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Zusammenfassung

Die Röntgencomputertomographie findet zunehmend Einsatz in der industriellen

Qualitätskontrolle. Es ist jedoch eine grosse Herausforderung, sie in der vollautoma-

tisierten Fertigung zu verwenden, da dies u.a. robuste Volumenbildverarbeitung auf

verrauschten Bildern erfordert. Die vorliegende Arbeit präsentiert Methoden zur au-

tomatischen Detektion und geometrischen Beschreibung von Defekten. Die Erken-

nung der Defekte beruht auf einer statistischen Grauwertanalyse. Im Anschluss an

die Detektion werden defekte Voxel gruppiert um Form und Grösse der zugehörigen

Materialfehler zu bestimmen. Es werden Ergebnisse in der Poren- und Rissdetektion

von Stahlteilen gezeigt.

Abstract

X-ray computed tomography gains increasing popularity for industrial quality in-

spection tasks. It is a challenge however to use it in a fully automated assembly

line, which requires robust algorithms for volumetric image analysis on noisy data.

This work provides methods for the automatic detection of defects and their geo-

metric description. The approach will be based on spatial statistical analysis of the

voxel structure to determine the presence of a defect. Once detected, defect voxels

will be clustered to determine shape and size of the associated material faults. The

effectiveness of the method will be shown on pores and cracks in steel parts.
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1 Introduction

X-ray computerized tomography is a powerful technique to image internal features

of industrial parts. It thus attracts the interest of quality control engineers, who

otherwise rely on less universal non-destructive testing methods such as ultra-sound

or eddy current. In many cases they even have to revert to destructive techniques,

which are elaborate and can access internal features at selected positions only. X-

ray CT on the other hand generates a volume image of the entire object down to

resolutions of a few µm easily achieved with modern systems.

This work contributes to automatic processing of X-ray CT data with the pur-

pose of defect detection. While known techniques in that field primarily have been

developed for conventional 2D X-ray imaging [1,2,3,4], this paper provides algo-

rithms, which define pixel neighborhoods in all three coordinate directions.

The report is organized as follows: Section 2 gives a brief overview of typical

defect detection tasks approached through X-ray CT. Section 3 discusses previously

reported work on related techniques in the field of 2D X-ray image evaluation. We

proceed in section 4 with a quick summary of technical aspects of X-ray CT to give

some insight into specific challenges faced by image processing. Section 5 puts our

work in the context of volume image processing techniques used in other areas such

as medical research. Sections 6 and 7 detail the main contributions of this work.

Section 6 is concerned with the detection of defects, whereas section 7 provides

techniques to extract their features such as size and shape. The main part of this

paper concludes in a summary and outlook. We designed a GUI-based software

application that serves as an interface to parameterize and apply the algorithms to

arbitrary CT-data. We will describe some key aspects of that work in the appendix.
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2 Industrial Applications of CT

The detection of pores, contraction cavities, cracks and inclusions are important

tasks in industrial quality control. Pores and contraction cavities are material faults

found in welds and castings (see fig. 1(a) and (b)). While it is technically often not

possible to produce parts free of defects, their type and extent determine whether

the part has to be classified as good or bad. In addition, a detailed spatial distribu-

tion of the defects obtained through CT provides valuable information for process

engineers. A CT-system could be used for mechanically supervised monitoring of the

manufacturing process. This requires fully automatic evaluaton of the images which

is the objective of this work.

Fig. 1(c) shows a crack running through a steel part. While cracks are the most

critical of all defects, they are extremely hard to detect. The visibility of a defect in

an X-ray image primarily depends on two factors: the difference in absorption with

respect to its environment and its size. Since cracks are very narrow, they offer a

minimum of contrast and in many cases can’t be resolved at all.

Another class of defects are inclusions. Fig. 1 shows an inclusion that had devel-

oped during the welding process. Its contrast is very weak since it consists of slag

that has an absorption very similar to the surrounding material.

A further application of industrial X-ray CT is the measurement of inner ge-

ometries. However, most current applications can be found in the areas of defect

detection discussed in the previous paragraph. For that reason and due to the fact,

that defect detection can be approached in a more general manner we chose to focus

our efforts on that field.
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Fig. 1: Examples for industrial inspection tasks. (a) Pores and contraction cavities

in castings, (b) and (d) welding defects, (c) crack.



4

3 Review of related work

Defect detection requires a decision whether individual voxels differ significantly

from the background. Early applications have used median filtering techniques to

obtain a background image and applied a threshold to the difference image [1]. To

distinguish between constructive features and defects, they adapted the filter mask

to the object geometry. Each object requires a learning stage in which the best masks

are selected either manually or automatically. This requires a defect-free part, how-

ever, which is not always available. The mask selection has been improved in [3], but

the method still has difficulty with low-contrast defects typical in X-ray CT images

(see fig. 4). Gayer et al. [2] used high-pass or first derivative filtering to identify

potential defects. True defects were subsequently identified via template matching.

This technique takes advantage of neighborhood information but requires a priori

knowledge about defect shapes. Alternatively, the authors computed a background

image by interpolating between pixels that had been marked as intact and applied

a threshold to the difference image. However, this still has the previously mentioned

disadvantages, i.e. poor performance on low-contrast noisy defects.

A recent approach uses both spatial variance and spatial contrast and applies

fuzzy reasoning to distinguish between defect and background [4]. This technique

does not require heuristic threshold parameters since these are estimated in the

training process.

Our method will detect defects by evaluating the deviation not of singular voxels,

but structural deviations from the background. This approach is particularly suitable

for low-contrast planar defects such as cracks, that are difficult to detect with other

methods. However, the technique works on more compact defects such as pores and

contraction cavities as well.
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4 CT Fundamentals

This section gives an outline of the data aquisition process in X-ray CT, i.e. data

recording and geometry reconstruction. Data recording refers to the physical collec-

tion of data through an X-ray detector whereas reconstruction processes those data

to obtain a volume model of the object.

4.1 Data Recording

Fig. 2: During a CT recording, several hundred individual images are taken from

different angles and used to reconstruct the volume information. Provided by Dr.

Andreas Siegle, Robert Bosch Corp.

Fig. 2 illustrates the principle of X-ray CT data recording. An X-ray source irra-

diates an object whose image is recorded by a detector array. The turntable rotates

stepwise to record object images from different angles. A CT recording typically

consists of several hundred individual projections.

During image reconstruction, individual images obtained from different angles

are processed to yield a 3D volume image of the object. The basic algorithm to
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perform this task is the so-called Feldkamp-Algorithm [5]. This technique has been

modified for increased performance or better image quality in a number of articles,

e.g. [6].

4.2 Image Properties

The reconstructed images have a number of properties characteristic of X-ray CT-

data. The major challenges image processing algorithms have to cope with are arti-

facts and noise.

4.2.1 Artifacts We only quote the most salient artifacts that limit defect detec-

tion. The so-called cupping artifacts make the absorption appear stronger near the

boundaries than in the interior of the object, even if it is homogeneous (see fig. 3).

We will model defect-free image data based on a local training region. The non-

homogeneity caused by the cupping artifact will limit the algorithm’s performance

near the object boundaries. The physical cause for the cupping artifact lies in the

non-linearity of the absorption as a function of the beam energy and is discussed in

more detail in [7].

Edge artifacts appear as a halo near the object boundary making small defects

difficult to detect, especially close to strongly absorbing materials (fig. 4).

4.2.2 Noise As most defects manifest themselves in a deviation of the absorption

from that of homogeneous material, their detectability is limited by noise (see fig. 4).

In section 6.3 we will perform defect detection by evaluating the significance of the

deviation of groups of pixels from the background. This will involve estimating the

covariance matrix

Covg = 〈
(
g(i,j,k) − ḡ

)
,
(
g(i′,j′,k′) − ḡ

)
〉 (1)

where we average across the homogeneous area of the image, and subsequently

estimate the noise after performing certain neighborhood operations. Details of that

procedure including the quantification of the noise parameters will be presented in

section 6.3.

4.3 Processing time

Image processing should take no longer than data recording and reconstruction,

which require approximately 20 − 30 min each for a 512 × 512 × 512 volume. The

bottleneck in data recording is the integration time on the detector to obtain a

sufficiently large signal-to-noise ratio.
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Fig. 3: Cupping artifact. The grey values in the middle of the object are smaller even

though the X-ray absorption is constant throughout the object. (a) Grey image, (b)

cross-section.
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Fig. 4: Noise. The crack is hard to detect due to its low contrast. (a) Grey image,

(b) cross-section.
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5 Volume image processing

Currently most applications of volume image processing can be found in medical

fields such as cancer diagnosis or brain research [8,9,10]. This section gives a brief

overview of techniques that can also used for industrial image processing.

5.1 Detection

Defect detection means assigning voxels to two kinds of classes: intact or defect.

This decision will be based on thresholding techniques which are basically classified

as point-dependent or region-dependent. Point-dependent techniques take into ac-

count a pixel’s grey value only whereas region-dependent methods use neighborhood

information. Both techniques may be applied locally or globally [11].

5.1.1 Segmentation Segmentation refers to the process of extracting connected

regions with similar properties. This is a common problem in brain research, where

the goal is to obtain a functional map of the brain [9,10]. Typical techniques in

this field are so-called region growing algorithms, where starting from distinct seed

points, regions with similar grey value structure are extracted. We will use this

general technique to distinguish between defects and constructive object features.

5.1.2 Feature extraction In feature extraction we will compute parameters de-

scribing size and geometric defect properties. Known methods can be divided into

two main categories: model-based (parametric) and non-parametric.

An example of non-parametric techniques are active contours or ’snakes’ intro-

duced in [12]. The physical analogy of an active contour is a ring of masses connected

by springs. The masses also experience a force derived from a grey image. A com-

mon method to calculate this force is to equate the grey value of an image with the

potential energy. The snake will then change shape to reach a state of minimum

energy. This method has a drawback regarding noisy images: The snake might get

stuck in a local minimum. As a solution Velasco et al. introduced so-called Sandwich

Snakes [13]. Here two snakes are initialized, one inside and one outside the object.

The interaction among them will force them to converge on the true object bound-

ary. Raisch et al. [14] applied a special energy term with reduced noise to avoid

being trapped in local minima in the first place.

While snakes are very useful in boundary extraction and have been widely ap-

plied, they do not directly yield object features. Model-based approaches yield object

properties directly and can be adapted to the desired level of detail. Examples of
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prototypes are ellipsoids [15] and spherical harmonics [16]. In [16], the use of mo-

ments for shape characterization is discussed as well.

In our work we decided to use a model-based approach, since lower order shape

parameters are usually sufficient for defect characterization.

5.2 Outline of the main contribution of this work

Section 6 deals with the detection of defect voxels. For an object composed of one

material, we first perform a grey value segmentation using a global threshold, which

is determined from the histogram. This distinguishes between material and air. In

a second step, we use topological properties of the segmented regions to distinguish

between defects and background.

In the subsequent section we suggest an alternative to using a global threshold

as a criterion for binarization. We apply structure enhancing operators locally and

regard defects as outlier structures from the estimated background. As we will show

this technique performs better on low-contrast noisy images with varying intensity.

In contrast to previously reported approaches, it uses both neighborhood informa-

tion and subsequent statistical testing for defect detection. The detection threshold

can then be chosen independently from the image content.

Section 7 determines the shape characteristics of the defects based on the de-

tection result. We will suggest two model-based approaches: The first one describes

defects with ellipsoids. This seems appropriate since in many cases one is interested

in the main axes of a defect and their ratios. The second approach uses spherical

harmonics, which allows to distinguish among more complex shapes. This model is

very flexible in the sense that it can be adapted to the level of shape details one is

interested in.

Section 8 recapitulates the key accomplishment of this work, i.e. to generate a

defect protocol based on raw CT-data. The main part of this thesis concludes with

a summary and some proposals for future work.
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6 Defect detection

Defect detection refers to the process of classifying voxels as either intact or defect.

We first need to discard all voxels that are not an integral part of the object, such as

the air in the environment or in a drillhole. This discrimination is accomplished by

means of a threshold, the choice of which is documented in section 6.1. Section 6.2

describes how we distinguish between inclusions and air. Finally, section 6.3 details

our attempt how to detect more subtle defects that are not found by a simple

thresholding operation.

6.1 Object and background

The simplest possible method for fault detection is to classify each single voxel of

the raw image g(i, j, k) as defect or intact according to the following criterion:

– voxel intact if g(i,j,k) > t,

– voxel defect if g(i,j,k) < t,

where t is some threshold within the dynamic range of the image (0...255 in our

examples). In the sense of [11], this method is global point-dependent.

Commonly used threshold selection techniques model the grey value distribution

g(x) as a sum of Gaussian components, see (see [11]):

f(x) =
∑
i

pi

σi
√

2π
e
− (x−mi)

2

σ2
i (2)

A voxel is then assigned to the class with the highest probability density. This tech-

nique is known in the literature as mixture density modeling. Known mixture density

decomposition algorithms are the MF-Estimator [17,18], and the generalized mini-

mum volume ellipsoid (GMVE) [19]. These techniques estimate the parameters of

each cluster by iterative refinement, which is a computationally expensive procedure

and might even fail in the case of poorly chosen initial estimates [11]. Chang et

al. [11] suggest an alternative approach: Instead of estimating the parameters itera-

tively, they choose optimal initial conditions by first smoothing the histogram and

then finding a window around each peak in which the distribution has zero skew-

ness. The parameters are then estimated in a single step from these intervals. While

this algorithm yields better performance and more accurate results than techniques

using the MF-Estimator and B-Splines, the authors point out that the results will

depend on the size of the filter used for smoothing the histogram (see [20] for a

general discussion of B-Splines in computer vision).



12

In our application, the number of components to be segmented is known a priori

since it corresponds to the number of materials with different X-ray absorption (see

fig. 6(b)). The leftmost flank of the histogram in fig. 6(b) is typical for X-ray CT-

images and arises from artifacts during reconstruction. The main peak comes from

the object itself, and the small bump in-between is due to the halo effect described in

section (see section 4.2.1). Knowing the desired number of components in advance,

we propose an algorithm for automatic threshold selection that does not make any

prior assumptions about the particular distribution type. Our method works itera-

tively but without heuristic input parameters. The histogram is smoothed iteratively

with a (3× 1) Binomial until the number of local maxima equals the number of ma-

terial components. The local minima of the histogram are then chosen as thresholds

(see fig. 6.1). Once the grey image is binarized at the resulting threshold, we obtain

an approximate segmentation of the object, which classifies voxels as either occupied

with material or air. This approach works well if the peaks from the different ma-

terials are sufficiently distinct such that they do not coalesce. To detect defects we

have to further differentiate among those classified as air. This is done by classifying

their topology as described in the following section.

Fig. 5: Iterative histogram smoothing.
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Fig. 6: (a) CT-image of a steel part with defects. (b) Associated histogram.

Fig. 7: (a) Smoothed histogram. (b) Fig. 6(a) binarized at the threshold extracted

from the smoothed histogram.
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6.2 Classifying regions as defect

Consider a single-component image that has been binarized to distinguish between

material and air/vacuum (see section 6.1). This assigns both the surrounding back-

ground and defects the same class, so we have to apply further techniques to extract

the defects. For this purpose we apply a so-called region growing technique com-

monly used in segmentation. Starting from a seed area, neighboring voxels will be

included if the newly created region satifies certain homogeneity criteria based on

grey values, color or texture [10,21,22]. Applications are primarily found in medical

image registration. [10,9] but also in other areas such as video segmentation [21] or

general applications [22].

To outline how to extract the defects in our binarized image of fig. 7(b)we first

have to give some definitions:

Definition 1 Connectivity. Each voxel is connected to those of its 26 nearest neigh-

bors that have the same grey value class.

Definition 2 Each connected graph corresponds to one region.

These definitions allow us to disregard all voxels that are connected to the sur-

rounding atmosphere, such as drillings and channels. All remaining sub-threshold

regions are classified as defects. We implement a 3D region growing algorithm that

labels regions in the binarized image of fig. 7(b) to extract defects. This algorithm

uses the following homogeneity criteria:

h = 1− b(i,j,k), (3)

where b(i,j,k) is the value of the binary image of fig. 7(b) (i.e. 0 or 1). The voxel

(i, j, k) will join the region if and only if h = 1. Results are shown in fig. 8 and algo-

rithmic details can be found in B.1. A schematic diagram of the detection algorithm

discussed can be found in appendix D.

This technique has two limitations: firstly, defects that are just a few voxels in

size are often not detected due to their low contrast (fig. 9(b)). Secondly, surface

defects cannot be detected since they are labeled as surrounding air (fig. 9(a)).

6.3 Improvements for small low-contrast defects

Applying a global threshold to the image often leaves small or low-contrast de-

fects undetected. In this section, we introduce methods for a local image analysis,

that classifies voxels with respect to their neighborhood, rather than globally. This
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Fig. 8: Fig. 7(b) after the 3D labeling. Defects are objects classified as background

that are not connected to the outer image region.

Fig. 9: Examples of defects that usually remain undetected by global thresholding

and 3D labeling: (a) surface defects, since they are connected to the outer image

region and are thus classified as background and (b) small defects with low contrast

such as cracks.
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procedure comprises two steps: Firstly, defects are enhanced using special filtering

techniques and secondly, a threshold is chosen based on the covariance properties of

a defect-free training region.

6.3.1 Defect enhancement The key to defect enhancement is to detect oriented

structures within the image. Commonly used techniques are tensorial approaches,

which are discussed in [23,24,25,26]. These methods require eigenvalue computation

for each pixel, which results in a computationally expensive procedure. In addition,

they respond to both edges and noise. As an alternative, we suggest to simply take

the square of locally averaged derivatives as an edge detector. This suppresses the

noise and, at the same time, enhances pixels within areas of coherent grey value

structure. The corresponding operator looks like this:

g′ (x) =
3∑
i=1

(∫
w(x− x′)∂g(x′)

∂xi
dx′
)2

(4)

Here g(x′) is the grey value at point x = (x1, x2, x3) and ∂/∂xi the derivative with

respect to the ith coordinate. w denotes a three-dimensional smoothing function

(commonly a Gaussian). The discrete version of this equation is

g′ = (g ∗ fpx)2 + (g ∗ fpy )2 + (g ∗ fpz )2 (5)

where

fpx = Bp
xB

p
yB

p
zD2xSySz

fpy = Bp
xB

p
yB

p
zD2ySxSz

fpz = Bp
xB

p
yB

p
zD2zSxSy

(6)

The filter masks are

D2x = [ 0.5 0 − 0.5 ]

Sx = [ 0.1839155 0.632169 0.1839155 ]
(7)

and the binomial filters Bp
x are defined as

B0
x = [ 1 ]

B1
x = [ 1 1 ]

B2
x = [ 1 2 1 ]

(8)

The filters with index y and z have the same coefficients and are applied in the

y and z-direction, respectively. D2xSySz represents a first derivative operator in x-

direction that has been optimized for isotropy [27]. Smoothing the image of first

derivatives has the effect that areas with coherent linear structure are preserved,

whereas noise is suppressed. Results obtained on both artificial and real data will

be presented in the following section. For detection, we set a threshold above which

we regard a signal as significant. This requires a statistical model and estimating

parameters.
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6.3.2 Statistical model The noise is correlated as will be shown shortly. We

therefore model the absorption g(x) of an intact object as locally homogeneous with

added correlated isotropic normal noise. In other words, we interpret the data as

realization of a stochastic process with drift (the mean is only locally constant). The

covariance structure is assumed constant throughout the random field (homoscedas-

ticity), and it is estimated from a homogeneous training region (see fig. 11.

In fig. 10a CT-data of a defect part have been simulated by adding uncorrelated

normal noise to a constant grey image where the voxels of the YZ plane across the

center have been set to a lower grey value, and convolving the result with a (3×3×3)

binomial filter to obtain correlated noise. Fig. 10b shows the result of the filtering

with (5). Even though the crack in fig. 10a is clearly visible, the signal across the

horizontal cross section through the image hardly shows a significant deviation from

the background (fig.10c).

If g denotes the constant grey image with added uncorrelated normal noise σ

and if g̃ is obtained from g by convolution with a three-dimensional Binomial b(i,j,k),

then the variance σ̃2 of g̃ becomes

σ̃2 = σ2
∑

b2
(i,j,k) (9)

where the summation extends over all filter coefficients. For a (3× 3× 3) binomial

filter the variance of the noise in fig. 10a thus becomes

σ̃2 = 0.05273σ2· (10)

Fig. 10c illustrates the difficulty in detecting low-contrast defects: A threshold

of 3σ̃ will barely detect the crack and, at the same time, yield a large number of

pseudo errors – for a normal distribution f(x) = e−x
2/(2σ2)

σ
√

2π
we have to expect a false

alarm rate of 2.7%. In a typical image with 512 × 512 × 512 voxels more than a

million intact voxels would be classified as defect, which is unacceptable. Fig. 10d

shows a far better signal-to-noise ratio. To determine an appropriate threshold, we

have to know the variance of the noise in the filtered image. The next section will

detail how to calculate that noise from the covariance matrix of the source image.

6.3.3 Error Propagation To determine the covariance matrix of the source

image we manually select a defect-free homogeneous training region and compute

the covariance matrix under the assumption that the noise is isotropic (see fig. 6.3.3).

To see the effect of the filtering on the covariance matrix, we rewrite (5) as

g′ = (g′x)
2 + (g′y)

2 + (g′z)
2 (11)
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Fig. 10: Effect of the filtering on an artificial 3D image: (a) slice of original image:

homogeneous with crack and added correlated noise (white Gaussian noise convolved

with a (3 × 3 × 3) binomial filter). (b) Image after it has been filtered with (5);

smoothing operator: (13×13×13) binomial filter. (c) Horizontal cross section through

the original image and (d) the filtered image.
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Fig. 11: Analyzing the covariance structure. (a) Original image with hand-selected

training region. (b) Empirical covariance vs. distance assuming isotropic noise. (c)

A Gaussian fit to the empirical covariance data for small distances has a standard

deviation of σcoh = 1.12.
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where

g′x = g ∗ fpx , g′y = g ∗ fpy , g′z = g ∗ fpz , (12)

At point (i, j, k), we obtain

g′x(i,j,k) =
r∑

{l,m,n}=−r

fpx(l,m,n)g(i−l,j−m,k−n), (13)

where fpx(l,m,n) are the coefficients of our three-dimensional filter fpx . If the image

is modeled as a random field as described in the previous paragraph, the variance

σ′2x(i,j,k) of g′x(i,j,k) is

σ′2x(i,j,k) = E
[(
g′x(i,j,k) − E

[
g′x(i,j,k)

])2
]
, (14)

where E denotes expectation. We substitute (13) into (14), rearrange terms and

compute the expectation value term by term in order to obtain

σ′2x(i,j,k) =
r∑

{l,m,n,u,v,w}=−r

fpx(l,m,n)f
p
x(u,v,w)

E

[(
g(i−l,j−m,k−n) − E

[
g(i−l,j−m,k−n)

]) (
g(i−u,j−v,k−w) − E

[
g(i−u,j−v,k−w)

])]
(15)

(see appendix A.1). Eq. 15 can be rewritten as

σ′2x(i,j,k) =
r∑

{l,m,n,u,v,w}=−r

fpx(l,m,n)f
p
x(u,v,w)Cov((i− l, j −m, k − n), (i− u, j − v, k − w)).

(16)

As mentioned above, we assume the covariance function to be constant over space

so that the variance at a pixel becomes

σ′2x =
r∑

{l,m,n,u,v,w=−r}

fpx(l,m,n)f
p
x(u,v,w)Cov(l − u,m− v, n− w). (17)

If we order the filter coefficients as a vector we can rewrite (15) as a bilinear expres-

sion using the covariance matrix Σij:

σ′2 = f pTΣijf
p (18)

with i, j = −lmn...lmn. Since we assume isotropic noise, the expectation values of

the variances σ′2y(i,j,k) and σ′2z(i,j,k) of g′y(i,j,k) and g′z(i,j,k) are equal so that

σ′2z = σ′2y = σ′2x . (19)

Let σ2
x2 be the variance of g′2x . By definition we may write

σ′2x2 = E[g′4]− E[g′2]2. (20)
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With a few algebraic steps one can show that, if g′x is normally distributed, the

variance of g′2x becomes

σ′2x2 = 2σ′4x . (21)

(see appendix A.2 for more details). Finally, let σ′2 be the variance of g′. Even

though the derivatives of a random field are spatially correlated, the derivatives

with respect to different spatial directions taken at the same point are uncorrelated

in an isotropic random field. In this case, the variance of the sum in (4) is equal to

the sum of the individual variances, so that

σ′2 = 6σ′4x (22)

Equations (22) and (17) relate the noise of the image filtered with (11) to the

noise of the unfiltered image. This estimate of the noise in the resultant image g′
allows for the choice of a threshold at a given significance level.

For real images we expect to improve the signal-to-noise ratio by a similar amount

as shown in fig. 10. A drawback of this method is that it enhances defects as well

as edges. As a workaround, we only apply this technique to the interior region of

the object, which we determine by eroding the union of object and defect region

(fig. 7(b) and fig. 8). Fig. 12(b) shows the region of interest, on which we detect

defects. The technique will therefore still be incapable of detecting surface defects

such as the one shown in fig. 9(a).

An overview of the complete procedure is given in fig. 13. The diagram shows

three main execution threads: one for calculating the signal-to-noise ratio (noise

estimation), one for filtering and a third one for creating the region in which defect

detection is allowed (ROI selection). Sequence diagrams of the algorithm can be

found in appendix D. In the next section we will present results and discuss in detail

the parameters used.

6.3.4 Results Fig. 14(b) shows the original image filtered according to (5) divided

by the noise given by (22) or, in other words, the amplitude-noise-ratio (ANR). The

ANR approximately has a χ2-distribution with three degrees of freedom. Its density

is given by

fχ(x) =
e−x/2

√
x

2
√

2Γ (3/2)
(23)

We can now select a quantile of the χ2-distribution independent of the actual

image and thus can choose a detection threshold on the ANR that is universal

across samples. So instead of adjusting the threshold to the image data, we trans-

form the image data such that the threshold can be left constant. Fig. 14(c) and (d)

show the ANR binarized at thresholds 0.217 and 2.17. The parameters indicated in
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Fig. 12: Region of interest (ROI) for defect detection. (a) Original image, (b) ROI

(c), ROI of original image.

fig. 13 are as follows: Number of components = 1 (determined by the object itself),

Size of smoothing kernel = 1 (i.e. we don’t smooth at all and simply apply the

defect enhancement filter), size of Erosion mask = 15. The size of the smoothing

kernel should be adapted to the types of defects to be detected. It should be selected

such that the vector normal to the defect surface points approximately in the same

direction throughout the smoothing window. A larger smoothing kernel then results

in a better ANR ratio. This makes the technique especially suitable for crack de-

tection, as these are very low in contrast, but basically planar in shape. We already

took advantage of that effect when we set the kernel size to 13 in fig. 10.

Fig. 15 shows results obtained on a real crack. The kernel size has been set

to 5 in this case. While increasing the kernel size can improve the detectability of

planar low-contrast defects, there is a computational cost associated with a larger

smoothing window, which we address in more detail when discussing performance

issues in the next section. The size of the erosion mask can be chosen depending on

the covariance vs. distance function in fig. 11, though we empirically set the final

value to 13σcoh, if σcoh denotes the range of the covariance function of the training

data. For smaller values we obtain plenty of pseudo errors near the edges. From

the fact that the value had to be chosen that large, we conclude that the statistical

properties of the data near the edges are different from the interior, and additional

effects contribute to the image properties at the borders as the discussion about

artifacts (section 4.2.1) already suggested. The threshold values seem low, since we

would expect a lot more pseudo defects at a ANR of 2.17. However bear in mind

that the size of the covariance matrix equals the size of the filter vector f p in (18).

In the first example we chose p = 0 so we had few data to estimate the covariance

matrix and poor statistical precision. Also, since the covariances of pixels close to
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Fig. 13: Overview of the complete low-contrast defect detection technique. The rect-

angular boxes indicate parameters supplied by the user: the number of components,

the one-dimensional filter to be applied in each direction for defect enhancement, the

size of the Binomial smoothing kernel (superscript p in (5)), the amount by which

the image is eroded to exclude regions close to the border from defect detection, and

the threshold.



24

each other were predominant, we actually underestimated the noise. In the case of

the crack, the size of the training region was (7× 7× 7) (since we used a (5× 5× 5)

smoothing kernel). Figures 15(c) and (d) show the SNR image at thresholds 1 and

13 respectively.

Fig. 14: Panel (b) shows the signal-to-noise ratio after (a) has been filtered with (5).

(c) and (d): the image in (b) binarized at thresholds 0.217 and 2.17 respectively.

Fig. 15(b) shows that there is a slight inhomogeneity of the covariance structure

throughout the image, as the false alarm rate at threshold 1 appears to be bigger

in the center than near the outer edges. Again, this reflects the fact that modeling

the noise as homogeneous within our sample is just an approximation. Secondly, we

observe an increased false alarm rate at the lower boundary of the object, which also

points to the fact that our stochastic model does not adequately describe the real

image near the boundaries. The range of the coherency function in this example was
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Fig. 15: (a) original image, (b) after filtering with (5), (c) binarization at 1, (d)

binarization at 13.
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0.83, and the size of the erosion mask was set to 5.

In contrast to the technique explained in 6.2, this method detects defect bound-

aries. In the next section we will fit various models to those boundaries to charac-

terize shape and dimension of the defects with a few parameters, but first we will

give some details about the algorithm’s performance.

6.4 Complexity and performance

6.4.1 Complexity In this paragraph we will give a brief overview over the com-

plexity of the computational steps involved in the algorithm. The schematic sum-

mary in fig. 13 shows three main threads of the detection algorithm:

– Noise estimation

– Filtering

– ROI selection

In the following we will estimate the number of arithmetic operations for the

individual steps per voxel.

Noise estimation . Let C be the edge length of the training region. The covariance

Covg of the grey values g(l,m,n), where l,m, n = 0, ..., C − 1, is defined by

covg =
〈(
g(l1,m1,n1) − ḡ

) (
g(l2,m2,n2) − ḡ

)〉
(24)

Calculating the arithmetic mean ḡ requires ∼ C3 additions. Calculating the

covariance requires an additional ∼ 3C6 additions and C6 multiplications. The co-

variance matrix has to be calculated only once, so the required number of additions

(multiplications) per pixel is approximately 3C6/N3 (C6/N3).

Filtering Eq. 5 gives the mathematical details of this step. Smoothing (Bp
xB

p
yB

p
z )

requires 3p+3 multiplications and 3p additions for each term. For the derivative part

(D2xSySz etc.) 6 additions and 9 multiplications have to be performed respectively if

(3×1) filters are used. This adds up to 9p+36 multiplications and 9p+18 additions.

Summing up the squares of individual terms demands an additional 3 multiplications

and 2 additions.

ROI selection The computation time of this step depends for the most part on

the specific image data, so its performance will be evaluated based on concrete

benchmarks in the next section.
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6.4.2 Performance The performance of the algorithms has been tested on the

image shown in fig. 15 (image size: 511×511×280). Fig. 16 shows performance data

for the three main execution threads shown in fig. 13 and discussed in the previous

paragraph: noise estimation, filtering and ROI selection. The filtering is split up into

the derivative (D2xSySz etc.) and the smoothing part (Bp
xB

p
yB

p
z ). The bottom axis

corresponds to the total number of arithmetic operations (additions plus multipli-

cations). The top axis displays the total execution time on our test data set. The

vertical axis represents the size of the Gaussian smoothing filter (e.g. if the num-

ber given is 3, a (7 × 1) filter has been used (3 · 2 + 1 = 7)). The time scale was

chosen to match the experimental performance with the number of operations for

p = 6. The smoothing operation accounts for the biggest part of the total execu-

tion time as the filter size is increased to achieve a better ANR (see discussion in

section 6.3.4). The derivative part remains constant as the filters are not changed

from those in (7). Also the parameter involved in the ROI selection has been left

constant (size of erosion mask = 5). The computation time for estimating the

noise is barely significant, since it does not scale with the size of the image. The

next section will suggest how to optimize the smoothing procedure as it accounts

for the biggest portion of the total computation time. We propose how to use more

efficient filters for smoothing and will estimate the reduction in computation time

upon efficient implementation.

Fig. 16: Performance of the detection algorithm. The test was conducted on the image

of fig. 15 with p = 6. The computation time for the other values of p is estimated is

broken down into estimating the noise, smoothing, taking the derivatives and ROI

selection.
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6.4.3 Outlook: performance improvements The algorithm leaves room for

performance improvements at two particular points. First the smoothing filters can

be implemented more efficiently: a (n× 1) Binomial can be implemented efficiently

as a network [28], reducing the number of operations from n − 1 additions plus n

multiplications to ∼ n additions. Fig. 17 shows the execution time expected upon

efficient implementation of the smoothing based on the reduced number of operations

just mentioned. The numbers show that there will be a significant gain for larger filter

sizes, and taking the derivatives and ROI selection now are the main contributors

to computation time.

This concludes the work on detecting defect voxels. We will next address, how to

cluster them and extract suitable parameters for shape and size description.

Fig. 17: Hypothetical computation time, when the Binomials are implemented effi-

ciently as a network.
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7 Feature extraction

The previous chapter has been concerned with classifying single voxels only. For

quality analysis, however, features such as defect size or orientation are important.

To extract those features we apply two model-based approaches. In this section we

will use ellipsoids as prototypes and in the next section we will show how spherical

harmonics can be used to fit models of arbitrary detail to the data. In any case, we

first have to group voxels that belong to the same fault and determine its character-

istics from there. Whether defects close to each other have to be counted as one is

subject to specific inspection requirements for the product. In our example, defects

closer than 2mm have to be treated as a conglomeration of defects, for which the tol-

erable extent is different than for individual defects. Within the scope of this work,

there will be no distinction between those two types of defects, but conglomerates

will be treated as such and not as single defects. A distance of 2mm corresponds to

4 voxels in our image. In fig. 14d we will therefore merge regions that are closer to

each other than 4 voxels. This is done by performing a (5×1) morphological dilation

in the x,y and z direction. The result can be observed in fig. 18. Voxels belong to

the same defect if they are connected in the sense of definitions 1 and 2. To label

the regions we use our 3D labeling algorithm detailed in appendix B.1.

Fig. 18: Voxels belonging to the same defect are grouped together by performing a

5× 1 morphological dilation on the image in fig. 14(d).

Having grouped voxels that are to be counted as one defect, we now have to ex-

tract relevant parameters such as the exact position and the maximum and minimum

extent.
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7.1 Ellipsoids

To extract the features of interest we first model the object boundary as an ellipsoid.

This has an analogy in classical physics, namely calculating the tensor of inertia of

a mass distribution. Its eigenvectors and eigenvalues yield the major and minor

axes of the ellipsoid of inertia. For each region in fig. 18 we equate the grey values

in the enhanced image (fig. 14(b)) with the masses and then determine the shape

characteristics of the object via the ’tensor of inerta’. We first compute the ’center

of mass’ to obtain the defect position R for each object:

R =

∑
giri∑
gi

(25)

Extending the grey value-mass analogy, we can calculate the ’tensor of inertia’ for

each defect:

J =

Jxx Jxy JxzJyx Jyy Jyz

Jzx Jzy Jzz

 (26)

J is symmetric and has the components

Jxx =
∑

(y2
i + z2

i )g(xi)

Jyy =
∑

(x2
i + z2

i )g(xi)

Jzz =
∑

(x2
i + y2

i )g(xi)

Jxy =
∑

(xiyi)g(xi)

Jxz =
∑

(xizi)g(xi)

Jyz =
∑

(yizi)g(xi)

(27)

In the coordinate system spanned by the eigenvectors of J , the normalized tensor

components Jnn/
∑
g(xi) (n ∈ {x, y, z}) are the expectation values of the main radii

of the best-fit ellipsoid to the data. Fig. 19 recapitulates the steps to obtain those

radii starting from the enhanced and defect image. The related sequence diagrams

are displayed in appendix D and. Fig. 20 shows results on one of the detected defects.

The data set in the left column can be well approximated by an ellipse, whereas the

one in the right column exhibits significant deviations from an elliptical shape. Here

a more sophisticated model is required, which will be introduced in the next section.

7.2 Spherical Harmonics

7.2.1 The mathematical model In this paragraph we provide a more general

representation of three-dimensional objects that can be adapted to the level of detail

required. We hereby approximate the point cloud using spherical harmonics. The
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Fig. 19: Computing the principal defect axes based on the tensor of inertia.
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Fig. 20: Modeling a defect with an ellipse (for each column, the figures show three

orthogonal views of the same plot). Left column: the ellipse fits the data pretty well.

Right column: the points form a shape that deviates significantly from an ellipse.
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spherical harmonics form a complete orthonormal set of functions in L2(S1) where

S1 represents the unit sphere. In R3 they are defined as

Y m
l (θ, φ) = Y m

l e(θ, φ)+Y m
l o(θ, φ) = Pm

l (cosθ) (cos(mφ) + sin(mφ)) ,m = 0, 1, 2, ..., l

(28)

where Pm
l are the associated legendre polynomials. A linear combination of the Y m

l

can describe arbitrarily complex objects R(θ, φ) in spherical coordinates:

R(θ, φ) =
∑
m,l

aml Y
m
l e(θ, φ) + bml Y

m
l o(θ, φ) (29)

The odd functions Y m
l o all change sign under the transformation φ → −φ and

exhibit a shape rather untypical for defects. We hence use the even part only, so our

approximation becomes

R(θ, φ) =
∑
m,l

aml P
m
l (cosθ)cos(mφ) (30)

where the sum can be truncated according to the level of shape detail one is interested

in. Fig. 21 shows the even part of a few of the basis functions. The next section

addresses how to estimate the coefficients in (30) based on the real data.

7.2.2 Adaption to real data Saupe et al. used spherical harmonics to extract

features from 3D models that could be used to retrieve similar objects from a

database [16]. They estimated the coefficients of the expansion via a spherical FFT

algorithm. We will take a different approach, i.e. we will use a least squares esti-

mator to fit each model to our data. Given a set of points in spherical coordinates

(ri, θi, φi, gi), where gi denotes the grey value, we need to find the coefficients in (30)

such that

S :=
∑
i

g2
i

(
ri −

∑
m,l

aml Y
m
l e(θi, φi)

)2

−→ min. (31)

The sum represents the average radius as a function of (θ, φ). Eq. 31 requires

∂S

∂aml
= 0 (32)

for all aml to be considered. Equation 32 is a system of linear equations which can

be expressed as:

G · a = d (33)

If we truncate the sum in (32) after n terms, G is an n× n matrix with the entries

Glm =
N∑
i=1

g2
i fl(θi, φi)fm(θi, φi) (34)



34

Fig. 21: A few representatives of even spherical harmonics: (a) Y 0
0 e. (b) Y 0

2 e. (c) Y 2
4 e
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and d is an (n× 1) vector with components

dn =
N∑
i=1

g2
i fn(θi, φi)ri (35)

Here we replaced the Y m
l with fn, so that

f0 = Y 0
0 e, f1 = Y 0

1 e, f2 = Y 1
1 e, f3 = Y 0

2 e (36)

and so on. To solve for the coefficients, we invert the matrix G via singular value

decomposition.

7.2.3 Results Figs. 22 through 24 show the results obtained on the data set

shown in the second column of fig. D at various orders. In case of the second order,

for example, the number of free parameters is 6: a0
0,a0

1,a1
1,a0

2,a1
2,a2

2. The higher the

order the more shape details are resolved. Since we weighted the fit with the grey

value (see eq. 31) the surface tends to follow the dark points more closely and ignore

the lighter ones. Again, sequence diagrams can be found in the appendix.
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Fig. 22: Zero and first order fit.
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Fig. 23: Second and fourth order fit.
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Fig. 24: Sixth order fit.
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Fig. 25: Defect protocol

8 From the raw data to the inspection protocol

The objective of image processing techniques in industrial quality control is to gen-

erate a data protocol, that allows for direct comparison of measured defects with

inspection requirements. The algorithms we introduced in this paper can be used

to generate necessary data such as the location of defects, their extent and shape

characteristics.

Fig. 25 shows such a protocol obtained with the methods detailed in section 6 and

7. The ’List of defects’ displays defect postions and features. This list has been gen-

erated fully automatically from a raw data set after entering just a few parameters

as indicated in fig. 13. Appendix C will give some details about the software that

we have designed to automate this task.
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9 Conclusion and outlook

This work contains techniques for the automated defect detection and feature ex-

traction in X-ray CT images. The methods are universal and applicable to a wide

range of data. They mark one of the first attempts to bring 3D image processing

techniques to the field of industrial inspection. We managed to keep the processing

time below the amount required for recording and reconstruction, which makes the

algorithms useful for integration into a real system. Appendix C details aspects of

the GUI based software application developed within the scope of this work that

automatically generates a fault protocol after processing the raw data supplied by

the user.

This thesis marks a first step towards automating a CT inspection system. Future

work includes the application of our algorithms and software packages towards con-

crete inspection tasks. To fully automate the detection process described in section

6.3 the statistical analysis can be refined by estimating the covariance structure of

the noise locally and robustly and by using a more general random field model. Also

it is desirable to find an objective threshold on the ANR.
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A Calculations and proofs

A.1 Error propagation

Step from (14) to (15): Substituting (13) in (14) yields

σ′2x(i,j,k) = E

[∑
l,m,n

fp(l,m,n)g(i−l,j−m,k−n) − E

[∑
l,m,n

fp(l,m,n)g(i−l,j−m,k−n)

]
∑
u,v,w

fp(u,v,w)g(i−u,j−v,k−w) − E

[∑
u,v,w

fp(u,v,w)g(i−u,j−v,k−w)

]] (37)

The expectation value of a finite sum of random variables equals the sum of their

expectation values. We may therefore rewrite (37) as

σ′2x(i,j,k) =
r∑

{l,m,n,u,v,w}=−r

fpx(l,m,n)f
p
x(u,v,w)

E

[(
g(i−l,j−m,k−n) − E

[
g(i−l,j−m,k−n)

]) (
g(i−u,j−v,k−w) − E

[
g(i−u,j−v,k−w)

])]
(38)
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A.2 The variance of a squared gaussian random variable

This paragraph derives the relation between the variances of a Gaussian random

variable and its square. Let y be a normally distributed random variable with vari-

ance σ2
y and probability density

f(y) =
1

σ
√

2π
e
− y2

2σ2
y . (39)

The variances of y and y2 are by definition

σ2
y = E

[
y2
]
− E [y]2

σ2
y2 = E

[
y4
]
− E

[
y2
]2 (40)

The expectation value of y is zero, so (40) becomes

σ2
y2 = E

[
y4
]
− σ4

y (41)

On the other hand, the expectation value of y4 is

E

[
y4
]

=

∫ ∞
−∞

y4e−
y2

2σ2 dy. (42)

Using ∫ ∞
0

xne−ax
2

=
Γ
(
n+1

2

)
2a(n+1

2 )
(43)

we obtain

E

[
y4
]

=
4Γ
(

5
2

)
√
π

σ4
y = 3σ4

y . (44)

Substituting (44) in (41) finally yields

σ2
y2 = 2σ4

y (45)
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B Algorithmic details

B.1 3D labeling

The algorithm for labeling separated regions in the image is implemented in two

steps: First mark all background pixels of the binarized image transparent and all

object pixels opaque. Then consider a parallel beam light source illuminating one

side of the object (see fig. 27(a)) and mark all voxels struck by any of the light rays

as illuminated. Repeat this procedures for the other 5 sides of the object. After that,

create a list of the coordinates of all remaining ’shaded’ points that are neighbors of

’illuminated’ points. Then mark those voxels as illuminated and repeat the previous

step. Iterate this procedure until no more voxels are converted. Fig. 26 gives a

schematic summary of the algorithm. The final result can be observed in fig. 27(c).

Fig. 26: Schematic summary of the 3D labeling algorithm
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Fig. 27: Steps of the 3D labeling algorithm: (a) ’Illuminating’ from one side (b) two

sides and (c) final result.
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C Software architecture

Besides providing basic image processing algorithms, the objective of the project was

to build a user-friendly software application to visualize, store and retrieve processing

results. Fig. 28 shows a screenshot of the application running under Windows with

various controls for interactive visualization and data handling.

Fig. 28: The user interface

C.1 Technical realization

Fig. 29 shows an overview of the architecture. We used the commercially available

software package ’heurisko’ to implement the image processing algorithms. Heurisko

operates through an interpreted script language. Script files can be loaded and ex-

ecuted through an external interface. Our GUI based software uses that interface

for execution control and data exchange. Fig. 30 shows some its classes: the ob-

ject data retrieval is handled through the class ’hQueryInterface’ and the data are

stored in container classes that support ordered lists. The key handlers for start-
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Fig. 29: Software architecture
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Fig. 30: Some of the key classes of our software application
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ing the image processing and retrieving the data are ’CImprocDlg::OnStart()’ and

’CImProcDlg:OnFinish()’, both of which are listed below.

void CImProcDlg::OnStart()

{

// TRACE("Entering hQueryInterface<T>::OnStart()\n");

// LogwinPutStr("",1,FALSE,"%s","Entering hQueryInterface<T>::OnStart()");

UpdateData(TRUE);

CMainSheet* pMSheet = (CMainSheet*)GetParent();

CFaultList* pFaultList = &pMSheet->m_faultDoc.m_faultList;

pFaultList->RemoveAll();

DWORD nThreadID = theApp.m_nThreadID;

char command[1024];

if (IsDlgButtonChecked(IDC_CHECKHOLE)) {

((CFaultList*)pFaultList)->Shrink("Hole");

m_busyDlg.Create(IDD_BUSYDIALOG);

if (m_Method == 0) {

sprintf(command,"HOLES(%dl)",nThreadID);

hCommand(command);

}

else {

sprintf(command,"go(%dl)",nThreadID);

hCommand(command);

}

}

}

void CImProcDlg::OnFinish(WPARAM wParam, LPARAM lParam) {

CMainSheet* pMSheet = (CMainSheet*)GetParent();

CFaultList* pFaultList = &pMSheet->m_faultDoc.m_faultList;

...
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hQueryInterface<HOLE> hI;

hQueryInterface<IMAGE> hIMAGE;

CHole hole;

CImage image;

IMAGE Im;

...

try {

nHoles = hI.Acquire("HOLE");

hIMAGE.Acquire("IMAGE");

image = hIMAGE.dataVec[0];

...

throw nHoles;

}

catch (ULONG nHoles) {

if (NONZERO(nHoles))

{

hQueryInterface<IMAGE> hQ;

hQ.Acquire("IMAGE");

Im = *hQ.dataVec;

pMSheet->m_pImObj->Im = Im;

CHole::counter = 0;

for (i = 0; i < (int)nHoles; i++) {

hole = hI.dataVec[i];

hole.AddTo(pFaultList);

CHole::counter++;

}

nHoles = hI.Acquire("HOLE");

...

else

{

AfxMessageBox("Es wurden keine Fehler gefunden!");

}

}

...
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D Flowchart summary

Fig. 31: Detection algorithm with global thresholding and 3D labeling as described

in section 6.1 and 6.2. The rounded boxes represent the various subroutines of the

processing sequence, the rectangular boxes contain the parameters relevant for the

each step, and the right column shows the respective procedure call.
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Fig. 33: The activity diagram for the routine described in section 6.3 with associated

objects and procedure calls.
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Fig. 34: The algorithm on the previous page as a sequence diagram, this is the first

part...
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Fig. 36: Fitting ellipses to localized objects (see section 7.1)
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Fig. 37: The algorithm for fitting ellipses as a sequence diagram.
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Fig. 38: Object modelling with spherical harmonics (see section 7.2)
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Fig. 39: Object modeling with spherical harmonics shown as a sequence diagram
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