
Dissertation

submitted to the Combined Faculty of

Natural Sciences and Mathematics

of Heidelberg University, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Christian Mauch
born in: Stuttgart

Oral examination: 14.12.2021

Operating Accelerated Neuromorphic Hardware

– A Scalable and Sustainable Approach

Referees:
Dr. habil. Johannes Schemmel (Heidelberg University)

Prof. Dr. Hans-Christian Schultz-Coulon (Heidelberg University)

Abstract

Accelerated mixed-signal neuromorphic hardware presents a promising approach

to overcome run time and scalability issues of software-based neural network

simulations. It accomplishes this by physical emulation of the neuronal dynamics

via specialized analog circuitry instead of numerical calculations. However, facili-

tating the advantage of such highly custom hardware with a similar convenience

as conventional simulators poses various challenges. This thesis addresses these

in two ways:

First a multi-layered software architecture developed for the second-generation

BrainScaleS neuromorphic systems is presented. Well-de�ned interfaces allow

utilization of the hardware in di�erent stages of development with the appropriate

level of abstraction. The upper layers provide an interface to e�ciently describe

neuroscience experiments and handle automated translation of population-based

spiking neural network graphs to valid hardware con�gurations and experiment

�ow programs. Suitable run time performance and scalability of the software

are veri�ed by extensive measurements while usability is demonstrated via an

SNN-based Sudoku solver. The second part covers the challenges of supplying

novel compute hardware as a research platform to the neuroscience community.

A convenient and robust multi-user access is facilitated via customization of

the prevalent SLURM resource scheduler to the requirements of neuromorphic

experiment work�ows. Finally, a monitoring infrastructure vital for system

commissioning and experiment reproducibility is established.

ii

iii

Zusammenfassung

Beschleunigte neuromorphe digital-analoge Hardware ist ein vielversprechen-

der Ansatz zur Überwindung der Laufzeit- und Skalierbarkeitsproblemen von

softwarebasierten Simulationen neuronaler Netze. Erreicht wird dies durch die

physikalische Emulation der neuronalen Dynamik mittels spezialisierter analoger

Schaltungen anstelle von numerischen Berechnungen. Es ist jedoch eine Heraus-

forderung, die Vorteile solcher hochgradig spezialisierter Hardware mit einem

ähnlichen Komfort wie bei herkömmlichen Simulatoren zu verbinden. In dieser

Arbeit werden diese auf zwei Arten angegangen:

Im ersten Teil wird eine mehrschichtige Softwarearchitektur für die zweite Gene-

ration der BrainScaleS neuromorphen Systeme vorgestellt. Gut de�nierte Schnitt-

stellen ermöglichen die Nutzung der Hardware in verschiedenen Entwicklungssta-

dien mit der entsprechenden Abstraktionsebene. Die oberen Schichten bieten eine

Schnittstelle zur e�zienten Beschreibung neurowissenschaftlicher Experimente

und zur automatischen Übersetzung populationsbasierter Graphen pulsbasierter

neuronaler Netze in valide Hardwarekon�gurationen und Experimentablaufpro-

gramme. Die geeignete Laufzeitleistung und Skalierbarkeit der Software wird

durch umfangreiche Messungen veri�ziert, während die Benutzerfreundlichkeit

anhand eines Sudoku-Lösers auf Basis pulsbasierter Netze demonstriert wird. Der

zweite Teil befasst sich mit den Herausforderungen, die mit der Bereitstellung die-

ser neuartigen Hardware als Forschungsplattform für die neurowissenschaftliche

Gemeinschaft verbunden sind. Ein handlicher und robuster Mehrbenutzerzugang

wird durch die Anpassung des weit verbreiteten SLURM-Ressourcenmanagers an

die Anforderungen neuromorpher Experimentabläufe ermöglicht. Abschließend

wird eine Überwachungsinfrastruktur eingerichtet, die für die Inbetriebnahme

des Systems und die Reproduzierbarkeit der Experimente unerlässlich ist.

iv

v

Contents

1 Introduction 1

2 Background 5
2.1 Spiking Neural Networks . 5

2.1.1 The Leaky Integrate-and-Fire Model 5

2.1.2 The Adaptive Exponential Integrate-and-Fire Model . . 7

2.1.3 Multi-Compartment Neuron Models 7

2.1.4 Synaptic Input and Plasticity 7

2.1.5 Network Topologies . 8

2.2 Neuromorphic Computing Platforms 8

2.2.1 Computational Neuroscience Work�ow 9

2.2.2 Neuromorphic Approaches 10

2.2.3 BrainScaleS-1 . 12

2.2.4 BrainScaleS-2 . 16

2.3 Software Development Concepts 19

3 Neuromorphic Software Architecture 23
3.1 Architecture . 24

3.1.1 Goals and Requirements 24

3.1.2 Software Stack Overview 26

3.1.3 Prior Work . 29

3.1.4 Collaborative Work . 30

3.2 Communication . 31

3.2.1 Connection Interface . 31

3.2.2 Back-Ends . 32

3.3 Hardware Abstraction . 33

3.3.1 Coordinates . 34

3.3.2 Container . 36

3.3.3 Runtime Control . 39

3.3.4 Hardware Database . 42

3.3.5 Performance . 43

vi CONTENTS

3.3.6 Example Studies . 46

3.4 Experiment Description . 46

3.4.1 Signal-Flow Graph Description 47

3.4.2 Abstract Network Description 51

3.5 Modeling Wrapper . 53

3.5.1 PyNN . 53

3.5.2 PyTorch . 57

3.6 Full Stack Analysis . 58

3.6.1 Scaling with Run Time 58

3.6.2 Scaling with Network Topology 66

3.6.3 Impact on Experiment Work�ow 70

3.7 Sudoku Solver . 71

3.7.1 Experiment Setup . 72

3.7.2 Chosen Sudoku Puzzles 73

3.7.3 Network Analysis . 73

3.7.4 Run Time Performance 75

3.7.5 Outlook . 77

4 Neuromorphic Platform Operation 79
4.1 Resource Management . 79

4.1.1 Prelude . 80

4.1.2 Resource Scheduler Con�guration 83

4.1.3 Baseline Performance 84

4.1.4 Resource Isolation . 86

4.1.5 Native Resource Request API 87

4.1.6 Automated Neighbor Initialization 92

4.1.7 Scheduler Utilization Analysis 100

4.1.8 Micro Scheduler . 106

4.2 Monitoring and Alerting . 108

4.2.1 Aggregation and Storage 109

4.2.2 Visualization . 112

4.2.3 Alerting . 117

4.2.4 Findings . 117

5 Conclusion and Outlook 119

A Contributions 125
A.1 Publications . 125

A.2 Supervision . 127

CONTENTS vii

B Measurement Conditions 129
B.1 Software State for Performed Measurements 129

B.1.1 BrainScaleS-1 . 129

B.1.2 BrainScaleS-2 . 129

B.1.3 Slurm . 130

B.1.4 Sudoku Solver . 130

B.2 Compute Node Speci�cations 132

C Acronyms 133

D Bibliography 135

viii CONTENTS

1

Chapter 1

Introduction

The nervous system, and in particular the brain, is the evolutionary result for

the need of animals to interact with their environment. It comprises a myriad of

interconnected nerve cells also called neurons, from which astonishing cognitive

capabilities emerge. The �eld of computational neuroscience strives to develop

models that explain and replicate the functionality of these systems. Spiking Neu-

ral Networks (SNNs) are one of the basic models to describe the brains structure

and investigate its computational capabilities. The complexity of such models and

systems often necessitates numerical simulations. Traditionally these simulations

are performed in software on conventional compute architectures [Diesmann

et al. 2002; Hines et al. 2003; EPFL et al. 2008]. However, they become com-

pute and time intensive, especially with scaled up network sizes. For example,

a human-scale brain simulation of the cerebellum comprising 6.8 · 10
10

neurons

and 5.4 · 10
12

synapses was conducted utilizing all 82 944 compute nodes of the K

supercomputer [Yamazaki et al. 2021]. One minute of non-functional network

activity took over 10 hours of wall-clock simulation time, a slowdown by a factor

of about 600. Moreover, the K supercomputer has an average power consumption

of about 12 MW [Yamamoto et al. 2014]. Reasons for these huge compute require-

ments are, on the one hand, that solving the di�erential equations describing the

neuron dynamics is numerically expensive. On the other hand, distribution of

the spike events between the hundreds of compute nodes introduces a signi�cant

communication overhead [Zenke et al. 2014].

These challenges were met with di�erent approaches, from e�ciency improve-

ments in traditional numerics to optimization in event distribution [Pronold et al.

2021a]. Another approach is the development of dedicated hardware to physically

emulate neural networks, which is called neuromorphic computing and was �rst

coined by Caver Mead [Mead 1989; Mead 1990]. The term has been applied

more broadly in recent years, to any specialized hardware that mimics structure

and behavior of neural systems. Various neuromorphic computing devices were

2 CHAPTER 1. INTRODUCTION

developed over the years, from FPGA-based accelerators to full-custom digital or

mixed-signal chips [Indiveri et al. 2011; Furber et al. 2012; Hu et al. 2014; Davies

et al. 2018].

One such approach, the BrainScaleS (BSS) architecture [Schemmel et al.

2010; Schemmel et al. 2020], is the focus of this thesis. It implements a physical

representation of the neuron dynamics in the form of analog circuits, i.e., no

numerical computations are performed. However, the distribution of spike events

throughout the network is performed via a digital bus system, thereby making it

a mixed-signal system. The chosen circuit dimensions allow the neuromorphic

substrate to operate with speed-up of 10
3

to 10
5

compared to real-time. This high

acceleration factor enables the investigation of long term neural development

experiments previously not possible as biological years could be emulated in

mere hours wall-clock time. These advantages however come with trade-o�s

to generality and precision. Regarding generality, the neuron model and its

parameter range are �xed to the chosen design whereas in software simulation

these can be chosen arbitrarily. Limited precision is caused by variations in the

analog substrate as well as constraints in parameter resolution, mostly only a few

bits, compared to �oating-point precision in software. Furthermore, the physical

emulation of the neuronal dynamics entails a continuous operation, meaning it

cannot be halted and continued later on. Therefore, one has to cope with these

trade-o�s during operation.

Neuromorphic hardware not only provides means to expedite neuroscience

research but could usher in new computing paradigms. The ever-increasing

thirst of human society for compute power could be quenched due to Moore’s

law [Moore 1965]. It is an empirical observation that “predicts” a doubling of

integration density in microcircuits, or e�ectively in compute power, every two

years. However, over the last decade this evolution has encountered a number of

roadblocks [Theis et al. 2017] which lead to the pursue of novel non-von-Neumann

architectures [Neumann 1945]. The renascence of Arti�cial Neuronal Networks

(ANNs) in Machine Learning (ML) at the beginning of the 2010s through deep

learning [Krizhevsky et al. 2012; LeCun et al. 2015; Tan et al. 2018] is, at least

algorithmically, a step in the direction of such a paradigm shift. Various tasks

formerly thought of as requiring "human level intelligence" have been solved with

this approach [Silver et al. 2016; OpenAI et al. 2019]. Their breakthrough was made

possible by performant specialized algorithms for matrix multiplication utilizing

Graphics Processing Units (GPUs). However, deep learning with ANNs still has

a huge computational cost leading to development to even more specialized

hardware like Google’s Tensor Processing Unit (TPU) [Jouppi et al. 2017].

Another big role for the success of ANNs in ML was played by various software

frameworks like TensorFlow [Abadi et al. 2015] or PyTorch [Paszke et al. 2019a].

They allow researchers to formulate experiments in high-level interfaces which

3

abstract away the underlying hardware operations. Thus, one can take advantage

of GPUs or TPUs without requiring a deep knowledge of the technical background.

Likewise, the facilitation of specialized neuromorphic hardware also requires

specialized software to fully exploit its advantages [Rhodes et al. 2018; Lin et al.

2018].

The �rst main goal of this thesis is the design and development of a sophis-

ticated software architecture for the BrainScaleS Generation 2 (BSS-2) neuro-

morphic hardware system. It aims to support a similar high-level work�ow that

abstracts away as many system speci�cs as possible so that researchers can focus

on their experts and not on hardware particularities. To this end, several aspects

of system operation need to be covered such as handling of communication,

abstraction of hardware components, managing runtime control and de�ning

high-level experiment descriptions. All these aspects need to cope with the par-

ticular characteristics of the analog hardware. For example, the high acceleration

factor and continuous network emulation set high demands on throughput as well

as latency. Similarly, scalability and sustainability of the software are important

to handle changes in hardware makeup and evolution to large-scale systems. This

is especially true in an academic environment where the stay of researchers is

shorter than the lifetime of the hard- and software.

The main purpose of the BSS neuromorphic hardware is to facilitate compu-

tational neuroscience experiments. To this end, the Electronic Visions(s)
1

group

as part of the Human Brain Project [Markram 2012] strives to provide access

to theses systems as computing platforms for the scienti�c community. The

second major goal of this thesis is to ensure that conducting science with this

platform is robust, convenient and, most notably, reproducible. Typically large

scale neuroscience simulations, like most other large scale simulations, are run

in super-computing centers also called High Performance Computings (HPCs).

There multi-user access to the compute nodes is managed via resource sched-

ulers. Likewise, access to the neuromorphic hardware systems is supported by a

resource scheduler customized to the particular characteristics of the hardware.

Furthermore, reproducibility and robustness of experiments are facilitated by an

extensive monitoring infrastructure.

Thesis Outline
The thesis is structured as follows:

Chapter 2 provides an introductory insight into the most relevant topics

of this thesis. First, an introduction to biological spiking neural networks is

given in section 2.1. Then, the concept of neuromorphic computing, especially in

1
https://www.kip.uni-heidelberg.de/vision/

4 CHAPTER 1. INTRODUCTION

the context of computational neurosciences, is discussed further in section 2.2.

Subsequently, sections 2.2.3 and 2.2.4 give an overview of the neuromorphic

systems covered in this thesis, namely BrainScaleS Generation 1 (BSS-1) and

BSS-2. Furthermore, general concepts of software engineering and their relevance

to science, in particular the collaborative work�ow practiced in the Electronic

Vision(s) group, are discussed in section 2.3.

Building on this, chapter 3 presents the developed software framework facili-

tating utilization of the BSS-2 hardware. It discusses the particular requirements

that accelerated neuromorphic hardware and neuroscience experiments have

on software design and the resulting decisions regarding the chosen software

architecture. A short overview of the architecture is given as an orientation which

is subsequently followed up with more detailed explanations in sections 3.2 to 3.5.

Chapter 3 is then concluded by demonstrating the viability and usability of the

software by extensive performance measurements (section 3.6) and an exemplary

neural network experiment (section 3.7).

Chapter 4 discusses the e�orts regarding platform operation. First, the cus-

tomizations to the Simple Linux Utility for Resource Management (Slurm) resource

scheduler are described in section 4.1. This includes an analysis of the hardware

utilization via scheduler usage statistics. Secondly the extensive monitoring in-

frastructure is described in section 4.2, which facilitates robust and reproducible

platform operations.

Chapter 5 summarizes and discusses the achievements and limitations of the

conducted thesis. It is concluded by an outlook regarding future of the systems,

in particular their scale-up.

5

Chapter 2

Background

2.1 Spiking Neural Networks

Spiking Neural Networks (SNNs) are used to describe and investigate the dynamics

of the neurons and their connections found in the brain. Figure 2.1 illustrates

the principle of spiking neurons and their synaptic interconnection, going from

biological neurons to a simple abstract model. Action potentials, also called

spikes, travel along the axon of the pre-synaptic neurons and induce a change

in membrane potential of the post-synaptic neuron. If the change was positive

the connection or synapse is called excitatory and in case of negative change it is

called inhibitory. The post-synaptic neuron typically has hundreds to thousands

of pre-synaptic connections which it accumulates. With enough input events in

quick succession it can emit a spike itself.

This of course is a simpli�cation of all the mechanisms present in real bi-

ological neurons. There are several models which describe these mechanisms

with varying detail, with the Hodgkin–Huxley model [Hodgkin et al. 1952] being

one of the most in�uential. It is relatively complex computational wise as it

incorporates the dynamics of sodium and potassium ion-channels to describe

the neuron behaviour. However, the full detail of these dynamics are not always

necessary when investigating the behaviour of large neural networks. Therefore,

in many simulations of large networks simpler neuron models are utilized, two of

which are also implemented in the BSS hardware and explained in the following.

2.1.1 The Leaky Integrate-and-Fire Model

The LIF neuron model is a simple yet prevalent model as its dynamics are often

su�cient to describe functional networks [Stein 1967]. Its dynamics are illustrated

6 CHAPTER 2. BACKGROUND

(a)

Soma

Dendrites

Axon

(c)

(

o

i

(d)

o

i

(b)

output spike

output spike

Figure 2.1: Abstraction of the functionality of spiking neurons. (a) Illustration

of a biological neuron. (b) Functionality of spike input accumulation. Axons

of pre-synaptic neurons are connected to dendrites of the accumulating post-

synaptic neuron via synapses (gray ellipses). An incoming spike event leads to

rises of the neuron membrane potential, which then decays back to the resting

potential (see inlet). If enough excitatory input spikes arrive in quick succession

the accumulating neuron �res, i.e., emits a spike itself. (c) Abstract representation

of a neuron receiving multiple incoming spike sequences which result in an

outgoing spike sequence, thereby performing non-linear information processing.

(d) Neuron membrane dynamics triggered by spike input according to the LIF

neuron model. With enough input spikes the membrane potential reaches the

threshold ϑ. This results in quick reset of the membrane potential and emission

of an outgoing spike. Modi�ed from Grüning et al. 2014.

in �g. 2.1(d) and described by the following equation.

Cm

dVm

dt
= −gleak(Vm − Vleak) + I (2.1)

Without any synaptic input I the membrane potential Vm rests at the leakage

potential Vleak. An incoming spike event elicits an input current I which charges

the membrane capacitance Cm. The resulting potential then decays back to Vleak

with the time constant τm = Cm/gleak, where gleak is the leakage conductance.

Enough excitatory input events in short succession bring Vm over the threshold

ϑ, which triggers an outgoing spike. Simultaneously, the membrane potential is

brought to the reset potential Vreset for a duration de�ned by a refractory time

constant τref.

2.1. SPIKING NEURAL NETWORKS 7

2.1.2 The Adaptive Exponential Integrate-and-Fire Model

The Adaptive Exponential Integrate-and-Fire (AdEx) neuron model [Brette et

al. 2005] is an extension to the LIF model that remedies some of its limita-

tions [Markram et al. 2004]. On the one hand, an adaptive term is added that

provides the neuron with some capability to remember its past states prior to a

reset. On the other hand, an exponential term is added that promotes spiking the

closer the membrane potential is already to the threshold. These additional terms

allow recreation of complex �re patterns found in biology that the LIF model is

not capable of producing. Extending Equation (2.1) with these terms results in:

Cm

dVm

dt
= −gleak(Vm − Vleak) + gleak∆T · exp(

Vm − VT

∆T

) − w + I (2.2)

τw
dw

dt
= a(Vm − Vleak) − w (2.3)

with w being the adaptation current which is parametrized by a time constant

τw and an adaptation constant a. Once a spike is emitted w is increased by an

amount b. Regarding the exponential term, ∆T de�nes the scaling factor and VT

the exponential onset. VT is typically set closely below the �ring threshold ϑ.

Setting w and ∆T to 0 results again in the LIF equation (eq. (2.1)).

2.1.3 Multi-Compartment Neuron Models

Until now neurons had no spacial structure, i.e, were regarded as points. However,

as seen in �g. 2.1a, real biological neurons have a spacial extension that also

a�ects their behaviour. To model such behaviour the concept of compartmental

models was introduced [Gerstner et al. 2002] in which multiple point neurons,

i.e., the compartments, are interconnected to form larger structures. When using

the LIF model to describe the individual compartments, the dynamics of one

compartment i are given by the equation:

Ci
dVi
dt

= −gmem,iVi +
∑
k

gspine,ik(Vk − Vi) + Ii (2.4)

where gmem,i describes the conductance to the membrane of the individual com-

partment and gspine,ik the conductance between connecting compartments.

2.1.4 Synaptic Input and Plasticity

In the previous eqs. (2.1) and (2.2) the synaptic input was abstracted as an arbitrary

input current. Shape, amplitude and duration of this input current vary depending

8 CHAPTER 2. BACKGROUND

on the synapse type and its parameters. Two prominent synapse types are Current

Based (CUBA) synapses and Conductance Based (COBA) synapses.

The primary parameter that de�nes the strength of the interconnectivity

between two neurons is the synaptic weight. The dynamics and therefore func-

tionality of neural networks greatly depend on these weights. One of the major

features of neural networks is their ability to learn which is among others fa-

cilitated by modi�cation of this weight. The capability to modify the synaptic

input strength is called synaptic plasticity and can occur on di�ering time scales

depending on the type of plasticity model or rule. For example Short-term Plas-

ticity (STP) as the name suggest happens on short time scales, i.e., milliseconds to

seconds [Tsodyks et al. 1997]. It reduces or increases the strength of the synaptic

input depending on how active the neuron is. This for example can represent

the depletion of neurotransmitters in biological neurons. One of the �rst con-

cepts in synaptic learning, i.e, long-lasting changes to synaptic weights, is the

Hebbian theory [Hebb 1949] which is colloquially summarized as "Cells that �re

together wire together". More explicitly the synaptic weight is strengthened or

weakened depending on the temporal correlation between arrival of pre-synaptic

spikes and emission of a post-synaptic spikes. Spike Timing Dependent Plasticity

(STDP) [Markram et al. 1997] is a widespread plasticity rules that applies the

Hebbian theory.

2.1.5 Network Topologies

The structure of neural networks, i.e., the interconnection between neurons, is

crucial to their functionality as much as or even more so than the dynamics of the

individual neurons. Neural networks are typically illustrated as graphs where the

vertices represent neurons and edges the synaptic connections. The most common

example of neural network structures is the feed forward network, illustrated in

�g. 2.2a. It is a simple example ANN structure to describe deep learning in ML,

with a typical application being image classi�cation tasks. The input signals are

propagated through one or more hidden layers resulting in a desired activity of

the output layer, this typically being only one active neuron. If the network graph

is cyclic, i.e., there are connections that feed back activity, it becomes a recurrent

network (see �g. 2.2b). This can provide the network with a quasi memory which

is for example utilized for time sequence data such as speech.

2.2 Neuromorphic Computing Platforms

Modern neuroscience research that aims to decipher the brain is highly interdis-

ciplinary and cost intensive leading to endeavors like the BRAIN Initiative [Insel

2.2. NEUROMORPHIC COMPUTING PLATFORMS 9

Input Hidden

Output

(a) Feed-Forward Network (b) Recurrent Network

Figure 2.2: Common neural network structures. (a) Separate layers are connected

in one direction, consequently signals are also propagated and processed only in

one direction, hence the name feed-forward. (b) Additional recurrent connections

can function as quasi memory, e.g., for time series data such as speech.

et al. 2013] or the Human Brain Project [Markram 2012]. They aim to consolidate

e�orts by sharing access to large-scale experiment platforms as is similar for

large-scale physics projects in astronomy or high energy physics. The following

section will give a short overview of neuromorphic computing platforms, in

particular the BSS systems. First however, the typical work�ow for large-scale

neural network research is discussed. Especially the neuroscience software tools

like simulator frameworks are introduced as they serve as connection points to

the neuromorphic platforms.

2.2.1 Computational Neuroscience Work�ow

Neuroscience Software

In computational neuroscience, like in most other computation centric research

�elds, shared software tools emerge to consolidate e�orts. One category of

such tools are dedicated spiking neural network simulators, of which a few are

shortly presented highlighting their di�erent main applications. The NEST simu-

lator [Diesmann et al. 2002] is specialized for large-scale point neuron simulations

with focus on scaling on HPC clusters through intrinsic Message Passing Interface

(MPI) support. It tries in particular to address the bandwidth and memory bottle-

necks of event distribution over compute nodes [Pronold et al. 2021a; Pronold

et al. 2021b]. The NEURON [Hines et al. 2003] and Arbor [Akar et al. 2019] simu-

lators focus on multi compartment models. Brian2 [Stimberg et al. 2019] focuses

�exibility, e.g., with convenient description of custom neuron models. They are

several approaches to accelerate these CPU-based simulators with GPU-based

back-ends like GeNN [Yavuz et al. 2016] or CARLsim[Chou et al. 2018].

Kulkarni et al. 2021 benchmarks several of those simulators and reinforces that

there is no one-�ts-all simulator but most have their particular use case. However,

10 CHAPTER 2. BACKGROUND

it is not always clear which simulator is best applicable in a given situation.

Common back-end agnostic interfaces were developed to ease switching between

simulator frameworks and facilitating comparability. The most prominent being

PyNN [Davison et al. 2009a] and Nengo [Bekolay et al. 2014].

In recent years many ML learning inspired approaches where adopted for SNN,

for example, the back-propagation trough time algorithm [Werbos 1990] or LSTM

cells [Bellec et al. 2018]. Consequently, ML frameworks like TensorFlow [Abadi

et al. 2015] or PyTorch [Paszke et al. 2019a] found their way into the neuroscience

community, with the latter being more prominent [He 2019]. Vice versa, the

sparsity in information transport of SNN and therefore potential energy e�ciency,

peaked interest in the ML community. Resulting from this are SNN extensions to

pytorch like BindsNET which utilize similar population based interfaces of SNN

simulators.

High Performance Computing

Large-scale SNN neuroscience experiments typically demand high computation

capabilities, not only for the simulation of the networks themselves but also for pre-

and post-processing, e.g., of large spike data. As high computation capabilities are

needed in a plethora of research �elds, collaboratively funded High Performance

Computing (HPC) clusters like the Jülich Supercomputing Centre are operated.

Challenges for construction and operations of super-compute clusters are for

example setup of a suitable connection topology of the compute nodes to provide

balanced data exchange. To facilitate the distributed compute resources inter

process communication is needed, for example handled via MPI. Furthermore,

sharing of compute resources for multiple users needs to be ensured, which is

solved by resource schedulers.

In typical HPC environments simulations take several hours up to weeks,

which consequently leads to long waiting times. Therefore, researchers �rst

prototype their experiment scripts on a small scale allowing for relatively fast

feedback-loops. Only then they submit long running jobs to the cluster.

In a similar vein, neuromorphic computing platforms also need to manage

shared access for researchers. Chapter 4 presents how this is facilitated for the

BSS platform.

2.2.2 Neuromorphic Approaches

The �eld of neuromorphic computing emerged from the desire to overcome the

limitations of conventional simulations of SNNs and the constraints of the von-

Neumann architecture. It saw a strong growth in the 2010s, similar to the rise

of ANNs in ML, resulting in di�erent technological approaches [Schuman et al.

2.2. NEUROMORPHIC COMPUTING PLATFORMS 11

2017]. They range from FPGAs-based emulations [Wang et al. 2018] to custom

digital and mixed-signal ASICs [Indiveri et al. 2011; Benjamin et al. 2014; Merolla

et al. 2014] or even new materials like memristors [Hu et al. 2014; Li et al. 2018]

and photonics [Feldmann et al. 2019].

As this thesis focuses on the facilitation of neuromorphic computing platforms

an overview is given of systems which are already available to the community,

including the necessary software support. For a broader overview of neuromor-

phic devices please refer to Schuman et al. 2017; Thakur et al. 2018; Li et al. 2018;

Young et al. 2019.

SpiNNaker

The SpiNNaker neuromorphic platform developed at the University of Manch-

ester mainly tackles the issue of spike distribution between computation cores of

conventional numerical simulators [Furber et al. 2012]. It does this by intercon-

necting a multitude of general purpose Advanced RISC Machines (ARM) compute

cores with a routing mesh to e�ciently handle spike transfer between the cores.

Each core is connected to its top, right and diagonally top right neighbor resulting

in a two-dimensional torus mesh for the complete network topology. A single

SpiNNaker chip utilizes 17 ARM cores where 48 of those chips are combined on

large circuit boards which again are interconnected to build up the full system.

It thus incorporates over 10
6

of these ARM processors which are able to simu-

late over 10
9

neurons with 10 000 synapses each. As the performed computation

is general purpose, arbitrary neuron models and plasticity rules are supported.

Real-time simulation speed is possible however slowdown occurs depending on

the simulated model. Regarding software support, SpiNNaker provides a PyNN
back-end as a experiment interface [Rhodes et al. 2018].

Loihi

The Loihi neuromorphic chip developed by Intel implements specialized fully

digital circuits which calculate the neuron dynamics in discrete time steps [Davies

et al. 2018]. One Loihi chip contains 128 neuromorphic cores which implement

up to 130 000 LIF neurons with 1000 CUBA synapses each. These neurons can

be combined to form larger logical neurons. Synaptic plasticity is facilitated by

a learning framework which allows to de�ne custom update rules from a set of

given functions and observables to operate on. The cores are connected to a 2D

bus system allowing arbitrary connections within a chip. However, fan-in and

fan-out, i.e., maximum number of connections to other neurons, of these cores

is limited, thus neuron placement is constrained and needs to be handled. Each

core runs asynchronously within a time step however the spike events between

12 CHAPTER 2. BACKGROUND

cores need to be synchronised e�ectively constraining the overall performance

to the slowest core. 768 of those chips are combined in a rack-mount which

thus has the capacity to simulate over 10
8

neurons [Intel 2020]. Experiment

description for the Loihi system is supported via multiple interfaces such as a

custom population based Application Programming Interface (API) [Lin et al.

2018] similar to PyNN , a Nengo1
back-end and a Tensor�ow like API [Rueckauer

et al. 2021]. Unfortunately the work behind Loihi and conducted research on it is

shrouded by non disclosure agreements.

BrainScaleS

The BrainScaleS (BSS) neuromorphic hardware developed by the Electronic Vi-

sion(s) group at the University of Heidelberg [Schemmel et al. 2010; Schemmel

et al. 2020] does not simulate neuron dynamics numerically but emulate them in

physical representations of the underling neuron model. Multiple di�erent chip

generations where developed of which a short overview is given. The predecessor

chip Spikey marks the �rst chip generation developed by the group [Schemmel

et al. 2006]. Its main application was as portable single chip system however also

a multi chip system was designed [Philipp et al. 2007]. Large-scale networks were

then more speci�cally targeted with the BSS systems. As facilitation of BSS-1

and BSS-2 are central elements of this thesis they are described in more detail in

section 2.2.3 and section 2.2.4 respectively.

2.2.3 BrainScaleS-1

The BSS-1 hardware is the �rst generation of systems developed in the Electronic

Vision(s) group with the explicit goal to provide large-scale accelerated SNN

emulation. It utilizes wafer-scale integration to implement up to 196 608 AdEx

neurons (section 2.1.2) and over 40 million COBA synapses (section 2.1.4) on

a single wafer module, illustrated in �g. 2.3a. Each wafer consist of 8×48=384

so-called High-Input Count Analog Neuronal Network (HICANN) chips that im-

plement 512 neurons each. In contrast to conventional chip manufacturing, single

chip dies are not cut out but kept intact to be interconnected via an additional

post-processing layer. This post-processing also provides connection pads for,

e.g. supply voltages, analog readout or communication. Multiple neuron circuits

can be combined, in groups of up to 64, by directly connecting their membranes

to form larger neurons with increases synaptic fan-in. It is to note that this

functionally does not constitute multi compartment capabilities as described in

section 2.1.3. The presented overview of BSS-1 is constrained to information

1
https://www.nengo.ai/nengo-loihi/ 2021-09-16

2.2. NEUROMORPHIC COMPUTING PLATFORMS 13

which is primarily relevant for chapter 4 and as background for BSS-2. A more

detailed description of the system is given in Schemmel et al. 2010.

(a) Silicon Wafer (b) Wafer Module

Figure 2.3: BSS-1 neuromorphic wafer module. (a): Post-processed silicon wafer

with zoom-in to a single HICANN chip. One wafer comprises 8×48=384 of these

chips, where groups of eight HICANNs are called a reticle (dashed smaller grid

on wafer). Each chip implements 512 neuron circuits with 220 synapses each,

where multiple circuities can be combined to form larger neurons. At maximum

granularity, 196 608 neurons with 220 synapses each are realized or at minimum

granularity 3072 neurons with 14 080 synapses each. Spike transmission is handled

via a digital bus system that spans horizontally and vertically over the wafer,

with additional connections on- and o�-wafer. (b): Exploded view of a wafer

module with its various components (dimensions: 50 cm×50 cm×15 cm). A: silicon

neuromorphic wafer B: 48 communication FPGAs C: analog readout module D:

supply voltage distribution E: main PCB interconnecting all components. Modi�ed

from Müller et al. 2020b.

Neuron dynamics

The AdEx neuron dynamics are physically time-continuously emulated by analog

circuitry implemented in 180 nm Complementary Metal-Oxide-Semiconductor

(CMOS) technology. It operates at a speedup of 10
3

to 10
5

compared to biological

real-time, which is a consequence of the circuit dimensions deliberately chosen

by the hardware designers. All parameters of the implemented AdEx model are

con�gurable, to a certain degree, resulting in the range for the speedup. These

con�gurable parameters need to be provided in analog, i.e., as voltages or currents.

14 CHAPTER 2. BACKGROUND

To this end, an analog neuron parameter storage is implemented by �oating gates

cells, which take a digital value as input. One of their downsides is a high trial-

to-trial variation, i.e., writing the same digital value multiple times results in

varying analog values. This can be somewhat circumvented utilizing the inherent

longevity of the written values for consecutive experiments.

Spike Transmission

Spike events are transmitted via a digital bus system that stretches over the wafer

in a mesh like structure, thus making the BSS-1 architecture mixed-signal. When

a neuron spikes it emits a digital packet containing its address. This packet is

either directly sent o� chip or propagated over the wafer to all target neurons via

a pre-determined con�gurable routing. Similarly, external events can be inserted

onto the chip. Events are duplicated at mesh nodes if necessary. When a packet

passes a target chip, the synapse array then checks the source address of events

and forwards it to the neuron if the addresses match. FPGA-to-chip data transfer

is implemented via two communication technologies. On the one hand an Low-

Voltage Di�erential Signaling (LVDS) high-speed link, hereinafter simply called

high-speed link. And on the other hand a much slower but robust communication

channel via Joint Test Action Group (JTAG). The latter is used to initialize the

links or as a fallback when physical link connection is faulty.

Auxiliary Hardware

To utilize the neuromorphic wafers a multitude of auxiliary hardware is needed.

Figure 2.3b shows an exploded view of the various modular components consti-

tuting a BSS-1 wafer module. 48 FPGA boards provide a communication interface

for con�guration and spike data. Further boards provide readout for analog data,

i.e., neuron membrane voltages, and generation of various supply voltages. All

components are interconnected via a central PCB.

Platform Setup

The BSS-1 compute platform constitutes several wafer modules, conventional

computes nodes for experiment control and analysis as well as the necessary com-

munication infrastructure. Figure 2.4 shows a photograph of the fully assembled

platform.

Fixed Pattern Noise

One of the major challenges when working with analog circuitry are the inherent

parameter variations due to the underlying CMOS manufacturing process. This

2.2. NEUROMORPHIC COMPUTING PLATFORMS 15

Figure 2.4: BSS-1 neuromorphic computing platform. Up to 4 wafer modules are

mounted in a rack. Each wafer is connected via 48×1
Gbit/s ports. Conventional

compute nodes are mounted in middle rack and connected to the setups via

10
Gbit/s switches.

means, setting model parameters for multiple neurons to the same value results

in di�erent behaviour. To circumvent this, calibration is applied which �nds

particular parameter settings so that neurons show similar behaviour. The concept

is illustrated in Figure 2.5. This calibration however cannot completely hide all

variations due to the limited parameter resolution on hardware. Furthermore, the

available parameter range might not be su�ciently large that all neurons can be

calibrated for a desired parameter set.

Software Support

The BSS-1 computing platform provides support for the PyNN API via a custom

back-end. The underlying software stack manages translation of the abstract

experiment description to a valid hardware con�guration and executes it. Müller

et al. 2020b presents a more detailed view of the BSS-1 software and system

operation, which includes work covered in chapter 4. Several of these concepts

are also presented in chapter 3 which addresses the design of the BSS-2 software

architecture.

16 CHAPTER 2. BACKGROUND

Figure 2.5: Principle of neuron

parameter calibration. User spec-

i�es a parameter sets. Fixed pat-

tern noise inherent to the sub-

strate leads to variations in be-

haviour without calibration (a).

With applied calibration (b), pa-

rameters are slightly modi�ed

to compensate variations, result-

ing in similar neuron behaviour.

Taken from Müller et al. 2020b.

2.2.4 BrainScaleS-2

The BSS-2 chip generation represents the shift from 180 nm to 65 nm CMOS tech-

nology. A change to the higher resolution manufacturing process enabled several

improvements and new features which are explained in the following. Neverthe-

less, the core principles stay the same, neuron dynamics are physically emulated

as analog circuits in a mixed-signal system. As described in section 2.2.2 there

were two prototype generations for BSS-2, the HICANN-DLS and the HICANN-X

chips. Conceptually both are similar with HICANN-X for the most part being a

scaled up version of HICANN-DLS, going from 32 neurons with 32 synapses each

to 512 neurons with 256 synapses. Therefore only the most current iteration, the

HICANN-X v2 chip, is described, especially its di�erences to BSS-1. Hereinafter

BSS-2 refers to this chip version.

Chip Overview

The BSS-2 chip implements 512 AdEx neurons with 256 CUBA synapses each.

Parameter ranges of the analog circuits were chosen to provide an acceleration

of about 10
3

compared to biological real-time. This speedup is one order of

magnitude smaller than on BSS-1 which was decided to relax timing constraints.

A simpli�ed schematic of the chip functionality and relevant components

is illustrated in �g. 2.6 and is explained in the subsequent sections. It is a stark

abstraction of the actual highly symmetrical and repetitive chip layout which can

be seen in �g. 2.7 on the left. For more in-depth descriptions refer to Schemmel

et al. 2020.

2.2. NEUROMORPHIC COMPUTING PLATFORMS 17

Paramter Storage

CADC

PPU

an
al

o
g

ne
tw

o
rk

co
reEvent

Routing

I/ O

Configuration

Memory

Synapse Array

Neurons

Figure 2.6: Abstract schematic of the BSS-2 chip-layout and functionality. The

dotted box on the right annotates the analog network core, i.e., neurons and their

synapses. It is surrounded by data-�ow and control logic which are connected to

the o�-chip I/O. Taken from Billaudelle et al. 2020.

I/O

Data in- and output of the chip is handled via a communication FPGA. It handles

timed release of con�guration data and spike events onto the chip as well as data

readout. Multiple spike events can be packed into single communication packets

to further utilize the limited bandwidth. This results in spikes taking up 4 bit in

compressed and 8 bit in uncompressed case [Karasenko 2020].

Con�guration Memory

Con�guration memory represents access to the con�guration space of the various

on chip components. This con�guration covers for example control parameters

for the operation points of components but also digital parameters of the network

components like synaptic weights.

Analog Parameter Storage

Storage of the analog neuron circuit parameters was changed from �oating gates

on BSS-1 to a capacitive memory [Hock 2014]. One of the main advantages of

this approach are signi�cantly lower trial-to-trial variations.

18 CHAPTER 2. BACKGROUND

Event Routing

Event routing handles interconnection of neuron spike in- and output as well

as on- and o�-chip spike sources. Such a routing is needed as full static connec-

tivity becomes infeasible rather quickly. O�-chip sources correspond to either

host computer generated events or events from other chips in future multi-chip

experiments. On-chip exist a con�gurable spike generator which generates either

regular or Poisson distributed spike sequences. The digital packets representing

spike events contain the address of the source neuron. An event packet is then

�ltered by the components involved in routing according to this address. The

challenging part then becomes to �nd a valid routing under the given constraints

(see section 3.4.2).

On-Chip Analog Readout

Another improvement over BSS-1 are extensive on-chip analog readout capa-

bilities. On the one hand, there is a Analog-to-Digital Converter (ADC) with

high temporal resolution which can readout analog parameters of one neuron

at a time. As its primary application is the readout of membrane voltages it

is called MADC. On the other hand, there are lower resolution ADCs for each

neuron/synapse column, hence called CADC. There, a trade-o� can be made

between temporal resolution and number of concurrent read out columns. They

are primarily used to read out correlation capacitors, which are in turn used to

facilitated STDP like learning rules (section 2.1.4) via the Plasticity Processing

Unit (PPU). Alternatively they can be utilized to readout membrane voltages,

albeit with a signi�cantly lower resolution than the MADC.

Plasticity Processing Unit

The so-called Plasticity Processing Unit (PPU) is a general purpose 32 bit Single

Instruction Multiple Data (SIMD) processor integrated on the same substrate with

the primary intent to implement arbitrary plasticity rules, hence the name [Fried-

mann 2013]. It is based on the PowerPC architecture with a custom-built vector

unit extension. It provides parallel computation for plasticity relevant observables,

namely the synapse array and results from the correlation sensors. Most other

observable can be accessed in a serial fashion. Available C and C++ compiler

support for the PowerPC instruction set was extended for the vector unit allowing

to write e�cient code conveniently [Heimbrecht 2017]. This code can then be

loaded into the PPU memory for later execution. Due to its general purpose

nature it is furthermore utilized, for example, as an experiment controller or a

virtual environment for accelerated robotics applications [Wunderlich et al. 2019;

Schreiber 2021].

2.3. SOFTWARE DEVELOPMENT CONCEPTS 19

Multi Compartment Capabilities

Furthermore, the chip provides multi compartment capabilities as described in

section 2.1.3. However, these capabilities are not explicitly covered in this thesis.

Kaiser et al. 2021 provides further insight into their application.

Analog Multiply-Accumulate

BSS-2 provides in addition to the SNN operation also the capabilities to perform

analog matrix multiplications. This is implemented with the same circuitry but

with a di�erent con�guration set, that transforms the synapse matrix and neuron

circuit into multiply accumulate units. This operation mode can be utilized to

perform ANN-based ML task for example demonstrated in Stradmann et al. 2021.

However, these capabilities are not applied in this thesis as the main focus lies on

spiking operation. Nevertheless, the software architecture described in chapter 3

fully covers this use case.

Platform Setup

The BSS-2 chips are not yet ready for wafer-scale integration, nevertheless they

are already utilized in several studies with smaller scale networks [Billaudelle

et al. 2020; Göltz et al. 2021; Czischek et al. 2021]. Figure 2.7 shows photographs

of a bonded BSS-2 chip and several single chip setups constitution the current

state of the BSS-2 computing platform. They are connected to several compute

nodes for experiment control and analysis.

2.3 Software Development Concepts
A signi�cant portion of the work conducted in this thesis covers the design and

development of software to facilitate neuromorphic research. As the lifetime of

the neuromorphic experiment platform, including its software, typically exceeds

the stay of individual group members it needs to be sustainable. This necessitates

a su�cient level of software quality. However, the impact of software quality and

sustainability in science is an open issue [Hatton 2007; Merali 2010], down to the

ambiguity of its de�nition [Venters et al. 2014].

A plain example of bad software quality is wrong code, often simply called

bugs. One prominent case was the discovery of bugs in functional Magnetic Res-

onance Imaging (fMRI) analysis tools which question the validity of a multitude

of studies [Eklund et al. 2016]. Another more tragic example were the Therac-25

accidents, where software bugs and insu�cient quality-control culminated in

administration of radiation overdoses leading to at least 3 fatalities and 3 seriously

20 CHAPTER 2. BACKGROUND

Figure 2.7: BSS-2 neuromorphic computing platform. Left: Single bonded

HICANN-X chip. Image taken from Müller et al. 2020a. Right: Lab setups each

carrying a single neuromorphic chip which is covered by the white plastic cap

(top left). Each setup is connected via 1
Gbit/s Ethernet which is controlled by a

communication FPGA (not visible, on the back). Conventional compute nodes

are mounted in a rack and connected to the setups via 10
Gbit/s switches (left

background).

injured [Leveson et al. 1993]. Neuromorphic systems are not yet in a state to

endanger human lives, nevertheless, correctness needs to be a primary goal.

Further aspects to software quality, that are maybe not directly apparent,

are, for example, code readability or type safety. To provide better context short

introductions to software engineering concepts, tools and best practices is given

which are applied in this thesis.

Testing Virtually all code contains errors and therefore needs to be tested

extensively. There are several approaches to verify desired code behaviour, one

being so-called unit testing. Its principle is to test individual contained parts of

the code base as it is easier to manage testing for small modules. Conversely,

integration testing describes verifying the correct operation of large sections

or the entire code base. They are necessary as unit testing does not cover the

interactions between units.

Code Readability If the task or logic code is easy to grasp it has good readabil-

ity. This can be facilitated by consistent formatting, e.g., indents, or comments

describing the intent of the code. But also avoiding convoluted nesting of condi-

2.3. SOFTWARE DEVELOPMENT CONCEPTS 21

tionals and loops helps readability. So-called code linter tools can be utilized to

automate consistent formatting, reducing load on the developer.

Code Duplication Duplicate code, i.e., multiple code segments that ful�ll the

same task, is undesirable. It introduces unnecessary maintenance-overhead and

can make code less readable. Duplicate code segments should therefore be refac-

tored to a single source of truth that is easier to maintain.

Technical Dept Technical dept is used to describe the pitfall of choosing a quick

but insu�cient solution instead of a sustainable but more time-involving solution.

The former leads to accumulation of development costs in the future, i.e. dept.

Examples are, skipping implementation of tests or insu�cient documentation.

Version Control Software source code is often a living document which is

frequently modi�ed. Version control tools provide a means to track and uniquely

identify these changes to code. This is especially valuable when multiple persons

work in the same code base. Git2
is a prominent version control tool and utilized

for the software development conducted in the Electronic Vision(s) group.

Code Review Code Review describes the practice that changes to code, typi-

cally done via version control, are reviewed other developers. It is ubiquitous in

open-source and industrial software development as a means to increase software

quality [Bird et al. 2013]. The Electronic Vision(s) group practices code review

not only for quality assurance but also as a learning method for new group mem-

bers which, as physics students, typically do not have a pronounced software

background. To this end the gerrit3
framework is utilized by the group.

Continuous Integration Continuous Integration describes the practice of

constantly verifying all changes done to the code base. By ensuring that all

changes do not break any tests the software continuously remains in a usable

state.

2
https://git-scm.com/ 2021-09-16

3
https://www.gerritcodereview.com/ 2021-09-16

22 CHAPTER 2. BACKGROUND

23

Chapter 3

Neuromorphic Software
Architecture

The previous chapter introduced the BSS neuromorphic hardware platform in the

context of computational neuroscience. Furthermore, some concepts of software

engineering were introduced that are relevant for the work in this chapter. The

following presents the software framework that enables utilization of the BSS-2

neuromorphic hardware.

First, di�erent challenges and requirements to the software, like the high

acceleration factor, are highlighted in section 3.1. The resulting design decisions

for the software architecture are discussed. To this end a broad overview of the

various layers is given, including a discussion regarding the collaborative nature of

the performed software work. A more detailed descriptions of these layers follows

in the subsequent sections. Afterwards, performance measurements utilizing all

layers are conducted to validate their proper implementation, in section 3.6. In

particular, scalability towards multi-chip experiments is investigated. The chapter

is concluded by a 4×4 Sudoku solver demonstrating the capabilities of hard- and

software.

The concepts presented in the following chapter are explained in the context

of the latest BSS-2 chip generations. However, most concepts are applicable not

only to the speci�c substrate but to any hardware system with similar application

and constraints. They are the culmination of the design and development e�orts

of many previous chip generations.

24 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

3.1 Architecture

3.1.1 Goals and Requirements

Designing and implementing a software framework that enables convenient

utilization of novel neuromorphic devices is no small feat. On one side of the

spectrum, custom designed hardware needs to be abstracted and controlled. And

on the other side high-level experiment frameworks need to be supported which

automatically handle the hardware speci�cs to provide e�cient work�ows.

To provide better context the di�erent goals and requirements are discussed in

the following. First, the various potential users with diverse scienti�c background

are characterized. Then, relevant modes of operation of a neuromorphic system

are explained. Finally, the resulting requirements to performance are highlighted.

Target Users

Computational neuroscience is a highly interdisciplinary research �eld. As a con-

sequence potential users of a neuromorphic device have varying areas of expertise

and expectations regarding its usage. Furthermore, typical work�ows during

development and commissioning of the systems di�ers from typical neuroscience

experiment-work�ow. A hardware developer may require low-level access for

fast prototyping and testing of individual components. On the other hand, for

high-level neuroscience experiments as much hardware speci�cs as possible, e.g.

topological constraints or �xed pattern noise, should be automatically taken

care of. Thus, usage of the systems needs to be supported on di�erent levels of

abstraction.

Experiment Usage Modes

To provide a suitable software framework that utilizes the neuromorphic hard-

ware e�ciently one �rst needs to consider potential modes of operation. We

di�erentiate between three main experiment usage modes, shown in �g. 3.1.

Batch In batch mode each experiment can be independently executed. Each

individual run fully describes neural network con�guration and spike input. Such

experiments can be parallelized by consecutive execution on multiple hardware

setups to increase throughput. Example experiments of this category are long-

running learning experiments utilizing on-chip plasticity capabilities.

Iterative (in-the-loop) The iterative or also called in-the-loop usage describes

experiments with multiple consecutive hardware runs that depend on the previ-

3.1. ARCHITECTURE 25

Time

R
e
so
u
rc
e
s

(a) Batch

Time

R
e
so
u
rc
e
s

(b) Iterative

Time

R
e
so
u
rc
e
s

(c) Closed Loop

Figure 3.1: Sketch of di�erent usage modes of neuromorphic hardware. Blocks

represent execution instances on the hardware.

ous execution. Compared to batch experiments individual hardware executions

are typical shorter lived. On �rst iteration a neural network with some initial

conditions is executed on hardware. Response data, for example spike trains are

read back and analyzed. For the following run weights or spike input are modi�ed

according to some learning update rule. This is repeated until convergence of

some optimization criteria is reached. Examples are learning methods inspired by

machine learning approaches like the back propagation algorithm [Rumelhart

et al. 1986; Bellec et al. 2019].

Closed Loop Closed loop experiments di�er compared to batch or iterative

insofar as that the experiment controller is time-coupled to the network emula-

tion. This demands tight constraints to communication latency and performance.

Typical examples are sensor-motor loops where an agent navigates a virtual

environment.

The rest of this chapter will focus on the �rst two usage modes. An exemplary

work that focuses on closed loop operation utilizing the on-chip processor (PPU)

can be found in Schreiber 2021.

26 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Performance

The aforementioned use cases and the nature of analog neuromorphic hardware

create certain requirements to a software stack. Especially the high acceleration

factor of 10
3

and time-continuous emulation necessitate performant software. As

the network emulation cannot be paused data transfer and processing throughput

need to be high. Simultaneously low latency is relevant in particular for iterative

use cases due to their sequential nature.

3.1.2 Software Stack Overview

Taking the requirements explained in the previous section into account an overview

of the developed software stack is given. First, the utilized programming lan-

guages are and considerations to sustainability are discussed. Afterwards the

architecture of di�erent layers is shortly presented. It aims to provide an introduc-

tion of the overarching idea with the individual layers being explained in more

detail in subsequent sections.

Utilized Programming Languages

The two programming languages dominantly utilized in the software stack are C++

and Python. The core of most layers is written in C++ due to is high performance

and e�ciency. Its multi-paradigm support allows for di�erent approaches to the

various tasks required to utilize neuromorphic hardware. Due to its strongly-typed

nature many issues can already be tackled at compile time further increasing

performance and correctness. A further reason for its use is legacy - most already

existing code which can be reused is written in C++.

Python is prevalent in the natural sciences due to its �exibility, ease of use and

thus relative low learning curve. There are a myriad of Python libraries improving

e�ciency for scienti�c work�ows, e.g., numpy1
, pandas2

or matplotlib3
. Support-

ing a Python interface gives access to all these valuable tools. Therefore, virtually

all frameworks in neuroscience and machine learning provide a Python API with

the BSS-2 software stack being no exception [Abadi et al. 2015; Rhodes et al. 2018;

Lin et al. 2018; Paszke et al. 2019a]. To this end the library genpybind [Klähn 2020]

is employed which provides automated wrapping of C++ via code annotations.

Yet, providing support for both languages leads to design constraints for the APIs

connecting the various layers.

1
http://numpy.scipy.org 2021-07-20

2
https://pandas.pydata.org/ 2021-07-20

3
https://matplotlib.org/ 2021-07-20

3.1. ARCHITECTURE 27

Sustainability

Development of neuromorphic chips is a long-lasting e�ort over several years,

involving changes to various parts of system design. The software therefore

needs to be sustainable, e.g., easily adaptable to changes of hardware components.

This is achieved by separating the software in multiple independent layers, i.e.,

splitting it up in modules. Layering is a very common architecture pattern that

allows, if executed properly, changes to parts of a code base, e.g. communication,

with only minor changes to rest of the code. This requires well-de�ned APIs

for the individual layers which has the additional bene�t of providing access to

experimenters on di�erent levels of abstraction.

The single-chip prototype setups are planned with multi-chip or even wafer

scale operation in mind. This demands bearing parallel execution on multiple

chip instance in mind when designing the software architecture. Furthermore, the

ability to unit test sections of code should also be taken into account to increase

stability and sustainability.

Developed Layers

As explained earlier structuring software into well-de�ned layers is vital in keep-

ing it maintainable and extendable. Figure 3.2 shows a schematic of the developed

software architecture and its various applications on di�erent levels.

The stack will be described from a bottom up view as this is the typical devel-

opment priority when implementing a new chip. The presented schematic is not

exhaustive and only shows layers and corresponding repositories directly relevant

for experiment control and abstraction of the BSS-2 neuromorphic hardware. All

mentioned repositories are open source under the GNU Lesser General Public
License v2 and available at https://github.com/electronicvisions.

Communication The �rst step to utilize hardware systems, from the software

point of view, is the ability to send and receive data. With proper abstraction

the underlying transport protocol and technology should be interchangeable.

Communication is therefore structured into a common connection interface

hxcomm that supports various back-ends (cf. section 3.2).

Hardware Abstraction The next higher layer category is the hardware ab-
straction, presented in section 3.3. Responsibility of this layer can be compared to

device drivers. It provides an abstract structure of the various hardware and chip

components and their control �ow.

Within this category the lowest layer is the abstraction of control FPGA

instructions. Combined with communication this is already su�cient to provide

https://github.com/electronicvisions

28 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

PyTorch
hxtorch

pyNN
pyNN.brainscales

Runtime Control
stadls

Connection
hxcomm

Signal-Flow Graph
grenade

FPGA Instructions
fisch

Coordinate
halco

Co-Simulation
flange

Hardware Database
hwdb

Logical Container
lola

Modeling Wrapper

Communication

HW Container
haldls

Host-ARQ (HW)
sctrltp

Experiment Description

Hardware Abstraction

Early Prototyping

Comissioning /
Expert Experiments

Neuroscience /
Machine Learning

Applications

Place and Route
grenade

Network Graph
grenade

quiggeldy (HW)
hxcomm

Figure 3.2: Overview of the developed BSS-2 software architecture and its appli-

cations. Left side: Colored boxes in background represent categories of di�erent

levels of abstraction. White boxes represent individual layers with their speci�c

repositories names and their dependencies. Right side: Various applications on

their corresponding abstraction levels, i.e., which APIs they utilize. See text for

detailed description of the individual components.

an interface for fast prototyping in early stages of system development, i.e.,

manually setting addresses and bits.

An intuitive structure of the convoluted address space is provided by the

coordinate layer. It represents each hardware component via custom ranged types

that can be converted to other corresponding types.

A structured representation of the con�guration space of hardware compo-

nents is implemented in the container layer. These containers also de�ne de- and

encoding of their abstract representation to the on-hardware data formatting. A

pair of coordinate and container objects then represent the state of a uniquely

identi�able hardware component.

The runtime control layer provides an interface to describe timed sequenced

of read and write instructions of such coordinate-container pairs as well es spike

events. These timed sequences, also called playback programs, can then be loaded

3.1. ARCHITECTURE 29

to and executed on the hardware which sends back record response data. On

this level of abstraction most of commissioning and early expert experiments are

conducted (section 3.3.6).

Experiment Description To e�ectively utilize the hardware especially for

larger experiments an abstract description of neural network experiments is

needed. First a signal-�ow graph representing the hardware con�guration is

de�ned. It contains a hardware abstraction graph and an experiment �ow descrip-

tion interface that utilizes these graphs.

Building on-top of the signal-�ow graph description a high-level abstract

representation of neural network topology is developed. An automated translation

from this high level abstraction to a valid hardware con�guration is handled by a

place and route interface. Detailed explanation can be found in section 3.4.

Modeling Wrapper Various back-end agnostic modeling languages emerged

to provide access to various simulators or neuromorphic hardware systems to

a wide range of researchers. The BSS-2 software stack comprises wrappers to

two of such modeling frameworks, namely PyNN [Davison et al. 2009b] and

PyTorch [Paszke et al. 2019b]. Their goal is to hide as many hardware speci�cs as

possible which is not always expedient to fully exploit all capabilities of specif

hardware back-ends. The necessary trade-o�s and modi�cations to the APIs are

described in section 3.5.

3.1.3 Prior Work

The Electronic Vision(s) group accumulated valuable experience regarding hard-

ware as well as software design over the past two decades. Many aspects in this

thesis pro�t from and built upon the results acquired during development of

previous chip generations, especially BSS-1 [Brüderle 2009; Müller 2014; Jeltsch

2014]. A short overview of the lessons learned during their development and oper-

ation is given. Likewise, it is discussed how they in�uenced the earlier explained

architecture of the BSS-2 software stack.

Most requirements for the BSS-2 system previously explained in section 3.1.1

also apply to BSS-1. Thus, several principles like layering, coordinates or abstrac-

tion of hardware components into container were already utilized. One aspect

lacking was a clear separation of communication and hardware abstraction, in

particular data de- and encoding. The encoding and decoding functionalities di-

rectly performed corresponding read and write command to the hardware which

hamper serialization and abstraction of di�erent communication back-ends There-

fore a deliberate e�ort is made to separate the di�erent layers as well as possible.

30 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Another inadequate aspect was that hardware speci�cs where abstracted away

too early in too low levels of the software stack. This complicated debugging in

higher levels of the software stack as not the full set of possible hardware features

and observables was accessible.

Nevertheless, many concepts and feature proved valuable. For example the

Ethernet based custom ARQ-protocol connecting FPGA and hostiles could directly

be reused. Also, the coordinate framework could be utilized as is explained later

in section 3.3.1.

3.1.4 Collaborative Work
Development, commissioning and operation of novel neuromorphic devices is

a long-lasting e�ort of dozens of people. Especially software development is

highly collaborative manifesting for example in the code review based work�ow

practiced by the group (section 2.3). Since the introduction of the �rst BSS

hardware architecture E. Müller leads the software development e�orts and

provides architectural guidance. Still, almost all detailed software design decisions

are discussed and decided as a group. For clarity, an overview of the contributions

from the author as well as other main contributors to the software architecture

are stated. Major contributions are additionally stated again at the beginning of

each section. E. Müller is a common contributor and thus not mentioned below.

Section 3.2 Communication
The connection interface was developed by Y. Stradmann, O. Bre-

itwieser and P. Spilger in collaboration with FPGA developers. The

author integrated the HostARQ communication back-end, added

various stability and enhancement changes including a protocol

versioning scheme. The Co-simulation back-end was mainly devel-

oped by P. Spilger. The quiggeldy back-end was developed by O.

Breitwieser.

Section 3.3 Hardware Abstraction
Initial conceptualization and implementation of coordinates, con-

tainer and runtime control were performed by the author, J. Klähn

and D. Stöckel for the HICANN-DLS chip. The initial implementa-

tion for this chip was �nalized by P. Spilger. Additional extensions

and further improvements for the full-size HICANN-X chip were

performed by the author and P. Spilger.

Section 3.4 Experiment Description
Conceptualization and implementation was done by P. Spilger during

his master thesis [Spilger 2021] which the author co-supervised. The

3.2. COMMUNICATION 31

author contributed by validation work and performance analysis

presented in this thesis.

Section 3.5 Modeling Wrapper
The PyNN back-end was established by Milena Czierlinski during her

bachelor thesis [Czierlinski 2020] which the author co-supervised.

The author subsequently refactored, improved the implementation

and added various features including calibration injection, manual

neuron placement or quiggeldy micro-scheduler support. P. Spilger

and the author integrated the experiment description layer which

was validated in this thesis.

3.2 Communication

Communication describes the ability to exchange data between a host machine

and an instance of neuromorphic hardware be it real or simulated. It represents the

lowest level of the software stack and speci�cs of the implemented communication

protocol should be irrelevant to upper layers. Communication layer is therefore

split into a connection API and the various abstracted away back ends.

3.2.1 Connection Interface

The basic instructions a communication interface needs to provide are sending and

receiving of data. Execution and receiving of data to and from the chip is managed

by the controlling FPGA in a chunk like fashion, which is explained in more detail

in section 3.3.3. Hence, the interface is designed to take one or multiple messages,

i.e. a vector, to be sent and returns a vector of response data and potential run

time statistics like connection stability and errors. Furthermore, the interface is

typed to support di�erentiation of various FPGA-to-hardware transport protocols

like JTAG [IEEE 2001], Serial Peripheral Interface (SPI) or omnibus [Friedmann

2015] which are represented by so called UT-messages [Karasenko 2020]. Multiple

on chip transport protocols are supported as they have vastly di�erent trade-o�s

between throughput and stability. These protocols should not be confused with

the di�erent possible host-to-FPGA communication protocols implemented by

the back-ends explained in following sections.

Another useful feature of this layer is the ability to choose a desired commu-

nication back-end at runtime either explicitly in code or through environment

variables. This allows fast and easy switching between di�erent back-ends, e.g.,

during testing on di�erent setups without changing or recompiling code. Further-

32 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

more, extension to other potential communication back-ends, e.g., PCI-Express,

is properly encapsulated.

3.2.2 Back-Ends

Host-ARQ

Host-ARQ is an Ethernet-based light-weight implementation of a sliding win-

dow transport protocol similar to Transmission Control Protocol (TCP) between

conventional host and control FPGA. It is the communication back-end used for

the BSS-2-HICANN-X hardware setups. The accelerated nature of the neuromor-

phic system demands high throughput so that data transfer does not become a

bottleneck. Host-ARQ is therefore highly optimized. It was primarily developed

in Müller 2014 for BSS-1 and further enhanced in Mauch 2016 and this thesis. For

example error handling is improved and more descriptive. A versioning scheme

is implemented to support automated detection of host and FPGA functionality

mismatch. This improves productivity of experimenters as time investigating

cryptic error messages is reduced.

Measurements of the raw Host-ARQ implementation were previously con-

ducted for BSS-1 systems with near maximum performance in Müller 2014; Mauch

2016. The theoretical maximum throughput for Host-ARQ with maximum packet

size via a 1
Gbit/s Ethernet connection is 117 MB/s. To ensure proper migration

of FPGA and software implementation measurements where repeated for BSS-2.

Figure 3.3 shows the throughput for increasing batches of loop-backed data over

5 repetitions. For smaller amounts of data throughput cannot be fully utilized

until a saturation is reached. This is expected as the round trip time dominates

execution time for small payload sizes. With 115
MB/s this saturation is close to

the theoretical maximum. Later, Section 3.6 investigates this performance under

scaling for the full BSS-2 stack.

Co-Simulation

In the past unit tests for hardware simulations needed to be implemented in

a separate software environment compatible with the simulation environment.

This lead to additional overhead such as duplicate implementations of the same

test but also prohibited full integration tests resulting in limited test coverage.

The back-end provides a connection to hardware simulations of the FPGA and

current as well as future chip revisions. Thereby enabling hardware/software

co-design, i.e., testing and development with the full software stack prior to

expensive hardware tape-outs. It is implemented by a Remote Call Framework

(RCF) based connection to a running simulation server.

3.3. HARDWARE ABSTRACTION 33

101 102 103 104 105

Data size [B]

10−1

100

101

102
T

r
a
n

s
p

o
r
t

r
a
t
e

[
M

B
/s

]

Figure 3.3: Rate of looped-back transport of data between host computer and FPGA

via 1
Gbit/s Ethernet. The measurement is repeated 5 times for a data size between

8 B and 512 kB. For large-enough data to be transported, the rate approaches the

expectation. Maximum rate is 115
MB/s. Modi�ed from Spilger 2021.

Micro-Scheduler

Quiggeldy is a fast experiment micro scheduler with the goal of increasing hard-

ware utilization. As it is closely related to platform operation, particularly cluster

scheduling, its overall functionality is described in section 4.1.8. This scheduler

is abstracted to a communication back-end that uses RCF to serialize the data

stream to server instances. These server instances themselves implement either a

Host-ARQ or and co-simulator back-end.

3.3 Hardware Abstraction

The plethora of con�gurable components of the neuromorphic system like neuron

circuits, synapse array, analog memory, ADCs or PPUs leads to a large con�gura-

tion space. Access, i.e. reading or writing, to this con�guration is implemented

on the hardware side via a register-like access. Registers are identi�ed via an

address and provide read and/or write access to 32 bit of data. Depending on the

corresponding component this data can represent an integer, a boolean or an arbi-

trary bit formatting. The bit formatting of components needs to be abstracted in

an intuitive structured way to make them manageable. Furthermore, the control

�ow of those units needs to be handled, e.g., order of writing the con�guration is

relevant due to interdependencies. The following sections present the software

layers tackling this abstraction.

34 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

First, a hierarchical structure for the address space of the components as

a kind of coordinate system is described in section 3.3.1. Then an abstract rep-

resentation of the con�guration of individual components, i.e., actual bits on

hardware, is developed as so called containers. Section 3.3.2 explains the design

decisions of these containers and how a pair of coordinate and container uniquely

represent the con�guration of a single component on a system. Utilizing those

unique representations a runtime control framework is designed (cf. section 3.3.3)

allowing to de�ne temporal sequences of write and read commands. Finally, a

representation of the state of hardware setups in a hardware database is explained

in section 3.3.4.

3.3.1 Coordinates
To access an individual hardware component one needs its corresponding register

address. There are hundreds of such registers which need to be represented in

software. A naive approach would be to represent these by builtin numerical

types, i.e., integers. Instead, custom ranged types are used, which provides type

safety and other features like automated range checking.

Hardware design patterns result in repeating structures and therefore high

symmetry in chip layout, which naturally leads to abstraction on di�erent scales.

Figure 3.4 shows the layout schematic of the latest BSS-2 chip with annotations

for di�erent component regions. The high symmetry is immediately evident

with top and bottom chip halves being mirrored horizontally and therefore called

hemispheres. Each hemisphere again is vertically mirrored resulting in quadrants.
This symmetry is re�ected in a hierarchical structure of the chip’s coordinate

system.

Repeating components can be addresses relative to the di�erent regions. Neu-

ron circuits are taken as an example. Depending on the hierarchical level, a neuron

can be addressed via NeuronOnQuadrant, NeuronOnHemisphere or NeuronOn-
Chip. All three have di�erent allowed ranges of 128, 256 and 512 respectively.

It is possible to intuitively transform between these representations. Coordi-

nates of a higher region can be cast down to a lower level for example Neuron-
OnChip.toNeuronOnQuadrant(). Vice versa, lower views can be combined to cre-

ate higher-level coordinates, e.g., NeuronOnChip(NeuronOnHemisphere, Hemi-
sphereOnChip). Coordinates of di�erent components that relate to each other

can also be transformed. A synapse is always related to a Neuron for example

resulting in the possible translation of SynapseOnQuadrant.toNeuronOnQuad-
rant(). Translation from a neuron to synapse on the other hand will return a

vector of all related synapses.

Furthermore, coordinates can be combined to form two-dimensional grids with

synapses being an example. SynapseOnQuadrant is composed of SynapseRowOn-

3.3. HARDWARE ABSTRACTION 35

4mm

8
m

m

128 Neurons

128 x 256
Synapses

SIMD Processor

PLL

Fast
ADC

SIMD Processor

128 Neurons

128 x 256
Synapses

128 x 256
Synapses

128 Neurons128 Neurons

O
ff

-ch
ip

Tra
n
sp

o
rt La

y
e
r

Synapse

Analog Parameters
24x130

Analog Parameters
24x130

Analog Parameters
24x130

Analog Parameters
24x130

Bottom
Hemisphere

Bottom-right
Quadrant8

x
 2

G
B

it/s
H

ig
h
-sp

e
e
d
 Lin

ks

128-Column ADC128-Column ADC

128-Column ADC128-Column ADC

11.76µm

8
.0

0
µ

m

Array addressing
scheme

Figure 3.4: Schematic of the highly symmetrical layout of the latest BSS-2 chip.

Various component regions are framed in yellow. Dashed lines indicate logically

separable regions of the chip. Synapses and neurons are partitioned into four

quadrants. Two embedded SIMD processors (PPU) as well as columnar ADCs

are located in the upper and lower chip hemisphere. The row-major ordering

scheme of two-dimensional coordinates is shown in orange. Taken from Müller

et al. 2020c.

36 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Quadrant and SynapseColumnOnQuadrant correlating to the number of synapses

connected to a neuron (255) and the number of neurons (128) on a quadrant

respectively. Such coordinates can then be constructed by X and Y components

or by an enumerated number which is de�ned by row major order.

Additionally, coordinates can be utilized as iterators, e.g., in for loops. This

facilitates, for instance, the creation of arrays with typed indexes as shown in

listing 3.1.

Listing 3.1: Example usage of custom coordinate type

for(auto synapse : iter_all<SynapseOnChip>()) {
my_synapse_matrix[synapse].weight =

SynapseWeight(42);
}

Overall this typed coordinate system has several advantages over plain inte-

gers. First of all type safety and automated range checks enforce correctness. The

ability of writing code that is relative to the respective regions and prevents code

duplication and increases readability as the intent which coordinate ought to be

used is explicit. Conversion tied to the individual coordinates further increases

correctness, convenience and readability. Due to its lightweight design it comes

with little to no downside in terms of run time performance.

The explained concept and implementation of a coordinate system were

originally developed for the BSS-1 systems. The main changes accomplished

during this thesis regarding the coordinates are explained in the following. First,

the previous implementation was separated and transformed to a shared common

repository for both BSS-1 and BSS-2. This allows both platforms to pro�t from

subsequent improvements to the code base. But more importantly is serves as

a basis for the shared resource management explained in section 4.1. A shift on

a conceptual level compared to BSS-1 is that every component on chip must be

represented by at least by one coordinate. This ensures a complete coverage and

therefore addressability of the chip systems.

3.3.2 Container
As coordinates represent the address of hardware entities containers represent

their con�guration. The con�guration of a hardware component is managed by

one or multiple registers which depending on the component can be read from

and/or be written to. A container object represents and stores a possible state

of these registers. The hardware properties are abstracted on di�erent software

layers (cf. �g. 3.2).

3.3. HARDWARE ABSTRACTION 37

FPGA-Instructions

On the lowest level a heterogeneous set of communication clients, e.g., SPI, JTAG

or omnibus are abstracted away to a uniform register-access like interface. For

example writing a value via SPI requires multiple commands which are passed to

the underlying communication layer as aforementioned UT-messages. Yet, this

operation is disguised to the upper facing layer as a single register word.

Hardware Containers

Building upon this encapsulation into di�erent register word types, the next

layer abstracts the con�guration of the various hardware entities into containers.

Figure 3.5 shows the concepts of this abstraction.

The con�guration of individual hardware entities is encapsulated in one or

more register words. Each word consists of a certain amount of data bits depending

on the underlying on-chip protocol, for example omnibus has 32 bit. The meaning

of these bits are abstracted in named member of the corresponding container.

These members depending on the abstracted entity are appropriately typed. For

example the switch for the leak term of the LIF neuron model named enable_leak
is of boolean type. The corresponding value of the refractory_time is a ranged

integer with the same implementation as coordinates (cf. section 3.3.1). This

intuitive structure and naming leads to quasi automated in-code documentation.

Individual containers adhere to the smallest possible read/write granularity

to not constraint higher layer abstraction as well as preventing of sending and

receiving unnecessary data. Each container implements a conversion from its

state to a vector of payload words called encoding. The reverse conversion,

i.e., taking raw payload bits and setting its state, is called decoding respectively.

Additionally, a translation of corresponding coordinate to the actual bit address is

provided. These functions are employed by the runtime control described later in

section 3.3.3. Implementation wise bit-�elds are utilized for translation between

named members and plain bits, see listing 3.2 for an example. Compared to plain

manual bit shifts theses provide clear, readable and therefore maintainable code.

Furthermore, containers are composable to allow forming of lager of units of

repetitive circuits, for example grouping multiple synapses into a matrix.

Logical Containers

The composition feature is utilized in the next higher layer (Logical Containers)

to group di�erent types of containers to form logical units. For example all

containers related to a neuron are composed to de�ne its state, e.g. its analog

parameters like leak voltage as well as its digital parameters. When designing the

structure of these containers typical usage as well as performance needs to be

38 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Chip

...

SynapseMatrix

Synapse
weight
label

...

...

...

...

...

NeuronConfig
enable_spike
...

AnalogParameter
leak
threshold
...

0x3450x12

addr value

0x3450x13

addr value

0x3450x14

addr value

0x3450x15

addr value

encode write

0x28

addr

encode read

decode

0x678

value

b
itstre

a
m

Figure 3.5: Con�gurable hardware entities are modeled by nested data struc-

tures encapsulating named data elements. An algorithm visits recursively the

nested data structures and generates a hardware con�guration bitstream. Taken

from Müller et al. 2020c.

considered. A common use case are iterative experiments where only synaptic

weights are updated. It is therefore imperative that the synapse weight matrix

remains its own container. The logical layer furthermore provides an abstraction

for compositions of individual neuron circuits to multi-compartment neurons (cf.

section 2.1.3).

The composition feature is implemented in a tree like fashion where only leaf

nodes actually store data. Encoding and decoding is implemented in a visitor

pattern which recursively travels this tree to generate address and corresponding

payload words from the leaf nodes. This design provides a clear and extendable

interface for data composition abstraction.

Regarding the various communication protocols described for the lowest ab-

3.3. HARDWARE ABSTRACTION 39

Listing 3.2: Example bit-�eld utilized for bit formatting of spike background

generator container.

struct __attribute__((packed)) {
// bits ; word

uint32_t enable : 1; // 0 ; 0
uint32_t enable_random : 1; // 1 ; 0
uint32_t /* unused */ : 14; // 2-15 ; 0
uint32_t period : 16; // 16-31 ; 0
uint32_t seed : 32; // 0-31 ; 1
uint32_t mask : 8; // 0-7 ; 2
uint32_t rate : 8; // 8-15 ; 2
uint32_t neuron_label : 14; // 15-29 ; 2
uint32_t /* unused */ : 2; // 29-31 ; 2

};

straction layer there can exist a 1→N relation between a container and multiple

register word types. This abstracts the fact that a speci�c entity might be acces-

sible via di�erent on-chip communication protocols, e.g., JTAG or high speed

links. The desired protocol can transparently be selected upon invocation of

the aforementioned visitor. This provides an easy shift between debugging and

normal operation, where prior utilizes the near fail-safe but slow JTAG protocol.

An additional feature of the hardware abstraction layer is the support for

multiple chip versions via separated C++ name-spaces. As only a small subset of

features changes in-between chip iterations most code can therefore be shared

features between the chip versions. This is especially valuable in the transition

period when a new chip is commissioned while the old chip is still used by the

majority of researchers.

Storing and loading of container instances is facilitated by a serialization

method. With this a speci�c hardware con�guration can be stored for example

to a �le and loaded by another process at a later time or on a di�erent machine.

This is for example utilized by the current calibration tools.

Overall container provide a uni�ed abstract interface of the neuromorphic

hardware con�guration for upper facing layers hiding implementation details

like conversion to and from register values.

3.3.3 Runtime Control

In section 3.1.1 three generalized usage modes batch, iterative and closed loop
are outlined. The following presents how these usage modes are covered by the

runtime control.

40 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Due to the dynamic nature of the emulated neuron model timing of input

stimulus, output data, access to observables as well as controllables is essential.

Additionally, con�guration of the system might also require time-controlled

execution for technical or experiment control reasons. To this end the control

FPGA implements a runtime control framework. The corresponding software

representation was developed during this thesis.

First, the software interface abstracting runtime control is explained. Then,

runtime control is illustrated based on a hypothetical experiment running on

BSS-2.

Runtime control is described by a temporally ordered sequence of commands,

hereafter called playback program. Generation of such a sequence is comprised of

three functions write, read and block_until. The �rst two functions represent

handling of data be it sending of input spikes, setting or reading out con�guration.

They utilize the coordinates and containers explained in previous sections. The

write function takes a container instance as data payload and a corresponding

coordinate as destination. read only takes a coordinate as parameter because each

hardware component is uniquely identi�able by a speci�c coordinate instance.

An std::future-like
4

object is returned representing the to be read data which

will become valid after experiment execution. The block_until function enables

timing of data commands by halting release of subsequent commands until a

speci�c condition. The most commonly utilized condition is reaching a certain

time tracked by a timer on the FPGA. Said timer can be reset to enable relative

timing instead of keeping track of one monolithic timing. Additional conditions

are checking emptiness of communication channels or comparison against the

value of a speci�c register. The latter for example is used to synchronize playback

program execution with PPU-programs. Listing 3.3 provides a simple code exam-

ple of playback generation. Generation of playback programs is handled via the

widespread builder design pattern, leading to better separation of construction

and representation of complex timed sequences.

Next, �ow of a playback program execution is described with the aid of an

exemplary hypothetical experiment. The experiment encompasses external spike

stimulus with concurrent on chip PPU interaction, e.g., implementing synaptic

plasticity. Figure 3.6 illustrates and describes the runtime �ow of the experiment.

Only parts involving the actual neuromorphic hardware are shown but not for

example neural network setup or analysis of recorded data.

In the following some of the considerations that went into the design of

the runtime control are further discussed. Especially scaling of neuromorphic

experiments both horizontally and vertically, i.e., multi-chip and long experiment

runtime respectively, was kept in mind. The std::future like interface for read

4
https://en.cppreference.com/w/cpp/thread/future 2021-08-02

3.3. HARDWARE ABSTRACTION 41

FPGA

chip & network
configuration

Host

input
stimulus
(spikes)

PPU

upload

trigger
execution

download

end of
emulation

start of
network emulation

network
runtime

Figure 3.6: Schematic showing control �ow of a playback program running

concurrently with code on the embedded processor (e.g. plasticity rule). Black

boxes denote activity. First, the host sets up communication with the control

FPGA and then loads the constructed playback program onto it. Each playback

program is appended with a special instruction denoting the end of the program

(gray box). After the FPGA loads this instruction execution is automatically

started. Initially the chip is fully con�gured including bringing components in a

working state and the con�guration of the neural network. As analog circuits may

need time to settle a wait is inserted before experiment start (cut in time bar). Now

PPU execution is started concurrently with release of spike input. Depending on

the experiment FPGA and PPU execution need to be synchronized (not shown).

During execution all responses like spikes or analog readout traces are recorded

with time annotation by the FPGA. Experiment execution is �nished once the

special end of program instruction (gray box) is reached, also triggering upload

of response data to the host machine. Modi�ed from Müller et al. 2020a.

42 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Listing 3.3: Example usage of playback builder pattern

PlaybackProgramBuilder builder

builder.write(NeuronConfigOnDLS(42), my_neuron_config)
builder.block_until(TimerOnDLS(0), Timer.Value(1000))
ticket = builder.read(SpikeCounterOnDLS(3))

program = builder.done()
run(connection, program)

read_count = ticket.get()

back data was chosen as it is suitable for large experiments where data cannot be

stored fully on the FPGA or even host machines. It for example would support

patterns like double bu�ering of playback programs to support quasi inde�nitely

running experiments.

The builder pattern approach for playback program generations allows for the

de�nition of template builders. For example the most frequently used template

encapsulates the base initial con�guration of a chip. This framework also lends

itself well to de�ne templates for various categories of neural network experiments.

Iterative experiments are prime candidates due to their repetitive nature. This

reduces code duplication, improves readability of code as intend is clearly stated

and most of al ensures proper initialization. Multiple of such template as well as

experiment speci�c program builder can be concatenated.

Next it is reasoned to which extent this runtime control facilitate the previously

described experimental usage modes. The de�nitions of three usage cases becomes

vague regarding PPU utilization. For example the described experiment could

be a plain batch job when one regards the PPU usage just as "on-chip" learning.

But one could also categorize it as closed loop operation as the modi�cation of

network settings is done in a time coupled fashion. Nevertheless, all use cases

are su�ciently covered with the exception of closed loop experiments where the

host acts as sole experiment controller.

3.3.4 Hardware Database
Analog neuromorphic hardware setups are a conglomerate of components with

varying properties and con�guration. For reproducibility, it is necessary to track

this composition and have them uniquely identi�ably. To this end a hardware

database was developed for BSS-1 functioning as the single source of truth for the

state of all hardware setups [Koke 2017]. This database was separated out of the

3.3. HARDWARE ABSTRACTION 43

BSS-1 software stack and extended for the various BSS-2 prototype setups over

the course of this thesis. Exemplary information that are stored are IPs addresses,

component serial numbers and chip versions. The underlying on-disk data format

is yaml as it is human-readable and has already available implementations for C,

C++ and Python. Some features are present by code examples in Listing 3.4. It

shows a database entry of a BSS-2 HICANN-X cube setup(section 2.2.4). Cube

setups always have at least two FPGAs present but not necessarily have a chip

equipped. As components can change in time the combination of setup ID,

FPGA number, chip ID are used to generate a unique identi�er. In this example

the identi�er is hxcube13fpga3chip31 and is used, e.g., for �le names to store

calibration data.

Listing 3.4: Example hardware database entry for a BSS-2 HICANN-X cube setup.

Only one of the two FPGAs is equipped with a chip.

hxcube_id: 13
fpgas:

- fpga: 0
ip: 192.168.73.1

- fpga: 3
ip: 192.168.73.4
handwritten_chip_serial: 31
ldo_version: 2
chip_revision: 2

usb_host: 'AMTHost13'
usb_serial: 'AFE25B471E002000'

3.3.5 Performance
In the following the performance of the hardware abstraction is measured to

investigate its impact on overall system e�ciency. Neuromorphic experiments

are rather data heavy, especially the synapse matrix makes up a large portion of

the con�guration space. A typical use case are iterative jobs where only synaptic

weight is adapted between network emulations. Therefore, low performance on

writing and reading of data would be detrimental.

First, the encoding rate for read and write commands is measured. Encoding

in this context describes more than encode function described in section 3.3.2. It

encapsulates the entire process from creation of response tickets in case of reads

to the generation of UT-messaged sequences. Figure 3.7 shows the encoding rate

of all plain and composite (logical) containers with randomly �lled data, where

44 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

101 103 105

UT messages per container

2

4

E
n

c
o

d
i
n

g
r
a
t
e

[
M

B
/s

]
×108

plain

comp

(a) Write encoding speed: 304 MB/s (com-

posite) 128 MB/s (plain)

101 103

UT messages per container

0.5

1.0

1.5

E
n

c
o

d
i
n

g
r
a
t
e

[
M

B
/s

]

×108

plain

comp

(b) Read encoding speed: 158 MB/s (com-

posite) 24 MB/s (plain)

Figure 3.7: Encoding rate of read and write operations on randomly �lled plain

and composite container. Measurements are taken by averaging the time for 102

random valid container values per type. Marker size represents a container type’s

portion of the complete system con�guration in UT-message count multiplied by

all coordinate values, i.e., instances of the container on the hardware. Average

rates are weighted with container aforementioned container portion. Measure-

ments conducted on Epyc compute nodes (appendix B.2). Modi�ed from Spilger

2021.

the random data is constrained to be valid. For plain container both write and

read encoding rate shows proportionality to number of encoded UT-messages,

i.e., container size. This is expected as encoding many small containers has

more overhead to few larger containers. This proportionality does not hold true

for composite containers. Nevertheless, overall encoding speed is higher for

composite containers again due to mitigating of overhead.

To provide comparable numbers the weighted average encoding rate is deter-

mined, where the proportion of a container type to overall con�guration space

is taken as weight. This result in 304
MB/s for composite and 128

MB/s for plain

in case of write and 158
MB/s and 24

MB/s for read respectively. Comparing these

values shows that read encoding is unexpectedly slower than write encoding.

This is caused by the overhead of creating the placeholder data entries for the to

be read back data. Next the time it takes to encode write and read commands for

the whole chip is estimated. The number of messages which need to be encoded

for a whole chip is 539 212 in case of write and 301 905 in case of read, where each

message has size of 8 B. Write messages contain address and payload whereas

3.3. HARDWARE ABSTRACTION 45

reads only contain the address. The number of readable entities on chip is larger

as there are some components that are read-only, predominantly the correlation

sensors of the synapse matrix. Taking these numbers then yields an encoding

time of 14 ms for write and 15 ms for read respectively.

Now decoding performance is investigated with a similar measurement setup.

Valid response UT-messages are generated with random payload and decoded

resulting in �g. 3.8.

101 103

UT messages per container

1

2

3

4

D
e
c
o

d
i
n

g
r
a
t
e

[
M

B
/s

]

×108

plain

comp

Figure 3.8: Decode rate of plain and composite container from random data.

Measurements are taken by averaging the time for 102
random container values

per type. Marker size represents a container type’s portion of the complete

system con�guration in UT-message count multiplied by all coordinate values,

i.e., instances of the container on the hardware. Weighted average decoding rate is

167
MB/s for composite container and 129

MB/s for plain container. Measurements

conducted on Epyc compute nodes (appendix B.2). Modi�ed from Spilger 2021.

Again decode rate is proportional to container size for plain container and

not for composite container. Weighted average rates are 167
MB/s for composite

and 129
MB/s for plain container. Estimation of decode duration for a whole chip

results in about 14 ms.

Thus, encoding and decoding do not pose a bottleneck to sustained operation

when compared against the bandwidth of 115
MB/s of the FPGA-to-host connection

(�g. 3.3). The communication speed only passed barely, therefore, if connection

speed would be upgraded to 10
Gbit/s the software could not keep up. However, the

available bandwidth will be quickly consumed in multi-chip experiment anyhow,

therefore not being an immediate issue which needs addressing.

Overall time spent for encoding and decoding of a whole chip con�guration

however can be an overhead for short iterative experiments in millisecond range.

46 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Finally, performance of the hardware database is assessed. Measurement

results are taken from section 4.1.5. Loading the database �le is by far the most

expensive operation taking 65 ± 5 ms. Execution time of querying of database en-

tries however is below milliseconds and therefore negligible. Retrieving hardware

con�guration information is performed only once per experiment, thus overall

impact on performance is limited.

3.3.6 Example Studies

The developed abstraction of the hardware components and its operation are

already su�cient for hardware experts to conduct research on SNN learning

strategies. Two studies that built on top of the hardware abstraction layer are

shortly outlined.

Cramer et al. 2021 employs surrogate gradient training methods [Neftci et

al. 2019] for deep as well as recurrent SNNs. To this end they integrate the

hardware abstraction layer into the ML learning framework PyTorch. This enables

training of the SNN topologies based on loss functions that incorporate the analog

membrane potentials of the neuron circuits as well as their output spikes. Based

on this training framework, they reached accuracy levels equivalent to software

implementations of the same SNNs on various datasets and set new benchmarks

for energy consumption, classi�cation latency, and throughput.

Göltz et al. 2021 derived closed-form equations for the spike-time gradients

in multi-layer SNNs. They utilize the same training framework as the previous

study. Based on these equations, they optimized multi-layer networks employing

a time-to-�rst-spike coding scheme, both in software simulations as well as on

BrainScaleS-2.

3.4 Experiment Description
The previous section introduced the abstraction of the hardware as a �at collection

of con�guration and runtime control instructions. That level of abstraction is

su�cient to formulate single-chip experiments by expert users as the con�gu-

ration of the chip is still manageable (cf. section 3.3.6). However, in the light of

multi-chip or even wafer-scale experiments a high-level abstract description of

neural networks is pivotal. The user-facing API should be as general as possible

permitting formulation of a wide range of network topologies. Goal of this layer is

to provide such a high level experiment description and its automated translation

to a valid hardware con�guration.

First, a signal-�ow graph-based approach providing structured description of

hardware con�guration and experiment �ow is presented in section 3.4.1.

3.4. EXPERIMENT DESCRIPTION 47

Building on top of this interface a high level description for network topology

and its in and output is de�ned in section 3.4.2. The necessary complex process of

placing and routing such an abstract network to a valid hardware con�guration

is explained in section 3.4.2.

The work described in this section was predominantly performed by Philipp

Spilger during his master thesis [Spilger 2021] which was co-supervised by the

author. The author contributed by validation and performance analysis of the

implementation and helped by the integration into PyNN described in section 3.5.1.

An in depth explanation of the di�erent graph APIs and their implementation is

therefore given in Spilger 2021. It also covers the facilitation of the non-spiking

analog inference operation (cf. section 2.2.4) which is not subject of this thesis.

3.4.1 Signal-Flow Graph Description

The topology of neural networks is predominantly described in the form of

graphs [Davison et al. 2009b; Abadi et al. 2015; Paszke et al. 2019b]. As neuromor-

phic devices aim to emulate neural networks their con�guration and experiment

�ow naturally lend themselves to a graph-based representation. To this end a

signal-�ow graph description was developed for BSS-2 systems. On its lowest

abstraction layer it provides a description for hardware network con�guration, in

particular the digital event routing. An experiment �ow abstracting the lower

graphs as single instructions is implemented on the next higher layer.

Hardware Abstraction Graph

First, a short introduction to signal-�ow graphs and the utilized nomenclature is

given. A signal-�ow graph is a directed graph where the vertices represent units

that process incoming signals in some way and propagate them according to the

connected edges. Figure 3.9 shows the concept of a signal-�ow graph by example

of abstract mathematical operations.

source

y = x2

z = 2.3x+ 3

h(y, z) = y + z

Figure 3.9: Signal-�ow graph example. Following

a source vertex, data is transformed by two par-

allel operations (y and z) at the top and bottom

vertex. Their results are transformed in the right

vertex (h). Modi�ed from Spilger 2021.

In case of hardware abstraction vertices on the one hand represent individual

chip components, e.g., neurons, synapses or routing crossbar. Edges on the

other hand represent the interconnection thereof. For each vertex the allowed and

expected neighboring vertex types and connectivity types are de�ned. This allows

48 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

to check validity of a constructed graph, e.g., unconnected or to many inputs or

outputs from vertices. Such a graph then provides an explicit description of the

signal-�ow for neural network topologies on hardware. Figure 3.10 exemplary

shows a graph representation of a feed-forward network realized on a BSS-2

chip. Besides ensuring correct network topology a graph-based representation

(a) Feed forward net-

work

input crossbar

synapsedrivers

synapses

neurons

output crossbar

external events

PADI events

labels

synaptic currents

neuron spikes

external events

(b) Hardware Graph

Figure 3.10: Signal-�ow graph representation of a feed-forward neural network

on a BSS-2 chip. (a) shows the topology of a simple feed-forward network where

neurons of the �rst layer are external events and the second layer are neurons

to be realized on hardware. (b) visualization of chip components realizing the

feed-forward network and its corresponding graph representation. Modi�ed

from Spilger 2021.

additionally provides access to graph optimization algorithms. It furthermore

facilitates a direct visualization of the network topology.

It is important to note that the real-time evolution, e.g., insertion of spike trains

or readout of membrane voltage, is not explicitly described by such a graph but is

abstracted as properties of input and output vertices. This also applies to PPU

operation concurrent to the real-time evolution, where it is merely represented

as the content of its data and instruction memory.

Not all hardware con�guration is encapsulated by this graph description as

it is not directly relevant for the signal-�ow representation. For example the

con�guration that controls the operation points of components like recording

frequency of ADCs. This part of con�guration is provided to and handled by the

experiment �ow described in the following section.

3.4. EXPERIMENT DESCRIPTION 49

The implementation of this signal-�ow graph description heavily utilizes the

boost::graph library
5
. It de�nes an intuitive API for graph construction and

provides a multitude o� functionality like optimization algorithms or visualization

of the graph.

Experiment Flow Description

Building upon the hardware signal-�ow graph an abstract description for experi-

ment �ow is developed. The full composition of the hardware signal-�ow graph

is abstracted away to an individual run on hardware hereinafter called execution

instance. Such an execution instance in turn is abstracted to a single vertex in the

now explained experiment �ow graph.

Main goal of this experiment �ow description is providing a formulation for

experiments that exceed resources of a single-chip instance. Such a description is

imperative for multi-chip experiments but can likewise be utilized to time slice

an experiment onto a single-chip instance. A feed forward network with three

layers is taken as an example visualized in �g. 3.11.

Figure 3.11: Partitioning of feed for-

ward network. First layer (orange)

is input from host machine. Second

and third layer (cyan) are realized

on neuromorphic hardware. As sig-

nal �ows only in one direction, i.e.,

no recurrence, experiment can be

sliced.

Assuming 512 neurons in each layer such a network needs resources of two

chip instances as a single BSS-2 chip implements only 512 neuron circuits. Such a

network could either be realized by executing concurrently on two interconnected

chips or time sliced on a single-chip. This is possible for feed-forward networks

where only the relative timing of events into and out from the layer is relevant.

This does not hold true for example for recurrent networks. There the timing

between layers needs to be precise for network functionality due to the continuous

nature of the neuromorphic substrate. In such a case partitioning over multi-chip

is only possible with su�cient low latency interconnection, i.e., latency in the

same order of magnitude as neuron time constants.

Next generation and execution of hardware instruction sequences from the

high level experiment �ow description is presented. Figure 3.12 shows compilation

and execution of an exemplary experiment �ow graph on a single-chip instance.

5
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/ 2021-08-06

50 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

The experiment graph de�nes the possible ordering of execution instances as

each vertex can only be processed once its input vertices are executed. A valid

ordering is guaranteed as the graph is forced to be acyclic. Processing of an

execution instance is separated into three steps. First, it is converted to an

instruction sequence (cf. section 3.3.3), then it is executed on hardware and

�nally its resulting data is analyzed and possibly provided to the next vertex.

Pre- and post-processing are handled by conventional compute nodes whereas

execution happens on neuromorphic hardware instances. Therefore, pre- and

post-processing can be parallelized and performed concurrently to neuromorphic

hardware execution.

1

3
2

4

t
1
2
3
4

execution
preprocessing

postprocessing

Figure 3.12: Compilation and execution of an experiment �ow graph (left) into

time sliced execution instances on a single neuromorphic chip (right). Preprocess-

ing encapsulates generation of hardware instruction sequence which is followed

by execution of said sequence and �nalized by post-processing of read back data

for the next execution instance. Execution happens on the same physical chip

and is therefore executed sequentially, whereas pre- and post-processing can be

executed concurrently. Taken from Spilger 2021.

Figure 3.13 demonstrates the impact of multi chip utilization. The same

exemplary experiment graph as �g. 3.12 is executed however an additional chip

instance is utilized. As vertex 1 and 3 are independent execution can be trivially

parallelized.

1

3
2

4

t
1
2
3
4

execution
preprocessing

postprocessing

Figure 3.13: Compilation and execution of the same experiment �ow graph as in

�g. 3.12 however utilizing an additional neuromorphic chip. Execution instances

1 and 3 can now be executed concurrently resulting in shorter overall run time.

Modi�ed from Spilger 2021.

For the implementation of the experiment �ow graph the tbb::flow li-

brary [TBB 2021] is utilized. It provides for example automated concurrent

execution of the experiment graph.

3.4. EXPERIMENT DESCRIPTION 51

A

B

AB

Figure 3.14: Abstract neural network

graph. Grey boxes A and B represent

populations, i.e., collections of neu-

rons. The collection of connections

between these populations is encap-

sulated as the projection AB. Modi-

�ed from Spilger 2021.

3.4.2 Abstract Network Description

The signal-�ow graph representation presented in the previous section provides

a structured way of describing the hardware con�guration for neural network

experiments. However, formulating neural network experiments with this de-

scription still would require detailed knowledge about the routing capabilities of

the neuromorphic hardware. To handle this issue a high level abstract descrip-

tion for neural network topology is de�ned. This abstract representation is then

translated to a valid hardware signal-�ow graph by a place and route algorithm.

Abstract Network Graph

Again a graph-based representation of the neural network topology �ts naturally,

as is realized by many neural network frameworks and simulators [Davison et al.

2009b; Bekolay et al. 2014; Hazan et al. 2018]. Inspired by these the topology of a

neural network is described by so-called populations and projections between

them. Populations describe collections of neurons whereas projections represent

collections of connections between neurons of di�erent or the same populations.

Figure 3.14 illustrates such an abstract neural network graph.

There are three di�erent types of populations for a BSS-2 chip. First, there are

populations representing the on-chip neuron circuits. The other two types repre-

sent spike sources, namely o�-chip spike arrays and on-chip spike generators. The

former are arbitrarily timed spike events generated by the control host released

during real-time execution. The latter produce regular or Poisson distributed

events directly on-chip. Connectivity restrictions are explicitly checked by the

graph description, i.e., spike source can only have output whereas actual on-chip

neurons can have in and output connections. Connections are de�ned by their

source, destination and a synapse type. This generic synapse type abstracts the

various possible implementations on hardware. For example a signed synapse can

be implemented by combining two hardware synapses where one is con�gured

to be excitatory and the other to be inhibitory.

52 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Place And Route

Translation of an abstract network to a valid hardware con�guration depending

on network topology size and complexity can be highly involved and computa-

tional costly. It is typically separated into two tasks. First is placement of abstract

neurons to actual neuron circuits on hardware while considering hardware con-

straints, e.g., limited routing capabilities or defect chip components. Second is

then �nding a valid network routing of the speci�ed connections between those

neurons. Figure 3.15 illustrates the concept of placing and routing an abstract

network graph to a possible hardware con�guration. The bidirectional nature of

A

B

AB

A B

AB

Figure 3.15: Abstract network graph (left) and potential realization on neuromor-

phic chip (right) Neurons of population A and B correspond to sets of hardware

neurons (blue and orange squares). The projection AB is realized by appropriate

setting of synapses in the synapse array. Modi�ed from Spilger 2021.

this translation is facilitated to also provide a backwards translation from hard-

ware entities to their abstract representation. This allows to provide experiment

results to the respective abstract entities.

Di�erent place and route algorithms are better suited for di�erent network

topologies. The actual implementation of a place and route algorithm is therefore

separated in a free function which can be provided by the experimenter. The

currently utilized place and route algorithm for single chips implements a greedy

sequential strategy. First, all neurons are linearly placed on chip. Then all de-

scribed connections are placed and routed in order of their creation. Consequently,

no abstract knowledge about the network topology is exploited. A more detail

explanation can be found in Czierlinski 2020.

In sum, the presented experiment description layer provides a population-

based interface that allows intuitive and e�cient formulation of neural network

experiments. It achieves this by automatically handling translation of the high-

3.5. MODELING WRAPPER 53

level graph representation to the speci�cs concerning signal-�ow and its cor-

responding hardware con�guration. This lays the foundation for large-scale

multi-chip experiments through its generalized and scaleable design.

3.5 Modeling Wrapper

The intended goal for the BSS-2 neuromorphic systems, as for most other neu-

romorphic hardware and simulators, is to be accessible to as many researchers

as possible. Accessibility to systems from the software point of view is de�ned

by their supported APIs. Many neural simulators and neuromorphic chips pro-

vide similar capabilities and therefore similar interfaces, i.e., description of net-

work topology or parameters of the neuron model. To reduce the burden on

researchers to learn multiple similar but di�erent APIs common interfaces for

neural network experiments where developed, for example PyNN [Davison et al.

2009b], nengo [Bekolay et al. 2014] or BindsNET [Hazan et al. 2018]. It further-

more improves reproducibility and comparability between di�erent simulators.

Supporting such common interfaces also potentially lowers the threshold for

researchers to adopt novel devices. Furthermore, it opens access to many tools

and frameworks developed by the research community. However not all use cases

can be covered by a single interface, leading to multiple di�erent interfaces that

excel at di�erent tasks. Therefore, wrappers for the prevalent APIs PyNN [Davi-

son et al. 2009b] and pytorch [Paszke et al. 2019a] were developed. The former

provides a Domain Speci�c Language (DSL) for describing SNN models, their

topology and input with the main focus being computational neuroscience. The

latter is a widespread machine learning framework which in recent years grew

in popularity also in the neuroscience community [He 2019]. The authors direct

contribution to the PyTorch wrapper is minimal and is therefore only outlined.

3.5.1 PyNN

PyNN is a simulator-independent DSL for neural network modeling. Its goal is to

provide a common interface for various software simulators as well as neuromor-

phic hardware so that researchers can utilize them while only needing to de�ne

their network models once. In the following PyNN ’s interface is shortly outlined.

It is similar to the abstract network graph interface introduced in section 3.4.2 as

PyNN was its original inspiration. The topology of a neural network is described

by populations and projections between them. Populations are collections of neu-

rons of the same model type, e.g., the LIF model (cf. section 2.1.1). The individual

neurons in a population can share the same con�guration or have individually

sets of model parameters, like leak or threshold. Projections are collections of

54 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

connections between neurons of di�erent populations. Their properties are de-

�ned by synapse and receptor type. Synapses at least de�ne a weight but can also

represent types of plasticity. Again parameters can be set for the whole projec-

tion or for each individual connection. PyNN provides connector classes utilized

by projections to conveniently describe the connectivity between populations.

For example the FixedProbabilityConnector allows to construct a projection

where each individual connection is created with a speci�c probability. Thereby

providing an API that allows to describe all possible network topology types like

feed-forward networks or recurrent networks.

PyNN de�nes a standard set of neuron, synapse and plasticity models with the

intent that back-ends implement support for these standard sets where applicable.

Recording of di�erent neuron observables like emitted spike train or membrane

potential can be activated for individual neurons and populations. After the

network topology is set up its time evolution is triggered by a run instruction for

a certain amount of time. After such a run network responses can be read out,

analyzed and acted upon. For example topology or parameters can be modi�ed

before time evolution is continued by a further run call.

Each back-end needs to implement a translation between the PyNN interface

and its own while hiding simulator speci�cs as much as possible. Especially for

neuromorphic hardware back-ends this is not always possible or even desirable to

fully exploit the emulator capabilities. Back-ends can to this end de�ne their own

neuron or synapse models as well es extend or modify the API. As this defeats the

purpose of PyNN as a uni�ed simulator-independent front-end to some degree it

should only be considered if absolutely necessary. In the following the developed

BSS-2 PyNN back-end called pynn.brainscales is explained with special focus

on parts where chosen design deviates from the standard PyNN API or work�ow.

The primary task of pynn.brainscales is to provide a translation of the PyNN
API to the network description layer described in section 3.4.

BSS-2 PyNN Back-End

A short hypothetical experiment illustrating PyNN work�ow is given in listing 3.5.

In this experiment some input, e.g. spike encoded image, is give to a fully con-

nected feed forward-network. Based on the read back output of the previous run

weights are updated and the network is repeatedly emulated on hardware for

a number of epochs. First, the external input population and its spike train are

created. Then the on-chip population consisting of the custom HXNeuron type is

created. Subsequently, both populations are connected via an all-to-all projection.

The network is then iteratively run and outcome of each run is saved. Finally, the

accumulated results are analyzed.

Now aspects relevant for the usage and implementation of pynn.brainscales

3.5. MODELING WRAPPER 55

Listing 3.5: Example pyNN experiment �ow

pynn.setup()
spiketimes = [0.1, 1, 2, 3.5]
ext_stim = pynn.Population(

256,
SpikeSourceArray(spike_times=spiketimes))

hw_pop = pynn.Population(
256,
pynn.cells.HXNeuron(**neuronparams))

hw_pop.record(["spikes"])
proj = pynn.Projection(

ext_stim, hw_pop,
pynn.AllToAllConnector(),
synapse_type=StaticSynapse(weight=63),
receptor_type="excitatory")

result = []
for _ in range(number_of_epochs):

pynn.run(5)
spikes = hw_pop.get_data('spikes')
result.append(analyse_result(spikes))
proj.setWeights(weight_update(spikes))

process_result(result)
pynn.end()

back-end are presented.

Standard PyNN neuron and synapse models operate with biological units,

e.g., µS for weights or µF for neuron capacitance. At time of writing there does

not yet exist a suitable calibration framework that would allow for automatic

translation of the full BSS-2 hardware parameters, e.g., unit-less integers, to the

biological domain. Therefore, a custom neuron type is developed that directly

maps applicable parameters de�ned by the logical containers (cf. section 3.3.2).

Directly reusing lower level containers provides a rudimentary interface as a �rst

step for researchers familiar with the hardware speci�cs. It also automatically

provides the same container features like early range checks of parameters.

One of the key di�erences between software simulator back-ends and BSS-2

is its continuous time evolution. Where in software simulation the complete state

of the simulator can simply be frozen in-between run calls this is not possible on

hardware. Therefore, in the current implementation a run-call always corresponds

to an isolated hardware execution. Thus conditions at start of each experiment are

unde�ned, i.e., in whatever state the neuromorphic substrate is at that moment,

56 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

typically idle at resting potential.

Another task needed for neuromorphic hardware, as well as multi-node simula-

tions, is place and route of the abstract PyNN network to the hardware constraints.

How this issue is approached algorithmically is explained in section 3.4.2, with

the question now being at which point place and route should be executed in

the context of a PyNN experiment. One of the requirements is that there should

be no "magic knowledge" required, e.g., if certain types of populations would

need to be created before others. However, researchers still need to be able to

modify the place and route behaviour to better utilize the hardware by providing

knowledge about the network structure. Especially for multi-chip experiments

this can be valuable [Plank et al. 2021]. This implies in general that map and

route are only performed after the full network topology is de�ned. However,

current placement strategy is a simple direct assignment from PyNN neurons to

hardware neurons on creation of a population. Experimenters can take advantage

of the direct placement by providing an arbitrary permutation of the assignment

to investigate behaviour of individual neuron circuits even on this high level of

abstraction.

The direct placement approach furthermore enables injection of a rudimentary

on-demand calibration that provides hardware parameters for a desired operation

point. Such a calibration is generated before PyNN utilization and provides its re-

sult in a set of vectors of coordinate container pairs. The pynn.brainscales-API

was enhanced to enable injection of such a calibration result to automatically set

the parameter values of neuron populations accordingly. This allows researchers

to modify parameters relative to the calibration result.

Routing, however, is only possible after the network topology is completely

de�ned and is therefore performed in the run call. As routing can be a time-

consuming operation (cf. section 3.6.2) measures are taken to reduce overhead

for iterative experiments where the network topology is not changed in-between

runs. Primarily this is implemented by checks if network topology or parameters

changed that would warrant a renewed routing. For example abstract synaptic

weights that are larger than individual synaptic circuits weights are supported by

combining multiple synapses to larger virtual ones. This weight virtualisation

in�uences routing and needs to be handled. One approach is to statically assign

the maximum needed synapses per virtualised weight which potentially wastes a

lot of resources but does not require rerouting with weight changes. The other

approach is to re-route for each weight change which depending on complexity

of network can be time-consuming. These again are trade-o�s which the user

should be able to specify by choosing an appropriate synapse type abstracting

such behaviour.

A performance and scaling analysis of the complete software stack on the

basis of PyNN is conducted in section 3.6. Section 3.7 presents a Sudoku solver

3.5. MODELING WRAPPER 57

network utilizing the developed PyNN back-end.

Outlook

There are several features and improvements that should to be added to the

current pynn.brainscales implementation to further enhance its usability.

One key feature is the support for standard cell types de�ned by PyNN which

facilitate back-end agnostic experiment description. To this end design and im-

plementation of a framework that joins calibration and place and route strategies

is essential. However yet, an intermediate representation working in hardware

SI-units is also desirable especially for expert users closely familiar to it.

Another aspect that can be improved is the behaviour of pynn.run. As ex-

plained in the current implementation each call corresponds to a concrete hard-

ware execution run. However, this is not standard behaviour and also introduces

overhead for iterative calls. One possible approach is to compose a larger ex-

periment over multiple run calls without execution. Execution could then for

example be automatically triggered when trying to access to be read output data.

Currently, the on-chip PPU is only supported as a quasi black-box algorithm

that is executed in parallel to the network experiment de�ned in PyNN . A more

native support of PPU capabilities, in particular for plasticity rules, is desirable.

Its automated incorporation is a challenge as code needs to be generated and

compiled that implements a desired plasticity algorithm. A �rst step could be to

provide parameterized pre-compiled plasticity algorithms abstracted as synapse

types in PyNN . A more advanced approach would be to support arbitrary rules

that can be de�ned by the experimenter as mathematical equations. There the

challenge lies in an automated code-generation for the PPU [Blundell et al. 2018].

A relative new pursued concept at least in neuromorphic hardware are multi

compartment neurons (cf. section 2.1.3). Therefore, a new version of PyNN incor-

porating description of such multi compartment neurons is still in development

stage
6
. However, to utilize the multi compartment capabilities of the BSS-2 chip

an early adoption of this newer version seams valuable.

3.5.2 PyTorch

With the advent of ML techniques in computational neuroscience, e.g., adaptations

of the back-propagation algorithm, so came the desire to harness the wealth of

ML-tools. One such tool is the widespread PyTorch framework [Paszke et al.

2019a]. Its key features are the autograd functionality which is an automatic

di�erentiation engine used for gradient descent-based network optimization

6
https://github.com/NeuralEnsemble/PyNN/tree/mc 2021-09-13

58 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

strategies as well as the native support of GPUs for e�cient computation. One of

the main reasons for their success is the plethora of utility features they provide

on top of performant compute graph compilation and execution engine, that allow

for rapid prototyping. Examples are convenient importing of common training

datasets like MNIST [LeCun et al. 1998] or Imagenet [Krizhevsky et al. 2012].

To take advantage of the PyTorch framework a thin software layer called

hxtorch was developed. Its main task is translating between the PyTorch world and

the BSS-2 software stack, in particular the experiment description layer. Compared

to previous ML inspired research performed on BSS-2 (cf. section 3.3.6), hxtorch
allows to fully utilize the abstract network description capabilities to support

arbitrary network topologies within PyTorch.

hxtorchwas established to facilitate the non-spiking operation (cf. section 2.2.4)

in Spilger 2021 and was subsequently utilized for SNN experiments in Arnold

2021.

3.6 Full Stack Analysis
The previous sections described the BSS-2 experiment software stack developed

during the course of this thesis. Now its overall performance especially its scala-

bility in the wake of future multi-chip experiments is investigated. Again, to fully

exploit the hardware speedup software overhead should be as small as possible.

First, the scaling with hardware execution time, more speci�cally with spike

event readout is investigated. Then overhead of abstract experiment description

and transformation to a valid hardware con�guration is examined. Finally, their

impact on the experiment work�ow is discussed.

All measurements are performed with the repository state given in appendix B.1.2

and on RyzenHost nodes (cf. appendix B.2) if not explicitly stated otherwise.

3.6.1 Scaling with Run Time
There are various experiment scenarios where large amounts of data are aggregate

on hardware and sent to host for analysis. Such data could be spikes, membrane

voltage traces or synaptic weights. Increasing the execution time on hardware

for such experiments leads to more output data. Therefore, the following section

investigates how the software stack scales with amount of read back spike data.

Spike data is chosen as it can be the largest source of generated data.

Spike Loss

Recording of experiment data like responses of read instructions and, predom-

inantly, spike data is facilitated by a readout bu�er memory on FPGA. It auto-

3.6. FULL STACK ANALYSIS 59

matically starts sending recorded data on experiment start. The current FPGA

implementation provides a bu�er size of 32 MB. The spike throughput between

chip and FPGA (≈200 MHz) [Karasenko 2020] is an order of magnitude larger

than the throughput between FPGA and host (≈13 MHz). This potentially leads to

spike loss if event rate is larger than the FPGA-to-host bandwidth for a prolonged

time.

To get a better understanding of this dynamic read back spike sequences for

increasing on-chip spike rates are analyzed in �g. 3.16. Utilizing the PyNN stack

a single regular input spike train with rate of 1 MHz is connected one-to-all to

an increasing number of neurons which are read out. Neurons are con�gured in

so-called bypass mode meaning an incoming spike directly results in emitting an

output spike, i.e., bypassing the analog neuron behaviour. This yields reproducible

results independent of �xed pattern noise of di�erent chip setups. With this spikes

are basically duplicated for each neuron and looped back to the host. For each

neuron count an experiment run of 10 s is conducted, yielding 1 · 10
7

spikes per

neuron. The resulting spike train is read out and segmented into logarithmically

increasing time slices for which the spike rate is determined. As expected a

decrease in spike count and therefore rate is observed for increasing run time and

neuron count.

To provide better context of these results the relevant theoretical limits are

calculated. The maximum theoretical run time tmax for nneuron neurons where

no spike loss occurs is given by:

tmax =
mfpga

nneuron · fneuron ·mspike

=
32 MB

60 · 1 MHz · 4 B
= 133 ms

where mfpga denotes the available FPGA readout memory, fneuron the spike fre-

quency and mspike the memory requirement of a single spike event. This assumes

that no other events are stored in the FPGA memory and spikes are optimally

packed section 2.2.4. The theoretical maximum number of continuously �ring

neurons where the FPGA-to-host bandwidth bfpga2host is su�cient inde�nitely is

given by:

nneuron =
bfpga2host

·fneuron ·mspike

=
115 MB/s

1 MHz · 4 B
= 14

Value for bfpga2host is taken from �g. 3.3.

Looking at the measurement no spike loss occurs until at least 100 ms for all

neuron counts. Likewise, spike rate stays at maximum for 16 neurons and below

over the complete 10 s run time. For neuron counts above 20 spike loss occurs

later than the plain theoretical limit given by FPGA bu�er size. This makes sense

as events are already being sent to host from the start.

60 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

4 12 20 28 36 44 52 60
number of neurons

0 - 10

10 - 17

17 - 32

32 - 56

56 - 100

100 - 170

170 - 320

320 - 560

560 - 1000

1000 - 1700

1700 - 3200

3200 - 5600

5600 - 10000

tim
e

se
gm

en
t [

m
s]

400

500

600

700

800

900

1000

ou
tp

ut
 ra

te
 [k

Hz
]

Figure 3.16: Spike loss due to limited FPGA readout bu�er memory and bandwidth.

Regular external spike source of 1 MHz stimulates an increasing number of on-

chip neurons. Each neuron is con�gured to produce a spike for each input event.

Spike output is recorded for 10 s and segmented in logarithmically increasing

time intervals. Meaning, each column corresponds to a single execution on

hardware. If output spike count exceeds the FPGA readout memory size spike

loss occurs if the rate is higher than the FPGA-to-host bandwidth. Solid blue

curve shows the theoretical maximum run time until the FPGA memory is full

for the currently implemented 32 MB readout memory. Dash-dotted cyan curve

represents this limit for 512 MB which is physically available on the system but

not yet utilized. Dashed grey line shows minimum neuron count n=14 where

bandwidth is su�cient inde�nitely.

3.6. FULL STACK ANALYSIS 61

Large Spike Experiment Run Time Analysis

Based on spike loss results a full stack spike scaling experiments is performed.

First, the same minimal PyNN network experiment of reading out n = 12 contin-

uously �ring neurons is pro�led, resulting in �g. 3.17.

It covers the execution of the entire python experiment script. Illustrated are

memory consumption and run time segments of the respective tasks carried out

by the software stack. Table 3.1 provides short descriptions of the individual tasks.

Memory consumption is obtained utilizing the python tool mprof 7
. A Population

size of 12 is chosen as no spike loss occurs leading to better comparability for

varying run time in later scaling comparison.

Execution Segment Description

python_import Import of all needed python libraries including

pynn.brainscales
setup PyNN setup call including loading of calibration data

build_network Creation of PyNN network

build_graph Build and route of grenade experiment description

run_on_hw Sending, executing and receiving playback program

process_response Process response data, e.g., decode packed spikes to

individual spike events

extract_spikes Convert spikes into experiment description format

type

sort_spikes Spike train needs to be fully sorted as hardware re-

turns only partial ordered sequence

�lter_spikes Filter out events with time stamps outside of experi-

ment range

grenade_run Remaining overhead from grenade execution

assign_spikes Converts spike train from hardware container to a

map of abstract neuron IDs and �oating point time

stamps.

get_spikes Request spikes from PyNN API

end Destruction of PyNN network

Table 3.1: Short descriptions for experiment execution segments of �g. 3.17.

Initially an overhead of importing python libraries and loading up the PyNN
environment can be seen. This needs to be performed once for an experiment

and is independent of the network itself. As expected creation of the network

topology, conversion to a signal-�ow graph representation and routing are only

7
https://github.com/pythonpro�lers/memory_pro�ler 2021-09-06

62 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

0
1

2
3

4
5

runtim
e [s]

0

200

400

600

800

1000

memory [MiB]

python_im
port 1.10s (22.65%

)
setup 0.17s (3.47%

)
build_network 0.10s (2.00%

)
build_graph 0.09s (1.85%

)
run_on_hw 1.47s (30.30%

)
process_response 0.42s (8.74%

)
extract_spikes 0.35s (7.24%

)
sort_spikes 0.59s (12.19%

)
filter_spikes 0.11s (2.23%

)
grenade_run 0.07s (1.45%

)
assign_spikes 0.27s (5.53%

)
get_spikes 0.05s (0.99%

)
end 0.07s (1.34%

)

script 1.21s (24.99%
)

pyNN 0.27s (5.47%
)

grenade 1.48s (30.49%
)

hxcom
m

 1.47s (30.30%
)

fisch 0.42s (8.74%
)

F
i
g
u

r
e

3
.1

7
:

R
u

n
t
i
m

e
a
n

a
l
y

s
i
s

o
f

a
PyN

N
-
b
a
s
e
d

e
x
p

e
r
i
m

e
n

t
w

i
t
h

l
a
r
g
e

s
p

i
k

e
c
o

u
n

t
.

A
P

o
p

u
l
a
t
i
o

n
o

f
1
2

n
e
u

r
o

n
s

i
n

b
y

p
a
s
s

m
o

d
e

i
s

e
x
c
i
t
e
d

b
y

a
r
e
g

u
l
a
r

s
p

i
k

e
t
r
a
i
n

w
i
t
h

f
r
e
q

u
e
n

c
y

o
f

1
M

H
z
.

N
e
t
w

o
r
k

i
s

e
m

u
l
a
t
e
d

f
o

r
1

s
o

n
h

a
r
d

w
a
r
e

r
e
s
u

l
t
i
n

g
i
n

1
.2
·
1
0

7
s
p

i
k

e
e
v
e
n

t
s
.

B
l
a
c
k

l
i
n

e
g

r
a
p

h
s
h

o
w

s
m

e
m

o
r
y

c
o

n
s
u

m
p

t
i
o

n
d

u
r
i
n

g
e
x
e
c
u

t
i
o

n
.

H
o

r
i
z
o

n
t
a
l

b
a
r
s

r
e
p

r
e
s
e
n

t
v
a
r
i
o

u
s

s
e
g

m
e
n

t
s

p
e
r
f
o

r
m

e
d

d
u

r
i
n

g
e
x
p

e
r
i
m

e
n

t
e
x
e
c
u

t
i
o

n
(
t
o

p
)

a
n

d
t
h

e
c
o

r
r
e
s
p

o
n

d
i
n

g
s
o

f
t
w

a
r
e

l
a
y

e
r

(
b

o
t
t
o

m
)
.

A
n

n
o

t
a
t
i
o

n
s

i
n

l
e
g

e
n

d
p

r
e
s
e
n

t
i
n

d
i
v
i
d

u
a
l

r
u

n
t
i
m

e
o

f
s
t
e
p

s
a
n

d
p

e
r
c
e
n

t
a
g

e
o

f
o
v
e
r
a
l
l

r
u

n
t
i
m

e
.

I
n

d
i
v
i
d

u
a
l

s
e
g

m
e
n

t
s

a
r
e

d
e
s
c
r
i
b

e
d

i
n

t
a
b
l
e

3
.1

.

3.6. FULL STACK ANALYSIS 63

a few milliseconds due to the simple network structure. Most time is spent in

executing the experiment on hardware and then processing the 1.2 · 10
7

spikes.

Run time on hardware is about 1.5 s which includes initial con�guration and send-

ing of the input spike train. Where the former takes about 125 ms and the latter

roughly
32MB
115MB/s

= 278 ms. The former is obtained by averaging execution of 100

empty runs, meaning run time of 0 seconds and only one population without

connections. Peak memory consumption is reached during sorting where three

di�erent versions of the spike sequence are held. A spike event has di�erent

representations and therefore varying storage consumption on the various ab-

straction layers. For FPGA-to-host communication spikes are packed and can

take up 4 B or 8 B. In upper layers spike events store information as separate

variables namely source address label, FPGA time stamp and chip time stamp.

Then closest �tting types are used resulting in 4 B+8 B+8 B=20 B per event. For

1.2 · 10
7

events this leads to 96 MB and 240 MB storage consumption respectively.

These numbers agree with the measurement results.

Memory pro�le and run time are the outcome of various optimization e�orts.

For example care is taken that few temporary copies of spike sequence are created

or APIs are aligned to prevent overly costly conversions. Still, there is room for

improvement, for example, the spike types could be uni�ed over most layers to

reduce for example overhead in the extract_spikes step. Another example is

sorting of the read back spike sequence. Sorting is necessary due to de-serialization

and serialization of parallel communication channels between chip and FPGA.

This can lead to �ips in ordering, however time stamps are preserved allowing

later sorting. The resulting spike sequence is therefore almost sorted, which is

taken into account for choosing an appropriate sorting algorithm. For example the

default sorting algorithm of the standard library
8

takes 1042 ± 17 ms for 1.2 · 10
7

spikes averaged over 10 iterations. Alternatively, the boost spinsort algorithm
9

which is optimized for almost sorted sequences takes 583 ± 19 ms.

Execution Time Scaling

Next the previous experiment is repeated with increasing hardware execution

length to investigate scaling with increasing amount of read back spike events.

Figure 3.18 shows overall software run time and peak memory consumption

depending on the requested hardware execution time. Constants o�set of the

python_import step is subtracted from memory consumption and run time re-

spectively for each run.

8
https://en.cppreference.com/w/cpp/algorithm/sort 2021-09-06

9https://www.boost.org/doc/libs/1_68_0/libs/sort/doc/html/sort/single_
thread/spinsort.html 2021-09-06

https://www.boost.org/doc/libs/1_68_0/libs/sort/doc/html/sort/single_thread/spinsort.html
https://www.boost.org/doc/libs/1_68_0/libs/sort/doc/html/sort/single_thread/spinsort.html

64 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Overall run time and memory consumption are constant for hardware exe-

cution time below 100 ms. There overhead is dominating and mainly caused for

example by con�guration of all chip components. Especially the con�guration of

analog parameters which requires a subsequent analog settling time of 100 ms

causes a large portion of the overhead. Memory consumption as well as overall

run time start to increase after 100 ms hardware execution time. After 1000 ms

both memory and overall run time scale linearly. This is expected as spike-event

related operations have a runtime complexity of O(n). This includes the sorting

algorithm given the spike data is almost sorted.

100 101 102 103 104

hardware execution time [ms]

100

101

102

ov
er

al
l r

un
tim

e
[s

]

101

102

103

104

pe
ak

 m
em

or
y

[M
iB

]

runtime
memory

Figure 3.18: Scaling of experiment run time (left axis) and peak memory con-

sumption (right axis) depending on requested hardware execution time. Utilizes

same loop back experiment as �g. 3.17 with varying run time averaged over

5 iterations each. Constants o�set of python_import step is subtracted from

memory consumption and run time.

Multi-Chip Readiness

Finally, readiness for execution of experiments on multiple-chip setups is inves-

tigated. As there is no true multi-chip support yet available, performance for

multi-chip setups is estimated by parallel execution of the same experiment on

independent chips. This estimate is relatively accurate for segments of hardware

execution and spike handling as these would be independent even for real multi-

chip experiments. However, network description as well as routing would scale

di�erently.

Two cases of interest are investigated. First, the scaling of run time and

memory consumption for increasing amount of parallel executions is measured.

There the goal is to verify that the software can handle concurrent executions

without too much overhead. In the second case full utilization of the 10
Gbit/s

Ethernet connections during runtime is veri�ed.

3.6. FULL STACK ANALYSIS 65

For the �rst case the same spike loop back experiment as described in the

previous sections (cf. �g. 3.17) is executed in parallel for increasing number of

chips. This is facilitated by starting multiple synchronized processes via MPI

on the same host. A Synchronisation point is set before the pynn.setup step.

Figure 3.19 shows the resulting run time and peak memory consumption.

As expected memory consumption shows a linear increase. Regarding run

time a steady increase from 4 s to 5 s is observable. One possible cause for this

increase are bandwidth limitations between CPU cores and memory during spike

processing. Another limiting factor for ideal parallelization is the 10
Gbit/s band-

width between experiment host and the neuromorphic hardware setups which in

turn are connected each with 1
Gbit/s. Therefore an increase in run time would be

expected for more than 10 setups, assuming full bandwidth utilization. However,

the experiment parameters are explicitly chosen such that the bandwidth for each

hardware setup does not exceed 1
Gbit/s. This is done as exceeding the bandwidth

would result in spike loss and therefore in�uence scaling.

2 4 6 8 10 12
number parallel executions

0

1

2

3

4

5

ru
nt

im
e

[s
]

0

2000

4000

6000

8000

pe
ak

 m
em

or
y

[M
iB

]
runtime
memory

Figure 3.19: Scaling of spike processing time (left axis) and peak memory con-

sumption (right axis) depending on number of parallel executions. Utilizes same

loop back experiment as �g. 3.17 with varying run time averaged over 10 itera-

tions each. Processes are synchronized via MPI before pynn.setup step, which

marks start of run time. Low enough spike activity ensures no spike loss and

therefore comparability for increasing parallel jobs. End of run time is end of last

�nished process. Used setups are randomized for each execution. Measurement

performed on EpycHost, see appendix B.2.

For the second case, again, the loop back experiment described in �g. 3.17 is

utilized. Run time and neuron count are set to 1 s and 24 respectively to be on the

edge of no spike loss, see �g. 3.16. The experiment is executed concurrently for

increasing number of processes. The read back spike count is averaged over all

processes resulting in �g. 3.20.

For the chosen parameters each experiment should return about 2.4 · 10
7

66 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

1 2 3 4 5 6 7 8 9 10 11 12
number parallel executions

1.2

1.4

1.6

1.8

2.0

2.2

2.4
re

ad
 b

ac
k

sp
ike

s
1e7

Figure 3.20: Utilization of communication back end for parallel experiments. The

same loop back experiment as �g. 3.17 is run concurrently for increasing number

of processes. Execution run time is set to 1 s and neuron count to 24 neurons

to be at edge of spike loss �g. 3.16. 10
Gbit/s Ethernet FPGA to host connection

saturates for more than 10 concurrent experiments. Processes are synchronized

via MPI. Hardware setups are randomized for each of 10 iterations. Measurement

performed on EpycHost, see appendix B.2.

spikes with some expected spike loss. This is true as long the individual 1
Gbit/s

connections due not saturate. As expected only with 11 and 12 concurrently

running experiments signi�cant spike loss occurs. This shows that the software

stack can handle concurrent hardware executions e�ciently.

3.6.2 Scaling with Network Topology

Next performance and scaling dependent on network size and complexity are

investigated.

The performance impact of network description and routing naturally depends

on the network topology itself. A fully connected feed-forward network topology

is chosen for performance evaluation as it provides the highest connection density.

However, there are multiple ways an abstract network can be described, e.g., many

small populations or few large ones. Figure 3.21 illustrates how the same feed-

forward network can be described with varying granularity of populations. This

allows to investigate overhead introduced by scaling of network topology graph.

Abstract Network Graph

First, impact of construction of the abstract network graph is examined. Figure 3.22

shows time and memory consumption for construction depending on population

granularity.

3.6. FULL STACK ANALYSIS 67

Figure 3.21: Illustration of network topology to benchmark the abstract

population-based description. All sketches represent the same fully connected

feed-forward network, however with increasing population granularities. Lines

represent all-to-all projections between the individual populations. However, the

total amount of connections, which are not illustrated, stays the same. Left: one

population (with all four neurons) per layer; Middle: two populations (with two

neurons each) per layer; Right: four populations (with one neuron each) per layer.

10

20

D
u

r
a
t
i
o

n
[
m

s
]

100 101 102

populations per layer

2.5

5.0

7.5

P
e
a
k

m
e
m

o
r
y

[
M

B
]

Figure 3.22: Run time (top) and memory consumption (bottom) of an abstract

network description. A fully connected feed-forward network with 256 neurons in

each layer is constructed with increasing granularity of populations as described

in �g. 3.21. Modi�ed from Spilger 2021.

68 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Time consumption initially decreases with more granular description. Then,

after 64 populations per layer it increases quadratically. For many populations

per layer quadratic time expenditure is expected due to the quadratic growth

of projection count. A similar progression can be seen for peak memory con-

sumption, however, there initial peak memory allocation is actually the largest

with about 9 MB. This large memory requirement for large populations does not

stem from the resulting graph but during construction of it. During construction,

connections of each projection are stored in a memory vice wasteful std::set
object. For one population per layer only one large set is created in contrast to

many populations where many sets are created for which memory is successively

allocated and freed. Likewise, this leads to longer execution times.

Network Size

Next run time overhead of the network description via pyNN.brainscales is

investigated. This includes description of networks in PyNN , translation to

abstract graph representations, subsequent routing and its eventual conversion

to a hardware signal-�ow graph. First, run time scaling with network size is

examined in �g. 3.23. Again a fully connected, i.e. all-to-all, feed-forward network

is chosen due to its high connectivity and therefore routing complexity. Population

and projection count stay constant (two and one respectively), whereas connection

count increases quadratically. Run time consumption stays constant in order of

10 ms below population sizes of 10. It then transitions roughly into quadratic

scaling as is expected.

100 101 102

population size

10 1

100

ru
nt

im
e

[s
]

Figure 3.23: Full stack run time scaling with network size. All-to-all connected

feed-forward network is described in PyNN , routed and translated to hardware

signal-�ow graph. Quadratic scaling due to all-to-all connectivity. Averaged over

10 iterations.

3.6. FULL STACK ANALYSIS 69

Network Description Granularity

Next the impact of network description granularity is investigated. To this end the

same feed-forward network description with increasing population granularity

as described in �g. 3.21 is utilized. Figure 3.24 shows run time and memory

consumption of the abstract PyNN network graph construction and translation

to hardware constraints.

100 101 102

populations per layer

101

ru
nt

im
e

[s
]

102

pe
ak

 m
em

or
y

[M
iB

]runtime
memory

Figure 3.24: Full stack run time (left axis) and memory consumption (right axis) for

varying description granularity of an all-to-all connected feed-forward network

(cf. �g. 3.21). Averaged over 10 iterations.

Again, quadratic scaling for increasing number of populations per layer is

expected. A run time of 1 s for coarser granularity agrees with results from

scaling with network size (cf. �g. 3.23). For �ner granularities, i.e., many small

populations with many projections, run time reaches 20 s.

To investigate impact of the individual steps a detailed run time analysis of

a single iteration run is performed in �g. 3.25. First, most notably, overall run

time is dominated by construction of the network description in PyNN , especially

for a high number of projections. Secondly run time of routing stays constant at

about 800 ms independent of description granularity. This is expected as routing

operates on the realized connections which stay constant for all description gran-

ularities. All other steps as well as memory consumption scale with description

granularity. Routing dominates run time of the experiment description segment

(grenade) with the exception of max granularity, i.e., one population for each

neuron.

In summary, the central result of network scaling is that network topology

should be described as coarse as possible, i.e., least granularity regarding popula-

tions and projections. In other words one should describe a network with few

large populations compared to many small ones.

70 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

0 5 10 15 20 25 30 35 40
runtime [s]

0

100

200

300

400

500
m

em
or

y
[M

iB
]

build_network 27.33s (71.41%)
network_graph 1.74s (4.55%)
routing 7.21s (18.83%)
singal-flow-graph 1.27s (3.33%)
end 0.72s (1.88%)

pyNN 28.05s (73.29%)
grenade 10.22s (26.71%)

Figure 3.25: Run time analysis of a single measurement repetition of �g. 3.24.

The same abstract all-to-all connected feed-forward network topology is con-

structed with increasing population granularity (cf. �g. 3.21). Overall, the net-

work is constructed 9 times, where each iteration consist of 5 steps. First, the

network is built in PyNN (build_network), then converted to abstract network

graph(network_graph). This graph is then routed (routing) and subsequently

translated to a signal-�ow graph (signal-flow-graph). Finally, the PyNN state

is reset (end). Horizontal bars represent these 5 steps (top) and their correspond-

ing software layer (bottom). Annotations in legend present individual run time

of steps and percentage of overall run time. Black line graph shows memory

consumption during execution. Memory consumption starts at roughly 200 MiB

due to import of necessary python libraries including pyNN.brainscales. As the

overall topology of the network is constant so is routing time consumption. All

other steps however scale with description granularity.

3.6.3 Impact on Experiment Work�ow

Concluding full stack analysis, the rami�cations of the obtained results on experi-

ment work�ow are discussed. Two use cases, long-running hardware executions

and short iterative ones, are addressed.

Regarding long-running experiments it was shown that the developed soft-

ware frameworks can in principle arbitrarily scale with run time under the con-

straints of available memory on host machine. Larger experiments would then

needed to be split either temporally or physically. Nevertheless, run time larger

than 10 s hardware wall-clock time at maximum recording rate will not be ex-

ceeded in the foreseeable future.

Regarding iterative work�ow, however, the obtained results have a more im-

3.7. SUDOKU SOLVER 71

mediate impact. First of all, the constant overhead by always writing the full chip

con�guration for every hardware execution limits iteration rate to under 10 Hz.

Fortunately, for many experiment types the aforementioned analog parameters

which take up 100 ms do not change between runs. So, the natural approach

to address this shortcoming is to only update parameters that have changed. A

straight forward approach is to split fast and slowly con�gurable parameters and

track them with dirty-�ags. Another approach to this issue could be batching of

experiment segments, i.e., executing multiple independent segments in a single

run. The outlook of section 3.5.1 already outlines how such an approach could be

automatically facilitated within the PyNN framework.

Execution times in order of seconds for the place and route algorithms like-

wise pose a limitation on experiment throughput. However, as explained in

section 3.5.1, there are already mechanism implemented addressing this issue.

Routing is omitted if a routing result from a previous run is available and no rele-

vant change to network description was performed. Furthermore, the currently

utilized routing algorithm is a straight forward, barely optimized implementation

for which a faster and scaleable design is in development.

Regarding scaling to multi-chip setups it was shown that in principle execution

can be parallelized without unexpected overhead. Of course providing true

multi chip support still requires more than simply parallelizing experiments

for individual chips. One of the greatest challenges will be the development of

suitable routing algorithms for large-scale systems. Nevertheless, the architectural

decisions outlined in this chapter provide a solid base for coming extensions to

support multi-chip experiments.

3.7 Sudoku Solver

In the preceding sections the motivation, design, implementation and veri�cation

of the developed software architecture are explained. Now the usability of this

framework is are demonstrated by a neural network implementing a 4×4 sudoku

solver. This section presents the work jointly conducted with Alexander Nock

and subsequent further investigation by the author.

As part of the physics advanced lab course taken by Bachelor students at Hei-

delberg University, the Electronic Vision(s) group o�ers an introductory course on

neuromorphic hardware. Historically experiments for this course were conducted

on the rather dated Spikey chip, an early neuromorphic chip also developed in

this group (cf. section 2.2.2). The content of this course were migrated to the

BSS-2 chip architecture as part of Alexander Nock’s bachelor thesis [Nock 2021],

which was supervised by the author. One of the main achievements of said work

was the development of a Sudoku solver network experiment running on BSS-2.

72 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

Sudoku tasks are a subset of constraint satisfaction problems for which neural

network solvers exist [Maass 2014], which have been deployed on various neuro-

morphic hardware devices [Fonseca Guerra et al. 2017; Kugele 2018; Ostrau et al.

2019; Yakopcic et al. 2020]. Thus, a Sudoku solver was chosen for the advanced

lab course as it provides a real world application while still having an easy to

comprehend implementation.

3.7.1 Experiment Setup

We will start with a short introduction on the rules of Sudoku and in that process

elaborate on their representation in the solver’s network structure Figure 3.26

illustrates the principle of the Sudoku solver. The goal of Sudoku is to �ll empty

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

3 4
4 3

1 2
1 3

Block

Cell

Row Column

0
0

1

1

2

2

3

3

y\ x

Figure 3.26: Principle of the neural network Sudoku solver. Left: Setup and

terminology of a 4×4 Sudoku with 8 clues. Each number between 1-4 must appear

exactly once in each row, column and block. Right: Setup of neural network. Each

number in each cell is represented by a neuron. General concept is to connect

neurons so that they implement the Sudoku rules. This is exemplarily shown for

the neuron highlighted in gray. It is inhibitorily connected to each other neuron

in the same cell and to each neuron representing the same number in the same

row, column and block. Furthermore, it is self connected excitatorily therefore

implementing a winner-take-all network. Taken from Kugele 2018.

cells according to given clues. In that process, each numbers is allowed to appear

exactly once in each row, column and block. The general concept is to set up a

neural network topology such that it implements these rules in a winner-take-all

fashion. In this network each number of each cell is represented by a neuron.

Each of those neurons is then connected inhibitory to each other neuron in its cell

so that only one neuron, i.e. number, is active at a given time. This is repeated for

3.7. SUDOKU SOLVER 73

each other neuron representing the same number in the same row, column and

block. Finally, neurons are excitatorily self-connected to stimulate themselves

and thus implement winner-take-all behaviour. A 4×4 Sudoku is chosen because

an implementation for a typical 9×9 Sudoku would have required 9 · 9 · 9 = 729
neurons, whereas a BSS-2 chip only has 512 neurons. Experiment conditions are

stated in appendix B.1.4.

To solve a Sudoku, the neurons representing clues are pinned by external

stimulation with a high frequency input of 1 MHz. Furthermore, all neurons

receive Poisson background input with lower frequency of 300 kHz facilitating

solution exploration. Network dynamics should then lead to only neurons being

active that conform to the Sudoku rules.

3.7.2 Chosen Sudoku Puzzles
It is crucial to carefully evaluate the performance of the network and to this end

choose suitable Sudoku puzzles to be presented to the network. For 4×4 Sudoku

there exist 13 581 312 valid puzzles [Shi Doku n.d.]. However, only 85 632 of those

puzzles are minimal, i.e., no further digit can be removed while still having only

one unique correct solution. Furthermore, these can be canonicalized by reduction

of all grid symmetries and permutations of numbering. This results then in only

36 minimal canonical 4×4 Sudoku puzzles, 13 with 4 clues, 22 with 5 clues and 1

with 6 clues respectively. These 36 Sudokus where chosen as benchmark for the

solver network.

3.7.3 Network Analysis
To verify the desired behaviour the network is emulated for 4 ms and recorded

spike trains of all neurons are analyzed. For each Sudoku cell its 4 corresponding

neuron activities are segmented in 100 µs intervals. The neuron with the high-

est activity then determines the number of the cell. For each time segment its

classi�cation is compared against the known solution. In the case of all cells rep-

resenting the correct solution, the time segment is marked as correct. Figure 3.27

presents exemplary visualizations of network activity for two observed activity

cases. For most presented Sudoku puzzles the network activity quickly �nds the

correct solution and �nds a stable equilibrium. However in few cases the network

activity is unstable and �uctuates between correct and wrong solutions. Longer

experiment run times revealed no convergence to a stable solution.

The exact dynamics of the network and therefore its capability to correctly

solve a puzzle depend on various network parameters. One such parameter are the

weights of the connections describing the rules. A parameter sweep is conducted

to investigate impact of the weights wex, wP and winh. wex represents the weight

74 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time [ms]

1,1
1,2
1,3
1,4
2,1
2,2
2,3
2,4
3,1
3,2
3,3
3,4
4,1
4,2
4,3
4,4

Su
do

ku
 c

oo
rd

in
at

es
 [r

ow
, c

ol
um

n]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time [ms]

1,1
1,2
1,3
1,4
2,1
2,2
2,3
2,4
3,1
3,2
3,3
3,4
4,1
4,2
4,3
4,4

Su
do

ku
 c

oo
rd

in
at

es
 [r

ow
, c

ol
um

n]

Figure 3.27: Example activity of Sudoku solver network for a stable solution (top)

and a �uctuating network (bottom). Y-axis represents individual Sudoku cells

with 4 neurons each. Separation of cells is visualized by grey horizontal lines.

Presented clues are marked in front of the respective neurons as small lines in

same color. Bottom row shows if given time segment correctly solves the Sudoku

(green circle) or not (red cross). Top: Typical activity for most presented Sudoku

puzzles. Bottom: Uncommon, �uctuating activity with fewer correctly solved

segments and no convergence to stable solution.

3.7. SUDOKU SOLVER 75

of self-excitation, wP of the Poisson background sources and winh the inhibition

weights implementing the rules. Figure 3.28 shows the result of a sweep over wP

and winh while keeping wex constant as well as sweep over wex and winh while

keeping wP constant. To quantify the success of the solver network the ratio of

correctly solved time segments versus wrongly solved ones is chosen.

First, sweep with constant wex is discussed. For low weights in either case

the network is not able to correctly solve any Sudoku. This is reasonable as for

low inhibition the Sudoku rules stop applying and for low background noise the

network shows no activity. Similarly, in case winh dominates the network is too

strongly inhibited resulting in too low activity or in case of strong wP activity

becomes too random.

When considering the sweep with constant wP, a similar behavior can be

observed for too low inhibitory weights Increasing self-excitation weights impairs

result exploration and thus decreased classi�cation rate. Interestingly small

self-excitation weights are already su�cient if not even optimal for network

performance. Even for no self excitation, i.e. wex = 0, most Sudoku puzzles

are still solved correctly. This suggests that for the chosen neuron dynamics a

high enough inhibition and Poisson background activity is su�cient for quasi

winner-take-all behaviour . General classi�cation performance distribution is

comparable to results in Ostrau et al. 2019, Figure 3 obtained for BSS-1.

One relevant metric for problem solvers is how fast they can ascertain a

correct solution. To this end the time to �rst solution for all 36 Sudokus with 10

iterations each is plotted in �g. 3.29. The segmentation into 100 µs determines the

lower bound to �rst solution, with 18% of Sudokus being solved in that time. In

over 55 % of cases a correct solution is found within 200 µs. All presented Sudokus

are correctly solved within the 4 ms run time. Time to �rst solution results are in

the same order of magnitude as for BSS-1 conducted in Ostrau et al. 2019, Table 1.

3.7.4 Run Time Performance
Next, the run time analysis of the Sudoku solver implemented via pyNN.brainscales
is shortly discussed. Table 3.2 presents the run time consumption of the di�erent

execution steps. For each Sudoku puzzle one hardware run is executed with

subsequent analysis. PyNN setup and network description as well as route and

construction of the signal-�ow graph are only done once. This is made possible

by de�ning a fully connected projection between clue stimuli and all neurons and

initialize all of its weights to 0. To then pin neurons to the respective clues, the

corresponding weights are set to 63 and the remaining again back to 0.

Hardware execution dominates as in the current implementation all neuron

parameters are updated and not just the weights (cf. section 3.6.3). This settling

time for analog parameters alone takes about 100 ms. For 36 iteration this adds

76 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

5 10 15 20 25 30 35 40 45 50 55 60
inhibitory weight

5
10
15
20
25
30
35
40
45
50
55
60

Po
iss

on
 w

ei
gh

t

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 c
or

re
ct

 se
gm

en
ts

5 10 15 20 25 30 35 40 45 50 55 60
inhibitory weight

5
10
15
20
25
30
35
40
45
50
55
60

se
lf_

ex
 w

ei
gh

t

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 c
or

re
ct

 se
gm

en
ts

Figure 3.28: Parameter sweep over interconnecting weights of the Sudoku network.

Top: Poisson background noise weight wP over inhibitory connection weights

winh with constant self-excitation connection wex = 5. Bottom: wex over winh with

constant wP = 45 Weight values are unit-less hardware values in the range of

[0 − 63]. Element values are ratio of correctly vs wrongly solved time segments

averaged over all 36 minimal Sudokus and 5 iterations.

3.7. SUDOKU SOLVER 77

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
runtime [ms]

0.0

0.1

0.2

0.3

0.4
co

un
t

Figure 3.29: Histogram of the time to �rst correct solution. Time is de�ned by

end of �rst time segment, i.e., best case 100 µs. In over 55 % of cases the correct

solution is found within 200 µs. The bin resolution corresponds to the segment

size of 100 µs. Each of the 36 minimal Sudokus was presented 10 times. All runs

resulted in successful solution for at least one valid segment. Weight values:

wex = 5, wP = 50, winh = 42

up to 3.6 s of the 5.75 s spent in hardware execution.

Execution Steps Run Time [s]

PyNN setup 0.77

Route and abstract graph 0.37

Hardware execution 5.75

Analysis 2.97

Total 9.86

Table 3.2: Run time of experiment steps for solving all 36 minimal Sudokus.

3.7.5 Outlook

The obtained results for the 4×4 Sudoku solver are promising but still several

aspects can be improved.

First of all, a 100% classi�cation rate is not always reached with small devia-

tions in weight or background activity. A more thorough exploration regarding

impact of di�erent parameters on classi�cation rate is therefore needed. Especially

the robustness against deviations of background noise or hardware parameter

variations is of interest. For example simply permutation of the number of a

minimal sudoku could lead to a di�erent result.

Furthermore, a convergence of the network to a stable solution would be

desirable. Possible approaches to this would be a tempering mechanism, e.g., of

78 CHAPTER 3. NEUROMORPHIC SOFTWARE ARCHITECTURE

the Poisson background stimulus [Korcsak-Gorzo et al. 2021]. Solution space ex-

ploration could be increased by a regulation on high neuron activity, for example,

Short Term Depression (STD) [Leng et al. 2018].

One major point that could be addressed is the implementation of the solver

itself. In its current form it is speci�cally crafted towards solving Sudoku of size

4×4. A more �exible approach allowing arbitrary Sudokus, or better yet a general

constraint satisfaction problem solving framework, would be desirable.

Overall run time could also be signi�cantly improved. For example multiple

Sudoku could be solved during one hardware run by batching the presented clues

as outlined in outlook of section 3.5.1.

One issue that needs to be addresses before the setup can be transformed

into a real solver is the nature of concrete execution times. Ideally one wants to

exploit the short time to solutions however that time is not known beforehand.

One possible approach would be to utilize the on-chip PPU to check for correct

solution during run time. The results can than be stored and new weights for the

next problem can be loaded.

Nevertheless, the primary goal of this experiment was reached. Namely,

providing a functional and comprehensible application for the advanced lab course

and demonstration of the capabilities of the developed software architecture.

79

Chapter 4

Neuromorphic Platform
Operation

The previous chapter demonstrated how utilization of the BSS-2 neuromorphic

hardware systems was facilitated by an extensive software framework. Before

that, sections 2.2.1 and 2.2.2 gave an introductory overview of HPC platforms

in general and neuromorphic computing platforms in particular. This chapter

will now present the necessary measures taken to allow both BSS-1 and BSS-2

hardware systems to operated as such platforms. In particular the di�erences in

operation that arise from the characteristics of the custom hardware are addressed.

First, section 4.1 describes how multi-user access to the heterogeneous hard-

ware setups is managed by a customized resource scheduler. This includes for

example isolation of hardware resource access to individual jobs. Additional

requirements of the hardware like managing interdependencies to neighboring

chips are also covered.

Secondly, the essential monitoring infrastructure for stable and reproducible

operation is explained in section 4.2. It covers the di�erent types of data generated

by the systems and how they are aggregated and visualized.

Most features explained in this chapter where primarily developed in the

context of BSS-1 operation. Thus, the main focus in most sections lies on BSS-1

systems (see section 2.2.3).

4.1 Resource Management

The amount of available compute devices, be it conventional or neuromorphic, are

typically limited due to cost and other constraints. Thus, if multiple users want

to utilize such devices some mechanism needs to be in place that distributes these

resources. Providing shared access of limited compute resources is a common

80 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

problem in HPC which is solved by resource schedulers. In a typical work�ow

users prepare there compute tasks, e.g. simulations, on so called front-end nodes.

From these they submit long-running experiments to a multitude of compute

nodes where they are executed. Most conventional HPC cluster have rather

homogeneous hardware, typically there are at most a few dedicated nodes types

like GPU nodes. However, this is not the case for analog neuromorphic hardware.

Neuromorphic setups vary from each other due to the inherent �xed pattern

noise, described in section 2.2.3. The also described calibration e�orts try to

compensate these variations to a certain degree but cannot obscure them entirely.

Consequently, the typical work�ow for experimenters is to pick a hardware

instance and stick to it. Researchers must therefore be able to specify a particular

hardware setup for their experiment jobs.

In early stages of hardware setup development and commissioning, there are

typically more setups than developers. Even then, there are several bene�ts in

having resource management in place from the get-go. One advantage, especially

true during the recent pandemic, is the constant availability through remote access.

Another example are researchers that particularly investigate the aforementioned

variations need access to multiple setups. At the latest when providing access to

the systems for external researchers, it is inevitable to have robust shared access

in place.

A short overview of the section structure is given. First, the state regarding

resource management prior to this thesis is described in section 4.1.1. The sub-

sequent sections will then present the e�orts carried out to enhance usability,

convenience and correctness. Section 4.1.2 gives a quick overview of the con�gu-

ration of the utilized Slurm instance, in particular focusing on requirements of

the research work�ow on the neuromorphic systems. Then, in section 4.1.3 a per-

formance baseline is de�ned which subsequently described features are compared

against. The �rst described new feature is then isolation of hardware resources

to individual jobs, thus ensuring no interference between experiments. This is

facilitated by the subsequently explained native support for request of custom

hardware setups to the scheduler tools via implementation of a Slurm plugin.

Employing said plugin, an idiosyncrasy of the BSS-1 wafer systems is managed

by an automated initialization feature, presented in section 4.1.6. Furthermore,

the utilization of the hardware system is analysed in section 4.1.7. The section

is then concluded by description of a micro scheduler that drastically increases

hardware utilization.

4.1.1 Prelude
The widespread resource scheduler Slurm was chosen for BSS to manage access

to conventional as well as custom-developed hardware. Key features are its fault

4.1. RESOURCE MANAGEMENT 81

tolerance, heterogeneous resource support, high con�gurability and customiz-

ability.

In sections 2.2.3 and 2.2.4 the BSS-1 and BSS-2 hardware setups are explained

in detail. However, a short introduction with most relevant information for this

chapter is given.

The BSS-1 neuromorphic system facilitates wafer-scale integration to utilize a

large interconnected mesh of 384 chips. These chips are in turn grouped in blocks

of 8 called reticles. Each reticle is connected to an FPGA which handles o�-chip

communication via 1
Gbit/s Ethernet. Furthermore, 12 ADCs boards are utilized

for analog readout. The synchronization of the analog readout with experiment is

controlled by 12 trigger groups. In the following the terms reticle and FPGA will

be used frequently and somewhat interchangeably as they represent the same

shared resource.

The BSS-2 single chip setups provide access for up to two independent neuro-

morphic chips. Each one is again connected to a communication FPGA.

Figure 4.1 illustrates these custom neuromorphic systems and how they are

incorporated into the conventional compute cluster. The following explains how

access to the custom systems are represented in Slurm. As seen in �g. 4.1 there

are two access paths for an experiment setup. Either it is physically attached to a

single node via USB or reachable via Ethernet from multiple nodes. Resources

connected via USB can natively be represented in Slurm as gres1
since they are

only reachable from one speci�c node. For resources not exclusively attached to

one node there is no immediately corresponding concept in Slurm. Therefore,

Slurms software licenses framework
2

is misappropriated (to some degree). Due

to the multitude of connotations the term license already carries it is hereinafter

called GCR. GCRs operate similar to semaphores, a job can require a certain

amount of globally de�ned GCRs and execution will be deferred until all GCRs

can be allocated. Each license corresponds to a string-like constant and an amount,

which is set to one as they represent unique physical entities. For each Ethernet

connection a unique license with count one is de�ned, e.g., for the 3rd FPGA of

BSS-1-Wafer 20 the license W20F3 is created. An experimenter would than specify

which hardware instances to allocated via --licenses Slurm argument.

All measurements are performed on HBPHost nodes if not explicitly state

otherwise, see appendix B.2.

Other Contributions The initial integration of the Slurm infrastructure was

established by E. Müller who is also a common contributor to Resource Manage-

ment. The development of the neighbor initialization feature (cf. section 4.1.6)

1
https://slurm.schedmd.com/gres.html 2021-07-23

2
https://slurm.schedmd.com/licenses.html 2021-07-23

82 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

USB

SwitchSwitch

BSS-2 Single-
Chip Setups

FPGAFPGA
1-2x

Compute Nodes Servers

BSS-1 Wafer Modules

FPGAFPGAFPGA
48x

ADCADCADC
12x

TriggerTriggerTrigger
12x

in
te

rd
e
p
e
n
d
e
n
t

10GbE

Switch

1GbE48x1GbE

Switch

Switch

40GbE

BSS-2
Control Node

(incl. slurm control)

Figure 4.1: Overview schematic of the cluster setup incorporating the BSS-1

and BSS-2 hardware platforms. On the top both systems are shown with their

respective managed resources and connections to the conventional compute

nodes. Each BSS-1 wafer module is connected through its 48 FPGAs via 1 GbE.

Each of those FPGAs as well as ADCs and corresponding triggers to start analog

readout are non-shareable resources and are therefore tracked via GCRs. The

FPGAs of BSS-2 prototype setups are tracked as GCRs the same way, yet their

USB connections to a speci�c control node are tracked via gres. All experiment

setups are connected via Ethernet over a mixed
10/40 GbE backbone to compute

nodes and servers, e.g., front-end and Slurm control node.

4.1. RESOURCE MANAGEMENT 83

was performed in close collaboration with P. Häussermann during his bachelor

thesis [Häussermann 2018] who also refactored the resource isolation capabil-

ities (cf. section 4.1.4), thereby increasing their performance. Section 4.1.8, the

experiment micro scheduler, was predominantly developed by O. Breitwieser in

his PhD thesis [Breitwieser 2021]. Furthermore, he contributed to the general

cluster operation.

4.1.2 Resource Scheduler Con�guration

The Slurm-scheduler provides a plethora of con�gurations options from cluster

composition to scheduling schemes and parameters. With this Slurm can be

adapted to speci�c requirements of various use cases. The following presents an

overview of how the scheduler con�guration is set up to the needs for development

and operation of the neuromorphic hardware platforms. First, general distribution

of compute tasks is discussed followed by speci�c optimization of scheduling

latency.

Compute nodes shown in �g. 4.1 are not only utilized explicitly for neuro-

morphic experiments but also for general compute tasks like compilation and

simulations. Therefore, utilization needs to be balanced with higher priority to

experiment execution. Slurm partitions are set up for the various tasks and chip

generations. With this di�erent features can be utilized to balance access accord-

ing to task relevance. For example jobs scheduled into a hardware experiment

partition are assigned a much higher priority than jobs in the compile partition,

resulting in hardware jobs being able to overtake queued compile jobs. Further-

more, some nodes are exclusively assigned to hardware experiment partitions to

always ensure minimal availability.

During development or experiment script prototyping researchers require a

short response time for experiments as to not break their interactive work �ow.

Afterwards, experiments are scheduled in a batch fashion where the relevant met-

ric is overall throughput. Therefore, a balance between high throughput and fast

scheduling needs to be found. Due to Slurm’s prevalence there are several studies

investigating its overall performance and the impact of di�erent con�gurations

parameters [Simakov et al. 2018; Zhou et al. 2013]. Regarding high throughput

Slurms documentation also provides suggestions for various parameters
3
. Based

on this a suitable con�guration of scheduling plugins and parameters was de-

termined. The resulting impact is investigated in section 4.1.3. Furthermore, a

node sharing feature
4

is used to increase utilization of the conventional compute

nodes as well as job response time [Minami et al. 2021]. In default con�guration

3
https://slurm.schedmd.com/high_throughput.html 2021-07-23

4
https://slurm.schedmd.com/cons_res_share.html 2021-07-23

84 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

only one job can be executed on one node. This would be very prohibitive for

operation as amount of neuromorphic setups exceeds the amount of compute

nodes. Especially in case individual chips on the wafer scales systems are to be

utilized by individual jobs.

4.1.3 Baseline Performance
To verify that the developed features covered in the subsequent sections do not

introduce too large of an overhead, a baseline to compare against is de�ned. On

the one hand base overhead that resource scheduler itself introduces needs to be

determined and on the other hand run time of typical experiments for BSS-1 and

BSS-2.

Resource Scheduler Overhead

Regarding resource scheduler overhead there are two relevant metrics, individual

jobs run time and overall job throughput. All measurements are conducted with

a separate testing scheduler instance using the same con�guration as production

with disabled custom plugin and pro-/epilog scripts, see section 4.1.4 and sec-

tion 4.1.5. Measurements are executed under a best case scenario, i.e., no other

users where present and therefore no running jobs and minimal load.

Individual job run time overhead is determined by measuring wall-clock

time of 10
5

jobs serially executed, using srun5
. Repetitions over 5 iterations

and averaging results in 106 ± 1 ms per job. However, this holds only true if

scheduling is trivial meaning no pending jobs need to be overtaken. A pending

job is waiting for execution as it cannot be scheduled due to some constraint for

example blocked GCR. Repeating the same measurement but with pending jobs

in queue results in 2723 ± 5 ms. Therefore, scheduling introduces a signi�cant

overhead for interactive usage but is imperative for platform operation.

Next overall job throughput is determined in batch operation, i.e., using

sbatch6
. To investigate the e�ect of scheduling overhead the job rate is measured

dependent on number of submitted jobs resulting in �g. 4.2. An increasing

number of no-op jobs allocating the same GCR is submitted where wall-clock

time measurement is started on spawn of the �rst job and stopped once the last job

�nishes. The measurement is conducted with and without pending jobs in queue

to be overtaken and each data point averaged over 10 repetitions. As expected,

scheduling overhead diminishes the job rate for low number of submitted jobs

and pending jobs increase the scheduling overhead leading to slower rise. In

both cases jobs a plateau is reached at a rate of around 14 Hz meaning individual

5
https://slurm.schedmd.com/srun.html 2021-07-23

6
https://slurm.schedmd.com/sbatch.html 2021-07-23

4.1. RESOURCE MANAGEMENT 85

job overhead is about 70 ms. Larger queues however lead to high load on the

scheduling controller resulting again in lower rates.

101 102 103 104

Number of submitted jobs

2

4

6

8

10

12

14

Jo
b
 r

a
te

 [
H

z]

empty

queued

Figure 4.2: Resource scheduler job throughput. Wall-clock time is measured for

an increasing number of submitted no-op jobs allocating same resource. queued
is measured with pending jobs to be overtaken by scheduling, empty no pending

jobs to be overtaken. Data points show mean and standard deviation over 10

repetitions.

Experiment Run Time Baseline

To provide an estimate of experiment run time baseline software overhead and

typical minimal experiments are investigated. Software stacks of the BSS-1 and

BSS-2 platforms are examined separately. Due to physical locality to the respective

setups all BSS-1 related measurements are performed on HBPHost machines and

on RyzenHost for BSS-2 respectively, see appendix B.2 for speci�cations.

The intended experiment for the BSS platforms consists of a python script

executed by a user, see section 3.1. Therefore, as a bare minimum the overhead

of importing the relevant python libraries is benchmarked by minimal python

scripts (cf. appendices B.1.1 and B.1.2). An average over 100 iterations yields

1.37 ± 0.04 s and 1.80 ± 0.07 s for BSS-1 and BSS-2 respectively.

Next, run times of minimal experiments are estimated. As example exper-

iment for BSS-1 the nmpm1_single_neuron.py demo script is taken from the

BSS-2 guidebook web-page [HBP 2021]. For the BSS-2 systems the single_neu-
ron_demo.py from the pynn.brainscales github repository[Demo 2021] is taken

as minimal example. Both scripts are chosen to provide a similar overview of

the feature-sets of the respective PyNN back-end implementations. Run time

86 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

averaged over 100 executions results in 18.4 ± 0.8 s and 5.0 ± 0.3 s for BSS-1 and

BSS-2 respectively, including full overhead of python imports.

Impact of Overhead

Regarding interactive work�ow resource scheduler overhead and run time of

small experiments are in the same order of magnitude, i.e., seconds. The relative

large overhead introduced when needing to overtake jobs is therefore acceptable.

Regarding iterative work�ow scheduling frequencies of over 10 Hz are promis-

ing to take full advantage of the high acceleration factor of the neuromorphic

hardware. However, bare minimum overhead due to python importing makes such

an approach unviable. Therefore, typically iterative experiments are performed

by allocating longer running jobs and iterate within the job body. Section 4.1.8

will present a solution for higher hardware utilization.

4.1.4 Resource Isolation

Solely relying on experimenters specifying a correct set of GCR for their experi-

ments is insu�cient as people simply make mistakes or, even worse, may have

malicious intent. A common case would be a user changing used hardware in

their script but forgetting to adapt the GCR. When they now run a new job it

could interfere with already running jobs utilizing the same setup. It is therefore

necessary to allow access only to experiment setups for which GCRs are allocated.

This restriction is realized by setting up �rewall rules via the iptables7
tool

utilizing Slurm’s pro- and epilog framework
8
. This framework allows execution

of arbitrary programs on a node immediately prior to and after execution of a

job. bash9
is used for pro- and epilog scripts as it is readily available on node

machines and relatively easy to maintain. All relevant information is extracted via

scrontrol command for example requested hardware GCRs names.Per default for

each neuromorphic device, be it BSS-1 wafer or BSS-2 single-chip setups, access

via User Datagram Protocol (UDP), TCP as well as Internet Control Message

Protocol (ICMP) are blocked for the relevant subnet, e.g., for wafer 20 this would

be 192.168.20.0/24. Once one or more hardware resources are allocated by

the user an exception rule is added in the pro log script providing access to the

respective setups. Once the job has �nished the created exception rule is deleted

in the epilog script. With this access to a neuromorphic resource is securely

con�ned within a job. Additionally, task-prolog and task-epilog are used to add

7
https://linux.die.net/man/8/iptables 2021-07-23

8
https://slurm.schedmd.com/prolog_epilog.html 2021-07-23

9
https://www.gnu.org/software/bash/ 2021-07-23

4.1. RESOURCE MANAGEMENT 87

further information to the user environment as they are, contrary to pro- and

epilog, executed in the user environment.

Performance

To determine the overhead introduced by resource isolation run time of prolog,

task-prolog, task-epilog and epilog script where measured. Figure 4.3 shows the

run time of the individual scripts, their sum and overall run time with increasing

number of requested resources. For each script the time at start and end point

were logged with the di�erence determining their run time. The overall run time

is given by start of prolog and end of epilog script. For each amount of GCRs

100 jobs executing a no-op where submitted and averaged. The chosen numbers

of GCRs correspond to an empty run, increasingly allocating all FPGAs of one

wafer module and then two and three whole wafer modules. Linear growth is

expected as all operations for isolation are executed serially in loops without

parallelization as many tools, e.g., iptables are not reentrant. All scripts show the

expected linear growth and linear regression for the sum of all scripts yields a

slope of 0.0135 s with intercept at 0.882 s.

The baseline overhead of ≈0.882 s for empty run is dominated by acquiring

information of the run job via the scontrol command, which in current implemen-

tation is called in each individual script. This is done as prolog and epolig scripts

do not share the same environment. Alternatives for example �le based infor-

mation sharing would conceptually be feasible but very involved and introduce

further technical debt.

The prolog script has the largest contribution as the most costly tasks, e.g.,

setting up the �rewall exception rules is performed there. Each additional GCR

increases run time by ≈13.5 ms.

Next, acquired results are compared with the baseline de�ned in section 4.1.3.

In general, an overhead of about a second was deemed acceptable as it should

not signi�cantly interfere with interactive work �ow of researchers. For BSS-1

prototyping experiments with run times ranging from 20 s to several minutes

such an overhead is negligible. In case of BSS-2 prototyping experiments ranging

in the order few seconds overhead is more signi�cant but still acceptable.

4.1.5 Native Resource Request API

The wafer-scale BSS-1-system has various interdependent resources which may

or may not be needed in an experiment, see section 4.1.1. An example of such

resources are the 12 external ADCs used for analog readout. Each HICANN-chip

on a wafer module can be read out by two of those ADCs but each ADC can only

read out one signal from a chip at a time. As not every experiment needs analog

88 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

0 20 40 60 80 100 120 140
0

1

2

3
Ru

nt
im

e
[s

]
linear fit sum
prolog
task-prolog
task-epilog
epilog
sum
full

0 10 20 30 40
Number of Resources

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

[s
]

Figure 4.3: Resource Isolation run time overhead. Run time for prolog, task-prolog,

task-epilog, epilog, their sum and total run time for an increasing numbers of

allocated GCRs. Each point is averaged over 100 runs and standard deviation is

taken as error. 1-48 GCRs correspond to individual FPGAs of one wafer module

and 96 and 144 GCRs for two and three whole wafer modules respectively. Top

shows full range, bottom subset for better resolution. Linear �t result: intercept

0.882 s, slope 0.0135 s, R2 = 0.99.

readout, e.g., only spike trains are relevant, it is desired to explicitly state the need

for such an ADC. They are tracked via their unique serial number as GCRs, e.g.,

B219566, similar to the communication-FPGAs. As the a�liation between chip

and corresponding ADC is not described by a simple rule, a lookup is necessary,

see �g. 4.4.

As such a lookup is tedious and prone to errors an automation is needed.

To this end a Slurm plugin was developed. Its goal is to extend the Slurm job

submit tools to provide human-writable command line arguments for the various

resources. Slurm provides an extensive framework
10

for plugins that can be

executed at various steps within a compute job’s lifetime. Speci�cally a job

10
https://slurm.schedmd.com/plugins.html 2021-07-23

4.1. RESOURCE MANAGEMENT 89

Figure 4.4: Overview of the di�erent components and numbering schemes on

a wafer module. A square corresponds to a reticle and its corresponding com-

munication FPGA denoted by the two white highlighted numbers. Each reticle

consisting of 8 HICANNs. Analog readout groups are color coded. Not marked

are the trigger groups.

90 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

submit plugin
11

was added. It is injected after a job was submitted but before it

is scheduled, this allows freely modifying all parameters of a job, e.g., requested

GCRs. Job submit plugins however do not by themselves support adding new

command line arguments for the job-spawning tools srun
12

and sbatch
13

. For

this purpose, a plain spank plugin
14

was added in conjunction. It adds additional

command line arguments which are then parsed and acted upon in the job submit

plugin. Figure 4.5 outlines the control �ow of a job including the plugin and

is interaction with the prolog and epilog scripts. Most features in subsequent

sections built upon these plugins.

Job request

Job runtime

User request:
- Custom resource
 arguments

Submit plugin:
- Parse input
- Resolve resource
 interdependencies
- Modify job description
 and environment

Prolog:
- Extract job
 information
- Add firewall
 exception rule

Job execution:
- Run experiment
 script

Epilog:
- Delete firewall
 exception rule

Figure 4.5: Schematic of job control �ow including plugin prolog and epilog scripts

Di�erent granularities of resource allocation are supported. Users can allocate

single chips, reticles, FPGAs and/or whole wafer modules. In case multiple single

chips are requested it is looked up to which FPGAs they correspond and then

those FPGA GCRs are requested. For individual components, e.g., chips or reticles,

one can specify if and which analog readout should also be automatically allocated.

When allocating a whole wafer module all corresponding resources, i.e., GCRs,

are requested. Some exemplary parameters can be seen in listing 4.1. It also shows

exemplarily how long-winded a call directly requesting hardware GCRs utilizing

the native Slurm API would be.

Hardware executions reaching over more than one reticle need to be synchro-

nise. To this end all FPGAs share a signal line which is utilized by one speci�c

FPGA, the master-FPGA, at experiment start. If multiple reticles or FPGAs are

11
https://slurm.schedmd.com/job_submit_plugins.html 2021-07-23

12
https://slurm.schedmd.com/srun.html 2021-07-23

13
https://slurm.schedmd.com/sbatch.html 2021-07-23

14
https://slurm.schedmd.com/spank.html 2021-07-23

4.1. RESOURCE MANAGEMENT 91

Listing 4.1: Example resource scheduler calls to allocate wafer resources

allocate the full module
srun --wafer 33 experiment_example.py
allocate reticle 4,5 and 6 (with analog readout and trigger by

default)↪→

srun --wafer 33 --reticle 4,5,6 experiment_example.py
equivalent call if manual allocation was necessary
srun --licenses

W33F10,W33F12,W33F14,W33F15,B291728,B291712,W33T5,W33T6
experiment_example.py

↪→

↪→

allocate only HICANN 0 (without analog readout and trigger)
srun --wafer 33 --hicann-without-aout 0 experiment_example.py

requested this master-FPGA is also automatically requested additionally. This

automated allocation can be disabled via an optional argument.

The plugin utilizes the coordinate system, see section 3.3.1, for parameter

translations and range checks as well as the hardware database, see section 3.3.4.

As the plugin is written in C, a full C-wrapper was written for the hardware

database. It also includes wrappings of needed coordinates and is located in the

same repository.

To provide various information regarding hardware allocations during a run-

ning job the user environment is extended. Some of this information, e.g., allocated

GCRs, can be extracted via the Slurm native tool scontrol, but for example the

information about which individual HICANNs are requested would be lost. Other

examples are all allocated FPGA-IP or the database entry in its YAML source

format.

One of the limitations of the current implementation is the explicit design

of the query API described in listing 4.1. It was designed with a concrete wafer

utilization in mind. This could be improved by unifying the job submit plugin API

and hardware database APIs. Furthermore, a switch from C to C++ as programming

language for the plugin would be desirable. This is possible by compiling the

plugin with a from Slurm separated build �ow with C linkage. An advantage

would be easier coupling with the main software stack and therefore reduced

technical debt.

Performance

Overhead of the custom Slurm plugin is directly measured in code. Allocating

a full wafer results in a run time of 68 ± 5 ms averaged over 100 iterations. Yet,

total run time of the submit plugin is dominated by loading the hardware database

92 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

which takes 65 ± 5 ms. Hence, plugin run time is nearly independent of number

of requested GCRs. If no hardware resources are requested all functionality is

skipped resulting in run time of 0.14 ± 0.13 ms

Run time could be reduced by caching the loaded hardware database between

calls of the plugin. This could be implemented by storing and comparing modi�-

cation date of the database �le. As overall overhead is dominated by the prolog

and epilog scripts, see section 4.1.4 this improvement was not yet implemented.

4.1.6 Automated Neighbor Initialization
A HICANN-chip on the wafer system is not fully independent of its directly

neighboring chips. Digital inter-chip communication buses, also called L1 (see

section 2.2.3), are directly connected to repeaters of their neighboring chips. If L1

is to be used during an experiment then these repeaters need to be in an initialized

state. In general a chip is assumed to be uninitialized as checking if it is in a

fully initialized state would take the same time as just initializing it. Hereinafter

an initialized chip will be called "clean" and a chip in unde�ned state "dirty".

This interdependency to neighboring chips was discovered late in commissioning

(roughly mid of 2019) and could not be remedied in hardware. Again taking o�

the burden from experimenters to keep track of these dependencies an automated

solution is needed. The naive approach is to additionally allocate all neighboring

HICANN and initialize them, which has some downsides. As �g. 4.6 shows, every

HICANN has at least one and at most two neighboring reticles. Those neighboring

reticles would be blocked during experiment run time for potential other jobs

even though they are only needed to be initialized in the beginning. However, a

user cannot release resources during job run time. Furthermore, chip initialization

takes about 18 s (�g. 4.8). Thus, it would be ideal to skip initialization if a prior

run already performed it.

The resource scheduler is prime candidate to handle both these issues. From

within scheduler control resources can be modi�ed during run time. Furthermore,

as the scheduler handles all hardware access it can initialize the hardware and

track its state.

To this end the previously introduced Slurm plugin, see. section 4.1.5, as well

as prolog script were enhanced. The goal is to automatically allocate and initialize

neighboring reticles if not already clean from a previous run. Furthermore, the

GCRs of neighboring chips should only be held as long as necessary. An �ow

chart of the implementation is shown in �g. 4.7.

First, the plugin determines all reticles with neighboring HICANN chips of

the requested resources. Lists of all user-requested GCRs and neighboring GCRs

is stored. The collection of all GCRs is then used for scheduling as all resources

need to be available in the beginning of the job. After the job is allocated to a

4.1. RESOURCE MANAGEMENT 93

neighbor

allocated

reticle

Figure 4.6: Illustration of exemplary HICANN chip resource allocations and

corresponding neighbors. Shown are two exemplary resource request. Right:

a single chip. Left: an arbitrary allocation larger than a reticle. For the single

allocation two neighboring reticles would need to be requested and initialized

while for the multi-chip four reticles are required.

node all further steps are performed via the scheduler prolog script. All relevant

information is extracted from the job description. The state including a time

stamp for all GCRs is tracked in the same SQL database already utilized by Slurm.

A GCR is considered dirty either if its state is dirty or the time stamp is older than

24h hours. This timeout of 24 hours was empirically chosen to mitigate possible

variations over time, e.g., voltage drifts. First, all user-requested resources are

marked as dirty since, after user access, the state of hardware must be considered

unde�ned. Now all neighboring GCRs are queried and tagged for initialization

if they are dirty. Resource isolation �rewall exceptions, see section 4.1.4, are

temporally set via an additional �rewall rule for neighboring resources during

prolog execution. A pre-deployed version of the BSS-1-software-stack is then

used to initialize the neighboring reticles. SQL entries of the freshly initialized

reticles are updated to a clean state with the current date and time. Finally, the

neighbor GCRs are release from the job. Additionally, there are two optional

command line arguments to disable or force initialization regardless of database

state execute.

94 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

Submit experiment job

Initialize dirty
resources

NO (default)

SKIP

FORCE

USER

Initialize all
resources

Execute experiment

job submit
Plugin Determine neighbor

resources

Set neighbor resources
and/or requested mode

Extract job
information

ResourcesNone

INIT binary INIT binary

Query for dirty
neigbhor resources

Mark initialized
resources as clean
including time stamp

prolog

Mark requested
resources dirty

Did user request
skip or force of init?

SKIP

FORCE

DEFAULT

Figure 4.7: Flow chart of automated neighbor initialization feature for BSS-1 wafer

modules. User-requests resources for experiment run and optionally if neighbor

initialization should be forced or skipped. Job submit plugin determines neighbors

accordingly an modi�es job information to provide information to prolog script.

Prolog script then executes neighbor initialization if necessary followed by the

experiment execution.

4.1. RESOURCE MANAGEMENT 95

Performance

Now the impact of the introduced automated neighbor initialization feature is

investigated. First of all overhead of the reticle initialization itself is determined.

Figure 4.8 shows run time of the reticle initialization script for increasing number

of reticles in parallel. The small increase in run time is expected as the initialization

of each reticles is independent of the others it can be easily parallelized.

0 5 10 15 20 25 30 35 40 45
number of reticles

0

10

20

30

ru
nt

im
e

[s
]

Figure 4.8: Parallel reticle initialization script run time analysis for full wafer

module. Script is called for increasing number of reticles averaged over 10 iter-

ations each. Experiment conducted on wafer module 30 (D9NKP16G4) which

has 4 reticles with non-functioning high-speed links which are excluded (see

section 2.2.3).

Next overhead introduced through the neighbor initialization feature is ana-

lyzed where three cases are distinguished:

1. Neighbor initialization feature is skipped, but allocated resources still need

to be marked as dirty. De�nes base overhead even when feature is not

utilized for an individual job.

2. Feature is active and no neighbors need to be initialized. De�nes lower

bound.

3. Feature is active and all neighbors need to be initialized. De�nes upper

bound.

For the �rst case the same measurement protocol as for resource isolation

overhead (section 4.1.4, �g. 4.3) was used now with neighbor initialization features

active, resulting in �g. 4.9. Again, a linear increase with additional requested

GCRs is expected. Linear �t yields an overhead for an empty run of 0.850 s.

This agrees with results from resource isolation measurement, see �g. 4.3. An

increase of 44.7 ms per GCR resulting in an overhead of over 2 seconds for 48

96 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12
Ru

nt
im

e
[s

]
linear fit sum
prolog
task-prolog
task-epilog
epilog
sum
full

0 10 20 30 40
Number of Resources

0

1

2

3

4

5

Ru
nt

im
e

[s
]

Figure 4.9: Neighbor initialization feature base run time overhead, i.e., case 1.

Same measurement protocol as �g. 4.3 including neighbor initialization feature

but initialization is skipped, i.e., only additional overhead is marking resources as

dirty in SQL database. Linear �t result: intercept 0.850 s, slope 0.0447 s,R2 = 0.98.

GCRs is unexpectedly high. From multiple requested GCR only one command is

constructed and sent to the SQL database. Therefore only a small linear increase

would be expected.

The SQL calls are measured explicitly to further investigate both long run

time and its high variances speci�cally, resulting in �g. 4.10. Again, run time

shows linear growth. However, in most cases the median is close to the minimal

run time. Thus, strong outliers lead to a widened standard deviation and skewed

mean run time. Potential reasons for strong outliers in SQL command execution

could be that the Slurm control node is running in a Virtual Machine (VM). VMs

can introduce additional jitter during process scheduling and I/O [Abeni et al.

2020]. Potential solutions could be switching to a real-time kernel or even a bare

metal installation. As most run times do not introduce a strong overhead, i.e., only

a few milliseconds for a single GCR, these solutions were not yet investigated.

Now case 2 and 3 of neighbor initialization are investigated. Figure 4.11 shows

4.1. RESOURCE MANAGEMENT 97

1 5 9 13 17 21 25 29 33 37 41 45

Number of Resources

0

1

2

3

4

5

R
u
n
ti

m
e
 [

s]

Figure 4.10: SQL query run time overhead analysis for same experiment setup as

�g. 4.9. Box plot of run time distribution of SQL calls for an increasing number of

dirty resources. Medians close to shortest run time and many outliers show that

mean and standard deviation are skewed.

run time of both cases, again measured via prolog and epilog scripts analog to

�g. 4.3. Only sum and total run time are shown as other scripts do not vary from

previous measurements. Additionally, the run time of the raw reticle initialization

script is plotted for comparison (data taken from �g. 4.8). As expected, for case 2

run time is in the same range as for case 1 (�g. 4.9) as there is marginal overhead

trough checking if neighbors are clean. For the 3rd case run time is dominated by

initialization of neighboring reticles, as can be seen by the raw reticle initialization

run time. In typical experiment use cases the actual requested hardware instances

do not change for an experimenter between most runs. Thus, full advantages of

case 2 can be taken.

Use Case: Calibration Routine

One of the main use cases where automated neighbor initialization is required

is the wafer calibration routine, developed in Kleider 2017. Historically, it was

designed for single-chip granularity. Calibration requires timed analog signal

readout which leads to resource interdependencies, i.e., the limited number of 12

ADC, on a wafer module. For each HICANN, a calibration job is submitted where

the resource scheduler handles these interdependencies. Run time of the devel-

oped automated neighbor initialization is compared with a naive implementation

where all neighboring resources are held for each calibration step. As shown in

98 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

4 8 12 16 20 24

Number of neighbors

0

5

10

15

20

25

30
R

u
n
ti

m
e
 [

s] sum init

full init

sum no init

full no init

raw init

Figure 4.11: Neighbor initialization run time overhead for case 2 and 3. Analogous

to �g. 4.3 sum and full run time of prolog/epilog scripts is plotted against increasing

number of neighboring reticles. Additionally, run time of raw reticle initialization

script is plotted.

�g. 4.6, individual HICANNs have one or two neighbors on di�erent reticles and

in case they are at the edge of a wafer can also have zero neighboring reticles. As

calibration for a single HICANN takes nearly 2 hours and the actually executed

job is not relevant to measure overhead, dummy jobs are submitted with same

resource constraints as for a real calibration. In case of automated initialization

the job body is a sleep of 300 s whereas for the naive approach a manual ini-

tialization precedes this sleep. 300 s are chosen so that the initialization itself is

not dominant and the overall run time is not unnecessarily long. The additional

manual initialization in case of naive dummy runs serves for better comparability

between both implementations, as the initialization routine has varying run time

depending on the connection quality of the speci�c chip instance.

Figure 4.12 shows the run time distribution of all individual jobs for 5 dummy

calibrations. As expected in case of automated initialization of a signi�cant

amount of jobs only last for the sleep duration plus few seconds scheduler over-

head as neighbors are already initialized. Jobs for naive implementation that also

only have 300 s run time correspond to HICANNs at the edge of a wafer which

have no neighboring chips and therefore need no initialization. Peaks at roughly

340 s and 360 s correspond to HICANNs with non-functioning high-speed links,

where communication-fallback is performed via the much slower JTAG protocol.

A wider spread and outliers of run times is possible as steps in the initialization

routine are retried if not successful immediately.

4.1. RESOURCE MANAGEMENT 99

300 320 340 360 380 400 420 440

Runtime [s]

100

101

102

103

C
o
u
n
t

auto

naive

Figure 4.12: Histogram of individual job run time for dummy calibrations with

naive and automated neighbor initialization. 384 jobs, one for each HICANN chip,

are spawned with same neighbor constraints as real calibration. Execution body

is a sleep of 300 s in both cases including a preceding initialization in naive case.

Preceding initialization severs better comparability so both cases execute the

initialization which has varying run time dependent on chip connection quality.

These variations lead to wider spread and outliers in run time.

To put these numbers into perspective, the theoretical minimum run time of

a full dummy calibration run is estimated. With ideal parallelism, no scheduling

overhead and no resource allocation overlap the minimally possible overall run

time tmin would be:

tmin =
nFPGA · nchip · tsleep

nADC

+ tinit =
48 · 8 · 300 s

12
+ 36 s = 9636 s

where nFPGA represents number of FPGAs, nchip number of chips, tsleep execution

of dummy body, nADC number of parallel analog readouts and tinit one full

wafer initialization in the beginning. One parallelized wafer initialization takes

36.1 ± 0.3 s, see �g. 4.8.

Table 4.1 shows the comparison of theoretical, automated and naive case

run times averaged over �ve executions. Comparing full wall-clock run time,

i.e., from start of �rst job to end of last job, and mean of single job run time

show a di�erence in relative overhead to theoretical minimal time. Assuming full

parallelism of single jobs an estimated wall-clock run time of 10 048 ± 480 s for

automated and 10 432 ± 416 s for naive implementation could be reached. This

results in an discrepancy of 551 ± 483 s and 1558 ± 439 s compared to theoretical

100 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

full wall-clock time [s] single run [s]

theoretical 9636 301

automated 10 599 ± 53 (11%) 314 ± 15 (5%)

naive 11 990 ± 140 (24%) 326 ± 13 (9%)

Table 4.1: Dummy calibration run time comparison between automated and naive

implementation, see �g. 4.12 for experiment setup. Full wall-clock time is de�ned

by start of �rst executed job and end of last �nished job. A single run corresponds

to mean run time of all individual jobs. Number in brackets are relative run time

overhead compared to theoretical run time. Results are averaged over �ve runs.

minimal wall-clock run time.

To investigate the discrepancy, �g. 4.13 shows pipelined execution of indi-

vidual dummy jobs for one arbitrarily chosen run. As resource sharing of the

analog readout is the main bottleneck jobs are grouped for one of the limiting

resources, the 12 trigger groups. One can see a higher utilization for automated

compared to naive implementation in the later half of runs. This congestion for

the naive implementation can be explained by the higher resource constraints

as the neighboring reticles are not relinquished after initialization. Assuming

wall-clock run time discrepancy for naive and automated case are caused by

congestion alone it should be linearly proportional to job run time. Therefore, an

overhead factor of roughly 1.7 and 4.8 calibration execution times is expected for

automated and naive case. Extrapolation to full calibration run time of 2 h this

would result in an overhead of 3.4 h and 9.6 h respectively compared to theoretical

run time of 64 h. Therefore, automated initialization saves about 6 h or 10% of

overall calibration run time for one wafer module.

In summary, automated neighbor initialization provides a convenient and

robust solution to ensure proper experiment behaviours. In cases where the

feature is not needed it only introduces a small overhead. Compared to a naive

implementation, which would execute neighbor initialization always, it saves

signi�cant time if the same resources are requested consecutively. For the fre-

quent use case of calibration it reduced run time overhead by roughly 6 h or 10%

compared to a naive implementation. Ultimately, the goal for future hardware

designs needs to be to avoid such interdependencies.

4.1.7 Scheduler Utilization Analysis
Slurm’s job accounting feature sacct15

provides a wealth of usage statistics. In the

following this feature is harnessed to estimate hardware utilization by analyzing

15
https://slurm.schedmd.com/sacct.html 2021-07-23

4.1. RESOURCE MANAGEMENT 101

0 2000 4000 6000 8000 10000 12000
Runtime [s]

W30T0
W30T1

W30T10
W30T11
W30T2
W30T3
W30T4
W30T5
W30T6
W30T7
W30T8
W30T9

Sh
ar

ed
 re

so
ur

ce

auto
naive

Figure 4.13: Run time of dummy calibration jobs, see �g. 4.12 for experiment setup.

Each rectangle corresponds to one of 384 jobs for each HICANN calibration. Jobs

are grouped by one of the constraining shared resources, the trigger for analog

readout. Dashed black line denotes minimal theoretical run time. The wall-clock

run time, i.e. start of �rst job to end of last job, in case of automated neighbor

initialization feature is 10 599 ± 53 s. In case of naive implementation wall-clock

run time is 11 990 ± 140 s. Congestion in later stages of naive implementation

due to more resource allocation of individual runs, i.e., neighboring reticles are

allocated for the whole run.

run time of jobs with allocated hardware resources. This also allows to further

investigate the possible run time impact of the aforementioned features as well.

As a reference, between 2016 and mid 2021 a total of 228 user accounts were

registered for neuromorphic cluster access. Please note that, for technical reasons,

all experiments conducted via the Human Brain Project (HBP) collaborative web

interface
16

are performed via one account.

BrainScaleS-1

Figure 4.14 shows run time histograms of BSS-1 related jobs before and after

introduction of the automated neighbor initialization feature. This separation

was done as the additional overhead of initialization counts towards the run

time statistics of a job. Overhead caused by resource isolation is present in both

datasets. Calibration-related jobs are separated to provide a better understanding

16
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/

2021-08-14

102 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

100 101 102 103 104 105

Runtime [s]

100

101

102

103

104

105

Co
un

t

Regular
Calib

(a) Before neighbor initialization feature (2017-01-17 until 2019-07-09).

Total run time: regular 222 151 hfpga; calibration 15 910 hfpga

100 101 102 103 104 105

Runtime [s]

100

101

102

103

104

105

Co
un

t

Regular
Calib

(b) After neighbor initialization feature (2019-07-09 until 2021-07-09)

Total run time: regular 72 487 hfpga; calibration 66 478 hfpga

Figure 4.14: Run time distribution of BSS-1 jobs before and after automated

neighbor initialization feature. Separation is done as overhead of the feature is

included in job run time. Calibration runs are separated to provide better insight

for regular hardware usage. Run time in for histogram is not converted to hfgpa

as the actual job wall-clock time is the relevant metric.

4.1. RESOURCE MANAGEMENT 103

of jobs executed for regular experiments. Additionally, the total accumulated

hardware allocation time is shown. Summing up all job run times is not a su�cient

metric to describe hardware allocation as jobs have a varying amount of hardware

resources allocated. Analog to core hour used in HPC environments the unit

FPGA hour, short hfpga, is de�ned and used hereinafter. The total number of

FPGA hours for a given job is calculated by multiplying the run time with the

number of FPGA resources allocated to that job.

First, run time of regular jobs is discussed. The general distribution is in�u-

enced by the typical work �ow described in section 4.1.3, i.e., short jobs dominate

due to testing and prototyping of experiments. Prior to the neighbor initialization

feature, most runs are in the 20-40 s range which is expected as chip con�guration

takes about 20 seconds. This shows that for most runs the resource isolation

overhead of O(1 s) is acceptable.

Comparing distributions of calibration jobs and regular jobs, a shift of distribu-

tion towards longer run times is visible. This can be explained as jobs submitted

in the calibration partition are less of a prototyping nature and more systematical,

e.g., parameter sweeps. Especially after introduction of the neighbor initialization

feature there are two distinct peaks visible at 2400 s (40 min) and 5400 s (90 min)

which correspond to the two separate calibration steps.

Comparing total run time of regular jobs between �g. 4.14a and �g. 4.14b

yields a decline of roughly 58% in utilization. Reason for this decline in regular

experiments is the transition to the newer BSS-2 systems. However, utilization

for calibration runs nearly doubled, which stems from two causes. First, resources

temporally allocated for automated neighbor initialization are tracked by job

accounting for the whole run time. On average, a HICANN has 1.23 neighboring

reticles, see �g. 4.4 and �g. 4.6. Assuming most calibration jobs after neighbor

feature where single-chip allocations yields an over utilization by a factor of

2.23. Second reason for higher utilization is the extended development of the

calibration framework conducted by Jose Montes and Hartmut Schmidt.

BrainScaleS-2

Figure 4.15 shows job run times for the BSS-2 HICANN-X single-chip systems

which are active since May 2019. Again, run time also includes resource isolation

overhead of roughly 900 ms(section 4.1.4) as nearly all jobs only allocate one chip.

General distribution with small run times dominating follows the same work

�ow principal as described for BSS-1. Most run times between 5-7 s expected

from baseline estimates described in section 4.1.3. Peaks at 3600 s (60 min) and

1.7 · 10
5

s (48 h) correspond to default and maximum allowed run time of jobs.

104 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

100 101 102 103 104 105

Runtime [s]

102

103

104

Co
un

t

Figure 4.15: Run time distribution of BSS-2 related jobs. Total run time 44 525 hfpga

from 2020-02-27 until 2021-07-09.

Hardware Utilization Estimate

Next the utilization of the BSS hardware setups is investigated. Of particularly

interest is the distribution over time of day as it gives insight on the work�ow of

researchers.

To this end, The corresponding run time portion of all hardware execution

jobs is matched to the hours over a week resulting in �g. 4.16. To put the resulting

aggregated run times into perspective, full theoretical utilization is estimated. The

number of available setups changes over time for example because new systems

are commissioned or due to maintenance. An analysis of hand written logs or

change history of the hardware database would be very involved. Therefore a

constant number of available hardware setups is assumed according to available

setups for July 2021. Overall available time is determined by date of �rst and last

executed job.

Several observations can be made that apply to both systems. The general

distribution agrees to typical working hours of researchers, i.e., peak activity in the

afternoon Monday till Friday with some activity on Saturday. Around midnight

smaller peaks in utilization can be observed which are caused by automated tests

running on hardware (see section 2.3).

One di�erence in utilization of the systems is the baseline utilization. BSS-1

wafer systems are sparsely used during the night wheres BSS-2 systems have a

high base utilization also through the night. This is most probably caused by

long running iterative experiments. Furthermore, overall utilization is higher

for single chip systems with rough average of 30% compared to the 6% for wafer

4.1. RESOURCE MANAGEMENT 105

Mon Tue Wed Thu Fri Sat Sun
Hour of Week

0.0

2.5

5.0

7.5

10.0

12.5

Ut
iliz

at
io

n
[%

]

(a) BSS-1 wafer. Full utilization estimated with 3 modules with 48 reticles each.

Usage statistics from 2017-01-17 until 2021-07-09

Mon Tue Wed Thu Fri Sat Sun
Hour of Week

0

10

20

30

40

Ut
iliz

at
io

n
[%

]

(b) BSS-2 single chip. Full utilization estimated with 10 setups. Usage statistics

from 2020-02-27 until 2021-07-09

Figure 4.16: Utilization of BSS hardware systems over the week. Gray vertical

lines correspond to midnight. Orange horizontal line represents average utiliza-

tion. Utilization percentage is estimated by assuming full availability of certain

amount of BSS-1 and BSS-2 setups. Peak around midnight correspond to jobs for

automated testing run on hardware.

106 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

modules. These numbers are rather low but not entirely unexpected as average

user count is still in the same order of magnitude as hardware setups.

The conducted estimates are only an upper bound for hardware utilization

as they neglect the software overhead during the hardware resource allocations.

Especially in iterative experiments that perform expensive analysis computations,

software overhead can be signi�cant. Section 4.1.8 presents an approach that

allows to drastically increases hardware utilization.

4.1.8 Micro Scheduler
In sections 4.1 and 4.1.3 it was argued why �xed pattern noise leads to researchers

working on speci�c hardware setups and why iterative experiments are executed

within single long-running Slurm scheduler jobs to mitigate overheads. Of course

such a work�ow comes with downsides. Most notably, hardware utilization is

signi�cantly diminished as experiment pre-/post-processing and analysis are

executed in the same job. Section 4.1.7 showed that current overall utilization is

still not at capacity, nevertheless this changes if more researchers request access to

the systems. Particularly if two researcher want to work on the same setup friction

is inevitable. To remedy this a micro scheduler framework, called quiggeldy, was

developed predominantly by Oliver Breitwieser in his PhD thesis [Breitwieser

2021]. Contribution of the author was during conceptualization and integration

into the PyNN back end (see section 3.5.1). Principle of this micro scheduler is

shortly presented for sake of completeness, for a detailed explanation refer to

Breitwieser 2021.

The issue of blockage by prolonged hardware allocation is tackled in two

steps. First, the actual hardware execution is automatically separated from the

remaining experiment. Secondly, these hardware execution segments are then

sent to and managed by a micro scheduler instance for each hardware setup. The

principle is explained by �g. 4.17 in more detail.

The main advantage of higher hardware setup utilization is evident, however

this approach brings also other upsides. Long running sweep experiments now

do not completely block a setup allowing other experiments to be interleaved.

This is especially helpful during the prototyping phase of experiment script

development. To this end, the experiment state can be tracked, to a certain

extend, and reapplied in case another experiment was interleaved. Furthermore,

the serialization between experiment script and scheduler instance facilitates

cross platform support. The scheduler instances only depend on the low-level

communication layer of the software stack (see section 3.2). This signi�cantly

reduces implementation e�ort for other computer architectures, for example ,

ARM. As the scheduler instances themselves are running in Slurm jobs bene�ts

from all features explained in previous sections are exploited.

4.1. RESOURCE MANAGEMENT 107

quiggeldy
(hardware setup)

Regular scheduling via SLURM:

time

Exp. 1

Exp. 2

Exp. 3

Experiment Setup

Hardware Run

Update/Analysis

Micro-Scheduling via quiggeldy:

Exp. 1

Exp. 2

Exp. 3

Hardware idle
despite work

time difference scheduling

Hardware idle
despite work

finish

finish

Figure 4.17: Principle of the quiggeldy experiment micro scheduler. The bo�om
right shows the 3 principle steps each experiment has, where experiment setup

and analysis are not running on the neuromorphic hardware. The top illustrates

the downsides of whole experiment execution in one Slurm job. Three sepa-

rate experiments utilizing the same hardware are executed sequentially, thereby

increasing overall run time and wasting hardware resources. The bo�om le�
demonstrates the advantages of separated hardware execution. The same three

experiments as before are executed however with the micro scheduler in place.

For each experiment the hardware execution is not performed by the experiment

script itself but serialized and sent to a scheduler instance corresponding to the

requested hardware. Once �nished, the instances then send the resulting data

back to the experiment scripts. The scheduler instances themselves are running in

a Slurm job and therefore bene�t from all features explained in previous sections.

The automated separation of hardware execution is facilitated by an additional

opaque communication back-end (see section 3.2). It serializes the hardware

instruction sequences generated by the upper layers and transports it to the

scheduler instances via standard TCP. Taken from Breitwieser 2021.

108 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

This micro scheduler however is not yet fully integrated into the current

software stack. Nevertheless its advantages and capabilities could be demonstrated

on a workshop during the NICE 2021 conference
17

. There, over 80 000 individual

experiments were executed by 66 participants utilizing shared access to 8 hardware

setups in two time slots of 3 hours each.

4.2 Monitoring and Alerting

Measuring the conditions under which an experiment was performed is crucial for

all scienti�c work. Knowing as many system parameters as possible is also vital

for development and debugging, especially for custom analog hardware systems.

Starting with small single-chip prototype setups it is still manageable to handle

this on demand, i.e., manually perform data aggregation and analysis during an

experiment. This becomes infeasible when migrating to larger systems due to

the ever increasing number of components as well as the need for stability. In

addition continuous data aggregation allows investigation of potential issues and

unanticipated measurement parameters after the fact. It furthermore facilitates

providing access to system state to external researchers.

Monitoring a multitude of various devices and components is a common

issue in Information Technology (IT). There already exist several approaches and

tools that tackle this problem. This section describes the monitoring and alerting

infrastructure for the neuromorphic systems and the conventional computing

cluster, which was mainly established during this thesis.

Figure 4.18 gives an overview of the monitoring infrastructure, which is

described in the following sections in more detail. First, data aggregation and

storage for the myriad of components is explained. Then structured visualization

of this data is presented which is needed to facilitate quick analysis. Automated

alerting of critical parameters and components will be described afterwards.

Finally, the impact of this infrastructure on platform operation will be discussed.

This section presents the substantial restructuring and enhancement of the

rudimentary monitoring framework employed prior to this thesis.

Other Contributions Development was done in close collaboration of Daniel

Kutny during his bachelor thesis [Kutny 2018]. In particular, he established the

event data aggregation and designed several dashboards. Furthermore, Patrick

Häussermann integrated aggregation and visualization of Slurm statistics during

his bachelor thesis [Häussermann 2018] supervised by the author. Maurice Güt-

tler primarily developed the aggregation capabilities of the Raspberry Pi-based

17
https://niceworkshop.org/nice-2021/ 2021-09-07

4.2. MONITORING AND ALERTING 109

Conventional Compute Cluster

Figure 4.18: Overview of monitoring infrastructure. Various metrics of the BSS-1

system and conventional compute nodes are aggregated and stored to Graphite

and Elasticsearch. Stored data is then visualized by Grafana and Kibana. Taken

from Kutny 2018

hardware control hosts, and contributed to overall monitoring operation.

4.2.1 Aggregation and Storage

Data aggregated from neuromorphic systems as well as conventional compute

nodes can be separated in two qualitatively di�erent categories, time-series data

and event data. Time series data describes data, typically numerical values, that

are measured continuously with a regular time interval. Example metrics are

voltage, temperature or CPU load. Event data are as the name implies events

at certain points in time, powering on and o� hardware entities for example.

Generation, storage as well as visualization of these types of data di�er greatly.

Therefore di�erent aggregation and storage tools are utilized. The di�erent tools

and strategies to handle those types of data are explained in the following.

Time series

There are two relevant sources of data generation, custom neuromorphic hardware

and conventional compute nodes. The vast majority of data are time-series metrics

of BSS-1 wafer modules. Custom software running on the control Raspberry Pi

has the main task of managing access and operation of wafer components but

also carries out data aggregation. Conventional compute nodes utilize the widely

110 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

used ganglia monitoring system
18

for data aggregation. Ganglia daemons running

on nodes gather metrics like CPU-utilization, memory allocation and network

throughput.

Graphite was chosen as data storage for time series data. It provides an easy

to use netcat-based
19

work�ow on the data aggregation side. From the data query

point of view it provides an HTTP based URL-API
20

, which provides additional

functionality like sort, �lter, and arithmetics. One of the important decisions for

aggregation and storage is to arrange the data in an intuitive hierarchical structure

to ease later querying. Figure 4.19 exemplarily shows an abridged version of the

chosen metrics tree structure and some exemplary metric curves generated with

graphite (section 4.2.2).

To e�ciently store the data Graphite uses RRDtool21
which implements a

Round Robin Database (RRD). An RRD requires to de�ne a sensible data retention

scheme, i.e., which metrics should be stored for which time period with what

resolution. Naturally one would want to store all data with the highest possible

time-resolution that data aggregation allows. But one needs to compromise

resolution with storage space.

The upper bound of time-resolution is de�ned by the aggregation tools them-

selves. Most components on a wafer module could be read out with sub second

resolution. However, they are connected via the same Inter-Integrated Circuit

Link (I2C) communication bus behind a tree of multiplexer, thus can only be read

out serially. The sheer number of components therefore leads to e�ective resolu-

tions in the order of 10 s. Furthermore, a maximum aggregation resolution leads

to high load on the control Raspberry Pis. All these aspects lead of a maximum

aggregation resolution of 60 s for on wafer components.

Yet other metrics can e�ectively be aggregated with higher time-resolution.

Graphite even supports the de�nition of retention schemes for an arbitrary num-

ber of metrics. However, it was decided that more granular resolutions are not

worth the overhead of individually de�ning retention schemes for the individual

metrics. All metrics are therefore stored with a maximum resolution time of 60 s.

The nature of an RRD now allows to calculate the required storage space for

given resolution. A storage space estimate is only calculated for BSS-1 wafer

modules as they are the source for the vast majority of data. For each data point

the time stamp and value are saved as a float(4 B) and double(8 B) respectively.

Additional metadata overhead of a few bytes is neglected. Each wafer module has

over 1800 metrics resulting in a storage consumption of 10.73 GB for one year with

full 60 s resolution. This would already require 214.6 GB for the originally planned

18
http://ganglia.sourceforge.net/ 2021-07-23

19
https://nc110.sourceforge.io/ 2021-07-23

20
https://graphite.readthedocs.io/en/latest/render_api.html 2021-07-23

21
https://oss.oetiker.ch/rrdtool/ 2021-08-07

4.2. MONITORING AND ALERTING 111

\Graphite
Cluster

Frontend
load_five
...

Computenode1
...

WaferModule
30

FPGA
Reticle

5
voltages

VDD12
VDD5
...

power
1
...

Fan
...

21
...

RoomStats

-

-

Figure 4.19: Tree hierarchy of time series metrics. Exemplary drill-down of

conventional compute node statistic and chip supply voltage. Voltage is expected

to be constant whereas load on node is dynamic.

112 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

operation of 20 wafer modules. A resolution of one hour was therefore chosen

for older data, i.e., 10 years, resulting in an additional 1.79 GB per wafer module.

This resolution still allows to observe changes within a day which typically are

larger then average changes between days.

To simplify data extraction a helper script is provided allowing dumping of all

metrics relevant of a wafer module in a given time range to a JavaScript Object

Notation (JSON) �le.

Event Data

Event data compared to time series data is not as structured but more free form.

Its only de�ning characteristic is that something happened at a certain point in

time. That something can be for example alerts, error messages or control events

like powering some hardware component on or o�. To manage this free form data

the widely spread open source ELK-stack (Elasticsearch, Logstash and Kibana)
22

was chosen. Where Logstash handles data aggregation from log �les, Elasticsearch
manages data storage and querying and Kibana visualization which is covered

later on, see section 4.2.2. In principle Elasticsearch could also be used to store

time series data albeit signi�cantly less e�cient as graphite storage and latency

wise.

One of the main use cases of the ELK stack is the aggregation and analysis of

log �les. This work�ow is utilized to implement data aggregation of events without

much overhead to overlaying software, as writing syslog events is supported by

many languages. Relevant tools, for example FPGA control scripts, write events

to speci�c system log �les which are further processed by Logstash. From changes

to those log �les Logstash generates JSON formatted queries to Elasticsearch via

Hypertext Transfer Protocol (HTTP).

As the ELK-stack went proprietary in early 2021 a change to the open source

for OpenSearch23
would be desirable in the future.

4.2.2 Visualization
Aggregated data is only of value if it is analyzed. One of the easiest and quickest

ways for humans to extract relevant information from data is visualization. The

challenge is now to visualize the myriad of data produced by the neuromorphic

systems in an clear, intuitive and structured fashion.

Graphite itself provides a visualization web Graphic User Interface (GUI)

which is helpful for quick exploration of data. This feature is used especially

in early commissioning of the monitoring and when adding new data types.

22
https://www.elastic.co/elastic-stack/ 2021-08-10

23
https://www.opensearch.org/ 2021-08-10

4.2. MONITORING AND ALERTING 113

However, persistent dashboards are needed to fully exploit the aggregated data.

Kibana the analytics and visualization tool of the ELK stack used for event data

provides such dashboards but does not support graphite as a storage back-end.

It is therefore mainly used to quickly explore event data. Grafana24
was chosen

as central visualization front end as it provides highly customizable dashboards,

fully supports time-series data and also event data albeit to a limited extend.

Access to Grafana is managed via Lightweight Directory Access Protocol (LDAP)

authorization allowing users to simply use the same account as for platform

access.

Monitoring Dashboards

Monitoring dashboards provide an highly customizable, intuitive and structured

way to visualize the plethora of data produced by the neuromorphic systems as

well as conventional infrastructure. They supply various visualizations tools like

line graphs, bar plots, pie charts or tables and allow easy selection of time ranges.

In the following exemplary dashboards are presented that provide researchers

better insight into the systems.

The central dashboard for BSS-1 wafer systems is shown in �g. 4.20. It aims to

present most relevant information of a single wafer module on one page allowing

to analyze system health on a short glance. Links to more detailed dashboards and

vice versa are given allowing quick switching to more relevant information in a

drill-down fashion. Augmenting time series data with event data helps identifying

correlations, as seen with power on and o� events from FPGAs.

Another feature that is used to great e�ect are templates
25

. They allow to

de�ne parametrized dashboards, where parameters are for example wafer and/or

reticle IDs. This provides a quick and convenient way to switch between systems

or compare metrics of di�erent components and systems. For example a researcher

can easily compare supply voltages of di�erent chips to identify potential outliers

as shown in �g. 4.21.

Monitoring is also vital for maintenance of the computing platform. Figure 4.22

shows an overview dashboard of cluster health. It provides information of relevant

metrics like machine load, resource scheduler utilization and network tra�c.

There are many additional dashboards providing more detail to di�erent

system aspects like FPGAs, individual cluster nodes or overall scheduler stats

which are not shown for abbreviation.

Monitoring is always changing as the systems and the needs of researchers

are ever evolving. However, yet another advantage of Grafana is its relative low

learning curve allowing researcher to contribute and create their own dashboards.

24
https://grafana.com/ 2021-08-12

25
https://grafana.com/docs/grafana/latest/variables/ 2021-08-12

114 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

F
i
g

u
r
e

4
.2

0
:

B
S
S
-
1

w
a
f
e
r

m
o

d
u

l
e

o
v
e
r
v
i
e
w

d
a
s
h

b
o

a
r
d

.
C

e
n

t
r
a
l

l
a
n

d
i
n

g
p

a
g

e
f
o

r
w

a
f
e
r

m
o

d
u

l
e

m
o

n
i
t
o

r
i
n

g
.

H
e
a
d

e
r
:

W
a
f
e
r

m
o

d
u

l
e

I
D

d
r
o

p
-
d

o
w

n
l
i
s
t
.

L
i
n

k
s

t
o

o
t
h

e
r

r
e
l
e
v
a
n

t
d

e
t
a
i
l
e
d

d
a
s
h

b
o

a
r
d

s
p

r
o
v
i
d

i
n

g
d

r
i
l
l
-
d

o
w

n
n

a
v
i
g

a
t
i
o

n
.

T
o

p
r
o
w

:

T
e
m

p
e
r
a
t
u

r
e
s

o
f

v
a
r
i
o

u
s

c
o

m
p

o
n

e
n

t
s

w
i
t
h

l
i
n

k
s

t
o

d
e
t
a
i
l
e
d

d
a
s
h

b
o

a
r
d

s
.

M
i
d

d
l
e

r
o
w

:
R

e
t
i
c
l
e

a
n

d
F
P

G
A

p
o
w

e
r

s
t
a
t
e

h
i
s
t
o

r
y
.

L
i
n

e
g
r
a
p

h
s

o
f

p
o
w

e
r

s
u

p
p

l
y

b
o

a
r
d

m
e
t
r
i
c
s
.

W
a
f
e
r
,
F
P

G
A

a
n

d
c
o

o
l
i
n

g
f
a
n

i
n

t
a
k

e
t
e
m

p
e
r
a
t
u

r
e

p
r
o

�
l
e

(
a
v
e
r
a
g
e
,
m

i
n

,
m

a
x
)
.

V
e
r
t
i
c
a
l

l
i
n

e
s

c
o

r
r
e
s
p

o
n

d
t
o

F
P

G
A

p
o
w

e
r

u
p

/
d

o
w

n
e
v
e
n

t
s
.

B
o

t
t
o

m
r
o
w

:
C

u
r
r
e
n

t
t
e
m

p
e
r
a
t
u

r
e

o
f

a
l
l

i
n

d
i
v
i
d

u
a
l

F
P

G
A

s
,
c
o

l
o

r

c
o

d
e
d

w
i
t
h

c
r
i
t
i
c
a
l

t
e
m

p
e
r
a
t
u

r
e
.

4.2. MONITORING AND ALERTING 115

F
i
g
u

r
e

4
.2

1
:

D
a
s
h

b
o

a
r
d

p
r
o
v
i
d

i
n

g
o
v
e
r
v
i
e
w

o
f

B
S
S
-
1

r
e
t
i
c
l
e

r
e
l
a
t
e
d

v
o

l
t
a
g
e
s
.

H
e
a
d

e
r
:

W
a
f
e
r

m
o

d
u

l
e

I
D

a
n

d
r
e
t
i
c
l
e

n
u

m
b

e
r

d
r
o

p
-
d

o
w

n
l
i
s
t
.

A
l
l
o
w

s
t
o

c
o

m
p

a
r
e

a
r
b
i
t
r
a
r
y

s
e
t
s

o
f

r
e
t
i
c
l
e
s

o
n

a
w

a
f
e
r

m
o

d
u

l
e
.

T
o

p
r
o
w

:
H

i
s
t
o

r
y

o
f

o
n

-
o

�
s
t
a
t
e

o
f

r
e
t
i
c
l
e
s

R
i
g

h
t

m
i
d

d
l
e
:

V
o

l
t
a
g

e
s

r
e
l
e
v
a
n

t
f
o

r
F
P

G
A

-
t
o

-
c
h

i
p

h
i
g

h
s
p

e
e
d

c
o

n
n

e
c
t
i
o

n
.

R
i
g

h
t

b
o

t
t
o

m
:

V
o

l
t
a
g

e
s

r
e
l
e
v
a
n

t
f
o

r
o

n
w

a
f
e
r

c
o

m
m

u
n

i
c
a
t
i
o

n
.

L
e
f
t

b
o

t
t
o

m
:

R
e
m

a
i
n

i
n

g
v
o

l
t
a
g
e
s

r
e
l
a
t
e
d

t
o

r
e
t
i
c
l
e
s
.

116 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

F
i
g

u
r
e

4
.2

2
:

C
l
u

s
t
e
r

u
t
i
l
i
z
a
t
i
o

n
o
v
e
r
v
i
e
w

d
a
s
h

b
o

a
r
d

.
T

o
p

L
e
f
t
:

C
l
u

s
t
e
r

s
e
r
v
e
r

a
n

d
n

o
d

e
l
o

a
d

.
T

o
p

R
i
g

h
t
:

S
c
h

e
d

u
l
e
r

u
s
a
g

e

s
t
a
t
s

a
n

d
o
v
e
r
a
l
l

a
c
t
i
v
i
t
y
.

B
o

t
t
o

m
:

V
a
r
i
o

u
s

n
e
t
w

o
r
k

s
t
a
t
i
s
t
i
c
s

o
f

c
l
u

s
t
e
r

n
o

d
e
s

a
n

d
s
w

i
t
c
h

e
s
.

4.2. MONITORING AND ALERTING 117

4.2.3 Alerting

No software nor hardware is free of bugs, especially not if custom built. With

increasing number of components the probability of things going awry increases.

Simultaneously overseeing monitoring data manually becomes impossible. Auto-

mated checking of parameters and subsequent alerting, i.e., notifying platform

operators and users, is essential. Yet another reason that Grafana was chosen is

its built in alerting framework. It allows to de�ne thresholds for arbitrary metrics

and sends noti�cations either via email or to the group-managed chat. This quick

and direct feedback channel to researchers is valuable as it reduces down-time of

experiments and saves people from prolonged bug hunts.

One example for metrics that have alerting in place are di�erent temperatures

of wafer modules. Another one are supply voltages that are checked for their

absolute value as well as their time-derivate. Small shifts in voltage would not

necessarily reach an undesired absolute value but are nonetheless not expected.

Furthermore, alerts are set up for conventional compute nodes to ensure proper

platform operation. Examples are load of compute nodes and severs or checking

for free disk space.

It is to note that altering is not solely relied upon concerning damage to

hardware but is regarded as a �rst line of defense. All crucial components have

built in automatic shutdown in case dangerous values are reached.

4.2.4 Findings

The following section presents examples where monitoring was essential in

identifying issues with the systems.

Wafer Temperature Gradients

Behaviour of the analog neuron circuits, especially the exponential term, is tem-

perature dependent. Therefore, care is taken to keep wafer modules at a constant

temperature. To this end a PID-controller of the cooling fans was implemented

with a target temperature of 50
◦
C. There are several factors leading to varying

temperature gradients on individual BSS-1-wafer setups. For example AC-units

and heat sources are not spread evenly over the machine room. Based on monitor-

ing data a strategy for a more constant cooling was devised. Increasing ambient

temperature of the machine room as well as reducing cooling fan speed resulted

in a smaller more stable gradient over wafer modules.

118 CHAPTER 4. NEUROMORPHIC PLATFORM OPERATION

Reticle Voltage Drifts

Initial symptoms of stochastically failing high speed links to reticles where discov-

ered through the regular creation of calibration and blacklisting data. Investigation

of the monitoring data reveled irregular �uctuations in various supply voltages

for the reticles. Figure 4.23 shows an exemplary monitoring excerpt of such a

drift.

Figure 4.23: Exemplary monitoring data showing irregular drops in supply voltage

of reticle 6 on wafer module 33. Year of monitoring data is 2020.

Suspected cause of these �uctuations are failing plug contact in turn caused by

vibrations induced by the high rotation frequency cooling-fans custom mounted

to wafer modules. Improving contact of the plugs by re-pressing them onto

the wafer modules temporarily reverted behaviour back to normal. Directly

bridging the plug contacts through soldered wires permanently stabilized the

voltages further indicating bad plug contact as the cause. A more permanent

solution of improving damming between cooling fans and wafer modules is

under investigation. Discovery of these voltage drops greatly bene�ted from the

continuous monitoring of all voltages and the insight from dashboards.

119

Chapter 5

Conclusion and Outlook

Neuromorphic hardware promises energy-e�cient and fast simulation of neural

networks compared to classical von-Neumann architectures. However, these

advantages come with trade-o�s like neuron model and topology constraints or

device variability. Fully exploiting these novel devices therefore requires sophisti-

cated software managing their operation. The ultimate goal is that researchers can

e�ciently describe experiments and the software automatically handles hardware

speci�cs.

To this end, one of the main achievements of this thesis is the facilitation of

the second-generation BrainScaleS accelerated neuromorphic system through a

performant, scalable and sustainable software architecture covered in chapter 3.

First, the rami�cations of neuromorphic hardware and typical experiment work-

�ow, de�ning the design constraints, are introduced in 3.1.1. Especially the unique

acceleration factor of 10
3

results in high throughput and low latency demands.

Furthermore, the multi-year multi-person development e�ort of hard- and soft-

ware requires high emphasis on sustainability. This is especially true in light of

multi-chip operation and wafer-scale integration. Therefore, much deliberation is

put into the design of a software architecture with well-de�ned layers, outlined

in section 3.1.2. These well-de�ned layers facilitate modular design and provide

suitable access points to tackle various issues at di�erent stages of development.

At the lowest level, a communication interface facilitates data exchange for multi-

ple back-ends like neuromorphic hardware or simulators for hardware/software

co-design. Section 3.3 presents the abstraction of con�guration space and runtime

control of the hardware. It provides an interface encapsulating the hardware

operation as a timed sequence of read and write instructions. This interface is

facilitated by coordinate-container pairs which uniquely describe the con�gura-

tion of individual hardware components. Furthermore, a hardware database is

utilized as a single source of truth. Building on top of the hardware abstraction

an experiment description layer is presented in section 3.4. It provides means

120 CHAPTER 5. CONCLUSION AND OUTLOOK

for high-level network description and therefore allows constructing neural net-

works intuitively in a graph-based manner as populations and projections. The

translation from this high-level description to a valid hardware con�guration is

managed by place and route algorithms. To ease usage for non-hardware-experts

the back-end agnostic modelling frameworks PyNN and PyTorch are supported.

These generalized interfaces and the accompanying trade-o�s are discussed in

section 3.5. Full stack measurements conducted in section 3.6 verify suitable per-

formance as well a scalability. Section 3.7 �nally demonstrates soft- and hardware

capabilities via a winner-take-all network implementing a Sudoku solver. All 36

minimal canonicalized 4×4 Sudoku puzzles were solved, where for 55% of puzzles

the solution was found within 200 µs.

However, there are still performance and usability shortcomings which should

be addressed, especially in the PyNN back-end discussed insection 3.6.3. One

limitation is low experiment repetition rate of under 10 Hz due to unnecessary

repeated chip con�guration on successive experiment runs. This however can be

addressed by omitting redundant con�gurations for example via utilization of a

dirty-�ag pattern. Experiment rate could be improved further by batching multi-

ple iteration steps into a single hardware execution, elaborated in section 3.5.1.

Regarding usability, convenient native support for the on-chip PPU would be

desirable. In particular, auto generation of PPU programs that implement cus-

tomizable plasticity rules would facilitate a variety of learning experiments.

The developed software stack further opens the possibility for external re-

searchers, and not only for experts, to exploit the advantages of BSS neuromorphic

hardware. However, operation of the BSS systems still requires system-expert

intervention. Consequently, the custom hardware cannot simply be shipped to

and easily utilized by other research groups. Therefore, the Electronic Visions(s)

group, as part of the Human Brain Project, strives to provide access to these

systems as computing platforms for the scienti�c community. The aspiration on

usability of the platforms is that they behave much like any conventional HPC

cluster. Users should be able to conveniently schedule experiments on the desired

neuromorphic hardware and can trust in correct execution.

Chapter 4 describes measures taken for providing such a platform while

incorporating the characteristics of analog hardware. The high customizability of

the widespread resource scheduler Slurm was exploited to handle robust multi-

user access for BSS-1 wafer systems as well as BSS-2 single-chip systems. Its

setup and con�guration was tuned to �t the work�ow on the neuromorphic

hardware, i.e., low iterations cycles during prototyping and high throughput

for batch operation. Slurm’s plugins as well as prolog and epilog frameworks

are extensively utilized to manage the hardware speci�cs. Additional command

line options are added to the scheduler submit tools so that researchers can

natively request particular hardware instances. To ensure no interference between

121

experiments a resource isolation mechanism was added. Access to the hardware

is only granted within a job if the corresponding request was made via the

scheduler. A particular need of the BSS-1 wafer modules, namely the necessity

for neighboring chips to be initialized, is also automatically handled. All features

are thoroughly investigated to verify no disruptive overhead to job run time is

introduced. Scheduler usage statistics are analyzed estimating an upper bound to

hardware utilization of 7% and 30% for BSS-1 and BSS-2 respectively assuming

round-the-clock availability. To increase utilization and support preemption of

iterative experiments a micro-scheduler for BSS-2 systems was developed on top

of Slurm. In sum, these features assure experimenters a well-de�ned environment

to work in.

Limitations of the current implementation are its hard-coded interface for

hardware requests. It was originally only designed with BSS-1 wafer scale usage

in mind. This could be remedied by migration to the hardware database interface

which incorporates both systems.

Another crucial requirement to a scienti�c computing platform is reproducibil-

ity. The high complexity of the custom hardware systems results in a myriad of

components which need to be monitored. For each BSS-1 wafer module alone

over 1800 metrics can be observed. The multitude of components furthermore

increase the probability for faults. An extensive monitoring framework is there-

fore also vital for robust operation of the platform. Another achievement of this

thesis was the development of such a monitoring infrastructure. Readily available

open-source monitoring services were adapted to the speci�c requirements of

the experiment platform. It manages aggregation of time-series and event data

of the neuromorphic devices as well as conventional compute infrastructure.

Time-series data comprises voltages, temperatures or control host load and event

data includes for example powering on/o� certain devices. The plethora of time-

series data are e�ciently stored via a Round Robin Database culminating in about

13 GB storage requirement per wafer module over 10 years. Key feature of good

monitoring is an intuitive and structured way of presenting the data. To this

end, visualization dashboards are designed allowing experimenters to quickly

navigate and analyze the system state. Nevertheless, manual oversight of such

a large amount of data becomes unfeasible. Therefore, alerting is employed to

increase system health and stability. Example cases demonstrated the value of

the developed monitoring infrastructure.

One shortcoming of the current monitoring is limited aggregation and ex-

ploitation of event data. For example analysis of software and system stability

could greatly pro�t if error cases would be automatically logged to the event

database.

The sophisticated software architecture combined with robust platform op-

eration, established in the course of this thesis, enabled, at least in part, several

122 CHAPTER 5. CONCLUSION AND OUTLOOK

studies not only by group members but also external researchers [Bohnstingl et al.

2019; Czischek et al. 2021; Klassert et al. 2021].

Outlook
The next large step for the BSS-2 systems will be the facilitation of multi-chip

operation to enable experiments beyond 512 neurons. In a �rst intermediate

approach multiple single-chip setups are interconnected via FPGA-to-FPGA. The

current Gigabit-Ethernet-based host-FPGA communication method is not suitable

for this application as it is not designed for low-latency real-time applications.

To remedy this, an alternative interconnection via the EXTOLL [Neuwirth et al.

2015] technology is under development.

This has varying implications on the di�erent software-layers. On the one

hand the communication layer simply has to utilize a di�erent back-end. Likewise,

only minimal change is necessary to the hardware abstraction layer as it encapsu-

lates a single chip instance. From the modelling wrapper perspective no change

to the topology description is needed. Ideally, researchers can simply request

more neurons in their experiments. Most changes are required in the experiment

description layers, especially place and route algorithms need to be enhanced

signi�cantly. An important aspect of multi-chip operation is the additional delay

of spike transfer between the chip instances during the continuous network em-

ulation. Synaptic and axonal delay has an in�uence on SNNs functionality [Xu

et al. 2013] and is thus shortly estimated. As a base reference, the on-chip spike

communication takes in the order of 50 ns
1
. Event transfer between chip and

FPGA introduces a delay of roughly 300 ns [Karasenko 2020, p110]. EXTOLL
based FPGA-to-FPGA connection adds about 60 ns per hop [Resch et al. 2014,

p133]. This results in a delay between two setups of roughly 1 µs, an order of

magnitude higher than on-chip delay. More notably it approaches typical mem-

brane and synaptic time constants which are in the order of 10 µs. Consequently,

the additional delay might a�ect network dynamics depending on distribution of

neurons over single chip instances. Therefore, place and route strategies need

to factor in these di�erent delays. A �rst naive approach could be placement of

the neurons of individual populations only on the same chip instances or with

same hop distance. The relatively contained extent of required changes further

demonstrates the advantages of the developed multi-layer software architecture.

Multi Compartment (MC) models provide an interesting prospect to neuro-

science research [London et al. 2005]. Yet, software simulations of MC neuron

models are signi�cantly more involved than for single point neurons. The BSS-2

chips are equipped with inter-compartment capabilities to tackles these issues.

1
Personal correspondence with chip designer Sebastian Billaudelle

123

However, the software implementation does not yet support these capabilities

on the experiment description layer. Especially the parameter translation from

abstract model to hardware units will pose a challenge. As such a translation

depends on calibration which in turn depends on the speci�c circuit instances,

coupling of calibration and place and route strategies should therefore be a high

priority for further software development. Furthermore, depending on the com-

plexity of the models, the number of compartments vary by 3 orders of magnitude,

up to 1000 [Branco et al. 2010; Miyasho et al. 2001], individual chip resources can

quickly be exhausted or be insu�cient. A signi�cant scale up of the systems is

therefore desirable in particular to better explore multi-compartment capabilities,

albeit this does not cover cases requiring more compartments than on chip neuron

circuits.

A more scalable approach than inter-connected single chips is the direct in-

terconnection of dozens or hundreds of chips on the same PCB or even same

silicon substrate. The former is used by several large-scale neuromorphic sys-

tems [Furber et al. 2012; Intel 2020], whereas the latter could be realized through

wafer-scale integration as it was achieved for the BSS-1 systems. In either case,

the established platform infrastructure and software stack is well-equipped to

support the upscaling of the BSS-2 neuromorphic systems.

One key result of the Human Brain Project is the introduction of the EBRAINS

collaboratory, which will provide a common interactive work�ow to various HPC

sites and neuromorphic platforms. The results of the presented work facilitate

the integration of the BSS-2 hardware into this infrastructure, thereby creating a

low threshold entry point for the neuroscience community.

The emphasis on sustainable software development practices employed through-

out this thesis will ensure long-term usability of the BSS-2 accelerated neuromor-

phic research platform.

124 CHAPTER 5. CONCLUSION AND OUTLOOK

125

Appendix A

Contributions

A.1 Publications

The author contributed to the following publications (* marks equal contributions):

Peer-reviewed

Timo Wunderlich*, Akos F. Kungl*, Eric Müller, Andreas Hartel, Yannik Strad-

mann, Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber,

David Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian
Mauch, Johannes Schemmel, Karlheinz Meier, Mihai A. Petrovici Demonstrat-
ing Advantages of Neuromorphic Computation: A Pilot Study, Frontiers in
Neuroscience — Neuromorphic Engineering, 36 March 2019 Volume 13 pages 260,

2019, https://doi.org/10.3389/fnins.2019.00260

Contribution: The Author contributed to the development of the BSS-2 software

architecture for HICANN-DLS covered in section 3.3.

Akos F. Kungl, Sebastian Schmitt, Johann Klähn, Paul Müller, Andreas Baumbach,

Dominik Dold, Alexander Kugele, Eric Müller, Christoph Koke, Mitja Kleider,

Christian Mauch, Oliver Breitwieser, Luziwei Leng, Nico Gürtler, Maurice Güt-

tler, Dan Husmann, Kai Husmann, Andreas Hartel, Vitali Karasenko, Andreas

Grübl, Johannes Schemmel, Karlheinz Meier and Mihai A. Petrovici, Accelerated
Physical Emulation of Bayesian Inference in Spiking Neural Networks,
Frontiers in Neuroscience — Neuromorphic Engineering, 14 November 2019 Volume
13 pages 1201, 2019, https://doi.org/10.3389/fnins.2019.01201

Contribution: The Author contributed to the development of the BSS-1 software

architecture. Its contents are not discussed in this thesis.

https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.3389/fnins.2019.01201

126 APPENDIX A. CONTRIBUTIONS

Sebastian Billaudelle*, Yannik Stradmann*, Korbinian Schreiber*, Benjamin Cramer*,

Andreas Baumbach*, Dominik Dold*, Julian Göltz*, Akos F. Kungl*, Timo C.

Wunderlich*, Andreas Hartel, Eric Müller, Oliver Breitwieser, Christian Mauch,

Mitja Kleider, Andreas Grübl, David Stöckel, Christian Pehle, Arthur Heimbrecht,

Philipp Spilger, Gerd Kiene, Vitali Karasenko, Walter Senn, Mihai A. Petrovici,

Johannes Schemmel, Karlheinz Meier, Versatile emulation of spiking neu-
ral networks on an accelerated neuromorphic substrate, IEEE International
Symposium on Circuits and Systems (ISCAS), 2020, https://doi.org/10.1109/
ISCAS45731.2020.9180741

Contribution: The Author contributed to the development of the BSS-2 software

architecture for HICANN-DLS covered in section 3.3.

Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch,

Christian Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Se-

bastian Schmitt, Timo C. Wunderlich, Yannik Stradmann, Johannes Schemmel

hxtorch: PyTorch for BrainScaleS-2. Gama J. et al. (eds) IoT Streams for Data-
Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine
Learning. ITEM 2020, IoT Streams 2020. Communications in Computer and In-
formation Science, vol 1325. Springer, Cham., 2020, https://doi.org/10.1007/
978-3-030-66770-2_14

Contribution: Development of BSS-2 software architecture for HICANN-X cov-

ered in chapter 3. Contribution: The Author contributed to the development of

the BSS-2 software architecture for HICANN-X covered in section 3.3.

Johannes Weis, Philipp Spilger, Sebastian Billaudelle, Yannik Stradmann, Arne

Emmel, Eric Müller, Oliver Breitwieser, Andreas Grübl, Joscha Ilmberger, Vitali

Karasenko, Mitja Kleider, Christian Mauch, Korbinian Schreiber, Johannes Schem-

mel, Inference with Arti�cial Neural Networks on Analog Neuromorphic
Hardware. Gama J. et al. (eds) IoT Streams for Data-Driven Predictive Maintenance
and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM 2020, IoT Streams
2020. Communications in Computer and Information Science, vol 1325. Springer,
Cham., https://doi.org/10.1007/978-3-030-66770-2_15

Contribution: Development of BSS-2 software architecture for HICANN-X cov-

ered in chapter 3.

Preprint/Submitted

Eric Müller, Christian Mauch*, Philipp Spilger*, Oliver Julien Breitwieser*, Jo-

hann Klähn*, David Stöckel, Timo Wunderlich, Johannes Schemmel Extend-
ing BrainScaleS OS for BrainScaleS-2. arXiv preprint arXiv:2003.13750, 2020,

https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.1007/978-3-030-66770-2_15

A.2. SUPERVISION 127

https://arxiv.org/abs/2003.13750

Contribution: This study discusses in detail the concepts described in chapter 3,

in particular section 3.3. Submitted to the ACM Journal on Emerging Technologies

in Computing Systems.

Eric Müller*, Sebastian Schmitt*, Christian Mauch*, Sebastian Billaudelle, An-

dreas Grübl, Maurice Güttler, Dan Husmann, Joscha Ilmberger, Sebastian Jeltsch,

Jakob Kaiser, Johann Klähn, Mitja Kleider, Christoph Koke, José Montes, Paul

Müller, Johannes Partzsch, Felix Passenberg, Hartmut Schmidt, Bernhard Voggin-

ger, Jonas Weidner, Christian Mayr, Johannes Schemmel The Operating System
of the Neuromorphic BrainScaleS-1 System, arXiv preprint arXiv:2003.13749,

2020, https://arxiv.org/pdf/2003.13749

Contribution: Software Development for BSS-1 that is not discussed in this

thesis and platform operation as well as monitoring infrastructure covered in

chapter 4. Submitted to the Elsevier Journal Neurocomputing.

A.2 Supervision

The following Students where supervised, however, not all work could be included

in this thesis. Nevertheless, the author wishes to thank their valuable contribution

to this thesis and the BSS computing platform overall.

Towards Fast Iterative LearningOnTheBrainScaleSNeuromorphicHard-
ware System
Lukas Pilz was co-supervised by the author. Work not is contained in this the-

sis [Pilz 2016].

Development of a Modern Monitoring Platform for the BrainScaleS Sys-
tem
Daniel Kutny was co-supervised by the author. The work is covered in sec-

tion 4.2 [Kutny 2018].

Integration of the Slurm workload manager into the BrainScaleS moni-
toring platform
Patrick Häussermann was supervised by the author. The work is covered in

sections 4.1.6 and 4.2 [Häussermann 2018].

Spike-based Expectation Maximization on the HICANN-DLSv2 Neuro-
morphic Chip
Philipp Spilger was co-supervised by the author. The work is covered in sec-

https://arxiv.org/abs/2003.13750
https://arxiv.org/pdf/2003.13749

128 APPENDIX A. CONTRIBUTIONS

tion 3.3 [Spilger 2018].

Analyzing and optimizing the con�guration time of the BrainScaleS-1
system by implementing di�erential con�guration
Paul Meehan was co-supervised by the author. The Work is not contained in this

thesis [Meehan 2019].

PyNN for BrainScaleS-2
Milena Czierlinski was co-supervised by the author. The work is covered in

section 3.5 [Czierlinski 2020].

FromNeuralNetworkDescriptions toNeuromorphicHardware—ASignal-
Flow Graph Compiler Approach
Philipp Spilger was co-supervised by the author. The work is covered in sec-

tions 3.3 to 3.5 [Spilger 2021].

Migration and Enhancement of the Advanced Lab Course on Neuromor-
phic Computing
Alexander Nock was supervised by the author. The work is covered in sec-

tion 3.7 [Nock 2021].

129

Appendix B

Measurement Conditions

B.1 Software State for Performed Measurements

B.1.1 BrainScaleS-1

Measurements for BSS-1 baseline estimates in section 4.1.3 were conducted with

module nmpm-software/2021-09-08-1. Minimal PyNN overhead script is given

in listing B.1.

Listing B.1: Minimal BSS-1 PyNN python import

import pysthal
import pyhmf as pynn
from pymarocco import PyMarocco, Defects
from pymarocco.runtime import Runtime
from pymarocco.coordinates import LogicalNeuron
from pymarocco.results import Marocco

B.1.2 BrainScaleS-2

All measurement and experiments related to BSS-2 were performed with the git

repository state given in table B.1 and the following gerrit changesets applied

bottom to top:

• https://gerrit.bioai.eu/c/grenade/+/15517

• https://gerrit.bioai.eu/c/grenade/+/15515

• https://gerrit.bioai.eu/c/grenade/+/15542

https://gerrit.bioai.eu/c/grenade/+/15517
https://gerrit.bioai.eu/c/grenade/+/15515
https://gerrit.bioai.eu/c/grenade/+/15542

130 APPENDIX B. MEASUREMENT CONDITIONS

• https://gerrit.bioai.eu/c/grenade/+/15520

• https://gerrit.bioai.eu/c/grenade/+/15446

• https://gerrit.bioai.eu/c/grenade/+/15468

Minimal PyNN overhead script is given in listing B.2.

Listing B.2: Minimal BSS-2 PyNN python import

import pynn_brainscales.brainscales2 as pynn

B.1.3 Slurm
Measurements for Slurm overhead in chapter 4 where conducted with the Slurm

testing environment in the state given in table B.2 and corresponding added

logging messages in prolog/epilog scripts.

B.1.4 Sudoku Solver
State of Sudoku solver can be found in gerrit changeset https://gerrit.bioai.
eu/c/fp-neurocomp/+/13216/23. Experiment for the Sudoku solver were con-

ducted on setup hxcube8fpga3chip28. Model parameters are given by the default

nightly calibration presented in listing B.3. The date of used calibration �le is

2021-09-13.

Listing B.3: Settings of nightly calibration

def calibrate(
connection: hxcomm.ConnectionHandle, *,
leak: Union[int, np.ndarray] = 80,
reset: Union[int, np.ndarray] = 70,
threshold: Union[int, np.ndarray] = 125,
tau_mem: pq.quantity.Quantity = 10. * pq.us,
tau_syn: pq.quantity.Quantity = 10. * pq.us,
i_synin_gm: Union[int, np.ndarray] = 500,
membrane_capacitance: Union[int, np.ndarray] = 63,
refractory_time: pq.quantity.Quantity = 2. * pq.us,
synapse_dac_bias: int = 400,
readout_neuron: Optional[halco.AtomicNeuronOnDLS] = None

) -> NeuronCalibResult:

https://gerrit.bioai.eu/c/grenade/+/15520
https://gerrit.bioai.eu/c/grenade/+/15446
https://gerrit.bioai.eu/c/grenade/+/15468
https://gerrit.bioai.eu/c/fp-neurocomp/+/13216/23
https://gerrit.bioai.eu/c/fp-neurocomp/+/13216/23

B.1. SOFTWARE STATE FOR PERFORMED MEASUREMENTS 131
R

e
p

o
s
i
t
o

r
y

C
o

m
m

i
t
-
H

a
s
h

C
o

m
m

i
t

M
e
s
s
a
g
e

p
y

n
n

-
b
r
a
i
n

s
c
a
l
e
s

34
cf

34
d3

8c
cf

2d
50

1a
8d

A
d

a
p

t
t
o

e
x
t
r
a
c
t
_
n

e
u

r
o

n
_
s
p

i
k

e
s

t
o

r
e
t
u

r
n

a
d

i
c
t

h
a
l
d

l
s

e5
d6

2e
ff

02
1b

95
6a

6e
d4

U
p

d
a
t
e

C
o

m
m

o
n

N
e
u

r
o

n
B

a
c
k

e
n

d
C

o
n

�
g

d
e
f
a
u

l
t

v
a
l
u

e
s

g
r
e
n

a
d

e
d9

3f
9f

bf
a3

f2
19

c1
96

bb
I
m

p
r
o
v
e

t
i
m

e
c
h

e
c
k

i
n

g
u

n
i
q

u
e

c
o

n
n

e
c
t
i
o

n
s

.
.
.

c
o

d
e
-
f
o

r
m

a
t

ce
6a

51
04

71
f2

6d
78

a2
f9

p
y

l
i
n

t
:

A
d

d
h

x
t
o

r
c
h

.c
o

n
s
t
a
n

t
s
.*

t
o

g
e
n

e
r
a
t
e
d

m
e
m

b
e
r
s

l
o

g
g
e
r

bc
00

62
38

ec
fd

c4
83

d5
b9

A
d

d
l
o

g
4
c
x
x
_
l
e
v
e
l
_
v
2

h
a
l
c
o

77
af

b3
bb

a4
28

8a
9f

b9
ce

I
n

t
r
o

d
u

c
e

v
x
:
:
v
3

n
a
m

e
s
p

a
c
e
s

h
a
t
e

b9
12

0c
53

ff
cd

a9
15

96
23

A
d

d
i
n

d
e
n

t
f
u

n
c
t
i
o

n
f
o

r
m

u
l
t
i
-
l
i
n

e
s
t
r
i
n

g

�
s
c
h

33
46

0b
26

57
0f

c5
58

9b
49

R
e
v
e
r
t

"
M

i
g
r
a
t
e

h
a
r
d

w
a
r
e

v
e
r
i
�

c
a
t
i
o

n
t
o

H
X

v
2
"

z
t
l

d9
00

ab
07

3f
6a

a8
df

4b
f7

A
d

d
.g

i
t
r
e
v
i
e
w

h
x
c
o

m
m

ac
c9

53
57

4b
09

4d
90

e9
60

M
o
v
e

d
e
c
o

d
e
r

l
o

g
-
m

e
s
s
a
g
e
s

f
r
o

m
d

e
b
u

g
t
o

t
r
a
c
e

p
y

u
b
l
a
s

fb
53

8e
8c

31
3a

3f
04

d1
a5

A
d

d
.g

i
t
r
e
v
i
e
w

p
y

w
r
a
p

83
dd

ba
d8

a1
14

b4
73

0b
82

S
u

p
p

o
r
t

b
u

i
l
d

s
w

/
o

g
e
n

e
r
a
t
i
n

g
P

y
t
h

o
n

b
i
n

d
i
n

g
s

r
a
n

t
7d

99
2b

2e
fb

2e
49

89
73

00
R

e
m

o
v
e

u
n

u
s
e
d

i
n

c
l
u

d
e
s

l
i
b
-
b

o
o

s
t
-
p

a
t
c
h

e
s

2d
7e

07
d4

e7
48

27
c4

2d
9e

U
p

d
a
t
e

c
o

n
t
e
n

t
d

e
s
c
r
i
p

t
i
o

n
i
n

R
e
a
d

m
e

l
i
b
n

u
x

19
1f

13
57

09
00

71
c8

13
0a

A
d

d
g
t
e
s
t
-
c
o

m
p

a
t
i
b
l
e

t
e
s
t
i
n

g
f
r
a
m

e
w

o
r
k

s
c
t
r
l
t
p

03
ff

11
55

7f
93

4d
84

40
eb

A
v
o

i
d

z
o

m
b
i
e

h
o

s
t
a
r
q

d
a
e
m

o
n

p
r
o

c
e
s
s
e
s

h
w

d
b

17
18

73
5d

da
af

20
ad

71
54

U
p

d
a
t
e

w
2
3

e
n

t
r
y
,
i
n

c
l
u

d
i
n

g
n

o
w

a
n

a
n

a
s

a
n

d
n

e
w

P
i

v
i
s
i
o

n
s
-
s
l
u

r
m

27
9c

83
92

87
ca

22
78

eb
68

U
s
e

s
l
u

r
m

v
i
z

v
i
e
w

i
n

c
o

n
�

g
u

r
e

s
t
e
p

d
i
r
e
c
t
l
y

�
a
n

g
e

fc
de

2a
af

e6
98

05
48

77
89

S
u

p
p

o
r
t

b
u

i
l
d

s
w

/
o

g
e
n

e
r
a
t
i
n

g
P

y
t
h

o
n

b
i
n

d
i
n

g
s

b
s
s
-
h

w
-
p

a
r
a
m

s
cc

cc
90

d3
b5

6e
2f

ac
bc

1b
E

x
e
c
u

t
e

j
e
n

k
i
n

s
j
o

b
s

i
n

-
n

o
d

e
v

a
p

p

l
i
b
-
r
c
f

5b
16

32
6a

e3
0e

e0
8a

32
2a

F
i
x
e
s

f
o

r
l
o

g
4
c
x
x
@

0
.1

1
.0

T
a
b
l
e

B
.1

:
S
t
a
t
e

o
f

B
S
S
-
2

s
o

f
t
w

a
r
e

s
t
a
c
k

f
o

r
a
l
l

m
e
a
s
u

r
e
m

e
n

t
s
.

A
l
l

r
e
p

o
s
i
t
o

r
i
e
s

i
n

h
e
a
d

s
t
a
t
e

e
x
c
e
p

t
f
o

r
gr
en
ad
e

w
h

i
c
h

h
a
s

ge
rr
it

c
h

a
n

g
e
s

g
i
v
e
n

i
n

t
e
x
t
.

132 APPENDIX B. MEASUREMENT CONDITIONS

Repository Commit-Hash Commit Message

con�g-slurm f84601ebc2a47901aef6
92e86e38a1dddd67078c

Update licenses �le

with new creation tool

vision-slurm 54e85324edeb071e0022
bdfd134c29e500edd18a

Increase allowed

license length

Table B.2: State of testing Slurm environment.

B.2 Compute Node Speci�cations
HBPHost

• Intel(R) Core(TM) i7-4771

– 4C/8T

– 3.5GHz base/3.9GHz boost

– 25.6 GB/s memory bandwidth

• 32G DDR3 RAM

RyzenHost

• AMD Ryzen 7 3800X

– 8C/16T

– 3.9GHz base/4.5GHz boost

– 47.68 GiB/s memory bandwidth (dual channel)

• 64G DDR4 RAM

EpycHost

• AMD EPYC 7402P

– 24C/48T

– 2.8GHz base/3.35GHz boost

– 190.7 GiB/s memory bandwidth (octa channel)

• 256G DDR4 RAM

133

Appendix C

Acronyms

ADC Analog-to-Digital Converter 18

AdEx Adaptive Exponential Integrate-and-Fire 7

ANN Arti�cial Neuronal Network 2

API Application Programming Interface 12

ARM Advanced RISC Machines . 11

ASIC Application Speci�c Integrated Circuit 11

BSS BrainScaleS . 2

BSS-1 BrainScaleS Generation 1 . 4

BSS-2 BrainScaleS Generation 2 . 3

CMOS Complementary Metal-Oxide-Semiconductor 13

COBA Conductance Based . 8

CPU Central Processing Unit . 9

CUBA Current Based . 8

DSL Domain Speci�c Language . 53

fMRI functional Magnetic Resonance Imaging 19

FPGA Field-Programmable Gate Array 2

GPU Graphics Processing Unit . 2

GUI Graphic User Interface . 112

HBP Human Brain Project . 101

HICANNHigh-Input Count Analog Neuronal Network 12

HPC High Performance Computing 3

HTTP Hypertext Transfer Protocol 112

I2C Inter-Integrated Circuit Link 110

ICMP Internet Control Message Protocol 86

IT Information Technology . 108

JSON JavaScript Object Notation . 112

JTAG Joint Test Action Group . 14

LDAP Lightweight Directory Access Protocol 113

134

LVDS Low-Voltage Di�erential Signaling 14

MC Multi Compartment . 122

ML Machine Learning . 2

MPI Message Passing Interface . 9

PPU Plasticity Processing Unit . 18

PyNN PyNN neural network modeling language 10

RCF Remote Call Framework . 32

RRD Round Robin Database . 110

SIMD Single Instruction Multiple Data 18

Slurm Simple Linux Utility for Resource Management 4

SNN Spiking Neural Network . 1

SPI Serial Peripheral Interface . 31

SQL SQL database language . 93

STD Short Term Depression . 78

STDP Spike Timing Dependent Plasticity 8

STP Short-term Plasticity . 8

TCP Transmission Control Protocol 32

TPU Tensor Processing Unit . 2

UDP User Datagram Protocol . 86

VM Virtual Machine . 96

YAML YAML human-readable data-serialization language 91

135

Appendix D

Bibliography

Abadi, Martín et al. (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. url: http://download.tensorflow.org/paper/
whitepaper2015.pdf.

Abeni, Luca and Dario Faggioli (2020). “Using Xen and KVM as real-time hypervi-

sors”. In: Journal of Systems Architecture 106, p. 101709.

Akar, Nora Abi et al. (Feb. 2019). “Arbor — A Morphologically-Detailed Neural

Network Simulation Library for Contemporary High-Performance Computing

Architectures”. In: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 274–282. doi: 10.1109/
EMPDP.2019.8671560.

Arnold, Elias (2021). “Biologically Inspired Learning in Recurrent Spiking Neural

Networks on Neuromorphic Hardware”. Master’s thesis. Universität Heidel-

berg.

Bekolay, Trevor et al. (2014). “Nengo: a Python tool for building large-scale

functional brain models”. In: Frontiers in Neuroinformatics 7, p. 48. issn: 1662-

5196. doi: 10.3389/fninf.2013.00048. url: https://www.frontiersin.
org/article/10.3389/fninf.2013.00048.

Bellec, Guillaume et al. (2018). “Long short-term memory and learning-to-learn

in networks of spiking neurons”. In: arXiv preprint arXiv:1803.09574.

Bellec, Guillaume et al. (2019). “Biologically inspired alternatives to backpropa-

gation through time for learning in recurrent neural nets”. In: arXiv preprint
arXiv:1901.09049.

Benjamin, Ben Varkey et al. (2014). “Neurogrid: A mixed-analog-digital multichip

system for large-scale neural simulations”. In: Proceedings of the IEEE 102.5,

pp. 699–716.

Billaudelle, S. et al. (Oct. 2020). “Versatile emulation of spiking neural networks on

an accelerated neuromorphic substrate”. In: 2020 IEEE International Symposium

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.3389/fninf.2013.00048
https://www.frontiersin.org/article/10.3389/fninf.2013.00048
https://www.frontiersin.org/article/10.3389/fninf.2013.00048

136

on Circuits and Systems (ISCAS). IEEE. doi: 10.1109/iscas45731.2020.
9180741.

Bird, Christian and Alberto Bacchelli (May 2013). “Expectations, Outcomes, and

Challenges of Modern Code Review”. In: Proceedings of the International Confer-
ence on Software Engineering. IEEE. url: https://www.microsoft.com/en-
us/research/publication/expectations-outcomes-and-challenges-
of-modern-code-review/.

Blundell, Inga et al. (2018). “Code Generation in Computational Neuroscience: A

Review of Tools and Techniques”. In: Frontiers in Neuroinformatics 12, p. 68.

issn: 1662-5196. doi: 10.3389/fninf.2018.00068. url: https://www.
frontiersin.org/article/10.3389/fninf.2018.00068.

Bohnstingl, Thomas et al. (May 2019). “Neuromorphic Hardware Learns to Learn”.

English. In: Frontiers in neuroscience 2019.13, pp. 1–14. issn: 1662-4548.

Branco, Tiago, Beverley A. Clark, and Michael Häusser (2010). “Dendritic Dis-

crimination of Temporal Input Sequences in Cortical Neurons”. In: Science
329.5999, pp. 1671–1675. doi: 10.1126/science.1189664. url: https://
www.science.org/doi/abs/10.1126/science.1189664.

Breitwieser, Oliver (2021). “Learning by Tooling: Novel Neuromorphic Learning

Strategies in Reproducible Software Environments”. PHD thesis. Ruprecht-

Karls-Universität Heidelberg.

Brette, R. and W. Gerstner (2005). “Adaptive Exponential Integrate-and-Fire Model

as an E�ective Description of Neuronal Activity”. In: J. Neurophysiol. 94,

pp. 3637–3642. doi: 10.1152/jn.00686.2005.

Brüderle, Daniel (2009). “Neuroscienti�c Modeling with a Mixed-Signal VLSI

Hardware System”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Chou, Ting-Shuo et al. (2018). “CARLsim 4: An open source library for large scale,

biologically detailed spiking neural network simulation using heterogeneous

clusters”. In: 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, pp. 1–8.

Cramer, Benjamin et al. (2021). Surrogate gradients for analog neuromorphic com-
puting. arXiv: 2006.07239 [cs.NE].

Czierlinski, Milena (2020). “PyNN for BrainScaleS-2”. Bachelor thesis. Universität

Heidelberg.

Czischek, Stefanie et al. (2021). Spiking neuromorphic chip learns entangled quan-
tum states. arXiv: 2008.01039 [cs.ET].

Davies, Mike et al. (2018). “Loihi: A neuromorphic manycore processor with

on-chip learning”. In: IEEE Micro 38.1, pp. 82–99.

Davison, A. P. et al. (2009a). “PyNN: a common interface for neuronal network

simulators”. In: Front. Neuroinform. 2.11. doi: 3389/neuro.11.011.2008.

— (2009b). “PyNN: a common interface for neuronal network simulators”. In:

Front. Neuroinform. 2.11. doi: 3389/neuro.11.011.2008.

https://doi.org/10.1109/iscas45731.2020.9180741
https://doi.org/10.1109/iscas45731.2020.9180741
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://doi.org/10.3389/fninf.2018.00068
https://www.frontiersin.org/article/10.3389/fninf.2018.00068
https://www.frontiersin.org/article/10.3389/fninf.2018.00068
https://doi.org/10.1126/science.1189664
https://www.science.org/doi/abs/10.1126/science.1189664
https://www.science.org/doi/abs/10.1126/science.1189664
https://doi.org/10.1152/jn.00686.2005
https://arxiv.org/abs/2006.07239
https://arxiv.org/abs/2008.01039
https://doi.org/3389/neuro.11.011.2008
https://doi.org/3389/neuro.11.011.2008

137

Demo (2021). BSS2 PyNN single neuron demo script. https://github.com/
electronicvisions/pynn-brainscales/blob/master/brainscales2/
pynn_brainscales/brainscales2/examples/single_neuron_demo.py.

accessed August 25, 2021.

Diesmann, Markus and Marc-Oliver Gewaltig (2002). “NEST: An Environment for

Neural Systems Simulations”. In: Forschung und wisschenschaftliches Rechnen,
Beiträge zum Heinz-Billing-Preis 2001. Ed. by Theo Plesser and Volker Macho.

Vol. 58. GWDG-Bericht. Göttingen: Ges. für Wiss. Datenverarbeitung, pp. 43–

70.

Eklund, Anders, Thomas E Nichols, and Hans Knutsson (2016). “Cluster failure:

Why fMRI inferences for spatial extent have in�ated false-positive rates”. In:

Proceedings of the national academy of sciences 113.28, pp. 7900–7905.

EPFL and IBM (2008). Blue Brain Project. Lausanne. url: http://bluebrain.
epfl.ch/.

Feldmann, Johannes et al. (2019). “All-optical spiking neurosynaptic networks

with self-learning capabilities”. In: Nature 569.7755, pp. 208–214.

Fonseca Guerra, Gabriel A. and Steve B. Furber (2017). “Using Stochastic Spiking

Neural Networks on SpiNNaker to Solve Constraint Satisfaction Problems”.

In: Frontiers in Neuroscience 11, p. 714. issn: 1662-453X. doi: 10.3389/fnins.
2017.00714. url: https://www.frontiersin.org/article/10.3389/
fnins.2017.00714.

Friedmann, Simon (2013). “A New Approach to Learning in Neuromorphic Hard-

ware”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

— (2015). Omnibus On-Chip Bus. forked from https://github.com/five-
elephants/omnibus. url: https://github.com/electronicvisions/
omnibus.

Furber, Steve B. et al. (2012). “Overview of the SpiNNaker System Architecture”.

In: IEEE Transactions on Computers 99.PrePrints. issn: 0018-9340. doi: http:
//doi.ieeecomputersociety.org/10.1109/TC.2012.142.

Gerstner, Wulfram and Werner Kistler (2002). Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge University Press.

Göltz, Julian et al. (2021). Fast and energy-e�cient neuromorphic deep learning
with �rst-spike times. arXiv: 1912.11443 [cs.NE].

Grüning, André and Sander M Bohte (2014). “Spiking neural networks: Principles

and challenges.” In: ESANN. Citeseer.

Hatton, Les (2007). “The chimera of software quality”. In: Computer 40.8, pp. 104–

103.

Häussermann, Patrick (2018). “Integration of the Slurm workload manager into

the BrainScaleS monitoring platform”. Bachelorarbeit. Universität Heidelberg.

Hazan, Hananel et al. (2018). “BindsNET: A Machine Learning-Oriented Spiking

Neural Networks Library in Python”. In: Frontiers in Neuroinformatics 12,

https://github.com/electronicvisions/pynn-brainscales/blob/master/brainscales2/pynn_brainscales/brainscales2/examples/single_neuron_demo.py
https://github.com/electronicvisions/pynn-brainscales/blob/master/brainscales2/pynn_brainscales/brainscales2/examples/single_neuron_demo.py
https://github.com/electronicvisions/pynn-brainscales/blob/master/brainscales2/pynn_brainscales/brainscales2/examples/single_neuron_demo.py
http://bluebrain.epfl.ch/
http://bluebrain.epfl.ch/
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.3389/fnins.2017.00714
https://www.frontiersin.org/article/10.3389/fnins.2017.00714
https://www.frontiersin.org/article/10.3389/fnins.2017.00714
https://github.com/five-elephants/omnibus
https://github.com/five-elephants/omnibus
https://github.com/electronicvisions/omnibus
https://github.com/electronicvisions/omnibus
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2012.142
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2012.142
https://arxiv.org/abs/1912.11443

138

p. 89. issn: 1662-5196. doi: 10.3389/fninf.2018.00089. url: https://www.
frontiersin.org/article/10.3389/fninf.2018.00089.

HBP (2021).HBPNeuromorphic Guidebook single demo example. https://electronicvisions.
github.io/hbp-sp9-guidebook/pm/using_pm_newflow.html#running-
tenpynn-scripts. accessed August 11, 2021.

He, Horace (2019). “The State of Machine Learning Frameworks in 2019”. In: The
Gradient.

Hebb, Donald O. (1949). The Organization of Behaviour. New York: Wiley.

Heimbrecht, Arthur (Mar. 2017). “Compiler Support for the BrainScaleS Plasticity

Processor”. Bachelorarbeit. Universität Heidelberg.

Hines, M.L. and N.T. Carnevale (2003). “The NEURON simulation environment.”

In: The Handbook of Brain Theory and Neural Networks. M.A. Arbib, pp. 769–

773.

Hock, Matthias (2014). “Modern Semiconductor Technologies for Neuromorphic

Hardware”. PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Hodgkin, Alan Lloyd and Andrew F. Huxley (Aug. 1952). “A quantitative de-

scription of membrane current and its application to conduction and excita-

tion in nerve.” In: J Physiol 117.4, pp. 500–544. issn: 0022-3751. url: http:
//view.ncbi.nlm.nih.gov/pubmed/12991237.

Hu, Miao et al. (2014). “Memristor crossbar-based neuromorphic computing sys-

tem: A case study”. In: IEEE transactions on neural networks and learning
systems 25.10, pp. 1864–1878.

IEEE (2001). “IEEE Standard Test Access Port and Boundary-Scan Architecture”.

In: IEEE Std 1149.1-2001, pp. i–200. doi: 10.1109/IEEESTD.2001.92950.

Indiveri, Giacomo et al. (2011). “Neuromorphic silicon neuron circuits”. In: Fron-
tiers in Neuroscience 5.0. issn: 1662-453X. doi: 10.3389/fnins.2011.00073.

url: http://www.frontiersin.org/Journal/Abstract.aspx?s=755&
name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.
00073.

Insel, Thomas R, Story C Landis, and Francis S Collins (2013). “The NIH brain

initiative”. In: Science 340.6133, pp. 687–688.

Intel (Mar. 18, 2020). “Intel Scales Neuromorphic Research System to 100 Million

Neurons”. In: url: https://newsroom.intel.com/news/intel-scales-
neuromorphic-research-system-100-million-neurons/.

Jeltsch, Sebastian (2014). “A Scalable Work�ow for a Con�gurable Neuromorphic

Platform”. PhD thesis. Universität Heidelberg.

Jouppi, Norman P et al. (2017). “In-datacenter performance analysis of a tensor

processing unit”. In: Proceedings of the 44th Annual International Symposium
on Computer Architecture, pp. 1–12.

Kaiser, Jakob et al. (2021). “Emulating dendritic computing paradigms on analog

neuromorphic hardware”. Publication in Neuroscience pending.

https://doi.org/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/using_pm_newflow.html#running-tenpynn-scripts
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/using_pm_newflow.html#running-tenpynn-scripts
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/using_pm_newflow.html#running-tenpynn-scripts
http://view.ncbi.nlm.nih.gov/pubmed/12991237
http://view.ncbi.nlm.nih.gov/pubmed/12991237
https://doi.org/10.1109/IEEESTD.2001.92950
https://doi.org/10.3389/fnins.2011.00073
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.00073
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.00073
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic%20engineering&ART_DOI=10.3389/fnins.2011.00073
https://newsroom.intel.com/news/intel-scales-neuromorphic-research-system-100-million-neurons/
https://newsroom.intel.com/news/intel-scales-neuromorphic-research-system-100-million-neurons/

139

Karasenko, Vitali (2020). “Von Neumann bottlenecks in non-von Neumann com-

puting architectures”. PhD thesis. Universität Heidelberg.

Klähn, Johann (2020). genpybind software v0.2.0. doi: 10.5281/zenodo.372674.

url: https://github.com/kljohann/genpybind.

Klassert, Robert et al. (2021). “Variational learning of quantum ground states on

spiking neuromorphic hardware”. In: in prep.
Kleider, Mitja (2017). “Neuron Circuit Characterization in a Neuromorphic Sys-

tem”. HD-KIP 17-135. PhD thesis. Universität Heidelberg. url: http://www.
kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3657.

Koke, Christoph (2017). “Device Variability in Synapses of Neuromorphic Circuits”.

PhD thesis. Ruprecht-Karls-Universität Heidelberg.

Korcsak-Gorzo, Agnes et al. (2021). Cortical oscillations implement a backbone for
sampling-based computation in spiking neural networks. arXiv: 2006.11099
[q-bio.NC].

Krizhevsky, Alex, Ilya Sutskever, and Geo�rey E. Hinton (2012). “ImageNet Clas-

si�cation with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates,

Inc., pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

Kugele, Alexander (2018). “Solving the Constraint Satisfaction Problem Sudoku

on Neuromorphic Hardware”. Master’s thesis. Universität Heidelberg.

Kulkarni, Shruti R et al. (2021). “Benchmarking the performance of neuromorphic

and spiking neural network simulators”. In: Neurocomputing 447, pp. 145–160.

Kutny, Daniel (2018). “Development of a Modern Monitoring Platform for the

BrainScaleS System”. Bachelor thesis. Ruprecht-Karls-Universität Heidelberg.

LeCun, Yann, Yoshua Bengio, and Geo�rey Hinton (May 2015). “Deep learning”.

In: Nature 521.7553, pp. 436–444. issn: 0028-0836. doi: http://dx.doi.org/
10.1038/nature1453910.1038/nature14539.

LeCun, Yann and Corinna Cortes (1998). The MNIST database of handwritten digits.
Leng, Luziwei et al. (2018). “Spiking neurons with short-term synaptic plasticity

form superior generative networks”. In: Scienti�c reports 8.1, pp. 1–11.

Leveson, Nancy G and Clark S Turner (1993). “An investigation of the Therac-25

accidents”. In: Computer 26.7, pp. 18–41.

Li, Yibo et al. (2018). “Review of memristor devices in neuromorphic computing:

materials sciences and device challenges”. In: Journal of Physics D: Applied
Physics 51.50, p. 503002.

Lin, Chit-Kwan et al. (2018). “Programming Spiking Neural Networks on Intel’s

Loihi”. In: Computer 51.3, pp. 52–61.

London, M. and M. Häusser (2005). “Dendritic computation”. In: Annu. Rev. Neu-
rosci. 28, pp. 503–532.

https://doi.org/10.5281/zenodo.372674
https://github.com/kljohann/genpybind
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3657
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3657
https://arxiv.org/abs/2006.11099
https://arxiv.org/abs/2006.11099
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/http://dx.doi.org/10.1038/nature14539 10.1038/nature14539
https://doi.org/http://dx.doi.org/10.1038/nature14539 10.1038/nature14539

140

Maass, W. (2014). “Noise as a Resource for Computation and Learning in Networks

of Spiking Neurons”. In: Proceedings of the IEEE 102, pp. 860–880.

Markram, H. (2012). “The Human Brain Project”. In: Scienti�c American 306.6,

pp. 50–55.

Markram, H. et al. (1997). “Regulation of Synaptic E�cacy By Coincidence of

Postsynaptic Aps.” In: Science 275, pp. 213–215.

Markram, Henry et al. (2004). “Interneurons of the neocortical inhibitory system”.

In: Nature Reviews Neuroscience 5.10, pp. 793–807.

Mauch, Christian (2016). “Commissioning of a Neuromorphic Computing Plat-

form”. Masterthesis. Universität Heidelberg.

Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison Wesley.

— (1990). “Neuromorphic Electronic Systems”. In: Proceedings of the IEEE 78,

pp. 1629–1636.

Meehan, Paul (2019). “Analyzing and optimizing the con�guration time of the

BrainScaleS-1 system by implementing di�erential con�guration”. Bachelor

thesis. Universität Heidelberg.

Merali, Zeeya (Oct. 2010). “Computational science: ...Error”. In:Nature 467, pp. 775–

7. doi: 10.1038/467775a.

Merolla, Paul A et al. (2014). “A million spiking-neuron integrated circuit with a

scalable communication network and interface”. In: Science 345.6197, pp. 668–

673.

Minami, Shohei, Toshino Endo, and Akihiro Nomura (2021). “Measurement and

Modeling of Performance of HPC Applications towards Overcommitting

Scheduling Systems”. In: JSSPP. url: https : / / jsspp . org / papers21 /
nomura.pdf.

Miyasho, Tsugumichi et al. (2001). “Low-threshold potassium channels and a

low-threshold calcium channel regulate Ca2+ spike �ring in the dendrites

of cerebellar Purkinje neurons: a modeling study”. In: Brain research 891.1-2,

pp. 106–115.

Moore, G. E. (Apr. 1965). “Cramming more components onto integrated circuits”.

In: Electronics 38.8.

Müller, Eric Christian (2014). “Novel Operation Modes of Accelerated Neuromor-

phic Hardware”. HD-KIP 14-98. PhD thesis. Ruprecht-Karls-Universität Heidel-

berg. url: http://www.kip.uni-heidelberg.de/Veroeffentlichungen/
details.php?id=3112.

Müller, Eric et al. (Mar. 2020a). “Extending BrainScaleS OS for BrainScaleS-2”. In:

arXiv preprint. arXiv: 2003.13750 [cs.NE]. url: http://arxiv.org/abs/
2003.13750.

Müller, Eric et al. (Mar. 2020b). “The Operating System of the Neuromorphic

BrainScaleS-1 System”. In: arXiv preprint. arXiv: 2003.13749 [cs.NE]. url:

http://arxiv.org/abs/2003.13749.

https://doi.org/10.1038/467775a
https://jsspp.org/papers21/nomura.pdf
https://jsspp.org/papers21/nomura.pdf
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
https://arxiv.org/abs/2003.13750
http://arxiv.org/abs/2003.13750
http://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13749
http://arxiv.org/abs/2003.13749

141

— (Mar. 2020c). “The Operating System of the Neuromorphic BrainScaleS-1

System”. In: arXiv preprint. arXiv: 2003.13749 [cs.NE].

Neftci, Emre O., Hesham Mostafa, and Friedemann Zenke (2019). “Surrogate Gra-

dient Learning in Spiking Neural Networks: Bringing the Power of Gradient-

Based Optimization to Spiking Neural Networks”. In: IEEE Signal Processing
Magazine 36.6, pp. 51–63. doi: 10.1109/MSP.2019.2931595.

Neumann, J. von (1945). First draft of a report on the EDVAC. Tech. rep. Transscript

in: M. D. Godfrey: Introduction to “The �rst draft report on the EDVAC” by

John von Neumann. IEEE Annals of the History of Computing 15(4), 27–75

(1993). Moore School of Electrical Engeneering Library, University of Penn-

sylvania.

Neuwirth, Sarah et al. (2015). “Scalable communication architecture for network-

attached accelerators”. In: 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, pp. 627–638.

Nock, Alexander (2021). “Migration and Enhancement of the Advanced Lab Course

on Neuromorphic Computing”. Bachelor thesis. Ruprecht-Karls-Universität

Heidelberg.

OpenAI et al. (2019). Dota 2 with Large Scale Deep Reinforcement Learning. arXiv:

1912.06680 [cs.LG].

Ostrau, Christoph et al. (July 2019). “Comparing Neuromorphic Systems by Solving

Sudoku Problems”. In: pp. 521–527. doi: 10.1109/HPCS48598.2019.9188207.

Paszke, Adam et al. (2019a). “PyTorch: An Imperative Style, High-Performance

Deep Learning Library”. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach et al. Curran Associates, Inc., pp. 8024–8035.

— (2019b). “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by

H. Wallach et al. Curran Associates, Inc., pp. 8024–8035. url: http : / /
papers . neurips . cc / paper / 9015 - pytorch - an - imperative - style -
high-performance-deep-learning-library.pdf.

Philipp, S. et al. (Sept. 2007). “Interconnecting VLSI Spiking Neural Networks

Using Isochronous Connections”. In: Proceedings of the 9th International Work-
Conference onArti�cial Neural Networks (IWANN’2007). Vol. LNCS 4507. Springer

Verlag, pp. 471–478.

Pilz, Lukas (2016). “Towards Fast Iterative Learning On The BrainScaleS Neuro-

morphic Hardware System”. Bachelor thesis. Universität Heidelberg.

Plank, Philipp et al. (2021). A Long Short-Term Memory for AI Applications in
Spike-based Neuromorphic Hardware. arXiv: 2107.03992 [cs.NE].

Pronold, Jari et al. (2021a). Routing brain tra�c through the von Neumann bottle-
neck: E�cient cache usage in spiking neural network simulation code on general
purpose computers. arXiv: 2109.12855 [cs.DC].

https://arxiv.org/abs/2003.13749
https://doi.org/10.1109/MSP.2019.2931595
https://arxiv.org/abs/1912.06680
https://doi.org/10.1109/HPCS48598.2019.9188207
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2107.03992
https://arxiv.org/abs/2109.12855

142

Pronold, Jari et al. (2021b). Routing brain tra�c through the von Neumann bottle-
neck: Parallel sorting and refactoring. arXiv: 2109.11358 [q-bio.NC].

Resch, Michael M et al. (2014). Sustained Simulation Performance 2014: Proceed-
ings of the Joint Workshop on Sustained Simulation Performance, University of
Stuttgart (HLRS) and Tohoku University, 2014. Springer.

Rhodes, Oliver et al. (2018). “sPyNNaker: A Software Package for Running PyNN

Simulations on SpiNNaker”. In: Frontiers in Neuroscience 12, p. 816. issn: 1662-

453X. doi: 10.3389/fnins.2018.00816. url: https://www.frontiersin.
org/article/10.3389/fnins.2018.00816.

Rueckauer, Bodo et al. (Jan. 2021). “NxTF: An API and Compiler for Deep Spiking

Neural Networks on Intel Loihi”. In: arXiv preprint.
Rumelhart, D. E., G. E. Hinton, and Williams R.J. (1986). “Learning internal rep-

resentations by error propagation”. In: Parallel Distributed Processing: Explo-
rations in the Microstructures of Cognition I. Ed. by D. E. Rumelhart and J. L.

McClelland, pp. 318–362.

Schemmel, J. et al. (2006). “Implementing Synaptic Plasticity in a VLSI Spiking Neu-

ral Network Model”. In: Proceedings of the 2006 International Joint Conference
on Neural Networks (IJCNN). IEEE Press.

Schemmel, Johannes et al. (2010). “A Wafer-Scale Neuromorphic Hardware System

for Large-Scale Neural Modeling”. In: Proceedings of the 2010 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1947–1950.

Schemmel, Johannes et al. (2020). “Accelerated Analog Neuromorphic Computing”.

In: arXiv preprint. arXiv: 2003.11996 [cs.NE]. url: https://arxiv.org/
abs/2003.11996.

Schreiber, Korbinian (Jan. 2021). “Accelerated neuromorphic cybernetics”. PhD

thesis. Universität Heidelberg.

Schuman, Catherine D. et al. (2017). A Survey of Neuromorphic Computing and
Neural Networks in Hardware. eprint: arXiv:1705.06963.

Shi Doku (n.d.). http://sudopedia.enjoysudoku.com/Shi_Doku.html. accessed Aug

27, 2021.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks

and tree search”. In: Nature 529.7587, pp. 484–489.

Simakov, Nikolay A. et al. (2018). “A Slurm Simulator: Implementation and Para-

metric Analysis”. In: High Performance Computing Systems. Performance Mod-
eling, Benchmarking, and Simulation. Ed. by Stephen Jarvis, Steven Wright,

and Simon Hammond. Springer International Publishing, pp. 197–217.

Spilger, Philipp (2018). “Spike-based Expectation Maximization on the HICANN-

DLSv2 Neuromorphic Chip”. Bachelorarbeit. Universität Heidelberg.

— (Feb. 2021). “From Neural Network Descriptions to Neuromorphic Hardware

— A Signal-Flow Graph Compiler Approach”. Master’s thesis. Universität

Heidelberg.

https://arxiv.org/abs/2109.11358
https://doi.org/10.3389/fnins.2018.00816
https://www.frontiersin.org/article/10.3389/fnins.2018.00816
https://www.frontiersin.org/article/10.3389/fnins.2018.00816
https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/2003.11996
arXiv:1705.06963

143

Stein, R. (Jan. 1967). “Some Models of Neuronal Variability”. In: Biophysical Journal
7.1, pp. 37–68. issn: 00063495. doi: 10.1016/S0006-3495(67)86574-3. url:

http://dx.doi.org/10.1016/S0006-3495(67)86574-3.

Stimberg, Marcel, Romain Brette, and Dan Fm Goodman (Aug. 2019). “Brian 2,

an intuitive and e�cient neural simulator”. In: eLife 8. doi: 10.7554/eLife.
47314.

Stradmann, Yannik et al. (Mar. 2021). “Demonstrating Analog Inference on the

BrainScaleS-2 Mobile System”. In: arXiv preprint. arXiv: 2103.15960 [cs.AR].

Tan, Kar-Han and Boon Pang Lim (2018). “The arti�cial intelligence renaissance:

deep learning and the road to human-Level machine intelligence”. In: APSIPA
Transactions on Signal and Information Processing 7, e6. doi: 10.1017/ATSIP.
2018.6.

TBB (2021). TBB �ow-graph documentation. https://software.intel.com/
content/www/us/en/develop/documentation/tbb- documentation/
top/intel-threading-building-blocks-developer-reference/flow-
graph/overview.html. accessed September 18, 2021.

Thakur, Chetan Singh et al. (2018). “Large-Scale Neuromorphic Spiking Array

Processors: A Quest to Mimic the Brain”. In: Frontiers in Neuroscience 12,

p. 891. issn: 1662-453X. doi: 10.3389/fnins.2018.00891. url: https:
//www.frontiersin.org/article/10.3389/fnins.2018.00891.

Theis, Thomas N. and H.-S. Philip Wong (2017). “The End of Moore’s Law: A New

Beginning for Information Technology”. In: Computing in Science Engineering
19.2, pp. 41–50. doi: 10.1109/MCSE.2017.29.

Tsodyks, M. and H. Markram (Jan. 1997). “The neural code between neocorti-

cal pyramidal neurons depends on neurotransmitter release probability”. In:

Proceedings of the national academy of science USA 94, pp. 719–723.

Venters, Colin C et al. (2014). “Software sustainability: The modern tower of

babel”. In: CEUR Workshop Proceedings. Vol. 1216. CEUR, pp. 7–12.

Wang, Runchun M, Chetan S Thakur, and André van Schaik (2018). “An FPGA-

based massively parallel neuromorphic cortex simulator”. In: Frontiers in
neuroscience 12, p. 213.

Werbos, Paul J (1990). “Backpropagation through time: what it does and how to

do it”. In: Proceedings of the IEEE 78.10, pp. 1550–1560.

Wunderlich, Timo et al. (2019). “Demonstrating Advantages of Neuromorphic

Computation: A Pilot Study”. In: Frontiers in Neuroscience 13, p. 260. issn: 1662-

453X. doi: 10.3389/fnins.2019.00260. url: https://www.frontiersin.
org/article/10.3389/fnins.2019.00260.

Xu, Bo, YuBing Gong, and BaoYing Wang (2013). “Delay-induced �ring behavior

and transitions in adaptive neuronal networks with two types of synapses”.

In: Science China Chemistry 56.2, pp. 222–229.

https://doi.org/10.1016/S0006-3495(67)86574-3
http://dx.doi.org/10.1016/S0006-3495(67)86574-3
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://arxiv.org/abs/2103.15960
https://doi.org/10.1017/ATSIP.2018.6
https://doi.org/10.1017/ATSIP.2018.6
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-reference/flow-graph/overview.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-reference/flow-graph/overview.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-reference/flow-graph/overview.html
https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-reference/flow-graph/overview.html
https://doi.org/10.3389/fnins.2018.00891
https://www.frontiersin.org/article/10.3389/fnins.2018.00891
https://www.frontiersin.org/article/10.3389/fnins.2018.00891
https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260

144

Yakopcic, Chris et al. (2020). “Solving Constraint Satisfaction Problems Using the

Loihi Spiking Neuromorphic Processor”. In: 2020 Design, Automation Test in
Europe Conference Exhibition (DATE).

Yamamoto, Keiji et al. (2014). “The K computer Operations: Experiences and

Statistics”. In: Procedia Computer Science 29. 2014 International Conference

on Computational Science, pp. 576–585. issn: 1877-0509. doi: https://doi.
org/10.1016/j.procs.2014.05.052. url: https://www.sciencedirect.
com/science/article/pii/S1877050914002294.

Yamazaki, Tadashi, Jun Igarashi, and Hiroshi Yamaura (2021). “Human-scale

Brain Simulation via Supercomputer: A Case Study on the Cerebellum”. In:

Neuroscience 462. In Memoriam: Masao Ito—A Visionary Neuroscientist with

a Passion for the Cerebellum, pp. 235–246. issn: 0306-4522. doi: https://
doi.org/10.1016/j.neuroscience.2021.01.014. url: https://www.
sciencedirect.com/science/article/pii/S030645222100021X.

Yavuz, Esin, James Turner, and Thomas Nowotny (2016). “GeNN: a code generation

framework for accelerated brain simulations”. In: Scienti�c reports 6.1, pp. 1–

14.

Young, Aaron R et al. (2019). “A review of spiking neuromorphic hardware com-

munication systems”. In: IEEE Access 7, pp. 135606–135620.

Zenke, Friedemann and Wulfram Gerstner (2014). “Limits to high-speed sim-

ulations of spiking neural networks using general-purpose computers”. In:

Frontiers in Neuroinformatics 8.76. issn: 1662-5196. doi: 10.3389/fninf.2014.
00076. url: http://www.frontiersin.org/neuroinformatics/10.3389/
fninf.2014.00076/abstract.

Zhou, Xiaobing et al. (2013). “Exploring Distributed Resource Allocation Tech-

niques in the SLURM Job Management System”. In:

https://doi.org/https://doi.org/10.1016/j.procs.2014.05.052
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.052
https://www.sciencedirect.com/science/article/pii/S1877050914002294
https://www.sciencedirect.com/science/article/pii/S1877050914002294
https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014
https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.01.014
https://www.sciencedirect.com/science/article/pii/S030645222100021X
https://www.sciencedirect.com/science/article/pii/S030645222100021X
https://doi.org/10.3389/fninf.2014.00076
https://doi.org/10.3389/fninf.2014.00076
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00076/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2014.00076/abstract

145

Acknowledgments

The author would like to extend his gratitude to the following people:

The late Prof. Dr. Karlheinz Meier whose clear guidance made all the outstanding

work conducted by the Electronic Vision(s) group possible.

Dr. habil. Johannes Schemmel for continuing the vision of Prof. Meier and for

taking over the supervision of my thesis.

Prof. Dr. Hans-Christian Schultz-Coulon for agreeing to review this work as well

as Prof. Dr. Tilman Plehn and Prof. Dr. Jürgen Hesser for participating in my oral

examination.

Dr. Eric Müller for his invaluable contributions to the group as well as teaching

me the ways of sustainable research software development.

All my proofreaders for helping me, namely Eric, Yannik, Andi, Philipp, Billi, Oli

and Sebastian.

All students I had the pleasure to supervise for their work throughout this thesis.

The container crew (including the Breitwieser enclave) for cultivating a very

joyful work environment.

My Slurm brother Oli for tooling our way to greatness.

My desk buddy Philipp for providing a very short feedback loop.

Joscha for starting the visionary brewing culture.

All the wonderful people who took part in visionary recreational activities that

kept me sane through the pandemic.

All contributors to the visionary infrastructure for sustaining a productive work-

�ow.

All the Visionaries for making, facilitating and putting the systems to good use.

My parents for supporting me in all my life decisions that lead me here.

GG EZ

146

Funding Statement

This research has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under grant agree-

ment Nos. 720270, 785907 and 945539 (Human Brain Project, HBP)

and from the European Union Seventh Framework Programme (FP7)

under grant agreement no 269921 (BrainScaleS).

147

Statement of Originality (Erklärung)

I certify that this thesis, and the research to which it refers, are

the product of my own work. Any ideas or quotations from

the work of other people, published or otherwise, are fully

acknowledged in accordance with the standard referencing

practices of the discipline.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel

benutzt habe.

Heidelberg, October 12, 2021

Signature (Unterschrift). .

	Introduction
	Background
	Spiking Neural Networks
	The Leaky Integrate-and-Fire Model
	The Adaptive Exponential Integrate-and-Fire Model
	Multi-Compartment Neuron Models
	Synaptic Input and Plasticity
	Network Topologies

	Neuromorphic Computing Platforms
	Computational Neuroscience Workflow
	Neuromorphic Approaches
	BrainScaleS-1
	BrainScaleS-2

	Software Development Concepts

	Neuromorphic Software Architecture
	Architecture
	Goals and Requirements
	Software Stack Overview
	Prior Work
	Collaborative Work

	Communication
	Connection Interface
	Back-Ends

	Hardware Abstraction
	Coordinates
	Container
	Runtime Control
	Hardware Database
	Performance
	Example Studies

	Experiment Description
	Signal-Flow Graph Description
	Abstract Network Description

	Modeling Wrapper
	PyNN
	PyTorch

	Full Stack Analysis
	Scaling with Run Time
	Scaling with Network Topology
	Impact on Experiment Workflow

	Sudoku Solver
	Experiment Setup
	Chosen Sudoku Puzzles
	Network Analysis
	Run Time Performance
	Outlook

	Neuromorphic Platform Operation
	Resource Management
	Prelude
	Resource Scheduler Configuration
	Baseline Performance
	Resource Isolation
	Native Resource Request API
	Automated Neighbor Initialization
	Scheduler Utilization Analysis
	Micro Scheduler

	Monitoring and Alerting
	Aggregation and Storage
	Visualization
	Alerting
	Findings

	Conclusion and Outlook
	Contributions
	Publications
	Supervision

	Measurement Conditions
	Software State for Performed Measurements
	BrainScaleS-1
	BrainScaleS-2
	Slurm
	Sudoku Solver

	Compute Node Specifications

	Acronyms
	Bibliography

