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Renormierungsgruppenzugang zum Hubbard Modell

Zusammenfassung

Nah der Entdekung der Hohtemperatursupraleiter hat das zweidimensionale Hub-

bard Modell als m�oglihe Beshreibung dieser Materialien verst�arkte Aufmerksamkeit

auf sih gezogen. Intensive Studien ergaben, da� dessen Phasendiagramm in der Tat

einige Eigenshaften dieser Materialien wiederspiegelt. Wir untersuhen das zweidimen-

sionale Hubbard Modell mit Hilfe von exakten Renormierungsgruppengleihungen. Daf�ur

formulieren wir die rein fermionishe Theorie in einer Form, in der bosonishe Felder

die Wehselwirkung zwishen den Fermionen vermitteln. Ein symmetriebrehendes Kon-

densat �au�ert sih dann in einem nihtvershwindenden Erwartungswert f�ur eins dieser

bosonishen Felder. Allerdings wird durh die (partielle) Bosonisierung eine unphysikalis-

he Freiheit in der Wahl der Kopplungen induziert, die von der M�oglihkeit herr�uhrt,

Fierz-Transformationen durhzuf�uhren. Diese Willk�ur spiegelt sih in niht eindeutigen

Mean-Field-Resultaten wieder. Die Renormierungsgruppe ist in der Lage, durh korrekte

Ber�uksihtigung des Renormierungsgruppenusses der Kopplungen, die Invarianz unter

untershiedlihen Wahlen der Anfangskopplungen wiederherzustellen. Indem wir dem Flu�

der Kopplungen in die gebrohene Phase folgen, k�onnen wir eine M�oglihkeit aufzeigen,

das Mermin-Wagner-Theorem mit der Beobahtung antiferromagnetisher Ordnung bei

nihtvershwindender Temperatur zu vereinbaren.

A Renormalisation Group Approah to the Hubbard Model

Abstrat

After the disovery of high temperature superondutors the two dimensional Hubbard

model has attrated a lot of attention as a desription of these materials. Intensive studies

have revealed that indeed its phase diagram shows features known from high temperature

superondutors. We study the two dimensional Hubbard model with the aid of exat

renormalisation group equations. For this purpose we rewrite the purely fermioni theory

in a form where bosoni �elds mediate the interation between fermions. A symmetry

breaking ondensate then manifests itself in a nonvanishing expetation value for one of

these bosoni �elds. However, the bosonisation preedure indues an arbitrariness in the

ouplings between fermions and bosons due to the possibility to perform Fierz transforma-

tions. This arbitrariness is mirrored in ambiguous mean �eld results. By properly taking

into aount the running of the ouplings, the renormalisation group is able to restore

the invariane under equivalent hoies of initial ouplings. By following the ow into

the broken phase we show how one may reonile the Mermin-Wagner theorem with the

observation of an antiferromagneti long range order at nonvanishing temperatures.
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Chapter 1

Introdution

The investigation of strongly orrelated fermion systems has been a main interest of

theoreti solid state physis for a long time. Of ourse it is muh too diÆult to study

these materials in a detailed mirosopi theory taking into aount all ore atoms

as well as their eletron shells and energy bands. Furthermore, it is questionable

if these are really the relevant degrees of freedom for an adequate desription of

suh materials. Instead, one is fored to onstrut idealised models that on the one

hand are simple enough to be manageable by alulations but on the other hand at

least qualitatively apture the harateristi features of the system. By investigating

suh models one gains insight into the general mathematial strutures of these

many partile systems but may also advane the understanding of the experimental

behaviour of many materials.

One suh model is the Hubbard model that has reently attrated inreased

attention sine it was proposed to be a good andidate for the desription of high

temperature superondutors. These materials were found about 15 years ago and

raised great expetations for their tehnial appliability. Not all of these hopes

have been met in pratie, but a lot of appliations have been found. Among these

are sensitive sensory devies for the detetion of magneti �elds (SQUIDs), high

frequeny transmitters for mobile and satellite ommuniation and �rst appliations

in power transmission and storage. Nevertheless, the origin of many properties of

these materials still lie in the dark. A further understanding of these aspets should

result into widening the spetrum of appliations of suh materials. However, even

the Hubbard model, whih on a �rst glane seems to be of omparatively simple

struture, has proved to be relutant to reveal its serets. Reent work has shown

that the phase struture exhibited by the Hubbard model may be very omplex and

indeed mirror many properties of high temperature superondutors.

Among the most promising urrent approahes to the Hubbard model are renor-

malisation group tehniques. The objet of this work is to further develop a frame-

1



2 Chapter 1. Introdution

work for the appliation of renormalisation group methods in the ontext of the

Hubbard model but whih also may prove useful for the understanding of simi-

lar models in solid state physis. For this purpose we will apply tehniques that

have proven to be valuable in the study of fermioni models of strongly interating

partiles. Before turning to a desription of the renormalisation group idea and the

Hubbard model let us take a look at the features that { apart from the exeptionally

high transition temperature into the superonduting state { make high tempera-

ture superondutivity suh an interesting �eld. For a reent review of this topi see

[15℄.

1.1 High temperature superondutors

The �rst high temperature superondutor was found in 1986 by Georg Bednorz and

Alex M�uller [8℄. They performed experiments on a ertain erami material with

hemial omposition (La;Ba)

2

CuO

4

and reported a transition temperature T



into

the superonduting state of approximately 35K. This was about 50% larger than

the highest transition temperature measured up to then and their result triggered

a tremendous experimental rush. In the next few years higher and higher transition

temperatures were disovered in materials with a similar struture, inluding the

famous yttrium barium opper oxides (YBCO) with a T



above the boiling point of

liquid nitrogen. The urrent world reord is a transition temperature of 134K found

in a merury based opper oxide at room pressure.

The ommon feature of all these materials is that they are omposed of layers

of opper oxide (CuO

2

) planes, hene their name uprates. Beause of this layered

struture their properties are very anisotropi. The layers are separated by bloks

ontaining other atoms, e.g. La

2

O

2

{bloks in La

2

CuO

4

. By replaing atoms in these

bloks one may add holes (p-doping) or eletrons (n-doping) to the CuO

2

planes

and hange their eletri properties. For example in (La

2�x

Ba

x

)CuO

4

a fration x of

the La atoms have been replaed by Ba atoms thereby adding holes to the planes.

A typial phase diagram of a high temperature superondutor is shown in �gure

1.1. The doping level refers to the fration of atoms replaed, i.e. x in the above

example.

For the undoped material one �nds a strong antiferromagneti interation be-

tween the Cu atoms in the planes whih below a few hundred Kelvin leads to a long

range order. In this ase the material is an insulator. Inreasing the level of doping

results in a vanishing of the antiferromagneti long range order and the emergene

of a region where the system is in the superonduting state. Below and above the

optimal doping, i.e. at the doping level where the highest ritial temperature for the

superonduting transition is ahieved, the material is said to be under{ and over-

doped respetively. However, the antiferromagneti and superonduting regions are
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Figure 1.1: Shemati phase diagram of a uprate superondutor.

not the only interesting features in the phase diagram. Notably in the underdoped

regime and below a temperature T

�

one observes unusual thermal and transport

properties. These are assoiated with a \pseudo energy gap". The endpoints of this

T

�

line are still heavily disputed. Furthermore the transition into this region seems

to be rather a rossover than a real phase transition. The nature of this gap, how-

ever, remains hitherto ompletely obsure, even if a variety of possible explanations

have been put forward inluding various kinds of harge and spin density waves,

alternating irular urrents in the unit ells or a preformation of hole-hole pairs

that later ondense into the superonduting state (see [7℄ for a review).

A ommon feature of all superondutors is that the eletrons somehow over-

ome their mutual eletrostati repulsion to form Cooper pairs. Breaking suh a

pair of eletrons osts energy { in other words there is an energy gap between the

paired and unpaired eletron states. Sine these pairs do not have to obey the Pauli

exlusion priniple they may ondense into a single quantum state below a ertain

temperature. The superonduting state may then be desribed by a marosopi

wave funtion. The ondensate breaks the U(1) symmetry and from this the unusual

properties of superondutors like the superurrent or the Meissner and Josephson

e�ets an be derived [42℄.

When a superondutor is ooled below its ritial temperature and put into a
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magneti �eld or vie versa the �eld is expelled from the inside of the superondutor

(Meissner e�et). The external magneti �eld is then ompensated by superurrents

on the surfae of the material. However, when the magneti �eld is too large the

energy ost for maintaining these surfae urrents may be larger than the energy

gained by ondensating into the superonduting state. The superondutor may

then either ompletely return to its normal state (type I superondutor) or, if

it is energetially favourable to have boundaries between the superonduting and

normal ordered phase, hoose to develop ux tubes, i.e. regions of material in the

normal state that the magneti �eld an penetrate while the rest of the material

stays in the superonduting state (type II superondutors). In the latter ase it

will take muh larger magneti �elds to ompletely break up the superonduting

state. The uprate superondutors are of the seond kind.

In onventional superondutors the attrative fore responsible for the pairing

between the eletrons is mediated by lattie vibrations (phonons). The eletrons

form pairs of vanishing total angular momentum, i.e. a rotationally invariant state

or an s-wave. This is the simplest ase of BCS theory [6℄ that explains how the

superonduting ondensate forms when an attrative fore is present between ele-

trons. However, pairs with other values of the angular momentum are possible and

indeed it has been shown experimentally [40, 37℄ that in high temperature super-

ondutors the pairs are in a state with d-wave symmetry. This means that the gap

funtion �(k

k

k

F

), whih is the order parameter for superondutivity, hanges its sign

on the Fermi surfae (the energy gap j�(k

k

k

F

)j thus has zeroes on the Fermi surfae).

However, the mehanism for the pair orrelation in these materials is still unknown.

It is speulated that an understanding of the pseudogap region might shed some

light on the nature of this mehanism.

1.2 E�etive theories

One of the deepest insights into quantum �eld theory is the observation that all

theories we know should be onsidered as e�etive theories derived from some un-

derlying theory by a kind of averaging proedure. For ondensed matter physis this

observation may seem very obvious, but the notion is indeed muh more general and

an be quanti�ed and applied for alulations. These ideas were put forward in the

most stringent form in the 1970

ies

although the basi notions had already pervaded

the literature for quite a while [45℄.

Consider a theory de�ned at some energy sale � by its ation S

�

ontaining

masses and ouplings olletively denoted by g

�

. The sale � serves as a uto�: path

integrals are only performed for modes orresponding to energies below �. In solid

state physis this uto� might orrespond to a momentum of the order of the inverse

lattie distane. Now suppose we are interested in physis at energy sales �

0

� �,
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for example when measurements are performed with a spatial resolution of the order

of 1=�

0

. In this ase we may as well integrate out the large energy modes and obtain

a new e�etive theory de�ned at the new energy sale �

0

through an ation S

�

0

and

ouplings g

�

0

. To do this, split the �elds in the path integral into high energy (�

>

)

and low energy (�

<

) modes:

Z

D� exp(�S

�

[�℄) =

Z

D�

>

D�

<

exp(�S

�

[�

>

; �

<

℄)

�

Z

D�

<

exp(�S

�

0

);

(1.1)

where �

>

(�

<

) vanishes for energies E < �

0

(E > �

0

). In the last line we have put

exp(�S

�

0

[�℄) =

Z

D�

>

exp(�S

�

[�

>

; �

<

℄): (1.2)

The new (Wilsonian e�etive) ation S

�

0

desribes the same physial system and

in partiular one will obtain the same Green funtions. However, loop-integrals now

have to be performed up to the new uto� only. In partiular at the sale �

0

tree

level diagrams suÆe. This also answers the question where S

�

ame from in the

�rst plae: it is itself derived from a more fundamental theory by mode elimination.

Iterating the above proedure one obtains a sequene of ations S

1

; S

2

; S

3

: : :. Eah

step is alled a renormalisation group transformation. One often depits this proe-

dure by plotting the ow of the ouplings g

i

in parameter spae. These trajetories

are the so alled ow lines.

Instead of integrating over a �nite energy interval as above one may as well

onsider in�nitesimal intervals. One then obtains a di�erential equation desribing

the hange of the ation dependent on the energy sale. Suh di�erential equations

are termed renormalisation group equations or just ow equations. They desribe an

in�nite system of oupled di�erential equations for the ouplings g

�

�

��

S[�℄ = B(S[�℄); �

�

��

g = �(g) (1.3)

and de�ne the famous beta funtions.

The renormalisation group equations may be viewed as a kind of magnifying

glass. For large values of the uto� one is able to distinguish details on small length

sales. Following the ow towards a smaller uto� is equivalent to averaging over

larger and larger regions in spae, in this way smearing out the small sale features.

In applying the renormalisation group one is able to interpolate between a miro-

sopi desription and an e�etive theory suitable for length sales on whih typial

experiments are performed.
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A beautiful example of an e�etive theory is the Landau theory of Fermi liquids

that with a few basi assumptions an aount for many thermodynami and trans-

port properties of ondutors [30℄. Though formulated long before renormalisation

theory was developed it may be ast into the language of this formalism (see [38, 35℄

and referenes therein). From a mirosopi viewpoint any eletron in a ondutor

will feel a ompliated potential from all its surroundings. Landau assumed that at

least the low lying exitations, i.e. partiles near the Fermi surfae, are ompliated

bound states of eletrons that again behave like fermions. These \dressed" or \renor-

malised" partiles, alled quasipartiles, are then assumed to be essentially free. In

other words the ompliated interations between eletrons have been \integrated

out" and now an be traed in a few parameters suh as an altered eletron mass

or some weak residual interation. This view explains the suess of the indepen-

dent eletron approximation (or rather independent quasipartile approximation) in

reproduing so many properties of a ondutor.

However, quasipartiles omposed of eletrons do not even have to be fermioni.

In the BCS theory of superondutivity two eletrons (or rather fermioni quasipar-

tiles in the above sense) form a bound state that ats as a whole like a boson

1

.

Viewed on suÆiently large length sales we may as well give this bosoni state an

independent meaning and treat it as a single partile just as the fermioni quasi-

partiles above. This shows that what we onsider as a \fundamental partile" may

be sale dependent. Far below a ompositeness sale these partiles may behave like

fundamental partiles, whereas above this sale we observe a omposite objet.

Of ourse this has a lose relation to partile physis. At suÆiently high energies

the fundamental partiles in strong interations are quarks and gluons. However, at

low energies the relevant degrees of freedom are rather baryons and mesons, i.e.

omposite objets from a mirosopi point of view.

1.3 The Hubbard model

The Hubbard model was independently introdued in the 1960

ies

by Hubbard,

Kanamori and Gutzwiller [25℄. However, the most extensive alulations in this

model were �rst performed by Hubbard and therefore his name is assoiated with

it. It has proven to be valuable for the modelling of a wide lass of phenomena in

solid state physis. Initially, it was applied to the desription of eletri properties

of solids with narrow energy bands (e.g. transition metals), but soon it was also

used for the study of magneti ordering and the metal insulator transition (Mott

1

In two dimensions one an even give a meaning to states that pik up any phase fator under

interhange of two (quasi)partiles and are thus termed "anyons" [17℄. They do not seem to play

a role in uprates, however.
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transition). More reently the model has beome very popular for understanding

high temperature superondutors [1℄. There is little doubt that the model is muh

too simple to desribe any atual solid faithfully, nevertheless it is a kind of minimal

model that takes into aount the quantum mehanial motion of the eletrons and

their mutual repulsive interation whih seem to be the dominating features in many

solids.

Despite its apparent simpliity the model has proven to be hard to solve even

approximately. An exat solution has been found in one dimension only [31℄, while in

larger dimensions very few exat results are known { mostly in extreme regions of the

parameter spae (see [39, 33℄ for reviews). A vast amount of alulational tehniques

have therefore been applied to the Hubbard model over the years. Unfortunately

none of these have turned out to be universally appliable to all aspets of the

model and they do not agree on more than some basi features.

In the Hubbard model the eletrons are assumed to be very tightly bound to

the ore atoms of the rystal, i.e. we delare that eletrons only live on the sites

of some lattie. We further assume that only a single non-degenerate orbit on eah

atom plays a signi�ant role for the low energy properties of the solid. This means

that only two eletrons with opposite spin an reside on a single lattie site. Of

ourse these eletrons will feel a strong repulsive Coulomb fore. We will take this

interation to be very e�etively sreened so that only eletrons on the same lattie

site are a�eted. Another important ingredient is their ability to move around in

the lattie by tunnelling from atom to atom.

The Hamiltonian of the Hubbard model is very onveniently formulated in terms

of reation and annihilation operators:

H =

X

ij;�

t

ij

a

+

i;�

a

j;�

+ U

X

i

n

i;"

n

i;#

; (1.4)

where a

+

i;�

and a

i;�

are reation-/annihilation-operators for an eletron at site i with

spin � and obey the usual antiommutation relations fa

+

i;�

; a

j;�

g = Æ

ij

Æ

��

. n

i;�

=

a

+

i;�

a

i;�

is the partile number operator. t

ij

is the probability for an eletron to tunnel

from site i to site j and the U -term mimis the sreened Coulomb like interation.

The �rst part of this Hamiltonian is often referred to as the hopping term. All

physial information in the Hamiltonian resides in the topology of the lattie and

the parameters t

ij

and U or rather their dimensionless ratios t

ij

=U . However, we

also need the number of eletrons per lattie site and the temperature if we are

interested in thermodynamis.

Many di�erent lattie topologies have been investigated. However, we will restrit

ourselves to a square lattie in two dimensions appropriate for the modelling of

high temperature superondutors. Beause of the highly anisotropi struture of

uprates, eletrons are strongly favoured to move inside of the CuO

2

planes. It is
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believed that the oupling between di�erent layers is weak and that the basi pairing

mehanism resides in the planes. Moreover one an show that the hopping between

opper and oxygen atoms may be modelled by a simple square lattie (see [37℄ and

referenes therein).

The \hopping parameters" t

ij

are hosen suh that tunnelling is only possible

between losely neighbouring sites:

t

ij

=

8

>

<

>

:

�t for nearest neighbours (NN)

�t

0

for next to nearest neighbours (NNN)

0 otherwise

; (1.5)

where t

0

is muh smaller than t. The overall sign of the parameters is onventional

but their relative sign plays a role. In the interation term, however, one has to

hoose U > 0 in order to model a repulsive interation.

The speial ase referred to as half �lling, where the number of eletrons on

the lattie equals the number of lattie sites, is espeially interesting as this or-

responds to an undoped uprate and furthermore some exat results are known.

These results are partiularly valuable as numerial simulations an be ompared

to them and have to pass this test. It is known that for suÆiently large U and at

half �lling the ground state of the Hubbard model is antiferromagneti. This agrees

with the observed antiferromagnetism of undoped superondutors. Therefore one

would assume that for low enough temperature the two dimensional Hubbard model

desribes an antiferromagnet.

However, there is an even more general result known as the Mermin-Wagner

theorem [32, 33℄ whih states that for one and two dimensional theories with a

ontinuous symmetry no long range order is possible in the two point orrelation

funtion at nonvanishing temperatures. As any magneti ordering breaks the ontin-

uous SU(2) spin symmetry the theorem strongly disfavours the above assumption of

antiferromagnetism at low temperatures. This would suggest that we have to rejet

the two dimensional Hubbard model as an adequate desription of real high temper-

ature superondutors and that we have to inlude e.g. interlayer oupling into the

model turning it into a three dimensional one. Fortunately there is a way around

this: one may assume that on sales aessible to the experiments there are large

lusters showing magneti ordering and only when averaging over even larger sales

this ordering is washed out. This mehanism will be lari�ed in our investigation

with renormalisation group equations.

In the last few years an inreasing number of renormalisation group studies of the

Hubbard model have been published [46, 20, 23, 19℄. They have shown very enour-

aging results and indeed suggest that antiferromagnetism dominates lose to half

�lling while for stronger doping the superonduting instability is the leading one.
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However, all these studies are done by diretly investigating the sale dependene of

the four fermion oupling. Symmetry breaking is here identi�ed by a divergene of

the oupling in various momentum hannels. Therefore these tehniques are limited

to the symmetri regime. Furthermore ouplings between more than four fermions

whih are not onsidered in these studies should play an important role at low energy

sales.

We believe that it is preferable to introdue the low energy degrees of freedom

more expliitly. This an be ahieved by a partial bosonisation, i.e. by rewriting

the original ation in a form where fermions ouple via a Yukawa like interation

to the interesting degrees of freedom represented by bosoni �elds appropriate for

ondensates of an even number of fermions. The symmetry breaking then manifests

itself in a nonvanishing expetation value for one of these bosons. At the onset of a

seond order phase transition one will observe a vanishing of the mass of this boson.

This then allows to expand the investigation to the broken phase. Furthermore

multi-fermion ouplings translate into interations between bosoni �elds whih may

onveniently be enlosed in an e�etive potential term.

Another advantage of this formalism is the possibility to investigate the interplay

of di�erent degrees of freedom by deliberately bloking some of the bosoni hannels.

An investigation in this diretion has been performed in parallel to the present work

[12℄. Although this has shown enouraging results, the renormalisation of the Yukawa

ouplings between bosons and fermions have been negleted thus severely limiting

its preditive power.

The present work is dediated mostly to the investigation of how the ow of these

ouplings may be inorporated into the study. It turns out, however, that several

obstales have to be overome in order to get a satisfatory result. An alternative

bosonisation proedure than applied in our former studies greatly simpli�es the

alulational tasks and makes the inherent struture of the bosonised theory muh

more transparent.

1.4 Dissertation outline

In hapter 2 we rewrite the partition funtion in path integral form. By suitably

rewriting this expression we are able to de�ne a theory that is equivalent to the

Hubbard model but where its purely fermioni interation is mediated by bosoni

�elds that represent interesting degrees of freedom.

We then pursue a mean �eld analysis of the bosonised Hubbard model in hap-

ter 3. Although oversimpli�ed this gives a �rst impression of the phase diagram.

However, it also reveals that a ertain reparametrisation invariane of the bosoni
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ouplings indued by the bosonisation proedure strongly a�ets the mean �eld

results.

This arbitrariness should be lifted if bosoni utuations are taken into aount

properly. A way to do this is by renormalisation group tehniques. The renormali-

sation group formalism for the average e�etive ation is presented in hapter 4.

Some loop alulations are done in hapter 5. Their purpose is twofold. First they

are to give a hint towards suitable trunation shemes for the renormalisation group

study. Seond, the full renormalisation group equations may be formally dedued

from a one loop equation.

Chapter 6 is dediated to the appliation of the renormalisation group formalism

to the Hubbard model. A way to inorporate unwanted four fermion interations

developed under the ow into the running of Yukawa ouplings is desribed. We

investigate two trunations. The �rst one deals with antiferromagnetism lose to

half �lling and a seond one investigates the parametrisation dependene indued

by the bosonisation proedure of the �nal result.



Chapter 2

The partition funtion

The equilibrium properties of a thermodynami system onneted to a heat bath

and a partile reservoir are desribed ompletely by its grand anonial partition

funtion

Z = Tr exp(��[

^

H � �

^

N ℄); (2.1)

where � =

1

T

is the inverse temperature,

^

H the Hamiltonian operator governing the

system, � the hemial potential and

^

N the partile number operator. The trae

runs over all many{partile states the system an aess. For many appliations it

is very useful to rewrite this partition funtion as a path integral. In this way one

an make ontat to quantum �eld theory and the wealth of tehniques known in

this �eld.

In this hapter we briey review the steps leading to the oherent state path

integral desription of fermioni systems. Exellent reviews of this topi an be

found in e.g. [34, 38℄. This formalism is then applied to the Hubbard model. We

proeed by rewriting the purely fermioni theory as a mixed theory ontaining both

fermioni and bosoni degrees of freedom oupled by a Yukawa{like interation.

2.1 Quantum many partile systems

Consider a quantum mehanial one{partile system. Suppose it lives in a Hilbert

spae H

1

whih is spanned by a omplete orthonormal set of states j�i

X

�

j�ih�j = 1; h�j�

0

i = Æ

��

0

: (2.2)

Now onsider a system omposed of N noninterating opies of these partiles.

Suppose the ith partile is in the state j�

i

i. Then the N partile state is desribed

11
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by

j�

1

�

2

: : : �

N

i = j�

1

i 
 j�

2

i 
 : : : j�

N

i: (2.3)

The fundamental assumption of many partile quantum mehanis is that a system

omposed of N opies of some partile an be desribed by a superposition of the

states (2.3) even if an interation is present, i.e. that in this ase the Hilbert spae

is H

N

= H

1


 H

1


 : : : 
 H

1

. The states (2.3) form a basis for the Hilbert spae

H

N

with ompleteness and orthogonality relations dedued from the properties of

the one partile ase.

However, for idential partiles this spae is too large as physial observables are

independent of an interhange of two partiles, i.e. the way the partiles are ordered

in (2.3). Hene only symmetrised or antisymmetrised states are neessary, forming

their respetive Hilbert spaes H

s=a

N

. Partiles having the former property are alled

bosons and the latter are alled fermions. This has remarkable onsequenes: whereas

any number of bosons may oupy a given state fermions are elibatory, i.e. two of

them may not be in the same state.

Beause of this property many partile systems may be very onveniently de-

sribed in terms of reation and annihilation operators as states "reated" from the

vauum in this way automatially ful�l the above symmetry properties. As these

operators hange the partile number they are de�ned on the so alled Fok spae

given by a diret sum of symmetrised/antisymmetrised Hilbert spaes with all parti-

le numbers inluding the vauum state j0i whih ontains zero partiles (not to be

onfused with the null vetor). States with di�erent partile ontent are supposed to

be orthogonal and hene ompleteness and orthogonality are indued by the proper-

ties of the N partile Hilbert spaes. The reation operator a

+

�

adds a partile with

quantum numbers � to a given state ket, i.e. maps between H

N

and H

N+1

a

+

�

j�

1

�

2

: : : �

N

i = j��

1

�

2

: : : �

N

i: (2.4)

Let us restrit ourselves to fermions in the following. Two fermioni reation oper-

ators antiommute, that is

fa

+

�

; a

+

�

g = a

+

�

a

+

�

+ a

+

�

a

+

�

= 0 (2.5)

and hene the Fok spae is spanned by the states

j�

1

: : : �

n

: : :i = a

+

�

1

: : : a

+

�

n

: : : j0i (2.6)

whih automatially obey the right symmetry properties with respet to an inter-

hange of two partiles. By using ompleteness and orthogonality in the Fok spae

one shows that the hermitian onjugate of the reation operator a

�

= (a

+

�

)

y

obeys

the antiommutation relations

fa

�

; a

�

g = 0; fa

�

; a

+

�

g = Æ

��

(2.7)
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and maps from H

N

to H

N�1

, i.e. destroys a partile in state �. Hene the name

destrution (or annihilation) operator for it.

Beause all possible states are formed as a superposition of the states (2.6), any

operator ating in this spae an be desribed by a produt (and sum) of reation

and annihilation operators. E.g. a one partile operator has the matrix elements

h�

1

� � ��

N

j

^

T j�

1

� � ��

N

i =

N

X

i;j=1

h�

i

j

^

T j�

j

i

Y

k 6=i

l6=j

h�

k

j�

l

i �

N

X

i;j=1

T

�

i

�

j

Y

k 6=i

l6=j

h�

k

j�

l

i (2.8)

and an therefore be expressed as

1

^

T =

X

��

T

��

a

+

�

a

�

; T

��

= h�j

^

T j�i (2.9)

in terms of reation and annihilation operators. Similarly a two partile operator

has the form

^

V =

1

2

X

��Æ

V

��Æ

a

+

�

a

+

�

a

Æ

a



; V

��Æ

= h��j

^

V jÆi: (2.10)

2.2 Coherent state path integral

2.2.1 Coherent states

In order to derive a path integral formulation of the partition funtion in statistial

physis, it is useful to onsider oherent states. A oherent state is de�ned as an

eigenstate of the destrution operator

a

�

j i =  

�

j i: (2.11)

For fermions a subtlety arises here. Beause destrution operators antiommute the

same property must hold for the eigenvalues

f 

�

;  

�

g = 0; f 

�

; a

�

g = 0: (2.12)

1

Then the matrix elements are the same as in (2.8)

h�j

^

T j�i = T

Æ

h0ja

�

a

+



a

Æ

a

+

�

j0i = T

Æ

h0j(�a

+



a

�

+ Æ

�

)(�a

+

�

a

Æ

+ Æ

�Æ

)j0i = T

Æ

Æ

�

Æ

�Æ

= T

��
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Antiommuting numbers like these are termed Gra�mann numbers (for exellent

introdutions to this �eld see [9, 41℄). It is easy to hek that the eigenvalue equation

(2.11) is solved by

j i = e

�

P

�

 

�

a

+

�

j0i =

Y

�

(1�  

�

a

+

�

)j0i (2.13)

whih an be veri�ed by diret alulation (in order to enhane readability we restrit

the alulations in this setion to a single quantum number)

aj i = aj0i � a a

+

j0i =  aa

+

j0i =  j0i =  (j0i �  a

+

j0i) =  j i:

We are thus fored to generalise the Fok spae by allowing Gra�mann valued oef-

�ients in linear ombinations of states.

In the same way as above we introdue left-eigenstates of the reation operator

h 

�

ja

+

�

= h 

�

j 

�

�

; h 

�

j = h0je

�

P

�

a

�

 

�

�

= h0j

Y

�

(1� a

�

 

�

�

) (2.14)

and demand that the eigenvalues  ,  

�

antiommute mutually and with all reation

and destrution operators

f 

(�)

�

;  

(�)

�

g = 0; f 

(�)

�

; a

(+)

�

g = 0:

Although the notation is reminisent of omplex onjugation we treat  and  

�

as

independent variables.

We are now able to alulate some properties of states and operators in the

generalised Fok spae. The salar produt of two oherent states is

h 

�

j i =

Y

�

(1 +  

�

�

 

�

) = e

P

�

 

�

�

 

�

: (2.15)

Let us de�ne a normal ordered operator as one with all reation operators to the

left of the destrution operators, e.g. A = a

+

�

a

+

�

a



a

Æ

. Then the matrix elements of a

normal ordered operator are easily alulated to be

h 

�

jA[a

+

�

; a

�

℄j i = e

P



 

�



 



A[ 

�

�

;  

�

℄: (2.16)

We an also derive a ompleteness relation in the spae of oherent states. For this

we de�ne integrals over Gra�mann variables as follows

2

Z

d 1 = 0;

Z

d  = 1;

Z

d d 

0

 

0

 = 1 = �

Z

d 

0

d  

0

 :

2

The de�nition is suh that the integrals over Gra�mann variables are translation invariant

b =

Z

d (a+ b ) =

Z

d 

0

((a+ b�) + b 

0

);  =  

0

+ �:
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The ompleteness relation then reads

Z

Y

�

d 

�

�

d 

�

e

�

P



 

�



 



j ih 

�

j = 1

Fok spae

; (2.17)

where the identity operator resides in the usual Fok-spae (not in the generalised

one). Let us do the alulation

Z

d 

�

d e

� 

�

 

j ih 

�

j =

Z

d 

�

d (1�  

�

 )f(j0i �  j1i)(h0j � h1j 

�

)g

=

Z

d 

�

d (� 

�

 j0ih0j+  j1ih1j 

�

) = j0ih0j+ j1ih1j:

As a last ingredient we need the trae of a bosoni operator, i.e. one that ontains

an even number of reation and annihilation operators

TrA =

X

n

hnjAjni =

Z

Y

�

d 

�

�

d 

�

e

�

P



 

�



 



h� 

�

jAj i: (2.18)

Again the alulation is simple with only one quantum number

X

n

hnjAjni =

Z

d 

�

d e

� 

�

 

X

n

hnjAj ih 

�

jni =

Z

d 

�

d e

� 

�

 

h� 

�

j

X

n

jnihnj

| {z }

1

Aj i:

Espeially note the minus sign in h� 

�

j due to the interhange of Gra�mann num-

bers. It will fore the �elds to have anti-periodi boundary onditions in the path

integral representation as we will shortly see.

2.2.2 Path integral formalism

In the following we derive a path integral expression for the (grand anonial) par-

tition funtion of a system governed by the Hamiltonian

^

H at temperature T = 1=�

and hemial potential �

Z = Tr e

��(

^

H��

^

N)

= Tr e

��

~

H

; (2.19)

where

^

N =

P

�

a

+

�

a

�

is the partile number operator. We will assume that

^

H[a

+

; a℄

is normal ordered. The exponential e

��

~

H

, however, will in general not be normal

ordered, so we annot apply (2.18) with (2.16) diretly. Therefore we rewrite the

exponential as (� = �=N)

e

��

~

H

= (e

��

~

H=N

)

N

= lim

N!1

(1� �

~

H)

N

= (1� �

~

H) � � � (1� �

~

H)

| {z }

N times

; � = �=N:
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Now insert the ompleteness relation (2.17) between eah fator and use

h 

�

i

j1� �

~

H[a

+

; a℄j 

i�1

i = e

P

�

 

�

�;i

 

�;i�1

e

��

~

H[ 

�

i

; 

i�1

℄

+O(�

2

):

De�ning the \endpoints" of the trae (2.18) as  

(�)

�;0

= � 

(�)

�;N

=  

(�)

�

we may now

write the partition funtion as

Z = lim

�!0

Z

N

Y

i=1

Y

�

d 

�

�;i

d 

�;i

� exp

h

� �

N

X

k=1

�

X

�

 

�

�;k

(

 

�;k

� 

�;k�1

�

� � 

�;k�1

)

	

+H[ 

�

�;k

;  

�;k�1

℄

i

:

(2.20)

One often adopts a ontinuum notation for this expression by writing  

(�)

�;i

=  

(�)

�

(� =

� i)

 (�)�  (� � �)

�

! �

�

 (�);

N

X

k=1

�!

Z

�

0

d� for �! 0:
(2.21)

The partition funtion then reads

Z =

Z

 

�

(�)=� 

�

(0)

 

�

�

(�)=� 

�

�

(0)

D( 

�

�

;  

�

) exp(�S[ 

�

�

;  

�

℄);

S[ 

�

�

;  

�

℄ =

Z

�

0

d� [ 

�

�

(�)(�

�

� �) 

�

(�) +H[ 

�

�

(�);  

�

(�)℄℄:

(2.22)

One has to keep in mind, however, that (2.22) is a shorthand notation for the disrete

version (2.20). Indeed, there is no sense in whih the di�erene  

k

� 

k�1

in (2.21) is

small and an be replaed by a derivative sine the objets are Gra�mann numbers

and thus do not even have any numerial value.

Note that the antiperiodi boundary onditions stem from the fat that we are

dealing with fermions. For bosoni �elds one enounters exatly the same parti-

tion funtion as (2.22) but with an integral over �elds having periodi boundary

onditions.

It is often onvenient to use a Fourier expansion of the funtions  

(�)

(�) with

respet to the \time" variable � . Sine the funtions are antiperiodi we may expand

 

�

(�) = T

X

n

e

i!

n

�

 

�n

;

 

�

�

(�) = T

X

n

e

�i!

n

�

 

�

�n

;

!

n

= �T (2n+ 1); n 2 Z:

(2.23)
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The \time derivative" now has the meaning

lim

�!0

Z

�

0

d�  

�

(�)(

 (�)� (���)

�

) = lim

�!0

T

2

X

nn

0

 

�

n

 

n

0

Z

�

0

d� e

�i(!

n

�!

n

0

)�

(

1�e

�i!

n

�

�

)

= T

X

n

 

�

n

 

n

i!

n

;

i.e. the integrals over \time" are onverted into sums, onventionally alled Matsu-

bara sums.

2.2.3 Appliation to the Hubbard model

We are now able to write down the partition funtion for the Hubbard model in

path integral formulation. If we adopt a spinor notation

^

 

i

=

�

^

 

i"

^

 

i#

�

;

^

 

�

i

=

 

^

 

�

i"

^

 

�

i#

!

; (2.24)

the ation for the Hubbard model reads

S

F

[

^

 ;

^

 

�

℄ =

Z

�

0

d�

h

X

ij

^

 

�

i

([�

�

� �℄Æ

ij

+ t

ij

)

^

 

j

+

U

2

X

i

(

^

 

�

i

^

 

i

)

2

i

; (2.25)

where we have used the replaement rules given above for the normal ordered Hamil-

tonian

H

int

(a

+

; a) = U

X

i

n

i"

n

i#

= �U

X

i

a

+

i"

a

+

i#

a

i"

a

i#

! H

int

[

^

 

�

;

^

 ℄ = �U

X

i

^

 

�

i"

^

 

�

i#

^

 

i"

^

 

i#

=

U

2

X

i�

^

 

�

i�

^

 

i�

^

 

�

i;��

^

 

i;��

=

U

2

X

i

(

^

 

�

i

^

 

i

)

2

:

Introduing soures for the fermions, the partition funtion �nally reads

Z[�; �

�

℄ =

Z

^

 (�)=�

^

 (0)

^

 

�

(�)=�

^

 

�

(0)

D(

^

 

�

;

^

 ) exp

�

� S

F

[

^

 ;

^

 

�

℄ + �

�

^

 + �

^

 

�

�

; (2.26)

where a sum over lattie sites and an integral over \time" is understood in the

produt �

�

^

 et.

It is onvenient to look at the Fourier transform of the ation as the kineti

term beomes diagonal in Fourier{spae. For this purpose we introdue a ompat

notation ombining spae and time indies. If we label the lattie sites by a vetor
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x

x

x, we may write

^

 

(�)

(X) =

^

 

(�)

(�;x

x

x) =

^

 

(�)

i

(�) and de�ne a olletive notation for

time and spae or frequeny and momentum respetively

X = (�;x

x

x); Q = (!

n

; q

q

q); QX = !

n

� + x

x

xq

q

q: (2.27)

Generalised sums and orresponding delta funtions then read

X

X

=

Z

�

0

d�

X

x

x

x

;

X

Q

= T

X

n

Z

�

��

d

2

q

(2�)

2

;

Æ(Q�Q

0

) =

1

T

Æ

n;n

0

� (2�)

2

Æ(q

q

q � q

q

q

0

);

Æ(X �X

0

) = Æ(� � �

0

) � Æ(x

x

x� x

x

x

0

):

(2.28)

These de�nitions apply equally in the fermioni and bosoni ase if we remember

that

!

Q

� !

n

= 2�nT; n 2

�

Z for bosons

Z+ 1=2 for fermions.

(2.29)

Note that Æ(q

q

q � q

q

q

0

) is periodi in 2�. Similarly, Æ(�) obeys Æ(�) = �Æ(� + �) for

bosons/fermions.

The Fourier transforms of the fermioni �elds an now be expressed in a very

ompat form:

^

 (X) =

X

Q

e

iQX

^

 (Q);

^

 

�

(X) =

X

Q

e

�iQX

^

 

�

(Q):

(2.30)

We will restrit ourselves to a square lattie in two dimensions and speify the

hopping matrix as

t

ij

=

8

<

:

�t for NN (nearest neighbours)

�t

0

for NNN (next-NN)

0 else.

(2.31)

The kineti part of the ation (i.e. the part quadrati in the �elds) then reads in

Fourier spae

S

F;kin

=

X

Q

^

 

�

(Q) [i!

Q

+ �

Q

� �℄

^

 (Q);

�

Q

= �2t(os q

x

+ os q

y

)� 4t

0

os q

x

os q

y

:

(2.32)

The inverse fermioni propagator P

F

(Q) = i!

Q

+ �

Q

� � has zeroes for T = 0

and �

Q

= �. This is of ourse expeted and we reognise the ondition for the Fermi

surfae. Figure 2.1 shows the Fermi surfae for di�erent values of � for t

0

= 0 (left)

and for t

0

= �0:1t (right). The line of quadrati shape in the left �gure orresponds
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-π -π/2 0 π/2 π

π

π/2

0

-π/2

-π

(a)

-π -π/2 0 π/2 π

π

π/2

0

-π/2

-π

(b)

Figure 2.1: Fermi surfaes �

Q

= � of the non-interating Hubbard model for t

0

= 0

(left) and t

0

= �0:1t (right). The ontours orrespond to various values of the

hemial potential � = �f0;

1

2

; 1;

3

2

gt.

to �

Q

= � = 0. In this ase there are as many states above the Fermi surfae as

there are below, i.e. exatly half of the states are oupied and the average number

of eletrons per lattie site is one. � = 0 is therefore referred to as half �lling. A

doped system, i.e. one where eletrons have been added or removed, is therefore

desribed by a nonzero hemial potential.

Symmetries

Let us take a look at the symmetries obeyed by the ation of the Hubbard model

(2.25).

The most obvious symmetries are maybe the symmetries of the underlying lat-

tie, whih are of ourse also respeted by the Hubbard ation. For a square lattie

they are translation, rotation and reetion. A U(1) symmetry

3

^

 (X)! e

i�

^

 (X);

^

 

�

(X)!

^

 

�

(X)e

�i�

provides for harge onservation and a SU(2) symmetry ating in spinor spae

^

 (X)! e

i~�

~

�

^

 (X);

^

 

�

(X)!

^

 

�

(X)e

�i~�

~

�

3

Do not expet to see gauge bosons orresponding to a loal U(1) symmetry. We are dealing

with an e�etive theory in whih photons are supposed to have been integrated out.
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reets invariane under spin rotations.

Another symmetry is reminisent of time reversal

^

 

i

(�)! �

^

 

i

(� � �);

^

 

�

i

(�)!

^

 

�

i

(� � �); t

ij

! �t

ij

; �! ��:

Assuming appropriate transformations of the soures the partition funtion will be

invariant under this transformation.

For speial hoies of the underlying lattie and hopping matrix t

ij

other sym-

metries may arise. Consider a square lattie I and a hopping matrix t

ij

whih has

entries for nearest neighbours only. We may then split the lattie I into two sub-

latties I

1

ontaining the lattie points ~x = (2Z; 2Z) and I

2

= I=I

1

ontaining the

rest; the hopping matrix t

ij

then has nonvanishing elements only if i and j reside on

di�erent sublatties. Suh a lattie is often alled a bipartite lattie. The mapping

(together with an appropriate mapping of the soures)

^

 

i2I

1

!

^

 

i2I

1

;

^

 

i2I

2

! �

^

 

i2I

2

;

^

 

�

i2I

1

!

^

 

�

i2I

1

;

^

 

�

i2I

2

! �

^

 

�

i2I

2

;

t

ij

! �t

ij

again leaves the partition funtion invariant. Together with time reversal invariane

we therefore onlude that for a bipartite lattie we may restrit ourselves to positive

� and t.

At half �lling the Hubbard model on a bipartite lattie even has another SU(2)

symmetry (pseudospin) whih for � 6= 0 breaks down to the U(1) fermion number

symmetry mentioned above [47℄.

Also note that the partition funtion is invariant under the resaling (� 2 R

+

)

� ! �=�; T ! �T; �! ��; t! �t; U ! �U;

and an therefore only depend on the dimensionless ratios T=t, �=t and U=t.

2.3 Partial bosonisation

Under a renormalisation group transformation the interation term of the Hubbard

model will aquire a omplex momentum dependene. Also vertex funtions ontain-

ing more than 4 fermioni operators will appear. Interesting physial phenomena

(e.g. the emergene of quasipartiles) are enoded in this momentum dependene. If

one of these degrees of freedom aquires a nonzero expetation value, a symmetry

is possibly broken. It would be nie if one ould somehow make these degrees of

freedom expliit in the formalism. This an be ahieved by partial bosonisation.
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In the purely fermioni formalism spontaneous symmetry breaking is hara-

terised by a divergene of the four fermion oupling in ertain momentum hannels.

This limits this formalism to the study of the symmetri phase. Furthermore it is

diÆult to inlude higher vertex funtions that are likely to play an important role

lose to the phase transition. In the partially bosonised theory this divergene is

translated into a vanishing of the mass term of a bosoni �eld if the phase transition

is of seond order. The bosoni �elds orrespond to omposite operators onsisting

of an even number of fermioni �elds, e.g. the magnetisation density is desribed by

~

~m

i

=

^

 

�

i

~�

^

 

i

with the Pauli matries �

i

.

Partial bosonisation, or Hubbard{Stratonovi transformation, is nothing but an

inlusion of a suitable 1 under the funtional integral, usually hosen to be a Gaus-

sian integral over some auxiliary �eld. By a suitable shift in the integration variable

orresponding to a fermion bilinear like e.g.

~

~m

i

one may be able to anel the inter-

ation term of the purely fermioni theory and end up with a Yukawa{type theory

with bosoni �elds oupled to the fermioni �elds. To see how this works we �rst

proeed by deomposing the Hubbard interation into fermion bilinears.

Note that the interation an be written in many di�erent ways. To display a few,

de�ne fermion bilinears orresponding to harge density, magnetisation and Cooper

pairs in di�erent hannels

~�(X) � ~�

i

=

^

 

�

i

^

 

i

; (2.33)

~

~m(X) �

~

~m

i

=

^

 

�

i

~�

^

 

i

; (2.34)

~s(X) � ~s

i

=

^

 

i

�

^

 

i

; ~s

�

(X) � ~s

�

i

= �

^

 

�

i

�

^

 

�

i

; (2.35)

~

x

(X) � ~

xi

=

^

 

i

�

^

 

i+ê

x

; ~

�

x

(X) � ~

�

xi

= �

^

 

�

i+ê

x

�

^

 

�

i

; (2.36)

where � is the two dimensional ompletely antisymmetri tensor (� = i�

2

) and ê

x

is

the unit vetor in x-diretion. We also de�ne a ~

y

similar to ~

x

. With these de�nitions

we may rewrite the interation term as follows

4

(

^

 

�

i

^

 

i

)

2

= ~�

2

i

= �

1

3

~

~m

2

i

= �

~

~m

2

3;i

=

1

2

~s

�

i

~s

i

(2.37)

and further note the identity

�~�

i

~�

i+ê

x

+

~

~m

i

~

~m

i+ê

x

+ 2

~



�

x

i

~

x

i

= 0 (2.38)

and similar for x! y.

Let us now introdue auxiliary �elds

^

B = (�̂;

^

~m; ŝ

(�)

; ̂

(�)

x

; ̂

(�)

y

) and add a term

quadrati in these �elds to the ation suh that the four fermion interation is just

4

Appendix B.1 may be useful for spinor gymnastis.
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anelled:

S[

^

 ;

^

 

�

;

^

B℄ = S[

^

 ;

^

 

�

℄ + �S

int

[

^

 ;

^

 

�

;

^

B℄ (2.39)

�S

int

=

X

X

�

1

2

�

�

(�̂

i

� ~�

i

)

2

+

1

2

�

m

(

^

~m

i

�

~

~m

i

)

2

+ �

s

(ŝ

�

i

� ~s

�

i

)(ŝ

i

� ~s

i

)

+ �

x

�

(̂

�

xi

� ~

�

xi

)(̂

xi

� ~

xi

)

�

1

2

(�̂

i

� ~�

i

)(�̂

i+ê

x

� ~�

i+ê

x

) +

1

2

(

^

~m

i

�

~

~m

i

)(

^

~m

i+ê

x

�

~

~m

i+ê

x

)

�

+ �

y

[x! y℄

�

:

(2.40)

Restriting the ouplings to the range

�

i

> 0;

�

�

; �

m

> �

x

+ �

y

;

3�

m

� �

�

� 2�

s

= U

(2.41)

ensures that the auxiliary �elds are Gaussian and an be integrated out after a shift

of variables (�rst and seond onditions) and furthermore the four fermion intera-

tion in the original ation is exatly anelled (third ondition). These onditions

thus ensure that the partition funtion ontaining bosoni �elds

Z[�; �

�

℄ =

Z

D(

^

 

�

;

^

 ;

^

B) exp

�

� S[

^

 ;

^

 

�

;

^

B℄ + �

�

^

 + �

^

 

�

�

is indeed equivalent to (2.26).

We emphasise, however, that the hoie of the parameters �

i

is not unique. A

wide range of hoies thus desribe the same fermioni model and physial results

should be independent of this arbitrariness. Nevertheless, when doing approxima-

tions it is hard to preserve this invariane. It is therefore a good hek for the

validity of any approximation sheme to investigate if and how strongly the �nal

result depends on the initial hoie of parameters.

Colleting terms in (2.39) we see that as promised we are now dealing with a

theory of fermions oupled to bosons via a Yukawa interation. In Fourier spae the

bosonised ation reads

S[

^

 ;

^

 

�

;

^

B℄ = S

kin

[

^

 ;

^

 

�

;

^

B℄ + S

Y

[

^

 ;

^

 

�

;

^

B℄ (2.42)

S

kin

=

X

Q

n

^

 

�

(Q)[i!

Q

� �

=�

Q

=�

q
q
q

z }| {

�2t(os q

x

+ os q

y

)� 4t

0

os q

x

os q

y

℄

^

 (Q)

+

1

2

(�

�

� �

x

os q

x

� �

y

os q

y

)�̂(�Q)�̂(Q)

+

1

2

(�

m

+ �

x

os q

x

+ �

y

os q

y

)

^

~m(�Q)

^

~m(Q)

+ �

s

ŝ

�

(Q)ŝ(Q) + �

x

̂

�

x

(Q)̂

x

(Q) + �

y

̂

�

y

(Q)̂

y

(Q)

o

(2.43)
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S

Y

= �

X

KQQ

0

�

Æ(K �Q+Q

0

)

�

(�

�

� �

x

os k

x

� �

y

os k

y

)�̂(K)

^

 

�

(Q)

^

 (Q

0

)

+ (�

m

+ �

x

os k

x

+ �

y

os k

y

)

^

~m(K)

^

 

�

(Q)~�

^

 (Q

0

)

�

+ Æ(K �Q�Q

0

)

�

�

s

[ŝ

�

(K)

^

 (Q)�

^

 (Q

0

)� ŝ(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

+ �

x

os

q

x

�q

0

x

2

[̂

�

x

(K)

^

 (Q)�

^

 (Q

0

)� ̂

x

(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

+ �

y

os

q

y

�q

0

y

2

[̂

�

y

(K)

^

 (Q)�

^

 (Q

0

)� ̂

y

(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

��

;

(2.44)

where we have used the Fourier transforms (2.30) for the fermions and (using the

onventions (2.28))

�̂(X) =

X

Q

e

iQX

�̂(Q); �̂

�

(X) =

X

Q

e

�iQX

�̂

�

(Q) (2.45)

for �̂

(�)

= (�̂; m̂; ŝ

(�)

), while for ̂; ̂

�

we use:

̂

x

(X) =

X

Q

e

i(QX+q

x

=2)

̂

x

(Q); ̂

�

x

(X) =

X

Q

e

�i(QX+q

x

=2)

̂

�

x

(Q) (2.46)

and similar for 

(�)

y

. At this point it is onvenient to de�ne the momentum spae

bilinears

~�(Q) =

X

X

e

�iQX

~�(X) =

X

K

^

 

�

(K)

^

 (K +Q);

~s(Q) =

X

X

e

�iQX

~s(X) =

X

K

^

 (K)�

^

 (K �Q);

~

x

(Q) =

X

X

e

�i(QX+q

x

=2)

~

x

(X) =

X

KK

0

Æ(Q�K �K

0

) os

k

x

�k

0

x

2

^

 (K)�

^

 (K

0

)

(2.47)

and so forth.

In the bosonised theory a broken symmetry will now manifest itself in a nonzero

expetation value of one of the bosoni �elds. For example there is strong evidene

for the fat that at low temperatures and lose to half �lling the Hubbard model de-

sribes an antiferromagnet, i.e. that the sign of the magnetisation density alternates

between neighbouring lattie sites. In Fourier spae this translates into a nonzero

expetation value of the

^

~m(q

q

q = (�; �)){mode of the spin density. Another impor-

tant exitation seems to be onneted to Cooper pairs having d{wave symmetry. In

the following setion we will therefore onstrut a boson reeting these symmetries

from ̂

x

and ̂

y

.



24 Chapter 2. The partition funtion

2.3.1 d{wave operators

In order to get an operator that has d{wave symmetry perform the transformation

of variables

ê = (̂

x

+ ̂

y

);

^

d = (̂

x

� ̂

y

);

̂

x

=

1

2

(ê +

^

d);

̂

y

=

1

2

(ê�

^

d);

(2.48)

and similar for ê

�

;

^

d

�

. Then sums and produts of these variables translate as

̂

�

x

̂

x

+ ̂

�

y

̂

y

=

1

2

(ê

�

ê+

^

d

�

^

d);

�

x

̂

x

+ �

y

̂

y

=

1

2

(�

x

+ �

y

)ê+

1

2

(�

x

� �

y

)

^

d:

(2.49)

If we insert this variable transformation into the ation (2.42) and put �

x

= �

y

= �



we obtain for the e and d dependent part of the ation:

S

e;d

=

X

Q

1

2

�



fê

�

(Q)ê(Q) +

^

d

�

(Q)

^

d(Q)g

�

X

KQQ

0

Æ(K �Q�Q

0

)

�

�



2

(os

q

x

�q

0

x

2

+ os

q

x

�q

0

x

2

)[ê

�

(K)

^

 (Q)�

^

 (Q

0

)� ê(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

+

�



2

(os

q

x

�q

0

x

2

� os

q

x

�q

0

x

2

)[

^

d

�

(K)

^

 (Q)�

^

 (Q

0

)�

^

d(K)

^

 

�

(Q)�

^

 

�

(Q

0

)℄

	

:

(2.50)

Integrating out the bosons is equivalent to inserting the solutions of their �eld

equations ÆS[

^

 ;

^

 

�

;

^

B℄=Æ

^

B = 0 (i.e. the saddle point) into the ation S[

^

 ;

^

 

�

;

^

B℄.

For the boson

^

d the solution is

~

d(Q) = ~

x

(Q)� ~

y

(Q); (2.51)

as expeted from the onstrution of

^

d and it is thus this ombination the boson

^

d represents in the fermioni theory (this will beome learer when we introdue

soures in the next setion).

Let us take a look at the q

q

q = (0; 0) mode of

~

d(Q), i.e. at a spatially homogeneous

�eld. From (2.51) we know that it is a superposition of stripes along the x{ and

y{axis added with opposite signs. A graphial representation is given in �gure 2.2

(left) where the solid and dashed lines indiate that two fermioni operators on

neighbouring lattie sites are onneted with positive or negative sign respetively.

To �nd a \loal" expression rewrite

~

d(Q = 0) =

X

K

(os k

x

� os k

y

)

^

 (K)�

^

 (�K)

=

1

2

X

X

�

^

 (X)�

^

 (X + ê

x

) +

^

 (X)�

^

 (X � ê

x

)

�

^

 (X)�

^

 (X + ê

y

)�

^

 (X)�

^

 (X � ê

y

)

	

(2.52)
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Figure 2.2: The q

q

q = 0

0

0 mode of

~

d(Q) in its global (left) and loal (right) form. Solid

and dashed lines indiate that two fermioni operators on neighbouring lattie sites

are onneted with positive or negative sign respetively.

so at eah lattie site we �nd an operator of the form shown in �gure 2.2 (right). We

see that indeed this boson may serve as a lattie representation of d

x

2

�y

2

symmetry

as it hanges its sign under rotation by 90

Æ

but not under reetion at the x or y

axes (see also [37℄).

2.3.2 Introduing soures for bosoni �elds

Let us now introdue soure terms for the fermioni and bosoni �elds

5

S

j

= �

X

X

n

�

�

(X)

^

 (X) + �(X)

^

 

�

(X) + l

�

(X)�̂(X) +

~

l

m

(X)

^

~m(X)

+ l

s

�

(X)ŝ(X) + l

s

(X)ŝ

�

(X) + [s

(�)

! (

(�)

x

; 

(�)

y

) or (e

(�)

; d

(�)

)℄

o

:

(2.53)

The logarithm of the partition funtion

Z[�; �

�

; fl

B

g℄ =

Z

D(

^

 

�

;

^

 ;

^

B) exp(�S[

^

 ;

^

 

�

;

^

B℄� S

j

[

^

 ;

^

 

�

;

^

B℄) (2.54)

is then the generating funtional of onneted Green funtions [34℄. In partiular we

�nd

B = h

^

Bi =

Æ

Æl

B

lnZ[�; �

�

; fl

B

g℄: (2.55)

5

It may sometimes be favourable to absorb the hemial potential � into the soure of � by

exhanging l

�

(X)! l

�

(X) + � and adding appropriate fators � �

2

in the ation [4℄.
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However, if we �rst integrate out the bosoni �elds, we �nd

Z[�; �

�

; fl

B

g℄ =

Z

D(

^

 

�

;

^

 ) exp(�S

F

[

^

 ;

^

 

�

℄�

~

S

j

[

^

 ;

^

 

�

℄)

~

S

j

[

^

 ;

^

 

�

℄ = �

X

Q

n

�

�

(Q)

^

 (Q) + �(Q)

^

 

�

(Q)

+ l

�

(�Q)~�(Q) +

1

2

(�

�

� �



(os q

x

+ os q

y

))

�1

l

�

(�Q)l

�

(Q)

+ � � �+ l

s

�

(Q)~s(Q) + l

s

(Q)~s

�

(Q) + �

�1

s

l

s

�

(Q)l

s

(Q)

+ � � �+ l

d

�

(Q)

~

d(Q) + l

d

(Q)

~

d

�

(Q) + 2�

�1



l

d

�

(Q)l

d

(Q);

(2.56)

i.e. for every omposite �eld there is a usual soure term and a term quadrati in the

soures. This is exatly what we want: for vanishing soures the expetation values

of the bosoni �elds and their orresponding fermioni bilinears exatly oinide

B = h

^

Bi = h

~

Bi =

Æ

Æl

B

lnZ[�; �

�

; fl

B

g℄

�

�

�

l

B

=0

;

thus if we �nd a nonvanishing expetation value of a bosoni �eld we know that the

orresponding symmetry is also broken in the purely fermioni desription.

2.4 The e�etive ation

In this setion we introdue the important onept of the e�etive ation. In order

to make the notation more onise we ombine �elds and soures into a vetor

notation

6

:

�̂(X) = (�̂;

^

~m; ŝ; ŝ

�

; : : : ;

^

 ;

^

 

�

)(X);

J(X) = (l

�

;

~

l

m

; l

s

�

; l

s

; : : : ; �

�

; �)(X):

(2.57)

Now de�ne lassial �elds as expetation values of the orresponding quantum op-

erators

� := h�̂i =

Æ

ÆJ

lnZ[J ℄: (2.58)

The e�etive ation is de�ned as the Legendre transform of the generating funtional

of onneted Green funtions, W [J ℄ = lnZ[J ℄, with respet to the lassial �elds

�[�℄ = �W [J ℄ +

X

X

J �; J = J [�℄; (2.59)

6

If we de�ne the Fourier transform as in (2.45), i.e. �̂(X) =

P

Q

e

iQX

�̂(Q), we obtain �̂(Q) =

(�̂(Q);

^

~m(Q); ŝ(Q); ŝ

�

(�Q); : : : ;

^

 (Q);

^

 

�

(�Q)).
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where J [�℄ is a solution of the �eld equation (2.58). From this de�nition we imme-

diately �nd the �eld equations

7

Æ

Æ�

i

�[�℄ = �

ÆJ

j

Æ�

i

Æ lnZ

ÆJ

j

+

ÆJ

j

Æ�

i

�

j

+M

ij

J

j

=M

ij

J

j

= J

j

M

ji

;

M = diag(1; 1; 1; 1; : : : ;�1;�1):

(2.60)

Sometimes it is useful to write the e�etive ation in a more impliit way. Using

(2.59) and the de�nition of the partition funtion Z[J ℄ we may also write

e

��[�℄

=

Z

D�̂e

�S[�̂℄+J(�̂��)

=

Z

D�̂e

�S[�̂+�℄+J�̂

; (2.61)

where J =M

Æ

Æ�

� (alternatively, J =

Æ�

Æ

R

�

for right-derivatives). We further note the

identity

8

�

(2)

ij

W

(2)

jk

=M

jl

ÆJ

l

Æ�

i

Æ�

k

ÆJ

j

=M

ik

; (2.62)

stating that the seond funtional derivative of the e�etive ation is the inverse

propagator.

The e�etive ation is a very powerful onept in �eld theory. It is the generating

funtional of one partile irreduible (1PI) Green funtions [34℄. Sine by the redu-

tion formulae one an onstrut all S-matrix elements from the Green funtions,

alulating the e�etive ation is equivalent to solving a quantum theory. It is not

hard to imagine that alulating the e�etive ation thus is a very diÆult task.

Note that for vanishing soures the �eld equations (2.58) exatly orrespond to

the ones derived by a lassial ation priniple (hene the terms \lassial �eld" and

\e�etive ation").

7

We make use of the hain rule for left-derivatives: f [g[�

0

+ �℄℄ = f [g[�

0

℄ + �g

(1)

[�

0

℄ + � � � ℄ =

f [g[�

0

℄℄ + �g

(1)

[�

0

℄f

(1)

[g[�

0

℄℄ + � � � .

8

This identity holds irrespetive of whether we de�ne the seond funtional derivatives as on-

taining only left derivatives or as ontaining both right and left derivatives:

F [�

0

+ �℄ = F [�

0

℄ + �

�

F

(1)

�

[�

0

℄ +

1

2

�

�

F

(2)

��

[�

0

℄�

�

+ � � � = � � �+

1

2

�

�

�

�

^

F

(2)

��

[�

0

℄ + � � � : (2.63)



Chapter 3

A mean �eld alulation

In order to get a �rst impression of whih strutures might arise in a quantum

theory one often relies on some kind of mean �eld approximation. In a mean �eld

approah one replaes some utuating quantity by its average value and tries to

solve the resulting equations in a self onsistent way, thereby obtaining an equation

for the size of the average value. However, there is not the way to make a mean �eld

approximation. Several may exist and lead to di�erent results. Furthermore, mean

�eld theory is grossly inadequate in the ritial region of some phase transition where

utuations play an inreasingly important role. The larger the spae{dimensionality

of the system, however, the better mean �eld theory works. Nevertheless, mean �eld

theory is often a starting point for a more sophistiated approximation.

Let us look at a rude derivation of a mean �eld equation. Consider a theory

with ation

S[ ;  

�

℄ =  

�

A

P

AB

 

B

+

1

2

f

ABCD

 

�

A

 

B

 

�

C

 

D

; (3.1)

where for notational onveniene we have extended the summation onvention also

to inlude momentum indies et. We may then approximate the two point funtion

(propagator) by replaing produts of �elds by their respetive expetation value in

the interation term

h 

�

 

�

�

i �

Z

D( 

�

;  ) 

�

 

�

�

e

� 

�

A

P

AB

 

B

�f

ABCD

( 

�

A

 

B

h 

�

C

 

D

i� 

�

A

 

D

h 

�

C

 

B

i)

� [P

��

+ (f

��CD

� f

�DC�

)h 

�

C

 

D

i℄

�1

:

We have onverted the many{partile problem into a one{partile problem for whih

the solution is known. Making some ansatz for the propagator leads to a self onsis-

teny equation sine the two point funtion ours on both sides of the equation. The

above equation is nothing but the Hartree{Fok mean �eld equation [34℄ and may be

regarded as the one-loop part of the Shwinger{Dyson equation for the propagator.

We will return to this at the end of this hapter.

28
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In the kind of mean �eld approah we are going to pursue we replae the bosoni

�elds by some onstant value. By onstant we do not neessarily mean spatially

uniform. For example we will assume the spin density to alternate in sign between

neighbouring lattie sites orresponding to an antiferromagnet whih is believed to

be the ground state of the Hubbard model near half �lling.

3.1 Calulation of the e�etive potential

When onsidering onstant �eld distributions it is possible to pull out a volume

fator from the e�etive ation. We will onsider vanishing expetation values of the

fermioni �elds and de�ne the e�etive potential as

VU(B) = �[ 

(�)

= 0; B = onst.℄; (3.2)

where V =

P

X

1 is the two dimensional volume divided by temperature. By min-

imising the e�etive potential we are able to �nd the ground state of the system.

In our mean �eld approximation alulating the e�etive potential amounts to

performing only the fermioni part of the funtional integral for the partition fun-

tion (2.54) while the bosoni �elds are �xed. This integral is Gaussian and may be

performed leading to a funtional determinant.

We now want to alulate the fermioni funtional determinant at �xed bosoni

�elds (�

�

� = (�; �))

� = �̂(q

q

q = 0); ~a =

^

~m(q

q

q = �

�

�); d

(�)

=

^

d

(�)

(q

q

q = 0); (3.3)

while all other �elds vanish, i.e. we assume that they do not gain a nonvanishing

expetation value. The fermioni part of the ation at �xed bosoni �elds an be

written as

S

2

[ ;  

�

℄ =

1

2

X

QQ

0

[ (�Q);  

�

(Q)℄S

(2)

(Q;Q

0

)

�

 (Q

0

)

 

�

(�Q

0

)

�

; (3.4)

whih de�nes S

(2)

and yields

1

S

(2)

(Q;Q

0

) =

�

B

+

(Q)Æ(Q�Q

0

) �A

T

(�Q;�Q

0

)

A(Q;Q

0

) B(Q)Æ(Q�Q

0

)

�

; (3.5)

1

We set t

0

= 0 in this alulation.
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A(Q;Q

0

) =

�

i!

Q

+ �

Q

� ~�

�

Æ(Q�Q

0

)�

~

A
 ~�Æ(�

�

� �Q+Q

0

));

�

Q

= �

�Q

= ��

Q+�

�

�

= �2t(os q

x

+ os q

y

);

~� = �+ (�

�

� 2�



)

| {z }

=:h

�

� = �+ h

�
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~
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m

� 2�



)

| {z }

=:h

a

~a = h

a

~a;

B(Q) = D(q

q

q)
 �; B

+

(Q) = �D

+

(q

q

q)
 �;

D

(+)

(q

q

q) = D

(+)

(�q

q

q) = �D

(+)

(q

q

q + �

�

�) = �



(os q

x

� os q

y

)d

(�)

:

(3.6)

The integral{orretion to the e�etive potential now reads (see appendix B.4 and

B.5) �U = � ln

R

D( ;  

�

) exp(�S

2

) = �

1

2

ln detS

(2)

. Using �~�

T

�

�1

= �~� we an

simplify the determinant as follows

ln detS

(2)

=

1

2

ln det

�

S

(2)

(Q;Q

0

)

�

0 1

1 0

�

S

(2)

(�Q

0

;�Q

00

)

�

0 1

1 0

��

= lndet

�

B

+

(Q)B(�Q)Æ(Q�Q

00

) + A(Q;Q

0

)A(�Q

0

;�Q

00

)

�

= lndet

h

�

!

2

Q
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Q

� ~�)
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+

~

A

2

+D

+

(q

q

q)D(q

q
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�

Æ(Q�Q
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)

+ 2~�

~

A~�Æ(Q�Q

0

+ �

�

�)

i

� ln det[a

q

Æ

qq

0

+

~

b~�Æ

q��;q

0

℄;

(3.7)

where in the last line we have adopted an obvious shorthand notation in momentum

spae. We will now alulate this determinant in two ways: �rst diretly and then

in a matrix notation showing the relation of the present formalism to the \oloured

Hubbard model" [4℄.

First note that by SU(2) rotation invariane one has det(a +

~

b~�) = det(a�

~

b~�)

and hene

2

ln det[Æ

q;q

0

� ~m

q

~� Æ

q;q

0

��

| {z }

M

qq
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1
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)(Æ
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0
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1

2

ln det[Æ
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�M
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0

M

q

0

q

00

℄ =

1

2

ln det[(1� ~m

q

~m

q��

)Æ

q;q

0

℄:

(3.8)

In a similar way we get (remember that all funtions are periodi a

q

= a

q+2�

)

ln det[a

q

Æ

qq

0

�

~

b~�Æ

q;q

0

+�

℄ = ln det[a

q+�

Æ

q+�;q

0

+�

�

~

b~�Æ
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0

℄
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1

2

ln detf[a

q

Æ

qq

0

�

~

b~�Æ

q;q

0

+�

℄[a

q+�

Æ

q;q
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+

~
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=

1

2

ln det[(a

q

a

q+�

�

~
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~

b)Æ

q;q

0

℄;

(3.10)

2

Alternatively, you might want to alulate this by expanding the logarithm:

tr ln[Æ

q;q

0

� ~m

q

~� Æ

q;q

0

��

| {z }

M

qq

0

℄ = �

1

2

tr

X

n

(M

2

)

n

n

=

1

2

tr ln[(1� ~m

q

~m

q��

)Æ

q;q

0

℄: (3.9)
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where we have used [tr ln a

q

Æ

qq

0

=

P

q

ln a

q

=

P

q

ln a

q+�

= tr lna

q+�

Æ

qq

0

℄ and similar

relations.

Before turning to the other alulation of the determinant show by indution

that

�

�

�

�

�

�

�

�

.

.

.

�

a

2

1

a

1

1

1 a

�1
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�

.

.

.

�

�

�

�

�

�

�

�

=

Y

n

(a

�n

a

n

� 1): (3.11)

Now split up the integration regions in di�erent quadrants [0;��℄ � [0;��℄ suh

that the funtion under the determinant beomes a 4� 4 matrix as in [4℄

3
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;

(3.12)

where in the last line we took the liberty to extend the integration region to [��; �℄�

[��; �℄ again. Of ourse this result oinides with (3.10).

Let us now ontinue the alulation of the fermioni determinant (D

2

Q

=

D

+

(q

q

q)D(q

q

q))
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=
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(3.13)

where the trae is in momentum{ and spin{spae:

tr = T

X

n

Z

�

��

d

2

q

(2�)

2

tr

spin

:

3

Indeed, if we take formula (37) in [4℄ and use a basis where the symmetri{phase fermioni

propagator is diagonal we obtain for matries �

��

= �

�
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2
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�
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2

℄

whih orresponds to (3.7) in \matrix notation".
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If we pull out a (temperature dependent) onstant from the funtional determi-

nant tr ln(!

Q

+ 


Q

) = tr ln(1 +




Q

!

Q

) + onst(T ), we are able to use [16℄

2 ln osh(x) =

X

n2Z

ln

�

1 +

x

2

(n+ 1=2)

2

�

2

�

(3.14)

and �nally obtain for the mean �eld approximation to the e�etive potential:

U

pot

=

1

2

h

�

�

2

+

1

2

h

a

~a

2

+

1

2

�



d

�

d+�U (3.15)
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1

2

tr lnS
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Z
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(3.16)

�
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=
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~�+ �

q
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+ h
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2

+ �
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(os q

x

� os q

y

)

2

d

�

d: (3.17)

For h

d

= 2�



and d

�

d = 4Æ this an be shown to oinide with the result presented

in [4℄

4

.

In the next setion we will investigate the phase struture implied by this po-

tential. Note again, however, that for given parameters �

i

we are not able to �x

the value of the four fermion interation U even though only two parameters our

expliitely in the potential: h

a

= �

m

� 2�



, h

d

= 2�



(the e�etive hemial poten-

tial ~� = �+ h

�

� will be onsidered as an external parameter governing the eletron

density of the system). We have not spei�ed �

s

, however, but only made the as-

sumption that ŝ does not gain a nonzero expetation value. (Stated from an other

point of view, a spei� hoie of U does not uniquely determine the parameters �

i

.)

3.2 Spontaneous symmetry breaking

There are two qualitatively di�erent ways in whih a phase transition an our.

Let us take a look at a salar theory with e�etive potential U('

2

) at di�erent

temperatures. In the �rst olumn of �gure 3.1 the potential U('

2

) beomes atter

at the origin when the temperature is lowered, until at some temperature T



the

potential beomes onave at ' = 0 and the minimum smoothly moves outward to

4

If we denote the �elds and ouplings in [4℄ by a tilde, we have to set

~

h

2

B

= �

2

h

B

and resale

the bosons by

~

B =

p

h

B

B=� in order to get the same results. The parametrisation of the ouplings

translates as �

�

= U�

2

, U�

3

= 2�



, U(�

2

+ 1) = 3�

m

, U�

1

= �

s

. Also note that

Z
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d

2

q

(2�)

2

X

�

i

F [(os(q
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i
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℄ = 2
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2

q

(2�)

2
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Figure 3.1: Possible senarios for phase transitions (PT) are ontinuous PT (left

olumn) and disontinuous PT (right olumn).

some nonzero value of the �eld '. We all suh a phase transition ontinuous (or of

2

nd

order) and the temperature T



the ritial temperature. If we de�ne the \mass"

of the �eld ' by m

2

'

= 2

�U

�'

2

j

'=0

we observe that the mass vanishes at the phase

transition. If as in the ase shown in �gure 3.1 the potential is symmetri under

the transformation ' ! �' the system has to hose between two energetially

equivalent on�gurations. The symmetry is then said to be spontaneously broken.

In a seond phase transition senario the potential develops \pokets" of low

energy away from the origin as in the right olumn of �gure 3.1. The minimum

of the potential thus jumps away from ' = 0 at some transition temperature T



.

We all suh a phase transition disontinuous (or of 1

st

order). We see that in this

ase the mass may still be positive below the phase transition. Negative mass is

thus only a suÆient ondition for the ourrene of a phase transition but not a

neessary one. We will observe symmetry breaking of both kinds in our mean �eld

approximation of the Hubbard model.

Before proeeding with a numerial analysis of the mean �eld potential (3.15) let

us investigate it by analyti means. First note that for large temperature the u-

tuation orretion �U to the potential vanishes � T

�1

. The minimum is therefore
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governed by the \lassial" potential and the system is in the symmetri phase at

~a

2

= 0 and d

�

d = 0. Furthermore, for large values of the order parameters ~a

2

and

d

�

d the lassial potential governs the overall behaviour. Thus we know that the

minimum of the potential will always be at �nite values of the order parameters.

The utuations tend to destabilise the symmetri minimum. This an be seen

by inspetion of the masses of the ~a and d bosons de�ned by

m

2

a

= 2

�U

pot

�(~a

2

)

�

�

�

~a

2

=d

�

d=0

= h

a

� h

2

a

Z

d

2

q

(2�)

2

tanh(

1

2T

(�

q

q

q

� ~�))

�

q

q

q

;

m

2

d

=

�U

pot

�(d

�

d)

�

�

�

~a

2

=d

�

d=0

=

�



2

�

�

2



2

Z

d
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q

(2�)

2
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1
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(�

q

q

q

� ~�))

�

q

q

q
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(os q

1

� os q

2

)

2

:

(3.18)

The utuation orretions lower the masses and hene atten the potential at the

origin. The larger the ouplings the more pronouned this e�et beomes; remember

however that there is an arbitrariness in the hoie of ouplings.

In a similar way we are also able to get some information about the order of the

phase transition. Assume that the minimum of the potential is loated at ~a

2

= 0

and d

�

d > 0. We know that at the minimum the derivative of the potential vanishes

0

!

=

�U

pot

�(d

�

d)

�

�

�
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2

=0
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d

�

�
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:

The term in urly brakets is negative for d

�

d > 0 so this equation only has solu-

tions for m

2

d

< 0. A phase transition from the symmetri to the superonduting

phase will therefore be of seond order. A similar alulation an be done for the

antiferromagnet and indiates that for suÆiently small values of the e�etive hem-

ial potential the phase transition from the symmetri state is also of seond order.

However, for large enough ~� we may well enounter disontinuous phase transitions.

3.2.1 Numerial results

We have analysed the phase diagram for di�erent Yukawa ouplings numerially.

We hoose U=t = 1. It is not lear, however, how the \ouplings" �

i

(and thus h

i

)

have to be hosen for a given value of the four fermion oupling U sine all hoies

respeting (2.41) lead to the same Hubbard model. (Therefore the results may also

be interpreted as if the hopping parameter t is �xed and we perform alulations

for di�erent values of the four fermion interation U .) Beause of our mean �eld

approximation the partition funtion beomes dependent on the parameters �

i

. The
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Figure 3.2: The T � ~� phase diagram for h

a

= h

d

= 10t=�

2

with symmetri (SYM),

antiferromagneti (AF) and superonduting phase (SC). In the region marked by

the bold line the phase transition into the antiferromagneti phase is of �rst order;

all other phase transitions are of seond order.

phase diagrams for di�erent hoies of the ouplings are presented in the �gures

(3.2) to (3.5); the values hosen are displayed in the respetive �gure aptions. The

phases with antiferromagneti (AF) and superonduting (SC) order are indiated

by di�erent �ll-patterns. In the symmetri phase (SYM) both operators have a

vanishing expetation value. If two regions are separated by a bold line the phase

transition between the two is of �rst order; all other phase transitions are of seond

order.

The minima were found for �xed temperature and hemial potential by sliding

along the gradient of U

pot

into some valley in the phase spae spanned by ~a

2

and

d

�

d. In order to ensure that the minimum found is not just a loal one we have

started the minimisation proedure at di�erent values in the phase spae. This was

neessary for �nding the �rst order transitions where the minimum jumps away from

the value obtained at higher temperature.

For equal values of the ouplings h

a

and h

d

the phase diagrams (�gures 3.2 and

3.3) resemble the ones for a real{life high T



superondutor (�gure 1.1). However,

by inreasing one of the ouplings h

a

or h

d

the respetive boson an be made to

dominate the phase diagram, suppressing the regions where the other boson gains

a nonvanishing expetation value (�gures 3.4 and 3.5). Several features are worth

mentioning. Note that there is no region of oexistene of di�erent phases. If one bo-
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Figure 3.3: The T � ~� phase diagram for h

a

= h

d

= 40t=�

2

with symmetri (SYM),

antiferromagneti (AF) and superonduting phase (SC). In the region marked by

the bold line the phase transition into the antiferromagneti phase is of �rst order;

all other phase transitions are of seond order.

son obtains a nonzero expetation value it tries to prevent the other from obtaining

one. Therefore the phase transition between the superonduting and antiferromag-

neti region is always of �rst order. Furthermore, the phase transition between the

symmetri phase and the superonduting one is always of seond order as already

antiipated in the analyti investigation. Similarly there may be a �rst order phase

transition between the symmetri and the antiferromagneti state for large enough

values of the hemial potential. This is also apparent if we plot the value of ~a

2

at

the minimum of the potential (�gure 3.6), where the disontinuous jump an be seen

expliitely.

In onlusion, the mean �eld approximation for the oloured Hubbard model

an give a qualitatively reasonable piture of the phases in high T



superondutors.

On the other hand, the shortomings of this approximation are also apparent from

the �gures. All phase diagrams orrespond to di�erent mean �eld approximations

for the same model. It is impossible to resolve this ambiguity within the mean �eld

approximation without additional input on the seletion of the Yukawa ouplings.

The reason is that we have negleted the utuations of the bosoni �elds. Only if

these are inluded, the di�erent equivalent hoies of the Yukawa ouplings should

lead to the same physial results. The di�erenes between the �gures reveal the

importane of the negleted bosoni utuations.
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Figure 3.5: The T � ~� phase diagram for h

d

= 10t=�

2

, h
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2

with symmetri

(SYM) and antiferromagneti phase (AF). In the region marked by the bold line

the phase transition into the antiferromagneti phase is of �rst order, otherwise of

seond order.
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. For large

values of the hemial potential the expetation value jumps disontinuously to a

non vanishing value when the temperature is lowered.

The inlusion of the bosoni utuations is a omplex problem whih an be

attaked by means of nonperturbative renormalisation group equations [11, 43℄.

Studies for similar QCD-motivated models of fermions with Yukawa oupling to

salars have already been arried out suessfully [10, 27℄. In the next hapters

we will therefore develop renormalisation group equations and apply them in the

ontext of the Hubbard model.

3.3 Comparison with Hartree{Fok equations

In the introdution to this hapter we have onsidered another mean �eld approah:

the Hartree{Fok mean �eld. It is illuminating to ompare the results obtained in

the bosonised piture above to this approah whih will turn out to be independent

of the parametrisation of the interation term.

Let us �rst derive the Hartree{Fok equations more formally as the one loop order

of a Shwinger{Dyson series. Shwinger{Dyson equations are a simple onsequene

of the translation invariane of the funtional integral

5

0 =

Z

D 

Æ

Æ 
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0

exp(�S[ ;  

�

℄ + �

�

 + � 

�
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0

[ !

Æ

Æ�

�

;  

�

!

Æ

Æ�

�

℄� �

�

A

0

o

Z[�; �

�

℄:

(3.19)

5

This is why the translational invariane was used as de�ning property of the Gra�mann inte-

gration in hapter 2.
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This is an in�nite set of relations between Green funtions of di�erent order. For

example by a further di�erentiation with respet to �

�

B

0

we an relate the two point

funtion and the four point funtion. If we again take an ation of the form (3.1),

use Z = expW and W

(2)

AB

=

Æ

2

W

Æ�

B

Æ�

�

A

et. and perform the derivatives at vanishing

soures �, �

�

we arrive at

Æ
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where we have assumed that

Æ

2

W

Æ�Æ�

et. vanishes. If we turn towards one partile

irreduible (1PI) Green funtions (see setion 2.4), we �nally obtain

�

(2)

A

0

B

0

=P

A

0

B

0

� (f

ABA

0

B

0

� f

A

0

BAB

0

)(�

(2)

)

�1

BA

� f

ABCB

0

(�

(2)

)

�1

CC

00

(�

(2)

)

�1

BB

00

(�

(2)

)

�1

AA

00

�

(4)

A

0

C

00

B

00

A

00

:

(3.21)

These equations have the graphial representation

(

�

)

�1

= (

�

)

�1

+

�

+

�

(3.22)

where the double line and shaded blob represent the full propagator and the full

vertex respetively. Furthermore we have abbreviated

� =�+� (3.23)

with f

abd

=

�

b

a

d



for the \lassial" vertex. Sometimes the �rst term is

alled the Hartree term and the seond one the Fok term. If we only onsider these

two terms and neglet the last term of (3.21), whih is of two loop order we have

rederived the Hartree{Fok equation displayed at the beginning of the hapter. The

orretion to the propagator �

AB

= �

(2)

AB

� P

AB

is often alled the self energy whih

we split up in the Hartree and Fok ontributions � = �

H

+ �

F

.

Similar equations an of ourse be derived for other n{point funtions in the same

way. Note that the perturbation series for the n{point funtions an be obtained from

these equations by iteratively inserting the right hand side on the left. Indeed the

one loop part of (3.21) an also be found in equation (B.32) of appendix B.5, where

we deal with one loop orretions to the e�etive ation.

Let us now apply the Hartree{Fok equations to the Hubbard model. We will

assume that the fermioni two point funtion obtains an antiferromagneti gap

�

(2)

(Q;Q

0

) = P (Q;Q

0

) + �(Q;Q

0
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Q

+ �

Q

� �)Æ(Q�Q
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A~�Æ(Q�Q
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�):

(3.24)
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This may be inverted and for �
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= ��
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�

one obtains
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(3.25)

We now have to solve the gap equation �

!

=	 in a self onsistent way. As we

have seen, the fermioni interation an be written in di�erent ways, e.g.:
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(3.26)

The Hartree{Fok equations yield the same result independent of the hoie of

parametrisation of the oupling term as they ontain all one loop diagrams. How-

ever, in order to get as lose to the bosonised desription as possible we hoose to

evaluate the gap equation with the seond parametrisation. For the Hartree and

Fok terms we �nd

6

�

H

AB

= 2�

F

AB

= �2

U

3

~

A~�

AB

Æ(Q

A

�Q

B

+ �

�

�)

X

Q

N

�1

(Q):

(3.27)

If we set M(Q) = !
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But we have already evaluated this! It is nothing but the integral in the mean �eld

alulation of �U

pot

familiar from equation (3.13). We thus have

�
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The gap equation thus reads for h

a

= �

m

= U=3 (in the bosoni language this

orresponds to bosonising only with respet to ~m)

1
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)� 2h

a

�

~

A

2

(�U j

h

2

a

~a

2

=

~

A

2

;d

�

d=0

) = �(1+

1

2

)�h

�1

a

[2�

~a

2

(�U j

d

�

d=0

)℄: (3.30)

If we ompare this with equation (3.18), we �nd that apart from a fator (1 +

1

2

)

the gap equation is nothing but the ondition for the vanishing of the mass m

2

a

(i.e. the onset of spontaneous symmetry breaking) in the mean �eld alulation for

6

If we had used the �rst parametrisation, only the Fok term woud have ontributed and would

have been the sum of the two terms in (3.27).
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the bosonised Hubbard model. This means that in the Hartree{Fok approah the

SU(2) symmetry is broken at higher values of the temperature ompared to what

we have seen in the last setion.

Let us try to understand where the additional fator of

3

2

omes from. If we

expand the full propagator to �rst order in

~

A the interesting part of the Hartree and

Fok terms an be visualised as




and

�

; (3.31)

where the ross denotes the ondensate. The alulation of the Hartree Fok results

above an be diretly translated to the bosonised language for �

�

= �



= 0. Here the

dotted lines in the diagrams stand for propagation of bosons and we have a Yukawa

oupling at the verties. We will later see that in this language the fermioni loop

(left diagram of (3.31)) exatly orresponds to a hange in the bosoni mass, while

the right diagram orresponds to a hange in the Yukawa oupling. Thus we on-

lude that in the bosonised theory the mean �eld results have to be augmented by

a orresponding hange in the Yukawa ouplings in order to obtain parametrisa-

tion invariant results. We will later inlude suh a shift of the ouplings by using

renormalisation group equations where both the bosoni potential and the Yukawa

ouplings beome sale dependent

7

.

A similar alulation of the Hartree and Fok terms above an also be performed

for an energy gap with d{wave symmetry in the partile{partile (or hole{hole)

hannel, orresponding to superondutivity (equation (2.51)). However, here the

\bosoni mean �eld" results are not reprodued as the momentum integrals vanish.

7

From the results of this setion one would expet that the Yukawa oupling should grow during

the ow thus leading to larger ritial temperatures than found in the simple mean �eld alulation.

The fat that the ritial temperatures are atually lowered is due to the fat that the right diagram

in (3.31) is not the only ontribution to the ow of h

a

that we onsider.



Chapter 4

Exat renormalisation group

equations

In this hapter we will onsider the expliit onstrution of a renormalisation group

equation for the (average) e�etive ation [11, 43℄. For a review on similar equations

and a historial overview see [3℄.

4.1 The average e�etive ation

Let us onsider a theory ontaining a omplex bosoni �eld û, û

�

, a real bosoni

�eld ŵ and a fermioni �eld

^

 ,

^

 

�

. We ollet the �elds into generalised �elds and

de�ne generalised soures for them
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(4.1)

Now we regularise the theory by adding an infrared uto�
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C

C

A

(4.3)

1

The indies � run over �eld type, momentum, internal indies et.

42



4.1. The average e�etive ation 43

to the original ation S[�̂℄ and de�ne the k{dependent funtional of the onneted

Green funtions of the regularised theory as

W

k

[J ℄ = ln

Z

D�̂ exp

�

� (S[�̂℄ + �S

k

[�̂℄) + J�̂)

�

: (4.4)

The funtion R

 

k

is to regularise the zero modes of the propagator, i.e. add a mass

to the fermions lose to the Fermi surfae. For momenta far from the Fermi surfae

(ompared to k) R

 

k

is to vanish rapidly so that the behaviour of these modes is

essentially unaltered. A similar task is assigned to the bosoni uto� funtions. In

the limit k ! 0 we demand that the regulators vanish so that one reovers the

original theory. For k ! �, where � is the sale the original theory is de�ned on,

we assume them to diverge

lim

k!0

R

�

k

= 0; lim

k!�

R

�

k

=1: (4.5)

We may now proeed to de�ne an e�etive ation in analogy to the de�nition

(2.59). By a Legendre transform with respet to the lassial �elds

� = h�̂i =

Æ

ÆJ

W

k

[J ℄; (4.6)

we obtain the funtional

~

�

k

[�℄ = J��W

k

[J ℄; (4.7)

where J = J [�℄ is a solution of the equation (4.6). As will beome lear in a moment

it is favourable to subtrat the uto� ation from this funtional and de�ne the

average e�etive ation as

�

k

[�℄ = J��W

k

[J ℄��S

k

[�℄ (4.8)

and establish the relations

Æ

Æ�

�

~

�[�℄ = �

ÆJ

j

Æ�

�

ÆW

ÆJ

�

+

ÆJ

j

Æ�

�

�

�

+M

��

J

�

=M

��

J

�

;

Æ

Æ�

�

�[�℄ =M

��

J

�

� R

k;��

�

�

= (JM)

�

� (�R

k

M)

�

;

M = diag(1; 1; 1;�1;�1):

(4.9)

As in (2.61) we may give an equivalent impliit de�nition of the average e�etive

ation:

exp(��

k

[�℄) =

Z

D�̂ exp

�

� (S[�̂+ �℄ + �S

k

[�̂℄) +

Æ�

k

Æ�

M�̂

�

; (4.10)
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where we have used the fat �S

k

is quadrati in the �elds. We also note the identity

(see (2.62))

~

�

(2)

k;��

W

(2)

k;�

=M

�

: (4.11)

The average e�etive ation is the e�etive ation of a theory ontaining an

extra \mass" term desribed by the ation S[�̂℄ +�S

k

[�̂℄. Sine the e�etive ation

respets all (linearly realised) symmetries of the original ation [42℄, this also applies

to �

k

[�℄ for all k, if the regulator �S

k

[�̂℄ respets the symmetries. It is thus possible

to expand the average e�etive ation in invariants with respet to these symmetries.

The limits (4.5) lead to orresponding limits for the average e�etive ation

lim

k!0

�

k

[�℄ = �[�℄; lim

k!�

�

k

[�℄ = S[�℄: (4.12)

This is why we hose to subtrat the regulator in the de�nition of �

k

[�℄: for large

\uto�" k this funtional is nothing but the original ation. If we an somehow

smoothly interpolate between a large and a small uto� we are also able to alulate

the e�etive ation by starting with the original ation. This is what the \ow

equation" desribed in the next setion is all about. The �rst limit in (4.12) is

apparent from the de�nition (4.8), while the seond follows more easily from (4.10)

by noting that lim

R

k

!1

exp(�

1

2

�̂R

k

�̂) essentially ats like a delta funtional Æ[�̂℄

under the integral.

4.2 A ow equation

In this setion we will derive a di�erential equation for the uto� dependene of the

average e�etive ation.

We speify the seond funtional derivative in symmetri form ontaining both

left and right derivatives

2

F [�

0

+ �℄ = F [�

0

℄ + �

�

F

(1)

�

[�

0

℄ +

1

2

�

�

F

(2)

��

[�

0

℄�

�

+ � � � : (4.13)

2

When using only left derivatives F [�

0

+ �℄ = � � � +

1

2

�

�

�

�

^

F

(2)

��

[�

0

℄ + � � � , it is preferable to

reparametrise �S

k

[�̂℄ =

1

2

�̂

�

�̂

�

^

R

k;��

= û

�

R

u

k

û +

1

2

ŵ

�

R

w

k

ŵ +

^

 

�

R

 

k

^

 . The derivation of the ow

equation is essentially idential to the one presented but with R

k

!

^

R

k

and F

(2)

!

^

F

(2)

. Written

out in omponents this of ourse leads to the same equation.
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For the k{derivative of

~

�

k

one now obtains:

�

k

~

�

k

[�℄j

�

= ��

k

W

k

[J ℄j

J

� �

k

J �

ÆW

k

ÆJ

j

k

+ �

k

J � �

= ��

k

W

k

[J ℄j

J

= h�

k

�S

k

i =

1

2

�

k

R

k;��

h�

�

�

�

i

=

1

2

�

k

R

k;��

�

W

(2)

k;��

+ h�

�

ih�

�

i

	

=

1

2

�

k

R

k;��

W

(2)

k;��

+�S

k

[�℄;

(4.14)

where we used the fat that W

k

[J ℄ is the generating funtional of onneted Green

funtions, i.e. W

(2)

k;��

= h�

�

�

�

i



= h�

�

�

�

i � h�

�

ih�

�

i. With the aid of (4.11) we

immediately obtain a ow equation for the average e�etive ation

�

k

�

k

[�℄ =

1

2

�

k

R

k;��

�

�

(2)

k

+R

k

�

�1

�

M

�

=

1

2

STr

�

�

k

R

k

[�

(2)

k

+R

k

℄

�1

	

;

(4.15)

where the \supertrae" runs over �eld type, momentum, internal indies et. (We

have olleted some properties of the supertrae in appendix B.3.)

This equation is exat { we have only performed formal manipulations. In fat

just as exat as the original funtional integral de�nition of the e�etive ation

(2.59). However, it is an equation for an in�nite number of ouplings and hene by

no means aessible to an exat solution. The usefulness of (4.15) will only show up

if we are able to make sensible approximations to the ow equation. We will ome

bak to this later.

Let us �rst rewrite the ow equation in a very useful way making ontat to

perturbation theory. De�ne the derivative (the index i ounts the �eld types)

~

�

k

= (�

k

R

i

k

)

�

�R

i

k

: (4.16)

With the aid of this derivative the ow equation an be ast in the form

�

k

�

k

[�℄ =

1

2

STr

�

~

�

k

ln[�

(2)

k

+R

k

℄

	

: (4.17)

This has to be ompared with the perturbative one loop result

�

k

[�℄ = S[�℄ +

1

2

STr ln[S

(2)

+R

k

℄;

where we have regularised the propagators. Performing the k{derivative of this equa-

tion leads to a one loop ow equation. A \renormalisation group improvement"

S

(2)

! �

(2)

k

promotes this equation to a non{perturbative exat ow equation. This

allows us to identify the right hand side of (4.17) as a sum of one loop diagrams,
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projected flow

true flow

PSfrag replaements

g

1

g

2

g

i

Figure 4.1: The \true" ow through the parameter spae will in general not be

idential to the trunated one.

where all ouplings have been replaed by their renormalised ounterparts and mo-

mentum integrations, sums over internal indies et. are performed after the

~

�

k

derivative.

Obtaining the ow equation for some oupling thus amounts to summing all one

loop diagrams for this oupling, evaluating the

~

�

k

derivative and then alulating

the trae. However, we may be able to perform parts of the trae �rst if the uto�

does not depend on it. For example we will later be able to �rst sum over Matsubara

indies before performing the

~

�

k

derivative.

The ow equation (4.15) is a omplex di�erential equation for funtionals. Let

us try to takle it by expanding the e�etive ation in powers of the �elds

�

k

[�℄ =

1

X

n=0

X

�

i

�

�

1

� � ��

�

n

�

(n)

k

(�

1

; : : : ; �

n

): (4.18)

The ow equations of the n{point funtions �

(n)

k

an easily be derived from (4.15) by

appropriate funtional derivatives. However, the ow of some n{point funtion will

in general ontain higher n{point funtions. This is a general feature: if we perform

a systemati expansion of the e�etive ation, the set of ow equations will not be

losed. We have to trunate the expansion at some point.

Let us take a look at this \trunated" ow. The \true" ow through the in�nite

dimensional parameter spae spanned by the ouplings g is de�ned by the ow
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equation (4.15). This leads to a trajetory g(k), where k is the uto� parameter,

winding through this spae. If one onsiders a trunated theory one is on�ned to

an m{dimensional submanifold of this parameter spae. In general the true ow

will leave this submanifold. In order to obtain the trunated ow ~g(k) one has

to projet the true ow on to the submanifold after eah renormalisation step:

g(k + dk)

P

�! ~g(k + dk). This is shown shematially in �gure 4.1 for two iterations.

Observe that in general it is not true that g(k

0

)

P

�! ~g(k

0

), beause one has to projet

after eah renormalisation group step.

In general one would expet a better agreement between the trunated and the

true ow the more ouplings g are onsidered. It turns out, however, that often the

hosen \oordinate system" plays an equally important role. For example, in a sys-

tem with spontaneous symmetry breaking an expansion around the (k{dependent)

vauum expetation value leads to far better results than a simple expansion in

powers of �elds [2℄.

Note that in the ow equation (4.15) the regulator funtion R

k

appears in the

\numerator" as an infrared regulator as well as in the \denominator". For an ap-

propriate hoie of R

k

this means that e�etively only a small interval of momenta

ontributes to the integrals. In addition our regularisation sheme is thus also able

to deal with possible ultraviolet divergenies.

4.3 A standard example: the e�etive potential in

O(N) theories

In this setion we want to alulate the ow equation for the e�etive potential in a

model with O(N)-symmetry

�

k

[�℄ =

1

2

X

Q

Z

�

�

i

(�Q)P

ij

(Q)�

j

(Q)+

X

X

U(�(X)); �(X) =

1

2

�

i

(X)�

i

(X) (4.19)

where the initial onditions ould be standard �

4

theory, i.e. P (Q) = Q

2

, Z

�

= 1

and U(�(X)) =

�

4!

�

4

(X). The potential U(�) is de�ned as the part of the e�etive

ation for homogeneous values of the �elds. The ow for the potential an thus be

derived by evaluating the ow equation (4.15) for a onstant value of the �eld �.

The matrix of seond funtional derivatives

�

(2)

ij

(Q) = Z

�

P (Q)Æ

ij

+ Æ

ij

U

0

(�) + �

i

�

j

U

00

(�) (4.20)

has the eigenvalues Z

�

P (Q) +

^

M

2

i

with

^

M

2

i

=

�

U

0

(�) + 2�U

00

(�) for i = 1

U

0

(�) for i = 2 : : : N:

(4.21)
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The ow equation for the e�etive potential thus reads

�

k

U(�) =

1

2

X

Q;i

~

�

k

ln[Z

�

P (Q) +

^

M

2

i

+R

k

(Q)℄

=

1

2

X

Q

�

k

R

k

(Q)

�

1

Z

�

P (Q) + U

0

(�) + 2�U

00

(�) +R

k

(Q)

+

N � 1

Z

�

P (Q) + U

0

(�) +R

k

(Q)

�

(4.22)

or in terms of resaled and renormalised quantities

~� = Z

�

k

2�d

�; u(~�) = k

�d

U(�); t = ln k; � = ��

t

lnZ

�

; (4.23)

�

t

u(~�) =� du(~�) + k

�d

�

t

U(�)j

~�

=� du(~�) + (� + d� 2)~�u

0

(~�) + k

�d

�

t

U(�)j

�

;

(4.24)

where we have used the fat that after a hange of variables from f(x; y) to

f(x; g(x; y)) the derivatives read

�f

�x

j

y

=

�f

�x

j

g

+

�f

�g

j

x

�g

�x

j

y

.

In equation (4.22) one an learly see the appearane of the massless Goldstone

modes, when the symmetry is spontaneously broken as U

0

(�) vanishes at the min-

imum of the potential. The O(N) symmetry with

N(N�1)

2

independent symmetry

transformations is broken down to O(N � 1) with

(N�1)(N�2)

2

transformations. The

number of broken symmetries is just the di�erene: N �1. This exatly orresponds

to the number of massless modes in (4.22) in aord with Goldstones theorem.

We will later need these equations for the running of the bosoni potential in our

desription of the Hubbard model.



Chapter 5

Loop alulations

As we have seen in the previous hapter, the renormalisation group equation for the

e�etive ation has essentially the form of a one loop equation. As a preparation

for a renormalisation group study we will therefore take a look at some one loop

alulations in this hapter. Our interest in them is twofold: �rst, a one loop alu-

lation will reprodue the results of a renormalisation group study for large values of

the uto�. We will therefore let us guide by one loop alulations in order to obtain

useful trunations. Seond, we know that we an obtain the ow equation for some

partiular oupling from the one loop result by applying the

~

�

k

operator to it.

In this hapter we will onsider the loop orretions to the bosoni propagator

in order to �nd a suitable trunation and later briey touh on the loop orretions

to four fermion ouplings in the bosonised theory as one might hope to obtain

some onstraint for the hoie of parameters �

i

in the bosonisation proedure. More

extensive one loop alulations for the Yukawa ouplings et. are listed in appendix

B.5.

5.1 The bosoni propagator to one loop order

Starting from the ation (2.42) (together with (2.50)), we want to alulate the one

loop orretions to the bosoni propagators. Due to U(1) invariane we know that

there will be no terms mixing real bosons (orresponding to partile{hole pairs) and

omplex bosons (orresponding to partile{partile and hole{hole pairs). Similarly,

no mixing between the spin triplet and spin singlet bosons ours beause of SU(2)

49
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invariane. The ontributing diagrams are

�

KK

Q

K +Q

w w



KK

Q

K �Q

u

�

u

(5.1)

where the solid lines denote fermions and the dashed bosons. We have olletively

alled the real bosons w and the omplex bosons u.

Note that alulating these diagrams is nothing else but alulating the fermioni

determinant for �xed external bosoni �elds just as we did in the mean �eld alu-

lation and then expand the determinant in numbers of bosoni �elds. However, this

time we will allow arbitrary external momenta.

Let us parametrise the ation (2.42), (2.50) in the form (� = (u; u

�

; w;  ;  

�

))

S[�℄ =

X

Q
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0
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�

(Q

0
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)

+

�

u

�



(K) 

�

(Q)V

u

�

��;

(Q;Q

0

) 

�

(Q
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�

�

(Q)V

u

��;

(Q;Q

0

) 

�

�

(Q

0

)

�

Æ(K �Q�Q

0

)

	

(5.2)

with

V

�

(Q;Q

0

) = h

�

(Q�Q

0

)
 1

spin

; h

�

(K) = �

�
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(os k

x

+ os k

y

);

V
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) = h
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 ~�
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(K) = �
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(os k

x

+ os k
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(5.3)
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) = h
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 �
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= �
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(5.4)

and V

u

(Q;Q

0

) = �V

u

�

(�Q;�Q

0

). The propagators are

P

 

(K) = i!

Q

+ �

Q

� �; P

�

(K) = h

�

(K); P

m

(K) = h

m

(K);

P

s

(K) = h

s

; P

e;d

(K) = h

d

:

The fermioni part of the ation at �xed bosoni �elds an be written as (we

suppress the momentum labels { they an be restored in the end of the alulation

by momentum onservation)

~

S[ ;  

�
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1

2

X

ab
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�

℄
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;
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�
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| {z }
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~
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�

�

b

: (5.5)
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The fermioni one loop orretion to the e�etive ation is (.f. appendix B.5)

� = S +��; �� = �

1

2

Tr ln

~

S

(2)

: (5.6)

Now split S

(2)

=

~

P +�

~

P into a part ontaining only the fermioni propagator and

a part ontaining bosoni �elds and expand in the number of bosoni �elds
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(5.7)

The �rst term is a vauum graph, the seond desribes tadpoles and the third yields

the loop orretions to the propagators

�� =

Æ

=

�

+

�

+

�

+

�

+ � � � : (5.8)

Restoring momenta one obtains for the loop orretion of the bosoni propagators
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(5.9)

where we have de�ned G
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G

 

(Q)G

 

(Q

0

) =

�!

n

!

n

0

+ �

q

q

q

�

q

q

q

0

+ i[�

q

q

q

!

n

0

+ �

q

q

q

0

!

n

℄

[!

2

n

+ �

2

q

q

q

℄[!

2

n

0

+ �

2

q

q

q

0

℄

: (5.10)

For !

0

n

= !

n

, i.e. vanishing external Matsubara frequeny, the imaginary part van-

ishes due to the Matsubara sum in (5.9). For �

Q

= ��

Q+�

�

�

and � = 0 the imaginary

part also vanishes under the momentum integral (the vertex{part is always symmet-

ri under Q! Q+ �

�

�).

The Matsubara sums in (5.9) an be performed analytially

1

S(m; a; b) =

X

n2Z

ab� (2n+ 1)(2(n+m) + 1)

[a

2

+ (2n+ 1)

2

℄[b

2

+ (2(n+m) + 1)

2

℄

= �

�

2

(a� b)(tanh

a�

2

� tanh

b�

2

)

4m

2

+ (a� b)

2

; (5.11)
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whih has the following limits

S(0; a; a) = �

�

2

4

osh

�2

a�

2

; S(0; a;�a) = �

�

2

tanh

a�

2

a

: (5.12)

We now see that the mass orretions obtained in the mean �eld approximation

(3.18) are of ourse exatly the same as the bosoni propagator orretions for

K = (0;�

�

�) for the ~a{boson and K = (0;0

0

0) for the d{boson. However, here we are

able to look at the propagator orretions for di�erent external momenta.

A main reason for alulating the one loop orretions to the bosoni propaga-

tors was to get a feeling for the momentum dependene the propagators are likely to

obtain under a renormalisation group ow. For example, the boson ~m has a \las-

sial" (inverse) propagator P

m

(K) = �

m

+ �



(os k

x

+ os k

y

) whih is independent

of the Matsubara frequeny. Furthermore for small or vanishing �



the momentum

dependene is very weak. In the following we will therefore take a loser look at a

numerial evaluation of P

m

(K) + ��

m

(K) for di�erent hoies of the external mo-

menta. We will restrit ourselves to �

Q

= 2t(os q

x

+ os q

y

) = ��

Q+�

�

�

, i.e. to nearest

neighbour hopping of the fermions. Furthermore we hoose �

m

= t while the other

�

i

vanish; this orresponds to U=t = 3. The funtion we are interested in is thus

P

m

1 loop

(K = (!

m

; k

k

k)) = h

m

(K) + h

2

m

(K)

2T

(�T )

2

Z

�

��

d

2

q

(2�)

2

S(m;

�

q

q

q

�T

;

�

q

q

q+k

k

k

�T

) (5.13)

with h

m

(K) = �

m

.

In �gure 5.1 we have plotted P

m

1 loop

(K) for di�erent values of the external mo-

menta at vanishing external Matsubara frequeny. The left �gure shows the situation

well above the ritial temperature T



� 0:2, where the propagator develops a zero

mode, while in the right �gure the temperature is well below T



. Note that the

propagator is smallest for k

k

k = �

�

�, i.e. the antiferromagnet is the favoured mode of

propagation above T



. Also notie the development of sharp rests at low tempera-

ture (right �gure) due to the singularities in the fermioni propagators at the Fermi

surfae.

Figure 5.2 shows the dependene of P

m

1 loop

(K) on the external Matsubara fre-

queny !

m

for two values of the external momenta. Note that the !

m

= 0 mode is

the one that is hanged most. For k

k

k = 0

0

0 this is even the only mode that is hanged

at all, while ��

m

vanishes in the other ases.

1

This an also be expressed as follows

<

X

n2Z

1

i!

n

��

1

i!

n+m

��

=

X

n2Z

���!

n

!

n+m

[�

2

+!

2

n

℄[�

2

+!

2

n+m

℄

=

1

(�T )

2

S(m;

�

�T

;

�

�T

) =

[�� �℄[f(�)� f(�)℄

(2m�T )

2

+ (� � �)

2

;

where f(x) =

1

1+exp(x)

is the Fermi{funtion.
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Figure 5.1: The one loop orreted bosoni kineti term in the e�etive ation for

the boson ~m as a funtion of the external momenta at T = 0:5t (left) and T = 0:15t

(right) for !

m

= 0; U=t = 3.

In the next hapter we will try to make use of the observations of this setion in

order to formulate suitable trunations for the bosoni propagators. Similar obser-

vations an be made for the propagators of the other bosons.

5.2 Four fermion terms

Let us take a look at the di�erent one loop graphs that will play an essential role for

the ow equations. We again use solid lines for fermions and dashed lines for bosons

as in (5.1). However, now we do not put arrows on the lines to indiate the momen-

tum ow. The diagrams an then be interpreted for both real and omplex bosons.

For the former one fermioni line with ingoing and one with outgoing momentum

meet at eah vertex, while for the latter two ingoing or two outgoing lines meet. We

have olleted the algebrai expressions represented by the graphs in appendix B.5.

Remember that the renormalisation group equation orresponding to some oupling

an be found by applying a derivative with respet to the uto� funtion to the

one loop result. We will therefore speak of the orretions under the ow by these

diagrams in this spirit. The �rst set of diagrams

���

(5.14)

are the obvious orretions to the bosoni and fermioni propagators respetively

and the vertex orretions. These orretions only hange the form of ouplings (i.e.



54 Chapter 5. Loop alulations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

-10 -5 0 5 10

P

m

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

P

m

Figure 5.2: The one loop orreted bosoni kineti term in the e�etive ation for

the boson ~m as a funtion of the external Matsubara frequeny at T = 0:2t and

k

k

k = 0

0

0 (left) and k
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k = �
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� (right); U=t = 3.

masses, kineti terms, Yukawa{ouplings et.) already inorporated in the \lassial"

ation (2.42). Nevertheless, there is of ourse the problem of how the ompliated

momentum dependene of the orreted ouplings an be aptured eÆiently in a

suitable representation.

In a further expansion there will also be diagrams orresponding to a fermioni

loop with di�erent numbers of external bosoni �elds as in (5.8). We will ollet

these ontributions in an e�etive potential for the bosoni �elds. However, we also

have to fae purely fermioni diagrams, like

��

: (5.15)

These ontributions are ertainly unwanted as we tried to get rid of the four fermion

terms in the ation by a partial bosonisation and would like to deal with a theory

of fermions oupled via a Yukawa oupling to bosons that arry the important

information about spontaneous symmetry breaking. These four fermion terms are

by no means small in omparison with the diagrams generated by the bosoni parts

of the ation

2

��

(5.16)

and will therefore supposedly play an important role in the ow equations.

2

These diagrams are obtained by solving the bosoni �eld equation

Æ�

ÆB

= J

B

for the bosoni

�elds and inserting the result B into the mixed e�etive ation to obtain a purely fermioni e�etive

ation �[ ;  

�

℄ = �[ ;  

�

; B℄.
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The generation of terms ontaining higher fermioni vertex funtions is a general

feature of partially bosonised theories and it is important to develop a method that

an deal with them.

In a �rst attempt we have investigated if it is possible to hoose the parameters

�

i

parametrising our bosonisation so that the diagrams in (5.15) beome small or

vanish. This would then orrespond to an optimal hoie of ouplings that pins down

the arbitrariness in the parameters to a de�nite value, thus enlarging the preditive

power of the mean �eld results. However we �nd that minimising the four fermion

loops orresponds to setting 3�

m

� �

�

= 0, i.e. U = 0. However, noninterating

fermions are not what we wanted to investigate, so we have to �nd other means of

dealing with multi fermion verties.

A promising formalism for this task was proposed in [18℄. The authors use the

freedom to rede�ne the bosoni �elds in the ourse of the renormalisation group ow

so that the generated four fermion terms are anelled. This orresponds to a kind

of rebosonisation on the y. We will deal with this approah in the beginning of the

next hapter.

We remark that the diagrams of (5.15) and (5.16) are exatly the ones one ob-

tains in a purely fermioni theory if we reinterpret the dotted lines as the fermioni

interation just as in (3.23). The exat value of eah diagram is of ourse dependent

on the speial hoie of parametrisation hoosen for the four fermion oupling. How-

ever, if we use the parametrisation as applied in the bosonisation proedure (2.40),

there is atually a one to one orrespondene between the diagrams in the bosonised

and the purely fermioni theory.



Chapter 6

Renormalisation group analysis

This hapter is dediated to the appliation of the renormalisation group formalism

presented in hapter 4 to the Hubbard model in its partially bosonised form. Our

initial ondition will be the \lassial" ation of the Hubbard model presented in

hapter 2. As has already been disussed in hapter 4 one has to make approxima-

tions to the full ow equation in order to be able to solve them, i.e. we will trunate

the in�nite set of ouplings generated under the ow and solve the equations in this

subset. For a suitable hoie of this trunation we will let us guide by the results

obtained in hapter 5 in a one loop study.

In the �rst setion of this hapter we want to present a formalism for translating

the four fermion interation terms generated during the ow into a hange of the

Yukawa{ouplings of the bosonised theory. The following setions deal with spei�

trunations. In the �rst one we deal with antiferromagnetism at low hemial po-

tential. A seond one investigates the degree of dependene of physial results on

the ambiguous hoie of parameters �

i

in our trunations.

6.1 Rebosonisation of fermioni interations

As we have seen in the last hapter any partially bosonised theory will generate four

fermion interation terms under a renormalisation group step orresponding to the

diagrams

��

: (6.1)

However, we wanted to apture the ompliated behaviour of higher fermion verties

in the bosoni language { this was what the bosonisation proedure was all about.

One might suspet that it should be possible to rebosonise the fermioni oupling

56
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obtained after some renormalisation group step by a suitable �eld rede�nition of the

bosoni �elds. This is indeed the ase as was shown in [18℄ (see also [26℄).

Consider a theory with (average e�etive) ation

�

k

[ ;  

�

; �℄ =

X

Q

 

�

(Q)P

 ;k

 (Q) +

1

2

X

Q

�(�Q)P

�;k

(Q)�(Q)

�

X

Q

h

k

(Q)�(Q)

~

�(�Q) +

X

Q

�

k

(Q)

~

�(Q)

~

�(�Q);

(6.2)

where

~

� is the fermioni bilinear orresponding to the bosoni �eld �, e.g.

~

�

i

(K) =

P

Q

 

�

(Q)�

i

 (Q+K), and the initial ondition for the purely fermioni oupling is

�

�;k

= 0 at some initial sale k.

Now perform a renormalisation group step from the sale k to the sale k =

k � �k. The hange in sale, �k, is supposed to be so small that the hanges in

ouplings are also small; they are alulated by the ow equation (4.15) for the

trunation (6.2). As we have seen, the four fermion oupling �

k

will in general be

di�erent from zero, say ��

k

, at the new sale k.

We will use our freedom in the de�nition of our bosoni �elds to onsider a �eld

rede�nition at the sale k (we put �

k

= � at the initial sale)

�

k

(Q) = �

k

(Q) + ��

k

~

�(Q); (6.3)

where ��

k

is an up to now arbitrary funtion. Inserting this into (6.2) we �nd:

�

k

[ ;  

�

; �

k

℄ =

X

Q

 

�

(Q)P

 ;k

 (Q) +

1

2

X

Q

�

k

(�Q)P

�;k

(Q)�

k

(Q)

�

X

Q

[h

k

(Q)���

k

(Q)P

�;k

(Q)℄�

k

(Q)

~

�(�Q)

+

X

Q

[��

k

(Q)� h

k

(Q) ��

k

(Q)℄

~

�(Q)

~

�(�Q) +O[(��

k

)

2

℄;

(6.4)

where h

k

(Q) = h

k

(Q) + �h

k

(Q). Due to the �eld rede�nition the hange at �xed

�elds of both the four fermion oupling and the Yukawa oupling is supplemented

by a term proportional to the arbitrary parameter ��

k

. The full hanges in oupling

read

�h

k

(Q) = �h

k

(Q)���

k

(Q)P

�;k

(Q);

��

k

(Q) = ��

k

(Q)� h

k

(Q) ��

k

(Q):

(6.5)

This is exatly what we need if we want to demand that the four fermion oupling

also vanishes at sale k. We may absorb the hange in the four fermion oupling by
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adjusting the �eld rede�nition. This in turn leads to the full hange of the Yukawa

oupling

�h

k

(Q) = �h

k

(Q)�

P

�;k

(Q)

h

k

(Q)

��

k

(Q): (6.6)

By iterating this proedure after eah renormalisation group step from some sale

k to sale k � �k and so on we may thus demand that the four fermion oupling

vanishes for all sales by adjusting the parameter ��

k

after eah step.

Let us see how we an implement this reasoning into the renormalisation group

formalism of hapter 4. In (4.15) the hange of sale �

k

�

k

[�℄j

�

is alulated at �xed

�elds. Hene if we in addition perform a shift in the �elds as above (6.3) orrespon-

ding to

�

k

�

k

(Q) = � �

k

�

k

(Q)

~

�(Q); (6.7)

the ow equation reads
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(6.8)

and this hanges the ow equations for h

k

and �

k

to

�

k

h

k

(Q) = �

k

h

k

(Q)j

�

k

� �

k

�

k

(Q)P

�;k

(Q);

�

k

�

k

(Q) = �

k

�

k

(Q)j

�

k

� h

k

(Q) �

k

�

k

(Q):

(6.9)

Again we may demand that the purely fermioni oupling vanishes for all sales k

whih leads to the modi�ed ow equation for the Yukawa oupling

�

k

h

k

(Q) = �

k

h

k

(Q)j

�

k

�

P

�;k

(Q)

h

k

(Q)

�

k

�

k

(Q)j

�

k

; (6.10)

whih exatly orresponds to the adjustment \by hand" done above.

This kind of proedure an also be applied to omplex �elds and to more than

one �eld.

6.2 First trunation: Antiferromagneti be-

haviour lose to half �lling

It is now time to apply the renormalisation group formalism developed in the pre-

eeding hapters to the Hubbard model. In this setion we will take a look at the
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region lose to half �lling and low temperatures. At and lose to half �lling the

system is dominated by an antiferromagneti spin density. In this setion we will

therefore leave aside all bosons apart from the spin density ~m(X). There is then no

ambiguity how the parameter �

m

is related to the original fermioni oupling U .

However, under the ow ouplings with other momentum dependenies will appear

that are not inluded in this simple ansatz.

Let us now try to de�ne a suitable trunation for the e�etive ation. The initial

ondition for the ow equation (4.15) is the lassial ation (2.42). In the ourse

of the ow towards lower sales the average e�etive ation will in general pik up

all possible ouplings that are ompatible with the symmetries of the theory. We

have to trunate this set of ouplings somewhere to make progress. We will make

an ansatz ontaining a fermioni kineti term �

 ;k

, a term ontaining a Yukawa like

interation between fermions and bosons �

Y;k

and a bosoni term. (A term ontaining

a four fermion interation is to be rebosonised as skethed in the previous setion.)

As we are mainly interested in antiferromagneti behaviour we de�ne the boson

(�

�

� = (�; �))

~a(Q) = ~m(Q + �

�

�); (6.11)

whose zero momentum mode ~a(0) orresponds to an antiferromagneti spin density.

For the fermioni kineti term we adopt the lassial part unhanged

�

 ;k
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X

Q

 

�

(Q)P

 

(Q) (Q);
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(Q) = i!

Q

+ �

Q

� �; �

Q

= �2t(os q

x

+ os q

y

);

(6.12)

where we restrit ourselves to nearest neighbour hopping.

Similarly the Yukawa oupling term is taken to be

�

Y;k

[ ;  

�

;~a℄ = �h

a

X

KQQ

0

~a(K) 

�

(Q)~� (Q

0

)Æ(K �Q +Q

0

+ �

�

�) (6.13)

with sale dependent (but momentum independent) Yukawa oupling h

a

.

As an ansatz for the purely bosoni part we take a kineti term augmented by

an e�etive potential

�

a;k

[~a℄ =

1

2

X

Q

~a(�Q)P

a

(Q)~a(Q) + VU [~a℄; (6.14)

where V =

P

X

1 is the two dimensional volume divided by temperature.

Due to SU(2) symmetry the potential an only depend on the rotation invariant

ombination

�(K;K

0

) =

1

2

~a(K)~a(K

0

): (6.15)
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Furthermore we will make an expansion in powers of the �eld ~a up to a quarti

interation. We take di�erent trunations in the symmetri regime (SYM) and in

the regime with spontaneous symmetry breaking (SSB) as it is preferable to always

expand around the minimum of the potential

SYM : VU [~a℄ =

X

K
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2

a

�(�K;K)

+

1

2

X

K

1

:::K

4

�

a

Æ(K

1

+K

2

+K

3

+K

4

)�(K

1

; K

2

)�(K

3

; K

4

);

SSB : VU [~a℄ =

1

2

X

K

1

:::K

4

�

a

Æ(K

1

+K

2

+K

3

+K

4

)

(�(K

1

; K

2

)� �

0

Æ(K

1

)Æ(K

2

))(�(K

3

; K

4

)� �

0

Æ(K

3

)Æ(K

4

))

(6.16)

with sale dependent mass m

a

, minimum �

0

and oupling �

a

.

The bosoni propagator on the lassial level is simply a mass term in our ase

(no inlusion of e and d bosons, i.e. �



= �

x

= �

y

= 0). We let us guide by the loop

results of hapter 5 for the momentum dependene and take

P

a

(Q) = Z

a

Q

2

= Z

a

(!

2

B

+ [q

q

q℄

2

); (6.17)

where Z

a

is a sale dependent wave funtion renormalisation and the funtion [q

q

q℄

2

is de�ned as [q

q

q℄

2

= q

2

x

+ q

2

y

for q

i

2 [��; �℄ and ontinued periodially otherwise.

The ansatz [q

q

q℄

2

for the spatial part is to mimi the momentum dependene of

�gure 5.1. The Matsubara dependene is more diÆult. A look at �gure 5.2 would

rather suggest an ansatz where only the part for the smallest frequenies is hanged,

while the higher frequeny modes retain their original mass term. Lowering the sale,

the !

B

= 0 mode will then dominate the propagation more and more. We mimi

this behaviour by adding the !

2

B

term to the propagator instead and give all modes

the same mass.

One would by the way suspet a similar thing for the quarti boson oupling

�

a

, whih at large uto� is generated by the fermion loop

�

: the low frequeny

modes are supposedly hanged most, while we take �

a

to be independent of !

B

.

Again the !

2

B

term in the propagator will mimi this e�et by suppressing all high

frequeny modes that ouple to suh a vertex. For example in

�

or

�

only

low frequeny modes will ontribute to the loop while others are suppressed by the

propagator.

6.2.1 Choie of the regulators

In addition to the trunation we still have to speify the regulator funtions for the

renormalisation group equations.
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Fermioni regulator:

The fermioni uto� funtion is inspired by the fat that at nonvanishing tempera-

ture the propagator P

 

(Q) = i!

Q

+ �

Q

� � has no zero{modes. This means that the

temperature itself ats as a regulator. We therefore hoose

R

 

k

(Q) = i!

Q

(

T

k

T

� 1) = i2�(n

Q

+

1

2

)(T

k

� T ); (6.18)

whih has the e�et of replaing the temperature T by some funtion T

k

in the

fermioni propagator. We will later speify this funtion to be

T

2

k

= T

2

+ k

2

; then �

k

T

k

=

k

T

k

!

(

1 if k � T

k=T if k � T

; (6.19)

whih very e�etively integrates out the fermions.

Bosoni regulator:

For the bosoni regulator we take

R

a

k

(Q) = Z

a

(k

2

�Q

2

)�(k

2

�Q

2

); (6.20)

where Q

2

is de�ned in (6.17). This leads to a full propagator of the form

P

a

(Q) +R

a

k

(Q) = Z

a

�

Q

2

�(Q

2

� k

2

) + k

2

�(k

2

�Q

2

)

�

| {z }

=:Q

2

k

=

(

Z

a

Q

2

if Q

2

> k

2

Z

a

k

2

if Q

2

< k

2

:

(6.21)

The regulator funtion (6.20) thus hampers the propagation of modes with small

momenta and Matsubara frequenies. Therefore, by lowering k, we average over

larger and larger regions in position spae. We may therefore relate properties of the

average e�etive ation �

k

at a given sale k to properties of size 1=k in position

spae. However, the uto� does not allow to perform the Matsubara sums in loops

ontaining bosoni propagators thus slowing down the numerial evaluation.

6.2.2 The ow equations at half �lling

Bosoni potential

We de�ne the ow of masses and ouplings as follows

1

:

SYM: �

t

m

2

a

=

d

d�

(�

k

U(�))j

�=0

; �

t

�

a

=

d

2

d�

2

(�

k

U(�))j

�=0

;

SSB: �

t

�

0

= �

1

�

d

d�

(�

k

U(�))j

�=�

0

; �

t

�

a

=

d

2

d�

2

(�

k

U(�))j

�=�

0

:

(6.22)

1

The ow of the minimum is inferred from the fat that U

0

(�

0

) = 0 and hene

d

dk

U

0

(�

0

) =

�

k

U

0

(�

0

) + U

00

(�

0

)�

k

�

0

= 0.
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The ow equation for the potential itself an diretly be read o� from the results of

the mean{�eld alulation (3.15) and the O(N)-symmetri model (4.22)

�

t

U(�) = �

t

U

B

(�) + �

t

U

F

(�)

=

1

2

X

Q;i

~

�

t

ln[P

a

(Q) +

^

M

2

i

(�) +R

ak

(Q)℄� 2T

Z

�

��

d

2

q

(2�)

2

~

�

t

ln osh y(�); (6.23)

where the \masses" M

2

i

are de�ned as

^

M

2

i

(�) =

�

(m

2

a

+ 3�

a

�;m

2

a

+ �

a

�;m

2

a

+ �

a

�)

i

SYM

�(3�� �

0

; �� �

0

; �� �

0

; )

i

SSB

(6.24)

and we have de�ned the funtion

y(�) =

q

�

2

q

q

q

+ 2h

2

a

�=Z

2

 

=(2T

k

): (6.25)

With the aid of (6.22) we may now derive the ow equations for the parameters

in the e�etive potential. However, �rst we introdue resaled and renormalised

quantities

2

:

m

2

a

=

m

2

a

Z

a

k

2

; �

0

= Z

a

�

0

; �

a

=

�

a

Z

2

a

k

2

; h

2

a

=

h

2

a

Z

2

 

Z

a

k

2

:

With the de�nitions �

a

= ��

t

lnZ

a

(anomalous dimension), t = ln k and

P

Q

�

P

Q

�(k

2

�Q

2

) we get in the symmetri (SYM) phase:

�

t

m

2

a

=�

5

2

�

a

X

Q

2� �

a

(1�Q

2

=k

2

)

k

2

(1 +m

2

a

)

2

+ (k�

k

T

k

)h

2

a

T

2T

3

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(0)

y(0)

+

1

osh

2

y(0)

�

� (2� �

a

)m

2

a

;

(6.26)

�

t

�

a

=11�

2

a

X

Q

2� �

a

(1�Q

2

=k

2

)

k

2

(1 +m

2

a

)

3

� k

2

(k�

k

T

k

)h

4

a

T

8T

5

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(0)

y

3

(0)

+

2y(0) tanh y(0)� 1

y

2

(0) osh

2

y(0)

�

� 2(1� �

a

)�

a

:

(6.27)

2

Note that some of these quantities are not dimensionless. However, for small uto� ompared

to the temperature the theory beomes essentially two dimensional due to dimensional redution.

In this ase the above funtions have the desired sale dependene.
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In the broken (SSB) phase we get:

�

t

�

0

=

1

2

X

Q

2� �

a

(1�Q

2

=k

2

)

k

2

�

3

(1 + 2�

a

�

0

)

2

+ 2

�

� (k�

k

T

k

)

h

2

a

�

a

T

2T

3

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(�

0

)

y(�

0

)

+

1

osh

2

y(�

0

)

�

� �

a

�

0

;

(6.28)

�
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a

X
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a

(1�Q

2

=k

2

)

k

2

�

9

(1 + 2�

a

�

0

)

3

+ 2

�

� k

2

(k�

k

T

k

)h

4

a

T

8T

5

k

Z

�

��

d

2

q

(2�)

2

�

tanh y(�

0

)

y

3

(�

0

)

+

2y(�

0

) tanh y(�

0

)� 1

y

2

(�

0

) osh

2

y(�

0

)

�

� 2(1� �

a

)�

a

;

(6.29)

where

y(�

0

) =

q

�

2

Q

+ 2k

2

h

2

a

�

0

=(2T

k

): (6.30)

Note that for (k < 2�T ^ k < �) we are able to evaluate the

P

Q

{sum and �nd

P

Q

(2� �

a

(1�Q

2

=k

2

)) = k

2

T (4� �

a

)=(8�).

These equations all have a simple diagrammati representation. In the symmetri

phase the mass ontribution is

�  

(6.31)

and similarly the ontribution to the oupling reads

! "

(6.32)

In the SSB phase the inverse fermioni propagator ontains terms � ~a

0

Æ(Q�Q

0

+�

�

�);

similarly the �eld is also present in the bosoni propagator (.f. the \masses" (6.24)).

Anomalous dimension

The anomalous dimension �

a

= �k�

k

lnZ

a

is a measure for the hange of the wave

funtion renormalisation Z

a

with sale. Therefore we an extrat it from the mo-

mentum dependene of the bosoni two point funtion. As we are mainly interested
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in the spatial momentum dependene we set

Z

a

= V

�1

�

2

�l

2

�

�

�

�

l=0

�

Æ

2

Æ~a(�K)Æ~a(K)

�

k

�

�

�

�

�

 ; 

�

=0;~a=~a

0

; K = (!

B

= 0; k

k

k = le

e

e

1

); (6.33)

where ~a

0

is the minimum of the e�etive potential. In this way we projet out the

urvature at the minimum in �gure 5.1.

In the symmetri phase (SYM) the bosoni propagator is a�eted by the two

diagrams in equation (6.31). However, the bosoni loop is independent of the exter-

nal momenta and therefore does not ontribute to the anomalous dimension. The

fermioni loop is well known from our alulation in hapter 5 and we obtain

�

a

=� 2h

2

a
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2

(k�
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�
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�
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�
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�
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�
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)) sinh(

�

q
q
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�
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1
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i

:

(6.34)

In the SSB-phase we also get a ontribution from the bosoni setor. The on-

tribution omes from a bosoni loop with four external legs, where two external legs

are onneted to the ondensate (denoted by a ross):

#

(6.35)

As we will later see, the system enters the broken phase at very small values of the

uto� parameter k. At these values only the lowest Matsubara frequeny (!

B

= 0)

ontributes in the bosoni propagator (.f. (6.21)). The diagram above is thus the

same as the orresponding one for a simple O(3) model in two dimensions. Here the

anomalous dimension has been alulated to be [44℄

�

a

=

16Tv

2

2

�

0

�

2

a

m

2

2;2

(2�

a

�

0

; 0) (6.36)

=

T

�

�

0

�

2

a

(1 + 2�

a

�

0

)

2

; (6.37)
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where the funtion m

2

2;2

(x; y) ontains the momentum dependene of the loop inte-

gral and depends on the regulator R

a

k

. For our hoie of regulator it an be alulated

expliitely [22℄ as shown in (6.37).

The ontribution from the fermioni loop is muh smaller at the values of k we

fae in the broken phase; we will therefore neglet this ontribution.

Yukawa oupling

In the symmetri phase the running of the Yukawa oupling is generated by the

diagrams

$

;

%&

(6.38)

where the �rst diagram is the diret ontribution, while the last two have to be

rebosonised as presribed in the beginning of this hapter. The extration of the

ontribution from the �rst diagram is performed at vanishing bosoni momentum,

while we average over the fermioni momenta Q = (�!

0

;0

0

0) beause !

0

= �T

k

does

not vanish exept for T = 0.

We apply the rebosonisation proedure presented in the beginning of this hapter

to the two box diagrams. Of ourse the generated four fermion oupling will in

general not fatorise as in (6.2). What one obtains instead is rather

~m

Q

(K) =  

�

(Q)~� (Q+K);

��

box

=

X

KQQ

0

�

QQ

0

(K) ~m

Q

(K) ~m

Q

0

(�K) + � � � ;

(6.39)

i.e. the diagrams depend on all external momenta onstrained by overall momentum

onservation. The de�nition of ~m

Q

(K) is in analogy to the one of ~m(K) (.f. (2.47)).

In order to extrat the oupling we thus have to �x the momenta at some value.

In our alulation we hoose to put q

q

q = q

q

q

0

= 0

0

0 and k

k

k = �

�

� appropriate for the

antiferromagnet and again average over matsubara frequeny �!

0

.

In the symmetri phase we get for the running of h

a

Q

2

k

= Q

2

�(Q

2

� k

2

) + k

2

�(k

2

�Q

2

); (6.40)
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2

n
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2

n

(�

t

T

k

)=T

k

; (6.41)
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(6.42)

In the phase with spontaneously broken SU(2){symmetry (SSB) the hange in

the Yukawa oupling due to the diagrams (6.38) is negligible as we have heked

numerially. Anyhow, we are only interested in the qualitative behaviour in this re-

gion, so we will neglet the running of the Yukawa{oupling here; this then amounts

to keeping the unrenormalised Yukawa oupling h

a

�xed at its value on the sale,

where symmetry breaking ourred.

6.2.3 Numerial results

Let us �rst take a look at how the fermioni regulator funtion works. For this

purpose we plot the integrand of the fermioni part of the ow equation for the
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bosoni mass, i.e. the funtion

F (q

1

; q

2

) =

tanh y

y

+

1

osh

2

y

; y =

2t(os q

1

+ os q

2

)

T

k

(6.43)

for di�erent values of T

k

=t. The left part of �gure 6.1 shows F (q

1

; q

2

) for fairly large

values of T

k

while the right part is for low T

k

. Observe that the ontribution to

the integral omes from narrower regions around the Fermi{surfae the smaller T

k

beomes. This was exatly what was intended by the regulator.

We now turn to a numerial analysis of the above ow equations. For this we set

U=t = 3 and take a temperature T = 0:18t just below the ritial temperature. The

initial sale k

0

= 100t is hosen so large that the �nal results do not depend on it and

the one loop results are well produed in the beginning of the ow. The di�erential

equations were integrated by a standard Runge{Kutta like routine [36℄. In �gures 6.2

and 6.3 we plot the ow of the Yukawa oupling h

a

, the massm

2

a

, the quarti bosoni

oupling �

a

, the wave funtion renormalisation Z

a

and the anomalous dimension �

a

in the symmetri phase (SYM) one with linear and one with logarithmi sale.

The reader is autioned not to mix up the hopping parameter t, whih is kept �xed,

and the logarithmi uto� sale t = ln k=k

0

, whih are denoted by the same letter.

For sales below t � �2:5 the running is mainly dominated by the simple saling

due to the respetive dimensions of the ouplings. In an intermediate range up to

t � �6 the large value of �

a

dominates the ow. For even smaller values of t the ow

is mainly driven by the fermioni part of the ow equations. At t � �8:2 the bosoni

mass m

2

a

vanishes and we enter the broken phase. In �gure 6.4 we have plotted both

the renormalised and the unrenormalised Yukawa oupling. We observe, that the

unrenormalised oupling is almost unaltered from its initial value.

In �gure 6.5 we enter the broken phase. In this regime we have kept the unrenor-

malised Yukawa oupling onstant. As we have heked numerially its hange due

to the ow is negligible. First, we observe that the quarti bosoni oupling reahes

a �xed point very soon (the steep initial rise and �nal derease is hard to distinguish

in the �gure). This is beause the term � �

2

a

in equation (6.29) just ompensates the

other ontributions. A similar thing happens for the minimum of the potential. At

the beginning of the ow the fermioni part dominates the ow and the right hand

side is negative leading to inreasing values of �

0

. However, soon the fermioni part

beomes smaller and the bosoni loop dominates. This �nally drives the minimum

to zero and thus restores the symmetry. When the fermioni part beomes negligi-

ble we e�etively deal with a bosoni O(3) model in two dimensions for whih the

symmetry restoration is a well known feature.

This then reoniles the symmetry breaking with the Mermin{Wagner theorem

[32, 33℄, whih states that a ontinuous symmetry annot be broken at nonvanishing

temperatures in two dimensions and below. As we have found we indeed do not
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see any symmetry breaking if we average over larger and larger volumes, i.e. lower

the uto� parameter t = ln k. However, for smaller regions there may be lusters in

whih the symmetry is broken (in a weak sense omparable to domains in a ferro-

magnet with vanishing net magnetisation). Nevertheless, we �nd that the symmetry

is restored only when averaging over extremely large samples unaessible to any

real experiment

3

.

6.2.4 The ow equations for � 6= 0

Let us take a look at nonvanishing hemial potential in the symmetri phase (i.e.

� = 0). The bosoni part of the e�etive potential is not altered, while the fermioni

part is. The ow equations for the ouplings m

2

a

and �

a

in the bosoni potential

now read
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with

~y(�) = (�

q

q

q

� �)=(2T

k

): (6.46)

The equation for the anomalous dimension beomes

�

a

= �2k

3

h

2

a

T (�

k

T

k

)

h

�

T

k

�

2

l

n

�1

2T

k

Z

�

��

d

2

q

(2�)

2

tanh

�

q
q
q

+�

2T

k

+ tanh

�

q

q

q+lê
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whih results in a lengthy expression.

3

For O(2) models in two dimensions there is another posibility to irumvent the Mermin{

Wagner theorem mentioned by Kosterlitz and Thouless [29℄. It is speulated that this kind of

mehanism may play a role in the superonduting region [13℄.
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For the Yukawa{oupling we obtain
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6.2.5 Numerial results

We have analysed the phase diagram of the Hubbard model for small values of the

hemial potential �. The results are plotted in �gure 6.6, where again we have

hosen U = 3t. The upper line shows the temperature at whih the bosoni mass

vanishes in the one loop approximation (.f. (5.9) for k

k

k = �

�

�). For small enough �

this orresponds to the mean �eld approximation as the phase transition is of seond

order (.f. �gure 3.2, where h

a

= 10t=�

2

� t, just as in the example here and so is

equivalent as long as no other �eld aquires a nonzero expetation value). In order to

deal with �rst order phase transitions one would have to treat the bosoni potential

in a more ompliated trunation so we will restrit ourselves to small values of �.

The lower line in �gure 6.6 shows the ritial temperature for various values of

the hemial potential derived with the aid of the ow equations displayed above.

One observes that the ritial temperature is lowered ompared to the mean �eld

result.

The results found for the ritial temperature are in reasonable agreement with

results published by other authors [19, 21, 24℄.
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Figure 6.6: Plot of the ritial temperature T



versus the hemial potential � for

U=t = 3 in the mean �eld approximation (above) and with ow equations (below).

6.3 Seond trunation: Parametrisation depen-

dene in the bosonised theory

In this setion we want to investigate how well the inlusion of running ouplings

is able to solve the ambiguity with respet to the hoie of Yukawa ouplings in

the bosonisation proedure, whih was so annoying in the mean �eld alulation.

For this purpose we add the �(Q) boson orresponding to utuations in the harge

density to our trunation. To keep things simple, however, we redue the bosoni

e�etive potential to a simple mass term for eah boson.

For the full inverse propagator P

ak

�

Q) = P

a

�

Q) + R

ak

(Q) of the ~a boson we

hoose

P

ak

�

Q = (!

n

; q

q

q)

�

=

(

m

2

a�

+R

ak

� P

a�

for !

n

6= 0

Z

a

[q

q

q℄

2

+m

2

ak

+R

ak

� P

ak

(q

q

q) for !

n

= 0

(6.51)

and similarly for P

�k

(Q) (however, we �x Z

�

= 1). The funtion [q

q

q℄

2

is de�ned as

below (6.17). This hoie reets the fat that in the one loop alulation we found
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that the !

m

= 0 mode is hanged most. Furthermore, if we make an !

m

{independent

hoie of the bosoni regulator, we are able to perform the Matsubara sums in the

loops for the Yukawa{ouplings, whih drastially speeds up the numeris. We hoose

R

Bk

= k

2

for both ~a and �.

The fermioni kineti part of the trunation is hosen as in setion 6.2. Spei�-

ally, we restrit ourselves to nearest neighbour hopping. Furthermore we will only

onsider � = 0. Also the Yukawa part is hosen as in setion 6.2, where we have

taken the \lassial" part with momentum independent ouplings.

6.3.1 The ow equations

The running of the anomalous dimension �

a

an be inferred diretly from (6.34).

The ow of the masses is governed by a fermioni loop and reads
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where y =

�

q
q
q

2T

k

.

The running of the Yukawa oupling for the antiferromagneti boson is
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with y =
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6.3.2 Numerial results

The trunation we have de�ned above is a very primitive one but was hosen to

make the numeris relatively fast. We therefore do not expet high preision results

but one should be able to see the general features of the ow.

The �rst hek was to see if the orretions to the fermioni oupling U whih

an be found from a one loop alulation either in the bosonised or in the purely

fermioni theory (see appendix B.5) are reprodued by the above ow equations. For

this we start at a large value of the uto�, follow the ow for a while and integrate

out the bosons at their new ouplings to obtain the new U . As expeted it turns out

that for large enough values of the uto� this is indeed the ase for di�erent hoies

of the bosonisation parameters �

i

. This of ourse is no surprise beause of the one

loop form of the ow equations.

If we follow the ow towards smaller values of the uto�, the purely fermioni

oupling will obtain a ompliated momentum dependene and furthermore the

loop alulations are no longer adequate as omparison for the quality of the ow.

We therefore need another quantity to investigate the invariane of the ow under

di�erent reparametrisations of the bosonisation. For this we have hosen the ritial

temperature where the mass of the boson ~a orresponding to an antiferromagneti

spin density vanishes, i.e. at the onset of spontaneous symmetry breaking in the

antiferromagneti hannel.
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Figure 6.7: Plot of the ritial temperature T



for di�erent hoies of the parameter

�

�

alulated with ow equations (solid line) and in the mean �eld approximation

(dotted line). The initial fermioni oupling is U = 12t = 3�

m

� �

�

.

In �gure 6.7 we have plotted the ritial temperature T



at whih symmetry

breaking into the antiferromagneti hannel takes plae for di�erent values of the

parameters �

m

and �

�

for a �xed value of the initial fermioni oupling U = 12t =

3�

m

� �

�

. This has been alulated both with ow equations and in the \mean

�eld approximation", i.e. by searhing for the zeroes of the bosoni mass in the

loop alulation of the two point funtion

4

. The fermioni uto� was hosen to

be T

2

k

= T

2

+ k

2

for this plot. One observes that the ritial temperature is still

dependent on the hoie of bosonisation. However, this dependene is relatively

mild ompared to the mean �eld results and ertainly due to our poor trunation.

Nevertheless, if we further inrease �

�

, we will ome to a point where the symmetry

breaking ompletely eases. This is due to the fat that the Yukawa oupling h

a

beomes too small at small values of the uto� and annot drive the mass m

2

a

to zero

suÆiently fast. We mention that the independene of the unrenormalised Yukawa

oupling found in �gure 6.4 is also found in the present trunation for �

�

= 0. For

other values of the parameters the unrenormalised Yukawa oupling may indeed

hange. In the present trunation the ow of m

a

is inuened only through h

a

(see

(6.52)). Therefore, if h

a

is altered during the ow this will result in a hange of the
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�nal value of m

a

and hene the ritial temperature.

We also �nd that the ritial temperature is dependent on the hoie of the

fermioni uto� if the bosoni uto� is kept �xed. This is due to di�erent ontribu-

tions from

~

�

k

derivatives of the full fermioni and the full bosoni propagator in the

loops ontributing to the Yukawa ouplings. This dependene is of a size omparable

to the parametrisation dependene disussed above if we hoose T

k

= T + k instead

of the uto� used for �gure 6.7 above.

4

The parametrisation independent Hartree{Fok results orrespond to a ritial temperature of

aproximately T



� 2:9t in this ase.



Chapter 7

Conlusions

The phase diagram of a high temperature superondutor shows many ompliated

features. At low doping these materials are antiferromagneti insulators. Inreasing

the onentration of eletrons or holes turns them into a superondutor with exep-

tionally high transition temperatures ompared to \onventional" superondutors.

The mehanism for the binding of eletrons into Cooper pairs is so far ompletely

unknown in these materials. Between doping onentrations leading to antiferromag-

neti and superonduting behaviour is a region in whih a lot of di�erent degrees

of freedom seem to play a role. The lari�ation of the basi degrees of freedom

and their interplay in this pseudogap region still needs a lot of experimental and

theoretial e�ort.

The ommon feature of all high temperature superondutors is their highly

anisotropi struture omposed of layers of opper oxide (CuO

2

) planes. The inter-

esting properties of these materials and the mehanisms for generating them seem to

be largely on�ned to these planes. The two dimensional Hubbard model is a simple

attempt to apture this mirosopi struture. The model assumes eletrons that

are able to tunnel from site to site on a lattie and feel a mutual sreened Coulomb

repulsion. Whether suh an oversimpli�ed model is able to reprodue the omplex

phase struture of a real high temperature superondutor or parts of it still has to

be lari�ed. A lot of theoretial work has been dediated to this task over the last

years but so far the results are still inonlusive.

We try to attak this problem by means of renormalisation group (RG) equations.

Earlier RG studies have already revealed the power of this tehnique in the ontext

of the Hubbard model but derive the properties in a purely fermioni language.

We believe that it is favourable to inlude the interesting degrees of freedom more

expliitly. This an be ahieved by rewriting the original ation of the Hubbard

model in a partially bosonised form.

77
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A simple mean �eld alulation in the partially bosonised Hubbard model leads

to very enouraging results. We are able to reprodue a phase diagram that losely

resembles the one of a real high temperature superondutor. However, this simple

approah also reveals an undesirable drawbak of the bosonisation proedure. The

ouplings are not uniquely �xed by the reformulation proedure but there is an

arbitrariness onneted to di�erent parametrisations of the oupling term that is also

mirrored in the results. Even though the reformulation itself is exat, approximations

may break this parametrisation invariane.

In the mean �eld approximation the utuations of the bosoni �elds are om-

pletely negleted. Taking the bosoni �elds into aount should dispose of or at least

diminish the parametrisation dependene of the results. An inlusion of the bosoni

degrees of freedom in the alulation may be performed using renormalisation group

equations. We use them in a form generalising the e�etive ation. The bosonised

theory then serves as a starting point for the ow of ouplings. A loop alulation

that for large uto� reprodues the renormalisation group results serves as a guide

for the formulation of suitable trunations shemes and also lari�es the relation

between diagrams in the bosonised theory and the original fermioni formulation.

A �rst trunation deals with antiferromagneti behaviour at and lose to half

�lling. We are able to observe the breaking of the spin rotation symmetry and may

follow the ow further into the broken phase. We obtain a plausible explanation

of why antiferromagneti behaviour may be observed in the two dimensional model

despite of the Mermin-Wagner theorem as the system returns to the symmetri state

when averaging over extremely large spatial extensions. The observation of antiferro-

magnetism may thus be regarded as a �nite size e�et. For low doping onentration

we alulate a phase diagram that agrees well with other investigations.

In a seond trunation we address the question of how strongly the ow is altered

when we hange the arbitrary parameters due to the parametrisation invariane of

the bosonised model. We still �nd some dependene but in view of the minimal

trunation used the results are enouraging.

We believe that the bosonisation proedure presented and applied to simple ases

in this work may be regarded as a suitable starting point for further investigations.

As we have shown, multi fermion ouplings, orresponding to bosoni interations

in our formulation, may be inluded eÆiently. Furthermore this approah has the

advantage to be able to look into the broken phase. Also, the investigation of the

interplay of di�erent degrees of freedom is feasible by bloking some of the bosoni

hannels. Nevertheless, a lot of work still has to be done in order to obtain a uni�ed

piture of the phase diagram of the Hubbard model. We hope that our formalism

may be able to put in plae some of the piees of this fasinating puzzle.



Appendix A

Conventions and notation

We use units with ~ =  = k

B

= 1. A �eld is indiated by a ^ over a symbol,

e.g.

^

 for a fermion. The symbol without a ^ denotes the expetation value of the

orresponding �eld. We write a ~ over a symbol to indiate omposite �elds build

from two fermioni �elds in order to distinguish them from their bosoni ounter-

parts, e.g. ~� =

^

 

�

^

 . Symbols with arrow (~m;~a; : : :) denote three dimensional vetors,

while bold symbols (x

x

x;q

q

q; : : :) denote two dimensional vetors. We de�ne generalised

momenta and positions by

Q � (!

n

; q

q

q); X � (�;x
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and generalised sums and orresponding delta funtions as follows
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These de�nitions apply equally in the fermioni and bosoni ase if

!

n

� 2�nT; n 2

�

Z for bosons

Z+ 1=2 for fermions.

(A.3)

Note that Æ(q

q

q � q

q

q

0

) is periodi in 2�. The same applies to Æ(�) = �Æ(� + �) for

bosons/fermions.

The Fourier transforms of the fermioni �elds are:

^

 (X) =

X

Q

e

iQX

^

 (Q);

^

 

�

(X) =

X

Q

e

�iQX

^

 

�
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(A.4)

Similar Fourier transforms are used for the bosoni �elds (see (2.45) and (2.46)).
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Appendix B

Useful formulae

B.1 Pauli matries

GL(2,C ) is the group of all omplex 2� 2{matries. They may be onstruted from

the identity matrix �

0

= 1

2

and the Pauli matries �

1

=

�

0 1

1 0

�

, �

2

=

�

0 �i

i 0

�

,

�

3

=

�

1 0

0 �1

�

and obey the well known relations (roman indies run from 1 � � �3,

greek indies from 0 � � �3)

f�

i

; �

j

g = 2i�

ijk

�

k

; [�

i

; �

j

℄ = 2Æ

ij

; �

i

= (�

i

)

y

= (�

i

)

�1

: (B.1)

It is useful to de�ne a ondensed notation and derive the identities (� = i�

2

, g

��

=

diag(1;�1;�1;�1))

�

�

= (�

0

; ~�); �

�

= (�

0

;�~�); (B.2)

(�

�

)

��

(�

�

)

Æ

= 2�

�

�

�Æ

; ��

�

= (�

�

)

T

�; �

�

�

�

= 4; (B.3)

from whih we easily derive

�

i

��

�

i

Æ

= Æ

��

Æ

Æ

� 2�

�

�

�Æ

(B.4)

�

i

�

j

= Æ

ij

+ i�

ijk

�

k

(B.5)

�

i

�

j

�

i

= ��

j

(B.6)

��

iT

� = �

i

; ��

i

� = �

iT

(B.7)

~��~�

T

= ~�

T

�~� = �3� (B.8)

and ( 

(�)

are Gra�mann numbers)

( 

�

a

� 

�



)( 

b

� 

d

) = �( 

�

a

 

b

)( 

�



 

d

)� ( 

�

a

 

d

)( 

�



 

b

) (B.9)

( 

�

a

~� 

b

)( 

�



~� 

d

) = �( 

�

a

 

b

)( 

�



 

d

)� 2( 

�

a

 

d

)( 

�



 

b

): (B.10)
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B.2 Matrix relations

Let M =

�

A B

C D

�

be an arbitrary invertible blok matrix with square bloks A and

D. It is often useful to onsider the following partitions of the matrix

M =

�

1 0

CA

�1

D � CA

�1

B

��

A B

0 1

�

=

�

A� BD

�1

C BD

�1

0 1

��

1 0

C D

�

:

(B.11)

The determinant of the matrix an then be split up into determinants over subma-

tries:

detM = det(D � CA

�1

B) detA = det(A� BD

�1

C) detD (B.12)

and

�

1 0

A B

��

1 0

�B

�1

A B

�1

�

= 1 =

�

A B

0 1

��

A

�1

�A

�1

B

0 1

�

together with the partitions leads

to the inverse

M

�1

=

�

(A�BD

�1

C)

�1

�(A

�1

B)(D � CA

�1

B)

�1

�(D

�1

C)(A� BD

�1

C)

�1

(D � CA

�1

B)

�1

�

: (B.13)

We often need to expand the inverse of some matrix. For this we alulate (B is

supposed to be \small": jA

�1

Bj � 1):

1 = A

�1

(A+B � B) = A

�1

(A+B)� A

�1

B

) (A+B)

�1

= A

�1

� A

�1

B(A+B)

�1

= A

�1

� A

�1

BA

�1

+ A

�1

BA

�1

BA

�1

� � � � :

The derivative of an inverse matrix an be read of from �

k

(A

k

A

�1

k

) = 0:

�

k

A

�1

k

= �A

�1

k

(�

k

A

k

)A

�1

k

(B.14)

and under the trae we may use the relations like (tr lnA = lndetA)

�

k

trf(A

k

) = tr[f

0

(A

k

)�

k

A

k

℄;

�

k

tr lnA

k

= trA

�1

k

�

k

A

k

; �

k

detA

k

= tr[A

�1

k

�

k

A

k

℄ detA

k

for matries depending on some parameter k.

B.3 Matries ontaining Gra�mann numbers

There are many exellent introdutions into the �eld of Gra�mann alulus (e.g.

[9, 28, 41℄). We will only mention a few matters we need for our alulations.
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We denote the even (ommuting) and odd (antiommuting) parts of a Gra�mann

algebra G by G

+

and G

�

respetively. G

+

are the usual omplex numbers C (or any

�eld F) and G

�

ontains the \usual" Gra�mann numbers.

We will onsider matries in \standard form":

A =

�

A

BB

A

BF

A

FB

A

FF

�

; with

�

A

BB;ij

; A

FF;ij

2 G

+

A

BF;ij

; A

FB;ij

2 G

�

: (B.15)

If furthermore A

T

BB

= A

BB

, A

T

FF

= �A

FF

and A

T

FB

= �A

BF

, we all suh a matrix

s-symmetri. (

T

denotes the usual transposed: (A

T

)

ij

= A

ji

).

Then de�ne

supertrae: strA = trA

11

� trA

22

superdeterminant: sdetA = exp (str lnA) ;

(B.16)

with the properties

strAB = strBA (B.17)

�

k

str[f(A

k

)℄ = str[f

0

(A

k

) � �

k

A

k

℄ (B.18)

sdetAB = sdetA � sdetB (B.19)

sdetA = [det(A

BB

� A

BF

A

�1

FF

A

FB

)℄

�1

detA

FF

= det(A

FF

� A

FB

A

�1

BB

A

BF

)[detA

BB

℄

�1

:

(B.20)

Equation (B.17) is proven easily by diret alulation for two matries in standard

form. (B.18) then follows from (B.17) by expansion of f .

The supertrae of the ommutator of two matries vanishes beause of (B.17).

Together with the Baker-Kampbell-Hausdor� formula e

A

e

B

= e

(A+B+[A;B℄=2+��� )

we

an prove (B.19) by using the de�nition of sdet:

str ln(AB) = str ln(e

lnA

e

lnB

) = str(lnA+ lnB) + str(

1

2

[lnA; lnB℄ + � � � );

where the linearity of the supertrae was used. The last term only ontains ommu-

tators and vanishes.

Note that the partitions (B.11) also apply to supermatries. We thus only need

(B.19) to prove (B.20). Note also the similarity between the usual determinant (B.12)

and the superdeterminant. An inverse an also be onstruted with the aid of the

partitions just as we did in (B.13).

The formulae for supertraes and superdeterminants above bear a lear rela-

tion to the ones for usual traes and determinants. Another important relation,

detA

T

= detA, needs the de�nition of the \supertransposed" matrix M

S

to have a

ounterpart:

A

S

=

�

A

T

BB

�A

T

FB

A

T

BF

A

T

FF

�

; (AB)

S

= B

S

A

S

; sdetA

S

= sdetA: (B.21)
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B.4 Gaussian integrals

See [41℄ or [48℄ for a general disussion of Gaussian integrals. For �

i

; j

i

; A

ij

=

A

ji

; B

ij

= �B

ji

2 G

+

and �

i

; �

i

2 G

�

one �nds

I

+

(A; j) =

Z

1

�1

exp(�

1

2

�

i

A

ij

�

j

+ j

i

�

i

)

Y

i

d�

i

p

2�

=

1

p

det(A)

exp(

1

2

j

i

A

�1

ij

j

j

); (B.22)

I

�

(B; �) =

Z

exp(�

1

2

�

i

B

ij

�

j

+ �

i

�

i

) d�

1

� � �d�

n

= pf(B) exp(�

1

2

�

i

B

�1

ij

�

j

); (B.23)

pf

2

(B) = det(B); (B.24)

where the "pfaÆan" is de�ned through the integral and an be shown to be related

to the determinant as shown.

More general integrals ontaining both ommuting and antiommuting numbers

an easily be alulated from these two speial ases by �rst integrating over Gra�-

mann and then over ommuting variables (or vie versa). For s-symmetri matries

(see (B.15)) one has

M =

�

A

BB

A

BF

A

FB

A

FF

�

; � =

�

�

�

�

S[�℄ =

1

2

�

T

M� =

1

2

�

T

A

BB

�+ �

T

A

BF

� +

1

2

�

T

A

FF

� 2 G

+

spf(M) =

Z

exp(�

1

2

�

T

M�)D�; D� =

Y

i

d�

i

p

2�

d�

1

� � �d�

n

=

pf(A

FF

+ A

T

BF

A

�1

BB

A

BF

)

p

detA

BB

=

pf(A

FF

)

q

det(A

BB

+ A

BF

A

�1

FF

A

T

BF

)

(B.25)

where again the "super{pfaÆan" is de�ned through the integral. Depending on

whih integral was performed �rst one enounters one of the two equivalent repre-

sentations in terms of determinants. Note the onnetion with the supertrae (and

superdeterminant) for s-symmetri matries:

str lnM = ln sdetM = �2 ln spfM: (B.26)

in ontrast to tr lnB = lndetB = +2 lnpfB for \usual" antisymmetri matries.
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B.5 Loop alulations

We expand the e�etive ation in powers of ~, i.e. in numbers of loops:

�[�℄ = �~ ln

Z

D~� exp(�S[ ~� + �℄ + J [�℄�)=~ = �

0

[�℄ + ~�

1

[�℄ + ~

2

�

2

[�℄ + � � �

J [�℄ =

Æ�[�℄

Æ

R

�

= J

0

[�℄ + ~J

1

[�℄ + ~

2

J

2

[�℄ + � � �

(B.27)

(note that the funtional derivative is a right{derivative; this is only important

for fermions). To lowest order �

0

[�℄ = S[�℄ and hene J

0

= S

(1)

[�℄. Inserting this

together with an expansion of the ation

S[�+ ~�℄ = S[�℄ + S

(1)

[�℄ ~� +

1

2

~�

T

S

(2)

[�℄ ~� + � � �

into (B.27) we obtain

�[�℄ = S[�℄� ~ ln

Z

D~� exp(�

1

2

~�

T

S

(2)

[�℄ ~�)=~+O(2-loop): (B.28)

The integral is Gaussian and an be performed both for bosoni and fermioni

variables and the mixed ase. From �

1

[�℄ we get J

1

and an proeed alulating the

two loop orretion. We remark that the soure term J� anels all diagrams in the

funtional integral that are not one partile irreduible.

We proeed by expanding the one loop result in the bosoni ase �

1

= �� =

1

2

ln detS

(2)

in the number of external legs. For this we rearrange S

(2)

= S

(2)

kin

+

�S

(2)

= S

(2)

kin

(1 + (S

(2)

kin

)

�1

�S

2

) and expand ln(1� x) = �

P

1

n=1

x

n

=n. (S

(2)

kin

=

~

P )

�� = ��

0

+��

1

+��

2

+ � � �

=

1

2

Tr ln

~

P +

1

2

Tr(

~

P

�1

�S

(2)

)�

1

4

Tr(

~

P

�1

�S

(2)

)

2

+ � � � :

(B.29)

The �rst term is a vauum graph, the seond desribes tadpoles and the third yields

the loop orretions to the propagators et. (.f. (5.8)).

B.5.1 Fermion-loop orretions in pure fermioni theory

To see how this works onsider an ation of the form

S[ ;  

�

℄ =  

�

A

P

 

AB

 

B

+

U

2

f

ABCD

 

�

A

 

B

 

�

C

 

D

(B.30)
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with f

ABCD

= f

CDAB

. We then �nd (dots indiate the matrix struture (f

AB��

)

��

=

f

AB��

)

S

(2)

[ ;  

�

℄ =

�

�P

T

P

�

| {z }

~

P

+

U

2

�

�2f

A�C�

 

�

A

 

�

C

�2[(f

AB��

� f

�BA�

) 

�

A

 

B

℄

T

2(f

AB��

� f

�BA�

) 

�

A

 

B

�2f

�B�D

 

B

 

D

�

| {z }

S

(2)

int

[ ; 

�

℄

=

�

B

+

�A

T

A B

�

(B.31)

and hene with a relation like (B.29) (for the propagator we write G = P

�1

)

��

1

[ ;  

�

℄ = �

1

2

Tr(

~

P

�1

S

(2)

int

[ ;  

�

℄)

= �UTr[G(f

AB��

� f

�BA�

) 

�

A

 

B

℄

��

2

[ ;  

�

℄ =

1

4

Tr(

~

P

�1

S

(2)

int

[ ;  

�

℄)

2

(B.32)

=

U

2

2

Tr[G(f

AB��

� f

�BA�

) 

�

A

 

B

G(f

CD��

� f

�DC�

) 

�

C

 

D

℄

�

U

2

2

Tr[G

T

f

A�C�

 

�

A

 

�

C

Gf

�B�D

 

B

 

D

℄:

B.5.2 Mixed bosoni and fermioni �elds

We abbreviate �

A

= (u; u

�

; w;  ;  

�

)

A

and onsider the ation:

S[�℄ = S

F

kin

[ ;  

�

℄ + S

B

[u; u

�

; w℄ + S

Y

[�℄ (B.33)

S

F

kin

[ ;  

�

℄ =  

�

A

P

F

AB

 

B

; S

B

[u; u

�

; w℄ =

1

2

w

A

P

w

AB

w

B

+ u

�

A

P

u

AB

u

B

; (B.34)

S

Y

[�℄ = �w

C

 

�

A

V

w

AB;C

 

B

� u

�

C

 

A

V

u

�

AB;C

 

B

� u

C

 

�

A

V

u

AB;C

 

�

B

: (B.35)

Let us parametrise

S[�+ �

0

℄ = S

(0)

[�

0

℄ + S

(1)

A

[�

0

℄�

A

+

1

2

�

A

S

(2)

AB

[�

0

℄�

B

+ � � � ; (B.36)

then the matrix of seond funtional derivatives reads

S

(2)

[�℄ =

0

B

B

B

B

�

0 P

uT

0 0 �2 

�

V

u

;

P

u

0 0 �2 V

u

�

;

0

0 0 P

w

� 

�

V

w

;

V

w

;

 

0 �2V

u

�

;

  

�

V

w

;

�2u

�



V

u

�

;

�(P

F

� w



V

w

;

)

T

�2V

u

;

 

�

0 �V

w

;

 P

F

� w



V

w

;

�2u



V

u

;

1

C

C

C

C

A

: (B.37)

This matrix is s-symmetri (see (B.15)), therefore to order one-loop we �nd from

the previous setions

�[�℄ = S[�℄ + ��[�℄ = S[�℄ +

1

2

str lnS

(2)

: (B.38)
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As usual we try to perform an expansion of the logarithm: ln(1 + x) = x � x

2

=2 +

x

3

=3� � � � . For this we split the matrix into a propagator and an interation part,

e.g. for the fermioni part of the matrix

S

(2)

FF

=

~

P

F

+

~

I

FF

: (B.39)

It is not always unambiguous how the matrix should be split up. Usually the kineti

or �eld independent part is taken as propagator and the rest is onsidered as inter-

ation. However, for some purposes (espeially in a phase with broken symmetry) it

may be favourable to inlude some of the \interation" parts into the propagator.

In the following we relate the lowest order terms of the expansion of ��[�℄. To

enhane readability we rename the real and omplex �elds to R and C respetively.

The propagators are indiated by a G = P

�1

with labels for the respetive �elds.

The verties are denoted as above.

Bosoni two point funtion

��

BB

=

X

K

[

1

2

R

i

(�K)R

j

(K)

X

L

tr

spin

fG

 

(L)V

R

i

(L;K + L)G

 

(K + L)V

R

j

(K + L; L)g

+C

�

i

(K)C

j

(K)(�2

X

L

tr

spin

fG

 

(L)V

C

j

(L;K � L)G

 

(K � L)V

C

�

i

(K � L; L)g)℄

(B.40)

Fermioni two point funtion

��

 

�

 

=

X

QQ

0

 

�

�

(Q) 

�

(Q

0

)

X

L

f�G

R

ji

(L)V

R

i

(Q;Q+ L)G

 

(Q+ L;Q

0

+ L)V

R

j

(Q

0

+ L;Q

0

)

+ 4G

C

ji

(L)V

C

i

(Q;L�Q)G

 

(L�Q;L�Q

0

)V

C

�

j

(L�Q

0

; Q

0

)g

��

(B.41)

Vertex Corretions

Real:

��

Y R

=

X

KQQ

0

R

k

(K) 

�

�

(Q) 

�

(Q

0

)Æ(K �Q+Q

0

)

X

L

�

�G

R

ji

(L)V

R

i
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R

k
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0

+ L)V

R

j
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0

+ L;Q

0

)

+ 4G

C

ji

(L)V

C

i

(Q;L�Q)G

 

(L�Q)[V

R

k

(L�Q

0

; L�Q)℄

T

G

 

(L�Q

0

)V

C

�

j

(L�Q

0

; Q

0

)

	

��

(B.42)
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Real-omplex:

��

Y C

=

X

KQQ

0

C

k

(K) 

�

�

(Q) 

�

�

(Q

0

)Æ(K �Q�Q

0

)

X

L

�

�G

R

ji

(L)V

R

i

(Q;Q+ L)G

 

(Q + L)V

C

k

(Q+ L;Q

0

� L)
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(Q

0

� L)℄

T

[V

R

j

(Q

0

; Q

0

� L)℄

T

	

��

(B.43)

Box diagrams

Real-real-1:

��

B1

=

X

ABCD

 

�

�

(Q

A

) 

�

(Q

B

) 

�



(Q

C

) 

Æ
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D
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2
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R

kl
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�
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R

i

(A;A� L)G

 

(A� L)V

R

k

(A� L;B)℄

��

[V

R

l

(C;D � L)G

 

(D � L)V

R

j

(D � L;D)℄

Æ

	

(B.44)

Real-real-2:
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�
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Real-omplex:
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Complex-omplex:
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