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Abstract

This dissertation deals with theoretical methods to simulate the linear and nonlinear
absorption of circularly polarized light. Specifically, expressions for the rotatory strength
in the intermediate state representation (ISR) of the algebraic-diagrammatic construction
(ADC) scheme up to third order are detailed in both the length and velocity gauge,
and are used to simulate electronic circular dichroism (ECD) spectra. The well-known
origin-dependence inherent to the prediction of magnetic properties within approximate
theories is explored related to ECD using the ADC method. The ECD spectra of
methyloxirane, methylthiirane and their dimethylated counterparts, H2O2 and H2S2 are
calculated at the ADC(2) and ADC(3) levels of theory and compared to the same spectra
calculated at CC2, CCSD and CC3 level of theory. The simulated ECD spectra of the
bicyclic ketones, camphor, norcamphor and fenchone are analysed at ADC(3) level and
compared against experimental gas-phase ECD spectra. Solvent effects are addressed
by the use of a polarizable continuum model (PCM) on the simulated ECD spectra of
solvated epinephrine.

The time-resolved counterpart to ECD, namely excited-state electronic circular
dichroism (ESECD) is further derived within the ADC/ISR formalism, replacing the
ground state with an excited-state, to obtain excited-state rotatory strengths. The quality
of the simulated ESECD spectra of norcamphor at ADC(3) level is compared with those
same spectra calculated at time-dependent density functional theory (TDDFT) with
several exchange-correlation functionals. Furthermore, the ESECD spectrum of binol in
the energetically lowest singlet excited state (S1-ESECD) is computed at the ADC(2)
level of theory.

The simultaneous absorption of two-photons where at least one of them is circularly
polarized, so-called “two-photon circular dichroism” (TPCD), is derived within the
ADC/ISR formalism. In this case, three formulations of the TPCD rotatory strength are
employed and used to simulate the TPCD spectra of methyloxirane and methylthiirane.
The chiroptical properties of a twisted biphenyl molecule is subsequently evaluated in
terms of their linear (ECD) and nonlinear (TPCD) spectra. The impact the polarization-
propagation of the two light beams have on the simulated TPCD spectra of norcamphor
is further demonstrated.

Next, expressions for the first-order hyperpolarizability are derived and used to
calculate the second harmonic generation (SHG) and hyper-Rayleigh scattering (HRS)
within the ADC/ISR formalism. The static first-order hyperpolarizability of several
organic and inorganic molecules is then compared at ADC(n) and CC levels of theory.
The dynamic, SHG, signal strength of several molecules is subsequently evaluated at
ADC(n) levels of theory with respect to experimental measurements. Lastly, the HRS of
ammonia is evaluated at ADC(2) and ADC(3) levels of theory.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit theoretischen Methoden zur Simulation der linea-
ren und nichtlinearen Absorption von zirkular polarisiertem Licht. Insbesondere werden
Ausdrücke für die Rotationsstärke in der intermdiate state representation (ISR) des
algebraisch-diagrammatischen Konstruktionsschemas (ADC) bis zur dritten Ordnung
sowohl im Längen- und Geschwindigkeitsmaß detailliert beschrieben und zur Simulati-
on des elektronischen Zirkulardichroismus (ECD) verwendet. Spektren. Die bekannte
Ursprungsabhängigkeit, die der Vorhersage magnetischer Eigenschaften in Näherungs-
theorien inhärent ist, wird im Zusammenhang mit ECD und ADC untersucht. Die
ECD-Spektren von Methyloxiran, Methylthiiran und ihren dimethylierten Derivaten,
sowie H2O2 und H2S2 werden auf dem ADC(2)- und ADC(3)-Theorieniveau berechnet
und mit verglichen Spektren berechnet auf CC2-, CCSD- und CC3-Theorieniveau ver-
glichen. Die simulierten ECD-Spektren der bicyclischen Ketone Campher, Norcampher
und Fenchon werden auf ADC(3)-Niveau analysiert und mit experimentellen Gasphasen-
ECD-Spektren verglichen. Lösungsmitteleffekte werden durch die Verwendung eines
polarisierbaren Kontinuumsmodells (PCM) auf die simulierten ECD-Spektren von solva-
tisiertem Adrenalin behandelt.

Das zeitaufgelöste Gegenstück zur ECD, nämlich der elektronische Zirkulardichrois-
mus (ESECD) im angeregten Zustand, wird im ADC/ISR-Formalismus hergeleitet, wobei
der Grundzustand durch einen angeregten Zustands ersetzt wird, um die Rotationsstärken
des angeregten Zustands zu erhalten. Die Qualität der simulierten ESECD-Spektren von
Norcampher auf ADC(3)-Niveau wird mit den entsprechenden Spektren verglichen, die
mit der zeitabhängigen Dichtefunktionaltheorie (TDDFT) mit mehreren Austauschkor-
relationsfunktionalen berechnet wurden. Darüber hinaus wird das ESECD-Spektrum
von Binol im energetisch niedrigsten angeregten Singulett-Zustand (S1-ESECD) auf
ADC(2)-Niveau berechnet.

Die gleichzeitige Absorption von Zweiphotonen, bei denen mindestens eines zirku-
lar polarisiert ist, der sogenannte Zweiphotonen-Zirkulardichroismus (TPCD), wird im
ADC/ISR-Formalismus abgeleitet. In diesem Fall werden drei Formulierungen der TPCD-
Rotationsstärke verwendet und genutzt, um die TPCD-Spektren von Methyloxiran und
Methylthiiran zu simulieren. Die chiroptischen Eigenschaften eines verdrillten Biphenyl-
moleküls werden anschließend hinsichtlich ihrer linearen (ECD) und nichtlinearen (TPCD)
Spektren bewertet. Der Einfluss der Polarisationsausbreitung der beiden Lichtstrahlen
auf die simulierten TPCD-Spektren von Norcampher wird weiter untersucht.

Als nächstes werden Ausdrücke für die Hyperpolarisierbarkeit erster Ordnung abgelei-
tet und verwendet, um die Frequenzverdopplung (SHG) und die Hyper-Rayleigh-Streuung
(HRS) innerhalb des ADC/ISR-Formalismus zu berechnen. Die statische Hyperpolarisier-
barkeit erster Ordnung mehrerer organischer Moleküle wird dann auf den Theorieebenen
ADC(n) und CC verglichen. Die dynamische SHG-Signalstärke mehrerer Moleküle
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wird anschließend auf ADC(n)-Niveau in Bezug auf experimentelle Messungen bewertet.
Schließlich wird die HRS von Ammoniak auf den Theorie-Niveaus ADC(2) und ADC(3)
bewertet.
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Chapter 1

Introduction

The absorption of light is the fundamental process studied in optical spectroscopy where
molecular systems are interrogated providing insight into physical processes. [1] By the
use of linear polarized plane waves as the light source, one obtains information about the
electronic structure of the investigated molecular system. However, this does not yield

Figure 1.1: Absorption.

information about the absolute stereochemistry of the system. Using circularly polarized
light, where the tip of the vector potential rotates in a counter or anti-counter clockwise
motion results in the preferential absorption by enantiomers, thus providing information
about the absolute stereochemistry of the system. This preferential absorption is measured
in electronic circular dichroism (ECD) spectroscopy. [2–9]
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1 INTRODUCTION

On a theoretical level, various methods have been developed over the last cen-
tury, chiefly, the development of quantum mechanics allowed molecular systems to be
described using a wave function, containing all the information about the system de-
scribed therein. [10] Properties can then be obtained as solutions to the time-independent
Schrödinger equation (TISE) equation. [11–15] Analytical solutions are not available for
systems containing more than two particles, and several approximations have been
employed to keep the computational effort minimal while providing the most accurate
quantities. The starting point is often Hartree-Fock (HF) which neglects the motion
of individual electrons, instead treating their interaction in an average fashion. [16–20]

Perturbation theory can then be used to recover electron correlation with the most
common being the Møller–Plesset perturbation theory (MP) method. [21–27] The wave
function can also be expanded in terms of excited determinants where inclusion of all
possible determinants fully correlates the motions of the electrons, providing the exact
solution to the TISE within a given one-electron basis set, referred to as configuration
interaction (CI). [28]

The algebraic-diagrammatic construction (ADC) scheme is formally derived from
Greens function theory and can be viewed as a combination of a configuration interaction
expansion of the wave function with a MP treatment of the matrix elements. [29,30] While
ADC has proven high accuracy in the simulation of UV/VIS spectroscopy, [31] it has not
yet been applied to simulate chiroptical spectroscopies, which is the main focus of this
dissertation.

The first of these chiroptical spectroscopies is electronic circular dichroism (ECD)
(commonly called CD), where the difference in absorption of left- and right-handed
circularly polarized light is measured. [3,4,32] Since a difference in absorption is measured,
a negative or positive signal can be recorded where enantiomers produce mirror-like
spectra. A common usage of ECD spectroscopy is the determination of secondary
structures of proteins, [5,33–36] as well as in pharmaceutical synthesis as a control for
enantiomeric purity. [37] ECD is typically measured in solution and hence solvent molecules
arranging themselves around a solute can give rise to a signal though a processes referred
to as induced circular dichroism (ICD). [38–43] Quantum mechanically, the ECD signal
arising from an electronic transition is described by the Rosenfeld equation as the scalar
product of the electric and magnetic transition dipole moments between the ground state
Ψ0 and nth excited state Ψn, a quantity referred to as the rotatory strength

Rn0 = µ⃗n0 · m⃗n0. (1.1)

Several methods have been used to calculate rotatory strengths, for molecules on the
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Figure 1.2: Additional information obtained by ECD compared to UV/VIS spec-
troscopy. Enantiomers are clearly distinguishable and determination of absolute configu-
ration is possible using ECD where circularly polarized light is used.

order of hundreds of atoms, time-dependent Hartree-Fock (TD-HF) [44–46] and time-
dependent density-functional theory (TD-DFT) [47–51] has been used. For molecules
on the order of tens of electrons, CI [52] as well as linear response (LR) based on a
complete active space self-consistent field (CASSCF) reference [53] and equations-of-motion
coupled cluster (EOM-CC) [54,55] and the similar coupled cluster linear response (CC-LR)
approach [56–59] has been employed.

The Rosenfeld equation, need not be restricted to describe excitations from the
ground state, but can in principle describe rotatory strengths corresponding to excitations
from an excited-state

Rnk = µ⃗nk · m⃗nk. (1.2)

The resulting process is then referred to as excited state electronic circular dichroism
(ES-ECD) which is a nonlinear absorption process analogous to pump-probe UV/VIS. [60–63]

ES-ECD has been theoretically explored at the TD-HF and TD-DFT levels of theory,
where the rotatory strength from an excited-state was evaluated through the double
residue of a quadratic response function. [64] However, ES-ECD has yet not been im-
plemented using the ADC formalism, as will be presented for the first time in this
work.

Another important nonlinear spectroscopy is two-photon absorption (TPA), here,
two-photons are absorbed simultaneously, acting as a single photon with the sum of their
individual frequencies. [65–68] Analogous to how ECD complements UV/VIS spectroscopy,



1 INTRODUCTION

two-photon circular dichroism (TPCD) complements TPA spectroscopy, providing infor-
mation about the absolute stereochemistry of molecular system. [69–78] Here, two-photons
where at least one is circularly polarized are simultaneously absorbed through a so-called
“virtual state”, in a preferential manner depending on the absolute stereochemistry of
the system. [79] The unique benefit TPA offers, specifically, high temporal and spatial
resolution, owing to the nonlinear optics (NLO) process, as well as the use of lower
frequency light, are both inherent to the TPCD process. [80,81] While TPA has been
explored theoretically at several levels of theory including ADC, [82] TPCD has only been
evaluated at TD-HF, TD-DFT, CC2 and CCSD levels of theory. [78,79,83] Hence, another
milestone of this dissertation is to implement and simulate TPCD spectra within the
ADC/intermediate state representation (ISR) formalism.

Of equal importance in this work is the static and dynamic first-order hyperpolariz-
ability, specifically, the dispersion process of second-harmonic generation (SHG). [84–92]

While conceptually similar to TPA, here, two photons are dispersed through a virtual
excited state and re-emitted at the combined frequency of both. Measured in SHG
spectroscopy is thus the dynamic first-order hyperpolarizability of the molecular sys-
tem, which has been used to analyse collagen fibrillar structure, [93–95], cell imaging [96]

and cancers. [97] Here, systems with large hyperpolarizabilities are sought after in the
development of several exotic materials for use in displays, medicinal imaging, etc. [98–104]

Furthermore, the SHG process is constrained through symmetry to only produce signals
from centrosymmetric media, thus the method is commonly applied to the study of surface
phenomena.When the first-order hyperpolarizability is measured from liquid samples, the
hyper-Rayleigh scattering (HRS) is processes is exploited, where the signal is isotropic,
incoherent and dephasing. [105] Theoretically, the first-order hyperpolarizability and thus
SHG and HRS, have been evaluated at various levels of theory, e.g., TD-DFT, CISD and
coupled cluster singles and doubles (CCSD), but not yet using the ADC method.

Implementation and evaluation of these spectroscopies novel to the ADC method
is what will be presented in this dissertation. In Chapter 3, expressions for the rota-
tory strength is used to simulate ECD spectra within the ADC/ISR formalism. [106] In
Chapter 4 expressions for rotatory strengths arising from transitions from excited states
are used to simulate ES-ECD spectra. [107] In 5 expressions for the two-photon rotatory
strength are derived within the used to simulate TPCD spectra. Lastly, in Chapter 6,
expressions for the static first-order hyperpolarizability tensor, SHG and HRS within
the ADC/ISR formalism are used to calculate hyperpolarizabilities. Other projects that
have been published in collaboration with other groups are not included in this thesis
but are listed in the end.



Chapter 2

Theory

This chapter begins with a discussion of the molecular TISE and its approximate solution
starting with the Hartree-Fock method. In Section 2.2, one of the most fundamental
correlated methods, namely CI, is described. Section 2.3 continues the discussion of
correlated methods, here, Rayleigh-Schrödinger and Møller-Plesset (MP) perturbation
theory are described. In Section 2.4, linear and circularly polarized plane wave light
are described as well as the absorption of both. Next, in Section 2.5 response theory
will be described as related to the absorption of linear and circularly polarized light,
electric-dipole polarizability and the first-order electric-dipole hyperpolarizability as well
as two-photon absorption. Lastly, in Section 2.6 the algebraic-diagrammatic construction
(ADC) scheme for the polarization propagator in the intermediate state representation
is described and applied to electronic circular dichroism, two-photon circular dichroism
and second harmonic generation.

2.1 Hartree-Fock

Hartree-Fock (HF) is arguably the most fundamental approximate method of electronic
structure theory and forms the basis of molecular orbital theory where each electron’s
motion is described by a single-particle (orbital) function and every electron is unre-
sponsive to the motion of the others. [16,17] The method arose in the pursuit to solve
the electronic Schrödinger equation or more precisely, the time-independent Schrödinger
equation TISE after the Born-Oppenheimer approximation (BO) (considering the nuclei
as fixed in space) has been invoked. Using r and R to denote the coordinates (in atomic
units) of the electrons and nuclei, respectively, the TISE is then written as, [15]

−1
2
∑

i

∇2
i −

∑
A,i

ZA

rAi
+
∑

A>B

ZAZB

RAB
+
∑
i>j

1
rij

Ψ(r; R) = EelΨ(r; R). (2.1)
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The total N-electron wave function is then separated into products of one-electron wave
function (orbitals), resulting in a form known as a Hartree-product (HP). However, this
form does not satisfy the antisymmetry principle, which states that fermions need to be
antisymmetric with respect to an interchange of any set of spatial and spin coordinates
x = {r, ω}. Here, one introduces notations for spatial orbitals as ϕ(r) and spin orbitals
as χ(x) = ϕ(r)α(ω) or χ(x) = ϕ(r)β(ω). To ensure the antisymmetry principle is obeyed,
the wave function is then parameterized using a Slater determinant, which for N -electrons
is written as

Ψ = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (x1) χ2 (x1) · · · χN (x1)
χ1 (x2) χ2 (x2) · · · χN (x2)

...
... . . . ...

χ1 (xN ) χ2 (xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

where 1√
(N !)

is a normalization factor. [20] One consequence of using a Slater determinant
is that each electron is indistinguishable and contributes to every orbital, however small
that contribution might be. With this form for the wave function one proceeds towards
simplifying the Hamiltonian. Defining first a one-electron operator h,

h(i) = −1
2∇2

i −
∑
A

ZA

riA
, (2.3)

and a two-electron operator v(i, j),

v(i, j) = 1
rij
. (2.4)

The electronic Hamiltonian can then be written more compactly as,

Ĥel =
∑

i

h(i) +
∑
i<j

v(i, j) + VNN , (2.5)

where VNN is a fixed constant dependent only on the fixed set of nuclear coordinates R
(BO approximation). The energy can then be obtained as an expectation value,

Eel =
〈
Ψ
∣∣∣Ĥel

∣∣∣Ψ〉 , (2.6)

which in the case of the HF energy satisfies the variational theorem which ensures that the
energy is necessarily an upper bound to the exact (minimal) energy. Because of this, the
parameters of Ψ can be varied until a minimum is obtained with the resulting molecular
orbitals (MOs) referred to as canonical MOs, i.e., those that minimizes Eel within the
HF-approximation. By simple rearrangement and making use of braket notations, the
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HF energy can be written in terms of integrals over the one- and two-electron operators,

EHF =
∑

i

⟨i|h|i⟩ + 1
2
∑
ij

([ii|jj] − [ij|ji]) , (2.7)

where the one electron integral is,

⟨i|h|j⟩ =
∫
dx1χ

∗
i (x1)h (r1)χj (x1) , (2.8)

and the two electron integral is,

[ij|kl] =
∫
dx1dx2χ

∗
i (x1)χj (x1) 1

r12
χ∗

k (x2)χl (x2) , (2.9)

for which there are numerous efficient integration algorithms. Hence, the HF-method
yields approximate solutions to the TISE assuming the wave function is constituted by a
single Slater determinant with each electron occupying a single spin orbital. To minimize
the HF energy one wants to change the orbital parameters χi → χi + δχi, while keeping
the spinorbitals orthonormal to one and other. This is accomplished by Langrange’s
method of undetermined multipliers, where one uses a functional L,

L [{χi}] = EHF [{χi}] −
∑
ij

ϵij (⟨i|j⟩ − δij) . (2.10)

Here ϵij are undetermined Langrange multipliers, ⟨i|j⟩ is the overlap of spin orbitals i
and j. One then proceeds by setting the first variation to zero, δL = 0, to arrive at the
Hartree-Fock equations,

h (x1)χi (x1) +
∑
j ̸=i

[∫
dx2 |χj (x2)|2 r−1

12

]
χi (x1) −

∑
j ̸=i

[∫
dx2χ

∗
j (x2)χi (x2) r−1

12

]
χj (x1)

= ϵiχi (x1) ,
(2.11)

where ϵi is the energy associated with orbital χi. One may solve these equations numerically
(exact HF) or in a space spanned by a set of basis functions (Hartree-Fock-Roothan equations), in
either case some initial guess for the orbitals are required which are then iterated upon. Because
of this requirement of iteration on an initial guess the procedure is referred to as a self-consistent
field (SCF) method or approach. The second term in Equation 2.11 describes the Coulomb
interaction of an electron occupying spin orbital χi, with the integral producing the average
interaction to other electrons, i.e. “mean field”. This Coulomb term can then be defined by the
Coulomb operator as,

Jj (x1) =
∫
dx2 |χj (x2)|2 r−1

12 . (2.12)

The Coulomb operator thus describes the average local potential at point x1 arising from the
charge distribution of spin-orbital χj . The second term is referred to as the “exchange term” has
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no classical analogue and arises from the antisymmetric condition, it likewise is defined by the
Exchange operator as,

Kj (x1)χi (x1) =
[∫

dx2χ
∗
j (x2) r−1

12 χi (x2)
]
χj (x1) . (2.13)

Using these notations and lifting the j ̸= i condition of the summations, one can define the Fock
operator as,

f (x1) = h (x1) +
∑
j

Jj (x1) − Kj (x1) , (2.14)

Equation 2.11 can then be written compactly as,

f (x1)χi (x1) = ϵiχi (x1) . (2.15)

To obtain the Roothan equations the orbitals are expressed in terms of one-particle (orbital)
basis functions with the expansion,

χi =
K∑
µ=1

CµiB̃µ, (2.16)

where B̃µ is the spatial function spanning the i-th orbital with expansion cofficient Cµi. Within
the given basis set {B}, Equation 2.15 takes the form,

f (x1)
∑
ν

CνiB̃ν (x1) = ϵi
∑
ν

CνiB̃ν (x1) (2.17)

and after left multiplication and integration,

∑
ν

Cνi

∫
dx1B̃

∗
µ (x1) f (x1) B̃ν (x1) = ϵi

∑
ν

Cνi

∫
dx1B̃

∗
µ (x1) B̃ν (x1) . (2.18)

Lastly, one defines the overlap S and Fock F matrices as,

Sµν =
∫
dx1B̃

∗
µ (x1) B̃ν (x1) , (2.19)

Fµν =
∫
dx1B̃

∗
µ (x1) f (x1) B̃ν (x1) , (2.20)

and finally the Hartree-Fock-Roothaan equations are written as,

∑
ν

FµνCνi = ϵi
∑
ν

SµνCνi, (2.21)

or in matrix notations,
FC = SCϵ. (2.22)

After transformation into the basis of S, one obtains a simple eigenvalue equation.
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2.2 Configuration interaction

In the Hartree-Fock approximation one finds the energetically lowest single determinant wave
function in a given one-electron basis set, neglecting correlation of electrons with opposite spin.
Correlation can then be recaptured by an expansion of the HF wave function with excited
determinants, [15]

ΨCI = aoΦHF +
∑
S

aSΦS +
∑
D

aDΦD +
∑
T

aTΦT + · · · =
∑

aiΦi. (2.23)

where ai are expansion coefficients of the Φi excited determinant constructed by permutations of
the occupied and virtual orbitals. Including permutations of one- (singles, S), two- (doubles, D)
and three-pairs (triples, T) are the most common inclusions. A hierarchy of methods are thus
configuration interaction singles (CIS), configuration interaction doubles (CID), configuration
interaction singles and doubles (CISD), configuration interaction singles, doubles and triples
(CISDT) etc. Inclusion of all possible determinants is referred to as Full-CI (FCI) which captures
all correlation in a given basis set. To obtain state and excitation energies one introduces the

Figure 2.1: The relation of the completeness of the one-electron basis set and the
inclusion of excited determinants in the CI expansion. The diagonal arrow points
towards the exact solution to the TISE.

Lagrangian L, where λ are Lagrange multipliers,

L = ⟨ΨCI|H |ΨCI⟩ − λ(⟨ΨCI|ΨCI⟩ − 1). (2.24)
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This then yields a set of variational secular equations by the eigenvalue equation,


H00 − E H01 · · · H0i

H10 H11 − E · · · H1i
...

... . . . ...

Hi0
... · Hii − E




a0

a1
...
ai

 =


0
0
...
0

 . (2.25)

The lowest and second lowest eigenvalues corresponds to the ground state and first excited state
energies, the corresponding eigenvectors contains the expansion coefficients (ai) of Equation 2.23.
Simplifications are made possible by the Slater-Condon rules, which state that CI elements with
more than two different MOs are necessarily zero. Moreover, Brillouin’s thereom states that
matrix elements containing the HF reference and singly excited determinants vanish and hence
the first correlation correction is obtained at the CID level.

2.3 Perturbation theory

In this section, time-independent perturbation theory will be discussed as a method to describe
electron correlation. Specifically, obtaining corrections to the energy and wave function using
Rayleigh-Schrödinger perturbation theory. Next, Møller-Plesset perturbation theory is described
where the fock operator is used as the unperturbed reference state.

2.3.1 Rayleigh-Schrödinger perturbation theory

This section will describe Rayleigh-Schrödinger perturbation theory (RSPT). Here, the aim is to
find approximate solutions to the TISE

Ĥψn = Enψn. (2.26)

While these solutions aren’t known, one assumes that the solutions to a conceptually “simpler”
system ψ

(0)
n with the Hamiltonian Ĥ(0) are known exactly

Ĥ(0)ψ(0)
n = E(0)

n ψ(0)
n (2.27)

and that this simpler system is not significantly different such that the difference between Ĥ and
Ĥ(0) can be viewed as a small perturbation. All quantities of the system described by Ĥ can
then be expanded as a Taylor series in terms of a parameter λ,

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + . . . (2.28)

ψn = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . . (2.29)

En = Ê(0)
n + λE(1)

n + λ2E(2)
n + . . . (2.30)

Here, the ψ(1)
n and E(1)

n terms are the first corrections to the wave function and energy, respectively,
ψ

(2)
n and E

(2)
n are the second order corrections to the same and so on. If the perturbation is
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turned off, λ → 0, then Ĥ → Ĥ(0), ψn → ψ
(0)
n and En → E

(0)
n , the equations above revert to

the original unperturbed system, whose properties are already known. The goal of perturbation
theory is then to determine energies and wave functions up to a given order. This can be done
by insertion of Equations. (2.28)-(2.30) into the TISE, Equation 2.26, and sorting the terms by
order of λ,

Ĥ(0)ψ(0)
n = E(0)

n ψ(0)
n (2.31)(

Ĥ(0) − E(0)
n

)
ψ(1)
n =

(
E(1)
n − Ĥ(1)

)
ψ(0)
n (2.32)(

Ĥ(0) − E(0)
n

)
ψ(2)
n =

(
E(2)
n − Ĥ(2)

)
ψ(0)
n +

(
E(1)
n − Ĥ(1)

)
ψ(1)
n (2.33)

...

From now on more its more convenient to use bra-ket notation

ψ(0)
n ≡

∣∣∣ψ(0)
n

〉
, ψ(1)

n ≡
∣∣∣ψ(1)
n

〉
, . . . (2.34)

Next, to obtain the first order correction to the energy, E(1), Equation 2.32 is multiplied by〈
ψ

(0)
n

∣∣∣ from the left which gives

〈
ψ(0)
n

∣∣∣(Ĥ(0) − E(0)
n

)∣∣∣ψ(1)
n

〉
=
〈
ψ(0)
n

∣∣∣(E(1)
n − Ĥ(1)

)∣∣∣ψ(0)
n

〉
(2.35)〈

ψ(0)
n

∣∣∣Ĥ(0)
∣∣∣ψ(1)

n

〉
− E(0)

n

〈
ψ(0)
n

∣∣∣ψ(1)
n

〉
= E(1)

n

〈
ψ(0)
n

∣∣∣ψ(0)
n

〉
−
〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
(2.36)

Furthermore, by using the fact that Ĥ(0) is an Hermitian operator and that the eigenvalues of
H(0) are orthonormal〈

ψ(0)
n

∣∣∣Ĥ(0)
∣∣∣ψ(1)

n

〉
=
〈(
Ĥ(0)ψ(0)

n

) ∣∣∣ψ(1)
n

〉
=
〈(
E(0)
n ψ(0)

n

) ∣∣∣ψ(1)
n

〉
= E(0)

n

〈
ψ(0)
n

∣∣∣ψ(1)
n

〉
. (2.37)

Equation 2.36 becomes,

E(0)
n

〈
ψ(0)
n

∣∣∣ψ(1)
n

〉
− E(0)

n

〈
ψ(0)
n

∣∣∣ψ(1)
n

〉
= E(1)

n −
〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
(2.38)

0 = E(1)
n −

〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
(2.39)

Thus, according to Equation 2.39, the first order correction to the energy is,

E(1)
n =

〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
(2.40)

which is the expectation value of the first order Hamiltonian in the state ψψ(0)
n of the unperturbed

system. To find the first order correction to the wave function, one proceeds in a similar manner,
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here left multiplying Equation 2.32 by
〈
ψ

(0)
k

∣∣∣, where k ̸= n,

〈
ψ

(0)
k

∣∣∣Ĥ(0) − E(0)
n

∣∣∣ψ(1)
n

〉
=
〈
ψ

(0)
k

∣∣∣E(1)
n − Ĥ(1)

∣∣∣ψ(0)
n

〉
(2.41)(

E
(0)
k − E(0)

n

)〈
ψ

(0)
k

∣∣∣ψ(1)
n

〉
= −

〈
ψ

(0)
k

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
(2.42)

〈
ψ

(0)
k

∣∣∣ψ(1)
n

〉
=

〈
ψ

(0)
k

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
E

(0)
n − E

(0)
k

(2.43)

where going from Equation 2.41 to Equation 2.42, the orthogonality of the zeroth-order wave
function have been exploited, i.e.

〈
ψ

(0)
k

∣∣∣ψ(0)
n

〉
= 0. Furthermore, Equation 2.43 is only valid when

the unperturbed system is assumed to be non-degenerate. To find
∣∣∣ψ(1)
n

〉
, one may introduce the

identity operator, 1̂, which is defined in terms of the eigenfunctions of the unperturbed system∣∣∣ψ(1)
n

〉
= 1̂

∣∣∣ψ(1)
n

〉
=
∑
k

∣∣∣ψ(0)
k

〉〈
ψ

(0)
k

∣∣∣ψ(1)
n

〉
(2.44)

What remains is a simple insertion of Equation 2.43 into Equation 2.44, although the summations
over k must here be different such that k ≠ n, which is imposed by using intermediate normalisation〈

ψ(0)
n

∣∣∣ψn〉 = 1. (2.45)

With this normalization condition established, insertion of Equation 2.43 into Equation 2.44
yields the first order correction to the wave function as,

∣∣∣ψ(1)
n

〉
=
∑
k ̸=n

∣∣∣ψ(0)
k

〉 〈ψ(0)
k

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
E

(0)
n − E

(0)
k

=
∑
k ̸=n

∣∣∣ψ(0)
k

〉 H
(1)
kn

E
(0)
n − E

(0)
k

(2.46)

where, H(1)
kn is a shorthand notation for the matrix element

〈
ψ

(0)
k

∣∣∣Ĥ(1)
∣∣∣ψ(0)

n

〉
.

As mentioned above, the first order correction to the energy was simply the expectation
value of the unperturbed Hamiltonian. To obtain the second order correction, one multiplies
Equation 2.33 by

〈
ψ

(0)
n

∣∣∣ from the left, and use the fact that
〈
ψ

(0)
n

∣∣∣ψ(1)
n

〉
= 0. This results in

〈
ψ(0)
n

∣∣∣Ĥ(0) − E(0)
n

∣∣∣n(2)
〉

=
〈
ψ(0)
n

∣∣∣E(2)
n − Ĥ(2)

∣∣∣ψ(0)
n

〉
+
〈
ψ(0)
n

∣∣∣E(1)
n − Ĥ(1)

∣∣∣ψ(1)
n

〉
0 = E(2)

n −
〈
ψ(0)
n

∣∣∣Ĥ(2)
∣∣∣ψ(0)

n

〉
−
〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(1)

n

〉
.

(2.47)

Then, solving for E(2)
n one finds

E(2)
n =

〈
ψ(0)
n

∣∣∣Ĥ(2)
∣∣∣ψ(0)

n

〉
+
〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(1)

n

〉
= H(2)

nn +
〈
ψ(0)
n

∣∣∣Ĥ(1)
∣∣∣ψ(1)

n

〉
, (2.48)

which when inserted into Equation 2.46 yields the the second-order correction to the energy as,

E(2)
n = H(2)

nn +
∑
k ̸=n

H
(1)
nkH

(1)
kn

E
(0)
n − E

(0)
k

(2.49)
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2.3.2 Møller-Plesset perturbation theory

While the above discussion of Rayleigh-Schrödinger perturbation theory was rather general, a
more concrete case is when one wishes to improve upon the Hartree-Fock approximation. Writing
the Hamiltonian of the form,

Ĥ =
Ne∑
i=1

[
ℏ2

2me
∇2
i −

NN∑
I=1

ZIe
2

4πε0 |rI − ri|

]
+ 1

2

Ne∑
i,ji̸=j

e2

4πε0 |ri − rj |

=
Ne∑
i=1

f̂i + 1
2

Ne∑
i,ji̸=j

e2

4πε0 |ri − rj |

(2.50)

where we again made the separation into a one-electron operator ĥi and a two electron operator.
Next, one defines the zeroth order Hamiltonian as a sum of Fock operators f̂i for each electron i

Ĥ(0) =
Ne∑
i=1

(
ĥi + v̂HF

i

)
=

Ne∑
i=1

f̂i. (2.51)

Where the HF potential for electron i is defined as,

v̂HF
i =

Ne∑
a=1

(
Ĵa(i) − K̂a(i)

)
(2.52)

here Ne is the number of occupied spinorbitals and Ĵ and K̂ are the familiar Coulomb and
exchange operators, Equation 2.12 and Equation 2.13, respectively. Using this choice as the
unperturbed Hamiltonian, the first correction is given by,

Ĥ(1) = Ĥ − Ĥ(0) = 1
2

Ne∑
i,j

e2

4πε0 |ri − rj |
−

Ne∑
i=1

v̂HF
i . (2.53)

This choice of H(0) as the Fock operator, is known as Møller-Plesset (MP) perturbation theory.
Next, to see how this will improve the energy description of the ground state, one first observes
that any Slater determinant that is a solution Equation 2.22 is an eigenfunction of Ĥ(0) and
hence

Ĥ(0)Φ(0)
0 = Ĥ(0) |χa(1)χb(2) . . . χz (Ne)|

= (εa + εb + . . .+ εz) |χa(1)χb(2) . . . χz (Ne)|
(2.54)

where Φ0 is the ground state determinant. The zeroth order energy is then read from Equation 2.54
as the sum of the energies of the spinorbitals of Φ(0)

0

E
(0)
0 = ϵa + ϵb + . . .+ ϵz. (2.55)

The first order energy, Equation 2.40, is

E
(1)
0 =

〈
Φ(0)

0

∣∣∣ Ĥ(1)
∣∣∣Ψ(0)

0

〉
. (2.56)
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Here, an important observation can be made, namely that the sum E
(0)
0 + E

(1)
0 is just equal to

the HF energy

E
(0)
0 + E

(1)
0 =

〈
Ψ(0)

0

∣∣∣ Ĥ(0) + Ĥ(1)
∣∣∣Ψ(0)

0

〉
=
〈

Ψ(0)
0

∣∣∣ Ĥ ∣∣∣Ψ(0)
0

〉
= EHF

0 (2.57)

Importantly, Equation 2.57 implies that to obtain any improvement on the HF energy, the second
order energy correction must be computed, i.e. correlation is obtained at second order. This
method to obtain second order energy correction is referred to as MP2, which according to
Equation 2.49 is

E
(2)
0 =

∑
J ̸=0

〈
Φ(0)

0

∣∣∣Ĥ(1)
∣∣∣Φ(0)

J

〉〈
Φ(0)
J

∣∣∣Ĥ(1)
∣∣∣Φ(0)

0

〉
E

(0)
0 − E

(0)
J

(2.58)

To calculate E(2)
0 , the matrix elements

〈
Φ(0)

0

∣∣∣ Ĥ(1)
∣∣∣Φ(0)
J

〉
must be evaluated. Here, one can make

use of the orthogonality property of different Slater determinants, for J ̸= 0〈
Φ(0)

0

∣∣∣Ĥ(0)
∣∣∣Φ(0)

J

〉
=
〈

Φ(0)
0

∣∣∣E(0)
J

∣∣∣Φ(0)
J

〉
= E

(0)
J

〈
Φ(0)

0 | Φ(0)
J

〉
= 0 (2.59)

which yields

0 =
〈

Φ(0)
0

∣∣∣Ĥ(0)
∣∣∣Φ(0)

J

〉
⇔ 0 =

〈
Φ(0)

0

∣∣∣Ĥ − Ĥ(1)
∣∣∣Φ(0)

J

〉
⇔
〈

Φ(0)
0 |Ĥ|Φ(0)

J

〉
=
〈

Φ(0)
0

∣∣∣Ĥ(1)
∣∣∣Φ(0)

J

〉
(2.60)

The above result demonstrates that the matrix elements of the Ĥ and Ĥ(1) operators are in fact
identical for J ̸= 0. Using this result as well as the SC rules, i.e.,

〈
Φ(0)

0

∣∣∣ Ĥ(1)
∣∣∣Φ(0)
J

〉
is nonzero

when Φ(0)
J and Φ(0)

0 differs by two excitations (spinorbitals), one arrives at the following result for
the energy at second-order MP

E
(2)
0 = 1

4
∑
x,y

∑
r,s

⟨xy∥rs⟩⟨rs∥xy⟩
εx + εy − εr − εs

. (2.61)

This is often enough to describe electron correlation, usually capturing 80-90%, and higher order
MP is rarely used. One important point is that in contrast to CI, MP is not variational, it is
however size-extensive. Moreover, if a molecular system’s electronic structure is poorly described
using a single Hartree-Fock reference, then likewise the perturbation treatment on top will be
poor.

2.4 Polarization and absorption of plane waves

In this section, the polarization of plane waves is illustrated. Next, the absorption of plane waves
as measured in the UV/VIS and ECD spectroscopies is derived from the perspective of electric
and magnetic fields.
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2.4.1 Linear and circular polarized plane wave light

Maxwell’s equations yield plane wave solutions, [32]

F⃗ = F⃗0e
i(k⃗·x⃗−ωt), B⃗ = B⃗0e

i(k⃗·x⃗−ωt), (2.62)

where F⃗0 and B⃗0 are the electric and magnetic polarization vectors both 3-dimensional complex
vectors, ω is the real angular frequency, k⃗ is the real wavevector (ω = c|⃗k|, in vacuo). Furthermore,
Maxwell’s equations show that the electric and magnetic fields are orthogonal to each other

B⃗0 = 1
ω

(
k⃗ × F⃗0

)
. (2.63)

Equation 2.63 implies that the magnetic field depends on the electric field with magnitude∣∣∣F⃗0

∣∣∣ = c
∣∣∣B⃗0

∣∣∣. Thus, the electric field in propagating in the z-direction can be written as

F⃗ = F⃗0e
iω( z

c −t), F⃗0 = (Fx, Fy, 0) . (2.64)

Here, Fx and Fy are complex numbers,

Fx = |Fx| eiϕx , Fy = |Fy| eiϕy , (2.65)

where ϕ denotes the phase of the field. When in-phase, Equations 2.64 and 2.65 describe
linear polarization in the z-direction. If the components are out of phase (ϕx ̸= ϕy) with equal
magnitudes (|Fx| = |Fy|) the resulting polarization is said to be elliptical or circular. Specifically,
ϕx − ϕy = +π

2 denotes left-handed circularly polarized light and ϕx − ϕy = −π
2 describes

right-handed circularly polarized light. Hence,

F⃗0 =
(
F0, F0e

iπ
2 , 0
)

= (F0, iF0, 0) left-handed circularly polarized light. (2.66)

F⃗0 =
(
F0, F0e

−iπ
2 , 0
)

= (F0,−iF0, 0) right-handed circularly polarized light. (2.67)

Since the electric field is real, the vector potential of left-handed circularly polarized light
propagating in the z-direction is

Re(F⃗ ) = (F0 cos(kz − ωt),−F0 sin(kz − ωt), 0) . (2.68)

Linearly and circularly polarized light as described by the above equations can be illustrated by
plotting the individual components of the vector potential as well as the tip of the vector potential,
as shown in Fig. 2.2. Here, the tip of the vector potential oscillates in a straight path along the
axis of propagation (linear, left figure) or spins in around the axis of propagation (circular, right
figure). As is trivial to see from the above equations, addition of left and right-handed circularly
polarized light yields linearly polarized light again,

F⃗0 = (F0, iF0, 0) + (F0,−iF0, 0) = (2F0, 0, 0) . (2.69)
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Figure 2.2: The electric (blue) and magnetic (red) oscillating fields and the tip of the
vector potential (black) of in-phase, linear polarized light (left) and out out-of-phase,
circular polarization light (right).

2.4.2 Absorption

Absorption occurs when the frequency of incoming light passing through a molecule matches
the energy difference ωk0 between two quantum states |Ψ0⟩ and |Ψk⟩. The transition rate of the
absorption is then described by Fermi’s golden rule, [108]

Pk0(ω) = π

2ℏ2 | ⟨Ψ0| V̂ (t) |Ψk⟩ |2δ(ω − ωk0), (2.70)

where δ is Dirac’s delta function, ensuring that a transition only occurs when the incoming
frequency matches the difference between the quantum states. V̂ (t) is the gauge-dependent
interaction operator which describes the interaction of the the system with the fields. One may
then partition the time-dependent Hamiltonian Ĥ(t) as,

Ĥ(t) = Ĥ0 + V̂ (t), (2.71)

In Equation 2.71, Ĥ0 is the unperturbed Hamiltonian, which when used in the TISE (2.1) yields
quantum states |n⟩ as eigenfunctions and state energies En as eigenvalues.

In the Coulomb gauge, the interaction operator may be expressed as a multipole expansion
in terms of an external electric field, [32]

V̂ (t) = −F0(iF · µ̂) −B0(iB · m̂) − ∇F0

2 (iz · θ̂ · iF ) + . . . (2.72)

where iF , iB , iz are unit vectors for the electric and magnetic vector of the polarized field and the
unit-vector in the direction of propagation, µ̂ is the electric dipole operator, m̂ is the magnetic
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dipole operator and θ̂ is the traceless quadrupole operator defined as

µ̂ =
Nel∑
i

qir̂i, (2.73)

m̂ =
Nel∑
i

qi
2mi

(r̂i × p̂i) (2.74)

θ̂ =
Nel∑
i

qir̂ir̂i. (2.75)

Here, r̂ is the position operator, p̂ is the linear momentum operator, and qi is the charge of the
ith particle.

The absorption of a molecular species is linearly proportional to its concentration (outside of
dispersion effects), as described by the Beer-Lambert law, [109]

A = ϵ(ω)cl (2.76)

where ϵ(ω) is the molar absorption coefficient at frequency ω, c is the concentration of the sample,
l is the path length light traverses. The molar absorption coefficient is related to Fermi’s rule as

ϵ(ω) = NAπω

1000 × ln(10) × 2ℏI0

∑
k0

gk0(ω)| ⟨Ψ0| V̂ |Ψk⟩ |2, (2.77)

where, NA is Avogradro’s number, I0 is the intensity of light and gk0 is a function accounting for
spectral broadening. There are several reasons for spectral broadening, e.g., collisions of molecules,
scattering of light, vibrational effects, and more. These effects are not trivial to include in the
Hamiltonian and as such it is common practice to simulate the impact they have by inclusion
of gk0(ω) centered at ωk0. When the chief contribution of spectral broadening is spontaneous
emission gk0 is taken to be a Lorentzian function, [110]

gk0(ω) = 1
π

γk0

(ω − ωk0)2 + γ2
k0

(2.78)

with γn0 being inversely proportional to the lifetime of the nth excited state. Equation 2.77
can be used to derive expressions for the absorption processes of many different spectroscopic
techniques. For instance, using linear polarization for the oscillating electric field in the multipole
expansion leads to expressions for UV/VIS spectroscopy. Using the left- and right handed
circularly polarized light in the same expansion and taking the difference will yield expressions
for ECD as shall be discussed next.

Absorption of linear polarized light: UV/VIS spectroscopy

For a randomly oriented sample, the molar absorption coefficient is dominated by the lowest term
in the multipole expansion and thus given by

ϵ(ω) = 4π2NAω

3 × 1000 × ln(10)(4πϵ0)nℏc
∑
k0

gk0(ω)
∑

i=x,y,z
|⟨Ψ0| µ̂i |Ψk⟩|2 , (2.79)
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which is measured in UV/VIS spectroscopy. However, for theoretical methods, it is convenient to
use the dimensionless oscillator strength

frk0 =2meωk0

3ℏe2

∑
i=x,y,z

|⟨Ψ0| µ̂i |Ψk⟩|2 (2.80)

where the superscript r denotes the length-gauge i.e., the use of the position operator (2.73). In
atomic units, the oscillator strength is given by

frk0 =2ωk0

3 (µ⃗0k · µ⃗k0) (2.81)

Absorption of circularly polarized light: ECD spectroscopy

When the electric and magnetic fields are out of phase by ±π
2 , the difference in absorption between

them considering only electronic transitions, form the basis of ECD spectroscopy. Denoting the
left and right circularly polarized light as ϵL and ϵR, respectively, the difference

∆ϵ(ω) =ϵL(ω) − ϵR(ω), (2.82)

for a randomly oriented sample, using Equation 2.77, is

∆ϵ(ω) = NAπω

1000 × ln(10) × 2ℏIo

∑
k0

gk0(ω)
( ∣∣(V L)k0

∣∣2 −
∣∣(V R)k0

∣∣2 ). (2.83)

By using Equations 2.66 and 2.67 for the fields, after insertion into Equation 2.83, one obtains, [111]

∣∣(V L)k0
∣∣2 −

∣∣(V R)k0
∣∣2 =1

2 Im [(µx)k0(my)k0 + (µy)k0(mx)k0]F0B0

+ i

4 iz · (µk0 × µk0)F 2
0 + i

4 iz · (mk0 ×mk0)B2
0 + . . . .

(2.84)

The last two terms in Equation 2.84 are nonzero in the presence of an external magnetic field
and are relevant for magnetic circular dichroism (MCD), but are zero in the case of ECD. One
can now express the molar coefficient describing the difference in absorption between left and
right circularly polarized light as,

∆ϵ(ω) = 16π2NAω

3 × 1000 ln(10) (4πϵ0) ℏc2

∑
k0

gk0(ω) Im
(

⟨Ψ0| µ̂ |Ψk⟩ ⟨Ψk| m̂ |Ψ0⟩
)
. (2.85)

Analogous to the oscillator strength, it is here convenient to introduce the rotatory strength

Rrk0 = Im ⟨Ψ0| µ̂ |Ψk⟩ ⟨Ψk| m̂ |Ψ0⟩ (2.86)

where the superscript r again denotes the length-gauge formulation.Unlike the oscillator, the
rotatory strength is not a dimensionless quantity, but has units of 10−40 esu · cm · erg/G or 10−40

c.g.s. units. [112] Equation 2.86 was first derived in a similar manner by Rosenfeld in 1929 and is
thus known as the Rosenfeld equation. [113] Rrk0 is only nonzero for molecular systems without
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a primary axis of rotation, hence chiral molecules, where at least one component of the scalar
product of the electric and magnetic transition dipole moments overlap.

2.5 Response theory

Exact response theory may be viewed as a particular scheme of time-dependent perturbation theory
whereby explicit summations are avoided, instead solving algebraic equations in a transferable
manner, i.e., properties can be retrieved from a wave function, independent of the parameterization
of the wave function itself. [114,115]

Response theory begins with an examination of the expectation value of some arbitrary
operator of interest, Â. Denoting the time-dependent reference state |0̃(t)⟩ and considering only
Hermitian (time-dependent) perturbation operators V̂ , the response functions are obtained as
Fourier coefficients in the time dependent-expectation value of Â as

⟨0̃(t)|Â|0̃(t)⟩ =⟨0|Â|0⟩

+
∫ ∞

−∞
⟨⟨Â; V̂ ω1⟩⟩e−iω1tdω1

+ 1
2

∫ ∞

−∞

∫ ∞

−∞

〈〈
Â; V̂ ω1 , V̂ ω2

〉〉
e−i(ω1+ω2)tdω1dω2

+ 1
6

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

〈〈
Â; V̂ ω1 , V̂ ω2 , V ω3

〉〉
e−i(ω1+ω2+ω3)tdω1dω2dω3 + · · · ,

(2.87)
here each V ωi corresponds to a time-dependent perturbation operator and the infinitesimal
factors which ensure that the perturbations are turned on adiabatically, and vanish as t → ∞,
are omitted. Each response function is denoted ⟨⟨Â; B̂ω2 , . . . , X̂ωi⟩⟩ where Â is the observable,
and B̂ω1 . . . X̂ωi are the perturbation operators at ωi frequency. This perturbational treatment is
only valid when the perturbations are small compared to the interatomic potential. [116] While
Equation 2.87 describes response functions for both static and dynamic fields, frequency-dependent
response functions can only be used with approximate methods that provide the time-dependent
expectation value of Â, and hence methods that only provide the energy but not the wave function,
e.g., coupled cluster singles, doubles and perturbative triples (CCSD(T)), are not applicable to
this approach. However, static response functions can be used for these methods. The methods
that can be used with frequency-dependent response functions are thus HF, DFT, MCSCF, etc,
where the ground state |0⟩ is taken as the reference (zeroth-order), and frequency-dependent
response functions are calculated “on top”.

The first, second and higher order responses in Equation 2.87 are determined in a way
consistent with the TISE and in general have the matrix form

[H − ωS]λ(n)(ω) = −V(n)(ω), (2.88)

where λ(n)(ω) is a vector containing the nth order (n > 0) wave function parameters. Here,
H and S depend only on the unperturbed ground state, whereas the vector on the right-hand
side depends on the lower-order wave function parameters (λ(1), λ(2), λ(3),. . .,λ(n−1)) and on the
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perturbation operator V(n)(ω). This means that to solve an nth order response function, the
(n− 1)th order must already have been solved for. The formal solution to Equation 2.88 is trivial,
namely

λ(n)(ω) = −[H − ωS]−1V(n)(ω), (2.89)

where [H − ωS]−1 is a nonsingular matrix. Since H and S depend only on the unperturbed
ground state, they can in principle be computed directly. Subsequently, the inverse would be
calculated followed by matrix-vector multiplication to obtain a solution. However, in practice the
inverse is often too computationally expensive to compute directly due to the sizes of H and S.

Furthermore, when [H − ωS]−1 is non-invertible, occurs when ωk is identical to one of the
eigenvalues of the system, i.e., ωk0 = ωk, k = 1, 2, 3, . . ., which can be used to identify the
excitation energies of the system. Finding these eigenvalues corresponds to solving the eigenvalue
problem

(H − wkS) Xk = 0, (2.90)

where Xk is the eigenvector corresponding to wk. Equation 2.90 has no perturbational dependence
and as such can be solved directly to obtain the excitation energies ωk0 = wk, k = 1, 2, 3, . . .
without explicit knowledge of the excited-state wave function, which is one of the attractive
features of response theory. Since the ground state energy is known from the unperturbed
calculation, the excited-state energy is then also known by

Ek = E0 + ℏωk0. (2.91)

The computational advantage of the response approach is thus that explicit knowledge of the
excited-state wave functions is required, rather, the solutions of the response functions in
Equation 2.88 for each perturbation operator V(ω) are needed.

2.5.1 Linear response functions

Considering only exact states, the zeroth-order response function in Equation 2.87 is the expecta-
tion value of operator Â in the unperturbed reference state |Ψ0⟩, ⟨Ψ0| Â |Ψ0⟩. The first-order,
linear response function in the sum-over-states (SOS) or spectral representation is [117,118]

⟨⟨Âωσ ; B̂ω1⟩⟩ω1 = − 1
ℏ
P∑

k

⟨Ψ0|Âωσ |Ψk⟩⟨Ψk|B̂ω1 |Ψ0⟩
ωk − ω1,

(2.92)

where ℏωk = Ek − E0 is the transition energy from the ground state to the kth excited state.
Here P denotes a permutation operator with implicit summation of the permutations, i.e., P
above is the sum of the permutations of (Âωσ , ωσ) and (B̂ω1 , ω1). Writing the above equation
without the permutation operator is thus

⟨⟨Âωσ ; B̂ω1⟩⟩ω1 = − 1
ℏ
∑
k

[
⟨Ψ0|Âωσ |Ψk⟩⟨Ψk|B̂ω1 |Ψ0⟩

ωk − ω1
+ ⟨Ψ0|B̂ω1 |Ψk⟩⟨Ψk|Âωσ |Ψ0⟩

ωk + ω1

]
. (2.93)
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In the following equations the superscript for the operator frequencies are implicit. Since the
poles of Equation 2.92 correspond to excitation energies, the residues can be used to obtain
transition moments

lim
ω→ωk

ℏ (ω − ωk) ⟨⟨Â; B̂⟩⟩ω1 = ⟨Ψ0|Â|Ψk⟩⟨Ψk|B̂|Ψ0⟩ (2.94)

lim
ω→−ωk

ℏ (ω + ωk) ⟨⟨Â; B̂⟩⟩ω1 = −⟨Ψ0|B̂|Ψk⟩⟨Ψk|Â|Ψ0⟩ (2.95)

where ⟨Ψ0| Â |Ψk⟩ corresponds to a transition moment between the ground state and the kth
excited state. This is commonly expressed in terms of the kth eigenvector of Equation 2.90 and
the matrix representation of operator Â. Using the excitation energies and transition moments
obtained from Equation 2.90 and 2.94, in SOS expression including all states, is equivalent to
Equation 2.88.

Furthermore, the linear response functions defined by Equation 2.92 obey the permutation
and conjugation rules

⟨⟨Â; B̂⟩⟩ω1 = ⟨⟨B̂; Â⟩⟩−ω1 (2.96)

⟨⟨Â; B̂⟩⟩∗
ω1

= ⟨⟨Â†; B̂†⟩⟩−ω1 (2.97)

In approximate theories, Equation 2.92, is only valid in off-resonance regions, i.e., far away from
the poles, since the lifetime of the kth excited state is assumed to be infinite. To correct for this,
one may introduce a broadening constant, γk, which is inversely proportional to the lifetime of
the kth excited state (τk = 1/γk). The exact damped linear response function will then be of the
form, [116]

⟨⟨Â; B̂⟩⟩ω = 1
ℏ
∑
k ̸=0

(
⟨Ψ0|Â|Ψk⟩⟨Ψk|B̂|Ψ0⟩
ω − ωk0 + iγk/2

− ⟨Ψ0|B̂|Ψk⟩⟨Ψk|Â|Ψ0⟩
ω + ωk0 − iγk/2

)
. (2.98)

While the lifetime of the individual excited states of a molecular system will in principle be
different for each state, it is very difficult to account for this in approximate theories using
Equation 2.88. Instead, an identical lifetime for all excited states are used (γ1 = γ2 = . . . = γ).
The spectral form of Equation 2.98 is then a Lorentzian function.

2.5.2 Quadratic response functions

The second-order, exact quadratic response function is defined as

⟨⟨Â; B̂, Ĉ⟩⟩ω1,ω2 = − 1
ℏ2 P

∑
k,f

⟨Ψ0|Â|Ψk⟩⟨Ψk|B̂|Ψf ⟩⟨Ψf |Ĉ|Ψ0⟩
(ωk − ωσ) (ωf − ω2) , (2.99)

where ωσ is the sum of the perturbation frequencies (ωσ =
∑
i ωi). P permutes the three

frequency-operator pairs as described for Equation 2.92. When the ground state |0⟩ is omitted
from the sum in Equation 2.99, one obtains operators of the form ¯̂

B = B̂ − ⟨0| B̂ |0⟩, i.e., the
operator shifted by the exact ground-state expectation value, referred to as the “fluctuation
operator”. [118] From the quadratic and higher-order response functions, multiple residues are
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possible. Among the most important is the single residue of a quadratic response function

lim
ω2→ωf

ℏ (ω2 − ωf ) ⟨⟨Â; B̂, Ĉ⟩⟩ω1,ω2 = − 1
ℏ

[
P∑

k

⟨Ψ0|Â|Ψk⟩⟨Ψk|B̂|Ψf ⟩
(ωk − ωσ)

]
⟨Ψf |Ĉ|Ψ0⟩, (2.100)

which can be used to obtain two-photon transition matrix elements which are relevant for TPA
and TPCD as will be described later. Another important residue is the double residue of a
quadratic response function

lim
ω1→−ωk

ℏ (ω1 + ωk) lim
ω2→ωf

ℏ (ω2 − ωf ) ⟨⟨Â; B̂, Ĉ⟩⟩ω1,ω2

= −⟨Ψ0|B̂|Ψk⟩⟨Ψk|(Â− ⟨Ψ0|Â|Ψ0⟩)|Ψf ⟩⟨Ψf |Ĉ|Ψ0⟩,
(2.101)

which allows for the determination of transition moments between two excited states |Ψk⟩ and |Ψf ⟩
(having only knowledge of the reference state |Ψ0⟩). Importantly, with the choice of |Ψk⟩ = |Ψdf⟩
one obtains,

lim
ω1→−ωk

ℏ (ω1 + ωk) lim
ω2→ωk

ℏ (ω2 − ωk) ⟨⟨Â; B̂, Ĉ⟩⟩ω1,ω2

= −⟨Ψ0|B̂|Ψk⟩
(

⟨Ψk|Â|Ψk⟩ − ⟨Ψ0|Â|Ψ0⟩
)

⟨Ψk|Ĉ|Ψ0⟩.
(2.102)

Here, the state specific expectation value ⟨Ψk| Â |Ψk⟩, is recovered.

2.5.3 Linear polarizability

Insertion of Â = µ̂ and V̂ ω = µ̂ · Fω into Equation 2.87 yields the exact linear response function
which describes the first-order induced electric dipole moment in the presence of an oscillating
electric field. With these operators, Equation 2.92 defines the elements of the frequency-dependent
electric dipole polarizability

ααβ(−ω;ω) = − ⟨⟨µ̂α; µ̂β⟩⟩ω . (2.103)

Here, the subscripts i, j denote the Cartesian spatial components of the electric dipole operator
µ̂. From the permutation and conjugation rules (2.96 and 2.97) inherent to the linear response
function, it follows that the electric dipole polarizability is an even function of frequency and is
symmetric with respect to permutations of the indices

ααβ(−ω;ω) = ααβ(ω; −ω) (2.104)

ααβ(−ω;ω) = αβα(−ω;ω), (2.105)

which demonstrates that α possesses six linearly independent components.
Another important quantity is the mixed electric - magnetic dipole polarizability, which can

be evaluated from the linear response function

G′
αβ (ωk) = − Im ⟨⟨µ̂α; m̂β⟩⟩ωk

. (2.106)

The residues of Equation 2.103 and 2.106 are related to the oscillator and rotatory strengths (2.80
and 2.86), which shows how response approach can be used to obtain these spectroscopy-relevant
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quantities, as will be discussed in the next section.
Common properties accessible from the linear response function and its residue are summa-

rized in Table 2.1.

Table 2.1: Properties obtained by the linear response function and its residue.

Response fnc. Residue Property

⟨⟨µ̂; µ̂⟩⟩ω − Linear electric dipole polarizability.

ω = ωf0 One-photon transition matrix elements between

the ground state |0⟩ and the excited state |f⟩.

⟨⟨µ̂; m̂⟩⟩ω − Linear mixed electric-magnetic dipole polarizability.

ω = ωf0 One-photon rotatory strength elements between

the ground state |0⟩ and the excited state |f⟩.

2.5.4 Oscillator and rotatory strengths

For the following sections, the properties derived will be presented in atomic units.

Oscillator strength

In approximate theories, the one-photon absorption intensity, oscillator strength f , Equation 2.80,
is obtained from the residue of the frequency-dependent electric dipole polarizability. By Equa-
tion 2.103, in the length-gauge is written

frk0 = −2ωk0

3

x,y,z∑
α

lim
ω→ωk0

(ω − ωk0) ⟨⟨µ̂α; µ̂α⟩⟩ω

= 2ωk0

3

x,y,z∑
α

lim
ω→ωk0

(ω − ωk0)ααα(−ω;ω)

= 2ωk0

3 ⟨Ψ0| µ̂ |Ψk⟩ ⟨Ψk| µ̂ |Ψ0⟩ .

(2.107)

It is important to consider the relation between the position and momentum operator which are
related by the hypervirial relationship

⟨Ψ0| p̂α |Ψk⟩ = iωk0 ⟨Ψ0| r̂α |Ψk⟩ . (2.108)
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By replacing the electric dipole operator by the linear momentum operator using Equation 2.108
allows for the oscillator strength to be expressed in the so-called “velocity-gauge” as

f∇
k0 = 2ωk0

3

x,y,z∑
α

lim
ω→ωk0

(ω − ωk0) ⟨⟨p̂α; p̂α⟩⟩ω

= 2
3ωk0

⟨Ψ0| p̂ |Ψk⟩ ⟨Ψk| p̂ |Ψ0⟩ ,

(2.109)

where the ∇ superscript denotes the that the linear momentum operator has been used (p̂ = −i∇).
Furthermore, the oscillator strength can be expressed in the so-called mixed length-velocity
gauge, [3]

fr∇
k0 = −2i

3

x,y,z∑
α

lim
ω→ωk0

(ω − ωk0) ⟨⟨µ̂α; p̂α⟩⟩ω

= −2i
3 ⟨Ψ0| µ̂ |Ψk⟩ ⟨Ψk| p̂ |Ψ0⟩ .

(2.110)

While these formulations are formally identical, they are in fact only equivalent when Equa-
tion 2.108 is fully upheld, which is only the case when the TISE is solved exactly. Hence for
approximate theories, differences between these formulations will occur. Approximate methods can
further be divided into “gauge-invariant” and “gauge-variant” categories, where gauge-invariant
methods produce equivalent oscillator strengths in all formulation for a complete one-electron
basis set (COEBS). For such methods, the mixed-gauge representation can be used to measure
the completeness of the one-electron basis set in combination with the other two formulations
(Equation 2.107 and 2.110). [119] A common gauge-invariant method is random-phase approxima-
tion (RPA) and gauge-variant methods include CCS, CC2, CCSD etc, as well as ADC. However,
even for relatively small basis sets these methods usually yield small difference between the gauges.
Furthermore, there is no “good” reason to believe that one or the other of these formulations is
more accurate and as such there is little reason to compute one over the other. However, this is
not the case for the optical rotatory strength as shall be discussed next.

Rotatory strength

As was the case for the oscillator strength, the rotatory strength, Equation 2.86, can be obtained
as the residue of the mixed electric - magnetic dipole polarizability, Equation 2.106

Rrk0 =
x,y,z∑
α

lim
ω→ωk0

(ωk0 − ω) Im ⟨⟨µ̂α; m̂α⟩⟩ω (2.111)

Equation 2.111 corresponds to the length-gauge formulation of the rotatory strength. This form
of the rotatory strength has an unphysical origin-dependence. Specifically, this means that if the
molecular coordinates are transformed, the calculated property, i.e., the corresponding rotatory
strength, will likewise change. To see why this is the case, consider a change in gauge-origin along
a vector O such that such that the position of the nuclei and electrons are shifted rO → rO − O,
the electric-magnetic dipole polarizability then changes accordingly as

G′(−ω;ω) → G′(−ω;ω) + 1
2 Im [⟨⟨µ̂; p̂⟩⟩ω × O] (2.112)
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which shows that the tensor is indeed origin dependent. Furthermore, this origin dependence
arises solely from the magnetic dipole operator which transforms as

m̂ → m̂− 1
2 p̂× O (2.113)

with a shift in origin. This is where the gauge transformation introduced in Equation 2.108 shows
its usefulness. When the electric dipole operator is replaced with the linear momentum operator,
one obtains the rotatory strength in the velocity-gauge as

R∇
k0 = − 1

ωk0

x,y,z∑
α

lim
ω→ωk0

(ωk0 − ω) ⟨⟨p̂α; m̂α⟩⟩ω

= − 1
ωk0

⟨Ψ0| p̂ |Ψk⟩ ⟨Ψk| m̂ |Ψ0⟩ .

(2.114)

This form of the rotatory strength is inherently origin-independent, even for approximate theories.
As such, it can be argued that velocity-gauge rotatory strengths are more reliable than length-
gauge rotatory strength and they are often preferred in calculations. However it should be
emphasized that these two formulations are equivalent in exact theory, i.e., the length-gauge
formulation is origin-independent when the TISE is solved exactly. An alternative approach to
obtain origin-independent rotatory strengths is by using magnetic-field gauge including atomic
orbitals (GIAO), also referred to as London orbitals. [48,120–127]

While the expressions for the oscillator and rotatory strengths discussed so far correspond to
excitations from the ground state, they can in principle be used to describe excitations from excited
states. For approximate theories where excited state transition moments can be obtained, e.g.,
⟨Ψn| µ̂ |Ψf ⟩, ⟨Ψn| p̂ |Ψf ⟩ and ⟨Ψn| m̂ |Ψf ⟩, one can express the oscillator and rotatory strengths
corresponding to excitations from the nth to kth excited states using the matrix elements. For
the oscillator strengths

frkn = 2ωkn
3 ⟨Ψn| µ̂ |Ψk⟩ ⟨Ψk| µ̂ |Ψn⟩ (2.115)

f∇
kn = 2

3ωkn
⟨Ψn| p̂ |Ψk⟩ ⟨Ψk| p̂ |Ψn⟩ (2.116)

fr∇
kn = −2i

3 ⟨Ψn| µ̂ |Ψk⟩ ⟨Ψk| p̂ |Ψn⟩ (2.117)

and for the rotatory strengths

Rrkn = Im ⟨Ψn| µ̂ |Ψk⟩ ⟨Ψn| m̂ |Ψk⟩ (2.118)

R∇
kn = − 1

ωkn
⟨Ψn| p̂ |Ψk⟩ ⟨Ψk| m̂ |Ψn⟩ . (2.119)

For approximate methods, where frequency-dependent response functions can be used, these
quantities can be obtained either using linear response functions (replacing the ground state with
an excited-state wave function) or alternatively by the residues of a quadratic response function
as demonstrated in Section 2.5.2.

Described above are the processes that encompass the one-photon absorption of linear and
circularly polarized plane wave light which are summarized in Table 2.2.
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Table 2.2: Oscillator and rotatory strengths for one-photon processes and their
associated spectroscopies.

Associated Origin

Symbol Formula n (k > n) spectroscopy dependence1

linear polarization

f r
kn

2meωkn
3ℏe2 ⟨Ψn| µ̂ |Ψk⟩ ⟨Ψk| µ̂ |Ψn⟩ n = 0 UV/VIS no

n > 0 pump-probe no

f∇
kn

2
3ℏmeωkn

⟨Ψn| p̂ |Ψk⟩ ⟨Ψk| p̂ |Ψn⟩ n = 0 UV/VIS no

n > 0 pump-probe no

f r∇
kn − 2i

3ℏe ⟨Ψn| p̂ |Ψk⟩ ⟨Ψk| µ̂ |Ψn⟩ n = 0 UV/VIS no

n > 0 pump-probe no

circular polarization

Rr
kn Im ⟨Ψn| µ̂ |Ψk⟩ ⟨Ψk| m̂ |Ψn⟩ n = 0 ECD yes

n > 0 ES-ECD yes

R∇
kn − ℏ

meωkn
⟨Ψn| p̂ |Ψk⟩ ⟨Ψk| m̂ |Ψn⟩ n = 0 ECD no

n > 0 ES-ECD no

1For approximate theories without using GIAOs.

2.5.5 First-order electric dipole hyperpolarizability and second har-
monics

When the electric dipole operator is chosen for Â, B̂ and Ĉ, Equation 2.99 yields the first-order
electric dipole hyperpolarizability

βαβγ (−ωσ;ω1, ω2) = − ⟨⟨µ̂α; µ̂β , µ̂γ⟩⟩ω1,ω2
, (2.120)

which is only physically relevant when ωσ = ω1 + ω2. One can associate Equation 2.120 with
several different nonlinear processes, depending on the dynamic fields, as listed in Table 2.3.
Inherent to the definition of the quadratic response function, Equation 2.99, are symmetry with
respect to permutation of operators,

βαβγ (−ωσ;ω1, ω2) = βαγβ (−ωσ;ω2, ω1) , (2.121)

βαβγ (−ωσ;ω1, ω2) = ββαγ (ω1; −ωσ, ω2) . (2.122)
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Table 2.3: Processes described by first-order electric dipole hyperpolarizability.

Process Symbol Frequencies Response function

Second harmonic generation (SHG) βSHG
αβγ (−2ω;ω, ω) ⟨⟨µ̂α; µ̂β, µ̂γ⟩⟩ω,ω

Electro-Optic Pockels Effect (EOPE) βEOPE
αβγ (−ω;ω, 0) ⟨⟨µ̂α; µ̂β, µ̂γ⟩⟩ω,0

Optical Retification βOR
αβγ (0; −ω, ω) ⟨⟨µ̂α; µ̂β, µ̂γ⟩⟩ω,−ω

Furthermore, by assuming that one can interchange the indices of the incoming light, without
changing the corresponding frequencies

βαβγ (−ωσ;ω1, ω2) ≈ βαγβ (−ωσ;ω1, ω2) , (2.123)

the number of linearly independent components of β is further reduced, an assumption known as
Kleinman’s symmetry. [128] This relation is fully upheld at static frequency, although, often used
as a good approximation in dynamic and especially low-frequency regions. In the case of the
first-order electric dipole hyperpolarizability, the experimentally relevant quantity is the vector
component of β in the direction of the permanent dipole moment in the direction of the molecular
z-axis. The isotropic averages are then defined as

β∥ = 1
5

x,y,z∑
η

(βzηη + βηzη + βηηz) , (2.124)

β⊥ = 1
5

x,y,z∑
η

(2βzηη − 3βηzη + 2βηηz) , (2.125)

where the same sequence of optical frequencies are used for the laboratory and molecular axes.
The number of linearly independent elements of β depends on the frequency combination applied
as well as on the symmetry of the molecule. In the case of SHG, the signal is related to the
isotropic values as

βSHG = β||(−2ω;ω, ω), ω > 0. (2.126)

An often employed experimental method to measure β is HRS which owes its prominence due to
allowing measurements in solutions. The SHG intensity associated with an HRS measurement is

I2ω = g
∑
s

Nsβ
2
HRSI

2
o , (2.127)

where Ns is the number density of the sth molecular species, Io is the intensity of the incoming
field at frequency ω. βHRS in the laboratory axes frame is related to the molecular axes reference
by

βHRS =
√

⟨β2
iii⟩ +

〈
β2
jii

〉
(2.128)
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where ⟨β2
iii⟩ and ⟨β2

jii⟩ are orientational averages of β in the molecular axes as

〈
β2
iii

〉
= + 1

7

x,y,z∑
α

β2
ααα + 4

35

x,y,z∑
α̸=β

β2
ααβ + 2

35

x,y,z∑
α ̸=β

βαααβααβ + 4
35

x,y,z∑
α̸=β

ββααβααβ

+ 4
35

x,y,z∑
α ̸=β

βαααββββ + 1
35

x,y,z∑
α̸=β ̸=γ

β2
βαα + 4

105

x,y,z∑
α̸=β ̸=γ

βααβββγγ

+ 1
105

x,y,z∑
α̸=β ̸=γ

ββααββγγ + 4
105

x,y,z∑
α̸=β ̸=γ

βααββγγβ + 2
105

x,y,z∑
α̸=β ̸=γ

β2
αβγ

+ 4
105

x,y,z∑
α̸=β ̸=γ

ββαγβαβγ

(2.129)

〈
β2
jii

〉
= + 1

7

x,y,z∑
α

β2
ααα + 4

105

x,y,z∑
α̸=β

βααββαββ − 2
35

x,y,z∑
α̸=β

βαααβββα + 8
105

x,y,z∑
α̸=β

β2
βαα

+ 3
35

x,y,z∑
α ̸=β

β2
αββ − 2

35

x,y,z∑
α̸=β ̸=γ

βααβββαα + 1
35

x,y,z∑
α ̸=β ̸=γ

βαβββαγγ

− 2
105

x,y,z∑
α ̸=β ̸=γ

βααββββγ − 2
105

x,y,z∑
α ̸=β ̸=γ

βααβββγγ + 2
35

x,y,z∑
α̸=β ̸=γ

β2
αβγ

− 2
105

x,y,z∑
α ̸=β ̸=γ

βαβγββαγ .

(2.130)

In Equation 2.129 and 2.130 the molecular system is assumed to have the ground state dipole
moment aligned along the positive z-axis.

2.5.6 Two-photon absorption

Two-photon absorption is formally obtained from the cubic response function, however, in the
vicinity of two-photon resonance it is sufficient to use the single residue of the quadratic response
function. The two-photon probability is then, [129,130]

δTPA
k0 (ω1, ω2) =FδF (ω1, ω2) + GδG (ω1, ω2) + HδH (ω1, ω2) , (2.131)

where F, G and H are constants that depend on the polarization of the two photons and the
geometrical setup of the measurement. The other three quantities, δF , δF and δF are

δF (ω1, ω2) = Sk0
αα (ω1, ω2)Sk0,∗

ββ (ω1, ω2) (2.132)

δG (ω1, ω2) = Sk0
αβ (ω1, ω2)Sk0,∗

αβ (ω1, ω2) (2.133)

δH (ω1, ω2) = Sk0
αβ (ω1, ω2)Sk0,∗

βα (ω1, ω2) (2.134)



Response theory 29

The two-photon tensor, Sαβ , can be obtained from Equation 2.100 when the electric dipole
operator is used

Sk0
αβ (ω1, ω2) = 1

ℏ
∑
m

{
⟨Ψ0|µ̂α|Ψm⟩⟨Ψm|µ̂β |Ψk⟩

ωk0 − ω1
+ ⟨Ψ0|µ̂β |Ψm⟩⟨Ψm|µ̂α|Ψk⟩

ωk0 − ω2

}
. (2.135)

With the condition that both photons are linearly polarized and have the same frequency, i.e.,
using a monochromatic light source one can express Sαβ as

Sk0
αβ (ω) = 1

ℏ
∑
m

{
⟨Ψ0|µ̂α|Ψk⟩⟨Ψk|µ̂β |Ψm⟩

ωm0 − 1
2ω

+ ⟨Ψ0|µ̂β |Ψk⟩⟨Ψk|µ̂α|Ψm⟩
ωm0 − 1

2ω

}
. (2.136)

For this experimental setup, the coefficients are F = G = H = 2 and Equation 2.131 simplifies
significantly,

δTPA
k0 = −Sk0

ααS
k0,∗
µµ + 3SαβSk0,∗

αβ
(2.137)

Equation 2.136 may be evaluated using the SOS expression, although many states are often
needed to ensure convergence. When circularly polarized light is used, the coefficients depending
on the experimental setup are listed in Table 2.4.

Table 2.4: Coefficients for experimental configurations reproduced from Ref. 131

Polarization Propagation F G+H

1. Two co-rotating circularly polarized Parallel -2 6

Perpendicular -1/4 13/4

2. One circularly polarized; Parallel 1/2 7/2

one linear polarized in plane of circle Perpendicular 1/2 7/2

3. One circularly polarized; Perpendicular -1 3

one linear polarized

perpendicular to plane of circle

2.5.7 Two-photon circular dichroism

When the difference between left and right circularly polarized light is measured, i.e., in TPCD
spectroscopy, with both photons being of equal frequency the difference is

δTP
L − δTP

R = 4
15

(2π)2NAω
2g(2ω)

c3
0 (4πϵ0)2 RTP(ω) (2.138)

with g(2ω), denotes a normalized line shape. is Avogadro’s number, c0 is the speed of light
in vacuo and ϵ0 is the vacuum permittivity. Here RTP is the two-photon rotatory strength,
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analogous to the rotatory strength describing preferential absorption in ECD, [78]

fRTP
ω0

(ω) = −ib1Bω0
1 (ω) + b2Bω0

2 (ω) − ib3Bω0
3 (ω). (2.139)

Here, the superscript f denotes a transition from the ground state to an excited-state Ψf , b1, b2

and b3 are coefficients depending on the polarization and propagation of light in the experimental
setup analogous to F, H and G in Equation 2.131. The coefficients for various experimental
setups are listed in Table 2.5.

Table 2.5: Coefficients for different experimental configurations reproduced from Ref.
131.

Polarization Propagation b1 b2 b3

1. Two left circularly polarized Parallell 6 2 -2

Antiparallell 1 -1 3

Perpendicular 13/4 -1/4 -1/4

2. One left circularly polarized; one linear Parallell 3 1 -1

polarized in plane of circle Antiparallell 1/2 -1/2 3/2

Perpendicular 7/4 1/4 1/4

3. One left circularly polarized; Perpendicular 3/2 -1/2 -1/2

one linear polarized

perpendicular to plane of circle

The other three quantities, Bω0
1 , Bω0

2 and Bω0
3 , are analogous to the three terms constituting δTPA

n0

(2.132, 2.133 and 2.134), and are constructed as

Bω0
1 (ω) =

∑
ρσ

M0f
ρσ (ω)Sf0∗

ρσ (ω), (2.140)

Bω0
2 (ω) = ω

2
∑
ρσ

Q0f
ρσ(ω)Sf0∗

ρσ (ω), (2.141)

Bω0
3 (ω) =

[∑
ρ

M0f
ρρ (ω)

][∑
σ

S0f
σσ(ω)

]
, (2.142)

where ω is the one-photon excitation energy and ρ, σ ∈ x, y, z. Here S, M and Q are the
two-photon tensors corresponding to the electric dipole-electric dipole, electric dipole-magnetic
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dipole and electric dipole - electric quadrupole,

S0f
αβ (ωβ) = 1

ℏ
P ∑

n ̸=0

⟨Ψ0| µ̂α |Ψn⟩ ⟨Ψn| µ̂β |Ψf ⟩
ωα − ω0n

, (2.143)

M0f
αβ (ωβ) = 1

ℏ
P ∑

n ̸=0

⟨Ψ0| µ̂α |Ψn⟩ ⟨Ψn| m̂β |Ψf ⟩
ωα − ω0n

, (2.144)

Q0f
αβ (ωβ) = 1

ℏ
εβγδP

∑
n ̸=0

⟨Ψ0| q̂αγ |Ψn⟩ ⟨Ψn| µ̂δ |Ψf ⟩
ωα − ω0n

, (2.145)

where α and β are the spatial components α, β ∈ [x, y, z], ϵβγδ is the Levi-Cevitas tensor, P
is the permutation operator acting on the operator-frequency pairs (µα, ωα) and (µβ , ωβ) as
described for Equation 2.92, µi is the electric transition dipole moment, mi is the magnetic
transition dipole moment and qij is the quadrupole transition dipole moment. Equation 2.139
can be described as the two-photon Rosenfeld equation in the length-gauge formalism and hence
exhibit origin-dependence which arises solely from the B1 and B3 terms as the B2 term does not
include the magnetic dipole operator and hence is already origin-independent. [78]

In the effort of obtaining origin-independent two-photon rotatory strengths, three velocity
gauge formulations have been proposed named ω1, ω3, and the translationally invariant (TI)-
equation. Only the ω1 and ω3 formulations are implemented in this work as they should yield the
same values in the limit of a complete one-electron basis set and full-ADC. To arrive at the ω1 and
ω3 formulations of the two-photon rotatory strength, one can use the commutator relationship
between the position, momentum and Hamiltonian operator, Equation 2.108. However, this
transformation can be applied either once or twice to Sαβ , both transformations will yield
origin-invariant terms in the two-photon rotatory strengths. Applying it once is denoted Pαβ and
applying it twice is denoted P pαβ . Likewise, it can be applied to Mαβ to produce Mp

αβ . Explicitly,
one writes

Sαβ = 1
ℏ
P ∑

n ̸=0

⟨Ψ0| µ̂α |Ψn⟩ ⟨Ψn| µ̂β |Ψf ⟩
ωα − ω0n

−→ Pαβ = 1
ℏω

P ∑
n ̸=0

⟨Ψ0| µ̂α |Ψn⟩ ⟨Ψn| p̂β |Ψf ⟩
ωα − ω0n

(2.146)

−→ P pαβ = 1
ℏω2 P

∑
n ̸=0

⟨Ψ0| p̂α |Ψn⟩ ⟨Ψn| p̂β |Ψf ⟩
ωα − ω0n

(2.147)

M0f
αβ = 1

ℏ
P ∑

n ̸=0

⟨Ψ0| µ̂α |Ψn⟩ ⟨Ψn| m̂β |Ψf ⟩
ωα − ω0n

−→ Mp
αβ

0f = 1
ℏω

P ∑
n ̸=0

⟨Ψ0| p̂α |Ψn⟩ ⟨Ψn| m̂β |Ψf ⟩
ωα − ω0n

(2.148)
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For the first transformation, one obtains the terms comprising the “ω1” velocity-gauge two-photon
rotatory strength

Bω1
1 (ω) = 1

ω

∑
ρσ

M0f
ρσ (ω)P f0

ρσ (ω), (2.149)

Bω1
2 (ω) = Bω0

2 (ω) = ω

2
∑
ρσ

Q0f
ρσ(ω)Sf0

ρσ(ω), (2.150)

Bω1
3 (ω) = 1

ω

[∑
ρ

Mp,0f
ρρ (ω)

][∑
σ

S0f
σσ(ω)

]
. (2.151)

Hence, the ω1 formulation two-photon rotatory strength is thus

fRTP
ω1

(ω) = b1Bω1
1 (ω) + b2Bω1

2 (ω) + b3Bω1
3 (ω). (2.152)

Applying the hypervirial theorem twice produces the terms comprising the “ω3” velocity-gauge
rotatory strength

Bω3
1 (ω) = 1

ω3

∑
ρσ

Mp,0f
ρσ (ω)P p,f0∗

ρσ (ω) (2.153)

Bω3
2 (ω) = Bω0

2 (ω) = ω

2
∑
ρσ

Q0f
ρσ(ω)Sf0∗

ρσ (ω) (2.154)

Bω3
3 (ω) = 1

ω3

[∑
ρ

Mp,0f
ρρ (ω)

][∑
σ

P p,0fσσ (ω)
]

(2.155)

hence the ω3 formulation two-photon rotatory strength is

fRTP
ω3

(ω) = −b1Bω3
1 (ω) + b2Bω3

2 (ω) − b3Bω3
3 (ω) (2.156)

For each of these transformations new energy prefactors appear in front of the B1 and B3 terms,
which gives these formulations their names, ω1 and ω3, namely ω−1 and ω−3 dependencies.

Lastly, in the TI equation, the electric quadrupole operator is expressed in its velocity-gauge
formulation as

T+
αβ =

∑
i

qi
mi

(piαriα + riαpiα) , (2.157)

and thus

T +,0f
αβ (ωβ) = 1

ℏ
εβγδP

∑
n̸=0

⟨Ψ0| T̂+
αγ |Ψn⟩ ⟨Ψn| p̂δβ |Ψf ⟩
ωα − ω0n

. (2.158)
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Using this form for the electric quadrupole operator results in the following three terms comprising
the TI two-photon rotatory strength

BTI
1 (ω) = Bω3

1 = 1
ω3

∑
ρσ

Mp,0f
ρσ (ω)P p,f0∗

ρσ (ω) (2.159)

BTI
2 (ω) = 1

2ω3

∑
ρσ

T +,0f
ρσ (ω)P p,f0∗

ρσ (ω) (2.160)

BTI
3 (ω) = Bω3

3 (ω) = 1
ω3

[∑
ρ

Mp,0f
ρρ (ω)

][∑
σ

P p,0fσσ (ω)
]

(2.161)

The benefit of the above approach is that each term has the same energy dependence, namely
ω−3. The resulting expression for the TI two-photon rotatory strength is thus

fRTP = −b1BTI
1 (ω) − b2BTI

2 (ω) − b3BTI
3 (ω). (2.162)

To reiterate, these expressions are all equivalent for gauge-invariant methods in the limit of a
complete one-electron basis set (COEBS), hence

−iBω0
1

COEBS≡ Bω1
1

COEBS≡ −Bω3
1

COEBS≡ −BTI
1 , (2.163)

Bω0
2

COEBS≡ Bω1
2

COEBS≡ Bω3
2

COEBS≡ −BTI
2 , (2.164)

−iBω0
3

COEBS≡ Bω1
3

COEBS≡ −Bω3
3

COEBS≡ −BTI
3 . (2.165)
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2.6 Algebraic-diagrammatic construction

The algebraic-diagrammatic construction (ADC) scheme provides a series of ab initio methods
for the treatment of electronic vertically excited state (VES), combining diagonalization of a
(Hermitian) secular matrix and a perturbation treatment for the matrix elements. [29,31,132? –136]

It can be derived via Green’s functions or propagator theory, where different propagators yield
different properties, e.g., ionization potentials, electron affinities, or excitation energies. In the
original derivation, ADC did not provide excited-state wave functions, but this deficiency was
overcome with the development of the intermediate state representation (ISR), within which
ADC may be viewed as a representation of the (shifted) Hamiltonian within a basis of explicitly
constructable intermediate states (IS), giving direct access to excited-state wave functions and
properties. [137] In the following sections, I will limit myself to the polarization propagator and
the absorption of one or two photons.

2.6.1 ADC method

Within the ISR, excitation energies are evaluated by solving the secular equation of the shifted
Hamiltonian (Ĥ − E0) within a basis of explicitly constructable intermediate-states (IS),

MIJ =
〈

Ψ̃I

∣∣∣Ĥ − E0

∣∣∣ Ψ̃J

〉
=
〈

Ψ̃I |Ĥ|Ψ̃J

〉
− E0δIJ . (2.166)

Finding solutions to this secular equation corresponds to solving an Hermitian eigenvalue equation

MX = XΩ, X†X = 1, (2.167)

where X is a column matrix of eigenvectors Xk and Ω is a diagonal matrix of eigenvalues
ωk = Ek −E0. Ground- to excited-states transition moments are then obtained by contraction of
the eigenvector X†

n with an applied arbitrary operator D̂,

xn =
〈

Ψn|D̂|Ψ0

〉
= X†

nF̃(D̂) = X†
n

〈
Ψ̃I |D̂|Ψ0

〉
(2.168)

where F̃ are so called “modified-transition moments”. To construct the IS, one usually starts
with so-called correlated-excited states (CES), which are obtained by applying a set of excitation
operators on the exact ground state with the set of operators used depending on which propagator
and hence property one desires ∣∣Ψ0

J

〉
= ĈJ |Ψ0⟩ (2.169)

For n-particle, n-hole processes, i.e., single and double excitations etc

{ĈJ} ≡
{
ĉ†
aĉk, ĉ

†
aĉ

†
b ĉk ĉl, . . .

}
Polarization propagator (2.170)
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The ADC method then proceeds by replacing the exact ground state |Ψ0⟩ and its energy E0 in a
perturbation expansion,

|Ψ0⟩ =
∣∣∣Ψ(0)

0

〉
+
∣∣∣Ψ(1)

0

〉
+
∣∣∣Ψ(2)

0

〉
+ . . . (2.171)

E0 = E
(0)
0 + E

(1)
0 + E

(2)
0 + . . . (2.172)

Using an MP partitioning of the Hamiltonian results in the zeroth-order wavefunction as the HF
determinant. With this expansion of Ψ0 and E0, the ADC secular matrix M is likewise expanded
in a series as

M = M(0) + M(1) + M(2) + . . . (2.173)

What results of the above expressions when including all terms up to the nth order is termed
ADC(n) scheme. Moreover, when the excited-state wave function is expanded in the complete
basis of IS, one can obtain excited-state wave functions and properties,

|Ψn⟩ =
∑
I

∣∣Ψ̃I

〉 〈
Ψ̃I | Ψn

〉
=
∑
I

XI,n

∣∣Ψ̃I

〉
, (2.174)

where XI,n are elements of the ADC eigenvector. Insertion of the above expansion (2.174) into
the expression for the expectation value of an arbitrary operator yields the nth excited state
expectation value of operator D̂ as

Dn =
〈

Ψn|D̂|Ψn

〉
=
∑
IJ

X∗
I,n

〈
Ψ̃I |D̂|Ψ̃J

〉
XJ,n = X†

nB̃Xn (2.175)

where B̃IJ =
〈

Ψ̃I |D̂|Ψ̃J

〉
is the matrix representation of operator D̂ in the IS basis. Excited-state

to excited-state transition moments can likewise then be obtained as

Tmn =
〈

Ψm|D̂|Ψn

〉
= X†

mB̃Xn. (2.176)

Next, one can decompose the matrix representation B of operator D̂ in the IS basis into a
ground-state and excited-state contribution

B̃IJ = D0δIJ +BIJ (2.177)

where,
D0 =

〈
Ψ0|D̂|Ψ0

〉
(2.178)

is the ground-state contribution and

BIJ =
〈

Ψ̃I

∣∣∣D̂ −D0

∣∣∣ Ψ̃J

〉
(2.179)
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is the excited-state contribution, analogous to the ADC matrix. B can then expanded in a similar
fashion to M as,

B = B(0) + B(1) + B(2) + . . . (2.180)

by then writing the one-particle operator in second quantization, i.e. D̂ =
∑
pq dpda

†
pa

†
q, allows

for the excited-state or state-to-state transition moments to be expressed in terms of state ρn
and transition densities ρmn as

Dn =
〈

Ψn|D̂|Ψn

〉
=
∑
pq

dpq
∑
IJ

X∗
I,n

〈
Ψ̃I

∣∣â†
pâq
∣∣ Ψ̃J

〉
XJ,n =

∑
pq

dpqρn,pq (2.181)

Tmn =
〈

Ψm|D̂|Ψn

〉
=
∑
pq

dpq
∑
IJ

X∗
I,n

〈
Ψ̃I

∣∣â†
pâq
∣∣ Ψ̃J

〉
XJ,m =

∑
pq

dpqρmn,pq (2.182)

By choosing the nth order Møller-Plesset treatment of the wave function as the ground state
yields nth order ADC(n) with MP2 yielding ADC(2) and so on.

Hence, ADC(1) consists of the eigenvectors of first-order M and B, ADC(2) consists of
the eigenvectors of second-order M and B, consistent through order n. Another significant
method is ADC(3)) which is not consistent through order n and uses the third-order M with the
second-order B, which will for simplicity be referred to as ADC(3) in the coming chapters. [31,138]

2.6.2 Electronic circular dichroism

In the ADC/ISR approach, the exact states contained in the Rosenfeld equation (2.86) are
replaced by the known IS states. The rotatory strength corresponding to an excitation from the
ground state |Ψ0⟩ to an excited state |Ψn⟩ is then expressed as

Rrn0 = Im
(

F̃†(µ̂)XnX†
nF̃(m̂)

)
, (2.183)

where F̃(µ̂), and F̃(m̂), are the modified transition moments by the electric and magnetic dipole
moment operators in the IS basis (2.168) and Xn is the eigenvector corresponding to state n. By
using Equation 2.176, one similarly obtains an expression for the excited-state to excited-state
rotatory strength as

Rrmn = Im
(

X†
nB̃(µ̂)XmX†

mB̃(m̂)Xn

)
, (2.184)

where B̃(µ̂) and B̃(m̂) are the one-electron matrix representations of the electric and magnetic
dipole operators in the IS basis. Hence, the ground state to excited-state and excited-state to
excited-state rotatory strengths are computed as expectation values within the ISR formalism. [137]

It is of course trivial to express the velocity-gauge representations of either of the two rotatory
strengths as

R∇
n0 = Re

(
F̃†(p̂)XnX†

nF̃(m̂)
)
, (2.185)

And, in an analogous manner,

R∇
mn = Re

(
X†
nB̃(p̂)XmX†

mB̃(m̂)Xn

)
, (2.186)
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2.6.3 Two-photon circular dichroism

The two-photon absorption cross-section within ADC/ISR has been derived from time-dependent
response theory for exact states, [82,139] and the same methodology is applied in the derivation
of two-photon circular dichroism. [78] Using quadratic response theory, the two-photon tensor of
arbitrary operators Â and Ẑ can be expressed as, [82]

(AZ)fαβ =
∑
n ̸=0


〈

Ψ0

∣∣∣Âα∣∣∣Ψn

〉〈
Ψn

∣∣∣Ẑβ∣∣∣Ψf

〉
ωn − ω1

+

〈
Ψ0

∣∣∣Ẑβ∣∣∣Ψn

〉〈
Ψn

∣∣∣Âµ∣∣∣Ψf

〉
ωn − ω2

 , (2.187)

where the subscripts denote spatial components, i.e., α, β ∈ [x, y, z] and A and B here denote
general operators, but are in the of TPA both electric dipole operators. Here and in the following,
the short-hand notations

Âα = Âα −
〈

Ψ0

∣∣∣Âα∣∣∣Ψ0

〉
, (2.188)

Ẑα = Ẑα −
〈

Ψ0

∣∣∣Ẑα∣∣∣Ψ0

〉
, (2.189)

are used for the Â and Ẑ operators shifted by their exact ground state expectation values.
Furthermore, by using Equation 2.168 and 2.176 for the modified transition moments and matrix
representation of operator Â and Ẑ in the IS basis, the secular ADC matrix M as well as the
eigenvector Xf one can write Equation 2.187 in matrix notation within the ADC/ISR as [140]

(AZ)fαβ = F̃†(Âα) (M − ω11)−1 B̃(Ẑβ)Xf + F̃†(Ẑβ) (M − ω21)−1 B̃(Âα)Xf . (2.190)

With these notations, one can express the S, M, Q, Mp, P and Pp two-photon tensors within
the ADC/ISR formalism. Using D, M, Q and P for the electric, magnetic, quadrupole and
momentum dipole operators, respectively, all three formulations (2.139), (2.152) and (2.156) of
the two-photon rotatory strength may be expressed as

fRTP
ω0

=
∑
α,β

(
− ib1(DM)fαβ(DD)f∗

αβ + b2ωn
2 (QD)fαβ(DD)f∗

αβ − ib3(DM)fαα(DD)f∗
ββ

)
, (2.191)

fRTP
ω1

=
∑
α,β

(
+ b1

ωn
(DM)fαβ(DP)f∗

αβ + b2ωn
2 (QD)fαβ(DD)f∗

αβ + b3

ωn
(PM)fαα(DD)f∗

ββ

)
, (2.192)

fRTP
ω3

=
∑
α,β

(
− b1

ω3
n

(PM)fαβ(PP)f∗
αβ + b2ωn

2 (QD)fαβ(DD)f∗
αβ − b3

ω3
n

(PM)fαα(PP)f∗
ββ

)
. (2.193)

The above equations describe the two-photon rotatory strength corresponding to an excitation
from the ground state |Ψ0⟩ to an excited state |Ψf ⟩. All three formulations of the two-photon
rotatory strengths may be calculated using their SOS expression and calculated at ADC(n) level
in an identical fashion to SOS-TPA, [141] although this approach is not computationally tractable
for large systems where many states may be required to achieve numerically convergent results,
as explained in previous sections.
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2.6.4 First-order hyperpolarizability and second harmonic generation

In this section, expressions for the linear electric dipole polarizability and the first-order electric
dipole hyperpolarizability with the ADC/ISR formalism are derived. Subsequently, the isotropic
dynamic first-order hyperpolarizability using frequency relations applicable for SHG and HRS
are presented.

Linear polarizability within the ADC/ISR formalism

The electric dipole polarizability, Equation 2.92 and 2.103, can be expressed within the ADC/ISR
formalism using Equation 2.168 for the modified transition moments of the electric dipole operator,
as well as the inverse of the secular ADC matrix M at frequency ω, (M − ω)−1, [142]

ααβ(−ω;ω) = P
(

F̃†(µ̂α)(M − 1ω)−1F̃(µ̂β)
)
. (2.194)

Here, P, permutes the (µα,−ω) and (µβ , ω) pairs such that,

ααβ(−ω;ω) = F̃†(µ̂α)(M − 1ω)−1F̃(µ̂β) + F̃†(µ̂β)(M + 1ω)−1F̃†(µ̂α) . (2.195)

Evident from Equation 2.194, is that the eigenvectors corresponding to the nth excited states, are
not explicitly required and that once F̃(µ̂α) and (M − 1ω)−1 are known a solution is obtained by
simple matrix-vector multiplication. These are solved for by a projection algorithm as will be
described in the next section.

First-order hyperpolarizability within the ADC/ISR formalism

The first-order electric dipole hyperpolarizability, Equation 2.120 and 2.99, can be expressed
within the ADC/ISR formalism using Equation 2.168 for the modified transition moments and
Equation 2.176 for the matrix representation of µ in the IS basis, as well as the inverse of the
secular ADC matrix M at frequency ω,

βαβγ(−ωσ;ω1, ω2) = P
(

F̃†(µ̂α)(M − 1ωσ)−1B̃(µβ)(M − 1ω2)−1F̃†(µ̂γ)
)
. (2.196)

Here, P , permutes the (µα,−ωσ), (µβ , ω1) and (µγ , ω2) pairs, in an identical manner to the same
operator in Equation 2.194. The above equation is the general non-damped first-order electric
dipole hyperpolarizability, which describes all the processes in Table 2.3. However, specifically in
the case of SHG, the frequency relation [143]

2ω1 = 2ω2 = ωσ = 2ω, (2.197)

applies, which allows for simplifications with the βSHG
αβγ -tensor expressed as

βSHG
αβγ (−2ω;ω, ω) = P

(
F̃†(µ̂α)(M − 2ω)−1B̃(µβ)(M − 1ω)−1F̃(µ̂γ)

)
. (2.198)
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While in principle, all the elements contained in Equation 2.198 are known. The inverse, (M±ω)−1,
is often too large to be solved for directly. Instead, one may introduce the response vector, y−ω

α

y−ω
α = F̃†(µ̂α)(M − ω1)−1, (2.199)

which after rearrangement,
y−ω
α (M − ω1) = F̃†(µ̂α), (2.200)

can be solved for using a projection algorithm, e.g., DIIS. In this case, 12 equations are required
to obtain the full βSHG

αβγ -tensor, which, when calculated allows for the tensor to be expressed as

βSHG
αβγ (−2ω;ω, ω) = P

(
y−2ω
α B̃†(µβ)y−ω

γ

)
. (2.201)

Which is solved for by matrix-vector multiplications, once yα are obtained.





Chapter 3

Electronic circular dichroism

This chapter will cover electronic circular dichroism (ECD) implemented at ADC(n) levels of
theory. Here, the origin dependence of the length formulation is compared with those at CC levels
of theory for methyloxirane. Next, the computed rotatory strengths at ADC(2) and ADC(3)
levels of theory are compared to those at CC2 and CCSD levels for enantiomers of methyloxirane,
methylthiirane and their dimethylated counterparts, as well as for H2O2 and H2S2. The inclusion
of solvent effects on the rotatory strengths is evaluated for L-epinephrine at the ADC(2) level using
the polarizable continuum model (PCM). Lastly, the ECD spectra of an camphor, norcamphor
and fenchone enantiomer is analyzed at ADC(2) and ADC(3) level of theory and compared to
their experimental gas-phase ECD spectra. This chapter has already been published as Mikael
Scott, Dirk R. Rehn, Sonia Coriani, Patrick Norman, and Andreas Dreuw. “Electronic circular
dichroism spectra using the algebraic diagrammatic construction schemes of the polarization
propagator up to third order”, The Journal of Chemical Physics, 154(6):064107,2021.

3.1 Introduction

ECD is among the oldest techniques for determining the absolute configuration of chiral
molecules, [32] exploiting the differential absorption of one of the two circularly polarized compo-
nents of plane polarized light (Figure 2.2), resulting in a rotation of the plane of polarization,
commonly measured in units of molecular ellipticity. Among the many uses, ECD has found
particular employment in the detection of secondary structures of proteins, [144] as well as in
pharmaceutical synthesis as a quality control tool to measure enantiomeric purity. [37] Of central
importance is the sign of the measured ECD signal where enantiomers produce mirror-like ECD
spectra and can thus be easily distinguished. Not only chiral molecules produce ECD spectra,
non-chiral molecules interacting with a chiral system, e.g., a solvent can give rise to a CD signal
through a processed referred to as induced circular dichroism (ICD). ICD thus provides informa-
tion about the absolute configuration of the chiral structure be it an achiral solvent arranging
itself in a structurally chiral manner or a chiral solvent doing the same. [145] The experimental
setup for measuring an ECD spectrum is almost identical to a standard UV/VIS measurement
with the only significant addition of a polarizer to produce left- and right-handed circularly

41
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polarized light. The measurement is then carried out twice, using only one of the two handedness
each time. The difference between these two signals then define the measured ECD (commonly
CD) signal at a specific wavelength ω,

∆ϵ(ω) = ϵL(ω) − ϵR(ω), (3.1)

with ϵ(ω) being the molar absorption coefficients and the two subscripts denoting left or right
circularly polarized light. After measurement, the signal may then be related to the rotatory
strength, R, by integration over a frequency range as

R = 22.97 ×
ω2∫
ω1

∆ϵ(ω)
ω

dω, (3.2)

where the photon energy ω is in eV and ∆ϵ(ω) is given in L mol−1 cm−1. The rotatory strength,
R, is in units of 10−40 esu · cm · erg/G or 10−40 c.g.s. units. [112,146] This quantity was first
derived in 1929 by Rosenfeld as the scalar product of the electric and magnetic transition dipole
moments (see Section 2.4.2). [147] The selection rules for ECD are obtained by simple inspection

Figure 3.1: Chiral systems lack any principal axis of rotation and their mirror images
are not superimposable.

of Equation 2.86. Here, the rotatory strength is only nonzero for both electric and magnetic
dipole allowed transitions, where at least one component of the transition moments overlap. This
only occurs when the molecular system lacks a principal axis of rotation, hence for chiral systems,
as shown in Figure 3.1. Furthermore, as is readily apparent when comparing Equation 3.2
to Equation 2.86, Equation 3.2 assumes that the signal arises from an isolated state. This is
obviously rarely the case and cannot be known a priori before measurement.

On a theoretical level, ECD spectra have been calculated for molecules on the order of
hundreds of atoms, using TD-HF [44–46] and TD-DFT [47–51], for molecules on the order of tens of
electrons, CI [52] and LR based on a CASSCF reference [53] and EOM-CC [54,55] and the similar
CC-LR approach [56–59] have been used.For very large systems, e.g. proteins, semi-empirical
methods have also been used which can predict low-lying CD signals.

For this novel ADC(n) implementation, however, it makes most sense to compare calculated
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rotatory strengths directly to experiment and CC methods (coupled cluster singles (CCS),
coupled cluster singles and approximate doubles (CC2), CCSD, coupled cluster singles, doubles
and approximate triples (CC3)) due to the similar scaling and ab initio of these methods compared
with the hierarchy of ADC(n) methods.

To test the robustness of the ADC(n) methods in simulating ECD spectra, methyloxirane
and methylthiirane as well as their dimethylated derivatives represent excellent systems. For these
molecules, highly resolved gas-phase spectra exist for comparison. Furthermore, the inherently
chiral hydrogen peroxide H2O2 and dihydrogen disulfide H2S2 are likewise highly suitable due to
their small size and well studied chiro-optical properties. Beside these relatively small molecules,
camphor, norcamphor and fenchone constitute additional test cases whose chiroptical properties
have been explored in previous work, [148–152] but have not yet been explored using a third order
ab initio method. Furthermore, epinephrine, a common medical drug and hormone, [153] for which
there are aqueous ECD solution spectra reported is likewise an excellent test case to include the
effects of a solvent. [154] Thus, the ECC spectra of these molecules, Figure 3.2, will be presented
in the coming sections.

1 2 3 4 5 6

7 8 9 10

Figure 3.2: Chemical sketches of 1 (R)-methyloxirane, 2 (R)-methylthiirane, 3 (R,R)-
dimethyloxirane, 4 (R,R)-dimethylthiirane, 5 hydrogen peroxide, 6 hydrogen persulfide,
7 (1R)-camphor, 8 (1R)-fenchone, 9 (1R)-norcamphor and 10 L-epinephrine.

3.2 Computational details

The length and velocity gauge rotatory strengths at ADC(n) levels have been implemented in a
development version of Q-Chem 5.2, [155] as described in Section 2.6.2. For the length and velocity
gauge rotatory strengths at CC level, Dalton2018 was used. [156] Dunning basis sets were employed
throughout this chapter. [157–160] The origin for the position operator was set to the hetero atom
for the oxiranes, thiiranes, camphor and its derivatives and to one of the oxygen/sulfur atoms
in the symmetrical H2O2 and H2S2 molecules. Geometries of methyloxirane, dimethyloxirane,
methylthiirane and dimethylthiirane were optimized using MP2/aug-cc-pVTZ and those of and
at MP2/d-aug-cc-pVTZ level. For camphor, norcamphor and fenchone, DFT/CAM-B3LYP/aug-
cc-pVTZ [161] was used for the geometry optimization. To simulate the ECD spectra, the rotatory
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strengths were converted from a.u. to 10−40 c.g.s. using the conversion factor of 471.44 and
subsequently broadened by a Lorentzian function according to

∆ϵ(ω) =
∑
n

∆ϵn
γn

(ω − ωn0)2 + γ2
n

(3.3)

∆ϵn = ωRn0

22.94π × 1040, (3.4)

where ∆ϵn is the peak intensity of the nth transition given in L mol −1 cm−1, Rn0 is the rotatory
strength in 10−40 c.g.s., γn is the Lorentzian broadening factor, ω and ωn0 are the incident optical
frequency and excitation energy in eV. The broadening factor corresponding to full width at half
maximum full width at half maximum (FWHM) of γn = 1000 cm−1 is used for all spectra. [162]

3.3 Origin-dependence of length gauge rotatory strengths

As described in subsection 2.5.4, the calculated length gauge rotatory strengths (2.111), in
approximate theories exhibit unphysical origin-dependence. Specifically, a translation of the
gauge-origin of the position operator will alter the calculated rotatory strength. While Full-ADC
is origin-independent, truncated ADC schemes are not, and hence will yield different rotatory and
oscillator strengths in the length- and velocity gauges, which is of the order O(n) for ADC(n). [30]

To visualize the impact a shift in origin has on the calculated rotatory strengths in the length
gauge, Figure 3.3 shows the ECD spectra of R-methyloxirane where the molecule is shifted along
the spatial coordinate diagonal. Initially, the oxygen atom of R-methyloxirane is placed at the
origin Oa=(0, 0, 0) and the entire molecule is subsequently shifted to a new origin Ob=(10, 10, 10)
(in units of Å); through 20 uniformly spaced steps.

Evidently, Figure 3.3 clearly demonstrates the origin-dependence of Equation 2.111 while
Equation 2.114 is inherently origin-independent at each of the ADC and CC levels of theory, as
expected. For the specific case of R-methyloxirane, using the aug-cc-pVTZ basis set, length-
gauge rotatory strengths computed using ADC(1) are less impacted than those at CCS level
when subjected to a shift in origin with the latter producing a noticeable sign reversal of the
energetically lowest band structure. Although, the direction of change is consistent between
both methods, the magnitude is more prominent in case of CCS. At ADC(2) and CC2 levels, a
similar behaviour is noted between, with the direction of change being identical for both methods.
ADC(3) yields larger alterations in the computed length-gauge rotatory strengths with a shift in
origin as compared to CCSD. This is likely due to the overall larger rotatory strengths of the
gauge 1 spectrum at ADC(3) compared to CCSD as well as the qualitatively different results
of both methods. Using the center of charge as origin of the position operator produces near
identical spectra for the two gauges which is consistent in all methods.

Furthermore, the transition moments of the electric, magnetic and momentum dipole for the
lowest energetic excited state are collected in Table 3.1, where the same translation is performed,
up until a distance of (20, 20, 20) Å; in 20 uniform steps.
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Figure 3.3: Simulated ECD spectra, with a shift in origin, of R-methyloxirane at ADC
and coupled cluster (CC) levels of theory using the aug-cc-pVTZ basis set. The oxygen
atom of methyloxirane is placed at O1 = (0, 0, 0) (gauge origin 1 ) and subsequently
moved to Ob = (10, 10, 10) (gauge origin 2 ) with each line creating the color-gradient is
one uniform step of 0.5 Å in the direction of Ob.
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Table 3.1: Transition moment components of R-methyloxirane at ADC(2)/aug-cc-
pVDZ level of theory for the energetically lowest singlet excited state. The molecule is
shifted from O0 = (0, 0, 0) → O20 = (20, 20, 20) Å.

On µ⃗10(×10) a.u. ω−1
10 p⃗10(×10) a.u. L⃗10(×10) a.u.

n x y z x y z x y z

0 · · · · · · 2.9 2.6 1.5
2 · · · · · · 0.6 1.9 4.5
4 · · · · · · −1.6 1.1 7.5
6 · · · · · · −3.9 0.3 10.6
8 · · · · · · −6.1 −0.4 13.6
10 −2.2 0.9 −1.6 −2.5 1.0 −1.6 −8.4 −1.2 16.6
12 · · · · · · −10.6 −2.0 19.6
14 · · · · · · −12.9 −2.7 22.6
16 · · · · · · −15.1 −3.5 25.6
18 · · · · · · −17.4 −4.3 28.6
20 · · · · · · −19.6 −5.0 31.7

On Rr
10(×100) a.u. R∇

10(×100) a.u.

n x y z ∑ x y z ∑
0 −6.4 2.5 −2.5 −6.4 −7.2 2.6 −2.5 ·
2 −1.4 1.8 −7.4 −7.1 −1.5 1.8 −7.3 ·
4 3.6 1.0 −12.4 −7.7 4.1 1.1 −12.2 ·
6 8.7 0.3 −17.4 −8.4 9.7 0.3 −17.1 ·
8 13.7 −0.4 −22.3 −9.0 15.3 −0.4 −22.0 ·
10 18.7 −1.1 −27.3 −9.7 21.0 −1.2 −26.9 −7.0
12 23.7 −1.8 −32.2 −10.4 26.6 −1.9 −31.7 ·
14 28.7 −2.6 −37.2 −11.0 32.2 −2.7 −36.6 ·
16 33.7 −3.3 −42.2 −11.7 37.9 −3.4 −41.5 ·
18 38.8 −4.0 −47.1 −12.4 43.5 −4.2 −46.4 ·
20 43.8 −4.7 −52.1 −13.0 49.1 −4.9 −51.3 ·

3.4 ADC and CC level rotatory strengths compared to
experiment

In this section, ADC(1), ADC(2), ADC(3) will be compared directly to CCS, CC2 and CCSD, as
well as CC3 when possible, in their respective ability to reproduce experimental gas-phase ECD
spectra of small organic molecules.
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3.4.1 R-Methyloxirane and R-methylthiirane

Methyloxirane, a 3-membered ring structure, is commonly used to benchmark theoretical methods
in their ability to simulate ECD spectra, primarily due to its small size and readily available
experimental gas-phase ECD spectrum, [163–165] as well as its well-studied electronic structure, [166]

excited state properties and solution spectrum. [167–171] The importance of diffuse functions in
describing the electronic structure of methyloxirane especially for the assignment of the sign of
the rotatory strength has been demonstrated by other authors. [172] Furthermore Pople basis sets
seem inadequate even with diffuse functions, while Dunning basis sets provide a more qualitative
description. [48] Consequently, the dependence of different correlation-consistent basis sets on the
calculated rotatory strengths will be assessed for R-methyloxirane in the following section.

Basis set impact on R-methyloxirane.

The excitation energies, length and velocity gauge rotatory strengths of R-methyloxirane calculated
at ADC(2), ADC(3), CC2 and CCSD levels of theory are collected in Figure 3.4 - 3.5. For some
large basis sets, only ADC(2) was calculated due to the computational effort required by the
higher-order methods. Starting with ADC(2) and CC2, with the smallest basis of the cc-pVXZ
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Figure 3.4: Excitation energies (eV) of the energetically lowest singlet electronic
transition of R-methyloxirane calculated at the ADC(2), ADC(3), CC2 and CCSD levels
of theory using Dunning basis sets.

series (X: D,T,Q), cc-pVDZ, yields nearly identical excitation energies for ADC(2) and CC2, with
the first vertically excited state calculated at 8.24 eV at ADC(2) and 8.35 eV at CC2 level, which
should be compared with the experimental value of 7.08 eV. [164] Increasing the basis set size from
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Figure 3.5: Rotatory strengths (×10−40esu2·cm2) of the energetically lowest singlet
electronic transition of R-methyloxirane calculated at the ADC(2), ADC(3), CC2 and
CCSD levels of theory in length and velocity gauges using Dunning basis sets.

double to quadruple-zeta lowers the excitation energy to 7.51 eV and 7.54 eV for ADC(2) and
CC2, respectively. However, the rotatory strength of the first transition is largely unaffected
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and is roughly overestimated by a factor of two compared to experiment. In this regard, one
could counter that the reported rotatory strength in Ref. 164 is based on Equation 3.2 with the
limits of integration determined by a low-level CI calculation which likely introduced errors. In
general, careful analysis is always required when comparing computed and experimental rotatory
strengths.

Turning to the singly-augmented, aug-cc-pVXZ series (X: D,T), aug-cc-pVDZ yields similar
excitation energies for the first vertically excited state at ADC(2) and CC2 level, with 6.23 eV
and 6.37 eV, respectively. Increasing the basis from double to triple-zeta improves the excitation
energies, name 6.52 eV and 6.55 eV for ADC(2) and CC2, respectively. Evidently, the rotatory
strengths are much more sensitive to augmentation of the basis set than the excitation energies.
The rotatory strength of the first transition is within 20% of experiment, for aug-cc-pVDZ, and
within 15% for aug-cc-pVTZ, which is overestimated by roughly 100% using non-augmented basis
sets.

Moving to the doubly augmented d-aug-cc-pVXZ series (X: D,T), the rotatory strength of the
first excited state is within 10% of experiment for both ADC(2) and CC2 using d-aug-cc-pVDZ,
but the excitation energy (< 0.04 eV) is hardly affected. Going to d-aug-cc-pVTZ, the rotatory
strength is largely unaffected while the excitation energy is increased as was the case for the singly
augmented aug-cc-pVTZ basis. Moreover, double augmentation has substantial impact on the
rotatory strengths of higher-lying excited states. For cc-pVXZ and aug-cc-pVXZ basis sets, the
second vertically excited state has an incorrect positive sign of the rotatory strength at ADC(2)
and CC2 levels of theory but is correctly described as negative using d-aug-cc-pVXZ basis sets.
Higher-order methods like ADC(3), CCSD or CC3 reproduce the correct sign regardless of which
basis set is employed. This illustrates the importance of diffuse functions, as well as the degree of
electron correlation included for the correct assignment of higher excited states.

Overall, the differences between the length and velocity gauge rotatory strengths are relatively
small for the first electronic transition, i.e. on the order of ∼ 20 ↔ 10% for cc-pVXZ, ∼ 10 ↔ 8%
for the aug-cc-pVXZ, and ∼ 10 ↔ 7% for d-aug-cc-pVXZ at ADC(2) and CC2 levels of theory.
The difference is on the same order of magnitude for energetically higher-lying excited states with
minor exceptions. The difference between the length and velocity forms of the oscillator strength
is very similar to the one observed for the rotatory strengths.

Electronic circular dichroism spectra of R-methyloxirane.

The experimental gas-phase ECD spectrum of R-methyloxirane consists of three distinct band fea-
tures, here labelled A, B and C. [164] The simulated ECD and UV/VIS spectra of R-methyloxirane
at ADC and CC levels of theory using the d-aug-cc-pVDZ basis set comprising the energetically
lowest 15 singlet excited states are shown in Figure 3.6. Numerical values for the excitation
energies, oscillator and rotatory strengths are collected in Table A.1-A.2. At ADC(2) and CC2
levels of theory, similar spectra are produced, which are shifted to correspond to the experimental
value of 7.10 eV for the energetically lowest band feature, A. The shifts required are +0.92 eV for
ADC(2) and +0.78 eV for CC2, respectively. The A and B-bands of the experimental spectrum
are well reproduced at the ADC(2) and CC2 levels of theory (Figure 3.6). Furthermore, at these
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Figure 3.6: ECD (top) and UV/VIS (bottom) spectra of R-methyloxirane calculated
with ADC(2), ADC(3), CC2 and CCSD in the velocity gauge using the d-aug-cc-pVDZ
basis set. The spectra are shifted by +0.92 eV and −0.74 eV for ADC(2) and ADC(3),
respectively, as well as +0.78 eV and −0.02 eV for CC2 and CCSD, respectively. The
rotatory strength is scaled by a factor of 0.5. Experimental data (black line) are taken
from Ref. 164.

levels of theory, A-C arise from oxygen lone-pair excitations to Rydberg orbitals. According
to these calculations, the A-band is a convolution of two states of negative amplitude, and the
B-band is a convolution of three states with an overall positive amplitude. Lastly, the C-band
corresponds to a convolution of three states and is incorrectly predicted as positive by both
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methods.
The spectra calculated at ADC(3) and CCSD levels of theory are again shifted by −0.74

eV and −0.02 eV, respectively, for the first vertical excitation energy to match the experimental
value. At these levels of theory, in addition to the A and B-bands being reproduced, the C-band
is now correctly predicted as negative albeit red-shifted by ∼ 0.5 eV for ADC(3).

Electronic circular dichroism spectra of R-methylthiirane.

Methylthiirane is the sulfur containing analog of methyloxirane for which high-quality experimental
ECD gas-phase spectrum has been measured, [164,165] as well as experimental vibrational circular
dichroism (VCD) [173] and Raman optical activity (ROA) [174] spectra. The ECD spectrum and the
optical rotatory dispersion have also been addressed in theoretical studies. [175,176] The simulated
ECD and UV/VIS spectra of R-methylthiirane at ADC and CC levels of theory using the
d-aug-cc-pVDZ basis set comprising the energetically lowest 15 singlet excited states are shown
in Figure 3.7. Numerical values for the excitation energies, oscillator and rotatory strengths are
collected in Table A.3-A.4.

The experimental ECD spectrum of methylthiirane possesses three distinct band features,
labelled A, B and C in analogy to methyloxirane. Using the d-aug-cc-pVDZ basis set, ADC(2)
and CC2 yield very similar transition energies and rotatory strengths for the energetically lowest
15 computed states computed. All excited states correspond to electronic transitions from sulfur
lone pair orbitals into Rydberg orbitals. ADC(2) and CC2 yield ECD spectra correctly predicting
the signs of the A, B and C-bands. The excitation energies are red-shifted by roughly 0.4
eV in comparison to experiment. The first peak arises from a weakly absorbing state with a
negative rotatory strength, which has also been experimentally observed but was not shown in the
experimental spectrum as it was barely visible. The first significant feature of the experimental
spectrum, the A-band, is a convolution of two peaks which are correctly predicted as negative
but the amplitude is underestimated by a factor of two at these levels of theory. The B and
C-bands correspond to convolutions of multiple states, the signs of which are correctly predicted
using ADC(2) and CC2.

Proceeding to ADC(3), the excitation energies require no shift to align with the experimental
spectrum and transition amplitudes likewise agree very well. The two electronic states constituting
the spectral feature A, a1 and a2, lie within ∼0.02 eV of the experimental spectrum at the ADC(3)
level, but, the rotatory strengths of these states appear to be swapped compared to experiment.
Although, it cannot be excluded that these arise from vibrational effects. The improvement is
of equal quality for CC2→CCSD, although slightly red-shifted compared to experiment. The
B-band consist of four vibronic peaks in the experimental spectrum. At ADC(3) level two
excited electronic states are computed exhibiting the correct excitation energies and signs of
their corresponding rotatory strengths. The C-band is a convolution of several peaks in the
experimental spectrum, and is incorrectly described as negative by at both ADC(3) and CCSD
levels of theory.
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(b)    CC spectra of R-methylthiirane
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Figure 3.7: ECD (top) and UV/VIS (bottom) spectra of R-methylthiirane calculated
with ADC(2), ADC(3), CC2, CCSD in the velocity gauge, using d-aug-cc-pVDZ. The
rotatory strength is scaled by a factor of 0.5. Experimental data (black line) are taken
from Ref. 164.

3.4.2 (R,R)-Dimethyloxirane and (R,R)-dimethylthiirane

As was the case for R-methyloxirane and R-methylthiirane, their dimethylated counterparts also
have high-quality experimental gas phase ECD spectra recorded [164,165] which, unsurprisingly,
show similar band features as those of methyloxirane and methylthiirane.
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Electronic circular dichroism spectra of (R,R)-dimethyloxirane.

The simulated ECD and UV/VIS spectra of R-methylthiirane at ADC and CC levels of theory
using the d-aug-cc-pVDZ basis set comprising the energetically lowest 15 singlet excited states
are shown in Figure 3.8. Numerical values for the excitation energies, oscillator and rotatory
strengths are collected in Table A.5-A.6. The experimental gas-phase ECD spectrum consists
of four distinct band features, here labelled A, B, C and D. At the ADC(2) and CC2 levels
of theory, similar spectra are produced for the energetically lowest 15 states, with the ADC(2)
excitation energies red-shifted by ∼ 0.15 − 0.20 eV compared to CC2. Both spectra in Figure 3.8
are shifted to correspond to the experimentally measured lowest singlet excited state at 7.0 eV
(+0.92 eV for ADC(2) and +0.78 eV for CC2). At these levels of theory, the A to D-bands arise
exclusively from lone-pair orbital excitations from the oxygen atom into Rydberg orbitals. The
A-band arise solely from the energetically lowest transition with the excitation energy being
red-shifted by ∼ 0.8 eV compared to experiment, and calculated to 6.08 eV and 6.22 eV for
ADC(2) and CC2, respectively. The rotatory strength of this transition is in reasonable agreement
with experiment, although it is roughly overestimated by 40% for both ADC(2) and CC2. The
B-band, at ADC(2) and CC2 levels stems from the second excited state for which the excitation
energy is calculated to 6.38 eV and 6.53 eV for ADC(2) and CC2, respectively, with both methods
being red-shifted by ∼ 0.9 eV compared to experiment. The rotatory strength of this transition
is overestimated by one order of magnitude. The third band, C, arises from a convolution of the
third and fourth excited states, which are red-shifted by roughly 1 eV for both ADC(2) and CC2,
compared to experiment. The D-band emerges from the fifth and sixth excited states, which are
again red-shifted by roughly 1.1 eV.

The spectra of the higher order methods are likewise shifted to correspond to experiment
(−0.81 eV for ADC(3) and −0.07 eV for CCSD). At ADC(3) level, the A-band arises from
two states with negative rotatory strengths, separated by 0.10 eV. These peaks appear in good
agreement with the experimental ECD spectrum, however, it is noteworthy that other studies
have assigned these peaks to vibronic structures originating from up to two electronic states. [177]

Furthermore, these two peaks are not reproduced in the CCSD spectrum which, alike ADC(2) and
CC2, shows the A-band arising from a single excited electronic state whose width closely agrees
with the experimental one. At ADC(3) level of theory, the B-band is a convolution of the third
and fourth excited states with the former being sharply positive and latter negative. This results
in a relatively weak positive feature, in reasonably good agreement with the measured spectrum.
A similar convolution is observed at CCSD level, however, involving the second and third excited
state. The larger energetic separation between these two states at CCSD level results in a more
intensely positive B-band.The C-band is likewise a convolution of many states at ADC(3) level
resulting in broad positive band, which is not present in the experimental spectrum, followed by
a blue-shifted negative peak. CCSD correctly predicts the overall negative shape of the C-band
which is originating from the fourth and fifth excited states, and clearly is in better agreement
with experiment than at ADC(3) level. The D-band is correctly predicted as positive for both
ADC(3) (arising from the tenth state) and CCSD (a convolution of many states).
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Figure 3.8: ECD (top) and UV/VIS (bottom) spectra of (R,R)-dimethyloxirane
calculated with ADC(2), ADC(3), CC2 and CCSD in the velocity gauge using the
d-aug-cc-pVDZ basis set. The spectra are shifted by +0.92 eV and −0.81 eV for ADC(2)
and ADC(3), respectively, as well as +0.78 eV and −0.07 eV for CC2 and CCSD,
respectively. The rotatory strength is scaled by a factor of 0.5. Experimental data (black
line) for dimethyloxirane are taken from Ref. 164.

Electronic circular dichroism spectra of (R,R)-dimethylthiirane.

The simulated ECD and UV/VIS spectra of (R,R)-dimethylthiirane at ADC and CC levels of
theory using the d-aug-cc-pVDZ basis set comprising the energetically lowest 15 singlet excited
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states are shown in Figure 3.9. Numerical values for the excitation energies, oscillator and rotatory
strengths are collected in Table A.7-A.8) Three main band features, here labeled A, B and C are
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Figure 3.9: ECD (top) and UV/VIS (bottom) spectra in of (R,R)-dimethylthiirane
calculated with ADC(2), ADC(3), CC2, CCSD in the velocity gauge using the d-aug-cc-
pVDZ basis set. The spectra are shifted by +0.5 eV. The rotatory strength is scaled by
a factor of 0.5. Experimental data (black line) are taken from Ref. 178

evident in the experimental gas-phase ECD spectrum of (R,R)-dimethylthiirane. These bands
are again characterised by lone-pair excitations into Rydberg orbitals by both ADC(2) and CC2.
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The spectra at ADC(2) and CC2 level are shifted (by +0.5 eV for each) to correspond to the
experimentally measured lowest excited state at 4.5 eV.

The first rotatory strength exhibits an error of more than an order of magnitude, namely
5.7 (×10−40 c.g.s.) and 4.3 (×10−40 c.g.s.) for ADC(2) and CC2, respectively, compared to the
experimental value of 0.1 (×10−40 c.g.s.). [178] However, this is a weakly active state and as such
experimental limitations may also play a role.

The energetically lowest feature, the A-band, is a convolution of the second to fifth excited
states at the respective levels of theory. The B-band is a convolution of the sixth to eighth
excited state, and the C-band arises from higher-lying excited states above the eighth state. It is
interesting to recognize that the calculated spectra at ADC(2) and CC2 levels could be mistaken
as that of a red-shifted (S,S)-dimethylthiirane, however, this is not the case for the higher order
methods.

At the ADC(3) and CCSD levels of theory the lowest excitation energy remains mostly
unaltered at 4.97 eV and 5.04 eV, respectively. For this transition, ADC(3) yields a rotatory
strength of similar magnitude to that of the experiment, deviating by only ∼10%, however, the
same transition is still overestimated by an order of magnitude using CCSD. For the A-C bands
of the experimental spectrum, excellent agreement is achieved at ADC(3) level of theory with the
A-band being overestimated by a factor of two. Notably, the last band feature, C, is correctly
predicted as negative at ADC(3) level resulting from a convolution of several excited states but
incorrectly predicted as positive using CCSD. For CCSD, however, more excited states may be
needed to correctly reproduce this spectral region.

3.4.3 H2O2 and H2S2

Due to the small size and complex electronic structure, H2O2 and H2S2 have been the subject of
benchmark calculations for various methods. [51,179,180] Previous studies have for instance shown
that the optical rotatory strength depends heavily on the dihedral angle of H2S2 which has been
studied at the CIS level of theory. Here, it was also shown that H2S2 has degenerate excited
states at a dihedral angle of ∼ 90◦ which are poorly described using a HF wavefunction. Later
work evaluated the performance of various density functionals in comparison to MRCI and CC2
calculations. [181] For both H2O2 and H2S2, CC3 and ADC(3) serve as the reference methods
from which the spectral bands features are identified due to the lack of experimental reference
spectra.

Electronic circular dichroism spectra of H2O2.

The simulated ECD and UV/VIS spectra of H2O2 at ADC and CC levels of theory using the
d-aug-cc-pVTZ basis set comprising the energetically lowest 15 singlet excited states are shown
in Figure 3.10. Numerical values for the excitation energies, oscillator and rotatory strengths are
collected in Table A.9-A.10) Five distinct band features, labeled A, B, C, D and E are observed
at ADC(3) and CC3 levels of theory all of which correspond to lone-pair excitations into Rydberg
orbitals.
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Figure 3.10: ECD (top) and UV/VIS (bottom) spectra of at ADC(2), ADC(3) (a),
CC2, CCSD and CC3 (b) in the velocity gauge using the aug-cc-pVTZ basis set for
CC3 and d-aug-cc-pVTZ for all others. The O-O bond has been contracted by 1.8 pm
in (a) (green line).

At ADC(2) and CC2 levels, similar ECD spectra for the energetically lowest 15 singlet states
are apparent. At these levels, the A-band arises from the first electronic excited state with
the excitation energy and rotatory strengths calculated to within 0.03 eV and ∼ 15% of the
corresponding CC3 values. The B-band arises from the second excited state and agrees well
between both ADC(2) and CC2, however the spectra are red-shifted by ∼ 0.5 eV compared to
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CC3. The rotatory strengths of this band at these levels of theory agree to within ∼ 10% with
respect to CC3.The C-band stems from the third excited state with ADC(2) and CC2 yielding
blue-shifted (∼ 0.04 eV) transition energies and rotatory strengths to within ∼10% to those at
CC3 level. However, due to the larger energetic gap between the third and fourth excited state
at the CC3 level, the C-band is overestimated by a factor of two at ADC(2) and CC2 levels.
The D-band corresponds to the fourth excited state where ADC(2) and CC2 yield red-shifted
transition energies (0.4 eV) with rotational strengths calculated to within ∼10% compared to
CC3 level. Lastly, the E-band is caused by the fifth excitation and is red-shifted by ∼ 0.5 eV
with rotatory strengths underestimated by ∼50% and ∼30% for ADC(2) and CC2, respectively,
as compared with CC3. Noticeably, the E-band could be mistakenly interpreted as positive at
the ADC(2) and CC2 levels due to the sixth excitation.

At ADC(3), CCSD and CC3 levels, the first excited state which comprises the A-band has
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Figure 3.11: The four energetically lowest rotatory strengths of H2O2 calculated at the
ADC(3) and CCSD levels of theory using the aug-cc-pVTZ basis set with a contraction
of the O-O bond length.

an excitation energy of 5.95 eV, 6.14 eV and 6.08 eV, respectively. The B-band at ADC(3) and
CCSD levels are blue-shifted by 0.5 eV, compared to ADC(2) and CC2. Conspicuously, at ADC(3)
level, the sign of the transition is positive, whereas at CCSD and CC3 level the same band is
negative. This sign-reversal can be explained by the sensitive dependence of the rotatory strength
on structural parameters, specifically the length of the oxygen-oxygen bond. Contraction of this
bond by 1.8 pm from its MP2 equilibrium geometry (1.452 Å) interchanges the second and third
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excitations, i.e. B ↔ C, at ADC(3) level, see Figure 3.11, which then fall directly into reasonable
agreement with the CCSD and CC3 results (Figure 3.10). An identical contraction leaves CCSD
and CC3 excited states relatively unaltered which clearly demonstrates the unique dependence
on the structural parameters of H2O2 at ADC(3) level. The D and E-bands correspond to the
same excited states as those calculated using ADC(2) and CC2, and agree well between ADC(3)
and CC3, after contraction of the oxygen-oxygen bond.

Electronic circular dichroism spectra of H2S2.

The simulated ECD and UV/VIS spectra of H2S2 at ADC and CC levels of theory using the
d-aug-cc-pVTZ basis set comprising the energetically lowest 15 singlet excited states are shown
in Figure 3.10. Numerical values for the excitation energies, oscillator and rotatory strengths are
collected in Table A.11-A.12. Four band features are present at ADC(3) level labelled A, B, C
and D. At ADC(2) and CC2 levels, the simulated ECD spectra between both methods are very
similar and all bands consist of near degenerate n-Rydberg excited states of alternating sign.

The A-band corresponds to the first and second excited state, the B-band arises from the
third and fourth excited states, the C-band results from the fifth and sixth excited states, all
separated by ∼ 0.02 eV. Lastly, the D-band is a convolution of multiple narrowly separated
higher-lying states.

At ADC(3) and CCSD levels, the A-D bands remain mostly unaltered, with ADC(3) shifting
A, B, C and D by −0.25 eV, −0.10 eV, −0.05 eV and +0.01 eV, respectively. In contrast, a
smaller shift of opposite trend is observed for CCSD with A, B, C and D being shifted by +0.02
eV, −0.04 eV, −0.08 eV and −0.15 eV, respectively.

Of the four states converged at CC3 level, the excitation energy of the A-band is blue-shifted
compared to ADC(3) and red-shifted compared with CCSD, both by 0.1 eV. The rotatory strength
of the transition comprising the A-band is of equal quality for both ADC(3) and CCSD level
with ADC(3) in slightly closer agreement. The CC3 energies of the B-band are blue-shifted by
0.02 eV from ADC(3) and red-shifted 0.09 eV from CCSD with similar rotatory strengths. Using
the ADC(3) and CCSD spectra as references, ADC(2) and CC2 are shown to yield similar results
in reproducing all bands.

3.4.4 (1R)-Camphor, (1R)-norcamphor and (1R)-fenchone

Camphor and its structurally related molecules, norcamphor and fenchone are often used as
molecular standards for ECD calibrations [182–186] and their characteristic ECD and vibrational
circular dichroism (VCD) spectra have been extensively explored. [148,187–190] Until this work
these molecular systems had not been evaluated using high-level ab initio methods. [106] Numerical
values for the excitation energies, oscillator and rotatory strengths calculated at the ADC(2) and
ADC(3) levels of theory for the nine lowest excited states of (1R)-camphor, (1R)-norcamphor
and (1R)-fenchone are collected in Table A.14-A.16.
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Figure 3.12: ECD (top) and UV/VIS (bottom) spectra of at ADC(2), ADC(3) (a),
CC2, CCSD and CC3 (b) levels of theory in the velocity gauge using the aug-cc-pVTZ
basis set for CC3 and d-aug-cc-pVTZ for all others. The rotatory and oscillator strength
is scaled by a factor of 0.25 and 0.5 respectively.

Electronic circular dichroism spectra of (1R)-camphor.

The ECD spectrum of (1R)-camphor in gas phase is fully reproduced using ADC(3)/aug-cc-pVDZ
with the ten lowest lying excited states, as seen in Figure 3.13. The signs of the three energetically
lowest bands (A-C) of the experimental spectrum are all correctly predicted and the simulated
ECD spectral amplitudes likewise are in good agreement.
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| n0| |Ln0|
1 0.04 1.09 109
2 0.27 0.47 99
3 0.31 0.14 82
4 0.20 0.16 116
5 0.36 0.45 92
6 0.22 0.14 54
7 0.22 0.19 98
8 0.37 0.34 90
9 0.28 0.15 56
10 0.20 0.17 172
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Figure 3.13: ECD (top) and UV/VIS (bottom) spectra in the length (solid) and
velocity (dashed) gauges of (1R)-camphor computed at ADC(3) and ADC(2) levels of
theory using the aug-cc-pVDZ basis set. The ten energetically lowest states are used to
plot the spectra. The ADC(3) and ADC(2) spectra have been shifted by -0.32 eV and
-0.08 eV, respectively. The inset table shows the norm of the transition dipole moments
and the angle, θ, between them. Experimental data (black line) are taken from Ref.
187; the UV/VIS spectra are in arbitrary units.

The simulated ECD spectrum are shifted by -0.32 eV to correspond with experiment. The
A-band is caused by the energetically lowest excited state, although a dark state in the UV/VIS
spectrum, it becomes visible in the ECD spectrum due to its large magnetic transition dipole
moment. The rotatory strengths for this band are in excellent agreement with experiment. The
B-band, appears as a vibrationally resolved peak in the experimental spectrum and is calculated
as arising from the second to fifth excited electronic states which match closely in amplitude.
The C-band is a convolution of the sixth to ninth excitations. All excited states correspond to
n-Rydberg excitations.

At the ADC(2)/aug-cc-pVDZ level, A, B and C arise from the same states as those computed
at ADC(3) level with identical signs. The simulated spectrum is shifted -0.08 eV to correspond
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with experiment. The rotatory strength of the peak comprising the A-band, at this level of
theory, matches well with experiment and roughly overestimates ADC(3) by a factor of 2. The
B and C-bands are both red-shifted with respect to experiment by ∼ 0.8 eV and ∼ 1 eV,
respectively. The rotatory strength of B and C is calculated to roughly half and roughly one
quarter, respectively, as those at ADC(3) level.

The UV/VIS spectra calculated at ADC(3) and ADC(2) levels are likewise in good agreement
for the features corresponding to the B-band, labelled ϵexp

1 and ϵexp
2 , as well as the C-band labelled

ϵexp
3 . Here, the relative amplitudes of these bands are excellently reproduced already at ADC(2)

level, with ADC(3) producing a slightly overestimated ϵ
ADC(3)
3 as compared to experiment.

| n0| |Ln0|
1 0.04 1.09 92
2 0.29 0.41 84
3 0.25 0.39 124
4 0.28 0.13 113
5 0.17 0.23 77
6 0.21 0.25 88
7 0.25 0.18 85
8 0.14 0.15 87
9 0.05 0.17 77
10 0.03 0.04 55
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Figure 3.14: ECD (top) and UV/VIS (bottom) spectra in the length (solid) and
velocity (dashed) gauges of (1R)-norcamphor computed at ADC(3) and ADC(2) levels
of theory using the d-aug-cc-pVDZ basis set. The ten lowest states are used to plot the
spectra. The ADC(3) and ADC(2) spectra have been shifted by -0.40 eV and -0.14 eV,
respectively. The inset table shows the norm of the transition dipole moments and the
angle, θ, between them. Experimental data (black line) are taken from Ref. 187; the
UV/VIS spectra are in arbitrary units.
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Electronic circular dichroism spectra of (1R)-norcamphor.

Equally good results are found for (1R)-norcamphor, however, here, excitation energies are
blue-shifted by roughly 0.4 eV, as seen in Figure 3.14. Noticeably, the first band feature A is
weakly positive (+0.3 × 10−40 c.g.s.) in the length gauge and weakly negative (-0.5 × 10−40

c.g.s.) in the velocity gauge at the ADC(3)/d-aug-cc-pVDZ level of theory. This can be attributed
to one-electron basis sets incompleteness as well as the overall small spectral intensity of the
transition. The A-band arises from the first excited state which is again characterized by n-
Rydberg character, as all other computed higher-lying states of norcamphor are as well. The
B-band of the experimental ECD spectrum, is caused by the second vertical excited state and
again aligns excellently with the experimental reference. The sharply positive C-band arises from
a convolution of the third and fourth excited states with vibrational fine structure appearing in
the experimental spectrum. Lastly the D-band arises from convolutions of the fifth to seventh
excited states which are hard to separate.

At the ADC(2)/d-aug-cc-pVDZ level, the A- B- and C-bands are consistently reproduced
as those at ADC(3) level. Here, a shift of −0.14 eV is applied to align with experiment. The
B- and C-bands are both red-shifted by ∼1.0 eV with rotatory strengths roughly half as those
calculated at ADC(3) level. The D-band is not reproduced at the ADC(2) level from the lowest
ten electronic excited states.

The UV/VIS spectra calculated at ADC(3) and ADC(2) levels are here in good agreement
for the features corresponding to the B, C and D-bands; labelled ϵexp

1 , ϵexp
2 and ϵexp

3 , respectively.
Here, the relative amplitudes of these bands are qualitatively reproduced at ADC(2) level, however,
ϵ

ADC(2)
3 is slightly underestimated as compared to ϵADC(3)

3 .

Electronic circular dichroism spectra of (1R)-fenchone.

Lastly, we look at the ECD and UV/VIS spectra of (1R)-fenchone, the constitutional isomer of
(1R)-camphor, shown in Figure 3.15. Unsurprisingly, all computed excited states of fenchone
correspond again to transitions from lone-pair oxygen n-orbitals to Rydberg orbitals. Three main
bands (A-C)are apparent in the experimental spectrum. The A-band is dark in the UV/VIS
spectrum as was the case for (1R)-camphor, however, is clearly visible in the ECD spectrum, again
arising from the energetically lowest excited state which is in good agreement with experiment.
The B-band appears again as a vibrationally resolved peak with a slightly red-shifted shoulder,
as was the case for camphor. At ADC(3) level this band arises from a convolution of the second
to fifth excited states which are further blue-shifted by ∼ 0.4 eV from experiment. The simulated
(broadened and convoluted) ECD spectral amplitude of the B-band is in excellent agreement
with experiment. The C-band arises from a convolution of the eighth excitation and upwards.

At ADC(2)/aug-cc-pVDZ level, the spectrum is shifted by +0.04 eV to align with experiment.
At this level the A-, B- and C-bands are consistently reproduced as those calculated at ADC(3)
level. The rotatory strength of the A-band is within 10% of those at ADC(3) level. The B- and
C-bands are red-shifted by ∼1.0 eV and the rotatory strengths are roughly half of those obtained
at ADC(3) level.

The UV/VIS spectra calculated at ADC(3) and ADC(2), as was the case for (1R)-camphor
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| n0| |Ln0|
1 0.01 1.05 45
2 0.10 0.15 84
3 0.40 0.51 102
4 0.35 0.10 56
5 0.17 0.24 128
6 0.23 0.06 118
7 0.10 0.08 107
8 0.16 0.27 53
9 0.34 0.19 95
10 0.41 0.18 91
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Figure 3.15: ECD (top) and UV/VIS (bottom) spectra in the length (solid) and
velocity (dashed) gauges of (1R)-fenchone computed at ADC(3) and ADC(2) levels of
theory using the aug-cc-pVDZ basis set. The ten lowest states are used to plot the
spectra. The ADC(3) and ADC(2) spectra have been shifted by -0.18 eV and +0.04 eV,
respectively. The inset table shows the norm of the transition dipole moments and the
angle, θ, between them. Experimental data (black line) are taken from Ref. 187; the
UV/VIS spectra are in arbitrary units.

and (1R)-norcamphor, in excellent agreement for the features corresponding to the B, C and
D-bands; labelled ϵexp

1 , ϵexp
2 and ϵexp

3 , respectively. The relative amplitudes of the three bands
are qualitatively reproduced at both ADC(2) and ADC(3) levels of theory as compared with
experiment; with the energetic shifts that we’re evident in the ECD spectra.

3.5 Inclusion of solvent effects

The D-enantiomer of epinephrine (commonly known as adrenaline) is biologically active yet organic
synthesis produces a racemic mixture of both enantiomers. [191] An efficient method to obtain
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Figure 3.16: ECD spectra of L-epinephrine calculated with ADC(2) with and without
PCM in the length (solid spectrum) and velocity (dashed line) gauges using the aug-cc-
pVDZ basis set. Rotatory strengths are in the length gauge. The reference experimental
data (red spectrum) was measured in water and is taken from Ref. 154.

isolated D-epinephrine is via HPLC separation in combination with ECD spectroscopy. [154] To
demonstrate the general ability of this novel ADC implementation to calculate rotatory strengths
for the simulation of ECD spectra of solvated molecules, the solution spectrum of L-epinephrine
in water was computed using a conductor-like PCM for water. [192,193] To explore the solvent
effects of solvated epinephrine thoroughly, one would obviously need to include explicit water
to capture all interactions, however, as a proof-of-concept, the PCM approach suffices. To this
end, the geometry of the L-epinephrine was optimized at CAM-B3LYP/cc-pVTZ level with and
without PCM (the converged geometry in both cases corresponds to the AG1a conformer using
the nomenclature adopted from Ref 194). The ECD spectra of these molecular systems were
then computed at the ADC(2)/aug-cc-pVDZ/PCM(water) and ADC(2)/aug-cc-pVDZ levels of
theory for the five energetically lowest excited states as shown in Figure 3.16. Numerical values
for the excitation energies, oscillator and rotatory strengths are collected in Table A.13.

At these levels of theory, all states included in the spectra are dominated by ππ∗ excitations
with contributions from the oxygen/nitrogen lone pair into π∗- orbitals of the phenyl ring. Two
bands, labeled A and B are seen in the experimental spectrum. The A-band is a weakly positive
band centered around 270 nm and the B-band is a broad negative peak centered around 230
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nm. However, the A-band is not unambiguously assignable in the experiment and may well
correspond to noise. Using the gas-phase geometry at ADC(2)/aug-cc-pVDZ level, the B-band of
the ECD spectrum is clearly reproduced as a convolution of the third to fifth vertically excited
states. The A-band is a convolution of the first two excited states producing an overall negative
band. Including the PCM for water solvation only for the calculation of the spectrum, leads to a
blue-shift of the center of the B-band and drastically alters the computed rotatory strengths,
which falls inline with the experimental spectrum, however, with the A-band again predicted as
weakly negative. Using the PCM for both geometry optimization as well as the calculation of the
ECD spectrum yields a very similar spectrum to that obtained using the gas-phase geometry,
showing that the optimized geometry is only negligibly influenced by solvation. The difference
between the length and velocity gauges for the energetically lowest excited states are as large as
a factor of two but small in absolute terms, owing to the weak absorption, which can already
originate from the incompleteness of the one-particle basis set. For energetically higher states
with higher absorption, the gauges agree acceptably well, with deviations of ∼15%. For all states,
the sign of the rotatory strength remains consistent.

3.6 Summary

Expressions for the calculation of rotatory strength in the length and velocity gauges have been
implemented for the algebraic diagrammatic constructions scheme for the polarization propagator
up to third order. The accuracy of the simulated ECD spectra using the ADC(2) and ADC(3)
schemes has assessed by comparison to the corresponding coupled cluster schemes CC2, CCSD
and, for the smaller systems, also CC3. For that objective, the gas phase ECD spectra of the
R-enantiomers of methyloxirane, methylthiirane, dimethyloxirane, dimethylthiirane, hydrogenper-
oxid, hydrogendisulfide, camphor, norcamphor and fenchone have been computed. Furthermore,
addressing the spectra of molecules in solution, the water spectrum of epinephrine was evaluated
using ADC(2) in combination with the polarizable continuum model.
A strong basis set dependence of the computed rotatory strengths has been observed, in particular
with respect to the inclusion of diffuse orbital functions. However, this owes to the n-Rydberg
excitation character of all transitions studied here, and can be expected to be less prominent
when other chiral organic molecules involving less diffuse n− π∗ and π− π∗ electronic transitions
are investigated.

Not surprisingly, ADC(2) yields rotatory strengths and ECD spectra very similar to those
obtained at the CC2 level. ADC(3) produces spectra similar in quality to CCSD which are both
comparable to CC3. ADC(3) spectra are in better agreement with the experimental ones for
the larger systems studied here, i.e. camphor, norcamphor and fenchone, than for the smaller
molecules. For the purpose of assigning an ECD spectrum to one specific enantiomer, ADC(2)
and ADC(3) are clearly sufficiently accurate. Together they represent an excellent complementary
toolbox for the simulation of ECD spectra which holds promise that the same will also apply for
other chiro-optical properties that will be the subject of future studies.

An important aspect in the simulation of experimental ECD spectra of medium-sized to
large molecules is the influence of molecular environments, as has been shown for the solution
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spectrum of epinephrine where the application of PCM shifted the simulated spectrum. Within
the ADC framework, further different solvation models are available, for example frozen density
embedding, [195,196] effective fragment potentials [197] or polarizable embedding. [198,199] The suit-
ability of these environment models in combination with ADC for the simulation of ECD spectra
should be the focus of future work.





Chapter 4

Excited state electronic circular
dichroism

This chapter deals with excited-state electronic circular dichroism ES-ECD implemented at the
ADC(n) levels of theory. The simulated S1-ES-ECD spectrum of norcamphor, calculated at
ADC(3) level is compared to those calculated at TD-DFT level using various exchange-correlation
functionals. The S1-ES-ECD spectra of camphor and fenchone are also analysed at the ADC(3)
level of theory. Lastly, the ground state ECD and the S1-ES-ECD spectra of 1,1’-bis-2-naphthol
(binol) is analysed at the ADC(2) and CAM-B3LYP levels of theory. This chapter has already
been published as Mikael Scott, Dirk R. Rehn, Patrick Norman, and Andreas Dreuw. “Ab
initio excited-state electronic circular dichroism spectra exploiting the third-order algebraic-
diagrammatic construction scheme for the polarization propagator”, The Journal of Physical
Chemistry Letters, 12(21):5132–5137, 2021. [107]

4.1 Introduction

ECD spectroscopy can in principle be extended to the investigation of excited electronic states
(ES-ECD), in analogy to pump-probe transient absorption spectroscopies, in which excited-state
absorption is measured. [63] Such techniques allow for time-resolved ECD measurements of initially
excited molecules on a sub-picosecond timescale. [60–63]

While experimental setups for probing ES-ECD are still in their infancy and remain techni-
cally quite involved, the theoretical simulation of ES-ECD spectra requires the evaluation of the
Rosenfeld equation (2.86), with the corresponding excited-state wave function Ψi, i ̸= 0, replacing
the ground state wave function Ψ0. When excited-state wave functions are directly accessible, the
corresponding electric and magnetic transition moments can be calculated in a straightforward
manner employing the Rosenfeld equation and the excited-state rotatory strength for Ψi → Ψf

can thus be computed.
An general alternative approach is response theory, where the excited-state wave function

are not required explicitly. The electric and magnetic moments between excited states can then

69
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be extracted from higher-order ground state response functions, [114] for example, as a double
residue of the quadratic response function, which is usually employed within density functional
theory, or alternatively the rotatory strength can be extracted directly from the triple residue of
a cubic response function. [167]

To demonstrate the applicability of this ADC approach, the excited-state rotatory strengths
from the S1 state of the chiral molecules (1R)-camphor, (1R)-fenchone and (1R)-norcamphor
are calculated, due to their excellent agreement of their ground state ECD spectra at ADC(2)
and ADC(3) levels of theory with their reported experimental spectra, as was demonstrated
in Section 3.4.4. Furthermore (R)-binol is chosen due to the strongly absorbing ground state
experimental ECD spectra.

4.2 Computational details

Both the length and velocity gauge ground state and excited-state rotatory strengths at ADC(n)
levels were implemented in a development version of Q-Chem 5.2, [155] as described in Section 2.6.2.
For the TD-DFT rotatory strengths, a locally modified version of Dalton2018 was used. [156]

Dunning basis sets were employed throughout this chapter. [157–160] The origin for the position
operator was set to the center of charge for all calculations. To simulate the ECD spectra, the
computed rotatory strengths are converted from a.u. to 10−40 c.g.s. using the conversion factor
of 471.44 and subsequently broadened by a Lorentzian function according to

∆ϵ(ω) =
∑
n

∆ϵn
γn

(ω − ωn0)2 + γ2
n

(4.1)

∆ϵn = ωRn0

22.94π × 1040, (4.2)

where ∆ϵn is the peak intensity of the n-th transition given in L mol −1 cm−1, Rn0 is the rotatory
strength in 10−40 c.g.s., γn is the Lorentzian broadening factor, ω and ωn0 are the incident optical
frequency and excitation energy in eV.

4.3 Comparison with DFT

This section will start with a comparison of ADC and density-functional theory (DFT) simulated
ES-ECD spectra. Here, quadratic-response density functional theory (QR-DFT) was employed
using Equation 2.101 and calculated using a locally modified version of Dalton2018a. [156] In order
to get a measure of the accuracy of the simulated ES-ECD spectra at these levels of theory, the
ground state ECD spectra is also analysed. Starting with an inspection of the ground state and
S1-ECD spectra of (1R)-norcamphor at different levels of theory, which have been computed at
the equilibrium ground state geometry optimized at DFT/CAM-B3LYP/aug-cc-pVTZ level (Fig.
4.1). Numerical values for the excitation energies, oscillator and rotatory strengths of both the
ground state and excited-state to excited-state transitions are collected in Table B.1.

The computed ground state ECD spectra at DFT levels show the typical shift of the main
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Figure 4.1: (a) Ground state ECD spectra and (b) S1-ECD spectra of (1R)-norcamphor
computed at TD-DFT level with various exchange-correlation functionals as well as the
ADC(3) level using the d-aug-cc-pVDZ basis set. At ADC(3) level, the spectra have
been computed in length (dashed line) and velocity gauge (solid line). The experimental
ground state ECD spectrum (red line) from Ref. [187] is given for comparison. Lorentzian
broadening with a half width at half maximum (HWHM) of 0.124 eV is used to simulate
the spectra.

spectral features with varying amount of non-local orbital exchange from BLYP, [200] B3LYP, [201]

to BHandHLYP [202] and CAM-B3LYP [161] exchange-correlation functionals. [203] The computed
ECD spectra at the BHandHLYP and, in particular, CAM-B3LYP levels agree very favorably with
the experimental one as well as with the one computed at ADC(3) level. The detailed analysis
of the performance of ADC methods in the calculation of the ground state ECD spectra show
ADC(3) can yield a near quantitative accuracy and to reproduce experimental spectral shapes
reliably, as demonstrated in chapter 3. [106] The spectra (of camphor and its related structures)
usually exhibit a small energetic offset, as it is the case for (1R)-norcamphor (Fig. 4.1), however
all major spectral features are reproduced with the correct sign.

The S1 excited state ECD spectrum (S1-ECD) of (1R)-norcamphor computed with DFT
employing different exchange-correlation (xc)-functionals as well as ADC(3) reveals a similar
trend as observed for ground state ECD (Fig. 4.1). The S1-ECD spectra are again blue-shifted
at the DFT level with increasing amounts of non-local orbital exchange. However, the overall
shape of the spectra, in particular, at DFT/CAM-B3LYP and ADC(3) level is very similar, even
though they are energetically slightly shifted by about 0.4 eV. Owing to the fact that these two
conceptually different theoretical methods (CAM-B3LYP and ADC(3)) in the description of the
S1-ECD spectrum of (1R)-norcamphor, as well as its established accuracy in the description of
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ground state ECD gives additional confidence in the accuracy of ADC(3) in the computation of
S1-ECD spectra of organic molecules.

4.4 S1-ES-ECD of camphor, norcamphor and fenchone

To demonstrate the ability of the novel computational functionality, the S1 excited-state ECD spec-
tra of the related molecules (1R)-camphor and (1R)-fenchone were also computed at ADC(3)/aug-
cc-pVDZ and QR-DFT/CAM-B3LYP/aug-cc-pVDZ level due to the overall good agreement
between both methods of the ground state ECD and S1-ECD spectra of (1R)-norcamphor. For
further comparison the excited-state absorption (ESA) spectra at these levels of theory were also
calculated.
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Figure 4.2: S1-ECD and S1-ESA spectra of (1R)-camphor calculated at the ADC(3)
level in velocity (dashed) and length (solid) gauges. Lorentzian broadening with a
HWHM of 0.124 eV is used to simulate the spectra. The ESA spectrum (true color) is
calculated at ADC(3) level in the length gauge; simulated in arbitrary units. The CAM-
B3LYP spectra have been shifted to correspond to the energetically lowest transition at
the ADC(3) level.
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Figure 4.3: S1-ECD and S1-ESA spectra of (1R)-fenchone calculated at the ADC(3)
level in velocity (dashed) and length (solid) gauges. Lorentzian broadening with a
HWHM of 0.124 eV is used to simulate the spectra. The ESA spectrum (true color) is
calculated at ADC(3) level in the length gauge; simulated in arbitrary units. The CAM-
B3LYP spectra have been shifted to correspond to the energetically lowest transition at
the ADC(3) level.

The S1-ECD and S1-ESA spectra comprising transitions into the nine energetically higher-
lying excited states Sn (n = 2−10) calculated at the ADC(3) and QR-DFT/CAM-B3LYP levels of
theory; simulated using a Lorentzian with a HWHM of 0.124 eV of (1R)-camphor, (1R)-fenchone
and (1R)-norcamphor are shown in Figure 4.2, 4.3 and 4.4, respectively. All rotatory and oscillator
strengths for these transitions are shown in Table B.2-B.3. The electronic structure of these
states were analyzed in Chapter 3 and were shown to correspond to electronic transitions into
Rydberg orbitals. For all molecules, the simulated S1-ECD spectra consist of three distinct
regions (G), separated by ≈0.5 eV. The first group G1 arises from the S1 → S2 transition and
is energetically well separated in all spectra from the higher-energy features with an excitation
energy of 2.2 eV. At this level of theory, the rotatory strength of the first feature is negative
for (1R)-camphor and (1R)-fenchone and positive for (1R)-norcamphor. The energetically next
higher distinct spectral feature is G2 which consists of a convolution of three excitations out of
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Figure 4.4: S1-ECD and S1-ESA spectra of (1R)-norcamphor calculated at the
ADC(3) level in velocity (dashed) and length (solid) gauges. Lorentzian broadening
with a HWHM of 0.124 eV is used to simulate the spectra. The ESA spectrum (true
color) is calculated at ADC(3) level in the length gauge; simulated in arbitrary units.
The CAM-B3LYP spectra have been shifted to correspond to the energetically lowest
transition at the ADC(3) level.

S1 into S3, S4 and S5, respectively, with oscillating negative and positive rotatory strengths for
(1R)-camphor, two negative and one positive for (1R)-fenchone and two positive and one negative
for (1R)-norcamphor. In all three molecules, the maximum of G2 is centered around ≈2.7 eV in
the simulated S1-ECD spectra. The third spectral feature centered around ≈ 3.5 eV consistent
for all three molecules and labelled G3 (Figure 4.2-4.4). It corresponds to a convolution of the
electronic transition from S1 into S6 to S10. While the individual electronic transitions have
different signs in the S1-ECD spectrum, for example, in (1R)-fenchone these transitions exhibit
rotatory strengths of +0.9, -0.5, +3.3, -1.5, +1.9 (10−40 c.g.s.) the resulting convoluted peak
has an overall clearly positive sign in the S1-ECD spectrum of (1R)-fenchone. The same holds
true for (1R)-camphor, in which the overall sign of G3 is also positive, while it is negative for
(1R)-norcamphor (Figure 4.4).
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As explained in Section 2.4.2 and shown in Figure 3.3, calculated rotatory strengths using
approximate quantum chemical methods and incomplete one-electron basis sets are well known
to be gauge-variant (origin dependent in the length gauge). [167] For example, the ground state
rotatory strength of the S0 →S1 transition of (1R)-norcamphor calculated at ADC(3)/d-aug-cc-
pVDZ level yields opposite signs in the length and velocity gauge owing to the incompleteness of
the basis (Figure 3.13b). One may assume the gauge dependence to be amplified for ES-ECD,
however, this is not the case, as the simulated S1-ECD spectra in length and velocity gauges
agree generally well (Figure 4.1-4.4). One noticeable and at the same time typical exception is the
S1 →S3 electronic transition of (1R)-norcamphor for which an overall very small and positive or
negative sign is computed in the length and velocity gauge, respectively, which we also attribute
to basis set incompleteness.In general, the differences between the length-velocity gauges is found
to be on the same order of magnitude for the excited state (S1) rotatory strength as for the
ground state one.

4.5 S1-ES-ECD of 1,1’-bis-2-naphthol (binol)

Another prominent test case for theoretical methods to simulate ECD spectra is 1,1’-bis-2-
naphthol (binol), for which ground state as well as excited-state circular dichroism has been
investigated earlier. [60,61,204] It has been observed experimentally and verified by calculations that
the two naphtol moieties exhibit a significant rotational barrier making binol an axially chiral
compound. [205] The enantiomers are called atropoisomers and specified by the stereodescriptors
P/M or Ra/Sa. Interestingly, the binol enantiomers undergo a conformational change in the
excited state, switching from an orthogonal conformation of the two moietes to a cisoid or
transoid conformation with the transoid being slightly more preferred. [204] As starting point
for the simulation of the ground state and S1 excited-state ECD spectra, we optimized the
structure of (Ra)-binol using standard DFT in combination with the CAM-B3LYP functional and
the aug-cc-pVTZ basis set and a polarizable continuum model (PCM) for EtOH solution. We
restricted ourselves to the energetically most favorable conformer (I1,R adopting the nomenclature
used in Ref. [206]) and subsequently computed the 20 energetically lowest electronic excited states
at the second-order ADC (ADC(2)) level and TDDFT/CAM-B3LYP using the cc-pVDZ basis
set.

The rotatory strengths for the S0 → Sn (n=1–20) and S1 → Sn (n=2–20) transitions
were calculated and the ground-state ECD and S1 excite-state ECD spectra constructed using
Lorentzian broadening with a half width at half maximum of 0.2 eV, shown in Figure 4.5 and 4.6,
for the ground state and S1-excited state spectra, respectively.

Again, the simulated ECD spectra at both levels of theory agree very favorably with the
experimental spectrum measured in EtOH solution. The main features of the experimental
ground-state ECD spectrum are clearly identifiable after a shift of -0.6 eV is applied to the
calculated excitation energies. [207] For (Ra)-binol, a very small, only slightly positive band a1

is visible in the low-energy region of the experimental spectrum. At both levels of theory this
small positive feature is reproduced and identified to originate from the two energetically lowest
excited states that are nearly degenerate with ππ∗ character and which possess opposite rotatory
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Figure 4.5: ECD (top) and UV/VIS spectrum (bottom) of (R)-binol computed at
ADC(2)/cc-pVDZ (black) and CAM-B3LYP/cc-pVDZ (green) levels of theory in length
(solid) and velocity (dashed) gauges. Lorentzian broadening of HWHM of 0.20 eV is
applied to simulate the spectra. The UV/VIS spectrum is in arbitrary units and the
experimental (red) line is from Ref. [61].

strengths. In the molecular orbital representation, the S1 and S2 states are best characterized
as electronic transitions from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO) as well as from the HOMO-1 to the LUMO+1, respectively
(Figure 4.7).

The first significant feature of the experimental ECD spectrum is a sharp negative band a2

at ≈ 5.25 eV. At both theoretical levels this feature is well reproduced. At ADC(2) level, it arises
from a convolution of electronic transitions into S7 and S8, which both exhibit ππ∗ character.

The rotatory strength of the S0 → S7 and S0 → S8 transitions are calculated to −1092
(×10−40 c.g.s.) and −227 (×10−40 c.g.s.) in the length gauge, respectively. The next band a3 at
≈ 5.5 eV in the experimental spectrum is a rather sharp peak, which according to our calculations
arises from a convolution of electronic transitions into S9 and higher excited states with the most
significant peak arising from the S0 → S12 with a rotatory strength of 407 (×10−40 c.g.s.) in the
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Figure 4.6: S1-ECD (top) and corresponding ESA spectra (bottom) of (R)-binol
computed at ADC(2)/cc-pVDZ (black) and CAM-B3LYP/cc-pVDZ (green) levels of
theory in length (solid) and velocity (dashed) gauges. Lorentzian broadening of HWHM
of 0.20 eV is applied to simulate the spectra. The ESA spectra are in arbitrary units.

length gauge.
The S1-ECD spectrum has been simulated at ADC(2)/cc-pVDZ as well as TDDFT/CAM-

B3LYP/cc-pVDZ level for the electronic transitions S1 → Sn (n=2-20). The energetically lowest
transition is of course S1 → S2, which has an excitation energy of 0.02 eV, which corresponds to
an absorption wavelength in the far-IR around 60 µm, owing to the near degeneracy of the S1 and
S2 excited states. There are several other energetically low-lying transitions S1 → Sn (n=3–6)
with absorption wavelengths in the near IR region between 1000 and 2000 nm (Figure 4.6), which
are responsible for the overall positive tail of the simulated S1-ECD spectrum of (Ra)-binol in
that spectral range. In the visible and UV region, it shows three distinct features. The first band
b1 with negative rotatory strength is centered around ≈775 nm, and results from the S1 →S7

transition according to our ADC(2) as well as CAM-B3LYP calculations. The second band, b2

arises from the S1 →S11 and S1 →S12 transitions with rotatory strengths of 41 (×10−40 c.g.s.)
and 14 (×10−40 c.g.s.) and absorption wavelengths calculated as 713 nm and 703 nm respectively.
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Figure 4.7: Canonical molecular orbitals of (R)-binol computed at Hartree-Fock/cc-
pVDZ level of theory.

The third band b3, a positive peak arise from a convolution of the transitions S1 →Sn (n=13–20),
with two sharp opposite-signed near-degenerate peaks S1 →S15 and S1 →S16 canceling out and
producing an overall positive band.

A comparison of our simulated excited-state ECD spectra of (Ra)-binol to experimental ones
would be highly desirable, however the existing experiments [60,61,204] demonstrate the usefulness
of time-resolved ECD and report changes in ECD signal at selected absorption wavelengths only
and not complete ES-ECD spectra. This renders a comparison to experiment impossible at
present impossible.

4.6 Summary

In conclusion, it is reassuring that the results of the TD-DFT/CAM-B3LYP and ADC calculations
agree well for the ES-ECD spectra of (R)-binol. This gives great confidence in the accuracy of both
computational schemes which can, for organic compounds with single-reference electronic ground
states, be expected to be similar to the one observed for ground-state ECD spectra. Furthermore,
our findings emphasize the relevance of computational methods in the investigation of chiral
compounds. They represent a straightforward means to determine the absolute configuration, but
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much more, with the help of the presented methodology time-resolved pump-probe experiments
with circularly polarized light can be reliably simulated and chiral reaction paths followed. With
this contribution we hope to trigger further experimental work in that direction.





Chapter 5

Two-photon circular dichroism

In this chapter, expressions for the two-photon rotatory strength within the ADC/ISR formalism
as described in Section 2.6.3 are used to simulate the TPCD spectra of S-methyloxirane and
S-methylthiirane at the ADC(2) level. These are then compared to those same spectra at CC2
level. Furthermore, the one- and two-photon circular dichroism spectra of twisted biphenyl are
investigated at the ADC(2) level of theory. Lastly, the TPCD spectra of (1R)-norcamphor at
ADC(2) and ADC(3) level is used to illustrate the impact different polarization and propagation
configurations available to experimentalist.

5.1 Introduction

The linear ECD and its time-resolved nonlinear counterpart ES-ECD have been explored in
Chapter 3 and Chapter 4, respectively. Similar to ECD, TPCD involves the absorption of
circularly polarized light, however, here involving the simultaneous absorption of two photons
with at least one being circularly polarized. [32] The interest in nonlinear optical processes and
specifically those involving two photons has been increasing over the last few decades due to
its applicability in prodrug activation where molecular systems function as carriers of inactive
drugs which upon irradiation of two-photons, releases the drug making it bioactive. Several such
molecular systems have been developed over the past decades and are referred to as two-photon
caging compounds, or photo-removable protecting groups (PPGs). [208–215] Another major area
where NLO and TPA in particular are employed is two-photon fluorescent probes where the aim
is to develop diagnostic tools for Alzheimer’s disease. [216] Beyond these medicinal applications,
TPA is used in the manufacturing of computer components, e.g., optical data storage and 3D-
microfabrication. [217–222] These applications exploit the high temporal and spatial resolution
afforded by the TPA process and, in the case of in vivo applications, using “safe” radiation in the
infra-red region. The extension to include chiroptical properties in addition naturally follows with
TPCD spectroscopy where all the spatial and temporal benefits of TPA are combined with the
absolute stereochemistry information carried over from ECD, yielding unique TPCD spectra for
different enantiomers. As was the case for ECD, the TPCD rotatory strength also exhibits origin-
dependence when using the length formulation, however, producing origin-independent TPCD

81
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rotatory strengths is even more complex owing to the NLO process. Instead of just one velocity
gauge formulation, three origin-independent velocity gauge formulations have been developed,
referred to as the ω1, ω3 and translationally invariant (TI) equation. All three formulations have
been studied at the TD-HF level of theory, [78,79] and the TI equation has been employed at the
CC2 level of theory. [83] Neither of the formulations have been used within the ADC/ISR scheme,
which is the goal of this work. Specifically, the calculation of the TPCD rotatory strength has
been implemented at the ADC(2) and ADC(3) levels of theory.

5.2 Computational details

The derivation of the ω0, ω1 and ω3 formulation two-photon rotatory strengths within the
ADC/ISR formalism, were presented in Section 2.6.3 which resulted in Equations 2.191-2.193.
These three formulations were implemented in a development version of Q-Chem 5.2 [155]. The
rotatory strengths were convoluted using a Lorentzian or Gaussian function, g(ω), to simulate
the spectra according to,

∆ϵ(ω) = 471.211 · ω · g(ω)fROP (10−40 c.g.s), (5.1)

δTPCD(ω) = 4.87555 × 10−5 · ω2 · g(2ω)fRTP (GM). (5.2)

Here ROP and RTP denote the one and two-photon rotatory strength of the f -excited state in
atomic units. The ground state geometries of S-methyloxirane and S-methylthiirane are taken
from Ref. 83. Biphenyl was optimized at the CAM-B3LYP/cc-pVTZ level and norcamphor at
the CAM-B3LYP/aug-cc-pVTZ level. The origin of the position operator was set to the center of
charge for all length gauge calculations.

5.3 Two-photon circular dichroism at ADC and CC levels

While TPCD has been explored at TD-HF, TD-DFT, CC2 and CCSD levels of theory, a relatively
limited amount of molecular systems have been investigated. [78,79,83] For comparison purposes,
the TPCD spectra at the ADC(2) level of theory of S-methyloxirane and S-methylthiirane
were calculated and compared with the same spectra calculated at the CC2 level of theory. [83]

Starting with S-methyloxirane, for the six energetically lowest singlet states computed at the
ADC(2)/aug-cc-pVDZ level, there is excellent agreement with those reported in literature at the
CC2/aug-cc-pVDZ level where the translation invariant (TI) formulation of the rotatory strength
has been used, as seen in Figure 5.1. These spectra are convoluted using a Gaussian function
with a HWHM of 0.02 eV; the peaks are well separated and the energies of each excited state are
in close agreement between ADC(2) and CC2. The peaks labeled In (n = 1, 2, 3, 4, 5) agree in
sign for all gauges with the exception of I5 which is calculated as negative in the ω3 formulation.
This good agreement between the three formulations indicates that aug-cc-pVDZ is an adequate
basis set for methyloxirane (although, as seen in Section 3.4.4, extra diffuse functions are needed
at the ADC(2) level of theory to correctly predict the sign of the rotatory strength of the second
excited state). When comparing the ECD spectrum to the TPCD spectrum, there is an almost



5.3 Two-photon circular dichroism at ADC and CC levels 83

0.8

0.4

0.0

0.4

0.8

1.2

1.6

2.0

TP
CD

 (a
rb

. u
nit

s)
(a).  TPCD/ECD of S-methyloxirane

I1

I2

I4

I3

I5

TPCDTPCD

0  : ADC(2)
1  : ADC(2)
3  : ADC(2)

TI: CC2

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

TP
CD

 (a
rb

. u
nit

s)

(b).  TPCD/ECD of S-methylthiirane

II1

II2

II3

II4

II5

TPCD

160 165 170 175 180 185 190 195
absorption wavelength (nm)

120

80

40

0

40

80

120

160

 (a
rb

. u
nit

s)

I1

I2

I3

I4
I5

ECDECD

ADC(2)
CC2

192 200 208 216 224 232 240 248
absorption wavelength (nm)

60

45

30

15

0

15

30

45

60
 (a

rb
. u

nit
s)

II1

II2
II3

II4

II5

ECD

Figure 5.1: Simulated TPCD and ECD (length gauge) spectra of (a) S-methyloxirane
and (b) S-methylthiirane. Computed at the ADC(2)/aug-cc-pVDZ level of theory in
the ω0, ω1 and ω3 formulations for the six energetically lowest singlet excited states and
convoluted using a Gaussian function with a HWHM of 0.02 eV. The CC2-TI values
were taken from Ref. 83. The ADC(2) spectra have been shifted to correspond to the
energetically lowest excited state of CC2, +0.14 eV for methyloxirane and +0.06 eV for
methylthiirane, respectively.

direct reversal of signs of the rotatory strengths. Furthermore, I3 is a dark-state in ECD but is
present as a small peak in the TPCD spectrum.

For S-methylthiirane, the results are equally consistent for the first five states which produce
near identically two-photon rotatory strengths for ADC(2) and CC2, with the somewhat significant
exception of II1 and II4 which deviate for the ω3 formulation, as was the case for I5 (ω3) of
methyloxirane. Beyond these exceptions, all three formulations are in good agreement which
indicate that the aug-cc-pVDZ basis set is adequate to achieve consistency between the gauges
(ω0, ω1, ω3) concerning methylthiirane. Comparing the TPCD spectrum with the ECD spectrum
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reveal a reversal of rotatory strengths signs of the IIn (n = 3, 4, 5) peaks, although the ratio
between the peaks remain mostly unaltered.

5.4 Two-photon circular dichroism of biphenyl chromophores

Figure 5.2: Biphenyl chromophores for carboxylic acids.

Biphenyl chromophores have been used as chirality probes for the assignment of the absolute
configuration of 2-substituted chiral carboxylic acids by amide derivatization. [223] Attachment
of biphenyl to a 2-substituted carboxylic acid, twists the phenyl moieties with a P/M torsion
depending on the substituents on the Cα (O=C-Cα), with larger substituents being sterically
hindered from approaching the phenyl ring and therefore leading to a specific torsion, illustrated
in Figure 5.2. Furthermore, aromatic substituents are favorably attracted to the phenyl ring
due to π − π∗ interactions. While direct assignment of an carboxylic acid enantiomer is in
principle straightforward by ECD, the weak band arising from the n− π∗ transition introduces
uncertainty in measurements. A benefit of this attachment approach is the strong absorbance
and ECD signal in the 250 nm region (A-band) and the characteristic P/M torsional-dependent
ECD spectra. The diphenyl moiety exhibits a low rotational barrier of around ∼ 14 kcal/mol,
allowing for the thermodynamically most favorable conformation to be the major product at
room temperature. [224]

Thus, to test this novel TPCD implementation within the ADC/ISR formalism, biphenyl in
its application as a chirality probe represent an excellent starting point. To this end, the ground
state geometry of biphenyl was optimized at the CAM-B3LYP/cc-pVTZ level of theory, resulting
in an relaxed torsion angle of ≈ ±40◦ for the P and M conformer, respectively. Subsequently, using
the optimized geometry of the M enantiomer as a starting point, the ECD spectra comprising
the ten energetically lowest singlet excited states of biphenyl as a function of the torsional angle
(5◦ < θ < 45◦) was computed in an unrelaxed scan, Figure 5.4. The spectra can be divided
into two main regions, the A-band (200 - 250 nm) and the B-band (180 - 200 nm). At this
level of theory, the A-band arises solely from the three energetically lowest singlet excited states.
Moreover, there is a clear dependence on the torsional angle which impacts the intensity of the
A-band in a linear manner up until 45◦. The absorption maximum of this band is blue-shifted with
increasing torsional angle. The energetically higher B-band, shows similar features to the A-band,
namely the ECD signal is strongly dependent on the torsional angle, reaching a minimum around
40◦, with the excitation energies likewise blue-shifted. While the A-band is clearly distinguishable
in the ECD spectrum, one should keep in mind that due to the low rotational barrier, a mixture
of P/M will always be present in the experimental spectra yielding weaker signals.
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Figure 5.3: ECD spectra of biphenyl twisted along its torsional angle 5◦ < ϕ < 45◦

(M ) calculated at the ADC(2)/cc-pVDZ level of theory for the ten energetically lowest
singlet excited states. The spectra are convoluted using a Lorentzian function with a
HWHM 0.124 eV.

Next, the TPCD spectra were computed at ADC(2)/cc-pVDZ level of theory. Here, the
A-band consist of a sinusoidal signal situated in the visible energy range, around 500 nm, with
the energetically lowest peak reaching a maximum when the torsional angle is around 22.5◦.The
B-band is now centered at 350 nm with the TPCD signal increasing linearly with the torsional
angle.
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Figure 5.4: TPCD spectra of biphenyl twisted along its torsional angle 5◦ < ϕ < 45◦

(M ) calculated at the ADC(2)/cc-pVDZ level of theory for the ten energetically lowest
singlet excited states. The spectra are convoluted using a Lorentzian function with a
HWHM 0.124 eV.

5.5 Polarization-propagation impact on the two-photon
rotatory strength

The ECD and ES-ECD spectra of norcamphor and its related compounds camphor and fenchone
were intensively investigated at ADC(2) and ADC(3) levels of theory in Chapter 3 and 4. [106]

Due to the overall excellent agreement with the experimental gas-phase ECD spectra and those
calculated at ADC(3) level of theory, norcamphor represent a good model-system to evaluate
TPCD spectra. Specifically, to illustrate the impact different setups have on the simulated TPCD
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Figure 5.5: The impact of polarization and propagation (b1, b2 and b3) on the TPCD
spectra of (1R)-norcamphor at the ADC(2) and ADC(3) levels of theory using the
aug-cc-pVDZ basis set simulated using a Lorentzian function with a HWHM of 0.124
eV.

spectra, the TPCD spectra of norcamphor comprising the eight energetically lowest singlet excited
states was computed at the ADC(2) and ADC(3) levels of theory using the aug-cc-pVDZ basis
set. The seven different polarization-propagation setups listed in Table 2.5 were then used to
simulate the resulting TPCD spectra, shown in figure Figure 5.5. As seen in this figure, using
the common setup of two left circularly polarized lightwaves propagating parallel produces the
strongest absorbing ADC(2) and ADC(3) spectra (top-left). Using the same polarization but with
the two photons propagating antiparallel (top-middle) produces spectra of similar two-photon
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absorption intensity, but with sign reversal of the last peak. Next, with the same polarization
yet with the photons propagating perpendicular (top-right) yields a near identical spectra as for
parallel propagation, but with an two-photon absorption intensity of roughly half the magnitude.
The middle-left and middle-middle spectra are obviously just the same spectra as those of the
top-left and top-middle at half the magnitude. The other middle-right and lower-left likewise
exhibit the same features as those of top-left and top-right, respectively. The dominant terms in
Equations. 2.139-2.156, for the majority of peaks in the spectra are the B1 and B2 terms, with
small quadrupole-electric dipole interactions in the strongly absorbing at ∼ 180 nm.

5.6 Summary

The calculated TPCD spectra at the ADC(2) level compares favorably to those calculated at
the CC2 level, as shown for the S-methyloxirane and S-methylthiirane molecules. Furthermore,
biphenyl chromophores provides an interesting test case for experimental verification of computed
TPCD spectra, as well as a promising area for further development of chirality probes using the
TPCD process. As demonstrated at the ADC(2) level, biphenyl exhibit strongly absorbing TPCD
bands in the one-photon visible range, thus accessible to standard spectroscopic measurement
techniques. Furthermore, the use of different polarization and propagation configurations for the
experiment can be easily included in the calculated two-photon rotatory strength. While TPCD
remain experimentally challenging, this work extends the theoretical toolbox at an ab initio level
for evaluation of two-photon rotatory strengths.



Chapter 6

Hyperpolarizability and higher
harmonic generation

In this chapter the expressions for the static and dynamic first-order hyperpolarizability tensor
within the ADC/ISR described in Section 2.6.4 are used to compute the static β at ADC(1),
ADC(2) and ADC(3) levels of theory. Furthermore, these are then compared against those
same quantities at CCS, CC2 and CCSD levels of theory for several small organic and inorganic
molecules. Next, the dynamic first-order hyperpolarizability response or SHG signal of several
small organic molecules calculated at ADC(n) levels are compared with experimentally measured
values. Lastly, the dynamic HRS spectra of ammonia calculated at the ADC(2) and ADC(3)
levels of theory are briefly discussed.

6.1 Introduction

The field of nonlinear optics NLO was pioneered by Maria Goeppert in the 1930s, [225] however
experimental demonstration required high-intensity light and hence wasn’t possible until the
advent of the laser in the 1960s. [226] NLO has since grown into a promising field in physics
which investigates the induced polarization in a material as the nonlinear response to an applied
electric field. At the microscopic level, the interaction of a molecular system and an oscillating
electromagnetic field may be described semi-classically, within the electric dipole approximation,
the interaction Hamiltonian takes the form, [227]

Hint = µ⃗ · E⃗, (6.1)

where µ⃗ is the molecular electric dipole moment. The induced dipole moment may then be
expressed as a power series of the electric field strength where the perturbation is orders of
magnitudes lower than the interatomic electric field,

µ⃗i = µ⃗0
i + α⃗ijE⃗j + β⃗ijkE⃗jE⃗k + γ⃗ijklE⃗jE⃗kE⃗l + . . .︸ ︷︷ ︸

NLO

, (6.2)

89
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where E⃗j is the electric field strength, µ⃗0
i is the static dipole moment, α⃗ij is the linear polarizability

(zeroth order hyperpolarizability), β⃗ijk is the first-order hyperpolarizability and γ⃗ijkl is the
second-order hyperpolarizabilitiy. The first hyperpolarizability, β, incorporates SHG, differential
frequency generation (DFG), sum-frequency generation (SFG) and optical retification (OR).
Similarly, third harmonic generation (THG), two-photon absorption TPA and more are captured
by the second-order hyperpolarizabilitiy, γ⃗ijkl.

SHG has found wide use, of particular importance is the application of bio-imaging where
SHG microscopy is used to investigate cancer, cardiovascular and fibrotic diseases. [228–232] A
major benefit of using NLO in bio-imaging is the spatial and temporal resolution afforded by
the method, as well as the minimal noise from bulk material. One method is to use organic
dyes to enhance contrast in tissue imaging by exploiting SHG. [233] There is naturally a need
to find and develop molecular system with large first-order hyperpolarizabilities suitable for
this purpose as well as a general need of finding molecular systems with specific nonlinear
optical properties for uses in other applications e.g. 3D data storage, signal processing and
microfabrication, and other uses in biology. [98–104] The classical systems which demonstrates large
first-order hyperpolarizabilities are those of a push-pull character, e.g. paranitro-aniline (pNA)
where electron withdrawing and donating groups are positioned opposite on a phenylring. [234–248]

Furthermore, a recent source of novel molecular systems that’s starting to be exploited is that of
marine natural products (MNP) which are produced by marine microorganisms for particular
cellular functions that exhibit interesting nonlinear optical properties. [249–251]

The first-order hyperpolarizability, β, at SHG frequency conditions is commonly measured
using the electric-field induced second harmonic electric-field-induced second-harmonic generation
(EFISH) experimental method. [252] Another method which is frequently employed is measuring
hyper-Rayleigh scattering HRS. [253–258] HRS generates a non-vanishing signal even in bulk,
allowing for β to be measured in liquids. [259–269] The central differences of SHG and HRS is that
the signal in the case of SHG is anisotropic, coherent and in phase, whereas for HRS the signal is
isotropic, incoherent and dephasing with the exciton photon. [105]

The development of theoretical frameworks in the calculation of hyperpolarizabilities are
important since they allow for the prediction of nonlinear optical properties in silico. In the pursuit
of this aim several approaches to calculate the first-order hyperpolarizability are available with
the common methods being the finite field finite field (FF) method, [270,271] sum-over-states (SOS)
method and the response function (RF) formalism. [272,273] In the finite field method, molecular
properties, e.g., the dipole moment, polarizability and first-order hyperpolarizability, are identified
as derivatives of the total molecular energy in the presence of a static uniform electric field, which
are evaluated at zero field strength. This method does not require a wave function and are thus
accessible to electronic structure methods that only provide the energy, e.g. MP2, CASPT2
and CCSD(T) etc. These partial derivatives may then be computed using the finite difference
formula. The SOS method can be applied to any quantum chemistry method where excited-state
properties (dipole moments) as well as excitation energies are accessible. Here, the state-to-state
transition elements and excitation energies are used to form the hyperpolarizability explicitly in
the SOS expression. This approach has the benefit of revealing the individual contribution of
each excited state to the hyperpolarizability at a given frequency. The SOS method is however
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computationally intractable for molecular systems with large numbers of excited states. Lastly,
the RF formalism where a full diagonalization of the molecular Hamiltonian yields the equivalent
to including all excited states in the SOS method. At the ab initio level the RF has been employed
using CC to calculate static and dynamic first- and second-order hyperpolarizabilities at the
CCS, CC2, CCSD, CCSD(T) and CC3 levels of theory. [59,64,274–287] For very large molecular
systems density functionals have been employed, however early developed functionals were often
inadequate in the description of hyperpolarizabilities. [288–306]

The RF formalism is employed in this ADC implementation that will be evaluated in the
following sections.

6.2 Computational details

The first-order hyperpolarizability tensor, expressed within the ADC/ISR formalism, Equa-
tion 2.198, was solved using a DIIS algorithm as described by Equations 2.199-2.201 as imple-
mented in a development version of Q-Chem 5.2. [155] The same quantities calculated at CC levels
were performed in a locally modified version of Dalton2018a using the CC-QR module. [156] The
Dunning basis sets were employed throughout this work. [157–160]

The geometries of the molecular systems investigated in the two following sections were
optimized at different levels of theory depending on the system size. For the comparison of static
first-order hyperpolarizabilities, the inorganic molecules were optimized at the CCSD/aug-cc-
pVTZ level and for the organic molecules in the same section CCSD/cc-pVTZ was used. For
the comparison of dynamic first-order hyperpolarizabilities (SHG) with experiment, CCSD/aug-
cc-pVTZ was used. Furthermore, in the static case, the alignment of the molecules of their
permanent dipole moment with the positive z-axis was not always performed, since here only
methods are compared. As such, for the comparison of CC values, the sign of the isotropic
hyperpolarizability should be viewed as not important. However, when the calculated βSHG is
compared with experiment, all molecules are aligned with the permanent dipole moment in the
z-axis.

(Inorganic) HX

(1) (2) (3) (4) (5)

Figure 6.1: HF, HCl, HBr, H2O and H2S chemical sketches.

(Inorganic) NaX
(6) (7) (8) (9) (10)

Figure 6.2: NaF, NaCl, NaBr, NaOH and NaSH chemical sketches.
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(Inorganic) LiX
(11) (12) (13) (14) (15)

Figure 6.3: LiF, LiCl, LiBr, LiOH and LiSH chemical sketches.

(Inorganic) H2SOx

(16) (17) (18) (19)

Figure 6.4: H2SO4, H2SO3, H2SO2, H2SO, H3BO3 and H3PO4 chemical
sketches.

(Inorganic) H3PO4 and H3BO3

(20) (21)

Figure 6.5: H3BO3 and H3PO4 chemical sketches.

(Inorganic) HNOx and N2O

(22) (23) (24) (25)

Figure 6.6: HNO, HNO2, HNO3 and N2O chemical sketches.
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(Inorganic) HNSx and N2O

(26) (27)

(28)

(29)

Figure 6.7: HNS, HNS2, HNS3 and N2S chemical sketches.

(Organic) Hydrocarbons ketones

(30) (31) (32)

(33) (34)
(35)

(36)
(37)

(38)

(39)

Figure 6.8: H2CO, H5C2O, H6C3O, H2O3C, C2O4H2, C2O2H4, COH4, C2OH6,
C2NH3 and CO chemical sketches.
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(Organic) Heterocycles

(40) (41) (42)

(43) (44) (45)

(46)

(47)
(48)

(49)

(50)

(51)

Figure 6.9: Furan, thiopenthene, pyrrole, imidazole, thiozole, thiadiazole,
thiazole, dioxolane, isothiazole, 3-pyrroline, oxadiazole and oxazole chemical
sketches.



6.3 Static first-order hyperpolarizability tensor at ADC and CC levels 95

Halomethane

(52)
(53)

(54)

(55)

(56)
(57) (58) (59)

(60)
(61)

Figure 6.10: CFH3, CFCl3, CF2H2, CH3Cl, CH2Cl2, CF3Br, CF3H, CHCl3,
CF2Cl2 and CF3Cl chemical sketches.

6.3 Static first-order hyperpolarizability tensor at ADC
and CC levels

The molecules examined below are divided into an inorganic and organic category.

6.3.1 Inorganic molecules

Starting with the inorganic series HX, X=(F, Cl, Br, OH, SH), at ADC and CC levels of theory
using the aug-cc-pVTZ basis set. For all molecules, ADC(1), ADC(2), ADC(3) and CCS, CC2
and CCSD produce similar βαβγ values, indicating that the first-order hyperpolarizability is
already well described using a lower-order method, as seen in Figure 6.11.

For the series NaX, X=(F, Cl, Br, OH, SH), at ADC and CC levels using the aug-cc-pVTZ
basis set, there is again good agreement between the pairs ADC(1)/CCS, ADC(2)/CC2 and
ADC(3)/CCSD, as seen in Figure 6.12. However, the second-order methods heavily overestimate
β for NaF and NaOH, and the lowest-order methods ADC(1) and CCS tend to underestimate
these same components.

For the series LiX, X=(F, Cl, Br, OH, SH), at ADC and CC levels using the aug-cc-pVTZ
basis set, the results are showing all the features evident for the NaX series, as could be expected,
as seen in Figure 6.13.
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Figure 6.11: Components of static β at ADC and CC levels using the aug-cc-pVTZ
basis set of HF, HCl, HBr, H2O and H2S (Fig. 6.1).

For the H2SOx, x=(1,2,3,4) series, ADC and CC methods compare favorably, with ADC(3)
and CCSD producing near equivalent first-order hyperpolarizabilities for all systems included.
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Figure 6.12: Components of static β at ADC and CC levels using the aug-cc-pVTZ
basis set of NaF, NaCl, NaBr, NaOH and NaSH (Fig. 6.2).

For the series HNOx, x=(1,2,3), there is equally good agreement between ADC and CC for
the static β, as seen in Figure 6.15, with the somewhat noticeable exception of βzxx of HNO2 at
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Figure 6.13: Components of static β at ADC and CC levels using the aug-cc-pVTZ
basis set of LiF, LiCl, LiBr, LiOH and LiSH (Fig. 6.3).

ADC(2) level which is heavily overestimated (-17.7 a.u.) as compared to the same component
at CC2 level (-3.4 a.u.). Although, when comparing the isotropic value at these same levels of
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Figure 6.14: Components of static β at ADC and CC levels using the aug-cc-pVTZ
basis set of H2SO4, H2SO3, H2SO2 and H2SO, H3BO3 and H3PO4 (Fig. 6.4 and 6.5).

theory, ADC(2) is in closer agreement to both ADC(3) and CCSD as compared to CC2.
Another case is that of N2O, where ADC(2) heavily overestimates βzzz, calculating it to
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Figure 6.15: Components of static β at ADC and CC levels using the aug-cc-pVTZ
basis set of HNO, HNO2, HNO3 and N2O (Fig. 6.6).

about twice as large as the same value at CC2 level, resulting in an isotropic value that is likewise
twice as large as at CC2 level.

For the similar series HNSx, x=(1,2,3), near identical trends emerge, as seen in Figure 6.16.
For HNS, ADC(2) βzzz is roughly twice as large as at CC2 level, calculated to 53.6 a.u. compared
to 24.7 a.u., although the isotropic values are in better agreement at 85.5 a.u. compared to 64
a.u. Overall, β at ADC levels of theory are slightly overestimated compared to the same values
at corresponding CC levels. For HNS2, there is good enough agreement between the methods to
elude discussion.

For HNS3, β at ADC levels is again overestimated compared with corresponding CC level.
Here, βzzz at CC2 level is calculated to 10.3 a.u., whereas at ADC(2) level it is calculated to
-69.7 a.u. While this is clearly a nontrivial difference, the isotropic values are in fact in excellent
agreement at 23.1 a.u. and 22.7 a.u. at CC2 and ADC(2) level, respectively.
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Figure 6.16: Components of static β at ADC and CC levels using the aug-cc-pVTZ
basis set of HNS, HNS2, HNS3 and N2S (Fig. 6.7).

As was the case N2O, β of N2S at ADC(2) level of theory is heavily overestimated, due to
the similarity between the molecules.

6.3.2 Organic molecules

For the organic molecules, the trends are identical to those discovered for the inorganic molecules,
i.e., the ADC method produces equivalent first-order hyperpolarizabilities as those at correspond-
ing CC levels.

In summery, for most molecules, the trend ADC(1)-ADC(2)-ADC(3) mirrors the trend of
the series CCS-CC2-CCSD for the calculated static βαβγ component. As could be expected, the
pairs ADC(1)/CCS, ADC(2)/CC2, ADC(3)/CCSD are generally in closest agreement, due to the
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Figure 6.17: Components of β of organic molecules at ADC and CC levels using the
aug-cc-pVTZ basis set, molecular sketches shown in Fig. 6.8

similarity between the methods. In all cases, the line drawn ADC(1)-ADC(3) is near parallel to
the line CCS-CCSD which indicates similar convergence behaviour.
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Figure 6.18: Components of β of organic molecules at ADC and CC levels using the
aug-cc-pVTZ basis set, molecular sketches shown in Fig. 6.8
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Figure 6.19: Components of β of organic molecules at ADC and CC levels using the
aug-cc-pVTZ basis set, molecular sketches shown in Fig. 6.8

6.4 Dynamic first-order hyperpolarizability at ADC(n) lev-
els compared with experiment

To gauge the accuracy of the frequency dependent first-order hyperpolarizability (at SHG
conditions) afforded at the ADC(1), ADC(2) and ADC(3) levels of theory, βSHG was calculated
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with a perturbation of 694.3 nm for the small organic molecules CO, HF, HCl, H2O, H2S and NH3

using the j-aug-cc-pVXZ, j=s,d, X=T,Q basis sets and CH3CN, CH3F, CFCl3, CH2F2, CH3Cl,
CH2Cl2, CH3OH (CH3)2O, CF3Br, CF3H, CHCl3, CF2Cl2 and CF3Cl using the aug-cc-pVXZ,
X=T,Q basis sets.
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Figure 6.20: βSHG (a.u.) at 694.3 nm of CO, HF, HCl at ADC levels using the
Dunning basis sets. Experimental values are from Ref. 307.

For the linear diatomic molecules CO, HF and HCl, Figure 6.20, it is possible to approach
the complete basis set limit using d-aug-cc-pVQZ at the higher end. Starting with CO, at the
ADC(1)/d-aug-cc-pVQZ level of theory the theoretical βSHG of 30.0 a.u. matches excellently with
experiment (within ∼ 0.5% of 30.2 ± 3.2 a.u.) which is likely due to fortuitous error cancellation.
At the ADC(2)/d-aug-cc-pVQZ and ADC(3)/d-aug-cc-pVQZ levels of theory, βSHG is calculated
to 28.6 a.u. (within ∼ 6% of experiment) and 31.5 a.u. (within ∼ 4% of experiment), which
indicates a good convergence with increasing order.

For the HF molecule, at the ADC(1)/d-aug-cc-pVQZ level of theory the theoretical βSHG

of -9.9 a.u. again agrees favourably with experiment at -11.0 ± 1.0 a.u. (to within ∼ 11%), as
before this is attributable to fortuitous error cancellation. At the ADC(2)/d-aug-cc-pVQZ and
ADC(3)/d-aug-cc-pVQZ levels of theory, βSHG is calculated to 12.9 a.u. and 9.4 a.u., respectively,
both being within ∼ 17% of the experimental value.

For HCl, at the ADC(1)/d-aug-cc-pVQZ level of theory the theoretical βSHG of -26.4 a.u.
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which compared to the experimental value of -9.9 ± 1.2 a.u. is overestimated by a factor of ∼ 2.5.
At ADC(2)/d-aug-cc-pVQZ level βSHG is calculated to -18.9 a.u., overestimating the measured
value by a factor of ∼ 2. Lastly, at ADC(3)/d-aug-cc-pVQZ level, βSHG is calculated at -9.4 a.u.
which excellently captures experiment to within ∼ 5%.

For the triatomic molecules H2O and H2S and NH3, collected in Figure 6.21, starting with
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Figure 6.21: βSHG (a.u.) at 694.3 nm of H2O, H2S and NH3 at ADC levels using the
Dunning basis sets. Experimental values are from Ref. 307.

H2O at ADC(1)/d-aug-cc-pVQZ level we see an excellent agreement with βSHG calculated to
-21.6 a.u., which is within ∼ 2% of experiment at -22.0 ± 0.9 a.u. As was the case for CO and
HF, this is attributable to fortuitous error cancellation. At ADC(2)/d-aug-cc-pVQZ level, βSHG

is overestimated by ∼ 50% calculated at -33.2 a.u. and lastly at ADC(3)/d-aug-cc-pVQZ βSHG is
overestimated by ∼ 9.5% calculated to -24.1 a.u.

For H2S, at ADC(1)/d-aug-cc-pVQZ level βSHG is overestimated by a factor of ∼ 2.3,
calculated to -23.5 a.u. compared with -10.1 ± 2.1 a.u. of experiment. Similar results occur at
ADC(2)/d-aug-cc-pVQZ and ADC(3)/d-aug-cc-pVQZ levels where βSHG is overestimated by a
factor of ∼ 2.6 (-25.9 a.u.) and ∼ 2 (-20.6 a.u.) for ADC(2) and ADC(3), respectively.

For NH3, at ADC(1)/d-aug-cc-pVQZ level, βSHG is underestimated by ∼ 32% calculated to
37.1 a.u. compared with experiment at 48.9 ± 1.2 a.u. At ADC(2)/d-aug-cc-pVQZ level, βSHG is
instead overestimated by ∼ 37% at -67.0 a.u. and lastly at ADC(3)/d-aug-cc-pVQZ level, there
is reasonably good agreement with experiment with βSHG overestimated by ∼ 9% calculated at
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Figure 6.22: βSHG (a.u.) at 694.3 nm of 13 organic molecules computed at ADC levels
of theory using the aug-cc-pVTZ and aug-cc-pVQZ basis sets. Experimental values are
from Ref. 307. Molecular sketches shown in Fig. 6.10

For the heavier molecules, Figure 6.23, we limit the basis set to aug-cc-pVQZ on the higher
end and start at the flourinated methane series CHnFm, m=(1,2,3), n=4-m. Beginning with
CH3F, at ADC(1) level, the computed βSHG of -54.6 a.u. is well within the error margins of the
experimental βSHG of 57.0 ± 4.2 a.u. which as for previous cases likely arise from the completeness
of the one particle basis set and cancellation of terms. At ADC(2) level, βSHG is overestimated
by ∼ 12%, computed to -63.7 a.u. and falling slightly outside the margins of error. Finally, at
ADC(3) level, the calculated βSHG of -52.7 a.u. is slightly underestimated (∼ 8%) with respect
to measurement.

For CH2F2, unexpectedly identical trends emerge with the computed βSHG of -44.0 a.u.,
-53.2 a.u., -42.6 a.u. at ADC(1), ADC(2) and ADC(3) levels of theory, respectively, which should
be compared to the experimental βSHG of -42.1 ± 1.9 a.u.

Similarly, for CHF3, the computed βSHG of -26.8 a.u., -33.2 a.u., -25.9 a.u. at ADC(1),
ADC(2) and ADC(3) levels of theory, respectively, which when compared to the experimental
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Figure 6.23: βSHG (a.u.) at 694.3 nm of 13 organic molecules computed at ADC levels
of theory using the aug-cc-pVTZ and aug-cc-pVQZ basis sets. Experimental values are
from Ref. 307. Molecular sketches shown in Fig. 6.10

value of -25.2 ± 0.9 a.u. demonstrate the same behaviour as for CH2F2 and CH3F.

For the series CFnClm, m=(1,2,3), n=(4-m), starting with CFCl3 at ADC(1) level the
calculated βSHG at -32.7 a.u. is within the margins of error of experiment measured at -30.9 ±
2.6 a.u. for identical reasons to the previous cases. At ADC(2) level the calculated βSHG signal is
overestimated by ∼ 58% at -48.7 a.u. and at ADC(3) level the calculated βSHG is overestimated
by ∼ 21% at -37.5 a.u. showing the expected convergence behaviour of ADC(2)-ADC(3).

For CF2Cl2, CF3Cl and CF3Br, identical trends are displayed as for CFCl3 which is unsur-
prising due to the related structures. Starting with CF2Cl2 the computed βSHG of -53.8 a.u.,
-76.2 a.u. and -64.1 a.u. at ADC(1), ADC(2) and ADC(3) levels, respectively, compares favorably
to the experimental value of -60.3 ± 1.9 a.u. Furthermore, for CF3Cl the computed βSHG of -63.5
a.u., -86.4 a.u. and -77.5 a.u. at ADC(1), ADC(2) and ADC(3) levels, respectively, again agrees
favorably to the experimental value of -69.2 ± 2.8 a.u. Lastly, for CF3Br the computed βSHG

of -120 a.u., -168 a.u. and -149 a.u. at ADC(1), ADC(2) and ADC(3) levels, respectively, show
the same trends as the previous cases with ADC(1) below, ADC(2) above and ADC(3) in close
agreement with -140 ± 9.0 a.u measured.
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For the series CHnClm, m=(1,2,3), n=4-m, beginning with CH3Cl, at the ADC(1) level
of theory the sign of the βSHG signal is incorrectly predicted as negative at -4.0 a.u., while at
ADC(2) level the correct sign is obtained with βSHG calculated to 6.1 a.u. and lastly at ADC(3)
level reasonable agreement with experiment is achieved with βSHG calculated to 16.7 a.u. In this
case its clear that the aug-cc-pVTZ basis is inadequate and due to the large shift at higher basis
its unclear whether aug-cc-pVQZ is close to the basis set limit.

For CH2Cl2, a similar trend is observed with βSHG calculated to -4.4 a.u., -3.6 a.u. and 8.7
a.u. at ADC(1), ADC(2) and ADC(3) level, respectively which should be compared to 4.0 ± 2.3
a.u. of measurement. Likewise, large shifts are observed with increasing basis for this molecule
with ADC(2) failing to predict the correct sign even at aug-cc-pVQZ.

Last in this series, CHCl3, βSHG is calculated as -5.5 a.u., -9.0 a.u. and 0.4 a.u. at ADC(1),
ADC(2) and ADC(3) level, respectively. Here ADC(3) is in reasonable agreement with 1.2 ±
2.6 a.u. of experiment, though for such a small measured value its hard to make qualitative
statements.

For CH3CN, already at ADC(1) level βSHG is calculated to 17.6 a.u. which is within ∼ 2%
of experiment at 17.9 ± 1.1 a.u., likely due to cancellation of terms. At ADC(2) level βSHG is
calculated to 15.5 a.u., which underestimates the measured value by ∼ 15% and lastly at ADC(3)
level βSHG is overestimated by ∼ 16% calculated to 20.8 a.u.

For CH3OH, βSHG is calculated to -43.3 a.u., -50.6 a.u. and -41.5 a.u. at ADC(1), ADC(2)
and ADC(3) level, respectively with ADC(3) approaching closest to the experimental value of -35
± 2.1 a.u.

For (CH3)2O, βSHG is calculated to -92.9 a.u., -155 a.u. and -111 a.u. at ADC(1), ADC(2)
and ADC(3) level, respectively. Here ADC(2) heavily overestimates βSHG by a factor of ∼ 2.3
compared with experiment at -67.1 ± 1.2 a.u..

6.5 Dynamic βHRS of NH3

As a proof-of-concept the dynamic βHRS signal above the first two-photon absorption resonance
energy of ammonia, NH3, was calculated at ADC(2)/aug-cc-pVTZ and ADC(3)/aug-cc-pVTZ
level of theory using a damping factor of 0.124 eV. The spectra, consisting of both the real and
imaginary part of βHRS are collected in Figure 6.24b and Figure 6.24c. The real and dispersive
part, βRe

HRS, steadily increases towards 1
2ω01, as expected, reaching a local minimum of ∼ 483 a.u.

at 394 nm, then sharply decreases when passing through the two-photon absorption point at
ω21 =and subsequently increasing again reaching the second local minimum of 550 a.u. at ∼ 379
nm, showing the typical behaviour passing through resonance. At the same time the imaginary
and absorptive part βIm

HRS shows the expected local maximum at 1
2ω01, reaching a value of 1025

a.u. at ∼ 386.5 nm. At ADC(3) level the same features are observed, with the two dispersive
maxima occurring at 382 nm and 367 nm with 290 a.u. and 356 a.u. and the absorptive part
reaching a local maximum of 635 a.u. at the two-photon absorption point of 374 nm.
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Figure 6.24: HRS spectra of ammonia, NH3, at the ADC(2) and ADC(3) levels of
theory using the aug-cc-pVTZ basis set with a damping constant of Γ = 1000 cm−1.

6.6 Summary

In the calculation of first-order hyperpolarizabilities with both static and dynamic perturba-
tions, ADC(n) provides a hierarchy of ab initio methods that prove highly capable. For the
several organic and inorganic molecules evaluated in this work, the static β at ADC(n) lev-
els of theory are directly comparable with CC methods of similar scaling. Furthermore, the
trend of ADC(1)→ADC(2)→ADC(3) mirror that of CCS→CC2→CCSD, indicating consistent
convergence behaviour.

With a perturbation of 694.3 nm, βSHG for the di- and tri-atomic molecules CO, HF, HCl,
H2O, H2S and NH3 calculated at ADC(1), ADC(2) and ADC(3) levels agree favorably with
those same quantities measured experimentally. Here, ADC(1) and ADC(3) often produce
close βSHG values which can be attributed to fortuitous cancellation of terms. For the heavier
molecules CH3F, CH2F2, CF3H, CFCl3, CF2Cl2, CF3Cl, CF3Br, CH3Cl, CH2Cl2, CHCl3m
CH3CN, CH3OH and (CH3)O, βSHG calculated at ADC(1) and ADC(3) again agree excellently
with measurement. For these molecules a very large one-electron basis set was often required
to get the correct sign of βSHG, with even the aug-cc-pVTZ basis set not being sufficient. In
most cases, ADC(2) overestimates the βSHG signal by ∼ 10%. Furthermore, the hyper-Rayleigh
scattering of NH3 computed at the ADC(2) and ADC(3) levels of theory demonstrated the ability
to calculate first-order hyperpolarizabilities in the two-photon resonant region. Here, the typical
dispersion/absorption behaving passing through resonance was observed.

This chapter concludes with another property obtainable at the ADC(1), ADC(2) and
ADC(3) levels of theory. An obvious future extension to this work is the inclusion of solvent
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effects, which are very important when simulating HRS spectra, commonly measured in solution.





Chapter 7

Conclusion

In this dissertation, five spectroscopies, ECD, ES-ECD, TPCD, SHG and HRS, have been
theoretically described and implemented at the ADC(n) levels of theory.

In Chapter 3, expressions for the rotatory strength in the length and velocity gauges within
the ADC/ISR formalism as described in Section 2.6.2, were used to simulate the ECD spectra
of R-methyloxirane, R-methylthiirane and their dimethylated counterparts as well as H2O2 and
H2S2. These simulated spectra were then compared to the same spectra calculated at CC levels
of theory and with experimental gas-phase ECD spectra. At ADC levels of theory, these spectra
were shown to be of similar quality to corresponding the CC level. Furthermore, for the majority
of these molecular systems, ADC(2) was shown to adequately reproduce all major bands in the
experimental gas-phase ECD spectra, with the exception of dimethylthiirane. Next, simulation of
solvent effects by employment of PCM was demonstrated for the water solvated L-epinephrine
enantiomer. Here, inclusion of PCM in the simulated ECD spectrum at the ADC(2) level,
greatly improved the theoretical description of the spectral features of the experimental solution
ECD spectrum, thus exemplifying one available method to account for solvent effects in the
calculation of chiroptical properties using ADC(n). Lastly, the ECD spectra of the bicyclic ketones
(1R)-camphor, (1R)-norcamphor and (1R)-fenchone, were simulated at ADC(2) and ADC(3)
level. For all three molecules, a remarkably good agreement between the calculated spectra and
experimentally measured gas-phase ECD spectra was observed. Moreover, at ADC(2) level, all
major spectral features were reproduced, albeit energetically shifted. The origin-dependence
of the length-gauge formulation of the rotatory strength at the ADC(1), ADC(2) and ADC(3)
levels of theory were shown to be of similar sensitivity as those of CCS, CC2 and CCSD levels of
theory, as demonstrated for the case of R-methyloxirane. To summarize this chapter, the ADC(n)
method has been shown to be excellent in reproducing the ECD spectra of small to medium-sized
chiral molecules in both gas-phase and solution environments.

In Chapter 4, expressions for excited-state to excited-state rotatory strength in both the
length and velocity gauges as described in Section 2.6.2 were used to simulate the S1-ES-ECD
spectrum of (1R)-norcamphor at the ADC(3) level of theory. This spectrum was then compared
to those calculated at TD-DFT level using varying exchange-correlation functionals which showed
good agreement between ADC(3) and CAM-B3LYP. Furthermore, the S1-ES-ECD spectra of

113
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(1R)-camphor and (1R)-fenchone were calculated at the ADC(3) level of theory and compared to
those same spectra calculated at TD-DFT/CAM-B3LYP level, showing equally good agreement.
Next, ground state ECD spectra of (R)-Binol were calculated at the ADC(3) and TD-DFT/CAM-
B3LYP levels of theory. At both these levels, all major spectral features were reproduced. The
S1-ES-ECD spectra of (R)-Binol was then computed at these same levels of theory. Here, both
methods revealed the same spectral features, as one should expect from the good agreement of
the ground state ECD spectra. The absolute difference between the excited-state to excited-state
length and velocity gauge rotatory strengths of these molecules was shown to be on the same order
as for the ground state rotatory strengths of these same molecules. To summarize this chapter,
comparison of ground state ecd spectra using the ADC(2), ADC(3) and TD-DFT/CAM-B3LYP
methods, showed good agreement, similarly good agreement was found for the S1-ES-ECD
spectra, which indicates the robustness of the ADC(2) and ADC(3) methods in the prediction of
excited-state to excited-state rotatory strengths. While experimental ES-ECD methods are still
in their infancy, the theoretical groundwork has been clearly presented in this work using the
ADC/ISR formalism.

In Chapter 5, three expressions for the two-photon rotatory strength within ADC/ISR as
described in Section 2.6.3 were used to simulate the TPCD spectra of S-methyloxirane and
S-methylthiirane at the ADC(2) level of theory. These spectra where then compared to those
calculated at the CC2 level of theory using the equivalent TI-formulation of the rotatory strength.
Here, all three formulations at ADC(2) level were shown to yield similar spectra as those calculated
at CC2 level. Furthermore, the ECD and TPCD spectra of a twisted-biphenyl molecule with
varying torsional angle was calculated at the ADC(2) levels of theory. A potential application
is to use this molecular system as a chirality probe of amino acids, using TPCD. The ECD
spectra showed a strong dependence on the torsional angle for the magnitude of the energetically
lowest band feature (A-band). In close proximity to this same energetic region, the TPCD
spectra showed a similar band feature, with a magnitude exhibiting a similar dependence on the
torsional angle. This demonstrates that TPCD can be used in absolute configuration assignment
of carboxylic acids with this amide derivation method. Next, the impact of various polarization
and propagation configurations of the two photons absorbed, was calculated at ADC(2) and
ADC(3) levels of theory and demonstrated with the TPCD spectra of R-norcamphor. here,
reversal of several band features were evident, as impacted by the different polarization and
propagation setups. To summarize the chapter, while experimentally challenging, ADC(n) has
been added as an ab initio method, to the theoretical toolbox to calculate TPCD spectra.

Lastly, in Chapter 6, expressions for the first-order hyperpolarizability within ADC/ISR as
described in Section 2.6.4 were used to calculate the static first-order hyperpolarizabilities of several
small organic molecules at ADC(n) levels of theory. These quantities were subsequently compared
to those same quantities calculated at the corresponding CC levels. For the overwhelming majority
of cases, the components of the first-order hyperpolarizability tensor at ADC(n) level consistently
matched with those at the corresponding CC level. Two noticeable exceptions were evident,
namely HNO2 and N2O, where the molecular systems where poorly described using a single HF
reference. Next, the dynamic first-order hyperpolarizability, with SHG frequency conditions, was
calculated at ADC levels of theory for several organic molecules. Here, it was shown that the
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ADC(1) and ADC(3) methods produce hyperpolarizabilities, with consistently good agreement to
those measured experimentally, while ADC(2) often overestimate these same quantities. The fact
that ADC(1), in contrast to ADC(2), produces first-order hyperpolarizabilities in good agreement
with experiment, can be attributed to fortuitous cancellation of terms. As a proof-of-concept,
the HRS signal of NH3 was calculated in the two-photon resonance region at the ADC(2) and
ADC(3) levels of theory. Here, the expected absorption/dispersion behaviour was observed
passing through resonance. To summarize this chapter, the ADC(n) methods were shown to
be excellent in the prediction of static and dynamic first-order hyperpolarizabilities. Predicting
similar static hyperpolarizabilities as corresponding CC levels, as well as dynamic first-order
hyperpolarizabilities that can be directly compared with experiment .

In conclusion, this dissertation covers several chiroptical properties that where previously
novel to the ADC method. The ground state and excited-state optical rotatory strength in
both the length and velocity gauges are now accessible at the ADC(n) level. This allows for the
simulation of ECD and ES-ECD spectroscopies. The simultaneous absorption of two photons
where one is circularly polarized can likewise be evaluated at the ADC(n) level of theory for the
three formulations of the two-photon rotatory strength described. This allows for the simulation
of TPCD spectroscopy. The first-order hyperpolarizability tensor can now also be evaluated at
ADC(n) levels of theory. Here, for dynamic fields, ADC(n) has been used to simulate the SHG
and HRS spectroscopies.
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Appendix A

Ground to excited-state rotatory
and oscillator strengths

The excitation energies, rotatory and oscillator strengths of all calculations discussed in chapter 3.
For R-methyloxirane, R-methylthiirane, (R,R)-dimethyloxirane, (R,R)-dimethylthiirane, H2O2,
H2S2, (1R)-camphor, (1R)-norcamphor and (1R)-fenchone the oxygen or sulfur atom was used as
the origin of the position operator.

A.1 R-Methyloxirane

119
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Table A.1: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of R-methyloxirane
calculated at the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.18 -13.5 -14.9 11.7 13.4 7.84 -13.3 -11.8 5.8 4.4
2 6.56 -0.8 -1.1 6.2 8.0 7.93 -12.8 -11.0 21.7 16.1
3 6.62 5.8 6.5 15.7 18.9 8.23 5.6 4.8 3.2 3.2
4 6.79 3.6 4.0 13.2 15.4 8.30 20.5 17.3 21.1 15.5
5 7.40 4.1 4.6 5.2 5.5 8.47 6.5 5.8 28.7 25.2
6 7.47 -1.8 -1.9 1.6 1.9 8.57 -15.5 -13.4 33.6 25.8
7 7.48 0.4 0.5 4.2 4.8 8.72 -3.4 -2.9 18.2 17.2
8 7.54 -0.3 -0.3 1.8 1.9 8.87 -8.6 -8.4 6.9 6.7
9 7.57 -0.8 -0.9 2.8 2.9 8.92 4.2 1.6 4.6 3.3

10 7.60 8.4 9.2 2.8 3.1 9.16 5.4 4.9 17.4 14.3
11 7.63 -1.3 -1.4 2.4 2.7 9.19 -11.8 -10.7 3.6 3.2
12 7.75 0.6 0.5 0.4 0.4 9.28 2.2 2.2 5.7 4.7
13 7.76 2.6 2.8 4.8 5.6 9.33 4.5 4.0 3.4 3.0
14 7.82 1.0 1.1 3.4 3.7 9.46 0.9 0.8 0.2 0.2
15 8.05 -3.2 -3.2 14.8 13.0 9.50 -0.3 0.2 4.0 3.6
16 8.06 4.7 5.0 8.2 8.3
17 8.09 -8.4 -8.6 27.2 25.2
18 8.11 0.8 0.9 2.0 2.5
19 8.18 0.9 0.9 0.6 0.6
20 8.21 0.7 0.9 1.7 1.9
21 8.21 -6.8 -6.9 3.7 3.9
22 8.25 -0.5 -0.5 2.5 2.6
23 8.28 0.2 0.1 1.1 1.4
24 8.38 2.6 2.6 2.0 1.9
25 8.48 -0.2 -0.2 0.5 0.6
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Table A.2: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of methyloxirane
calculated at the CC2, CCSD and CC3 levels of theory using the d-aug-cc-pVDZ and
aug-cc-pVDZ basis sets.

CC2/d-aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.32 -15.9 -15.2 14.1 12.9 7.12 -15.0 -14.8 9.6 9.0
2 6.70 -1.3 -1.5 7.0 6.9 7.35 -5.9 -6.4 16.5 18.8
3 6.76 6.5 6.4 18.7 17.9 7.56 9.1 9.0 15.0 14.6
4 6.93 4.4 4.1 16.8 15.9 7.76 5.6 5.6 16.9 17.1
5 7.54 5.0 4.9 6.3 5.6 8.07 9.8 10.2 4.1 4.3
6 7.61 -2.1 -1.9 1.9 1.8 8.38 0.8 0.9 2.2 2.1
7 7.62 1.1 1.3 5.2 4.8 8.44 -6.4 -5.9 25.3 23.9
8 7.66 8.5 9.3 2.7 2. 8.47 -1.7 -2.2 16.1 14.9
9 7.68 -0.9 -0.8 3.1 2.8 8.50 4.5 4.6 10.5 10.9

10 7.71 -0.1 0.0 3.5 3.2 8.55 -3.3 -3.7 9.7 9.4
11 7.76 -2.0 -2.0 1.8 1.7 8.56 -4.5 -4.6 7.5 7.3
12 7.88 0.6 0.4 0.3 0.3 8.59 2.5 2.6 4.9 4.7
13 7.90 2.6 2.5 5.1 4.9 8.70 -10.1 -10.2 5.1 5.4
14 7.96 1.3 1.2 4.2 4.0 8.73 0.3 0.4 1.0 0.8
15 8.10 -3.2 -3.3 24.0 21.2 8.79 -0.7 -0.7 1.8 2.0
16 8.14 -8.2 -8.1 24.2 21.8
17 8.20 4.7 4.7 3.4 3.3
18 8.25 1.4 1.5 1.9 1.9
19 8.26 -6.7 -6.7 4.3 4.4
20 8.31 1.3 1.2 0.9 0.9

CC3/aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 7.18 -19.4 -18.8 13.5 12.7
2 7.47 -3.8 -4.0 12.8 12.8
3 7.65 10.5 10.1 18.4 16.9
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A.2 R-Methylthiirane

Table A.3: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of methylthiirane
calculated at the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 5.02 -1.8 -1.7 0.3 0.3 4.95 -1.2 -1.2 0.2 0.2
2 5.56 -4.7 -5.1 18.9 19.5 5.91 -5.2 -5.2 34.3 29.7
3 5.79 -5.3 -5.5 33.9 37.8 5.98 -6.9 -6.6 17.8 17.2
4 6.08 -0.3 -0.3 15.3 15.6 6.41 2.3 2.1 21.5 19.1
5 6.31 2.1 2.0 3.5 3.5 6.64 3.7 3.7 2.2 2.1
6 6.72 8.3 8.7 14.5 13.3 7.07 5.6 5.4 21.7 17.6
7 6.83 -0.1 -0.2 1.5 1.3 7.20 1.1 1.0 1.0 0.9
8 6.86 3.5 3.5 8.6 8.8 7.24 2.8 2.6 9.4 8.2
9 6.88 -1.2 -1.3 2.3 1.7 7.25 -1.9 -1.8 1.0 0.9

10 6.95 -3.7 -3.5 6.3 6.7 7.33 -5.7 -5.6 11.0 10.6
11 7.04 -1.0 -1.1 7.6 6.0 7.45 2.6 2.5 4.9 4.6
12 7.10 1.2 1.1 2.2 4.9 7.47 -0.1 -0.4 6.7 6.0
13 7.17 1.5 1.4 5.4 4.5 7.57 -4.9 -4.3 36.9 29.7
14 7.25 1.7 1.7 2.2 2.1 7.61 1.7 1.5 6.0 4.9
15 7.41 2.1 2.6 11.1 10.5 7.69 1.4 1.4 1.8 1.6
16 7.50 -0.1 0.1 15.6 4.9 7.81 8.8 7.7 12.3 10.3
17 7.51 -0.7 0.1 2.9 15.8 7.85 20.7 18.1 17.6 13.7
18 7.52 1.8 1.7 4.7 5.4 7.91 2.7 3.0 1.8 1.7
19 7.57 -0.6 -0.8 0.2 0.2 7.97 0.5 1.0 13.6 11.1
20 7.68 6.7 5.6 1.5 2.6 7.98 -1.8 -2.0 10.8 8.4
21 7.70 9.9 8.2 1.6 6.9
22 7.76 2.6 3.0 0.4 2.0
23 7.91 4.4 4.1 9.6 7.3
24 7.93 -8.5 -8.4 1.1 10.1
25 7.94 2.0 2.3 10.0 4.2
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Table A.4: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of methylthiirane
calculated at the CC2 level of theory using the d-aug-cc-pVDZ basis set.

CC2/d-aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 5.07 -2.2 -2.1 0.3 0.3 5.02 -1.2 -0.9 0.3 0.3
2 5.62 -5.7 -5.2 20.1 18.9 5.80 -5.6 -5.8 26.1 24.6
3 5.84 -5.4 -5.3 34.9 33.9 5.93 -6.1 -6.3 26.5 29.5
4 6.14 0.0 0.0 17.2 15.3 6.31 0.6 0.5 19.0 18.3
5 6.37 2.5 2.3 3.7 3.5 6.55 3.2 3.2 2.5 2.5
6 6.77 8.3 8.6 15.2 14.5 6.96 6.9 7.2 19.9 17.5
7 6.89 0.2 0.2 1.5 1.5 7.10 0.6 0.4 1.4 1.3
8 6.92 4.0 3.9 9.1 8.6 7.13 5.1 4.9 5.3 4.9
9 6.93 -1.2 -1.2 2.4 2.3 7.13 -2.3 -2.3 6.1 6.2

10 6.99 -3.7 -3.4 7.1 6.3 7.20 -4.3 -4.2 8.6 8.4
11 7.10 -2.0 -1.9 7.9 7.6 7.33 1.2 1.1 6.1 6.0
12 7.13 1.4 1.4 2.4 2.8 7.35 -0.9 -1.0 4.6 4.5
13 7.23 1.6 1.5 6.1 5.4 7.49 1.5 1.5 6.3 5.8
14 7.31 2.0 1.9 2.3 2.2 7.57 2.3 2.3 3.2 3.1
15 7.46 3.0 3.0 11.5 11.1 7.64 -4.8 -3.7 26.4 21.4
16 7.53 -3.6 -3.2 18.4 15.6
17 7.55 2.8 2.8 3.2 2.9
18 7.59 1.00 0.9 5.0 4.7
19 7.60 0.2 0.1 0.2 0.2
20 7.62 -0.6 -0.6 1.7 1.5

CC3/ aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.99 -1.5 -1.5 0.2 0.3
2 5.80 -8.5 -8.5 18.9 17.7
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Table A.5: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of dimethyloxirane
calculated at the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.08 -12.6 -14.0 8.0 10.4 7.81 -20.0 -18.4 12.0 10.1
2 6.38 14.6 16.3 10.6 13.3 7.92 -18.5 -18.8 7.8 8.0
3 6.57 -8.5 -9.3 8.6 10.7 8.12 20.4 15.9 10.0 6.0
4 6.65 -3.8 -4.1 1.2 1.5 8.14 -10.3 -9.0 11.7 7.7
5 7.16 4.6 5.0 14.7 15.9 8.28 2.6 2.3 12.7 11.8
6 7.22 0.3 0.5 0.0 0.0 8.39 1.6 2.3 0.2 0.5
7 7.26 -8.2 -8.6 9.1 9.8 8.46 -21.8 -18.9 26.6 19.9
8 7.27 1.8 1.9 2.4 3.0 8.48 23.0 22.3 22.7 21.1
9 7.29 2.6 2.8 0.8 0.9 8.79 -8.8 -10.0 1.4 1.8

10 7.30 -4.6 -4.1 0.8 0.6 8.98 17.0 15.9 36.4 31.7
11 7.41 0.1 0.2 1.9 2.3 9.07 3.1 2.5 13.9 9.6
12 7.49 5.2 5.5 3.1 3.5 9.07 0.0 -0.1 1.1 1.2
13 7.52 -6.9 -7.5 5.3 6.5 9.11 3.9 3.7 5.8 5.2
14 7.57 -1.0 -1.1 0.2 0.2 9.12 3.6 3.9 1.8 2.1
15 7.65 2.2 1.9 5.2 4.6 9.18 -16.1 -15.0 10.5 8.9
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Table A.6: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of dimethyloxirane
calculated at the CC2 level of theory using the d-aug-cc-pVDZ basis set.

CC2/d-aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.22 -15.0 -14.2 10.8 10.1 7.07 -16.3 -16.3 9.8 10.3
2 6.53 16.5 16.0 12.3 11.6 7.35 16.2 15.9 12.2 11.7
3 6.71 -9.8 -9.8 10.0 10.0 7.46 -10.1 -11.0 12.6 14.2
4 6.79 -4.1 -4.4 1.3 1.5 7.66 -4.8 -4.8 1.0 0.9
5 7.30 5.9 5.8 18.7 17.1 7.76 -11.1 -11.2 3.2 3.2
6 7.34 -12.4 -11.1 3.7 3.0 8.12 3.5 3.0 9.1 8.5
7 7.37 0.8 1.2 0.1 0.2 8.20 -16.4 -16.0 6.0 5.7
8 7.40 2.2 2.2 3.2 3.3 8.23 10.6 10.7 22.8 22.8
9 7.40 -3.6 -3.4 8.6 7.6 8.31 0.2 0.2 1.2 1.1

10 7.42 3.0 2.9 0.9 0.9 8.33 13.1 13.7 13.6 13.6
11 7.54 0.4 0.5 2.3 2.2 8.33 -6.1 -5.9 28.6 26.9
12 7.62 5.5 5.2 3.2 2.9 8.34 0.6 0.8 0.1 0.1
13 7.65 -9.1 -9.1 4.3 4.5 8.35 9.0 9.0 9.1 9.3
14 7.70 3.4 3.1 7.4 6.5 8.51 -3.7 -4.1 3.1 3.7
15 7.70 -1.0 -1.1 0.2 0.2 8.59 -5.4 -5.5 6.8 7.5
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A.4 (R,R)-Dimethylthiirane

Table A.7: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of dimethylthiirane
calculated at the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 5.02 5.1 5.8 0.2 0.2 4.97 0.7 0.1 0.0 0.0
2 5.57 -6.9 -7.6 22.8 23.0 5.92 -3.9 -4.7 43.2 38.6
3 5.83 -19.1 -19.6 25.6 27.7 6.08 -20.1 -19.3 7.0 6.7
4 5.93 -0.3 -0.3 21.3 21.4 6.30 3.8 3.6 23.4 20.4
5 6.19 -5.2 -5.6 2.3 2.7 6.56 -2.2 -1.6 0.6 0.3
6 6.53 10.3 11.0 3.1 2.9 6.89 6.1 6.1 8.6 6.6
7 6.68 5.5 5.4 8.4 8.3 7.06 11.3 10.7 9.8 8.9
8 6.72 3.8 3.8 8.4 8.4 7.13 2.9 2.7 10.7 9.1
9 6.73 -1.1 -0.6 0.2 0.1 7.14 -2.9 -3.2 1.2 1.4

10 6.80 0.0 -0.7 2.3 2.0 7.22 1.4 1.3 0.2 0.2
11 6.81 3.0 3.0 20.4 20.3 7.23 -0.6 -0.6 24.0 21.5
12 6.97 -3.2 -3.3 12.9 13.4 7.39 -0.9 -1.2 14.3 12.8
13 6.99 1.0 0.9 2.4 2.2 7.47 2.0 1.8 7.6 6.1
14 7.09 0.3 0.1 0.0 0.0 7.51 -8.2 -7.3 48.8 38.7
15 7.21 3.5 3.6 7.2 6.3 7.57 -9.8 -8.6 12.9 9.8
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Table A.8: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of dimethylthiirane
calculated at the CC2 level of theory using the d-aug-cc-pVDZ basis set.

CC2/d-aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 5.08 4.4 4.5 0.1 0.1 5.04 2.4 3.1 0.0 0.1
2 5.63 -8.0 -7.2 24.3 23.2 5.82 -5.2 -5.3 35.6 34.9
3 5.88 -19.6 -19.0 25.6 24.5 6.01 -21.0 -21.7 13.5 15.4
4 6.00 -0.2 -0.2 22.7 20.4 6.18 1.7 1.6 22.5 21.7
5 6.26 -5.5 -5.6 2.3 2.4 6.46 -3.4 -3.4 1.0 0.9
6 6.59 10.6 10.6 3.6 3.6 6.79 8.6 9.0 6.6 5.2
7 6.74 6.6 6.4 9.6 9.0 6.96 9.5 9.1 11.2 10.4
8 6.79 4.3 4.2 9.1 8.8 7.01 3.2 3.2 9.9 9.3
9 6.79 -1.4 -1.1 0.3 0.2 7.02 -2.3 -2.3 0.7 0.7

10 6.86 -0.5 -0.3 1.9 1.8 7.10 0.4 -0.1 0.5 0.4
11 6.87 3.3 3.2 21.6 20.2 7.10 1.9 1.9 22.8 22.7
12 7.03 -3.3 -3.2 12.5 11.8 7.28 -1.8 -1.8 13.8 13.8
13 7.06 1.1 1.0 2.6 2.2 7.34 1.4 1.3 3.3 3.0
14 7.16 0.5 0.3 0.0 0.0 7.43 2.0 1.8 1.4 1.1
15 7.27 3.8 3.8 8.5 8.3 7.55 1.0 1.1 10.1 9.1
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A.5 H2O2

Table A.9: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of H2O2 calculated at
the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.10 -9.9 -10.9 6.2 7.5 5.97 -6.8 -6.1 2.9 2.3
2 6.57 -15.9 -18.6 4.4 5.4 7.08 9.1 7.8 11.8 8.3
3 7.24 15.9 16.3 13.6 11.3 7.35 -14.7 -14.7 3.2 3.3
4 7.55 29.0 31.8 9.7 11.8 8.24 32.0 29.6 14.1 12.1
5 7.84 -5.8 -5.2 0.9 0.8 8.72 -17.8 -16.3 5.3 4.4
6 8.33 -0.1 -0.1 14.7 16.0 9.66 13.7 12.6 21.6 18.8
7 8.54 0.3 0.3 6.5 6.8 10.06 1.0 -0.1 136.0 127.1
8 8.79 0.1 0.0 5.6 5.7 10.06 0.1 0.1 0.2 0.1
9 8.86 6.9 6.3 15.3 14.2 10.30 2.3 2.1 12.6 10.6

10 9.10 -2.2 -2.1 0.4 0.4 10.45 -13.2 -11.7 44.2 33.6
11 9.15 -2.1 -2.1 1.5 1.6 10.81 1.7 3.0 1.6 2.1
12 9.25 -1.4 -1.0 0.9 0.8 10.95 -9.7 -9.1 7.9 7.0
13 9.29 0.0 0.0 0.8 0.6 11.22 -5.6 -5.2 5.5 4.9
14 9.40 3.2 3.7 0.7 0.9 11.36 0.6 0.6 4.3 4.4
15 9.41 4.4 4.5 1.4 1.4 11.37 3.3 3.5 13.1 15.2
16 9.46 -0.1 -0.2 1.7 2.0
17 9.59 -6.4 -6.5 13.2 13.9
18 9.84 -0.9 -0.6 15.2 13.9
19 9.86 2.7 3.1 0.2 0.3
20 9.97 1.8 1.7 4.8 4.5
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Table A.10: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of H2O2 calculated at
the CC2, CCSD and CC3 levels of theory using the d-aug-cc-pVTZ and aug-cc-pVDZ
basis sets set.

CC2/d-aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.10 -11.4 -11.3 6.6 6.5 6.16 -9.3 -11.4 4.2 6.4
2 6.60 -18.4 -18.4 5.4 4.9 7.10 -20.0 -21.6 7.6 8.2
3 7.24 16.9 16.9 13.4 11.2 7.30 16.0 18.6 8.1 8.0
4 7.59 32.4 32.1 12.0 11.8 8.05 32.1 32.8 13.0 13.5
5 7.87 -6.3 -5.5 1.1 0.8 8.44 -10.0 -9.3 1.9 1.6
6 8.36 0.3 0.4 17.7 16.0 9.06 -0.6 -0.6 20.7 21.1
7 8.57 0.7 0.7 7.3 7.1 9.27 -0.3 -0.3 10.1 9.6
8 8.82 0.1 -0.2 5.9 5.3 9.40 12.5 12.3 24.6 23.9
9 8.89 7.4 6.8 16.9 13.7 9.64 1.1 0.6 2.3 2.1

10 9.14 -2.0 -1.9 0.3 0.3 9.90 0.0 0.0 0.0 0.0
11 9.18 -2.6 -2.4 1.7 1.6 9.95 -5.7 -5.5 2.8 2.6
12 9.28 -1.3 -1.0 1.2 0.9 10.05 -4.4 -4.0 6.8 6.4
13 9.32 0.0 0.0 0.7 0.6 10.09 0.3 0.3 0.5 0.5
14 9.43 3.7 3.9 0.9 0.9 10.19 5.7 5.8 7.6 7.2
15 9.44 5.3 5.1 1.9 1.7 10.21 -0.5 -0.5 0.0 0.0
16 9.49 -0.3 -0.3 1.8 1.7 10.26 -13.0 -13.0 35.0 34.1
17 9.62 -7.2 -7.0 14.8 14.3 10.27 4.0 3.9 5.5 5.4
18 9.87 -0.9 -0.5 16.3 13.4 10.62 2.4 2.7 48.5 43.7
19 9.89 2.7 2.8 0.2 0.2 10.68 3.8 4.3 0.4 0.5
20 10.00 2.0 1.9 5.1 4.6 10.79 0.9 0.9 8.1 7.4
21 10.20 1.6 1.0 0.5 0.3 10.84 0.0 -0.8 31.9 28.1
22 10.23 -2.4 -2.4 6.9 6.0 10.97 0.5 0.3 0.6 0.5
23 10.23 -0.4 -0.3 0.0 0.0 10.99 0.1 0.1 0.0 0.0
24 10.26 -0.5 -0.5 10.9 9.7 11.02 -7.3 -7.2 22.4 22.0
25 10.35 -1.8 -1.8 2.1 2.1 11.03 -7.1 -7.0 2.0 2.0

CC3/aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 6.10 -9.5 -9.8 4.1 4.3
2 7.09 -20.0 -20.0 8.6 8.5
3 7.21 16.1 16.6 6.4 6.6
4 8.05 33.3 33.2 13.2 13.1
5 8.42 -11.4 -11.3 2.5 2.5
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Table A.11: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of H2S2 calculated at
the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 5.01 -5.5 -6.4 4.4 5.8 4.77 -5.0 -5.3 3.3 3.7
2 5.03 14.4 14.1 13.3 12.3 4.79 13.8 12.5 10.5 8.4
3 6.08 65.1 69.0 14.0 15.7 5.98 57.7 59.6 12.8 13.7
4 6.09 -73.2 -77.0 18.1 19.7 6.00 -64.3 -66.0 15.2 15.9
5 6.91 -20.6 -22.8 2.1 2.6 6.86 -13.9 -15.9 0.7 1.0
6 6.92 31.4 34.5 15.2 16.2 6.87 17.0 19.4 8.8 8.4
7 7.78 -19.0 -18.5 124.0 117.8 7.79 10.3 9.9 14.0 13.0
8 7.78 11.1 10.5 6.8 6.1 7.80 -16.3 -15.6 223.4 203.6
9 7.82 -16.9 -15.9 4.7 4.2 7.84 8.0 7.2 51.1 45.9

10 7.83 1.0 1.0 0.4 0.6 7.84 -14.1 -13.2 4.1 3.6
11 7.90 2.8 2.9 54.6 49.4 7.85 -5.8 -5.6 11.6 11.9
12 7.99 -2.6 -2.7 0.1 0.1 8.02 -4.6 -4.7 0.4 0.4
13 8.10 -41.2 -40.3 42.5 40.9 8.09 1.0 0.8 44.2 33.5
14 8.12 39.7 38.9 28.4 27.3 8.19 -27.7 -27.5 20.7 21.0
15 8.24 23.6 21.5 127.3 107.5 8.20 48.0 47.0 35.3 33.9
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Table A.12: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of H2S2 calculated at
the CC2, CCSD and CC3 levels of theory using the d-aug-cc-pVDZ basis set.

CC2/d-aug-cc-pVDZ CCSD/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.98 -5.8 -5.6 4.6 4.2 4.96 -6.3 -7.4 3.9 5.4
2 5.00 13.6 12.3 13.0 10.1 4.98 14.0 14.1 11.1 10.6
3 6.04 64.4 65.4 14.0 14.5 6.08 60.6 62.8 13.9 14.9
4 6.06 -72.5 -72.7 18.1 17.9 6.10 -67.7 -69.7 16.5 17.4
5 6.87 -20.6 -19.1 2.1 1.8 6.94 -14.2 -16.3 0.8 1.0
6 6.88 31.7 29.9 15.4 14.6 6.96 20.1 22.4 11.1 11.2
7 7.63 -8.7 -8.5 78.8 74.3 7.78 -6.4 -6.4 93.7 92.9
8 7.65 7.7 7.1 1.7 1.5 7.79 8.9 8.7 2.7 2.6
9 7.70 -12.5 -11.8 39.1 35.4 7.82 -15.1 -14.7 60.1 57.2

10 7.74 -2.6 -2.5 7.1 6.8 7.86 -4.8 -4.6 11.5 10.5
11 7.76 10.1 10.0 12.0 11.3 7.89 10.5 10.2 15.9 14.8
12 7.78 -10.7 -10.5 3.3 3.2 7.93 -8.3 -8.0 1.9 1.7
13 8.02 -36.8 -36.8 23.8 24.1 8.17 -8.5 -9.1 128.2 113.3
14 8.03 43.7 43.6 23.9 23.8 8.20 -18.8 -18.6 14.7 13.9
15 8.18 22.5 20.0 127.6 109.4 8.21 45.3 44.4 30.0 28.8
16 8.24 11.5 11.6 25.4 21.4 8.36 22.4 21.7 7.0 6.2
17 8.24 -43.3 -42.4 17.2 16.5 8.36 -40.9 -39.5 13.6 12.6
18 8.37 1.4 1.4 1.9 1.8 8.56 1.5 1.5 4.9 4.8
19 8.42 5.9 5.6 9.4 7.6 8.60 9.7 9.5 4.8 4.2
20 8.43 3.9 3.7 16.8 14.5 8.63 2.6 2.5 6.7 6.1
21 8.44 0.0 -0.1 0.0 0.0 8.65 -0.1 -0.1 0.1 0.1
22 8.46 -3.1 -3.0 1.1 1.0 8.67 -4.9 -4.8 2.9 2.8
23 8.48 -2.1 -1.9 12.4 10.9 8.69 -1.6 -1.5 11.1 10.2
24 8.67 2.6 2.6 33.0 31.0 8.85 -17.3 -17.1 64.0 62.2
25 8.68 -1.4 -1.3 24.4 22.1 8.91 1.6 1.5 23.7 22.1

CC3/aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.86 -6.0 -5.4 3.9 3.2
2 4.89 13.1 12.4 10.8 9.7
3 6.01 59.3 58.6 12.6 12.3
4 6.02 -67.3 -66.8 15.9 15.7
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A.7 L-Epinephrine

Table A.13: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of L-epinephrine calcu-
lated at the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2) - gas phase geometry

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.828 −4.3 −6.9 42.4 33.5
2 4.871 3.1 5.8 17.1 16.2
3 5.268 −4.3 −4.5 0.7 0.9
4 5.430 −4.6 −3.9 3.7 3.3
5 5.617 −1.4 −1.3 1.8 1.7

ADC(2)/PCM - gas phase geometry

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.831 −1.1 −0.3 59.1 47.1
2 5.010 −1.6 −0.7 2.1 5.3
3 5.348 −4.9 −5.1 1.3 1.7
4 5.510 −13.6 −12.1 6.0 5.0
5 5.722 4.4 4.3 15.9 13.8

ADC(2)/PCM - PCM geometry

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.830 −1.4 −0.3 59.1 47.1
2 5.036 −1.5 −0.4 2.0 5.1
3 5.406 −5.5 −6.1 2.0 2.6
4 5.541 −6.7 −5.8 1.5 1.2
5 5.740 0.6 0.6 0.9 0.7
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A.8 (1R)-camphor, (1R)-norcamphor, (1R)-fenchone

(1R)-camphor

Table A.14: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of (1R)-camphor
calculated at the ADC(2) level of theory using the aug-cc-pVDZ basis set.

ADC(2)/aug-cc-pVDZ ADC(3)/aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.18 5.2 5.2 0.2 0.2 4.42 3.2 1.8 0.1 0.1
2 5.54 2.0 2.3 9.6 11.8 6.67 4.7 3.6 12.3 9.7
3 5.92 -0.4 -0.4 6.5 6.5 7.11 -1.4 -1.3 16.6 15.4
4 5.97 1.0 0.9 5.4 5.9 7.14 3.4 3.0 7.1 6.0
5 6.01 1.5 1.4 15.4 17.3 7.21 1.3 1.2 23.5 18.8
6 6.52 -0.7 -0.7 0.9 1.2 7.66 -4.3 -4.1 9.0 8.4
7 6.59 3.1 3.3 3.2 3.7 7.80 1.4 1.3 9.4 7.7
8 6.63 -0.9 -1.0 4.2 4.6 7.81 -0.1 1.1 26.1 19.8
9 6.65 -2.6 -2.8 2.6 3.2 7.85 -5.4 -4.6 14.8 10.7

10 6.74 0.6 0.9 13.4 15.5 7.89 7.6 6.2 7.5 4.9

(1R)-norcamphor

Table A.15: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of (1R)-norcamphor
calculated at the ADC(2) level of theory using the d-aug-cc-pVDZ basis set.

ADC(2)/d-aug-cc-pVDZ ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.09 0.6 0.3 0.2 0.1 4.33 0.3 -0.5 0.2 0.1
2 5.47 -1.6 -1.8 9.4 11.9 6.65 -3.3 -2.8 14.3 11.3
3 5.97 10.0 10.8 12.3 14.0 7.23 15.0 13.6 12.5 9.8
4 5.99 -0.3 -0.2 2.9 2.9 7.27 3.7 3.9 15.5 15.1
5 6.03 -1.6 -1.8 3.1 3.4 7.33 -2.1 -2.0 7.9 6.4
6 6.46 0.2 0.4 4.8 5.6 7.86 -1.0 -1.2 12.9 10.3
7 6.51 2.0 2.2 2.0 2.5 7.91 -5.9 -5.1 29.0 24.7
8 6.53 -0.2 -0.5 0.7 0.9 7.98 0.0 -0.3 3.8 3.9
9 6.57 0.0 -0.1 0.1 0.1 8.07 -4.2 -3.0 2.2 1.2

10 6.60 0.2 0.2 0.2 0.2 8.13 -4.7 -3.5 18.6 12.9
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(1R)-fenchone

Table A.16: Transition energy, ω (eV), optical rotatory strength, R (× 10−40esu2·cm2)
and oscillator strength (×10−3) of the lowest singlet excitations of (1R)-fenchone
calculated at the ADC(2) level of theory using the aug-cc-pVDZ basis set.

ADC(2)/aug-cc-pVDZ ADC(3)/aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0

1 4.16 -2.1 -2.5 0.0 0.0 4.38 -2.4 -3.0 0.0 0.0
2 5.44 0.4 0.3 2.2 1.9 6.58 -0.4 -0.2 1.5 2.0
3 5.79 2.9 3.3 14.6 15.7 6.99 10.2 9.2 27.9 21.7
4 5.84 -0.4 -0.4 12.7 13.8 7.05 -4.5 -4.3 21.0 17.6
5 5.92 3.0 3.2 2.1 2.3 7.11 5.9 5.2 5.2 4.0
6 6.37 0.9 0.9 7.2 6.8 7.57 1.5 1.4 9.5 8.4
7 6.47 -0.2 -0.4 1.8 1.9 7.68 0.6 0.5 1.8 1.5
8 6.48 -1.6 -1.6 0.6 0.6 7.69 -5.9 -5.6 4.7 4.2
9 6.54 0.0 -0.1 8.8 9.4 7.75 1.4 1.4 22.0 18.8

10 6.58 -1.4 -1.4 25.2 26.7 7.79 0.4 0.4 31.7 27.8
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Table B.1: Transition energy, ω (eV) and optical rotatory strength R (× 10−40esu2·cm2)
of the energetically lowest singlet excitations of (1R)-norcamphor calculated at the
ADC(3), BLYP, B3LYP, BHandHLYP and CAM-B3LYP levels using the d-aug-cc-pVDZ
basis set.

ADC(3)/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 ωn1 Rr
n1 R∇

n1

1 4.33 0.28 -0.50
2 6.62 -3.00 -2.51 2.29 1.13 1.36
3 7.16 12.96 11.75 2.83 0.97 -0.02
4 7.20 3.35 3.45 2.88 2.96 2.97
5 7.24 -2.12 -2.04 2.92 -4.15 -3.99
6 7.71 -0.50 -0.68 3.38 0.75 0.35
7 7.76 -0.87 -0.70 3.43 -7.54 -7.00
8 7.79 -0.26 -0.47 3.46 -0.75 -0.75
9 7.84 -0.46 -0.16 3.51 0.42 -0.11

10 7.87 -0.15 -0.09 3.54 0.37 1.12

BLYP/d-aug-cc-pVDZ B3LYP/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 ωn1 Rr
n1 R∇

n1 ωn0 Rr
n0 R∇

n0 ωn1 Rr
n1 R∇

n1

1 3.97 -1.64 -2.20 4.17 0.18 -0.30
2 4.51 0.66 0.72 0.54 -3.25 -3.20 5.44 -1.44 -1.45 1.28 -0.98 -0.94
3 5.01 3.02 2.95 1.04 -3.96 -3.93 5.94 5.22 5.15 1.77 -1.42 -1.41
4 5.05 1.68 1.69 1.09 5.52 5.47 5.98 3.04 3.12 1.81 3.77 3.70
5 5.11 1.67 1.71 1.15 5.13 5.22 6.01 -0.34 -0.34 1.85 0.18 0.23
6 5.42 0.33 0.32 1.45 0.89 0.85 6.40 0.25 0.25 2.23 -0.44 -0.39
7 5.44 0.13 0.11 1.48 -0.67 -0.54 6.43 1.50 1.54 2.26 -3.82 -3.72
8 5.47 1.07 1.15 1.50 -6.03 -5.89 6.44 -0.35 -0.37 2.28 0.23 0.20
9 5.50 -0.05 -0.03 1.53 0.92 0.81 6.46 0.45 0.48 2.29 0.43 0.37

10 5.51 -0.12 -0.11 1.54 -0.57 -0.64 6.48 -0.37 -0.38 2.31 0.04 -0.02

BHandHLYP/d-aug-cc-pVDZ CAM-B3LYP/d-aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 ωn1 Rr
n1 R∇

n1 ωn0 Rr
n0 R∇

n0 ωn1 Rr
n1 R∇

n1

1 4.44 0.41 0.03 4.25 0.73 0.25
2 6.62 -2.95 -2.99 2.18 -0.11 -0.07 6.22 -2.48 -2.51 1.97 -0.11 -0.07
3 7.13 13.27 13.37 2.69 -1.15 -1.20 6.77 10.34 10.52 2.52 -1.15 -1.20
4 7.16 1.25 1.25 2.72 3.24 3.20 6.81 3.44 3.35 2.56 3.24 3.20
5 7.20 -2.38 -2.40 2.76 -1.47 -1.44 6.84 -1.16 -1.17 2.60 -1.47 -1.44
6 7.63 0.16 0.15 3.19 -0.02 -0.01 7.29 0.19 0.17 3.04 -0.02 -0.01
7 7.67 1.78 1.81 3.24 -2.96 -2.90 7.34 0.40 0.46 3.09 -2.96 -2.90
8 7.69 -1.23 -1.24 3.25 0.19 0.17 7.36 0.43 0.40 3.11 0.19 0.17
9 7.72 0.01 0.07 3.28 -0.20 -0.26 7.40 -0.42 -0.34 3.16 -0.20 -0.26

10 7.75 -0.26 -0.25 3.31 -0.17 -0.15 7.44 -0.24 -0.23 3.19 -0.17 -0.15
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Table B.2: Transition energy, ω (eV) and optical rotatory strength R (× 10−40esu2·cm2)
of the energetically lowest singlet excitations of (1R)-camphor and (1R)-fenchone calcu-
lated at the ADC(3) level using the aug-cc-pVDZ basis set.

(1R)-camphor (1R)-fenchone

n ωn1 Rr
n1 R∇

n1 fr
n1 f∇

n1 ωn1 Rr
n1 R∇

n1 fr
n1 f∇

n1

2 2.25 −3.20 −3.47 2.20 4.25 2.20 −0.70 −0.32 3.21 0.78
3 2.69 −1.38 −0.79 3.48 1.83 2.61 −3.54 −3.38 1.71 2.86
4 2.73 5.17 4.13 5.30 4.25 2.67 −0.59 −0.87 0.04 0.10
5 2.79 −1.67 −0.36 12.94 13.57 2.73 2.09 2.63 2.00 3.01
6 3.24 5.21 4.60 0.75 0.73 3.19 0.85 0.83 2.42 2.13
7 3.38 0.67 0.12 3.74 3.31 3.30 −0.51 −0.53 1.02 0.82
8 3.39 −1.45 −0.56 0.81 0.77 3.31 3.32 3.19 2.44 2.04
9 3.43 1.33 1.26 1.57 1.79 3.38 −1.48 −0.88 13.42 11.95
10 3.47 5.88 5.78 3.47 3.31 3.41 1.92 1.86 0.95 1.74

Table B.3: Transition energy, ω (eV) and optical rotatory strength R (× 10−40esu2·cm2)
of the energetically lowest singlet excitations of (1R)-camphor and (1R)-fenchone calcu-
lated at the CAM-B3LYP level using the d-aug-cc-pVDZ basis set.

(1R)-camphor (1R)-fenchone (1R)-norcamphor

n ωn1 Rr
n1 R∇

n1 ωn1 Rr
n1 R∇

n1 ωn1 Rr
n1 R∇

n1

2 1.99 −1.80 −1.80 1.96 −0.50 −0.52 1.97 0.52 0.57
3 2.43 −0.90 −0.87 2.42 −1.83 −1.82 2.52 0.78 0.71
4 2.46 1.81 1.79 2.44 −0.40 −0.43 2.56 1.51 1.49
5 2.56 0.94 1.03 2.50 1.31 1.35 2.60 −2.34 −2.32
6 2.97 5.14 4.94 2.95 0.56 0.57 3.04 −0.43 −0.41
7 3.07 −2.03 −1.91 3.08 −0.62 −0.60 3.09 −3.63 −3.58
8 3.13 1.61 1.40 3.10 1.70 1.78 3.11 −0.09 −0.11
9 3.17 0.93 0.82 3.17 2.37 2.42 3.16 −0.12 −0.15

10 3.20 1.24 1.54 3.20 0.38 0.40 3.19 0.73 0.74
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B.2 Binol

Table B.4: Transition energy, ω (eV) and optical rotatory strength R (× 10−40esu2·cm2)
of the energetically lowest singlet excitations of BINOL calculated at the ADC(2) and
CAM-B3LYP levels using the aug-cc-pVDZ basis set.

ADC(2)/aug-cc-pVDZ CAM-B3LYP/aug-cc-pVDZ

n ωn0 Rr
n0 R∇

n0 fr
n0 f∇

n0 ωn0 Rr
n0 R∇

n0 fr
n0

1 4.33 -35.28 -26.54 0.10 0.07 4.41 -24.95 -23.20 1.34
2 4.35 66.97 53.81 0.02 0.01 4.45 71.94 66.59 0.15
3 4.98 1.53 1.62 0.13 0.09 4.83 -1.94 -0.96 0.73
4 4.99 18.55 18.37 0.01 0.01 4.84 0.37 0.49 0.00
5 5.08 -1.34 -0.82 0.00 0.00 5.01 -0.41 -0.48 0.02
6 5.09 -5.26 -4.26 0.01 0.01 5.01 -2.46 -2.35 0.04
7 5.93 -1092.48 -944.74 1.12 0.89 5.93 -1178.02 -1147.75 7.03
8 5.97 -227.32 -190.81 0.20 0.14 6.00 280.78 271.21 1.66
9 5.99 623.88 535.31 0.44 0.32 6.00 14.23 8.88 0.51

10 6.02 60.66 51.86 0.11 0.08 6.03 196.38 199.60 0.62
11 6.07 -179.52 -157.15 0.10 0.08 6.05 -210.80 -206.01 0.70
12 6.10 406.91 350.91 0.28 0.20 6.08 679.36 667.31 2.78
13 6.10 100.06 88.29 0.07 0.05 6.12 -314.80 -314.20 1.68
14 6.10 87.87 77.75 0.06 0.05 6.21 361.86 356.86 1.53
15 6.31 16.87 14.48 0.18 0.14 6.38 21.89 16.86 0.18
16 6.32 20.05 17.78 0.14 0.11 6.39 55.65 52.56 0.94
17 6.54 424.09 355.61 0.22 0.16 6.55 -239.47 -240.55 0.96
18 6.55 -402.01 -340.34 0.37 0.27 6.55 272.07 271.67 0.83
19 6.82 -15.11 -24.87 0.00 0.01 6.71 49.45 44.29 0.18
20 6.86 -12.88 -8.56 0.01 0.01 6.73 26.14 29.99 0.01



B.2 Binol 139

Table B.5: Transition energy, ω (nm) and optical rotatory strength R (×
10−40esu2·cm2) of the energetically lowest singlet excitations of BINOL calculated
at the ADC(2) and CAM-B3LYP level using the d-aug-cc-pVDZ basis set.

ADC(2)/aug-cc-pVDZ CAM-B3LYP/aug-cc-pVDZ

n ωn1 Rr
n1 R∇

n1 fr
n1 f∇

n1 ωn1 Rr
n1 R∇

n1 fr
n1

2 59753 -1.00 -7.67 0.16 4.85 27328 -0.94 -2.17 148.18
3 1920 -8.24 36.38 0.03 0.16 2945 10.82 25.51 2.95
4 1890 31.28 -47.95 1.77 1.90 2851 -0.89 -39.24 22.46
5 1655 -7.19 12.51 0.62 0.67 2062 -3.29 3.42 58.74
6 1640 0.66 7.24 0.12 0.22 2041 -0.77 3.62 26.14
7 777 -37.80 -35.80 5.41 4.87 813 -11.00 -11.15 39.16
8 756 0.06 -0.46 0.15 1.14 779 0.33 -0.36 107.83
9 749 -7.70 -2.09 10.89 8.93 775 -0.50 -0.98 31.95

10 735 -1.94 -7.66 0.08 0.56 762 -1.92 -2.29 39.41
11 713 41.16 43.14 10.26 11.27 756 1.50 1.80 24.86
12 703 14.14 16.11 9.85 10.28 741 2.32 1.76 23.62
13 701 -3.27 -3.41 4.18 5.19 724 2.27 1.29 21.03
14 701 -5.11 -5.54 4.31 5.43 687 8.06 10.81 134.18
15 627 73.01 86.41 58.89 73.55 630 -29.71 -33.62 496.83
16 624 -81.32 -89.65 51.96 58.14 626 23.70 29.33 304.42
17 562 6.43 7.46 0.29 0.31 579 0.23 0.22 405.20
18 560 -6.47 -6.98 0.12 0.14 577 0.29 0.21 559.27
19 499 21.00 17.10 7.79 5.20 538 8.87 8.41 106.72
20 491 -1.52 -2.14 3.37 2.62 533 -10.32 -9.76 101.64
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Table C.1: Components of static β at ADC and CC levels of theory of HF (1), HCl
(2), HBr (3), HOH (4), and HSH (5) using the aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

HF (1) ADC(1) 13.68 2.17 2.17 10.81
ADC(2) 16.16 3.66 3.66 14.09
ADC(3) 12.71 2.54 2.54 10.68
CCS 11.40 1.50 1.50 8.64
CC2 14.36 3.55 3.55 12.88
CCSD 11.63 2.39 2.39 9.85

Molecule Method βzzz βzxx βzyy β||

HCl (2) ADC(1) 28.09 1.08 1.08 18.15
ADC(2) 25.19 0.88 0.88 16.17
ADC(3) 22.22 0.10 0.10 13.45
CCS 21.53 −1.43 −1.43 11.20
CC2 22.49 0.61 0.61 14.22
CCSD 19.68 −0.20 −0.20 11.57

Molecule Method βzzz βzxx βzyy β||

HBr (3) ADC(1) 29.81 −0.30 −0.30 17.53
ADC(2) 25.38 −1.28 −1.28 13.69
ADC(3) 21.28 −2.67 −2.67 9.57
CCS 21.40 −4.14 −4.14 7.87
CC2 21.67 −1.72 −1.72 10.94
CCSD 18.60 −2.75 −2.75 7.85

Molecule Method βzzz βzxx βzyy β||

HOH (4) ADC(1) −18.95 1.60 −2.76 −12.07
ADC(2) −23.17 0.89 −5.50 −16.66
ADC(3) −18.70 1.29 −3.75 −12.69
CCS −16.23 2.53 −1.63 −9.20
CC2 −21.40 1.22 −5.41 −15.36
CCSD −17.11 1.72 −3.43 −11.29

Molecule Method βzzz βzxx βzyy β||

HSH (5) ADC(1) −22.56 4.01 −4.38 −13.75
ADC(2) −21.39 4.23 −3.47 −12.38
ADC(3) −18.61 4.97 −2.09 −9.44
CCS −17.10 6.32 0.81 −5.98
CC2 −18.91 4.44 −3.34 −10.68
CCSD −16.14 4.92 −1.72 −7.76
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Table C.2: Components of static β at ADC and CC levels of theory of NaF (6), NaCl
(7), NaBr (8), NaOH (9), and NaSH (10) using the aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

NaF (6) ADC(1) 59.01 29.53 29.53 70.85
ADC(2) 319.54 113.54 113.54 327.98
ADC(3) 113.01 49.16 49.16 126.80
CCS 53.59 27.60 27.60 65.28
CC2 471.03 146.82 146.82 458.80
CCSD 151.48 61.41 61.41 164.58

Molecule Method βzzz βzxx βzyy β||

NaCl (7) ADC(1) 365.45 124.87 124.87 369.12
ADC(2) 585.29 180.10 180.10 567.30
ADC(3) 493.94 156.58 156.58 484.26
CCS 316.54 109.61 109.61 321.45
CC2 623.79 185.87 185.87 597.32
CCSD 488.76 153.15 153.15 477.04

Molecule Method βzzz βzxx βzyy β||

NaBr (8) ADC(1) 628.23 188.82 188.82 603.53
ADC(2) 908.34 250.70 250.70 845.85
ADC(3) 763.17 215.01 215.01 715.92
CCS 536.07 162.51 162.51 516.65
CC2 921.36 248.50 248.50 851.02
CCSD 763.56 213.35 213.35 714.16

Molecule Method βzzz βzxx βzyy β||

NaOH (9) ADC(1) 58.60 68.75 68.75 117.66
ADC(2) 232.57 241.61 241.61 429.47
ADC(3) 106.82 110.69 110.69 196.92
CCS 54.02 66.21 66.21 111.86
CC2 330.18 306.11 306.11 565.44
CCSD 132.85 136.14 136.14 243.07

Molecule Method βzzz βzxx βzyy β||

NaSH (10) ADC(1) 32.21 52.02 21.38 63.37
ADC(2) 26.67 56.05 16.86 59.75
ADC(3) 32.86 64.94 24.17 73.18
CCS 34.83 59.38 30.85 75.03
CC2 34.03 65.50 17.56 70.26
CCSD 36.99 67.12 24.48 77.16
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Table C.3: Components of static β at ADC and CC levels of theory of LiF (11), LiCl
(12), LiBr (13), LiOH (14), and LiSH (15) using the aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

LiF (11) ADC(1) 20.93 18.95 18.95 35.30
ADC(2) 66.45 57.09 57.09 108.38
ADC(3) 31.92 29.24 29.24 54.24
CCS 16.65 17.42 17.42 30.90
CC2 75.69 63.70 63.70 121.86
CCSD 34.35 34.14 34.14 61.57

Molecule Method βzzz βzxx βzyy β||

LiCl (12) ADC(1) 150.16 91.08 91.08 199.39
ADC(2) 212.19 123.09 123.09 275.02
ADC(3) 178.65 108.92 108.92 237.89
CCS 117.17 79.66 79.66 165.89
CC2 210.85 123.49 123.49 274.70
CCSD 166.91 105.57 105.57 226.84

Molecule Method βzzz βzxx βzyy β||

LiBr (13) ADC(1) 268.69 138.21 138.21 327.07
ADC(2) 352.83 174.54 174.54 421.14
ADC(3) 293.03 151.11 151.11 357.15
CCS 208.29 118.95 118.95 267.72
CC2 337.45 169.47 169.47 405.83
CCSD 278.32 149.18 149.18 346.01

Molecule Method βzzz βzxx βzyy β||

LiOH (14) ADC(1) 63.13 50.31 50.31 98.26
ADC(2) 189.65 143.36 143.36 285.83
ADC(3) 101.71 76.60 76.60 152.95
CCS 55.01 47.33 47.33 89.80
CC2 220.23 163.04 163.04 327.79
CCSD 113.61 87.97 87.97 173.74

Molecule Method βzzz βzxx βzyy β||

LiSH (15) ADC(1) 5.00 −11.85 14.80 4.77
ADC(2) −3.60 −34.03 11.93 −15.42
ADC(3) 2.59 −21.20 17.72 −0.53
CCS 10.39 −1.92 24.15 19.57
CC2 −0.62 −36.98 12.45 −15.09
CCSD 5.83 −19.59 18.35 2.75
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Table C.4: Components of static β at ADC and CC levels of theory of H2SO4 (16),
H2SO3 (17), H2SO2 (18), H2SO2 (19), and H3BO3 (20) using the aug-cc-pVTZ basis
set.

Molecule Method βzzz βzxx βzyy β||

H2SO4 (16) ADC(1) 65.11 16.67 18.02 59.88
ADC(2) 101.14 27.64 27.16 93.56
ADC(3) 62.19 16.96 22.78 61.16
CCS 47.12 11.45 15.74 44.58
CC2 82.92 23.06 27.54 80.12
CCSD 53.99 14.68 20.38 53.43

Molecule Method βzzz βzxx βzyy β||

H2SO3 (17) ADC(1) 123.09 15.79 18.22 94.26
ADC(2) 228.71 34.48 35.40 179.15
ADC(3) 132.05 24.77 26.10 109.76
CCS 89.67 13.66 15.65 71.39
CC2 181.45 37.34 37.23 153.61
CCSD 112.09 23.76 24.70 96.33

Molecule Method βzzz βzxx βzyy β||

H2SO2 (18) ADC(1) 99.84 10.04 55.32 99.12
ADC(2) 118.12 11.11 68.06 118.38
ADC(3) 84.55 14.09 64.86 98.10
CCS 80.67 9.84 53.12 86.18
CC2 91.42 10.87 66.51 101.28
CCSD 72.63 11.15 59.11 85.73

Molecule Method βzzz βzxx βzyy β||

H2SO2 (19) ADC(1) −17.45 4.68 −7.19 −11.97
ADC(2) −15.37 5.81 −7.58 −10.28
ADC(3) −15.98 8.87 −7.38 −8.69
CCS −15.14 5.85 −4.02 −7.98
CC2 −14.87 7.11 −8.22 −9.59
CCSD −14.33 7.34 −7.13 −8.47

Molecule Method βzzz βzxx βzyy β||

H3BO3 (20) ADC(1) −27.98 23.94 −0.46 −2.70
ADC(2) −37.64 32.48 −0.62 −3.47
ADC(3) −29.94 25.90 −0.47 −2.71
CCS −24.78 21.74 −0.24 −1.97
CC2 −34.18 29.27 −0.52 −3.26
CCSD −28.84 25.20 −0.34 −2.39
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Table C.5: Components of static β at ADC and CC levels of theory of HNO (22),
HNO2 (23), HNO3 (24), and N2O (25) using the aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

HNO (22) ADC(1) −69.92 −2.95 −0.44 −43.99
ADC(2) −115.92 −2.10 3.81 −68.53
ADC(3) −86.49 6.94 4.49 −45.04
CCS −60.11 2.58 0.79 −34.04
CC2 −127.91 1.92 4.11 −73.13
CCSD −83.69 6.30 3.89 −44.10

Molecule Method βzzz βzxx βzyy β||

HNO2 (23) ADC(1) 50.98 −2.09 8.03 34.15
ADC(2) 49.45 −17.68 17.20 29.38
ADC(3) 30.55 −2.73 13.66 24.89
CCS 35.60 0.39 7.57 26.14
CC2 47.23 −3.41 21.07 38.93
CCSD 28.04 −0.98 14.58 24.98

Molecule Method βzzz βzxx βzyy β||

HNO3 (24) ADC(1) 62.01 −33.54 4.12 19.55
ADC(2) 62.24 −36.70 7.14 19.61
ADC(3) 34.35 −24.86 5.67 9.10
CCS 44.33 −25.54 3.31 13.25
CC2 36.21 −14.62 7.74 17.60
CCSD 25.62 −17.33 5.67 8.38

Molecule Method βzzz βzxx βzyy β||

N2O (25) ADC(1) −91.77 −4.60 −4.60 −60.58
ADC(2) −168.65 −3.19 −3.19 −105.02
ADC(3) −90.59 −5.67 −5.67 −61.15
CCS −73.50 −4.84 −4.84 −49.91
CC2 −74.91 −4.78 −4.78 −50.68
CCSD −74.25 −4.22 −4.22 −49.61
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Table C.6: Components of static β at ADC and CC levels of theory of HNS (26),
HNS2 (27), HNS3 (28), and N2S (29) using the aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

HNS (26) ADC(1) 77.81 67.73 24.10 101.79
ADC(2) 53.60 70.82 18.08 85.50
ADC(3) 45.46 73.21 20.06 83.24
CCS 52.20 68.39 23.36 86.37
CC2 24.66 67.53 14.47 64.00
CCSD 23.54 64.48 15.18 61.92

Molecule Method βzzz βzxx βzyy β||

HNS2 (27) ADC(1) 98.53 211.41 7.40 190.40
ADC(2) 207.80 345.34 0.95 332.45
ADC(3) 197.17 276.82 5.19 287.51
CCS 104.44 175.75 7.13 172.39
CC2 190.76 223.96 0.79 249.30
CCSD 160.57 212.63 0.60 224.28

Molecule Method βzzz βzxx βzyy β||

HNS3 (28) ADC(1) −149.53 176.44 −12.56 8.61
ADC(2) −69.67 121.59 −14.08 22.70
ADC(3) 124.47 25.44 −14.96 80.97
CCS −80.04 121.97 −10.50 18.86
CC2 10.27 39.46 −11.25 23.09
CCSD 47.57 38.14 −10.97 44.84

Molecule Method βzzz βzxx βzyy β||

N2S (29) ADC(1) −330.43 76.21 76.21 −106.80
ADC(2) −641.86 97.46 97.46 −268.16
ADC(3) −274.77 86.06 86.06 −61.58
CCS −227.11 76.35 76.35 −44.64
CC2 −259.50 87.92 87.92 −50.20
CCSD −222.14 78.50 78.50 −39.08
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Table C.7: Components of static β at ADC and CC levels of theory of COH2 (30),
C2OH4 (31), C3OH6 (32), H2CO3 (33), and C2O4H4 (34) using the aug-cc-pVTZ basis
set.

Molecule Method βzzz βzxx βzyy β||

COH2 (30) ADC(1) −59.56 −2.32 −7.08 −41.38
ADC(2) −86.11 11.12 −5.78 −48.46
ADC(3) −62.09 12.95 −5.08 −32.54
CCS −50.15 2.81 −5.82 −31.90
CC2 −85.08 19.13 −5.21 −42.70
CCSD −58.71 14.72 −4.26 −28.95

Molecule Method βzzz βzxx βzyy β||

C2OH4 (31) ADC(1) −41.89 −22.46 −9.86 −44.53
ADC(2) −77.79 −20.54 −9.64 −64.78
ADC(3) −48.71 −9.69 −8.16 −39.94
CCS −33.23 −15.59 −8.90 −34.63
CC2 −79.05 −11.61 −9.34 −60.00
CCSD −46.62 −6.94 −7.24 −36.48

Molecule Method βzzz βzxx βzyy β||

C3OH6 (32) ADC(1) 104.70 1.71 18.19 74.76
ADC(2) 105.49 17.95 18.83 85.37
ADC(3) 63.78 4.48 16.84 51.06
CCS 78.29 −1.80 16.73 55.94
CC2 79.78 23.14 19.39 73.39
CCSD 52.31 4.85 15.86 43.81

Molecule Method βzzz βzxx βzyy β||

H2CO3 (33) ADC(1) 26.38 −35.98 0.78 −5.30
ADC(2) 18.34 −51.00 0.80 −19.12
ADC(3) 11.40 −40.14 0.16 −17.15
CCS 19.69 −31.48 0.99 −6.48
CC2 4.51 −44.04 1.94 −22.55
CCSD 5.88 −38.10 1.11 −18.66

Molecule Method βzzz βzxx βzyy β||

C2O4H4 (34) ADC(1) 54.01 18.76 9.57 49.41
ADC(2) 66.50 23.01 15.22 62.84
ADC(3) 31.08 10.98 10.79 31.71
CCS 33.30 11.76 7.18 31.34
CC2 71.01 24.10 18.78 68.33
CCSD 25.20 8.93 11.52 27.39
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Table C.8: Components of static β at ADC and CC levels of theory of C2O2H4 (35),
Furan (40), Thiopenthene (41), Pyrrole (42), and Imidazole (43) using the aug-cc-pVTZ
basis set.

Molecule Method βzzz βzxx βzyy β||

C2O2H4 (35) ADC(1) 92.18 −9.20 18.46 60.86
ADC(2) 100.65 −7.17 21.36 68.90
ADC(3) 61.55 −9.04 18.56 42.64
CCS 67.40 −10.38 16.86 44.32
CC2 75.03 −0.51 21.80 57.79
CCSD 48.88 −8.21 17.45 34.87

Molecule Method βzzz βzxx βzyy β||

Furan (40) ADC(1) 13.19 −36.29 −5.19 −16.98
ADC(2) −3.41 −32.69 −4.93 −24.62
ADC(3) 2.42 −31.24 −4.24 −19.84
CCS 19.46 −35.53 −3.91 −11.99
CC2 0.55 −32.80 −4.14 −21.84
CCSD 0.01 −30.00 −4.13 −20.47

Molecule Method βzzz βzxx βzyy β||

Thiopenthene (41) ADC(1) −30.37 −4.38 −9.13 −26.33
ADC(2) −35.22 −6.69 −6.19 −28.86
ADC(3) −31.91 −4.27 −5.24 −24.85
CCS −20.60 −1.67 −7.66 −17.96
CC2 −27.67 −5.58 −5.41 −23.19
CCSD −36.23 −6.46 −5.60 −28.97

Molecule Method βzzz βzxx βzyy β||

Pyrrole (42) ADC(1) 22.35 −21.36 5.01 3.60
ADC(2) 15.85 −11.00 3.52 5.02
ADC(3) 25.96 −7.79 3.54 13.02
CCS 21.71 −23.73 3.76 1.04
CC2 16.23 −11.86 2.97 4.41
CCSD 26.42 −7.11 3.53 13.70

Molecule Method βzzz βzxx βzyy β||

Imidazole (43) ADC(1) −6.91 −53.97 −5.15 −39.62
ADC(2) −50.11 −51.87 −2.29 −62.56
ADC(3) −21.22 −41.57 −2.96 −39.44
CCS 2.93 −50.05 −3.75 −30.52
CC2 −58.60 −51.25 −1.71 −66.93
CCSD −18.00 −37.67 −1.88 −34.53



150 C FIRST-ORDER HYPERPOLARIZABILITY TENSOR

Table C.9: Components of static β at ADC and CC levels of theory of Thiozole
(44), Thiadiazole (45), Thiazole (46), Dioxolane (47), and Isothiazole (48) using the
aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

Thiozole (44) ADC(1) 20.32 25.63 −1.59 26.61
ADC(2) 0.79 47.76 −2.89 27.39
ADC(3) −4.85 31.89 −1.63 15.25
CCS 15.42 21.71 −1.56 21.34
CC2 −1.58 42.19 −2.68 22.76
CCSD −10.26 24.94 −2.20 7.49

Molecule Method βzzz βzxx βzyy β||

Thiadiazole (45) ADC(1) 86.48 27.45 13.08 76.21
ADC(2) 161.37 77.81 6.16 147.21
ADC(3) 91.65 42.50 8.09 85.34
CCS 67.26 18.85 10.10 57.72
CC2 158.64 71.07 5.07 140.87
CCSD 78.09 34.10 6.08 70.96

Molecule Method βzzz βzxx βzyy β||

Thiazole (46) ADC(1) −1.28 −27.29 7.72 −12.51
ADC(2) −36.46 −24.44 5.90 −33.00
ADC(3) −12.58 −17.73 6.01 −14.58
CCS 1.91 −27.52 7.13 −11.09
CC2 −45.28 −21.83 6.01 −36.66
CCSD −11.12 −15.65 5.99 −12.47

Molecule Method βzzz βzxx βzyy β||

Dioxolane (47) ADC(1) 35.85 0.32 −1.55 20.78
ADC(2) 50.84 1.62 −7.09 27.22
ADC(3) 43.86 −0.80 −8.80 20.56
CCS 35.48 −1.32 −4.75 17.64
CC2 51.93 0.78 −10.57 25.29
CCSD 42.43 −0.69 −9.43 19.39

Molecule Method βzzz βzxx βzyy β||

Isothiazole (48) ADC(1) 0.79 12.52 −1.82 6.89
ADC(2) −4.22 30.45 −1.11 15.07
ADC(3) −18.26 24.96 −0.05 3.99
CCS −2.52 15.11 −2.02 6.35
CC2 −3.32 31.63 −0.99 16.39
CCSD −19.73 19.49 −1.08 −0.79
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Table C.10: Components of static β at ADC and CC levels of theory of 3-pyrroline
(49) , Oxadiazole (50), and Oxazole (51) using the aug-cc-pVTZ basis set.

Molecule Method βzzz βzxx βzyy β||

3-pyrroline (49) ADC(1) −0.93 8.75 17.36 15.11
ADC(2) −1.83 15.38 27.88 24.85
ADC(3) −2.07 11.30 22.86 19.25
CCS −1.44 8.11 17.15 14.30
CC2 −0.97 15.61 28.61 25.95
CCSD −1.36 11.54 22.56 19.64

Molecule Method βzzz βzxx βzyy β||

Oxadiazole (50) ADC(1) −31.71 −11.90 −23.88 −40.49
ADC(2) −48.75 −13.42 −19.70 −49.12
ADC(3) −34.30 −12.72 −19.54 −39.94
CCS −16.49 −12.08 −20.25 −29.30
CC2 −48.87 −20.98 −18.38 −52.94
CCSD −34.11 −14.81 −17.51 −39.86

Molecule Method βzzz βzxx βzyy β||

Oxazole (51) ADC(1) 50.99 −50.38 5.26 3.53
ADC(2) 60.97 −42.80 2.47 12.38
ADC(3) 56.12 −39.92 3.43 11.78
CCS 49.37 −48.92 3.85 2.58
CC2 64.34 −39.93 2.35 16.05
CCSD 47.86 −37.54 2.31 7.58
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C.2 Dynamic first-order hyperpolarizability tensor

Table C.11: βαβγ components at 693.1 nm perturbation of CO, H2O, H2S and NH3
at ADC levels of theory with the aug-cc-pVTZ and aug-cc-pVQZ basis sets.

βzzz βzxx βxzx βyzy β||

CO (39) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) 48.2 48.2 2.4 2.4 0.5 0.5 0.5 0.5 30.3 30.3
ADC(2) 39.8 38.9 6.4 5.5 5.1 4.3 5.1 4.3 30.5 29.0
ADC(3) 38.7 38.2 9.1 8.4 7.5 6.8 7.5 6.8 32.8 31.8

βzzz βzxx βxzx βyzy β||

H2O (4) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −16.4 −16.6 −14.6 −13.7 −14.9 −13.9 −6.1 −6.0 −22.0 −21.5
ADC(2) −24.1 −25.0 −18.3 −16.6 −18.2 −16.4 −14.3 −13.7 −33.0 −32.4
ADC(3) −17.5 −18.3 −14.7 −13.4 −14.8 −13.4 −9.0 −9.0 −24.2 −24.0

βzzz βzxx βxzx βyzy β||

H2S (5) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −10.1 −6.3 −20.1 −15.5 −21.8 −17.2 −13.1 −12.8 −24.7 −19.9
ADC(2) −9.9 −7.2 −20.9 −16.2 −21.5 −16.6 −14.1 −13.5 −25.4 −21.0
ADC(3) −5.2 −2.7 −19.1 −14.7 −19.8 −15.2 −11.0 −11.0 −19.6 −15.9

βzzz βzxx βxzx βyzy β||

NH3 TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −33.5 −36.1 −11.7 −12.0 −11.5 −11.8 −11.5 −11.8 −34.0 −35.9
ADC(2) −69.0 −72.8 −17.1 −17.1 −14.8 −15.0 −14.8 −15.0 −60.0 −62.5
ADC(3) −52.4 −57.6 −13.5 −14.0 −12.2 −12.7 −12.2 −12.7 −46.7 −50.3
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Table C.12: βαβγ components at 693.1 nm perturbation of CO, H2O, H2S and NH3
at ADC levels of theory with the aug-cc-pVTZ and aug-cc-pVQZ basis sets.

βzzz βzxx βxzx βyzy β||

CH3F (52) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −47.5 −47.1 −22.8 −21.9 −22.9 −22.0 −22.9 −22.0 −55.9 −54.6
ADC(2) −56.6 −55.1 −27.5 −25.4 −27.8 −25.6 −27.8 −25.6 −67.2 −63.7
ADC(3) −42.2 −42.2 −24.4 −24.4 −24.6 −24.6 −24.6 −24.6 −54.8 −54.8

βzzz βzxx βxzx βyzy β||

CH2F2 (54) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −34.6 −32.5 −23.8 −22.9 −23.8 −22.9 −17.5 −17.8 −45.5 −44.0
ADC(2) −42.7 −38.6 −28.7 −26.7 −28.9 −26.8 −22.8 −23.2 −56.7 −53.2
ADC(3) −34.0 −34.0 −25.5 −25.5 −25.6 −25.6 −15.3 −15.3 −45.0 −45.0

βzzz βzxx βxzx βyzy β||

CF3H (58) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −28.5 −26.8 −9.1 −9.0 −9.0 −8.9 −9.0 −8.9 −27.9 −26.8
ADC(2) −34.6 −31.0 −12.6 −12.3 −12.4 −12.1 −12.4 −12.1 −35.7 −33.2
ADC(3) −29.0 −29.0 −8.7 −8.7 −8.5 −8.5 −8.5 −8.5 −27.7 −27.7

βzzz βzxx βxzx βyzy β||

CFCl3 (53) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −51.0 −58.0 1.2 1.6 1.2 1.7 1.2 1.7 −29.2 −32.7
ADC(2) −69.7 −77.6 −2.2 −1.5 −2.7 −1.9 −2.7 −1.9 −44.9 −48.7
ADC(3) −49.7 −49.7 −2.5 −2.5 −3.1 −3.1 −3.1 −3.1 −33.3 −33.3

βzzz βzxx βxzx βyzy β||

CF2Cl2 (60) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −50.2 −57.5 −23.2 −25.0 −22.4 −24.2 −8.4 −7.5 −48.9 −53.8
ADC(2) −68.9 −76.2 −32.8 −34.5 −32.3 −34.0 −18.2 −16.7 −71.7 −76.2
ADC(3) −55.1 −55.1 −26.2 −26.2 −26.1 −26.1 −17.4 −17.4 −59.1 −59.1
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Table C.13: βαβγ components at 693.1 nm perturbation of CO, H2O, H2S and NH3
at ADC levels of theory with the aug-cc-pVTZ and aug-cc-pVQZ basis sets.

βzzz βzxx βxzx βyzy β||

CF3Cl (61) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −45.8 −48.4 −26.4 −29.6 −25.1 −28.2 −25.1 −28.2 −58.1 −63.5
ADC(2) −70.6 −71.8 −33.7 −36.8 −32.5 −35.7 −32.5 −35.7 −81.8 −86.4
ADC(3) −64.1 −64.1 −28.8 −28.8 −27.9 −27.9 −27.9 −27.9 −72.2 −72.2

βzzz βzxx βxzx βyzy β||

CF3Br (57) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −106.9 −110.3 −49.0 −50.6 −45.6 −47.3 −45.6 −47.3 −120.3 −124.2
ADC(2) −160.1 −160.0 −61.9 −62.3 −58.7 −59.3 −58.7 −59.3 −167.7 −168.3
ADC(3) −138.9 −138.9 −54.6 −54.6 −52.4 −52.4 −52.4 −52.4 −147.1 −147.1

CH3Cl (55) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −32.8 −26.3 5.3 11.0 3.6 9.3 3.6 9.3 −14.7 −4.0
ADC(2) −25.0 −16.9 8.2 14.2 6.9 13.1 6.9 13.1 −6.2 6.1
ADC(3) −8.7 −1.9 9.2 15.3 8.3 14.6 8.3 14.6 5.1 16.7

βzzz βzxx βxzx βyzy β||

CH2Cl2 (56) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) 1.9 11.4 −0.3 1.4 −1.4 0.4 −18.1 −19.8 −10.1 −4.4
ADC(2) 0.5 11.4 1.1 2.8 0.8 2.6 −18.2 −20.1 −10.1 −3.6
ADC(3) 6.7 6.7 5.4 5.4 5.2 5.2 −7.0 −7.0 2.9 2.9

βzzz βzxx βxzx βyzy β||

CHCl3 (59) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) 10.6 16.1 −11.6 −12.3 −12.0 −12.7 −12.0 −12.7 −7.9 −5.5
ADC(2) 12.0 18.5 −16.4 −17.1 −15.7 −16.5 −15.7 −16.5 −12.0 −9.0
ADC(3) 15.6 15.6 −9.9 −9.9 −9.4 −9.4 −9.4 −9.4 −2.2 −2.2
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Table C.14: βαβγ components at 693.1 nm perturbation of CO, H2O, H2S and NH3
at ADC levels of theory with the aug-cc-pVTZ and aug-cc-pVQZ basis sets.

βzzz βzxx βxzx βyzy β||

CH3CN (38) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −14.7 −14.3 −8.3 −6.6 −9.6 −8.0 −9.6 −8.0 −19.8 −17.6
ADC(2) 28.0 29.2 −2.1 −0.7 −3.5 −2.1 −3.5 −2.1 13.2 15.5
ADC(3) 35.0 35.0 −1.2 −1.2 −2.2 −2.2 −2.2 −2.2 18.8 18.8

βzzz βzxx βxzx βyzy β||

CH3OH (36) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −36.5 −35.8 −13.2 −12.9 −13.6 −13.3 −23.8 −23.4 −44.1 −43.3
ADC(2) −41.8 −40.6 −19.6 −18.6 −20.0 −18.8 −26.6 −25.4 −52.6 −50.6
ADC(3) −34.8 −34.8 −11.5 −11.5 −11.9 −11.9 −24.5 −24.5 −42.4 −42.4

βzzz βzxx βxzx βyzy β||

(CH3)2O (37) TZ QZ TZ QZ TZ QZ TZ QZ TZ QZ

ADC(1) −71.7 −72.1 −22.3 −22.4 −22.5 −22.7 −61.1 −60.9 −92.9 −93.0
ADC(2) −113.2 −110.6 −54.8 −52.2 −52.0 −49.8 −103.6 −98.9 −160.8 −155.3
ADC(3) −79.9 −80.5 −30.0 −29.7 −29.2 −29.0 −76.5 −75.6 −111.0 −110.7
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