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Optimizing Spiking Neuromorphic Networks for Information Processing

The human brain efficiently processes information by analog integration of inputs and digital, bi-
nary communication. This fundamental design is captured in spiking neural network models that
aim to harness the brain’s processing power and energy efficiency. Within this thesis, we contribute
to the manifold optimization of these models for information processing. To that end, we first con-
sider strategies for the quantification of the ability to process information. Second, we optimize
our network implementations for efficiency by exploiting the analog emulation of neuro-synaptic
dynamics on neuromorphic hardware, which aims to tie on the energy efficiency of its biological
archetype by mimicking key architectural principles. The actual optimization for information pro-
cessing is targeted in a third step by exploiting two orthogonal approaches: Specifically, we utilize
gradient-based methods in supervised learning scenarios and, moreover, we deliberately exploit
collective dynamics for information processing that emerged under local unsupervised plasticity.
In the last step, we consider overarched optimization strategies to cope with constraints imposed
by the neuromorphic implementation. In particular, we alleviate the ubiquitous issue of limited
synaptic resources via local structural reconfigurations. By considering all of the termed stages, we
highlight the potential processing capabilities of spiking neural networks implemented on analog
neuromorphic hardware.

Optimierung von Spikenden Neuromorphen Netzen für die Informationsverarbeitung

Das menschliche Gehirn verarbeitet Informationen effizient durch analoge Integration von Ein-
gangssignalen und digitale, binäre Kommunikation. Dieser grundlegende Aufbau wird in Modellen
für spikende neuronale Netze erfasst, die darauf abzielen, die Verarbeitungsleistung und Energieef-
fizienz des Gehirns zu imitieren. Im Rahmen dieser Arbeit leisten wir einen Beitrag zur vielfälti-
gen Optimierung dieser Modelle für die Informationsverarbeitung. Zu diesem Zweck betrachten
wir zunächst Strategien zur Quantifizierung der Fähigkeit zur Informationsverarbeitung. Zweitens
optimieren wir unsere Netzwerkimplementierungen auf Effizienz, indem wir die analoge Emula-
tion der neurosynaptischen Dynamik auf neuromorpher Hardware nutzen, die durch Nachahmung
wichtiger Architekturprinzipien an die Energieeffizienz ihres biologischen Vorbilds anknüpfen soll.
Die eigentliche Optimierung der Informationsverarbeitung erfolgt in einem dritten Schritt durch
die Nutzung von zwei orthogonalen Ansätzen: Insbesondere betrachten wir gradientenbasierte
Methoden in überwachten Lernszenarien und darüber hinaus nutzen wir die gezielte Anpassung
von kollektiven Dynamiken für die Informationsverarbeitung, die unter lokaler unbeaufsichtigter
Plastizität entstanden sind. Im letzten Schritt verwenden wir übergeordnete Optimierungsstrate-
gien, um Beschränkungen durch die neuromorphe Implementierung zu überwinden. Insbesondere
schwächen wir das allgegenwärtige Problem der begrenzten synaptischen Ressourcen durch lokale
strukturelle Rekonfigurationen. Indem wir alle genannten Bereiche berücksichtigen, zeigen wir die
potenziellen Verarbeitungsmöglichkeiten von spikenden neuronalen Netzen und deren Implemen-
tation auf analoger neuromorpher Hardware.
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1 Introduction

Artificial intelligence (AI) has become a mature element in our daily life. Applications thereof
range from the field of healthcare (Jiang et al., 2017) to virtual assistants (Hoy, 2018) present

in most modern devices. The name artificial intelligence (AI) was coined during the Dartmouth
conference in 1956 which initiated the nowadays broad area of AI and is often used to describe
machines that mimic human cognitive functions such as learning, understanding, reasoning, or
problem-solving (Russell & Norvig, 2016).

Machine learning is one prominent and successful subfield of AI (Figure 1.1a). It covers algorithms
that learn through experience, i. e. through past information (Mohri et al., 2018). Within supervised
learning scenarios, these methods build a model based on a set of labeled training data to learn the
desired input to outputmappingwithout being explicitly programmed to do so (Figure 1.1b). Inmore
detail, the training of the model is often framed as an optimization problem: An error-quantifying
loss function is minimized with respect to the model parameters to yield the desired information
processing. This is in direct contrast to classical algorithms which would solve a problem like image
recognition by a sequence of rules to extract key features from an image (Figure 1.1c).

Neural networks are a prominent example of a type of model considered within the field of ma-
chine learning. Originally inspired by the architecture of the brain, artificial neural networks (ANNs)
are build of artificial neurons connected to form deep networks (LeCun et al., 2015). These neurons
work by sending out analog signals to other neurons. Each neuronweights and aggregates all incom-
ing signals, applies non-linear transformations, and then passes the signal to downstream neurons.
In the last few years, there were several outstanding achievements in the field of machine learning
with neural networks likeDeepRL that mastered a diverse range ofAtari games to superhuman level
(Mnih et al., 2016), AlphaGo that defeated the world’s best player in the game of Go (Silver et al.,
2016) and GPT-3 an autoregressive language model that produces human-like text (Brown et al.,
2020). Despite their success, the solutions found by machine learning require huge amounts of data
as well as processing power which comes at the expense of the energetic footprint (Strubell et al.,
2019). In addition, there is still a large gap between current implementations and a truly human-like
intelligence, albeit AI system like Google Duplex approached to pass the Turing test proposed in
1950 (Turing & Haugeland, 1950). Due to these shortcomings, it might be promising to once again
draw inspiration from biological brains to bridge the gap between the achievements of current AI
solutions obtained with neural networks and brain-like performance.

Despite similarities, biological neurons differ in important aspects from their artificial equivalents.
Most notably, they do not communicate analog signals, but transmit sequences of precisely timed bi-
nary events so-called spikes (Bernstein, 1868; Perkel & Bullock, 1968). Nevertheless, the integration
of input signals at a given neuron is based on analog signals. This combination of analog integra-
tion and digital processing renders the brain very special. Furthermore, the inherently sparse coding
with binary events guarantees that each spike carries high information. As a result, the communica-
tion is efficient as the main energy cost comes from the generation of spikes. These key properties of
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Machine
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(a) Overview (b) Machine learning

(c) Classical

Figure 1.1: Overview of the field of AI. AI is a broad discipline which addresses very different subfields
with distinct methods. (a) Machine learning represents a subfield of AI. It contains the branch of brain in-
spired approaches which encompasses SNNs as well as ANNs. The classical programming paradigm differs
significantly from the machine learning approach. (b) Machine learning algorithms build models based on a
set of training data to make further predictions or decisions without being explicitly programmed to do so. (c)
Classical algorithms, in contrast, solve a problem by a specific sequence of rules. Figure inspired by Annoni
et al. (2018).

biological neurons are captured within spiking neural network (SNN) models (Hodgkin & Huxley,
1952; Lapicque, 1907; Gerstner, 2001; Brette & Gerstner, 2005).

Most current ANNs as well as SNNs models are implemented on conventional computing systems
which do not capture the intrinsic parallelism of both architectures. Specifically, current computer
systems feature distinct components to store and process information sequentially (Von Neumann,
1993). The speed at which data can be transferred from memory to the processor and vice versa
is often a limiting factor referred to as von Neumann bottleneck. Currently, there are efforts un-
derway to engineer hardware systems that mimic the human brain more closely (Schuman et al.,
2017). Computation in the brain is performed locally, asynchronously, and most notably in parallel:
Memory, learning, and processing in the brain are all located alongside in the neurons and synapses.
The latter constituents are slower (Hildebrand et al., 1993) and less reliable (Allen & Stevens, 1994;
Czanner et al., 2015) than the substitutes of conventional processors. However, this drawback is
overcome by redundancy: In any computation, a large number of neurons and synapses is involved
in a highly parallel manner. Learning is accomplished by continuous adjustments of the excitability
of single neurons, the coupling strengths between neurons as well as the network topology over
time to finally perform information processing based on sensory input data (Huttenlocher, 2009). It
is noteworthy that in contrast to machine learning applications, often neither the task nor the exact
form of the optimization is known for biological brains. Neuromorphic engineering tries to mimic
key architectural as well as functional properties of biological tissue with the aim to yield novel
computing paradigms (Schuman et al., 2017).

Despite all advantages, SNNs pose several challenges when put to function (Figure 1.2). For ex-
ample, the performance of SNNs on standard machine learning classification benchmark tasks as
MNIST (LeCun et al., 1998) and CIFAR (Krizhevsky et al., 2009) is not competitive with their ma-
chine learning counterparts. A first reason for this discrepancy is the necessity of conversions from
the input samples to spikes (Figure 1.2a). Second, there is a lack of training algorithms that fully
exploit the quoted advantages of SNNs (Figure 1.2c). Hence, the problem of optimizing SNNs for
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Figure 1.2: Information flow from stimulus to decision. The optimization of SNNs for information pro-
cessing can act at all levels ranging from input coding and injection to the downstream classification network.
(a)Withing the coding step, the stimulus is transformed to comply with the alphabet of the SNN implemented
on an arbitrary compute substrate (b). For classification, the substrate furthermore houses a classifier making
a final decision. Both, the network and the classifier may have access to a supervisor providing a stimulus-
specific target signal needed to adapt the model parameters during learning. The methods described within
this thesis differ in the availability and application of this signal within the scope of network optimization (c).

information processing does not only require suitable learning algorithms, but involves the whole
processing chain from stimulus pre-processing to decision making.

Brains processes a broad range of different temporal inputs ranging from visual, auditory, and
chemical to tactile stimulation (Marzvanyan & Alhawaj, 2019). These stimuli stand in stark contrast
to classical benchmark tasks – e. g. the processing of static images – which often do not challenge or
even exploit the temporal processing capabilities provided by SNNs. To apply more natural types of
temporal stimuli to SNNs, one has to likewise mimic parts of the sensory system to transform time
series data into spike trains (Figure 1.2a). The resulting models obviously impact the information
processing capabilities of subsequent SNNs (Davies et al., 2018; Cramer et al., 2020b). Moreover, they
often act on high-dimensional data or even increase dimensionality. However, in most scenarios,
the input signal is still sparse and not all features are relevant for the actual task. As the processing
of these irrelevant features requires additional computational resources, it is highly desirable to
exclude them prior to injection into an SNN in a higher-level optimization. The actual optimization
required to reach high performance on a given task is often accomplished by adjusting the coupling
strength to and in between the neurons constituting the SNN as well as the connections between the
SNN and a readout. In general, we will distinguish between two different scenarios: In supervised
learning tasks, the network parameters are optimized to yield a specific input to output mapping.
In contrast, the adaptation of parameters is done in a task-unspecific manner within unsupervised
learning experiments. In the latter scenario, the input to output mapping is often only imposed to
optimize connections from the SNN to the readout while the connections to and within the SNN are
adjusted in a task-independent way.

Within this thesis, we aim to contribute to all the stages of SNN optimization shown in Figure 1.2.
To that end, we first provide the required theoretical background in Chapter 2. The optimization of
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SNNs also encompasses their efficient implementation. Here, we consider the emulation of SNNs on
analog neuromorphic hardware. Specifically, we introduce the BrainScaleS-2 architecture in Chap-
ter 3 which builds the target platform for many of the experiments presented within this thesis. The
optimization of SNNs for information processing is first visited in the scope of Chapter 4. Here,
we present a novel, publicly available collection of spoken words as well as a spike-based version
thereof and finally establish a first set of benchmarks with SNNs. By directly providing spike trains
to the modelers, we not only minimize computational overhead, but render the coding step in Fig-
ure 1.2 universal and hence pave the way toward well-profounded comparisons. Regarding the SNN
optimization for task processing on neuromorphic hardware, we visit two orthogonal approaches.
First, we present a supervised learning method in Chapter 5 relying on surrogate gradient learning
for the training of SNNs. Second, we present an unsupervised learning approach that exploits col-
lective phenomena to adapt SNNs to task requirements in Chapter 6. While the first approach ties
on the success of gradient-based learning techniques with backpropagation through time (BPTT),
the second one is more plausible from a biological perspective and represents a step toward fully
local learning paradigms. Last, we consider higher-level optimizations for the efficient use of synap-
tic resources on neuromorphic substrates. To that end, we consider synaptic rewiring – a process
also found in biological tissue – and present an efficient implementation thereof on the neuromor-
phic hardware system BrainScaleS-2. All result chapters start with a short abstract thematically
classifying the content in the respective stage of SNN optimization.
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2 Background

In this chapter, we will introduce several basic aspects of neuroscience and neuromorphic com-
puting. Both of the aforementioned disciplines focus on the brain which builds the center of the

nervous system of all vertebrate and most invertebrate animals. It acquires, stores, and processes in-
formation in vastly complicated networks. These networks consist of neurons (Section 2.1.2) which
are locally and directionally coupled by synapses (Section 2.1.3). Computationally, the human brain
has several desirable properties: It processes information inherently parallel, has a power consump-
tion on the order of tens of watts for operation, and dynamically adapts to its environment on
slow time scales by means of plasticity (Section 2.1.4). Hence, adopting computation and design
principles from the highly optimized brain for the development of novel computing paradigms is
a promising approach when complicated tasks need to be solved. Nowadays, detailed knowledge
about the neuro-synaptic dynamics is available allowing to build complex models which in turn
can be simulated on conventional computers (Section 2.2.1). However, the latter operate in an en-
tirely different manner which is prohibitive when trying to exploit the full benefits of brain-inspired
computing. To overcome these limitations, one may again draw inspiration from the brain to build
dedicated compute systems, so-called neuromorphic systems, which have the potential to constitute
the hardware for novel brain-inspired computing paradigms (Sections 2.2.2 and 2.2.3).

2.1 Biology

Within this section, we draw on a top-down approach: First, we highlight the basic architectural
principles of the brain, before moving on to the functionality of neurons and synapses. To that end,
simplified models of neuro-synaptic dynamics will be introduced as well as principles of synaptic
plasticity. For further details regarding the neuroscientific background and modelling, the reader is
referred to Dayan & Abbott (2001) and Gerstner & Kistler (2002) which also served as a guideline
for this background chapter.

2.1.1 Nervous System

Over the past years, we have gained increasing knowledge about the structure and function of
biological brains. Santiago Ramón y Cajal – one of the pioneers of neuroscience – first noticed that
distinct cells form the central processing element of the brain (Figure 2.1a). The discovery of these
neurons was groundbreaking, since at that time the prevailing hypothesis was that of a continuum
of nerve cells, rather than individual elements. Despite different sizes and shapes, neurons form the
universal processing element of the nervous system. The description of the existence of dendritic
spines constitutes Cajal’s second major contribution (Figure 2.1b). His interpretation of spines as
possible targets of axons further underpinned his neuron doctrine (Cajal, 1890). Within the scope of
his last articles he utilized the term synapses to refer to the aforementioned connections (Cajal, 1933).
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(a) Pyramidal neuron (b) Spines (c) Network

Figure 2.1: First illustrations of the nervous system drawn byCajal. (a)Drawing of a pyramidal neuron
of the human motor cortex (Cajal, 1899). The legend states: an initial part of the axon; b dendrites; d axonal
collaterals. (b) Illustration of dendritic spines of pyramidal cells in the cerebral cortex of a 2 month old
child (Cajal, 1933). The drawing in (a) highlights that the surface of the dendrites are covered with spines.
(c) Schematic depiction of synaptic connections and information flow in the cerebral cortex (Cajal, 1933). The
legend states: A small pyramid; B,C medium and giant pyramids, respectively; a axon; c, nervous collaterals
that appear to cross and touch the dendrites and the trunks (apical dendrites) of the pyramids; H white matter;
E, Martinotti cell with ascending axon; F special cells of the first layer of cerebral cortex; G fiber coming from
the white matter. The arrows mark the supposed direction of the nervous current. Figures and descriptions
are taken from DeFelipe (2015).

Cajal manufactured a schematic drawing in his article (Cajal, 1933) which illustrates the connections
by contact of the collateral axonal branches of the pyramidal cells with dendritic spines (Figure 2.1c).
This early drawing already hints towards the complexity of densely connected neurons: A brain of
an adult male human has about 86 billion neurons and 85 billion non-neuron cells at a weight of
1.5 kg (Azevedo et al., 2009). The number of synapses present in the brain is known much less
precisely, but is estimated to be 0.15 quadrillion (Pakkenberg et al., 2003). In the remainder of this
thesis we will focus on spiking neurons, although there are analog neurons and supporter cells in
the brain as well.

Neurons constitute electrical excitable cells which are specialized for generating and forward-
ing of electrical responses. They propagate signals over long distances by short electrical pulses
– so-called action potentials (APs) or spikes – first observed by Bernstein (1868). These APs are
fluctuations in the electrical potential across the cell membrane with an amplitude of approximately
100mV lasting for a duration of about 1ms. Neurons process and propagate information by firing
sequences of these spikes in diverse temporal codes. Hodgkin and Huxley studied in their collabora-
tion the fundamentals of nerve cell excitability (Hodgkin & Huxley, 1952). They not only provided
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an understanding of how voltage-gated ion channels traversing the cell membrane of neurons give
rise to propagating APs, but also developed a framework for studying and analyzing ion channel
kinematics. While the analog subthreshold potentials of neurons are usually attenuated over rel-
ative small ranges of 1mm or less, the active regeneration of APs facilitates the propagation over
long distances.

A neuron can be mechanistically divided into three distinct parts (Figure 2.1). First, the dendrites
– a tree-like structure – which serves as input site. Second, the soma hosts the whole bio-chemical
machinery similar to other cells. Further, it also forms the central unit for information processing by
implementing a non-linear transformation: Only if the input strength exceeds a certain threshold
an AP is generated. This signal propagates along the axon, the third element, which terminates at
the synapses. While neurons send out dendrites with an average length of 3mm, the length of axons
varies between 1mm to 17mm for pyramidal neurons in the mouse cortex (Braitenberg & Schüz,
2013). In the human brain, myelinated nerve fibres span approximately 150 000 km to 180 000 km in
total (Pakkenberg et al., 2003).

Neurons are connected to networks via synapses. In the vertebrate cortex, neurons often target
more than 104 postynaptic neurons. These connections are often expressed to their neighbouring
neurons, but also extend over larger distances to different brain areas (Braitenberg & Schüz, 2013).
Most of these connections in the vertebrate cortex are of chemical type which are characterized by
a close gap between the pre- and the postsynaptic membrane called the synaptic cleft (Südhof &
Malenka, 2008). Here, the prefix pre refers to the transmitting site, whereas the receiving partner
is termed postsynaptic. At a synapse, an arriving AP causes the release of neurotransmitters into
the synaptic cleft. These transmitter molecules diffuse to the postsynaptic membrane where they
cause an influx of ions and thereby lead to a electrical response, the post-synaptic potential (PSP).
Apart from chemical synapse, there are also gap-junctions which allow for a direct exchange of ions
between neurons (Evans & Martin, 2002).

2.1.2 Neurons

As already mentioned in the previous section, neurons are specialized to communicate via electrical
pulses. The keymorphological features for the generation of these pulses are ion channels traversing
the cell membrane (Figure 2.2a). The latter constitutes a lipid bilayer which is impermeable for
ions and separates the extracellular space from the interior of the neuron. Embedded ion channels
control the flow of specific ions either statically or mediated by a variety of signals. We consider the
membrane potential – the electrical potential between the interior and the surround of a neuron – as
the relevant electrical signal. On the one hand, the magnitude of this potential is small enough such
that neurons are able to exploit the thermal energy of ions for their transport across the membrane.
On the other hand, the magnitude is large enough so that thermal fluctuations do not disturb the
electrical communication of the neuron.

Let us first shed light on the processes impacting the equilibrium potential. In general, there are
two distinct forces that drive ions through ion channels: First, there are electrical forces and second,
there is diffusion caused by concentration differences maintained by ion pumps (Figure 2.2a). We
consider an ion with electric charge 𝑛𝑒 where 𝑒 denotes the charge of one proton. At membrane
potential 𝑢, its thermal energy has to exceed −𝑛𝑒𝑢 to cross the membrane. The Boltzmann factor
exp(𝑛𝑒𝑢/𝑘B𝑇 ) denotes the probability of having an energy greater or equal to −𝑛𝑒𝑢 at temperature 𝑇.
In case of an opposing concentration gradient, the effect of themembrane potential can be overcome.
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(a) Membrane potential (b) Transient channels

Figure 2.2: Electrophysiology of neurons. (a) The cell membrane is formed by a lipid bilayer which is
traversed by ion channels. The electrical potential between the interior and the surround of the neuron defines
the membrane potential. The equilibrium potential is affected by concentration gradients and diffusion: Na+-
K+ pumps (green) cause concentration gradients and selectively permeable ion channels allow specific ion
types to constantly diffuse across the membrane. (b) In contrast to the channels in (a), transient ion channels
open transiently when the membrane potential is depolarized. In equilibrium, the channel is closed (top). If
the membrane potential rises, the channel opens (middle), thereby allowing ions to traverse the membrane.
Afterwards, the channel is inactivated by a second gate (bottom).

Here, ions flow with a rate proportional to their concentration in the extracellular space [Conc]out
into the cell. In the opposite direction, the flow is proportional to the concentration within the
cell [Conc]in exp(𝑛𝑒𝑢/𝑘B𝑇 ), since a sufficient amount of thermal energy is required to pass the cell
membrane. In equilibrium, these flows balance and we write for the associated potential 𝑢x:

𝑢𝑥 =
𝑘B𝑇
𝑛𝑒

log (
[Conc]out
[Conc]in

) , (2.1)

where 𝑥 refers to the considered ion type. This is the so-called Nernst equation which holds true
for ion channels that allow only a single ion type to pass the cell membrane (Nernst, 1889). In a
biological setting, the already addressed concentration gradients across the cellular membrane are
maintained by ion pumps. As a result, there is an excess of Na+ ions in the extracellular medium
which translates to a reversal potential of 𝑢Na = 50mV. In contrast, the concentration of K+ ions
inside the neuron exceeds the outer one resulting in 𝑢K = −70mV to −90mV (Dayan & Abbott,
2001).

All different ion types at hand impact the total current flowing across the membrane. Specifically,
the contribution of type 𝑥 channels with conductance 𝑔𝑥 is given by 𝑔𝑥(𝑢 − 𝑢𝑥). The exterior and
the interior of the neuron can be modelled as conductors, whereas the cell membrane constitutes an
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insulator. By definition, the membrane has a capacitance which we denote by 𝐶mem. With this, the
net currents due to type 𝑥 ions equal:

𝐶mem
d𝑢
d𝑡

= ∑
𝑥
𝑔𝑥(𝑢 − 𝑢𝑥) , (2.2)

where the sum extends over all present ion types.

Up to this point, we only considered the equilibrium potential induced by passive ion channels.
However, the generation of APs as well as their propagation is caused by active conductances which
introduce nonlinearities. Therefore, we will introduce additional equations that determine the char-
acteristics of the corresponding conductances 𝑔𝑥. To that end, we assume 𝑔𝑥 to be the product of
a maximum conductance ̄𝑔𝑥 and the probability of the gate being open 𝑃𝑥. Here, we focus on two
types of conductances: Persistent conductances for which 𝑃𝑥 is a function of the voltage and tran-
sient channels which only open transiently.

Let us first consider persistent channels which we assume to behave like a simple swinging gate.
The opening of these gates involves a series of conformational changes. Let us assume that 𝑘 inde-
pendent and identical changes promote an opening of the channel, each of which occurring with a
probability 𝑛. Then, the probability of the gate to open is given by 𝑃𝑥 = 𝑛𝑘. The K+ conductance is an
example of a persistent gate for which Hodgkin and Huxley suggested the form 𝑃K = 𝑛4 (Hodgkin
& Huxley, 1952).

For transient channels, in contrast, two processes with opposing voltage dependency are involved
(Figure 2.2b). As a result, they only open temporarily in case the membrane potential is sufficiently
depolarized. The first process behaves similar to a persistent gate which is why we can describe it by
𝑚𝑘. In addition, we denote the probability of the second gate being non-blocking by ℎ. The variables
𝑚 and ℎ are characterized by opposite voltage dependencies; a depolarization of the membrane
potential entails an increase of 𝑚, whereas ℎ decreases and vice versa. One example of a transient
channel is the Na+ conductance for which Hodgkin and Huxley predicted the form 𝑃Na = 𝑚𝑘ℎ with
𝑘 = 3 (Hodgkin & Huxley, 1952).

For each subunit of each of the discussed channels, we can describe the rate at which the gating
transition from open to close occurs by a voltage-dependent function 𝛼𝑥(𝑢) and the reverse transition
by a rate 𝛽𝑥(𝑢). Thus, we write for the probability of any gating event 𝑦 to occur:

d𝑦
d𝑡

= 𝛼𝑦(𝑢)(1 − 𝑦) − 𝛽𝑦(𝑢)𝑦 , (2.3)

with 𝑦 ∈ {𝑛, 𝑚, ℎ}. This equation can be rewritten:

𝜏𝑦(𝑢)
d𝑦
d𝑡

= 𝑦∞(𝑢) − 𝑦 , (2.4)

where we have defined the time constant 𝜏𝑦(𝑢) as well as the steady-state value 𝑦∞(𝑢):

𝜏𝑦(𝑢) =
1

𝛼𝑦(𝑢) − 𝛽𝑦(𝑢)
, 𝑦∞(𝑢) =

𝛼𝑦(𝑢)
𝛼𝑦(𝑢) + 𝛽𝑦(𝑢)

. (2.5)

The form of the functions 𝛼𝑦(𝑢) and 𝛽𝑦(𝑢) can be motivated by thermodynamic arguments and have
been fitted to experimental data obtained in voltage clamping experiments by Hodgkin and Huxley
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Figure 2.3: Illustration of the functionality of the Hodgkin-Huxley model. (a)We consider the model
in response to a rectangular stimulus current 𝐼 initiated at 𝑡 = 50ms (upper panel). After stimulus onset, a
sequence of APs is triggered as long as the input current persists (middle panel). The initial rapid rise of the
membrane potential 𝑢 constituting each AP is caused by a sudden change in the Na+ conductivity 𝑔Na𝑚3ℎ
(lower panel). In turn, the rise in 𝑢 causes the inactivation of the gating variable ℎ thereby shutting off the
Na+ current. Moreover, high values of 𝑢 activate the K+ conductance 𝑔K𝑛4, pulling 𝑢 back to negative values.
In a final recovery process, all variables are readjusted and the processes recur as long as the stimulus persists.
(b) The rate functions 𝛼𝑦 and 𝛽𝑦 (upper panel), the time constants 𝜏𝑦 (middle panel) as well as the steady-state
values 𝑦∞ (lower panel) are functions of 𝑢 for all gates.

(Hodgkin & Huxley, 1952):

𝛼𝑛(𝑢) =
0.01(𝑢 + 55)

1 − exp (−0.1(𝑢 + 55))
, 𝛽𝑛(𝑢) = 0.125 exp (−0.0125(𝑢 + 65)) , (2.6)

𝛼𝑚(𝑢) =
0.01(𝑢 + 40)

1 − exp (−0.1(𝑢 + 40))
, 𝛽𝑚(𝑢) = 4 exp (−0.0056(𝑢 + 65)) , (2.7)

𝛼ℎ(𝑢) = 0.07 exp (−0.05(𝑢 + 65)) , 𝛽ℎ(𝑢) =
1

1 + exp (−0.1(𝑢 + 35))
. (2.8)

These functions as well as the resulting time constants 𝜏𝑦 and steady-state values 𝑦∞ are shown in
Figure 2.3.

Combining the terms for constant, persistent and transient conductances results in the Hodgkin-
Huxley model (Hodgkin & Huxley, 1952) capturing the generation of APs:

𝐶mem
d𝑢
d𝑡

= −𝑔leak(𝑢 − 𝑢leak) − 𝑔K𝑛4(𝑢 − 𝑢K) − 𝑔Na𝑚3ℎ(𝑢 − 𝑢Na) + 𝐼 , (2.9)

where the constant factors are grouped together in a so called leakage current 𝑔leak(𝑢−𝑢leak). Figure
2.3 shows the temporal evolution of the dynamic variables of the Hodgkin-Huxley model during
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Figure 2.4: Illustration of the functionality of the LIF neuron model. The LIF neuron integrates its
current input 𝐼 on its membrane potential 𝑢 upon reaching threshold 𝑢thres. When reaching 𝑢thres at time 𝑡, the
neurons emits a spike at 𝑡 and 𝑢 is clamped to the reset potential 𝑢reset for the duration of the refractory period
𝜏ref. After expiration of 𝜏ref, 𝑢 is released and again evolves freely. In the absence of any stimulation, 𝑢 decays
to the leak potential 𝑢leak. The model dynamics in response to stimulus currents with different amplitudes is
depicted by different colors.

stimulation with a positive step current. First, the injected current leads to a rise of the membrane
potential, thereby driving the 𝑚 variable to a value of one. Since the ℎ variable initially deviates
from zero, the Na+ conductivity 𝑚3ℎ increases which promotes an influx of Na+ ions. As a result,
the membrane potential 𝑢 is rapidly driven to around 25mV. Note the positive feedback effect of
both 𝑢 and 𝑚: A depolarized membrane potential lets 𝑚 increase and in turn activates the Na+

conductance causing 𝑢 to increase. Transiently, the rising membrane potential drives ℎ towards
zero. As a result, the Na+ conductance gets inactivated, thereby suspending the Na+ current. In
addition, the depolarized 𝑢 drives 𝑛 towards one and activates the K+ conductance. This promotes
an increased K+ current, which then hyperpolarizes the membrane potential. Finally, the 𝑚, ℎ, and
𝑛 variables are restored and 𝑢 decays to its resting value.

The four-dimensional Hodgkin Huxley model can be reduced to two dimensions. Figure 2.3b
shows that the time scale of the gating variable 𝑚 is substantially faster than the one of ℎ, 𝑛, and 𝑢.
Therefore, we replace 𝑚 by its steady-state value 𝑚∞(𝑢). In addition, the time constants 𝜏𝑛(𝑢) and
𝜏ℎ(𝑢) are rather similar, independent of 𝑢. Furthermore, the course of 𝑛(𝑢) and 1 − ℎ(𝑢) are roughly
similar allowing to replace both gating variables by an effective variable 𝑤. By setting (𝑏 − ℎ) ≈ 𝑎𝑛
with constants 𝑎, 𝑏 and 𝑤 = 𝑏 − ℎ we get:

𝐶mem
d𝑢
d𝑡

= −𝑔leak(𝑢 − 𝑢leak) − 𝑔K (
𝑤
𝑎
)
4
(𝑢 − 𝑢K) − 𝑔Na𝑚3

0(𝑢)(𝑏 − 𝑤)(𝑢 − 𝑢Na) + 𝐼 , (2.10)

d𝑤
d𝑡

= 1
𝜏𝑤
(𝑎𝑛(𝑢) − 𝑤) , (2.11)

with time constant 𝜏𝑤. In case 𝜏𝑤 ≫ 𝜏, d𝑢/ d𝑡 is larger than d𝑤/ d𝑡 except around the nullcline of 𝑢.
Hence, the model can be assumed to have a firing threshold 𝑢thres and spikes become stereotypical
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(a) Hodgkin-Huxley (b) Leaky integrate-and-fire

Figure 2.5: Equivalent electrical circuits of the Hodgkin-Huxley and LIF neuron model. The lipid
bilayer is emulated by a capacitor with capacitance 𝐶mem. All constant contributions to 𝑢 are grouped together
in the conductivity 𝑔leak and the potential 𝑢leak. (a) Each ion channel for the ion type 𝑥 corresponds to a variable
conductivity 𝑔𝑥 and specific reversal potential 𝑢𝑥 given by a battery. (b) In the LIF circuit, the ion channel
blocks for Na+ and K+ are replaced by a comparator which triggers a switch in case the potential 𝑢 exceeds a
threshold 𝑢thres.

events (Figure 2.4). This motivates the leaky integrate-and-fire (LIF) neuron model:

𝜏mem
d𝑢
d𝑡

= − [𝑢(𝑡) − 𝑢leak] +
𝐼

𝑔leak
, (2.12)

with time constant 𝜏mem = 𝐶mem/𝑔leak (Lapicque, 1907). Here, the spikes are described formally by
a threshold criterion:

𝑡𝑘 ∶ 𝑢𝑗(𝑡𝑘) ≥ 𝑢thres , (2.13)

with the 𝑘-th firing time 𝑡𝑘 and the threshold potential 𝑢thres. Immediately after 𝑡𝑘, the membrane
potential is clamped to the reset potential 𝑢(𝑡) = 𝑢reset for 𝑡 ∈ (𝑗𝑘, 𝑡𝑘 + 𝜏ref], with the refractory period
𝜏ref capturing the readjustment of gating variables after an AP. There are also extensions to the
described LIF neuron model. One prominent example is the two-dimensional adaptive exponential
leaky integrate-and-fire (AdEx) model which is based on an exponential spike mechanism and an
additional adaptation equation to cover a broad range of activity patterns (Brette & Gerstner, 2005;
Naud et al., 2008).

The electrical properties of both presented models can be translated into equivalent electrical
circuits (Figure 2.5). Here, the reversal potentials correspond to batteries, connected in parallel to
the capacity 𝐶mem as formed by the membrane. The ion channels are included in form of variable
resistances in combination with their respective ion-conducting reversal potential. For the leakage
current, the resistance is constant. Additional input currents could either charge the capacitor or
flow through the resistances, depending on their actual value. We will further comment on the rele-
vance of these equivalent circuits in the context of neuromorphic hardware depicted in Section 2.2.3
and Chapter 3.
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Figure 2.6: Spike-mediated chemical synapse. (a) Schematic drawing of a chemical synapse. Vesicles
filled with neurotransmitter are released into the synaptic cleft in case an AP arrives at the bouton. Transmit-
ter molecules diffuse to the postsynaptic membrane where they cause the opening of ion channels. (b) Dy-
namics of current-based synapse model. Shown are six synapses with random weights and time constant
𝜏syn = 20ms which transmit Poisson distributed spikes at a rate of 10Hz (gray). The resulting synaptic cur-
rents 𝐼𝑖𝑗 are summed by the postsynaptic neuron 𝑗, resulting in the total synaptic current 𝐼𝑖 (red).

2.1.3 Synapses

Synapses build the connections between neurons. They either directly transmit electrical signals or
relay chemical messengers to the postsynaptic neuron (Pereda, 2014). At a spike-mediated chemi-
cal synapse, an arriving AP leads to the opening of Ca2+ channels and an associated influx of Ca2+

into the presynaptic terminal (Figure 2.6a). This rise in concentration induces the release of neuro-
transmitters in the synaptic cleft. The transmitter molecules diffuse to the postsynaptic side of the
synapse where they undergo a binding reaction with receptors, thereby opening ion channels and
shifting the PSP. Because of this, we can model synapses by a time-dependent conductivity 𝑔syn(𝑡)
that opens whenever a presynaptic spike occurs. The synaptic current is then given by:

𝐼syn(𝑡) = 𝑔syn(𝑡)(𝑢 − 𝑢syn) . (2.14)

This expression can be directly incorporated into Equation (2.9) or Equation (2.12), respectively.
Depending on the ion type and the respective reversal potential 𝑢syn, synapses are either excitatory if
they increase the postsynaptic membrane potential or inhibitory in case they decrease the potential.

Let us assume that the transmitter directly interacts with a channel in a binding reaction: While
the binding of transmitter molecules causes the receptor to open, the unbinding promotes the clos-
ing. In this setting, we are able to use the same formalism as for voltage-dependent channels to
describe 𝑔syn(𝑡) = ̄𝑔syn𝑃syn(𝑡) with a conductance ̄𝑔syn and an opening probability 𝑃syn obeying the
form:

d𝑃syn
d𝑡

= 𝛼syn(1 − 𝑃syn) − 𝛽syn𝑃syn . (2.15)

Here, we introduced the opening rate 𝛼syn as well as the closing rate 𝛽syn. The opening rate is a
function of the transmitter concentration available for the binding reaction with the receptor. In
more detail, an AP arriving at the pre-synaptic terminal causes the transmitter concentration and
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in turn 𝛼syn to rise which results in an increase of 𝑃syn. Subsequently, the transmitter concentration
in the cleft is rapidly decreased by diffusion, degradation and reuptake mechanisms.

Up to this point, we only considered a single synapse which is artificial compared to biological
systems where a single neuron receives input spikes from up to 15 000 synapses, each of which
transmitting multiple spikes. To capture this situation, we first need to model the total synaptic
current stimulating neuron 𝑖 by summing over all presynaptic partners 𝑗:

𝐼𝑖(𝑡) = ∑
𝑗
𝐼𝑖𝑗(𝑡) . (2.16)

In the following, we will denote the spike train emitted by neuron 𝑗, 𝑆𝑗(𝑡) = ∑𝑘 𝛿(𝑡 − 𝑡𝑘𝑗 ) where the
sum extends over all emitted spikes. Since most of the synapses are located far away from the soma
of the neuron and the change in conductance described by Equation (2.14) only occurs locally, we
can utilize the simplified model of a current pulse reaching the soma through passive propagation.
In addition to this current-based approximation, we consider the release and diffusion of transmitter
molecules to happen instantaneously. Further, we assume 𝛽syn to be constant and set 1/𝛽syn = 𝜏syn.
With these simplifications, the synaptic currents 𝐼𝑖𝑗(𝑡) can be obtained from Equation (2.15):

𝜏syn
d𝐼ij(𝑡)
d𝑡

= −𝐼𝑖𝑗(𝑡) + ̄𝐼syn𝑤𝑖𝑗𝑆𝑗(𝑡) , (2.17)

where 𝑤𝑖𝑗 denotes the weight of the synapse connecting neuron 𝑖 and 𝑗. The latter impacts the
amplitude of an elicted PSP which has been shown to correlate with the spine head size (Matsuzaki
et al., 2001). Figure 2.6b shows an example of the current-based synapse model introduced above.
The resulting exponential shape is a common first-order approximation (Gerstner & Kistler, 2002).
We will stick to this exponential form throughout the remainder of this thesis, albeit more detailed
approximations for the solution of Equation (2.15) are available.

2.1.4 Plasticity

One fascinating property of themammalian brain is themodification of neural circuit function based
on past experience (Kolb, 2013). This process is called plasticity and has the potential to impact all
future behavior. Synaptic plasticity in particular refers to the activity-dependent modification of the
synaptic weights 𝑤𝑖𝑗 at existing synapses (Citri & Malenka, 2008). Many different forms of synaptic
plasticity have been described in the past. The associated changes can either be enhancing or de-
pressing depending on the activity and can occur on time scales from milliseconds to hours, days,
and even longer. Furthermore, almost all excitatory synapses in the mammalian brain simultane-
ously exhibit different forms of synaptic plasticity. In the following, we will shortly discuss short-
and then move on to long-lasting forms of synaptic plasticity.

Different forms of short-term plasticity (STP) have been observed in almost all synapses in or-
ganisms ranging from invertebrates to mammals (Zucker & Regehr, 2002). The resulting effects
last from milliseconds to several minutes and are caused by a dependence of the transmitter re-
lease probability on the spike history at the synapse (Markram & Tsodyks, 1996). There are two
principle modes of STP (Markram et al., 1998): In case the postsynaptic potential decreases in am-
plitude in response to repeated presynaptic activation, the effect is termed depressing. In contrast,
for a facilitating synapse, the pulse amplitude increases. Both effects can be modeled by a presy-
naptic transmitter release probability comparable to Equation (2.15). Here, the release probability
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Figure 2.7: Illustration of synaptic plasticitymechanisms. (a) Short-term plasticity affects the amplitude
of PSPs depending on previous activation. Shown are modelled membrane potentials for a neuron stimulated
by an excitatory synapse for both depression (top) and facilitation (bottom) (Fuhrmann et al., 2002). (b) Spike-
timing dependent plasticity is a mechanism which changes the synaptic weights based on the relative timing
of pre- and postsynaptic spikes. Here, anticausal spike pairing (Δ𝑡 < 0) cause depression, whereas causal ones
(Δ𝑡 > 0) lead to a potentiation of the respective synaptic weight which is often modeled by an exponential
kernel (Bi & Poo, 1998). The time constants are chosen to be 𝜏± = 20ms and the amplitudes 𝐴± = 1.

is changed by presynaptic activity (Figure 2.7a): For the facilitating mode the release probability is
increased upon presynaptic activation whereas it is decreased for the depressing mode (Markram
et al., 1998; Tsodyks et al., 1998; Fuhrmann et al., 2002). Since STP has a direct impact on the synaptic
efficacy it alters neural information transmission, especially it has been reported to cause temporal
filtering and gain control (Abbott et al., 1997; Tsodyks et al., 1998; Fuhrmann et al., 2002).

Aside from these short-term changes, there are also long-lasting activity-dependent modifica-
tions of synaptic weights 𝑤𝑖𝑗 induced by experience which are assumed to be crucial for learning.
Already Santiago Ramon y Cajal advanced the idea of associative memories which are formed by
these synaptic modifications in the brain (Cajal et al., 1893). This idea was put forward by Donal
Hebb in the late 1940s, resulting in Hebbs’s famous postulate which inspired many subsequent ex-
periments (Hebb, 1949). Based on theoretical considerations, this postulate makes a statement about
the modification of the connection between a presynaptic neuron A and a postsynaptic neuron B:

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased.” (Hebb, 1949)

In the context of spiking neural networks (SNNs), this postulate is often rephrased in terms of tem-
poral correlation between pre- and postsynaptic activity.

Experiments have demonstrated that synaptic changes are indeed driven by pre- and postsynap-
tic activity. Specifically, the amplitude and direction of these changes depend on the relative timing
of presynaptic spike arrival and postsynaptic response. In paring experiments with cultured hip-
pocampal neurons, the dependence of synaptic modifications on the exact presynaptic and postsy-
naptic spike times, 𝑡𝑘𝑗 and 𝑡𝑘𝑖 , has been examined. Most notably, the change of synaptic efficacies Δ𝑤𝑖𝑗
crucially depends on the spike time differences Δ𝑡 = 𝑡𝑘𝑖 − 𝑡𝑘𝑗 and is therefore termed spike-timing
dependent plasticity (STDP) (Figure 2.7). In more detail, a synapse is strengthened in case spike
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pairings appear to be causal (Δ𝑡 > 0) and weakened for anticausal pairings (Δ𝑡 < 0) (Bi & Poo, 1998;
Markram et al., 1997). These findings are indeed a manifestation of the Hebbian postulate as presy-
naptic neurons which were activated slightly before the postsynaptic neuron emits an AP are those
which “take part in firing it”. STDP is likely to bio-chemically rely on N-methyl-D-aspartic acid
(NMDA) receptors which act as coincidence detectors (Bliss & Collingridge, 1993). Similar to the
discussed receptors involved in the generation of PSPs, these NMDA receptors lead to the opening of
ion channels in the postsynaptic membrane. However, NMDA controlled channels are additionally
blocked by magnesium ions which are only released in case of sufficient postsynaptic depolariza-
tion. Only if both factors are present, the channels open and cause Ca2+ influx into the postsynaptic
terminal which in turn triggers a complex biochemical reaction chain ultimately inducing a change
of the synaptic strength (Nevian & Sakmann, 2006).

Albeit detailed bio-physical models of STDP are available, we consider a phenomenological ap-
proach (Shouval et al., 2001). In that process, the total weight change Δ𝑤𝑖𝑗 induced by STDP is
often modeled by weighting the spike time difference Δ𝑡 according to a kernel and an accompanied
summation over all pre- and postsynaptic spike pairs:

Δ𝑤𝑖𝑗 = ∑
𝑡𝑘𝑖 ,𝑡𝑘𝑗

𝑊(𝑡𝑘𝑖 , 𝑡
𝑘
𝑗 ) . (2.18)

A common choice for the kernel function 𝑊(𝑡𝑘𝑖 , 𝑡
𝑘
𝑗 ) is an exponential:

Δ𝑊(𝑡𝑘𝑗 , 𝑡
𝑘
𝑖 ) =

⎧

⎨
⎩

𝐴+ exp (
𝑡𝑘𝑗 −𝑡𝑘𝑖
𝜏+

) for 𝑡𝑘𝑗 − 𝑡𝑘𝑖 < 0 ,

𝐴− exp (
𝑡𝑘𝑖 −𝑡𝑘𝑗
𝜏−

) for 𝑡𝑘𝑗 − 𝑡𝑘𝑖 > 0 ,
(2.19)

with causal amplitude𝐴+ and time constant 𝜏+, as well as anticausal amplitude𝐴− and time constant
𝜏− (Figure 2.7b). It is noteworthy that there are also exceptions contradicting this simplified model:
Synapses between parallel fibers and Purkinje-cells show the opposite dependence on spike timing
and therefore obey an anti-Hebbian form of plasticity (Bell et al., 1997).

The increase in synaptic strength in response to activity represents a positive feedback process:
The activity inducing synaptic changes is reinforced by Hebbian plasticity, which in turn causes
more activity and further modification. Hence, neural networks subject to activity-dependent plas-
ticity would be driven to epileptic or silent behavior in the absence of additional stabilizing mech-
anisms. In biology, synaptic scaling – a form of homeostatic plasticity – counteracts the afore-
mentioned processes by globally affecting the transmission through all afferent synapses of a given
neuron (Turrigiano & Nelson, 2004). This process occurs in case the network activity dramatically
deviates for prolonged periods of time: Reduced activity levels promote an increase in the strength of
excitatory synapses onto excitatory neurons, whereas increased activity reduces the overall strength
of all excitatory synapses (Turrigiano et al., 1998). Most notably, the relative strength of individual
synapses is maintained even though the total synaptic input is altered.

Plasticity is not only limited to the change of synaptic weights. Experiments suggest that there is a
continuous rewiring of synapses in the cortex (Lamprecht & LeDoux, 2004; Trachtenberg et al., 2002;
Yasumatsu et al., 2008; Holtmaat & Svoboda, 2009; Loewenstein et al., 2011). These mechanisms are
centered around dendritic spines on which most excitatory synapses in the mammalian neocortex
project onto (Yuste, 2011). Although most of the dendritic spines are maintained over long periods
of time (Grutzendler et al., 2002), a small fraction of them is likely to disappear (Loewenstein et al.,
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(a) Apical dendrite (b) Tip of Dendrite

Figure 2.8: Biological neural networks are prone to structural reconfigurations. (a) Two-photon laser
scanning microscopy allows to monitor dendritic spines over time spans of weeks. Shown is a maximum
intensity projection of an apical dendrite of a neuron in the auditory cortex of a mouse. (b) Spine sizes
exhibit substantial volatility at time scales ranging from days to months. The upper part displays the tip of
a dendrite at the first imaging day, whereas the bottom panel visualizes the very same dendrite on the last
imaging day. The spines being present at both measurement days are highlighted by blue triangles. Figure
taken from Loewenstein et al. (2011).

2015). Specifically, it has been observed that small spines are removed on time scales from seconds
to weeks and new spines are formed (Holtmaat et al., 2005, 2006; Yasumatsu et al., 2008; Holtmaat
& Svoboda, 2009). From a modeling perspective, this means that synapses with small weights are
more likely to be pruned since the spine head size correlates with the amplitude of an elicited PSP
(Matsuzaki et al., 2001). Further, cortical spines show remarkable dynamics after lesioning of input
pathways (Trachtenberg et al., 2002; Holtmaat et al., 2006). In particular, after the trimming of
whiskers, the fraction of newly formed spines in the somatosensory cortex that become persistent
increases strongly (Holtmaat et al., 2006).

Besides the presented plasticity mechanisms, there are also higher-order forms which are referred
to as metaplasticity. This metaplasticity can be understood as the plasticity of plasticity (Abraham
& Bear, 1996; Bear et al., 1987). One example is the shift of the threshold for which long-term poten-
tiation and depression occurs mediated by previous activity (Huang et al., 1992; Wang & Wagner,
1999). In general, metaplasticity is a regulator of plasticity thresholds and plays a key role in keeping
the expression of plasticity functional.

Within this chapter, we gave a glimpse of the diverse mechanisms summarized under the term
plasticity. Especially synaptic plasticity is assumed to be a basic mechanism underlying learning and
memory. More coarsely, learningmechanisms can be divided into three categories: For unsupervised
learning, the elicited response solely depends on a combination of the stimulus and the structure
and/or dynamics of the underlying network. In these scenarios, the input as well as the learning rule
lead to self-organization of the network, as in the case of STDP. In contrast, in supervised learning, a
network is trained according to an input to output mapping imposed by a supervisor. This learning
scheme is met by most machine learning applications (Goodfellow et al., 2016b). Last, there is an
intermediate form of the aforementioned scenarios called reinforcement learning (Sutton & Barto,
2018). Here, the network only obtains feedback about its current performance during the process
of training which is provided in form of a reward signal.
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Figure 2.9: Illustration of the von Neumann architecture and Moore’s law. (a) The von Neumann
architecture is a computer architecture based on the stored-program concept; a single shared memory holds
both the program as well as the instruction data. The central processing unit executes the instructions of a
computer program. It contains a control unit, a arithmetic and logic unit and registers. Further, the central
processing unit is coupled to a memory unit as well as in- and output devices. (b) The transistor count of
microprocessor almost doubles every two years (Moore et al., 1965). Shown are key processor features as well
as their dates of introduction. Data taken from Wallentowitz (2021).

2.2 Neuromorphic Systems

In the previous section, we have introduced the basic working principles of spiking neurons and net-
works thereof. Despite this detailed knowledge, simulating large-scale networks of spiking neurons
remains a major challenge. To understand the associated hurdles that prevent scaling up neural net-
works on conventional hardware, we need to take a look at the von Neumann architecture. Thereby,
we will naturally motivate the ideas of neuromorphic engineering.

2.2.1 Von Neumann architecture

Most of the contemporary computers are based on the von Neumann architecture (Von Neumann,
1993). This electrical digital computer architecture consists of a control unit (CU), an arithmetic and
logic unit (ALU), registers, a memory unit, and in- as well as outputs (Figure 2.9a). The ALU, CU and
a set of register make up the central processing unit (CPU) which constitutes the central element for
the execution of the instructions of a computer program. The accompanying arithmetic as well as
logic operations are executed by the ALU, whereas the CU takes care of the operation of the ALU,
memory as well as input and output devices. In more detail, the CU controls the response to program
instructions fetched and interpreted from the memory unit. Further, the timing and control signals
required by other components are supplied by the CU. High-speed storage is provided in form of
registers which have to hold all data before the actual processing. This architecture composed of a
centralized CU with memory access is what is typically referred to as von Neumann architecture,
albeit several variations and extensions have been proposed and implemented in the past.

The von Neumann architecture constitutes a powerful design that is only limited by the amount
of memory and the available computation time. In particular, the shared bus between program
and data memory creates a bottleneck, usually termed the von Neumann bottleneck. This shared

18



2.2 Neuromorphic Systems

bus prevents an instruction fetch and an arbitrary operation at the same time, thereby limiting the
theoretical throughput of the CPU. Especially for minimal processing of massively parallel data, this
problem is aggravated and limits the effective processing speed. Here, the CPU has to continually
wait for required data to move from or to the memory.

Most of the advancement in CPU development is due to the progress in semiconductor technolo-
gies. The amount of memory as well as the CPU size and speed have increased in recent years
(Figure 2.9b). Especially, Moore’s law still holds by doubling the number of transistors on a chip
every two years (Moore et al., 1965). However, the speed of CPUs increases at a rate 60 % yr−1

whereas the speed of dynamic random-access memory (DRAM) increases with only 10 % yr−1 (Pat-
terson & Hennessy, 2016). This in turn exacerbates the effect of the von Neumann bottleneck as in
typical programs 20 % to 40 % of the instructions reference memory (Patterson & Hennessy, 2016).
This becomes a severe problem for massively parallel processing like the simulation of large-scale
bio-inspired neural networks.

Nevertheless, neuro-synaptic dynamics can be modeled on digital computers based on the von
Neumann architecture. The equation presented Sections 2.1.2 and 2.1.3 that model the dynamics
of neurons and synapses can be solved by numerical methods: Large networks of spiking neurons
can be simulated by discretizing time and iterative update schemes of all state variables (Press et al.,
2007). Recently, efforts have been made to perform large-scale simulations on conventional com-
puting systems which are based on the von Neumann architecture. Some of these implementations
were centered around a highly connected cortical microcolumn (Potjans & Diesmann, 2014). Van
Albada et al. (2018) performed an optimized simulation of this microcolumn on a supercomputer.
This simulation encompassed about 80000 neurons and 0.3 billion synapses, corresponding to only
0.0001 % of the entire brain. The authors reported a slowdown of 4.6 and a minimum required en-
ergy of 5.8 µJ per synaptic event. If one would linearly scale this result up to the size of a brain,
this would lead to a total power consumption of 58GW. Among other factors, this inefficiency in
terms of energy and simulation speed is caused by the von Neumann bottleneck: For a single state
update, the required data – like e. g. the synaptic weights – needs to be fetched from the memory
prior to the actual computations. In contrast, the physical substrate in the brain that implements the
memory – like the synaptic weight – directly performs the computation. This difference between
the von Neumann architecture and the design of the brain significantly affects the performance of
simulations of the latter.

Different changes and extensions to the von Neumann architecture have been proposed to al-
leviate the von Neumann bottleneck for neural network simulations in particular and to improve
the parallel processing capabilities in general. Among others, strategies like caching, prefetching,
multithreading, new types of random access memory and near-memory computing with a proces-
sor mingled with memory on a single chip have been developed and applied in the past (Patterson
& Hennessy, 2016). An existing and pervasive class of computing devices developed for parallel
processing are graphics processing units (GPUs). Originally developed for the efficient handling
of graphic data, they are suitable for parallel computing in general due to their enormous amount
of parallelly distributed processing cores and their associated parallel arithmetic (Brodtkorb et al.,
2013). For these devices, the complexity of a single processing unit has been traded against the
number of available units which renders them quite successful for a broad range of applications.
Therefore it is obvious that the model of the cortical column has also been simulated on GPUs.
Knight & Nowotny (2018) demonstrated that GPUs performed substantially better in terms of both
energy efficiency as well as simulation speed. The best results were achieved on an Nvidia Jetson
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TX2 card which only consumed 0.3 µJ per synaptic event at a slowdown of 25 compared to biological
real-time. For an Nvidia Tesla V100 accelerator speedups approaching a factor of two have been re-
ported. Despite these successes, both approaches are still orders of magnitude away from the 0.2 fJ
per synaptic operation as required by the brain, thereby increasing the demand for novel computing
architectures.

2.2.2 Neuromorpic hardware

Biological neural networks operate quite differently compared to conventional computers obeying
the von Neumann architecture introduced in the previous section. Most notably the parallelism is
deeply rooted in the structure of brains; neurons and synapses process information independent
of each other. This is enabled by the asynchronous processing of information in the brain. In
particular, there is no global clock and new information gets immediately processed at the time of
arrival. Apart from this, there is no separation between memory and computation, instead, both
are combined and distributed over the entire network. The physical substrate that implements the
memory – like the synaptic weight – directly performs the computation. These desirable properties
point to the beneficial role of novel computing architectures that mimic aspects of the brain.

The associated neuromorphic computing has emerged in recent years and was coined by Mead
(1990). Originally, the term neuromorphic hardware referred to very-large-scale integration (VLSI)
systems with analog electrical components that mimic parts of biological neural networks. Nowa-
days, implementations that are based on biologically-inspired or artificial neural networks as well
as implementations on non-von Neumann architectures are also referred to as neuromorphic. How-
ever, these neuromorphic implementations share dense connectivity, parallel processing, low-power
consumption and co-located memory and processing (Schuman et al., 2017). In the following, we
motivate the potential benefits of a neuro-inspired computing device compared to purely analog
or digital solutions based on theoretical arguments. This consideration follows the arguments of
Boahen (2017).

In contrast to digital computers, the communication and computation in the brain are prone to er-
rors (Allen & Stevens, 1994). To finally understand why this approach is favorable in terms of energy
efficiency, let us consider a collection of communications channels and their associated information
content. Each of these channels conveys a certain number of information bits 𝑏. According to the
Shannon-Hartley theorem 𝑏 depends on the signal energy 𝐸:

𝑏 = 1
2
log2 (1 +

𝐸
𝑘B𝑇

) , (2.20)

for a channel with additive white Gaussian noise with an energy of 𝑘B𝑇 (Shannon, 1948; Hartley,
1928). A theoretical maximum of 𝑏with respect to 𝐸 is reached for 𝐸 = (𝑒−1)𝑘B𝑇with 𝑏max = 1/log (4)𝑒.
Most notably, the information decreases only logarithmically with the signal energy. In contrast,
the number of signals transmitted per second rises linearly with the bandwidth 𝐵. Hence, the total
channel capacity is given by 𝐶 = 𝐵𝑏. Therefore, using many error-prone, low-energy channels
is more energy-efficient – albeit taking up more space – than using a few pristine, high-energy
channels (Figure 2.10a). In summary, communication efficiency can be maximized by trading most
of the signal-to-noise ratio for energy efficiency.

Communication errors are highly probable in the regime of maximum energy efficiency, i. e. the
working point of the brain (Figure 2.10a). For a binary alphabet, the error probability caused by
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Figure 2.10: Efficient combination of analog and digital computation. The computation carried out by
human brains relies on a combination of digital and analog processing. (a)Analog computing is characterized
by a high energy efficiency 𝑏/(𝐸 + 𝑘B𝑇 ). A signal with energy 𝐸 transmits 𝑏 = 1/2 log2 (1 + 𝐸/𝑘B𝑇) bits of information
(top). For 𝐸 > 3𝑘B𝑇 it conveys more than 1 bit of information. In case of a digital communication, 𝑏 is clipped
to 1 bit. The error probability 𝑝err, however, exponentially depends on 𝐸 (bottom). Conventional computers
therefore operate with high energy signals to minimize the error probability, whereas the brain operates
in the converse regime. (b) Computations with intermediate precision profit from neuromorphic solutions.
To low-pass filter a signal, the energy demand depends quadratically, logarithmically and linearly on the
precision 𝑟 for analog, digital and neuromorphic solutions. Hence, an analog implementation is most energy-
efficient for low precision, whereas digital multiply-accumulate units take over for high precision. In between,
neuromorphic implementations seem to be beneficial for which the neuron count is assumed to scale linearly
with the precision. Figure based on Boahen (2017).

thermal fluctuation is given by exp (−𝐸/4𝑘b𝑇). To be functional, digital computers require low error
rates on the order of 𝑝err = 10−24 corresponding to a signal energy of 220𝑘B𝑇. Because of this,
the computer’s communication energy efficiency is 60 times lower than the theoretical maximum
achieved for 𝐸 = (𝑒 − 1)𝑘B𝑇. In direct contrast, the brain operations in the error-prone regime of the
theoretical optimum: The transmission at synaptic contacts is unreliable, i. e. in two-thirds of the
cases a spike fails to trigger ligand release at the terminals (Allen & Stevens, 1994).

The combination of digital and analog communication and computation of neurons is character-
ized by a low energetic footprint for intermediate precisions (Boahen, 2017). Let us consider a low-
pass filter similar to the sub-threshold behavior of neurons. Here, the precision is given by 𝑟 = √𝐸/𝑘B𝑇
with 𝐸 being the energy to cycle from the minimum to the maximum signal value and back (Fig-
ure 2.10b). The implementation in a digital fashion requires a multiply-accumulate unit that grows
quadratically with the number of bits. Here, a full cycle is divided into 𝑚 equal steps. Hence, the
associated energy is given by 𝐸 = 𝑚𝑏2𝐸mac with the energy 𝐸mac for a single multiply-accumulate
operation per bit. Substituting 𝑏 = log2 (𝑟 + 1) yields 𝐸 = 𝑚 (log2 (𝑟 + 1))2 𝐸mac (Figure 2.10b). Be-
cause of this logarithmic scaling, digital solutions consume less energy at high precision, whereas
analog implementations are beneficial for low precision. With advances in semiconductor technol-
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ogy during the last years, the intersection has moved to lower precision values. For example, an
actual 28 nm process consumes about 2.1 pJ, whereas an older 90 nm process requires 10.9 pJ for
𝑚 = 50 and 𝑟 = 255 (Reyserhove et al., 2014). If the subthreshold dynamics of neurons can now be
implemented with analog circuits and the asynchronous communication between them by digital
logic instead, the precision can be assumed to be linearly dependent on the neuron count (Fig-
ure 2.10b). As a result, this neuromorphic implementation has the potential to outperform purely
digital as well as purely analog realizations in an intermediate precision regime.

So far, the theoretical consideration discussed above does not take a specific hardware imple-
mentation into account. In general, there are many different strategies to approach the field of
neuromorphic computing which resulted in vastly different computing substrates in the past years
(Schürmann et al., 2005). In the following, we will present a selection of contemporary hardware
devices as well as their potential field of use.

2.2.3 Neuromorpic designs

Given the broad definition of neuromorphic systems, it is not surprising that a variety of devices
has been developed in the past (Schuman et al., 2017). These application-specific integrated circuits
(ASICs) are made up of a vast range of basic building elements. Among others, optical (Brunner
et al., 2016; Maier et al., 1999; Paquot et al., 2012) as well as magnetic (Roy et al., 2014a; Grollier
et al., 2016) components have been visited previously. Moreover, recent effort in material science
promoted the development of memristive components (Roy et al., 2019; Marković et al., 2020; Joshi
et al., 2020; Dalgaty et al., 2021). Here, we limit our consideration to electrical devices implemented
in a standard complementary metal oxid semiconductor (CMOS) technology which relies on metal
oxide semiconductor field-effect transistors (MOSFETs). This technology is also used for the im-
plementation of conventional computers. On a higher level, all implementations of neuromorphic
devices can be subdivided into three major categories: digital, analog and mixed-signal devices.
In the following, we will discuss some representatives of each category and highlight their basic
working principles.

Digital systems, rely on boolean logic-based gates to perform computations (Harris & Harris,
2013). For these digital systems, the voltage across the gate of the underlying MOSFETs is almost
always driven between its minimum and maximum value. By this, the transistor is either fully
conducting or fully closed, thereby mostly suppressing leakage currents as well as device-specific
variations. Since the energy required to charge the gate and make the substrate conductive scales
quadratically with the applied voltage, the energy efficiency of digital CMOS devices also decreases
with the squared applied voltage. However, the effect of thermal noise is minimized by operating
at the binary states of a closed or open gate. Like in conventional computers, this digital logic can
be used to calculate the neuro-synaptic dynamics. In contrast to conventional computers, they of-
ten use dedicated accelerators to speed up the simulation of specific model components. Examples
of digital systems are IBM’s TrueNorth chip (Akopyan et al., 2015), the SpiNNaker system (Furber
et al., 2014), and Intel’s Loihi chip (Davies et al., 2018). These exemplary digital systems already show
the extent to which the design choices being pursued differ in terms of flexibility. The SpiNNaker
system relies on many small integer cores and a custom interconnection, optimized for the commu-
nication of spike-events. Hence, it provides a high degree of flexibility in terms of the implementable
neuron, synapse as well as plasticity models. In contrast, the TrueNorth chip implements LIF neu-
rons – i. e. a fixed neuron model – in combination with a programmable network connectivity, but
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without support for on-chip plasticity. This reduced flexibility, however, provides a high energy
efficiency: While TrueNorth is reported to require on average 25 pJ to pass one spike through one
static synapse, the SpiNNaker system consumes 10 nJ for the same operation (Furber, 2016). This
already gives a glimpse towards the trade-off of flexibility and energy efficiency in contemporary
neuromorphic solutions.

For analog devices, flexibility is traded for energy efficiency. The transistors of analog systems
are not bound to the two extrema of digital systems and instead utilize the physical characteris-
tics of these electronic devices to emulate a certain behavior. In more detail, the transistors can be
operated in arbitrary configurations, only limited by the signal-to-noise ratio as described in the
previous section (Sansen, 2007). This facilitates the representation of state variables as actual physi-
cal observables within the system in direct accordance with biological neural networks. As a result,
these devices emulate fixed neuron, synapse as well as plasticity models with their analog circuits.
In so-called mixed-signal devices, these analog circuits are accompanied by digital logic implement-
ing the spike traffic. These ASICs capture the digital behavior of spikes as well as the analog nature
of synapses and neurons in the sub-threshold regime of the membrane potential. With analog and
mixed-signal systems being most relevant for this thesis, we wish to focus on them in the following.

Depending on the operating point of the used transistors, analog neuromorphic systems could be
divided further into sub- and supra-threshold devices. In the sub-threshold region, the gate voltage is
below the threshold voltage required to activate the source-drain channel. In this regime, the drain-
current exponentially depends on the difference of the gate-source voltage and the threshold voltage
(Gray et al., 2001). This behavior lets the system operate at extremely low currents ensuring high
energy efficiency. Systems build to work in this regime have been reported to require only on the
order of pJ per spike (Livi & Indiveri, 2009). At the same time, the low currents allow these systems
to operate in real-time, opening a wide range of applications by the possibility to directly interface
with neuromorphic sensors (Corradi & Indiveri, 2015; Ros et al., 2015; Corradi et al., 2014; Chicca
et al., 2014; Rongala et al., 2015). On the downside, the drain current also depends exponentially
on the temperature of the environment (Gray et al., 2001). Therefore, the temperature impacts the
behavior as much as the signal itself in the absence of explicit control mechanisms. In contrast, this
dependence is much less pronounced for devices exploiting the ohmic or even the saturation region.

Transistors operating above the threshold voltage cannot achieve low drain currents. As a result,
the associated circuit dynamics are faster, since these currents are directly proportional to the volt-
age changes across the capacitors. One way to exploit the dynamics in the supra-threshold regime
is to design all circuits such that all time constants are scaled down by a constant acceleration factor.
For neuromorphic implementations, this means that the parameter defining the time scale of the un-
derlying model dynamics like the membrane and synaptic time constants are scaled by this constant
factor. Hence, the relevant time scales are compressed while the relative dynamics are preserved.

The impact of these accelerated dynamics is twofold. Technically, the interfacing of accelerated
systems with external hardware can be difficult. In particular, the input and output data bandwidth
increases linearly with the acceleration factor. At the same time, the tolerated latency decreases lin-
early. Further, most of the conventional hardware is build for human interaction and is therefore not
directly applicable. These technical problems, however, can, in general, be mitigated by additional
engineering effort (Schreiber, 2000).

The acceleration opens up new application areas. Most notably, the human-relevant time scales
of our environment coincide with the time scales of the dynamics of the brain (Kiebel et al., 2008). By
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Figure 2.11: Impact of noise on the emulation of neuro-synaptic dynamics on analog neuromorphic
hardware. Due to the analog implementation of neurons and synapses, their dynamics are subject to noise.
Here, we distinguish between two sources of noise. (a) Circuit-to-circuit variability induced by imperfections
in the production process results in parameter deviations of the emulatedmodels. This fixed-pattern noise can
be mitigated by dedicated calibration routines. (b) Temporal noise affects time scales relevant for emulation
by e. g. thermal noise. Effects are exemplarily shown for LIF neuron dynamics.

accelerating the dynamics of a neuromorphic device we, therefore, shift the potential use cases by
precluding a direct interaction with the environment on “human-perceptible” time scales. Especially
medical applications and in general brain-machine interfaces involving human interactions are often
precluded (Corradi & Indiveri, 2015; Ros et al., 2015; Corradi et al., 2014; Chicca et al., 2014; Rongala
et al., 2015). However, the speedup does not only preclude applications, but also enables new ones.
While for example, real-time applications with audio signals covering a frequency range of 10Hz to
20 000 kHz (Rossing, 2007) is not possible, the speedup directly translates to high-frequency signals.
Depending on the actual acceleration factor even applications in the radio frequency range are pos-
sible (Beasley, 2010). Moreover, if no real-time processing of inputs is required, the systems could
either run on hold or can just be used to evaluate pre-recorded data.

The acceleration promotes experiments with high throughput. In particular, the development
of the nervous system and its involved plasticity mechanisms cover vast time scales. For exam-
ple, the changes induced by structural plasticity occur on time scales ranging from days to months
(Loewenstein et al., 2011). Here, the acceleration factor comes to rescue by emulating the under-
lying network dynamics in minutes to hours assuming an acceleration factor of 1000. On a larger
scale, the development of a human brain starts in the third gestational week and extends at least
through late adolescence (Stiles & Jernigan, 2010), thereby covering multiple decades. Again, these
scales translate to months and are therefore in general feasible to study when drawing on acceler-
ated systems. High throughput is also desirable for any hyperparameter optimization by dedicated
learning algorithms (Thrun & Pratt, 2012), evolution strategies (Hansen et al., 2015) or parameter
sweeps. Last but not least, large amounts of statistical data could be gathered in relatively short
timespans. Hence, the accelerated emulation of neuro-synaptic dynamics renders these devices a
promising tool for neuro-scientific simulations.

Analog systems come with the promise to process information faster and more energy-efficient
compared to their digital counterparts. However, these potential advantages come with drawbacks
as analog circuits are prone to noise. Here, we would like to distinguish between two sources of
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noise. First, there are substantial circuit-to-circuit deviations induced by variations in the manu-
facturing process which we would like to term fixed-pattern noise (Shyu et al., 1984). While digital
systems are also subject to this form of variation, its effect is usually less pronounced for these sys-
tems due to the binary operating mode as well as the established error-correcting protocols. For
analog neuromorphic circuits, in contrast, fixed-pattern noise results in parameters deviations of
the emulated model for every circuit (Figure 2.11a). These variations can, however, be mitigated by
dedicated calibration routines, resulting in a mapping from configured parameters to actual behav-
ior (Neftci & Indiveri, 2010; Neftci et al., 2011a; Brüderle et al., 2011). Second, there is temporal noise
which affects time scales relevant for emulation (Figure 2.11b), e. g. thermal noise (Wunderlich et al.,
2019; Cramer et al., 2020a; Pfeil et al., 2013).

The BrainScaleS architecture is an example of an accelerated approach to the design of neuro-
morphic hardware (Schemmel et al., 2010; Friedmann et al., 2016; Schemmel et al., 2020). In the past
years, it has been applied to a variety of problems, most of them explicitly exploiting its intrinsic
acceleration. First of all, in-the-loop (ITL) learning has been utilized to port deep artificial neural net-
works to the wafer-scale BrainScaleS-1 system (Schmitt et al., 2017). In recent work, the extensions
for vector-matrix multiplication and accumulation of BrainScaleS-2 have been used to implement
artificial neural networks (ANNs) (Weis et al., 2020). Directly exploiting the spiking mode, neural
sampling – a spike-based implementation of Bayesian computing – has been demonstrated on all
versions of BrainScaleS on a variety of tasks (Kungl et al., 2019; Billaudelle et al., 2020; Czischek
et al., 2020). Moreover, multi-layer SNNs employing a time-to-first-spike coding scheme have been
trained on BrainScaleS-2 (Göltz, 2019). In addition, surrogate gradient learning has been applied to
train multi-layer as well as recurrent SNNs on several benchmark tasks (Cramer et al., 2021). Like-
wise, a neuromorphic agent has been trained with a learning-to-learn framework in a maze runner
task which directly exploiting the hybrid plasticity approach (Bohnstingl et al., 2019). Using the
flexible plasticity of BrainScaleS-2, SNNs have been optimized to task complexity by exploiting col-
lective dynamics (Cramer et al., 2020a). Also exploiting the hybrid plasticity of BrainScaleS-2, rein-
forcement learning has been applied to train a virtual player in the game of Pong (Wunderlich et al.,
2019). Finally, limitations in the number of synaptic resources have been surmounted by structural
reconfigurations on BrainScaleS-2 (Billaudelle et al., 2021). In the following chapter, we highlight
the basic components of the BrainScaleS-2 system facilitating this broad range of applications.
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The spiking neural networks (SNNs) considered within the scope of this thesis were not only
optimized for information processing, but likewise, their energetic footprint was minimized.

To that end, the networks were emulated on two different mixed-signal neuromorphic chips of the
BrainScaleS-2 family. The BrainScaleS-2 architecture is centered around an analog neural network
core implementing neuron and synapse models in electrical circuits that emulate the dynamics of
their biological archetypes in continuous time (Sections 3.1.1, 3.1.2, 3.2.1 and 3.2.2). Consequently,
the state variables like the membrane potentials and the synaptic currents are physically repre-
sented in the respective circuits. Compared to biological measurements, all time constants of neu-
rons and synapses are accelerated by a factor of 1000, determined by the intrinsic capacitances
and conductances of the semiconductor technology. This acceleration facilitates the emulation of
time-consuming experiments, such as the investigation of learning on various time scales, the per-
forming high-dimensional parameter sweeps, or the gathering of large volumes of data in statistical
experiments (Cramer et al., 2020a; Bohnstingl et al., 2019; Billaudelle et al., 2021). Facilitated by
the 65 nm process, BrainScaleS-2 features a freely programmable on-chip processor (Sections 3.1.3
and 3.2.3). This processor is specialized towards the implementation of plasticity rules and together
with the named speedup allows to fully exploit the benefits of neuromorphic computing in terms
of energy efficiency and execution speed. Although the ultimate target of the BrainScaleS-2 archi-
tecture is wafer-scale integration, smaller versions based on single application-specific integrated
circuits (ASICs) are needed to develop and debug the final design. The experiments described within
this thesis were conducted on two different chips within this development. Early experiments were
implemented on the small prototype device High Input Count Analog Neural Network with Digi-
tal Learning System (HICANN-DLS), whereas later work focused on the full-size ASIC High Input
Count Analog Neural Network X (HICANN-X), both of which were used in their respective second
revision.

3.1 HICANN-DLS prototype

HICANN-DLS represents a small prototype chip within the BrainScaleS-2 family (Figure 3.1). It
covers an area of 1.7 × 1.7mm2 and features 32 neurons and an array of 32 × 32 synapses. In the
following, the analog neuromorphic network core is depicted in Section 3.1.1. It houses the neu-
rons and synapses, the synapse drivers, as well as an analog parameter storage and a 64 channel
analog-to-digital converter (ADC). This core is surrounded by a digital backend as well as a digital
coprocessor whereof the latter is described in Section 3.1.3. We close by highlighting the event rout-
ing in Section 3.1.2 and the basic components of the experimental setup in Section 3.1.4. For further
details, the reader is referred to Friedmann et al. (2016), Aamir et al. (2017) and Hock et al. (2013).
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(a) Neuromorphic system (b) Neuromorphic chip

PPU, digital control and IO
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Figure 3.1: Photograph of the BrainScaleS-2 prototype system. (a) The full system is designed as a small
tabletop setup. The neuromorphic chip HICANN-DLS (left, below white cover) is mounted on the chip carrier
board. The latter is housed together with a FPGA (right foreground) on the baseboard. (b) The HICANN-
DLS chip features an analog neural network core as well as an on-chip general-purpose processor, the PPU.
Shown is a close-up of the neuromorphic chip with highlighted key functional units. Annotations taken from
Cramer et al. (2020a). Photographs adapted from Aamir et al. (2017).

3.1.1 Analog neuromorphic network core

Synapse array: The analog network core constitutes the central component of the BrainScaleS-2
architecture (Figure 3.2a). In case of the HICANN-DLS prototype, it features an array of 32 silicon
neurons (Aamir et al., 2018) emulating leaky integrate-and-fire (LIF) dynamics according to Equa-
tion (2.12). The connectivity is physically implemented by the synapse array: Every neuron receives
input from a column of 32 current-based synapses. Events enter this 2D array of synapses from the
left via synapse drivers (Figure 3.2a). The synapse drivers forward the digital spike events to a sin-
gle synaptic row and control the timing by means of a short digital voltage pulse. In more detail,
events injected into a single row of the synapse array are tagged with 6 bit addresses denoting their
presynaptic origins and are then forwarded to each synapse in the respective row. Likewise, each
synapse holds a 6 bit label alongside a 6 bit weight in the synapse-local static random-access memory
(SRAM). It allows filtering afferent spike trains by their addresses (Figure 3.2b): Only if the address
of an incoming event matches the locally stored one, an address comparator generates a presynaptic
enable signal which in turn causes the creation of a current pulse with amplitude proportional to
the stored synaptic weight. Hence, the total amount of charge of each pulse linearly depends on
both the synaptic weight and the pulse length which is derived from the digital voltage pulse. Two
vertical lines – one excitatory and one inhibitory – sum and forward the resulting current pulses to
the synaptic inputs of each neuron where the actual conversion to the synaptic current according to
Equation (2.17) takes place (Figure 3.3). On BrainScaleS, the sign of a synaptic current is determined
by the synapse driver and is, therefore, a row-wise property in the synapse array: Each driver can
be configured to be either excitatory or inhibitory.

In addition to the described routing mechanisms, each synapse implements an analog circuit
for measuring pairwise correlations between pre- and postsynaptic spike events (Friedmann et al.,
2016). These sensors have access to the current pulses generated in each synapse which constitute
the presynaptic side. Dedicated signaling lines carry up the postsynaptic digital spike event from
the neuron to each column of synapses (Figure 3.3). In total, there are two measurement units per
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(a) System block-level schematic (b) Synaptic event filtering

Figure 3.2: Block-level schematic of the BrainScaleS-2 prototype ASIC. (a) The neural and synaptic
circuits make up the analog neuromorphic network core which is most notably accompanied by an analog
parameter storage and the CADC for digitizing synaptic correlation measurements. Surrounding digital logic
allows to interface the full-custom circuits by taking care of configuration data as well as event traffic. The
close attachment of analog neural network core and PPU facilitates the processor to access synaptic weights
and address labels, digitized data from the CADC as well as configuration data. (b) Events injected into a
row of the synapse array are identified with an address denoting their source (numbered and marked by
color). Spike trains from different origins can be overlayed and injected into a single synapse row. Synapses
filter afferent events by comparing the source address to a label stored in their local SRAM. Only in case of
matching addresses, a spike is forwarded to the postsynaptic neuron. Figures adapted from Billaudelle et al.
(2020, 2021).

synapse, one for causal and one for anticausal correlations between pre- and postsynaptic spike
times. The measurements are represented as analog voltages stored on two capacitors and obey the
following equations:

𝑓+ (𝑡𝑘𝑖 , 𝑡
𝑙
𝑗, 𝑡 , 𝑡 + 𝑇) = ∑

𝑘
𝑡𝑘𝑖 ,𝑡𝑘𝑗 ∈[𝑡,𝑡+𝑇 ]

𝜂+ exp(−
𝑡𝑘𝑖 −max𝑙 [𝑡 𝑙𝑗 < 𝑡𝑘𝑖 ]

𝜏+
) , (3.1)

𝑓− (𝑡𝑘𝑖 , 𝑡
𝑙
𝑗, 𝑡 , 𝑡 + 𝑇) = ∑

𝑘
𝑡𝑘𝑖 ,𝑡𝑘𝑗 ∈[𝑡,𝑡+𝑇 ]

𝜂− exp(
𝑡𝑘𝑖 −max𝑙 [𝑡 𝑙𝑗 > 𝑡𝑘𝑖 ]

𝜏−
) , (3.2)

where 𝑓+ accounts for causal and 𝑓− for anticausal correlations in the time interval [𝑡, 𝑡 + 𝑇 ]. The
parameters 𝜂± and 𝜏± correspond to the freely configurable amplitudes and time constants of the re-
spective spike-timing dependent plasticity (STDP)-kernel. Note that the correlation measurements
in Equations (3.1) and (3.2) follow a reduced nearest-neighbor pairing rule (Morrison et al., 2008).
The availability of correlations measurements on the system allows access to various forms of learn-
ing rules based on STDP (cf. Section 2.1.4).

Neurons and synaptic input: The LIF neurons are implemented in silico and feature current-
based synaptic inputs (Figure 3.3). The latter emulate the exponential dynamics according to Equa-
tion (2.17). To that end, the current pulses relayed by each of the aforementioned columns of 32
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Figure 3.3: Block-level schematic of the HICANN-DLS neuron. Each term in the current-based synapse
and LIF neuron model is emulated by an equivalent circuit. The current pulses generated by the synapses
(bottom left) are summed along the columns of the synapse array on the excitatory (red) and the inhibitory
(blue) line respectively (top left). These signals are finally converted to proportional singed currents by the
synaptic inputs. LIF dynamics are emulated by a leak conductance 𝑔leak and an associated leak potential 𝑢leak
as well as a capacitor 𝐶mem (top middle). Further, a spike comparator (bottom right) implements the spike
condition: In case the membrane potential exceeds a threshold 𝑢thres, a fire signal is emitted to the digital
backend. Further, the potential is clamped to the reset potential 𝑢reset by means of a switch for the duration
of the refractory period 𝜏ref.

synapses on the excitatory as well as the inhibitory line are integrated separately onto two RC inte-
grators per column. Each incoming nanosecond-wide current pulse causes a drop in the respective
voltage as they discharge the aforementioned capacitor. This decline is proportional to the strength
of the incoming current pulse and recovers with the synaptic time constant 𝜏syn, determined by two
configurable resistors, one for each line. As a result, we obtain two voltage signals with similar
polarity, one excitatory and one inhibitory. Both of which are accordingly transformed into pro-
portional currents by the operational transconductance amplifiers (OTAs) of the synaptic inputs.
While signals on the excitatory line lead to positive currents, the input on the inhibitory line causes
negative currents on the membrane capacitance 𝐶mem.

The leak term in Equation (2.12) is emulated by another OTA. This tunable resistor with conduc-
tance 𝑔leak is connected to the leak potential 𝑢leak and the membrane capacitance 𝐶mem. Hence, the
membrane time constant 𝜏mem of the emulated neuron is determined by the quotient of 𝐶mem and
𝑔leak. Despite being digitally configurable, we fixed 𝐶mem to its maximum value of 2.3 pF for the
experiments conducted within this thesis.

The circuits described so far emulate a leaky integrator with synaptic input (Equation (2.12)). A
comparator and an associated switch complete the model by implementing the spike generating
mechanism according to Equation (2.13) (Figure 3.3). In case the membrane potential 𝑢 exceeds
the threshold voltages 𝑢thres, the comparator triggers a fire signal which marks the actual spike. In
turn, this signal is forwarded to the digital backend via outgoing digital lines and in addition, is
registered by circuits that count the number of emitted spikes for each neuron with a precision of
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Figure 3.4: HICANN-DLS supports parallel recordings of synapses-local spike-time correlations.
Each synapses on HICANN-DLS features sensors measuring the correlation of pre- and postsynaptic spike
times. Here, a STDP-like paring experiment is conducted: The measurement of each sensors is assessed
in parallel via the CADC after stimulation with a pair of pre- and postsynaptic spikes with time difference
Δ𝑡 = 𝑡 𝑙𝑖 −𝑡𝑘𝑗 . To facilitate STDP-like plasticity experiments, the sensors are designed to emulate an exponential
correlation kernel. Each synapse features two circuits, one for the measurement of causal spike-time corre-
lations 𝑓+ with Δ𝑡 > 0 (a) and a second one for the assessment of anticausal spike pairings with Δ𝑡 < 0 (b).
Shown are the respective measurements for all 32×32 synapses present on HICANN-DLS.

10 bit. Moreover, the fire signal leads to the closing of the switch, thereby shorting 𝐶mem to 𝑢reset.
After the expiration of the duration of the refractory period 𝜏ref, the switch is again released. The
parameter 𝜏ref is configurable by a refractory bias current.

Column-parallel analog-to-digital converter: The analog neuromorphic core is augmented
by a column-parallel analog-to-digital converter (CADC) which forms the connecting line between
analog and digital processing. Most notably, it can be used to read out the analog correlation volt-
ages (Figure 3.4). The CADC is located at the top of the synapse array and extends over its full
width (Figure 3.2a). Every column of this parallel ADC features two channels; one for the digi-
tization of the causal and one for the anticausal correlation measurement. Both of which can be
used simultaneously resulting in a total of 64 inputs with a resolution of 8 bit. The CADC is built
upon a ramp-compare architecture with a centralized ramp generator: This global circuit generates
a linearly rising voltage ramp which is distributed to all channels. The actual value of this ramp
is compared to the applied input voltages of each channel. The time difference between the start
of the ramp and the match of ramp and input voltage is proportional to their difference. Channel-
wise counters measure this time difference. Running at a clock speed of 100MHz, the theoretical
sample rate of the CADC is determined by the number of counts, i. e. its precision, and therefore
given by approximately 390 kHz. In the design of BrainScaleS-2, the CADC plays a central role as
it constitutes the connecting link between the analog emulation and the digital processing with the
plasticity processing unit (PPU).

Analog parameter storage: For all of the aforementioned circuits to work properly, supply volt-
ages and bias currents are required. An on-chip analog capacitive memory generates all voltages
and currents necessary to individually configure all components of the neuromorphic chip (Hock
et al., 2013). Like the synapse array and the neurons, this parameter storage is organized in columns
with additional extensions for global currents and voltages. The analog behavior of each neuron is
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Figure 3.5: The architecture of the PPU is optimized for the implementation of plasticity rules. (a)
The PPU consists of a general-purpose part implementing the Power ISA and a SIMD vector unit to accelerate
computations. The general-purpose part comes with 16 KiB of on-chip memory and a 4 KiB instruction cache.
Aside from performing arbitrary computations, it can send vector instructions to a queue which is then pro-
cessed by the SIMD vector unit. The functional units of the vector extension operate on 128 bit vectors of
which 32 can be stored in the VRF. A 128 bit wide bus facilitates a close attachment to the analog neural net-
work core and in turn provides access to the synaptic SRAM as well as the CADC. (b) The SIMD vector unit
implements a fractional saturation arithmetic. The 6 bit synaptic weights are aligned with the 8 bit fractional
saturation arithmetic by a bit-shift. By shifting the weight values by one bit to the left, the most significant
bit 𝑤5 of each weight is aligned with the 6-th bit of the fractional saturation arithmetic, thereby allowing to
exploit saturation effects. Accessing synaptic weights hence requires this bit shift after each load and in the
reverse direction in advance of each store operation.

individually configurable by 17 integrated digital-to-analog converters (DACs). Each of these DACs
comes with a precision of 10 bit admitting room for detailed calibration routings equalizing out sys-
tematic parameter variability induced by the analog implementation (Pfeil et al., 2013; Brüderle et al.,
2011; Neftci & Indiveri, 2010; Neftci et al., 2011b; Aamir et al., 2018).

3.1.2 Routing

External spike events can be injected into the analog neuromorphic core by a single-ended serial-
izer/deserializer (SERDES) link from the field-programmable gate array (FPGA). Since the prototype
ASIC HICANN-DLS lacks on-chip routing logic, the event routing is also implemented on the FPGA.
In general, the FPGA features two different routing modes. Here, we rely on one of these modes
of routing which is used throughout this thesis. This mode is characterized by a short roundtrip
time 𝑑syn of recurrent spikes which comes, however, at the cost of less flexible routing possibilities.
In more detail, all accruing recurrent events are tagged with the same address label and injected
back into the chip. Specifically, the events emitted by neuron 𝑖 are transmitted to synapse driver 𝑖.
Together with excitation and inhibition being a row-wise property, this choice enforces the adher-
ence to Dale’s law (Dale, 1934), i. e. a neuron only forms excitatory or inhibitory synapses with its
postsynaptic partners, but not both simultaneously.
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3.1.3 Plasticity processing unit

The incorporation of a freely programmable embedded microprocessor into the BrainScaleS-2 archi-
tecture significantly expands its versatility (Friedmann et al., 2016). In particular, the latter is tailored
to the implementation of synaptic plasticity and hence enables the execution of custom programs in-
teracting with the analog emulation of neuro-synaptic dynamics. In more detail, the PPU comprises
of a general-purpose part and a single instruction, multiple data (SIMD) vector unit which consti-
tutes a weakly coupled coprocessor (Figure 3.5a). The general-purpose part implements the Power
instruction set architecture (ISA) and features a total of 16 KiB of main memory with an instruction
cache of 4 KiB. Further, the processor is able to reconfigure all of the aforementioned components
of the neuromorphic system during experiment execution by accessing the chip-internal configura-
tion bus. The analog neural network core can be efficiently interfaced by the SIMD vector unit. In
particular, the tight coupling of the SIMD vector unit to the synapse array’s SRAM controller and
the CADC promotes massively parallel updates of the synaptic SRAM. The PPU can thus be used for
a vast array of applications such as near-arbitrary learning rules (Bohnstingl et al., 2019; Billaudelle
et al., 2021; Grübl et al., 2020; Cramer et al., 2020a), on-line circuit calibration (Leibfried, 2021), or
the co-simulation of an environment capable of continuous interaction with the network running
on the neuromorphic core (Wunderlich et al., 2019; Schreiber, 2021).

The SIMD vector unit is optimized for the parallel calculation of plasticity updates. In more detail,
the SIMD unit constitutes a weakly coupled coprocessor (Figure 3.5a): The general-purpose part of
the PPU can send vector instructions to a queue which is processed alongside by the SIMD unit.
Specifically, the instructions sent to this queue are processed in order by the vector unit and in
turn decoded as well as distributes to the corresponding functional units. The vector unit operates
on 128 bit wide vectors and has access to the vector register file (VRF) which can store up to 32
vectors. In general, the functional units units can either process vectors with a precision of 8×16 bit
or 16 × 8 bit. For each precision, the vector elements can either be treated with integer modulo or
fractional saturation arithmetic. In the following, we stick to the fractional saturation arithmetic
and a precision of 16 × 8 bit as this setting is most relevant for the results presented in this thesis. In
this arithmetic, the vector elements are interpreted as signed rational numbers in the range [−1, 1)
with a resolution of 2−7 (Figure 3.5b). Hence, a signed 8 bit integer 𝑖 maps to 𝑖/128 if interpreted in
the fraction saturation arithmetic. Most notably, operations resulting in values out of the dynamic
range clip at −1 and 1 − 2−7 which can be exploited to efficiently prevent overflows within weight
update calculations.

A tight coupling of the PPU to the analog neural network core is established by two different
load-store units. First, a 32 bit unit guarantees access to the main memory as well as the on-chip
configuration bus from the general-purpose part. This unit enables the PPU to reconfigure all other
components of the neuromorphic system during experiment execution. Second, a 128 bit bus pro-
vides access to the synaptic SRAM and the CADC from the SIMD vector unit. The choice of a
precision of 16 × 8 bit is not only convenient because of the 8 bit precision of the CADC, but also
synaptic weights can be easily converted to profit from the fractional saturation arithmetic. First,
the 6 bit weights on the prototype ASIC are aligned to the 8 bit resolution of the SIMD vector unit
by filling the most significant bits with zeros (Figure 3.5b). To finally profit from the saturation
arithmetic, this conversion is augmented by shifting the weights one bit to the left, resulting in an
alignment of the most significant bit of the weights with the 6-th bit of each vector element. This
bit-shift is applied after each load operation and in the reversed direction before each store opera-
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tion (Listing 1). As a result, the largest weight of 63 lsb corresponds to a value of 126/128 on the
vector unit, whereas the largest fractional number 127/128 is translated back to a weight of 63 lsb.
Thereby, we prevent wrap-around effects of weights already being at their maximum value.

Scalability of the hybrid plasticity approach implemented by the incorporation of the PPU in the
BrainScaleS-2 architecture is guaranteed by the parallelism of the SIMD vector unit. With the choice
outlined above, the SIMD unit operates in parallel on slices of 16 synapses. Hence, two accesses
are required to update all synapses residing within the same row (Listing 1). In case the width of
the SIMD vector unit is scaled linearly with the number of neurons, the provided parallelism lets
plasticity algorithms scale ∼ 𝒪(𝑚)with the indegree 𝑚, but ∼ 𝒪(1)with the number of postsynaptic
neurons. In addition, the clock speed of the PPU can be increased to further facilitate scalability. On
the considered prototype system, the PPU runs at a clock speed of 100MHz.

All kernel codes shown within this thesis are embedded into an update loop comparable to List-
ing 1. To ensure precise temporal control of synaptic updates, the PPU is programmed to contin-
uously poll the FPGA memory for update signals which can, in turn, be triggered from the FPGA
via the host system (lines 2 to 4). In case this signal was sent, the PPU iterates over all slices of the
synapse array (lines 7 and 8). For STDP-based update rules, the processing of each slice starts with
the assessment of the causal and anticausal correlation measurements via the CADC (lines 11 and
12). The resulting data is then shifted by one bit to the right in order to correctly interpret and treat
the unsigned 8 bit measurements with the signed 8 bit fractional arithmetic of the vector unit (lines
13 and 14). Afterwards, the correlation sensors are reset (line 16). The synaptic weights can also
be directly loaded into the SIMD vector unit (line 18). Prior to the update calculations, the weights
are aligned to the 8 bit representation by a bit-shift to the left as outlined previously (line 19). After
the calculation and application of weight updates, a compare operation is utilized to clip all nega-
tive elements of the weight vector at zero to prevent underflows (lines 22 and 23). It is noteworthy
that the weights do not need to be checked for overflows due to the saturation arithmetic. Before
actually writing back the weights, the initial bit-shift is reversed (lines 25 and 26).

3.1.4 Experimental setup

The neuromorphic chip HICANN-DLS is bonded on a chip carrier board (Figure 3.1a and b). The
latter mainly contains passive components for supply voltage stability. Further, it features some
test pads for direct signal readout. A standard small outline dual inline memory module (SODIM)
connector establishes the connection between the carrier board and a baseboard. This baseboard
provides the required supply voltages for all functional components as well as debug pins. More-
over, it houses a custom printed circuit board (PCB) on which a Xilinx Spartan-6 FPGA, memory,
a differential input ADC, multiple digital general-purpose I/O lines and universal serial bus (USB)
connectivity is mounted.

The Xilinx Spartan-6 FPGA serves as an interface with a host system. On the one hand, the FPGA
communicates with a host computer via USB 2.0. On the other hand, the communication between
the neuromorphic chip and the FPGA is established by four digital data signals and a clock linewhere
the accruing data on both sides is serialized and deserialized by a SERDES. The FPGA provides the
sequencing mechanisms for experiment control and spike handling including the configuration, the
experiment control, the spike recording and in case of the HICANN-DLS ASIC the spike routing.
Due to the accelerated physical implementation, configuration and spike data are first stored in
512MiB of DDR3 synchronous dynamic random-access memory (SDRAM) and then played back
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1 ; wait for run signal

2 while(command != HALT) {

3 if(command == RUN) {

4 command = NONE;

6 ; iterate over synapse array to update weights

7 for(size_t half = 0; half < dls_num_vectors_per_row; half++) {

8 for(size_t row = 0; row < dls_num_rows; row++) {

9 asm volatile(

10 ; load and shift correlation measurements

11 inx ca_meas, %[ca_base], %[offset]

12 inx ac_meas, %[ac_base], %[offset]

13 shiftb ca_meas, ca_meas, -1

14 shiftb ac_meas, ac_meas, -1

15 ; reset correlation sensors

16 outx %[select], %[ca_base], %[offset]

17 ; load and shift weights

18 inx weights, %[weigh_base], %[offset]

19 shiftb weights, weights, 1

20 ; calculate updates

21 ; set to zero if result is smaller than zero

22 compareb weights

23 select weights, weights, %[zeros], LT

24 ; Save shifted weights

25 shiftb weights, weights, -1

26 outx weights, %[weight_base], %[offset]

27 : [weights] ”=&qv” (weights)

28 : [zeros] ”qv” (zeros),

29 [weight_base] ”b” (dls_weight_base),

30 [offset] ”r” (2*row + half));

32 }; end for

33 }; end for

34 }; end if

35 }; end while

Listing 1: Control loop for the execution of plasticity kernels. PPU updates are triggered from the
FPGA. The general-purpose part of the PPU continuously polls the FPGA memory for update signals. In
case a run signal is detected, a sequence of updates is initiated by iterating over the synapse array. On
HICANN-DLS slices of 16 synapses can be updated in parallel. Hence, two accesses are required to update all
synapses residing within the same row, implemented by the outer loop. The inner loop iterates over all rows.
Most plasticity kernels start with the triggering of CADC measurements to assess the causal and anticausal
correlation measurements. The unsigned 8 bit measurements are aligned with the signed 8 bit arithmetic by a
bit-shift to the right. Afterwards, the correlation sensors are reset. Next, the 6 bit synaptic weights are loaded
into the vector unit. To profit from the 8 bit saturation, the weights are shifted by one bit to the left. After
the calculation of updates, the resulting weight values only have to be checked for lower saturation before
reverting the bit-shift and the write to the synaptic SRAM. The kernel code is shown using NASM syntax.
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(a) Neuromorphic system (b) Neuromorphic chip

Figure 3.6: HICANN-X is the first full-size single chip system implementing the BrainScaleS-2 ar-
chitecture. (a) Several PCBs connect the neuromorphic chip (top left, below white cover) to an FPGA which
serves as an interface to the host system. (b) The neuromorphic chip HICANN-X is mounted on a carrier
board. The chip covers an area of 4 × 8mm2 and houses 512 AdEx neuron circuits with 256 × 512 synapses.
Photographs taken from Müller et al. (2020).

by the FPGA using cycle-accurate timing. Both, the FPGA and the internal chip logic run at a
clock frequency of 100MHz. Therefore, the best-case temporal precision is 10.4 ns corresponding to
10.4 µs in biological time when accounting the constant speedup factor of 1000.

3.2 HICANN-X

In the following, the HICANN-X chip is described by highlighting the key differences to the pro-
totype system HICANN-DLS. Most notably, HICANN-X represents the first full-size neuromorphic
chip implementing the BrainScaleS-2 architecture. TheASIC covers an area of 4 × 8mm2 (Figure 3.6).
This section is structured exactly like its predecessor by starting with an overview of the analog
neural network core in Section 3.2.1, followed by a description of the event routing in Section 3.2.2.
Alterations affecting the PPU are detailed in Section 3.2.3. Again, we close with a description of the
full experimental setup in Section 3.2.4. For further details, the reader is referred to Schemmel et al.
(2020).

3.2.1 Analog neuromorphic network core

Being at full chip size, the analog network core of HICANN-X physically implements four intercon-
nected blocks of neurons and synapses (Figure 3.7). Each of these blocks contains its own synapse
array and the associated neuron compartments as well as a capacitivememory and a CADC instance.

Synapse arrays: Each of the four synapse arrays features 256 × 128 current-based synapses (Fig-
ure 3.7). The rows in these synapse arrays are fed with spike events by synapse drivers which are
located between two adjacent synapse arrays. In contrast to HICANN-DLS, each synapse driver is
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Figure 3.7: Block-level schematic of the BrainScaleS-2 full size ASIC. The analog network core com-
prises four blocks. Each block contains 128 AdEx neuron compartments, a synapse array of size 256×128, an
instance of the CADC and an associated analog parameter storage. Two adjacent blocks of neuron compart-
ments share a digital neuron backend, synchronizing and serializing neural events onto digital output buses.
A central event router drives the event buses on each half. Two closely attached PPUs can access neuro-
synaptic observables by the CADC as well as the synapse array on their respective chip half. The analog
network core is surrounded by digital logic, most notably the PLL, eight SERDES high-speed links, the digital
backend, readout amplifier and the MADC.

associated with two rows, resulting in a total of 128 drivers per chip half. Spike events are repre-
sented by a 6 bit address within a synapse array. Together with the synapse driver being individually
addressable, a total of 16 386 distinguishable presynaptic partners are available, i. e. at least 8 presy-
naptic resources are shared among a single synaptic row.

Aside from their increased count, the synapse drivers of HICANN-X also feature new circuits pro-
viding additional modelling capabilities. As a first extension, a simplified Tsodyks-Markam model
for short-term plasticity (STP) is implemented by dynamically modulating the pulse width within
the synapse drivers. The state variables of the model are kept on an array of capacitors within
each driver (Schemmel et al., 2007; Billaudelle, 2017). Another important innovation is the ability
of synapse drivers to not only handle single- but also multi-valued input signals. With this, ana-
log vector-matrix multiplication can be performed which in turn promotes the implementation of
artificial neural networks (ANNs) on HICANN-X (Weis et al., 2020; Stradmann et al., 2021).

Neurons and synaptic input: On HICANN-X, the physical LIF neuron model is augmented by
additional circuits to provide adaptive exponential leaky integrate-and-fire (AdEx) functionality.
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Specifically, each block houses 128 of these AdEx neuron compartments. Each of the latter receives
input via two lines from the aforementioned columns of 256 synapses. In contrast to the prototype
ASIC, the neurons can be connected to form structured neurons or to enlarge the synaptic fan-in
(Schemmel et al., 2017; Aamir et al., 2017). This can be achieved by connecting the membranes and
the digital spike signals of each neuron either vertically or horizontally.

Analog parameter storages: HICANN-X provides an adjacent analog parameter storage for each
row of neuron compartments. Like for its predecessor, this storage is organized in columns. In more
detail, the storage now provides 24 values for each AdEx neuron and 48 global parameters. Again,
this manifold of controllable parameters paves the way for detailed calibration routines, equalizing
out potential circuit-to-circuit variations.

Column-parallel analog-to-digital converters: Each block on HICANN-X houses its own in-
stance of the parallel CADC with two channels per column. The CADC has also been scaled up
with a total of 256 channels per instance, i. e. 1024 channels per chip. In contrast to HICANN-DLS,
the CADCs on HICANN-X do not only provide access to synaptic correlation measurements, but
moreover are able to digitize the synaptic inputs as well as the membrane potentials. Especially
the availability of the latter is key for many learning rules discussed in the literature (Urbanczik &
Senn, 2014; Zenke & Ganguli, 2018a). In addition, digital calibration circuits have been added to the
CADC to eliminate inter-channel variability.

3.2.2 Routing

HICANN-X comes with 16 low voltage differential signaling (LVDS) lines for host communica-
tion (Karasenko, 2020). These links have a total I/0 bandwidth of 16Gbit when driven with a
500MHz clock, i. e. 1 Gbit per line. With the current spike encoding on HICANN-X, this translates
to 250 × 106 spikes s−1 per direction. In other words, each neuron can emit spike events at a rate
of 488 kHz which is significantly higher than average firing rates reported for biological tissue. All
eight physical links present on the neuromorphic chip can not only be used simultaneously for the
transfer of neuron event data, but also for slow control and PPU as well as global memory accesses.

With scaling up the ASIC, not only the number of neuron and synapse circuits increases, but also
the number of required and accruing events rises. Thereby, the I/O bandwidth is further challenged.
To address this concern, spike sources have been included in the central event routing unit (Fig-
ure 3.7). These sources can either produce spikes with regular inter-spike intervals or random Pois-
son distributed spikes times. By relying on these sources, a dramatic relief of the input bandwidth
can be achieved, since the associated events are generated on-chip and can hence be directly fed
into the synapse array via the synapse drivers. This approach allows to save bandwidth resources
and gives the modeler more flexibility to stimulate the silicon neurons with externally generated
input spike trains comprising a complex structure.

The routing of external, internal as well as spike source events is implemented by a crossbar
(Figure 3.8a). In general, there are two layers of communication: first a real-time address-event layer
(L1) and second a layer using time-stamped event packets (L2). Both types of events are converted
into each other in the digital core logic driving the crossbar. In total, this crossbar provides two
symmetric sources and sinks for event data: first, the analog network core featuring eight input and
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Figure 3.8: Illustration of the event routing onHICANN-X. (a)A crossbar implements the event routing
of external, internal as well as spike source events. All input sources are shown on the left, whereas the output
channels are illustrated at the top. At the position of crosses, a programmable routing element is located.
Chip-external events enter via L2→ L1 connections, whereas accruing event data leaves the chip by L1→ L2
nodes. Besides external events, the neurons of each chip half in combination with potential events emitted by
the background generators constitute event sources of the crossbar. All of this event data can be injected into
the synapse drivers of each chip half. (b) The synapse drivers are statically connected to the first eight output
channels of the crossbar via four PADI buses per chip half. Within each half, the PADI buses are connected to
the synapse drivers in an alternating fashion. (c) Closing the event chain, the neurons on the left half connect
to the first four input channels of the crossbar, whereas the right half is attached to the second four input
channels. Each neuron is uniquely assigned to a single crossbar input channel.

eight output event buses as well as an event link layer with four links in each direction to insert
external events and to conduct away events to other chips and/or the host system. The background
generators constitute an additional source of event data. All sources and sinks result in a total of 20
distinct input and 12 output channels.

Prior to injection and after leaving the crossbar, external events are 16 bit wide. In more detail,
an external 16 bit event is assigned to one of the four input channels of the crossbar by taking
the value of the two most significant bits. The latter then directly corresponds to the respective
crossbar input channel. For further treatment, these two bits are discarded within the crossbar,
resulting in 14 bit events. In the reverse direction, the 14 bit wide crossbar events are extended
by 2 bit characterizing the respective output channel. The crossbar operates on 14 bit wide events
which are all treated equally and remain unchanged. Each crossbar node connecting an input to an
output channel filters these events. In more detail, an event is only forwarded to a crossbar output
channel in case the masked event ID matches a target, i. e. event&mask == target. Here, mask and

39



3 BrainScaleS-2

target are configurable 14 bit values.

The synapse drivers are connected to the crossbar output channels by four parallel driver interface
(PADI) buses per hemisphere in a one-to-one correspondence. These buses handle 11 bit events
which are obtained by only taking the least significant bits of the crossbar events. The resulting
PADI events are forwarded to the 128 synapse drivers per hemisphere. Each of them is connected to
a single PADI bus in an alternating fashion (Figure 3.8b). Hence, each PADI bus statically connects to
32 synapse drivers. Every synapse driver filters incoming PADI events based on a freely configurable
5 bit mask in combination with the index of the synapse driver on its PADI bus. Specifically, an event
is only forwarded to the synapse array in case themasked fivemost significant bits of the PADI event
match the masked index on the PADI bus. In case this condition is fulfilled, the lower 6 bit of the
PADI event are forwarded as a synaptic event to the two rows of the synapse array connected to the
respective synapse driver. At this point, the routing within a single block of synapses is comparable
to the one of the prototype ASIC.

For inter-block communication, two adjacent neuron blocks share a digital neuron backend (Fig-
ure 3.7). The latter synchronizes accruing neural events to the digital system clock of 125MHz and
serializes them onto digital output buses (Kiene, 2017). In case a neuron emits a spike, an event is
generated which is again injected into the routing crossbar. To that end, each neuron is connected
to exactly one channel of the crossbar (Figure 3.8c). The generated event is again 14 bit wide and
configurable via the digital neuron backend. In more detail, the lower 8 bit can be freely set per
neuron, whereas the six most significant bits are clamped to zero. Besides event addressing, the
digital neuron backend further extends the capabilities of the neurons and replaces former analog
circuits like the implementation of the refractory time by digital circuits.

3.2.3 Plasticity processing unit

Like HICANN-DLS, HICANN-X provides digital extensions for the flexible implementation of plas-
ticity. In contrast to HICANN-DLS, HICANN-X contains two independent PPUs within each chip
half (Figure 3.7). Both of which can in general access the same set of variables and configuration
as their predecessor. Parallel access to the synapse array and the CADC, however, is only provided
within the associated chip half. Nevertheless, the PPUs are capable of exchanging data via a shared
FPGA memory with a total size of 128 KiB. This memory can also be used to communicate data
between the PPUs and the host system which builds a central element of the framework discussed
in Chapter 5.

Scalability of the hybrid plasticity approach is guaranteed by enlarging the size of the SIMD vector
unit as well as a higher clock speed. On the full size ASIC, the SIMD vector units operates on 1024 bit
wide vectors and feature an appropriate bus to access the synaptic SRAM as well as the CADC. It,
therefore, allows processing 128 synapses in parallel on each chip half. In addition, the clock speed
is increased to 250MHz. Both provisions promote scalability of plasticity implementations for the
increased system size.

Scalability is further facilitated by the incorporation of pseudo-random number generators. While
for the prototype chip HICANN-DLS, random numbers had to be drawn on the general-purpose part
and then transferred to the SIMD vector unit of the PPU, HICANN-X provides specialized hardware
acceleration. Most notably, these accelerators can be directly employed from the SIMD vector unit.
This massively parallel access to random numbers improves the update frequency of the synaptic
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SRAM in the case of plasticity rules involving stochastic terms. It is noteworthy that the fixed-
point arithmetic often requires stochastic rounding. By drawing on the aforementioned hardware
accelerators, rounding mechanisms could be efficiently incorporated into update calculations on the
SIMD vector unit.

3.2.4 Experimental setup

The periphery of the analog neural network core of HICANN-X has been augmented by two novel
components. First, a fast ADC has been included to digitize any signal originating from the analog
neural network core at high speed and precision. Specifically, this membrane analog-to-digital con-
verter (MADC) allows to digitize analog signals with a resolution of 10 bit and achieves a sample
rate of up to 62.5MSample s−1 when driven by a 750MHz clock signal. Most notably, this MADC
renders the substrate more autonomous by making external measurement equipment superfluous,
thereby simplifying the calibration of all analog circuits. Second, a phase-locked loop (PLL) has been
included which converts a reference clock to different output frequencies. While the PLL relies on a
50MHz signal, it is able to generate different clock signals with up to 1.5 GHz. It is this module that
generates the high-speed clock signals for the MADC, the PPU and further off-chip communication
infrastructure.

As for the prototype system, HICANN-X is bonded to a chip carrier board. The latter is attached
to a Cube Setup which has been originally developed for the BrainScaleS-1 system (Figure 3.6). Es-
sentially, this setup is composed of six PCBs: four Kintex-7 FPGA boards, one I/O board and the
xBoard (Kleider, 2017; Güttler, 2017; Schreiber, 2021). Like for HICANN-DLS, the FPGA provides
the required sequencing mechanisms for experiment control and spike handling. Connectivity with
the host system in form of Ethernet and USB is established by the I/O board. The xBoard, in con-
trast, interfaces the Cube setup to the HICANN-X carrier board. Most notably, the system also
comes with INA219 current and voltage monitors which provide easy access to the system’s power
consumption.

41





4 Benchmarks

Stimulus

Coding

SNN

Readout

Decision

Supervisor

The context of this chapter has been published in Cramer et al. (2020b) in collaboration with
Yannik Stradmann under the supervision of Dr. Friedemann Zenke. In the following, I will
follow the structure of the publication, but with a more detailed description of the generation
of the described benchmark dataset.

In the previous chapters, we introduced spiking neural networks (SNNs) as well as strategies for
their efficient implementation. Irrespective of the implementation on either conventional com-

puters or neuromorphic systems, the assessment of computational capabilities of SNNs builds an
essential step within the development of novel optimization strategies. In this context, classifica-
tion is one of the often pursued approaches. Here, the agreement on a common set of problems
within the community is indispensable for well-defined comparisons which foster the development
of new algorithms. In contrast to the artificial neural network (ANN) community, the SNN commu-
nity has not agreed on a set of canonical benchmarks. Moreover, the frequently available time series
data used for the performance quantification of ANNs cannot directly be used for SNNs: Here, the
samples have to be converted to the spiking domain prior to stimulation. Since the data and the
conversion are often treated separately, there is a deficiency of spike-based benchmarks. This con-
stitutes a fundamental problem since the pre-processing often involves complex processing steps
that complicate the dissection of the impact of the conversion and the neural processing of a down-
stream SNNs on performance and hence harm comparability. Here, we aim to tackle these problems
by introducing two spike-based datasets for classification with SNNs implemented on conventional
as well as neuromorphic hardware. Both benchmarks are based on collections of spoken words,
namely the novel high-fidelity Heidelberg Digits (HD) and second Google’s Speech Commands (SC).
We finally convert the raw audio signals into spikes by a chain of models capturing key features of
the ascending auditory pathway. Based on the converted data, we establish the first set of baseline
performances by training non-spiking as well as spiking classifiers and demonstrate that the spike
times contain inevitable information for the classification of both datasets.

4.1 Introduction

One prominent way of benchmarking neural networks is to assess their performance on a common
classification problem to finally compare different approaches and methods. In contrast to ANNs,
there exists no general set of tasks to benchmark SNN implementations (Davies, 2019; Roy et al.,
2019). This lack of suitable benchmarks has the potential to slow down the development within
the SNN research community. Often, only specific properties of an SNN are investigated by pri-
vate benchmarks which are hence tailored to a specific problem at hand. Despite their necessity,
these tasks are not sufficient to foster comparability among different architectures and optimization
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approaches. Ideally, the community as a whole needs to agree upon a set of shared benchmark
datasets.

The lack of common spike-based benchmark datasets for SNNs is partially due to the variety
of different learning schemes and visited architectures. Approaches directly tying on the success
of conventional ANNs by employing steady-state rate-coding schemes do not require spike-based
datasets. In this scenario, the input and output rate remain constant during the stimulation with
a single input pattern (Zylberberg et al., 2011; Neftci et al., 2017; Pfeiffer & Pfeil, 2018). Often, the
inputs enter as Poisson distributed spike trains with a rate proportional to the stimulus intensity,
i. e. the gray value of an image. Similarly, the network signals its decision in form of firing rates for
each output unit. Hence, networks employing steady-state rate-coding can often easily be trained
by network translation (Pfeiffer & Pfeil, 2018) on standard machine learning datasets like MNIST
(LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009), or SVHN (Netzer et al., 2011), eliminating the
need for spike-based benchmarks. However, these rate-coding approaches neither allow to naturally
process time series data nor to exploit the temporal processing capabilities provided by SNNs.

Temporal coding schemes constitute an elemental approach to efficient information processing
with SNNs. Here, the input as well as the output activity vary during the presentation of a sin-
gle stimulus sample. Therefore, the information is coded in the timing and outputs can be either
individual spikes (Gütig, 2014; Bohte et al., 2002; Mostafa, 2017; Comsa et al., 2020), spike trains
with predefined firing times (Memmesheimer et al., 2014) or varying firing rates (Gilra & Gerstner,
2017; Nicola & Clopath, 2017; Thalmeier et al., 2016). Furthermore, continuously varying quanti-
ties derived from output spikes have been considered, typically in form of linear combinations of
low-pass filtered spike trains (Eliasmith & Anderson, 2004; Denève & Machens, 2016; Abbott et al.,
2016; Nicola & Clopath, 2017; Gilra & Gerstner, 2017). In general, the time series data constituting
the input side can be injected into an SNN in form of time-varying currents. However, this is often
not possible for the processing on neuromorphic hardware: Most current systems do not support
the stimulation with time-varying currents evolving on time scales of neuro-synaptic dynamics.
And even if systems support current injection, they do not allow to stimulate a large set of neurons
by different inputs simultaneously. Nevertheless, all contemporary devices implementing spiking
neurons support the injection of precisely timed input spike trains. Hence, the time series data
constituting a given benchmark dataset needs to be transformed to spike trains prior to the actual
stimulation. This process and preceding methods for feature selection usually involve complex pro-
cessing chains, which leave fundamental design decisions to the modeler and violate comparability.
Especially, the dissection of the SNN’s performance and the effect of conversion becomes increas-
ingly challenging. Because of this, spike-based benchmark datasets are required for the systematic
evaluation of the performance of SNNs in general and their hardware equivalents in particular.

Artificially generated spike patterns have been used to quantify the information processing capa-
bilities in the past. The temporal exclusive-OR (XOR) task and variations thereof represent a simple
and standardized approach to the assessment of the performance of an SNN employing temporal
coding (Bohte et al., 2002; Huh & Sejnowski, 2018; Abbott et al., 2016). Within this task, a network
is trained to solve a boolean XOR where the logical on and off states correspond to early and late
spike times respectively. Often this task is used to demonstrate hidden layer learning since it can
not be accurately solved by an SNN without a hidden layer, which is in direct accordance with the
perceptron’s inability to solve the regular XOR task. However, this benchmark is of limited appli-
cability as it is already saturated due to its low dimensionality. In more general scenarios, pattern
generation tasks have been used to assess the performance of SNNs, directly exploiting their sparse
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spatio-temporal coding capabilities (Ponulak & Kasiński, 2009; Pfister et al., 2006; Florian, 2012; Mo-
hemmed et al., 2012; Memmesheimer et al., 2014; Gardner & Grüning, 2016). Here, the SNNs are
trained to generate a specific target spike train when stimulated with a set of regular (Gardner &
Grüning, 2016) or random input spike trains of variable length and statistics (Memmesheimer et al.,
2014). This general idea has also been visited by Gütig & Sompolinsky (2006) who performed bi-
nary classification of random input spike patterns. While these approaches already make use of
spatio-temporal patterns, they lack non-random structure, which is, however, present in many real-
world stimuli. Aside from the aforementioned random synthetic datasets, the classification of spike
patterns with additional spatio-temporal structure has been considered. One example is based on
smooth random manifolds from which spike times can be sampled (Zenke & Vogels, 2021). These
synthetic datasets have the advantage of controllable dimensionality as well as sample and class
counts and hence provide an excellent opportunity for an initial investigation of computational
capabilities. However, this well-behaved formulation is in direct contrast to most real-world appli-
cations.

One last category of classification benchmarks stems from neuromorphic sensors. Prominent ex-
amples encompass datasets generated with a dynamic vision sensor (DVS) (Lichtsteiner et al., 2008)
and a silicon cochlea (Anumula et al., 2018). One instance of a vision dataset is the Neuromorphic
MNIST, which was derived from the MNIST benchmark by projecting the associated images onto a
screen (Orchard et al., 2015). The digits were moved in order to elicit spikes within the DVS’s re-
sponse. The resulting spike trains can then be directly used in classification scenarios and are hence
very successful in the SNN community. Since the dataset is based on MNIST, it is already nearing
saturation, i. e. it is almost solved perfectly with current methods. The DVS128 gesture dataset is
another vision dataset that has been released more recently by IBM under a Creative Commons
license (Amir et al., 2017). This benchmark consists of DVS recordings of 11 unique hand gestures
performed by different subjects under various lighting conditions. The stimuli are available in form
of a continuous data stream and hence entail extensive preprocessing. Furthermore, the high dimen-
sionality of 128×128 pixels renders this dataset computationally challenging. Last, the DASDIGIT
benchmark naturally exploits the intrinsic temporal processing of SNNs in a lower dimension (Anu-
mula et al., 2018). It was generated by processing the spoken words of the TIDIGTS dataset with a
64 channel silicon cochlea. However, the original samples are released under a proprietary license
and the provided word sequences of the TIDIGITS go beyond the capabilities of many current SNN
implementations.

Based on this assessment of previous work, which is notably far from complete, we formulate a
minimum set of requirements for a benchmark dataset. First, it has to be free to use and needs to
be published under a permissive public domain license. Second, the benchmark should be easily
applicable and self-explanatory. Especially, it should not require extensive preprocessing. Third,
the data has to be general enough and not explicitly tailored to a specific problem at hand to attract
broad interest within the community. And last, the task should not already be saturated, i. e. solved
with almost perfect accuracy by existingmethods. Otherwise, improvements upon existingmethods
would be hidden.

In this chapter, we present two general SNN benchmark datasets designed to require modest
computational overhead for preprocessing as well as classification. To this end, we use speech data,
which provides a natural temporal dimension and a relatively low bandwidth compared to video
data. More specifically, we recorded the novel, high-fidelity Heidelberg Digits (HD) and resort to
the existing Speech Commands (SC). We converted the raw time series data to spikes by a chain
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of models inspired by the ascending auditory pathway. By training a set of conventional as well as
spiking classifiers on the resulting spike trains, we demonstrate that these newly created samples are
not already saturated by current methods. In that process, we show that leveraging spike-timing is
essential to solve these problems with high accuracy. Moreover, we suggest approaches to quantify
generalization by exploiting design features of both datasets as well as the pursued partitioning of
samples.

4.2 Methods

In the following method section, we describe the two audio datasets which form the basis of our
spike-based benchmarks (Section 4.2.1). Next, we outline the models used for the audio-to-spike
conversion (Section 4.2.2) and highlight the data format used to distribute the final benchmark data
as well as its organization (Section 4.2.3). We close with a description of the spiking (Section 4.2.4)
as well as the non-spiking classifiers (Section 4.2.5) used to establish the first set of benchmarks. All
reported performance measures within this chapter correspond to the mean and their errors to the
standard deviation of 10 independent experiments.

4.2.1 Audio datasets

Our benchmarks are based upon two distinct audio datasets, which servewidely different application
areas. While our newly recorded Heidelberg Digits (HD) were optimized for word-level alignment
and overall recording quality, the Speech Commands (SC) closely replicate real-world conditions of
mobile devices.

Heidelberg Digits: The Heidelberg Digits (HD) cover the spoken digits ranging from zero to nine
in English and German language published under a permissive public domain license1. In more
detail, the dataset provides a collection of 10 420 digits assigned to 20 distinct classes. The age of the
six female and six male speakers spanned the range from 21 yr to 56 yr with a mean of (29 ± 9) yr.
The native language of all subjects was German. While making the recordings, all of these speakers
were tasked to speak as clearly as possible.

All digits were recorded in a sound-shielded room at the Heidelberg University Hospital. The near
and far-field were captured by three microphones; two AudioTechnica Pro37 in different positions
and a Beyerdynamic M201 TG (Figure 4.2a). The signals of all microphones were digitized with a
sample rate of 48 kHz and a precision of 24 bit by a Steinberg MR816 CSX audio interface and finally
stored in Free Lossless Audio Codec (FLAC) format. For convenience, the digits were recorded in
ascending sequences for each language and speaker (Figure 4.1a). This not only renders the dataset
balanced in terms of digits within each language, but also reduced the time spent on recording
(Figure 4.1b and c). However, the use of sequences requires an automated cutting framework.

First, the recorded sequences were manually pre-selected and externally mastered (Schumann,
2019). We drew on a gate with speaker-dependent thresholds and release times to finally carve the
individual digits within each sequence (Figure 4.1a). The gate parameters were optimized by a black-
box optimizer (Knysh & Korkolis, 2016) to yield exactly 10 single digits per sequence. Additionally,

1The raw audio files of HD as well as the spiking datasets SHD and SSC are available at https://compneuro.net. In
addition, we provide code examples and further information.
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Figure 4.1: The HD have a balanced class count for each language and variable duration. The HD
consist of 10 420 recordings of spoken digits ranging from zero to nine in English and German language.
(a) The samples were recorded in sequences of 10 ascending digits for each language. The cutting times
(colored) were determined by a gate and speaker specific ramp-in and ramp-out times. (b) Variable numbers
of digits are available for each speaker and each language. (c) The dataset is balanced in terms of digits within
each language. (d) The HD audio recordings were cut for minimal duration to keep computation time at bay.
Panels (b) to (d) as well as their caption taken from Cramer et al. (2020b).

the threshold was constrained to be as low as possible to appropriately capture on- and offset ef-
fects. The release time was forced to be as low as possible to reduce the duration of each sample to
a minimum, thereby minimizing the computational overhead of further modelling. To even further
shorten audio file durations, we determined speaker-specific ramp-in and ramp-out times by visual
inspection. This comprehensive processing produces samples with optimal temporal alignment and
hence different sample durations due to speaker variations (Figure 4.1d). To not disturb the com-
putation of fast Fourier transformations (FFTs) involved in the following processing stages, 30ms
Hann windows were applied to the start and end of the peak normalized audio signals respectively.

The partitioning of the HD into training and testing samples is designed to challenge generaliza-
tion. To this end, we exclusively assigned all samples spoken by the speakers four and five to the test
set. In order to result in a common split ratio, we further appended 5% of the remaining recordings
of each digit and language. By this, the evaluation of the test performance allows quantifying the
ability to generalize to novel speakers.

Speech Commands: Recently, the TensorFlow and AIY teams published the Speech Commands
(SC)2 under a Creative Commons BY 4.0 license (Warden, 2018). The dataset contains command
words spoken by a total of 1864 speakers. Each recording is available as a single WAVE file of
1 s duration with a sample rate of 16 kHz. Our benchmark dataset is based on version 0.02 which
provides a total of 105 829 audio files classified into 34 distinct categories.

2The raw audio files constituting SC as well as information about the pursued partitioning strategy are available at
https://www.tensorflow.org
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Figure 4.2: Processing pipeline for the Heidelberg Digits (HD) and the Speech Commands (SC)
dataset. (a) The HD were recorded in a sound-shielded room. (b) Afterwards, the resulting audio files were
cut and mastered. (c) The HD as well as the SC were fed through a hydrodynamic basilar membrane model.
(d) Basilar membrane decompositions were converted to phase-coded spikes by use of a transmitter-pool-
based hair cell model. (e) The phase-locking was increased by combining multiple spike trains of hair cells
at the same position of the basilar membrane in a single bushy cell. Figure and caption taken from Cramer
et al. (2020b).

24 of these 34 categories make up the command words Yes, No, Up, Down, Left, Right, On, Off,
Stop, Go, Backward, Forward, Follow, Learn, Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine
with about five samples per speaker and word. In addition, only one sample per word and speaker
is available for the ten auxiliary words Bed, Bird, Cat, Dog, Happy, House, Marvin, Sheila, Tree, and
Wow. The partitioning of the samples into training and testing set was performed by the intended
hashing functionwith a share of 80 % and 20%, respectively (Warden, 2018). For validation purposes,
we used 10 % of the samples of the training set.

As for the samples of the HD, we applied a 30ms Hann window to the on- and offset of each sam-
ple’s peak normalized waveform. In contrast to the originally intended use of the SC, we consider
the top-one-classification of all 34 distinct words. This renders the benchmark more challenging
compared to the proposed keyword spotting task which only requires separating the samples into
12 classes (10 keywords, unknown word, and silence). Our choice, however, does not preclude the
usage of the derived spike-based benchmark dataset in the keyword spotting scenario.

4.2.2 Spike conversion

We converted the audio files of the datasets described above to the spiking domain by an artifi-
cial model3 of the ascending auditory pathway (Figure 4.2). While this chain of models is inspired
by physiological findings, its effect is comparable to commonly used language processing systems
(Huang et al., 2001). As a first stage, we reached spatial frequency dispersion by a hydrodynamic

3The model used to convert the raw audio signals into spike trains is available at https://github.com/

electronicvisions/lauscher
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root
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times[samples][events].................................................VLArray of Arrays holding spike times

units[samples][events].................................................VLArray of Arrays holding spike units

labels[samples] .........................................................................................Array of digit IDs

extra

speaker[samples]...............................................................................Array of speaker IDs

keys[digits].......................................................................Array of digit description strings

meta_info

gender[speaker].......................................................................Array of speaker genders

age[speaker]...............................................................................Array of speaker ages

body_height[speaker].........................................................Array of speaker body heights

Figure 4.3: HDF5 file organization. For each partition and dataset, we provide a single HDF5 file which
holds spikes, digit labels, and additional meta-information. Inmore detail, each element 𝑖 in keys describes the
transformation between the digit ID 𝑖 and the spoken words. Further, the entry 𝑖 of each array in meta_info

corresponds to the information for speaker 𝑖. The meta_info is only available for SHD. Figure and caption
taken from Cramer et al. (2020b).

basilar membrane (BM) model, analogous to the computation of a spectrogram with Mel-spaced
filter banks. Next, the resulting channels were converted to time-varying firing rates through a
transmitter-pool-based hair cell (HC) model. In an intermediate stage, we generated spike trains
from these firing rates with Poisson statistics. Further, we imposed a simple refractory effect upon
these spike times by denying any event occurring in a certain time interval 𝜏ref after a spike. Last,
we simulated a layer of 𝑁ch bushy cells (BCs) to increase phase locking and sparsity (cf. Figure 4.2).
Our benchmark datasets Spiking Heidelberg Digits (SHD) and Spiking Speech Commands (SSC)
provide the spikes emitted by the layer of BCs. Intuitively, the spikes emitted by each of these BCs
code the stimulus information contained within a small frequency band. By resorting to biologically
plausible models, all parameters were chosen according to physiological findings, which reduces the
number of free parameters (see Table 4.1). All of these outlined model stages are described in detail
in Appendix A.1.

4.2.3 Event-based data format

The spikes emitted by the BCs are available in event-based representation in Hierarchical Data
Format 5 (HDF5). By this, the overall memory requirements are reduced and download times are
kept at a minimum. Moreover, this choice facilitates the usage of the benchmark datasets in most
common programming environments. Each partition of each dataset is published as a single file
that contains additional meta-information aside from the actual spikes and labels (Figure 4.3).

The spike data of each sample is contained in two separate VLArrays: One for the times and
the other one for the associated unit. All corresponding labels – characterizing the digit identity –
are stored alongside. The extra group holds additional information about the speakers and labels.
Specifically, we provide an additional array holding the speaker identity for each sample. Further-
more, the mapping between the label ID in labels and the actual spoken word is provided within
the keys group where the 𝑖-th element holds the spoken word for ID 𝑖. The last group is only avail-
able for the SHD. This meta_info provides detailed information about the speakers where the 𝑖-th
entry of each category holds the information for the speaker with ID 𝑖 as given in the speaker labels.
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Table 4.1: Benchmark model parameters. The BM parameters were taken from Sieroka et al. (2006) and
the HC parameter inherited from Meddis et al. (1990). Table and caption adapted from Cramer et al. (2020b).

Parameter Symbol Value

BM
model

Damping constant 𝛾 0.15 s−1

Greenwoods constant 𝑎 35 kg s−2 cm−2

Stiffness constant 𝐶0 109 g s−2 cm−2

Fluid density 𝜌 1.0 g cm−3

Attenuation factor 𝛼 3.0 cm−1

Height of scala ℎ 0.1 cm
Effective mass 𝑚 0.05 g cm−2

Number of channels 𝑁ch 700

HC
model

Input scaling factor 𝑐 1.0 s cm−1

Permeability offset 𝐴 5
Permeability rate 𝐵 300
Maximum permeability 𝑔 1000
Replenishing rate 𝑦 11.11
Loss rate 𝑙 1250
Reuptake rate 𝑟 16 667
Reprocessing rate 𝑛 250
Propability scaling ℎ 50 000
Number of HCs at same BM position 𝑁hc 40

SNN
model

Synaptic time constant 𝜏syn 0.5ms1/10ms2

Membrane time constant 𝜏mem 1ms1/20ms2

Refractory time constant 𝜏ref 1ms1/0ms2

Leak potential 𝑢leak 0
Reset potential 𝑢reset 0
Threshold potential 𝑢thres 1
Number of input neurons 𝑁I 700
Number of hidden neurons per layer 𝑁H 128
Number of label neurons 𝑁L 203/344

General
Simulation time step 𝛿𝑡 0.5ms
Simulation duration (per input sample) 𝑇 1.0 s
Number of time steps (per input sample) 𝑁T 2000

Optimization

Training epochs 𝑁E 3002/1004

Batch size 𝑁B 256
Learning rate 𝜂 0.001
Surrogate gradient steepness 𝛽 100
Lower bound regularization threshold 𝜃l 0.01
Lower bound regularization strength 𝜌l 1.0
Upper bound regularization threshold 𝜃u 100.0
Upper bound regularization strength 𝜌u 0.06
First moment estimates decay rate 𝛽1 0.9
Second moment estimates decay rate 𝛽2 0.999
Stability parameter 𝜖 1.0 × 10−8

1 BC parameter 2 SNN parameter 3 SHD parameter 4 SSC parameter

All of these files are publicly available (Cramer et al., 2019) without additional requirements or
the need for registration (Footnote 1). To reduce the barrier of entry, we furthermore provide code
examples for downloading and visualization of the benchmark data.

4.2.4 Spiking network models for establishing benchmarks

We created the first set of performance references for each of the two spike-based benchmark
datasets by training networks of leaky integrate-and-fire (LIF) neurons to classify word identities.
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To overcome the binary nature of these SNNs, we resort to surrogate gradients to finally perform
backpropagation through time (BPTT) on arbitrary loss functions. In the following section, we
give an overview of the visited neuron and synapse models as well as their composition to various
topologies. Moreover, we highlight the weight initialization, the supervised learning algorithm and
the loss function as well as the regularization techniques.

Neuron and synapse models: We consider LIF neurons with dynamics evolving according to
Equation (2.12). For the work presented within this chapter, we directly incorporate the reset term
into the differential equation:

d𝑢(𝑙)𝑖
d𝑡

= −
𝑢(𝑙)𝑖 + 𝑢leak − 𝑅𝐼 (𝑙)𝑖

𝜏mem
+ 𝑆(𝑙)𝑖 (𝑡)(𝑢leak − 𝑢thres) . (4.1)

Here, we introduced an additional layer index to denote the membrane potential of neuron 𝑖 in layer
𝑙 by 𝑢(𝑙)𝑖 .

The Equations (2.17) and (4.1) solely determine the neuro-synaptic dynamics. Both of which can
be solved by numerical integration based on a regular time grid with 𝑛 time steps and step size 𝛿𝑡
over a total duration 𝑇 = 𝑛 ⋅ 𝛿𝑡. With this, the output spike train 𝑆(𝑙)𝑖 [𝑡] of neuron 𝑖 in layer 𝑙 at time
step 𝑡 can be expressed as a nonlinear function of the membrane potential:

𝑆(𝑙)𝑖 [𝑡] = Θ (𝑢(𝑙)𝑖 [𝑡] − 𝑢thres) , (4.2)

with the Heaviside function Θ. Here, we highlighted the discrete nature of the argument by square
brackets. For small time steps 𝛿𝑡, the evolution of synaptic currents (Equation (2.17)) is solved by:

𝐼 (𝑙)𝑖 [𝑡 + 1] = 𝜅𝐼 (𝑙)𝑖 [𝑡] + ∑
𝑗
𝑤 (𝑙)
𝑖𝑗 𝑆(𝑙−1)𝑗 [𝑡]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
feed-forward

+ ∑
𝑘
𝑣 (𝑙)𝑖𝑘 𝑆(𝑙)𝑘 [𝑡]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
recurrent

. (4.3)

The first sum extends over all presynaptic partners 𝑗 and 𝑤 (𝑙)
𝑖𝑗 denotes the corresponding afferent

weights from the layer below. Recurrent connections within each layer are incorporated by the
second sum over the presynaptic partners 𝑘 within the same layer 𝑙 and the recurrent weights 𝑣 (𝑙)𝑖𝑗
respectively. The membrane potential in Equation (4.1) can be expressed as:

𝑢(𝑙)𝑖 [𝑡 + 1] = 𝜆𝑢(𝑙)𝑖 [𝑡](1 − 𝑆(𝑙)𝑖 [𝑡]) + (1 − 𝜆)𝐼 (𝑙)𝑖 [𝑡] , (4.4)

where we set 𝑢leak = 0 as well as 𝑢thres = 1 without loss of generality. Further, we used 𝑅 = (1 − 𝜆)
and defined the decay constants 𝜅 ≔ exp (−𝛿𝑡/𝜏syn) and 𝜆 ≔ exp (−𝛿𝑡/𝜏mem).

Networkmodel: The spike trains emitted by the𝑁ch = 700 BCs – in the following denoted by 𝑆(0)𝑖
– were used to stimulate the actual classification network. In the context of this work, we trained
both feed-forward and recurrent networks with hidden layers containing 𝑁H = 128 LIF neurons
each. For all network architectures, the last layer was accompanied by a linear readout (𝑙 = 𝐿)
consisting of 𝑁L leaky integrators which did not spike.

Weight initialization: The weights 𝑤 (𝑙)
𝑖𝑗 and 𝑣 (𝑙)𝑖𝑗 of all our networks were initialized according to

Kaiming’s uniform scheme (He et al., 2015). Specifically, the initial values were drawn independently
from a uniform distribution given by𝒰(−1/√𝑁, 1/√𝑁)with the number of efferent connections, i. e.
𝑁ch or 𝑁H, respectively. This choice ensures suitable activation prior to learning.
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Figure 4.4: Computation graph of an SNN in discrete time. Time evolves from left to right. Input
spikes 𝑆(0)𝑖 enter the network from the bottom and propagate upwards to higher layers. On the one hand, the
synaptic currents 𝐼 (1)𝑖 decay from one time step to the next and on the other hand they supply the membrane
potentials 𝑢(1)𝑖 . The latter similarly decay over time. Spikes 𝑆(1)𝑖 are generated by a threshold criterion in
each time step. Upon spike emission, the membrane potential is reset within the next time step. The accruing
spikes propagate to a downstream layer as well as recurrently within the same layer to build up the respective
synaptic currents.

Gradient-based learning: We trained our networks by minimizing a loss functionℒ formulated
on the activation of the readout layer. More specifically, we modified the SNN parameters by per-
forming gradient descent:

𝜃 ← 𝜃 − 𝜂𝜕ℒ
𝜕𝜃

= 𝜃 − 𝜂∑
𝑡

𝜕ℒ[𝑡]
𝜕𝜃

, (4.5)

with a learning rate 𝜂 and the network parameters 𝜃, i. e. the feed-forward as well as the recurrent
weights, 𝑤 (𝑙)

𝑖𝑗 and 𝑣 (𝑙)𝑖𝑗 , respectively. The interplay of the observables of multi-layer SNNs incorpo-
rating recurrence can be illustrated by a computation graph that can be constructed based on the
description of neuro-synaptic dynamics given by the Equations (4.2) to (4.4) (Figure 4.4). With re-
gard to this graph, the optimization of the loss functionℒ requires to solve a spatio-temporal credit
assignment problemwhich can be achieved by gradient descent and the application of the chain rule
by drawing on the BPTT algorithm (Werbos, 1990). For the full recursive relationship of BPTT for
recurrent SNNswe refer to Zenke &Neftci (2021). However, it should be noted that the calculation of
the underlying partial derivatives involves the computation of 𝜎 ′ = 𝜕𝑆(𝑙)𝑖 /𝜕𝑢(𝑙)𝑖 which only deviates
from zero at the time of a spike (cf. Equation (4.2)). Here, we overcame this binary nature of SNNs
and the associated crucial points of spike emergence and disappearance under parameter changes
by introducing a surrogate for the derivative of the spike 𝜎 ′ (Neftci et al., 2019a; Bellec et al., 2020;
Zenke & Vogels, 2021). Specifically, we replaced the Heaviside activation function (Equation (4.2))
by a fast sigmoid (Figure 4.5) in the backward pass:

𝜎(𝑢(𝑙)𝑖 [𝑡]) =
𝛽 (𝑢(𝑙)𝑖 [𝑡] − 𝑢thres)

1 + 𝛽 |𝑢(𝑙)𝑖 [𝑡] − 𝑢thres|
+ 1 , (4.6)
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Figure 4.5: Illustration of the SuperSpike surrogate derivative To train SNNs with gradient-based meth-
ods, the true derivative of the neuronal activation function in the backward pass is replaced with a surrogate.
(a) Specifically, a fast sigmoid 𝜎 is used as activation function within the backward pass. Here, 𝜎 is shown
as a function of the difference between the membrane potential of neuron 𝑖 in layer 𝑙, 𝑢(𝑙)𝑖 , and the threshold
potential 𝑢thres. (b) The associated surrogate derivative 𝜎 ′ takes on the form of the SuperSpike non-linearity
(Zenke & Ganguli, 2018b). The steepness of the activation function and in turn the surrogate derivative can
be controlled by the parameter 𝛽.

where we introduced a positive steepness parameter 𝛽 (Figure 4.5). Hence, the partial derivative of
Equation (4.2) occurring in the recursion relation of BPTT was replaced by:

𝜎 ′(𝑢(𝑙)𝑖 ) =
𝜕𝑆(𝑙)𝑖 [𝑡]

𝜕𝑢(𝑙)𝑖 [𝑡]
= 1

(𝛽 ⋅ |�̃�(𝑙)𝑖 [𝑡] − 𝑢thres|)
2 . (4.7)

This surrogate derivative was originally invented by Zenke & Ganguli (2018b).

Within this work, we performed BPTT by relying on standard auto-differentiation tools. To that
end, the surrogate derivative in Equation (4.7) was implemented in PyTorch (Paszke et al., 2017)
by overloading existing auto-differentiation capabilities (Listing 2). An instructive example of this
method can be found online4. For the results shown in this chapter, we applied the Adamax opti-
mizer (Kingma & Ba, 2014) for the minimization of the loss functions described in the following.

Loss functions: We quantified the success of our SNNs by a cross-entropy loss evaluated on the
activity of the readout layer 𝑙 = 𝐿. More specifically, after stimulation with the input spikes 𝑆(0)𝑖,𝑠
constituting a batch composed of 𝑁B samples:

{(𝑆(0)𝑖,𝑠 [𝑡], 𝑦𝑠) | 𝑠 = 1, ..., 𝑁B ; 𝑦𝑠 ∈ {1, ..., 𝑁C}} , (4.8)

and 𝑁C classes, we considered a negative log-likelihood loss based on the membrane potentials of
the readout neurons evaluated by a softmax function:

ℒ(𝑢(𝐿)𝑖,𝑠 , 𝑦𝑠) = − 1
𝑁B

𝑁B

∑
𝑠=1

1(𝑖 = 𝑦𝑠) ⋅ log(
exp (𝑢(𝐿)𝑖,𝑠 [ ̃𝑡𝑖,𝑠])

∑𝑁C
𝑖=1 exp (𝑢

(𝐿)
𝑖,𝑠 [ ̃𝑡𝑖,𝑠])

) , (4.9)

with the indicator function 1. Here, we introduced an additional sample index 𝑠 for both the spikes
as well as the membrane potentials. For the establishment of a first set of benchmarks on SHD

4Instructive examples of the implementation of surrogate gradients in PyTorch can be found at https://github.com/
fzenke/spytorch
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1 class SuperSpike(torch.autograd.Function):

2 beta = 80.0

3

4 @staticmethod

5 def forward(ctx, v: torch.Tensor):

6 ctx.save_for_backward(v)

7 return torch.gt(v, torch.as_tensor(0.0)).to(v.dtype)

8

9 @staticmethod

10 def backward(ctx, grad_output):

11 v, = ctx.saved_tensors

12 grad_input = grad_output.clone()

13 grad = grad_input / (SuperSpike.beta * torch.abs(v) + 1.0) ** 2

14 return grad, None

15

16 spike_fn = SuperSpike.apply

Listing 2: Implementation of surrogate gradients in PyTorch. Surrogate gradients can be imple-
mented in PyTorch by overloading existing auto-differentiation capabilities. In the forward pass, the
step function is applied as activation function. The ctx object is utilized to stash information with the
ctx.save_for_backward method for the later backpropagation of error signals. In the backward pass, the
neuronal activation function is replaced by the normalized negative part of a fast sigmoid.

and SSC, we trained our SNNs based on two distinct choices for ̃𝑡𝑖 (Figure 4.8). First, we used the
time step with maximal membrane potential deflection for each readout unit ̃𝑡𝑖,𝑠 = argmax𝑡 𝑢

(𝐿)
𝑖,𝑠 [𝑡]

resulting in a max-over-time loss function. Second, we utilized the last time step 𝑇 of each readout
unit ̃𝑡𝑖,𝑠 = 𝑇. The latter choice resulted in a last-time-step loss.

Regularization: The loss function in Equation (4.9) can be additively augmented by regulariza-
tion terms to shape the activity of the SNNs. Here, we employed a penalty acting on the mean
population activity:

ℒu (𝑆
(l)
𝑖,𝑠 ) = 𝜌u

1
𝑁B

𝑁B

∑
𝑠=1

[max {0, 1
𝑁H

𝑁H

∑
𝑖=1

𝑇
∑
𝑛=1

𝑆(𝑙)𝑖,𝑠 [𝑛] − 𝜃u}]
2

, (4.10)

with strength 𝜌u, and threshold 𝜃u. This first contribution prevents pathologically high activities
and hence enforces sparse spatio-temporal activity. In a second term, we rewarded spiking activity
by a per neuron lower threshold regularization:

ℒl (𝑆
(l)
𝑖,𝑠 ) = 𝜌l

1
𝑁B

𝑁B

∑
𝑠=1

1
𝑁H

𝑁
∑
𝑖=1

[max {0, −1
𝑇

𝑇
∑
𝑛=1

𝑆(𝑙)𝑖,𝑠 [𝑛] − 𝜃l}]
2

, (4.11)

with strength 𝜌l, and threshold 𝜃l. This latter penalty especially prevented the problem of vanishing
gradients in deep networks by ensuring activity.
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Figure 4.6: Schematic view of the deep CNN architecture. For validation purposes, we trained deep
CNNs on spatio-temporal histograms of the spike times of both SHD and SSC. To that end, we formulated a
categorical cross-entropy loss based on the activation of the last layer of the shown CNN which was in turn
optimized with the Adamax optimizer. The CNN was implemented in Tensorflow with the Keras API.

4.2.5 Non-spiking classifiers for establishing benchmarks

We trained three standard non-spiking classifiers on our newly created benchmarks to assess their
separability and to investigate the information carried by spike times. To this end, we consider
results achieved by support vector machines (SVMs), long short-term memories (LSTMs), and con-
volutional neural networks (CNNs), which are described in the following.

Support vector machines: We trained a set of SVMs on activity vectors of both datasets. Aside
from linear, we considered radial basis function (RBF) as well as polynomial kernel functions. The
latter were visited up to the third degree. To inject the data into the SVMs, we generated 𝑁ch-
dimensional activity vectors 𝑎𝑖,𝑠 for each sample by constructing spatial histograms of the spikes
emitted by each BC 𝑖 for sample 𝑠, 𝑡𝑘𝑖,𝑠, i. e. 𝑎𝑖,𝑠 = ∑𝑘 𝑡

𝑘
𝑖,𝑠. In more detail, these activity vectors no

longer had a temporal dimension. All resulting 𝑎𝑖,𝑠 were corrected for the mean and scaled to their
unit variance. We trained SVMs using the scikit-learn package (Pedregosa et al., 2011).

Long short-term memories: For validation purposes, we applied LSTMs explicitly relying on
temporal information within the data (Hochreiter & Schmidhuber, 1997). Specifically, we trained
our LSTMs on the activity:

𝑎𝑖,𝑠[𝑡] = ∑
𝑘
1 (𝑡𝑘𝑖,𝑠 ≥ 𝑡 ⋅ 𝛿𝑡, 𝑡𝑘𝑖,𝑠 < (𝑡 + 1) ⋅ 𝛿𝑡) , (4.12)

estimated with a temporal bin size of 𝛿𝑡 = 10ms. These activity patterns were injected into a
single LSTM layer with 128 units. The dropout probabilities for both the linear transformation of
the input as well as the recurrent states were set to 20 %. We connected a readout layer with softmax
activation in series and formulated a categorical cross-entropy loss which was minimized with the
Adamax optimizer (Kingma & Ba, 2014). Like for SNNs, the latter was formulated based on the last
time step of each sample or the time step of maximal deflection respectively. For the implementation
of LSTM networks we made use of TensorFlow 1.14.0 with the Keras 2.3.0 application programming
interface (API) (Abadi et al., 2015; Chollet et al., 2015). All layers were initialized with their default
values unless mentioned otherwise.
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Figure 4.7: Temporal information is essential for the achievement of high classification accuracy.
(a) Classifiers incorporating temporal information outperform rate-based architectures on the SHD. Here,
SVMs are trained on spike count vectors whereas LSTMs as well as CNNs draw on spatio-temporal histograms
of the original spike trains. LSTMs and CNN tend to reduce overfitting and outperform all tested SVMs by
a large margin. (b) Temporal information also proves beneficial for the larger SSC dataset. Likewise, LSTM
and CNN architectures promote highest accuracy on the SSC. Figure taken from Cramer et al. (2020b).

Convolutional neural networks: The separability of both benchmarks was further assessed by
training deep CNNs. Like for the LSTMs, we stimulated the input layer by spatio-temporal activity
histograms with a temporal binwidth of 𝛿𝑡 = 10ms. Moreover, we condensed neighboring input
spike trains according to:

𝑎𝑗,𝑠[𝑡] =
𝛿𝑖
∑
𝑖=1

𝑎𝑗⋅𝛿 𝑖+𝑖,𝑠[𝑡] , (4.13)

with 𝛿𝑖 = 11. The topology of the CNN was made up of several blocks (Figure 4.6): First, the stimuli
were processed by a 2D convolutional layer with 32 filters of size 11×11 and rectified linear units
(ReLUs). The output of this first block was processed by a sequence of three equal blocks. Each
of these blocks encompassed two 2D convolutional layers, each of them individually combined by
batch normalization and ReLUs. The convolutional layers hold 32 filters of size 3×3. This sequence
was completed by a 2D max-pooling layer with pool size 2×2 and a dropout layer with a dropout
probability of 20 %. Finally, a dense layer with 128 ReLUs provided input to a softmax readout. We
again formulated a categorical cross-entropy loss which was minimized with the Adamax optimizer
(Kingma & Ba, 2014). This CNN topology was implemented and trained in Tensorflow 1.14.0 by
drawing on the Keras API. All layers were initialized with their respective default parameters unless
mentioned otherwise.

4.3 Results

With the publication of both spike-based datasets – Spiking Heidelberg Digits (SHD) and Spiking
Speech Commands (SSC) – under a Creative Commons By 4.0 license, we already satisfy parts of our
minimum requirements for a valuable benchmark dataset. By providing code snippets, we further
reduce the entry hurdle and thereby hopefully attract the interest of a broader community. In the
following, we establish the first set of benchmarks to test the generality of our datasets and more
importantly to assess the separability by current methods. To that end, we first consider non-spiking
classifiers and then move on to SNNs.
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4.3.0.1 Training non-spiking classifiers

Rate-based versions of our novel datasets can not be solved accurately by current methods. More-
over, these reduced datasets allow us to investigate the impact of temporal information on classifi-
cation performance. To that end, we trained a set of SVMs on spike count patterns of each sample,
which by design lack temporal information. When using a linear kernel function, the SVM already
suffers from overfitting resulting in a test performance of only (56.0 ± 0.4) % on the SHD (Figure 4.7a).
In contrast, the same SVM trained on the SSC is less prone to overfitting, but only reached an over-
all test accuracy of (21.6 ± 0.0) % (Figure 4.7b). Hence, both datasets can not be accurately solved
by a simple linear model. Non-linear kernel functions only slightly improve upon these results.
Specifically, SVMs with RBF kernels lead to the highest performance with an overall test accuracy
of (60 ± 3) % on the SHD and (29.5 ± 0.0) % on the SSC (Figure 4.7a and b). Most notably, SVMs with
polynomial kernel functions are not able to improve upon the results reached with linear SVMs. In
summary, for all tested kernels, we are not able to surpass the 60 % accuracy mark on the SHD and
the 30 % mark on the SSCs. Hence, our newly created datasets can not be accurately classified based
on plain firing rates. Particularly, the generalization to the SHD test remains a major challenge.

The design of the SHD dataset allows us to make well-founded statements about generalization
to new unseen speakers. Specifically, generalization is stressed by the test set which exclusively
contains all samples of two speakers. Because of this, the ability to generalize to new speakers
can be quantified by comparing the performance reached on a uniformly drawn validation set with
the one observed on the test set. Particularly, the SVMs with polynomial as well as RBF kernel
generalize worse than the ones with linear kernels (Figure 4.7a). In contrast, there is no noticeable
difference between the accuracies reached on the validation and the test set of the SSC. This is a
direct consequence of the uniform partitioning of the samples, which, however, stem from a much
larger pool of speakers.

Leveraging the temporal information within both datasets improves the classification perfor-
mance in general and the generalization in particular. More specifically, the performance on both
benchmark datasets and especially the ability to generalize can be improved when considering clas-
sifiers with explicit access to temporal information within the samples. To that end, we trained
LSTMs on spatio-temporal histograms of the spikes (Section 4.2.5). Despite the relatively small
amount of samples in the SHD dataset, LSTMs are less prone to overfitting and clearly outperform
the results of all tested SVMs with an accuracy of (89 ± 2) % (Figure 4.7a). A similar improvement
can be observed on the SSC. Here, LSTMs reach a test accuracy of (73.0 ± 0.1) %, which is more
than twice as high as the best-performing classifier on the spike count data. However, the degree
of overfitting on the SSC is slightly higher than on the SHD when only considering the uniform
partitioning of samples within both validation sets.

CNNs generalize best to new speakers and novel samples. Since the performance of LSTMs still
suffers from overfitting, we trained deep CNNs. Like for LSTMs, spatio-temporal histograms of
spikes were used to stimulate the first layer of the CNN (Section 4.2.5). Indeed, these networks
generalize best among all tested architectures (Figure 4.7). In more detail, the test accuracy is only
1.4 % less than the training accuracy on the samples of the SHD. Most notably, the performance on
the SHD test set is comparable to the one reached on a uniformly drawn validation set. For the SSC
we observe a drop of only 1.5 %. In absolute terms, we reach an accuracy of (92.4 ± 0.7) % on the
SHD and (77.7 ± 0.2) % on the SSC.
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Figure 4.8: Dedicated loss functions bridge the gap between time scales of neuro-synaptic dynamics
and speech signals. (a) The flexibility of the surrogate gradient approach allows to formulate different
loss functions based on the output of the linear readout units. Here, we employ two different strategies for
the evaluation of a cross-entropy loss: First, we only consider the time step with maximal activity of each
readout unit (colored arrows) and second, we utilize the activation of the very last time step (gray arrows).
Shown is a schematic illustration of two readout units receiving input from an SNN with a single hidden
layer incorporating recurrent connections. The inset of the panel illustrates the corresponding feed-forward
topology. (b) The performance of all tested SNN architectures suffers from training with a last-time-step loss
function. Only the LSTM is able to maintain relevant stimulus information until the last time step. Shown is
the performance on the SHD dataset. (c) The performance of all tested architectures profits from a max-over-
time loss. Particularly, the accuracy on the SHD reached by SNN classifiers substantially increases compared
to the aforementioned training with a last-time-step loss. Figure taken from Cramer et al. (2020b).

All of these results do not only serve as a performance baseline, but also demonstrate how tempo-
ral information present in both datasets could be leveraged to improve classification performance.
For the sake of completeness, it should be mentioned that a more sophisticated hyperparameter op-
timization and architecture search can improve upon our results. However, both datasets seem to
be useful contributions to promote quantitative comparisons between different SNNs architectures
as well as training mechanisms up to at least these empirical accuracy values.

4.3.0.2 Training spiking neural networks

The results presented above demonstrate that our benchmark datasets contain essential temporal
information, which is required to accurately classify the data. Next, we will investigate whether
this information is also accessible to SNNs. To that end, we make use of surrogate gradient learning
to overcome the binary nature of SNNs and to finally perform gradient-based learning on a super-
vised loss function by BPTT (Neftci et al., 2019a). The associated surrogate derivative replaces the
true gradient within the backward pass and can be interpreted as a continuous relaxation of the
true gradient. Thus, the forward pass remains unchanged and only the backward pass is modified
(Section 4.2.4). With this, we are furthermore able to establish the first set of benchmarks for SNNs.

Inspired by biology, we consider SNNs with finite neuronal and synaptic time constants on the
order ofmilliseconds, although this is generally not required for the framework of surrogate gradient
learning. The finite time constants stay in stark contrast to the previously considered LSTMs. The
main difference is that LSTMs are equipped with amemory on arbitrary time scales, which promotes
the training with a cross-entropy loss based on the last time step of each sample. Specifically, this
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Figure 4.9: The steepness of the surrogate derivativemainly impacts convergence time. A grid search
of the steepness 𝛽 and the learning rate 𝜂 reveals an optimal parameter combination for fast convergence to
a solution with high accuracy on the SHD dataset. (a) The accuracy reached by a recurrent SNN on a SHD
validation set is high for a broad range of 𝛽 values and only shows a slight dependence on 𝜂. (b) Particularly,
low values of 𝛽 and hence shallow surrogate derivatives promote fast convergence. The number of epochs
required to reach an accuracy larger than 0.75, 𝑛0.75, is lowest for 𝛽 = 40. (c) For the parameter combination
𝛽 = 40 and 𝜂 = 10−3, SNNs quickly converge. (d) With this parametrization, the training data could be fitted
and SNNs generalize well on a validation set of SHD indicated by high accuracy levels. Figure taken from
Cramer et al. (2020b).

loss requires the maintenance of information over the entire course of a stimulus until the last
time step (Figure 4.8a). An SNN composed of LIF neurons with finite time constants, however,
needs to implement the required memory by reverberating activity and hence with its dynamics.
To relax this constraint, we furthermore use a max-over-time loss, which considers only the time
step with maximum activation of each readout unit (Figure 4.8a). This loss function is inspired by
the Tempotron (Gütig & Sompolinsky, 2006), which signals its decision about the class membership
by whether a readout neuron emitted a spike at an arbitrary point in time or remained silent. With
this loss function, the time scales between neuro-synaptic dynamics and speech signals could be
bridged.

SNNs have difficulties with the maintenance of information over long time spans. We trained
LSTMs as well as various SNN topologies in combination with both aforementioned loss functions
on the SHD. While LSTMs accurately classify the dataset irrespective of the chosen loss function,
SNNs only perform well when being trained with a max-over-time loss (Figure 4.8b and c). Most
notably, the recurrent SNN slightly outperform the feed-forward architectures in combination with
a last-time-step loss, underpinning the need for memory. Within the recurrent SNN, the latter is
likely to be implemented by reverberating activity through recurrent connections. In summary, all
network architectures and topologies – including the LSTM – performed best when being trained
with a max-over-time loss. Because of this, we employ this loss function throughout the remainder
of this chapter.
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Figure 4.10: Recurrent SNNs outperform feed-forward architectures on both datasets. (a) The accu-
racy reached by recurrent SNNs on the SHD dataset is comparable to the performance of LSTMs with a max-
over-time loss. Among all tested spiking architectures, recurrent topologies promote highest performance.
Increasing the number of layers in feed-forward topologies hardly affects performance. (b) The performance
on the larger SSC dataset reached by all SNNs is significantly lower than the one obtained by LSTMs and
CNNs. In contrast to networks trained on SHD, an increasing number of layers leads to a monotonic increase
of accuracy on the SSC. Figure taken from Cramer et al. (2020b).

Our surrogate gradient learning entails a new hyperparameter 𝛽, which controls the steepness of
the surrogate derivative (Equation (4.7)). Particularly, 𝛽 plays a crucial rule for convergence similar
to the learning rate 𝜂. Most notably, a single layer recurrent SNN shows high performance on the
SHD for a plethora of both parameter values (Figure 4.9a). In more detail, only a slight decrease of
accuracy can be observed for high values of 𝛽, whereas a dramatic drop only occurs for very small 𝛽.
The learning rate, in contrast, has a minor impact on the performance for the tested values. Aside
from the peak performance, the number of epochs required for a given network to converge plays
a crucial role in efficient training. Here, convergence speed heavily depends on both 𝛽 and 𝜂 (Fig-
ure 4.9b). The combined observations for peak performance and convergence speed let us to choose
𝛽 = 40 and 𝜂 = 1 × 10−3 for all SNN architectures within this chapter. For this parameter set, the
peak performance is reached after about 150 training epochs (Figure 4.9c and d). After this point,
additional training only improves training accuracy, but does not impact generalization. It is note-
worthy that the considered recurrent SNN already leads to results comparable to the performance
of LSTMs. The benchmarks for feed-forward architectures, however, have yet to be established.

Recurrent architectures outperform feed-forward networks on both benchmark datasets. With
the described set of hyperparameters, we trained multi-layer feed-forward architectures with up
to three hidden layers as well as a network with a single hidden layer but recurrent connections.
Among all investigated topologies, the recurrent networks performs best with a final test accuracy of
(71.4 ± 1.9) % on the SHD and (50.9 ± 1.1) % on the SSC (Figure 4.10). However, the generalization of
recurrent SNNs falls back behind LSTMs as well as CNNs. Moreover, the accuracy on the SHD test
set is almost independent of the number of hidden layers. A monotonic increase of performance
with increasing layer count can, however, be observed for feed-forward networks trained on the
SSC. Despite this rise, feed-forward architectures are not even able to surpass the benchmark of the
best performing SVM on the SSC (Figure 4.7b).

60



4.3 Results

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
ac

cu
ra
cy

(a) Control classifier

Linear SVM
RBF SVM

LSTM
CNN

(b) SHD → SSC

Reference
Generalisation
Chance level

0 1 2 3 4 5 6 7 8 9 10 11

Speaker ID

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

ac
cu

ra
cy

(c) Spiking classifier

1-layer
2-layer

3-layer
Recurrent

Spiking
1-layer

Spiking
2-layer

Spiking
3-layer

Spiking
Recurrent

LSTM CNN

(d) SSC → SHD

Figure 4.11: Trained networks generalize across speakers and datasets. The design of the SHD test
set allows to quantify generalization to new speaker, since the samples spoken by the speakers four and five
exclusively occur in the test set. (a) Among all tested non-spiking classifiers, CNNs generalize best on the
samples of the aforementioned unseen speakers. However, a clear decrease in performance is observable
for all classifiers on the samples spoken by the held-out speakers four and five (highlighted). Likewise, the
generalization to new speakers can be assessed by evaluating the performance of networks trained on one
dataset and evaluated on the common subset of the other one. (b) Networks trained on the SHD dataset do
not necessarily generalize to the English digits of the SSC. For all classifiers, the accuracy on the SSC digits
(generalization) is substantially lower than on the digits of the SSC test set (reference). It is noteworthy that
despite of this drop in accuracy, all networks performed above change level. (c) Among all tested spiking
classifiers, recurrent architectures lead to highest performance on the unseen speakers of the SHD test set.
(d) Networks trained on the SSC generalize well to the English digits of the SHD dataset. Figure taken from
Cramer et al. (2020b).

4.3.0.3 Quantifying generalization across speakers and datasets

Before deploying an implementation for the classification of spoken words, its ability to generalize
to new data needs to be carefully investigated. Particularly, the generalization to novel previously
unseen speakers is indispensable for the robust classification of spoken words in real-world scenar-
ios, e. g. on mobile devices. To that end, a performance evaluation based on a uniform partitioning
of all available samples may not be sufficient. Our newly generated benchmark datasets allow us
to quantify generalization to novel speakers in a more fine-grained manner. This can be achieved
most easily by resorting to the SHD: Since the test set of the SHD exclusively contains the samples
of two speakers, the generalization to new speakers can be investigated by simply evaluating the
test performance. By comparison to the accuracy reached on a uniformly drawn validation set, the
ability to generalize can be quantified.

Our tested architectures suffer from a decline of performance on the SHD test set compared to
a uniform validation set. In more detail, the accuracy on the samples of the unseen speakers four
and five is systematically lower compared to the remaining samples (Figure 4.11a and c). When
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considering SVMs only, the linear kernel shows the smallest decline of about 18 %. In contrast, we
observe a drop of 26 % for the RBF kernel function. The best overall generalization performance
is achieved by the CNNs characterized by a decrease of only 8 % closely followed by the LSTMs
with reduction of 10 %. With regard to SNNs, recurrent topologies generalize best with a decline of
21 %. The feed-forward topologies, however, undergo drops in the range from 24% to 27 % on the
samples of the unseen speakers. As a result, the composition of the SHD test set does not only pose
a challenge to existing implementations, but also allows the investigation of generalization across
speakers of a given algorithm.

The uniform partitioning of samples in the SSC prohibits the quantitative assessment of gener-
alization to novel speakers. In general, the SSC also provide speaker information and hence allow
for a comparable assignment of samples as done for the SHD. This, however, would involve a new
partitioning of samples into train and test sets and hence a deviation from the scheme proposed by
Warden (2018). Nevertheless, the generalization to new speakers can still be quantified by evalu-
ating networks trained on the SSC with the shared English digits of the SHD and vice versa. Due
to the purpose of both datasets, this furthermore allows making statements about the impact of
noise present during training and inference respectively. As a result, networks trained on the SSC
generalize better to the samples of SHD. This result, on the one hand, hints towards the favorable
role of noise and on the other hand, emphasizes the valuable impact of the high number of samples
constituting the SSC. Among all tested architectures, CNNs and recurrent networks promote the
highest performance. Overall, it can be stated that all networks performed significantly above the
chance level when generalizing to novel datasets.

The generalization across datasets also constitutes a first step towards the quantification of the
impact of noise on classification. It is noteworthy that the high-fidelity recordings of the HD allow
us to investigate the influence of noise on training and inference in more fine-grained scenarios.
Here, the signal-to-noise ratio can be precisely controlled by imprinting noise with well-defined
amplitude to the raw audio signals. The SSC already come at a higher noise level and are hence
inappropriate for this application.

4.3.0.4 Strategies to improve generalization performance

The assessment of generalization in the previous section suggests the exploration of methods to
increase the overall network capacity. To that end, we consider the network size as well as the
scale of model time constants. For an exemplary recurrent SNN trained on the SHD, all of the
aforementioned methods improve on the result obtained previously. While even small networks are
already able to almost fit the training data, an increased size nevertheless enhances test accuracy
up to (76.5 ± 1.0) % for a recurrent hidden layer with 1024 LIF neurons (Figure 4.12a). To tie on the
discussion of finite time constants, we scaled both neural as well as synaptic time constants simulta-
neously. For a scaling factor of 4 , we significantly reduced overfitting and achieved a test accuracy
of (79.9 ± 2.8) % (Figure 4.12b). This choice corresponds to the time constants 𝜏mem = 80ms and
𝜏syn = 40ms. Most notably, this approach allowed us to almost catch up with the results achieved
with LSTMs of similar size (Table 4.2). A comparable approach could be taken by accelerating the
stimuli along the temporal dimension. This method has the potential to further reduce the com-
putational overhead since a reduced number of time steps needs to be evaluated. In summary, an
enlargement of the network size as well as increased time constants allow us to improve upon pre-
vious results.
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Figure 4.12: Generalization performance improves with network size, input reduction, time con-
stants as well as data augmentation. (a) The performance achieved with recurrent SNNs on the SHD
profits from increasing network sizes. While already small networks readily fit the training data, the test
accuracy still increases with the network size. (b) Increased time constants further promote generalization.
Highest validation performance is reached when scaling synaptic as well as membrane time constants by an
expansive factor of 4. (c) Condensing the spikes of neighboring input channels slightly improves generaliza-
tion performance. A maximum validation accuracy is achieved when the spikes of the 700 input units are
compressed to only 70 units. (d) Likewise, generalization can be improved by augmenting the training data
with Gaussian spatial noise (channel jitter). The validation accuracy peaks for a standard deviation of 𝜎u = 20
channels. Figure taken from Cramer et al. (2020b).

Generalization performance can be further enhanced by compressing and augmenting the input
data. As already showcased for the CNN, a compression of the input promotes high performance.
To likewise exploit this finding for SNNs, we merged the spikes of neighboring channels of the
input spike trains. We find a plethora of increased accuracy of about 73 % when merging 2 to 10
neighboring channels for a recurrent SNN trained on SHD (Figure 4.12c). Most notably, this strat-
egy does not only increase test performance, but it also decreases the computational overhead by
reducing the original 700 down to only 70 input channels. Equally acting on the input spike trains,
data augmentation allows us to improve generalization. Specifically, we investigate the impact of
noise present at the input layer by implementing a spatial spike jitter. To that end, each spike car-
ried by channel 𝑖 was moved independently to a neighboring unit drawn from the integer normal
distribution 𝒩 (𝑖, 𝜎). This method effectively reduces overfitting and leads to a peak performance
of (78.7 ± 2.2) % for a jitter of width 𝜎u = 20 (Figure 4.12d). Hence, both of the presented methods
constitute simple strategies to significantly improve generalization performance by manipulating
the input data.

All of the described strategies can be combined to result in a best effort test accuracy of (83.2 ± 1.3) %
on the SHD test set (Table 4.2). Most notably, this number was obtained by utilizing the optimal pa-
rameters found for the individual experiments described above. A more sophisticated parameter
search is likely to improve upon this result. However, the reported number exceeds the perfor-
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Table 4.2: Benchmark performance comparison on SHD and SSC. The errors indicate the standard
deviation. Table and caption adapted from Cramer et al. (2020b).

Classifier Architecture SHD (%) SSC (%)
Train Test Train Test

SVM

Linear kernel 100.0 ± 0.0 56.0 ± 0.4 50.0 ± 0.0 21.6 ± 0.0
Polynomial kernel of degree 2 91.5 ± 0.1 48.3 ± 0.2 43.2 ± 0.0 23.0 ± 0.0
Polynomial kernel of degree 3 86.5 ± 0.2 46.7 ± 0.5 51.0 ± 0.0 23.9 ± 0.0
RBF kernel 96.8 ± 0.1 60.0 ± 0.3 52.3 ± 0.0 29.5 ± 0.0

LSTM1 1 hidden layer 99.9 ± 0.1 89.0 ± 0.2 87.2 ± 0.4 72.8 ± 0.5

CNN 99.9 ± 0.0 92.4 ± 0.7 81.0 ± 0.0 77.7 ± 0.2

Spiking1

1 hidden layer 98.7 ± 0.2 48.1 ± 1.6 41.1 ± 0.2 32.5 ± 0.5
2 hidden layers 99.6 ± 0.3 48.6 ± 0.9 45.0 ± 0.5 38.5 ± 0.6
3 hidden layers 97.1 ± 0.8 47.5 ± 2.3 46.8 ± 0.5 41.0 ± 0.5
1 recurrent hidden layer 99.7 ± 0.4 71.4 ± 1.9 57.5 ± 0.7 50.9 ± 1.1
1 recurrent hidden layer (best effort)2 99.6 ± 0.4 83.2 ± 1.3 – –
1 recurrent hidden layer (SNU)2 100.0 ± 0.0 79.0 ± 1.6 – –

1 Trained with max-over-time loss 2 1024 neurons, optimized time constants and channel number combined with noise injection

mances promoted by every strategy on its own. Moreover, it significantly improved upon the test
performance of (71.4 ± 1.9) % on the SHD achieved with our previous recurrent SNN implementa-
tion.

The choice of SNNs composed of LIF neurons used to establish this first set of benchmarks is
somehow arbitrary. To place our results in a somewhat broader context, we finally trained recurrent
networks of spiking neural units (SNUs) on our benchmark datasets (Wozniak et al., 2020). These
units are related to LIF neurons, but in contrast feature delta synapses. In addition, the networks
are usually trained with a different surrogate derivative. For training and evaluation, we applied the
aforementioned best effort condition. Here, the network composed of SNUs reaches an accuracy of
(79.0 ± 1.6) % and hence falls slightly behind the performance of our regular LIF SNNs (Table 4.2).

4.4 Discussion

In this chapter, we have presented two new public-domain spike-based classification datasets to
foster benchmarking within the SNN community. Both pose speech classification problems and are
hence based on audio recordings. The latter naturally exploit the temporal dimension of SNNs and
require fewer input features for accurate classification. Hence, our datasets are computationally
more feasible in terms of utilized memory as well as dimensionality. By training a set of spiking as
well as non-spiking classifiers, wewere able to establish the first set of performance baselines, which
serve as a reference for future comparisons. We already gave a glimpse of the tremendous explo-
ration possibilities facilitated by our benchmark data by visiting different loss functions. Moreover,
we hinted towards setups for the quantification of generalization to novel speakers and showcased
strategies to increase test performance.

The merits of audio data for the benchmarking of SNNs have also been addressed in the past.
Here, we decided to base only one of our benchmarks on an existing dataset as only the SC sat-
isfy our minimum requirements. One prominent example for another spoken digit collection is the
TIDIGTS dataset (Leonard & Doddington, 1991). However, these digits are published under a com-
mercial license and hence preclude open access. In contrast, the Free Spoken Digit Dataset (Zohar
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et al., 2018) is available under a Creative Commons BY 4.0 license. Nevertheless, at the time of writ-
ing, it contained only 2000 samples of lower recoding and alignment quality and therefore stays
in stark contrast to the HD. Other publicly available datasets encompass Mozilla’s Common Voice
(Mozilla, 2019), LibriSpeech (Panayotov et al., 2015), TED-LIUM (Rousseau et al., 2012) as well as the
Spoken Wikipedia Corpora (Köhn et al., 2016). However, all of these datasets pose more complex
classification problems since they only provide alignment information at the sentence level. Only
the Spoken Wikipedia Corpora supplies word-level alignment information, but the inventors left
the cutting to the end-user. Moreover, the enormous amount of classes as well as their imbalance
renders classification more challenging. Because of these reasons and in view of the capabilities of
current SNN implementations, we refrain from converting the discussed datasets. Aside from HD,
the only public domain dataset with word level-alignment and moderate computational require-
ments on preprocessing at the time of writing was the SC dataset. Therefore, we decided to derive
a second spike-based dataset on these SC mimicking real-world conditions and hence provide a
necessary expansion to the high-fidelity recordings of the HD.

The conversion of raw audio signals into neuronal spikes was achieved by relying on established
models. By directly releasing spike trains, we standardize the feature selection step for both the HD
as well as the SC. As the preprocessing has a major impact on the separability of the benchmarks,
we pave the way towards well-defined comparisons of SNN implementations and at the same time
relieve the end-user of tedious preprocessing. Themodels underlying our conversion provide several
advantages: First, the physical inner-ear model (Sieroka et al., 2006) and the hair-cell model (Meddis,
1988) are based upon physiological measurements and hence set all hyperparameters. Second, the
layer of BCs does not only increase phase-locking, but also emits spike trains that are sparse in
space and time. The latter is especially useful for the reduction of the memory footprint and thereby
shortens download times of the data files.

A comparable approach to the generation of spike-based benchmark datasets has been taken in
the past by Anumula et al. (2018), who played the samples of the TIDIGIT dataset (Leonard & Dod-
dington, 1991) to a dynamic audio sensor with 2×64 frequency selective channels. Unfortunately, the
raw audio files of the TIDIGTS dataset are not publicly available and therefore consolidate the con-
tribution of the SHD and the SSC. Furthermore, we also publish the software implementing all model
stages required to generate both datasets. Therefore, it is straightforward to extend both datasets
by future recordings which would otherwise only be possible for the inventors of the DASDIGIT
dataset due to the required dynamic audio sensor.

By training a set of spiking and non-spiking classifiers we were able to establish the first set
of benchmarks (Table 4.2) and furthermore demonstrated that both datasets can not be accurately
solved by existing methods. In this process, we were able to showcase that spike times indeed
provide useful information for classifying both datasets. In addition, architectures exhibiting explicit
recurrence led to the best performance. Since the audio signals carry information at various time
scales, the reverberating recurrent activity most likely implements the required memory to roll out
stimulus characteristics at later points in time. Hence, the exploration of additional state variables
evolving on slower time scales like the ones presented by Bellec et al. (2018) represents an interesting
direction of future research.

It is noteworthy that the surrogate gradient method used within this chapter is only one possibil-
ity to train SNNs. Apart from different surrogate derivatives (Bohte, 2011; Bellec et al., 2018; Shrestha
& Orchard, 2018; Neftci et al., 2019a; Yin et al., 2020; Wozniak et al., 2020) different gradient-based
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approaches have been investigated in the past. Other work considered network translation (Zam-
brano et al., 2017; Pfeiffer & Pfeil, 2018; Rückauer et al., 2019; Stöckl & Maass, 2021), single spike
timing (Mostafa, 2017; Göltz et al., 2021), mean firing rates (Hunsberger & Eliasmith, 2015; Lee et al.,
2019), and stochastic approximations (Bengio et al., 2013b; Rezende & Gerstner, 2014; Gardner &
Grüning, 2016; Jang et al., 2019) to only name a few. Moreover, there exists a body of literature on
online approximations of surrogate gradients (Zenke & Ganguli, 2018b; Kaiser et al., 2020; Bellec
et al., 2020). Finally, biologically motivated spike-timing dependent plasticity (STDP)-like learn-
ing rules have been explored by Kheradpisheh et al. (2018) and Zhang et al. (2018) (Tavanaei et al.
(2018) contributed an extensive review). All of these methods provide interesting starting points for
detailed comparisons facilitated by the SHD and the SSC.

In summary, we introduced two open-access datasets which are easy to use and pose challenging
problems for current SNN implementations. This has the potential effect to advance the field of
neuromorphic computing, which lacks suitable real-world benchmarks. By providing spike-based
benchmark datasets, we contribute to the standardized performance evaluation of SNN implemen-
tations even across different platforms (Davies, 2019). The latter encompass both conventional com-
puters as well as neuromorphic hardware. Alongside the spiking data, we released our conversion
software (Footnote 3) and raw audio datasets (Footnote 1), both under permissive public domain
licenses. This allows to keep pace with current and future developments by refining and extending
the current version of the SHD and the SSC, but also promotes the creation of novel datasets.
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The surrogate gradient in-the-loop (ITL) framework has been published as a preprint in
Cramer et al. (2021) in close collaboration with Sebastian Billaudelle and Dr. Friedemann
Zenke. In the following, I will closely follow the publication, but with a more detailed de-
scription of the implementation. Thework on networks employing time-to-first-spike (TTFS)
coding was performed in collaboration with Julian Göltz and Laura Kriener and has been
published in Göltz et al. (2021).

Throughout the remainder of this thesis, we focus on distinct optimization strategies for in-
formation processing with spiking neural networks (SNNs) emulated on analog neuromorphic

hardware. While the emulation is characterized by exceptional efficiency, the training of SNNs on
these devices, however, remains a challenge due to the inherent device mismatch, the intrinsic noise
as well as the lack of suitable learning methods. Within the scope of this chapter, we start to ap-
proach these problems by considering a supervised learning scenario (Section 2.1.4), i. e. we train
networks to learn a predefined mapping from an input to an output based on some labeled train-
ing data. To turn this into an optimization problem, the mapping is imposed by a loss function
quantifying the current success of a given network based on the labeled training data. For the ac-
tual optimization, we consider successful methods from the field of machine learning. Specifically,
we minimize the loss function with gradient-based methods by resorting to the backpropagation
through time (BPTT) algorithm to learn the input to output mapping. Here, we apply the surrogate
gradient methods already presented in Chapter 4 to overcome the binary nature of SNNs which
precludes the utilization of vanilla gradient descent. While this approach has been shown to be suc-
cessful for the training of SNNs implemented in software as well as on digital neuromorphic devices,
the application of surrogate gradient learning to SNNs emulated on analog neuromorphic hardware
has not been achieved so far. Within this chapter, we extend surrogate gradient methods to build
a general in-the-loop (ITL) training framework targeting analog neuromorphic devices. The latter
is applied to the High Input Count Analog Neural Network X (HICANN-X) single-chip system to
showcase how learning self-corrects for device mismatch of the analog components. This property
allows us to exploit the benefits of analog neuromorphic hardware and hence facilitates low-latency
and high throughput classification of both standard vision datasets as well as the novel collection
of spoken words presented in Chapter 4. Our neuromorphic networks exhibit sparse spiking ac-
tivity and consume less than 200mW during inference. By this, we establish new benchmarks for
low-energy inference with SNNs on analog neuromorphic substrates. We compare our general ap-
proach to the specific case of networks employing a time-to-first-spike (TTFS) coding for which the
parameter changes resulting from the optimization can be expressed analytically.
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5.1 Introduction

Supervised learning methods achieved great successes in the field of machine learning with artifi-
cial neural networks (ANNs) (Abiodun et al., 2019). Originally inspired by the architecture of the
brain, ANNs are build of artificial neurons connected to form deep networks (LeCun et al., 2015).
Despite of this descent, ANNs differ in important aspects from their biological archetype. While
ANNs process and communicate multi-valued signals, the processing and communication scheme
of biological neurons is characterized by spatio-temporal sparseness deeply anchored in the design
of biological networks (Sterling & Laughlin, 2015). The constituents of the latter are spiking neu-
rons which receive and integrate incoming input on their analog membranes and, when reaching a
firing threshold, emit action potentials (APs), so-called spikes (Section 2.1.2). These events are com-
municated asynchronously through the network and serve as input to other downstream neurons
(Section 2.1.3). This behavior is captured by SNN models which promise energy-efficiency as well
as fault tolerance just like their biological archetype (Gerstner & Kistler, 2002). It is noteworthy that
already a single bio-inspired neuron – in contrast to an artificial neuron – constitutes a complex
system with finite response times and membrane dynamics, as well as its spike-based communica-
tion (Gerstner, 2001; Izhikevich, 2004). The benefits of SNNs can be exploited in combination with
neuromorphic hardware systems which mimic the key architectural properties of the processing
and communication scheme of biological neural networks (Section 2.2). Here, the analog emula-
tion of neuro-synaptic dynamics, drawing on physical properties and dynamics of the underlying
hardware components, promises a power-efficiency as well as scalability (Ambrogio et al., 2018;
Marković et al., 2020; Roy et al., 2019).

Analog neuromorphic systems are affected by device mismatch induced by variations in the pro-
duction process which renders the implementation of functional SNNs challenging (Section 2.2).
Hence, when emulating SNNs on these devices, the training needs to be robust and has to take
into account potential hardware imperfections. ITL learning schemes have been developed to di-
rectly incorporate variations in the training process. Within each iteration of the loop, the network
is emulated on the device and observables are recorded. The latter are incorporated into a model
implemented in software on the host system to finally calculate weight updates. These updates
are then written back to the device and the next iteration starts. By directly incorporating actual
observables recorded from the neuromorphic system into the training loop, the procedure automati-
cally corrects for potential deviations between the softwaremodel and the hardware implementation
(Schmitt et al., 2017; Kungl et al., 2019). This strategy, however, requires suitable training strategies
to fully exploit the temporal processing capabilities of SNNs.

Supervised learning in deep SNNs requires to solve both a spatial as well as a temporal credit as-
signment problem. The standard way of training neural networks in machine learning is to perform
gradient descent on a suitable loss function with respect to the network parameters by resorting to
the BPTT algorithm (LeCun et al., 2015). A similar approach cannot be directly taken for SNNs, since
the spike mechanism renders these networks non-differentiable. Specifically, the crucial points as-
sociated with the appearance and the vanishing of spikes under parameter changes pose challenges.
Hence, past work came up with the strategy of network translation to port the success of machine
learning with ANNs to the realm of SNNs (Pfeiffer & Pfeil, 2018). Here, a non-spiking ANN is first
trained and then translated into an equivalent SNN (Rückauer et al., 2019; Zambrano et al., 2017;
Stöckl & Maass, 2021; Büchel et al., 2021). However, the resulting SNNs often rely on rate-coding
schemes and hence do not exploit temporal processing capbabilities provided by SNNs which in
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turn results in inefficent solutions. Here, it might be promising to draw again inspiration from the
role model of SNNs and aim to mimic the sparseness in the communication scheme of biological
neural networks far away from the rate coding limit (Tavanaei et al., 2018; Pfeiffer & Pfeil, 2018;
Neftci et al., 2019b).

Temporal coding in combination with a supervised loss function requires to overcome the binary
nature of SNNs which precluded the application of vanilla gradient descent. Here, several strategies
have been proposed to render the dynamics of SNNs differentiable. First, smoothing approaches
introduce either graded spikes (Huh & Sejnowski, 2018) or stochasticity (Ackley et al., 1985; Bengio
et al., 2013a; Brea et al., 2013; Gardner & Grüning, 2016; Rezende & Gerstner, 2014; Guerguiev et al.,
2017) to render the forward pass differentiable. However, introducing stochasticity typically requires
averaging over time or space by considering populations of neuron to reduce the variance of the
gradient estimates (Hunsberger & Eliasmith, 2015; O’Connor &Welling, 2016; Lee et al., 2016; Neftci
et al., 2017; Guerguiev et al., 2017; Payeur et al., 2020). Second, spike-time gradients can be adopted in
cases in which the neuronal membrane potential (Gütig & Sompolinsky, 2006; Memmesheimer et al.,
2014) or firing times (Bohte et al., 2002; Mostafa, 2017; Mozafari et al., 2019; Göltz et al., 2021; Comsa
et al., 2020) can be expressed analytically in closed form. This strategy has been demonstrated in
multi-layer networks in conjunction with time-to-first-spike coding schemes. While this method
leaves the forward model unchanged and allows to exploit temporal coding, it requires additional
mechanisms to deal with neurons that remained silent or emitted multiple spikes. Finally, surrogate
gradient approaches also leave the forward model unchanged while not relying on a specific coding
strategy. Instead, such approaches directly apply approximations to the gradients to overcome the
binary nature of spikes which impedes the application of vanilla gradient descent, a notion inspired
by work on binary ANNs (Bengio et al., 2013a; Courbariaux et al., 2016; Neftci et al., 2019b). Most
notably, they allow to successfully train SNNs with spike-time coding (Bohte, 2011; Esser et al., 2016;
Zenke & Ganguli, 2018a; Shrestha & Orchard, 2018; Bellec et al., 2018; Wozniak et al., 2018; Neftci
et al., 2019b).

In this chapter, we extend previous work on surrogate gradients to develop an ITL training frame-
works. The latter is applied to the mixed-signal BrainScaleS-2 single-chip system to solve several
challenging benchmark problems requiring precisely timed spikes instead of firing rates. Most no-
tably, we demonstrate recurrent SNNs trained on the real-world speech dataset presented in Chap-
ter 4. In addition, we showcase ultra-low latency classification facilitated by the spiking implemen-
tation and further boosted by the accelerated nature of HICANN-X (Section 3.2). Moreover, we
highlight the self-calibrating nature of our ITL training scheme which automatically equalizes de-
vice variations and hence renders hardware calibration redundant. All of our networks perform at
comparable accuracy levels as corresponding software simulations, thereby validating our hardware
implementation.

5.2 Methods

Within this section, we present a general ITL learning framework which facilitates the training of
multi-layer as well as recurrent SNNs emulated on analog neuromorphic hardware. Specifically,
we consider loss functions on which gradient descent via BPTT is performed. To that end, we
draw on a surrogate derivative to overcome vanishing gradients (Zenke & Ganguli, 2018a; Neftci
et al., 2019b). Additionally, this choice provides a high degree of flexibility as surrogate gradient
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Figure 5.1: Surrogate gradient-based ITL learning for analog neuromorphic hardware. The SNN
emulated on the analog device is optimized for information processing in an iterative fashion based on an
approximate model on the host computer. To that end, the forward pass of the model is emulated on the neu-
romorphic device by stimulating the SNN with a set of input spikes. Simultaneously, observables originating
from the device are recorded and injected together with the input spike trains in an approximate model of
the neuro-synaptic dynamics simulated on the host computer. This approximate model allows to perform the
backwards pass with gradient-based methods and the BPTT algorithm with a standard auto-differentiation
library. Subsequently, the computed weight updates Δ𝑤 are written back to the analog neuromorphic device
and the next iteration is entered. Figure taken from Cramer et al. (2021).

learning supports arbitrary loss functions which can be tailored to either rate- or spike-timing-
based coding schemes or even combinations thereof. We start with a general description of our
surrogate gradient-based ITL training framework in Section 5.2.1 and then move on to the specific
implementation on the HICANN-X application-specific integrated circuit (ASIC) in Section 5.2.2.
We close by a description of the utilized application specific techniques like the loss functions and
regularization methods (Section 5.2.3), the considered benchmark datasets (Section 5.2.4) as well as
the initialization strategies (Section 5.2.5). All utilized parameters are summarized in Table 5.1.

We compare our framework to a spike-time gradient approach for which the weight updates can
be calculated analytically. More specifically, we consider a TTFS coding schemewithin feed-forward
architectures. The methods thereof are depicted in Appendix A.2. Due to the analytical solution and
the requirement of emitted spikes only, the weight updates can be directly calculated according to
Equations (A.16), (A.22) and (A.23) on the host machine without relying on auto-differentiation
tools.

5.2.1 In-the-loop training framework

Basically, our ITL framework comprises of three successive stages (Figure 5.1). First, the forward
pass is emulated on the analog neuromorphic substrate by stimulationwith samples originating from
a spike-based dataset. Simultaneously, the spikes as well as the membrane traces of all neurons are
recorded and transferred to the host computer. Second, this data is injected into an approximate
software model of the neuromorphic SNN to render the acquired data differentiable. In more detail,
we draw on BPTT using auto-differentiation libraries in combination with state-of-the-art optimiz-
ers which promotes the calculation of weight updates (Paszke et al., 2017) A single loop iteration is
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then finalized by, third, transferring the calculated weight updates from the host computer back to
the analog device. By incorporating the actual hardware recordings into the computation of surro-
gate gradients – instead of relying on simulated estimates – the software model is ensured to not
deviate too far from the actual dynamics emulated on the neuromorphic substrate. As a result, the
calculated updates remain accurate despite the approximate nature of the software model. Thereby,
the algorithm self-adjusts for parameter mismatch of the analog components.

In the following, we describe the three central steps of our general ITL learning scheme in more
detail. In that process, we start with a description of the emulated networks and discuss the ob-
servables required for weight update calculations. Next, the approximate model of neuro-synaptic
dynamics as well as the injection of recordings is depicted. We close by a specification of the pa-
rameter updates on the neuromorphic system.

Network emulation: Our ITL training framework allows to optimize arbitrary networks com-
posed of leaky integrate-and-fire (LIF) neurons. In general, this framework can be applied to any
analog or mixed-signal substrate as long as access to all membrane potentials and spike times of
the emulated neurons is supported. Here, we focus on multi-layer as well as recurrent SNNs with
signed synaptic weights. In more detail, the latter can seamlessly transit between positive (excita-
tory) and negative (inhibitory) weight values. For simplicity, we consider the case of coinciding leak
and reset potentials, 𝑢leak and 𝑢reset. Moreover, the refractory period 𝜏ref is set to zero for simplicity.
The actual emulation of the forward pass encompasses the stimulation of the implemented SNNs
with samples originating from a spike-based dataset. The spikes as well as the digitized membrane
potentials of all neurons within the network are simultaneously recorded and in turn, transferred
to the host computer to perform the subsequent update calculations.

Construction of computation graph: In the following, we highlight a method for the construc-
tion of a computation graph based on an approximate model of the emulated neuro-synaptic dy-
namics of the analog neuromorphic substrate, which allows us to perform gradient descent on an
arbitrary loss function via BPTT to calculate weight updates Δ𝑤. In more detail, the neuronal dy-
namics can be iteratively simulated on the host computer resulting in a differentiable computation
graph. Subsequently, the previously described measured observables originating from the analog
neuromorphic substrate are incorporated into this computation graph. In that process, we rely on
measured quantities whenever available and resort to simulation results for intermediate observ-
ables that can not be measured like the synaptic currents.

Within our computation graph (Figure 5.2), we assume ideal LIF dynamics in combination with
current-based synapses (Sections 2.1.2 and 2.1.3) and apply exact integration based on a regular
time step 𝛿𝑡 (Equation (2.12)). To that end, we iteratively estimate the membrane potentials by
incorporating the decay to the leak potential 𝑢leak aswell as the calculated synaptic currents ̃𝐼 [𝑡]. The
latter are based on the presynaptic spike trains of the downstream layer ̃𝑆(𝑙−1)𝑗 [𝑡] and the recurrent

ones 𝑆(𝑙)𝑘 :

�̃�(𝑙)𝑖 [𝑡 + 1] = �̃�(𝑙)𝑖 [𝑡] ⋅ e−𝛿𝑡/𝜏mem + ̃𝐼 (𝑙)𝑖 [𝑡] , (5.1)

̃𝐼 (𝑙)𝑖 [𝑡 + 1] = ̃𝐼 (𝑙)𝑖 [𝑡] ⋅ e−𝛿𝑡/𝜏syn + ∑𝑗 𝑤
(𝑙)
𝑖𝑗 ̃𝑆(𝑙−1)𝑗 [𝑡]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

feed-forward

+ ∑𝑘 𝑣
(𝑙)
𝑖𝑘

̃𝑆(𝑙)𝑘 [𝑡]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
recurrent

, (5.2)
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Figure 5.2: Construction of a differentiable computation graph. A computation graph is constructed by
integrating the LIF equation in combination with current-based synapses. Here, all modeled state variables
are highlighted by a tilde. Actual recordings stemming from the analog neuromorphic substrate are inserted
into their place whenever available. Time evolves from left to right, while the information flowwithin a single
integration step occurs from bottom to top. The synaptic currents are supplied by spikes originating from the
previous layer (𝑆(𝑙−1)) as well as recurrent events (𝑆(𝑙)), weighted by the feed-forward (𝑤 (𝑙)) and recurrent (𝑣 (𝑙))
weights, respectively. These currents are in turn integrated on the neuronal membrane potentials (𝑢(𝑙)). Upon
reaching the firing threshold, neurons emit spikes (𝑆(𝑙)) which in turn propagate to neurons in downstream
layers as well as recurrently within the same layer. In addition, the release of a spike causes the reset (rst)
of the membrane potential within the next time step. The modeled membrane potentials 𝑢(𝑙) and spikes 𝑆(𝑙)

are continuously synchronized with data recorded from the analog neuromorphic device (�̃�(𝑙) and ̃𝑆(𝑙)). Figure
taken from Cramer et al. (2021).

where 𝑤 (𝑙)
𝑖𝑗 denote the feed-forward and 𝑣 (𝑙)𝑖𝑘 the recurrent weights of layer 𝑙. Here, we highlight

all modelled state variables which represent estimates of the on-chip dynamics by a tilde. It is
noteworthy that the simplified dynamics captured by Equations (5.1) and (5.2) lack of higher-order
effects induced by the analog implementation. Hence, �̃�(𝑙)𝑖 [𝑡] and ̃𝑆(𝑙)𝑖 [𝑡] are likely to deviate from the
actual values 𝑢(𝑙)𝑖 [𝑡] and 𝑆(𝑙)𝑖 [𝑡] as sampled from the hardware. To not distort the resulting gradients,
the normalized, actual recordings are inserted in their place whenever possible and we only utilize
the model for the calculation of their derivatives. In more detail, we introduce an auxiliary identity
function 𝑓 (𝑥, �̃�) ≔ 𝑥 and define its surrogate derivatives:

𝜕𝑓
𝜕𝑥

≔ 0 ,
𝜕𝑓
𝜕�̃�

≔ 1 . (5.3)

With this, we are able to modify Equation (5.1) to:

�̃�(𝑙)𝑖 [𝑡 + 1] = 𝑓 (𝑢(𝑙)𝑖 [𝑡 + 1], �̃�(𝑙)𝑖 [𝑡] ⋅ e−𝛿𝑡/𝜏mem + ̃𝐼 (𝑙)𝑖 [𝑡]) . (5.4)

Likewise, we define ̃𝑆(𝑙)𝑗 [𝑡](𝑆(𝑙)𝑗 [𝑡], �̃�(𝑙)𝑗 [𝑡]) ≔ 𝑆(𝑙)𝑗 [𝑡] for spike times 𝑆(𝑙)𝑗 [𝑡]with the associated surrogate
derivatives:

𝜕 ̃𝑆(𝑙)𝑗 [𝑡]

𝜕𝑆(𝑙)𝑗 [𝑡]
≔ 0 ,

𝜕 ̃𝑆(𝑙)𝑗 [𝑡]

𝜕�̃�(𝑙)𝑗 [𝑡]
≔ (𝛽 ⋅ |�̃�(𝑙)𝑗 [𝑡] − 𝜗 |)

−2
, (5.5)
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where 𝛽 corresponds to the steepness of the surrogate derivative (Zenke & Ganguli, 2018a). Note
that this is the same surrogate derivate as the one used in the context of Chapter 4.

Specifically, for the evaluation of the backward pass and the associated calculation of 𝜕ℒ/𝜕𝜃 =
… 𝜕 ̃𝑆/𝜕�̃� ⋅ 𝜕�̃�/𝜕𝜃, we resort to the sampled values of the membrane potential originating from the
analog device whenever an expression containing �̃� is evaluated, e. g. 𝜕 ̃𝑆/𝜕�̃�. In contrast, we draw
on the modelled quantities for further derivatives 𝜕�̃�/𝜕𝜃 within the recursion relation of BPTT.

Closing the loop: The loop is closed by transferring the calculated weight updates from the host
computer to the analog neuromorphic device. To this end, the updated weights only need to be
alignedwith the weight resolution of the substrate. After this third step, the next iteration is entered.

5.2.2 Implementation on HICANN-X

We apply our flexible ITL training framework to the HICANN-X chip (cf. Section 3.2). In the follow-
ing, we start with a description of the required mapping of multi-layer as well as recurrent SNNs
with signed synaptic weights to the analog neuromorphic core of HICANN-X. Subsequently, we
depict the pursued strategy for the parallel recording of membrane potentials via the CADCs si-
multaneously to the gathering of event data required to construct the differentiable computation
graph. We close with a description of the applied weight scaling used to align the calculated up-
dates with the weight resolution on HICANN-X as well as the software implementation of the whole
framework.

Mapping of multi-layer as well as recurrent SNNs to the analog neuromorphic core: We
used the HICANN-X chip to implement multi-layer as well as recurrent SNNs with signed synaptic
weights (Figure 5.3). As outlined in Chapter 3, the analog core of HICANN-X is designed to emulate
SNNs adhering to Dale’s law. To still allow for a continuous transition between positive and neg-
ative weights during training, we configured one line of each synapse driver to be excitatory and
the other line to be inhibitory. Now, a union of two synapses – one on each line of each synapse
driver – can be considered as a logical synapse (Figure 5.3a). By sending each spike event to both
lines and ensuring only one of the two weights constituting each logical synapse to be non-zero, the
combination of both circuits can be regarded as a single synapse carrying a sign. This implementa-
tion of signed synapses reduces the number of synapses per neuron from 256 to 128. To restore the
original fan-in of 256 synapses per neuron, we utilized the multi-compartment features of HICANN-
X and connected always two neighboring neuron circuits to form a single logical neuron. To that
end, we disabled the leak as well as the spiking mechanism of all but one of the combined neuron
compartments.

The implementation of larger feed-forward as well as recurrent SNNs required to exchange spikes
between all four quadrants of HICANN-X. For that purpose, we utilized the routing capabilities to
unify the synapses of all four quadrants into a virtual synapse array. Due to the relay of two neuron
compartments and the use of singed synapses, the latter is of size 256×256 for all results presented
in this chapter. Within this formulation, feed-forward as well as recurrent neural networks can be
mapped efficiently and easily to HICANN-X (Figure 5.3).

Here, we consider network topologies that comprise a single hidden layer accompanied by a
non-spiking readout layer. The associated non-spiking leaky integrators can be implemented on
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Figure 5.3: Implementation of multi-layer and recurrent networks on the HICANN-X ASIC. (a) The
flexible on-chip routing capabilities of HICANN-X promote the implementation of near arbitrary network
topologies on the analog neuromorphic core. The stimulating spikes (orange lines) are injected via a column
of synapse drivers (black triangles) into the synapse array. A set of synapses (orange dots) relays these events
to the hidden layer neurons (green circles). All hidden layer spikes are routed on-chip, either recurrently to
other hidden layer neurons (green dots) or to the downstream layer (gray dots) composed of the readout units
(gray circles). To implement synapses with signed weights, each logical connection is represented by a pair
of excitatory and inhibitory hardware synapses. During the analog emulation, the membrane potentials are
digitized in parallel via the CADCs and read out by the PPUs. (b) Corresponding recurrent network graph.
Synaptic connections are highlighted with the same color as in panel (a). Figure taken from Cramer et al.
(2021).

HICANN-X by disabling the readout neurons’ firing mechanism. Thereby linear readout units –
common in the field of machine learning – can be efficiently implemented on-chip.

All neuronal parameters, including reference potentials and time constants, were calibrated to the
values presented in Table 5.1. The dynamical range of the membrane potential was maximized by a
large distance between the leak and threshold potential 𝑢thres−𝑢leak to ensure a high signal-to-noise
ratio. Since the model used to construct the computation graph does not include refractory effects,
the refractory time 𝜏refrac was configured to a small value. Furthermore, the reset potential 𝑢reset
was configured to match the leak potential 𝑢leak for simplicity.

The neuron-wise adjustability of parameters does not only facilitate calibration routines to mit-
igate circuit-to-circuit deviations induced by variations in the production process, but also allows
to deliberately decalibrate the system. Specifically, we calibrated 𝜏mem, 𝜏syn and 𝑢thres to neuron
specific target values. The latter were drawn from a normal distribution 𝒩 (𝜇d, 𝜎d) with mean 𝜇d
corresponding to the original calibration target. Here, the quality of the calibration is measured by
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Figure 5.4: Parallel digitization of membrane potentials on HICANN-X. (a) Illustration of the applied
membrane potential recording strategy. During the emulation of neuro-synaptic dynamics, the CADCs are
used to digitize the analog membrane potentials of all analog neurons in parallel. To that end, the FPGA is
used to trigger a sequence of CADC recordings via the PPUs. Specifically, the PPUs continuously poll for
RUN signals send from the FPGA. In case this signal is detected, the SIMD vector units are used to record
a sequence of samples of each neuron’s membrane potential in parallel. The resulting data is immediately
transferred to an intermediate memory region on the FPGA from where it is asynchronously read back by
the host computer. By this approach, a data rate of 1.2 Gbit can be reached which exceeds the bandwidth
achievable via a direct transfer of CADC data to the host machine. (b) With this strategy, the membrane
potentials of 256 neurons can be digitized in parallel with a sample interval of only 1.7 µs. The spike times
are annotated in red. Panel (b) taken from Cramer et al. (2021).

the normalized standard deviation 𝜎d which was swept in the range 0 % to 50 %. Thereby, we provide
a strategy to systematically explore the self-calibration properties of our learning framework.

Recording spikes and analogmembrane traces: Training SNNswith surrogate gradient meth-
ods requires knowledge of the neuronal membrane potentials. In contrast to digital systems, the
latter are represented as physical voltages on analog neuromorphic systems and are therefore not
directly available for weight update calculations. To be able to perform numerical calculations in-
volving the membrane potentials on these systems, digitization is required. However, the latter
is often challenging due to the inherent parallelism and time-continuous nature of the underlying
substrate. This bottleneck becomes even more strained for accelerated systems like HICANN-X.

The two column-parallel analog-to-digital converters (CADCs) (Section 3.1.1), deeply anchored
into the design of BrainScaleS-2, allow to digitize the membrane potentials of 2×128 neurons si-
multaneously and hence reduce the strain of the aforementioned bottleneck (Figure 5.4). Since we
connected pairs of neurons to increase the synaptic fan-in, a single read per CADC is sufficient to
acquire a sample of each neuron’s membrane in parallel. This is furthermore facilitated by the inter-
leaved row-wise parallel reading scheme of the CADCs: With a single read, the membrane potential
of every second neuron is digitized. Hence, our choice of two-compartment neurons promotes a
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1 while(command != HALT){

2 // check if last sample in batch

3 if(command == RESET_BATCH)

4 batch_offset = 0;

5 end if

6

7 // wait for run signal

8 if(command == RUN)

9 command = NONE;

10 start = get_time_base();

11

12 // calculate memory offset for current sample

13 external_offset = get_memory_offset(batch_offset, ppu_id, sample);

14

15 // read membrane potentials and write to external memory

16 for(size_t sample=0; sample < n_samples; ++sample)

17 asm volatile(

18 inx potentials, %[ca_base], %[cadc_offset]

19 outx potentials, %[external_base], %[external_offset]

20 : [potentials] ”=&qv” (vec_splat_u8(0))

21 : [ca_base] ”b” (dls_causal_base),

22 [external_base] ”b” (dls_extmem_base),

23 [cadc_offset] ”r” (0),

24 [external_offset] ”r” (external_offset)

25 :

26 );

27 end for

28 asm volatile(”sync”);

29

30 batch_offset++;

31

32 // measure duration to estimate sample rate

33 duration = get_time_base() - start;

34 end if

35 end while

Listing 3: Recording of analog membrane traces with the PPUs. The PPUs continuously polls for the
update signal RUN send from the field-programmable gate array (FPGA). In case this signal is detected, the
PPUs trigger n_samples CADC reads via the SIMD vector units to digitize the membrane potentials of all
neurons in parallel. Here, the recorded data is directly transferred to an intermediate memory region on the
FPGA at offset external_offset also accessible by the host system. Batch support is provided by reusing
the same memory region once all samples have been acquired. This cycling is implemented by the additional
reset signal RESET_BATCH which leads to a reset of the batch index bacht_offset. For further processing,
the time required to acquire n_samples is assessed. The kernel code is shown in NASM syntax.

minimal sample period while simultaneously ensuring stable timing. The latter is in particular not
disrupted by multiple successive reads for the recording of a single sample for each neuron and each
time step.

Instead of triggering a sequence of CADC reads from the host system, we utilized the embedded
plasticity processing units (PPUs) to trigger the conversions to ensure higher and more stable sam-
pling rates (Figure 5.4a). The implementation is centered around the kernel code shown in Listing 3.
Specifically, the PPUs are programmed to continuously poll for the update signal RUN send in regular
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time intervals from the FPGA (line 1). In case this signal is detected (line 8), the single instruction,
multiple data (SIMD) vector units trigger a sequence of n_samples CADC reads and stores the as-
sociated digitized data in the register potentials (lines 16 to 27). By relying on an external update
signal, both PPUs can be synchronized which in turn facilitates the assignment of CADC samples
and corresponding time stamps. The digitized data in potentials is directly transferred to a ded-
icated FPGA memory region at offset external_offset (line 19). Notably, the latter cannot only
be accessed from the SIMD vector units, but also from the interfacing host system. The traces can
then asynchronously be read back by the host computer after the completion of a batch of input
samples. Subsequently, the batch index batch_offset is reset from the FPGA via the RESET_BACHT
signal (lines 3 to 5), leading to a cycling over the very same memory region after batch completion
(line 13). For further processing of the digitized membrane data and to finally estimate the achieved
sample rate, the duration duration required to digitize and store n_samples samples is assessed
(lines 10 and 33).

Including the transfer of data to the external memory region, we reach a sample rate of approx-
imately 0.6MSample s−1, which corresponds to a sampling interval of 1.7 µs. For 256 neurons, this
yields a data rate of 1.2 Gbit s−1 which exceeds the 1Gbit s−1 bandwidth between the host computer
and the interfacing FPGA and hence confirms our PPU-based approach. For comparison, if the
1Gbit bandwidth to the host system would be exclusively utilized for the transfer of digitized mem-
brane traces, a theoretical sample rate of approximately 0.5MSample s−1 could be reached which
corresponds to a sample interval of 2.0 µs. In addition to the sampled membrane traces, we simulta-
neously record the spike events emitted by the neurons on the neuromorphic device. In this setup,
the maximum recording duration is only limited by the available memory and the batch size.

For most of the presented results, we set the step size 𝛿𝑡 used to construct the computation graph
to the aforementioned sample interval of the CADCs. It is noteworthy that albeit the timestamps
of the spikes returned from HICANN-X feature a much higher precision, we aligned them to the
same regular grid. For some tasks, a higher temporal resolution can be beneficial to better capture
causal relations between successive spikes. In these cases, we applied a simple interpolation of the
recorded membrane traces with base 𝛿𝑡/𝑛 by drawing on a piecewise constant approximation.

Aside from plain data recording, the PPUs furthermore enable the implementation of a fast infer-
ence mode. An overall lowered emulation time is a key feature of this mode which can be achieved
by reducing the number of acquired CADC samples n_samples as well as the shortening of the tem-
poral separation between concurrent stimuli. However, the input spikes of two concurrent stimuli
can not be sent in direct succession due to the finite time constants of the analog system: Before
stimulation with the next input sample, all synaptic currents as well as membrane potentials have
to decay back to their respective baselines. To not have to wait for their natural decay with time
constants 𝜏syn and 𝜏mem, 𝑢(𝑙)𝑖 and 𝐼 (𝑙)𝑖 were artificially reset via the PPUs after the acquisition of the
requested sample count. Both resetting mechanisms can be triggered in parallel from the SIMD vec-
tor unit with the kernel code shown in Listing 4. Specifically, the membrane potentials are clamped
to the reset potential 𝑢reset for the duration of the refractory period 𝜏ref by triggering silent neuron
resets within the neuron backend (line 6). This approach effectively irradiates past states, since 𝑢reset
was chosen to match the leak potential 𝑢leak and due to the short 𝜏ref. At the same time, the synaptic
inputs are connected via debug lines to an external digital-to-analog converter (DAC) (lines 3 and
4). The latter pulls the synaptic inputs back to their baseline values and is again disconnected after
the expiration of cycles cycles (lines 18, 22 and 23). Since the recording of the membrane poten-
tials is done on the PPUs, this fast inference can be exploited even further by directly evaluating the
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1 asm volatile(

2 // Connect synapse debug lines

3 outx attach, %[debug_switch_base], %[index_0]

4 outx attach, %[debug_switch_base], %[index_1]

5 // Trigger silent neuron reset of one neuron compartment

6 outx zeros, %[neuron_reset_base], %[index_odd]

7 :

8 : [attach] ”qv” (vec_splat_u8(syn_debug_both)),

9 [zeros] ”qv” (vec_splat_u8(0)),

10 [debug_switch_base] ”b” (dls_config_odd_base),

11 [neuron_reset_base] ”b” (dls_neuron_reset_base),

12 [index_0] ”r” (512 + 0),

13 [index_1] ”r” (512 + 1),

14 [index_odd] ”r” (1)

15 :

16 );

17

18 sleep_cycles(cylces);

19

20 asm volatile(

21 // Disconnect synapse debug lines

22 outx detach, %[debug_switch_base], %[index_0]

23 outx detach, %[debug_switch_base], %[index_1]

24 :

25 : [dettach] ”qv” (vec_splat_u8(syn_debug_cut)),

26 [zeros] ”qv” (vec_splat_u8(0)),

27 [debug_switch_base] ”b” (dls_config_odd_base),

28 [index_0] ”r” (512 + 0),

29 [index_1] ”r” (512 + 1)

30 :

31 );

Listing 4: Fast inferencemode on the PPUs. The temporal separation between concurrent samples can be
lowered by artificially resetting the membrane potentials and the synaptic currents in parallel via the SIMD
vector unit to not wait for their decay. For subsequent samples to not interfere, we reset the membrane
potentials of all neurons after the presentation of the input by triggering a silent reset of the neuron backend.
At the same time, the synaptic inputs are connected via debug lines to an external DAC, thereby pulling the
synaptic input back to their baselines effectively irradiating the past state. After settling to the resting state,
the lines are again disconnected. The kernel code is shown in NASM syntax.

network’s decision on-chip via the SIMD vector unit. With this, only crucial classification results
need to be transferred back to the host machine. Thereby, the I/O bottleneck can be relieved and at
the same time, much larger batch sizes can be supported.

Weight scaling: The synaptic weights calculated in software have to be scaled and clipped to align
with the weight resolution of 7 bit signed integers of HICANN-X. To that end, we first matched the
amplitudes of single post-synaptic potentials (PSPs) in the software simulation and the hardware
emulation by adjusting the analog bias currents on HICANN-X. While this scaling is crucial for all
weights connecting spiking neurons, the weights of synapses targeting non-spiking layers can be
scaled arbitrarily due to the absence of a threshold criterion.

For the classification of MNIST images, we adaptively scaled the weights between hidden and

78



5.2 Methods

1 network = strobe.nn.Network([strobe.nn.Linear(n_input, n_hidden),

2 strobe.nn.LIFLayer(n_hidden),

3 strobe.nn.Linear(n_hidden, n_output),

4 strobe.nn.LILayer(n_output)])

5 network.connect(...)

6

7 for epoch in range(n_epochs):

8 for x, y_star in data_loader:

10 optimizer.zero_grad()

11

12 y = model(x)

13

14 loss(y, y_star).backward()

15 optimizer.step()

16

17 with torch.no_grad():

18 model.linear_hidden.weight.data.clamp_(-limit, limit)

19 model.linear_output.weight.data.clamp_(-limit, limit)

Figure 5.5: Extension of the PyTorch library for ITL learning. Our framework extends the existing Py-
Torch auto-differentiation library and builds upon a custom backend that relies on the BrainScaleS-2 software
stack. By this, the experiment control flow is compatible with the one used for standard machine learning
applications on conventional hardware. Shown is the definition of a SNN with a single hidden layer and a
readout comprising of non-spiking leaky integrators. The training loop is comparable to standard PyTorch
implementations, despite the required clamping of synaptic weights prior to their upload to HICANN-X.

output neurons after each batch. More specifically, we aligned the largest absolute weight value as
represented in software max𝑖,𝑗 |𝑤L

𝑖𝑗 | to the maximum weight possible on the neuromorphic substrate
prior to writing the weights to the device.

Software environment: We implemented our ITL training framework within PyTorch’s auto-
differentiation library (Paszke et al., 2017). This extension builds upon the BrainScaleS-2 software
stack which was used to configure HICANN-X as well as to execute experiments (Müller et al.,
2020). An example of the high-level usage is shown in Figure 5.5. By deeply embedding our frame-
work into the PyTorch library, the experiment control flow is compatible with the one of standard
machine learning applications in common software implementations. The implementation of the
surrogate partial derivatives given in Equations (5.3) and (5.5) was achieved in a comparable manner
to Listing 2.

5.2.3 Loss functions

Our proposed framework can be combined with any differentiable loss function that can be formu-
lated based on the data provided by the neuromorphic system. We start with a description of the
specific loss functions utilized to conduct the results shown within this chapter. The flexibility pro-
vided by our framework furthermore allows us to augment these task-specific loss functions with
regularizations terms. The considered choices are described afterward. We close with a summary of
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the employed benchmark datasets as well as the weight initialization strategy. In close accordance
with the methods presented in Chapter 4, we presented the data in batches to the SNNs which is
why we again introduce a batch index 𝑠 in the following.

Task loss: Within this chapter, we consider two loss functions based on the membrane potential
of non-spiking leaky integrators in the readout layer (𝑙 = 𝐿). Hence, the network’s response is
directly encoded in the evolution of their membrane potentials 𝑢𝐿𝑖,𝑠[𝑡]. We trained all feed-forward
architectures with the Adam optimizer (Kingma & Ba, 2014) in combination with a max-over-time
loss which has also been visited within the scope of Chapter 4. More specifically, we applied the
cross-entropy loss in Equation (4.9) to the time step containing the maximal membrane potential
deflection for each readout unit ̃𝑡𝑖,𝑠 = argmax𝑛 𝑢

(𝐿)
𝑖,𝑠 [𝑡] (Cramer et al., 2020b). Due to the finite time

constants of both LIF as well as leaky integrator neurons, we applied a loss function that considers
all samples of each readout unit for our recurrent SNNs. Specifically, we replaced the max-operator
with a sum, i. e. ̃𝑡𝑖,𝑠 = ∑𝑁T

𝑖=1 𝑢
(𝐿)
𝑖,𝑠 [𝑡] to obtain a sum-over-time loss, incorporating all membrane samples

of the readout units. This choice has been utilized in combination with the SMORS3 optimizer.

Regularization: We augmented the task-specific loss by regularization terms. Specifically, we
applied activity regularization leading to sparse firing patterns, both in space and time. For the
classification of MNIST digits, we applied a regularization term rewarding solutions with few spikes:

ℒb (𝑆H𝑖,𝑠) = 𝜌b
1
𝑁B

𝑁B

∑
𝑠=1

1
𝑁H

𝑁H

∑
𝑖=1

(∑
𝑡
𝑆H𝑖,𝑠[𝑡])

2
. (5.6)

Here, we introduced the strength parameter 𝜌b, the hidden layer size 𝑁H, the corresponding hidden
layer spike trains 𝑆H𝑖,𝑠 and the number of samples in a batch 𝑁B. For readability and due to the use of
a single hidden layer only, we dropped the layer index 𝑙 in the following and denote quantities of the
hidden layer by the superscript H. For the spoken digit classification, we applied a regularization
which only punishes solutions in case the hidden layer spiking activity exceeds a threshold:

ℒa (𝑆H𝑖,𝑠) = 𝜌a
1
𝑁B

𝑁B

∑
𝑠=1

max [0, ([
𝑁H

∑
𝑖=1

𝑁T

∑
𝑡=1

𝑆H𝑖,𝑠[𝑡]] − 𝜃a)
2

] , (5.7)

with the strength 𝜌a, the threshold 𝜃a and the number of time steps𝑁T. It is noteworthy that shaping
the activity of SNNs is of particular interest in the field of neuromorphic engineering, where the
overall power consumption often correlates with the spike count. Moreover, a reduced number of
spikes not only relieves the bandwidth on the substrate itself, but also between chips in multi-chip
systems.

Regularization terms can not only be tailored to improve generalization performance, but can
also be used to incorporate hardware-specific constraints such as finite weights or limited dynamic
ranges of the analog recordings. To prevent saturation of the weights on HICANN-X, we added a
regularizer punishing large weight values:

ℒw (𝑤H
𝑖𝑗 ) = 𝜌w

1
𝑁I

𝑁I

∑
𝑖=1

1
𝑁H

𝑁H

∑
𝑗=1

(𝑤H
𝑖𝑗 )

2
, (5.8)

with strength parameter 𝜌w and the input layer size 𝑁I. For all feed-forward architectures, we addi-
tionally included readout regularization to better utilize the dynamic range and to prevent saturation
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of the membrane potentials of the analog readout units. Here, we considered a regularizer acting
on the maximum deflection of each readout neuron’s membrane potential:

ℒr (𝑢L𝑖,𝑠) = 𝜌r
1
𝑁B

𝑁B

∑
𝑠=1

1
𝑁L

𝑁L

∑
𝑖=1

(max𝑡
𝑡

𝑢𝐿𝑖,𝑠[𝑡])
2
, (5.9)

with strength parameter 𝜌r and the number of units in the label layer 𝑁L.

5.2.4 Datasets

We utilized three different classification datasets to benchmark our implementation of SNNs em-
ulated on HICANN-X. Specifically, we trained SNNs on the Yin-Yang, the MNIST as well as the
Spiking Heidelberg Digits (SHD) dataset with our ITL learning framework.

Yin-Yang: As proposed by Kriener et al. (2021), we took the 5000 train and 1000 test samples from
the Yin-Yang figure. Each point was interpreted by a pair of Cartesian coordinates (𝑥1, 𝑥2) ∈ [0, 1]1.
The latter were transformed to the spiking domain by multiplication with the input time constant
𝜏in, i. e. 𝑡 I1 = 𝑥1𝜏in and 𝑡 I2 = 𝑥2𝜏in, respectively. To capture the symmetry of the data and to enable
training without additional bias term, the two input spike times were augmented by 𝑡 I3 = (1 − 𝑥1)𝜏in
and 𝑡 I4 = (1 − 𝑥2)𝜏in. Following the proposition of the inventors, we in addition introduced a bias
spike at time 𝑡 I5 = 𝑡bias. These five input spikes were used to classify the 𝑁C = 3 classes Yin, Yang
and Dot. In order to accommodate to the input strength and weight resolution of HICANN-X, each
spike was multiplexed five times. The resulting 25 spike times were used to stimulate our SNNs
via a set of 25 synapses, each of which transmitting a single spike per input sample. To increase
the temporal resolution, we employed 𝑛 = 2, i. e. a two-fold interpolation of the acquired CADC
membrane traces.

MNIST: The size of the raw MNIST images was reduced from 28×28 to 16×16 pixels. This was
achieved by first discarding the two outermost rows of pixels and second by scaling these remaining
pixels. To convert the images to spike times, the normalized greyscale value of each pixel 𝑥𝑖 was
interpreted as currents to a LIF neuron. If this current is strong enough, it triggers a spike at time:

𝑡 I𝑖 (𝑥𝑖) = 𝜏in log (
𝑥𝑖

𝑥𝑖 − 𝜃in
) , (5.10)

where 𝜏in corresponds to the input units time constant and 𝜃in to its threshold. The resulting 256
spike trains – each of which comprising a single event – were used to classify the 𝑁C = 10 distinct
digits.

Following established methods, we employed data augmentation to the raw MNIST images by
introducing random rotations up to 𝜗r = 15°. Furthermore, we investigated dropout to the hidden
layer with a probability of 𝑝d = 10% to improve generalization performance.

SHD: Since the SHD dataset directly provides spike trains (Chapter 4), a custom conversion of
auditory signals was not required (Cramer et al., 2020b). We, however, reduced the input dimen-
sionality to accommodate to a manageable fan-in for HICANN-X by sampling𝑁I = 70 of the original
700 input units by omitting the first 70 and then selecting every ninth. Furthermore, the time di-
mension was compressed by a factor of 𝛾 = 2000 to reflect the accelerated system’s speedup of 1000
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Table 5.1: Parameters for the neuromorphic substrate, training framework and datasets. All param-
eters are given in the hardware time domain. The errors given for neuronal parameters correspond to the
standard deviation of all neurons. Table adapted from Cramer et al. (2021).

Stage Parameter Symbol Value
Yin-Yang MNIST SHD

Neuro-
synaptic
dynamics

Difference threshold-leak potential 𝑢thres − 𝑢leak (270 ± 15)mV (270 ± 15)mV (270 ± 15)mV
Membrane time constant 𝜏mem (8.6 ± 1.1) µs (5.7 ± 0.3) µs (8.6 ± 1.2) µs

in computation graph 10.0 µs 6.0 µs 10.0 µs
Synaptic time constant 𝜏syn (6.5 ± 0.1) µs (6.5 ± 0.1) µs (11.2 ± 0.5) µs

in computation graph 6.0 µs 6.0 µs 10.0 µs

Network

Input size 𝑁I 5 256 70
Hidden layer size 𝑁H 120 246 246
Label layer size 𝑁L 3 10 20
Mean of weight initialization �̂�𝑤 0.0 0.0 0.0
Stdev of weight initialization �̂�𝑤 0.17 0.17 0.171

Dropout probability 𝑝d – 10% –

Input

Input unit time constant 𝜏in 42 µs 8 µs –
Input unit threshold 𝜃in – 0.2 –
Bias time 𝑡b 0.45𝜏in – –
Random rotations 𝜗r – 15° –
Input speedup 𝛾 – – 2000
Input unit jitter 𝜎u – – 15

General
Time step/sample period 𝛿𝑡 0.85 µs 1.7 µs 1.7 µs
Number of time steps 𝑁T 20 20 200

Optimization

Training epochs 𝑁E 100 400 50
Batch size 𝑁B 50 40 50
Surrogate gradient steepness 𝛽 50 50 50
Learning rate 𝜂 1.5 × 10−3 1.5 × 10−3 1.5 × 10−3

Learning rate decay (per epoch) 𝛾𝜂 0.03 0.03 0.025
First moment estimates decay rate 𝛽1 0.9 0.9 0.9
Second moment estimates decay rate 𝛽2 0.999 0.999 0.999
Stability parameter 𝜖 1.0 × 10−8 1.0 × 10−8 1.0 × 10−8

Burst regularization strength 𝜌b 0.05 0.05 –
Activity regularization strength 𝜌a – – 0.6 × 10−3

Readout regularization strength 𝜌r – – 0.5
Activity regularization threshold 𝜃a – – 600

1 0.34 for recurrent connections

and to further shorten the experiment duration while at the same time bridging the time scales of
auditory signals and neuro-synaptic dynamics.

To improve generalization performance, we employed the same data augmentation strategy for
the samples of the SHD as in Chapter 4: A spike previously originating from input channel 𝑖 was
reassigned to a neighboring channel drawn from a normal distribution 𝒩 (𝜇 = 𝑖, 𝜎u) with standard
deviation 𝜎u = 15. This augmentation was applied prior to downsampling the inputs.

5.2.5 Weight initialization

All weights were initialized using Kaming’s initialization scheme (He et al., 2015). In more detail,
the synaptic weights were drawn from a normal distribution 𝒩 (𝜇 = 0, �̂�w/√𝑁) with zero mean 𝜇
and a standard deviation of �̂�𝑤/√𝑁. Here, 𝑁 corresponds to the number of afferent connections, i. e.
the number of input units 𝑁I or hidden layer neurons 𝑁H, respectively.
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Figure 5.6: Classification of the Yin-Yang dataset with SNNs trained with surrogate gradients. Feed-
forward networks with a single hidden layer composed of 120 LIF neurons are able to replicate the Yin-Yang
figure. (a) After about 40 training epochs with the surrogate gradient-based ITL training framework, the
emulated SNNs converged to a state of high performance. Shown are loss and accuracy over the course of
100 training epochs for ten initial conditions. (b) Trained networks closely resemble the Yin-Yang figure
with errors occurring only in the vicinity of the decision boundaries. To inspect the decision boundaries, the
response of the network can be evaluated on a grid spanned by the two input spike times 𝑡 I1 and 𝑡 I2. All 1000
samples constituting the test set are overlayed and colored according to the network’s response. Wrongly
classified samples are marked by a red cross. The ground truth decision boundaries are highlighted in black.

5.3 Results

In the following, we discuss results achieved by training the analog neuromorphic HICANN-X chip
with our ITL learning framework on a set of artificial as well as real-world benchmark tasks. The
underlying datasets are chosen to challenge different aspects of SNNs as well as to mimic different
application areas. Moreover, they exhibit widely different time scales and hence suggest both feed-
forward as well as recurrent architectures. To put our experiments into a broader context, we also
present results obtained by feed-forward networks employing a TTFS coding scheme trained with
spike time gradients, likewise emulated on HICANN-X.

5.3.1 Resembling non-linear decision boundaries with feed-forward SNNs

First, we inspect the ability of emulated SNNs trained with our surrogate gradient-based framework
to represent non-linear and continuous decision boundaries. To that end, we trained a feed-forward
network with a single hidden layer composed of 120 neurons on spike-encoded samples drawn
from the Yin-Yang figure (Kriener et al., 2021). Here, the temporal precision of trained SNNs can be
assessed since samples belonging to different classes can have an arbitrarily small distance at the
decision boundaries. The dataset as well as the decision of the network can be visualized in a 2D
plane spanned by the input spike times (Figure 5.6). After 100 training epochs, our SNN learned
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Figure 5.7: Classification of the Yin-Yang dataset with SNNs trainedwith spike time gradients. Feed-
forward networks with a single hidden layer composed of 120 LIF neurons were able to replicate the Yin-Yang
figure. (a) After about 200 training epochs with the spike time gradient ITL learning, the SNNs learned to
closely resemble the validation data. Shown are validation loss and accuracy over the course of 400 training
epochs for 10 initial conditions. (b) The latencies of spikes emitted by the trained SNN closely resemble the
Yin-Yang figure. The classification result for all 1000 test samples is visualized in a 2D plane spanned by
the two input spike times 𝑡 I𝑥 and 𝑡 I𝑦. The class inferred by the network is highlighted by color for each test
sample. All wrongly classified samples are marked by red crosses. The ground truth decision boundaries are
highlighted in black. Figure adapted from Göltz et al. (2021).

to closely resemble the Yin-Yang figure resulting in a final test performance of (96.7 ± 0.8) %. Most
notably, errors only occur in close vicinity to the decision boundaries. It is noteworthy that the
surrogate gradient approach allows us to train the SNN starting from a quiescent hidden layer, even
without a homeostatic regularization term enforcing network activity (cf. Chapter 6).

The test accuracy reached by our neuromorphic SNNs is only slightly surpassed by equivalent
SNNs trained in software. Specifically, the latter reach a final performance of (97.0 ± 0.0) % on the
held-out test samples. Most notably, these simulations did not take into account all sources of noise
as well as hardware-specific constraints like the finite resolution of the synaptic weights as well
as CADC recordings. The lack of these features within simulations as well as the only minor gap
between the simulation and emulation performance underpins the robustness of our ITL learning
framework.

Our surrogate gradient approach outperforms the alternative hardware implementation drawing
on spike time gradients for the training of SNNs. After 400 epochs, these networks learned to stably
separate the three distinct classes of the Yin Yang dataset (Figure 5.7) with a slightly reduced test
performance of (95.0 ± 0.9) % (Göltz et al., 2021). Just like for SNNs trained with surrogate gradients,
errors only occur in close vicinity to the decision boundaries (Figure 5.7b). Similarly sized networks
simulated and trained in software reach an accuracy of (95.9 ± 0.7) % after 300 epochs (Table 5.2). In
summary, both the simulation as well as the emulation results on networks trained with spike time
gradients slightly fall behind the ones reached with SNNs trained with surrogate gradient methods.
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The results achieved with both training methods do not only highlight the robustness with re-
spect to non-linear decision boundaries, but also showcases the fine-grained temporal resolution
achievable with SNNs emulated on HICANN-X. For the Yin-Yang task, the maximum achievable
accuracy does not only depend on the hidden layer size, but also on the temporal precision at which
spikes can be injected into the SNN as well as the resolution at which the network is able to signal its
decision. For our surrogate gradient-based framework, we usually align the spike times to a regular
grid with 𝑁T steps and step size 𝛿𝑡 = 1.7 µs determined by the sample interval of the CADC. As a
result, the temporal resolution is limited by 𝛿𝑡 despite the fact that spikes are recorded with much
higher precision. Here, however, we employed an interpolation 𝛿𝑡/𝑛 with 𝑛 = 2 to exploit the high
temporal resolution of spike times. Similarly, 𝑁T could be increased to improve the precision. This
strategy, however, is likely to entail increased calibration targets for both synaptic and neuronal
time constants to maintain the support of neuro-synaptic dynamics. In contrast, the TTFS approach
also employs spike time coding in the readout layer and does not rely on CADC measurements dur-
ing training. Hence, the temporal resolution is only limited by the precision at which spikes can
be injected into and read out from the neuromorphic device which is way higher than the sample
interval of the CADC. However, even with a two-fold interpolation, the surrogate gradient-based
approach surpasses the performance achieved with SNNs employing TTFS coding. This is likely
due to the limited amount of test samples provided by the Yin Yang dataset, rendering the resolu-
tion especially at the decision boundaries sufficient (Figure 5.6a). Moreover, the incorporation of
the membrane potential into the training is likely to promote robustness and precision.

5.3.2 Classification of images with feed-forward SNNs

As a real-world application, we trained an SNN with our surrogate gradient-based framework on
the MNIST dataset (LeCun et al., 1998). In more detail, we consider feed-forward SNNs with a single
hidden layer composed of 246 LIF neurons on a spike-latency encoded version of the MNIST images
with 16×16 pixels. Here, the neuromorphic SNNs learned to correctly encode the class affiliation of a
presented sample in the maximally responsive output unit during training (Figure 5.8a and b). Most
notably, the inhibition of all but the correct classes emerged as a byproduct and was not explicitly
enforced within the loss function, Equation (4.9). After only 100 training epochs, the SNNs were
optimized to almost perfectly fit the training data. On the held-out test data, the trained networks
achieve an overall accuracy of (97.2 ± 0.1) % (Table 5.2). By augmenting the training data by applying
random rotations of up to 15°, we were able to reduce overfitting. Additionally, we incorporated
dropout regularization to weights connecting the input and the hidden layer to further improve test
performance. A combination of both strategies results in a best-effort accuracy of (97.6 ± 0.1) % on
HICANN-X (Table 5.2).

For validation purposes, we trained equivalently sized SNNs purely in software. These networks
only slightly outperform the hardware emulation with a best-effort accuracy of (97.8 ± 0.0) %. For
comparison, we in addition trained equivalently sized ANNs with rectified linear units (ReLUs) on
the 16×16 pixel version of MNIST. These networks reach a test accuracy of (98.1 ± 0.1) %. Similar to
the results presented above, dropout as well as data augmentation again allow us to improve upon
this benchmark with a best-effort performance of (98.7 ± 0.1) %. Most notably, these numbers are
on par – within their uncertainties – with the accuracy achieved by ANNs trained on the full-size
MNIST images (Table 5.2). Hence, our input dimensionality reduction seems to only marginally
impact performance. In turn, the accuracies reported for the reduced as well as the full-size MNIST
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Figure 5.8: Classification of the MNIST dataset with SNNs trained with surrogate gradients. Feed-
forward networks with a single hidden layer composed of 246 LIF neurons emulated on HICANN-Xs are able
classify the MNIST images with high accuracy. (a) These emulated SNNs learned to correctly encode the
class affiliation of the MNIST images in the maximally responsive output unit. Shown are three exemplary
downscaled 16×16 MNIST images prior and after spike conversion (top) as well as the elicited hidden layer
spiking activities (middle) and the readout neuron traces (bottom). The readout traces are colored according to
their class affiliation. The ground truth of the presented digit as well as the corresponding color is highlighted
inside the bottom panel of the figure. (b) The SNNs are able to almost perfectly fit the training data. Shown
are training loss and accuracy traces over the course of 100 training epochs for five initial conditions. Figure
taken from Cramer et al. (2021).

images are likely to be comparable.

Networks trained with spike time gradients are likewise able to classify the MNIST images with
high accuracy. In more detail, emulated feed-forward SNNs with 246 hidden neurons reach a test
performance of (96.6 ± 0.1) % after 50 training epochs when resorting to data augmentation (Fig-
ure 5.10a). Equivalent software simulations surpass this result with a final test performance of
(97.3 ± 0.1) % (Table 5.2). On the one hand, both numbers slightly fall behind the corresponding
results achieved with the surrogate gradient-based learning scheme. On the other hand, the gap be-
tween software and hardware results is slightly higher for networks employing TTFS coding. This
hints towards the impact of discrepancies between the emulation in the forward pass and the soft-
ware model used to calculate weight updates. The only minor difference between the performances
obtained by simulation and emulation for the surrogate gradient approach stresses the favorable
role of the membrane potential for the close alignment of emulation and equivalent software model
on the host computer within the ITL learning scheme.

5.3.3 Low-latency classification

The spike-latency encoding of MNIST images promotes low decision times. Here, we analyze the
inference latency of SNNs trained with our surrogate gradient-based ITL framework by artificially
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Figure 5.9: Spike-latency encoding of MNIST images promotes low-latency classification. (a) SNNs
trained with our surrogate gradient-based ITL learning framework make their decision prior to 10 µs after
stimulus onset. Here, we iteratively re-evaluate the max-over-time on the output traces (Figure 5.8a) re-
stricted to a limited time intervals [0, 𝑇 ]. (b) The low classification latency facilitates high throughput in a
fast inference mode. By artificially resetting the state of neuromorphic SNNs between successive samples,
we are able to inject an image every 11.8 µs, translating to more than 85 k classifications per second. Figure
taken from Cramer et al. (2021).

restricting the membrane traces of the readout layer to time intervals [0, 𝑇 ] with 𝑇 ≤ 𝑁T ⋅ 𝛿 𝑡 (Fig-
ure 5.8a). Based on this segment, we determine a maximally responsive output unit. By sweeping
𝑇, we find that our SNNs reach their peak performance within the first 8 µs after stimulus onset
(Figure 5.9a). Hence, the emulation over the entire time span 𝑁T ⋅ 𝛿 𝑡 used during training is not at
all required to reach high accuracy during inference.

To ensure that this low classification latency can be exploited for high inference rates, the state
of the SNN needs to be reset. Especially in feed-forward SNNs, the propagation and forgetting of
information are determined by the neuronal and synaptic time constants. They determine the time
scale at which the underlying state variables decay back to their respective baseline values. Because
of this, the time constants pose a lower limit on the maximum rate at which stimuli could be injected
into the network without interfering with each other. Thus, the synaptic as well as the neuronal
state need to be reset to not wait for their natural decay to exploit the aforementioned low latency
classification within a fast inference mode. To that end, we triggered an artificial neuron reset 10 µs
after the injection of the first input spike of each sample and at the same time clamped the synaptic
inputs to their baselines (Figure 5.9b). Both of which can be achieved in parallel by drawing on the
SIMD vector units of both PPUs. By this, we are able to inject images with a temporal separation of
only 11.8 µs which translates to a throughput of 85 k images per second. Within this fast inference
mode, each image is classified within the first 8 µs after stimulation with the first spike.

Furthermore, we quantified the power consumption of the system during inference. For the full
ASIC emulating the trained SNN, we measured approximately 200mW. This number encompasses
the current draw from the analog neuromorphic core, the plasticity processors, all surrounding pe-
riphery, as well as the highspeed communication links. It is noteworthy that the overall figure was
dominated by the idle power spent on clock generation and distribution as well as the communi-
cation links to and from the ASIC. In combination with the measured throughput, this yields an
energy of only 2.4 µJ per classified MNIST image.
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Figure 5.10: Classification of the MNIST dataset with SNNs trained with spike time gradients. Feed-
forward networks with a single hidden layer composed of 246 LIF neurons emulated on HICANN-X are
able classify the MNIST images. (a) After about 40 training epochs with the spike time gradient-based ITL
approach, our networks converged to a state of high performance. Shown are loss and accuracy over the
course of 50 training epochs for 10 initial conditions. (b) Trained SNNs robustly make their decision within
the first 10 µs after stimulus onset. Learning leads to sufficiently separated spike times of the label neurons to
not suffer from trial-to-trial variability induced by the analog emulation. Shown are 10 exemplary membrane
traces for each readout unit recorded on HICANN-X after training. Each trace is colored according to the
readout neuron’s identity. The color of the box in the lower right part of the figure depicts the ground truth
of the presented stimulus. The stimulating sample is shown in the inset of the box. Figure adapted from Göltz
et al. (2021).

Likewise, the TTFS coding scheme in combination with the spike-latency encoding of MNIST
images leads to low classification latencies on HICANN-X. Post-training membrane traces recorded
from the analog substrate highlight that the correct label neuron emitted a spike prior to 10 µs after
stimulus onset (Figure 5.10b). Moreover, this first spike is clearly separated from the spike times of all
other label neurons, enforced by the TTFS loss function (Equation (A.14)). This observation explains
the robust classification even in presence of substantial spike jitter elicited by the analog emulation.
Note that a direct comparison to the 8 µs latency achievedwith the surrogate gradient-based training
should keep in mind the distinct image to spike conversion schemes: While the results presented
before were obtained with LIF neurons in the receptor layer and hence a logarithmic mapping from
greyscale value to spike time, the results for SNNs employing TTFS coding were acquired with a
linear transformation.

The emulated networks employing TTFS coding are able to process MNIST images with a tempo-
ral separation of 48 µs which corresponds to a throughput of about 20 800 images per second. During
inference, the ASIC consumed approximately 175mWand hence slightly less compared to the surro-
gate gradient-based approach which is due to the omission of PPU triggered CADCs measurements.
In combination with the observed throughput, this yields an energy of 8.4 µJ per classification. It
is noteworthy that this figure does not include an artificial reset of the SNN’s state variables. As-
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Figure 5.11: Regularization facilitates the efficient classification ofMNIST images with sparse spik-
ing activity. The generality of our surrogate gradient-based ITL training framework allows us to augment
the task loss by an adjustable burst regularizer with strength parameter 𝜌b to promote sparse spiking activity.
When sweeping 𝜌b, trained SNNs reach a constant test accuracy of about 97.2 % for activity levels down to
only 20 hidden spikes per input image. Figure taken from Cramer et al. (2021).

suming a similar temporal overhead of 3.8 µs for resetting, a theoretical throughput of more than
72 k images could be reached which translates to an energy of 2.6 µJ. Here, we assumed a power
consumption of 200mW since the PPUs would be additionally required for the implementation of a
fast inference mode.

5.3.4 Efficient coding through sparse spiking activity

The spiking activity of neurons in the mammalian cortex is remarkably sparse with an average of
only 0.2 to 5 spikes per second (Attwell & Laughlin, 2001). This sparsity is expressed in both time
and space and is assumed to be central for the low energetic footprint of biological neural tissue
(Sterling & Laughlin, 2015). Like for their role model, neuromorphic systems emulating SNNs simi-
larly profit from sparsity, especially whenmultiple chips need to be interfaced. Here, an information
exchange characterized by spatio-temporal sparsity directly relieves the bandwidth of the associated
communication channels.

The generality of our surrogate gradient-based ITL learning framework allows us to promote
sparse solutions by augmenting the task loss with an adjustable regularizer. Specifically, we trained
feed-forward SNNs on theMNIST images with the burst penalty defined in Equation (5.6) for a broad
range of strength parameters 𝜌b. Simultaneously, we assessed both the performance as well as the
average hidden layer spike counts of these SNNs. For all tested 𝜌b, our networks were almost able to
perfectly fit the training data (Figure 5.11a). Even more important, these SNNs reach a constant test
accuracy of about 97.2 % for activity levels down to 20 hidden spikes per input image (Figure 5.11b).
Only for 10 spikes and below, we observe a noticeable decline of performance. For these sparse
solutions, the information is carried by individual spikes and their timing which stays in strong
contrast to rate coding approaches.

5.3.5 Self-calibration of the analog circuits through ITL training

The incorporation of observables measured from the neuromorphic substrate renders our approach
unsusceptible to parameter deviations. All results presented so far were gathered with a calibrated
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Figure 5.12: Surrogate gradient-based ITL learning promotes robust training and classification on
inhomogeneous substrates. Our surrogate gradient-based ITL framework inherently compensates for pa-
rameter variations induced by the analog implementation and can be further extended to improve robustness
to defects occurring after deployment. (a) The configurability of HICANN-X allows us to control the devi-
ation of model parameters. For that purpose, a calibration with neuron-specific target values drawn from
normal distributions of variable widths 𝜎d was utilized. Shown are the distributions of the measured values
for the membrane time constant 𝜏mem (left), the synaptic time constant 𝜏syn (middle) and the distance between
threshold and leak potential 𝑢thres−𝑢leak (right) for different values of 𝜎d (colored). For comparison, the distri-
butions stemming from an uncalibrated HICANN-X chip are overlayed in red. (b) The fixed-pattern variations
shown in (a) are widely compensated by ITL training, despite assuming homogeneously behaving circuits in
the computation graph. Configurations with high 𝜎d already suffer from dysfunctional states. (c) SNNs can
be trained to exhibit resilience against neuron death occurring after deployment. Here, dropout regulariza-
tion with probability 𝑝d during training promotes robust classification performance even for scenarios where
more than 10% of the hidden layer neurons are artificially silenced during inference. Figure adapted from
Cramer et al. (2021).
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HICANN-X chip for which all occurring parameter deviations were widely equalized to closely align
the computation graph and the emulated dynamics. It is noteworthy that despite all effort put into
calibration, a certain degree of residual parameter variations remained (Figure 5.12a). Moreover,
we constructed the computation graph based on the calibration target values which deviate from
the actual measured parameters (Table 5.1). Nevertheless, our ITL training leads to well-performing
SNNs even in presence of deviations between computation graph and emulated dynamics.

To test the ability of our ITL training framework to compensate for these parameter variations,
we deliberately decalibrated the neuromorphic circuits on HICANN-X. In more detail, we adjusted
the synaptic and membrane time constants 𝜏syn and 𝜏mem as well as the distance between threshold
and leak potential 𝑢thres − 𝑢leak to individual, neuron-specific target values. The latter were drawn
from normal distributions 𝒩 (𝜇d, 𝜎d) with mean 𝜇d corresponding to the original calibration target
(Table 5.1). The normalized standard deviation 𝜎d was swept in the range of 0 % to 50 % (Figure 5.12a).
Most notably, some of these configurations already exceed the mismatch present on an uncalibrated
HICANN-X chip. To further dissect the parameter influence, we first decalibrated 𝜏syn and 𝜏mem at
the same time. In a second experiment, we detuned 𝑢thres − 𝑢leak and last we swept all parameters
at the same time. For all of these conditions, we trained the SNNs starting from five different initial
conditions.

Based on these configurations, we trained our neuromorphic SNNs on the MNIST dataset while
still assuming ideal parameters when constructing the computation graph. Despite ignoring the
introducedmismatch on the substrate, our SNNs reach a state of high performance for decalibrations
of up to 𝜎d = 30% (Figure 5.12b). Most configurations even yield high performance beyond that
point while some trials suffer from dysfunctional network states, observable by increased errors.
Particularly leak-over-threshold configurations induced by high values of 𝜎d for the distance 𝑢thres−
𝑢leak harm performance. However, for parameter variations comparable to the ones present on
an uncalibrated HICANN-X chip and even beyond, our ITL learning framework self-calibrates the
analog neuromorphic SNN. Thus our framework renders detailed calibration routines redundant.

5.3.6 Training for robustness to defects

Power efficiency as well as low-latency classification render SNNs implemented on HICANN-X par-
ticularly interesting for edge computing applications (Khan et al., 2019; Shi & Dustdar, 2016). Here,
the resilience of trained SNNs to hardware defects emerging after deployment is crucial. Among
others, failing neuron circuits have the potential to put functionality at risk. The latter effect can
be imitated by artificially disabling a fraction of all hidden neurons during inference (Figure 5.12c).
Maybe not surprisingly, the MNIST test accuracy drops with the fraction of silenced neurons.

We can, however, reduce the sensitivity to dysfunctional hidden neurons by including dropout
regularization during training. Before, we already showcased the beneficial role of dropout on gen-
eralization performance (Table 5.2). Aside from reducing overfitting, it also raises the resilience to
an increased fraction of silenced neuron circuits (Figure 5.12c). When disabling 15 % of all hidden
layer neurons, the test error increases by only 10 % for networks trained with dropout regularization
with a probability of 𝑝d = 40%. In contrast, the error rises by 37 % for SNNs trained without dropout
regularization.
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Figure 5.13: Reucurrent SNNs trained with surrogate gradients promote high performance in a nat-
ural language classification task. The surrogate gradient-based ITL framework facilitates the training of
recurrent SNNs and in that process allows to us exploit a combination of rate- and temporal coding. Specifi-
cally, recurrent SNNs with a single hidden layer composed of 186 LIF neurons promote competitive accuracy
levels on the SHD. (a) This network learned to correctly infer the class affiliation of spoken digits in the total
membrane deflection of the readout neurons. Shown are snapshots of the spike converted digits (top), the
elicited hidden layer activity as well as the readout neuron traces (middle). For visualization, we also show
the cumulative sums of the latter (bottom) to illustrate the decision of the SNN trained with a sum-over-time
loss function. Readout traces and their respective cumulative sums are colored according to their class affili-
ation. The color of the ground truth of the presented digit is highlighted at the top of the figure. (b) Only 100
training epochs are required to develop suitable representations as evidenced by a reduced training loss and
error. Both of which are shown for five distinct initial conditions. Figure adapted from Cramer et al. (2021).

5.3.7 Classification of spoken words with recurrent SNNs

Up to this point, we have only considered tasks requiring to memorize and integrate information
on comparatively short time scales. In the following, we will move on to benchmarks that require
working memory exceeding the time scales of single-neuron dynamics. For SNNs, this memory can
be implemented by activity propagating on recurrent connections. The latter are readily supported
by the flexible on-chip event router of HICANN-X (Chapter 3). These topologies can be easily sup-
ported in our ITL training framework by admitting recurrent contributions to the synaptic currents
in Equation (5.2).

As a potential proxy for a real-world time series classification task, we trained recurrent SNNs
on the SHD (Cramer et al., 2020b). More specifically, we consider networks with a single recurrent
hidden layer composed of 186 LIF neurons to classify the English and German spoken digits »zero«
to »nine« into the respective 20 categories (Chapter 4). The underlying time series data naturally
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Figure 5.14: Recurrent SNNs emulated on HICANN-X generalize to novel speakers. The choice of
classes as well as the composition of the SHD test set challenge generalization. (a) Classes exhibiting phone-
mic similarities like »nine« vs. »neun« are indeed harder to separate for trained SNNs. Shown is the confusion
matrix for all 20 classes. (b) The trained SNNs generalized on previously unseen speakers. A speaker decoded
error allows us to quantify the generalization to samples of new speakers since the digits of the subjects four
and five (highlighted in gray) exclusively occur in the SHD test set. They constitute 81 % of all test samples
and hence explain the discrepancy between training and overall test error (dashed line). Figure taken from
Cramer et al. (2021).

exploits the temporal dimension of SNNs. Furthermore, we have already shown the beneficial role
of recurrent connections when training SNNs on this benchmark task in software simulations (Fig-
ure 4.10). Here, we reduced the spatial dimensionality of the spike trains of SHD to accommodate
to a tractable fan-in while preserving a sufficiently large hidden layer on HICANN-X. To that end,
we subsampled 70 out of the original 700 original channels (cf. Methods). It is noteworthy that this
choice only reduces the available information present within the samples. In contrast to Chapter 4,
our neuromorphic SNNs were trained by minimizing a sum-over-time loss function (Figure 5.13a).
Moreover, this task-specific loss was augmented by activity regularization to prevent pathological
spiking activity in the hidden layer.

After 100 training epochs, our recurrent SNNs almost fit the training data with an accuracy of
(96.6 ± 0.5) %. In this state, we reach a performance of (76.2 ± 1.3) % on the SHD test set (Figure 5.13b
and Table 5.2). This rather large gap is expected due to the composition of the test set which is es-
pecially designed to challenge the ability to generalize (Chapter 4). On the one hand, the dataset
comprises of classes with significant phonemic similarity like e. g. »nine« vs. »neun«. Indeed, these
two classes are harder to separate for trained networks (Figure 5.14a). On the other hand, the test
set of the SHD exclusively contains the samples of two of the twelve speakers. The associated sam-
ples constitute 81 % of all testing data and hence dominate the test set. When assessing a speaker
decoded accuracy, an increased error on the samples of the unseen speakers can be observed (Fig-
ure 5.14b). Like already proposed in Chapter 4, we were able to reduce overfitting by the utilization
of data augmentation. Specifically, we randomly reassigned input spikes originating from unit 𝑖 to
a neighboring channel drawn from the normal distribution 𝒩 (𝜇 = 𝑖, 𝜎u) with width 𝜎u = 15 prior
to subsampling the spike trains. This strategy leads to a best-effort performance of (80.6 ± 1.0) % on
the test data (cf. Chapter 4).

Like for feed-forward architectures, we trained equivalent recurrent SNNs in software only. When
not employing data augmentation, we reach a peak performance of (71.2 ± 0.3) % on the SHD test
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Table 5.2: Performance comparison of SNNs trained on BrainScaleS-2 and in software. For the down-
scaled 16×16 MNIST, a dropout probability of 0.1 and random rotations of up to 15° were used. In contrast, the
dropout probability was increased to 0.4 for the full size MNIST images . For the SHD dataset, input spikes
were randomly switched to neighboring channels according to a normal distribution with width 𝜎 = 15. In
addition, we provide an ANN baseline to place our results obtained with SNNs into a broader context. Table
adapted from Cramer et al. (2021).

Dataset Implementation Gradient Architecture Augmentation Accuracy (%)
Train Test

16 × 16
MNIST

BrainScaleS-2 Surrogate 256-246-10 – 100.0 ± 0.0 97.2 ± 0.1
BrainScaleS-2 Surrogate 256-246-10 Dropout + rotation 97.3 ± 0.1 97.6 ± 0.1
Software Surrogate 256-246-10 – 100.0 ± 0.0 97.5 ± 0.1
Software Surrogate 256-246-10 Dropout + rotation 97.7 ± 0.1 98.0 ± 0.0
BrainScaleS-2 Firing time 256-246-10 Temporal spike jitter 98.2 ± 0.1 96.6 ± 0.1
Software Firing time 256-246-10 Temporal spike jitter 99.2 ± 0.1 97.3 ± 0.1
ANN Regular 256-246-10 – 100.0 ± 0.0 98.1 ± 0.1
ANN Regular 256-246-10 Dropout + rotation 99.0 ± 0.0 98.7 ± 0.1

28 × 28
MNIST

ANN Regular 784-246-10 – 100.0 ± 0.0 98.1 ± 0.1
ANN Regular 784-246-10 Dropout + rotation 98.0 ± 0.0 98.7 ± 0.1

Yin-Yang

BrainScaleS-2 Surrogate 5-120-3 – 96.7 ± 0.6 96.7 ± 0.7
Software Surrogate 5-120-3 – 98.0 ± 0.0 98.7 ± 0.1
BrainScaleS-2 Firing time 5-120-3 – 95.3 ± 0.7 95.0 ± 1.0
Software Firing time 5-120-3 – 96.0 ± 0.7 96.3 ± 0.7

SHD

BrainScaleS-2 Surrogate 70-186-20 – 96.6 ± 0.5 76.2 ± 1.3
BrainScaleS-2 Surrogate 70-186-20 Spatial spike jitter 90.7 ± 0.5 80.6 ± 1.0
Software Surrogate 70-186-20 – 100.0 ± 0.0 71.2 ± 0.3
Software Surrogate 70-186-20 Spatial spike jitter 90.9 ± 0.2 79.9 ± 0.7

set (Table 5.2). This, most notably, is far below the result achieved by SNNs emulated on HICANN-
X. However, the SNNs implemented in software are able to perfectly fit the training data which is
not the case for our hardware implementation (Table 5.2). This discrepancy is most likely due to
the intrinsic noise induced by the analog implementation of SNNs on HICANN-X which potentially
acts as a form of regularization. In contrast to the previously described feed-forward architectures,
this stochasticity gets amplified by recurrent activity. Indeed, we improved the test accuracy of our
simulated SNNs to (79.9 ± 0.7) % when again employing data augmentation in form of the spatial
spike jitter. Hence, stochasticity closes the gap between the test performances of hardware emula-
tion and software simulation. The same holds true for the training performance which obviously
suffers from an increased unit jitter width 𝜎u. Thus, the intrinsic noise of the analog neuromor-
phic substrate could indeed act as an efficient regularizer. Most notably, we only incorporated the
stochastic data augmentation into our simulations and ignored further sources of noise present on
the neuromorphic device which might explain the remaining gap between performances. Summing
up, these results suggest that our ITL training framework is also applicable to recurrent SNNs and
hence allows us to exploit application areas like the classification of time series data.

5.4 Discussion

Within the scope of this chapter, we developed a general ITL training framework relying on sur-
rogate gradient learning. With this, we were able to train recurrent as well as multi-layer SNNs
on the analog neuromorphic substrate HICANN-X. By exploiting the massively parallel recoding of
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neuronal membrane potentials with the CADCs, we were able to bring the success of surrogate gra-
dient learning to the realm of neuromorphic hardware. We benchmarked our framework based on
a set of artificial as well as real-world tasks. Specifically, we visited a spike-latency encoded version
of the MNIST dataset to train feed-forward SNNs and the SHD in the context of recurrent archi-
tectures. With this, we establish new benchmarks for low-latency processing, energy efficiency as
well as task performance compared to other existing neuromorphic implementations. Moreover, the
trained networks exhibited sparse spiking activity, both in space and time. Most importantly, the
self-correcting nature of our ITL training framework compensated for device mismatch and hence
renders detailed calibration routines redundant. All implementations performed at accuracy levels
comparable to the ones reached by software simulations of equivalent networks. Ultimately, our ap-
proach allowed us to exploit analog neuromorphic hardware for low-latency and high throughput
inference.

Most current neuromorphic hardware implementations are based on digital designs and hence
often allow to simulate SNNs previously trained in softwarewithout a significant loss in performance
(Esser et al., 2016; Frenkel et al., 2020). Despite the associated flexibility with regard to the training
scheme (Bohte et al., 2002; Rückauer et al., 2019; Zambrano et al., 2017; Pfeiffer & Pfeil, 2018; Büchel
et al., 2021; Hunsberger & Eliasmith, 2015; Lee et al., 2016; Neftci et al., 2019b; Mostafa, 2017; Bellec
et al., 2020; Huh & Sejnowski, 2018) recent achievements in material science let to a refocus on
analog and mixed-signal implementations (Roy et al., 2019; Marković et al., 2020; Joshi et al., 2020;
Dalgaty et al., 2021). The accompanying findings have the potential to promote the development
of efficient neuromorphic processors which in turn require training schemes to fully exploit their
benefits. A key component to implement long-term memory on such devices are memristors, which
are intrinsically analog and are subject to both drift and manufacturing variability. However, the
latter exacerbates a direct mapping of software-trained models to these devices. Many studies tried
to solve this problem by optimizing the implemented networks for robustness during training, but
the associated strategies are of limited applicability (Büchel et al., 2021; Wright et al., 2021). As long
as mature on-chip training solutions are not available, ITL has emerged as a compromise (Schmitt
et al., 2017; Göltz et al., 2021). It incorporates device-specific non-idealities and heterogeneities into
the training and in that process compensates for them.

Previous work on ITL learning in the context of analog neuromorphic computing mostly focused
on rate-coding strategies (Schmitt et al., 2017). However, these approaches often entail higher ac-
tivity levels and longer latencies and therefore do not exploit the favorable properties of SNNs.
Likewise, TTFS coding schemes – constituting the extreme end of temporal coding – have been
successfully applied to analog devices, but only in combination with feed-forward architectures and
single spikes (Göltz et al., 2021). In contrast, surrogate gradient learning exploits and interpolates
between both rate and temporal coding, and can be applied to multi-layer as well as recurrent SNNs.
By extending current ITL techniques, we were able to bring the success of surrogate gradient meth-
ods to the realm of analog neuromorphic hardware. With this, we could not only train networks to
reach state-of-the-art performance for SNNs on a set of benchmark datasets, but in that process also
improve energy efficiency as well as throughput and latency (Davidson & Furber, 2021).

The incorporation of an additional state variable aside from spike times is likely to play a key role
in the ability to self-calibrate the analog substrate. While HICANN-X supports the parallel recording
of membrane traces, other analog systems only communicate spikes to the host system and if at all
only feature analog-to-digital converters (ADCs) with low channel counts (Schemmel et al., 2010;
Benjamin et al., 2014; Moradi et al., 2018). On the one hand, the requirement of membrane traces
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Table 5.3: Comparison of MNIST benchmark results across neuromorphic platforms. Performance-
wise, our emulated SNNs are only outperformed by larger networks or CNNs. The measured energetic foot-
print is only surpassed by optimized implementations in smaller and more energy efficient technology nodes.
Our SNNs set new benchmarks in terms of both throughput as well as classification latency. Reported energy
measurements are normalized to a single inference. Table taken from Cramer et al. (2021).

Platform Reference Architecture Node Energy Accuracy Samples/s Latency

SpiNNaker Stromatias et al. (2015) 784-600-500-10 130 nm –3 95.0 % –3 –
TrueNorth Esser et al. (2016) CNN 28 nm 108.0 µJ 99.4 % 1 k –
Intel Chen et al. (2019) 784-236-20-10 10 nm 1.0 µJ 88.0 % 6.3 k –
Intel Chen et al. (2019) 784-1024-512-10 10 nm 12.4 µJ 98.2 % – –
Intel Chen et al. (2019) 784-1024-512-10 10 nm 1.7 µJ 97.9 % – –
MorphIC Frenkel et al. (2019) 784-500-101 65 nm 205 µJ 97.8 % – –
MorphIC Frenkel et al. (2019) 784-500-101 65 nm 21.8 µJ 95.9 % 250 –
SPOON Frenkel et al. (2020) CNN 28 nm 0.3 µJ2 97.5 % – 117 µs

BrainScaleS-1 Schmitt et al. (2017) 100-15-15-5 180 nm –3 95.0 % 10 k –
BrainScaleS-2 Göltz et al. (2021) 256-246-10 65 nm 8.4 µJ 96.9 % 21 k <10 µs
BrainScaleS-2 Cramer et al. (2021) 256-246-10 65 nm 2.4 µJ 97.6 % 85 k 8 µs

1 Segmented input and hidden layers 2 Based on pre-silicon estimates 3 Estimates were given by Pfeiffer & Pfeil (2018)

represents a limitation of our work compared to e. g. the approach of Göltz et al. (2021) which only
requires spike times to calculate weight updates. On the other hand, however, the incorporation of
membrane traces is likely to enhance the resilience to device mismatch present on analog substrates.
Hence, the investigation of the performance of SNNs trained with the rule derived by Göltz et al.
(2021) under controlled decalibration – like presented within this chapter – would be an interesting
direction of future research.

Quantitative comparisons of distinct SNN implementations on various neuromorphic substrates
remain challenging. This difficulty is partially due to the lack of suitable metrics and standardized
benchmarks (Davies, 2019; Cramer et al., 2020b). Especially, the inhomogeneous strategies for re-
porting a system’s energy consumption put comparability at risk. The latter range from pre-silicon
estimates of the current drawn by a neuromorphic processor to full-system lab measurements. This
also explains the enormous spread of reported energy consumptions for current neuromorphic im-
plementations (Table 5.3). Here, we nevertheless try to put our energy measurements into a broader
context by comparing our results to other analog as well as digital solutions. For that purpose, we
visit the MNIST dataset due to its widespread application, despite its lack of a temporal dimension
and the non-standardized spike conversion scheme. When considering the energetic footprint, our
implementation is only outperformed by optimized designs fabricated in much smaller and there-
fore more energy-efficient technology nodes (Frenkel et al., 2020; Chen et al., 2019). In terms of task
performance, our emulated SNNs are only outperformed by much larger or convolutional neural
networks (CNNs) (Stromatias et al., 2015; Frenkel et al., 2019; Chen et al., 2019). To draw on these
results, systems with multiple HICANN-X chips or using a single chip in a time-multiplexed fash-
ion to implement multi-layer networks represent a promising way of future research. Even with the
current system, we were able to establish new benchmarks in terms of both throughput as well as
classification latency (Frenkel et al., 2020; Göltz et al., 2021).

We have already demonstrated the generality of our ITL learning framework by training different
network topologies as well as by visiting different task losses and regularization terms. However,
our framework can be easily extended to incorporate more features like the training of neuronal
parameters or the incorporation of slow varying state variables. The latter are especially promis-
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ing since most real-world applications require memory that exceeds the time scale of single-neuron
dynamics. We already gave a glimpse of how to extend the memory time span by recurrent con-
nections and the associated reverberating activity for the classification of spoken words. While re-
current SNNs are often unstable and their memory time span is limited, intrinsic recurrence within
spiking neurons represents a promising direction of further research (Neftci et al., 2019a). Natural
candidates are spike-triggered adaption as well as short-term plasticity (STP) which both introduce
additional state variables with slower temporal evolution compared to the neuro-synaptic dynam-
ics themselves (Mongillo et al., 2008; Bellec et al., 2018). Both mechanisms are readily supported on
HICANN-X and can be easily included in the existing ITL training framework.

In summary, our ITL training framework allows us to open up the extensive opportunities of
SNNs emulated on analog neuromorphic hardware for energy-efficient ultra-low latency informa-
tion processing. Especially the feedback provided by the construction of the computation graph
based on hardware measurements leads to the compensation of device-specific imperfections. The
latter feature is key to finally exploit the beneficial features of SNNs emulated on analog neuro-
morphic hardware for classification. ITL training is, therefore, an intermediate step toward on-chip
training which will be ultimately required to exploit the full benefits of this emergent technology.

97





6 Unsupervised Learning

Stimulus

Coding

SNN

Readout

Decision

Supervisor

The first part of this chapter has been published in Cramer et al. (2020a) in collaboration
with David Stöckel and Markus Kreft under the supervision of Dr. Viola Priesemann. For
this segment I will closely follow the publication, but with a more detailed description of the
implementation. The study presented within the second part has been conducted in close
collaboration with Markus Kreft and Dr. Johannes Zierenberg. Early results of the second
part have been presented in Kreft (2021).

Despite the exceptional success recorded by the supervised learning approach presented in the
previous chapter, the training with gradient-based methods differs from learning in biological

neural networks. For the latter, global information might be costly or simply impossible to dis-
tribute which is why most biologically inspired learning paradigms draw on the concept of locality
to fosters parallelism and scalability. Locality is often exploited in unsupervised learning scenarios
where the associated adaptation solely depends on a combination of the stimulus and the structure
and/or dynamics of the underlying network. Consequently, the learning of patterns or sequences
is accomplished by self-organization. Hence, plasticity rules exploiting these concepts are likewise
promising in the context of neuromorphic hardware.

Within the first part of this chapter, we consider a form of plasticity that tunes networks emu-
lated on a prototype of the BrainScaleS-2 system to a so-called critical point – a discontinuous phase
transition between order and chaos or stability and instability. In more detail, we show that the asso-
ciated collective dynamics of our network can be precisely adjusted by changing the input strength
under the action of spike-timing dependent plasticity (STDP)-like regulation. The associated critical
dynamics maximize a set of abstract computational properties – like the sensitivity, dynamic range,
correlation length, information transfer as well as the susceptibility – and were hence assumed to
be optimal for task processing with recurrent neural networks. However, we demonstrate that this
hypothesis is not generally valid by testing an spiking neural network (SNN) on a set of tasks of
varying complexity. Specifically, we investigate the interplay of criticality, task performance and
the information-theoretic fingerprint. Most importantly, the information-theoretic measures are in
strong contrast to task performance: While all of these measures are maximized at criticality, only
the complex, memory-intensive tasks profit from the associated dynamics, whereas the simple tasks
even suffer from it. Hence, critical dynamics are not always favorable for task processing. Instead,
we show that the collective network state has to be tuned to the computational requirements which
can be easily achieved by adjusting the input strength under STDP-like regulation.

In the second part of this chapter, we present a homeostatically regulated system that exhibits
bistable dynamics. Harnessing the transition probabilities between states, the time scales of the dy-
namics could be controlled by the input strength under continuous background stimulation. With
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Figure 6.1: Phase diagrams of discontinuous and continuous phase transitions. Different phases are
distinguished by macroscopic measurable properties of a system, so-called order parameters. Depending on
their change in response to the variation of an ambient property – the so-called control parameter – phases
can be classified. (a) For a discontinuous phase transition, the order parameter undergoes a discontinuity
when the control parameter is posed at its critical value. (b) If, in contrast, the transition is continuous, but
non-differentiable, the transition is referred to as continuous.

this system, we show how external perturbations can be used to accurately determine the auto-
correlation time of the underlying dynamics. More specifically, the time scale of the decay of the
population activity after the perturbation only predicts the autocorrelation time if the networks
are continuously stimulated with background noise at a level used for their homeostatic adaption.
Otherwise, the effect of perturbations quickly decays. Last, we show how the time scales elicited
by bistable dynamics can be harnessed for fast inference and the retrieval of memory respectively.
In that process, we furthermore depict a strategy to exploit bistable dynamics for classification of
spatio-temporal pattern.

6.1 Introduction

The initialization of any neural network poses a central challenge as it is crucial for convergence and
hence optimal performance on a given task (Yam & Chow, 2000; Drago & Ridella, 1992; Shimodaira,
1994; Wessels & Barnard, 1992; Weymaere & Martens, 1994). Different initialization strategies for
feed-forward architectures have been proposed in the past (Yam & Chow, 2000; Thimm & Fiesler,
1995; Goodfellow et al., 2016a; Weymaere & Martens, 1994). The design of recurrent topologies, in
contrast, could be guided by the concept of neural criticality (Boedecker et al., 2012; Bertschinger &
Natschläger, 2004; Legenstein &Maass, 2007; Kinouchi &Copelli, 2006; Shew&Plenz, 2013; Del Papa
et al., 2017; Langton, 1990). Here, criticality is defined as a specific type of behavior observed when a
system undergoes a phase transition. In statistical physics, different phases are classified by macro-
scopic, measurable properties, so-called order parameters. Depending on their change in response to
the variation of an ambient property – the control parameter – different phases can be distinguished
(Binney et al., 1992). For a discontinuous phase transition, the order parameter undergoes a dis-
continuity when the control parameter is posed at a critical value (Figure 6.1a). Here, neighboring
phases coexist which is tantamount to bistability in extended, noisy systems (di Santo et al., 2016).
A continuous transition, in contrast, leads to a continuous, but non-differentiable dependence (Fig-
ure 6.1b). If a system features a continuous phase transition, it can exactly reside at the transition
between both phases, the so-called a critical state.
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When undergoing a continuous phase transition between order and chaos or stability and insta-
bility – at a so-called critical point – systems develop a set of desirable computational properties:
Among others, the sensitivity, the dynamic range, the correlation length, the information transfer
and the susceptibility all diverge (Harris, 2002; Munoz, 2018a;Wilting et al., 2018; Barnett et al., 2013;
Tkačik et al., 2015). Due to these maximized capabilities, neural networks with critical dynamics
are thought to be optimal for any task processing (Del Papa et al., 2017; Bertschinger & Natschläger,
2004; Boedecker et al., 2012; Kinouchi & Copelli, 2006; Shew& Plenz, 2013; Munoz, 2018a,b; Langton,
1990). Despite being widely accepted within the community, it may be questioned whether critical-
ity is actually always beneficial for computation. Wilting et al. (2018) hypothesized that each task
requires its own network state to reach optimal performance since e. g. long memory retrieval may
be detrimental for problems requiring only short memory time spans. Nevertheless, the interplay
of task requirements and dynamical state is not understood.

Despite the favorable role of criticality for information processing, the tuning of a neural network
precisely to a phase transition in general and to criticality, in particular, is often challenging. Due
to the intrinsic nature of a critical point, the adjustment has to be very precise in order to not rush
into the unstable regime. It is noteworthy that the archetype of SNNs, the human brain, consti-
tutes a large, but finite system. For such systems, phase transitions do not occur at a single value
of the control parameter, but are smeared out over a small region that is technically not critical, but
sustains many properties of criticality (Moretti & Muñoz, 2013). Nevertheless, control mechanisms
are required to maintain this dynamical state which is why a system ideally self-organizes in an
unsupervised manner and dynamically readapts its dynamics (Hesse & Gross, 2014). Recent work
demonstrated that local learning rules are indeed able to tune neural networks to criticality by mod-
ifying synaptic weights only based on pre- and postsynaptic neuronal activity (Levina et al., 2007;
Meisel & Gross, 2009; Stepp et al., 2015; de Andrade Costa et al., 2015; Del Papa et al., 2017; Tetzlaff
et al., 2010; Munoz, 2018a; Zierenberg et al., 2018; Poil et al., 2012; Shin & Kim, 2006). Furthermore,
theoretical considerations suggest that local learning even allows to sweep the entire range of collec-
tive dynamics from the subcritical to the critical regime. In more detail, the state of homeostatically
regulated networks can be tuned by simply adjusting the input strength (Zierenberg et al., 2018).

Locality plays a central role in biological as well as artificial neural networks where global infor-
mation like task performance error or the state of distant neurons may be unavailable. Unsupervised
and local learning does not only allow to tune the collective dynamics, but also enables neural net-
works to learn patterns or sequences (Hebb, 1949; Hopfield, 1982; Bi & Poo, 1998; Markram et al.,
1997). To that end, SNNs are often exposed to STDP (Section 2.1.4) which is though to be central
for sequence learning involved in language as well as motor processing (Markram et al., 1997; Bi &
Poo, 1998). By these unsupervised mechanisms, the networks could be preshaped in the presence of
noise to strongly speed up convergence on actual pattern input (Loidolt et al., 2020). This process is
in direct analogy to the development of biological neural networks by spontaneous activity during
development.

The locality of learning in combination with the intrinsic parallelism of SNNs does not naturally
translate to efficient software-based simulations (Section 2.2). Specifically, simulations of plastic
recurrent neural networks of increasing size become inefficient on conventional hardware, since
the amount of state variables that needs to be updated by numerical methods often scales super
linear with the number of neurons. Further, the investigation of self-organizing networks requires
comprehensive sweeps to cover the relevant time spans: First, the branching of activity within the
network needs to be captured which acts on time scales of hundreds of milliseconds. In addition,
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the plasticity required for self-organization evolves on the order of seconds. Last, large amounts
of data have to be acquired for statistical analysis. These time scales stay in strong contrast to
the neuronal dynamics: the microscopic states evolve on scales ranging from tens of milliseconds to
milliseconds. Simulating these accurately is especially important for recurrent networks. Capturing
this discrepancy of time scales is prohibitively expensive in software-based simulations. However,
the capabilities of recurrent SNNs can be efficiently exploited by relying on the intrinsic parallelism
of the physical emulation of synapses and neurons in analog or mixed-signal neuromorphic systems
(Mead, 1990; Douglas et al., 1995; Schemmel et al., 2010; Indiveri et al., 2011; Moradi et al., 2018).
More recently, these devices were extended for on-device learning capabilities, allowing to fully
profit from local learning rules (Friedmann et al., 2016; Qiao et al., 2015). Especially for accelerated
devices, the aforementioned time scales can be bridged while the learning capabilities provide the
required flexibility for the self-organization of the network.

The evaluation of the performance of an SNN implementation poses challenges irrespective of
the underlying substrate. In Chapter 4, we discussed the impact and benefits of classification bench-
marks. Despite their favorable role, the performance of a given network crucially depends on the
specific task. The quantification of processing capabilities of any local circuit in a more general
task-independent way can be achieved by methods from information theory (Wibral et al., 2015).
Measures from classical information theory allow us to quantify the information about past input,
the transfer of information within a circuit as well as the storage of information (Shannon, 1948;
Wibral et al., 2015; Cover & Thomas, 2012). The latter can be estimated either within the network or
as read out from a single unit. More recent work focuses on partial information decomposition (PID)
to disentangle the encoding of information within ensembles of neurons in a network (Williams &
Beer, 2010; Bertschinger et al., 2013; Wibral et al., 2015; Lizier et al., 2018). By this, PID allows to
quantify the unique and redundant contribution of a set of source variables to a target, but most no-
tably it also quantifies the synergistic computation which is a key contributor for any information
integration (Wibral et al., 2015, 2017a,b; Bertschinger et al., 2013; Williams & Beer, 2010). The col-
lection of these information-theoretic measures promises to bridge the gap between the assessment
of local processing capabilities and global task performance.

In the following, we present strategies to precisely tune the collective dynamics of SNNs. All
of these approaches have in common that the dynamics can be controlled by adjusting the input
strength under the permanent application of local plasticity. Within the first part of this chapter,
we investigate critical-like phenomena and shed more light on the relation between criticality, task
performance and information-theoretic fingerprint. In the second part, we consider SNNs exhibiting
bistable dynamics which give rise to autocorrelation times significantly exceeding single-neuron
dynamics.

6.2 Methods

The general results presented within this chapter are inspired by the theoretical considerations of
Zierenberg et al. (2018). In this work, the framework of a driven branching process (Harris & Harris,
2013) is applied to demonstrate the control of the dynamical regime of a homeostatically regulated
network by the frequency of the driving stimulus. Within this formulation, a spike at timestep 𝑡
causes on average 𝑚 postsynaptic spikes in the next time step, such that the expected total network
activity 𝐴[𝑡 + 1] is given by:

⟨𝐴[𝑡 + 1]|𝐴[𝑡]⟩ = 𝑚𝐴[𝑡] + 𝑁ℎ𝛿𝑡 , (6.1)
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Figure 6.2: Control of collective dynamics by the input strength. Within the framework of a driven
branching process, homeostatic plasticity shapes the network dynamics controlled by the ratio of the external
input rate ℎ and the target neural firing rate 𝜈target. Depending on this ratio, the network state can be bursting,
fluctuating or input-driven quantified by the branching parameter 𝑚 (a) and the autocorrelation time 𝜏ac (b).

in a network with 𝑁 units which are externally driven at a rate ℎ and considered at a fixed step size
𝛿𝑡. Here, ⟨.|.⟩ denotes the conditional expectation. The parameter 𝑚 is referred to as the branching
parameter. For 𝑚 < 1, the process is within the sub-critical regime where cascades of activity fade
out over time and the temporal average of the network activity converges to the stationary value:

⟨𝐴⟩ = 1
𝑇

𝑇
∑
𝑡=0

𝐴[𝑡]
𝑇→∞
−−−−→ 𝑁ℎ𝛿𝑡

1 − 𝑚
. (6.2)

Assuming a homogeneous rate distribution between all neurons in the network implies a mean
neuronal firing 𝜈 rate of:

𝜈 = ℎ
1 − 𝑚

, (6.3)

that becomes constant for a branching parameter 𝑚 ∈ [0, 1) at finite input rates ℎ ∈ [0,∞).

Homeostatic plasticity within the network is designed to adjust neuronal firing rates to a target
𝜈target by regulating all presynaptic weights 𝑤𝑖𝑗 of a neuron 𝑖 depending on its local firing activity
𝑎𝑖[𝑡]. The associated weight dynamics evolve at a time scale 𝜏hom according to:

Δ𝑤𝑖𝑗[𝑡] = (𝜈target𝛿𝑡 − 𝑎𝑗[𝑡]) (
𝛿𝑡

𝜏hom
) . (6.4)

For 𝛿𝑡/𝜏hom → 0 and therefore sufficiently slowweight dynamics, the updates become smallΔ𝑤𝑖𝑗 ≈ 0
and the network evolution is only determined by the average weights. Under this assumption, an
effective branching parameter can be estimated based on Equation (6.3):

𝑚 = 1 − ℎ
𝜈target

. (6.5)

Thus, the network dynamics can be controlled by the input strength ℎ (Figure 6.2a). For decreasing
ℎ, the dynamics are characterized by a larger branching parameter closer to criticality. Here, the
network compensates for disappearing input by internal activation, thereby tuning the system closer
to a critical state. For even lower input strengths, the dynamics are limited by the homeostatic time
scale which causes resonance effects. As a result, the network activity becomes increasingly bursty
with an effective branching parameter resembling supercritical behavior.
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In experimental settings, the dynamical state of a network can be quantified by the autocorrelation
time 𝜏ac of the underlying activity. For a subcritical branching process, the autocorrelation function
is governed by:

𝐶(𝑡) = 𝑚𝑡 , (6.6)

(Wilting & Priesemann, 2018). Comparison of the above expression with an exponential:

𝐶(𝑡) = exp (−𝑡𝛿𝑡/𝜏ac) , (6.7)

yields the autocorrelation time:

𝜏ac = − 𝛿𝑡
log (𝑚)

, (6.8)

which diverges as expected at 𝑚 = 1 where the system undergoes a critical phase transition (Fig-
ure 6.2b).

Within this chapter, we apply the theoretical concepts highlighted above to SNNs emulated on
two different BrainScaleS-2 application-specific integrated circuits (ASICs). The required methods
are organized in two major parts: We start with a description of the implemented network models
(Section 6.2.1) and then move on to a summary of the analysis techniques (Section 6.2.2). Within the
first part, we present two distinct frameworks which are both motivated by the work of Zierenberg
et al. (2018): First, a STDP-based implementation on the prototype system High Input Count Analog
Neural Network with Digital Learning System (HICANN-DLS) (cf. Section 3.1) is introduced where
the input strength is controlled by the degree of the input. The second part highlights a realization
on High Input Count Analog Neural Network X (HICANN-X) (cf. Section 3.2) that is closer aligned
to the one presented by Zierenberg et al. (2018). Here, the network is controlled by homeostatic reg-
ulation based on neuronal firing rates while the input strength is adjusted via the average indegree
of the network.

6.2.1 Models

All measures of time presented within this thesis are given in wall clock time. Due to the
accelerated nature of the BrainScaleS-2 architecture, the latter are rendered 1000× faster than
their biological equivalents. Hence, all time scales as well as time constants have to be scaled
by a factor of 1000 to achieve a translation to the corresponding biological time domain, i. e.
1 µs wall clock time corresponds to 1ms in the biological time domain.

The results presented in this chapter were acquired on the two different versions of the mixed-
signal neuromorphic hardware systemBrainScaleS-2 described in Chapter 3. While the STDP frame-
work described in Section 6.2.1.1 was implemented on the HICANN-DLS prototype chip, the home-
ostatic framework depicted in Section 6.2.1.2 targeted the HICANN-X. For each implementation, a
brief overview of the network topology, the programmed plasticity rule, the initialization and the
simulation techniques is given.

6.2.1.1 STDP framework

Network: For the experiments executed on HICANN-DLS, we used all 𝑁 = 32 leaky integrate-
and-fire (LIF) neurons and all corresponding 32×32 synapses. The synaptic address labels were
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(a) Network implementation

𝑡𝑘0 𝑡𝑘1 𝑡𝑘2 𝑡𝑘3

𝑠 𝑙0

𝑠 𝑙1

𝑠 𝑙2

𝑠 𝑙3

CADC

PPU

𝑓− 𝑓− 𝑓− 𝑓−

(b) Plasticity kernel

1 ; Scale anticausal measurements by factor

2 mulbfs dws, ac_meas, %[lambdas_stdp]

3 ; Apply decays to weight updates

4 mulbfs dws_decay, weights, %[lambdas_drift]

5 addbfs dws, dws, dws_decay

6 ; Load random numbers from general-purpose part

7 lax dws_rand, 0, %[rands_offset]

8 ; Add random numbers to updates

9 addbfs dws, dws, dws_rand

10 ; Scale and add update to weights

11 mulbfs dws, dws, %[scales]

12 addbfs weights, weights, dws

Figure 6.3: Implementation of homeostatically regulated fixed indegree SNNs on HICANN-DLS.
(a) The synapses in the synapse array of HICANN-DLS were programmed to two different address labels. A
fixed number of synapses per neuron (column) was set to the external address (red) and therefore transmits
only input spikes 𝑠 𝑙𝑗. The recurrent events 𝑡𝑘𝑖 of neuron 𝑖 were injected back into the chip to synapse drivers
𝑖 (row) with a distinct address label (blue). Non-external synapses were configured to share the recurrent
address and therefore only transmit recurrent events. The analog STDP measurements of every synapse
were digitized by the CADC and used for the parallel calculation of weight updates on the PPU. (b) Kernel
code for the STDP-based updates of synaptic weights in NASM syntax. By row-wise parallel iteration over the
synapse array, all synaptic weights were updated equally. The basic observable for the STDP driven update
rule consisted of the measurements of the correlation sensors which were digitized by the column-parallel
analog-to-digital converter (CADC). A read was directly triggered from the single instruction, multiple data
(SIMD) vector unit. The random numbers required for the stochastic potentiation of synaptic weights were
generated in software on the general-purpose part and were then loaded into a register of the vector unit.

configured to result in fixed-indegree networks (Figure 6.3a). In more detail, we used two different
address labels in the synapse array: one tagging external and the other one recurrent spikes. The LIF
neurons were connected to the external input by configuring 𝐾ext randomly chosen synapses per
neuron – i. e. per column of synapse – to the external address. All address labels of the remaining
synapses were set to the recurrent address. Therefore, each synapse either transmitted external or
recurrent events. The spike router was used in the bypass mode (cf. Section 3.1.1) and programmed
to send all accruing spikes of a neuron 𝑖 back to the synapse driver 𝑖 – i. e. to row 𝑖 – with the
recurrent address label. By controlling the ratio of the two address labels programmed in the synapse
array and therefore by setting 𝐾ext, the network can be adjusted between an input-driven and a
highly recurrent dominated regime. The extreme case with 𝐾ext/𝑁 = 1 represents a purely feed-
forward topology, whereas𝐾ext/𝑁 = 0 corresponds to a fully recurrent networkwhich is completely
decoupled from the external input.

To approximate biological findings, our networks featured about 20 % inhibitory synapses. Specif-
ically, we configured 𝑁inh randomly chosen synapse drivers on HICANN-DLS to be inhibitory, i. e.
𝑁inh synaptic rows only contained inhibitory synapses (cf. Figure 6.3). It is noteworthy that the
stochastic network description led to both excitatory as well as inhibitory synapses transmitting
the external input.
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Table 6.1: Overview of the model parameters used within the STDP framework. All time constants
are given in wall clock time. Spike-timing dependent plasticity (STDP) amplitudes as well as time constants
where measured using 20 spike pairs. The errors indicate the standard deviation. Table and caption adapted
from Cramer et al. (2020a).

Stage Parameter Symbol Value

Neuro-synaptic
dynamics

Threshold potential 𝑢thresh (554 ± 21)mV
Leak potential 𝑢leak (384 ± 79)mV
Reset potential 𝑢reset (319 ± 18)mV
Membrane capacitance 𝐶𝑚 (2.38 ± 0.02) pF
Membrane time constant 𝜏mem (1.6 ± 1.0) µs
Refractory period 𝜏ref (4.9 ± 0.5) µs
Excitatory synaptic time constant 𝜏 excsyn (3.7 ± 0.5) µs
Inhibitory synaptic time constant 𝜏 inhsyn (2.8 ± 0.3) µs
Synaptic delay 𝑑syn (1.9 ± 0.1) µs
Weight scaling factor 𝛾w (8.96 ± 0.13) µA

Network

Inhibitory synapses per neuron 𝑁inh 6
Neurons 𝑁 32
Degree of the input 𝐾ext 6 - 32
Number of Poisson spike sources 𝑁in 32
Initial weight 𝑤 init

𝑖𝑗 0mA

Plasticity
dynamics

STDP time constant 𝜏− (6.8 ± 1.2) µs
STDP amplitude 𝜂− 0.071 ± 0.023
Correlation scaling factor 𝜆stdp 11/128
Drift parameter 𝜆drift 1/512
Range of random variable 𝑛amp 15/16
Bias of random variable ⟨𝑛⟩ 3/16
Plasticity update period 𝑇 1ms

Input Input rate ℎ 29 kHz

Experiment
control

Burn-in experiment duratio 𝑇 burnin 625ms
Static experiment duration 𝑇 exp 104ms
Static trial experiment duration 𝑇 static 1ms
Training experiment duration 𝑇 train 104ms
Testing experiment duration 𝑇 test 21ms
Perturbation experiment duration 𝑇 pert 2ms
Perturbation time 𝑡pert 1ms

Evaluation
Embedding dimension 𝑙 4
Delays steps 𝑁𝜏 100

The parameter fluctuations induced by the analog emulation of neuro-synaptic dynamicswere not
explicitly compensated by dedicated calibration routines. Especially, no explicit calibration based
on single neurons and synapses was applied. Instead, all circuit instances were configured to the
same shared values. The latter were chosen such that all parts behave according to the LIF equation
with current-based synapses. In particular, we ensured that all neurons are sensible to stimulation,
but silent in the absence thereof. This choice led to larger uncertainties in the model parameters as
reported in Table 6.1, though excluded the necessity for detailed calibration routines.

Plasticity: All synapses – the recurrent as well as the stimulating ones – were subject to plasticity.
Specifically, the synaptic weight updates comprised three contributions: First, a correlation sensitive
part controlled by 𝜆stdp, second a weight drift controlled by the parameter 𝜆drift and third positively
biased stochastic potentiation. In more detail, the plasticity processing unit (PPU) on the HICANN-
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DLS chip was programmed to update synaptic weights to 𝑤𝑖𝑗(𝑡 + 𝑇 ) = 𝑤𝑖𝑗(𝑡) + Δ𝑤𝑖𝑗 according to:

Δ𝑤𝑖𝑗 = −𝜆stdp𝑓− (𝑡𝑘𝑖 , 𝑡
𝑙
𝑗, 𝑡 , 𝑡 + 𝑇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

specific depression

−𝜆drift𝑤𝑖𝑗(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decay

+ 𝑛𝑖𝑗(𝑡)⏟
unspecific

potentiation

. (6.9)

While the specific depression within this update rule is comparable to vanilla STDP, the potentiation
is unspecific and hence not correlation driven. It is noteworthy that despite of our choice for the
anticausal accumulation trace 𝑓− (cf. Equation (3.2)) within Equation (6.9), 𝑓+ is an equally valid
option which leads to comparable results. However, we decided to rely on 𝑓− for weight update
calculations due to its similarity to STDP with anticausal depression. Our weight updates were
rendered stochastic by the last term in Equation (6.9), which adds a uniformly distributed, but biased
random variable:

𝑛𝑖𝑗 ∼ unif (−𝑛amp, 𝑛amp) + ⟨𝑛⟩ , (6.10)

where 𝑛amp specifies the range, while ⟨𝑛⟩ is the bias of the random numbers. The parameters 𝜆drift,
𝑛amp and ⟨𝑛⟩ were chosen such that the average combined force of the decay and the stochastic
potentiation was positive (Table 6.1).

To facilitate scalability, all individual terms were calculated and applied to the synaptic weights
by the SIMD vector unit (Figure 6.3b). Here, the general-purpose part of the PPU was only used
to implement the update loop over the whole synapse array in row-major order. For this purpose,
the code shown in Listing 1 was utilized to trigger weight updates and in that process load synaptic
weights and access the digitized anticausal correlation measurements via the CADC. This code was
extended by the kernel shown in Figure 6.3b, implementing the individual terms of Equation (6.9).
To that end, the digitized correlation measurements ac_meas were first multiplied by the constant
scaling factor lambda_stdp and the result thereof was stored in dws (line 2). Second, the weight
decay was implemented by a single multiplication of the weights in the register weights with the
scaling factor lambda_drift. The result in dws_decay was in turn added to theweight update in dws
(line 4 and 5). Third, the realization of the stochastic, unspecific potentiation required the availability
of random numbers on the SIMD vector unit. As the prototype ASIC does not feature support for the
on-chip generation of random numbers, a pseudo-random number generator was implemented by
utilizing an exclusive-OR (XOR)-shift algorithm evaluated on the general-purpose part of the PPU.
The drawn numbers were loaded into the register dws_rand accordingly and then added to the
weight updates dws (line 7 and 9). Last, the updates dws were scaled by the constant factor scales
to ensure small updates and therefore smooth convergence despite of the 8 bit arithmetic (11 and 12).
Afterwards, the calculated weights in weights were written to the synaptic static random-access
memory (SRAM) with the code shown in Listing 1.

Initialization: The network emulation starts from a silent state by initializing the synapticweights
to 𝑤𝑖𝑗 = 0. Later, we will show that our approach generalizes to initial conditions with 𝑤𝑖𝑗 ≠ 0 (Fig-
ure 6.17). We then used𝑁 Poisson spike trains of rate ℎ for stimulation via the 𝐾ext synapses of every
neuron. In this adaptation phase, we repeatedly applied Equation (6.9) for a duration 𝑇 burnin leading
to synaptic weights 𝑤𝑖𝑗 ≠ 0. To gather sufficient statistics, we emulated each network with degree
𝐾ext 100 times. For each of these runs, we considered different random seeds for the input spike
trains, the network topology as well as the random walk in Equation (6.9). The resulting weight
matrices served as the initial condition for static experiments of duration 𝑇 exp with frozen weights
(Δ𝑤𝑖𝑗 = 0) on which we perform the actual analysis.
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(a) Network implementation

𝑡𝑘0 𝑡𝑘1 𝑡𝑘2 𝑡𝑘3 𝑡𝑘4 𝑡𝑘5 𝑡𝑘6 𝑡𝑘7

𝑠 𝑙0
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𝑠 𝑙1
𝑠 𝑙5

𝑠 𝑙2
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CADC

PPU
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(b) Plasticity kernel

1 ; Calculate weight updates

2 lax rates, 0, %[rates_offset]

3 subbfs dws, targets, rates

4 mulbfs dws, dws, %[lambdas]

5 ; Stochastic acceptance

6 inx rands, %[rand_base], %[offset]

7 subbfs rands, rands, rands_offset

8 compareb rands

9 select dws, dws, %[zeros], LT

10 ; Only update recurrent synapses

11 inx addresses, %[decoder_base], %[offset]

12 shb addresses, addresses, 6

13 shb addresses, addresses, -6

14 subbfs addresses, addresses, %[ones]

15 compareb addresses

16 select dws, %[zeros], dws, LT

17 addbfs weights, weights, dws

Figure 6.4: Implementation of homeostatically regulated fixed indegree SNNs on HICANN-X.
(a) The routing capabilities of HICANN-X were exploited to treat the analog cores of both chip halfs as a
single virtual matrix. A synapse 𝑖, 𝑗 was configured to either transmit recurrent spikes from neuron 𝑗 or neu-
ron 𝑗 + 256 respectively (blue and gray circles) or to relay a stimulating spike train 𝑗 or 𝑗 + 256 (red and yellow
circles) to its home neuron. Shown is a schematic illustration for a virtual matrix of size 4×8. Homeostatic
regulation was implemented on the PPU by accessing the neuronal spike counters. (b) Kernel code for the
homeostatic regulation of synaptic weights in NASM syntax. The basic observable for this update rule con-
sists of the spike counts which were obtained by accessing the spike counters via the general-purpose part of
the PPU. Following this, the results were loaded into the SIMD vector unit. The random number generators
were used to implement a stochastic acceptance of weight updates.

Simulation: We implemented idealized versions of the network in Brian 2 to augment the hard-
ware emulation (Goodman & Brette, 2009). In more detail, we disregarded parameter mismatch
and temporal noise and instead initialized all model parameters to the mean values given in Ta-
ble 6.1. Furthermore, we evaluated weight dynamics with floating-point precision, hence relaxing
the constraint of integer arithmetic and discretized weights as present on HICANN-DLS. Moreover,
the implemented anticausal STDP in Brian 2 did not only consider nearest-neighbor spike pair-
ings, but was based on an integral formulation. To stay within the population-based formulation of
Brian 2, the degree of the input was implemented probabilistically, i. e. each input-neuron pair was
connected with probability 𝐾ext/𝑁 and each pair of neurons with probability (𝑁 − 𝐾ext)/𝑁. This
population-based formulation relaxed the hardware constraints that either the recurrent synapse
between neuron 𝑖 and 𝑗 or the stimulating synapse between input 𝑖 and neuron 𝑗 could be realized.

6.2.1.2 Homeostatic framework

Network: The topology implemented on the full-size HICANN-X chip was similar to the one
implemented on the prototype except for a fixed recurrent sparsity and a scaled-up network. In
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more detail, the routing capabilities of HICANN-X were exploited such that the synapse arrays of
the four blocks can be treated as a single larger matrix of shape 256×512 (Figure 6.4a). Here, the left
half of this virtual matrix was assigned to the upper two quadrants of HICANN-X and the lower
half was mapped to the two lower ones. In order to still be able to connect arbitrary inputs to
neurons as well pairs of neurons among each other, the lower 2 bit of the address labels 𝑎𝑖𝑗 were
reserved. Specifically, based on their configured value, one of four possible source populations
could be individually assigned to each synapse: A synapse 𝑖, 𝑗 could be configured to either transmit
recurrent spikes from neuron 𝑗 for (𝑎𝑖𝑗& 0b11) = 0 or neuron 𝑗 + 256 for (𝑎𝑖𝑗& 0b11) = 1 to neuron
𝑖 determined by the two lowermost values. The remaining address label values were reserved to
identify a stimulating spike train 𝑗 for (𝑎𝑖𝑗& 0b11) = 2 or 𝑗 + 256 for (𝑎𝑖𝑗& 0b11) = 3, respectively.

The aforementioned setup was used to again implement fixed-indegree networks. In this context,
𝐾in synapses of each neuron were randomly drawn and configured to transmit one of 256 possible
input spike trains. Here, we relied on a fixed number of randomly chosen recurrent connections
𝐾rec which was equally split into the lower and upper half of neurons. Thereby, when changing
𝐾in, the network itself remained unchanged in terms of recurrent connections and only the number
of synapses relaying the stimulus was changed. All remaining synapses were configured to the
second input population address which could be used to inject structured input. For that purpose,
we randomly selected 𝑁div synapses per row – i. e. per presynaptic partner – and configured their
weights to a value 𝑤stim (Figure 6.11a). By relying on an extra set of synapses to stimulate our SNNs,
the effective stimulus strength remained unchanged even when changing 𝐾in.

Here, too, the networks featured inhibitory synapses: A randomly drawn set of𝑁inh = 51 synaptic
rows – i. e. presynaptic partners – was configured to be inhibitory corresponding to about 20 % of
all available synapses. To stay within the framework of a single large synapse array, the IDs of
the inhibitory synapse drivers on the upper and lower half of HICANN-X were chosen to coincide.
Again, this formulation led to excitatory and inhibitory stimulating synapses which is in direct
contrast to the theoretical considerations of Zierenberg et al. (2018).

In contrast to the STDP framework, we here applied an explicit and automated calibration of the
analog circuits to equalize out parameter variations (Figure 6.5). To this end, binary search algo-
rithms were utilized to match the measured values to a desired target (Weis, 2020). More specifically,
the time constants were adjusted based on membrane analog-to-digital converter (MADC) measure-
ments to sufficiently capture the temporal aspects of neuro-synaptic dynamics. The synaptic time
constants of both excitatory and inhibitory synapses were calibrated to 5 µs, whereas the membrane
time constants were configured to match a target of 20 µs (Figure 6.5a to c). The configured mem-
brane time constant builds a compromise between noise susceptibility which increases with their
magnitude on the neuromorphic substrate and the desirable integration of inputs by neuro-synaptic
dynamics even for the low firing rates considered within this work. In contrast, we relied on the
parallel CADC for rapid calibration of all model potentials. The latter were calibrated to exhibit a
high dynamic range, i. e. a high distance between the leak and threshold potential (Figure 6.5d to e
and Figure 6.6a and b).

Plasticity: The homeostatic regulation implemented on HICANN-Xwas designed to approximate
the theoretical considerations of Zierenberg et al. (2018). Here, all stimulating synapses remained
unchanged with a fixed shared weight 𝑤in. In contrast, the afferent recurrent synaptic weights of
each neuron were homeostatically regulated depending on the neuronal firing rate. Specifically,
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Figure 6.5: The configurability of HICANN-X allows to mitigate circuit-to-circuit variability. Ded-
icated calibration routines were used to compensate fix-pattern variations by exploiting the configurability
of all neuromorphic circuits. The excitatory and inhibitory synaptic time constants 𝜏 excsyn (a) and 𝜏 inhsyn (b) were
calibrated to match a target value of 10 µs, whereas the membrane time constant 𝜏m (c) was adjusted to a tar-
get of 20 µs. To be less susceptible to temporal noise, the leak potentials 𝑢leak (d) and the threshold potential
𝑢thres were optimized for a large distance. The reset potential 𝑢reset (f) was adjusted to a value slightly below
𝑢leak. As a reference, the distribution of an uncalibrated state is shown which was obtained by configuring all
circuits with the mean of the value determined by the calibration routine.

they were updated according to 𝑤𝑖𝑗(𝑡 + 2𝑇 ) = 𝑤𝑖𝑗(𝑡) + Δ𝑤𝑖𝑗 with:

Δ𝑤𝑖𝑗 = 𝜆 (𝜈target − 𝜈𝑖) . (6.11)

Here, 𝜆 denotes the learning rate, 𝜈𝑖 corresponds to the firing rate of neuron 𝑖 in the time interval [𝑡, 𝑡+
𝑇 ) and 𝜈target is the target rate. The calculated weight updates Δ𝑤𝑖𝑗 were applied with a probability
of only 𝑝 = 2.5% to guarantee smooth convergence to the target rate despite integer arithmetic and
finite weight resolution.

Scalability was again facilitated by updating synaptic weights via the SIMD vector units (Fig-
ure 6.4b). To this end, we again utilized the code shown in Listing 1 which was extended by the
kernel highlighted in Figure 6.4b. As the homeostatic updates according to Equation (6.11) rely on
𝜈𝑖, the spike counters were first evaluated on the general-purpose part of the PPUs. In general, this
detour was necessary since a direct access of the spike counters is not possible on the considered
version of HICANN-X. Specifically, we reset all spike counters in direct succession and triggered the
associated reads after a total duration 𝑇 −𝑇 reset from the general-purpose part, where 𝑇 reset denotes
the duration required to reset the counters of all 𝑁 neurons. To ensure a constant measurement pe-
riod 𝑇 for all neurons, the duration of the reset was adjusted to approximately match the time span
of a read. By accessing the spike counter of the neuron backend in advance of the weight update
calculations and by allowing a sufficient time interval for weight updates after triggering the next
iteration of the update loop, the measurement of 𝜈𝑖 was not disturbed by dynamics directly elicited
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Table 6.2: Overview of the model parameters used within the homeostatic framework. All time
constants are given in wall clock time. The errors indicate the standard deviation.

Stage Parameter Symbol Value

Neuro-synaptic
dynamics

Threshold potential 𝑢thresh (554 ± 21)mV
Leak potential 𝑢leak (384 ± 79)mV
Reset potential 𝑢reset (319 ± 18)mV
Membrane capacitance 𝐶𝑚 (2.38 ± 0.02) pF
Membrane time constant 𝜏mem (1.6 ± 1.0) µs
Refractory period 𝜏ref (4.9 ± 0.5) µs
Excitatory synaptic time constant 𝜏 excsyn (3.7 ± 0.5) µs
Inhibitory synaptic time constant 𝜏 inhsyn (2.8 ± 0.3) µs
Synaptic delay 𝑑syn (1.0 ± 0.1) µs
Exciatotry weight scaling factor 𝛾 excw (0.55 ± 0.00) nA
Inhibitory weight scaling factor 𝛾 inhw (0.65 ± 0.10) nA
Exciatotry weight offset 𝛿excw (0.59 ± 1.15) nA
Inhibitory weight offset 𝛿 inhw (0.80 ± 1.10) nA

Network

Inhibitory synapses per neuron 𝑁inh 51
Recurrent synapses per neuron 𝑁rec 102
Neurons 𝑁 512
Average indegree 𝐾in 65 to 117
Number of Poisson spike sources 𝑁in 256
Number of unique letter inputs 𝑁stim 10
Number of input replications 𝑁mu 20
Number of stimulating synapses per row 𝑁div 20
Input weight 𝑤in 17
Stimulating weights 𝑤stim 20 to 60
Initial synaptic weight 𝑤 init

𝑖𝑗 0

Plasticity
dynamics

Learning rate 𝜆 0.375
Target rate 𝜈target 10 kHz
Update probability 𝑝 2.5 %
Plasticity update period 𝑇 1 µs

Input
Input rate ℎ 0 kHz to 10 kHz
Stimulus rate Δℎ 0 kHz to 30 kHz
Number of samples 𝑁sample 500

Experiment
control

Burn-in experiment duration 𝑇 burnin 1000 µs
Static experiment duration 𝑇 exp 100 µs
Letter duration 𝑇 letter 200 µs
Pattern duration 𝑇 pattern 2000 µs

by rewriting the weights. In particular, the neuromorphic SNN had time to settle after applying
the weight updates and prior to the next estimation of 𝜈𝑖 for the subsequent synaptic update. The
rates measured by this approach were subsequently loaded into the register rates on the SIMD
vector unit (line 2). In direct succession, the content of rates was subtracted from the target rates
in targets and scaled by the constant factor lambda. The result thereof was stored in dws (lines 3
and 4).

We employed the hardware accelerators for the drawing of random numbers to implement the
stochastic acceptance of weight updates. By this, uniformly distributed 8 bit integers were directly
and most notably in parallel loaded into the register rands of the SIMD vector units (line 6). To fi-
nally support different acceptance probabilities, a configurable offset rands_offset was subtracted
from the drawn values (line 7). By an elementwise comparison, the elements in dws were clamped
to zero whenever the corresponding entry in rands was smaller than or equal to zero (lines 8 and
9).
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To ensure that only the weights of recurrent synapses were updated, the address labels were first
loaded into the register addresses of the SIMD vector unit to finally detect recurrent synapses (line
11). Subsequently, two bit shift operations were utilized to extract the two lowermost bits of the ad-
dress labels which contain the information of the source population as described previously (lines
12 and 13). Specifically, we detected the synapses for which (𝑎𝑖𝑗& 0b11) = 0 or (𝑎𝑖𝑗& 0b11) = 1
holds true. This was implemented by subtracting one from the shifted addresses in addresses (line
14). Now, a single check for positivity was sufficient to detect recurrent synapses: For stimulating
synapses, the result in addresses was positive and the updates in dws were clamped to zero, other-
wise, the calculated weight updates were kept (lines 15 and 16). Lastly, the calculated updates dws
were added to the old weights contained in weights and in turn written back to the synaptic SRAM
with the code in Listing 1.

Initialization: At the start of each emulation, we initialized all recurrent weights 𝑤𝑖𝑗 to 0. In
contrast, the stimulating weights were configured equally to 𝑤in. During emulation, the network
was stimulated with 𝑁in Poisson-distributed spike trains of rate ℎ by the 𝐾in synapses of every
neuron. For that purpose, we configured the on-chip background spike sources to inject spikes with
address labels corresponding to the first input population into the emulated SNNs. The repeated
application of Equation (6.9) for a total duration 𝑇 burnin caused the formation of recurrent weights
𝑤𝑖𝑗 ≠ 0. For every value 𝐾in, the network was evaluated 50 times, each with a different random
seed for the input spike trains, the network topology and the stochastic acceptance of the weight
updates. If not stated otherwise, the resulting weight matrices were used as initial conditions for
experiments with frozen weights (Δ𝑤𝑖𝑗 = 0) of duration of 𝑇 exp on which the analysis is performed.

Simulation: For validation purposes, comparable homeostatically regulated SNNs were imple-
mented in Brian 2 (Goodman & Brette, 2009). Here, the characterization results shown in Figure 6.5
were used to closely align software simulation and hardware emulation. To that end, fixed-pattern
noise was implemented by drawing parameter values from Gaussian distributions, parametrized by
the previously identified means as well as standard deviations. Furthermore, temporal noise with
a standard deviation of 2mV ⋅ √𝑤Δ𝑡/𝜏mem was added to the membrane potential of each neuron.
This roughly matched the spread of temporal variations present on the neuromorphic substrate. To
finally align the effect of a single post-synaptic potential (PSP) on hard- and in software, we charac-
terized the PSP height as a function of the configured weight value on HICANN-X (Figure 6.6). In
more detail, we determined a weight scaling factor 𝛾 exc,inhw to transform the dimensionless hardware
weight values 𝑤𝑖𝑗. This was achieved by fitting the ideal solution of the LIF equation (Equation (2.12))
to MADC recordings of the membrane potential 𝑢𝑖(𝑡) in response to a single stimulating event 𝑡0𝑗 re-
layed over a single synapse with weight 𝑤𝑖𝑗:

𝑢𝑖(𝑡) = 𝑢leak +
𝜏mem ⋅ 𝜏syn ⋅ �̃�𝑖𝑗

𝐶mem(𝜏syn − 𝜏mem)
Θ (𝑡 − 𝑡0𝑗 ) [exp (−

𝑡 − 𝑡0𝑗
𝜏syn

) − exp (−
𝑡 − 𝑡0𝑗
𝜏mem

)] . (6.12)

Here, we fixed all fit parameters to the calibration target values except for the PSC height �̃�𝑖𝑗 and the
leak potential 𝑢leak to ensure stable fits. A linear fit to the obtained �̃�𝑖𝑗 for every configured synaptic

weight 𝑤𝑖𝑗 resulted in an estimate for 𝛾 exc,inhw which finally allowed us to implement a comparable

weight range in our Brian 2 simulations. Furthermore, the fit provided the offsets 𝛿exc,inhw which
systematically deviated from zero and hence led to a violation of Dale’s law for low 𝑤𝑖𝑗 (Figure 6.6c
to e). Their effect on the results presented within the scope of this chapter was investigated in
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Figure 6.6: Characterization of the weight range on the HICANN-X chip. (a) The measured excita-
tory PSC heights �̃� exc

𝑖𝑗 show significant parameter deviations for a maximum weight. The uncalibrated state
was achieved by configuring all circuit instances with the mean value determined by the calibration rou-
tine. (b) Same as for (a), but showing a histogram of inhibitory post-synaptic current (PSC) heights �̃� inh

𝑖𝑗 .
(c) The average excitatory PSC height �̃� exc

𝑖𝑗 is a linear function of the configured synaptic weight. Linear fits
were utilized to extract the weight scaling factor essential to match the software simulations to the hardware
emulation. (d) Same as for (c), but showing the average excitatory PSC height �̃� inh

𝑖𝑗 . (e) Exemplary MADC
recordings of an excitatory PSPs for various weight values.

simulations, but turned out to not affect the investigated collective dynamics. Because of this, the
simulation results shown within this chapter were obtained with 𝛿exc,inhw = 0 for for simplicity.

Similar to the simulation methods of the STDP framework, the network topology was defined
in a population-based manner. Because of this, the same relaxations of hardware constraints hold
true for the simulations of the homeostatically regulated SNNs. In contrast to the simulations of the
STDP framework, the standard time step of Brian 2 was reduced. More specifically, we relied on
Δ𝑡 = 50 µs approaching the time-continuous nature of the analog implementation on BrainScaleS-2
which might become more critical for the larger networks under consideration.

6.2.2 Evaluation

The networks described above were not only characterized in terms of critical dynamics, but their
performance was also evaluated in a task-independent as well as task-dependent fashion. As all
measures rely on an estimate of activity, we start with a description of the applied binning (Sec-
tion 6.2.2.1). We proceed with the measures characterizing the distance to critical-like dynamics in
Section 6.2.2.2. The task-independent measures are depicted in Section 6.2.2.3. We close the sec-
tion with a description of the task-dependent performance quantification in the context of reservoir
computing in Section 6.2.2.4.
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𝑠 = 8 𝑠 = 5

𝑡

Figure 6.7: Schematic illustration of neural avalanches. Avalanches correspond to cascades of spikes
in neural networks, usually quantified on a measure of population activity. The size 𝑠 of a neural avalanche
corresponds to the number of events (red dots) in a cascade of spikes.

6.2.2.1 Binning

All of the following measures rely on an estimate of the temporally resolved activity, either per
neuron or population-wise. Because of this, we applied temporal binning to the spike times 𝑥𝑘𝑖 of
unit 𝑖:

�̃�𝑖[𝑡] = ∑
𝑘
1 (𝑥𝑘𝑖 ≥ 𝑡 ⋅ 𝛿𝑡, 𝑥𝑘𝑖 < (𝑡 + 1) ⋅ 𝛿𝑡) , (6.13)

with the binwidth 𝛿𝑡, and the indicator function 1. Based on this estimate, we are able to define the
binarized activity for a single process 𝑖:

𝑥𝑖[𝑡] = min (1, �̃�𝑖[𝑡]) . (6.14)

Depending on the leading question, the variable 𝑥𝑖[𝑡] can represent either the activity of a neuron in
the network 𝑎𝑖[𝑡], or of a stimulating spike train 𝑠𝑖[𝑡]. Hence, we abbreviated the stimulating (input)
and recurrent spikes correspondingly by the variable 𝑥𝑘𝑖 .

The population activity 𝑎[𝑡] of the network can be obtained by summing �̃�𝑖[𝑡] over all neurons:

𝑎[𝑡] =
𝑁
∑
𝑖=1

�̃�𝑖[𝑡] . (6.15)

From this, the population rate 𝜈[𝑡] can be estimated by normalization with the binwidth 𝛿𝑡 as well
as the population size 𝑁.

6.2.2.2 Classical measures

Neural avalanches: In neural networks, an avalanche is defined as a cascade of spikes in di-
rect succession. Following established definitions, we estimate avalanches based on the population
activity 𝑎[𝑡] obtained by binning the spike trains with 𝛿𝑡 given by the mean inter-event interval.
Hence, avalanches correspond to sequences of non-empty consecutive bins of 𝑎[𝑡] (Beggs & Plenz,
2003). Here, we only consider the sizes 𝑠 of avalanches which are in general considered as the num-
ber of spikes within an avalanche (Figure 6.7). The size distribution 𝒫 (𝑠) is assumed to resemble a
power-law in the case of critical dynamics.

The criticality hypothesis can hence be quantified by fitting different distributions to 𝒫 (𝑠). In
more detail, we compare power-law with exponential fits and select a best-matching distribution
based on the fit-likelihood (Clauset et al., 2009). To account for the system’s finite size, we restrict
the fit range to the interval 𝑠 ∈ {4, 3 ⋅ 𝑁 }. Furthermore, we make use of a truncated power-law fit:

𝒫pl(𝑠) ∝ 𝑠−𝛼𝑠 exp (− 𝑠
𝑠cut

) , (6.16)
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with 𝑠 ≥ 1 to finally estimate the critical exponent 𝛼𝑠 as well as an exponential cutoff 𝑠cut. All fits
were performed with the power-law Python package which provides a rich repertoire of testable
distributions (Alstott et al., 2014).

Fano factor: For the quantification of variations within the population activity 𝑎[𝑡], we consider
the Fano factor:

𝐹 = 𝜎2𝑎 /𝜇𝑎 , (6.17)

where 𝜎2𝑎 denotes the variance and 𝜇𝑎 is the mean of the population activity 𝑎[𝑡]. By estimating 𝑎[𝑡]
with a binwidth of 𝛿𝑡 = 𝜏ref, we are able to even capture variations within the propagation.

Trial-to-trial variability: For the estimation of trial-to-trial variations Δvrd, we stimulated each
network multiple times with the very same input spike train. To this end, we obtain multiple trials
which differ due to the analog emulation of neuro-synaptic dynamics. In order to finally estimate
a von-Rossum like distance, we convolve the spike times 𝑡 𝑗𝑖,𝑚 emitted by neuron 𝑖 in trial 𝑚 with a
Gaussian kernel:

̃𝑡𝑖,𝑚(𝑡) = ∑
𝑗
∫
𝑇 exp

0
exp (−

(𝑡 − 𝑡′)2

2𝜎2vrd
)𝛿(𝑡′ − 𝑡𝑗𝑖,𝑚)dt′ , (6.18)

with the kernel width 𝜎vrd which is chosen to match the refractory period 𝜏ref. The convolution is
carried out with a temporal resolution of 0.1 µs. In pair-wise comparisons, we, in turn, estimate a
von-Rossum like distance from the trials 𝑚 and 𝑛:

Δvrd = 1
𝜎vrd

∑
𝑚,𝑛
𝑚≠𝑛

𝑁
∑
𝑖=1

∫
∞

−∞

[ ̃𝑡𝑖,𝑚(𝑡) − ̃𝑡𝑖,𝑛(𝑡)]2

[ ̃𝑡𝑖,𝑚(𝑡) + ̃𝑡𝑖,𝑛(𝑡)]2
dt , (6.19)

which is then averaged over all possible combinations of trials.

Susceptibility: We define a susceptibility based on the network’s sensitivity to external pertur-
bations. To this end, we embedded a burst of 𝑁pert additional spikes at time 𝑡pert into the regular
Poisson distributed input spike trains. The susceptibility is then defined as the difference in the
populations activity 𝑎[𝑡] after and prior to this perturbation:

𝜒 =
∑𝑖,𝑘 1 (𝑥𝑘𝑖 ≥ 𝑡pert − 𝛿𝑡, 𝑥𝑘𝑖 < 𝑡pert) − ∑𝑘 1 (𝑥𝑘𝑖 ≥ 𝑡pert, 𝑥𝑘𝑖 < 𝑡pert + 𝛿𝑡)

𝐾2
ext

, (6.20)

where we estimate 𝑎[𝑡] with a binwidth of 𝛿𝑡 = 𝑑syn, i. e. the synaptic round trip time. This allows
us to only capture the effect of the perturbation and at the same time to minimize the effect of trial-
to-trial variations. Here, we normalize 𝜒 to the number of stimulating synapses 𝐾2

ext in order to
compensate for the decoupling from the external input with decreasing 𝐾ext.

To calculate Δvrd, 𝑑var and 𝜒, each weight matrix, obtained by the application of the plasticity
rule, was used as initial condition for 10 emulations with frozen weights and fixed seeds for the
Poisson-distributed spike trains of duration 𝑇 static, 𝑇 pattern and 𝑇 pert, respectively. Additionally, a
perturbation of size 𝑁pert at 𝑡pert = 𝑇 pert/2 was embedded into the stimulating spike trains for the
estimation of 𝜒.
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Figure 6.8: Schematic illustration of a two-state hidden Markov model model. A hidden Markov
model with two hidden states 𝑠− and 𝑠+ (gray) is fitted to the population activity 𝑎[𝑡] (red). The transition
probabilities 𝑝t

𝑖𝑗 (green) denote the probability of moving between the hidden states 𝑖 and 𝑗, whereas the
emission proabilities 𝑝𝑖𝑗e (blue) describe the probability that the hidden state 𝑖 generates the observation 𝑗.

Branching parameter: The population activity of a spiking neural network often follows a first-
order autoregressive representation. In analogy to Beggs & Plenz (2003) and Wilting & Priesemann
(2018), we consider the ansatz in Equation (6.1) and estimate the population activity with a binsize
of 𝛿𝑡 = 𝜏ref. Here, the branching parameter 𝑚 can be directly assessed, since the full network state is
known and subsampling effects do not bias the estimate (Priesemann et al., 2009, 2014). Because of
this, we rely on the classical estimation by computing the linear regression between 𝑎[𝑡] and 𝑎[𝑡 +1]
(Wei & Winnicki, 1990). For model validation pruposes, we calculate an autocorrelation time 𝜏br
from 𝑚 by drawing on Equation (6.8).

Autocorrelation time: However, the estimation of the autocorrelation time from the branching
parameter 𝑚 is only valid for vanishing external drive ℎ. Thus, we further estimate the autocorre-
lation function 𝜌𝑎,𝑎 based on the population activity 𝑎[𝑡] binned with 𝛿𝑡 = 𝜏ref:

𝜌𝑎,𝑎[𝑡′] =
1
𝜎2𝑎

𝑇 exp/𝛿𝑡−𝑡′

∑
𝑡=1

(𝑎[𝑡] − 𝜇𝑎) (𝑎[𝑡 + 𝑡′] − 𝜇𝑎) , (6.21)

where 𝜎𝑎 is the standard deviation, and 𝜇𝑎 the mean of the population activity. The autocorrelation
time 𝜏ac is determined by fitting an exponential to 𝜌𝑎,𝑎. We are then able to validate our model by
comparing the 𝜏br and 𝜏ac.

Hidden Markov model: We fit a hidden Markov model (HMM) to the population activity 𝑎[𝑡]
to identify phases of low and high activity to finally determine the dominant time scale of our
neuromoprhic SNNs. To that end, we restrict our model to two hidden states 𝑠− and 𝑠+ (Figure 6.8).
The transition and emission probabilities 𝑝t𝑖𝑗 and 𝑝

e
𝑖𝑗 are obtained by a Baum-Welch algorithm (Baum

et al., 1972), whereas a Viterbi algorithm is utilized for the inference (Viterbi, 1967). We estimate the
time scale of the SNNs from the transmission probabilities 𝑝t𝑖𝑗. Specifically, we determine the second
largest eigenvalue of 𝑝t𝑖𝑗, 𝜆2. From 𝜆2, the time scale 𝜏hm can be estimated by applying Equation (6.8).
Here, the population activity 𝑎[𝑡] is estimated with a binsize of 𝛿𝑡 = 1 µs for both the HMM as well as
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Figure 6.9: Schematic illustration of a delay embedding. For the estimation of AIS and TE as well as the
PID, we reconstruct the past states X− based on the activity 𝑥(𝑖). These state vectors are obtained by delay
embedding with length 𝑙 according to Xl[𝑡 − 1] = {𝑋[𝑡 − 1], 𝑋[𝑡 − 2], ..., 𝑋 [𝑡 − 𝑙]}. The current value 𝑋 is then
simply given by 𝑋[𝑡].

the classical estimation of the autocorrelation function used for comparison. The HMM was fitted
and evaluated with the hmmlearn Python package.

6.2.2.3 Information theory

In the following, we stick to the definitions and concepts of Wibral et al. (2015) to which we refer
for further details. For the classical information-theoretic measures, we always consider pairs of
neural spike trains or pairs of stimulating and neural spike trains, respectively. Their firing activity
is assumed to represent two stationary random processes 𝑋1 and 𝑋2, composed of random variables
𝑋1[𝑡] and 𝑋2[𝑡], 𝑡 = 1, ..., 𝑛, with realizations 𝑥1[𝑡] and 𝑥2[𝑡].

Both, the entropy (H) as well as the mutual information (I) can be directly calculated for the
random variables. Hence, the mutual information (I) between 𝑋1 and 𝑋2 is given by:

I(𝑋1 ∶ 𝑋2) = H(𝑋1) − H(𝑋1|𝑋2) . (6.22)

To capture the fading of memory within a network, we define the lagged mutual information for
time lag 𝜏:

I𝜏(𝑋1 ∶ 𝑋2) = I𝜏 (𝑋1[𝑡] ∶ 𝑋2[𝑡 + 𝜏]) . (6.23)

Integrating this lagged I defines the memory capacity (MC):

MC(𝑋1 ∶ 𝑋2) =
𝑁𝜏

∑
𝜏=1

𝛿𝑡 [I𝜏(𝑋1 ∶ 𝑋2) − I𝑁𝜏(𝑋1 ∶ 𝑋2)] , (6.24)

with a maximal delay 𝑁𝜏 which we set to 100within this work. In order to compensate for potential
estimation biases, we furthermore subtract the I corresponding to 𝑁.

Since the following measures rely on past states, we start by constructing an embedding space.
Specifically, the embedding vector of e. g. 𝑋1 is constructed according to:

Xl
1[𝑡] = {𝑋1[𝑡], 𝑋1[𝑡 − 1], ..., 𝑋1[𝑡 − 𝑙 + 1]} , (6.25)

(Figure 6.9). Here, the embedding dimension 𝑙 is chosen such that the variable 𝑋1[𝑡 + 1] is rendered
conditionally independent of all random variables 𝑋1[𝑡′] with 𝑡′ < 𝑡 − 𝑙 + 1:

𝑝 (𝑋1[𝑡 + 1]|Xl
1[𝑡], 𝑋1[𝑡′]) = 𝑝 (𝑋1[𝑡 + 1]|Xl

1[𝑡]) , (6.26)
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Figure 6.10: Quantification of information modfication with PID. PID allows to assess the information
distribution in ensembles of agents. Here, we decompose a joint mutual information where the spiking his-
tories a−i and a−j of two neurons correspond to the input variables, and the output variable is given by the
present state 𝑎𝑗. (a) With this choice, the joint mutual information is equal to the sum of TE and AIS. (b) PID
provides us with measures for the unique contributions of each source to the firing of the target neuron,
as well as the shared (also called redundant), and synergistic contributions. Figure inspired by Wibral et al.
(2017a).

where (⋅|⋅) denotes the conditional. As a shorthand notation, we define the past state of the random
process 𝑋1:

X−
1 ≡ Xl

1[𝑡 − 1] = {𝑋1[𝑡 − 1], 𝑋 [𝑡 − 2], ..., 𝑋1[𝑡 − 𝑙]} . (6.27)

which is highlighted in bold font to clearly differentiate from the current value of the corresponding
process 𝑋1 (Figure 6.9).

The storage of information as read out from a single process is captured by the active information
storage (AIS). With above’s notation, the latter is given by:

AIS(𝑋1) = I(𝑋1 ∶ X−
1 ) , (6.28)

for the process 𝑋1. The transfer of information between a source process 𝑋1 and a target 𝑋2 is
quantified by the transfer entropy (TE):

TE(𝑋1 → 𝑋2) = I(𝑋2 ∶ X−
1 |X−

2 ) . (6.29)

Alongside to these classical information-theoretic measures, we use the novel concept of PID
to estimate the information modification (Williams & Beer, 2010; Bertschinger et al., 2013; Wibral
et al., 2017a). Here, we use the same pair-wise definition as Wibral et al. (2017a). Specifically, the
modification is assumed to be the information about the present state of a process, that can only
be obtained by observing both the past of the own process as well as the past of a source process.
Because of this, PID can be used to decompose the joint mutual information I(𝑋1 ∶ X−

1 ,X−
2 ) of a

process𝑋1, its own pastX−
1 , as well as the past of a second processX−

2 . This jointmutual information
corresponds to the sum of the active information storage (AIS) and the TE (Figure 6.10a):

I(𝑋1 ∶ X−
1 ,X−

2 ) = I(𝑋1 ∶ X−
1 ) + I(𝑋1 ∶ X−

2 |X−
1 ) . (6.30)

With this choice, the PID components are (Figure 6.10b):

1. The unique information Iunq(𝑋1 ∶ X−
1 ⧵ X−

2 ) capturing the information available in the past
of the own process.
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2. The unique information Iunq(𝑋1 ∶ X−
2 ⧵ X−

1 ) encompassing the information conveyed by the
source process.

3. The shared information Ishd(𝑋1 ∶ X−
2 ;X−

1 ) which is redundantly contributed by both pro-
cesses.

4. The synergistic information Isyn(𝑋1 ∶ X−
2 ;X−

1 ), which can only be obtained when observing
both past states.

We follow the idea of Wibral et al. (2017a) and use Isyn as a suitable measure for information modifi-
cation. Since the decomposition can not be accomplished by the estimation of classical information
terms, additional assumptions have to be made. The choices utilized within this work are outlined
in Appendix A.3.

To finally evaluate all of these measures, we generate the binarized activity for every neuron and
stimulus with a binwidth 𝛿𝑡 = 𝜏ref. The delay embedding vectors are constructed with 𝑙 = 4 which
builds a compromise between the required amount of data and the capturing of sufficient history.
Measures incorporating more than a single process are estimated in a pair-wise scenario where the
mean over all possible combinations of processes is taken. For these measures, the entropy (H)
of the target process is used for normalization. All classical information-theoretic measures were
estimated with the toolbox JIDT (Lizier, 2014). The joint mutual information was decomposed by
relying on the BROJA-2PID estimator (Makkeh et al., 2018).

6.2.2.4 Reservoir computing

We draw on the reservoir computing framework to perform task-specific information processing
with our networks (Maass et al., 2002; Jaeger, 2001). To this end, we stimulated our neuromorphic
network with task-specific spike trains and consider the performance of a linear readout on the
elicited neural activity trained in software. In order to not change our network by the input, we
fixed all synaptic weights during the processing of inputs.

Readout: The considered readout only has access to a subset of all neurons in the network. Specif-
ically, the activity 𝑎𝑖[𝑡] of a random set of neurons 𝒰 with cardinality 𝑁read is used for the training
with a binary classification problem:

𝑣[𝑡] = Θ(∑
𝑗∈𝒰

𝑤𝑗𝑎𝑗[𝑡] −
1
2
) , (6.31)

where Θ(⋅) is the Heaviside function, and 𝑣[𝑡] is the predicted label. Linear regression on a set of
training data with label 𝑦[𝑡] is used to determine the weight vector 𝑤𝑗 of the classifier:

𝑤𝑗 = argmin
𝑤𝑗

(∑
𝑡
|𝑦[𝑡] − 𝑤𝑗𝑎𝑗[𝑡]|

2) . (6.32)

The performance of the network is quantified by I (𝑦[𝑡], 𝑣[𝑡]) on a set of held-out test samples . Note
that the multi-class scenario can be easily constructed by training multiple readout units simulta-
neously. For the prediction of time continuous functions, the linear readout can be modified to:

𝑦[𝑡] =
𝑁
∑
𝑗=1

𝑤𝑗𝑎𝑗[𝑡] . (6.33)
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To capture the continuous nature of inferred result 𝑦[𝑡], a normalized root-mean-square error (NRMSE)
is used to quantify the network’s performance on some test data:

NRMSE =
√

⟨𝑥𝑛[𝑡] − 𝑦[𝑡]⟩𝑡
𝜎𝑦

, (6.34)

where we defined the standard deviation of the vote of the linear classifier 𝜎𝑦. The linear regression
was performed with the scikit-learn Python package (Pedregosa et al., 2011).

6.2.2.5 Tasks

We quantify the computational capabilities of our neuromorphic SNNs by evaluating their perfor-
mance on a set of artificial tasks. The latter are designed to provide precise control of complexity
or to resemble spatio-temporal input patterns.

Sum and parity: The estimation of both the temporal sum as well as the parity of the input 𝑠𝑘𝑖
from the population activity 𝑎𝑖[𝑡] requires memorizing and combining past input. Here, we used a
single Poisson-distributed spike train of rate ℎ to stimulate all external synapses of the network, i. e.
the input spike times were given by 𝑠𝑘𝑖 = 𝑠𝑘 ∀ 𝑖. To define both functions based on these spike trains,
we bin the spike times according to Equation (6.14) with a binsize of 𝛿𝑡 = 1 µs. The resulting activity
𝑠[𝑡] can then be directly used to calculate the 𝑛-bit sum given by:

𝑧𝑛 (𝑠[𝑡]) = 𝑠[𝑡] + 𝑠[𝑡 − 1] + ... + 𝑠[𝑡 − 𝑛 + 1] , (6.35)

i. e. the number of spikes that occurred in the past 𝑛 time steps. Likewise, we define the 𝑛-bit parity
function:

𝑝𝑛 (𝑠[𝑡]) = 𝑠[𝑡] ⊕ 𝑠[𝑡 − 1] ⊕ ... ⊕ 𝑠[𝑡 − 𝑛 + 1] , (6.36)

with 𝑝𝑛 (𝑠[𝑡]) ∈ {0, 1} and the modulus 2 addition ⊕, i. e. whether an even or odd number of spikes
occurred in the past 𝑛 time steps.

While the classifier can be directly implemented according to Equation (6.31) for the estimation of
𝑝𝑛 (𝑠[𝑡]), the number of readout units needs to be extended to infer 𝑧𝑛 (𝑠[𝑡]). To that end, a winner-
take-all mechanism is finally utilized to select a winning unit. To compensate for imbalance, we
furthermore weighted each sample in the regression in Equation (6.32) with the respective occur-
rence of their corresponding class. In addition, we correct the performance I by the performance of
the same classifier trained on a shuffled version of both 𝑝𝑛 (𝑠[𝑡]) and 𝑧𝑛 (𝑠[𝑡]).

NARMA: We also assess the performance of linear readout trained on the activity of our networks
to generate continuous functions of the input. To that end, we stimulated our networks with 𝑁
Poisson-distributed input spike trains of rate ℎ and duration 𝑇 train and 𝑇 test, respectively. Based on
these spike trains, we define the normalized activity:

̃𝑠[𝑡] =
𝑠[𝑡] −min (𝑠[𝑡])
2 ⋅max (𝑠[𝑡])

, (6.37)

where 𝑠[𝑡] is obtained with a binsize 𝛿𝑡 = 1 µs. The nonlinear auto-regressive moving average
(NARMA) can now be defined based on this non-binary observable:

𝑥𝑛[𝑡] = 𝛼 ⋅ 𝑥𝑛[𝑡 − 1] + 𝛽 ⋅ 𝑥𝑛[𝑡 − 1] ⋅ 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑛[𝑡 − 𝑖] + 𝛾 ⋅ ̃𝑠[𝑡 − 𝑛] ⋅ ̃𝑠[𝑡 − 1] + 𝛿 , (6.38)
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𝑇 letter

𝑁stim

Time 𝑡

Letter A
Letter B

Input Reservoir Readout

Background

𝑤in

𝑤stim

(a) Random letter (b) Reservoir computing setup

Figure 6.11: Benchmarking of SNNs with artificial letters. (a) Each letter consists of a set of 𝑁stim

Poisson distributed spike trains with duration 𝑇 letter. Here, we show two of these patterns A and B. The task
of a network is to infer the letter identity at time 𝑡 after stimulus onset. (b) For classification, we consider the
framework of reservoir computing. Specifically, a linear readout is trained on a SNN’s activity 𝑎𝑖[𝑡] elicited
by a stimulus injected via a set of 𝑁in ×𝑁mu input synapses with weight 𝑤stim. Simultaneously, the network is
continuously stimulated with Poissonian background spikes via a set of 𝐾in synapses with weight 𝑤in.

with the parameters 𝛼 = 0.3, 𝛽 = 0.05, 𝛾 = 1.5, 𝛿 = 0.1 (Jaeger, 2003). Note that we normalized the
second operand with 𝑛, since the latter is considered as a measure of complexity in close accordance
to the sum and parity tasks.

Random pattern: Next, we target the classification of artificial letters. In more detail, these com-
prise of 𝑁stim spike trains of rate Δℎ = 30 kHz and duration 𝑇 letter with Poisson statistics. Different
classes can now be generated by considering various seeds for their generation. Here, we only dis-
cuss results for a binary classification of the letters A and B (Figure 6.11a). The associated spike
trains were used to stimulate the reservoir network (Figure 6.11b). Specifically, each spike train was
multiplexed 𝑁mu times resulting in a total of 𝑁stim ×𝑁mu inputs, each of which injected into a single
synaptic row of HICANN-X to elicit sufficiently high activation levels within the emulated SNN.
For that purpose, we configured the two lowermost bits of the address labels of 𝑁div randomly se-
lected synapses per synaptic row to the identifier of the second input population. In addition, their
weight values were set to 𝑤stim. This choice allowed us to simultaneously stimulate the network
with Poissonian spikes via the first input population which continuously received input from the
background spike sources. By injecting the very same pattern 𝑁sample times, we generated different
samples. Again, we train a linear readout on the elicited activity 𝑎𝑖[𝑡] on 50% of all acquired samples
to finally classify the letter identity. As done previously, we quantify the performance by a mutual
information based on the remaining 50 % of the samples. We utilized a binwidth 𝛿𝑡 = 1 µs for the
estimation of 𝑎𝑖[𝑡].

121



6 Unsupervised Learning

(a) Low input spike raster
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Figure 6.12: The degree of external input 𝐾ext shapes the collective dynamics of the network. (a) For
a low degree of the input (𝐾ext = 0.25), strong recurrent connections develop, and the activity shows irregular
bursts, resembling a critical state. (b) For a high degrees of the input (𝐾ext = 0.56), firing becomes more
irregular and asynchronous. Figure and caption taken from Cramer et al. (2020a).

6.3 Results

Throughout this work, we consider SNNs mimicking basic aspects of neural systems. In-vivo in
awake animals, the latter exhibit a hierarchy of autocorrelation time scales ranging from millisec-
onds within sensory to hundreds of milliseconds in frontal areas (Murray et al., 2014; Hasson et al.,
2015). In more detail, cortical areas associated with higher-order brain function feature a higher
autocorrelation time. The functional meaning of this form of correlation within neuronal tissue is
the implementation of working memory (Christophel et al., 2017). In particular, this memory is en-
coded in the dynamical states. Most of this knowledge is, however, only supported by data which
is why comprehensive models are required. In terms of these models, the mechanisms leading to
autocorrelations within the population activity could be carved out to build a fundamental under-
standing of time scales in SNNs and finally in biological tissue. Moreover, these models allow the
investigation of the functional role of diverse time scales within a single system.

Within this section, we present two distinct mechanisms causing collective dynamics by means
of correlations within the population activity of SNNs. Both underlying frameworks allow us to
control the time scale of these correlations by adapting the input strength. While the dynamics of
the STDP framework seem to resemble a continuous phase transition, the homeostatic framework
displays bistable behavior. For both setups, we propose scenarios in which the collective dynam-
ics can be exploited for efficient information processing without highly detailed and task-specific
learning mechanisms within the network. Note that all measures of time are given in wall clock
time and have to be scaled by a factor of 1000 to obtain their biological equivalent (Section 6.2.1).

6.3.1 STDP framework

Within our STDP framework, we consider plastic networks of LIF neurons emulated on HICANN-
DLS. In total, we utilize all 32 neurons with the associated 32×32 synapses programmed to feature
20 % inhibitory synapses. All synapses are plastic and subject to a modified version of STDP com-
posed of a positive drift and the negative anticausal part of STDP. In particular, this choice promotes
stable network activity – i. e. no pathologically low or high firing rates – even in the presence of
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hardware imperfections (Table 6.1). The synaptic plasticity is implemented on-chip, running along-
side the analog emulation of neuro-synaptic dynamics. Hence, the communication with the host
system is kept at a minimum which facilitates an uninterrupted emulation and in turn, allows to
fully profit from the accelerated nature of BrainScaleS-2.

Here, we consider fixed indegree networks implemented on the BrainScaleS-2 prototype system
HICANN-DLS which were implemented by configuring a set of 𝐾ext synapses per neuron to relay
Poisson-distributed distributed input spikes. All remaining synapses were used to relay recurrent
spikes. This choice leads to the extreme cases of a feed-forward network for 𝐾ext/𝑁 = 1 and a
fully connected recurrent topology without stimulating synapses for 𝐾ext/𝑁 = 0. We discover
vastly different dynamics depending on the choice of 𝐾ext: While the network activity is more
asynchronous-irregular for low 𝐾ext (Figure 6.12b), it becomes increasingly synchronous for a de-
creased input strength 𝐾ext (Figure 6.12a) in direct accordance with the work of Zierenberg et al.
(2019).

6.3.1.1 Control of critical dynamics

The change in collective dynamics evidenced by Figure 6.12 closely resembles the dynamics expected
at a non-equilibrium continuous phase transition. Indeed, we find the associated critical phenomena
in the avalanche distributions (Figures 6.13 and 6.14) and the branching parameter (Figure 6.15a)
as well as the autocorrelation time (Figure 6.15b). Similarly, the networks become increasingly
sensitive to internal as well as external perturbations as indicated by the susceptibility and trial-to-
trial variability (Figure 6.15d).

We consider the framework of a branching process to test for critical dynamics (Zapperi et al.,
1995; Harris, 2002; Watson & Galton, 1875; Wilting & Priesemann, 2018). Within this formulation, a
spike at time 𝑡 triggers on average 𝑚 postsynaptic spikes at time 𝑡 + 1. Critical dynamics emerge for
a branching parameter of 𝑚 = 1where large discharges of spikes – so-called avalanches – define the
population activity (Beggs & Plenz, 2003; Harris, 2002). The size 𝑠 of an avalanche is given by the
number of events within a cascade. Being at a critical point, the sizes are expected to be distributed
according to a power law. Indeed, our network activity shows power-law distributed avalanche
sizes over two orders of magnitudes for low input strengths (Figure 6.13a). Quantified by fitting
exponentials and power-laws (Clauset et al., 2009), the distributions are best fitted by a power-law for
low 𝐾ext (Figure 6.13d). The associated critical exponents 𝛼𝑠 are found by fitting a truncated power-
law. Only for the lowermost 𝐾ext, 𝛼𝑠 closely matches the theoretically predicted critical exponent
𝛼𝑠 ≈ 1.5 (Zapperi et al., 1995). Moreover, this fit also provides an increasing cutoff 𝑠cut for decreasing
input strengths. However, for the lowest value of 𝐾ext the networks tend to become unstable which
is why 𝑠cut (Figure 6.13b) and themodel comparison (Figure 6.13d) peak for higher values of the input
strength. Summing up, the assessment of neural avalanches suggests a continuous phase transition
for low 𝐾ext and, more importantly, the distance to critical-like dynamics can be controlled by the
input strength 𝐾ext.

We draw on software simulations of equivalent networks to investigate finite-size scaling due
to the limited size of our neuromorphic network. In more detail, we simulated an equivalent low
input strength network in Brian 2 and scaled the system size 𝑁 accordingly. Just like their smaller
counterparts emulated on HICANN-DLS, these low degree networks reveal power-law distributed
avalanches size 𝑠 (Figure 6.14a). Moreover, a truncated exponential fit suggests that the cutoff 𝑠cut
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Figure 6.13: Under low degree of input 𝐾ext, the network self-organizes towards a critical state,
and showed long-tailed avalanche distributions. (a) Distributions of avalanche sizes 𝑠 resemble power-
laws over two orders of magnitude for low 𝐾ext. Fitting a truncated power law, (b) the exponential cutoff
𝑠cut peaks, and (c) critical exponents 𝛼𝑠 approximate 1.5, as expected for critical branching processes. (d) A
maximum-likelihood comparison decides for a power-law compared to an exponential fit in the majority of
cases. Dashed vertical lines indicate the set of 𝐾ext/𝑁 values that have been selected in (a). In this and all
following figures, the median over runs and (if acquired) trials is shown, and the errorbars show the 5%-95%
confidence intervals. Figure and caption taken from Cramer et al. (2020a).

of the avalanche distribution scales with 𝑁 with an associated scaling exponent of 1.6 ± 0.2 (Fig-
ure 6.14b). These simulation results underpin the assumption that our neuromorphic networks
self-organize to a critical point for low degrees of the input 𝐾ext.

The implementation on the accelerated HICANN-DLS chip promises an efficient and fast emula-
tion of neuro-synaptic dynamics. By taking up the aforementioned Brian 2 simulations, we are able
to directly compare the run time of emulation and simulation. Despite the small system size, the
emulation on HICANN-DLS already outperforms the simulation on conventional hardware with a
speedup factor of 100 , even when incorporating the overhead introduced by spike transfer. More
precisely, the simulation of a single plasticity experiment with a duration of 600 s in biological time
takes 570 s in Brian 2 while the emulation requires only 6 s. In general, the simulation with detailed
synaptic plasticity often scales with 𝒪(𝑁 2) for all-to-all connected networks, i. e. with the number
of synapses that need to be updated. In contrast, HICANN-DLS naturally captures the intrinsic
parallelism of neuro-synaptic dynamics and hence renders the emulation time independent of the
system size 𝑁 as long as the network can be mapped to chip.

Next, we assess the branching parameter in a direct fashion to further strengthen the prevalence
of the universality class of a critical branching process. The branching parameter 𝑚 captures the
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Figure 6.14: Finite-size scaling is assessed using a software implementation with varying system
size 𝑁. (a) Exemplary avalanche size distributions follow a power-law for any tested 𝑁 (degree of the input
𝐾ext/𝑁 = 1/4). (b) As expected for critical systems, the cutoff 𝑠cut scales with the system size with scaling
exponent 1.6 ± 0.2. Figure and caption taken from Cramer et al. (2020a).

spread of activity within a network and is smaller than unity for sub-critical dynamics, whereas it
is larger for super-critical processes. For all 𝐾ext, our networks shows 𝑚 < 1 and hence sub-critical
dynamics. However, 𝑚 tends towards unity for low 𝐾in (Figure 6.15a). The theoretical relation
𝜏br(𝑚) ∼ lim

𝑚→1
(−1/ log (𝑚)) = ∞ suggests that the autocorrelation time 𝜏ac diverges at a critical point

(Wilting & Priesemann, 2018). In a first step, we directly estimated the autocorrelation time from
the population activity 𝜏ac which indeed peaked for low 𝐾ext (Figure 6.15b). Building on this result,
the relation between autocorrelation time and 𝑚 in Equation (6.8) allows us to validate the model
used to determine 𝑚. The times obtained by both methods indeed closely match, characterized by a
correlation coefficient 𝜌 = 0.998 with 𝑝 < 10−10 (Figure 6.15c). As a result, this assessment of 𝑚 as
well as the autocorrelation time strengthens our assumption of critical-like dynamics for low 𝐾in.

A major computational advantage of operating in the vicinity of a critical point is the enhance-
ment of differences within the stimulus. This is captured by a diverging susceptibility 𝜒 for critical-
like dynamics. Here, we define 𝜒 by the change in the population activity in response to a burst of
𝑁pert = 6 additional spikes embedded into the regular Poisson spike input. Indeed, this suscepti-
bility is highest for low 𝐾ext (Figure 6.15d). Moreover, not only does the response to this external
perturbation increase, but also intrinsic variations are strongly amplified. The latter are caused by
the analog nature of the substrate which exhibits temporal noise within all dynamical variables of
the model. Quantified by a van-Rossum distance Δvrd, these trial-to-trial variations also peak for
networks closer to criticality (Figure 6.15d). Hence, not only the avalanche size distribution, but also
the considered dynamical properties suggest self-organization to criticality for low input strength.

6.3.1.2 Adjusting networks to task requirements

In the following, we test the prevailing assumption that criticality is beneficial for task processing in
general. Our results showcase that this general statement has to be phrased more carefully. While
we already found that abstract computational properties are indeed maximized in the vicinity of a
critical point this does not necessarily translate to high task performance (Shew et al., 2011; Shew &
Plenz, 2013; Barnett et al., 2013; Wilting & Priesemann, 2018). Indeed, there are also tasks for which
critical dynamics are detrimental. Hence, the network state needs to be carefully adjusted to task
requirements, i. e. every task needs its own dynamics to be optimally solved.
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Figure 6.15: For lowdegrees of the input𝐾ext, the network showclear signatures of criticality beyond
power-laws. Only for low values of 𝐾ext, (a) the estimated branching parameter 𝑚 tends towards unity, and
(b) the estimated autocorrelation time 𝜏ac peaks. (c) The match of the 𝜏ac, and the 𝜏br ∼ −1/ log (𝑚) as inferred
from 𝑚 support the criticality hypothesis (correlation coefficient of 𝜌 = 0.998, 𝑝 < 10−10). (d) Trial-to-trial
variations Δvrd as well as the susceptibility 𝜒 increase for low 𝐾ext. Figure and caption taken from Cramer
et al. (2020a).

The performance of a recurrent SNN on a specific benchmark task can be evaluated in a reservoir
computing framework. In more detail, a linear readout can be trained to separate different input
sequences based on the activity of a recurrent network stimulated by these sequences (Maass et al.,
2002; Jaeger, 2001; Schürmann et al., 2005). Aside from the ability to separate different input pattern,
the fading of memory over extensive time-spans facilitate performance. The latter is especially
important when past and present input need to be combined. In this scenario, additional dynamical
memory might bridge the gap between neuro-synaptic time constants and the time scales involved
in real-world stimuli.

Within this work, we rely on a 𝑛-bit sum and a 𝑛-bit parity to test the performance of a linear
readout trained on 𝑁read = 16 randomly selected neurons within the recurrent network. In order
to achieve high performance on this benchmark, networks need tomemorize and combine the input
from 𝑛 past time steps. Hence, the task complexity increases with 𝑛 and can be further dissected
by the comparison of the linear sum and the non-linear parity task. Due to the extensive memory
time spans of critical networks – usually quantified by a diverging mutual information – tasks with
high 𝑛 are likely to profit from critical dynamics. In contrast, simple tasks with low 𝑛 might suffer
from critical dynamics due to dispensable memory of past input not required for task processing. In
summary, we expect that – depending on the task complexity – there is an optimal input strength
𝐾ext which leads to best performance.
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(a) 𝑛-bit sum, 𝑁read = 16
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(b) 𝑛-bit parity, 𝑁read = 16
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(c) 𝑁read = 8
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(d) 𝑁read = 4
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(e) 𝑛-bit NARMA
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Figure 6.16: Computational challenging tasks profit from critical network dynamics (small 𝐾ext) –
simple tasks do not. The network was used to solve (a) a 𝑛-bit sum and (b) a 𝑛-bit parity task by training
a linear classifier on the activity of 𝑁read = 16 neurons. Here, task complexity increases with 𝑛, the number
of past inputs that need to be memorized and processed. For high 𝑛, critical dynamics are beneficial for
task performance, whereas simple tasks suffer from criticality. Especially, the more complex, non-linear
parity tasks profit from criticality. Further, task complexity can be increased by restricting the classifier to
(c)𝑁read = 8 and (d)𝑁read = 4. Again, the parity task increasingly profits from criticality with decreasing𝑁read.
The performance is quantified by the normalised mutual information ̃I between the vote of the classifier and
the parity or sum of the input. (e) Likewise, the peak performance moves towards criticality with increasing
complexity in a NARMA task. The performance is quantified by the inverse NRMSE. Highest performance for
a given task is highlighted by colored arrows. (f) Schematic reservoir computing setup. Figure and caption
taken from Cramer et al. (2020a).

Indeed, the task performance of our networks depends on a combination of both task complexity
as well as the distance to critical-like dynamics. While the simple sum task with 𝑛 = 5 bit is solved
best by sub-critical networks, the complex 𝑛 = 25 bit sum task requires critical dynamics with as-

127



6 Unsupervised Learning

sociated long lasting memory (Figure 6.16a). Incorporating non-linearity in the consideration even
pronounced this effect: Even a 𝑛 = 5 bit parity task is better solved by increasingly critical net-
works (Figure 6.16b). Because of this, the networks need to be tuned to task requirements which
can actually be done by adjusting the input strength.

A standard task for the benchmarking of reservoir networks is the NARMA task (Jaeger, 2001).
In contrast to the sum and parity task, the calculation of a NARMA requires multiple computing
operations. However, all tasks have in common that their complexity can be controlled by the
number of incorporated past time steps 𝑛. Again, the peak performance becomes increasingly shifted
into the critical regime when increasing 𝑛 (Figure 6.16e).

Another task-independent approach to increase complexity is to reduce the number of neurons
visible to the readout 𝑁read. In general, the information for solving the aforementioned tasks can be
available within the activity of a single neuron of our networks. For low𝑁read, we expect best perfor-
mance for networks with low 𝐾ext, since the spatio-temporal correlations associated with emerging
critical phenomena render the network activity redundant (Figure 6.12a). This is tested by training
the linear readout on a random subset of neurons of the network for the 𝑛 = 5 bit sum and parity
task, respectively. Here, only low 𝑁read lead to highest task performance of critical reservoirs on the
parity task (Figures 6.16c and 6.16d). The information required for the sum task seems to be glob-
ally available in each network and can hence be solved even with sub-critical dynamics. In general,
the local availability of information is of equal importance for both large neuromorphic systems
(Schemmel et al., 2010) as well as biological networks (Brette, 2019; Bernardi & Lindner, 2017). For
both of which the communication of information in form of spikes between arbitrary neurons is
costly or not at all possible. Hence, the redundancy provided by the discovered critical-like dynam-
ics facilitates the local availability of task-relevant information globally within the network.

6.3.1.3 Strategies to dynamically switch between network states

As stated above, networks need to be tuned to task requirements in such a way that complex tasks
require critical dynamics whereas simple ones profit from sub-critical states. In general, the ad-
justment of networks to computational demands by controlling the input strength can actually be
implemented by different strategies. The instantiation of many networks – each with its own input
strength and hence different dynamics – can be accomplished on multiple chips or a single large
wafer-scale system, respectively. In this scenario, all networks operate in parallel which manifests
in a fast emulation. However, this approach requires many resources. In another approach, the
configuration of previous adaptation experiments for different 𝐾ext can be saved. Depending on the
task, the desired configuration can be readily loaded into the chip for task processing. This on the
downside requires additional memory to store the configuration data and hence stresses the input
bandwidth which can become a bottleneck for very large networks or fast switching of states.

A resource aware approach instead exploits the accelerated nature of HICANN-DLS by changing
the input strength 𝐾ext according to task requirements accompanied by the self-organization to a
new state. Here, we investigate the transition from critical to sub-critical dynamics and vice versa
while simultaneously assessing the performance as well as the branching parameter. Most notably,
switching between previously adapted states yields final states comparable to emulations starting
from a quiescent state with 𝑤𝑖𝑗 = 0 ∀ 𝑖, 𝑗, indicated by comparable task performance as well as similar
branching parameters (Figure 6.17). This dynamic adaptation of the input strength comes withmini-
mal requirements, i. e. no additional memory needs to be allocated and the I/O bandwidth can solely
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Figure 6.17: Network can be dynamically adapted by changing the degree of the input 𝐾ext. After
convergence of synaptic weights 𝑤𝑖𝑗, 𝐾ext/𝑁 was (i) switched from critical (𝐾ext = 0.3) to sub-critical (𝐾ext =
0.8) and (ii) vice versa. The branching parameter 𝑚 and the performance I of the network on (a) the 5-bit and
(b) the 15-bit parity task were evaluated after various numbers of synaptic updates. Here, the network reaches
the same performance and dynamics as when starting from 𝑤𝑖𝑗 = 0 ∀ 𝑖, 𝑗 (marked by red stars). For both tasks,
the transition from sub-critical to critical dynamics require more updates. Moreover, optimal performance
for (a) the 5-bit task is achieved under strong input (i), whereas for (b) the 15-bit task requires low input (ii).
The performance is quantified by the mutual information I between the parity of the input and the vote of a
linear classifier. Figure and caption taken from Cramer et al. (2020a).

be used for spike traffic. Hence, this approach is particularly promising for large neuromorphic
systems.

For the aforementioned dynamic switching of states to be a useful strategy, the self-organization
to the novel state has to be fast enough. A transition from a critical to a sub-critical state is com-
pleted with only 50 synaptic updates, whereas a sub-critical to critical transition requires on average
500weight updates (Figure 6.17). It is noteworthy that due to the accelerated nature of HICANN-
DLS, the reported numbers of updates correspond to only 50ms and 500ms wall clock time. These
durations can most likely be even further reduced by lowering the integration time used for the
measurement of the accumulation traces in Equation (3.2). Because of this, dynamical switching
represents a desirable strategy for accelerated systems, especially in presence of limited resources.

6.3.1.4 Task-independent quantification of computational capabilities by information
theory

The assessment of performance in classification tasks is standard (cf. Chapter 4), but poses several
problems. First, it highly depends on the task at hand and second, such an approach is not applicable
for measurements on biological systems, like higher brain areas or in-vitro preparations, due to the
unknown neural code. A task-independent consideration of performance can instead be achieved by
methods from information theory (Wibral et al., 2015). Here, the laggedmutual information between
any input spike train 𝑠𝑖 and the activity of a neuron after time lag 𝜏, 𝑎𝑗 predicts the performance on
the parity task under standard Poisson input: Sub-critical networks only provide high information
about the input on relatively short time scales and hence short 𝜏 of about 20 µs (Figure 6.18a). The
forgetting on larger time scales is, however, required for erasing irrelevant past input. In contrast,
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Figure 6.18: Long lasting memory accompanies critical network dynamics. (a) Memory about the
input 𝑠𝑖 as read out from neuron 𝑎𝑗 after a time lag 𝜏 is quantified by the mutual information I𝜏(𝑎𝑗, 𝑠𝑖). Here,
high degrees of the external input 𝐾ext are favorable for memory on short time scales, whereas a low 𝐾ext is
favorable on larger time scales. (b) The memory capacity (MC) stays fairly constant, despite of a decreased
coupling to the stimulus for low 𝐾ext. (c) The lagged I between the activity of pairs of neurons indicates
increasing memory for decreasing 𝐾ext, also visible in the memory capacity (MC) (d). The selection of 𝐾ext/𝑁
in (a) and (c) is marked by dashed vertical lines in (b) and (d). Figure and caption taken from Cramer et al.
(2020a).

critical networks with dominant recurrence provide longer memory of about 60 µs. The latter is
required to combine past and novel input, a necessity for high performance on any of the previous
high 𝑛 tasks. However, this increased memory comes at the cost of a less reliable representation
of the input within a single neuron’s activity. By integrating I𝜏 over all delays, a measure of input
representation can be obtained. Most notably, this memory capacity (MC) stays almost constant
over all tested 𝐾ext (Figure 6.18b). It is noteworthy that a linear classifier, in contrast, could draw
on the activity of a subset of neurons which jointly provide a better representation. Here, however,
we only consider the representation within a single neuron which is also easily accessible within
experiments.

The memory is implemented by the recurrent network dynamics, i. e. by activity propagating
through recurrent connections which is why it is often referred to as AIS (Lizier et al., 2008; Wibral
et al., 2014). Dominant recurrent activity for low degrees of the input 𝐾ext and hence critical dy-
namics leads to larger lagged I between the activity of pairs of neurons within our networks (Fig-
ure 6.18c). Because of this, the MC strongly increases over almost two orders of magnitude when
lowering 𝐾ext (Figure 6.18d). This internal MC boosted the performance on the high 𝑛 sum and
parity tasks (Figure 6.16a and b).
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Figure 6.19: The information fingerprint changes with the degree of the input 𝐾ext, thus with dis-
tance to criticality. (a) The entropy (H) of the spiking activity of a single neuron, 𝑎𝑗 stays fairly constant,
except for low 𝐾ext as a consequence of decreasing firing rates. (b) The mutual information (I) between the
activity of two units 𝑎𝑖, 𝑎𝑗 increases with lower 𝐾ext (i. e. closer to critical). The network intrinsic memory
also grows, indicated by the active information storage (AIS) I(𝑎𝑗 ∶ a−j ). Likewise, the information transfer
within the network increases with lower 𝐾ext. The information transfer is measured as transfer entropy (TE)
between pairs of neurons 𝑎𝑗 and 𝑎𝑖, I(𝑎𝑗 ∶ a−𝑖 |a−𝑗 ). Figure and caption taken from Cramer et al. (2020a).

Information theory does not only provide us measures for H and I, but furthermore allows to
quantify the transfer and storage of information (Wibral et al., 2015, 2017a; Schreiber, 2000). Addi-
tionally, it allows disentangling unique, redundant and synergistic contributions when considering
ensembles of agents (Williams & Beer, 2010; Bertschinger et al., 2013). All of these measures increase
when approaching a critical point, i. e. for low 𝐾ext (Figures 6.19b and 6.20b). Hence, the overall ca-
pacity of our networks increases in the vicinity of a critical point in close accordance with previous
work (Boedecker et al., 2012; Barnett et al., 2013; Bertschinger & Natschläger, 2004; Langton, 1990).

Specifically, the AIS of a single neuron, the I as well as the TE between pairs of neurons increase
for decreasing𝐾ext (Figure 6.19b). Most notably, the associatedmemory is implemented dynamically
with recurrent activity and not within a single neuron’s state, since the binsize used for analysis ex-
ceeds all time constants of the LIF model (refractory period 𝜏ref, synaptic 𝜏syn and membrane 𝜏𝑚 time
scales). Hence, information theory reveals that the transfer of activity and the storage of informa-
tion within the networks increase when approaching critical-like dynamics. Increasing I, AIS and
TE have likewise been reported for the Ising model and reservoirs with critical dynamics (Barnett
et al., 2013; Boedecker et al., 2012) and therefore support our notation that criticality indeed maxi-
mizes the abstract information processing capacity. However, this does not necessarily translate to
task processing as shown above for simple tasks.

The dissection of information in ensembles of neurons is enabled by PID (Williams & Beer, 2010).
Here, we considered the decomposition of a joint mutual information of the present state of a neu-
ron 𝑎𝑖, its past state a−𝑖 , as well as the past state of a source neuron a−𝑗 . PID allows us to disen-
tangle not only the information from each of these two past states individually, but even further
provides us with redundant and synergistic information. The redundant contribution corresponds
to information that can be obtained by either source respectively. In contrast, the synergistic con-
tingent denotes the information that can only be computed when knowing both input variables
(Figure 6.10b).

Not only the joint I, but all PID components increase when lowering𝐾ext (Figures 6.20a and 6.20b).
Most notably, the redundant and synergistic contributions exceed the unique terms by an order of
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Figure 6.20: PID components increase towards criticality (i. e. with smaller input 𝐾ext) (a) The joint
mutual information (I) increases with decreasing 𝐾ext. (b) All PID components increase with approaching
criticality. Interestingly, the synergistic and shared contributions are always much larger than the unique
contributions (note the logarithmic axis). This highlights the collective nature of processing in recurrent
neural networks. Figure and caption taken from Cramer et al. (2020a).

magnitude. For critical-like dynamics, the shared information dominates, underpinning synchrony
and redundancy between neurons. This, however, did not impede the performance at criticality.
Nevertheless, this increase in shared information is likely to harm performance when approaching
the critical point even further. Although the synergistic contribution increases towards the critical
point, it exceeds all other components for sub-critical networks. The latter might be due to the fact
that joint activation of multiple neurons within the network is required to lead to the emission of a
postsynaptic spike.

6.3.2 Homeostatic framework

Motivated by Zierenberg et al. (2018), we consider SNNs subject to homeostatic regulation emulated
on HICANN-X in the remainder of this chapter. Specifically, we study recurrent networks composed
of 512 LIF neurons with the associated 256×512 current-based synapses configured to feature 20 %
inhibition. A population of 256 spike sources emitting Poisson distributed spike trains at a rate of
ℎ = 10 kHz serves as input for the LIF neurons. To that end, a randomly drawn set of 𝐾in out of the
𝑁in = 256 synapses per neuron is utilized. Furthermore, 𝑁rec = 102 randomly drawn synapses per
neuron implement recurrent connections. All recurrent synapses – excitatory and inhibitory ones
– are homeostatically regulated while the stimulating ones were clamped to a fixed shared weight.
The homeostatic weight updates are calculated and applied by the embedded PPUs alongside the
analog emulation of neurons and synapses.

The on-chip implementation of homeostatically regulated SNNs allows us to take full advantage
of the accelerated emulation. Here, the I/O can be dramatically relieved by resorting to the on-chip
spike sources for network stimulation and by calculating weight updates on the SIMD vector units
of the PPUs. Specifically, we consider a stochastic formulation of the homeostatic regulation in
Equation (6.4) which guarantees smooth convergence and an average firing rate of 𝜈target = 10 kHz
per neuron (Figure 6.21a and b). In more detail, each synaptic weight update is accepted with a
probability 𝑝 to cope with the available fixed-point, limited precision arithmetic. Irrespective of the
learning rate, only low values of 𝑝 lead to smooth convergence and the attainment of the desired
target rate on the neuromorphic substrate (Figure 6.21c). With this on-chip implementation, the
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Figure 6.21: Stochastic homeostatic plasticity stabiliy regulates neuronal activity on HICANN-X.
Stochastic weight updates allow to reach a stable firing rate despite of limited precision, fixed-point arith-
metics as well as discrete weights for various average indegrees 𝐾in. (a) Homeostatic regulation is applied
to the afferent synapses of each neurons for a total of 1000 updates. (b) The adjustments leads to a smooth
convergence of the firing rate 𝜈 to the homeostatic target of 𝜈target = 10 kHz (dashed horizontal line). (c) On
the ASIC, the latter is only reached for low update probabilities 𝑝, irrespective of the learning rate 𝜆. Shown
is the fraction of neurons for which 𝜈 ∈ [6, 14] kHz. The configuration used throughout the remainder of
this chapter is marked by a white star. (d) For high 𝐾in and hence input dominated networks, the recurrent
connections are regulated to low values. In contrast, the disappearing input for low 𝐾in is compensated by
upregulation of recurrent weights to maintain the target firing rate. (e) Across all neurons and experiments,
the homeostatic plasticity regulates the firing rates 𝜈 to a target of 10 kHz (dashed vertical line). Only for very
low 𝐾in, networks tend to become unstable.

ASIC is rendered autonomous during homeostatic adaption which in turn translates to a power
consumption of only 150mW and moreover allows to fully exploit the system’s speedup factor
of 1000 compared to biological time scales. Hence, our emulated SNN in combination with the
stochastic homeostatic plasticity is characterized by a high degree of efficiency in terms of power
consumption as well as speed.

The stochastic formulation of the homeostatic weight updates allows reaching the target rate for
various input strengths. To tie on the results of Zierenberg et al. (2018), the regulation has to work
reliably for a range of average indegrees 𝐾in, i. e. different input strengths. Indeed, the resulting
networks with complex weight distributions (Figure 6.21d) promote a stable firing rate of 10 kHz
for the tested 𝐾in for most of the analog neurons (Figure 6.21e). It is noteworthy that the range of
considered 𝐾in values is naturally limited by the dynamic range of the analog neurons as well as the
range and impact of the synaptic weights. By fixing all stimulating synapses and only regulating
recurrent ones, the maintenance of the target rate for different values of 𝐾in shifts the working point
of our neuromorphic SNNs from input-driven to highly recurrent dynamics.
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Figure 6.22: The average indegree𝐾in shapes the collective dynamics of the network. The time scale of
temporal correlations can be controlled by adjusting 𝐾in. (a) Low average indegree 𝐾in lead to exponentially
shaped autocorrelation functions 𝜌𝑎,𝑎 of the population activity 𝑎[𝑡] with long time constants 𝜏ac. (b) The
investigated range of 𝐾in values allows to adjust 𝜏ac over almost two orders of magnitude. The time constants
were obtained by exponential fits to 𝜌𝑎,𝑎.

6.3.2.1 Control of time scales by the input strength

Our networks indeed show diverse collective dynamics for different input strengths as suggested by
the work of Zierenberg et al. (2018). Specifically, the population activity exhibits autocorrelations
with time scales controlled by the average indegree 𝐾in (Figure 6.22). Therefore, the amount of dy-
namic memory within the network can be controlled by selecting an appropriate 𝐾in. Most notably,
we are able to adjust the autocorrelation time scale 𝜏ac over almost two orders of magnitude for
the investigated 𝐾in range. For the lowermost 𝐾in, 𝜏ac exceeds the highest model time constant –
the membrane time constant – by a factor of 20. Whether these correlations, however, stem from
critical-like dynamics has to be investigated.

The spiking activity of our neuromorphic SNNs suggests bistable instead of critical-like dynam-
ics. When looking at the population activity of networks with different 𝐾in, the systems seem to
develop bistable dynamics for low values of 𝐾in (Figure 6.23a to c). This trend is also reflected in the
distribution of the population activity 𝑎[𝑡] which shows a bimodal trend for low 𝐾in (Figure 6.23d).
Hence, we propose that the emerging autocorrelations for low 𝐾in stem from the transitioning be-
tween these phases of low and high activity. In the following, we consider a HMM to estimate the
corresponding phases and the associated transition probabilities.

The autocorrelation time scales determined previously are indeed consolidated by a HMM. Specif-
ically, we fitted a two-state HMM to detect the phases of low and high firing activity within the
network responses. In particular for low 𝐾in, the states predicted by the model closely mimic the
population activity (Figure 6.23a to c). Moreover, the model provides us with the transition proba-
bilities between the two hidden states from which an equivalent autocorrelation time constant 𝜏hm
can be estimated. This 𝜏hm closely resembles the autocorrelation time constants obtained by ex-
ponential fits to the population activity 𝜏ac (Figure 6.23e). As a result, the measured correlations
seem to stem from the transitioning between the two states. Most notably, our SNNs self-organized
to this bistable regime and maintained this state with frozen weights. Hence, the phases of low
and high activity are not induced by ongoing weight changes or dissipative model components like
short-term plasticity (STP).
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Figure 6.23: Autocorrelations emerge from transitioning between phases of low and high activity.
The population rate 𝜈 shows increasingly separated phases of high and low activity when decreasing the
average indegrees 𝐾in from large values (𝐾in = 117, a), to intermediate (𝐾in = 85, b) to small values (𝐾in = 65,
c). (d) Hence, the distribution of 𝜈[𝑡] shows a bimodal trend for low values of 𝐾in which become increasingly
softened for high 𝐾in. These phases can be captured by fitting a two component Hidden Markov model to
𝜈[𝑡] (highlighted by red color). (e) The time scale as calculated from the transition probabilities of the Hidden
Markov model 𝜏hm accurately predicts the autocorrelation time as estimated from the population activity by
exponential fits 𝜏ac. Both of which are highly correlated with a Pearson correlation coefficient of 𝜌 = 0.91.

6.3.2.2 Heterogeneous weight distributions promote high time scales

The connectome with diverse weight values induced by self-organization is essential for high time
scales at low firing rates on the neuromorphic substrate. As demonstrated previously, the stochastic
formulation of homeostatic weight updates leads to diverse weight values for the afferent synapses
of each neuron (Figure 6.21d). To investigate the functional role of this diversity, we initialized all
recurrent excitatory weights 𝑤exc with themeanweight value determined by the homeostasis for the
respective 𝐾in. Likewise, we clamped all recurrent inhibitory weights 𝑤 inh to a fixed value which
was then swept in a set of experiments. These homogeneous networks closely approximate the
homeostatic target rate 𝑟 = 10 kHz at 𝑔 = 𝑤 inh/𝑤exc ≈ 1 (Figure 6.24a). Like for the homeostatically
regulated networks, topologies with homogeneous weights lead to non-zero autocorrelation times
(Figure 6.24b). However, the networks for which 𝑔 = argmin𝑔(𝑟 − 𝜈target) induce systematically
lower autocorrelation times compared to the homeostatically regulated connectomes with diverse
weight values (Figure 6.24b). Hence, the stochastic self-organization of our neuromorphic SNNs
seems to favor high time scales at low firing rates.

Our networks emit non-pathological firing activity with non-zero autocorrelation times for 𝑔 ≈ 1.
The theoretical considerations of Brunel (2000) predict stable activity for 𝑔 ≈ 4, i. e. for networks
with balanced excitation and inhibition. While our networks are comparable to the ones considered
by Brunel (2000), there are key differences: Their model relies on delta synapses and maybe more
importantly, is driven by purely excitatory input which is not shared among neurons, i. e. each
individual neuron is excitatory stimulated by its own spike source. All of these factors have the
potential to explain the shift in 𝑔 as well as the emergence of collective phenomena at the transition.
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Figure 6.24: Heterogenous weight distributions induced by homeostatic regulation promote high
autocorrelation time scales at low firing rates. The impact of a heterogeneous weight distribution is
investigated by clamping all excitatory weights 𝑤 exc of a SNN to the mean excitatory weight determined
by homeostatic regulation and sweeping the value of all inhibitory weights. (a) At a ratio of inhibitory
to excitatory strength of 𝑔 = 𝑤 inh/𝑤 exc ≈ 1, homogeneous networks approximate the homeostatic target
𝜈target = 10 kHz with their firing rate 𝜈 for all average indegrees 𝐾in. The inset of the figure displays the 𝑔
values for which 𝜈 ≈ 𝜈target (gray). For comparison, the 𝑔 of heterogeneous weight distributions induced by
homeostatic regulation is superimposed (red). (b) Like for homeostatically regulated networks, topologies
with homogeneous weights cause non-zero autocorrelation times 𝜏ac. The 𝑔 values promoting 𝜈 ≈ 10 kHz are
marked by colored stars. The associated values of 𝜏ac, however, are systematically lower (figure inset gray)
than the ones estimated from a homeostatically regulated SNN with heterogeneous afferent weight values
(figure inset red).

6.3.2.3 Validation of the analog emulation

Our results are validated by simulations of equivalent SNNs. Like for the emulated SNNs, our sim-
ulations show collective phenomena for low 𝐾in in form of a rising autocorrelation time constant
𝜏ac. These emerging autocorrelations for simulated networks with low 𝐾in equally stem from the
transitioning between phases of low and high activity. In more detail, the autocorrelation time scale
𝜏ac estimated by exponential fits to the autocorrelation function of the population activity accu-
rately predicts an equivalent time scale 𝜏hm calculated from the transition probabilities of a HMM
(Figure 6.25a). Moreover, the simulations allow us to validate the emulation of neuro-synaptic dy-
namics in general: Both, 𝜏ac and 𝜏hm estimated from the activity of simulated SNNs coincide with
their counterparts obtained from the emulated population activity (Figure 6.25a and b). These re-
sults even persist when the hardware constraints are relaxed in the software simulations: Neither
the limited weight resolution nor the noise impact the collective phenomena for low 𝐾in (Kreft,
2021). Summarizing, the simulation results validate the implementation on the analog neuromor-
phic substrate and underpin the emergence of bistable dynamics in networks with frozen weights.

6.3.2.4 Estimation of autocorrelation times in perturbation experiments

In most biological settings, neural networks are subject to external stimulation. In the following, this
situation is modelled by prolonged periods of additional stimulation. In more detail, we increased
the rate of the spike sources from ℎ to ℎ + Δℎ for a duration of 𝑇stim = 1000 µs. In contrast to
previous experiments, we start by considering the network response to a perturbation in the absence
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Figure 6.25: Software simulations validate the hardware emulation results. Results of equivalent SNNs
obtained in a standard simulation environment validate both the emergence of collective phenomena for low
values of the average indegree 𝐾in as well as the accurate emulation of neuro-synaptic dynamics by the
neuromorphic substrate. (a) The emerging autocorrelations for simulated networks with low 𝐾in also stem
from the transitioning between phases of low and high activity. The autocorrelation time scale 𝜏ac estimated
by exponential fits to the autocorrelation function of the population activity accurately predicts an equivalent
time scale 𝜏hm calculated from the transition probabilities of a HMM. Both of which are highly correlated
with a Pearson correlation coefficient of 𝜌 = 0.91. (b) Moreover, the estimated 𝜏ac of emulated and simulated
networks closely match (𝜌 = 0.98). (c) Likewise, the obtained 𝜏hm of both implementations coincide (𝜌 = 0.98).

of background stimulation (ℎ = 0 kHz). Here, the network starts from a silent state, followed by a
quick rise of the network rate 𝜈 after stimulus onset. After the perturbation, 𝜈 quickly decays back to
the absorbing state (Figure 6.26a). Most notably, the initial rise is fastest for networks with high 𝐾in,
but the steady-state rate 𝑟 during stimulus presentation is highest for SNNs with low 𝐾in. Overall,
the SNNs with low 𝐾in show steeper response functions when only considering the steady-state
value as a function of Δℎ. Moreover, the time scale of relaxation to the baseline after stimulus offset
𝜏dc is way faster than predicted by the autocorrelation time constant 𝜏ac for all tested values of 𝐾in
and Δℎ. However, when increasing the rate of the background noise up to ℎ = 10 kHz, the relaxation
time scale 𝜏dc after a superimposed perturbation with rate Δℎ accurately predicts the autocorrelation
time scale 𝜏ac (Figure 6.26a to c).

The results of these in-silico experiments have direct implications on the estimation of autocor-
relation time scales. Here, a perturbation should be superimposed to existing background activity
to yield an accurate estimate of 𝜏ac. Hence, measurements should be done in the presence of in-
put and therefore highlight the importance of the latter. Moreover, these perturbation experiments
prompt an input injection strategy: While many existing reservoir computing frameworks are based
on stimulus injection into a previously silent neural network (Maass et al., 2002; Verstraeten et al.,
2006), we have shown that for our networks the continuous presence of Poissonian background
is essential to maintain input information beyond stimulus offset. In addition, we showcased that
the 𝑠+ state can be entered by sufficiently strong perturbations. This is in close accordance with the
work of Legenstein &Maass (2007) where the input current was used to maintain a specific network
state. The computational impact of the states 𝑠±, however, remains to be clarified.

6.3.2.5 Classification with bistable dynamics

So far, we have presented the emergence of collective phenomena with decreasing average indegree
𝐾in. In the following, we will try to exploit the associated time scales as well as the bistable dy-
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Figure 6.26: Perturbations quickly decay in the absence of background stimulation. Networks were
perturbed by increasing the rate of the background spikes sources from ℎ to ℎ + Δℎ. (a) In absence of back-
ground stimulation (ℎ = 0 kHz), the firing rate 𝜈 quickly rises after perturbation onset (first three rows). The
time span of stimulus application is marked by dashed vertical lines. The steady-state 𝜈 (marked by red dashed
line) non-linearly depends on Δℎ (fourth row). While a rising Δℎ leads to an increase of 𝜈 in general, espe-
cially lower average indegrees 𝐾in are characterized by sharp upswings of 𝜈. The horizontal red lines highlight
the Δℎ values shown in the first three rows. The time scale of the decay of 𝜈 after stimulus offset 𝜏dc does
not match the autocorrelation time 𝜏ac (fifth row). (b) With increasing background stimulation (ℎ = 5 kHz),
perturbations start to reverberate in the SNNs (first three rows). Hence, 𝜏dc approaches 𝜏ac for all values of
𝐾in as well as Δℎ, but remains always smaller. (c) Only if the rate of the background stimulation matches the
rate used during homeostatic adaptation (ℎ = 10 kHz), perturbations reverberate on time scales significantly
exceeding all intrinsic time constants of the SNNs (first three rows). Here, the steady-state 𝜈 only slightly
depends on Δℎ. In this condition, 𝜏dc closely resembles 𝜏ac for all values of 𝐾in as well as Δℎ.
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Figure 6.27: Novel task-irrelevant input interferes with task-relevant input. The SNN is used to clas-
sify spatio-temporal spike patterns with Poisson statistic by training a linear classifier on the elicited activity
of all neurons. Here, the task-memory can be quantified by training and evaluating the classifier based on
variable points in time after stimulus onset 𝑡. When considering the standard Poissonian background with
ℎ = 10 kHz and injecting the spike pattern with an additional set of synapses into the network, networks
with short intrinsic time scales (high 𝐾in) promote the highest performance I during the presentation of the
stimulus (gray area). Memory beyond stimulus offset is only provided by networks with long time scales and
hence low 𝐾in. However, the decay of I after stimulus offset occurs on a significantly shorter time scale than
both the decay of the network rate 𝜈 as well as the time scale of autocorrelations. By decreasing ℎ, the rele-
vance of the pattern input within the systems response could be increased. Specifically, a decrease of ℎ leads
to a monotonic increase of I during stimulus presentation. However, only intermediate values of ℎ promote
increased memory time scales while low values of ℎ cause again a decline.

namics for classification and in that process try to approach the question of suitable stimuli as well
as stimulation strategies. To that end, we again utilize the framework of reservoir computing to
perform information processing with our SNNs. Specifically, we trained a linear readout based on
the activity of all neurons within the network when being stimulated by patterns of random spike
trains with Poisson statistics. For that purpose, an additional set of synapses was utilized, i. e. each
input spike train projected onto a randomly drawn subset of neurons. Here, the task memory can be
quantified by training and evaluating the linear readout on distinct time segments 𝑡 after stimulus
onset for various average indegrees 𝐾in (Figure 6.11). With this framework, we will show that net-
works with low intrinsic time scales are favorable for fast inference, whereas SNNs covering long
time scales are only desirable when dynamic memory is required. Moreover, we will depict that
the task-irrelevant input provided by the continuous background stimulation with rate ℎ seems to
interfere with the task-relevant pattern input.

Low intrinsic time scales are particularly favorable for fast inference. In the presence of standard
background stimulation with rate ℎ = 10 kHz, SNNs with high 𝐾in and hence short intrinsic time
scales promote the highest performance during the presentation of the stimulus (Figure 6.27). In this
temporal segment, memory on relatively short time scales seems to be sufficient to lead to increased
performance for the task at hand. Furthermore, even networks with low 𝐾in and hence long time
scales do not lead to significant memory effects for ℎ = 10 kHz. In more detail, the time scale of the
decay of the performance after stimulus offset is neither on the order of the decay of the firing rate 𝜈
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(Figure 6.27a) nor comparable to the previously estimated autocorrelation time scales (Figures 6.22
and 6.23).

Novel task-irrelevant input seems to interfere with task-relevant pattern input. The continuous
background stimulation with rate ℎ in addition to the actual pattern input constitutes a source of
continuous, task-irrelevant information. It is noteworthy that this background stimulation is, how-
ever, required to reach and maintain the dynamical state of our SNNs. By reducing ℎ to intermediate
values, the classification performance at all times after stimulus onset increases (Figure 6.27). Most
notably, the memory time scale of networks with low 𝐾in likewise increases. This reduction of ℎ to
medium values causes a reduction of the impact of the task-irrelevant background stimulationwhich
especially facilitates the representation of stimulus information beyond stimulus offset. However, a
further reduction of ℎ decreases the memory time scale about the injected pattern after stimulus off-
set (Figure 6.27a), which is in direct accordance with our previous results (Figure 6.26). In contrast,
the performance during stimulus presentation still monotonically increases. Here, intermediate val-
ues of ℎ seem to build a comprise between the maintenance of activity beyond stimulus offset as well
as the negative interference of pattern input and task-irrelevant background stimulation.

The network activity presumably needs to be more self-sustained to promote high classification
performance on additional pattern input. The assessment of performance in Figure 6.27 suggests
that our networks are still highly input-driven and hence represent input information on relatively
short time scales within the network activity. Especially after stimulus offset, the still existing back-
ground stimulation is likely to dominate the information contained within the network activity.
Consequently, mechanisms allowing for a further reduction of the input strength are likely to fa-
cilitate suitable stimulus representations on long time scales within the network activity. The con-
sidered reduction of ℎ for the results in Figure 6.27 not only strengthens the impact of the pattern
input, but moreover allows the exploitation of bistable dynamics for efficient information process-
ing. While only values of ℎ in the proximity of ℎ = 10 kHz – the strength applied during homeostatic
adaption – cause the entering of the state of high activity, intermediate stimulation strengths allow
to only evoke this state in presence of additional pattern input (Figure 6.26). By this, not only the
energetic footprint of our SNNs could be reduced, but moreover, the bandwidth on the neuromor-
phic system could be relieved. It is noteworthy that, however, high stimulus strengths only increase
the likelihood of entering the state of high activity, but in addition, could lead to saturation effects
on the analog neuromorphic substrate.

6.4 Discussion

Within this chapter, we considered self-organized SNNs and exploited the resulting collective phe-
nomena for information processing. Most notably, we refrained from detailed and highly specialized
training like the one presented in the scope of Chapter 5. Instead, the adaption to task requirements
was achieved on an abstract level and did not take specific training samples into account.

The underlying control of time scales in SNNs has been demonstrated for two different types of
collective phenomena. Specifically, we considered critical-like phenomena within the first part of
this chapter, while networks exhibiting bistable behavior have been utilized in the second part. For
both frameworks, an adaption can be achieved by controlling the input strength. It is noteworthy
that the number of synapses connected to the external input is only one possibility to control the
input strength. Likewise, the rate of the stimulus can be utilized as a control parameter. Indeed,
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adjusting the input rate leads to similar results for both types of phenomena and has been shown
to allow to even cross the critical point for low input rates (Appendix A.4). Both parameters in
conjunction span a 2D landscape of possible configurations which provide a high degree of flexibility
when tuning a network to computational requirements. Previous work has come up with analytical
solutions for the optimal input strength within mean-field networks (Zierenberg et al., 2018). These
results have the potential to guide the design of other networks and tasks as well.

Likewise, inhibition can act as a control parameter. Inhibition does not only shape collective
dynamics and causes oscillations (Whittington et al., 2000; Buzsáki &Wang, 2012), but specific ratios
of excitation and inhibition are known to cause critical phenomena in neural networks (Poil et al.,
2012; Shin & Kim, 2006; Hesse & Gross, 2014; Neto et al., 2017). In close accordance, our networks
featured 20 % inhibitory neurons, which were however not required for critical dynamics (Levina
et al., 2007; Wilting & Priesemann, 2018). This magnitude of control parameters facilitates fine-
grained adjustments even in cases where only a subset of them can be freely configured without
perturbing the input coding.

Not only the configuration of a control parameter, but also the interaction with local plasticity
allowed the self-organization and the associated shaping of computational properties. Most notably,
this robust mechanism does not require fine-tuning of parameters. Within the first part of this
chapter, we considered a modified version of STDP which implements only the negative, anticausal
arm. When instead relying on full STDP, networks tend to become unstable, despite counteracting
homeostasis which has also been observed in the past (Keck et al., 2017). Our plasticity mechanism
is, however, similar to STDP, but with unspecific potentiation and only specific depression. Because
of this, our rule may be useful for further studies, due to its stabilizing nature and its similarity to
STDP. In the second part, we utilized a homeostatic regulation inspired by synaptic scaling found
in biological tissue (Turrigiano & Nelson, 2004). While the latter choice allows fine-grained control
of the network activity and hence facilitates usability, it lacks spike-timing aware information and
hence specific features. Because of this, a combination of both rules presented within the scope of
this chapter represents a promising direction for future research.

Robust adaption mechanisms with local plasticity are particularly promising for the tuning of
SNNs emulated on analog neuromorphic hardware. The latter exhibit fixed-pattern variations in-
duced by the production process and are subject to temporal noise due to the analog emulation
of state variables. Here, plasticity mechanisms have the potential to equalize fixed-pattern varia-
tions which are likely to destabilize the network. A comparable approach has been demonstrated in
the past for STP (Bill et al., 2010). These approaches could sidestep the role of detailed calibration
routines which are especially challenging for large neuromorphic systems.

Irrespective of the compute substrate, critical-like dynamics are assumed to be beneficial for any
task processing (Munoz, 2018b; Boedecker et al., 2012). However, we showcased that this assumption
has to be rephrased: While criticality indeed maximizes a set of abstract computational properties
like autocorrelation time (Figure 6.15b), susceptibility (Figure 6.15d), as well as information-theoretic
measures (Figures 6.18 to 6.20) this does not necessarily boost task performance in a system of
finite size. Here, we demonstrated that only the complex and memory-intensive tasks profit while
simple ones even suffer. For the latter, task-irrelevant information is maintained by long-lasting
memory effects at criticality which might erase novel, task-relevant stimuli. As a result, the network
dynamics need to be tuned to task requirements, i. e. every task needs its own dynamic state to be
solved optimally.
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Our understanding of criticality on computation was facilitated by the task-dependent as well as
task-independent considerations of performance. In the past, the network state has been character-
ized by classical measures like AIS, I and TE (Shew& Plenz, 2013; Mediano & Shanahan, 2017) or PID
(Tax et al., 2017;Wibral et al., 2017a), but not in combinationwith task processing. However, only the
combination of both allowed us to showcase that information capacity is indeed maximized at a crit-
ical point, but not necessarily task performance. Here, a key step to understand task processing was
enabled by a direct prediction of memory time scales with a lagged I between stimulus and delayed
neuronal activity. This provided us with a relation of task complexity and information-theoretic
fingerprint. Because of this, our results have the potential to serve as the basis for well-founded
design decisions of future artificial architectures.

Aside from critical phenomena, we analyzed SNNs exhibiting bistable dynamics within the scope
of this chapter. Strong fluctuations associatedwith states of low and high activity have been found in
experiments depending on the brain area and experimental details, however only under the influence
of anesthetics or in brain slices (Cossart et al., 2003; Jercog et al., 2017; Stern et al., 1997). The
associated dynamics have likewise been observed in models of neural networks exposed to STP
(Holcman & Tsodyks, 2006; Benita et al., 2012) as well as in networks of adaptive exponential leaky
integrate-and-fire (AdEx) neurons (Protachevicz et al., 2019). While the aforementioned models
feature dissipative components, our homeostatically regulated SNNs lack thereof and instead show
bistable dynamics even with frozen weights. Here, the switching between both states is likely to be
driven by statistical variations of the input. The actual source of bistable dynamics is, however, a
subject of ongoing research.

Within all experiments, we considered random networks lacking of spatial structure stimulated
by uncorrelated input spike trains. In the context of reservoir computing, nearest neighbor topolo-
gies are strongly represented, especially in combination with tasks of natural language processing
(Maass et al., 2002; Verstraeten et al., 2005; Legenstein & Maass, 2007). Aside, also ring, lattice,
torus as well as dense connectomes have been investigated previously (Dale et al., 2021). Particu-
larly in combination with stimuli exhibiting spatio-temporal structures, these topologies represent
a promising direction for future research. Aside from the network topology, the stimulus injection
constitutes a key design decision. Often a randomly drawn subset of neurons is used to inject ex-
ternal input into the reservoir network (Maass et al., 2002; Legenstein & Maass, 2007). We shared
this idea, albeit, in the context of random network topologies.

All of the aforementioned design decisions need to be tested with regard to their area of applica-
tion. Within this chapter, we utilized a set of artificial tasks to benchmark our neuromorphic SNNs.
Due to their ability to precisely control the complexity and memory requirements, the computation
of the 𝑛-bit parity as well as the NARMA constitute standard benchmarks within the reservoir com-
puting community (Bertschinger &Natschläger, 2004; Jaeger, 2003; Appeltant et al., 2011). However,
their applicability to larger SNNs poses problems: Especially for the computation of the 𝑛-bit parity,
every single input spike is crucial for the network to make the correct decision. In the context of
noise-affected SNNs implemented on analog neuromorphic hardware and also for their biological
archetype – the human brain – this constitutes an artificial condition. Moreover, in their origi-
nal formulation, these tasks lack spatio-temporal structure (cf. Chapter 4). In contrast, real-world
benchmark data like the samples constituting the Spiking Heidelberg Digits (SHD) dataset presented
in Chapter 4, feature non-random structures, but do not naturally allow to make statements about
complexity or the required memory. While a partitioning of existing benchmarks in pairwise clas-
sifications according to their complexity is in general conceivable, the design of classes of artificial
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spatio-temporal pattern of well-defined complexity directly in the spiking domain remains a major
challenge.

Both presented strategies – the STDP-like as well as the homeostatic weight updates – revealed
complex computational properties of our networks despite their small system size. A scale-up of
these systems would be beneficial, as one would expect even larger processing capabilities. More-
over, larger system sizes promote more self-sustained activity (Kriener et al., 2014; Borges et al.,
2020), which in turn allows to further reduce the impact of the Poisson input used for self-organization.
This has the potential to induce a better representation of superimposed stimuli within the system’s
response as well as memory retrievals on even longer time scales. At the same time, this scale-up
does not require additional parameter fine-tuning due to the self-organization with local learning
rules. By this, the energy efficiency and speed of larger chips or even multi-chip systems can be
exhausted with the presented frameworks.

In summary, we developed two distinct SNN models as well as their implementation on two
BrainScaleS-2 chips which exhibit emerging collective dynamics within the population activity.
Specifically, we showcased emerging autocorrelation times, significantly exceeding the time scale of
single-neuron dynamics. The underlying dynamics promoting these time scales, however, seem to
stem from different phenomena. Within the first part of this chapter, we found critical-like behavior.
With this, we have shown a clear relation between criticality, task performance and information-
theoretic fingerprint. Our results contradict the assumption that criticality promotes performance
on any task. Although the dynamical state of the network indeed impacts performance evaluated
in a reservoir computing framework, only complex tasks profit from critical states, whereas simple
ones suffer. The tuning of networks to computational requirements can be achieved by the input
strength under homeostatic action. With this, we provide an understanding of how critical phe-
nomena could be exploited in the design of SNNs. Moreover, our results may give an explanation
why biological neural networks do not necessarily operate at a critical point, but in its dynamically
rich vicinity where they can be easily tuned to task requirements (Wilting et al., 2018; Wilting &
Priesemann, 2019). In the second part of this chapter, we showcased emerging autocorrelation times
induced by bistable dynamics within SNNs. Like for critical SNNs, the time scale of the system can
be controlled via the input strength, although with entirely different collective dynamics. Most no-
tably, the SNNs maintained the transitioning between both states even with frozen weights and in
the absence of dissipative model components. Last, we provide a reliable strategy for the measure-
ment of autocorrelation times within perturbation experiments as well as an approach to exploit the
emerging phenomena for computation.
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The work on weight-driven structural plasticity presented within this chapter has been pub-
lished in Billaudelle et al. (2021) in close collaboration with Sebastian Billaudelle. In the
following, I will closely follow the publication, but with a more detailed description of the
implementation. The results on STDP-driven structural plasticity have been conducted in
collaboration with Markus Kreft and have already been demonstrated in Kreft (2019).

In the previous chapters, we investigated different strategies to optimize spiking neural networks
(SNNs) emulated on analog neuromorphic hardware for information processing by changing the
strength of synaptic weights. While we were able to make use of the associated fast and energy-
efficient emulation, the neuromorphic devices also imposed limitations. One of them are finite
synaptic resources which posed constraints on the fan-in as well as the overall size of the SNNs
discussed in Chapter 5. This constraint does not only hold true for the BrainScaleS-2 system, but
represents an ubiquitous issue for all neuromorphic substrates and is even inherited from the biolog-
ical archetype, the human brain. The latter, however, does not implement a static connectome, but
is known to constantly rewire its pre- and postsynaptic partners, a process referred to as structural
plasticity. Therefore, it might be promising to draw again inspiration from the human brain and port
similar mechanisms to neuromorphic hardware to relax the constraint of limited synaptic resources
by facilitating information processing in sparse networks. Within this chapter, we discuss an over-
arched optimization principle by presenting structural plasticity on the mixed-signal neuromorphic
chip High Input Count Analog Neural Network with Digital Learning System (HICANN-DLS). In
more detail, we describe an efficient on-chip implementation facilitated by synaptic-event filtering
(Section 3.1.1) and the embedded plasticity processing unit (PPU) running alongside the analog em-
ulation of neuro-synaptic dynamics (Section 3.1.3). We characterize our concept in a supervised as
well as an unsupervised learning scenario (cf. Chapters 5 and 6) with two distinct pruning conditions
and demonstrate the stimulus-dependent self-organized formation of structured networks. Further-
more, we evaluate the computational efficiency of our algorithms on HICANN-DLS and showcase
the comparable minimal overhead introduced by rewiring. Thereby, we highlight the beneficial
role of structural plasticity on neuromorphic hardware, especially in combination with accelerated
neuromorphic systems.

7.1 Introduction

Neuromorphic systems aim to transfer the efficiency of biological brains to silicon circuits thereby
implementing novel computing paradigms (Section 2.2). Despite the associated advantages, these
devices often also inherit limitations from their biological archetypes. With the diverse range of
proposed architectures in mind (Schuman et al., 2017), the nature of the limitations as well as their
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impact on the overall performance when it comes to benchmarking crucially depends on the con-
sidered device. However, all physical systems have in common that they need to operate on finite
resources provided by the substrate.

One primary example of such a limitation is the synaptic fan-in. This constraint holds true for
both digital as well as analog or mixed-signal implementations, albeit trade-offs are possible for
various platforms. Digital systems often feature fast on-chip memory whose size poses limits on
the number of synapses (Akopyan et al., 2015; Frenkel et al., 2018; Davies et al., 2018). Since these
systems often use time-multiplexed update logic, they can be designed to soften the constraint of
a limited fan-in by increasing the allocated memory size, however, at the cost of prolonged simu-
lation times, a reduced precision or an overall lowered network size (Furber et al., 2013). Analog
or mixed-signal devices, in contrast, implement their synapses physically and, hence, do not allow
the described trade-offs. Instead, they provide a fixed number of synaptic circuits for the definition
of networks (Moradi et al., 2018; Schemmel et al., 2007, 2010; Friedmann et al., 2016). Nevertheless,
some of these systems provide multi-compartment neuron models which on the one hand allow the
emulation of soma and dendrites, but on the other hand facilitate an extension of the fan-in bymerg-
ing multiple neuron circuits – each with its associated synaptic resources – to larger logical entities
(Schemmel et al., 2010; Aamir et al., 2018). Exemplary networks falling back on this strategy have
been presented in the context of Chapter 5 where the fan-in had to adhere to already downscaled
MNIST images. However, this comes at the cost of a reduced number of neurons available for the
actual network implementation.

The investigation of current neuromorphic platforms underpins that the limited availability of
synaptic resources indeed represents an ubiquitous issue. Since these devices were originally in-
spired by the working principle of the human brain for which similar constraints hold true, it is
worth taking another look at their role model. Most notably, biological neural networks do not im-
plement static networks, but are subject to ongoing reconfigurations by the removal and creation of
synapses (Grutzendler et al., 2002; Zuo et al., 2005; Bhatt et al., 2009; Holtmaat & Svoboda, 2009; Xu
et al., 2009). Nevertheless, they exhibit at all times a high degree of sparsity even at the local scale
(Braitenberg & Schüz, 2013; Abeles, 1991; Hellwig, 2000). In the mammalian cortex, most of the
excitatory synapses to Pyramidal neurons target dendritic spines (Yuste, 2011). As outlined in detail
in Section 2.1.4, the head size of these dendritic spine varies dramatically (Trachtenberg et al., 2002)
and correlates with the probability of their removal (Holtmaat et al., 2005, 2006). The lifetime of a
connection is assumed to be related to the synaptic efficacy because the spine volume depends on
the amplitude of the respective synaptic currents (Matsuzaki et al., 2001). While the magnitude of
synaptic turnover decreases in the adult brain, a relatively small but significant fraction of synapses
continuously re-adapts neural tissue to environmental stimuli (Holtmaat et al., 2005; Trachtenberg
et al., 2002; Grutzendler et al., 2002). Even in the adulthood, this turnover can be reactivated after
lesions or in the process of recovering from stroke (Yamahachi et al., 2009; Keck et al., 2011; Brown
et al., 2007). Moreover, the process of structural plasticity is thought to be key for effective infor-
mation storage, both in terms of space and energy requirements (Knoblauch et al., 2010; Chklovskii
et al., 2004; Poirazi & Mel, 2001). Hence, ongoing structural reconfigurations are likely to allow
sparse biological networks to maintain function at a low spatial and energetic footprint even in the
presence of changing environments.

In the field of machine learning, synaptic rewiring has already been visited in the context of sparse
networks. Most contemporary standard tasks like the processing of image or movie data come with
high dimensionality at the stimulus level: Already for small size images like the ones provided with
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the MNIST dataset (LeCun et al., 1998) a total of 28×28 pixels with a precision of 8 bit need to be
processed which already challenges the synaptic fan-in of many neuromorphic implementations
(Cramer et al., 2021; Göltz et al., 2021). This problem gets even more severe for the benchmark
datasets CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) where not only the amount of pixels is
increased to 32×32, but also colors are included: Here, every pixel comes with three color channels
resulting in a total of 3072 different inputs each with 8 bit precision. In contrast, applications like
natural language processing rely on specific preprocessing steps to extract relevant features (Cramer
et al., 2020b; Warden, 2018; Köhn et al., 2016; Zohar et al., 2018; Leonard & Doddington, 1991). These
transformations further enlarge the input dimensionality as an additional dimension – the frequency
– is introduced (Kumar, 1998). However, in most scenarios, the input signal is still sparse and not
all stimulus features are relevant for task processing. Aside from the input, Denil et al. (2013) found
that not all connections of multi-layer networks are required to remain functional for common ma-
chine learning datasets. Quite the opposite, these networks express many redundant connections
during training. Therefore, it is highly desirable to exploit overarched optimization schemes to not
even form redundant or non-informative connections as the maintenance of synapses as well as the
optimization of the associated weights requires computational resources. As a result, the connectiv-
ity pattern is no longer dense, but exhibits sparsity. Hence, the community has come up with new
training schemes which directly incorporate sparsity constraints into the training process (Bellec
et al., 2017; Wen et al., 2016). By this, network graphs can often be dramatically compressed without
a significant loss in performance. To also bring this effort to the field of neuromorphic computing
with SNNs, the ability to implement structural plasticity as well as arbitrary sparse networks should
be deeply anchored into the design of the associated devices.

Within this chapter, we present two structural plasticity mechanisms and their on-chip imple-
mentation on the mixed-signal HICANN-DLS chip (cf. Section 3.1). Our strategies directly draw
on the fact that the connectome on HICANN-DLS is partially and most notably locally resolved
within the synapses (cf. Section 3.1.1). This architecture promotes both the mapping of sparse net-
works as well as an on-chip implementation of structural plasticity executed by the embedded PPU
(cf. Section 3.1.3). Our approaches keep the mapped connectomes sparse at all times at a constant
fan-in. With our implementations of structural plasticity, we demonstrate the self-organized forma-
tion of receptive fields. Moreover, we showcase the ability to dynamically readapt these receptive
fields to changing environments. Albeit of the additional structural updates by local-learning, we
showcase the minimal overhead introduced by readapting the network graph compared to e. g. the
computation of synaptic weights.

7.2 Methods

Within this method section, we highlight two different algorithms for the pruning and reassignment
of synapses accompanied by their implementation on HICANN-DLS. As both strategies exploit the
partial in-synapse resolution of the connectome enabled by synaptic event filtering on BrainScaleS-
2 (Section 3.1.1), we start by shortly recapping the event-routing in the analog neuromorphic core
of HICANN-DLS before moving on to our structural plasticity implementations. In that process, we
introduce a general nomenclature used throughout this chapter.

Structural reconfigurations can be implemented on HICANN-DLS by synapse-local operations.
The connectivity on HICANN-DLS is physically implemented by the synapse array (Figure 7.1).
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Figure 7.1: Synaptic event filtering enables the efficient implementation of structural plasticity. The
connectivity on HICANN-DLS is physically implemented by a 2D array of synapses. Events enter the rows
constituting this array from the left and are eventually forwarded by synapses to the neurons located at the
bottom (circles). Multiple events originating from different presynaptic partners can be injected into a single
row of synapses (color-coded). Each spike event carries a unique address that denotes its presynaptic origin.
In addition to a synaptic weight, each synapse holds an address label in its local SRAM (color-coded). Based
on this address, each synapse filters incoming events and only forwards them to its home neuron in case the
event address matches the locally stored address label. Hence, structural reconfigurations can be efficiently
implemented by manipulating the synapse-local address labels which can be achieved via the on-chip PPU.
Here, the number of distinct spike trains injected into a single synaptic row is referred to as bundle size 𝑘, and
the number of utilized synaptic rows is termed 𝑚. Figure adapted from Billaudelle et al. (2021).

Synapse drivers forward spike events to whole rows of synapses constituting this 2D array. In more
detail, each event injected into a single row carries a 6 bit event address denoting its presynaptic
origin. Likewise, each synapse holds a 6 bit address label alongside a 6 bit weight in its local static
random-access memory (SRAM). Based on this address label, synapses filter incoming spike events
and only forward them to their home neuron in case the event address matches the aforementioned
address label. In general, multiple events originating from different presynaptic sources – i. e. with
different event addresses – can be injected into the very same synaptic row. Here, we refer to the
number of distinct presynaptic sources per synaptic row as the bundle size 𝑘. It is noteworthy that
each synapse can only transmit the spike events of a single presynaptic partner out of this bundle
to its home neuron. The number of utilized synaptic rows is termed 𝑚. By exploiting this synapse-
local event filtering, structural reconfigurations can be implemented by dynamically manipulating
the address label stored in the synaptic SRAM which effectively eliminates the previous connection
and at the same time creates a new one (Figure 7.1). Hence a re-write of the synaptic SRAM is
required for a single structural update which can be achieved in parallel by the single instruction,
multiple data (SIMD) vector unit of the PPU (cf. Section 3.1.3). The locality and parallelism render our
strategy very efficient compared to other implementations. In particular, no global access patterns
– like the reordering of routing tables – are entailed which would otherwise dramatically increase
computational complexity (Liu et al., 2018).

Within this chapter, we detail two distinct algorithms for the pruning and reassignment of synapses
as well as their accompanying weight dynamics. First, we consider a weight-driven approach de-
tailed in Section 7.2.1 and, second, a STDP-driven algorithm is presented in Section 7.2.2. While our
weight-driven approach assumes that informative connections are characterized by a high weight,
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Table 7.1: Overview of model and stimulus parameters used for the weight-driven structural plas-
ticity implementation. The given LIF neuron parameters correspond to the target values of the calibration
routines. All time constants are given in wall clock time. The errors indicate the standard deviation.

Stage Parameter Symbol Value

Neuro-synaptic
dynamics

Threshold potential 𝑢thresh 1000mV
Leak potential 𝑢leak 700mV
Reset potential 𝑢reset 400mV
Membrane capacitance 𝐶𝑚 (2.38 ± 0.02) pF
Membrane time constant 𝜏mem 6.0 µs
Refractory period 𝜏ref 4.0 µs
Excitatory synaptic time constant 𝜏 excsyn 4.5 µs
Inhibitory synaptic time constant 𝜏 inhsyn 4.5 µs
Synaptic delay 𝑑syn (1.9 ± 0.1) µs
Weight scaling factor 𝛾 (8.96 ± 0.13) µA

Network

Number of label neurons 𝑁 3
Maximum input rate ̂𝜈 50 kHz
Initial synaptic weight 𝑤 init

𝑖𝑗 0
Initial address label 𝑎init𝑖𝑗 ∼ unif(0, 𝑘)
Bundle size 𝑘 8
Number of synase rows 𝑚 6

Plasticity
dynamics

Causal STDP time constant 𝜏+ 8.0 µs
Causal STDP amplitude 𝜂+ 0.08
Pruning threshold 𝜃w 10/128
Causal STDP capping 𝑓max 9/128
Correlation scaling 𝜆stdp 30/128
Regularization scaling 𝜆reg 60/128
Range of random variable 𝑛amp 4/128
Plasticity update period 𝑇 24ms
Structural plasticity update period 𝑇 struct 120ms
Experiment duration 𝑇 exp 4.8 s

Input

Number of receptors 𝑛 48
Kernel support 𝜆 1.5/𝑛
Maximum rate ̂𝜈 50 kHz
Teacher rate 𝜈teach 35 kHz
Stimulus duration 𝑇 stim 200 µs

the STDP-driven algorithm is tailored to input patterns exhibiting spatio-temporal correlation like
auditory stimuli (Appendix A.1).

7.2.1 Weight-driven structural plasticity

Our first approach is motivated by two well-established biological findings, namely that first a high
weight is indicative for informative synapses and that second weak synapses are more likely to be
pruned (Holtmaat et al., 2005, 2006; Matsuzaki et al., 2001). While the first fact is incorporated by
Hebbian learning in combination with slow forgetting, the latter is implemented by the weight-
dependent pruning and reassignment of synaptic connections. This allows networks to potentially
improve their performance on a benchmark task while simultaneously maintaining sparse connec-
tivity at a limited and, more importantly, constant fan-in. In the following, we start by highlighting
the classification task and the network topology as well as the plasticity algorithms and their im-
plementation on HICANN-DLS. We end with a description of the experimental procedure and the
network initialization. All model parameters are summarized in Table 7.1.
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Figure 7.2: Sparse network architecture and input encoding of the Iris dataset. (a) The receptors
are uniformly distributed on the two-dimensional feature space, which is spanned by the petal widths and
lengths of Iris flowers belonging to the three classes setosa, versicolor, and virginica. A receptor’s activity is
calculated from its Euclidean distance to a data point according to a triangular kernel with radius 𝜆. (b) The
two-layer network consists of a group of receptors and a label population. One teacher per label neuron
ensures excitation of the correct labels during learning. The inputs project onto the label layer with a potential
all-to-all connectivity (gray), but only a subset of synapses is realized (red). Figure and caption taken from
Billaudelle et al. (2021).

Task: We benchmarked our structural plasticity implementation by classifying the Iris dataset
which contains petal and sepal length and width information of three different Iris flower species
(Fisher, 1936). For validation purposes, we randomly partitioned the 150 samples into 120 training
and 30 test data points. To accommodate the data to a manageable fan-in and to finally convert
the width and length information of Iris flowers to spike trains, we reduced the four-dimensional
dataset to only two distinct dimensions. In that process, we only selected the petal widths and
lengths renormalized to values between 0.2 and 0.8 We uniformly placed 𝑛 uniformly distributed
virtual receptors in the resulting 2D feature plane (Figure 7.2a). Each of which emitted Poisson-
distributed spike trains with an instantaneous rate determined by the Euclidean distance 𝑑𝑖𝑗 between
the receptor 𝑖 and the presented sample 𝑗. In more detail, the firing rate of receptor 𝑖 in response to
sample 𝑗 was assigned according to a triangular kernel 𝜈𝑖𝑗(𝑑𝑖𝑗) = ̂𝜈 ⋅max(0, 1 − 𝑑𝑖𝑗/𝜆), with a maximal
rate of ̂𝜈 = 50 kHz (Figure 7.2a). This translates to 50Hz in the biological time domain when taking
the system’s acceleration into account. To adequately cover the feature plane for various receptor
counts 𝑛, we scaled the radius 𝜆 inversely with √𝑛. By this method, we generated 𝑛 spike trains with
a duration of 𝑇 stim = 200 µs for every sample of the Iris dataset.

Network: To classify the Iris flowers, we instantiated a label layer composed of 𝑁 = 3 neurons on
HICANN-DLS. The latter received its input spike trains from a software-based receptor layer com-
posed of the aforementioned 𝑛 virtual receptors. The routing on HICANN-DLS was realized such,
that in general each label neuron could be stimulated by each receptor. However, the connectome
was kept sparse at all times by ensuring that 𝑛 always exceeds the number of realized synapses.
Here, we considered a supervised learning framework, i. e. every label neuron was in addition stim-
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ulated by a teacher spike train with Poisson-distributed spike trains of rate 𝜈teach = 35 kHz via static
synapses with frozen weights. The latter connections ensured activation of the correct label neuron
whenever the presented sample corresponded to its respective class.

For all our experiments, the number of expressed synaptic connections to the readout unit, i. e.
the number of utilized synaptic rows 𝑚, was always smaller or equal than the number of receptors
𝑛 (Figure 7.1). To still inject all 𝑛 generated spike trains into the chip, we randomly grouped them
into 𝑚 disjoint bundles of size 𝑘. Each of these bundles was injected into a single synapse row of
HICANN-DLS (Figure 7.1). In order to uniquely identify the presynaptic origin, the spike trains
constituting each bundle were assigned a unique event label in the range [0, 𝑘). Similarly, the three
distinct teaching spike trains were injected via a single but separate row of synapses with event
labels from zero to two. The assignment of a readout unit to a stimulus class was hence determined
by the configured address label within the synaptic row in which the teacher spike trains were
injected. By simply configuring each of the three address labels within this row multiple times, the
very same network can be instantiated repeatedly on a single HICANN-DLS chip.

The sparsity of our SNNs can be controlled by the number of utilized synaptic rows𝑚 and the bun-
dle size 𝑘. Here, we define the sparsity of our networks as the ratio between the number of unrealized
synapses 𝑛 − 𝑚 and the count of potential synapses 𝑛, i. e. 1 − 1/𝑘 = 1 − 𝑚/𝑛. Hence, our imple-
mentation features two independent parameters to control the network connectivity (Figure 7.7).
We exposed our SNNs to two distinct scenarios: First, the number of receptors 𝑛 was increased for
a fixed synapse count 𝑚 which results in an enlarged bundle size 𝑘 and thus increased sparsity. Sec-
ond, the synapse count 𝑚 was reduced while simultaneously keeping the sparsity constant 1 − 1/𝑘
which in turn leads to a reduced number of receptors 𝑛.

The described assignment of spike trains to synaptic rows imposes constraints on the connectome.
Most notably, each label neuron is only able to connect to a single receptor within each bundle. If,
however, two informative receptors by chance reside within the very same bundle, only one of them
can be selected at a given point in time. Moreover, multiple projections from the same afferent to a
single postsynaptic neuron are not possible. The latter is especially important in combination with
a limited weight range. It is noteworthy that both of these constraints can be relaxed by a redundant
injection of spike trains, i. e. by injecting the very same spike train into multiple synaptic rows.

Plasticity: For our weight-driven approach, a synapse’s eligibility for pruning was determined
by a threshold criterion centered around the value of its weight 𝑤𝑖𝑗. In case 𝑤𝑖𝑗 felt below a thresh-
old 𝜃w, the corresponding synapse was removed. Consequently, a new synaptic connection was
randomly drawn out of the bundle of potential presynaptic partners of size 𝑘 and was inserted in
its place. By this substitution strategy, the synaptic indegree remained conserved. With regard to
the BrainScaleS-2 architecture this strategy was implemented by dynamically rewriting the address
label 𝑎𝑖𝑗 stored in the synapse-local SRAM according to:

𝑎𝑖𝑗(𝑡 + 𝑇struc) = {
unif(0, 𝑘 − 1), if 𝑤𝑖𝑗(𝑡) < 𝜃w
𝑎𝑖𝑗(𝑡), otherwise .

(7.1)

where the bundle size 𝑘 determines the range of the drawn random numbers and in turn the amount
of considered presynaptic partners. Each newly created synapse was then initialized with a low
weight 𝑤init.
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The synaptic reconfiguration strategy described above is centered around the assumption that
informative synapses are characterized by a high weight. Indeed, this requirement is met by a wide
range of learning rules (Zenke & Ganguli, 2018b; Neftci et al., 2019a; Göltz et al., 2021; Urbanczik
& Senn, 2014; Bellec et al., 2020). Within the scope of weight-driven structural reconfigurations,
we drew on Hebbian weight dynamics based on the spike-timing dependent plasticity (STDP) mea-
surements of HICANN-DLS which facilitated a fully local implementation of weight updates on the
PPU. Moreover, the latter can be extended to yield more complex learning rules (Frémaux & Gerst-
ner, 2016; Neftci et al., 2014). For our experiments, we calculated synaptic weight updates according
to 𝑤𝑖𝑗(𝑡 + 𝑇 ) = 𝑤𝑖𝑗(𝑡) + Δ𝑤𝑖𝑗 where Δ𝑤𝑖𝑗 was determined by the following three terms:

Δ𝑤𝑖𝑗 = 𝜆stdp ⋅min [𝑓max, 𝑓+(𝑡𝑘𝑖 , 𝑡
𝑙
𝑗, 𝑡 , 𝑡 + 𝑇 )]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

specific potentiation

−𝜆reg ⋅ 𝜈𝑖(𝑡, 𝑡 + 𝑇 )𝑤𝑖𝑗(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
regularization

+ 𝑛𝑖𝑗(𝑡)⏟
random
walk

. (7.2)

Each of the first two products was scaled by a positive factor 𝜆stdp or 𝜆reg, respectively. The first
term implemented the causal branch of STDP based on the pre- and postsynaptic spike times, 𝑡𝑘𝑖
and 𝑡 𝑙𝑗 in the time interval (𝑡, 𝑡 + 𝑇 ] according to Equation (3.1), but cut off at a maximum value
𝑓max. The second term yielded slow forgetting by an exponential weight decay and at the same
time homeostatic regulation based on the number of spikes emitted by neuron 𝑖 in the interval
[𝑡, 𝑡 + 𝑇 ], 𝜈𝑖(𝑡, 𝑡 + 𝑇 ). Moreover, it introduced competition between all afferent synapses of neuron
𝑖. In accordance to the work of Kappel et al. (2015), the last contribution 𝜂𝑖𝑗(𝑡) built an unbiased
random walk and hence led to exploration:

𝑛𝑖𝑗 ∼ unif (−𝑛amp, 𝑛amp) , (7.3)

where 𝑛amp specifies the range of the random numbers. Especially on HICANN-DLS, the latter term
was key to overcome local minima induced by fixed-pattern variations and the integer arithmetics
of the SIMD vector unit.

All components of the weight dynamics target specialized hardware components and can be ef-
ficiently mapped to the BrainScaleS-2 architecture by drawing on the SIMD vector unit of the PPU.
To that end, we utilized the update loop shown in Listing 1 to control the experiment flow and it-
erate over the entire synapse array in a row-wise manner. More specifically, this loop triggered the
respective weight as well as structural updates with different frequencies: While synaptic weights
were adjusted with a period 𝑇, the pruning condition was evaluated at a rate 𝑇struc = 5 ⋅ 𝑇, i. e. every
fifth update carried out by the PPU adapted the connectome. Hence, the pruning process took place
on a slower time scale than both the network dynamics as well as the weight changes, giving the
synaptic weights time to develop over multiple iterations. Within the update loop we applied the
kernels shown in Listings 5 and 6 implementing structural reconfigurations as well as the weight
dynamics on the SIMD vector unit.

Structural reconfigurations for a slice of synapses were implemented by the kernel code shown in
Listing 5. To that end, we first loaded a slice of synaptic weights and address labels into the registers
weights and addresses of the SIMD vector unit (lines 2 and 3). Likewise, pseudo-random numbers
were moved into the register rands (line 5). These uniformly distributed integer random numbers
– required to update the address label – were drawn on the general-purpose part of the PPU by
a xorshift algorithm (Marsaglia et al., 2003). The resulting 32 bit values were masked to cover the
range [0, 𝑘) prior to the load instruction. For most of the experiments presented within this chapter,
we considered 3 bit random numbers and therefore visited 𝑘 = 8 potential presynaptic partners
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1 ; Load weights and addresses labels

2 inx weights, %[weight_base], %[offset]

3 inx addresses, %[address_base], %[offset]

4 ; Load uniformly distributed random numbers with range [0,k-1)

5 lax rands, 0, %[rand_offset]

6 ; Evaluate pruning condition based on current values of weights

7 subbfs conds, weights, %[threshold],

8 compareb conds

9 select addresses, addresses, rands, LT

10 ; Save address labels

11 outx addresses, %[address_base], %[offset]

12 ; Reset weights of pruned synapses

13 compareb conds

14 select weights, weights, %[w_init], LT

15 ; Save weights

16 outx weights, %[weight_base], %[offset]

Listing 5: Kernel code for weight-driven structural reconfigurations. After loading the synaptic
weights and address labels of a slice of synapses from the synaptic SRAM, the pruning condition is evaluated
by a comparison of the weight values to a fixed threshold. In case the weights fall below this threshold, new
randomly drawn address labels are assigned to the corresponding synapses thereby allocating new presynap-
tic partners. Further, the weights of the associated synapses are reset to a small value. Note that the random
numbers are generated on the general-purpose part of the PPU and are then loaded to the SIMD vector unit.
The range of these numbers determines the amount of visited presynaptic partners and is chosen to coincide
with the bundle size 𝑘. Shown is the kernel code using NASM syntax.

per row of synapses. To ultimately evaluate the pruning condition, we first subtracted the pruning
threshold in the register threshold from the current weights hold in weights and stored the result
thereof in the register conds (line 7). These values in conds served as the basis for a subsequent
compare operation (lines 8 and 9): For all elements of conds which were greater or equal to zero,
the respective elements in addresses remained unchanged, i. e. the synaptic connections persisted.
In the opposite case, the connections were pruned by updating the values in addresses to the new
randomly drawn values in rands. Afterwards, the address labels were written back to the synaptic
SRAM (line 11). An update was finalized by resetting the synaptic weights of pruned synapses.
This was achieved by a second compare operation based on the previously calculated values in
conds (lines 13 and 14): The old weight values were kept for all elements in weights for which
the respective entry in conds was greater or equal to zero. Otherwise the corresponding elements
in weights were assigned to the initial weight hold in w_init. Afterwards, the values in weights

were written back to the respective slice of the synapse array (line 16). Note that the bit-shift usually
carried out prior to calculations involving the synaptic weights was omitted here, as the saturation
arithmetic did not matter for the evaluation of the pruning condition.

The STDP-derived term in Equation (7.2) was implemented by the kernel code in Listing 6a. The
causal spike time correlations were measured in the analog synapse-local circuits and then digitized
using the column-parallel analog-to-digital converter (CADC). A slice of these observables was sub-
sequently loaded into the register ac_meas and aligned to the arithmetic of the SIMD vector unit by
the code shown in Listing 1. Subsequently, the correlation sensors were reset. Thereafter, the values
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(a) STDP kernel

1 ; calculate and apply update

2 subbfs thresholds, ac_meas, %[f_max]

3 compareb thresholds

4 select dws, %[f_max], ac_meas, LT

5 mulbfs dws, dws, %[lambda_stdp]

6 addbfs weights, weights, dws

(b) Homeostatic kernel

1 ; load spike counts

2 ; from general-purpose part

3 lax rate, 0, %[rate_offset]

4 ; calculate and apply weight update

5 mulbfs dws, weights, %[lambda_reg],

6 mulbfs dws, dws, rate

7 subbfs weights, weights, dws

(c) Random walk kernel

1 ; load random numbers

2 ; from general-purpose part

3 lax rands, 0, %[rand_offset]

4 ; calculate positive and negative updates

5 ; seperately omitting zero updates

6 addbfs weights_neg, weights, rands

7 subbfs weights_neg, weights_neg, %[bias],

8 addbfs weights_pos, weights_neg, %[one],

9 ; check if random update would be greater

10 ; or equal zero to restore balance

11 subbfs tmps, rands, %[bias],

12 addbfs tmps, tmps, %[one],

13 compareb tmps

14 ; select either positive or negative

15 ; weight update depending on sign

16 select weights, weights_pos, weights_neg, LT

Listing 6: Kernel codes for the unsupervised updates of synaptic weights accompanying weight-
driven structural changes. (a) Amodified STDP kernel constitutes the driving force for the weight dynam-
ics accompanying our weight-driven structural plasticity implementation. The CADC is utilized to digitize
the measurements of a slice of correlation sensors. In turn, the measurements are capped and scaled to result
in the weight updates which are then applied to the old weight values. (b) The regularization term relies on
both synaptic weights and the firing rates. The firing rates are read from the on-chip bus by the general-
purpose part and then loaded into the SIMD vector unit. The product of a scaling factor, the weights and
the firing rates constitutes the weight update which is subtracted from the current weight value. (c) Explo-
ration is implemented by a random walk. The random numbers are drawn on the general-purpose part of
the PPU and are subsequently loaded into the SIMD vector unit. To implement random updates with a mean
of zero, positive and negative updates are treated separately. A compare operation is utilized to select the
corresponding updates. Shown is the kernel code using NASM syntax.

in ac_meas were scaled by the factor in lambda_stdp resulting in the temporary weight updates dws
(line 2). The capping of the result was implemented by a single subtraction. To that end, the cap
value in f_max was subtracted from ac_meas and the result thereof was assigned to thresholds

which was used for a subsequent compare operation (lines 2 and 3). For all elements in ac_meas for
which the corresponding entries in thresholds were greater or equal to zero, the measurements
in ac_meas were capped and hence the corresponding weight update dws was set to f_max (line
4). Otherwise, the actual measurements ac_meas were kept. Next, the calculated updates were
scaled by the positive factor lambda_stdp (line 5). Ultimately, the weight updates dws were added
to the old weight values weights (line 6) and the result thereof was written back to the synaptic
SRAM by the kernel code shown in Listing 1. The capping of correlation measurements allowed
us to reduce potential imbalances introduced by fixed-pattern deviations of the associated analog
sensors. With regard to Figure 3.4, it becomes evident that some of these sensors systematically
yield higher measurements which may result in self-amplification of the corresponding synaptic
weights by increasingly dominated synchronization of the associated pre- and postsynaptic firing.

154



7.2 Methods

It is noteworthy that reducing the parameter 𝜆stdp could likewise counteract this self-amplification.
However, the associated scaling of the STDP measurements could impact convergence due to the
limited precision fixed-point calculations carried out by the PPU.

Listing 6b shows the kernel utilized to implement the second term in Equation (7.2). This homeo-
static component required access to the postsynaptic spike counts. Since these observables are only
available from the neuronal spike counters via the on-chip configuration bus, they were first ac-
cessed by the general-purpose part of the PPU and in turn loaded into the register rate of the SIMD
vector unit (line 3). Subsequently, the multiplication of the synaptic weights hold in weights with
the constant scaling factor in lambda_reg was carried out and the result thereof was assigned to dws
(line 5). In direct succession, dws was multiplied by the rates in rates (line 6). Finally, the resulting
updates dws were substrated from the current weight values weights (line 7) prior to writing back
the result to the synapse array by the code shown in Listing 1.

Finally, the stochastic term in Equation (7.2) was implemented by the kernel in Listing 6c. Like
for the structural plasticity updates, the stochasticity required for the last term was provided by a
xorshift algorithm implemented on the general-purpose part of the PPU. Subsequently, the drawn
32 bit integer random numbers were restricted to only 3 bit and then loaded to the SIMD vector unit
into the register rands (line 3). Hence, the random numbers covered the range [0, 6). Since the
associated kernel had to implement a balanced random walk with ⟨𝜂𝑖𝑗⟩ = 0 to not induce a bias in
the weight updates, the positive and negative weight updates were treated separately to guarantee
a symmetrical distribution. To that end, we converted the random values to the range [−3, 3] by
omitting the value zero. For the negative updates, we first added the random numbers in rands to
the current weight values in weights resulting in weights_neg (line 6). Next, the values in bias

were substrated from the results in weights_neg (line 7). For the 3 bit random numbers, this bias
was set to four. The positive updates were simply obtained by adding ones to the negative updates
weights_neg to avoid a weight update of zero (line 8). Last, the correct update had to be determined.
To that end, we utilized a compare operation to determine if the random update would be greater or
smaller than zero. Hence, we first substracted the values in biases from the random values in rands

(line 11). To implement a less or equal zero operation, we subsequently added a one to the results
stored in tmps (line 12). Afterwards, a compare operation based on the results in tmps was utilized
to select the correct update (line 13): In case these results exceeded zero, we assigned the positive
update in weights_pos to weights, otherwise, we applied the negative update weights_neg (line
16). The random walk kernel was then finalized by writing back weights to the synaptic SRAM
with the kernel highlighted in Listing 1.

Initialization: At the start of each experiment, we initialized the synaptic weights to zero except
for the ones corresponding to the teacher synapses. The latter were chosen to ensure activation
of the correct label neuron in case a sample of the corresponding class was injected. Accordingly,
these synapses were initialized with maximal weight. Initially, the address labels were configured
randomly according to a uniform distribution covering the range [0, 𝑘). Afterwards, we stimulated
the network with the randomly selected training samples drawn from the Iris dataset and an addi-
tional teacher spike train. During this phase, the synaptic weights as well as the address labels freely
evolved according to Equations (7.1) and (7.2) for a total of 200 training epochs. Simultaneously, we
read back the address labels as well the synaptic weights for further evaluation after each training
epoch, i. e. after each presentation of the full dataset. To evaluate the test performance, we switched
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Figure 7.3: Informative auditory spike trains exhibit high correlation. (a) The auditory input channels
are correlated to different degrees, visible in both the integrated auto- as well as crosscorrelation. Only in a
narrow band of inputs – corresponding to the HCs sensitive to the frequencies of speech – both correlation
measures peak. The crosscorrelation for channel 𝑖 is obtained by estimating the correlations between the
spike train of channel 𝑖 and all other channels 𝑗 in a pairwise fashion and a subsequent integration over
all 𝑗. (b) The mutual information between input spike trains and digit identity likewise peaks for a narrow
range of input channels. (c) Both, the auto- and crosscorrelation shown in (a) are highly correlated with
the informative synapses as characterized in (b) with Pearson correlation coefficients of 𝜌auto = 0.86 and
𝜌cross = 0.91, respectively.

off the teacher spike trains and emulated our networks with frozen synaptic weights and address
labels while injecting the randomly drawn test samples of the Iris dataset.

Evaluation: The decision of the network was evaluated by a winner-take-all mechanism imposed
in software. In more detail, we evaluated the firing rate of each readout neuron on HICANN-DLS
during stimulation with each sample. A most active, winning unit was obtained by comparison
among all readout neurons.

7.2.2 Correlation-driven structural plasticity

In the following, we propose a mechanism for structural reconfigurations which is thought to aug-
ment the implementation of the critical computing framework with STDP-like weight dynamics
described in Chapter 6. In more detail, we aim to adapt the network topology when being exposed
to the auditory stimuli presented in Chapter 4 to induce the formation of receptive fields. When
transforming audio data of speech with the methods described in Appendix A.1, the resulting spike
trains are characterized by spatio-temporal correlations (Figure 7.3a). As it becomes apparent, the
input channels exhibiting the highest correlation (Figure 7.3b) match the ones carrying high infor-
mation about the identity of the spoken word (Figure 7.3c). Most notably, the informative channels
are contained within a narrow band of input channels – the frequency band of speech. The remain-
ing channels mostly contain noise induced by thermal fluctuations capturedwithin the hair cell (HC)
model (cf. Appendix A.1.2). Hence, the input dimensionality could be dramatically relieved by only
considering the informative input channels, thereby compressing subsequent network graphs used
for classification. The latter can be achieved by formulating a pruning condition that promotes a
preference for correlated input spike trains. Therefore, it seems natural to formulate a STDP-driven
pruning strategy which builds on the algorithm described in Section 7.2.1 to detect informative
channels within the input.
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Table 7.2: Overview of model and stimulus parameters used for the STDP-driven structural plas-
ticity implementation. All time constants are given in wall clock time. The errors indicate the standard
deviation. All remaining parameters are given in Table 6.1.

Stage Parameter Symbol Value

Network

Number of inputs 𝑁in 128
Bundle size 𝑘 4
Number of synase rows 𝑚 32
Initial synaptic weight 𝑤 init

𝑖𝑗 0
Initial address label 𝑎init𝑖𝑗 ∼ unif(0, 𝑘)

Plasticity
dynamics

Causal STDP time constant 𝜏+ (7.3 ± 0.7) µs
Causal STDP amplitude 𝜂+ 0.068 ± 0.022
Maximum pruning threshold 𝑐thres 10/128
Structural plasticity update period 𝑇 struct 0.5 s
Experiment duration 𝑇 exp 50 s

Input

Spatial correlation strength 𝜌spat {0.0, 0.3, 0.6, 0.9}
Temporal correlation strength 𝜌temp {0.00, 0.25, 0.50, 0.75, 1.00}
Mean of modulation frequency 𝜈temp 24 kHz
Standard deviation of modulation frequency 𝜎𝜈 2.4 kHz
Stimulus offset 𝜃 9.6 kHz
Frequency scaling factor 𝐴 30𝜃
Phase 𝜎𝜑 1ms

In the following, we highlight the artificial and real-world auditory stimuli used to benchmark
our implementation. After that, we describe the network topology and the plasticity mechanisms.
We again close by a specification of the initialization and evaluation techniques. All model and
stimulus parameters are summarized in Table 7.2.

Stimuli: Our STDP-driven structural plasticity targets auditory feature selection for classification
tasks like the one provided by the Spiking Heidelberg Digits (SHD) (cf. Chapter 4). Aside from the
SHD, we utilize artificial stimuli that aim to reflect the correlations present in the spoken words to
finally benchmark our implementation (de Boer, 1980; Meddis, 1986). Furthermore, these artificial
stimuli allow us to dissect the effect of spatial and temporal correlation inherently present in the
spike trains of SHD. All stimuli are designed to feature 128 distinct spike trains thereby exceeding
the fan-in of 32 synapses per neuron on HICANN-DLS by a factor of four.

We first designed a spatially correlated stimulus that exhibited correlation at level 𝜌spat between
different input channels that was chosen to be constant in time. The spiking probability of all in-
put units was calculated from the cumulative distribution function (CDF) of a normal distribution
𝑋 ∼ 𝒩 (𝜇, 𝜎2)with mean 𝜇 = 0 and standard deviation 𝜎 given by the correlation parameter 𝜌spat. In
more detail, a spike was generated if a value drawn from this distribution was smaller than the ac-
ceptance probability 𝑝, CDF(𝑋) < 𝑝. To accommodate to a total of 128 inputs, we generated 𝑚 = 32
bundles of inputs, each of which comprising 𝑘 = 4 spike trains. For each bundle, we drew four spike
trains with fixed 𝜌spat ∈ {0.0, 0.3, 0.6, 0.9}. By changing the probability, the frequency 𝜈 = 𝑝𝛿𝑇 was
varied, thereby enabling fine-grained network control. Figure 7.4 shows an excerpt of the spikes in
a sample stimulus created with the actual model parameters used in the experiments.

The second stimulus was designed to exhibit temporal correlation 𝜌temp within each input chan-
nel. In close accordance with the HC model in Appendix A.1, we here generated spikes according
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Figure 7.4: Characterization of artificial and real-world auditory stimuli. The two artificial stimuli are
designed to exhibit either spatial (first row) or temporal (second row) correlations. Both of which are present
within the spike trains of the SHD (third row). In the first column, exemplary raster plots for spatially and
temporally correlated artificial stimuli and a real-world spoken digit are shown. The second column contains
the crosscorrelation 𝜌𝑎𝑖,𝑎𝑗 for all combinations of input channels. In the last column, the autocorrelation for
every input channel 𝑖, 𝜌𝑎𝑖,𝑎𝑖 is visualized. The four distinct correlation levels are visually separated by red hor-
izontal lines. Note that the temporal dimension of the spoken digits has already been scaled to accommodate
to the acceleration factor of HICANN-DLS. Panels adapted from Kreft (2019).

to a Poisson process with modulated instantaneous probability:

𝑝𝑖(𝑡) = max {0, 𝐴 ⋅ 𝜌temp ⋅ sin (2𝜋 ⋅ 𝜈𝑖 ⋅ (𝑡 + 𝜑𝑖)) + 𝜃} , (7.4)

for input unit 𝑖 and a fix offset 𝜃. The frequency 𝜈𝑖 of the sine was drawn from a normal distribu-
tion 𝒩 (𝜈temp, 𝜎2𝜈 ) with mean 𝜈temp and standard deviation 𝜎𝜈 = 0.1𝜈temp. In addition, a constant
phase shift 𝜑𝑖 is drawn from a normal distribution 𝒩 (0, 𝜎𝜑) for every input channel. Together, this
avoided synchronous input events across all channels and therefore reduced spatial correlation. The
strength of correlation was changed by scaling the amplitude of the sine with a factor 𝜌temp. Here,
𝐴 constitutes an additional scaling factor of the sine amplitude which was used to change the fir-
ing rate. Like for the spatially correlated stimulus, we generated a total of 128 independent spike
trains divided into 𝑚 = 32 bundles of size 𝑘 = 4. Each bundle contains four spike trains with
𝜌temp ∈ {0.0, 0.25, 0.5, 1.0}. An example of a temporarily correlated stimulus is shown in Figure 7.4.

As an example of real-world stimuli exhibiting both spatial as well as temporal correlation, we
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applied a reduced version of the SHD. More specifically, an early version of the dataset without the
additional layer of bushy cells (BCs) was used (cf. Appendix A.1). Hence, the associated spike trains
exhibited larger levels of noise and a decreased phase-locking. Further, we stuck to the recordings
of the English digits »zero« to »nine«. To reduce the dataset to 128 inputs only, we selected every
fifth input channel. Moreover, the temporal dimension was compressed by a factor of 1000 to ac-
commodate to the accelerated nature of HICANN-DLS. An example of a downsampled input spike
raster of a single digit is shown in Figure 7.4. Again, these spike trains were assigned to 𝑚 = 32
bundles in an alternating fashion in such a way that the first bundle contains the input channels
{0, 32, 64, 96}, the second {1, 33, 65, 76} and so on. By this assignment strategy, the highly correlated
input spike trains are distributed to different bundles (cf. Figure 7.3a).

Network: We considered the very same network topology as the one described in Section 6.2.1.1
(Figure 6.3), but with 128 instead of only 32 possible external presynaptic partners. Nevertheless,
only 32 of themwere active at any given point in time for each neuron, all others remained dormant.
In more detail, we considered 𝑘 = 128/32 = 4 distinct event addresses to inject bundles of four spike
trains into each synaptic row of HICANN-DLS (cf. Figure 7.1). These event addresses were chosen
to cover the range [0, 𝑘). Again, we configured the address labels of a randomly drawn set of 𝐾ext
synapses per neuron to a value in the range [0, 𝑘) to eventually stimulate our neurons with external
spike events. The remaining 32 − 𝐾ext synapses per neuron implemented recurrent connections by
setting their address label to 63. Similarly, the spike router was programmed to inject all events of
neuron 𝑖 back into the synaptic row 𝑖 with an event address of 63.

Plasticity: Here, we only implemented structural reconfigurations for synapses transmitting the
external stimuli and kept the recurrent ones fixed to not disturb the degree of the external input
𝐾ext of our networks. With this choice, the network state could in general still be controlled by the
parameter 𝐾ext and hence adapted to task requirements. As detailed above, and in contrast to the
weight-driven structural plasticity, we here relied on a STDP-based pruning condition when dealing
with auditory stimuli. On HICANN-DLS, this was achieved by using the correlation sensors. In
more detail, a stimulating synapse’s eligibility for pruning was determined by its causal spike-time
correlation:

𝑎𝑖𝑗(𝑡 + 𝑇struc) = {
𝑎𝑖𝑗(𝑡), if 𝑓+ (𝑡𝑘𝑖 , 𝑡

𝑙
𝑗, 𝑡 , 𝑡 + 𝑇) ≥ 𝑐𝑖𝑗(𝑡)

unif(0, 𝑘 − 1), otherwise ,
(7.5)

with the causal correlation 𝑓+ based on the pre- and postsynaptic spike times, 𝑡𝑘𝑖 and 𝑡 𝑙𝑗 in the time
interval (𝑡, 𝑡+𝑇 ] according to Equation (3.1). Only if 𝑓+ is greater than or equal to a random threshold
value 𝑐𝑖𝑗(𝑡) the respective address was kept. In the opposite case, a randomly drawn address label
was assigned and the corresponding synaptic weight was reset to 𝑤init. The reference values 𝑐𝑖𝑗 were
drawn from an uniform distribution:

𝑐𝑖𝑗 ∼ unif(0, 𝑐thres − 1) , (7.6)

that was capped by the pruning threshold 𝑐thres. Note that the parameter 𝑘 determined the number
of considered presynaptic partners per row of synapses and translates to a total of 32 × 𝑘 potential
input spike trains when utilizing all synaptic resources of HICANN-DLS.

As already indicated, our STDP-driven pruning can be efficiently implemented on HICANN-DLS
by drawing on the correlation measurements and the SIMD vector unit of the PPU. To that end, we
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1 ; Load causal measurement

2 inx ca_meas, %[ca_base], %[offset]

3 shiftb ca_meas, ca_meas, -1

4 ; reset correlation sensors

5 outx %[select], %[ca_base], %[offset]

6 ; Load weights and addresses labels

7 inx weights, %[weight_base], %[offset]

8 inx addresses, %[address_base], %[offset]

9 ; Evaluate pruning condition

10 lax rand_thresholds, 0, %[threshold_offset]

11 subbfs conds, ca_meas, rand_thresholds

12 addbfs conds, conds, %[ones],

13 ; Set conds to one if address is internal

14 subbfs temps, addresses, %[internal_addresses]

15 compareb temps

16 select conds, , %[ones], condsLT

17 ; Load random data to update address labels

18 lax rands, 0, %[rand_offset]

19 compareb conds

20 select addresses, addresses, rands, LT

21 ; Reset weights of pruned synapses

22 compareb conds

23 select weights, weights, %[w_init], LT

24 ; Save address labels and weights

25 outx addresses, %[address_base], %[offset]

26 outx weights, %[weight_base], %[offset]

Listing 7: Kernel code for STDP-driven structural reconfiguration. After digitization of the correlation
data via the CADC as well as the loading of synaptic weights and address labels, the pruning condition was
evaluated by a comparison of the weight’s value to a random threshold. To ensure that only stimulating
synapses were updated, we utilized a second compare operation. In case a synapse was pruned, the address
label was replaced by a randomly drawn value, thereby assigning a new presynaptic partner. Further, the
weight was reset to a small value. Note that the random numbers had to be generated on the general-purpose
part of the PPU and were then loaded to the SIMD vector unit. Here, the amount of visited presynaptic
partners depends on the range of the drawn random numbers. Shown is the kernel code using NASM syntax.

utilized the update loop shown in Listing 1 for experiment control. Again, the structural plasticity
evolved on a slower time scale than the actual network dynamics and weight updates: Only every
500th update triggered by this control loop comprised an evaluation of the pruning condition, i. e.
𝑇struc = 500 ⋅ 𝑇. With this choice, we gave the synaptic weights the chance to develop over multiple
update periods. The update loopwas augmented by the already discussed kernel shown in Figure 6.3,
implementing the actual weight updates, as well as the kernel highlighted in Listing 7 which ensured
structural reconfigurations of stimulating synapses.

The kernel code shown in Listing 7 was used to implement structural reconfigurations according
to Equation (7.5). The evaluation of the pruning condition first required access to the causal corre-
lation measurements. To that end, a CADC read was triggered from the SIMD vector unit and the
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digitized correlation data of a slice of synapses was assigned to the register ca_meas (line 2). A bit
shift of one was applied to correctly interpret the 8 bit unsigned measurements with the 8 bit signed
arithmetic of the SIMD vector unit (line 3, cf. Chapter 3). In direct succession, we reset the cor-
relation sensors (line 4). It is noteworthy that we accumulated pair-wise correlations not over the
full course of a structural plasticity period 𝑇struc to evaluate the pruning condition in Equation (7.5),
but instead relied on the regular weight update duration 𝑇. This was due to the fact that the reset
among causal and anticausal correlation measurement circuits is shared on HICANN-DLS. Hence,
the reset of the anticausal sensors required to implement Equation (6.9) also led to a reset of the
causal ones. After accessing the correlation measurements, the synaptic weights as well as the ad-
dress labels were read from the synaptic SRAM and stored in the registers weights and addresses,
respectively (lines 5 and 6). Since we here applied a stochastic pruning condition, we drew uni-
formly distributed random numbers on the general-purpose part of the PPU by a xorshift algorithm
(Marsaglia et al., 2003). The resulting 32 bit values were masked to cover the range [0, 𝑐thres) and
were subsequently loaded into the register rand_thresholds (line 10). Afterwards, the pruning
condition was evaluated by subtracting these random numbers from the correlation measurements
in ca_meas and assigning the result to the register conds (line 11). Prior to the actual compare
operation, we added ones to these results to implement a less or equal than operation (line 12).
Moreover, we had to guarantee that only the address labels of stimulating synapses were updated.
To that end, we manipulated conds for all recurrent synapses for which the address labels were
configured to the maximum possible value. More specifically, we subtracted the address value of
recurrent synapses in internal_address from the current addresses resulting in temps (line 14).
Based on this result, we utilized a compare operation, which assigned a value of one to all entries
in conds for which the result in temps was not smaller than zero, i. e. for all recurrent synapses
(line 16). Now, conds contained only positive values for recurrent synapses as well as stimulating
synapses whose weights exceeded the pruning threshold. For the update of all other synapses, we
again utilized randomly drawn integer numbers which were masked to cover the range [0, 𝑘) prior
to loading them into the register rands (line 18). Based on the values in conds, we either assigned
the old states to addresses in case the respective entries conds were smaller than zero or reassigned
the corresponding synapses by assigning the respective elements in rands to addresses (line 20).
Lastly, we reset the weights of pruned synapses to w_init by a similar compare operation (lines 24
and 25). The kernel was finalized by writing back the synaptic weights as well as the address labels
to the associated slice of the synaptic SRAM (lines 25 and 26).

Initialization: The surrounding network and plasticity model was similar to the one presented
in Chapter 6. For an experiment, the network was initialized with a certain 𝐾ext. Since the re-
current synapses were not subject to structural plasticity, the degree of the input of our networks
was conserved over the course of an experiment despite structural reconfigurations. All weights
were initiated with a value of 𝑤𝑖𝑗 = 0∀𝑖, 𝑗 and the address labels of the stimulating synapses were
chosen at random according to an integer uniform distribution with range [0, 𝑘). During stimula-
tion with artificial or auditory stimuli, the synapses were subject to the modified STDP according
to Equation (6.9) and structural plasticity given in Equation (7.5) allowing the network to adapt.
A total of 100 structural plasticity updates were performed leading to an overall experiment dura-
tion of 𝑇 exp = 100 ⋅ 𝑇 struc. After each evaluation of the pruning condition, the synaptic weights
and addresses labels of all synapses were saved for subsequent evaluation. Each experiment was
conducted 10 times with different random seeds for the involved plasticity processes as well as the
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initialization and stimulation. The results stemming from the network analysis were then averaged
over these 10 independent experiments. All shown errors correspond to the standard deviation.

Evaluation: For evaluation, the address labels of every row of synapses were ranked according
to the correlation strength of their corresponding spike trains. While this was directly possible for
artificial stimuli, we first had to sort the spike trains constituting the auditory stimuli with respect to
their integrated auto- or crosscorrelation as shown in Figure 7.3. To finally quantify the performance
of our structural plasticity implementation, we evaluated the fraction of all external synapses with
a preference for the 𝑖-th highest available correlation within each bundle:

𝑃𝑖 =
𝑁𝑖
𝑁ext

, (7.7)

with the number of synapses expressed to an input with the 𝑖-th highest correlation within each
bundle and the total count of inputs 𝑁ext = 128. In other words, for networks with a preference for
correlated input spike trains 𝑁3 should be highest.

7.3 Results

In the following, we present results gathered with two structural plasticity implementations on
HICANN-DLS.We start with results obtained with a weight-based pruning condition and thenmove
on to a STDP-based pruning. Both presented strategies enable the efficient utilization of the available
synaptic resources by the self-organized formation of receptive fields. While our algorithms are
not explicitly tailored to the BrainScaleS-2 architecture, their implementation on HICANN-DLS is
characterized by low computational overhead.

7.3.1 Weight-driven structural plasticity

To benchmark our weight-driven structural plasticity framework, we consider three label neurons
emulated on HICANN-DLS which received input by a receptor layer implemented in software.
Specifically, we trained the network to classify the Iris dataset under various sparsity constraints. To
that end, we applied synaptic plasticity as well as structural reconfigurations (Section 7.2.1). These
mechanisms allowed the emulated SNN to make efficient use of its limited synaptic resources while
maintaining high performance on the task at hand.

7.3.1.1 Self-organized formation of receptive fields

In the following, we show that our implementation of structural plasticity promotes the efficient
utilization of synaptic resources by the self-organized formation of receptive fields. In general, the
distribution of the input data in the feature space renders each receptor informative about different
features (Figure 7.2b). Our weight-driven structural reconfiguration in combination with the weight
evolution as given by Equation (7.2) leads to a preference of each label neuron for the most informa-
tive receptors of its class which in turn promotes the emergence of receptive fields for every label
neuron. Thereby, our reconfiguration strategy allows us to dramatically compress network graphs
and facilitates learning in sparse networks.
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Figure 7.5: Informative synapses emerge during training. (a) Exemplary evolution of realized afferent
weights of the setosa label neuron during the course of a single experiment. The line color is determined
by the average feature-space distance between the respective receptor and all setosa data points. Synapses
that receive inputs from relevant receptors (i. e. those lying close to the features that are relevant for their
postsynaptic label neuron) are strengthened towards values that lie above the pruning threshold 𝜃w. All
other, less informative synapses remain below 𝜃w and are pruned at regular intervals of five epochs. For each
pruned synapse, a new one is initialized at 𝑤init, between the same label neuron and a previously unconnected
receptor. (b) Distribution of synaptic weights during the last 50 epochs over 20 randomly initialized runs.
Note that the histogram only takes into account realized synapses, which at all times are only 18 out of
144 potential ones. (c) Exemplary evolution of all synaptic weights between the receptor population and the
setosa label neuron. At all times, only 𝑛/𝑘 = 6 synapses are realized. The transition from blue to red marks the
pruning threshold 𝜃w. Note how gray/blue (subthreshold) and white (non-existent) states alternate, marking
the pruning of weak synapses and re-initialization of new ones. One of these reassignments is highlighted and
referenced to the corresponding threshold crossing in pane (a). (d) Evolution of the turnover rate (fraction of
all pruned synapses per epoch) for 20 runs. The solid line marks the mean and the gray area represents the
20 and 80 percentiles. As time progresses, the turnover rate converges to approximately 20 %, indicating that
all relevant receptors (on average five) have been found. The remaining free synapses (on average one) keep
switching between all other receptors, but are pruned regularly as they are not informative for the respective
class. Figure and caption adapted from Billaudelle et al. (2021).

Informative synapses are potentiated by STDP-based synaptic plasticity. To understand the un-
derlying dynamics, we start by considering the evolution of the connectome over the course of an
experiment (Figure 7.5). Starting from their initial values, synapses that contribute causally to the
firing of their postsynaptic neurons are potentiated by the STDP-term in Equation (7.2). In more
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Figure 7.6: Self-organized formation of receptive fields. The probability of synapse expression depends
on the location of receptors in the feature space and the class of label neurons. Each square is shaded according
to the probability for a label neuron to have formed a synapse with a receptor lying within that area (lighter
for higher probability); estimated from the state at the end of training in 100 experiments with random initial
conditions. The size of the three emerging clusters is determined by the receptor radius 𝜆. Figure and caption
taken from Billaudelle et al. (2021).

detail, the receptors being informative about a given class are more likely to be activated during
the presentation of samples belonging to their respective class which is ensured by the additional
teacher spike train (cf. Figure 7.2b). The STDP term in Equation (7.2) promotes the facilitation
of the corresponding synaptic weights until an equilibrium with the homeostatic force is reached
(Figure 7.5a). In contrast, non-active synapses are not strengthened by STDP and hence are not
potentiated.

Informative synapses are consolidated by reaching high synaptic weights, thereby persistently
exceeding the pruning threshold. At the start of an experiment, the connectome did not reflect the
distribution of the dataset, since the synaptic connections between the receptor and label layer were
randomly initialized. Consequently, a period of increased pruning and reassignment of synaptic
connections sets in. Hence, the turnover rate, given by the fraction of pruned synapses, is high at the
start of an experiment (Figure 7.5c). By change, uninformative synapses are replaced by informative
ones. In turn, the aforementioned weight dynamics cause the potentiation of the respective synaptic
weights which in turn leads to the consolidation of these synapses in case their weights stably exceed
the pruning threshold. At the end of an experiment, the pruning and reassignment of a relatively
small number of synapses is still visible in the weight distribution by a pronounced peak at the re-
initialization value 𝑤init (Figure 7.5b). Nevertheless, the turnover rate significantly decreases over
time and the connectome converges to a stable solution.

The preference of our label neurons to form informative synapses under the action of our struc-
tural configuration strategy suggests the formation of receptive fields. This can be investigated by
reconstructing the topology of the emerged connectome after learning from the address labels. To
this end, we calculated the probability density for a synapse to be expressed at a given point in the
2D feature plane by repeating the experiments multiple times with different seeds and hence initial
conditions. The resulting map approximates the distribution of the input data (Figure 7.6). In more
detail, label neurons preferentially cluster their synapses around the location of input samples of
their respective class in the feature plane. It is noteworthy that the radius of these receptive fields
is in general not only determined by the distribution of the stimuli in the feature plane, but also by
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Figure 7.7: Structural plasticity improves classification performance in sparse networks. (a) Struc-
tural plasticity promotes the formation of synapses to informative receptors. For a constant indegree 𝑚 of
the label neurons (equivalent with the number of synapse rows on the hardware), classification accuracy im-
proves with larger 𝑘, as the neurons gain access to an increasing number of receptors 𝑛 = 𝑘𝑚. (b) Structural
reconfigurations allow to utilize the available synaptic resources more efficiently. For a constant number
of receptors 𝑛, structural plasticity can compensate for increased sparsity (reduced indegree 𝑚 induced by
a larger bundle size 𝑘) up to a certain degree. The chance level is indicated by the gray dashed horizontal
line. (c) The results shown in the panels a and b can be embedded into a more extensive sweep over the
number of the indegree 𝑚 and bundle size 𝑘. The white lines highlight the sweeps shown in panel (a) and (b),
respectively. Figure and caption adapted from Billaudelle et al. (2021).

the support and shape of the applied receptor kernel (Figure 7.2a). If this preference for informa-
tive synapses in sparse networks can, however, be exploited within classification tasks requires the
evaluation of performance.

7.3.1.2 Coping with limited synaptic resources

Structural plasticity can be applied to maintain high performance on a given task even for increas-
ingly sparse network topologies. In the following, we show results obtained by imposing different
limitations on the connectome. Subsequently, we evaluate the performance of our SNNs by pre-
senting the test data to the receptor layer while keeping the connectome as well as the synaptic
weights fixed. In total, we trained and evaluated the networks for each limitation starting from 20
initial configurations to test the ability to generalize and furthermore reduce the impact of specific
receptor positionings and initial conditions.

Structural plasticity can be used to expand the virtual fan-in of each neuron to eventually improve
performance. This was shown by sweeping the bundle size 𝑘, i. e. the number of spike trains injected
into a single row of synapses, while keeping the number of utilized synaptic rows on HICANN-DLS
fixed at 𝑚 = 6. By this, we increased the number of receptors 𝑛 = 𝑘 ⋅ 𝑚 in the receptor layer when
increasing 𝑘. In other words, each label neuron has access to an increased amount of receptors with
rising 𝑘, but is only allowed to express a fixed amount of synapses 𝑚. Hence, structural plasticity
is required to detect the most informative receptors. The accuracy of our networks over the course
of training is shown in Figure 7.7a. For all values of 𝑘, structural reconfigurations and ongoing
plasticity allow to rapidly improve classification performance. With increasing 𝑘, the classification
accuracy increases with a peak performance of 92.3 % for a bundle size of 𝑘 = 8 showcasing the
ability of structural plasticity to express informative synapses. For comparison, we likewise present
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results for a network with 𝑘 = 1 corresponding to a setup without structural reconfiguration and
only limited access to details in the feature plane. Maybe not surprisingly, all networks subject to
structural configurations outperform this network with 𝑘 = 1.

Furthermore, structural reconfigurations can be applied to maintain function in increasingly
sparse networks. This was assessed by keeping the number of receptors 𝑛 constant and sweep-
ing the bundle size 𝑘 leading to variable numbers of utilized hardware synapses 𝑚 and in turn to
increasingly sparse networks. Here, our networks are able to maintain a performance of about 92 %
for 𝑘 ∈ {2, 4, 8} (Figure 7.7b). Hence our results demonstrate that structural plasticity can be used to
reduce the number of required hardware resources while maintaining high performance. By reduc-
ing the overall amount of utilized resources, larger and potentially deeper network architectures can
be implemented on the neuromorphic substrate (cf. Chapter 5). It is noteworthy that for decreasing
numbers of synaptic rows 𝑚 the connectome converges more slowly since the bundles increased in
size and hence more updates are required to explore all potential presynaptic partners by sampling
(Figure 7.7b). Here, the accelerated nature of HICANN-DLS facilitates the emulation of these exper-
iments in short periods of time while simultaneously promoting learning with structural plasticity
in increasingly sparse networks.

The aforementioned scenarios are a subset of a large sweep over the number of utilized synaptic
rows 𝑚 and the bundle size 𝑘 (Figure 7.7c). Both, the expansion of the virtual fan-in as well as
the increasing sparsity experiments are highlighted in Figure 7.7c by white lines. The final peak
performance mainly depends on the number of receptors 𝑛 and only minor on the count of utilized
hardware synapses. In particular, only six hardware synapses are sufficient to reach a comparable
performance otherwise only attainable with more than 32 synapses. As a result, our structural
plasticity implementation can be utilized to dramatically compress the connectome.

The performance results reported so far can be put in relation by establishing a baseline perfor-
mance for the very same task, but with an artificially set up network topology. This not only allows
us to quantify the impact of structural reconfigurations on performance, but moreover enables the
effect of Hebbian weight dynamics on accuracy. To that end, we applied the same bundling of re-
ceptors into 𝑚 = 8 bundles of size 𝑘 = 8, but artificially selected a synapse within each bundle.
For each label neuron, the latter was obtained by choosing the receptor with the highest mean fir-
ing rate, estimated over all samples of the respective class. By evaluating the resulting receptive
fields for multiple seeds, i. e. different initial conditions, we are able to compare this artificial con-
nectome with a network topology generated by our structural plasticity implementation. Here, the
expression probabilities obtained by both approaches are strongly correlated (Figure 7.8a). Hence,
our implementation indeed generates connectomes relying on informative synapses. Figure 7.8a
shows a slight underrepresentation of receptors exhibiting the highest expression probabilities in
the learned connectome. This is likely to be a consequence of the threshold-based pruning strategy:
In case a synapse gets potentiated due to the Hebbian contribution, its synaptic weight may exceed
the pruning threshold and hence becomes consolidated even though a receptor carrying higher in-
formation about the class membership may be present within the corresponding bundle. As a result,
further exploration of potential presynaptic partners is prevented.

For our implementation, weight dynamics were mainly governed by Hebbian potentiation as
well as unspecific regularization. In contrast, the synaptic weights within the previously described
artificial connectome remain as free parameters. To finally establish a baseline performance and to
dissect the effect of Hebbian weight dynamics, we visited two different methods to assign weights
to each synapse. First, we configured all weights to the same fixed value 𝑤𝑖𝑗 = 𝑠 for all synapses.
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Figure 7.8: Comparison of structural plasticity to a baseline estimate. Structural plasticity yields an
accuracy comparable to the one of a network obtained by artificially choosing the most active receptors for
each class. (a)A clear correlation between the synapse expression probabilities of the trained and the artificial
networks can be observed. (b) A proportional weight selection mimicking Hebbian potentiation outperforms
connectomes with homogeneous synapses. For the proportional weight selection, the weights of the artificial
connectome were scaled with the receptors’ mean activations. In contrast, the weights were configured
homogeneously to a constant value for the constant weight selection. Each approach was evaluated for
different weight scaling factors. (c) Classification performance for structural plasticity is on par with the
respective maxima from (b), where the proportional scaling outperforms the constant one. Figure and caption
adapted from Billaudelle et al. (2021).

This scenario essentially captures the ability of a network with ongoing structural reconfigurations,
but without weight dynamics. Second, we set the weights to 𝑤𝑖𝑗 = 𝑠 ⋅ 𝜈𝑗/max𝑗(𝜈𝑗), with the average
receptor firing rate 𝜈𝑗, thereby mimicking the combined effects of structural reconfiguration and
Hebbian plasticity. Both methods were evaluated for various scaling factors 𝑠 (Figure 7.8b). As a
result, we considered the respective maxima as a suitable measure for a performance comparison
which is shown in Figure 7.8c. Most notably, admitting synapse-specific weight values mimicking
Hebbian plasticity improves upon our baseline performance with constant weights. It should be
noted that aside from the favorable role of Hebbian weight selection, the corresponding STDP term
within our weight dynamics constitutes the driving force for the formation of receptive fields within
our structural plasticity algorithm. Likewise, our implementation also improves upon the baseline
with constant weights, but falls slightly behind the performance achieved with distinct weights. It
is noteworthy that both of the presented baseline measures rely on global information of the Iris
dataset and the respective receptor activities. In contrast, the connectome that emerged through
structural plasticity was generated with local information only and nevertheless yielded comparable
performance.

The performance of a given network depends on the hyperparameters used within the weight
update rule. For our algorithm, the steady-state weight distribution is determined by the relative
parametrization of the individual contributions in Equation (7.2) (Figure 7.5). Since our pruning
condition is centered around the strength of synaptic weights, the selection of a suitable pruning
threshold has to take into account the final weight distribution and in turn the utilized hyperpa-
rameters. In general, the pruning threshold 𝜃w needs to be high enough to enable the pruning of
uninformative synapses, thereby facilitating the sampling of the potential feature space. Apart from
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Figure 7.9: Networks promote stable performance over a wide range of hyperparameters. We var-
ied the pruning threshold 𝜃w and the regularization strength 𝜆reg, which both shape the steady-state weight
distribution. For different aspects of learning performance, broad plateaus with respect to variations of these
hyperparameter can be observed. Solid lines and shaded areas respectively denotemean and 20-80 percentiles,
measured over 20 randomly initialized experiments. The plateaus mostly coincide for (a) classification ac-
curacy after learning (average over the last 20 epochs), (b) variability of accuracy after learning (standard
deviation over the last 20 epochs), and (c) number of epochs until an accuracy of 70 % was reached, 𝑛0.70.
Figure and caption taken from Billaudelle et al. (2021).

that, 𝜃w has to be low enough to guarantee the consolidation of informative synapses. Because of
its crucial role, we evaluated the performance of our SNNs by different metrics for various prun-
ing thresholds (Figure 7.9). In addition to 𝜃w, we swept the regularization strength 𝜆reg, since the
weight distribution after learning mainly depends on the balance of the Hebbian potentiation and
the depressing effect of the regularization which in turn also impacts the choice of a suitable 𝜃w.
For a broad range of pruning thresholds and regularization strengths not only the accuracy shows
a broad plateau of high performance, but also the resulting connectomes show the least amount of
variability during inference and moreover converge with the least amount of epochs. Hence our
learning rule seems to be broadly applicable without precise parameter fine-tuning.

7.3.1.3 Self-organized adaptation to switching tasks

So far, we have demonstrated learning in sparse networks through structural plasticity. This was
achieved by sampling the input space to eventually form informative receptive fields. All our ex-
periments were based on uniformly drawn initial address labels and hence randomly initialized
connectomes. Moreover, all synaptic weights were initially configured to the same value. In the
following, we quantify the ability of our plasticity implementation to learn from different initial
configurations, particularly from a previously learned state with structured connectome and non-
uniform weight distribution. In more detail, we changed the task during training by rearranging the
receptors in the feature plane after 200 epochs. This resulted in a misalignment of the stimuli and
the receptive fields. During this task switch, the PPU continuously updated both the address labels
as well as the synaptic weights.

Immediately after the rearrangement, the accuracy drops to approximately chance level (Fig-
ure 7.10). The associated disappearance of spike-time correlation leads to a take-over of the de-
pression through unspecific regularization (cf. Equation (7.2)). As a result, the synaptic weights
decrease and potentially fall below the pruning threshold 𝜃w. Hence, a period of increasing pruning
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Figure 7.10: Restoration of network performance after task switch. After training for 200 epochs,
the receptor layer is randomly rearranged, leading to a mismatch in receptive fields. Ongoing structural
plasticity unlearns the previously established connectome and quickly starts to again explore the input space.
This process can be observed in an elevated turnover rate after the task switch, similar to the initial phase of
the experiment. Figure and caption taken from Billaudelle et al. (2021).

sets in, visible in a rapid increase of the turnover rate. By this mechanism, our SNNs unlearn the
previous connections and newly explore the feature space to again form informative receptive fields.
After about 100 additional epochs, our networks again show high performance. This behavior not
only suggests that our algorithm promotes learning with different initial conditions, but highlights
the ability of structural plasticity to constantly adapt SNNs to changing environments.

7.3.1.4 Efficient implementation on BrainScaleS-2

Our presented structural plasticity algorithm comes with low computational overhead, especially
when implemented on HICANN-DLS. Here, the efficiency of pruning and reassignment of synapses
was promoted by the filtering of events in each synapse according to their source address. Since
the connectome is partially defined by the address labels stored in the local SRAM of each synapse,
local operations are sufficient to effectively change the network topology.

Aside from the partial definition of the connectome within each synapse, efficiency is further pro-
moted by the implementation of the plasticity algorithm on the SIMD vector unit of PPU. Its tight
coupling to the analog neuromorphic core of HICANN-DLS is key for the combination of analog em-
ulation and the digital implementation of weight updates as well as structural changes (Section 3.1).
Essentially, our strategy of structural reconfiguration encompasses the read and write of the synap-
tic SRAM as well as a couple of arithmetic operations (Listing 6). All of these operations can be
carried out in parallel by the SIMD vector unit of the PPU. Here, 110 clock cycles were required to
apply a structural plasticity update on a single slice of 16 synapses (Figure 7.11). This corresponds
to only 1.1 µs at a PPU clock frequency of 100MHz. Calculated back to the update duration of a
single synapse, this amounts to only 69 ns. For comparison, we also assessed the execution time
of the individual contributions to the weight dynamics: The completion of the STDP kernel took
approximately 3.8 µs for a slice of 16 synapses and hence 240 ns per synapse. The remaining regular-
izer and random walk contributed 69 ns and 97 ns, respectively. All three terms were implemented
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Figure 7.11: Efficient mixed-signal implementation of structural plasticity. (a) Duration of a synapse
update broken down into its four individual contributions, including structural reconfiguration. The hatched
areas indicate the time spent on pseudo-random number generation. (b) Contributions of the individual
terms to the overall update duration, taking into consideration that pruning and reassignment are executed
five times less often than synaptic weight updates. Figure and caption taken from Billaudelle et al. (2021).

separately and were hence not optimized for execution speed (cf. Section 7.2.1). Reducing common
accesses to the synaptic SRAM or sharing intermediate calculation results between the individual
contributions would further improve upon the presented results. It is noteworthy that the weight
dynamics are updated five times more often compared to the pruning and reassignment of synapses
and hence dominate the overall execution time. As a result, our implementation of structural plas-
ticity is characterized by low computational overhead.

An implementation of our structural plasticity algorithm on the full-size High Input Count Analog
Neural Network X (HICANN-X) chip promises to even further reduce the computational overhead.
When breaking down each kernel, memory accesses as well as the generation of pseudo-random
numbers contributedmost to the total runtime. Access times primarily depend on the design choices
of the system, but can be optimized. Likewise, the generation of random numbers can be sped up
by incorporating hardware accelerators. Within our algorithm, both the random walk as well as
the pruning and reassignment of synapses required the drawing of pseudo-random numbers. The
portion of time spend on their generation constituted a significant amount of the overall execution
time (Figure 7.11). With the inclusion of hardware accelerators into the BrainScaleS-2 architecture
for the HICANN-X chip, this contribution could be reduced to negligible 0.08 clock cycles for the
drawing a single 8 bit random number per synapse (Section 3.2). Hence our approach is not only
able to efficiently use synaptic resources, but furthermore facilitates an implementation with low
computational overhead by exploiting key features of the BrainScaleS-2 architecture.

The sampling of the potential input space associated with structural reconfigurations profits from
the accelerated nature of BrainScaleS-2. Usually, the extensive time scales governed by structural
plasticity are prohibitively expensive for many implementations. In this regard, we were able to
benefit from the accelerated nature of the BrainScaleS-2 architecture. Here, a single epoch of 24 s in
the biological time domain was performed in only 137ms as measured from the host system. When
only considering the execution time on HICANN-DLS, i. e. disregarding the on-the-fly generation
of input spike trains, this number boils down to less than 50ms and hence a measured speedup of a
factor of 500. While, we only implemented theweight updates and structural reconfigurations on the
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embedded PPUwithin this work, Wunderlich et al. (2019) demonstrated that porting the experiment
control from the host and field-programmable gate array (FPGA) to the PPU further reduces the
overhead by minimizing I/O. By this, the system’s power consumption could be lowered to less than
60mW with a minor dependence on network activity and plasticity evaluation (Wunderlich et al.,
2019).

The speedup of BrainScaleS-2 is achieved by emulating neuro-synaptic dynamics with above-
threshold analog transistor circuits (Chapter 3). Although these transistors deviate induced by vari-
ations in the fabrication process, the individual parametrization of each circuit allowed us to reduce
this fixed-pattern noise (Aamir et al., 2018). More specifically, we employed calibration routines to
equilibrate not only the neuron circuits, but also the synaptic correlation sensors used to imple-
ment the STDP-like term in Equation (7.2). The impact of the remaining variability on network
performance was assessed by transferring a learned connectome and the associated weights to dif-
ferent circuits. In more detail, we trained a population of three label neurons and then replicated the
learned connectome to four disjunct groups of neurons and their associated synapses on the same
chip. By relying on distinct subsets of neuron and synapse circuits – each of which with their own
variations – we were able to establish a measure of transferability of training results across different
systems by comparing the performance achieved by each set of label neurons with the original pop-
ulation of neurons. Most notably, the inferred performances across all groups of neurons deviated
by only 1.2 % from the originally trained population. While this result showcases the ability of a cal-
ibrated system to perform inference without device-specific training, on-chip learning furthermore
enables the compensation for non-ideal calibration data underpinning its necessity in the context
of analog and mixed-signal neuromorphic systems (Wunderlich et al., 2019).

7.3.2 STDP-driven structural plasticity

The results obtained so far were acquired in combination with structural reconfigurations centered
around a weight-based pruning condition. Here, we adopt a STDP-driven approach to ultimately
select auditory features based on spatio-temporal correlation. In the auditory system, theHCs – con-
verting the basilar membrane (BM) decompositions to spikes by mechanotransduction – phase-lock
to different frequencies depending on their position along the BM (Appendix A.1). These HCs emit
uncorrelated spike trains in the absence of stimulation due to thermal fluctuations (Appendix A.1.2).
In case of an incidental sound wave, the BM causes spatial frequency dispersion which in turn leads
to stimulation of a set of HCs that depends on the spectrum of the impinging stimulus. Conse-
quently, this set of HCs emits spike trains exhibiting spatio-temporal correlations. As a result, only
the spike trains of these HCs provide high information about the stimulus (cf. Figure 7.3). Our STDP-
based pruning condition is designed to promote the formation of synapses from these HCs to the
downstream SNN by favoring presynaptic partners emitting correlated spike trains. This structural
plasticity mechanism is meant to augment the critical computing framework presented in Chapter 6,
since the classification of spoken words constitutes a prominent application of reservoir computing
(Maass et al., 2003; Skowronski & Harris, 2007; Verstraeten et al., 2006).

To this end, we utilized artificial as well as real-world auditory stimuli which constitute the in-
put spike trains for SNNs emulated on HICANN-DLS. In more detail, we generated a total of 128
input spike trains, but imposed a sparsity constraint on our recurrent SNNs in such a way that each
neuron was only allowed to connect to 𝐾ext ≤ 32 of them at each point in time. Structural recon-
figurations were restricted to synapses transmitting the external stimulus to not disturb the degree
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of the input 𝐾ext and occurred on a five-times slower time scale than the actual weight dynamics.
The results shown in this section are meant as a demonstrator of the various opportunities pro-
vided by our structural plasticity implementation on HICANN-DLS, particularly they highlight the
combinability of different weight dynamics and various pruning conditions. The investigation of
collective dynamics of our networks when being exposed to correlated inputs in favor of Chapter 6
is the subject of future research.

To dissect the complex correlation patterns present in real-world auditory stimuli, we first inves-
tigate artificial stimuli, designed to exhibit either spatial or temporal correlation before considering
real-world stimuli (Figure 7.4). In order to inject all 128 input spike trains into the neuromorphic
substrate, they were grouped into 𝑚 = 32 bundles with size 𝑘 = 4 (Figure 7.1). We assigned a unique
event address to each spike train in these bundles and in turn, injected them into the synaptic rows
of HICANN-DLS. The PPU was programmed to update not only synaptic weights, but furthermore
reassign the synapse-local address labels, thereby exploring the feature space by sampling all presy-
naptic partners residing within the corresponding bundle of the associated synapse. The preference
of a network for a stimulus was quantified by 𝑃𝑖 = 𝑁𝑖/𝑁ext with the number of synapses transmitting
spikes with the 𝑖-th highest correlation within their bundle, 𝑁𝑖 and the total amount of stimulating
synapses 𝑁ext = 𝐾ext ⋅ 𝑁. While this ranking of input spike trains according to their correlation
is directly available for artificial stimuli, the spike trains of the real-world auditory stimuli were
arranged according to their auto- and crosscorrelation, respectively.

7.3.2.1 Preference for correlated input spike trains

Our correlation-driven structural reconfiguration preferentially selects inputs exhibiting high cor-
relation for a broad range of degrees of the input 𝐾ext (Figure 7.12). Since the structural reconfig-
uration was embedded into the reservoir computing setup presented in Chapter 6, the preference
has to persists for various 𝐾ext (cf. Section 6.3.1). This holds true for both artificial stimuli as well
as for the real-world auditory stimulus which all show a preference for the highly correlated inputs
– i. e. 𝑁3 is the highest component – for a range of 𝐾ext values (Figure 7.12). Especially for inter-
mediate values of 𝐾ext, a clear preference can be observed. Only for highly recurrent and almost
completely input-driven networks, this preference degrades. In these regimes, the network is either
input-driven or almost decoupled from the input and hence at its extreme values (cf. Section 6.2.1.1).
Furthermore, the correlated inputs put stability at risk and most likely decrease the available range
of 𝐾ext. Because of this, the shown 𝐾ext ranges within this chapter are slightly reduced compared
to the results shown in Chapter 6.

7.3.2.2 Adjusting the pruning condition to stimulus characteristics

The time scale and sensitivity of the correlation measurements used for pruning have to match the
characteristics of the stimulus. After about 50 epochs of structural reconfiguration, all networks con-
verged to a state characterized by an excess of synaptic connections to correlated inputs irrespective
of the stimulus. However, the speed of convergence was highest for the temporally correlated stim-
ulus (Figure 7.12). For the real-world stimulus, however, the preference for the inputs revealing the
highest correlation was reduced (Figure 7.12 bottom). This is likely to be a consequence of different
time scales or an overall lower correlation strength within the real-world stimulus (Figure 7.4). Fur-
thermore, the assignment of input channels to bundles plays a major role since multiple spike trains
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Figure 7.12: STDP-based pruning promotes a preference for correlated stimuli. The probability of
synapse expression depends on the correlation present in the input spike trains. For artificial stimuli, our
SNNs preferentially express synapses to stimuli exhibiting highest spatial 𝜌spat and temporal 𝜌temp correlation.
Similarly, the input channels of the auditory stimulus with highest auto- and cross-correlation are preferen-
tially chosen as presynaptic partners. The probability of expression is quantified by the number of synapses
in the respective correlation group 𝑁𝑖 normalized to the total amount of external synapses 𝑁ext. Here, results
for three distinct stimuli are shown a spatially correlated (top), a temporally correlated (middle), and a real-
world auditory (bottom) stimulus. For each of them the networks are evaluated for variable degrees of the
input 𝐾ext/𝑁. Panels adapted from Kreft (2019).

residing within the same bundle may by chance feature similar degrees of correlation. This again
stresses the impact of suitable assignment strategies, since the amount of correlation present within
auditory stimuli varies dramatically over inputs with channels exhibiting almost no correlation to
very high levels of correlation. Like for the weight-driven approach, the pruning threshold has to be
selected carefully to cope with this situation, i. e. to ensure that the connectome is not prematurely
consolidated with inadequate synapses or dissolved by removing informative synapses.

The pruning threshold can be used to adjust the sensitivity to correlated stimuli. In contrast to the
previously visited weight-based pruning condition, we here consider a stochastic pruning threshold
to cope with the diverse correlation levels of auditory stimuli as well as the fixed-pattern noise of
the correlation sensors on HICANN-DLS (cf. Figure 3.4). To investigate its impact, we only con-
sider artificial stimuli and investigate the number of synapses that established a connection with

173



7 Feature Selection

0.2

0.3

0.4

0.5

0.6

0.7
Pr

ef
er
en

ce
𝑁
3/
𝑁
ex
t

𝐴 = 10 𝜃 𝐴 = 30 𝜃 𝐴 = 46 𝜃

𝑐thres = 16
𝑐thres = 32
𝑐thres = 64
𝑐thres = 128

0 20 40 60 80 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ef
er
en

ce
𝑁
3/
𝑁
ex
t

𝜈 = 10.0 kHz

0 20 40 60 80 100

Epochs

𝜈 = 29.0 kHz

0 20 40 60 80 100

Epochs

𝜈 = 48.0 kHz

Figure 7.13: Correlation sensitivity can be adjusted by tuning the pruning threshold. The range of
the stochastic pruning threshold 𝑐thres impacts the sensitivity to correlation and hence the final connectome.
Thus, each stimulus requires an appropriately chosen upper limit for the drawn threshold values. Receptive
fields emerge for specific combinations of 𝑐thres and correlation levels. Here, the temporal evolution of the
number of synapses connecting to the inputs exhibiting the highest available correlation 𝑁3 is shown for the
temporally (top) and the spatially (bottom) correlated stimuli. For both types of stimuli, we controlled the
exhibited correlation by the scaling parameter 𝐴 and the stimulus frequency 𝜈, respectively. Panels adapted
from Kreft (2019).

the presynaptic partner exhibiting the highest correlation within each bundle. In addition to the
range of the stochastic pruning threshold 𝑐thres, we swept the parameters 𝜈 and 𝐴, effectively con-
trolling the correlation magnitude of the spatially and temporally correlated stimuli, respectively.
For the spatially correlated stimulus, the frequency 𝜈 for which the largest split happens gets shifted
under adjustments of the pruning threshold (Figure 7.13). While for high spike frequencies around
𝜈 = 30 kHz, the highest split is achieved with 𝑐thres = 64 it is shifted to 𝑐thres = 32 for lower frequen-
cies. Below 𝑐thres = 16 no stable convergence can be observed and address labels were randomly
reassigned. This behavior is also observable for the temporally correlated stimulus when adjusting
𝐴. Therefore, a reduction of the pruning threshold can be used to counteract the effect of changing
correlation strengths present within the stimulus. It is noteworthy that the choice of a stochas-
tic pruning threshold is particularly beneficial when considering non-overlapping bundles of input
spike trains. As discussed earlier for the weight-based pruning, multiple informative inputs residing
within the same bundle may cause the formation of a non-ideal connectome by the consolidation
of unfavorable synapses. Here, the stochastic pruning threshold may by chance facilitates to again
prune and reassign these synapses to further explore the feature space. This, however, comes at the
cost of ongoing pruning activity over the course of an experiment.

The stimuli have to emit a certain level of correlation for a fixed range of the pruning threshold
𝑐thres to cause the formation of receptive fields. To systematically analyze the behavior in response to
different stimuli, we in the following summarize the preference of our networks for each of the four
distinct correlation levels by averaging the preference over the last 10 structural plasticity updates
(Figure 7.14). We again control the observable correlation by setting the frequency 𝜈 and the ampli-
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Figure 7.14: Receptive fields emerge for different degrees of the input and a magnitude of stimulus
parameters. The networks show a clear preference 𝑁𝑖/𝑁ext for highly correlated input spike trains (high
values of 𝜌temp and 𝜌spat) for a broad range of degrees of the input 𝐾ext/𝑁 and stimulus hyperparameters
𝐴 and 𝜈. Synapse expression probabilities for every input group are shown for the temporally (top) and
the spatially (bottom) correlated artificial stimulus. The preference is averaged over the last 10 structural
plasticity updates. The white crosses highlight the configurations shown in Figure 7.12. Figure adapted from
Kreft (2019).

tude scaling 𝐴, but for a fixed value of 𝑐thres to further investigate the need for precise adjustments
in 𝑐thres under changing external stimulation. Despite slightly displaced regions of high correlation
sensitivity, the preference for correlated input is maintained for a broad range of different correla-
tion strengths. These regions mainly depend on the parametrization of the causal STDP-kernel used
within the pruning condition (Equation (7.5)). The time constant of the kernel has to be adjusted
to cover the stimulus relevant frequencies: When keeping the threshold fixed, more synapses are
pruned when decreasing the frequency since less correlation per measurement interval can be de-
tected. Hence, the time scale of the STDP kernel has to mimic the stimulus characteristics, although
no fine-tuning is required.

7.3.2.3 Self-organized formation of receptive fields

The STDP-based pruning strategy causes the self-organized formation of receptive fields for real-
world auditory stimuli. In the following, we consider the expression probability of a synapse as a
function of the position, i. e. the frequency, of the HC on the BM. The resulting distribution resem-
bles the correlation present within the emitted spikes of each HC and hence the information content
about the identity of the stimulus (Figure 7.3a). For the tested degrees of the input, this informa-
tion is indeed correlated with the synapse expression probability which confirms the ability of our
STDP-driven structural plasticity to select informative auditory features (Figure 7.3b). The reduced
correlation between the expression probability and the information carried by the respective input
for very low and high 𝐾ext is likely to be a consequence of unstable network dynamics.
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Figure 7.15: Self-organized formation of auditory receptive fields. Synapses preferentially cluster to
HCswith specific frequencies covering the human voice. (a)The synaptic expression probability changeswith
the position of the HC on the BM, i. e. with the stimulus frequency. The preference 𝑁syn/𝑁ext corresponds
to the fraction of synapses expressed at the respective position 𝑥 and the total number of available synapses
𝑁ext. For each experiment, 𝑁syn is averaged over the final 50 structural plasticity updates. (b) The STDP-based
pruning strategy selects informative auditory features. Specifically, the expression probability of each input
shown in (a) correlates with the information conveyed by the corresponding HC about the stimulus identity
highlighted in Figure 7.3. Most notably the Pearson correlation coefficient 𝜌 was highest for intermediate
degrees of the input 𝐾ext. Panel (a) adapted from Kreft (2019).

7.3.2.4 Efficient implementation on BrainScaleS-2

Like the weight-based structural plasticity, the STDP-based reconfiguration is based on synapse-
local information only and hence promotes an efficient on-chip implementation on HICANN-DLS
with low computational overhead. In comparison to the weight-based pruning algorithm, additional
pseudo-random numbers are required for the implementation of the stochastic pruning threshold.
While the associated overhead for the drawing of pseudo-random numbers has to be accepted on the
prototype chip, the time spent on their generation could be reduced on HICANN-X by drawing on
the specialized hardware accelerators (cf. Section 3.2). With this and the fact that structural updates
occur on a way larger time scales, the time spend on the evaluation of the pruning condition on
the SIMD vector unit of the PPU becomes negligible when compared to the actual weight update
calculations.

The presented STDP-framework profits from the accelerated nature of the BrainScaleS-2 archi-
tecture. Particularly, the high update period for structural reconfigurations required for the long-
lasting relaxation phases of the weight and network dynamics would render an implementation on
many contemporary platforms prohibitively expensive (Figure 6.17). Again, the accelerated emula-
tion comes to rescue by facilitating these long-lasting experiments thereby allowing to bridge the
gap between time scales of neuro-synaptic dynamics and update intervals of structural reconfig-
urations. With this, the increased emulation times required to fully sample the feature space to
eventually establish a suitable connectome through structural reconfigurations become feasible.
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7.4 Discussion

Within this chapter, we presented an efficient on-chip implementation of structural plasticity on
HICANN-DLS relying on two distinct pruning conditions. Both strategies allowed us to train sparse
networks of spiking neurons by utilizing the synaptic resources more efficiently. This was especially
facilitated by the self-organized formation of receptive fields without prior knowledge of the distri-
bution of the input data. For a supervised learning task and a network with Hebbian weight updates,
this led to themaintenance of high performance for increasingly sparse network topologies. Further,
we augmented the critical computing framework presented in Chapter 6 with a correlation-based
pruning condition which enabled the detection of informative auditory features. By replacing the
pruning condition, we were not only able to give an insight into the broad applicability of structural
reconfigurations, but furthermore, demonstrate the efficiency of our implementation in combination
with HICANN-DLS.

The selection of informative features of the Iris dataset prior to stimulus injection into a neuro-
morphic hardware system has been visited in the past. Schmuker et al. (2014) proposed an off-chip
preprocessing based on a principal component analysis to determine informative receptor locations
and to finally satisfy the fan-in of a predecessor of HICANN-DLS. Based on the found receptor loca-
tions, they defined a static connectomewhichwas accordingly loaded to the neuromorphic substrate
for inference. In contrast to this feature selection strategy, we relied on the self-organized formation
of receptive fields by structural plasticity. Most notably, our algorithm only incorporates local in-
formation and does not require additional knowledge of the distribution of data in the feature space
which in turn facilitated our on-chip implementation.

The concept of structural plasticity has been applied to vastly different network topologies in
combination with different learning paradigms (Butz et al., 2009; George et al., 2017; Bogdan et al.,
2018; Kappel et al., 2015; Bellec et al., 2017). Aside from its role in coping with limited space and en-
ergy constraints, structural plasticity is thought to improve the overall network performance (Roy
et al., 2014b; Spiess et al., 2016) and memory capacity when evaluated in combination with non-
linear multi-compartment neuron models (Poirazi & Mel, 2001; Hussain & Basu, 2016). We already
gave a glimpse of the broad applicability and flexibility of our structural plasticity implementations
on HICANN-DLS and expect even more possibilities when considering different network topologies
and learning rules. Among others, the inclusion of modulatory reward signals into our weight-based
structural plasticity algorithm seems very promising. Reward modulated STDP has already been
demonstrated on HICANN-DLS and should be easily combinable with structural reconfigurations
(Wunderlich et al., 2019; Grübl et al., 2020). Moreover, the flexibility provided by the embedded PPU
allows to extend the structural plasticity itself by e. g. additional pruning criteria such as bookkeep-
ing (Spiess et al., 2016), spatial information (Bogdan et al., 2018), or silent synapses (Roy & Basu,
2016). However, it should be noted that the algorithm’s locality is key for its efficiency.

The combinability of our weight-based structural plasticity algorithm allows us to alleviate the
ubiquitous issue of limited synaptic resources. Most notably, the latter puts constraints on the over-
all size of multi-layer as well as recurrent neural networks implemented on the neuromorphic device
at hand. Many of the networks and models implemented on the BrainScaleS platform in the past are
likely to profit from a similar weight-based pruning and reassignment strategy as the one presented
in the first part of this work (Schmitt et al., 2017; Kungl et al., 2018; Cramer et al., 2021; Göltz et al.,
2021). This also includes the supervised learning frameworks presented in Chapter 5, demonstrated

177



7 Feature Selection

on HICANN-X. Both of them required an off-chip downscaling of the MNIST images to accom-
modate the input data to a manageable neuronal fan-in on HICANN-X without constraining the
overall network size too much. Since both learning rules assign high synaptic weights to informa-
tive synapses, our structural reconfiguration should be directly applicable. Thereby, the limitations
on the network topology imposed by the neuromorphic device and the input dimensionality could
be relaxed.

Structural plasticity has been demonstrated on various neuromorphic platforms. On digital sys-
tems, the event handling is per se based on look-up tables. Hence, most digital implementations
centered around the on-the-fly adaptation of routing tables (Bogdan et al., 2018; Yan et al., 2019).
While this approach is very flexible in general, it involves the reordering of connectivity lists for
each removal and insertion of a synapse to keep look-up latencies at a minimum (Liu et al., 2018).
Similar approaches have also been visited in the context of analog neuromorphic systems by utiliz-
ing optimized look-up matrices (Spiess et al., 2016; George et al., 2017; Bhaduri et al., 2018). While
these representations are comparable to the on-chip synapse matrix of the BrainScaleS-2 architec-
ture, they were stored and evaluated off-chip by external FPGAs. Because of this, weight dynamics
as well as structural reconfigurations were carried out off-chip. It is noteworthy that the definition
of sparse connectomes requires additional memory besides the actual synaptic weight to annotate
all non-zero connections. Since the overall network graphs are reduced, this memory consumption
is outweighed by the overall gains. The spatial footprint can be reduced by relying on dynamic
random-access memory (DRAM) instead of SRAM to externally store the look-up tables. How-
ever, the associated access latencies can be detrimental for any system in general and accelerated
systems in particular. In contrast, the partial in-synapse definition of the connectome within the
BrainScaleS-2 architecture enabled our efficient on-chip implementation by only incorporating and
adopting synapse-local quantities.

The accelerated nature of the BrainScaleS-2 systems allows bridging the gap in time scales be-
tween neuro-synaptic dynamics and structural plasticity evolution. In biological systems, the pro-
cesses participating in synaptic rewiring evolve on time scales from hours to days and are hence
prohibitively expensive for simulations (Lamprecht & LeDoux, 2004). The relatively long time scale
of structural reconfigurations allows synapses to process sensory input and evolve accordingly to
accumulate evidence of the information content prior to pruning or consolidation. Like for synaptic
plasticity, the time scale of structural reconfigurations depends on the underlying time constants
of the neuro-synaptic dynamics. Hence, the acceleration of BrainScaleS-2 directly translates to the
implementation of structural reconfiguration and speeds up the emulation of bio-inspired plasticity
models. Notably, the accelerated nature allowed us to gather large amounts of data for statistical
processing.

Despite the limited system size of HICANN-DLS, our implementation is directly designed to scale
well with the system size. This is due to the incorporation of synapse-local quantities only and
further facilitated by the row-wise parallel update possibilities of the SIMD vector unit of the PPU
which is also scaled with the system size (cf. Section 3.2). Especially on large systems, these scaling
properties will become important when dealing with more complex network structures and synapse
arrays of increased size. The associated enlarged physical fan-in of each neuron – i. e. the number
of available synapses – results in an even larger virtual fan-in for the BrainScaleS-2 architecture and
hence allows considering complex high-dimensional tasks in future implementations.
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8 Conclusion

Within this thesis, we approached the optimization of spiking neural networks (SNNs) imple-
mented on neuromorphic hardware for information processing. In that process, we visited

the key steps necessary for the emulation of functional SNNs on analog devices. We started by
finding suitable real-world benchmark tasks for SNNs and then moved over to learning algorithms
– being supervised or unsupervised – and their implementation on two distinct mixed-signal neu-
romorphic chips of the BrainScaleS-2 family. While the aforementioned optimization schemes were
limited to synaptic weights only, we lastly gave a glimpse of the efficient usage of limited resources,
in particular a higher-level optimization of the fan-in of a neuromorphic system with local learning
capabilities.

We started by considering benchmark tasks for the quantification of an SNN’s ability to perform
complex information processing. In that process, we designed a dataset that exhibits a natural tem-
poral dimension, poses a minimum set of requirements on preprocessing, and most notably is freely
available to the public. We came up with a collection of spoken digits – the Spiking Heidelberg
Digits (SHD) – which we directly transformed to neuronal spike trains by a bio-inspired model of
the ascending auditory pathway. Most notably, our dataset is not tailored to a specific problem or
implementation and can be applied to SNNs irrespective of the substrate used for simulation or em-
ulation, respectively. Currently, the SHD started to become established within the field and have
already been visited in a broad range of applications: First, the performance of sparse (Perez-Nieves
& Goodman, 2021) as swell as heterogeneous (Perez-Nieves et al., 2021) networks has been evalu-
ated based on the SHD. Aside, also networks composed of novel neuron types have been visited (Yin
et al., 2020). Moreover, novel learning mechanisms (Zenke & Vogels, 2021; Zenke & Neftci, 2021;
Fang et al., 2021) and computing architectures (Fang et al., 2021; Eissa et al., 2021; Kan et al., 2021)
have been benchmarked with the samples of the SHDs. All of these studies build on our first set of
baseline performances obtained by optimizing a range of spiking as well as non-spiking classifiers
in supervised learning paradigms.

With a suitable benchmark task for the assessment of the performance of SNNs at hand, wemoved
on to the optimization of SNNs emulated on different chips of the BrainScaleS-2 family. In more de-
tail, we took two different approaches to the training of these networks which were developed in
parallel. While the first one draws on the success of gradient-based methods and the backprop-
agation through time (BPTT) algorithm, the second one aims to exploit collective phenomena in
SNNs. It is noteworthy that these approaches are not compellingly orthogonal to each other, but
were developed simultaneously.

The first approach was presented in Chapter 5 where we invented an in-the-loop (ITL) training
framework which aims to bring the success of supervised learning with gradient-based methods
to the realm of analog neuromorphic hardware. The notion of surrogate gradients allowed us to
overcome the binary nature of SNNs which precludes the application of vanilla gradient descent.
In combination with the massively parallel recording of membrane traces on BrainScaleS-2, this
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strategy facilitates the usage of gradient descent on a suitable loss function by performing BPTT.
With this framework, we were able to train analog neuromorphic SNNs on a set of challenging
benchmark tasks, including the newly established SHD dataset presented in Chapter 4. In particular,
we were able to showcase state-of-the-art performance as well as new benchmarks in terms of low-
latency classification and energy consumption for SNNs implemented on neuromorphic hardware.

The generality of the presented ITL training framework allows to easily extend the current imple-
mentation. Here, not only the training of neuronal parameters, but also the augmentation of existing
dynamics by additional slow varying state variables seems very promising. The latter are thought
to further bridge the gap between the time scales of neuro-synaptic dynamics and real-world stim-
uli. Moreover, these dynamics even allow to surpass the memory span of the already demonstrated
recurrent SNNs and are likely to further stabilize these networks. Natural candidates are spike-
triggered adaption as well as short-term plasticity (STP) (Mongillo et al., 2008; Bellec et al., 2018)
which are both readily supported on the High Input Count Analog Neural Network X (HICANN-X)
chip and can be easily included into the existing ITL training framework.

With our ITL training framework, we contributed to current efforts which try to bring the suc-
cess of machine learning strategies to the field of SNNs in general and their implementation on
specialized hardware systems in particular. The emerging solutions are especially important for
edge computing applications where the training needs to be done once prior to deployment. Af-
terwards, the optimized networks are only used to perform inference. Nevertheless, learning and
inference in biological tissue are not temporally separated and moreover, significantly differ from
common machine learning strategies: In biological systems, the data is not presented in batches for
long time spans with thousands of samples occurring in direct succession. Moreover, the learning
happens more or less continuously and maybe more importantly lasts for the whole life. Thus, it
might be promising to take one step back and draw again inspiration from the brain – not only in
terms of the employed neuron and synapse models – to build more efficient training algorithms,
both in terms of data requirements as well as resource demands.

While the surrogate gradient-based ITL framework is indeed very powerful and allows to in-
clude a vast range of bio-inspired mechanisms, it differs in important aspects from biological neural
networks. Hence, we moved on to more biologically plausible unsupervised and local methods in
Chapter 6. Specifically, we considered two distinct local learning rules which in combination with
the input strength shape the dynamics of SNNs. For both of which, the regulated SNNs exhibit
emerging autocorrelation times with a decreasing input strength. First, a spike-timing dependent
plasticity (STDP) derived plasticity allowed us to exploited critical-like phenomena for computation.
Here, the distance to a so-called critical point was adjusted by the input strength. With this frame-
work, we demonstrated that the network dynamics have to be tuned to task requirements for optimal
performance: While only complex andmemory-intensive tasks profited from criticality, simple ones
even suffered. Thereby, we do not only challenge the common assumption that criticality would be
beneficial for any task, but, moreover, provide a general understanding of how collective phenom-
ena in SNNs could be exploited for information processing. With a second local learning rule, we
likewise demonstrated the emergence of autocorrelations. However, autocorrelations developed by
this homeostatic regulation are generated by a bistable population activity.

So far, the proposed critical computing framework has only been applied to small, artificial prob-
lems. However, the ultimate goal should be the application to real-world benchmark tasks like the
SHD. This would, however, require a notion of complexity for the classifications necessary to solve
this problem. While we have seen that words exhibiting high phonemic similarity were harder to
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classify for SNNs trained with the ITL approach presented in Chapter 5, it remains to show if a
system posed at a critical point performs better in classifying these words than a sub-critical one.
Here, the criticality hypothesis could be tested by classifying different pair-wise word combina-
tions. While certainly not all pairings require critical dynamics to be solved accurately, a hierarchy
of networks seems promising: Each constituent within this hierarchy should thereby be tuned to a
different dynamical state to cover the full range of complexity levels. This scenario can be imple-
mented either as a chain of successive networks or by instantiating multiple networks in parallel. By
this, not only the criticality hypothesis could be tested in a real-world scenario, but also multi-chip
systems running the constituents of the hierarchy in parallel could be benchmarked.

While the aforementioned two approaches of supervised and unsupervised learning were devel-
oped in parallel, their union has the potential to solve a couple of problems present in many deep
architectures. Specifically, a preshaping of SNNs with the proposed unsupervised methods akin to
supervised learning represents a promising direction of future research. While a comparable ap-
proach has been visited in the field of machine learning by Hochreiter & Schmidhuber (1997), the
application to SNNs seems likewise promising. Here, the problem of vanishing gradients and thus
suitable initialization of deep SNNs could be solved by prior application of unsupervised learning
(Hochreiter, 1998). Thereby, not only activation of deeper layers could be ensured, but, likewise,
the adjustment to the time scales of the considered task could be done. By this, the supervised
preshaping has the potential to speed up the convergence of subsequent supervised training.

Within Chapter 6, wemoreover demonstrated how the optimization could be designed in a hardware-
aware fashion. To further advance the field of neuromorphic computing, the development of ded-
icated hardware systems and novel computing paradigms should not be considered as disjoint re-
search areas, but a co-design should be targeted. Often, the efficiency of an approach could be
dramatically increased by a lively exchange between both fields, potentially resulting in the incor-
poration of new features into existing neuromorphic architectures.

The reverse case, in which the design of a given hardware system inspired an efficient learning
algorithm was outlined in Chapter 7. Within the scope of this chapter, we do not limit ourselves to
the adaptation of synaptic weights, but, likewise, adjusted the topology of SNNs to overcome typical
constraints present on neuromorphic hardware. Specifically, we proposed structural plasticity as a
potential mechanism to deal with the ubiquitous issue of limited synaptic resources on neuromor-
phic devices. This resulted in an overarched optimization strategy applicable to both supervised as
well as unsupervised learning paradigms. Our particular implementation on a BrainScaleS-2 pro-
totype comes with low overhead and exploits the fact, that the connectome on BrainScaleS-2 is
partially resolved locally within each synapse. Most notably, our strategy does not require knowl-
edge of the distribution of samples in the feature space. Instead, it exploits the accelerated nature
of BrainScaleS-2 to perform synaptic sampling to find informative receptors, thereby leading to the
self-organized formation of receptive fields.

The overarched nature and the fully local execution allow us to combine our structural plasticity
strategy with other existing implementations emulated on the BrainScaleS-2 system. In particular,
it would be very promising to combine this concept with the ITL learning framework presented in
Chapter 5. Here, the ubiquitous issue of a limited synaptic fan-in necessitated the pre-processing
of MNIST images as well as the merging of multiple neuron circuits to larger logical entities. In
general, it is desirable to inject the full-size images and instead apply structural reconfigurations.
This would not only lead to more comparable performance measures, but would furthermore render
a data distribution aware preprocessing – like the discarding of the outermost pixels as well as the
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zooming – redundant. Thereby, the proposed experiment builds an important step towards more
autonomous and self-organizing systems.

The accelerated nature of BrainScaleS was key for all presented optimization approaches. Par-
ticularly, the acceleration led to high throughput during inference for SNNs trained with our ITL
learning framework. It is noteworthy that for real-time applications the time scales of the problem
should match the scale of the accelerated dynamics. The on-chip implementations profited most due
to the reduction of I/O and the hence uninterrupted emulation. For neuro-scientific experiments,
the speedup allowed us to gather large amounts of data or to investigate learning over long time
spans, thereby bridging the gap between time scales of neuro-synaptic dynamics and slower learn-
ing processes. Hence, the temporal efficiency was visible for all presented experiments and renders
our approaches fruitful.

For all topics, an efficient emulation on BrainScaleS-2 was targeted. Especially within the scope
of the last chapter, we highlighted the importance of efficient hardware usage even at a small scale.
The limited size of the BrainScaleS-2 prototype naturally enforced implementations taking into ac-
count hard constraints which would presumably not be the case for small-scale software simula-
tions. When one of the ultimate goals of neuromorphic computing is the emulation of brain-scale
experiments on very-large-scale integration (VLSI) systems, locality and thus scalability should be
reconsidered carefully even at the small scale. In particular, the investigating of computational ca-
pabilities within small-scale networks prior to the actual scale-up might promote more efficient
resource usage.
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A Appendix

A.1 Auditory modelling

This summary of established auditory models is part of the appendix of the publication
Cramer et al. (2020b) which has been presented in the scope of Chapter 4. For this segment I
will closely follow the publication, but provide additional details about the functionality and
impact of each model stage.

In the following, we depict the models involved in the conversion of audio time series data to
spikes. To that end, we draw on a chain of three established models mimicking basic aspects of the
ascending auditory pathway: First, we apply a hydrodynamic basilar membrane (BM) model which
causes spatial frequency dispersion (Appendix A.1.1). Second, the BM movement is converted to
firing rates by means of a biologically motivated hair cell (HC) model (Appendix A.1.2). Neural
events are then obtained by drawing Poisson distributed spikes from these temporal firing rates and
imposing a simple refractory effect. Last, a layer of bushy cells (BCs) increases phase-locking and
the overall sparsity of the final spike trains (Appendix A.1.3).

A.1.1 Basilar membrane model

The physics of the inner ear are mainly determined by the interaction of the BMwith the fluid within
the cochlea – the perilymph – and can hence be described by hydrodynamics. A comprehensive
consideration of hydrodynamic BM models and their derivation is beyond the scope of this section.
For extensive reviews, the reader is referred to the work of de Boer (1980) and de Boer (1984). Here,
we will closely follow the work done by Sieroka et al. (2006) and highlight the key steps required for
the derivation of a long-wave analytical solution that has been applied for the conversion of both
the Spiking Heidelberg Digits (SHD) as well as the Spiking Speech Commands (SSC).

The aforementioned interaction of the BM and the fluid leads to the induction of spatial frequency
dispersion (Sieroka et al., 2006; de Boer, 1980, 1984). In the following, we will assume the simplified
cochlea geometry depicted in Figure A.1a which captures key mechanical features. For simplicity,
we assume the fluid to be inviscid aswell as incompressible and the oscillations to be small so that the
fluid can be described as linear. Within this framework, the BM can be described by its mechanical
impedance 𝜉 (𝑥, 𝜔) which is a function of the position in the 𝑥-direction (cf. Figure A.1a) and the
angular frequency 𝜔 = 2𝜋𝜈:

𝜉 (𝑥, 𝜔) = 1
𝑖𝜔

[𝑆(𝑥) − 𝜔2𝑚 + 𝑖𝜔𝑅(𝑥)] . (A.1)

Here, we introduced a transversal stiffness 𝑆(𝑥) = 𝐶0𝑒−𝛼𝑥 − 𝑎, a resistance 𝑅(𝑥) = 𝑅0𝑒−𝛼𝑥/2 as
well as an effective mass 𝑚 (de Boer, 1980). An associated damping constant of the BM is given by
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FigureA.1: Illustration of theBMmodel. (a) Schematic view of the BMmodel. The BM (blue) separates the
scala tympani (lower chamber) from the scala vestibuli (upper chamber). At the helicotrema (green), the two
scalae are connected. The scala tympani ends in the round window (yellow). A sound wave 𝑣sig is penetrating
the eardrum, applying pressure at the oval window (red) by moving the ossicles, leading to a compression and
slower traveling wave. We have neglected the scala media (Sieroka et al., 2006) and consider a stretched form.
(b) The BMmodel is exposed to a superposition of two sine waves with frequencies of 50Hz and 400Hz. 30ms
Hann windows are applied to the start and end of the signal, respectively. (c) The BM model causes spatial
frequency dispersion. Being exposed to the superposition of sine waves, the velocity of the BM in 𝑦-direction
clearly shows two spatially distinct areas of resonating behavior. Here, we show the response of the model
at 50 distinct positions on the BM for simplicity. Panel (a) as well as its caption are taken from Cramer et al.
(2020b).

𝛾 = 𝑅0/√𝐶0𝑚. The encoding of the whole range of human audible frequencies from about 20Hz to
20 kHz (Purves et al., 2001) into BM movements is facilitated by variations of the stiffness 𝑆(𝑥) over
several orders of magnitude.

In the following, we denote the difference in pressure between the upper and lower chamber in
Figure A.1a by 𝑝(𝑥, 𝜔). The expression:

𝑝(𝑥, 𝜔) = ∑
𝑛
∫
∞

0

d𝑘
2𝜋

𝑒−𝑖𝑘𝑥𝑝0(𝑘) [
cosh(𝑚0(ℎ − 𝑦))

cosh(𝑚0ℎ)

+
𝑚0 tanh(𝑚0ℎ) cosh(𝑚1(ℎ − 𝑦))

𝑚1 tanh(𝑚1ℎ) cosh(𝑚1ℎ)
⋅ cos (𝜋𝑧𝑛

𝑏
)] , (A.2)

fulfills the boundary conditions 𝑣𝑦 = 0 for 𝑦 = ℎ, and 𝑣𝑧 = 0 at 𝑧 = ±𝑏 of our assumed simplified
geometry (de Boer, 1980). By resorting to the Laplace equation, we obtain the relations 𝑚0 = 𝑘 and
𝑚1 = √𝑘2 + 𝜋2/𝑏2. Throughout the remainder of this section, we will only consider 𝑛 = 1 and hence
stick to the principal mode of excitation in the 𝑧-direction. Combining all of these assumptions, we
obtain an expression for the 𝑦-component of the velocity in the middle of the BM by applying the
Euler equation:

𝜕𝑦𝑝(𝑥, 𝜔) = −𝑖𝜔𝜌𝑣𝑦(𝑥, 𝜔) =
2𝑖𝜔𝜌
𝜉 (𝑥, 𝜔)

𝑝(𝑥, 𝜔) . (A.3)

For readability, we excluded the 𝑦 and 𝑧 arguments. In order to obtain an analytical solution for
𝑣𝑦(𝑥, 𝜔), we restrict our consideration to the limiting case of long waves with 𝑘ℎ ≪ 1. Applying this
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limit to the Equations (A.2) and (A.3) yields:

𝜕2𝑥𝑝(𝑥, 𝜔) =
𝑖𝜔𝜌

ℎ𝜉 (𝑥, 𝜔)
𝑝(𝑥, 𝜔) , (A.4)

where we furthermore accomplished the replacement ̂𝑝(𝑘) → 𝑝(𝑥), 𝑘 → 𝑖𝜕𝑥 and 𝑘2 → 𝜕2𝑥 with the
Fourier transform ̂𝑝(𝑘) of 𝑝(𝑥, 0, 0). This equation is approximately solved by:

𝑝(𝑥, 𝜔) =
√

𝐺(𝑥, 𝜔)
𝑔(𝑥, 𝜔)

𝐻 (2)
0 (𝐺(𝑥, 𝜔)) , (A.5)

with the second Hankel function 𝐻 (2)
0 . The functions 𝑔(𝑥, 𝜔) and 𝐺(𝑥, 𝜔) are determined by:

𝑔(𝑥, 𝜔) = 𝜔
√

𝜌
ℎ𝜉 (𝑥, 𝜔)

, (A.6)

𝐺(𝑥, 𝜔) = ∫
𝑥

0
𝑑𝑥′𝑔(𝑥′, 𝜔) + 2

𝛼
𝑔(0, 𝜔) . (A.7)

It is noteworthy that 𝐺(𝑥, 𝜔) can also be solved analytically. A closed-form solution was derived
by Sieroka et al. (2006). The stimulation by an incidental sound wave with Fourier transformation
𝑣sig(𝜔) can be done by evaluating:

𝑣𝑦(𝑥, 𝑡) = ∫
𝑑𝜔
2𝜋

𝑖𝑍in
𝑣𝑦(𝑥, 𝜔)
𝑝(0, 𝜔)

𝑒−𝑖𝜔𝑡𝑣sig(𝜔) . (A.8)

Here, we modelled the input impedance of the cochlea by:

𝑍in(𝜔) =
𝑝(𝑥 = 0)
𝑣𝑥(𝑥 = 0)

≈
√
2𝐶0
ℎ

𝑖𝐽0 (𝜁) + 𝑌0 (𝜁)
𝐽1 (𝜁) − 𝑖𝑌1 (𝜁)

, (A.9)

where 𝐽𝛽(𝜁 ) and 𝑌𝛽(𝜁 ) denote the Bessel functions of first and second kind of order 𝛽. Furthermore,

we introduced 𝜁 = 2𝜔/𝛼√2/(ℎ𝐶0).

The nature of the BM to cause spatial frequency dispersion can be illustrated by exposing the
model to a superposition of two sine waves (Figure A.1b). Here, the BM movement reveals two
clear resonance regions which are spatially distinct (Figure A.1c). Before applying the BM model
to a stimulus, each signal 𝑣sig(𝑡) was normalized to a root mean square (RMS) value of 0.3 cm s−1.
Afterwards, the BM model was evaluated in the spatial range 𝑥 ∈ (0, 3.5 cm] in 𝑁ch linearly spaced
steps.

A.1.2 Hair cell model

The movements of the BM are converted to neural events by the inner HCs via mechanotransduc-
tion. In more detail, a sequence of 𝑁ch HCs is located along the 𝑥 direction of the BM (Figure A.3a).
While the human cochlea contains about 𝑁ch = 3500, we chose 𝑁ch = 700 for our benchmark
datasets to reduce the memory as well as computational footprint of our benchmarks and model, re-
spectively. At the same time, this choice still provides an accurate representation of auditory stimuli.
In the following, we highlight the key steps of the HC model invented by Meddis (1986), to which
we refer for further details.
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Figure A.2: Illustration of the HCmodel. (a) Schematic view of the transmitter flow within the HCmodel
Figure adapted from Meddis (1986). The model comprises four transmitter pools which allow the description
of the transmitter concentration in the synaptic cleft. (b) TheHCmodel causes a half-wave rectification aswell
as a compression of its stimuli. Shown is the model response to the BM velocity elicited by the superposition
of sine waves depicted in Figure A.1. Panel (a) as well as its captions are taken from Cramer et al. (2020b).

Within the formulation of this model, the state of a HC is determined by the dimensionless trans-
mitter concentration in various stages. Each cell contains a specific amount of free transmitter
molecules 𝑞(𝑥, 𝑡)which can be released into the synaptic cleft through a semi-permeable membrane
(Figure A.2a). The permeability depends on the movement of the BM and is in our description
directly based on the BM’s velocity in 𝑦-direction, 𝑣𝑦(𝑥, 𝑡):

𝑘(𝑥, 𝑡) = {
𝑔⋅[𝑐⋅𝑣𝑦(𝑥,𝑡)+𝐴]
𝑐⋅𝑣𝑦(𝑥,𝑡)+𝐴+𝐵

for 𝑣𝑦(𝑥, 𝑡) + 𝐴 > 0

0 else
. (A.10)

Here, we introduced a maximum permeability 𝑔, the input scaling 𝑐, a permeability offset 𝐴 as well
as the permeability rate 𝐵. It is noteworthy that there is a constant leak of transmitter even in the
absence of mechanical stimulation. Further, only the decomposition in positive 𝑦-direction increases
the permeability, thereby capturing the half-wave rectification carried out by biological HCs. Once
being released into the synaptic cleft, the amount of transmitter molecules is continuously reduced
by chemical destruction or loss through diffusion 𝑙 ⋅ 𝑐(𝑥, 𝑡). Further, a fraction of transmitter 𝑟 ⋅ 𝑐(𝑥, 𝑡)
is reuptaken back into the HC. Hence, the total amount of transmitter in the cleft 𝑐(𝑥, 𝑡) evolves
according to:

d𝑐
d𝑡

= 𝑘(𝑥, 𝑡)𝑞(𝑥, 𝑡) − 𝑙 ⋅ 𝑐(𝑥, 𝑡) − 𝑟 ⋅ 𝑐(𝑥, 𝑡) . (A.11)

The reuptaken transmitter molecules are cached in a reprocessing store from where they are con-
tinuously transferred to the free transmitter pool at a rate 𝑛 ⋅ 𝑤(𝑥, 𝑡). With this, the concentration in
the reprocessing store 𝑤(𝑥, 𝑡) is governed by:

d𝑤
d𝑡

= 𝑟 ⋅ 𝑐(𝑥, 𝑡) − 𝑛 ⋅ 𝑤(𝑥, 𝑡) . (A.12)

Aside from reuptake, the free transmitter pool gets replenished at a rate 𝑦[1− 𝑞(𝑥, 𝑡)] by a manufac-
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Figure A.3: Schematic view of the connectivity within the auditory model. (a) Multiple HCs (green
circles) are located at each position 𝑥 of the BM (gray area). Each of these HCs at position 𝑥 projects onto
a single BC (blue circles). (b) The integration of multiple spike trains emitted by the HCs at each position
by a BC increases the phase-locking to stimulus features and at the same time reduces the overall amount of
spikes in the elicited response. Shown are the spikes of a single exemplary HC at each position 𝑥 in response
to the BM velocity elicited by the superposition of sine waves depicted in Figure A.1 (gray). Superimposed is
the response of a layer of BCs, each of which stimulated by 40 independent HCs (red).

turing base. Summing all contributions, the concentration in the free transmitter pool becomes:

d𝑞
d𝑡

= 𝑦[1 − 𝑞(𝑥, 𝑡)] + 𝑛 ⋅ 𝑤(𝑥, 𝑡) − 𝑘(𝑥, 𝑡)𝑞(𝑥, 𝑡) . (A.13)

The emission of spikes is based on the concentration of the transmitter in the synaptic cleft. While
being in the cleft, transmitter quanta could open post-synaptic ion channels to elicit post-synaptic
potentials (PSPs) with a probability 𝑝spike = ℎ ⋅ 𝑐(𝑥, 𝑡)𝛿𝑡, where we introduced the time step 𝛿𝑡 used
to evaluate the model. Like for regular leaky integrate-and-fire (LIF) neurons, we impose a simple
refractory period 𝜏ref by denying any spike which would occur after a previous event with a tem-
poral separation of less than 1ms. Revisiting the example of the superposition of sine waves, the
compression and half-wave rectifying effect of the HC becomes apparent (Figure A.2).

A.1.3 Bushy cell model

We increased the phase-locking of the output spikes to stimulus features by a population of 𝑁ch
BCs (Figure A.3a). To that end, we simulated 𝑁hc = 40 independent HCs at each position 𝑥 of the
BM to capture sufficient statistics from the spike times about 𝑝spike. Each of these 𝑁hc HCs projects
onto a single BC. In contrast to Rothman et al. (1993), we implemented the BCs as standard LIF
units and not as detailed Hodgkin-Huxley neurons. All synaptic weights between the HCs and the
layer of BCs were set equally to a value of 𝑤𝑖𝑗 = 0.54/𝑁hc ∀𝑖, 𝑗. Despite the noisy input spike trains
emitted by each of the 40 HCs individually (Figure A.2b), the BCs accurately recover the phase
relation (Figure A.3b) of the stimulus (Figure A.1a). Moreover, the spike trains emitted by the BCs
are characterized by a higher sparsity level expressed in both space and time.
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A.2 Time-to-first-spike coding

The information given in this section is part of the publication Göltz et al. (2021) whereof the
results achieved with an implementation on HICANN-X have been presented in the scope of
Chapter 5. In the following, we present the basic steps of the derivation of the learning rule
as well as details concerning the implementation on HICANN-X.

The spike-timing-based code highlighted in the following ties on the ideas of Mostafa (2017). In a
time-to-first-spike (TTFS) coding, the time elapsed between stimulus onset and the first firing time
of a neuron signals the presence of a feature within a stimulus. In this context, an earlier spike time
highlights a more manifested feature. Hence, this coding scheme enables efficiency in terms of both
time-to-decision as well as energy-to-solution. In the following, we present the utilized methods for
the results obtained by networks employing TTFS coding within the scope of Chapter 5. To that end,
we closely follow the basic steps of Göltz et al. (2021), to which we refer for further details. We start
by formulating the used TTFS loss function on which we performed gradient descent. Moreover,
we highlight the key steps of the derivation of an analytical differentiable solution of the first-spike
time 𝑇which facilitates the formulation of a learning rule based on the aforementioned loss function.
We close by a description of the in-the-loop (ITL) training used to optimized multi-layer networks
employing TTFS coding on the High Input Count Analog Neural Network X (HICANN-X) chip.

A.2.1 Loss function

To finally optimize spiking neural networks (SNNs) with gradient descent and the backpropagation
algorithm, we define a TTFS loss function which is differentiable with respect to both synaptic
weights as well as spike times. During the process of training, this loss function aims to maximize
the temporal difference between the spike emitted by the correct and all remaining label neurons.
More specifically, we consider the TTFS loss function:

ℒ = log [∑
𝑖
exp(−

𝑡(𝐿)𝑖 − 𝑡(𝐿)𝑖⋆

𝜉 𝜏syn
)] , (A.14)

with the index of the correct label neuron 𝑖⋆ and a positive scaling parameter 𝜉. Here, the spike time
of neuron 𝑖 in layer 𝑙 is denoted by 𝑡(𝑙)𝑖 with the special case 𝑙 = 𝐿 for the readout layer. Note that
we skipped the spike index since we restrict our networks to only emit a single spike per neuron.
Here, we define 𝑡(𝑙)𝑖 = ∞ for silent neurons which, however, renders the closed-form solution for 𝑇
as well as its derivates ill-defined.

In order to enforce spiking activity, we hence increased the input weights of all silent neurons
by Δ𝑤bump in case the number of silent neurons exceeds a certain threshold 𝑝silent. For multi-layer
networks, we only applied this strategy to the first layer falling below this threshold. This weight
increase was chosen exponentially in case the neurons in a layer remain silent over multiple, suc-
cessive updates. To enhance training, we furthermore added a regularization term to the overall
loss function:

ℒreg = 𝜌𝛼 [exp(
𝑡(𝐿)𝑖⋆

𝛽𝜏syn
) − 1] , (A.15)

with the regularization strength 𝜌reg and a positive scaling parameter 𝛽. This penalty rewards the
correct label neuron to emit even earlier spike times.
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A.2.2 Weight updates

Gradient descent can now be performed on the loss function in Equation (A.14) by iteratively ap-
plying the chain rule:

Δ𝑤 (𝑙)
𝑖𝑗 = −𝜂 𝜕ℒ

𝜕𝑤 (𝑙)
𝑖𝑗

= −
𝜕𝑡(𝑙)𝑖
𝜕𝑤 (𝑙)

𝑖𝑗

𝜕ℒ

𝜕𝑡(𝑙)𝑗⏟
𝛿 (𝑙)𝑗

=
𝜕𝑡(𝑙)𝑖
𝜕𝑤 (𝑙)

𝑖𝑗

∑
𝑘

𝜕𝑡(𝑙+1)𝑘

𝜕𝑡(𝑙)𝑗
𝛿 (𝑙+1)𝑘 , (A.16)

with a learning rate 𝜂which was chosen to decay over the course of training with a decay rate 𝛾𝜂 and
a step size of 𝛾step. The emerging derivatives can be calculated analytically which in turn requires
an analytical solution for the first spike time of neuron 𝑖, 𝑇𝑖. Due to the interest in single spikes only,
we can drop the spike count index to obtain a solution of the LIF equation in Equation (2.12) for the
neuron 𝑖:

𝑢𝑖(𝑡) =
1

𝐶mem

𝜏mem𝜏syn
𝜏mem − 𝜏syn

∑
𝑗
𝑤𝑖𝑗𝜃(𝑡 − 𝑡𝑗) [exp (−

𝑡 − 𝑡𝑗
𝜏mem

) − exp (−
𝑡 − 𝑡𝑗
𝜏syn

)] . (A.17)

Here, the sum extends over all presynaptic partners 𝑗 and the PSPs take the form of a difference of
exponentials. For the special case 𝜏mem → 𝜏syn, we obtain with l’Hôpital’s rule:

𝑢𝑖(𝑡) =
1

𝐶mem
∑
𝑗
𝑤𝑖𝑗𝜃(𝑡 − 𝑡𝑗)(𝑡 − 𝑡𝑗) exp (−

𝑡 − 𝑡𝑗
𝜏syn

) , (A.18)

i. e. alpha-shaped PSPs. By setting 𝑢(𝑇 ) = 𝑢thres and relying on the Lambert W function 𝒲, we get
for the first-spike time:

𝑇𝑖 = 𝜏syn {
𝑏𝑖
𝑎𝑖
−𝒲[−

𝑔leak𝑢thres
𝑎𝑖

exp (
𝑏𝑖
𝑎𝑖
)]} , (A.19)

where we defined the functions:

𝑎𝑖 ≔ ∑
𝑗∈𝐶

𝑤𝑖𝑗 exp (
𝑡𝑗

𝜏syn
) , 𝑏𝑖 ≔ ∑

𝑗∈𝐶
𝑤𝑖𝑗

𝑡𝑗
𝜏syn

exp (
𝑡𝑗

𝜏syn
) , (A.20)

with the causal set 𝐶 = {𝑗|𝑡𝑗 < 𝑇𝑖} (Göltz et al., 2021). In case a spike occurred, the spike threshold
𝑢thres is crossed two times: first from below due to the rising of 𝑢𝑖 caused by incoming PSPs and
second from above, when 𝑢𝑖 decays back to the leak potential 𝑢leak. In general, we are interested
in the earlier of the solutions of Equation (A.19). This corresponds to the branch that returns the
larger 𝒲, i. e. 𝒲 = 𝑏𝑖/𝑎𝑖 − 𝑇𝑖/𝜏syn > −1.

The above expression for 𝑇𝑖 is differentiable with respect to both synaptic weights as well as
presynaptic spike times. By adopting the nomenclature of multi-layer networks, we obtain the
following derivatives (Göltz et al., 2021):

𝜕𝑡(𝑙)𝑖
𝜕𝑤 (𝑙)

𝑖𝑗

= − 1
𝑎𝑖

exp (
𝑡(𝑙−1)𝑗
𝜏syn

)

𝒲 (𝑧) + 1
(𝑡(𝑙)𝑖 − 𝑡(𝑙−1)𝑗 ) , (A.21)

𝜕𝑡(𝑙)𝑖
𝜕𝑡(𝑙−1)𝑗

= − 1
𝑎𝑖

exp (
𝑡(𝑙−1)𝑗
𝜏syn

)

𝒲 (𝑧) + 1
𝑤𝑖𝑗
𝜏syn

(𝑡(𝑙)𝑖 − 𝑡(𝑙−1)𝑗 − 𝜏syn) , (A.22)

(A.23)
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where the argument of the Lambert W function is defined by:

𝑧 ≔ −
𝑔leak𝑢thres

𝑎𝑖
exp (

𝑏𝑖
𝑎𝑖
) . (A.24)

Hence, these expressions allow to solve the credit assignment problem and thus facilitate the exact
error propagation through multi-layer SNNs employing TTFS coding. We finally obtain a synaptic
update rule by inserting both derivatives into Equation (A.16).

A.2.3 Datasets

In order to stimulate the networks of LIF neurons, the input data has to be transformed to spikes.
Irrespective of the dataset, this was done by defining an earliest and a latest spike time, 𝑡early and
𝑡late, respectively. The input values were then mapped linearly to the time interval [𝑡early, 𝑡late].

As a first benchmark, we consider data points sampled from the Yin-Yang figure. In more detail,
each point is given by a pair of Cartesian coordinates (𝑥, 𝑦) ∈ [0, 1]1 and the mirrored coordinates
(1−𝑥, 1−𝑦) to capture the symmetry of the data and to enable training without additional bias term
(Kriener et al., 2021). All of these coordinates were converted to spike times by the method described
above and joined with an additional bias spike. The resulting five spike trains – each comprising
of a single spike – were used to classify the data into the three categories Yin, Yang and Dot. In
order to accommodate these stimulating spike trains to the input strength and weight resolution of
HICANN-X, each logical spike train was replicated five times to finally result in a total of 25 spike
trains.

The second dataset consists of downscaled MNIST images with a size of 16×16 pixels. By down-
scaling, we were able to accommodate the input dimensionality to a tractable fan-in on HICANN-X.
Subsequently, the pixel intensities were first normalized and then linearly mapped to spike times,
resulting in a total of 256 stimulating spike trains each of which containing a single spike time. Fur-
thermore, we added Gaussian noise with standard deviation 𝜎𝑡 to these input spike times to reduce
overfitting.

A.2.4 In-the-loop training

SNNs emulated on HICANN-X were trained ITL. To that end, the spikes emitted by HICANN-X
were used to calculate the weight updates according to Equations (A.16), (A.22) and (A.23) on the
host computer. Moreover, we imposed a maximum weight update Δ𝑤max. The HICANN-X chip
was calibrated to yield a comparable behavior as software simulations. Specifically, the PSP size as
well as the produced spike times of hard- and software implementation were matched. By a high
refractory period 𝜏ref, we ensured that most neurons only spiked once during the presentation of an
input sample. In more detail, we configured 𝜏ref > 𝜏syn in order to let all synaptic currents decay
and to irradiate the associated information.

A.3 Partial information decomposition

Often, the information within e. g. a neural network is encoded by an ensemble of agents. Knowl-
edge about the distribution of information in these ensembles may guide the design of both the
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Table A.1: Overview of the parameters used for SNNs employing TTFS coding. All parameters are
given in the hardware time domain. Mean and standard deviation of the weight initialization are given sepa-
rately for the weights connecting the input with the hidden layer as well as the weights between hidden and
readout layer. Table adapted from Göltz et al. (2021).

Stage Parameter Symbol Value
Ying-Yang MNIST

Neuro-synaptic
dynamics

Leak potential 𝑢leak 550mV 550mV
Threshold potential 𝑢thres 850mV 850mV
Membrane time constant 𝜏mem 6 µs 10 µs
Synaptic time constant 𝜏syn 6 µs 10 µs

Network

Input size 𝑁I 25 256
Hidden layer size 𝑁H 120 246
Label layer size 𝑁L 3 10
Mean weight initialization �̂�𝑤 0.1/0.075 0.01/0.006
Stdev weight initialization �̂�𝑤 0.12/0.15 0.03/0.1

Input

Input noise 𝜎𝑡 – 0.3 µs
Bias time 𝑡bias 0.9 𝜏syn –
Earliest possible spike time 𝑡early 0.15 𝜏syn 0.15 𝜏syn
Latest possible spike time 𝑡late 2.0 𝜏syn 2.0 𝜏syn

Optimization

Training epochs 𝑁epochs 400 50
Batch size 𝑁batch 40 50
Learning rate 𝜂 2.0 × 10−3 3.0 × 10−3

Learning rate decay step 𝛾step 20 10
Learning rate decay 𝛾𝜂 0.05 0.1
First moment estimates decay rate 𝛽1 0.9 0.9
Second moment estimates decay rate 𝛽2 0.999 0.999
Stability parameter 𝜖 1.0 × 10−8 1.0 × 10−8

Maximum allowed update Δ𝑤max 0.2 0.2
Weight bump value Δ𝑤bump 5 × 10−4 5 × 10−3

Latency regularization 𝜌𝛼 5 × 10−3 5 × 10−3

Loss scaling parameter 𝜉 0.2 0.2

ensembles as well as the higher-level network. In this context, partial information decomposition
(PID) allows the quantification of the unique and redundant contribution of a set of source variables
to a target and, moreover, facilitates the assessment of synergistic computation. In the following,
we will consider the most simple case of two input variables 𝑋1 and 𝑋2 as well as a single output
variable 𝑌 and closely follow the steps of Wibral et al. (2015) to motivate the assumptions made for
the estimation of PID components within the scope of Chapter 6.

Classical information theory provides us with a measure of mutual information which could be
applied to different pairings of variables: First, each of the inputs individually provides information
about the target specified by the mutual information I(𝑌 ∶ 𝑋𝑖). Second, both input variables jointly
contain information about the target as given by the joint mutual information I(𝑌 ∶ 𝑋1, 𝑋2). How-
ever, classical information theory does not provide a closed-form expression for the information
contained in the joint input variables about the target that cannot be obtained from each source
separately. This is termed synergistic information. Further, we lack an expression for the informa-
tion carried by only one input variable about the target that can not be obtained from the other one.
The latter is referred to as unique information. Last, we have no notion of shared information that is
the information contained within one input variable about the target that can also be obtained by
looking at the other input variable alone. The estimation of these contributions is the subject of PID
(Williams & Beer, 2010; Bertschinger et al., 2013; Lizier et al., 2018).
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Figure A.4: Estimation of unique information. (a) Illustration of the constituents of a PID of the joint
mutual information I(𝑌 ∶ 𝑋1, 𝑋2). The synergistic information Isyn and the shared information Ishd can be cal-
culated in case the unique information Iunq is given. (b) Themutual information I(𝑌 ∶ 𝑋2) is defined in classical
information theory and constant onΔ𝒫. Iunq(𝑌 ∶ 𝑋2⧵𝑋1) is unknown, but constant onΔ𝒫 by assumption. (c) In
order to estimate Iunq(𝑌 ∶ 𝑋1, 𝑋2), I𝒬(𝑌 ∶ 𝑋1, 𝑋2) is defined on Δ𝒫 which depends on 𝒬. (d) I𝒬(𝑌1 ∶𝑋2 | 𝑋1) is de-
fined in classical information theory, but depends on 𝒬. (e) I𝒬,syn(𝑌1 ∶𝑋1, 𝑋2) equally depends on 𝒬. (f) By
minimizing I𝒬,syn(𝑌1 ∶𝑋1, 𝑋2) an upper estimate for Iunq(𝑌 ∶ 𝑋2⧵𝑋1) can be obtained. (g)With the definition of
Iunq(𝑌 ∶ 𝑋2 ⧵ 𝑋1), Ishd(𝑌 ∶ 𝑋1 ; 𝑋2) can be calculated from I(𝑌 ∶ 𝑋2). (h) Finally, Isyn(𝑌1 ∶𝑋1, 𝑋2) can be obtained
from I(𝑌 ∶ 𝑋1, 𝑋2), Iunq(𝑌 ∶ 𝑋2 ⧵𝑋1), Iunq(𝑌 ∶ 𝑋1 ⧵𝑋2) and Ishd(𝑌 ∶ 𝑋1 ; 𝑋2). Figure inspired byWibral et al. (2015).
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Let us start by considering the decomposition of the joint mutual information I(𝑌 ∶ 𝑋1, 𝑋2) be-
tween two input variables 𝑋1 and 𝑋2 and one output variable 𝑌. First, the total information of each
input variable about the target should be decomposable into the unique information Iunq and the
shared information Ishd:

I(𝑌 ∶ 𝑋1) = Ishd(𝑌 ∶ 𝑋1 ; 𝑋2) + Iunq(𝑌 ∶ 𝑋1 ⧵ 𝑋2) , (A.25)

I(𝑌 ∶ 𝑋2) = Ishd(𝑌 ∶ 𝑋2 ; 𝑋1) + Iunq(𝑌 ∶ 𝑋2 ⧵ 𝑋1) . (A.26)

Similarly, the two unique information terms, the shared information and the synergistic information
Isyn(𝑌 ∶ 𝑋1 ; 𝑋2) should sum up to the joint information I(𝑌 ∶ 𝑋1, 𝑋2):

I(𝑌 ∶ , 𝑋1, 𝑋2) = Iunq(𝑌 ∶ 𝑋1 ⧵ 𝑋2) + Iunq(𝑌 ∶ 𝑋2 ⧵ 𝑋1) + Ishd(𝑌 ∶ 𝑋1 ; 𝑋2) + Isyn(𝑌 ∶ 𝑋1 ; 𝑋2) . (A.27)

With regard to Figure A.4, it becomes apparent that none of these terms can be obtained by a combi-
nation of classical mutual information terms. However, if one of the components can be estimated,
all the others can be computed in succession. Williams & Beer (2010) proposed a set of axioms based
on a set of source variables 𝑋1, 𝑋2, ..., 𝑋𝑛 and a target 𝑌 to obtain a functional definition of shared
information:

1. The shared information of the variables𝑋1, 𝑋2, ..., 𝑋𝑛 about 𝑌 is symmetric under permutations
of the variables 𝑋1, 𝑋2, ..., 𝑋𝑛.

2. The mutual information I(𝑌 ∶ 𝑋1) equals the shared information that 𝑋1 shares with itself
about 𝑌.

3. The shared information of the variables 𝑋1, 𝑋2, ..., 𝑋𝑛 about 𝑌 is smaller than or equal to the
redundant information that the variables 𝑋1, 𝑋2, ..., 𝑋𝑛−1 have about 𝑌.

However, none of the components of PID can be uniquely defined based on this set of axioms which
is why additional assumptions have to be made.

The approach taken in this thesis applies the definition by Bertschinger et al. (2013) and is inspired
by game theory. The key assumption is that the unique information terms only depend on the
marginal distributions 𝒫 (𝑦, 𝑥1) and 𝒫 (𝑦, 𝑥2), but not on 𝒫 (𝑦, 𝑥1, 𝑥2). In more detail, the unique
information should stay the same when 𝒫 is replaced with a probability distribution 𝒬 from the
space Δ𝒫 of probability distributions that share the marginals with 𝒫. This motivates the following
definition of unique information:

̃Iunq(𝑌 ∶ 𝑋1 ⧵ 𝑋2) = min
𝒬∈Δ𝒫

I𝒬(𝑌 ∶ 𝑋1 | 𝑋2) . (A.28)

Here, I𝒬(𝑌 ∶ 𝑋1 | 𝑋2) corresponds to a conditional mutual information based on to the join distribu-
tion 𝒬(𝑌 , 𝑋1, 𝑋2) instead of 𝒫 (𝑌 , 𝑋1, 𝑋2). It is noteworthy that only the minimum of I𝒬(𝑌 ∶ 𝑋1 | 𝑋2)
is a measure of the unique information (Figure A.4). With the definition of unique information in
Equation (A.28), the shared information ̃Ishd and synergistic information ̃Isyn are given by:

̃Ishd(𝑌 ∶ 𝑋1 ; 𝑋2) = max
𝒬∈Δ𝒫

[I(𝑌 ∶ 𝑋1) − I𝒬(𝑌 ∶ 𝑋1 | 𝑋2)] , (A.29)

̃Isyn(𝑌 ∶ 𝑋1 ; 𝑋2) = I(𝑌 ∶ 𝑋1, 𝑋2) − min
𝒬∈Δ𝒫

I𝒬(𝑌 ∶ 𝑋1, 𝑋2) . (A.30)

Thesemeasures have been shown to be positive and can be obtained by convex optimization (Makkeh
et al., 2018). Moreover, the synergistic, shared and unique information of any definition satisfying
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the Equations (A.26) and (A.27) are bounded by the previous measures (Bertschinger et al., 2013):

Iunq(𝑌 ∶ 𝑋1 ⧵ 𝑋2) ≤ ̃Iunq(𝑦 ∶ 𝑋1 ⧵ 𝑋2) , (A.31)

Iunq(𝑌 ∶ 𝑋2 ⧵ 𝑋1) ≤ ̃Iunq(𝑦 ∶ 𝑋2 ⧵ 𝑋1) , (A.32)

Ishd(𝑌 ∶ 𝑋1 ; 𝑋2) ≥ ̃Ishd(𝑌 ∶ 𝑋1 ; 𝑋2) , (A.33)

Isyn(𝑌 ∶ 𝑋1 ; 𝑋2) ≥ ̃Isyn(𝑌 ∶ 𝑋1 ; 𝑋2) . (A.34)

The above definitions only hold true for considerations involving two input and one output variable.
Decompositions of ensembles involving higher counts of input variables are the subject of active
research.

A.4 Control of criticality by the input rate

The results shown in this section are part of the publication Cramer et al. (2020a) which has
been presented in the scope of Chapter 6. In the following, we present the results shown in
the supplementary material of the publication.

For the results shown in Chapter 6, we adjusted the input strength by changing the degree of
the input 𝐾ext under the action of a variant of spike-timing dependent plasticity (STDP). In general,
the distance to critical-like dynamics can be controlled by a variety of different parameters. Within
this section, we demonstrate that the input strength could be equally adjusted by the input rate ℎ
for our framework presented in Section 6.2.1.1. Changes in ℎ have qualitatively the same impact
on the network dynamics as the degree of the input 𝐾ext. Both parameters in combination shape
the network dynamics and even allow to pass the critical point for low values of ℎ and 𝐾ext. The
Figures A.5 to A.8 directly correspond to the ones shown in Section 6.3.1, but depict the results for
varying both 𝐾ext and ℎ.
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(a) ℎ = 4 kHz, 𝐾ext/𝑁 = 0.25
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(b) ℎ = 29 kHz, 𝐾ext/𝑁 = 0.25
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(c) ℎ = 4 kHz, 𝐾ext/𝑁 = 0.56
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(d) ℎ = 29 kHz, 𝐾ext/𝑁 = 0.56
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FigureA.5: The input strength shapes the collective dynamics of the network. This figure corresponds
to Figure 6.12. For every degree of the input 𝐾ext, there is an input rate ℎ for which the activity shows irregular
bursts, resembling a critical state. In the sub-critical case, the firing becomesmore irregular and asynchronous.
The input rate ℎ increases from left to right with ℎ = 4 kHz for (a) and (c) and ℎ = 29 kHz for (b) and (d). The
degree of the input 𝐾ext increases from top to bottom with 𝐾ext/𝑁 = 0.25 for (a) and (b) and 𝐾ext = 0.56 for
(c) and (d). Figure and caption taken from Cramer et al. (2020a).
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(a) Branching ratio
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Figure A.6: Depending on the input strength, systems show clear signatures of criticality beyond
power-laws. This figure corresponds to Figure 6.15. The input strength is determined by both the degree
of external input 𝐾ext and the input rate ℎ (colors). Only for specific combinations of these parameters, (a)
the estimated branching ratio 𝑚 tends towards unity, and (b) the estimated autocorrelation time 𝜏corr peaks.
(c) The clear match of the 𝜏corr, and the 𝜏branch ∼ −1/ log (𝑚) as inferred from 𝑚 supports the criticality
hypothesis (correlation coefficient of 𝜌 = 0.850, 𝑝 < 10−10). Further, intrinsic variations as measured by (d)
the Fano factor 𝐹, and (e) the trial-to-trial variation ΔVRD, as well as (f) to external perturbations as measured
by the susceptibility 𝜒 peak approximately for the critical input strengths. Figure and caption taken from
Cramer et al. (2020a).
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(a) Avalanche distribution
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(d) Model comparison
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Figure A.7: Under specific input strengths, the network self-organizes towards a critical state and
shows long-tailed avalanche distributions. This figure corresponds to Figure 6.13. The input strength
is determined by both the degree of external input 𝐾ext and the input rate ℎ (colors). Only for specific com-
binations of these parameters, (a) power-law distributed avalanche sizes 𝑠 over two orders of magnitude are
observed (shown for 𝐾ext/𝑁 = 0.31). Fitting a truncated power law, (b) the exponential cutoff 𝑠cut peaks, and
(c) critical exponents 𝛼𝑠 approximate 1.5 for the critical input strengths, as expected for critical branching
processes. (d) A maximum-likelihood comparison decides for a power-law compared to an exponential fit
in the majority of cases for the aforementioned critical input strengths. The dashed vertical line in (b) to (d)
highlights the 𝐾ext/𝑁 that has been selected in (a). Figure and caption taken from Cramer et al. (2020a).
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(a) 𝑛 = 10 bit parity
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(b) 𝑛 = 15 bit parity
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(c) 𝑛 = 20 bit parity
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(d) 𝑛 = 25 bit parity
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Figure A.8: Computational challenging task profit from critical network dynamics – simple tasks
do not. This figure corresponds to Figure 6.16b. The network is used to solve a 𝑛-bit parity task by training a
linear classifier on the activity of 𝑁read = 32 neurons. Here, task complexity increases with 𝑛, the number of
past inputs that need to be memorized. Task-complexity 𝑛 increases from (a) to (d) with 𝑛 ∈ {10, 15, 20, 25}. For
high 𝑛, task performance profits from criticality, whereas simple tasks suffer from criticality. The performance
is quantified by the normalized mutual information ̃𝐼 between the parity of the input and the vote of a linear
classifier. The performance ̃I for high 𝑛-bit parity tasks is higher for the critical pairs of the external input
𝐾ext and the input rate ℎ. Figure and caption taken from Cramer et al. (2020a).
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Table A.2: Software state used for the experiments on surrogate gradient learning. The experiment
code used to gather the results presented in Chapter 5 is provided in the repository model-hx-strobe andwas
used in combination with the shown software state and the container image c10889p24_2020-11-04_1.img
with the visionary-dls app.

Repository Git hash

calix ede948267e4fb6944cee4925bf2f6d8106c6f6fe
haldls d9d1d30bc032e214b5a59905fb964a3a1db166b9
pyhid 82c64b5569928d2ec8344b8dffbd930da23d0004
tools-kintex7 34d64ba95ac0db73c2cae2ea12cc2e3108cb0b5a
code-format 5d55a9952d4b6400fa5b2baeff9be546e45bf76d
logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd
halco 27ccf9d1a92dfb938f82e1de62ab0acc45cbcd33
hate c7483cedc3d76b8e7a4a65e7bc9a423131f40ce1
fisch 087ea1930137b1e940cf841598d4f2595f5709c3
hxcomm 5114f8219973cb02e13b95965f76367ffb66697c
hmf-fpga 46844c8e5018a094b8bedbcf5c305e45f6a49091
rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6
pywrap 83ddbad8a114b4730b82d299e8bd9da2a6ca5ebb
lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb
sctrltp 72a3735c606795b0b058271d4899b5f490bd88bf
visions-slurm 79de4b1754f26e77fbabb7827dc78556276c85a0
flange fcde2aafe69805487789ca0b1a8a245caf5fb8ed
lib-rcf 5b16326ae30ee08a322a6569887ca8bd2684c252
libnux 32597fe35fa93b331de41da2adee127eb40e46e1
hwdb 754b4dbb87a76411cf2291dc34153d4199a8066a
bss-hw-params 3d88b7644bd40fc1fa0210b25062ac8866186a3b
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Table A.3: Software state used for the experiments on spike time gradient learning. The experiment
code used to gather the results presented in Chapter 5 is provided in the repository https://github.com/

JulianGoeltz/fastanddeep and was used in combination with the shown software state and the container
image 2021-02-19_1.img with the visionary-dls app.

Repository Git hash

model-hx-strobe 6fdc7b05a3334ad1c2497e563a3c4c1c41feeceb
haldls 9f34f9b1ea0e34dd1141198c61d2a0b25bfc8e92
calix f7e9b72aae47929a5de27bd1897a042c14d10ad0
libnux 32597fe35fa93b331de41da2adee127eb40e46e1
pyhid 82c64b5569928d2ec8344b8dffbd930da23d0004
tools-kintex7 08395cc8429031281fd024e5cbf071d521f03259
code-format be6615c28aedac9e423c5bc0cb602379ad775b18
logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd
halco 00ddc0f868b37be07bbf577f97168c4cef1205e6
hate c7483cedc3d76b8e7a4a65e7bc9a423131f40ce1
fisch 2147c148af5f681453fac8e81649bc087739afcc
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6
hxcomm a01ba278fb4994463a9e539aaeeadb950f05256e
hmf-fpga 4c64b3f40501cb1eb2b01728a1b42a828b255102
rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d
pywrap 83ddbad8a114b4730b82d299e8bd9da2a6ca5ebb
lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb
sctrltp b5f825007b842f44f3e6401f00cf93387e5e3f3c
hwdb 04c88357dab609aef7a8d36af58d10285d5cae51
visions-slurm 5e7ea560235b068fc12f26e3f0d002d415f76cf9
flange fcde2aafe69805487789ca0b1a8a245caf5fb8ed
lib-rcf 5b16326ae30ee08a322a6569887ca8bd2684c252

Table A.4: Software state used for the experiments on computing. The experiment code used to gather
the results presented in the first part of Chapter 6 is provided in the repository model-hw-correlation and
was used in combination with the shown software state and the container image 2019-01-09_1.img with
the visionary-dls app.

Repository Git hash

logger 8355792fd3e591d08381575fcf5c4b2547b5fe3d
bitter a1990af1e25edaa6d8dba5da979f294df7b05cfe
rant d54908fc9e0cf9f06bace1a4910a6feddd0bdc46
pywrap d17bf50aa098d098a1c34ebaca74493fb9153022
pyublas 85b4b20a10d16e3342b1ccc187893c2bef611899
pyplusplus 5a612a7f5372d832bebacc5377e78ffd2deabcde
uni 57efe4451fb58220ebbc47a5ee1803ffcf3b3fc8
frickel-dls 3a6ada473d7be11072a2a09cd278b35101bd2edb
pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f
hicann-dls-scripts b4cad5a8366502efa8c69a13ce826a802e71fd5d
libnux f66675bd5a95338acba45eab72eca664a269aff2
ppu-software 7110aea926bc5bdcf5d6a787611998824eadc547
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Table A.5: Software state used for the experiments on networks exhibiting bistable dynamics. The
experiment code used to gather the results presented in second part of Chapter 6 is provided in the repository
model-hw-wavy and was used in combination with the shown software state and the container image 2021-
09-03_1.img with the visionary-dls app.

Repository Git hash

calix 72e15b86b542cdebaae5b4c743bd36be54477d64
haldls 1b8886b3be50b5fedcd4e05bfa1b448b75ae1a2d
pyhid 82c64b5569928d2ec8344b8dffbd930da23d0004
tools-kintex7 08395cc8429031281fd024e5cbf071d521f03259
code-format be6615c28aedac9e423c5bc0cb602379ad775b18
logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd
halco 307aa73f4c4ffbbee734cb8c3752f9f584ecf260
hate f8718505f8f39d65537122bb28c59b2581e0106e
fisch 3c32848a3b1e82a60f7da7de7ea2b787b5229fc2
hxcomm ccb630dcda2f942f28ebde6977e622ae073605d0
hmf-fpga c816482bbe0f85468ab70a4f302a01bdd4e1ec9b
rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6
pywrap 550051ab0faad678e58cb456079b1ba45ad2230a
lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb
sctrltp be58599f60a8652b0404bf3a5f7dd3a3b4d1c303
visions-slurm 3777a9dc36a7067be3657ce06253efec32db260e
flange 2fb312fb4fc31634d3dbf74243c13a566b79810f
lib-rcf 211ea6afc811dcc9964dff3d5526048412b8e2ae
libnux 03f536b0e358ae5e473dba8c384a12f95d86b0cb
hwdb 13fadc068fc7bbaabef7ed678ef5237b423f00be

Table A.6: Software state used for the weight-driven structural plasticity experiments. The experi-
ment code used to gather the results presented in first part of Chapter 7 is provided in the repository model-

dls-structural and was used in combination with the shown software state and the container image 2019-
01-21_1.img with the visionary-dls app.

Repository Git hash

symwaf2ic 66a4a9126fb8040fdc1849e117c61a7dd4580c82
logger 8355792fd3e591d08381575fcf5c4b2547b5fe3d
bitter aa18d4a73a994a7e8590addbc40f6dc34a439b24
rant 8d5d65484667852ccfdb52843f0b6d4b6b067324
pywrap 85a6cfc104f52ef51310a4a61e28209daea2c1fc
pyublas cb8db753399719cd356afa1b2c749eb54c7c420a
pyplusplus 064993baaea33e81c93655d79d9a1a6204b4acd0
uni 9336fbc68346c00fcf3e410d08a1669394fe1148
frickel-dls 2db3700557933680044cd9833d3d2c355ff5aa5d
pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f
flyspi-rw_api 475f99bbf2f5bd4d5b065bd39ed9704e273ec748
dls2calib 032c45cbf4d2c21bdad1aa24f6dddd52233b5c55
hicann-dls-scripts 1635a36edb01fc96f51b0ca7a95e39f6c0099844
libnux 1c1592adf6f00683e5d30e613aff4a79d9a913ac
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TableA.7: Software state used for the STDP-driven structural plasticity experiments. The experiment
code used to gather the results presented in second part of Chapter 7 is provided in the repository model-hw-

correlation and was used in combination with the shown software state and the container image 2019-01-
09_1.img with the visionary-dls app.

Repository Git hash

logger 8355792fd3e591d08381575fcf5c4b2547b5fe3d
bitter aa18d4a73a994a7e8590addbc40f6dc34a439b24
rant acd5a3cd94fe91fa942e1da727e47025f00208c8
pywrap 158e5bb2b70f8c3f9b7d45e431c6105cb4dc301d
pyublas feaf60f2f920e30d588837dd6b0715eef23ed550
pyplusplus 064993baaea33e81c93655d79d9a1a6204b4acd0
uni e9135459841741e446e17f514e048fff74a8441f
frickel-dls 17c2d37c3bdad0a1f3b83260edd05dc5ba501a57
pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f
hicann-dls-scripts 3d84f5685059e2e2d96374ff64473f124884add2
libnux 0c46980e778162a893d1ae641db4c26e38c3256c
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