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Abstract

Multicellular organisms require specialized cell types in order to function.
While a widely accepted definition does not exist, cell types are regarded
as groups of cells with similar properties, such as RNA expression, protein
abundance and epigenetic modification.

Single-cell RNA sequencing (scRNAseq) is a recent breakthrough for explor-
ing cell types, providing expression estimates for all genes in thousands of
individual cells. Using data-driven algorithms, such as unsupervised clus-
tering, scRNAseq has discovered new cell types and created large reference
data sets, next to other exploratory achievements. More recently, scRNA-
seq was applied to patient cohorts that include different groups, for example
disease and healthy or disease subtypes. These multi-sample multi-condition
data sets enable statistical inferences between groups, such as differential ex-
pression testing. In contrast to projects exploring unknown tissues or species,
patient cohorts often study known cell types defined by specific marker genes.

Here, I present Pooled Count Poisson Classification (PCPC), a novel cell
type classification approach designed for inference with multi-sample multi-
condition scRNAseq data sets. PCPC implements a statistical model that
allows researchers to distinguish cells according to marker-based cell type
definitions, enabling reproducible and comparable analysis between data sets
and technologies (e.g. scRNAseq and flow cytometry). Specifically, PCPC
pools marker gene counts across related cells to overcome technical noise,
and compares them to a user-defined threshold using the Poisson model.

In this work, I apply PCPC to three different data sets to demonstrate its
utility. The first application shows it is able to annotate all lineages in data
from human cord blood mononuclear cells (CBMCs), with a single marker
gene per cell type.

The second application shows PCPC is able to discriminate fine cell type sub-
sets, using data from a human tumor of mucosa-associated lymphoid tissue
(MALT). Many cell types in the MALT tumor microenvironment, and T cell
subsets in particular, are transcriptionally related, making their classification
difficult. In spite of this challenging complexity, PCPC can even use lowly
expressed marker genes, such as FOXP3 marking CD3E+CD4+FOXP3+ reg-
ulatory T (Treg) cells. Furthermore, I find Treg cells isolated from the MALT
tumor can further be subdivided into CCR7+ and ICOS+ subsets, indicating
a mixture of naive-like and activated Treg cells. In comparison to unsuper-
vised clustering and the marker-based tool Garnett, classification with PCPC
has more flexibility and fewer misclassifications, respectively. Thus, PCPC
removes obstacles in studying complex tissues with scRNAseq, such as the
microenvironment in human tumors.
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Furthermore, I demonstrate a multi-sample multi-condition comparison using
data from a patient cohort of aggressive and indolent lymphoma subtypes.
PCPC is applied to classify CD3E+CD8B+ cytotoxic T cells, followed by
differential expression testing between the aggressive and indolent subtypes.
This uncovers significantly lower LGALS1 expression in indolent tumors,
further implicating this gene in tumor aggressiveness and T cell inhibition.

Currently, PCPC requires data generated with unique molecular identifiers
(UMI), as well as substantial manual work. Due to its ability to resolve com-
plex tissues with few marker genes, PCPC may bring clarity to transcrip-
tomic cell type definitions and prove useful for multi-sample multi-condition
comparisons in scRNAseq data.
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Zusammenfassung

Mehrzellige Organismen bestehen aus verschiedenen, spezialisierten Zellty-
pen. Eine allgemein akzeptierte Definition dieser Zelltypen existiert nicht.
Sie werden aber als Gruppen von Zellen mit ähnlichen Eigenschaften ver-
standen, wie zum Beispiel RNA-Expression, Zusammensetzung der Eiweiß-
moleküle oder epigenetische Modifikationen.

Die Einzelzell-RNA-Sequenzierung (scRNAseq, von single-cell RNA sequen-
cing) markierte einen Durchbruch in der Erforschung von Zelltypen. Sie misst
die Expression aller Gene in Tausenden von Zellen. Durch die Anwendung da-
tengesteuerter Algorithmen, wie unüberwachtem Clustering, hat scRNAseq
die Entdeckung neuer Zelltypen und die Erschaffung großer Referenzdaten-
sätze ermöglicht. In neueren Studien wurde scRNAseq auf Patientenkohorten
angewandt, welche verschiedene Gruppen umfassen (z.B. kranke und gesun-
de Probanden oder verschiedene Krankheitsbilder). Durch den Vergleich ver-
schiedener Gruppen mit jeweils mehreren Patienten ermöglichen diese Daten-
sätze statistische Rückschlüsse (Inferenz), etwa die Ermittlung differenzieller
Genexpression. Im Gegensatz zu Projekten, die sich mit unbekannten Gewe-
ben oder Spezies befassen, untersuchen Studien mit Patientenkohorten häu-
fig bereits bekannte Zelltypen, die durch spezifische Gene, die Zelltypmarker,
definiert werden.

In dieser Arbeit stelle ich Pooled Count Poisson Classification (PCPC) vor,
eine neue Methode der Zelltypklassifizierung speziell für die Inferenz in scRNA-
seq-Daten mit mehreren Patienten und Gruppen. PCPC basiert auf einem
statistischen Modell, welches es Wissenschaftlern ermöglicht, Zellen nach
Zelltypmarkern zu unterscheiden. Dies ermöglicht wiederum eine reproduzier-
bare und vergleichbare Analyse zwischen verschiedensten Datensätzen und
Technologien (wie z.B. scRNAseq und Durchflusszytometrie). PCPC bün-
delt die Zellmarkerexpression verwandter Zellen, um technisches Rauschen
zu vermindern. Die gebündelte Expression wird dann unter Verwendung des
Poisson-Modells mit einem benutzerdefinierten Schwellenwert verglichen.

Ich wende PCPC in dieser Arbeit auf drei Datensätzen an, um zu zeigen, wie
die Zellklassifizierung funktioniert. Zunächst nutze ich die Methode, um alle
Zelltyplinien in einem Datensatz von mononukleären Zellen des menschlichen
Nabelschnurbluts (CBMCs, von cord blood mononuclear cells) zu unterschei-
den, mit nur einem einzigen Marker pro Zelltyp.

Des Weiteren kann PCPC feine Zellsubtypen in den Daten eines menschlichen
Tumors des Mukosa-assoziierten Lymphgewebes (MALT) auftrennen. Vie-
le Zelltypen in der MALT-Tumormikroumgebung (und insbesondere T-Zell-
Untergruppen) sind transkriptionell ähnlich, was deren Klassifizierung er-
schwert. Trotz dieser anspruchsvollen Komplexität kann PCPC sogar schwach
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exprimierte Zelltypmarker verwenden, wie z.B. FOXP3, welches CD3E+CD4+

FOXP3+ regulatorische T (Treg)-Zellen markiert. Außerdem können Treg-
Zellen aus dem MALT-Tumor weiter unterteilt werden, in CCR7+ und in
ICOS+ Untergruppen. Dies deutet auf eine gemischte Population aus nai-
ven und aktivierten Treg-Zellen im MALT-Tumor hin. Im Vergleich zu un-
überwachtem Clustering und dem markergestützten Programm Garnett zeigt
sich, dass PCPC mehr Flexibilität bei geringerer Fehlklassifizierung bietet.
Somit ermöglicht es eine genauere Untersuchung komplexer Gewebe mit
scRNAseq, wie z.B. der Mikroumgebung menschlicher Krebsgeschwüre.

Ich nutze außerdem eine Patientenkohorte mit aggressiven und indolenten
Lymphomen, um diese beiden Gruppen exemplarisch mit Inferenzstatistik zu
vergleichen. Für diese Demonstration werden CD3E+CD8B+ zytotoxische T-
Zellen mit PCPC klassifiziert, um sie danach auf differenzielle Expression zwi-
schen aggressiven und indolenten Subtypen zu untersuchen. Hierbei entdecke
ich eine signifikant verminderte Expression von LGALS1 in den indolenten
Lymphomen. Dies liefert weitere Hinweise auf eine bereits diskutierte Ver-
bindung zwischen LGALS1 mit Tumoraggressivität und T-Zellinhibierung.

Derzeit unterstützt PCPC nur Daten, welche mit eindeutigen molekularen
Identifikatoren (UMI, von unique molecular identifiers) erzeugt wurden. Au-
ßerdem muss der Wissenschaftler die Gene und ihre Schwellenwerte manu-
ell auswählen. Aufgrund seiner Fähigkeit, komplexe Gewebe mit wenigen
Zelltypmarkern aufzutrennen, ermöglicht PCPC aber eindeutigere Zelltyp-
deklarationen und hat das Potenzial, die Vergleiche mehrerer Patienten und
Gruppen in scRNAseq-Daten zu vereinfachen.
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How to read this thesis

• Figure axis. I omit axis annotations in UMAP embeddings, since
this single measure simplifies most figures in this thesis. If you are
unfamiliar with UMAP and feature plots, I highly recommend reading
the ‘UMAP’ paragraph in section 1.4 and all of section 2.2.

• Citation style. The ampersand (“&”) is used to concatenate sources
that have and have not undergone peer review (bioRxiv preprints, blog
posts and websites). Example: [1] & [2, preprint].

• Cellpypes. I encourage the reader to look at Figure 5.1 in section 5.2
ahead of time. It describes the cellpypes R package that I am currently
developing and which will simplify the classification approach described
in this thesis. The R package is unfinished and thus placed in the
outlook (section 5.1).

• I and we are used with purpose in this work. I is used whenever a
thought or analysis can be attributed solely to myself, and we when
other people contributed (most notably of course, my direct supervisor
Simon Anders).

• ‘Data’ is plural in the original Latin, but I follow the convention pro-
posed by the Guardian [3] and use singular verbs (‘Little data is avail-
able’), since they feel more natural than plural verbs (‘Little data are
available’).

• Footnotes give further explanations or anecdotal evidence that may be
of interest but is not backed by thorough analysis or literature sources.
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Chapter 1

Introduction

1.1 Single-cell RNA sequencing (scRNAseq)

Ribonucleic acid (RNA), and in particular messenger RNA (mRNA), is used
by cells to function according to the information stored in their genomes.
mRNA molecules encode the genetic information necessary to synthesize
proteins, and their abundance is therefore indicative of cell function. The
field of transcriptomics is the scientific discipline that studies mRNA abun-
dances of all genes in different cell types, tissues, species and conditions (such
as healthy / diseased, wild type / mutant, etc.). Until recently, microarrays
and RNA sequencing were the dominant techniques in transcriptomics. Both
microarrays and RNA sequencing profile gene expression in ‘bulk’, i.e. after
pooling thousands of cells. In contrast, modern protocols are efficient enough
to measure gene expression in individual cells [4–6]. This technology is known
as single-cell RNA sequencing (scRNAseq), and has revolutionized the field
of transcriptomics. Instead of exploring ‘bulk’ transcriptomes after sorting
cells experimentally, scRNAseq allows to sort cells in silico (i.e. during data
analysis) by their transcriptional similarities. This makes scRNAseq a pow-
erful technique to investigate cell-cell heterogeneity with unsupervised (data-
driven) algorithms. For example, the continuous transcriptional changes dur-
ing differentiation processes can be explored, as well as different cell states in
diverse biological settings (different organs, conditions, species, etc.). While
other single-cell ‘omics’ protocols are being developed (measuring the prot-
eome and/or epigenome instead of transcriptome, or even multiple of these
omics modalities – see [7] for an overview), scRNAseq remains dominant in
the ‘single-cell field’, in parts due to commercial adaptions (c.f. section 1.2).
Next to the proven potency of scRNAseq data, its high dimensionality and
technical noise are challenging to work with, requiring rigorous statistical
algorithms. For this reason, the single-cell field is as much a computational
discipline as it is an experimental one.
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1.2 From cell suspension to count matrix

Every scRNAseq experiments starts with a cell suspension, i.e. solid tissues
have to be digested enzymatically to dissociate cells from one another. In
this thesis, all analysis starts from the raw counts in the form of a gene-by-
cell expression count matrix. To go from single-cell suspension to this count
matrix involves the following steps:

1. Cell capture and cell lysis. To increase protocol efficiency, each cell is
captured in a small reaction volume, for example water droplets in oil
immersion [6], micro-wells [8, 9] or microtiter plates [5, 10–14].

2. Reverse transcription (RT), i.e. conversion of mRNA molecules to com-
plementary DNA (cDNA). It is generally accepted that RT is the limit-
ing step in scRNAseq protocols [1]. The success rate in 10x scRNAseq
has been estimated to be between 6 and 32%, depending on which ver-
sion protocol is used [13, 15, 16]. This means that only a third or less
of the mRNA molecules are successfully converted to cDNA, resulting
in sparse data (c.f. section 1.3).

3. Sequencing library. The cDNA is fragmented and tagged with sequenc-
ing adapters (typically from the commercial ‘TruSeq’ kit), which is done
in a single step (‘tagmentation’) in scRNAseq protocols to increase ef-
ficiency [17].

4. Read (pseudo)alignment and quantification. The raw sequencing files
are processed to count matrices with thousands of columns and rows,
which contain the measured transcript count for all genes and cells.
This step is often done with 10x CellRanger [18], which internally uses
alignment with the often used tool ‘STAR’ [19]. Several alternatives
to CellRanger exist, such as dropEst [20], as well as pseudo-alignment
tailored to scRNAseq data [21]. These methods, as well as CellRanger,
incorporate mechanisms to correct for sequencing errors, especially in
barcodes identifying cells and molecules (UMIs, see below).

Protocols to generate scRNAseq data fall into two categories, depending on
whether they use unique molecular identifiers (UMIs) (Figure 1.1, explained
below). The protocols with UMIs are most relevant to this thesis, and include
DropSeq [6] and its commercialization 10x Gemcode [22], next to others [8,
9, 13, 14, 23]. Non-UMI protocols are SMARTseq2 [5] and others [4, 10, 11,
24]. The major difference for data analysis is that data generated with or
without UMIs require different noise models (introduced in section 1.3). This
is because non-UMI protocols make it impossible to remove amplification
bias introduced during polymerase chain reaction (PCR). By contrast, UMI
protocols can identify PCR duplicates, as illustrated in Figure 1.1. The
scRNAseq protocol reagents destroy the cell, releasing RNA molecules from
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Figure 1.1: Unique molecular identifiers (UMI) count single molecules. The
read count in cell B is misleadingly high due to PCR duplicates; UMI counts
avoid this amplification bias. For simplicity the schematic shows only two
cells and a single gene. More details are in the main text. RT: reverse tran-
scription, PCR: polymerase chain reaction, poly(dT): stretch of around 30
deoxythymine bases, AAAAA: polyadenylation (of unknown length), RNA:
ribonucleic acid.

the lysed cells. The single-stranded oligonucleotides have a deoxythymine
stretch (poly(dT)) that binds polyadenylated RNA, enriching for mRNA
(ribosomal RNA is much more abundant but lacks polyadenylation). This
links the mRNA molecule to a sequencing adapter and a cell-specific DNA
sequence (‘adapter’ and ‘barcode’ in Figure 1.1, left), and importantly to the
molecule-specific UMI 1. After library preparation and sequencing, the read
counts contain PCR duplicates. In the example of Figure 1.1, Cell B has
misleadingly high read counts (UMI 3, red), masking expression differences
to cell A. This happens because PCR is a non-linear process, meaning a
single mRNA molecule gives rise to different numbers of sequencing reads for
each cell and gene. The final UMI counts (Figure 1.1, right) do not suffer
from PCR bias, because PCR duplicates can be identified and collapsed into
a single UMI count. This has implications for data analysis, as introduced
below (section 1.3).

I note that all data used throughout this thesis was generated with UMI
counts, as discussed in section 4.5. Until recently, UMI protocols had the
disadvantage that they only counted the ends of mRNA molecules, lacking
whole-transcript coverage. Of note, the recently published SMARTseq3 pro-
tocol [12] combines whole-transcript coverage with UMI counts, enabling the
removal of PCR duplicates as well as investigating isoform usage and allele
specificity.

1To understand oligonucleotide synthesis, I recommend the DropSeq paper [6]. In
general, 10x Genomics offers clear figures on their website as well.
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1.3 Statistical models for scRNAseq counts

The low transcript capture rate mentioned above, combined with the small
mRNA content of a single cell, result in sparse data. One illustrative ob-
servation is that scRNAseq data has the same characteristics as bulk RNA
samples after diluting it to the same, low concentration [25, Fig. 1 therein].
Kharchenko et al. [26] thoroughly described the high amount of zeros in the
data (around 80%) and an initially puzzling gap between zeros and non-zero
counts, making the data appear almost bimodal, if not binary 2. In these
early years, when only non-UMI protocols were available, the term ‘drop-
out’ was coined and is still used today, but with multiple meanings. In this
work, I refer to ‘drop-outs’ as zero sequencing counts when instead a non-
zero count had been expected. For example, all T cells are likely to have had
CD3E mRNA molecules at time of lysis, so observed zeros likely represent
‘drop-out’ events rather than indicating actual absence of mRNA molecules.
Important terminology in this context is that for cells with zero sequencing
counts, we can only say that the respective gene is not detected in the cell.
It is important to avoid claiming the gene was not expressed, as in no mRNA
molecules were present. This is because in scRNAseq data, zero sequenc-
ing counts can represent ‘true’ zeros (gene was not expressed and thus not
detected) or drop-outs (gene was expressed, but not detected).

The state-of-the-art of modeling scRNAseq data today is to use the Pois-
son distribution and its derivatives (allowing for over-dispersion, i.e. larger
variances than the Poisson) to directly model the raw sequencing counts 3.
The consensus to model non-UMI data is to use the zero-inflated negative
binomial (ZINB) distribution [27–31]. This model represents counts as a mix-
ture of a negative binomial distribution for detected values and a drop-out
component to model additional zeros in the data. This drop-out component
was implemented as a low-rate Poisson random variable by Kharchenko et
al. [26], while the more recent tool ZINB-WaVE uses the dirac function,
modeling a binary ‘decision’ between zero and non-zero count [27].

In contrast to non-UMI counts, data generated with UMIs are not zero-
inflated [32]. In other words, the number of observed zeros is not larger
than expected from the small amount of mRNA input material. Control
experiments without any biological variation show good agreement with the

2 This gap is generally accepted now to be due to amplification bias during library
preparation (non-UMI protocols only): Polymerase chain reaction is non-linear, i.e. the
amplification success can differ by a few orders of magnitude between cells and between
genes. Directly after reverse transcription, the difference between zero and non-zero values
might not be large, but amplification increases this difference. Therefore, the same gene
is not detected at all in some cells, while high numbers of sequencing counts are observed
in other cells.

3 Some algorithms model normalized counts instead of the raw counts. In this scenario,
the statistical distribution is unknown and has to be approximated, e.g. with the log-
normal distribution.
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Poisson model [32] & [33, preprint], with the exception of highly expressed
genes [33, preprint] (the authors speculate this is due to efficiency noise, i.e.
droplet-to-droplet differences in capturing efficiency). The Poisson model
therefore fits well in many settings [1, 32, 34] & [33, preprint]. In the presence
of strong biological variation (e.g. for heterogeneous cell types, or modeling
expression across multiple cell types), UMI counts are usually modeled as
negative binomial random variable [1, 35, 36]. This is because the negative
binomial distribution is overdispersed, i.e. allows for more variance than
the Poisson distribution. This is achieved with a Gamma-Poisson hierarchy:
Conceptually, expression strengths sampled from a Gamma distribution are
used as Poisson rates to model how sequencing counts were generated 4. I
note that also for UMI data, some methods use a log-likelihood ratio test
to determine whether ZINB is necessary or if the negative binomial model
suffices [36]. Thus, UMI data is modeled by Poisson, negative binomial or
ZINB, depending on how much biological variation is to be expected.

In summary, the state-of-the-art model for non-UMI data is to use a zero-
inflated negative binomial distribution (ZINB) [27], while standard negative
binomial or even Poisson are used for UMI data.

1.4 Frequent analysis steps

Here, I introduce important terms and analysis procedures, such as ‘total
UMI’, ‘feature plot’, normalization, PCA and UMAP. Once a count matrix
has been obtained (see section 1.2), the analysis steps listed here are applied
prevalently to scRNAseq data. They are shared by many commonly used
analysis tools, such as Seurat [37], Scanpy [38] or monocle2 [39].

1. Normalization. The number of sequencing counts typically varies
between cells by multiple orders of magnitude. To make expression
rates comparable between cells, the raw counts have to be normalized
to the total number of counts. To this end, the counts are often di-
vided by each cell’s sum of all (UMI) counts, which in this work I
will refer to as totals, total UMI or library size. In particular, I do
refer to the totals as ‘size factors’, to distinguish them from numbers
centered around 1. Other approaches to normalization include using
the geometric mean [40, Garnett] computed after masking all zeros, or
regressing the dependency of observed counts and a cell’s totals [41,
scTransform]. Following size-factor normalization, variance-stabilizing

4For this reason, the negative binomial distribution is also known as Gamma-Poisson
distribution. I note that in non-sequencing techniques that obtain continuous read-outs
instead of discrete sequencing counts, gene expression is modeled with a log-normal instead
of the Gamma distribution. With the correct parametrization, however, both distributions
are similar in shape and the Gamma distribution is analytically more tractable.
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transformations are applied. This aims at giving the same ‘influence’
on later processing steps to all genes, and typical choices are loga-
rithmic (‘log-normalization’ [42, Seurat vignette]) or square root-based
transformations such as Freeman-Tukey [33, preprint].

2. Filtering cells. This step is often termed quality control (QC). Most
typically, cells with extremely low or high totals are excluded, assuming
they are empty beads, cell-cell doublets or unwanted outlier cells. Also,
cells with high mitochondrial mRNA content are excluded, assuming
most cytosolic mRNA was leaked after cell damage.

3. Filtering genes. This step is also known as feature selection, and aims
at identifying genes with a variance exceeding the measurement noise.
Such ‘highly-variable genes’ contain biological information on top of the
technical noise [25]. Multiple methods have been formally proposed [1,
25, 43, 44], and many scRNAseq analysis tools use their own imple-
mentations. For example, monocle2 [39] and Seurat [37] both select
overdispersed genes according their own methods. I note that Seu-
rat [37] selects highly-variable genes after log-normalization, which has
been criticized [1], next to general concerns towards log-normalization
[45].

4. Principal component analysis (PCA) computes linear combina-
tions of the supplied features (genes), such that the first components
(new features) maximize the variance amongst the data points (cells).
While PCA formally rotates the coordinate system, preserving all in-
formation in the data, discarding later components with lower variance
effectively reduces technical noise [46] & [33, preprint]. This is because
biological variation is expected to accumulate in the first few compo-
nents with the highest variance, since biological variation is often larger
than technical noise and on top correlated among genes. Typically, the
first 20 to 50 components are retained in practice, and the exact num-
ber is often chosen by the user after exploration [42, Seurat vignette].
As input for PCA, it is common to use gene expression values after
normalization, transformation, centering and scaling. Alternatively,
GLM-PCA [1] is a statistical generalization so that PCA can directly
operate on raw UMI counts.

5. Nearest neighbors. For each cell, the k-nearest neighbors (kNN) are
identified from pairwise cell-cell distances. This is an important step,
since kNN are used for most analysis end-points, such as clusters and
UMAP embeddings (see below). Mathematically, kNN information can
be represented in a nearest neighbor graph, where each cell is a node
that is connected to its kNN with edges. This representation is used in
UMAP, clustering (see below) and also the classification tool presented
in this thesis (see chapter 3). In scRNAseq, kNN are typically found
using the Euclidean distance computed on the PCA embeddings.
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6. UMAP and tSNE embeddings. scRNAseq data is finally visual-
ized with non-linear embedding methods (non-linear meaning that the
transformation can not be represented in mathematical matrix nota-
tion). Instead, UMAP [47] and tSNE [48] use nearest-neighbor graphs
(introduced in section 1.7.2) to create low-dimensional embeddings (2D,
most typically) where cells with similar transcriptomes are placed into
close proximity of each other. I note that distances within these em-
beddings are arbitrary and controlled by UMAP’s spread and min_dist
parameters. In particular, cell-cell distances in UMAP embeddings are
not quantitative due to the non-linear nature of the algorithm. An early
comparison between UMAP and tSNE suggested UMAP was faster and
better at preserving global structure for scRNAseq data [49]. However,
tSNE is able to preserve global structure when parameterized correctly
[50] and runs faster than UMAP since the introduction of FItSNE [50,
51]. One common application of UMAP or tSNE embedding are ‘fea-
ture plots’. Coined by the Satija lab [42, Seurat vignette], the term
‘feature plot’ denotes embeddings colored by the expression strength
of a single gene. This thesis contains many such feature plots, as they
are crucial when assigning cell type labels to cells.

7. Clustering. Clustering cells by transcriptomic similarity is introduced
thoroughly in section 1.7.2. In the presence of differentiation processes
or similar transcriptomic gradients, pseudotime (computed e.g. with
Monocle2 [39]) can be a more goal-oriented alternative to using discrete
clusters.

1.5 Inference with scRNAseq data sets

Inference and exploration are two branches of statistics, and Figure 1.2 gives
an overview over their role in scRNAseq data analysis. Exploring data in-
volves visualization, clustering and other unsupervised algorithms. Inference
aims at generalizing from the observed samples (patients, mice, cell culture
dishes, etc.) to the wider population (all patients, mice or cell culture dishes).
Put in simple terms, exploration generates hypotheses, while inference tests
them 5. The differences between inference and exploration are central to the
classification approach I propose in section 3, so I introduce related termi-
nology in the following.

scRNAseq is most notorious for its capability of unsupervised exploration.
Indeed, several large atlas projects have already been completed to this end:
Tabula muris [52], the mouse cell atlas [8], the mouse nervous system [53],

5 Inference uses statistical hypothesis testing, for which a full introduction is beyond
the scope of this work. Briefly, a hypothesis is compared to a simpler alternative, the null
hypothesis, in terms of how likely both were to ‘generate’ the observed data.
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Typical
results

Ideal
Study
design

Tools

Goals

Data analysis for single-cell RNA sequencing data

Exploration Statistical inference

● Hypothesis tests comparing conditions
(treatment/control, aggressive/indolent)

● Unsupervised algorithms 
(clustering, UMAP embeddings)

● Multi-sample multi-condition studies
● Clear case-control design

● Large-scale atlas projects profiling
a novel disease, organ or species

● Differential gene expression  (DE) 
between conditions

● Descriptive ‘expression landscapes’ 
(clusters and their markers)

● Novel cell types

● Generalize observations on the 
given samples (a few individuals)
to the population (all individuals)

● Data-driven analysis that is independent 
from prior knowledge (‘unbiased') 

● Hypothesis generation

Figure 1.2: Exploration and inference with scRNAseq data. Their differences
in goals, tools, study design and results call for separate cell type classifica-
tion methods, as argued in this thesis. Multi-sample mutli-condition studies
are also referred to as ‘cohort’. The bullet point in each category are non-
exhaustive examples.

the malaria parasite [54], the brain of fruit flies [55], and the (yet to be fin-
ished) human cell atlas [56]. In a few cases, the major exploratory goal of
discovering novel cell types has been achieved [57–59]. In recent years, a
new trend has entered the field: Cohort studies started using scRNAseq for
group comparisons, i.e. with inference instead of exploration as main goal.
For example, Schirmer et al. [60] compared post mortem brain tissue sam-
ples of 21 patients with and without multiple sclerosis. The same research
group did a similar comparison for autism spectrum disorder [61], with 31
patients (half of which with autism, the other half were control individuals).
A similarly large cohort was recently reported for inflammatory bowel dis-
ease, obtaining scRNAseq data for 18 patients with ulcerative colitis and 12
control individuals. Other diseases were studied in similar, although smaller,
cohorts. I myself have recently contributed to a study in which patient sam-
ples from aggressive lymphomas were compared to indolent and tumor-free
control samples (12 patients in total) [62]. Azizi et al. profiled eight breast
cancer patients with scRNAseq [63]. For half of them, tumor-free breast
tissue was included, which can be used for paired comparisons of cells from
healthy and malignant tissues. Another small cohort used scRNAseq on five
lung tumor patients, four of them with healthy control tissue [64].
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These cohort studies pursued the same general computational strategy: find-
ing cell types by transcriptomic similarities, comparing the same cell type
across two conditions and reporting the inference results (most prominently,
lists of differentially expressed genes). Thus, as Crowell et al. put it in
their ‘muscat’ manuscript [65], cell type classification methods in this con-
text are “in silico sorting approaches for multi-subpopulation multi-sample
multi-condition scRNAseq datasets” [65]. In the past years, the experimental
units were not samples (patients, mice or other batch units), but instead indi-
vidual cells [65]. This ‘pseudoreplication’ leads to misleadingly low p-values
(for example with hundreds of genes with p � 0.05), because the biological
question was asked imprecisely. Specifically, inference aims at generalizing
from a few observations (few patients) to the wider population (all patients).
The intended and biologically meaningful population in the scRNAseq cohort
setting would be samples (patients, mice, etc.), not cells, so samples have to
be the experimental unit in statistical testing. To discriminate differential
testing on cells from that on samples, Crowell et al. [65] refer to the latter
as ‘differential state’ analysis.

I now clarify the terminology used in this thesis. In contrast to Crowell et
al. [65], I refer to multi-condition multi-sample comparisons as differential
expression testing, not differential state. I will use it repeatedly as primary
example for inference questions addressed with scRNAseq cohorts. In this
thesis, such studies will often be referred to as inference-oriented studies,
because their goal is more the comparison between treatment groups than
the cell type discovery through exploration of large atlas data sets.

In contrast to differential gene expression between conditions, and of little
significance to my work, ‘marker gene identification’ is the process of com-
paring clusters within samples using cells as experimental unit. The p-values
are, as in pseudoreplication above, often misleadingly low. The problem here
is not ‘pseudoreplication’, but instead the circularity of the test: Differences
in gene expression are first used to define clusters, but then tested for the
null hypothesis that they do not exist. A procedure to avoid this circularity
has been proposed [66], but I note again that differential expression testing,
not marker gene identification, is the question addressed in this thesis.

In summary, inference with scRNAseq cohorts are an unsolved problem that
requires novel statistical frameworks [65]. Inference (such as differential gene
expression) is orthogonal to assigning cell type labels [65], otherwise p-values
are unreliable due to the circularity [65, 66]. In this work, I argue that not
only the statistical tests for inference, but also the cell type classification
method itself requires innovation. I propose a novel method for inference-
oriented cell type classification, which I motivate in more detail in section
3.1. The method I propose is conceptually related to gene smoothing, and
aims at assigning cell type labels, so I introduce these two fields in the next
two sections.
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1.6 Gene smoothing and imputation

In this section, I introduce existing smoothing and imputation methods for
scRNAseq expression values. I note that in my work, the smoothed expres-
sion is not a goal on its own, but instead is used for the binary decision
of whether a cell is positive for a gene or not. This is in contrast to the
existing methods, which often seek to improve data quality in general. The
intend of this multi-purpose smoothing is to have a positive impact on down-
stream analysis such as UMAP, clustering, gene-gene correlations, and oth-
ers. The circularity of improving a data set with the very same data set has
been pointed out by Andrews et al. [67], who also showed for the major-
ity of these methods to introduce false signals, such as spurious correlations
between genes [67]. Therefore, results obtained with the denoised counts
produced by the methods I now introduce require extra caution to avoid
over-interpretation.

To avoid confusion, I find it necessary to define the terms smoothing, denois-
ing and imputation, because they are used interchangeably by some authors
in the context of scRNAseq gene expression [67–69]. Throughout this the-
sis, I refer to imputation as the process of replacing zeros by more likely
values. Specifically, imputation does not alter non-zero expression values.
This is in contrast to smoothing or denoising, which I use interchangeably
here. In smoothing, all values are replaced by more likely expression values,
irrespective of whether they were zero or non-zero values.

Imputation The existence of drop-out events [26] sparked the development
of imputation methods, such as CIDR [70], DrImpute [31] and scImpute [71],
and has most recently even been addressed with autoencoders [72]. Of note,
these methods assume that non-zero (detected) values do not require any
correction. In reality, however, there is no fundamental difference between
zero and non-zero counts: they both arise from the same noisy measurement
process. A more recent practice is therefore to smooth all values, rather than
imputing only the ‘missing’ values.

MAGIC One of the first smoothing methods was MAGIC [68], which
smooths gene expression across nearest neighbors. The data sparsity makes
Euclidean distance noisy, so in order to find a cell’s k nearest neighbors
(kNN) more precisely, MAGIC assumes a diffusion process. Conceptually,
random walks are simulated from a given cell to all other cells. This random
walk can make the nearest neighbor assignments more precise: Technical
noise produces random neighbor edges (c.f. 1.4) between two cells, while
biological signal gives rise to systematically connected neighbors. Diffusion
processes in scRNAseq data emphasize these systematic connections, because
true neighbors are also connected to the neighbors of neighbors [73]. The dif-

19



fusion principle had previously been adapted for scRNAseq to compute better
low-dimensional embeddings (see the destiny package [74]), and has more re-
cently been applied for label transfer between scRNAseq samples with Conos
[73] (introduced further in section 1.7.3). While conceptually related, diffu-
sion algorithms such as MAGIC do not directly simulate individual random
walks in practice. Instead, they adapt the simpler mathematical solution
described in [74]. Specifically, the transition probability from one cell to its
neighbors is computed as an exponential function of the Euclidean distance
to these neighbors. By computing the nth power of this cell transition matrix
(‘Markov transition matrix’ in [68]), the probability to ‘walk’ from one cell
to all others with n steps is computed. Gene expression is then smoothed by
multiplying the normalized gene expression matrix with this cell-cell transi-
tion matrix, which contains the transition probabilities from all cells to all
other cells after a random walk with n steps. In other words, a weighted
average for gene expression is computed across the kNN as defined by the
diffusion process. I note that the authors of MAGIC call this imputation [68],
but it clearly is smoothing by the terms used in this thesis, because non-zero
values are also altered. The goal of smoothing with MAGIC is to improve
downstream analysis such as UMAP and clustering [68]. Furthermore, the
authors propose to investigate the expression and correlation of lowly ex-
pressed genes, such as transcription factors [68, Fig. 5 therein]. This is not
without the risk of overinterpretation: a few or even single expressing cells
might be enough to suggest strong correlation after smoothing. Such spuri-
ous correlations are artifacts introduced by all existing smoothing methods
[67], and MAGIC in particular [35].

kNN-smoothing 1 and 2 kNN-smoothing and kNN-smoothing 2 are
more recent methods [33, preprint] that also average the expression pro-
files of nearest neighbors, with a special emphasis on how these neighbors
are found. While MAGIC uses a diffusion process, the kNN-smoothing algo-
rithms take an iterative approach. Each cell is first averaged with its closest
neighbor, and these minimally smoothed transcriptomes are used to again
find kNN for each cell. Then, the first three kNN are averaged for each cell,
and again the kNN information is refined. In each step, more neighbors are
used until a preset value is reached. The authors claim that alternating be-
tween kNN search and kNN averaging makes the smoothing more precise.
To compute Euclidean cell-cell distances for the kNN search in each step, the
first kNN-smoothing algorithm uses normalized gene expression, while kNN-
smoothing 2 uses the PCA embedding. This is the only difference between
version 1 and 2 [33, page 10, preprint], and helps to resolve highly related
cell types that differ in only a few genes. The authors find that hierarchical
clustering, which performs poorly on scRNAseq data, produces sound re-
sults after smoothing the entire transcriptome (more precisely: 1000 highly
variable genes). Furthermore, manual thresholding of smoothed marker gene
expression can be used to identify major blood lineages (T cells, B cells, den-
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dritic cells and monocytes). Finally, the authors observe that the smoothed
transcriptomes are more compact in PCA space than the original ones, and
note that stronger dependencies between cells are introduced with increasing
smoothing bandwidth (number of kNN). In line with this, Andrews et al. [67]
report smoothing artifacts introduced by kNN-smoothing. As for MAGIC,
they note that kNN-smoothing is circular because it aims at improving a
given data set with the very same data set. In this process, Andrews et al.
remark that “no new information is gained, making it analogous to simply
lowering the significance threshold of any statistical test applied to the data”
[67]. In other words, kNN-smoothing introduces many false-positive findings
in downstream inference tests (gene-gene correlations, cell-type markers and
differentially expressed genes) [67]. I note that the kNN-smoothing approach
has not passed peer review since the preprint was published two years ago.

Autoencoders: DCA, scVI and SAVER-X One last group of smooth-
ing methods employ neural networks in the form of autoencoders. DCA [36]
is a classical autoencoder, i.e. a neural network that tries to reproduce ob-
served data as accurately as possible with the constraint of representing all
cells with only a small number of latent features. Architecturally, an autoen-
coder has a middle layer with only a few artificial neurons, where the exact
number is a hyperparameter to be optimized and depends on the data set
complexity. In one example, the authors chose DCA’s ‘bottleneck layer’ to
contain 32 neurons for the data set under study [36]. Thus, the network is
trained to reconstruct the observed expression of thousands of input genes
as accurately as possible in its output layer, while being forced to represent
the cells as 32-dimensional latent vector in its middle layer. These 32 arti-
ficial features (‘latent variables’) are thus forced to capture different aspects
of variation in the data, and neural networks are able to do so in a non-
linear way 6. The output layer represents smoothed gene expression values,
because the autoencoder’s low-dimensional bottleneck forces it to focus only
on the strongest signals, because the abundant but uncorrelated noise can
not be accommodated in the limited information encoded in a few (dozen)
bottleneck neurons. Since biological variability is typically stronger and ad-
ditionally correlated, in contrast to random technical noise, the autoencoder
is expected to denoise by encoding mostly these relevant cell-cell variations
while discarding unwanted variation. Andrews et al. [67] also report strong
artifacts in gene expression values smoothed with DCA, for the same circu-
larity reasons as for MAGIC and kNN-smoothing.

scVI [69] also uses neural networks to represent cells in low-dimensional latent
space. In contrast to DCA, gene expression smoothing is only one of several
tasks it is designed for, next to clustering, differential expression testing

6Non-linear means in this context that a change in gene expression is not necessarily
proportional to a change in the latent variable’s value. In contrast to linear methods such
as PCA, non-linear operations can not be represented by matrix notation.
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and data set integration (batch effect removal). I note that as in the case
of MAGIC, the authors of scVI use the term ‘imputation’ contrary to the
definition of this thesis, according to which it should be called ‘smoothing’
because non-zero values are also changed. I note that scVI was not tested for
false signals by Andrews et al. [67] because it had not been published yet.
Still, it provides transcriptome-wide gene smoothing without introducing any
new information, which makes it likely to also introduce artifacts as the other
methods.

SAVER-X is designed to smooth gene expression data more robustly by us-
ing information from related reference data sets [30]. The algorithm is the
successor of SAVER and is also smooths gene expression by predicting it
from correlated genes. These gene-oriented approach is a key difference to
kNN smoothing methods such as MAGIC and kNN-smoothing 2. Specifi-
cally, SAVER-X [30] trains an autoencoder on external data (the ‘X’ is for
external), to learn weights for the gene-gene correlations. This is in contrast
to its predecessor SAVER, which uses penalized regression (the LASSO) to
regress gene UMI counts on other genes as predictors. The autoencoder of
SAVER-X is implemented using the DCA library, and perhaps for this rea-
son also uses 32 neurons in the bottleneck layer. The reference data sets for
training are ideally related to the ‘query’ data set that is to be denoised.
Conveniently, multiple data sets can be used from human, mouse or both
(relying on 15,494 homologous genes). While only UMI data sets can be
denoised, SAVER-X can train the autoencoder on non-UMI data. In this
case, they use transcripts per million (TPM) and use the ZINB likelihood,
even though TPM are continuous rather than discrete counts. In the bench-
marking paper by Andrews et al. [67], SAVER-X has not been included
yet. Its predecessor SAVER introduced less spurious correlations than other
methods [67], and the authors hope that SAVER-X breaks the circularity
of transcriptome smoothing by adding external information in the form of
reference data sets [30].

Other smoothing approaches I again point out SAVER [35], which I
briefly introduced together with SAVER-X in the previous paragraph. By
regressing the gene of interest with other genes as predictors, SAVER does not
rely on kNN information at all. Perhaps for this reason, Andrews et al. [67]
find that SAVER introduces fewer artifacts than other transcriptome-wide
smoothing approaches [67]. Of note, SAVER not only returns the smoothed
expression values, but also estimates of their uncertainty [35].

Finally, there are more computational methods that are conceptually related
to smoothing of scRNAseq data. For example, MetaCell [75] aims at increas-
ing the signal-to-noise ratio by creating ‘mini-bulks’. For this, it finds highly
related cells and pools their raw UMI counts, in order to obtain MetaCells -
fewer than the original cells, but with larger library sizes and thus less tech-
nical noise. Other approaches attempt to iteratively smooth and cluster the
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data [76–78].

Summary and reference to my work What unites all smoothing ap-
proaches described above is their ambition to provide continuous expression
values for the entire transcriptome. The goals of smoothing are often non-
specific and thus rather extensive: Improving UMAP, clustering and finding
correlations between weakly expressed genes are frequently named as motiva-
tion. As pointed out by Andrews et al. [67], smoothing introduces artifacts
into the data, so the denoised expression values should be used with cau-
tion. Here, we use gene expression smoothing with a very specific goal in
mind: For a few selected marker genes, we want to determine which cells are
positive or negative for these markers. This binary decision does not make
any guarantees for the derived continuous expression values, but instead uses
it as a proxy to quantify uncertainty when assigning cell type labels. This
is in contrast to the existing approaches, which are multi-purpose, whole
transcriptome smoothing methods.

1.7 Assigning cell type labels in scRNAseq
data

Here, I introduce cell type classification methods from the single-cell omics
field. To organize the ever-increasing number of algorithms, I group classifi-
cation methods by their core principles as follows. The largest body of tools
assumes that clusters are cell types, which would mean the classification task
reduces to finding optimal groupings of cells with an unsupervised algorithm.
The second group extends this idea by transferring cell type labels from a
reference data set, typically annotated using clustering, to a new query data
set. Methods from the last group are independent from clusters: They either
use gene expression signatures (dozens of genes or more), or they elect to
work with a minimal set of marker genes. This last category of methods is
conceptually most related to my own work and its small size already shows
the need for novel ideas. I start this chapter, however, with a short review
of the cell type concept itself.

1.7.1 The cell type concept

The cell type concept is not clearly defined and often debated [79, 80]; for
a collection of different opinions see for example [81, comment]. It has been
proposed to assign cell identity based on phenotype, lineage and state [82].
Another opinion is to introduce a kind of ‘periodic table’ for cell types. As
periods, groups and isotopes are used in the periodic table of the chemical
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elements, it is proposed to use lineages, differentiation stages and cell states
analogously [83]. Others propose to label cells according to (major) cell type,
developmental state, activation status, function and signaling pattern [84].
In practice, the criteria to define cell types evidently depend on the meth-
ods used. For flow cytometry (“FACS”), a few protein surface markers are
hand-selected, while researchers that employ sequencing technologies tend
to use genome-wide cellular states (scRNAseq, ATACseq, etc.). Those with
a preference for imaging and lineage tracing assays have argued that these
molecular phenotypes are secondary to ontology [85], i.e. that a cell’s an-
cestry and tissue of origin are the decisive criteria for assigning cell types.
For the field of evolutionary biology, the homology between species has been
proposed as central criterion to define cell types [86]. Taken together, this
global perspective on cell biology suggests a rather subjective nature of cell
type definitions. A more goal-oriented approach is to use the more general
term ‘subpopulation’, defined as any group of cells for which it is interesting
to ask inference questions [87]. Here, a typical inference question is for ex-
ample to find differential gene expression between conditions. In my work, I
adhere to this goal-oriented scheme of cell type definitions.

1.7.2 Labels from clusters

The idea that clusters are cell types and vice versa is so prevalent in the
scRNAseq literature that both terms are often used interchangeably. Indeed,
several methods have been developed specifically to take clusters and find
corresponding cell type labels [88], naturally assuming a direct mapping be-
tween them. Also, in a recent comparison, cell type classification methods
are evaluated based on how well they recapitulate clustering results reported
in the original papers [89]. I note that this concept of assuming clusters equal
cell types has limitations, which I point out at the end of this section.

Clustering algorithms for scRNAseq data can be divided into four groups,
which I will introduce in turn by discussing representative methods for each
in the following. Briefly, the four groups formulate the clustering objective
differently. k-means and its derivatives consider the density in feature space.
Hierarchical clustering considers only the cell-cell distances. Graph-based
clustering also uses cell-cell distances to build a nearest neighbor graph, on
which the communities (clusters) are then detected. For modularity-based
algorithms, this graph-based community detection works by considering the
density of graph edges. The forth group is a heterogeneous collection of
methods, some employing deep learning, others smoothing and yet others
gene-regulatory networks for clustering. For the distance-based algorithms
(hierarchical and graph-based), I note that a popular metric is the Euclidean
distance computed on the PCA embeddings. Other metrics in use for scRNA-
seq data are the cosine similarity and Pearson distance (1 minus Pearson
correlation), which are formally not distance functions because they do not
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fulfil the triangle inequality.

k-means clustering Methods relying on k-means clustering include SC3
[90], RaceID [91] and SIMLR [92]. A recent review [46] mentions k-means
as the most popular clustering technique, but I disagree due to the unbro-
ken popularity of Seurat [37] and Scanpy [38]. k-means clustering computes a
user-defined number of k centroids in feature space (typically gene expression
or PCA embeddings). Cells are assigned to the closes centroid, centroids are
recomputed and this process is iterated until convergence. The result often
depends on the random initialization of centroids, and so k-means algorithms
have to be re-run multiple times to avoid local minima. Classical k-means
tends to find equally-sized populations [46], and several adaptions were tay-
lored for scRNAseq data. For example, RaceID includes outlier detection,
so that rare cell types are also identified [91]. SIMLR also uses k-means
[46] and has proposed an improved distance measure adapted for scRNAseq
data [92]. SC3 uses consensus clustering [90] across different pre-processing
steps. Specifically, different distance metrics are used, and cells are grouped
together if they were nearest neighbors in many different settings.

Hierarchical clustering Hierarchical clustering is now rarely used for
scRNAseq data. SINCERA is an early pipeline designed for non-UMI data
[93], which uses hierarchicl clustering with Pearson correlation. As Kise-
lev et al. [46] point out in their review, however, hierarchical clustering is
prohibitively slow on large data sets, because computation time increases
quadratically with the number of cells [46]. Also, it does not perform well
on the noisy distances derived from scRNAseq data, which is why several
improvements have been proposed. CIDR imputes zero expression before hi-
erarchical clustering, i.e. replaces zeros with continuous values [70]. pcaRe-
duce [94] recomputes PCA after each merging of groups. It thus uses multiple
iterations to ensure smaller populations can be detected in spite of technical
noise [46]. Furthermore, hierarchical clustering can be used on smoothed
expression data [33, preprint].

Graph-based clustering Many popular methods for scRNAseq data anal-
ysis [18, 37, 38, 40] use graph-based clustering. Here, the nearest neighbors
of each cell are identified and represented in graph notation, i.e. a list of
edges that connect nodes (cells). The simplest kNN graphs are unweighted,
i.e. with binary edges (1: neighbors, 0: not neighbors), and undirected (if
cell A is a kNN of cell B, the inverse is assumed to also be true). Clus-
ters are then detected using community detection algorithms on the kNN
graph. Popular algorithms for community detection on neighbor graphs are
the Louvain [95] and Leiden [96] algorithms. For a good description of these
algorithms, see also [97, predecessor of Leiden]. Both Louvain and Leiden
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maximize the ‘modularity’, which compares the observed with the expected
density of edges within communities [95, 96]. The modularity can be defined
with [96, Leiden] or without [95, original Louvain] a resolution parameter. In
particular, the original Louvain algorithm [95] had a resolution limit, which
resulted sometimes in over-sized and/or poorly connected communities [96].
This was improved with the introduction of the resolution parameter [97, 98]
& [99, preprint], for which the user can select smaller values to obtain more
communities and vice versa. In modern implementations (Seurat [37], Scanpy
[38]), the Louvain algorithm with this resolution parameter is used, while the
classical version without it can still be found in tools using the igraph R pack-
age, such as Garnett [40]. Another improvement for graph-based clustering
that is used by Seurat [37], Scanpy [38] and also Garnett [40] is the concept of
shared nearest neighbors (SNN). As noted by Seurat’s authors [42, vignette],
SNN were introduced to scRNAeq data by PhenoGraph [100] and SNN-cliq
[101]. For this, conventional kNN are first found, typically with Euclidean
distance in PCA embeddings. SNN are then computed as the overlap of
these. For example, Seurat and Garnett both use the Jaccard index and 20
kNN as default ([42, vignette] and [40]), which means that for each pair of
cells the number of shared kNN is divided by 20 and used as edge weight in
the SNN graph. The rationale of SNN is that they are more robust in high
dimensions than conventional kNN [101]. Other methods relying on graph-
based clustering are for example Scanpy [38], a python analysis workflow,
CellRanger [18], 10x alignment and pre-processing pipeline, Garnett [40], in-
troduced further in section 1.7.4, monocle [39], an analysis workflow with a
focus on pseudotime computations, and SCCAF [102], which proposes self-
projection clustering to find ideal clusters. In general, graph-based clustering
has the property that the number of clusters does not have to be specified
by the user, in contrast to k-means. Still, the popular Leiden and modern
Louvain algorithms have the resolution parameter, to determine cluster size
indirectly. I note that when applied to scRNAseq data, undirected graphs
are commonly used but not necessarily appropriate. For example, outlier
cells would not be among the first few neighbors of their neighbors, which is
ignored by undirected edges.

Other clustering approaches Next to k-means, hierarchical and graph-
based clustering, more unsupervised algorithms exist that do not fit into any
of the above categories.

For example, SCENIC [103] derives gene-regulatory networks for clustering.
Specifically, SCENIC computes for each cell the activity of so called regulons,
and then clusters on regulon activity instead of gene expression data. Reg-
ulons are found by correlating the expression of known transcription factors
with various genes. Significant correlations are filtered by requiring the tran-
scription factor binding motif to be enriched in proximity to the gene body.
The output of SCENIC is a binary matrix with regulon activity (active or
not) for each cell, which can be used as input for clustering. The authors
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note that linking many genes by the transcription factors that regulate them,
SCENIC can overcome the sparsity of the data [103]. Several tools that use
gene regulatory networks for scRNAseq data exist, see [104] for a review, and
two recent benchmarking papers [105, 106].

Moana [78, preprint] is conceptually similar to clustering since it is purely
data-driven. Moana uses kNN-smoothing 2 [33, preprint] to first aggressively
smooth transcriptomes. Here, aggressive means using a large bandwidth, i.e.
Moana pools UMI counts from 128 kNN during this step [78, supplementary
methods, preprint]. This is followed by manual inspection of the first two
principal components (PCs) computed on the smooth transcriptomes. If at
least two distinct populations are evident, density-based clustering (using
DBSCAN) is used for an initial grouping of cells on the first two PCs. The
initial cell labels obtained this way are used as training labels for a support-
vector machine (SVM) with linear kernel. In real data sets, these initial cell
labels typically correspond to major cell lineages (e.g. T, B and myeloid
cells) [78]. Further subtypes (T cell subsets, etc.) can then be separated by
repeating these three steps (smoothing, PCA, SVM) for each subpopulation
separately. The authors claim this works well even for integrating data sets,
due to the excessive smoothing. In summary, Moana thus automates labeling
training cells for an SVM classifier applied to PCA embeddings. It can be said
that this original approach uses supervised learning (SVM) in a completely
unsupervised setting (training cells come from DBSCAN after smoothing
and PCA). I note Moana has not passed peer review since the preprint was
published three years ago.

It has also been proposed to identify clusters and cell types using neural
networks [107]. Interestingly, a recent paper implemented different architec-
tures and reports that deep learning does not outperform classical machine
learning [108] on the cell type classification task. The authors note that cell
types are rather simple, rule-based conventions and thus the complexity of
non-linear neural networks might not be required to solve it.

Multi-omics protocols and clustering For explorative single-cell stud-
ies, another group of algorithms is of particular interest. Seurat [109], MOFA+
[110] and a few other approaches [111, 112, MATCHER, LIGER] are able
to integrate different modalities measured with multi-omic protocols. For
example, the same protocols measures transcriptome and surface proteome
for the same cells [113–115, CITEseq, REAPseq, BioLegend totalSeq], oth-
ers measure transcriptome and chromatin accessibility [116–118, sci-CAR,
SNARE-seq, 10x Multiome], or even the two with DNA methylation on top
as third molecular layer [119, scNMTseq]. In order to separate this type of
multi-omics data from having multiple, independent data sets using differ-
ent omics protocols, the Satija lab coined the term ‘modalities’ to denote
transcriptome, proteome, chromatin accessibility, etc. from the same indi-
vidual cells. For an extensive overview of published protocols, see [7]. As
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a representative example, I now discuss the weighted-nearest neighbor ap-
proach (WNN) published together with Seurat v4 [120]. Specifically, nearest
neighbors are first identified separately on the available modalities (transcrip-
tome, surface proteome, chromatin accessibility, etc.). The WNN method
then weights the two modalities by estimating for each cell which neighbor
graph has exclusive information. This is possible by the following obser-
vation described by the authors [109, preprint]: if a cell’s kNN computed
on the transcriptome are remote neighbors according to the proteome, but
not vice versa, this means the proteome has exclusive information for this
particular cell that the transcriptome is lacking. For this cell, the proteome
receives a larger weight than the transcriptome. The resulting WNN graph
thus automatically focuses on the modality with the better signal-to-noise
ratio.

Clustering limitations The core idea that clusters equal cell types has
obvious limitations. For instance, a recent blog post points out that not all
clusters are ‘real’ [121], i.e. can arise due to artifacts from modularity opti-
mization instead of true biological cell types. Perhaps most importantly, the
cell type concept itself is not clearly defined, and as introduced above, other
disciplines use criteria other than the molecular states. Grabski et al. [2,
preprint] show that removing or adding cells at random to a data set results
in less or more clusters, which makes a direct correspondence paradoxical
since the number of cell types is of course unchanged. Furthermore, Seurat
v4 paper shows that a single modality is not enough to separate some highly
related cell types: Multi-omic protocols that combine scRNAseq with surface
proteome (e.g. CITEseq / TotalSeq protocol) or ATACseq (10x Multiome
protocol) were necessary to resolve finer cell types with highly correlated
transcriptomes (T cell subsets, dendric cells and other myeloid cells) [120].
For single-omic studies (using conventional scRNAseq protocols), this means
that the given data does not necessarily offer fundamental cell groupings that
clustering can identify. Instead, cell types are simplifications researchers use
to understand complex biological systems, and as such they are discussed
rather than discovered. This last thought is a key contribution of my work
and fundamental to the method I propose here, as will become apparent in
section 3. I will introduce below that this topic is heavily debated. For now,
I refer the reader to a collection of opinions from established reasearchers of
different fields on the topic of how to define cell types [81, comment] and
quote the Satija lab: “Deep biological understanding requires more than a
taxonomic listing of clusters” [122].

1.7.3 Label transfer from reference data sets

A popular avenue for cell type classification is to use reference data sets to
annotate a new ‘query’ data set. I start by describing methods harnessing
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references of transcriptomic profiling in bulk. This is followed by various
methods using scRNAseq references, which includes a group of methods that
use kNN graphs. Other methods apply neural networks for label transfer,
and are even able to transfer labels from other sequencing technologies such
as scATACseq.

Transfer from bulk reference SingleR [123] and scMatch [124] use bulk
RNAseq or microarray data from sorted populations to annotate cell types in
query scRNAseq data sets. scMatch finds for each cell the bulk sample with
the highest correlation of gene expression or ontology terms, and assigns the
corresponding label. SingleR has refined this strategy. Using the ImmGen
data base for mouse and Blueprint Epigenomics as well as Encode for human,
SingleR is able to access hundreds of bulk samples for dozens of immune cell
types. For each individual cell, Spearman correlations are computed with
these pure cell type transcriptomes. Immune cells have rich data bases, so
SingleR is able to use multiple bulk samples per cell type, making this first
step with Spearman coefficients more robust. For each cell, the top ranking
reference cell types are used in a second round, again computing Spearman
coefficients and this time using only the genes whose expression differs be-
tween the high-ranking reference cell types. I note that this approach relies
on the existence of rich transcriptome data bases, so does not necessarily
apply to cell types other than immune cells. I note that the Azimuth website
by the Satija lab is conceptually similar [125]. Azimuth uses Seurat’s integra-
tion methods (see below) to annotate novel data sets with known atlases. At
time of writing this thesis, the supported tissue types were human PBMCs
and pancreas, as well as motor cortex from human and mouse.

Transfer from scRNAseq references Similar reference-based approaches
using scRNAseq also exist, for example CHETAH [126]. In a first step,
CHETAH computes average transcriptomic profiles for each cell type in the
reference data. Using hierarchical clustering with Spearman correlation,
these averaged reference transcriptomes are arranged into a classification
tree. In the second step, the hierarchical classification tree is traversed for
each cell, always following the branch with higher Spearman correlation. At
a given branching point, the top 200 genes discriminating the two possible
paths are used, for an enhanced signal-to-noise ratio. Of note, when the cor-
relations are low for both branches, CHETAH stops at an intermediate node.
Thus, CHETAH can label these cells with intermediate labels and for some
applications the user can choose to leave them unassigned. This handling of
an ‘outgroup’ is in contrast to clustering algorithms, which assign all cells to
one group or another.

scPred [127] computes principal component analysis (PCA) on the labeled
scRNAseq reference data sets. It selects PCs that contribute significantly
to separating the different cell types, and trains a support vector machine
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(SVM) with radial kernel on these discriminatory PCs. To annotate a given
query data set, scPred applies the same normalization, centering, scaling and
PCA transformation as for the training data. It then predicts cell types using
the trained SVM. As CHETAH, scPred is able to assign cells as unassigned
when the SVM is unable to confidently assign them to any cell type.

Grabski et al. [2, preprint] propose a Naive Bayes-like classifier, pre-trained
on 216 cell types from PanglaoDB. I note that version 1 of their preprint
still mentioned the Naive Bayes algorithm, while the current version does
not although it is still inspired by the concept. The core question of their
approach is: what is the probability that a cell is of class k given its ex-
pression profile and the expression profiles of known cell types? Grabski et
al. [2] model gene expression as Poisson random variables where the Poisson
rates are either drawn from a log-normal distribution with larger mean (on)
or one with lower means (off-high from a log-normal, off-low from an expo-
nential distribution. This hierarchy of log-normal / exponential and Poisson
is highly familiar to using negative binomial random variables, i.e. a hierar-
chy of Gamma and Poisson distributions. The goal of this model is to find
a ‘barcode’ of latent variables that for each cell and each gene can take the
values on, off-high, off-low. The authors argue that this latent representation
of a cell is robust to batch effects and noise. Importantly, Grabski et al. [2]
then use 3,389,679 cells from PanglaoDB to derive distribution parameters
and the latent variables for 218 cell-types. This yielded 6,996 genes that are
useful to discriminate cell types. A query data set can then be classified using
Bayes rule, linking the class probabilities to the Poisson likelihoods. I note
that this approach has not passed peer review at time of writing, meaning
that it is still in the state of a preprint.

Graph-based label transfer Graph-based methods are a common ap-
proach for label transfer. The goal is to find nearest neighbors across data
sets, so that cell type labels can be transferred from reference to query data.
To this end, unwanted variation has to be removed while preserving the vari-
ation of interest (cell type differences). Examples for unwanted variation
are technical batch effects, even for data stemming from different laborato-
ries and sequencing protocols, and biological differences due to age, organ,
disease, species or natural heterogeneity between individuals. Below I in-
troduce selected methods but note that many more exist [73, 122, 128–134,
scVI, Scanorama, BBKNN, Conos, Seurat, Harmony, scMerge and LIGER,
MNNcorrect]. Of note, there is no objective way to discriminate wanted from
unwanted variation. Indeed, a recent paper comparing integration methods
points out that a trade-off exists between preserving biological heterogeneity
and removing batch effects [135]. Different tools differ in how this choice
is realized. Once the different samples have been integrated and are mixed
well within clusters, cell type labels can be transferred from an annotated
reference to query samples.
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One example for this graph-based approach is Conos. It is based on the obser-
vation that mutual nearest neighbors between two samples are more reliable
than conventional nearest neighbors [134]. However, spurious neighbor edges
can still arise without a true correspondence [73]. Thus, inter-sample neigh-
bor edges that mark true biological relations between data sets are mixed
with spurious edges that represent noise. Conos relies on the assumption
that valid inter-sample edges connects communities that are in turn densely
connected by many within-sample edges. By mixing inter- and within-sample
edges, Conos builds a joint graph. For this, it takes the ‘alignment strength’
parameter, where the user can force stronger or weaker alignment by chang-
ing the number of mutual nearest neighbors that should be used between
data. I note that this parameter represents the trade-off mentioned above,
namely between removing noise and retaining biological variation. Once the
joint graph has been found, this shared representation can be used for clus-
tering with Louvain, Leiden or the hierarchical walktrap algorithm [73]. If
one of the data set has cell type labels, Conos propagates them with a dif-
fusion process along the joint graph. I note that Conos not only propagates
discrete labels such as cell type annotations, but can also propagate continu-
ous values and thus is able to smooth gene expression. Of note, more samples
make Conos more sensitive, meaning that increasingly rare cell types can be
detected as more samples are profiled with scRNAseq [73]. In other words,
data integration with methods such as Conos are particularly well-suited for
exploratory questions, such as the identification of rare cell types.

As for clustering of a single sample (see above), Seurat is a popular tool for
label transfer as well. An initial contribution from the Satija lab was to use
canonical correlation analysis (CCA) and dynamic time warping to align two
samples [37]. Like PCA, CCA is a feature coordinate transformation based
on singular value decomposition. It finds components that maximize the cor-
relations between both samples, effectively focusing on the shared biological
signals in the data. Once CCA has found a shared embedding, the sam-
ples are aligned along this embedding using dynamic time warping. Clusters
can then be determined on this batch-corrected feature space. Using this
strategy, samples from different sequencing protocols, treatment groups or
individuals can be integrated [37]. To refine this strategy further, Seurat
version 3 included the mutual nearest neighbor concepts by Haghverdi et
al. [134]. Specifically, Seurat finds ‘cell anchors’ between data sets using
the MNN concept, and uses these to compute a correction matrix, as pro-
posed by [134]. I note that the earlier CCA approach had the problem that
integration results depended on which sample was chosen as starting point
for integration - the reference sample. In Seurat version 3, this problem is
replaced by computing CCA embeddings between all pairs of samples, and
then iteratively merge the most similar data sets (sharing most anchor cells).
I note that this elaborate, time-consuming approach has alternatives. For ex-
ample, Harmony [131] is wrapped by Seurat, meaning it can be used directly
in the Seurat workflow, replacing the elaborate CCA approach.
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Transfer with deep learning scANVI [136] is the successor of scVI [69];
and VI stands for variational inference, a technique to solve intractable
Bayesian posterior computations [136]). Both scVI and scANVI use neural
networks to find a low-dimensional embedding of cells, the so called latent
variables. Specifically, the model used by both tools considers gene expres-
sion as ZINB random variables with covariates for the sample (patient, mouse
or any batch unit), the sequencing depth and biological variation. The latter
is captured as a low-dimensional vector (10 dimensions in the scVI paper
[69]) of Gaussians, representing the latent variables used for cell type iden-
tification. During training, the neural networks used by scVI and scANVI
find a non-linear mapping between the latent variables and the ZINB param-
eters (mean, dispersion and drop-out probability). This is achieved with the
autoencoder principle, i.e. the network is challenged with the task of restor-
ing the original data while being forced to reducing it to ten dimensions in
its bottleneck layer (see also DCA introduced in section 1.6). I note that
the scVI paper never mentions the term ‘autoencoder’ but still employs this
principle, as also noted by a recent scVI adaption by Svensson et al. [137].
scVI and scANVI are able to integrate multiple data sets at once. If one of
them is annotated with cell type labels, these can be transferred with either
methods. scVI takes a simple approach, where the majority vote amongst
the labeled kNN decides the cell type label of unannotated cells. scANVI
takes a more rigorous approach, using a Bayesian semi-supervised approach,
c.f. [136, also Appendix Note D therein].

Another deep learning method to label transfer is scGCN [84]. Like Seurat
and Conos, scGCN starts by finding mutual nearest neighbors on CCA com-
ponents to build a neighborhood graph with intra- and inter-sample edges.
A graph convolutional network (GCN) then projects both data sets into the
same latent space, using three convolutional layers. Next to this hybrid gr-
aph embedding, scGCN can integrate individuals, data sets from different
single-cell omics technologies and species.

scArches aims at making label transfer with deep learning portable [138].
Specifically, the trained neural network is applied to novel data sets directly,
so raw data do not have to be shared. The users can update the reference
network again by providing their own data, and share the thus improved
weights further, while keeping their unpublished data sets private.

Reference to my work I consider label transfer from annotated reference
data sets a powerful approach to exploration. Indeed, it has been noted that
as more scRNAseq data sets become available, label transfer methods will
make exploration more and more powerful [84]. In my work, I am interested
in inference, for which cell type annotation has different requirements, as I
point out in the course of this work. Briefly, integrating data sets comes with
the trade-off between removing batch effects more aggressively and keeping
more nuanced biological signals. Also, the core concept still is to use clus-
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tering results as cell type labels, which has the same limitations pointed out
in section 1.7.2. I will thoroughly discuss this in context with my own work
in chapters 3 and 4.

1.7.4 Labels from known marker genes

Cell-ID, CellAssign, SCINA, Garnett and the Naive Bayes-like approach by
Grabksi et al. focus on the expression of cell type-specific genes 7. In this
work, I refer to cell-type specific genes as marker genes or cell type markers.
These genes are usually overexpressed by the corresponding cells (positive
markers), but sometimes cell types are specifically marked by the absence
of expression (negative markers). I also use the term gene signature here to
denote a list of marker genes, as done for example by Cell-ID [140, preprint].
Marker genes or signatures can be obtained from data bases such as MSigDB,
KEGG, the Gene Ontology (GO), Reactome, PanglaoDB or CellMarkers. Al-
ternatively, gene lists derived from microarrays or bulk RNAseq of sorted cell
populations can be used, or the genes are manually curated by the investi-
gator [141].

CellAssign CellAssign [141] works directly on raw UMI counts. The user
provides a binary matrix, where 1s and 0s encode which genes (rows) mark
which cell types (columns). It then fits negative binomial distributions to
the raw UMI counts of single cells, one for each cell type and marker gene.
Elegantly, it only assumes that a cell type overexpresses its marker genes
compared to other cell types, but infers the exact amount from the data. It
can also accomodate covariates, such as the sample of origin (e.g. patients).
CellAssign employs Expectation-Maximization (EM) to find the maximum
likelihood solution for cell type assignments and parameters of the negative
binomial distributions. Briefly, the M-step computes the distribution param-
eters (mean and dispersion for each gene) from all cells currently assigned
to a cell type. This is followed by the E-step, where the cell type assign-
ments are computed from the fitted negative binomial distributions (i.e. the
probabilities for a cell to belong to each class). After randomly initializing
cell class assignments, the EM algorithm alternates E-step and M-step until
convergence. Due to this random initialization, CellAssign has to be re-run
several times after which the solution with the highest marginal likelihood is
chosen. I note that using the raw UMI counts requires either highly expressed
genes (high detection rate in the cell type it marks) or a long list of genes.
Otherwise, most cells will have zero values in all markers as is typical for
scRNAseq data, preventing cell type assignment altogether. Consequently,

7A few other tools can take marker genes for cell type annotation, such as scID [139].
I do not introduce them here in more detail because they have a different core philoso-
phy. scID, for example, can use a reference scRNAseq data set for label transfer and is
introduced in the previous section for this reason.
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almost all examples the authors provide in the CellAssign paper use dozens
of genes [141, Table S2 therein].

SCINA SCINA [142] shares many concepts with CellAssign. For example,
it also fits mixture models to gene expression using the EM algorithm. Fur-
thermore, it only uses the provided marker genes for cell type assignments, so
like CellAssign ignores much of the information available in scRNAseq data.
In contrast to CellAssign, SCINA supports negative markers by simply in-
verting their expression values (multiplication with -1). Still, CellAssign is
more rigorous in taking the structure of scRNAseq data into account. Firstly,
SCINA fits Gaussian mixture models to log-normalized expression. This is
in contrast to the existing noise models I introduced in section 1.3, which
would use negative binomial models for UMI data and zero-inflated models
for non-UMI data. And secondly, SCINA assumes perfect bimodality, i.e. all
negative (positive) cell types are assumed to express at the same low (high)
level. CellAssign, in contrast, estimates one gene mean for each cell type.
I furthermore note that the authors of SCINA call it a semi-supervised ap-
proach because because the marker genes represent prior knowledge, which
is in contrast to the usual definition of combining some labeled data with
much unlabeled data.

scSorter scSorter takes two aspects into account when assigning cells to
classes. First, it gives higher class probabilities to cells with higher expres-
sion of the respective marker genes. And second, it computes the classes’
current average expression profiles and gives higher probability to cells closer
to respective centroid. Thus, scSorter adds k-means clustering to the marker-
based strategy used by CellAssign and SCINA. Instead of using mixture mod-
els like these two methods, scSorter solves an optimization problem which
computes for each marker gene two expression means: the background’ (µ
in [143]), and the expression of the marked cell type (µ + δ in [143]). Like
SCINA, scSorter assumes a single mean for all cell types that are not marked
by the gene of interest (‘background’ expression). In order to assign cell
type classes, scSorter’s optimization procedure then also takes each cell’s
distance to the different class centroids into account. These centroids are
computed from all highly-variable genes that are not user-supplied marker
genes. Thus, in contrast to CellAssign and SCINA, scSorter makes use of all
the information available in scRNAseq data sets. The user can fine-tune the
optimization with a single parameter that weights how much both aspects,
marker genes and whole transcriptome, contribute during the optimization.
Of note, scSorter had to solve the ‘outgroup’ problem: what happens to
cells that do not match any cell type definitions supplied by the user? After
the optimization converged, scSorter excludes cells which have a low propor-
tion of the respective marker genes expressed at high levels. Furthermore, it
uses the centroid expression profiles to exclude outgroup cells. For this, it

34



computes the z-score for all variable non-marker genes, squares these values
and uses the χ2 distribution to exclude cells that are further away from this
centroid than expected by chance. With these two steps, optimization and
outgroup detection, scSorter was able to tell apart major cell types in diverse
tissues such as brain, lung, pancreas and blood. For this, the authors used
between 3 and 12 markers per cell type, with a few exceptions [143, supple-
mentary material]. I note the scSorter paper is somewhat in conflict with
existing knowledge on the structure of scRNAseq data. First, the authors at-
tribute the expression noise mostly to biological heterogeneity, downplaying
the widely accepted impact of technical noise [143, Fig. 1 therein]. And sec-
ond, they do not explicitly model any distribution, in contrast to CellAssign
(which uses negative binomial on raw UMIs).

Garnett Garnett is designed for the “rapid annotation of cell atlases” [40].
It uses elastic net regression, which is a family of penalized regression meth-
ods that also includes ridge and Lasso regression. In contrast to CellAssign,
SCINA and scSorter, this is a classical supervised method, requiring training
data. Since labeled data are tedious to obtain for scRNAseq data, Gar-
nett uses a heuristic to find representative cells for training. Specifically,
Garnett first uses ‘term frequency-inverse document frequency’ (TF-ID) to
transform the expression values of supplied marker. Using TF-ID is to avoid
dominance of highly-expressed markers over more specific but lower marker
genes. As heuristic defense against non-specific nuisance expression, values
below a certain threshold are next set to zero 8. Then, Garnett sums the
transformed values for all markers of a certain class, and cells in or above
the 75th percentile are chosen as training cells. Using these training cells,
Garnett trains a logistic regression classifier with elastic net. Specifically,
regularized regression on genes is used to predict the classes of all labeled
cells. The regularization term avoids over-fitting by shrinking the gene co-
efficients, focusing on predictive genes. Garnett uses the glmnet R package
internally and follows a hierarchical approach: first, major cell types are sep-
arated (e.g. T, B and myeloid cells), followed by classifying subtypes (e.g.
helper and cytotoxic T cells) separately for each of the major classes. For
this, the user writes and maintains a marker file with definitions that include
class names, marker genes and parent class. This is in contrast to CellAs-
sign, SCINA and scSorter, where the user input can be represented by a
simple binary matrix with genes in rows and cell types in columns, instead
of the tree-like structure used by Garnett. The hierarchical approach has
the advantage that Garnett can fall back to high-level cell type labels (e.g.
T cell) when a cell can not be assigned to any daughter class (e.g. helper
or cytotoxic T cell). Once trained, a classifier (more specifically: the gene
weights for a linear predictor of discrete cell type labels) can be transferred to

8 The threshold is 25% of the 95th percentile of TF-ID value. The authors explain that
highly expressed markers can leak into the expression of other cells during the sequencing
protocol, but this strategy of course also corrects true biological ‘leaky’ expression.
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new data sets. With this approach, Garnett performed well on human lung
cells after being trained on murine data. Also, Garnett can be applied to
‘gene activity scores’ derived from scATACseq data, but then assigned only
about half of the cells correctly. Like scSorter, Garnett has proposed a way
to solve the outgroup problem, i.e. how to identify cells that do not fit to
any of the supplied cell type definitions. For this, Garnett clusters a random
selection of cells with the Louvain algorithm on a SNN graph, and selects the
same number of cells from each cluster to represent the outgroup. This is to
ensure that the outgroup is not dominated by the most abundant cell type.
With their approach, the authors of Garnett report moderate labeling suc-
cess (mostly between 50 and 80%, depending on the data set), and aim their
method at the ‘rapid annotation of cell atlases’ [40, paper title]. The authors
observe that Garnett struggles on complex data sets [40, Fig. S9 therein],
i.e. whenever cell types are highly related. After my own experience with
Garnett, I note that another limitation lies within the heuristic that iden-
tifies representative cells for training. Specifically, a marker gene can only
be used by one class without creating conflict. To make a concrete example,
the gene PDCD1 (aka PD1) can only be used to identify PD1+ cells in a
single cell type, but can mark subsets of both cytotoxic and helper T cells
[according to my own observations]. Lastly, I point out the difference in phi-
losophy to other tools. The authors of Garnett propose to curate a data base
of pre-trained classifiers, while other methods (CellAssign, SCINA, scSorter)
implicitly suggest to curate lists of marker genes themselves.

Cell-ID Cell-ID [140, preprint] is strikingly different from other methods in
this section. It can operate completely unsupervised, and also do reference-
to-query label transfer. Still, it is included here instead of the above sections
because it also has a key focus on finding a few marker genes to assign cell
type labels. Cell-ID first ranks genes by how strongly they are associated with
each cell in the query data set, and tests for each cell the gene enrichment
in known gene signatures (e.g. from data bases or reference data sets). If
no signatures are supplied, it allows the user to explore the de novo gene
signatures. Technically speaking, genes are ranked by their association with
cells based on a low-dimensional embedding that is shared between cells
and genes. This shared embedding is computed by multiple correspondence
analysis (MCA). With MCA, genes specific for a cell are embedded into close
proximity to that cell. Of note, if a marker gene is not detected in a cell at all,
it can still be highly ranked for that cell due to it’s expression in neighboring
cells. The extracted Cell-ID signatures are transferable between batches and
have value in their own right: they offer excellent cell type definitions. When
the user supplies known gene expression signatures, Cell-ID can also assign
cell type labels directly. Due to the transferable nature of gene signatures,
Cell-ID can also do label transfer from an annotated reference data set. For
this, it matches cells from the query data set with the Cell-ID gene signatures
in the reference data set (either individual cells, or groups of cells). I note
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this method has not passed peer review yet.

Summary and limitations of marker-based approaches To sum up
this group of methods, marker-based approaches are promising avenues to cell
type classification. One advantage of marker-based approaches is that, unlike
clustering, they do not assign all cells but instead estimate the uncertainty
in class assignments. Also in contrast to clustering and label transfer, it
has been noted [144] that marker-based assignments make use of established
knowledge from the literature, i.e. cell type markers. This is important to
connect novel findings from scRNAseq studies to ‘legacy knowledge’ [80],
i.e. results reported in the literature that were based on flow cytometry,
imaging or other marker-based approaches. Perhaps most importantly, cell
type definitions are more useful if a small number of markers is used to define
cell types, as noted in recent blog posts [121, 145, blog posts]. These so
called ‘actionable cell types’ [145, blog post] are simple and transferable, and
therefore enable downstream experiments for validation and deeper biological
understanding. While marker-based tools require the researcher to provide
lists of marker genes, these can often be obtained readily from the literature
or data bases such as PanglaoDB, CellMarkers or pathway data bases (e.g.
MSigDB, GO, Reactome, KEGG, Wikipathways) [140, preprint].

Before marker-based methods can be routinely applied in scRNAseq cohort
studies, further improvements are necessary. For example, they all use a
rather large number of marker genes. CellAssign takes dozens of genes [141,
Table S2 therein], and even the authors of scSorter used between 3 and 14
markers per cell type, with a few exceptions [143, supplementary methods].
These are large numbers when considering the technologies commonly used
for validation experiments: Flow cytometry and imaging usually are easiest
with a handful of markers, and more than a dozen is hardly feasible for many
laboratories. For SCINA and scSorter, I furthermore note that they currently
have no way of including different patients into their models. scRNAseq co-
hort studies profile dozens of patients already today (e.g. [60, 61]), so it is
crucial for marker-based methods to work across many different individuals.
In this context, I furthermore note that it is unclear whether the cell type
definitions used by current marker-based methods (marker files or binary
gene-class matrices) are flexible enough to accomodate the heterogeneity of
diseased individuals. For example, cancer cells are known to down-regulate
prominent markers, and these can be different between patients or even be-
tween clones from the same patient (for example antibody light chains in
[62]). Finally, marker-based methods have so far only been shown to work
on discrete, well-separated cell types. For example, they are often tested by
classifying the major cell types in lung, pancreas and blood [40, 143], such
as T, B, myeloid, endothelial and glia cells and neurons. For all marker-
based methods tested, a recent report found they all struggle on complex
tissues, i.e. when cell types have correlated transcriptomes [40, 89, shown for
SCINA, Garnett and DigitalCellsorter]. I note neither the original method
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publications, nor this last benchmarking paper ventured into diseases such
as cancer, where highly related T cell subsets are present - thus, it is likely
their performance on these would be rather poor. Taken together, scRNAseq
studies that have inference, not exploration, as their main goal – such as
cohorts comparing two groups – call for novel marker-based methods that
overcome above limitations.

1.8 Aims and relevance of this thesis

Single-cell RNA sequencing (scRNAseq) provides transcriptomic information
for thousands of individual cells from a given sample. It has been applied
to explore gene expression variability [146] and differentiation processes [39],
to discover new cell types [57–59], and to study heterogeneous subpopu-
lations in large atlas projects [8, 52–56]. A more recent development are
cohort studies [60–64, 147], in which scRNAseq data from multiple patients
are compared between different disease conditions (healthy controls, differ-
ent treatments, indolent or aggressive tumor subtypes, etc.). In contrast to
purely exploratory scRNAseq studies, these multi-sample multi-group multi-
subpopulation comparisons aim at inference, i.e. statistical hypothesis tests.
For example, differential gene expression testing between treatment groups
is a typical inference goal, and lists of differentially expressed gene a typical
inference result [65]. To allow biological interpretation and contextualization
of such results, the cell type classification used for inference has special re-
quirements: First, it should connect well to legacy knowledge generated from
marker-based approaches such as imaging and cell sorting [80]. Second, it
should be amenable to validation experiments [145, blog post]. And third,
the classification method should be able to separate fine cell type subsets in
spite of their highly correlated transcriptomes. No existing method currently
meets all three of these prerequisites. Briefly, classification methods either
require large numbers of marker genes (CellAssign [141], SCINA [142]) or
are unable by design to incorporate prior knowledge (graph-based clustering
with Seurat [37] or Scanpy [38]).

In this thesis, I set out to address these issues. I develop a novel marker-
based classification method for scRNAseq data, called Pooled Count Poisson
Classification (PCPC). To apply it, a researcher starts with marker-based cell
type definitions, such as CD3E+CD4+FOXP3+ for regulatory T cells, and
picks expression thresholds to extract cells of the corresponding cell type. By
sharing information across related cells, Pooled Count Poisson Classification
(PCPC) can use even weakly expressed marker genes to identify cells of the
corresponding cell type. With a single marker gene per cell type, PCPC is
able to separate major lineages of blood cells (such as T and B lymphocytes).
With four markers or less per cell type, PCPC also resolves highly complex
tissues such as a tumor microenvironment, including for example fine subsets
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of regulatory T cells. Thus, PCPC provides simple, clear and falsifiable cell
type definitions that are ideal to obtain and communicate inference results
from multi-sample multi-condition multi-subpopulations studies. To illus-
trate this use case, I apply PCPC to a recently published cohort of lymphoma
patients profiled with scRNAseq. With PCPC, I classify cytotoxic T cells
as CD3E+CD8B+ cells and find genes for which the expression depends on
the aggressiveness of the harboring tumor entity. The goal of PCPC is that
results from such an analysis can be summarized in concise, testable state-
ments, in this case: CD3E+CD8B+ cells from aggressive tumors have higher
expression of the gene LGALS1 than those from indolent tumors. For these
reasons, PCPC has the potential to prove useful in communicating infer-
ence results from scRNAseq studies, complementing exploratory approaches
(e.g. clustering and data integration). At the same time, PCPC provides a
language to discuss and debate cell types themselves in health and disease.
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Chapter 2

Methods and Data sets

All analysis in this thesis was done in R version 3.6.3 or 4.0.0. To en-
sure reproducibility upon re-executing R scripts, I used base R’s set.seed
function directly before all non-deterministic computations, in particular:
Truncated principal component analysis with irlba, neighbor search with
RcppAnnoy (version 0.0.18) and UMAP with uwot (version 0.1.9). The lat-
ter requires also to set the number of computer processors n_sgd_threads
to 1 in order to ensure reproducible UMAP embeddings. I describe all meth-
ods thoroughly here, but for convenience the R scripts processing MALT,
CBMC and lymphoma data sets are available to the Anders group in my
dataMisc R package (data miscellaneous) on the university’s scientific data
storage (SDS), and are available upon request to everyone else (felixfrauham-
mer@gmail.com). I note in particular the following scripts of the dataMisc
package: malt_preprocess.R, malt_preprocess_singlets.R, cite_preprocess.R
and lymphoma_preprocess.R, currently stored in the private repository http
s://github.com/FelixTheStudent/dataMisc and on the SDS. I have also
written the scUtils package that is available on CRAN https://cran.r-p
roject.org/package=scUtils, which can be used to generate feature plots
and compute col/rowsums of sparse matrices. I note that the SDS drive
also has data packages for the multiple sclerosis data in [60] (dataMS) and
the autism spectrum disorder cohort [61] (dataASD). As the dataMisc pack-
age, these two contain the raw UMI counts, the nearest neighbors, UMAP
embeddings and clusterings for the data sets, amongst other things.

2.1 scRNAseq analysis workflow

The following workflow was applied to CBMC and MALT data (see next
sections for data set details).

1. Filtering genes. Genes were used for downstream analysis (namely
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PCA) if they were expressed in more than 10 cells (or 0.1% of all
cells, whichever number is larger) and if their variance-mean ratio
(VMR) was more than 1.5-fold higher than the Poisson expectation
Ξ = 1

N

∑
j

1
sj
, where sj is a cells total UMI count. Deriving Ξ is de-

tailed elsewhere.

2. Normalization and transformation. Raw UMI counts were di-
vided by the cell library size sj (total UMI), followed by square root
transformation for variance stabilization. Feature plots (i.e. UMAP
embeddings colored by gene expression) also show the normalized and
transformed values.

3. Principal component analysis (PCA). For PCA, normalized and
transformed genes were scaled and the first 60 principal components
computed with the prcomp_irlba function from the irlba package (ver-
sion 2.3.3). Briefly, the rationale behind retaining only the first few
components is that this denoises the data [33, preprint] & [46]. Biolog-
ically relevant variation is expected to be correlated and therefore to be
captured by lower components, while noise is random and expected to
be represented by higher components. Also, truncated PCA computes
faster (see irlba package documentation). Thus, I chose 60 components
1 in the MALT, CBMC and lymphoma data sets.

4. k-nearest neighbors (kNN). 50 kNN were approximated with Rcp-
pAnnoy (version 0.0.18). Euclidean distances computed on the first 60
components were used.

5. UMAP embeddings were computed from the 50 kNN with the uwot
package (version 0.1.9), by setting parameter X to NULL and provid-
ing the kNN IDs and distances as list to the nn_method parameter.
Furthermore, I set spread=20 and min_dist=1 as this results in less
dense UMAP embeddings, which improves feature plots and other vi-
sualizations 2. The same values of spread and min_dist were used for
CBMC, MALT and lymphoma data sets.

6. Louvain clusters were computed with igraph (version 1.2.6). For
this, an undirected graph was constructed manually in R as symmet-
ric binary matrix (known as adjacency matrix) and passed to the gr-

1 I note that inspecting a scree plot (plotting component variance over component rank)
is widely used instead, which suggested fewer PCs (e.g. 12 for CBMC data). However,
I have anecdotal evidence that choosing too few components performs poorly (CBMC T
cell subsets only separate with 18 or more, not with 12 components), while including more
than necessary is not harmful (UMAP embeddings with 30 and with 60 PCs look virtually
identical as judged by eye). My rule of thumb is thus to exclude hundreds or thousands
of the high-noise components, while the exact number appears to have little impact for
performance. I speculate the reason is that lower components have higher variance and
thus contribute more to Euclidean distances used for the k nearest neighbors (kNN) search.

2 Informally, I note this creates embeddings that resemble those computed with tSNE
when run with default parameters.
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aph_from_adjacency_matrix function. I note this implementation of
Louvain has no resolution parameter (see section 1.7.2).

2.2 Feature plots

In this thesis, I use the term ‘feature plot’ for two-dimensional embeddings
(from UMAP, tSNE, etc.) that are colored by the expression of one gene
per plot. I note this usage of ‘feature plot’ was coined by Seurat and its
developers [42]. Clear feature plots are crucial for Pooled Count Poisson
Classification (PCPC), and in the following I describe how ggplot2 (version
3.3.2) was used to create them. Of note, I have implemented them in the
scUtils package available through CRAN (version 0.1.0) as well. Feature
plots in this thesis use ggplot2’s coord_fixed function for a fixed axes aspect
ratio. To avoid overplotting, I compute less dense UMAP embeddings (using
spread and min_dist as described in section 2.1) and choose a small point
size in plots (between 0.3 and 0.5, depending on the data set). The raw UMI
counts were divided by the total UMI for each cell (or neighborhood, for
smoothed expression) and zeros were replaced by the one tenth of the smallest
non-zero value. For coloring, scale_color_viridis from viridis (version 0.5.1)
and viridisLite (version 0.3.0) was used with log2 transformation and the
closed breaks implemented in scUtils. Briefly, closed breaks guarantee the
minimum and maximum values are labeled in the color legend, and that
labels are human readable.

For the lymphoma cohort feature plots, the following extra steps were taken:
All points were plotted with transparency (alpha=0.1), except for the cyto-
toxic T cells (CD3E+CD8B+, alpha=1.0). To make overexpression clearer,
non-zero expression was plotted on top of zero expression.

2.3 Doublet removal

For the results in section 3.3.3, doublets were removed as described in the fol-
lowing. After doublet removal, the same analysis workflow as above (section
2.1) was applied to the remaining 6629 cells in order to find kNN, Louvain
clusters and UMAP embedding. Doublet removal steps: 1200 synthetic in
silico doublets were simulated, each by pooling the UMI counts of two cells
selected at random from the MALT data. Raw UMI counts of doublets
and MALT cells were concatenated and 50 kNN were computed with the
above workflow (section 2.1). The percentage of doublets amongst the 50
kNN was computed for synthetic doublets and measured cells, and visual-
ized as histogram. Based on this, I excluded 1783 cells with more than 5
synthetic doublets amongst its 50 kNN (>10% of neighborhood, blue in Fig-
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Figure 2.1: Potential
doublets removed
from MALT data.
is_dblt=TRUE (‘is
doublet’) shows cells
for which the pro-
portion of simulated
doublets amongst 50
kNN is more than 0.1
(10%).

ure 2.1), leaving 6629 cells for further analysis (red cells). To sanity-check
this approach, I confirmed that most synthetic doublets would also have been
detected with this threshold (1110 out of 1200, or 92.1%), see also Figure 2.1.
Furthermore, the excluded cells were mostly located centrally in the UMAP
embedding within groups of cells that were double-positive for lineage mark-
ers (CD3E, MS4A1 and others, not shown), and otherwise were scattered
randomly amongst all cell types.

2.4 CBMC data

The CBMC data generated by Stoeckius et al. [113] were downloaded from
path/GSE100866_CBMC_8K_13AB_10X-RNA_umi.csv.gz (transcriptome)
and path/GSE100866_CBMC_8K_13AB_10X-ADT_umi.csv.gz (proteome),
where path is ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE100nnn/GSE1
00866/suppl. As internal control for the CITEseq protocol, Stoeckius et al.
included murine cells, and I excluded 612 cells with more than 10% of murine
UMI counts from both messenger RNA (mRNA) and protein data.

RNA processing The 50 kNN of each cell, Louvain clusters and a UMAP
embedding were computed with the workflow introduced above (section 2.1).
I note the CBMC data were generated by somewhat overloading the 10x
machine with cells [113], resulting in many doublets and multiplets 3. The

3In this thesis, I define multiplets as droplet barcodes (‘cells’) that express markers
from more than two cell type lineages. I note that capturing many multiplets from soluble
cells by random chance is unlikely. Private communications with researchers from the
field suggest that they might instead arise due to antibody aggregates ‘glueing’ multiple
cells together, and would thus be specific to the surface proteome protocols (CITEseq,
TotalSeq, REAPseq).
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way PCPC reacts to the presence of many doublets and multiplets is of
interest, which is why I did not attempt to remove them when generating
the results in section 3.2.

Protein processing I manually annotated cell types based on the surface
proteome and denote the resulting labels as ‘protein types’ throughout this
thesis. The goal is to create an independent ‘ground truth’, so that methods
based on the mRNA only can be tested without circularity. To this end, I
aimed at labeling protein types with high confidence (avoiding false-positives
at the cost of not labeling all cells). This resulted in 5128 out of 8005 cells
with a protein type, leaving only a minority of cells undefined. I observed no
overlap between these protein types, as expected from the ‘manual gating’
strategy I now describe in the following. I normalized surface protein UMI
counts with the centered log ratio transformation 4 with the following clr
function, adapted from Seurat’s source code:

clr <- function(x) {log1p( (x) /
(exp(sum(log1p((x)[x > 0]), na.rm = TRUE)/length(x + 1)))

Here, x is an R vector with the raw UMIs of a given CITEseq / TotalSeq
antibody (each vector element is from one cell). Next, I chose thresholds
to find clearly positive (e.g. CD3+) and cleary negative (e.g. CD3−) cells
for the following major lineage markers available in the surface proteome
(ADT data): CD3 for T, CD19 for B, CD56 for natural killer, CD34 for
haematopoietic stem cell, CD14 and CD11c for monocytes 5. I note the
conservative thresholding left some cells in between as undecided, to ensure
the purity of protein types. For erythrocytes and platelets / megakaryocytes,
there are no good protein markers in the CBMC data. To mark these two cell
types and doublets/multiplets containing them, I used HBB, HBG2, HBA1
(erythrocytes) and GP9, PF4 and PPBP (platelets / megakaryocytes) - re-
quiring all three markers for lineage-positive cells, and the absence of all
three markers for lineage-negative cells. Having identified positive and neg-
ative cells for all lineages, I then selected each cell type as negative for all
lineage marker except for their own (two markers for monocytes, three for
erythrocytes/platelets, and one marker for all others). In order to discrimi-
nate T cells from monocytes 6, both of which can be positive for CD14 and
CD11c, I required T cells to be negative for both and on top positive for

4 The CLR transformation is used for compositional data. Surface proteine UMIs
are typically not normalized to total protein UMIs, because the resulting fractions can
depend heavily on the cell type. This is because only up to a few dozen features are used,
in contrast to the genome-wide scRNAseq data.

5 I note that CD11c is expressed on other myeloid cells (natural killer, dendritic and
macrophage cells) and some T and B cells, next to monocytes. These were excluded, see
below.

6 In flow cytometry, light scatters (forward and side scatter) is used for this, because
monocytes have more ‘granularity’ and scatter more light.
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either CD4 or CD8. At the same time, this subdivided T cells into cytotoxic
(CD8+) and helper (CD4+) T cells. Of note, I left CD11c+ natural killer cells
unassigned in spite of reports of CD11c+ subsets, because they systemati-
cally showed larger colSums and were CD14+ (not shown). To mark doublets
and multiplets, I required two and more than two lineage markers to be pos-
itive, respectively. Of note, I only marked doublets involving T cells (CD3+

plus one other lineage marker, or potential cytotoxic-helper doublets: CD3+

CD4+CD8+), as these were relevant to the results I discuss in this thesis (see
section 3.2).

2.5 MALT data

The filtered count matrix from CellRanger output was downloaded from http
s://support.10xgenomics.com/single-cell-gene-expression/datasets
/3.0.0/malt_10k_protein_v3. UMAP embedding, kNN and Louvain clus-
ters were computed as described in section 2.1, doublets were removed as
described in section 2.3. The MALT data is generated by 10x Genomics
and has the following specifications (selected information taken from [148,
website]):

• Cells from a dissociated Extranodal Marginal Zone B-Cell Tumor (MALT:
Mucosa-Associated Lymphoid Tissue) stained with TotalSeq-B anti-
bodies.

• Cell Ranger 3.0.0, run with –expect-cells=10000

• Single Cell Gene Expression Dataset using v3 chemistry and using a
pre-release set of TotalSeq-B antibodies (https://www.biolegend.co
m/totalseq).

• 8,412 cells detected

• Sequenced on Illumina NovaSeq with approximately 32,000 reads per
cell

• 28bp read1 (16bp Chromium barcode and 12bp UMI), 91bp read2
(transcript), and 8bp I7 sample barcode

I note that the TotalSeq antibodies are a commercialization of the CITEseq
protocol by Stoeckius et al..
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2.6 Lymphoma cohort

The scRNAseq samples from 12 patients with follicular lymphoma (‘lym-
phoma cohort’) was recently published by Roider et al., in a collaboration
between the Dietrich lab, me and my colleagues. Specifically, I processed the
raw sequencing files with CellRanger as described in [62], helped to explore
the data and assisted the leading author with my computational expertise.
For this thesis, I use the lymphoma cohort to demonstrate how PCPC can be
used in multi-patient multi-condition comparisons. The analysis described
in the following is my own and independent from the published manuscript
[62].

Sample processing and cell type classification All lymphoma samples
(patients) were processed separately with the workflow described in section
2.1 (computing 50 kNN on 60 components, and running UMAP with spread
= 20 and min_dist = 1, as for the MALT and CBMC data sets). Cytotoxic T
cells were classified with PCPC as CD3E+CD8B+ in all samples separately,
except for patient DLBCL1 for which no T cells were detected. Also, in
patient FL3, cells were additionally required to be negative for CD4 expres-
sion (as indicated in Figure 3.12). Marker genes were selected after thorough
exploration. In particular, CD3E was in agreement with CD3D and CD3G
and mutually exclusive with MS4A1 and other B cell markers. Similarly,
CD8B was co-expressed with CD8A and formed a distinct subpopulation in
all samples, with no or hardly any CD4 detected in all samples except patient
FL3.

Differential gene expression (aggressive vs. indolent) Raw UMI
counts of cytotoxic T cells were pooled (summed up) for each patient sepa-
rately, representing so called ‘pseudobulk’ samples. DESeq2 (version 1.28.1)
with default parameters was used to test these pseudobulks for differential
expression between four aggressive (patients DLBCL2/3 and tFL1/2, exclud-
ing DLBCL1 due to lacking T cells) and four indolent (patients FL1/2/3/4)
tumors. Of note, the 12 samples were aligned with two different versions of
CellRanger, and for this reason some genes are only present in half of the
cohort samples. For differential expression testing only, these missing genes
were excluded. I note, however, that those remaining for differential expres-
sion testing contributed at least 91.8% of the totalUMI in all cells, and 96%
or higher in the majority of all cells in all samples.
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2.7 Cluster markers and ROC curves

For thorough exploration, two methods were used and the results inspected
manually for finding cluster markers. First, the functions roc and auc from
the pROC R package (version 1.16.2) were used. These were also used to
compute receiver operating characteristics (ROC) curves in Figure 3.2. And
second, Seurat’s FindMarkers function was used with default parameters
(Wilcoxon test).

2.8 Tissue complexity

For the Pearson correlation heatmaps illustrating tissue complexities, the
normalized expression values (k/s) were averaged across all cells from the
same cluster. Averaging was done for all measured genes (33538 for MALT
data, 20400 for CBMC data). Pearson correlation was computed on the
square roots of the cluster averages, to stabilize the variance across different
gene expression strengths. The heatmaps present correlations starting from
0.7 and higher, as the lowest value was 0.72. To summarize tissue complexity
into a single number, I took the same approach described by Abdeel et al.
[89]. Specifically, for each cluster average Ci, the highest correlation to other
clusters was selected, and these maximal correlations were averaged:

Complexity = mean
j

(max
∀i,i 6=j

corr
∀i,j

(Ci, Cj))

This formula is adapted from [89].

2.9 Seurat

Seurat version 3.2.2 was used in this thesis. Clusters in Figure 3.8 were com-
puted from raw UMI counts by sequentially applying the following Seurat
functions (non-default parameter values are indicated in paranthesis). For
scTransform normalization: CreateSeuratObject, SCTransform, RunPCA,
FinNeighbors (dims=1:30), FindClusters. The same was applied again after
removing potential doublets as detailed in section 2.3. For log-normalization:
CreateSeuratObject, NormalizeData, FindVariableFeatures, ScaleData, Run-
PCA, FindNeighbors (dims=1:30), Find Clusters. Clusters were visualized
on the embedding computed with the workflow described in section 2.1, to
enable comparison with other figures, and the removed doublets were visu-
alized in grey.
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2.10 Garnett

Garnett (version 0.1.17) was run on the MALT data with the marker files
supplied in supplement A. For this, a ‘CellDataSet’ was created with mon-
ocle (version 2.16.0) and size factors computed with its estimateSizeFactors
function. Marker files were checked with Garnett’s check_markers function,
revealing considerable marker overlap (not shown). For example, Garnett
was concerned about CCR7 being expressed not only by CCR7+ cytotoxic
T cells, but also CCR7+ helper T cells and many B cells. It seems that even
though Garnett is hierarchical, marker genes are assumed to be not detected
at all in other cell types. Then, the train_cell_classifier was applied with
num_unknown=50, as recommended for smaller data sets 7 by the tutorial at
https://cole-trapnell-lab.github.io/garnett/docs/ [accessed in De-
cember 2020 and March 2021]. In order to avoid mapping from symbols to
ENSEMBL-IDs and back, I set db=“none” and cds_gene_id_type as well
as marker_file_gene_id_type to “SYMBOL”.

7 I note that Garnett is designed for large atlas data sets and so the default value for
num_unknown is 500, which is why the value 50 as recommended by the Garnett tutorial
seems reasonable for the MALT data’s 8412 cells. For this reason, I discuss the results from
num_unknown=50 in the results (section 3.3.5). To be rigorous, I re-ran Garnett with
num_unknown=500 for the fine cell type hierarchy. While this labeled a high percentage
of cells (93.8%, not shown), cell type labels were widely incorrect. For example, CD19+
cells were randomly scattered across the UMAP embedding, labeling as many T cells as
actual CD19++ cells.

48

https://cole-trapnell-lab.github.io/garnett/docs/


Chapter 3

Results

3.1 Motivation and structure

The main contribution of this thesis is a novel cell type classification ap-
proach, which we refer to as Pooled Count Poisson Classification (PCPC).
I start from cell type definitions based on very few marker genes, for which
cells are either positive or negative. For example, regulatory T cells (Tregs)
can be defined as CD3E+CD4+CD8B−FOXP3+. These marker genes are of-
ten well established in the literature (as in the Treg example), are compiled in
data bases, or can be found with exploratory data analysis (e.g. graph-based
clusters and derived markers, as introduced in section 1.7.2). Given these
definitions and a scRNAseq data set, the computational question that is an-
swered here then is how to find positive and negative cells for each marker
(e.g. CD3E+ and CD3E−), so that cells can be labeled according to the given
cell type definitions.

Inference, exploration and classification I argue that cell type clas-
sification should have two equally important goals, for which we need spe-
cialized algorithms: Completely data-driven exploration on the one hand,
for the unsupervised search of ‘fundamental’ cell types and novel subpop-
ulations. And inference on the other hand, for multi-sample multi-group
comparisons using scRNAseq data (introduced in section 1.5). Marker-based
(‘inference-oriented’) cell types are simplified models that can be discussed
and debated in context with the literature, in order to find the most appro-
priate cell type definitions given the inference question. They make inference
results compatible with so called legacy knowledge, i.e. findings from non-
sequencing studies using for example sorted cell populations or imaging 1.
Also, they make inference results (e.g. lists of differentially expressed genes)
testable with these non-sequencing methods, making the scientific progress

1 I acknowledge Wagner et al. [80] for coining the term ‘legacy knowledge’.
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more effective by providing falsification opportunities. For these reasons, I
refer to definitions based on the expression of a few markers as ‘inference-
oriented’ cell types, and sometimes as ‘actionable’ cell types as proposed by
Valentine Svensson [145, blog post]. I observe that most existing classifica-
tion algorithms (introduced in section 1.7) are ideal for exploration, with the
goal of discovering new cell types or answering similar exploratory questions.
In particular, unsupervised tools such as clustering and data integration are
not hypothesis-driven and ignore prior knowledge such as marker genes. For
inference, by contrast to exploration, classification has very different require-
ments, which I will define in the next two paragraphs to motivate the design
of my own classification method.

Classification under high technical noise To take a data set’s signal-
to-noise ration into account, I propose that it is useful to assign the label
CD3E+ for two types of cells: First, those cells that have a high UMI count
for CD3E. And second, all cells with transcriptomes which, in the given
data set, are indistinguishable from this first group of highly expressing cells.
I reason this way, because the technical noise in scRNAseq data prevents
us from accurate statements of true expression rate for individual genes in
individual cells. Indeed, methods that attempt such statements introduce
false signals, such as spurious gene correlations [67]. Instead, I call a cell
CD3E+ if the cell’s k nearest neighbors (kNN) showed high CD3E expression,
and motivate this by assuming that the transcriptomes from the kNN are in
effect indistinguishable from that of the cell of interest in the given data
set (c.f. section 4.3 for a discussion of this assumption). Then, while no
conceivable algorithm could derive a reliable estimate of the cell’s number
of messenger RNA (mRNA) molecules at time of lysis, it still is reasonable
to say that this cell, judged by all information we have on it, was part of a
CD3E-expressing subpopulation. This is an important innovation over the
prevalent idea that clusters equal cell types (introduced in section 1.7.2).
While valuable for exploratory analysis, the idea that clusters correspond
to ‘fundamental’ cell types (as in data-driven, or unbiased) ignores that the
signal-to-noise ratio is limited in any given data set. Instead, the goal of
Pooled Count Poisson Classification (PCPC) is to provide researchers with
a divide-and-conquer strategy: The first step is to define cell types (e.g.
CD3E+CD4+FOXP3+ for Tregs) using the literature, exploratory analysis
and scientific discussion. The second step is to use PCPC to find cells fitting
these definitions in the given data. My goal is to provide a method that also
gives feedback during this second step, i.e. the investigator sees whether the
data quality is high enough to separate the desired subpopulations, or not.
Thus, the question is not whether cell type labels are correct or not, but
whether they are ‘correct enough’ to answer a given scientific question.
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Simple, transferable and useful cell type labels There is an increasing
number of multi-sample multi-group comparisons with scRNAseq cohorts
(c.f. section 1.5). With a focus more on inference than on exploration,
these studies would benefit from cell type labels that are easily transferable
to validation experiments or the literature, so that the resulting inference
insights drive biological understanding foward. To make a specific example,
a scRNAseq study might find that Tregs upregulate certain cytokines after
stimulation with compound C. Such lists of differentially expressed genes
are very typical inference results in transcriptomics, and many technological
platforms exist to verify such findings. As a general rule, fewer marker genes
provide higher transferability, which is especially true when using in situ
imaging techniques or fluorescence activated cell sorting (FACS) followed
by functional assays. For these downstream experiments, it is crucial that
cell type definitions used in the scRNAseq analysis are transferable to these
technologies, i.e. that the scRNAseq cell types are actionable [145, blog
post]. Put differently, whether the scientific argument built by single-cell
studies and their follow-up experiments is convincing or not, I argue, will
depend on the characteristics of the cell type definitions themselves. I note
that it might be the same research group that tries to verify their finding, or it
might be other scientists who would like to integrate findings from the most
recent literature into their current research effort. For group comparisons
with scRNAseq data, I claim that inference results are most potent if the
underlying cell type definitions are simple, transferable and useful:

• Simple cell type definitions allow researchers to understand the
complexity of biology with a mental representation of reduced complex-
ity. They make scientific discussions more precise and debates clearer.
The goal is to derive simple rules for a complex world, or put again dif-
ferently, to come up with a scientific model that is as simple as possible
while explaining as many experimental observations as possible. The
exact optimum of this trade-off will be and should be subject to rigor-
ous debate and for this it is crucial that the cell type definition is simple
and easily communicated. For example, one publication might claim
that CD3E+CD8+LAG3+ cells are cytotoxic T cells with an exhaustion
phenotype that are unable to destroy cancer cells. T cell exhaustion
is a highly debated field, and a colleague might challenge this defini-
tion by observing that LAG3 is also expressed by active T cells, and
for exhaustion more markers such as PD1 (HUGO symbol PDCD1) or
others might be necessary. It is the simplicity of the marker-based cell
type definitions that now allows such a debate to home in on the most
useful scientific model to explain cytotoxic T cell behaviour in tumors
and tumor models. In contrast, using clusters as cell type definitions
lacks this simplicity: In the popular graph-based Louvain algorithm
[95], clusters are obtained by optimizing the modularity scores on a
neighbor graph defined on thousands of genes. Thus, clusters are not
only found by a complex algorithm, but are themselves abstract and
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complex groupings of cells.

• Transferable cell types are available to validation experiments. This
makes the inference results, but also the cell type definitions them-
selves, testable and amenable to falsification. As in the Treg example
above, scRNAseq data often times generate new hypotheses. Since a
hypothesis can not be proven with the same data set it was generated
with, more experiments are required. To use the wording of Valentine
Svensson [145, blog post], cell type definitions should be ‘actionable’,
i.e. have a small number of specific marker genes that can be used in
validation experiments using common experimental platforms. To vali-
date the Treg reaction to compound C (see example above), researchers
might in a first step test if their the markers used for their Treg defini-
tion (CD3E, CD4, FOXP3) show good correlation between mRNA and
protein expression. If so, they could use flow cytometry to correlate
these Treg markers with cytokine release with and without compound
C in a larger cohort of patients. If the correspondence between mRNA
and protein is questionable, one possibility is to use in situ imaging. To
name another option, scRNAseq data from additional patients can be
queried with the same inference question: Do CD3E+CD4+FOXP3+

cells to upregulate cytokine expression in response to compound C?

• Useful cell type definitions are those that allow researchers to find
all cells in question in their data set. In sparse scRNAseq data, the
expression magnitude of a marker gene can be as important as its speci-
ficity, because the goal is to label not only correctly, but also as many
cells in the data as possible. Further points one might consider are if
the gene product is a cell surface protein, which allows for cell sorting
of living cells and avoids complex fixation protocols, and if it is useful
to define cell populations in many settings, such as different organs,
disease states or even organisms.

To date, no algorithm exists that fulfills all three criteria, as I will demon-
strate and discuss in this thesis (see in particular discussion in section 4.1.3).
To fill this gap, I propose Pooled Count Poisson Classification (PCPC), a
novel inference-oriented cell type classification method.

Structure of this thesis This chapter presents the results of this thesis
and is organized into sections 3.2, 3.3, 3.4 and 3.5. I now briefly describe the
content of each section as an overview. Note that each section discusses the
relevant literature whenever this helps to contextualize the presented results.
A focused discussion of crucial aspects, one by one, can be found in the
discussion (4).

The classification method I present in this thesis, PCPC, uses count pooling
across neighbors and an expression threshold for classification. Section 3.2
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introduces the classification approach in detail. To start with a simple use
case, this section uses scRNAseq data from cord blood cells (CBMCs), i.e.
clearly separated cell types with highly expressed marker genes. Of note, the
section clearly states a generative model for the technical noise in scRNAseq
data with UMIs, and motivates PCPC classification approach directly from
it. Specifically, the section introduces kNN pooling as principled method to
reduce technical noise, and discusses the similarities and differences to gene
smoothing tools. Most importantly, section 3.2 shows how pooled counts
can be used to make a statistically informed decision on whether a cell is
positive for a marker gene, negative or ambiguous. I end section 3.2 with a
classification demonstration using the CBMC data set, annotating all major
cell type lineages with one marker per major lineage.

In section 3.3, I demonstrate how a more complex scRNAseq data set can be
divided into finer and finer structures. The data set used to illustrate this is
derived from the microenvironment of a B cell tumor in mucosa-associated
lymphoid tissue (MALT). I first show how the MALT data set has highly
related T cell subsets and thus is more difficult for classification algorithms
than the CBMC data set. Also, I demonstrate that relevant markers such as
FOXP3 can be expressed weakly, and that PCPC is able to handle even such
sparse signals. This section also discusses the idea that cell type definitions
are intelligent choices rather than objective truths, at least with the signal-to-
noise ratio available in most existing data sets. The thought that cell types
in scRNAseq cohort studies should be discussed, rather than discovered, is
central to my work, and section 3.3 prepares the more thorough discussion
(c.f. section 4.1). In section 3.3, I also compare PCPC to graph-based
clustering and the marker-based tool Garnett.

Section3.4 provides practical considerations for using PCPC, again using the
MALT data. For example, the strategy to pick marker genes and their ex-
pression thresholds in order to achieve good classification results is layed out.
Also, the section explores the bias and variance of smoothed gene expression,
in order to demonstrate that pooling nearest neighbors is legitimate for cell
type classification, and not introducing major artifacts.

Section 3.5 applies PCPC to a lymphoma cohort recently published by us
and others, making clear how I intent my method to be used in case-control
studies that use scRNAseq. In particular, I ask how cytotoxic T cells found in
aggressive lymphoma subtypes differ from those in indolent ones. I use PCPC
to classify cytotoxic T cells as CD3E+CD8B+ cells in each patient sample
separately, and compare their gene expression between subtypes. Specifically,
differential gene expression testing using four patients per subtype, I find
CD3E+CD8B+ cells from aggressive lymphomas over-express LGALS1, a
gene implicated in T cell inhibition and apoptosis.

Finally, one important note to understand how PCPC would be used in
practice. PCPC requires simple, efficient and interactive R code so that
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classification in dozens of scRNAseq samples is feasible. In particular, a con-
venient and flexible way to pick marker genes and their expression thresholds
is required. To this end, I started developing the cellpypes R package at the
final stages of writing this thesis. For this reason, it is placed in the outlook
(chapter 5), and I encourage readers interested in this aspect to read section
5.2 ahead of time.

3.2 Classification principle (CBMC data)

In this work I propose to use inference-oriented cell type definition. For
example, Tregs can be defined as CD3E+CD4+FOXP3+, and this definition
is simple and transferable. I will illustrate in this section that it is also useful,
in the sense that we can extract cells of this type from scRNAseq data. The
method I have conceived for this purpose is called PCPC, and this section
explains the principle of how it functions in five consecutive subsections.
Section 3.2.1 defines gene expression strength to avoid diffuse terminology.
Section 3.2.2 introduces the noise model for scRNAseq data used by PCPC,
section 3.2.3 proposes kNN pooling for gene smoothing, section 3.2.4 uses
this principled smoothing for classification. Lastly, section 3.2.6 provides a
technical note on the chosen smoothing method.

3.2.1 Definition of gene expression strength

In this work, I define the gene expression strength π as fraction of total
mRNA molecules at time of lysis. I note the exact value of π is unknown
in scRNAseq experiments, but can be estimated with some precision from
the data. I note that this definition does not normalize for transcript length,
because current UMI-generating protocols only count molecule ends. This
makes it inappropriate to use the popular transcriptomic units RPKM (short
for Reads Per Kilobase Million) and TPM (short for Transcripts per kilobase
Million). I also refrain from using the term ‘expression rate’, because ‘rate’
implies events per time. For example, mRNA transcription from the genome
has a certain rate, measuring the molecules per hour. In contrast, the ex-
pression strength π also includes mRNA degradation, and therefore has no
direct relationship with the ‘expression rate’. The only context this work
uses ‘rate’ is when speaking about the Poisson distribution’s only parameter,
which traditionally is referred to as Poisson rate.

For other technologies, such as quantitative real-time polymerase chain reac-
tion, it is common to normalize to selected house-keeping genes. I choose to
normalize π to the entirety of all genes instead, because this is most robust
to measurement noise and deprived of selection bias. In summary, a gene’s
expression strength π is defined as the proportion of total mRNA molecules
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that is allotted to that particular gene. In this work, I utilize per mille (‰)
for better readability.

  

Model for sequencing process: (UMI protocols such as 10x GemCode)

Statistical model:

scRNAseq

p << 1

s j= ∑
i∈genes

k i , j=103

kCD3E,j ~ Binom(400, p) ≈ Pois( sj πCD3E,j )  

Cell j at lysis

   total mRNA = 105

CD3E mRNA = 400
  total UMI =

 
CD3E UMI = kCD3E,j = 4 

mRNA molecules at lysis Observed number of UMI counts

πCD3E,j = 400/105= 4 ‰

Cell j in count matrix

Figure 3.1: Statistical model for UMI counts. For a given gene such as CD3E,
the scRNAseq assay (including cell capture, library preparation, sequencing
and computational preprocessing) converts mRNA molecules to UMI counts
with probability p. This conversion is imperfect (p � 1) and introduces
technical noise, which is accounted for by PCPC by modeling the UMI kCD3E,j

as a Poisson random variable. The underlying distribution only has a single
unknown that has to be inferred, namely the the fraction of mRNA molecules
πij. Symbols: gene i, cell j, UMI counts kij, total UMI sj, true unknown
expression strength πij.

3.2.2 Statistical model

There is still some debate on how UMI counts are best modelled, e.g. whether
the negative binomial instead of the Poisson distribution should be used or
not [1, 32, 44]. Perhaps adding some confusion to the debate, it is often
left unclear whether the specified distribution models individual cells, a cell’s
kNN, clusters or even the entire data set. In this section, I therefore precisely
state the generative model for UMI counts as assumed throughout this work.

PCPC assumes that the UMI count of a given gene in an individual cell is a
Poisson random variable with a Poisson rate that is unknown. Figure 3.1 is
a schematic on the basis of which I now motivate using the Poisson model.
At time of lysis, the exact number of mRNA molecules in a given cell j is un-
known. To make an example, Figure 3.1 shows a cell with ten thousand total
mRNA molecules, 400 of which encode the gene CD3E. The gene expression
strength of CD3E is then defined as the fraction of the cell’s total mRNA
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molecules, and in this example is πCD3E,j = 400
105 = 0.004 = 4‰. For readabil-

ity, all figures throughout this work provide gene expression strengths π and
their estimates as per mille (‰).

During a typical scRNAseq experiments, cell j is lysed and all of its mRNA
molecules released into a small reaction volume, e.g. a microwell [8] or a
water droplet inside immersion oil [6, 16]. With a certain probability p,
mRNA molecules are converted to UMI counts in the final scRNAseq data
matrix. As indicated in Figure 3.1, p is between 0 and 1 but typically much
smaller than 1 (p� 1). I note that p summarizes several steps: Before it is
recorded as UMI count in a data file, mRNA molecules have to be reverse
transcribed, amplified, tagged with sequencing adapters, sequenced with no
or very few errors and then be detected and quantified in silico within the
reference genome by alignment [18, 20] or pseudoalignment [21]. Each of
these steps can fail for some of the mRNA molecules, with the result always
being that it is not observed as UMI count in the scRNAseq data. Hence, the
model summarizes all steps as Bernoulli process with the probability p. Of
note, p includes the reverse transcription step, that has been estimated to be
as low as 6 - 32%, depending on which version of the 10x genomics products
is used [15, 16]. Thus, the rate p is likely dominated by, but not restricted
to, limitations in the reverse transcription step of scRNAseq protocols. The
right part of Figure 3.1 shows how the resulting UMI counts for cell j might
look like, assuming that roughly 1% of mRNA molecules in cell j give rise
to observed UMI counts, i.e. p = 0.01. Cell j’s total UMI counts sj are
two orders of magnitude smaller than the number of mRNA molecules, as
expected from a stochastic downsampling with 1% success probability 2. For
CD3E, 4 UMI counts were observed in this example, out of 400 mRNA
molecules. Of note, observing 3 or 5 counts instead of 4 would have been
almost as likely - the final number is subject to a stochastic process, and the
variation between different outcomes of this thought experiment are purely
due to technical noise, without any biological component. Strictly speaking,
the expected UMI counts for CD3E in cell j, or kCD3E,j, follow a binomial
distribution with a size of 400 and a probability of p = 0.01 (see Figure 3.1).
In scRNAseq experiments, both n and p are unknown. Importantly, we can
only estimate their product, i.e. n and p are not separately identifiable:
Increasing one of them is just as likely as long as the other decreases by
the same factor. Therefore, I use the Poisson distribution to model the
counts kCD3E,j, which is not uncommon in scRNAseq data analysis [1, 32].
The Poisson distribution approximates the binomial distribution for small
p and large molecule numbers, and only uses a single parameter called the
Poisson rate. Coming back to the example in Figure 3.1, PCPC models UMI
counts of gene CD3E in cell j as Poisson random variable with the Poisson

2 As noted, modern protocols make 10% or even 30% possible (p=0.1 or p=0.3), which
would make 104 rather than 103 total UMIs a more representative example. In practice,
total UMIs can easily span this range – in my experience, T cells have thousands of total
UMI, while neurons have ten thousands.
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rate sjπCD3E,j. In summary, using Poisson random variables to model UMI
counts arises naturally from above considerations of the sequencing process.

For classification, the crucial question will be to group cells according to
their unknown value of πij. To this end, the next section introduces gene
smoothing and how it can mitigate the challenges posed by technical noise.
In particular, I chose to smooth with neighbor pooling, and will use the
Poisson random variable model to motivate this choice. Later in this section,
I will then show how from the same model, a simple decision strategy based
on Poisson distribution tails lends itself to our goal of deciding for each cell
whether it is positive or not for a certain marker.

3.2.3 kNN pooling smoothly separates cell types

Using the noise model above, I propose kNN pooling in this section, a prin-
cipled method to smooth gene expression values. I show how kNN pooling
separates cell types in a simple example. In the next section, I then show
how pooled counts are useful to separate cells using Poisson tails.

Given an inference-oriented cell type definition for regulatory T cells such as:

Treg: CD3E+CD4+FOXP3+

how do we find Tregs in a given scRNAseq data set? In flow cytometry,
manual gating is prevalently used. This strategy is not directly applicable
to scRNAseq data, since mRNA typically is not as abundant as the corre-
sponding protein, which leads to considerable technical noise in scRNAseq
data (see previous section). Here, I propose that smoothing gene expression
can overcome this obstacle and restore the original signal to the extent that
cell types can be discriminated with high accuracy. Algorithms leveraging
kNN information dominate the field of scRNAseq data analysis (examples
include UMAP [47] and graph-based clustering [95]), and we reasoned that
they could also be helpful to solve our classification problem. Here, I pro-
pose to use kNN pooling to smooth gene expression and classify cell types in
scRNAseq data. Specifically, I start from the noise model introduced by Fig-
ure 3.1, and assume that the UMI counts kij for gene i in cell j are described
by a Poisson random variable:

kij ∼ Pois(sjπij)
sj =

∑
i

kij
(3.1)

Here, sj denotes the total UMI counts of cell j, and πij is the unknown
expression rate as a fraction of sj. We denote the set of 50 nearest neighbors
as Nj, where 50 is fixed for each cell (discussed in 4.3). We now pool counts
and totals across cell j’s nearest neighbors Nj:
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Kij =
∑

j′∈Nj

kij′

Sj =
∑

j′∈Nj

sj′
(3.2)

To make a concrete example with a common T cell marker, KCD3E,j is com-
puted by summing the UMI counts of transcript CD3E across the kNN of
cell j (including that cell j itself), where I choose 50 nearest neighbors as
‘bandwidth’ (more on the bandwidth can be found in section 3.4.3). I next
note that division by the overall neighborhood size Sj gives the smoothed
expression value KCD3E,j

Sj
, for simplicity referred to as K

S
from here onward

(and throughout this thesis, for different genes depending on context). Intu-
itively, K

S
is to the neighborhood Nj what kj

sj
(or k

s
for simplicity) is to cell

j; namely the fraction of total transcripts allotted to the transcript CD3E.
Thus, K

S
and k

s
are both estimators of πij, but the latter is dominated by

technical noise, while K
S

uses information from multiple cells. In statistical
terms, K

S
has less variance, but more bias than k

s
(detailed in section 3.4.3).

Figure 3.2 shows the CBMC data set and illustrates that K
S

is much better
at separating cell types than k

s
. To use an independent ground truth for

the cell types, I use the robust protein signal of this CITEseq data set to
define cell types by manual gating (see methods section 2.4). Figure 3.2a
shows the resulting cell type labels, and only cell types that are relevant in
the following are shown for clarity: Two T lymphocytes subtypes (green and
dark green), NK cells (orange) and doublets (red). Figure 3.2b shows the
same UMAP embedding, colored by the values of CD3E k

s
. Evidently, T

cells highly express CD3E as expected for a T cell marker, but even in the T
cell population (as defined in Figure 3.2a), some cells have had zero counts
for CD3E (dark purple points in Figure 3.2b). These zeros are typical for
sparse scRNAseq data, and it is not unlikely that virtually all T cells had at
least a few CD3E mRNA molecules at time of lysis, but we simply did not
observe them as UMI counts. These so called ‘drop-outs’, as we now know,
are to be expected due to Poisson noise [32] (as introduced in section 1.3).
Figure 3.2b also shows that CD3E is expressed in doublets and a few NK
cells. Doublets are expected to have some CD3E expression in data sets with
many T cells, because these doublets are created when a T cell is randomly
captured and sequenced together with a second cell of any type. For the
NK cells, it is feasible that the observed expression of the T cell marker
CD3E is due to biology (‘leaky expression’) or due to a technical artifact.
For example, ambient mRNA can cross-contaminate droplets, and several
tools have been proposed to remove such artifacts [149]. As a side-note, the
Poisson model described in the previous section is valid in any case, whether
CD3E expression in NK cells is of biological or technical nature.

Developing the classification method proposed in this thesis (see next sec-
tion) was inspired by the observation that smoothed marker gene expression
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a

b

c

d

e

Figure 3.2: Smoothed CD3E expression identifies T cells in the CBMC
data. a, b, c show UMAP embeddings (c.f. section 2.2). a Cell types were
manually annotated using surface protein levels (c.f. section 2.4), and of
these ‘protein types’ the following selection is shown: T cells (green), NK
cells (orange) and doublets (red). b, c CD3E expression before and after
smoothing, shown as fraction of the library size in ‰ (per mille). d Density
plot of CD3E expression before and after smoothing, colored as in a. Most
values in the upper panel (k/s) are zero, which appears as continuous (instead
of discrete) peak around 0.01 due to the kernel density estimation. e Receiver
operating characteristic (ROC) curve for classifying T cells with CD3E before
and after smoothing. The area under the curve (AUC) is provided in the
inset.

is able to separate cell types even in presence of high technical noise. As
illustrating example, Figure 3.2c, d and e show how smoothed CD3E ex-
pression separates T cells from all other cell types, including NK cells. As
evident from Figure 3.2c, the smoothed expression value K

S
is higher in T

cells than in NK cells and all other cell types, even the doublet cells marked
in Figure 3.2a. The separation of T cells from the closely related NK cells
is even more obvious from the density plots depicted in Figure 3.2d. Before
smoothing (upper panel), the NK cells which express CD3E form a peak that
is inseparable from the two T cell subtypes. After smoothing (lower panel),
this peak is gone, and all NK cells were estimated to have lower expression
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than T cells. Likewise, T cells that had zero expression before smoothing
formed a peak around zero (upper panel in Figure 3.2d) that is not present
after smoothing. Put differently, if we choose a threshold in the density plot
Figure 3.2d, a lower threshold will select more T cells as CD3E+, but at
the risk of contaminating them with more NK cells. For the unsmoothed
value k

s
, these false-positive cells are more abundant. To quantify this im-

provement after smoothing, I construct a simple ROC classifier (Receiver
operating characteristic) for K

S
and k

s
. Figure 3.2e shows the resulting ROC

curves, recording the respective ability to separate T cells from all other cell
types (defined by surface protein expression, see methods section 2.4). Mov-
ing along the curves, a lower and lower threshold will increase sensitivity, i.e.
more T cells are marked as CD3E+ cells. For the unsmoothed value k

s
, how-

ever, this comes at the cost of decreased specificity (note the reversed x-scale
of Figure 3.2e), as a lower threshold also incorrectly selects more NK cells.
Strikingly, for the smoothed expression K

S
, this trade-off is much lower: the

sensitivity can be increased to 1 without decreasing specificity much. The
area under the ROC curve (AUC, see Figure 3.2e) measures the ability to
separate cell types with high specificity and sensitivity, and an AUC of 1
indicates perfect binary classification. I observe that K

S
achieves an AUC of

0.99, demonstrating the clean separation of T cells from all other cell types.
In contrast, the unsmoothed value k

s
has an AUC value of 0.86, indicating

the incomplete separation of T and NK cells when CD3E is not smoothed.

Thus, kNN pooling of CD3E is perfectly able to identify T cells in the CBMC
data, and we will see in later examples that this approach works with weaker
markers and less distinct cell types as well (see section 3.3).

Comparing the legends of Figure 3.2s b and c, it is apparent that the vari-
ance is reduced after smoothing: Expression values range from 0 to 1.13‰
for K

S
(Figure 3.2c), while they range from 0 to 4.4‰ for k

s
. I interpret this

observation, taken together with the results from above, as follows: denoising
the expression through kNN pooling allows us to better estimate each cell’s
actual expression rate πCD3E,j. For T cells, this expression rate was close to
1‰ (see green peak in density plot Figure 3.2d), while NK cells had values
for πCD3E,j around 0.1‰. This tenfold difference is what allowed an AUC of
0.99, i.e. virtually perfect binary classification into CD3E+ and CD3E− cells,
once the gene expression was smoothed. I stress that the goal of kNN pooling
was exactly this binary classification, i.e. a qualitative decision. Specifically,
I do not claim quantitative reliability of the smoothed expression value, but
rather propose to use it as a proxy to group cells into CD3E+ and CD3E−
populations. In contrast, there are many imputation methods that have tried
to restore a continuous and precise estimate of πij, for example in order to
measure correlations between individual genes more precisely, or to improve
clustering results [31, 33, 35, 36, 68, 71, 78]. Andrews et al. [67], how-
ever, could show that such continuous estimates of πij are difficult without
introducing artifacts, such as false correlations between genes. Thus, it is
likely that in scRNAseq data, the transcript success rate p (introduced by
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the model in Figure 3.1) is not high enough for quantitative statements con-
cerning individual genes. In cases where indeed the precise number, fraction
or variability of mRNA molecules from an individual gene is of interest for
the scientific question, investigators would ideally use single-molecule imag-
ing techniques rather than scRNAseq, as demonstrated recently [150]. To
summarize this thought: kNN pooling can not guarantee that all T cells (or
better: CD3E+ cells) actually had CD3E molecules at time of lysis. Instead,
with the specific sequencing depth of a given scRNAseq data set, PCPC
marks those cells as CD3E+that had a transcriptome associated with CD3E
expression. I will revisit these considerations in more detail in the next sec-
tion, when I introduce the statistical approach to divide cells into positive
and negative populations.

3.2.4 Classification with pooled counts

I showed in the above section that modeling UMI counts as Poisson random
variables is a principled approach, which is why count pooling can overcome
technical noise. To find cells that are positive for a marker gene, I next pro-
pose to simply compare their pooled UMI counts to a user-defined threshold.
This section introduces my approach, involving the tails of a Poisson dis-
tribution around the given threshold. The next section demonstrates how
the CBMC data set can be fully annotated with cell type labels this way.
Application to more complex tissues is demonstrated in section 3.3, and to
a cancer cohort in section 3.5. While automating PCPC is challenging (see
sections 3.3.5 and 4.2), interactive code makes it swift and simple (section
5.2).

In this section, I suppress the index i because we consider always the same
gene. To find CD3E+ cells, PCPC pools counts across neighbors and com-
pares them to a given threshold value. I choose deliberately to work with
pooled countsKj and the smoothed value Kj

Sj
, rather than for example averag-

ing kj

sj
across kNN, because of the useful properties that Kj has. Specifically,

as sum of Poisson random variables, it itself is a Poisson random variable.
Let Kj denote the UMI counts of a given marker gene, pooled across cell j
and its nearest neighbors, which together I denote Nj. Then, I model the
pooled counts as a Poisson random variable:

Kj ∼ Pois(
∑

j′∈Nj

sj′πj′)

where sj′ are the kNNs’ known totals, and πj′ are their unknown expression
rates. I assume that kNN have virtually indistinguishable transcriptomes
(discussed in section 4.3), and thus approximate their expression rates πj′ as
identical. I write this common expression rate as πNj

, and will discuss this
assumption of equal rates in section 4.4. Then, the pooled counts for cell j
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can be modeled as:

Kj = Pois(πNj

∑
j′∈Nj

sj′)

= Pois(πNj
Sj)

(3.3)

For a given threshold value τ , PCPC defines positive cells as those where K
lies clearly above values we would expect from a Poisson distribution where
πN = τ :

FPois(Kj, τSj) > 0.99 (3.4)
where FPois is the Poisson cumulative distribution function (CDF). Likewise,
negative cells are those where the CDF is below 0.01, while cells outside of the
two distribution tails remain unassigned. Thus, PCPC constructs a Poisson
distribution around τ in order to quantify the uncertainty which UMI counts
inherit from the stochastic sequencing process. This uncertainty is modeled
as Poisson noise, as introduced in section 3.2.2.

The strategy to find positive cells is illustrated in Figure 3.3. The threshold
τ = 0.45‰ is shown as dashed line in Figure 3.3a. The grey points around
it represent cells whose smoothed values Kij

Sj
were too close to τ , and can be

‘drawn’ with high probability from a Poisson distribution with Poisson rate
τSj. Clearly above (below) this area of uncertainty lie the positive (nega-
tive) cells marked with blue (red) points. Figure 3.3b shows the same cells
in the UMAP embedding. Evidently, most T cells in the right third of the
embedding3 were selected as positive (blue dots), and all other cell types as
negative. The percentage of unlabelled T cells is very small, demonstrating
that CD3E+ is a useful definition to extract T cells from this data set. In-
terestingly, most unassigned cells (grey dots) are located in areas of ‘leaky’
CD3E expression (NK cells and doublets, explained more in Figure 3.2). In
these grey cells, the smoothed value Kij

Sj
was higher than in negative cells

(red dots), but not high enough to be counted as positive. The fact that
these unassigned cells were NK cells and doublets highlights that it can be
useful to leave some cells unassigned.

Finding suitable values for the threshold τ is crucial for this approach. In
this example, I found τ = 0.45 by inspecting the resulting CD3E+ cells in
the UMAP embedding (blue cells in right panel of Figure 3.3). Specifically,
I compared the blue area to the area of CD3E expression (marked by k

s
, see

Figure 3.2b), and chose the threshold that maximizes agreement between the
two. I will show a clear example for this thresholding strategy with the MALT
data set in Figure 3.6 (section 3.3). In later sections, I discuss difficulties to
automate picking thresholds manually (sections 3.3.5 and 4.2), but give an
outlook on interactive code to make this task simple and fast (section 5.2).
For now, it is enough to say that a manual threshold, once the PCPC user
has found it, can split cells into positive and negative populations, with

3See also Figure 3.2a for a transcriptome-independent definition of T cells.
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Figure 3.3: Poisson tails identify CD3E+ cells. a: Smoothed expression
K
S

(per mille, ‰) over neighborhood size S (total UMI, 50k=50,000), com-
puted across 50 kNN for each cell. Both axes are logarithmic. For better
visualization, the minimal value on the y-axis is 0.001‰, cells with lower
expression are visualized as jittered points inside the grey box. The dashed
line indicates user-defined a threshold τ . The Poisson distribution function
of K given τ and S divides cells into positive (blue, CDF > 0.99), negative
(red, CDF< 0.01) and unassigned (grey, all others). b: UMAP embedding,
cells are colored as in left panel.

unassigned cells in between. This approach is reminiscent of flow cytometry,
where it is common practice to set gating thresholds manually, and leave cells
in between unassigned. The difference to flow cytometry is that scRNAseq
data is not biased for a few genes, but the user can select marker from the
entire transcriptome. This makes marker-based cell type definitions more
valuable, because if the utility of a given marker is in doubt, any researcher
may download the respective data set and use PCPC to propose and test
other markers.

To focus on a technical aspect, the width of the grey area in Figure 3.3
decreases when the neighborhood size Sj is larger. Put differently, even
though τ is always the same, each cell has a different cut-off value for the
smoothed value Kij

Sj
. Cells with sparser kNN have smaller neighborhood sizes

Sj, and my interpretation is that for these cells, less information is available
to judge whether the neighborhood expression rate πN was more extreme
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than the threshold τ or not. PCPC accounts for this, by increasing the area
of uncertainty around τ for smaller neighborhood sizes. For this reason, we
choose to show the smoothed value Kij

Sj
plotted over Sj in Figure 3.3, instead

of a histogram. The histogram of the smoothed expression would perhaps
be more intuitive to some. It does, however, not display the information
contained in neighborhood size Sj and therefore might fail to show separation
of positive and negative cells as clearly.

A further technical note is that Kij and Kij

Sj
show a different relationship

between Sj and the associated uncertainty. As for all Poisson random vari-
ables, the variance of Kij increases linearly with the Poisson rate τSj. Thus,
the pooled counts Kij themselves are less certain when more ‘information’
is added. In contrast, the smoothed value Kj

Sj
has less uncertainty for larger

Sj and so πij can be compared with τ with increasing confidence. This in-
crease versus decrease with larger Sj becomes obvious when considering the
variances of Kij and Kij

Sj
:

var(Kij) = τSj

var(Kij

Sj

) = 1
S2

j

var(Kij) = τ

Sj

(3.5)

Here, I use the variance property that when a random variableKij is scaled by
a factor ( 1

SJ
), the variance decreases by that factor squared. As 3.5 shows, the

uncertainty for the pooled count increases with larger Sj, while it decreases
for the smoothed value Kij

Sj
, and this explains why the grey area of uncertainty

in Figure 3.3a is broader for small Sj.

I end this section with noting some parallels between statistical testing and
above strategy. Equation 3.4 and its rationale are reminiscent of hypothesis
testing, where the null hypothesis would be that the Poisson rate πN was
precisely τ . In contrast to actual hypothesis testing, however, this null hy-
pothesis would be completely unreasonable: the user specifies the threshold
τ precisely such that cells are divided into two groups by it, and is not in-
terested in the actual confidence and p-value with which the null hypothesis
can be rejected. Instead, PCPC uses the Poisson model to quantifying the
uncertainty in UMI measurements, and aims at selecting cells whose tran-
scriptomes are similar to those of highly expressing cells. For this reason,
we do not apply multiple testing correction: testing multiple cells is not di-
rectly linked to generating more false positives that would need adjustment.
Instead, the majority of cells are expected to lie clearly above or below the
threshold τ , because by definition the user chooses the threshold so that it
separates positive from negative cells as clearly as possible.
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3.2.5 Annotating cell types in the CBMC data with
PCPC

The above sections focused on separating T cells from other cell types, i.e.
only two classes. Before I move on to classification in more complex tissues
(section 3.3), this section demonstrates how PCPC can annotate all cell types
in the CBMC data - which contain mononuclear blood cells from a healthy
donor, i.e. transcriptionally very distinct cell types.

As mention above, I have manually annotated the CBMC data with ‘protein
types’, i.e. cell type definitions based on the CITEseq protocol’s surface
proteome (see methods in section 2.4). Figure 3.4 shows these protein types,
next to the cell types I assigned with PCPC using well established blood cell
marker genes. I will elaborate more on how to find suitable thresholds for
PCPC below, in sections 3.3.2 and 5.2.

Overall, there is very good correspondence between the plots, demonstrating
that our approach can perform well with as few as a single marker gene per
cell types (except T cell subsets, which I defined using two marker genes). I
observe the largest discrepancy between both annotation methods for classi-
cal monocytes (Mono_c in a, CD14+ cells in b). Here, I was very conservative
with the protein type annotation, stringently labeling only a few cells. While
the general agreement still is good, I note that PCPC’s CD14+ cells include a
few multiplets. This is a good opportunity to discuss the selection of marker
genes: I chose CD14+ as definition for classical monocytes, but now find
through exploration that this includes some unwanted cells, in this case mul-
tiplets4. Hence, I may find it advisable to instead define classical monocytes
as CD14+CD3E−, for example, potentially getting rid of doublets. An al-
ternative would be of course to first exclude doublets, either with dedicated
tools [151–155] or simulations (see method section 2.3).

Another point of interest are the two T cell subtypes (T_CD4 and T_CD8
in Figure 3.4a). Evidently, PCPC does not separate these two cells without
errors, although only a few. The authors of the Seurat package note for
the same data set that indeed separating the two T cell subsets is also not
achieved by Seurat [120]. The reason is that cord blood contains mainly naive
cells, which have their differences on other modalities than the transcriptome.
In line with this, Seurat version 4 was able to separate them only with multi-
modal analysis, i.e. when the transcriptome was analyzed together with the
the surface proteome [120].

In summary, PCPC annotates cells in the CBMC data set in good overall
agreement with the cell types defined on rich surface proteome data, while

4Multiplets are defined here as ‘cells’ that express markers from more than two cell
type lineages. The CBMC data was generated by somewhat overloading the 10x machine
with cells[113], resulting in many doublets and multiplets
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Figure 3.4: PCPC applied to CBMC data, visualized in UMAP embedding.
a Colors indicate ‘protein types’, i.e. cell types defined with manual gating
on the CITEseq surface proteome data (see methods). Grey cells were left
without assignment after stringent gating. b Colors indicate cells that PCPC
with manual thresholding found positive for the indicated markers. Colors
match those in a, and grey cells (labeled with -/-) were negative for all
markers. Symbols: Mono_c: classical monocytes. Mono_nc: non-classical
monocytes. Ery: erythrocytes. HSC: haematopoietic stem cells. NK: NK
cells. T_CD4: T helper cells. T_CD8: cytotoxic T cells.

only using sparse scRNAseq data.
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3.2.6 Pooled counts result in inverse-variance weight-
ing

I end this section with one last technical considerations on the proposed
smoothing method, and why I call kNN pooling a principled approach. We
found that the smoothed expression value Kij

Sj
has the interesting property

that it is the inverse-variance weighted estimator of πij. Specifically, we found
that Kj

Sj
is equivalent to averaging the weighted, normalized UMI counts w′j

k′
j

s′
j
,

where j′ is amongst the cell j’s kNN (j′ ∈ Nj), and the weights are the inverse
of the expected variance:

wj = 1
var(kj

sj
) (3.6)

Estimators using inverse-variance weighting achieve particularly low vari-
ances [156], which we reason will allow to estimate πij more precisely and
potentially lead to better classification results. We now prove that comput-
ing Kj

Sj
is equivalent to inverse-variance weighting under the assumption that

all neighbors Nj had the same expression rate as cell j. As above, we write
this rate, which is common to all neighbors Nj, as πNj

. Furthermore, with
reference to equation 3.3, we note that a cell j′ from this neighborhood has
UMI counts distributed according to ():

kj′ ∼ Pois(sj′πNj
) (3.7)

We now find the weights wj′ defined in equation 3.6:
var(kj′) = sj′πNj

var(kj′

sj′
) = 1

s2
j′

var(kj′) =
πNj

sj′

wj = var(kj

sj

)
−1

= sj′

πNj

(3.8)

This first line follows from the Poisson distribution itself, whose variance
is equal to the Poisson rate. And the second statement follows from the
following property of the variance itself: var(cX) = c2var(X): the variance
of values scaled by a constant is scaled by the square of that constant (see for
example [157]). With the weights wj′ from equation 3.8, we can now proof
that Kj

Sj
is the inverse-variance weighted average of kj

sj
across the neighbors

Nj (for simplicity, I write Nj as N in the following): ∑
j′∈N

wj′

−1 ∑
j′∈N

wj′
kj′

sj′
= πN

 ∑
j′∈N

sj′

−1 ∑
j′∈N

sj′

πN

kj′

sj′

=
 ∑

j′∈N
sj′

−1 ∑
j′∈N

kj′

= Kj

Sj

(3.9)
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Note that the first line is the formulated claim, i.e. that Kj

Sj
is the weighted

average of k′
j

s′
j
. Again, this is valid only under the assumption that all cells

j′ ∈ Nj have the same expression rate πNj
(πN in above equation for sim-

plicity), and the validity of this assumption is discussed further in section
4.3.

3.3 Resolving complex tissues (MALT data)

Mucosa-associated lymphoid tissue (MALT) is populated with lymphocytes
(such as T and B cells) and found next to epithelium such as the skin, eyes or
lungs. PCPC performed well on CBMC data, separating T cells from other
major blood lineages with high sensitivity and accuracy (see above sections).
As naive immune cells, the CBMC data set contains clearly separated cell
types, i.e. very distinct populations in transcriptional space (with the excep-
tion of two T cell subsets, see above). In this section, I now ask if PCPC is
able to separate highly related subpopulations as well. Specifically, I show
classification for the MALT data set, which is a complex tumor microenvi-
ronment from MALT tissue, with transcriptionally similar T cell subsets. I
start this section by demonstrating the MALT data is of higher complexity
than the CITEseq data. I show how thresholds are best selected and that this
works for low expression strengths as well. I then show cell type annotations
from PCPC, and for context also show and discuss differences to annotations
from Seurat and Garnett. Thus, this section demonstrates PCPC’s ability to
resolve complex tissues such as the MALT data set. Practical considerations,
such as how to pick marker genes and the number of kNN for pooling, are
presented in section 3.4. Finally, I will apply PCPC to a cancer cohort with
multiple patients, as a proof of concept, in section 3.5.

3.3.1 Tissue complexity

Abdelaal et al. recently benchmarked different classification algorithms [89].
They found that all of the studied algorithms struggle with complex data
sets, i.e. whenever the pairwise correlation between cell populations is high
[89]. It is thus a crucial question if PCPC is able to discriminate between
related subpopulations. To distinguish complex and simple data sets, Abde-
laal et al. proposed the following measure of tissue complexity: they average
the normalized transcriptomes across each cluster, and compute the Pearson
correlation between these clusters. More complex tissues will have higher
correlations between the contained cell types, captured by high correlations
between clusters. To derive a single number, Abdelaal et al. furthermore
propose take each cluster’s largest correlation value and to average these
maximal Pearson correlations. The resulting value is by definition below
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one, and closer to one for more complex tissues. The authors note that the
summarized measure also depends on the number of cell types in the data
set, not only their similarity.

Figure 3.5: Tissue complexity for MALT and CBMC data. The left pan-
els show Louvain clusters computed on 50 nearest neighbors. In the right
panels, Pearson correlation between cluster averages are shown, computed
on square-root normalized UMI counts and using all genes without filtering.
This strategy to measure tissue complexity is adopted from [89].

Figure 3.5 demonstrates that the MALT data set is of much higher com-
plexity than the CBMC data. For the indicated clusters (left panel), the
MALT data overall has higher correlations to other clusters (indicated by
intense red colors in right panel). For the next section, the T cell subpop-
ulations are of particular interest. They are represented by clusters 3, 5, 9
and 11. As apparent from the top-right panel in Figure 3.5, these clusters
also show particularly high Pearson correlations to each other. I conclude
that the tissue complexity in the MALT data is higher than in the CBMC
data, especially since this fits the biological expectation: the MALT tumor
microenvironment can be assumed to have more related cell types from the
same major lineage than cord blood cells. Thus, the ability to separate these
related T cell subsets is a trait of a good classification algorithm, and PCPC
is applied to these T cell subpopulations in the next section.
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I end this section by briefly discussing Pearson correlation as measure for
tissue complexity. In particular, Abdelaal et al. not only used manual in-
spection of heatmaps, but also summarized such heatmaps into a single value.
Using the same approach, the two heatmaps in Figure 3.5 can be summarized
into complexity measure values of 0.97 for MALT and 0.95 for the CBMC
data (see Methods and [89]). These values are surprisingly similar to each
other, given that the heatmaps (right panel in Figure 3.5) show such clear
differences. One reason for this might lie in the clustering of the CBMC data.
It is debatable if all of the clusters shown in Figure 3.5 (lower left panel) cor-
respond to unique cell types. In particular, clusters 2 and 10 are very similar
monocyte clusters, and clusters 7 and 8 are both CD4+ T cells. In both
instances, the modularity score optimization by the Louvain algorithm [95]
resulted in the observed clusters, and a different clustering algorithm might
have decided differently. This dependency on the given clustering output
makes the complexity measure proposed by Abdelaal et al. lose some ob-
jectivity. Instead, a robust complexity measure could measure the maximal
correlation between individual cells. Or, if Pearson correlations between in-
dividual cell transcriptomes proof very noisy, the averages between nearest
neighbors could be used instead of clusters.

A second limitation might be that the proposed score is computed on all
genes. It is worth noting that the complexity score might change considerably
when genes are filtered first, excluding genes where no biological signal can
be detected above technical noise.

Finally, I have observed that the Pearson correlation between clusters de-
pends on each cluster’s average library size. For example, clusters 2 and 4 in
the MALT data show systematically lower Pearson correlation to all other
clusters than the rest. Interestingly, clusters 2 and 4 have the highest and
lowest average library sizes: less than 1000 UMI counts on average in cluster
2, more than 14000 UMIs in cluster 4, and roughly around 3000 UMI counts
in all other clusters (data not shown). This apparent connection of outlier
library sizes and low Pearson correlation could on the one hand be explained
by biology: perhaps clusters 2 and 4 simply are more different from the rest
than all other clusters. On the other hand, library size is a known confounder
in scRNAseq data, and it would make sense that the Pearson correlation de-
pends on it. Although it is beyond the scope of this work, this dependency
could be investigated using preprocessing strategies that aim at removing
effects from library sizes (such as scTransform [41]).

Overall, the above findings indicate short-comings of the summarized com-
plexity measure proposed by Abdelaal and colleagues. Apparently, their
proposal to summarize tissue complexity’ into a single number struggles to
faithfully capture tissue complexity. Abdelaal et al. also inspected individual
Pearson correlations in heatmaps [89], and my findings suggest this approach
is more apt at discriminating complex cell type mixtures from simple tissues.
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3.3.2 Selecting thresholds and expression strength

The above section demonstrated that the MALT data set is more complex
than the CBMC data, and resolving complex tissues is a difficult classification
task. In this section, I showcase some of PCPC’s properties using three
selected genes, and derive strategies for selecting marker gene thresholds.
This is in preparation of the full cell type annotation of the MALT data set
(see Figure 3.7), where I also describe a strategy to select the appropriate
marker genes.

Figure 3.6 shows how PCPC detects JUN+, CD3E+ and FOXP3+ cells, which
represent relevant cell (sub)types in the MALT data set. Briefly, JUN marks
a B cell subset, CD3E marks all T cells and FOXP3 marks regulatory T cells
(the final cell type annotations are discussed below, see Figure 3.7). The left

Figure 3.6: Weak and strong marker genes in MALT data. The threshold
divides cells into positive (+, blue) and negative (-, red) k: gene UMIs, s:
total UMIs, ‰: per mille, K: pooled gene UMIs. S: pooled total UMIs,
50/100/500k: 50/100/500 thousand.

column in Figure 3.6 shows normalized UMI counts, the thresholding process
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is illustrated in the center, and the right column shows the resulting positive
and negative cells. The strategy I propose for finding a suitable threshold is
to make the left and right columns in Figure 3.6 congruent. That is, the blue
UMAP area in the right column should correspond to the UMAP area with
high expression in many cells (left column). By trial and error 5, the most
appropriate threshold can then be found, assisted by the smoothed expression
plot (central column, introduced in Figure 3.3). Importantly, the positive and
negative cells which PCPC finds (blue and red dots in Figure 3.6) are always
defined relative to a threshold, not an absolute expression value. JUN, CD3E
and FOXP3 in Figure 3.6 serve well to illustrate this distinction between
relatively and absolutely negative expression: As evident from the third row
in Figure 3.6, most cells are absolutely negative for FOXP3 in the sense that
no UMI counts were detected in these cells or in any of their nearest neighbors
(apparent as dark purple areas of cells in left column, and cells with 0.001‰
or less in the middle column). Knowing about the sparsity of scRNAseq
data, however, this absolute definition of ‘negative’ is not very useful for
classification. That is because zero UMI counts across all neighbors could
either mean the mRNA molecules were really not there, or it could mean they
were not observed because the marker is lowly expressed (detailed in section
3.2.2). Conversely, JUN expression is much higher and UMI counts were
detected in most cells. For classifying JUN+ cells, it is therefore not relevant
to find cells that were positive in absolute terms, but rather with relation
to the user-defined threshold (dashed line in Figure 3.6, first row, second
column). Put differently, absolute UMI values are not helpful in dividing
cells according to marker gene expression, it is the fold change to other cell
types that is decisive.

Of note, the three genes in Figure 3.6 are expressed at different orders of mag-
nitude, but still PCPC manages to find many positive cells for all markers.
This demonstrates that classification can work well for a reasonable range
in expression strength. Put into numbers, JUN shows very high expression
with up to 10‰ after smoothing (up to 28.5‰ before smoothing), while
FOXP3+ is expressed at less than 0.1‰ (1.3‰) in almost all cells. Thus,
expression strength of relevant cell type markers spans at least three orders of
magnitude in the MALT data, and PCPC is able to identify positive cells for
this entire range. This is important, because lowly expressed transcription
factors such as FOXP3 can thus be used as markers with PCPC.

One property of PCPC is that the number of unlabeled cells (grey dots in Fig-
ure 3.6) depends on the gene’s expression strength. JUN is highly expressed
and has hardly any grey cells, i.e. almost all cells can be labeled as JUN+ or
JUN−. In contrast, FOXP3 has low expression, leaving the majority of cells
unassigned (grey in Figure 3.6, bottom right). In other words, we can either
identify FOXP3+ or FOXP3− cells, but not both at the same time. So if we

5 Whether manual thresholding can be (semi-)automated is explored in sections 3.3.5,
4.2 and 5.2
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define Tregs as FOXP3+, we need positive markers for the remaining T cell
subsets 6. I note that this is a limitation of scRNAseq data in general: The
sparsity makes it difficult to rigorously prove the absence of expression for
lowly expressed markers. Classification with PCPC thus requires a certain
level of marker expression, and I argue this is even desirable if the goal is to
generalize inference results. Using the term coined by Valentinse Svensson,
actionable cell types are those that can be identified with a few good mark-
ers in many different experimental settings [145, blog post]. The lower the
expression of a marker gene, the more likely it becomes that this gene can
not be used in other experimental settings due to the respective platform’s
measurement noise. While it is in principle possible to count unassigned,
grey cells as negative, and thus divide T cells into FOXP3+ and FOXP3−,
it is more advisable to curate lists of positive markers wherever possible in-
stead. I envision that PCPC encourages such positive cell type definitions,
gently steering researchers towards cell type definitions that generalize well
to many experimental settings. Lastly, I note that it is not unreasonable to
expect the expression of many established cell type markers to be sufficiently
expressed. After all, they are typically selected for their strong, unambiguous
expression in a cell type.

Researchers will often encounter the situation that multiple marker genes can
be chosen from. For example distinguishing Tregs from other T cells is often
done with IL2RA (often called CD25) instead of FOXP3, because IL2RA is
a surface protein and thus accessible to cell sorting experiments using flow
cytometry. For the transfer of inference results, the exact marker choice
is not crucial: Insights into FOXP3+ cells from the MALT data can and
should be compared with literature findings on Treg cells defined with IL2RA
expression. In experiments other than scRNAseq, cell types are often defined
using protein technologies (e.g. flow cytometry and immunofluorescence).
Depending on the correlation of protein and mRNA levels, not all protein
markers can readily be transferred and their mRNA be used by PCPC. To
stay with the Treg example, a researcher would then build his scientific case by
providing evidence, experimental or from the literature, that FOXP3 mRNA
and IL2RA protein by large select the same cells. Alternatively, she or he
could repeat the analysis with IL2RA+ instead of FOXP3+ cells and show
that the claimed scientific findings remain unchanged. In other cases, good
mRNA marker genes first have to be identified, for example using exploratory
analysis of the scRNAseq data set. Specifically, cluster markers found in the
scRNAseq data set can be used, and ideally are validated experimentally or
showing their ubiquitous utility in other scRNAseq data sets. I will elaborate
more on the strategy of how to select markers in section 3.4.1.

In conclusion, the cell type definitions I propose, together with PCPC, al-
low for clear communication of biological discoveries. Presented this way, a

6Typically, I expect positive markers to exist in most settings where PCPC is applicable.
In this case, possible subsets of CD3E+ T cell are (c.f. Figure 3.7): CD4+ANXA1+, CD4+

CXCL13+, CD8B+CCR7+ and CD8B+ICOS, next to CD4+FOXP3+ Tregs.

73



research finding can be interpreted and commented by colleagues and com-
petitors in light of the cell type definitions used. I envision that this scientific
debate enabled by PCPC can help to guide deeper biological understanding
in many fields.

3.3.3 PCPC on the MALT data

Above, I showed that the MALT data is a complex classification task, recom-
mended strategies for threshold selection and demonstrated how our method
is able to use even lowly expressed marker genes for classification. I now
turn to annotating the entire MALT data set with cell type labels. In later
sections, I will further investigate the performance of Garnett on this data
set, and how clustering with Seurat behaves in the presence of correlated cell
types.

The MALT data was generated from a single B cell lymphoma sample and
has its name from the tissue of origin: Mucosa-associated lymphoid tissue
(MALT). This lymphoma microenvironment is a complex mixture that con-
tains mostly B cells, B cell-derived cancer cells and the T cells that have
infiltrated the tumor. With 3000 T cells, roughly a third of the MALT data
forms a resource to explore and study T cell subsets in cancer. The process
of annotating the MALT data with PCPC yields simple cell type definitions
that can be tested, verified and refined by researchers working on related data
sets: scRNAseq data sets with similar tumor-infiltrating T cells exist already
today for many tumor types, including breast cancer [63], lung tumors [64],
pancreatic adenocarcinoma [158] and nodal B-cell lymphoma [62], amongst
others. Furthermore, promising single-cell data are also generated with mass
cytometry [159, 160]. A common language such as the marker-based naming
scheme used by PCPC could therefore help researchers to form hypothesis
that can be tested across platforms and cancer entities.

Figure 3.7 shows cell type classification with PCPC for the MALT data. For
better visualization, two different color schemes are provided: Figure 3.7a
colors by major cell type and Figure 3.7b shows colors with high contrast
that are also suitable for most forms of color blindness. The major cell
types, as colored in Figure 3.7a, are: CD19+ (B cells and B-cell derived
tumor cells), TOP2A+ (yellow, cycling cells), LYZ+ (black, myeloid cells),
TTN+ (purple, probably muscle cells), CD3E+CD8B+ (green, cytotoxic T
cells) and CD3E+CD4+ (red, helper T cells). As noted above, the tumor-
invasive T cell subsets are of particular interest but are difficult to classify
due to highly correlated transcriptomes (c.f. tissue complexity in Figure 3.5).
Figure 3.7 demonstrates that PCPC resolves them with great detail. For
example, Treg cells (CD3E+CD4+FOXP3+) can be further subdivided into
CCR7+ and ICOS+ subpopulations, representing naive-like and effector-like
Tregs (see next paragraph). The ICOS+ Treg subpopulation consists of only
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124 cells (1.5% of all cells), indicating that PCPC also works for cells with low
abundance. The annotation of the T cell subsets demonstrates that PCPC
can resolve fine hierarchies in complex tissues, which is a difficult task for all
classification algorithms [89, in particular Fig. 8].

As evident from Figure 3.7, manual annotation with PCPC assigned a cell
type label for the majority of cells, leaving only a small proportion with-
out cell type annotation (grey cells in Figure 3.7). Out of the entire data
set, the fraction of labeled cells was 82%, which further increased to 87%
after excluding potential doublets (not shown, see methods section 2.3). Out
of these, only 2.3% had more than one cell type label, showing the chosen
markers define mutually exclusive cell types. For comparison, Garnett labels
less than 50% of cells using the same markers on the same data (see section
3.3.5). Interestingly, PCPC seems to provide a trade-off between the number
of labeled cells and how detailed the cell type definitions are. Specifically,
when Tregs and cytotoxic T cells (CD3E+CD8B+) are classified without sub-
dividing them according to ICOS and CCR7 (not shown), the percentage
of labeled cells in the MALT data increases by 3% to 85% (90% after dou-
blet removal). In other words, whenever subpopulations have highly related
transcriptomes, such as ICOS+ and CCR7+ subsets of Tregs and cytotoxic
T cells, separating these subpopulations comes at the cost of leaving a few
cells ‘in between’ unannotated. Thus, PCPC adapts to the signal-to-noise
ratio, i.e. if the technical noise is too high to label difficult cells, it does
not assign these edge cases. This is in contrast, for example, to clustering
cells, where every cells has to be assigned to one of the clusters regardless of
its biology. I note that when subtypes can not be assigned by PCPC (e.g.
ICOS+ and CCR7+ Treg cells), then the user can still choose to label them
with a broader cell type (Treg, for example). In later sections, I will discuss
Garnett’s annotations and Seurat’s clustering of the MALT data in more
depth. In conclusion, PCPC is able to thoroughly classify cells from complex
tumor microenvironments.

3.3.4 Clustering on MALT data

In the previous paragraph, I demonstrated how PCPC can be used to anno-
tate cell types in the MALT data set. In order to compare these results to the
current standard in the field, this section investigates how Seurat’s clustering
behaves on the same data. Outside of the scRNAseq field, clustering is an
exploratory algorithm, i.e. not suitable for inference, and my observations in
this section should be seen as a reminder of this simple fact. I conclude here
that clustering and PCPC are complementary, not competing. Garnett [40]
offers a more direct comparison because it follows the same marker-based
philosophy as PCPC, and I refer the reader to the next section for its cell
type annotations of the MALT data.
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Figure 3.7: PCPC applied to the MALT data set. Cells are colored by the
indicated cell types (a) or four high contrast colors (b, colorblind-friendly).
Unassigned cells are shown in grey. Black lines connect cell type definitions
(boxes) to the corresponding cells and are omitted in (b) for clarity.

Clustering algorithms are unsupervised, and it is a common notion that this
makes them unbiased, in the sense that it is exclusively biological signal, and
not prior knowledge, driving the cell type annotations. At the same time,
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the term ‘unbiased’ is meant to denote objectivity, in the sense that cluster-
ing eliminates subjective choices by the researcher. In order to discuss these
assumptions of objectivity and lack of subjective bias, I applied Seurat with
three different preprocessing strategies that a researcher might reasonably
adopt. Specifically, I compare two different normalization strategies that the
authors of Seurat suggest as alternative options [161, tutorial]: scTransform
(more recent) and log-normalization (more established). For scTransform, I
run the workflow with and without removal of potential cell doublets (see
methods section 2.3), representing a second subjective researcher decision. If
clustering were truly unbiased (independent of subjective choices), these sub-
jective choices should not change the resulting cell labels much. Figure 3.8
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Figure 3.8: Clusters on MALT data depend on preprocessing. Seurat clusters
were computed after normalization with scTransform, either using all cells
(a) or after removing potential doublets (b, see methods section 2.3), and
with log-normalization and all cells (c). Default parameters were used (e.g.
resolution=0.8). Clusters are visualized on the same UMAP embedding used
above (computed as described in methods section 2.1). Although not used
for clustering, potential doublets are still shown in b as grey cells, for clarity.

shows the Seurat clusters for all three preprocessing strategies. The colors
were matched with those in Figure 3.7, and for clarity I will refer to sub-
populations with the names used in Figure 3.7. As evident from Figure 3.8,
clustering is not unbiased but is instead influenced by various subjective de-
cisions. For example, cluster 0 in Figure 3.8a (CD19+IGKC+ cells) is split
into two clusters when removing doublets (Figure 3.8b). In other words, for
cluster 0 in the MALT data, the notion that clusters are cell types creates
the paradox that removing cells increases the number of cell types present.
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As noted elsewhere, the same paradox occurs when cells are removed at ran-
dom [2, preprint]. Another example for bias in clustering is provided by the
Treg cells. While PCPC extracted a distinct group of CD3E+CD4+FOXP3+

cells (vertical, longish in the UMAP embedding, c.f. Figure 3.7), Seurat’s
algorithm distributes them to two separate clusters. Both of them, namely
clusters 4 and 5 (Figure 3.8a), contain not only Tregs but also cells without
any evidence of FOXP3 expression (c.f. Figure 3.6), suggesting that cluster-
ing is at odds with the well established Treg cell type definition. Graph-based
clustering is the state-of-the-art for cell type classification, and was unable to
clearly identify Treg cells on the MALT data. PCPC thus removes obstacles
in studying Tregs in human tumors. For example, it was able to resolve a
ICOS+ subset (see section 3.3.3) that resembles the ICOS+ Treg cells recently
reported in a cohort of lymphoma patients [62, Fig. 2 therein]. As in the
MALT tumor, these were B cell-derived malignancies which can be studied
in finer detail using PCPC.

Another conclusion from Figure 3.8 is that clusters do not always capture
biologically relevant cell types. For example, cluster 5 in Figure 3.8a contains
CD3E+CD4+CXCL13+ cells (T follicular helper cells 7 ), and a group of
potential doublets, next to FOXP3+ cells. This clustering result, peculiar as
it is, is not robust to pre-processing: Using log-normalization (Figure 3.8c)
yields different cluster labels for these T cell groups. These strong differences
between preprocessing strategies show that unsupervised clustering is not
unbiased, but instead depends strongly on subjective preprocessing decisions.

Interestingly, modern clustering algorithms offer a solution for including sub-
jective researcher decisions. Namely, Seurat has the parameter ‘resolution’,
which can be used to produce more and smaller clusters. So in principle, this
resolution parameter might be used to resolve the Treg subpopulations after
all. For example, Seurat might well be able to identify subsets of cytotoxic
T cells (green in Figure 3.8, c.f. Figure 3.7) when a larger value for the res-
olution parameter is used. For exploration, this approach is most valuable:
Finer and finer clusters can be tested for whether they are ‘real’ [121, blog
post] and which marker genes they might have. For inference, I argue this
approach is undirected and not goal-oriented. For many scientific questions,
the literature dictates marker genes that have to be used in order to draw con-
vincing conclusions regarding a certain cell type. While this is the declared
goal of PCPC, clustering was built for exploration and using its resolution
parameter does not guarantee the desired result is obtained. For example,
we saw above in Figure 3.6 (top row) that JUN expression subdivides CD19+

IGHD+ cells into subpopulations (clusters 6 and 1 in Figure 3.8a), but also
marks tiny subsets of helper T cells (cluster 2), cytotoxic T cells (cluster
3), CD19+IGKC+ cells (cluster 0) and CD19+LINC01781+ cells (cluster 10).
A researcher interested in the JUN+ subset of any of these subpopulations

7 I refer to CD3E+CD4+CXCL13+ cells from the MALT data as T follicular helper
cells here, because they highly express many of the specific markers defined by Roider et
al. [62, Fig. 2 therein] (not shown)
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would have to choose smaller and smaller values for the resolution parame-
ter, hoping Seurat at one point would produce a cluster that exactly overlaps
with these cells. As defined by Crowell et al., a subpopulation can be any
group of cells for which it is interesting to ask inference questions [65]. The
JUN+ T cells are just one hypothetical example illustrating the flexibility re-
quired from inference-oriented classification methods, highlighting the need
for tools such as PCPC. To bring it to the point, the ignorance to existing
prior knowledge is a strength in exploration, but a nuisance in inference.
Thus, clustering is a powerful tool for exploring which cell types are present
in a data set, but is not flexible enough to accommodate the diversity of
scientific inference questions.

Admittedly, PCPC requires substantial manual work before yielding cell type
annotations. Still, I argue this time is a good investment and point out the
hidden labor that clustering has: If clusters were to be used for inference, a
rigorous researcher would re-cluster his data again and again with different
choices of analysis strategies, including normalization, clustering parameters
(e.g. Seurat’s resolution) or even the clustering algorithm itself. Out of these
results, he would then use his experience and prior knowledge to select the
most appropriate clustering result. If multiple data sets are analyzed to-
gether, one would on top iterate through different parameters and/or meth-
ods for batch correction. The term ‘unbiased’ is therefore an unfortunate
choice, as it glosses over this manual human labor that is always required
by rigorous science, even when using unsupervised methods. With PCPC, I
argue the invested time is well directed towards the scientific problem that
the researcher tries to answer. Importatnly, the personal bias he introduces
is not hidden in abstract preprocessing choices, but visible as the selection of
marker genes. Thus, I argue it is always the researcher who decides the cell
type annotations, even when using unsupervised algorithms such as cluster-
ing.

From the observations in this section, I draw the following conclusions. Clus-
ters do not directly correspond to cell types in the MALT data. Instead,
clustering is a powerful tool for exploring the cell types present. PCPC com-
plements this exploratory approach with a flexible classification method that
adapts to various inferential research questions. Thus, instead of having a
single algorithm for all applications, I argue that exploration and inference
have different requirements for cell type labels, calling for separate, special-
ized algorithms.

3.3.5 Garnett on MALT data

In the sections above, I showed that PCPC is able to resolve fine cell type
hierarchies in the MALT data. In particular, not only higher cell type levels
such as CD3E+CD4+ can be annotated, but also lower levels of fine-grained
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definitions, such as CD3E+CD4+FOXP3+ICOS+. This is encouraging, be-
cause such “deep levels of annotation” [89] are difficult for all classification
methods [89]. To put the results into context, I next ask how Garnett [40]
performs on the MALT data. While many computational tools exist for cell
type classification, comparing Garnett and PCPC is particularly instructive
because both use marker-based cell type definitions. These are simple and
transferable, so Garnett already fulfills two out of three criteria introduced
in section 3.1. The question in this section is consequently to address the
third trait of good cell type definitions: Are Garnett cell type annotations
useful, in the sense that many cells from a given scRNAseq data set can be
labeled?

Garnett’s annotations of the MALT data To allow a direct compari-
son to PCPC, I tested Garnett on the MALT data, and using different levels
of cell type hierarchies. For the finest cell type definitions, I used the same
marker genes as with PCPC in Figure 3.7 above. For cell type hierarchies
of coarse and intermediate level of detail, I left out genes marking finer sub-
types (e.g. ICOS, CCR7, FOXP3, IGKC, etc.) as stated in the methods
and in the caption of Figure 3.9. The cell type labels for these three hier-

Figure 3.9: Garnett [40] applied to MALT data with different levels of hi-
erarchy detail. The colors were matched fo Figure 3.7 where possible. The
coarse hierarchy uses only major lineage markers (TTN, LYZ, TOP2A, CD19,
CD3E) and two for defining helper and cytotoxic T cells (CD4+ and CD8B+).
The intermediate hierarchy further subdivides helper T cells into ANXA1+,
CXCL13+ and FOXP3+ (Tregs). The fine hierarchy subdivides Tregs and cy-
totoxic T cells with ICOS and CCR7, and also separates CD19+ cells as in
Figure 3.7 using IGKC, IGHD, SPN, LINC01781 and JUN.

archy levels are shown in Figure 3.9. In all three cases, Garnett failed to
label a large proportion of the cells. From coarsest to finest hierarchy, the
percentage of labeled cells were 45, 39 and 23%. Garnett has the option to
fall back to Louvain clustering so that more cells can be labeled. When using
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these ‘cluster-extended types’, 52, 53 and 58% of cells were assigned a cell
type, indicating that Garnett often times was unable to match clusters to
cell types. Thus, Garnett annotates less than half of the cells in the MALT
data, and this does not improve much when using cluster-extended types.
Garnett’s low labeling success is not entirely surprising, given what the au-
thors themselves report [40]. Even on blood cells from a healthy donor, i.e.
a rather simple cell mixture, Garnett labeled only 74% of cells [40, 71% cor-
rect plus 3% uncorrect labels]. To test Garnett on more complex tissues, the
authors used lung tissue from the mouse cell atlas [8] and Tabula muris [52].
When labeling only the major cell types without subsets (B cells, T cells,
endothelial cells, etc.) in these two lung data sets, Garnett achieved 58%
and 71% correctly annotated cells, respectively, leaving a third and a quarter
unassigned [40, c.f. Fig. S4 therein]. When the authors applied Garnett to
a finer cell type hierarchy in the mouse brain, few cells were assigned a cell
type at all (only 30% correctly assigned, see [40, Fig. S9 therein]).

Garnett labels fewer cells than PCPC Having observed Garnett’s
performance now gives some context to evaluate PCPC. In section 3.3.3,
I showed that PCPC has labeled more than 80% of cells in the MALT data,
with highly detailed cell type definitions (e.g. CD3E+CD4+FOXP3+ICOS+).
In comparison, Garnett labeled less than 50% of cells, making PCPC’s per-
formance a most encouraging result.

Garnett misclassifies more cells than PCPC Next to labeling few cells
overall, Garnett also struggled to assign some of the cell types as intended.
Most prominently, Garnett hardly found any CD19+ cells (blue in Figure 3.9),
labeled many B and T cells as TTN+ cells (purple in Figure 3.9) and was
unable to tell CD4+ and CD8B+ T cells apart. Also, many CD4+ T cells
remained unassigned (center and right panel in Figure 3.9) or were labeled
with the more general label CD3E+, again indicating that Garnett struggled
to distinguish them from CD8B+ T cells (left panel).

I next asked how Garnett’s ‘cluster-extended’ mode performs on the MALT
data. Comparing Figure 3.10a and b, I observe it did not drastically improve
classification: Garnett still was unable to identify TTN+ cells (purple) and
to separate CD4+ and CD8B+ cells (green and bright red). I now consider
TTN+ cells (purple in Figure 3.10a) in more detail to discuss why Garnett
fails in labeling cells. This is in preparation for discussing the challenges in
automating cell type classification in general (see following section and also
section 4.2). As evident from Figure 3.10c, TTN is detected in many cells
all across the UMAP embedding, and this causes problems when Garnett in-
ternally chooses which cells to use when training the logistic regression clas-
sifier. Indeed, during training, Garnett used 345 cells to represent the class
of TTN+ cells (not shown), whereas only 116 TTN+ cells exist in the data
(as judged by PCPC, c.f. Figure 3.7). When picking training sets, Garnett
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Figure 3.10: Garnett [40] applied to MALT data.

uses the reasonable assumption that the highest expressing cells represent
the marked cell type. In practice, however, it is not straight forward to de-
termine these highly-expressing cells. Specifically, Garnett uses a heuristics
to decide which cells to include: It considers all cells above a threshold, and
this threshold is automatically computed as 25% of the expression’s 95th pre-
centile. In the case of TTN, it appears that this rule-of-thumb selected too
many cells (specifically: 345 cells) for training, including many CD19+ and
CD3E+ cells, resulting in final annotations that frequently mislabel cells as
TTN+ (namely: purple dots in Figure 3.10a,b). In other words, the correct
cut-off to label TTN+ training cells would have been at higher expression,
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but the hard-coded heuristics Garnett uses failed to recognize this.

Another instance to discuss challenges in automated cell type assignments
are the CD4+ and CD8B+ cells. Garnett was unable to tell these two T cell
subsets apart, as evident from comparing Figure 3.10a,b with the marker
expression in Figure 3.10e,f. Strikingly, the cluster-extended mode of Garnett
was apparently misled by the irrelevant bimodality of CD4. Specifically, it
failed to label the lower half of the CD4+ T cells (compare Figure 3.10b
and f) and resorted to labeling them as CD3E+ T cells instead. Also, the
cluster-extended type was unable to identify CD8B+ cells at all (absence
of green dots in Figure 3.10b). This might be because Louvain clustering
tends to return rather large clusters in scRNAseq data in my experience (see
also Figure 3.5 for Louvain clusters of the MALT data), and perhaps this is
at fault here: CD8B+ cells might simply have ended up in same cluster as
(some) CD4+ cells, so that Garnett was not confident in deciding for the one
or the other. This prevented Garnett obviously from resolving finer cell type
hierarchies as well: FOXP3+ are not detected at all (Figure 3.10), let alone
subdivided into CCR7+ ICOS+ subsets.

Finally, I speculate on why CD19+ cells were not annotated well by Garnett.
Garnett uses unsmoothed, normalized counts, and it is possible that simply
not enough genes are correlated with CD19. MS4A1 is a highly expressed
marker in these cells, but it is also expressed by TTN+ and TOP2A+ cells
in the MALT data (not shown). Obviously, this confused Garnett in the
first logistic regression iteration where it tried to separate the major lineages
CD19+, CD3E+, LYZ+, TTN+ and TOP2A+ (see marker files in supplement
A). I note that it is a short-coming of my analysis here that I have not defined
TTN+ and TOP2A+ cells as subset of CD19+ cells. It is possible to improve
the marker file and thus perhaps CD19+ cell classification. Compared to
PCPC, I note that this type of error-correction is tedious since Garnett has
long computation times and it is intransparent which cells were selected
for training. Even if CD19+ cells were not classified due to an inadequate
marker file, the T cell subsets could also not be resolved to Garnett, leaving
my conclusions from this section valid.

Automating marker-based classification is challenging In this sec-
tion, I use some of the above examples to illustrate why automating cell type
classification based on few markers per cell type is challenging in general. I
discuss this more concisely in section 4.2.

As a first example, I continue discussing TTN+ cells from the previous sec-
tion. Figure 3.10c shows that while cells with non-zero TTN expression
include many B and T cells, the expression there is below 0.5‰ (greenish),
while the actual TTN+ cells show larger expression (yellowish). This dif-
ference becomes even more evident when the smoothed values are displayed
(Figure 3.10d). This clear expression difference allowed me to find TTN+
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and TTN− cells with PCPC (see section 3.3.3). In contrast, the heuris-
tics implemented by Garnett failed doing so (see previoius section). This
could be a general problem for automation: For a human, spotting the cor-
rect threshold interactively is trivial even without Figure 3.10d as guidance,
while implementing this decision with algorithmic heuristics is challenging.

TTN and its ambiguous threshold is not a rare example. In fact, CD4 in
the MALT shows at least three expression regimes (Figure 3.10f): Very high,
moderate and undetected. In particular, the T cells (in the left half of the
embedding, c.f. Figure 3.7) show very high CD4 expression in the upper
UMAP area, low expression in the lower, and no expression at all on the left.
I note these three regimes are more evident from smoothed expression not
shown here, but the unsmoothed expression in Figure 3.10f gives an idea.
An algorithm now has the difficulty to decide the following question: given
the user-provided knowledge that there are CD8B+ and CD4+ cells, how
should the T cells be divided? Should only the very high CD4 expression
count, while the moderately expressing cells should remain unassigned? Or
are both to be assigned as CD4+ cells? While difficult to capture with algo-
rithmic rules, to a human observer, the answers to these questions are more
obvious. Using the prior knowledge that CD8B and CD4 are mutually ex-
clusive in T cells (except in very rare exceptions such as progenitors in the
thymus), the human would compare CD4 and CD8B expression (Figure 3.10e
and f) and reason as follows: While CD4 expression is surprisingly weak in
the lower UMAP half, the otherwise highly expressed CD8B is hardly de-
tected at all, so it is reasonable to label these cells as CD4+. This rational
can be further consolidated by an interactive user through goal-oriented ex-
ploration. For example, a trained biologist would also consult CD8A and
CD40LG to see that they are correlated with CD8B and CD4, respectively
(not shown). Thus, he would with ease know that the cells with moderate
CD4 expression are still to be labeled as CD4+, and would pick a threshold
with PCPC accordingly. And there is another strength of manual thresh-
olding. In cases more debatable than this simple T cell subsetting, scientific
peers and reviewers might challenge the classification, and the above argu-
ments can then be brought forward in a scientific debate. By contrast, for a
marker-based algorithm provided with only CD4 and CD8B, this reasoning
is impossible and can result in annotations that fail to capture the intended
cell types.

Garnett conclusions Garnett can go from marker-based cell type defini-
tions to cell type labels in a fully automated manner, without requiring as
much manual labor as PCPC. Also, classifiers can be transferred to new data
sets. Still, I conclude that Garnett is not a direct competitor for PCPC. As
the authors note, it is instead for “rapidly annotating atlas” [40] data sets. I
see this application has value in the exploratory setting of large studies. With
more and more available data sets, Garnett’s trained classifiers will become
better and better, helping scientists to explore new data sets faster and with
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more confidence. By contrast, PCPC addresses the need for a marker-based
method intended for inference. Here, it is crucial that the majority of cells
is labeled, so that hypothesis testing such as differential gene expression can
harness as much information as available.

As noted above, PCPC labels less cells when finer cell type definitions are
used. Interestingly, Garnett shows the same trend, i.e. the coarsest hierarchy
allowed for labeling the largest proportion of cells (45%, compared to 23%
with the finest hierarchy). This suggests that a trade-off exists between cell
type resolution and confidence: Telling highly similar subpopulations apart
comes at the price of leaving many cells ‘in between’ unassigned. It is a good
sign for both methods that classification with PCPC and Garnett reflects
this trade-off in the number of labeled cells, as this indicates conservative
results whenever the technical noise is higher than the biological signal.

Lastly, I note Garnett might perform better when more marker genes are
used, or more work is invested when designing the marker files (marker files
are in supplement A). For example, Garnett allows manual thresholds. I note
that rerunning Garnett with different threshold values becomes unfeasible
with higher numbers of genes / cell types, and is probably outside of its
intended use case. Here, the short computation times and interactive usage
of PCPC are more appropriate.

3.4 Practical notes for using PCPC (MALT
data)

This section illustrates how I envision PCPC to be used by (computational)
biologists. Using the MALT data as example, I first describe how marker
genes can be selected. I next show how PCPC encourages researchers to
clearly define their scientific question.

3.4.1 Marker selection strategy

I now describe how I selected the marker genes to annotate the MALT data,
i.e. the genes used in Figure 3.7. This illustrates how I envision PCPC
will be used by (computational) biologists. For any potential marker gene,
it starts by visualizing its expression in the UMAP embedding (a so called
feature plot, see for example Figure 3.6, left column). UMAP places related
cells next to each other, and a suitable marker stands out by high expres-
sion in a specific, local area of the embedding. Choosing between different
candidate markers is then a process of comparing their feature plots and the
resulting positive cells (c.f. Figure 3.6, left and right columns), and con-
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sulting the literature. This strategy of selecting the right marker from a
few potential candidates can be assisted by the interactive code presented
in the outlook (section 5.2). I now give concrete examples for markers used
in Figure 3.7. I obtained CD3E, FOXP3 and CD19 from the literature, as
they represent common markers for T cells, Tregs and B cells, respectively.
All three markers in principle have several alternatives. Next to CD3E, for
example, other components of the T cell receptors would be good candi-
dates, such as CD3G, TRA or CD247 (also known as zeta chain). I chose
CD3E because it is expressed higher than the other components and the
corresponding protein complex (CD3) is widely used as pan-T cell marker
in flow cytometry. This last point is important, because inference results
obtained for CD3E+ cells found by PCPC can be expected to have a direct
correspondence to legacy knowledge in the literature, i.e. results obtained
from cells sorted with anti-CD3 antibody - assuming sufficient correlation of
mRNA and protein levels. In the case of JUN (also: c-JUN, AP-1), a tar-
geted literature search confirmed its role in B cell lymphoma [162, 163], after
JUN had come up as cluster marker. Specifically, I first clustered the MALT
data with the Louvain algorithm (for clusters see Figure 3.5). Then, as part
of exploratory analysis, I ranked genes by their fold change between a given
cluster of interest and all other cells (see methods section 2.7). JUN was
amongst the top markers (marking cluster 8 in Figure 3.5), i.e. genes with
the highest expression difference to all other cells. With the same strategy,
I found CCR7 and ICOS, which divide the Tregs into two subsets 8 (see Fig-
ure 3.7). CCR7 marks naive-like Tregs [164], and I note that an alternative
choice in the MALT data would be SELL (CD62L). ICOS marks cells that
are also ITGAE+ (known as CD103, not shown), which marks effector-like
Treg cells [164]. These two Treg subsets thus illustrate that often, a researcher
may choose from a few marker genes that would give highly similar classifica-
tion outcomes. Further below, I explain how I chose ICOS over ITGAE and
CCR7 over SELL, and how this flexibility of PCPC is helpful in adapting to
the exact scientific question.

Instead of actively choosing, one could in principle use multiple markers in
parallel. For example, Tregs could be discriminated from other CD3E+CD4+

cells using FOXP3 and IL2RA together. With PCPC, this is achieved with
simple logical operations: A Treg cell would then be required to be both
FOXP3+ and IL2RA+. As a consequence, the same or fewer cells would be
labeled using both markers compared to using only one of them, but never
more than that. This strategy is advisable if purity is more important than
yield, i.e. if mislabeled cells should be avoided at the cost of labeling fewer
cells. I note, however, that the goal of PCPC is to use as few genes as possible
for classification to keep the cell type definitions simple. So instead of requir-
ing Tregs to be FOXP3+IL2RA+, a researcher could rather demonstrate that
his main findings are the same, irrespective of whether Tregs are defined as

8Conveniently, CCR7 and ICOS also distinguish two subsets of cytotoxic T cells in the
MALT data.
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FOXP3+ or as IL2RA+. Thus, a researcher can convince himself his findings
are robust, and help his colleagues to interpret his results in context of the
literature that might sometimes use FOXP3 and other times use IL2RA.

In summary, choosing marker genes is a process that involves exploratory
analysis and consulting prior knowledge from the literature. I envision this
strategy to be effective in most biological settings. It is particularly apt
to classify cell types in well researched cell mixtures, such as immune cells
from mouse or human. This scenario is encountered in many studies with
an emphasis on inference, such as case-control cohorts of patients profiled
with scRNAseq (see for example [60–64]). Here, the goal is to gain disease-
specific insights into well-known cell types such as T cell subsets. I argue
that the inference results from such a cohort study are more tangible with
the unambiguous cell type definitions provided by PCPC. Still, even if no
prior knowledge on cell types and their markers were available at all, PCPC
could in principle work exclusively by using genes found as cluster markers
during exploration. An example for this could be a scRNAseq study that
builds a gene expression atlas of a rarely studied organ, species or disease.
In contrast to the inference-oriented cohort study above, this is a purely
exploratory setting, in which PCPC would aim at proposing novel cell type
definitions that can be tested by others. More clearly, exploratory tools such
as clustering [37, 95, 101] and label transfer from annotated reference data
sets [73, 84, 122, 138, 165] are central in such exploratory studies, while
PCPC could be used at the end to communicate the novel cell types in a
simple, transferable and useful manner 9.

3.4.2 PCPC adapts to the scientific question

With PCPC, it is trivial to adapt cell type definitions to the scientific need, so
that the same data can be used to answer various research questions. Using
the Treg cells from the MALT data, I give two concrete examples.

The first example is how to choose between ICOS and ITGAE, both of which
seem to mark a similar group of cells representing effector-like Tregs (not
shown, c.f. section 3.4.1). In the literature, ITGAE is established as a
marker for this population [164], making it a good choice to connect to ‘legacy
knowledge’. In contrast, we recently observed ICOS+ Tregs in a related cancer
entity [62, Fig. 2 therein], and could now ask if this subpopulation also exists
in the MALT data set. Thus, the marker choice depends also on the scientific
question: Do we generate new insights into previously described cell types, or
are we re-visiting the MALT data to perhaps generalize the results obtained
from a new study [62]. Another consideration is the experimental follow-up
of any findings the scRNAseq data might bring. In contrast to ITGAE, ICOS

9Simple, transferable and useful are used here in the sense introduced at the beginning
of this section.
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can also mark a subset of cytotoxic T cells (see Figure 3.7), which is useful
when resolving cell types with as few markers as possible is desirable. This is
the case for example in flow cytometry, where more than a handful of markers
are challenging on most instruments. When sorting all four populations (two
Treg and two cytotoxic), the number of required marker is reduced by two
when choosing ICOS and CCR7 over of ITGAE and SELL. This ability to
switch between marker genes makes PCPC a flexible tool to harmonize the
scRNAseq data analysis with the literature and follow-up experiments.

The second example for goal-oriented classification considers cell type defi-
nitions at different levels of detail. A researcher might first be interested in
the abundance of a very specific Treg subpopulation, such as CD3E+CD4+

FOXP3+ICOS+ cells (dark red in Figure 3.7). As noted above, an investi-
gator may select them with PCPC in his/her own data and also in related
tumors, such as B cell lymphoma [62, see Fig. 2c therein], and compare
pathway activities or cell abundance, for example. Next to such questions
concerning detailed subsets, an independent endeavor could be to investigate
all CD3E+CD4+FOXP3+ Tregs together. Indeed, I observe that UMAP has
arranged the MALT Tregs vertically in the embedding, so that they form
a distinct elongated shape. Explorations of the MALT data with feature
plots (not shown) suggest this longish appearance represents a gradient of
Treg phenotypes, going from a naive-like CCR7+ to an effector-like ITGAE+

phenotype [164]. Specifically, going from lower to higher locations in the
UMAP embedding, Tregs highly express SELL and CCR7, then CCR6, then
IL32, then CTLA4, then ICOS, then TNFRSF18 and finally ITGAE/CD103
(not shown). Thus, a researcher could use PCPC to extract all CD3E+

CD4+FOXP3+ and subject them to analysis with pseudotime tools [39, for
example] in order to describe and characterize the spectrum of Treg transcrip-
tomes. Equally, any higher level in this cell type hierarchy could be chosen:
all helper cells with CD3E+CD4+, and all T cells with CD3E+.

In conclusion, I propose that answering different questions with the same
data set requires flexible classification as implemented in PCPC. I argue
that ‘the’ ideal cell type annotation does not exist, but instead has to adapt
to the exact research question. This way, a scientific argument can be built
more clearly and persuasively.

3.4.3 Pooling bandwidth: Bias and variance

PCPC uses kNN pooling, raising the following questions. How valid is kNN
pooling? Is this likely to introduce artifacts, and what would be the conse-
quences? How to choose the ‘pooling bandwidth’, i.e. the number of kNN to
use? This section discusses these points, and I also refer the reader to section
4.3, which provides a focused discussion on how to find appropriate kNN.
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A useful statistical concept for considering the bandwidth is the bias-variance
trade-off. Briefly, pooling counts across more kNN will make the smoothed
value (K

S
, see 3.2) less noisy, decreasing variance. At the same time, however,

increasing the pooling bandwidth will also include cells with different cellular
states, biasing the individual estimate towards a false estimate (namely, the
global average of the entire data set). In order to understand this trade-off,
I smoothed FOXP3 expression across increasing numbers of kNN for two
related subpopulations. To avoid circularity, I use the Louvain clusters from
Figure 3.5 to define subpopulations in this analysis, rather than cell type
labels found using PCPC 10.

Figure 3.11: Smoothing bias and variance for FOXP3 expression. a 100 cells
each were randomly selected (black circles) from Louvain clusters 5 (green,
Treg cells) and 9 (purple, naive helper cells). b Feature plot of FOXP3,
marking cluster 5. Expression is shown as UMI counts k divided by total
UMI s and multiplied with 1000 to show per mille (‰) for human readability.
c The smoothed FOXP3 expression for the 200 cells selected in (a) is shown
for increasing numbers of kNN. Each line represents one cell from (a), and the
smoothed value was computed as pooled FOXP3 UMIs K divided by pooled
total UMIs S (K and S as in section 3.2). Both axis are log10-transformed,
and a pseudocount of 0.001 was added to the per mille (‰) values on the
y-axis in order to avoid log10(0).

10 I note that the TotalSeq antibodies in the MALT data included CD25 (IL2RA)
marking Tregs (cluster 5), but unfortunately its signal was too weak (few UMI counts
compared to many other antibodies) to define Treg ‘protein types’, which would have been
an even better ground truth than Louvain clusters.
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Bias and variance Figure 3.11 illustrates the bias-variance concept for
two subpopulations and a single marker gene. To make the following con-
siderations rigorous, I picked the following example: Clusters 5 and 9 (blue
and purple in Figure 3.11a and c) have highly correlated transcriptomes (c.f.
heatmap in Figure 3.5, section 3.3.1). At the same time, cluster 5 is marked
by a weakly expressed gene, the transcription factor FOXP3 (Figure 3.11b).
For 100 random cells from clusters 5 and 9 (Figure 3.11a), the smoothed
FOXP3 expression was computed with increasing bandwidth (Figure 3.11c).
The variance in estimating FOXP3 expression becomes obvious from the
width of the green ‘ribbon’, i.e. how widely the green lines are spread out
vertically (Figure 3.11c). For few kNN (e.g. 10), the green ribbon is broad,
while for 1000 kNN it is very narrow. Thus, increasing the bandwidth re-
duces variance in PCPC’s FOXP3 expression estimates. At the same time,
the bias increases. This is evident from the green and the purple ribbons,
converging towards the same value when thousands of kNN are used. Natu-
rally, the convergence value is the data set-wide average, i.e. when pooling
counts across all 8412 cells in the MALT data. So on the one hand, it is
important to pick the bandwidth large enough to obtain a non-zero expres-
sion estimate. For example, smoothed FOXP3 expression is 0 for many green
cells in Figure 3.11c when using only 10 kNN, simply because FOXP3 was
not detected in any of the 10 neighbors 11. On the other hand, the band-
width should not be too large, as otherwise the expression estimates become
systematically wrong (biased). While bias and variance in smoothing seems
important, the crucial question for PCPC is how the bandwidth impacts the
classification outcome (FOXP3+ cells).

Bandwidth and classification outcome To test the influence of the
bandwidth parameter, I classified FOXP3+ cells from the MALT data us-
ing different numbers of kNN with the same threshold τ = 0.01‰. I find
the overlap is in general high, and more neighbors find more positive cells
(not shown in the figures). For example, when picking a small number such
as 20 kNN, PCPC identifies 384 cells. Reassuringly, the majority of these
(362, 94%) are also detected with 100 kNN, while at this high number of
kNN 173 cells on top get labeled as FOXP3+. Testing kNN values between
20 and 100 consistently gave large overlaps and always more positive cells
with more neighbors. This is not unexpected: More neighbors decrease vari-
ance in Figure 3.11, and the larger neighborhood size decreases the area of
uncertainty around the user-defined expression threshold (c.f. middle col-
umn in Figure 3.6). Still, 100 kNN would be too high for most data sets
because larger bandwidths, while labeling more cells, are not per se better:
It is a fundamental assumption of PCPC that a cell’s kNN are, with the

11 Averaged across all FOXP3+ cells (cluster 5), FOXP3 expression is as low as 0.075‰,
meaning that for a cell with 3000 total UMIs we expect a FOXP3 UMI count with only
a 22.5% chance. Classification still works well because cluster 9 only has 0.003‰, i.e.
25-fold lower FOXP3 expression than cluster 5.
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given data, indistinguishable from this cell. If it can not be told apart from
highly expressing cells, we can call a FOXP3+ cell beyond reasonable doubts,
with the given data. I further discuss this noise-robust definition of positive
cells in section 4.3. Thus, like with smoothing (c.f. section 1.6), choosing
the bandwidth for classification also has a trade-off. More kNN will leave
fewer cells undecided, but at the same time might more severely violate the
assumption that positive cells have transcriptomes that are associated with
FOXP3 expression. As a final note on the bandwidth, let us consider the
task of separating green from purple cells in Figure 3.11c by eye. Evidently,
this can be achieved with a wide range of bandwidth values, and 50 kNN
(used throughout this thesis) may be a reasonable default value. Still, more
principled approaches exist to find appropriate neighbors for our purposes,
which I will further discuss in section 4.3.

3.5 Multi-sample multi-group comparison (lym-
phoma data)

PCPC is a flexible tool to annotate cell types with inference as goal. The
ideal use case for which I have designed PCPC is differential testing in multi-
sample multi-group multi-subpopulation studies (see section 1.5). As an
example, I choose the lymphoma cohort recently published by Roider et al.
[62]. In this section, I will use PCPC to classify a single cell type and perform
differential gene expression testing. This approach can be scaled to annotate
all subpopulations present in the data, as demonstrated for the MALT data
(c.f. section 3.3.3).

Analysis goal As introduced in methods section 2.6, the ‘lymphoma co-
hort’ represents scRNAseq data sets prepared from the lymph nodes of 12
patients, 9 of which had B cell lymphomas. Some B-cell lymphomas in the
lymph node are aggressive, while others are indolent and associated with a
good prognosis. Specifically, follicular lymphomas (FL) are indolent (4 pa-
tients), while the cohort’s aggressive tumors were diagnosed either as the
transformed type (tFL, 2 patients) or as diffuse large B cell lymphomas (DL-
BCL, 2 patients). Understanding the differences between these two groups,
aggressive and indolent, is a promising strategy to improve treatment. The
first analysis step is to find genes that are differentially expressed between
the two conditions.

Classifying CD3E+CD8B+ cells Here, I ask the question how tumor-
infiltrating cytotoxic T cells differ between aggressive and indolent lym-
phomas. Using PCPC on each sample separately, I classify cytotoxic T cells
as CD3E+CD8B+ cells. Figure 3.12 shows the marker expression (a,b) and
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the classification result (c). Patient DLBCL1 had no detectable T cells and
was therefore excluded from this analysis. As above, I chose the marker ex-
pression thresholds to maximize agreement between the UMAP areas with
CD3E+CD8B+ cells (black dots in Figure 3.12c) and co-expression of the two
markers (a,b). This resulted in 183 cells per sample on average, with most
cells in sample tFL1 (469 cells) and fewest in sample tFL2 (34 cells). Below,
I will use these cell labels to test for differential expression between cytotoxic
T cells from aggressive and indolent tumors. Before that, I use the classifica-
tion example to illustrate the strengths of manual thresholding by the user,
in preparation of discussing the limitations of automated classification (see
section 4.2).

Informed decisions and flexibility with manual thresholding PCPC
requires the user to manually select expression thresholds, which in this exam-
ple are two thresholds per sample (one per gene) in order to classify cytotoxic
T cells. While this is more manual labor that running other marker-based
methods, such as Garnett [40], CellAssign [141] or Scina [142] (c.f. section
4.5), it provides more flexibility to meet the heterogeneity of patient cohorts.
The importance of flexibility is illustrated in the following two examples.

While selecting thresholds for sample DLBCL2, I noticed the CD3E+CD8B+

cells are distributed to two separate groups in UMAP (Figure 3.12c, panel
‘DLBCL2’). This situation requires the attention of an investigator, because
deciding whether this classification result is desired or not might depend
on the research question, and certainly requires more exploration. To this
end, I inspected more markers for DLBCL2 and found that both groups of
CD3E+CD8B+ cells were also positive for CD8A and negative for both CD4
and CD40LG (not shown), as expected from cytotoxic T cells. The ‘upper’
CD8B+ cells furthermore highly express ICOS, GZMK, LAG3 and PDCD1,
which are described activation markers in tumor-derived cytotoxic T cells
[64]. The ‘lower’ group, in contrast, has a naive phenotype lacking these
markers and instead highly expressing CCR7 and IL7R. Thus, exploration
suggests that the two groups of CD3E+CD8B+ cells in DLBCL2 are not
doublets or other artifacts, but represent two biological entities. For further
analysis, an investigator may now decide what makes more sense for his
analysis: Include all cytotoxic T cells, or only one of the two subsets? Here,
I chose the former since I was interested in all cytotoxic T cells, and not
all samples seem to have enough cytotoxic T cells to allow dissecting the
activated and naive subpopulations in all samples. This example backs my
argument put forward in this thesis that classification for inference is not right
or wrong but instead depends on the question, in contrast to exploration.
Put differently, if inference is the goal instead of exploration, cell types are
discussed rather than discovered.

As a second example of how classification requires flexibility and informed
decisions, I note sample FL3 also presented with two CD8B+ subpopulations
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Figure 3.12: CD3E+CD8B+ cells classified with PCPC in the lymphoma cohort.
Patients are indicated in grey boxes, feature plots were created as described in
methods (section 2.2). For patient FL3 only, cells were additionally required to
be CD4−. a, b Marker gene feature plots, using different color scales for visual
separation. c CD3E+CD8B+ cells (black dots) classified with PCPC.

(Figure 3.12b, panel ‘FL3’). More exploration showed that the small ‘lower’
group in the embedding was also highly expressing CD4 (not shown), sug-
gesting these cells represent doublets or a rare CD8B+CD4+ subtype. In
contrast to DLBCL2, I decided to exclude this second population of CD3E+

CD8B+ cells by additionally requiring them to be CD4−.

These two examples illustrate that automating marker-based cell type clas-
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sification is difficult at least, and perhaps not even desirable. For a hetero-
geneous cancer cohort, classification is best done separately for each patient,
taking literature knowledge and the analysis goal into account. Opting out
on automation sets PCPC apart from all other marker-based classification
tools [40, 141–143], deserving further discussion (see section 4.2).

Multi-group comparison: Aggressive and indolent tumors Having
classified cytotoxic T cells as CD3E+CD8B+ in 8 patients (excluding DL-
BCL1 due to a lack of T cells), I next tested for differential expression (DE)
between cells derived from aggressive and indolent tumors. Testing for DE
in multi-sample multi-condition data, such as the lymphoma cohort, is still
an area of active research [65]. Pseudobulk methods are simple, fast and
perform well [65]. Therefore, I formed pseudobulks for the CD3E+CD8B+

cells, one for each patient, and tested for DE between aggressive and indo-
lent tumors 12. using DESeq2 [166]. As illustrated by the volcano plot in
Figure 3.13, DESeq2 found 12 genes with higher expression in T cells from
aggressive tumors and 2 genes with higher expression in indolent samples.
This illustrates that even with as few as four patients per group, significant
differences can be detected with scRNAseq cohorts.

Figure 3.13: Volcano plot for testing differential expression in cytotoxic T
cells from aggressive or indolent tumors. CD3E+CD8B+ cells were tested
with DESeq2 on pseudobulks. Positive log2 fold changes represent higher
expression in cells from aggressive tumors (DLBCL and tFL samples).

12 I note that this type of multi-sample multi-group comparison has recently been re-
ferred to as ‘differential state’ testing, to discriminate it from comparing clusters within
the same sample. I do not follow this convention, as explained in section 1.5
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Pitfalls when interpreting inference results I present the DE genes
in Figure 3.13 as an illustration of how PCPC can be applied to scRNAseq
cohorts for multi-condition comparisons. Given the small number of patients
and limitations in using pseudobulks, these results require further validation
to avoid over-interpretation. Most prominently, while the genes reported here
were DE according to DESeq2’s statistical assumptions, there is no guarantee
for generalization, i.e. that these genes would also be DE in a larger cohort.
Only four patients per group might not be a valid sample from the entire
population of all lymphoma samples. Thus, it might be that some of the DE
genes obtained from DESeq2 are due to other characteristics than aggressive
and indolent. For instance, tumor infiltration might have a certain kinetic,
so that the T cell transcriptomes would depend not only on tumor aggres-
siveness, but also on the time point at which the lymph node was removed
and the cells were sequenced 13. Also, the lymphoma cohort was generated
from frozen patient material, so more dead cells and thus contamination with
ambiend mRNA are to be expected than for fresh samples. This is impor-
tant to keep in mind for example when considering IFIT1, the gene with the
largest fold change (Figure 3.13). While significant in the pseudobulks, the
percentage of CD3E+CD8B+ cells with non-zero UMIs were below 3% in all
samples except for DLBCL3 (21%). The inference results from small scRNA-
seq cohorts should be considered hypothesis-generating events, followed by
further validation experiments. The marker-based cell type definitions used
by PCPC are ideal for follow-up experiments with flow cytometry or imaging
with the same markers.

LGALS1 in cytotoxic T cells from aggressive lymphoma Above pre-
sented case study revealed DE distinguishing cytotoxic T cells in aggressive
and indolent lymphoma. The gene with the lowest p-value was LGALS1,
for which DESeq2 reported over-expression in the aggressive subgroup. Fig-
ure 3.14 shows feature plots of LGALS1 for each patient sample. As de-
scribed in methods section 2.2, non-zero expression was plotted on top the
more abundant zeros, and CD3E+CD8B+ cells are emphasized by making all
other cells transparent. Inspecting Figure 3.14, it is evident that LGALS1
is expressed higher in aggressive (top row) than in indolent tumors (bottom
row): The color intensity is, overall, higher in the cytotoxic T cells from ag-
gressive tumors (top row). The percentage of CD3E+CD8B+ cells for which
LGALS1 was detected was between 17 and 68% for aggressive and between
6 and 10% for indolent tumors 14. Many non-T cells have high LGALS1
expression in sample DLBCL3 (Figure 3.14, panel ‘DLBLCL3’), which could

13For resolving such transcriptomic changes in tumor-infiltrating T cells over time, a
data set with 4 donors per group is obviously insufficient.

14 This is no proof for over-expression, because the library sizes in cytotoxic T cells
from the aggressive tumors were systematically higher (3098-4608 total UMIs on average)
than for indolent tumors (1853-2916 total UMIs on average). I note that in contrast to
the detection frequency, DESeq2’s negative binomial model adjusts for these differences
in library size, so LGALS1 is nevertheless a legitimate DE gene.
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Figure 3.14: Feature plots of LGALS1 in CD3E+CD8B+ cells. Patient name
is given within grey boxes, and tumor status (aggressive or indolent) as col-
ored text. LGALS1 expression in these cells was higher for samples from
aggressive tumors than for indolent, according to DESeq2 on pseudobulks.
For clarity, only CD3E+CD8B+ cells are shown non-transparent, and non-
zero values were plotted on top of cells with zero expression.

strongly contaminate a sparsely expressed gene with ambient RNA. In the
case of LGALS1, however, high expression was observed in the other three
aggressive tumor samples, suggesting this might be a biological property of
aggressive lymphomas. LGALS1 (also known as Galectin-1) is known to
be secreted by malignant tumor cells, suppressing cytotoxic T cell activity
[167]. Of note, it induces apoptosis of activated human T cells [168], which
explains why tumor cells would secrete it. Here, I now find that cytotoxic T
cells themselves highly express LGALS1 in four samples from aggressive tu-
mors, which is a noteworthy observation. An investigator could now use flow
cytometry to sort CD3+CD8+ cells from more lymphoma patients to con-
firm these findings, and to further investigate if and how LGALS1 influences
tumor progression in B-cell lymphoma patients.

In conclusion, PCPC annotates cell types in scRNAseq cohorts. Its flexibility
is particularly apt at adjusting cell type definitions to individual patients as
required by the inherent heterogeneity of cancer malignancies. The presented
case study analyzing the role of cytotoxic T cells in a small lymphoma cohort
was only one potential use case. In the future, similar questions might be
addressed using larger cohorts (section 5.2 shows how to make this time-
efficient for many patients).
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Chapter 4

Discussion

In the previous chapter, I showed how Pooled Count Poisson Classification
(PCPC) can be used to classify cells in scRNAseq data, giving examples
from blood cells (CBMC data), fine T cell subsets (MALT data) and a multi-
patient cancer cohort (lymphoma data). I have referenced the existing liter-
ature where appropriate in the previous chapter and thus already discussed
many aspects of my work and how it relates to the existing state-of-the-art.
Here, I focus on a few central aspects that I feel deserve a separate scientific
treatment.

This discussion is organized from general to more specific. I start with the
general concept of what cell types are, and discuss different classification
requirements in exploration and inference (section 4.1). I then discuss the
peculiarities of PCPC: Manual thresholding as opposed to automation (sec-
tion 4.2), nearest neighbor pooling and its implications (section 4.3), using
Poisson random variables to model pooled counts (section 4.4), and vari-
ous limitations that fundamentally arise from how I designed PCPC (section
4.5). Finally I summarize limitations of this thesis, if distinct from those of
PCPC as a method, in the next chapter (chapter 5) as an outlook on the
next possible steps in this project.

4.1 The cell type concept

The cell type concept is not clearly defined and frequently debated [79]. In
this work I argue its requirements depend on whether exploration or inference
is the analysis goal. In other words, while scRNAseq has the ability to do
both types of analysis, data-driven or hypothesis-driven, it should be sepa-
rate, specialized algorithms performing these tasks. In this section, I discuss
the differences between cell types for exploration (4.1.2) and for inference
(4.1.3) in detail. I also provide guidance on how the interplay of exploration
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and inference can be organized (4.1.4). I start by noting how the cell type
concept itself is somewhat subjective (4.1.1), which fits well with my obser-
vations from section 3.3.4 that unsupervised algorithms are not necessarily
unbiased. For interesting impulses concerining the current cell type debate,
I recommend a collection of opinions in ‘CellSystem Voices’ [81, comment]
and the introduction of the muscat preprint [87, preprint] or paper [65].

This section in a nutshell The exploratory aspect of scRNAseq analysis
has received much attention in the form of unsupervised algorithms, most
prominently clustering after data integration [73, 122, 128–133] and label
transfer [84, 126, 127, 136, 138] & [2, preprint] (introduced in section 1.7).
The better the data set (multiple modalities, many cells, high transcript cap-
ture rates, etc.), the more detailed the cell types become that these methods
can discover in high-dimensional space. For inference, on the other hand, the
requirements are different. Novel insights gained into a subpopulation of cells
(such as genes up-regulated after a certain treatment) should not stand on
their own, but are instead to be interpreted in context with existing knowl-
edge from previous studies. Most often, the requirement is thus to connect
inference results to ‘legacy knowledge’ 1 obtained with non-sequencing tech-
nologies (e.g. imaging and mass cytometry, or bulk omics and functional
assays from sorted cell populations). For this reason, cell type labels found
with marker-based methods are ideal for inference. Out of the existing meth-
ods that find labels from known marker genes (introduced in section 1.7.4),
PCPC is the only one that is simple, transferable as well as useful (as defined
in section 3.1). For a given scRNAseq patient cohort, I therefore propose the
following analysis strategy. Exploratory algorithms are used on this cohort
or, better even, on a large multi-omic data set, to discover relevant cell types
and their markers. PCPC or a similarly powerful marker-based approach is
used to classify these cell types to the extent that the given cohort data set
allows. The resulting insights from inference (such as differentially expressed
genes or conclusions drawn from them) are then validated using the same
marker genes in independent data sets or experimental platforms.

4.1.1 Subjectivity in cell type definitions

In this thesis, I argue that with the current technology, cell types are not
objective fundamental truths to be discovered. Instead, they are the result
of a subjective trade-off between how simple a cell type definition is, and how
much complex experimental behavior it explains. Here, I further back this
argument by reviewing the cell type concept across different disciplines.

That cell types are subjective is evident from the fact that separate biological
disciplines disagree already on the first step: Which aspects should be consid-

1 I ackowledge Wagner et al. [80] for coining the term ‘legacy knowledge’.
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ered and prioritized when defining cell types? For example, ontology has been
proposed as the crucial factor to define myeloid cell types (such as dendritic
cells, monocytes and macrophages) [85]; in the sense that cells should first
and foremost be distinguished by which precursor and developmental lineage
they have originated from. The authors note that fate-mapping experiments
are required, which are not available in all organisms. In this ontology-based
cell type concept, the cell’s molecular cell state, such as surface markers or
the transcriptome, would then be secondary and optional [85]. This is in
contrast to the rather young discipline of scRNAseq, where the priorities
are evidently exactly the other way around: It is the single cell’s molecular
state (transcriptome, proteome, methylation, etc.) that defines its cell type
in the field of scRNAseq method development [40, 88, 89, 120, 141, 169],
while lineage tracing is an optional read-out requiring specialized protocols
[170, review]. Yet another approach to categorize cells is to focus on the
evolutionary aspect, such that cell types from one species have counter-parts
in related species [86]. Finding such homologous cell types, according to
the authors, can be achieved by identifying the combination of transcription
factors that define them (referred to as core regulatory complex). Summing
up these observations, I conclude that the view on how cell types should be
defined appears to depend on a researcher’s subjective experimental prefer-
ences. Evolutionary biologists put the homology between species first, while
researchers who employ single-cell assays prefer to define cell types based on
molecular information, which to yet others is inferior to cell ontology defined
by fate-mapping experiments.

Next to the lacking agreement on the rules for defining cell types, another
rather subjective line to be drawn is the separation between cell type and cell
state. In a recent opinion article [82], S. Morris notes that a the cell state
(subject to fluctuations due to interactions with the cell’s environment) and
the cell type (permanent in absence of reprogramming and differentiation)
should be kept separate. To this end, Morris proposes to ideally use mul-
tiple technologies in concert: Fate-mapping experiments to determine the
lineage, scATACseq for the cell type’s slowly-changing epigenetic signature,
scRNAseq for dynamic transcriptomic cell states, et cetera. A similar line of
argument, with a special emphasis on transcription factor combinations used
by different cell types, is found in [83, opinion article].

Moving forward, I propose it is helpful to distinguish two types of classifica-
tion. One for exploratory purposes, where ideally multi-omic protocols are
used to discover fundamental cell types and cell states, if they exist. And
the other for inference, where the limited signal-to-noise ratio is taken into
account when defining cell types. I will discuss cell types for exploration and
inference in the following two sections.
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4.1.2 Cell types for exploration

As single-cell technologies become more powerful, a fundamental question of
categorizing cells can be addressed: Does a single, optimal cell type assign-
ment exist, or does the ideal classification depend on the scientific question?
Put differently, when single cells are viewed in the high-dimensional feature
space that spans the transcriptome, proteome, epigenome and metabolome,
do they form disconnected groups (cell types), or rather a continuous spec-
trum? To discuss this former scenario, I will refer to these disconnected
groups of cells as ‘fundamental cell types’ that unsupervised algorithms can
discover and characterize. Multimodal analysis tools [110, 120] could be used
to annotate a large multi-omic reference data set with these fundamental cell
types. Given a new scRNAseq data set (the ‘query’ data), a strong case
could then be made for finding a single, ideal annotation using data inte-
gration and/or label transfer set [73, 122, 138] based on the most relevant
reference data set. In the latter scenario, by contrast, discrete latent cell
types do not exist and any categorization of cells is a subjective trade-off be-
tween its simplicity and the proportion of experimental observations that it
is able to explain (c.f. section 3.3.4). In this scenario, unsupervised methods
are poor choices in inference studies, because they would appear unbiased
when in reality the bias is just hidden in the methodology, i.e. algorithm
parameters and preprocessing choices (c.f. section 3.3.4). Put plainly, this
is the crucial open question: Are cell types discovered, or rather discussed?
Do they represent fundamental ground truths, or are they mental concepts
to explain biological complexity with simple rules?

For current scRNAseq protocols, I argue answering this fundamental question
is not feasible yet. Limited to only the transcriptome (and perhaps one other
modality [113, 118]), and with transcript capture rates of 30% or lower [15],
the signal-to-noise ratio is not sufficient to make unsupervised methods truly
unbiased (see section 3.3.4). Taken together with the personal bias discussed
in section 4.1.1, I conclude that cell type definitions are subjective, intelligent
choices by the researcher in most of PCPC’s use cases. I will describe these
‘inference-oriented’ cell types in the next section.

4.1.3 Cell types for inference

When stating my motivation to develop PCPC (section 3.1), I proposed that
inference has different requirements for classification algorithms than explo-
ration. Specifically, I proposed the three requirements for cell type assign-
ments: Simple, transferable and useful. Here (4.1.3 and 4.1.3), I compare
PCPC to the existing classification methods introduced in section 1.7 un-
der these three aspects. Furthermore, I point out two other peculiarities of
how PCPC finds cell type labels. First, the concept of positive cell types
and how it avoids interpretations that are not permitted by the sparsity of
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scRNAseq data (4.1.3). And second, I discuss whether cell types should be
mutually exclusive, as they are in most methods, or whether cell type overlap
is acceptable, as with PCPC (4.1.3).

The concept of positive cells PCPC allows researchers to formulate pre-
cise, testable claims such as ‘FOXP3+ cells in MALT tumors have property
XYZ ’, by using the concept of positive and negative cells. To this end, I
defined marker-positive cells as those with a transcriptome that is indistin-
guishable from cells with high marker expression. This definition circumvents
the issue of smoothing artifacts [67] (introduced in section 1.6), because it is
the high similarity to expressing cells, rather than the expression value itself,
that is being inferred. In other words, PCPC does not claim that positive
cells were necessarily highly-expressing cells themselves. I will discuss the
concept of indistinguishable neighbors and its limitations in section 4.3. For
now, I stress that my definition of positive cells acknowledges that ‘better’
data (with more cells/transcripts/modalities) might have led to a different
set of cells labeled as positive. The analysis goal, after all, is not to improve
the data (which is impossible), but to make claims from it that are beyond
all reasonable doubts. Making such scientific claims under uncertainty is en-
able by my definition of positive and negative cells, because it appreciates
the inevitable imperfection of any classification attempt in the presence of
high technical noise. This pragmatic interpretation of the resulting cell labels
clearly distinguishes PCPC from graph-based clustering (Seurat [37], Scanpy
[38], etc.), where the definition of clusters is purely technical, namely group-
ings of cells that optimize the modularity score in the k nearest neighbors
(kNN) graph. Thus, the concept of positive cells defined here introduces
more intuition of what the cell types are and are not, which I find crucial for
biological interpretation.

One interesting question is how PCPC is impacted when scRNAseq protocols
continue to become more sensitive. If the transcript success rate (currently 5
- 30% [15]) improves, the technical noise decreases. Thus, on the one hand,
fewer neighbors that are indistinguishable might be available to PCPC in
a given data set, since the improved signal-to-noise ratio can measure more
subtle cell-cell differences. On the other hand, pooling across fewer neighbors
will be necessary to estimate marker gene expression with enough precision
to separate positive from negative cells. I therefore speculate the definition
of positive cells used by PCPC to remain relevant with ‘better’ scRNAseq
technology.

Classification algorithms are either simple or useful As introduced
in section 3.1, a classification method for inference should be simple, trans-
ferable and useful. Here, I discuss the two criteria ‘simple’ and ‘useful’ again
briefly, and point out which ones are fulfilled by the existing classification
tools introduced in section 1.7. I discuss ‘transferable’ in the next section.
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Clusters are not defined in simple terms, instead they are a somewhat ab-
stract result of optimizing the modularity score on a kNN graph (introduced
in section 1.7.2). Thus, as I pointed out in section 3.3.4, clustering is a pow-
erful exploratory tool, and therefore complementary to (not competing with)
inference-oriented methods such as PCPC. In general, simplicity is an impor-
tant criterion for cell type labels due to three reasons. First, they provide a
clear language for communicating inference results and for scientific debates
in general. Second, they facilitate falsification: Not only are marker-based
cell type definitions easily testable across many experimental platforms, the
derived inference results are also more actionable, i.e. tractable in validation
experiments 2. And third, they explain a complex world with simple rules,
which I consider a fundamental goal of science: When two hypothesis can
explain the same observations, it is wise to choose the simpler of the two
(known as ‘law of parsimony’ or Occam’s razor [171, Wikipedia]). Thus, as-
signing cell type labels from known marker genes is simple, while clustering
and label transfer (introduced in sections 1.7.2 and 1.7.3) are not.

A cell type classification approach is useful when from a given scRNAseq
data set, many cells can be retrieved with reasonable confidence. This is
of obvious importance, for example because differential expression testing
has more power when more cells are included. PCPC fulfills this definition
of useful, for example because it was able to find most regulatory T cell
(Treg) cells in spite of FOXP3’s low expression in the MALT data set (see
Figure 3.6 in section 3.3.3). Other marker-based methods may be simple
and transferable, namely Garnett, CellAssign, SCINA and scSorter. I argue,
however, that they are not as useful as PCPC. For Garnett, I have shown in
section 3.3.5 that it fails to label the majority of cells in the MALT data. I
expect the same to be true for CellAssign and SCINA, because both tools
only use the marker genes themselves, ignoring the rest of the transcriptome.
This means that when searching for CD3E+CD4+FOXP3+ cells, CellAssign
and SCINA would indeed only use the information contained in three genes,
which is problematic due to the sparsity of scRNAseq data. Using these
methods with more markers, however, results in cell type definitions that
are not transferable to some experimental platforms such as flow cytometry
or imaging. I note that scSorter, like PCPC, uses the entire transcriptome
next to the supplied marker genes (introduced in section 1.7.4). scSorter was
published in the final stages of writing this thesis [143], so testing its ‘useful-
ness’ (ability to label many cells) on the MALT and lymphoma data is out of
scope of this work. If scSorter is indeed able to perform well with few marker
genes, the original publication did not show it: Between 3 and 12 markers
were used per cell type with a few exceptions [143, supplementary material],
for classifying major lineages for which PCPC requires only a single marker.
Also, I speculate that scSorter might struggle on some data sets due to its
assumptions: scSorter fits only two expression levels across all cells (back-
ground expression or over-expression). This means it assumes expression is

2 Compare ‘FOXP3+ cells express IL2RA.’ with ‘Cluster 5 expresses IL2RA.’.
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either off (background) or on (over-expression), but not intermediate. I point
out violations of this assumption in sections 3.3.5 and 4.2, for example CD4
expression in the MALT data.

Transfer of marker panels The third criterion for inference-oriented cell
type annotation is that it should be transferable (c.f. section 3.1). This is
relevant embed novel inference results on a certain subpopulation into the
existing literature (‘legacy knowledge’ [80]) and follow-up studies. While
feasible with most classification methods, there are fundamental differences
in how the transfer is achieved, which I now discuss.

Label transfer between scRNAseq data has received much attention recently
(introduced in section 1.7.3). One of the first tools for this, Garnett, uses
logistic regression to ‘learn’ a linear combination of genes that is able to sep-
arate cell types in the reference data, and transfers these weights to annotate
the query data. Most recently, a similar strategy has been proposed for the
deep learning tool scArches [138]. Specifically, scArches can learn neural net-
work weights on a large reference data set. Representing prior knowledge,
these weights are then ‘fine tuned’ on the new data set, finally annotating
this ‘query’ data. The strategy that marker-based methods such as PCPC
pursue is fundamentally different. Rather than collecting trained classifiers
in the form of weights obtained from a reference, I suggest to curate marker
gene lists instead, and use those on new data sets. The two approaches have
opposite strengths and weaknesses: Applying it to a new data set can be
expected to be less work (either manual or computational) a trained clas-
sifier than for a curated marker, but trained weights might fail when the
query data is very different from the reference data. Put differently, curating
marker genes, in comparison to learned weights, is qualitative rather than
quantitative, and I expect it therefore to generalize better to unseen data
(different organs, diseases, etc.).

Marker-based cell type definitions have the advantage that, in contrast to
clustering and label transfer, they can also be applied in non-sequencing
platforms. For example, CD3E+CD4+FOXP3+CCR7+ cells can be further
studied with sequencing, flow cytometry or imaging. Before using the same
cell type definition across these technologies, however, a researcher first has
to ensure that messenger RNA (mRNA) and protein levels are sufficiently
correlated. I note that for well established markers, this correlation has
often times already been proven (compare for example CD3 protein and
mRNA levels in CITEseq data sets). In general, protein-mRNA correlation
is low for high abundant house-keeping genes (ribosomes, mRNA splicing),
and high for dynamic responses (nucleotide metabolism, acute inflammatory
responses) [172]. These dynamic response genes are perfectly suited to define
cell type subsets in experiments where cells respond to a treatment condition.
Another study found good correlation for most genes in ovarian cancer [172],
suggesting the transfer between scRNAseq cohort studies of complex diseases
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and protein-based technologies (flow cytometry, mass spectrometry, etc.) is
realistic.

Cell type overlap and ‘cherry picking’ Existing classification algo-
rithms (clustering, CellAssign, Garnett, to name a few) are designed to assign
exactly one cell type label per cell. In other words, cell types are defined by
these tools to be mutually exclusive. Since cell type labels obtained with
PCPC are not necessarily mutually exclusive, I discuss the implications of
overlapping cell types in this section. Of note, with ‘overlap’ I mean multiple
labels from cell types that are not subset or superset of the other: Naturally,
the same cell can at the same time belong to the cell types ‘T’, ‘CD4-positive
T’ and ‘Treg’ – cell type overlap instead is when a cell is ‘Treg’ and ‘B’ at the
same time.

With PCPC, this is possible that a cell is assigned two cell types at once,
for example CD3E+FOXP3+CCR7+ and CD3E+FOXP3+ICOS+. At first
glance, this overlap may appear undesirable or even nonsensical from a bio-
logical perspective. This is because for exploration, cell type overlap would
indeed be an obstacle in the way of finding fundamental cell types (fundamen-
tal in the sense of section 4.1.2). For inference, in distinction to exploration,
mutually exclusive cell types are not per se strictly required. For example,
one could be interested in asking scientific questions about FOXP3+ICOS+

T cells in a publicly available data set. In such cases, it might be unim-
portant whether some of these cells overlap with FOXP3+CCR7+ T cells or
not. Perhaps the researcher does not even annotate FOXP3+CCR7+ T cells,
but instead extracts only the FOXP3+ICOS+ T cells she or he is interested
in. This ‘cherry picking’ of cell types is an ideal use case for PCPC, and
particularly appropriate if the scRNAseq data is only one piece of evidence
amongst many.

Perhaps PCPC can thus help to increase the re-use of published data sets for
novel scientific questions, due to its flexibility to extract any group of cells
identified by a unique combination of specific markers. As pointed out in
the muscat paper [65], a subpopulation is any group of cell for which it is
interesting to ask inference questions. As scRNAseq matures as technology,
it will take its place amongst other experimental methods, contributing one
more piece of evidence to make a convincing scientific case.

In general, I expect higher degree of overlap at finer hierarchies than at
coarser ones. For example, T cells will be distinct from B cells in most if not
all data sets, while detailed subsets such as FOXP3+CCR7+ and FOXP3+

ICOS+ T cells are transcriptionally more similar and might not separate
in all cases. Evident from UMAP as overlapping CCR7 and ICOS expres-
sion, the reasons behind non-exclusivity could either be technical (insufficient
signal-to-noise ratio) or biological (double-positive cells exist). Thus, curat-
ing marker panels that result in mutually exclusive cell types requires work,
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but is possible as I have shown for the MALT data (see section 3.3.3). In
particular, generalizing a marker panel from one biological setting to another
(tissue/disease/patient) may require compromise on top of extensive manual
work. Still, it is not without merit to constantly revise cell type definitions,
much like all biological hypothesis are constantly revised, falsified and re-
fined.

4.1.4 Cell types in practice

My insights on the cell type concept can be reformulated as best practices on
how to find cell types for a given biological setting (disease, organ, species).
In particular, I advocate iterating these four steps to derive insights from
scRNAseq data:

1. The research community creates a large reference data set, ideally us-
ing multi-omics protocols or including lineage tracing. Unsupervised
methods can then be used to derive cell type / cell state definitions.
These are ‘optimal’ in the sense that no data set with greater signal-
to-noise ratio exists, and so these cell type definitions are expected to
be as fundamental (as defined in section 4.1.2) as possible.

2. Marker genes are found that define these cell types. If no mRNA mark-
ers exist, scRNAseq might be the wrong technology for the system un-
der study. Instead, other technologies such as imaging mass cytometry
or multimodal sequencing protocols (CITEseq [113], scM&Tseq [173],
etc.) may be used.

3. The researcher classifies cells in her/his data set using marker-based
cell type definitions (e.g. using PCPC), then uses them for inference
(hypothesis testing, e.g. molecular pathway activity or differential gene
expression testing between conditions).

4. Critical inference results and conclusions derived from them are vali-
dated on independent data. This includes cell type definitions them-
selves: are they useful in other organs / diseases / patients / species?

According to this strategy, PCPC is complementary to (not competing with)
unsupervised methods, such as data integration, clustering and label trans-
fer. While these tools provide powerful exploration, PCPC adds falsifiability
(step 4.). This is crucial: Only clearly defined cell type definitions are can be
proven wrong by showing they do not work well in a certain tissue, disease or
species. Only then, a scientific debate can ensue to decide whether this rep-
resents an exception to an otherwise helpful cell type rule, or if better marker
genes can be found. Likewise, any results derived from the cell type defini-
tions can also be falsified in a clear way, which could improve reproducibility
of biological findings.
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4.2 Automation and challenges

I have named a few concrete examples of marker genes that make automation
difficult in section 3.3.5. Briefly, TTN requires a relative, not absolute ex-
pression threshold; and CD4+ cells have bimodal CD4 expression that is not
relevant to the classification task. Also, section 3.5 illustrates that annotat-
ing heterogeneous cancer cohorts may require human decision making, since
different subpopulations may be present in different tumors. Here, I discuss
more aspects of automation to consider, and further explain why I adopted
manual thresholding instead. The personal bias that manual thresholding
might introduce into the analysis is discussed in section 4.5, and interactive
code to make it swift and simple is shown in the outlook (section 5.2).

Of note, Köhler et al. recently demonstrated that complex algorithms such
as deep learning do currently not outperform other machine learning ap-
proaches in cell type classification [108]. The authors concluded that since
cell type annotation is a simple and linear rule-based approach, non-linear
algorithms such as deep learning are unable to use their advantages for su-
perior performance [108]. I would go even further and argue that cell type
definitions are, outside the exploratory setting (c.f. section 3.1), subjective
rules (see section 4.1.1). Any conceivable algorithm, objective by design, will
struggle to provide satisfactory results in matching subjective criteria.

Challenges in automating marker-based classification Next to un-
expected marker gene behaviour (TTN and CD4 in section 3.3.5), a further
obstacle is that marker expression can be an artifact from the cell capturing
procedure. For example, HBB may be detected in all cells due to erythrocyte
contamination [174, Fig. 4 therein]. Also, I foresee marker-based cell type
definitions to require many ‘exceptions’ in order to meet biological com-
plexity, and these are best handled by human users instead of automated
algorithms. For example, PDCD1 (encoding PD1, an immune checkpoint
molecule) marks exhausted (inactive) T cells [175], but in certain cases can
also be indicative of T cell activity [64, Fig. 5f therein].

Before I decided to use manual thresholding, I have tested ways to automate
marker-based classification as well (not included in this thesis). Briefly, I have
tried three approaches: Logistic regression much like Garnett, Naive Bayes on
the raw UMI counts and Gamma mixture models fitted to smoothed marker
gene expression using Expectation-Maximization. All three approaches re-
quire a training set, i.e. a few cells from the data set that are annotated
correctly with cell type labels 3. I have not succeeded at automating this
labeling of training cells, and believe this is because an algorithm, unlike a
human user, can not make use of prior knowledge from scientific training,

3 The Gamma mixtures do not require this in theory, but I have found it useful in
practice to map the provided cell type classes to the resulting groupings of cells.
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the literature and exploratory data analysis. Published algorithms evidently
struggle with this as well: Garnett’s heuristic to label training cells was
misled multiple times in the same data set (as described in sections 3.3.5
and 3.3.5). Briefly, one ‘problem’ was that TTN is expressed not only by
TTN+ cells but also B cells, and another that CD4 showed bimodal expres-
sion among the CD4+ cells that was not relevant to the classification task.
The ‘rule-of-thumb’ implemented by Garnett failed to correctly label train-
ing cells for these classes, resulting in very poor classification results (section
3.3.5). Perhaps it is still possible to conceive an algorithm that can label
training cells robustly. My conclusion at this time is, however, that finding
marker gene thresholds is an intelligent task, that does not only depend on
the data set at hand, but instead has to integrate prior knowledge from the
literature.

It would be interesting to test the other marker-based approaches (CellAs-
sign, SCINA and scSorter) on the MALT and lymphoma data (see outlook
in section 5). This could show how much automated algorithms are able to
achieve on complex biological samples with the current state-of-the-art, or
it could further back my argument that manual labor is well invested here.
Towards answering this question, I note the examples provided by the au-
thors in all three papers [141–143] separate clearly defined, major lineages
using multiple markers, while PCPC achieves the same task with a single
marker per lineage (see section 3.3.3). I discuss more differences between
these methods and PCPC in section 4.1.3.

Automation is less flexible than manual thresholding In general,
the price of automation is to make stronger assumptions about the data. For
example, scSorter assumes that markers are bimodal, i.e. the same two lev-
els (background and overexpression) are used for the entire data set. While
CellAssign allows different expression levels for each class, it still models
each class as one single negative binomial distribution - this implicitly as-
sumes that for example non-T cells can not have bimodal expression in any
T cell marker. Also, all approaches need to solve the ‘outgroup’ problem, i.e.
accommodate the possibility that a group of cells best remains unassigned.
This is required, for example, when more cell types are present in the data
than defined by the user, and requires assumptions about how this ‘outgroup’
might look or not look like. I propose that more assumptions make meth-
ods more prone to malfunction in unconventional cases, but more research
is required to decide whether this is crucial for classification in scRNAseq
cohorts.

Finally, automated algorithms such as CellAssign, SCINA, scSorter and Gar-
nett make it somewhat tedious to adapt the marker selection interactively.
This is because they all follow the same divide-and-conquer scheme: In a
first step, a list of cell types and their marker genes is curated manually
by the user. In a second step, the algorithm is provided with this marker
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list and the raw UMI counts of a data set, and then runs completely un-
supervised from there. In contrast, PCPC interactively combines these two
steps. Replacing one T cell marker with another, for example, is a matter
of seconds with PCPC 4 and the resulting positive cells can immediately be
inspected in UMAP (see interactive code example in outlook, section 5.2).
In practice, this is valuable when annotating heterogeneous samples, such
as different human patients. A researcher may have certain marker genes
in mind, but when picking thresholds with PCPC may realize they do not
fit a particular sample and thus explore alternative markers. Following this
strategy, it might turn out for example that classifying cancer cells in one
patient requires different markers than in another patient. Thus, PCPC is
more flexible to meet the requirements of multi-sample multi-condition stud-
ies, such as heterogeneous cancer cohorts. The manual labor and subjective
bias that might arise from this strategy is discussed in section 4.5.

In conclusion, automating marker-based classification is challenging and per-
haps not even desirable. If the analysis has inference as main goal (and
not exploration, see sections 3.1 and 4.1), then cell types are a rule-based
concept, and these rules are made by human researchers. I argue that in
this setting, coming up with good cell type definitions has to be an iterative
process of exploratory analysis, scientific debate and self-correction. It is
intelligent work to be done by researchers, and it is unlikely that algorithms
can take this task over completely.

4.3 On the accuracy of nearest neighbor in-
formation

PCPC pools marker gene counts from a cell’s kNN to assign a cell type label.
Throughout this thesis, PCPC uses 50 kNN found by Euclidean distance
on PCA embeddings, but in principle all unweighted kNN graphs from any
method can readily be used. Here, I discuss how different kNN graphs might
affect classification with PCPC. Most importantly, I introduce methods that
can identify indistinguishable nearest neighbors as proposed in my definition
of positive cells. Furthermore, I discuss the difference between directed and
undirected kNN graphs, and how SNN and other weighted graphs can be
adapted for PCPC. Finally, I conclude finding the neighbors for pooling with
these strategies can result in different numbers of neighbors per cell, which I
consider desirable.

As a general note, kNN information is relied on by virtually all scRNAseq
4 kNN pooling on a single computational thread (without parallelization) computes

within milliseconds on a conventional laptop, and plotting the result takes 4 seconds.
Using all markers to annotate the MALT data set computes only a few seconds, while
Garnett runs roughly 30 minutes.
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workflows in one way or another, for example by clustering (Seurat [37],
Scanpy [38], Garnett [40]), data integration (Conos [73]) and visualization
(UMAP [47], tSNE [48]). As for these methods, I expect ‘better’ kNN in-
formation to improve results obtained with PCPC. In general, I recommend
to use algorithms that identify indistinguishable neighbors. I expect this
will make cell type labels and the resulting inference results more robust,
i.e. more reproducible with ‘better’ data (more cells / sequencing depth /
protocol sensitivity).

Indistinguishable neighbors I now discuss more principled approaches
to find kNN. Of note, two recent algorithms have made suggestions how kNN
can be selected such that they are indistinguishable from one another, given
the data’s signal-to-noise ratio. In particular, VarID [146] tests expression
values across all kNN and all genes for their likelihood of being ‘sampled’
from the same negative binomial distributions (one per gene). Only neigh-
bors where this is likely across the entirety of all genes are retained, creating
a ‘pruned’ kNN graph [146]. I note that MetaCell follows a very similar ratio-
nale, aiming at identifying cells that “ideally represent re-sampling from the
same cellular state” [75]. While these methods were still under development,
I have started exploring my own approach to find indistinguishable kNN,
based on the simulation of ‘Poisson replicates’ for each cell (not shown).
Briefly, I smoothed the entire transcriptome for a given cell, and sampled
many cells from this expression vector using the Poisson distribution. Initial
experiments (not shown) indicate that these Poisson replicates tend to have
similarly high Euclidean distances to each other than to the closest cells in
the data set. Thus, my idea is that the cells that lie as close as a cell’s
Poisson replicates are indistinguishable from this cell. While this resulted in
reasonable numbers of neighbors for most cells in the MALT data and a few
data sets I tested (not shown), there are also cell types where no neighbors at
all are selected this way (namely the microglia cells in the multiple sclerosis
data described in [60], not shown). More research in this direction it thus
required to ensure the positive cells found with PCPC have a clear biological
interpretation as stated in section 4.1.3.

Directed and undirected neighbor edges PCPC conceptually uses di-
rected neighbor graphs when pooling UMI counts, which I now briefly discuss
and compare. Directed edges in a kNN graph mean that if a cell is amongst
the kNN of another cell, the inverse is not necessarily true. While simple
Louvain clustering does require symmetric kNN graphs (I will return to clus-
tering in the next section), I argue the asymmetric neighbor relationships
used by PCPC are desirable. For example, imagine 50 cells form a dense
community in expression space, and a 51st cell is drastically different, con-
stituting a lonely outlier. Then, this outlier would not be among the 50 kNN
of any other cell, which would avoid potential biases when pooling counts
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within neighborhoods. This is an advantage of asymmetric kNN graphs as
used by PCPC. To stay with this example, one weakness of simple kNN ap-
proaches is that this 51st cell would ideally have zero kNN, given its outlier
nature, but instead will of course be assigned the same number of neigh-
bors as all other cells. Thus, PCPC is ideally used with kNN found with a
principled approach (such as pruned kNN, see previous heading), to ensure
existing outliers are not misclassified. To give a specific example for outlier
cells encountered in this thesis, I name the doublets and multiplets in the
CBMC data, which PCPC was able to discriminate from actual T cells (c.f.
Figure 3.2 in section 3.2.3). While PCPC does not specifically safe-guard
against outlier cells, it is conceivable that the kNN of such outliers are a
noisy, random collection of different cell types, so any lineage marker gene is
‘diluted’ and the cells remain unassigned.

If simple kNN are used instead of indistinguishable kNN, then the user is re-
quired to choose a bandwidth value (the number of nearest neighbors). While
Figure 3.11c suggests a wide range of bandwidths is acceptable, a more princi-
pled approach is to use cross-validation. Of note, ‘molecular cross-validation’
has recently proposed as means to find parameter values for scRNAseq gene
smoothing [176, preprint]. Still, the most promising approach that I would
pursue in future research endeavors is the identification of indistinguishable
kNN (see previous heading).

Shared nearest neighbors (SNN) While graph-based clustering relies
on nearest neighbors like PCPC does, modern implementations further refine
kNN graphs with the shared-nearest neighbors (SNN) principle (introduced
in section 1.7.2). SNN are based on the Jaccard index (overlap) between the
kNN of two cells. This might prevent random (‘noisy’) edges from impacting
count pooling as much. While I leave a thorough testing to future research,
I have run initial tests on how to use SNN information when pooling counts
with PCPC. I note that SNN graphs are weighted (continuous values between
0 and 1, instead of binary), and so the pooling loses intuition - after all, what
does it mean to pool 25% of one cell together with 14% of another? Also,
instead of pooling 50 kNN, the number of cells we pool is not clear. Summing
all the edge weights of a cell’s SNN gave numbers much smaller than 50 when
I tested it on the MALT data, but still information from many more cells
was used, so how do we adjust it to a more reasonable number? In initial
experiments, it looked promising to convert the weighted SNN edge weights
to binary format (1 if Jaccard index is larger than 0.1, 0 otherwise), but more
research is necessary before SNN can confidently be applied in PCPC.

Different numbers of kNN per cell There is another appeal to using
kNN graphs computed with VarID, MetaCell, Poisson replicates or SNN (see
previous headings). Namely, it would allow every cell to be assigned a dif-
ferent number of neighbors, depending on how well the cell is connected.
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Assuming the technical noise is constant for all cells (same transcript conver-
sion rate during library preparation), I would expect cells from homogeneous
cell types to have many neighbors then, while outliers might receive none at
all. Classification with PCPC would take this into account, assigning cells
with more information more confidently, while leaving outlier cells unas-
signed (PCPC assigns cells more confidently when the pooled total UMIs S
are larger, see section 3.2.4). While I use a constant number of kNN through-
out this thesis, these more principled kNN search methods should thus be
explored in future research efforts.

4.4 PCPC’s model assumptions

PCPC pools counts from a cell’s kNN. It compares the pooled counts to a
user-specified expression threshold, using the tails of a Poisson distribution
in order to find positive and negative cells. Here, I discuss the Poisson
distribution as a model for UMI counts, with a detailed discussion of the
literature on the topic.

Poisson distribution to model UMI counts from a single cell In sec-
tion 3.2.2, I have described a model for how UMI counts are being generated
in scRNAseq protocols, and claimed that the UMI counts from a single cell
are well described by a Poisson distribution. I discuss this assumption here,
but note this is an academic exercise. The assumptions on pooled counts are
more relevant to PCPC, and these are discussed under the next heading.

The generative model for UMI counts, as stated in 3.2.2, assumes the count
of one gene in a single cell is well described by a Poisson random variable.
That is, the technical noise is modeled using a Poisson distribution, while
biological variation may introduce over-dispersion and thus requires a neg-
ative binomial model (as introduced in section 1.3). This is an important
distinction to make: The counts from a single cell can be modeled as a Pois-
son random variable, while modeling the counts across multiple cells would
make a negative binomial random variable more appropriate, as the non-zero
dispersion allows the variance to be larger than the mean (while for Poisson,
the variance equals the mean). Thus, it is important to realize that the
model described in section 3.2.2 uses Poisson random variables to describe
the distribution that would be obtained from a hypothetical re-sequencing of
the very same cell, i.e. in absence of all biological variation.

A potential limitation in modeling a single cell’s UMI counts as Poisson ran-
dom variable is that highly expressed genes have been reported to be over-
dispersed even in absence of biological variation [41, 177] & [33, preprint].
Specifically, Grün et al. used an early UMI protocol to sequence a homoge-
neous mRNA solution instead of cells, thereby removing all biological vari-
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ation. The resulting UMI counts showed over-dispersion for the genes with
highest expression [177, Fig. 1c therein]. The same over-dispersion for highly
expressed genes is described by the authors of scTransform, which for this
reason uses regularized negative binomial (instead of Poisson) regression for
normalization [41, Fig. 4D therein]. Furthermore, my own experiments with
similar mRNA data showed over-dispersion of the genes with highest expres-
sion (not shown 5), while the study generating this data concludes the Poisson
model describes the data well [32]. Townes et al. also conclude the Poisson
model is sufficient [1], but I note these two last studies ([1, 32]) focused on
the fraction of zeros in, rather than the variance of, normalized UMI counts.

If highly expressed genes indeed have over-dispersed technical noise, then it
is an interesting question to ask why. It has been speculated the reasons
are differences in capture efficiency between droplets [33, preprint] or tubes
[177]. Indeed, Grün et al. estimated the tube-to-tube variability in capturing
efficiency by adding synthetic spike-in molecules of known concentrations
before applying their UMI protocol, and found it explains the observed over-
dispersion well. Also, this over-dispersion of highly expressed genes is not
apparent after capture efficiency has been corrected for by downsampling all
cells/droplets to the number of UMIs [1, Fig. 1c/d therein]. I note that
beyond these speculations, there might be more mechanisms at play that are
less intuitive due to the complexity of the sequencing process. For example,
the base composition of UMI barcodes affects the likelihood to observe them,
leading to skewed UMI distributions with counter-intuitive properties [20].

In conclusion, modeling the UMI counts of a single gene and from a single
cell as Poisson random variable is debated only for highly expressed genes,
while it is widely accepted for the vast majority of all genes. In order to
model technical noise for these ‘house-keeping’ genes, a negative binomial
distribution is thus more appropriate than the Poisson distribution. For non-
UMI data, the model on top has to account for zero-inflation as introduced
in section 1.3.

Poisson distribution to model pooled counts Under the previous
heading, I have noted that for highly expressed genes, counts from individual
cells are over-dispersed and require a negative binomial model. Importantly,
this does not apply to pooled counts, according to PCPC’s logic, irrespec-
tive of their expression level. Instead, UMIs pooled across a cell’s kNN are

5 Briefly, I obtained UMI counts from soluble mRNA from Valentine Svensson upon
personal request. I divided raw UMI counts by the total UMI for all genes and cells
and computed gene variances and means of these normalized values across all droplets
(containing mRNA instead of cells). A scatter plot showing the variance-to-mean ratio
(VMR) and the mean (both axis logarithmic) shows a constant VMR (consistent with
Poisson) for all genes except the 20 or so with highest expression. This investigation is
unfinished, which is why I consider it anectdotal evidence that belongs into a footnote
rather than the main text.
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modeled as Poisson random variable, which I discuss in the following. For
simplicity, I will discuss how PCPC finds positive cells, but the same consid-
erations apply accordingly to negative cells.

Conceptually, finding positive cells with PCPC asks whether a hypothetical
re-sequencing of the cell’s 50 kNN could have given pooled counts as low as
expected from a Poisson distribution around the user-defined threshold (c.f.
section 3.2.4). If the negative binomial distribution were used, the expression
strengths of the kNN would be treated as gamma random variable. By using
the Poisson distribution, PCPC instead considers these expression strengths
as fixed 6. Consider hypothetical re-sequencing experiments, where the exact
same cells (i.e. the kNN) with the same amount of mRNA could again be
profiled with the same scRNAseq protocol. Then, ‘fixed’ means that the
kNN’s expression strengths would have the exact same k unknown values, and
the UMI counts observed in each re-sequencing experiment would correspond
to k Poisson random variables (according to the model specified in section
3.2.2, for discussion see previous heading). Then, pooling UMI counts across
a cell’s kNN corresponds to summing up Poisson random variables. The
sum of Poisson random variables, even with different Poisson rates, again is
a Poisson random variable, which is why PCPC’s logic does not require a
negative binomial model.

Of note, using the Poisson model does not address biological variation be-
tween kNN at all, because PCPC includes this variation in its definition
of positive cells. As detailed in section 4.1.3, this definition puts it on the
researcher to correctly interpret what positive cells are (namely, cells with
highly-expressing neighbors) and, importantly, what they are not (cells that
can be guaranteed to have had high mRNA content themselves). When us-
ing PCPC, the crucial question is whether the neighbors of a given cell are
relevant in deciding on that cell’s cell type label, and this will depend on
the cell type granularity. In most data sets, the kNN will be appropriate
to separate major cell types (B cells from T cells), and many subtle T cell
subsets (see e.g. MALT data in section 3.3.3). With PCPC, it thus is the
researcher who decides which granularity of cell types can still be resolved
with the given data, not the statistical model.

One limitation of PCPC’s assumptions becomes apparent when we restate the
above as follows: PCPC models the technical noise with the Poisson distri-
bution, while the researcher is charged with the biological uncertainty when
interpreting what positive cells are 7. The problem is that the technical noise

6 Note that the negative binomial distribution, also called gamma-Poisson distribution,
is a hierarchical model in which gamma random variables are used as rate parameters in
Poisson random variables, conceptually. The width of this gamma distribution corresponds
to the over-dispersion, and the Poisson distribution is its special case when over-dispersion
is zero.

7 For example, in order to interpret FOXP3+ cells as Treg cells, a researcher has to
answer questions such as: How likely is it that a Treg cell was assigned a B cell as neighbor?
How about a CD8 T cell, or an even more related CD4 T cell subset?
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is not always appropriately modeled by the Poisson distribution. As pointed
out in the previous paragraph, there is a non-negligible over-dispersion for
highly-expressed genes (often refered to as ‘house-keeping genes’). Using
the negative binomial distribution instead of Poisson would solve this issue,
but at the same time require dispersion estimates for each neighborhood
8. Throughout this thesis, I therefore chose to use the Poisson distribution
instead, but note this is a limitation of my work. It is a task for future
research to understand why the technical noise of highly expressed genes is
overdispersed, and to test whether this means that PCPC is over-confident
in assigning positive cells for house-keeping genes 9.

In conclusion, PCPC assumes that the Poisson model suffices to describe
pooled counts, by moving considerations of biological variation into the def-
inition of positive cells. This separation of statistical model and the biologi-
cal variation between neighbors may improve interpretation of the cell types
found in scRNAseq data, simultaneously empowering and obliging the re-
searcher (subjective bias is discussed in section 4.5). Given that the kNN are
found with rigorous analysis methods (c.f. section 4.3), the FOXP3+ cells for
example can be interpreted as cells that are (with the given data) indistin-
guishable from FOXP3-expressing cells. This acknowledges that better data
(more cells, more omic modalities or higher protocol efficiency) may always
revise the current knowledge on cell type.

Similarity and differences to scTransform I want to acknowledge sc-
Transform [41] by noting that the Poisson tails used by PCPC are concep-
tually similar to the Pearson residuals computed by scTransform. The goals
are of course very different: PCPC models pooled counts with the goal of
classification, while scTransform models individual counts for gene expres-
sion normalization. Also, scTransform uses the regularized negative binomial
distribution, while PCPC uses the Poisson distribution for reasons pointed
out in section 4.4. Thus, both methods are very dissimilar, but it was sc-
Transform’s Pearson residuals that made me realize the Poisson tails can be
used to define positive and negative cells.

4.5 Limitations

I next discuss limitations of PCPC in general. For limitations of this thesis,
see the outlook in chapter 5.

8 A neighborhood is made up of a cell’s kNN, including the cell itself.
9 This case has not occured yet in my work, because these highly expressed genes

(typically MALAT1, ribosomal proteins, etc.) are not marker genes for any cell type I
have worked with. This does, however, not mean that case does not exist.
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UMI protocols only Our method can only be applied to scRNAseq data
generated with UMI protocols. Pooling counts from a cell’s kNN results in
a Poisson random variable for UMI data (c.f. 4.4), while it is statistically
less tractable for non-UMI data due to the amplification bias of polymerase
chain reaction (introduced in section 1.2). I observe that 10x technology has
spread widely within the research community, and so I assume that a large
proportion of scRNAseq patient cohorts that are being generated right now
will generate UMI data. Also, I point out how SAVER’s smoothing estimates
could be used to extent PCPC to non-UMI data in the future, which could
also make it orthogonal to UMAP (see section 4.5). As of today, however,
requiring UMI data is a limitation that might prevent some researchers from
using PCPC.

PCPC requires suitable marker genes Grabski et al. recently showed
that the majority of all genes show bimodal expression across 218 cell types in
PanglaoDB [2, preprint, Fig. 3 therein]. In other words, most genes are either
‘on’ or ‘off’ in a given cell type, suggesting that specific markers exist in the
vast majority of cases. Still, it is conceivable that a cluster does not have any
good markers, even if it is evident as distinct population in UMAP. It could,
for example, be defined by a combination of dozens of genes with a weak
tendencies towards over- or under-expression in that particular cell type,
but without one single clear gene. In such cases, PCPC might struggle to
select positive cells for this cell type. To my knowledge, this is a hypothetical
scenario and inference results for such a cell type would anyways be of limited
for use since it would be inaccessible to many experimental platforms such
as flow cytometry and imaging (c.f. ‘actionable’ in section 3.1 and [145, blog
post]).

It is a requirement that the user has curated a panel of markers for the
cell types under study. As a side-note in their paper, Abdelaal et al. [89]
mention that selecting marker genes for ‘deeply annotated datasets’ (fine cell
type hierarchies) becomes infeasible. I agree it is a challenging task, but
have shown for the MALT data that indeed it is feasible to subdivide T cells
into finer and finer subtypes. This is especially true for patient cohorts and
other multi-sample multi-condition studies: Sequencing more patients (sam-
ples) rarely introduces new cell types, so once a suitable marker set has been
found for a certain tissue, disease and organism, it can be applied again and
again. Furthermore, curating marker genes can have value in itself, because
simple marker-based cell type definitions that describe the complex biology
well are helpful for science. Thus, curating marker sets that apply in many
different experimental settings, tedious as it might be, should be considered
an achievement which requires integration of exploratory data analysis with
prior knowledge from the literature spanning sequencing and non-sequencing
methods. Finally, I note that with PCPC, it is no longer necessary to decide
on the final panel before running the algorithm: In contrast to CellAssign,
Garnett, SCINA and scSorter, PCPC makes it easy to experiment with differ-

115



ent markers interactively (discussed further in section 4.2, see also interactive
code in outlook section 5.2).

For lowly expressed marker genes, PCPC is furthermore unable to find pos-
itive and negative cells at the same time. For example, if FOXP3 is used
to mark Tregs, we can not use the same threshold value to find FOXP3−
cells (c.f. section 3.3.2). The sparse FOXP3 expression simply provides not
enough information, so absence of UMI detection does not prove low expres-
sion in this neighborhood due to high technical noise. In general, I advise
to use positive markers wherever possible (for instance, ANXA1+ instead of
FOXP3−) and to select markers with high expression wherever possible. This
way, inference results deduced from the cell type definitions are more likely
to generalize to data sets generated with less sequencing depth or imaging
methods such as RNA fluorescent in situ hybridization.

Subjective bias PCPC is highly flexible (c.f. section 4.2), but this is
prone to introducing personal biases. By freely chosing marker genes and
the corresonding thresholds, a researcher has few constraints in choosing
any group of cells he or she pleases. In principle, generating nonsensical
classification results is thus possible. Also, PCPC may enable so called ‘p-
hacking’, i.e. the slight adjustment of algorithm parameters until the desired
results are obtained. For example, by changing thresholds or the marker
panel time and time again, the list of differentially expressed genes may be
influenced until a certain gene of interest is contained in it – defeating the
purpose of multiple testing correction and other scientific principles. Thus,
classification with PCPC is only as rigorous as the investigator using it.

The most obvious personal bias, however, is the selection of marker genes.
With PCPC, a single marker can be enough to classify certain cell types, but
this raises the question which marker gene to use. For example, if FOXP3
and IL2RA are both specific to regulatory T cell cells in a given data set, the
choice which one to use can be a highly subjective one. In flow cytometry or
imaging, researchers are often forced to select a single or few markers, while
scRNAseq offers the entire transcriptome – Is it thus not an unnecessary
restriction to choose between FOXP3 and IL2RA? The crucial difference, I
argue, is that whenever necessary, the analysis can be repeated with another
set of markers. For example, if it is crucial to the scientific question, a
rigorous researcher could show to his scientific peers that the reported results
do not change in essence when IL2RA is used instead of FOXP3. Thus,
during the process of peer review, the personal bias introduced by selecting
marker genes can well be controlled.

Before pointing out more counter-measures guarding against subjective bi-
ases, I note that unsupervised algorithms such as clustering also have their
biases. As demonstrated in section 3.3.4, clustering results depend largely
on pre-processing choices. Another subjective researcher choice in clustering
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is the resolution parameter implemented in modern versions of graph-based
clustering algorithms (introduced in section 1.7.2). When applied to more
than one sample, clustering furthermore requires batch effect removal, in-
troducing more subjectivity. This is because data integration has a trade-
off between cell type resolution and the mixing of samples [135], which the
user decides indirectly by algorithm choice [135] or directly (e.g. alignment
strength in Conos [73]). Thus, unsupervised algorithms are not ‘unbiased’,
but have more subtle and hidden biases. Not only do they not prevent ‘p-
hacking’, they may even hide it within the complexity of these algorithms. In
this context, it is important to note that PCPC clearly states marker genes
and thresholds used, which are more accessible to interpretation and revision
by scientific peers than the hyperparameters of unsupervised algorithms.

Two important mechanisms against subjective biases are scientific debate and
falsification. As introduced in section 3.1 and pointed out above, the simple
marker-based cell type definitions used by PCPC make scientific debates
clearer and can thus also make peer review more effective and efficient. At
the same time, they bring falsification to scRNAseq inference findings: If the
claim is that FOXP3+ cells upregulate certain genes under certain conditions,
it is easy to test and falsify this inference result.

In summary, the personal bias introduced in classification with PCPC is
not necessarily more severe than that introduced by unsupervised methods
(making it misleading to call them ‘unbiased’, c.f. section 3.3.4), but it is
more accessible to scientific peers.

Manual labor It is clear that running PCPC once on a patient cohort
is more laborious than running unsupervised methods (clustering after data
integration or label transfer, introduced in sections 1.7.2 and 1.7.3). This
does not mean that unsupervised methods do not require a lot of work when
applied rigorously – testing different parameters or even different algorithms
for data integration and clustering can also be highly time-consuming. At
any rate, there are differences between PCPC and unsupervised methods in
how a researcher invests time, which I discuss in more detail here.

PCPC is time-consuming in two ways. First, picking thresholds for each
gene requires some time, and my personal opinion is that this is feasible for
dozens of patients but perhaps not hundreds (see section 5.2 for interactive
code to make threshold picking convenient). Second, finding mutually exclu-
sive markers is tedious, and in my experience takes more time than picking
thresholds. As argued in section 4.5, however, this may only be necessary
once for a given disease and be of value on its own to drive biological un-
derstanding onward. Thus, PCPC splits the classification task and the time
invested into two apects: Finding good markers (intelligent work), and find-
ing good thresholds (repetitive work). This enables iterative data analysis:
A preliminary marker panel can be used for a first end-to-end analysis, using
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for example only major cell types in differential expression testing between
experimental conditions. After more exploratory data analysis, this marker
panel may be refined, but only new markers now require threshold picking.
If pre-processing changes (doublet removal, filtering genes and cells, data in-
tegration, ...) or more patients are coming in, it is conceivable that the list of
differentially expressed genes becomes more precise, but the top hits might
not even change. Thus, experiments to confirm these preliminary results and
novel hypotheses generated from them can already be started, even if the
final cell type labels have not been reached. This uncoupling of validation
experiments and the tedious progression towards ideal cell type labels is par-
ticularly useful in scRNAseq cohort studies, which typically generate data
in multiple ‘waves’, i.e. once every few months when more patient materials
has been acquired.

For unsupervised methods such as clustering after data integration and label
transfer, only little amounts of human labor seems to be required at first
glance. I argue, however, that previous time investments are mostly wasted
once the pre-processing changes. In large cohort studies that span multiple
years of effort, this may happen several times. Specifically, data integration
and clustering have to be recomputed and re-annotated every time a new
samples arrives or algorithm parameters change for quality control, doublet
removal, normalization or data integration. When using PCPC, in contrast,
once appropriate marker genes have been found they remain the same if
preprocessing changes – the user can supply the updated kNN and re-run
previous code in seconds. Whether thresholds can be re-used in such cases,
and whether the manual labor is indeed manageable, will become clear once
PCPC is applied to a novel scRNAseq cohort study and remains to be seen.

Dependence on UMAP embeddings The user picks thresholds interac-
tively with PCPC by trial-and-error, comparing marker expression in UMAP
embeddings 10 to the positive cells identified by the current threshold value.
This has implications that I discuss in the following.

One limitation of our approach is that if cells from a given subpopulation
are not somewhat grouped together in the embedding, they can not be con-
fidently classified using PCPC. The user simply does not know how to pick
a reasonable threshold, and it is uncertain if the resulting classification is
reliable. Thus, as a rule of thumb, if UMAP can not resolve a subpopula-
tion, PCPC also can not (in particular if they operate on the exact same
kNN graph). In contrast to this, CellAssign [141] and SCINA [142] might be
able to resolve such a subpopulation due to their architecture. Since both
algorithms are designed to work with many marker genes (typically dozens,
as introduced in section 1.7.4), the user might use a large marker panel ob-

10 Any visualization tool next to UMAP can be used, for example tSNE. Throughout this
thesis, I use UMAP because weak evidence exists that it outperforms tSNE on scRNAseq
data [49], but note that this has been contended [50].
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tained for example from bulk RNAseq after cell sorting. In any case, however,
researchers may find it difficult in trusting any findings concerning a subpop-
ulation that is scattered across the embedding. Also, if the data does not
provide enough signal for UMAP 11, it is questionable whether this data set
is rich enough to add striking new insights into this evasive subpopulation.

The tight coupling of UMAP embeddings and PCPC has another potential
drawback. They do not provide independent perspectives on the data, since
both rely on the same kNN graph. Thus, any artifacts introduced into the
kNN graph, for example by technical noise or the approximate kNN algo-
rithm (see methods), is expected to manifest in UMAP and PCPC alike. A
more elegant approach would be to find positive cells without kNN informa-
tion. This way, PCPC and UMAP would be more likely to disagree whenever
UMAP is ‘wrong’, i.e. placing similar cells far apart or dissimilar cells into
close proximity to each other. In particular, a future direction of PCPC
could be to find positive cells based on smoothed values and their uncertain-
ties computed by SAVER [35] (introduced in section 1.6). Briefly, SAVER
regresses marker gene UMI counts on the expression of all other genes, not
using kNN information at all. PCPC could thus replace its Poisson tails ap-
proach by asking whether the smoothed values found by SAVER lies clearly
above a given threshold (for example, by 3 standard errors or more), using
the estimates of uncertainty that SAVER also computes. This would make
PCPC more orthogonal to UMAP and other kNN approaches, and I would
welcome future research in this direction.

As a final note, I stress that PCPC does not rely on UMAP beyond visual-
ization. This is because reducing high dimensional information (such as 50
principal components representing thousands of genes) to two dimensions is
a simplified view on the data that should not be expected to capture all rele-
vant information. Instead, PCPC bases its annotations on careful statistical
assumptions derived from the Poisson distribution as described in section 3.2
and discussed in section 4.4.

11The interplay between a data set’s ‘signal-to-noise ratio’ and the ability to resolve
highly related subpopulations are discussed in section 4.1.
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Chapter 5

Outlook

This thesis describes the ongoing development of Pooled Count Poisson Clas-
sification (PCPC), and I now discuss aspects that I find are relevant to ad-
dress in the near future. Automating PCPC is not discussed here, see section
4.2.

5.1 Large cohort, all subpopulations

I have demonstrated that PCPC is able to annotate all cell types in complex
tumor microenvironments (section 3.3.3) and a single cell type in a multi-
sample multi-condition lymphoma cohort (section 3.5). I consider this a first
proof of principle, but stress that the goal is to annotate all subpopulations
in dozens of patients. UMI-protocols have spread widely throughout the
research community and I assume that scRNAseq cohorts will keep growing in
the future, so I believe PCPC will have plenty of opportunities to be applied
once it is available as R package (see section 5.2). In particular, testing
PCPC on a large, novel scRNAseq cohort will answer three questions. First,
does manual thresholding scale reasonably with increasing patient numbers,
and can mutually exclusive marker genes be found in all cases (c.f. sections
4.5 and 4.5)? Second, how does pre-processing (normalization, cell and gene
filtering, etc.) influence classification performance, and more importantly
the resulting inference insights (e.g.differentially gene expression)? I would
assume that providing refined k nearest neighbors (kNN) information and
re-using the same genes and thresholds with PCPC is a convenient and fast
way to test the influence of such analysis choices, highlighting their relative
importance to other aspects of data analysis. And third, does PCPC prove
useful beyond immune cells? Specifically, the classification examples I present
here use three data sets (CBMC, MALT and the lymphoma cohort) that
mainly consist of immune cells, which express highly specific markers that
are required for their function. The next exciting step is to apply PCPC
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to a non-immune cell cohort, to test its applicability for a wide range of
scientific fields. In initial experiments, I observed that PCPC performs well
on stem cells and their progeny from the fly gut (not shown, unpublished) and
two recent brain disease cohorts [60, 61] (not shown), but this is anecdotal
evidence until this part of the project is finished as well.

5.2 Interactive programming with cellpypes

In order to apply it to larger cohorts, PCPC requires well-structured code
that makes interactive usage fast and clear. To this end, I started developing
the cellpypes R package, which I briefly introduce now.

When developing PCPC and writing this thesis, I have found that the most
time consuming part of classification is exploration, not manual thresholding.
Specifically, the user of PCPC has to answer these questions in order to
annotate the entire data set: Which cell types are present, and which markers
result in mutually exclusive subpopulations? This requires code which makes
changing marker genes and cell type definitions not much more difficult than
adjusting threshold values. To this end, I currently develop the cellpypes
package, which implements PCPC using the highly interactive R pipes from
the magrittr package [178].

Figure 5.1: Code example for using the cellpypes package (under develop-
ment), a highly interactive implementation of PCPC using magrittr’s pipe
operator “%>%”. Object creation, classification and plotting is shown, for
explanations see main text.

Figure 5.1 shows how cytotoxic T cells can be classified with the cellpypes
package providing clear and flexible structure. After loading the cellpypes
package (first line in Figure 5.1), the user creates an R object with the UMI
count matrix (raw), the total UMI of each cell (totals, i.e. the sum from all
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columns in raw), a two-dimensional embedding computed for example with
UMAP (embed) and an unweighted kNN graph (neighbors). The kNN graph
can either be supplied as binary adjacency matrix (square matrix with 1
if neighbor and 0 otherwise) or as a matrix with the indices of each cell’s
kNN (with k columns and as many rows as there are cells). I note that
these four inputs are readily available from scRNAseq data objects processed
with any pipeline (e.g. Seurat [37], scater/scran [179], scanpy [38], monocle2
[39]), because the neighbor information is computed by UMAP and clustering
algorithms – I therefore intend that cellpypes can wrap objects from all of
these pipelines for the user’s convenience. I note that weighted graphs can
in principle also be used, as discussed in section 4.3.

In order to classify CD3E+CD8B+ cells, the user specifies classes and rules
with the pype command (pype is short for ‘cell type pipes’). The example
in Figure 5.1 classifies T cells as those cells whose CD3E expression was es-
timated to be above 0.2 ‰. Internally, the pype command selects cells for
which the pooled counts were higher than expected from a Poisson distribu-
tion around 0.2 ‰ of the pooled totals (c.f. 3.2.4). The next line again uses
the pype command, to define Ttox (short for cytotoxic T cells) as a subset of T
cells, requiring CD8B expression above 0.15 ‰. As a further refinement, the
user could attempt to exclude doublets formed from co-capturing a T with
a B cells by demanding that his CD3E+CD8B+ cells are on top negative for
a B cell marker, such as CD79B or MS4A1 (not shown). For this negative
thresholding, the rule in the pype command can also accept an additional
operator argument (“<” instead of “>”, not shown in this example).

I have used this implementation to classify cytotoxic T cells in the lymphoma
cohort (c.f. Figure 3.12). In order to decide on the exact genes and thresh-
olds, the user can for example replace CD3E with CD3G or 0.2 ‰ with
0.3 ‰, and inspect the new result with the plot_classes or plot_last func-
tions (last lines in Figure 5.1). The plot_classes function combines all rules
that apply for this class, so in this example would show CD3E+CD8B+ cells
in a UMAP embedding (effectively this generates Figure 3.12c). In contrast,
plot_last only displays the rule in the most recent pype, which in this case
would be CD8B+ cells. Conveniently, plot_last on top shows a feature plot
of the relevant gene (CD8B here), much like in Figure 3.12a and b, so that
the user may compare the currently selected cells in UMAP with the marker
gene expression.

Thus, cytotoxic T cells are classified with two lines of code, and the user
can adjust thresholds (0.2 ‰ and 0.15 ‰) and genes (CD3E and CD8B)
interactively. Once the user is satisfied with the resulting cell type labels,
these can be used to form pseudobulk samples from this patient, or simply be
exported and saved for later (not shown). In order to annotate a new sample
(other patient, other treatment, etc.), these few lines of code can simply be
copied and pasted below a different cellpypes object, and the threshold be
adjusted where necessary.
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I expect this way of annotating multi-sample multi-condition cohorts to scale
quite well to dozens of patients. One strength of this approach is that ad-
vances in analysis can directly be fed in. If exploration and literature reveal
after some time that a different marker panel might be more appropriate, the
user can swiftly experiment with it. Conveniently, the clear and concise code
represents a compact documentation of how the cell types were defined. Fi-
nally, the user perhaps wants to compare whether data integration (c.f. next
section) improves the nearest neighbor information or not. After updating
neighbors in the cellpypes object, the code with the same genes (perhaps even
same thresholds) can be re-run and the result immediately inspected to see
if the novel neighbor information leaves fewer cells unassigned, for example.

5.3 Analyze samples together instead of sep-
arately

In the lymphoma cohort, I have chosen to process each sample separately. As
an alternative, data from different patients could first be integrated, with the
hope of refining kNN information this way (as explained in 2.1). Numerous
methods for integration have been proposed [73, 122, 128–133], and each can
be used to compute kNN graphs. It would be interesting to test how much any
potential differences in kNN information will influence PCPC classification.
Also, it may turn out that batch effect removal is not necessary: I expect
that kNN information improves when patients are pooled when computing
PCA embeddings. A batch effect separating patients in this embedding is
not necessarily a nuisance for classification with PCPC – cells would be
assigned nearest neighbors from the same patient sample, which might be
desirable anyways. While clustering strictly requires the removal of batch
effects using data integration methods, PCPC could thus work without it
while still profiting from more patients (by making gene-gene correlations
less noisy, improving the PCA embedding). This is desirable since removing
batch effects comes at the price of removing some biological variation as well,
blurring subtle biological cell type differences [135]. On the same note, PCPC
might profit from using scTransform for normalization, or GLM-PCA [1] (a
method that adapts principal component analysis specifically to UMI count
data, not requiring normalization).

Finally, pooling data across several patients might enable the detection of
rare cell types. This is because in a single sample, a handful of cells are
unlikely to separate in UMAP due to the low signal-to-noise ratio. When
pooled across many samples, however, the rare subpopulation might reach a
critical abundance and separate.
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5.4 Future work concerning nearest neighbors

In this work, I use the 50 nearest neighbors of each cell. As discussed in
section 4.3, it might be more robust to prune the kNN graph and only retain
indistinguishable neighbors. In any case, this would ensure straight forward
interpretability of positive cells (as described in section 4.1.3). As discussed
in section 4.5, it would also be interesting to use gene smoothing with SAVER
to find positive and negative cells. SAVER was shown to smooth more conser-
vatively than other methods [67] and is independent from kNN information.
This could make PCPC orthogonal to UMAP and clustering, in the sense
that artifacts specific to either the kNN search or gene-wise smoothing would
show as disagreement between UMAP and PCPC.

Along a similar line of reasoning, I would like to see another question an-
swered in the future: If the data set at hand does not have enough information
to resolve a given subpopulation, would PCPC help the user to realize this?
A key difference between PCPC and exploratory tools such as clustering is
that cell type definitions are used as prior knowledge, so it is not only inter-
esting which cell types we find, but also which cell types we do not find with
the given data. From PCPC’s architecture (c.f. section 3.2.4), I would expect
that PCPC adapts to the available signal-to-noise ratio, leaving questionable
cells unassigned rather than accepting misclassifications. In order to show
this, one could classify FOXP3+ cells in the MALT data with increasingly
poorer kNN information (by exchanging each cell’s 5, 10, 20 and 50 kNN
with randomly selected cells). This is work to be done in the future.
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Appendix A

Supplement: Garnett marker
files

I now paste the content of the three marker files used to train Garnett. This
relates to Figure 3.9, where the resulting cell type labels assigned by Garnett
are shown.

A.1 Coarse hierarchy

>TTN+
expressed: TTN

>LYZ+
expressed: LYZ

>TOP2A+
expressed: TOP2A

>CD3E+
expressed: CD3E

>CD8+
expressed: CD8B
subtype of: CD3E+

>CD4+
expressed: CD4
subtype of: CD3E+

>CD19+
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expressed: CD19

A.2 Intermediate hierarchy

>TTN+
expressed: TTN

>LYZ+
expressed: LYZ

>TOP2A+
expressed: TOP2A

>CD3E+
expressed: CD3E

>CD8+
expressed: CD8B
subtype of: CD3E+

>CD4+
expressed: CD4
subtype of: CD3E+

>FOXP3+
expressed: FOXP3
subtype of: CD4+

>CD4+CXCL13+ T cells
expressed: CXCL13
subtype of: CD4+

>CD4+ANXA1+ T cells
expressed: ANXA1
subtype of: CD4+

>CD19+
expressed: CD19

A.3 Fine hierarchy

>TTN+
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expressed: TTN

>LYZ+
expressed: LYZ

>TOP2A+
expressed: TOP2A

>CD3E+
expressed: CD3E

>CD8+
expressed: CD8B
subtype of: CD3E+

>CD8+ICOS+
expressed: ICOS
subtype of: CD8+

>CD8+CCR7+
expressed: CCR7
subtype of: CD8+

>CD4+
expressed: CD4
subtype of: CD3E+

>FOXP3+
expressed: FOXP3
subtype of: CD4+

>FOXP3+ICOS+
expressed: ICOS
subtype of: FOXP3+

>FOXP3+CCR7+
expressed: CCR7
subtype of: FOXP3+

>CD4+CXCL13+ T cells
expressed: CXCL13
subtype of: CD4+

>CD4+ANXA1+ T cells
expressed: ANXA1
subtype of: CD4+
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>CD19+
expressed: CD19

>IGKC+
expressed: IGKC
subtype of: CD19+

>SPN+
expressed: SPN
subtype of: CD19+

>LINC+
expressed: LINC01781
subtype of: CD19+

>IGHD+JUN+
expressed: IGHD, JUN
subtype of: CD19+

>IGHD+JUN-
expressed: IGHD
not expressed: JUN
subtype of: CD19+
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