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Funktionale Methoden für kosmische Strukturentstehung
Kurzreferat

Diese Dissertation befasst sich mit der Untersuchung kosmischer Strukturentstehung zu spä-
ten Zeiten und auf großen Längenskalen, unter der Anwendung von nicht-störungstheoretischen
funktionalen Methoden auf eine feldtheoretische Beschreibung von Dunkler Materie. Um Phä-
nomene beschreiben zu können, die sich nicht mit der herkömmlichen Näherung einer idealen
Flüssigkeit erklären lassen, wird die Beschreibung der Dunklen Materie mittels kinetischer Theo-
rie um Geschwindigkeitsdispersions-Freiheitsgrade erweitert. Als effektive Theorie erlaubt diese
es, die Dynamik von Dunkler Materie über das sich Kreuzen von Teilchen-Trajektorien hinaus
zu beschreiben, wohingegen die Näherung einer idealen Flüssigkeit scheitert. Um nichtlineare
Skalen zu untersuchen, bei denen gewöhnliche störungstheoretische Methoden versagen, wer-
den die Dyson-Schwinger-Gleichung und die funktionale Renormierungsgruppe genutzt. Diese
erlauben es auf natürliche Weise in nicht-störungstheoretischen Näherungen zu arbeiten, die
notwendig sind, um die physikalischen Prozesse auf nichtlinearen Skalen zu beschreiben. Die
funktionale Renormierungsgruppe wird genutzt, um den Sektor der großen Wellenzahlen mittels
Ward-Identitäten zu lösen, welche auf eine erweiterte Version von Galilei-Invarianz zurückzu-
führen sind. Ebenso wird die funktionale Renormierungsgruppe auf eine effektive Beschreibung
von Dunkler Materie angewendet, die Dynamiken beschreibt, die lokal in der Zeit sind. Wei-
terhin wird die Entstehung und Fortentwicklung von Vortizität und Geschwindigkeitsdispersi-
on von Dunkler Materie mit der Dyson-Schwinger-Gleichung untersucht, was zu einer nicht-
störungstheoretischen Vorhersage von Korrelationen führt.

Functional methods for cosmic structure formation
Abstract

This thesis is concerned with the investigation of late-time large-scale cosmic structure formation
by applying non-perturbative functional methods to a field-theoretic description of dark matter.
To account for phenomena beyond the standard perfect fluid approximation, the kinetic theory
description of dark matter is extended by including velocity dispersion degrees of freedom. As an
effective theory description, this naturally allows to describe the evolution of dark matter after
shell-crossing where the perfect fluid approximation breaks down. To probe the non-linear regime
of cosmic structure formation where standard perturbative methods fail, the Dyson–Schwinger
equation and the functional renormalisation group are employed. These naturally allow for
non-perturbative approximation schemes that are necessary to capture the relevant physics at
non-linear scales. The functional renormalisation group is used to solve the large wave number
sector using Ward identities related to an extended version of Galilean invariance as well as to
investigate time-local dynamics for an effective fluid description of dark matter. Moreover, the
emergence and evolution of dark matter vorticity and velocity dispersion are studied with the
Dyson–Schwinger equation, leading to the non-perturbative prediction of correlations from first
principles.
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1 General introduction

One of the main objectives of contemporary cosmology is to understand the forma-
tion and evolution of the large-scale structure of the Universe. Observations show a
rich variety of objects, from starts to galaxies, galaxy groups to clusters, organised
into even larger structures forming filaments separated by immense voids that per-
meate the Universe to form the so-called cosmic web. Surveys of the cosmos indicate
that the large-scale structure of the Universe appears to be statistically homogeneous
and isotropic in space, a notion also known as the cosmological principle.

In the cosmological concordance model it is assumed that the energy content of
the late-time Universe is dominated by two contributions. The larger part is made
up of an unknown form of energy that is responsible for the accelerated expansion of
the Universe and is dubbed dark energy [1]. The remaining energy is almost entirely
made up of matter, the dominant part of which interacts only weakly, if at all, with
three of the four fundamental interactions of nature. The hypothetical form of dark
matter interacts only gravitationally, at least to leading-order approximation, and is
responsible for the observed large-scale structure of the Universe. It is believed that
quantum fluctuations in the energy density of the primordial Universe seed matter
perturbations which grow under the influence of gravity over the course of time to
form the structures which are observed today [2, 3].

The key to a description of late-time cosmic structure formation therefore lies
within understanding the gravitational dynamics of dark matter. To this end, a
rather useful tool are 𝑁-body simulations which compute numerical solutions for
the dynamics of gravitationally interacting particles. While 𝑁-body simulations
can give a profound knowledge of the large-scale structure of the Universe [4], they
are necessarily subject to spurious effects such as the finite simulation volume or
the amount of simulated particles. Moreover, they give very little insight into the
physical processes responsible for structure formation. Ideally, one would like to
have an effective description of dark matter that can capture the process of structure
formation without tracing the microscopic degrees of freedom but rather describes
dark matter gravitational dynamics in terms of a coarse-gained model that accounts
for the relevant physical phenomena.

Such a description can be given in a kinetic theory approach which describes an
ensemble of self-gravitating classical point particles. By coarse-gaining the micro-
scopic degrees of freedom, dark matter can be described in terms of macroscopic
degrees of freedom that quantify the energy density, pressure, heat current, stress
and other properties of an effective dark matter description. Typically, one is inter-
ested in a finite amount of these properties, rendering an effective hydrodynamical
description of dark matter, sometimes called the cosmological fluid.
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1 General introduction

In a kinetic theory description of dark matter the state of the theory is described
by a phase-space distribution function which obeys the Vlasov–Poisson equations [5].
In the single-stream approximation dark matter is modelled by a perfect pressureless
fluid which is preserved by the Vlasov–Poisson equations, in the sense that no other
degrees of freedom are sourced if initially absent. However, it is an apparent self-
consistency due to the phenomenon of shell-crossing. During gravitational collapse,
dark matter particles meet in position space and generate a non-trivial velocity
dispersion tensor which indicates the break down of the single-stream approximation.
While the perfect pressureless fluid description provides a surprisingly good account
of the early stages of gravitational instabilities, one naturally longs for a description
that is capable to capture the physics of a multi-stream flow. Ultimately, this relies
on including some notion of velocity dispersion. To this end, various approaches have
been developed, ranging from a description including the velocity dispersion tensor
[6–11] through effective terms parametrising the effect of velocity dispersion [12],
through functional approaches, either over the phase-space distribution function [13]
or the Lagrangian displacement field [14], to using the Schrödinger method [15,16],
to name only a few.

Since it is believed that the large-scale structure of the Universe is the outcome
of primordial quantum fluctuations, one often adopts a statistical description for
dark matter. This can be understood as describing an ensemble of cosmic histories,
only one realisation of which is the Universe that is observed. Due to the stochastic
nature of the initial conditions, one is typically interested in correlation functions
that quantify the properties of cosmic structure on different length scales. A major
obstacle for a prediction of the correlation functions is that dark matter gravitational
dynamics is non-linear. In such a setting it is in general not possible to straight-
forwardly calculate correlation functions. Typically, the linear part of the dynamics
can be solved while non-linearities are taken perturbatively into account [17]. For-
mally, this is understood as expanding the theory around the linear solutions which
is naturally only sensible as long as the deviations from linear theory are small. This
is only the case for the largest of cosmic scales where the deviation from a homoge-
neous and isotropic background are small. To also describe smaller scales, different
methods have been proposed. These include various resummation schemes [18–26],
two-particle irreducible methods [27–30], direct interaction approximations [31–33],
the renormalisation group [34–38], effective theories [39–42], higher-order perturba-
tion theory and extensions thereof [43–45] and kinetic field theory [46–48], to name
only a few.

In the light of future surveys, such as the Euclid mission, which are probing ever
increasingly smaller scales, it is necessary to have a description of cosmic structure
formation that can go beyond the limitations of the single-stream approximation
and standard perturbation theory. To this end, dark matter gravitational dynamics
in the kinetic picture can be formulated as a statistical field theory [27]. This
allows to make use of a lot of the methods that have been developed for quantum
field theories [49]. Although being a classical field theory, the formal analogies
allow to apply a large part of the machinery to the case of non-linear structure
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formation. In particular this includes non-perturbative functional methods that do
not rely on an expansion around linear theory. Most important in the following
are the Dyson–Schwinger equation [50–52] and the functional renormalisation group
[53]. These provide a framework in which the correlation functions characterising
the statistical properties of dark matter can be computed in a generically non-
perturbative manner and have been proven to be very useful for various phenomena
in quantum field theories and statistical mechanics [54, 55]. Both methods rely on
studying the effective action of the theory which in principle encodes all physical
information. While both methods in practice cannot be solved exactly, they allow
for approximation schemes that are generically non-perturbative.

In this thesis the gravitational dynamics of dark matter is investigated in a de-
scription beyond the single-stream approximation using non-perturbative functional
methods to probe the non-linear regime of cosmic structure formation with non-
perturbative methods. In chapter 2 the description of dark matter gravitational
dynamics in terms of general relativistic kinetic theory is reviewed and its Newto-
nian limit is derived. To model dark matter in terms of an effective description
that goes beyond the single-stream approximation, truncations of the phase-space
distribution function’s cumulant expansion that include the velocity dispersion ten-
sor are discussed. In chapter 3 the statistical description of dark matter moti-
vated from inflation is discussed and the relevant statistical concepts needed in
the subsequent chapters are introduced. In chapter 4 the statistical field theory for
dark matter gravitational dynamics is formulated and various perturbative and non-
perturbative approximation schemes are discussed. These include in particular the
Dyson–Schwinger equation and the functional renormalisation group which are used
in the following chapters to investigate the non-linear regime of cosmic structure
formation. In chapter 5 the large wave number sector of the functional renormali-
sation group is solved for the two-point correlation functions using Ward identities
that are related to an extended version of Galilean invariance. In chapter 6 the
Dyson–Schwinger equations are truncated in a self-consistent one-loop approxima-
tion that allows for a non-perturbative calculation of one- and two-point correlation
functions. These are computed for a dark matter description that includes veloc-
ity dispersion degrees of freedom to overcome the limitations of the perfect fluid
description. In chapter 7 the functional renormalisation group is investigated with
an ansatz for the effective action that corresponds to time-local effective dynamics.
The two-point correlation functions are computed with this ansatz and compared to
results obtained in other approximation schemes. Finally, in chapter 8 the insights
obtained throughout this thesis are discussed and an outlook for future directions is
given.
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2 Gravitational dynamics of dark matter

In this chapter the description of dark matter in terms of general relativistic kinetic
theory is reviewed. Starting from first principles, the Vlasov–Einstein equations are
derived describing the dynamics of matter and metric degrees of freedom. These are
studied for Friedmann–Lemaître–Robertson–Walker space-times that describe a ho-
mogeneous and isotropic background cosmology. Following, a perturbed space-time
is considered and the Vlasov–Einstein equations are investigated to first order in per-
turbations. Finally, the Newtonian limit leading to the Vlasov–Poisson equations
is discussed and the cumulant expansion of the kinetic theory phase-space distribu-
tion function is investigated. Truncations thereof are discussed and the perfect fluid
approximation is extended to include velocity dispersion degrees of freedom.

2.1 General relativistic kinetic theory

In the current understanding of nature, gravity is a geometrical property of space-
time which warps in the presence of energy. This is formalised in the general theory
of relativity which describes how space-time bends in the presence of energy and
momentum. In general, there are a rather large amount of contributions to the
energy content of the Universe. Although the underlying microscopic physics of all
these contributions is in itself interesting, it can be sufficient to describe the different
contributions by means of effective theories.

A rather good developed theory is the kinetic theory of classical point particles,
being able to describe a wide range of physical phenomena. Kinetic theory relies
on the assumption that there is a hierarchy of scale such that one can distinguish
between short and long ranged forces, meaning that the mean free path between
short ranged interactions is much larger than the range of those interactions, in
some way saying the system is dilute. The short range interactions can then be
treated as point particle collisions while the large range interactions are described
as an external force due to a potential field. Keeping track of the dynamics of single
particles is rather complicated and it is questionable whether this is even wanted.
Rather, one studies the average dynamics of an ensemble of states in the sense of
an effective theory as a macroscopic state. The state of the theory can be described
by an (average) phase-space distribution function, where the underlying microscopic
nature of the state and internal degrees of freedom such as spin are disregarded, in
the sense that they are already integrated out.
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2 Gravitational dynamics of dark matter

2.1.1 General relativity
Mathematically, space-time is modelled by a four-dimensional Lorentzian manifold
which is characterised by its metric tensor. In local coordinates 𝑥 the components of
the metric tensor are denoted 𝑔𝜇𝜈(𝑥) which locally describes the geometry of space-
time.1 In local coordinates the metric tensor can be specified by its line element,

d𝑠2 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 ≕ −𝑐2 d𝜏2
∗ , (2.1)

where 𝜏∗ is the proper time as measured by an observer at rest.2 In the absence of
any forces except for gravity, observers are said to be in free fall and according to
Einstein’s equivalence principle follow geodesics. Geodesics can be parametrised in
terms of an affine parameter which is particularly convenient chosen to be proper
time, at least for a massive observer. The world line 𝑥(𝜏∗) of a freely falling observer
is then given by the solution of the geodesic equation,

d2𝑥𝜇

d𝜏2
∗

+ 𝛤 𝜇
𝜌𝜎

d𝑥𝜌

d𝜏∗

d𝑥𝜎

d𝜏∗
= 0 . (2.2)

Here, 𝛤 𝜇
𝜌𝜎(𝑥) are the components of the Levi–Civita connection in coordinates 𝑥, giv-

ing a notation of how tangent spaces at different points in space-time are connected.
The so-called Christoffel symbols of the second kind are defined by

𝛤 𝜌
𝜇𝜈 ≔ 𝑔𝜌𝜎

2
(

𝜕𝑔𝜎𝜇

𝜕𝑥𝜈 + 𝜕𝑔𝜈𝜎
𝜕𝑥𝜇 −

𝜕𝑔𝜇𝜈

𝜕𝑥𝜎 ) . (2.3)

The central equations governing how the curvature of space-time is related to the
energy content are Einstein’s field equations [57],

𝐺𝜇𝜈 + 𝛬𝑔𝜇𝜈 = 𝜅 𝑇𝜇𝜈 , (2.4)

where 𝛬 the cosmological constant and 𝜅 ≔ 8𝜋𝐺N/𝑐4 is given in terms of the speed
of light 𝑐 and Newton’s gravitational constant 𝐺N. The left-hand side of Einstein’s
field equations (2.4) describes the geometry of space-time in terms of the Einstein
tensor 𝐺𝜇𝜈(𝑥) while the right-hand side specifies the energy content of space-time in
terms of the energy-momentum tensor 𝑇 𝜇𝜈(𝑥). The Einstein tensor is a non-linear
function of the metric tensor and its components are defined as

𝐺𝜇𝜈 ≔ 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 , (2.5)

which in turn are defined in terms of the Ricci curvature tensor,

𝑅𝜇𝜈 ≔ 𝛤 𝜌
𝜇𝜈,𝜌 − 𝛤 𝜌

𝜌𝜇,𝜈 + 𝛤 𝜌
𝜇𝜈𝛤 𝜎

𝜌𝜎 − 𝛤 𝜌
𝜎𝜇𝛤 𝜎

𝜈𝜌 , (2.6)
1Greek indices run from zero to three whereas Latin indices from the middle of the alphabet run

from one to three and Einstein’s summation convention is employed where repeated indices
within the same term are summed over.

2The metric signature convention (−, +, +, +) is used and the MTW sign convention (+, +, +) is
adopted [56].
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2.1 General relativistic kinetic theory

and scalar curvature,
𝑅 ≔ 𝑔𝜇𝜈𝑅𝜇𝜈 . (2.7)

The Einstein field equations are a system of ten coupled non-linear hyperbolic-
elliptic partial differential equations which describe the dynamics the metric degrees
of freedom.

For an empty space-time the Einstein field equations can be solved given suitable
initial data. Naturally, the Universe is not empty but rather filled with all sorts of
energy. Although local energy-momentum conservation is incorporated in general
relativity due to the Bianchi identities, it is not sufficient to describe the dynamics
of a general energy content since the energy-momentum tensor has ten degrees of
freedom and energy-momentum conservation only supplies four equations.

2.1.2 Kinetic theory

In the following it is assumed that space-time is filled exclusively with an ensemble
of classical point particles of rest mass 𝑚 which admit a kinetic theory description.3
The four-momentum of a particle of rest mass 𝑚 is given by the tangent vector
𝑝𝜇 = 𝑚 d𝑥𝜇/d𝜏∗ fulfilling the on-shell constraint

𝑔𝜇𝜈𝑝𝜇𝑝𝜈 + 𝑚2𝑐2 = 0 , −𝑝𝜇𝑢𝜇 > 0 , (2.8)

where 𝑢𝜇 is a future-directed time-like vector field that is normalised to 𝑢𝜇𝑢𝜇 = −1.4
The phase-space can be given canonical local coordinates (𝑥𝜇, 𝑝𝜇) in terms of the
conjugate momentum 𝑝𝜇.5 The state of the theory is described by a one-particle
phase-space distribution function 𝑓(𝑥, 𝑝) defined on the mass hyperboloid (2.8) of
phase-space. Define the hypersurface element

d𝛴𝜇(𝑥) ≔ |𝑔| 1
2

3!
𝜖𝜇𝜈𝜌𝜎 d𝑥𝜈 ∧ d𝑥𝜌 ∧ d𝑥𝜎 , (2.9)

and the on-shell momentum range

d𝛱𝑥 ≔ 4𝜋
|𝑔| 1

2
𝜃(−𝑢𝛼𝑝𝛼) 𝛿(𝑔𝜇𝜈𝑝𝜇𝑝𝜈 + 𝑚2𝑐2) d𝑝0 ∧ d𝑝1 ∧ d𝑝2 ∧ d𝑝3

(2𝜋)4

= 1
|𝑔| 1

2

1
𝑝0

+

d𝑝1 ∧ d𝑝2 ∧ d𝑝3
(2𝜋)3 ,

(2.10)

3For simplicity the absence of corresponding anti-particles is assumed.
4Space-time is assumed to be time-orientable and connected such that the future mass hyperboloid

(2.8) is unambiguously defined through the whole manifold [58]. Moreover, it is assumed that
space-time is globally hyperbolic such that it can be foliated by space-like Cauchy surfaces which
are assumed to be orientable and thus parallelisable.

5From a mathematical point of view, phase-space is the cotangent bundle of the space-time mani-
fold and the future mass hyperboloid (2.8) is the submanifold of on-shell states. The conjugate
momentum is defined to be the tautological one-form providing a bridge between Lagrangian
and Hamiltonian dynamics.
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2 Gravitational dynamics of dark matter

on the future mass hyperboloid, where |𝑔| is the determinant’s absolute value of the
metric tensor’s matrix representation and

𝑝0
+(𝑥, 𝒑) ≔ √(𝑔0𝑖𝑝𝑖)2 − 𝑔00(𝑔𝑖𝑗𝑝𝑖𝑝𝑗 + 𝑚2𝑐2) , (2.11)

where 𝒑 = (𝑝1, 𝑝2, 𝑝3) are local coordinates on the mass shell. The number of
particles flowing through the hypersurface element d𝛴𝜇 (𝑥) which are in the (on-
shell) momentum range d𝛱𝑥 at position 𝑥 is then given by

d𝑁 = 𝑓(𝑥, 𝑝) 𝑔𝜇𝜈𝑝𝜇 d𝛴𝜈(𝑥) d𝛱𝑥 . (2.12)

The particle number current density and energy-momentum tensor are obtained as

𝑁𝜇(𝑥) = 𝑐 ∫
𝑃𝑥

𝑝𝜇 𝑓(𝑥, 𝑝) d𝛱𝑥 , (2.13)

and
𝑇𝜇𝜈(𝑥) = 𝑐 ∫

𝑃𝑥

𝑝𝜇𝑝𝜈 𝑓(𝑥, 𝑝) d𝛱𝑥 , (2.14)

respectively, where 𝑃𝑥 is the mass fiber over 𝑥. More generally, one can define
moments with respect to the conjugate momentum argument of the distribution
function,

𝑀𝜇1…𝜇𝑛
(𝑥) ≔ 𝑐 ∫

𝑃𝑥

𝑝𝜇1
… 𝑝𝜇𝑛

𝑓(𝑥, 𝑝) d𝛱𝑥 , (2.15)

the full set of which completely characterise the distribution function, assuming
the distribution function is sufficiently regular and all moments exist. In terms of
moments, the particle number density and energy-momentum tensor are the first
and second moment.

To write the integrals over the mass hyperboloid (2.8) more explicitly, it is useful
to introduce the concept of frame fields, also called tetrad or vierbein formalism in
physics. These can be understood as (local) transformations to a laboratory frame
where the metric is flat,

𝑔𝜇𝜈(𝑥) 𝑒𝜇
𝑎(𝑥) 𝑒𝜈

𝑏(𝑥) = 𝜂𝑎𝑏 , (2.16)

where 𝜂𝑎𝑏 = diag(−1, 1, 1, 1) is the Minkowski metric. The dual one-form is the
coframe field 𝑒𝑎

𝜇(𝑥), such that

𝑒𝑎
𝜇(𝑥) 𝑒𝜇

𝑏(𝑥) = 𝛿𝑎
𝑏 , 𝑒𝜇

𝑎(𝑥) 𝑒𝑎
𝜈(𝑥) = 𝛿𝜇

𝜈 . (2.17)

In terms of the frame fields the momentum can be written as 𝑝𝜇 = 𝑝𝑎 𝑒𝑎
𝜇 and

moments of the distribution function read

𝑀𝑎1…𝑎𝑛
(𝑥) = 𝑐 ∫

𝒑′

̄𝑝𝑎1
… ̄𝑝𝑎𝑛

[𝑚2𝑐2 + 𝛿𝑖𝑗𝑝′
𝑖𝑝′

𝑗]
1
2

𝑓(𝑥, 𝒑′) , (2.18)
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2.1 General relativistic kinetic theory

where three-vectors expressed in the laboratory frame are denoted with a prime.
Here 𝑓(𝑥, 𝒑) denotes the restriction of the distribution function to the mass hyper-
boloid with momenta ̄𝑝 = (𝑝+

0 , 𝒑) and 𝑝+
0 is the corresponding conjugate momentum

to the four-momentum (2.11).6

2.1.3 Vlasov–Einstein equations

The geodesic equation (2.2) implies Hamilton’s equations

d𝑥𝜇

d𝜏∗
= 𝑔𝜇𝜈𝑝𝜈

𝑚
,

d𝑝𝜇

d𝜏∗
= −𝜕𝑔𝜌𝜎

𝜕𝑥𝜇
𝑝𝜌𝑝𝜎

2𝑚
, (2.20)

along which the distribution function is conserved according to Liouville’s theorem.
In the absence of collision, the distribution function thus obeys the Vlasov equation
[59]

[𝑔𝜇𝜈𝑝𝜈
𝜕

𝜕𝑥𝜇 − 1
2

𝜕𝑔𝜌𝜎

𝜕𝑥𝜇 𝑝𝜌𝑝𝜎
𝜕

𝜕𝑝𝜇
]𝑓(𝑥, 𝑝) = 0 , (2.21)

also known as Liouville’s equation or the collisionless Boltzmann equation.7 The
Vlasov equations can be naturally restricted to the mass hyperboloid (2.8) which
can be realised by using the relations

𝜕
𝜕𝑥𝜇 𝑓(𝑥, 𝒑) = [ 𝜕

𝜕𝑥𝜇 − 1
2𝑝0

+

𝜕𝑔𝜌𝜎

𝜕𝑥𝜇 ̄𝑝𝜌 ̄𝑝𝜎
𝜕

𝜕𝑝0
]𝑓(𝑥, 𝑝)∣

𝑝=𝑝̄
,

𝜕
𝜕𝑝𝑖

𝑓(𝑥, 𝒑) = [ 𝜕
𝜕𝑝𝑖

−
𝑔𝑖𝜇 ̄𝑝𝜇

𝑝0
+

𝜕
𝜕𝑝0

]𝑓(𝑥, 𝑝)∣
𝑝=𝑝̄

.
(2.22)

Doing so, one obtains the one-shell Vlasov equation

[𝑔𝜇𝜈 ̄𝑝𝜈
𝜕

𝜕𝑥𝜇 − 1
2

𝜕𝑔𝜌𝜎

𝜕𝑥𝑖 ̄𝑝𝜌 ̄𝑝𝜎
𝜕

𝜕𝑝𝑖
]𝑓(𝑥, 𝒑) = 0 . (2.23)

6The (co)frame fields form an orthonormal basis of the (co)tangent space and can be globally
defined if and only if the space-time manifold is parallisable which was assumed earlier. In the
following three-dimensional momentum space integrals are abbreviated as

∫
𝒑

= ∫
R3

d3𝑝
(2𝜋)3 . (2.19)

7More generally, for collisional systems a collision term is present giving the Boltzmann equation.
This term depends on the two-particle phase-space distribution function which in turn can only
be solved for by knowing the three-particle phase-space distribution function and so on, creating
the so-called Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy. To obtain a closed system
of equations which can be solved, one needs to resort to approximation schemes such as the
Stoßzahlansatz where the collision term is approximation in terms of one-particle distribution
functions. Although it would most be interesting to include a collision term to account for dark
matter self-interaction, this is not further pursued here.
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2 Gravitational dynamics of dark matter

The Vlasov equation can be straight forwardly integrated to give the covariant con-
servation of all moments

∇𝜈𝑀𝜈𝜇1…𝜇𝑛(𝑥) = 0 , (2.24)

where ∇𝜈 denotes to covariant derivative associated with the Levi–Civita connection.
The first two of these conservation equations then correspond to the conservation of
particle number and energy-momentum. Moments of the distribution function are
studied in much more detail in the Newtonian limit in section 2.4 although most of
these considerations can be similarly transferred to the relativistic setting.

The Vlasov equation (2.23) and Einstein’s field equations (2.4) form a set of
closed non-linear integro-differential equations that describe the dynamics of the
energy content as well as geometry of space-time. When solving these in terms
of moments of the distribution function one usually needs to resort so some sort
of truncation scheme. Usual approximations include the method of moments [60]
and the Müller–Israel–Stewart theory [61–64] or more modern truncations schemes
which keep moments to infinite order [65–67].

2.2 The homogeneous and isotropic Universe

On the largest observable scales the Universe appears to be spatially homogeneous
and isotropic, a notion also referred to as the cosmological principle. To understand
the dynamics of the Universe at these scales one has to solve the Einstein field equa-
tions (2.4) for a space-time geometry respecting the symmetries of the cosmological
principle.

The class of manifolds that respect the symmetries of the cosmological principle
are Friedmann–Lemaître–Robertson–Walker space-times. They are characterised by
a line element of the form

d𝑠2 = 𝑎(𝜏)2[−𝑐2 d𝜏2 + d𝜎2] , (2.25)

where 𝑎(𝜏) is a positive warp function, in cosmology called scale factor, and d𝜎2 is
the line element of a three-dimensional manifold with constant sectional curvature
𝐾.8 The spatial part of the Universe is modelled by a three-dimensional space form
and is distinguished for vanishing, positive and negative curvature corresponding to
spherical or elliptical, Euclidean and hyperbolic geometries, respectively.9

8Mathematically speaking, the four-dimensional space-time manifold factorises, at least locally,
into the warped product of an interval (time) and a maximally symmetric three-dimensional
Riemannian manifold (space).

9Usually one restricts to globally homogeneous and isotropic manifolds that are simply connected.
These are isometric to three-dimensional Euclidean space, the three-sphere and hyperbolic three-
space, respectively. More generally, other topologies can be allowed by loosening the condition
of simply connectedness and allowing for only locally homogeneous and isotropic manifolds,
which seems reasonable since the Universe cannot be probed globally. In this case there exist
an infinite amount of manifolds all of which have one of the simply connected cases as their
universal covering [68].
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2.2 The homogeneous and isotropic Universe

In local coordinates (𝜒, 𝜃, 𝜑) the spatial line element may be written as

d𝜎2 = d𝜒2 + 𝑆𝐾(𝜒)2[d𝜃2 + sin(𝜃)2 d𝜑2] , (2.26)

with

𝑆𝐾(𝜒) =
⎧{
⎨{⎩

𝐾− 1
2 sin(𝐾 1

2 𝜒) for 𝐾 > 0
𝜒 for 𝐾 = 0

|𝐾|− 1
2 sinh(|𝐾| 1

2 𝜒) for 𝐾 < 0
. (2.27)

Spatial hypersurfaces have (spatially) constant sectional curvature 𝐾/𝑎2 and the
coordinate 𝜒 is chosen to carry the units of length such that the curvature 𝐾 has
the units of length−2. For simply connected space-times these coordinates are par-
ticularly convenient since the whole manifold is covered by 𝜒 ∈ [0, 𝜋/𝐾 1

2 ) for 𝐾 > 0
and 𝜒 ∈ [0, ∞) for 𝐾 ≤ 0 and 𝜃 ∈ [0, 𝜋) and 𝜑 ∈ [0, 2𝜋).

2.2.1 Friedmann’s equations

Having specified the type of space-times allowed by the symmetries of the cosmolog-
ical principle one can proceed to solve the Einstein field equations. For the following
investigations 𝜏 is called conformal time and it is convenient to work in the comoving
quasi-Cartesian coordinates 𝒙 = (𝑥1, 𝑥2, 𝑥3) with spatial line element

d𝜎2 = 𝛾𝑖𝑗(𝒙) d𝑥𝑖 d𝑥𝑗 , (2.28)

where the metric is diagonal,

𝛾𝑖𝑗(𝒙) = (1 + 𝐾
4

𝛿𝑘𝑙𝑥𝑘𝑥𝑙)
−2

𝛿𝑖𝑗 , (2.29)

and 𝛿𝑖𝑗 is the Kronecker delta. The Einstein tensor in these coordinates is given by

𝐺00 = 3(H2 + 𝐾𝑐2)
𝑐2 , 𝐺0𝑖 = 0 , 𝐺𝑖𝑗 = −2Ḣ + H2 + 𝐾𝑐2

𝑐2 𝛾𝑖𝑗 , (2.30)

where H = ̇𝑎/𝑎 is the conformal Hubble function parametrising the expansion or
contraction rate of space-time. The energy-momentum tensor allowed by the cos-
mological principle is of the form

𝑇𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜇 + 𝑃(𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈) , (2.31)

which in a kinetic picture can be identified as a perfect fluid with volumetric en-
ergy density 𝜖 and kinetic pressure 𝑃 as measured by a freely falling observer with
(normalised) four-velocity 𝑢𝜇 = 𝛿𝜇

0/𝑎. More generally, the energy-momentum ten-
sor (2.31) can describe any type of energy contained in the Universe, irrespective
whether it admits a kinetic theory description.
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2 Gravitational dynamics of dark matter

In terms of the Einstein tensor (2.30) and the energy-momentum tensor (2.31) the
Einstein field equations reduce to the celebrated Friedmann equations [69],

H2 + 𝐾𝑐2

𝑎2 = 𝜅𝑐2

3
𝜖 + 𝛬𝑐2

3
, Ḣ

𝑎2 = −𝜅𝑐2

6
(𝜖 + 3𝑃) + 𝛬𝑐2

3
. (2.32)

These govern the dynamics of the homogeneous and isotropic Universe and allow
for expanding and contracting solutions of the scale factor 𝑎 depending on the type
energy content. Since general relativity incorporates local energy-momentum con-
servation, the Friedmann equations can be combined to give

̇𝜖 + 3H(𝜖 + 𝑃) = 0 , (2.33)

describing the dilution of energy with the expansion of space-time. For a constant
equation of state 𝜔 ≔ 𝑃/𝜖 one finds 𝜖 ∝ 𝑎−3(1+𝜔) and typical examples include
non-relativistic matter (cold dust) with 𝜔m = 0 and ultra-relativistic radiation with
𝜔r = 1/3. For a Universe where the energy content is made up of contributions
which are characterised by a constant equation of state the Friedmann equations
(2.32) can be written as

∑
𝑋

𝛺𝑋 + 𝛺𝐾 + 𝛺𝛬 = 1 , Ḣ
H2 = 1 − 𝛺𝐾 − 3

2 ∑
𝑋

(1 + 𝜔𝑋)𝛺𝑋 , (2.34)

where the sum runs over all contributions 𝑋 to the energy content and the (time-
dependent) density parameters are given by

𝛺𝑋 = 8𝜋𝐺N𝑎2𝜖𝑋
3H2𝑐2 , 𝛺𝛬 = 𝛬𝑐2𝑎2

3H2 , 𝛺𝐾 = −𝐾𝑐2

H2 . (2.35)

In the 𝛬 cold dark matter (𝛬CDM) model one usually assumes the energy content
to be made up of radiation, baryonic matter, cold dark matter, curvature and dark
energy. In the minimal six-parameter model curvature is neglected and dark energy
is assumed to be a cosmological constant, such that the Friedmann equations can
be written as

𝐻2 = 𝐻2
0 [𝛺r,0 𝑎−4 + 𝛺m,0 𝑎−3 + 𝛺𝛬,0] , (2.36)

where 𝐻 = H/𝑎 is the usual Hubble function and subscripted objects with a 0 are
the values at 𝑎 = 1, corresponding to today.

Current observations [162] indicate, that the Universe is almost flat and the to-
day’s contributions are roughly 𝛺m,0 ≈ 0.3, 𝛺𝛬,0 ≈ 0.7, 𝛺r,0 ≈ 10−4 and ℎ ≈ 0.7
is the reduced Hubble parameter and defined by 𝐻0 = ℎ ⋅ 100 km/(s Mpc). Since
the scale factor grows in time, there are eras of the Universe in which the different
contributions entering (2.36) dominate the energy content. Due to the scaling these
are chronologically given by a radiation dominated era, to a matter dominated era
and finally a dark energy dominated era. This naturally only holds as long as there
are no other contributions to the energy content such as believed for a very early
epoch of the Universe where the energy content is dominated by an inflaton field
leading to an exponential growth of the Universe. This is discussed in more detail
in chapter 3.
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2.2 The homogeneous and isotropic Universe

2.2.2 Distribution function
The Ehlers–Geren–Sachs theorem [70] shows that if all freely falling observers mea-
sure an isotropic cosmic background radiation relative to their four-velocity, the
Universe is a Friedmann–Lemaître–Robertson–Walker space-time, at least if one
adopts a kinetic picture without collision or in detailed balance.10 For a particle
species admitting a kinetic description one can now make the connection to the
phase-space distribution function. To this end it is convenient to use the coframe
fields

𝑒𝑎
𝜇(𝒙) = (

1 0
0 |𝛾(𝒙)| 1

2 𝛿𝑖
𝑗
) , (2.37)

where it should be noted that the lab frame is only conformally flat and still ex-
panding such that momentum in this frame is still comoving. One then obtains
𝒑2 = 𝛾𝑖𝑗𝑝𝑖𝑝𝑗 = 𝛿𝑖𝑗𝑝′

𝑖𝑝′
𝑗 = 𝒑′2 and defines 𝐸𝒑(𝜏) ≔ 𝑐√(𝑚𝑐)2 + 𝒑2/𝑎2. The most

general distribution function obeying the symmetries of homogeneity and isotropy
which solves the Vlasov equation is given by a (physically sensible) positive function
𝑓(𝒑2) [70, 73,74]. The particle number current is then given by

𝑁𝑎 = 𝑛𝑢𝑎 , (2.38)

and the particle number density as measured by the rest frame observer moving with
𝑢𝑎 = 𝛿𝑎

0/𝑎 is given by

𝑛(𝜏) = 𝑐
𝑎3 ∫

𝒑′

𝑓(𝒑′2) . (2.39)

Similarly, the energy-momentum tensor is given by

𝑇𝑎𝑏 = 𝜖𝑢𝑎𝑢𝑏 + 𝑃(𝑔𝑎𝑏 + 𝑢𝑎𝑢𝑏) , (2.40)

where the mean volumetric energy density is

𝜖(𝜏) = 1
𝑎3 ∫

𝒑′

𝐸𝒑′ 𝑓(𝒑′2) , (2.41)

and the mean (kinetic) pressure is

𝑃(𝜏) = 𝑐2

𝑎5 ∫
𝒑′

𝒑′2

3𝐸𝒑′
𝑓(𝒑′2) . (2.42)

Given these formulas, one can now consider the case of non-relativistic (dust) matter
where 𝐸𝒑 → 𝑚𝑐2 and of ultra-relativistic radiation where 𝐸𝒑 → |𝒑|𝑐/𝑎 and |𝒑|
denotes the modulus of three-momentum. From equation (2.41) one obtains 𝜖m ∝
𝑎−3 and 𝜖r ∝ 𝑎−4 corresponding to the equations of state 𝜔m = 0 and 𝜔r = 1/3
discussed earlier.
10This result generalises to the case with collisions [71] and even applies to the more realistic case

of a nearly isotropic cosmic background radiation [72], showing the stability of the theorem.
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2 Gravitational dynamics of dark matter

2.3 Relativistic cosmology
Having introduced the foundations to describe a Universe filled with collisionless
classical point particles in the previous section, the goal here is to establish some
standard results from relativistic cosmology. In particular, a homogeneous and
isotropic background cosmology as well as first-order perturbations around that
background are studied.

The above considerations describe a homogeneous and isotropic expanding Uni-
verse and as such no structures can form. To describe structure formation, one
naturally needs deviations from the homogeneous and isotropic background cosmol-
ogy. Generally this is most certainly a very complex process which is naturally
difficult to solve.

To get a grip on structure formation one solves the Einstein field equations pertur-
batively on the homogenous and isotropic background cosmology. This is justified
as long as the deviations from the background are small which is typically the case
through the Universe, when not probing the extremest of gravitational phenomena
such as black holes or neutron stars. In the following, the Vlasov–Einstein equations
are solved up to first order in deviations from the background cosmology.

2.3.1 Perturbed metric
To study deviations from the a Friedmann–Lemaître–Robertson–Walker background
cosmology a metric corresponding to the line element

d𝑠2 = −𝑎2(1 + 2𝜓) d𝜏2 + 2𝑎2𝑤𝑖 d𝜏 d𝑥𝑖 + 𝑎2[(1 − 2𝜙)𝛾𝑖𝑗 + 2ℎ𝑖𝑗] d𝑥𝑖 d𝑥𝑗 , (2.43)

is considered, where ℎ𝑖𝑗 is a symmetric second-order three-tensor field with 𝛾𝑖𝑗ℎ𝑖𝑗 = 0
since the trace is already parametrised in terms of the potential 𝜙. In the following,
the speed of light is set to unity to clear up notation and only when explicitly needed
it is restored. The scalar potentials can be identified with the Newtonian gravita-
tional potential as is shown in the next section. In the following the deviation from
the background metric is assumed to be small, 𝛿𝑔𝜇𝜈 ≪ 1, allowing for a perturbative
treatment of the otherwise highly non-linear Einstein field equations.

Generally the metric has ten degrees of freedom although due to the freedom
of choosing a coordinate frame only six of them are physical. Although is can be
sensible to work with gauge-invariant perturbations [75–77] here a gauge is chosen
where ∇𝑖𝑤𝑖 = 0 and ∇𝑖ℎ𝑖𝑗 = 0 such that the vector field is solenoidal [78]. When
neglecting the metric vector and tensor perturbations this gauge reduces to the
common conformal Newtonian gauge [79, 80]. Here ∇𝑖 denotes the Levi–Civita
connection associated to the spatial metric 𝛾𝑖𝑗 which is used to raise and lower
indices on 𝑤𝑖 and ℎ𝑖𝑗 and partial derivatives are denoted as 𝜕𝑖.

Generally, a vector field 𝑉𝑖 and symmetric tensor field 𝑆𝑖𝑗 defined on the three-
space with metric 𝛾𝑖𝑗 can be decomposed as [81]

𝑉𝑖 = ∇𝑖𝑉 + 𝑉 ⟂
𝑖 , 𝑆𝑖𝑗 = (∇𝑖∇𝑗 − 1

3𝛾𝑖𝑗∇2)𝑆 + ∇(𝑖𝑆⟂
𝑗) + 𝑆tt

𝑖𝑗 , (2.44)
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2.3 Relativistic cosmology

where ∇2 ≔ ∇𝑖∇𝑖 is the connection Laplacian which acts differently for scalar,
vector and tensor fields and reduces to the Laplace–Beltrami operator for scalar
functions. Here ∇𝑖𝑉 is called the longitudinal part and ∇𝑖𝑉 ⟂

𝑖 = 0 the transverse
part. Similarly one has the transverse part ∇𝑖𝑆⟂

𝑖 = 0 and ∇𝑖𝑆tt
𝑖𝑗 = 0 is called the

traceless and transverse part.11 As such, also the Einstein field equations can be
decomposed into different parts [82].

The Einstein tensor is then given to first order in the perturbations [83] by the
(00)-component

𝛿𝐺00 = 2∇2𝜙 + 6𝐾(𝜓 + 𝜙) − 6H ̇𝜙 , (2.45)

the longitudinal (0𝑖)-component

𝛿𝐺0𝑖 = 2∇𝑖( ̇𝜙 + H𝜓) , (2.46)

the transverse (0𝑖)-component

𝛿𝐺0𝑖 = −(2Ḣ + H2 + 2𝐾)𝑤𝑖 − 1
2∇2𝑤𝑖 , (2.47)

and the longitudinal (𝑖𝑗)-component

𝛿𝐺𝑖𝑗 = [2(2Ḣ + H2)(𝜓 + 𝜙) + 2H( ̇𝜓 + 2 ̇𝜙) + 2 ̈𝜙 + ∇2(𝜓 − 𝜙)]𝛾𝑖𝑗

+ ∇𝑖∇𝑗(𝜙 − 𝜓) ,
(2.48)

and the transverse (𝑖𝑗)-component

𝛿𝐺𝑖𝑗 = −(𝜕𝜏 + 2H)∇(𝑖𝑤𝑗) . (2.49)

and the traceless and transverse (𝑖𝑗)-component

𝛿𝐺𝑖𝑗 = −2(2Ḣ + H2)ℎ𝑖𝑗 + 2Hℎ̇𝑖𝑗 + ℎ̈𝑖𝑗 − ∇2ℎ𝑖𝑗 . (2.50)

To close the Einstein field equations also the matter part needs to be perturbed
which is done in the following.

2.3.2 Perturbed matter
Since working perturbatively, the distribution function is split into a background
and perturbation, 𝑓(𝜏, 𝒙, 𝒑) = ̄𝑓(𝒑2)+𝛿𝑓(𝜏, 𝒙, 𝒑). To express the energy-momentum
tensor in terms of the distribution function, it is convenient to work in the coframe

𝑒𝑎
𝜇 = (

1 + 𝜓 −𝑤𝑗
0 (1 − 𝜙)|𝛾| 1

2 𝛿𝑖
𝑗 + |𝛾| 1

2 ℎ𝑖
𝑗
) , (2.51)

such that the particle number current can be written as

𝑁𝑎 = 𝑛𝑢𝑎 + 𝑎𝜈𝑎 , (2.52)
11Such decompositions are discussed in greater detail for Euclidean space in appendix A
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2 Gravitational dynamics of dark matter

and the energy momentum tensor is

𝑇𝑎𝑏 = 𝜖𝑢𝑎𝑢𝑏 + 𝑃(𝑔𝑎𝑏 + 𝑢𝑎𝑢𝑏) + 2𝑎𝑞(𝑎𝑢𝑏) + 𝑎2𝜋𝑎𝑏 . (2.53)

with respect to the rest frame observer with four-velocity 𝑢𝑎 = 𝛿𝑎
0/𝑎. The diffu-

sion current 𝜈𝑎 = (0, 𝜈′
𝑖) and momentum flux density 𝑞𝑎 = (0, 𝑞′

𝑖) are orthogonal
to the fluid four-velocity as well as the shear stress tensor which has only spatial
components.12 These are given in terms of the particle number density

𝛿𝑛(𝜏, 𝒙) = 𝑐
𝑎3 ∫

𝒑′

𝛿𝑓(𝜏, 𝒙, 𝒑′) , (2.54)

the diffusion current

𝜈′
𝑖(𝜏, 𝒙) = 𝑐2

𝑎4 ∫
𝒑′

𝑝′
𝑖

𝐸𝒑′
𝛿𝑓(𝜏, 𝒙, 𝒑′) , (2.55)

the perturbed energy density

𝛿𝜖(𝜏, 𝒙) = 1
𝑎3 ∫

𝒑′

𝐸𝒑′ 𝛿𝑓(𝜏, 𝒙, 𝒑′) , (2.56)

the perturbed pressure

𝛿𝑃 (𝜏, 𝒙) = 𝑐2

𝑎5 ∫
𝒑′

𝒑′2

3𝐸𝒑′
𝛿𝑓(𝜏, 𝒙, 𝒑′) , (2.57)

the momentum flux density across the hypersurface normal to 𝑖

𝑞′
𝑖(𝜏, 𝒙) = − 𝑐

𝑎4 ∫
𝒑′

𝑝′
𝑖 𝛿𝑓(𝜏, 𝒙, 𝒑′) , (2.58)

and the shear stress tensor

𝜋′
𝑖𝑗(𝜏, 𝒙) = 𝑐2

𝑎5 ∫
𝒑′

𝑝′
𝑖𝑝′

𝑗 − 𝛿𝑖𝑗𝒑′2/3
𝐸𝒑′

𝛿𝑓(𝜏, 𝒙, 𝒑′) . (2.59)

For the sake of completeness let us discuss another way to define the fluid velocity
often done is cosmology and more generally in relativistic fluid dynamics. There are
two rather obvious ways to define the fluid velocity, the first being in the direction
of the particle number current, the particle or so-called Eckart frame [84] where the
diffusion current vanishes,

𝑁𝜇 = 𝑛𝑢E
𝜇 . (2.60)

With the three-velocity 𝑢𝑖 = 𝑣𝑖/𝑎 this corresponds to defining the spatial velocity
as pointing in the direction of the diffusion current, 𝑣E

𝑖 = 𝜈𝑖/𝑛̄. Secondly, the energy
12The prime is to denote that the three-vectors are expressed in the coframe (2.51).
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2.3 Relativistic cosmology

or so-called Landau frame [85] in which the fluid velocity is the time-like eigenvector
of the energy-momentum tensor such that the momentum density flux vanishes,

𝑇𝜇𝜈 = 𝜖𝑢L
𝜇𝑢L

𝜈 + 𝑃(𝑔𝜇𝜈 + 𝑢L
𝜇𝑢L

𝜈 ) + 𝑎2𝜋𝜇𝜈 , (2.61)

implying that one has 𝑣L
𝑖 = 𝑞𝑖/( ̄𝜖+ ̄𝑃 ). In either of these cases, the fluid three-velocity

is pointing in the direction of the dissipation current or energy flux, respectively.
Especially the Landau frame is most commonly used in perturbation theory, such
that instead of the energy flux the fluid three-velocity is used as a perturbative
variable. Since this is just a choice of convention, here the momentum density flux
is kept.

2.3.3 Vlasov–Einstein equation
Combining the results obtained from the perturbed metric and energy-momentum
tensor one can now find Einstein’s field equations in these variables. These are given
by the (00)-component

(∇2 + 3𝐾)𝜙 = 1
2𝜅𝑎2[𝛿𝜖 − 3H𝑞] , (2.62)

the longitudinal (0𝑖)-component

̇𝜙 + H𝜓 = −1
2𝜅𝑎2𝑞 , (2.63)

the transverse (0𝑖)-component

(∇2 + 2𝐾)𝑤𝑖 = 2𝜅𝑎2[( ̄𝜖 + ̄𝑃 ) 𝑤𝑖 + 𝑞⟂
𝑖 ] , (2.64)

the trace (𝑖𝑗)-component

̈𝜙 + H( ̇𝜓 + 2 ̇𝜙) + (2Ḣ + H2)𝜓 + 1
3∇2(𝜓 − 𝜙) − 𝐾𝜙 = 1

2𝜅𝑎2𝛿𝑃 , (2.65)

the longitudinal (𝑖𝑗)-component

𝜙 − 𝜓 = 𝜅𝑎2𝜋 , (2.66)

the transverse (𝑖𝑗)-component

(𝜕𝜏 + 2H)𝑤𝑖 = −𝜅𝑎2𝜋⟂
𝑖 , (2.67)

and finally the transverse traceless (𝑖𝑗)-component

(𝜕2
𝜏 + 2H𝜕𝜏 − ∇2 + 2𝐾)ℎ𝑖𝑗 = 𝜅𝑎2𝜋tt

𝑖𝑗 . (2.68)

One can now realise that the six equations (2.63), (2.65), (2.67) and (2.68) describe
the time evolution of the metric perturbations corresponding to the six physical de-
grees of freedom while the other four equation (2.62), (2.64) and (2.66) are constraint
equations.
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2 Gravitational dynamics of dark matter

While the Einstein field equation describe the evolution of the metric pertur-
bations, the dynamics of the matter perturbations are determined by the Vlasov
equation (2.23). Since 𝜕𝜇𝑓 is already of first order in perturbations, the coefficient
in front can be set to the background value. In contrast 𝜕𝑓/𝜕𝑝𝑖 has a background
contribution such. With the metric (2.43) one then obtains the Vlasov equation

𝜕𝜏𝑓 + 𝑝𝑖
𝑎𝐸𝒑/𝑐2 𝜕𝑖𝑓 − [

𝑎𝐸𝒑

𝑐2 𝜕𝑖𝜓 + 𝒑2

𝑎𝐸𝒑
𝜕𝑖𝜙 −

𝑝𝑗

𝑐
𝜕𝑖𝑤𝑗 −

𝑝𝑗𝑝𝑘

𝑎𝐸𝒑
𝜕𝑖ℎ𝑗𝑘] 𝜕𝑓

𝜕𝑝𝑖
= 0 , (2.69)

where the speed of light is explicitly reinstalled in order take the non-relativistic
limit in the next section.

In principal one could now solve the perturbed Einstein–Vlasov equations for a
general relativistic treatment of structure formation. Since these in general involves
solving for the full distribution function and the six metric degrees of freedom it is
a rather involving problem. One could turn to truncation schemes that describe the
phase-space distribution function in terms of its moments to reduce the complex-
ity although a truncation of such an expansion is also problematic in the general
relativistic setting [67]. Before turning to such truncation schemes it is convenient
to additionally reduce the complexity by considering the Newtonian limit of the
perturbed Einstein–Vlasov equations as applicable for non-relativistic dark matter.
This is pursued in the next section.

2.4 Newtonian cosmology
Often the full general relativistic Vlasov–Einstein equations can be reduced to a
much simpler system of equations. The requirements for such a simplification are
discussed in the following.

2.4.1 Newtonian limit

Typical gravitational fields throughout the Universe are relatively small in magni-
tude and quasi-stationary, at least when not probing the extremest of gravitational
phenomena such as black holes or neutron stars. Additionally, the currently favoured
candidate accounting for the dominant contribution to the matter content of the
Universe is cold dark matter. In the kinetic theory picture this corresponds to a
phase-space distribution function which is centred around velocities much smaller
than the speed of light. With these assumptions the dynamics of dark matter grav-
itational instabilities greatly simplify as shown in the following.

The Newtonian limit is defined by the requirements:

• Gravitational fields are weak, |𝛿𝑔𝜇𝜈| ≪ 1.

• Gravitational fields are quasi-stationary, |𝜕𝜏𝛿𝑔𝜇𝜈 /H| ≪ 1.

• Particle velocities are non-relativistic, |𝑣𝑖| ≪ 𝑐.
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2.4 Newtonian cosmology

Note that while the gravitational fields are assumed to be small in magnitude, this
does not necessary imply that deviations from the background distribution function
are small.

The assumption of weak gravitational fields justifies the perturbative treatment
of Einstein’s field equations resulting in Friedmann’s equations and the first-order
deviations from them. When studying late-time cosmic structure formation it is
additionally convenient to work in a spatially flat geometry and neglect the radiative
contribution to the energy content of the Universe.13 This is well justified since the
curvature and radiation densities contribute below the per mille level to the energy
content of the Universe sufficiently deep within the matter dominated era. With
these assumptions, the Friedmann equations (2.34) reduce to

𝛺m + 𝛺𝛬 = 1 , Ḣ
H2 = 1 − 3

2
𝛺m . (2.70)

To leading order one obtains 𝐸𝒑 → 𝑚𝑐2 in the non-relativistic limit such that the
Vlasov equation (2.69) simplifies to

𝜕𝜏𝑓 + 𝑝𝑖
𝑎𝑚

𝜕𝑖𝑓 − 𝑎𝑚 𝜕𝑖𝜓
𝜕𝑓
𝜕𝑝𝑖

= 0 , (2.71)

in the Newtonian limit. Therefore, the only relevant equations needed to obtain a
closed system of equations are the non-relativistic limit of the constraint equations
(2.62) and (2.66). These yield Poisson’s equation

𝜕𝑖𝜕𝑖𝜙 = 3
2
H2𝛺m

𝛿𝜖
̄𝜖
, (2.72)

and 𝜓 = 𝜙, respectively. In the following, it is chosen to work in terms of the
gravitational potential 𝜙 such that effectively the metric in the Newtonian limit is
given by

d𝑠2 = 𝑎2[−(1 + 2𝜙) d𝜏2 + (1 − 2𝜙) 𝛿𝑖𝑗 d𝑥𝑖 d𝑥𝑗] , (2.73)

also known as conformal Newtonian gauge.14

2.4.2 Vlasov–Poisson equations

In the following, it is sensible to define the non-relativistic analogue of the compo-
nents of the particle number current (2.13) and energy-momentum tensor (2.14).
These are related to the non-relativistic moments of the phase-space distribution
13In Euclidean space, vectors and covectors are no longer distinguished as they are canonically

related and all vectors are denoted with subscripts in the following.
14In principal, one could engineer the limit such that it also includes vector and tensor metric

perturbations. These are absent in the presented derivation since it is assumed that all metric
perturbations are of the same dimension, [𝜓] = [𝜙] = [𝑤𝑖] = [ℎ𝑖𝑗]. In this case the vector and
tensor perturbations drop out of the non-relativistic limit of the Vlasov equation (2.69) since
they are suppressed by the speed of light.
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2 Gravitational dynamics of dark matter

function and studied in the next section. The proper dark matter mass density field
is defined as

𝜌(𝜏, 𝒙) ≔ 𝑚
𝑎3 ∫

𝒑
𝑓(𝜏, 𝒙, 𝒑) , (2.74)

the proper momentum flux reads

𝜌(𝜏, 𝒙) 𝑢𝑖(𝜏, 𝒙) ≔ 𝑚
𝑎3 ∫

𝒑

𝑝𝑖
𝑎𝑚

𝑓(𝜏, 𝒙, 𝒑) , (2.75)

and the proper stress tensor is

𝜌(𝜏, 𝒙)[𝑢𝑖(𝜏, 𝒙) 𝑢𝑗(𝜏, 𝒙) + 𝜎𝑖𝑗(𝜏, 𝒙)] ≔ 𝑚
𝑎3 ∫

𝒑

𝑝𝑖
𝑎𝑚

𝑝𝑗

𝑎𝑚
𝑓(𝜏, 𝒙, 𝒑) . (2.76)

The momentum flux (2.75) and stress tensor (2.76) have already been expressed
in terms of the velocity field 𝑢𝑖(𝜏, 𝒙) and velocity dispersion tensor 𝜎𝑖𝑗(𝜏, 𝒙) which
are the connected part of the corresponding moments and play a central role in the
subsequent sections and chapters.

The non-relativistic limit of the components of the particle number current and
energy-momentum tensor are given by

𝑛 → 𝜌𝑐
𝑚

, 𝜈𝑖 → 𝜌𝑢𝑖
𝑚

, 𝜖 → 𝜌𝑐2 , 𝑞𝑖 → 𝜌𝑐𝑢𝑖 , 𝛿𝑖𝑗𝑃 + 𝜋𝑖𝑗 → 𝜌𝜎𝑖𝑗 , (2.77)

where the particle and energy flow are pointed into the direction of the mass flow
such that the Eckart and Landau frame coincide in this limit, at least to leading
order.

Since the gravitational potential is sourced by the relative deviation from the
background energy density it is convenient to also split the mass density field into a
homogeneous background and a local fluctuation,

𝜌(𝜏, 𝒙) ≕ ̄𝜌(𝜏) [1 + 𝛿(𝜏, 𝒙)] . (2.78)

The background density decays with the expansion of space ̄𝜌 ∝ 𝑎−3 as was already
discussed in section 2.2.15 It is convenient to redefine the distribution function as

̃𝑓(𝜏 , 𝒙, 𝒑) ≔ 1
̄𝜌
𝑚
𝑎3 𝑓(𝜏, 𝒙, 𝒑) , (2.79)

such that it is normalised to unity with respect to the momentum argument at
the level of the homogeneous and isotropic background cosmology. Since the time-
dependence is the same as for the standard distribution function, it obeys the same

15For non-vanishing velocity dispersion this is only true to leading order since the equation of state
is of the order O(𝜎̄𝑖𝑖/𝑐2). In the following it is assumed that this contribution is small enough
to not significantly contribute to the evolution of the background cosmology.
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2.4 Newtonian cosmology

Vlasov equation (2.71). Dropping the tilde in the following, the Vlasov–Poisson
equations [5] take the form

𝜕𝜏𝑓 + 𝑝𝑖
𝑎𝑚

𝜕𝑖𝑓 − 𝑎𝑚 𝜕𝑖𝜙
𝜕𝑓
𝜕𝑝𝑖

= 0 ,

𝜕𝑖𝜕𝑖𝜙 = 3
2H

2𝛺m[∫
𝒑

𝑓 − 1].
(2.80)

Together with Friedmann’s equations (2.70) they form a closed system of equations.

2.4.3 Moments, cumulants and the Vlasov hierarchy
While it would in principal be desirable to know the full phase-space distribution
function, the main problem lies in the complexity when supplying random initial
conditions. In the study of late-time large-scale cosmic structure formation one usu-
ally adopts a statistical description in which the phase-space distribution function
itself is random.16 In this case the Vlasov–Poisson equations (2.80) are stochastic
partial differential equations in seven variables that are quite challenging to inves-
tigate with analytical methods. Therefore, one is often not interested in the full
phase-space distribution function but rather in velocity moments thereof. The full
set of moments completely characterise the distribution function and parametrise
the degrees of freedom of the dark matter particle ensemble.

To investigate the moments of the phase-space distribution function with respect
to the momentum argument in a systematic manner, it is convenient to introduce
the moment-generating function

𝑀(𝜏, 𝒙; 𝒍) ≔ ∫
𝒑

e 𝒍⋅𝒑
𝑎𝑚 𝑓(𝜏, 𝒙, 𝒑) . (2.81)

The proper velocity moments of the distribution function are obtained by taking
derivatives with respect to the source vector 𝒍 and evaluating at vanishing value,

𝑚(𝑛)
𝑖1…𝑖𝑛

(𝜏, 𝒙) ≔ 𝜕𝑛𝑀
𝜕𝑙𝑖1

… 𝜕𝑙𝑖𝑛

∣
𝒍=𝟎

. (2.82)

The first few moments were already defined in equations (2.74), (2.75) and (2.76).
In terms of the redefined distribution function (2.79) these reads

𝑚(0) = 1 + 𝛿 , 𝑚(1)
𝑖 = (1 + 𝛿)𝑢𝑖 , 𝑚(2)

𝑖𝑗 = (1 + 𝛿)(𝑢𝑖𝑢𝑗 + 𝜎𝑖𝑗) . (2.83)

The time evolution of the moments is determined by the Vlasov equation and ob-
tained by an appropriately weighted integration over momentum space,

𝜕𝜏𝑚(𝑛)
𝑖1…𝑖𝑛

+ 𝑛H𝑚(𝑛)
𝑖1…𝑖𝑛

+ 𝜕𝑖𝑛+1
𝑚(𝑛+1)

𝑖1…𝑖𝑛𝑖𝑛+1
+ 𝑛 𝑚(𝑛−1)

𝑖1…𝑖𝑛−1
𝜕𝑖𝑛

𝜙 = 0 . (2.84)

16The statistical description of dark matter is discussed in chapter 3 and at the heart of the field-
theoretic formulation introduced in chapter 4.
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2 Gravitational dynamics of dark matter

To obtain a closed system of equations Poisson’s equation needs to be supplied,

𝜕𝑖𝜕𝑖𝜙 = 3
2H

2𝛺m𝛿 . (2.85)

While the second term on the left-hand side of the evolution equation (2.84) repre-
sents the Hubble drag term of the corresponding moment, the third and fourth term
couple to the next lower- and (more importantly) next higher-order moment. This
creates an infinite tower of coupled non-linear evolution equations sometimes called
the Vlasov hierarchy [86].

From a practical point of view it is rather pointless to keep the full (infinite) set of
moments. To obtain a finite and closed (and thereby solvable) system of equations
one usually needs to resort to approximations.

To find an appropriate approximation scheme for the description of dark matter
gravitational dynamics it is useful to introduce another type of object that equiva-
lently well characterises the distribution function. The proper velocity cumulants are
the connected part of the moments and are derived from the cumulant-generating
function 𝐶(𝜏, 𝒙; 𝒍) ≔ ln(𝑀) in the same manner as moments are obtained from the
moment-generating function 𝑀,

𝑐(𝑛)
𝑖1…𝑖𝑛

(𝜏, 𝒙) ≔ 𝜕𝑛𝐶
𝜕𝑙𝑖1

… 𝜕𝑙𝑖𝑛

∣
𝒍=𝟎

. (2.86)

The first few cumulants are then given by

𝑐(0) = ln(1 + 𝛿) , 𝑐(1)
𝑖 = 𝑢𝑖 , 𝑐(2)

𝑖𝑗 = 𝜎𝑖𝑗 . (2.87)

Although being two sides of the same coin, it is often preferential to work in terms
of cumulants rather than moments, one of the reasons being that the degenerate and
normal distribution are fully characterised in terms of a finite amount of cumulants.

The time evolution of the cumulants is determined by the Vlasov equation and
obtained in a similar manner as for the moments. The corresponding evolution
equations read [87]

𝜕𝜏𝑐(𝑛)
𝑖1…𝑖𝑛

+ 𝑛H𝑐(𝑛)
𝑖1…𝑖𝑛

+ 𝜕𝑖𝑛+1
𝑐(𝑛+1)

𝑖1…𝑖𝑛+1
+ ∑

𝑆
𝑐(|𝑆|+1)

𝑗1…𝑗|𝑆|𝑖𝑛+1
𝜕𝑖𝑛+1

𝑐(𝑛−|𝑆|)
𝑗|𝑆|+1…𝑗𝑛

+ 𝛿𝑛1𝜕𝑖1
𝜙 = 0 ,

(2.88)

where the sum runs over all combinations of picking indices {𝑗1, … , 𝑗𝑛} out of
{𝑖1, … , 𝑖𝑛}.17 The cumulant evolution equations are non-linear and create an in-
finite hierarchy of coupled equations, very similar to the equations (2.84).

Although the general structure is discussed in the next section, the applications
studied in later chapters only involve the first few of the evolution equations explic-
itly. These are given by the continuity equation

𝜕𝜏𝛿 + 𝜕𝑖[(1 + 𝛿)𝑢𝑖] = 0 , (2.89)
17More formally, the sum runs through all 2𝑛 sets 𝑆 in the power set P({𝑖1, … , 𝑖𝑛}) with

{𝑗1, … , 𝑗|𝑆|} ∈ 𝑆 and {𝑗|𝑆|+1, … , 𝑗𝑛} ∈ {𝑖1, … , 𝑖𝑛}\𝑆.
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2.4 Newtonian cosmology

Cauchy’s momentum equation

𝜕𝜏𝑢𝑖 + H𝑢𝑖 + 𝜕𝑗𝜎𝑖𝑗 + 𝑢𝑗𝜕𝑗𝑢𝑖 + 𝜎𝑖𝑗𝜕𝑗 ln(1 + 𝛿) + 𝜕𝑖𝜙 = 0 , (2.90)

and the velocity dispersion equation

𝜕𝜏𝜎𝑖𝑗 + 2H𝜎𝑖𝑗 + 𝜕𝑘𝑐(3)
𝑖𝑗𝑘 + 𝑢𝑘𝜕𝑘𝜎𝑖𝑗 + 𝜎𝑗𝑘𝜕𝑘𝑢𝑖 + 𝜎𝑖𝑘𝜕𝑘𝑢𝑗 + 𝑐(3)

𝑖𝑗𝑘𝜕𝑘 ln(1 + 𝛿) = 0 . (2.91)

The continuity equation (2.89) is expressed in terms of the density contrast field
rather than in the zeroth-order cumulant because 𝛿 is the natural physical field
variable and enters Poisson’s equation (2.85). At the same time it is emphasised
that the non-linear terms in the higher-order evolution equations (2.90) and (2.91)
couple to the logarithmic density field.

Cauchy’s momentum equation (2.90) describes the momentum transport of the
dark matter particle ensemble and is as such rather general. By specifying a con-
stitutive relation, the stress tensor can be expressed in terms of viscosity and the
velocity field such that one obtains the Navier–Stokes equation describing the dy-
namics of a viscid fluid. Similarly, one obtains Euler’s equations for a vanishing
velocity dispersion tensor describing the dynamics of a perfect fluid.

These limits are related to approximations in which the phase-space distribution
function is described in terms of finite cumulants only. General truncation schemes
of the cumulant expansion are investigated in the next section in order to find a
viable description for the dynamics of dark matter gravitational instabilities. These
should be understood as coarse-gaining the microscopic dynamics such that one is
left with a finite set of macroscopic quantities describing the dark matter particle
ensemble in an effective theory description also referred to as the cosmological fluid.

2.4.4 Truncations of the cumulant expansion
Since keeping the full cumulant expansion of the phase-space distribution function is
impractical for applications, this section is concerned with approximations. To this
end it is sensible to analyse the different terms for the 𝑛th-order cumulant evolution
equation (2.88):

• The second term is the Hubble drag term of the 𝑛th-order cumulant.

• The third term depends on the (𝑛 + 1)th-order cumulant creating the Vlasov
hierarchy.

• The fourth term is non-linear in cumulants and couples the (𝑘 + 1)th- and
(𝑛 − 𝑘)th-order for all 𝑘 ∈ {0, … , 𝑛}.

• The fifth term only contributes for 𝑛 = 1 and depends on the gravitational
potential.

The main issue in finding a self-consistent truncation of the cumulant expansion that
does not generate any other cumulants lies within the non-linear terms. One can
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2 Gravitational dynamics of dark matter

easily verify that any truncation of the cumulant expansion that includes cumulants
of order 𝑛 > 1 naturally generates all higher-order cumulants due to the non-linear
terms [88].

The only apparent self-consistent truncation of the cumulant expansion is obtained
by only keeping the zeroth and first order. The so-called single-stream approximation
corresponds to a degenerate distribution function

𝑓(𝜏, 𝒙, 𝒑) = (1 + 𝛿)(2𝜋)3 𝛿(𝒑 − 𝑎𝑚𝒖) , (2.92)

where momentum is directly related to the velocity field at each instant in time and
point in space. The distribution function (2.92) is described in terms of four degrees
of freedom only, namely the density contrast and velocity field. The corresponding
evolution equations are the continuity and Euler’s equations describing the dynamics
of a perfect pressureless fluid.

While the single-stream approximation is mathematically self-consistent it can-
not capture the exact physical dynamics. During gravitational collapse dark matter
particle trajectories cross in positions space and the velocity field is multi-valued, a
phenomenon known as shell-crossing. By construction the single-stream approxima-
tion cannot account for the multiple streams coexisting in the same region of space
at shell-crossing. The superposition of streams naturally generate a non-trivial ve-
locity dispersion tensor which in turn sources all higher-order cumulants and thus
the single-stream approximation breaks down [88].

To go beyond the shell-crossing regime one generally needs to include higher-order
cumulants. By the above presented arguments it is clear that one would actually
need to include all higher-order cumulants since even if initially absent the Vlasov
hierarchy would generate them. Naturally the question arises whether all cumulants
are needed for a viable description that can capture the relevant physical processes
of cosmic structure formation.

For non-relativistic dark matter that decouples thermally in the early Universe
one would expect the background distribution function to be Maxwellian [2],

̄𝑓(𝒑2) = ( 2𝜋
𝑚𝑘B𝑇

)
3
2

exp(− 𝒑2

2𝑚𝑘B𝑇
) , (2.93)

where 𝑇 is the dark matter temperature and 𝑘B the Boltzmann constant. Equation
(2.93) corresponds to a normal distribution that is described in terms of the three
cumulants (2.87) only. The zeroth- and first-order cumulants vanishes due to the
normalisation (2.79) and isotropy, respectively, while the second-order cumulant
is given by 𝜎̄𝑖𝑗 = 𝛿𝑖𝑗𝑘B𝑇 /(𝑚𝑎2). At the level of the background the distribution
function is naturally conserved since the Vlasov equation reduces to 𝜕𝜏

̄𝑓(𝒑2) = 0.
A simple extension of the single-stream approximation is achieved by including the

velocity dispersion tensor and truncating the cumulant expansion thereafter [6–8].
In this case the momenta are normal distributed,

𝑓(𝜏, 𝒙, 𝒑) = (1 + 𝛿) (2𝜋) 3
2

𝑎3𝑚3 det(𝜎) 1
2

exp(−1
2

[ 𝑝𝑖
𝑎𝑚

− 𝑢𝑖](𝜎−1)
𝑖𝑗

[
𝑝𝑗

𝑎𝑚
− 𝑢𝑗]) , (2.94)
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2.4 Newtonian cosmology

and 𝜎𝑖𝑗(𝜏, 𝒙) is the covariance matrix.18 The non-trivial velocity dispersion tensor
regularises the momentum delta function of the single-stream approximation (2.92)
which is recovered in the limit 𝜎𝑖𝑗 → 0. Although the distribution function (2.94)
cannot capture shell-crossing microscopically, it supports the average motion of a
multi-stream flow.

The distribution function (2.94) naturally supports a Maxwell–Boltzmann dis-
tribution of momenta (2.93), such as expected for thermal relics [2] or virialised
clumps of dark matter, at least in simple halo models [89], but is more general in
the sense that it can describe local deviations from the background. Although the
subsequent evolution in time naturally deforms the distribution function away from
its initial shape, the first three cumulants can provide a good approximation of the
full distribution function as long as the other cumulants are relatively small.

More generally, one could include higher-order cumulants up to some desired
order 𝑛 and truncate the expansion thereafter. For truncations with 𝑛 > 2 the
distribution function can no longer be explicitly reconstructed.19 Nonetheless, one
would expect that any finite cumulant expansion has a natural range of scales where
it is applicable, but eventually breaks down due to small scale effects that are not
captured by the truncation.

2.4.5 Galilean invariance
In the Newtonian limit Hamilton’s equations (2.20) take the form

d𝑥𝑖
d𝜏

= 𝑝𝑖
𝑎𝑚

, d𝑝𝑖
d𝜏

= −𝑎𝑚 𝜕𝑖𝜙 . (2.95)

A standard symmetry of the Newtonian limit of general relativity is Galilean in-
variance [90]. A Galilean transformation relates two inertial frames of reference
and is given by the coordinate transformation 𝒓 ↦ 𝒓 + 𝒗𝑡 for any constant veloc-
ity 𝒗 in terms of proper cosmic time d𝑡 ≔ 𝑎(𝜏) d𝜏 and proper physical coordinates
𝒓 ≔ 𝑎(𝜏) 𝒙.20 The corresponding transformation of the comoving coordinates and
conjugate momenta take the time-dependent form [92]

𝒙 ↦ 𝒙 + 𝒗 𝑇 , 𝒑 ↦ 𝒑 + 𝑎𝑚𝒗 ̇𝑇 , (2.96)

where
𝑇 (𝜏) ≔ 1

𝑎(𝜏)
∫

𝜏

𝜏in

d𝜏 ′ 𝑎(𝜏 ′) . (2.97)

The phase-space distribution function is invariant under Galilean transformations
and transforms as

𝑓(𝜏, 𝒙, 𝒑) ↦ 𝑓(𝜏, 𝒙 − 𝒗 𝑇 , 𝒑 − 𝑎𝑚𝒗 ̇𝑇 ) . (2.98)
18By construction the velocity dispersion tensor is positive definite such that the distribution func-

tion exists, except for trivial degenerate cases.
19The only distribution functions that have a finite amount of cumulants are the degenerate and

normal distribution.
20Naturally the velocity 𝒗 should be much smaller than the speed of light to justify the Newtonian

limit.
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2 Gravitational dynamics of dark matter

For the moment-generating function one then obtains

𝑀(𝜏, 𝒙; 𝒍) ↦ 𝑀(𝜏, 𝒙 − 𝒗 𝑇 ; 𝒍) e𝒍⋅𝒗 ̇𝑇 , (2.99)

and as such all velocity moments are affected by a Galilean transformation. In terms
of the cumulant-generating function one has

𝐶(𝜏, 𝒙; 𝒍) ↦ 𝐶(𝜏, 𝒙 − 𝒗 𝑇 ; 𝒍) + 𝒍 ⋅ 𝒗 ̇𝑇 , (2.100)

implying that only the first-order cumulant transforms non-trivially under a Galilean
transformation,

𝑐(𝑛)
𝑖1…𝑖𝑛

(𝜏, 𝒙) ↦ 𝑐(𝑛)
𝑖1…𝑖𝑛

(𝜏, 𝒙 − 𝒗 𝑇 ) + 𝛿𝑛1𝑣𝑖1
̇𝑇 . (2.101)

The presence of the self-gravitating cosmological fluid spontaneously breaks Galilean
invariance since there exists a preferred frame in which the fluid is at rest [93]. This
is immediately evident when considering the transformation of the gravitational
potential [90] under the Galilean transformation (2.96),

𝜕𝑖𝜙(𝜏, 𝒙) ↦ 𝜕𝑖𝜙(𝜏, 𝒙 − 𝒗 𝑇 ) + 𝒗 Ḣ𝑇 , (2.102)

as demanded by the equations of motion (2.95). While Galilean invariance is no
longer manifest it corresponds to an extended symmetry and is related to the large
wave number sector of the theory studied in chapter 5.
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3 Statistical cosmology

In this chapter the statistical description of dark matter, which is at the heart of the
field theory formulated in chapter 4, is introduced. In section 3.1 the description
of dark matter in terms of random fields and correlation functions is introduced.
In section 3.2 the theory of inflation as the initial condition for large-scale cosmic
structure formation is discussed. In section 3.3 the decomposition into irreducible
representations of the translation and rotation group of dark matter degrees of free-
dom is performed. Finally, in section 3.4 linear perturbation theory is reviewed.

Fourier transform

In the following, it is often convenient to work in terms of the Fourier transform
taking position vectors 𝒙 to their reciprocal wave vectors 𝒌. For any suitable function
or distribution 𝑓(𝒙) the convention

𝑓(𝒌) = ∫
𝒙

e−i𝒌⋅𝒙 𝑓(𝒙) , 𝑓(𝒙) = ∫
𝒌

ei𝒌⋅𝒙 𝑓(𝒌) , (3.1)

is employed. The Fourier transform is denoted by the same symbol and distinguished
by its argument if not clear from the context. The three-dimensional Euclidean inner
product is written as 𝒌 ⋅𝒙 = 𝑘𝑖𝑥𝑖 and the modulus of three-vectors is abbreviated as
the corresponding lightface symbol, such as for the wave number 𝑘 = |𝒌|. Integrals
over the entire domain are abbreviated as

∫
𝒙

≔ ∫
R3

d3𝑥 , ∫
𝒌

≔ ∫
R3

d3𝑘
(2𝜋)3 , (3.2)

and wave vector delta functions are often denoted as 𝛿(𝒌) ≔ (2𝜋)3 𝛿(𝒌).

3.1 Statistical description of dark matter
To study late-time large-scale cosmic structure formation, one usually adopts a sta-
tistical description of dark matter. This is most often motivated from the assump-
tion that the very early Universe goes through a period of rapid expansion inflating
quantum fluctuations in the energy density to macroscopic perturbations. The most
common type of such inflation models predict these perturbations to be very close to
statistically homogeneous and isotropic Gaussian random fields [94] and is discussed
in more detail in the next section.

The employed statistical field theory can be understood as describing an ensemble
of cosmic histories or, equivalently for this purpose, a sample corresponding to a large
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3 Statistical cosmology

but finite spatial volume of the Universe. The fair sample hypothesis conjectures
that ensemble averages over cosmic histories can be treated as samples averages for
large enough spatial domains [95]. The closely related concept of ergodicity asserts
that ensemble averages are equal to sample averages over an infinite volume. Since
the fair sample hypothesis assumes this property to also hold for finite patches of
the Universe, it is a much stronger assumption.

To characterise the statistical properties of random fields, one usually studies
expectation values of composite field operators which are most often taken to be
monomials in the fields. These so-called correlation functions are the natural gen-
eralisation of the moments of a multivariate random variable. The cosmological
principle corresponds to the assumption that spatial homogeneity and isotropy are
realised statistically such that the correlation functions transform trivially under the
action of the translation and rotation group [96].

In a kinetic theory description, one is interested in correlation functions of the
phase-space distribution function 𝑓(𝜏, 𝒙, 𝒑) or the velocity moments and cumulants
thereof. The simplest type of correlation functions has already been encountered in
chapter 2, namely the dark matter background mass density

̄𝜌(𝜏) = ⟨𝜌(𝜏, 𝒙)⟩ , (3.3)

and background pressure

𝛿𝑖𝑗
̄𝑃 (𝜏) = ⟨𝜌(𝜏, 𝒙) 𝜎𝑖𝑗(𝜏, 𝒙)⟩ , (3.4)

where ⟨…⟩ denotes the ensemble average.
One-point correlation functions are mean fields, such as background density (3.3),

which are constant throughout space due to statistical homogeneity. The density
contrast field (2.78) has a vanishing mean field as it is defined as the relative deviation
from the density mean field (3.3). Due to statistical isotropy the velocity field
cannot obtain a mean field and in fact all moments and cumulants of odd order have
vanishing mean fields. In contrast, moments and cumulants of even order in general
have non-vanishing mean fields, such as the stress tensor (3.4). Of the cumulants
discussed in chapter 2 only the trace of the velocity dispersion tensor can obtain a
mean field,

𝛿𝑖𝑗 𝜎̄(𝜏) ≔ ⟨𝜎𝑖𝑗(𝜏, 𝒙)⟩ . (3.5)

It is emphasised that the pressure mean field (3.4) is not given by the product of
the density and velocity dispersion mean fields but also includes cross-correlations
of density and velocity dispersion fields due to the non-linear splitting (3.4).

To study higher-order correlation functions, it is useful to introduce connected
correlation functions as the natural generalisation of the cumulants of a multivariate
random variable. The connected two-point correlation functions are expectation
values of two fields and correspond to auto- and cross-covariance functions. Since
inflation predicts the initial state of the theory to be very near to a Gaussian random
field, the covariance functions together with the mean fields fully characterise the
initial state of the theory.
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3.1 Statistical description of dark matter

The cross-covariance function of two scalar fields 𝜙 and 𝜓 is denoted as

𝐶𝜙𝜓(|𝒙 − 𝒙′|) = ⟨𝜙(𝒙) 𝜓(𝒙′)⟩c ≔ ⟨𝜙(𝒙) 𝜓(𝒙′)⟩ − ⟨𝜙(𝒙)⟩⟨𝜓(𝒙′)⟩ , (3.6)

where ⟨…⟩c is the connected part of the expectation value. Due to statistical ho-
mogeneity and isotropy, the two-point correlation functions only depend on the
distance, at least for scalar fields.

In cosmology, one is mostly concerned with the density contrast equal-time auto-
covariance function although in general also unequal-time and cross-covariance func-
tions are necessary to understand all the physics at play.1

In general, one can also study higher-order (connected) correlation functions which
quantify the deviation from a Gaussian random field similar to the skewness and
kurtosis of a random variable. Since the dynamics of dark matter gravitational insta-
bilities is non-linear, the late-time statistical properties of dark matter are naturally
non-Gaussian. However, one expects the covariance functions to be the dominant
correlations on cosmically large scales where deviations from the homogeneous and
isotropic background are small and gravitational dynamics is almost linear.

It is often convenient to work with the Fourier transform of correlation functions.
Since the mean fields are spatially constant, they consist of a zero mode only. The
Fourier transform of a connected two-point correlation function is the power spectral
density

𝑃𝜙𝜓(𝑘) ≔ ∫
𝒙

ei𝒌⋅(𝒙−𝒙′) 𝐶𝜙𝜓(|𝒙 − 𝒙′|) , (3.7)

one of the central objects studied in cosmology. It quantifies the distribution of
‘power’ into Fourier modes and is also called the power spectrum. Simple examples
include a constant power spectral density corresponding to Gaussian white noise
and the reciprocal of a pure quadratic polynomial corresponding to an Ornstein–
Uhlenbeck process [97].

Another useful quantity is the dimensionless power spectrum

∆𝜙𝜓(𝑘) ≔ 𝑘3

2𝜋2 𝑃𝜙𝜓(𝑘) . (3.8)

The coincidence limit of the covariance function, provided it exists and is finite, can
then be written as

𝐶𝜙𝜓(0) = ∫
𝒌

𝑃𝜙𝜓(𝑘) = ∫
∞

−∞
d ln(𝑘/𝑘∗) ∆𝜙𝜓(𝑘) , (3.9)

where the last equality implies that the dimensionless power spectrum quantifies the
contribution to the covariance in a logarithmic interval at 𝑘/𝑘∗ for some arbitrary
wave number 𝑘∗.

1The density contrast equal-time auto-covariance function is in cosmology often called the corre-
lation function and denoted by 𝜉(|𝒙 − 𝒙′|).
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Although the two-point correlation functions have been introduced for scalar fields
only, the definition can be straight forwardly extended to fields that transform non-
trivially under the rotation group. This is discussed in section 3.3, where degrees of
freedom are classified according to their transformation properties.

Higher-order correlation functions can be Fourier transformed in a similar fash-
ion. The corresponding spectral densities are the natural generalisations of the
power spectrum and are also frequently studied in cosmology in terms of the bi- and
trispectrum [98].

3.2 Inflation
It is believed that shortly after the Big Bang the Universe underwent an inflationary
phase of rapid expansion. Typical models assume the energy content to be domi-
nated by an inflaton field driving the exponential growth of the Universe [99–101].2
Quantum fluctuations of the inflaton field are stretched to macroscopic length scales
during inflation forming the seeds for late-time cosmic structure formation.

Metric perturbations are induced by the inflaton field due to the warping of space-
time by its energy content. These are most conveniently described in terms of the
comoving curvature perturbation R which is essentially the gravitational potential
𝜙 in Poisson gauge. Most inflation models predict the comoving curvature perturba-
tion to be described by a near to scale-free Gaussian random field. The corresponding
dimensionless power spectrum is usually parametrised in terms of an amplitude 𝐴s
and a spectral index 𝑛s at some arbitrary pivot scale 𝑘∗,

∆R(𝑘) = 𝐴s ( 𝑘
𝑘∗

)
𝑛s−1

. (3.10)

In the case 𝑛s = 1 one obtains the scale-free Harrison–Zeldovich power spectrum
[102,103] describing Gaussian white noise.

Since the gravitational potential couples to the dark matter density perturbations
via Poisson’s equations (2.85), the primordial dimensionless power spectrum of dark
matter density perturbations is

∆prim
𝛿𝛿 (𝑘) ∝ 𝑘4∆R(𝑘) ∝ 𝑘𝑛s+3 , (3.11)

such that induced primordial matter density perturbations are expected to be near
to scale-free and Gaussian [104–107].

During inflation the comoving Hubble horizon 𝑐/H is shrinking and perturbations
with a larger wave length are said to be superhorizon. After inflation ends and
during the subsequent radiation and matter dominated eras of the Universe, pertur-
bations re-enter the growing Hubble horizon and become subhorizon. Since the dark
matter density perturbations evolve differently on sub- and superhorizon scales in

2There is a vast landscape of inflation models, covering single- to multi-scalar field models or even
more exotic theories.
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Figure 3.1: Typical density contrast power spectrum used as an initial condition for
late-time cosmic structure formation. The infrared and ultraviolet limits
(3.12) are shown as dotted curves. The power spectrum is generated at
redshift 𝑧 = 99 for a 𝛬CDM cosmology with parameters from Planck
2018 [162] using the class code [157]. The equality scale 𝑘eq ≈ 0.015
ℎ/Mpc is computed for a cosmic microwave background temperature
𝑇CMB ≈ 2.73 K [158].

the radiation dominated era of the Universe, the near to scale-free power spectrum
(3.11) is altered. The matter perturbations inside the horizon are suppressed during
radiation domination while outside the horizon continue to grow [3]. During matter
domination, the matter perturbations grow equally on all scales and thus the char-
acteristic scale of suppression is set by the radiation-matter equality wave number
𝑘eq = Heq/𝑐.3 This leads to a characteristic shape of the density contrast power
spectrum deep within the matter dominated era of the Universe which is given by

𝑃 in
𝛿𝛿(𝑘) ∝ {

𝑘𝑛s for 𝑘 ≪ 𝑘eq

𝑘𝑛s−4 ln(𝑘/𝑘eq)2 for 𝑘 ≫ 𝑘eq
. (3.12)

A typical density contrast power spectrum used as an initial condition for late-time
large-scale cosmic structure formation is shown in figure 3.1.

3.3 Scalar-vector-tensor decomposition
Due to statistical homogeneity and isotropy, it is sensible to classify the degrees of
freedom under study according to their transformation properties with respect to the

3The subhorizon evolution of perturbations in the radiation and matter dominated eras of the
Universe is described by the Mészáros equation [108].
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three-dimensional Euclidean translation and rotation group. From a group-theoretic
point of view this is understood as the decomposition into irreducible representations
and is discussed in greater detail in appendix A.

Since the following chapters mainly deal with the velocity cumulants of the phase-
space distribution function, they are classified in the following. The decomposition
into irreducible unitary representations of the translation group is given by the
decomposition into Fourier modes,

𝑐(𝑛)
𝑖1…𝑖𝑛

(𝒙) = ∫
𝒌

ei𝒌⋅𝒙 𝑐(𝑛)
𝑖1…𝑖𝑛

(𝒌) , (3.13)

where time arguments are suppressed in the remainder of this section.
For a fixed wave vector 𝒌 the Fourier modes are symmetric 𝑛th-order three-tensors

and as such transform in the 𝑛th symmetric power of the defining representation of
the rotation group, denoted as Sym𝑛(𝟑). The symmetric power can be decomposed
into a direct sum of irreducible representations very similar to the Clebsch–Gordan
decomposition,

Sym𝑛(𝟑) ≅
⌊𝑛/2⌋

⨁
𝑗=0

(𝟐𝒏 − 𝟒𝒋 + 𝟏) , (3.14)

where the boldfaced right-hand side denotes the irreducible representations in terms
of their dimension and ⌊… ⌋ is the floor function.

Since 𝒌 singles out a direction, the representations further break up into irreducible
representations of the circle group describing rotations in the plane perpendicular to
𝒌. More explicitly, the odd dimensional irreducible representations of the rotation
group break up as

(𝟐ℓℓℓℓ + 𝟏) ≅
ℓ

⨁
𝑗=1

𝟐𝑗 ⊕ 𝟏0 , (3.15)

where 𝟐𝑗 are two-dimensional representations and 𝟏0 is the trivial representation of
the circle group.4 The former correspond to spin-𝑗 modes that are transverse to 𝒌
while the latter are spin-0 modes parallel to 𝒌. In the following, the spin-0 modes
are called scalar, the spin-1 modes are called vector and the spin-2 modes are called
tensor as is common in cosmology.5

Combining the decompositions (3.14) and (3.15) one finally obtains the splitting

Sym𝑛(𝟑) ≅
𝑛

⨁
𝑗=0

𝟐⊕𝑚𝑛,𝑗
𝑗 ⊕ 𝟏⊕𝑚𝑛,0

0 , (3.16)

where the multiplicities are given by

𝑚𝑛,𝑗 = ⌊𝑛 + 2 − 𝑗
2

⌋ . (3.17)

4Since the circle group is abelian, its complex irreducible representations are one-dimensional. As
such, the two-dimensional real irreducible representation 𝟐𝑗 corresponds to two one-dimensional
conjugate complex representations.

5Notice that by this nomenclature the vector and tensor modes only have two degrees of freedom.
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3.3 Scalar-vector-tensor decomposition

From a practical point of view the decomposition corresponds to splitting a sym-
metric 𝑛th-order three-tensor into transverse, traceless and symmetric 𝑛th-order
three-tensors.6

Velocity cumulants

Returning to the phase-space distribution function, one finds that a truncation of
the cumulant expansion after order 𝑛 corresponds to a description which includes
(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)/6 degrees of freedom which can be decomposed into

𝑛
∑
𝑘=𝑗

⌊𝑘 + 2 − 𝑗
2

⌋ , (3.18)

Fourier modes of spin 𝑗.
In the following, this decomposition is used to explicitly decompose the first- and

second-order velocity cumulant. While equation (3.16) straight forwardly implies
that the velocity field decomposes as 𝟑 ≅ 𝟐1 ⊕ 𝟏0 and the velocity dispersion tensor
as Sym2(𝟑) ≅ 𝟐2 ⊕ 𝟐1 ⊕ 𝟏0 ⊕ 𝟏0, one has the freedom to choose a normalisation. To
this end, it is convenient to define the the velocity-divergence and vorticity field,

𝜃(𝒙) ≔ 𝜕𝑖𝑢𝑖(𝒙) , 𝜔𝑖(𝒙) ≔ 𝜖𝑖𝑗𝑘𝜕𝑗𝑢𝑘(𝒙) , (3.19)

quantifying the momentum flux through an infinitesimally small surface enclosing
𝒙 and the local rotation of fluid elements at 𝒙, respectively.7 In terms of these, the
decomposition of the velocity field reads

𝑢𝑖(𝒙) = ∫
𝒌

ei𝒌⋅𝒙 [𝜖𝑖𝑗𝑙
i 𝑘𝑗

𝑘2 𝜔𝑙(𝒌) − i 𝑘𝑖
𝑘2 𝜃(𝒌)] . (3.20)

For the velocity dispersion tensor, the scalar modes are parametrised as

𝜎(𝒌) ≔ 1
3 𝛿𝑖𝑗𝜎𝑖𝑗(𝒌) , 𝜗(𝒌) ≔ (𝑘̂𝑖𝑘̂𝑗 − 1

3 𝛿𝑖𝑗) 𝜎𝑖𝑗(𝒌) , (3.21)

where 𝑘̂𝑖 ≔ 𝑘𝑖/𝑘. These correspond to isotropic and anisotropic velocity disper-
sion degrees of freedom, respectively. The vector and tensor modes are anisotropic
velocity dispersion degrees of freedom and are defined as the projections

𝜗𝑖(𝒌) ≔ P𝑖𝑙(𝒌) 𝑘̂𝑗 𝜎𝑙𝑗(𝒌) , 𝜗𝑖𝑗(𝒌) ≔ P𝑖𝑗𝑘𝑙(𝒌) 𝜎𝑘𝑙(𝒌) . (3.22)

The transverse projector is P𝑖𝑗(𝒌) ≔ 𝛿𝑖𝑗 − 𝑘̂𝑖𝑘̂𝑗 and the transverse, traceless and
symmetric projector reads

P𝑖𝑗𝑙𝑚(𝒌) ≔ 1
2[P𝑖𝑙(𝒌) P𝑗𝑚(𝒌) + P𝑖𝑚(𝒌) P𝑗𝑙(𝒌) − P𝑖𝑗(𝒌) P𝑙𝑚(𝒌)] . (3.23)

6An explicit formula for the full decomposition is derived in appendix A.
7It is noted that the vorticity field is a pseudovector transforming trivially under parity trans-

formations. In terms of the velocity-divergence and vorticity field, the decomposition of the
velocity field is the Helmholtz decomposition.
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The decomposition of the velocity dispersion tensor then takes the form

𝜎𝑖𝑗(𝒙) = ∫
𝒌

ei𝒌⋅𝒙 [𝜗𝑖𝑗(𝒌) + 2𝑘̂(𝑖𝜗𝑗)(𝒌) + 3
2(𝑘̂𝑖𝑘̂𝑗 − 1

3 𝛿𝑖𝑗) 𝜗(𝒌) + 𝛿𝑖𝑗𝜎(𝒌)] . (3.24)

Similarly, one can decompose the higher-order velocity cumulants using the splitting
(3.16) but this is not further pursued here.

Correlation functions

Having classified the matter degrees of freedom, one might ask about correlation
functions of scalar, vector and tensor modes. Due to statistical isotropy only the
scalar modes can obtain a non-vanishing mean field although one should be careful
to correctly take the physical degrees of freedom into account. For example the
velocity-divergence 𝜃(𝒌) can in principal obtain a non-vanishing mean field, while
the physical velocity field cannot. From the decomposition (3.20), one can realise
that a zero-mode of the velocity-divergence field leads to an unbounded growth of
the corresponding velocity field rendering it unphysical.8 Similarly, one can realise
that the isotropic velocity dispersion field 𝜎(𝒌) can feature a mean field while the
anisotropic velocity dispersion field 𝜗(𝒌) in general cannot.

More generally, only those scalar modes 𝟏0 can obtain a non-vanishing mean field
that also correspond to the trivial representation 𝟏 of the rotation group. The scalar
modes which are obtained from non-trivial representations due to the decomposition
(3.15) in general have a vanishing mean field in order to ensure statistical isotropy
of the corresponding physical degrees of freedom.

Turning to the two-point correlation functions, the statistical isotropy symme-
try guarantees that only modes of the same spin have a non-vanishing covariance
function. Naturally, one also deals with vector power spectra such as e.g.

𝑃𝜔𝑖𝜔𝑗
(𝒌) = ∫

𝒙
ei𝒌⋅(𝒙−𝒙′) 𝐶𝜔𝑖𝜔𝑗

(𝒙 − 𝒙′) , (3.25)

for which the trace 𝐶𝜔𝑖𝜔𝑖
(|𝒙 − 𝒙′|) only depends on the distance of the two posi-

tion vectors. The vector power spectrum is invariant under parity transformations,
𝑃𝜔𝑖𝜔𝑗

(−𝒌) = 𝑃𝜔𝑖𝜔𝑗
(𝒌), since it is proportional to the projector P𝑖𝑗(𝒌).9 The power

spectrum can be reduced to

𝑃𝜔𝜔(𝑘) ≔ 1
2 P𝑖𝑗(𝒌) 𝑃𝜔𝑖𝜔𝑗

(𝒌) , (3.26)

where the factor one half is due to the identity P𝑖𝑗 P𝑖𝑗 = 2.
When working in terms of the power spectrum, one is often interested in the

scaling of it in certain regimes such that it is useful to define the spectral index, e.g.

𝑛𝜔(𝑘) ≔ d ln(𝑃𝜔𝜔(𝑘))
d ln(𝑘)

, (3.27)

8From the point of view of the Helmholtz decomposition, one would argue that boundary conditions
need to be imposed for a unique reconstruction of the velocity field.

9This is true irrespective of whether the transverse vector mode is a true- or pseudovector.
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3.4 Standard perturbation theory

which is constant for a pure power law power spectrum.
Very similarly, one can proceed for the power spectrum of tensor modes although

not needed in the following and therefore not explicitly treated here.

3.4 Standard perturbation theory
Having introduced the dynamics of gravitational instabilities, the nature and sta-
tistical description of the initial conditions and the decomposition of the matter
degrees of freedom into irreducible components, one can now turn to actually calcu-
late late-time statistical properties of dark matter. In this section, this is presented
in terms of standard perturbation theory of the single-stream approximation before
constructing a much more complete framework in the next chapter in terms of a
functional formalism for the underlying statistical field theory.

In the framework of standard perturbation theory of the single-stream approx-
imation, dark matter is described in terms of the density contrast and velocity-
divergence fields while the vorticity field is neglected [17].10 The Fourier transform
of the continuity equation (2.89) is given by

𝜕𝜏𝛿(𝒌) + 𝜃(𝒌) + ∫
𝒌′

𝛼(𝒌′, 𝒌 − 𝒌′) 𝜃(𝒌′) 𝛿(𝒌 − 𝒌′) = 0 , (3.28)

and Euler’s equation (2.90) for the velocity-divergence reads

𝜕𝜏𝜃(𝒌) + H𝜃(𝒌) − 3
2 𝛺mH2 𝛿(𝒌) + ∫

𝒌′

𝛽(𝒌′, 𝒌 − 𝒌′) 𝜃(𝒌′) 𝜃(𝒌 − 𝒌′) = 0 , (3.29)

where Poisson’s equation (2.85) has been used to eliminate the gravitational poten-
tial. The mode coupling functions are determined by the non-linear terms and are
given by [17]

𝛼(𝒌1, 𝒌2) ≔ (𝒌1 + 𝒌2) ⋅ 𝒌1
𝑘2

1
, 𝛽(𝒌1, 𝒌2) ≔ (𝒌1 + 𝒌2)2(𝒌1 ⋅ 𝒌2)

2𝑘2
1𝑘2

2
. (3.30)

The density contrast and velocity-divergence are assumed to be Gaussian random
fields at some initial time deep within the matter dominated era of the Universe and
are as such fully characterised in terms of their respective power spectra which are
predicted by inflation and the early Universe physics discussed in section 3.2.

3.4.1 Linear perturbation theory
The linear parts of the continuity equation (3.28) and Euler’s equation (3.29) can
be combined to the second-order differential equation

𝜕2
𝜏 𝛿L(𝜏, 𝒌) + H(𝜏) 𝜕𝜏𝛿L(𝜏, 𝒌) − 3

2 𝛺m(𝜏)H(𝜏)2 𝛿L(𝜏, 𝒌) = 0 , (3.31)
10This is well justified since in the absence of velocity dispersion vorticity is not sourced and decays

with the expansion of the Universe.

35



3 Statistical cosmology

which together with Friedmann’s equations (2.70) determine the linear growth of
density fluctuations. Since each Fourier mode involves independently, the general
solution is given by the superposition of its two independent solutions which may
be written as

𝛿L(𝜏, 𝒌) = 𝐷+(𝜏) 𝐴(𝒌) + 𝐷−(𝜏) 𝐵(𝒌) , (3.32)

where the functions 𝐴(𝒌) and 𝐵(𝒌) are determined by the initial density contrast
field. The linear growth functions 𝐷+(𝜏) and 𝐷−(𝜏) denote the fastest and slowest
growing solution, respectively, and are chosen to be normalised to unity at 𝑎 = 1.
The continuity equation (3.28) then determines the linear velocity-divergence field,

𝜃L(𝜏, 𝒌) = −H(𝜏)[𝑓(𝜏) 𝐷+(𝜏) 𝐴(𝒌) + 𝑔(𝜏) 𝐷−(𝜏) 𝐵(𝒌)] , (3.33)

where 𝑓 = 𝜕 ln(𝐷+)/𝜕 ln(𝑎) and 𝑔 = 𝜕 ln(𝐷−)/𝜕 ln(𝑎).
In the linear growing mode, the fields obey the relation 𝛿L = −𝜃L/(𝑓H) and

therefore the linear power spectra

𝑃 L
𝛿𝛿 = −𝑃 L

𝛿𝜃/(𝑓H) = 𝑃 L
𝜃𝜃/(𝑓H)2 , (3.34)

are all equal and given by

𝑃 L
𝛿𝛿(𝜏, 𝜏 ′, 𝑘) =

𝐷+(𝜏)
𝐷+(𝜏in)

𝐷+(𝜏 ′)
𝐷+(𝜏in)

𝑃 in
𝛿𝛿(𝑘) . (3.35)

In an Einstein–de Sitter cosmology the energy content is dominated by matter with
𝛺m = 1 and the linear growth functions are

𝐷+ = 𝑎 , 𝐷− = 𝑎−3/2 . (3.36)

In a 𝛬CDM cosmology without a radiative component, which is applicable in the
late-time Universe where the radiation density is small compared to the matter and
cosmological constant densities, one obtains [109]

𝐷+ = 𝑎 2𝐹1 (1
3 , 1; 11

6 ; −𝑎3𝜔)

2𝐹1 (1
3 , 1; 11

6 ; −𝜔)
, 𝐷− = 𝑎− 3

2
2𝐹1 (−1

2 , 1
6 ; 1

6 ; −𝑎3𝜔)

2𝐹1 (−1
2 , 1

6 ; 1
6 ; −𝜔)

, (3.37)

where 2𝐹1 is the Gaussian hypergeometric function and 𝜔 = (1 − 𝛺m,0)/𝛺m,0 is
today’s relative energy density fraction due to matter.

Since it is much easier to work in an Einstein–de Sitter cosmology, the approx-
imation 𝛺m/𝑓2 = 1 mapping a 𝛬CDM onto an Einstein–de Sitter cosmology is
frequently employed. The approximation essentially assumes that the slowest grow-
ing solution is given by 𝐷− = (𝐷+)− 3

2 which is strictly speaking only true for the
growth functions (3.36). The approximation is frequently employed in perturbation
theory since the equations become separable in this case [110].
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3.4.2 Non-linear perturbation theory

In order to compute non-linear corrections to the linear power spectrum (3.35), the
continuity equation (3.28) and Euler’s equation (3.29) can be solved order by order
using the perturbative expansions

𝛿(𝜏, 𝒌) =
∞

∑
𝑛=1

𝛿(𝑛)(𝜏, 𝒌) , 𝜃(𝜏, 𝒌) =
∞

∑
𝑛=1

𝜃(𝑛)(𝜏, 𝒌) . (3.38)

The 𝑛 = 1 terms are then the linear solutions (3.32) and (3.33) such that the higher-
order terms correspond to an expansion in the linear or initial fields.

The corrections to linear theory should be small in order to obtain predictive
results from a truncation of the perturbative series. This is only justified on cos-
mically large scales where the Universe becomes homogeneous and isotropic. Going
to smaller scales, the non-linear coupling of modes become larger and perturbation
theory naturally breaks down such that the expansion (3.38) should be understood
as an asymptotic series.

Using the perturbative expansion (3.38) one can find an expansion for the density
contrast power spectrum [17]

𝑃𝛿𝛿(𝜏, 𝜏 ′, 𝑘) =
∞

∑
ℓ=0

𝑃 (ℓ)
𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) , (3.39)

and similarly for the other power spectra. One obtains for the zeroth loop order the
linear power spectrum,

𝑃 (0)
𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) = 𝑃 L

𝛿𝛿(𝜏, 𝜏 ′, 𝑘) , (3.40)

while the one-loop contribution is usually expressed as [111,112]

𝑃 (1)
𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) = 𝑃 (2,2)

𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) + 2𝑃 (1,3)
𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) . (3.41)

Truncating the expansion (3.39) after ℓ = 1 one obtains the one-loop power spectrum

𝑃 1-loop
𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) = 𝑃 (0)

𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) + 𝑃 (1)
𝛿𝛿 (𝜏, 𝜏 ′, 𝑘) . (3.42)

Similarly one can proceed for the velocity-divergence auto-power spectrum and
velocity-divergence-density contrast cross-power spectrum [113,114].

The basic idea is to expand the fields in powers of their initial conditions, such that
expectation values such as the power spectrum can be computed from the statistics
of the initial state alone. Using a generalisation of Isserlis’ theorem [115], in physics
often called Wick’s theorem [116], one can then express all expectation values in
terms of initial power spectra only.

Standard perturbation theory is again reviewed in chapter 4 embedded into the
larger functional formalism presented there.

The performance of the standard perturbation theory one-loop power spectrum
computed in the single-stream approximation is shown in figure 3.2. As one can
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Figure 3.2: Dimensionless density contrast equal-time power spectrum as predicted
from one-loop standard perturbation theory at redshift 𝑧 = 0. It is com-
puted from an initial power spectrum 𝛬CDM cosmology with parameters
from Planck 2018 [162] using the Eisenstein & Hu fitting formula [177].

clearly see, the one-loop correction leads to an enhancement of the power spectrum
at small scales. The enhancement is a result of a rather accurate cancellation of
the two contributions 𝑃 (2,2)

𝑎𝑏 and 𝑃 (1,3)
𝑎𝑏 . In fact, the correction strongly overesti-

mates the power at small scales when compared to data from 𝑁-body simulations
or observations, which is due to the fact that at small scales the theory is no longer
perturbative. Although some improvement can be achieved on mildly non-linear
scales by including higher loop orders, the perturbative expansion ultimately breaks
down due to its nature as an asymptotic series [117].
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In this chapter the basic formalism used in the following chapters is established. In
section 4.1 the dynamics of dark matter gravitational instabilities is formulated as
an action based statistical field theory. Generalised correlation functions such as the
mean linear response and covariance function are discussed and the corresponding
generating functional is introduced. The one-particle irreducible effective action is
defined and a diagrammatic representation for correlation functions is introduced.
In section 4.2 standard perturbation theory is discussed within the functional frame-
work and the usual one-loop results of the single-stream approximation are derived.
In section 4.3 the loop expansion of the effective action and its relation to the
one-particle irreducible resummation scheme is discussed and computed to one-loop
order. In sections 4.4 and 4.5 the Dyson–Schwinger equation and the functional
renormalisation group are derived and discussed, which are the main methods used
in the following chapters to study late-time cosmic structure formation. Finally, in
section 4.6 the symmetries of the theory are studied and related Ward identities are
derived.

4.1 Statistical field theory formulation
Having introduced the dynamics of dark matter gravitational instabilities and the
statistical nature of the corresponding initial conditions, one can understand late-
time cosmic structure formation from a field-theoretic point of view [118].

In the following, the matter degrees of freedom are chosen to be a set of velocity
cumulants of the phase-space distribution function and the desired field content is
assembled into the multiplet

𝜓𝑎(𝜏, 𝒙) = (𝛿, 𝑢𝑖, 𝜎𝑖𝑗, …) , (4.1)

where the index 𝑎 carries any additional substructure of the fields, such as tensorial
indices, and is summed over if appearing twice in a single term. The equations of
motion (2.88) can then be written as

𝜕𝜏𝜓𝑎(𝜏, 𝒙) + ∫
𝒙′

𝛺𝑎𝑏(𝜏, 𝒙 − 𝒙′) 𝜓𝑏(𝜏, 𝒙′)

+ ∫
𝒙′,𝒙″

𝛾𝑎𝑏𝑐(𝒙 − 𝒙′, 𝒙 − 𝒙″) 𝜓𝑏(𝜏, 𝒙′) 𝜓𝑐(𝜏, 𝒙″) = 0 ,
(4.2)

where the gravitational potential has already been eliminated by formally solving
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Poisson’s equation (2.85).1 The linear part is characterised by the matrix

𝛺(𝜏, 𝒙 − 𝒙′) =

𝛿
𝑢𝑖
𝜎𝑖𝑗

𝛿 𝑢𝑗 𝜎𝑘𝑙

⎛⎜⎜⎜⎜
⎝

0 𝜕𝑗𝛿(𝒙 − 𝒙′) 0 ⋯
𝑂𝑖(𝜏, 𝒙 − 𝒙′) H𝛿𝑖𝑗 𝛿𝑖𝑘𝜕𝑙𝛿(𝒙 − 𝒙′) ⋯

0 0 2H𝛿𝑖𝑘𝛿𝑗𝑙 ⋯
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟
⎠

, (4.3)

where the fields above and to the left of the matrix are displayed as an orientation
and indicate which field (above) enters into which equation of motion (left). The
matrix 𝛺𝑎𝑏 is local and of upper triangular form except for the velocity-density
component that is determined by the solution of Poisson’s equation. It is given by
the operator

𝑂𝑖(𝜏, 𝒙 − 𝒙′) = 3
2
H2𝛺m

1
4𝜋

𝑥𝑖 − 𝑥′
𝑖

|𝒙 − 𝒙′|3
, (4.4)

together with an appropriate boundary condition which is discussed in more detail
in section 4.6.3. The diagonal entries of 𝛺𝑎𝑏 are the Hubble drag terms of the cor-
responding cumulants while the entries above the diagonal are derivatives coupling
to the next higher-order cumulant.

The vertices 𝛾𝑎𝑏𝑐 are symmetrised with respect to the two fields they couple and
their spatial dependence is through gradients. The first few that are relevant in the
following chapters are listed in appendix C.

4.1.1 Response and correlation functions
Before turning to the functional formulation it is necessary to discuss the type of
correlation functions one has to deal with in a field-theoretic description. Besides
statistical correlation functions one naturally obtains another type of correlation
functions that are related to the response functions characterising the dynamics of
the system.

The linear part of the equations of motion (4.2) can be formally solved by a Green’s
function that is in cosmology most often called the linear retarded propagator [119].
The Green’s function obeys the equation

𝜕𝜏𝑔R
𝑎𝑐(𝜏, 𝜏 ′, 𝒙 − 𝒙′) + ∫

𝒙″

𝛺𝑎𝑏(𝜏, 𝒙 − 𝒙″) 𝑔R
𝑏𝑐(𝜏, 𝜏 ′, 𝒙″ − 𝒙′)

= 𝛿𝑎𝑐 𝛿(𝜏 − 𝜏 ′) 𝛿(𝒙 − 𝒙′) ,
(4.5)

is spatially translation invariant and subject to the boundary conditions

𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) = 0 for 𝜏 ′ > 𝜏 , 𝑔R

𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) = 𝛿𝑎𝑏 for 𝜏 ′ → 𝜏− , (4.6)
1Equation (4.2) cannot capture the equations of motion (2.88) exactly, since they contain non-

linear terms of the form 𝑐(𝑛+1)𝜕𝒙 ln(1 + 𝛿). These are non-polynomial in the field content (4.1)
and are in the following approximated as 𝑐(𝑛+1)𝜕𝒙𝛿 for 𝑛 > 1. This can be understood as
a vertex expansion around the (vanishing) density contrast mean field. Similarly, one could
chose to include the logarithmic density contrast in the field content (4.1), although in this case
Poisson’s equation (2.85) is non-polynomial in the field content leading to a similar problem.
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rendering it causal.2
The linear retarded propagator can be interpreted as the linear impulse response

to an ultra-local source. This notion can be generalised to higher-order response
functions to which end one supplies a source current 𝐾𝑎(𝜏, 𝒙) to the right-hand side
of equation (4.2). The general solution 𝜓sol

𝑎 (𝜏, 𝒙) is then source-dependent and the
𝑛th-order response function is defined as

𝑅(𝑛)
𝑎𝑏1…𝑏𝑛

(𝜏, 𝒙; 𝜏1, 𝒙1; … ; 𝜏𝑛, 𝒙𝑛) ≔ 𝛿𝑛𝜓sol
𝑎 (𝜏, 𝒙)

𝛿𝐾𝑏1
(𝜏1, 𝒙1) … 𝛿𝐾𝑏𝑛

(𝜏𝑛, 𝒙𝑛)
∣
𝐾𝑎=0

, (4.7)

which in general depends on the initial conditions 𝜓in
𝑎 (𝒙). The zeroth-order response

function is the solution of the equations of motion in the absence of a source current
and vanishes for vanishing initial conditions. The linear retarded propagator is
obtained as the first-order response function for vanishing initial conditions,

𝑅(1)
𝑎𝑏 (𝜏, 𝒙; 𝜏 ′, 𝒙′)∣

𝜓in
𝑎 =0

= 𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) , (4.8)

although more generally carrying non-linear information for non-vanishing initial
data.3

For random initial conditions 𝜓in
𝑎 (𝒙) the response functions are in general also

random and as such one is rather interested in the mean response functions, ob-
tained by averaging the response functions (4.7) over the initial state. One of the
central objects studied in the subsequent chapters is the retarded propagator which
is defined as the mean linear response function,

𝐺R
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) ≔ ⟨𝑅(1)

𝑎𝑏 (𝜏, 𝒙; 𝜏 ′, 𝒙′)⟩
in

, (4.9)

where ⟨…⟩in denotes the expectation value over the initial state.
Besides mean response functions one is mainly interested in the statistical correla-

tion functions of the fields (4.1). Since these are subject to the equations of motion
(4.2) the relevant expectation values are the mean fields

𝛹𝑎(𝜏) ≔ ⟨𝜓sol
𝑎 (𝜏, 𝒙)⟩

in
∣
𝐾𝑎=0

, (4.10)

2More rigorously, in the limit 𝜏′ → 𝜏 one obtains 𝑔R
𝑎𝑏(𝜏, 𝜏′, 𝒙 − 𝒙′) → 𝛿𝑎𝑏𝜃(0) where 𝜃(0) is the

Heaviside unit step function at vanishing argument. In the functional formalism introduced in
the next section the value of 𝜃(0) is fixed by the discretisation procedure for stochastic differential
equations. The convention equivalent of Itô calculus is employed, leading to 𝜃(0) = 0 which is
discussed in more detail in appendix B.

3Similarly, one could define the non-linear response function (4.7) at vanishing initial conditions
such that the the first-order response function is the linear retarded propagator. In this case
initial conditions can be supplied by the time-localised shift 𝛿(𝜏 − 𝜏in) 𝜓in

𝑎 (𝒙) of the source
current. Using this convention, it is evident that the linear response function as defined in
equation (4.7) carries non-linear information for non-vanishing initial conditions.
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covariance functions,

𝐶𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) ≔ ⟨𝜓sol
𝑎 (𝜏, 𝒙) 𝜓sol

𝑏 (𝜏 ′, 𝒙′)⟩
in,c

∣
𝐾𝑎=0

, (4.11)

and generally higher-order correlation functions.
Equations (4.10) and (4.11) give a concrete prescription how to calculate the

correlation functions introduced in chapter 3, namely by averaging products of the
fields that solve the equations of motion over the initial state.

A note on rigour

It seems quite natural to ask under which conditions the afore mentioned mean re-
sponse and correlation functions are well-defined. Usually this requires the equations
of motion to admit sufficiently well behaved solutions that are globally existent and
unique. From a mathematical point of view this is a rather delicate assumption even
for the perfect fluid case, not to mention extensions thereof. Despite the mathemat-
ical subtleties one should understand the following investigations from an effective
theory point of view in the sense that any blow up is expected to be regularised due
to small scale physics.

In appendix B a scalar toy model with cubic interaction, which is structurally
speaking the closest to the equations of motion (4.2), is discussed in more detail.
Since there exist solutions with finite escape time for this model, the mean response
and correlation functions are ill-defined.4 For a physically viable theory one would
expect some mechanism which renders the correlation functions finite, such as a
quartic interaction term with very small coupling coming to rescue at large field
values.

4.1.2 Generating functionals
One would like to have a systematic way to obtain expectation values such as the
mean linear response function (4.9), the mean field (4.10) and the covariance function
(4.11). To this end, the Martin–Siggia–Rose/Janssen–de Dominicis formalism [120–
123] allows to construct a generating functional from which all type of correlation
functions can be obtained.5 The explicit construction is performed in appendix B
for a (1+0)-dimensional toy model, although it is straight forwardly generalised to
include spatial dimensions. Although not including mean fields and constructed in
slightly different ways, similar field theory constructions have already been studied
in cosmology [9, 27–30,35,37].

The relevant generating functional is given by

𝑍[𝐽, ̂𝐽 ] ≔ ⟨exp{∫
𝜏,𝒙

𝐽𝑎(𝜏, 𝒙) 𝜓sol
𝑎 (𝜏, 𝒙)}⟩

in
, (4.12)

4From a quantum field-theoretic point of view this corresponds to the absence of a stable vacuum
state due to an unbounded Lagrangian.

5It can be viewed as the classical statistical field theory equivalent to the Schwinger–Keldysh
formalism [124,125].
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where 𝜓sol
𝑎 (𝜏, 𝒙) is understood to solve the equations of motion (4.2) in the presence

of a source current i ̂𝐽𝑎(𝜏, 𝒙) and for Gaussian distributed random initial condi-
tions.6 Applying functional derivatives with respect to the source current 𝐽𝑎(𝜏, 𝒙)
to 𝑍[𝐽, ̂𝐽 ] allows to calculate correlation functions such as the mean field (4.10)
and the covariance function (4.11) while functional derivatives with respect to the
source current ̂𝐽𝑎(𝜏, 𝒙) are related to mean response functions such as the retarded
propagator (4.9).

Following the Martin–Siggia–Rose formalism [120] one introduces a set of so-called
response fields ̂𝜓𝑎(𝜏, 𝒙) which are utilised in the Janssen–de Dominicis formalism
[121–123] to obtain the functional integral representation

𝑍[𝐽, ̂𝐽 ] = ∫D𝜓 ∫D ̂𝜓 e−𝑆+𝐽𝐴𝜓𝐴+ ̂𝐽𝐴
̂𝜓𝐴 . (4.13)

The measures D𝜓 and D ̂𝜓 are understood as the continuum limit of integrals on a
lattice in time and space and the bare action is given by

𝑆[𝜓, ̂𝜓] = − i ∫
𝜏,𝒙,𝒙′

̂𝜓𝑎(𝜏, 𝒙)[𝜕𝜏𝛿𝑎𝑏 𝛿(𝒙 − 𝒙′) + 𝛺𝑎𝑏(𝜏, 𝒙 − 𝒙′)]𝜓𝑏(𝜏, 𝒙′)

− i ∫
𝜏,𝒙,𝒙′,𝒙″

̂𝜓𝑎(𝜏, 𝒙) 𝛾𝑎𝑏𝑐(𝒙 − 𝒙′, 𝒙 − 𝒙″) 𝜓𝑏(𝜏, 𝒙′) 𝜓𝑐(𝜏, 𝒙″)

+ ∫
𝒙,𝒙′

̂𝜓𝑎(𝜏in, 𝒙)[i 𝛿(𝒙 − 𝒙′) 𝛹 in
𝑎 + 1

2 𝐶 in
𝑎𝑏(𝒙 − 𝒙′) ̂𝜓𝑏(𝜏in, 𝒙′)] ,

(4.14)

where 𝛹 in
𝑎 and 𝐶 in

𝑎𝑏(𝒙 − 𝒙′) are the mean field and covariance function which fully
characterise the Gaussian initial state.7

Capital letters from the beginning of the Latin alphabet denote DeWitt indices,
e.g. 𝐴 = (𝑎, 𝜏, 𝒙), which are summed and integrated over when appearing twice in a
single term for discrete and continuous variables respectively, while boldface indices
additionally comprise the physical-response field structure, e.g. 𝜓𝑨 = (𝜓𝐴, ̂𝜓𝐴).

From the generating function (4.13) it is clear that 𝐽𝑎 and ̂𝐽𝑎 serve as source
currents for the physical and response fields, respectively.8 Functional derivatives

6The imaginary unit in front of the source current is inserted for later convenience and related to
the one used in equation (4.7) by 𝐾𝑎 = i ̂𝐽𝑎.

7The construction assumes the existence of a unique solution 𝜓sol
𝑎 (𝜏, 𝒙) in some time interval 𝜏in

to 𝜏fi and depends on the method of discretisation for stochastic differential equations. To this
end the convention equivalent to Itô calculus is employed, which is particular convenient since
it does not need the introduction of additional ghost fields [126]. Integrals over the whole time
interval are abbreviated as

∫
𝜏

= ∫
𝜏fi

𝜏in

d𝜏 ,

while spatially periodic boundary conditions are imposed.
8Notice that the initial mean field can be absorbed into the response field source current. In

the following it is chosen to keep the initial mean field explicit such that physical correlation
functions are obtained at vanishing source currents.
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with respect to the source currents are abbreviated as

𝑍(𝑛)
𝑨1…𝑨𝑛

≔ 𝛿𝑛𝑍
𝛿𝐽𝑨1

… 𝛿𝐽𝑨𝑛

, 𝑍(𝑚,𝑛)
𝐴1…𝐵𝑛

≔ 𝛿𝑚+𝑛𝑍
𝛿𝐽𝐴1

… 𝐽𝐴𝑚
̂𝐽𝐵1

… 𝛿 ̂𝐽𝐵𝑛

, (4.15)

where the two notations are related by

𝑍(1)
𝑨 = (

𝑍(1,0)
𝐴

𝑍(0,1)
𝐴

) , 𝑍(2)
𝑨𝑩 = (

𝑍(2,0)
𝐴𝐵 𝑍(1,1)

𝐴𝐵

𝑍(1,1)
𝐵𝐴 𝑍(0,2)

𝐴𝐵

) , (4.16)

for first- and second-order derivatives and similarly for higher orders. Due to general
properties of the construction the generating functional is normalised to 𝑍[0, ̂𝐽 ] = 1
[127] which immediately implies

𝑍(0,𝑛)
𝐵1…𝐵𝑛

= 0 , (4.17)

for all 𝑛 > 0 at vanishing source currents. Correlation functions are defined as

⟨𝜓𝑨1
… 𝜓𝑨𝑛

⟩ ≔
𝑍(𝑛)

𝑨1…𝑨𝑛

𝑍
, (4.18)

which naturally include mean response as well as statistical correlation functions.
Physical correlation functions are obtained at vanishing source currents and are said
to be ‘on the equations of motion’.

It is convenient to also introduce the generating functional 𝑊 ≔ ln(𝑍) from which
one obtains connected correlation functions as

⟨𝜓𝑨1
… 𝜓𝑨𝑛

⟩
c

= 𝑊 (𝑛)
𝑨1…𝑨𝑛

. (4.19)

At vanishing source currents the first-order functional derivatives give

𝑊 (1)
𝑨 = (𝛹𝑎(𝜏)

0 ) . (4.20)

while the second-order derivatives are

𝑊 (2)
𝑨𝑩 = ( 𝐶𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) i 𝐺R

𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′)
i 𝐺A

𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) 0 ) . (4.21)

Here the advanced propagator is defined as the ‘transpose’ of the retarded and obeys
the relation

𝐺A
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) = 𝐺R

𝑏𝑎(𝜏 ′, 𝜏 , 𝒙′ − 𝒙) . (4.22)

From these expressions it becomes clear that expectation values involving the re-
sponse field are naturally related to response functions and generalisations thereof.

In a formal analogy to probability distributions, the expectation values ⟨…⟩ are
understood as being taken as averages weighted with e−𝑆, although this does not
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4.1 Statistical field theory formulation

allow for a probabilistic interpretation since the bare action (4.14) is in general
complex and the response fields are not physical degrees of freedom.9

To get a hand on the formalism it is enlightening to study two limits in which the
generating function can be explicitly computed. It is obvious that these limits are
rather trivial since for non-linear dynamics and a non-trivial random initial state
the generating functional is in general not explicitly computable.

Linear limit

Conceptually the easiest case in which one can explicitly calculate the generating
functional is the linear limit 𝛾𝑎𝑏𝑐 → 0. In this case the bare action (4.14) is quadratic
in the fields and the functional integrals in the generating functional 4.13 are Gaus-
sian. Performing the integrations one obtains

𝑊 L = ∫
𝜏,𝒙

𝐽𝑎(𝜏, 𝒙) 𝛹L
𝑏 (𝜏)

+ i ∫
𝜏,𝜏′

𝒙,𝒙′

𝐽𝑎(𝜏, 𝒙) 𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) ̂𝐽𝑏(𝜏 ′, 𝒙′)

+ 1
2 ∫

𝜏,𝜏′

𝒙,𝒙′

𝐽𝑎(𝜏, 𝒙) 𝐶L
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) 𝐽𝑏(𝜏 ′, 𝒙′) ,

(4.24)

where the linear mean field,

𝛹L
𝑎 (𝜏) = ∫

𝒙
𝑔R

𝑎𝑏(𝜏, 𝜏in, 𝒙) 𝛹 in
𝑏 , (4.25)

and the linear covariance function,

𝐶L
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) = ∫

𝒚,𝒚′

𝑔R
𝑎𝑏(𝜏, 𝜏in, 𝒙 − 𝒚) 𝐶 in

𝑎𝑏(𝒚 − 𝒚′) 𝑔A
𝑎𝑏(𝜏in, 𝜏 ′, 𝒚′ − 𝒙′) , (4.26)

are build from the linear propagator and initial mean field or covariance function
only. Consequently one has

𝑊 L (𝑛)
𝑨1…𝑨𝑛

= 0 , (4.27)

for 𝑛 > 2 and the theory is described by Gaussian random fields at all times.

9Even though e−𝑆 does not allow for a probabilistic interpretation, the functional

𝑃[𝜓] = ∫D ̂𝜓 e−𝑆 , (4.23)

is real and can be interpreted as a ‘probability density functional’ for the fields 𝜓𝑎.
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Deterministic limit

Another case in which the generating functional can be calculated explicitly is the
deterministic limit 𝐶 in

𝑎𝑏 → 0. In this case the initial state is fixed to the mean field
𝛹 in

𝑎 and not fluctuations are present. The generating functional is then given by

𝑊 D = ∫
𝜏,𝒙

𝐽𝑎(𝜏, 𝒙) 𝛹 sol
𝑎 (𝜏, 𝒙) , (4.28)

where 𝛹 sol
𝑎 (𝜏, 𝒙) is the solution to the equations of motion (4.2) in the presence of

a source current i ̂𝐽𝑎(𝜏, 𝒙), given the initial condition 𝛹 in
𝑎 . Very similar to equation

(4.7) the solution is made up of all the response functions of the system which no
longer depend on the random initial conditions but rather on the initial mean field
𝛹 in

𝑎 . Since the initial distribution is degenerate in the deterministic limit these can
be replaced by the mean fields when averaging. From this one can immediately infer
that the connected expectation values

𝑊 D (𝑚,𝑛)
𝐴1…𝐵𝑛

= 0 , (4.29)

for all 𝑚 > 1. This especially implies that all correlation functions of physical
fields vanish, as to be expected since the theory features no fluctuations. The non-
vanishing correlation functions are given by the mean response functions

𝑊 D (1,𝑛)
𝑎𝑏1…𝑏𝑛

(𝜏, 𝒙; 𝜏1, 𝒙1; … ; 𝜏𝑛, 𝒙𝑛) = 𝑅(𝑛)
𝑎𝑏1…𝑏𝑛

(𝜏, 𝒙; 𝜏1, 𝒙1; … ; 𝜏𝑛, 𝒙𝑛) , (4.30)

which depend on the initial mean field 𝛹 in
𝑎 .

4.1.3 The one-particle irreducible effective action
In the following, it is useful to introduce yet another generating functional. The
one-particle irreducible (1PI) effective action 𝛤 is defined as the Legendre transform
of the generating functional 𝑊 with respect to both source currents,

𝛤 [𝛹, ̂𝛹 ] ≔ sup
𝐽, ̂𝐽

[𝐽𝐴𝛹𝐴 + ̂𝐽𝐴
̂𝛹𝐴 − 𝑊[𝐽, ̂𝐽 ]] , (4.31)

and can be regarded as the natural generalisation of the bare action 𝑆 which includes
all statistical information.10

One-particle irreducible correlation functions are defined as the functional deriva-
tives of the effective action with respect to the mean fields 𝜓𝑨 and are denoted in
analogy to equation (4.15) as 𝛤 (𝑛)

𝑨1…𝑨𝑛
. The normalisation 𝑊[0, ̂𝐽 ] = 0 implies that

𝛤 [𝛹, 0] = 0 and as such all 1PI correlation functions involving only physical fields
vanish on the equations of motion [128].
10From a formal point of view 𝑍 and 𝑊 are moment- and cumulant-generating functionals of the

‘distribution functional’ e−𝑆. The 1PI effective action 𝛤 is related to a rate function which
quantifies fluctuations away from the expected (mean field) behaviour, decaying asymptotically
with e−𝛤 for an infinite sample, at least in the standard ergodic paradigm.
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The 1PI one-point function by construction obeys

𝛤 (1)
𝑨 = 𝐽𝑨 , (4.32)

assuming that the supremum on the right-hand side of equation (4.31) is attained at
some maximising (field-dependent) source current 𝐽𝑨 = 𝐽 sup

𝑨 [𝛹 , ̂𝛹 ]. On the equations
of motion the 1PI one-point function is given by

𝛤 (1)
𝑨 = ( 0

− i 𝐸𝑎(𝜏)) , (4.33)

where 𝐸𝑎(𝜏) are the effective equations of motion determining the dynamics of the
physical mean fields.

Due to general properties of the Legendre transform the 1PI and connected two-
point correlation functions are inverse to each other,

𝛤 (2)
𝑨𝑩 𝑊 (2)

𝑩𝑪 = 𝛿𝑨𝑪 , (4.34)

where the left-hand side is taken to depend on the source currents or equivalently on
the mean fields via equation (4.32). On the equations of motion the 1PI two-point
functions are given by

𝛤 (2)
𝑨𝑩 = ( 0 − i 𝐷A

𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′)
− i 𝐷R

𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) 𝐻𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) ) , (4.35)

where the inverse retarded propagator 𝐷R
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) is defined by the relation

∫
𝜏′,𝒙′

𝐷R
𝑎𝑏(𝜏, 𝜏 ′, 𝒙 − 𝒙′) 𝐺R

𝑏𝑐(𝜏 ′, 𝜏″, 𝒙′ − 𝒙″) = 𝛿𝑎𝑐 𝛿(𝜏 − 𝜏″) 𝛿(𝒙 − 𝒙″) , (4.36)

and the statistical 1PI two-point correlation function 𝐻𝑎𝑏(𝜏, 𝜏 ′, 𝒙−𝒙′) is defined by

∫
𝜏′,𝒙′

𝐷R
𝑎𝑎̄(𝜏, 𝜏 ′, 𝒙 − 𝒙′) 𝐶𝑎̄𝑏(𝜏 ′, 𝜏″, 𝒙′ − 𝒙″)

= ∫
𝜏′,𝒙′

𝐻𝑎𝑏̄(𝜏, 𝜏 ′, 𝒙 − 𝒙′) 𝐺A
𝑏̄𝑏(𝜏 ′, 𝜏″, 𝒙′ − 𝒙″) .

(4.37)

Notice that equation (4.36) reduces to the linear retarded propagator equation (4.5)
in the linear limit. More generally, the equations (4.36) and (4.37) are evolution
equations for the retarded propagator and covariance function, respectively. As
such they allow to obtain the connected two-point correlation functions as the solu-
tion to these equations, provided one can supply the corresponding 1PI correlation
functions.

Due to the translational invariance of the correlation functions it is convenient
to work also with the Fourier transform. Here the convolution integrals becomes
simple products and in the following both representations are used interchangeably
and the DeWitt indices may include position or wave vector arguments.
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Equation (4.37) can be formally inverted to give the power spectrum

𝑃𝑎𝑏(𝜏, 𝜏 ′, 𝒌) = ∫
𝜏″,𝜏‴

𝐺R
𝑎𝑎̄(𝜏, 𝜏″, 𝒌) 𝐻𝑎̄𝑏̄(𝜏″, 𝜏‴, 𝒌) 𝐺A

𝑏̄𝑏(𝜏‴, 𝜏 ′, 𝒌) . (4.38)

To study approximation schemes, it is convenient to split correlation functions into
a linear and a non-linear contribution. In terms of the 1PI correlation functions this
corresponds to identifying the linear parts of the bare action (4.14). For the effective
equations of motion one then finds

𝐸𝑎(𝜏) = 𝜕𝜏𝛹𝑎(𝜏) + 𝑛H𝛹𝑎(𝜏) − 𝑄𝑎(𝜏) − 𝛿(𝜏 − 𝜏in) 𝛹 in
𝑎 , (4.39)

where 𝑛 denotes the number of tensorial indices carried by the field 𝛹𝑎 and corre-
sponds to the corresponding term is the Hubble drag term. The function 𝑄𝑎(𝜏) is
the mean field source term and parametrises the back-reaction effect of non-linear
corrections to the linearly decaying mean field.

Similarly, the 1PI two-point functions can be decomposed into a linear part and
a self-energy. For the inverse propagator this is parametrised as

𝐷R
𝑎𝑏(𝜏, 𝜏 ′, 𝒌) = [𝜕𝜏𝛿𝑎𝑏 + 𝛺𝑎𝑏(𝜏, 𝒌)]𝛿(𝜏 − 𝜏 ′) − 𝛴R

𝑎𝑏(𝜏, 𝜏 ′, 𝒌) , (4.40)

while for the statistical 1PI two-point function

𝐻𝑎𝑏(𝜏, 𝜏 ′, 𝒌) = 𝛿(𝜏 − 𝜏in) 𝛿(𝜏 ′ − 𝜏in) 𝑃 in
𝑎𝑏(𝒌) + 𝛱𝑎𝑏(𝜏, 𝜏 ′, 𝒌) . (4.41)

In the following it is convenient to further split the retarded self-energy into a local
and non-local contribution

𝛴R
𝑎𝑏(𝜏, 𝜏 ′, 𝒌) = 𝛿(𝜏 − 𝜏 ′) 𝛴H

𝑎𝑏(𝜏, 𝒌) + 𝛴F
𝑎𝑏(𝜏, 𝜏 ′, 𝒌) , (4.42)

which are called the Hartree and Fock self-energy in analogy to the corresponding
approximation in quantum field theory. While the Hartree self-energy describes
time-local corrections which do not account for correlations, the Fock self-energy is
in general non-local in time and corresponds to memory effects due to correlations.
In this sense the statistical self energy (4.41) is also of Fock-type. Physically, one
would expect the effective dynamics to be local in time although it is not clear
whether this can really be realised in terms of the macroscopic description studied
here. In chapter 7 local and non-local dynamics are discussed in detail in order to
find an appropriate ansatz for the effective action.

It is emphasised that up to here only formal manipulations have been performed
and no approximations have been made. As such all the objects and equations are
still exact.

4.1.4 Diagrammatic representation
To investigate expansion and approximation schemes it is convenient to introduce
diagrammatic rules for the computation of correlation functions. To this end, con-
nected and 1PI correlation functions are represented by

𝑊 (𝑚,𝑛)
𝐴1…𝐴𝑚𝐵1…𝐵𝑛

= 𝑚 𝑛 , 𝛤 (𝑚,𝑛)
𝐴1…𝐴𝑚𝐵1…𝐵𝑛

= 𝑚 𝑛 . (4.43)
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4.2 Standard perturbation theory

External solid (dashed) edges correspond to physical (response) source currents or
fields, respectively. Edges can be appropriately connected such that the correspond-
ing DeWitt indices are summed and integrate over, while loops are cycle diagrams
and imply a trace over the corresponding indices.

The equations (4.36) and (4.37) can then be written as

= 1 , = − . (4.44)

For the following investigations it is necessary to also introduce a diagrammatic
representation for the linear connected and bare 1PI correlation functions,

𝑊 L (𝑚,𝑛)
𝐴1…𝐴𝑚𝐵1…𝐵𝑛

= 𝑚 𝑛 , 𝑆(𝑚,𝑛)
𝐴1…𝐴𝑚𝐵1…𝐵𝑛

= 𝑚 𝑛 . (4.45)

From the linear generating functional (4.24) and the bare action (4.14) it is evident
that only linear one- and two-point connected and bare 1PI one-, two- and three-
point correlation functions exist.

Notice that the linear and bare correlation functions are in general different as
the latter include non-linearities to some extend. Consider e.g. the bare inverse
retarded propagator which is given by

= − i 𝛿(𝒌 + 𝒌′)[𝜕𝜏𝛿𝑎𝑏 + 𝛺𝑎𝑏(𝜏, 𝒌) + 2𝛾𝑎𝑏𝑐(𝒌, 𝟎) 𝛹𝑐(𝜏)] 𝛿(𝜏 − 𝜏 ′) , (4.46)

on the equations of motion. As such, the bare inverse retarded propagator already
features a non-vanishing Hartree self-energy which quantifies the coupling of the
mean field to the fluctuations.

Since one typically deals with connected two-point functions in expansion schemes
it is sensible to define the connected two-point functions solving the evolution equa-
tions (4.36) and (4.37) for the bare 1PI two-point functions. Diagrammatically these
are denoted as

= 1 , = − , (4.47)

and play a role in the 1PI resummation schemes studied in section 4.3.

4.2 Standard perturbation theory
In standard perturbation theory the generating functional (4.13) is formally ex-
panded as

𝑍[𝐽, ̂𝐽 ] =
∞

∑
𝑛=0

1
𝑛!

[−1
2

𝑆(2,1)
𝐴𝐵𝐶

𝛿
𝛿𝐽𝐴

𝛿
𝛿𝐽𝐵

𝛿
𝛿 ̂𝐽𝐶

]
𝑛

𝑍L[𝐽 , ̂𝐽 ] , (4.48)

where 𝑆(2,1)
𝐴𝐵𝐶 is proportional to the bare vertex.

This should be understood as an asymptotic series as the series expansion of
the interaction operator is exchanged with the functional integration, formally only
possible if the perturbative series converges absolutely. In general such perturbative
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4 Cosmological field theory

series do not converge and in cosmology the perturbative expansion shows clear
signals of being asymptotic, namely corrections start to grow beyond some finite
order and do not further improve results by including higher orders [117].

Since the bare vertex 𝛾𝑎𝑏𝑐 couples two physical to one response field, the se-
ries (4.48) is also an expansion in the linear (or initial) mean field and covariance
function. As such, it is organised in orders of 𝛹L

𝑎 and 𝐶L
𝑎𝑏 where by dimensional

arguments the the (2𝑛)th-order in 𝛹L
𝑎 corresponds to the 𝑛th-order in 𝐶L

𝑎𝑏.
While it is straight forward to derive correlation functions from the generating

functional (4.48), it is quite tedious to do so explicitly. Diagrammatically, this can
be done in a much more convenient and systematic matter and is in the following
done for the first non-trivial order.

Including the terms up to 𝑛 = 1 of the perturbative series (4.48) gives the mean
field

= − 1
2 + … , (4.49)

where the second diagram on the right-hand side is the one-loop contribution and
indicates the back-reaction of fluctuations onto the mean field. In principal there is
also the diagram proportional to

, (4.50)

which vanishes due to the derivative nature of the bare vertices and spatial homo-
geneity of the mean field.

For the connected two-point functions one can proceed similarly. Although one
also obtains corrections for the 𝑛 = 1 term of the perturbative series, at least in
the presence of a non-vanishing mean field, the fist loop corrections appear at order
𝑛 = 2. For the retarded propagator the expansion up to order 𝑛 = 2 reads

= + 1
2 + 1

2 + … , (4.51)

where only the contributions for a vanishing mean field are displayed. The additional
contributions due to a non-vanishing mean field are of the type

, , … (4.52)

where the expansion (4.49) is used to substitute the full mean field, in order to
reduce the amount of diagrams, which should only be taken into account to the
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appropriate order. Similarly one obtains for the power spectrum

= + 1
2

+ 1
2 + 1

2

+ 1
2 + 1

2 + … .

(4.53)

which, similar to the propagator, has additional contributions due to a non-vanishing
mean field not shown explicitly here.

In terms of the formal solution (4.38) and the self-energy splitting (4.41), one
can identify the loop diagram in the first line of equation (4.53) as the self-energy
correction while the loops in the second and third line are corrections due to the
propagator. These can be identified with the standard perturbation theory one-loop
expansion which is usually written as

𝑃 1-loop
𝑎𝑏 (𝜏, 𝜏 ′, 𝑘) = 𝑃 L

𝑎𝑏(𝜏, 𝜏 ′, 𝑘) + 𝑃 (2,2)
𝑎𝑏 (𝜏, 𝜏 ′, 𝑘) + 2𝑃 (1,3)

𝑎𝑏 (𝜏, 𝜏 ′, 𝑘) , (4.54)

where the 𝑃 (2,2)
𝑎𝑏 contribution is the loop diagram in the first line while the 2𝑃 (1,3)

𝑎𝑏
contribution is given by the loop diagrams in the second and third line of equation
(4.53).

Besides the problem that the method is perturbative, one should also be aware that
at smaller scales the phenomenon of shell-crossing naturally generates higher-order
velocity cumulants and thus invalidates the single-stream approximation. That is,
even if one could compute the power spectrum exactly with some non-perturbative
method, one would expect the true physical power spectrum to carry the signature
of other small scale effects. These must not necessarily be all encoded in the density
contrast equal-time auto-spectrum, but could be encoded in the general set of auto-
and cross-spectra or higher-order correlation functions. In chapter 6 various two-
point correlation functions are computed in an approximation which goes beyond
the single-stream approximation with a non-perturbative method in order to take
care of the above discussed issues.

4.3 Effective action loop expansion
Another in field theory often employed approximation is the loop expansion of the
effective action. It is related to the 1PI resummation scheme which naturally leads
to results corresponding to an infinite, but partial, resummation of the perturbative
series (4.48). The basic idea of one-partial irreducible resummation schemes is to
directly work with 1PI correlation functions rather than with (connected) correla-
tion functions. These can be expanded in a similar fashion and truncated. To do so,
one is interested in an expansion of the corresponding generating functional, namely
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4 Cosmological field theory

the effective action 𝛤. The advantage of such an expansion scheme is that a finite
truncation of the effective action naturally corresponds to resummed two-point con-
nected correlation functions when solving the evolution equations (4.36) and (4.37).
This is also known as the 1PI resummation scheme.

From the definition of the effective action (4.31) one finds

e−𝛤[𝛹]+𝐽𝑨𝛹𝑨 = ∫D𝜓 e−𝑆[𝜓]+𝐽𝑨𝜓𝑨 , (4.55)

where the source currents should be understood as being field-dependent here though
the Legendre transform (4.32). To find an approximation where the right-hand side
can be explicitly computed use can use the method of steepest decent. To do so, the
bare action is expanded around the bare solution 𝜓sol

𝑨 , solving the bare equations of
motion 𝑆(1)

𝑨 = 𝐽𝑨. For the physical field this simply implies that the bare solution
solves the equations of motion (4.2) in the presence of a source current while the
response field vanishes on the equations of motion. It is emphasised that the bare
solution is taken to not be on the equations of motion, meaning the solutions are
source dependent which in turn via the Legendre transform implies that the bare
solution depends on the mean fields 𝜓sol

𝑨 [𝛹 ]. Doing so up to quadratic order gives

𝑆[𝜓] = 𝑆[𝜓sol] + 𝑆(1)
𝑨 [𝜓sol] (𝜓𝑨 − 𝜓sol

𝑨 )

+ 1
2 𝑆(2)

𝑨𝑩[𝜓sol] (𝜓𝑨 − 𝜓sol
𝑨 )(𝜓𝑩 − 𝜓sol

𝑩 ) + O[(𝜓 − 𝜓sol)3] ,
(4.56)

where by construction 𝑆(1)
𝑨 [𝜓sol] = 𝐽𝑨. Keeping only the terms up to quadratic order

in the fields renders the functional integral on the right-hand side of equation (4.55)
Gaussian. Using that the mean field by definition obeys the effective equations of
motion 𝛤 (1)

𝑨 [𝛹 ] = 𝐽𝑨 one finds that the difference to the bare solution needs to be
a correction of higher order contained in the last term of the right-hand side of
equation (4.56), such that one can set 𝜓sol

𝑨 = 𝛹𝑨 up to the indicated order. Doing
so one is finally left with the one-loop effective action

𝛤 = 𝑆 + 1
2 Tr[ln(𝑆(2))] + … , (4.57)

where the logarithm should be understood as the functional series expansion of the
operator 𝑆(2)

𝑨𝑩 and the trace operator is understood to run over the physical and
response field content, time and space.11

Having an expression for the effective action one can now obtain explicit ex-
pressions for the 1PI correlation functions. Applying first-order derivative to the
one-loop effective action (4.57) on obtains the 1PI one-point function

𝛤 (1)
𝑨 = 𝑆(1)

𝑨 + 1
2 Tr[[𝑆(2)]−1 ⋅ 𝑆(3)

𝑨 ] , (4.58)

and similar for second-order derivatives which yield the 1PI two-point functions

𝛤 (2)
𝑨𝑩 = 𝑆(2)

𝑨𝑩 − 1
2 Tr[[𝑆(2)]−1 ⋅ 𝑆(3)

𝑨 ⋅ [𝑆(2)]−1 ⋅ 𝑆(3)
𝑩 ] , (4.59)

11In the last step the identity ln(det(𝐴)) = tr(ln(𝐴)) was used.
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where the dot product runs over all internal structures similar to the trace.
On the equations of motion these can be expressed diagrammatically. The effective

equations of motion read

= + 1
2 , (4.60)

while the corresponding response field part vanishes on the equations of motion.
The inverse propagator takes the form

= − 1
2 − 1

2 . (4.61)

while the statistical 1PI two-point correlation function is

= − 1
2 . (4.62)

Using these expression to solve the propagator and power spectrum evolution equa-
tions (4.44), results in an infinite partial resummation of the full perturbative series.
This can be seen as a first step towards a non-perturbative method and it is seen
in the next section that this approximation scheme is a truncation of the Dyson–
Schwinger equation.

4.4 The Dyson–Schwinger equation

The Dyson–Schwinger equation provides a non-perturbative method to compute cor-
relation functions and is derived in the following. In chapter 6 the Dyson–Schwinger
equation is employed to studied large-scale cosmic structure formation.

Essentially, the Dyson–Schwinger equation is a consequence of the identity

∫D𝜓 ∫D ̂𝜓 𝛿
𝛿𝜓𝑨

e−𝑆+𝐽𝑨𝜓𝑨 = 0 , (4.63)

from which one obtains
𝛤 (1)

𝑨 [𝛹 ] = ⟨𝑆(1)
𝑨 [𝜓]⟩ , (4.64)

using the Legendre transform (4.32).12 Additionally, from definition (4.18) one can
realise that source-dependent expectation values can be written as

⟨𝜓𝑨1
… 𝜓𝑨𝑛

⟩ = (𝛹𝑨1
+ 𝛿

𝛿𝐽𝑨1

)⟨𝜓𝑨2
… 𝜓𝑨𝑛

⟩ , (4.65)

12Remember that boundary terms vanish due to imposing periodic boundary conditions when
taking the continuum limit.
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where 𝛹𝑨[𝐽 , ̂𝐽 ] is the source-dependent mean field. Here, the first term compensates
for the normalisation 1/𝑍 while the second term generates a field. By iteration one
obtains

⟨𝜓𝑨1
… 𝜓𝑨𝑛

⟩ =
𝑛

∏
𝑚=1

(𝛹𝑨𝑚
+ 𝑊 (2)

𝑨𝑚𝑩
𝛿

𝛿𝛹𝑩
) , (4.66)

where the equation is understood to depend on the mean fields through the Legendre
transform (4.32). Using the inverse relation of the connected and 1PI two-point
functions (4.34), one can express the expectation value of any operator O[𝜓] which
has a well-defined series expansion in the fields as

⟨O[𝜓]⟩ = O[𝜓 = 𝛹 + [𝛤 (2)]−1 ⋅ 𝛿
𝛿𝛹

] . (4.67)

Finally, combining equations (4.64) and (4.67) one obtains the celebrated Dyson–
Schwinger equation [50–52]

𝛤 (1)
𝑨 [𝛹 ] = 𝑆(1)

𝑨 [𝜓 = 𝛹 + [𝛤 (2)]−1 ⋅ 𝛿
𝛿𝛹

] . (4.68)

Applying field derivatives one obtains Dyson–Schwinger equations for the 1PI 𝑛-
point correlation functions. The one-point function reads

𝛤 (1)
𝑨 = 𝑆(1)

𝑨 + 1
2 Tr[𝑊 (2) ⋅ 𝑆(3)

𝑨 ] , (4.69)

while the two-point function is given by

𝛤 (2)
𝑨𝑩 = 𝑆(2)

𝑨𝑩 − 1
2 Tr[𝑊 (2) ⋅ 𝑆(3)

𝑨 ⋅ 𝑊 (2) ⋅ 𝛤 (3)
𝑩 ] , (4.70)

and the three-point function is

𝛤 (3)
𝑨𝑩𝑪 = 𝑆(3)

𝑨𝑩𝑪 + 1
2 Tr[𝑊 (2) ⋅ 𝑆(3)

𝑨 ⋅ 𝑊 (2) ⋅ 𝛤 (3)
𝑩 ⋅ 𝑊 (2) ⋅ 𝛤 (3)

𝑪 ] + (𝑩 ⟷ 𝑪)

− 1
2 Tr[𝑊 (2) ⋅ 𝑆(3)

𝑨 ⋅ 𝑊 (2) ⋅ 𝛤 (4)
𝑩𝑪] ,

(4.71)

where the inverse of the second-order functional derivative of the effective action is
expressed using the inverse relation (4.34).

Similarly, equations for higher-order 1PI correlation functions are obtained by
applying more functional derivatives with respect to the mean fields. For the type of
bare action (4.14) the Dyson–Schwinger equation for the 𝑛-point function involves
the (𝑛 + 1)-point function generating an infinite tower of coupled equations. For
practical applications one needs to truncate this hierarchy to obtain a finite solvable
system of equations.

It is interesting to notice the relation between the one-loop effective action ex-
pressions (4.58) and (4.59) and the Dyson–Schwinger equations (4.69) and (4.70).
The former are approximations obtained from a loop expansion of the effective ac-
tion while the latter are exact. From this point of view the one-loop 1PI expansion
scheme can be seen as a truncation of the Dyson–Schwinger equations.
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The Dyson–Schwinger equations can be used to find explicit expressions for the
non-linear parts of correlation functions. The mean field source term is obtained
from the second term on the right-hand side of equation (4.69). On the equations
of motion it is given by

𝑄𝑎(𝜏) = − ∫
𝒒

𝛾𝑎𝑏𝑐(𝒒, −𝒒) 𝑃𝑏𝑐(𝜏, 𝜏 , 𝒒) , (4.72)

which is proportional to the equal-time coincidence limit of the covariance function.
Similarly, the self-energies of the 1PI two-point functions are obtained from equation
(4.70). The Hartree self-energy is contained in the non-linear part of 𝑆(2)

𝑨𝑩 and reads
on the equations of motion

𝛴H
𝑎𝑏(𝜏, 𝒌) = −2 𝛾𝑎𝑏𝑐(𝒌, 𝟎) 𝛹𝑐(𝜏) . (4.73)

Diagrammatically, these are represented by

i 𝑄𝑎 = 1
2 , i 𝛴H

𝑎𝑏 = , (4.74)

from which it is evident that the mean field is sourced by the equal-time correlation
of fluctuations while the Hartree self-energy captures the effect of the presence of a
mean field.

The retarded and statistical Fock self-energies are more involving and obtained
from the second term on the right-hand side of equation (4.70). Diagrammatically,
the retarded Fock self-energy on the equations of motion is given by

i 𝛴F
𝑎𝑏 = −1

2 − 1
2 − 1

2 , (4.75)

and the statistical Fock self-energy on the equations of motion reads

𝛱𝑎𝑏 = −1
2 − 1

2 − 1
2 − 1

2 . (4.76)

These capture the effect of the non-linear coupling of fluctuations and in general
non-local in time.

In chapter 6 the Dyson–Schwinger equations are truncated by keeping the full
structure of the one- and two-point correlation functions while setting higher-order
1PI correlation function to their corresponding bare functions. This truncation is
a natural extension of the 1PI one-loop approximation studied in section 4.3 and
called self-consistent one-loop approximation or Hartree–Fock approximation.
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4.5 The functional renormalisation group

Another non-perturbative method is the functional renormalisation group. The
basic idea is to regulate the generating function (4.13) by altering the bare action
to include a term which is bilinear in the fields and suppresses fluctuations within
the functional integral. More explicitly consider the regulated generating functional

𝑍𝑘[𝐽 , ̂𝐽 ] ≔ ∫D𝜓 ∫D ̂𝜓 e−𝑆𝑘+𝐽𝐴𝜓𝐴+ ̂𝐽𝐴
̂𝜓𝐴 , (4.77)

where the regulated bare action is given by

𝑆𝑘 ≔ 𝑆 + 1
2 𝜓𝑨𝑅𝑘,𝑨𝑩 𝜓𝑩 . (4.78)

The regulator 𝑅𝑘,𝑨𝑩 depends on the renormalisation group scale 𝑘 and is build such
that it suppresses fluctuations within the functional integral, either in the infrared
or ultraviolet (or both).13 This can be achieved by suppressing fluctuations in the
initial state or altering the dynamics to suppress the propagation of fluctuations.
In the following applications the former option is employed although the functional
renormalisation group is not restricted to this case.

Analogous to before, one defines the generating functional of connected correlation
functions 𝑊𝑘 and the flowing 1PI effective action as the modified Legendre transform

𝛤𝑘[𝛹 , ̂𝛹 ; 𝑅] ≔ sup
𝐽

[𝐽𝑨𝛹𝑨 − 𝑊𝑘] − 1
2 𝛹𝑨𝑅𝑘,𝑨𝑩 𝛹𝑩 . (4.79)

The term bilinear in the fields is added for later convenience but vanishes in the
limit 𝑅𝑘,𝑨𝑩 → 0 where one obtains the full 1PI effective action 𝛤𝑘 → 𝛤.

One can study how the generating functionals change when altering the renormal-
isation group scale by calculating the partial derivative with respect to the renormal-
isation group scale 𝑘. The renormalisation group flow equation for the generating
functional of connected correlation functions then reads

𝜕𝑘𝑊𝑘 = −1
2 Tr[(𝑊 (2)

𝑘 + 𝑊 (1)
𝑘 ⊗ 𝑊 (1)

𝑘 ) ⋅ 𝜕𝑘𝑅𝑘] . (4.80)

where the Kronecker product ⊗ is taken with respect to the physical and response
fields, time and space and in the current context it is the analogue of Polchinski’s
equation [129]. Applying the modified Legendre transform (4.79) one is left with
the flow equation

𝜕𝑘𝛤𝑘 = 1
2 Tr[[𝛤 (2)

𝑘 + 𝑅𝑘]
−1

⋅ 𝜕𝑘𝑅𝑘] , (4.81)

which is Wetterich’s equation [53] in the present context and the flow equation used
in the following.
13When dealing with the functional renormalisation group wave vectors arguments of correlation

functions are denoted usually by 𝒒 to distinguish these from the renormalisation group scale 𝑘.

56



4.5 The functional renormalisation group

Applying functional derivatives with respect to the mean fields one obtains flow
equations for 1PI correlation functions. The flow of the one-point function is given
by

𝜕𝑘𝛤 (1)
𝑘,𝑨 = −1

2 Tr[𝑊 (2)
𝑘 ⋅ 𝛤 (3)

𝑘,𝑨 ⋅ 𝑊 (2)
𝑘 ⋅ 𝜕𝑘𝑅𝑘] , (4.82)

while the flow of the two-point function reads

𝜕𝑘𝛤 (2)
𝑘,𝑨𝑩 = 1

2 Tr[𝑊 (2)
𝑘 ⋅ 𝛤 (3)

𝑘,𝑨 ⋅ 𝑊 (2)
𝑘 ⋅ 𝛤 (3)

𝑘,𝑩 ⋅ 𝑊 (2)
𝑘 ⋅ 𝜕𝑘𝑅𝑘] + (𝑨 ⟷ 𝑩)

− 1
2 Tr[𝑊 (2)

𝑘 ⋅ 𝛤 (4)
𝑘,𝑨𝑩 ⋅ 𝑊 (2)

𝑘 ⋅ 𝜕𝑘𝑅𝑘] ,
(4.83)

and the flow of the three-point function is

𝜕𝑘𝛤 (3)
𝑘,𝑨𝑩𝑪 = − 1

2 Tr[𝑊 (2)
𝑘 ⋅ 𝛤 (3)

𝑘,𝑨 ⋅ 𝑊 (2)
𝑘 ⋅ 𝛤 (3)

𝑘,𝑩 ⋅ 𝑊 (2)
𝑘 ⋅ 𝛤 (3)

𝑘,𝑪 ⋅ 𝑊 (2)
𝑘 ⋅ 𝜕𝑘𝑅𝑘]

+ (perm. (𝑨, 𝑩, 𝑪))

+ 1
2 Tr[𝑊 (2)

𝑘 ⋅ 𝛤 (4)
𝑘,𝑨𝑩 ⋅ 𝑊 (2)

𝑘 ⋅ 𝛤 (3)
𝑘,𝑪 ⋅ 𝑊 (2)

𝑘 ⋅ 𝜕𝑘𝑅𝑘]

+ (perm. (𝑨, 𝑩, 𝑪))

− 1
2 Tr[𝑊 (2)

𝑘 ⋅ 𝛤 (5)
𝑘,𝑨𝑩𝑪 ⋅ 𝑊 (2)

𝑘 ⋅ 𝜕𝑘𝑅𝑘] .

(4.84)

Very similar to the Dyson–Schwinger equation the functional renormalisation group
involves an infinite tower of coupled flow equations and needs to be truncated in an
appropriate way. To this end, various expansion and truncation schemes have been
developed most importantly the vertex and derivative expansion which are applied
in chapter 7.

In the following a regulator which suppresses ultraviolet fluctuations in the initial
state is employed [35–38]. To this end the regulator is written as

𝑅𝑘,𝑨𝑩 = 𝛿(𝜏 − 𝜏in) 𝛿(𝜏 ′ − 𝜏in)[𝐶 in
𝑘,𝑎𝑏(𝒙 − 𝒙′) − 𝐶 in

𝑎𝑏(𝒙 − 𝒙′)] (0 0
0 1) , (4.85)

where the power spectral density is regulated by

𝑃 in
𝑘,𝑎𝑏(𝒒) ≔ 𝑟𝑘(𝑞) 𝑃 in

𝑎𝑏(𝒒) , (4.86)

for a shape function which in the following is chosen to be 𝑟𝑘(𝑞) = 𝜃(𝑘/𝑞 −1).14 Due
to the choice of regulator and definition of the flowing effective action, one then has
the limits

lim
𝑘→0

𝛤𝑘 = 𝑆 , lim
𝑘→∞

𝛤𝑘 = 𝛤 . (4.87)

14It has been criticised that for the regulator (4.85) the flow equation (4.81) simply describes initial
power spectrum variations rather than truly capturing the effects of coarse-gaining [130]. While
it is true that modes which are initially absent can (and will) be dynamically generated, the flow
equation (4.81) is not restricted to these types of regulators. In principle, the dynamical part of
the bare action (4.14) can also be regulated such that the propagation of modes on scales 𝑞 > 𝑘
is essentially absent.
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which can be used as an initial condition of the flow in the infrared in order to flow
to the physical limit in the ultraviolet. The choice of a sensible regulator heavily
depends on the problem at hand and the behaviour of the system in the infrared
and ultraviolet. In the context of cosmology, where corrections to the bare action
arise due to initial state fluctuations, the question of a sensible regulator is related
to the scaling of the initial power spectrum. For a power law dark matter density
contrast power spectrum, 𝑃 in

𝛿𝛿(𝑞) ∝ 𝑞𝑛, corrections are finite in the infrared for
𝑛 > −1 and in the ultraviolet for 𝑛 < −3 to all orders in standard perturbation
theory [90,91,131–133].15 Realistic power spectra of the 𝛬CDM concordance model
avoid divergences in both limits due to the scaling shown in chapter (3) in equation
(3.12).

To study the flow equations it is useful to introduce a diagrammatic representation
of the regulator,

𝐺R
𝑘,𝑎𝑎̄(𝜏, 𝜏in, 𝒒) 𝜕𝑘𝑃 in

𝑘,𝑎̄𝑏̄(𝒒) 𝐺A
𝑘,𝑏̄𝑏(𝜏in, 𝜏 ′, 𝒒) = . (4.88)

The flow equations of the 1PI one-point function is then given by

𝜕𝑘𝛤 (0,1)
𝑘,𝐴 = 1

2 , (4.89)

the inverse propagator flow is given by

𝜕𝑘𝛤 (1,1)
𝑘,𝐴𝐵 = −1

2 − 1
2 + 1

2 , (4.90)

and the 1PI statistical two-point function flow is given by

𝜕𝑘𝛤 (0,2)
𝑘,𝐴𝐵 = − 1

2 − 1
2 − 1

2

− 1
2 − 1

2 − 1
2 + 1

2 .
(4.91)

In chapter 5 the flow equations of the two-point functions is closed using Ward
identities related to extended Galilean invariance studied in the next section. In
chapter 7 the functional renormalisation group is solved by truncating the theory
space using an ansatz for the effective action that corresponds to dynamics that are
local in time.

4.6 Extended symmetries and related Ward identities
In this section symmetries of the bare action (4.14) are investigated in order to
understand the general structure of the effective action 𝛤𝑘 and derive related gener-
alised Ward identities [134]. The studied symmetries correspond to (infinitesimal)
15Even for finite corrections at all orders the perturbative series is only asymptotic and therefore

does not need to converge [43].
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affine field transformations

𝛿𝜖𝜓𝑨 = 𝐿𝜖,𝑨𝑩 𝜓𝑨 + 𝑇𝜖,𝑨 , (4.92)

where 𝐿𝜖 is a linear operator and 𝑇𝜖 a translation in field space. In this context, a
transformation that leaves the action invariant is called a true symmetry, while an
extended symmetry changes the action by terms that are at most linear in the fields
[135]. Since a change of integration variables must leave the generating functional
(4.13) unaltered, one obtains the Ward identity

𝛤 (1)
𝑘 ⋅ 𝛿𝜖𝛹 = 𝛿𝜖𝑆[𝛹] + Tr[𝐿𝜖 ⋅ 𝑊 (2)

𝑘 ⋅ 𝑅𝑘] . (4.93)

The first term on the right-hand side only contributes for extended symmetries,
while the second term vanishes if the regulator respects the symmetry transforma-
tion.16 Since the employed regulator (4.85) only alters the initial power spectrum,
the flowing action (4.79) respects the same symmetries as the bare action (4.14) so
that the second term on the right-hand side of the Ward identity (4.93) vanishes.

4.6.1 Conservation of mass
Conservation of mass is ensured at the level of the bare action (4.14) by the continuity
equation. This extends to the effective action and is related to a time-gauged density
contrast response field shift, 𝛿𝜖

̂𝛿(𝜏 , 𝒙) = 𝜖(𝜏), which changes the bare action by a
term linear in the fields,

𝛿𝜖𝑆 = − i ∫
𝜏,𝒙

𝜖(𝜏) 𝜕𝜏𝛿(𝜏, 𝒙) + ∫
𝒙,𝒙′

𝜖(𝜏in) 𝐶 in
𝛿𝑎(𝒙 − 𝒙′) ̂𝛹𝑎(𝜏in, 𝒙′) , (4.94)

where the second term on the right-hand side vanishes for the type of initial power
spectra considered here since it is proportional to 𝑃 in

𝑎𝑏(𝟎).17 Since 𝜖(𝜏) is an (in-
finitesimal) arbitrary function of time, one obtains the Ward identity

∫
𝒙

𝛤 (0,1)
𝑘,𝛿 (𝜏, 𝒙) = − i ∫

𝒙
𝜕𝜏𝛿(𝜏, 𝒙) , (4.95)

which encodes that the effective equations of motion of the density contrast field
are of conservative form. The Ward identity may equivalently be written in Fourier
space as

𝛤 (0,1)
𝑘,𝛿 (𝜏, 𝟎) = − i 𝜕𝜏𝛿(𝜏, 𝟎) . (4.96)

Here and in the following, specific mean fields are denoted by the same symbols as
their fluctuation counterpart for a clearer notation.
16Additionally, it is assumed that the functional integral measure is invariant under the symmetry

transformation, i.e. in the absence of an anomaly, which is the case for the two symmetries
studied in this section.

17Due to the periodic boundary conditions imposed in the functional integral, the space integral
over the total derivative term in the continuity equation vanishes.
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4.6.2 Extended Galilean invariance
In the following, the Galilean invariance [90, 92, 93, 136] studied in section 2.4.5
of chapter 2 is used to derive generalised Ward identities. Remember that the
cumulants of the distribution function transform as

𝑐(𝑛)
𝑖1…𝑖𝑛

(𝜏, 𝒙) ↦ 𝑐(𝑛)
𝑖1…𝑖𝑛

(𝜏, 𝒙 − 𝒗 𝑇 ) + 𝛿𝑛1𝑣𝑖1
̇𝑇 , (4.97)

so that only the velocity field is non-trivially shifted. The equations of motion (2.88)
are invariant under this transformation up to a time-dependent shift in the velocity
field equation. While this shift is compensated for by the transformation of the
gravitational potential [90]

𝜕𝑖𝜙(𝜏, 𝒙) ↦ 𝜕𝑖𝜙(𝜏, 𝒙 − 𝒗 𝑇 ) + 𝑣𝑖𝑇 Ḣ , (4.98)

the symmetry is no longer apparent when the gravitational potential is eliminated
by solving Poisson’s equation. Indeed, Galilean invariance is no longer manifest
since integrating Poisson’s equation in terms of the operator (4.4) fixes a frame
with respect to which expectation values are computed.18 In this sense the Galilean
transformation (2.96) is already an extended symmetry that changes the bare action
(4.14) by terms linear in the velocity response field.

The transformation (2.96) extends to a time-gauged symmetry of the effective
action for the infinitesimal field transformations

𝛿𝜖𝜓𝑎(𝜏, 𝒙) = −𝜖𝑖(𝜏) 𝜕𝑖𝜓𝑎(𝜏, 𝒙) + 𝛿𝑎𝑢𝑖
̇𝜖𝑖(𝜏) ,

𝛿𝜖
̂𝜓𝑎(𝜏, 𝒙) = −𝜖𝑖(𝜏) 𝜕𝑖

̂𝜓𝑎(𝜏, 𝒙) .
(4.99)

Under these transformations all terms in the bare action (4.14) are invariant except
for the term involving the time derivative and the Hubble drag term of the velocity
field, giving rise to

𝛿𝜖𝑆 = − i ∫
𝜏,𝒙

𝑢̂𝑖(𝜏, 𝒙)[ ̈𝜖𝑖(𝜏) + H ̇𝜖𝑖(𝜏)] . (4.100)

Since the right-hand side is linear in fields, this corresponds to an extended symme-
try. The corresponding Ward identity reads

∫
𝒙

[𝛹𝑎(𝜏, 𝒙) 𝜕𝑖 − 𝛿𝑎𝑢𝑖
𝜕𝜏]𝛤 (1,0)

𝑘,𝑎 (𝜏, 𝒙) + ∫
𝒙

̂𝛹𝑎(𝜏, 𝒙) 𝜕𝑖𝛤
(0,1)
𝑘,𝑎 (𝜏, 𝒙)

= − i ∫
𝒙

[𝜕2
𝜏 − H𝜕𝜏 − Ḣ]𝑢̂𝑖(𝜏, 𝒙) ,

(4.101)

and entails that, apart from the velocity field’s time derivative and Hubble drag
term which are not renormalised, the effective action is invariant under time-gauged
Galilean transformations.
18Equivalently, one can keep the gravitational potential and Poisson’s equation at the expense of

introducing another response field so that Galilean invariance corresponds to a true symmetry,
as shown in the next section.
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Applying field derivatives to the Ward identity (4.101) yields related identities
such that for 𝑚 + 𝑛 > 1 one obtains in Fourier space

[
𝑚

∑
𝑙=1

𝜃(𝜏 − 𝜏𝑙) i 𝑞𝑙,𝑖 +
𝑛

∑
̄𝑙=1

𝜃(𝜏 − 𝜏 ′
̄𝑙 ) i 𝑞′

̄𝑙,𝑖]𝛤 (𝑚,𝑛)
𝑘,𝑎1…𝑏𝑛

(𝜏1, 𝒒1; … ; 𝜏 ′
𝑛, 𝒒′

𝑛)

= 𝛤 (𝑚+1,𝑛)
𝑘,𝑢𝑖𝑎1…𝑏𝑛

(𝜏, 𝟎; 𝜏1, 𝒒1; … ; 𝜏 ′
𝑛, 𝒒′

𝑛) .

(4.102)

The Ward identities (4.102) impose linear relations between 1PI correlation functions
of order (𝑚 + 1, 𝑛) at vanishing wave vector for a velocity field and 1PI correlation
functions of lower order (𝑚, 𝑛).

4.6.3 Non-renormalisation of the gravitational sector

Instead of eliminating the gravitational potential by solving Poisson’s equation
(2.85), one can equivalently use a gravitational response field ̂𝜙(𝜏 , 𝒙) in order to
enforce Poisson’s equation. Constraint equations are introduced into the generating
functional (4.13) in the same manner as field equations so that the bare action in
this setting reads

𝑆 = − i ∫
𝜏,𝒙,𝒙′

̂𝜓𝑎(𝜏, 𝒙)[𝜕𝜏𝛿𝑎𝑏 𝛿(𝒙 − 𝒙′) + 𝛺′
𝑎𝑏(𝜏, 𝒙 − 𝒙′)]𝜓𝑏(𝜏, 𝒙′)

− i ∫
𝜏,𝒙,𝒙′,𝒙″

̂𝜓𝑎(𝜏, 𝒙) 𝛾𝑎𝑏𝑐(𝒙 − 𝒙′, 𝒙 − 𝒙″) 𝜓𝑏(𝜏, 𝒙′) 𝜓𝑐(𝜏, 𝒙″)

+ ∫
𝒙,𝒙′

̂𝜓𝑎(𝜏in, 𝒙)[i 𝛿(𝒙 − 𝒙′) 𝛹 in
𝑎 + 1

2 𝐶 in
𝑎𝑏(𝒙 − 𝒙′) ̂𝜓𝑏(𝜏in, 𝒙′)]

− i ∫
𝜏,𝒙

𝑢̂𝑖(𝜏, 𝒙) 𝜕𝑖𝜙(𝜏, 𝒙)

− i ∫
𝜏,𝒙

̂𝜙(𝜏 , 𝒙)[𝜕𝑖𝜕𝑖𝜙(𝜏, 𝒙) − 3
2 H2𝛺m𝛿(𝜏, 𝒙)] .

(4.103)

Here, 𝛺′
𝑎𝑏 is the upper triangular part of the matrix 𝛺𝑎𝑏 given in equation (4.3), that

is the velocity-density component due to integrating out the gravitational potential
is removed. This has the advantage that no non-analyticities are present in the bare
action since 𝛺′

𝑎𝑏 only acts through spatial gradients.
The gravitational sector of the theory is particularly simple since there are two

extended symmetries related to the (infinitesimal) time- and space-gauged field shifts
𝛿𝜖𝜙(𝜏, 𝒙) = 𝜖(𝜏, 𝒙) and 𝛿𝜖

̂𝜙(𝜏 , 𝒙) = 𝜖(𝜏, 𝒙). These yield the Ward identities

𝛤 (1,0)
𝑘,𝜙 (𝜏, 𝒙) = i [𝜕𝑖𝑢̂𝑖(𝜏, 𝒙) − 𝜕𝑖𝜕𝑖

̂𝜙(𝜏 , 𝒙′)] , (4.104)

and
𝛤 (0,1)

𝑘,𝜙 (𝜏, 𝒙) = − i [𝜕𝑖𝜕𝑖𝜙(𝜏, 𝒙) − 3
2 H2𝛺m𝛿(𝜏, 𝒙)] , (4.105)
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which encode that the whole gravitational sector is not renormalised and the depen-
dence on the gravitational fields is the same for the bare and effective action.

In this setting Galilean invariance can be realised as a true symmetry using the
transformations (4.99) in addition to

𝛿𝜖𝜙(𝜏, 𝒙) = −𝜖𝑖(𝜏) 𝜕𝑖𝜙𝑎(𝜏, 𝒙) − 𝑥𝑖[ ̈𝜖𝑖(𝜏) + H ̇𝜖𝑖(𝜏)] ,

𝛿𝜖
̂𝜙(𝜏 , 𝒙) = −𝜖𝑖(𝜏) 𝜕𝑖

̂𝜙𝑎(𝜏, 𝒙) .
(4.106)

In the case where the gravitational potential is integrated out using Poisson’s equa-
tion (2.85),

𝜕𝑖𝜙(𝜏, 𝒙) = ∫
𝒙′

𝑂𝑖(𝜏, 𝒙 − 𝒙′) 𝛿(𝜏, 𝒙′) + 𝐶𝑖(𝜏, 𝒙) , (4.107)

where the operator 𝑂𝑖 is defined in equation (4.4), one has a residual gauge symmetry
due to the constant of integration 𝐶𝑖, which is a divergence-less vector field. By
choosing 𝐶𝑖 appropriately, any bulk velocity terms appearing due to a Galilean
transformation (4.99) can be eliminated. Since the constant of integration is fixed
to 𝐶𝑖 = 0 in the equations of motion (4.2), Galilean invariance is no longer manifest.
This should be understood as ‘gauge fixing’ to the frame in which the velocity mean
field is vanishing.19

19Within the functional integral representation (4.13) a specific velocity mean field can be forced
by evaluating expectation values at a non-vanishing response field source current or by adding
a ‘frame-fixing’ term to the bare action [92]. Similar to local gauge symmetries the choice
of frame can be gauge fixed using the Faddeev–Popov method so that one obtains a Becchi–
Rouet–Stora symmetry and a related Slavnov–Taylor identity instead of an extended Galilean
symmetry [137,138].
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In this chapter the large external wave number limit of the 1PI two-point correlation
function’s flow equations is investigated. Using the Ward identities (4.102) related
to extended Galilean invariance, the flow equations can be (formally) closed in this
limit, at least in the absence of higher-order velocity cumulants. The procedure
presented here is closely related to the large external wave number limit studied in
the context of fluid turbulence [139–141], although being in a non-stationary setting
in cosmology.

5.1 Large external wave limit

To derive the large external wave number limit of the flow equations (4.90) and
(4.91), the first diagram of the inverse propagator flow (4.90) is considered as an
illustrative example. It is given by

= − i 𝛿̄(𝒒 + 𝒒′) ∫
̄𝜏, ̄𝜏′

̃𝜏, ̃𝜏′

∫
𝒍

̂𝛤 (2,1)
𝑘,𝑐𝑒𝑎( ̃𝜏 , 𝒍; ̄𝜏 , −𝒒 − 𝒍; 𝜏, 𝒒)

× 𝐺R
𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒 + 𝒍)

× ̂𝛤 (2,1)
𝑘,𝑑𝑏𝑓( ̃𝜏 ′, −𝒍; 𝜏 ′, −𝒒; ̄𝜏 ′, 𝒒 + 𝒍)

× ̂𝜕𝑘𝑃 I
𝑘,𝑑𝑐( ̃𝜏 ′, ̃𝜏 , 𝒍) ,

(5.1)

where the circumflex denotes that an overall wave vector conserving delta function
has been extracted from the 1PI three-point functions. Further, the abbreviation

𝑃 I
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = 𝐺R

𝑘,𝑎𝑎̄(𝜏, 𝜏in, 𝒒) 𝑃 in
𝑘,𝑎̄𝑏̄(𝒒) 𝐺A

𝑘,𝑏̄𝑏(𝜏in, 𝜏 ′, 𝒒) , (5.2)

is used and the derivative

̂𝜕𝑘 = ∫
𝒒

𝜕𝑘𝑃 in
𝑘,𝑎𝑏(𝒒) 𝛿

𝛿𝑃 in
𝑘,𝑎𝑏(𝒒)

, (5.3)

only acts on the regulated initial power spectrum.
The internal wave vector 𝒍 running through the loop of the diagram (5.1) is re-

stricted to |𝒍| = 𝑘 due to the regulator (4.85). In the limit 𝑞 → ∞ the internal
wave vector 𝒍 is therefore small in magnitude compared to 𝒒 and may be set to zero
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within the 1PI three-point functions.1 In the case where the vanishing wave vector
is assigned to a velocity mode the Ward identity (4.102) can be used to relate the
1PI three-point function to a 1PI two-point function.
A priori it is not clear why the vanishing wave vector should be assigned to

velocity modes since the loop naturally runs over all degrees of freedom included in
the field content (4.1). In the following, it is argued that in the absence of velocity
dispersion and higher-order velocity cumulants it is expected that in the limit 𝑞 → ∞
the leading contribution is due to the velocity-velocity sector of the regulator. More
specifically, it is shown that in the large external wave number limit the diagram
(5.1) is given by

∼ − i 𝛿(𝒒 + 𝒒′) ∫
̄𝜏, ̄𝜏′

̃𝜏, ̃𝜏′

̂𝛤 (2,1)
𝑘,𝑢𝑖𝑒𝑎( ̃𝜏 , 𝟎; ̄𝜏 , −𝒒; 𝜏, 𝒒) 𝐺R

𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒)

× ̂𝛤 (2,1)
𝑘,𝑢𝑗𝑏𝑓( ̃𝜏 ′, 𝟎; 𝜏 ′, −𝒒; ̄𝜏 ′, 𝒒)

× ̂𝜕𝑘 ∫
𝒍
𝑃 I

𝑘,𝑢𝑗𝑢𝑖
( ̃𝜏 ′, ̃𝜏 , 𝒍) ,

(5.4)

at least perturbatively to all orders. The line of argument presented here is very
similar to the classification of digrams in renormalised perturbation theory [18,19].

Consider the diagram (5.1) and amputate the regulator ̂𝜕𝑘𝑃 I
𝑘,𝑐𝑑. At lowest order

in standard perturbation theory the leading contribution in the limit 𝑞 → ∞ is given
by

𝑎

𝑐 𝑑

𝑏 ∼ 𝑞2 𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒒) 𝛿𝑐𝑢𝑖

𝛿𝑑𝑢𝑗
× (𝑞-ind.) . (5.5)

The limit makes use of the fact that the wave vector 𝒍 is bounded in magnitude due
to the regulator and thus negligible compared to 𝒒. The leading contribution is then
due to the scaling of the linear propagator

𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒒) ∼ ( 1 𝑞𝑗

𝑞𝑖/𝑞2 𝛿𝑖𝑗
) × (𝑞-ind.) , (5.6)

and the structure of the bare vertices.
At the next higher order in perturbation theory two types of diagrams need to be

distinguished. In the language of renormalised perturbation theory one can realise
that every perturbative diagram has a principle path that connects the ingoing
and outgoing mode with a chain of linear retarded propagators. Diagrams can
be organised according to how many interactions (via bare vertices) are along this

1Strictly speaking, this is only possible if the correlation functions are analytic in wave vectors.
The non-gradient dependence due to the operator (4.4) implies non-analyticity of the (inverse)
propagator in the velocity-density component. The corresponding infrared divergence is associ-
ated with homogeneous mass density shifts and is usually treated by regularising gravitational
interactions at large scales and related to the Jeans swindle [27,142]. In the following, the tacit
assumption is made that no other non-analyticities develop in the presence of a regulator.
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5.1 Large external wave limit

path. Since for each bare vertex that is passed along the principal path a factor 𝑞 is
picked up in the large external wave number limit, the leading contribution is due
to diagrams where all interactions are on that path.

As an example consider the contributions where one vertex of the diagram (5.5)
is evaluated at one-loop. These consist of diagrams of the type

D1 =
𝑎

𝑐

𝑑

𝑏
, (5.7)

and

D2 =
𝑎

𝑐

𝑑

𝑏
, (5.8)

Similarly, evaluating the retarded propagator in diagram (5.5) at one-loop one ob-
tains

D3 = 𝑎

𝑐 𝑑

𝑏 . (5.9)

The leading contribution of the diagrams is obtained by counting the vertices along
the principal path such that one obtains

D1 ∼ 𝑞3 𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒒) 𝛿𝑑𝑢𝑖

× (𝑞-ind.) ,
D2,3 ∼ 𝑞4 𝑔R

𝑎𝑏(𝜏, 𝜏 ′, 𝒒) 𝛿𝑐𝑢𝑖
𝛿𝑑𝑢𝑗

× (𝑞-ind.) .
(5.10)

This argument extends to any perturbative order and can be applied to all diagrams
entering the flow equations (4.90) and (4.91). In turn only the velocity-velocity part
of the regulator ̂𝜕𝑘𝑃 I

𝑘,𝑢𝑗𝑢𝑖
enters into the expression (5.4), at least to leading order.

Although the presented argument holds to all orders in perturbation theory, there
is no rigorous justification why it should hold non-perturbatively. More specifically,
in the presence of non-perturbative scales the line of argument presented here cannot
be straight forwardly extended to full propagators and vertices.

Further, the presented argument no longer holds in the presence of higher-order
velocity cumuants, e.g. velocity dispersion. Indeed, considering again the lowest
order contribution (5.5) in the presence of velocity dispersion and taking into account
the allowed vertices due to the non-linear terms in equation (4.2), one finds the
leading contribution to the first diagram of the velocity-velocity inverse propagator
flow to be

𝑢𝑖

𝑐 𝑑

𝑢𝑗 ∼ 𝑞2 𝑔R
𝛿𝜎(𝜏, 𝜏 ′, 𝒒) 𝛿𝑐𝜎𝛿𝑑𝜎 × (𝑞-ind.) , (5.11)
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5 Large wave number sector of the functional renormalisation group

where tensorial structures are suppressed on the right-hand side. This contribution
dominates in the limit 𝑞 → ∞ over the one given in equation (5.5) due to the scaling

𝑔R
𝛿𝜎𝑖𝑗

(𝜏, 𝜏 ′, 𝒒) ∼ 𝑞𝑖𝑞𝑗 × (𝑞-ind.) . (5.12)

The justification that the vanishing wave vector is assigned to a velocity mode there-
fore relies on the following two assumptions:

• The emergence of non-perturbative scales does not invalidate the classification
of leading contributions described before.

• Higher-order velocity cumulants are absent or at least subdominant.

Under these assumptions the limit (5.4) holds and the 1PI three-point vertices can be
replaced using the Ward identity (4.102). This can be done for all diagrams entering
the flow equations (4.90) and (4.91). More precisely, the three-point functions are
replaced by

̂𝛤 (2,1)
𝑘,𝑢𝑖𝑏𝑎(𝜏″, 𝟎; 𝜏 ′, −𝒒; 𝜏, 𝒒) = − i 𝑞𝑖[𝜃(𝜏″ − 𝜏 ′) − 𝜃(𝜏″ − 𝜏)]

× ̂𝛤 (1,1)
𝑘,𝑏𝑎 (𝜏 ′, −𝒒; 𝜏, 𝒒) ,

̂𝛤 (1,2)
𝑘,𝑢𝑖𝑏𝑎(𝜏″, 𝟎; 𝜏 ′, −𝒒; 𝜏, 𝒒) = − i 𝑞𝑖[𝜃(𝜏″ − 𝜏 ′) − 𝜃(𝜏″ − 𝜏)]

× ̂𝛤 (0,2)
𝑘,𝑏𝑎 (𝜏 ′, −𝒒; 𝜏, 𝒒) ,

(5.13)

whereas the four-point functions are replaced using

̂𝛤 (3,1)
𝑘,𝑢𝑖𝑢𝑗𝑏𝑎(𝜏‴, 𝟎; 𝜏″, 𝟎; 𝜏 ′, −𝒒; 𝜏, 𝒒) = −𝑞𝑖𝑞𝑗[𝜃(𝜏‴ − 𝜏 ′) − 𝜃(𝜏‴ − 𝜏)]

× [𝜃(𝜏″ − 𝜏 ′) − 𝜃(𝜏″ − 𝜏)]

× ̂𝛤 (1,1)
𝑘,𝑏𝑎 (𝜏 ′, −𝒒; 𝜏, 𝒒) ,

̂𝛤 (2,2)
𝑘,𝑢𝑖𝑢𝑗𝑏𝑎(𝜏‴, 𝟎; 𝜏″, 𝟎; 𝜏 ′, −𝒒; 𝜏, 𝒒) = −𝑞𝑖𝑞𝑗[𝜃(𝜏‴ − 𝜏 ′) − 𝜃(𝜏‴ − 𝜏)]

× [𝜃(𝜏″ − 𝜏 ′) − 𝜃(𝜏″ − 𝜏)]

× ̂𝛤 (0,2)
𝑘,𝑏𝑎 (𝜏 ′, −𝒒; 𝜏, 𝒒) .

(5.14)

Substituting the relations (5.13) and (5.14) into the inverse propagator flow (4.90)
one obtains

𝜕𝑘𝐷R
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = 𝑞2 ∫

̄𝜏, ̄𝜏′

𝐷R
𝑘,𝑎𝑒(𝜏, ̄𝜏 , 𝒒) 𝐺R

𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐷R
𝑘,𝑓𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒)

× ̂𝜕𝑘𝐼𝑘(𝜏, ̄𝜏 ; ̄𝜏 ′, 𝜏 ′)

− 𝑞2

2
𝐷R

𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) ̂𝜕𝑘𝐼𝑘(𝜏, 𝜏 ′; 𝜏 , 𝜏 ′) ,

(5.15)
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5.1 Large external wave limit

and similarly for the statistical two-point function flow (4.91)

𝜕𝑘𝐻𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = 𝑞2 ∫
̄𝜏, ̄𝜏′

[𝐷R
𝑘,𝑎𝑒(𝜏, ̄𝜏 , 𝒒) 𝑃𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐷A

𝑘,𝑓𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒)

− 𝐷R
𝑘,𝑎𝑒(𝜏, ̄𝜏 , 𝒒) 𝐺R

𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐻𝑘,𝑓𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒)

− 𝐻𝑘,𝑎𝑒(𝜏, ̄𝜏 , 𝒒) 𝐺A
𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐷A

𝑘,𝑓𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒)]

× ̂𝜕𝑘𝐼𝑘(𝜏, ̄𝜏 ; 𝜏 ′, ̄𝜏 ′)

− 𝑞2

2
𝐻𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) ̂𝜕𝑘𝐼𝑘(𝜏, 𝜏 ′; 𝜏 , 𝜏 ′)

+ 𝛿(𝜏 − 𝜏in) 𝛿(𝜏 ′ − 𝜏in) ̂𝜕𝑘𝑃 in
𝑘,𝑎𝑏(𝒒) ,

(5.16)

where the function 𝐼𝑘 is given by

𝐼𝑘(𝜏, 𝜏 ′; ̄𝜏 , ̄𝜏 ′) = 1
3

∫
𝜏

𝜏′

d𝜏″ ∫
̄𝜏

̄𝜏′

d ̄𝜏″ ∫
𝒒

𝑃 I
𝑘,𝑢𝑖𝑢𝑖

(𝜏″, ̄𝜏″, 𝒒) . (5.17)

As a concrete example the first diagram of the inverse propagator flow (4.90) is
computed and the other diagrams follow similarly. The first flow diagram of equation
(4.90) is given by

= − i 𝛿̄(𝒒 + 𝒒′) ∫
̄𝜏, ̄𝜏′

̃𝜏, ̃𝜏′

∫
𝒍

̂𝛤 (2,1)
𝑘,𝑐𝑒𝑎( ̃𝜏 , 𝒍; ̄𝜏 , −𝒒 − 𝒍; 𝜏, 𝒒)

× 𝐺R
𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒 + 𝒍)

× ̂𝛤 (2,1)
𝑘,𝑑𝑏𝑓( ̃𝜏 ′, −𝒍; 𝜏 ′, −𝒒; ̄𝜏 ′, 𝒒 + 𝒍)

× ̂𝜕𝑘𝑃 I
𝑘,𝑑𝑐( ̃𝜏 ′, ̃𝜏 , 𝒍)

∼ − i 𝛿(𝒒 + 𝒒′) ∫
̄𝜏, ̄𝜏′

̃𝜏, ̃𝜏′

̂𝛤 (2,1)
𝑘,𝑢𝑗𝑒𝑎( ̃𝜏 , 𝟎; ̄𝜏 , −𝒒; 𝜏, 𝒒) 𝐺R

𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒)

× ̂𝛤 (2,1)
𝑘,𝑢𝑖𝑏𝑓( ̃𝜏 ′, 𝟎; 𝜏 ′, −𝒒; ̄𝜏 ′, 𝒒)

× ̂𝜕𝑘 ∫
𝒍
𝑃 I

𝑘,𝑢𝑖𝑢𝑗
( ̃𝜏 ′, ̃𝜏 , 𝒍)

= − i 𝛿̄(𝒒 + 𝒒′) ∫
̄𝜏, ̄𝜏′

𝐷R
𝑘,𝑎𝑒(𝜏, ̄𝜏 , 𝒒) 𝐺R

𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐷R
𝑘,𝑓𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒)

× 𝑞2

3
∫

̃𝜏, ̃𝜏′

[𝜃( ̃𝜏 − ̄𝜏) − 𝜃( ̃𝜏 − 𝜏)]

× [𝜃( ̃𝜏 ′ − 𝜏 ′) − 𝜃( ̃𝜏 ′ − ̄𝜏 ′)]

× ̂𝜕𝑘 ∫
𝒍
𝑃 I

𝑘,𝑢𝑖𝑢𝑖
( ̃𝜏 ′, ̃𝜏 , 𝒍)

= − i 𝛿̄(𝒒 + 𝒒′) 𝑞2 ∫
̄𝜏, ̄𝜏′

𝐷R
𝑘,𝑎𝑒(𝜏, ̄𝜏 , 𝒒) 𝐺R

𝑘,𝑒𝑓( ̄𝜏 , ̄𝜏 ′, 𝒒)

× 𝐷R
𝑘,𝑓𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒) ̂𝜕𝑘𝐼𝑘(𝜏, ̄𝜏 ; ̄𝜏 ′, 𝜏 ′)

(5.18)
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5 Large wave number sector of the functional renormalisation group

where the second equality holds in the limit 𝑞 → ∞ under the assumptions discussed.
The third equality makes use of the Ward identity (5.13) and statistical isotropy
implies

𝑞𝑖𝑞𝑗 ∫
𝒍
𝑃 I

𝑘,𝑢𝑖𝑢𝑗
(𝜏, 𝜏 ′, 𝒍) = 𝑞2

3
∫

𝒍
𝑃 I

𝑘,𝑢𝑖𝑢𝑖
(𝜏, 𝜏 ′, 𝒍) . (5.19)

Finally, the last equality uses definition (5.17) to rewrite the expression.
The flow equations (5.15) and (5.16) are (formally) closed at the level of two-point

functions, although involving connected and 1PI correlation functions. The flow of
the propagator and power spectrum can be obtained from relation (4.34) and read

𝜕𝑘𝐺R
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = − ∫

̄𝜏, ̄𝜏′

𝐺R
𝑘,𝑎𝑎̄(𝜏, ̄𝜏 , 𝒒) 𝜕𝑘𝐷R

𝑘,𝑎̄𝑏̄( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐺R
𝑘,𝑏̄𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒) , (5.20)

and

𝜕𝑘𝑃𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = ∫
̄𝜏, ̄𝜏′

𝜕𝑘[𝐺R
𝑘,𝑎𝑎̄(𝜏, ̄𝜏 , 𝒒) 𝐻𝑘,𝑎̄𝑏̄( ̄𝜏 , ̄𝜏 ′, 𝒒) 𝐺A

𝑘,𝑏̄𝑏( ̄𝜏 ′, 𝜏 ′, 𝒒)] . (5.21)

Using the flow equations (5.15) and (5.16) one finally arrives at the rather simple
equation for the retarded propagator

𝜕𝑘𝐺R
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = −1

2 𝑞2 ̂𝜕𝑘𝐼𝑘(𝜏, 𝜏 ′; 𝜏 , 𝜏 ′) 𝐺R
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) , (5.22)

and the power spectrum

𝜕𝑘𝑃𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = −1
2 𝑞2 ̂𝜕𝑘𝐼𝑘(𝜏, 𝜏 ′; 𝜏 , 𝜏 ′) 𝑃𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) + ̂𝜕𝑘𝑃 I

𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) . (5.23)

Note that the function 𝐼𝑘 defined in equation (5.17) vanishes at equal times of either
of the two time argument pairs due to the Heaviside unit step functions appearing
in the identities (5.13) and (5.14) as well as being localised at the renormalisation
group scale 𝑘 due to the regulator. This implies in particular that the first term on
the right-hand side of equation (5.23) vanishes for the equal-time power spectrum.

Although the equations (5.15) and (5.16) are formally closed, the function 𝐼𝑘
involves knowledge of the propagator at 𝑞 = 𝑘 which is the opposite limit to what
was assumed in the derivation, at least in some regions of the renormalisation group
flow trajectories.

While the function 𝐼𝑘 is non-universal, the fact that the propagator and power
spectrum have a Gaussian suppression in wave number 𝑞 in the limit 𝑞 → ∞ is
universal and a direct results of the possibility to close the flow equations at the level
of two-point functions. As was remarked before, this holds as long as dark matter
is described by the single-stream approximation in the absence of non-perturbative
scales and other effects due to e.g. velocity dispersion are not present. In turn, any
violation from this scaling has to be due to the emergence of non-perturbative scales
or due to higher-order velocity cumulants and is regarded as an interesting possible
signature for such non-perturbative effects.

68



5.2 Sweeping effect

5.2 Sweeping effect
A simple approximation that allows to solve the flow equations (5.22) and (5.23)
analytically is given by evaluating the propagators in the expression ̂𝜕𝑘𝑃 I

𝑘,𝑎𝑏 at linear
level so that ̂𝜕𝑘𝑃 L

𝑘,𝑎𝑏 is the regulator entering the flow equations. This is justified
for a renormalisation group flow deep in the infrared, where gravitational dynamics
is well described by linear theory. There, one obtains

𝐼𝑘(𝜏, 𝜏 ′; 𝜏 , 𝜏 ′) =
[𝐷+(𝜏) − 𝐷+(𝜏 ′)]2

𝐷+(𝜏in)2 𝜎2
v,𝑘 , (5.24)

for growing mode initial conditions,

𝑢L
𝑖 (𝜏, 𝒒) = i 𝑞𝑖

𝑞2
𝐷̇+(𝜏)
𝐷+(𝜏)

𝛿L(𝜏, 𝒒) , (5.25)

where 𝐷+ is the standard linear growing mode of density fluctuations in the single-
stream approximation, here normalised to unity at 𝑎 = 1, corresponding to today.
Further, 𝜎v,𝑘 is the initial root mean square velocity,

𝜎2
v,𝑘 = 1

3
𝐶 in

𝑘,𝑢𝑖𝑢𝑖
(𝟎)/

𝐷̇+(𝜏in)2

𝐷+(𝜏in)2 = 1
6𝜋2 ∫

𝑘

0
d𝑞 𝑞2 𝑃 in

𝑢𝑖𝑢𝑖
(𝒒)/

𝐷̇+(𝜏in)2

𝐷+(𝜏in)2 , (5.26)

up to a factor of 𝐷̇+(𝜏in)2/𝐷+(𝜏in)2. The flow equation for the propagator is then
solved by

𝐺R
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = 𝑔R

𝑎𝑏(𝜏, 𝜏 ′, 𝒒) e− 1
2 𝑞2𝜎2

v,𝑘[𝐷+(𝜏)−𝐷+(𝜏′)]2/𝐷+(𝜏in)2 , (5.27)

and similar for the power spectrum,

𝑃𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = 𝑃 L
𝑘,𝑎𝑏(𝜏, 𝜏 ′, 𝒒) e− 1

2 𝑞2𝜎2
v,𝑘[𝐷+(𝜏)−𝐷+(𝜏′)]2/𝐷+(𝜏in)2 . (5.28)

In this setting the propagator and the unequal-time power spectrum feature a Gaus-
sian suppression factor due to the linear root mean square velocity field.

In the following it is shown that a random background flow, associated to a velocity
mean field, has the same effect on the linear response function and is related to the
sweeping effect previously discussed in the context of fluid turbulence [143]. To this
end consider the cumulant evolution equations (2.88) on a background flow 𝑣𝑖(𝜏).
It is assumed that the background flow evolves proportional to some function ̇𝜇(𝜏)
so that 𝑣𝑖(𝜏) = ̇𝜇(𝜏) 𝑣𝑖, where 𝑣𝑖 is a zero-mean normal distributed multivariate
random variable.2 The linear response function is the Green’s function of the linear
equations of motion (4.2) which are modified in the presence of a background flow
to

𝜕𝜏𝜓𝑎(𝜏, 𝒙) + ∫
𝒙′

𝛺𝑎𝑏(𝜏, 𝒙 − 𝒙′) 𝜓𝑏(𝜏, 𝒙′) + 𝑣𝑖(𝜏) 𝜕𝑖𝜓𝑎(𝜏, 𝒙) = 0 . (5.29)

2For a velocity field decaying with the Hubble expansion one simply has 𝜇̇(𝜏) ∝ 𝑎(𝜏)−1.
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5 Large wave number sector of the functional renormalisation group

The corresponding linear response function is then given in Fourier space by

𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒒) e−i𝒒⋅𝒗[𝜇(𝜏)−𝜇(𝜏′)] , (5.30)

where 𝑔R
𝑎𝑏(𝜏, 𝜏 ′, 𝒒) is the linear response in the absence of a background flow. The

mean linear response function is then given by averaging over the distribution of 𝑣𝑖
such that one obtains [143]

𝐺R
𝑎𝑏(𝜏, 𝜏 ′, 𝒒) = 𝑔R

𝑎𝑏(𝜏, 𝜏 ′, 𝒒) e− 1
2 𝑞2𝑣2

rms[𝜇(𝜏)−𝜇(𝜏′)]2
, (5.31)

where 𝑣rms is the root mean square background velocity.
This analysis shows that the Gaussian suppression factor in the propagator (5.31)

is not related to a true loss of memory due to relaxation processes but rather to the
random advection of small-scale structures due to a large-scale flow also know as
sweeping effect [28,29,144,145].

One can now notice that the large wave number limit propagator (5.27) is of a
similar form as the response function on a random background flow. In the infrared
of the renormalisation group flow the suppression is due to the linear root mean
square velocity, suggesting that it does not truly capture the effect of memory loss
associated with relaxation towards equilibrium but rather describes the sweeping of
small-scale structure due to an effective random large-scale advection. In contrast,
the flow equations (5.22) and (5.23) are more general since the function 𝐼𝑘 includes
non-linear information beyond the sweeping effect.

The propagator (5.27) was first obtained in the framework of renormalised pertur-
bation theory [19]. Interestingly enough, this form of the propagator is actually exact
in the Zeldovich approximation [29], whereas for more realistic approximations, such
as the adhesion model, the propagator is already much more complicated [144,145].
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6 Truncated Dyson–Schwinger equations

In this chapter the dynamics of dark matter in terms of a kinetic theory description
beyond the single-stream approximation is investigated with the Dyson–Schwinger
equation. While the extension of the kinetic theory description enables to go be-
yond the shell-crossing regime, the Dyson–Schwinger equation allows for a non-
perturbative calculation of the correlation functions of the underlying field theory.
Combining the extension of the kinetic theory description with the non-perturbative
Dyson–Schwinger equation overcomes the main limitations of standard perturbation
theory in the single-stream approximation and allows to probe small-scale physics.

In section 6.1 the field content which is used to describe dark matter is fixed and
the employed truncations of the Dyson–Schwinger equation discussed. Subsequently,
in sections 6.2 and 6.3 two truncations of the Dyson–Schwinger equation are studied
in greater detail.

6.1 Field content and evolution equations

In the following, dark matter is described in the kinetic theory picture discussed
in chapter 2. To this end, the cumulant expansion of the phase-space distribution
function is cum grano salis truncated after the second order such that the relevant
degrees of freedom are parametrised by the density contrast 𝛿, the velocity vector 𝑢𝑖
and the velocity dispersion tensor 𝜎𝑖𝑗. The latter two are decomposed into irreducible
components according to equations (3.20) and (3.24) and only the scalar velocity
dispersion modes are kept in the following. While it would in principle be interesting
to also include the vector and tensor velocity dispersion modes, this enlarges the field
content by another four degrees of freedom making numerical solutions even more
time consuming than they already are.

The relevant field content is in this case given by

𝜓𝑎 = (𝛿 , − 𝜃
𝑓H

, 𝑘2𝜎
(𝑓H)2 , 𝑘2𝜗

(𝑓H)2 , 𝜔𝑖
𝑓H

) , (6.1)

where prefactors of 𝑘 and 𝑓H are chosen such that the fields are of the same dimen-
sion. The equations of motion (4.2) are most conveniently written with respect to
the time evolution parameter 𝜂 ≔ ln(𝐷+) and take the form

𝜕𝜂𝜓𝑎(𝜂, 𝒌) + 𝛺𝑎𝑏(𝜂) 𝜓𝑏(𝜂, 𝒌) + ∫
𝒒

𝛾𝑎𝑏𝑐(𝒒, 𝒌 − 𝒒) 𝜓𝑏(𝜂, 𝒒) 𝜓𝑐(𝜂, 𝒌 − 𝒒) = 0 . (6.2)
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6 Truncated Dyson–Schwinger equations

The matrix specifying the linear part is given by

𝛺𝑎𝑏(𝜂) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 0 0
−3

2
𝛺m
𝑓2

3
2

𝛺m
𝑓2 − 1 1 1 0

0 0 3 𝛺m
𝑓2 − 2 0 0

0 0 0 3 𝛺m
𝑓2 − 2 0

0 0 0 0 3
2

𝛺m
𝑓2 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6.3)

where the transverse projector of the component 𝛺55 has been amputated and the
bare vertices 𝛾𝑎𝑏𝑐 are listed in appendix C. The matrix 𝛺𝑎𝑏 is wave number indepen-
dent and straight forwardly allows to work in the approximation 𝛺m/𝑓2 = 1, where
the linear equations of motion are time-translation invariant.

In contrast to the single-stream approximation the field content (6.1) features a
non-vanishing mean field,

⟨𝜓𝑎(𝜂, 𝒌)⟩ = 𝛿𝑎3 𝛿̄(𝒌) 𝑘2𝜎̄(𝜂)
𝑓(𝜂)2H(𝜂)2 ≕ 𝛿𝑎3 𝛿̄(𝒌) 𝑘2𝜎̃(𝜂) , (6.4)

where the second equality defines the rescaled mean field 𝜎̃ and it is remarked that
due to the wave number factors appearing in the field content (6.1) an overall 𝑘2𝛿̄(𝒌)
needs to be removed when dealing with the mean field.

In the following, the dynamics of the connected one- and two-point correlation
functions is studied. The evolution of the mean field is determined by the effective
equation of motion

𝜕𝜂𝜎̃(𝜂) + (3 𝛺m
𝑓2 − 2)𝜎̃(𝜂) = 𝛿(𝜂 − 𝜂in) 𝜎̃in + 𝑄(𝜂) , (6.5)

where the source term is simply denoted as 𝑄. The propagator equation (4.36) takes
the form

[𝜕𝜂𝛿𝑎𝑏 + 𝛺𝑎𝑏(𝜂) − 𝛴H
𝑎𝑏(𝜂, 𝑘)] 𝐺R

𝑏𝑐(𝜂, 𝜂′, 𝑘)

− ∫
𝜂

𝜂′

d𝜉 𝛴F
𝑎𝑏(𝜂, 𝜉, 𝑘) 𝐺R

𝑏𝑐(𝜉, 𝜂′, 𝑘) = 𝛿𝑎𝑐𝛿(𝜂 − 𝜂′) , (6.6)

while the power spectrum equation (4.37) reads

[𝜕𝜂𝛿𝑎𝑎̄ + 𝛺𝑎𝑎̄(𝜂) − 𝛴H
𝑎𝑏(𝜂, 𝑘)] 𝑃𝑎̄𝑏(𝜂, 𝜂′, 𝑘) − ∫

𝜂

𝜂in

d𝜉 𝛴F
𝑎𝑎̄(𝜂, 𝜉, 𝑘) 𝑃𝑎̄𝑏(𝜉, 𝜂′, 𝑘)

= 𝛿(𝜂 − 𝜂′) 𝐺R
𝑏𝑏̄(𝜂′, 𝜂in, 𝑘) 𝑃 in

𝑎𝑏̄(𝑘) + ∫
𝜂′

𝜂in

d𝜉 𝐺R
𝑏𝑏̄(𝜂′, 𝜉, 𝑘) 𝛱𝑎𝑏̄(𝜂, 𝜉, 𝑘) ,

(6.7)

where the advanced propagator was eliminated in favour of the retarded one using
relation (4.22).

The evolution equations (6.5), (6.6) and (6.7) are exact up to here and have
only been rewritten in terms of a source term and the self-energies. These can be
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6.1 Field content and evolution equations

determined by the Dyson–Schwinger equation as discussed in section 4.4 of chapter 4
and are given by equations (4.74), (4.75) and (4.76). Since the latter two depend on
the 1PI three-point function, one needs to find an appropriate approximation to close
the Dyson–Schwinger hierarchy. This is achieved here by keeping the full structure
of the one- and two-point functions and setting the 1PI three-point function to its
bare form.

The source term and Hartree self-energy stay exact in this truncation,

i 𝑄 = 1
2 , i 𝛴H

𝑎𝑏 = , (6.8)

while the Fock self-energies reduce to

i 𝛴F
𝑎𝑏 = −1

2 − 1
2 , 𝛱𝑎𝑏 = −1

2 . (6.9)

In quantum field theories a similar truncation is known as Hartree–Fock approxima-
tion [146–148] or self-consistent one-loop since the full two-point correlation func-
tions enter in the loops of the self-energies.

More explicitly, the source is given by

𝑄(𝜂) = 1
6𝜋2 ∫

∞

0
d𝑞 [2𝑃42(𝜂, 𝜂, 𝑞) − 𝑃32(𝜂, 𝜂, 𝑞)] , (6.10)

and shows that the velocity dispersion mean field is sourced by the back-reaction of
velocity-velocity dispersion cross-correlations.1 As long as 2𝑃42(𝜂, 𝜂, 𝑞) is larger than
𝑃32(𝜂, 𝜂, 𝑞) the source term is positive and enhances the velocity dispersion mean
field. Since there is a priori no reason why isotropic velocity dispersion fluctuations
should be much larger than anisotropic fluctuations, one expects the mean field to
grow in time.

The Hartree self-energy is given by

𝛴H
𝑎𝑏(𝜂, 𝑘) =

⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
−𝑘2𝜎̃ 0 0 0 0

0 2
3𝑘2𝜎̃ 0 0 0

0 4
3𝑘2𝜎̃ 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, (6.11)

and describes the influence of the mean field on the evolution of fluctuations. The
effect of the source term (6.10) and Hartree self-energy (6.11) is investigated in
section 6.2 in order to understand how these interplay.

1In principle also the cross-spectrum of the velocity and velocity dispersion vectorial modes enters
into the source term (6.10). This contribution is absent since the latter is neglected in the here
employed approximation.
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6 Truncated Dyson–Schwinger equations

Finally, the Fock self-energies are given by

𝛴F
𝑎𝑏(𝜂, 𝜂′, 𝑘) = 4 ∫

𝒒
𝛾𝑎𝑐𝑒(𝒒, 𝒌 − 𝒍) 𝐺R

𝑒𝑓(𝜂, 𝜂′, |𝒌 − 𝒒|) 𝛾𝑓𝑑𝑏(−𝒒, 𝒌) 𝑃𝑐𝑑(𝜂, 𝜂′, 𝑞) , (6.12)

and

𝛱𝑎𝑏(𝜂, 𝜂′, 𝑘) = 2 ∫
𝒒

𝛾𝑎𝑐𝑒(𝒒, 𝒌 − 𝒒) 𝑃𝑒𝑓(𝜂, 𝜂′, |𝒌 − 𝒒|) 𝛾𝑏𝑓𝑑(−𝒌 + 𝒒, −𝒒)

× 𝑃𝑐𝑑(𝜂, 𝜂′, 𝑞) ,
(6.13)

and describe the non-local effects of correlations on the evolution of fluctuations.
Since the equations (6.5), (6.6) and (6.7) are in general coupled, they need to

be solved simultaneously. From a technical point of view the evolution equations
ban be classified as a system of non-linear Volterra–Fredholm integro-differential
equations of second kind in time and non-linear Fredholm integral equations of sec-
ond kind in wave number. To solve these numerically, the Runge–Kutta–Cash–Karp
method [149–151] adapted to Volterra integro-differential equations [152] is employed
for the time evolution while a finite element method using B-splines of order one
as basis functions is used for the wave number interpolation. The details of the
implementation are given in appendix D.

6.2 Hartree approximation

As a first approximation the Fock self-energies (6.12) and (6.13) are neglected to
understand the interplay between the mean field and the fluctuations. In this setting
the mean field is still sourced by the correlation of fluctuations which in turn evolve
in the presence of the mean field. The propagator equation (6.6) then simplifies to

[𝜕𝜂𝛿𝑎𝑏 + 𝛺𝑎𝑏(𝜂) − 𝛴H
𝑎𝑏(𝜂, 𝑘)] 𝐺R

𝑏𝑐(𝜂, 𝜂′, 𝑘) = 𝛿𝑎𝑐𝛿(𝜂 − 𝜂′) , (6.14)

and the power spectrum equation (6.7) is solved by

𝑃𝑎𝑏(𝜂, 𝜂′, 𝑘) = 𝐺R
𝑎𝑎̄(𝜂, 𝜂in, 𝑘) 𝐺R

𝑏𝑏̄(𝜂′, 𝜂in, 𝑘) 𝑃 in
𝑎̄𝑏̄(𝑘) , (6.15)

due to the absence of the statistical self-energy.

6.2.1 Growth factors and free-streaming scale

To simplify the following analysis the approximation 𝛺m/𝑓2 = 1 is employed, ef-
fectively mapping the 𝛬CDM cosmology onto an Einstein–de Sitter cosmology. In
this case the linear equations of motion are time-translation invariant and the lin-
ear propagator can be calculated using Laplace transforms.2 Explicitly, the linear

2A thorough discussion of the Laplace transform is given in chapter 7.
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6.2 Hartree approximation

retarded propagator reads

𝑔R
𝑎𝑏(𝜂 − 𝜂′) = [𝐴𝑎𝑏 e𝜂−𝜂′ + 𝐵𝑎𝑏 e− 3

2 (𝜂−𝜂′) + 𝐶𝑎𝑏 e−(𝜂−𝜂′)

+ 𝐷𝑎𝑏 e− 1
2 (𝜂−𝜂′)] 𝜃(𝜂 − 𝜂′) ,

(6.16)

where the matrices characterising the different independent solutions are given by

𝐴 = 1
5

⎛⎜⎜⎜⎜⎜⎜
⎝

3 2 −1 −1 0
3 2 −1 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐵 = 1
5

⎛⎜⎜⎜⎜⎜⎜
⎝

2 −2 −4 −4 0
−3 3 6 6 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, (6.17)

and

𝐶 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 1 1 0
0 0 −1 −1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐷 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

. (6.18)

The eigenvalues of the matrix −𝛺𝑎𝑏 characterise the growth properties of the in-
dependent solutions of the linear propagator and are referred to as growth factors.
The first two terms of the linear propagator (6.16) correspond to the growing and
decaying modes of the single-stream approximation (3.37), whereas the third and
fourth term correspond to decaying modes associated with the velocity dispersion
and vorticity degrees of freedom, respectively.

The propagator equation (6.14) is more general in the sense that it describes the
mean linear response in the presence of a mean field and is no longer time-translation
invariant. Nonetheless, the eigenvalues and -vectors of the matrix −𝛺𝑎𝑏 +𝛴H

𝑎𝑏 deter-
mine the (time-dependent) growth properties of the corresponding solutions. The
growth factors are then the roots of the characteristic polynomial

𝜒(𝑠) = [𝑠3 + 3
2 𝑠2 + (3𝑘2𝜎̃ − 1)𝑠 + 𝑘2𝜎̃ − 3

2](𝑠 + 1)(𝑠 + 1
2) , (6.19)

which only depend on the dimensionless combination 𝑘2𝜎̃. In the limit 𝑘2𝜎̃ → 0
these approach the growth factors of the linear propagator (6.16).

The standard growing and decaying modes of the single-stream approximation
correspond to the roots

𝑠g = 1 + O(𝑘2𝜎̃) , 𝑠d = −3
2

+ O(𝑘2𝜎̃) , (6.20)

while the decaying modes associated with the velocity dispersion degrees of freedom
are characterised by

𝑠∗
d = −1 + O(𝑘2𝜎̃) , 𝑠∗∗

d = −1 , (6.21)
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Figure 6.1: Roots of the characteristic polynomial (6.19) as a function of 𝑘2𝜎̃. The
real parts (solid curves) correspond to growing or decaying contributions
for positive or negative values, respectively, while the imaginary parts
(dotted curves) are responsible for oscillatory behaviour of the corre-
sponding solutions.

and become degenerate in the limit 𝑘2𝜎̃ → 0. Finally, the vectorial growth factor
characterising the linear decay of the vorticity field is given by 𝑠v = −1/2.

While the growth factors 𝑠∗∗
d and 𝑠v are constant, the other three are determined

by the roots of the cubic polynomial in the square brackets of equation (6.19). From
the discriminant criterion one finds that the roots are all real for 𝑘2𝜎̃ ≲ 0.051 while
for larger values two roots are complex conjugate. The real and imaginary parts of
the growth factors are displayed in figure 6.1 as a function of 𝑘2𝜎̃.

The complex conjugate roots are identified as being the decaying mode growth
factors 𝑠d and 𝑠∗

d which have a negative real part for all 𝑘2𝜎̃ and in the limit 𝑘2𝜎̃ → ∞
approach Re(𝑠d) → −7/12 while the imaginary part is diverging. The real root is
the growing mode growth factor 𝑠g which features a zero-crossing at 𝑘2𝜎̃ = 3/2 and
stays negative for larger values while approaching 𝑠g → −1/3 in the limit 𝑘2𝜎̃ → ∞.

The zero-crossing of 𝑠g is related to the free-streaming wave number [12]

𝑘fs(𝜂) ≔ √ 3
2 𝜎̃(𝜂)

, (6.22)

above which all growth factors are negative. The free-streaming wave number sets
the length scale below which the growth of structure is damped or even completely
stalled due to the free-streaming of dark matter particles. From a formal point of
view the mechanism is very similar to the Jeans instability [153] that describes the
gravitational collapse of a gas cloud. In this case the thermal pressure is responsible
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6.2 Hartree approximation

for the suppression of small-scale structures and the same formula (6.22) applies for
the Jeans wave number, where the velocity dispersion mean field is replaced by the
speed of sound squared.

To fully characterise the growth properties of the solutions, one also needs to study
the eigenvectors of the matrix −𝛺𝑎𝑏 + 𝛴H

𝑎𝑏. The only one relevant in the following
is the growing mode eigenvector which is given by

𝑤g(𝑘2𝜎̃) = (1 , 1 , 0 , 0 , 0) + O(𝑘2𝜎̃) , (6.23)

and implies the standard growing mode relation 𝛿L = −𝜃L/(𝑓H) for the single-stream
approximation. In what follows, it is assumed that the fluctuations deep within the
matter dominated era of the Universe are sufficiently well described by the growing
mode of the single-stream approximation. With this assumption the initial power
spectrum is chosen to be

𝑃 in
𝑎𝑏(𝑘) = 𝑤g,𝑎(0) 𝑤g,𝑏(0) 𝑃 in

𝛿𝛿(𝑘) , (6.24)

implying the absence of initial velocity dispersion and vorticity fluctuations.
While the initial power spectrum (6.24) corresponds to cold initial conditions,

one could also study an initial power spectrum build out of the full scale-dependent
eigenvector 𝑤g,𝑏(𝑘2𝜎̃in) by specifying an initial velocity dispersion mean field 𝜎̃in.
This would introduce a non-trivial suppression in the ultraviolet of the initial power
spectrum as is typical for warm dark matter models. In the following investigations it
is chosen to dynamically generate the suppression associated with velocity dispersion
degrees of freedom starting from cold initial conditions for the fluctuations together
with a non-vanishing mean field 𝜎̃in.

To study the response of fluctuations, it is convenient to define the reduced prop-
agator

𝐺R
𝑎 (𝜂, 𝑘) ≔ 𝐺R

𝑎𝑏(𝜂, 𝜂in, 𝑘) 𝑤g,𝑎(0) , (6.25)

quantifying the mean linear response of initial conditions that are proportional to
𝑤g,𝑎(0). Since only the density contrast and velocity-divergence fields are initialised,
the velocity dispersion response is dynamically generated. The vectorial mode is
absent at all times since it cannot be sourced in the Hartree approximation.

6.2.2 Linear mean field
Before turning to the full Hartree approximation it is useful to study an approxi-
mation that can be solved with analytical methods. To this end, the source term 𝑄
is neglected such that the mean field evolves linearly and decays due to the Hubble
expansion,

𝜎̃(𝜂) = 𝜎̃in e−(𝜂−𝜂in) . (6.26)

The propagator equation (6.14) can then be reduced to a third-order differential
equation for the reduced density contrast propagator,

𝜕3
𝜂𝐺R

1 (𝜂, 𝑘) + 3
2 𝜕2

𝜂𝐺R
1 (𝜂, 𝑘) + [3𝑘2𝜎̃(𝜂) − 1]𝜕𝜂𝐺R

1 (𝜂, 𝑘) − 3
2 𝐺R

1 (𝜂, 𝑘) = 0 . (6.27)

77



6 Truncated Dyson–Schwinger equations

0.05 0.50 5 50
10-4

10-3

10-2

10-1

1

101

102

Figure 6.2: Hypergeometric functions appearing in the solutions (6.28) as a function
of 𝑘2𝜎̃. The growing mode (solid curve) is enhanced at non-vanishing
𝑘2𝜎̃, whereas the decaying modes (dashed and dotted curves) are sup-
pressed and oscillate with increasing frequency and decaying amplitude.
The latter behaviour can be directly attributed to the corresponding
growth factors displayed in figure 6.1.

The general solution to this equation is build out of the three independent solutions

𝐹g(𝜂, 𝑘) = e𝜂
1𝐹2(−1; −1, −3

2 ; −3𝑘2𝜎̃) ,

𝐹d(𝜂, 𝑘) = e− 3
2 𝜂

1𝐹2(3
2 ; 3

2 , 7
2 ; −3𝑘2𝜎̃) ,

𝐹 ∗
d (𝜂, 𝑘) = e−𝜂

1𝐹2(1; 1
2 , 3; −3𝑘2𝜎̃) ,

(6.28)

where 1𝐹2 are generalised hypergeometric functions that are displayed in figure 6.2.
The two solutions 𝐹g and 𝐹d are related to the growing and decaying modes with
growth factors (6.20) while the solution 𝐹 ∗

d is the decaying mode associated with
the growth factors (6.21). In the limit 𝑘2𝜎̃ → 0 the hypergeometric functions ap-
proach unity and one obtains the solutions related to the first three terms of the
linear propagator (6.16). Notice, that going to larger 𝜎̃ at constant 𝑘2 implies going
backwards in time in this approximation since the mean field (6.26) is decaying in
time.

The growing mode is enhanced at non-vanishing 𝑘2𝜎̃, whereas the decaying modes
are damped due to oscillations of increasing frequency and decaying amplitude. The
suppression of the decaying modes can be traced back to the increasing imaginary
part and decreasing real part of the growth factors 𝑠d and 𝑠∗

d displayed in figure 6.1.
On the other hand the enhancement of the growing mode cannot be explained solely
by the growth factor 𝑠g, but depends on information encoded in the corresponding
eigenvector as well. Nonetheless, the growing mode does not feature any oscillations
which is due to the fact that the growth factor 𝑠g is always real.
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6.2 Hartree approximation

6.2.3 Sourced mean field

Restoring the source term 𝑄 and the dependence on 𝛺m/𝑓2, qualitatively does not
change the influence of the mean field on the fluctuating fields. What does change is
that the back-reaction of fluctuations now sources the mean field and as such they
are coupled. Since the results from the last section suggest that all fluctuation power
spectra are suppressed at wave numbers larger than 𝑘fs in the presence of a mean
field, one expects the dominant contributions to the source term (6.10) to be from
wave numbers below the free-streaming wave number.

Since the mean field and the fluctuations are coupled in the Hartree approxima-
tion, they need to be solved with numerical methods. The wave number interpolation
is done over finite elements which naturally introduce an infrared and ultraviolet cut-
off. The solutions are computed with 𝑁𝑘 = 500 interpolation points, an infrared
cut-off 𝑘min = 10−5 ℎ/Mpc and an ultraviolet cut-off corresponding to the initial
free-streaming wave number of the dark matter model. It has been checked that
the results do not vary to much when increasing the ultraviolet cut-off confirming
the conjecture that the dominant contributions to the source term 𝑄 are from wave
numbers smaller than 𝑘fs.

For a numerical solution the initial power spectrum (6.24) and an initial mean field
𝜎̃in need to be supplied. The initial density contrast power spectrum is generated
deep within the matter dominated era of the Universe at redshift 𝑧in = 99 and on
scales 10−5 ℎ/Mpc ≲ 𝑘 ≲ 20 ℎ/Mpc for a 𝛬CDM cosmology with parameters from
Planck 2015 [161] using the class code [157] and extrapolated into the ultraviolet
using the fitting formula 𝛼 log(𝛽𝑘)2𝑘𝑛s−4 with parameters 𝛼 and 𝛽.

Typical values for the velocity dispersion mean field of non-relativistic dark mat-
ter that decouples thermally in the early Universe are roughly of the order of
𝜎̄eq ∼ 105 km2/s2 for sterile neutrinos with a mass of 1 keV and 𝜎̄eq ∼ 10−7 km2/s2

for weakly interacting massive particles with a mass of 100 GeV at radiation-matter
equality [154]. These values can be extrapolated to 𝑧in = 99 using the linear de-
cay due to the Hubble expansion, at least as long as the source term can be ne-
glected. Since the evolution is throughout the matter dominated era of the Uni-
verse, one can safely assume an Einstein–de Sitter cosmology such that 𝜎̄ ∝ 𝑎−2.
Computing the radiation-matter equality using the cosmic microwave background
temperature 𝑇CMB ≈ 2.73 K [158] one obtains the values 𝜎̄in ∼ 102 km2/s2 and
𝜎̄in ∼ 10−10 km2/s2 for sterile neutrinos and weakly interacting massive particles,
respectively.

To cover different models, numerical solutions of the evolution equations are com-
puted for various initial values of the velocity dispersion mean field ranging from
𝜎̄in = 10−10 km2/s2 to 𝜎̄in = 105 km2/s2. Four of these numerical solutions for the
velocity dispersion mean field are shown in figure 6.3.

For all initial conditions studied the mean fields follow the linear decay due to
the Hubble expansion initially, justifying the extrapolation from radiation-matter
equality up to redshift 𝑧in = 99. In the subsequent evolution the source term (6.10)
grows to the point where it leads to a turnover from decay to growth of the mean
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Figure 6.3: Time evolution of the velocity dispersion mean field as a function of the
scale factor. Solutions which are sourced by correlations (solid curves)
grow in time compared to those decaying linearly (dotted curves) due
to the Hubble expansion. Smaller initial values correspond to larger
free-streaming wave numbers and lead to a stronger late-time growth.

field. The time of this turnover depends on the warmness of the dark matter model
and happens earlier for colder and later for warmer models. This is attributed to the
free-streaming wave number which is much larger for the colder models and in turn
allows correlations from smaller scales to contribute to 𝑄. This is most notable for
the coldest candidate investigated here which undergoes a phase of extreme growth
for 𝑧 ≲ 0.5 to the point where it seems that the back-reaction of fluctuations blows
up the mean field [7, 8].

For a complete picture, the power spectra (6.15) are needed which in the Hartree
approximation are directly related to the reduced propagators (6.25). Numerical
solutions of the latter are shown in figure 6.4 at redshift 𝑧 = 0 and for the initial
conditions 𝜎̄in = 1 km2/s2 and 𝜎̄in = 10−5 km2/s2. It is emphasised that the
abscissas do not coincide for the two dark matter models since these start from
different initial mean fields.

The reduced density and velocity-divergence propagators are in the growing mode
of the single-stream approximation for small 𝑘2𝜎̃in while the reduced velocity dis-
persion propagator has a near to power law scaling in 𝑘2𝜎̃in. For larger 𝑘2𝜎̃in the
reduced propagators exhibit oscillations with a decaying amplitude for the density
and velocity-divergence and a near to constant amplitude for the velocity dispersion.
These appear at scales that are related to the (time-dependent) free-streaming wave
number which in turn is set by the mean field. The colder dark matter model has a
ratio of 𝜎̃/𝜎̃in ≈ 9.0 ⋅ 105 compared to the warmer model with 𝜎̃/𝜎̃in ≈ 11 at redshift
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Figure 6.4: The reduced density contrast (blue curves), velocity-divergence (red
curves) and the isotropic (yellow curves) and anisotropic (violet curves)
velocity dispersion propagators normalised to the standard growing mode
as a function of 𝑘2𝜎̃in. They are shown for the two initial velocity dis-
persion mean fields 1 km2/s2 (solid curves) and 10−5 km2/s2 (dashed
curves). The damping scale responsible for the oscillations is set by the
corresponding mean field shown in figure 6.3 and is at much smaller 𝑘2𝜎̃in

for the colder dark matter model due to its stronger growth in time.
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6 Truncated Dyson–Schwinger equations

𝑧 = 0.3 Correspondingly, the scale of oscillatory behaviour is at much smaller 𝑘2𝜎̃in

for the colder dark matter model.
To conclude this section the most important insights from the Hartree approxi-

mation are summarised as follows:

• The back-reaction of velocity-velocity dispersion cross-correlations leads to an
enhancement the velocity dispersion mean field.

• Fluctuations evolving in the presence of the velocity dispersion mean field are
damped on scales smaller than the free-streaming length.

6.3 Hartree–Fock approximation
Having studied the Hartree approximation, one can now reinstall the Fock self-
energies (6.12) and (6.13) to solve for the full one-loop self-consistent Hartree–Fock
approximation. Since in this case the non-local effect of correlations is included, the
full system of equations (6.5), (6.6) and (6.7) needs to be solved simultaneously.

6.3.1 Large external wave number limit
Before turning to the full numerical solutions, it is useful to study a limit in which
at least some analytical insight can be obtained. In the limit of large external wave
numbers the propagator equation can be much simplified and solved in an approxi-
mation without the mean field. This can be seen as a complementary investigation
to chapter 5, where the same limit was studied with the functional renormalisation
group.

The inclusion of the retarded Fock self-energy 𝛴F
𝑎𝑏 introduces a new scale depen-

dence in the propagator due to the non-linear coupling of modes. As long as the
velocity dispersion degrees of freedom are comparably small, one expects the domi-
nant non-linear contribution to be due to the sweeping effect studied in chapter 5. To
isolate this contribution and investigate how it appears in the Hartree–Fock approx-
imation, the large external wave number limit is studied in the absence of velocity
dispersion degrees of freedom.

In the limit 𝑘 → ∞ the leading-order contribution to the retarded Fock self-energy
(6.12) is calculated to be

𝛴F
𝑎𝑏(𝜂, 𝜂′, 𝑘) ∼ −𝑘2𝐽(𝜂, 𝜂′)2 𝐺R

𝑎𝑏(𝜂, 𝜂′, 𝑘) , (6.29)

where
𝐽(𝜂, 𝜂′)2 ≔ 1

6𝜋2 ∫
∞

0
d𝑞 [𝑃22(𝜂, 𝜂′, 𝑞) + 2𝑃55(𝜂, 𝜂′, 𝑞)] . (6.30)

Notice that in the equal-time limit 𝐽(𝜂, 𝜂)2 is equal to the root mean square velocity
𝐶𝑢𝑖𝑢𝑖

(𝜂, 𝜂, 0)/3 up to a factor of (𝑓H)2. Since 𝐽(𝜂, 𝜂′) depends on the full velocity
3Notice that the physical velocity dispersion mean field 𝜎̄ is displayed in figure 6.3 while the

free-streaming wave number is set by the redefined mean field 𝜎̃ = 𝜎̄/(𝑓H)2.
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power spectrum, the general solution involves solving the power spectrum equation
(6.7). To avoid this complication, the full velocity power spectrum is approximated
by the linear one. In this case one obtains

𝐽(𝜂, 𝜂′)2 = e𝜂−𝜂in e𝜂′−𝜂in 𝜎2
v , (6.31)

where
𝜎2

v ≔ 1
6𝜋2 ∫

∞

0
d𝑞 𝑃 in

22(𝑞) , (6.32)

is often interpreted as a one-dimensional velocity dispersion in the sense of a mean
square velocity. The propagator equation (6.6) then reduces to

[𝜕𝜂𝛿𝑎𝑏 + 𝛺𝑎𝑏] 𝐺R
𝑏𝑐(𝜂, 𝜂′, 𝑘) + (𝑘𝜎v)2 ∫

𝜂

𝜂′

d𝜉 e𝜂+𝜉−2𝜂in 𝐺R
𝑎𝑏(𝜂, 𝜉, 𝑘) 𝐺R

𝑏𝑐(𝜉, 𝜂′, 𝑘)

= 𝛿𝑎𝑐𝛿(𝜂 − 𝜂′) .
(6.33)

Before investigating the solutions to this equation, the connection to the large
external wave number limit of the functional renormalisation group studied in chap-
ter 5 is drawn. As was already pointed out, the above limit assumes the absence
of velocity dispersion degrees of freedom which would contribute terms to the self-
energy (6.29) that dominate over those of order 𝑘2. This was completely analogous
in the limit of the functional renormalisation group, where velocity dispersion de-
grees of freedom were assumed to be absent. Further, 𝐽(𝜂, 𝜂′) in general involves the
full velocity power spectrum very similar to the function (5.17). Finally, to solve the
two-point function flow equation and obtain an explicit solution for the propagator,
a similar approximation in terms of the linear power spectrum was assumed. In the
current notation the propagator obtained from the functional renormalisation group
calculation reads

𝐺R
𝑎𝑏(𝜂, 𝜂′, 𝑘) = 𝑔R

𝑎𝑏(𝜂, 𝜂′) exp(−1
2 𝑘2𝜎2

v[e𝜂−𝜂in − e𝜂′−𝜂in]2) . (6.34)

Returning to equation (6.33), one can studied the 1PI one-loop approximation
which is given by evaluating the propagator stemming from the self-energy (6.29)
at linear level. The resulting equation is linear in the full propagator and can be
solved by Laplace transforms to give [28]

𝐺R
𝑎𝑏(𝜂, 𝜂′, 𝑘) = 𝑔R

𝑎𝑏(𝜂, 𝜂′) cos(𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in]) . (6.35)

Similarly, equation (6.33) can actually also be solved via Laplace transforms in the
case where both full propagators are kept and reads [28,31]

𝐺R
𝑎𝑏(𝜂, 𝜂′, 𝑘) = 𝑔R

𝑎𝑏(𝜂, 𝜂′)
𝐽1(2𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in])

𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in]
, (6.36)

where 𝐽1 is the first-order Bessel function of first kind.4

4The Laplace transform of the two propagators (6.35) and (6.36) is studied in detail in chapter 7.
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Figure 6.5: The propagators (6.34), (6.35) and (6.36) normalised to the linear prop-
agator as a function of 𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in]. While the functional renor-
malisation group (FRG) propagator (solid curve) shows a Gaussian sup-
pression, the Hartree–Fock (HF) approximation (dashed curve) and the
1PI one-loop approximation (dotted curve) feature oscillations related
to the different partial resummations of the perturbative series.

The large external wave number limit propagators (6.34), (6.35) and (6.36) can all
be written as the linear retarded propagator multiplied by a correction factor that
only depends on the dimensionless combination 𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in] and are shown
in figure 6.5.

The propagator obtained from the functional renormalisation group calculation
(6.34) is suppressed by a Gaussian factor while the 1PI one-loop and Hartree–Fock
approximation propagators feature oscillations which in the former case are sup-
pressed at larger 𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in]. The characteristic scale of suppression re-
spectively the frequency of the oscillations is determined by the non-linear wave
number

𝑘nl(𝜂) ≔ 1
𝜎v e𝜂−𝜂in

, (6.37)

or more precisely by the difference of the inverse of two non-linear wave numbers at
the two times of the propagator.

The difference of the propagators is due to the different resummation schemes
underlying the approximations in which they were derived. While the three methods
are all non-perturbative in the sense that they resum the perturbative series to
infinite order, they correspond to different infinite partial resummations. This is
best understood in the language of renormalised perturbation theory [18], where the
propagator (6.34) can be obtained as a systematic resummation of the perturbative
series.
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6.3 Hartree–Fock approximation

Loop order 1 2 3 4 5 … ℓ

1PI 1-loop 1 1 1 1 1 … 1

HF approx. 1 2 5 14 42 … (2ℓ)!/((ℓ + 1)!ℓ!)

FRG 1 3 15 105 945 … (2ℓ − 1)!!

Table 6.1: Number of diagrams included at loop order ℓ in the different resumma-
tion schemes. While the 1PI one-loop approximation captures only a
single diagram at each loop order, the Hartree–Fock approximation im-
proves on this, but captures only a subset those diagrams resummed in
the functional renormalisation group (FRG).

The Gaussian suppression factor entering the propagator (6.34) can be written as
the series

e− 1
2 𝑋2 =

∞
∑
ℓ=0

(2ℓ − 1)!!
(2ℓ)!

(−𝑋2)ℓ , (6.38)

where 𝑋 ≔ 𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in] and !! is the double factorial. Here, (2ℓ − 1)!! are
the number of diagrams contributing to the propagator at perturbative loop order
ℓ while the factor 1/(2ℓ)! is due to all time integrations within a diagram [19]. It is
emphasised that these are not all diagrams, but rather only a subclass of diagrams
that are assumed to be dominant in the large external wave number limit. This
is also clear from the functional renormalisation group calculation performed in
chapter 5, where the propagator (6.34) was obtained in an approximation. As such
it corresponds to an infinite partial resummation of the perturbative series.

Applying the same expansion to the propagators (6.35) and (6.36), one can find
the number of diagrams contributing at each loop order. For the 1PI one-loop
approximation the expansion of the cosine reads

cos(𝑋) =
∞

∑
ℓ=0

1
(2ℓ)!

(−𝑋2)ℓ , (6.39)

while for the Hartree–Fock approximation one finds

𝐽1(2𝑋)
𝑋

=
∞

∑
ℓ=0

[ (2ℓ)!
(ℓ + 1)!ℓ!

] 1
(2ℓ)!

(−𝑋2)ℓ . (6.40)

The number of diagrams contributing at each loop order to the different resummation
schemes is summarised in table 6.1. It is noteworthy that in the direct-interaction
approximation similar results for the propagator hold in turbulence [155,156].

The different partial resummations can also be obtained from topological argu-
ments. Consider the contributions to the propagator contained in the resummation
of renormalised perturbation theory up to two-loop order. At zero and one-loop
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order there is only a single diagram which is captured by all resummation schemes.
At two-loop order though there are the three diagrams

(1)
+

(2)
+

(3)
. (6.41)

While the 1PI one-loop approximation can only capture diagram (1) topologically,
the Hartree–Fock approximation contains the diagrams (1) and (2) due to its self-
consistent one-loop structure. Finally, the functional renormalisation group calcu-
lation of chapter 5 captures all three diagrams (1), (2) and (3).

Based on the large external wave number limit two approximation schemes inter-
polating between the perturbative small wave number and non-perturbative large
wave number sector haven been developed. In renormalised perturbation theory the
propagator (6.34) is used for the interpolation [19] while in the direct-interaction
approximation the propagator (6.36) is utilised [31]. In the next section the numer-
ical solution of the full propagator equation (6.6) is compared to these interpolation
schemes which in the following are referred to as ‘CS’ and ‘TH’ approximations,
respectively.

6.3.2 Numerical solutions

In this section the full system of equations (6.5), (6.6) and (6.7) is solved with
numerical methods in the Hartree–Fock approximation. The equations are solved
in the single-stream approximation as well as for the field content (6.1) and are
compared to 𝑁-body simulations that are discussed in the following.

𝑵-body simulations

Since 𝑁-body simulations can only simulate a representative finite region of the
Universe, one typically has to decide whether one wants to accurately reproduce
large-scale structures, requiring a fairly large simulation volume, or is interested
in resolving small-scale physics, which requires a rather high number density of
particles. To test the performance of the Hartree–Fock approximation, numerical
solutions are compared to the Horizon Run 2 (HR2) 𝑁-body simulation [166] featur-
ing a very large simulation volume as well as to a 𝑁-body simulation of Buehlmann
& Hahn (BH19) [169] featuring a comparably high number density of particles. The
cosmological parameters and codes used for the simulations as well as the number
of particles 𝑁p, the box side length 𝐿box and the initial redshift 𝑧in are summarised
in table 6.2.

Three snapshots of the BH19 𝑁-body simulation [169] were kindly provided by
the authors M. Buehlmann and O. Hahn. The datasets contain estimates for the
density, velocity and isotropic velocity dispersion interpolated on a 10243-mesh at
redshifts 𝑧 = 2.165, 𝑧 = 0.994 and 𝑧 = 0. The density field was estimated using the

86



6.3 Hartree–Fock approximation

Simulation Cosmology Code 𝑁p 𝐿box [Mpc/ℎ] 𝑧in

HR2 [166] WMAP5 [159] gotpm [163] 60003 7200 32

BH19 [169] Planck 2015 [161] gadget-2 [164] 10243 300 99

Table 6.2: Details of the 𝑁-body simulations used as comparison to the numerical
solutions of the Hartree–Fock approximation.

cloud-in-cell deposition algorithm [170] while the velocity and velocity dispersion
fields were obtained from the Lagrangian tessellation method [171,172].

To derive an estimate for the power spectra, the fields are discretely Fourier trans-
formed on a three-dimensional grid with fundamental wave number 𝑘f ≔ 2𝜋/𝐿box
and 𝑁grid = 1024 grid points per dimension. Further, the density field is deconvolved
using the cloud-in-cell window function [173]

𝑊(𝒏) =
3

∏
𝑖=1

sinc( 𝜋𝑛𝑖
𝑁grid

)
2

, (6.42)

where 𝑛𝑖 ∈ {1, … , 𝑁grid}. The power spectrum estimate ̂𝑃𝑎𝑏(𝑘) is then obtained
from the spatial average of two fields over the simulation volume and an angular
average of modes within spherical shells of thickness 𝑘f and radius 𝑘 = 𝑛𝑘f for
𝑛 ∈ {1, … , 𝑁grid}. Finally, the statistical error is estimated as [174]

∆ ̂𝑃𝑎𝑏(𝑘) ≔ 1√
2𝜋𝑛

[ ̂𝑃𝑎𝑏(𝑘) + ( 𝐿box
𝑁grid

)
3

] , (6.43)

where the first term on the right-hand side is the sample variance while the second
term is the Poisson shot noise.

It is emphasised that the power spectrum and its error estimate should be taken
with caution for small wave numbers due to systematic uncertainties related to the
relatively small box size of the BH19 𝑁-body simulation.

Details of the numerical solutions

To compare the Hartree–Fock approximation to the HR2 and BH19 𝑁-body sim-
ulations, two sets of numerical solutions are computed. These account for the dif-
ferent cosmological parameters and initial redshifts listed in table 6.2. The ini-
tial power spectrum is generated by the class code [157] on scales 10−5 ℎ/Mpc
≲ 𝑘 ≲ 20 ℎ/Mpc and extrapolated into the ultraviolet using the fitting formula
𝛼 log(𝛽𝑘)2𝑘𝑛s−4. The wave number interpolation is done on a grid with an infrared
cut-off 𝑘min = 𝑘f and an ultraviolet cut-off 𝑘max = 𝑛𝑘Ny equal to a multiple of the
Nyquist wave number 𝑘Ny ≔ 𝜋𝑁grid/𝐿box. For the HR2 simulation these are given
by 𝑘f ≈ 8.7 ⋅ 10−4 ℎ/Mpc and 𝑘Ny ≈ 2.6 ℎ/Mpc while for the BH19 simulation they
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are 𝑘f ≈ 2.1 ⋅ 10−2 ℎ/Mpc and 𝑘Ny ≈ 11 ℎ/Mpc. More specifically, when comparing
to the HR2 simulation the cut-off is chosen as 𝑘max ≈ 5.2 ⋅ 10−2 ℎ/Mpc while when
comparing to the BH19 simulation the cut-off is varied between 𝑘max ≈ 11 ℎ/Mpc
and 𝑘max ≈ 43 ℎ/Mpc.5

In the following, numerical solutions are computed in the single-stream approxi-
mation as well as for the field content (6.1). In the former case a wave number grid
with 𝑁𝑘 = 100 interpolation points is chosen and in the latter case 𝑁𝑘 = 50. While
it would be desirable to increase the number of interpolation points, it consider-
ably slows down the solving algorithm since the arrays storing the Fock self-energies
(6.12) and (6.13) scale cubic in 𝑁𝑘.6

Single-stream approximation

To gain more insight into the general properties of the Hartree–Fock approximation,
the system of equations (6.5), (6.6) and (6.7) is first solved in the single-stream
approximation where the field content (6.1) reduces to the density and velocity-
divergence only. The density contrast propagator and power spectrum have also been
studied in the single-stream approximation with the two-particle irreducible method
[27–30] and in closure theory [31–33] which yield the same evolution equations as the
Hartree–Fock approximation. In the following, the focus lies in identifying how well
the Hartree–Fock approximation captures non-linearities as well as to find where the
single-stream approximation fails.

Propagator: In figure 6.6 the density contrast and velocity-divergence reduced
propagators are shown for 𝑘 ≈ 2 ℎ/Mpc (upper panel) and 𝑧 = 0 (lower panel).
The numerical solution of the Hartree–Fock approximation is near to identical with
the TH approximation. A slight deviation for wave numbers 𝑘 ≳ 𝑘nl(𝜂) is observed,
which is not to surprising since the TH approximation interpolates between the
small and large wave number sector. As was already discussed in section 6.3.1, the
observed oscillations are not associated with physical phenomena but rather with
the partial resummation of the full perturbative series.

Density contrast equal-time auto-spectrum: In figure 6.7 the dimensionless den-
sity contrast equal-time auto-spectrum normalised to the linear one is shown at
redshifts 𝑧 = 2 (upper panel) and 𝑧 = 0 (lower panel). At large wave numbers, the
Hartree–Fock approximation does not overestimate the 𝑁-body power spectrum as
bad as the standard perturbation theory one-loop prediction. While the deviation
from the 𝑁-body power spectrum is fairly small at redshift 𝑧 = 2 it grows towards

5While numerical solutions computed in the single-stream approximation are percent-accurate for
𝑘max ≳ 5 ℎ/Mpc [31], this changes dramatically when including velocity dispersion degrees of
freedom since the mean field source term (6.10) is sensitive to small-scale physics.

6The self-energy arrays also scale with the sixth power in the field content which is the reason why
the vector and tensor velocity dispersion modes were neglected.
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Figure 6.6: Density contrast (blue curves) and velocity-divergence (red curves) re-
duced propagators for 𝑘 ≈ 2 ℎ/Mpc (upper panel) and 𝑧 = 0 (lower
panel). The numerical solution of the Hartree–Fock (HF) approximation
(solid curves) is compared to the TH (dashed curves) and CS (dotted
curves) approximation. The Hartree–Fock and TH approximations are
near to identical since the latter is based on the large wave number limit
of the former.
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Figure 6.7: Dimensionless density contrast equal-time auto-spectrum normalised to
the linear one (black dotted curves) at redshifts 𝑧 = 2 (upper panel)
and 𝑧 = 0 (lower panel). The numerical solution of the Hartree–Fock
(HF) approximation (blue solid curves) is compared to the standard
perturbation theory (SPT) one-loop prediction (black dashed curves)
and data from the HR2 𝑁-body simulation (red solid curves). While
the Hartree–Fock approximation shows better convergence properties at
larger wave numbers, it overestimates the power spectrum at smaller
wave numbers.
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Figure 6.8: Dimensionless density contrast equal-time auto-spectrum at redshift
𝑧 = 0. The Hartree–Fock approximation captures the general shape of
the non-linear power spectrum obtained from 𝑁-body simulations much
better than the standard perturbation theory one-loop predication.

redshift 𝑧 = 0. Especially for wave numbers 𝑘 ≲ 0.2 ℎ/Mpc the Hartree–Fock ap-
proximation seems to follow the standard perturbation theory one-loop prediction.
Since the full 1PI three-point functions are set to their bare form in the Hartree–Fock
approximation, it is likely that vertex corrections are needed to accurately capture
the mildly non-linear regime.

In figure 6.8 the dimensionless density contrast equal-time auto-spectrum is shown
for a larger range of wave numbers at redshift 𝑧 = 0. The Hartree–Fock approxima-
tion shows a much better convergence towards the 𝑁-body power spectrum compared
to the standard perturbation theory one-loop prediction that badly overestimates
the power spectrum. The drop of the 𝑁-body power spectrum at wave numbers near
the Nyquist wave number is due to finite box size effects and should not be trusted.

Velocity-divergence equal-time auto-spectrum: In figure 6.9 the dimensionless
density contrast (upper panel) and velocity-divergence (lower panel) equal-time
auto-spectra are shown at redshift 𝑧 = 0. The density contrast power spectrum
is shown for the sake of completeness and similar to the one shown in figure 6.8 but
computed with different cosmological parameters and cut-offs since it is compared
with the BH19 𝑁-body simulation. The better performance of the standard pertur-
bation theory one-loop predication is attributed to the missing of large-scale modes
due to the comparably large infrared cut-off 𝑘min ≈ 2.1 ⋅ 10−2 ℎ/Mpc, suppressing
the overestimation observed in figure 6.8.

Neither the Hartree–Fock nor the standard perturbation theory one-loop pred-
ication can capture the sharp drop of the velocity-divergence power spectrum at
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Figure 6.9: Dimensionless density contrast (upper panel) and velocity-divergence
(lower panel) equal-time auto-spectrum at redshift 𝑧 = 0. The numerical
solution of the Hartree–Fock (HF) approximation (blue solid curves) is
compared to the standard perturbation theory (SPT) one-loop predic-
tion (black dashed curves) and data from the BH19 𝑁-body simulation
(red solid curve). The Hartree–Fock approximation badly overestimates
the 𝑁-body velocity-divergence power spectrum even in the small wave
number regime. This is due to the fact that the drop of the velocity-
divergence power spectrum is associated with effects beyond the single-
stream approximation.
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small scales. Even worse, the Hartree–Fock approximation even fails to reproduce
the power spectrum at relatively small wave numbers where the standard perturba-
tion theory one-loop predication can capture at least the onset of the suppression.
Indeed, the drop is associated with the energy transfer into vorticity modes [168]
and thus beyond the single-stream approximation. This is discussed in detail when
studying the Hartree–Fock approximation including velocity dispersion degrees of
freedom.

Unequal-time auto-spectra and equal-time cross-spectra: In figure 6.9 the di-
mensionless density contrast unequal-time auto-spectrum (upper panel) at redshifts
𝑧 = 0 and 𝑧′ = 2.165 as well as the dimensionless velocity-divergence-density con-
trast equal-time cross-spectrum (lower panel) at redshift 𝑧 = 0 are shown. The oscil-
latory suppression of the unequal-time power spectrum is qualitatively captured by
the Hartree–Fock approximation due to the non-perturbative self-consistent resum-
mation of the propagators contrary to the standard perturbation theory one-loop
prediction. While the 𝑁-body power spectrum seems to indicate an almost constant
amplitude, the Hartree–Fock approximation features a decaying amplitude which is
directly related to the in amplitude decaying oscillations shown in figure 6.6.

More interesting and important for the investigations that include velocity disper-
sion degrees of freedom is the cross-spectrum. The 𝑁-body power spectrum stays
close to the linear prediction up to 𝑘 ≈ 1.0 ℎ/Mpc above which a sign change is
observed. This is interpreted as a turnover from matter inflow to outflow and as-
sociated with shell-crossing [167, 169]. Naturally, this cannot be captured in the
single-stream approximation and explains why the Hartree–Fock approximation is
unable to capture the 𝑁-body power spectrum.

Summary:

• The propagators are to very good approximation described by the large wave
number limit (6.36), at least if the initial and final times are sufficiently far
apart.

• The density contrast equal-time auto-spectrum converges well at small scales
but fails to accurately capture the physics at mildly non-linear scales. This is
most likely due to neglecting corrections to the bare vertex.

• The drop of the velocity-divergence equal-time auto-spectrum cannot be cap-
tured since it is associated to the energy transfer into vorticity modes.

• The oscillatory suppression of unequal-time auto-spectra is qualitatively cap-
tured due to the non-perturbative resummation of the propagators.

• The sign change in the velocity-divergence-density contrast equal-time cross-
spectrum cannot be captured since it is associated with shell-crossing.
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Figure 6.10: Dimensionless density contrast unequal-time auto-spectrum (upper
panel) at redshifts 𝑧 = 0 and 𝑧′ = 2.165 as well as velocity-divergence-
density contrast equal-time cross-power spectrum (lower panel) at red-
shift 𝑧 = 0. The numerical solution of the Hartree–Fock (HF) approx-
imation (blue solid curves) is compared to the standard perturbation
theory (SPT) one-loop prediction (black dashed curves) and data from
the BH19 𝑁-body simulation (red solid curve). The oscillatory suppres-
sion is of the unequal-time power spectrum is qualitatively captured by
the Hartree–Fock approximation due to the non-perturabtive resumma-
tion of propagators. The sign change observed in the equal-time cross-
spectrum cannot be captured since it is associated with shell-crossing.
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Including velocity dispersion degrees of freedom

Having seen the limitations of the single-stream approximation in the last section,
the Hartree–Fock approximation is now studied for the field content (6.1) including
the vorticity and velocity dispersion fields. In this case, the free-streaming of dark
matter seen in the Hartree approximation as well as the non-linear coupling of
modes encoded in the Fock self-energies contribute. To take both effects correctly
into account, the two scales associated with them, namely the free-streaming wave
number 𝑘fs and the non-linear wave number 𝑘nl, need to be resolved. Numerically
this is rather challenging for cold dark matter candidates since these scales are
separated by several orders of magnitudes. Since the propagators are suppressed
on small scales the adaptive Runge–Kutta method takes smaller times steps as one
solves at later times. The larger the ultraviolet cut-off wave number is, the more
time steps are necessary to keep the errors under control. To obtain results in a
sensible amount of time, but at the same time capture the effects of non-vanishing
velocity dispersion in the following rather warm dark matter candidates are studied.
More specifically the initial velocity dispersion mean field is taken to be between
𝜎̄in = 102 km2/s2 and 𝜎̄in = 105 km2/s2. The ultraviolet cut-off is varied between
𝑘max = 𝑘Ny and 𝑘max = 4𝑘Ny to see the effect of including smaller scales.

Velocity dispersion mean field: In figure 6.11 the velocity dispersion mean field
for different ultraviolet cut-offs is shown. Here the different initial conditions are
colour-coded which is also used in the figures following to distinguish the different
solutions. All numerical solution have been performed for an ultraviolet cut-off
𝑘max = 𝑘Ny and 𝑘max = 2𝑘Ny as well as for 𝑘max = 4𝑘Ny for the coldest candidate
studied here, with an initial velocity dispersion mean field of 𝜎̄in = 102 km2/s2. As
can be seen, as long as the free-streaming wave number is below or of the order
of the ultraviolet cut-off the numerical solutions are well converged and insensitive
to a larger ultraviolet cut-off. This is best seen for the warmest candidate with
an initial mean field of 𝜎̄in = 105 km2/s2 which has a growing free-streaming wave
number starting at 𝑘fs ≈ 2.1 ℎ/Mpc at 𝑧 = 99 to 𝑘fs ≈ 6.2 ℎ/Mpc at 𝑧 = 0,
both well below the ultraviolet cut-off. One can clearly observer how colder initial
conditions naturally need a larger ultraviolet cut-off to capture the small-scale power
which sources the growth of the mean field. Most drastically this is seen for the
coldest candidate where the free-streaming wave number at the point of turnover
from decay to growth is roughly of the order 𝑘fs ≈ 210 ℎ/Mpc which is way above
the largest ultraviolet cut-off 𝑘max = 4𝑘Ny ≈ 43 ℎ/Mpc used here. This naturally
extends to colder candidates. The velocity dispersion mean field can be computed
from the three snapshots of the BH19 𝑁-body simulations as the spatial average
of the velocity dispersion tensor trace. These are also shown and it is evident that
the velocity dispersion mean field is even larger than the rather warm dark matter
candidates studied here. One could conjecture that if it would be computationally
manageable to start out with a very cold dark matter candidate, such as a weakly
interacting particle with 𝜎̄in ∼ 10−10 km2/s2, an early growth could lead to the
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Figure 6.11: Evolution of the velocity dispersion mean field in the Hartree–Fock
approximation for different ultraviolet cut-offs that are multiples of
𝑘Ny ≈ 11 ℎ/Mpc. Shown as the numerical solutions which are colour
coded for differential initial conditions (violet, blue, green and yel-
low from coldest to warmest), the linearly decaying mean field (dotted
curves) and the three snapshots from data of the BH19 𝑁-body simula-
tion (red diamonds). For warmer dark matter where the free-streaming
wave number is below the cut-off the results are well converged while
for colder dark matter with a larger free-streaming wave number this is
no longer the case.
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Figure 6.12: Density contrast and isotropic velocity dispersion reduced propagators
for the dark matter model with 𝜎̄in = 105 km2/s2 at redshift 𝑧 = 0. Also
shown is the ansatz (6.44) superposing the free-streaming effect found
in the Hartree approximation (6.28) and the large wave number limit
(6.36). Qualitatively, the ansatz captures the numerical solution of the
Hartree–Fock approximation which naturally captures both effects.

observed values. Due to the above mentioned computational limitations it was not
possible to verify this.

Propagator: In figure 6.12 the density contrast and isotropic velocity dispersion
reduced propagators for the dark matter model with 𝜎̄in = 105 km2/s2 are shown at
redshift 𝑧 = 0. To see how the effects of the Hartree and retarded Fock self-energy
combine, both have been superposed with the ansatz

𝐺R
𝑎𝑏(𝜂, 𝜂′, 𝑘) = ̃𝐺R

𝑎𝑏(𝜂 − 𝜂′, 𝑘2𝜎̃)
𝐽1(2𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in])

𝑘𝜎v[e𝜂−𝜂in − e𝜂′−𝜂in]
, (6.44)

where ̃𝐺R
𝑎𝑏(𝜂 − 𝜂′, 𝑘2𝜎̃) is the retarded propagator that is obtained in the Hartree

approximation for a linear mean field and can be reconstructed from the solutions
(6.28). This naïve ansatz qualitatively captures the Hartree–Fock approximation
and reproduces the superposition of oscillations from free-streaming encoded in the
Hartree self-energy and of the decaying oscillations due to the coupling of modes en-
coded in the retarded Fock self-energy.7 Although not shown here, the performance
of the ansatz (6.44) worsens when compared to colder dark matter models. Since

7It is again emphasised that the oscillations due to the retarded Fock self-energy are a consequence
of the employed truncation of the Dyson–Schwinger hierarchy and can be understood as an
infinite but partial resummation of standard perturbation theory.
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the propagator ̃𝐺R
𝑎𝑏(𝜂 − 𝜂′, 𝑘2𝜎̃) is strictly speaking only valid for a decaying mean

field, it fails to capture the effect of a strongly growing mean field as is the case for
the colder dark matter models.

Density and velocity equal-time auto-spectra: Although only initially rather
warm dark matter candidates are studied, the question arises whether the approx-
imation including velocity dispersion degrees of freedom can overcome the short-
comings of the single-stream approximation. To see the impact on non-vanishing
velocity dispersion, the dimensionless density contrast and velocity-divergence equal-
time auto-spectrum is shown in figure 6.13. The solutions corresponding to different
velocity dispersion mean field initial conditions are colour coded in the same way
as in figure 6.11. Additionally, the free-streaming scales related to the correspond-
ing velocity dispersion mean field are displayed. Since the numerical solutions all
have a mean field of the same order at redshift 𝑧 = 0, and therefore a similar
free-streaming wave number, only a single free-streaming wave number is indicated
here. It is clearly visible that the dark matter models starting out with a warmer
initial condition show a large suppression in the density contrast as well as in the
velocity-divergence power spectrum. Interestingly, one can observe that although
the velocity dispersion is of similar order at redshift 𝑧 = 0, the dark matter models
starting out comparably cold show near to no suppression in the density contrast
power spectrum and matche the 𝑁-body data rather well. Comparing with the evo-
lution of the mean field shown in figure 6.11, it seems that if the mean field obtains a
large value only at late times one does not see a suppression in the density contrast
power spectrum. In contrast, consider the warmest dark matter model shown that
is warm for a large part of its time evolution. Although the final mean field is even
below the final mean field of the initially colder model, a significant suppression
is observed in the density contrast power spectrum. This suggest that indeed the
dark matter model should start out with a small velocity dispersion mean field in
to match the observed power spectrum. On the other hand, this also implies that a
late-time large velocity dispersion mean field does not necessarily imply the power
spectrum to be suppressed.

Velocity dispersion equal-time auto-spectra: In figure 6.14 the time (upper panel)
and wave number (lower panel) dependencies of the dimensionless isotropic ve-
locity dispersion equal-time auto-spectrum are shown at constant wave number
𝑘 ≈ 0.5 ℎ/Mpc and redshift 𝑧 = 0, respectively. Displayed is the time depen-
dence of the power spectrum at constant wave number 𝑘 ≈ 0.5 ℎ/Mpc which grows
in time and does so more strongly for the initially colder dark matter models, very
similar to the velocity dispersion mean field. Also depicted are the corresponding
three snapshots of the 𝑁-body simulations of BH19 which seem to exhibit a stronger
growth at late times, roughly scaling ∝ 𝐷8

+. Also shown is the wave number depen-
dence compared to the data from the BH19 𝑁-body simulations. One can clearly
see a near to power law scaling of the power spectrum in the infrared up to some
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Figure 6.13: Dimensionless density contrast (upper panel) and velocity-divergence
(lower panel) equal-time auto-spectrum at redshift 𝑧 = 0. The numeri-
cal solutions of the Hartree–Fock (HF) approximation are colour coded
according to the respective mean fields shown in figure 6.11. They
are compared to the linear power spectrum (black dotted curves), the
standard perturbation theory (SPT) one-loop prediction (black dashed
curves) and data from the BH19 𝑁-body simulation (red solid curve).
Both spectra are suppressed for warmer dark matter models, although
the velocity-divergence power spectrum shows a much stronger suppres-
sion.
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Figure 6.14: Time (upper panel) and wave number (lower panel) dependence of the
dimensionless isotropic velocity dispersion equal-time auto-spectrum at
constant wave number 𝑘 ≈ 0.5 ℎ/Mpc and redshift 𝑧 = 0, respec-
tively. The numerical solutions of the Hartree–Fock (HF) approxima-
tion are colour coded according to the respective mean fields shown in
figure 6.11. Three snapshots from data of the BH19 𝑁-body simula-
tion (red diamonds and red solid curves) as well as power law scalings
(black dotted lines) are also shown. The velocity dispersion of colder
dark matter candidates grows faster in time but all candidates show
a near to power law scaling in wave number at redshift 𝑧 = 0 corre-
sponding to a spectral index 𝑛𝜎 ≈ −1.8 up to the free-streaming wave
number.
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wave number above which the power spectrum drops. Later analysis and 𝑁-body
simulations [167, 169] seem to indicate that is scale is related to shell-crossing and
the largest collapsed structures. In the current framework this is in turn related to
the velocity dispersion mean field and the free-streaming scale as indicated. That
is, one can clearly see that for wave numbers above the linear free-streaming scale
the power spectrum drops. The spectral index observed in 𝑁-body simulations is
roughly 𝑛𝜎 ≈ −1 [169] and corresponds to the indicated scaling ∆33 ∝ 𝑘6.8 The
numerical solutions show a slightly less step power spectrum which scales roughly
as ∆33 ∝ 𝑘5.2 in the infrared, before dropping on wave numbers above the free-
streaming scale.

Velocity- and velocity dispersion-density equal-time cross-spectra: In figure 6.15
the dimensionless velocity-divergence- and velocity dispersion-density contrast equal-
time cross-spectra at redshift 𝑧 = 0 are shown. It has been seen in figure 6.10 that the
single-stream approximation badly fails to describe the velocity-divergence-density
contrast equal-time cross-spectrum. This was related to the fact that the observed
sign change in 𝑁-body data is related to shell-crossing which cannot be described
by the single-stream approximation. In contrast, when including velocity dispersion
degrees of freedom the effect is captured. Both cross-spectra shown in figure 6.15
carry a signature of shell-crossing, related to the sign change in correlation. It is also
evident that the scale of shell-crossing is related to the free-streaming wave number
(the sign change occurs roughly at 2𝑘fs) and thus to the velocity dispersion mean
field. It is clear that the numerical solutions presented here show a sign change
at a higher wave number compared to the since the 𝑁-body simulations since the
corresponding mean field is smaller. Nonetheless, one can see that including velocity
dispersion degrees of freedom into the description actually allows to describe effects
associated with shell-crossing.

Vorticity equal-time auto-spectra: In figure 6.16 the time (upper panel) and wave
number (lower panel) dependencies of the dimensionless vorticity equal-time auto-
spectrum are shown at constant wave number 𝑘 ≈ 0.5 ℎ/Mpc and redshift 𝑧 = 0,
respectively. It is emphasised that vorticity is initially absent and can also not be
sourced by the mean field alone, which is why it is also absent the Hartree approx-
imations studied in section 6.2. But it can be sourced by non-linear terms of the
fluctuations and is thus naturally generated in the Hartree–Fock approximation due
to the mode coupling of the 1PI statistical self-energy. One can observe the late-
time scaling 𝐷7

+ [88, 167] in the BH19 𝑁-body data and finds that the numerical
solutions growth similar, although depending on the specific dark matter model.
More interesting is the wave number dependence. As indicated and seen in various
𝑁-body simulations [88, 167, 168] one finds a spectral index 𝑛𝜔 ≈ 2.5 in the in-
frared corresponding to the scaling ∆55 ∝ 𝑘5.5 of the dimensionless vorticity power
spectrum, before dropping on scales smaller than the free-streaming scale. The nu-

8Remember that ∆33 ∝ 𝑘3𝑃33 ∝ 𝑘7𝑃𝜎𝜎 due to the rescaling in the field content (6.1).
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Figure 6.15: Dimensionless velocity-divergence- (upper panel) and velocity
dispersion-density contrast (lower panel) equal-time cross-power
spectrum 𝑧 = 0. The numerical solutions of the Hartree–Fock (HF)
approximation are colour coded according to the respective mean
fields shown in figure 6.11. They are compared to the linear power
spectrum (black dotted curves), the standard perturbation theory
(SPT) one-loop prediction (black dashed curves) and data from the
BH19 𝑁-body simulation (red solid curve). The sign change of the
cross-spectra is associated with shell-crossing and captured by the
Hartree–Fock approximation in both power spectra.
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Figure 6.16: Time (upper panel) and wave number (lower panel) dependence of the
dimensionless isotropic velocity dispersion equal-time auto-spectrum at
constant wave number 𝑘 ≈ 0.5 ℎ/Mpc and redshift 𝑧 = 0, respec-
tively. The numerical solutions of the Hartree–Fock (HF) approxima-
tion are colour coded according to the respective mean fields shown in
figure 6.11. Three snapshots from data of the BH19 𝑁-body simulation
(red diamonds and red solid curves) as well as power law scalings (black
dotted lines) are also shown. The vorticity of colder dark matter candi-
dates grows faster in time but all candidates show a near to power law
scaling in wave number at redshift 𝑧 = 0 corresponding to a spectral
index 𝑛𝜔 ≈ 2 up to the free-streaming wave number.
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merical solution shows a spectral index of almost exact 𝑛𝜔 ≈ 2.9 Indeed, there are
arguments that if vorticity is absent initially, one expects the power spectrum to
actually scale with a spectral index 𝑛𝜔 = 2. Since the position space covariance
function has only has finite support due to causality, the Fourier transform needs to
be analytic [175]. Since the vorticity mode is transverse, the power spectrum carries
an additional transverse projector P𝑖𝑗(𝒌) such that the simplest scaling required for
analyticity is given by 𝑛𝜔 = 2. Precisely such a scaling is observed in the infrared
of the Hartree–Fock approximation. It has been argued [168] that a deviation from
this scaling observed in 𝑁-body simulations could be due to missing contributions
of large scales due to the finite box size, rendering the 𝑁-body power spectrum to
steep. Along similar lines one could argue that the deviation between the isotropic
velocity dispersion equal-time auto-spectrum shown in figure 6.14 is due to this finite
size effect.

It is remarked here, that although the infrared is perturbative in the sense that
fluctuations are small and the density contrast power spectrum is well described by
perturbation theory, the generation of vorticity and velocity dispersion is a highly
non-perturbative effect. This is also the reason why perturbative methods do not
correctly capture the scaling of the vorticity power spectrum, see e.g. [11,176]. Also
it is interesting to realise that the drop of the velocity-divergence auto-spectrum
happens at the rise of the vorticity auto-spectrum, with the lowest point of the
former corresponding to the peak of the latter. This is interpreted as consequence
of angular momentum conservation converting power from the velocity-divergences
to vorticity modes, preventing the further infall of matter [168].

9Notice here that the spectrum 𝑃55 differs from the vorticity spectrum only by wave number
independent factors such that the spectral index is the same.
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7 Time-local effective dynamics with the
functional renormalisation group

In this chapter a description for dark matter that features time-local effective dy-
namics is investigated with the functional renormalisation group. To this end, the
structure of the (inverse) propagators corresponding to local and non-local dynamics
are investigated using Laplace transforms. Following, an ansatz for the effective ac-
tion is studied which can be understood as a combination of a vertex and derivative
expansion up to the order of the bare action. The relevant coefficients needed to
capture the sweeping effect studied in chapter 5 are found and the flow equations
are solved for them. The corresponding propagators are computed and compared
to those obtained in the large wave number limit. Finally, the density and velocity-
divergence power spectra are computed using the non-perturbative propagators ob-
tained before and compared to data from 𝑁-body simulations.

Laplace transform

In the following, it is convenient to work with the Laplace transform taking a time
variable 𝑡 to the complex frequency 𝑠. For a suitable function or distribution 𝑓(𝑡)
with support on the positive real line the Laplace transform is defined as

𝑓(𝑠) ≔ ∫
∞

0
d𝑡 e−𝑠𝑡 𝑓(𝑡) . (7.1)

Within the region of absolute convergence the Laplace transform is analytic and can
be inverted using the Bromwich integral

𝑓(𝑡) = lim
𝜎→∞

∫
𝑐+i𝜎

𝑐−i𝜎

d𝑠
2𝜋 i

e𝑠𝑡 𝑓(𝑠) , (7.2)

where 𝑐 is real and to the right of all singularities of the integrand.

7.1 Local and non-local dynamics
Consider the retarded propagator equation

∫
𝜂

𝜂′

d𝜉 𝐷R
𝑎𝑏(𝜂, 𝜉, 𝑞) 𝐺R

𝑏𝑐(𝜉, 𝜂′, 𝑞) = 𝛿𝑎𝑐𝛿(𝜂 − 𝜂′) . (7.3)

For a generic inverse propagator the equation is naturally non-local in time and
includes memory effects. In the case where the inverse propagator has support for
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𝜂 = 𝜂′ only, such as in the linear case (4.5) or for the bare inverse propagator (4.46),
the dynamics are local in time.

Consider the Laplace transform of the retarded inverse propagator with respect
to ∆𝜂 = 𝜂 − 𝜂′,

𝐷R
𝑘,𝑎𝑏(𝜂, 𝑞; 𝑠) = ∫

∞

0
d∆𝜂 e−𝑠∆𝜂 𝐷R

𝑘,𝑎𝑏(𝜂, 𝜂 − ∆𝜂, 𝑞) , (7.4)

taking its natural support ∆𝜂 ≥ 0 into account.1 For a time-translation invariant
system the inverse propagator only depends on ∆𝜂 and the propagator can be ob-
tained by inverting the matrix structure of equation (7.4) and subsequently inverting
the Laplace transform. For a generic system that is not time translation invariant
this is no longer possible and equation (7.3) needs to be solved with other methods.

To investigate local and non-local dynamics it is convenient to expand the inverse
propagator in terms of a Laurent series,

𝐷R
𝑘,𝑎𝑏(𝜂, 𝑞; 𝑠) =

∞
∑

𝑛=−∞
𝐷(𝑛)

𝑘,𝑎𝑏(𝜂, 𝑞) (𝑠 − 𝑠∗)𝑛 , (7.5)

around some complex frequency 𝑠∗.2

Local dynamics

In the case where 𝑠∗ is non-singular the principal part of the series vanishes and
one obtains an ordinary Taylor series. Provided that the series terminates at some
finite order 𝑁, the corresponding dynamics are local and of 𝑁th-order since inverting
the Laplace transform results in a local derivative expansion. In the case of local
first-order dynamics one obtains

𝐷R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = [𝐷(0)

𝑘,𝑎𝑏(𝜂, 𝑞) + 𝐷(1)
𝑘,𝑎𝑏(𝜂, 𝑞) (𝜕𝜂 − 𝑠∗)]𝛿(𝜂 − 𝜂′) , (7.6)

which captures the linear retarded inverse propagator of the cosmological field theory
introduced in chapter 4. To summarise, local dynamics necessarily correspond to an
inverse propagator that is a polynomial in complex frequency.

Non-local dynamics

If the series does not terminate at finite order, the self-energy generally does not
correspond to local dynamics.3 If 𝑠∗ is a singularity, one naturally obtains non-local

1Since the initial conditions are given at some finite 𝜂in, the time difference ∆𝜂 can maximally
be 𝜂 − 𝜂in. The Laplace transform (7.4) should be understood as the limit 𝜂in → −∞ where
the initial conditions are pushed infinitely far into the past. This can also be understood as
integrating out the linear dynamics within the functional integral such that the initial conditions
do not explicitly enter into the bare action [29].

2For any complex frequency 𝑠∗ that is no branch point and in the region of absolute convergence
the series exists in some annulus around 𝑠∗.

3Consider e.g. a self-energy of the form 𝛴R
𝑘,𝑎𝑏(𝜂, 𝑞; 𝑠) ∝ e−𝑎𝑠 which corresponds to a delayed

impulse response 𝛴R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) ∝ 𝛿(𝜂 − 𝜂′ − 𝑎).
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7.1 Local and non-local dynamics

terms from the non-vanishing principal part of the Laurent series. Consider e.g. an
affine term and an isolated simple pole, that is the Laurent series features only the
𝑛 = ±1 terms. In this case one obtains

𝐷R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = 𝐷(1)

𝑘,𝑎𝑏(𝜂, 𝑞) (𝜕𝜂 − 𝑠∗) 𝛿(𝜂 − 𝜂′) + 𝐷(−1)
𝑘,𝑎𝑏(𝜂, 𝑞) e𝑠∗(𝜂−𝜂′) 𝜃(𝜂 − 𝜂′) , (7.7)

naturally leading to memory integrals in the equations of motion.4

Classifying the large wave number limit propagators

Consider the ansatz

𝐺R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = 𝑔R

𝑎𝑏(𝜂 − 𝜂′) 𝐹𝑘(e𝜂 − e𝜂′ , 𝑞) , (7.8)

which captures the various large wave number limits discussed in chapter 6, at least
when employing the approximation 𝛺m/𝑓2 = 1 such that the linear dynamics are
time-translation invariant. To obey the boundary conditions of the propagator one
should impose 𝐹𝑘(0, 𝑞) = 1 = 𝐹𝑘(e𝜂 − e𝜂′ , 0).

Using the ansatz (7.8) as well as the equations of motion (7.3) and projecting
onto the single-stream growing mode using 𝑤𝑎 = (1, 1), one obtains the evolution
equation

𝜕𝜂𝐹𝑘(e𝜂 − e𝜂′ , 𝑞) − ∫
𝜂

𝜂′

d𝜉 e𝜂+𝜉 𝛴̄R
𝑘 (e𝜂 − e𝜉 , 𝑞) 𝐹𝑘(e𝜉 − e𝜂′ , 𝑞) = 0 , (7.9)

where it is assumed that

𝛴̄R
𝑘 (e𝜂 − e𝜂′ , 𝑞) ≔ e−2𝜂 1

2 𝑤𝑎𝑤𝑏𝛴R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) , (7.10)

captures the time dependence of the self-energy.5 Taking the Laplace transform with
respect to e𝜂 − e𝜂′ one arrives at

[𝑠 − 𝛴̄R
𝑘 (𝑠, 𝑞)] 𝐹𝑘(𝑠, 𝑞) = 1 . (7.12)

To understand the structure of the self-energy, one needs to invert the Laplace
transform of 𝑠 − 1/𝐹𝑘(𝑠, 𝑞).

It is straightforward to verify that the three large wave number limit cases dis-
cussed in 6 do not correspond to local dynamics since their inverse propagator is no

4This is for example the case for the 1PI one-loop self-energy which lead to the oscillatory propa-
gator (6.35).

5Obviously, this is most generally not the case. But considering the large wave number limit of
the Hartree–Fock approximation as derived in chapter 6 one has

𝛴̄R
𝑘 (e𝜂 − e𝜂′ , 𝑞) = −𝑞2𝜎2

v,𝑘 e−2𝜂in 𝐹𝑘(e𝜂 − e𝜂′ , 𝑞) 𝜃(𝜂 − 𝜂′) , (7.11)

and similarly without the factor additional factor 𝐹𝑘 on the right-hand side for the 1PI one-loop
approximation.
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7 Time-local effective dynamics with the functional renormalisation group

polynomial in frequency. More explicitly, with 𝜔𝑘(𝑞) = 𝑞𝜎v,𝑘 e−𝜂in one finds that the
1PI one-loop approximation (6.35) corresponds to

𝐹𝑘(𝑠, 𝑞) = 𝑠
𝑠2 + 𝜔2

𝑘
, (7.13)

the Hartree–Fock approximation (6.36) to

𝐹𝑘(𝑠, 𝑞) =
−𝑠 + √𝑠2 + 4𝜔2

𝑘

2𝜔2
𝑘

, (7.14)

and the functional renormalisation group result (6.34) to

𝐹𝑘(𝑠, 𝑞) = √
𝜋

2𝜔2
𝑘

exp{ 𝑠2

2𝜔2
𝑘

} erfc{√ 𝑠2

2𝜔2
𝑘

} , (7.15)

where erfc( ⋅ ) is the complementary error function.
Finally, consider the case where the dynamics is actually local and of first order.

In this case one has
𝐹𝑘(𝑠, 𝑞) = 𝐴𝑘(𝑞)

𝑠 − 𝜔𝑘(𝑞)
, (7.16)

and consequently

𝐹𝑘(e𝜂 − e𝜂′ , 𝑞) = 𝐴𝑘(𝑞) exp{𝜔𝑘(𝑞)(e𝜂 − e𝜂′)} . (7.17)

It should be clear that this is only a special case of the more general equation (7.3)
since here the ansatz (7.8) is already rather restrictive. Nonetheless it captures the
spirit of local dynamics, as is seen in the following sections.

7.2 Effective action with local dynamics
7.2.1 Truncation scheme and ansatz
The effective action can be (formally) expanded as

𝛤𝑘[𝛹 , ̂𝛹 ] = ∑
𝑛∈N

𝑔𝑘,𝑛 ⋅ O𝑛[𝛹 , ̂𝛹 ] , (7.18)

for a functional basis of operators O𝑛[𝛹 , ̂𝛹 ] and generalised couplings 𝑔𝑘,𝑛 where
the dot symbolises the summation and integration over all internal structures, such
as time and space arguments. This quite general form is not to helpful in real
applications and one usually decides on a set of operators which are assumed to be
suited. A common expansion scheme is the vertex expansion, where one chooses the
operators to be monomials in the fields

O𝐴1…𝐴𝑚𝐵1…𝐵𝑛
=

𝑚
∏
𝑖=1

𝛹𝐴𝑖

𝑛
∏
𝑗=1

̂𝛹𝐵𝑗
. (7.19)
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7.2 Effective action with local dynamics

Truncating the expansion at finite order allows to actually close the infinite hierarchy
of flow equations derived in chapter 4.

Since a general truncation of the vertex expansion is still rather general, the
ansatz used in the following is further restricted. That is, the ansatz is taken to only
feature operators which are already present in the bare action and which respect the
symmetries, that is statistical isotropy and homogeneity as well as mass conservation
and extended Galilean invariance. Further, only operators are allowed that describe
local first-order dynamics, that is the same kind of equations that describe the
effective cosmological fluid. More specifically, the ansatz considered can be written
as

𝛤𝑘[𝛹 , ̂𝛹 ] = − i ∫
𝜂,𝒒

̂𝛹𝑎(𝜂, −𝒒)[𝜕𝜂𝛿𝑎𝑏 + 𝛺𝑘,𝑎𝑏(𝜂, 𝒒)]𝛹𝑏(𝜂, 𝒒)

− i ∫
𝜂,𝒒,𝒒′

̂𝛹𝑎(𝜂, −𝒒) 𝛾𝑘,𝑎𝑏𝑐(𝜂, 𝒒′, 𝒒 − 𝒒′) 𝛹𝑏(𝜂, 𝒒′) 𝛹𝑐(𝜂, 𝒒 − 𝒒′)

+ i ∫
𝜂

̂𝛹𝑎(𝜂, 𝟎)[𝛿(𝜂 − 𝜂in) 𝛹 in
𝑎 + 𝑄𝑘,𝑎(𝜂)]

+ 1
2 ∫

𝜂,𝜂′,𝒒

̂𝛹𝑎(𝜂, −𝒒)[𝛿(𝜂 − 𝜂in) 𝛿(𝜂′ − 𝜂in) 𝑃 in
𝑎𝑏(𝒒)

+ 𝛱𝑘,𝑎𝑏(𝜂, 𝜂′, 𝒒)] ̂𝛹𝑏(𝜂′, 𝒒) .

(7.20)

Here 𝛺𝑘,𝑎𝑏 and 𝛾𝑘,𝑎𝑏𝑐 are scale-dependent generalisations of their bare counterparts
and should be chosen to not violate the symmetries studied in section 4.6 of chapter
4. The source term 𝑄𝑘,𝑎 and statistical self-energy 𝛱𝑘,𝑎𝑏 are completely general for
now.

The dynamical part of the action is described by first-order local dynamics. More
specifically, the inverse retarded propagator reads on the equations of motion

𝐷R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = [𝜕𝜂𝛿𝑎𝑏 + 𝛺𝑘,𝑎𝑏(𝜂, 𝑞) + 2𝛾𝑘,𝑎𝑏𝑐(𝜂, 𝒒, 𝟎) 𝛹𝑐(𝜂)]𝛿(𝜂 − 𝜂′) . (7.21)

Similarly, the three-point function is local in time

𝛤 (2,1)
𝑘,𝑏𝑐𝑎(𝜂′, 𝒒′; 𝜂″, 𝒒″; 𝜂, 𝒒) = −2 i 𝛿(𝜂 − 𝜂′) 𝛿(𝜂 − 𝜂″) 𝛿̄(𝒒 + 𝒒′ + 𝒒″)

× 𝛾𝑘,𝑎𝑏𝑐(𝜂, 𝒒′, 𝒒″) .
(7.22)

7.2.2 Flow equations

Since the ansatz (7.20) only includes 1PI correlation functions up to third order, the
corresponding functional renormalisation group flow equations are closed and read
diagrammatically for the source term

i 𝜕𝑘𝑄𝑘,𝑎 = 1
2 , (7.23)
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7 Time-local effective dynamics with the functional renormalisation group

for the inverse propagator

i 𝜕𝑘𝛴R
𝑘,𝑎𝑏 = −1

2 − 1
2 , (7.24)

and for the 1PI statistical two-point function

𝜕𝑘𝛱𝑘,𝑎𝑏 = −1
2 − 1

2 , (7.25)

and similarly for the 1PI three-point function flow which is not explicitly shown
here. These can be written in an explicit manner to read

𝜕𝑘𝑄𝑘,𝑎(𝜂) = − ∫
𝒍
𝛾𝑘,𝑎𝑏𝑐(𝜂, 𝒍, −𝒍) 𝐺R

𝑘,𝑐 ̄𝑐(𝜂, 𝜂in, 𝑙) 𝜕𝑘𝑃 in
𝑘, ̄𝑐 ̄𝑑(𝑙) 𝐺A

𝑘, ̄𝑑𝑑(𝜂in, 𝜂, 𝑙) , (7.26)

for the source term,

𝜕𝑘𝛴R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = 4 ∫

𝒍
𝛾𝑘,𝑎𝑐𝑒(𝜂, 𝒍, 𝒒 − 𝒍) 𝐺R

𝑘,𝑒𝑓(𝜂, 𝜂′, |𝒒 − 𝒍|) 𝛾𝑘,𝑓𝑑𝑏(𝜂′, −𝒍, 𝒒)

× 𝐺R
𝑘,𝑑 ̄𝑑(𝜂′, 𝜂in, 𝑙) 𝜕𝑘𝑃 in

𝑘, ̄𝑑 ̄𝑐(𝑙) 𝐺A
𝑘, ̄𝑐𝑐(𝜂in, 𝜂, 𝑙) ,

(7.27)

for the inverse propagator self-energy,

𝜕𝑘𝛱𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = 4 ∫
𝒍
𝛾𝑘,𝑎𝑐𝑒(𝜂, 𝒍, 𝒒 − 𝒍) 𝑃𝑘,𝑒𝑓(𝜂, 𝜂′, |𝒒 − 𝒍|)

× 𝛾𝑘,𝑏𝑓𝑑(𝜂′, −𝒒 + 𝒍, −𝒍)
× 𝐺R

𝑘,𝑑 ̄𝑑(𝜂′, 𝜂in, 𝑙) 𝜕𝑘𝑃 in
𝑘, ̄𝑑 ̄𝑐(𝑙) 𝐺A

𝑘, ̄𝑐𝑐(𝜂in, 𝜂, 𝑙) ,

(7.28)

for the 1PI statistical self-energy.

7.2.3 Projection onto local ansatz
An obvious problem is that the flow equation for the inverse propagator is non-
local in time, opposed to the ansatz (7.20). This reflects that the ansatz is not
self-consistent and the renormalisation group flow naturally evolves away from the
theory subspace spanned by the effective action ansatz. To project the non-local
flow onto the local ansatz the prescription developed in reference [37] is employed.
This prescription maps the non-local self-energy flow onto the local ansatz using
Laplace transforms which essentially matches the corresponding growth factors of
the inverse propagators.

Here the projection prescription developed in reference [37] is reviewed, since it is
thereafter used. The idea behind the projection can be understood by considering
the simple case of a time-translation invariant system

𝐺R
𝑎𝑏(𝜂 − 𝜂′, 𝑞) = ∫

𝑐+i∞

𝑐−i∞

d𝑠
2𝜋 i

e𝑠(𝜂−𝜂′) [𝐷R(𝑞; 𝑠)]−1
𝑎𝑏

, (7.29)
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where 𝑐 is a real number that is to the right of all singularities. In the case where the
integrand has isolated poles only, the integral (7.2) can be computed using Cauchy’s
residue theorem and the poles determine the growth properties of the propagator.
That is, the zeros of the inverse propagator’s determinant are of interest. These are
precisely the growth factors also studied in chapter 6. In the non-stationary setting
equation (7.29) can no longer be used to compute the propagator, but rather the
general equation (7.3) needs to be solved using other methods. To project the non-
local flow onto the local ansatz, the corresponding zeros of the inverse propagator’s
determinant are matched. Specifically, consider

det(𝐷R
𝑘 (𝜂, 𝑞; 𝑠)) = 0 , (7.30)

having zeros 𝑠𝑘(𝜂, 𝑞). Using Jacobi’s formula, one can compute the flow equation
for the zero-crossing to be [37]

𝜕𝑘𝑠𝑘(𝜂, 𝑞) = −
tr(𝐷R

𝑘 (𝜂, 𝑞; 𝑠)−1 ⋅ 𝜕𝑘𝐷R
𝑘 (𝜂, 𝑞; 𝑠))

tr(𝐷R
𝑘 (𝜂, 𝑞; 𝑠)−1 ⋅ 𝜕𝑠𝐷R

𝑘 (𝜂, 𝑞; 𝑠))
∣
𝑠=𝑠𝑘(𝜂,𝑞)

. (7.31)

The right-hand side can now be computed using the local ansatz

𝐷R
𝑘,𝑎𝑏(𝜂, 𝑞; 𝑠) = 𝑠𝛿𝑎𝑏 + 𝛺𝑘,𝑎𝑏(𝜂, 𝑞) + 2𝛾𝑘,𝑎𝑏𝑐(𝜂, 𝒒, 𝟎) 𝛷𝑐(𝜂) , (7.32)

as well as using the flow equation (7.27) in order to match the zero-crossings. This
is how the non-local flow is projected onto a local ansatz in the following.

7.3 Propagator
To reduce the complexity and understand general properties of such a local ansatz,
the single-stream approximation is considered. This simplifies matters extremely
due to the absence of mean fields. The field content is set to

𝜓𝑎(𝜂, 𝒒) = (𝛿 , − 𝜃
𝑓H) , (7.33)

and further the approximation 𝛺m/𝑓2 = 1 is employed such that

𝛺𝑎𝑏 = ( 0 −1
−3

2
1
2

) . (7.34)

Since the ansatz (7.20) is still quite general, the aim is to find only a few flow
parameters which sufficiently well describe the effective dynamics of cosmic structure
formation. To this end, the vertex is set to its bare form and only ansätze of the
form

𝛺𝑘,𝑎𝑏(𝜂, 𝑞) = 𝛺𝑎𝑏 + 𝜆𝑘,𝑎𝑏 e𝜅𝑘𝜂 𝑞2 , (7.35)

are considered and it is shown a posteriori that these kind of ansätze, if chosen
appropriately, capture the dominant wave number and time behaviour obtained
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7 Time-local effective dynamics with the functional renormalisation group

from other approximations. That is, the dynamics are corrected due to gradients in
the linear part and should be understood as a derivative expansion. Note here, that
although only corrections up to order 𝑞2 are taken into account, this is at the level of
the inverse propagator and thus by the virtue of the 1PI resummation scheme leads
to a non-perturbative propagator to all orders in 𝑞. The exponential dependence on
the time evolution parameter 𝜂 is motivated by the one-loop result which features
such a time dependence.

Due to the structure of the ansatz one has the zero-crossings

𝑠g,𝑘(𝜂, 𝑞) = 1 + O(𝑞2) , 𝑠d,𝑘(𝜂, 𝑞) = −3
2

+ O(𝑞2) , (7.36)

which smoothly connect to the standard single-stream approximation growth factors
studied in chapter 6. Since the projection (7.31) is rather complicated in full form,
the zero-crossing flow is only solved up to order 𝑞2 in the spirit of the derivative
expansion. That is, using that the self-energy vanishes in the limit 𝑞 → 0 for this
ansatz, the zero-crossing flow at order 𝑞2 is given by

𝜕𝑞2𝜕𝑘𝑠𝑘(𝜂, 0) = 1
4𝑠 + 1

tr((2𝑠 + 1 2
3 2𝑠) ⋅ 𝜕𝑞2𝜕𝑘𝛴R

𝑘 (𝜂, 0; 𝑠)) ∣
𝑠=𝑠𝑘(𝜂,0)

. (7.37)

In the following, this is abbreviated at order 𝑞2 as

Flowg,𝑘(𝜂) ≔ 1
5

tr((3 2
3 2) ⋅ 𝜕𝑞2𝜕𝑘𝛴R

𝑘 (𝜂, 𝑞; 1)∣
𝑞2=0

) ,

Flowd,𝑘(𝜂) ≔ −1
5

tr((−2 2
3 −3) ⋅ 𝜕𝑞2𝜕𝑘𝛴R

𝑘 (𝜂, 𝑞; −3
2)∣

𝑞2=0
) ,

(7.38)

for the growing mode 𝑠g,𝑘(𝜂, 0) = 1 and decaying mode 𝑠d,𝑘(𝜂, 0) = −3/2, respec-
tively. It should be noted that there might be more zero-crossings due to the non-
local structure of the full non-perturbative self-energy. Here only those are taking
into account that smoothly connect to the linear growing and decaying mode.

Although the ansatz (7.35) can in principal be solved using numerical methods, it
is preferred here to find an ansatz that can be solved analytically, at least to some
extent. To this end, the question arises what kind of coefficients are necessary to
capture the dominant physics. Reference [37] has studied the case where

𝜆𝑘 = ( 0 0
𝜆s,𝑘 𝜆𝜈,𝑘

) , (7.39)

where the coefficients 𝜆s,𝑘 and 𝜆𝜈,𝑘 are interpreted as effective sound velocity and
viscosity, respectively, thereby mapping the non-local flow onto a viscous fluid theory.
The main deficit of the approach is that the corresponding density propagator fails
to reproduce the characteristic suppressions on small scales, associated with the
sweeping effect as is later shown.

112



7.3 Propagator

The reason for this is, as already mentioned, that the sweeping effect causes this
suppression. In order to capture it, one would need coefficients in each equation of
motion coupling to the field that carries the time derivative. That is, these are terms
that live on the diagonal of 𝜆𝑎𝑏 and can be interpreted as an effective convective
derivative in the sense that the coefficient acts similar to a velocity background. In
the viscous ansatz (7.39) such a coefficient exists for the velocity-divergence field but
not for the density contrast field, leading to a suppression in the velocity propagator
and near to no suppression in the density propagator. To overcome this, two ansätze
are studied, one where a single coefficient is included and a second one allowing for
more dependence in the flow, where two coefficients are included.

7.3.1 One-loop approximation
For the one-loop approximation, the propagators and power spectrum on the right-
hand side of the flow equation (7.27) are set to their linear form, such that the
equation has a perturbative one-loop structure. In this case one obtains for the
order 𝑞2 self-energy

𝜕𝑞2𝜕𝑘𝛴R
𝑘 (𝜂, 𝑞; 𝑠)∣

𝑞2=0
= −

e2(𝜂−𝜂in) 𝜎2
v,𝑘

2𝑠2 + 5𝑠
(2𝑠 − 3 4/5

9 2𝑠 + 8) , (7.40)

and thus finds the flows

Flowg,𝑘(𝜂) = −187
175

e2(𝜂−𝜂in) 𝜎2
v,𝑘 , Flowd,𝑘(𝜂) = −29

25
e2(𝜂−𝜂in) 𝜎2

v,𝑘 . (7.41)

Since both growth factors are corrected by a negative term, the growth of modes is
suppressed due to non-linearities. These values are used for the two ansätze studied
in the following section to initialise the flow at some large infrared scale.

7.3.2 One-coefficient ansatz
As a first example, the ansatz

𝜆𝑘,𝑎𝑏 = 𝜆𝑘𝛿𝑎𝑏 , (7.42)

is considered. The corresponding propagator can be solved for analytically and reads

𝐺R
𝑘,𝑎𝑏(𝜂, 𝜂′, 𝑞) = 𝑔R

𝑎𝑏(𝜂 − 𝜂′) exp{−𝜆𝑘
𝜅𝑘

𝑞2[e𝜅𝑘𝜂 − e𝜅𝑘𝜂′]} , (7.43)

where the single-stream approximation linear retarded propagator 𝑔R
𝑎𝑏(𝜂−𝜂′) is given

by the upper left (2×2)-block of equation (6.16) given in chapter 6. Notice here the
close relation to the simplified version (7.17) of a local dynamics ansatz although a
more general time dependence is allowed here due to the coefficient 𝜅𝑘.

The zero-crossings of the ansatz are then given by

𝑠(1)
𝑘 (𝜂, 𝑞) = 1 − 𝜆𝑘 e𝜅𝑘𝜂 𝑞2 , 𝑠(2)

𝑘 (𝜂, 𝑞) = −3
2

− 𝜆𝑘 e𝜅𝑘𝜂 𝑞2 . (7.44)
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7 Time-local effective dynamics with the functional renormalisation group

To match the renormalisation group flow to the coefficients, one still has the freedom
how to do so since there are two flow equations. Since one expects that the growing
mode determines most of the late-time structure formation, here it is chosen to
compute the flow of the zero-crossings using only the flow of 𝑠(1)

𝑘 (𝜂, 𝑞).6 Then the
relevant flow equation reads

𝜕𝑘(𝜆𝑘 e𝜅𝑘𝜂) = −Flowg,𝑘(𝜂) . (7.45)

Since the time dependence of the flow is not completely captured by the ansatz,
one further needs to specify how to project to the two coefficients. This is done by
applying a time derivative and evaluating the flow at some (arbitrary) projection
time 𝜂∗. By doing so one obtains the two flow equations

𝜕𝑘𝜆𝑘 = e−𝜅𝑘𝜂∗ [𝜂∗Flow′
g,𝑘(𝜂∗) − (1 + 𝜅𝑘𝜂∗) Flowg,𝑘(𝜂∗)] , (7.46)

and
𝜕𝑘𝜅𝑘 = e−𝜅𝑘𝜂∗

𝜆𝑘
[𝜅𝑘Flowg,𝑘(𝜂∗) − Flow′

g,𝑘(𝜂∗)] , (7.47)

where the time derivative of the flow is abbreviated as Flow′
g,𝑘(𝜂) ≔ 𝜕𝜂Flowg,𝑘(𝜂).

One should check that the time dependence on 𝜂∗ is weak, otherwise indicating that
the ansatz does not capture the dominant time dependence. An explicit formula for
Flow′

g,𝑘(𝜂) is given in appendix E.
For the numerical solutions of the flow equations (7.46) and (7.47) an initial power

spectrum is taken from the Eisenstein & Hu fitting formula [177] at 𝑧 = 99 and the
Planck 2018 parameters [162]. The flow is then initialised at 𝑘in = 10−3 ℎ/Mpc with
the one-loop values,

𝜆𝑘 = 187
175

𝜎2
v,𝑘 , 𝜅𝑘 = 2 , (7.48)

although these are also varied in order to check the robustness of the flows and fixed
points. The flow of the amplitude coefficient 𝜆𝑘 and exponent characterising the
time dependence 𝜅𝑘 for a projection time 𝜂∗ = 0 corresponding to today, are shown
in figure 7.1. Both coefficients initially follow the one-loop result as the amount
of fluctuations allowed by the regulator is small and a perturbative treatment is
applicable. Around the scale 𝑘 ≈ 0.05 ℎ/Mpc the full flow equation starts to deviate
from the one-loop prediction, at least when the projection time is close to today. For
a projection time chosen at earlier times the flow approaches the one-loop result,
which is not to surprising since at earlier times perturbation theory is applicable at
smaller scales.

The corresponding reduced propagator normalised to the linear one at the fixed
point is shown in figure 7.2. Since the density and velocity-divergence reduced
propagators are the same in this approximation, only one propagator is shown here.
Shown is also the functional renormalisation group result obtained in chapter 5

6Additionally, the region of convergence of the self-energy Laplace transform is given by Re(𝑠) > 0.
Using the decaying mode might involve analytically continuing the flow numerically as done in
the next section.
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Figure 7.1: Renormalisation group flow of the coefficients 𝜆𝑘 (upper panel) and 𝜅𝑘
(lower panel) for a projection time 𝜂∗ = 0 corresponding to today. Shown
is the one-loop result (black solid curves), varying initial conditions (dot-
ted blue curves) as well as also different projection times (dashed blue
curves). It is clearly visible that the coefficients approach a fixed point
near to independent of the initial condition. Varying the amplitude co-
efficient by several orders of magnitude shifts the respective fixed point.
Changing the projection time also shifts the fixed point, between the
values attained at a projection time 𝜂∗ = 0 and 𝜂∗ = 𝜂in, where the fixed
point coincides with the one-loop result.
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Figure 7.2: Reduced propagator at the fixed point for the local-time ansatz (yel-
low curves) in the single-stream approximation with coefficients 𝜆𝑘 and
𝜅𝑘. Also shown is the reduced propagator obtained from the large wave
number limit (green curves). For large time differences the propagators
nearly coincide while for small time differences they differ. This can be
directly attributed to the time-local ansatz of the inverse propagator.

which features the Gaussian suppression factor. As is evident, the propagators
nearly coincide at large time differences, whereas at small time differences they
show different suppression scales. This is clear from the analytical result (7.43)
which leads to a much slower ‘opening’ of the propagator when the time difference
is lowered due to the different time dependencies (e𝜅𝑘𝜂 − e𝜅𝑘𝜂′) and (e𝜂 − e𝜂′)2.
From the perspective of the Laplace transform this can be understood as follows.
As was discussed at the beginning of this chapter, the local ansatz corresponds to
a Taylor expansion in complex frequency, very similar to a derivative expansion
in gradients. Naturally, this only accounts for small frequencies corresponding to
large time differences. Therefore this sector should be captured well while the short
time difference sector is dominated by the principal part of the Laurent series and
corresponds to memory effects.

It is emphasised that the Gaussian suppression factor obtained in the large wave
number limit of the functional renormalisation group flow is also obtain in an approx-
imation for the function 𝐼𝑘 which determined the flow equations, see also equation
(5.27), and in general it is not clear whether the full non-perturbative propagator
really shows such a Gaussian suppression in the time difference (e𝜂 − e𝜂′)2.

116



7.3 Propagator

7.3.3 Two-coefficient ansatz

To improve the ansatz and allow for more dependence in the flow, the more general
ansatz

𝜆𝑘,𝑎𝑏 = (𝜆1,𝑘 0
0 𝜆2,𝑘

) , (7.49)

is considered. Structurally, the ansatz still features coefficients which describe cor-
rections that involve to the fields that carry the time derivative, but allow the
amplitude of these terms to be different. In this case the propagator is build from
the growing solution

𝐹g,𝑘(𝜂, 𝑞) = e𝜂 e−
𝜆1,𝑘

𝜅𝑘
𝑞2e𝜅𝑘𝜂

1𝐹1( 1
𝜅𝑘

; 1 + 5
2𝜅𝑘

; −𝜆2,𝑘−𝜆1,𝑘
𝜅𝑘

𝑞2 e𝜅𝑘𝜂) , (7.50)

and decaying solution

𝐹d,𝑘(𝜂, 𝑞) = e− 3
2 𝜂 e−

𝜆1,𝑘
𝜅𝑘

𝑞2e𝜅𝑘𝜂

1𝐹1(− 3
2𝜅𝑘

; 1 − 5
2𝜅𝑘

; −𝜆2,𝑘−𝜆1,𝑘
𝜅𝑘

𝑞2 e𝜅𝑘𝜂) , (7.51)

where 1𝐹1 is Kummer’s confluent hypergeometric function. Using the matrix

𝑈𝑘(𝜂, 𝑞) = ( 𝐹g,𝑘(𝜂, 𝑞) 𝐹d,𝑘(𝜂, 𝑞)
[𝜕𝜂 + 𝜆1,𝑘 e𝜅𝑘𝜂 𝑞2]𝐹g,𝑘(𝜂, 𝑞) [𝜕𝜂 + 𝜆1,𝑘 e𝜅𝑘𝜂 𝑞2]𝐹d,𝑘(𝜂, 𝑞)) , (7.52)

the propagator can then be reconstructed as

𝐺R
𝑘,𝑎𝑐(𝜂, 𝜂′, 𝑞) = 𝑈𝑘,𝑎𝑏(𝜂, 𝑞) 𝑈𝑘,𝑏𝑐(𝜂′, 𝑞)−1 𝜃(𝜂 − 𝜂′) . (7.53)

In this case the flow is already more complicated and the corresponding inverse
propagator’s zero-crossings need to be expanded. Up to order 𝑞2 these are given by

𝑠g,𝑘(𝜂, 𝑞) = 1 − [3
5𝜆1,𝑘 + 2

5𝜆2,𝑘] e𝜅𝑘𝜂 𝑞2 + O(𝑞4) ,
𝑠d,𝑘(𝜂, 𝑞) = −3

2 − [2
5𝜆1,𝑘 + 3

5𝜆2,𝑘] e𝜅𝑘𝜂 𝑞2 + O(𝑞4) .
(7.54)

To study the flow of the two amplitude coefficients independently, the flow of both
zero-crossings must be taken into account,

𝜕𝑘[𝜆1,𝑘 e𝜅𝑘𝜂] = −3 Flowg,𝑘(𝜂) + 2 Flowd,𝑘(𝜂) ,
𝜕𝑘[𝜆2,𝑘 e𝜅𝑘𝜂] = 2 Flowg,𝑘(𝜂) − 3 Flowd,𝑘(𝜂) .

(7.55)

As before, the flow is projected to some time 𝜂∗ and the flow of the coefficient 𝜅𝑘
describing the time evolution is again computed from the flow of the growing mode
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7 Time-local effective dynamics with the functional renormalisation group

zero-crossing only. One then finds

𝜕𝑘𝜆1,𝑘 = e−𝜅𝑘𝜂∗

3𝜆1,𝑘 + 2𝜆2,𝑘
[5𝜆1,𝑘𝜂∗ Flow′

g,𝑘(𝜂∗)

− (9𝜆1,𝑘 + 6𝜆2,𝑘 + 5𝜆1,𝑘𝜅𝑘𝜂∗) Flowg,𝑘(𝜂∗)
+ (6𝜆1,𝑘 + 4𝜆2,𝑘) Flowd,𝑘(𝜂∗)] ,

𝜕𝑘𝜆2,𝑘 = e−𝜅𝑘𝜂∗

3𝜆1,𝑘 + 2𝜆2,𝑘
[5𝜆2,𝑘𝜂∗ Flow′

g,𝑘(𝜂∗)

+ (6𝜆1,𝑘 + 4𝜆2,𝑘 − 5𝜆2,𝑘𝜅𝑘𝜂∗) Flowg,𝑘(𝜂∗)
− (9𝜆1,𝑘 + 6𝜆2,𝑘) Flowd,𝑘(𝜂∗)] ,

𝜕𝑘𝜅𝑘 = 5 e−𝜅𝑘𝜂∗

3𝜆1,𝑘 + 2𝜆2,𝑘
[𝜅𝑘 Flowg,𝑘(𝜂∗) − Flow′

g,𝑘(𝜂∗)] .

(7.56)

A problem occurring in a description with two coefficient is that the flow involves the
self-energy evaluated at the decaying mode zero-crossing, which is negative. Since
the Laplace transform only has a region of convergence Re(𝑠) > 0 and cannot be
performed analytically due to the rather involving propagator (7.53), the self-energy
needs to be analytically continued by numerical methods. There is no obvious way
how to do this in general and one would therefore rather prefer to work in an
approximation which allows to perform the Laplace transformation explicitly. To
this end the hypergeometric functions within the propagator (7.53) are expanded
using the generalised hypergeometric series expansion

1𝐹1 (𝑎; 𝑏; 𝑧) =
∞

∑
𝑛=0

𝑎(𝑛)𝑧𝑛

𝑏(𝑛)𝑛!
, (7.57)

where 𝑎(𝑛) and 𝑏(𝑛) denote the rising factorial for any real number 𝑎 and 𝑏. It is
noted that this expansion is still non-perturbative in the wave number 𝑞2 due to
the exponential decaying prefactors in the propagator (7.53). Also note that the
suppression in the exponential prefactor, as written in equation (7.53), is due to the
coefficient 𝜆1,𝑘. This must not necessarily be the case, since it can be exchange with
the coefficient 𝜆2,𝑘 using Kummer’s transformation

1𝐹1 (𝑎; 𝑏; 𝑧) = e𝑧
1𝐹1 (𝑏 − 𝑎; 𝑏; −𝑧) . (7.58)

Applying this transformation first and then using the series expansion (7.57) allows
to keep either of the two amplitude coefficients as suppression factor.

In the following, only the terms 𝑛 = 0, 1 of the expansion (7.57) are taken into ac-
count. Effectively this gives a flow of the order 𝑘2, up to an overall non-perturbative
prefactor

∝ exp(−
2𝜆𝑖,𝑘

𝜅𝑘
𝑘2 e𝜅𝑘𝜂) , (7.59)

due to the two propagators attached to the regulator in equation (7.27). These are
evaluated at a loop wave number of magnitude 𝑘 and where 𝑖 = 1, 2, depending
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7.3 Propagator

on which coefficient is extracted. Due to this fact, the flow equations should be
treated with care for renormalisation group scales 𝑘2𝜆𝑖,𝑘 ≳ 1. The explicit forms
of Flowg,𝑘(𝜂∗) and Flowd,𝑘(𝜂∗) in this approximation, in the following referred to as
‘leading-order’ approximation, are again listed in appendix E.

The flow is initialised at 𝑘in = 10−3 ℎ/Mpc with the one-loop values,

𝜆1,𝑘 = 31
35

𝜎2
v,𝑘 , 𝜆2,𝑘 = 47

35
𝜎2

v,𝑘 , 𝜅𝑘 = 2 , (7.60)

which are also varied to check the robustness of the flow. Additionally, the self-energy
is also numerically analytically continued using the Schlessinger Point Method (SPM)
[178, 179] to verify that the leading-order approximation is indeed justified. Since
performing the analytical continuation numerically is quite time intensive, it is only
computed for a single set of initial conditions.

The flow of the amplitude coefficients 𝜆1,𝑘 and 𝜆2,𝑘 for a projection time 𝜂∗ = 0 are
shown in figure 7.3 and of the coefficient 𝜅𝑘 in figure 7.4. Similar to the case with
one coefficient these approach fixed points in the ultraviolet which are robust against
changing the initial conditions, at least if not changing them by several orders of
magnitude. The flow is solved for two cases, namely by extracting the 𝜆1,𝑘 or the
𝜆2,𝑘 coefficient as in the prefactor (7.59). Indeed, it is seen that only the latter choice
gives a stable renormalisation group flow while the former choice leads to a blow up
at finite renormalisation group scale. Also shown is the full numerically analytically
continued result which coincides with the leading-order approximation that uses
𝜆2,𝑘, at least up to the scale shown. After this scale it becomes numerically rather
challenging to solve the analytically continued flow since it seems to become stiff.
Nonetheless, the flow seems to be already in the fixed point at this renormalisation
group scale, indicating that the leading-order approximation using 𝜆2,𝑘 describes
the flow sufficiently well.

The corresponding reduced propagators at the fixed point are shown for the den-
sity contrast in figure 7.5 and for the velocity-divergence in figure 7.6. As a com-
parison also shown are the propagators obtained when employing the mapping onto
a viscous theory studied in reference [37]. The density contrast reduced propagator
for the time-local ansatz is similar to the propagator with only one coefficient shown
in figure 7.2. A sight difference can be seen when considering the largest time differ-
ence which is due to the more general dependence of the ansatz. Compared to the
viscous propagators it is clearly visible that the time-local ansatz is much stronger
suppressed at small scales. As was mentioned before, this is due to the fact that
there is no coefficient in the continuity equation that can account for the non-linear
coupling of modes and suppress the density response. The suppression observed is
solely due to the viscous coefficients entering Euler’s equations and seem to suppress
the density response only at much smaller scales. The velocity-divergence reduced
propagators show similar suppression behaviour and the characteristic ‘slower open-
ing’ of the propagator when compared to the propagators obtained from the large
wave number limit.
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Figure 7.3: The flow of the coefficients 𝜆1,𝑘 and 𝜆2,𝑘 for a projection time 𝜂∗ = 0.
The flow is solved at one-loop (black curves), using the leading-order
approximation (blue and yellow curves) and with the SPM (red curve).
The leading-order approximation based on the coefficient 𝜆2,𝑘 is stable
and coincides with the SPM while using the coefficient 𝜆1,𝑘 leads to a
blow up at finite renormalisation group scale. The grey shaded region
indicates where 𝑘2𝜆𝑖,𝑘 ≤ 1.

120



7.4 Power spectrum

0.005 0.050 0.500 5
1.7

1.8

1.9

2.0

2.1

2.2

Figure 7.4: The flow of the coefficient 𝜅𝑘 for a projection time 𝜂∗ = 0. The flow is
solved at one-loop (black curves), using the leading-order approximation
(blue and yellow curves) and with the SPM (red curve). The leading-
order approximation based on the coefficient 𝜆2,𝑘 is stable and coincides
with the SPM while using the coefficient 𝜆1,𝑘 leads to a blow up at finite
renormalisation group scale.

Simulation Cosmology Code 𝑁grid 𝐿box [Mpc/ℎ] 𝑧in

HR2 [166] WMAP5 [159] gotpm [163] 6000 7200 32

HAA15 [167] WMAP7 [160] l-gadget-3 [165] 1024 1000 100

Table 7.1: Details of the 𝑁-body simulations that are used as comparison to the
functional renormalisation group results.

7.4 Power spectrum

As a first application of the renormalisation group to the power spectrum, the 1PI
statistical self-energy flow (7.28) is solved at one-loop level and used to compute
the power spectrum using the formula (4.38) and the full propagators obtained from
the large wave number limit as well as those from the time-local ansatz. Although
it would be interesting to solve the full flow equation (7.28), this is more involving
since the power spectrum itself enters into the equation and is therefore left for
future work.

In the following numerical solutions for the the power spectra are shown and com-
pared to data from 𝑁-body simulations. To this end, the numerical solutions are
computed with an infrared cut-off corresponding to the fundamental wave number
of the simulation box size, 𝑘f = 2𝜋/𝐿box. The initial power spectra are generated
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Figure 7.5: Reduced density contrast propagator obtained from the ansatz (7.49)
(upper panel) and for the viscous ansatz (7.39) (lower panel) at the
fixed point for the local-time ansatz (yellow curves) in the single-stream
approximation. Also shown is the reduced propagator obtained from the
large wave number limit (green curves). It is clearly visible that the
density propagator obtained from mapping to a viscous theory is much
less suppressed at small scales due to the absence of a coefficient in the
continuity equation.
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Figure 7.6: Reduced velocity-divergence propagator obtained from the ansatz (7.49)
(upper panel) and for the viscous ansatz (7.39) (lower panel) at the fixed
point for the local-time ansatz (yellow curves) in the single-stream ap-
proximation. Also shown is the reduced propagator obtained from the
large wave number limit (green curves). The propagators behave simi-
larly, with minor difference such as that the viscous velocity-divergence
propagator also obtains negative values.
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Figure 7.7: Density contrast auto-spectrum at the fixed point normalised to the lin-
ear one. Shown is the standard perturbation theory one-loop prediction
(black dashed curve), the functional renormalisation group (FRG) cal-
culation using the large wave number limit (green solid curve) as well as
the time-local ansatz (yellow solid curve) propagator and data from the
HR2 𝑁-body simulation (red solid curve).

at a redshift 𝑧in listed in table 7.1, using the class code [157] and for cosmological
parameters from the Wilkinson Microwave Anisotropy Probe, either from the five-
year (WMAP5) [159] or seven-year (WMAP7) [160] mission. The density contrast
auto-spectrum is compared to data from the Horizon Run 2 (HR2) 𝑁-body simu-
lations [166] while the velocity-divergence-density contrast cross-power spectrum as
well as the velocity-divergence auto-spectrum is compared to the 𝑁-body data fit of
Hahn, Angulo & Abel (HAA) [167]. This is summarised in table 7.1.

In figure 7.7 the density contrast auto-spectrum is shown at redshift 𝑧 = 0. The
density-contrast power spectrum obtained from the time-local and large wave num-
ber propagator both perform better than the standard perturbation theory one-loop
prediction and are close to the 𝑁-body power spectrum up to scales 𝑘 ≈ 0.2 ℎ/Mpc.
The result obtained when using the large wave number propagator is slightly more
accurate for small wave numbers while the result obtained from the time-local ansatz
seems to follow the standard perturbative result at very small wave numbers, before
underestimating the 𝑁-body power spectrum badly. One could conjecture that this
is due to neglecting vertex corrections in the time-local ansatz studied here, although
this is not completely clear.

In figure 7.8 the velocity-divergence-density contrast cross- and velocity-divergence
auto-spectrum are shown at redshift 𝑧 = 0. Both power spectra are much better
captured by the time-local ansatz than with the large wave number limit propagator.
For the velocity-divergence auto-spectrum the results using the time-local ansatz
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Figure 7.8: Velocity-divergence-density contrast cross-spectrum (upper panel) and
velocity-divergence auto-spectrum (lower panel) at the fixed point nor-
malised to the linear one. Shown is the standard perturbation theory
one-loop prediction (black dashed curve), the functional renormalisation
group (FRG) calculation using the large wave number limit (green solid
curve) as well as the time-local ansatz (yellow solid curve) propagator
and data from the HR2 𝑁-body simulation (red solid curve).
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7 Time-local effective dynamics with the functional renormalisation group

even captures the power spectrum within the error up to 𝑘 ≈ 0.2 ℎ/Mpc. While
this is an improvement over the standard perturbative result it is emphasised that
in chapter 6 it was shown that a major contribution to the drop in the velocity-
divergence auto-spectrum is due to the transfer of power to vorticity modes. This
typically happens at much smaller scales and the onset of the suppression seen here
seem to be due to the non-linear coupling of modes. This seems to be captured
much better by the time-local ansatz than the large wave number limit propagator.
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8 Discussion and outlook

In this thesis the gravitational dynamics of dark matter have been studied in a kinetic
theory approach that is extending the perfect pressureless fluid description. More-
over, correlation functions that quantify the statistical properties of dark matter
have been calculated with non-perturbative functional methods that allow predic-
tions in the non-linear regime of cosmic structure formation.

In chapter 2 it has been motivated that an extension of the perfect pressureless
fluid description of dark matter is necessary to account for small-scale physical phe-
nomena such as shell-crossing. While the inclusion of the velocity dispersion tensor
into the dark matter description cannot account for such phenomena microscopi-
cally, it captures these effects in terms of an effective theory description. Although
the Vlasov hierarchy is not closed under a truncation of the cumulant expansion
after the first order, it has been motivated that a truncation including the velocity
dispersion tensor can be sensible for a description of late-time dark matter dynamics.

Building on earlier work [27, 28, 35, 37], a statistical field theory formulation for
dark matter gravitational dynamics was introduced in chapter 4 which in particular
treated the inclusion of non-vanishing mean fields such as needed for a dark matter
description that includes velocity dispersion degrees of freedom. Various expan-
sion and approximation schemes of the statistical field theory were studied and the
Dyson–Schwinger equation and the functional renormalisation group were obtained.
Finally, Ward identities of the effective action that are related to mass conservation
and an extended version of Galilean invariance were derived.

In chapter 5 the Ward identities that are related to extended Galilean invariance
were used to solve the large wave number sector of the functional renormalisation
group in the single-stream approximation. The Ward identities allow to (formally)
close the flow equations of the two-point correlation functions such that these can
in principle be solved. In an approximation where only the linear power spectrum
acts as the regulator the flow equations were solved to obtain explicit expressions
for the propagator and the unequal-time power spectrum. These are suppressed on
smaller scales due to an effect known as sweeping effect in fluid turbulence. This can
be understood as the random advection of small-scale structures due to an effective
large-scale velocity background.

In chapter 6 a dark matter description that includes velocity dispersion degrees
of freedom was studied in a self-consistent one-loop approximation of the Dyson–
Schwinger equations where the full structure of the one- and two-point correlation
functions was kept and the 1PI three-point correlation functions were set to their
bare form. The resulting closed system of evolution equations for the one- and
two-point correlation functions was studied in great detail and solved in different
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8 Discussion and outlook

approximations. It has been seen that a mean field for the isotropic velocity disper-
sion naturally emerges due to the back-reaction of fluctuations onto the background.
In turn, the fluctuating fields evolve in the presence of the velocity dispersion mean
field which introduces a new scale 𝑘fs associated to the free-streaming of dark matter
particles. This leads to a characteristic suppression of the power spectra typically
associated with warm dark matter. It has been seen that the velocity dispersion
mean field is sourced stronger if initially smaller, leading to the fact that even if
dark matter starts out as been cold it naturally gets warmer over the course of time.
In particular, it has been seen that the velocity dispersion mean field can be quite
large at late-times without leaving a signature in the density contrast power spec-
trum. This is only the case for the dark matter models that start out cold and attain
a large velocity dispersion due to a strong back-reaction of the fluctuations. This
is compatible with the observed power spectrum which usually excludes warm dark
matter models due to a missing suppression of small scales structures. The signature
of shell-crossing observed in velocity and density cross-correlations was shown to be
qualitatively captured by including velocity dispersion degrees of freedom as well as
the transfer of power to vorticity modes leading to a drop in the velocity-divergence
auto-spectrum. Further, a non-perturbative determination of the velocity dispersion
and vorticity power spectrum was obtained from first principles. The corresponding
spectral indices are given by 𝑛𝜎 ≈ −1.8 and 𝑛𝜔 ≈ 2, close to the values obtained
from 𝑁-body simulations [167–169].

In chapter 7 time-local effective dynamics for dark matter were investigated using
the functional renormalisation group. To this end, a combination of a vertex and
derivative expansion of the effective action of the same order as the bare action was
employed. Since the renormalisation group flow equations are generically non-local
in time, they needed to be projected onto the local ansatz. To this end the prescrip-
tion developed in reference [37] was employed and the Laplace transform of inverse
propagators for local and non-local dynamics was studied. By mapping the non-
local flow equations onto the time-local ansatz of the effective action, the relevant
flow coefficients that capture the suppression associated with the sweeping effect
investigated in chapter 5 were identified. These lead to propagators that exhibit the
same wave number dependence that was obtained in the large wave number limit
of the functional renormalisation group. Due to the nature of the ansatz the time
dependence is naturally different than the one obtained in the approximate solution
of the large wave number limit which correspond to non-local dynamics. Finally, the
density and velocity-divergence power spectra were computed using the propagators
obtained in the large wave number limit and from the time-local ansatz. These
perform better than standard perturbation theory, although giving different results
at smaller scales. While the large wave number propagator captures the density
contrast power spectrum to a better degree, the velocity-divergence power spectrum
is better captured by the time-local ansatz.

The kinetic theory dark matter description as well as the functional methods de-
veloped and investigated in this thesis can be used for further studies extending
the results obtained here. On the one hand one could investigate the inclusion of
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a collision term in the Vlasov equation in order to account for dark matter self-
interactions. With an appropriate ansatz for the collision term an extension of the
methods employed throughout this thesis should work in a very similar manner. On
the other hand it would also be interesting to include higher-order velocity cumu-
lants into the dark matter description to investigate the stability of the cumulant
truncation employed in this thesis and understand the limits of such truncations
better.

It was shown that the Hartree–Fock approximation studied in chapter 6 qualita-
tively captures the physics that are observed in 𝑁-body simulations, ranging from
the shell-crossing signature in cross-spectra to the drop of the velocity-divergence
auto-spectrum associated with transfer of power to vorticity modes. The limitations
that were encountered are of pure computational nature due to the large separation
of the free-streaming and non-linear scale for cold dark matter. It would be most
interesting to develop an algorithm which can also solve the Hartree–Fock approx-
imation for colder dark matter models. Since this requires to cover a larger range
of wave numbers while resolving the free-streaming and non-linear scale, one could
work with an adaptive finite element method or try to use spectral methods.

Having investigated the inclusion of dark matter velocity dispersion with the
Dyson–Schwinger equation, it would be most interesting to investigate the inclu-
sion of velocity dispersion also with the functional renormalisation group. Using a
time-local ansatz for the effective action similar to the one studied in chapter 7, one
could use the insights gained from the solutions in the Hartree–Fock approximation
to find appropriate flow coefficients that capture the growth of the velocity disper-
sion mean field as well as the suppression in the propagator due to free-streaming.
A complication in this setting is that one also needs to compute the running of the
1PI one- and three-point functions, naturally leading to a more complex system of
flow equations. Nonetheless, it would be interesting to investigate whether an ef-
fective time-local ansatz can account for the signatures of shell-crossing seen in the
Hartree–Fock approximation, also because the renormalisation group flow equations
are numerically not as involving.
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A Irreducible representations of the
translation and rotation group

The main text is mostly concerned with the decomposition of vector and symmetric
second-order tensor fields on three-dimensional Euclidean space. For a sufficiently
fast decaying vector field 𝑣𝑖(𝒙), one often utilises the Helmholtz decomposition [180],

𝑣𝑖 = 𝜕𝑖 ̂𝑣 + ̂𝑣𝑖 , (A.1)

resolving the vector field into an irrotational vector field 𝜕𝑖 ̂𝑣(𝒙) and a solenoidal
vector field ̂𝑣𝑖(𝒙).1

Similarly, a symmetric second-order tensor field 𝑠𝑖𝑗(𝒙) can be resolved using the
Lifschitz decomposition [181]

𝑠𝑖𝑗 = 𝛿𝑖𝑗𝑡 + (𝜕𝑖𝜕𝑗 − 1
3𝛿𝑖𝑗∆) ̂𝑠 + 𝜕(𝑖 ̂𝑠𝑗) + ̂𝑠𝑖𝑗 , (A.2)

where 𝑡(𝒙) and ̂𝑠(𝒙) are functions and ̂𝑠𝑖(𝒙) and ̂𝑠𝑖𝑗(𝒙) are a solenoidal vector and
tensor field, respectively.

More generally, the decomposition of a 𝑛th-order symmetric tensor field can be
organised in terms of irreducible representations of the Euclidean translation and
rotation group and is discussed in detail in the following sections.

A.1 Representations of the translation and special
orthogonal group

A.1.1 Translation group

The three-dimensional translation group T(3,R) is an abelian real non-compact
Lie group and as such all irreducible complex representations are one-dimensional.
Since it is a non-compact Lie group, the infinite-dimensional unitary representation
on the space of square-integrable functions can only be decomposed in terms of a
direct integral [182],

𝐿2(R3) ≅ ∫
⊕

R3

𝐻𝒙 d𝜇(𝒙) , (A.3)

1Given suitable boundary conditions, the decomposition is unique in simply connected and con-
tractible regions of R3. In multiple connected regions an irrotational vector field is not neces-
sarily conservative and in non-contractible regions a solenoidal vector field is not necessarily the
curl of a vector potential.
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A Irreducible representations of the translation and rotation group

where 𝐻𝒙 ≅ C for all 𝒙 ∈ R3 and 𝜇 is the standard Lebesgue measure on three-
dimensional Euclidean space. This can be understood from the point of view of
harmonic analysis as the decomposition of a function 𝑓 ∈ 𝐿2(R3) into plane waves,

𝑓(𝒙) = ∫
𝒌

̂𝑓(𝒌) ei𝒌⋅𝒙 , (A.4)

where the ei𝒌⋅𝒙 span the one-dimensional irreducible unitary representations 𝐻𝒙.

A.1.2 Special orthogonal group

The special orthogonal group SO(𝑛,R) is a real compact Lie group which is abelian
for 𝑛 ≤ 2 and non-abelian for 𝑛 ≥ 3. In the following only the cases 𝑛 = 2 and
𝑛 = 3 are of interest.

For 𝑛 = 2 the special orthogonal group is abelian and thus all irreducible complex
representations are one-dimensional and may be labelled by an integer 𝑚 ∈ Z. All
non-trivial irreducible real representations are two-dimensional and may be labelled
by a positive integer 𝑚 ∈ N which is related to two (one-dimensional) conjugate
irreducible complex representations.

For 𝑛 = 3 the special orthogonal group has (2ℓ+1)-dimensional irreducible real
and complex representations for all ℓ ∈ N0, in the following denoted as 𝑉ℓ. These
can be realised on different vector spaces, the one relevant in the following is the
vector space of traceless and symmetric ℓth-order tensors.

True and pseudovector representation

The orthogonal group O(3,R) is isomorphic to the internal direct procuct SO(3,R)×
Z2 and as such each irreducible representation of SO(3,R) can be lifted to two dis-
tinct irreducible representations of O(3,R). These are the three-dimensional defining
or vector representation which lifts to the true vector representation transforming
in the alternating representation of Z2 and the pseudovector representation trans-
forming in the trivial representation of Z2.2

A.1.3 Tensor products

Generally, one can consider tensor products of representations and these naturally
can also be decomposed into irreducible representations.

In the following, the decomposition of tensor products of finite-dimensional repre-
sentations of the rotation group into irreducibles is considered. The tensor product
of two irreducible representations of SO(3,R) can be decomposed into a direct sum

2In fact, the true vector representation is the defining representation while the pseudovector rep-
resentation is the adjoint representation of O(3,R). These descend to identical representations
of SO(3,R).
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A.2 Decomposition of symmetric three-tensor fields

according to the Clebsch–Gordan decomposition [183],

𝑉ℓ1
⊗ 𝑉ℓ2

≅
ℓ1+ℓ2

⨁
ℓ=|ℓ1−ℓ2|

𝑉ℓ . (A.5)

This can be iterated to the case of a tensor product of 𝑛 representations, such that
the tensor power of the defining represenstation decomposes as

𝑉 ⊗𝑛
1 ≅

𝑛
⨁
𝑗=0

𝑉 ⊕𝑚𝑛,𝑛−𝑗
𝑛−𝑗 , (A.6)

with multiplicities [184]

𝑚𝑛,𝑗 =
⌊(𝑛−𝑗)/3⌋

∑
𝑘=0

(−1)𝑘 (𝑛
𝑘) (2𝑛 − 3𝑘 − 𝑗 − 2

𝑛 − 2 ) . (A.7)

Along similar line one can decompose the symmetric power of the defining represen-
tation into the direct sum,

Sym𝑛(𝑉1) ≅
⌊𝑛/2⌋

⨁
𝑗=0

𝑉𝑛−2𝑗 . (A.8)

A.2 Decomposition of symmetric three-tensor fields
A symmetric 𝑛th-order three-tensor field transforms as

𝑇𝑖1…𝑖𝑛
(𝒙) ↦ 𝑅𝑖1𝑗1

… 𝑅𝑖𝑛𝑗𝑛
𝑇𝑗1…𝑗𝑛

(𝑅−1 ⋅ 𝒙) , (A.9)

for all rotations 𝑅 ∈ SO(3,R) and as

𝑇𝑖1…𝑖𝑛
(𝒙) ↦ 𝑇𝑖1…𝑖𝑛

(𝒙 + 𝒂) , (A.10)

for all translations 𝒂 ∈ R3.
Assuming suitable decay conditions the tensor field can be decompose into irre-

ducible unitary representations of the translation group by a Fourier transformation,

𝑇𝑖1…𝑖𝑛
(𝒙) = ∫

𝒌
ei𝒌⋅𝒙 ̂𝑇𝑖1…𝑖𝑛

(𝒌) . (A.11)

The tensor ̂𝑇𝑖1…𝑖𝑛
(𝒌) transforms in the 𝑛th symmetric power of the defining rep-

resentation of the three-dimensional rotation group and can be decomposed into
irreducible representations according to formula (A.8). This decomposition can be
explicitly realised as [185],

̂𝑇𝑖1…𝑖𝑛
(𝒌) =

⌊𝑛/2⌋

∑
𝑗=0

T (𝑛−2𝑗)
(𝑖1…𝑖𝑛−2𝑗

(𝒌) 𝛿𝑖𝑛−2𝑗+1𝑖𝑛−2𝑗+2
… 𝛿𝑖𝑛−1𝑖𝑛) , (A.12)
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A Irreducible representations of the translation and rotation group

where the tensors T (ℓ)
𝑖1…𝑖ℓ

(𝒌) are traceless and symmetric.3 By restricting to the
subgroup of rotations in the plane perpendicular to the wave vector 𝒌 the irreducible
representations of SO(3,R) break up into irreducilbe representations of SO(2,R).
Explicitly, this can be written as,

T (ℓ)
𝑖1…𝑖ℓ

(𝒌) =
ℓ

∑
𝑚=0

T (ℓ,𝑚)
𝑖1…𝑖𝑚

(𝒌) 𝑘̂𝑖𝑚+1…𝑖ℓ
, (A.13)

where the tensors T (ℓ,𝑚)
𝑖1…𝑖𝑚

(𝒌) are transverse, traceless and symmetric and 𝑘̂𝑖1…𝑖𝑚
are

longitudinal, traceless and symmetric tensors. Finally, the full decomposition reads

𝑇𝑖1…𝑖𝑛
(𝒙) = ∫

𝒌
ei𝒌⋅𝒙

⌊𝑛/2⌋

∑
𝑗=0

𝑛−2𝑗

∑
𝑚=0

T (𝑛−2𝑗,𝑚)
(𝑖1…𝑖𝑚

(𝒌) 𝑘̂𝑖𝑚+1…𝑖𝑛−2𝑗
𝛿𝑖𝑛−2𝑗+1𝑖𝑛−2𝑗+2

… 𝛿𝑖𝑛−1𝑖𝑛) .

(A.14)
Explicitly a vector field is decomposed as

𝑣𝑖(𝒙) = ∫
𝒌

ei𝒌⋅𝒙 [ ̂𝑣𝑖(𝒌) + i 𝑘𝑖 ̂𝑣(𝒌)] , (A.15)

and a symmetric second-order tensor field is decomposed

𝑠𝑖𝑗(𝒙) = ∫
𝒌

ei𝒌⋅𝒙 [ ̂𝑠𝑖𝑗(𝒌) + i 𝑘𝑖 ̂𝑠𝑗(𝒌) + i 𝑘𝑗 ̂𝑠𝑖(𝒌) − 3
2(𝑘𝑖𝑘𝑗 − 1

3𝛿𝑖𝑗𝑘2) ̂𝑠(𝒌) + 𝛿𝑖𝑗 ̂𝑡(𝒌)] ,

(A.16)
where prefactors are inserted for convenience to invert the Fourier transforma-
tion. Inverting the Fourier transformation one obtains the decompositions (A.1)
and (A.2). Often one also writes a solenoidal vector field as the curl of a vector
potential,

̂𝑣𝑖(𝒌) = 𝜖𝑖𝑗𝑘 i 𝑘𝑗
̂𝐴𝑘(𝒌) , 𝑣𝑖(𝒙) = 𝜖𝑖𝑗𝑘𝜕𝑗𝐴𝑘(𝒙) , (A.17)

where the vector potential now transforms in the pseudovector representation.

3This decomposition is easily generalised to a non-symmetric 𝑛th-order tensor field by using the
decomposition (A.6).
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B Langevin dynamics with stochastic
initial conditions

In this section the Martin–Siggia–Rose/Janssen–de Dominicis formalism [120–123] is
reviewed in the (1+0)-dimensional setting with some applications for a cubic inter-
action term in the action which is structurally speaking the closest to the equations
of motion studied in cosmology.

B.1 Existence and uniqueness
Consider the first-order ordinary differential equation

d𝜙(𝑡)
d𝑡

+ 𝐹(𝜙(𝑡)) = 0 , (B.1)

where it is assumed that 𝐹(𝜙) is locally Lipschitz continuous. Given some initial
condition 𝜙(𝑡in) = 𝜙in the Picard–Lindelöf theorem [186, 187] guarantees the exis-
tence and uniqueness of a solution 𝜙sol(𝑡) on an interval [𝑡in − 𝑇 , 𝑡in + 𝑇 ] for some
𝑇 > 0 although 𝑇 may depend on 𝜙in.

As a practical example through this section, the Riccati equation with constant
coefficients is studied. That is, 𝐹(𝜙) = −𝜇𝜙 + 𝑔𝜙2 where 𝜇, 𝑔 > 0 without loss of
generality. Structurally speaking, this is also the closest to the cosmological setting
studied in the main text, that is one deal with linear and quadratic terms in the
equations of motion.1 For any initial condition 𝜙in one can find the (locally unique)
solution

𝜙sol(𝑡) = e𝜇(𝑡−𝑡in) 𝜙in

1 + 𝑔
𝜇𝜙in[e𝜇(𝑡−𝑡in) − 1]

. (B.2)

The solution has a (possible) finite escape time 𝑡 = 𝑡in + 𝑡∗ with

𝑡∗(𝜙in) = 1
𝜇

ln(1 − 𝜇
𝑔𝜙in ) , (B.3)

provided 𝜇/(𝑔𝜙in) > 1. That is, for 𝜙in > 0 there is a (possible) blow-up at some
time 𝑡 < 𝑡in while for 𝜙in > 0 there is a (definite) blow-up at some time 𝑡 > 𝑡in and
for 𝜙in = 0 there is the a global trivial vanishing solution.

1It is emphasised that in the cosmological setting studied in chapter 4 the equations of motion
are a system of non-linear hyperbolic-elliptic partial differential equations and thus the results
derived here cannot simply be transferred to there.
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B Langevin dynamics with stochastic initial conditions

B.2 Response functions
To study the response of a system described by equation (B.1), one supplies a source
current

d𝜙(𝑡)
d𝑡

+ 𝐹(𝜙(𝑡)) = 𝐾̂(𝑡) , (B.4)

where 𝐾̂(𝑡) is interpreted as an input impulse of a system.2 Interpreting the solution
as the response of the system, one can expand the solution as a Volterra series [188]

𝜙sol
𝐾 (𝑡) =

∞
∑
𝑛=0

1
𝑛!

∫
𝑡fi

𝑡in

d𝑡1 … ∫
𝑡fi

𝑡in

d𝑡𝑛 𝑅(𝑛)(𝑡, 𝑡1, … , 𝑡𝑛) 𝐾̂(𝑡1) … 𝐾̂(𝑡𝑛) , (B.5)

where
𝑅(0)(𝑡) = 𝜙sol(𝑡) , (B.6)

is the solution in the absence of a source current and the Volterra kernels for 𝑛 > 0

𝑅(𝑛)(𝑡, 𝑡1, … , 𝑡𝑛) = 𝛿𝑛𝜙sol
𝐾 (𝑡)

𝛿𝐾̂(𝑡1) … 𝛿𝐾̂(𝑡𝑛)
∣
𝐾̂(𝑡)=0

, (B.7)

can be regarded as generalised non-linear response functions. Since the response
of an impulse is causal, the response functions only have support for 𝑡 > 𝑡𝑖 for all
𝑖 ∈ {1, … , 𝑛}. In the case of a generic non-linear 𝐹(𝜙), the Volterra kernels are
non-vanishing and the series expansion has a finite radius of convergence depending
on the explicit form of 𝐹(𝜙).

As an illustrative example consider the linear case 𝐹(𝜙) = −𝜇𝜙 with the solution

𝜙sol
𝐾 (𝑡) = e𝜇(𝑡−𝑡in) 𝜙in + ∫

𝑡

𝑡in

d𝑡′ e𝜇(𝑡−𝑡′) 𝐾̂(𝑡′) . (B.8)

This obviously gives

𝑅(0)(𝑡) = e𝜇(𝑡−𝑡in) 𝜙in , 𝑅(1)(𝑡, 𝑡′) = 𝜃(𝑡 − 𝑡′) e𝜇(𝑡−𝑡′) , (B.9)

while all higher-order responses vanish, as expected for a linear system. In particular,
notice that the linear response function is causal.

Although no explicit solution to the Riccati equation with a time-dependent source
current can be given, the Volterra series exists, provided the solution does not blow
up, within some characteristic radius of convergence of the source currents. More
specifically, for 𝐹(𝜙) an analytic function (such as the examples studied here) and no
finite escape time, a Volterra series exists and converges uniformly and absolutely
on any finite time interval within a characteristic radius of convergence (possibly
depending on the length of the time interval) for sufficiently smooth and bounded
source currents [189,190] and can also be extended to system with finite escape time
at least on time intervals before the blow-up [191]. Often, the Volterra kernels and
source currents are of more general type such as tempered distributions [192,193].

2The presence of a (continuous) source current does not alter the local existence and uniqueness
of a solution.

136



B.3 Random initial conditions

B.3 Random initial conditions

In the following the initial conditions are assumed to be random variables that follow
a distribution characterised by the probability density function 𝑃(𝜙in). One is then
interested in expectation values,

⟨O(𝜙in)⟩in ≔ ∫
R

d𝜙in O(𝜙in) 𝑃 (𝜙in) , (B.10)

where the operator O is typically taken to be a monomial in the solution, in order
to compute moments of the (time-dependent) field 𝜙sol(𝑡), such as the mean field
or the covariance of two fields (possibly at unequal times). That is, due to the
random initial conditions, the field 𝜙sol(𝑡) is a stochastic process and moreover its
distribution can vary from the initial one for any non-linear 𝐹(𝜙).

In the following the distribution function is mostly taken to be a normal distribu-
tion with mean 𝛷in and variance 𝐶 in,

𝑃(𝜙in) = 1√
2𝜋𝐶 in

exp{−1
2

(𝜙in − 𝛷in)2

𝐶 in } . (B.11)

Going back to the exemplary Riccati equation with solution, one can realise that
expectation values such as the mean or the covariance function are not well-defined
on any fixed time interval from 𝑡in to 𝑡fi. That is, in order to compute the expec-
tation values, one has to average over all initial conditions 𝜙in and in particular
over all negative initial conditions. Since each initial condition on the negative line
is associated to a (finite) blow-up time, there is no definite time interval on which
solutions to all initial conditions exist. In particular this implies that the mean field
and unequal-time covariance is not defined while the equal-time covariance function
diverges.

From a physical point of view one would argue that at large enough field values
some mechanism comes to rescue before the finite blow-up time. A rather simple
extension would be 𝐹(𝜙) = −𝜇𝜙 + 𝑔𝜙2 + 𝜖𝜙3 with 𝜖 > 0 such that solutions stay
finite.

B.4 Asymptotic expansions

Finally one can compute expectation values perturbatively. That is, the solution is
expanded in terms of its initial condition and expectation values are computed order
by order.3 More explicitly that is,

𝜙sol(𝑡) =
∞

∑
𝑛=0

1
𝑛!

𝜕𝑛𝜙sol(𝑡)
𝜕(𝜙in)𝑛 ∣

𝜙in=0

(𝜙in)𝑛 , (B.12)

3One can also work perturbatively in couplings, although here it is preferred to not do so.

137



B Langevin dynamics with stochastic initial conditions

similar to the Volterra series for response functions. The series expansion naturally
has a radius of convergence within which the series convergence absolutely and
uniformly.

Computing expectation values perturbatively is usually done as an asymptotic
series, that is e.g. for the mean field

⟨𝜙sol(𝑡)⟩in ∼
∞

∑
𝑛=0

1
𝑛!

𝜕𝑛𝜙sol(𝑡)
𝜕(𝜙in)𝑛 ∣

𝜙in=0

⟨(𝜙in)𝑛⟩in . (B.13)

Since the series expansion convergence absolutely and uniformly only within the
radius of convergence, taking the series expansion and taking expectation value
in general cases does not commute. Nevertheless the expectation values can be
understood as an asymptotic series, in the sense that for a distribution which is
strongly peaked within the radius of convergence might actually provide a sufficient
good approximation to the true expectation value.

An extreme example would be a degenerate distribution which is localised within
the region of convergence. Smoothing the degenerate distribution to a normal distri-
bution (again strongly peaked within the radius of convergence) naturally cannot be
exact since one averages over values outside the region of convergence. Nevertheless,
it might give a reasonable approximation taking only a finite amount of terms into
account. Generally, one usually has an optimal amount of terms which leads to the
smallest error compared to the exact result.

Returning to the Riccati equation example one encounters another peculiarity
which one should be aware of. The expansion reads

𝜙sol(𝑡) = e𝜇(𝑡−𝑡in)
∞

∑
𝑛=0

(−1)𝑛( 𝑔
𝜇

)
𝑛
[e𝜇(𝑡−𝑡in) − 1]

𝑛
(𝜙in)𝑛+1 , (B.14)

and it is easy to see that the radius of convergence is given by

|𝜙in| < 𝜇
𝑔

[e𝜇(𝑡−𝑡in) − 1]
−1

, (B.15)

for all 𝑡in ≤ 𝑡 < 𝑡in +𝑡∗(𝜙in). The limit 𝑔 → 0 and 𝑡 = 𝑡in naturally are the cases with
an infinite radius of convergence, while for all finite times and an interacting theory
one naturally has a finite radius of convergence. As was already pointed out, odd
moments of the field are undefined while even moments are simply divergent. This
is a direct consequence of the finite escape time. Nonetheless, the series expansion
(B.14) is valid within the region of convergence (B.15). Computing the average of
equation (B.14) one obtains an asymptotic series for the mean field, although the
left-hand side is not well-defined. Using the asymptotic series, one can now actually
compute the mean field and covariance function, although the exact results is not
even existent or simple divergent. That is, while the asymptotic series can provide
a suitable way of approximating expectation values, it should be treated with care.
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B.5 Stochastic processes

B.5 Stochastic processes
In order to build up the Martin–Siggia–Rose/Janssen–de Dominicis formalism one
has to discretise the evolution equation. That is, consider the partition 𝑡 ∈ {𝑡𝑛 ∶
𝑛 ∈ {1, … , 𝑁}} where 𝑡𝑛 = 𝑡in + (𝑛 − 1)𝜖 with 𝜖 = (𝑡fi − 𝑡in)/(𝑁 − 1) and abbreviate
𝜙𝑛 = 𝜙(𝑡𝑛) and 𝐹𝑛 = 𝐹(𝜙(𝑡𝑛)). Then one can express the dynamical evolution of
the fields together with the initial conditions as

∆𝜖𝜙𝑛 + (1 − 𝜆)𝐹𝑛−1 + 𝜆𝐹𝑛 = (1 − 𝜆)𝐾̂𝑛−1 + 𝜆𝐾̂𝑛 + 𝛿𝑛1
𝜖

𝜙in , (B.16)

with the forward finite difference derivative

∆𝜖𝜙𝑛 = 𝜙𝑛 − 𝜙𝑛−1
𝜖

, (B.17)

for 𝑛 ∈ {1, … , 𝑁} with 𝜆 ∈ [0, 1] and 𝜙0 = 0 as well as 𝐾̂0 = 0. For 𝑛 = 1 this yields

𝜙sol
𝐾,1 = 𝜙in + O(𝜖) , (B.18)

which recovers the initial conditions in the continuum limit 𝜖 → 0. The correspond-
ing continuum limit is given by

d𝜙(𝑡)
d𝑡

+ 𝐹(𝜙(𝑡)) = 𝐾̂(𝑡) + 𝛿(𝑡 − 𝑡in) 𝜙in , (B.19)

which in this context is a Langevin equation [194] where the noise term is localised
at initial time. That is, in contrast to equation (B.1) the initial condition are forced
within the equations of motion.

Consider the linear case 𝐹(𝜙) = −𝜇𝜙. In this case the linear recursion relation
(B.16) is uniquely solved by

𝜙sol
𝐾̂,𝑛

= 𝑐𝑛

1 − 𝜖𝜆𝜇
𝜙in + 𝜖

1 − 𝜖𝜆𝜇

𝑛−1
∑
𝑚=0

𝑐𝑛−𝑚−1[(1 − 𝜆)𝐾̂𝑚 + 𝜆𝐾̂𝑚+1] , (B.20)

where
𝑐 = 1 + 𝜖(1 − 𝜆)𝜇

1 − 𝜖𝜆𝜇
. (B.21)

It is now easy to verify that in the continuum limit 𝜖 → 0 one obtains the solution
(B.8) using

e𝑥 = lim
𝑁→∞

(1 + 𝑥
𝑁

)
𝑁

. (B.22)

Further one can now make sense of the discretised linear response function as

𝑅(1)
𝑛𝑚 ≔

𝜕𝜙sol
𝐾̂,𝑛

𝜖𝜕𝐾̂𝑚
=

⎧{{{
⎨{{{⎩

𝑐𝑛−𝑚

(1 − 𝜖𝜆𝜇)(1 + 𝜖(1 − 𝜆)𝜇)
for 𝑛 > 𝑚

𝜆
1 − 𝜖𝜆𝜇

for 𝑛 = 𝑚

0 for 𝑛 < 𝑚

, (B.23)
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which in the continuum limit 𝜖 → 0 leads to

𝑅(1)(𝑡, 𝑡′) =
⎧{
⎨{⎩

e𝜇(𝑡−𝑡′) for 𝑡 > 𝑡′

𝜆 for 𝑡 = 𝑡′

0 for 𝑡 < 𝑡′
. (B.24)

That is, the stochastic differential equation depends on the discretisation procedure
and amounts to the prescription 𝜃(0) = 𝜆. In the following we employ the Itô
convention 𝜆 = 0.

B.6 Martin–Siggia–Rose/Janssen–de Dominicis formalism

The construction is loosely based on the review [127]. Writing 𝐾̂𝑛 = i ̂𝐽𝑛 for later
convenience, the relevant moment-generating function is given by [120–123,195,196]

𝑍(𝐽, ̂𝐽) = ⟨e𝜖𝐽𝑛𝜙sol
̂𝐽,𝑛⟩in = ∫

R

d𝜙in 𝑃(𝜙in) e𝜖𝐽𝑛𝜙sol
̂𝐽,𝑛 , (B.25)

where factors of 𝜖 are conveniently introduced in order to take the continuum limit
at the end and double appearing indices are summed over.4 This can be rewritten
using delta functions to

𝑍(𝐽, ̂𝐽) = ∫
R

d𝜙in 𝑃(𝜙in) ∫
R𝑁

d𝑁𝜙 [
𝑁

∏
𝑛̄=1

𝛿(𝜙𝑛̄ − 𝜙sol
̂𝐽,𝑛̄

)] e𝜖𝐽𝑛𝜙𝑛 . (B.26)

Then one uses the delta function identity (and thereby assumes a unique solution)
𝑁

∏
𝑛=1

𝛿(𝜙𝑛 − 𝜙sol
̂𝐽,𝑛

) = |det(J )|
𝑁

∏
𝑛=1

𝛿(𝐸𝑛) , (B.27)

where

𝐸𝑛 = ∆𝜖𝜙𝑛 + (1 − 𝜆)𝐹𝑛−1 + 𝜆𝐹𝑛 − (1 − 𝜆)𝐾̂𝑛−1 − 𝜆𝐾̂𝑛 − 𝛿𝑛1
𝜖

𝜙in , (B.28)

are the discretised evolution equations and the Jacobian is given by

J𝑚𝑛 ≔ 𝜕𝐸𝑚
𝜕𝜙𝑛

=
𝛿𝑚𝑛 − 𝛿𝑚(𝑛−1)

𝜖
+ (1 − 𝜆)𝐹 ′

𝑛−1𝛿𝑚(𝑛−1) + 𝜆𝐹 ′
𝑛𝛿𝑚𝑛 , (B.29)

where 𝐹 ′(𝜙) ≔ 𝜕𝐹(𝜙)/𝜕𝜙. Since the Jacobian is of upper triangular form, the
determinant is given by

det(J ) = 1
𝜖𝑁

𝑁
∏
𝑛=1

(1 + 𝜖𝜆𝐹 ′
𝑛) , (B.30)

4It is assumed that the moment-generating functional exists, that is the solution exists in the time
interval for all initial conditions and the distribution function is ‘nice’ enough.
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B.6 Martin–Siggia–Rose/Janssen–de Dominicis formalism

and since the second term can be made as small as desired by choosing 𝜖 small
enough, the determinant can be assumed to be positive without loss of generality.
Understanding the delta functions as a tempered distribution it can be expressed in
terms of its Fourier transform as

𝛿(𝐸𝑛) = 𝜖𝑁 ∫
R𝑁

d𝑁 ̂𝜙
(2𝜋)𝑁 ei𝜖 ̂𝜙𝑛𝐸𝑛 , (B.31)

such that equation the delta functions can be written as

𝑁
∏
𝑛=1

𝛿(𝜙𝑛 − 𝜙sol
̂𝐽,𝑛

) = |det(𝜖J )| ∫
R𝑁

d𝑁 ̂𝜙
(2𝜋)𝑁 ei𝜖 ̂𝜙𝑛𝐸𝑛 . (B.32)

Here one can already see, that using equation (B.30) lead to the determinant being
unity for Itô discretisation, 𝜆 = 0. For a general discretisation one can exponentiate
the determinant using the Faddeev–Popov method by introducing two Grassmann
variables, 𝜃𝑛 and ̄𝜃𝑛. Explicitly, this reads

det(𝜖J ) = ∫
𝛬𝑁

d𝑁𝜃 ∫
𝛬𝑁

d𝑁 ̄𝜃 e𝜖 ̄𝜃𝑛[∆𝜖𝜃𝑛+(1−𝜆)𝐹 ′
𝑛−1𝜃𝑛−1+𝜆𝐹 ′

𝑛𝜃𝑛] (B.33)

where 𝜃0 ≔ 0. Plugging all of the above together one obtains the final result

𝑍(𝐽, ̂𝐽) = ∫
R

d𝜙in 𝑃(𝜙in) ∫
R𝑁

d𝑁𝜙 ∫
R𝑁

d𝑁 ̂𝜙
(2𝜋)𝑁 ∫

𝛬𝑁

d𝑁𝜃 ∫
𝛬𝑁

d𝑁 ̄𝜃

× exp{i 𝜖 ̂𝜙𝑛[∆𝜖𝜙𝑛 + (1 − 𝜆)𝐹𝑛−1 + 𝜆𝐹𝑛 − 𝛿𝑛1
𝜖

𝜙in]}

× exp{𝜖 ̄𝜃𝑛[∆𝜖𝜃𝑛 + (1 − 𝜆)𝐹 ′
𝑛−1𝜃𝑛−1 + 𝜆𝐹 ′

𝑛𝜃𝑛]}

× exp{𝜖𝐽𝑛𝜙𝑛 + 𝜖[(1 − 𝜆) ̂𝐽𝑛−1 + 𝜆 ̂𝐽𝑛] ̂𝜙𝑛} ,

(B.34)

where the second line is the dynamical part, the third line is the ghost part due to
the discretisation of stochastic differential equation and the last line are the source
currents. In the case of Gaussian initial conditions the integral over the initial fields
can be performed explicitly to arrive at

𝑍(𝐽, ̂𝐽) = ∫
R𝑁

d𝑁𝜙 ∫
R𝑁

d𝑁 ̂𝜙
(2𝜋)𝑁 ∫

𝛬𝑁

d𝑁𝜃 ∫
𝛬𝑁

d𝑁 ̄𝜃 e−𝑆−𝑆FP esources , (B.35)

with the Martin–Siggia–Rose/Janssen–de Dominicis action

𝑆(𝜙, ̂𝜙) = − i 𝜖 ̂𝜙𝑛[∆𝜖𝜙𝑛 + (1 − 𝜆)𝐹𝑛−1 + 𝜆𝐹𝑛] + i ̂𝜙1𝛷in + 1
2

̂𝜙1𝐶 in ̂𝜙1 , (B.36)

and the Faddeev–Popov action

𝑆FP(𝜙, 𝜃, ̄𝜃) = −𝜖 ̄𝜃𝑛[∆𝜖𝜃𝑛 + (1 − 𝜆)𝐹 ′
𝑛−1𝜃𝑛−1 + 𝜆𝐹 ′

𝑛𝜃𝑛] , (B.37)
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B Langevin dynamics with stochastic initial conditions

and the sources

sources = 𝜖𝐽𝑛𝜙𝑛 + 𝜖[(1 − 𝜆) ̂𝐽𝑛−1 + 𝜆 ̂𝐽𝑛] ̂𝜙𝑛 . (B.38)

To take the continuum limit, provided it exists in some sensible way, one should
specify the function space that is integrated over in order to take care of issues such
as boundary conditions. One then obtains

𝑍[𝐽, ̂𝐽 ] = ∫D𝜙 ∫D ̂𝜙 ∫D𝜃 ∫D ̄𝜃 e−𝑆−𝑆FP esources , (B.39)

with the Martin–Siggia–Rose/Janssen–de Dominicis action

𝑆[𝜙, ̂𝜙] = − i ∫
𝑡fi

𝑡in

d𝑡 ̂𝜙(𝑡)[𝜕𝑡𝜙(𝑡) + 𝐹(𝜙(𝑡))] + i ̂𝜙(𝑡in) 𝛷in + 1
2

̂𝜙(𝑡in) 𝐶 in ̂𝜙(𝑡in) , (B.40)

and the Faddeev–Popov action

𝑆FP[𝜙, 𝜃, ̄𝜃] = − ∫
𝑡fi

𝑡in

d𝑡 ̄𝜃(𝑡)[𝜕𝑡𝜃(𝑡) + 𝐹 ′(𝜙(𝑡)) 𝜃(𝑡)] , (B.41)

and the sources

sources = ∫
𝑡fi

𝑡in

d𝑡 [𝐽(𝑡) 𝜙(𝑡) + ̂𝐽(𝑡) ̂𝜙(𝑡)] . (B.42)

In the case of Itô discretisation the ghost part can be integrate to unity and one
obtains

𝑍[𝐽, ̂𝐽 ] = ∫D𝜙 ∫D ̂𝜙 e−𝑆 esources , (B.43)

which is the generating functional started off with in equation (4.13) in the main
text.
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C Bare vertices

The bare vertices of the field content 𝜓𝑎(𝜏, 𝒙) = (𝛿, 𝑢𝑖, 𝜎𝑖𝑗) are given by

𝛾𝛿𝑢𝑖𝛿(𝒙 − 𝒙′, 𝒙 − 𝒙″) = 1
2 𝜕𝑖[𝛿(𝒙 − 𝒙′) 𝛿(𝒙 − 𝒙″)] ,

𝛾𝑢𝑖𝑢𝑗𝑢𝑘
(𝒙 − 𝒙′, 𝒙 − 𝒙″) = 1

2 [𝛿𝑖𝑘 𝛿(𝒙 − 𝒙′) 𝜕𝑗𝛿(𝒙 − 𝒙″)

+ 𝛿𝑖𝑗 𝜕𝑘𝛿(𝒙 − 𝒙′) 𝛿(𝒙 − 𝒙″)] ,

𝛾𝑢𝑖𝜎𝑗𝑘𝛿(𝒙 − 𝒙′, 𝒙 − 𝒙″) = 1
2 𝛿𝑖𝑗 𝛿(𝒙 − 𝒙′) 𝜕𝑘𝛿(𝒙 − 𝒙″) ,

𝛾𝜎𝑖𝑗𝜎𝑘𝑙𝑢𝑚
(𝒙 − 𝒙′, 𝒙 − 𝒙″) = 1

2 [𝛿𝑖𝑘𝛿𝑗𝑙𝜕𝑚𝛿(𝒙 − 𝒙′) 𝛿(𝒙 − 𝒙″)

+ (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙)𝛿(𝒙 − 𝒙′) 𝜕𝑙𝛿(𝒙 − 𝒙″)] .

(C.1)

Similarly, the bare vertices of a description including higher-order velocity cumulants
can be obtained from the non-linear terms of the evolution equation (2.88).

The bare vertices of the field content (6.1) used in chapter 6 are obtained by
decomposing the bare vertices (C.1) using the decompositions (3.20) and (3.24).
With 𝒌 = 𝒌1 + 𝒌2, one finds that the 𝛾𝛿𝑢𝑖𝛿 vertex decomposes into the two vertices

𝛾121(𝒌1, 𝒌2) = −𝒌 ⋅ 𝒌1
2𝑘2

1
,

𝛾15𝑖1(𝒌1, 𝒌2) = −(𝒌1 × 𝒌2)𝑖
2𝑘2

1
,

(C.2)

the 𝛾𝑢𝑖𝑢𝑗𝑢𝑘
vertex into the five vertices

𝛾222(𝒌1, 𝒌2) = −𝑘2 (𝒌1 ⋅ 𝒌2)
2𝑘2

1𝑘2
2

,

𝛾225𝑖
(𝒌1, 𝒌2) = −[𝑘2

1 + 2(𝒌1 ⋅ 𝒌2)](𝒌1 × 𝒌2)𝑖
2𝑘2

1𝑘2
2

,

𝛾25𝑖5𝑗
(𝒌1, 𝒌2) =

(𝒌1 × 𝒌2)𝑖(𝒌1 × 𝒌2)𝑗

𝑘2
1𝑘2

2
,

𝛾5𝑖25𝑗
(𝒌1, 𝒌2) =

𝑘1,𝑖𝑘1,𝑗 − 𝛿𝑖𝑗(𝒌 ⋅ 𝒌1)
2𝑘2

1
,

𝛾5𝑖5𝑗5𝑘
(𝒌1, 𝒌2) =

[𝑘2
2 − 𝑘2

1](𝒌1 × 𝒌2)𝑖𝛿𝑗𝑘 − 𝑘2
2𝜖𝑖𝑗𝑙𝑘𝑙𝑘1,𝑘 − 𝑘2

1𝜖𝑖𝑘𝑙𝑘𝑙𝑘2,𝑗

2𝑘2
1𝑘2

2
,

(C.3)
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the 𝛾𝑢𝑖𝜎𝑗𝑘𝛿 vertex into the four vertices

𝛾231(𝒌1, 𝒌2) = 𝒌 ⋅ 𝒌2
2𝑘2

1
,

𝛾241(𝒌1, 𝒌2) = 3(𝒌 ⋅ 𝒌1)(𝒌1 ⋅ 𝒌2) − 𝑘2
1(𝒌 ⋅ 𝒌2)

4𝑘4
1

,

𝛾5𝑖31(𝒌1, 𝒌2) = −(𝒌1 × 𝒌2)𝑖
2𝑘2

1
,

𝛾5𝑖41(𝒌1, 𝒌2) = [𝑘2
1 + 3(𝒌1 ⋅ 𝒌2)](𝒌1 × 𝒌2)𝑖

4𝑘4
1

,

(C.4)

and the 𝛾𝜎𝑖𝑗𝜎𝑘𝑙𝑢𝑚
vertex into the eight vertices

𝛾332(𝒌1, 𝒌2) = −3𝑘2(𝒌1 ⋅ 𝒌2) + 2𝑘2𝑘2
2

6𝑘2
1𝑘2

2
,

𝛾335𝑖
(𝒌1, 𝒌2) = −𝑘2(𝒌1 × 𝒌2)𝑖

2𝑘2
1𝑘2

2
,

𝛾342(𝒌1, 𝒌2) = 𝑘2𝑘2
1𝑘2

2 − 3𝑘2(𝒌1 ⋅ 𝒌2)2

6𝑘4
1𝑘2

2
,

𝛾345𝑖
(𝒌1, 𝒌2) = −𝑘2(𝒌1 ⋅ 𝒌2)(𝒌1 × 𝒌2)𝑖

2𝑘4
1𝑘2

2
,

𝛾432(𝒌1, 𝒌2) = 𝑘2𝑘2
2 − 3(𝒌 ⋅ 𝒌2)2

3𝑘2
1𝑘2

2
,

𝛾435𝑖
(𝒌1, 𝒌2) = −(𝒌 ⋅ 𝒌2)(𝒌1 × 𝒌2)𝑖

𝑘2
1𝑘2

2
,

𝛾442(𝒌1, 𝒌2) = −18(𝒌 ⋅ 𝒌1)(𝒌 ⋅ 𝒌2)(𝒌1 ⋅ 𝒌2) + 9(𝒌 ⋅ 𝒌1)2(𝒌1 ⋅ 𝒌2)
12𝑘4

1𝑘2
2

+ 6𝑘2(𝒌1 ⋅ 𝒌2)2 + 6𝑘2
1(𝒌 ⋅ 𝒌2)2 + 3𝑘2𝑘2

1(𝒌1 ⋅ 𝒌2) − 2𝑘2𝑘2
1𝑘2

2
12𝑘4

1𝑘2
2

,

𝛾445𝑖
(𝒌1, 𝒌2) = −

[6(𝒌 ⋅ 𝒌1)(𝒌1 ⋅ 𝒌2) + 3(𝒌 ⋅ 𝒌1)2 − 2𝑘2(𝒌1 ⋅ 𝒌2)](𝒌1 × 𝒌2)𝑖
4𝑘4

1𝑘2
2

+
[2𝑘2

1(𝒌 ⋅ 𝒌2) + 𝑘2𝑘2
1](𝒌1 × 𝒌2)𝑖

4𝑘4
1𝑘2

2
.

(C.5)
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D Numerical implementation of the
Hartree–Fock approximation

The system of equations (6.5), (6.6) and (6.7) with the source term (6.10), the
Hartree self-energy (6.11) and the Fock self-energies (6.12) and (6.13) is numerically
solved using the Runge–Kutta–Cash–Karp method [149–151] adapted to Volterra
integro-differential equations [152]. The wave number dependence of the propagator
and power spectrum is interpolated using a finite element method and described in
detail below.

The wave number interval is mapped 𝜒 ∶ [𝑘min, 𝑘max) → [−1, 1) with

𝜒(𝑘) ≔ (𝑘/𝑘∗ − 𝑘min/𝑘∗
1 − 𝑘/𝑘max

− 1)/(𝑘/𝑘∗ − 𝑘min/𝑘∗
1 − 𝑘/𝑘max

+ 1) , (D.1)

where 𝑘∗ = 0.25 ℎ/Mpc is chosen here. The mapping (D.1) naturally allows for the
limits 𝑘min → 0 and/or 𝑘max → ∞. An grid over the variable 𝜒 is then obtained
from the Chebychev nodes

𝜒𝑛 = cos(
𝑛 + 1

2
𝑁𝑘 + 2

𝜋) , (D.2)

with 𝑛 ∈ {0, … , 𝑁𝑘 + 1} which infers a wave number grid 𝑘𝑛 via the inverse of the
mapping (D.1). The interpolation over this lattice is done with a basis of B-spines
of order one which are the triangular functions

𝑇𝑛(𝜒) =

⎧
{
{
⎨
{
{
⎩

𝜒 − 𝜒𝑛−1
𝜒𝑛 − 𝜒𝑛−1

if 𝜒𝑛−1 ≤ 𝜒 < 𝜒𝑛
𝜒𝑛+1 − 𝜒
𝜒𝑛+1 − 𝜒𝑛

if 𝜒𝑛 ≤ 𝜒 < 𝜒𝑛+1

0 elsewise

, (D.3)

for 𝑛 ∈ {1, … , 𝑁𝑘} which fulfil the orthogonality condition 𝑇𝑛(𝜒𝑛̄) = 𝛿𝑛𝑛̄. The
propagator and power spectrum are expand in the triangular basis functions as

𝐺R
𝑎𝑏(𝜂, 𝜂′, 𝑘) =

𝑁𝑘

∑
𝑛=1

𝐺R
𝑛,𝑎𝑏(𝜂, 𝜂′) 𝑇𝑛(𝜒(𝑘)) ,

𝑃𝑎𝑏(𝜂, 𝜂′, 𝑘) =
𝑁𝑘

∑
𝑛=1

𝑃𝑛,𝑎𝑏(𝜂, 𝜂′) 𝑇𝑛(𝜒(𝑘)) .

(D.4)
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D Numerical implementation of the Hartree–Fock approximation

The source term (6.10) can then be written as

𝑄(𝜂) =
𝑁𝑘

∑
𝑛=1

𝐴𝑄
𝑛,𝑎𝑏 𝑃𝑛,𝑎𝑏(𝜂, 𝜂) (D.5)

while the Fock self-energies (6.12) and (6.13) are

𝛴F
𝑎𝑏(𝜂, 𝜂′, 𝑘𝑛) =

𝑁𝑘

∑
𝑛̄=1

𝑁𝑘

∑
𝑛̃=1

𝐴F
𝑛𝑛̄𝑛̃,𝑎𝑐𝑒𝑓𝑑𝑏 𝑃𝑛̄,𝑐𝑑(𝜂, 𝜂′) 𝐺R

𝑛̃,𝑒𝑓(𝜂, 𝜂′) ,

𝛱𝑎𝑏(𝜂, 𝜂′, 𝑘𝑛) =
𝑁𝑘

∑
𝑛̄=1

𝑁𝑘

∑
𝑛̃=1

𝐴𝛱
𝑛𝑛̄𝑛̃,𝑎𝑐𝑒𝑏𝑓𝑑 𝑃𝑛̄,𝑐𝑑(𝜂, 𝜂′) 𝑃𝑛̃,𝑒𝑓(𝜂, 𝜂′) .

(D.6)

The array which stores the source term is given by

𝐴𝑄
𝑛,𝑎𝑏 = ∫

𝒒
𝛾3𝑎𝑏(𝒒, −𝒒) 𝑇𝑛(𝜒(𝑞)) , (D.7)

while the retarded Fock self-energy is stored in

𝐴F
𝑛𝑛̄𝑛̃,𝑎𝑐𝑒𝑓𝑑𝑏 = 4 ∫

𝒒
𝛾𝑎𝑐𝑒(𝒒, 𝒌 − 𝒒) 𝑇𝑛̃(𝜒(|𝒌 − 𝒒|)) 𝛾𝑓𝑑𝑏(−𝒒, 𝒌) 𝑇𝑛̄(𝜒(𝑞)) ,

𝐴𝛱
𝑛𝑛̄𝑛̃,𝑎𝑐𝑒𝑏𝑓𝑑 = 2 ∫

𝒒
𝛾𝑎𝑐𝑒(𝒒, 𝒌 − 𝒒) 𝑇𝑛̃(𝜒(|𝒌 − 𝒒|)) 𝛾𝑏𝑓𝑑(−𝒌 + 𝒒, −𝒒) 𝑇𝑛̄(𝜒(𝑞)) ,

(D.8)

where |𝒌| = 𝑘𝑛. To compute the arrays (D.7) and (D.8) the integration is shifted to
𝒒′ = 𝒒 − 𝒌/2 and evaluated using the elliptical coordinates [28,32]

𝒒′ = 𝑘
2

⎛⎜
⎝

sinh(𝜒) sin(𝜃) cos(𝜑)
sinh(𝜒) sin(𝜃) sin(𝜑)

cosh(𝜒) cos(𝜃)
⎞⎟
⎠

, (D.9)

where 𝜒 ∈ [0, ∞), 𝜃 ∈ [0, 𝜋) and 𝜑 ∈ [0, 2𝜋). The integration over the azimuthal angle
𝜑 can be preformed to give a factor of 2𝜋 and with the substitutions 𝑋 = cosh(𝜒)
and 𝑌 = cos(𝜃) one finally arrive at

∫
R3

d3𝑞
(2𝜋)3 = 𝑘3

32𝜋2 ∫
∞

1
d𝑋 ∫

1

−1
d𝑌 (𝑋2 − 𝑌 2) , (D.10)

where 𝑋 ∈ [1, ∞) and 𝑌 ∈ [−1, 1). The integrals are further restricted due to the
compact support of the triangular basis functions (D.3) to

∫
𝛺𝑛̄𝑛̃(𝒌)

d3𝑞
(2𝜋)3 = 𝑘3

32𝜋2 ∫
𝑋max

𝑛̄𝑛̃

𝑋min
𝑛̄𝑛̃

d𝑋 ∫
𝑌 max

𝑛̄𝑛̃ (𝑋)

𝑌 min
𝑛̄𝑛̃ (𝑋)

d𝑌 (𝑋2 − 𝑌 2) , (D.11)

with the domain

𝛺𝑛̄𝑛̃(𝒌) = {𝒒 ∈ R3 ∶ 𝑘𝑛̄−1 ≤ |𝒒| < 𝑘𝑛̄+1 , 𝑘𝑛̃−1 ≤ |𝒌 − 𝒒| < 𝑘𝑛̃+1} . (D.12)
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The limits of the 𝑌 integration are

𝑌 min
𝑛̄𝑛̃ (𝑋) = min{1 , max{−1 , 2𝑘𝑛̄−1

𝑘
− 𝑋 , 𝑋 −

2𝑘𝑛̃+1
𝑘

}} ,

𝑌 max
𝑛̄𝑛̃ (𝑋) = max{−1 , min{1 ,

2𝑘𝑛̄+1
𝑘

− 𝑋 , 𝑋 − 2𝑘𝑛̃−1
𝑘

}} ,
(D.13)

and of the 𝑋 integration

𝑋min
𝑛̄𝑛̃ = max{1 , 𝑘𝑛̄−1 + 𝑘𝑛̃−1

𝑘
} ,

𝑋max
𝑛̄𝑛̃ = max{1 ,

𝑘𝑛̄+1 + 𝑘𝑛̃+1
𝑘

} .
(D.14)

The integration of the (𝑋, 𝑌 )-plain is done using the trapezoidal rule with 100 points
in each variable keeping the error around the percent level [32].
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E Renormalisation group flow equations
for time-local dynamics

The flow equations are numerically solved using the dimensionless coefficients 𝜆̃𝑖,𝑘 =
𝑘2𝜆𝑖,𝑘 and ‘flow time’ 𝑡 = ln(𝑘/𝑘∗) for some arbitrary reference scale 𝑘∗ here chosen
to be 𝑘∗ = 10−3 ℎ/Mpc.

E.1 One-coefficient ansatz
In the ansatz with one coefficient (7.42) the flow of the growing mode zero-crossing
at order 𝑞2 is given by

Flowg,𝑘(𝜂) = e2(𝜂−𝜂in) e− 2𝜆𝑘
𝜅𝑘

𝑘2e𝜅𝑘𝜂
𝜎2

v,𝑘[−187
175

+ 2(137 + 46𝜅𝑘) e𝜅𝑘𝜂 𝑘2𝜆𝑘
35(1 + 𝜅𝑘)(7 + 2𝜅𝑘)

] . (E.1)

E.2 Two-coefficient ansatz
For the ansatz with two coefficients with the coefficient 𝜆2,𝑘 extracted in the leading-
order approximation one has the growing mode zero-crossing at order 𝑞2

Flowg,𝑘(𝜂) = e2(𝜂−𝜂in) 𝜎2
v,𝑘 e−𝑋

× [−187
175

+
2𝑋[(3927 + 3𝜅𝑘(2775 + 2𝜅𝑘(799 + 158𝜅𝑘))]𝜆1,𝑘

175(1 + 𝜅𝑘)(5 + 2𝜅𝑘)(7 + 2𝜅𝑘)𝜆2,𝑘
 

−
2𝑋[(3927 + 2𝜅𝑘(2450 + 𝜅𝑘(1137 + 244𝜅𝑘))]𝜆2,𝑘

175(1 + 𝜅𝑘)(5 + 2𝜅𝑘)(7 + 2𝜅𝑘)𝜆2,𝑘
 ] ,

(E.2)

and the decaying mode zero-crossing at order 𝑞2

Flowd,𝑘(𝜂) = e2(𝜂−𝜂in) 𝜎2
v,𝑘 e−𝑋

× [−29
25

+
𝑋[(−522 + 𝜅𝑘(−705 + 226𝜅𝑘 + 232𝜅2

𝑘)]𝜆1,𝑘

25(1 + 𝜅𝑘)(−3 + 2𝜅𝑘)(5 + 2𝜅𝑘)𝜆2,𝑘
 

+
𝑋[(522 + 2𝜅𝑘(155 − 2𝜅𝑘(155 − 2𝜅𝑘(173 + 96𝜅𝑘)))]𝜆2,𝑘

25(1 + 𝜅𝑘)(−3 + 2𝜅𝑘)(5 + 2𝜅𝑘)𝜆2,𝑘
 ] ,

(E.3)

where 𝑋 = 2𝜆2,𝑘 𝑘2 e𝜅𝑘𝜂 /𝜅𝑘. To solve the flow equation only the 𝑛 = 0, 1 terms of
the series expansion (7.57) are included.
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