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ABSTRACT

Pediatric cancer is the third leading course of death among children and adolescents in the USA despite

its low incident and high survival rate. Next-generation sequencing technologies allow the pro�ling of

tumor genetics and the prediction of disease progression and response to therapies. However, tumor

temporal and spatial heterogeneity could complicate the success of the selected therapy. Serial sampling

of tumors at multiple time-points can accurately track the dynamics of clonal evolution during treatment.

Multiple sampling of tumors at di�erent locations can reveal all clonal genetic structures of the tumor.

Nevertheless, both strategies might post discomfort or critical risk to the patient. Liquid biopsy has

become an attractive strategy for obtaining tumor biomarkers non-invasively. Sequencing of cell-free

DNA (cfDNA), DNA fragments in the liquid sample such as blood, has become a strategy to detect

tumor-derived genetic markers known as circulating tumor DNA. Recently, cfDNA has been extensively

evaluated its clinical value with di�erent high-throughput sequencing technology in many adult cancers.

Hence, cfDNA could also have a potential bene�t to the management of pediatric cancer patients.

In this thesis, we developed bioinformatics work�ows for analyzing cfDNA derived from an extensive

group of pediatric cancer patients. The work�ow aims to detect genetic alterations from three sequencing

strategies, including low-coverage whole-genome sequencing (lcWGS), whole-exome sequencing (WES),

and deep gene-panel sequencing (Panel-seq). The capabilities of detecting copy-number aberrations and

point mutations have been compared between those strategies. We also compared the detectability of

plasma cfDNA across tumor entities, including brain tumors, sarcomas, and other pediatric cancers.

Sequencing strategy and tumor location have in�uences on the success of cfDNA in detecting tumor

genetic alterations. An R package, cfdnakit, was developed to extract the length of cfDNA fragments

and perform genome-wide fragment-length analysis using lcWGS dataset. The fragment-length analysis

shows that the enrichment of short-fragment cfDNA is correlating with copy-number aberrations. In

addition, this package calculates a comprehensive copy-number aberration (CPA) score that combines

copy-number aberration and short-fragmented cfDNA ratio. This CPA-score is correlating with a higher

level of ctDNA and could suggest the use of subsequent detection methods such as WES to detect

actionable mutations with more sensitivity. Moreover, we applied TelomereHunter, a telomeric DNA

analysis tool. It showed that telomeric DNA exists which opens an opportunity to detect telomeric

aberration in plasma cfDNA. Analyzing plasma cfDNA of the pediatric cohort has shown the declining

of telomere content. However, elongation and integration of telomeric variant repeats were found among

brain tumor and sarcoma patients.

Finally, we demonstrated the utility of liquid biopsy cfDNA in the management of pediatric cancer.

cfDNA reveals heterogeneous mutations possibly shred by tumor at metastasis site in a child with

bilateral nephroblastoma. This �nding supports the utility of cfDNA as a comprehensive source of

genetic information derived from the tumor population in the body without invasive multiple tumor

biopsies. In addition, we found that cfDNA can detect tumor temporal heterogeneity in several sarcoma

patients through serial biopsy. This �nding supports the idea of utilizing cfDNA to follow-up patients

during the course of therapy.
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ZUSAMMENFASSUNG

Pädiatrische Krebserkrankungen sind trotz ihrer niedrigen Inzidenz und ihrer hohen Überlebensrate

die dritthäu�gste Todesursache bei Kindern und Jugendlichen in den USA. Next-Generation Sequenc-

ing Technologien ermöglichen die Erstellung eines genetischen Pro�ls, welches hilft Vorhersagen zum

Krankheitsverlauf sowie zum Behandlungserfolg zu tre�en. Die zeitliche und räumliche Heterogenität

des Tumors könnte jedoch den Erfolg der gewählten Therapie erschweren. Zum einen können Proben

von Tumoren zu mehreren Zeitpunkten helfen die Dynamik der klonalen Entwicklung während der Be-

handlung genau zu verfolgen. Zum anderen können durch mehrere Proben des Tumors an verschiedenen

Tumorstellen alle klonalen genetischen Strukturen des Tumors aufgedeckt werden. Nichtsdestotrotz sind

beide o.g. Ansätze für den Patienten mit Beschwerden oder einem beachtlichem Risiko verbunden. Ein

Bluttest, die Liquid Biopsy (Flüssigbiopsie) hat sich zu einer attraktiven Strategie zur nicht-invasiven

Gewinnung von Tumorbiomarkern entwickelt. Durch Sequenzierung von zellfreier DNA (cfDNA) aus der

Flüssigbiopsie-Probe kann vom Tumor abgesonderte DNA, der sogenannten zirkulierenden Tumor-DNA

(ctDNA), nachgewiesen werden. Vor kurzem wurde der klinische Nutzen von cfDNA mit verschiedenen

Hochdurchsatz-Sequenzierungstechnologien bei vielen Krebserkrankungen bei Erwachsenen umfassend

untersucht. Daher könnte cfDNA auch einen potenziellen Nutzen für die Behandlung von pädiatrischen

Krebspatienten haben.

In dieser Dissertation wurden bioinformatische Work�ows zur Analyse von cfDNA entwickelt, welche aus

einer umfangreichen Gruppe von pädiatrischen Krebspatienten gewonnen wurde. Der Work�ow hat zum

Ziel, genetische Veränderungen anhand von drei Sequenzierungsstrategien zu erkennen, darunter low-

coverage whole-genome sequencing (lcWGS), whole-exome sequencing (WES), sowie deep gene-panel

sequencing (Panel-seq). Die Fähigkeiten zur Erkennung von Kopienzahlaberrationen und Punktmu-

tationen wurden zwischen diesen Strategien verglichen. Ebenso wurde auch die Nachweisbarkeit von

Plasma cfDNA bei verschiedenen Tumorentitäten, einschlieÿlich Hirntumoren, Sarkomen und anderen

pädiatrischen Krebsarten verglichen. Die Sequenzierungsstrategie und Tumorlokalisation bein�ussen die

Nachweisbarkeit der tumorgenen Veränderungen mittels cfDNA. Das R-Paket cfdnakit wurde entwick-

elt, um die Länge von cfDNA-Fragmenten zu extrahieren und eine genomweite Fragmentlängenanal-

yse mittels lcWGS Daten durchzuführen. Die Fragmentlängenanalyse zeigt, dass die Anreicherung von

kurzfragmentiger cfDNA mit der Kopienzahlaberration korreliert. Darüber hinaus berechnet dieses Paket

einen umfassenden Kopienzahlaberrations-Score (CPA), der die Kopienzahlaberration und den Gehalt

von kurzfragmentierten cfDNAs kombiniert. Dieser CPA-Score korreliert mit einem höheren ctDNA

Gehalt und könnte die Verwendung nachfolgender sensitiver Nachweismethoden wie WES unterstützen.

Darüber hinaus haben wir TelomereHunter, ein Telomer DNA-Analysetool, angewendet. Es zeigte sich,

dass telomere DNA als Plasma cfDNA vorhanden ist, was eine Möglichkeit erö�net, Telomeraberrationen

zu detektieren . Die Analyse der Plasma cfDNA der pädiatrischen Kohorte hat eine Abnahme des Telom-

ergehalts gezeigt. Bei der cfDNA von Hirntumor- und Sarkompatienten war jedoch eine Verlängerung

sowie Integration von Telomer-Variantenwiederholungen vorhanden.

Schlieÿlich demonstrierten wir die Verwendung von Flüssigbiopsie cfDNA bei der Behandlung von pädi-

atrischem Krebs. CfDNA deutete auf heterogene Mutationen hin, die möglicherweise durch einen metas-

tasierendem Tumor bei einem Kind mit bilateralem Nephroblastom absondert werden. Dieser Befund

unterstützt den Nutzen von cfDNA als umfassende Quelle genetischer Information der Tumorpopula-

tion ohne mehrfache invasive Tumorbiopsien. Auch konnte gezeigt werden, dass cfDNA bei mehreren

Sarkompatienten durch longitudinale Flüssigbiopsien die zeitliche Heterogenität des Tumors erkennen

kann. Dieser Befund stützt die Idee cfDNA zur Nachsorge von Patienten im Therapieverlauf einzuset-

zen.
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1.1 Tumors in Childhood and Their Genomic Landscape

1.1.1 Global incidence, mortality, and survival rate

Pediatric cancer is the third leading cause of death among children and adolescents aged 0-19 years

in the USA despite its low overall incidence [1]. Approximately 300,000 children were diagnosed with

cancer worldwide every year during the past decade [2, 3]. The incidence of tumors is di�erent between

patient's age at diagnosis (Figure 1). Among children aged 0-14 years, the most common tumors were

leukemias, followed by brain and central nervous system (CNS) tumors, lymphoma, and neuroblastoma

[2]. In young adults between 15 and 19 years old, lymphomas were the most common cancer followed by

epithelial tumors and melanoma, leukemias, germ cell tumors, and sarcomas [2].

The mortality rate of cancer in childhood was low in comparison to adult tumors. During 2001 � 2016,

the leading cause of cancer death in children was leukemia (28.5%) followed by brain and other nervous

systems (26.9%) and bones and joints tumor (9%) [4, 5]. The overall death rate of pediatric tumors among

children and adolescents aged 0 to 19 was approximately 25 per million in the USA [4, 5]. The death

rates declined by 1.5% on average every year during 2002-2016 particularly among pediatric leukemia and

lymphoma since the availability of advanced treatment and supportive care [6]. However, the death rate

of brain, bone, and soft-tissue cancer remained stable. In 2011, the brain tumor has replaced leukemia

and became the leading cause of tumor death [4, 5].

Figure 1: Global incidence of cancer in childhood (Reprinted from [2], Copyright © 2017 the World
Health Organization, CC BY-NC-ND)

The overall survival rate of pediatric cancers was 83.5% during 2001 - 2015 [4, 5]. The improvement was

signi�cant among acute lymphocytic leukemia (ALL) and lymphoma, whereas stable among solid tissue

tumors [4]. Minor improvements for pediatric brain tumors have been observed due to the development of

neuroimaging, surgical technology, radiation technique, and supportive care. Soft tissue and bone cancers

have no improvement in mortality and survival due to the lack of novel therapeutic agents and the limited

development of existing agents during the past decade [7]. Overall, the important contribution toward

the improvement of survival and decline in mortality rate has been related to accessibility to medical

services where an early and accurate diagnosis is possible. Moreover, emerging innovative therapies and
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palliative care reduce the late-e�ect of treatment and improve the outcome and quality of patient's life.

1.1.2 Improving outcomes of childhood tumor - early detection and accurate diagnosis

Early detection is a major key to improve outcomes of cancer care. The early identi�cation of cancer leads

to e�ective care that results in better survival, less intensive and su�ering treatment [8, 9]. Late diagnosis

leads to di�culty in having correct diagnosis due to complications and patients would su�er from late-

e�ect from treatment. There are two early detection approaches previously described by the World

Health Organization (WHO): (i) the recognition of symptomatic cancer in patients (early diagnosis); (ii)

the identi�cation of asymptomatic disease in a healthy target population (screening) [10]. Generally, it

is not possible to screen for cancer in children because the cause of the majority of cancer in children is

unknown [11]. Only very few cancers are caused by inherited genetic factors, environmental exposure,

or chronic infections such as HIV, and hepatitis B [12, 13].

Early diagnosis is the most e�ective but requires awareness of warning symptoms by families and primary

healthcare providers. Early and accurate clinical evaluation can help the medical doctor in deciding a

speci�c treatment regimen that may include surgery, radiotherapy, and chemotherapy. The advance of

high-throughput sequencing sheds light on personalized medicine and the development of new targeted

agents. The genetic pro�le of the tumor allows the prediction of disease progression and response to

therapies.

1.1.3 Genomic landscape of pediatric tumor

During past decade, comprehensive genomic studies have been focusing on cancers in adults, possibly

due to their higher incidence, mortality rate and poor survival rate. They found that adult cancers

usually developed multiple genetic alterations during life-time which together drive cancer progression.

The genomes of adult cancers are mostly a mixture of small alterations of one or few of DNA bases, and

larger structural alterations spanning more than 1,000 bases. The driver mutations are frequently shared

across cancer types [14]. Recent pan-cancer genomic analyses have revealed the genomic landscape of

tumors in children [15]. The results have increased our understanding of the genetic mechanisms that

shape the genome cancer in children which is very essential for precision medicine.

The pediatric pan-cancer project has identi�ed the major di�erence between genomes of pediatric cancer

and adult cancer. A pediatric pan-cancer study analyzed nearly 400 whole-exome sequencings and 550

whole-genome sequencings across 24 tumor types, bias toward brain tumors, has reported a 14 times lower

mutation rate than in adult cancers (Figure 2) [15]. The number of mutations signi�cantly correlates

with age � supporting the idea that cells accumulate mutations through a lifetime.

Second, childhood cancer is frequently driven by only a single cancer-driving mutation rather than

multiple hits on cancer-driving genes. The driver mutations are likely preserved for speci�c cancer types.

Half of the primary tumors harbor a potentially targetable genetic alteration. This �nding emphasizes

the need for personalized pro�ling to tailor more e�ective and less invasive therapies [15, 16]. Germline

mutations, inherited from parents, have been identi�ed as the causative factor in 7.6% of the cohort.

Those germline mutations are enriched in DNA repair genes from mismatch (MSH2, MSH6, PMS2) and

double-stranded break repair (TP53, BRACA2, CHEK2). Pediatric cancers are also characterized by a

substantial degree of genomic instability which is strongly associated with somatics and germline TP53

mutations. Those unstable cancer genomes often display hyperploidy with a ploidy of four or more and

are commonly found with chromothripsis.
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Figure 2: Somatic mutations in the pediatric pan-cancer cohort (Reprinted from [15], Copyright© 2018
by Macmillan Publishers Limited , CC BY)

1.2 Tumor Heterogeneity and Resisting Cell Death

Cancer is a complex disease. Multiple factors including germline genetic variations, somatic mutations,

and environmental factors can dynamically shape the direction of evolution. This evolution supports the

transformation of a non-malignant cell to a malignant cell through sequential mutations. Accumulation

of mutations promotes the capabilities of self-sustaining proliferative signal, evading growth suppressors

and cell death signals, induction of angiogenesis, and activation of tissue invasion and metastasis [17, 18].

These stochastic processes generate a genetically heterogeneous bulk of tumor where each cell harbors

di�erent molecular signatures. The di�erence in micro-environment and site-speci�c factors within and

at di�erent disease sites result in an uneven distribution of genetically diverse tumor subpopulations

(spatial heterogeneity) (Figure 3A). Temporal heterogeneity refers to the genetic variation of a single

tumor over time (Figure 3B). Heterogeneity within a bulk tumor result in di�erent levels of sensitivity

to cancer therapies. This section will point out tumor heterogeneity as a cause of tumor development

against given therapy and resisting cell death.

1.2.1 Tumor temporal heterogeneity complicates the success of treatment

Both targeted therapies and nonspeci�c therapies apply dynamic selective pressure on the tumor popula-

tion. This selective pressure in�uences the direction of clonal evolution depending on the administration

schedule and speci�c choice of therapy. The resistant clone could emerge from the existing tumor pop-

ulation within 1-2 years during and after the treatment [19]. There are two mechanisms that drive

resistance. Cells with resistant alterations are present at low allele frequency in the pretreatment tumor.

This subpopulation could tolerate and expand under the therapeutic selective pressure (Figure 4A).

Other �ndings support the alternative mechanism that cells could tolerate the therapy through adaptive

activation of an alternative metabolic pathway, survival signals, and epigenetic programs. These cells
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Figure 3: A conceptual framework of heterogeneity in tumor: Spatial heterogeneity (A) and Temporal
heterogeneity (B) (Reprinted from [19], Copyright© 2018 by Macmillan Publishers Limited, permission
from Copyright Clearance Center's RightLink® service)

acquire de novo resistant alterations that give resistance to therapy (Figure 4B). Given this temporal

heterogeneity, interrogating a single genetic snapshot might not be e�cient throughout the course of

therapy.

Serial sampling of tumors at multiple timepoints is now the only approach to accurately track the

dynamics of clonal evolution during the clinical course of treatment. Administration of targeted drugs

can be adapted accordingly to the emergence, loss, and reappearance of expanding clones. For example,

longitudinal sampling of a patient with adenocarcinoma harboring L858R EGFR and TP53 mutation

has shown a dynamic change in clonal structure in response to administration of EGFR tyrosine kinase

inhibitor (TKI) erlotinib [20]. The tumor had a substantial response during the �rst 8 months. A lung

core biopsy reveals adenocarcinoma with the same L858R and p53 mutations, as well as an additional

EGFRT790M TKI resistant mutation. T790M mutation could no longer be detected from the repeat

biopsy after a 10-month interval of TKI withdrawal. The patient afterwards responded to erlotinib

again to a therapeutic option that does not target T790M. This study demonstrates the clinical utility

of repeat sampling for keeping track of clonal evolution and adjusting therapeutic administration. The

development of sensitive technologies to support the early detection of a residual resistant clone is also

necessary for the future era of precision medicine.

1.2.2 Resisting cell death through the telomere elongation

In tumor development, cancer cells require supportive mechanisms for unlimited replicative potential.

Maintenance of telomere is one of the crucial processes that protect the ends of chromosomes from end-to-

end fusions that leads to unstable dicentric chromosomes and �nally cell mortality [18]. The maintenance

process requires activation of the telomerase protein complex that plays important role in synthesizing

telomeric DNA by the function of TERT reverse transcriptase and TERC RNA template. Genetic

aberrations of TERT, including ampli�cations, rearrangements, or mutations in the promoter region are

commonly found in human cancers [21]. Another mechanism known as the alternative lengthening of

telomeres (ALT) pathway also supporting the telomere elongation by synthesizing telomeric DNA with

di�erent DNA recombination. The underlining mechanism of ALT remains unclear. Detection of ALT

could indicate the inhibition of ALT as an anticancer treatment that causes cellular senescence [22].

Human telomeric DNA is typically 10�15 kb long and consists of non-coding repetitive sequences of
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Figure 4: Two temporal evolutionary pathways that drive treatment resistance: A resistant clone (red) is
pre-existing in the clone and expands beyond therapeutic selective pressure (A) or acquire de novo resis-
tance alterations after surviving the pressure (B). (Reprinted from [19], Copyright© 2018 by Macmillan
Publishers Limited, permission from Copyright Clearance Center's RightLink® service)

TTAGGG (t-type). However, telomeric variant repeats (TVRs) sequences namely TGAGGG (g-type),

TCAGGG (c-type), and TTGGGG (j-type) also exist (Figure 5) [21, 23]. Telomeres of cells with ALT

have heterogenous lengths and harbor recombination of TVRs [23]. In addition, extra-chromosomal

telomeric repeats can exist in forms called C-circles [22, 24] which has been developed as a rapid,

robust, and quantitative assay for ALT. Detection and quanti�cation of telomere elongation and TVR

has been demonstrated as a part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG)

Consortium [21].
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Figure 5: Genomic footprint of telomere elongation by telomerase and ALT (Reprinted from [21], Copy-
right © 2020 by the authors, CC BY)

1.3 Liquid Biopsy as a Non-invasive Approach to Track Tumor Progression

Due to the aforementioned tumor heterogeneity, a tumor can �nd an alternative direction to evolve and

overcome environmental limitations or resist applied treatment. Taking multiple or serial biopsies seems

to be the explicit solution. However, some limitations prohibit the routine tissue biopsy.

1. Multiple tumor biopsies from a patient cannot be always performed as a routine procedure. The

patient would feel discomfort and su�er from the surgery. The surgery could be also complicated

reaching the tumor site.

2. The procedure might increase the chance of tumor to seed onto other sites.

3. The derived sample from tissue biopsy might not represent the overall clonal structure of the tumor

at a particular site. Only a single snap-shot of tumors is taken which ignores the adjacent tumor

or at the remote site.

Liquid biopsy has become attractive over the past years as an alternative to derive information from

patients non-invasively regarding pathological status. The fundamental objective is to detect a particular

biomarker as a sign of the tumor in the body from the liquid samples (e.g. blood, saliva, or urine). Re-

cently, the term �liquid biopsy� is covering the use of various bio�uids, analyte materials, and biomarkers

(Figure 6). Because it is easy to obtain a liquid biopsy, some of the liquid biopsy-based biomarkers have

been used routinely after the completion of treatment as prognosis markers.

The following sections will describe liquid-based biomarkers that have been routinely obtained as tumor

markers and emerging biopsy materials.
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Figure 6: Biomarkers encompassed in liquid biopsy (Reprinted from [25], Copyright © 2020 by the
authors, CC BY.)

1.3.1 Serum tumor markers

Serum-derived tumor markers are substances either released by tumor cells or other tissue in response to

tumor indicating the existence of tumor in the body. They can be obtained non-invasively from blood,

urine, stool, or other bodily �uid. Recent marker candidates, mostly proteins, antibodies, metabolites,

and lipids, have shown potential for detecting a tumor in various clinical stages. The majority of these

tumor markers were measured periodically after completion of curative treatment of primary tumor as

a prognosis marker and to detect recurrence of the disease. For example, postoperative surveillance of

asymptomatic women with breast cancer commonly measures the level of CA 15-3, carcinoembryonic

antigen (CEA), tissue polypeptide antigen (TPA), tissue polypeptide-speci�c antigen, and HER2. Other

serum-based tumor markers and their utilization have been introduced and reviewed [26].

Enzyme-linked immunosorbent assay (ELISA) is used as the gold standard method to detect serum

tumor markers. This assay contains antibodies that bind speci�cally to targeted tumor antigens on a

solid phase. The antibodies were designed to enzymatically react with speci�c substrates to produce a

detectable signal (Figure 7). The general procedure of ELISA involves attaching one speci�c antigen on

a solid well or with antibodies on the well surface. After immobilizing the antigen, the antibodies are

added and form immunocomplexes with antigens. The antibody itself can be bound to an enzyme or

to another secondary enzyme-conjugated antibody. In the �nal step, a designed substrate is added to

produce detectable signals that can be detected by naked eyes or a spectrophotometer. The intensity of

the signal indicates the concentration of tumor marker molecules. The ELISA-based technologies have

been adapted extensively to improve its performance, customization and reduced operation cost [27, 28].

Although serum markers have been utilized in many clinical settings, there are limitations on their lack of

speci�city and sensitivity. Moreover, even though a particular serum marker is detected, it only indicates

the existence of disease but lack of diagnostic value nor specify the tissue of origin.

1.3.2 Circulating tumor cells

Circulating tumor cells (CTCs) are a group of tumor cells that were shed from a primary tumor and

circulate through blood circulation or the lymphovascular system. The �rst discovery was in 1869 when

the Australian physician Thomas R. Ashworth observed cells with similar features of a tumor in the blood
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Figure 7: Process of Sandwich ELISA (Adapted from [28], Copyright© 2013 The Society for Investiga-
tive Dermatology, Inc., with permission from Elsevier)

of a man with metastatic cancer [29]. However, CTC had never been widely studied until the late 90s

when Racila and colleagues �rst developed a sensitive assay combining immunomagnetic enrichment with

�ow cytometric methodology for CTC detection (Figure 8) [30]. Importantly, Racila and colleagues found

that CTC were also present at the early stage , and they described the correlation between changes in the

level of CTCs with both treatment and clinical status. The enrichment method distinguishes epithelial

cells from mesenchymal blood cells by the expression of epithelial cell adhesion molecule (EpCAM) or

cytokeratin proteins. Base-on this enrichment methodology, the CellSearch® [31] is the only detection

and enumeration system approved by U.S. Food and Drug Administration (FDA) to date for monitoring

cancer patients. The clinical utility has been demonstrated in advance and metastatic cancer such as

lung cancer [32, 33], prostate cancer [34], ovarian cancer [35], and colorectal cancer [36].

The presence of CTCs in a patient's peripheral blood implies the intravasation of a population of tumor

cells and the beginning of the metastatic event (Figure 9). CTC can go through epithelial-to-mesenchymal

transmission (EMT) and be shedded into the bloodstream via active secretion from the primary tumor.

Through EMT, cancerous epithelial cells lose their cell-to-cell adhesion and develop a mesenchymal-like

phenotype. Those CTCs can be in the form of single cells or cell clusters which increase their metastatic

potential. When reaching the distant site, CTCs transform back to their epithelial phenotype and grow

into secondary metastasis. Despite the tumor's ability to secrete CTCs, only a small group of CTCs

survive from trauma, oxidative stress, or evade from the immune system. The success of CTC to reach

target distant sites depends on their survival mechanisms and in�uence factors [37]. Depending on the

origin clone, CTCs are usually heterogeneous at the genetic, transcriptomic, proteomic, or metabolomic

level making them a potential biomarker for deriving information regarding tumor heterogeneity and

allow early detection of tumor metastasis.

The challenge of utilizing CTC is due to the low concentration of CTC. Usually, a sample of blood contains

approximately 1 CTC per 1 Ö 106 blood cells with a half-life of less than 2.5 h [39]. This requires the

development of a robust, reproducible, and sensitive assay to extract and maintain CTCs from a limited

blood sample. Moreover, the FDA-approved platform, CellSearch®, was designed to separate CTCs
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Figure 8: Circulating tumor cell detection with �ow cytometric methodology in 1998: Detected circulat-
ing tumor cells (A-E) and normal epithelium cells (F) by �ow cytometry and combined immunomagnetic
enrichment. (A) Circulating tumor cells from a patient with metastatic breast cancer stained with anti-
mucin-1. (B) Cells stained with anti-cytokeratin 5,6,8, and 18 from the same patient as a. Tumor cells
stained with anti-cytokeratins from patient with breast tumor (C) and prostate cancer (D). (E) Two
apoptotic tumor cells (arrows) stained with anti-cytokeratin and attached to a macrophage. (F) Normal
epithelium obtained from human trypinized foreskined and stained with anti-mucin-1. (Reprinted from
[30], Copyright © 1998 The National Academy of Sciences, CC BY-NC-ND)

with the expression of EpCAM from whole-blood cells, whereas CTCs without or low expression of

EpCAM would be overlooked. Therefore, it is necessary to develop a method for enrichment, capture,

and enumeration of CTCs incorporating other molecular or biophysical properties. Recently, many

separation and enumeration methods have been develop and commercially available such as micro�uidic

chips [40, 41], size-based separation [42, 43], direct-imaging [44�46], and dielectrophoresis[47, 48]. The

advantages and disadvantages have been reviewed in detail [38, 49].

1.3.3 Exosome

Exosomes are one of the extracellular vesicles that play important role in the cell-to-cell signal transduc-

tion of most eukaryotic cells. The size of exosome ranges from 40 to 160 nm in diameter (average 100 nm)

[50]. An exosome is surrounded by a lipid bilayer membrane where inside contains biomolecules, includ-

ing proteins, DNA, mRNA, non-coding RNA, and metabolites originated from the source cell (Figure

10A).

The basic protein component of the exosome includes a protein family of tetraspanins including CD9,

CD63, CD81, CD82, CD106, Tspan8, and ICAM. Other non-speci�c protein families includes major

histocompatibility complex (MHC), heat shock proteins (HSP), membrane fusion and transport proteins

(annexins, Rab-GTPase), and cytoskeleton (actin,myosin, and tubulin) [50, 51]. Depending on the

cellular origin and physiopathologic state, their actual composition is highly heterogeneous. According

to ExoCarta [52], an exosome database (www.exocarta.org;accessed on 21 June 2021), exosome contains

almost 10,000 proteins, 3,500 mRNAs, 3,000 miRNA and 1,000 lipids. These components in the exosome

can be used as a prognosis marker for cancer progression.

Exosomes are also present in body �uid such as urine, serum, plasma, lymph, or cerebrospinal �uid from

both cancer patients and healthy individuals. This makes it another potential non-invasive prognosis

biomarker. Many exosomal circulating miRNAs have been related to tumor proliferation, transformation,

22



Figure 9: CTC dissemination from the primary tumor to distant sites via blood circulation (Reprinted
from [38], Copyright © 2020 by the authors, CC BY)

angiogenesis, and resistance to therapy. Exosomes are important molecules that allow communication

between growing tumor cells and surrounding cells in a tumor microenvironment (TME) (Figure 10B).

TME is a mixture composition of extracellular matrix, blood vessels, tumor stem cells, tumor �broblasts,

stromal cells, signaling molecules, in�ltrating in�ammatory cells, and immune cells (T and B lympho-

cytes, dendritic cells, macrophages, and natural killer cells). The ability to protect those cellular contents

from the phagocytic system make exosomes a good messager for cellular communication within TME.

Detecting biomarkers from exosomes could be used for cancer early detection, early diagnosis, prognosis

prediction, and therapeutic e�cacy evaluation [50]. Moreover, engineered exosomes carrying tumor-

suppressing proteins could provide new strategies for precise drug delivery in the era of precision medicine.

1.3.4 Cell-free DNA

Cell-free DNA (cfDNA) are extracellular double-stranded DNA fragments released by cells in the body

into body �uid such as blood plasma, serum, cerebrospinal �uid, urine, and saliva [53]. The most

commonly studied body �uids are blood plasma and urine whereas other liquids have been analyzed for

speci�c type of tumor or disease. In general, the cfDNA fragments are relatively short (~167 bp) but

larger fragment (>1 kb) could also be found [54]. The mechanism of cfDNA secretion is still unclear.

Cell apoptotic process, in particular endonuclease activity, could be the source of short cfDNA. The

length of plasma cfDNA fragments measured by sequencing technology shows a peak at 166-167 bp,

which corresponds to the length of DNA wrapped around a nucleosome plus H1 histone linker protein.

Nucleases cleaving process on the DNA strand at exposed sites with each turn of the DNA double

helix leaves a 10bp ladder pattern on the fragment size trace of cfDNA. The longer fragment may be

released by circulating tumor cells or exosome via necrosis (Figure 11). Recent studies has demonstrated

that cfDNA carries dynamic information of cancer-speci�c genetic and epigenetic alterations [55]. The

estimated half-life of cfDNA in blood circulation varies from a couple of minutes to 1-2 hours [56]. The

short half-life of cfDNA facilitate the real-time analysis for evaluating treatment response and assessing
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Figure 10: Components of an Exosome (A) (Adapted from [51], Copyright © 2021 by the authors, CC
BY) and signal transduction pathway of TME via exosome (B) (Adapted from [50], Copyright © 2020
by the authors, CC BY)

status of tumor tissue.

cfDNA has been widely explored their clinical utilization as a prognostic or predictive marker, and ability

to detect cancer [55]. Blood plasma of advance cancer patient contains much higher cfDNA concentration

than healthy individuals [57, 58]. In cfDNA derived from a patient, DNA fragments originated from

tumor tissue, termed circulating tumor DNA (ctDNA), can be detected via tracking tumor mutation.

It is usually speci�c to tumor and could be used as a marker of tumor. The concentration of ctDNA

was found elevated among patients with advanced or metastatic cancer [59]. It usually correlates with

tumor stage [59], and response of tumor to the given therapy [55, 60]. With recent advance of high-

throughput sequencing technique, cfDNA become an attractive candidate for a routine surveillance in

cancer management. However, cfDNA has to be evaluated for its reliability and prognostic signi�cance.

Standardization of assay and �nding validation has to be done in large-scale clinical trials.

Figure 11: Source and genetic alterations in plasma cell-free DNA (Reprinted from [55], Copyright
© 2017 by Macmillan Publishers Limited, permission from Copyright Clearance Center's RightLink®
service)
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1.4 Circulating Cell-free DNA

The basic information about cfDNA has been described in the previous section. This section contains

more speci�c information about cfDNA including the history, possible source of cfDNA, biological prop-

erties, methodology for ctDNA detection, and application.

1.4.1 History of cell-free DNA

The history of cfDNA dates back to 1948 when Mendel and M´etais reported the discovery of nucleic

acid in blood plasma [61]. They reported that extracellular DNA and RNA can be detected in the

blood of humans without intention to be recently known as �liquid biopsy�. This discovery had not

gained much attention until 30 years later. The level of cfDNA was signi�cantly increased in plasma of

patients with systemic lupus erythematosus [62], and cancer [63]. They found that the concentration

of serum cfDNA was higher in half of the cancer patients comparing to healthy individuals [63]. The

concentration dropped when the patient positively response to radiation therapy and vice versa. An

important discovery by Stroun and Anker in 1989 has demonstrated that cfDNA from the blood of

patients contains DNA originated from tumor cells [64]. In the early 1990s, two independent studies were

able to detect oncogene (KRAS and NRAS) point mutations in the plasma of patients with pancreatic

cancer [65] and acute myelogenous leukemia [66]. Microsatellite instability and loss of heterozygosity

(LOH) were found in the serum of patients with small-cell lung cancer [67] and head and neck cancer [68]

in 1996. This discovery leads to the following development that supports advancements in liquid biopsy

for non-invasive cancer detection (Figure 12). In 2016, FDA approved Cobas® EGFR Mutation Test for

patients with non-small cell lung cancer [69]. High-throughput sequencing technology has become the

main platform of DNA sequencing. Recently, cfDNA has been widely explored and clinically evaluated

to support detection of both genetic and epigenetic alteration [69�71].

Figure 12: Timeline of cfDNA major research progression (Reprinted from [71], Copyright © 2019 by
the authors, CC0 1.0)

1.4.2 Liquid sample of cell-free DNA

Cell-free DNA has been widely explored especially the potential source of cfDNA to be extracted from

a patient. CfDNA extracted from di�erent sources harbor unique contributions of cells of origin and

provide a speci�c characteristic of DNA fragment (Figure 13). It has to be considered when planning
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the implementation of cfDNA to surveillance on the tumor of interest and the selection of DNA isolation

and quanti�cation methodology.

Figure 13: Overview of liquid sample of cell-free DNA (Reproduced with permission from [72], Copyright
© 2018 by Massachusetts Medical Society)

Blood plasma (plasma cfDNA)/serum

Plasma cfDNA has been used as biomarkers in several medical areas such as non-invasive prenatal testing

[73], inspecting of graft rejections after organ transplantations [74], and oncology. It has been widely

explored for a decade. Studies during the past decade of plasma cfDNA has shown some basic properties

and suggested their origin. Cells in the hematopoietic system are the major source of plasma cfDNA [54].

The fragment length distribution of plasma cfDNA shows a modal length of 167 bp with a 10 bp peak

ladder suggesting apoptosis cells as its origin [54]. Necrotic cells, active secretion, and circulating tumor

cells (CTC) also contribute high-molecular-weight DNA to the pool of plasma cfDNA [55]. Since the

cfDNA fragment shows the pattern of DNA-binding onto nucleosome, many studies investigate patterns

of plasma DNA fragmentation especially the preferred ending of fragment [75] and nucleosome positioning

mapping [76]. Despite recent progression, the insight about the origin and the underlying mechanism

still has to be further elucidated.

The mechanisms of cfDNA accumulation remain unclear. Concentration of plasma cfDNA varies between

0�1000 ng/ml in patients with cancer [58, 77] whereas approximately 200 ng/ml in healthy control [77].

A signi�cant variation in the level of ctDNA has been observed among plasma cfDNA derived from

patients with di�erent tumor types [59]. CtDNA detection rate in patients with a primary tumor located
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in the brain, renal, and thyroid was lower than those patients with advanced neuroblastoma, prostate,

ovarian, colorectal, breast, and some other tumors [59]. This might be explained by the location of the

primary tumor where particular mechanisms such as the blood-brain barrier or capsules block the release

of ctDNA into blood circulation. Moreover, excessive physical activity, stroke, and infection also result in

elevated concentrations of plasma cfDNA [78, 79]. Possibly concentration of cfDNA alone might not be an

appropriate marker for cancer management. The success of utilizing cfDNA in clinical management could

be improved by a better understanding of the basic biology of cfDNA and the underlying mechanisms of

ctDNA.

Cerebrospinal �uid

Cerebrospinal �uid (CSF) is a clear body, colorless �uid that �lls and baths the brain and spinal cord.

It provides necessary nutrients and removes waste to maintain the central nervous system (CNS). CSF

can be obtained through a minimally invasive procedure of the lumbar puncture which possesses some

clinical risk and potential discomfort of the patient [80, 81]. The diagnostic lumbar puncture is performed

routinely to evaluate CSF cytology for patients with CNS infectious disease, autoimmune encephalitis,

and some tumors such as medulloblastoma. In a cancer patient, CSF cytology is used for diagnosis,

tumor staging, and an indicator of response to therapy (Figure 14).

Figure 14: The shedding of DNA from central nervous system malignancies into cerebrospinal �uid
(Reproduced with permission from [81], Copyright © 2015 by National Academy of Sciences)

As mentioned previously, blood plasma contains cfDNA derived from various tissue-of-origin especially

hematologic cells. CNS, however, has a highly selective semipermeable border, termed the blood-brain

barrier, that tightly regulates the transportation of molecules including cfDNA from peripheral blood

into the extracellular �uid of the CNS and vice versa. A limited amount of cfDNA from CNS origin

is released into the blood plasma. Therefore, blood plasma is not the best liquid solution for detecting

cranial malignancies. Compared to blood, cfDNA in CSF has a lower background of normal DNA and

contains a much higher proportion of tumor-derived cfDNA [82]. Li Y.S. and colleagues demonstrated

that CSF liquid biopsy harbor EGFR mutation in patients with leptomeningeal metastases of the non-

small-cell lung [82].
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Other body �uids

Urine has been recognized as an important ultra-noninvasive sample source over tissue and blood to detect

tumor markers from a patient with bladder cancer and prostate cancer [83, 84]. Extracellular DNA has

long been found in urine [85]. There are two categories of urinary cell-free DNA (ucfDNA) depending

on its origin: urinary tract cell DNA and transrenal DNA. Urinary tract cells DNA contains both high-

molecular-weight ucfDNA, usually longer than 1 kbp released from necrotic cells along the urinary tract,

and low-molecular-weight ucfDNA, 150-250 bp fragment originated from apoptotic cells and represent

the majority of ucfDNA [86, 87]. Transrenal DNA refers to cell-free DNA in blood plasma that passes

through the glomerular basement membrane in the kidney. The transrenal DNA is a low-molecular-

weight fragment of size 150 - 160 bp, given that glomerular pores �ltering out the large molecule with a

diameter > 11.5 nm. including nucleosomes, exosomes, apoptotic bodies, and large protein complexes.

Since urinary tract cells have direct contact and their DNA is the majority of ucfDNA, it has great

potential as a desirable source of diagnostic biomarkers for bladder cancer, prostate cancer, and renal

cancer [88].

Pleural �uid is a common liquid material used in diagnosing cancers of the respiratory system. Many

studies have demonstrated the feasibility of pleural e�usion �uid in detecting EGFR mutation in patients

with non-small cell lung cancer [89, 90]. It showed a potential of being a useful predictor of the ge�tinib

and erlotinib response. A study reported the high sensitivity (88%) and speci�city (100%) of using

pleural �uid cfDNA [91].

Ascites were reported to have abundant cell-free DNA and contained mutations in TP53, KRAS in pa-

tients with digest system cancer and gynecologic cancer [92]. Another preliminary study detected the

presence of copy-number alterations in cancer-associated genes, especially in EGFR, in 6 metastatic can-

cer patients [93]. High molecular weight cfDNA was commonly found in ascites and indicate extracellular

vesicles as the possible source [94].

Other body �uids such as sputum and saliva (for head and neck cancer, and oral cavity cancer), and

stools (for colorectal cancer) are also a promising sources of cfDNA [81, 95].

1.4.3 Methodology/Technology for detecting circulating tumor DNA

At the early time of studies on cfDNA, polymerase chain reaction (PCR) was the main technology

used for quanti�cation of cfDNA and detection of alteration. Recently, next-generation sequencing has

become cost-e�ective and demonstrated much utilization in the studies on cfDNA. One should consider

the clinical situation and goal of ctDNA analysis in order to select which method would be suitable

(Table 1). Brie�y, the comprehensive approach does not rely on prior knowledge of hotspot mutation

or genomic landscape of target tumor entity, while the targeted method can provide more sensitivity

toward low-concentration of ctDNA.

Gene-panel deep sequencing

Although targeting a few genomic loci, gene-panel sequencing provides high speci�city with a limit of

detection at an allele frequency of 0.1. There are two approaches for sequencing a set of target genes:

amplicon and hybridization-based sequencing.

The amplicon sequencing method is the most commonly used to detect point mutations in a set of target

regions. This method uses PCR to amplify the targeted regions, called amplicon, and create multiplex of

amplicon from di�erent samples. If the target region is small (typically < 50 genes), amplicon sequencing

is more cost-e�ective, requires less material ( 10 - 100 ng) and lesser time than the hybridization-based

method. However, the PCR bias of this method can lead to sequencing errors.

The hybridization-based method uses long, biotinylated oligonucleotide baits to capture the targeted
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region. The hybridization-based methods are favorable when targeting larger regions (typically > 50

genes). In general, this approach provides better sensitivity (down to 1%) than amplicon sequencing

(down to 5%) and enable detection all variant types including single nucleotide variants (SNVs), in-

sertions/deletions (INDELs), and complex genomic alteration [96]. However, the hybridization method

requires more input material (1-250 ng.) and a longer time to do puri�cation steps.

Both sequencing methods have been frequently used in cfDNA studies. However, the additional advantage

of the hybridization strategy is that it can combine with molecular barcodes which allow the reduction of

sequencing error during the PCR process. Moreover, sequencing reads on o�-target regions can be used

for the detection of copy-number variations (CNVs). These advantages make the hybridization-based

method a potential candidate for cfDNA investigation [97].

Whole-exome sequencing

Whole-exome sequencing (WES) provides a broader investigation of coding and non-coding regions of

genes. It also allows the identi�cation of genomic signatures such as tumor mutational burden (TMB)

and microsatellite instability (MSI). Several studies performed WES on plasma cfDNA in detecting

mutations and copy number alterations [98�100]. They demonstrated the longitudinal WES could be

used to track tumor mutations during treatment or follow-up [98, 99]. Changes in the level of clonal and

subclonal mutations could inform clinical about emerging resistant clones. However, the use of WES

is limited by its sensitivity (limit of detection (LOD) >5%) and requires a relatively high amount of

input material (>50 ng. required by Illumina Nextera Rapid Capture [101]). Many studies applied WES

after a certain level of ctDNA is reached to e�ectively derive comprehensive mutation information and

mutational signatures [98, 99, 102].
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Low-coverage whole-genome sequencing

Instead of getting sequencing coverage at 10-30X, low-coverage whole-genome sequencing (lcWGS) o�ers

an a�ordable approach to derive genome sequence at shallow coverage ~0.5-2X. It can be performed

instantly using a few input DNA materials (>1 ng.). lcWGS can discover genetic alterations without

prior knowledge of the genetic makeup of the tumor and is not limited to a speci�c set of regions. This

ability come in useful because most of the late-stage tumor evolve rapidly as a result of progression and the

selective pressure of treatment. Moreover, the majority of solid tumors and 50% of blood-related cancer

harbor aneuploidy and aberrated copy-number pro�le. Bioinformatics work�ows can use lcWGS data to

investigate genome-wide copy-number pro�les, estimate the tumor fraction and extract characteristics of

cfDNA fragments. Recently, lcWGS has been performed in many studies and shows a great presentation

of genome-wide copy-number pro�les from plasma DNA samples. Moreover, longitudinal lcWGS has

been recognized as a cost-e�ective tool in tracking tumor relapse during follow-up and revealing the

copy-number pro�le of the therapeutical-resistant clone. However, the sensitivity of this method is

limited to reliable detection of ctDNA at 5-10% [96].

Error rate reduction

The limitation of the next-generation sequencing (NGS) method is due to the high error rate of both

the PCR and sequencing process. Theoretically, a true mutation is called only when the frequency of

the mutation is higher than a read error rate. The limit of detection of 0.01% can be achieved with

100,000 region supporting reads given the error rate is below 0.01% and 5,000 genomic equivalence. The

early NGS and PCR-based genotyping technique cannot reliably detect alleles less than 5% [96]. Several

techniques were introduced aiming to reduce the error rate. One potential technique is so-called molecular

barcoding strategies [103]. The molecular barcode has been known as unique molecular identi�ers (UMI),

or unique identi�ers (UID). They are designed as a random sequence of 6-8 nucleotides to be assigned to

each DNA molecule during PCR. At the end of the process, the bioinformatics approach could reidentify

the sequence of template molecules based on consensus reads having identical UMI and mapping genomic

location (Figure 15) [104�106]. Implementing UMI with deep panel-sequencing can reduce PCR biases

and sequencing errors, improve accuracy in the detection of low-allele frequency mutation in cfDNA [97,

107].

Figure 15: Simpli�ed schematic of somatic mutations calling with application of unique molecular iden-
ti�ers (UMI) (Reprinted from [106], Copyright © 2019 by the authors, CC BY)
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1.5 Characteristical Length of CfDNA Inferring Tumor-origin Plasma CfDNA

Cell-free DNA in blood plasma consists of a pool of DNA fragments released into the blood circulation

from various cell types in the body. Di�erentiating tumor-derived DNA (or ctDNA) from non-tumor

DNA required insight on which characteristic of cfDNA could be used as a marker. Many studies have

discovered genetic and nongenetic signatures of cfDNA that could infer the origin of cfDNA, for example,

methylation, nucleosomal footprint, end-motif sequence, and length of the fragment. This dissertation

will investigate the characteristic of cfDNA focusing on the length of the cfDNA fragment. This section

describes the underlining mechanism relating to fragmentation of cfDNA and what is the di�erence

between ctDNA and non-malignant cfDNA.

1.5.1 The source of cfDNA determines characteristical length of plasma cfDNA

It has been long discovered that cfDNA fragments are generated by a non-random process. Blood

plasma contains a mixture of cfDNA fragments of di�erent sizes where the majority of fragments are

short (<200bp). In plasma of healthy individuals, the fragment length distribution of cfDNA shows a

dominant peak is ~167 bp. which corresponding to the length of a DNA fragment wrapping around

a molecule of mononucleosome (143 bp.) plus an H1 linker protein (~10.4 bp.) (Figure 16a). Within

the 100-160 bp range, a characteristic 10-bp periodic peak is observed which is possibly the result of

cleavage on the grooves of DNA that is exposed to nuclease. This common �nding suggests that plasma

cfDNA was secreted via cell apoptosis into blood circulation as a DNA bound to the histone protein.

It is often known as �circulating nucleosomes�. Recent studies reveal that the fragmentation process

involves several endonuclease activities. Inside apoptotic cells, chromatins are digested by DFFB (DNA

fragmentation factor sub-unit β) and DNASE1L3 (deoxyribonuclease 1-like3) as a part of cell death

program (Figure 16b). Cleaved DNA-nucleosome complex is secreted together with DNASE1L3 and

DNASE1 (deoxyribonuclease 1) into extracellular �uid where additional fragmentation is performed.

Therefore, the chromatin structure of the original cell would in�uence the length of the cfDNA fragment.

Open chromatin regions would be secreted as highly fragmented cfDNA whereas cfDNA from closed

chromatin regions are mostly intact (Figure 16c).

Figure 16: Source and chromatin structure incluence length of cfDNA fragment (Adapted from [72],
Copyright © 2021 by the authors with permission from AAAS)
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1.5.2 Tumor-derived cfDNA is shorter than non-malignant-origin cfDNA

Since the advance of next-generation sequencing technology, the length of individual cfDNA molecules

can be accurately measured in many areas of research. In the plasma of pregnant women, cfDNA derived

from the fetus (originated from the placenta) has has been shown to be shorter than cfDNA from the

mother. Quanti�cation of short-fragment cfDNA in pregnant women could bene�t in quanti�cation

of fetal DNA and detect chromosomal aneuploidies of the fetus. A similar phenomenon is observed

in patients who receive organ transplantation. Graft-derived cfDNA are shorter than recipient-derived

cfDNA and enrichment of short cfDNA indicate the graft-rejection [108, 109]. In patients diagnosed

with cancer, enrichment of short cfDNA has been observed in many tumor entities, and correlate with

pathological status.

Figure 17: The size pro�le of mutant ctDNA with animal models and personalized capture sequencing
(Reprinted from [110], Copyright © 2018 by the authors with permission from AAAS)

In 2018, Florent Mouliere and colleagues published a comprehensive study demonstrating that tumor-

derived cfDNA is shorter than cfDNA from non-malignant cells. An experiment of a xenografted human

ovarian cancer was performed in a mouse model in which cfDNA was extracted (Figure 17A). The ex-

tracted cfDNA were sequenced and their origin whether were identi�ed via sequence alignment (align

onto the human reference genome or mouse reference genome). The length of tumor-derived cfDNA

(human cfDNA) was enriched in the range between 90 and 150 bp, while non-tumor cfDNA (mouse

cfDNA) is dominated by fragments longer than 150 bp and peaked at 166 bp (Figure 17B). Similar �nd-

ings were also found in other xenografted human cancers [111�113]. Second, tumor mutations identi�ed

by whole-exome sequencing of tumor DNA were used as a patient-speci�c panel for deep sequencing

(>300 depth of coverage) of matched cfDNA samples (Figure 17C). The size pro�les of detected ctDNA

in 19 patients with cancer were analyzed. cfDNA fragments that harbor tumor alleles were enriched in

fragments ~20 and 40 bp shorter than the length of DNA-mononucleosome and dinucleosome complex

(Figure 17D). This study �nds that circulating tumor DNA consists of highly fragmented DNA between

the length of 90 and 150 bp, and 250 to 320 bp. They also survey fragment length of 344 plasma samples

derived at late-stage in a pan-cancer study and 65 healthy controls (Figure 18A). It shows a signi�cant

di�erence in the proportion of short-fragment cfDNA between samples with high ctDNA and samples
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from healthy individuals (Figure 18B). cfDNA samples from late-stage melanoma, breast, ovarian, lung,

colorectal, and cholangiocarcinoma show enrichment of short-fragment cfDNA when comparing to other

tumor entities and healthy individuals (Figure 18C).

Figure 18: A survey of plasma DNA fragmentation on a pan-cancer scale (Reprinted from [110], Copyright
© 2018 by the authors with permission from AAAS)

1.5.3 Size-selection enhances detection of circulating tumor DNA

The �nding that circulating tumor DNA is shorter than non-tumor cfDNA has been discussed during the

past decade and comprehensively demonstrated by Florent Mouliere and colleagues [110]. This study is

also the �rst study that presents the utility of size-selection strategy, both in vitro and in silico, (Figure

19A) and quantitatively assesses its impact on detecting tumor alteration in plasma cfDNA. In vitro

size-selection used a bench-top micro�uidic device to select fragments with a particular size. In silico

size-selection, fragment length is inferred from the mapping distance between the beginning and the end

of a mapped paired-read. Both methods can �lter cfDNA with the length between 90 to 150 bp (Figure

19B).

The e�ect of size-selection in detecting somatic copy number alterations (SCNAs) has been determined

in plasma cfDNA samples derived from a group of patients with high-grade serous ovarian cancer. They

identi�ed cfDNA at pretreatment with a high concentration of ctDNA where many SCNAs were detected

(Figure 19C). Without size-selection, a few SCNAs were detected in the posttreatment sample derived
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Figure 19: Enhancing the tumor fraction from plasma sequencing with size selection (Reprinted from
[110], Copyright © 2018 by the authors with permission from AAAS)

3 weeks after the beginning of chemotherapy (Figure 19D). It is possibly due to the low concentration

of ctDNA. When applying in vitro size-selection on the posttreatment sample, amplitudes of detected

SCNAs were increased approximately 6.4x comparing to without size-selection (Figure 19E). Moreover, it

shows SCNAs not only those observed in pretreatment but also additional SCNAs that were not detected

in the pretreatment sample. Not only SCNAs, both in vitro and in silico size-selection strategies also

improve SNV/INDELs detection using WES. Integrating cfDNA fragment size analysis and SCNAs

together increases the performance of the classi�cation model discriminating between cfDNA samples

from patients and those from healthy individuals. Their experiment demonstrates exploring the biological

properties of cfDNA, fragment length in this study can overcome the current limitation of sensitivity

and support downstream clinical and research applications.
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1.6 Aims of Thesis

Liquid biopsy o�ers non-invasive approach to get genetic material from a patient while also getting

pooled genetic pro�le from heterogeneous origin including entire tumor mass. In collaboration with

the Early Cancer Diagnostics and Reverse Translation unit, KiTZ Hopp Children's Cancer Center, we

collected cfDNA from a group of pediatric cancer patients. We aim to use the advantages of cfDNA

in the clinical management of pediatric cancer using multi-omic data. However, the utilization of

cfDNA in pediatric cancer have not been investigated comprehensively with multiple next-generation

sequencing technique. This thesis aims to investigate the utilization of cfDNA in detecting ge-

netic alterations based-on three next-generation sequencing approachs namely low-coverage

whole-genome sequencing (lcWGS), whole-exome sequencing (WES) and deep gene panel-

sequencing (Panel-seq). A set of druggable genes in pediatric cancers would be the alteration to focus

on. To support this investigation, two analyses were performed

1. Evaluate the performance of cfDNA in detecting copy-number variations (CNVs), somatic point

mutations (SNVs and INDELs) using lcWGS, WES and Panel-seq base-on information from tumor

sequencing data

2. Detect genetic aberration from cfDNA that could potentially indicate the use of targeted therapy

It has been shown in many adult cancer studies that the tumor-derived cfDNA is shorter than cfDNA

shed from non-malignant cells. The increasing proportion of short-fragment cfDNA is correlating with

pathological stage of tumor. Moreover, the size-selection for short-fragmented cfDNA enchances the

detection of tumor copy-number aberrations. It opened an opportunity to use this characteristics as a

quantitative measurement of tumor from cfDNA. Recently, none of bioinformatics tool can comprehen-

sively extract fragment-length pro�le from the next-generation sequencing data and provide genome-wide

pattern of fragment length of cfDNA. In this study, we explored the fragment-length characteristic

of cfDNA in pediatric cancers and aims to increase the success of detection of tumor-derived

cfDNA. The accomplished these aims, we have to

1. Demonstate the fragment-length chracteristic of tumor-derived cfDNA in pediatric cancer patients

2. Develop a bioinformatics tool that extract fragment-length pro�le of the sample and analyse

genome-wide pattern of fragment length of cfDNA

3. Evaluate the fragment-length characteristic of cfDNA as a marker of tumor aberration in cfDNA

assay
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In this dissertation, we developed several bioinformatics work�ows for analyzing speci�c next-generation

sequencing data including low-coverage whole-genome sequencing (lcWGS), whole-exome sequencing

(WES), and gene-panel sequencing (Panel-seq) of cfDNA samples (Figure 20). This chapter describes

technical details involving the detection of copy-number variants (CNVs), druggable alterations, and

alterations in telomeric regions. The fragment length analysis with the new bioinformatics method is

described further in Chapter 3.

Figure 20: The overall analysis work�ow to analyse next-generation sequencing data of cfDNA

2.1 Library Preparation and Next Generation Sequencing (NGS)

2.1.1 Tumor and blood control samples - whole-exome sequencing

In the collaboration with the Department of Pediatric Neurooncology at the German Cancer Research

Center (DKFZ), pan-pediatric cancer samples have been collected from children, adolescents, and young

adults. The library preparation, and the sequencing process of individual-matched tumor and blood

samples have been previously described in the INFORM pilot study [114]. Primary tumors and matched

controls from each patient were submitted to DKFZ Genomics and Proteomics Core Facility. Either

SureSelect Human All Exon V5 or SureSelectXT HS Human All Exon V7 capture kit were used to

capturing the coding regions of the genome without untranslated regions. The whole-exome sequencing

was operated by Illumina HiSeq sequencing machines with paired-end sequencing strategy.

2.1.2 Cell-free DNA sequencing

The processes of the sample extraction and library preparation have been performed by the Early

Cancer Diagnostics and Reverse Translation unit, KiTZ Hopp Children's Cancer Center. The cell-free

DNA samples from each patient were extracted and submitted to the DKFZ Genomics and Proteomics

Core Facility. The exons without untranslated regions were captured by either SureSelect Human All

Exon V5 or SureSelectXT HS Human All Exon V7 capture kit. Sequencing was performed by Illumina
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HiSeq sequencing machines with a paired-end sequencing strategy. For low-coverage whole-genome se-

quencing, the library preparation was carried out with either the Accel-NGS 2S Plus DNA library kit,

which allows unique molecular barcoding, or PicoPLEX DNA-Seq. Gene-panel sequencing utilized the

customized gene-panel developed by the Department of Neuropathology, Heidelberg University Hospital

[115]. The library preparation was carried out with Accel-NGS 2S Plus DNA library kit with unique

molecular barcoding process.

2.2 Sequencing Data Pre-processing : ODCF Sequence Alignment and So-

matic Variant Calling Work�ow

Sequencing data of tumor, control, and cfDNA were transferred to DKFZ Omics IT and Data

Management Core Facility (ODCF). In-house bioinformatics work�ows for sequence alignment and

somatic variant calling were performed. Brie�y, this work�ow performed sequence alignment onto

the GRCh37 (hg19) human reference genome plus PhiX sequence by using BWA-MEM [116]. Du-

plicated marking, sorting and indexing processes were performed by using Sambamba [117] and sam-

tools [118] respectively. Quality matrices of the alignment (e.g. coverage, percentage of mapped reads,

percentage of duplicates) were extracted by in-house scripts. This work�ow is publicly available at

[https://github.com/DKFZ-ODCF/AlignmentAndQCWorkflows].

Somatic SNV and INDEL calling was performed by ODCF with the in-house SNVCallingWork�ow

and the IndelCallingWork�ow from individual-matched tumor-control or cfDNA-control BAM �les as

previously described [15]. In brief, somatic SNVs were detected by using Samtools mpileup and bcftools.

Somatic INDELs were detected by using Platypus [119]. All detected variants were annotated by using

ANNOVAR [120] and GENCODE database version 19 [121]. Only somatic high-con�dence coding or

splice site variants were used for downstream analysis. The somatic SNV and INDEL calling from

matched cfDNA-control were performed with option -t 500 -c 0 -x 1 -l 1 -e 0 and set the score of 7 as the

threshold of high-con�dence variant to allow detection of low allele frequency mutations. Finally, One

Touch Pipeline (OTP) [122] provides a web-based portal showing the overview of available sequencing

data, quality matrices, and the result of variant calling.

2.3 Copy-number Variant Calling for Tumor Sequencing Data

Copy-number variants were inferred from whole-exome sequencing of individual-matched tumor-

control samples by using CNVkit [123]. CNVkit used both on-target reads and o�-targets reads to

determine copy-number aberrations across the genome. It also corrects variability of the sequencing read

depth regarding GC content, library size, and spacing of target regions.

The segmentation and CNV calling processes were already described in detail [124]. Brie�y, genomic

positions with alternative allele frequencies between 0.3 and 0.7 are considered heterozygous SNPs.

Segmentation was performed on the alternative allele frequency information. Only segments that contain

at least 20 heterozygous SNPs were later used in the estimation of tumor ploidy and tumor cell content.

The segments were classi�ed into balanced, ambiguous, and imbalanced segments using the distribution

of the alternative allele frequency. The ambiguous segments were excluded from the analysis. For

imbalanced segments, the average B-allele frequency (BAF) of all SNPs was calculated per segment.

The average read count of the B-allele of a segment was calculated as the read count multiply by the

BAF of the segment. Estimation of tumor cell content (TCC) and tumor ploidy method was adapted

from ACEseq [125]. The range of TCC between 0.15 and 1.0, and tumor ploidy between 1 and 6.5 were

included in the model �tting procedure. The distance per TCC/ploidy solution was calculated as the

local minimum in the weighted mean distance.

2.4 Developing a Bioinformatics Work�ow for CfDNA Sequencing Analysis

The following section describes the bioinformatics work�ow for cfDNA sequencing analysis in detail.
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The overview of the work�ow is shown in Figure 21.

Figure 21: Overview of bioinformatics analysis work�ow

2.4.1 Unique molecular index integration work�ow for lcWGS and Panel-seq

Unique molecular index (UMI) barcoding is a sequencing strategy that can suppress sequencing arti-

facts that occur during PCR by calling consensus sequences from reads originating from the same DNA

molecule. Moreover, molecular barcodes allow di�erentiation between reads of molecular origin from

PCR products. It increases the overall sequencing coverage comparing to the regular markduplication

process when one deeply sequences highly fragmented cfDNA. Fgbio toolkit, developed by Fulcrum ge-

nomics, provides the UMI processing work�ow [126]. This work�ow required sequencing FASTQ �les of

the paired-end reads (R1 and R2), a FASTQ �le of sample-matched UMI (I1), and a BAM �le as inputs

of the work�ow. The work�ow is implemented as follows (Figure 22).

1. fgbio-FastqToBam matches UMI sequences (I1) with sequencing reads (R1 and R2 �les) using the

read name. A sorted unmapped BAM �le is created. The UMI is added per alignment record into

the RX tag.

2. Picard-MergeBamAlignment merges information of the unmapped BAM with the alignment infor-

mation from the mapped BAM �le.

3. fgbio-GroupReadsByUmi groups sequencing reads that originate from the same original molecule

by sub-grouping those reads by the UMI sequence and the mapping positions. The output of

sub-grouping is assigned to molecular index (MI) tag per alignment record.

4. fgbio-CallMolecularConsensusReads calls consensus reads from those reads with the same MI tag.

Reads must have a minimum mapping quality of 20.

41



Figure 22: Pre-processing work�ow : UMI-based deduplication and errors correction.

5. Re-alignment is performed by Picard-SamToFastq extracting the consensus reads as FASTQ format

and BWA-MEM aligning reads onto the reference genome.

6. Samtools creates the sorted alignment �le and index �le (.bai).

7. For panel-sequencing data, on-target reads are extracted by using bedtools-intersect function from

a given target-region bed �le.

2.4.2 Extracting sequencing coverage matrices

The sequencing coverage of low-coverage whole-genome sequencing was extracted by Picard-CollectWgsMatrics

[127]. For this assessment, paired-end reads (�ag value 3) with minimum mapping quality of 20 and ex-

cluded mark-duplicated reads (�ag value 1024) were used.

The on-target coverage of whole-exome sequencing was extracted from QC matrices table provided

by ODCF AlignmentAndQCWork�ows.

For panel-seq data, the median on-target depth of coverage was calculated by using samtools-depth

and an in-house bash script. Only reads with minimum mapping quality of 20 were considered.

2.4.3 Assessing the e�ect of DNA oxidation artifact

For both WES and Panel-seq of cfDNA, DNA oxidation artifacts C > A/G > T [128] has been

considered as one of the quality control measurements. Picard-CollectOxoMatric was used to collect

these alterations and calculate the Phred-scaled probability of the oxidation artifact. The lower Phred-

score implies higher 8-oxoguanine artifact rate. For each sample, the average Phred-score of substitution

C(C>A or G>T) were calculated as a quality measurement of whole-exome sequencing and panel-

sequencing of cfDNA samples.

2.4.4 Copy-number variant calling for low-coverage whole-genome sequencing

ichorCNA (v0.3.2) [102] was used for segmentation, tumor fraction estimation and CNV calling. To

reduce noise and correct the systematic biases introduced by the sequencing platform, sample preparation

protocol, cfDNA-speci�c fragmentation structure, creating a Panel-of-Normal (PoN) from a group of

selected cfDNA samples is necessary. The PoN was created from patient-derived cfDNA that does not

have large copy-number alterations. The NIPTeR package [129] was implemented to �lter-out cfDNA
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with the large copy-number alteration. Since cfDNA samples in this study were prepared by using two

preparation kits, Accel-NGS and Picoplex, two separated PoNs were created as the following instruction.

1. BAM �les with coverage between 0.24 - 2.35 for Accel-NGS samples and more than 0.1 for Picoplex

samples were initially selected.

2. Each of the selected BAM �les was loaded into R environment using the NIPTeR package as a NIPT-

Sample object. The GC bias correction was performed using LOESS method via NIPTeR:gc_correct

function.

3. A NIPTControlGroup object was created from a list of NIPTSample objects in the previous step.

4. The function NIPTeR::diagnose_control_group was used iteratively to compute z-scores per chro-

mosome of every sample in the NIPTControlGroup object. In each iteration, the function reported

samples with the aberrant chromosomal event. The reported samples were removed from the

control group and then the process continued until no aberrant sample was reported.

5. The �nal samples in the NIPTControlGroup were used in the creation of PoN by ichorCNA.

Once a PoN was created, it was used in the copy-number detection by ichorCNA. Since the majority of

cfDNA sample contains low concentration of tumor-derived cfDNA, ichorCNA parameters were modi�ed

to improve CNV detection having low ctDNA samples. The parameters were changes as followed. -ploidy

"c(2,3)" -normal "c(0.8,0.9,0.95,0.99,0.995)" -maxCN 4 -includeHOMD FALSE -estimateScPrevalence

FALSE -scStates "c()" -chrTrain "c(1:22)". These parameters setting allows �tting ranges of non-tumoral

contamination: 80%, 90%, 95%, 99% and 99.5% ; cell ploidy of 2 and 3; segment copy-number from 1 to

4 copies. Subclonal fraction estimation was ignored. The most likelihood tumor fraction was interpreted

as the �nal estimated tumor fraction.

2.4.5 Copy-number variant calling for whole-exome sequencing

Unlike CNV calling of the matched tumor-control data, the result of CNV calling of cfDNA-control

sample produces rather a high level of noise and unstable segmentation. It is possibly due to the

di�erences in sequencing protocol, DNA capture-kit, coverage, and genomic structure of the source.

PureCN [130] was selected as software for CNV calling on the whole-exome sequencing data of cfDNA.

Similar to ichorCNA, PureCN allows the creation of PoN selected from process-matched samples. To be

selected as a PoN, the sample must have the median on-target depth of coverage between 142 and 269

By the result of tumor-informed SNV/indel variant detection process (Section 2.4.7), the samples also

must support less than 3 somatic variants in the matched tumor.

Once a group of samples were selected, PureCN requires them for the creation of NormalDB. The

instruction of this process can be found in PureCN vignettes document. Brie�y, the coverage of each

sample was extracted and normalized for the GC-bias. A normal panel VCF containing mutations

commonly found in the selected samples was created by the following instruction.

1. For each of selected BAM �les, germline and somatics variant were detected by using GATK Mu-

tect2 [131] in �tumor-only� mode with parameters -max-mnp-distance 0 -min-base-quality-score

20 -annotation BaseQuality -read-�lter MappingQualityReadFilter -read-�lter OverclippedRead-

Filter -minimum-mapping-quality 30 -read-�lter FragmentLengthReadFilter -min-fragment-length

30. This process produced a VCF �le per individual sample.
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2. Only common variants found in at least 3 samples were selected. This can be done by using VCF

�les in the previous step as the input of GATK:CombineVariants where parameter minimumN is

set to 3.

Lastly, PureCN runs CNV calling in the setting that allows the detection of samples with lower tu-

mor purity. The software parameters were set as followed: -minpurity 0.05 -minaf 0.01 -error 0.0005

-maxploidy 3 -maxcopynumber 8 -padding 25 -model betabin -funsegmentation PSCBS -postoptimize.

This parameters �x the PureCN solution space down to tumor purity of 5% as recommned by the soft-

were developer. The model search for solution with the tumor ploidy up to 3 ploidy and 8 number of

copy. The segmentation were performed by PSCBS.

2.4.6 Sequencing quality control of cfDNA sequencing data

Before further analysis, a cfDNA sequencing data must pass the following quality threshold.

For low-coverage whole-genome sequencing, a sample must have genomic coverage above 0.1 reported

by Picard-CollectWgsMatrics. GC-Map correction MAD, reported by ichorCNA, must be less than 0.15

to reduce high variance in the data.

For WES, a sample must reach 60 on-target coverage, reported by the ODCF work�ow, to achieve the

detection of the tumor variant allele frequency at 2%. No coverage threshold was applied for Panel-seq

samples. WES and Panel-seq samples with the average Phred-score of substitution C(C>A or G>T)

below 30 (Section 2.4.3) were excluded from downstream analysis.

2.4.7 Tumor-informed SNV/indel variant detection in cfDNA sequencing data

In addition to the somatic variant calling, a set of in-house scripts were developed for interrogating

a cfDNA sample if the tumor-derived cfDNA exists. Tumor high-con�dence somatic variants, in the

tumor VCF �le, were used as ground truth and look them up from the read pileup information of

individual-matched cfDNA. Each variant was sorted into three categories. If a tumor variant is present

in cfDNA, the variant will be reported as �var_present�, otherwise it will be reported as �not_present�.

The tumor variant will be initially reported as �pos_not_covered� when no read was aligned onto the

position of the variant. Only the read pileup that has the read minimum mapping quality of 1 and the

base quality of 20 were considered. The variant positions with less than 5 supporting reads were marked

as �pos_not_covered� and were discarded from the analysis. A tumor variant needs at least one read in

the cfDNA sample that supports the tumor allele to be reported as �var_present�.

To support the evalutation of CPA Score in detecting high ctDNA, we categorise cfDNA WES into

two classes: high ctDNA and low ctDNA. Threshold were estimated by the power of detection detecting

tumor purity > 2.5 %, average coverage 210, and tumor ploidy 2 using calculatePowerDetectSomatic of

PureCN package. With this parameter, samples that detect at least 17% of tumor point mutation and

3 tumor point mutations were categorised as high ctDNA otherwise as low ctDNA.

2.5 Xenograft-derived Sequencing Data Analysis

The sequencing data from the patient-derived xenograft experiment were also processed by the ODCF

sequence alignment work�ow and the UMI sequencing work�ow. All reads were mapped onto the refer-

ence FASTA �le containing both the human reference genome (GRCh37) and the mouse reference genome

(GRCm38). The separation between human-derived cfDNA and mouse-derived cfDNA was done by us-

ing samtools. Human-derived cfDNA was further analyzed by ichorCNA for CNV calling and tumor
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fraction estimation. The fragment length pro�les of the human-derived and mouse-derived cfDNA were

analyzed by using cfdnakit (Chapter 3).

2.6 Telomere Content Estimation and Quanti�cation of Telomeric Variant

Repeat

The telomere content of both tumor and cfDNA was estimated by using TelomereHunter [132]. Brie�y,

TelomereHunter extracted reads containing at least six non-consecutive repeat sequences (TTAGGG,

TCAGGG, TGAGGG, and TTGGGG) from a BAM �le. The extracted reads were sorted into four

categories depending on their mapping position on the genome. Only unmapped reads or reads with a

mapping quality lower than 8 were considered intratelomere reads. The telomere content was calculated

as the number of intratelomere reads per million reads having a GC content of 48-52%. Telomere variant

repeats (TVR) were detected in the intratelomeric reads by searching for the hexamer NNNGGG where

'N' can stand for A, C, G, or T. The TVR that has a neighboring t-type context, (TTAGGG)3-NNNGGG-

(TTAGGG)3, were called �singletons�. The absolute counts of each TVR singleton were normalized by

the total number of reads in the sample and used for further analysis.

For tumor samples, the matched tumor-control WGS were used to calculate the log2 ratio of the

estimated telomere content and TVR singleton count. For cfDNA samples, only the lcWGS (BAM �les

from the ODCF work�ow) of cfDNA was used as the input of TelomereHunter. The input BAM �le of

cfDNA were obtained from the standard ODCF sequence alignment not the result of UMI work�ow.
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3 DEVELOPMENT OF BIOINFORMATICSMETHODOLOGY

(cfdnakit Package)

47



3.1 Background

Cell-free DNA (cfDNA) has become an attractive source of DNA that shows potential bene�ts to the

management of cancer patients. Detection of tumor-derived cfDNA or circulating tumor DNA (ctDNA)

has been extensively demonstrated in many cancers and di�erent clinical settings. Nevertheless, the low

concentration of ctDNA has been a major challenge to the success especially for those patients with early-

stage or localized tumors. Research on the biological characteristics of cfDNA have provided new insights

regarding its cellular origin and mechanism behind the secretion [54, 72, 133]. These discoveries post new

opportunities also in terms of data analysis to increase the success of ctDNA detection. We are interested

in the characteristical length of cfDNA showing that the ctDNA is relatively shorter than non-ctDNA

fragments [110, 112]. The enrichment of short-fragmented cfDNA correlates with the pathological stage

of the tumor and mimics the genomic copy-number alteration of the tumor population [110]. Analyzing

the fragment length of cfDNA could provide complementary evidence of ctDNA in the pool of cfDNA

fragments [134, 135].

Due to the lack of speci�c bioinformatics tools, a software package �cfdnakit� has been developed. This

package provides functions to explore the length of cfDNA from low-coverage next-generation sequencing

data. Comparing the amount of short-fragmented cfDNA (<150 base-pairs) relative to long-fragmented

cfDNA between multiple samples is simple by using this package. The amount of short-fragmented cfDNA

can be explored throughout genomic loci and infers aberrant copy-number in the tumor genome. cfdnakit

also estimates the most likely tumor fraction from the signal of short-fragmented cfDNA and calculates

a copy-number tumor burden score. This score could be used to indicate overall genomic instability from

the tumor-derived cfDNA. In this dissertation, this package has been used in the exploration of cfDNA

samples from a pan-pediatric cancer dataset. The following sections are dedicated to methodological

details of this package.

3.2 Fragment-length Distribution

The fragment length of a cfDNA can be inferred from the mapping distance between the outer end

of the two paired-end reads. This information can be extracted from a BAM �le in the TLEN �eld.

cfdnakit uses Rsamtools package [136] to read a given BAM �le and extracts the TLEN information.

Using the Rsamtools function to read the BAM �ag information, cfdnakit keeps only mapped paired-end

reads with minimum mapping quality of 20 and excludes reads with markduplicated �ag or being the

secondary alignment. cfdnakit also excludes those reads that mapped onto blacklisted regions (described

in Section 3.3). After that, sequencing reads are then separated into equal-size (100, 500, or 1000 kilobase

pairs) non-overlapping genomic windows (bins). Finally, the input sequencing sample is formated as a

SampleBam object in the R environment.

cfdnakit provides a function to visualize the fragment-length distribution of a SampleBam object.

Given a list of SampleBam objects, this function allows comparisons between multiple cfDNA samples

(Figure 23). The fragment-length distribution should present a pattern of association between cfDNA

and nucleosomes. In general, plasma cfDNA would show modal length at 167 bases (the size of a

DNA wrapping around a unit of nucleosome plus an H1 linker protein) and 10-bp periodically peak in

the distribution of fragment lengths below 150 bases [54, 110]. CfDNA from other sources (e.g. CSF

or urine) is more fragmented into less than 147 bases suggesting a di�erent mechanism behind their

secretion [137, 138]. Enrichment of short-fragmented cfDNA (<150 bp) is often observed from tumor-

derived cfDNA (ctDNA) and has been recognized as a potential tumor marker [110]. The other pattern

of distribution has not been reported yet. The fragments such as PCR primers are usually short (<50
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Figure 23: A fragment-length distribution plot showing in comparison between two cfDNAs derived
from a cancer patient (cyan line) and a healthy donor (red line)
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bases) and indicates the sample quality issue if the plot shows a high distribution within this range.

3.3 ENCODE Excluded Regions

It is recommended when analyzing genomic data to exclude sequencing reads locate within the EN-

CODE blacklist loci to assure the quality of the result [139]. When using the GRCh37 as the reference

in cfdnakit, a set of genomic regions including the ENCODE blacklist and centromere loci, provided by

UCSC Genome Browser [140], were used. Users can introduce customized blacklist regions by creating

a bed �le or a tab-separated �le where the �rst three columns are chromosome, start, and end position

respectively. The future cfdnakit would be able to support blacklists of other reference genomes such as

GRCh38 or GRCm38.

3.4 Calculation of Short-fragmented Ratio

The number of short and long fragments of every bin is counted. The count value is called fragment-

count. By default, a short-fragment is de�ned as a fragment with a size between 100 to 150 base pairs

whereas the size of long-fragment is 151 to 250 base pairs. The short and long fragment-count are

then further corrected for GC and mappability bias (Section 3.5) using the information provided by

the QDNAseq package [141]. The corrected fragment-counts of short and long fragments are used to

calculate the short/long-fragment ratios (S.L.Ratio) of the sample (S.L.Ratiosample) and ratios per bin

(S.L.Ratiow) as follows:

S.L.Ratiosample =
NF.short

NF.long

S.L.Ratiow =
NF.shortw

NF.longw

where NF.short is number of short fragments; NF.long is number of long fragments;

w = {1, 2, 3, ..., n}; where n is number of bins;

NF.shortw is number of short fragments in bin w; NF.longw is number of long fragments in bin w.

S.L.Ratiosample can be used as a general comparative quanti�cation of ctDNA between plasma

cfDNA samples. This ratio increases when a sample contains the higher contribution of ctDNA. The

S.L.Ratiowrepresents the short-fragment cfDNA in a genomic bin. The aberration of ratios over a con-

tinuous locus correlates with the copy-number status in the matched tumor genome. The ratio increases

when the tumor acquires more segment copies and slightly decrease in the copy-loss segment.

The results of the calculation are then returned from the function as a SampleFragment object. The

object contains S.L.Ratio per bin ( in table per_bin_pro�le) and S.L.Ratio of the sample (in table

sample_pro�le). cfdnakit provides a plot function to visualize the S.L.Ratio throughout the genomic

regions (Figure 24). The noisy plot might be the result of too low sequencing coverage or too low DNA

material.

3.5 GC and Mappability Bias Correction

A LOESS regression model is created from the relation between the fragment count and the percent

of GC per bin. The raw count per bin is deduced with the read count predicted by the model. Then,

the values are added with the median of raw counts to bring back the range of values similar to the raw

count. After correction for GC bias, the GC-corrected read counts are then corrected for mappability

bias using a similar process. The mappability bias indicates the mapping capability of a genomic region
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Figure 24: A plot of genomic short/long-fragment ratios (S.L.Ratio) representing enrichment of short-
fragmented cfDNA in di�erent genomic loci

to be mapped uniquely by sequencing reads. cfdnakit also produces a plot describing the read count bias

within a sample and a plot showing the read count and S.L.Ratio after GC and mappability correction.

3.6 Creation of Panel-of-Normal Dataset

To estimate the rate of both technical and biological artifacts, creation of a Panel-of-Normal is usually

recommended by most bioinformatics work�ow. A Panel-of-Normal (PoN) of cfDNA analysis should be

made from healthy samples or a group of selected patient-derived cfDNA. There is no de�nitive rule on

how to select or how many samples should be included in a PoN. Creating a PoN will in general be better

than analysis without a PoN. Nevertheless, the most important approach is including normal samples

that are generated by similar techniques (such as DNA preparation methods, sequencing platform, and

biological sources) as many as possible.

cfdnakit requires a PoN dataset for further analysis. Every selected sample must be initially processed

by cfdnakit to extract S.L.Ratio per bin and saved the result as a separated RData �le. Once every sample

is processed, a text �le containing paths to those RData �les is created. cfdnakit will read this text �le

and create a matrix of S.L.Ratio. The matrix must be saved into an RData �le to be used repetitively

in downstream analysis.

3.7 Transforming Short-fragmented Ratio with PoN

The bias-corrected S.L.Ratio indicates the quantity of short-fragmented cfDNA and can be compared

within a sample. However, to relatively compare between samples, standardization is required. cfdnakit

transforms the S.L.Ratio by subtracting the median and dividing by median absolute deviation (MAD)

of S.L.Ratio as follows:

S.L.normw = S.L.Ratiow−median({S.L.Ratio1,...,S.L.Ration}−{S.L.Ratiow})
mad({S.L.Ratio1,...,S.L.Ration}−{S.L.Ratiow})

w = {1, 2, 3, ..., n}; where n is number of bins

The MAD is a term representing the median of the absolute deviation from the median. As an

alternative to the standard deviation, MAD a robust measure of variability of the data. We calculated

MAD from a sample as follows:

mad (S.L.Ratio1..n) = median (|S.L.Ratioi −median (S.L.Ratio1..n)|)

where n is number of bins
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Figure 25: A plot of genomic segmentation with circular binary segmentation (CBS)

The standardized S.L.Ratio (S.L.norm) of a bin is then transformed in z-score using the PoN dataset.

The z-score is calculated from the S.L.Ratio by subtracting the median and dividing by the mad of

S.L.Ratio of PoN samples at the same locus.

zscorew =
S.L.normw−median({S.L.normw,1,...,S.L.normw,p})

mad({S.L.normw,1,...,S.L.normw,p})

w = {1, 2, 3, ..., n}; where n is number of bins

and p = {1, 2, 3, ...,m}; where m is number of samples in PoN

3.8 Circular Binary Segmentation

Circular Binary Segmentation (CBS) is a partition method commonly used in partitioning a genome

into segments of total copy-number (TCN)[142]. Implementation of CBS in R packages (DNAcopy[143]

and PSCBS[144]) is widely used in many copy-number analysis tools, for example, ACEseq [125] and

cnvkit. cfdnakit utilizes the CBS algorithm and additional functions provided by the PSCBS package.

Once the S.LRatio is calculated per genomic windows and transformed into a z-score, the CBS

is performed. Outlier signals that are signi�cantly di�erent from the neighboring loci are identi�ed

by PSCBS function dropSegmentationOutliers with default parameters. The biological gaps such as

centromere where two adjacent loci should be treated as non-neighboring loci are identi�ed. cfdnakit

de�nes a region as a gap if the distance between two loci is larger than 10 Mb with no observed signal

between them. The actual segmentation is then performed using the function segmentByCBS. The

function produces a segmentation result using the median as a representative value (Figure 25). To

avoid oversegmentation, cfdnakit also applies hierarchical clustering to prune the segmentation result by

setting the tree height threshold to 0.5.

3.9 Copy-number Variant Calling and Tumor Fraction Estimation

The median S.L.Ratio of segments can be used as the signal for the estimation of tumor content

and ploidy of the tumor cell population. cfdnakit calculates the expected signal for tumor fraction (tf)

between 0.0 to 0.8 (with increments of 0.01), tumor ploidy (ploidy) between 1.5 to 4 (with increments

of 0.05), and integer copy numbers (TCN) between 1 and 5 as followed by the package default:

Expected.S.L.Ratio = median.segment ·
(

tf ·TCN+2·(1−tf)
tf ·ploidy+2·(1−tf)

)
where median.segment is the median segment S.L.Ratio of all segments ;

52



Figure 26: Copy-number variant calling solution space and coverage plot: A) Heatmap plot showing all
solution distances. The color gradient ranges from the lowest distance (blue) to the highest distance
(red). The lowest distances per rounded ploidy (2, 3, and 4) are marked with asterisks where the ranking
number are nearby. B) The genome-wide copy-number plot of the best solution (lowest distance). The
color represents the associated copy-number alteration: deletion (red), neutral (grey), gain (green),
ampli�cation (light green).

tf = {0.0, 0.01, ..., 0.8} ; ploidy = {1.5, 1.55, ..., 4} and TCN = {1, 2, .., 5}.

Cfdnakit calculates the distance between the observed signal and the expected signal as the absolute

di�erence of the expected signal and the signal of the segment.

distancesegment = |Expected.S.L.Ratio− S.L.Ratiosegment|

where S.L.Ratiosegmentis the median S.L.Ratio of segment (the signal of segment)

and distancesegmentis the distance of a segment to the expected S.L.Ratio

For a distinct set of parameters (ploidy, and tf), cfdnakit selects a TCN that provides the minimum

distance to the expected signal. cfdnakit calculates the distance per distinct set of parameters (solution)

as the mean distance weighted by the segment length as follows:

distance (ploidy, tf) =

∑Nsegment

i=1
(distancesegmenti

∗lengthsegmenti)∑Nsegment

i=1
lengthsegmenti

where distancesegmenti is the distance of segmenti;

lengthsegmenti is the number of bins in segmenti

and Nsegmentis the total number of segment

Cfdnakit reports the distances of all solutions and visualizes them with a heatmap plot (Figure 26A).

The color and color intensity represents the distance of a solution. The asterisks (*) indicate solutions

with the minimum distance per integer ploidy (ploidy 2, 3, and 4 by the package default). Finally,

cfdnakit provides CNV pro�les that represent the best solution per round ploidy (Figure 26B). Users

can select which solution to be reported and visualized.
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3.10 Copy-number Abnormality Score

As the result of copy-number solution �tting, the tumor fraction (tf) indicates the estimated quantity

of ctDNA from the amplitude of signals. cfdnakit also implements the copy number pro�le abnormality

(CPA) score [145] to quantify the tumor burden from the segmentation result. In cfdnakit, this score is

de�ned similarly as follows:

CPA =
(∑Nsegment

i=1 (|Zsegmenti × lsegmenti |) /Nsegment

)
· S.L.Ratiosample

where Zsegmenti is the z-score of segmenti;

lsegmenti is the number of bins in segmenti

and S.L.Ratiosample short/long-fragment ratio of the sample (Section 3.4)

This score is robust to coverage bias and noisy fragmented signals. The full formula and its advantages

were emphasized in the original publication [145]. Brie�y, the Gaussian noise does not a�ect the score

because the z-scores of segments, instead of the z-score of bins, are considered. Second, the average

segment length is used as a penalty for sample quality. The signal of a bad quality sample does not

strongly a�ect the score whereas a true highly unstable genome would overcome this penalty.

3.11 Package Repository

The cfdnakit package is currently accessible via the GitHub repository (https://github.com/Pitithat-

pu/cfdnakit) as an open-source software under the GNU General Public License v3.0. The package

information and analysis instructions are available on the wiki page of the repository.
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4 RESULTS
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4.1 The Pediatric Cohort Dataset

The Early Cancer Diagnostics and Reverse Translation unit, KiTZ Hopp Children's Cancer Center

collected serum/plasma from patients with brain tumors (n= 62), sarcoma (n=55), and other pediatric

cancers (n=14) and additional healthy individuals (n=10). Cell-free DNA was extracted and sequenced

with three di�erent strategies, namely: low-coverage whole-genome sequencing (lcWGS), whole-exome

sequencing (WES), and gene-panel deep sequencing (Panel-seq). The collection of cfDNA sequencing

data includes 137 samples with lcWGS, 71 with WES, and 77 with Panel-seq. The individual-matched

tumor genomic data are available through the study �Individualized Therapy for Relapsed Malignancies

in Childhood� (INFORM) project. The tumor genomic data include 131 matching tumor WES-, 131

lcWGS-dataset, and 129 methylation arrays. Figure 27 and Supplement Table S1 show the overall

collection of cfDNA and solid tumor samples.

More than half of cfDNA samples (53.5%; n=84) were sequenced by more than one sequencing method

(Supplement Figure S1). The majority of cfDNA samples from brain tumors were sequenced by all three

strategies (n=24) (Supplement Figure S1A). Sarcoma cfDNAs were more exclusively sequenced through

lcWGS (n=40) and contains few overlaps of all three strategies (n=8) (Supplement Figure S1B). CfDNA

from other pediatric cancers are mostly overlapped by three strategies (n=12) (Supplement Figure S1C).

Nevertheless, this dataset allows the comparison between di�erent sequencing strategies in detecting

di�erent types of genetic alterations including copy-number variant (CNV) and point mutation (SNVs

and INDELs).

4.2 Data Preprocessing

This section describes the result of the preprocessing including the result of applying sequencing

quality control and unique molecular index integration work�ow.

4.2.1 Quality control �lters samples with sequencing artifact and insu�cient coverage

Prior to further analysis, several quality measurements have been performed as previously described

(Method Section 2.4.6). Figure 28 shows the overall �ltering process and the number of samples passing

the quality threshold. We excluded 4 lcWGS samples from downstream analysis because they have less

than 0.1x genomic coverage or ichorCNA MAD less than 0.15. Out of 71 WES sets, 4 samples have

insu�cient genomic coverage (less than 60x median on-target depth of coverage ) or excessive levels of

oxidative artifacts. In addition, we checked the genotyping similarity between the cfDNA WES and the

matched germline WES. We excluded one WES sample that had a correlation coe�cient of 0.54 to the

matched germline WES. We discarded 3 of 77 Panel-seq samples that failed oxidative quality control.

Finally, 133 lcWGS, 66 WES, and 74 Panel-seq cfDNA samples were subjected to downstream analysis.

4.2.2 Unique molecular indexing improves the sequencing coverage

A regular bioinformatics work�ow applied a duplicate alignment marking (e.g. samtools-markdup)

on next-generation sequencing (NGS). This process locates and tags duplicate reads, originating from

a single DNA fragment, in an alignment �le (BAM �le). The aim is to remove duplicates that arise

from PCR which are likely to contain sequencing artifacts and coverage bias such as GC-extreme regions

[146]. CfDNA sequencing may require PCR because of inadequate amounts of starting DNA material,

and losses during size selection. Nevertheless, cfDNA is known to be highly fragmented as the result of

endonuclease reaction before and after secretion into the circulation (Section 1.5.1). Several fragmented

molecules would have been mistaken for being PCR duplicates and excluded from downstream analysis.

Unique Molecular Indexing (UMI) is one of the sequencing strategies that attach additional sequences

to each input molecule of DNA. With this barcode index, PCR duplicates can be accurately identi�ed

and be distinguished from real DNA duplicate fragments. Hence, UMI could enhance the performance

of deep coverage sequencing in detecting point mutations from cfDNA. We applied the UMI integration
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Figure 28: The number of samples that passed or failed the sequencing quality measurement of lcWGS
(A), WES (B), and Panel-seq (C).

work�ow (Method section 2.4.1) to both lcWGS (Accel NGS library only) and Panel-seq. We extracted

median on-target depth of coverage from Panel-seq data and genomic coverage from lcWGS data (Method

Section 2.4.2).

We compared the coverage of result BAM �les before and after the implementation of the UMI

integration work�ow (Figure 29). The median on-target depth of coverage increased approximately

threefold from 328.5 to 820.5 in Panel-seq (Figure 29A). On the other hand, the median genomic coverage

of lcWGS increases approximately 7% from 1.27 to 1.38 after integrating UMI deduplication (Figure

29B). The increase appears to be in�uenced by the degree of duplication of the DNA template. The fold

change in coverage correlates positively with the mark-duplication rate for both Panel-seq (Figure 29C)

and lcWGS (Figure 29D). The Panel-seq library was constructed using a larger amount of input DNA

and produced more throughput than the lcWGS. Moreover, cfDNAs are already highly-fragmented DNA

when isolated from the blood sample. The more duplicated templates present in a sample, the more

reads can be obtained using the UMI barcoding strategy and the greater the chance of detecting point

mutations with low allele frequency.
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Figure 29: Increasing coverage of deep and shallow cfDNA sequencing with UMI: (A) On-target coverage
of cfDNA Panel-seq data was compared between the regular bioinformatic Markduplication procedure
and the UMI-based deduplication work�ow. The UMI-based deduplication work�ow (light blue) improves
on-target coverage by about 3-fold compared to the regular Markduplication (blue). (B) UMI-based
deduplication (light yellow) improves coverage over mark-duplication (yellow) by only 7% in lcWGS
samples. The increasing coverage in Panel-seq (C) and lcWGS (D) correlates with the degree of duplicated
reads removed by the Markduplication procedure.

4.3 Result of CfDNA Sequencing Data from Bioinformatics Work�ows

4.3.1 Low-coverage whole-genome sequencing is a comprehensive strategy to detect large

copy-number alteration

Since CNV is the most common alteration in pediatric cancers, obtaining this information non-

invasively via liquid biopsy could aid in the clinical management of childhood cancers. Large CNVs

of tumors were detected using the matched tumor/germline WES. For each tumor sample, the CNV

calling work�ow (Method Section 2.3) reported the normalized log2 ratio per bin of on-target and o�-

target regions, genomic segments with the associated integer copy number (Figure 30A). To facilitate

comparison between tumor and cfDNA CNVs, the reported CNV event was adjusted according to the

reported tumor ploidy. For example, a segment with an absolute copy-number of 3 is designated as

neutral if the tumor has ploidy 3.

IchorCNA detected CNVs based on sequencing coverage segmentation per 1-megabase of genomic

non-overlapping windows. Based on the segmentation result, the software detected copy number aberra-

tions by �tting a model with a range of parameters for tumor-fractions (TF) and tumor ploidy. Multiple

solutions of CNV pro�les were reported but only the pro�le with the highest likelihood score was con-

sidered (Figure 30B). When a tumor with large CNVs secretes enough DNA into the blood circulation,

cfDNA would likely be able to capture those CNVs and reported high TF. However, more than of cfDNA

in this cohort did not recapitulate the alteration that existed in their matched tumor pro�le because

they had a very low tumor-fraction.
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Figure 30: Detection of genome-wide copy-number alterations in cfDNA with low-coverage whole-genome
sequencing (lcWGS): tumor copy number alterations were �rst determined from tumor tissue using WES
(A). Cell-free DNA was obtained from liquid biopsy samples. The lcWGS (~2X) were generated and
provided a comprehensive genomic copy number abberations where tumor-fraction estimation can be per-
formed by ichorCNA (B). Colors in a genomic pro�le represent CNV events ( grey:neutral, red:deletion,
green:gain (3N), light green:ampli�cation (> 3N)). Using the tumor pro�le as the ground truth, the
sensitivity and speci�city of lcWGS reaching speci�c estimated tumor-fraction were determined (C).

Using the matching tumor CNV pro�le as a ground truth, we evaluated the performance of the lcWGS

strategy in detecting copy number aberrations in liquid biopsy cfDNA (Figure 30C). The sensitivity and

speci�city of lcWGS are relatively stable at 80% to 90% and when a sample reaches 5% or more TF.

When a sample reaches the estimated tumor-fraction of 3%, lcWGS detects CNVs with a sensitivity

of 76.5% and a speci�city of 68.9% in this cohort. This indicates that cfDNA has the ability to detect

CNVs and focal ampli�cations/deletions when the tumor fraction reaches a certain threshold. For further

analysis and evaluation, we classi�ed a sample with TF greater than 3% as "high ctDNA" samples, and

otherwise as "low ctDNA" samples. We later determined the success of detection based on this sample

classi�cation, regardless of the lack of clinical status at the time the liquid biopsy was taken.

4.3.2 Whole-exome sequencing complements low-coverage whole-genome sequencing by

detecting point mutations

The utility of the cfDNA WES strategy was demonstrated here by performing the CNV calling

work�ow with PureCN ( Method Section 2.4.5) and tumor-informed mutation detection ( Method Section

2.4.7). PureCN calculated the log2 copy number ratio of the normalized read-count of the sample and

the group of process-matched cfDNA samples for both on- and o�-target regions. Segmentation was

performed using PSCBS, which is included in the package. As a result, genome-wide copy number events

are reported per segment. CNVs with a tumor-fraction of 3% or more are likely to be identi�ed.

We compared the number of tumor alterations, including point mutations and CNVs, between lcWGS

and WES of 6 high ctDNA samples (Figure 31A). Due to higher coverage, WES provides the ability to

detect tumor-derived cfDNA having deleterious somatic SNVs and INDELS. In this cohort, WES detected

89.6% (190/212) of SNVs and INDELs in sarcomas and 81.6% (58/71) in other pediatric cancers. On

the other hand, lcWGS detected 14% (30/212) of SNVs and INDELs in sarcomas and 4.2% (3/71) in

other pediatric cancers.

For CNVs, the detection results of lcWGS and WES are very similar among high ctDNA samples

(Figure 31B). LcWGS of high ctDNA samples detected 90% (161/179) of CNVs in sarcomas and 30.4%

(7/23) in other pediatric cancers. The matching WES sample detected 88.2% (158/179) of CNVs in

sarcomas and 39.1% (9/23) in other pediatric cancers. In general, WES can detect CNVs similarly to

lcWGS and also provides sequencing coverage that allows detection of tumor point mutations. However,
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it is important to remember that the limitation of CNV calling with WES is initially set to a minimum

of 5% tumor content. CNVs in samples with lower tumor purity may not be detected.

Figure 31: Comparison between lcWGS and WES fo cfDNA in detecting CNVs and point mutations:
The deeper coverage of WES allows detection of point mutations (SNVs and INDELs). Approximately
80% of point mutations were detected by WES in cfDNA with high tumor-fraction (A). Both WES and
lcWGS detected a comparable amount of CNVs (B). In samples with low tumor-fraction, a lower number
of point mutations (C) and CNVs (D) were detected by both WES and lcWGS.

The sensitivity of 50 cfDNA samples with low ctDNA content decreases in both WES and lcWGS.

WES detected 11.1% (132/1181) of point mutaitons in brain tumors, 9.0% (94/1042) in sarcomas, and

8.9% (67/752) in other childhood cancers (Figure 31C). Only 5 mutations in brain tumors and 1 mutation

in a germ cell tumor were detected with lcWGS. As for CNVs, 16.2% (78/480) were detected with lcWGS

in brain tumors, 22.1% (113/511) in sarcomas, and 30.3% (30/99) in other pediatric cancers (Figure 31D).

Meanwhile, only 6% (29/480) of CNVs were detected in brain tumors, 2.7% (14/511) in sarcomas, and

none of the other cancers were detected in cfDNA with WES.

4.3.3 Whole-exome sequencing allows detection of druggable mutations

Because the coverage of WES enables detection of tumor CNVs, SNVs and INDELs, we wanted to

investigate the application of WES in tumor mutation detection, particularly for druggable genes from

cfDNA samples. We extracted mutations in 367 genes that could be candidates for targeted therapy in

pediatric cancer patients (Supplement Table S2). The WES data included individual-matched tumor,

germline, and cfDNA from 27 brain tumors, 26 sarcomas, and 13 other pediatric cancers. We performed

the tumor-informed process (Method Section 2.4.7) and somatic mutation calling (Method Section 2.2) in

cfDNAWES. The number of tumor mutations, druggable mutations, and the detection rate were counted

and calculated per cfDNA sample. The variant allele frequency (VAF) of detected tumor variants was

calculated as the frequency of variant-supporting reads found in all supporting reads. Table 2 shows the

descriptive statistics of VAF per cancer type. We collected the point mutation status of druggable genes

from tumor and cfDNA WES. The point mutation status was visualized using the Oncoplot function

of the ComplexHeatmap R package [147] (Figure 32 ). We found that approximately half of the tumor

genomes contained druggable mutations, including 16 brain tumors, 16 sarcomas, and 6 other pediatric

62



cancers.

Disease Types Max.VAF Median.VAF Mean.VAF Min.VAF

Brain tumor 30.56 0.81 2.45 0.09
Sarcomas 92.11 10.58 14.69 0.35

Other Cancer 21.21 2.06 4.19 0.11

Table 2: Variant allele frequency (%) of tumor mutations detected in WES of cfDNA; Variant Allele
Frequency (VAF)

Among 18 cfDNA samples from brain tumors (Figure 32A), the average tumor mutation detection

rate is 11.3%. We detected at least one druggable mutation in 10 cfDNA samples. PIK3CA is the most

frequently detected gene in both tumor and cfDNA, while PLK4 is most frequently detected in cfDNA.

We found 2 cfDNA samples containing multiple mutations that are not present in the primary tumor

genome. We checked their genotypic �ngerprint with the matching tumor genome and con�rmed that

it was not an individual-mismatch variant calling error. It is possible that the cfDNA containing these

mutations was secreted by the refractory tumor.

Increasing detection rates were observed in 17 cfDNA samples derived from sarcoma patients (Figure

32B). The average tumor mutation detection rate was 32%. We detected druggable mutations in 9 cfDNA

samples. 6 samples contain mutations present only in the primary tumor; 3 samples have additional

druggable mutations. Interestingly, we found two cfDNA samples (2LB-037-P01.01 and 2LB-019-P01.01)

derived from desmoplastic small round cell tumors that contain multiple extra druggable mutations.

In 11 cfDNA samples obtained from patients with other pediatric cancers, we found a lower number of

drug-e�ective mutations (Figure 32C). The mutation detection rate is 27% on average. Druggable muta-

tions are presented in 5 samples. One sample, obtained from a patient with neuroblastoma, contains all

3 tumor druggable mutations including mutations in the CTNNB1, ALK, and ATM genes. We followed

a set of 5 serial liquid biopsies (2LB-049-P01 to 2LB-049-P05) from a patient with hepatoblastoma. The

genome of the tumor contains deleterious mutations in 4 druggable genes, including CTNNB1, FBXW7,

PTCH1, and FLT1. The mutation in CTNNB1 was detected only in the �rst biopsy (2LB-049-P01),

while the mutation remained undetected in other liquid biopsy samples.

We obtained a sample from a patient with bilateral Wilms tumor (2LB-053-P01). The tumor genome

does not have a druggable mutation. However, a deleterious mutation in the druaggable gene NOTCH2

was found in the patient's cfDNA. This cfDNA has been shown to contain a variety of aberrations that

are not present in the primary tumor (Section 4.6.3). The possible source of the distinct alterrations in

the cfDNA could be the tumor in another kidney or at a distant metastatic site in the liver, lymph nodes

and abdominal wall.

Copy-number status (ampli�cation, neutral or deletion) was extracted based on genomic position.

In sarcomas, brain tumors, and other childhood cancers, CNVs were detected in tumors at an average

rate of 33.7%, 29.1%, and 39.1%, respectively. Overall, the rate of CNVs detected is 30.4%. The most

frequently detected genes include MMP9 (associated with tumor invasion, metastasis, and modulation

of the tumor microenvironment [148]), AURKA (oncogene that promotes tumorigenesis in many cancers

including solid tumors and hematologic malignancies [149]), and EIF4E (oncogene involved in multiple

hyperactive signaling pathways promoting tumorigenesis [150]).

4.3.4 Panel-sequencing of cfDNA provides more sensitivity in detecting druggable point

mutations

We have investigated the utility of Panel-seq in detecting SNVs and INDELs in tumors, particularly
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in druggable genes. Overall, Panel-seq can detect tumor mutations with a low allele frequency in plasma

cfDNA. The gene-panel includes 261 genomic loci with a library size of 897,805 bases. We performed only

the tumor-informed process (Method 2.4.7) by using somatic functional mutations from tumors WES.

Data from WES included individual-matched tumors WES and cfDNA Panel-seq from 44 brain tumors,

15 sarcomas, and 15 other pediatric cancers. The gene-panel captured at least 1 somatic deleterious

point mutation in 19 brain tumors, 7 sarcomas, and 7 other pediatric tumors. We found 24 cfDNA

samples (9 brain tumors, 11 sarcomas, and 4 other cancers) with at least one tumor mutation.

Table 3 shows the descriptive statistics of VAF in cfDNA. Tumor variants were found with very low

frequency in brain tumors. The VAF of brain tumor variants ranged from 1.23% to 0.04% (median =

0.14%). In contrast, tumor variants of sarcomas and other cancers had a higher VAF. VAF of detected

variants ranged from 63.03% to 0.7% (median = 10.60%) in sarcomas and from 30.21% to 1.08% (median

= 3.1%) in other childhood cancers. This shows that the deep sequencing strategy could detect the tumor

variant with an allele frequency as low as 0.1% in a liquid biopsy sample.

Disease Types Max.VAF Median.VAF Mean.VAF Min.VAF

Brain tumor 1.23 0.14 0.32 0.04
Sarcomas 63.03 10.60 24.58 0.70

Other Cancer 30.21 3.10 7.34 1.08

Table 3: Variant allele frequency (%) of tumor mutations detected in Panel-seq of cfDNA

When considering only druggable genes, only 66 of 367 druggable genes were covered by this gene

panel. There were 31 tumor WES (19 brain tumors, 6 sarcomas, and 6 other cancers) that have at least

one mutation in druggable genes. The most common druggable genes are CTNNB1, FBXW7, PTCH1,

NF1, and MUC16. We detected druggable mutations in the cfDNA of 4 brain tumors, 5 sarcomas, and 4

other childhood cancers (Figure 33). An identical mutation in PIK3CA was found in 3 cfDNA samples

from medulloblastoma patients at VAF 0.34% and the other two sarcomas at VAF 10.6% and 4.39%.

This demonstates that the Panel-seq can be detected point mutations at very low allele frequency in

cfDNA across tumor entities.
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We compared the performance in detecting mutations in druggable genes between WES and Panel-

seq (Figure 34). In brain tumors, we detected at least one point mutation in 30% (5/16) with WES and

25% (4/16) with Panel-seq (Figure 34A). In sarcomas, we detected at least one point mutation in 71%

(5/7) with WES and 43% (3/7) with Panel-seq (Figure 34B). The majority of mutations were detected

by WES and Panel-seq did not exclusively detect the additional druggable mutation. In other childhood

cancers, we detected at least one point mutation in 44% (4/9) with WES and 33% (3/9) with Panel-

seq (Figure 34C). Similar to sarcoma cfDNA, Panel-seq did not report extra druggable point mutation.

Interestingly, WES from a neuroblastoma patient (2LB-087-P01) detected the SNV in CTNNB1 while

this mutation was missed by the Panel-seq. Since reported as low TF (TF = 0.8%), the mutation may

be missed in the Panel-seq library by chance. Overall, WES can provide broader coverage to detect

actionable mutations in non-cranial tumors (sarcomas and other cancers). On the other hand, brain

tumors showed the variability of the comparison result. The mutated cfDNA fragments can be missed

by chance because of the low concentration of the tumor-derived cfDNA in the blood circulation.
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4.4 CfDNA Fragment Length Analysis with cfdnakit

We developed an R package called cfdnakit. It is speci�cally designed for analyzing cfDNA sequencing

data focusing on extracting the characteristical length of cfDNA, quantify tumor cfDNA contribution,

and inferring CNV base-on the short-fragmented cfDNA. The package extracts the fragment length of

cfDNA from a sequencing �le (BAM �le) and creates the fragment-length pro�le of the sample. For

comparison and QC inspection purposes, cfdnakit allows visualization of a fragment-length pro�le and

comparing between multiple cfDNA pro�les. This section describes the application of the package.

First, we compares the fragment-length pro�le of tumor-derived cfDNA with non-malignant cfDNA in

the PDX experiment. Moreover, cfdnakit is also used to explore the fragment length pro�les of cfDNA

in the pediatric cancer cohort. Finally, genome-wide fragment-length are explored and used as a signal

to infer tumor CNVs by using the proportion of short-fragmented cfDNA.

4.4.1 Circulating tumor Cell-free DNA is shorter than cfDNA from non-malignant cells

We extracted human-derived cfDNA from plasma cfDNA of mice with patient-derived xenograft

(PDX) cell-lines (Figure 35A) by separating sequencing reads mapped onto human chromosomes (GRCh37)

from those mapped onto mouse chromosome (GRCm38). When a sample was reported having high tu-

mor fraction (Tf > 3%), the genomic copy-number pro�le of the human-derived cfDNA (Figure 35B)

was similar to the genome of the tumor (Figure 35C). This similarity could con�rm that human-derived

cfDNA was secreted from tumor cells.
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Figure 35: Extraction of tumor-derived cfDNA from a patient-derived xenograft liquid biopsy: (A) A
collection of cfDNA from a mouse model with xenografted pediatric cancer cells allows characterization
of cfDNA released by cancer cells (reads aligning onto the human genome) from the DNA released by
non-malignant cells (reads aligning onto the mouse genome). The result of reads separation is con�rmed
by the similarity of CNV genomic pro�le between human-derived cfDNA (B) and tumor DNA (C).
Colors in a genomic pro�le represent CNV events ( grey:neutral, red:deletion, green:gain (3N), light
green:ampli�cation (> 3N)).

Using cfdnakit, the length of cfDNA fragments was extracted from their alignment information. The

fragment-length distribution plot showed that the human-derived cell-free DNA was shorter than mouse-

derived cfDNA (Figure 36A). The size of ctDNA was distributed between 80 - 150 base pairs with the

peak at ≈142 base pairs. Meanwhile, the mouse-derived cfDNA showed the modal length of 167 base

pairs with a 10-bp periodical peak among fragments shorter than 150 base pairs. The modal length of

the human-derived cfDNA was around 142 bases and is signi�cantly shorter than the modal length of

the mouse-derived cell-free (Wilcoxon rank sum test; p=0.024) (Figure 36B). The �nding supported the

observation in many experiments in adult cancers [110, 151] that tumor-derived cfDNA are relatively

shorter than cfDNA from non-malignant cells. The fragment-length characteristic has been used as a

quantitative tumor marker in many tumors [110, 151]. The most recent application is to apply the

size-selection method to increase the success of tumor mutation detection from liquid biopsies.
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Figure 36: Comparison of fragment-length between tumor-derived cfDNA and non-tumor-derived
cfDNA in the PDX experiment: (A) Fragment-length distribution plot of a human-derived cfDNA and
a mouse-derived cfDNA. The human-derived cfDNA is shorter than the cfDNA from non-malignant ori-
gin. (B) The modal length of cfDNA released by cancer cells (human-derived) and non-maligant cells
(mouse-derived).

4.4.2 Short-fragment size-selection in-silico enriched copy-number aberration detection in

plasma cfDNA

Since the previous section indicated that the plasma tumor-derived cfDNA is shorter than non-

malignant cfDNA, the success of detecting tumor genomic aberration can be increased by selecting

only the short-fragmented cfDNA. We performed in-silico size-selection to the lcWGS of cfDNA in the

pediatric cohort. The short-fragmented cfDNA was extracted in-silico by selecting cfDNA fragments

having a size less than 150 base pairs (Figure 37A).

Using cfdnakit, the lengths of cfDNA fragments were extracted from the alignment information before

and after in-silico size selection (Figure 37B). The fragment length distribution showed the clear cut at

fragment length 150 observed from samples having in-silico size-selection. The enrichment of short-

fragmented cfDNA by the in-silico method enhanced the log2 ratio of genomic regions with copy-number

aberrations found in the tumor genome (Figure 37C). The estimated tumor fraction increased from 12%

without size selection (Figure 37D) to 36% after size-selection (Figure 37E). By applying in-silico size-

selection, we can in general increase the detection rate of CNVs from lcWGS of cfDNA. However, this

is possible only when the read-coverage of the sequenced sample is high enough. Otherwise, the result

could rather due to noise which will increase the rate of false positives.
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4.4.3 Short-fragmented cfDNA correlates with the copy-number aberration

We expected that the enrichment of short-fragmented cell-free DNA per genomic loci correlates with

the number of copies in the tumor genome. To demonstrate the relation, we selected a cfDNA sample

derived from an embryonal rhabdomyosarcoma patient showing multiple copy-number alterations and

high estimated tumor fraction (Figure 38A). Cfdnkit reported the sample having a short-fragment ratio

of 1.03 which is approximately 5 times more than the average of healthy individuals. The short-fragment

ratio per 1 MB was extracted and visualized by cfdnakit (Figure 38B). It shows that a short-fragment

ratio of a genomic segment is increasing in the ampli�ed segment and decreasing when the segment is

lost. The copy-number log2 ratio and the short-fragment ratio is highly correlated ( Pearson correlation

0.95; 95% CI [0.949,0.956]). Moreover, it shows that the short-fragment ratio is increasing accordingly

with the number of copy-number aberrations reported by ichorCNA (Figure 39).

Figure 38: Correlation between short-fragment ratio and copy-number alteration per 1 Mb non-
overlapping windows: (A) Genomic CNV pro�le of a high-TF cfDNA from a patient with embryonal
rhabdomyosarcoma. Colors in the genomic pro�le represent CNV events ( grey:neutral, red:deletion,
green:gain (3N), light green:ampli�cation (> 3N)). (B) Short-fragment ratio extracted by the cfdnakit
package.

4.4.4 CPA score is asssociated with both copy-number aberration and tumor mutational

burden

Cfdnakit transformed those short-fragment ratio per 1 MB into normalized score (z-score) using the

Panel-of-Normal (PoN) dataset (Method Section 3.7). Similar to the CNV calling work�ow of lcWGS,

the PoN included a group of selected cfDNA samples without large CNV (Method Section 2.4.4). The

z-score could represent the aberration of short-fragment cfDNA at a locus of the sample compared to

the PoN dataset. The segmentation using PSCBS packages has been performed through z-scores and

created continuous genomic segments; each showing aberration of short-fragment cfDNA. We performed

CNV calling and tumor fraction estimation using these segmentation result (Method Section 3.9).

Cfdnakit �nally reported the copy-number aberration (CPA) score. This score were calculated as

average of segment z-scores multiplied by short-fragment ratio of the sample (Method Section 3.10). The

CPA score can be used as a qualitative score to detect cfDNA that contains a certain level of tumor-

derived DNA. To demonstrate the relationship, the following experiment and measurement have been
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Figure 39: Short-fragment ratio by copy-number aberrations: Short-fragment ratio increases accordingly
with absolute CNVs found in cfDNA.

performed in the dataset of 34 WES cfDNA that have matched lcWGS data. This dataset contains

cfDNA from 14 brain tumors, 10 sarcomas, and 10 other pediatric cancers. The TF of each lcWGS was

reported by ichorCNA. In total, there are 30 low-ctDNA (TF<3%) and 4 high-ctDNA. For this dataset,

we �nd a correlation between the CPA score and the estimated tumor-fraction (Pearson correlation 0.89;

95% CI [0.84,0.95]) (Figure 40). The correlation coe�cient declines in low-ctDNA samples, (Pearson

correlation 0.35; 95% CI [0.00,0.63]).

Figure 40: The correlation between CPA score and TF and tumor mutations in 34 lcWGS (Pearson
correlation 0.89; 95% CI [0.84,0.95]).

For each WES, the process of mutation calling and the tumor-informed variant detection have been

processed. The mutation burden is the total number of somatic functional SNVs supported by at least

5 reads and have ≥ 1% VAF. The tumor-informed detection reported the number of detected (variant

presented) and undetected tumor somatic functional mutations. The percentage of detection (percent

detected) is calculated afterwards. The principal component analysis (PCA) of all cfDNA samples shows
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that the CPA score, tumor fraction and mutation burden were contributing to the principal component

(PC) 1 while �variant presented� and �percent detected� were more contributing to PC2 (Figure 41A).

Those high-ctDNA samples were explained by either having high mutation burden, CPA score and tumor

fraction or high variant presented and percent detected. Considering only 30 low-ctDNA, majority of low-

ctDNA samples were not assoicated with any variables. The �rst component of the PCA, although only

explaining 46% of variance, was strongly associated with variant presented and percent detect (Figure

41B). The second component explaining 24% of variants had contributions from the variance CPA score

and tumor fraction. Only a few number of samples were associated with the CPA score or the tumor

fraction.

Figure 41: Principal component analysis showing the correlation between estimated TF, CPA Score,
and mutational burden. (A) The �rst two components of all cfDNA samples (n=34). The high-ctDNA
samples (red dots) were either associated with high mutation burden, CPA score, and predicted tumor
fraction or with high percentage and number of tumor variant detected. Meanwhile, some of low-ctDNA
(blue dots) were associated with PC2. (B) First two components of cfDNA with low-ctDNA (TF<3%;
n=30). Mut.Burden represents mutatonal burden. Variant Presented is the number of tumor variants
detected in cfDNA WES. Percent Detected is the percentage of tumor variants detected. Predicted.TF
is the estimated tumor fraction reported by ichorCNA.

The correlation of both CPA score and tumor fraction to all 3 mutational variables, namely Mutation

Burden, Variant Presented, and Percent Detected, were calculated (Table 4). The correlation coe�cient

values was comparable between the tumor fraction and the CPA score when including high-ctDNA

samples. However, no correlation was found from the tumor fraction value among low-ctDNA samples.

In this group, the CPA score shows a weak but stronger correlation to the Variant Presented and Percent

Detected. With this �nding, we assumed that the CPA score could also be associated with the number

of tumor mutations and the detection rate in a patient's cfDNA.

4.4.5 CPA score performed better in detecting high ctDNA

We compared the performance between the CPA score and the tumor fraction value in detecting

cfDNA with a high concentration of tumor-derived cfDNA. We divided WES data into two categories:

high ctDNA and low ctDNA by using detection thresholds as described (17% of tumor mutations detected,

and 3 tumor mutations) (Method Section 2.4.7). The tumor fraction value is not signi�cantly di�erent

between high-ctDNA and low-ctDNA (p-value=0.1; T-test) (Figure 42A). Meanwhile, the CPA score

shows a clearer di�erence between high-ctDNA and low-ctDNA (p-value=0.03; T-test) (Figure 42B).
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Mutation Burden Variant Presented Percent Detected

All cfDNA (n=34)

Tumor Fraction 0.87 0.58 0.66

CPA Score 0.9 0.63 0.54

Low ctDNA (n=30)

Tumor Fraction 0.05 0.08 0.05

CPA Score 0.1 0.27 0.42

Table 4: Pearson correlation between the CPA Score and the Mutation burden, Variant Presented, and
Percent Detection in comparison to the tumor fraction.

The tumor fraction variable cannot di�er between high-ctDNA and low-ctDNA when considering the

number of tumor variant given the overall mutation burden (Figure 42C). On the other hand, the CPA

score can di�er at least 3 high-ctDNA from other low-ctDNA (Figure 42D).

Figure 42: Comparison between the tumor fraction and the CPA score in high-ctDNA and low-ctDNA:
(A) Distribution of estimated TF between low ctDNA and high ctDNA samples; (B) Distribution of CPA
Score between low ctDNA and high ctDNA samples; (C) A scatter plot showing correlation between
mutation burden and estimated TF; (D) A scatter plot showing correlation between mutation burden
and CPA Score. Blue line: scatter plot smoothed line using LOESS model.

We calculated the sensitivity and the speci�city of the CPA score and the tumor fraction in discrimi-

nating high-ctDNA and low-ctDNA samples. We manually change the class of sample 5LB-053 (bilateral

Wilm's tumor) from low-ctDNA to high-ctDNA regarding the tumor heterogeneity. Receiver operating

characteristic (ROC) curves were used to virtualize and calculate the area under the ROC curve (AUC)

(Figure 43). It is demonstated that the CPA score (AUC=0.97) performs better than the estimated
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tumor fraction (AUC=0.81) in detecting high-ctDNA samples.

Figure 43: ROC curve showing the performance of CPA score and ichorCNA TF in detecting cfDNA
with high tumor mutations.

4.4.6 CPA score of the pediatric cancer cohort

We analyzed lcWGS of cfDNA in the pediatric cancer cohort with cfdnakit. The CPA score has been

calculated per sample. We found a high correlation between the CPA score and the tumor fraction (TF)

reported by ichorCNA (Pearson correlation : 0.82; 95% CI : [0.76,0.88]) (Supplement Figure S2). The

distribution of CPA scores in the cohort has shown a di�erence between cfDNA from healthy donors

and cfDNA from cancer patients (Figure 44A). The CPA score of healthy cfDNAs (median=2.14) is

lower than low ctDNA samples (median=4.23) and high ctDNA samples (median=29.3). Compared to

the short-fragment ratio (Figure 52B), the CPA score can di�erentiate cfDNA of healthy donors from

cfDNA of patients. In high ctDNA samples. CPA score of sarcoma samples were highest (median =

29.3; n=11) comparing to brain tumors (6.68; n=1) and other cancers (71.6; n=1) (Figure 44B). Those

CPA scores of low ctDNA samples were indiferrent between tumor entity (median CPA score 4.38, 3.46

and 4.23 ). Supplement Table S4 shows CPA score per tumor entity and tumor fraction.

The utility of the CPA score in guiding the detection of tumor point mutations with WES is shown

in Figure 45. In brain tumors, high CPA scores (score > 6; false positive rate 0.14) were found in two

cfDNA samples (Figure 45A). In particular, a cfDNA from patient with high-grade gliomas detected 11

tumor mutations (52% of all tumor mutations) and 2 druggable mutations in PLK4 and PIK3CG. This

sample would not have been detected by using TF as a guiding measurement value. In sarcomas and

other pediatric cancers, the CPA score correlates with the mutation burden, and the percentage of tumor

mutations detected by WES of cfDNA (Figure 45B and C). The detectability of the CPA score and TF

is comparable especially those high TF samples. Using a CPA score of 6 as the threshold, we detect an

additional cfDNA from a patient with Wilms tumor (Figure 45C). This cfDNA contains 10 tumor point

mutations (37% of all tumor mutations) and a mutation in FBXW7 druggable gene. Overall, the CPA

score could increase the sensitivity of cfDNA WES as a guiding measurement to determine the success

of detecting tumor alterations and estimation of mutational burden.
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Figure 44: Distribution of CPA Score of plasma cfDNA samples in the pediatric cohort: (A) The
distribution of CPA Score in cfDNA samples grouped by sample's esitmated tumor fraction. CPA
scores of cfDNA of patients are higher signi�cantly than healthy donors (Wilcoxon rank sum test). (B)
Distribution of CPA Score per tumor entities of cfDNA samples in the pediatric cohort. High CPA scores
were commonly found among cfDNA from sarcoma patients.
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4.5 A Preliminary Analysis of Detecting Telomeric Alterations with Liquid

Biopsy CfDNA

This section presents the result of telomeric alteration analysis from liquid biopsy cfDNA. Here,

lcWGS data of tumor and plasma cfDNA was analyzed by using TelomereHunter software (Methods

Section 2.6). We compared the estimated telomere content and normalized count of telomeric variant

repeats (TVRs) between cfDNA of patients and healthy donors. We demonstrate the possibility of using

sequencing data of cfDNA to track telomere shortening and detect integration of TVRs.

4.5.1 Telomere elongation and telomeric variant repeats were found in some brain tumors

and sarcomas

First, we explored telomeric aberration of 110 tumor samples in the pediatric cohort, including 51

brain tumors, 48 sarcomas, and 11 other pediatric tumors. Using individual-matched tumor/control

lcWGS data, TelomereHunter calculated telomere contents and reported it as the ratio of tumor over

control. Sequencing reads were classi�ed as telomeric reads when six non-consecutive repeat types (

t-type, c-type, g-type, or j-type) or their reverse complements appear in a 100 bp read. The telomere

content was calculated as intratelomeric read counts normalized by the total number of reads having

similar GC composition. We found that most tumors had a decreasing telomere content compared

to their matched control (Figure 46A).The average telomere content log2 ratios were -0.26 (95% CI [-

0.54,0.00]) in brain tumor, -0.21 (95% CI [-0.36,0.10]) in sarcoma and -0.59 (95% CI [-0.98,0.19]) in other

cancers. There were 13 brain tumors (25%), 9 sarcomas (16%), and 1 other cancer (9%) with increasing

telomere content (log2 ratio > 0.5). Among those diagnostic types with an increased or stable telomere

content were high-grade gliomas (HGG), germ cell tumors, and osteosarcomas (average telomere content

log2 ratio = 0.01, -0.05, and 0.77, respectively) (Figure 46B).
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Figure 46: Distribution of telomore content log2 ratio of tumors in the pediatric cohort: (A) Distributon
of telomere content of all tumor entities; (B) Distribution of telomere content of all tumor diagnostic
types

We identi�ed tumor samples with deleterious somatic point mutations in ATRX, DAXX, H3F3A,

TERT, TP53, IDH1, and IDH2 from matched tumor WES (Supplement Figure S3). Those genes are

associated with telomere maintenance mechanisms (TMM) or alternative lengthening of telomeres (ALT)

in brain tumors [152�154]. In total, there were 44 samples with at least one mutation in those genes.

Point mutations in ATRX were found in 4 brain tumors (3 HGGs and 1 di�use intrinsic pontine glioma)

and 1 osteosarcoma. Additional mutated H3F3A was found in 18 brain tumors. No samples had a point

mutation in IDH1, IDH2, DAXX, and TERT. Lastly, TP53 is the most frequently mutated gene and was

found in 29 samples. Interestingly, all samples with a mutation in both ATRX and TP53 (ATRX/TP53)

had increased telomere content.

Since alternative lengthening of telomere (ALT) leads to increased integration of TVRs into telom-

eres, TelomereHunter extracted and calculated the normalized count of TVRs in both intratelomeric

and subtelomeric regions. In this study, we focused on the number of each 5 common TVR singletons

(variant hexamers surrounded by at least three t-type repeats) in intratelomeric regions. The normal-

ized count of TVR singletons generally increased with telomere content increase in brain tumors and

sarcomas (Figure 47). In brain tumors, TGAGGG and TTCGGG singletons were frequently found in

tumors having mutations in both ATRX and TP53 (ATRX/TP53). On the other hand, the integration
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of TGAGGG singletons was relatively stable. The ATRX-mutated osteosarcomas did not show any par-

ticular enrichment of any TVRs. The insertion of TVRs in pediatric sarcomas could be mandated by

mutations in other genes.

Figure 47: Enrichment of telomere variant repeats of tumor samples in the pediatric cohort. ATRX/-
DAXX (orange) represents samples with a mutation in either ATRX or DAXX. ATRX/TP53 (red) are
samples with mutations in both ATRX and TP53. Samples with a mutation in TERT or IDH1/IDH2
were named TERT/IDH (dark green).

4.5.2 Telomere content is decreasing in most of patient's cfDNA

Since there were di�erence in the sample preparation process between cfDNA and tumor samples,

we presumed that the telomeric region could be a�ected by these factors. We applied TelomereHunter

to 146 lcWGS datasets of cfDNA and compared their telomere content (number of intratelomeric reads

per million reads with telomeric GC content) with matched tumor and control samples. As expected,

the telomere content of cfDNA (median=235) is signi�cantly lower than control (median=652) and

tumor samples (median=464) (Supplement Figure S4B). Using individual-matched cfDNA/control as the

inputs to TelomereHunter might thus not be suitable. Therefore, we analyzed telomeric aberrations in

cfDNA without individual-matched control for downstream analysis. Since the coverage of cfDNA lcWGS

was relatively low, we checked the correlation of lcWGS coverage with the estimated telomere content.

Although showing a weak correlation, the telomere content tended to decline at below 0.4X genomic

sequencing coverage (Supplement Figure S4A). Further integrative analysis with matching tumors is

required to ensure that ultra-deep sequencing could a�ect the estimation of telomere content.

We compared the telomere content of cfDNA samples per tumor entity in the pediatric cohort. Using

3% tumor fraction as threshold, we classi�ed 146 cfDNA samples into two classed: low ctDNA (n=124)

and high ctDNA (n=22). Similar to tumor samples, telomere content of most cfDNA samples was

decreasing compared to cfDNA from healthy donors (median=302; n=10) (Figure 48). Those telomere
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contents of high ctDNA samples (median=187) also were declining when comparing them to low ctDNA

samples (median=239). On the other hand, several samples from both low and high ctDNA have telomere

content more than the median of healthy donors. We found cfDNA from 3 brain tumors, 4 sarcomas,

and 1 other cancer with high telomere content (telomere content > 400). This indicates that cfDNA

could harbor the evidence of shortening or elongation of telomere of pediatric cancers.

Figure 48: Telomere content of cfDNA in the pediatric cohort and additional healthy donors: Telomere
content of high ctDNA samples had decreased signi�cantly comparing to healthy donor (p-value=0.00035;
Wilcoxon rank sum test) and low ctDNA samples (p-value=0.028; Wilcoxon rank sum test).

4.5.3 Integration of telomere variant repeats were detectable in plasma cfDNA

Without matched control given, TelomereHunter calculated the normalized count of TVR singletons

in intratelomeric regions of cfDNA. The normalized count of TVR singletons also increased accordingly

with the telomere content in a number of patient-derived cfDNA. Figure 49 plotted normalized count of

�ve TVRs (TCAGGG, TGAGGG, TTGGGG,TTCGGG, and TTTGGG) against total telomere content

per tumor entity. Among 10 healthy cfDNA, none of the TVRs were explicitly enriched along with

the increasing telomere content. Meanwhile, all TVRs except TTCGGG were positively correlated with

increasing telomere content in cfDNA of brain tumors and sarcomas. The frequently integrated TVRs

in brain tumors and sarcomas cfDNA were: TCAGGG, TTGGGG, and TTTGGG. Meanwhile, none of

the other cancer cfDNA showed any frequently integrated TVRs.
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Figure 49: Normalized count of telomeric variant repeat in cfDNA : The normalized count of 5 TVR
singleton (TCAGGG, TGAGGG, TTGGGG,TTCGGG, and TTTGGG) was plotted against telomere
content. The enrichment of TVRs and telomeres was observed in brain tumor and sarcoma cfDNA
samples. The correlation coe�cient (in the red box) was calculated using Pearson correlation.
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Among those cfDNA samples, 36 samples were derived from patients whose tumor harbors at least

one ALT-associated point mutation (Figure 50). A cfDNA sample from HGG with an ATRX point

mutation showed an increasing telomere content, but none of the TVR was increased, possibly due to

the low tumor fraction. On the other hand, an increase of telomere content and TVR normalized counts

was often found in the group of sarcoma patients. Most of them have a mutation in TP53 and commonly

have a high estimated tumor fraction. The cfDNA from ATRX-mutated osteosarcoma did not show

strong enrichment of TVR insertions nor telomere elongation, possibly due to low tumor fraction in the

sample. It is interesting to �nd out which mutation could cause ALT and telomere elongation in pediatric

sarcomas.

Figure 50: Enrichment of telomere variant repeats of cfDNA samples with ALT-associated point muta-
tion. The ctDNA level was categorized regarding the tumor fraction (TF) estimation from ichorCNA
where low.ctDNA are samples with TF < 3%. The verticle dashed line denotes the median telomere
content of healthy cfDNA.
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4.6 CfDNA Analysis of Pediatric Cancer

4.6.1 Tumor entity in�uences the success of detection

The tumor entity seems to in�uence the success of CNV detection using lcWGS of plasma cfDNA. In

this cohort, high-ctDNA samples were detected in sarcoma (28.6%), followed by other pediatric cancers

(20%) and brain tumors (1.9%) (Figure 51A). With this rate, detecting tumor CNVs in sarcomas or

other cancers is more likely than in brain tumors.

We determined how many tumor CNVs are detected in high-ctDNA (TF ≥ 3%) and low-ctDNA (TF

< 3%) samples (Figure 51B). A tumor CNV is considered as detected when at least 20% of the segment

is overlapping with a cfDNA segment and both report the same CNV event (either ampli�cation, neutral,

or deletion). Among cfDNA from sarcoma patients, 79% (426/541) of tumor CNVs were detected from

cfDNA with high-ctDNA whereas samples with low-ctDNA detected 28.5% of tumor CNVs. The only

high-ctDNA sample from brain tumors was derived from a patient diagnosed with metastatic medul-

loblastoma. This sample shows a similar CNV pro�le to the matched tumor and allowed detection of

55% (10/18) of tumor CNVs. Considering high-ctDNA samples of other childhood cancers, the detec-

tion rate is the lowest (20%) although they were reported to have very high TF (37%, 15%, and 3.1%).

Low-ctDNA samples showed a similar detecting rate at approximately 30% of tumor CNVs in patients

with sarcomas and other tumors, and 18% in patients with a brain tumor. Together, if we consider

the detection rate of low-ctDNA as a background signal, cfDNA samples with TF > 3% can detect

approximately half of tumor CNVs.

Figure 51: Estimated tumor-fraction in the pediatric cohort and correlation to tumor copy-number
pro�le: (A) Number of high ctDNA and low ctDNA samples per tumor entity; (B) Number of CNVs
detected per tumor entity; (C) Pearson correlation coe�cient of genomic log2 ratio between tumor and
cfDNA.

Not only considering the tumor CNVs, but we also calculated the correlation between the copy-number
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log2 ratios of cfDNA and the matched tumor (Figure 51C). The correlation of cfDNA with low-ctDNA

was quite varied because the correlation also consider the tumor with few or �at copy-number pro�les.

The correlation rises when comparing �at cfDNA with a �at tumor genome. In particular, we found a

signi�cantly high correlation among sarcoma patients when the cfDNA is high-ctDNA. This supports that

the cfDNA shows a similar pro�le to the tumor genome. Among other pediatric cancers, the correlation

of high-ctDNA samples indicates that two cfDNA shows a di�erent pro�le from the respective tumor

genome. One of the cfDNA is derived from a Wilms tumor patient and has low similarity to the matched

tumor although the TF is high (37%). We wondered that this cfDNA contains tumor cfDNA secreted

from other tumor cells located at other sites in the body. The result of the investigation is shown in the

next section (Section 4.6.3).

4.6.2 Short-fragmented cfDNA are enriched in high-ctDNA samples

Using cfdnakit, fragment-length pro�les have been generated from 13 high-ctDNA (TF ≥ 3%), and

81 low-ctDNA (TF < 3%) samples from 15 di�erent pediatric cancer types. We also analyzed additional

10 plasma samples from healthy controls. The ratio of short-fragmented cfDNA (size between 100 to 150

base pairs) over long-fragmented cfDNA (size between 151 to 250 base pairs) is calculated per cfDNA

sample. The ratio is signi�cantly higher in high-ctDNA samples than in those samples from healthy

controls or with low-ctDNA (Figure 52A). The ratio of healthy controls ranges from 0.14 to 0.24 (median

= 0.18). The ratio of cfDNA from cancer patient varies between 0.11 and 0.88 (median = 0.22) in

low-ctDNA, and between 0.18 and 1.10 (median=0.43) in high-ctDNA samples. It is also possible that

other tumor genetic alterations could contribute to short-fragmented cfDNA rather than copy-number

aberrations. It thus seems that the enrichment of short-fragmented cfDNA is commonly associated with

enrichment of ctDNA in the blood plasma of cancer patients.
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Figure 52: Short-fragment ratio of cfDNA in the pediatric cohort and association with estimated tumor
fraction: (A) Distribution of short-fragment ratio shows that high ctDNA sample contains signi�cantly
more short-fragmented cfDNA than healthy donors and low ctDNA. (B) Enrichment of short-fragment
cfDNA is frequently found in sarcoma. Enrichment in brain tumors and other childhood cancer is rare.
(C) Distribution of short-fragment ratio per diagnostic group shows that enrichment is found in Ewing's
sarcomas, rhabdomyosarcomas (RMS), and other sarcomas.

Regarding tumor entities, the majority of cfDNA with enrichment of short-fragments were from

sarcoma patients where we found 11 high-ctDNA from 44 total sarcoma cfDNA (Figure 52B). The ratio

of sarcoma high-ctDNA ranges from 0.18 to 1.1 (median = 0.43). We found a high short fragment ratio

(0.56) in the sample from the bilateral Wilms tumor (Section 4.6.3). Nevertheless, the brain tumor with

high-ctDNA has a short-fragment ratio of 0.21, which is much lower than in other high-ctDNA samples.

We found enrichment of short-fragment cfDNA among a group of rhabdomyosarcomas, Ewing's sarcomas,

and other sarcomas (Figure 52C).

4.6.3 Tumor spatial and temporal heterogeneity in plasma-derived cell-free DNA

We explored the potential bene�ts of cfDNA as a minimal-invasive liquid biopsy in a cancer man-

agement setting. A liquid biopsy should be able to inform the emergence of refractory tumors or the

existence of clones locating at multiple sites. In this cohort, we have inspected spatial and temporal

heterogeneity of the tumors as detected in the corresponding cfDNA.

A 5-year-old girl was diagnosed with a Wilms tumor, the most common type of kidney cancer in

children, at both of her kidneys. A tumor biopsy from one of her kidneys was obtained. The genomic

analysis of the tumor biopsy revealed ampli�cation of MYC, a somatic mutation in TP53, and over-

expression of KDM1A. The genome-wide copy-number pro�le shows ampli�cations at chromosome 4p,
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8q23.1, and 18q22.1 and deletions on chromosome 4q, 8q, 17, 18, 21, and 22 (Figure 53A). The tumor

later progressed and spread to multiple locations including liver, lymph nodes, and abdominal wall.

Multiple sampling of tumor tissues to get comprehensive genetic information might be di�cult. A liquid

biopsy has been obtained from the peripheral blood of the patient. Plasma cell-free DNA was extracted

and submitted to multiple sequencing libraries includes lcWGS, WES, and Panel-seq.

Figure 53: Tumor spatial heterogeneity was captured by cfDNA from a patient with metastasis bilateral
Wilms tumor. (A) Genome-wide copy-number aberrations from a tumor tissue obtained from one kidney;
The tumor image is reprinted with permission from MayoClinic.org (Copyright © 1998-2021 Mayo
Foundation for Medical Education and Research (MFMER). All rights reserved.). (B) Genome-wide
copy-number aberrations from plasma cfDNA; (C) Overlapping genomic segments from the tumor tissue
(blue) and the plasma cfDNA (orange); Colors in a genomic pro�le represent CNV events ( grey:neutral,
red:deletion, green:gain (3N), light green:ampli�cation (> 3N)).

From the result of the lcWGS method, ichorCNA reported 37.4% estimated tumor fraction and

detected copy-number aberrations in multiple loci (Figure 53B). Interestingly, the genome-wide copy-

number pro�le of the cfDNA looks di�erent from the tumor pro�le (Figure 53C). Genotyping has con-

�rmed that those samples were derived from the same individual (Supplement FigureS5). Low-coverage

whole-genome sequencing of cfDNA reveals only similarity in the deletion of chromosome 22. Aberrations

in chromosome 4 still existed at the very low fraction. This shows that the majority of ctDNA was not

released by the tumor population that we have obtained.

We annotated the aberrant regions with an in-house list of druggable genes. We found 105 genes

that were exclusive to cfDNA, 64 exclusive to the tumor, and 20 common druggable genes. Supplement

Table S3 shows druggable genes found exclusively in cfDNA. Among those cfDNA-exclusive alterations,

a deletion of CTNNB1, gene encoding beta-catenin, was found. This gene is commonly mutated in

Wilms tumors[155] and many types of cancer[156�159]. It is known as a major component of the Wnt

signaling pathway and forming E-cadherin cell-cell adhesion systems[157]. The loss of E-cadherin adhe-

sion in association with the epithelial�mesenchymal transition (EMT) occurs frequently during tumor

metastasis[160]. However, this alteration might not be druggable since CTNNB1-targeted drugs, such
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as TTK inhibitor, aim to suppress the activation of CTNNB1 that drives cell proliferation through the

Wnt signaling pathway [161]. We are now looking forward to �nding potential candidates for the next

drug target that could cure the majority of tumors based on the evidence from the liquid biopsy.

We received plasma cfDNA samples in a time-series manner from 10 patients including 9 sarcomas

and 1 pediatric hepatoblastoma. Although there are 2 samples per patient, we have identi�ed 4 patients

whose cfDNA contains high-ctDNA in at least 1 time-point (Figure 54A). We detected 3 high-ctDNA

samples obtained at the �rst time point from patients with sarcoma. Their copy-number pro�le looks

similar to their matched tumor CNV pro�les. The estimated tumor fraction (TF) were 28.6%, 10.1%

and 3.1%. Since we do not have the clinical record at the sampling time, it is possible that those liquid

biopsies were obtained at the diagnosis time or before the surgery and contained a detectable amount

of ctDNA. The second biopsy from a patient with an in�ammatory myo�broblastic tumor (IMT) also

contained a high level of ctDNA (TF = 5.2%) and also maintained the same CNV pro�le from as in �rst

biopsy (TF = 3.1%).

Figure 54: Time-series cfDNA biopsy captured refractory tumor in pediatric patients. (A) Tumor fraction
estimation was performed in a time-series cfDNA collection of 5 patients. Samples with high TF (TF
≥ 3%) were highlighted with bigger dots. (B and C) Genome-wide copy-number aberrations plots of
cfDNA collected at timepoint T.1 and T.2; (D) Genome-wide copy-number aberrations of tumor WES of
the same patient; The copy-number pro�le of T.2 looks similar to the pro�le of tumor while T.1 does not
shows any apparent CNVs. Colors in a genomic pro�le represent CNV events ( grey:neutral, red:deletion,
green:gain (3N), light green:ampli�cation (> 3N)).

We also detect a cfDNA sample that captures the refractory of the tumor at the second time point.

The sample was obtained from a patient with rhabdomyosarcoma. The �rst cfDNA has not shown

any copy-number aberration and ichorCNA reported 0.8% TF (Figure 54B). However, the second liquid

biopsy was reported having TF 28.3% and contains multiple large CNVs including ampli�cation of

chromosome 2, 12 and 18, and deletion in chromosome 4 and 10 (Figure 54C). These CNVs were also

found in the matched tumor biopsy (Figure 54D).
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4.6.4 Estimated tumor fraction guides detection of targetable mutation in noncranial tu-

mor

As described in Section 4.4.4, a positive correlation was found between the estimated tumor fraction,

the mutational burden, the number of tumor mutations, and the percentage of detected tumor mutation.

We hypothesize that when a high tumor fraction (TF > 3%) is reported from lcWGS, it could suggest the

utilization of WES that could provide more sensitive detection of point mutations to screen for clinically

relevant or druggable mutations. We extracted copy-number aberrations and point mutations from 54

individual-matched tumor WES and plasma WES. The number and the proportion of tumor alterations

detected in cfDNA were counted and calculated. We also track the number and the percentage of detected

alteration of druggable genes.

As a result, cfDNA can detect the majority of tumor CNVs and point mutations with WES strategy

when more than 3% tumor fraction was reported from the lcWGS (Figure 55). The cfDNA from 4

sarcomas and 2 other pediatric cancers were reported with high TF whereas none of the brain tumors

reach 3% of the tumor fraction threshold. Being reported as high TF, cfDNA detected more than 70%

of druggable CNVs and 80% of tumor mutations found in the tumor through the WES strategy. Only

the cfDNA obtained from bilateral Wilms tumor detected only tumor mutations (35%) and druggable

CNVs (21%) because of spatial heterogeneity (Section 4.6.3).

The detection rate of samples with low tumor fraction (TF < 3%) was decreasing in detecting tumor

mutations and druggable CNVs. The detection rate decreased to below 12 % on average among low TF

samples. However, the detection of tumor mutations and druggable mutations were increased to above

20% in 12 samples. It shows that lcWGS ignores the existence of point mutation when very few or none

of the copy-number aberrations exist.

Figure 55: Number and percentage of targetable aberrations by the level of estimated tumor fraction.
The �rst 3 rows of grey bar plots show the number of mutations, the number of druggable mutated genes,
and the number of druggable genes with CNVs in a tumor. The 3 rows of blue bar plots below show the
percentage of detected tumor mutations, percentage of detected tumor druggable genes, and percentage
of detected druggable genes with CNVs in cfDNA using the WES strategy. The cfDNA sample obtained
from the patient with bilateral Wilms tumor is highlighted (*).

The chance of detecting tumor mutations is higher when more than 3% TF is reported by lcWGS.

Among cfDNA samples from noncranial tumors (sarcomas and other pediatric cancers), we detected 5

very high tumor fractions (TF > 10%) cfDNA samples from 3 sarcomas including 2 embryonal rhab-

domyosarcomas, 1 alveolar rhabdomyosarcoma, and 2 other pediatric cancers including a neuroblastoma
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and a bilateral Wilms tumor (Figure 56). A substantial tumor fraction (TF > 3%) is derived from an

in�ammatory myo�broblastic tumor (IMT). WES successfully detects at least one druggable mutation

in 4 out of 6 patients that have estimated TF > 3%. We detected a novel mutation in the targetable

NOTCH2 gene, an oncogene that is overexpressed in a range of cancers [162], from the blood of a patient

with bilateral Wilms tumor. This mutation could be secreted from a tumor that locates apart from the

primary site.

Figure 56: Mutation detection rate and detected druggable genes in noncranial tumors: the �rst 2 rows
of the bar plots show the number of mutations and number of druggable mutated genes in tumor tissue.
The following 2 rows of blue bar plots show the percentage of detected tumor mutation and druggable
mutated genes in cfDNA. The matrix reports deleterious somatic mutation in druggable genes found in
tumors (SNV in blue and INDEL in yellow) and in cfDNA (black cross).

Interestingly, we detected all 5 druggable mutations from a cfDNA sample (2LB-055.P01) of a pa-

tient with embryonal rhabdomyosarcoma (RME). Those mutated genes included NOTCH3, HDAC1,

ERBB2, ERBB4, NTRK3 and TLR8. Recently known as HER2 and HER4, ERBB2 and ERBB4 encode

receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) protein family [163].

These HER proteins are classi�ed as oncogenes, causing tumorigenesis, tumor growth and progression

through overexpression, mutation, truncation and gene ampli�cation [164] The mutation of HER2 was

found at low frequencies in many cancer types including RME and could be the target of HER2 targeted

drugs [165�167]. NTRK3, one of the neurotrophic tyrosine kinase (NTRK) genes, promotes cell prolif-

eration, di�erentiation, and survival via activation of several signaling pathways including JAK/STAT,

PI3K/AKT, and SHC/RAS/MAPK [168]. Although FDA has approved the use of tropomyosin-related
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kinase (TRK) inhibitors for patients with NTRK gene-fusion, mutations in the kinase domain have shown

high sensitivity to type II inhibitors, including altiratinib, cabozantinib and foretinib [169]. NOTCH3,

encodes one of NOTCH signaling transmembrane protein, and HDAC1, encodes one of histone deacety-

lase protein complex, regulate the activation of NOTCH targeted genes [170]. Those genes include HES

and HEY protein families, CD25, cyclin D1 and c-MYC which implicate in cell-cycle progression, and

cancer stemness [171, 172]. Many strategies have been introduced to target NOTCH3-mutated cancer

including siRNA/shRNA and antibody-drug conjugates [172]. TLR8, a member of toll-like receptor

encoding genes, were found highly expressed in cancers leading to tumor cell proliferation and chemore-

sistance [173].It is also being recognized as a potential target of cancer immunotherapy that could reverse

the immune suppressive function leading to strong tumor inhibition [174].

Among cfDNA samples from brain tumor patients, no sample reaches 3% TF (Figure 57). The

detection rate of tumor mutations is approximately 12%, and only 8 samples contain at least one mutation

in druggable genes. We found a sample from high-grade glioma to contain 15 novel mutations and 1

tumor mutation locating in druggable genes. We have checked base quality, genotypic �ngerprint, and

oxidative sequencing artifact; no sample problem is detected. The overall mutation burden of this cfDNA

sample is 628 nucleotide variants which are even higher than the primary tumor. It is not clear what

could be a possible source of these druggable mutations.

Figure 57: Druggable mutation in cfDNA from brain tumor patients

4.7 Summary

This thesis demonstrated a comprehensive utility of cfDNA in pediatric cancer based on information

derived from three next-generation sequencing techniques. The proportions of cancer types in this cohort

also represents the incidence of childhood solid tumors where brain tumors and sarcomas represented the

majority of data in the dataset, followed by other childhood-speci�c entities. Based on this cohort, we

found that the success of using plasma cfDNA in detecting tumor DNA from blood circulation (circulating

tumor cell-free DNA or ctDNA) is a�ected by two factors. First, the di�erent sequencing methods of

choice have their limitation of sensitivity and comprehensiveness. The broader the genome-scale level

of the method, the lower the sensitivity towards single-base alterations of the method is. The higher

coverage could provide more sensitivity at the single-base resolution but will lose the ability to detect

comprehensive alterations across the genome. Second, the tumor location in�uences the probability of
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tumor-derived cfDNA being shed into blood circulation. We observed the rate at which mutations from

brain tumors were detected in plasma cfDNA to be very small, while more alterations from non-cranial

tumors can be detected.

It has been widely observed in many adult cancer studies that ctDNA is shorter than cfDNA shed by

non-malignant cells. We explored the size of cfDNA in the patient-derived xenograft mouse experiment

and the pediatric cohort. The enrichment of short-fragmented cfDNA was observed in human-derived

cfDNA in the xenograft, supporting the result of a previous study in an ovarian cancer experiment. The

enrichment of short-fragmented cfDNA and number of copy-number alterations were positively correlated.

In-silico size-selection can enhance the copy-number alteration and increase the tumor fraction estimates.

In the pediatric cohort, the enrichment is also more prevalent among non-cranial tumor cfDNA than in

brain tumor patients. We found that the amount of short-fragmented cfDNA not only correlates with

the copy-number alteration status but also with the overall mutation burden and with the amount of

ctDNA.

The utility of plasma cfDNA in detecting telomeric aberrations including telomeric elongation and

integration of telomeric variant repeats has been demonstrated in this study with lcWGS assay. The

estimated telomere content of cfDNA derived from patients was decreased comparing to cfDNA of adult

healthy donors. The integration of telomere variant repeats in the intratelomeric regions could be detected

in plasma cfDNA. A positive correlation was found between the telomere content and the frequency of

TVRs integration in brain tumors and sarcomas. However, the low concentration of tumor-derived

cfDNA from brain tumors provided variability in the result. The association between ALT-associated

mutations with particular TVR integration could not be found. Di�erent quanti�cation strategies and

additional enrichment methods could provide higher sensitivity and speci�city to the experiment in the

future.

The thesis demonstrated that plasma cfDNA can reveal spatial and temporal tumor heterogeneity

which commonly complicate the success of therapy. These �ndings have shown the potential bene�t of

liquid biopsy to pediatric cancer patient management.
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5 DISCUSSION
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5.1 E�cacy of Low-coverage Whole-genome Sequencing (lcWGS) in Detect-

ing Tumor-derived CfDNA

5.1.1 Sequencing cfDNA with lcWGS shows a comprehensive copy-number pro�le and

allows estimation of tumor fraction.

When applying cfDNA as a liquid biopsy material, the type of genetic alteration to be used as a marker

would play an important role in the success of the detection. This study demonstrates the detection

of large copy-number alterations and estimates tumor fraction (TF) from lcWGS (median coverage

1.32x) using the ichorCNA bioinformatics tool. We measured the sensitivity and speci�city of lcWGS in

detecting copy-number variants (CNV) at di�erent tumor fractions found in the cohort. The sensitivity

rises to approximately 75% when the TF reaches 3% and becomes stable at 80% when the TF reaches

5%. On the other hand, the speci�city when the TF reaches 3% was stable around 68% and reaches

approximately 80% at 9% TF. The evaluation result is similar to the result provided by the developer

of ichorCNA who performed several comprehensive benchmarkings by an in-silico mixture approach at

1x genome coverage [102]. They also found the lower limit of 0.03 TF for detecting the presence of

chormosome-arm aberration (>100 Mb). This indicates that the genome-wide copy-number pro�le of

cfDNA should look very similar to the tumor when the tumor with large CNVs sheds enough DNA into

the blood circulation. However, it is important to mention that this study considered CNVs in the tumor

as a ground truth. We should not overlook the fact that cfDNA might contain CNVs originating from

a tumor population that has not been captured by sequencing the primary tumor. The benchmarking

by in-silico mixture approach using tumor DNA and health donor cfDNA was not performed in this

thesis. Since CNVs are the alterations commonly found in pediatric cancers, comprehensive screening for

CNVs from the liquid biopsy with lcWGS could further indicate the use of a more targeted and sensitive

sequencing approach (e.g. whole-exome sequencing, gene-panel sequencing, or PCR).

Regarding the detection of point mutations, this study has shown that the detection rate from lcWGS

is less than 15% of total tumor point mutations in the cohort even though the TF was higher than 3%.

This implies that lcWGS cannot provide enough coverage to detect the tumor-derived cfDNA when the

tumor is driven by point mutations. This is the major limitation of implementing lcWGS to detect

tumors at the early stage especially in pediatric cancer that ≈10% of them harbor few mutations in

cancer predisposition genes [175]. This problem can be solved by the whole-exome sequencing (WES),

where point mutations can be detected at 5% lower limit of detection [96]. Combining both advantages

of lcWGS and WES could provide comprehensive information regarding both CNVs and point mutation

and increase the success of detection for all pediatric cancers. Further development of DNA extraction,

isolation, and preparation are required to obtain enough cfDNA material for generating lcWGS and WES

libraries from a limited DNA of blood collection from a child.

Since lcWGS could only detect CNVs when a sample reaches approximately 3% of TF, detecting

tumor CNV at low TF might be di�cult. In-vitro or in-silico size-selection could enriched tumor-derived

cfDNA [110] and has been demonstrated in Section 4.4.2. The success rate of this strategy also depends

on the initial concentration of tumor-derived cfDNA. The in-vitro could better enrich the detection of

CNVs than the in-silico approach [110]. However, our samples have been already sequenced when this

study begin and sample re-processing is not possible. The other sequencing strategy to detect early

detection of a relapsed tumor is gene-panel sequencing or personalized panel-sequencing. They provide

both sensitivity and speci�city in detecting point mutations with the lower limit of detection at variant

allele frequency at 0.1% [96, 176]. This thesis also performed the analysis of panel-sequencing (Section

4.3.4) and discussed in Section 5.2.2.
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5.1.2 The location of the primary tumor in�uence the success of detection by plasma

cfDNA sequencing.

Selecting the source of liquid biopsy is the most important decision that could already determine

the success of capturing the tumor marker. Obtaining an unsuitable source of liquid biopsy often leads

to high detection failure. In this study, we compare the success of detecting tumor CNVs from plasma

cfDNA with lcWGS between cranial (brain tumors) and non-cranial (sarcomas and other childhood-

speci�c tumors) (Section 4.6.1). Using 3% TF as the threshold of success detection, detecting CNV

from a cranial tumor is very rare. Only 1 out of 54 cfDNA samples from brain tumor patients could

reach the threshold. In total, plasma cfDNA detected only 9% of brain tumor CNVs and would rather

be false-positive results because the low speci�city was commonly found among samples with TF <

3%. The more successful detection was observed among cfDNA from patients with non-cranial tumors.

Approximately 25% of samples contained more than 3% TF and had 90% of tumor CNVs detected.

The success rate of using plasma cfDNA to capture ctDNA based on CNVs is in�uenced by the

concentration of tumor-derived cfDNA in the liquid biopsy sample. The rare success rate among brain

tumor patients could be explained by the location of the primary tumor where the blood-brain barrier

blocks the release of tumor DNA into the blood circulation. The ideal source of liquid biopsy for detecting

ctDNA from brain tumor patients is cerebrospinal �uid (CSF), which provides necessary nutrients and

removes waste in the central nervous system. It has been demonstrated that CSF could lead to detection

of genetic aberrations in patients with leptomeningeal metastases of non-small-cell lung cancer [82]. The

extended dataset of this cohort, not included in this study, contains 33 CSF samples from pediatric

brain tumor patients. Almost half of them are estimated to have more than 3% TF (Supplement Figure

S6). Supplement Figure S7 shows an exemplary result of CSF in detecting CNVs from a patient with

medulloblastoma. The further evaluation analysis of these CSF samples is beyond the scope of this thesis.

On the other hand, the success rate of detection in this cohort shows that blood plasma is the possible

source of liquid biopsy for patients with non-cranial tumors. Although we detected only 25% of samples

having a high level of ctDNA (TF > 3%), the related clinical status has been blind to us at most of the

time in this study. Additional clinical information such as the stage or size of the tumor, time point of

treatment when the sample was taken, or RECIST status could help us to understand the relationship

between the progression of a tumor and the detection rate of plasma cfDNA. Overall, selecting a suitable

source of liquid biopsy in�uences enormously the success of detection using any tumor marker. Keeping

the correct sample could still provide a chance of trying di�erent detection strategies while an incorrect

source of sample will not be a suitable starting meterial.

5.2 E�cacy of Whole-exome Sequencing (WES) and Panel-seq in Detecting

Alterations at Higher-resolution

5.2.1 Deep and broad coverage of WES allows interogation of point mutations.

Compared to adult cancers, childhood cancers typically have fewer somatic mutations but a higher

prevalence of germline mutations in cancer predisposition genes [15]. Approximately 50% of pediatric

cancers harbored at least 1 potentially druggable alteration, and one-third of them retain the potentially

druggable alteration at the time of relapse. Obtaining a tumor biopsy from a patient allows us to extract

its molecular pro�le which could guide the therapeutic selection. Obtaining multiple or serial biopsies

could track the mutational dynamics during and after the course of treatment. However, it poses several

challenges including patient's discomfort and overlooking of tumor clone at an adjacent or remote site.

Although lcWGS of plasma cfDNA allow us to detect large CNVs and estimate the tumor fraction,

it lacks the power to detect mutations at single-base resolution. Nevertheless, WES and gene-panel

sequencing (Panel-seq) o�er sequencing depth power to detect point mutations in targeted regions with
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cfDNA material.

WES provides both breadth and depth sequencing to detect functional somatic point mutations with

a lower limit of detection of 5% [96] . In this study, we detected at least one tumor point mutation in

90%, 85%, and 75% in cfDNA of sarcomas, other childhood cancers, and brain tumors, respectively. We

extracted somatic functional point mutations in 367 genes that could be candidates for targeted therapy

in pediatric cancer patients from tumor and cfDNA WES (Supplement Table S2). We found that 30%

of cfDNA in this cohort contained at least 1 druggable mutation. Mutations detected from non-cranial

tumor cfDNA show a higher concordance to the matching tumor than cfDNAs from a brain tumor. This

implies that tumor type also a�ects the detection rate of cfDNA WES similarly to lcWGS.

The source of mutations that exclusively exist in cfDNA is unclear. Most of these samples gain 1 extra

druggable mutation. It could originate from adjacent tumor populations that have not been captured

by tumor biopsy. Alternatively, the mutation could arise from the subclone of the primary tumor during

the course of treatment. The tumor spatial heterogeneity could explain the source of multiple exclusive

point mutations (> 4 mutations) in cfDNA. It could be the tumor population that seeds at a distance site

away from the primary tumor. The local environment applies a di�erent selective pressure that drives

the continuous development of distinct clones and shed DNA into blood circulation. A study in a group

of non-small cell lung cancer, known as TRACERx, used multi-region exome sequencing to construct

phylogenetic tumor branches[177]. Multiplex-PCR assay panels were designed per patient targeting

clonal and subclonal SNVs to track the phylogenetic tumor branches in plasma cfDNA [176]. They

found that a median of 27% of subclonal SNVs were detected in 68% of ctDNA-positive patients. Many

of these subclone SNVs existed only in a particular region. In our study, we have identi�ed a patient with

bilateral Wilm tumor whose primary tumor genome does not have druggable point mutation. However,

we detected a point mutation in NOTCH2 with additional druggable CNVs in the plasma cfDNA of

the patient. This case has been con�rmed afterward having multiple metastasis sites including the liver,

lymph nodes, and abdominal wall. We assumed that the source of cfDNA-exclusive mutation was derived

from those sites (Discussed in section 5.6.1).

The main limitation of WES in cfDNA is the limited sensitivity to detect segmental loss of heterozy-

gosity (LOH) from B-allele frequency (BAF). Most bioinformatics tools would �nd it challenging in the

sample with a low concentration of tumor cfDNA [178]. For example, our CNV calling work�ow for

tumor WES (Method Section 2.3) classi�es a segment with the global maximum between 0.45�0.55 (~

5% alternative allele frequency) as a balanced segment (no LOH). The WES can accuratly identify re-

gions with LOH when compared with gold standard whole-genome SNP6 microarray in tumors of 40-60%

purity [179]. This study also found that PureCN also provided ambiguous segmentation of BAF when

the sample with low estimated tumor fraction. Excluding higher tumor ploidy (ploidy 4 and more) from

solution searching parameters of CNV calling software could eliminate the ambiguous result of absolute

copy-number in low TF samples. The future evaluation of cfDNA with WES could also include detection

of LOH at di�erent tumor fraction.

5.2.2 Customised Panel-seq provides a detection with more sentivity but limited breadth.

Panel-seq provides a more sensitive detection but at a limited number of genomic loci. The customized

gene-panel has designed to capture 130 genes which are recurrently altered in brain tumors, focusing on

coding regions and selected intronic and promoter regions [115]. Based on tumor WES, the gene-panel

could capture at least 1 somatic deleterious point mutation in around half of the tumor DNA samples.

We interrogated these mutations from the matched cfDNA samples and calculated the tumor variant

allele frequency (VAF) of the detected variants. We found that only one-fourth of plasma cfDNA from

brain tumor patients can detect at least one point mutation at the VAF ranging from 0.04% to 1%. This

range of tumor fractions is below the limit of detection of both lcWGS and WES processed by standard
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pipelines [96]. Almost half of cfDNA from sarcomas and other pediatric tumors can detect at least one

tumor point mutation. The maximum range of VAF reaches 63% in sarcomas and 30% in other pediatric

cancers. This �nding shows that the location of the tumor in�uences the detectability of plasma cfDNA

although the customised Panel-seq already be able to detect mutation at very high sensitivity.

The design of the gene-panel limits the tracking of druggable mutations to regions of only 66 genes.

Using Panel-seq, 71% (5/7), 40% (4/10), and 22% (4/18) of cfDNA can detect at least 1 druggable point

mutation in sarcomas, other pediatric cancers, and brain tumor cases, respectively. Panel-seq narrows

down the scope of mutation detection and decreases the detection rate of druggable genes comparing to

WES. The rate of detecting at least one targetable mutation is comparable between WES and Panel-seq

(Figure 34). WES would increase the higher chance of detecting more functional druggable mutations

per sample. Comprehensive alteration detection using WES could be applied to disease monitoring

of advanced-stage patients and suggest the next therapeutic option [151]. Because WES supports the

characterization of the genomic pro�le of cfDNA, it expands the possibility to detect alterations that

might exclusively be shed by tumor clones that locate at a distant site.

The implementation of WES or Panel-seq of liquid biopsy cfDNA in the clinical management of

pediatric cancer should consider the clinical objective of the application. Early diagnosis would require

a sensitive assay to notify the developing tumor in the body. Most childhood cancers have been found

driven by only a single cancer-driving mutation rather than multiple hits on cancer-driving genes [15].

The customized gene-panel could be designed to capture the most frequently mutated genes among

childhood cancers. Meanwhile, a personalized gene-panel could be bene�cial for disease monitoring and

detecting minimal residual disease in terms of sensitivity and speci�city. In the TRACERx study [177],

personalized multiplex-PCR panel sequencing was used in ctDNA pro�ling of non-small cell lung cancers

(NSCLC)[176]. This study shows that the multiplex-PCR assay provide a sensitivity above 99% for the

detection of tumor allele frequencies above 0.1% and 99.6% speci�city of detecting a SNV. It also was

estimated that a plasma VAF of 0.1% would correspond to a primary NSCLC burden of 302 million

tumor cells or tumor volumn of 10 cm3. With this power of detection, personalized panel sequencing had

detected at least two SNVs in 93% of patients with tumor relapsed before or at clinical replase (median

lead time = 70 days). This shows that the sensitivity of Panel-seq could provide clinical bene�ts for

early detection of relapse tumor. Overall, the limit of detection and coverage of these two next-generation

sequencing approaches (WES or Panel-seq) should be major points of concern.

5.3 Estimation of Tumor Fraction Guides the Use of Subsequent Sensitive

Detection Method.

The detection of actionable somatic mutations in the plasma of pediatric cancer patients has made

possible the minimal-invasive biopsy to guide therapy selection. WES and standard WGS can provide

genomic pro�les from the plasma cfDNA. However, the high cost of sequencing and the low tumor

fraction limit the cost-e�ectiveness of those sequencing approaches. Gene-panel sequencing could be very

sensitive but limited to only detecting mutations in clinically actionable regions by the assay design.

Moreover, gene-panel sequencing cannot be used for the characterization of genomic features such as

mutational signatures or mutational burden which could be used as a biomarker of checkpoint blockade

immunotherapy[151]. LcWGS uses less DNA material but can provide a comprehensive genomic pro�le

of plasma cfDNA. The correlation between tumor fraction estimated from lcWGS and the success in

detecting actionable point mutation with WES has been previously demonstrated in metastatic adult

solid tumors [102, 151]. However, pediatric cancers are known to have less tumor mutational burden than

adult cancers [15]. The possibility to detect pediatric druggable mutation using lcWGS tumor fraction

estimate as a guide has never been demonstrated.

In this study, we compared the detection rate of tumor point mutations and the detection rate of
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druggable mutations to the TF reported by lcWGS. As expected, we found a positive correlation between

TF of lcWGS, percent of tumor point-mutations detected, and mutational burden from WES of plasma

cfDNA in the cohort. When lcWGS reaches the 3% TF threshold, the WES of the identical sample could

detect more than 80% of tumor mutations and 70% of druggable CNVs. Interestingly, all druggable point

mutations were detected by both WES and Panel-seq. Nevertheless, in samples with lower TF only 12

% of tumor point mutations were detected on average and very few druggable mutations and CNVs. At

least 1 druggable point mutation was detected in 30% of WES and 10% Panel-seq. This suggests that

the estimation of TF by using lcWGS can relatively guide the success of detecting using a more sensitive

sequencing technique.

5.4 Fragment-length Analysis of CfDNA in Pediatric Cancers

5.4.1 Pediatric cancers shed short-fragmented cfDNA into the blood circulation.

Even though the underlying mechanism of the generation of cfDNA is not fully understood, the

fragmentation analysis has found that cfDNA fragments were generated by mostly endonuclease activity

as a part of the cell apoptosis process [72]. A previous experiment of xenografted human ovarian cancer

have observed that human-derived (tumor) cfDNA is shorter than mouse-derived (non-tumor) cfDNA

[110]. We assumed that pediatric cancer also releases cfDNA into blood circulation through a similar

mechanism. We developed cfdnakit, a bioinformatics tool specialized in the fragment-length analysis

of cfDNA. Using this package, we extracted the length of cfDNA and compare the sample fragment-

length pro�le of human-derived and mouse-derived cfDNA. In this study of pediatric cancer, we found

that tumor-derived cfDNA was shorter than cfDNA shed by non-malignant cells in the patient-derived

xenograft (PDX) experiment. This implies that the secretion of DNA into the bloodstream of pediatric

cancers and adult cancers is driven by the same underlying mechanism. The fragment length of tumor

cfDNA in the PDX experiment has shown that the tumor cells always secrete shorter fragment lengths

mainly 142 bases long on average which is the size of DNA wrapping around 1 unit of mononucleosome.

The cause of this fragmentation pattern in tumor cfDNA has not been fully understood. It could be

related to the di�erentiation stage of the tumor where chromatin repositioning and destabilization is

common [180, 181].

5.4.2 Short-fragment cfDNA is enriched in cfDNA with high tumor-derived cfDNA.

Fragment lengths of plasma cfDNA have been mainly explored in adult cancers [110]. The number

of short-fragment cfDNA increases accordingly with the concentration of tumor-derived cfDNA. Many

studies have tried to explore the utilization of short-fragmented cfDNA as a quantitive measurement of

tumor-derived cfDNA [110, 151, 182]. As previously mentioned, we found that pediatric tumors also

release short-fragmented cfDNA into the blood circulation, we thus expected the enrichment of short-

fragmented cfDNA to also correlate with the estimated tumor fraction reported by ichorCNA. In this

study, we explored the fragment-length pro�le of cfDNA lcWGS in the pediatric cohort using cfdnakit.

We observed an enrichment of short-fragmented cfDNA (<150 bases) among sarcomas and other pediatric

cancers. In particular, it is because of the high prevalence of high-TF cfDNA among sarcomas and other

pediatric cancers. CfDNA with a low tumor fraction contains a similar amount of short-fragmented

cfDNA to cfDNA of healthy doners. The abundance of short cfDNA of a particular genomic region has

been shown to correlate with absolute copy-number aberration found in the cfDNA. Moreover, selecting

only short-fragmented cfDNA in-silico can enhance the detection of CNVs and increase the estimated

tumor fraction in the pediatric cancer cohort. This �nding is similar to previous experiments of adult

pan-cancer [110]. However, the relationship between TF estimates and short-fragmented ratio (ratio of

short-fragmented cfDNA over longer-fragmented cfDNA) is still unclear. Some low TF samples contain

a relatively high short-fragmented ratio. The most possible cause could be that the tumor secretes
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only small or point mutations rather than large CNVs. This means that using TF to infer the overall

concentration of ctDNA with lcWGS could have overlooked the sample with an excessive point mutation

rate.

In this study, we observed the overall short-fragment in cfDNA is associated with both copy-number

aberrations and tumor mutational burden. The developed CPA-Score has done better to predict cfDNA

samples with high mutation burden and likely to contains tumor-derived cfDNA by using lcWGS data

than TF estimates. It could be used as a guiding measurement to increase the chance of detecting tumor

point mutations with WES. The limitation of further evaluation of CPA score is the fact that cancer

accumulates mutations through a lifetime thus the childhood cancers frequently have a lower mutation

rate than adult cancers. Further evaluation should be performed in adult cancers in which more somatic

mutations are acquired during lifetime and from exposure. It could also guide the utilization of WES or

WGS to perform characterization of genomic features such as mutational signature analysis.

5.5 Detecting Telomeric Aberration and Insertion of Variant Repeats

A previous study has suggested that cfDNA originates from somatic cells [183]. The decreasing level

of plasma telomeric cfDNA is associated with age in healthy individuals. Moreover, the level of telomeric

cfDNA is decreasing among baseline breast cancer [183] and gastric cancer patients[184]. We assumed

that plasma telomeric cfDNA might be able to indicate the alternative lengthening of telomeres (ALT)

and the integration of telomeric variant repeat (TVR) into intratelomeric regions.

In this study, we �rstly explored the telomeric alteration of tumors in the pediatric cohort with

lcWGS. While most tumors had a decreasing telomere content, high-grade gliomas and osteosarcomas

had increasing telomere content compared to their matched control. The correlation between telomere

content and normalized count of TVRs was observed in brain tumors and sarcomas. Samples with ATRX

functional mutation had an increased telomere content and frequently showed an integrated a pattern

of variant repeats. These �ndings are in line with the analysis of the Pan-Cancer Analysis of Whole

Genomes (PCAWG) Consortium dataset [21]. In addition to the PCAWG study, we found that high-

grade gliomas with mutations in both ATRX and TP53 (Figure 47) had increased telomere contents.

TGAGGG and TTCGGG singletons were frequently integrated into their intratelomeric regions.

Similar to previous studies [183, 184], we observed decreasing telomere content in most cfDNA samples

when compared to a group of adult healthy donors. The pattern of TVR integration in cfDNA were am-

biguous although they were still positively correlated with increasing telomere content. In brain tumors

and sarcoma cfDNA, all TVR except TTCGGG were found to be integrated into elongating telomeres.

Without normalization with matched control, it might not be suitable to compare the normalized count

of telomere content between samples because telomeres shortens with increasing age. Therefore, the re-

sult of TVR plotting against telomere content might not correctly indicate the pattern and the frequency

of TVR integration per increment of telomere content. This is the limitation of using sequencing data

in this analysis.

Telomeric DNA might be depleted in plasma cell-free DNA as we found a signi�cant decrease of

telomere content comparing to control and tumor samples (Figure S4B). The mechanism behind the

secretion of telomeric DNA into the circulation still remain elusive. In general, endonuclease activity of

DFFB (DNA fragmentation factor sub-unit β) and DNASE1L3 (deoxyribonuclease 1-like3) as a part of

the cell death program would cleave open-chromatin regions into highly fragmented cfDNA while leaving

closed-chromatin regions mostly intact [72]. Therefore, it is possible that most of telomere DNA is

released into the blood circulation as a large telomere-protein complex unit. The plasma cfDNA mostly

contains small molecular units such as short-fragmented cfDNA which contains more tumor genetic

mutation [185]. On the other hand, serum cfDNA has been shown to contain larger DNA fragments

[185] and more telomeric cell-free DNA when treated with DNase [186]. It could be an opportunity to
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isolate telomeric cell-free DNA from serum as a better source than plasma.

Although we could demonstrate that plasma cfDNA harbor telomeric alterations including elongation

and integration of TVRs with lcWGS, the low concentration of tumor-derived cfDNA and the limited

number of samples with ALT mutation hindered the clear interpretation of the results of this study.

Sequencing lcWGS might not be a suitable strategy for detecting reads with TVRs since the power of

detection is not high enough for low-ctDNA samples. Several studies recommended the enrichment for

telomeric DNA and utilization of PCR-based detection strategies.

5.6 Application to Pediatric Cancer Patient Management

5.6.1 CfDNA reveals spatial tumor heterogeneity in a patient with bilateral Wilms tumor.

cfDNA in blood circulation is contributed from cells including from all tumor mass in the body. In

this study, a cfDNA sample obtained from a patient with bilateral Wills tumor has shown discordance

genomic pro�le with the primary tumor obtained from one of the patient's kidneys. We hypothesize that

the source of aberration could be tumor mass located in another kidney where obtaining the tumor sample

could have been complicated. The clinical data con�rmed that this patient also su�ered from multiple

tumor metastase in the liver, lymph nodes, and abdominal wall. Recently, we have obtained additional

tumor biopsies from another kidney and other tumor sites and are looking forward to generating their

genomic pro�les. With this information, we could clarify the origin of CNVs found in the cfDNA. We

might have better evidence to support the utility of cfDNA as a surveillance liquid biopsy assay in

pediatric cancer management. The information could be used in the therapeutic decision or suggesting

the utilization of additional liquid biopsy assays such as single-cell sequencing of circulating tumor cells to

precisely identify a druggable target. However, analyzing upcoming genomic data could not be performed

in the time frame of this thesis.

5.6.2 Time-series liquid biopsy of cfDNA allows a tracking of tumor progression over a

period of time.

The primary advantage of liquid biopsy is the non-invasiveness compared to tumor biopsy operations.

It can be a source of tumor markers throughout the course of treatment for tracking the response of the

tumor and notify the refractory of disease. In this study, we obtained several cfDNA samples collected in a

pseudo-time-series manner. WES and lcWGS informed us about the detected mutations, comprehensive

copy-number variants, and tumor fraction estimated from the cfDNA sample over the studied period.

The lcWGS can notify us of the rising tumor clone without information on the tumor genome. It could

be a cost-e�ective strategy when applied in clinical routine. However, their prognostic value needs to

be evaluated per disease and clinical setting. Because of the lack of overlapping samples, our study

could not combine the �nding in lcWGS with mutation detection from WES to show how many point

mutations were detected when the TF is high. Moreover, additional information at the time of biopsy

such as clinical status, time relative to the start of therapy, or size of the tumor could give us a complete

picture of the bene�t of cfDNA in pediatric cancer management.

5.7 Limitations of the Study

First of all, plasma cfDNA samples were collected from the pediatric cohort where the tumor molec-

ular diagnostic process has been well-established and the clinical status of tumors is mostly available.

However, the information regarding the clinical status of patients per liquid biopsy sample was not al-

ways available to us. There was also variability in the clinical status of patients, the tumor diagnostical

types, the time interval between tumor and liquid biopsy, and the treatment a patient received. This

study mainly focuses on the technical development of detecting genomic aberrations from cfDNA. Future

prospective studies of speci�c cancer types to evaluate the utility of cfDNA will require the information
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of stages of disease progression and the precise information of liquid biopsy time interval.

Second, the number of collected liquid biopsies per diagnostical disease type varied and might not be

enough to perform a comprehensive evaluation. The extended dataset of the pediatric cohort contains

an additional number of samples obtained from brain tumors and rhabdomyosarcoma which could not

be included into this thesis, however.
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9.1 Supplementary Figures

Supplementary Figure S1: The number of cfDNA next-generation sequencing data and the overlapping
by tumor entity: A) Brain tumors B) Sarcomas C) Other Pediatric Cancers and D) All Cancer Types;
The venn diagrams were generated by using Venny 2.1 [187].
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Supplementary Figure S2: Correlation between estimated tumor fraction and CPA Score of the pediatric
cohort samples
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Supplementary Figure S4: Estimated telomere content in cell-free DNA with lcWGS: (A) The telomere
content estimated from lcWGS of cfDNA samples (n=156) is weakly correlated with the sequencing
coverage (Pearson correlation coe�cient 0.17). (B) Telomere content in cfDNA is signi�cantly lower
than in bu�ycoat/control and tumor samples (Wilcoxon rank sum test).
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Supplementary Figure S5: Genotypic �ngerprint checking of the bilateral wilms tumor DNA The
heatmap shows genotyping correlation matrix of samples derived from 3 di�erent individuals. The
correlation coe�cient between samples from the patient with bilateral wilms tumor (in orange square)
are clustered together. This con�rms that the cfDNA were derived from the patient rather than another
individual.
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Supplementary Figure S6: Estimated tumor-fraction from cfDNA in cerebrospinal �uid of brain tumor
patients: Number of high ctDNA (right panel) and low ctDNA (left panel) samples per tumor diagnostic
group; Low Grade Glioma (LGG); Tumor Fraction (TF)
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Supplementary Figure S7: Detecting CNVs and estimating tumor fraction from cerebrospinal �uid of
a medulloblastoma patient: CfDNA samples were collected from cerebrospinal �uid (CSF) and blood
plasma of the patient. Most of tumor CNVs were detected in CSF rather than plasma cfDNA. (A)
Genomic CNV pro�le of tumor genome; (B) Genomic CNV pro�le of CSF cfDNA; (C) CNV pro�le of
plasma cfDNA
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9.2 Supplementary Tables

lcWGS WES Panel-seq Total

Brain Tumors 54 28 44 126
Sarcomas 67 27 17 110

Others Pediatric Cancers 16 16 17 49
Total 137 71 77 285

Supplementary Table S1: Total number of cfDNA next-generation sequencing dataset of the INFORM
cohort
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Supplementary Table S2: List of pediatric cancer druggable genes

chr start end strand gene

1 1138888 1142071 -1 TNFRSF18

1 1146706 1149518 -1 TNFRSF4

1 7979907 8000926 -1 TNFRSF9

1 8064464 8086368 -1 ERRFI1

1 9711790 9789172 1 PIK3CD

1 11166592 11322564 -1 MTOR

1 12123434 12204264 1 TNFRSF8

1 16450832 16482582 -1 EPHA2

1 23037332 23241818 1 EPHB2

1 23345941 23410182 1 KDM1A

1 26644448 26647014 1 CD52

1 26856252 26901521 1 RPS6KA1

1 27022524 27108595 1 ARID1A

1 27938575 27961788 -1 FGR

1 32479430 32526451 1 KHDRBS1

1 32716840 32751766 1 LCK

1 32757687 32799236 1 HDAC1

1 43803478 43818443 1 MPL

1 45285516 45308735 -1 PTCH2

1 51426417 51440305 1 CDKN2C

1 59041099 59043166 -1 TACSTD2

1 65298912 65432187 -1 JAK1

1 92414928 92479983 1 BRDT

1 110452864 110473614 1 CSF1

1 112025970 112106584 -1 ADORA3

1 115247090 115259515 -1 NRAS

1 120454176 120612240 -1 NOTCH2

1 150547032 150552066 -1 MCL1

1 154377669 154441926 1 IL6R

1 155158300 155162707 -1 MUC1

1 156785432 156851642 1 NTRK1

1 160709037 160724611 1 SLAMF7

1 161040785 161059389 NECTIN4

1 162601163 162757190 1 DDR2

1 165370159 165414433 RXRG

1 172628154 172636014 1 FASLG

1 179068462 179198819 -1 ABL2

1 206643791 206670223 1 IKBKE

1 218519577 218617961 1 TGFB2

1 223282748 223316624 -1 TLR5

1 226548392 226595780 -1 PARP1

1 243651535 244014381 -1 AKT3
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

2 16080686 16087129 1 MYCN

2 25455845 25565459 -1 DNMT3A

2 29415640 30144432 -1 ALK

2 39208537 39351486 -1 SOS1

2 45878484 46415129 1 PRKCE

2 47572297 47614740 1 EPCAM

2 61704984 61765761 -1 XPO1

2 65537985 65659771 -1 SPRED2

2 69092613 69098649 -1 BMP10

2 112656056 112787138 1 MERTK

2 113587328 113594480 -1 IL1B

2 121493199 121750229 1 GLI2

2 136871919 136875735 -1 CXCR4

2 190920423 190927455 -1 MSTN

2 202899310 202903160 1 FZD7

2 204732509 204738683 1 CTLA4

2 204801471 204826300 1 ICOS

2 208627310 208634287 -1 FZD5

2 209100951 209130798 -1 IDH1

2 212240446 213403565 -1 ERBB4

2 222282747 222438922 -1 EPHA4

2 239969864 240323348 -1 HDAC4

2 242792033 242801060 -1 PDCD1

3 12328867 12475855 1 PPARG

3 12625100 12705725 -1 RAF1

3 13521224 13547916 1 HDAC11

3 30647994 30735634 1 TGFBR2

3 32993066 32997841 1 CCR4

3 38179969 38184513 1 MYD88

3 41236328 41301587 1 CTNNB1

3 46395225 46402419 1 CCR2

3 46411633 46417697 1 CCR5

3 49924435 49941299 -1 MST1R

3 53190025 53226733 1 PRKCD

3 55499743 55523973 -1 WNT5A

3 66429221 66551687 -1 LRIG1

3 89156674 89531284 1 EPHA3

3 107762145 107809872 -1 CD47

3 113995760 114029135 1 TIGIT

3 132036211 132087142 1 ACPP

3 134316643 134979309 1 EPHB1
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

3 138066539 138124375 1 MRAS

3 138372860 138553780 -1 PIK3CB

3 142168077 142297668 -1 ATR

3 178865902 178957881 1 PIK3CA

3 187386694 187388187 -1 SST

4 843064 926161 -1 GAK

4 1795034 1810599 1 FGFR3

4 15779898 15854853 1 CD38

4 25656923 25680370 1 SLC34A2

4 55095264 55164414 1 PDGFRA

4 55524085 55606881 1 KIT

4 55944644 55991756 -1 KDR

4 84213614 84256306 -1 HPSE

4 99792835 99851788 -1 EIF4E

4 123372625 123377880 -1 IL2

4 123747863 123819391 1 FGF2

4 128802016 128820350 1 PLK4

4 153242410 153457253 -1 FBXW7

4 157681606 157892546 -1 PDGFC

4 177604689 177713881 -1 VEGFC

5 1253262 1295184 -1 TERT

5 35852797 35879705 1 IL7R

5 38845960 38945698 1 OSMR

5 67511548 67597649 1 PIK3R1

5 68530668 68573250 1 CDK7

5 86563705 86687748 1 RASA1

5 131409483 131411859 1 CSF2

5 133530025 133561833 PP2A

5 139226364 139422884 -1 NRG2

5 141000443 141016437 -1 HDAC3

5 141971743 142077617 -1 FGF1

5 149432854 149492935 -1 CSF1R

5 149493400 149535435 -1 PDGFRB

5 149781200 149792492 -1 CD74

5 156512843 156569880 -1 HAVCR2

5 156569944 156682201 1 ITK

5 176513887 176525145 1 FGFR4

5 180028506 180076624 -1 FLT4

6 30844198 30867933 1 DDR1

6 31236526 31239907 -1 HLA-C

6 32162620 32191844 -1 NOTCH4
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

6 32936437 32949282 1 BRD2

6 33161365 33168630 -1 RXRB

6 35995488 36079013 1 MAPK14

6 36644305 36655116 1 CDKN1A

6 37137979 37143202 1 PIM1

6 41902671 42018095 -1 CCND3

6 43737921 43754224 1 VEGFA

6 44214824 44221620 1 HSP90AB1

6 82879700 82957471 -1 IBTK

6 86159809 86205500 1 NT5E

6 111981535 112194655 -1 FYN

6 114254192 114332472 -1 HDAC2

6 117609463 117747018 -1 ROS1

6 127439749 127518910 1 RSPO3

6 151977826 152450754 1 ESR1

6 166822852 167319939 -1 RPS6KA2

6 170591294 170599561 -1 DLL1

7 536895 559933 -1 PDGFA

7 18126572 19042039 1 HDAC9

7 22765503 22771621 1 IL6

7 23275586 23314727 1 GPNMB

7 41724712 41742706 -1 INHBA

7 42000548 42277469 -1 GLI3

7 55086714 55324313 1 EGFR

7 75931861 75933612 1 HSPB1

7 81328322 81399754 -1 HGF

7 89783689 89794143 1 STEAP1

7 90893783 90898123 1 FZD1

7 92234235 92465908 -1 CDK6

7 100400187 100425121 -1 EPHB4

7 106505723 106547590 1 PIK3CG

7 116312444 116438440 1 MET

7 128828713 128853386 1 SMO

7 140419127 140624564 -1 BRAF

7 148504475 148581413 -1 EZH2

7 150750899 150755617 -1 CDK5

7 151163098 151217206 -1 RHEB

7 155592680 155604967 -1 SHH

8 6357172 6420930 -1 ANGPT2

8 11351510 11422113 1 BLK

8 22877646 22926692 -1 TNFRSF10B
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

8 23047965 23082639 -1 TNFRSF10A

8 31496902 32622548 1 NRG1

8 38268656 38326352 -1 FGFR1

8 39759794 39785963 1 IDO1

8 48685669 48872743 -1 PRKDC

8 56792372 56923940 1 LYN

8 95891998 95908906 -1 CCNE2

8 108261721 108510283 -1 ANGPT1

8 108911544 109095913 -1 RSPO2

8 128747680 128753674 1 MYC

8 141667999 142012315 -1 PTK2

9 4985033 5128183 1 JAK2

9 5450503 5470566 1 CD274

9 21967751 21995300 -1 CDKN2A

9 22002902 22009362 -1 CDKN2B

9 27109139 27230173 1 TEK

9 80331003 80646374 -1 GNAQ

9 87283466 87638505 1 NTRK2

9 91975702 92113045 -1 SEMA4D

9 93564069 93660831 1 SYK

9 98205262 98279339 -1 PTCH1

9 101866320 101916474 1 TGFBR1

9 130547958 130553066 1 CDK9

9 130577291 130617035 -1 ENG

9 133589333 133763062 1 ABL1

9 135766735 135820020 -1 TSC1

9 136895427 136933657 -1 BRD3

9 137208944 137332431 1 RXRA

9 139388896 139440314 -1 NOTCH1

9 139553308 139567130 1 EGFL7

10 6052652 6104288 IL2R

10 6469105 6622263 -1 PRKCQ

10 30722866 30750762 1 MAP3K8

10 35927177 35930362 -1 FZD8

10 43572475 43625799 1 RET

10 48413092 48416853 -1 GDF2

10 54074056 54077802 1 DKK1

10 62538089 62554610 1 CDK1

10 73507316 73533255 VSIR

10 83635070 84746935 1 NRG3

10 89622870 89731687 1 PTEN
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

10 90750414 90775542 1 FAS

10 104263744 104393292 1 SUFU

10 123237848 123357972 -1 FGFR2

11 532242 537287 -1 HRAS

11 2150342 2170833 -1 IGF2

11 9595228 9615004 1 WEE1

11 27910385 27912580 HSP90AA2P

11 49168187 49230222 -1 FOLH1

11 60223225 60238233 1 MS4A1

11 64002010 64006259 1 VEGFB

11 66081958 66084515 -1 CD248

11 69455855 69469242 1 CCND1

11 69587797 69590171 -1 FGF4

11 69624992 69633792 -1 FGF3

11 71900602 71907345 1 FOLR1

11 103777914 104035107 -1 PDGFD

11 107992243 108018503 1 ACAT1

11 108093211 108239829 1 ATM

11 112831997 113149158 1 NCAM1

11 118307205 118397539 1 KMT2A

11 119076752 119178859 1 CBL

11 125495036 125546150 1 CHEK1

12 4382938 4414516 1 CCND2

12 6554033 6560884 1 CD27

12 6881678 6887621 1 LAG3

12 12867992 12875305 1 CDKN1B

12 14765576 14849519 -1 GUCY2C

12 25357723 25403870 -1 KRAS

12 48176505 48226915 -1 HDAC7

12 52300692 52317145 1 ACVRL1

12 52345451 52390862 1 ACVR1B

12 56137064 56150911 1 GDF11

12 56360553 56366568 1 CDK2

12 56473641 56497289 1 ERBB3

12 57853918 57866045 1 GLI1

12 58141510 58149796 -1 CDK4

12 64845660 64895888 1 TBK1

12 69201956 69239214 1 MDM2

12 102789645 102874423 -1 IGF1

12 104323885 104347423 1 HSP90B1

12 112856155 112947717 1 PTPN11
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

12 130647004 130650285 1 FZD10

13 28577411 28674729 -1 FLT3

13 28874489 29069265 -1 FLT1

13 32889611 32973805 1 BRCA2

13 43136872 43182149 1 TNFSF11

13 86366925 86373623 -1 SLITRK6

13 108903588 108960832 1 TNFSF13B

13 114523522 114567046 -1 GAS6

14 20811741 20826064 1 PARP2

14 23767999 23780968 1 BCL2L2

14 24686058 24701660 -1 NEDD8

14 61654277 62017694 1 PRKCH

14 76424442 76449334 -1 TGFB3

14 102547075 102606036 -1 HSP90AA1

14 105235686 105262088 -1 AKT1

14 105607318 105635161 -1 JAG2

15 38544527 38649450 1 SPRED1

15 40986972 41024354 1 RAD51

15 41221538 41231237 1 DLL4

15 41849873 41871536 1 TYRO3

15 66679155 66784650 1 MAP2K1

15 73976307 74006859 1 CD276

15 76228310 76352136 -1 NRG4

15 88418230 88799999 -1 NTRK3

15 90626277 90645736 -1 IDH2

15 99192200 99507759 1 IGF1R

16 810762 818865 1 MSLN

16 2097466 2138716 1 TSC2

16 23614488 23652631 -1 PALB2

16 23688977 23701688 1 PLK1

16 23847322 24231932 1 PRKCB

16 28943260 28950667 1 CD19

16 30125426 30134827 -1 MAPK3

16 50727514 50766988 1 NOD2

16 58191811 58231824 -1 CSNK2A2

16 71671738 71758604 -1 PHLPP2

17 8108056 8113918 -1 AURKB

17 29421945 29709134 1 NF1

17 32582304 32584222 1 CCL2

17 33426811 33448541 -1 RAD51D

17 33677324 33700720 -1 SLFN11
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

17 37617764 37721160 1 CDK12

17 37844167 37886679 1 ERBB2

17 38465444 38513094 1 RARA

17 40465342 40540586 -1 STAT3

17 41196312 41277500 -1 BRCA1

17 42154114 42201070 -1 HDAC5

17 42634925 42636907 1 FZD2

17 56429861 56494956 -1 RNF43

17 56769934 56811703 1 RAD51C

17 57970447 58027925 1 RPS6KB1

17 62006100 62009714 -1 CD79B

17 64298754 64806861 1 PRKCA

17 73314157 73401790 -1 GRB2

17 73996987 74002080 1 CDK3

17 78518619 78940171 1 RPTOR

18 721588 812547 -1 YES1

18 23596578 23671181 -1 SS18

18 60382672 60647666 1 PHLPP1

18 60790579 60987361 -1 BCL2

19 2164148 2232577 1 DOT1L

19 3094408 3124002 1 GNA11

19 4090319 4124126 -1 MAP2K2

19 6583194 6604114 -1 CD70

19 7112266 7294045 -1 INSR

19 8959520 9092018 -1 MUC16

19 10244021 10341962 -1 DNMT1

19 10461209 10491352 -1 TYK2

19 10677138 10679735 -1 CDKN2D

19 11071598 11176071 1 SMARCA4

19 15270444 15311792 -1 NOTCH3

19 15347647 15443356 -1 BRD4

19 17935589 17958880 -1 JAK3

19 30302805 30315215 1 CCNE1

19 35810164 35838258 1 CD22

19 39989535 39999121 1 DLL3

19 40736224 40791443 -1 AKT2

19 41725108 41767671 1 AXL

19 41807492 41859816 -1 TGFB1

19 42212504 42233718 1 CEACAM5

19 49838428 49846592 1 CD37

19 51728320 51747115 1 CD33
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Supplementary Table S2: List of Pediatric Cancer Druggable (con-

tinue)

chr start end strand gene

19 54382444 54410906 1 PRKCG

19 55249980 55295776 1 KIR2DL3

19 55281263 55295774 1 KIR2DL1

19 55361898 55378662 1 KIR3DL2

19 57742377 57746916 1 AURKC

20 459116 524465 -1 CSNK2A1

20 10618332 10654694 -1 JAG1

20 30252255 30311792 -1 BCL2L1

20 30639991 30689659 1 HCK

20 31350191 31397162 1 DNMT3B

20 35973088 36034453 1 SRC

20 44637547 44645200 1 MMP9

20 44746911 44758502 1 CD40

20 54944445 54967393 -1 AURKA

21 39751949 40033704 -1 ERG

22 21271714 21308037 1 CRKL

22 22108789 22221970 -1 MAPK1

22 24129150 24176703 1 SMARCB1

22 24813847 24838328 1 ADORA2A

22 29083731 29138410 -1 CHEK2

22 30658818 30662829 -1 OSM

22 39619364 39640756 -1 PDGFB

22 50354161 50357728 1 PIM3

22 50683612 50689834 -1 HDAC10

22 50702142 50709196 -1 MAPK11

X 12885202 12908499 1 TLR7

X 12924739 12941288 1 TLR8

X 15482369 15574652 1 BMX

X 20168029 20285523 -1 RPS6KA3

X 47420516 47431307 1 ARAF

X 48367350 48379202 1 PORCN

X 48659784 48683392 1 HDAC6

X 48770459 48776301 -1 PIM2

X 66764465 66950461 1 AR

X 71549366 71792953 -1 HDAC8

X 83318984 83442933 -1 RPS6KA6

X 100604435 100641183 -1 BTK

X 153845865 153847533 -1 CTAG1B
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Aberration Druggable Gene

Deletion PPARG, RAF1, HDAC11, TGFBR2, CCR4, MYD88, CTNNB1, CCR2, CCR5,
MST1R, PRKCD, WNT5A, LRIG1, TERT, HSPB1, HGF, JAK2, CD274,

CDKN2A, CDKN2B, TEK, GNAQ, NTRK2, SEMA4D, SYK, PTCH1, TGFBR1,
CDK9, ENG, ABL1, TSC1, BRD3, RXRA, NOTCH1, EGFL7, TSC2, PALB2,

PLK1, PRKCB, CD19, MAPK3, NOD2, CSNK2A2, PHLPP2
Gain AKT3, STEAP1, FZD1, CDK6, EPHB4, PIK3CG, MET, SMO, BRAF, EZH2,

CDK5, RHEB, SHH, IL2R, PRKCQ, MAP3K8, FZD8, RET, VSIR, NRG3,
PTEN, FAS, SUFU, FGFR2, CCND2, CD27, LAG3, CDKN1B, GUCY2C,
KRAS, HDAC7, ACVRL1, ACVR1B, GDF11, CDK2, ERBB3, GLI1, CDK4,
TBK1, MDM2, IGF1, HSP90B1, PTPN11, FZD10, BCL2L1, HCK, DNMT3B,

SRC, MMP9, CD40, AURKA
Ampli�cation MCL1, IL6R, MUC1, NTRK1, SLAMF7, NECTIN4, DDR2, DKK1, CDK1
SNVs/INDELs NOTCH2

Supplementary Table S3: List of druggable gene found exclusively in cfDNA from a patient with Wilm
tumor
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Tumor Entity Sample (n) Median CPA Score

Healthy.Control Healthy.Control 10 2.14
Low ctDNA (TF<3%) Brain tumors 39 4.38
Low ctDNA (TF<3%) Others 9 3.46
Low ctDNA (TF<3%) Sarcomas 33 4.23

High ctDNA Brain tumors 1 6.68
High ctDNA Others 1 71.6
High ctDNA Sarcomas 11 29.3

Supplementary Table S4: CPA score per tumor entity and tumor fraction
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9.3 Reproducibility

This section contain technical process in order to perfrom the bioinformatics work�ow for cfDNA se-
quencing analysis. This section will cover all process described in the Figure 20 in the method section.
The primary aim of this part is to make analysis reproducible as much as possible under the system
environment of ODCF cluster. Implementation under other environment/condition must con�gure path
of directory, software/module availability per situation. Every processing script is accessible at the
github repository https://github.com/Pitithat-pu/OE0290_pediatric_workflow. Feel free to con-
tact pitithat@gmail.com for questions.

9.3.1 Directory structure on the ODCF cluster environment

Project directory of cfDNA samples All sequencing data of cfDNA were transferred to and man-
aged by DKFZ Omics IT and Data Management Core Facility (ODCF) under the project codename
OE0290_pediatric_tumor. Their in-house bioinformatics work�ows (Method Section 2.2) have con-
structed most of fundamental directory structure; namely the �project directory�. The project directory
host raw sequencing �les (FASTQ), sequence alignment �les (BAM) (except the panel-sequencing). In
the future, it'd better checking if they still keep the directory structure as follows:
The overview structure of the project directory (OE0290_pediatric_tumor)

/omics / odc f / p r o j e c t /OE0290/pediatr ic_tumor /
= exon_sequencing/
= view=by=pid /

= `PID ` /
= ` Sample . ID ` / pa i red /merged=al ignment /
= ` Sample . ID ` / pa i red /run . . .

= panel_sequencing /
= view=by=pid /

= `PID ` /
= ` Sample . ID ` / pa i red /run . . .

= whole_genome_sequencing/
= view=by=pid /

= `PID ` /
= ` Sample . ID ` / pa i red /merged=al ignment /
= ` Sample . ID ` / pa i red /run . . .

� merged-alignment - contains BAM �les and quality control matrices

� run... - contains sequencing FASTQ �les (R1,R2) and UMI sequence �les (I1)

All sequencing data of tumor, control included in the pediatric cohort were also managed by ODCF under
the project codename INFORM. The fundamental directory structure is similar to OE0290_pediatric_tumor.
Result of both SNV Calling and INDEL calling work�ow (Method Section 2.2) were also located within
this structure.
The overview structure of the project directory (INFORM)

/omics / odc f / p r o j e c t / inform/ sequenc ing /
= exon_sequencing/
= view=by=pid /

= `PID ` /
= ` Sample . ID ` / pa i red /merged=al ignment /
= i n d e l_ r e su l t s /
= snv_resu l t s /

= whole_genome_sequencing/

� merged-alignment - contains BAM �les and quality control matrices

� indel_results - contains result of ODCF INDEL calling work�ow

� snv_results - contains result of ODCF SNV calling work�ow
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9.3.2 Setting up an analysis directory

We created an directory with full �le permission in a separated directory inside the ODCF cluster environ-
ment. The analysis of this study are hosted at /omics/odcf/analysis/OE0290_projects/pediatric_tumor/.
If you want to host the analysis somewhere else, please adjust the path accordingly. The bash sript
��ll_PID_folders.sh� will create symbolic links to BAM �les and (if applicable) SNV and INDEL
results in the project directory of exome-sequencing and low-coverage whole-genome sequencing.

The structure within this directory after running �ll_PID_folders.sh

/omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= exon_sequencing/
= results_per_pid /

= `PID ` /
= al ignment /
= i n d e l s /
= mpileup/

= whole_genome_sequencing/
= results_per_pid /

= `PID ` /
= al ignment /

� alignment - contains symbolic links to BAM, BAI and quality control �les in the project directory

� indels - contains symbolic links to INDEL calling results

� mpileup - contains symbolic links to SNV calling results

9.3.3 Running AlignmentAndQCWork�ows for Panel Sequencing data

As you may see that ODCF did not process the basic sequence alignment for panel sequencing data. We
have to manual run the AlignmentAndQCWork�ows via roddy. Bash script �PanCanAlignment.sh�
inside the git directory panel_sequencing will run AlignmentAndQCWork�ows.

1. Create a directory RoddyCon�g inside panel_sequencing directory; Copy PanCanAlignment.xml
from the git repo to the RoddyCon�g directory

2. Create a directory target_regions inside panel_sequencing directory; Copy

target_regions/panel_target_coverage_plain.bed inside the git repo to target_regions directory

3. Edit PanCanAlignment.sh: Setting the variable PIDs to all PIDs you want to process; TU-
MOR_SAMPLE_NAME_PREFIXES to the sample pre�x (e.g. plasma, csf, serum); TAR-
GET_REGIONS_FILE to path of panel_target_coverage_plain.bed in the previous step.

4. Run PanCanAlignment.sh

The alignment result will be located in the directory �alignment�.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= panel_sequencing /
= results_per_pid /

= `PID ` /
= al ignment /

= RoddyConfig/PanCanAlignment . xml
= ta rge t_reg ions / panel_target_coverage_plain . bed

Remark : This process require several reference �les that provide through the path /icgc/ngs_share
and ODCF plugin �les inside /tbi/software/x86_64/otp/roddy/. Please check availability of all paths
inside the script PanCanAlignment.sh. If the script still doesn't work, please contact ODCF IT support;
tell them that you want to run the AlignmentAndQCWork�ows.
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9.3.4 Pre-processing - UMI work�ow (fgbio work�ow)

Fgbio toolkit, developed by Fulcrum genomics, provides the UMI processing work�ow [126]. As de-

scribed in Method Section 2.4.1 ,this work�ow required sequencing FASTQ �les of the paired-end reads

(R1 and R2), a FASTQ �le of UMI (I1), and a BAM �le as inputs of the work�ow. These FASTQ �les

located in the project directory. A set of bash scripts for the whole work�ow and a wrap-up script

(run_fgbioUMI_withunmapbam.sh) are available in the git repository https://github.com/Pitithat-

pu/fgbio_umi.

Setting up and pre-con�guring the work�ow

1. Download the java library (.jar �le) of the work�ow from https://fulcrumgenomics.github.io/fgbio/.

2. Clone the git repo https://github.com/Pitithat-pu/fgbio_umi.

3. Inside the cloned directory, edit every �le with pre�x �fgbio_�; Set variable fgbio_jar to the path
of the fgbio-1.x.0.jar

4. Inside the cloned directory, edit every �le with pre�x �picard_�; Set variable picard_jar to the
path of the picard.jar located in the cloned directory

Low-coverage whole-genome sequencing (lcWGS) To run the UMI work�ow, setting inside
�run_fgbioUMI_withunmapbam.sh� have to be edited.

1. Set project_dir to view-by-pid directory inside the project directory

2. Set pids_dir to results_per_pid directory inside the analysis directory

3. Set PIDs to pids you want to perform

4. Set fgbio_work�ow_dir to directory where you clone the git repository

5. It is possible to adjust cluster resource con�guration per analysis step. Current setting is enough
for both panel-sequencing and lcWGS. It may have to be adjust for more memory if the size of raw
data increases.

The UMI result will locate in the directory �alignment_umi�. The �nal result will be named with su�x
(_realigned.bam), otherwise they are intermediate �les.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= whole_genome_sequencing/
= results_per_pid /

= `PID ` /
= al ignment /
= alignment_umi / . . . _rea l igned .bam

Gene-panel sequencing (Panel-seq) Similar to lcWGS, the script �run_fgbioUMI_withunmapbam.sh�
has to be edit accordingly to the panel-sequencing project and analysis directory. The UMI result will also
locate in the directory �alignment_umi�. The �nal result will be named with su�x (_realigned.bam),
otherwise they are intermediate �les.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= panel_sequencing /
= results_per_pid /

= `PID ` /
= al ignment /
= alignment_umi / . . . _rea l igned .bam
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9.3.5 Extracting sequencing coverage

Low-coverage whole-genome sequencing We use the CollectWgsMetrics function of Picard toolkit
to extract genomic sequencing coverage of lcWGS data (Method Section 2.4.2). A bash script
�run_picard_CollectWgsMetrics.sh� was written to apply CollectWgsMetrics function to BAM
�les in directory alignment (non-umi) and alignment_umi (umi). We can use the picard library �le
(picard.jar) provided in our git repository to ensure the compatibility with the script. The output will
exist inside directory named �stat_coverage� inside the alignment (or alignment_umi) directory.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= whole_genome_sequencing/
= results_per_pid /

= `PID ` /
= al ignment /
= stat_coverage /*_CollectWgsMetrics . txt

= alignment_umi/
= stat_coverage /*_CollectWgsMetrics . txt

The output �le CollectWgsMetrics.txt contain aWgsMatrics table. In this table, we use MEAN_COVERAGE
for comparing sequencing coverage between samples and PCT_EXC_DUPE is the read duplication rate
of the sample.

Whole-exome sequencing We simply use the quality matrix �le (*_wroteQcSummary.txt ) for ex-
tracting on-target coverage (column �coverage QC bases On Target�) of WES data. This �le should be
linked and located inside the alignment directory (Appendix Section 9.3.2).

Panel-sequencing Similar to the process for low-coverage whole-genome sequencing, A bash script
�run_picard_CollectWgsMetrics.sh� will extract sequencing coverage of BAM �le in both directory
alignment (non-umi) and alignment_umi (umi). However, we must supply the function with an inter-
val �le to calculate the genomic regions that targeted by the designed gene-panel. In our git repository, we
provide the interval �le of gene-panel used by this study (panel_target_coverage_plain.interval_list).
We extract the read duplication rate of the sample from column PCT_EXC_DUPE of the result �le
(*_CollectWgsMetrics.txt).

To compare depth of coverage between panel-seq samples, we extract median on-target depth-of-
coverage from a given BAM �le and a target-region �le in bed format. A bash script
�run_median_ontarget_depth.sh� apply samtools depth function and additional awk command
to get the median read-depth of target-regions. We can �nd the bed �le of target-region in tar-
get_regions/panel_target_coverage_plain.bed (Appendix Section 9.3.3). The output will exist inside
directory named �stat_coverage� inside the alignment (or alignment_umi) directory.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= panel_sequencing /
= results_per_pid /

= `PID ` /
= al ignment /
= stat_coverage /*_CollectWgsMetrics . txt
= stat_coverage /*_mediumdepth . txt

= alignment_umi/
= stat_coverage /*_CollectWgsMetrics . txt
= stat_coverage /*_mediumdepth . txt

9.3.6 Estimating DNA oxidation artifact with picard tools

We provide a bash script �run_CollectOxoGMetric.sh� for exon_sequencing and panel_sequencing
for estimating DNA oxidation artifacts C > A/G > T (Method Section 2.4.3). Given a BAM �le,
this script will run Picard CollectOxoGMetrics function. We can use the picard library �le (picard.jar)
provided in our git repository to ensure the compatibility with the script. The script will make a
command and submit the command to bsub. The output will be in a new directory named �pi-
card_CollectOxoGMetrics� locating in the PID directory of the given BAM �le.
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/omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= panel_sequencing /
= results_per_pid /

= `PID ` /
= picard_CollectOxoGMetrics /*oxoG_metrics . txt

9.3.7 Copy-number variant calling - lcWGS

Selecting samples for Panel-of-Normal (PoN) creation We can skip this step if we don't want
to recrate PoN. For running ichorCNA with PoN, we can jump to the next section (lcWGS - ichorCNA).

Low-coverage whole-genome sequencing with AccelNGS and Picoplex library

1. We select a group of samples to represent sample population with normally distributed genomic
coverage.

2. The instruction of selection will be inside the directory �ichorCNA/NIPTeR_PoN_selection� of
the cloned git repository.

3. OE0290_ped_AccelNGS_coverage_qc.html andOE0290_ped_Picoplex_coverage_qc.html
are instructions for sample selection for lcWGS samples sequenced by AccelNGS and Picoplex re-
spectively.

4. Using NIPTeR package to help you select a group of control samples, de�ned as sample with-
out large copy-number aberration, from the sample population selected previously. Please follow
those instruction inside NIPTeR_OE0290_select_control.html for AccelNGS samples and
NIPTeR_OE0290_select_control_nonumi.html for Picoplex samples

5. The result �le of the previous step (e.g. NIPT_clean_bam�les.txt) will tell which samples can be
uses as PoN for CNV calling work�ow.

Creating and choosing Panel-of-Normal �le (.rds) Previously we selected a group of samples for
Panal-of-Normal using NIPTeR package. The result �le (NIPT_clean_bam�les.txt) contains samples
without large copy-number aberrations. We can follow the instruction suggested by ichorCNA at
https://github.com/broadinstitute/ichorCNA/wiki/Create-Panel-of-Normals. In brief, we have to create
wig �le from those selected BAM �les using readCounter (https://github.com/shahcompbio/hmmcopy_utils)
and save its full path into a �le (wig_�les.txt). In this project, we aims to detect CNV using 1MB res-
olution, so we set �windows 1000000. Finally, the Rscript createPanelOfNormals.R generate the PoN
for ichorCNA work�ow. Our script �create_PoN.sh� in the directory �ichorCNA� located in the git
repository gives an example of how to run this whole step from a group of bam �le.

For reproducibility of analysis, we provides three PoN �les inside �ichorCNA_PoN� directory of
the git repository.

1. PoN_umi_1Mb_97_NIPTeR_median.rds for analysing Accel-NGS 2S Plus DNA (UMI
processed BAM)

2. PoN_nonumi_1Mb_97_NIPTeR_median.rds for analysing high-coverage WGS Picoplex
1 ng input xxx-0x-02...mdup.bam or xxx-0x-03...mdup.bam (2LB-098 2LB-087 2LB-065 2LB-062)

3. PoN_1Mb_Picoplex_median.rds for analysing lcWGS Picoplex low input xxx-0x-01...mdup.bam

Running ichorCNA We can perform ichorCNA CNV calling and tumor fraction estimation by
following the instruction in the git repository of ichorCNA (https://github.com/broadinstitute/
ichorCNA/wiki). Alternatively, we provide a bash script (run_ichorCNA_1MB_maxCN4.sh) for
running ichorCNA as described in Method Section 2.4.4. We must adjust those path in the script. In
the script, we need to change the path to the installation of ichorCNA (PATHichorCNA), path to
readCounter binary (readCounter_bin) and path to PoN �le (PoN_rds_�le). The script takes two
positional parameters: 1) Full path to bam�le, 2) Path to output directory.

Steps to run ichorCNA in brief:

1. Make PoN or use already created PoN as mentioned above.
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2. Make sure that readCounter binary and ichorCNA is already installed. Setup paths to readCounter
and ichorCNA in the bash script (run_ichorCNA_1MB_maxCN4.sh)

3. Select suitable PoN rds �le. Set the variable PoN_rds_�le to the location of the �le.

4. Run run_ichorCNA_1MB_maxCN4.sh. Giving it two parameters: full path to bam�le and
full path to output directory

9.3.8 Copy-number variant calling - WES

This study applied PureCN (version 1.21.3) for performing CNV calling on WES data of cfDNA. The
instruction for package installation were provided by the developer at

https://bioconductor.org/packages/release/bioc/vignettes/PureCN/inst/doc/Quick.html.
In addition, we followed their recommendation by installing and using PSCBS for segmentation. For
project reproducibility, we provide two wrap-up scripts (run_GC-normalized_coverage.sh and run_PureCN.sh).

The script run_GC-normalized_coverage.sh performs GC normalization. In this script, we
have to set variable PureCN_libdir to the location of PureCN library; results_per_pid_dir to
results_per_pid analysis directory; intervals to the location of capture kit bait interval �le (our git
repo provides Agilent7withoutUTRs_plain_bait.intervals) and PIDs to pid that we want to analyse.
The script will generate and submit command to bsub. A GC-normalied coverage �le (*_loess.txt.gz)
is given at the end of the process.

Once the previous script is �nished, the script run_PureCN.sh performs PureCN analysis given a
coverage �le (*_loess.txt.gz). There are several setting to be adjust as follows:

� module_load_cmd = (In ODCF cluster environment) the module load command for using R: must
be the same R version you install the PureCN library.

� result_per_pid_dir = path to analysis results_per_pid directory

� PURECN = path to extdata/ of the installed PureCN library

� PureCN_normaldb = Path to normalDB �le (PoN of this software):

We provide normalDB_agilent_v7_hg19.rds in our git repository for Agilent V7 without UTRs
capture kit. The selection criteria were in the Method Section 2.4.5.

� mappingbias_�le = Path to mapping bias information �le:

We provide mapping_bias_agilent_v7_hg19.rds in our git repository for Agilent V7 without UTRs
capture kit.

� internal_�le = Path to the capture kit bait interval �le: Agilent7withoutUTRs_plain_bait.intervals
is available in out git repository.

� snp_blacklist_�le = Path to excluded location of repetitive regions:

We provide SimpleRepeat_hg19_plain.bed for hg19 genome.

The output directory (PureCN) locates in the results_per_pid directory.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= exon_sequencing/
= results_per_pid /

= `PID ` /
= PureCN/

9.3.9 ODCF SNV/IndelCalling work�ow for cfDNA WES

We applied ODCF SNV/IndelCalling work�ow for identi�cation of somatics mutation. To perform this
analysis, we must check the existance of individual-matched plasma-control BAM �le in the alignment
directory. Within ODCF cluster environment, this work�ow can be executed through roddy command.
Our git repository provide two necessary �les: SNVCalling_WES.xml and applicationProperties.ini. The
setting and execution instruction are as follows:
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1. Create a directory to host SNVCalling_WES.xml and applicationProperties.ini. Usually, we create
a directory name �RoddyCon�g� at the same location as the results_per_pid. Copy these two �les
there.

2. Edit applicationProperties.ini; Set or add path to our �RoddyCon�g� to the variable con�gura-
tionDirectories

3. Edit SNVCalling_WES.xml, Set con�g value of inputBaseDirectory and outputBaseDirectory to
the our analysis directory

4. In the SNVCalling_WES.xml, check the value of con�guration (cvalue) �possibleTumorSample-
NamePre�xes�. The value of this con�guration variable must be matching with the pre�x of our
cell-free DNA sample. Normally, our cell-free DNA would be named aka plasma-01-01, plasma-01-
02, plasma-02-01 or etc.

5. Execute roddy command for snvCalling; replace `PID` and `/path/to/RoddyCon�g/` with sample
pid, and full path of directory in 1)

/icgc/ngs_share/ngsPipelines/RoddyStable/roddy.sh runWES_control_pediatric@snvCalling `PID`

--usecon�g=`/path/to/RoddyCon�g/`applicationProperties.ini

6. Execute roddy command for indelCalling; replace `PID` with sample pid

/icgc/ngs_share/ngsPipelines/RoddyStable/roddy.sh runWES_control_pediatric@indelCalling `PID`

--usecon�g=`/path/to/RoddyCon�g/`applicationProperties.ini

The output of the work�ow will be located in the results_per_pid directory named mpileup and indels.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= exon_sequencing/
= results_per_pid /

= `PID ` /
= mpileup/
= i n d e l s /

If the script still doesn't work, please contact ODCF IT support; tell them that we want to run the
SNVCalling or INDELCalling work�ow.

9.3.10 Tumor-informed mutation detection

Extracting on-target reads We provide a bash script �run_extract_on-target_reads.sh� in our
git repository. This script will load and use bedtools (for extracting on-target reads) and samtools (for cre-
ating index �le) given a target bed �le. For panel-seq, the target �le is named panel_target_coverage_plain.bed
which we has already mentioned in Appendix Section 9.3.3. For whole-exome sequencing data, target �les
of di�erent version of Agilent SureSelect are available through ICGC/ngs_share directory (commented
in the script). This script will �nd all BAM �les per pid and create a bsub command. The command
contains the �bedtools intersect� and the �samtools index� command.

The output �le will be saved into the alignment �le (alignment or alignment_umi)

/omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= exon_sequencing/
= results_per_pid /

= `PID ` /
= al ignment /
= * . on=t a r g e t . bam

= panel_sequencing /
= results_per_pid /

= `PID ` /
= alignment_umi/
= * . on=t a r g e t . bam
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Running addBAMinfo script After we extracted on-target reads, we are ready to interogate tumor
mutation on those on-target reads in cfDNA. Our git repository provide several �les inside the directory
addBAMinfo including:

1. *_functional_snv.con�g and *_functional_indel.con�g contain con�guration setting for
running the process. We have to set :

ANALYSIS_DIR = Path to analysis directory

PIPELINE_DIR = Path to this addBAMinfo directory

REFERENCE_GENOME = Path to reference genome (.fa); To make sure that the �le exist

2. run_addBAMinfo_per_pids_functional.sh is the executing script. We have to set :

result_per_pid_dir = Path to results_per_pid

PIPELINE_DIR = Path to this addBAMinfo directory; Same as the previous .con�g �le

PIDs = pids to run the analysis

To execute the process, We simply execute the bash script �run_addBAMinfo_per_pids_functional.sh�.
The script will run run_addBAMinfo.sh with necessary parameters which later submit the process to
the bsub command. The result of process will be inside the results_per_pid directory named as �ad-
dAnnotation�.

/ omics / odc f / ana l y s i s /OE0290_projects/ pediatr ic_tumor /
= exon_sequencing/
= results_per_pid /

= `PID ` /
= addAnnotation
= *_compareSOLiD_functional_indels
= *_compareSOLiD_functional_snvs

9.3.11 In-silico size-selection of CfDNA

We provide a bash script �short_isize_selection.sh� inside directory whole_genome_sequencing of
our git repository to perform the in-silico size-selection. The script accept the path to BAM �le as only
input parameter. Via samtools and awk command, the script extract sequencing read originated from
DNA fragment with size between 50 to 150 bases. The output �le will be a BAM �le with su�x name
�*.shortinsert.bam�. in the same directory as the input BAM.
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