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Towards Infrared QCD Correlation Functions With Functional
Methods

In this thesis, we study the infrared regime of QCD with functional methods. To this
end, we present the Mathematica package QMeS-Derivation. It allows for the derivation
of symbolic functional equations from a given master equation. We apply this tool to
Landau gauge Yang-Mills theory, where gauge invariance is implemented via BRST sym-
metry. We solve a self-consistent set of momentum-dependent functional equations within
a vertex expansion and compare the correlation functions obtained from different func-
tional approaches. We find good agreement of the results, hinting at gauge consistency
of our setup. We proceed by using the obtained Euclidean results to compute four-gluon
correlation functions, from which we extract the scalar and pseudo-scalar glueball mass by
finding spectral representations of the dressings. The obtained results agree well with the
masses computed from other methods. Next, we consider QCD at finite temperature and
finite chemical potential and provide a setup for thermal correlation functions, where we
introduce a thermal split in the quark-gluon vertex. This setup allows for a study of the
phase diagram of QCD, where special emphasis is put on the investigation of the chiral
phase transition.

Fortschritte Zur Berechnung Niedrigenergetischer QCD
Korrelationsfunktionen Mit Funktionalen Methoden

In dieser Arbeit untersuchen wir den QCD Niedrigenergie-Sektor mit Hilfe funktionaler
Methoden. Dazu stellen wir das Mathematica Paket QMeS-Derivation vor. Es ermöglicht
die Herleitung von symbolischen funktionalen Gleichungen aus einer gegebenen Master-
gleichung. Wir wenden dieses Tool auf Yang-Mills Theorie in Landau Eichung an, bei der
Eichinvarianz über BRST-Symmetrie implementiert wird. Wir lösen einen in sich konsis-
tenten Satz impulsabhängiger funktionaler Gleichungen in einer Vertex-Entwicklung und
vergleichen die Korrelationsfunktionen, die wir aus verschiedenen funktionalen Metho-
den erhalten. Wir finden eine gute Übereinstimmung der Ergebnisse, die auf Eichkonsis-
tenz unseres Systems hindeutet. Wir fahren fort, indem wir die erhaltenen euklidischen
Ergebnisse verwenden, um Vier-Gluon-Korrelationsfunktionen zu berechnen, aus denen
wir die skalare und pseudoskalare Glueball-Masse extrahieren, indem wir spektrale Dar-
stellungen der Dressings finden. Die erhaltenen Ergebnisse stimmen gut mit den Massen
überein, die aus anderen Methoden berechnet wurden. Als Nächstes betrachten wir QCD
bei endlicher Temperatur und endlichem chemischen Potential und stellen einen Ansatz
für thermische Korrelationsfunktionen bereit, bei dem eine thermische Aufspaltung im
Quark-Gluon-Vertex eingeführt wurde. Dieser Ansatz ermöglicht die Untersuchung des
Phasendiagramms der QCD, wobei besonders Wert auf die Untersuchung des chiralen
Phasenübergangs gelegt wird.
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1. Introduction

1.1. Motivation

Our modern understanding of fundamental physics is captured in the Standard Model
(SM) of elementary particle physics. It describes the three fundamental interactions, the
electromagnetic, the weak, and the strong force, as well as the fundamental fermions that
constitute matter. With the discovery of the Higgs boson [6, 7], the key ingredient for the
mechanism [8–10] that gives rise to particle masses, the SM has become widely accepted
and is today one of the most well-tested models in physics.

The theory of Quantum Chromodynamics (QCD) captures the strongly interacting sec-
tor of the Standard Model i.e. the interaction between colored particles such as quarks and
gluons where the corresponding gauge theory is a non-Abelian SU(3) Yang-Mills theory
(YM) [11]. The interaction manifests in a plethora of different phenomena that are depen-
dent on the energy scale. In the large momentum regime of QCD, the coupling becomes
asymptotically small rendering the theory asymptotically free [12, 13]. This sector has
been extensively studied with perturbative approaches and techniques. For low momenta,
the strong coupling becomes large and the theory becomes strongly correlated. This par-
ticular infrared behavior is subject to many theoretical QCD studies, see e.g. [14] and
experiments, such as heavy-ion collisions at RHIC [15], LHC [16], CBM [17] and NICA
[18], as this sector exhibits two interesting features.

The emergence of hadrons in the strongly coupled regime is linked to (color-)confinement
that describes the absence of colored particles from the physical spectrum and manifests
itself in a linear potential between a pair of quarks. Thus, although the existence of quarks
which are the constituents of hadrons is experimentally well established [19], a single quark
cannot be detected or measured. The self-interacting or non-Abelian nature of QCD also
allows for the formation of glueballs, bound states of gluons only.

The second characteristic effect in the non-perturbative sector of QCD is dynamical
chiral symmetry breaking. Implications thereof can be seen when comparing the observed
hadron mass to those of the constituent quark masses in the SM, that were acquired by the
Higgs mechanism, making up only a fraction of the total hadron mass while the remaining
observed mass difference is accounted for by QCD binding energy.

While the properties of most hadrons are experimentally well-known [20], a quantitative
understanding of infrared QCD is necessary to provide theoretical insights and predictions.
This goes hand in hand with the development of non-perturbative ab initio approaches,
where during the last years mainly two methods have prevailed, lattice computations and
functional methods.

The first has proven itself by yielding precise predictions of the hadronic bound state
spectrum, see e.g. [21], and various studies on the QCD phase diagram at small chemical
potential, see e.g. [22–25]. However, a major conceptual obstacle connected with lattice
simulations is the sign problem preventing the efficient inclusion of fermionic matter as
well as large chemical potentials in the computation, see e.g. [26, 27]. Furthermore, the

9



1.1. Motivation

convergence in the continuum limit has to be established.

Functional methods yield a continuum description of the theory in terms of an infinite
number of coupled equations for correlation functions, where the propagators play a central
rôle. However, the exact equations can only be solved within truncations.

In this conceptual framework, two aspects have to be taken into consideration. Firstly,
the convergence of results for increasing truncations has to be established. This goes
hand in hand with the technical development of computer-algebraic tools for the self-
consistent numerical computation and solution of the coupled equations within functional
methods. And Secondly, the propagators of gauge theories are only well-defined if the
redundant degrees of freedom are removed via a gauge-fixed formulation of the theory.
This procedure breaks gauge invariance of the action, rendering the correlation functions
to be only indirectly related to physical observables and where only combinations thereof
are gauge-invariant. Thus, a study of the conservation of gauge symmetry or residuals
thereof encoded in other emerging symmetries of the action within functional approaches,
where cut-offs and regulators are required, is necessary. The smallness of violation of
the underlying gauge symmetry within truncations is essential to guarantee the limit
of physical gauge invariance of the full theory. This gauge consistency of the correlation
functions is relevant to the understanding and manifestation of confinement in gauge-fixed
settings.

Equipped with these insights into the technical numerical treatment of functional com-
putations of gauge theories, one can start to study confinement and infrared gluon dy-
namics in the pure gauge sector of QCD. This is already sufficient since confinement can
be directly related to a mass gap in the gluon propagator in Yang-Mills theory [28–30].
Proving the existence of this mass gap in quantum Yang-Mills theory is even one of the
Millennium Prize Problems [31] and requires proving the existence of the underlying quan-
tum field theory. First computations of signatures of the mass gap in Yang-Mills theory
have already been performed with functional methods, see e.g. [32–40].

Methods for the computation of QCD bound states with functional equations, e.g. via
dynamical hadronization [41–44] and via Bethe-Salpeter equations [45, 46], are still in
development. Their predictive power and the obtained results are on a par with lattice
computations.

Building on the gained insights in Yang-Mills theory, the inclusion of quarks is a feasible
improvement of the truncation, leading to insights into the full theory of QCD. Addition-
ally, including a finite chemical potential and finite temperature allows for a study of the
phase diagram of Quantum Chromodynamics. Here the advantages of functional methods
stand out as they do not face any technical difficulties with the inclusion of fermions and
large chemical potentials.

Understanding the phase structure is closely linked to the two major non-perturbative
effects of QCD, confinement and chiral symmetry breaking. Keeping the temperature low
and going to very high chemical potential, quark-matter is in a color-flavor-locked phase
[47], a chiral symmetry broken phase where color-superconduction occurs.

At vanishing temperature and chemical potential, matter is in the hadronic confined
phase, meaning there are no free quarks and gluons but only bound states thereof. In-
creasing the temperature leads to a crossover at Tc ≈ 155 MeV [22, 23] into the deconfined
quark-gluon plasma where (approximate) chiral symmetry is restored, this stage is compa-
rable to the situation in the early universe. The chiral and the confinement-deconfinement
phase transition are closely related [48], however, the true nature of this relation is not
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1.1. Motivation

yet fully understood. The chiral crossover turns into a phase transition of first order for
higher chemical potential, potentially yielding a critical endpoint in the phase diagram.

The existence of a chiral critical endpoint for finite temperature and chemical poten-
tial is highly conjectured and subject of many theoretical and experimental studies, see
e.g. [49–67]. Thus, from a theoretical point of view, the full understanding of the non-
perturbative sector of QCD is a requirement for explorations of the QCD phase diagram.

In conclusion, this work contributes to the theoretical insights into infrared QCD dynam-
ics by introducing a numerical tool for the systematic and theory-independent derivation
of symbolic functional equations. Using this tool, we present a study of gauge consistency
in truncated SU(3) Yang-Mills theory with different functional methods, where we com-
pare various solutions related to the mass gap. We provide an ansatz and first results for
the extraction of glueball masses obtained within this framework. Finally, we present the
setup for a study of QCD at finite temperature and finite chemical potential, where we
are aiming at extracting the chiral order parameter and the critical temperature Tc. The
individual projects presented in this thesis are motivated separately at the beginning of
each chapter.
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1.2. Publications

1.2. Publications

While the thesis was written by the author only, most of the results that are presented
were obtained in collaborations. The respective content, as well as text and figures, were
taken from the publications and not marked individually but rather cited at the beginning
of the respective chapters.

The author was however main author of the following publication,

[1, 2] QMeS-Derivation: Mathematica package for the symbolic derivation of
functional equations
Jan M. Pawlowski, Coralie S. Schneider, Nicolas Wink
E-Print: arXiv:2102.01410
Github: QMeS-Derivation

Furthermore the thesis includes so far unpublished works, listed here:

[3] On Gauge Invariance in Gauge-Fixed Yang-Mills Theory
Jan M. Pawlowski, Coralie S. Schneider, Nicolas Wink
Comment: We investigate gauge invariance in Landau gauge Yang-Mills theory with
functional methods by solving a self-consistent set of transverse and longitudinal
momentum-dependent correlation functions.

[4] Glueball Masses from the fRG
Jan M. Pawlowski, Coralie S. Schneider, Jonas Turnwald, Julian M. Urban
Comment: The scalar and pseudo-scalar glueball masses are extracted from the
spectral function of the full fRG four-gluon vertex dressing via Padé approximants
and Gaussian Process Regression.

[5] Phase Structure of QCD
Fei Gao, Jan M. Pawlowski, Coralie S. Schneider
Comment: A study of the phase structure of 2 + 1-flavor QCD with thermal corre-
lation functions at finite chemical potential.
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1.3. Outline

1.3. Outline

We start by introducing the basics of non-Abelian gauge theories and Quantum Chro-
modynamics (QCD) in Chapter 2. Functional methods and different quantum master
equations within our notation, as well as the vertex expansion of the effective action, a
short discussion of truncations and different infrared cutoffs, are presented in Chapter 3.
The full derivation of the equations can be found in Section A.1.

Chapter 4 presents QMeS-Derivation, a Mathematica package for the symbolic deriva-
tion of functional equations starting from a quantum master equation. The corresponding
equations, as well as the general conventions and notations, were introduced in the pre-
vious chapter and the functional derivative rules used by the package can be found in
Section A.2. After introducing the workflow and defining the main objects within QMeS-
Derivation, we give examples in Yang-Mills theory, and Nf = 1 and Nf = 2 Yukawa
theory, where the corresponding QMeS outputs can be found in Section A.3.

In Chapter 5, the previously introduced package is applied to Euclidean SU(3) Yang-
Mills theory in Landau gauge where gauge invariance is implemented via BRST symmetry.
Results obtained self-consistently from different functional methods are compared for sev-
eral (non-)confining solutions. We compare the longitudinal correlation functions obtained
from different functional methods and find good agreement hinting at gauge consistency
of our setup. In-depth information about the respective computations can be found in
Chapter B.

The obtained results are then used to extract masses for the scalar and pseudo-scalar
glueball by finding a spectral representation of the appropriately projected four-gluon ver-
tex dressings with Padé approximants and Gaussian Process Regression. After introducing
both methods, as well as the relation between Euclidean correlation functions and spec-
tral representations thereof in Minkowski space, the results are presented in Chapter 6.
Chapter C contains additional information on the numerical details of this topic.

Chapter 7 contains the motivation and a setup for the derivation of functional equations
at finite temperature and chemical potential in 2 + 1-flavour QCD, where we have intro-
duced a thermal split in the quark-gluon vertex. The chapter contains preliminary results
at vanishing chemical potential that are compared within different truncations. Further
technical information is given in Chapter D.

Finally, we give a summary of the results obtained in this work and an overall conclusion
containing an outlook and future projects in Chapter 8.
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2. Quantum Chromodynamics

The study of Quantum Chromodynamics (QCD) entails strongly interacting quarks and
gluons exhibiting interesting features. The non-Abelian nature of the theory allows for glu-
onic self-interactions and the theory exhibits a phenomenon called asymptotic freedom:
At high energies, i.e. at a small coupling constant, the theory becomes asymptotically
free, meaning that the coupling approaches the Gaussian fixed point [12, 13]. The self-
interaction of gluons also allows for the formation of glueballs, i.e. bound states consisting
solely of gluons. These theoretically predicted states have not yet been detected conclu-
sively in experiments. For a general overview, see [68]. This topic will be discussed in
more detail in Chapter 6.

Furthermore, all observed states are color-neutral, one cannot detect a single quark
or gluon. In fact, a quark-anti-quark pair experiences a linearly rising potential when
pulled apart. This (color-)confinement can be linked to the existence of a mass gap in the
gauge sector of QCD, called Yang-Mills theory [28–30]. For studies of the gapped gluon in
Landau gauge Yang-Mills theory and QCD with functional methods, see e.g. [32–40, 69].

Signatures thereof and a study of gauge invariance within different functional methods,
is presented in Chapter 5. For an introduction to different confinement scenarios that are
relevant in the context of functional methods, see e.g. [14, 70–73]. For topological and
other approaches to confinement, see e.g. [74–77].

When comparing the quark masses with the masses of mesons and hadrons, one discovers
that the former are significantly lighter than the latter. In fact, the mass of a proton is
around 938 MeV, whereas the sum of the (current) masses of the constituent quarks, makes
up only about 1 % of the proton mass [20, 78]. This phenomenon can be explained by
dynamical chiral symmetry breaking. We will go into more details on this in Section 2.3
and in Chapter 7 which contains a setup for a study of QCD at finite temperature and
chemical potential, delving deeper into the relation between chiral symmetry breaking and
confinement while exploring the phase structure of QCD. For literature on chiral symmetry
breaking within functional methods, see [44, 60, 69, 79–91].

In the following, we give a brief overview of QCD in Euclidean space-time. The discus-
sion closely follows [92, 93]. For further details, see e.g. [14, 94, 95].

2.1. Non-Abelian Gauge Theories

We start by investigating the gauge invariant QCD action. For this, we consider a Dirac
fermion q in a fundamental representation of the gauge group together with the SU(3)
Yang-Mills action. Implementing gauge invariance of the Euclidean action under a local
transformation U ∈ SU(3) one arrives at,

S[q, q̄, A] = SD[q, q̄] + SYM [A]

=

∫
x
q̄( /D +mq)q +

1

2

∫
x

TrFµνFµν , (2.1)
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2.1. Non-Abelian Gauge Theories

where the Gamma matrices obey {γµ, γν} = 2δµν and the covariant derivative that depends
on the gauge field Aµ is given as,

Dµ = ∂µ − igAµ . (2.2)

One proceeds by constructing a kinetic term for the gauge field from the commutator of
the covariant derivative,

Fµν =
i

g
[Dµ, Dν ]

= ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (2.3)

Since the gauge fields live in the Lie algebra of SU(3), they are matrix-valued and therefore
non-commuting, hence the non-Abelian nature of the theory. One can therefore write,

Aµ = AaµT
a

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.4)

with the generators T a of the Lie algebra,[
T a, T b

]
= ifabcT c , (2.5)

and Tr(T aT b) = 1
2δ
ab and where fabc are the structure constants of the Lie algebra. The

non-Abelian nature of the gauge fields lead to self-interaction terms of the form,

AaµA
b
ν∂µA

c
ν and AaµA

b
νA

c
ρA

d
σ . (2.6)

The gauge transformation of the fields and the field strength tensor are then given as,

q → qU = Uq , q̄ → q̄U = q̄U † , Aµ → AU = UAµU
† − i

g
(∂µU)U † ,

Fµν → FUµν = UFµνU
† , (2.7)

with the gauge transformation,

U = eiT
aΘa(x) . (2.8)

It is worth mentioning that in contrast to QED the field strength tensor itself, i.e. the
color-electric and color-magnetic fields,

Eai = F a0i ,

Ba
i =

1

2
εijkF

a
jk , (2.9)

with the totally anti-symmetric tensor εijk, are no observables as they are not gauge
invariant.
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2.2. Quantization of Non-Abelian Gauge Theories

The gauge transformation (2.8) yields an infinite number of equivalent gauge configura-
tions. This means we cannot simply derive Feynman Rules from the generating functional
of Yang-Mills theory,

Z[J ] =

∫
DA exp

(
SYM [A] +

∫
x
JaµA

a
µ

)
. (2.10)

The necessity to remove this ambiguity by fixing the gauge via the condition F [Agf ] = 0,
arises. This does however not account for Gribov copies, as it is only a locally unique
condition, [96, 97]. We proceed by considering general covariant gauges, ∂µAµ = 0.

Generally the gauge-fixing condition allows for a split of the path integral measure,

DA = JDAgfDU , (2.11)

with the Jacobi determinant J of the transformation U . Following the Faddeev-Popov
method [98], one can insert the following identity into the path integral,

1 = ∆F [A]

∫
DUδ

(
F [AU ]

)
, (2.12)

where ∆F [A] is gauge invariant.
This can be illustrated by considering a general observable O, which is by definition

gauge invariant,

〈O〉 =

∫
DAO[A]eSYM [A]∫
dAe−SYM [A]

=

∫
DADUδ

(
F [AU ]

)
∆F [A]O[A]e−SYM [A]∫

DADUδ (F [AU ]) ∆F [A]e−SYM [A]

=

∫
DĀδ

(
F [Ā]

)
∆F [Ā]O[Ā]e−SYM [Ā]∫

DĀδ
(
F [Ā]

)
∆F [Ā]e−SYM [Ā]

, (2.13)

with A = ĀU
†
, DĀU

†
= DĀ and ∆F [ĀU

†
] = ∆F [A]. We can then compute the Jacobian

determinant via,

δ
(
F [AU ]

)
=
δ(Θ−Θ0)∣∣det δFδΘ

∣∣ , (2.14)

and the transformation U = eiΘ and the gauge fixing,

F [Agf = AU(Θ0)] = 0 . (2.15)

The Faddeev-Popov determinant is then,

∆F [A] = |detMF [Agf ]| with MF [A] =
δF
δΘ

∣∣∣∣∣
Θ=0

=
δF
δA

δA

δΘ

∣∣∣∣∣
Θ=0

, (2.16)

with indices dropped for simplicity. In a general covariant gauge, F [A] = ∂µAµ, this
determinant can be represented by a Gaussian integral containing the anti-commuting
Grassmann-valued fields c and c̄,

detMF [Agf ] =

∫
DcDc̄ exp

(∫
x,y
d4xc̄(x)a (−∂µDµ)ab (x, y)cb(y)

)
, (2.17)
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2.2. Quantization of Non-Abelian Gauge Theories

with Dab
µ = ∂µδ

ab − gfabcAcµ.
By using an average of gauges, one modifies (2.13) by,

δ
(
F [AU ]

)
→
∫
DCδ

(
F [AU − C]

)
exp

(
1

2ξ

∫
x
CaCa

)
, (2.18)

with the gauge fixing parameter ξ. In summary, the gauge fixed Yang-Mills action is given
as,

SA[A, c, c̄] =
1

4

∫
x
F aµνF

a
µν +

1

2ξ

∫
x

(
∂µA

a
µ

)2 − ∫
x
c̄a(∂µDµ)abcb . (2.19)

The final form of the generating functional then is,

Z[JA, Jc, Jc̄] =

∫
DADcDc̄e−SA[A,c,c̄]+

∫
x(JA·A+Jc̄·c−c̄·Jc) . (2.20)

A derivation of the effective action from the generating functional used in functional
methods can be found in Chapter 3.

This gauge fixing procedure renders an action that is not gauge invariant anymore. The
underlying gauge symmetry however manifests itself in a new symmetry of SA, the BRST
symmetry. Further details can be found in Section 2.3, 3.1.3 and A.1.3.

In the present work we only work in Landau gauge, meaning ξ = 0 and,

∂µAµ = 0 . (2.21)

For advantages of this gauge and its implications in this work, see Section 5.1.4.
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2.3. QCD

The fully quantized and gauge-fixed QCD action is given as,

SQCD[q, q̄, A, c, c̄] =
1

4

∫
x
F aµνF

a
µν +

1

2ξ

∫
x

(
∂µA

a
µ

)2 − ∫
x
c̄a(∂µDµ)abcb

+

∫
x
q̄( /D +mq)q . (2.22)

For massless quarks mq = 0 the action (2.22) exhibits an U(Nf )L × U(Nf )R flavor sym-
metry, where Nf is the number of quarks and the indices R/L indicate a projection with
the right-/left-handed chiral projection operator PR/L = 1±γ5

2 , and γ5 = γ1γ2γ3γ4.
Generally, there are six flavors of quarks, divided into three generations containing two

quarks each. The up and the down quark from the first generation have a mass con-
siderably smaller than the scale of the theory, ΛQCD, whereas all other quark masses are
significantly larger. Therefore only taking into account the first two quarks and considering
them approximately massless, i.e. a 2-flavor approximation still captures the relevant fea-
tures of the theory and exhibits an approximate flavor symmetry, SU(2). This generalizes
to SU(Nf ) with Nf = 3, if we also consider the strange quark as light.

For further discussions, it is useful to rewrite the chiral symmetry of the action (with
massless quarks) as,

U(Nf )L × U(Nf )R → U(1)V × SU(Nf )V × U(1)A × SU(Nf )A , (2.23)

with the vector V = L+R and axial vector A = L−R transformations. Additionally the
action is symmetric under SU(Nc) gauge transformations.

While the U(1)V is a symmetry of the full action and implies baryon number conserva-
tion, the SU(Nf )V symmetry is broken by the quark mass terms. The axial symmetries
U(1)A and SU(Nf )A are also broken, the first one is broken explicitly by the axial anomaly,
[99–102], which manifests itself as the observed large mass difference in the η and η′ me-
son [103]. The SU(Nf )A symmetry is spontaneously broken [104]. For a more detailed
discussion of the symmetries, see e.g. [95].

The quark pair condensate serves as an order parameter for this spontaneous symmetry
breaking,

〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0 , (2.24)

with group indices dropped for simplicity and qR/L = PR/Lq. The expectation value
indicates a mixing of left- and right-handed quarks in the vacuum, allowing them to
acquire an effective mass [92]. A study thereof at finite temperature and finite chemical
potential is presented in Chapter 7.

Furthermore, the spontaneous breaking of the symmetry with massless quarks gives rise
to three massless Goldstone bosons [105–107]. Due to the non-vanishing quark masses
in QCD, the symmetry is also explicitly broken and thus all pseudo-Goldstone bosons
are massive and are identified with three relatively light pseudo-scalar pions in QCD,
[104, 108].

Interestingly, there is an intricate interplay of chiral symmetry breaking and confinement
in the low energy region of QCD (for Nf ≥ 3): on one hand, chiral symmetry breaking
being fueled by a growing coupling and confinement being characterized by an emergent
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2.3. QCD

mass gap in the gluon, hindering and finally stopping this growth of the coupling and
on the other hand, massless quarks leading to a massless gluon dispersion and thus no
confinement [109].

We will now proceed and introduce another symmetry of the QCD action (2.22): BRST
symmetry [110, 111] which encodes the underlying gauge-invariance of the gauge-fixed
theory. To this end, we rewrite the gauge-fixing term in the action,

Sgf [A] =
1

2ξ

∫
x

(
∂µA

a
µ

)2 → Sgf [A,B] =

∫
x

(
Ba∂µA

a
µ −

ξ

2
BaBa

)
. (2.25)

The infinitesimal BRST transformations of the fields in QCD are given as,

sq = igcaT aq

sq̄ = −igq̄caT a

sAaµ = Dab
µ c

b

sca =
1

2
gfabccbcc

sc̄a = Ba

sBa = 0 . (2.26)

with the BRST transformation of a general field φi =
(
q, q̄, Aaµ, c̄

a, ca, Ba
)
,

δBRSTφi = sΦiδλ , (2.27)

and the Grassmann valued transformation parameter δλ and where we have introduced
the auxiliary Nakanishi-Lautrup field Ba. We then have s2φi = 0 and we can integrate
out the auxiliary field. These transformations are coupled to the respective BRST sources

Qi =
(
Qq, Qq̄, Q

a
A,µ, Q

a
c , Q

a
c̄

)
. This yields additional terms in the action (2.22),

SBRST [q, q̄, A, c, c̄] =−
∫
x
igQqc

aT aq +

∫
x
igQq̄ q̄c

aT a

−
∫
x
QaA,µ

(
∂µc

a + gfabcAbµc
c
)

− 1

2

∫
x
gfabcQacc

bcc +
1

ξ

∫
x
Qac̄∂µA

a
µ . (2.28)

Using the STI (3.17), one can derive equations that relate longitudinal to transverse cor-
relation functions in the theory. Assuming regularity of longitudinal and transverse cou-
plings for perturbative momenta the STI constrains the transverse couplings and demands
equality of coupling constants in this regime,

αi(p) = αs(p) =
g2

4πZA(p)Z2
c (p)

with i = {Aq̄q, Ac̄c, A3, A4} , (2.29)
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where ZA(p) and Zc(p) are the non-trivial momentum dependent gluon and ghost propa-
gator dressings.

We can compute the beta function of the strong running coupling as a series of pertur-
bative coefficients. One then obtains at one-loop order[12],

β(αs) =
p2

4π

dαs
dp2

=
α2
s

16π2

(
−11

3
Nc +

2

3
Nf

)
︸ ︷︷ ︸

β1

+O(α3
s) , (2.30)

where αs = αs(p̄) is the coupling constant at the renormalisation scale p̄, N is the number
of colors in the SU(N) gauge theory and Nf is the fermion number.

From the integration of the first order in (2.30) one obtains the one-loop running cou-
pling,

αs(p) =
αs(p̄)

1− β1

4παs(p̄) ln p2

p̄2

. (2.31)

For p → ∞ the strong coupling approaches the Gaussian fixed point, αs(p) → 0. The
theory becomes asymptotically free and one can investigate QCD within a perturbative
expansion.

For low energies however, the coupling grows and perturbation theory is not applicable
anymore. This renders the necessity for non-perturbative methods such as functional
methods that are presented in Chapter 3 to investigate the infrared regime of QCD.
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3. Functional Methods

This chapter is in parts based on [1].
Functional approaches are a well-established tool to study non-perturbative aspects of
quantum field theories. They have been successfully used for a wide class of non-perturbative
physics problems, ranging from strongly correlated condensed matter and statistical physics
systems over nuclear physics, QCD, and high energy physics to beyond the Standard Model
physics, cosmology, and quantum gravity. Applications also include real-time aspects in
and out of equilibrium. For reviews on various physics applications of functional methods
see e.g. [14, 59, 64, 71, 72, 112–136].

In these approaches, one solves a set of functional integro-differential loop relations
between correlation functions of the theory at hand. These relations are typically closed
at one or two-loop order in full correlation functions. If aiming for quantitative precision
this requires setting up and solving a large set of loop equations involving the full tensor
structure and momentum dependencies of the correlation function involved. This requires
the use of elaborate computer-algebraic tools as well as well-structured numerics.

In this chapter, we introduce the master equation for fRG, DSE, and mSTI as well as
our condensed notation. We give an example of an expansion scheme for the effective
action and discuss the infrared cutoff and its properties.

3.1. Quantum Master Equations

In this section, we discuss the quantum master equation for the fRG, mSTI, and DSE.
Full derivations can be found in Section A.1. We use a superfield notation throughout the
paper, introduced below.

For a general quantum field theory, the Euclidean action S[φ] reads

S[φ] =
∑
n=2

Sa1...anφa1 . . . φan . (3.1)

In (3.1) we have introduced deWitt’s condensed notation, for the form used here see
[115]. The ai comprise internal and Lorentz indices, as well as species of fields and a
sum/integration over space-time or momenta. Lowering and rising indices is done with
the metric γab, which is diagonal in bosonic subspaces and symplectic in fermionic ones.
For a single fermion anti-fermion pair (f, f̄) the metric is given by,

(γab) =

(
0 −1

1 0

)
. (3.2)

For the complete metric, we have the normalisation

γ ab = γacγbc = δab ,

γab = γacγcb = (−1)abδab , (3.3)
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3.1. Quantum Master Equations

with

(−1)ab =

−1 a and b fermionic,

1 otherwise.
(3.4)

Then, lowering and rising indices follows as,

φa = φbγba ,

φa = γabφb . (3.5)

The condensed notation introduced above allows us to write the Master equations in a
concise form. Moreover, the metric introduced here is also used in the program.

The Schwinger functional W [J ], the generating functional of connected correlation func-
tions with the classical action (3.1), follows as,

eW [J ] =

∫
Dφ exp (−S[φ] + Jaφa) = Z[J ] . (3.6)

In order to make the condensed notation more explicit, we write the source term as a sum
over internal and Lorentz indices, and species of fields, α, and a space-time integral,

Jaφa =
∑
α

∫
ddxJα(x)φα(x) . (3.7)

While the derivation of master equations is best done with the Schwinger functional and
they also take the simplest form if formulated in W [J ], for a discussion see e.g. [115], most
applications are done for the effective action Γ[Φ], the generating functional of one-particle
irreducible (1PI) correlation functions. The argument of Γ is the expectation value Φ of
the field φ,

δW [J ]

δJa
= Wa = 〈φa〉J = Φa . (3.8)

Then, the effective action Γ[Φ] is obtained as the Legendre transform of the Schwinger
functional with respect to the source J ,

Γ[Φ] = sup
J

(
JaΦa −W [J ]

)
. (3.9)

Equation (3.9) entails that the sources are related to the derivatives of Γ[Φ] w.r.t. the
fields,

δΓ[Φ]

δΦa
= Γa = γabJ

b , (3.10)

where we have used

JaΦa = ΦaJa = JaΦ
bγab = ΦbJ

aγab . (3.11)

24



3.1. Quantum Master Equations

Finally, we are interested in master equations for correlation functions, provided by source-
and field-derivatives of the Schwinger functional and the effective action respectively. We
will use the notation,

δ

δΦa1

. . .
δ

δΦan

Γ[Φ] = Γa1...an ,

δ

δJa1
. . .

δ

δJan
W [J ] = Wa1...an . (3.12)

The definition of the effective action entails, that the two-point function Γab is the inverse
of the propagator Gab = Wab,

Gab = 〈φaφb〉 − 〈φa〉〈φb〉 . (3.13)

In our condensed notation this reads,

GacΓ
cb = γba . (3.14)

With this setup, we now derive quantum master equations in terms of the effective ac-
tion, the flow equation for the effective action in the functional renormalisation group,
the quantum equation of motion (Dyson-Schwinger equations), as well as the modified
Slavnov-Taylor identities.

3.1.1. Quantum Equations of Motion (DSE)

Dyson-Schwinger equations (DSEs) [137, 138] are the quantum equations of motion. They
yield a complete description of the theory via 1PI correlation functions. In terms of the
effective action they are given by,

δΓ[Φ]

δΦa
=
δS[φ]

δφa

∣∣∣∣∣
φb=Φb+Gbc

δ
δΦc

. (3.15)

The full derivation of the DSE from the generating functional (3.6) can be found in Sec-
tion A.1.1. The r.h.s. of (3.15) comprises a classical part as well as loops. It is evident
from a theory with an nth-order interaction of the fields leads to up to n− 2-loops in full
propagators, full vertices as well as one classical vertex. This entails, that the DSE is a
closed (exact) n − 2-loop functional master equation. As such it allows for perturbative
as well as non-perturbative approximations. For reviews see e.g. [14, 59, 71, 72, 130–136].

3.1.2. Flow Equation for the Effective Action (fRG)

The flow equation for the effective action within the Functional Renormalisation Group
approach [41, 139–142] can be viewed as a differential DSE. Typically, one introduces
an (infrared) momentum regularisation, that suppresses quantum fluctuations below the
infrared cutoff scale k. This is done by changing the classical dispersion by 1/2φaR

abφb,
where Rab is a momentum-dependent cutoff functions, that acts as a mass for low momenta
and decays sufficiently fast for large momenta. More details and the derivation of the fRG
equation, see Section A.1.2. This approach allows us to integrate-out quantum fluctuations
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3.1. Quantum Master Equations

successively within momentum shells, finally arriving at the full effective action at k = 0.
With ∂t = k∂k, the fRG flow equation is concisely given by,

∂tΓ =
1

2
ṘabGab . (3.16)

Equation (3.16) is a one-loop exact master equation. The propagator Gab is infrared
regularised via the cutoff mass. In turn, the equation is ultraviolet finite as Ṙab decays
for large momenta. In contradistinction to the DSE in (3.15), that is n− 2-loop exact for
an nth order interaction, the fRG-master equation is a closed (exact) one-loop equation
for general theories. As for the DSEs, a complete set of fRG-equations solves the theory
exactly. For reviews see e.g. [64, 112–129].

3.1.3. STI & mSTI

Within a gauge-fixed formulation of gauge theories the underlying gauge-invariance is
carried by the BRST-symmetry (Becchi, Rouet, Stora, Tyutin). In their infinitesimal
form, this symmetry is described by the Slavnov-Taylor identities (STI) [110, 111]. They
ensure the gauge invariance of observables, and can be formulated in terms of a master
equation for the effective action including BRST-sources, [143, 144],

δΓ

δQa
δΓ

δΦa
= 0 . (3.17)

For deriving (3.17) one adds source terms Qasφa for BRST transformations to the path
integral, for more details see Section A.1.3. The BRST transformation in Yang-Mills
theory transforms a gauge boson into a ghost. The explicit transformation can be found
in (4.8). Qa is a source term for the BRST transformation of the fields sφa, see (A.25).
For reviews see e.g. [14, 71, 72, 115, 130–133, 135, 136].

However, the introduction of a cutoff term in the effective action breaks BRST symmetry
for non-vanishing k. This leads to a modification of the symmetry identities (mSTI) that
appears as a 1-loop correction,

δΓ

δQa
δΓ

δΦa
= RabGbcΓ

c
Qa . (3.18)

for more details see Section A.1.4. In the above equation one can already see that for
k → 0 the mSTI reduces to the STI. Thus, satisfying the mSTI at all scales k, guarantees
gauge invariance of observables at k = 0. For details beyond that provided in Section A.1.3
we refer to the reviews [64, 115, 117, 119, 120, 127–129] and references therein.
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3.2. Vertex Expansion and Truncation

The effective action Γ[Φ] consists of all possible combinations of fields and their derivatives.
Naturally, one wants to find a systematic expansion scheme for the effective action which
allows for quantitative error control. One such scheme that is used throughout this work
is the vertex expansion,

Γ[Φ] =

∞∑
n=1

∫
ΓΦ1...ΦnΦ1 . . .Φn , (3.19)

where one expands the effective (average) action in terms of n-point correlation functions.
For simplicity, momentum arguments in (3.19) were dropped.

Inserting (3.19) into the previously presented quantum master equations and taking
functional derivatives, i.e. projecting onto the moments of the effective action, one can
see that the functional equations yield an infinite tower of coupled equations and that the
functional equation of an n-point function depends on vertices of order up to n+ 2.

The necessity to truncate the expansion (3.19) at some finite order nmax arises, thereby
closing the finite number of remaining equation. This procedure introduces errors in the
otherwise exact functional relations. By systematically improving the truncation, one aims
at establishing convergence of the correlation functions.

Generally, one can expand an n-point correlation function in its tensor basis with ap-

propriate scalar vertex dressings, λ
(i)
Φ1...Φn

(p1, . . . , pn−1),

ΓΦ1...Φn(p1, . . . , pn−1) =
∑
i=1

λ
(i)
Φ1...Φn

(p1, . . . , pn−1)τ
(i)
Φ1...Φn

(p1, . . . , pn−1) . (3.20)

The choice of tensor basis is not unique. A minimal truncation in terms of tensor structures
and vertices that are taken into account is including only the classical ones and dismiss
subleading tensor structures and higher order vertices.

From the structure of the functional equations, one can already see that correlation
functions of order n + 2 ≥ 5 only indirectly contribute to the functional equations of
the propagators of the theory as they only enter as one-loop corrections into the func-
tional equations of vertices of order n. Phenomenologically, higher order n-point functions
are, loosely speaking, proportional to the n particle phase space and thus suppressed.
Large densities and resonances in the interaction however can counteract this phase-space
suppression. Within these restrictions truncating the effective action at some nmax is a
commonly used approximation.

Another viable option is to use symmetry identities of the respective gauge theory to
identify the dressing functions of the (n + 1)- and (n + 2)-point functions with those of
lower order correlation functions instead of dropping them in the functional equations of
the n-point correlator.

From (3.20) one can see that including the full momentum dependencies of the scalar
dressing functions increases the computational effort tremendously. Reducing the full
momentum structure to only one average momentum argument in the dressing functions
is a commonly applied truncation.

The different truncations that were used throughout this work are described in more
detail in the respective chapters and a quantitative investigation of different functional
methods within a truncation can be found in Chapter 5.
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3.3. Regulators

The fRG and mSTI master equations, (3.16) and (3.18), depend on a regulator insertion
Rab that acts as an infrared momentum regularisation which is chosen such that it fulfills
the following properties:

(A) The suppression of infrared modes via,

lim
p2/k2→0

Rab(p) > 0 .

(B) The effective action goes to the physical limit for k → 0,

lim
k→0

Rab(p) = 0 .

(C) The action has the classical UV limit,

lim
k→∞

Rab(p) =∞ .

At vanishing cutoff the effective action Γ[Φ] should be independent of the choice of cutoff,

δΓ[Φ]

δRab(p)
= 0 . (3.21)

This is directly linked to the RG consistency condition and the renormalisation, for further
details, see e.g. [145].

Within these restrictions, there is still a plethora of possible regulator functions. How-
ever, the effective action at k = 0 must be independent of the choice of regulator. For
convenience one usually parametrises,

Rab(p) = Γba(p)
∣∣∣
m=0

r(y) with y =
p2

k2
, (3.22)

where r(p2/k2) is the regulator shape function. Standard choices of shape functions are

• the Litim-regulator shape function, [146, 147],

r(y) =

(
1

y
− 1

)
Θ(1− 1

y
)

• an exponential shape function with parameters a and b,

r(y) =
aey

−b

1− ey−b

The different shape functions and their derivatives are shown in Figure 3.1.

The regulator and shape functions that were used for numerical computations through-
out this work are parametrised in Section B.2.2.
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Figure 3.1.: Regulator, yr(y) (left) and regulator derviative y∂yr(y) (right), for different
shape functions over y. The blue line corresponds to the Litim shape function
and the red dashed line to the exponential regulator shape function with
a = b = 1.

As briefly mentioned in Section 3.1.3, the introduction of a cutoff term breaks BRST
symmetry explicitly. This leads to a modification of the Slavnov-Taylor identities at non-
vanishing cutoff which manifests as a modification of the action at the cutoff,

lim
k→Λ

Γk = SΛ 6= S , (3.23)

with arguments dropped for simplicity. To obtain gauge invariant observably one must
therefore somehow restore BRST symmetry at k = 0. One approach is via gauge invariant
flows, see e.g. [32, 148–162], these are however still in an early stage of development.

A more hands-on approach yielding an effective action at k = 0 that fulfills the STI, is
by determining the modification of the action at the cutoff SΛ. Technically this can either
be done by additionally solving the mSTI at every RG-step and by fulfilling the mSTI at
k inevitably fulfilling the STI at k = 0, or by choosing an ansatz for SΛ with parameters
that need to be finetuned such, that the STI is fulfilled at k = 0.

A comparison between both methods as well as a discussion of their limitations is
presented in Chapter 5.
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4. Deriving Symbolic Functional Equations

This chapter is based on [1].
To date, there are still only a few computer-algebraic tools for functional methods [163–
174]. In this work, we present a package of QMeS (Quantum Master equations: environ-
ment for numerical Solutions), that can be used for the symbolic derivation of functional
equations arising from a master equation. Relevant examples are Functional Renormalisa-
tion Group (fRG) Equations, Dyson-Schwinger Equation (DSE) or Slavnov-Taylor Iden-
tities (STI) and their modification in the presence of a cutoff, the modified STIs (mSTI).
In most cases, the cutoff is an infrared cutoff, and hence the mSTI includes the STI as a
special case for a vanishing cutoff.

The package is written in Mathematica and can be used to derive a functional equation
such as fRGEs, DSEs, mSTIs from a given field content and, for the DSE, a given classical
action. Then, symbolic equations for different n-point functions, i.e. the moments of the
master equations, can be derived. Naturally, it works in a general field space, allowing
for arbitrary theories and can include momentum routing for the diagrammatic/symbolic
results. Its coherent implementation of conventions and handling of fermionic minus signs
for diagrams allows for a simple and intuitive use. Due to its modular structure, it fa-
cilitates future extensions to other master equations and more complicated objects and
truncations.

The main objects of functional approaches, i.e. quantum master equations as well as our
condensed notation was introduced in Chapter 3. We proceed by describing the details of
the package in Section 4.1, i.e. how the modules are connected via the interface, as well
as the installation process. Then we give an overview of the input and output in QMeS-
Derivation. Section 4.3 contains two examples: Yang-Mills and Yukawa theory (Nf = 1
and Nf = 2). For these example theories, we describe, how to derive different symbolic
functional equations from an action. In Section 4.4 we summarise the main features of
QMeS-Derivation.

4.1. Description

This section outlines the basic design and features of QMeS, i.e. its modules and how they
are connected via the interface. Furthermore, we give instructions on how to install the
package.

4.1.1. Modules and Interface

The code consists of four main modules - getDSE.m, FunctionalDerivatives.m, Superindex-
Diagrams.m and FullDiagrams.m - which are connected by the interface DeriveFunc-
tionalEquation.m.

The four modules correspond to the four output options described in Section 4.2.4. The
workflow is depicted in Figure 4.1.
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4.1. Description

Figure 4.1.: Depiction of the workflow of QMeS-Derivation with its interface and modules.

The user is required to provide a setup that consists of either a master equation or an
association indicating that QMeS first needs to derive the DSE for a given classical action.

Furthermore, the setup needs to contain a definition of the field space and a truncation,
as well as a list of field derivatives. Specifying the preferred form of the output (i.e.
"OutputLevel") is optional.

Depending on whether or not a master equation was provided the interface calls the
FunctionalDerivatives.m or first the getDSE.m module which then generates the Dyson-
Schwinger equation of the theory, and passes it on to the FunctionalDerivatives.m module
along with the setup and derivative list. Within this module, the (remaining) field deriva-
tives of the master equation are performed and fields are set to zero.

In the interface, the output and user-provided input are again passed on to the Su-
perindexDiagrams.m module, where the trace in field space is performed, the field content
of objects, like propagators, n-point functions, and regulator insertions, are sorted, pref-
actors are computed and the truncation is applied.

The result together with the initial input is then used by the FullDiagrams.m module
to replace the superfield indices with physical indices and the objects are replaced by
functions of indices.

If the user has specified an output option, the workflow is terminated after the corre-
sponding module providing the user with the chosen output. The default output option
is "FunctionalDerivatives".

4.1.2. Requirements and Installation

Functionality of QMeS-Derivation is supported in Mathematica 12.0 or higher, although
it may also work with older versions.

To install the package download the installer via:

Import["https://raw.githubusercontent.com/

QMeS-toolbox/QMeS-Derivation/main/QMeSInstaller.m"];
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4.1. Description

Other options are to either save a copy of the repository in the
"../Mathematica/Applications" folder or append the path (yourpath) where the copy
is saved to the list of paths where Mathematica searches for packages via:

AppendTo[$Path, "yourpath"];

Then the package can be loaded in Windows by calling the following or an equivalent path
for Linux and MacOS:

<<"QMeS-Derivation\\DeriveFunctionalEquation.m"
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4.2. Input, Functions and Options

4.2. Input, Functions and Options

To compute functional derivatives of a master equation one needs to define said equation
as well as the theory one is working in. Both must be collected in an association.

Setup = <|"MasterEquation" -> masterEquation,

"FieldSpace" -> fields,

"Truncation" -> truncation|>;

If one first wants to derive a DSE of a given theory, the setup must be provided as,

SetupDSE = <|

"MasterEquation" -> <|"getDSE" -> "True",

"classicalAction" -> classicalAction|>,

"FieldSpace" -> fields,

"Truncation" -> truncation|>;

Note that one then needs a definition of the classical action via possible vertices.

4.2.1. Master Equations and Objects

Within the QMeS framework, a master equation is defined as a list of objects, the first
being an overall prefactor. Each object is of a specific "type" (e.g. propagator, n-point
function, regulator or regulator derivative). Furthermore, every object contains a list of
"indices" that are superfield indices. For the fRG equation and the mSTI, the indices
should be closed. We recall the fRG equation (3.16) as an example of a master equation,

∂tΓ =
1

2
ṘabGab ,

fRGEq = {"Prefactor" -> {1/2},

<|"type" -> "Regulatordot", "indices" -> {a, b}|>,

<|"type" -> "Propagator", "indices" -> {a, b}|>};

as well as the modified Slavnov-Taylor identity (mSTI) introduced in (3.18),

δΓ

δQa
δΓ

δΦa
= RabGbcΓ

c
Qa .

The mSTI can be written as:

LHSmSTIEq = {"Prefactor" -> {1},

<|"type" -> "nPoint", "indices" -> {Q[a]}, "nPoint" -> 1, "spec" -> "BRST"|>,

<|"type" -> "nPoint", "indices" -> {a}, "nPoint" -> 1, "spec" -> "none"|>};

mSTIEq = {"Prefactor" -> {1},

<|"type" -> "Regulator", "indices" -> {a, b}|>,

<|"type" -> "Propagator", "indices" -> {b, c}|>,

<|"type" -> "nPoint", "indices" -> {c, Q[a]}, "nPoint" -> 2, "spec" -> "BRST"|>};

It is furthermore possible to derive the DSE of a given theory with the aforementioned
setup. For further information see section Section 4.2.4. The superindices in the master
equations should not coincide with the names of fields or any of their indices.
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4.2. Input, Functions and Options

Prefactors

The first entry in every diagram is the Prefactor. It can contain numbers (1,−1,1/2,...)
or a metric factor (−1)ab. For example the prefactor

"Prefactor" -> {-1/2, {a,b}, {b,b}, {b,c}};

translates into

−1

2
(−1)ab(−1)bb(−1)bc , (4.1)

where again the superfield index convention introduced in (3.4) is used.

Regulator and Regulator Derivative

<|"type" -> "Regulatordot", "indices" -> {a, b}|>;

<|"type" -> "Regulator", "indices" -> {a, b}|>;

A regulator Rab or regulator derivative Ṙab is an object with two superfield indices corre-
sponding to the incoming and outgoing fields with their respective momenta and indices.

Propagator

<|"type" -> "Propagator", "indices" -> {a, b}|>;

A propagator Gab is an object with two superfield indices corresponding to the fields
and their indices. These are lower indices. Note that for fRG and mSTI equations the
propagator is k-dependent whereas it is not for DSEs.

n-Point Functions

<|"type" -> "nPoint", "indices" -> {a, b, c, d},

"nPoint" -> 4, "spec" -> "none"|>;

<|"type" -> "nPoint", "indices" -> {a, b},

"nPoint" -> 2, "spec" -> "classical"|>;

<|"type" -> "nPoint", "indices" -> {a, b, Q[c]},

"nPoint" -> 3, "spec" -> "BRST"|>;

n-Point functions are field derivatives of the effective action. The value of "nPoint"

indicates the number of derivatives, whereas the "indices" again represent the superfield
indices. The specification "spec" implies whether the vertex is a BRST ("BRST", ΓabQc),

a 1PI ("none", Γabcd) or a classical ("classical", Sab) one. The superfield index of a
BRST source needs to be written as "Q[i]" to indicate that this is a lower index belonging
to the BRST source of a field Q[field] (for the notation, see Section 4.2.2.1). Again it is
worth mentioning, that in case of fRG or mSTI equations the 1PI and BRST vertices are
k-dependent objects.
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4.2. Input, Functions and Options

Fields

<|"type" -> "Field", "indices" -> {a}|>;

Fields Φa are objects with one lower index. Note that after taking all functional derivatives,
external fields, which are leftover, are set to zero.

4.2.2. Theory

The user is required to define a specific theory. This breaks down into two main parts:
defining the fields with the respective indices and the truncation.

4.2.2.1. Fields with Indices

The fields of a theory are either fermionic or bosonic. Antifermion/fermion pairs must be
combined in a list.

fields =

<|"bosonic" -> {A[p, {mu, a}], B[p]},

"fermionic" -> {{cbar[p, {a}], c[p, {a}]}, {af[p,{d}], f[p,{d}]}},

"BRSTsources" ->

{{Q[A], "fermionic"}, {Q[B], "fermionic"},

{Q[cbar], "bosonic"}, {Q[c], "bosonic"},

{Q[af], "bosonic"}, {Q[f], "bosonic"}}|>;

If a theory contains no fields of either bosonic or fermionic statistics, it is then required
to assign an empty list.

When computing mSTIs one also needs to define the BRST charges of fields. They are in-
dicated by Q[field] followed by the respective property of the charge (either "fermionic"
or "bosonic"). For the computation of DSE or fRG equations, it is not necessary to define
the BRST sources.

The respective indices are provided as arguments of the fields, where the momentum is
always the first entry, followed by a list of further indices (e.g. group or Lorentz indices).
Note that the names of the indices for different fields do not need to be unique. For better
readability it is recommended to define the same kind of index with the same name: these
names (e.g. {mu, i}) in combination with a unique number (e.g. $8215) will be used to
create unique indices (e.g. {mu$8215, i$8215}) by QMeS.

4.2.2.2. Truncation and Classical Action

For the derivation of DSEs it is necessary to define the classical action via vertices. This is
done by giving a list of combination of fields that appear as a classical vertex in the action,

classicalAction = {{A, A}, {c, cbar}, {A, A, A},

{A, A, A, A}, {A, c, cbar}};

Furthermore the truncation of the full theory is defined by specifying the truncation of
1PI and BRST vertices. It is worth mentioning that the user is also required to include
the possible propagators in this list,
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4.2. Input, Functions and Options

Truncation = {{A, A}, {c, cbar}, {A, A, A},

{A, A, A, A}, {A, c, cbar}, {A, A, c, cbar}};

The truncation may be similar or include more vertices than the classical action.
In both definitions the order of fields or vertices is irrelevant.

4.2.3. Derivative List

Lastly one needs to specify a list of field derivatives. Note that the last entry of the list
will be the first derivative.

DerivativeList1 = {A, A};

DerivativeList2 = {A[a], A[b]};

DerivativeList3 = {A[-p, {mu, a}], A[p, {nu, b}]};

Generally one has three options: the first is to only provide the field names. This
can be combined with the output options "getDSE" and "FunctionalDerivatives".
The second is to assign superindices to the fields, this input additionally works with
"SuperindexDiagrams". If one wants to obtain full diagrams with momentum routing
("FullDiagrams"), then one needs to assign indices and momenta to the fields.

4.2.4. Outputs

The main function takes two arguments: the setup and the list of field derivatives,

DeriveFunctionalEquation[Setup, DerivativeList];

The output is always a list of the diagrams that are produced. The specification of the
diagrams can be altered with options.

Options are called via

DeriveFunctionalEquation[Setup, DerivativeList,

"OutputLevel" -> options];

There are three options specifying the level of the output via "OutputLevel":

getDSE

The first option is to simply derive the Dyson-Schwinger equation via getDSE. The user
needs to specify the classical vertices as well as at least one field derivative δ

δφ . From this,
the RHS of the DSE is computed according to the rules in Section A.2. This means the
classical action (3.1) can be written as,

S[φ] = Sa1a2φa1φa2 + Sa1a2a3φa1φa2φa3 + · · ·+ Sa1...anφa1 . . . φan , (4.2)

where only those orders appear that are given in the theory. All prefactors (and signs)
should be contained in the definition of Sa1...am . Then the getDSE module computes

δS

δφi

∣∣∣∣
φi=Φi+Gij

δ
δΦj

. (4.3)

Terms that end with a field derivative are immediately dropped. One then gets the general
diagrams that contribute to the DSE for a given classical action. If the field derivative list
contains more than one entry, the last one is a field, whereas the others are processed as
expectation values of fields.
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4.2. Input, Functions and Options

DerivativeListDSE = {Phi[a], Phi[b], Phi[c], Phi[d]}

The list above thus produces

Γabcd =
δ3

δΦaΦbΦc

(
δS

δφd

)
φi=Φi+Gij

δ
δΦj

. (4.4)

FunctionalDerivatives

If the option is set to "FunctionalDerivatives" the user obtains a list of diagrams that
are generated by taking functional derivatives of the quantum master equation. The trace
over fields in the diagrams is however not taken. Therefore one gets symbolic diagrams
with fields set to zero. When choosing this option with a given master equation, the user
is not required to specify a truncation.

The default output level is equal to calling the "FunctionalDerivatives" option.

SuperindexDiagrams

The third option is called "SuperindexDiagrams". If this is chosen, the trace over fields is
taken, where only those diagrams remain that satisfy the truncation, and the fields in the
objects are sorted canonically. This means that upper indices (eg. for regulators, regulator
derivatives or vertices, including BRST-vertices) are sorted as (bosonic, antifermionic,
fermionic) and lower fermionic indices in reverse order. If two indices have are of the
same type, e.g. two bosonic fields, they are sorted alphabetically. Lastly, the prefactors
are evaluated.

QMeS aims at generating outputs for general theories. For this reason, we refrain from
symmetrization or identification procedures for diagrams.

FullDiagrams

For the last module one may call the main function with the option "FullDiagrams",
which means that in addition to the previous steps also the momentum routing is done
for all 1-loop diagrams (i.e. fRG, mSTI, but not for all DSE diagrams). Superfield indices
are replaced by physical indices and objects are transformed into functions of indices such
that one can insert Feynman rules easily.
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4.3. Examples

In this section, we give different examples of deriving symbolic functional equations with
QMeS.

The first example is deriving functional equations (i.e. fRG, mSTI and DSE) within
Yang-Mills theory which serves as a prerequisite for QCD. Studying QCD with functional
methods is an ab initio approach to investigate the non-perturbative regime.

Then we derive fRG equations in Nf = 1 and Nf = 2 Yukawa theory. It illustrates
and emphasizes how QMeS handles multiple fermions and sorts the vertices accordingly.
Furthermore, a simple Yukawa model can already be used to describe nuclear forces be-
tween fermions which are mediated by pions thus approximating QCD with an effective
field theory.

4.3.1. Yang-Mills Theory

In the following, we want to give the crucial steps one needs to take to compute functional
equations in Yang-Mills theory (YM) with QMeS.

The theory we work in is SU(3) Yang-Mills theory, thus one has bosonic gauge fields
Aaµ(p), fermionic ghosts ca(p) and antighosts c̄a(p). The classical Euclidean YM action
including gauge fixing and ghost terms can be written as,

S =

∫
d4x

(
1

4
F aµνF

a
µν +

1

2ξ
∂µA

a
µ∂νA

a
ν + ∂µc̄

a
(
∂µc

a + gfabcAbµc
c
))

, (4.5)

with F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . After Legendre transforming the classical action

and introducing a regulator term one obtains the effective average action,

Γ =
1

2
ΓAAAA− Γc̄cc̄c− ΓAc̄cAc̄c+

1

6
ΓAAAAAA

+
1

24
ΓAAAAAAAA− 1

2
ΓAAc̄cAAc̄c+

1

4
Γc̄c̄ccc̄c̄cc , (4.6)

with indices suppressed. For a BRST-symmetric action one includes the source terms,

ΓBRST =− ΓcQAcQ
A + ΓAQc̄AQ

c̄ − ΓAcQAAcQ
A − 1

2
Γ cc
Qc Qccc , (4.7)

which relate to the BRST transformations,

sAaµ = ∂µc
a + gfabcAbµc

c

sca =
1

2
gfabccbcc

sc̄a = Ba

sBa = 0 . (4.8)

with the auxiliary Nakanishi-Lautrup field Ba and one the BRST operator is nilpotent,
s2 = 0. One can then proceed by integrating out the auxiliary field and arrives at the
relation 〈sφa〉 = − δΓ

δQa . For more details see Section A.1.3 and Section A.1.4.

For pure Yang-Mills theory, we can define the fields in QMeS as,
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Figure 4.2.: Graphical representation of the flow equation of the gluon two-point function,
explicitly given in (4.10). The dashed lines represent the ghost, curly orange
lines the gluon. The black circles represent full vertices and the crossed circle
represents the regulator derivative. The power −1 indicates a full two-point
function.

fieldsYM = <|"bosonic" -> {A[p, {mu, a}]},

"fermionic" -> {{cbar[p, {a}], c[p, {a}]}}|>;

Note that fermions need to be defined as a pair of the antifermion and corresponding
fermion.

Next, we specify the truncation for the effective average action without the BRST
terms. It is important to also define the two-point functions in order to get the possible
propagators.

TruncationYM = {{A, A}, {c, cbar}, {A, A, A},

{A, A, A, A}, {A, c, cbar}, {A, A, c, cbar},

{c, c, cbar, cbar}};

The classical Yang-Mills action is given by

classicalActionYM = {{A, A}, {c, cbar},

{A, A, A}, {A, A, A, A}, {A, c, cbar}};

Since we have a theory with ghosts ca and color indices a, b, d, . . . , we use i, j, m . . . as
superindices for the master equations.

4.3.1.1. Flow of the Gluon Two-Point Function

To compute the flow of the gluon two-point function we need to define the Quantum
Master equation which is in this case the fRG equation (3.16). This translates to QMeS
input as,

fRGEq = {"Prefactor" -> {1/2},

<|"type" -> "Regulatordot", "indices" -> {i, j}|>,

<|"type" -> "Propagator", "indices" -> {i, j}|>};

Now we can define the setup

SetupYMfRG = <|"MasterEquation" -> fRGEq,

"FieldSpace" -> fieldsYM,

"Truncation" -> TruncationYM|>;

The only thing that is missing is a specification of the field derivatives that we want to
take:

DerivativeListAA = {A[-p, {mu, a}], A[p, {nu, b}]};
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Now we can derive symbolic diagrams. In general we have different output options (see
Section 4.2.4).

First we can take a look at the general structure of diagrams that are produced when
taking two functional derivatives with respect to the superfields Φa and Φb by calling the
QMeS command DeriveFunctionalEquation with the output option "OutputLevel" ->

"FunctionalDerivatives". We then obtain

Γ̇ab =− 1

2
(−1)ia(−1)ib(−1)nnṘijGimΓmabnGnj

+
1

2
(−1)ia(−1)ib(−1)nn(−1)n

′n′

ṘijGimΓmanGnm′Γ
m′bn′Gn′j

+
1

2
(−1)ia(−1)ib(−1)nn(−1)n

′n′(−1)ab

ṘijGimΓmbnGnm′Γ
m′an′Gn′j . (4.9)

One thus gets a tadpole diagram and two diagrams with two three-point vertices re-
spectively. Next, we want to get the fully traced diagrams by evaluating

fRGDiagramsAA = DeriveFunctionalEquation[SetupYMfRG,

DerivativeListAA, "OutputLevel" -> "FullDiagrams"];

As a result we obtain in superindex notation where now a ' (−p, µ, a) and b ' (p, ν, b),

Γ̇AaAb =− Ṙc̄cGcc̄ΓAaAbc̄cGcc̄

− 1

2
ṘAAGAAΓAAaAbAGAA

+
1

2
ṘAAGAAΓAAaAGAAΓAAbAGAA

+
1

2
ṘAAGAAΓAAbAGAAΓAAaAGAA

− Ṙc̄cGcc̄ΓAac̄cGcc̄ΓAbc̄cGcc̄

− Ṙc̄cGcc̄ΓAbc̄cGcc̄ΓAac̄cGcc̄ . (4.10)

The QMeS output is a list of different traced diagrams such that one can easily define
and insert the Feynman rules for the different objects like propagators, regulators, or
vertices. It can be found in Section A.3.1. A graphical representation of the flow can be
found in Figure 4.2.

4.3.1.2. mSTI of Gluon Two-Point Function

To compute the mSTI of the gluon two-point function we need to alter our definition of
fields and include the corresponding BRST sources.

fieldsYMmSTI = <|"bosonic" -> {A[p, {mu, a}]},

"fermionic" -> {{cbar[p, {a}], c[p, {a}]}},

"BRSTsources" -> {{Q[A], "fermionic"},

{Q[cbar], "bosonic"}, {Q[c], "bosonic"}}|>;
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Figure 4.3.: Graphical representation of the mSTI of the gluon two-point function, explic-
itly given in (4.11). The dashed lines represent the ghost, curly orange lines
the gluon. The black circles represent full vertices and the crossed square
corresponds to a regulator and the triangle to a BRST vertex. The power −1
indicates a full two-point function.

The truncation then also changes. The vertices on the right-hand side of the mSTI are
truncated as,

TruncationYMRHSmSTI = {{A, A}, {c, cbar},

{A, A, A}, {A, A, A, A}, {A, c, cbar},

{A, c, Q[A]}, {c, c, Q[c]}};

and for the left-hand side, we choose

TruncationYMLHSmSTI = {{A, A}, {c, cbar},

{A, A, A}, {A, A, A, A}, {A, c, cbar},

{A, Q[cbar]}, {c, Q[A]}, {A, c, Q[A]},

{c, c, Q[c]}};

Lastly we need to define the right- and left-hand side of the mSTI equation (3.18). In the
QMeS formalism this is done by

mSTIRHS = {"Prefactor" -> {1},

<|"type" -> "Regulator", "indices" -> {i, j}|>,

<|"type" -> "Propagator", "indices" -> {j, m}|>,

<|"type" -> "nPoint",

"indices" -> {m, Q[i]}, "nPoint" -> 2, "spec" -> "BRST"|>};

mSTILHS = {"Prefactor" -> {1},

<|"type" -> "nPoint",

"indices" -> {Q[i]}, "nPoint" -> 1, "spec" -> "BRST"|>,

<|"type" -> "nPoint",

"indices" -> {i}, "nPoint" -> 1, "spec" -> "none"|>};

We define the two setups as,

SetupYMmSTIRHS = <|"MasterEquation" -> mSTIRHS,

"FieldSpace" -> fieldsYMmSTI,

"Truncation" -> TruncationYMRHSmSTI|>;

SetupYMmSTILHS = <|"MasterEquation" -> mSTILHS,

"FieldSpace" -> fieldsYMmSTI,

"Truncation" -> TruncationYMmSTILHS|>;
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To obtain the mSTI of the gluon two-point function one needs to take derivatives with
respect to the ghost and gluon field,

DerivativeListAAmSTI = {A[-p, {mu, a}], c[p, {b}]};

We obtain the full mSTI by evaluating

mSTIDiagramsAALHS = DeriveFunctionalEquation[SetupLHSmSTILHS,

DerivativeListmSTI, "OutputLevel" -> "FullDiagrams"];

mSTIDiagramsAARHS = DeriveFunctionalEquation[SetupmSTIRHS,

DerivativeListmSTI, "OutputLevel" -> "FullDiagrams"];

With the superindices a ' (−p, µ, a) and b ' (p, b) the algebraic equations are then given
as,

Γcb
QA

ΓAAa − ΓAaQc̄Γ
c̄cb = RAAGAAΓAc̄cbGcc̄Γ

Aac
QA

−RAAGAAΓAAaAGAAΓAcb
QA

−Rc̄cGcc̄ΓAac̄cGcc̄Γ ccb
Qc , (4.11)

where for the sake of brevity, indices and momenta are dropped. The output of QMeS
is given in Section A.3.2. The diagrams that contribute to the mSTI can be found in
Figure 4.3.

4.3.1.3. DSE of Ghost-Gluon Vertex

In this subsection, we derive the DSE for the ghost-gluon vertex. This can be done by
taking functional derivatives of the action,

ΓAc̄c =
δ2

δAδc̄

(
δS

δc

)
φa→Φa+Gab

δ
δΦb

. (4.12)

We define the setup,

SetupYMDSE = <|"MasterEquation" ->

<|"getDSE" -> "True", "classicalAction" -> classicalActionYM|>,

"FieldSpace" -> fieldsYM,

"Truncation" -> TruncationYM|>;

We define the derivative list

DerivativeListAcbarcDSE =

{A[p1, {mu, a}], cbar[p2, {b}], c[-p1 - p2, {d}]};

We get the full result by using the command:

DSEDiagramsAcbarc = DeriveFunctionalEquation[SetupYMDSE,

DerivativeListAcbarcDSE, "OutputLevel" -> "FullDiagrams"];
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Figure 4.4.: Graphical representation of the DSE of the ghost-gluon vertex, explicitly given
in (4.13). The dashed lines represent the ghost, curly orange lines the gluon.
The black and grey circles represent full and classical vertices.

Diagrammatically the result is,

ΓAac̄bcd =− SAac̄bcd

− SAc̄cdGAAΓAAac̄bcGcc̄

+ SAc̄cdGAAΓAAAaGAAΓAc̄bcGcc̄

− SAc̄cdGAAΓAc̄bcGcc̄Γ
Aac̄cGcc̄ , (4.13)

where we have used the superindices a ' (p1, µ, a), b ' (p2, b) and d ' (−p1− p2, d). The
full equation can be found in Section A.3.3. The symbolic DSE can be found in Figure 4.4.

4.3.2. Yukawa Theory

In this example, we want to compute simple two-point flows in Yukawa theory. To further
illustrate how QMeS handles multiple fermions we do this in Nf = 1 as well as Nf = 2.
Generally, we can write the action of a Yukawa theory as,

S =

∫
d4x(

1

2
φ(−∂2 +m2

φ)φ+ λφ4

+ ψ̄
(
/∂ +mψ

)
ψ − gφψ̄ψ) . (4.14)

The effective action contains

Γ =Γφφφφ+ Γψ̄ψψ̄ψ + Γφψ̄ψφψ̄ψ

+ Γφφφφφφφφ+ Γψ̄ψ̄ψψψ̄ψ̄ψψ . (4.15)

As a master equation, we again use the fRG equation,

fRGEq = {"Prefactor" -> {1/2},

<|"type" -> "Regulatordot", "indices" -> {i, j}|>,

<|"type" -> "Propagator", "indices" -> {i, j}|>};
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4.3.2.1. Nf = 1

For Nf = 1 we only have one flavour of fermions and thus only one antifermion/fermion
pair in the definition of fields. Furthermore, a Yukawa theory also contains a scalar field,
which has bosonic statistics.

fieldsNf1 = <|"bosonic" -> {Phi[p]},

"fermionic" -> {{Psibar[p, {d}], Psi[p, {d}]}}|>;

The truncation is given as,

TruncationfRGNf1 = {{Phi, Phi}, {Psi, Psibar},

{Phi, Psi, Psibar}, {Phi, Phi, Phi, Phi},

{Psi, Psi, Psibar, Psibar}};

Thus we can summarize the setup,

SetupNf1 = <|"MasterEquation" -> fRGEq,

"FieldSpace" -> fieldsNf1,

"Truncation" -> TruncationfRGNf1|>;

Flow of the Scalar Two-Point Function

To compute the flow of the scalar two-point function we define the list of derivatives as,

DerivativeListScalarTwopoint = {Phi[-p], Phi[p]};

To get the full diagrams one has to run the command

fRGDiagramsPhiPhiNf1 = DeriveFunctionalEquation[SetupNf1,

DerivativeListScalarTwopoint, "OutputLevel" -> "FullDiagrams"];

The result with superindices a ' (−p) and b ' (p) is given as,

Γ̇φaφb =− 1

2
RφφGφφΓφφφaφbGφφ

−Rψ̄ψGψψ̄Γφaψ̄ψGψψ̄Γφbψ̄ψGψψ̄

−Rψ̄ψGψψ̄Γφbψ̄ψGψψ̄Γφaψ̄ψGψψ̄ . (4.16)

The full output of QMeS is given in Section A.3.4.

Flow of the Fermionic Two-Point Function

The derivative list for the flow of the fermionic two-point is

DerivativeListFermionTwopoint = {Psibar[-p, {d}], Psi[p, {e}]};

The full diagrams can be obtained with

fRGDiagramsPsibarPsiNf1 = DeriveFunctionalEquation[SetupNf1,

DerivativeListFermionTwopoint, "OutputLevel" -> "FullDiagrams"];
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The result with superindices is then given as,

Γ̇ψ̄dψe =−Rψ̄ψGψψ̄Γψ̄ψ̄dψeψGψψ̄

− 1

2
RφφGφφΓφψ̄ψeGψψ̄Γφψ̄dψGφφ

− 1

2
RφφGφφΓφψ̄dψGψψ̄Γφψ̄ψeGφφ

− 1

2
Rψ̄ψGψψ̄Γφψ̄dψGφφΓφψ̄ψeGψψ̄

− 1

2
Rψ̄ψGψψ̄Γφψ̄ψeGφφΓφψ̄dψGψψ̄ , (4.17)

where indices were again dropped. The full output of QMeS is given in Section A.3.4.

4.3.2.2. Nf = 2

Since we now want to include two flavours of fermions, we need to implement two anti-
fermion/fermion pairs. For simplicity we call them (ψ̄1, ψ1) and (ψ̄2, ψ2).

fieldsNf2 = <|"bosonic" -> {Phi[p]},

"fermionic" -> {{Psibar1[p, {d}], Psi1[p, {d}]},

{Psibar2[p, {d}], Psi2[p, {d}]}}|>;

The truncation is then given by

TruncationfRGNf2 = {{Phi, Phi}, {Psi1, Psibar1},

{Psi2, Psibar2}, {Phi, Psi1, Psibar1},

{Phi, Psi2, Psibar2}, {Phi, Phi, Phi, Phi},

{Psi1, Psi1, Psibar1, Psibar1},

{Psi2, Psi2, Psibar2, Psibar2},

{Psi1, Psi2, Psibar1, Psibar2}};

The setup is then given as,

SetupNf2 = <|"MasterEquation" -> fRGEq,

"FieldSpace" -> fieldsNf2,

"Truncation" -> TruncationfRGNf2|>;

Flow of the Scalar Two-Point Function

As before we define the two scalar field derivatives as,

DerivativeListScalarTwopoint = {Phi[-p], Phi[p]};

To get the full diagrams one has to run the command

fRGDiagramsPhiPhiNf2 = DeriveFunctionalEquation[SetupNf2,

DerivativeListScalarTwopoint, "OutputLevel" -> "FullDiagrams"];
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The result in superindex notation with a ' (−p) and b ' (p) is given as,

Γ̇φaφb =− 1

2
RφφGφφΓφφφaφbGφφ

−Rψ̄1ψ1Gψ1ψ̄1
Γφaψ̄1ψ1Gψ1ψ̄1

Γφbψ̄1ψ1Gψ1ψ̄1

−Rψ̄1ψ1Gψ1ψ̄1
Γφbψ̄1ψ1Gψ1ψ̄1

Γφaψ̄1ψ1Gψ1ψ̄1

−Rψ̄2ψ2Gψ2ψ̄2
Γφaψ̄2ψ2Gψ2ψ̄2

Γφbψ̄2ψ2Gψ2ψ̄2

−Rψ̄2ψ2Gψ2ψ̄2
Γφbψ̄2ψ2Gψ2ψ̄2

Γφaψ̄2ψ2Gψ2ψ̄2
. (4.18)

The full output of QMeS is given in Section A.3.5.

Flow of the Fermionic Two-Point Function

The derivatives with respect to the first antifermionic and fermionic fields is given as,

DerivativeListFermion1Twopoint = {Psibar1[-p, {d}], Psi1[p, {e}]};

The full diagrams can be obtained with

fRGDiagramsPsibar1Psi1Nf2 = DeriveFunctionalEquation[SetupNf2,

DerivativeListFermion1Twopoint, "OutputLevel" -> "FullDiagrams"];

The result in superindex notation is then

Γ̇ψ̄1dψ1e =−Rψ̄1ψ1Gψ1ψ̄1
Γψ̄1ψ̄1dψ1eψ1Gψ1ψ̄1

+Rψ̄2ψ2Gψ2ψ̄2
Γψ̄1dψ̄2ψ1eψ2Gψ2ψ̄2

− 1

2
RφφGφφΓφψ̄1dψ1Gψ1ψ̄1

Γφψ̄1ψ1eGφφ

− 1

2
RφφGφφΓφψ̄1ψ1eGψ1ψ̄1

Γφψ̄1dψ1Gφφ

− 1

2
Rψ̄1ψ1Gψ1ψ̄1

Γφψ̄1dψ1GφφΓφψ̄1ψ1eGψ1ψ̄1

− 1

2
Rψ̄1ψ1Gψ1ψ̄1

Γφψ̄1ψ1eGφφΓφψ̄1dψ1Gψ1ψ̄1
. (4.19)

Here one can see how the canonical sorting of fields in vertices is followed by an alphabetical
one. The full output of QMeS is given in Section A.3.5.
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4.4. Conclusion

In this work we have introduced the Mathematica package QMeS-Derivation. It allows
deriving symbolic functional equations from a master equation (fRG, mSTI, DSE). This
includes taking functional derivatives, tracing in field space, and a momentum routing for
1-loop diagrams. One of the most notable features is that during this process QMeS is
able to deal with fermionic signs effectively and consistently. Special emphasis is put on
the modular structure of the code which allows for future extensions like for example the
extension of the momentum routing to higher loop order diagrams.

We elucidated the usage of the package by computing different functional equations in
SU(3) Yang-Mills and Nf = 1 and Nf = 2 Yukawa theory starting from an action S.
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5. On Gauge Invariance in Gauge-Fixed
Yang-Mills Theory

This chapter is based on [3].
Infrared QCD is a strongly correlated system and is governed by confinement and spon-
taneous chiral symmetry breaking, whose understanding and resolution require numerical
non-perturbative first principle approaches. Functional diagrammatic approaches such as
the functional renormalisation group (fRG) and Dyson-Schwinger equations (DSE), or
n-particle irreducible approaches (nPI) potentially offer both, analytic access to the mech-
anisms behind the infrared dynamics of QCD as well as its quantitative numerical resolu-
tion, for literature on the fRG and DSE approaches in QCD see the recent reviews [59, 64]
and references therein.

The diagrammatic nature of functional approaches is best implemented within gauge
fixed QCD, for a recent discussion of gauge invariant alternatives see [64] and references
therein. A specifically well-suited gauge fixing is the Landau gauge, in particular for
numerical applications. The latter require truncations to the infinite hierarchy of coupled
loop equations for correlation functions in functional approaches. Naturally, the strongly
correlated nature of infrared QCD begs the question of whether the truncations commonly
used for explicit numerical solutions transport the underlying gauge symmetry of QCD: are
the correlation functions computed gauge consistent. Naturally, the gauge consistency of
the correlation functions is essential for confinement, both its manifestation in gauge-fixed
approaches as well as its understanding.

In the present work, we put forward a systematic approach towards the evaluation of
the above question: First, one computes transverse and longitudinal correlation functions
in QCD with functional approaches. Then, the gauge consistency of the results is tested
by inserting them into the Slavnov-Taylor identities (STIs). The STIs encode the changes
of gauge-fixed correlation functions under gauge or BRST-transformations. However, the
evaluation of the latter test comes with an intricacy. The STIs also constitute a set of func-
tional relations for correlation functions. These relations can be derived from the BRST
identity of the effective action, the BRST master equation, similarly to deriving functional
relations from the fRG-flow of the effective action or the functional DSE for the latter.
In the case of the STIs, longitudinal correlation functions are related to combinations of
transverse and longitudinal correlation functions. In summary, fRG equations, DSEs, and
STIs represent different resummation schemes for correlation functions and while their re-
spective solutions agree in exact solutions, at a finite orders of an expansion the solutions
will deviate. To exemplify this situation, let us emphasise that one can easily guarantee
the STIs for a finite set of correlation functions in a given order of the truncation if simply
using the STIs for the computation of the longitudinal correlation functions. Evidently,
this resolution of the STIs does not guarantee the gauge consistency of the transverse
correlation functions. This is best seen in the Landau gauge, where the set of functional
relations for transverse correlation functions is decoupled from the system of longitudinal
ones. Instead, gauge consistency should rather be evaluated by the smallness of the de-
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viations of correlation functions within all functional relations at hand: fRG equations,
DSEs, STIs and nPI-relations. For a detailed discussion of these subtleties, we refer to
[35, 64].

In the present work, we study Landau gauge Yang-Mills theory within a systematic ver-
tex expansion with the functional renormalisation group. Longitudinal correlation func-
tions are also computed from the respective Slavnov-Taylor identities, that follow from
the BRST master equation for the effective action. We use an advanced truncation level
for these computations, even though fully quantitative computations are still more ad-
vanced, for comparison see [37, 39]. The respective results are also compared with the
corresponding lattice results. In Section 5.2 we then discuss the consequences for the
gauge consistency of the present results as well as extensions of the current computations.

5.1. Slavnov-Taylor Identities in Functional Approaches

We consider SU(Nc) Yang-Mills theory in Euclidean space-time within the Landau gauge.
The explicit results are obtained in the physical (QCD) case Nc = 3, but they readily
extend the general Nc. The gauge-fixed classical action, including the ghost term and
BRST source terms, is given by

S =

∫
x

[
1

4
F aµνF

a
µν + ∂µc̄

aDab
µ c

b +Ba∂µA
a
µ −

ξ

2
BaBa

−QaA,µDab
µ c

b − 1

2
gfabcQacc

bcc +
1

ξ
Qc̄∂µA

a
µ

]
. (5.1)

The Landau gauge is implemented with ξ → 0, and we have introduced the shorthand
notation

∫
x =

∫
d4x. The covariant derivative D in the adjoint representation and field

strength tensor are defined as,

Dab
µ c

b = ∂µc
a + gfacbAcµc

b ,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (5.2)

The gauge-fixed Yang-Mills action in (5.1) still carries gauge invariance in terms of BRST-
symmetry (Becchi, Rouet, Stora, Tyutin) [110, 111]. The respective transformations are
given by

sAaµ = Dab
µ c

b

sca =
1

2
gfabccbcc

sc̄a = Ba

sBa = 0 , (5.3)

with the Nakanishi-Lautrup field Ba and with the BRST transformation of the field φa,
δBRSTφa = sφaδλ. In (5.1) we have already added BRST source terms with the currents
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Q = (QA, Qc, Qc̄) are coupled to the respective BRST transformations of the fields. Ev-
idently, we do not need QB as the respective BRST transformation vanishes identically.
Moreover, with s2 = 0 these additional terms are also BRST invariant. Our general
convention and notation follows [1].

5.1.1. Functional Renormalisation Group

In the functional renormalisation group approach, an infrared cutoff is introduced by
adding momentum-dependent mass terms ∆Sk to the classical action S in the path integral
representation of the generating functional Z[J,Q]. Here, the super-current J includes
currents for all component fields J = (JA, Jc, Jc̄, JB), and the BRST current Q is defined
above (5.3). The regulator terms read

∆Sk =

∫ (
1

2
(RA)abµν A

a
µA

b
ν + (Rc)

ab c̄acb
)
, (5.4)

with the infrared cutoff scale k. The regulators R = (RA, Rc) suppress quantum fluctua-
tions for momenta p2 . k2 for the respective fields, and vanishes for p2 & k2. The specific
form of the regulators used in the present work can be found in Section B.2.2.

The functional flow equation is derived for the scale-dependent effective action

Γk[Φ, Q] =

∫
J · Φ− logZ[J,Q]−∆Sk[Φ] , (5.5)

with the superfield

Φ = (Aµ, c, c̄, B) . (5.6)

Equation (5.5) is the modified Legendre transform of the Schwinger functional logZ, where
the regulator term has been separated for computational convenience. Its logarithmic scale
derivative provides us with the one-loop exact fRG equation,

∂tΓk =

∫ (
1

2
(ṘA)abµν (GAA)abµν − (Ṙc)

ab(Gcc̄)
ab

)
, (5.7)

with Ṙ = ∂tR, the (negative) RG time t = ln(k/Λ), and the full ghost and gluon propa-
gators

GAA =

[
1

Γ(2) +R

]
AA

, Gcc̄ =

[
1

Γ(2) +R

]
cc̄

. (5.8)

Here, Λ is a reference scale, typically chosen to be the initial cutoff scale deep in the
ultraviolet (UV). If the initial scale is chosen sufficiently large, the effective action tends
towards the local UV effective action ΓΛ that consists out of all UV-relevant terms. For
Yang-Mills theory this UV effective action includes all terms in the classical action as
well as a mass term for the gluon. The latter term originates in the breaking of gauge
invariance via the regulator term for k 6= 0. In turn, for k → 0, this breaking disappears
and we are left with the full BRST invariant effective action. For a full derivation and
further discussions, see e.g. [1, 64, 94, 115].

We close this section with a remark on some implicit assumptions within the deriva-
tion of the flow equation (5.7): it implies that the only k-dependence of the renormalised
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generating functional originates in the cutoff term. Then, in particular, the renormalisa-
tion procedure is assumed to be k-independent, for a detailed discussion see e.g. [115, 120].
While the self-consistency of this assumptions is readily shown for the wave function renor-
malisations and vertices, the absence of a mass renormalisation for the gluon is less trivial
and is of utmost importance for the interpretation of Yang-Mills theory in the presence
of the infrared cutoff term as a deformation of Yang-Mills theory, rather than massive
Yang-Mills theory (Curci-Ferrari (CF) model), see e.g. [175–178]. While this seemingly is
only of formal interest, the massless limit of the CF model is an intricate one as it defines
a flow in theory space. Instead, the removal of the momentum-local infrared regulator in
Yang-Mills theory is smooth, as the cutoff term can be interpreted as the local deformation
of Yang-Mills theory.

5.1.2. STI & mSTI

Classical BRST symmetry with the infinitesimal transformations (5.3) leads to symmetry
identities on the quantum level, that can be formulated in terms of a master equation, see
e.g. [179, 180], ∫

x

(
δΓ

δQaA,µ

δΓ

δAaµ
+

δΓ

δQac

δΓ

δca
+

δΓ

δQac̄

δΓ

δc̄a

)
= 0 . (5.9)

By integrating out the Nakanishi-Lautrup field leads to∫
x

(
δΓ

δQaA,µ

δΓ

δAaµ
+

δΓ

δQac

δΓ

δca
− 1

ξ
(∂νA

a
ν)∂µ

δΓ

δQaA,µ

)
= 0 . (5.10)

In the derivation of (5.10), one also uses the fact that the anti-ghost field only appears
linearly in the action.

Finally, the introduction of the cutoff term, (5.4), leads to a modification of the symme-
try identity (5.11), the modified Slavnov-Taylor identity (mSTI). It can be derived similarly
to the flow equation which can be interpreted as the equation which governs the violation
of scale invariance. For the mSTI, the additional term in comparison to (5.10) originates
from the lack of BRST invariance of the regulator term. As for the flow equation, it is
a one-loop exact equation. In the presence of the Nakanishi-Lautrup field B, the mSTI
takes the concise form, ∫

x
ΓQiΓΦi =

∫
x,y

(RG)ΦiΦj
ΓQjΦi (5.11)

with the notation

ΓQ1···QnΦn+1···Φn+m =
δΓ[Φ, Q]

δQ1 · · · δQnδΦn+1 · · · δΦn+m
, (5.12)

for mixed derivatives of the effective action with respect to BRST currents and fields. The
integral

∫
x,y on the right-hand side of (5.11) constitutes a space-time trace of the product

of operators (RG)(x, y) and ΓQΦ(y, x). On both sides of (5.11), a sum over species of
fields as well as internal and Lorentz indices is implied. For example, the left-hand side of
(5.11) is simply that of (5.9), if re-instating all indices.
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The right-hand side originates in the breaking of BRST invariance by the regulator
term, similarly to the right-hand side of the flow equation, which manifests the breaking
of scale invariance by the regulator term. We emphasise, that (5.11) is derived with the
same implicitly assumption of the independence of the UV renormalisation procedure of
the cutoff term. We will discuss the self-consistency of this assumption in Section 5.1.4.

For k → 0 the mSTI reduces to the STI. Thus, satisfying the mSTI at all scales k,
guarantees gauge invariance of observables at k = 0. A full derivation can be found
e.g. in [1, 94] and references therein.

5.1.3. Vertex Expansion and Truncations

We expand the effective action in terms of Φ and Q vertices. At vanishing BRST current,
Q = 0, this entails,

Γk[Φ, 0] =

∞∑
n=1

∫
ΓΦ1···ΦnΦ1 . . .Φn , (5.13)

with the superfield Φ in (5.6), the 1PI correlation functions ΓΦ1···Φn , and the normalisation
Γk[0, 0] = 0. Including BRST and mixed vertices is done analogously. Inserting the vertex
expansion (5.13) into the fRG equation (5.7), one sees readily, that a full solution of the
theory requires the complete set of 1PI correlation functions. Specifically, the flow of
ΓΦ1···Φn depends on correlation functions ΓΦ1···Φm with 2 ≤ m ≤ n + 2. This leads to an
infinite tower of coupled integro-differential equations. For most practical purposes this
tower has to be truncated. Similar considerations apply to all closed functional master
equations and in particular to the set of DSEs, whose towers of coupled integral equations
also satisfy 2 ≤ m ≤ n+ 2.

For this work, we restrict ourselves to the truncation shown in Figure B.6. The gluon
and ghost propagators are obtained from their respective two-point functions via (5.8),

ΓabAA,µν(p) = Π⊥µν(p)ZA(p)p2δab + Π‖µν(p)Γ
‖
AA(p)δab ,

Γabc̄c (p) =Zc(p)p
2δab , (5.14)

the transverse and longitudinal projection operators,

Π⊥µν(p) =

(
δµν −

pµpν
p2

)
,

Π‖µν(p) =
pµpν
p2

. (5.15)

The longitudinal scalar part Γ
‖
AA in (5.14) contains the gauge fixing part that diverges

in the Landau gauge limit ξ → 0 and a regular contribution, that originates from the
breaking of BRST invariance for finite k and vanishes in the limit k → 0. We have

Γ
‖
AA(p) =

1

ξ
p2 + Γ

‖
AA,reg . (5.16)

We remark that in the Landau gauge limit the propagator is transverse and does not

depend on Γ
‖
AA,reg, even though the latter contribution does not vanish. This is one of
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the properties that single out the Landau gauge not only as the technically least difficult
Lorenz gauge, but also suggests the best convergence of the results for correlation functions

in a systematic vertex expansions: for any other choice of ξ the regular part Γ
‖
AA,reg feeds

back into the dynamics of the system, even though its integrated impact has to vanish at
vanishing cutoff scale. A more detailed discussion including the consistency of different
functional relations (fRG, DSE, mSTI) is discussed in Section 5.1.4.

With the projection operators we can split correlation functions into their transverse
and longitudinal parts,

ΓΦ1···Φn = Γ⊥Φ1···Φn + Γ
‖
Φ1···Φn , (5.17)

where Γ⊥Φ1···Φn is the completely transverse part of the correlation function, structurally

given by Γ⊥Φ1···Φn = (Π⊥)nΓΦ1···Φn . The longitudinal part simply is the complement, and
hence is built up from correlation functions with at least one longitudinal leg.

We will explain this splitting at the example of the ghost-gluon vertex. Its complete
basis is spanned by only two tensor structures: the classical one, proportional to the anti-
ghost momentum, and a longitudinal non-classical one, which is proportional to the gluon
momentum,

ΓabcAc̄c,µ(p, q) = ifabc
(
λAc̄c,cl(p, q)qµ + λAc̄c,ncl(p, q)pµ

)
. (5.18)

However, we can rewrite this in terms of the projection operators defined in (5.15), which
are longitudinal and transverse in the gluon momentum p,

ΓabcAc̄c,µ(p, q) = ifabc
(
λAc̄c(p, q) Π⊥µν(p)qν + λ̄Ac̄c,1(p, q) pµ

)
, (5.19)

with

λAc̄c(p, q) = λAc̄c,cl(p, q) ,

λ̄Ac̄c,1(p, q) =
p · q
p2

λAc̄c,cl(p, q) + λAc̄c,ncl(p, q) . (5.20)

The singularity of such a split with projection operators at p = 0 is reflected in the prefactor
p · q/p2 of the classical dressing in λ̄Ac̄c,1(p, q). It is matched by the respective one in the
transverse projection operator multiplying λAc̄c(p, q). Therefore, for non-singular dressings
in (5.18) we only have a parameterisation singularity.

In the present work, we consider relations between the dressings at the symmetric point
p2 = q2 = −2p · q. In the ultraviolet limit, the non-classical dressing vanishes and we are
left with the classical one. Hence, for the present purpose it is convenient to simply use

the longitudinal projection of the classical tensor structure, Π
‖
µν(p)qν , for the longitudinal

part. This leads us to,

ΓabcAc̄c,µ(p, q) =
(
λAc̄c(p, q) Π⊥µν(p) + λAc̄c,1(p, q) Π‖µν(p)

)
ifabcqµ , (5.21)

see also [37]. The dressing λAc̄c,1 is given by

λAc̄c,1(p, q) = λAc̄c,cl(p, q) +
p2

p · q
λAc̄c,ncl(p, q) , (5.22)

54



5.1. Slavnov-Taylor Identities in Functional Approaches

and we have in particular λ̄Ac̄c,1(p, q) = −2λAc̄c,1(p, q) at the symmetric point. Moreover,
for all momenta except those with p · q = 0, the dressing in (5.22) has the ultraviolet limit
λAc̄c,1 → λAc̄c,cl which facilitates the following discussions, while λ̄Ac̄c,1 → (p · q)/p2λAc̄c,cl.
In conclusion, the transverse ghost-gluon dressing is equivalent to the classical one, whereas
the longitudinal dressing is a combination of the classical and non-classical dressing. For
a comparison of the dressings, see Figure 5.4 and Figure B.2.

We now proceed by parametrising the BRST and gluonic vertices in terms of transverse
and longitudinal projections analogously to the parameterisation of the ghost-gluon vertex
discussed above. With the anti-ghost shift symmetry of the effective action, we can relate
the BRST vertices ΓcQA and ΓAcQA to the ghost two-point and the ghost-gluon vertex. A
derivation thereof can be found in Section B.2.5,

ΓabcQA,µ(p) =− iZc(p)pµδab ,

ΓabcAcQA,µν(p, q) = − fabc
(

Π⊥µν(p)λAc̄c(p,−q − p) + Π‖µν(p)λAc̄c,1(p,−q − p)
)
. (5.23)

Notably, this identity even holds diagramatically for the flows of the dressings. The other
BRST two-point function and vertex are parameterised as,

ΓabAQc̄,µ(p) = −ipµ
1

ξ
δab ,

ΓabcccQc(p, q) = −ifabcλQccc(p, q) . (5.24)

In the present work we approximate the three- and four-gluon vertices with their fully
dressed classical tensor structures, noted as τA3,cl and τA4,cl. The purely transverse part
is obtained by contracting the classical tensor structure with three and four transverse
projection operators respectively. The complements now contain mixed vertices with lon-
gitudinal and transverse legs as well as a purely longitudinal part. The parts with at least
three longitudinal legs do not contribute since they do not feed back into the diagrams and
are therefore not included in our truncation. Thus we parameterise the gluonic vertices
as,

ΓA3(p, q) =

(
λA3

(
Π⊥
)3

+ λA3,1

(
Π⊥
)2

Π‖ + λA3,2Π⊥
(

Π‖
)2
)
τA3,cl + · · ·

ΓA4(p, q, r) =

(
λA4

(
Π⊥
)4

+ λA4,1

(
Π⊥
)3

Π‖ + λA4,2

(
Π⊥
)2 (

Π‖
)2
)
τA4,cl + · · · (5.25)

where indices and momenta are dropped and the permutations are implicitly assumed for
simplicity. The dots indicate terms with (Π‖)nτA3,cl and (Π‖)nτA4,cl with n ≥ 3 as well as
projections of further (non-classical) tensor structures. We emphasise that for p · q = 0 or
p · r = 0 the parameterisation in (5.25) may lead to parameterisation singularities for the
dressings, that are then seen in the respective projections of the diagrams in the functional
relations. For further details on the parameterisation, see Section B.2.1. The longitudinal
four-gluon vertices are approximated by their STI-values, see (5.46).

The remaining dressings are obtained from their respective fRG equations that are
depicted in Figure B.6 at the symmetric point for three(four)-point functions,

pi · pj =

 p2 for i = j,

− 1
n−1 otherwise, where n = 3(4).

(5.26)
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Figure 5.1.: Ghost, 1/Zc(p), (left) and gluon, 1/ZA(p) (right) dressing in comparison to
the lattice result (dots) from [149]. The global normalization of the lattice
results was fixed by our scaling solution, c.f. Section B.2.3.

For simplicity, the vertex dressings feeding back into the fRG equations are evaluated
at the average momentum configuration λi(p̄) with,

p̄2 =
1

n

n∑
i=1

p2
i , (5.27)

which has been shown to be a good approximation, see e.g. [181]. From the transverse
dressings we can derive momentum dependent running couplings,

αAc̄c(p) =
1

4π

λAc̄c(p)
2

ZA(p)Zc(p)2
,

αA3(p) =
1

4π

λA3(p)2

ZA(p)3
,

αA4(p) =
1

4π

λA4(p)

ZA(p)2
. (5.28)

These vertex couplings are perturbatively two-loop degenerate, which can also be seen in
our truncation, see Figure 5.2.

5.1.4. Functional Relations and Consistency Constraints

For the computation of functional relations, our choice of the Landau gauge is very efficient,
since in Landau gauge Yang-Mills theory the set of all transverse functional relations is
closed, i.e.

Γ⊥(n) = funRel⊥(n)[{Γ
⊥
(m≤n+2)}] , (5.29a)

where {Γ⊥(m≤n+2)} indicates the set of all transverse correlation functions with 2 ≤ m ≤
n+ 2. In contradistinction, the longitudinal correlation functions satisfy

Γ
‖
(n) = funRel

‖
(n)[{Γ

‖
(2<m≤n+2)}, {Γ

⊥
(m≤n+1)}] , (5.29b)
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Figure 5.2.: Left: Running couplings as defined in (5.28) obtained from different Yang-
Mills vertex dressings. Right: Scaling and decoupling gluon propagator in
comparison to the lattice result from [149]. The global normalization of the
lattice results was fixed by our scaling solution, c.f. Section B.2.3.

Equation (5.29a) follows from the fact that the gluon propagatorGA as well as (GṘG)AA
are transverse in the Landau gauge and hence so are all internal legs. Also, the propagator
only depends on Γ⊥(2). The structure (5.29) applies to fRG equations and DSEs, for more

details see [35, 37, 64, 94].

The mSTIs in (5.11) involve longitudinal and transverse correlation functions, and they
are similar to (5.29b) with,

Γ
‖
(n) = mSTI(n)[{Γ

‖
(2<m≤n+2)}, {Γ

⊥
(m≤n+1)}] . (5.30)

Note that (5.30) constitutes yet another tower of functional relations for longitudinal
correlation functions. Naturally, as for truncated towers of fRG equations and DSEs
its solution for a given truncation will in general differ from both, the solution of the
longitudinal fRG equations and the longitudinal DSEs (or any other tower of longitudinal
functional relations). Moreover, for a finite set of longitudinal and transverse correlation
functions, one may simply use the (m)STI for computing the longitudinal correlation
functions. Such a scheme trivially builds in gauge consistency by construction. Naturally,
the longitudinal correlation functions will then in general not satisfy the respective fRG
equations or DSEs. In conclusion, it is not the violation of the mSTI alone, which comprises
the information about gauge consistency, but the combination of all functions relations.

However, even though (5.30) is very similar to the fRG equations and DSEs for the
longitudinal dressings, there is an important structural difference which is most apparent
in the Landau gauge limit: while (5.29a) and (5.29b) only depend on the transverse part
of the regulator, the mSTI (5.30) depends on the longitudinal part for regulators whose
longitudinal part diverges with 1/ξ. A natural class of regulators with this property are
RG-adapted or spectrally adapted regulators, see [115, 182]. In this case, the regulators are
proportional to the full dispersion of the respective field, which is detailed in Section B.2.2.
This choice ensures, that the effective action in the presence of the regulator has the
underlying RG-invariance of the full theory at vanishing regulator, hence the name RG-
adapted. Specifically, the longitudinal part of the gluon regulator reads

(RA)‖,abµν (p) = δabΠ‖µν(p)Γ
‖
AA(p) r

(
p2

k2

)
. (5.31)
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The class of regulators with (5.31) leads to

lim
ξ→0

pµ(GAARA)µν = pν
rA

1 + rA
(p2/k2) , (5.32)

and hence one of the internal lines in the mSTI diagrams has a longitudinal part. In turn,
for gluon regulators with a regular longitudinal part we have

pµ(GAARA)µν ∝ ξpν , (5.33)

and hence all internal lines are transverse in the Landau gauge. Then, the mSTI has the
same structure as (5.29b) in terms of contributing correlation functions.

Interestingly, the fRG equations and DSEs (in the presence of a regulator), (5.29), are
the same in the Landau gauge limit for regulators with either (5.32) or (5.33). However,
it can be shown, that the contributions of the longitudinal part of the propagator (5.32)
do not cancel in the mSTI. In particular, the gluon mass m2

k from the STI only receives
contributions from the longitudinal part of (RkG)AA. In conclusion, only for gluon reg-
ulators whose longitudinal part contains the gauge fixing term 1/ξp2r(p2/k2), the mSTI
gluon mass and that from the fRG flow equation or DSE agree, and the implicit assump-
tion of k-independence of the renormalisation procedure is self-consistent. This intricacy
emphasises the importance of gauge consistency of the regularisation procedure. The
comparison of functional mSTI and fRG/DSE always allows us to choose a longitudinal

regulator R
‖
A such that all functional relations are compatible. However, this also implies

that gauge consistency of truncated fRG flows or DSEs should rather be checked with a
set of correlation functions and not a single one.

In summary, throughout this work we will use RG-adapted regulators (5.31), which are
also gauge consistent, as discussed above. A more detailed study of this intricacy and
the general regulator (shape) dependence is still under investigation and will be published
elsewhere.

We conclude this section with two remarks. Firstly, for regular correlation functions,
one can use the STIs for also extracting a part of the respective transverse correlation
functions. Loosely speaking, regularity implies

|∂piΓ(n)| <∞ , (5.34)

in which case the longitudinal and transverse parts are linked. However, in the present case
of Yang-Mills theories, it can be shown that regular correlation functions are at odds with
confinement. In turn, in perturbation theory, one can show that the regularity assumption
holds true. Indeed, it is also related to the identification of running couplings (5.28). This
adds yet another layer of complexity to the current situation: for perturbative and semi-
perturbative momenta regularity holds true and we should see the respective relations
between longitudinal and transverse correlation functions.

In summary, this leaves us with the necessity as well as a large variety of non-trivial
consistency checks. We also emphasise that great care is needed in the interpretation
of violations of the mSTI or alternatively of other functional relations for longitudinal
correlation functions within truncations.

5.1.5. Confinement

Confinement describes the effect that no coloured particles can be detected directly by
experiments, i.e. the absence of coloured states from the physical asymptotic spectrum
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of our theory. It is fundamentally linked to the non-abelian gauge group of QCD. Thus
first investigations thereof may already be carried out in Yang-Mills theory. One possible
mechanism for confinement has been proposed by Kugo and Ojima [183].

The Kugo-Ojima confinement scenario can generally be broken down into three criteria.
First, if we have a global, non-perturbative BRST charge, i.e. unbroken BRST symmetry, it
can be used to construct the physical state space Hphys. Second, if the global colour charge
is unbroken, Hphys only contains colourless states. And third, the cluster decomposition
principle has to be violated in the total state space H, but not in Hphys.

For the latter, it has already been argued in [184] that this is indeed fulfilled in the
covariant operator formulation of QCD.

From the second criterion, we can deduce direct implications for our infrared (IR)
Green’s functions. It can be shown that this requires an IR enhancement of the ghost
propagator. This yields a unique IR renormalization condition. We shall refer to this as
the scaling solution. This enhancement is accompanied by a dynamical creation of a gluon
mass,

lim
p→0

Zc(p
2) ∝ (p2)κ ,

lim
p→0

ZA(p2) ∝ (p2)−2κ , (5.35)

with 1/2 < κ < 1.
There are furthermore two other solutions that are studied in this work: the decoupling

solution, which is the confining solution with the smallest dynamically created gluon mass
m2
⊥,kmin , and massive solutions to which we will also refer to as Higgs solutions. The

Higgs solutions exhibit an explicit gluon mass and break global color symmetry. Both,
Higgs and the decoupling solution break BRST symmetry, [35, 185]. An investigation of
the different solutions within our setup can be found in Section 5.2.5. The full range of
solutions, in terms of the mass value m2

⊥,kmin
, can be found in Figure 5.5, where also our

choice of scaling and decoupling and the Higgs solution that was investigated is indicated.
The IR behaviour of the decoupling and Higgs solution is characterized by

lim
p→0

Zc(p
2) ∝ 1 ,

lim
p→0

ZA(p2) ∝ (p2)−1 . (5.36)

The scaling exponents obtained from our results can be found in (B.17).
More details on confinement in general and on the investigation of the different solutions

can be found in [37, 71].
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5.2. Numerical Results

In this work, we solve the transverse sector of Yang-Mills correlation functions self-
consistently in Landau gauge. In addition to that, we compute the longitudinal and
BRST dressings from the fRG and from the mSTI. We proceed by comparing the results
obtained with both approaches. All momentum-dependent equations are computed at the
symmetric point.

5.2.1. Solving the Transverse Sector from the fRG

As stated in Section 5.1.4, the transverse sector of Yang-Mills theory is closed in Landau
gauge. Thus, we have a closed system of momentum-dependent self-consistent coupled
differential equations that can be solved.

The mSTI requires a non-zero gluon massm2
⊥,Λ at the cutoff. The exact value is uniquely

fixed by demanding a scaling or decoupling type solution.
The constant initial values of the vertex dressings are tuned such that the respective

couplings are perturbatively degenerate at k = kmin, i.e. fulfill the two-loop exact rela-
tion from (5.28) thus rendering only the initial value of the ghost-gluon dressing a free
parameter. It is chosen to be λAc̄c,Λ(p) = 1 at the cutoff.

The vertex dressings of the three(four)-point functions generally depend on two(three)
momentum variables. To reduce the numerical effort we approximate the momentum
dependencies of the dressings to one variable, which we chose to be the average momentum
p̄ at the symmetric point, see (5.27). The symbolic equations for these quantities can be
found in figure Figure B.6 and were derived with QMeS-Derivation [1, 2].

The explicit form of the projection operators utilized to project onto the transverse,
classical tensor structures are given in Section B.2.1. However, it is worth mentioning,
that even after projecting, other tensor structures still enter the diagrammatic equations
and thus contribute to the functional equations. We approximate their dressing functions
with the transverse, classical dressing.

The results for the transverse correlation functions obtained from this setup are shown
in Figure 5.1 and Figure 5.2. The scale was set using the shown lattice computation
and more details regarding the scale setting and global normalization can be found in
Section B.2.3.

One can see that the couplings are degenerate for scales 2� p� Λ GeV. In this region,
the correlation functions from the scaling and decoupling solution also agree very well
with the lattice result. At smaller momenta, the results are not comparable due to the
different gauge fixing procedures on the lattice and in functional computations, see e.g.
[186? ]. When comparing the gluon propagator dressing in Figure 5.2 however, one can
see that the scaling solution matches the lattice results at intermediate scales p ≈ 1 GeV
much better than the decoupling solution.

5.2.2. BRST and Longitudinal Yang-Mills Sector from the fRG

The BRST symmetric Yang-Mills action additionally contains source terms Qi coupled to
the respective BRST transformations of the fields. These vertices are fully dressed objects,
see Section 5.1.3. BRST symmetry, and thus the mSTIs, relate the longitudinal parts of
vertex functions to themselves and the transverse parts, see (5.30).
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Figure 5.3.: Left: Transverse (solid black) and longitudinal (solid green) gluon mass from
the fRG and longitudinal (dashed dark green) gluon mass from the mSTI
over k. Right: Transverse (solid black) and longitudinal (solid green) gluon
two-point from the fRG and longitudinal (dahsed dark green) gluon two-point
from the mSTI at k = kmin over p.

Thus for a self-consistent check of the (m)STIs we also need to compute the longitudinal
and BRST dressings from the fRG. The symbolic equations were also derived using QMeS-
Derivation and can be found in Figure B.6. Again, the average momentum approximation
at the symmetric point (5.27) was used to simplify the momentum-dependence of the vertex
dressings.

Diagrammatically, the fRG equations of the transverse and longitudinal quantities are
identical, the vertices contributing in the diagrams are however different. As an illustrative
example of how the vertex contributions differ, see Section B.3.1, where we derive the
transverse and longitudinal one-loop gluon mass from the fRG and mSTI.

The projection procedure for the derivation of longitudinal fRG equations can be found
in Section B.2.1.

We can immediately see that the three-gluon dressing with one longitudinal leg vanishes
at the symmetric point,

λ̇A3,1 ∝ PabcA3,1,µνρ(p, q)Γ̇
abc
A3,µνρ(p, q) = 0 , (5.37)

rendering this dressing RG-invariant, λA3,1,k(p) ≡ λA3,1,Λ ≡ λA3,Λ. We use the same
initial values for the longitudinal dressings as for the transverse ones. As the longitudinal
gluon two-point function does not feed back into the flows, its initial value is chosen as,

Γ
‖
AA,kmin

(p) = 0.
Generally, the longitudinal fRG equations are coupled to the transverse sector and to

themselves, see Section 5.1.4. However, due to the non-running of the three-gluon vertex
dressing with one longitudinal leg, the equations decouple hierarchically and we can solve
them successively. Explicitly (and omitting the transverse sector) one can write,

λ̇Ac̄c,1(p) = fRG
[
λAc̄c,1, λA3,1

]
,

λ̇A3,2(p) = fRG
[
λAc̄c,1, λA3,1, λA4,1, λA4,2

]
,

Γ̇
‖
AA(p) = fRG

[
λAc̄c,1, λA3,1, λA4,2

]
, (5.38)

with momentum arguments on the right-hand side dropped for simplicity.
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Figure 5.4.: Left: Transverse (solid black) and longitudinal (solid blue) ghost-gluon dress-
ings from the fRG and longitudinal (dashed dark blue) ghost-gluon dressing
from the STI at k = kmin over p. Right: Transveral (solid black) and longitu-
dinal (solid blue) three-gluon dressings from the fRG and longitudinal (dashed
dark blue) three-gluon dressing from the STI at k = kmin over p.

One can see that the longitudinal two-point function does not feed back into the flows.

We solve the above system self-consistently while using the STI expressions (5.46) for
the longitudinal four-gluon dressings.

With this at hand, we obtain the longitudinal fRG dressings that are shown in Figure 5.3
and Figure 5.4. A discussion thereof can be found in Section 5.2.4.

We furthermore compute the BRST dressings from the fRG. Due to the shift symmetry
identity that allows for the identification of the ZcQA and λAcQA with the ghost and ghost-
gluon dressing, see Section B.2.5, one is only left with one dressing, λQccc. We show in
Section 5.2.3.2 that this dressing is also related to the longitudinal ghost-gluon dressing.

5.2.3. Modified Slavnov-Taylor Identitites

We proceed by inserting the fRG results into the (m)STI equations. This gives us a
non-trivial consistency check of our solution.

Numerically, it is not feasible to integrate the equations down to exactly zero, rendering a
small, yet finite cutoff kmin = 0.135 GeV. Consequently, we must not check the consistency
of our results with the STIs but rather with the mSTIs. In the following we will refer to

expressions of the general form STI −Diagrams !
= 0 as mSTIs, where the Diagrams are

the one-loop diagrammatic corrections of the STI due to the BRST symmetry breaking
cutoff terms (5.11). The symbolic equations can be found in Figure B.7.

In this section, we will present the STIs within our truncation. For the derivation
procedure and the diagrammatic contributions, see Section B.3.

All (m)STIs are evaluated at the symmetric point (5.26) and the dressings are computed
on the average momentum configuration (5.27).
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Figure 5.5.: Left: Gluon Mass m2
⊥ at k = kmin from different fRG solutions. The black

markers correspond to Higgs type and the blue markers to confining solu-
tions, where the lighter blue triangle indicates the scaling solution and the
dark blue circle the decoupling solution that were used for further investi-
gations throughout this work. The definition of the gluon mass is given in
Section B.2.2. The grey area indicates the unphysical region characterised by
Landau-pole-like singularities. Right: Absolute value of the gluon two-point
mSTI for different values of k over p.

5.2.3.1. Gluon Two-Point and Gluon Mass STI

The STI for the longitudinal gluon two-point function is,

Γ
‖
AA,reg(p) = 0 . (5.39)

This also renders the longitudinal gluon mass zero,

m2
‖ = Γ

‖
AA(p = 0) = 0 . (5.40)

A few more technical details can be found in Section B.2.2 and the quantities are shown
in Figure 5.3.

5.2.3.2. Ghost-Gluon STI

The STI for the ghost-gluon vertex relates the longitudinal part of ghost-gluon vertex to
the BRST projected vertex Qccc . The relation in our truncation reads,

2pµΓAc̄c,µ(p, q)Zc(p) + q2ΓccQc(p,−p− q)Zc(q) = 0 . (5.41)

Thus we can derive the STI for the respective dressings at the symmetric point,

λAc̄c,1(p)− λQccc(p) = 0 . (5.42)

A formulation of the ghost-gluon STI in terms of the classical and non-classical tensor
basis is presented in Section B.3.2. The respective dressings are depicted in Figure 5.4
and Figure B.2.
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Figure 5.6.: Left: Absolute value of the ghost-gluon mSTI measure for different values of
k over p. Right: Absolute value of the three-gluon mSTI measure for different
values of k over p.

5.2.3.3. Three-Gluon STI

The STI for the three-gluon vertex with two longitudinal legs is,

λA3,2(p)− ZA(p)

Zc(p)
λQccc(p) = 0 . (5.43)

After applying the ghost-gluon STI and dividing by propagator dressings, one obtains
the well-known perturbative relation for the couplings,

λ2
A3,2(p)

4πZ3
A(p)

=
λ2
Ac̄c,1(p)

4πZA(p)Z2
c (p)

. (5.44)

This is a valid approximation as is shown in Section 5.2.4.3 and Figure 5.6.

For the three gluon vertex with only one longitudinal leg, there exits no STI, since this
projection has no overlap with the classical tensor structure. The dressings are shown in
Figure 5.4.

5.2.3.4. Four-Gluon STI

The four-gluon STI relates different longitudinal four-gluon dressings to longitudinal and
transverse three-gluon and ghost-gluon dressings. We have again used the ghost-gluon
STI (5.42) and obtain at the symmetric point,

λA4,1(p)− 1

Zc(p)
λAc̄c(

√
10

3
p)λA3(

√
10

3
p) = 0 , (5.45)

λA4,2(p)− 32

33Zc(p)
λAc̄c,1(

√
10

3
p)λA3(

√
10

3
p)− 1

33Zc(p)
λAc̄c(

√
10

3
p)λA3,1(

√
10

3
p) = 0 .

It is worth mentioning that the STIs at the symmetric point are quite different from the
ones usually present in the literature, as e.g. in (5.28).
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Figure 5.7.: Left: Gluon mass measure for the longitudinal mass from the mSTI the trans-
verse mass from the fRG for different solutions over k. Right: Transverse
(solid lines) gluon mass from the fRG and longitudinal (dashed lines) gluon
mass from the mSTI for different solutions over k.

5.2.4. Discussion

We can now proceed by comparing the longitudinal results of different correlation functions
obtained from the fRG and mSTI approach.

5.2.4.1. Longitudinal Gluon Mass

The longitudinal mSTI mass, m2
‖, and the transverse fRG mass, m2

⊥ exhibit the same
running for large k which is shown in Figure 5.3. This is in good agreement with the
one-loop running, which is the same for both masses, for further details, see Section B.3.1.
At the scale k ≈ 5 GeV however, they split, which is most likely due to the difference
in the IR of the longitudinal and transverse vertices, cf. Figure 5.4. For k = kmin the
value of both masses agrees again, meaning the longitudinal mass shows the same scaling
behaviour as the transverse mass. The STI, (5.40), however, should render the longitudinal
gluon mass zero. This deviation therefore might stem from our truncation in the vertex
sector in the fRG equations, more precisely in the pure gluon sector, see Section 5.2.4.2.
Another plausible explanation would be IR cutoff effects, however, differentiating the two
is currently not feasible.

5.2.4.2. Longitudinal Gluon Two-Point Function

The solution of the longitudinal two-point fRG equation constitutes the simplest case
possible since neither the longitudinal two-point nor the longitudinal propagator does
anyhow feed back into the diagrams in Landau gauge. This means that a solution can
be obtained by simply integrating the equation over the cutoff k and choosing the initial

condition for Γ
‖
AA,µν,reg,Λ(p) such, that one obtains zero for the evaluated integral. Thereby

one not only solves the fRG equation but also satisfies the (m)STI at kmin.

By comparing the longitudinal gluon two-point from the fRG and from the mSTI, one
can see that they do not agree well on all scales k, see Figure 5.3 and Figure 5.5. They are
only identical at k = kmin for p & 0.5 GeV. For small momenta one can see a deviation of
order O(10−2 GeV2). Albeit small, the deviation is qualitatively similar to the deviation
in the three-gluon mSTI, Figure 5.6. Since the longitudinal three-gluon dressing enters the
mSTI equation for the gluonic two-point, but not vice versa, one can therefore conclude,
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Figure 5.8.: Left: Absolute value of the two-gluon mSTI measure for different solutions
over p. Right: Absolute value of the ghost-gluon mSTI measure for different
solutions over p.

that both deviations are due to the truncation of the fRG equation for the longitudinal
three-gluon and four-gluon dressing.

5.2.4.3. Longitudinal Ghost-Gluon Dressing

In a general covariant gauge, only λAc̄c requires renormalisation. The non-classical dressing
λAc̄c,ncl vanishes for large momenta. The non-classical dressing obtained from the fRG and
mSTI is depicted in Figure B.2.

We can see that our results fulfill this property perturbatively since the non-classical
dressing is approximately zero for large momenta, p � 5 GeV. In the infrared, it is how-
ever non-trivial. It is worth mentioning that the longitudinal and transverse ghost-gluon
dressings do not agree well at any momentum scale p. From Figure 5.4, Figure 5.6 and
Figure B.2 we can see that the mSTI and fRG dressing agree perfectly for all momenta
p implying that there is a non-trivial cancellation of diagrams within the two functional
approaches. Indeed, Figure 5.6 merely depicts the numerical accuracy of our computa-
tion. The (m)STI already holds true at the level of fRG equations, c.f. Figure B.6: The
diagrams contributing to the flow of the longitudinal ghost-gluon dressing that contain
three-gluon vertices cancel non-trivially. The remaining diagrams are equivalent if the
ghost-gluon STI is fulfilled at the cutoff k = Λ.

This non-trivial result implies BRST symmetry being conserved by the respective fRG
computation and thus strongly hints at gauge invariance of our setup.

5.2.4.4. Longitudinal Three-Gluon Dressing

The results for the different three-gluon dressings are shown in Figure 5.4. As demon-
strated in (5.37) the three-gluon dressing with one longitudinal leg, λA3,1, does not run.
One can see that the dressing with two longitudinal legs from the fRG agrees with
the transverse fRG dressing, λA3 , and the longitudinal STI dressing for large momenta
p� 5 GeV. The longitudinal STI dressing and the transverse fRG dressing however agree
up to even smaller scales p � 1.5 GeV. In the infrared one can observe that the general
behaviour of the longitudinal fRG and STI dressings agree. The STI dressing diverges for
p→ 0 whereas the fRG dressing forms a maximum at p ≈ 0.2 GeV. The minimum of both
dressings is given at approximately the same momentum, p ≈ 1 GeV.
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Figure 5.9.: Left: Longitudinal three-gluon dressing λAAA,2(p) from the fRG (solid lines)
and from the STI (dashed lines) for different solutions. Right: Absolute value
of the three-gluon mSTI measure for different solutions over p.

In contrast to that, the transverse dressing gets smaller and even becomes negative for
p → 0. Thus we can observe a clear splitting between the transverse and longitudinal
sector in both approaches which is due to the different contributions of longitudinal and
transverse vertices in transverse and longitudinal functional equations.

The slight deviation in the UV can be explained by the logarithmic finetuning procedure:
we have chosen the same initial values for the longitudinal and transverse dressings. The
contributions on the level of correlation functions to the flows are however different. By
choosing different (constant) initial values for the longitudinal dressings at the cutoff it is
nevertheless possible to generate a better agreement of the dressings in the UV at k = kmin.

As stated in the previous section, the three-gluon mSTI shows a deviation at p ≈ 5 GeV.
This might be due to the fact that we did not include a full tensor basis of the gluonic
sector and even approximated the longitudinal four-gluon dressings with their STI values
in the fRG equation of the three-gluon vertex.

For momenta p > 5 GeV, the three-gluon mSTI is however fulfilled, where the small
deviation for very large momenta stems from the tuning procedure, as described before.

5.2.5. Discussion of Different Solutions

In this section, we present a comparison of the mSTIs for different types of solutions, i.e.
the scaling, decoupling, and a Higgs type solution, that are highlighted amongst the range
of solutions in figure Figure 5.5.

Studying the gluon mass measure in Figure 5.7,

|m2
‖ −m

2
⊥|

1
2(|m2

‖|+ |m
2
⊥|)

, (5.46)

where the longitudinal mass is obtained from the mSTI and the transverse mass from
the fRG, one can see that all three solutions fulfill the measure equally well up until
p ≈ 20 GeV. There, the Higgs solution starts to deviate. It is expected that for a more
massive Higgs solution, the deviation starts at an even larger momentum scale p. Vice
versa, the scaling solution fulfills the measure up to smaller scales than the decoupling
solution.
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The ghost-gluon mSTI is fulfilled for all three types of solutions, the small deviations
shown in Figure 5.8 simply depict the numerical precision in the computation.

Generally, we do not expect the mSTIs to be fulfilled for scales p � 1 GeV, since non-
classical vertices and tensor structures that were not taken into account in our truncation,
contribute significantly in this regime. We furthermore expect IR cutoff effects contribut-
ing below this scale, being within one order of magnitude of kmin.

However, we can clearly see a divergence in the gluon two-point, Figure 5.8, and three-
point mSTI, Figure 5.9, for momenta p � 1 GeV. This singularity could be related to
resonances and is most distinct in the scaling solution.

Comparing the longitudinal three-gluon dressing λA3,2 from the fRG and from the STI
for different types of solutions, one can see that the scaling solution yields the best quali-
tative agreement of the dressings.
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5.3. Conclusion

We have studied gauge symmetry in Landau gauge Yang-Mills theory with functional
methods where gauge invariance was implemented via BRST symmetry. We have self-
consistently computed a set of momentum-dependent transverse and longitudinal corre-
lation functions from the functional Renormalisation Group (fRG) for different (non-)
confining solutions and compared the transverse results to lattice and Dyson-Schwinger
computations. We have furthermore computed longitudinal correlation functions from the
(modified) Slavnov-Taylor identities (mSTI) on the basis of the above results. They show
good agreement with the respective longitudinal fRG results hinting at gauge consistency
of our setup.
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6. Glueball Masses from the fRG

This section is based on the work that will be presented in [4].
An interesting consequence of the non-Abelian nature of Yang-Mills theory is the existence
of hadronic states that consist of gluons only. The masses of the different so-called glueballs
have been studied extensively in lattice computations [187–191]. First computations of
glueball masses with functional methods, especially Dyson-Schwinger equations (DSE),
have been made possible with the treatment of bound states via Bethe-Salpeter equations
(BSE) [45, 46], see e.g. [192–196]. An overview of the topic is given in e.g. [68, 197]. For
approaches with other methods, see e.g. [198–208].

In the following, we put forward a self-consistent approach of extracting the scalar
(JPC = 0++) and pseudo-scalar (JPC = 0−+) glueball mass from a Euclidean fRG com-
putation in Landau gauge Yang-Mills theory, based on the results presented in the previous
Chapter 5. We obtain the glueball spectral functions via Padé approximants [209, 210]
and via Gaussian Process Regression (GPR) [211] of the Euclidean correlator data. For a
review of the latter, see e.g. [212].

In Section 6.1 we introduce the spectral representation of Euclidean dressing functions,
as well as Padé approximants (Section 6.2) and GPR (Section 6.3), and discuss the pre-
liminary spectral functions from both approaches in Section 6.4 where we also compare
the reconstructed dressings to the fRG dressing. The thereby obtained preliminary scalar
and pseudo-scalar glueball masses are then compared to lattice computations, DSE-BSE
results as well as results from other approaches. We conclude in Section 6.5 by summing
up our findings and hinting at future improvements of the procedure. Chapter C contains
additional details on the numerical computation.

6.1. Spectral Representation

In the previous chapter, we have solved truncated Yang-Mills theory in Euclidean space-
time. To have access to quantities like transport coefficients, pole masses, and decay
rates, it is however necessary to access Minkowski space. This can be either done by
solving the (functional) equations directly in real-time formalism, as was put forward by,
e.g. [213, 214], via the Schwinger-Keldysh closed time-path in the fRG [162, 215], or
by finding a spectral representation of the correlation functions obtained in Euclidean
space-time, see e.g. [216, 217] for examples in QCD. The existence of such a spectral
representation follows as a direct consequence of locality of the underlying quantum field
theory [218–220].

The latter approach and different methods to obtain the spectral density will be dis-
cussed in the following chapters.
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6.1. Spectral Representation

6.1.1. Källén-Lehmann Spectral Representation

The relation between a general Euclidean propagator G(p) and its spectral function ρ(ω)
is given by the Källén-Lehmann representation [221, 222],

G(p0, |~p|) =

∫ ∞
0

dλ

π

λρ(λ, |~p|)
p2

0 + λ2
. (6.1)

The existence of a spectral function fulfilling (6.1) consequently constrains all non-analyticities
of the propagator to the real momentum axis. Therefore one can obtain the spectral func-
tion by evaluating the propagator at real frequencies,

ρ(ω) = 2 lim
ε→0+

Im G(−i(ω + iε)) , (6.2)

where the spatial momentum was set to zero, since in the vacuum, one can restore the full
phase space from Lorentz symmetry.

On the level of propagators, the spectral function contains the energy spectrum of the
theory, as the Källén-Lehmann representation (6.1) can be derived from the sum over
energy eigenstates, see e.g. [92].

6.1.2. Spectral Representation of the Four-Gluon Vertex Dressing

Spectral representations of higher order n-point functions, with n > 2 are not uniquely
defined, due to the dependence of the dressings on n − 1 momenta. However for single
(momentum) exchange channels one can find a representation similar to (6.1),

λA4(p) = λA4,Λ +

∫
λ

λρA4(λ)

p2 + λ2
, (6.3)

where
∫
λ =

∫∞
0

dλ
π and where we have split the full four-gluon vertex as,

ΓabcA4,µνρσ(p, p,−p,−p) =
∑
i

τ
(i),abc
A4,µνρσ

(p, p,−p,−p)λ(i)
A4(p) , (6.4)

with dimensionless tensor structures τ
(i),abc
A4,µνρσ

(p, p,−p,−p) and where the dressing is eval-
uated at the average momentum configuration, see Section C.1.2 for details.

The constant part λA4,Λ has to be separated since it does not have a spectral represen-
tation.

This is in accordance with a Hubbard-Stratonovich [223, 224] transformation, where the
channel is treated in analogue to an exchange of a particle, i.e. a propagator.

Then the relation between the full vertex and the spectral function is,

ρA4(ω) = 2 lim
ε→0+

Im λA4(−i(ω + iε)) . (6.5)

Thus the four-gluon dressing in an s-channel approximation contains information about
the exchange of a glueball.
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6.1. Spectral Representation

6.1.3. Ill-Conditioning of the Analytic Continuation

Without further assumptions about the complex structure the analytic continuation in
(6.2) and (6.5) is ill-conditioned [225, 226]. Technically the Euclidean correlation functions
are given as numerical data, i.e. with finite numerical precision and accuracy and usually
over a discretized momentum grid pi with i = 1, . . . , N .

Generally, different spectral functions may fulfill the Källén-Lehmann representation
(6.1) of the Euclidean correlator point-wise on the momentum grid pi.

This ambiguity of different spectral representations leading to equivalent Euclidean
correlation functions. This range of possible spectral functions can be reduced by im-
plementing further constraints on the spectral function, like the asymptotic behavior or
normalization and positivity of spectral representations of asymptotic states.

Different approaches suitable for the numerical solution of inverse problems have been
used to obtain a spectral representation, such as Bayesian inference techniques [216, 227–
229], neural networks [230–235], and others approaches, see e.g. [236–245].

The approach via Padé approximants has been used in e.g. [225, 246–248] and a first
application of GPR to inverse problems has been put forward in [249] and a computation
of spectral functions in Yang-Mills propagators was presented in [217].
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6.2. Padé Approximants

Obtaining a spectral representation of Euclidean correlation functions via Padé approx-
imants [209, 210] is based on expressing the correlator in terms of a rational function
[225],

Rn,m(p) =
Pn(p)

Qm(p)
(6.6)

where Pn(p) and Qm(p) are polynomials of order n and m in the Euclidean frequency p0.
One then obtains the spectral function by analytically continuing the rational function via
(6.2).

To obtain a stable analytic continuation, one chooses the order of polynomials as either,
(n, n) or (n−1, n). For the reconstruction of data via N data points one therefore chooses
a rational function of order (N−1

2 , N−1
2 ) if N is an odd number, or (N2 −1, N2 ) if N is even.

For the Padé approach to yield meaningful results, the Euclidean data must not have
any non-analyticities like divergences, the data must be of high enough accuracy and the
number of data points must be large enough [226]. Both can be checked by reconstructing
the Euclidean correlator via the Källen-Lehmann representation, (6.1), and comparing it
to the original data.

Usually, the reconstructed data from a Padé spectral function only agree with the orig-
inal data in a specific momentum regime. In other regimes, the deviation is usually large
and even the qualitative behavior of the reconstructed data is often quite different [216],
as we will also see in Section 6.4.

However, one is usually still able to see the main features of the lowest-lying state, i.e.
its position but for example not its width or any information about higher states, see e.g.
[216, 247, 250].
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6.3. Gaussian Process Regression

In the following, we present the main aspects of GPR relevant for the spectral reconstruc-
tion that was developed by [249]. For introductions reviews see e.g. [212, 251–254].

If a function f(x) can be described by a Gaussian Process (GP), one writes,

f(x) ∼ GP
(
µ(x), k(x, x′)

)
, (6.7)

where µ(x) = 〈f(x)〉 is the statistical mean and k(x, x′) the statistical covariance function
of the process,

k(x, x′) =
〈
(f(x) 〈f(x)〉)

(
f(x′)

〈
f(x′)

〉)〉
. (6.8)

The covariance matrix gives the correlation of uncertainties between different sample
points.

Now by definition we can write for any set of sample points xi,
f(x1)
f(x2)

...
f(xN )

 ∼ N


µ(x1)
µ(x2)

...
µ(xN )

 ,


k(x1, x1) k(x1, x2) . . . k(x1, xN )
k(x2, x1) k(x1, x2) . . . k(x1, xN )

...
...

. . .
...

k(xN , x1) k(xN , x2) . . . k(xN , xN )


 , (6.9)

where N (µ,Σ) is a multivariate normal distribution.
Generally the values of the function yi ≡ f(xi) at the sample points xi are computed or

measured within uncertainties, see the discussion in Section 6.1.3.
Assuming these can be described by a Gaussian with covariance matrix Cd and zero

mean value, one can then predict the function at other values x,(
f(x)

ŷ

)
∼ N

((
µ(x)
µ̂

)
,

(
k(x, x) k̂>(x)

k̂(x) K̂ + Cd

))
, (6.10)

where we have defined the quantities,

µi = µ(xi) ,

k̂i(x) = k(xi, x) ,

K̂ij = k(xi, xj) . (6.11)

Thus our knowledge of f(x) from the sampling points xi with the function values yi is,

f(x)|ŷ ∼ N
(
µ(x) + k̂>(x)

(
K̂ + Cd

)−1
(ŷ − µ̂) ,

k(x, x)− k̂>(x)
(
K̂ + Cd

)−1
k̂(x)

)
. (6.12)

6.3.1. Mean and Covariance Functions

From the above, one can see that the defining functions of any GP are the mean and
covariance function. Usually one does not know these functions from measurements or

75



6.3. Gaussian Process Regression

computations, but one has to model them. The mean function can be chosen according to
the general behavior of the data as e.g. a constant or linear function. For the covariance
function one commonly uses one of the following options:

kD(x, x′) = σ2
1δ(d(x, x′)) ,

kG(x, x′) = σ2
1 exp

(
−d(x, x′)2

2σ2
2

)
,

kM (x, x′) = σ2
1

21−ν

Γ(ν)

(√
2νd(x, x′)

σ2

)ν
Kν

(√
2νd(x, x′)

σ2

)
, (6.13)

where d(x, x′) is a measure between the two points, e.g. d(x, x′) = (x − x′), Γ(v) the
Gamma function and Kν a modified Bessel function.

The Gaussian kernel is related to the Matérn-kernel via ν →∞, and to the Delta-kernel
via σ2 → 0. σ1 describes the amplitude and σ2 the typical length scale. We can summarize
both in the hyperparameter α = (σ1, σ2).

6.3.2. Gaussian Processing with Indirect Data

Generally, the computed or measured data points di can be indirectly related to the
underlying function f(x) via,

di =

∫
wi(x)f(x)dx (6.14)

where wi(x) is an integration kernel, relating the data points to a function. One can al-
ready see that the Källén-Lehmann representation (6.1) satisfies (6.14). Since integrations
preserve Gaussian statistics one can conclude, that if f(x) can be described by a Gaussian
process, also the data di form a multivariate normal distribution,

di ∼ N
(∫

wi(x)µ(x)dx,

∫ ∫
wi(x)k(x, x′)wi(x

′)dxdx′
)
. (6.15)

Thus the function f(x) and the N data points di form a Gaussian process,
f(x)
di
...
dN

 ∼ N
((

µ(x)
ω̂

)
,

(
k(x, x) ŵ>(x)

ŵ(x) Ŵ + Cd

))
(6.16)

with

ω̂i =

∫
wi(u)µ(u)du ,

ŵi(x) =

∫
wi(u)k(u, x)du ,

Ŵij =

∫ ∫
wi(u)k(u, v)wj(v)dudv . (6.17)
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Thus the function f(x) based on the data di is then given as,

f(x)|d̂ ∼ GP
(
µ(x) + ŵ>(x)

(
Ŵ + Cd

)−1 (
d̂− ω̂

)
,

k(x, x)− ŵ>(x)
(
Ŵ + Cd

)−1
ŵ(x)

)
(6.18)

6.3.3. Optimization of Parameters

As introduced in (6.13) one can choose different covariance functions with a variable
hyperparameter σ describing amplitude and correlation length. One can obtain optimal
values for the hyperparameter by maximizing the associated likelihood [217, 252],

P(ŷ|α) =
1√

(2π)N |K̂ + Cd|
exp

(
−1

2
(ŷ − µ̂)>

(
K̂ + Cd

)−1
(ŷ − µ̂)

)
. (6.19)

For convenience one usually maximizes the log likelihood with respect to α,

logP(ŷ|α) = −1

2
(ŷ − µ̂)>

(
K̂ + Cd

)−1
(ŷ − µ̂)− 1

2
log |K̂ + Cd| −

N

2
log 2π . (6.20)

The optimized parameters that were used throughout this work, as well as further details
related to the optimization procedure can be found in Section C.2.2.
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6.4. Numerical Results

While the author of this thesis was involved in all stages of obtaining the results that
are presented in this section, the fRG dressings and GP results were obtained by other
collaborators of [4].
In this section, we present results for the scalar and pseudoscalar glueball spectral function
via GPR and via Padé approximants. We obtain the full vertex dressing from an fRG
computation on the results presented in Chapter 5. Further details on the computation can
be found in Chapter C. As described in Section 6.1.2, the full dressing contains information
about bound-states, where each one is suppressed as ∝ e−m with the respective glueball
mass m, see e.g. the discussion in [255, 256]. Thus we can directly extract the spectral
function of the scalar (JPC = 0++) glueball from the classical transverse four-gluon vertex
dressing. To this end, we use the respective projection operator in the s-channel,

Pabcds,µνρσ(p, p,−p) =

[
Π⊥(p)Π⊥(p)Π⊥(p)Π⊥(p)τA4,cl(p, p,−p)

]abcd
µνρσ

Π⊥(p)Π⊥(p)Π⊥(p)Π⊥(p)τA4,cl(p, p,−p)τA4,cl(p, p,−p)
, (6.21)

where indices are suppressed for simplicity. The classical four-gluon vertex tensor structure
is,

τabcdA4,cl,µνρσ(p1, p2, p3) = fabef cde (δµρδνσ − δµσδνρ)

+ facef bde (δµνδρσ − δµσδνρ)

+ fadef bce (δµνδρσ − δµρδνσ) , (6.22)

and the transverse projection operator is defined as,

Π⊥µν(p) = δµν −
pµpν
p2

. (6.23)

Due to the exponential suppression of heavier states, we need to find a projection operator
for the four-gluon vertex, that excludes all scalar particle exchanges. We know that the
pseudoscalar (JPC = 0−+) glueball has a Lorentz tensor structure proportional to [196],

τA4,ps,µν(p, P ) = εµναβp
T
αPβ , (6.24)

where P and p are the total and relative momenta, T indicates transverse with respect
to P , and εµναβ is the anti-symmetric tensor. In the s-channel approximation there exists
no relative momenta thus we have chosen the transverse momentum such that pTµp

T
µ = p2,

pTµPµ = 0. The parametrisation of the momenta is given in Section C.1.4.
From this, we construct the pseudo-scalar projection operator in the s-channel,

Pabcdps,µνρσ(p, p,−p) =

[
Π⊥(p)Π⊥(p)Π⊥(p)Π⊥(p)τA4,ps(p, 2p)τA4,ps(p,−2p)

]abcd
µνρσ

Π⊥(p)Π⊥(p)Π⊥(p)Π⊥(p)τ2
A4,ps

(p, 2p)τ2
A4,ps

(p,−2p)
(6.25)

Note that this does not project onto a dressing but rather onto the full four-point function.
For a full four-gluon vertex tensor basis, see e.g. [257].

Projecting the fRG equation for the four-gluon vertex with both projection operators,
one obtains equations for the scalar dressings λA4,s and the pseudo-scalar dressing λA4,ps.

The diagrammatic equations are shown in Figure C.1. It is worth mentioning that in
general there are diagrams with ghost loops contributing to the four-gluon dressing fRG
equation. Due to the s-channel approximation they vanish here.
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Padé
GP

10-1 100 101 102

-500

0

500

ω [GeV]

ρ
A
4 ,
s

10-2 100 102
0.0

0.8
fRG

Padé Approximant
Padé Reconstruction
GP Reconstruction

kmin 100 101 102
1.0

1.4

1.8

2.2

p [GeV]

λ
A
4 ,
s

Figure 6.1.: Left: Scalar spectral function ρA4,ps over frequency ω obtained from Padé
approximants (dark blue line) and from GP (green line). The light green band
represents the standard deviation. Right: Pseudo-scalar Euclidean dressing
λA4,ps from the fRG (black solid line) in comparison to reconstructions thereof
from the Padé (dotted dark blue) and the GP (dotted green) spectral functions
and in comparison to the Padé approximant (dashed light blue).

6.4.1. Discussion

We proceed by presenting the scalar and pseudo-scalar spectral function obtained from
Padé approximants and via a GP approach.

The spectral function for the scalar four-gluon vertex dressing and the fRG dressing as
well as the reconstructed dressing from both methods can be found in Figure 6.1. The
respective pseudo-scalar results are presented in Figure 6.2.

One can immediately see that both approaches yield very different spectral functions
for both, the scalar and pseudo-scalar projection.

Generally, the scalar and pseudo-scalar spectral functions via Padé look very different
in comparison to their GP counterparts which can be accounted for by the failure of the
Padé method, see the discussion below. The respective spectral function has a distinct
positive peak at ω = 1.933 GeV for the scalar and at ω = 1.843 GeV for the pseudo-scalar
projection.

When comparing the reconstructed dressings from the spectral functions with the fRG
dressing, one can see that for both projections the reconstructed dressing via Padé only
agrees qualitatively well with the respective scalar and pseudo-scalar fRG dressing for
momenta p ≥ 10 GeV. The deviations for very large momenta can be associated with UV
cutoff effects. For smaller momenta, the reconstructed dressings do not even show the
same qualitative behavior as the fRG dressing. This failure of the approach to reproduce
the Euclidean data is explained when one further investigates the Padé approximants.
Both approximants show poles in the Euclidean momentum range, see Figure C.2.

A qualitatively similar result was presented in [216] for the gluon propagator spectral
function and reconstructed dressing via Padé approximants. It was argued there, that
the approach does violate the holomorphicity of the dressing and therefore the spectral
function via Padé approximants does not reproduce the dressing. For a more detailed
discussion, see Section C.2.1. Due to the failure of the reconstruction, we refrain from
relating the peaks in the Padé spectral function to a potential glueball mass.

The reconstructed dressings via GP generally agree better with the fRG dressing. From
the reconstructed scalar dressing, we can see that it agrees very well with the fRG dressing
for large momenta, only slight deviations thereof can be seen in the regime 4 ≤ p ≤ 7 GeV.
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100 102
0

1

2
Padé
GP

10-2 10-1 100 101 102

-200

200

ω [GeV]

ρ
A
4 ,
ps

fRG
Padé Approximant
Padé Reconstruction
GP Reconstruction

kmin 100 101 102
-1

0

1

p [GeV]

λ
A
4 ,
ps

Figure 6.2.: Left: Pseudo-scalar spectral function ρA4,ps over frequency ω obtained from
Padé approximants (dark blue line) and from GP (green line). The light
green band represents the standard deviation. Right: Pseudo-scalar Euclidean
dressing λA4,ps from the fRG (black solid line) in comparison to reconstructions
thereof from the Padé (dotted dark blue) and the GP (dotted green) spectral
functions and in comparison to the Padé approximant (dashed light blue).

For momenta between 0.8 ≤ p ≤ 2 GeV, i.e. around the peak, the deviation is larger.

The same holds true for the reconstructed pseudo-scalar dressing. However, it is worth
mentioning that the peak structure of the pseudo-scalar fRG dressing for momenta 1 ≤
p ≤ 3 GeV is very well reproduced by the GP. Larger deviations are only visible in the
momentum regime between 5 ≤ p ≤ 15 GeV. Generally, the agreement of the reconstructed
dressings with the Euclidean fRG dressing is well within our numerical precision.

Both, the scalar and pseudo-scalar spectral functions from GP exhibit a rich peak struc-
ture which persists under modifications of the procedure. The connection thereof to phys-
ical bound states however is questionable and a further investigation of the system is
necessary. The appearance of many peaks or oscillations in the spectral function can usu-
ally be accounted for by the ill-conditioning of the procedure, see e.g. [216]. A promising
approach, that might enhance the bound-state structure in the spectral function, is to
compute spectral functions of the respective couplings, defined as,

αA4,s/ps =
λA4,s/ps(p)

4πZA(p)2
, (6.26)

from the scalar and pseudo-scalar dressing and the gluon propagator dressing ZA(p).

Furthermore, adding more prior knowledge about the spectral function, such as the UV
and IR asymptotic behavior which can be extracted from the Euclidean dressing, should
improve the overall procedure and results.

6.4.1.1. Glueball Masses

For a preliminary study of the glueball masses extracted from the spectral functions of
the projected four-gluon vertex dressings, we read off the position of the largest peak (in
terms of absolute value) in the respective spectral functions.

We obtain ωpeak,s = 0.911 GeV and ωpeak,ps = 1.287 GeV for the scalar and pseudo-
scalar peak respectively. As we work within an s-channel approximation, the position of
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6.4. Numerical Results

Masses [MeV]

JPC lattice
Hamiltonian/ consitutent

DSE-BSE
this work

Regge theory models (preliminary)

0++
1760(50) [187] 1980 [204] 1710 [200] 1850(130) [196] 1822 (GP)
1740(50) [189] 1580 [201] 1855 [198, 199] 1640 [193]
1651(23) [191]

0−+
2640(40) [187] 2220 [204] 2610 [200] 2580(180) [196] 2574 (GP)
2610(40) [189] 2560 [201] 2492 [198, 199] 4530 [193]
2600(40) [191]

Table 6.1.: Comparison of masses for the scalar (JPC = 0++) and pseudoscalar (JPC =
0−+) glueball from different methods. The errors for [187, 189] are a com-
bination of statistical error and of the use of an anisotropic lattice, whereas
the errors in [191] are statical errors only. The errors in [196] come from the
extrapolation method. In [198, 199] we compare to the results obtained from
Model B.

the peak correspond to half the glueball mass ωpeak,s/ps =
ms/ps

2 . The results are shown in
Table 6.1.

We can immediately see that the scalar and pseudo-scalar glueball mass extracted from
the respective four-gluon dressings agree very well with the lattice and DSE-BSE results.

We postpone a further discussion and comparison of results to later work, where we aim
at improving the GP method with the aforementioned approaches.
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6.5. Conclusion

We have presented a self-consistent approach for extracting bound state information from
a Euclidean four-gluon vertex dressing function within an fRG computation. The dressing
has been computed on the results presented in Chapter 5. By appropriately projecting out
tensor structures contributing to lighter bound states we have gained access to the scalar
and pseudo-scalar dressing function. We have obtained spectral functions of the dressings
via Padé approximants and via Gaussian Process Regression. While the latter leads to
reconstructed dressings that agree well with the respective fRG dressings, the former does
not even qualitatively reproduce the dressings for non-perturbative and semi-perturbative
momenta. The failure of a simple and näıve Padé approach within this context is no
surprise, as the approximant shows poles in the analytic half-plane. The masses obtained
via Padé are therefore not reliable and not stated here. The scalar and pseudo-scalar
glueball mass via GPR were obtained as 1822 MeV, and 2574 MeV respectively, and agree
well with the values from lattice and DSE-BSE computations. For a quantitative statement
about the spectral function within both projections, an improvement of the GP is necessary
which could consist of extrapolating the Euclidean data in the IR and UV according to
analytic relations or studying spectral functions of quantities like couplings rather than
dressing.
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7. Phase Structure of QCD

This chapter is based on [5].
The QCD phase diagram is subject to many experimental and theoretical studies. It
provides insight into the evolution of the early universe as well as into the underlying
processes in heavy-ion collisions [59, 130, 258–265]. While it is widely accepted that there
exists a crossover between the hadronic (confined) phase and the deconfined quark-gluon
plasma for T ≈ 155 MeV [22, 23] at low chemical potential, the relation of this confinement-
deconfinement phase transition to chiral symmetry breaking is still under investigation.
For larger chemical potentials, the phase transition is of first order and the existence
of a critical endpoint at finite temperature and chemical potential is highly conjectured.
Employing functional methods allows for a study of the whole phase diagram. For recent
results see e.g. [58–67]. For corresponding lattice QCD studies at small chemical potential,
see e.g. [25, 266–272].

In this work, we access the QCD phase structure via thermal correlation functions
for 2 + 1-flavor QCD at finite chemical potential within a self-consistent Dyson-Schwinger
(DSE) approach. Special emphasis is put on the computation of the thermally split quark-
gluon vertex feeding back into the quark gap equation. This is a first step in systematically
improving the truncation that was presented in previous works, see e.g. [65, 66]. This
approach allows for a study of the chiral phase structure and a potential critical end point
in the QCD phase diagram, where the only input parameters are the fundamental strong
coupling and the current quark masses at the renormalisation scale.

In Section 7.1 we present the setup for this work, followed by a discussion of the input
parameters and how we extract the chiral transition temperature Tc(µB) in Section 7.2. In
Section 7.3 we present preliminary results of the light quark mass dressing and the leading
dressing of the quark-gluon vertex and conclude our results in Section 7.4.

7.1. Setup

The classical QCD action in Euclidean space-time is given as,

SQCD[q, q̄, A, c, c̄] =

∫
x

(1

4
F aµνF

a
µν +

1

2ξ
∂µA

a
µ∂νA

a
ν

−c̄a∂µDab
µ c

b + q̄( /D +mq)q
)
, (7.1)

where ξ is the gauge fixing parameter and
∫
x =

∫
d4x. The definitions of the covariant

derivative and the field strength tensor can be found in Chapter 2.

In this work we choose an approach with Dyson-Schwinger equations to obtain the
effective action Γ[Φ] in terms of correlation functions.
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7.1. Setup

Figure 7.1.: Graphical representation of the DSEs that were solved for this work. The solid
lines represent the quarks, curly orange lines the gluon. All propagators are
fully dressed. The black and grey circles represent full and classical vertices.

The Dyson-Schwinger equation is (3.15),

δΓ[Φ]

δΦa
=
δS[φ]

δφa

∣∣∣∣∣
φb=Φb+Gbc

δ
δΦc

. (7.2)

with the superfield Φ = {q, q̄, Aµ, c, c̄} in QCD. The form of (7.2) relates the full correlators
of order n to a n−2-loop exact equation containing full vertices and full propagators as well
as a classical vertex. By choosing an appropriate ansatz for the classical action, one can
obtain the full correlation function by interatively solving the respective DSEs. Thereby
one gains insights into the non-perturbative regime of QCD.

7.1.1. Vertex Expansion and Truncation

We write the effective action in terms of a vertex expansion as (3.19),

Γ[Φ] =

∞∑
n=1

∫
ΓΦ1...ΦnΦ1 . . .Φn . (7.3)

Generally, this represents an expansion about a solution to the equations of motion in the
vacuum. At finite temperature, this expansion has already been proven to be a viable
scheme in, e.g. [69] and was employed at finite temperature and chemical potential in
e.g. [66]. We include the vertices that are shown in the diagrams in Figure 7.1, where we
neglect the ghost contributions to the gluon propagator, as they are small.

At finite temperature the vacuum O(4) symmetry is replaced by Z2 ×O(3). Thus, one
obtains a split into two components, a magnetic and electric one. The former is transverse,
the latter longitudinal to the heat bath. This split is introduced into the correlators via
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7.1. Setup

the projection operators,

ΠM
µν(p) = δµν −

(pµ − p0δµ0)(pν − p0δν0)

~p2
− δ0µδ0ν ,

ΠE
µν(p) = Π⊥µν(p)−ΠM

µν(p)

= δ0µδ0ν −
pµpν
p2

+
(pµ − p0δµ0)(pν − p0δν0)

~p2
. (7.4)

We then have

ΠM
µν(p)p0pν = 0 ,

ΠE
µν(p)pipν = 0 , (7.5)

where i = (1, 2, 3). We furthermore decompose four-vectors into,

p =

(
ω̃n
~p

)
, (7.6)

where ω̃n = 2πTn for gluons and ω̃n = 2πT (n + 1/2) − iµB/3 for quarks, n ∈ Z are
the discrete Matsubara modes and µB the chemical potential. The full parametrisation of
external and loop momenta that was used here can be found in Section D.4.

We therefore have the split in the propagators,

GabAA,µν(p) = δab
1

p2

(
1

ZM (p)
ΠM
µν(p) +

1

ZE(p)
ΠE
µν(p)

)

Gab,ij,f1f2
qq̄ (p) = δabδf1f2

Zq,‖(p)

Zq(p)
(iγij0 p0 +mq(p)) + i(γijµ pµ − γij0 p0)

Zq,‖(p)(p
2
0 +mq(p)2) + ~p2Zq(p)

. (7.7)

In the propagators, entering the quark-gluon vertex equation, the thermal split is how-
ever not applied, as this has been proven to be a good approximation, see e.g. [66]. There
we use the O(4) symmetric propagators,

GabAA,µν(p) = Π⊥µν(p)δab
1

ZA(p)p2
,

Gab,ij,f1f2
qq̄ (p) = δabδf1f2

(mq(p)δ
ij + iγijµ pµ)

Zq(p)(mq(p)2 + p2)
, (7.8)

and thus identify ZA = ZM ,
Zq,‖
Zq
≈ 1 and λ

(i)
Aq̄q ≈ λ

(i)
Aq̄q,M with momentum arguments

dropped for simplicity.
With this setup we derive Dyson-Schwinger equations for the electric and magnetic gluon

and quark dressings, the quark mass and the leading electric and magnetic quark-gluon
vertex dressings. The symbolic equations can be found in Figure 7.1.

For the quark-gluon vertex we only take into account the leading dressing functions,

τ (1)
µ (p, q) = −iγµ , τ (4)

µ (p, q) = (/p+ /q)γµ

τ (7)
µ (p, q) =

i

2

[
/p, /q
]
γµ , (7.9)
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7.1. Setup

where p is the anti-quark and q the quark momentum and where we apply a thermal split
into electric and magnetic components. The full tensor basis as well as the procedure
of applying the thermal split in the vertex is described in Section D.3. The symbolic
equations can be found in Figure 7.1.

Here we have included the classical tensor τ (1), a chirally symmetric tensor τ (7), and a
chiral symmetry breaking tensor τ (4). It has been shown in previous studies in the vacuum
that these are the only quanitatively important tensor structures, see e.g. [69, 91].

We approximate all vertex dressings feeding back into the equations at the symmetric
point, λ(n)(p̄), with

p̄2 =
1

n

n∑
i=1

(ω̃ni + ~p2
i ) . (7.10)

For the wave function renormalisations Zi with i = (A, q, (q, ‖)) as well as the quark
mass function feeding back we use,

Z(ω̃n, ~p) ≈ Z(0,
√
ω̃2
n + ~p2) ,

mq(ω̃n, ~p) = mq(
√
ω̃2
n + ~p2) (7.11)

We only compute the zeroth, first and second mode of the propagator and vertex dressings
and approximate the higher Matsubara frequencies with the above. This leaves us with
equations for

ZA(ω̃n, ~p) , mq(ω̃n, ~p) ,

Zq(ω̃n, ~p) , Zq,‖(ω̃n, ~p) ,

λ
(i)
Aq̄q,E(ω̃n, ~̄p) , λ

(i)
Aq̄q,M (ω̃n, ~̄p) ,

with n = {0, 1, 2}, i = {1, 4, 7} and ~̄p2 = 1
n

∑n
i=1 ~p

2
i .
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7.2. Chiral Condensate

7.2. Chiral Condensate

The quark gap equation, i.e. the DSEs for Zq, Zq,‖, mq carry the information of chiral
symmetry breaking and the phase transition. They are therefore the quantities of main
interest in our investigation.

We fix the renormalisation scale to µ = 40 GeV, where the strong coupling is then given
as αs(µ) = 0.1666 . The isospin symmetric light quark masses are determined via the
physical pion mass mπ(µ) = 138 MeV as m0

q = mu/d(µ) = 2.5 MeV. We fix the ratio of
strange to light quarks as, m0

s/m
0
q ≈ 27. Thereby all parameters are fixed and no further

input is required.
We begin the discussion with the quark mass dressing mq. For high momenta, corre-

sponding to the (approximate) chirally symmetric phase, the dressing mq is fixed by the
current quark mass m0

q . At smaller energy scales, chiral symmetry is dynamically broken,
the quark mass dressing increases to the constituent quark mass.

The chiral transition temperature T (µB) can be derived from the chiral susceptibility
∂T∆l,R of the renormalised light chiral condensate ∆l,R [65, 66, 90],

∆l,R =
1

2NR

∑
quarks

[∆q(T, µB)−∆q(0, 0)] , (7.12)

where NR = m4
π is a normalization factor and the quark condensate is given as,

∆q ' −m0
qT
∑
n∈Z

∫
d3p

(2π)3
TrGqq̄(p) . (7.13)

We expect from previous results, e.g. [66], that for increasing µB, the crossover in the
renormalised light condensate over temperature steepens, leading to a second order critical
endpoint and finally a first order phase transition.
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Figure 7.2.: Left: Light quark mass dressing mq in GeV for different temperatures, where
the (non-)split quark-gluon vertex enters the propagator equation. Right:

Leading quark-gluon vertex dressing λ
(1)
Aq̄q in comparison to the split dressings

λ
(1)
Aq̄q,E and λ

(1)
Aq̄q,M for different temperatures.

7.3. Numerical Results

While the setup and the Dyson-Schwinger equations were provided by the author of this
thesis, the iterative solution of the equations was performed by other collaborators of [5].
We present preliminary results for the quark mass dressing mq and the leading quark-gluon

vertex dressing λ
(1)
Aq̄q in Figure 7.2.

The quark mass dressingmq is shown for different truncations and different temperatures
T , where ’split’ refers to a thermal split in the quark-gluon vertex entering the quark gap
equation as defined in Section D.3.

One can see that for all temperatures and momenta, the mass dressing obtained with
the non-split quark-gluon vertex, i.e. where no thermal split was employed, are smaller
than the results obtained with the split. Finally, this leads to an increase of the phase
transition temperature. Overall, the deviation is however very small and the qualitative
behavior of the dressing function is not affected by the split. The deviation of the results
with the thermal split seems to be the largest around the phase transition temperature
and decreases for higher temperatures. Generally, increasing the temperature leads to a
decrease in the running of the quark mass dressing function.

Comparing the electric and magnetic, i.e. the split leading quark-gluon dressings λ
(1)
Aq̄q,E

and λ
(1)
Aq̄q,M with the non-split dressing λ

(1)
Aq̄q one can see that the overall deviation affiliated

with the thermal split is small. One can even see that the magnetic and the non-split
dressing agree perfectly for temperatures smaller and larger than the phase transition
temperature, only for temperatures around the phase transition the magnetic dressing is
slightly smaller than the non-split quark-gluon dressing. Overall, the electric dressing is
larger than the magnetic and non-split one, the difference however becomes larger with
increasing temperature although the running of the dressings becomes smaller. All in all
one can conclude that the introduction of the thermal split does not significantly alter the
leading quark-gluon dressing.

In conclusion one can see that the improvement of the truncation by introducing a
thermal split in the quark-gluon vertex does not have a large influence on the running of
the dressing functions hinting at apparent convergence of results.
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7.4. Conclusion

We have presented a setup for the investigation of the chiral phase structure of Nf = 2+1
QCD solving a self-consistent set of Dyson-Schwinger equations where the only input
parameters are the strong coupling at the renormalisation scale, the light current quark
masses from the pion mass, and the ratio between light and strange current quark mass.
The truncation is a qualitative improvement to the one presented in [66] as we apply the
thermal split in the quark-gluon vertex that feeds into the equations of the propagators. We
have obtained preliminary results for the quark mass dressing and the leading quark-gluon
vertex dressing at vanishing chemical potential and finite temperature. We have shown
that employing the thermal split leads to a small increase in the quark mass dressing and
therefore to a small increase of the phase transition temperature. Overall, the running
of the dressings does not show a big dependence on the introduction of the split hinting
at apparent convergence of the results. A study of all the relevant dressings, also at
finite chemical potential, and a computation of the chiral condensate, the phase transition
temperature and a potential critical endpoint is deferred to later work.
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8. Summary & Conclusion

With this work, we have paved the way for a quantitative and qualitative understanding
of infrared QCD correlation functions with functional methods.

We have presented the Mathematica package QMeS-Derivation which allows the deriva-
tion of symbolic functional equations starting from a quantum master equation such as
the fRG, DSE, or mSTI. This task was broken down into independent modules, explicitly
taking functional derivatives, tracing in field space, and applying a momentum routing for
one-loop diagrams. Its most remarkable features are the effective and consistent handling
of fermionic minus signs, its theory-independent superfield formulation, and its implemen-
tation via a very small number of rules. This allows for simple future extensions and a
flexible use also for theories and models unrelated to QCD. We have elucidated this by de-
riving different functional equations in SU(3) Yang-Mills theory, and Nf = 1 and Nf = 2
Yukawa theory.

We have proceeded by studying gauge invariance in SU(3) Landau gauge Yang-Mills
theory with functional methods by using QMeS to derive fRG and (m)STI equations for
the correlation functions. The (modified) Slavnov-Taylor identities carry the underlying
gauge invariance of the system in a gauge-fixed setting. The conservation thereof within
numerical computations that require truncations to the infinite tower of coupled functional
equations is essential for the understanding of confinement and infrared gluon dynamics.
We have studied this gauge consistency by solving the system of coupled momentum-
dependent equations for the ghost and gluon propagator, the ghost-gluon, and the three-
and four-gluon vertex self-consistently by feeding these quantities back into the loop equa-
tions. A comparison of the different (non-)confining results for the longitudinal correlation
functions has shown good agreement between both functional approaches, i.e. the fRG
and mSTI, although they represent different resummation schemes. This agreement hints
at gauge consistency of the setup.

Furthermore, we have put forward a self-consistent approach to extract bound state
information from a correlation function within the fRG. Explicitly, we have presented a
procedure to obtain the scalar and pseudo-scalar glueball mass by contracting the four-
gluon vertex fRG equation with the respective projection operators that eliminate the
contributions from lower-lying bound states. The resulting equations were solved on the
previously presented pure Yang-Mills results, rendering a Euclidean scalar and pseudo-
scalar four-gluon vertex dressing. We have found spectral representations of these dress-
ings by analytically continuing the Euclidean dressing via Padé approximants and by
applying Gaussian Process Regression. The extracted preliminary values for the scalar
and pseudo-scalar glueball mass from the respective spectral functions agree well with
the corresponding values that were obtained within other frameworks and computations.
Finally, we have given an outlook on possible improvements of both methods.

Lastly, we have presented a setup that allows studying the phase structure of QCD with
functional methods. To this end, we have presented a set of DSEs for thermal correlation
functions of Nf = 2+1 QCD at finite chemical potential, where we have improved existing
truncations by introducing the thermal split in the quark-gluon vertex entering the propa-
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gator equations. The only input parameters are the strong coupling at the renormalisation
scale, the light current quark masses from the pion mass, and the ratio between light and
strange current quark mass. This setup allows us to obtain the chiral phase structure and,
potentially, the critical end point. We have presented preliminary results of the quark
mass dressing and the leading quark-gluon dressing function for different temperatures
and in different truncations. A full investigation of the system and the resulting phase
structure is still in preparation.

All in all, we have made significant progress towards improving and understanding the
whole workflow connected with obtaining infrared QCD correlation functions with func-
tional methods. Particularly, by introducing QMeS-Derivation, a computer-algebraic tool
for the derivation of functional equations, which we then applied to Yang-Mills theory
to broaden our understanding of gauge invariance within functional methods. Equipped
with these technical insights, we have extracted bound state masses from the correlation
functions and presented a set of thermal correlation functions for a study of the phase di-
agram of QCD. Utilizing these developments, quantitative predictions of the chiral phase
transition and of a potential critical endpoint from functional methods are feasible objec-
tives. First results thereof are expected in the foreseeable future demonstrating the power
of functional methods as a tool to study QCD from first principles.
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A. Additional material: Deriving Symbolic
Functional Equations

A.1. Derivation of Master Equations

In the following we want to outline the basic steps in deriving the Dyson-Schwinger and
Functional Renormalisation Group equations, as well as (modified) Slavnov-Taylor Iden-
tities that were introduced in Section 3.1.

A.1.1. Derivation of the Dyson-Schwinger Equation

One can derive the Dyson-Schwinger equation (DSE) for 1PI Greens functions by taking
a total derivative of the integral (3.6)

0 =

∫
Dφ

δ

δφa
exp (−S[φ] + Jaφa)

=

∫
Dφ

(
− δS

δφa
+ (−1)aaJa

)
exp (−S[φ] + Jaφa)

=

(
− δS

δφa
+ (−1)aaJa

)
φb=

δ

δJb

Z[J ] . (A.1)

When pulling the derivative term the source out of the integral one has to replace the field
φ with a derivative with respect to the source.
Using the relation,

e−W [J ]

(
δ

δJa

)
eW [J ] =

δW [J ]

δJa
+

δ

δJa
. (A.2)

one obtains the DSE for connected Greens functions

−δS[φ]

δφa

∣∣∣∣∣
φb=

δW [J]

δJb
+ δ

δJb

+ (−1)aaJa = 0 . (A.3)

By rewriting the derivative with respect to J as and using the definition of the propagator
Wab = Gab,

δ

δJa
=
δΦb

δJa
δ

δΦb

=
δ

δJa
δW [J ]

δJb
δ

δΦb

= Gab
δ

δΦb
, (A.4)
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A.1. Derivation of Master Equations

one can express the DSE in terms of the effective action

δΓ[Φ]

δΦa
=
δS[φ]

δφa

∣∣∣∣∣
φb=Φb+Gbc

δ
δΦc

. (A.5)

The generalized DSE for quantum symmetries can be derived by inserting a generic func-
tion Ψ[φ] in the derivation of equation (A.1),

1

Z[J ]

∫
Dφ

δ

δφa
(Ψ[φ] exp (−S[φ] + Jaφa)) , (A.6)

thus yielding

〈Ψ[φ]〉 δΓ[Φ]

δΦa
=

〈
Ψ[φ]

δS[φ]

δφa

〉
−
〈
δΨ[φ]

δφa

〉
. (A.7)

A.1.2. Derivation of the fRG Equation

Since one introduces an (infrared) momentum-regularisation one modifies the Schwinger
functional by

Z[J,R] = eW [J,R] = e−∆S[φ,R]eW [J ] , (A.8)

with the so-called regulator insertion,

∆S[φ,R] =
1

2
Rabφaφb . (A.9)

The flow of the generating functional can be written as,

k∂kZ[J,R] = − (k∂k∆S[φ,R])Zk[J,R]

= −1

2

(
k∂kR

ab
) δ2Z[J,R]

δJaδJb
. (A.10)

Using the relation,

1

Z[J,R]

δ2Z[J,R]

δJaJb
= Wab +WaWb , (A.11)

the flow equation in terms of the Schwinger functional is

k∂kW = −1

2

(
k∂kR

ab
)

(Wab +WaWb) , (A.12)

where W is a function of J and R.
One can define the propagator as,

Gac (Γ + ∆S)cb = γba ,

↔ Gac

(
Γcb +Rbc

)
= γba . (A.13)

After a Legendre transformation one obtains the effective average action

Γ[Φ, R] = sup
J

(JaΦa −W [J,R]−∆S[Φ, R]) . (A.14)
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Again the relations between the fields and sources in terms of the effective average action
are given as,

δ(Γ[Φ, R] + ∆S[Φ, R])

δΦa
= (−1)aaJa ,

δW [J,R]

δJa
= Φa . (A.15)

By switching to the RG-time t = ln(k/Λ) with ∂t = k∂k one can write

∂tΓ = −∂tW − ∂t∆S

− ∂tJa
(

Φa −
δW

δJa

)
=

1

2

(
∂tR

ab
)

(Wab +WaWb)− ∂t∆S

=
1

2

(
∂tR

ab
k

)
Wab + ∂t∆S − ∂t∆S

=
1

2
ṘabGab . (A.16)

where Γ ≡ Γ[Φ], W ≡W [J,R], ∆S ≡ ∆S[Φ, R] and we have used equation (A.12) as well
as

1

2

(
∂tR

ab
) δW
δJa

δW

δJb
=

1

2

(
∂tR

ab
)

ΦaΦb

= ∂t∆S . (A.17)

Note that the superfield index notation above implies the summation and thus trace over
all fields and integration over space-time.

A.1.3. Derivation of the Slavnov-Taylor Identity

The classical Yang-Mills action of non-Abelian gauge theories is gauge invariant, but
neither the ghost nor the gauge fixed action are,

δagaugee
−SA = δagauge (Sgf + Sgh) , (A.18)

where δagauge is the generator of a gauge transformation. Additionally it has the form of
an operator in the generalized DSE (A.7) with δ/δφaΨ[φ] = δagauge which means that:

1

Z[J ]

∫
Dφ δagauge (exp(−SA[φ] + Jaφa))

=
〈
Ja(δagaugeφa)− δagauge(Sgf + Sgh)

〉
= 0 . (A.19)

Carrying out the expectation value leads to the Slavnov-Taylor identities (STI) of the
theory. These identities guarantee the gauge invariance of observables.

Since δagauge is not a symmetry of the underlying classical theory we would like to find
a transformation that is. This is satisfied by the BRST transformation

δBRSTφa = sφaδλ , (A.20)
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A.1. Derivation of Master Equations

where the infinitesimal parameter δλ as well as the BRST generator s are Grassmannian.

The action is invariant under BRST transformations

sSA[φ] = 0 . (A.21)

Again with s as an operator the generalized DSE can be written as,

1

Z[J ]

∫
Dφ s (exp(−SA[φ] + Jaφa)) = 0 . (A.22)

Thus the expectation value vanishes,

(−1)aa 〈Jasφa〉 = 0 . (A.23)

Note that the prefactor (−1)aa is due to the grassmannian nature of s.

sJaφa = (−1)aaJasφa . (A.24)

Since the BRST transformations of fields are usually quadratic in the fields, it seems as
if one looses the algebraic nature of the symmetry on quantum level. To resolve this one
may introduce additional source terms Qa for the BRST transformations of the fields,

Z[J,Q] =

∫
Dφ exp(−SA[φ] + Jaφa +Qasφa) . (A.25)

Since s2 = 0, this does not change (A.23).

Then one can write the STI takes again algebraic form as

〈sφa〉 =
1

Z[J,Q]

δZ[J,Q]

δQa
. (A.26)

By Legendre transforming the Schwinger functional lnZ[J,Q] one obtains the effective
action in the presence of source terms for the BRST transformation,

Γ[Φ, Q] = JaΦa − lnZ[J,Q] . (A.27)

We can directly see that

〈sφa〉 = −δΓ[Φ, Q]

δQa
=

1

Z[J,Q]

δZ[J,Q]

δQa
. (A.28)

Rewriting the expectation value (A.23) yields the STI

δΓ

δQa
δΓ

δΦa
= 0 . (A.29)

Fulfilling this relation guarantees gauge invariance of observables.
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A.1.4. Derivation of the Modified Slavnov-Taylor Identity

Due to the presence of the cutoff (A.9) in the effective average action, gauge and hence
BRST symmetry are broken, which means that we need to introduce modified Slavnov-
Taylor identities (mSTIs) at a non-vanishing momentum scale k that become the usual
STIs for k = 0.

Starting from the generating functional with the cutoff term ∆S[φ,R] one can derive
the mSTIs,

Z[J,Q] =

∫
Dφ exp (−S[φ]−∆S[φ,R]) exp (Jaφa +Qasφa) . (A.30)

Note that either the BRST charge or the field itself is of grassmanian nature. Thus the
expectation value (A.23) changes to

(−1)aa 〈Jasφa〉 = 〈s∆S[φ,R]〉 . (A.31)

After Legendre transforming the momentum scale dependent Schwinger functional one
obtains the following relation:

〈sφa〉 =
δW [J,Q,R]

δQa
= −δΓ[Φ, Q,R]

δQa
. (A.32)

Rewriting the sources Ja in terms of the effective average action (A.15) one is left with,

δΓ

δQa
δ (Γ + ∆S)

δΦa
= 〈s∆S[φ,R]〉 . (A.33)

Moving all terms that contain ∆S to the right, one can further simplify by using relation
(A.32),

〈s∆S[φ,R]〉 − δ∆S[Φ, R]

δΦa

δΓ[Φ, Q,R]

δQa

= 〈s∆S[φ,R]〉+ s∆S[Φ, R] . (A.34)

Inserting the cutoff term (A.9) one arrives at,〈
Rab(sφa)φb

〉
+Rab(sΦa)Φb

= −Rab δ

δJb
δ

δQa
W [J,Q,R]

= Rab
δ

δJb
δΓ[Φ, Q,R]

δQa

= RabGbcΓ
c
Qa . (A.35)

Thus the full mSTI reads

δΓ

δQa
δΓ

δΦa
= RabGbcΓ

c
Qa . (A.36)

Satisfying the mSTI at each momentum scale k ensures gauge invariance of observables
at k = 0.
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A.2. Summary of Derivative Rules used by QMeS

The relevant derivative and sign rules that are used in QMeS can be summarized as

Rab = (−1)abRba , Gab = (−1)abGba , Γab = (−1)abΓba ,

δ
δΦa

δ
δΦb

O = (−1)ab δ
δΦb

δ
δΦa

O ,

δ
δφa

Rbc = 0 , δ
δφa

φb = δab , δ
δφa

Sbcd = 0 ,

δ
δΦa

Rbc = 0 , δ
δΦa

Φb = δab , δ
δΦa

Sbcd = 0 ,

δ
δΦa

Γb...n = Γab...n , δ
δΦa

Gbc = (−1)(−1)ab(−1)eeGbdΓ
daeGec .
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A.3. Results for the Examples

In this section we give the QMeS output for the examples in Section 4.3.

A.3.1. YM: Flow of Gluon Two-Point Function

The full diagrams of the flow of the gluon two-point function with all indices are

A.3.2. YM: mSTI of Gluon Two-Point Function

The gluon two-point mSTI is given as:

A.3.3. YM: DSE of Ghost-Gluon Vertex

The full ghost-gluon vertex DSE is:
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A.3. Results for the Examples

A.3.4. Yukawa Nf = 1: Flow of Two-Point Functions

The flow of the scalar and fermionic two-point function are:
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A.3. Results for the Examples

A.3.5. Yukawa Nf = 2: Flow of Two-Point Functions

The flow of the scalar and fermionic two-point function are:
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B. Additional material: On Gauge Invariance
in Gauge-Fixed Yang-Mills Theory

B.1. Numerical Implementation

The fRG and mSTI equations were derived using QMeS [1, 2], a Mathematica package
for the derivation of symbolic functional equations. After projecting onto the respective
tensor structures, the equations were traced with FormTracer [171, 172]. The resulting
momentum-dependent integro-differential and integral equations were solved in Mathe-
matica 12.0.
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B.2. Additional Details on the fRG Computation

B.2.1. Projecting onto Tensor Structures

On the level of two-point functions, we have two quantities that contribute to the transverse
sector, the gluon and the ghost two-point function. Their tensor structures are,

τabAA,µν(p) = δab
(

Π⊥µν(p)p2 + Π‖µν(p)p2
)
,

τabcc̄ (p) = −δabp2 . (B.1)

For the derivation of their respective fRG equations we trace the diagrammatic equations
with the projection operators,

Pabcc̄ (p) = τabcc̄ (p) ,

P⊥,abAA,µν(p) = Π⊥µµ̄(p)Π⊥νν̄(p)τabAA,µ̄ν̄(p) ,

P‖,abAA,µν(p) = Π
‖
µµ̄(p)Π

‖
νν̄(p)τabAA,µ̄ν̄(p) . (B.2)

for the ghost and transverse gluon propagator dressing, and for the longitudinal gluon
two-point respectively. The tensor structures of the ghost-gluon vertex can be written as,

τabcAc̄c,µ(p, q) = ifabc
(

Π⊥µν(p) + Π‖µν(p)
)
qν . (B.3)

The fRG equations for the transverse and longitidunal ghost-gluon dressing are obtained
by contracting the equation, Figure B.6,

PabcAc̄c,µ(p, q) = Π⊥µµ̄(p)τabcAc̄c,µ̄(p, q) ,

P‖,abcAc̄c,µ(p, q) = Π
‖
µµ̄(p)τabcAc̄c,µ̄(p, q) . (B.4)

From the longitudinal and transverse/classical ghost-gluon dressing one can compute the
non-classical vertex dressing (5.20). The result is shown in Figure B.2. One can see that
it is approximately zero for perturbative momenta.

As a tensor basis for the three- and four-gluon vertex, we apply transverse and longitu-
dinal projections of the classical tensor structures,

τabcA3,cl,µνρ(p, q) = −ifabc (δµν(p− q)ρ + δνρ(2q + p) + δρµ(−2p− q)) , (B.5)

and

τabcdA4,cl,µνρσ(p, q, r) = fabef cde (δµρδνσ − δµσδνρ)

+ facef bde (δµνδρσ − δµσδνρ)

+ fadef bce (δµνδρσ − δµρδνσ) . (B.6)
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Figure B.1.: Transverse ghost-gluon and three-gluon dressings (blue lines) in comparison
to SU(2) lattice results [273–275] with N = 324, β = {2.13, 2.39, 2.60} and
a−1 = {0.8 GeV, 1.6 GeV, 3.2 GeV} for the dark blue/rusty red/ocher points.

We obtain the dressings, λA3,1, λA3,2, λA4,1, λA4,2, by contracting the full vertices with
the longitudinal and transverse projection operators (5.15) and the classical tensor struc-
tures themselves,

PabcA3,1,µνρ(p, q) =Π⊥µµ̄(p)Π⊥νν̄(q)Π
‖
ρρ̄(−p− q)τabcA3,cl,µ̄ν̄ρ̄(p, q) ,

PabcA3,2,µνρ(p, q) =Π⊥µµ̄(p)Π
‖
νν̄(q)Π

‖
ρρ̄(−p− q)τabcA3,cl,µ̄ν̄ρ̄(p, q) , (B.7)

and,

PabcdA4,1,µνρσ(p, q, r) = Π⊥µµ̄(p)Π⊥νν̄(q)Π⊥ρρ̄(r)Π
‖
σσ̄(−p− q − r)τabcdA4,cl,µ̄ν̄ρ̄σ̄(p, q, r) ,

PabcdA4,2,µνρσ(p, q, r) = Π⊥µµ̄(p)Π⊥νν̄(q)Π
‖
ρρ̄(r)Π

‖
σσ̄(−p− q − r)τabcdA4,cl,µ̄ν̄ρ̄σ̄(p, q, r) . (B.8)

Analogously we define the tensor structures of the BRST-projected two-point vertices,

τabAQc̄,µ(p) = −ipµ
ξ
δab ,

τabcQA,µ(p) = −ipµδab , (B.9)

and for the BRST three-point functions,

τabcccQc(p, q) =− fabc ,

τabcAcQA,µν
(p, q) =− fabc

(
Π⊥µν(p) + Π‖µν(p)

)
. (B.10)

The relation between these tensor structures and the pure Yang-Mills ones is further
elaborated in Section B.2.5.
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Figure B.2.: Non-classical ghost-gluon dressing from the fRG (solid blue) and STI (dashed
dark blue).

B.2.2. Regulators and Gluon Mass

The transverse gluon dressing ZA(p) contains the gluon mass gap and thus diverges below
1 GeV for k → 0. For the numerical computations we parameterize the gluon two-point
function as,

ΓabAA,µν(p) = Π⊥µν(p)ZT (p)
(
p2 +m2

T

)
δab + Π‖µν(p)Γ

‖
AA(p) δab ,

where the longitudinal part Γ
‖
AA contains the gauge fixing term p2/ξ. We obtain the

transverse and longitudinal gluon mass from,

m2
⊥,k = ZT (0)m2

T ,

m2
‖,k = Γ

‖
AA,k(0) . (B.11)

The pole mass as defined in Figure 5.5 is set to (m2
⊥,scaling−0.0004) GeV. The longitudinal

gluon mass from the mSTI however is extracted from,

m2
‖,k,mSTI = Γ

‖
AA,k,mSTI(p = 4kmin) , (B.12)

to avoid the influence of IR cutoff effects.
For the ghost and gluon regulator we use respectively,

(RA)abµν(p) = δabr(p2/k2)
(

Π⊥µν(p)Z̄T (p) p2 + Π‖µν(p)Γ
‖
AA(p)

)
,

(Rc)
ab(p) = δabp2Zc(p)r(p

2/k2) , (B.13)

where k is the RG scale and we parametrise the transverse gluon two-point as,

Γ⊥,abAA,µν(p) = Π⊥µν(p)ZT (p)(p2 +m2
T )δab (B.14)

= Π⊥µν(p)
(
Z̄T (p)(p2 + m̄2

T + k2)− k2
)
δab .

The dressing Z̄T guarantees a well-defined regulator in the infrared. The shape function
is defined as an exponential,

r(p2/k2) =
e−p

2/k2

1− e−p2/k2 . (B.15)
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Figure B.3.: Ghost and gluon propagator dressings from the fRG (blue) in comparison
to DSE results (green), from [39], for the scaling (solid line) and decoupling
(dashed line) solution. The DSE dressings were rescaled such that they agree
with the corresponding fRG dressings at p = Λ ≈ 672.6 GeV.

B.2.3. Extraction of Scale

We set the momentum scale by positioning the maximum of the gluon dressing 1/ZA(p)
at the lattice scale p ≈ 0.955 GeV from [149].

When comparing our propagators and dressings to the aforementioned lattice results
one also has to adjust the global normalization, Z−1

Lat(p) → yZ−1
Lat(p). This is done via

minimizing

NZA(y) =
∑
i

∆xi
∆E2

i

[(
Z−1
A (pi)− yZ−1

Lat(pi)
)2

+
(
∂pZ

−1
A (pi)− y∂pZ−1

Lat(pi)
)2]

(B.16)

in the region 0.8 GeV≤ pi ≤ 4 GeV, where the lattice input ∆xi denotes the distances to
the next point, ∆E2

i the statistical error of that point and Z−1
Lat(p) is the gluon dressing

obtained from the lattice computation [149]. The normalization procedure for the ghost
dressing is done analogously in the fitting range 1.5 GeV≤ pi ≤ 6 GeV.

B.2.4. Scaling Exponents

The scaling exponents, c.f. (5.35), obtained from our transverse scaling results in the
regime 0.135 GeV≤ p ≤ 0.471 GeV are

κgl = 0.535

κgh = 0.541 (B.17)

B.2.5. BRST Projected Vertices

The effective action exhibits shift symmetry in the anti-ghost. This symmetry leads to
the identities,

∂ · δΓ
δQA

=
δΓ

δc̄
,

δΓ

δQc̄
=

1

ξ
∂ ·A . (B.18)
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Figure B.4.: Gluon propagator and four-gluon dressing from the fRG (blue) in comparison
to DSE results (green), from [39], for the scaling (solid line) and decoupling
(dashed line) solution. The DSE dressings were rescaled such that they agree
with the corresponding fRG dressings at p = Λ ≈ 672.6 GeV.

Fourier transforming both gives,

−iqνΓQA,ν(q) = Γc̄(q) ,

ΓQc̄(−p) =
1

ξ
ipµAµ(p) . (B.19)

The first identity relates,

iqνΓadbAcQA,µν
(p,−p− q) = ΓabdAc̄c,µ(p, q) ,

ipµΓbacQA,µ(−p) = Γabc̄c (p) . (B.20)

Generally we can write down the full tensor basis,

ΓadbAcQA,µν
(p,−p− q) =fabd (δµνλ1 + pµpνλ2 + qµqνλ3 + pµqνλ4 + qµpνλ5) . (B.21)

The shift symmetry identity (B.20) then relates,

λAc̄c =λ1 + q2λ3 + pqλ5

λAc̄c,ncl = pqλ2 + q2λ4

λAc̄c,‖ =λ1 + q2λ3 + pqλ5 − 2pqλ2 − 2q2λ4 . (B.22)

The diagrams contributing to the flow of the AcQA- and cQA-dressings are depicted in
Figure B.6. One can see that the identity (B.20) is already diagrammatically fulfilled for
the fRG equations. Thus they are exact identities. Therefore applying them in the STIs
is valid and the exactness of the identities guarantees gauge parameter independence of
the three-gluon STI. However the STIs not only depend on these specific combinations of
dressings, therefore a computation of all five from the fRG is nonetheless necessary.
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Figure B.5.: Transverse ghost-gluon and three-gluon dressings from the fRG (blue) in com-
parison to DSE results (green), from [39], for the scaling (solid line) and de-
coupling (dashed line) solution. The DSE dressings were rescaled such that
they agree with the corresponding fRG dressings at p = Λ ≈ 672.6 GeV.

We however simplify the approximation by identifying,

λAcQA,1(p,−p− q) = λAc̄c,1(p, q) ,

λAcQA(p,−p− q) = λAc̄c(p, q) ,

ZcQA(p) = Zc(p) , (B.23)

where the index 1 indicates a longitudinally projected gluon. This approximation should
not lead to qualitative differences.
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Figure B.6.: Diagrammatic representation of the flow equations of propagators and ver-
tices. The dashed lines represent the fully dressed ghost, curly orange lines
the fully dressed gluon, solid black lines to fully dressed Qc and solid orange
lines to the fully dressed QA BRST charge. The permutations include per-
mutations of external legs as well as the position of the regulator derivative
insertions which is indicated by the crossed circle. The power −1 indicates a
full two-point function.
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B.3. Additional Details on the mSTI

B.3.1. Longitudinal Gluon Two-Point Function and Gluon Mass

To obtain the mSTI of the longitudinal gluon two-point function one takes the functional
derivatives δ2/(δAaµδc

b) of the mSTI (5.11) projects both sides of the equation with,

QabAA,µ = pντ
ab
AA,νµ(p) . (B.24)

After normalization, one obtains the STI

Γ
‖
AA,reg(p) = 0 . (B.25)

We can compare the one-loop, transverse and longitudinal, mass running from the fRG
with the one-loop longitudinal mass from the STI. The different diagrams contributing to
the equations can be found in Figure B.6 and B.7. Inserting undressed propagators and
vertices with a gauge coupling g and the regulator shape function r(q2) ≡ r(q2/k2), see
(B.15), one obtains for the transverse gluon mass from the fRG,

ṁ2
⊥ =

∫
dzdq

q3
√

1− z2

4π3

g2q2ṙ(q2)

q4(1 + r(q2))3

(
3− 9z2 + r(q2)(−7 + z2)

)
(B.26)

where z = p·q
|p||q| . Performing the loop integration, one arrives at the one-loop running,

ṁ2
⊥ = k∂km

2
⊥ = − 9g2

64π2
k2 . (B.27)

Solving the differential equation yields,

m2
⊥ = − 9g2

128π2
k2 . (B.28)

For the longitudinal gluon mass from the fRG one obtains,

ṁ2
‖ =

∫
dzdq

q3
√

1− z2

4π3

g2q2ṙ(q2)

q4(1 + r(q2))3

(
2− 9z2 + r(q2)(2 + z2)

)
. (B.29)

Even though the longitudinal vertices contribute differently, one arrives at the same one-
loop running as for the transverse mass and thus the longitudinal mass is,

m2
‖ = − 9g2

128π2
k2 . (B.30)

For the derivation of the one-loop mass from the mSTI, one has to take the zero momentum
limit p→ 0 of the equation for ΓAA‖ (p) with the rule of l’Hospital,

lim
p→0

f(p)

g(p)
= lim

p→0

f ′(p)

g′(p)
. (B.31)

One then obtains the equation [276],

m2
‖ =

∫
dzdq

q3
√

1− z2

4π3

g2q2r(q2)

q4(1 + r(q2))3

(
(−2 + 9z2)(1 + r(q2)) + 8q2z2∂qr(q

2)
)
. (B.32)

Integrating this, one arrives at the same one-loop mass as from the fRG,

m2
‖ = − 9g2

128π2
k2 . (B.33)

Although all three equations contain different contributions and diagrams, they yield the
same gluonic mass at one-loop level.
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B.3.2. Ghost-Gluon Vertex mSTI

We take the functional derivatives δ3/(δc̄aδcbδcc) of (5.11). To project onto the dressings
we trace the equation with fabc. Thus the projection operator is,

QabcAc̄c(p, q) = pµτ
abc
Ac̄c,µ(p, q) . (B.34)

After normalization, the STI for the non-classical ghost-gluon dressing at the symmetric
point is given as,

λQccc(p)− λAc̄c(p) + 2λAc̄c,noncl(p) = 0 . (B.35)

From this we can derive:

λAc̄c,ncl(p) =
1

2
(λAc̄c(p)− λQccc(p)) ,

λAc̄c(p) = λAc̄c(p) ,

λAc̄c,1(p) = λAc̄c(p)− 2λAc̄c,ncl(p) = λQccc(p) . (B.36)

A comparison of the non-classical ghost-gluon dressing from the mSTI and from the fRG
can be found in Figure B.2.

B.3.3. Three-Gluon Vertex mSTI

One can derive the three-gluon mSTI by taking the functional derivatives δ3/δAaµδA
b
νδc

c.
For the projection onto the mSTI for the three-gluon dressings with one and two longitu-
dinal legs, λA3,1(p, q) and λA3,2(p, q), one uses,

QabcA3,1,µν(p, q) = Π⊥µµ̄(p)Π⊥νν̄(q)(−p− q)ρ̄τabcA3,cl,µ̄ν̄ρ̄(p, q) ,

QabcA3,2,µν(p, q) = Π⊥µµ̄(p)Π
‖
νν̄(q)(−p− q)ρ̄τabcA3,cl,µ̄ν̄ρ̄(p, q) . (B.37)

Since the classical tensor structure has no overlap with the first projection operator, there
exists no mSTI for λA3,1(p) in our truncation, see also (5.37), for the equivalent case in
the fRG equations.

B.3.4. Four-Gluon Vertex mSTI

We take the field derivatives δ4/δAaµA
b
νA

c
ρc
d of (5.11). The projection operators to obtain

mSTI equations for the longitudinal four-gluon dressings λA4,1(p, q, r) and λA4,2(p, q, r)
are given as,

QabcdA4,1,µνρ(p, q, r) = Π⊥µµ̄(p)Π⊥νν̄(q)Π⊥ρρ̄(r)(−p− q − r)σ̄τabcdA4,cl,µ̄ν̄ρ̄σ̄(p, q, r) ,

QabcdA4,2,µνρ(p, q, r) = Π⊥µµ̄(p)Π⊥νν̄(q)Π
‖
ρρ̄(r)(−p− q − r)σ̄τabcdA4,cl,µ̄ν̄ρ̄σ̄(p, q, r) . (B.38)
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Figure B.7.: Diagrammatic representation of the modified Slavnov-Taylor identities for the
longitudinal vertices. The dashed lines represent the fully dressed ghost, curly
orange lines the fully dressed gluon. The black circles represent full vertices
and the crossed square corresponds to a regulator and the triangle to a BRST
vertex. The power −1 indicates a full two-point function. The permutations
include permutations of external ghost legs.
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C. Additional material: Glueball Masses
from the fRG

C.1. Computational Details

C.1.1. Numerical Implementation

The fRG equations were derived using QMeS [1, 2], a Mathematica package for the deriva-
tion of symbolic functional equations. After projecting onto the respective glueballs ten-
sor structures, the equations were traced with FormTracer [171, 172]. The resulting
momentum-dependent integro-differential and integral equations were solved in Mathe-
matica 12.0. The Padé approximants and the respective spectral functions were computed
using Mathematica 12.0. The Gaussian Process Regression was done and optimized in
Python 3, where the integrals were approximated using a Riemann sum.

C.1.2. fRG Equation

The fRG equation for the four-gluon vertex was computed on the scaling solution pre-
sented in Chapter 5. We only include the classical transverse tensor structures of vertices.
The scalar and pseudoscalar s-channel four-gluon dressings do not feed back into the equa-
tion. We approximate the four-gluon dressings in the equations as the classical transverse
symmetric point dressing λA4,cl(p̄),

p̄2 =
1

4

4∑
i=1

p2
i , (C.1)

where the momenta pi are the ones entering the respective four-gluon vertices in the
fRG equation. Other details on the approximations and quantities feeding back into the
equation can be found in Chapter 5.

C.1.3. RG Consistency

Due to the fact that scalar and pseudo-scalar dressings do not feed back into the fRG
equation we are at liberty to choose their respective initial conditions such, that the RG
consistency condition (3.21) is fulfilled and we get the classical theory in the UV.

This means in particular that the scalar dressing is equal to the classical transverse four-
gluon dressing for large momenta p � Λ, since the scalar projection, (6.21), has overlap
with this dressing.

The pseudo-scalar projection operator, (6.25), has per definition no overlap with the
scalar and classical transverse dressing. It therefore goes to zero for large momenta.

115



C.1. Computational Details

Figure C.1.: fRG equation for the s-channel four-gluon vertex dressing. Wiggly orange
lines correspond to fully dressed gluon propagators. The black dots indicate
fully dressed vertices. Permutations include permutations of external legs, as
well as permutations of the regulator insertion that is marked by a crossed
circle.

C.1.4. Momentum Parametrisation

We define the spatial vectors for the two-point functions as,

p =


p
0
0
0

 pT =


0
p
0
0

 q = q


z√

1− z2y√
1− z2

√
1− y2 cosφ√

1− z2
√

1− y2 sinφ

 , (C.2)

and the spatial scalar products

p · p = p2 ,

p · pT = p2 . (C.3)

The loop momentum integration measure is∫
d4q =

∫ 2π

0

∫ 1

−1

∫ 1

−1

∫ ∞
0

q3
√

1− z2

(2π)4
dqdzdydφ . (C.4)
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Figure C.2.: Position of poles of the scalar and pseudo-scalar Padé approximants as pre-
sented in Figure 6.1 and 6.2 in the complex plane.

C.2. Spectral Functions and Reconstruction

C.2.1. Pole Structure of Padé Approximants

The failure of the Padé spectral functions to reproduce the respective fRG dressings for
both projections can be explained by the presence of poles on the Euclidean axis, as well as
in the right half-plane, see Figure C.2. The non-analyticities in the right half-plane violate
the relation between the spectral function (6.5) and the Källén-Lehmann representation
of the dressing (6.3). This explains the failure of even qualitatively reproducing the fRG
dressing from the Padé spectral function in Figure 6.1 and 6.2. We therefore also refrain
from extracting the glueball masses from the respective Padé spectral function. Further
modifications such as smoothing the Euclidean data or constraining them to only certain
momentum regimes might remedy this approach. We however defer this strategy to future
work.

C.2.2. Optimized Parameters

We perform a grid scan of the log-likelihood (6.20) for different parameter values and addi-
tionally include hyperpriors to circumvent obtaining unstable directions in the parameter
space. The Gaussian covariance matrix Cd of the uncertainties of the fRG data was set
to 10−6

1. Throughout the computation we set the mean µ = 0. We slightly modify the
Gaussian kernel (6.13) via a non-linear rescaling,

ω → 1

e(ω−ω0)/l0 + 1
. (C.5)

This modification enhances the UV and IR asymptotic stability of the spectral function.
For a similar procedure, see [217].

The optimized parameters for the scalar and pseudo-scalar spectral function are pre-
sented below.

JPC σ2
1 σ2

2 ω0 l0

0++ 1000 0.0049 1 0.15

0−+ 1000 0.0064 1.2 0.2
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D. Additional material: Phase Structure of
QCD

D.1. Projection Operators

We have three DSEs for the quark propagator dressings, two for the gluon propagator
dressings and six for the quark-gluon vertex. We project,

ZM (p) ∝ΠM
µµ′(p)Π

M
νν′(p)τAA,µ′ν′(p)ΓAA,µν(p)

ZE(p) ∝ΠE
µµ′(p)Π

E
νν′(p)τAA,µ′ν′(p)ΓAA,µν(p)

Zq(p) ∝δabδfg1f2i(γjiν pν − γ
ji
0 p0)Γab,ij,f1f2

q̄q (p)

Zq,‖(p) ∝δabδf1f2γji0 p0Γab,ij,f1f2
q̄q (p)

mq(p) ∝δabδfg1f2δijΓab,ij,f1f2
q̄q (p) ,

(D.1)

For the dressing we apply a different procedure since the tensor basis is not orthogonal.
For this we compute a projection matrix. We know that,

τ iτ j = M ij , (D.2)

where τ i with i = 1, ..., 8 are the tensor structures of the quark-gluon vertex with indices
dropped for simplicity and M ij is a matrix. For a basis that is not orthogonal, such as
our basis, this matrix is not diagonal. However we want to find a projection operator σi

such that,

σiτ j = δijλ
(i)
Aq̄q . (D.3)

We obtain,

(M−1)ikτkτ j = (M−1)ikMkj

σiτ j = δij , (D.4)

with σi = (M−1)ikτk.
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D.2. Quark-Gluon Vertex

D.2. Quark-Gluon Vertex

We can write the transverse tensor basis of the quark-gluon vertex as,

Γaq̄qA,µ(p, q) = 1fT
a
c Π⊥µν(p+ q)

8∑
i=1

λ
(i)
Aq̄q(p, q)τ

(i)
ν (p, q) , (D.5)

with the transverse projection operator,

Π⊥µν(p) = δµν −
pµpν
p2

, (D.6)

and where the tensor structures are given as,

τ (1)
µ (p, q) = −iγµ
τ (2)
µ (p, q) = (p− q)µIs
τ (3)
µ (p, q) = (/p− /q)γµ
τ (4)
µ (p, q) = (/p+ /q)γµ

τ (5)
µ (p, q) = i(/p+ /q)(p− q)µ
τ (6)
µ (p, q) = i(/p− /q)(p− q)µ

τ (7)
µ (p, q) =

i

2

[
/p, /q
]
γµ

τ (8)
µ (p, q) =

i

2

[
/p, /q
]

(p− q)µ . (D.7)
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D.3. Thermal Split in the Quark-Gluon Vertex

D.3. Thermal Split in the Quark-Gluon Vertex

Generally the projection operators (7.5) acts on all Lorenz indices. We however approx-
imate the thermal split by only acting on the open index µ in the quark-gluon vertex.
Thus, the tensor structures of the electric vertex are,

τ
(1)
0 (p, q) = −iγ0

τ
(2)
0 (p, q) = (p− q)0Is
τ

(3)
0 (p, q) = (/p− /q)γ0

τ
(4)
0 (p, q) = (/p+ /q)γ0

τ
(5)
0 (p, q) = i(/p+ /q)(p− q)0

τ
(6)
0 (p, q) = i(/p− /q)(p− q)0

τ
(7)
0 (p, q) =

i

2

[
/p, /q
]
γ0

τ
(8)
0 (p, q) =

i

2

[
/p, /q
]

(p− q)0 , (D.8)

and the magnetic vertex tensor structures are given as,

τ
(1)
j (p, q) = −iγj

τ
(2)
j (p, q) = (p− q)jIs

τ
(3)
j (p, q) = (/p− /q)γj

τ
(4)
j (p, q) = (/p+ /q)γj

τ
(5)
j (p, q) = i(/p+ /q)(p− q)j

τ
(6)
j (p, q) = i(/p− /q)(p− q)j

τ
(7)
j (p, q) =

i

2

[
/p, /q
]
γj

τ
(8)
j (p, q) =

i

2

[
/p, /q
]

(p− q)j , (D.9)

where µ = (0, j) and j = 1, 2, 3. The fully dressed vertices are then given as,

Γa,Eq̄qA,µ(p, q) = 1fT
a
c ΠE

µ0(p+ q)

8∑
i=1

λ
(i)
Aq̄q,E(p, q)τ

(i)
0 (p, q)

Γa,Mq̄qA,µ(p, q) = 1fT
a
c ΠM

µj(p+ q)
8∑
i=1

λ
(i)
Aq̄q,M (p, q)τ

(i)
j (p, q) . (D.10)
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D.4. Spatial Momentum Parametrisation at Finite Temperature

D.4. Spatial Momentum Parametrisation at Finite Temperature

We define the spatial vectors for the two-point functions as,

~p =

 p
0
0

 ~q =

 qz

q
√

1− z2 cosφ

q
√

1− z2 sinφ

 , (D.11)

and the spatial scalar products

pi · pj = p2 , (D.12)

For the spatial scalar products of three-points we use

pi · pj = −p
2

2
for i 6= j , (D.13)

and

~p1 =

 p
0
0

 , ~p2 =

 −1/2p

p
√

3/2
0

 . (D.14)

The loop momentum integration measure is∫
d4q =

∫ 2π

0

∫ 1

−1

∫ ∞
0

q2

(2π)3
dqdzdφ . (D.15)
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