
Inaugural Dissertation
submitted to the

Combined Faculty for the Natural Sciences and Mathematics
of Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Multiscale Methods for High Performance
Uncertainty Quantification

Linus Seelinger

Author:
Born in:

Advisors:
Oral examination:

Linus Seelinger, MSc. Scientific Computing
Speyer
Prof. Dr. Peter Bastian and Prof. Dr. Robert Scheichl

Multiscale Methods for High Performance

Uncertainty Quantification

Linus Seelinger

Advisors: Prof. Dr. Peter Bastian and Prof. Dr. Robert Scheichl

September 2021

Linus Seelinger

Multiscale Methods for High Performance Uncertainty Quantification

Doctoral Thesis in Applied Mathematics, September 2021

Advisors: Prof. Dr. Peter Bastian and Prof. Dr. Robert Scheichl

Heidelberg University

Combined Faculty for the Natural Sciences and Mathematics

Abstract

Mathematical models of complex real-world phenomena result in computational
challenges, often necessitating the use of modern High Performance Computing
(HPC) systems and therefore parallelization. When solving Uncertainty Quantifica-
tion (UQ) problems on such models, these challenges only increase: Uncertainties in
input data or (in case of inverse problems) in measurements essentially contribute
to the overall dimensionality of the problem at hand.

This dissertation aims to close the gap between advanced models and advanced UQ
methods by three approaches: A parallelization scheme for an efficient hierarchical
inverse UQ method is devised, allowing to leverage the full potential of HPC systems;
efficient model hierarchies based on Localized Model Order Reduction (LMOR) are
investigated, allowing automatic generation of coarse models; and the resulting
tools are made available to the wider community as part of the modular and open
source MIT Uncertainty Quantification Library (MUQ).

Zusammenfassung
Mathematische Modelle komplexer Phänomene der realen Welt führen zu heraus-
fordernden numerischen Problemen, die oft nur mithilfe von Hochleistungsrech-
nern unter Parallelisierung gelöst werden können. Uncertainty Quantification
(UQ) auf solchen Modellen erhöht diese Schwierigkeiten weiter: Unsicherheiten in
Parametern oder (im Fall von inversen Problemen) in Messdaten erhöhen letztlich
die Dimensionalität des gesamten Problems.

Diese Dissertation zielt darauf ab, mit den folgenden drei Ansätzen zur Schließung
der Lücke zwischen fortschrittlichen UQ-Methoden und Modellen beizutragen: Eine
massiv parallelisierte Version eines effizienten hierarchischen UQ-Verfahrens für
inverse Probleme wird vorgestellt, was die Nutzung von Hochleistungsrechnern
möglich macht; effiziente Modellhierarchien basierend auf Localized Model Order Re-
duction (LMOR) werden untersucht, die das automatische Generieren vergröberter
Modelle erlauben; und die dabei entwickelten Software-Werkzeuge werden für die
Gemeinschaft als Teil der modularen und quelloffenen MIT Uncertainty Quantifica-
tion Library (MUQ) bereitgestellt.

v

Acknowledgement

First of all, I would like to thank my family: My parents for their loving support, in
particular my late father for supporting my interest in math and computing early on,
and my wonderful wife for making my life better in so many different ways (and
keeping me from eating toast all the time).

I would like to thank Peter Bastian, Ole Klein and Robert Scheichl for their su-
pervision and mentoring. Their guidance was extremely helpful throughout my
work.

Further, I would like to thank Peter’s and Robert’s research groups for a great
working environment and many fruitful discussions. In particular, I would like
to thank Dominic Kempf, René Heß and Steffen Müthing for frequent productive
exchange regarding the DUNE numerical software project.

Anne Reinarz has my gratitude for years of both enjoyable and fruitful collaboration
on the CerTest project relating to GenEO as well as uncertainty quantification on
ExaHyPE models. Likewise, since he joined, Jean Bénézech has become a highly
valued collaborator on CerTest, and I am looking forward to further work on applying
model order reduction in that setting.

For their collaboration on model order reduction, I would like to thank Christian
Engwer, Andreas Buhr and Chupeng Ma. It has been a great time working on
our joint project, and discovering direct links between model order reduction and
preconditioning lead to exciting results.

On the other side of my project (and of the pond), I would like to thank Andrew
Davis and Matthew Parno for fun and extremely useful collaboration on the MUQ
uncertainty quantification library. I am looking forward to future collaborations we
are currently planning.

I am also grateful to the administration staff at Heidelberg University for always
making things work, in particular Felicitas Hirsch, Herta Fitzer and Joachim Simon.

Finally, I would like to thank the bwHPC BwForCluster MLS&WISO and SuperMUC-
NG computing services for providing the computational resources needed to produce
my results. Their acknowledgement strings are therefore included at the end.

vii

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Contributions . 2
1.3 Thesis Structure . 3
1.4 Reading Guide . 5

2 Basics of Uncertainty Quantification 7
2.1 Physical Models . 8
2.2 Basic Concepts of Probability Theory 19
2.3 Uncertainty Quantification Problems 25

2.3.1 Forward problems . 25
2.3.2 Inverse problems . 26

2.4 Basic Numerical Uncertainty Quantification Algorithms 28
2.4.1 Illustrative Model . 29
2.4.2 Monte Carlo Methods . 31
2.4.3 Markov Chain Monte Carlo Methods 35

3 Advanced Uncertainty Quantification Methods 47
3.1 Methods Overview . 47
3.2 Multilevel Monte Carlo . 50
3.3 Multilevel Markov Chain Monte Carlo 52
3.4 Multiindex Markov Chain Monte Carlo 60

4 Efficient Models and Model Hierarchies for Multiscale Problems 67
4.1 Model Hierarchies . 68
4.2 Linking Robust Preconditioners and Model Order Reduction 70

4.2.1 Efficient Preconditioning using GenEO coarse spaces 70
4.2.2 Localized Model Order Reduction 76
4.2.3 GenEO Coarse Space in LMOR Theory 80
4.2.4 GenEO with Randomized Eigensolver 84

4.3 GenEO Virtual Overlap Implementation 90
4.4 Online/Offline Approach in Localized Model Order Reduction 93

ix

5 Modular and Parallel HPC Implementation 97
5.1 Introduction to MUQ . 98
5.2 Abstract Markov Chain Monte Carlo Framework 99
5.3 Multilevel / Multiindex MCMC . 101

5.3.1 Internal architecture . 101
5.3.2 Model interface . 103

5.4 Parallelized Multilevel / Multiindex MCMC 105
5.4.1 Model interface . 106
5.4.2 Internal architecture . 107

5.5 Dynamic load balancing . 109
5.6 Limits of Parallel Scalability . 111

6 Applications 115
6.1 Parameter Field Estimation - Poisson Equation 115

6.1.1 The Physical Model . 115
6.1.2 Results . 120

6.2 Multiindex Markov Chain Monte Carlo - Consistency check 122
6.2.1 The Physical Model . 122
6.2.2 Results . 124

6.3 Tsunami Origin Estimation - Shallow Water Equation 126
6.3.1 The Physical Model . 126
6.3.2 Results . 131

7 Conclusion 133
7.1 Future Work . 134

Bibliography 139

Acronyms 147

Symbols: Uncertainty Quantification 149

Symbols: Partial Differential Equations and Localized Model Order Re-
duction 151

List of Figures 153

x

Introduction 1
„I think it’s much more interesting to live not

knowing than to have answers which might be
wrong. I have approximate answers and possible
beliefs and different degrees of uncertainty [...]

— Richard P. Feynman

1.1 Motivation and Problem Statement

The above quote by Richard Feynman, an outstanding communicator of the scientific
method, illustrates a very fundamental principle: No observation, no model and no
prediction about reality will ever be fully accurate. Every measurement is limited in
accuracy by the device used to obtain it, and subtle aspects of reality may have been
missed in building seemingly good models.

This has been accounted for since the early days of rigorous science: Measurement
results are equipped with indications of their degree of reliability, and models by
their very name do not claim to be an absolute match of reality.

But what about model predictions? Clearly, they too are strongly affected by those
uncertainties, as weather forecasts remind us frequently. Historically, that aspect was
somewhat neglected, and understandably so: The computational resources needed
to solve complex models for realistic scenarios, let alone to treat stochastic behavior
appropriately, only became available over the last few decades.

Consequently, the field of Uncertainty Quantification (UQ), aiming for the com-
putationally efficient treatment of uncertainties in complex models, is fairly new.
Drawing from fields concerned with the efficient solution of complex models as well
as stochastics, it can reasonably be seen as interdisciplinary. However, a certain gap
between the disciplines can be observed in current research: Highly complex simu-
lations are often outfitted with simpler statistical methods, while more advanced
statistical methods are often only applied to rather simple problems.

1

Considering that advanced simulation tools are of ever increasing importance in
science and engineering, ranging from the exploration of theoretical models all the
way to safety-critical engineering applications, it is clear that closing this gap is
essential.

The aim of this thesis is to improve that situation by three approaches: Advancing
the efficiency of UQ methods geared towards large-scale models by employing
model hierarchies, improving techniques for constructing such model hierarchies
and providing an open, modular and model-agnostic technological basis to support
the application and further development of those methods in future research.

1.2 Contributions

At its core, this dissertation contains the following contributions to current re-
search:

• Parallelization strategies for Multilevel Markov Chain Monte Carlo (MLMCMC)
and Multiindex Markov Chain Monte Carlo (MIMCMC) as well as a modular
software framework supporting Multilevel Monte Carlo (MLMC), MLMCMC
and MIMCMC in a sequential and, most importantly, in a highly scalable paral-
lel setting. We demonstrate parallel efficiency in practical applications. The
software framework is made publicly available as part of the MIT Uncertainty
Quantification Library (MUQ) and intends to make those methods available to
a wider community.

• An extension of an MLMCMC method for the efficient solution of inverse UQ
problems to a more general multiindex case. While the general feasibility of
such a method is straightforward and has been proven before, we propose a
strategy for using samples from coarser models to accelerate the method on
finer models in analogy to an established multilevel method. This allows for
gains in efficiency when solving inverse problems in case multiple independent
coarsening strategies exist for the model.

• Coupling of these methods to realistic large-scale models demonstrating their
fitness for practically relevant High Performance Computing (HPC) applica-
tions.

• The discovery of a theoretical link between Model Order Reduction (MOR)
methods and the Generalized Eigenproblems in the Overlaps (GenEO) coarse
space originating from robust preconditioning of Partial Differential Equation

2 Chapter 1 Introduction

(PDE) solvers (joint work with Chupeng Ma and Andreas Buhr). This gives a
theoretical justification for employing a sightly modified version of GenEO as
a model order reduction method. Further, we can exchange methods between
the two fields, and demonstrate practical gains in GenEO preconditioner
robustness when applying a randomized eigensolver originally designed for
MOR methods.

• Development of coarsening strategies suitable for hierarchical UQ methods. As
part of the Tsunami application (joint work with Anne Reinarz), we investigate
changing the mathematical model itself for PDE solver performance. Working
towards a composite materials application (joint work with Jean Bénézech),
we propose an online/offline approach reusing large parts of an MOR model
for subsequent samples. While each of these approaches is specific to a certain
type of model, they substantially increase efficiency in solving inverse problems,
and may be transferred to other applications as well.

• Reimplementation of GenEO components in the Distributed and Unified Nu-
merics Environment (DUNE) to support unstructured grids (joint work with
Peter Bastian). This is an extension to previous work published by the author
in [SRS20]. Due to restrictions of DUNE grid implementations, communication
on overlapping grids as needed for GenEO is only directly available on struc-
tured grids. We overcome this by inferring the overlaps from discretization
matrices constructed on non-overlapping subdomains. As a result, GenEO in
DUNE can be applied to advanced engineering problems.

• Various further contributions to the MUQ and DUNE projects.

1.3 Thesis Structure

Chapter 2: Basics of Uncertainty Quantification

We begin with a quick review of basic stochastic concepts underlying the following
chapters, and introduce the main types of UQ problems to be treated in a general
way. As the foundations of the more advanced methods presented later, we introduce
the most basic Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) methods
for solving these problems.

1.3 Thesis Structure 3

Chapter 3: Advanced Uncertainty Quantification Methods

Here we present advanced multilevel and multiindex versions of the above algo-
rithms. By exploiting model hierarchies, these algorithms allow the treatment of far
more challenging UQ problems than their respective basic forms. While analogous
to multigrid methods in PDE solvers, they are very general regarding the choice of
model hierarchy.

Chapter 4: Efficient Models and Model Hierarchies for Multiscale Problems

Creating suitable model hierarchies for multilevel and multiindex UQ methods
allows for many gains in computational efficiency. We give an overview of different
approaches and present a specific choice. Making use of a GenEO coarse space
originating from preconditioning by interpreting it as a Localized Model Order
Reduction (LMOR) method, we can demonstrate significant gains in efficiency using
an online / offline approach.

Chapter 5: Modular and Parallel HPC Implementation

In order to effectively apply the multilevel and multiindex methods from Chapter 3
to large scale UQ problems on computationally challenging models, we need to
employ modern HPC systems. As a result, massive parallelization is required. In the
setting of inverse problems, this is far from trivial since MLMCMC and MIMCMC type
methods introduce numerous data dependencies. We present a highly scalable and
model agnostic implementation by highlighting its most relevant design decisions
and modular architecture.

Chapter 6: Applications

Here we demonstrate real-world effectiveness of our methods and software packages
on large-scale HPC applications. We investigate the algorithms’ behaviors as well as
parallel scalability.

Chapter 7: Conclusion

In the last chapter, we finally give a comprehensive conclusion to this thesis and its
results as well as an outlook on possible future research opportunities.

4 Chapter 1 Introduction

1.4 Reading Guide

The following section intends to guide readers to the aspects of this thesis that
should be most relevant to them.

Modeling experts might be most interested in the applications in chapter 6 that
show how the UQ methods investigated here can be used to answer questions in
realistic scenarios. A particularly relevant point is the simple interface between
forward models and UQ methods. This interface can be carried over into software
implementations and, when implemented in a modular framework as presented
in chapter 5, allows straightforward application of numerous existing UQ methods
to the same model. Further, parallel scalability on the UQ side as presented here
can be exploited to solve challenging UQ problems without investing too much
in the scalability of the forward model itself. Chapter 4 may serve as inspiration
when it comes to finding and exploiting hierarchies in forward models to accelerate
hierarchical UQ methods.

UQ method developers on beginner level should start with the UQ basics in chap-
ter 2. For more advanced readers, the MLMCMC and MIMCMC methods covered in
chapter 3 should be the most interesting regarding methods and algorithms. The
applications in chapter 6 demonstrate their effectiveness in practice. Further, the
implementation chapter in chapter 5 may serve as motivation to conduct implemen-
tations of new methods in existing modular frameworks in order to build on top
of existing work where possible, and have an interface that can easily couple to
existing forward models.

HPC experts and computer scientists might be most interested in the parallel
architecture devised in chapter 5 to facilitate large-scale UQ solvers, as well as
the scalability results demonstrating its effectiveness in chapter 6. Further, the
online/offline approach to localized model order reduction in chapter 4 highlights
opportunities in solving approximations of numerous related large-scale PDE prob-
lems at very low computational cost.

To MOR experts, we recommend the theoretical link between robust and scalable
preconditioning of PDE solvers and LMOR presented in chapter 4. There we show
that methods originating from both areas are essentially equivalent and both the-
oretical and practical tools may be exchanged between the fields. Further, the
hierarchical UQ methods introduced in chapter 3 and demonstrated in practice in
chapter 6 may provide inspiration in how to use MOR methods in the construction
of model hierarchies accelerating UQ solvers.

1.4 Reading Guide 5

Finally, numerical PDE experts may also be interested in the link between precondi-
tioning and MOR in chapter 4 as well as methods from MOR that can be transferred.
More generally, that chapter details how PDEs offer numerous opportunities for
constructing model hierarchies for fast UQ solvers. Further, the abstract interface
between forward models and UQ as shown in the implementations in chapter 5
can easily be exploited to apply existing UQ methods and codes to a specific PDE
model.

6 Chapter 1 Introduction

Basics of Uncertainty
Quantification

2
Physical processes are often affected by a wide variety of uncertainties. This fully
and immediately transfers to mathematical models aiming to accurately replicate
them. Beyond that, even models themselves may add further uncertainties.

The importance of treating uncertainty in models cannot be overstated, since a
seemingly good but actually unreliable result can easily have fatal consequences
in safety-critical applications. In fact, one might argue that no result is actually
valuable until its reliability can be quantified.

Some frequent types of such uncertainties are parameters only known up to a certain
confidence, measurement devices introducing errors, model predictions that can
only be computed approximately, or chaotic physical processes. Since they may have
significant effects on results, these uncertainties need to be accounted for when
constructing and employing models.

Expressing and analyzing uncertainty in mathematical models necessitates a consis-
tent theoretical framework. Whether the uncertainty in question is of aleatoric or
epistemic nature, the well-established probability theory is a suitable choice.

In the aleatoric case, where parts of the model itself are considered to be truly
random, the model’s inherent randomness directly coincides with the notion of
random events in probability theory. In case of epistemic uncertainty, where some
properties are assumed to have a true value but cannot be determined exactly,
probability distributions can be employed to represent our confidence in parameters,
model predictions or measurements.

We begin with a brief review of physical models based on a Partial Differential
Equation (PDE) in section 2.1. Section 2.2 presents the probabilistic basics needed to
express uncertainty in models, which we then use to introduce abstract Uncertainty
Quantification (UQ) problems in section 2.3. We proceed to introduce basic UQ
algorithms in section 2.4 to numerically solve such problems, and demonstrate them
on a simple example. These algorithms will be extended in chapter 3 to significantly
improve computational efficiency.

7

2.1 Physical Models

Physical processes are often suitably described in terms of a PDE. Later we will
exploit certain properties of such models in order to construct efficient UQ methods.
Therefore we give a brief review of how PDE models can be derived from simple
assumptions on the underlying physics, present an abstract Finite element (FE)
method to numerically solve them and introduce all notation we require in the
following. This section is based on [Bas12; BS07].

As a specific example, we consider subsurface fluid flow, a simple yet in many regards
representative case. The state of a fluid can accurately be described in terms of the
position and velocity of each individual atom or molecule. In order to compute the
fluid’s evolution over time, we need to take into account the interactions between
each of these particles as well as possible outside forces. When looking at large-scale
systems, like predicting the groundwater supply in an entire region across decades
or centuries, this approach is entirely intractable from a computational point of view:
Simply storing the state of each particle in that large system is far out of reach for
any computer available, let alone computing the enormous number of interactions.
Even worse, we would have to resolve extremely short time scales to capture particle
interactions.

Fortunately however, for many practical applications, resolving each individual
particle is not of interest at all. Realistic questions might be: Will a certain well
provide enough water for a town? As an answer to that question a well output
expressed in cubic meters per second will clearly be more appropriate than an
enormous set of particle states. As it turns out, for the model itself it is also
often enough to consider quantities on macroscopic scale, for example densities or
velocities, instead of tracking particle states on the microscopic scale. We assume
that these macroscopic quantities can be accurately represented in terms of (often)
continuous and smooth functions.

Derivation of a simple PDE

In case of fluid flow, we may consider the fluid’s density ρ : Ω× Σ→ R on a spatial
domain Ω ⊂ R3 and time interval Σ ⊂ R. The fluid’s mass Mω(t) at time t in a
subdomain ω ⊂ Ω is then simply given by the integral

Mω(t) =
∫
ω
ρ(x, t)dx.

8 Chapter 2 Basics of Uncertainty Quantification

This is now a model of the macroscopic state of the fluid in space and time. In order
to make this an actually useful model, we still need to model the evolution of the
system’s state over time. As it turns out, simply assuming conservation of mass is
already sufficient to imply the system’s temporal behavior. Conservation of mass
means, in this case, that Mω may only change if mass is injected or removed within
ω or if mass flows across the boundary ∂ω. Introducing the velocity v : Ω× Σ→ R3,
we can express that with the equation

Mω(t+ δt)−Mω(t) =
∫ t+δt

t

(∫
ω
f(x, r)dx−

∫
∂ω
ρ(x, r)v(x, r) · n(x)ds

)
dr (2.1)

where δt is an arbitrary time step and n is the unit outer normal to ∂w. Further,
f is a source function representing mass added or removed, for example through
wells.

We may now use
∫ t+δt
t g(r)dr = δtg(t) + O(δt2) on the left hand side of eq. (2.1)

assuming sufficient smoothness of Mω and further use Gauß’ theorem
∫
ω∇ · udx =∫

δω u · nds to convert the boundary integral into a domain integral. Passing to the
limit, we arrive at

∂t

∫
ω
ρ(x, t)dx+

∫
ω
∇ · (ρ(x, t)v(x, t))dx =

∫
ω
f(x, t)dx.

Since the above equation holds for any subdomain ω, we can follow the argument
in [Smi86, Section 74] to conclude the differential form of the mass conservation
law

∂tρ(x, t) +∇ · (ρ(x, r)v(x, r)) = f(x, t), x ∈ Ω, t ∈ Σ. (2.2)

This equation further simplifies due to ∂tρ = 0 in case of incompressible fluids and
we arrive at

∇ · v(x, r) = f(x, t), x ∈ Ω.

2.1 Physical Models 9

From mass conservation to subsurface flow

In order to model fluid flow in soil, or more general in porous media, it is often
enough to apply the same reasoning as above. Note that by defining the system state
only by density, we ignore the fluid’s momentum that critically contributes to vorticity.
However, since flow in porous media tends to occur at very low velocities, we allow
ourselves to ignore momentum in favor of achieving a more simple model.

Modeling porosity, the fraction of the porous material’s volume available to fluid
flow, we augment eq. (2.2) by a porosity function Φ : Ω→ (0, 1).

∂t(Φ(x)ρ(x, t)) +∇ · (ρ(x, r)v(x, r)) = f(x, t), x ∈ Ω, t ∈ Σ. (2.3)

Darcy’s law relates fluid velocity to pressure gradients via

v = −K
µ

(∇p− ρg),

where K is the permeability tensor modeling pore structure of the porous medium,
µ is the dynamic viscosity of the fluid and g is the gravity vector. Inserting this into
eq. (2.3), we arrive at

∂t(Φρ)−∇ · (ρK
µ

(∇p− ρg)) = f in Ω× Σ.

Further assuming a constant density ρ(t) = ρ, i.e. an incompressible fluid, we
obtain

−∇ · (ρK
µ

(∇p− ρg)) = f/ρ in Ω× Σ, (2.4)

where the only unknown is pressure.

In section 6.1 we will use this model in a simplified form, where assuming zero
gravity we arrive at Poisson’s equation

−∇ · (κ∇u) = f in Ω (2.5)

where we solve for u given parameters κ and f . This serves as a frequently used
model problem in numerous fields of applied mathematics, since it exposes properties

10 Chapter 2 Basics of Uncertainty Quantification

representative of a large class of PDE models despite its simplicity. The derivation of
the other models in chapter 4 and chapter 6 is outside the scope of this work, but
can be conducted in a similar way.

Types of PDEs

Linear PDEs of second order (i.e. ones consisting of at most second derivatives) such
as the one above may, assuming continuous differentiability in the coefficients, be
expressed in a general form:

Lu = −
n∑

i,j=1
aij(x)∂xj∂xiu+

n∑
i=1

bi(x)∂xiu+ c(x)u = f in Ω, (2.6)

where L is called the differential operator. It can be classified in the following way:

Definition 1 (Classification of second order linear PDEs). For a differential operator
L in the form of eq. (2.6), define (A(x))ij = aij(x) and b(x) = (b1(x), . . . , bn(x))T

for every x ∈ Ω. L is called

• elliptic in x if all eigenvalues of A(x) are nonzero and have the same sign,

• hyperbolic in x if all eigenvalues are nonzero, n− 1 eigenvalues have the same
sign and the remaining eigenvalue has the opposite sign,

• parabolic in x if one eigenvalue is zero, the remaining eigenvalues have the
same sign and the n× (n+ 1) matrix (A(x), b(x)) has full rank.

The operator is said to be elliptic, hyperbolic or parabolic if the respective property
holds for the entire domain Ω.

These classes of PDEs cover many practically relevant models including the appli-
cations in this thesis. For example, it is easy to verify that eq. (2.5) is an elliptic
PDE, whereas the tsunami model in section 6.3 is based on a hyperbolic one. The
classification itself plays an important role as it turns out that, while there certainly
are similarities, each class requires its own theoretical and numerical treatment. The
elliptic and, to a lesser extent, hyperbolic classes of PDEs will be the most prevalent
in this work. For brevity we restrict ourselves to the elliptic class here and refer to
[LeV02] for an extensive introduction to the hyperbolic class.

2.1 Physical Models 11

Towards a solution: Variational form and existence

One main goal of PDE theory is to investigate the existence and uniqueness of
a solution. Theoretical treatment and numerical solution of PDEs are typically
conducted in an abstract variational framework. We proceed to derive the variational
form of Poisson’s equation eq. (2.5), imposing boundary conditions that ensure
uniqueness as we will later see. Again this serves as a specific example, and an
analogous approach may be taken for many other PDEs. The PDE with Dirichlet
boundary conditions (i.e. fixed value of solution prescribed) then reads

−∇ · (κ∇u) = f in Ω (2.7)

u = 0 on ∂Ω. (2.8)

First, we multiply both sides of eq. (2.7) by a test function v with v|∂Ω = 0 and
integrate.

∫
Ω
−∇ · (κ∇u)vdx =

∫
Ω
fvdx.

Applying integration by parts on the left hand side and exploiting v|∂Ω = 0, we
arrive at

∫
Ω

(κ∇u) · ∇vdx︸ ︷︷ ︸
:=a(u,v)

=
∫

Ω
fvdx︸ ︷︷ ︸

:=l(v)

.

This allows us to formulate an abstract variational PDE in terms of the bilinear form
a and the linear form b:

Find u ∈ U such that: a(u, v) = l(v) ∀v ∈ V. (2.9)

Again, many other PDEs can be treated in an analogous way.

Clearly the existence of a solution as well as its properties strongly depend on the
as of yet unspecified function spaces U and V . It turns out that the space C1(Ω̄) of
differentiable functions on the closed domain with a norm based on a, the obvious
choice for the PDE above, unfortunately leads to inconsistencies. Specifically, C1(Ω̄)
is incomplete with respect to norms based on integrals. This issue can however be

12 Chapter 2 Basics of Uncertainty Quantification

mitigated by resorting to Sobolev spaces, in this case H1
0(Ω). Their introduction is

outside the scope of this work and we refer to [BS07, Chapter II]. Existence and
uniqueness is then guaranteed by the following theorem.

Theorem 1 (Lax-Milgram). Let a : V ×V → R be a symmetric and continuous bilinear
form and l : V → R be a linear form.

If a is coercive, i.e.

a(v, v) ≥ α‖v‖2 ∀v ∈ V,

then eq. (2.9) has a unique solution.

Proof. See [BS07, Theorem 2.5].

Under mild assumptions on the coefficient κ, theorem 1 can be verified for Poisson’s
equation (see [Bas12, Section 6.2]). A full presentation of PDE theory exceeds the
scope and we refer to [BS07] for a more rigorous treatment.

In addition to coercivity, the following property will play a role later:

Definition 2 (Stability). A bilinear form a : V × V → R is called stable, if

|a(u, v)| ≤ γ‖u‖‖v‖ ∀u, v ∈ V,

and γ is called the stability constant.

Numerical solution

For elliptic problems, we can use a conforming FE method to reduce an approximate
PDE solution to the solution of a linear system. Instead of trying to solve the
variational problem eq. (2.9) for the entire function space V , we instead restrict
ourselves to a finite dimensional subspace Vh ⊂ V .

Find uh ∈ Vh such that: a(uh, v) = l(v) ∀v ∈ Vh. (2.10)

For the subspace Vh, we assume a basis

2.1 Physical Models 13

Φh = {φh1 , . . . , φhNh}.

The approximate solution uh may now be expressed in terms of that basis:

uh =
Nh∑
j=1

zjφj .

Inserting this basis representation into the variational problem eq. (2.10), it fol-
lows

a(uh, v) = l(v) ∀v ∈ Vh (2.11)

⇐⇒ a(
Nh∑
j=1

zjφj , φi) = l(φi) ∀i = 1, . . . , Nh (2.12)

⇐⇒
Nh∑
j=1

zj a(φj , φi)︸ ︷︷ ︸
:=Aij

= (φi)︸︷︷︸
bi

∀i = 1, . . . , Nh (2.13)

⇐⇒ Az = b (2.14)

The resulting linear system can now be solved with established methods. For an
overview on iterative solvers for linear systems, refer to e.g. [Saa07]. Constructing
computationally efficient solvers may however be challenging if the matrix A is
ill-conditioned, and we will concern ourselves with that later in section 4.2.1.

This abstract procedure, known as the Galerkin method, works for any subspace Vh.
But how to construct a suitable subspace? Especially for arbitrarily shaped domains
Ω this is far from obvious. One widely used approach is to make use of a mesh on
Ω.

Definition 3 (Mesh). Given a domain Ω ⊂ Rn, a mesh on Ω is a finite set

T = {t0, . . . , tm}

of bounded domains ti, called elements, with Lipschitz boundary partitioning Ω in
the sense of

14 Chapter 2 Basics of Uncertainty Quantification

Ω̄ =
m⋃
i=0

t̄m, ti ∩ tj = ∅ ∀i 6= j.

Further, we define an element’s size as h(t) = maxx,y∈t̄ ‖x− y‖ and the overall mesh
size as h = maxt∈T h(t).

In order to simplify the construction of a basis, a restriction to conforming and affine
meshes is helpful.

Definition 4 (Affine mesh). A mesh T is called affine if each element ti is constructed
from an affine map µti : Ω̂→ Ω via

t̄i = µti(Ω̂),

where Ω̂ is either the reference simplex

Ŝn =
{

(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, 0 ≤
n∑
i=1

xi ≤ 1
}

or the reference cube

Q̂n = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1} .

Definition 5 (Conforming mesh). An affine mesh T in Rn is called geometrically
conforming if for any t, t′ ∈ T it holds that t ∩ t′ is either empty or a common face,
i.e. a simplex or cube of dimension less than n.

Based on a conforming affine mesh it is now easy to construct a suitable basis.

Definition 6 (Pk and Qk finite elements). Let T be a simplicial conforming affine
mesh on the domain Ω. Based on polynomials of degree k

Pnk = {u ∈ C∞(Rn) : u(x) =
∑

0≤|α|≤k
cαx

α},

the Pk space on T is defined as

2.1 Physical Models 15

Pk(T) = {u ∈ C0(Ω̄) : u|t̄ ∈ Pnk ∀t ∈ T .}

Likewise, for a cuboid conforming affine mesh, the polynomial space

Qn
k = {u ∈ C∞(Rn) : u(x) =

∑
0≤|α|∞≤k

cαx
α}

is used to define the corresponding Qk space

Qk(T) = {u ∈ C0(Ω̄) : u|t̄ ∈ Qn
k ∀t ∈ T .}.

A basis for Pk(T) and Qk(T) can now be constructed using Lagrange polynomials
on the respective reference element and transforming them to the mesh elements
[BS07][Chapter 5].

Finally, for a domain Ω with a corresponding conforming affine mesh T , the basis of
Pk(T) or Qk(T) may be used to form a basis of the finite dimensional space Vh. The
construction of the Galerkin method is therefore complete.

Note that there are numerous alternative ways to construct a FE type method. For
example, discontinuous Galerkin methods allow for discontinuous function spaces
and are frequently applied in flow problems [Kan07]. Another example is that
the assumption Vh ⊂ V may also be dropped in order to approximate boundaries
that cannot be exactly matched by elements [CR72]. Those cases exceed the scope
however.

It remains to show how the approximation error behaves that was introduced by
substituting V by the lower-dimensional space Vh in eq. (2.10). A key result is the
following.

Lemma 1 (Céa). Let a be a coercive bilinear form with coercivity constant α and
stability constant C, i.e.

|a(u, v)| ≤ C‖u‖‖v‖.

Further assume Vh ⊂ V , let u denote the solution of the variational problem eq. (2.9)
and uh the solution of the finite-dimensional problem eq. (2.10). Then it holds

16 Chapter 2 Basics of Uncertainty Quantification

‖u− uh‖a ≤
C

α
inf
v∈Vh
‖u− vh‖a.

Proof. For the solutions u and uh, we have by definition

a(u, v) = l(v) ∀v ∈ V,

a(uh, v) = l(v) ∀v ∈ Vh.

By subtraction, this implies

a(u− uh, v) = 0 ∀Vh. (2.15)

Now for any vh ∈ Vh, we can conclude

α‖u− uh‖2a ≤ a(u− uh, u− uh)

= a(u− uh, u− vh + vh − uh)

= a(u− uh, u− vh) + (u− uh, v − uh)︸ ︷︷ ︸
=0 due to eq. (2.15)

≤ C‖u− uh‖a‖u− vh‖a

⇐⇒ ‖u− uh‖a ≤
C

α
‖u− vh‖a

Since the last inequality holds for all of Vh, it follows

‖u− uh‖a ≤
C

α
inf
v∈Vh
‖u− vh‖a.

Lemma 1 shows that the approximation error introduced by solving the variational
problem in Vh boils down to the question of how well the solution can be approx-
imated in the space Vh. Since we construct Vh from piecewise polynomials, this
question can be answered by interpolation results. Clearly the approximation behav-
ior depends strongly on the regularity of the solution, the structure of the mesh as
well as the polynomial basis used.

2.1 Physical Models 17

Definition 7 (Shape regularity). A sequence of meshes {Tν : ν ∈ N} is called Shape
regular if κ2 > 0 indep. of ν s.t.

∀ν ∈ N,∀t ∈ Tν : hν(t)
ρν(t) ≤ κ2.

ρ(t) diameter of largest ball that can be inscribed in t

Theorem 2 (Pk approximation result). Let {Tν : ν ∈ N} be a sequence of affine and
shape regular simplicial meshes on Ω with hν → 0. Then for the interpolation operator
Iν : Hk(Ω)→ Pk−1(Tν) the following error bound holds:

‖u− Iνu‖m,Ω ≤ Chk−m|u|k,Ω ∀u ∈ Hk(Ω), 0 ≤ m ≤ m,

where the constantC depends only on the shape regularity constant and space dimension
of Ω.

Proof. See [Bas12, Theorem 8.10].

In this result, Hk(Ω) is the Sobolev space of order k on the domain Ω with the
associated seminorm | · |k,Ω, which becomes a true norm on the left hand side since
(u − Iν)|∂Ω = 0. Again for the purposes of this thesis it is enough to think of the
Sobolev space Hk as a completion of Ck and we refer to [BS07, Chapter II] for
details.

Combining theorem 2 with lemma 1 and some more technical intermediate steps
left out here for brevity, an a priori error estimate for the FE method can be shown
([Bas12, Theorem 8.16]):

‖u− uh‖1,Ω ≤ Chk−1‖f‖k−2,Ω.

This result is of course restricted to the assumptions made above. However, it is very
representative of numerous numerical PDE methods in the sense that their respective
analysis typically provides a priori estimates of that form. The convergence behavior
depending on polynomial degree and mesh width to a certain power can later be
used to satisfy the assumptions on accuracy per cost required by multilevel UQ
methods in chapter 3. Simply changing mesh width across levels is therefore often
enough to generate suitable model hierarchies. This and some more advanced
approaches will be discussed in chapter 4.

18 Chapter 2 Basics of Uncertainty Quantification

2.2 Basic Concepts of Probability Theory

This section introduces the underlying probability theory notions and tools required
later to formulate and treat probabilistic models. In particular, uncertain parame-
ters and measurements will be expressed using random variables, and so will be
corresponding model predictions. The numerical methods employed will then aim
to efficiently approximate the distributions of the unknown random variables, or
statistical moments derived therefrom.

Anyone familiar with probability theory, specifically Markov chains, can easily skip
this section, as it is simply a review of well-established probability theory. We largely
follow the presentation in [SZ21] and also draw from [Sul15]. For readers new to
probability, this should give sufficient insight to follow subsequent chapters.

As a very first step, we begin to define the most basic component of probability
theory: A measurable space. Its purpose is essentially to define a set of possible
random events, to which we later assign individual probabilities. In case of regular
dice, we might have six possible events. In case of modeling an unknown physical
parameter, we might actually consider the entirety of the real numbers R as the set
of possible events.

Definition 8 (Sample space and σ-algebra). We denote a set of underlying random
events by Ω 6= ∅. Then, we call a subset of its power set F ⊂ Pot(Ω) a σ-Algebra
over Ω if it holds

1. Ω ∈ F ,

2. A ∈ F ⇒ A{ ∈ F ,

3. Ai ∈ A ∀i ∈ N⇒
⋃
i∈NAi ∈ F .

Together, we call (Ω,F) a measurable space and any set A ∈ F a measurable set in
that space.

Now that we have a structure to hold basic and ’combined’ events, we can proceed
to assign probabilities to them. To that end, we introduce measures on measurable
spaces.

Definition 9 (Measure and probability measure). Given a measurable space (Ω, F),
we call a function µ : F → R+

0 a measure if

1. µ(∅) = 0 and

2.2 Basic Concepts of Probability Theory 19

2. for disjoint sets Ai ∈ F , i ∈ N, it holds

µ(
⋃
i∈N

Ai) =
∑
i∈N

µ(Ai).

Further, in case µ(Ω) = 1, we call µ a probability measure.

We will further need the notion of a property holding almost everywhere with respect
to a measure.

Definition 10 (Null set and properties holding almost-everywhere). For a measure
µ, we call N ∈ F a null set if µ(N) = 0.

If there is a null set A such that a certain property holds for all elements of A{, we
say this property holds µ-almost everywhere.

We will often work with measurable spaces that have a specific associated measure,
which leads us to the following definition.

Definition 11 (Measure space and probability space). When extending a measurable
space (Ω,F) by a measure µ defined on it a measure space and denote it by (Ω,F , µ).

In case of a probability measure P, we refer to the measure space (Ω,F ,P) as a
probability space.

When mapping random events to another space in a suitable way, as might be the
case when mapping stochastic parameters to stochastic model predictions, subsets
of the image could be measured by their corresponding preimages. To that end, we
first define measurable functions.

Definition 12 (Measurability of functions). A function f : Ω1 → Ω2 mapping
between two measurable spaces (Ω1,F1) and (Ω2,F2) is called F1/F2-measurable
if f−1(A2) ∈ F1 holds for all A2 ∈ F2.

Now we can proceed to define the measure implied on the image space of such a
function.

20 Chapter 2 Basics of Uncertainty Quantification

Definition 13 (Pushforward measure). For a measurable function f : Ω1 → Ω2

defined on a probability space (Ω1,F1, µ) and a measurable space (Ω2,F2), we
define the pushforward measure

f∗(A2) := µ(f−1(A2)) ∀A2 ∈ F2.

It is easy to show that the pushforward f∗ is actually a measure on (Ω2,F2).

For most of the following work, we will make use of the following special case.

Definition 14 (Random variable). A measurable function X : Ω→ V , where V is a
Banach space, defined on measurable spaces (Ω,F) and (V ,F2) is called a V -valued
Random Variable (RV).

Note that in the following, we often implicitly assume F and F2 to be suitably
defined and focus entirely on the definition of the RV as a mapping.

Since a RV is itself a measurable function, it also implies its own pushforward
measure when defined on a probability space.

Definition 15 (Distribution of a RV). Let X a RV defined on a probability space
(Ω,F ,P). We call the pushforward measure PX := X∗P the RV’s distribution.

In the following, we write X ∼ µ to indicate that the RV X has distribution µ.

While the goal of many methods introduced in the following sections is to determine
the entire distribution of parameters or model predictions, higher-level statistics
(expectation values, variances etc.) of these distributions are often of interest.
Aside from giving an easy to grasp understanding of a potentially high-dimensional
resulting distribution, they also play a key role in analyzing the accuracy and
efficiency of those methods. Since they are typically defined as integrals, we first
have to introduce the Bochner integral as a generalization of the Lebesgue integral
(for a more detailed introduction, refer to e.g. [Bau01]).

Definition 16 (µ-simple functions). We call a measure space (Ω,F , µ) (or the
measure µ itself) σ-finite if there exists a countable set (Ai)i∈N ∈ F such that

⋃
i∈N

Ai = Ω and µ(Ai) <∞ ∀i ∈ N.

2.2 Basic Concepts of Probability Theory 21

A function f : Ω→ V defined on such a σ-finite measure space is called µ-simple if
we can represent it based on finitely many event sets, that is

f =
n∑
i=1

IAivi,

where vi ∈ V , Ai ∈ F and µ(Ai) <∞ holds for all 1 ≤ i ≤ n.

Definition 17 (Bochner integral). A function f : Ω → V defined on a σ-finite
measure space (Ω,F , µ) and a Banach space V is called µ-Bochner integrable if

1. a sequence of µ-simple functions fn =
∑N
i=1 IAn,ivn,i exists such that limn→∞fn =

f µ-almost everywhere and

2.
limn→∞

∫
Ω
‖f(ω)− fn(ω)‖dµ(ω) = 0.

In that case, the Bochner integral is defined as

∫
Ω
f(ω)dµ(ω) := limn→∞

n∑
i=1

µ(An,i)vn,i.

Based on that, we can introduce the expectation value of a RV.

Definition 18 (Expectation value). For a RV X : Ω→ V , we define its expectation
as

E[X] :=
∫

Ω
X(ω)dP(ω)

if the integral exists.

We can now proceed to introduce the covariance operator, which can be seen as
indicating the spread of and relations between different components of a RV.

Definition 19 (Covariance operator). Given two RVs X : Ω → Rn and Y : Ω →
Rm defined on a probability space (Ω,F ,P), we define the covariance operator
cov(X,Y) : Rm → Rn by

〈v, cov(X,Y)w〉 =
∫

Ω
〈X − E[X], v〉〈Y − E[Y], w〉dP

22 Chapter 2 Basics of Uncertainty Quantification

provided the integral exists for any preimage of the operator.

Definition 20 (Variance and covariance matrix). In case of a RV X : Ω→ R defined
on a probability space (Ω,F ,P), we define the variance of X as

V(X) := E[(X − E[X])2] = E[X2]− E[X]2.

For RVs X : Ω → Rn and X : Ω → Rm this can be generalized to the algebraic
representation of the covariance operator, namely the covariance matrix

Cij = E[(Xi − E[Xi])(Yj − E[Yj])] ∈ Rn×m.

Note that for a single RV X in R1 it holds C11 = V[X].

When treating inverse UQ problems, we will make use of Markov Chain Monte Carlo
(MCMC) type methods. Therefore, we introduce the underlying notion of Markov
chains and related concepts here, following [Beh00] and [Bro+11]. First of all, a
Markov chain is a special case of a stochastic process, which is defined as follows.

Definition 21 (Stochastic process). Given a set S, an S-valued stochastic process is
a probability space (Ω,F ,P) together with random variables Xk : Ω→ S, k ∈ N0.

A Markov chain is now a stochastic process where a random variable Xk may only
depend on its predecessor Xk−1.

Definition 22 (Markov chain). An S-valued stochastic process X0, X1, ... is called
a Markov chain if for every k ∈ N and arbitrary i0, ..., ik−1, j ∈ S it holds

P(Xk = j|X0 = i0, ..., Xk−1 = ik−1) = P(Xk = j|Xk−1 = ik−1).

It is said to have stationary transition probabilities if the distribution of Xk+1 given
Xk does not depend on k.

Note that while Markov chains can, in case of finite S, be defined purely in terms of
transition probabilities, that more elementary definition is ultimately equivalent to a
stochastic process as above (see [Beh00][Theorem 1.4]). For brevity, we therefore
directly work with the definition based on stochastic processes.

2.2 Basic Concepts of Probability Theory 23

The stationarity property will play a key role in MCMC methods, and it is defined as
follows.

Definition 23 (Stationarity of stochastic processes). A stochastic process X0, X1, ...
is called stationary if for every k ∈ N the distribution of the k-tuple

(Xn+1, ..., Xn+k)

does not depend on n.

Another property relevant to MCMC is autocorrelation. In MCMC we are indirectly
generating samples from a target distribution using a Markov chain. Low auto-
correlation means we achieve near independent samples, leading to high quality
estimates with few samples, while high autocorrelation essentially implies redun-
dancy in our generated samples. Therefore autocorrelation is a useful measure
regarding efficiency of MCMC methods.

Definition 24 (Autocovariance, effective sample size). For a stationary stochastic
process X0, X1, ..., we define its lag-k autocovariance as

γk = cov(Xi, Xi+k),

the autocorrelation function as k 7→ γk and. In case the γk have one component, we
additionally define the autocorrelation function as k 7→ γk/γ0.

We further define the integrated autocorrelation time as

τ = 1 + 2
∞∑
k=1

corr(X0, Xk), (2.16)

where the correlation in turn is defined as corr(X0, Xk) := cov(X0,Xk)√
V[X0]
√

V[Xk]
.

In case only a finite subset {X0, ..., XN} of the process is accessible, we refer to the
fraction N/τ as the Effective Sample Size (ESS) of that subset.

The notion of effective sample size later becomes crucial when gauging the quality
of an MCMC estimator consisting of a truncated stationary Markov chain, since
less correlated samples generated by MCMC lead to a lower approximation error.
Determining the ESS in practice is not a trivial task, and in practical applications we
use the implementation of the approach in [Wol04] provided by the MIT Uncertainty
Quantification Library (MUQ).

24 Chapter 2 Basics of Uncertainty Quantification

2.3 Uncertainty Quantification Problems

There is a wide variety of theoretically interesting and practically relevant UQ prob-
lems. They mainly come down to introducing uncertainty to parts of an otherwise
deterministic model and investigating what the effect on the information we seek
from the model is.

Typically, UQ problems fall into two categories:

• Forward propagation refers to investigating the distribution of model predic-
tions for uncertain parameters given in terms of a specific distribution.

• Inverse problems seek to find the underlying parameters explaining given
measurements. Those measurements often come from real-world observations,
but for testing purposes may also be generated artificially. Since those mea-
surements are typically affected by uncertainty and the model itself may not
be uniquely invertible, the result is given in terms of a parameter distribution.

2.3.1 Forward problems

Forward UQ problems can be viewed as simple stochastic extensions to deterministic
models. A deterministic model F maps a specific parameter vector θ ∈ Rm onto a
specific model prediction F (θ) ∈ Rn (see fig. 2.1). We consider finite dimensional
parameters and model predictions in the following, even though infinite dimensional
parameter spaces may be treated in a similar way (see nonparametric UQ problems
[Hjo+10]).

We also introduce the notion of a Quantity of Interest (QOI) here. Quite often, the
model prediction itself is not the practically relevant quantity; instead, values derived
from it are of interest. For example, a weather forecast system internally produces
predictions on temperature, pressure, humidity etc. for the entire simulation domain.
The interesting outcome, however, might be whether it is likely to rain today in
Heidelberg. In the setting of forward models, disambiguating QOI and model
prediction seems redundant, as the model prediction could simply be defined as our
QOI. However, in inverse UQ problems, the QOI plays a crucial role by itself, so we
already add it for consistency.

In a setting where the specific parameter θ is affected by uncertainty, we may model
this uncertainty in terms of a known parameter distribution π0 (see fig. 2.2). We now
consider θ a RV with θ ∼ π0. For example, if the parameter can be directly measured

2.3 Uncertainty Quantification Problems 25

Parameter θ Forward model F Model prediction F (θ)

QOI Q(θ)

Fig. 2.1: Abstract deterministic model mapping parameters to model predictions.

experimentally, the distribution π0 could be a Gaussian distribution centered on
the measured value, with a variance matching the accuracy of the measurement
apparatus. Now we do not have a single model prediction any more, but instead an
entire distribution of predictions resulting from the underlying parameter distribu-
tion. More specifically, the result is a pushforward of the parameter distribution by
our model map. Likewise, the QOI prediction becomes a pushforward distribution
as well.

Parameter θ ∼ π0 Forward model F Model prediction F (θ) ∼ F ∗(π0)

QOI Q(θ) ∼ Q∗(π0)

Fig. 2.2: Extension to stochastic model based on a known parameter distribution.

2.3.2 Inverse problems

Forward problems as introduced above require full knowledge of the underlying
parameter or, in the stochastic case, the respective parameter distribution. There
are many practical applications however, where the underlying parameter is entirely
unknown, possibly up to some vague a priori information. Instead, those parameters
would have to be inferred through indirect observation.

If a unique inverse F−1 of our forward model was available, computing the parame-
ter leading to a certain real-world measurement y was as simple as evaluating the
inverse model (see fig. 2.3).

In analogy to the forward setting, we could determine uncertainty in the underlying
parameter by simply applying the inverse model to a measurement distribution
encoding uncertainty in our measurement process (see fig. 2.4).

26 Chapter 2 Basics of Uncertainty Quantification

Estimate θ̂ = F−1(y) Inverse model F−1 Measurement y

Fig. 2.3: Abstract deterministic inverse model mapping measurements to inferred parame-
ters.

Estimate F−1
∗(P(y)) Inverse model F−1 Measurement P(y)

Fig. 2.4: Abstract inverse model mapping distribution of measurements to inferred parame-
ter distribution.

In reality, however, the inverse of our model map F is often computationally in-
tractable or simply not well-defined. A simple and extreme example can be found in
physical processes like heat diffusion: Once equilibrium is reached, the initial heat
distribution cannot be recovered from measurements (except for the total amount
of energy). Even in more promising settings, the inverse is often not unique.

As a result, simply treating inverse problems in analogy to forward problems by
switching out the model map for its inverse is not sufficient, and we need to turn to
a more sophisticated approach. We pose the following requirements:

• Only the model map F should be evaluated, not its inverse, and

• no additional knowledge about the model (e.g. derivatives) should be needed.

An established approach to avoid the inverse model map is the Bayesian framework.
The basic idea is to exploit Bayes’ theorem [Dod08] in order to express the pos-
terior density, which represents the probability of parameters explaining a given
measurement, in terms of a likelihood density and a prior density.

Definition 25 (Posterior density). For given likelihood L, prior π0, we call

π(θ) := L(y|θ)π0(θ)
P(y)

the posterior density of θ given fixed measurements y, and ν the corresponding
distribution.

The likelihood L(y|θ) represents the probability of a given parameter leading to
the observed measurement. Typically, this requires evaluating the model for the
parameter θ and comparing the outcome to the given measurement y. When F (θ) is

2.3 Uncertainty Quantification Problems 27

close to y, in whatever metric makes sense in the context, the likelihood should have
a high value. In the opposite case, the likelihood should be low. A typical choice
for the likelihood of y given θ is a Gaussian distribution N (F (θ),ΣF), where ΣF

encodes the accuracy of the measurements in terms of a covariance matrix. We also
need to define a prior density π0. Since this is not informed by measurements, it
encodes a priori knowledge about parameters. For example, a model expert might
consider a certain parameter range more plausible than others. The final component
P(y) poses an issue, since the unconditioned probability of measurement values is
unobtainable in many applications and might only be derived from the unknown
underlying parameter distribution. However, with respect to the parameter θ this is
a constant, and we will later introduce methods that can ignore this scaling factor.

Posterior dist. ν Likelihood L(y|θ) Measurement P(y)

Prior π0

QOI Q∗(ν)

Fig. 2.5: Abstract deterministic inverse model mapping a measurement distribution to an
inferred parameter distribution using Bayes’ framework.

Compared to our naive approach above (fig. 2.4), we now have a slightly more
complex framework (see fig. 2.5). We have, however, gained the ability to infer pa-
rameters from uncertain measurements through a potentially non-invertible forward
model.

2.4 Basic Numerical Uncertainty Quantification
Algorithms

Now that we have introduced interesting UQ problems in section 2.3, we obviously
arrive at the question: How can we solve them? More specifically, how can we
obtain the pushforward or posterior distributions respectively?

Ideally, we would like to have an exact analytical solution. In some very simple
cases, a solution can be computed on paper. For example, if we start from an

28 Chapter 2 Basics of Uncertainty Quantification

uncertain parameter with Gaussian distribution θ ∼ N (0, 1) and have a simple affine
transformation F (x) = x+ 1 as our forward model, the model prediction again has
a Gaussian distribution F (θ) ∼ N (1, 1).

For more complex models, however, such a calculation will be outright impossible
once the model itself can only be evaluated numerically. As a result, we need to
employ numerical approximations to the stochastic problem as well.

This is analogous to many other numerical fields: For example, some Ordinary
Differential Equation (ODE)s and PDEs can be solved on paper; once the equations
becomes more intricate, as is usually the case when real-world data enters, one has
to resort to a numerical solution. The analytical problem is discretized in a way that
allows it to be solved algorithmically in finite time.

The main goal of numerical method development is to improve approximation
quality in relation to computational effort. Numerical results can demonstrate
practical applicability, uncover further challenges and show computational efficiency.
Theoretical treatment proves the methods’ mathematical correctness and reliability,
and ideally provides insights to support future method development.

Following that structure, we proceed to introduce basic numerical approximations to
the problems above. While far from computationally efficient, they already provide
valid solutions. They also form the underlying building blocks of the more advanced
methods in chapter 3, which mainly set themselves apart regarding efficiency, and
correspondingly the scale of problems they can treat effectively.

A very accessible introduction to these basic methods can be found in [McC18], and
this section is in part inspired by this source.

2.4.1 Illustrative Model

In order to illustrate the UQ methods introduced in the following sections, we first
define a very simple deterministic model problem. This ODE models the trajectory of
a basketball thrown by a 1.8m tall player, whose goal is to hit a standard dimensions
basket (3.05m tall, 46cm diameter) at a distance of 4m. As our model’s parameter,

we define the initial velocity θ = v0 =
(
v0
x

v0
y

)
.

The trajectory can then be defined as the system of ODEs

2.4 Basic Numerical Uncertainty Quantification Algorithms 29

Fig. 2.6: Example trajectory of the model problem for an initial velocity of 7.2ms at an
angle of 56 degrees. The basket is indicated as a black line, and the green cross
represents the point where the trajectory hits the basket.

x′(t) = v0
x

y′′(t) = −g

with initial values

x(0) = 0

y(0) = 1.8m

y′(0) = v0
y .

As our QOI, we define whether a given trajectory reaches the basket, i.e.

Q(θ) =
{

1 trajectory hits basket
0 trajectory misses basket

Note that for numerical calculations, this system can easily be transformed into one
with first order derivatives only.

For the UQ methods introduced later, the cost for achieving a certain accuracy in
the numerical solution will be crucial. We will assume that the above ODE is solved
with a simple explicit Euler’s method and equidistant step size h. From this method,
since we have a sufficiently smooth right hand side of the ODE, we may expect

30 Chapter 2 Basics of Uncertainty Quantification

a convergence rate of O(h) to the true solution. For a thorough introduction to
numerical methods for ODEs, we refer to the established literature, e.g. [Hol07].

2.4.2 Monte Carlo Methods

In this section we give a rudimentary, yet already feasible answer to the question:
How to numerically solve forward UQ problems?

As detailed in section 2.3.1, we seek the distribution of model predictions

F (θ) ∼ F ∗π0

produced by a model F with uncertain input modeled as a RV θ ∼ π0.

The approach we take is a rather intuitive one: We draw independent samples
θ1, ..., θN from our input distribution π0. For a sufficiently large number of samples
N , statistics of these samples will represent those of the actual distribution well.
In order to estimate the expected value, for example, we can take the following
approximation:

E[θ] ≈ 1
N

N∑
i=1

θi.

The law of large numbers immediately guarantees that, since our samples are
Independent and identically distributed (i.i.d.) by construction, this approximation
is exact for N →∞. Since we know the exact distribution π0 (after all it is part of
the design of our forward UQ problem), we can typically use established pseudo
random generators to generate samples in practice.

Now that we have a discrete representation of our input distribution, we can easily
compute a corresponding discrete representation of our pushforward distribution:
All it takes is applying the model map to each sample of the input distribution,
namely

F (θ1), ..., F (θN),

which can be seen as applying the pushforward. Since those samples are i.i.d.
samples from F ∗π0, we can continue the example above and again approximate the
mean by

2.4 Basic Numerical Uncertainty Quantification Algorithms 31

E[F (θ)] ≈ F̂MC
N := 1

N

N∑
i=1

F (θi),

or compute any other statistics. This approach is known as the Monte Carlo (MC)
method. From the definition of this method it is easy to see that we only need to
evaluate the forward model, and a finite number of evaluations is enough to deliver
the approximation we seek. As a result, the method can easily be implemented in
practice, for example using numerical forward model solutions.

Application to model

Let us now put this first method to use on our model problem from section 2.4.1:
First, we can extend this deterministic model to a forward UQ problem by for-
mulating a prior distribution. A somewhat realistic choice is θ ∼ N (µ, σ) where

µ = (7.2, 56)T and σ =
(
.3 0
0 1.0

)
. This models a variation in throwing angle and

velocity, as would be expected in a real-world scenario with a human basketball
player. The question we are going to answer is: How likely is our slightly unreliable
basketball player to hit the basket?

(a) Samples θi from prior distribution. (b) Model states computed for the above set
of parameters. Hits are indicated by green,
misses by red markers.

Fig. 2.7: Monte Carlo prior sampling and resulting model states.

Applying a Monte Carlo sampler to the model problem is fairly easy: We draw
a set of random parameters {θi}Ni=1 where θi ∈ R2 from the two-dimensional
Gaussian prior distribution. For this problem, a relatively small number of samples
N = 1000 should be sufficient. Figure 2.7a shows such a set of samples. Now that
we have a discrete representation of our distribution, we can apply the model to
each parameter. Note that each model evaluation is now technically equivalent to

32 Chapter 2 Basics of Uncertainty Quantification

evaluating a deterministic model for a single parameter, and as such neither the
mathematical model nor the implementation would have to be adapted.

(a) The distance component x of all model
evaluations at the height of the basket.

Hits Samples Hit ratio
400 1000 0.4

(b) Hit ratio evaluation via E[Q(θ)].

Fig. 2.8: QOI as computed via Monte Carlo method.

After applying the model to those prior samples, the resulting states F (θi) (in this
case, ODE solutions) are shown in fig. 2.7b. Since we are not actually interested in
the entire trajectories, we can now proceed with post-processing on those states,
particularly calculating our QOI samples. Figure 2.8a shows the x component of
the ODE solution at the height of the basket. From that, it is easy to compute the
desired value, namely the probability hitting the basket: It is enough to check what
fraction of trajectories reaches the basket relative to the total number of samples.
The results are shown in fig. 2.8b.

Efficiency considerations

Clearly, this method may require a large number of samples. But how does its cost
scale? The following quick calculation is enough to give us a rough idea about
that.

A frequently used quality indication of an estimator is its Mean square error (MSE)
which, assuming an unbiased estimator, is equivalent to the estimator’s variance.

E[(F̂MC
N − E[F (θ)])2] = V[F̂MC

N].

Further, we can exploit that our estimator is a sum over i.i.d. samples, and thus it
holds

2.4 Basic Numerical Uncertainty Quantification Algorithms 33

V[F̂MC
N] = V[1

N

N∑
i=1

F (θi)] = 1
N

V[F (θ)].

We can now compute (up to a constant) the number of samples needed to achieve a
MSE below ε2:

V[F̂MC
N] = 1

N
V[F (θ)] ≤ ε2

=⇒ N ≥ V[F (θ)]
ε2

= O(ε−2).

Finally, assuming that all forward model evaluations are of equal cost CF , we arrive
at

Cost(F̂MC
N) = CFN = O(ε−2).

This cost bound holds true if the forward model F is directly accessible. In practice,
this is often not the case: As we have already seen in section 2.1, often only numerical
discretizations of the model are available. These obviously introduce an error in
addition to the sampling error discussed above, since we can only sample from an
approximate pushforward distribution induced by the discretized forward model.
Controlling the discretization error usually implies that model cost CF also scales
with some power of ε.

For brevity, we only fully consider model cost per accuracy in the cost analysis of
MCMC in section 2.4.3. It shall be noted, however, that a cost estimate analogous to
eq. (2.19) can be shown for MC as well:

Cost(F̂MC
N) = O(ε−2− γ

α),

where α is the convergence rate of the expected value of the pushforward depending
on model discretization level and γ is the corresponding rate of cost increase.

Solving the illustrative model from section 2.4.1 with Euler’s method, we can expect
linear increase in cost (γ = 1) for linear error reduction (α = 1), and we therefore
arrive at Cost(F̂MC

N) = O(ε−3).

Cost increasing cubically for given desired accuracy is obviously not ideal, particularly
when working with large models. In chapter 3 we will present more advanced
methods whose main goal is improving that convergence rate.

34 Chapter 2 Basics of Uncertainty Quantification

2.4.3 Markov Chain Monte Carlo Methods

As we have seen above, a simple Monte Carlo method directly applied to uncertain
parameters allows us to numerically solve forward UQ problems. But can we extend
this concept to inverse problems as well?

In section 2.3.2 we already discussed that, if we had an inverse of the model map
available, we could interpret inverse problems as forward problems based on F−1.
However, since this is very often not available in practice, we had to introduce the
Bayesian framework. This lead us to a posterior density

π := L(y|θ)π0(θ)
P(y) ∝ L(y|θ)π0(θ)

where only our forward model enters as part of the likelihood.

As in Monte Carlo, we would like to represent this posterior by a finite number of
samples. How can we draw samples from this distribution? Directly sampling from
it would require very restrictive assumptions on the model, and without knowledge
of the true parameter distribution or large amounts of measurements the scaling
factor P(y) is entirely inaccessible.

An established approach to solve these issues are MCMC methods. The main idea is
to generate a Markov chain over the parameter space and ensure that its stationary
distribution matches the posterior. This can be ensured by essentially producing
a random walk which is weighted to reside in high-probability regions, but also
occasionally step into lower-probability regions. Typically, weighting is achieved by
evaluating the posterior for each step. If we now only take a finite number of steps
in the Markov chain, we obtain a (hopefully) good approximation of the posterior
while only evaluating it for a finite number of specific parameters.

There is a wide variety of methods of this type, balancing computational efficiency
against required model information. For example, some more advanced methods
may require derivatives of the model map. At their core, however, they are mostly
variations of the same underlying scheme. A very simple one, and in fact historically
one of the earliest, is Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC)
[Met+53; Has70], which we now introduce as a representative example.

For a more detailed discussion of advanced MCMC methods and alternatives, refer
to chapter 3.

2.4 Basic Numerical Uncertainty Quantification Algorithms 35

Metropolis Hastings Markov Chain Monte Carlo

In MHMCMC, we generate such a Markov chain approximating a target distribution π
by the following algorithm. From a starting point, we generate a sequence of samples
{θi}Ni=0 through what is essentially a random walk across the parameter space. A new
step in the vicinity of the current one is proposed through a proposal distribution
q. Whether we take that step, however, is something we decide depending on
whether our target distribution has a higher value there. In order to also cover
low-probability regions, albeit with a correspondingly lower number of samples, we
sometimes admit low-probability proposals as well. The exact procedure is detailed
in algorithm 1 and can be shown to indeed yield the desired stationary distribution
π.

Algorithm 1: MHMCMC

Result: Markov chain {θi}Ni=0.
Initialize the Markov chain with an arbitrary starting point θ0 ∈ Rm.
for sample n = 0, . . . , N − 1 do

• Draw a correlated proposal θ′ from a proposal distribution q(θ′|θn).

• For this proposal, compute an acceptance probability

α(θ′|θn) = min
{

1, π(θ′)q(θn|θ′)
π(θn)q(θ′|θn)

}
.

• With probability α, accept the proposal θ′ to form the next step of the chain
and set θn+1 = θ′. Otherwise, the chain should remain at the previous
parameter value, i.e. θn+1 = θn.

end

Classically, one would choose the proposal distribution q as a Gaussian distribution
centered around the previous step, and in fact this comes very close to the intuitive
interpretation as a weighted random walk. Later we will see that more advanced
proposal distribution can offer significant improvements in convergence.

Application to model

In order to illustrate the concept of inverse problems and the aforementioned
MHMCMC algorithm, we extend our deterministic model problem from section 2.4.1
to an inverse UQ problem. Since our goal is to infer underlying “true” parameters
from indirect observations, we first have to define what types of measurements we
will consider.

36 Chapter 2 Basics of Uncertainty Quantification

We suppose that we have a camera taking pictures of the ball when it reaches a
distance of 1.5m and 2.5m from the basketball player respectively, and that we can
observe the ball’s height at these points - up to a certain accuracy, of course. In

order to test the method, we assume the underlying “true” parameter to be

(
7.2
56

)
Figure 2.9 shows the corresponding model output as well as measurement points
along the trajectory.

Fig. 2.9: “True” trajectory with height measurements (blue crosses).

Of course that “true” parameter would be unknown in a realistic application. So
how can we infer the “true” throwing parameters just from resulting measurements?
And, most importantly, how can we determine our QOI, namely the probability of
hitting the basket given those measurements?

We follow the recipe from section 2.3.2 and formulate a Bayesian inverse problem.
For our prior, we choose

π0 := N
((

7
55

)
,

(
2 0
0 5

))
,

which should cover the range of throws to be expected in a realistic scenario. Clearly
this a priori knowledge can only give us a rough idea of the true parameter, so the
most interesting part is the likelihood incorporating observed measurements. We
assume that our measurements each have an error with Gaussian distribution and
variance of 3cm around the true height at the measurement points. We further
assume the measurement errors to be independent. As a result, for a specific model
prediction, we expect the following distribution of possible measurements:

L(·|θ) := N (F (θ), 0.03 · I)

2.4 Basic Numerical Uncertainty Quantification Algorithms 37

Combining prior and likelihood to form a posterior distribution, while notably
leaving out the unknown scaling factor P(y) as discussed before, we now apply
algorithm 1 to generate samples from that posterior distribution. This requires the
choice of a proposal distribution, and we go with a mildly educated guess of

q(·|θ′) := N (θ′, I).

(a) Samples from posterior distribution. (b) Model states computed for the above set
of parameters. Hits are indicated by green,
misses by red markers.

Fig. 2.10: Markov Chain Monte Carlo posterior sampling and resulting model states.

Figure 2.10a shows the distribution of posterior samples obtained. From the shape
of that distribution we can clearly see that velocity and angle have a rough inverse
proportionality. This is reasonable since a faster throw at a lower angle could lead to
similar measurements as a steeper but weaker throw. High velocity and high angle
combined however would lead to an overshoot and therefore be very unlikely to
produce the observed measurements.

So, the distribution of samples lets us estimate the parameters that would most likely
explain our measurements in the Bayesian sense. This alone does not yet answer the
question: How likely is the ball going to hit the basket given our measurements?

In order to answer this, we need to turn to our QOI again. Fortunately, now
that we have a parameter distribution and are interested in values derived from
model predictions, we are now in the same setting as forward UQ problems again
(section 2.3.1). We already introduced MC methods in section 2.4.2, where we
evaluate the model for a finite number of samples from the parameter distribution.
So, we could now proceed to feed those samples into a dedicated MC method again.
However, since we already have forward model evaluations for each of these samples,
this work is already done! All that remains to do is to apply the QOI map to the
samples, which typically means some post processing on the model states F (θi) we

38 Chapter 2 Basics of Uncertainty Quantification

already computed. In our example, this means checking for each trajectory whether
it hits the basket, and computing the resulting expected value by taking the mean.
The results for this particular experiment are shown in fig. 2.11.

Hits Samples Hit ratio
2803 10000 0.280

Fig. 2.11: Expected hit ratio determined from QOI via E[Q].

Just like before, computing more samples will deliver higher accuracy.

Efficiency considerations

We now have a working method, but how efficient is it? More specifically, we
clearly produce correlated samples in the MCMC method. Closely correlated samples
however add only very little information to the approximation we compute, whereas
ideally we would like to generate fully independent samples. So, how close are we
to drawing independent samples?

This can be estimated through the integrated autocorrelation time τ introduced
in section 2.2, as well as the corresponding effective sample size. The integrated
autocorrelation time estimates how many steps in the chain need to be taken on
average in order to obtain a near-independent sample. The cost for obtaining N
near-independent samples then is essentially τN forward model evaluations.

The MHMCMC method we used offers one main degree of freedom: The choice of
the proposal distribution. It is intuitively clear that the proposal distribution affects
the method’s performance: If we choose a proposal distribution with an extremely
small variance, subsequent samples will be extremely close to previous ones and
have a high integrated autocorrelation time. As a result, the chain will remain in the
same region of the parameter space for many steps, and we can only hope to cover
the “weight” of the target distribution by computing a very large number of steps.
Since each step requires a model evaluation, this comes at a very high computational
cost. In the worst case, we might have to stop the chain while only having reached a
small portion of the parameter space.

Conversely, a very high-variance proposal distribution may allow us to quickly jump
across the parameter space. This comes at a high risk of proposing low-probability
parameters far away from the high-probability regions. Many of those samples will
not be accepted, and as a result we spend a large number of model evaluations on

2.4 Basic Numerical Uncertainty Quantification Algorithms 39

ESS vel. ESS ang.
147.6 39.7

(a) Low-variance proposal
q(·|θ′) := N (θ′, 0.05 · I).

ESS vel. ESS ang.
483.7 154.3

(b) Mid-variance proposal
q(·|θ′) := N (θ′, I).

ESS vel. ESS ang.
298.6 167.5

(c) High-variance proposal
q(·|θ′) := N (θ′, 20 · I).

Fig. 2.12: Resulting samples (top), mixing plots showing the chains’ behavior over time
(mid) and effective sample sizes per parameter (bottom) for different proposal
distribution variances.

samples that do not contribute to our approximate solution, again leading to a large
integrated autocorrelation time.

Figure 2.12 illustrates this: Low-variance proposals lead to highly correlated propos-
als, many of which are accepted since they remain in approximately equally probable
regions. High-variance proposals in turn are better at generating quasi-independent
samples if accepted, but lead to lower acceptance rates, and as a result the chain
tends to stagnate for multiple steps. We can further see that proposals behave
differently regarding parameters: While the angle component of our parameter is
traversed effectively by higher variance proposals, they become harmful to sample
quality regarding initial velocity. This is easily explained by different magnitudes of
values: After all, the likely velocity values span a smaller range of numbers than the
likely angles.

Clearly, a more efficient and ideally problem independent type of proposal is de-
sirable. While more involved regarding algorithm and implementation, the more

40 Chapter 2 Basics of Uncertainty Quantification

advanced approaches in chapter 3 all build upon the MHMCMC method presented
here.

Convergence analysis

The convergence analysis of MCMC is well-established. Therefore, only a brief review
is given here based on [Dod+19b, Section 2.1]. For a more in-depth treatment, refer
to [RC10].

First, denote the transition kernel of the Markov chain {θn}n∈N as generated from
algorithm 1 by

K(θ′|θ) := α(θ′|θ)q(θ′|θ) +
(

1−
∫
Rm

α(θ′′|θ)q(θ′′|θ)dθ′′
)
δ(θ − θ′),

where δ is the Dirac function. Further, let

E = {θ : π0(θ) > 0},D = {θ : q(θ|θ∗) > 0 for some θ∗ ∈ E}.

Now E is the subset of Rm that the MCMC algorithm should sample from as defined
by the prior. The set D in turn contains all parameter vectors that can possibly be
reached via proposals. So, in order to ensure that the proposal distribution does
not ’cut off’ parts of the parameter space that are admitted in the prior, we assume
E ⊂ D.

Lemma 2. If E ⊂ D, then the posterior distribution π is a stationary distribution of
the chain {θn}n∈N.

Proof. See [RC10].

With the condition E ⊂ D, it is easy to verify that by construction the transition
kernel K(·|·) satisfies the detailed balance condition

K(θ|θ∗)π0(θ∗) = K(θ∗|θ)π0(θ).

Theorem 3. Assume E[|Q|] <∞ and

q(θ|θ∗) > 0 ∀(θ, θ∗) ∈ E × E . (2.17)

2.4 Basic Numerical Uncertainty Quantification Algorithms 41

Then it holds

lim
N→∞

Q̂MCMC
N = lim

N→∞

1
N + 1

N∑
i=0

θi = Eν [Q]

for any θ0 ∈ E .

Proof. See [RC10].

These two results guarantee convergence of of the MCMC estimator to the expected
value of the QOI. Note that, while this asymptotic result is entirely independent of
the starting point θ0 ∈ E , in practice a burnin phase is often desirable. That means
choosing the estimator as

Q̂MCMC
N = lim

N→∞

1
N + 1− n0

N∑
i=n0

θi,

and thereby ignoring the first n0 samples generated by the MCMC algorithm. This
can yield significant improvements in applications where the starting point θ0 is
chosen in a region where the posterior is relatively low. Due to correlation between
samples, this can lead to that region being severely over-represented unless a
sufficiently (and possibly prohibitive) number of samples is drawn. Choosing a
sufficiently large n0 instead allows the chain to “travel” towards a higher probability
region before samples are taken into account.

The cost of the MCMC method is typically analyzed in relation to the MSE achieved,
which is defined as

e(Q̂MCMC
N)2 := EΘ[(Q̂MCMC

N − Eρ[Q])2].

Here, EΘ is the expected value with respect to the joint distribution of Θ := {θn}n∈N
as generated by MCMC in algorithm 1.

We denote the computational ε-cost of the estimator by C(Q̂MCMC
N)2 < ε2, where

the cost is understood in terms of floating point operations.

For further analysis, the MSE can be decomposed into

e(Q̂MCMC
N)2 = VΘ[Q̂MCMC

N] + (EΘ[Q̂MCMC
N]− Eρ[Q])2,

42 Chapter 2 Basics of Uncertainty Quantification

namely the variance of the MCMC estimator and the estimator’s bias. In order to
take into account the situation where the QOI can only be approximated, we can
further exploit triangle inequality and linearity of expectation to arrive at

e(Q̂MCMC
N)2 ≤ VΘ[Q̂MCMC

N] + 2(EΘ[Q̂MCMC
N]− EνM,R [Q̂MCMC

N])2

+ 2(EνM,R [Q̂MCMC
N]− Eρ[Q])2,

(2.18)

These terms now represent the three sources of error in the MCMC estimator. In
particular, the last term is due to approximating the QOI Q by QM,R and ρ by νM,R.
This is frequently the case in the Bayesian setting when the forward model cannot
be solved exactly but instead only an approximation is accessible, for example in
terms of a FE method. In this notation, M indicates the accuracy of the numerical
approximation of the QOI, and R the dimension of the uncertain parameter. In the
illustrative model from section 2.4.1, we have R = 2 due to the two-dimensional
model parameter (angle and initial velocity) and M = 1

h , where h is the step size
of the explicit Euler method employed. Both M and R will become crucial in
the analysis of multilevel methods in chapter 3, where they may vary across the
hierarchy of models.

Variance and bias of the estimator (the first two terms) originate from the finite
number of samples available and the fact that they are not i.i.d. samples from the
target distribution νM,R respectively.

The sampling errors can be bounded asymptotically in the following way. Let
θ̃

0 ∼ νM,R. Then the chain Θ̃ := {θ̃n}n∈N generated via algorithm 1 from the
starting point θ̃

0
is stationary, meaning θ̃

n ∼ νM,R for n ∈ N.

The latter implies that, for Q̃
n
M,R := QM,R(θ̃n) we also have VΘ̃[Q̃nM,R] = VνM,R [Q̃M,R]

and EΘ̃[Q̃nM,R] = EνM,R [Q̃M,R]. Consequently, it holds

CovΘ̃[Q̃0
M,R, Q̃

n
M,R] = EΘ̃[(Q̃0

M,R − EνM,R [Q̃M,R])(Q̃nM,R − EνM,R [Q̃M,R)].

The asymptotic variance of the MCMC estimator is now defined as

σ2
Q := VνM,R [Q̃M,R] + 2

∞∑
n=1

CovΘ̃[Q̃0
M,R, Q̃

n
M,R].

2.4 Basic Numerical Uncertainty Quantification Algorithms 43

Note that in the idealized case of i.i.d. samples it holds σ2
Q = VνM,R [Q̃M,R], because

samples are not correlated in that case. Further, observe that the asymptotic variance
relates to the integrated autocorrelation time τQ of the chain (see eq. (2.16)) by

σ2
Q

VνM,R [Q̃M,R]
= τQ

Theorem 4 (central limit theorem). Assuming eq. (2.17) and σ2
Q <∞ and

P[αM,R = 1] < 1

.

Then it holds

√
N(Q̂MCMC

N − EνM,R [QM,R]) D−→ N (0, σ2
Q)

Proof. See [RC10].

This result implies that the sampling errors of the MCMC estimator asymptotically
decays at the same rate as an idealized estimator using i.i.d. samples. We are
therefore (at least in an asymptotic sense) in the same situation as MC again, except
for requiring an additional constant factor in the number of samples due to the
MCMC samples’ correlation.

In order to finally arrive at a cost bound of the MCMC involving a finite number
of samples, we now have to leave the asymptotic regime and instead make the
assumption

Assumption 1. For any N ∈ N, we can bound the sampling error by

VΘ[Q̂MCMC
N] + 2(EΘ[Q̂MCMC

N]− EνM,R [Q̂MCMC
N])2 . VνM,R [QM,R]

N
.

The hidden constant is assumed to be independent of M , R and N .

Such error bounds are not trivial to derive, but have been shown for certain settings
(e.g. [Rud12]). Note that, while the constant in assumption 1 is assumed indepen-
dent of M , R and N , it will in many cases directly depend on the autocorrelation
τQ (or, equivalently, σ2

Q) due to the aforementioned correlation between MCMC
samples.

44 Chapter 2 Basics of Uncertainty Quantification

Now the final term in eq. (2.18) remaining to be controlled is the discretization
bias.

Assumption 2. We assume EνM,R [QM,R] → Eρ[Q] for M,R → ∞ with convergence
order α, α′ > 0 in the sense of

|EνM,R [QM,R]− Eρ[Q]| .M−α +R−α
′

Under assumptions 1 and 2, it follows for the MSE from eq. (2.18)

e(Q̂MCMC
N) . VνM,R [QM,R]

N
+M−α

Adding the mild assumption that VνM,R is bounded independent of M and R, it now
suffices to choose N ≈ ε−2 and M ≈ ε−

1
α to conclude e(Q̂MCMC

N) = O(ε2).

In a final step, a bound on the computational cost needed to achieve a given error
tolerance can be derived. Assume that computing one sample of QnM,R has a cost
of C(QnM,R) ≤ Mγ for a γ > 0. Again choosing N ≈ ε−2 and M ≈ ε−

1
α , we can

conclude that the cost associated with an error tolerance

e(Q̂MCMC
N)2 < ε2

can be bounded by

Cost(Q̂MCMC
N) . NMγ ≈ ε−2−γ/α. (2.19)

As before, the hidden constant typically depends on the integrated autocorrelation
time τQ of the chain.

When applied to the model from section 2.4.1, the same constants and resulting
growth in cost may be expected as in the MC case from section 2.4.2, i.e. α = γ = 1.
Again, this directly follows from the convergence rate and cost scaling of the explicit
Euler method employed, and we arrive at a rate O(ε−3).

From this analysis, it is clear that the overall cost of the MCMC method for a specific
problem is determined by

• the cost of individual samples, which may grow significantly when accurate
numerical approximations of the forward model are needed in order to control
the discretization bias,

2.4 Basic Numerical Uncertainty Quantification Algorithms 45

• and the number of samples needed to control the sampling error, driven mainly
by the chain’s integrated autocorrelation time τQ.

More advanced approaches attempting to mitigate these sources of cost are discussed
in chapter 3. In fact, they mainly adress the two issues above: Hierarchies of
forward models are used in order to shift most of the sampling work to cheaper
models, and cheaper models are used in order to generate good proposals, reducing
autocorrelation time.

46 Chapter 2 Basics of Uncertainty Quantification

Advanced Uncertainty
Quantification Methods

3
The basic Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) algorithms
from section 2.4 already serve the purpose of solving both forward and inverse
Uncertainty Quantification (UQ) problems respectively, and provably so under very
mild conditions.

As already discussed in section 2.4.2 and section 2.4.3, these methods however
exhibit bad scaling of cost per accuracy when applied to computationally expensive
forward models. For intricate parameter distributions and, most importantly, higher
dimensional parameters, this becomes even more pronounced in practice. Working
towards the main goal of this thesis, namely advancing UQ on forward models that
are computationally challenging themselves, we therefore need to turn towards
more efficient methods.

In this chapter we begin with an overview and comparison of existing UQ methods,
and choose Multilevel Markov Chain Monte Carlo (MLMCMC) methods as the ones
best fulfilling our goals. We proceed with a review of existing work in that field and
conclude with the proposal of an improved Multiindex Markov Chain Monte Carlo
(MIMCMC) method.

For the treatment of large-scale problems, both the stochastic side and the forward
model need to be considered. Here we focus mainly on the stochastic side, while
chapter 4 aims to complement our multilevel and multiindex UQ algorithms with
carefully designed hierarchical forward models built specifically for that purpose.

Parts of this chapter have been published by the author in [See+21].

3.1 Methods Overview

For both forward and inverse UQ problems, a wide range of UQ methods have been
developed, and rightfully so: There is no single best approach, since they all vary
extremely in how they balance the following three contradictive aspects.

47

Agnosticity Efficiency

Expressivity

Fig. 3.1: The three main aspects of UQ methods.

• Expressivity: In both forward and inverse UQ problems we are interested in
obtaining a probability distribution. Some methods deliver approximation to
the entire distribution, for example in terms of samples or as linear combina-
tions of simple distributions like Gaussians. Others, however, may only deliver
certain statistical moments of the distribution or the Maximum a posteriori
probability (MAP) point. The appropriate choice here depends strongly on the
particular application.

• Efficiency: UQ methods themselves tend to be of relatively low computational
cost, while forward models can incur substantial computational effort. There-
fore, the main difference lies in how many model evaluations are required. For
example, optimization based methods have a clear advantage over sampling
based methods, since they do not need to recover the entire distribution and
may directly iterate towards a peak.

• Agnosticity: Some methods may only require simple evaluations of the forward
model F and are model agnostic in the sense that minimal assumptions on the
forward model are made. Others may additionally require derivatives, or even
a fundamental reformulation of the forward problem. In practice, the latter
may not be feasible with more complex models, while the former methods
may lend themselves to coupling with existing model implementations.

In the following we give an overview on various UQ methods and classify them ac-
cording to these three properties. Regarding forward problems, MC methods require
only forward model evaluations to recover a full pushforward distribution, but can
be extremely computationally expensive, as we already saw in section 2.4.2.

On the other hand, Stochastic Galerkin type methods [GS91; XK03] allow efficiently
recovering the entire distribution and, in suitable settings, can be very efficient.
They do however require a significant modification to the model itself, since they
essentially treat the uncertain parameters’ space as part of the Partial Differential
Equation (PDE) domain.

48 Chapter 3 Advanced Uncertainty Quantification Methods

Another approach, stochastic collocation, can work with simple model evaluations
and recover the target distribution (for inverse problems as well [MX09]), but is
efficient only for lower dimensional parameter spaces [Xiu15].

For inverse problems, there are highly efficient optimization-based methods for
determining the MAP point in inverse problems using derivatives of the posterior
[Kle+17; Kit95; LK14]. They are extremely efficient, but derivatives of the posterior
and thereby of the inverse model map can be hard to obtain.

Stochastic collocation type methods can work with simple model evaluations and re-
cover the posterior [MX09], but become inefficient for higher dimensional parameter
spaces [Xiu15].

MCMC type methods in turn recover the full posterior distribution and in many
cases only need simple forward model evaluations, but come at a very high compu-
tational cost in terms of numerous model evaluations required to achieve a good
approximation.

For the rest of this thesis, we choose MC and MCMC class methods for their agnos-
ticity and expressivity. Clearly, this incurs high computational demand. We seek
to mitigate this in the following, with a particular focus on inverse problems and
MCMC.

There is one main approach to reduce the number of model evaluations in MCMC:
Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) produces correlated
samples, since each proposed step is in the vicinity of the previous one. Strongly
correlated samples barely contribute information to our approximation (in the most
extreme case of identical samples, we gain nothing over a simple sample). So, as
already indicated in a very simple case in section 2.4.3, less correlated proposals
and high acceptance rates would allow us to achieve a good approximation with
fewer samples. A wide variety of improved proposals aims to achieve this. Exam-
ples include preconditioned Crank-Nicolson [Bes+08; Cot+13; RS15], Adaptive
Metropolis [HS98; HST01], Hamiltonian MCMC [Dua+87], Dimension-Independent
Likelihood-Informed (DILI) MCMC [CLM16; CDS19], and many others. They largely
come down to forming some kind of understanding of the shape of the posterior,
and using it to generate more well-informed proposals.

Rather than minimizing the number of model evaluations for a single model, Multi-
level Monte Carlo (MLMC) [Hei01; Gil08] and MLMCMC [Dod+15; Dod+19b] take
a second and somewhat orthogonal route: An entire hierarchy of models is defined,
ranging from cheap to compute rough approximations to the accurate, yet expensive,
full model. MLMC and MLMCMC make no assumptions on what exactly those coarse

3.1 Methods Overview 49

models could be. For example, we could use suitable Ordinary Differential Equation
(ODE)s as rough approximations to a more complex PDE model, as long as model
predictions are sufficiently close. We will clarify the specific requirements in the fol-
lowing sections and present some particularly efficient choices of model hierarchies
in chapter 4. A more obvious choice for a level hierarchy could be mesh width in
numerical PDE solvers, where theoretical a priori error bounds typically guarantee
that coarser meshes still deliver reasonable approximations, and for certain cases
convergence results can be shown. For an example of such a theoretical derivation,
we refer to the Poisson equation example investigated in [Dod+15; Dod+19b].

3.2 Multilevel Monte Carlo

As a prelude to presenting the MLMCMC algorithm and theory, we begin with a quick
introduction of MLMC [Hei01; Gil08], its corresponding and somewhat simpler
algorithm for forward UQ. Both have in common that, instead of working on a single
forward model F , they introduce an entire hierarchy of models

F 0, F 1, ... with F l : Rml → Rnl and lim
l→∞

F l = F .

Each of these model maps obviously implies its own model prediction F i(θ) approx-
imating F (θ), whose distribution now depends on the prior distribution and the
respective model Fi.

We refer to model maps F l with low and high index l as coarser models and finer
models respectively. For the convergence results of the following multilevel algo-
rithms it is crucial that, for increasing l, the models’ approximation error decreases
exponentially while the computational cost increases exponentially. In practice,
these requirements may be relaxed to some degree.

Further, in order to seamlessly apply asymptotical results from e.g. PDE theory, we
now have to differentiate between the theoretical “exact” model F and the finest
numerical approximation FL we can afford to compute numerically.

This model hierarchy can be exploited by replacing the expected value of our finest
model outcome by the following telescoping sum:

E[F (θ)] ≈ E[FL(θ)] = E[F 0(θ)]︸ ︷︷ ︸
Coarse approximation

+
L∑
l=1

E[F l(θ)− F l−1(θ)]︸ ︷︷ ︸
Fine corrections

50 Chapter 3 Advanced Uncertainty Quantification Methods

Clearly this telescoping sum is an identity, so what have we gained? Here our
previous assumption on the model hierarchy come into play: The coarsest component
of the telescoping sum requires many samples to be drawn, since it has to recover the
entire distribution. However, since the coarsest model is cheap to compute, overall
cost remains small. With the subsequent components, computational effort increases.
But here we can exploit that we are essentially sampling from the difference between
two approximations: Since we assume finer models to approximate each other better
and better, the increase in cost for a single evaluation is counteracted by less and
less samples being required to recover the respective difference accurately.

In order to exploit this variance reduction across levels in practice, we need to use
the same parameter sample to compute one sample of a difference between levels.
So, we arrive at the following MLMC estimator:

E[F (θ)] ≈ F̂MLMC
N,L := 1

N0

N0∑
i=1

F 0(θi0) +
L∑
l=1

1
Nl

Nl∑
i=1

(F l(θil)− F l−1(θil)),

where θil is the ith sample drawn for level l from our prior distribution. For this
estimator, the following cost estimate is proven in [Gil08, Thm 3.1]. It is based on
relating model error to model cost, denoting the discretization levels by an sequence
Ml increasing with l.

Theorem 5 (MLMC cost). Let ε < e−1 and suppose there are constants α, β, γ > 0
with α ≥ 1

2 min(β, γ) such that, for all l ≥ 0:

• |E[F l − F]| = O(M−αl),

• V[F l+1 − F l] = O(M−βl), and

• Cost(F l(θi)) = O(Mγ
l).

Then there exist L ∈ N and {Nl}Ll=0 ⊂ N, such that for the mean square error it holds
E[(F̂MLMC

Nl,L
− E[F])2] < ε2 and the overall cost of the multilevel estimator is given by

Cost(F̂MLMC
Nl,L

) =

O(ε−2) for β > γ,

O(ε−2log(ε)2) for β = γ,

O(ε−2− γ−β
α) for β < γ.

So, for a suitably chosen model hierarchy, we can achieve a cost estimate significantly
better than the MC counterpart Cost(F̂MC

N) ∝ N = O(ε−2− γ
α) from section 2.4.2.

For example, for the ODE model in section 2.4.1, a model hierarchy with Ml =

3.2 Multilevel Monte Carlo 51

2l ∝ 1
hl

can be constructed by simply cutting step sizes in half across levels, i.e.
hl = 1

2hl−1, starting from a coarse level step size h0. In that situation, we have
α = 1, β = 2 and γ = 1 due to employing an explicit Euler method with linear global
convergence and linear increase in cost with 1

h . Due to β > γ, the overall cost of
MLMC will scale with ε−2 in contrast to ε−3 in the single level MC case.

Note that the assumptions in theorem 5 are the only requirement on the relation
between forward models of different levels. As already mentioned earlier, it is
therefore not relevant how these models are actually constructed; what matters is
that, in terms of mean and variance, they approximate each other in a way that is
suitably balanced with the respective cost per model evaluation.

3.3 Multilevel Markov Chain Monte Carlo

Extending the MLMC algorithm above to an MCMC type method for inverse problems
could be done in a trivial way: Since MLMC requires samples to be drawn on various
levels, we could simply run MCMC chains on each of those levels. Here we still
benefit from the fact that more but cheaper samples are needed on coarser levels,
while more expensive but fewer samples are needed on finer levels.

As already introduced in section 2.3, the goal is to estimate a quantity of interest Q.
The multilevel method works on a hierarchy of forward models F i, and therefore
we have an associated sequence of Quantity of Interest (QOI) maps

Q0, Q1, ... with lim
l→∞

Ql = Q.

Note that particular care has to be taken regarding distributions. While in the
forward setting forward models differ, but the parameter distribution to sample from
is the same, here we have different posterior distributions across levels because the
posterior’s likelihood component depends on the respective forward model F i.

E[Q] ≈ EνL [QL] = Eν0 [Q0]︸ ︷︷ ︸
Coarse approximation

+
L∑
l=1

Eνl [Ql]− Eνl−1 [Ql−1]︸ ︷︷ ︸
Fine corrections

(3.1)

For subsequent analysis, we further specify the construction of levels by defining
Ql := QMl,Rl where, as in section 2.4.3, Ml corresponds to the refinement of the
numerical forward model approximation and Rl is the dimension of the model

52 Chapter 3 Advanced Uncertainty Quantification Methods

parameter on level l. Note that, for readers new to multilevel UQ methods, it is
enough to consider the case of constant parameter dimension across levels (i.e.
Rl = R) for a basic understanding of the algorithm.

While Ml typically corresponds to 1
h (for mesh width h) in Finite element (FE)

models, we will only require Ml to relate computational cost to approximation
error in a suitable way. Further denote the posterior distribution on each level by
νl := νMl,Rl , and the corresponding densities by πl := πMl,Rl .

There is, however, another approach to exploiting hierarchies in MCMC methods:
Coarser levels can be used to produce well-informed proposals for finer levels. A
simple method could be sampling from a coarse level, and only use a subset of those
(i.e. subsampling) as proposals for a fine level. As a result, fine proposals will be
nearly independent and we could achieve good mixing on the fine level with few
expensive samples. One method in this spirit, even though more refined, is delayed
acceptance MCMC [CF05].

Incorporating this is the key ingredient in MLMCMC as proposed in [Dod+15;
Dod+19b]. This section follows the presentation in [Dod+19b, Section 3].

We begin by defining an MCMC type estimator for each term in the telescoping sum
in eq. (3.1).

The coarsest component, Eν0 [Q0], may be estimated by single level MCMC as already
discussed in section 2.4.3. We denote the resulting estimator for level zero by
Q̂MCMC

0,N0
, where N0 indicates the number of samples drawn.

For estimating the correction terms, define Y l := Ql − Ql−1. The corresponding
estimator is the chosen as

ŶMCMC
l,Nl := 1

Nl

Nl∑
n=1

Y n
l = 1

Nl

Nl∑
n=1

Ql(θnl)−Ql−1(Θn
l−1) (3.2)

where Nl is the number of samples on level l, and we make use of two Markov
chains per level: A chain {θnl }n∈N on level l itself as well as an associated coarse
chain {Θn

l−1}n∈N, where each have the appropriate stationary distribution (νl and
νl−1 respectively).

Finally, by adding all estimators, we arrive at the MLMCMC estimator:

Q̂MLMCMC
L,{Nl} := Q̂MCMC

0,N0 +
L∑
l=1

ŶMCMC
l,Nl . (3.3)

3.3 Multilevel Markov Chain Monte Carlo 53

It remains to define how the respective Markov chains for the estimators ŶMCMC
l,Nl

are to be generated. To that end, we will proceed in two main steps. In a first
step, focusing on coupling two levels, we define how the fine components are to be
sampled, assuming idealized Independent and identically distributed (i.i.d.) coarse
samples Θn

l−1 serving as proposals.

Sampling the correction terms

For simplicity, consider a fixed level 1 ≤ l ≤ L. In order to accommodate varying
parameter dimensions across levels, i.e. Rl varies across levels, we partition the fine
chain consisting of samples θl ∈ RRl into fine and coarse components:

θl = [θl,C , θl,F],

where the coarse component matches the dimension on the coarse level l − 1, i.e.
θl,C ∈ RRl−1 . As a result, the fine component θl,F has dimension Rl −Rl−1.

Now we can exploit the coarse level in order to provide well-informed proposals
for the fine level (at least for the coarse component θl,C) as well as ensure variance
reduction between levels as l→∞. Both advantages ultimately come down to the
fact that νl−1 is assumed to be a good approximation of νl.

Ideal proposals would be i.i.d. samples from the target distribution itself; in that
case, every proposal could be accepted, trivially yielding i.i.d. samples from the
target distribution. Drawing proposals from the next coarser posterior distribution
approximates that idealized situation as l→∞ when posteriors can be assumed to
“converge” in a sense specified later. For the same reason, many proposals will be
accepted, meaning that coarse components on level l often equal their corresponding
proposals from level l − 1. Under assumptions specified later, that implies similar
quantities of interest on both levels, in turn implying low variance.

The approach is detailed in algorithm 2, where for now we assume i.i.d. samples from
νl−1 are readily available and specify later how to obtain them in an approximate
sense.

The algorithm comes down to drawing a sample Θn+1
l−1 from the level l − 1 posterior

distribution and making it the proposal θ′l,C for the coarse component on level l.
In order to support the case Rl > Rl−1, the proposal’s fine component ’θ′l,F needs
to be specified as well. To that end, we draw θ′l,F from a level-specific proposal

54 Chapter 3 Advanced Uncertainty Quantification Methods

Algorithm 2: MHMCMC for Y l

Result: Samples {θnl } and {Θn
l−1} as needed by the estimator ŶMCMC

l,Nl .
Choose initial states Θ0

l−1 ∼ νl−1 and θ0
l := [Θ0

l−1, θ
0
l,F].

for sample n = 0, . . . , Nl do
• Assume an i.i.d. sample Θn+1

l−1 from νl−1.

• Given θnl , generate θn+1
l in analogy to algorithm 1. In that process, choose the

proposal distribution qlML(θ′l|θnl) implicitly defined by taking θ′l,C := Θn+1
l−1 and

generating θ′l, F from a proposal distribution ql,FML(θ′l,F , θnl,F) independent of
the coarse component. As acceptance probability, use

αlML(θ′l|θnl) = min

{
1, π

l(θ′l)qlML(θnl |θ′l)
πl(θnl)qlML(θ′l|θnl)

}
.

end

distribution ql,FML. Combining coarse and fine component, we arrive at our full level
l proposal.

In order to arrive at an explicit formulation of the proposal qlML, we can break it
down in the following way.

Lemma 3. The acceptance probability αlML from algorithm 2 can be written as

αlML(θ′l|θnl) = min

1,
πl(θ′l)πl−1(θnl,C)ql,FML(θnl,F |θ′l,F)
πl(θnl)πl−1(θ′l,C)ql,FML(θ′l,F |θnl,F)

 .
and the induced transition kernel K l

ML satisfies detailed balance.

For symmetric fine level proposals this fraction simplifies to

αlML(θ′l|θnl) = min

{
1,
πl(θ′l)πl−1(θnl,C)
πl(θnl)πl−1(θ′l,C)

}
.

Note that for symmetric proposals however, the convergence analysis in [Dod+19b]
does not hold (see [Dod+19a]). In the applications, we therefore restrict our use of
symmetric proposals to the coarsest level.

Proof. Proposals θ′l,C for coarse components and proposals θ′l,F for fine components
are, by construction, independent. Therefore the overall proposal density qlML can

3.3 Multilevel Markov Chain Monte Carlo 55

Level 0

Level 1

Level 2

Fig. 3.2: Structure of samples being passed across levels of MLMCMC.

be decomposed into a product of a coarse proposal density ql,CML and a fine proposal
density ql,FML.

While the latter may be chosen in a variety of ways, coarse proposals in algorithm 2
are defined as being true i.i.d. samples from the coarse posterior πl−1. Consequently,
it follows that ql,CML(θ′l,C |θnl,C) = πl−1(θ′l,C) and ql,CML(θnl,C |θ′l,C) = πl−1(θnl,C). The
kernel K l

ML fulfilling the detailed balance condition then follows in analogy to
MHMCMC (see section 2.4.3).

Recursive generation of coarse proposals

Algorithm 2 fulfills the purpose of coupling samples from a coarser level l − 1 to a
level l chain, assuming i.i.d. samples from the coarse posterior are available. This
is a helpful step in constructing a valid MCMC method for sampling the correction
term estimator. However, these samples are clearly not available in practice, and
will have to be approximated.

An obvious practical way to obtain them is simply applying standard MHMCMC to
the coarser level, leading to a two-level method estimating each correction term.
Instead of plain MHMCMC, we can further apply algorithm 2 on level l − 1 in order
to produce proposals needed on level l. By applying this approach recursively, we
finally arrive at a full multilevel method in algorithm 3. How samples are passed
across levels is illustrated in fig. 3.2.

Since MCMC methods produce correlated samples, the i.i.d. assumption is how-
ever violated. In order to mitigate this, subsampling is applied; i.e. instead of
using all samples {Θn

l−1}n∈N of the coarse chain directly, we instead use the subset
{Θρl−1n

l−1 }n∈N for a subsampling rate ρl−1 ∈ N. Now, if ρl−1 � τ l−1 where τ l−1 is the

56 Chapter 3 Advanced Uncertainty Quantification Methods

Algorithm 3: Multilevel MCMC

Result: Markov chains {θik}
Nk
i=0 for all levels k ∈ {0, ..., L}.

On level 0, run a conventional MCMC chain, delivering samples θi0.
for level k = 1, . . . , L do

Choose starting point θ0
k with coarse component from next coarser starting

point θ0
k−1.

for sample j = 1, . . . , Nk do

Given θjk, generate proposal θ′k =
{
θ′k,C
θk,F

}
where

• θ′k,C is drawn from chain on level k − 1, observing subsampling, and

• θ′k,F from proposal density qk(θ′k,F |θ
j
k,F).

Compute acceptance probability

α(θ′k, θ
j
k) = min

1, πk(θ
′
k)qk(θ

j
k|θ′k)

πk(θjk)qk(θ′k|θ
j
k)
·
πk−1(θjk,C)
πk−1(θ′k,C)

 .
Draw a random number r ∈ [0, 1].
if r < α(θ′k, θ

j
k) then

Accept proposal: θ′k as θj+1
k

else
Reject proposal: θj+1

k = θjk
end

end
end

3.3 Multilevel Markov Chain Monte Carlo 57

integrated autocorrelation time of the level l − 1 chain, we obtain approximately
uncorrelated coarse samples. In practical applications, a value around ρl−1 ≈ 1.5τ l−1

often turns out to be a good choice.

For theoretical analysis of the algorithm, i.i.d. coarse samples will still be assumed
in the following. The bias introduced by drawing slightly correlated samples from
an MCMC chain on the coarse level is therefore not covered, but turns out negligible
in practical applications.

Convergence analysis

The convergence analysis from [Dod+19b] is conducted for the idealized algorithm 2.
That is, i.i.d. samples from level l − 1 are assumed when generating level l samples.
As already mentioned, this assumption is clearly not realistic, since generating
samples for any level is the goal in the first place. Algorithm 3 can be used in
practice, approximating i.i.d. proposals by subsampling the coarse chain. This
approximation naturally incurs an error. It is, however, beyond the scope of this
work to address that issue. We therefore continue with the analysis for the idealized
method, tacitly assuming in practical applications that appropriate subsampling
rates render the effect of this discrepancy negligible.

Convergence analysis of MLMCMC according to [Dod+19b] can be conducted in
the same spirit as MCMC in section 2.4.3. For each level l ∈ 1, . . . , L, let

E l = {θl : π0
l(θl) > 0},

Dl = {θl : qlML(θl|θ∗l) > 0 for some θ∗l ∈ E l}.

Then the following results follow from their single level MCMC counterparts (see
section 2.4.3) applied to each chain. Applied to the telescoping sum structure in
eq. (3.1) this implies the desired properties.

Lemma 4. Assuming E l ⊂ Dl, νl is a stationary marginal distribution of the Markov
chain {θnl }n∈N.

Theorem 6. Assume for l ∈ {1, . . . , L} it holds Eνl [|Ql|] <∞ and

qlML(θl|θ∗l) > 0 ∀(θl, θ∗l) ∈ E l × E l. (3.4)

58 Chapter 3 Advanced Uncertainty Quantification Methods

Then it holds

lim
{Nl}→∞

Q̂MLMCMC
L,{Nl} = EνL [QL]

for any θ0
l ∈ E l.

The assumption in eq. (3.4) is somewhat more intricate than its single level counter-
part in eq. (2.17). As already seen above, it holds

qlML(θl|θ∗l) = πl−1(θl,C)ql,FML(θl,F |θ∗l,F). (3.5)

Consequently, the assumption actually couples two levels in the sense that on the
level l posterior’s support E l, both the fine proposal and, most importantly, the coarse
posterior must be positive as well.

At first glance, eq. (3.4) is just as mild an assumption for practical applications as
the single level case eq. (2.17). For example, choosing Gaussian distributions for
prior, likelihood and fine proposals on all levels ensures that the respective densities
are all positive on the entire parameter space.

However, there is a severe implication when only a finite number of samples may be
drawn. Assume that πl � 0 and πl−1 ≈ 0 holds in a significant region Dllow of the
parameter space. We also have qlML ≈ 0 in Dllow due to eq. (3.5). This essentially
violates the assumption E l ⊂ Dl made in lemma 4 in the finite setting. Consequently,
the posterior νl will not be represented well by sampling unless drawing potentially
prohibitively large numbers of samples. Therefore, in applications like the ones in
chapter 6 it must be ensured that the coarse posterior “covers” the weight of the fine
posterior well. This may be challenging depending on the choice of forward models
and likelihoods. A more detailed investigation of this issue as well as an approach to
(at least partially) compensate for it can be found in [Lyk+20].

Finally, the following cost estimate for the idealized method is proven in [Dod+19b].
It requires the following objects: Let Θl := {θnl }n∈N∪{Θn

l−1}n∈N for l ≥ 1, and Θ0 :=
{θn0}n∈N. Denote the expected value and variance with respect to Θl (generated by
algorithm 2) by EΘl and VΘl . Further, denote by νl,l−1 the joint distribution of θl
and Θl−1, which is defined by the marginals of θl and Θl−1 (namely νl and νl−1)
with a correlation implied by algorithm 2. For clarity of presentation, further let
Y 0 := Q0, ν0,−1 := ν0, and M−1 = R−1 = 1.

3.3 Multilevel Markov Chain Monte Carlo 59

Theorem 7 (MLMCMC cost). Let ε < e−1 and suppose there are constants α, α′, β, β′, γ >
0 with α ≥ 1

2 min(β, γ) such that, for all l ≥ 0:

• |Eνl [Ql]− Eν [Q]| ≤ C(M−αl +R−α
′

l),

• Vνl,l−1 [Y l] ≤ C(M−βl−1 +R−β
′

l−1),

• VΘl [ŶMCMC
l,Nl]+(EΘl [ŶMCMC

l,Nl]−Eνl,l−1 [ŶMCMC
l,Nl]) ≤ CN

−1
l Vνl,l−1 [Y l],

and

• Cost(Ql(θil)) ≤ CM
γ
l .

Then there exist L ∈ N and {Nl}Ll=0 ⊂ N, such that for the multilevel estimator’s mean
square error it holds E∪lΘl [(Q̂MLMCMC

L,Nl
− E[Q])2] < ε2 and the overall cost of the

multilevel estimator is given by

Cost(Q̂MLMCMC
Nl,L

) = C

O(ε−2|log(ε)|) for β > γ,

O(ε−2|log(ε)|3) for β = γ,

O(ε−2− γ−β
α |log(ε)|) for β < γ.

 .

Proof. See [Dod+19b, Theorem 3.4].

This cost estimate is now essentially analogous to the MLMC case in theorem 5,
yielding similar gains in cost over the corresponding MCMC estimate

Cε(Q̂MCMC
N) . NMγ ≈ ε−2−γ/α.

from section 2.4.3. Since posterior distributions vary across levels in the assumptions
of theorem 7, applying it to our model problem from section 2.4.1 is not as straight-
forward as in the MLMC case above. For an application of theorem 7 to a realistic
model, we therefore refer to [Dod+19b, Section 4.2], where it is rigorously shown
that convergence an order below the single-level case can indeed be achieved.

3.4 Multiindex Markov Chain Monte Carlo

This section proposes a new extension of the above MLMCMC method to a more
general multiindex setting.

Both MLMC and MLMCMC methods above exploit the fact that forward models
can often be coarsened, in the sense of reducing computational effort while still
achieving acceptable model predictions. There are, however, many forward models

60 Chapter 3 Advanced Uncertainty Quantification Methods

(a) A single model as used in
plain MCMC.

2

1

0

In
cr

e
as

in
g

 c
o

st
 a

n
d

a
cc

u
ra

cy

(b) A linear model hierarchy
as defined in MLMCMC.

(0,2)

Increasing cost and accuracy

(0,1)

(0,0)

In
cr

ea
si

ng
 c

os
t

an
d

ac
cu

ra
cy

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(c) A 2D model hierarchy for
MIMCMC.

Fig. 3.3: Structures of model hierarchies from single level MCMC to MIMCMC.

that can be coarsened in multiple independent ways. In order to exploit this,
multiindex methods allow for an arbitrary dimensional “grid” of models instead of a
“linear” multilevel model hierarchy. Each model is then identified by a multiindex
α = (α1, . . . , αd) ∈ Nd0, where d is now the dimension of the model hierarchy. The
resulting model hierarchies for single level, multilevel and multiindex methods are
illustrated in fig. 3.3.

A generalization of MLMC to a multiindex setting, namely Multiindex Monte Carlo
(MIMC), is proposed in [Haj+16]. Based on that, the authors of [Jas+17] show that
a MCMC type method can be constructed in a multiindex setting as well. They do not,
however, exploit coarser models as proposals. The goal of this section is therefore to
transfer this key element from MLMCMC as constructed in [Dod+19b] to MIMCMC.
Beyond efficiency gains due to cheap well-informed proposals, MIMCMC constructed
in that manner is a true generalization of MLMCMC as introduced above. Therefore,
a single implementation suffices in chapter 5 to cover both cases.

As a first step, we give a quick review of the key concepts in [Jas+17]. The notation
from above is reused, the main difference is that objects defined per level are now
defined per multiindex.

We again assume that the hierarchy of approximate models converges towards the
underlying “true” model; the main difference is that now all dimensions of the
multiindex need refinement:

lim
min1≤i≤d αi→∞

Eνα [Qα] = Eν [Q]

3.4 Multiindex Markov Chain Monte Carlo 61

Δ(1)

Δ(0)

-

+

+

(0)

(1)

Δ(2)

-

+
(2)

(a) Telescoping sum in multilevel case.

Δ(1,1)

- +

+ -

Δ(0,1)

Δ(0,0)
Δ(1,0)

-

-

+

++

++
(0,0) (1,0)

(1,1)(0,1)

Δ(1,2)

- +

+ -

Δ(0,2)

-

+

++

(1,2)(0,2)

Δ(2,1)

- +

+ -

Δ(2,0)- +

++
(2,0)

(2,1)

Δ(2,2)

- +

+ -++

(2,2)

(b) Telescoping sum in multiindex case.

Fig. 3.4: Structures of telescoping sums in MLMCMC and 2D MIMCMC case; the former is
interpreted as a special case of the latter for one dimension. Each box represents
a summand in eq. (3.8), i.e. a ∆ operator applied to a specific multiindex. Each
operator is ultimately comprised of summands itself according to eq. (3.6). A “+”
symbol indicates a positive term in the operator, “-” indicates a negative sign. Note
that, when adding all operators as in eq. (3.8), all but the finest models cancel
out.

In order to construct a telescoping sum in the multiindex setting, we introduce the
operators ∆i, 1 ≤ i ≤ d, defined in the following way:

∆iEνα [Qα] :=
{

Eνα [Qα]− Eνα−ei [Qα−ei] if αi > 0
Eνα [Qα] else

}
, (3.6)

where ei are the canonical basis vectors of Rd. Next, define the successive application
of these operators as ∆ := ∆d . . .∆1. This leads us to the telescoping sum

Eν [Q] =
∑
α∈Nd0

∆Eνα [Qα] (3.7)

As before, model evaluations for an infinite set of models are unavailable, and a
truncation of the telescoping sum is used instead. Define a subset of Nd0

IL1:Ld := {α ∈ Nd0 : αi ∈ {0, . . . , Li}∀i ∈ {1, . . . , d}}.

62 Chapter 3 Advanced Uncertainty Quantification Methods

The Li correspond to the maximum number of “levels” available for the ith type of
refinement. In case d = 1 and L1 = L, this reduces to the multilevel setting treated
above. Now the desired expected value is approximated by

Eν [Q] ≈
∑

α∈IL1:Ld

∆Eνα [Qα]. (3.8)

The construction of the telescoping sum eq. (3.8) is illustrated in fig. 3.4. Note that
while here we choose the set IL1:Ld to form a hypercube grid, it was observed in the
MIMC setting [Haj+16] that other “shapes” of index sets may lead to more efficient
methods. In particular, a “convex” set is often a good choice since it may drop terms
in the telescoping sum that are both very costly and do not contribute much to the
error estimator due to their low variance.

Algorithm 4: Multiindex MCMC

Result: Markov chains {θik}
Nk
i=0 for all indices k ∈ IL1:Ld .

On index 0 = (0, . . . , 0), run a conventional MCMC chain, delivering samples θi0.
for index k ∈ IL1:Ld 0 do

Choose starting point θ0
k with coarse component from next coarser starting

point θ0
c(k).

for sample j = 1, . . . , Nk do

Given θjk, generate proposal θ′k =
{
θ′k,C
θk,F

}
where

• θ′k,C is drawn from chain on level c(k), observing subsampling, and

• θ′k,F from proposal density qk(θ′k,F |θ
j
k,F).

Compute acceptance probability

α(θ′k, θ
j
k) = min

1, πk(θ
′
k)qk(θ

j
k|θ′k)

πk(θjk)qk(θ′k|θ
j
k)
·
πc(k)(θ

j
k,C)

πc(k)(θ′k,C)

 .
Draw a random number r ∈ [0, 1].
if r < α(θ′k, θ

j
k) then

Accept proposal: θ′k as θj+1
k

else
Reject proposal: θj+1

k = θjk
end

end
end

3.4 Multiindex Markov Chain Monte Carlo 63

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(0,3) (1,3) (2,3)

(3,2)

(3,1)

(3,0)

(3,3)

(0,4) (1,4) (2,4) (3,4)

(4,2)

(4,1)

(4,0)

(4,3)

(4,4)

(0,5) (1,5) (2,5) (3,5) (4,5)

(5,2)

(5,1)

(5,0)

(5,3)

(5,4)

(5,5)

Δ(0,4)

(a) Proposal routing for ∆(0,4).

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(0,3) (1,3) (2,3)

(3,2)

(3,1)

(3,0)

(3,3)

(0,4) (1,4) (2,4) (3,4)

(4,2)

(4,1)

(4,0)

(4,3)

(4,4)

(0,5) (1,5) (2,5) (3,5) (4,5)

(5,2)

(5,1)

(5,0)

(5,3)

(5,4)

(5,5)

Δ(3,5)

(b) Proposal routing for ∆(3,5).

Fig. 3.5: Routing of proposals in MIMCMC.

We now propose a new strategy for handling proposals in MIMCMC in analogy to the
MLMCMC method from above. By coupling “neighboring” indices instead of levels,
we can apply the same construction for sampling differences as already shown in
algorithm 2. Specifically, we draw samples from coarser indices as proposals and,
as before, choose a suitable acceptance ratio to ensure the fine chain still exhibits
the appropriate stationary distribution. The result is an extension of algorithm
algorithm 3 to its multiindex counterpart algorithm 4.

There is one significant difference compared to the MLMCMC variant: While the
coarse level corresponding to level l is clearly level l − 1, in the multiindex case it is
not obvious which coarse chain index c(α) ∈ Nd0 should provide proposals for chain
α ∈ Nd0 \ 0.

The default choice taken in the implementation in chapter 5 is

c(α) := (α1, . . . , α(argmaxi αi)−1, α(argmaxi αi) − 1, α(argmaxi αi)+1, . . . , αd), (3.9)

where α 6= 0. This is the most “direct” route towards the diagonal and then down to
the coarsest index 0, while only coarsening one dimension at a time. This choice is
not unique. A possibly more advanced option could be a dynamic choice minimizing
cost along the path by balancing acceptance rates against model cost. This is however
left to future investigations.

One further intricacy is that, in order to exploit variance reduction, samples used
for estimating a difference in eq. (3.8) should be correlated across multiindices. In
analogy to MLMCMC (see eq. (3.2)), we achieve this by using coarse samples as

64 Chapter 3 Advanced Uncertainty Quantification Methods

proposals for fine chains and subsequently using fine samples and their correspond-
ing coarse proposals together in the estimator. We therefore need to extend the
aforementioned proposal routing strategy from eq. (3.9) to ensure that all samples
used to estimate a difference in the telescoping sum (corresponding to a box in
fig. 3.4) share proposals from the same coarse chain. The resulting routing strategy
is illustrated in fig. 3.5.

Finally, in the case of a one-dimensional multiindex, the MIMCMC algorithm above
is fully identical to MLMCMC: In case d = 1 the multiindex comes down to an integer
and, with a proposal routing strategy defined as c(α) := (α1−1), the telescoping sum
eq. (3.8) collapses to eq. (3.1). Further, proposals are now simply drawn from the
next coarser level again. This property allows a single implementation in chapter 5
to cover both multilevel and multiindex settings.

3.4 Multiindex Markov Chain Monte Carlo 65

Efficient Models and Model
Hierarchies for Multiscale
Problems

4

Typical Uncertainty Quantification (UQ) problems as introduced in section 2.3 can
be viewed as a deterministic forward model F combined with stochastic parameters,
whose distribution is either prescribed in forward problems or to be determined
from observations in inverse problems. This separation into a deterministic and a
stochastic aspect immediately translates into two different approaches for improving
the efficiency of numerical solvers for UQ problems: On one hand, we can improve
the efficiency of the UQ method in the sense of reducing forward model evaluations,
which has already been discussed extensively in chapter 3.

On the other hand, we can try and speed up the forward model itself. The efficient
and scalable solution of deterministic forward models is of course a very active field
of research on its own. For Partial Differential Equation (PDE) models alone, there
is a wide variety of methods, typically in the form of efficient preconditioners, and
software packages. Domain decomposition methods (see [SBG96] for an overview),
multilevel methods like [SBG96] and various algebraic multigrid methods like
BoomerAMG [YH02] or spectral AMGe [Cha+03] allow the solution of challenging
large-scale models. They are available in software packages like DUNE [BHM10],
FEniCS [Aln+15], Hypre [17] or deal.II [Alz+18]. These are just examples and far
from an exhaustive list.

As such, we could focus entirely on the UQ aspect and simply rely on existing forward
model implementations to be provided. However, there is a link between the two:
Multilevel Markov Chain Monte Carlo (MLMCMC) and Multiindex Markov Chain
Monte Carlo (MIMCMC) methods from chapter 3 act on a hierarchy of forward
models. Since the real-world performance of those multilevel and multiindex
methods depends entirely on the specific choice of that hierarchy just like multilevel
forward solvers, it seems promising to investigate potential gains in employing
purpose-built solvers for maximum efficiency of hierarchical UQ methods.

This chapter aims to investigate efficient choices for multilevel and multiindex
model hierarchies for UQ methods by exploiting and extending results from modern

67

preconditioners for PDEs. We begin with a general discussion of model hierarchies
in section 4.1.

In section 4.2 we present a new theoretical link between Generalized Eigenproblems
in the Overlaps (GenEO), a robust and scalable preconditioner for PDEs, and an
abstract Localized Model Order Reduction (LMOR) framework. This allows the
exchange of methods between the two fields, which we demonstrate by applying a
randomized eigensolver from LMOR in the preconditioner case. It also justifies the
use of GenEO as a model order reduction method. This section is joint work with
Andreas Buhr.

As an intermediate step in section 4.3, we proceed to present a new extension to
our GenEO implementation in the Distributed and Unified Numerics Environment
(DUNE) framework allowing the use of unstructured meshes. Support for unstruc-
tured meshes is particularly relevant for real-world engineering applications. This
section is joint work with Peter Bastian. Peter Bastian provided the virtual overlap
implementation, while the author was responsible for the GenEO implementation
building on top of it.

We show in section 4.4 how to exploit the locality of the GenEO basis construction
to form an efficient offline/online LMOR method that may reuse large parts of the
expensive coarse basis across multiple evaluations. This section is joint work with
Jean Bénézech. The author was mainly responsible for designing the method, while
Jean Bénézech was mainly responsible for the implementation. This is an ongoing
project, and the method will be applied to UQ problems in engineering in the near
future.

4.1 Model Hierarchies

There is a number of different approaches to building model hierarchies suitable
for multilevel and multiindex UQ methods. A frequently used example for forward
models based on numerical PDE solvers is simply changing mesh width across
levels. The main advantage is that numerical PDE theory typically provides a
priori error estimates depending on mesh width, which allows the construction of a
mesh hierarchy satisfying the assumptions on approximation quality made by e.g.
MLMCMC theory as shown in section 3.3. The same holds for the multiindex case as
well, as shown for a multiindex method in [Haj+16].

68 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

However, multilevel and multiindex methods as in chapter 3 only assume a hierarchy
of posterior densities. Therefore we may also introduce a more general model
hierarchy beyond mesh widths. For example, we might use a simple Ordinary
Differential Equation (ODE) as a coarse approximation to a PDE model. A more
in-depth treatment of such hierarchies is given under the name of multifidelity
methods in [PWG16]. In our tsunami application in section 6.3, we use a smoothed
bathymetry on coarser levels and even an extremely rough model without any
bathymetry data. We complement this with mesh coarsening. Since we technically
solve strongly modified models, we only obtain only very roughly correct outputs.
However, as the solver for hyperbolic PDEs we use is strongly affected by wetting
and drying as well as steep gradients in bathymetry, we gain significant reductions in
computational cost for these simplified models. Even though a theoretical treatment
of the approximation error we introduce in the process would be very hard to obtain,
we clearly observe significant gains at the very least by achieving well-informed
proposals for our finer models at low cost.

Beyond hand-crafted model hierarchies using application-specific knowledge, gen-
erating coarser models in an automatic way without requiring user intervention is
an attractive proposition. In the context of PDE models, the field of Model Order
Reduction (MOR) provides methods for automatically generating low-dimensional
approximations to high-dimensional PDE discretizations. Markov Chain Monte Carlo
(MCMC) type UQ methods require a large number of subsequent model evalua-
tions for (in case of high autocorrelation) only sightly changed parameters. LMOR
[Buh19] is of particular interest here, because local parameter changes between
evaluations imply that only few parts of the reduced order model need to be updated
each time.

In the following we prove that GenEO, a highly robust preconditioner, can be
employed as an LMOR method as well. This allows us to use it in all stages of model
hierarchy: On finer levels it serves as a preconditioner to an iterative solver for the
discretized PDE. On the coarsest level in turn, we employ the GenEO coarse space as
an LMOR method, reusing basis components from previous runs in an offline/online
fashion and thereby essentially reducing cost to a few subdomain solves per model
evaluation.

4.1 Model Hierarchies 69

4.2 Linking Robust Preconditioners and Model Order
Reduction

4.2.1 Efficient Preconditioning using GenEO coarse spaces

We show the link between model order reduction and eigenproblem-based robust
preconditioning at the example of the GenEO (Generalized Eigenproblems in the
Overlaps) coarse space. This section gives a brief review of the method as derived
from abstract Schwarz preconditioning theory, largely based on the presentations in
[SRS20; Spi+14].

Efficient preconditioning is crucial when solving large linear systems arising from
finite element-type discretizations, as direct solvers easily become intractable and
iterative solvers’ performance directly depends on the condition number.

In order to exploit modern high performance computing architectures, a precon-
ditioner should expose good parallel scalability. Further, solving hard simulation
problems often requires robustness with respect to parameter contrast, anisotropies
etc.

An established domain-decomposition approach achieving this is the abstract two-
level Schwarz framework [SBG96; TW05]. We begin with a review of the underlying
components and then proceed to show GenEO as a particular robust coarse space
choice.

Abstract Two-Level Additive Schwarz

According to established Finite element (FE) theory, we assume a weak form of the
PDE to be solved. As already introduced in section 2.1, that means we look for a
solution u ∈ U such that

a(u, v) = b(v) ∀v ∈ V. (4.1)

For simplicity, we assume U = V , as is sufficient for many applications. The specific
bilinear form a and linear form b arise in transforming a given PDE into such a weak
form. Typically, the function space V will be a suitable Sobolev space defined on the
PDE domain Ω, ensuring uniqueness of u.

70 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Let Th be a mesh of width h in the established FE sense. As a preparation for domain
decomposition, we further make the assumption that a is not only symmetric positive
definite but may also be decomposed into per-element weak forms

a(u, v) =
∑
e∈T〈

ae(u, v).

This is trivially the case when a and b are integrals over Ω. For unions Ω̃ of elements,
we accordingly denote by aΩ̃ the sum of the corresponding ae. We denote norms and
semi-norms corresponding to aΩ̃ by | · |a,Ω̃ and by ‖ · ‖a,Ω̃ in the respective cases.

In order to discretize, we again introduce a finite-dimensional approximation space
Vh ⊂ V based on per-element basis functions on the mesh Th, i.e. an FE space.
The system matrix A is then a discrete representation of a in that space, defined
by Ai,j = a(φj , φi) where Vh = span{φ1, . . . , φN}. Matrices and vectors used in the
following can be determined analogously on the same basis.

This very brief introduction should suffice to establish notation. For a more detailed
introduction to FE, refer to section 2.1.

The construction of a Schwarz type preconditioner now begins with a decomposition
of the domain Ω into non-overlapping subdomains {Ω′j}Nj=1, where the Ω′j are unions
of mesh elements of Th.

Next, we extend each non-overlapping domain by a layer of mesh elements, leading
to now overlapping subdomains Ωj . The extension procedure can be repeated an
arbitrary number of times to achieve larger overlaps. We denote the overlap region
of a subdomain as

Ωo
j := {x ∈ Ωj : ∃j′ 6= j such that x ∈ Ωj′},

which we will use during the construction of the coarse space.

We can define the according restrictions of our function space Vh onto the overlapping
subdomains by Vh(Ωj) := {v|Ωj : v ∈ Vh} for each 1 6 j 6 N . Further restricting
these subspaces to homogeneous Dirichlet conditions on subdomain boundaries (not
including ∂Ω) we arrive at subspaces Vh,0(Ωj).

Definition 26. Now define the prolongation operators RTj : Vh,0(Ωj)→ Vh for each
vj ∈ Vh,0(Ωj) such that RTj vj |Ωj = vj and RTj vj |Ω\Ωj = 0. The corresponding

4.2 Linking Robust Preconditioners and Model Order Reduction 71

restriction operator by Rj is then simply its adjoint. When representing the operator
in matrix form, we use the notation Rj .

Definition 27 (One-level Additive Schwarz). Based on these restrictions and the
system matrix A, we can now define restricted system matrices Aj := RjART

j . for
all subdomains j = 1, . . . , N . Then the Additive Schwarz preconditioner is given by
adding all local solves:

M−1
AS,1 :=

N∑
j=1

RT
j A−1

j Rj .

While such a preconditioner already is highly parallelizable, smooth errors spanning
the entire domain are badly resolved by only local corrections. A typical approach to
compensate for this is to introduce a coarser level to the method.

Following the one-level construction, we now introduce a coarse space VH defined
on the entire domain but with low dimension.

Definition 28 (Two-level Additive Schwarz). As our coarse prolongation, denote
the natural embedding by RTH : VH → Vh, and its matrix form RH

T . Again, the
corresponding restriction is its adjoint RH .

Now introducing the coarse problem AH := RHART
H , leads to the two-level Addi-

tive Schwarz preconditioner:

M−1
AS,2 := RT

HA−1
H RH +

N∑
j=1

RT
j A−1

j Rj .

The effectiveness of such a preconditioner can be analyzed in the framework of
[TW05]. This allows for an upper bound on the condition number of the precondi-
tioned system, based on two essential properties which allow bounds on the smallest
and largest eigenvalue.

The first property requires that only a certain number of subdomains may overlap at
any given point.

Definition 29 (Covering bound). We define

k0 = max
τ∈Th

(#{Ωj : 1 6 j 6 N, τ ⊂ Ωj}).

Note that this property is usually easy to fulfill with a low constant, since it only
depends on a reasonable arrangement of subdomains.

72 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Lemma 5 (Upper bound). With a finite covering k0, the largest eigenvalue of the
preconditioned system can be bounded by

λmax(M−1
AS,2A) 6 k0 + 1.

Proof. See [Spi+14, Lemma 2.6].

The second property requires the projections of a function onto the various subspaces
are bounded by its norm.

Definition 30 (Stable splitting).

‖RHv‖2a +
N∑
j=1
‖Rjv‖2a,Ωj 6 C2

0‖v‖2a.

From this, we can conclude the desired bound on the smallest eigenvalue.

Lemma 6 (Lower bound). If there exists a stable splitting with a common constant
C0 for all v ∈ Vh, then it holds

λmin(M−1
AS,2A) > C−2

0 .

Proof. See [Spi+14, Theorem 2.8].

Putting all this together, we arrive at a condition bound.

Theorem 8. Given Lemmas 5 and 6, we can give a bound on the condition number by

κ(M−1
AS,2A) 6 C2

0 (k0 + 1).

Proof. See [Spi+14, Theorem 2.8].

While a good k0 is easy to achieve, C0 remains to be determined. In particular, while
the restrictions Rj are obvious, the particular choice of RH allows for some freedom.
A large space VH tends to lead to a more effective preconditioner, however implying
a costly coarse system solve. Smaller coarse spaces are faster to solve in, but less of
an acceleration to the method. Therefore, a good balance between the two must be
found.

4.2 Linking Robust Preconditioners and Model Order Reduction 73

Additive Schwarz with GenEO Coarse Space

One such choice of coarse space is GenEO. If defines an efficient space with a good C0

stable splitting constant by means of an eigenproblem. Here we show the definition
of the method as well as the main theoretical results proving the robustness when
applied in a preconditioner.

According to [Spi+11; Spi+14], Lemma 6 can be relaxed to inequalities of purely
subdomain-local norms, albeit at the cost of a slightly worse constant:

Lemma 7 (Localized splitting). Let there exist a constant C1 fulfilling

‖Rjv‖2a,Ωj 6 C1|v|2a,Ωj

for all 1 6 j 6 N . Then the decomposition v = RHv +
∑N
j=1Rjv as above is C0-stable

with C2
0 = 2 + C1k0(2k0 + 1).

Note that these inequalities only involve the local restrictions onto Vj and not the
coarse component VH . Therefore, C1 can now be optimized by writing both sides as
part of an eigenproblem. Moving the eigenvectors implying a large C1 into the coarse
space consequently eliminates the respective eigenvalues from the inequalities.

Definition 31. For each subdomain j = 1, . . . , N , we define the generalized eigen-
problem: Find p ∈ Vh(Ωj) such that

aΩj (p, v) = λaΩoj (Ξj(p),Ξj(v)), ∀v ∈ Vh(Ωj). (4.2)

Here, the Ξj denote a partition of unity according to the following definition.

Definition 32 (Partition of unity). Let dof(Ωj) denote the degrees of freedom on
subdomain Ωj . Given weights µj,k > 1 with

∑
k∈dof(Ωj)

1
µj,k

= 1 for each subdomain
1 6 j 6 N , the associated partition of unity operator is defined by

Ξj(v) :=
∑

k∈dof(Ωj)

1
µj,k

vkφk|Ωj , for any v ∈ Vh(Ωj).

This partition can be used to ’stitch together’ local basis functions in order to produce
a well-formed global basis.

By means of a partition of unity, the results of the eigenproblem in eq. (4.2) are now
used to define the GenEO coarse space.

74 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Definition 33 (GenEO coarse space). For all subdomains j = 1, . . . , N , let (pjk)
mj
k=1

denote the eigenfunctions from eigenproblem (4.2) corresponding to the mj smallest
eigenvalues. Then the GenEO coarse space is defined as

VH := span{RTj Ξj(pjk) : k = 1, . . . ,mj ; j = 1, . . . , N}.

What remains is the choice of the numbers mj of eigenvectors per subdomain to
be included in the coarse space. By choosing all eigenvalues below a threshold, in
[Spi+14] the following bound is proven.

Theorem 9. For subdomain 1 6 j 6 N , choose

mj := min
{
m : λjm+1 >

δj
Hj

}

eigenvectors to be included in the coarse space, where δj is the overlap diameter Ωo
j and

Hj = diam(Ωj). Then the condition number is bounded by

κ(M−1
AS,2A) 6 (1 + k0)

[
2 + k0(2k0 + 1) max

16j6N

(
1 + Hj

δj

)]
.

Proof. See [Spi+14, Corollary 3.23].

This bound is now independent of parameter contrast and number of subdomains.
Therefore, choosing a GenEO space in a two-level Additive Schwarz method promises
to provide robustness and parallel scalability. These properties can be achieved in
practice, as show in [But+20a; SRS20].

In software implementations, we solve the discrete form of the GenEO eigenproblem
(4.2).

Definition 34. The discrete form of the GenEO eigenproblem for subdomain j reads

Ãjp
j
k = λjkXjÃ

o
jXjp

j
k.

Here we denote the subdomain-local discretization matrix by Ãj , the same matrix
restricted to the overlap region by Ã

o
j and Xj is the discretized partition of unity

(simply a diagonal matrix). In contrast to Aj from above, both Ãj and Ã
o
j do not

incorporate Dirichlet conditions away from ∂Ω.

4.2 Linking Robust Preconditioners and Model Order Reduction 75

As it turns out, the GenEO theory requires only minor adjustments to also hold for
a modified eigenproblem with full a full bilinear form on the right hand side. This
modification plays an important role when we later show how to embed GenEO in
the abstract LMOR framework, since it does not potentially introduce an additional
kernel on the right hand side.

Definition 35. For each subdomain j = 1, . . . , N , we define the GenEO eigenprob-
lem with full right hand side: Find p ∈ Vh(Ωj) such that

aΩj (p, v) = λaΩj (Ξj(p),Ξj(v)), ∀v ∈ Vh(Ωj). (4.3)

For full overlap, the two eigenproblems are clearly identical. Otherwise, we can
replace [Spi+14, Lemma 3.21] by a simplified version. When showing the localized
splitting property in lemma 7, instead of splitting the local contributions Rjv into an
overlap region and interior part, we can directly apply [Spi+14, Lemma 3.20] to it
and conclude

‖Rjv‖a,Ωj ≤
1

λjmj+1
‖v‖2a,Ωj .

Finally, an almost identical condition number estimate follows:

κ(M−1
AS,2A) 6 (1 + k0)

[
2 + k0(2k0 + 1) max

16j6N

(
Hj

δj

)]
.

As a result, we can employ a space closely related to GenEO in LMOR even in settings
with less than full overlap.

4.2.2 Localized Model Order Reduction

The goal of numerical model order reduction is to find a lower-dimensional ap-
proximation of a high-dimensional discretized model. There is a wide variety of
methods to generate such a reduced model. The family of methods we focus on
here is Localized Model Order Reduction (see [Buh+19] for an overview), since
that approach exposes striking similarities to domain decomposition preconditioners
and can in fact be shown to replicate theoretical results of GenEO and others (see
section 4.2.3).

For an abstract framework of model order reduction theory, we follow the presen-
tation in [Buh19] throughout this section. In order to remain consistent, we use

76 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

the same notation as in the original literature here. Later we show how the objects
introduced here can be identified with or connected to the ones introduced in the
preconditioner setting in section 4.2.1.

Abstract Localized Model Order Reduction

The goal of localized model order reduction is to generate a reduced model space by
first decomposing the global space V into several subspaces. Then, local approxi-
mation spaces are generated and finally combined to form a global approximation
space. Just like in domain decomposition preconditioners, this breaks down the
global problem into computationally tractable smaller problems which can easily be
parallelized in order to exploit modern high performance computers.

We begin by defining an abstract localizing space decomposition.

Definition 36 (Localizing Space Decomposition). A localizing space decomposition
consists of

1. an open, bounded and connected domain Ω ⊂ Rd with smooth boundary,

2. a Hilbert space V of functions on Ω which is a continuous or discrete function
space,

3. NVi subdomains ωi which form an overlapping or non overlapping domain
decomposition of the global domain Ω,

4. NVi local spaces Vi which are subspaces of the global ansatz space V and
satisfy ∑

i

Vi = V (4.4)

and
supp(ϕ) ⊆ ωi ∀ϕ ∈ Vi, (4.5)

5. NVi linear mappings PVi : V → Vi for which it holds

∑
i

PVi(ϕ) = ϕ ∀ϕ ∈ V . (4.6)

Instead of solving our variational problem from eq. (4.1) in the full space V , we will
solve a reduced version in an approximating space.

4.2 Linking Robust Preconditioners and Model Order Reduction 77

Definition 37 (Reduced variational problem). Find ũ in Ṽ ⊂ V , such that

a(ũ, v) = b(v) ∀v ∈ Ṽ . (4.7)

Based on the space decomposition above, we can now proceed to define local
reduced spaces that will, when combined, form the global reduced space Ṽ .

Definition 38 (Localized training configuration). Let
{

Ω, V , {ωi}
NVi
i=1 , {Vi}

NVi
i=1 , {PVi}

NVi
i=1

}
be a localizing space decomposition as defined in definition 36 and let u be the
solution of a non parametric variational problem as defined in eq. (4.1). We define
a “localized training configuration” to be a set of

1. NVi training domains ω∗i ⊂ Ω with the maximum number of subdomains
overlapping at any point x of Ω denoted by

J∗ := max
x∈Ω

#{i ∈ {1, . . . , NVi}| x ∈ ω∗i }, (4.8)

2. NVi Hilbert spaces V
∣∣
ω∗i

equipped with a norm satisfying

NVi∑
i=1

∥∥∥u|ω∗i ∥∥∥2
≤ J∗‖u‖2, (4.9)

3. NVi Hilbert spaces Si,

4. NVi bounded linear operators PSi : V
∣∣
ω∗i
→ Si,

5. NVi affine linear and compact operators Ti : Si → Vi,

for which it holds

u =
NVi∑
i=1

TiPSiu|ω∗i . (4.10)

Further, denote the linear components and affine shifts of Ti by T ai and T li respec-
tively.

For such a localized training configuration, the following approximation result can
be shown.

78 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Theorem 10 (Training a priori estimate). Let
{

Ω, V , {ωi}
NVi
i=1 , {Vi}

NVi
i=1 , {PVi}

NVi
i=1

}
be

a localizing space decomposition as defined in 36. Let further{
{ω∗i }

NVi
i=1 , {V

∣∣
ω∗i
}NVii=1 , {Si}

NVi
i=1 , {PSi}

NVi
i=1 , {Ti}

NVi
i=1

}
be a localized training configura-

tion as defined in definition 38. Let u be the solution of a symmetric, coercive and
stable variational problem as defined in eq. (4.1) and let ũ be the reduced solution of a
localized Galerkin projection onto Ṽ =

∑NVi
i=1 Ṽi as introduced in definition 37. Further

assume
T ai ∈ Ṽi ∀i ∈ {1, . . . , NVi}, (4.11)

and assume that the spaces Vi can be partitioned into J̄ classes such that spaces within
a class are orthogonal.

Then it holds

‖u− ũ‖
‖u‖

≤
√
γ

α

√
J̄J∗ max

i∈{1,...,NVi}

∥∥∥(1− P
Ṽi

)
T li

∥∥∥‖PSi‖. (4.12)

Proof. See [Buh19, Proposition 5.1.3].

Optimal Spaces

Since the approximation result in theorem 10 is formulated in a general way, it
remains to choose the localized training configuration optimizing approximation
error for a given reduced space dimension.

According to [SP16a; BL11], for a given reduced space dimension n, the error∥∥∥(1− P
R̃n

)
T l
∥∥∥ is minimized by the space spanned by the first n left singular

vectors of T l. The Singular Value Decomposition (SVD) exists due to the assumed
compactness of T l. We denote it by

T lϕ =
NT∑
i=1

qiσi(vi, ϕ)S ∀ϕ ∈ S, (4.13)

where NT is the rank of T l and it holds (qi, qj)R = δij , (vi, vj)S = δij and σi ∈ R+.
The optimal spaces defined as

R̃nopt := span{q1, . . . , qn} (4.14)

then minimize
∥∥∥(1− P

R̃n

)
T l
∥∥∥ for the given space dimension n and were applied in

[BL11] and [SP16b].

4.2 Linking Robust Preconditioners and Model Order Reduction 79

Lemma 8. Exploiting properties of the SVD and space decomposition, it holds

∥∥∥∥(1− P
R̃nopt

)
T l
∥∥∥∥ = sup

ϕ∈S\{0}

∥∥∥∥(1− P
R̃nopt

)
T lϕ

∥∥∥∥
‖ϕ‖

= sup
ϕ∈S\{0}

∥∥∥∥(1− P
R̃nopt

)∑NT
i=1 qiσi(vi, ϕ)S

∥∥∥∥
‖ϕ‖

= sup
ϕ∈S\{0}

∥∥∥∑NT
i=n+1 qiσi(vi, ϕ)S

∥∥∥
‖ϕ‖

= σn+1. (4.15)

So, choosing the coarse subspace as the first n singular vectors of T li , the error bound
in theorem 10 reduces to the product of some problem-specific constants and the
first singular value not included in the coarse space.

4.2.3 GenEO Coarse Space in LMOR Theory

In this section, we show how the GenEO coarse space can be covered in the abstract
LMOR theory above. To that end, we use the modified GenEO space with a full
right hand side of the eigenproblem defined in definition 35. Roughly speaking, the
original GenEO coarse space is constructed with a two-level Schwarz setting in mind,
and due to local subdomain solves the interior of subdomains does not need to be
treated by the coarse space. For LMOR however, we need to represent the solution
on the entire domain, and not just optimize the coupling between subdomains via
overlaps.

Further, the abstract LMOR theory above requires some of the spaces involved to
be Hilbert spaces. The bilinear forms originating from weak formulations of elliptic
PDEs may however have a non-trivial kernel ker(a), and they can therefore not serve
as an inner product. To fix this, we only treat Vh/ker(a) as the space to apply LMOR on,
and later add the kernel to the coarse space again. Note that in practice this step can
be ignored, since the GenEO eigenproblem recovers the kernel as eigenvectors with
zero eigenvalue, and therefore the GenEO space as defined above always includes
the kernel anyways.

80 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Definition 39. In order to represent GenEO within the setting of theorem 10, we
identify the following objects in LMOR by their respective counterparts in GenEO
notation:

Domains Spaces Mappings Inner products
LMOR GenEO LMOR GenEO LMOR GenEO

Ω Ω V Vh/ker(a) a(·, ·)
ωi Ωi Vi Vh,0(Ωi)/ker(a) PVi Ξi
ω∗i Ωi V |ω∗i Vh(Ωi)/ker(a) aΩi(·, ·)

Si Vh(Ωi)/ker(a) PSi 1 aΩi(·, ·)
Ti Ξi

As the partition of unity Ξi is linear, we trivially have T li = Ti and T ai = 0

Lemma 9. The domain decomposition used in GenEO is a localizing space decomposi-
tion as in definition 36.

Proof. We use the identifications of definition 39 to show that definition 36 is
fulfilled.

1. As defined in the GenEO setting, Ω is indeed an open, bounded and connected
domain.

2. The Hilbert space V is chosen as the discrete space Vh(Ω)/ker(a) from the GenEO
setting.

3. Local spaces Vi, identified with Vh,0(Ωi)/ker(a) from GenEO, clearly fulfill
∑
i Vi =

V while consisting of functions with only local support.

4. When identifying the PVi with the partition of unity, this property is fulfilled
by definition.

Lemma 10. With choices of operators as in definition 39, GenEO is a Localized Training
Configuration as in definition 38.

Proof. 1. By definition κ0 = J∗.

4.2 Linking Robust Preconditioners and Model Order Reduction 81

2. By finite covering, we trivially have

NVi∑
i=1
|u|ω∗i |

2
a,Ωj ≤ κ0‖u‖2a,Ω. (4.16)

3. Vh(Ωj)/ker(a) equipped with the inner product aΩj is a Hilbert space.

4. The operators PSi = 1 are trivially bounded and linear.

5. Likewise, the operators Ti = Ξi are linear. Due to the choice of PSi and by
definition of the partition of unity, it holds

NVi∑
i=1

TiPSiu|ω∗i =
NVi∑
i=1

Ξiu|Ωj = u. (4.17)

Since we are treating a finite dimensional setting, the operators are also
compact.

We have now shown that, with the choice of spaces from definition 39, we fulfill
the localized model order reduction assumptions from section 4.2.2. As a result,
we obtain the optimal coarse approximation space PRnopt and coarse approximation
error estimates due to lemma 8. It remains to show that this optimal space matches
the corresponding GenEO space of the same dimension. To that end, it is enough to
show that the per-subdomain GenEO eigenproblem from definition 35 is identical to
the per-subdomain operator SVDs from localized model order reduction:

aΩi(pj , v) = λjaΩi(Ξi(pj),Ξi(v)) ∀v ∈ Vh(Ωj)

⇐⇒ aΩi(pj , v) = λjaΩi(Ti(pj), Ti(v)) ∀v ∈ Vh(Ωj)

⇐⇒ (pj , v)Si = λj(Tipj , Tiv)Vi ∀v ∈ Si.

Defining σj = 1√
λj

, we can formulate

Tiφ =
∑
j

1
σj
Tipjσj(pj , φ)Si .

82 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

This is indeed the operator SVD of Ti, since from the eigenproblem we know
(pj , pk)Si = δij and (Tipj , Tipk)Vi = λjδjk, where the latter implies (1

σj
Tipj ,

1
σk
Tipk)Vi =

δjk, as well as σj > 0.

The GenEO space is formed from vectors Ξipj and the LMOR space Rnopt from vectors
1
σj
Tipj , which is, up to a scaling factor, identical.

Finally, having restricted ourselves to Vh/ker(a), we augment the LMOR space by the
kernel. The resulting space Rnopt

⊕
ker(a) serves as an approximation to the full dis-

crete space Vh. Since we include the full kernel again, no additional approximation
error is incurred.

As a further link between GenEO and LMOR, we additionally observe that, with
the newly obtained approximation result, we may substitute part of the GenEO
preconditioner analysis above.

Lemma 11. Using the approximation property in lemma 8, we can prove the assump-
tion of lemma 7.

Proof.

‖zj‖2a,Ωj = ‖Ξj(1−Πj
mj)v|Ωj‖a,Ωj

= ‖Ξjv|Ωj − Ξj
mj∑
k=1

aΩj (Ξjv|Ωj ,Ξjp
j
k)p

j
k‖a,Ωj

= ‖Ξjv|Ωj −
mj∑
k=1

aΩj (Ξjv|Ωj ,Ξjp
j
k)Ξjp

j
k‖a,Ωj

= ‖(1− PGenEO)Ξjv|Ωj‖a,Ωj
= ‖(1− PRnopt)Tjv|Ωj‖a,Ωj
6 ‖(1− PRnopt)Tj‖a,Ωj‖v|Ωj‖a,Ωj
6 σjmj+1|v|a,Ωj .

With the implied stable splitting constant, we can conclude a condition number
bound from theorem 8 yielding the same result as theorem 9:

κ(M−1
AS,2A) 6 (1 + k0)

[
2 + k0(2k0 + 1) max

16j6N

(
σjmj+1

)]
.

4.2 Linking Robust Preconditioners and Model Order Reduction 83

4.2.4 GenEO with Randomized Eigensolver

Randomized Eigensolver

Randomized techniques have seen large interest from the model order reduction
community during recent years. The optimal spaces defined in Equation 4.14 can
be approximated by randomized techniques at reduced computational cost, while
limiting the approximation error with very high probability [BS18] [Buh19, Section
5.2].

Algorithm 5: Randomized GenEO eigensolver

Data: Matrices from GenEO eigenproblem Ãj , Ã
o
j and Xj . Number of

reiterations R ∈ N
Result: Approximate GenEO eigenvectors {p1, . . . , pk}.
Compute Cholesky factorization CCT = Ãj .
for i = 1, . . . , k do

Draw random vector r ∼ N(0, I).

pi := (XjÃ
−1
j XjXjÃ

o
jXj)RXjC

−T r

end
Orthogonalize p1, ..., pk w.r.t. XjÃ

o
jXj .

We adapt the procedure in [Buh19, Algorithm 5.1] to the GenEO case and sim-
plify it to our needs in algorithm 5. The resulting algorithm allows tweaking the
eigenvectors’ accuracy via the number of reiterations. However, compared to the
original, we drop the test vector approach to verifying approximation quality, since
it turned out too costly in our applications. As we will later investigate at numerical
examples, coarse space quality is far less relevant for overall solver performance in
the preconditioning case than it clearly would be in LMOR applications.

Compared to purely iterative eigensolvers, algorithm 5 still has one significant
disadvantage in that it requires a costly Cholesky factorization. This turns out
prohibitive in practice, so for the subsequent numerical experiments we allow
ourselves to instead use the root of the diagonal as a crude approximation to the
Cholesky inverse. The result is algorithm 6. Unfortunately this is not backed by the
theoretical framework in [Buh19]. It is however a reasonable approximation in the
sense that the Cholesky inverse is only needed to transform the randomized starting
vectors, so we should only lose some efficiency in coarse space approximation and
not systematically miss important eigenvectors. This is supported by the numerical
experiments showing competitive behavior compared to an iterative eigensolver.

84 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Algorithm 6: Fast Randomized GenEO eigensolver

Data: Matrices from GenEO eigenproblem Ãj , Ã
o
j and Xj . Number of

reiterations R ∈ N
Result: Approximate GenEO eigenvectors {p1, . . . , pk}.
for i = 1, . . . , k do

Draw random vector r ∼ N(0, I).

pi := (XjÃ
−1
j XjXjÃ

o
jXj)RXjdiag(Ãj)−1/2r

end
Orthogonalize p1, ..., pk w.r.t. XjÃ

o
jXj .

Implementation

For the linear elasticity model, we use the the package dune-composites [But+20b],
which is primarily intended for modeling composite materials. It has successfully
been applied in real-world applications, e.g. in [Rei+18].

The GenEO implementation we use has been introduced in [SRS20]. It is part
of dune-pdelab and also serves as the main solver for dune-composites. In the
framework of this GenEO code, we implemented the randomized GenEO solver
introduced in section 4.2.4 as an alternative local basis. This is achieved by sub-
classing SubdomainBasis. The result can easily be used in place of the existing
GenEO local basis implementation based on ARPACK [LSY97] when desired. The
remainder of the framework, which among others constructs a global basis etc.,
remains untouched.

Poisson

For the Poisson equation tests, we choose a parameter distribution for κ(x) as
shown in Fig. 4.1a with a contrast of 105. As indicated by the results in Fig. 4.1d,
computing the per-subdomain basis vectors turns out to be considerably faster
with the randomized approach compared to the iterative one based on ARPACK. In
particular, setup cost is independent of the eigenproblem’s spectrum.

The gain is somewhat offset by an increased iteration number of the CG method
(Fig. 4.1e), indicating a lower-quality basis as expected. For extremely low numbers
of eigenvectors, that effect becomes very apparent, as the first eigenvectors tend
to have a very prominent effect. Still, for reasonable basis sizes, the randomized
method outperforms the iterative one in total time (Fig. 4.1c). Note that increasing

4.2 Linking Robust Preconditioners and Model Order Reduction 85

(a) Parameter distribution used, where
blue is low and red is high permeabil-
ity.

(b) Total time for preconditioner setup and pre-
conditioned solver.

(c) Setup time for per-subdomain basis. (d) Time taken by preconditioned CG solver.

(e) Iteration numbers of preconditioned CG. (f) Basis setup cost for decreasing element size h
when computing 15 basis vectors.

Fig. 4.1: Results for Poisson application. Failed solves due to ARPACK crashes are indicated
by zero values. geneo refers to eigensolves using ARPACK to full accuracy, geneo_-
1e-6 and geneo_1e-3 introduce the respective error tolerance. fastrndgeneo is the
randomized method with a single reiteration and fastrndgeneo2 adds a second
reiteration.

86 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

(a) Total time for solve. (b) Total time for solve (> 10 EV).

(c) Time spent in preconditioned Krylov solver
(> 10 EV).

Fig. 4.2: Results comparing restricted hybrid (true) to the additive (false) method in our
Poisson test case. Results are shown for various basis setup methods as above.

4.2 Linking Robust Preconditioners and Model Order Reduction 87

the error tolerances for ARPACK leads to a performance rivaling the randomized
approach. However, this leads to instabilities as ARPACK may return a near-singular
basis in that case.

Further, applying two reiterations in the randomized method instead of one leads
a more accurate eigensolve. This implies slightly higher setup cost while offering
slightly lower iterations numbers. Overall, we achieve a minor gain here.

Concerning scalability, basis setup cost scales comparably for iterative and random-
ized eigensolves with respect to numbers of degrees of freedom (fig. 4.1f).

Finally, a hybrid additive/multiplicative two-level Schwarz method (fig. 4.2) speeds
up the Krylov solve considerably for less exact methods (fig. 4.2c), in particular
for the randomized one. Note that, for very small numbers of eigenvectors, the
insufficient coarse space leads to an even larger loss of performance for hybrid
methods than is the case for fully additive ones.

Since this introduces asymmetry, we use GMRES instead of CG as our solver here.
Therefore, we can additionally use restricted additive Schwarz (RAS) [CS99] in
these cases, employing the partition of unity defined above.

The restricted and hybrid two-level additive Schwarz method can be defined by
extending Def. 28 in the following way:

M−1
hAS,2 := RT

HA−1
H RH(I −A

N∑
j=1

RT
j XjA

−1
j Rj) +

N∑
j=1

RT
j XjA

−1
j Rj .

This modification introduces only very little overhead, as the per-subdomain solves
still only have to be performed once in practice and applying a partition of unity is
cheap.

Linear Elasticity

In case of the Linear Elasticity equation, we choose a model similar to the ones
presented in [Rei+18]. The geometry is depicted in Fig. 4.3a. As boundary
conditions, zero Dirichlet conditions are applied on the left side, and a force pulling
to the right is applied at the top. The material is comprised of three highly anisotropic
layers of carbon fiber sheets in 45, -45 and 0 degrees rotation as well as two isotropic
resin layers in between.

88 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

(a) Original geometry as mesh and displacement
solution as solid volume (displacement scaled
by factor 5 for better visibility).

(b) Total time for preconditioner setup and pre-
conditioned solver.

(c) Setup time for per-subdomain basis. (d) Time taken by preconditioned CG solver.

(e) Iteration numbers of preconditioned CG.

Fig. 4.3: Results for Linear Elasticity application. Failed solves are indicated by zero values.

4.2 Linking Robust Preconditioners and Model Order Reduction 89

(a) Total time for preconditioner setup and pre-
conditioned solver.

(b) Detailed view of Fig. 4.4a for EV >= 15.

Fig. 4.4: Restricted hybrid additive Schwarz for Linear Elasticity application.

When testing both approaches to solving the eigenproblem, a similar picture emerges,
see Fig. 4.3. A significantly lower basis setup time in the randomized case is partly
offset by slightly higher iteration numbers, but overall still leads to an improved total
time. In particular, the randomized solver tends to depend less on the particular
choice of basis size. Higher error tolerances lead to a faster ARPACK solve at the cost
of a lower quality basis and therefore a slower preconditioner.

When applying the same restricted and hybrid additive Schwarz method here, we
again see a significant improvement (Fig. 4.4). Now, the randomized method is
leading clearly over the iterative ones except for unrealistically small numbers of
eigenvectors.

4.3 GenEO Virtual Overlap Implementation

The DUNE framework provides a number of grid implementations for various
purposes. Currently only YASPGrid, a structured grid, provides native support
for subdomain overlaps. This means that each process holds a copy of elements
in its overlap region and may exchange data attached to associated Degree of
freedom (DOF)s with neighboring processes. Since GenEO is based on overlapping
subdomains, we need this kind of communication mechanism. In previous work
[Rei+18], dune-composites overcame the restriction to cuboid domains implied
by YASPGrid by applying a transforming to the grid. However, for many relevant
engineering applications, a smooth transition from a cuboid cannot be found and
we need to extend DOF-based communication support unstructured grids as well.

90 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

Fig. 4.5: Definition of subdomains used in the following.

DoF

Known at the beginning

Known in step one

Known in step two

Fig. 4.6: The degrees of freedom known to process j after each step of recursive extension
of the matrix connectivity graph.

In order provide overlaps and communication across overlaps on unstructured grids
as well, we introduce an algebraic approach to construct discretization matrices
Aj defined overlapping subdomains Ωj from corresponding matrices Âj assembled
on non-overlapping subdomains Ω̂j . Figure 4.5 illustrates our notation for non-
overlapping and overlapping subdomains.

We begin with a matrix Âj on a non-overlapping subdomain Ω̂j , and assume it
has a neighboring subdomains Ω̂k, k ∈ Ej , with corresponding matrices Âk. We
identify coinciding DOFs in Âj and Âk through a global indexing as provided
by non-overlapping DUNE grids. On subdomain k, we now identify all DOFs
directly connected to those, and provide process j with unique indices and the
connectivity graph of this newly identified layer of DOFs. Since connected DOFs in a
FE discretization either share an element or are from adjacent elements, we now are
in a state where each process is aware of its neighbors’ DOFs one layer of elements
along the respective boundary.

By recursive application as shown in fig. 4.6, we can now grow this algebraic overlap
by an arbitrary number of layers, without having to rely on the grid implementation
to provide connectivity graphs.

Finally, using the extended connectivity graphs above we can construct a commu-
nication mechanism to exchange overlap data of vectors defined on the extended
domains between neighbors. We now have the communication infrastructure neces-
sary to generate a GenEO space in a parallel method in place.

4.3 GenEO Virtual Overlap Implementation 91

Critical DoF

Undesired integration domain

Desired integration domain

Fig. 4.7: Integration domain of a DOF on the boundary of the overlap of Ωj . Since it lies
in the interior of a neighboring non-overlapping domain, its matrix entries are
computed by the neighbor. The neighbor takes the entire integration domain
around the DOF into account, while process j requires only integration up to the
overlapping subdomain boundary ∂Ωj . The neighbors’ matrix entries can therefore
not be used to assemble Aj .

While the method above allows us to extend connectivity graphs of non-overlapping
matrices into neighboring subdomains, mimicking the graphs of overlapping ma-
trices Aj , the GenEO method obviously requires the actual matrix entries. Using
communication across algebraic overlap, we can exchange matrix entries between
neighbors.

The basic assumption we make here is that the bilinear form a of the weak formu-
lation can be decomposed additively into bilinear forms on elements aε, such that
a(u, v) =

∑
ε∈Th aε(u, v), where Th is the grid on Ω. Due to additivity of the integral

with respect to integration domain, this is trivially fulfilled for the weak forms we
consider here.

As a result, retrieving matrix entries from neighbors and adding them where DOFs
belong to multiple subdomains correctly constructs an overlapping matrix from
nonoverlapping ones. There is one exception however: At the boundary ∂Ωj of
the overlapping domain, retrieving the entries of an interior DOF will not yield the
correct result since the integration domain of said interior DOF extends beyond Ωj

as shown in fig. 4.7.

We circumvent this issue by not sending matrix entries from Âk from process k to
process j, but instead assemble a new matrix Âjk on the domain Ωj ∩ Ω̂k for that
purpose as shown in fig. 4.8. In practice, we communicate the partition of unity
Ξj generated from the already available matrix graph of Aj to all neighbors, and
use Ωj ∩ Ω̂k = supp(Ξj) ∩ Ω̂k as a convenient proxy to the desired domain snippet.
Since we have the decomposition

Ωj = Ω̂j ∪
⋃
k∈Ej

Ωj ∩ Ω̂k,

92 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

overlap boundaries

snippets provides by
subdomains j

overlap boundaries

snippets provides for
subdomains j

Fig. 4.8: Subdomain snippets Ωj ∩ Ω̂k used for assembly of algebraic overlaps, ensuring
correct entries on overlap boundaries.

all snippets together form the desired overlapping subdomain. Exploiting additivity
of the bilinear form a and thereby the FE matrix entries, this assembly strategy
leaves us with the correct overlapping matrix Aj for Ωj . Finally, we can embed these
components in an extension to our GenEO implementation from [SRS20].

4.4 Online/Offline Approach in Localized Model Order
Reduction

Since the GenEO basis is defined per subdomain, some basis vectors may be reused
when solving multiple related PDE problems on the same domain. In many realistic
applications, a substantial amount of computational effort is spent on solving the
GenEO eigenproblems. Therefore calculating the entire basis once in an "Offline"
step and only adapting subdomains that changed "online" promises significant cost
reductions. Figure 4.9 gives an overview of the procedure detailed in the following.

For the offline step, we perform a coarse space construction as introduced in the
preconditioner case (section 4.2.1). For the online step, we assume a problem in
weak formulation with bilinear form ã and linear form b̃. We further assume that
they are largely identical to the original problem, in the sense that both aΩj = ãΩj
and bΩj = b̃Ωj holds for many j ∈ 1, ..., NΩ. We refer to subdomains not fulfilling
this condition as "active".

Being able to reuse parts of the GenEO basis in the online step hinges on the fact that
the eigenproblems eq. (4.2) defining the coarse basis for subdomain Ωj are based
on the bilinear form aΩj . By definition, the eigenproblem therefore only differs in
active subdomains, and so do the eigenvectors.

4.4 Online/Offline Approach in Localized Model Order Reduction 93

OFFLINE ONLINE

Active subdomain

Eigen problems

Matrix assembly

Coarse matrix

Coarse solves

Database

All subdomains

Generate overlaps algebraically

Modified subdomain onlySub-meshes

Fig. 4.9: Main steps of the online/offline method reusing the GenEO basis contributions
on subdomains where the online PDE problem is equivalent to the previously
computed offline one.

The new coarse matrix ÃH needs to be updated wherever its entries of the form
(ÃH)(i,k)(j,l) = (Ξjplj)TAj(Ξipki) differ from their counterpart in AH . This is the case
when i or j are an active subdomain, and the entry is not trivially zero in case i and
j are not overlapping.

This coupling between overlapping subdomains implies that basis functions from
subdomains adjacent to active subdomains are needed for the coarse matrix update,
even if they are not active themselves. Those basis functions can be drawn from the
offline step however.

In the preconditioner setting, we consider this method not very promising, since local
solves on all subdomains will be performed regardless (according to the additive
Schwarz method) and parallelization would likely not be able to exploit the cost
reduction. However, when applying GenEO as an LMOR method, we can expect
to reduce cost for an online run from NΩ eigensolves to one eigensolve per active
subdomain, plus the solution of the resulting coarse system.

Note that in fact, the fraction of active subdomains is arbitrary. However, this method
is most efficient for few active subdomains out of a large number of subdomains.

In a future application in solving a UQ problem on composite materials using
MLMCMC, we will employ this coarse approximation space as a coarse level, while
using a GenEO preconditioned Conjugate Gradient (CG) solver as a fine level. We

94 Chapter 4 Efficient Models and Model Hierarchies for Multiscale Problems

expect the fine model to scale up to around 10000 processor cores (similar to our
application in [Rei+18]). Assuming that the uncertain parameter is the location and
shape of a material defect spanning around 10 subdomains, we can expect a speedup
factor of around 100 for coarse model evaluations compared to full fine level solves.
Due to the online/offline method, only a single processor core can handle a coarse
model evaluation. This in turn links up perfectly with the parallelization scheme in
chapter 5. Overall, with this approach, we can expect to solve UQ problems on a
challenging large-scale model whose simple forward evaluation was out of reach up
until a few years ago [But+20b].

4.4 Online/Offline Approach in Localized Model Order Reduction 95

Modular and Parallel HPC
Implementation

5
As part of this thesis, the multilevel and multiindex methods introduced in chapter 3
were implemented, reviewed and published in the open-source MIT Uncertainty
Quantification Library (MUQ) [@Par+] software package. The key innovations
are:

• A modular implementation supporting sequential Multilevel Monte Carlo
(MLMC), Multilevel Markov Chain Monte Carlo (MLMCMC) and Multiindex
Markov Chain Monte Carlo (MIMCMC) methods in a single code base support-
ing both C++ and Python,

• a massively scalable implementation of the same algorithms supporting dis-
tributed High Performance Computing (HPC) environments while retaining a
modular architecture,

• and a unified interface for controlling the various degrees of freedom offered
by multilevel and multiindex methods.

All these are achieved while carefully embedding the new architecture in the existing
modular structure of MUQ. This allows the use of shared and well-tested code, flexi-
bility in extending the new algorithms and easy application of the new algorithms to
existing model implementations.

Large parts of this chapter’s content will be published as part of a future general
publication on MUQ, written together with Matthew Parno and Andrew Davis.
This publication includes the description of the general architecture of MUQ as
well as sequential MLMCMC/MIMCMC, where the author is mainly responsible for
the latter. The part describing the parallel implementation in turn is published in
[See+21], which demonstrates its scalability for a simple Poisson case and a large-
scale Tsunami model. Here, the author was mainly responsible for the Uncertainty
Quantification (UQ) side using the software presented here, while coauthor Anne
Reinarz was mainly responsible for the tsunami forward model implementation
using the Exascale Hyperbolic PDE Engine (ExaHyPE) framework.

97

We begin with a brief overview of MUQ’s design philosophy in section 5.1. After a
review of the existing Markov Chain Monte Carlo (MCMC) components in section 5.2,
we proceed to present how the new multilevel and multiindex variants are embedded
in that architecture in section 5.3. Section 5.4 presents the architecture of the
fully parallelized implementation. A scheduling framework for the parallel code is
introduced in section 5.5, followed by a discussion on the maximum scalability the
architecture can achieve in section 5.6.

5.1 Introduction to MUQ

The increase in algorithmic complexity when comparing basic MCMC with MLMCMC
is representative of a more general development in UQ: Increasingly efficient and
powerful mathematical methods imply an increase in algorithmic complexity. For
many other advanced methods like surrogate models (e.g. [Dav+21]) or transport
maps (e.g. [Mar+16]), the same holds true. As a result, software components gain
complexity as well and developing a well-designed and well-tested shared code base
becomes increasingly valuable, if not even inevitable.

The goal of MUQ is to provide a powerful, general-purpose framework for UQ.
Assumptions on user-supplied models should be strictly minimal in order to keep
the framework model-agnostic and compatible with a wide variety of existing model
codes. The framework’s capabilities should range from HPC-grade applications
to easy-to-use rapid prototyping of UQ algorithms. By allowing the reuse of as
many components as possible, implementing future methods should require minimal
development effort.

These requirements are fulfilled by MUQ in the following way:

• Model-agnosticity
This is achieved by introducing lightweight and abstract model interfaces. For
example, for sampling methods it is enough to supply the desired density as
part of a SamplingProblem. Derivatives may be supplied by the user if an
efficient way to compute them exists; otherwise, numerical derivatives will
automatically be employed when more advanced UQ methods require it.

The models themselves can be represented in MUQ’s model graphs, which
allow easy construction of complex model setups and reuse of model com-
ponents. They further aid in handling model derivatives, for example by
automatically employing chain rules to couple model components’ derivatives.

98 Chapter 5 Modular and Parallel HPC Implementation

MUQ has been used in conjunction with a number of model codes. Essentially,
any C++ or Python compatible code can, with very little adaptation, be used
as a model.

• Modularity
The mathematical theory behind UQ as well as the associated algorithms often
already expose a certain degree of modularity. For example, in Markov chain
Monte Carlo methods, there exist a number of interesting choices for the
crucial proposal density (see e.g. chapter 3).

We mirror these mathematical components in a corresponding software archi-
tecture using object oriented programming. On one hand, the architecture that
has already proven successful on the theoretical side leads to a well-structured
code accessible to mathematicians; on the other hand, implementing new
methods building on these theoretical frameworks only necessitates minimal
adaptations beyond the existing components. That reuse of components fur-
ther implies technical advantages like allowing for a well-tested code base and
a community familiar with the same tools.

• Ease of use and HPC
Catering towards both HPC and quick method development needs is clearly a
challenge. We address this by developing MUQ in C++ with MPI support for
large-scale parallelism, while providing extensive Python bindings exposing
almost all MUQ functionality. Since the Python bindings correspond directly to
the underlying C++ architecture, it is easy to switch between the two and for
example port a Python prototype code over to a powerful C++ application.

5.2 Abstract Markov Chain Monte Carlo Framework

Following algorithm 1, MUQ implements MCMC using abstract data structures and
objects that each execute a different step in the algorithm. In particular, the main
difference between most MCMC type methods are proposal densities and sometimes
the kernel. Abstract “proposal” and “kernel” objects reflect this distinction in MUQ.
As a result, implementing new methods requires only minimal adaptations in the
form of new versions of the algorithm’s building blocks. Similarly, applying various
methods to the same problem becomes a matter of simply switching out the desired
components.

5.2 Abstract Markov Chain Monte Carlo Framework 99

The first of these components is an AbstractSamplingProblem (see fig. 5.1), which
at a minimum provides a function that evaluates the logarithm of the target dis-
tribution (in a Bayesian setting, up to the proportionality constant). Some MCMC
algorithms require more information—for example, likelihood or prior evaluations.
Therefore, children of this base class provide interfaces that expose this structure.
Optionally, an AbstractSamplingProblem can also implement functions that eval-
uate quantities of interest or derivatives of the target distribution. However, only
the log-target is absolutely required. Therefore, just like in the theory, we do not
make any assumptions on the underlying type of model and allow direct coupling to
arbitrary model codes.

AbstractSamplingProblem

LogDensity(SamplingState state) : double
QOI() : Eigen::VectorXd

Fig. 5.1: AbstractSamplingProblem interface (some methods left out for clarity).

For the actual MCMC method, we have the following components:

• The SampleCollection object (see Figure 5.3) stores the actual samples gen-
erated in the chain. Furthermore, it offers a number of operations on samples,
such as computing the mean, expected values, or other moments.

• The SingleChainMCMC class is responsible for stepping through the chain,
tracking progress and determining which samples are to be saved. This can,
for example, be exchanged for a parallel version that allows running multiple
independent chains instead.

• Whether a proposal is accepted as the next step in the chain is something
that varies across methods, therefore the abstract TransitionKernel provides
an interface for that task. For example, the MHKernel represents a standard
Metropolis Hastings kernel as above, while MIKernel is a modified variant for
multiindex MCMC.

• Finally, there is a wide variety of proposal strategies, and so MCMCProposal
provides a suitable abstract interface. For example, MHProposal implements
standard Metropolis Hastings proposals, whereas AMProposal.h provides an
adaptive method.

Figure 5.2 shows how that architecture functions for a standard Metropolis Hastings
MCMC as introduced above. Note that, at every level components can easily be

100 Chapter 5 Modular and Parallel HPC Implementation

SingleChainMCMC

kernels : std::vector<TransitionKernel>

Run() : void
GetSamples() : SampleCollection
AddNumSamps(numNewSamps : unsigned int) : void

TransitionKernel

Step(prevState : std::vector<SamplingState>) : std::vector<SamplingState>

MHKernel

proposal : MCMCProposal

AcceptanceRate() : double

MCMCProposal

Sample(currentState : SamplingState) : SamplingState

MHProposal

+proposal : GaussianBase

AbstractSamplingProblem

LogDensity(SamplingState state) : double

Fig. 5.2: Single chain MCMC architecture for standard Metropolis Hastings MCMC. Note
that this depiction is simplified by omitting some class members for clarity of
presentation. Simple arrows indicate references between the classes, whereas
triangle shaped arrows indicate inheritance.

exchanged. This architecture is capable of easily extending to all MCMC type
methods known to us, many of which are readily available in MUQ.

5.3 Multilevel / Multiindex MCMC

5.3.1 Internal architecture

By careful design, we can reuse much of the MCMC architecture introduced above
(see Section 5.2) for a multilevel implementation. For clarity of presentation, we do
not show the supported more general multiindex case here, and focus on multilevel
as its simpler special case. Nevertheless, all components introduced here naturally
extend to multiindices and are named accordingly.

5.3 Multilevel / Multiindex MCMC 101

SampleCollection

std::vector<SamplingState> samples

Add(newSamp SamplingState)
size() : unsigned int
Mean() : Eigen::VectorXd
CentralMoment(order : unsigned int) : Eigen::VectorXd

Fig. 5.3: The SampleCollection class, which stores samples from a distribution and pro-
vides implementations to compute common statistical information such as the
mean or other moments.

We begin constructing the architecture already at the telescoping sum. This is
of particular importance since each component of the telescoping sum should be
estimated from independent samples, and therefore proposals derived from coarser
chains may not be shared between them. Further, the number of samples needed
for each of these differences usually varies, which makes separating them a cleaner
solution.

As depicted in Figure 5.4, we therefore represent each component of the telescoping
sum as an instance of the MIMCMCBox class, which internally sets up a fine and a
coarse chain by means of two SingleChainMCMC instances. Each of these chains
receive a MIKernel, which implements the particular acceptance probability defined
in the MLMCMC method 3.3.

The particular kernel of MLMCMC requires both a coarse proposal, usually a sam-
ple from a coarser chain, and a fine proposal complementing it in case the finer
level expands parameter dimension. For the latter, any existing proposal density
may be used; coarse proposals drawn from finer levels are implemented by the
SubsamplingMIProposal, which itself draws samples from an associated coarser
chain.

In order to provide proposals for the finer chain, the MIMCMCBox hooks up its as-
sociated SubsamplingMIProposal to the coarser chain. The coarser chain itself
requires coarser proposals again, which recurses until the coarsest level is reached.
However, only the aforementioned two chains are used to compute the MIMCMCBox’s
contribution to the telescoping sum, while the coarser ones only serve to deliver
proposals. Therefore, the latter are not publicly exposed and only used internally by
the MIMCMCBox.

The interplay of objects set up by the MIMCMCBox is shown in section 7.1. Note that
here we do not show the corner case of level zero (the coarsest one). In that case,
no proposals are required from coarser chains and the architecture collapses down

102 Chapter 5 Modular and Parallel HPC Implementation

0...L

0...1

MIMCMC

boxes : std::vector<MIMCMCBox>

Run() : void
MeanQOI() : Eigen::VectorXd
GetBox(index : MultiIndex) : MIMCMCBox

MIMCMCBox

boxChains : std::vector<SingleChainMCMC>

Sample() : void
MeanQOI() : Eigen::VectorXd
GetChain(index : MultiIndex) : SingleChainMCMC

SingleChainMCMC

kernels : std::vector<TransitionKernel>

Run() : void
GetSamples() : SampleCollection
AddNumSamps(numNewSamps : unsigned int) : void

MIKernel

proposal : MCMCProposal
coarse_proposal : MCMCProposal

Step(prevState : SamplingState) : SamplingState

SubsamplingMIProposal

coarseChain : SingleChainMCMC

Sample(currentState : SamplingState) : SamplingState

MCMCProposal

...

Fig. 5.4: Multilevel MCMC architecture. Note that this depiction is simplified by omitting
some class members for clarity of presentation.

to a simple one-level MCMC. Likewise, level 1 only requires a single coarse chain for
proposals.

5.3.2 Model interface

For MCMC it is sufficient to specify a kernel, a proposal density and a posterior
density to sample from (see Section 2.4.3). A Multilevel MCMC method requires
some more information to be specified. Clearly, instead of a single posterior density,
we now need an entire hierarchy of posteriors originating from varyingly coarse
models. Likewise, proposals can be handled differently across levels.

5.3 Multilevel / Multiindex MCMC 103

SingleChainMCMC

MIKernel

SubsamplingMIProposal

MHProposal

SingleChainMCMC

MIKernel

SubsamplingMIProposal

SingleChainMCMC

MHProposal

MIMCMCBox Level l

Level l − 1

Fig. 5.5: Multilevel MCMC architecture.

In order to provide a unified way of specifying the various components needed for a
Multilevel or Multiindex MCMC problem, we introduce a class MIComponentFactory,
explained in detail below. All of MUQ’s MI/MLMCMC type methods expect the user
to provide an instance of a MIComponentFactory subclass. As a result, the particular
method to be used can be swapped out without necessarily touching the problem
definition.

MIComponentFactory

FinestIndex() : MultiIndex
SamplingProblem(index : MultiIndex) : AbstractSamplingProblem
Proposal(index : MultiIndex, samplingProblem: AbstractSamplingProblem) : MCMCProposal
CoarseProposal(index : MultiIndex, coarseProblem : AbstractSamplingProblem,

coarseChain : SingleChainMCMC) : MCMCProposal
Interpolation(index : MultiIndex) : MIInterpolation
StartingPoint(index : MultiIndex) : Eigen::VectorXd

Fig. 5.6: MIComponentFactory interface.

Its methods (see Figure 5.6) serve the following purposes:

• FinestIndex defines the index of the hierarchy’s finest model. In the multilevel
case, that is simply the finest level L.

• SamplingProblem returns the AbstractSamplingProblem representing the
posterior density for a given model index. For index zero, the coarsest model

104 Chapter 5 Modular and Parallel HPC Implementation

should be used, while the finest model should be returned for the value
specified in FinestIndex.

• Proposal defines how proposals are drawn on each level. Any existing or
user-defined proposal density, represented by an MCMCProposal, may be used
here. Note that, while for the coarsest level this is a regular MCMC proposal,
on finer levels this is only the fine component of the proposal, relevant to
control parameters not present on coarser levels.

• CoarseProposal specifies how samples from the next coarser chain are to be
drawn as proposals for the given model index. Typically, in order to subsample,
this means advancing the coarse chain by a number of steps and only using
the last state as a coarse proposal.

• Interpolation defines a method to combine fine and coarse proposals from
above, by means of an MIInterpolation instance. Typically this means simply
concatenating coarse parameters and fine ones not yet present on the coarse
chain. In more complex cases, this could be an actual interpolation type
operation, for example when coupling a finer PDE model to a coarser ODE
model. Again this can be specified independently for each level.

• StartingPoint finally specifies the chain’s initial state. Ideally it is chosen in
the mass of the distribution, alternatively a more extensive burn-in may be
necessary to avoid a perturbed estimate for small numbers of samples.

5.4 Parallelized Multilevel / Multiindex MCMC

Our new, highly scalable parallel implementation of MLMCMC and MIMCMC (see
chapter 3) is presented in this section. While parallelization in classical Monte
Carlo (MC) is trivial since samples are independent by definition, MCMC intro-
duces data dependency through proposals depending on the previous step. In the
case of MLMCMC, we use coarser chains’ samples as proposals, which introduces
data dependency between levels. There are, however, multiple opportunities for
parallelizing MLMCMC:

• Models: The forward models themselves may be parallelized. In fact, for
large models like the tsunami model we introduce in section 6.3, that is even
necessary due to memory constraints.

5.4 Parallelized Multilevel / Multiindex MCMC 105

• Chains: Instead of running a single Markov chain, multiple chains can be run
in parallel and their samples combined. It is beneficial to not purely rely on
this approach though since each chain requires a burn-in phase.

• Levels: Contributions to the multilevel telescoping sum in section 3.3 can be
evaluated in parallel.

Exploiting all those clearly introduces significant technical complexity. Therefore we
provide our implementation as part of the MUQ C++ library [@Par+]. The main
goals of this implementation are:

• Parallelism: All levels of parallelism from above are supported.

• Simple user interface: We hide the intricate details of communication from
the user. The algorithm can be tweaked, but defaults suffice to get started.

• Model-agnosticity: The MLMCMC algorithm as detailed in section 3.3 only
requires simple forward evaluations of the model. This theoretically allows
coupling to arbitrary forward models without introducing e.g. derivatives of
the model map. We retain this model agnosticity in the sense that any forward
model that can be called (possibly through wrappers) from C++ can be used.

• Modularity: MUQ is, from the ground up, designed as a modular framework.
Its modularity is closely modeled after the respective mathematical objects.
We extend this concept to our parallel MLMCMC implementation by building
on top of MUQ’s existing MCMC stack and, as detailed in the following,
constructing modular parallel units.

5.4.1 Model interface

The parallel implementation follows the same interface as the sequential version
introduced above. The key difference is that here, an additional function SetComm is
required that allows the user to pass a subcommunicator to the forward model (see
fig. 5.7).

This is essential, as it allows MUQ to control the distribution of tasks across proces-
sors, and in particular allows segregating groups of processes that compute forward
models independently.

Overall, this allows to exploit parallelism on the UQ side with minimal intervention
regarding the forward model implementation. For forward models that run sequen-
tially, even the step of passing a subcommunicator to it can be ignored. In that

106 Chapter 5 Modular and Parallel HPC Implementation

MIComponentFactory

SamplingProblem(index : MultiIndex) : AbstractSamplingProblem
FinestIndex() : MultiIndex
CoarseProposal(index : MultiIndex, coarseProblem : AbstractSamplingProblem,

coarseChain : SingleChainMCMC) : MCMCProposal
Proposal(index : MultiIndex, samplingProblem: AbstractSamplingProblem)

: MCMCProposal
Interpolation(index : MultiIndex) : MIInterpolation
StartingPoint(index : MultiIndex) : Eigen::VectorXd

ParallelizableMIComponentFactory

SetComm(comm : parcer::Communicator) : void

Fig. 5.7: ParallelizableMIComponentFactory interface.

case, a model hierarchy already implemented for use with a sequential MLMCMC or
MIMCMC method can immediately be used in a parallel setup.

5.4.2 Internal architecture

Our parallel process layout is shown in fig. 5.8. We define the following roles:

Root Phonebook

Collector 0

Collector 1

Lvl 0 Collectors

E[
Q

0
]

Collector 0

Collector 1

Lvl 1 Collectors

E[
Q

1
]−

E[
Q

0
]

Controller Worker 1

Worker 2 Worker 3

Lvl 0 Chain 0

Controller Worker 1

Worker 2 Worker 3

Lvl 0 Chain 1

Controller Worker 1

Worker 2 Worker 3

Lvl 1 Chain 0

Controller Worker 1

Worker 2 Worker 3

Lvl 1 Chain 1

Fig. 5.8: Parallel process layout.

• Fixed roles: These are assigned to specific processes at the start of the parallel
method. All other processes wait to be assigned a dynamic role.

– Root: This process is responsible for launching the parallel method,
assigning tasks to other processes and requesting collectors to begin
collecting a certain number of MCMC samples. It is also the best place

5.4 Parallelized Multilevel / Multiindex MCMC 107

for users to implement custom (possibly adaptive) sampling strategies, in
the sense of how many samples are to be drawn.

– Phonebook: The phonebook tracks what dynamic roles processes are
currently assigned to. Most importantly, it tracks which chains are cur-
rently sampling and which ones hold a new sample ready to be picked
up by other processes. Further, the phonebook can infer from that the
computational load on a given level, since the relation between requested
samples and assigned resources is available here. Therefore, it is also the
key component in dynamic load balancing across levels and chains.

• Dynamic roles: These roles may be assigned and reassigned at any time. In
particular, this permits dynamic load balancing and possibly more advanced
sampling strategies.

Workers and controllers solve forward models, where workers share the load
of running a single model evaluation and controllers additionally run the
inherently sequential MCMC chains; consequently, they are assigned (and, in
case of dynamic scheduling, reassigned) synchronously. This is facilitated by
Message Passing Interface (MPI) subcommunicators, which are passed through
to and should be used by the user’s model.

– Worker: Workers are responsible for running the user’s forward model,
specifically the user’s implementations of AbstractSamplingProblem.
Mathematically, they provide parallelized evaluations of the posterior and
quantity of interest on a given level for a given parameter. They listen
to their respective controller’s ParallelAbstractSamplingProblem to
signal the beginning of a evaluation for a specific parameter θ. Once the
signal arrives, they execute the user-implemented LogDensity method.
Since all workers of a work group are called synchronously, the user can
easily supply models assuming lock step parallelism.

– Controller: Each controller is responsible for a running a multilevel
MCMC chain according to algorithm 3. Specifically, a controller on level l
contains a chain on level l and one on l − 1, forming part of a summand
of the telescoping sum eq. (3.1) (with the obvious exception of the
coarsest level 0). An instance of ParallelAbstractSamplingProblem
is set up for each model needed. It provides an intermediate layer
between instances of the user-implemented AbstractSamplingProblem
instances running on multiple workers and the controller, allowing to
transparently distribute model executions. As a result, neither the user nor

108 Chapter 5 Modular and Parallel HPC Implementation

the inherently sequential MLMCMC chains need to concern themselves
with synchronizing worker processes to run forward models in lock step.

The chains themselves are implemented using existing MUQ components:
They are SingleChainMCMC instances with MCMCKernel implementations
matching the acceptance probability of algorithm 3. Drawing samples
from coarser chains as proposals is implemented with an MCMCProposal
requesting coarser samples from other controllers via the phonebook
process.

– Collector: Collectors request samples from controllers via phonebook
in order to form a summand of the telescoping sum eq. (3.1). Multiple
collectors may be responsible for a single level. Together, they hold
a DistributedCollection, an existing class in MUQ for storing and
computing statistics on samples in a parallel system.

Note that this architecture is defined on process level (more specifically, in terms of
MPI ranks). Thread-level parallelism can easily be exploited by worker processes.
In fact we make use of this through Intel Threading Building Blocks (TBB) in our
ExaHyPE Tsunami model, since ExaHyPE exhibits better performance characteristics
with few MPI ranks per node each making use of several threads.

In order to make the parallel architecture as modular as sequential MUQ code,
each of the above roles provide an MPI interface based on requests mimicking
function calls. This allows recombining the parallel components in analogy to object
orientation in order to implement other algorithms as well. For example, work
groups as introduced above are based on a ParallelAbstractSamplingProblem,
which in turn can be used to easily employ any sequential sampling algorithm on a
parallelized model. Likewise, the phonebook could be swapped out for an alternative
implementation with identical MPI interface, allowing for alternative load balancing
strategies.

5.5 Dynamic load balancing

Data dependencies in MLMCMC (see algorithm 3) introduce a load balancing
problem, since coarser chains need to provide proposals to finer ones only until the
desired number of fine samples is computed. Estimating the ideal distribution of
computational resources across levels is far from trivial or outright impossible in

5.5 Dynamic load balancing 109

(a) An exemplary run without load balancing. The top rows contain processes delivering level 0
samples to serve as proposals as well as forming part of the telescoping sum. After a short time the
latter is completed, while occasionally proposals are needed. As a result they are frequently idle.

(b) An exemplary run with load balancing. As soon as the aforementioned processes run idle, they are
reassigned to finer levels and we achieve near full machine utilization.

Fig. 5.9: Dynamic load balancing in parallel MLMCMC. Run time is on the horizontal axis,
while process indices are on the vertical. Green boxes indicate model evaluations,
while yellow boxes indicate chains’ burnin phases. In these examples, model
evaluations clearly differ strongly in run time.

110 Chapter 5 Modular and Parallel HPC Implementation

realistic applications, especially when adaptively determining the number of samples
per level.

Therefore, our parallel MLMCMC implementation provides a load balancing mecha-
nism to reassign worker processes to different tasks once samples on another level
are more critical to runtime. Figure 5.9 illustrates this load balancing mechanism
for a small test run.

Load balancing is implemented as part of the phonebook rank, since it keeps track of
how samples are passed around. Levels with low load are detected when samples on
that level are provided but not quickly picked up, while a high load is in turn detected
when sample requests remain queued. Unanswered sample requests originating
from other chains are given a higher impact than requests originating from collector
processes, since the first case implies chains waiting and therefore bad machine
utilization.

Models may have strongly varying run times. A new group of processes assigned to
a certain level only reduces that level’s load once it actually provides its first sample.
This implies the danger of reassigning tasks too frequently or too infrequently. In
order to stabilize the load balancer, the respective model run times are inferred by the
phonebook process by the frequency of samples provided. Based on that, scheduling
will only take place at the time scale of the respective model evaluations.

Note that this load balancer is unaware of the specific types of proposals or MCMC
kernels being executed. As a result, it can, for example, also be applied in the
MLMC setting as well. Also, all model specific tuning parameters are determined
dynamically, so no user intervention is required.

5.6 Limits of Parallel Scalability

All roles in the parallelization strategy above (see fig. 5.8) are trivially scalable;
the only component not able to scale arbitrarily is the phonebook, as for now it is
restricted to a single rank.

However, as it turns out, the phonebook’s load (in the sense of fraction of run-time
not spent waiting for new incoming MPI messages) is very low in the scalability
experiments of section 6.1. The exact results are shown in fig. 5.10. Extrapolating
from those, a parallel run with around 104 should leave the phonebook at around
10% load. A full load of 100% would be reached at around 105 ranks. High loads on

5.6 Limits of Parallel Scalability 111

Fig. 5.10: Load (i.e. fraction of non-idle time) of the phonebook rank in the application
from section 6.1.

the phonebook should however be avoided, since it could lead to blocking valuable
worker processes.

This estimate comes with a caveat: The distribution of load as well as overall
time scales directly depend on the forward model employed; for example, a model
hierarchy taking twice the amount of time for a forward solve immediately halves
load on the communication infrastructure, and vice versa. On the other hand, the
numbers above stem from a model that intentionally only requires one processor
core for each model level in order to produce a high load on MPI communication.
The parallel architecture however supports parallelization across forward models
themselves, which has no effect at all on the amount of communication needed
for our parallel method. So, in an otherwise equivalent setup (especially identical
run times of forward models) but with a forward model parallelized across 100
cores, the above example can easily scale to 106 cores at around 10% load on the
phonebook.

In an application where further scalability beyond the current architecture is required,
two main approaches should be relatively easy to implement.

• Multiple instances: The above architecture may exist in several independent
instances. This requires little to no change to the implementation. It does
however come with the caveat that information exchange between instances is
practically impossible, and in particular load balancing across instances would
be unavailable. Depending on the application, load balancing within each
instance may however be sufficient.

• Multiple phonebooks: Running multiple phonebooks is somewhat more in-
vasive, but the existing implementation is modular enough to keep changes
minimal. When having multiple phonebook instances responsible for a limited

112 Chapter 5 Modular and Parallel HPC Implementation

set of processes each, load balancing would be restricted to take place within
these sets. However, in contrast to the previous approach, a single set of
collector ranks would exist, allowing much finer control over the algorithm
from a single root rank.

Since the scalability limit was not encountered in the applications detailed here,
these extensions are left to future work.

5.6 Limits of Parallel Scalability 113

Applications 6
Here we show numerical applications of the algorithms and software infrastructure
introduced above. The main focus is the investigation of the hierarchical Uncertainty
Quantification (UQ) methods’ behavior in realistic large-scale scenarios as well as
the demonstration of parallel scalability for High Performance Computing (HPC)
purposes. Large parts of this chapter have been accepted for publication in the
Supercomputing 21 conference [See+21]; the tsunami application in section 6.3
is joint work with Anne Reinarz and Leonhard Rannabauer, who were mainly
responsible for the forward model.

6.1 Parameter Field Estimation - Poisson Equation

This application is intended to demonstrate the scalability of our new parallel imple-
mentation (see chapter 5) of the Multilevel Markov Chain Monte Carlo (MLMCMC)
method (see section 3.3). Since it is a widespread example, we choose parameter
field estimation in the Poisson equation as our example. Further, since the model it-
self can be constructed in a computationally cheap way, it lends itself to investigating
massive parallel scalability of UQ algorithm and parallelization strategies.

6.1.1 The Physical Model

In this example, our forward model maps a parameter θ that models the uncertainty
in the diffusion coefficient to the solution of the Poisson Partial Differential Equation
(PDE) evaluated at certain points. The inverse problem consists in estimating the
underlying parameter θ from given synthetic data while taking uncertainty in that
data into account.

Specifically, we solve the PDE

∇ · (κ(x, θ)∇u(x, θ)) = 0 for x ∈ Ω and θ ∈ Θ,

115

where we choose the domain Ω := [0, 1]2 and Θ := Rm. As boundary conditions, we
apply u(x) = 0 on the left, u(x) = 1 on the right and natural Neumann boundary
conditions at the remainder of the boundary. We model log(κ), the logarithm of the
diffusion coefficient, as a zero mean random field with Gaussian autocorrelation,
correlation length 0.15 and variance 1. In order to arrive at a finite dimensional
representation of the field, we use an approximation to a Karhunen Loève (KL)
expansion which we truncate after m terms, i.e.

log (κ(x, θ)) ≈
m∑
k=1

φk(x)θk.

In the expansion, φ1, ..., φm are the KL modes of largest wave length. Consequently, θ
is a vector of KL coefficients. We implement the model in the Distributed and Unified
Numerics Environment (DUNE) framework [BHM10] with a Q1 Finite Element
discretization on simple structured grids. To form a three-level model hierarchy
for our MLMCMC method, we choose mesh widths of 1

16 ,
1
64 and 1

256 . Across all
three levels, we choose an identical parameter dimension m = 113; this specific
number carries not much significance beyond making sure we select modes of up
to a certain specific wavelength, as detailed later. We use the dune-randomfield
module to generate the fields efficiently. It is based on circulant embedding [DN97],
and we modify the module slightly in order to fit our needs. In particular, we allow
injecting specific parameters chosen by Markov Chain Monte Carlo (MCMC) into
the generator instead of just drawing independent random fields.

First of all, since we are working in a 2D domain, the truncation of modes is not
immediately obvious. It is generally desirable to include low-frequency modes first,
since they allow to recover large-scale features of the parameter field we seek in
the inverse problem, and we would prefer to capture those over higher-frequency
components that likely have only local effects on the physical model. Therefore we
place the first index in matrix entry (0, 0) of the frequency domain matrix employed
in circulant embedding, corresponding to the constant mode. We then proceed to
add further modes by forming layers of entries around that (see section 6.1.1). In
order to give an idea of the resulting ordering of modes, some representative modes
corresponding to entries in frequency domain are shown in fig. 6.1. The generation
of random fields is an extensive research field of its own and not in the scope of this
thesis, so we refer to literature for further detail on circulant embedding for random
fields [DN97].

116 Chapter 6 Applications

(a) Mode 0, a constant. (b) Mode 1. (c) Mode 2.

(d) Mode 4. (e) Mode 7. (f) Mode 12.

Fig. 6.1: Individual modes of the permeability field used in these experiments.

θ3 θ2 θ6 θ7 θ4

θ10 θ9 θ8 θ12θ11

θ10θ11θ12 θ8 θ9
θ3 θ4 θ7 θ6 θ2
θ0 θ1 θ5 θ5 θ1

Fig. 6.2: Choice of modes in frequency domain of circulant embedding method. The
ordering ensures that modes are unique and the parameter vector θ is ordered by
increasing frequency of modes.

6.1 Parameter Field Estimation - Poisson Equation 117

Fig. 6.3: Random field realization log(κ(·, θ̂)) and parameter field κ(·, θ̂) from random field
realization used for synthetic data.

In order to form a Bayesian inverse problem, we generate synthetic data based on
a random field κ(x, θ̂), where θ̂ is a fixed sample drawn from N (0, I) (shown in
fig. 6.3).

The actual vector of measurements y is then defined by solving the above Poisson
problem for θ = θ̂, evaluating the solution u at a grid of points: { 2

32 ,
7
32 ,

13
32 ,

19
32 ,

25
32 ,

3
32}

2.
Based on that, we define our likelihood L(y|θ) to be a Gaussian N (F (θ), σ2

F I) with
σF = 0.01. Complementing it with a Gaussian prior π0(θ) = N (0, 4I), we complete
our Bayesian inverse problem.

Note that, by generating synthetic measurements directly from our forward model,
we commit an ’inverse crime’ [CK19, p. 179]. In realistic applications a model error is
inevitable, making it significantly harder to recover the underlying parameters from
data accurately. However, for this problem we intentionally accept this simplification:
Our focus in this case is algorithmic scalability and not a fully realistic setting. Further,
verifying the correctness of the UQ method is somewhat easier without a model
error.

As our Quantity of Interest (QOI), we define Qk(θ) = κ(xk, θ) where the xk form
a grid of width 1

32 . This captures the parameter field we seek and, as necessitated
by the telescoping sum in eq. (3.1), allows for a consistent dimension in QOI even
when varying the parameter dimension across levels.

118 Chapter 6 Applications

Fig. 6.4: Synthetic “true” field (left) and expected value of multilevel estimator (right).

V[Q0] or
level l hl DOFs tl[ms] ρl τl V[Ql −Ql−1]

0 1
16 289 3.35 206 137.3 1.501× 10−1

1 1
64 4225 45.64 17 11.2 1.121× 10−3

2 1
256 66 049 931.81 0 1.05 4.165× 10−5

Tab. 6.1: Multilevel properties of Poisson application. For each level l of mesh width hl with
associated degrees of freedom (DOFs), we show the computational cost tl and
chosen subsampling rate ρl. Due to high dimension of QOI in this setting, we only
show integrated autocorrelation time τl and variance for an single representative
component of Q.

6.1 Parameter Field Estimation - Poisson Equation 119

6.1.2 Results

In order to fully specify the MLMCMC algorithm for the given problem, it is enough
to set a Gaussian proposal on the coarsest level. We choose N (0, 3I) in order to
roughly match the prior. Since we have identical parameter dimensions across levels,
no fine level proposals are needed.

The MLMCMC method run with 104, 103 and 102 samples on levels 0, 1 and 2
exhibits properties detailed in in table 6.1 and captures the main features of the
parameter field underlying our synthetic data (see fig. 6.4). Clearly some higher
frequency detail is not recovered. This, however, is expected due to the limited
number of KL modes we include in our parameter space. Note that we can only
recover this up to a scaling factor, since the solution is only determined by the
parameter field up to a factor. Here, the choice of prior essentially determines the
scaling of the solution we observe.

For a more detailed analysis of Bayesian inverse problems based on Poisson equation
in MLMCMC, we refer to the original MLMCMC publication [Dod+15; Dod+19b].

In order to investigate parallel scalability of our MLMCMC implementation, we
conduct weak and strong scaling experiments on the BwForCluster MLS&WISO
Production HPC system. The partition we used consists of nodes with two 16-core
Intel Xeon E5-2630v3 CPUs and 64 gigabytes of memory.

As forward model, we use the Poisson model, since its low computational demand
allows us to stress the parallelized MLMCMC algorithm itself by running a large num-
ber of chains and samples. We use the same inverse problem detailed above, even
though the particular inverse problem does not affect the algorithm’s communication
patterns and therefore parallel scalability.

For the strong scaling setup, we draw 104, 103 and 102 samples on levels 0, 1 and 2
respectively. We further set subsampling rates according to table 6.1, and enable
dynamic load balancing. As the timing results in fig. 6.5 show, we achieve linear
speedup until relatively large burnin phases and suboptimal load balancing due to
few samples per chain occur.

Technically the observed speedup even slightly exceeds linear. That is simply due to
the fact that a fixed number of the processes is reserved for book keeping tasks (i.e.
the root, phonebook and collector processes). As a result, for increased number of
processes, a larger fraction contributes to parallel speedup by generating samples.

120 Chapter 6 Applications

Fig. 6.5: Scalability of the Poisson model problem for 104, 103 and 102 samples on levels
0, 1 and 2 respectively. Subsampling rates etc. are chosen according to table 6.1.
The problem setup remains constant as the number of processors is increased.

Fig. 6.6: Weak scalability and parallel efficiency of the Poisson model problem. At 64 cores
104, 103 and 102 samples are computed on levels 0, 1 and 2 respectively. The
number of samples is modified linearly with the number of processors.

6.1 Parameter Field Estimation - Poisson Equation 121

In our weak scaling test, we begin with the same setup as in the strong scaling
setting. In particular, we again choose to compute 104, 103 and 102 samples on levels
0, 1 and 2, and solve this problem using 64 processes. We then expand to a range
from 32 to 1024 processes while scaling the number of samples on each level linearly
in accordance with the number of processes.

The parallel efficiency (given in blue in Figure 6.6) is measured here as tref
tN
· 100%,

where tref is the quickest time taken over all runs and tN is the time taken onN ranks.
The initial increase to over 100% efficiency is due to the overhead of phonebook and
collector ranks. We achieve fairly consistent results of up to 80 seconds of total run
time except for the largest run. The latter is a very extreme scenario though, since
the extremely short run time of the coarsest model leads to a significant load on
the communication infrastructure. We therefore consider it reasonable to assume
that exceeding the ideal range should only occur for significantly larger numbers of
processes in more realistic applications.

6.2 Multiindex Markov Chain Monte Carlo - Consistency
check

In order to verify that the Multiindex Markov Chain Monte Carlo (MIMCMC) method
from section 3.4 was implemented correctly in chapter 5, we show a brief consistency
check here. Note that, in order to facilitate testing, this setup is not realistic in
certain regards, for example the choice of number of samples or artificial data.

We mainly recreate the multilevel setup in section 6.1, but adapt the forward model
to fit the multiindex case. For brevity, only the differences in the inverse problem
compared to the multilevel case are described in this section.

6.2.1 The Physical Model

The multiindex model hierarchy is obtained by replacing the discretization of the
domain Ω = [0, 1]2 by a structured grid where mesh width in x and y direction may
be chosen independently. So, due to employing a fully structured grid, each element
is now a rectangle, and not necessarily a square as in section 6.1.

Each two-dimensional multiindex α ∈ {0, 1, 2}2 then corresponds to a grid of mesh
width (hα0 , hα1) where h0 = 1

8 , h1 = 1
32 and h2 = 1

128 are chosen. We therefore have

122 Chapter 6 Applications

Fig. 6.7: Parameter field κ (left) and resulting PDE solution (right) for a representative
choice of θ. The grid belongs to α = (2, 1) and is therefore more refined in x
direction.

a total of nine models Fα, and the three “diagonal” indices α with α0 = α1 in fact
form a hierarchy of grids of squares analogous to the multilevel case from section 6.1
again.

On each grid, we solve the same Poisson PDE as in section 6.1.1, again with a Q1

Finite element (FE) basis and a parameter field κ defined by KL models. In contrast
to before, however, we only take the first four KL modes, and therefore θ ∈ R4. A
low-dimensional parameter requires few samples for an accurate result, and we can
therefore check the accuracy of the output at relatively low computational cost.

The inverse problem is defined in the same way as well, with slightly different
variances and choice of QOI and measurements. As prior, we set N (0, 5I). For the
likelihood’s, the fidelity variance is chosen as σ2

F = 10−2, which ensures a relatively
low posterior variance for the purpose of easily checking expected values produced
by the algorithm. Note that, for simplicity, the same priors and likelihoods functions
are chosen for all indices, and only the forward models Fα differ.

Model output Fα(θ) is defined on a grid of points, specifically evaluations of the
solution u at points {0.1, 0.3, 0.5, 0.7, 0.9}2. In order to complete the definition of
the posterior, synthetic data is generated by F(2,2)(θ̂), where θ̂ := (0, 0, 0, 1)>. As
before, this choice is an “inverse crime” and not representative of realistic appli-
cations. However, it is very helpful for the purpose of checking correctness of the
implementation.

Finally, the quantity of interest is defined as

Qα(θ) =
∫

[0.4,0,6]2
uα(x, θ)dx,

6.2 Multiindex Markov Chain Monte Carlo - Consistency check 123

Eν(2,2) [Q(2,2)] ESS
1.949E-02 46.72

Tab. 6.2: Results of single level MCMC reference run.

2 -4.997E-04 -6.662E-05 -2.065E-05
1 2.245E-03 4.055E-04 -7.076E-05
0 1.583E-02 2.392E-03 -5.496E-04

α1 / α0 0 1 2

Tab. 6.3: Resulting estimates of ∆iEνα [Qα].

where uα(x, θ) is the solution of the PDE as defined above for model α and parameter
θ. In practice, Qα is evaluated by numerical integration on the same grid the PDE is
solved on.

6.2.2 Results

On the finest model, i.e. α = (2, 2), we run an MCMC chain in order to obtain a
reference result. The MCMC method is outfitted with an Adaptive Metropolis [HS98;
HST01] proposal, initial variance of 1.0, and variance updates every 100 steps until
1000 samples have been drawn. The chain is started at θ0 = 0 and is given a burnin
phase of 100 samples.

Next, the MIMCMC method is applied to the multiindex model hierarchy above. The
MIMCMC method is specified with the same proposal as in the reference run for its
coarsest chain. We keep parameter dimension constant across levels, i.e. Rα = 2,
and therefore do not have fine proposals in this application.

Subsampling rates for proposals from level α are defined as ρα := 2
∑

i
|2−αi|, and

therefore range from 1 on the finest to 16 on the coarsest index. This choice ensures
that in the standard proposal routing strategy (see fig. 3.5), subsampling is always
increased by a factor of 2 when drawing samples from the next coarser chain. Finally,
we request 1000 samples to be drawn for each index, again with a burnin of 100
samples.

From this MIMCMC run, we observe that the magnitudes of components of the
telescoping sum (listed in table 6.3) diminishes for increasingly high multiindices.
This is exactly as expected and analogous to the multilevel case.

124 Chapter 6 Applications

2 1.555E-10 2.404E-09 1.055E-09
1 1.226E-09 2.333E-09 1.468E-09
0 1.289E-08 1.396E-09 4.201E-10

α1 / α0 0 1 2

Tab. 6.4: Estimated variance of the estimator Vνα [∆iQα]/Nα
eff , i.e. sample variance over es-

timated Effective Sample Size (ESS) denoted by Nα
eff . See table 6.6 for estimates

of Nα
eff .

2 1.757E-02 2.031E-02 1.967E-02
1 1.807E-02 2.087E-02 2.025E-02
0 1.583E-02 1.822E-02 1.767E-02

α1 / α0 0 1 2

Tab. 6.5: Resulting estimates of partial telescoping sums
∑
α′≤α ∆Eνα′ [Qα′]. The≤ relation

between multiindices is understood component-wise. Therefore, the partial
telescoping sum for α = (0, 0) consists of only the coarse chain estimate, while
the one for α = (2, 2) is the full telescoping sum from eq. (3.8).

2 1000 583.632 694.756
1 647.418 586.005 665.159
0 62.9783 575.853 734.519

α1 / α0 0 1 2

Tab. 6.6: Estimation of ESS Nα
eff for each estimator of ∆Eνα [Qα].

6.2 Multiindex Markov Chain Monte Carlo - Consistency check 125

When computing the telescoping sum (eq. (3.8)) or parts thereof, we observe in
table 6.5 that the overall telescoping sum gives the best approximation of the
reference value computed above in table 6.2.

Unfortunately the model hierarchy chosen here does not clearly exhibit variance
reduction across levels (see table 6.4). In particular, the gains in more interesting
truncations of the telescoping sum like a convex shape, as discussed for Multiindex
Monte Carlo (MIMC) in [Haj+16], do not become apparent here. Showing that
would likely require either substantial computational effort due to larger model
hierarchies or an even cheaper to compute forward model.

Regarding the new strategy for handling proposals in MIMCMC introduced in
section 3.4, we observe the benefit in terms of ESS estimates in table 6.6. While
the coarse chain ESS is in line with the single level run above (see table 6.2), we
observe significantly higher ESS for finer indices, indicating well-informed proposals
from coarser chains. Again, this is analogous to the MLMCMC case.

An MIMCMC application to a real-world problem is not part of this work due to time
constraints. However, from this brief investigation we conclude that algorithm and
implementation deliver plausible results. Since the implementation is identical to
the MLMCMC cases presented here, we expect it to offer the same real-world perfor-
mance demonstrated for MLMCMC. In addition, gains in computational efficiency
shown for MIMC in [Haj+16] can be expected and will be investigated in future
applications.

6.3 Tsunami Origin Estimation - Shallow Water
Equation

This section presents an application of the parallelized MLMCMC to a realistic
problem modelling the Tohoku tsunami.

6.3.1 The Physical Model

Tsunami propagation is typically modeled by some variant of the shallow water
equations [Beh+10; LGB11, e.g.], allowing for a simulation in only two dimensions.
The shallow water equations are obtained via depth-averaging of quantities (esp.
momentum) from the more complicated three-dimensional Navier-Stokes equations,

126 Chapter 6 Applications

based on the modeling assumption that horizontal length scales are considerably
greater than the vertical length scales.

In this setting, we concentrate on the basic shallow water equations with bathymetry
source terms (neglecting friction terms or more advanced models for with non-
hydrostatic corrections). The resulting equations can be written in first-order hyper-
bolic form as

∂

∂t

h

hu

hv

b

+∇ ·

hu hv

hu2 huv

huv hv2

0 0

+

0

hg ∂x(b+ h)
hg ∂y(b+ h)

0

 = 0, (6.1)

where h denotes the height of the water column, (u, v) the horizontal flow velocity,
g gravity and b denotes the bathymetry. This hyperbolic system of equations is
supplemented by a set of suitable initial and boundary values.

We discretize with an Arbitrary-high-order-DERivative Discontinuous Galerkin Method
(ADER-DG) method as proposed in [Dum+08]. It is essentially a predictor-corrector
scheme. A high-order solution is found element-locally and then corrected to take
into account neighbors by solving Riemann problems along element interfaces. To
resolve known high-order issues such as the Gibbs phenomenon a corresponding
a-posteriori finite volume sub-cell limiter is applied [DL16]. This limiter detects
and revokes problematic ADER-DG solution candidates and recomputes them with
a robust Finite-Volume scheme (cf. [Ran+18; RDB18] for details), following the
approach by LeVeque et al. [LGB11]. At coastlines the schemes relies entirely on the
Finite-Volume limiter, to correctly treat inundation.

As a large-scale example, we invert data from the Tohoku tsunami, which occurred
subsequent to an earthquake in the Japan trench in 2011. We assume that the only
significant sources of the tsunami are the displacements of the sea floor. In order to
initialize the tsunami, we can impose the displacements as an instantaneous defor-
mation of the bathymetry in the resting-lake case – compare respective modeling
approaches by Saito et al. [SF09] or Madden et al. [Mad+21]. By keeping the
water column constant, the change of the bathymetry is directly translated to the sea
surface and generates the tsunami. Gravity, as the main acting force, initiates the
propagation of the wave. The tsunami then evolves as a gravity wave. As reference
solution for the initial displacements of the ocean floor we use respective simulation
results provided by Galvez et al. [Gal+14]. The bathymetry data has been obtained
from GEBCO 1.

1https://www.gebco.net/

6.3 Tsunami Origin Estimation - Shallow Water Equation 127

https://www.gebco.net/

Fig. 6.8: Bathymetry for the full computational domain with darker rectangle denoting
parameter values in the prior.

µ Σ
l=0 l=1 l=2

1.85232 0.15 0.1 0.1
0.6368 0.15 0.1 0.1
30.23 2.5 1.5 0.75
87.98 2.5 1.5 0.75

Tab. 6.7: Mean µ and covariance Σ for all three levels.

Our goal is to obtain the parameters describing the initial displacements from the
data of two available buoys located near the Japanese coast. Some of these param-
eters are reasonably well-known already, these include location of the hypocenter,
length, width, and to some extent depth. Other parameters such as uplift are more
difficult to estimate. In these tests we estimate the location of the initial displace-
ment. The prior cuts off all parameters which would lead to an initial displacement
which is too close to the domain boundary. Figure 6.8 shows the cut-off values
used.

In order to compute a likelihood of a given set of parameters given the simulation
results we use a weighted average of the maximal wave height and the time at which
it is reached. The likelihood is given by a normal distribution N (µ,Σ) with mean µ
given by maximum wave height max{h} and the time t at which it is reached for
the the two DART buoys 21418 and 21419 2. The covariance matrix Σ depends on

2This data can be obtained from NDBC https://www.ndbc.noaa.gov/

128 Chapter 6 Applications

https://www.ndbc.noaa.gov/

Fig. 6.9: Plot of Sea surface height anomaly [ssha] for samples taken from level 0 (top) and
1 (bottom) compared to NDBC data at buoy 21418.

Fig. 6.10: Plot of Sea surface height anomaly [ssha] for samples taken from level 0 (top)
and 1 (bottom) compared to NDBC data at buoy 21419.

6.3 Tsunami Origin Estimation - Shallow Water Equation 129

Fig. 6.11: Illustration of bathymetry smoothing and mesh coarsening for tsunami model.

Fig. 6.12: The three-level tsunami test case, each point represents an accepted sample at
level l = 0, 1, 2 (from left to right). The dashed lines show the expected value
E(Q0) or E(Q0) +

∑
l E[Ql−Ql−1] with the true origin (0, 0) in red for reference.

the level, but not the probe point. Figures 6.9 and 6.10 shows the data and samples
of level 0 and 1. Table 6.7 gives the values of µ and the diagonal entries of Σ for all
three levels. Alternative likelihood functions, such as a quadratic average of multiple
buoys could also be used, see e.g. [Beh+10].

We set up a sequence of three models with increasing accuracy shown as in Figure
6.11. In the first model bathymetry is approximated only by a depth average over the
entire domain. Since no calculations of wetting and drying are needed this model is
computed purely with a DG method of order 2. The second and third models further
include a finite volume subcell limiter allowing for wetting and drying. The second
model uses smoothed bathymetry data and the third uses the full bathymetry data.
The main advantage of using smoothed data is that the FV subcell limiter is needed
in fewer cells. The models use 25, 79 and 241 order two elements in each direction
respectively. This model hierarchy demonstrates that not only mesh refinement and
coarsening, but also model specific optimizations can be used to exploit multilevel
MCMC.

130 Chapter 6 Applications

Fig. 6.13: Visualization of samples used to estimate the corrections between levels in
eq. (3.1). Left: Correction between levels zero and one. Right: Correction
between levels one and two. Dots and origins of arrows indicate coarse samples.
The arrows point towards their corresponding fine samples. Note that the arrow’s
length is scaled down to a factor of .15 for clarity. Coarse proposals that were
accepted by the fine chain, leading to identical coarse and fine samples here,
appear as simple dots instead of arrows.

6.3.2 Results

As a second example of the MLMCMC method we invert data from the Tohoku
tsunami. We find the parameter distribution describing the initial displacements
from the data of two available buoys located near the Japanese coast.The MLMCMC
method with three levels computes 800 samples on level 0, 450 on level 1 and 240
on level 2 with a subsampling rate of 25 on level 0 and 5 on level 1.

These tests were run on up to 72 Intel Skylake Xeon Platinum 8174 nodes of
SuperMUC-ng consisting of 48 cores each. The tests were run using Intel’s TBB for
parallelisation over the 48 cores of each node and MPI for parallelisation across
nodes. Each ExaHyPE run used exactly one full node. The runtime for each forward
model evaluation was on average 7.38 seconds on level 0, 97.3 seconds on level 1
and 438.1 seconds on level 2. These runtimes have a large variablility as the model’s
timestep depends on the uncertain parameters, making it a challenging test for
the scheduling infrastructure. In total 61, 250 level 0, 34500 level 1 and 240 level 2
forward model evaluations were required for this test.

Again, due to constant parameter dimension across levels, we only need to choose a
proposal density for the coarsest level. Like before, we choose Adaptive Metropolis

6.3 Tsunami Origin Estimation - Shallow Water Equation 131

V[Q0] or E[Q0]+
lvl l tl[s] ρl V[Ql −Ql−1]

∑l
k=1 E[Qk −Qk−1]

0 7.38 25 1984.09 1337.42 3.61 27.96
1 97.3 5 1592.17 1523.18 −12.29 23.39
2 438.1 0 340.56 938.53 −5.46 0.12

Tab. 6.8: Multilevel properties of the tsunami model. For each level l of mesh, we show
the computational cost tl and chosen subsampling rate ρl. We show variance and
expected values for both components of Q.

[HS98; HST01] provided by MIT Uncertainty Quantification Library (MUQ). As
initial prior we set N (0, 10I) and update every 100 steps.

Figure 6.12 shows the resulting samples on level 0 and 1. The expected values
E(Q0), and E(Ql −Ql−1) are shown as dashed line. The red marker shows the point
(0, 0). The point (0, 0) is the position of the initial displacements as estimated in
[Gal+14].

In order to illustrate how MLMCMC links coarser and finer level posteriors in order
to obtain fine level corrections, fig. 6.13 shows how samples on level l relate to
the level l − 1 samples that served as their respective coarse proposals. The result
can be thought of as a transformation between corresponding coarser and finer
distributions, even though only in a non-deterministic sense. Since in this application
we choose the QOI to be the uncertain parameter itself, the estimate of the terms in
the telescoping sum (eq. (3.1)) actually correspond to the mean of the corrections
displayed here.

Variances and expected values are given in Table 6.8. The relatively cheap samples
on level 0 provide a good initial estimate of the posterior, which are improved by
the more expensive models utilizing the full bathymetry data. In contrast to the
Poisson case, we do not observe variance reduction across levels. This is somewhat
expected, as the modified bathymetry does not permit the construction of a level
hierarchy fulfilling the theoretical assumptions made by MLMCMC based on a priori
error estimates. We do, however, still have the benefit of well-informed proposals on
finer levels driven by coarser level chains.

From this application, we conclude that the parallelization strategy proposed for
MLMCMC and the corresponding implementation in MUQ can successfully be em-
ployed in solving large-scale real-world inverse problems.

132 Chapter 6 Applications

Conclusion 7
As part of this dissertation, a parallelization strategy for Multilevel Markov Chain
Monte Carlo (MLMCMC) and Multiindex Markov Chain Monte Carlo (MIMCMC)
was developed in chapter 3, and implemented as part of the MIT Uncertainty Quan-
tification Library (MUQ) software project in chapter 5. The implementation is both
modular and highly scalable, overcoming inherent data dependencies. Numerous
software components can be reused within the framework, and arbitrary forward
models may be employed. The resulting methods allow solving a wide range of
Uncertainty Quantification (UQ) problems, and are specifically designed to handle
computationally challenging forward models. In addition, a new strategy for han-
dling proposals in MIMCMC in analogy to the MLMCMC method from [Dod+19b]
is proposed in section 3.4.

Coarsening strategies providing suitable model hierarchies for MLMCMC and MIM-
CMC are discussed in chapter 4. For multiscale Partial Differential Equation (PDE)
models, section 4.2 presents a new theoretical link between robust preconditioners
based on eigenproblems and Localized Model Order Reduction (LMOR). Conse-
quently, methods from both fields can be exchanged. Using theoretical results
from LMOR, it was proven that the Generalized Eigenproblems in the Overlaps
(GenEO) space may serve as a model order reduction space. On the other hand, a
randomized eigensolver used originally in LMOR could successfully be applied to
the preconditioner setting (section 4.2.4). Further, an online/offline approach is
proposed in section 4.4, allowing the reuse of large parts of the LMOR basis across
runs. Together with an extension of the GenEO implementation in the Distributed
and Unified Numerics Environment (DUNE) to overlaps generated algebraically
(section 4.3), this paves the way for future UQ applications at a fraction of the
computational cost.

Excellent parallel scalability and model-agnosticity of the algorithms proposed are
demonstrated in the applications in chapter 6. In particular, the tsunami application
in section 6.3 shows that the parallelized MLMCMC method allows for solving
realistic inverse UQ problems on a scale where forward models themselves already
pose significant computational challenges and require High Performance Computing
(HPC) environments.

133

7.1 Future Work

MIMCMC and online/offline coarse approximation in UQ applications

Future work further investigating the advanced MIMCMC method introduced in
section 3.4 is planned. In particular, applications to real-world models were unfortu-
nately out of scope due to time constraints.

Likewise, work towards coarse approximation reusing local basis functions across
multiple runs in an online/offline fashion (section 4.4) has progressed to a point
where method and implementation are ready. Exploiting the online phase for low-
cost coarse samples in an MLMCMC method and solving a UQ problem on multiscale
a PDE is planned for a subsequent step. This will be carried out as part of the CerTest
project [@Tho+].

Dynamic load balancing for heterogeneously parallelized models

The load balancing strategy for parallelized MLMCMC and MIMCMC presented in
section 5.5 is currently limited to models parallelized across the same number of
ranks for each level. Nevertheless, it has proven to be effective in the applications
in chapter 6, effectively compensating for non-optimal initial load balancing as
supplied by the user and ultimately yielding excellent scalability in large-scale tests
(see section 6.1).

In a next step, in order to support heterogeneous model parallelization across levels,
the load estimate per level could be adjusted to take into account the number of
processes per model. Then, assuming integer factors between the numbers of ranks
used in parallel models, assigning groups of processes to other levels should easily
be achievable within the existing architecture.

For lack of a suitable application, this step was not undertaken yet, as it likely requires
some more in-depth testing to ensure reliability. When applying the online/offline
approach in section 4.4, this will likely play a crucial role, as in that case large-scale
fine models will have to be balanced with sequential coarse models.

134 Chapter 7 Conclusion

Randomized eigensolvers for coarse approximation in Markov Chain Monte
Carlo (MCMC)

The randomized eigensolver used in section 4.2.4 turned out to be a viable option in
practical applications of the GenEO preconditioner. Besides a slight efficiency gain
in the scenarios tested, the main improvement over classic iterative eigensolvers
turned out to be a gain in robustness.

A far more promising setting regarding run time gains however is an application in
an MCMC setting: When multiple subsequent solves of nearly identical PDEs are
executed, the GenEO basis from previous runs may be reused and only augmented for
the new problem at hand. The randomized approach has the significant advantage
over iterative solvers that additional basis functions can easily be added to an existing
basis approximation. Therefore subsequent minimal basis updates are easily possible,
avoiding full recomputations of the computationally expensive eigenproblem.

Model abstraction in software

Many UQ algorithms, in particular MCMC type methods as discussed in this thesis,
simply assume a forward model in terms of a function F : Rn → Rm mapping
parameters onto model predictions. The design choices in the implementations
presented in chapter 5 exploit this, making use of the abstract model interface in
the MUQ. As a result, the algorithms implemented can be used with arbitrary (and
possibly already existing) user model codes.

While developing the applications in chapter 6 however, it turned out that coupling
complex model codes to advanced UQ codes may pose significant difficulties even
despite having a general-purpose interface. Numerous complications can arise
already in compiling such a software stack. Further, model codes may not be
intended to be called by other software in the first place.

For example, in the tsunami application in section 6.3 we made use of the Exascale
Hyperbolic PDE Engine (ExaHyPE) package for the forward model. It is intended
to be run for individual simulation runs, and in that use case is in fact easy to use
and highly efficient. In its current form, however, it is not intended to be used as a
software library. Overcoming resulting fundamental architectural limitations took
an enormous technical effort, binding resources that we would have liked to invest
in the design of the actual UQ problem to be solved.

7.1 Future Work 135

UQ client Model server
HTTP

container

Fig. 7.1: Network and container based coupling of UQ and model codes.
Ti

m
e UQ client Model server

θ0

F (θ0)

θ1

F (θ1)

θ2

F (θ2)

container

Fig. 7.2: Sequence of messages passed between client and server in case of an MCMC
algorithm generating samples θi.

It is therefore a very promising idea to truly decouple model and UQ software stacks
in order to leverage the model abstraction promised by UQ algorithm and theory.

As an alternative to a “hard” coupling in the sense of compiling model and UQ codes
together, an approach based on containerization and network communication was
developed. While initially intended as a “backup” solution, it turns out to have a
wider practical value.

The key point is to have the model code (“server”) and UQ code (“client”) exchange
information via a simple HTTP-based network protocol. Since the amount of data to
be exchanged consists of a typically small parameter vector and a resulting model
prediction vector for each (typically expensive) model evaluation, the overhead com-
pared to exchanging that information directly through shared memory is insignificant
for all but the most exotic applications.

At this point, server and client can be compiled entirely independently; in fact, since
only support for the simple HTTP protocol is required on both ends, they may even
use completely unrelated programming languages or dependencies.

136 Chapter 7 Conclusion

In a next step, such a model may be run and distributed inside a container, for
example a docker [Mer14] or singularity [KSB17] container. The resulting software
setup is illustrated in fig. 7.1, and an exemplary timeline of messages passed in
fig. 7.2. This makes it possible to

• easily deploy complex models on HPC systems with container support as well
as public cloud infrastructure while working in a standard and locally testable
software environment,

• provide an entire library of pre-built models to the UQ community for testing
and benchmarking purposes,

• and easily exchange complex models between collaborating researchers, com-
pletely bypassing software setup. Consequently, development can be arranged
by exploiting separation of concerns: Model experts only have to provide the
interface, while UQ developers need no understanding of the details of the
underlying model.

This ongoing work should further contribute to bridging the gap between advanced
models and advanced UQ methods.

7.1 Future Work 137

Bibliography

[Aln+15] Martin S. Alnæs, Jan Blechta, Johan Hake, et al. “The FEniCS Project Version
1.5”. In: Archive of Numerical Software 3.100 (2015) (cit. on p. 67).

[Alz+18] G. Alzetta, D. Arndt, W. Bangerth, et al. “The deal.II Library, Version 9.0”.
In: Journal of Numerical Mathematics 26.4 (2018), pp. 173–183 (cit. on
p. 67).

[BL11] I Babuška and R Lipton. Optimal local approximation spaces for general-
ized finite element methods with application to multiscale problems. English.
Philadelphia: SIAM Publications, 2011, pp. 373–406 (cit. on p. 79).

[BHM10] P Bastian, F Heimann, and S Marnach. “Generic implementation of finite
element methods in the Distributed and Unified Numerics Environment
(Dune).” In: Kybernetika 46.2 (2010), pp. 294–315 (cit. on pp. 67, 116).

[Bas12] Peter Bastian. Lecture notes: Numerical Methods for Partial Differential Equa-
tions. Sept. 2012 (cit. on pp. 8, 13, 18).

[Bau01] Heinz Bauer. Measure and integration theory. eng. De Gruyter studies in
mathematics ARRAY(0x5573a0f975d0). Includes bibliographical references
and indexes. Berlin ; New York: de Gruyter, 2001, XVI, 230 S. (Cit. on p. 21).

[Beh00] Ehrhard Behrends. Introduction to Markov chains. with special emphasis on
rapid mixing. eng. Advanced lectures in mathematics. Braunschweig ; Wies-
baden: Vieweg, 2000, IX, 232 S. (Cit. on p. 23).

[Beh+10] J. Behrens, A. Androsov, A. Y. Babeyko, et al. “A new multi-sensor approach
to simulation assisted tsunami early warning”. In: Natural Hazards and Earth
System Sciences 10.6 (2010), pp. 1085–1100 (cit. on pp. 126, 130).

[Bes+08] Alexandros Beskos, Gareth Roberts, Andrew Stuart, and Jochen Voss. “MCMC
METHODS FOR DIFFUSION BRIDGES”. In: Stochastics and Dynamics 08.03
(2008), pp. 319–350. eprint: https://doi.org/10.1142/S0219493708002378
(cit. on p. 49).

[BS07] Dietrich Braess and Larry L. Schumaker. Finite elements. theory, fast solvers,
and applications in elasticity theory. eng. 3. ed. Cambridge [u.a.]: Cambridge
University Press, 2007, XVII, 365 S (cit. on pp. 8, 13, 16, 18).

[Bro+11] Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, eds. Hand-
book of Markov chain Monte Carlo. eng. A Chapman & Hall book. Literatu-
rangaben. Boca Raton ; London [u.a.]: CRC Press, Taylor & Francis, 2011,
XXV, 592 S. (Cit. on p. 23).

139

https://doi.org/10.1142/S0219493708002378

[Buh19] Andreas Buhr. “Towards Automatic and Reliable Localized Model Order
Reduction”. PhD thesis. Westfälische Wilhelms-Universität Münster, 2019
(cit. on pp. 69, 76, 79, 84).

[Buh+19] Andreas Buhr, Laura Iapichino, Mario Ohlberger, et al. “Handbook on Model
Order Reduction”. In: submitted for publication. Walter De Gruyter GmbH,
2019+. Chap. Localized model reduction for parameterized problems (cit. on
p. 76).

[BS18] Andreas Buhr and Kathrin Smetana. “Randomized Local Model Order Reduc-
tion”. In: SIAM Journal on Scientific Computing 40.4 (2018), A2120–A2151
(cit. on p. 84).

[But+20a] R. Butler, T. Dodwell, A. Reinarz, et al. “High-performance dune modules for
solving large-scale, strongly anisotropic elliptic problems with applications
to aerospace composites”. In: Computer Physics Communications 249 (2020),
p. 106997 (cit. on p. 75).

[But+20b] R. Butler, T. Dodwell, A. Reinarz, et al. “High-performance dune modules for
solving large-scale, strongly anisotropic elliptic problems with applications
to aerospace composites”. In: Computer Physics Communications 249 (2020),
p. 106997 (cit. on pp. 85, 95).

[CS99] XC Cai and M Sarkis. “A restricted additive Schwarz preconditioner for
general sparse linear systems”. English. In: SIAM JOURNAL ON SCIENTIFIC
COMPUTING 21.2 (1999), pp. 792–797 (cit. on p. 88).

[Cha+03] T Chartier, R. D. Falgout, V. E. Henson, et al. Spectral AMGe (ρAMGe). English.
Philadelphia: Society for Industrial and Applied Mathematics, 2003, p. 1 (cit.
on p. 67).

[CF05] J. Christen and Colin Fox. “Markov chain Monte Carlo Using an Approxi-
mation”. In: Journal of Computational and Graphical Statistics - J COMPUT
GRAPH STAT 14 (Dec. 2005), pp. 795–810 (cit. on p. 53).

[CR72] P.G. Ciarlet and P.-A. Raviart. “Interpolation theory over curved elements,
with applications to finite element methods”. In: Computer Methods in Applied
Mechanics and Engineering 1.2 (1972), pp. 217–249 (cit. on p. 16).

[CK19] David Colton and Rainer Kress. “Inverse Acoustic and Electromagnetic Scat-
tering Theory”. In: 4th ed. New York: Springer-Verlag, 2019 (cit. on p. 118).

[Cot+13] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. “MCMC Methods for
Functions: Modifying Old Algorithms to Make Them Faster”. In: Statist. Sci.
28.3 (Aug. 2013), pp. 424–446 (cit. on p. 49).

[CDS19] Tiangang Cui, Gianluca Detommaso, and Robert Scheichl. “Multilevel Dimension-
Independent Likelihood-Informed MCMC for Large-Scale Inverse Problems”.
In: (Oct. 2019) (cit. on p. 49).

[CLM16] Tiangang Cui, Kody J.H. Law, and Youssef M. Marzouk. “Dimension-independent
likelihood-informed MCMC”. In: Journal of Computational Physics 304 (2016),
pp. 109–137 (cit. on p. 49).

140 Bibliography

[Dav+21] Andrew D. Davis, Youssef Marzouk, Aaron Smith, and Natesh Pillai. Rate-
optimal refinement strategies for local approximation MCMC. 2021. arXiv:
2006.00032 [stat.CO] (cit. on p. 98).

[DN97] C. Dietrich and G. Newsam. “Fast and Exact Simulation of Stationary Gaussian
Processes through Circulant Embedding of the Covariance Matrix”. In: SIAM
J. Sci. Comput. 18 (1997), pp. 1088–1107 (cit. on p. 116).

[Dod08] Yadolah Dodge. The concise encyclopedia of statistics. with 247 tables. eng.
Springer reference. Literaturverz. S. [597] - 616. [New York, NY]: Springer,
2008, VIII, 616 S. (Cit. on p. 27).

[Dod+19a] T. J Dodwell, C Ketelsen, R Scheichl, and A. L Teckentrup. “ERRATUM: A Hi-
erarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications
to Uncertainty Quantification in Subsurface Flow”. English. In: SIAM/ASA
journal on uncertainty quantification 7.4 (2019), pp. 1398–1399 (cit. on
p. 55).

[Dod+15] Tim Dodwell, Chris Ketelsen, Robert Scheichl, and Aretha Teckentrup. “A Hi-
erarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications
to Uncertainty Quantification in Subsurface Flow”. In: (Aug. 2015) (cit. on
pp. 49, 50, 53, 120).

[Dod+19b] Tim Dodwell, Chris Ketelsen, Robert Scheichl, and Aretha Teckentrup. “Mul-
tilevel Markov Chain Monte Carlo”. In: SIAM Review 61 (Jan. 2019), pp. 509–
545 (cit. on pp. 41, 49, 50, 53, 55, 58–61, 120, 133).

[Dua+87] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. “Hy-
brid Monte Carlo”. In: Physics Letters B 195.2 (1987), pp. 216–222 (cit. on
p. 49).

[Dum+08] Michael Dumbser, Dinshaw S. Balsara, Eleuterio F. Toro, and Claus-Dieter
Munz. “A unified framework for the construction of one-step finite volume
and discontinuous Galerkin schemes on unstructured meshes”. In: Journal of
Computational Physics 227.18 (2008), pp. 8209–8253 (cit. on p. 127).

[DL16] Michael Dumbser and Raphaël Loubère. “A simple robust and accurate
a posteriori sub-cell finite volume limiter for the discontinuous Galerkin
method on unstructured meshes”. In: Journal of Computational Physics 319
(2016), pp. 163–199 (cit. on p. 127).

[Gal+14] P. Galvez, J.-P. Ampuero, L. A. Dalguer, S. N. Somala, and T. Nissen-Meyer.
“Dynamic earthquake rupture modelled with an unstructured 3-D spectral
element method applied to the 2011 M9 Tohoku earthquake”. In: Geophysical
Journal International 198.2 (June 2014), pp. 1222–1240. eprint: https://
academic.oup.com/gji/article-pdf/198/2/1222/1651569/ggu203.pdf
(cit. on pp. 127, 132).

[GS91] Roger G. Ghanem and Pol D. Spanos. Stochastic Finite Elements: A Spectral
Approach. Berlin, Heidelberg: Springer-Verlag, 1991 (cit. on p. 48).

[Gil08] Michael B. Giles. “Multilevel Monte Carlo Path Simulation”. In: Oper. Res.
56.3 (May 2008), pp. 607–617 (cit. on pp. 49–51).

Bibliography 141

https://arxiv.org/abs/2006.00032
https://academic.oup.com/gji/article-pdf/198/2/1222/1651569/ggu203.pdf
https://academic.oup.com/gji/article-pdf/198/2/1222/1651569/ggu203.pdf

[HS98] Heikki Haario and Eero Saksman. “Adaptive Proposal Distribution for Ran-
dom Walk Metropolis Algorithm”. In: Computational Statistics 14 (July 1998)
(cit. on pp. 49, 124, 132).

[HST01] Heikki Haario, Eero Saksman, and Johanna Tamminen. “An Adaptive Metropo-
lis Algorithm”. In: Bernoulli 7 (Apr. 2001) (cit. on pp. 49, 124, 132).

[Haj+16] Abdul-Lateef Haji-Ali, Abdul-Lateef Haji-Ali, Fabio Nobile, et al. “Multi-index
Monte Carlo: when sparsity meets sampling”. English. In: Numerische Mathe-
matik 132.4 (2016), pp. 767–806 (cit. on pp. 61, 63, 68, 126).

[Has70] W. K Hastings. “Monte Carlo sampling methods using Markov chains and
their applications”. English. In: Biometrika 57.1 (1970), pp. 97–109 (cit. on
p. 35).

[Hei01] Stefan Heinrich. “Multilevel Monte Carlo Methods”. In: Large-Scale Scien-
tific Computing. Ed. by Svetozar Margenov, Jerzy Waśniewski, and Plamen
Yalamov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 58–67
(cit. on pp. 49, 50).

[Hjo+10] Nils Lid Hjort, Chris Holmes, Peter Müller, and Stephen G. Walker, eds.
Bayesian nonparametrics. eng. 1. publ. Cambridge series in statistical and
probabilistic mathematics ARRAY(0x55ea7e392be0). Cambridge [u.a.]: Cam-
bridge University Press, 2010, VIII, 299 S. (Cit. on p. 25).

[Hol07] Mark Holmes. Introduction to Numerical Methods in Differential Equations.
Vol. 52. Jan. 2007 (cit. on p. 31).

[17] Hypre - high performance preconditioners User’s Manual. Tech. rep. Software
Version: 2.11.2. https://computation.llnl.gov/sites/default/files/
public/hypre- 2.11.2_usr_manual.pdf: Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory, Mar. 2017 (cit. on
p. 67).

[Jas+17] Ajay Jasra, Kengo Kamatani, Kody Law, and Yan Zhou. “A Multi-Index Markov
Chain Monte Carlo Method”. In: International Journal for Uncertainty Quan-
tification 8 (Mar. 2017) (cit. on p. 61).

[Kan07] Guido Kanschat. Discontinuous Galerkin methods for viscous incompressible
flow. eng. 1. ed. Advances in numerical mathematics. Wiesbaden: Teubner
Research, 2007, 183 S. (Cit. on p. 16).

[Kit95] Peter K. Kitanidis. “Quasi-Linear Geostatistical Theory for Inversing”. In:
Water Resources Research 31.10 (1995), pp. 2411–2419. eprint: https://
agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/95WR01945 (cit.
on p. 49).

[Kle+17] Ole Klein, Olaf A. Cirpka, Peter Bastian, and Olaf Ippisch. “Efficient geostatis-
tical inversion of transient groundwater flow using preconditioned nonlinear
conjugate gradients”. In: Advances in Water Resources 102 (2017), pp. 161–
177 (cit. on p. 49).

142 Bibliography

https://computation.llnl.gov/sites/default/files/public/hypre-2.11.2_usr_manual.pdf
https://computation.llnl.gov/sites/default/files/public/hypre-2.11.2_usr_manual.pdf
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/95WR01945
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/95WR01945

[KSB17] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. “Singularity:
Scientific containers for mobility of compute”. English. In: PloS one 12.5
(2017). Ed. by Attila Gursoy, e0177459–e0177459 (cit. on p. 137).

[LK14] Jonghyun Lee and P. Kitanidis. “Large-scale hydraulic tomography and joint
inversion of head and tracer data using the Principal Component Geostatisti-
cal Approach (PCGA)”. In: Water Resources Research 50 (July 2014) (cit. on
p. 49).

[LSY97] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users Guide: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. 1997
(cit. on p. 85).

[LeV02] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2002 (cit. on
p. 11).

[LGB11] Randall J. LeVeque, David L. George, and Marsha J. Berger. “Tsunami mod-
elling with adaptively refined finite volume methods”. In: Acta Numerica 20
(2011), pp. 211–289 (cit. on pp. 126, 127).

[Lyk+20] Mikkel B. Lykkegaard, Grigorios Mingas, Robert Scheichl, Colin Fox, and
Tim J. Dodwell. Multilevel Delayed Acceptance MCMC with an Adaptive Error
Model in PyMC3. 2020. arXiv: 2012.05668 [stat.CO] (cit. on p. 59).

[Mad+21] Elizabeth Madden, Michael Bader, Jörn Behrens, et al. “Linked 3D modeling
of megathrust earthquake-tsunami events: from subduction to tsunami run
up”. en. In: Geophysical Journal International 224.1 (Oct. 2021), pp. 487–516
(cit. on p. 127).

[Mar+16] Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini.
“Sampling via Measure Transport: An Introduction”. In: Jan. 2016, pp. 1–41
(cit. on p. 98).

[MX09] Youssef Marzouk and Dongbin Xiu. “A Stochastic Collocation Approach
to Bayesian Inference in Inverse Problems”. In: PRISM: NNSA Center for
Prediction of Reliability, Integrity and Survivability of Microsystems 6 (Oct.
2009) (cit. on p. 49).

[McC18] Ryan G. McClarren. Uncertainty Quantification and Predictive Computational
Science. A Foundation for Physical Scientists and Engineers. eng. SpringerLink :
Bücher. Cham: Springer, 2018, Online–Ressource (XVII, 345 Seiten) (cit. on
p. 29).

[Mer14] Dirk Merkel. “Docker: lightweight linux containers for consistent develop-
ment and deployment”. In: Linux journal 2014.239 (2014), p. 2 (cit. on
p. 137).

[Met+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. “Equation of State Calculations by Fast
Computing Machines”. In: The Journal of Chemical Physics 21.6 (1953),
pp. 1087–1092 (cit. on p. 35).

Bibliography 143

https://arxiv.org/abs/2012.05668

[PWG16] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. “Optimal Model
Management for Multifidelity Monte Carlo Estimation”. English. In: SIAM
journal on scientific computing 38.5 (2016), A3163–A3194 (cit. on p. 69).

[RDB18] Leonhard Rannabauer, Michael Dumbser, and Michael Bader. “ADER-DG
with a-posteriori finite-volume limiting to simulate tsunamis in a parallel
adaptive mesh refinement framework”. In: Computers and Fluids 173 (2018),
pp. 299–306 (cit. on p. 127).

[Ran+18] Leonhard Rannabauer, Stefan Haas, Dominic Etienne Charrier, Tobias Weinzierl,
and Michael Bader. “Simulation of tsunamis with the exascale hyperbolic PDE
engine ExaHyPE”. en. In: Environmental Informatics: Techniques and Trends.
Adjunct Proceedings of the 32nd edition of the EnviroInfo. Shaker Verlag, Sept.
2018 (cit. on p. 127).

[Rei+18] Anne Reinarz, Tim Dodwell, Tim Fletcher, et al. “Dune-composites - A new
framework for high-performance finite element modelling of laminates”. In:
Composite Structures 184 (2018), pp. 269–278 (cit. on pp. 85, 88, 90, 95).

[RC10] Christian P. Robert and George Casella. Monte Carlo statistical methods. eng.
2. ed., softcover reprint of the hardcover 2. ed. 2004. Springer texts in
statistics. Literaturverz. S. [591] - 622. New York, NY: Springer New York,
2010, XXX, 645 S. (Cit. on pp. 41, 42, 44).

[Rud12] Daniel Rudolf. “Explicit error bounds for Markov chain Monte Carlo”. In:
Dissertationes Mathematicae 485 (2012), pp. 1–93 (cit. on p. 44).

[RS15] Daniel Rudolf and Björn Sprungk. “On a Generalization of the Preconditioned
Crank–Nicolson Metropolis Algorithm”. In: Foundations of Computational
Mathematics (Apr. 2015) (cit. on p. 49).

[Saa07] Youcef Saad. Iterative methods for sparse linear systems. eng. 2. ed., [Nachdr.]
Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics,
2007, XVIII, 528 S. (Cit. on p. 14).

[SF09] Tatsuhiko Saito and Takashi Furumura. “Three-dimensional tsunami gen-
eration simulation due to sea-bottom deformation and its interpretation
based on the linear theory”. In: Geophysical Journal International 178.2 (Aug.
2009), pp. 877–888. eprint: https://academic.oup.com/gji/article-
pdf/178/2/877/5917374/178-2-877.pdf (cit. on p. 127).

[SZ21] Robert Scheichl and Jakob Zech. Lecture notes: Numerical Methods for Bayesian
Inverse Problems. Mar. 2021 (cit. on p. 19).

[See+21] Linus Seelinger, Anne Reinarz, Leonhard Rannabauer, et al. “High Perfor-
mance Uncertainty Quantification with Parallelized Multilevel Markov Chain
Monte Carlo”. In: Supercomputing 21 to appear (2021) (cit. on pp. 47, 97,
115).

144 Bibliography

https://academic.oup.com/gji/article-pdf/178/2/877/5917374/178-2-877.pdf
https://academic.oup.com/gji/article-pdf/178/2/877/5917374/178-2-877.pdf

[SRS20] Linus Seelinger, Anne Reinarz, and Robert Scheichl. “A High-Performance
Implementation of a Robust Preconditioner for Heterogeneous Problems”.
In: Parallel Processing and Applied Mathematics. Ed. by Roman Wyrzykowski,
Ewa Deelman, Jack Dongarra, and Konrad Karczewski. Cham: Springer
International Publishing, 2020, pp. 117–128 (cit. on pp. 3, 70, 75, 85, 93).

[SP16a] Kathrin Smetana and Anthony T Patera. “Optimal Local Approximation
Spaces for Component-Based Static Condensation Procedures”. English. In:
SIAM journal on scientific computing 38.5 (2016), A3318–A3356 (cit. on
p. 79).

[SP16b] Kathrin Smetana and Anthony T. Patera. “Optimal Local Approximation
Spaces for Component-Based Static Condensation Procedures”. In: SIAM
Journal on Scientific Computing 38.5 (2016), A3318–A3356 (cit. on p. 79).

[Smi86] Vladimir I. Smirnov. ger. 16. Aufl. Hochschulbücher für Mathematik AR-
RAY(0x55f2476862c8). Berlin: Dt. Verl. d. Wiss., 1986, 618 S. (Cit. on p. 9).

[SBG96] Barry F. Smith, Petter E. Bjørstad, and William Gropp. Domain decomposition.
parallel multilevel methods for elliptic partial differential equations. eng. In-
cludes bibliographical references. Cambridge [u.a.]: Cambridge Univ. Press,
1996, XII, 224 S. (Cit. on pp. 67, 70).

[Spi+14] N Spillane, V Dolean, P Hauret, et al. Abstract robust coarse spaces for systems
of PDEs via generalized eigenproblems in the overlaps. English. Berlin/Heidel-
berg: Springer Berlin Heidelberg, 2014, pp. 741–770 (cit. on pp. 70, 73–
76).

[Spi+11] Nicole Spillane, Victorita Dolean, Patrice Hauret, et al. A robust two-level
domain decomposition preconditioner for systems of PDEs. English. Elsevier
B.V, 2011, pp. 1255–1259 (cit. on p. 74).

[Sul15] T. J. Sullivan. Introduction to Uncertainty Quantification. eng. Springer eBook
Collection. Cham: Springer, 2015, Online–Ressource (XII, 342 p. 28 illus,
online resource) (cit. on p. 19).

[TW05] Andrea Toselli and Olof Widlund. Domain decomposition methods - algorithms
and theory. eng. Springer series in computational mathematics. Berlin ;
Heidelberg [u.a.]: Springer, 2005, XV, 450 S. (Cit. on pp. 70, 72).

[Wol04] Ulli Wolff. “Monte Carlo errors with less errors”. In: Computer Physics Com-
munications 156.2 (2004), pp. 143–153 (cit. on p. 24).

[Xiu15] Dongbin Xiu. “Stochastic Collocation Methods: A Survey”. In: Jan. 2015,
pp. 1–18 (cit. on p. 49).

[XK03] Dongbin Xiu and George Em Karniadakis. “Modeling Uncertainty in Flow
Simulations via Generalized Polynomial Chaos”. In: J. Comput. Phys. 187.1
(May 2003), pp. 137–167 (cit. on p. 48).

[YH02] Ulrike Meier Yang and Van Emden Henson. “BoomerAMG: A parallel algebraic
multigrid solver and preconditioner”. In: Applied Numerical Mathematics 41.1
(2002), pp. 155–177 (cit. on p. 67).

Bibliography 145

Webpages

[@Par+] Matthew Parno, Andrew Davis, Linus Seelinger, and Youssef Marzouk. MUQ
project website. URL: http://muq.mit.edu/ (cit. on pp. 97, 106).

[@Tho+] Ole Thomsen et al. CerTest project website. URL: https://www.composites-
certest.com/ (cit. on p. 134).

146 Bibliography

http://muq.mit.edu/
https://www.composites-certest.com/
https://www.composites-certest.com/

Acronyms

ADER-DG Arbitrary-high-order-DERivative Discontinuous Galerkin Method. 127

CG Conjugate Gradient. 94

DOF Degree of freedom. 90–92, 154

DUNE Distributed and Unified Numerics Environment. 3, 68, 90, 91, 116, 133

ESS Effective Sample Size. 24, 125, 126

ExaHyPE Exascale Hyperbolic PDE Engine. 97, 109, 135

FE Finite element. 8, 13, 16, 18, 43, 53, 70, 71, 91, 93, 123

GenEO Generalized Eigenproblems in the Overlaps. 2–4, 68–70, 80, 83, 84, 90–94,
133, 135, 154

HPC High Performance Computing. v, 2, 4, 5, 97–99, 115, 120, 133, 137

i.i.d. Independent and identically distributed. 31, 33, 43, 44, 54–56, 58

KL Karhunen Loève. 116, 120, 123

LMOR Localized Model Order Reduction. v, 4, 5, 68, 69, 80, 83, 84, 94, 133, 151,
152

MAP Maximum a posteriori probability. 48, 49

MC Monte Carlo. 3, 32, 34, 38, 44, 45, 47–49, 51, 52, 105, 150

MCMC Markov Chain Monte Carlo. 3, 23, 24, 34, 35, 39, 41–45, 47, 49, 52, 53,
56–58, 60, 61, 63, 69, 98–100, 105–108, 111, 116, 124, 130, 135, 136, 153,
156

147

MHMCMC Metropolis-Hastings Markov Chain Monte Carlo. 35, 36, 39, 41, 49, 55,
56

MIMC Multiindex Monte Carlo. 61, 63, 126

MIMCMC Multiindex Markov Chain Monte Carlo. 2, 4, 5, 47, 61, 62, 64, 65, 67,
97, 105, 107, 122, 124, 126, 133, 134, 153

MLMC Multilevel Monte Carlo. 2, 49–52, 60, 61, 97, 111

MLMCMC Multilevel Markov Chain Monte Carlo. 2, 4, 5, 47, 49, 50, 53, 56, 58,
60–62, 64, 65, 67, 68, 94, 97, 98, 105–107, 109–111, 115, 116, 120, 126,
131–134, 153, 155

MOR Model Order Reduction. 2, 3, 5, 6, 69

MPI Message Passing Interface. 108, 109

MSE Mean square error. 33, 34, 42, 45

MUQ MIT Uncertainty Quantification Library. v, 2, 3, 24, 97–99, 106, 109, 132,
133, 135

ODE Ordinary Differential Equation. 29–31, 33, 50, 51, 69

PDE Partial Differential Equation. 2–8, 11–13, 18, 29, 48, 50, 67–70, 80, 93, 94,
115, 123, 124, 133–135, 151, 152, 154, 155

QOI Quantity of Interest. 25, 26, 28, 30, 33, 37–39, 42, 43, 52, 118, 119, 123, 132,
153

RV Random Variable. 21–23, 25, 31

TBB Intel Threading Building Blocks. 109

UQ Uncertainty Quantification. v, 1–8, 18, 23, 25, 28–32, 35, 36, 38, 47, 48, 50,
53, 67–69, 94, 95, 97–99, 106, 115, 118, 133–137, 153, 156

148 Acronyms

Symbols: Uncertainty
Quantification

(Ω,F ,P) Probability space. 21–23

F Forward model. 25–29, 31–35, 37, 38, 48, 50–52, 67, 135, 136, 150

K Transition kernel. 41

M Constant representing levels’ accuracy, corresponds to discretization level. 59,
60

Pot Power set. 19

Q Quantity of interest. 26, 28, 30, 33, 39, 41–46, 52, 53, 58–63, 107, 118, 123–125,
150, 153

R Parameter dimension in multilevel methods. 59, 60

V Banach space. 21, 22

X Random variable. 21, 22

Y Difference between levels. 60

Y Correction term. 53, 55, 59

Ω Sample space. 19–23, 149

Θ Uncertain model parameter on coarser chain. 53–56, 59

α Multiindex. 61

θ̂ Estimate of uncertain model parameter. 27

P Probability measure. 20–23, 149

F Sample space. 19–23, 149

L Likelihood function. 27, 28, 35, 37

P(y) Measurement distribution. 27, 28, 35, 38

149

µ Measure. 19–22

ν Posterior distribution. 27, 28, 42–45, 52–55, 58–63, 124, 125

π0 Prior density. 25–28, 31, 35, 37, 41, 58, 118

π Posterior density. 27, 35, 41, 53, 55, 56, 59

τ Integrated autocorrelation time. 24, 39, 44–46, 56, 58

θ Uncertain model parameter. 25–38, 40–43, 50, 51, 53–60, 63, 108, 117, 123, 124,
136, 155, 156

ŶMCMC Estimator of correction term. 53–55, 60

F̂ Monte Carlo (MC) estimator. 32–34, 51

Q̂ Q estimator. 42–45, 53, 59, 60

∗ Pushforward symbol. 21, 26–28, 31

m Model parameter dimension. 25, 36, 41, 50

n Forward model output dimension. 25, 50

q Proposal distribution. 36, 38, 40, 41, 55, 56, 58, 59

y Measurement. 26–28, 35

150 Symbols: Uncertainty Quantification

Symbols: Partial Differential
Equations and Localized
Model Order Reduction

J∗ Maximum number of domains ω∗i at any point in Ω. 78, 79

NVi Number of local spaces in LMOR. 77–79, 82

P Orthogonal projection, PX maps into X. 79, 80

R Range space of the transfer operator T . 79

Si Intermediate space of localized training configuration. 78, 79, 151

S Source space of the transfer operator T . 79, 80

T l Linear part of T . 79, 80

T ai Affine part of Ti. 78, 79

T li Linear part of Ti. 78–80

Ti Affine linear compact operator, mapping from Si to Vi. 78, 79, 82, 151

T Transfer operator. 151, 152

V
∣∣
ω∗i

Function space restricted to training domain. 78, 79

Vi Local function space in LMOR. 77–79, 151

V Function space. 77–79, 151

Ω PDE domain. 77–79, 151

α Coercivity constant of a. 13, 16, 79

J̄ Number of orthogonal classes. 79

γ Continuity constant of a. 13, 79

PSi Mapping from full space V to local space Si. 78, 79, 81, 82

PVi Mapping from full space V to local space Vi. 77–79, 81

151

ω∗i Subdomain of localized training configuration. 78, 79, 82, 151

ωi Subdomain of LMOR. 77–79

σ Singular value. 79, 80

ũ Reduced solution. 78, 79

R̃n Reduced range space of the transfer operator T . 79

Ṽi Local function space. 79

Ṽ Reduced function space. 78, 79

a Bilinear form. 78

b Linear form. 78

d PDE dimension. 77

q Left singular vector. 79, 80

u Solution of variational problem. 78, 79, 82

v Right singular vector. 79, 80

152 Symbols: Partial Differential Equations and Localized Model Order Reduction

List of Figures

2.1 Abstract deterministic model mapping parameters to model predictions. 26
2.2 Extension to stochastic model based on a known parameter distribution. 26
2.3 Abstract deterministic inverse model mapping measurements to inferred

parameters. 27
2.4 Abstract inverse model mapping distribution of measurements to inferred

parameter distribution. 27
2.5 Abstract deterministic inverse model mapping a measurement distribu-

tion to an inferred parameter distribution using Bayes’ framework. . . . 28
2.6 Example trajectory of the model problem for an initial velocity of 7.2ms

at an angle of 56 degrees. The basket is indicated as a black line, and
the green cross represents the point where the trajectory hits the basket. 30

2.7 Monte Carlo prior sampling and resulting model states. 32
2.8 Quantity of Interest (QOI) as computed via Monte Carlo method. 33
2.9 “True” trajectory with height measurements (blue crosses). 37
2.10 Markov Chain Monte Carlo posterior sampling and resulting model states. 38
2.11 Expected hit ratio determined from QOI via E[Q]. 39
2.12 Resulting samples (top), mixing plots showing the chains’ behavior

over time (mid) and effective sample sizes per parameter (bottom) for
different proposal distribution variances. 40

3.1 The three main aspects of UQ methods. 48
3.2 Structure of samples being passed across levels of MLMCMC. 56
3.3 Structures of model hierarchies from single level MCMC to MIMCMC. . 61
3.4 Structures of telescoping sums in MLMCMC and 2D MIMCMC case; the

former is interpreted as a special case of the latter for one dimension.
Each box represents a summand in eq. (3.8), i.e. a ∆ operator applied
to a specific multiindex. Each operator is ultimately comprised of sum-
mands itself according to eq. (3.6). A “+” symbol indicates a positive
term in the operator, “-” indicates a negative sign. Note that, when
adding all operators as in eq. (3.8), all but the finest models cancel out. 62

3.5 Routing of proposals in MIMCMC. 64

153

4.1 Results for Poisson application. Failed solves due to ARPACK crashes
are indicated by zero values. geneo refers to eigensolves using ARPACK
to full accuracy, geneo_1e-6 and geneo_1e-3 introduce the respective
error tolerance. fastrndgeneo is the randomized method with a single
reiteration and fastrndgeneo2 adds a second reiteration. 86

4.2 Results comparing restricted hybrid (true) to the additive (false) method
in our Poisson test case. Results are shown for various basis setup
methods as above. 87

4.3 Results for Linear Elasticity application. Failed solves are indicated by
zero values. 89

4.4 Restricted hybrid additive Schwarz for Linear Elasticity application. . . . 90
4.5 Definition of subdomains used in the following. 91
4.6 The degrees of freedom known to process j after each step of recursive

extension of the matrix connectivity graph. 91
4.7 Integration domain of a Degree of freedom (DOF) on the boundary of

the overlap of Ωj . Since it lies in the interior of a neighboring non-
overlapping domain, its matrix entries are computed by the neighbor.
The neighbor takes the entire integration domain around the DOF into
account, while process j requires only integration up to the overlapping
subdomain boundary ∂Ωj . The neighbors’ matrix entries can therefore
not be used to assemble Aj . 92

4.8 Subdomain snippets Ωj ∩ Ω̂k used for assembly of algebraic overlaps,
ensuring correct entries on overlap boundaries. 93

4.9 Main steps of the online/offline method reusing the GenEO basis contri-
butions on subdomains where the online PDE problem is equivalent to
the previously computed offline one. 94

5.1 AbstractSamplingProblem interface (some methods left out for clarity). 100
5.2 Single chain MCMC architecture for standard Metropolis Hastings MCMC.

Note that this depiction is simplified by omitting some class members for
clarity of presentation. Simple arrows indicate references between the
classes, whereas triangle shaped arrows indicate inheritance. 101

5.3 The SampleCollection class, which stores samples from a distribution
and provides implementations to compute common statistical informa-
tion such as the mean or other moments. 102

5.4 Multilevel MCMC architecture. Note that this depiction is simplified by
omitting some class members for clarity of presentation. 103

5.5 Multilevel MCMC architecture. 104
5.6 MIComponentFactory interface. 104

154 List of Figures

5.7 ParallelizableMIComponentFactory interface. 107
5.8 Parallel process layout. 107
5.9 Dynamic load balancing in parallel MLMCMC. Run time is on the hor-

izontal axis, while process indices are on the vertical. Green boxes
indicate model evaluations, while yellow boxes indicate chains’ burnin
phases. In these examples, model evaluations clearly differ strongly in
run time. 110

5.10 Load (i.e. fraction of non-idle time) of the phonebook rank in the
application from section 6.1. 112

6.1 Individual modes of the permeability field used in these experiments. . . 117
6.2 Choice of modes in frequency domain of circulant embedding method.

The ordering ensures that modes are unique and the parameter vector θ
is ordered by increasing frequency of modes. 117

6.3 Random field realization log(κ(·, θ̂)) and parameter field κ(·, θ̂) from
random field realization used for synthetic data. 118

6.4 Synthetic “true” field (left) and expected value of multilevel estimator
(right). 119

6.5 Scalability of the Poisson model problem for 104, 103 and 102 samples
on levels 0, 1 and 2 respectively. Subsampling rates etc. are chosen
according to table 6.1. The problem setup remains constant as the
number of processors is increased. 121

6.6 Weak scalability and parallel efficiency of the Poisson model problem.
At 64 cores 104, 103 and 102 samples are computed on levels 0, 1 and
2 respectively. The number of samples is modified linearly with the
number of processors. 121

6.7 Parameter field κ (left) and resulting PDE solution (right) for a represen-
tative choice of θ. The grid belongs to α = (2, 1) and is therefore more
refined in x direction. 123

6.8 Bathymetry for the full computational domain with darker rectangle
denoting parameter values in the prior. 128

6.9 Plot of Sea surface height anomaly [ssha] for samples taken from level 0
(top) and 1 (bottom) compared to NDBC data at buoy 21418. 129

6.10 Plot of Sea surface height anomaly [ssha] for samples taken from level 0
(top) and 1 (bottom) compared to NDBC data at buoy 21419. 129

6.11 Illustration of bathymetry smoothing and mesh coarsening for tsunami
model. 130

List of Figures 155

6.12 The three-level tsunami test case, each point represents an accepted
sample at level l = 0, 1, 2 (from left to right). The dashed lines show the
expected value E(Q0) or E(Q0) +

∑
l E[Ql −Ql−1] with the true origin

(0, 0) in red for reference. 130
6.13 Visualization of samples used to estimate the corrections between levels

in eq. (3.1). Left: Correction between levels zero and one. Right:
Correction between levels one and two. Dots and origins of arrows
indicate coarse samples. The arrows point towards their corresponding
fine samples. Note that the arrow’s length is scaled down to a factor of
.15 for clarity. Coarse proposals that were accepted by the fine chain,
leading to identical coarse and fine samples here, appear as simple dots
instead of arrows. 131

7.1 Network and container based coupling of UQ and model codes. 136
7.2 Sequence of messages passed between client and server in case of an

MCMC algorithm generating samples θi. 136

156 List of Figures

Colophon

This thesis was typeset with LATEX 2ε. It uses a slightly modified version of the Clean
Thesis style developed by Ricardo Langner. The design of the Clean Thesis style is
inspired by user guide documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

The authors acknowledge support by the state of Baden-Württemberg through
bwHPC and the German Research Foundation (DFG) through grant INST 35/1134-1
FUGG.

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time on the
GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de).

http://cleanthesis.der-ric.de/

Erratum: GenEO condition estimate in

“Multiscale Methods for High Performance

Uncertainty Quantification”

Linus Seelinger

December 21, 2021

The recapitulation of the condition estimate for additive two-level Schwarz
methods in section 4.2.1 contains an error. While the restriction operators
Rj and RH used to define the application of the preconditioner are defined cor-
rectly, they are incorrectly used in the “stable splitting” assumption. This has
implications on the formulation of some subsequent steps.

Stable splitting definition (p. 73)

The definition of stable splitting should instead read:

Definition 30 (Stable splitting). Assume a coarse space VH ⊂ Vh and per-
subdomain subspaces Vh,0(Ωj) as defined above. The decomposition of v ∈ Vh

v =
N∑

j=0

zj , z0 ∈ VH , zj ∈ Vh,0(Ωj) for 1 ≤ j ≤ N,

is called C0-stable iff

‖z0‖2a +
N∑

j=1

‖zj‖2a,Ωj
6 C2

0‖v‖2a.

Lemma 6 then correctly concludes a bound on the minimal eigenvalue of the
preconditioned system if there exists a common C0 such that all v ∈ Vh permit
a C0-stable splitting.
(Note that the decomposition in Definition 30 is indeed somewhat analogous to
the restriction operators Rj and RH . However, v = RHv +

∑
j Rjv does not

hold, at the very least due to subdomain overlaps. Further, Definition 30 only
needs to ask for any suitable decomposition to exist, and requiring a particular
one would be unnecessarily restrictive.)

1

Localized splitting (p. 74)

As a consequence, Lemma 7 also has to be adjusted slightly in order to match
the correct decomposition:

Lemma 7 (Localized splitting).
Let there exist a constant C1 fulfilling

‖zj‖2a,Ωj
6 C1|v|2a,Ωj

for all 1 6 j 6 N . Then the decomposition v =
∑N

j=0 zj as above is C0-stable

with C2
0 = 2 + C1k0(2k0 + 1).

Proof: Remains as before.

Modified eigenproblem (p. 76)

Definition 35 introduces a modified GenEO eigenproblem by replacing the right
hand side bilinear form aΩo

j
(i.e. the one restricted to the overlap region) by

the full aΩj
. A condition estimate nearly identical to the original GenEO result

can then be shown for the modified eigenproblem by dropping the treatment of
the interior Ωj \Ωo

j in the proof of (Lemma 3.21, Spillane 2014). The resulting
localized splitting formulated with the correct decomposition now reads

‖zj‖2a,Ωj
≤ 1

λjmj+1

|v|2a,Ωj
.

Apart from that change, the overall argument and resulting condition estimate
remain. A more extensive analysis of several related GenEO-type eigenproblems
can be found in [1]. Specifically, the one used here is defined in [1, equation
3.9a].

Localized splitting from LMOR (p. 83)

Lemma 11 shows how the approximation result from the localized model order
reduction (LMOR) framework can in turn be applied to prove the stable splitting
assumption in the abstract Schwarz theory. Now that the particular choice of
decomposition is left open in the stable splitting assumption above, Lemma 11
needs to explicitly introduce it.

Lemma 11. We follow the stable splitting construction in GenEO analysis
(Lemma 3.20 and 3.21, Spillane 2014). To that end, define the projection oper-
ators

Πj
mj
v =

mj∑

k=1

aΩj
(Ξjv,Ξjp

j
k)pjk

where v ∈ Vh and pjk is the k-th eigenvector from subdomain j. Note that
we work with the modified GenEO problem from above. Further define the
decomposition v =

∑N
j=0 zj according to Definition 30 with the particular choice

2

z0 = ΞjΠ
j
mj
v|Ωj

and

zj = Ξj(v|Ωj −Πj
mj

)v|Ωj , 1 ≤ j ≤ N.

Using the approximation property from Lemma 8, this decomposition can be
shown to form a localized splitting with

‖zj‖a,Ωj 6 σj
mj+1|v|a,Ωj .

Proof: Remains as before.

As before, the final condition estimate can be obtained from Theorems 8 and 9,
yielding the same result as the original GenEO analysis.

[1] P. Bastian, R. Scheichl, L. Seelinger and A. Strehlow, Multilevel Spectral
Domain Decomposition, accepted for publication in SISC, 2021

3

	Titlepage
	Cover
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Contributions
	1.3 Thesis Structure
	1.4 Reading Guide

	2 Basics of Uncertainty Quantification
	2.1 Physical Models
	2.2 Basic Concepts of Probability Theory
	2.3 Uncertainty Quantification Problems
	2.3.1 Forward problems
	2.3.2 Inverse problems

	2.4 Basic Numerical Uncertainty Quantification Algorithms
	2.4.1 Illustrative Model
	2.4.2 Monte Carlo Methods
	2.4.3 Markov Chain Monte Carlo Methods

	3 Advanced Uncertainty Quantification Methods
	3.1 Methods Overview
	3.2 Multilevel Monte Carlo
	3.3 Multilevel Markov Chain Monte Carlo
	3.4 Multiindex Markov Chain Monte Carlo

	4 Efficient Models and Model Hierarchies for Multiscale Problems
	4.1 Model Hierarchies
	4.2 Linking Robust Preconditioners and Model Order Reduction
	4.2.1 Efficient Preconditioning using GenEO coarse spaces
	4.2.2 Localized Model Order Reduction
	4.2.3 GenEO Coarse Space in LMOR Theory
	4.2.4 GenEO with Randomized Eigensolver

	4.3 GenEO Virtual Overlap Implementation
	4.4 Online/Offline Approach in Localized Model Order Reduction

	5 Modular and Parallel HPC Implementation
	5.1 Introduction to MUQ
	5.2 Abstract Markov Chain Monte Carlo Framework
	5.3 Multilevel / Multiindex MCMC
	5.3.1 Internal architecture
	5.3.2 Model interface

	5.4 Parallelized Multilevel / Multiindex MCMC
	5.4.1 Model interface
	5.4.2 Internal architecture

	5.5 Dynamic load balancing
	5.6 Limits of Parallel Scalability

	6 Applications
	6.1 Parameter Field Estimation - Poisson Equation
	6.1.1 The Physical Model
	6.1.2 Results

	6.2 Multiindex Markov Chain Monte Carlo - Consistency check
	6.2.1 The Physical Model
	6.2.2 Results

	6.3 Tsunami Origin Estimation - Shallow Water Equation
	6.3.1 The Physical Model
	6.3.2 Results

	7 Conclusion
	7.1 Future Work

	Bibliography
	Acronyms
	Symbols: Uncertainty Quantification
	Symbols: Partial Differential Equations and Localized Model Order Reduction
	List of Figures
	Colophon

