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Abstract

This thesis studies the geometric properties related to certain transversality
statements on singular spaces, in a purely topological setting. These enter in
the main part – the construction of a generalized homology theory realized
via bordism of such singular spaces – through the inverse of the excision-
isomorphism, the most difficult aspect of that problem. The relevancy of this
homology theory is due to the unification of both, possessing a geometric
description, establishing geometric fundamental-classes, and at the same
time being well-suited to study inherently topological phenomena, like
homeomorphism-invariance of said fundamental-classes, even in the absence
of pl-structures. As an application, the invariance of Goresky–MacPherson
L-classes under certain homeomorphisms is demonstrated.

Zusammenfassung

Technische Grundlage dieser Arbeit bildet die Untersuchung von, gewissen
Transversalitätsaussagen zugrundeliegenden, geometrischen Eigenschaften
singulärer Räume in einem rein topologischen Kontext. Für die hier vorge-
stellte Konstruktion einer verallgemeinerten Homologietheorie, realisiert als
Bordismustheorie solcher singulären Räume, besteht die Hauptschwierigkeit
in der Invertierbarkeit des Ausschneideisomorphismus. Ein Problem, dessen
Lösung sich in eben solchen Transversalitätsaussagen findet. Die Relevanz
einer solchen Homologietheorie liegt im Vorhandensein einer geometrischen
Beschreibung und damit von Fundamentalklassen, bei gleichzeitiger Kom-
patibilität mit topologischen Phänomenen, wie etwa der Invarianz jener
Fundamentalklassen unter Homöomorphismen, ohne die Notwendigkeit ei-
ner PL-Struktur. Als Anwendungsbeispiel wird die Invarianz von Goresky–
MacPherson L-Klassen unter bestimmten Homöomorphismen gezeigt.
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0 Introduction
Transversality and general-position techniques – i. e. the ability to avoid geometrically
degenerate special cases “as good as possible” while maintaining full generality, for
example by moving things around a little bit without changing the problem1 – play
a central role in the answer to many geometric questions.

These questions include the correspondence of geometry and algebra in high-
dimensional h-cobordisms [Sma62], the s-cobordism-theorem (by Barden, Mazur,
Stallings, see [Ker65]) or end-theory [Fre31; Sie65], the realization of excision (or sus-
pension) isomorphisms in (reduced) generalized homology theories given as bordism-
theories [Tho54], (closely related) the Thom–Pontryagin-construction, or characteris-
tic classes, for example L-classes, see e. g. [Hir71] (which is most apparent from a
viewpoint introduced by Thom [Tho58], see [Ran95, Prop. 2.6 (p. 7)] or [Ban07, §5.7
(p. 120–122)]).

Vice versa, geometric structures allow for certain transversality constructions.2
The interplay of transversality, geometry and algebraic topology is combined in this
thesis to construct an oriented bordism-theory, in a singular (non-manifold, but
manifold-stratified), inherently topological context (to be explained below).

By (manifold-) stratified spaces, we mean singular (non-manifold) spaces, that
can be divided into “reasonable” (e. g. manifold-) parts, called the “strata”, that fit
together in some controlled way. One of the motivating examples for the study of
such objects are algebraic varieties, that is, zero-sets of polynomials [Whi65; Tho69;
Mat]. Other examples are orbit-spaces of group-actions [Qui88a], or stratifications of
mapping-cylinders [CS95].

Besides these being of independent interest by themselves and through their natural
occurrence in such examples, stratified spaces additionally proved useful in the study
of manifolds and simplicial sets. As an example, the so-called “pinch-bordism”
[Sie83] allows for a very elegant proof of Novikov-additivity (of intersection-forms)
on manifolds, by using a singular bordism-theory. On the other hand, [Sie72] studies
self-homeomorphisms of finite simplicial sets via stratified spaces.

As always, provided such a new setting, the question of classification, or at least
useful invariants, was (and certainly is) an important aspect of development in
this area. A rather natural (and quite successful) approach to this problem is, by
generalizing manifold-invariants to manifold-stratified spaces, see for example [GM80;
Ban07] and references therein.

1This viewpoint, generalizing simplicial approximation to the smooth category, without explicit
use of triangulations [Whi40], seems to originate from [Tho54, chapitre I].

2Note, that also the treatment of topological transversality in high dimensions given by Kirby and
Siebenmann [KS77], uses a (smooth or pl) product-structure-theorem, a geometric result based
in turn on the (smooth or pl) h-cobordism-theorem.
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ii 0 Introduction

Classically, manifold classification relies heavily on surgery-theory [Mil61a; Wal70],
with (simply-connected) obstructions found in intersection-form-signatures (or more
generally in properties of intersection-pairings and L-theory [Ran92]). These in-
variants rely heavily on Poincaré-duality, which is not readily available for singular
spaces when using “standard” (e. g. singular) homology. A suitable replacement was
found in intersection-homology [GM80], by allowing for certain controlled deviations
from transversality of cycles to strata. Other approaches to restore Poincaré-duality
are L2-cohomology [Che80] or intersection-spaces [Ban10]. Having restored a (suit-
able form of) Poincaré-duality, one can also obtain, for example for Siegel’s [Sie83]
Witt-spaces, non-degenerate intersection forms. These allow in turn the definition of
a (bordism-invariant) signature and L-classes [GM80].

While in differential topology (cohomological) L-classes, and many other charac-
teristic classes of smooth manifolds, are defined via tangent-bundles, for topological
manifolds, and especially for singular spaces, another approach is required. As it
turns out, one can sometimes rely on transversality instead, for example for homo-
logical L-classes, the Poincaré-duals of the standard ones, such a construction was
already used by Thom [Tho58], and then transferred to the singular case by Goresky
and MacPherson [GM80].

One should note however, that already the transfer of transversality-ideas to
topological manifolds [KS77; Qui88b] was quite hard to achieve and involves many of
the techniques developed for example in [Nov65; Kir69]. Hence it is not actually too
surprising, that finding a singular topological setting with suitable (and accessible)
transversality properties will turn out to be the central problem of this thesis.

In a singular context, there is the additional issue of “inhomogeneities” where strata
meet. The usual approach on stratified spaces, via induction over skeleta, requires
some way of extending geometric structures from one stratum (or skeleton) into the
next, adjacent one. This suggests the use of some sort of normal-structure hypothesis –
as is usually built into the definitions of stratified spaces for such inductions. However
geometric normal-structure (e. g. bundles or compatible triangulations) is not readily
available in the topological category, not even for locally flat submanifolds (see e. g.
[FQ90, §9.5 (p. 150f)]). So artificially “enforcing” it (as a hypothesis), may render
the result incompatible with topological constructions (see below).

The existence of some – suitable for our purposes by a transversality-theorem of
[CV99] – geometric structure, namely mapping-cylinder neighborhoods of approxi-
mate fibrations, can be guaranteed (in high dimensions) by topological hypotheses
through “controlled topology” constructions [Qui79; Qui02; Cha83]. This allows
for fixing a topological hypothesis, to then obtain a geometric structure “on-the-fly”
whenever needed for a transversality-construction. So in this sense, it constitutes
the core element for realizing a geometric theory, within the topological setting
used. Much more details and discussion on suitable (topological) normal structure is
provided in Chapter 1 (“Background”).

The treatment presented here “encapsulates” the transversality properties in a
generalized homology theory realized by bordism of stratified spaces, more precisely
in (the inverse of) the excision-isomorphism. Similar theories using strong geometric
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hypotheses [Min04] or piecewise linear (pl) structures [Sie83; Par90; BLM19] are
quite well-understood. The interesting new aspect of the approach presented here is,
as outlined above, its compatibility with “inherently topological” problems.

We illustrate the “inherently topological setting” via an example: To study
the “transport-behavior” of geometric structures (e. g. of certain, L-theory-type,
fundamental classes) under topological homeomorphisms, the natural geometric
object to start from, is the mapping-cylinder of that homeomorphism (which could
then serve e. g. as a bordism). Now, restricting to the case of pl-pseudomanifolds
for the moment, such a homeomorphism, even if stratified, need not be pl3, so
generally we do not even know if its mapping-cylinder can be compatibly (with the
stratification) triangulated while keeping its “ends” fixed. Similarly, strong geometric
structures, like certain bundles, do not “usually” arise on that mapping-cylinder.

We will be working with a type of stratified spaces known as “Quinn”- or “homo-
topy”-stratified [Qui88a]. Cappell and Shaneson [CS95] found this type of stratified
spaces to “arise naturally” (see p. 59 of the reference) in the context of mapping-
cylinder stratifications, even though they studied smooth maps on smooth stratifica-
tions. At the same time, these spaces are well-suited (essentially by construction) for
the use of controlled topology techniques [Qui88a, e. g. Thm. 1.7 (p. 446)], [CV99].

We construct a bordism-theory of such spaces, which has both nice geometric
properties – for example fundamental-classes and a signature-invariant (see below) –
while also being able to describe their transport under certain homeomorphisms. So,
there are geometric fundamental-classes (close to) being homeomorphism / topological
invariants.

What, so far, we loosely referred to as “transport-behavior” under homeomor-
phisms can be understood as the combination of two questions: The behavior under
“isomorphisms”, i. e. stratified homeomorphisms as we are working in a stratified
category, and, on the other hand, dependence on the choice of stratification, i. e.
behavior under unstratified homeomorphisms. As we work in the realm of Quinn’s
[Qui88a] manifold homotopy-stratified spaces, where certain intrinsic stratifications
are available [Qui87], even unstratified homeomorphisms seem tractable. We demon-
strate this for spaces with at most two strata. Stratified homeomorphisms can be
treated more generally.

However, the transversality requirements come at the cost of additional hypotheses
on the (fundamental-groups of) links, and a “dimensional gap” between strata, that is
related to certain low-dimensional problems. This will become more apparent later. It
is not entirely clear as of now, to what degree the hypotheses used are strictly necessary
– this is discussed further later on – but it seems quite possible, that “suitable” (for
constructing a generalize-homology-bordism-theory) transversality results are indeed
obstructed in the setting observed. Similar “K-theoretic” problems [Qui04] were
found by [RY06], see below, which suggests, that (some of) the obstructions might
be “genuine”.

3Even for pl-manifolds (i. e. spaces with only one stratum, where any map is stratified) topological
homeomorphisms are not necessarily pl [Mil61b].
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On the other hand, this setup can be combined with a Witt-hypothesis [Sie83;
Fri09], to obtain a well-defined signature-invariant. Then the theory encodes (bord-
ism-invariant) intersection-form- and thus signature-information. This is the typical
“L-theory”-type information used for example in surgery theory of manifolds very
successfully. Also note, that introducing some “rigidity” on bordisms is particularly
important for singular theories, as, otherwise, it might happen that the cone on any
allowable space is an allowable null-bordism, which would render the theory trivial.
A signature invariant certainly prevents that.4

As an application of our construction, we show, that for suitable stratified spaces,
the Goresky–MacPherson L-classes [GM80] are invariant under certain (stratified, or,
of spaces with at most two strata) homeomorphisms. There are many previous results
concerning this problem: The manifold-case (of the invariance of rational Pontryagin-
classes, thus of L-classes) has been shown for the pl-case by Thom [Tho58], and for
the topological case, famously, by Novikov [Nov65]. A treatment of this problem
for pl-homeomorphisms, using ad-theories – which are a little stronger than, but
closely related to, bordism-theories – can be found in [BLM19]. Another treatment,
also answering some questions on generalizations of rational Pontryagin-classes (i. e.
including a treatment via characteristic classes of certain generalized bundle-theories)
can be found in [RW10]. As other “algebra-side” treatments (see next paragraph),
the geometric control provided by this reference’s treatment seems insufficient for
fundamental-classes beyond the manifold-case. The invariance of stratified L-classes
has also been treated by [CSW91] and [Wei94, p. 209f].

It should be mentioned, that there is a “complementary” / “algebraic” view-point,
know as “controlled L-theory” [RY06]. This approach also seems to “see” K-theoretic
obstructions (to generalized homology-theories), but seems well-suited for still in-
corporating the obstructed cases into a useful treatment. However in exchange, it
provides less geometric control, and “fundamental-classes” only in the manifold-case.

The contents of this thesis can be outlined as follows: Initially, Chapter 1 (“Back-
ground”) introduces and organizes known results from literature, as relevant to the
later development. Much of the introduction, and discussion motivating the choices
of which techniques to use, is also included there. Next, Chapter 2 (“Bordism Con-
structions”) analyzes the requirements for building a bordism-theory (as a generalized
homology-theory; similar to for example [Aki75; Fri15]) and connects these to the
material of the background-chapter, in order to establish a first “preliminary” setup,
demonstrating the relevant ideas in the simplest non-trivial case. Subsequently,
Chapter 3 (“Multiple Strata”) gives some generalizations, for broader applicability of
the theory, but also to set the grounds for Chapter 4 (“Homeomorphisms”) which uses
those results to study mapping-cylinders of certain homeomorphisms. Further exten-
sions are discussed in Section 2.6 (“Improvements”) and Chapter 6 (“Conclusion”).
In Chapter 5 (“The Main Theorem and its Applications”), implications, applicability,

4The theory presented here allows arbitrary topological manifolds, and on these, the signature-
invariant calculates the standard-signature, so for example the complex projective spaces CP2n

cannot be trivial.
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and a formulation mostly independent of the details behind the implementation of
the bordism-theory, are given. Finally Chapter 6 (“Conclusion”) discusses difficulties
and further aspects of the problems studied.



Contents

0 Introduction i

Contents vi

1 Background 1
1.1 Topological Normal Structure . . . . . . . . . . . . . . . . . . . . . 2
1.2 Approximate Fibrations . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Excursion: Stratified Spaces . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Quinn Spaces / (M)HSS . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Excursion: Manifold Transversality . . . . . . . . . . . . . . . . . . 28
1.6 Stratified Transversality . . . . . . . . . . . . . . . . . . . . . . . . 38
1.7 Excursion: Controlled Topology . . . . . . . . . . . . . . . . . . . . 53
1.8 Excursion: End-Theory . . . . . . . . . . . . . . . . . . . . . . . . . 64
1.9 Mapping-Cylinder Neighborhoods . . . . . . . . . . . . . . . . . . . 67
1.10 Intrinsic Stratifications . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.11 Excursion: Intersection Homology and Poincaré-Duality . . . . . . . 72
1.12 Witt-Condition and Signature of MHSS . . . . . . . . . . . . . . . . 75
1.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2 Bordism Constructions 85
2.1 Bordism Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.2 Transversality Properties . . . . . . . . . . . . . . . . . . . . . . . . 91
2.3 Generalized Homology Theory . . . . . . . . . . . . . . . . . . . . . 98
2.4 An Example-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.5 Reduced Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.6 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3 Multiple Strata 117
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2 Absorbing Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3 Special Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4 Transversality-Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4 Homeomorphisms 137
4.1 Stratified Homeomorphisms . . . . . . . . . . . . . . . . . . . . . . 137
4.2 Spaces With at Most Two Strata . . . . . . . . . . . . . . . . . . . 140



Contents vii

5 The Main Theorem and its Applications 151
5.1 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2 Satisfying the Hypotheses . . . . . . . . . . . . . . . . . . . . . . . 153
5.3 L-Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4 Singular Transversality . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Conclusion 169
6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Encountered Problems . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3 Outlook and Further Ideas . . . . . . . . . . . . . . . . . . . . . . . 170

A Ends in MHSS 173
A.1 Background on Controlled End-Theory . . . . . . . . . . . . . . . . 173
A.2 Local Fundamental Groups . . . . . . . . . . . . . . . . . . . . . . . 177
A.3 Tameness Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.4 Previously Deferred Proofs of Examples . . . . . . . . . . . . . . . . 184

B Bibliography 187





1 Background

This chapter summarizes known results from the literature and organizes them in
a way, applicable to the subject of constructing a bordism theory. It provides the
basic definitions and results used throughout this thesis.

The general progression of this chapter develops around finding the “correct”
notion of transversality in a stratified topological setting. The first clue is, that for
spaces with manifold-strata, transversality within individual strata is well-understood.
So the root of the problem really is in compatibility-conditions where the strata
meet. This requires some notion of “normal-structure”. However, in a topological
setting, strong geometric structures, like normal-vector-bundles, typically do not
exist. Rather, a natural notion was found in “approximate fibrations” [Edw, Def. 2
(p. 8), Thm. 2.1 (p. 11), Prop. 3.1 (p. 13)]. For cylinders of these, Connolly and Vajiac
[CV99] give indeed a transversality-theorem.1 This answers only half the question
however: As will be seen, most difficult issues have merely been moved – not resolved
– and are now hidden in the existence of (suitable) cylinder neighborhoods. Luckily,
this type of problem, known as controlled “end-theory” or “ends of maps” [Qui79;
Qui82a; Qui82b; Qui86; HR96] has received a lot of attention in the past, and is well-
understood (at least in high dimensions). An adequate framework of stratified spaces
to work with controlled ends, is found in Quinn’s [Qui88a] “(Manifold) Homotopy
Stratified Spaces” or (M)HSS for short.

The remaining sections of the chapter are concerned with properties of these spaces
as required for the present task. Namely, there is a well-defined intersection-homology
theory [Qui87], and a treatment of Poincaré-duality [Fri09], which also includes a
Witt-condition. This in turn allows for the definition of a signature-invariant of such
Witt-spaces. Finally there are intrinsic stratifications [Qui87] that are very close to
being topologically-intrinsic – i. e. in most cases only depend on the topology of the
underlying (unstratified) space – stressing the topological nature of the setting.

Throughout this chapter, we are working with spaces with at most two strata (or,
for gluing results, with spaces of at most two meeting strata), as this considerably
simplifies notation. Where relevant, the respective versions for spaces with more
than two strata are included in Chapter 3 (“Multiple Strata”).

Even if results are associated directly to a given reference, these are not to be
considered to be “at verbatim”. The statement given may be reformulated to integrate
with the notation and to incorporate further discussion, that is given by the source,
but not included in the statement itself. Any alterations should be clear from the

1They are working on Quinn-Spaces already, see Section 1.4 (“Quinn Spaces / (M)HSS”) for details,
but their construction mostly is “separate” from controlled topology and mapping-cylinder
existence, see Section 1.9 (“Mapping-Cylinder Neighborhoods”).

1



2 1 Background

context or additionally explained if not so.

1.1 Topological Normal Structure
This section summarizes some of the problems and requirements, that lead to the
choice of structures and techniques being used in the remainder of this thesis.

For realizing a transversality statement, we want to use manifold-transversality in
the lower stratum, extend the resulting geometric structure into a neighborhood by
using some sort of normal structure, and finally use relative manifold-transversality
in the upper stratum to finish the construction.

This seems to – and in fact does2 – require a geometric notion of normal-structure.
The usual candidates, (vector) bundles, can be used for this task [Min04], but
typically will not exist in a topological setting. Even in the “simple” case, where the
total space X is itself a manifold, and we are investigating the normal-structure of a
(locally flat) submanifold B, normal-bundles may not exist. A noteworthy special
case, where they do exist3 are manifold-boundaries:

Definition 1.1.1: A collar of Y ⊂ X is homeomorphism c : Y × [0,∞) → N ,
where N is an open neighborhood of Y ⊂ X and c(y, 0) = y for all y ∈ Y . If
such a collar c exists, Y ⊂ X is collared (by c).

Theorem 1.1.2: [Bro62]: Let (M,∂M) be a manifold with boundary.4 Then
∂M ⊂ M is collared.

The arguments given in this thesis require conditions on local fundamental-groups
– basically fundamental-groups of “links” from the stratified-spaces point of view
taken here – and one might suspect, that in these cases bundle-structures could exist.
However, again even for submanifolds, correct fundamental-group structure, does
not even imply local flatness (for an example, see [FQ90, p. 151]).

It would be possible, of course, to state a result with a geometric structure as part of
the hypothesis. This does however not work well with inherently topological problems
like constructing a bordism from (the mapping cylinder of) a homeomorphism. This
is exactly the type of question we want to answer, therefore we need to use an other
notion of normal-structure.

2See the “backward”-direction of [CV99, p. 536], and Section 1.6 (“Stratified Transversality”)
below.

3Other examples where they do exist are for low-dimensional submanifolds (for dim(B) ≤ 3 and
dim(X) ≥ 5) as well as small codimensions, see [FQ90, p. 150]

4I. e. points have neighborhoods homeomorphic to either a euclidean space Rn or a “half-plane”
Rn−1 × [0,∞), meaning the boundary is locally collared, and M is second-countable and
Hausdorff.



1.2 Approximate Fibrations 3

Returning to the manifold-case, it is in fact known, that there are normal-structures
which always exist. On the one hand, there are Milnor’s [Mil64] (stable) microbundles
– there does not seem to be an obvious way of generalizing these from submanifolds
to more general stratifications, however, and “stable” existence seems not to be
enough either. On the other hand, in high dimensions, (certain) submanifolds do
have neighborhoods of the form of the mapping-cylinder of an “approximate fibration”
[Edw] (Section 1.2 (“Approximate Fibrations”)).

This notion of normal-structure has been extended to stratified spaces by [Hug+00],
in the case of two strata, and, based on that result, in a series of papers by Hughes
[Hug99c; Hug99a; Hug99b; Hug02; Hug04] (see [Hug96] for an overview), in the
general case (for compactly dominated local homotopy links, see below). There
is a known connection to transversality problems [CV99] (Section 1.6 (“Stratified
Transversality”)), via controlled end-theory [Qui82a] (Section 1.7 (“Excursion: Con-
trolled Topology”), Section 1.9 (“Mapping-Cylinder Neighborhoods”)). These take
place in the setting of Quinn’s [Qui88a] “homotopy-stratified” spaces (Section 1.4
(“Quinn Spaces / (M)HSS”)).

As they come up repeatedly, we also fix notation for mapping-cylinders (with the
convention, that the cylinder-coordinate measures the distance to the “base”):

Definition 1.1.3: Given a (continuous) map f : X → Y , the mapping-cylinder
cyl(f) of f is the topological space given by the equivalence classes in X × I ⊔ Y ,
where I = [0, 1], of the equivalence-relation generated by (x, 0) ∼ f(x) for x ∈ X
with the quotient topology.

If f is surjective, points in the cylinder can always be denoted as [x, t], with
x ∈ X and t ∈ I. We will sometimes refer to t as the cylinder-coordinate and
to Y ⊂ cyl(f) as the base.

There is a canonical embedding of X as the cylinder-cap at X × {1} ⊂ cyl(f),
where no identifications via ∼ take place nearby.

The open cylinder cẙl(f) is the cylinder without cap, i. e. cẙl(f) := cyl(f) −
(X × {1}).

The cone c(X) on X is the cylinder of the (unique) map to the point c(X) :=
cyl(X → {pt}), similarly c◦(X) := cẙl(X → {pt}). The “base” is in this case
referred to as vertex v.

1.2 Approximate Fibrations
Approximate fibrations are continuous maps, that approximate the lifting properties
of fibrations. There are different ways of making this statement precise: Most notably,
via “smallness” with respect to open covers, smallness in a metric sense (if the base-
space is metric) or via continuity of “open” lifts when composed into the base. See
for example [HTW90, §12 (p. 43–52)] for a detailed analysis. We are particularly
interested in the case where total- and base-space are metric manifolds (thus metric-
ANR). In this case, the commonly used definitions agree (for the direction needed
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here, see [HTW90, Thm. 12.13 (p. 50)]), and we will adopt the following intuitive
definition:

Definition 1.2.1: Let E,B be metric (metric-)5ANR, p : E → B continuous.
(i) p has the ϵ-lifting property with respect to A for ϵ : B → (0,∞), if

given a commutative square (where arrows are continuous) of the form

A× {0}
F0

E

incl

A× I

p

B
f

F
≈ ϵ

the continuous “lift” F (dashed arrow) exists, such that the upper-left
triangle commutes, and the bottom-right triangle “commutes up to ϵ”, i. e.
for all (a, t) ∈ A× I: distB(p ◦ F (a, t), f(a, t)) < ϵ(f(a, t)). p is called an
ϵ-fibration if it has the ϵ-lifting property with respect to all A.

(ii) p is an approximate fibration (AF) if it is an ϵ-fibration for all ϵ > 0.
(iii) p is a manifold approximate fibration (MAF) if it is a proper map, an AF

and E, B are manifolds.

The difference to an “exact” fibration is probably best illustrated by examples:

E

B

p

γ

‘lift’
‘fast’

region

Figure 1.1: The MAF of Example 1.2.2.

5Metric-ANR here is supposed to mean ANR w. r. t. metric spaces. We will only work with
manifolds, which are metric-ANR, so for our purposes, we may as well replace “ANR” by
“manifold”.
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Example 1.2.2: Let E := (−1, 0] × {0} ∪ {0} × [0, 1] ∪ [0, 1) × {1} ⊂ R × R and
B := (−1, 1), define p : E → B as the projection to the first coordinate. See
Figure 1.1.

Then p is not a fibration, because given f : {pt} × I → B, t ↦→ t − 1/2 and
F0 : pt ↦→ (−1/2, 0) no exact lift can be continuous at t = 1/2, i. e. over 0 ∈ B.

But p is a MAF, because given any ϵ(0) > 0, a lift may run “1
ϵ
-fast” through

the vertical segment.

This behavior is “representative” for AFs R → R in the following sense.

Example 1.2.3: Given a map p : E → B:
(a) Let E = B = [0, 1]. Then

(i) p is an AF ⇔ p is monotonic and surjective
(ii) p is a fibration ⇔ p is strictly monotonic and surjective

(b) If E = B = R and p : R → R is a proper map, then
(i) p is a MAF ⇔ p is monotonic and surjective

(ii) p is a fibration ⇔ p is strictly monotonic and surjective

ε

E

B

ft

F0

p

Figure 1.2: An MAF from R to R must be
monotonic, see Example 1.2.3.

Proof: “(a) ⇒”: (i) See also Figure 1.2 for a picture of the contradiction found in the
following proof. Assume p where not monotonic, i. e. there are t0 < t′1 < t2 ∈ [0, 1]
s. t. p(t0), p(t2) > p(t′1). Pick t1 ∈ p−1

(︂
min{p(t)|t ∈ [t0, t2]}

)︂
̸= ∅ (the minimum on

the compact [t0, t2] is attained, thus this preimage is non-empty), then t0 < t1 < t2
and p(t0), p(t2) > p(t′1) ≥ p(t1) still hold. Let ϵ := 1/2 min(p(t2) − p(t1), p(t0) − p(t1))
and

f : {pt} × I → B = [0, 1], t ↦→ p(t1) − 2ϵt
F0 : {pt} → E = [0, 1], pt ↦→ t1

Then, there must be an approximate lift F : {pt} × I → E = [0, 1], with p ◦F ϵ-close
to f . By ϵ-closeness, p(F (t′)) < p(t1) for t′ := 3/4, and by p(t1) being the minimum
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of p on [t0, t2] by definition, F (t′) /∈ [t0, t2]. W. l. o. g. (the case F (t′) < t0 can be
treated analogously) F (t′) > t2, thus t2 ∈ im(F ), because the continuous image of
the connected {pt} × I is connected (and t1 = F (0), F (t′) ∈ im(F )). But this is a
contradiction to p ◦ F being ϵ-close to f , since p(t2) > p(t1) + 2ϵ by the choice of ϵ,
while all points in the image of f , are at ≤ p(t1).

Surjectivity can be seen as follows: The continuous image im(p) of the compact
[0, 1] is compact, thus closed. It is also open, because given t0 = p(τ) ∈ im(p), let
ϵ := min(1 − t0, t0) (or ϵ = 1/2 in the case t0 = 0 or 1, where we only have to check
one direction), ϵ/2-lift f±(t) := t0 ± ϵt with starting-point τ . Then the connected,
continuous images im(p ◦ F±) must contain (t0 − ϵ/2, t0 + ϵ/2).

(ii) If p is an exact fibration, it is a AF, thus monotonic and surjective. It can not
“linger” over a single point, for the reasons given in the previous example, thus is
strictly monotonic.

“(a) ⇐”: We start by showing (ii): If p is strictly monotonic, it is injective, thus,
being surjective by hypothesis, bijective. It is a well-known fact, that a continuous
bijection from a compact space to a Hausdorff-space is a homeomorphism (thus a
fibration).

(i) Given ϵ > 0 (the minimum of ϵ : [0, 1] → (0,∞)), subdivide [0, 1] into N > 1
2ϵ

pieces (of equal length). By surjectivity, each i
N

has a preimage ti. Define p′ by
linearly interpolating ti ↦→ i

N
. By monotonicity, t ∈ [ti, ti+1] ⇒ p(t) ∈ [ i

N
, i+1

N
], which

is of course also true for p′. Thus p and p′ are ϵ-close. p′ is strictly monotonic and
surjective by construction, thus a fibration by (ii). Produce an exact lift w. r. t. p′.
This is automatically ϵ-close to p, because p′ is.

“(b)”: The only modifications for the statement about proper maps are: For ⇒,
part (i), the closedness of the image, and thus surjectivity, follows from proper maps
of locally compact Hausdorff spaces being closed. The ⇐-direction of (ii) does not
require compactness for p to be a homeomorphism because p is proper (thus closed,
see above, thus p−1 is continuous, see for example the proof of [Bre97, Thm. 7.8
(p.19)]). Finally, the mesh of the subdivision for (i) can be made “adaptive”, as ϵ is
not just a number anymore, but this does not considerably change the argument.
For example, for n ∈ N use the previous argument on [n, n+ 1] inductively. □

Such “monotonic directions” exist more generally in the sense that, given an AF
p : E → B = B0 ×R the translation-isotopy (x, t) ↦→ (x, t+1) can be ϵ-lifted (starting
at the identity). This differs substantially from smooth (gradient) flows, not only
by introduction of ϵ, but also by their homotopic (as opposed to geometric) nature:
One obtains (thin) h-cobordisms rather than products in the total-space E. See also
the discussion on [Hug85, “Approximation Theorem” (p. 168)] below.

The following observation and example are from [HTW90, (p. 45)]: For path-
connected6 B, any fibration must be surjective (if a point were not in the image, try
lifting a path from one that is, to obtain a contradiction). This must not necessarily

6If B has multiple components, each one is either contained in the image or disjoint from the
image.
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be true for (non-proper) approximate fibrations: They only have dense image in
general.

Example 1.2.4: Let E := (0, 1) and B := [0, 1], define p : E → B as the
inclusion.

Then p is not a fibration, as indicated above.
But p is an AF, because any lift can be “clipped” to [ϵ, 1 − ϵ]: Just compose

with the projection to [ϵ, 1 − ϵ] (interpreted as a quotient of the interval), and
“lift” by the id. The result is ϵ-close. (We may assume ϵ > 0 is a number, as
opposed to a map, because B is compact.)

Evidently this p is not a proper map, so not a MAF.

On locally compact Hausdorff spaces (thus on manifolds) proper maps are closed,
so density of the image – which can be characterized as closure(im(p)) = B – implies
surjectivity for MAFs to connected spaces.

We continue by examining some of the properties AFs do have. Notably the
definition is local (as stated above, that is, on ANRs) as is shown for example in
[HTW90, Cor. 12.14 (p. 51)].

Lemma 1.2.5: If U ⊂ B is open, then
(i) if p is an AF, then so is the restriction p|U : p−1(U) → U .

(ii) if p is a MAF, then so is the restriction p|U : p−1(U) → U .
(iii) if U is an open cover of B, and ∀U ∈ U : p|U is a MAF, then f is a MAF.

Proof: Part (i) follows immediately from [HTW90, Cor. 12.14 (p. 51)], (ii) is a
consequence of (i): The continuous preimage p−1(U) is also open, and open subsets
of manifolds are manifolds, further properness is local (compactness is an absolute
property: A compact K ⊂ U is compact in B). (iii) is shown later as Cor. 1.4.20–1
as a consequence of Hughes’ cylinder-theorem and locality of MHSS. □

Apparently AFs are neither locally products, in the sense of local trivialization
(cf. Example 1.2.2), nor do they have well-defined (up to homotopy-equivalence)
fibers as fibrations do (cf. Example 1.2.4). However, in high dimensions, they are
close to both: By Hughes [Hug85, “Approximation Theorem” (p. 168)] there are,
over simplices, ϵ-close approximations by products7, which can, for example, be used
to obtain certain lifting results – or in the context of stratified spaces (as defined
later) extension results – e. g. for isotopies [Hug+00, Cor. 2.4 (p. 6)] (see also [HR96,
Thm. 17.4 (p. 201)]) or h-cobordisms [Hug+00, Cor. 9.7 (p. 57)].

More important for the following: The mapping-cylinder of an AF has a “homo-
topy-link” that is a fibration – so in turn has a well-defined fiber-homotopy-type

7See the reference for more details, we do not need this result in the following.
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[Qui04, Lemma 6.5.2 (p. 54)]. According to Quinn [Qui88a, footnote on p. 452], the
holink-construction was introduced by Fadell [Fad65] to “homotopically locate the
normal bundle of a submanifold”, which is a first indication of the relation between
AF-structures and normal structure as advertised above.

Definition 1.2.6: Given Y ⊂ X, the homotopy link holink(X, Y ) → Y is the
path-space (with compact-open topology)

holink(X, Y ) :=
{︂
γ : I → X

⃓⃓⃓
γ(0) ∈ Y and γ((0, 1]) ⊂ X − Y

}︂ ev0−−→ Y

where ev0(γ) := γ(0) is evaluation at zero.

There are a number of modifications of this construction, giving smallness con-
ditions on the length of paths [Qui88a, “holinkδ” (p. 453)], induced stratifications
[Hug99c, “holinkS” (p. 5)], or local versions (“holink(X, x)”; see [Hug99b, §5 (p. 317ff)]
or [Fri09, (p. 2172)]). Precise definitions will be given where they are used. The
connection to AFs through holinks of mapping-cylinders indicated above, is (refor-
mulated from the original source for the case of only two strata; the basic argument
is – to my knowledge – due to Hughes [Hug99a]):

Lemma 1.2.7: See e. g. [Qui04, Lemma 6.5.2 (p. 54)]: Given a continuous map
p : E → B, where E,B are metric ANR,

p is AF ⇔ holink(cyl(p), B) → B is a fibration

Homotopy-links turn out to be useful, even if no mapping-cylinder neighborhoods
exist. In fact they can be used used in Quinn’s [Qui82a] “controlled end-theory”, to
study the question of existence of such neighborhoods. Before returning to this point
of view in Section 1.9 (“Mapping-Cylinder Neighborhoods”), we will first introduce
“homotopy stratified spaces” (in Section 1.4 (“Quinn Spaces / (M)HSS”)) – also known
as Quinn-spaces – because these will also fix a notion of “tameness”, that is easily
seen to be a necessary requirement for the existence of cylinder neighborhoods.

The implications of the existence of those cylinder-neighborhoods on the problem
of extending transversality-constructions “upwards” from the lower stratum will then
be studied in Section 1.6 (“Stratified Transversality”).

Finally, we note some basic properties of (M)AFs:

Lemma 1.2.8: Properties of (M)AFs
(i) Given two AF p : E → B and p′ : E ′ → B′, with B and B′ compact, the

product p× p′ : E × E ′ → B ×B′ is a AF.
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(ii) Given two MAF p : E → B and p′ : E ′ → B′, the product p×p′ : E×E ′ →
B ×B′ is a MAF.

(iii) Given two (M)AF p : E → B and q : B → X, the composition q ◦ p : E →
X is a (M)AF.

(iv) Product-projections πX : X × Y → X are AF, if X and Y are ANR and
MAF if X and Y are manifolds and Y is compact.

Proof: “(i)”: Given ϵ : B × B′ → (0,∞) and a lifting problem of the form

A× {0} E × E ′

A× I B ×B′

F0

f
incl p× p′

There are lifting problems given by πEF0 and πBf for p (and similarly for p′). Using
ϵB(b) := min(ϵ({b} ×B′)), there are thus ϵB-lifts g and (an ϵB′-lift) g′ with g|A×{0} =
πEF0 and distB(pg, πBf) < ϵB (and similarly for g′). Then (g, g′) : A×I → E×E ′ is
an ϵ-solution to the lifting problem, if we are for example using the maximum-metric
to measure distances on the product.

“(ii)”: MAFs are proper, so we do not need the compactness-hypothesis: For every
point p in the manifold B ×B′ there is chart φp centered at p. The open images of
open unit-discs φp(D̊1) thus cover B ×B′, and by Lemma 1.2.5 (iii), it is enough to
show, that the restrictions to φp(D̊1) are MAFs. But the closed unit-disks φp(D̄1)
are compact, so we can choose ϵB and ϵB′ as before (on these compact sets, thus on
their subsets φp(D̊1). The proof of part (i) shows, that these restrictions are indeed
MAFs.

“(iii)”: Given ϵ : X → (0,∞) and a lifting problem

A× {0} E

A× I

B

X

F0

f

incl

p

q

By continuity of q, there is δ : B → (0,∞), such that whenever distB(b, b′) < δ holds,
then distX(q(b), q(b′)) < ϵ/2. Because q is an AF, there is a ϵ/2-lift F̃ of f starting at
pF0. Because p is an AF, there is a δ-lift F of F̃ starting at F0. By choice of δ, qpF
is ϵ/2-close to qF̃ , which is also ϵ/2-close to f .

“(iv)”: Product-projections are fibrations, thus (M)AF, if the spaces are suitable
and if the map is proper (in the case of a MAF). □

This concludes, for the moment, the discussion of (M)AFs.
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1.3 Excursion: Stratified Spaces
In this section, basic concepts of “stratified spaces” are briefly reviewed. Further,
some commonly used classes of stratified spaces are recalled. The reader familiar
with the world of stratified spaces may safely skip this excursion, potentially referring
back if necessary. More detailed treatments can be found for example in [Whi65;
Tho69; Mat; GM80; Kin85; Qui88a; Hug99c; Ban07; Kre10]. Often there is no “fully
canonical” choice for how to define certain details, if substantial to the argument,
such differences are pointed out in the place where they occur throughout this thesis.

We restrict ourselves to spaces with a finite number of strata. This removes most
differences between the “filtered” and the “stratified” point of view (see below). Also,
boundaries often require some special treatment, see for example Def. 1.4.13.

Definition 1.3.1: “Filtered point of view”:
A filtered space is a topological space X together with a series of subspaces

X = Xn ⊃ Xn−1 ⊃ . . . ⊃ X0 ⊃ X−1 = ∅

If the filtration is by closed subspaces, i. e. if the X i are closed (in X), we
call X i the i-skeleton and Xi := X i −X i−1 the i-stratum.
X is manifold-stratified if it is filtered by closed subspaces, and the strata Xi

are manifolds. In this case, it is filtered by dimension if for all non-empty strata
dim(Xi) = i.

A manifold-stratified X is orientable (oriented), if its top-stratum is orientable
(oriented) in the manifold-sense.

There is also the alternate point of view, starting from a partition into “strata”
indexed by a (finite) set I, that are locally closed, and satisfy a frontier condition:

Definition 1.3.2: “Stratified point of view”:
A partition of a topological space X into locally closed, disjoint strata (X(i))i∈I

satisfies the frontier condition if

X(i) ∩ closure(X(j)) ̸= ∅ ⇒ X(i) ⊂ closure(X(j))

In this case, there is a partial order on I (thus on skeleta and strata) given by

i ≤ j :⇔ X(i) ⊂ closure(X(j))

Extend this partial order to a total order ≤∗(on a finite set this does not require
the axiom of choice), then skeleta can be defined as

X(i) := closure(X(i)) ∪j≤∗i X
(j)
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Remark 1.3.3: We will usually only require the frontier condition component-
wise, i. e. components of X(i) that intersect closure(X(j)) must be contained
entirely in closure(X(j)). This provides a partial order on components of strata
rather than the index-set I, but does not otherwise differ much from the “global”
version above. See also Rmk. 1.4.20.

The “extension of the order” part simply means: If there are i, j such that
X(i) ∩ closure(X(j)) = ∅ and closure(X(i)) ∩X(j) = ∅, i. e. if the partial order “≤” is
not total – because things get added in disjoint places – define X(i) := closureX(i)
but X(j) := closureX(j) ∪X(i) and so on.

For our requirements these viewpoints coincide (see e. g. [Hug99c, §2 (p. 3f)]):

Lemma 1.3.4: A finite filtration by closed subspaces X i defines a partition
into locally closed, disjoint strata X(i) := Xi, that satisfy the frontier condition
(component-wise).

A partition into disjoint strata X(i) that satisfies the frontier condition, defines
a filtration by closed subspaces X i := X(i).

In these cases the notions of “strata” and “skeleta” coincide.

Given a filtered / stratified space, there are some evident constructions

Definition 1.3.5: Given X filtered by closed subspaces (thus stratified), V a
manifold, define:

(i) The induced filtration / stratification on a subspace A ⊂ X is the filtration
by closed subspaces given by Ai := X i ∩ A.

(ii) The product filtration / stratification on a X ×V is the filtration by closed
subspaces given by (X × V )i := X i × V . A shift in the indexing may be
used to possibly maintain the property of being filtered by dimension.

(iii) The stratified cone c(X) is filtered by c(X)i+1 = π(X i × I) (where π :
X × I → c(X) is the quotient-projection) and c(X)0 = {v}. Here v is the
cone-point / vertex.

(iv) The mapping cylinder cyl(f) of a map f : M → B between manifolds M
and B, is naturally filtered as a space with two strata by cyl(f) ⊃ B. For
similar constructions where domain / target are themselves stratified spaces,
see for example [CS95].

A more meaningful distinction of filtered / stratified can be made for mappings:
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Definition 1.3.6: Stratified and filtered maps
(i) A continuous map f : X → Y of stratified spaces X, Y (both indexed by

I) is stratum-preserving if f(Xi) ⊂ Yi.
(ii) A continuous map f : X → Y of filtered spaces X, Y (both indexed by I)

is a filtered map if f(X i) ⊂ Y i.
(iii) A continuous map f : X → Y of stratified spaces X, Y is a coarsening

if for all components of strata Yj the preimage f−1(Yj) is a union of
components of strata of X.

(iv) A continuous map f : X → Y of filtered spaces X, Y (both indexed by
I) is a isomorphism / stratified homeomorphism if it is filtered and a
homeomorphism.

While clearly a stratum-preserving map is filtered, a filtered map may send
larger strata to smaller ones in general. It is of course true however, that stratified
homeomorphisms are indeed stratified maps, and their inverses are again stratified
homeomorphisms. Coarsenings appear for example in [Qui87].

Further we use the following (strong choice) for homotopy-equivalences:

Definition 1.3.7: Given stratified spaces X, Y (both indexed by I), define:
(i) A map H : X×I → Y is a stratified homotopy if it is “stratum preserving

along I” i. e. if ∀x ∈ X : γx : I → Y, t ↦→ H(x, t) maps to a single stratum:
∃i : im(γx) ⊂ Yi.

(ii) Two maps f, g : X → Y are stratified homotopic f ≃strat g if there is
a stratified homotopy from f to g (in the usual sense H(–, 0) = f and
H(–, 1) = g).

(iii) A continuous map f : X → Y of is a stratum-preserving homotopy
equivalence if f is stratum-preserving, and there is a stratum-preserving
map f−1 : Y → X such that f ◦ f−1 ≃strat idY and f−1 ◦ f ≃strat idX .

(iv) A subspace A ⊂ X is a stratum-preserving neighborhood deformation
retract if, giving A the induced stratification, there is a neighborhood
A ⊂ U ⊂ X where the inclusion A → U is a stratum-preserving homotopy-
equivalence rel A (i. e. the “retraction” / inverse of i is rel A).

Finally, returning to spaces, we give some examples for classes of stratified spaces.
A basic geometric property that is often part of the definition, and in a certain sense
replaces the notion of “charts” in a manifold setting, is being “locally conelike”, as
illustrated by the following class of manifold-stratified spaces:
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Definition 1.3.8: A manifold-stratified metric space X (filtered by dimension)
is a conelike-stratified (CS) set in the sense of Siebenmann [Sie72], if every
point x ∈ X, say in the i-stratum x ∈ Xi, has a neighborhood of the form (i. e.
stratified8-homeomorphic to) Ri × c◦(Lx), for some compact space Lx (of finite
formal dimension) filtered by closed subsets, which intersects Xi in Ri × {v}.
The spaces Lx are called the “links”.

The dimension of X is the largest n such that Xn ̸= Xn−1. This agrees with
the manifold-dimension of the top-stratum if X is filtered by dimension.

The links are in general neither manifold-stratified nor unique (up to stratified-
homeomorphism). Nevertheless, these are often well-behaved. For example CS sets
have an underlying “intrinsic” stratification as CS set, that only depends on topology
(not on the stratification) [Han78, Thm. 2.4 (p. 169)].

Example 1.3.9: [Sie72, Examples 1.3 No. 4 (p. 128)]: Let (M,N) be a manifold-
pair, where N ̸= ∅ is locally flat in M . Then the stratification with strata M−N
and N is CS.

More consistency of links is provided for example by pseudomanifolds (see e. g.
[GM80] or [Ban07, Def. 4.1.1 (p. 72)]9)

Definition 1.3.10: A topological stratified pseudomanifold X of dimension n is
a CS set of dimension n, such that either

(i) X is a countable discrete point-set or
(ii) there exist choices of links Lx such that Lx is a topological pseudomanifold

of dimension n− i− 1, where x ∈ Xi.
Further, require there is no codimension 1 stratum Xn−1 = Xn−2, and the
top-stratum Xn is dense in X.

A piecewise linear (pl)-stratified pseudomanifold is additionally a pl-space,
such that the filtration is compatible with the pl-structure and the restriction of
the pl-structure turns strata into pl-manifolds (see [Ban07, Def. 4.1.2 (p. 73)]).

This definition makes sense (inductively), because the dimension of Lx (if manifold-
stratified ones exist, as required for being themselves CS) is automatically lower
than the dimension of X and the “start of induction” is provided by the discrete
point-sets.

Finally we give some examples:

8Ri × c◦(Lx) ⊂ Ri × c(Lx) is given the topology induced from the product-topology with the
stratified cone, cf. Def. 1.3.5.

9Replacing “metric” by “paracompact Hausdorff” seems to be sufficient as a point-set-topological
requirement on the underlying space.
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Example 1.3.11: See [Ban07, Examples 4.1.3 (p. 82)]: Many algebraic varieties
(for example pure-dimensional complex ones) are topological pseudomanifolds.
These algebraic varieties are even Whitney-stratified [Whi65], which is a smooth
notion of stratification.

Example 1.3.12: Orbit filtrations of topological group-actions provide an im-
portant class of examples. Depending on properties of the groups and actions,
the technical details tend to get quite involved rather quickly however, see for
example [Qui88a, p. 442]: Smooth actions yield smooth orbit-filtrations. Already
the pl-case gets much harder (in general) however, as here the orbit-filtrations
need not be compatibly pl themselves.

The next section will introduce a weaker notion of “homotopy stratified spaces”
due to Quinn [Qui88a], where neighborhoods are conelike only up to stratified
homotopy-equivalence.

1.4 Quinn Spaces / (M)HSS
Here, we introduce the “homotopy stratified sets” [Qui88a], which are used throughout
the remainder of this thesis. They are actually doing double-duty: We use them
in the “expected” way – as a quite general class of stratified spaces – but also as a
setup to study the end of the top-stratum controlled over the bottom-stratum (see
Section 1.9 (“Mapping-Cylinder Neighborhoods”) below). For controlled ends of
this form there is – in high dimensions – a correspondence of algebra and geometry
[Qui82a] very similar to what is found for “classical” ends and h-cobordisms. (see
Section 1.7 (“Excursion: Controlled Topology”) and Section 1.9 (“Mapping-Cylinder
Neighborhoods”))

We start by the definition of “tameness”.

Definition 1.4.1: [Qui88a, p. 452]: A subset B ⊂ X is (forward) tame in X iff
it is a nearly stratum-preserving neighborhood deformation retract (NDR).

This means, if there is a neighborhood N of B in X and a deformation-
retraction R : N × I → B, that is, it is “relB”: ∀b ∈ B : R(b, t) = b, it starts
at the identity: ∀x ∈ N : R(x, 0) = x and it ends at a retraction R1 to B:
∀x ∈ N : R(x, 1) ∈ B, while being stratum preserving “until the last moment”,
that is, ∀x ∈ X −B, t < 1 : R(x, t) ∈ X −B.

Tameness is a local property (see e. g. the proof below for an indication why) so
for example:
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Example 1.4.2: Let B ⊂ M be a locally flat closed submanifold. Then B ⊂ M
is tame.

Proof: Local flatness (for ∂B = ∅) means, that each b ∈ B has a neighborhood
U in M , where (U ∩M,U ∩B) ∼= (Rdim(M),Rdim(B)) (as a pair). By compactness of
B, we can cover B by the unit-balls (under this identification) of a finite number of
such neighborhoods U1, . . . , Un, and corresponding homeomorphisms hi.

Clearly, there is a deformation R of (Rdim(M),Rdim(B)) that nearly strictly retracts
the unit-ball to the plane Rdim(B) (rel this plane), and is the identity outside the
two-ball. Define Ri : M × I → M as h−1

i ◦R ◦hi on Ui and as the identity on M −Ui

(these are continuous, because R is already the identity outside the two-ball).
Define RM : M×I → M as RM

t (x) = R0
t ◦R1

t ◦ . . .◦Rn
t . Then RM retracts a neigh-

borhood of B nearly strictly to B: Set U := interior
(︂
(RM

1 )−1(B)
)︂
, where clearly RM

retracts U to B, and (Rn
1 )−1(B) ⊃ h−1

n (unit-ball) ∪B, and (Rn−1
1 )−1

(︂
(Rn

1 )−1(B)
)︂

⊃
h−1

n−1(unit-ball) ∪ V n−1
n ∪B, with V n−1

n an open neighborhood of h−1
n (unit-ball) ∩B

(by Rn−1
1 being continuous and rel B). Finally we thus end up with (RM

1 )−1(B) con-
taining an open neighborhood of (h−1

1 (unit-ball)∩B)∪ . . .∪(h−1
n (unit-ball)∩B) = B,

where the last equality holds by the choice of the cover U1, . . . , Un. So the interior U
is open, and still contains a neighborhood of B. Further, RM is nearly-strict and rel
B, because the Ri are. □

Note however, that there are a number of other commonly used variations of
“tameness” (see also Appendix A (“Ends in MHSS”)). For this reason, the requirement
given above is sometimes referred to as “forward tameness” – as opposed to “reverse
tameness”, where things can instead be pulled away from B [Qui79]. The term “tame”
is sometimes used in the sense of “forward and reverse tame”. This is not quite as bad
as it may sound, because for MHSS (see below) by [Qui88a, Prop. 2.14 (p. 466)] these
notions coincide (by a homological characterization of tameness as a consequence of
Poincaré-duality on manifold-strata).

Tameness is obviously necessary for the existence of cylinder-neighborhoods:

Example 1.4.3: Let f : E → B be a continuous map. Then B ⊂ cyl(f),
embedded as the “base” (see Def. 1.1.3), is tame.

A nearly stratum-preserving (neighborhood) deformation retraction is obtained
by pushing along the cylinder-coordinate:

R : cyl(f) × I → cyl(f),
(︂
(x, s), t

)︂
↦→

(︂
x, s(1 − t)

)︂

This is combined with the normal-structure provided by certain homotopy-links
(holinks were defined in Def. 1.2.6, where they were understood to characterize AFs
as those maps having holink-fibrations):
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Definition 1.4.4: [Qui88a, Def. 3.1 (p. 30)]: A manifold homotopy stratified set
(MHSS), with at most two strata, is a separated, metric space X ⊃ B filtered by
closed subsets, s. t. (using M := X −B the “upper stratum”):

(i) M and B are topological manifolds
(ii) B ⊂ X is tame

(iii) the homotopy-link holink(X,B) → B is a fibration
(iv) local homotopy-links are compactly dominated (see below)

The dimension of X is the manifold-dimension of the top-stratum M , i. e.
dim(X) := dim(M).

If only (ii) and (iii) hold, we call X an HSS.

The last condition (to be explained in a moment) is not part of Quinn’s original
work [Qui88a], it was only introduced later by [Hug99b] to obtain a better geometric
description of neighborhoods (see Example 1.4.5 below). Spaces with more than two
strata are defined in Chapter 3 (“Multiple Strata”).

The “local homotopy-link” holink(X, b) (see e. g. [Hug99b, §5 (p. 317ff)] or [Fri09,
(p. 2172)]) at a point b ∈ B is – in the case of at most two strata – just the fiber
of the holink(-fibration). Compact domination, means, there is a homotopy from
the identity on the local homotopy-link into a compact subspace (i. e. a continuous
R : holink(X, b) × I → holink(X, b), with R0 = id and im(R1) ⊂ K where K ⊂
holink(X, b) is compact).

Example 1.4.5: “Teardrops” (see e. g. [Hug+00]): Let p : E → B × R be a
MAF. As a set, define E ∪p B := E ⊔B (the disjoint union), and give E ∪p B
the minimal topology, such that E → E ∪p B (the set-inclusion) is an open
(topological) inclusion, and such that the “collapse-map”

c : E ∪p B → B × (−∞,∞], x ↦→

⎧⎨⎩p(x) if x ∈ E

(x,∞) if x ∈ B

is continuous. Then E ∪p B is a MHSS by [Hug99b, ‘Main Theorem’ (p. 306)].

These “teardrops” (or very closely related: “local approximate tubular neighbor-
hoods”, cf. [Fri09]) seem to be the natural geometric neighborhood-structure for
high-dimensional MHSS (with compact singular set), in the sense, that they always
exist, if X also satisfies condition (iv) of Def. 1.4.4 [Hug02, Thm. 7.1 (p. 887)] as
long as the dimensions of non-minimal10 strata are ≥ 5. The case of two strata was
10whenever two strata “meet” in the sense, that their closures intersect, then at least one of them

must be of dimension ≥ 5, see Def. 1.4.23.
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already contained in [Hug+00]. This type of neighborhoods does not11 suffice to give
geometric transversality constructions however.

A teardrop12 is a mapping-cylinder if and only if it is possible to write p as a
product p = p′ × idR. Why this may fail to be the case is explained in Section 1.9
(“Mapping-Cylinder Neighborhoods”).

We will not be much concerned with this weaker notion of neighborhood, for our
purposes require the stronger notion of cylinder neighborhoods (which imply (iv),
the high-dimensionality in Hughes’ Existence Theorem [Hug02, Thm. 7.1 (p. 887)]
only affects the other direction). So we may think of these as forming a hierarchy

∩

∩

∩

“spaces we are interested in / mapping-cylinders”

“spaces with teardrop-neighborhoods”

MHSS with (iv)

Quinn’s original definition

(obstructed by q0 in high dimensions)

(“=” in high dimensions)

See Section 1.9 (“Mapping-Cylinder Neighborhoods”) for details on the obstruction
q0. The only place where we are (implicitly) using the weaker neighborhood structures
is in Section 1.12 (“Witt-Condition and Signature of MHSS”) through Friedman’s
[Fri09] treatment of Poincaré-duality in intersection-homology.

Another potentially interesting question is the following:

Example 1.4.6: Given a “tame” (in the sense of knot-theory, i. e. framed by a
2-disc) knot S1 ×D2 ⊂ S3, then X = S3 ⊃ S1 × {0} is stratified as MHSS.

This raises the interesting question, do “wild” (non-tame) knots S1 ⊂ S3, that
stratify S3 as a MHSS exist?

Interestingly, there is some indication, that some geometric structure could
exist near any knot that is stratified as a MHSS, but the “full” backwards-direction
of the initial statement seems unlikely:

At least the uncontrolled end-theorem (see Section 1.8 (“Excursion: End-
Theory”) and Section 1.9 (“Mapping-Cylinder Neighborhoods”)) works (again)
in 3 dimensions [FQ90, “So if the Poincaré conjecture is true then the strong
form of the end theorem is true for 3-manifolds.” (p. 216)], since problems
arising from low dimensionality often are similar in the controlled case (see

11There is a “backwards” direction in the argument of [CV99], see Section 1.6 (“Stratified Transver-
sality”).

12Generally, the teardrop and quotient topology may not agree on the cylinder, but Example 1.4.5
defined teardrops explicitly for MAFs which are proper and between manifolds (thus locally
compact Hausdorff spaces), where they do agree [Hug99a, p. 130].
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e. g. [Qui82b] and Rmk. 1.9.4), at least a cylinder-neighborhood of a MAF might
exist (assuming obstructions vanish, in the uncontrolled case, by the restrictions
of possible fundamental groups of oriented surfaces, the obstruction-groups are
automatically trivial over the point, so for the controlled case, the arguments of
Lemma 3.1.11 should apply).

But what is known about classification of such MAF (e. g. [HTW90, Example
1.5 (p. 6)]), indicates, that the resulting mapping-cylinder might well be different
from S1 ×D2.

We continue by giving some properties of MHSS: Typically local cone-like struc-
ture plays an important role for the study of stratified spaces (see Section 1.3
(“Excursion: Stratified Spaces”)). MHSS may not have locally conelike structure
up to homeomorphism. But they do have locally conelike structure up to stratified
homotopy-equivalence.

Theorem 1.4.7: [Qui87, Thm. 2 (p. 239) and “Converse” (p. 240)]13

Suppose X is an HSS, then for U ⊂ B open and contractible, there is a
stratified space L and a map U × c◦(L) → X, which is a stratum-preserving
(the left-hand-side is stratified in the obvious way: The bottom stratum is U ×
{cone-point}, the higher strata are U × (0, 1) × Li for the strata Li of L)
homotopy-equivalence near U .

If X has locally contractible skeleta and given b ∈ B there is a neighborhood
b ∈ U ⊂ B, a stratified space L and a map U × c◦(L) → (X −B) ∪ U , which is
a stratum-preserving homotopy-equivalence near U , then X is an HSS.

Corollary 1.4.7–1: Given a (sep. metric) manifold-stratified space X ⊃ B with
two strata and B connected, then:
X is an MHSS, if and only if for any manifold-chart Rj ∼= U ⊂ B, there is a

space L such that there is a map Rj × c◦(L) → X, which is a stratum-preserving
homotopy-equivalence near U .

Proof: Manifold-charts are of course open and contractible, so the “⇒”-direction is
clear. To see “⇐”, note that by the cone-like property, local contractibility of skeleta
follows from local contractibility of strata, which are manifolds by hypothesis. □

This is particularly useful for Friedman’s [Fri09] treatment of Poincaré-duality.14

Also, this implies that MHSS are a quite large class of stratified spaces:
13Note, that while the statement given in the reference about existence of L is correct, the concrete

construction of L is not (in general), as remarked (also by Quinn) in [Qui88a, footnote 2
(p. 445)]. The (weakened) phrasing given here is correct. The wording was also changed to fit
the nomenclature of [Qui88a] used here, and the statement was simplified for the two-stratum
case.

14Up to complications due to intersection-homology with closed support not being invariant under
stratified homotopy-equivalence in general. See Section 1.12 (“Witt-Condition and Signature of
MHSS”).
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Example 1.4.8: A (separable) CS set in the sense of Siebenmann [Sie72] (see
Def. 1.3.8 in the preceding excursion) is an MHSS. The local homotopy-links are
homotopy-equivalent to the links of the CS set.

Many algebraic varieties (the main concern are non-“pure-dimensional” parts)
are topological pseudomanifolds (see e. g. [Ban07, Examples 4.1.3 (p. 82)]; this
was mentioned before in Example 1.3.11) and topological pseudomanifolds are
CS, thus are MHSS.

These claims remain true in the case of more than two strata, treated in
Chapter 3 (“Multiple Strata”), However, while here local homotopy-links are the
fibers of homotopy-links, some care has to be taken, if more than two strata are
involved, as the two concepts do not coincide anymore.

Proof: CS sets have manifold strata, and manifolds are locally contractible.
Further, CS sets are locally cone-like up to homeomorphism, thus clearly also up to
homotopy-equivalence. So by Thm. 1.4.7 they are MHSS.

Homotopy-links, and thus their fibers, are determined locally (via ϵ-holinks), so we
may restrict our attention to local trivializations, and thus to holink(Ri × c◦(L),Ri ×
{v}). The fiber of the holink-evaluation (evaluation at zero), over 0 ∈ Ri, is{︂

γ : I → Ri × c◦(L)
⃓⃓⃓
γ(0) = (0, v) and γ((0, 1]) ⊂ Ri × (L× (0, 1))

}︂
which can be deformed into

F0 :=
{︂

γ : I → Ri × c◦(L)
⃓⃓⃓
γ(t) = (0, [x, t])

}︂
by a deformation via paths mapping zero to (0, v) and t ̸= 0 to outside the vertex,
given as

Rs(γ)(t) :=

⎧⎪⎨⎪⎩
(︂
(1 − s)γRi(t), [γL(1), (1 − s)γcyl(t) + st]

)︂
if t ≥ 1 − s(︂

(1 − s)γRi(t), [γL( t
1−s

), (1 − s)γcyl(t) + st]
)︂

if t < 1 − s

where γ(t) =:
(︂
γRi(t), [γL(t), γcyl(t)]

)︂
∈ Ri × c(L). Now L → F0, x, ↦→ γ(t) = (0, [x, t])

is a homeomorphism (with inverse πLev1(γ) = πLγ(1)), thus a homotopy-equivalence.
So local homotopy-links are homotopy-equivalent to the links L of the CS set.

The definition of pseudomanifolds Def. 1.3.10 was actually formulated as pseudo-
manifolds being special CS sets (with “consistent” links). □

By Example 1.3.9, this includes flat submanifolds, and, more precisely it holds:

Example 1.4.9: [Hug99a, Thm 6.1 (p. 140) and Cor. 6.2 (p. 141)]: Let (Mm, Nn)
be a manifold-pair, with m := dim(M) ≥ 6, n := dim(N) ≥ 5. Then

N is locally flat in M ⇔

⎧⎨⎩M ⊃ N is a MHSS, and
the holink-fiber is homotopy-equivalent to Sm−n−1

In this (either) case N has a cylinder-neighborhood (of an MAF) in M .
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Proof: There are two minor modifications compared to [Hug99a, Cor. 6.2 (p. 141)]:
For once, we additionally claim, that if M ⊂ N is a MHSS with holink-fiber homotopy-
equivalent to Sm−n−1, then a cylinder-neighborhood exists. This is a consequence
of Quinn’s end-theorem (Thm. 1.9.3) and π1(Sm−n−1) = 0 (or Z if m = n+ 2) and
Wh(Zk) = 0 by the Bass–Heller–Swan theorem (see Example 2.2.4). dim(M) ≥ 6 is
sufficiently large (by hypothesis), so the end-theorem applies. The cylinder is the
cylinder of an MAF by Hughes’ cylinder theorem (Thm. 1.4.19).

The other difference is, that the reference, given a cylinder-neighborhood of N
homeomorphic to cyl(p) for some p, requires, that the homotopy-fiber of p be
≃ Sm−n−1, while we required this for the holink-fiber instead. These agree however:
For example use [Hug99a, Thm. 3.1 (p. 131)], see also the proof of [Hug99a, Thm 6.1
(p. 140)]. □

Further, being MHSS is a local property in the sense that

Lemma 1.4.10: If X is an MHSS and U ⊂ X is open, then U , with the induced
filtration (i. e. U i := X i ∩ U), is an MHSS.

Given a filtered space X and an open cover U , s. t. ∀U ∈ U , the induced
filtration makes U into an MHSS, then X is an MHSS.

Proof: This follows from Thm. 1.4.7, but can actually also be seen “directly”
from the definition: Forward tameness is a local property on metric spaces by
[Qui88a, Lemma 2.5 (p. 455)]. The homotopy link is determined locally by [Qui88a,
Lemma 2.4 (p. 454)] via its “δ-holink”. This also implies that local homotopy-links
are determined locally. Clearly, the strata being manifolds is also a local condition.
□

For closed subspaces, the situation is slightly more complicated. To be able to
discuss this case in some detail, we first introduce “p-NDRs”:

Definition 1.4.11: See e. g. [Qui88a, p. 469]: Given a continuous map p : E →
B, a subset A ⊂ B is a p-NDR if there is a deformation retraction r of a
neighborhood of A in B, that is covered by a retraction R of a neighborhood of
p−1(A) ⊂ E, i. e. p ◦R(x, t) = r(p(x), t).

This relates, for HSS, stratum-wise NDRs to stratified NDRs:
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Lemma 1.4.12: [Qui88a, Prop. 3.5 (p. 472)]: Suppose X is a HSS, and Y ⊂ X
is closed. Give Y the induced stratification. Then

Y is a stratified NDR ⇔

⎧⎪⎪⎨⎪⎪⎩
Y is a HSS and
Y ∩M ⊂ M a NDR and
Y ∩B ⊂ B is a p-NDR

Proof: [Qui88a, Prop. 3.5 (p. 472)] applies, because the definition of “homotopy-
transverse” [Qui88a, Def. 3.4 (p. 469)] is satisfied by Y : It can be seen by the
discussion after that definition, that “homotopy-transverse” in this case means
incl : holink(Y, Y ∩ B) → holink(M ∪ (Y ∩ B), Y ∩ B) needs to be a fibered ho-
equivalence over Y ∩B. By locality of holinks (ϵ-holinks) this clearly is the case if
Y ∩B ⊂ B is a p-NDR.

Further, the p-NDR requirement also implies that Y ∩B is a NDR in B. □

Another important property is an observation of Quinn, that (in high dimensions)
homotopy-collared boundaries are already collared. To discuss this, we want to first
define, what we mean by a space with boundary:

Definition 1.4.13: A MHSS with boundary (∂-MHSS) of dimension n is a
pair (X, ∂X) where X − ∂X and ∂X are MHSS of dimension n and n − 1
respectively15, with at most two strata such that (M,∂M) and (B, ∂B) are
manifolds-with-boundary, where ∂M is the top stratum of ∂X and M is the
union of the top-strata of X − ∂X and ∂X, and similarly for B.

Further, we require that ∂X has a stratified collar-neighborhood in X. This
means, there is a map φ : ∂X×[0,∞) → X, which is a stratified homeomorphism
to its image, and is the identity on ∂X × {0}.

Remark 1.4.14: Thus ∂X = ∂M ∪ ∂B, and further, collaring implies ∂X ⊂ X
is automatically closed, because ∂X × {0} ⊂ ∂X × [0,∞) is.

Quinn [Qui88a] uses a “homotopy-transverse” condition [Qui88a, Def. 3.4 (p. 472)] –
see also proof of Lemma 1.4.12 – on the inclusion of the boundary, instead of collaring
[Qui88a, Def. 5.1 (p. 491)].

But as indicated above, there is a strong connection of these “homotopy-collars”
and actual collars: A “homotopy-transverse” boundary is collared, up to issues in
dimension 4 and below.

15The dimension of any non-empty boundary is automatically n− 1, if the top-stratum is dense
(by boundary-collaring), so this requirement is typically fulfilled automatically.
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Theorem 1.4.15: [Qui88a, Thm. 1.2 (p. 444)]: Given a “MHSS with weak bound-
ary” (X,B) in the following sense: Let X be a compact space filtered by closed
subsets, such that its strata are manifolds with boundary. Let B be the subspace
B := ∪i∂(Xi) given by the union of boundaries of strata with the induced strati-
fication, i. e. with strata Bi = ∂(Xi+1). Further, assume, that the top-stratum of
B is (n− 1)-dimensional, where n := dim(X), and its closure in X is B, i. e.
closureX(Bn−1) = B. Furthermore X −B and B are MHSS.

Then homotopy-collaring of this “weak boundary” implies geometric (homeo-
morphism) collaring away from dimension 4: Suppose the 4-skeleton B4 ⊂ X4

has a stratum preserving collar (this 4-skeleton may be empty). Then, if B ⊂ X
is a stratum-preserving NDR, B ⊂ X has a stratum preserving collar.

Relative version [Qui88a, ‘Lemma’ (p. 492)]: Suppose the k-skeleton Bk ⊂ Xk

has a stratum preserving collar bk and k ≥ 4. Then, if Bk+1 ⊂ Xk+1 is a
stratum-preserving NDR, Bk+1 has a stratum preserving collar bk+1 in Xk+1,
extending bk, i. e. bk+1|Xk = bk.

Proof: By [Qui88a, Prop. 3.5 (p. 472)] the formulation of [Qui88a, Thm. 1.2 (p. 444)]
applies. Compare this also to the proof of Lemma 1.4.12.

The relative version [Qui88a, ‘Lemma’ (p. 492)] is used in the proof of the absolute
version [Qui88a, as ‘Corollary’ (p. 494) in §5.3 (p. 492–495)] via an induction over
skeleta. This ‘Lemma’ uses closed subsets Y ×[0,∞), ∂X ⊂ X, with ∂X∩Y ×[0,∞) =
Y × {0} and X − (Y × [0,∞)) a manifold which intersects ∂X in its boundary.

We identify these as follows: The collar Uk := im(bk) is an open neighborhood of
Bk ⊂ Xk, pick an open neighborhood Uk+1 of Bk+1 in Xk+1 which has a stratified
deformation retraction to Bk+1 (which exists by Bk+1 being a stratified NDR)
such that U ∩ Xk = im(bk). As an open subset of the MHSS Xk+1, this Uk+1 is
again a MHSS. Define X = Uk+1, ∂X = Bk+1 and Y = Bk. Note, that indeed
Bk × [0,∞) ∼= im(bk) ⊂ Uk+1 is closed in Uk+1. Further Bk+1 ∩ im(bk) = Bk × {0}
and Uk+1 − (Bk × [0,∞)) is a manifold (indeed, this is the (k + 1)-stratum of the
MHSS Uk+1), which intersects Bk+1 in its boundary.

Next we check the hypotheses of the ‘Lemma’ [Qui88a, p. 492]: X = Uk+1 is
locally compact (it is an open subset of Xk+1), Y × [0,∞) = im(bk) is tame (because
it is the k-skeleton of the MHSS Uk+1, thus tame see Lemma 3.1.8 part (ii) for
the multi-stratum case, in the case of at most two meeting strata (see Def. 1.4.23),
this is a minimal stratum, thus tame by definition of MHSS), Y = Bk is a finite
dimensional ANR (because it is a MHSS with a finite number of strata which are finite
dimensional manifolds), holink(X, Y × [0,∞)) = holink(Uk+1, Uk) is fiber homotopy
equivalent to holink(∂X, Y × {0}) = holink(Bk+1, Bk) (because Bk+1 is a stratified
NDR, see construction of Uk+1), and holink(∂X, Y × {0}) = holink(Bk+1, Bk) is a
fibration (a stratified system of fibrations in the multi-stratum case, see Chapter 3
(“Multiple Strata”); because Bk+1 is a MHSS). Further dim(X − Y × [0,∞)) =
dim(Uk+1 − Uk) = k + 1 ≥ 4 + 1 = 5 (by hypothesis).

In this case, the ‘Lemma’ [Qui88a, p. 492] states: Then the open collar Y ×[0,∞) =
im(bk) extends to an open collar of ∂X = Bk+1. Here, it “extends to” means,
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there is a homeomorphism of a neighborhood of (Bk+1 − Bk) ⊂ (Uk+1 − Uk) to
(Bk+1 −Bk) × [0,∞) (a choice of manifold boundary-collar), which extends by the
identity on Y × [0,∞) ∼= im(bk) to a stratified one of Bk+1 ⊂ Uk+1 [Qui88a, see
p. 494 in the proof of ‘Lemma’ (p. 493f)], which is an extension in the claimed sense.
□

Note, that this is the same as answering the question, if the mapping-cylinder
cẙl(incl : ∂X → X) is an MHSS (hence the label as “transverse”, see [Qui88a,
discussion on the bottom of p. 472]. It is thus not surprising that Quinn’s proof uses
controlled topology techniques (a controlled h-cobordism-theorem; see Section 1.7
(“Excursion: Controlled Topology”), specifically the discussion after Thm. 1.7.7)
similar to what will be discussed in Section 1.9 (“Mapping-Cylinder Neighborhoods”)
to study the existence of mapping-cylinder neighborhoods of the bottom stratum.

This may be formulated in simpler terms, by “absorbing” the boundary into the
stratification (it could be recovered [Qui88a, p. 491]). However, that would break
the “at most two strata” condition we are using for simplicity. Details on this are
provided in Section 3.2 (“Absorbing Boundary”). We note, that for the cases we are
most interested in (“pure-dimensional” without codimension 1 stratum), there is no
ambiguity in the choice of ∂X:

Definition 1.4.16: We say a MHSS X of dimension n is proper, if its top-stratum
Xn is dense in X and X does not have a codimension 1 stratum.

A MHSS with boundary (X, ∂X) is proper of dimension n, if its interior
X − ∂X and boundary ∂X are proper.

Example 1.4.17: Topological stratified pseudomanifolds are proper MHSS in
this sense.16

Witt-spaces (see Section 1.12 (“Witt-Condition and Signature of MHSS”)) do
not have a codimension 1 stratum (Example 1.12.8), so that properness becomes
a question about density of the top-stratum only.

Disallowing codimension 1 strata ensures there is a well-defined boundary of
the top-stratum and combined with the density of the top-stratum fixes a unique
(canonical) choice for the boundary of the entire space.

Lemma 1.4.18: Let (X, ∂X) be a proper MHSS with boundary. Then ∂X =
closure(∂Xn).

16Originally formulated on pl-spaces (which can always be stratified as CS sets [Sie72, Examples
1.3 (p. 128)]), this was considered the defining property of a “pseudomanifold”.
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Proof: The boundary ∂X is closed (see Rmk. 1.4.14), and ∂Xn ⊂ ∂X (because,
by definition, ∂X = ∪i∂Xi, see again Rmk. 1.4.14), so the closure of ∂Xn in X is
just the closure in ∂X. Since ∂X is proper, with dense top-stratum ∂Xn, we find
closure(∂Xn) = closure∂X(∂Xn) = ∂X. □

Now, we return to the connection to AFs. The following was already (partially)
indicated in Lemma 1.2.7.

Theorem 1.4.19: [Hug99a, Thm. 5.11 (p. 140)] (simplified for two strata): Let
p : V → B be a proper map between manifolds.

Then p is MAF if and only if the mapping-cylinder cẙl(p) with the natural
partition (Def. 1.3.5) is a MHSS.

Remark 1.4.20: We replaced AF and HSS by MAF and MHSS, which is possible,
because p is assumed to be proper and V,B are manifolds. Further, Hughes
assumes strata of B (i. e. B itself in the case of two strata) are path connected.
This is required to satisfy the frontier-condition (see [Hug99a, proof of Cor. 5.8
(p. 137)]): Obviously, if a stratum is not path connected, if one of its compo-
nents intersects the closure of another stratum, there is no reason for its other
components to be contained in the same closure, e. g. think of B = {pt, pt′},
p : V → B, x ↦→ pt, where certainly ∅ ≠ B ∩ closure(V × (0, 1]) ⊂ cyl(p), but
pt′ /∈ closure(V × (0, 1]) is a disjoint point. See also Rmk. 1.3.3.

For “proper” (Def. 1.4.16) MHSS with only two strata, this cannot happen:
By density of the top-stratum, its closure already contains the entire (only)
other stratum. More generally for spaces with more than two strata, we may
content ourselves with a component-wise version of the frontier-condition (or a
filtration by closed subsets) as we will not need a “global” version.

Corollary 1.4.20–1: Part (iii) of Lemma 1.2.5: If f : M → B is a map, and U
an open cover of B, such that f |U : f−1(U) → U is a MAF ∀U ∈ U , then f is a
MAF.

Proof: By Thm. 1.4.19, cyl(f |U ) are MHSS, thus, by locality of MHSS Lemma 1.4.10,
cyl(f) is a MHSS. Again by Thm. 1.4.19, f is a MAF. □

The “natural partition” in this case (of two strata) is the filtration cyl(p) ⊃ B.
It still remains to answer the question of when cylinder-neighborhoods do exist.
Section 1.9 (“Mapping-Cylinder Neighborhoods”) will complement the present picture
with regard to this problem.

But first, we briefly summarize some constructions using MHSS:
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Lemma 1.4.21: Let X be a MHSS (with at most two strata) without boundary,
A ⊂ X a closed stratified NDR. Further let (Y, ∂Y ) be a MHSS with boundary
and at most two strata. Then:

(i) (X × Y,X × ∂Y ) with the product-stratification is a MHSS with boundary
(possibly with more than two strata).

(ii) Given a manifold with boundary (V, ∂V ), the product (X × V,X × ∂V ) is
a MHSS with boundary and at most two strata.

(iii) The subspace A with the induced stratification is a HSS.
(iv) The fibers of the homotopy-links of A are homotopy-equivalent to those of

X.
(v) The fibers of the homotopy-links of ∂Y are homotopy-equivalent to those

of Y
(vi) An orientation of (the top-stratum of) Y , canonically induces an orienta-

tion of (the top-stratum of) ∂Y .

Proof: “(i)”: For a more detailed treatment of MHSS with more than two strata,
see Chapter 3 (“Multiple Strata”). The product-statement for MAFs (given in
Lemma 1.2.8), together with Thm. 1.4.19, shows (i). (There are also more direct
ways to prove this.)

“(ii)”: By (i) we only need to count strata of the product. These are generally up
to number of strata of X × number of strata of Y ≤ 2 × 1.

“(iii)”: This is part of Lemma 1.4.12.
“(iv)”: By Lemma 1.4.12, A ∩B is a p-NDR, thus fibers are homotopy-equivalent.
“(v)”: The boundary ∂Y ⊂ Y is collared, thus a stratified NDR, so (iv) applies.
“(vi)”: This is clear from the definition of boundaries as stratum-wise boundaries

Def. 1.4.13 and the manifold-case. □

The relevancy of the “stability” of holink-fibers (that they are the same for ∂X
and X etc.) will become more apparent in Chapter 2 (“Bordism Constructions”),
where this property will “automatically” ensure that the excision-isomorphism does
respect the class of “allowable” spaces, if being allowable depends on holink-fibers
(and codimension) only.

In order to obtain a gluing result, some care should be taken with regard to the
restriction to spaces with at most two strata. Until we introduce spaces with an
arbitrary (finite) number of strata in Chapter 3 (“Multiple Strata”), we use the
following technical modification (see Def. 2.1.4):

Definition 1.4.22: A MHSS with at most two meeting strata is a separated,
metric space X filtered by closed subsets, such that the non-top (i. e. dim(Bi) <
dim(X)) strata Bi are closed and disjoint (i ̸= j ⇒ Bi ∩ Bj = ∅). Further,
for all of the Bi, and the top-stratum M , we require the same properties as in
Def. 1.4.4:
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(i) M and all Bi are topological manifolds
(ii) Bi ⊂ X is tame for all i

(iii) the homotopy-links holink(X,Bi) → Bi are fibrations
(iv) local homotopy-links are compactly dominated

In this case, we call the Bi minimal strata.

Definition 1.4.23: More generally (also for spaces with more than two meeting
strata, see Chapter 3 (“Multiple Strata”)), we call a stratum Bi minimal, if all
other strata S, whose closure intersects the closure of Bi, are of higher dimension,
i. e. closure(S) ∩ closure(Bi) ̸= ∅ ⇒ dim(S) > dim(Bi).

Remark 1.4.24: Both the previous Def. 1.4.4 and the present Def. 1.4.22 are
local. Locality, combined with normality (of the metric X) and disjointness of
the Bi, means that spaces satisfying Def. 1.4.22 locally look like spaces with
exactly two strata (or manifolds), and the above results apply automatically
if they are local. Only boundary-collaring (Thm. 1.4.15) may not be obvious,
however, the statement of this result given above, did not actually put a limit
on the number of strata, so still applies here.

Of course, MHSS with at most two meeting strata as defined here, are MHSS
in the sense of [Qui88a] and Chapter 3 (“Multiple Strata”). In this sense, spaces
with at most two meeting strata, are spaces with one top-stratum and otherwise
only minimal strata.

The reason for the appearance of this definition, is, that gluing spaces with
two strata, of the same (top-stratum) dimension, but with minimal strata of
different dimensions far away from the “gluing interface”, would not technically
yield a two-stratum space. One might either both drop the requirement that
the space be stratified by dimension and weaken strata being manifolds to
components of strata being manifolds, or use a definition allowing for disjoint
additional strata as in Def. 1.4.22.

Combining the definition of boundaries (Def. 1.4.13) with locality of being MHSS
(Lemma 1.4.10) and the constructions above (Lemma 1.4.21), one easily obtains the
following gluing-result:

Lemma 1.4.25: Given (X, ∂X) and (Y, ∂Y ) both MHSS, of (the same) dimension
n, with boundary, at most two meeting strata and with subspaces X0, X1 ⊂ ∂X
such that

(i) X0, X1 with the induced stratification are MHSS of dimension n− 1 with
boundary.

(ii) X0 ∪X1 = ∂X.
(iii) X0 ∩X1 = ∂X0 = ∂X1.
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and Y0, Y1 ⊂ ∂Y satisfying the same conditions. Further suppose there is a
stratified homeomorphism h : X0 → Y0.

Then the adjoint pair (X ∪h Y,X1 ∪h|∂X1
Y1), with the stratification given by

adjoining stratum-wise, is an MHSS, of dimension n, with boundary and at most
two meeting strata.

Proof: We show the lemma for the case X1, Y1 = ∅ first. Being a MHSS is a local
property (Lemma 1.4.10), thus it suffices to show the statement on the elements of
an open cover. Let cX and cY be stratified boundary-collars, and define the open
cover

U =
{︂

X − ∂X, Y − ∂Y, im(cX) ∪h|∂X1
im(cY )

}︂
where X−∂X and Y −∂Y are MHSS by hypothesis. All identifications by h : ∂X →
∂Y are in the collars at cX(∂X × {0}) thus, using c−1

Y ◦ h ◦ cX |∂X×{0} = h× 0:

im(cX) ∪h im(cY ) ∼=strat
(︂
∂X × [0,∞)

)︂
∪h×0

(︂
∂Y × [0,∞)

)︂
∼=strat

(︂
∂X × [0,∞)

)︂
∪id×0

(︂
h−1(∂Y ) × [0,∞)

)︂
∼=strat ∂X × R

This is stratified by the product-stratification, because the collars were stratified.
Since ∂X is a MHSS by hypothesis, this is a MHSS with at most two (meeting)
strata by Lemma 1.4.21 (ii) (disjointness of different minimal strata Bi is obviously
preserved). Minimal strata Bi of far away from (outside the boundary-collar of) X0
also remain disjoint from of those of Y far away from Y0.

In the case that X1 or Y1 ̸= ∅, the previous case applies to the boundary part:
X1 ∪h|∂X1

Y1 is a MHSS. Note, that near the “corners” T := ∂X1 = ∂X0, the
collaring in X is three-fold: (X0, T ) is a MHSS with boundary by hypothesis,
thus there are collars c0

X : T × [0,∞) → X0, and c1
X : T × [0,∞) → X1, and

additionally (X,X0 ∪X1) is a MHSS with boundary by hypothesis, thus there is a
collar cX : (X0 ∪X1) × [0,∞) → X.

Putting the first two “back to back” we obtain a bi-collar c0
X ∪c1

X : T×R → X0∪X1,
which is the identity at T × {0}. Restricting the third one, cX , to the image of this
bi-collar we get

cX | ◦ c0
X ∪ c1

X : T × R × [0,∞) → X

a stratified homeomorphism to its image and the identity at T × {0} × {0}. So
we can refine the gluing-procedure in the boundary, to produce a “double-product”
stratification in T , and glue away from T (thus away from X1, Y1) as before. □

The ability to glue spaces is of course quite important for bordism-theories – for
example it will ensure transitivity of the bordism-equivalence-relation. One should
note, that collaredness of the boundary is a very important ingredient in establishing
this property. This is why rather strong transversality / cutting results (ensuring
bi-collaredness) must be available for later constructions.
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1.5 Excursion: Manifold Transversality
Here, we will first discuss “transversality” in a manifold-setting, to then, in Section 1.6
(“Stratified Transversality”), discuss the an approach based on a theorem by Connolly
and Vajiac [CV99], where mapping-cylinder neighborhoods of MAFs are used to give
transversality constructions on MHSS.

Typically “transversality” (or “general position”) refer to generalizations of the
observation, that, in the euclidean n-space Rn, given two planes Rm ∼= A ⊂ Rn and
Rk ∼= B ⊂ Rn of dimensions m and k, after an arbitrarily small move of either one,
one may assume that they intersect in an (at most) ((m+ k) − n)-dimensional plane
A ∩ B. (With the convention that dim(∅) = −∞.) There are (at least) two paths
along which such statements can be formalized:

On the one hand, there are statements about “isotoping subspaces into general
position” – referred to as embedded transversality below, see Thm. 1.5.11 – which is
basically a direct formalization of the above procedure. E. g. for the manifold-case one
would obtain something like “Given a manifold Mn and two submanifolds Um, V k,
there is a small isotopy of either one, moving it such that dim(U ∩ V ) ≤ (m+ k) − n
in a way compatible with (fixed in advance) normal-bundles” [KS77; Qui88b]. Some
technical details for dealing with normal-bundles are given below, but only a much
easier special case is needed in the remainder of the thesis.

On the other hand, there is the following well-known result from differential
topology, sometimes referred to as “map transversality”:

Definition 1.5.1: “Smooth map-transversality”: Given smooth manifolds Mm,
Nn and a smooth map f : M → N , and further a smooth submanifold V k ⊂ N .

If, for any m ∈ M with f(m) ∈ V the differential dfm : TmM → Tf(m)N is
such that its image im(dfm), together with Tf(m)V ⊂ Tf(m)N |V , spans Tf(m)N =
im(dfm) + Tf(m)V , then f is said to be transverse to V .

In this case, the preimage f−1(V ) is a smooth submanifold of dimension
(m+ k) − n, with normal-bundle the pullback of the normal bundle T N |V/T V of
V in N .

Theorem 1.5.2: “Smooth Transversality” (see e. g. [Bre97, Ch. II, Thm. 15.2
(p. 114)], the original idea of such triangulation-independent replacements of
simplicial approximation17 seems to come from [Tho54]):

Given smooth manifolds Mm, Nn and a smooth map f : M → N , and further
a smooth submanifold V k ⊂ N .

Then f can be homotoped (by a small homotopy) to a smooth map transverse
to V .

17A simplicial map automatically has the transversality-property indicated above on interior points
of top-dimensional simplices of the target. Since smooth manifolds can be triangulated [Whi40],
there is an indirect approach using simplicial approximation instead. See discussion in the
introduction of [Tho54].
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So the theorem essentially says, this transversality-property can always be ensured
by small “distortion” of f . This can be understood as a special case of moving
subspaces into general position: The graph of f in M × N being transverse to
M ×V implies the result for the preimage (see Cor. 1.5.11–1). Outside of the smooth
category, this also requires fixed normal-bundles. For example Milnor’s [Mil64]
micro-bundles may be used [KS77].

One should note however, that the difficulty in giving a topological transversality
result goes well beyond normal-bundle problems: While locally (on charts or handles)
there is an obvious smooth structure (the standard one on the Rn), thus transversality
can be realized locally (via smooth transversality), this has to be done “relatively”, so
that the obtained structure glues (in an inductive proof) to the previously obtained
one on other (overlapping) charts. This requires, for example, some sort of “product-
structure-theorem”, based on the h-cobordism-theorem [Sma62], but also techniques
from [Nov65] and the torus trick of [Kir69] and a topological handle-body theory
[KS77].

It is the second case, “map transversality”, that we will be mostly interested in.
More specifically we study, how maps into R can be made transverse to 0. To some
degree more general cases can be reconstructed by repeated application of such a
result, however, the normal-bundles (pulled back from a point) will end up being
trivial (see also Section 5.4 (“Singular Transversality”)). The main advantage of this
specific case is, that oriented (two-sided) normal-(micro-)bundles of co-dimension 1
manifolds are just “bi-collars” (in a sense to be explained below), i. e. they always
have strong geometric structure, even in the topological category (cf. boundary
collaring [Bro62] / Thm. 1.1.2, see also [FQ90, p. 150] and MHSS boundary collaring
[Qui88a, Thm. 1.2 (p. 444)] / Thm. 1.4.15). Hence the definition of transversality
given at the beginning of the next section is essentially formulated as a statement
about the existence of bi-collars.

A formal statement of a (general) transversality-theorem for topological manifolds
requires some microbundle-theory [Mil64], but the results that we will need later,
can be reformulated in terms of bi-collars. So the reader not (currently) interested in
technical details or a general theorem may safely restrict their reading to Def. 1.5.5,
the last paragraph of Def. 1.5.7, Rmk. 1.5.8 and the corollaries Cor. 1.5.9–1 and
Cor. 1.5.9–2.

We briefly define microbundles and normal microbundles as well as their morphisms:

Definition 1.5.3: [Mil64, ‘Definition’ (p. 54)] Microbundles:
A microbundle ξ of fiber-dimension n consists of a base space B, a total

space E a zero-section i : B → E and a projection p : E → B (all topological
spaces and continuous maps), satisfying p ◦ i = idB and which is locally-trivial:

“Local triviality”: For any b ∈ B, there are open neighborhoods U ⊂ B of
b and V ⊂ E of i(b), with i(U) ⊂ V and p(V ) ⊂ U , such that there is a
homeomorphism h : V ∼−→ U × Rn, compatible with the obvious zero-section and
projection on U × Rn: h ◦ i|U(x) = (x, 0) and πU ◦ h = p|V .
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[KS77, p. 84] Normal Microbundles:
A normal microbundle of a closed Y ⊂ X is microbundle ν, with base-space

Y , total-space an open neighborhood of Y in X and zero-section the identity on
Y .

A microbundle map f : E(ξ) → E(ξ′) is a continuous map, such that the
restriction to a fiber, maps to a single fiber in the target, and is an open topological
embedding there, formally: Given b ∈ B(ξ), the restriction f | : p(ξ)−1(b) →
p(ξ′)−1(f(b)) is well-defined and an open embedding.

Example 1.5.4: See [Mil64, Examples 1 to 3 (p. 55)]:
(1) There are trivial microbundles B ×0−→ B × Rn πB−→ B.
(2) Vector-bundles have an underlying microbundle.
(3) Topological manifolds have a tangent microbundle M ∆−→ M ×M

π1−→ M .
For (paracompact) smooth manifolds, this agrees (up to isomorphism) with
the underlying microbundle of the smooth tangent-bundle [Mil64, Thm. 2.2
(p. 56)].

We will typically restrict our attention to the codimension 1 case, where bi-collars
may be used instead.

Definition 1.5.5: Given a codimension 1 submanifold N ⊂ M − ∂M , then a
bi-collar of N in M is a map c : N × (−ϵ, ϵ) → M , which is a homeomorphism
to its image and restricts to the identity on N × {0}, i. e. it maps (n, 0) ↦→ n.
Here, for non-compact N , ϵ may be chosen as a function ϵ : N → (0,∞), in
which case N × (−ϵ, ϵ) := {(n, t) ∈ N × R||t| < ϵ(n)}.

We call N bi-collared in M , if a bi-collar exists.
Given a continuous map f : M → M ′ and N ⊂ M , N ′ ⊂ M ′ bi-collared

by c, c′, we call f compatible with c and c′, if im(fc) ⊂ im(c′) and (c′)−1fc =
f ′ × id(−ϵ,ϵ) is a product.

For U ⊂ N or V ⊂ M , the restrictions will be abbreviated as c|U := c|U×(−ϵ,ϵ)
and c|V := c|(V ∩N)×(−ϵ,ϵ).

We will not explicitly distinguish the notion of a germ of bi-collars from plain
bi-collars, so for a bi-collar c′ restricting to c (or extending c) we will typically
allow c′ to be “thinner” (i. e. defined for ϵ′ potentially smaller than ϵ where c
was defined).

Example 1.5.6: A locally flat codimension 1 submanifold N ⊂ M with M closed,
is bi-collared if it is two-sided, i. e. if there are subsets M+ and M−, such that
M = M+ ∪M− and N = M+ ∩M−.
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Proof: Both (M±, N) are manifolds with boundary, because N is locally flat.
By [Bro62] (see Thm. 1.1.2), the boundary N of M± is collared by c±, glue these
back-to-back to obtain

c : N × R → M, (x, t) ↦→
{︄
c+(x, t) if t ≥ 0
c−(x, t) if t ≤ 0

which is a bi-collar of N in M . □

Using either microbundles or bi-collars, (map-)transversality can be defined as:

Definition 1.5.7: [KS77, p. 84]: Let Mn be a (topological) n-manifold, (X, Y )
a topological pair, Y ⊂ X closed and with a normal microbundle ξ of fiber-
dimension k.

A continuous map f : M → X is transverse to ξ at ν, if L := f−1(Y ) ⊂ M is
a (topological) submanifold of dim(L) = n− k and ν is a normal microbundle of
fiber-dimension k of L in M such that f | : E(ν) → E(ξ) is a microbundle map.

Given U ⊂ M open, f is transverse to ξ on U at ν, if f |U is transverse to ξ
at ν.

We call f transverse to ξ, if a microbundle ν exists, such that f is transverse
to ξ at ν.

Further, given U ⊂ M open, we will call a map f : M → R (bi-collar)
transverse to 0 on U at c, if f−1({0}) ∩ U is a submanifold of U bi-collared
by c, such that f is compatible with c and the trivial bi-collar of {0} ⊂ R, i. e.
fc(x, t) = t.

Similarly, we will call a map f : M → J to a real interval J (bi-collar)
transverse to t0 ∈ interior(J) on U at c, if f−1({t0}) ∩ U is a submanifold and
bi-collared by c, such that fc(x, t) = t0 + t. Typically J = [−1, 1] and t0 = 0 in
our applications.

Remark 1.5.8: The subsequent statements are typically given for a map f : M →
X, which will be “made transverse on D rel C” for closed subsets C,D ⊂ M .
The formal statement may be easier to read with some explanation on what the
intent of the inputs C and D is. The result is usually a transverse map f⊥ ≃ f ,
with the homotopy respecting C, D in this (explained below) sense.

The “relative part” C: It is assumed, that f already is transverse near (on a
neighborhood of) C. Typically, applying a result (theorem, corollary, . . . ) to
obtain a transverse f⊥ ≃ f , will then leave f unchanged (f = f⊥, with trivial
homotopy) near (on a potentially smaller neighborhood of) C. So the existing
transverse preimage f−1(Y ) and its normal-bundle ν0 near C are really extended
into the remainder of M .

The “active part” D: The map f will be changed to a transverse map f⊥
near D. A very useful, although somewhat trivial, choice is D = M , which
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will produce a map f⊥ transverse everywhere on M . A potential reason for
choosing D ̸= M is, that f will be changed to a transverse map near D, but
it will, indeed, only be changed near D. So whatever properties f might have
away from D, they are maintained by f⊥ = f away from D.

One may assume C ⊂ D: If C ̸⊂ D, then the result is transverse near C ∪D
(because it was transverse near C −D and remains unchanged there). However,
some caution should be taken, when working rel boundary (see Cor. 1.5.9–2).

Clearly, the case of mapping to a real interval J is essentially equivalent to
mapping to R, by application of transversality-theorems to suitable subsets.

The following is the famous transversality theorem proofed (in high18 dimensions)
by Kirby and Siebenmann:

Theorem 1.5.9: [KS77, Thm. 1.1 (p. 85)] Map Transversality Theorem (on D
rel C):

Let Mn be a (topological) n-manifold, (X, Y ) a topological pair, Y ⊂ X closed
and with a normal microbundle ξ of fiber-dimension k.

Further suppose the following dimensional restrictions (these can be removed
completely [Qui88b], see Cor. 1.5.11–1): n ̸= 4 and n−k ̸= 4 and either ∂M ⊂ C
or both (n− 1) ̸= 4 and (n− 1) − k ̸= 4.

Let C,D ⊂ M be closed subsets with open neighborhoods U, V ⊂ M .
Given a continuous map f : M → X, transverse to ξ on U at a (given)

microbundle ν0, then there are open neighborhoods19 U ′, V ′,W ′ of C,D,M − V ,
a microbundle ν and a homotopy f ≃ f⊥ relU ′ ∪W ′, such that f⊥ is transverse
to ξ on U ′ ∪ V ′ at ν where ν|U = ν0.

Furthermore, this can be done by an arbitrarily small homotopy: If X is a
metric space (with metric d), and ϵ : M → (0,∞) continuous, then U ′, V ′,W ′,
ν, f⊥ and the homotopy H : M × I → X of H0 = f to H1 = f⊥ can be chosen
such that H is ϵ-small in the sense of d(H(x, 0), H(x, t)) < ϵ(x) for all x ∈ M
and all t ∈ I.

This can be reformulated in terms of bi-collar transversality to 0:

Corollary 1.5.9–1: Let Mn be a (topological) n-manifold, and C,D ⊂ M closed
subsets with open neighborhoods U, V ⊂ M .

Given a continuous map f : M → R, transverse to 0 on U at c, then there
are open neighborhoods U ′, V ′,W ′ of C,D,M − V and f ≃ f⊥ relU ′ ∪W ′ such
that f⊥ is transverse to 0 on U ′ ∪ V ′ at c′ with c′|U ′ = c|U ′.

18In the dimensions below ≤ 3, smooth and topological category agree, so the result was known to
hold there. (Co-)Dimension 4 was supplemented later, see [Qui88b].

19Obtaining these, as stated here, i. e. with the same ones for the different parts of the result,
requires intersecting the (unnamed) ones of the reference.
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Again, the entire construction can be made small to obtain an ϵ-homotopy.
One may replace R by a real interval J and 0 by t0 ∈ interior(J).

Proof: By definition (Def. 1.5.7), f being transverse to 0 on U at c, means,
L0 := f−1({0}) ∩ U is a manifold, compatibly bi-collared by c : L0 × (−ϵ, ϵ) → U .
This c defines a normal microbundle ν0 of L0 ⊂ U by L0

incl−−→ im(c)
incl πL0 c−1

−−−−−−→ L0.
The bi-collar being compatible, means fc(x, t) = t, so f is a microbundle map from

ν to the trivial normal microbundle ξ of {0} ⊂ R: This requires that for y ∈ L0, the
fiber Fy := (incl πL0c

−1)−1({y}) is embedded into the fiber R over f(y) = 0. The fiber
is Fy = c(π−1

L0 (incl−1({y}))) = c({y} × (−ϵ, ϵ)) so by compatibility of the bi-collar,
f | : Fy = c({y} × (−ϵ, ϵ)) → R, c(y, t) ↦→ fc(x, t) = t is the standard-embedding
(−ϵ, ϵ) ⊂ R.

So Thm. 1.5.9 applies to f , with C,D and U, V and ν0 to obtain f⊥ ≃ f relU ′∪W ′

transverse to ξ at ν on U ′ ∪ V ′, where ν|U ′ = ν0|U ′ . We construct, what will become
the inverse of the bi-collar c′ using L := f−1

⊥ ({0}) as

α : Eν → L× R, x ↦→ (pν(x), f⊥(x)).

Note, that c−1(x) = (pν0(x), f(x)), by compatibility with c (i. e. by fc(x, t) = t) and
by the definition of ν0. So by ν|U ′ = ν0|U ′ and f |U ′ = f⊥|U ′ , on U ′, α agrees with c−1

on U ′.
Transversality of f⊥ to ξ at ν, means by definition, that f⊥ embeds fibers of pν

into R. This makes α injective: If α(x) = α(x′), then pν(x) = pν(x′), so x and x′ are
in the same fiber of pν , which gets embedded into R by f⊥. Since also f⊥(x) = f⊥(x′),
it thus follows x = x′.

Clearly α is continuous, and one-to-one onto its image. It is also proper: Given
a compact K × [−N,N ] ⊂ L × R (any compact subset of L × R is a closed subset
of one of this form, so its preimage is a closed subset of the preimage of the form
α−1(K× [−N,N ]) and it suffices to show, that these are compact) cover K by finitely
many trivialization-charts hi of the microbundle ν, where we may assume, these
trivializations are additionally over manifolds-charts hi : Eν → Rdim(L) × Rk (where
k is the fiber-dimension of ν), s. t. the images Di := h−1

i (D̄1) × {0} ⊂ L of closed
unit-disks cover K. The pre-image α−1(Di × [−N,N ]) ∼= D̄1 × [−N ′, N ′] by f⊥
being a microbundle-map and the local trivialization preserving fibers (of pν). Here
N ′ : D̄1 → R is a map, but we may replace it by its maximum Ni (on the compact
one-disk) for the remaining proof. So α−1(K × [−N,N ]) is a closed subset of the
union of these finitely many compact α−1(Di × [−Ni, Ni]), thus compact. Hence α is
a proper map, one-to-one onto its image, between locally compact Hausdorff spaces,
so it is a homeomorphism to its image (the inverse being continuous is the same as
α being open; as a proper map of locally compact Hausdorff spaces α is closed, it
is also one-to-one, when restricted to its image, thus open). Since L ⊂ Eν , further
L× {0} ⊂ im(α). Hence there is a suitable ϵ′ with c′ := α−1| : L× (−ϵ′, ϵ′) → M a
homeomorphism to its image.
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Remark: It may seem quite surprising, that a (oriented) microbundle of fiber-
dimension 1 “contains” a bi-collar. Note however, that by a theorem of Kister
and Mazur, every microbundle (of fiber-dimension k) contains (in a similar
sense) a (Rk, 0)-fiber-bundle! So the trivial ν = f ∗ξ (a pullback of the bundle
over a point) “should” actually look like a product.

Here (in the case k = 1), one could also use the techniques of [Bro62]
(see Thm. 1.1.2) to see this: Both L≥ := f−1

⊥ ([0,∞)) ∩ (U ′ ∪ V ′) and L≤ :=
f−1
⊥ ((−∞, 0]) ∩ (U ′ ∪ V ′) are manifolds with boundary L, which is collared.

Gluing the collars “back-to-back” yields a bi-collar of L (see Example 1.5.6).

As we have seen above, c|U ′ = c′|U ′ . The (small if necessary) homotopy already has
the correct properties (it is rel U ′ ∪W ′). What remains to be checked, is, that f⊥ is
indeed transverse to 0 on U ′ ∪ V ′ at c′. This consists of L = f−1

⊥ ({0}) ∩ (U ′ ∪ V ′)
being a manifold (which we already established above), and of the compatibility with
c′, which follows immediately from the definition of α (and c′).

For the replacement of R by a real interval J and 0 by t0 ∈ interior(J) (see
Rmk. 1.5.8), apply the statement for R to a suitable neighborhood of t0 and rescale
the bi-collar. □

For this case, transversality to 0, linear interpolation / a straight-line-homotopy
in R are available, and using that manifold-boundaries are collared, a result rel
boundary can be understood rather easily (technically, Thm. 1.5.9 includes the case
of non-trivial boundary, but we want to be a little more precise on the relative
hypotheses):

Corollary 1.5.9–2: “Bi-collar-transversality rel boundary” (rel C∂ ∪ C on D):
Let Mn be a (topological) n-manifold, and C∂ ⊂ ∂M closed, with an open

neighborhood U∂ ⊂ ∂M in the boundary and fix a boundary collar b : ∂M ×
[0,∞) → M . Let C,D ⊂ M be closed with open neighborhoods U, V in M .
Assume C∂, C ⊂ D and C ∩ ∂M = ∅.

Given a continuous map f : M → R, with f |∂M transverse to 0 on U∂

at c∂, and f transverse to 0 on U at c, then there are open neighborhoods
U ′∂, U

M
∂ of C∂ in ∂M,M and U ′, V ′,W ′ of C,D,M − V in M , and a homotopy

f ≃ f⊥ relU ′∂ ∪ U ′ ∪W ′, such that f⊥ is transverse to 0 on V ′ at a bi-collar c′.
The bi-collar c′ in the result restricts to c on U ′ and extends c∂ in the following

sense: b restricts to b0 on the transverse preimage L := f−1
⊥ ({0}) and c′ restricts

to c′∂ on the boundary, such that c′∂ = c∂ on U ′∂. Further, there is a δ > 0 (or a
map in the non-compact case), such that the following diagram commutes (all
arrows except f⊥ are homeomorphisms to their image):
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∂L× [0, δ) × (−ϵ, ϵ)
b0 × id(−ϵ,ϵ)

L× (−ϵ, ϵ)

c∂ × id[0,δ)

∂M × [0, δ)

c

M
b f⊥

R

π(−ϵ,ϵ)

Again, the entire construction can be made small to obtain a ϵ-homotopy. Further,
one may replace R by a real interval J and 0 by t0 ∈ interior(J).

Proof: Apply Cor. 1.5.9–1 to f |∂M : ∂M → R on D∂ := D ∩ ∂M rel C∂ at c∂ (with
neighborhoods U∂ and V∂ := V ∩ ∂M) to obtain U ′∂, V

′
∂,W

′
∂ open neighborhoods of

C∂, D∂, ∂M − V∂ , and f |∂M ≃ f∂
⊥ relV ′∂ ∪W ′

∂ transverse to 0 on U ′∂ ∪ V ′∂ at c′∂ , where
c′∂ = c∂ on U ′∂.

Next we use the fixed boundary collar b : ∂M × [0,∞) → M to extend this
structure to im(b). First, we ensure, that our construction takes place near D and
away from C: Because C∂ ⊂ D, there is δ′ and an open neighborhood U ′′∂ of C∂ in
∂M with b(U ′′∂ × [0, δ′)) ⊂ V ′ for an open neighborhood V ′ ⊂ V of D in M . Further,
C ∩ ∂M = ∅, so there are smaller U ′′′∂ and δ′′ with b(U ′′′∂ × [0, δ′′)) ∩ U ′ = ∅ for an
open neighborhood U ′ of C in M .

By regularity of the metrizable M , there is η : M → [0, 1] with η = 1 near (on an
open neighborhood in M of) C∂ and η = 0 near the complement of b(U ′′′∂ × [0, δ′′)).
Extend f∂

⊥ to a map on all of M by interpolation in R:

f ′⊥ : M → R, x ↦→
{︄
f(x) if x /∈ b(U ′′′∂ × [0, δ′′))
η(x)f∂

⊥(π∂Mb
−1(x)) + (1 − η(x))f(x) otherwise

This extends f∂
⊥ in the sense that it agrees with it on a neighborhood (in ∂M) of C∂ ,

because η = 1 there, it is continuous, because η = 0 (near) where they meet.
A homotopy can be obtained via linear interpolation / the straight-line-homotopy

in R: Define H : M × I → R, (x, t) ↦→ (1 − t)f(x) + tf ′⊥. By the choices of U ′′′∂ and
δ′′, and by application of the transversality-theorem on the boundary rel C∂, this
homotopy is relW ′ ∪ U ′ ∪ U ′∂ with W ′ an open neighborhood of M − V ′.

Next, we show, that the result f ′⊥ is transverse to 0 at c′ on an open neighborhood
Uδ of C∂ in M . First, η−1({1}) contains an open neighborhood of C∂, this open
neighborhood contains one of the form Uδ := b(U ′′′∂ × [0, δ)).

By definition of f ′⊥, on η−1({1}) we find f ′⊥|−1({0}) = b(π−1
∂M ((f∂

⊥)−1({0}))) where
L∂ := (f∂

⊥)−1({0}) is a submanifold of ∂M by construction of the transverse f∂
⊥. So

(f ′⊥)−1({0}) = b(L∂ × [0,∞)) is a submanifold of im(b), and so is the open restriction
to Uδ, i. e. the pre-image of the restriction L′ := f ′⊥|−1

Uδ
({0}).

We also need the bi-collar c′ : L′×(−ϵ, ϵ) → Uδ, which is supposed to be compatible
with f ′⊥|Uδ

and b. First, note, that by L′ ⊂ (f ′⊥)−1({0}) = b(L∂ × [0,∞)), b can
be restricted to b0 = b|L∂

to get a (compatible) collar of the boundary L∂ of L′.
Use this, to write x ∈ L′ as x = b0(y, s), with y ∈ L∂, s ∈ [0,∞) and define
c′(b0(y, s), t) := b(c∂(y, t), s), which automatically makes the rectangle-part of the
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compatibility-diagram in the statement of the corollary commute. It is also compatible
with f ′⊥ by definition of f ′⊥ (the right triangle of the diagram also commutes).

Finally, apply Cor. 1.5.9–1 again, this time to f ′⊥ on D rel C ∪ C∂ to obtain
f⊥ ≃ f ′⊥ relU ′′ ∪ W ′′ (where we may assume U ′′ ⊂ U ′ and W ′′ ⊂ W ′, e. g. by
intersecting them), thus f⊥ ≃ f ′⊥ ≃ f relU ′′ ∪W ′′ ∪ U ′∂ at c′′. Since c′′ agrees with c′
only on U ′′, which is potentially smaller than b(∂M × [0, δ), we may need to choose
a smaller δ for the diagram to commute (which exists, however, by U ′′ containing a
neighborhood of C∂ in M).

After renaming U ′′, W ′′ etc. this finishes the proof of the corollary.
Smallness of the homotopy, can be achieved by the applications of Cor. 1.5.9–1

both producing a ϵ/3-small homotopy, and making the straight-line-homotopy f ≃ f ′⊥
also ϵ/3-small in R, by choosing the collar im(b) thin enough.

Again, for the replacement of R by a real interval J and 0 by t0 ∈ interior(J) (see
Rmk. 1.5.8), apply the statement for R to a suitable neighborhood of t0 and rescale
the bi-collar. □

Finally, for the sake of completeness, we give an “embedded” (in the original
reference “imbedded”) statement, and show, how it implies map-transversality.

Definition 1.5.10: [KS77, Def. 1.4 (p. 91)]: Let M be a (topological) manifold,
(W,N) a manifold pair, N ⊂ W closed and with a normal microbundle ξ.

Given a proper inclusion onto a proper20 submanifold f : M → W , then M is
embedded-transverse to ξ in W , if f is transverse to ξ at some ν, and f(M)∩N
is a submanifold of W .

Given C ⊂ W , then M is embedded-transverse to ξ in W near C, if there is
a neighborhood U of C in W and U ∩M is embedded-transverse to ξ ∩ U in U .

Theorem 1.5.11: [KS77, Thm. 1.5 (p. 91)] (with dimensional restrictions), see
also [Qui88b, ‘Theorem’ (p. 145)] (all dimensions); Embedded Transversality
Theorem (on D relC):

Suppose M and N are proper submanifolds of W , N has a normal microbundle
ξ in W , and closed subsets C ⊂ D ⊂ W and M is transverse to ξ near C.

Then, there is an isotopy of M , supported in any (given, but arbitrary small)
neighborhood of (D − C) ∩M ∩N , to a submanifold transverse to ξ near D.

Corollary 1.5.11–1: The embedded transversality theorem implies map-transver-
sality for manifold-targets:

For Thm. 1.5.11, in the reference [Qui88b, ‘Theorem’ (p. 145)], a version
without dimensional restrictions is explicitly given, so this formally verifies the
claim (at least for a manifold target-space), that Thm. 1.5.9 also applies without
dimensional restrictions (which is of course also implicit in [Qui88b]).

20Here, M ⊂ W proper means closed (as a subspace, not as a manifold) and such that the boundary
is intersected precisely in the boundary: ∂W ∩M = ∂M .
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Proof: Suppose, we are given a continuous map f : M → W and N ⊂ W , all
(sub)manifolds, and a normal microbundle ξ with N

iξ−→ Eξ
pξ−→ N of N in W , i. e.

Eξ ⊂ W and iξ = iN is the inclusion of N . The proof is essentially by making the
graph of f embedded-transverse to N ×M .

“Case C = ∅, D = M”: First, note, that ξ × M given by N × M
iξ×idM−−−−→

Eξ ×M
pξ×idM−−−−→ N ×M , is a normal microbundle of N ×M ⊂ W ×M .

Define (the proper embedding) g : M → W ×M,x ↦→ (f(x), x), then use the em-
bedded transversality theorem (Thm. 1.5.11) to obtain g⊥ ≃ g, embedded-transverse
to ξ × M at some ν. This means by definition, that im(g⊥) ∩ (N × M) is a sub-
manifold of W . As g⊥ is a homeomorphism to its image, this is homeomorphic to
L := g−1

⊥ (N ×M), which is a submanifold of M .
Define f⊥ := πWg⊥ : M → W . We claim, that f⊥ is already transverse to ξ

at ν. First, we note, that indeed f−1
⊥ (N) = g−1

⊥ (π−1
W (N)) = g−1

⊥ (N × M) = L is
a submanifold of M (see above). Next, we have to verify, that f restricts to a
microbundle map on Eν .

This means, we have to show, that f embeds, for any y ∈ L, the fiber F ν
y :=

p−1
ν ({y}) of ν into the fiber F ξ

f⊥(y) := p−1
ξ (f⊥(y)) of ξ. But g⊥ is transverse to ξ

at ν by construction, so g⊥| : F ν
y → (pξ × idM)−1(g⊥(y)) = F ξ

f⊥(y) × {πMg⊥(y)}
is an embedding. Since also πW : W × M → W restricts to an embedding on
F ξ

f⊥(y) × {πMg⊥(y)} → F ξ
f⊥(y), and f⊥ = πWg⊥ by definition, f⊥ restricts to a

microbundle map on Eν .
Finally, we use the (isotopy, thus) homotopy Hg of g ≃ g⊥ to construct one f ≃ f⊥

from f to f⊥. Since πWg = f , and πWg⊥ = f⊥, we may do so, simply by composition
with πW as Hf := πWH

g.
“Case of general C and D”: If near C, f is already transverse to ξ at a ν0, then g

is embedded transverse to ξ ×M at ν0 near C. The only thing that needs checking,
is that im(g) ∩ (N × U) is indeed a submanifold of W × U for some neighborhood
U ⊂ M of C. We know, that LU := f−1(N) ∩ U ⊂ U is a submanifold (or rather,
we know, that a U exists such that this is true, by f being transverse to ξ near C),

im(g) ∩ (N × U) =
{︂

(f(x), x) ∈ N × U
⃓⃓⃓
x ∈ U ∩ f−1(N) = LU

}︂
is the graph of the restriction f |LU

to the submanifold LU , thus a submanifold of
W × U .

We may assume C ⊂ D (Rmk. 1.5.8), so we can apply the embedded transversality
theorem (Thm. 1.5.11) relW × C on W ×D. The resulting f⊥ of the construction
above is then transverse to ξ at ν near D with ν = ν0 near C. □

Remark 1.5.12: If the target is not a manifold pair, but some compact metric
Y ⊂ X with normal microbundle ξ, cover Y by (finitely many) trivializations
hi of this normal microbundle ξ, that is hi : Vi

∼−→ Ui × Rk, inductively make
πRkhif transverse to the trivial normal microbundle of {0} ⊂ Rk rel where it is
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already transverse from previous induction-steps as in Cor. 1.5.11–1. Since the
hi preserve fibers, the result is transverse to ξ.

The “other direction” has no such elementary argument, as map-transversality
gives no hint at how to one could obtain an isotopy for the embedded theorem.

In the next section, the bi-collar transversality-statements Cor. 1.5.9–1 (without
boundary) and Cor. 1.5.9–2 (including boundary) are generalized to those MHSS
which posses mapping-cylinder neighborhoods of skeleta.

1.6 Stratified Transversality
This section summarizes transversality results on MHSS admitting cylinder-neigh-
borhoods of the lower stratum. It does not treat the question of existence of such
neighborhoods, this is deferred to the subsequent sections. The results presented here
rely heavily on Connolly and Vajiac’s [CV99] transversality theorem (see Thm. 1.6.4).

The setting used in [CV99] is in the context of Quinn’s [Qui88a] “homotopy
stratified spaces” (see Section 1.4 (“Quinn Spaces / (M)HSS”)), combined with
controlled end-theory. The aspect of how to obtain suitable transversality results,
or at least certain precursors21, is independent of these notions in principle. For
the sake of presentation, controlled end-theory is discussed later. To this end, some
statements are formulated slightly different than in the original source. From the
following sections Section 1.7 (“Excursion: Controlled Topology”) and Section 1.9
(“Mapping-Cylinder Neighborhoods”) the connections will become apparent. The
relevant hypothesis is the existence of a cylinder neighborhood in the following sense:

Definition 1.6.1: Given a filtered space Xn ⊃ . . . ⊃ X0, a cylinder-neighborhood
of Xk in Xk+1 is an open neighborhood N of Xk ⊂ Xk+1, which is (given
the induced stratification) stratified homeomorphic to a mapping-cylinder cẙl(f)
(Def. 1.1.3) of a map f : V → Xk, with the stratification (cf. Def. 1.3.5) defined
by the filtration cẙl(f) ⊃ Xk ⊃ . . . ⊃ X0, where Xk is identified with the
cylinder-base (at 0 in the convention used here).

Remark 1.6.2: We are working with MHSS, thus by Hughes’ cylinder-theorem
(Thm. 1.4.19), we may assume, that f is a MAF (or a suitable generalization
thereof in the case of more than two strata (cf. Chapter 3 (“Multiple Strata”)),
also implying that V is a manifold.22

21By Quinn’s collaring theorem Thm. 1.4.15, constructing homotopy-collars is already enough.
22The top-stratum V × (0, 1), as an open subset of Xk+1, is automatically a manifold. In the

topological category, this does not imply that V is one however [Bin58].
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We begin the treatment of transversality by giving a formal definition of transver-
sality in the stratified setting (for spaces with boundary, see Def. 1.6.5 below).

Definition 1.6.3: Let X be a MHSS, and g : X → R a continuous map. Then
g is transverse to 0 at c, if X0 := g−1({0}) is stratified bi-collared by c :
X0 × (−ϵ, ϵ) → X compatible with g, that is

(i) c is a stratified homeomorphism to its image
(ii) g ◦ c(x, t) = t ∀(x, t) ∈ X0 × (−ϵ, ϵ)

(iii) X0 is a MHSS
If X0 is non-compact, ϵ : X0 → (0,∞) may be considered a map.

If the bottom stratum has a cylinder neighborhood, then any continuous g : X → R
will turn out to be close to a transverse map. The most difficult part of proving this
is provided by the following result of Connolly and Vajiac [CV99]:

Theorem 1.6.4: [CV99, Thm. 2.2 (p. 529)]: Let X be a MHSS of dimension n,
with two strata B and M := X −B, without boundary, such that

(i) B = B0 × (−1, 1) for some closed manifold B0 and
(ii) there is p = (n, s) : ∂M ′ → B = B0 × (−1, 1) surjective, continuous, such

that X = cyl(p).
Here, M ′ is a manifold with boundary ∂M ′ such that M ⊂ M ′ and M ′ −M =
∂M ′.23 Set (see Figure 1.3)

V := { [x, t] ∈ cyl(p) | s(x) ≤ t < 1 }
W := { [x, t] ∈ cyl(p) | 0 ≤ t ≤ s(x) }
U := { [x, t] ∈ cyl(p) | 0 ≤ s(x) = t < 1 }

Then:
(a) U is a stratified (strong) deformation retract of both V and W
(b) V ∪W = X; V ∩W = U ;

V and W are closed subsets of X;
The lower strata are VB = B0×(−1, 0], WB = B0×[0, 1) and UB = B0×{0}

(c) U , V and W are stratified subspaces of X (i. e. ∂-MHSS when given the
induced stratification), with boundaries ∂V = ∂W = U and ∂U = ∅.

23The last equality – instead of the usual inclusion, see Section 1.8 (“Excursion: End-Theory”) –
holds, because ∂M = ∅ by hypothesis.



40 1 Background

t
(cylinder coordinate)

0

1

s (bicollar coordinate in B)−1 1

V
(s ≤ t)

W
(s ≥ t)

∂M ′

B0 × (−1, 1)

s−1
(
(0, 1)

)

U

U ∩B = B0

Figure 1.3: Pictorial representation of the construction by Connolly and Vajiac
[CV99], similar to their Fig. 4 (p. 530).

“Reverse direction” (see Connolly and Vajiac [CV99, p. 536]): Given a codi-
mension 1, stratified bi-collared MHSS X0 ⊂ X, then the end-obstruction
q0

(︂
B0 × (−ϵ̃, ϵ̃)

)︂
over a (potentially “thinner”) bi-collar of the lower stratum B0

of X0 vanishes (see also Section 1.9 (“Mapping-Cylinder Neighborhoods”)). If
dim(X) ≥ 6, this implies existence of a cylinder-neighborhood over B0 × (−ϵ̃, ϵ̃)
by Quinn’s end-theorem (see Thm. 1.9.3).

Proof: We briefly outline the proof as given in [CV99]: There are two particularly
interesting facts to check.

First, the upper stratum of U is homeomorphic to s−1
(︂
(0, 1)

)︂
, an open subset

of the manifold ∂M ′, hence a manifold. Compare this to Section 1.7 (“Excursion:
Controlled Topology”) and Rmk. 1.7.5 in particular, where it is seen, that obtaining
the “correct” ∂M ′ is actually one of the most difficult parts – and in fact the
obstructed step – in ensuring the existence of a suitable mapping-cylinder to apply
the theorem above. Much of the difficulty of the transversality-problem is hidden in
the existence of ∂M ′.

Second, the “stratified (strong) deformation retract” part ensures (in high dimen-
sions) the existence of a bi-collar, by Quinn’s collaring theorem Thm. 1.4.15. The
reference [CV99] uses the following elegant trick to construct these deformation
retractions: By Hughes’ cylinder theorem Thm. 1.4.19, p is a MAF. This implies by
Lemma 1.2.8 that also

p× id : ∂M ′ × (0, 1) → B × (0, 1) = B0 × (−1, 1) × (0, 1) is a MAF.

Retracting the images (see Figure 1.4)

Vimg := {(b, s, t) ∈ B0 × (−1, 1) × (0, 1)|s ≤ t} and
Wimg := {(b, s, t) ∈ B0 × (−1, 1) × (0, 1)|s ≥ t} to
U+

img := {(b, s, t) ∈ B0 × (−1, 1) × (0, 1)|2s = t} or
U−img := {(b, s, t) ∈ B0 × (−1, 1) × (0, 1)|3s/4 = t}
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∂M ′

B0 × (−1, 1) U ∩B = B0

V ∩ s−1
(
(0, 1)

)

U

U+

U−

RV R′
V

Figure 1.4: Pictorial representation of the retractions, similar to [CV99, Fig. 5
(p. 532)].

is easily done (in (−1, 1) × (0, 1), and then × idB0) by, say, RV
img (for V , all of the

following can be done similarly for W ). Now, one defines

ϵ : B × (0, 1) → (0,∞), (b, t) ↦→ tϵ0

for some fixed ϵ0 > 0 (chosen suitably small, see below) and produces an ϵ-lift RV of
RV

img w. r. t. the MAF p× id starting at the identity (see Figure 1.4). By choice of ϵ,
specifically by ϵ ↘ 0 as t ↘ 0 thus near the lower stratum, this can be extended by
the obvious retraction of B0 × (−1, 0] to B0 × {0} to a stratified one.

Further, if ϵ0 is chosen small enough, this ends up somewhere in

V ′ := {[x, t] ∈ cyl(p)|0 < s(x) ≤ t < 1} = V ∩ s−1
(︂
(0, 1)

)︂
which can in turn be retracted to U using (see Figure 1.4)

R′V : V ′ × I → V ′, ([x, t], τ) ↦→ [x, (1 − τ)t+ τs(x)]

Hence the composition of first RV then R′V yields the required stratified deformation
retraction of V to U . With some slight modifications (see picture) the same can be
done on W .

“Reverse direction” (this part of the proof can be found near the bottom of p. 536
in [CV99]): X0 is a MHSS, and therefore (by Lemma 1.4.21 (ii)) X0 × S1 is a MHSS.
The control-map (holink-evaluation) of the end of the upper stratum is a product
pX0 × idS1 (where pX0 is the holink-evaluation of X0). There are a number of ways,
to see, that the obstruction q0 of such a product with S1 vanishes. The (probably)
most elementary and geometric argument is found along the lines of [Fer81], but
this is actually a manifestation of a more general phenomenon: A control-map, that
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can be written as a product by a finite complex p′ = p × idK has end-obstruction
q0(p′) = χ(K)q0(p) [Qui82a, Prop. 1.8c (p. 359)] (if q0(p) is defined, which it is here,
because X0 is a MHSS). Here, χ is the Euler-characteristic of K (thus 0 in the case of
K = S1). This vanishing-result is also stated similarly in [CV99, Cor. 1.15 (p. 525)].

In any case, we next embed the bi-collar X0 × (−ϵ, ϵ) into X0 ×S1 by j := idX0 ×g
where g is a universal cover of S1 mapping (−ϵ, ϵ) to S1 − {pt}. By continuity of the
map f creating the cylinder(-neighborhood) X0 × S1 ∼= cẙl(f), we find 0 < ϵ̃ < ϵ,
such that f−1

(︂
B0 × (−ϵ̃, ϵ̃)

)︂
⊂ im(j). Since j is a homeomorphism to its image,

j−1 restricts to a homeomorphism cẙl
(︂
f | : f−1

(︂
B0 × (−ϵ̃, ϵ̃)

)︂
→ B0 × (−ϵ̃, ϵ̃)

)︂ ∼= N ,
where N ⊂ X0 × (−ϵ, ϵ) is a neighborhood of B0 × (−ϵ̃, ϵ̃) as required. □

A suitable transversality theorem for high dimensions, can be obtained from this,
combined with manifold transversality.

Corollary 1.6.4–1: See also [CV99, Cor. 1.17 (p. 527)]: Let X be a MHSS
of dimension n ≥ 6 with at most two meeting strata (without boundary), with
disjoint cylinder-neighborhoods of the minimal strata Bi (see Def. 1.4.23), further
g : X → R continuous and ϵ > 0.

Then there is a transverse to 0 map g⊥ ≃ϵ g rel g−1(R − (−ϵ, ϵ)) . I. e. there
is a homotopy H with H0 = g, H1 = g⊥, diam(H({x} × I)) < ϵ for all x ∈ X
and g(x) /∈ (−ϵ, ϵ) ⇒ H(x, t) = x.

Relative Version: If g is already transverse to 0 on (some of the) Bi (let B be
the union of these) at a bi-collar cB, then the construction can be done relB,
i. e. the homotopy can be chosen to additionally be relB, and c|B = cB.

Proof: The homotopy g ≃ g⊥ will be added in the end (we can simply use the
straight-line homotopy in R), also size-estimates (making the homotopy ϵ-small) are
provided, after the construction was outlined.

In the absolute case (or if g is not yet transverse on all the Bi), use manifold-
transversality Cor. 1.5.9–1 individually on those Bi to obtain gB

⊥ ≃ g|Bi
on Bi,

transverse to 0 at a bi-collar cBi
. On those Bi, where g|B is already transverse to 0

at cB (in the relative case), define gB
⊥ := g|B. So gB

⊥ is actually defined on the union
of all minimal strata Bi.

Next we want to apply the transversality-theorem by Connolly and Vajiac (see
Thm. 1.6.4). By hypothesis each Bi ⊂ X has a mapping-cylinder neighborhood
(disjoint from those of other Bi), i. e. there is cẙl(fi : ∂M ′

i → Bi) ∼= Ni relBi for an
open neighborhood Ni of Bi ⊂ X with i ̸= j ⇒ Ni ∩Nj = ∅. Thus we can (for now)
work on the Bi independently of each other.

Let pi :=
(︂
fi| : f−1

i (im(cB) ∩Bi) → im(cB) ∩Bi

)︂
, the restriction to the image of

the bi-collar in Bi. Now, cẙl(pi) ⊂ X is a MHSS (as an open subset of the MHSS
X), its lower stratum is a product of the form im(cB) ∩ Bi

∼= B0 × (−1, 1) using
B0 := gB

⊥({0}) ∩ Bi with a cylinder neighborhood in X given by pi, so Thm. 1.6.4
applies to yield stratified, as MHSS with “weak boundary” (i. e. boundaries are
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uncollared as of yet, see Thm. 1.4.15), subspaces U, V,W , where U = V ∩ W is a
stratified NDR of both V and W , together V ∪W = cẙl(pi) and with lower strata
UB = B0 × {0} and VB = B0 × (−1, 0], WB = B0 × [0, 1). By Quinn’s boundary-
collaring theorem Thm. 1.4.15 (its relative version [Qui88a, ‘Lemma’ (p. 492)]), U is
stratified bi-collared by cU : U × (ϵ′, ϵ′) → N extending cB near Bi. This is, because
the two “sides” V and W are both MHSS, collared by the individual sides of cB in
the dim(X) − 1 ≥ 5-skeleton, with homotopy-collared (stratified NDR) boundary
U , which is therefore collared in both individually, extending the sides of cB. The
bi-collar cU is then obtained by gluing both these collars “back-to-back”.

By regularity of the (metric) X, there is η : X → [0, 1] such that η = 1 near (on
an open neighborhood of) Bi, and η = 0 near the complement of Ni (the complement
of the cylinder-neighborhood). Define:

g′⊥ : X → [−1, 1], x ↦→
{︄
g(x) if x /∈ N

η(x)πRc
−1
U (x) + (1 − η(x))g(x) if x ∈ N

This is continuous, by the choice of η and g′⊥|B = gB
⊥ agree on Bi by compatibility of

gB
⊥ with cB, meaning gB

⊥cB(b, t) = t, and cU extending cB near Bi.
This g′⊥ is transverse near Bi at cU : Since η = 1 near Bi, there is an open

neighborhood U ′i of Bi in X, with η|U ′
i

= 1. The preimage (g′⊥|U ′
i
)−1({0}) = U ∩U ′i ⊂

U is an open subset of the MHSS U (as obtained above by application of Thm. 1.6.4),
thus an MHSS, and stratified bi-collared in U ′i by the restriction of cU .

By definition of η, g′⊥ = g outside Ni and, given another minimal stratum Bj , then
Ni ∩ Nj = ∅, so this can be done on all the minimal strata to obtain a single g′⊥,
transverse to 0 near all the Bi.

The closed complement X − ∪U ′i of the U ′i is disjoint from all the closed Bi (by
the choice of η). By normality of the metric X, it can thus be separated by open
neighborhoods W of X − ∪U ′i and Wi of Bi with W ∩Wi = ∅. We set CX := X −W ,
which is closed in X, such that its interior contains ∪Bi and with CX ⊂ ∪U ′i . In the
subspace-topology on M := X − ∪Bi, the intersection C := CX − ∪Bi = CX ∩M is
thus closed. Next apply, on the top-stratum M , manifold-transversality Cor. 1.5.9–1
again, to g′⊥|M on (all of) M rel C. This can be done, because g′⊥ is already transverse
on (∪U ′i) ∩M (which is an open neighborhood of C in M by construction of C) at
cU . This yields gM

⊥ ≃ g′⊥ relU ′′, where U ′′ is a (smaller) neighborhood of C, with gM
⊥

transverse to 0 (everywhere on M) at cM , and cM |U ′′∩M = cU |U ′′∩M .
Then, define g⊥ on all X by

g⊥ : X → [−1, 1], x ↦→
{︄
gB
⊥(x) if x ∈ B

gM
⊥ (x) if x ∈ M

which is continuous, because on the open neighborhood U ′′ of C (which is also an
open neighborhood of B ⊂ C), it is g⊥ = g′⊥ and g′⊥ is continuous and well-defined
on X (it agrees with gB

⊥ on B). Similarly

c : g−1
⊥ ({0}) × (−ϵ, ϵ) → X, (x0, t) ↦→

{︄
cU(x0, t) if x0 ∈ U ′′

cM(x0, t) otherwise
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is continuous, because cM |U ′′∩M = cU |U ′′∩M (which also implies that c|B = cU |B = cB

as claimed). Further g⊥ is transverse to 0 at c, because (g′⊥|U ′′)−1({0}) is an MHSS
(see above), and (gM

⊥ )−1({0}) is a manifold (thus an MHSS) and both together form
an open cover of g−1

⊥ ({0}), which is thus an MHSS (which is a local property). Also,
c is a stratified bi-collar, because cU |U ′′ and cM are (and they overlap on the open
U ′′ − ∪Bi).

For the homotopy H from g to g⊥, we use the straight-line homotopy in R, i. e.
Ht(x) = (1 − t)g(x) + tg⊥(x), which is indeed relB for the relative case, because
then g and g⊥ agree there.

This construction can be modified to make the homotopy ϵ-small and additionally
rel(X − g−1((−ϵ, ϵ))) as follows (for γ = ϵ/4): For the two applications of manifold-
transversality use Cor. 1.5.9–1 on D = g−1((−ϵ, ϵ)), more precisely, first on B, use
DB = D∩B and make g|B transverse to 0 on DB (on those Bi where it is not already
transverse) such that the resulting homotopy is γ-small (see Cor. 1.5.9–1). Then also
g|B and gB

⊥ , the ends of the homotopy, differ by at most γ. This will later suffice to
ensure, that the straight-line homotopy is also γ-small on B. Similarly we will later,
in the third step, on M use DM = D ∩M to obtain g⊥ ≃γ g

′
⊥ rel the complement of

a (arbitrarily small) neighborhood of DM .
It remains to see, that the step from g to g′⊥ (extending along the construction

of Connolly and Vajiac), can be made 3γ-small (it is γ-small on B, as g′⊥ = gB
⊥

there). To ensure this, we use the following observations: On g−1((−2γ, 2γ)),
obviously |g| < 2γ, and since gB

⊥ is γ-close to g|B, g−1((−2γ, 2γ)) contains an open
neighborhood W (in X) of (gB

⊥)−1({0}) ⊂ B. We restrict the extension-step to this
W . Note, that DM = g−1((−ϵ, ϵ)) ∩M will be a useful choice for the application of
manifold-transversality on M in the third step, as (g′⊥)−1({0}) ⊂ interior(DM ). This
is “useful”, in the sense, that the manifold-transversality result Cor. 1.5.9–1 will yield
a g⊥ transverse near D, relW ′ for an open neighborhood W ′ of the complement of
D, which means all zeros of g⊥ are inside of D, thus g⊥ is transverse to 0 everywhere
on X (trivially so away from D).

Further, we can replace the bi-collar cU : U × (−ϵ′, ϵ′) → N , by a (potentially
thinner, γ′ = min(ϵ′, γ)-small) one cU : U × (−γ′, γ′) → N . Then g′⊥, where it differs
from g (on a subset where η ̸= 0, see above), is defined as a linear interpolation (by η)
of π(−γ′,γ′)c

−1
U and g, thus |g′⊥−g| ≤ |π(−γ′,γ′)c

−1
U −g| here, where |π(−γ′,γ′)c

−1
U | < γ′ ≤ γ

and |g| < 2γ (see above), so |g − g′⊥| < 3γ where they differ (and, of course, also
where they agree).

As indicated above, in the third step, g′⊥ and g⊥ can be obtained γ-close (from the
γ-homotopy obtained by manifold-transversality on M), so g and g⊥ are 4γ = ϵ-close.
The choice of D = g−1((−ϵ, ϵ)) implies (together with the choice of W ensuring
D contains all zeros), that g = g⊥ outside g−1((−ϵ, ϵ)). These together imply,
that the straight-line homotopy Ht(x) = (1 − t)g(x) + tg⊥(x) is both ϵ-small and
rel(X − g−1((−ϵ, ϵ))). It is also relB in the relative case (as before). □

We will next investigate two different modifications of the proof to spaces with
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boundary. First, we say what transversality on a space with boundary means precisely
and then give further properties, which are additionally ensured by our results.

Definition 1.6.5: Let (X, ∂X) be a MHSS with boundary, and g : X → R a
continuous map.

Then g is transverse to 0 at c, if X0 := g−1({0}) is stratified bi-collared by
c : X0 × (−ϵ, ϵ) → X compatible with g, i. e. gc(x, t) = t as before.

Further, (X0, X0 ∩ ∂X) is required to be a MHSS with boundary and that c is
strict with respect to the boundary, in the sense, that c(∂X × (−ϵ, ϵ)) ⊂ ∂X and
c((X − ∂X) × (−ϵ, ϵ)) ⊂ (X − ∂X), thus the restrictions g|X−∂X and g|∂X are
transverse to 0 at the corresponding restrictions of c.

Definition 1.6.6: Given a MHSS X of the form cẙl(p : ∂M ′ → B0 × (−1, 1)),
and a transverse to 0 map g on X, we say g is standard with respect to p, if
g−1({0}) ∩N = U ∩N , for an open neighborhood N of B in X and the stratified
NDR U := {[x, t] ∈ cyl(p)|0 ≤ π(−1,1)p(x) = t < 1} of Thm. 1.6.4.

Given a MHSS with boundary (X, ∂X), and a fixed boundary collar b : ∂X ×
[0, γ) → X, we call g : X → R transverse to 0 at c compatible with b, if b
restricts to a collar b0 of ∂L := ∂X ∩ g−1({0}) ⊂ g−1({0}) =: L and c restricts
to a bi-collar c∂ of ∂L ⊂ ∂X such that (cf. Cor. 1.5.9–2)

∂L× [0, γ) × (−ϵ, ϵ)
b0 × id(−ϵ,ϵ)

L× (−ϵ, ϵ)

c∂ × id[0,γ)

∂M × [0, γ)

c

M
b f⊥

R

π(−ϵ,ϵ)

Remark 1.6.7: The compatibility with the boundary condition may seem quite
strong, but actually, since our boundary is collared anyway, we can just glue
a “trivial” collar to the “outside” to obtain a stratified homeomorphic space
X ′ ∼=h X, and define g : ∂X × [−1, 0] → R, (y, t) ↦→ g(c∂(y, 0)), which certainly
fits together with g on X ⊂ X ′ (and by strictness also c extends).

Choosing the outside collar “thin enough” one can make h arbitrarily small,
so any transversality-theorem that yields an arbitrarily close, transverse map
g⊥ without the last condition also provides arbitrarily close transverse maps
g′⊥ = h−1 ◦ gextended that satisfies the last condition. Vice versa, compatibility
with the boundary-collar implies of course strictness in the sense of Def. 1.6.5.

The “standard” condition will usually be satisfied automatically, e. g. if g
was made transverse using Cor. 1.6.4–1 (which is how we will typically obtain
transverse maps in the first place): Inspecting the proof of Cor. 1.6.4–1, we note,
that g⊥ is constructed to agree with g′⊥ near B, which in turn is defined as πRc

−1
U

near B, where cU is a bi-collar of U and clearly (πRc
−1
U )−1({0}) = U .
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The first idea to prove a transversality-theorem including boundary is, to use
spaces with more than two strata (see Chapter 3 (“Multiple Strata”)), “absorb the
boundary” into the stratification (see Section 3.2 (“Absorbing Boundary”)), and
then treat the space as if it were a space without boundary. For example if (X, ∂X)
has two strata (M,∂M) and (B, ∂B), then there is also a stratification (as MHSS as
it will turn out) with four strata M,∂M,B, ∂B without boundary, in which case a
multi-stratum analogue of Cor. 1.6.4–1 suffices for an inductive argument over skeleta.
Since, for now, we specialize to spaces of at most two strata, we defer this argument
to Cor. 3.2.3–1.

For now, we use a different approach, that does not use spaces with more than
two strata, but requires a bit more effort to get the bi-collars right, because they
need to be constructed in the interior and the boundary at the same time. To this
end, we strengthen the requirement on the mapping-cylinder-neighborhood, so that
the one of the boundary actually “fits together” with the one on the interior. See
Section 1.7 (“Excursion: Controlled Topology”) and Section 1.9 (“Mapping-Cylinder
Neighborhoods”) for a treatment of cylinder-neighborhood-existence. It is possible
to construct such compatible cylinder-neighborhoods using the relative end-theorem
of [Qui79, Thm. 2.1 (p. 282)], where the same obstruction-groups, as otherwise used
in this thesis, are encountered.24

Thus we can consistently maintain the requirement of at most two-strata, if we
want to. The argument used is similar to the one in the gluing lemma (Lemma 1.4.25),
and indeed, we do not need such a strong result here (it would suffice to show, that
corners are “homotopy-corners”, i. e. that X≥ etc. are MHSS with boundary, because
the gluing result – the only argument that requires geometric corners – already deals
with this). However, we can (even) show the following (geometric corner) result:

Corollary 1.6.4–2: Let (X, ∂X) be a MHSS with a boundary of dim(∂X) ≥ 6
with at most two meeting strata, with disjoint cylinder-neighborhoods of the
minimal strata Bi (see Def. 1.4.23) in the interior cẙl(Fi : ∂M ′

i → (Bi − ∂Bi))
and in the boundary cẙl(fi : ∂N ′i → ∂Bi), where, given a boundary collar
b : ∂X × [0, γ) → X, there are identifications ∂N ′i × (0, γ) ⊂ ∂M ′

i such that

Fi|∂N ′×(0,γ) = (fi × id(0,γ))

and b([x, t], s) = [(x, t), s] ∈ cẙl(fi × id). Then cẙl(Fī = Fi ∪ (fi × 0)) is an open
neighborhood of Bi in X. Further, let g : X → R be continuous and ϵ > 0.

Then there is a transverse to 0 map g⊥ ≃ϵ g rel g−1(R − (−ϵ, ϵ)), which
is standard with respect to fi on ∂X and with respect to Fi on X − ∂X and
compatible with b (both in the sense of Def. 1.6.6).

Relative Version: If g is already transverse to 0 on B (a union of Bi) at cB,
compatible with b|B, then the construction can additionally be achieved relB. If

24Implicitly, this makes use of the vanishing of the controlled h-cobordism obstruction-groups (which
is also guaranteed by our hypotheses) and the ensuing uniqueness of completions (cylinder-
neighborhoods), see Rmk. 4.1.2.
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g is already transverse to 0 on ∂X at c∂, and is standard (Def. 1.6.6) on ∂X with
respect to fi|im(cB)∩∂Bi

for all i, then the construction can additionally be made
rel ∂X. Both can be achieved at the same time, i. e. if g is already transverse to
0 on B and ∂X, then the construction can be done relB ∪ ∂X.

Proof: As in the proof of the previous Cor. 1.6.4–1, the closed disjoint Bi can be
treated individually. For ease of notation and readability, we assume there is only
one Bi =: B.

If X has only one stratum, the result is given by manifold-transversality with
boundary Cor. 1.5.9–2, so we may assume, that X has two non-trivial strata.

If ∂X = ∅, this is Cor. 1.6.4–1, with the addition of the last claim, that the result
be standard with respect to F . This can be seen from the proof of Cor. 1.6.4–1, as
described in Rmk. 1.6.7.

Otherwise, and if g is not yet transverse to 0 on B, obtain gB
⊥ ≃ g|B transverse to

0 in B at cB, compatible with the boundary-collar b|B, using manifold-transversality
with boundary Cor. 1.5.9–2 (on DB = B and CB = ∅ and relCB

∂ = ∅ if g is also not
given transverse on ∂X, or relCB

∂ = ∂B if g is already transverse on ∂X).
If g is not yet transverse on the boundary ∂X, apply the version for empty

boundary to ∂X, to obtain g∂
⊥ ≃ g|∂ , transverse to 0 at c∂ and standard with respect

to p∂ = f |im(cB)∩∂B.
The crucial new observation is, that, the results of Thm. 1.6.4 applied to interior

and boundary fit together by compatibility of f and F : On the one hand, using
p = Fim(cB)∩(B−∂B), Thm. 1.6.4 yields U, V,W ⊂ X − ∂X, which depend only on
the form of F . On the other hand, applying Thm. 1.6.4 to p∂ yields corresponding
U∂, V ∂,W ∂ in ∂X, which depend only on the form of f . The compatibility condition
on F and f means, that near the boundary, these overlap as p∂ × id (0, γ) = F | and
hence U = U∂ × [0, γ) (where we suppressed writing the identifying b in the notation)
and similar for V,W (as is immediate from the explicit form of these subset as given
in the statement of Thm. 1.6.4).

Further, g∂
⊥ being standard w. r. t. p∂ , additionally U∂ ×[0, γ) = (g∂

⊥)−1({0})×[0, γ).
Note, that these form an open cover by MHSS (with boundary) of (U,U∂), which is
thus also a MHSS with boundary. The boundary-collar can be chosen as a restriction
of b, since in the definition, b was implicitly used in defining U∂ × [0, γ). We call this
subspace of the cylinder-neighborhood (X0, ∂X0) := (U, ∂U).

Extending the bi-collars from the lower stratum and boundary requires a little
more effort, because without absorbing the boundary, see Section 3.2 (“Absorbing
Boundary”), the boundary requires some special treatment as compared to the
previous Cor. 1.6.4–1. We will work with the following setup (see also Figure 1.5
(b)): The transverse on B map gB

⊥ divides B in two parts B≥ := (gB
⊥)−1([0, 1]) and

B≤ := (gB
⊥)−1([−1, 0]). These are separated by B0 := (gB

⊥)−1({0}). all of these are
manifolds with boundary. ∂B0 are the corners B0 ∩∂B, while the boundary ∂B≥ (and
correspondingly of B≤) consists of two parts: B0 and B≥ ∩ ∂B =: (∂B)≥. Indeed,
also (∂B)≥ is a manifold with boundary also given by the corners ∂B0. Now, B0 is
collared in B≥ by one half of the bi-collar cB = c|B of B0 ⊂ B, because gB

⊥c
B(x, t) = t.
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B

A

ϕ

B A

(a) The homeomorphism φ fixes the
colored parts (see main text).

B≥

B≤

B0

∂B

(b) The decomposition of B used, the
corner of the upper “half” B≥ at its
bottom left is shown in (c) and (d).

B≥

B0

(∂B)≥

cB

bB

∂(∂B)≥ = ∂B0

(c) The corner, where the one side
of the bi-collar cB of B0 and the
boundary-collar bB (of ∂B restricted
to (∂B)≥) meet.

B≥

1
2cB

1
2bB

(∂B)≥ ∪B0 = ∂(B≥)

(d) The straightened corner, with a
boundary-collar of ∂(B≥) determined
by bB, cB and the choice of φ.

Figure 1.5: Corner-Straightening as used in the proof of Cor. 1.6.4–2.

Further, also the other part of the boundary of B≥, given by (∂B)≥ is collared in
B≥, this time by restriction of the collar bB = b|B of ∂B ⊂ B, because cB and bB

are also compatible.
Briefly, the construction can be outlined as follows (see also Figure 1.5 (c), (d)):

These two collars of the individual parts of ∂B≥ = B0 ∪ (∂B)≥ will be combined (by
straightening the corners) to a collar cB

≥ of ∂B≥ ⊂ B≥. As this is a manifold with
boundary, some collar exists anyway, but the point is, that we can fix one, relative to
the given parts. Next, we will use Quinn’s boundary-collaring theorem (Thm. 1.4.15),
to extend cB

≥ to c≥, a collar of ∂X≥ ⊂ X≥ (see below for the precise definition of the
partitioning of X). From there we will unstraighten the corners, such that the result
fits together with b extending (its restriction) bB = b|B near the corners, and with cB

on the lower stratum B. Then, the construction can be continued as in Cor. 1.6.4–1.
We start by partitioning X. The pairs (B≥, ∂B≥) etc. above do not have immediate
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analogues in X, but they do in the cylinder-neighborhood N := cẙl(F̄ ) of B in X, by
restricting the cylinder(-map) to the corresponding parts of B. We call these spaces
X≥, . . ., and note, that b extends (its restriction) bB. Also b restricts (see above) to
b0 collaring ∂X0 ⊂ X0. The corners ∂X0 are also stratified NDR (thus collared) in
(∂X)≥, because they have a neighborhood (W ∂, U∂) from Thm. 1.6.4 (see definition
of X0 above). The boundary-collar b is strict (keeping W −U in W −U and U in U)
with respect to the stratified NDR pair (W,U), which was obtained by Thm. 1.6.4.
So the (stratified) deformation of W to U can be combined with b|X≥ to see, that
∂X≥ ⊂ X≥ is also a stratified NDR. Thus, once we have constructed a collar cB

≥ in
B, it can be extended using Quinn’s boundary-collaring theorem (Thm. 1.4.15).

Next, we construct this collar cB
≥. First we fix a homeomorphism straightening the

corner (see Figure 1.5 (a)):

φ : [0, ϵ) × [0, ϵ) ∼−→ (−ϵ, ϵ) × [0, ϵ)

such a φ certainly exists such that φ(s, 0) = (s, 0) and φ(0, t) = (−t, 0) and further,
the lower half close to the “right” side is fixed: φ(s, t) = (s, t) for s > 3ϵ/4 and t < ϵ/2,
and finally, close to the other side of the corner t > 3ϵ/4, the “left” half s < 1/2 is
simply rotated down to become the lower half near the left of the straitened corner
as φ(s, t) = (−t, s).

Then define near the “corners” ∂B0, on im(cB
∂ ) ∪ im(bB

0 ) ⊂ ∂X≥, the collar cB
≥ as

the composition (see Figure 1.5 (c), (d); with cB
∂ ∪ bB

0 the collars of ∂B0 in (∂B)≥
and B0 glued back-to-back along ∂B0 × {0}):

cB
≥| : (im(cB

∂ ) ∪ im(bB
0 )) × [0, ϵ)

(cB
∂ ∪bB

0 )−1×id
−−−−−−−−→ ∂B0 × (−ϵ, ϵ) × [0, ϵ)
id×φ−1
−−−−→ ∂B0 × [0, ϵ) × [0, ϵ)
bB

0 ×id−−−→ im(bB
0 ) × [0, ϵ)

cB |−−→ B≥

By the choice of φ, after restriction to [0, ϵ/2), this fits together with cB on the rest of
im(cB): On bB

0 (B0 × (3ϵ/4, ϵ)) × [0, ϵ/2) the composition is cB ◦ (bB
0 × id) ◦ (id × id) ◦

((bB
0 )−1 × id) = cB. By compatibility of c with the boundary, c(b0 × id) = b(id ×c∂)

(flipping the sides of the corner), so similarly it fits together with bB on the rest
of im(bB): On cB

∂ (B0 × (−ϵ,−3ϵ/4)) × [0, ϵ/2) the composition is bB ◦ (id ×cB
∂ ) ◦

(rotate around (0, 0) by 90 degrees) ◦ ((cB
∂ )−1 × id) = bB where rotation and flipping

sides cancel each other.
The resulting collar of ∂B≥ ⊂ B≥ can be extended to one of ∂X≥ ⊂ X≥ using

Quinn’s boundary-collaring theorem (Thm. 1.4.15), see above. We call the result
c≥. Finally, we construct cX as a collar of X0 on the corners im(b0) ⊂ X0 (see again
Figure 1.5 (c), (d), this time we go in the other direction – constructing a half of the
bi-collar of X0 as fixed by the collar of ∂(X≥) and the choice of φ – and work in X
instead of B, but the picture remains the same; also as before, at the corner we can
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glue b0 ∪ c∂ back-to-back, i. e. b0 ∪ c∂(x, t) is b0(x, t) if t ≥ 0 and c∂(x,−t) if t ≤ 0):

cX | : im(b0) × [0, ϵ) b−1
0 ×id

−−−−→ ∂X0 × [0, ϵ) × [0, ϵ)
id×φ−−−→ ∂X0 × (−ϵ, ϵ) × [0, ϵ)
b0∪c∂×id−−−−−→ im(b0 ∪ c∂) × [0, ϵ)
c≥|−−→ X≥

By the choice of φ this can be extended into X0 − im(B0) × [0, ϵ/2) by c≥, because
close to the inside-end b0(∂X0 × (3ϵ/4, ϵ)), φ is given by the identity (on the lower half
[0, ϵ/2)), so the above composition reads c≥ ◦b0 ◦(id × id)◦b−1

0 . On the other hand, for
x0 ∈ ∂X0 (thus b−1

0 (x0) = (x0, 0)), the composition is given as (using φ(0, t) = (−t, 0),
see above) cX(x0, t) = c≥(c∂ × id(x0, φ(0, t))) = c≥(c∂(x0, t), 0) = c∂(x0, t). Thus
cX = c∂ on ∂X0.

Furthermore, this also fits together with cB on B: Restricted to B, the above
composition reads (near corners) cX |B| = cB

≥|◦((bB
0 ∪cB

∂ )× id)◦(id ×φ)◦((bB
0 )−1 × id),

plugging in cB
≥| = cB| ◦ (bB

0 × id) ◦ (id ×φ−1) ◦ ((cB
∂ ∪ bB

0 )−1 × id) as defined above,
everything except cB| cancels (near corners). Away from corners, cX = cX

≥ by
definition, extending cB

≥, which (away form corners) is given by cB
≥ = cB.

The same construction applied to the other side X≤ yields the other side of a
bi-collar, which we will also call cX , of X0 ⊂ X. As of yet, this cX agrees with c∂ on
∂X, but may not be compatible with b. So, to make cX compatible with the collar b
of the boundary ∂X ⊂ X, glue an outside-collar (Rmk. 1.6.7), where cX = c∂ × id.
(This does not change g|B or c|B, because these are compatible with b already, and
thus we are only gluing two products together, which is homeomorphic to the original
product.) Outside of the cylinder-neighborhood N , this can then be extended by
c∂ × id near ∂X (in the open neighborhood im(b)).

As in the proof of Cor. 1.6.4–1, use a continuous η : X → [0, 1] with η = 1 near
B ∪ ∂X and η = 0 near the complement X − (N ∪ im(b)) of cylinder-neighborhood
and boundary, to define

g′⊥ : X → [−1, 1], x ↦→
{︄
g(x) if x /∈ N ∪ im(b)
η(x)πRc

−1(x) + (1 − η(x))g(x) if x ∈ N ∪ im(b)
The restriction g′⊥|M to the upper stratum is thus transverse to 0 at c near M ∩
(B ∪ ∂X). So we can apply manifold transversality (without boundary, as C ⊃ ∂M)
Cor. 1.5.9–1, on M and relC = ∂X ∪ N ′, where N ′ is a neighborhood of B ⊂ X
intersected with M . This yields gM

⊥ transverse to 0 on M at c′, with c′ = c near
M ∩ (∂X ∪B). Thus c′ can be extended to B by c and gM

⊥ can be extended by g′⊥
to g⊥, also as in the proof of Cor. 1.6.4–1.

Near B this agrees with cB and gB
⊥ , by construction of c, near ∂X it is a product

(thus compatible with b) of c∂ × id, thus extends c∂.
Smallness of the construction (i. e. that H be an ϵ-homotopy and additionally

rel g−1({0})), can be achieved by the same arguments as in the proof of Cor. 1.6.4–1.
□
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From the construction of Connolly and Vajiac [CV99], it is evident how transver-
sality is very closely related to end-problems (“end-problems” here means “cylinder-
neighborhood-existence”, see Section 1.8 (“Excursion: End-Theory”)), an observation
that is also discussed for example in [Qui82a, §2.2 (p. 365ff), “transversality is an
end problem” (p. 367)].

We finish the present section, by illustrating, how also the opposite direction,
transversality solving end-problems, seems to be true, at least for the problems
studied here (excision in a bordism theory must be applicable repeatedly, so the “cut”
X0 must somehow be ensured to posses a cylinder neighborhood again).

Lemma 1.6.8: Let X be a MHSS of dimension n (with two strata B and M :=
X −B and without boundary), s. t.

(i) B = B0 × (−1, 1) (for some closed manifold B0) and
(ii) there is p = (n, s) : ∂M ′ → B = B0 × (−1, 1), s. t. X = cyl(p).

Further assume, that s : ∂M ′ → (−1, 1) is transverse to zero. Then X0 :=
cyl(p|s−1({0})) is a MHSS with cylinder-neighborhood of the lower stratum, and
is stratified bi-collared in X.

Proof: See the more general Lemma 1.6.9 below.

Note, that this does not have any dimensional restrictions. One may also combine
this with the construction of Connolly and Vajiac [CV99], if s is not transverse
“everywhere”. Then boundary-collaring (from stratified NDRs, Thm. 1.4.15) will
reintroduce some dimensional-requirements into the construction of a “g⊥”, however.

Lemma 1.6.9: “Modification of [CV99, Thm. 2.2 (p. 529)]”: Let X be a MHSS
of dimension n (with two strata B and M := X −B and without boundary), s. t.

(i) B = B0 × (−1, 1) (for some closed manifold B0) and
(ii) there is p = (n, s) : ∂M ′ → B = B0 × (−1, 1), s. t. X = cyl(p).

(M ′ is a manifold with boundary ∂M ′ such that M ⊂ M ′ and M ′ −M ⊂ ∂M ′.)
Further assume, that there is Σ ⊂ ∂M ′, such that the restriction s| : (∂M ′−Σ) →
(−1, 1) is transverse to 0 (in the manifold sense).

Set (as before; see Figure 1.6)

V := { [x, t] ∈ cyl(p) | s(x) ≤ t < 1 }
W := { [x, t] ∈ cyl(p) | 0 ≤ t ≤ s(x) }
U := { [x, t] ∈ cyl(p) | 0 ≤ s(x) = t < 1 }

Then (as before)
(a) U is a stratified (strong) deformation retract of both V and W
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t
(cylinder coordinate)

0

1

s (bicollar coordinate in B)−1 1

bicollar of transverse preimage

∂M ′

B0 × (−1, 1)

s−1
(
[0, 1)

)

U

U ∩B = B0

Figure 1.6: Pictorial representation of the construction by Connolly and Vajiac
[CV99], similar to their Fig. 4 (p. 530), but now (away from Σ) the
end of s−1

(︂
(0, 1)

)︂
, and thus the upper stratum of U , has an “obvious”

completion by s−1
(︂
[0, 1)

)︂
, where before, it had to be chosen open to

ensure that it is a manifold.

(b) V ∪W = X; V ∩W = U ;
V and W are closed subsets of X;
The lower strata are VB = N× (−1, 0], WB = N× [0, 1) and UB = N×{0}

(c) U , V and W are stratified subspaces of X (i. e. ∂-MHSS when given the
induced stratification), with boundaries ∂V = ∂W = U and ∂U = ∅.

and further:
(d) The lower stratum B ∩ U of U has a cylinder-neighborhood in U away

from p(Σ) stratified homeomorphic to cẙl(p|s−1({0})−Σ) rel B − Σ.

Proof: We only need to verify the additional part (d), i. e. we need to show, that the
stratified homeomorphism exists. To this end, let c : (s−1({0})−Σ)×(−ϵ, ϵ) → cẙl(p)
a stratified bi-collar with s ◦ c(x, t) = t, which exists by the transversality hypothesis
on s. Recall that there is a homeomorphism to its image of the upper-stratum

h : U ∩M → ∂M ′ ∩ s−1
(︂
(0, 1)

)︂
, (x, t) ↦→ x

which was used before to see that this is a manifold. Note that by definition of U
implying s(h(x, t)) = t the inverse is given by h−1(x) = (x, s(x)). Define

φ : cẙl(p|s−1({0})−Σ) → U [x, t] ↦→
{︄
h−1 ◦ c(x, t) if t > 0
p(x) if t = 0

This is well-defined, because if t > 0, then by s ◦ c(x, t) = t automatically c(x, t) ∈
im(h). If t = 0, then by x ∈ s−1({0}) − Σ, also p(x) ∈ B0 × {0} ⊂ U . Note that this
also shows, that φ is stratum-preserving.

Further φ is continuous, which needs to be checked for t → 0. By s ◦ c(x, t) = t an
the form of h−1(x) = (x, s(x)), it holds that

h−1 ◦ c(x, t) = (c(x, t), t)
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By continuity of p, the cylinder-identification in U given by p(x) ∼ φ(x, 0) =
(c(x, 0), 0) and in cẙl(p|s−1({0})−Σ) given by p|(x) ∼ (x, 0) agree.
φ is a homeomorphism to its image, because, on the upper-stratum it is the

composition of two homeomorphisms (to their images), and on the lower-stratum it
is the identity of B0 × {0}. □

These results might be useful for future work, to weaken the “dimensional-gap-
hypothesis” that later will be encountered in the construction of bordism theories
(see for example the hypothesis of the main theorem Thm. 5.1.2).

It remains to give a satisfactory answer to the question of existence of mapping-
cylinder neighborhoods. Even more so, as Connolly and Vajiac [CV99, p. 536] in fact
give a kind of “backwards”-direction (see Thm. 1.6.4), so these are (at least locally)
necessary.

“Controlled Topology”, as briefly explained in the in the following sections, does
provide reasonable answers, at least in high dimensions, to these questions.

1.7 Excursion: Controlled Topology
This section briefly summarizes some ideas and results from controlled topology (see
e. g. [Qui79; Qui02; Cha83]), with a focus on controlled end-theory (existence of
mapping-cylinder neighborhoods), also known as “ends of maps” [Qui79; Qui82a;
Qui82b; Qui86].

We start by recalling some classical (“uncontrolled”) results, namely the h-
cobordism-theorem (i. e. π1 = 0) [Sma62] and the s-cobordism-theorem proved
by Barden, Mazur and Stallings (see for example [Ker65; Coh73]) and – very closely
related – (uncontrolled) end-theory, initiated25 by Freudenthal [Fre31] and later de-
veloped further by Siebenmann [Sie65] (see also [HR96] and Section 1.8 (“Excursion:
End-Theory”)). We will only discuss the high-dimensional cases.

We start by recalling what an h-cobordism is:

Definition 1.7.1: A (manifold-)cobordism is a triple (W n+1;Mn
0 ,M

n
1 ) where W

is a compact oriented (n+ 1)-manifold with boundary ∂W = M0 ⊔ −M1.
An (uncontrolled) (n + 1)-dimensional h-cobordism (W n+1;Mn

0 ,M
n
1 ) is a

cobordism which deformation-retracts to both M0 and M1.26

A h-cobordism is trivial if it is a product W ∼= M0 × I.

The question, which high-dimensional, meaning dim(W ) ≥ 5 + 1, h-cobordisms
are trivial is answered by the “s-cobordism-theorem”. The formal starting point is
25according to [HR96, p. ‘x’]
26So the inclusions of M0 and M1 are homotopy-equivalences, and W has the homotopy type of a

cylinder on M0, hence the “h-”.
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usually the observation, that this is the case iff the retractions are simple (in the
sense of simple homotopy-theory), hence the “s-” in the name. The problem can be
approached using handle-body decompositions of topological manifolds – which exist
except for non-smoothable 4-manifolds (see e. g. [FQ90, §9.2 (p. 136)]), hence always
exist in “high dimensions”. By a handle-body we mean (technical details will not be
discussed here, but the following definition should provide sufficient understanding
of the concept for the ideas sketched below)

Definition 1.7.2: See e. g. [KS77], [FQ90, §9.1 (p. 134–136)] or [Wal71]: Given
an n-manifold W and a codimension 0 submanifold N ⊂ ∂W of its boundary,
then:

A k-handle is an embedding i of Dk × Dn−k into W . It is attached to
i((∂Dk) ×Dn−k). Further i((∂Dk) × 0) is called the attaching-sphere (a-sphere),
i(0 × (∂Dn−k)) is called the belt-sphere (b-sphere).

A (relative) handlebody-structure on (W,N) is a filtration W0 ⊂ W1 ⊂ . . . ⊂
W , where:

(1) W0 is a collar N × I on N .
(2) Wi+1 is obtained from Wi by attaching a handle to ∂Wi −N × {0}.
(3) Handles are locally finite.

The details of the following discussion are beyond the scope of this overview, see
for example [Coh73; Hud69] for a more complete treatment of the matter. We want
to focus our discussion on two important questions encountered in the proof of the
s-cobordism-theorem.

(1) “Geometric Connectivity” ([Wal71]): A pair (W,M0) is (relatively) “homotopi-
cally i-connected” if ∀j ≤ i : πj(W,M0) = 0. It is “geometrically i-connected”
if W can be obtained from (a collar on) M0 by adding only j-handles for j > i.
Clearly geometric connectivity implies homotopic connectivity, but when does
the converse hold?

(2) “Algebraic Classification”: How can the geometric data, of the (simplified by
(2)) handle-body structure of an h-cobordism, be “classified” algebraically?

The answer to the first question is (roughly): One can eliminate handles of dimension
≤ i by potentially adding i and i+1 dimensional ones if i is not “too close to dim(W )”.
Now, h-cobordisms are not only relatively homotopically i-connected for all i, but
they can also be “turned around”: An i-handle Di × Dn−i can be regarded as a
(n− i)-handle, the handle-decomposition of (W,M0) then becomes one of (W,M1)
with handles in complementary dimensions. But the problem is symmetric in M0 and
M1, so one can start eliminating handles from one direction, then turn around and
eliminate those previously “too close to dim(W )” which are now in low dimensions.
This allows elimination of all handles except for those in two adjacent dimensions k
and k + 1 on a collar of M0. For connectivity reasons, these must appear in pairs:

W = M0 × I ∪ pairs of the form ( k-handle, (k + 1)-handle )
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Clearly the h-cobordism is trivial iff all the remaining handles can be “absorbed”
into the collar on M0 (if the collar with the pair attached is again homeomorphic to
a collar).

More generally, answering the second question, one observes: A pair of a k-handle
and a (k+ 1)-handle is homeomorphic to a n-disc attached along a (n− 1)-disc in its
boundary (an “elementary expansion” in the sense of simple homotopy theory) and
can thus be absorbed into the collar if and only if the “attaching-sphere” (a-sphere) of
the k+ 1 handle intersects the “belt-sphere” (b-sphere) of the k handle transversality
in exactly one point. In high dimensions, this can in turn be arranged by general
position arguments if and only if the algebraic intersection “number” is 1 ∈ Zπ1(W ).

Algebraic intersection-data is in the group-ring of the fundamental groups, because
given an intersection-point, since handles are simply-connected, after fixing paths
(from a basepoint of W ) to the basepoints of handles, there is a well-defined element
in π1(W ) obtained by moving to the base-point of the first handle, moving to the
intersection-point (within that handle), switching into the other (intersecting) handle,
moving in that handle to its base-point, and finally back to the basepoint of W .
Then formally sum up all intersections with sign depending on orientation. See for
example [FQ90, §1.7 (p. 21–23)].

The intersection data of all the k and (k + 1)-handles can be arranged into a
square matrix (of all possible pairs), with entries in Zπ1(W ). Note that adding or
removing trivial pairs does not alter the geometry (the homeomorphism-type). So
any classifying algebraic invariant must allow stabilization and destabilization (of
these matrices). Further, one may rearrange the order of handles without changing
the geometric problem, corresponding to row or column swaps. Slightly more
general, certain “sliding” operations will not change the geometry, algebraically,
these manifest themselves as “elementary matrices” (beyond row or column swaps).
Moving along loops, one can further “multiply by π1-elements on the diagonal” (also,
the “transverse intersection in one point” condition above is clearly insensitive to the
π1-element associated to that intersection). Accounting for all of these identifications
on the algebraic side, one obtains an element in the “Whitehead-group” Wh

(︂
π1(M0)

)︂
.

Noteworthy, this depends only on the fundamental-group π1(M0) = π1(M1) = π1(W ).
The choice of base-point fixing π1 should be irrelevant from the geometric per-

spective and indeed can be eliminated by the algebraic identifications indicated
above. Hence we will simply write π1(W ), without reference to a base-point. For
non-path-connected spaces this should be read “component-wise”.

This is summarized by the well-known s-cobordism-theorem:

Theorem 1.7.3: “s-Cobordism Theorem (Barden, Mazur, Stallings)”: A (path-
connected) h-cobordism (W ;M0,M1) of dimension at least 5 + 1 is classified by
an invariant – the “Whitehead-torsion” – in the abelian group τ ∈ Wh(π), where
π = π1(M0) = π1(M1) = π1(W ), in the sense that:

(i) Two h-cobordisms (W ;M0,M1) and (W ′;M0,M
′
1) on M0 are homeomor-

phic rel M0 if and only if they have the same Whitehead-torsion τ = τ ′.
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(ii) Given M0 and τ ∈ Wh(π1(M0)), there is an h-cobordism (W ;M0,M1) with
Whitehead-torsion τ .

(iii) Two h-cobordisms (W ;M0,M1) and (W ′;M1,M2) with Whitehead-torsion
τ and τ ′ can be glued to an h-cobordism (W ∪W ′;M0,M2) with Whitehead-
torsion τ + τ ′

Further, the trivial h-cobordism (M0 × I;M0,M0) has Whitehead-torsion τ = 0.

Hence, by (i), a (high-dimensional) h-cobordism is trivial if and only if it has
vanishing Whitehead-torsion. To see how and why this is relevant to the treatment of
cylinder-neighborhoods of strata in MHSS, we first have a look at an example. The
subsequent proof also illustrates how mapping-cylinders can be constructed given
certain “nice” neighborhoods (and neighborhood-boundaries specifically).

Example 1.7.4: Let (W n+1;M0,M1) be a cobordism of dimension n+ 1 ≥ 5 + 1.
Define N := W/M0 ⊃ M0/M0 = {pt}. Then:

(i) N is a stratified cone c(M1) if and only if (W n+1;M0,M1) is a h-cobordism.
(ii) Given a manifold-stratified space X ⊃ {pt}, and two cone-neighborhoods

N,N ′ of {pt}, then:
If the h-cobordisms have the same Whitehead-torsion τ = τ ′, there are
t, t′ ∈ (0, 1] and an isotopy of idX to h : X → X such that h(Nt) = N ′t′

Here Nt is the image of M1 × [0, t]/identifications at 0 ⊂ c(M1) = N in X under the
embedding of N (as a neighborhood of {pt}).

Remark: Part (ii) could be formulated as an if and only if statement, if the
isotopy is required to be level [Qui86, Prop. 2.4 (p. 1150)] – in the sense of not
only matching (all x ∈ M0 at) at one specific t to t′ but to match all t to t′(t) –
this is much harder however (see proof for further information).

Proof: Part (i): “⇒”: Manifold boundaries are collared [Bro62] (see Thm. 1.1.2)
so things can be “pulled away” and “pushed into” both M0 and M1 for ϵ-far along
the collar coordinate. But the interior of the cone is a product, so it is clear how to
build a retraction there. Compose pushing, interior and pulling into a retraction.

“⇐” (sketch; a complete proof is a easy consequence of the end-theorem quoted
later): This is based on the argument Quinn [Qui02, §3.3 (p. 479)] calls a “swindle”27

(see also [Qui79]): If W is a h-cobordism, then W −M0 is a manifold with boundary
with the “correct homotopy-type” of an open collar: (W − M0,M1) ≃ (M1 ×
(0, 1],M1 × {1}).

So we start with a “neighborhood of the end”, that is “nice” in the sense, that
on the side away from the end (the “end” here is the open direction of W − M0,
where “M0 is missing”) it is admits a manifold boundary M1 × {1}, and has the
27Probably in reference to what is known as the “Mazur-swindle” (or on the algebraic side as

“Eilenberg-swindle”), of organizing terms in infinite sums in a way to make them trivially cancel
each other (locally).
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“homotopy-type” of an open collar. For now, by a “neighborhood of the end”, we
mean: An open neighborhood U of M0 ⊂ W intersected with W − M0 (for the
general definition see below or Appendix A (“Ends in MHSS”)).

Assume for a moment, that knowing about this (homotopical) “niceness” of our
initial “neighborhood of the end”, such “nice” neighborhoods could be constructed
inside any open “neighborhood of the end”. The explanation of when or why this
would be possible is deferred to later in this section, see question (b) below.

If the above assertion holds, we may pick a “neighborhood of the end” U0 ⊂
W − (M0 ∪M1) and find a “nice” neighborhood (N0, ∂N0) within U0. Then we can
continue by picking U1 ⊂ N0 − ∂N0 and so on. Clearly, we can choose the Uj to be
closer than 1

j
to M0, e. g. as Uj := (Nj−1 −∂Nj−1)∩{x ∈ W −M0| distW (x,M0) < 1

j
}.

Since the (Nj, ∂Nj) are manifolds with boundary, there are collars cj : ∂Nj ×
[0,∞) → Nj of ∂Nj . By possibly making the collars and Uj+1 smaller, we may assume
im(cj) ∩ Nj+1 = ∅. The central idea is, that the regions “between neighborhood-
boundaries” (up to “gaps” at [0, 1]), see Figure 1.7

N ′j := Nj − cj(∂Nj × [0, 1)) − (Nj+1 − ∂Nj+1)

are h-cobordisms. This can be seen from the homotopical part of the “niceness”
assumption, but will be skipped in this proof-sketch, as it is rather technical, see for
example [Qui79].

N ′j−1 N ′jWj Vj

‘collar’ ‘collar’

Vj ∪N ′j ∪Wj+1

∂Nj ∂Nj+1

Figure 1.7: Illustration of the “swindle” argument, cf. [Qui82a, p. 410]. The parts
labeled by “collar”, are cj(∂Nj × [0, 1]).

These h-cobordisms have Whitehead-torsions, say τj. By the realization-part of
the s-cobordism-theorem, there is a h-cobordism Wj with torsion τ(Wj) = − ∑︁

i≤j τi,
and Vj with torsion τ(Vj) = ∑︁

i≤j τi. Since τ(Wj ∪Vj) = 0 we can embed this product
in the “boundary-collar” at cj(∂Nj × [0, 1]). Now, τ(Vj ∪N ′j ∪Wj+1) = 0 so this is a
product. Then repeat the argument inductively. See again Figure 1.7.

By the “1/j-smallness” of Uj , we will approach M0. Gluing all these products gives
a global product W −M0 ∼= M1 × (0, 1]. Thus N ∼=strat c(M1).

Part (ii): We assume N ′ ⊂ N (a reference for the general case is given at the end
of the proof). Let N ′′ := N − (N ′−∂N ′) be the “region between” ∂N ′ and ∂N . This
is a h-cobordism (see above) with invariant τ ′′. But N = N ′ ∪N ′′, hence τ = τ ′+ τ ′′.
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So if τ = τ ′, then τ ′′ = 0 and N ′′ is a product. h maps a collar of ∂N to N ′′, and
the isotopy is constructed in the evident way.

Note that this only aligns the cones at one “slice”. There is a more general
statement (giving a level-wise homeomorphism) [Qui86, Prop. 2.4 (p. 1150)]. However
this requires a “swindle” argument very similar to the one above, but “one tier28

higher” using “pseudo-isotopies” in the place of h-cobordisms. □

So (at least over points) h-cobordisms do not answer the above question about
existence of mapping-cylinder neighborhoods, but they do explain the matter of
uniqueness (see Thm. 1.8.5 (iii) and Thm. 1.9.3 (iii)).

This example immediately raises two further questions however:
(a) What happens for bottom stratum ̸= {pt}, i. e. for “actual” mapping-cylinders,

as opposed to cones?
(b) The manifold-neighborhoods N of the example already have the “homotopi-

cally correct” boundary ∂N = M1, in the sense that (N − {pt}, ∂N) has
the homotopy-type of an open collar (M1 × (0, 1],M1 × {1}). How are such
neighborhoods constructed?

The first one (a) will be answered by controlled topology. The second one (b) is
answered by supplementing the concept of an h-cobordism with the – very closely
related – concept of an “end”.

Remark 1.7.5: We have seen when discussing the proof of Connolly and Vajiac’s
[CV99] transversality theorem Thm. 1.6.4, that finding the “correct boundary”
incorporates much of the difficulty inherent to the construction. This only
further emphasizes the relevance of (b). Indeed the end-obstruction can be
understood as the obstruction to the existence of one (and as it turns out, thus
any) such (small-enough) “nice” neighborhood.

We start by treating the first question (a). To this end, some of the basic ideas of
“controlled topology” are reviewed next. One such idea is to add “size-control” to
the constructions related to (e. g.) h-cobordisms. For example, one may ask: Given
a trivial h-cobordism M0 × I, the “rays” t ↦→ (x, t) are constant when projected to
M0. If we were given some map f : W → M0, with f |M0 = id, taking the place of
the product-projection, but for a general h-cobordism (W ;M0,M1), under which
hypotheses is W an ϵ-product? I. e. when is there a homeomorphism h : M0 ×I → W
rel M0, such that additionally the “rays” t ↦→ h(x, t) are ϵ-small when “projected”
by f , that is diam(t ↦→ f ◦ h(x, t)) < ϵ ∀x ∈ M0. This example would add “control
over M0” in the sense of “controlled topology”.
28There is a very similar theory for these in [Qui86]: Basically Quinn gives obstructions q0, q1, q2

in degrees 0, 1 and 2 of a “homology-theory” for completions of ends, h-cobordisms, and
pseudo-isotopies respectively (see also next section).
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Clearly, this idea is not limited to using M0 for measuring sizes. All that is really
needed is a metric space X and a proper29 map f : W → X. To get a better grasp
of what kind of hypotheses will be required, we briefly look at how the arguments
for the situation over the point – the “classical / uncontrolled case” is, from this
viewpoint, just the special case of X = {pt} – need to be modified to accommodate
control.

The key idea is, to make the constructions outlined above “small” on a low level.30

Of the two steps (in the proof of the “classical” s-cobordism theorem) outlined
initially, the “geometric connectivity” part does not reveal anything fundamentally
new, so we will focus on the translation to algebra instead. The reader interested in
geometric connectivity may consult [Qui79, §6 (p. 308–314)].

Firstly, however, note that if we were to successfully obtain a small product-
structure, this can in turn be used to construct small retractions (by pushing along
the ×I-coordinate). Hence, necessarily, the retractions of the h-cobordism can be
made small. The typical result will be phrased something like “∀ϵ > 0∃δ > 0
such that a (δ,h)-cobordism with . . . is an ϵ-product if and only if . . . ”. Where
(δ,h)-cobordism is taken to mean

Definition 1.7.6: [Qui79, Def. 2.6 (p. 284)]: Suppose (W,∂W ) is a manifold
with boundary, X a (compact)31 metric space, f : W → X proper and δ > 0.
Let M0 ⊂ ∂W be a codimension 0 submanifold, and M1 := closure(∂W ) −M0.

(i) (W,M0) is a (δ, h)-cobordism over X, if, for i = 0, 1, there are homotopies
Ri of W rel Mi into Mi of diameter < δ when measured in X, i. e.
diam(fRi({w} × I)) < δ for all w ∈ W .

(ii) (W,M0) is a δ-product over X, if there is a homeomorphism h : M0 × I →
W , which is the identity on M0 × {0} and has diameter < δ over X, i. e.
diam(fh({m0} × I)) < δ for all m0 ∈ M0.

(iii) (W,M0) is a (controlled) h-cobordism over X, if it is a (δ, h)-cobordism
over X for any δ > 0 (see [Qui82a, p. 357]).

Having fixed a notion of controlled h-cobordisms, we return to the handlebody
arguments, that gave a correspondence of geometry and algebra in the uncontrolled
case. Assuming all handles are subdivided “fine enough” that they themselves are
small, the algebraic description needs to capture, that any “rearrangements” of
handles must be achieved by small moves. Some of these problems are relatively
straight-forward, for example stabilization via a pair of large handles can be replaced
by a “chain” of many pairs of small handles. But some of the constructions need to
29Ordinary / uncontrolled h-cobordisms are assumed compact, here this is naturally weakened to

properness of f .
30A “low level” in the sense of already very elementary operations (on handles) are controlled, then

assembled into controlled higher-level results.
31See the end of this section for a more general notion.
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be shrunk by a torus-trick (similar to Kirby’s [Kir69], see also [Qui10]). This is done
inductively over handles32 of the control-space X. Roughly speaking, for each handle,
things over the “center” part are pulled back to an immersed punctured i-torus, the
puncture is “filled in”, next everything is lifted to a universal covering Ri (for an
i-handle), then some “large” disk is “compressed” into the unit-disk, and finally all
is pushed back down (and is now smaller than before). The trace this procedure
leaves is most apparent in the formulation of [Qui79], where theorems are stated
using a Wh(π × Zi) = 0 ∀i ≥ 0 condition (the group π will be identified in the next
paragraph). Note the fundamental group π1(i-torus) = Zi of the i-torus. Giving
actual obstructions and an “if and only if”-type statement as in [Qui82a] requires
the use of either hard to calculate pseudo-isotopy-spectra or rather sophisticated
homology-like theories (“homology with spectral-cosheaf coefficients”, see for example
[Qui82a, §8 (p. 419ff)] or slightly more detailed [Qui04, §6 (p. 50ff)]; some statements
about this theory are also given in the background-section of Chapter 3 (“Multiple
Strata”)).

While it makes sense, that some group “π” related to W or f should appear, it
is not quite so evident, what the correct choice for π is supposed to be. Clearly
if there is a “small” solution to problems, this should be something local over X –
often called a “local fundamental group”. The basic idea is that it consists of small
loops up to small homotopies (a detailed treatment is given in Appendix A (“Ends
in MHSS”)).

There is an other point of view: The “fiber” of the map f should also describe such
local π1-properties. Indeed, over the point X = {pt}, we know, this is related to the
“fiber” of the map f : W → {pt}, as π = π1(W ). In general, f may, of course, not
be a fibration and there may not be a well-defined homotopy-type of the fiber. But,
ultimately, we are interested in MHSS, which have holink-fibrations by definition.
It turns out, that these can be used to describe the obstruction-groups for the
completion of controlled ends, see Section 1.9 (“Mapping-Cylinder Neighborhoods”),
details are given in Appendix A (“Ends in MHSS”). We have seen a similar effect
before: By Hughes’ cylinder-theorem (Thm. 1.4.19), mapping-cylinders of MAF are
MHSS, thus have homotopy-link-fibrations with well-defined fiber. So, also here,
approximate behavior and holink-fibrations are connected.

A precise statement can be given, for π the local fundamental group (calculated
for example as fundamental-group of the fiber of the homotopy-link), as

Theorem 1.7.7: “Thin h-Cobordism Theorem” [Qui79, Thm. 2.7 (p. 284)]: Given
a locally 1-connected33 compact metric space X and ϵ > 0, then there is δ > 0,

32The problem can be reduced via Hilbert-cube-arguments from general metric X to manifold
control spaces. We are interested in MHSS, where control is provided over the lower stratum,
thus a manifold, so the Hilbert-cube-arguments are only needed, if B is a non-smoothable
4-manifold.

33The “locally 1-connected” hypothesis is not necessary when this is formulated using (δ, 1)-
connected control maps (see the end of this section). However, we are interested in manifold
base spaces anyway, which are locally 1-connected.
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such that any (δ, h)-cobordism of dimension ≥ 5+1 with Wh(π×Zi) = 0 ∀i ≥ 0
(for π the local fundamental-group) is an ϵ-product.

Relative version: If additionally given a D ⊂ X, then there is δ, such that
given a δ-product-structure on Dϵ = {x ∈ X| dist(D, x) < ϵ}, the resulting
product-structure can be chosen to agree with the given one on D.

If X is not compact, but F a controlled h-cobordism and proper, the absolute
result is still true after replacing ϵ and δ by maps X → (0,∞). [Qui82a, Thm. 1.2
(p. 357)]

Corollary 1.7.7–1: (Cf. [Qui79, Thm. 1.5 (p. 280) or Thm. 3.1.1 (p. 286)]) Given
two MAF f : M → B and g : M ′ → B with Wh(π × Zi) = 0 for π = π1(Lf ) the
fundamental group of the fiber of the homotopy-link of B ⊂ cẙl(f), further a
proper controlled h-cobordism F : W → B from f to g, for dimension ≥ 5 + 1.

Then cẙl(f) ∼=strat cẙl(g) relB.

Proof of the corollary: The question of why this is the correct “π” for applying
the theorem is discussed in Appendix A (“Ends in MHSS”) and [Qui82a] (see also
paragraph below).

Note that also F × id : W × (0, 1] → X × (0, 1] is a proper controlled h-cobordism.
Let ϵ : X × (0, 1] → (0,∞), (x, t) ↦→ 1/t. The ϵ-product structure on W × (0, 1]
induces an ϵ-homeomorphism φ : M × (0, 1] → M ′ × (0, 1]. Note that by the choice
of ϵ and the control being just id in the second coordinate, this extends by idB to a
stratified homeomorphism cyl(f) ∼=strat cyl(g). □

There are other formulations, see e. g. [Qui82a, Thm. 1.6 (p. 359)]. Much of the
power of the statement comes from the early choice of δ – before any control-map
or even a h-cobordism is fixed. For an interesting example of how to use this type
of theorem, and the “late choice” of control-maps in particular, see Quinn’s proof
[Qui88a, §5.3 (p. 492–495)] of his boundary-collaring theorem (Thm. 1.4.15 presented
earlier when discussing MHSS).

This notion of “approximate” seems to describe for AF, what transition-functions
are for bundles, in the following sense:

Example 1.7.8: Let (W ;M0,M1) be a cobordism (neither “h-” nor “controlled”).
Further, let f : W → B be a MAF and ϵ > 0. There are (automatically)
collars c0 and c1 of the manifold-boundary M0 and M1, we may assume they are
“ϵ/3-thin” (in the sense of diam(ci({x} × I)) < ϵ/3).

Suppose there is an embedded product-structure in B0 × R ⊂ B, such that
f(∂W ) ∩B0 × R = ∅ and for some N ∈ N, f−1(B0 × (−∞,−N)) ⊂ im(c0) and
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f−1(B0 × (N,∞)) ⊂ im(c1). Pick

γ := min
(︃

ϵ/3,

dist
(︂

f−1([−6N, 6N ]), W − f−1(B0 × R)
)︂
,

dist
(︂

f−1([−N,N ]), W − f−1(B0 × (−2N, 2N))
)︂ )︃

and use the approximate lifting property to obtain a γ-lift RW
0 starting at the

identity of the “isotopic pushes” RB
0 : B × I → B given by id outside B0 × R

and (b0, t) ↦→ (b0, t − 4N) on B0 × R. (Similarly for RW
1 .) Then, define R0 :

W × I → W by composing, “pushing away” from M1 along c1 then RW
0 and

finally “pushing into” M0 along c0.
The resulting R0, R1 give f ′ : (W ;M0,M1) → B0 the structure of an

(ϵ,h)-cobordism where f ′ = πB0 ◦ f outside im(c0) ∪ im(c1) and f ′(ci(x, t)) :=
lims→∞ πB0 ◦ f(ci(x, s)) on im(ci) respectively.

Some care needs to be taken to understand the relation of the local fundamental
groups of f ′ and those of f . Since f is an AF, the holink-fiber (of its mapping-
cylinder) provides a natural starting-point. Using a formulation via (δ,h)-connectivity
of the homotopy-link (see below and Appendix A (“Ends in MHSS”)), it is relatively
straight-forward to see, that this is a “thin” h-cobordism.

This example also illustrates why “strong bundle-structure” (vector-bundles and
the like) are not expected in a topological context: The natural “transition-functions /
structures” that occur between “local trivializations” are not products but rather
h-cobordisms. For vanishing Wh(π × Zk) this may seem fine, but in low dimensions
there is not much hope for finding geometric structures. To get “nice transitions”,
one needs some sort of inductive argument (e. g. over handle-dimensions in the base)
making more than just one direction into a ×R- coordinate. It seems like any such
procedure must handle the transition to low dimensions – including dimension 4,
which is notoriously “ill-suited” for these constructions.

We can now extend the initial Example 1.7.4 to more general base ̸= {pt}. Note
that a subtle, but non-trivial, new problem appears in the “swindle”-argument:

Example 1.7.9: Let (W n+1;M0,M1) with f : W → B proper be a controlled
cobordism of dimension n+ 1 ≥ 5 + 1. Define N := W ∪f |M0

B ⊃ B. Then:
(i) N is a stratified cylinder cyl(f |M1) if and only if (W n+1;M0,M1) is a

controlled h-cobordism.
(ii) Given a manifold-stratified space X ⊃ B and two such cylinder-neigh-

borhoods N,N ′ of B, there are t, t′ ∈ (0, 1] and an isotopy of idX to
h : X → X such that h(Nt) = N ′t′ if the h-cobordisms have the same
controlled obstruction q1 = q′1.
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Proof: The proof is mostly the one sketched in Example 1.7.4, with control added.
See also [Qui82a, §6.5 (p. 410f)] for a similar argument.

We only indicate required modifications. These occur in the “⇐”-direction of part
(i): Before, the successive Ni were only moved closer to M0, now we also require,
that the successive products become smaller and smaller (over B). Fix ϵj ↘ 0
to ensure this (the h-cobordisms N ′j need be δj-small). This makes “cylinder-rays”
f({x}×(0, 1]) “Cauchy” over B. Then continuity of f near M0 is enough to guarantee
“convergence”, in the sense that X is actually the cylinder as claimed.

There is, however, one major caveat in this argument: Before, it was enough to find
some h-cobordisms Wj and Vj with invariants −qj−1

1 and qj−1
1 to glue in a product

part of a collar of ∂Nj. The existence of Vj – which was trivial before (one could
just have used the “original” N ′j) – suddenly faces a problem: It needs to be δj+1
small, while the original h-cobordism N ′j was just δj-small, because we will replace
N ′j+1 ↦→ Vj ∪N ′j+1 for the next step.

This problem is solved by a “stability theorem” [Qui82a, §4 (p. 381–388)], which
roughly states, that once the geometric objects become small enough, the algebraic
obstructions become “stable” in the sense, that they do not change when the
geometric sizes are further reduced. So there is a (fixed initially) δ0 > 0 such that,
if we additionally require all the h-cobordisms to be < δ0 – this is really only a
change for the first “few” (finitely many) in the sequence – then, the Vj can in fact
be realized δj+1-small.

In other words: It is still true, that the construction works as before, but this now
requires the highly non-trivial stability-theorem mentioned above. □

So, for the most part, controlled topology seems to work just fine for dealing with
mapping-cylinder neighborhoods and it remains to understand question (b) from
above: How to find the correct neighborhood(-boundary)?

Before discussing this question in detail in the next two sections, finally, we remark,
that it is possible to formulate the hypothesis used for the thin h-cobordism theorem
using (δ, 1)-connected maps to fibrations (similar to how we will control ends in
MHSS via holink-fibrations). Here (δ, 1)-connected means

Definition 1.7.10: [Qui79, Def. 2.3 (p. 282f)] Given f : M → X and p : E → X,
a control-map F : M → E with pF = f is (δ, 1)-connected, if given a relative
2-complex (R, S) and a commutative diagram

S M E

R X

s

incl
r

F

f
p

there is a δ-lift g : R → E, i. e. g ◦ incl = F ◦ s and p ◦ g is δ-close to r.
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Example 1.7.11: Given X = cyl(f), where f is an MAF, then X is a MHSS
(by Thm. 1.4.19), and there is a natural (δ, 1)-connected map from f to the
holink-fibration (Lemma A.2.4).

This is particularly useful when dealing with spaces with more than two strata
and will be explained as needed in Chapter 3 (“Multiple Strata”). It is also briefly
illustrated in Appendix A (“Ends in MHSS”).

1.8 Excursion: End-Theory
We will return to controlled topology results in the next Section 1.9 (“Mapping-
Cylinder Neighborhoods”), but first, we want to approach the other question (b)
posed before in the last section: How do we obtain information about the existence
of neighborhoods, rather than uniqueness? This in turn requires some background
on “end-theory”.

There are a number of different definitions as to what exactly the “end” of a space
is. Here we illustrate the problem34 using a definition given by Hughes and Ranicki
[HR96]. We will later work with controlled ends, where we will formulate the precise
hypothesis on MHSS (see Section 1.9 (“Mapping-Cylinder Neighborhoods”)).

Definition 1.8.1: [HR96, Def. 1 (p. ‘x’)] Let W be a non-compact space.
(i) A neighborhood U of an end of W is a U ⊂ W which contains a component

of W −K for a non-empty compact K ⊂ W .
(ii) An end ϵ of W is an equivalence class of sequences of connected open

neighborhoods (of an end of W ): W ⊃ U1 ⊃ U2 ⊃ . . . such that
∞⋂︂

i=1
closure(Ui) = ∅

w. r. t. the equivalence relation

(W ⊃ U1 ⊃ U2 ⊃ . . .) ∼ (W ⊃ V1 ⊃ V2 ⊃ . . .)
:⇔ ∀i∃j with Ui ⊂ Vj and ∀j′∃i′ with Vj′ ⊂ Ui′

(iii) The fundamental group π1(ϵ) of an end ϵ is the inverse limit

π1(ϵ) :=
←

lim
i
π1(Ui) (when well-defined).

(iv) The fundamental group of ϵ is stable [Sie65, p. 1] if the inverse limit over
K̃0(Zπ1(Ui)) is well-behaved. In this case define K̃0(Zπ1(ϵ)) as this inverse
limit.

34this “definition” is not intended for actual use, but really just to illustrate the problem. It is a
bit fuzzy on some aspects for the sake of brevity.
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Most of the time we will be concerned with the following example:

Example 1.8.2: Let (M,∂M) be a compact manifold with boundary. Given a
codimension 0 submanifold A ⊂ ∂M , the space M − A has one end for every
connected component of A.

In fact, the central question of “end-theory” (for manifolds, as treated here; see
[CV99] for a discussion of ends of MHSS) is to determine, given a non-compact
manifold with an end, if it is of this form. The same question for multiple ends can
typically be decided on individual ends independently. Formally (compare to e. g.
[Qui79]):

Definition 1.8.3: Let W be a non-compact manifold (possibly with boundary)
with one end ϵ. Then W ′ is a completion of ϵ (and of W ) if W ′ is a compact
manifold with boundary ∂W ′ containing W ⊂ W ′, such that W ′ −W ⊂ ∂W ′.

If a completion exists, boundary-collaring [Bro62] implies the existence of a product-
structure – an open collar – at the end. Hence this does, indeed, (mostly) answer
our question:

Example 1.8.4: Let X ⊃ {pt} be a manifold-stratified space, i. e. M := X−{pt}
is a manifold. Then {pt} has a stratified cone-neighborhood – which is the same
as a cylinder-neighborhood over the point – if the end of M near {pt} has a
completion.

The other direction is true in the piecewise-linear (PL) or smooth (DIFF)
category but may fail topologically.

Proof: “⇐”: If there is a completion (M ′, ∂M ′), then, because the boundary is
collared [Bro62], collapsing the “new” component M ′ −M to a point is a cone.

“⇒”: There is c(Y ) ∼=strat N ⊂ X. Thus N ∩M ∼= Y × (0, 1]. If Y is a manifold,
then “glue” Y × [0, 1) to M along Y × (0, 1). The result is then a manifold-with-
boundary (M ′, Y ).

We do know, that Y × (0, 1) ∼= Y × R is an open subset of M , thus a manifold.
However, in the topological category, this does not imply that Y itself is a manifold.
A “classical” counter-example is Bing’s [Bin58] “dogbone”-space. For PL or DIFF,
Y must be a manifold. □

The somewhat unexpected twist in the “only if” direction does not need to concern
us: The transversality-theorem of Connolly and Vajiac [CV99] (see Section 1.6
(“Stratified Transversality”)) uses the manifold boundary (or rather part of it) as the
“new” upper stratum of the “cut”, so we are truly working in the world of completions,
and are not introducing too strong of a hypothesis when demanding that Y be a
manifold35 in the above example.
35This is implicit in the definition of MAF requiring the cylinder-cap to be a manifold.
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The boundary-collaring shows also, however, that similar to the case of h-cobord-
isms, also ends must necessarily satisfy some homotopy-condition if a completion
exists: Clearly one can provide homotopies “pushing towards” the end or “pulling
away” from the end along the boundary collar. This leads to a homotopical “tameness”
condition. A precise definition will be given for controlled ends.

The fact, that end-problems are closely related to h-cobordisms, is also reflected
in a similar relation to algebra (via handle-bodies). The main difference is, that a
“swindle”-argument as in the proof-sketch of Example 1.7.4 is used, effectively pushing
obstructions away to infinity. The difficulty is in constructing the “correct” (so that
(Ni, ∂Ni) is homotopically highly connected) ∂Ni to “close the construction” on one
side (see Rmk. 1.7.5). Algebraically this leads to the following modification: A h-
cobordism corresponds to a square matrix (up to certain identifications) representing
an isomorphism, and it is trivial (in high dimensions) if this matrix is equivalent to
the identity-matrix. A manifold end corresponds to a (generally non-square) matrix
(up to certain identifications) representing a projection, and it admits a completion
(in high dimensions) if this matrix is equivalent to a “standard”-projection (i. e. a
matrix with only ones on a “diagonal” and zeros otherwise).

Further, note that there is a connection between projections and projective modules.
In fact it turns out, the obstruction group is indeed K̃0(Z[π]), the group of projective
modules over the group-ring Z[π] with certain identifications, replacing Wh(π) when
compared to the h-cobordism case. Siebenmann [Sie65] finds the following “End-
Theorem”.

Theorem 1.8.5: Let Mn be a (smooth36) open manifold of dimension n ≥ 6.
(i) [Sie65, (p. 1)]: If an end ϵ of M is tame with stable fundamental group,

then there is a well-defined invariant σ(ϵ) ∈ K̃0(Z[π1(ϵ)]).
(ii) [Sie65, “Main Theorem” (p. 2)]: M admits a (smooth) completion if and

only if M has finitely many connected components, and each end ϵ of M
is tame with stable fundamental group and has invariant σ(ϵ) = 0.

(iii) Cf. [Sie65, Thm. 9.1 (p. 70)], [HR96, Thm. 10.2 (p. 110f)] and [Qui82a,
Thm. 1.1 b (p. 357)]: Completions are unique up to h-cobordism, in the
sense, that given two completions with boundary-collars, one can be em-
bedded in the other, with the “difference” being a h-cobordism.

The combination of both ideas discussed in this section and the previous one –
namely adding control and using ends to supplement h-cobordisms – is where we
leave this “excursion” and return to the main line of argumentation.

36Siebenmann works with smooth manifolds, but the results apply also topologically – important
developments in topological transversality (and handle-body) theory occurred only later, see for
example [KS77]. The topological case also is implicit in the results of [Qui82a], by taking the
control-space to be a point.
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1.9 Mapping-Cylinder Neighborhoods
Here, results concerning the existence of mapping-cylinder neighborhoods in MHSS
are discussed. The underlying theory is about “controlled end-completions” – con-
trolled in the sense of “controlled topology” – also known as “ends of maps”. The
results do not require prior knowledge of the subject, but a basic understanding may
help, so reading Excursion 1.7 (“Excursion: Controlled Topology”) and Excursion 1.8
(“Excursion: End-Theory”) above could clarify (and “demystify”) some results.

While there are more general ways to define controlled ends and their properties
[Qui82a], it suffices for our purposes to promote the following example to a definition:

Example 1.9.1: Let X be a MHSS (with two strata B and M := X − B),
with tameness retraction R : N × I → N , which, by definition, (nearly-strictly)
deforms a neighborhood N of B into B. It thus defines a map r = R1 : N → B.
M has an end (where B was taken away from X). This end is “tame”,

controlled over B by r, with “local fundamental group” π = π1(L) where L is
the fiber of the homotopy-link.37

See also Appendix A (“Ends in MHSS”).

Definition 1.9.2: A non-compact manifold M has a “tame” end, controlled over
B by r : N → B – where N is a neighborhood of the end (i. e. an open subset
of M such that M −N is compact) – with “local fundamental group” π if there
is a MHSS X with strata B and M , and a tameness-retraction R with R1 = r,
such that the holink has fiber L with π1(L) ∼= π (where the isomorphism is by
conjugation).

A “completion” of this end is a manifold-with-boundary (M ′, ∂M ′) – with
M ⊂ M ′ and M ′ − M ⊂ ∂M ′ – together with a map r′ : ∂M ′ → B, such that
there is a neighborhood N ′ ⊂ X of B, with N ′ ∼=strat cẙl(r′). Here cẙl(r′) is
stratified with two strata B (the target / cylinder-base) and cẙl(r′) −B, see also
Def. 1.3.5 (iv).

The existence of a completion / mapping-cylinder-neighborhood is obstructed in
general, but in high dimensions, an obstruction theory was developed by Quinn
[Qui82a]. We use the following formulation38 for MHSS39:

37Technically this depends on a choice of basepoint for L (so is only well-defined up to isomorphism
by conjugation), but similarly to how the Whitehead-group does not depend on this choice for
h-cobordisms, the actual obstruction groups here will be well-defined as well.

38This is not the way end-theorems are usually formulated, but lends itself well to the present
context. A more “standard” formulation can be found in [Qui79; Qui82a], the relation of the
two versions is explained in more detail in Appendix A (“Ends in MHSS”).

39In the sense of Quinn, without the additional compact-domination property for local holinks.
But the definition used here otherwise is strictly stronger, so the result clearly still applies.
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Theorem 1.9.3: [Qui88a, Thm. 1.7 (p. 446)]: Suppose X ⊃ B is a MHSS of
dimension ≥ 6 (with two strata) and holink-fibration p := ev0 : holink(X,B) →
B, then:

(i) There is an invariant q0(X,B) ∈ H lf
0 (B; S(p)).

(ii) There is a mapping cylinder neighborhood of B in X (i. e. a completion of
the controlled end in the sense defined above), if and only if q0(X,B) = 0.

The reader of Excursion 1.7 (“Excursion: Controlled Topology”) may want to
know:
(iii) [Qui82a, Thm. 1.1 b (p.357)]: Completions are unique up to controlled

h-cobordism.
We also note the following interesting refinement:

(iv) [Qui79, Thm. 1.4 (p. 280)]: If the upper stratum M := X −B is a smooth
(or pl) manifold, then also M ′ can be chosen smooth (or pl).

Remark 1.9.4: For “good” (see below) fundamental groups, the dimensional
requirement can probably be weakened to dim(X) ≥ 5, a detailed treatment is
hard to find in literature however, see [Qui79, Thm. 2.1.2 (p. 505)] (for “good=
trivial”, but without explicit mention of more general “goodness” being suffi-
cient; the proof seems to nevertheless apply using more general good groups)
[FQ90, ‘End theorem’ (p. 214)] (more general “good”, but B = {pt}; see also
Example 1.9.6), [Qui88a, §1.13 (p. 451)] (concerning cylinder-neighborhoods, as
formulated here, but without proof or formal statement):

If dim(X) = 5 and the local fundamental group π (the fundamental group of
the fiber of the holink, see Appendix A (“Ends in MHSS”)) is “good” (see below),
then there is a mapping cylinder neighborhood of B in X (i. e. a completion of
the controlled end in the sense defined above), if and only if q0(X,B) = 0.

Definition 1.9.5: A group π is good if given a 4-manifold M with π1(M) = π,
the 4-dimensional disk-embedding theorem holds for M , i. e. (roughly): An
immersion of a disjoint union of 2-disks in M with vanishing algebraic (self-)
intersections, can be deformed to an embedding [FQ90, p. 99].

A group is poly-(finite / cyclic), if there is a normal-series (a filtration by
subgroups, normal in the respective next one) with quotients, which are either
finite groups or infinite-cyclic (see e. g. [FH81, p. 308]).

Example 1.9.6: Poly-(finite or cyclic) groups are good [FQ90, §5 (p. 86ff)].

Remark 1.9.7: Technically, the end-theorem seems to hold again in low dimen-
sions ≤ 3 (unconditionally, which is consistent with the possible fundamental
groups of surfaces etc.), see [“So if the Poincaré conjecture is true then the
strong form of the end theorem is true for 3-manifolds.” FQ90, (p. 216)] for the
uncontrolled case.
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Some explanations on the obstruction-groups seem in place: The H lf
∗ refers to

locally finite homology with spectral cosheaf coefficients in the sense of [Qui82a, §8
(p. 419ff)] and [Qui04, §6 (p. 50ff)]. The coefficient “spectral-cosheaf” S(p) in this
case, is the one associated (by Def. 3.1.20) to S(X; p) (the finite-structure-spectrum
of [Qui82a]), which is itself a functor from fibrations over ANR (in the case of two
strata) to spectra (both with suitable morphisms), with the (fixed) control map p
given by the holink-fibration.

Instead of going into details of its definition, we will content ourselves with giving
enough information about the theory, to be able to apply the result above. Some
more information is summarized in Chapter 3 (“Multiple Strata”). Most importantly,
we will use the special case treated in [Qui79]:

Lemma 1.9.8: If a fibration p : E → B, with B a path connected manifold, is
such that its fiber F satisfies ∀k ≥ 0 Wh(π1(F )×Zk) = 0, then H lf

i (B; S(p)) = 0
for i ≤ 1.

For non-path connected B, the conclusion holds, if the hypothesis holds com-
ponent-wise.

Remark 1.9.9: Given a path connected topological space F , the abelian group
Wh

(︂
π1(F, {∗F })×Zk

)︂
does not depend on the choice of base-point ∗F , which we

can therefore safely omit in the notation. Further, over a connected component
of B, the homotopy-type (and thus the fundamental group) of the fiber of the
fibration p is well-defined.

Proof of the lemma: A direct proof of this statement (for ends, i. e. i = 0 as required
later on) is given in Appendix A (“Ends in MHSS”) (see Lemma A.2.4), by identifying
the local fundamental groups of [Qui79] as the fundamental-groups of the fiber of the
homotopy-link and showing that the homotopy-link-evaluation is (δ, 1)-connected
to the end. This then implies existence of a completion by the Whitehead-group
hypothesis of [Qui79], which means the obstruction of [Qui82a] always vanishes
for these ends, so by the realization results of [Qui82a], the obstruction-groups of
[Qui82a] must vanish as claimed.

Alternatively, the lower K-groups that occur as coefficients in Lemma 1.9.10 below,
are constructed [Bas68, p. 664], such that Wh(π × Zk) can be decomposed into a
direct sum of lower Wh- (thus K-) groups (in particular, it occur exactly those Whj

for j = −k + 1, . . . , 1) and certain nil-groups. Hence if Wh(π × Zk) vanishes for
all k ≥ 0, then the coefficients in Lemma 1.9.10 vanish for the degrees i ≤ 1, and
thus by the Atiyah–Hirzebruch-type spectral-sequence of Quinn [Qui82a, Thm. 8.7
(p. 423)] the obstruction-groups H lf

i = 0 vanish for i ≤ 1.
For non-path connected B, if the hypothesis holds component-wise, then the

conclusion hold by component-wise application of the result for path connected B. □
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The only ones of these obstruction-groups we need are H lf
0 (B; S(p)) (for end-

obstructions) and potentially / implicitly (Rmk. 4.1.2) H lf
1 (B; S(p)) (for h-cobordism

obstructions), both of which vanish under the hypothesis of the lemma.
It is also useful to know, that H lf

∗ behaves much like a homology-theory – for
example there is a “characterization theorem” [Qui82a, Thm. 8.5 (p. 422)] in the
spirit that Eilenberg–Steenrod-axioms characterize “conventional” homology-theories,
so coefficients, i. e. groups of the point (in low degrees) already contain (most of)
the information about the theory (there is also an Atiyah–Hirzebruch-type spectral-
sequence [Qui82a, Thm. 8.7 (p. 423)] making this statement precise). The coefficients
(in low degrees) are known:

Lemma 1.9.10: The coefficients are H lf
j ({pt}; S(F → {pt})) = Whj(π1(F )) for

j ≤ 1, where

Wh1(π1(F )) = Wh(π1(F ))
Whj(π1(F )) = K̃j(Z[π1(F )]) for j ≤ 0

where the K̃j are the “lower K-groups” of Bass [Bas68].
Proof: See e. g. [Qui82a, p. 356] combined with the assembly A : Hlf(X; S(p)) →

S(X; p) being a homotopy-equivalence of spectra [Qui82a, Thm. 8.5 (p. 422)]. Further
H lf
∗ are defined as the homotopy-groups of the spectrum Hlf. □

This fits together nicely with the results seen in the last two sections for the
obstruction-groups over the point – K̃0(Z[π1(F )]) for ends and Wh(π1(F )) for h-
cobordisms.

We conclude this section with an example where the ×Zk term in the obstruction-
groups actually matters, for examples of “strange ends” (ones that cannot be com-
pleted, although being tame etc., because they have non-vanishing obstruction) see
for example [Sie65, §8 (p. 56–70)] or the realization part for controlled structures
[Qui82a, p. 411].

Example 1.9.11: Farrell and Hsiang [FH67] use a product of a lens-space
with fundamental-group Z/p2Z and a torus to construct certain non-trivial h-
cobordisms.

Notice, that this also illustrates the obstruction-groups encountered here (e. g.
fix p = 2): While Wh(Z/4Z) = 0, for any k ≥ 1, one finds Wh(Z/4Z × Zk) ̸= 0 is
non-trivial.

Proof: “Wh(Z/4Z) = 0”: For the cyclic group Z/qZ of finite order q, the Whitehead-
group Wh(Z/qZ) is free of rank ⌊q/2⌋ + 1 − δ(q) (see e. g. [Coh73, 11.5 (p. 45)]), where
δ(q) is the number of divisors of q. Since 4 has divisors {1, 2, 4}, ⌊4/2⌋ + 1 − δ(4) =
2 + 1 − 3 = 0.
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“Wh(Z/p2Z × Zk) ̸= 0”: This follows for example from [BM67, Thm. 10.8 (p. 68)],
as the direct summand, called “X” in the their theorem, of Wh(Z/p2Z × Zk) is not
even finitely generated (by part (d) of the reference) for non square-free order p2.
See also [FH67]. □

This finishes the bulk of the background-material. The remaining sections intro-
duce mostly independent concepts extending the strongly interconnected material
presented up to this point.

1.10 Intrinsic Stratifications
A reason that makes MHSS particularly useful for the study of inherently topological
phenomena – e. g. transport of stratified invariants along unstratified homeomor-
phisms – is their “closeness” to the underlying (unstratified) topological space. This
“closeness” manifests itself, for example, in Quinn’s [Qui87] “intrinsic skeleta”.

First, we fix a notion of what “topologically intrinsic” is supposed to mean:

Definition 1.10.1: [Qui87, p. 234]: Given a topological space X, define an
equivalence relation ∼ on points as x ∼ x′ if and only if ∃ neighborhoods U , U ′
of x, x′ and a homeomorphism h : U → U ′ with h(x) = x′.

Let I be the set of equivalence classes. The topologically intrinsic stratification
of X has strata(︃

|X|i :=
{︂
x ∈ X

⃓⃓⃓
x is in the equivalence class i

}︂)︃
i∈I

If the stratification is equivalent to a filtration (for example if it satisfies the
frontier-condition, and the number of strata is finite), we denote the topologically
intrinsic skeleta by |X|i.

Given a stratified space X, we denote the underlying topological space by |X|,
i. e. the image under the forgetful functor from stratified spaces to topological
spaces.

In general, this stratification may of course not have any reasonable properties. If
X can be stratified as a MHSS (in the sense of Quinn) however, it holds that:

Theorem 1.10.2: [Qui87, Thm. 1.1 (p. 235)]: Suppose X has a filtration (by
dimension) as MHSS. Then there is a filtration X0,0 of the underlying topological
space |X| as HSS, such that:

(1) For any filtration Y of |X| as MHSS, the identity id : Y → X0,0 is a
coarsening (preimages of components of strata are unions of components
of strata, see Def. 1.3.6 (iii)).
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(2) If k ≥ 5 or X4 is locally conelike, then:
(i) The k-skeleton is the topologically intrinsic one (X0,0)k = |X|k.

(ii) The k-stratum (X0,0)k is a manifold.
(3) If (X0,0)0 = ∅ then (X × R)k+1

0,0 = (X0,0)k × R.

Proof: We briefly sketch the proof given in [Qui87]: Define Xn,n := X (where n =
dim(X)), then, for each component of Xn−1, check, if “promoting” this component
into Xn (i. e. changing the stratification such that this component is now part of the
n-stratum) maintains the property, that Xn is a manifold (This can be decided from
homotopy-link-fiber being a homology-sphere!40) and if the result would still be a
HSS. Define Xn,n−1 as Xn,n with all such “promotable” components of Xn−1 actually
promoted into Xn.

Next, repeat the same by promoting components of Xn−2 into Xn to obtain Xn,n−2
and so on. Finally we obtain Xn,0.

Then, define Xn−1,n−1 := Xn,0, and promote components from Xn−2 into Xn−1 to
obtain Xn−1,n−2, then from Xn−3 into Xn−1 to get Xn−1,n−3 and so on. Once we get
to Xn−1,0, we define again Xn−2,n−2 := Xn−1,0 and in the end this yields the X0,0 of
the theorem.

The properties stated in the theorem can then (mostly) be proven by contradiction
(if they did not hold, the component, where they do not hold, would have been
promoted). □

Note, that part (1) implies both id : Y0,0 → X0,0 and id : X0,0 → Y0,0 are
coarsenings, thus X0,0 = Y0,0. So even in the (rare) case that X0,0 is not the
topologically intrinsic stratification, it still holds that X0,0 is “intrinsic” in the sense,
that it does not actually matter, which stratification of |X| we started with.

If X has only strata of high dimension (≥ 5), then (2) implies X0,0 is the topo-
logically intrinsic stratification and a MHSS. The last statement also holds for our
definition (including compact domination of local holinks), because with X0,0 being
a coarsening of X, its local (stratified in the case of more than two strata) holinks
are coarsenings of local holinks of X, which are compactly dominated. Compact
domination requires a stratified deformation, but being stratified with respect to a
finer stratification implies it is also stratified with respect to the coarser stratification.

1.11 Excursion: Intersection Homology and
Poincaré-Duality

This section gives a brief overview of the concepts behind intersection homology. For
a more in-depth treatment, see for example [GM80; GM83; Kin85; KW06; Ban07;
Fri09].
40Except for zero-strata, where a homotopy-sphere is needed, hence the requirement (X0,0)0 = ∅ in

part (3).
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Intersection forms, as originally introduced and studied by Poincaré [Poi95] and
Lefschetz [Lef26] play an important role, for example via the signature-invariant,
in the theory of manifolds, e. g. as a surgery-obstruction. The question of how to
generalize a bordism-invariant signature to singular spaces was (according to [GM80])
originally posed by D. Sullivan.

An answer was discovered independently by Goresky and MacPherson [GM80] –
by introducing “perversities” to control deviation from general-position of cycles and
strata – and by Cheeger [Che80] – “L2-cohomology”, using a suitable integrability-
condition on the de-Rham-complex. A third such generalization is through “intersec-
tion-spaces” [Ban10].

We will employ the first one, “intersection homology”, which has been developed
further, for example in [GM83] (extending from pl to topological pseudomanifolds,
using sheaves), [Kin85] (showing topological invariance on pseudomanifolds, using
singular chains), [Qui87] (showing topological invariance on MHSS). Such invariants
can in fact even be established on structures generalizing intersection-homology
sheaves [Ban02] (using Lagrangian structures and self-dual sheaves “between” the
lower- and upper-middle-perversity), see also [Ban07, §9]. Particularly relevant to the
present task is also [Fri09] (giving a Witt-condition, Poincaré-duality, and signature
on MHSS, using sheaves).

The goal of this section is to merely outline the important ideas, so, to keep things
simple, we will avoid sheaves and use a chain based approach as in [GM80; Kin85].

First, we define “perversities”, which will measure the deviation from normal-
ity / transversality.

Definition 1.11.1: A perversity p̄ is a mapping N → N, which is:
(i) Monotonically increasing, in steps of at most one:

p̄(k + 1) ∈ { p̄(k), p̄(k) + 1 }.
(ii) Satisfies p̄(2) = 0.
There are some particularly relevant special cases:
• The “top-perversity” t̄(k) = k − 2.
• Two perversities p̄ and q̄ are “complementary” if p̄(k) + q̄(k) = t̄(k).
• The “lower-middle-perversity” m̄(k) = ⌊k−2

2 ⌋ and the “upper-middle-
perversity” n̄(k) = ⌈k−2

2 ⌉, which are complementary.

The introduction of perversities to allow chains non-transverse to strata in a
controlled codimension-dependent way was the main breakthrough in [GM80].

Definition 1.11.2: Using singular chains, [Kin85, p. 151]: Let X be a filtered (by
closed subsets) space, p̄ a perversity.

A singular i-simplex σi : ∆i → X is p̄-allowable, if ∀k

σ−1
i (Xn−k) ⊂ ∆(i−k+p̄(k))

i
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where ∆(i−k+p̄(k))
i is the (i− k + p̄(k))-skeleton of ∆i, i. e. the union of all faces

of dimension ≤ i− k + p̄(k).
The singular p̄-intersection-chain complex ICp̄

∗(X) of X in degree i is the free
abelian group on generators the p̄-allowable chains with p̄-allowable boundary:

ICp̄
i (X) := ⟨ σi : ∆i → X | σi is a p̄-allowable i-simplex and

∂σi is a p̄-allowable (i− 1)-simplex ⟩

the boundaries are given by the restrictions of the standard ∂i.
The singular p̄-intersection-homology groups IHp̄

∗(X;G) of X (with compact
support) are the homology-groups of ICp̄

∗(X) ⊗G.

Remark 1.11.3: Using simplicial chains instead of singular ones, for a tri-
angulation compatible with the stratification (i. e. such that skeleta are sub-
complexes), a simplex transverse to strata would intersect them in dimension
i + dim(stratum) − n = i − k, so in this context, it is more obvious in what
sense p̄ describes a deviation from transversality through a correction-term in
this formula.

Note, that this is not a homology-theory in the sense of Eilenberg–Steenrod, for
example it is not generally homotopy-invariant (even though it is, for example,
invariant under stratified homotopy-equivalences [Fri03], see below). Also concerning
functoriality, some care has to be taken, as (non-stratified) maps do not generally
induce homomorphisms on IH. While this definition seems to depend on a choice
of stratification, these intersection-homology groups are (on reasonable spaces)
independent of this choice.

Theorem 1.11.4: [GM83] (pseudomanifold case), [Kin85, Thm. 9 (p. 157)] (CS
case), [Qui87, Cor. (p. 243) of Thm. 3 (p. 242)] (MHSS): Given an MHSS
X and a perversity p̄, the intersection-homology groups IHp̄

∗(X) are topological
invariants, i. e. they do not depend on the choice of stratification of the underlying
topological space |X|.

[Fri03, Prop. 2.1 (p. 73) and §2 (p. 71–78)]: Given a filtered (by closed subsets)
space X, then intersection homology (with compact support) is invariant under
stratum-preserving homotopy-equivalences (with stratum-preserving homotopy-
inverses; which is implicit in our definition Def. 1.3.7).

As indicated above, intersection-homology was constructed to have the following
property:
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Theorem 1.11.5: [GM80] (pseudomanifold case), [Fri09] (MHSS): Given a
closed, orientable MHSS X of dimension n and complementary perversities
p̄+ q̄ = t̄, there is a “Poincaré Duality-Isomorphism”

Hom(IHp̄
i (X; Q),Q) ∼−→ IHq̄

n−i(X; Q)

If we know that, for some reason, IHp̄
∗(X; Q) ∼= IHq̄

∗(X; Q), typically for the middle-
perversities p̄ = m̄ and q̄ = n̄, then this yields a non-singular pairing and thus a
signature invariant. This happens for example for X with only even-codimensional
strata (e. g. a complex algebraic variety), where the condition on σ−1

i (Xn−k) is void
for k odd, while m̄(k) = n̄(k) for k even, thus already ICm̄

∗ (X) = ICn̄
∗ (X) on the

chain-level in this case. An other example of such spaces are those satisfying a “Witt-
condition” [Sie83], as described in the next section. For now we fix the preliminary
result (to be revisited in Thm. 1.12.10 and Prop. 1.12.11):

Theorem 1.11.6: [GM80]: Given a closed, orientable pl-pseudomanifold X of
dimension n with only even-codimensional strata, then there is a well-defined
signature invariant σ(X) ∈ Z, given by the signature of the middle-dimensional,
middle-perversity intersection-form.

This σ(X) is invariant under orientable pl-pseudomanifold bordisms with only
even-codimensional strata.

The relevant modifications to extend the signature-invariant to a suitable bordism-
theory of MHSS are reviewed in the next section.

1.12 Witt-Condition and Signature of MHSS
While it is relatively straight-forward to see, how a non-singular intersection form
can be restored in intersection homology for (suitable) stratified spaces with only
even-codimensional strata, that seems like a very “brute force” way to attain this goal.
Clearly it should be possible to find more subtle ways of ensuring their existence.

The first such generalization are Siegel’s [Sie83] “Witt-spaces” – he studies their
bordism-groups, identifying them with “Witt-groups”, hence the name. These are
orientable pl-pseudomanifolds with a condition imposed on the middle-dimensional
intersection-homology of links of odd-codimensional strata (for details see below), to
ensure, that the middle-dimensional middle-perversity intersection-form of the total
space is non-singular.41

The key ingredient is, as for spaces with only even-codimensional strata, that the
duality of IHm̄ and IHn̄ implies self-duality, in the case where the inclusion ICm̄ ⊂ ICn̄

41Non-singular for rational coefficients, hence these are also often referred to Q-Witt-spaces.
Extensions to more general fields an rings can be found for example in [Fri09].
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induces an isomorphism in homology. So the contents of this section mostly fall in
two categories:

The (quite general; not specific to MHSS) study of what “Witt-condition” makes
ICm̄ ⊂ ICn̄ a quasi-isomorphism on closed spaces, and how the “difference” on com-
pact spaces with boundary relates to the boundary, ultimately implying cobordism-
invariance. This part is mostly based on arguments as found in [Ban07] and [GM80].

And on the other hand, there is the problem of understanding such a “Witt-
condition” in terms of properties of links on MHSS, and finding a generalization of
duality to MHSS. This also requires some non-trivial arguments, as strong geometric
normal structure may not exists in general. This part is based on [Fri09].

Both lines of argument can be “easily” connected, as Friedman [Fri09, Thm. 5.1
(p. 2177)] shows that his “intersection-chain sheaf” I p̄S is the Deligne-sheaf [GM83],
while the arguments used by Banagl [Ban07, §6.1 (p. 123–127) and §6.4 (p. 133–135)]
use an axiomatic description of the Deligne-sheaf (actually the intersection-chain
sheaves on topological pseudomanifolds are defined via these axioms here, see [Ban07,
p. 94]).

We have to formally work in the derived category (see e. g. [Ban07]), but may
think of the resulting distinguished triangle as the long exact sequence in the proof
of [GM80, ‘Theorem’ (p. 155)] (which uses a pl-chain-description). Some care has
to be taken with the different indexing-conventions (basically I p̄Sk ∼= IC−k

p̄ for the
cohomological viewpoint)

Lemma 1.12.1: See [Ban07, Lemma 6.4.1 (p. 94)] and discussion thereafter: Let
IC∗m̄, IC∗n̄ satisfy the Deligne-sheaf axioms for the same orientation (local system)
on the top-stratum (for the middle-perversities m̄ and n̄). Given a distinguished
triangle IC∗m̄ → IC∗n̄ → S∗

[1]−→ on the canonical morphism (corresponding to the
inclusion ICm̄ ⊂ ICn̄ and its long exact sequence in [GM80]), then

Hi(S∗)x =

⎧⎨⎩Hi(IC∗n̄)x if x ∈ Xn−k where i = n̄(k) − n

0 otherwise

This rather technical result has multiple important consequences: First, vanishing
of Hi(IC∗n̄)x clearly is equivalent to ICm̄ ⊂ ICn̄ being a quasi-isomorphism. This is
the Witt-condition we are looking for. The condition can be brought into a more
appealing form:

Lemma 1.12.2: See comment below [Fri09, Def. 8.1 (p. 2197)]: If X is a MHSS
with sufficiently many local approximate tubular neighborhoods, then

Hk
(︂
I n̄S∗(Q)x

)︂ ∼= IHn̄
k(Lx; Q)
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where IHn̄
∗ is (compactly supported; as defined in Def. 1.11.2 for filtered spaces in

general) intersection homology, and where k is fixed by the stratum x ∈ Xn−(2k+1)
containing x with local homotopy-link42

Lx := holink(X, x) = {γ ∈ holinkS(X,Xn−(2k+1))|γ(0) = x}.

Remark 1.12.3: Having “sufficiently many local approximate tubular neighbor-
hoods” (see [Fri09, §4 (p. 2174–2176)]) means (for spaces with at most two
meeting strata, see Def. 1.4.23), points in the minimal strata have neighborhoods
that are teardrops (Example 1.4.5). Mapping-cylinder-neighborhoods are a spe-
cial case of such teardrop-neighborhoods, hence this is not a restriction for our
purposes, as we will study spaces with mapping-cylinder neighborhoods. Also,
in high dimensions, teardrop-neighborhoods (of pure subsets, thus of skeleta, cf.
Chapter 3 (“Multiple Strata”)) exist by a theorem of Hughes [Hug02, Thm. 7.1
(p. 887)] under mild hypothesis (for example if the singular set is compact, see
also [Fri09, Thm. 3.2 (p. 2174)]).

Proof of the lemma: The proof of [Fri09, Prop. 5.2 (p. 2178)] needs only be modified
slightly to show this:

Let x ∈ Xn−l. The stalks H i
(︂
I n̄S∗(Q)x

)︂
= lim−→x∈U

Hi
(︂
U ; I n̄S∗(Q)

)︂
are direct

limits over open neighborhoods U of x, where the sheaf I n̄S is constructed such
that, on open sets, it is quasi-isomorphic to the (closed support IH∞∗ ) intersection-
chain sheaf, i. e. Hi

(︂
U ; I n̄S∗(Q)

)︂ ∼= I n̄H∞n−i(U). By [Fri09, Lemma 4.3 (p. 2176)],
there is a cofinal sequence of local approximate tubular neighborhoods, hence the
limit can be calculated assuming U is a local approximate tubular neighborhood.
This means U ∩ Xn−l

∼= Rn−l and [Fri07, Thm. 6.15 (p. 55)] applies to yield a
spectral-sequence calculating the closed-support intersection-homology I n̄H∞n−(p+q)(U)
from the compactly-supported one in Ep,q

2 = Hp
(︂
Rn−l, IHn̄

l−q(cLU ,LU × R)
)︂

where
LU = holinkS(U, x).

The intersection-homology of the cone appearing in the E2-terms can be calculated
from the one of the “link” LU as in the pseudomanifold case (see for example [Ban07,
Example 4.1.15 (p. 80)]; the potential “wildness” of LU formally complicates things;
for details see the proof of [Fri09, Prop. 5.2 (p. 2178)])

IHn̄
j

(︂
cLU ,LU × R

)︂ ∼=

⎧⎨⎩0 : j < l − n̄(l)
IHn̄

j−1(LU) : j ≥ l − n̄(l)

The reference [Fri09, Prop. 5.2 (p. 2178)] uses this result, to establish, that H i(I n̄S∗x)
vanishes for high enough i, so that the sheaf I n̄S satisfies axiom (2) (in the numbering
used in the reference) of the Deligne-Sheaf.
42For spaces with only two strata, this is the fiber of the homotopy-link, for the general case, see

Chapter 3 (“Multiple Strata”)
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What we want to understand is, why Hk
(︂
I n̄S∗(Q)x

)︂ ∼= IHn̄
k(L; Q). But this follows

immediately: In our case, the E2-terms are non-zero only for p = 0, so the spectral
sequence collapses immediately at E∞ = E2.

Hq
(︂
U ; I n̄S∗(Q)

)︂ ∼= I n̄H∞n−q(U) ∼= IHn̄
l−q(cLU ,LU × R)

)︂
∼=

⎧⎨⎩0 : q > n̄(l)
IHn̄

l−q−1(LU) : q ≤ n̄(l)

We are interested in l = 2k+ 1 and q = k, with n̄(l) = n̄(2k+ 1) = ⌈2k+1−2
2 ⌉ = k ≥ q

resulting in

Hk
(︂
U ; I n̄S∗(Q)

)︂ ∼= IHn̄
k(LU)

There is one last thing to check, namely Lx ≃strat LU , then, by stratified-homotopy-
invariance of compactly supported intersection homology on filtered spaces [Fri03] (see
Thm. 1.11.4), the claim follows. This equivalence to Lx is a consequence of locality
of holinks: U is an open neighborhood of x, so for example using Quinn’s ϵ-holinks
([Qui88a, p. 453]) with ϵ small enough that all γ ∈ holinkϵ have image in U can be
used to obtain this result. □

Remark 1.12.4: See the discussion in [Fri09, p. 2197]: Other than in the pseudo-
manifold case, where the links are again pseudo-manifolds, the spaces Lx may
not be such that the duality-isomorphism exists. As a result, IHn̄

k(L; Q) cannot
generally be replaced by IHm̄

k (L; Q), which seems to be the more common choice
for formulating the Witt-condition in literature.

Now, the Witt-condition can be formulated as:

Definition 1.12.5: [Fri09, Def. 8.1 (p. 2197)]43: A MHSS X with sufficiently
many local approximate tubular neighborhoods (see Rmk. 1.12.3) is a (Q-)Witt
space, if for each point of an odd-codimensional stratum x ∈ Xn−(2k+1) we have:

IHn̄
k(Lx; Q) = 0

where Lx = holink(X, x) = {γ ∈ holinkS(X,Xn−(2k+1))|γ(0) = x} is the local
holink at x and IHn̄

∗ is intersection-homology (with compact support) utilizing
the upper-middle perversity n̄.

A large and important class of examples are:

43This is a simplified version of what this reference defines: We do not want to account for more
general base-rings than Q here. See also the next lemma.
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Example 1.12.6: Pseudomanifolds with only even-codimensional strata are Witt.
This includes pure-dimensional complex algebraic varieties.

By construction, the so-defined Witt-spaces have the following property:

Lemma 1.12.7: See discussion around [Fri09, Thm. 8.2 (p. 2198)] and the
Lemma 1.12.2 above: For a closed oriented MHSS X with sufficiently many
local approximate tubular neighborhoods (see Rmk. 1.12.3), without codimension
1 stratum44, it holds that:

X is (Q-)Witt
⇔

ICm̄
∗ (X) ⊂ ICn̄

∗ (X) induces an isomorphism IHm̄
∗ (X; Q) ∼= IHn̄

∗ (X; Q)

The following example demonstrates, how this definition is (mostly) compatible
with “properness” (the absence of a codimension one stratum) and the manifold-case.

Example 1.12.8: Let X be a compact MHSS, then

X is Witt ⇒ X does not have a codimension 1 stratum

further, if the underlying topological space |X| is a manifold, then

X is Witt ⇔ X does not have a codimension 1 stratum

Proof: “⇒”: Witt-spaces never have codimension 1 strata ([Fri09, (p. 2197)]),
because the condition on the link (for 2k + 1 = 1, i. e. k = 0) reads IHn̄

0 (L; Q) = 0,
which would require a ordinary homology group in degree 0 to vanish as well (by
arguments similar to the proof of [Fri09, Prop. 5.2 (p. 2178)] / Lemma 1.12.2).

“⇐”: We give two alternative proofs for this direction. A brief one explaining
the statement itself, and a sketch of a second one to shed a little more light on the
relation to links and giving an interesting connection to intrinsic stratifications (see
Section 1.10 (“Intrinsic Stratifications”)).

(1) Proof of “⇐”: Intersection-homology on MHSS is topologically invariant
[Qui87], and on the manifold |X| clearly ICm̄

∗ (|X|) = ICn̄
∗ (|X|). The Witt-condition

was chosen to be equivalent to these being quasi-isomorphic (Lemma 1.12.7). So
the only thing that could go wrong would be, if the orientation of the top-stratum
of X would not induce a (compatible) orientation of |X| (so the Deligne-sheaf
44What we really need is: There is an orientation of the top-stratum M0,0 ⊃ M of the intrinsic

skeleton X0,0 (see Section 1.10 (“Intrinsic Stratifications”)), that restricts to the one chosen for
M . See the proof of Example 1.12.8 below.
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argument in Lemma 1.12.2 may fail, because the orientation for X and |X| may
not agree). Obviously if X has a codimension 1 stratum, the top-stratum may have
more connected components than |X| has, thus more choices of orientations (some of
which must be incompatible). If it does not, the orientation of |X|∗ induces one on X.
See for example the discussion around [Fri15, Lemma 2.9 (p. 10)], which treats the
pl-case, but the argument is by extension (the intrinsic stratification is a coarsening
by Thm. 1.10.2) of sheaf-isomorphisms – defining an orientation as an isomorphism
of the orientation-sheaf to the constant sheaf in the “usual” way – which does not
rely on the space being pl.

(2) Sketch of alternative proof: Investigating the construction of the intrinsic
skeleta of Quinn [Qui87, Thm. 1.2 (p. 235)] (see Thm. 1.10.2), we find that for the
component B to be “promotable” (i. e. B is part of a larger stratum in X0,0), its
links (homotopy-link fibers) in X must necessarily be homology-spheres. Since
|X| is a manifold by hypothesis, writing Y = |X| ⊃ ∅, this is a stratification as
MHSS. So by Thm. 1.10.2 X0,0 = Y0,0 = Y . Thus holinks must be homology-spheres
(possibly stratified in a non-trivial way when working with spaces with more than two
strata, if certain larger strata were not promoted either; see also [Hug99a, Cor. 6.2
(p. 141)], where a similar result for submanifolds being locally flat iff they have
fibers that are homotopy-spheres is given). By invariance under stratified homotopy-
equivalence, the (mapping cylinder of) the holink being homotopy equivalent to a
neighborhood (thus a MHSS), and topological invariance of IH on MHSS [Qui88a],
IHn̄

k(L; Q) = Hk(S2k; Q) = 0 for all k > 0. □

Remark 1.12.9: Generally, even for a manifold with boundary (M,∂M), we
may think of M as a MHSS with one stratum and ∂X = ∂M , or as a MHSS
with two strata, filtered as M ⊃ ∂M , without boundary. This seems to be bad
news for “Thom’s theorem” / bordism invariance of the signature (Prop. 1.12.11)
to make any sense.

It is the fact, that Witt-spaces cannot have codimension 1 strata, together
with boundary-collaring, that saves the day and ensures there is no ambiguity
in identifying what is a ∂X ⊂ X.

The typical use-case of the Witt-condition is, of course, the definition of a signature-
invariant:

Theorem 1.12.10: [Fri09, Thm. 8.2 (p. 2198)]: Let X be a closed45 oriented
MHSS Witt-space of dimension 4k, then X has a well-defined signature σ(X) ∈ Z,
given by the signature of the middle-dimensional, middle-perversity intersection-
homology (with rational coefficients) non-degenerate intersection-form.

If the dimension is not divisible by 4, define σ(X) = 0.
45While the reference states results for “compact” spaces, it defines MHSS explicitly as MHSS

without boundary (in our sense) (see [Fri09, p. 2172]), so “compact” in the notation of the
reference, actually means closed in the notation used here.
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See also [Fri09, Cor. 7.3 (p. 2193)] for the relevant (middle-dimension, middle
perversity) pairing.

Next we want to understand bordism-invariance, known as “Thom’s theorem” in
the manifold case. This is expected to work “as usual” because the relevant argument
is on the algebraic side, thus unaffected by the change of underlying geometry. It
requires to account for boundaries however (for obvious reasons):

Proposition 1.12.11: “Thom’s Theorem for MHSS”: Let X be a compact oriented
MHSS Witt-space with boundary ∂X closed. Then σ(∂X) = 0.

Proof: The orientation of X uniquely induces an orientation of ∂X, because it
is defined as an orientation of the top-stratum, and for the manifold-case this is a
well-known fact. We may assume dim(X) = 4k + 1 with k > 0, since the other cases
are trivial.

The proof (for k > 0) proceeds basically as for [GM80, ‘Theorem’ (p. 155)] or
[Ban07, Thm. 6.1.4 (p. 125)]:

Define Y := X ∪∂X c(∂X), which is a compact MHSS with sufficiently many local
approximate tubular neighborhoods and without boundary. This is, because this is
a local property, and true for X and therefore (since the boundary ∂X is collared
in X by definition) this only needs to be checked near the cone-point. But the
cone-point has a cone-like neighborhood, so is a MHSS with sufficiently many local
approximate tubular neighborhoods. Hence [Fri09, Cor. 7.3 (p. 2193)] applies and
there are duality-isomorphisms PD : IHm̄

l (Y ) ∼−→ (IHn̄
n−l(Y ))∗ := Hom(IHn̄

n−l(Y ),Q).
If coefficients for IH are not explicitly stated, we assume them to be the rationals Q.

By Lemma 1.12.2 ICm̄ ⊂ ICn̄ differs near x from a quasi-isomorphism by stalks
∼= IHn̄

k(Lx; Q). Away from the cone-point, these vanish, since X is Witt. The cone-
point v has Lx ≃strat ∂X (by pushing along the cone coordinate, see Example 1.4.8),
and co-dimension n. Thus the only difference is in degree i = n̄(n) = n̄(4k+ 1) = 2k.

Combining the long-exact-sequences / distinguished-triangles of Lemma 1.12.2 with
the duality-isomorphisms on Y one obtains the following commutative ladder-diagram
with exact rows (using n− 2k = 2k + 1):

IHm̄
2k+1(Y ) IHn̄

2k+1(Y ) IHn̄
2k(∂X) IHm̄

2k(Y ) IHn̄
2k(Y )

(IHn̄
2k(Y ))∗ (IHm̄

2k(Y ))∗ (IHn̄
2k(∂X))∗ (IHn̄

2k+1(Y ))∗ (IHm̄
2k+1(Y ))∗

PD ∼ PD ∼ PD

∼

PD

∼

where (. . .)∗ := Hom(. . . ,Q). Since ∂X is Witt (its strata have the same holinks
and codimensions as those in its collar in X, and X is Witt), IHn̄

2k(∂X) ∼= IHm̄
2k(∂X).

Further, using the canonical isomorphism (Lemma 1.12.7) induced by the inclusion
ICm̄ ⊂ ICn̄ we define the composition (of isomorphisms)

φ : IHm̄
2k(∂X) → IHn̄

2k(∂X) PD−−→
(︂

IHm̄
2k(∂X)

)︂∗
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Using naturality of the constructions, we can replace the middle-column of the above
diagram by this to get (working in the derived category, the existence of φ follows
from the axioms of triangulated categories):

IHm̄
2k+1(Y ) IHn̄

2k+1(Y ) IHm̄
2k(∂X) IHm̄

2k(Y ) IHn̄
2k(Y )

j

(IHn̄
2k(Y ))∗ (IHm̄

2k(Y ))∗ (IHm̄
2k(∂X))∗ (IHn̄

2k+1(Y ))∗ (IHm̄
2k+1(Y ))∗

j∗

PD ∼ PD ∼ PD

∼

PD

∼φ∼

The usual arguments – see for example [Ban07, ‘1.’ (p. 124)] and the proof of [Ban07,
Thm. 6.1.2 (p. 124)] – apply, to show, that im(j) is a Lagrangian (i. e. an, under this
pairing φ, maximally self-annihilating) subspace in IHm̄

2k(∂X). Thus the signature of
φ, which is the middle-dimensional (dim ∂X = dimX − 1 = 4k), middle-perversity
intersection-form, is zero as claimed. □

To summarize: Using Friedman’s [Fri09] formulation, the usual sheaf-theoretic
treatment [GM83] (see also [Ban07]) applies. In consequence, for MHSS with suffi-
ciently many local approximate tubular neighborhoods, there is a “Witt-Condition”,
that can be formulated on the intersection-homology of local-homotopy-links – in
essentially the same way as on links for pseudomanifolds (only the choice of n̄
cannot be replaced by m̄ anymore) – to obtain a class of spaces with well-defined,
Witt-bordism invariant signature.

1.13 Summary
The central “line of argument”, of this background-chapter can be summarized as
follows (for spaces with at most two strata):

Stratified transversality requires some normal-structure, to extend geometric
constructions into the upper stratum. Such normal structure in a topological setting
seems to be best described by mapping-cylinders of MAFs, where the transversality-
construction of Connolly and Vajiac [CV99] applies.

A suitable setup for the study of the existence and uniqueness of such neighborhoods
is identified in Quinn’s [Qui88a] (M)HSS, where classical h-cobordism and end-
problems can be treated in a controlled-topology (generalizing from lower stratum
B = {pt}) setting. Here, the existence / uniqueness question can be treated by
methods of [Qui79].

Finally, this class of spaces that rather “naturally” arose in the treatment of
transversality-questions in an inherently topological setting, does indeed have (topo-
logically) “intrinsic” stratifications. Further it is suitable for the definition of
intersection-homology [GM80; Qui87] satisfying Poincaré duality and, in the Witt-
case [Sie83], having non-singular intersection-forms, thus signature-invariants (see
[Fri09]).
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This “two-stratum” picture is supplemented in Chapter 3 (“Multiple Strata”) by
a treatment of cases with more than two-strata.





2 Bordism Constructions

Given suitable transversality properties, bordism theories often provide general-
ized homology-theories. At the same time, for “allowable” spaces Xn – i. e. those
constituting the “probing” objects of the theory – there is natural notion of a
“fundamental-class” [X] := [X id−→ X] ∈ Ωn(X). This makes them interesting
structures for the study of characteristic classes.

We want to construct a bordism-theory, whose “allowable” spaces are certain MHSS,
with the motivation, that MHSS-stratifications are characterized topologically, thus
will often be available on purely topological constructions, for example on mapping-
cylinders of stratified homeomorphisms. This in turn allows, for example, the study
of the “transport-behavior” of said fundamental classes [X] under such stratified
homeomorphisms.

Additionally, being close to (topologically) intrinsic ones (see Section 1.10 (“Intrin-
sic Stratifications”)), these stratifications even allow for the study of the transport-
behavior under unstratified homeomorphisms. This case – unstratified homeomor-
phisms – is very closely related to the question, whether [X] depends on the stratifi-
cation of X or just on its topology.

We start by the construction of bordism theories, not necessarily generalized ho-
mology theories yet, in Section 2.1 (“Bordism Theories”). Then it is formalized what
“suitable transversality properties” is supposed to mean in Section 2.2 (“Transver-
sality Properties”). The actual verification of homology-axioms (of an unreduced
theory) in the sense of Eilenberg–Steenrod is carried out in Section 2.3 (“Generalized
Homology Theory”). For certain MHSS with at most two strata, the transversality
properties can be seen to hold relatively directly. This is shown in Section 2.4 (“An
Example-Theory”) and introduces an important condition on Whitehead-groups
related to the fundamental groups of “links”. Some stratified homeomorphisms can be
studied with this basic theory already. The reduced homology theory, associated with
the homology theories produced before, has certain nice geometric properties, which
can be formalized through the form / realization of the suspension-isomorphism. This
is done in Section 2.5 (“Reduced Theories”) and used in Section 5.3 (“L-Classes”).
Finally, it is outlined in Section 2.6 (“Improvements”), how the initial “basic theory”
can be extended to remove some unpleasant restrictions. Such “extensions” are
carried out in the next chapters (Chapter 3 (“Multiple Strata”) and Chapter 4
(“Homeomorphisms”)) and constitute the bulk of technical work presented in this
thesis. For this reason, their relevancy and limitations are discussed in this dedicated
section. Further discussion can be found in Section 6.3 (“Outlook and Further
Ideas”).

In this thesis, the terms “bordism” and “cobordism” are used synonymous. We
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do not treat “cohomological” theories, e. g. in the sense of Buonchristiano, Rourke,
and Sanderson’s [BRS76] “mock-bundles”, so no confusion should arise from this
convention.

2.1 Bordism Theories
Bordism theories have been studied intensely in the past, originally on (smooth)
manifolds [Tho54; Wal60], with additional structure via bundles [Ati61], for stratified
spaces [Sie83; Par90], for stratified spaces and additional structure [Min06; Ban06] or
for abstract classes of spaces satisfying certain requirements [Aki75; Fri15] (similar to
the approach here). It turns out, that quite generally, many (co)homology theories
can be realized geometrically via suitable bordism-constructions (and mock-bundles)
[BRS76].

Bordisms play an important role e. g. in surgery (as the “trace”) to establish
(surgery-)invariants, or in (tangent-bundle-independent) constructions of characteris-
tic classes, such as L-classes [Tho58]. Also the Pontryagin–Thom-construction (the
construction of the bordism-spectrum MSO) was quite influential.

As of the contents of this section, first, the specifics of “bordism-theories” are
defined, relations to generalized homology theories will then be discussed in Section 2.3
(“Generalized Homology Theory”).

In a stratified setting, bordism-theories typically need some “rigidity” beyond the
compactness hypothesis used, for example, for manifolds. This is, because otherwise,
for a space X the cone cX is typically a “null-bordism” (see below), rendering the
theory trivial. An important example of such “rigidity” is a Witt-condition, because
a bordism-invariant signature invariant prevents a “collapse” to the trivial theory.
Further, to get a generalized homology theory later, we will need some hypothesis to
ensure sufficiently nice transversality properties.

For these two reasons, the theories as formulated here use certain subclasses
C ⊂ ∂-MHSS, rather than all MHSS. Formally, one may use as C a category with
forgetful functor to ∂-MHSS, meaning probing objects could contain certain additional
information (if that information glues etc.), but we do not use this freedom (see
however Rmk. 4.1.2).

Clearly such subclasses need to be chosen “consistently” – in the sense, that
bordism is indeed an equivalence-relation – which will be ensured by the following
property (similar approaches can be found for example in [Aki75; Fri15])

Definition 2.1.1: We call a class C of compact proper (the top-stratum is dense,
and there is no codimension 1 stratum) orientable MHSS with boundary stable,
iff

(i) For (X, ∂X) ∈ C also ∂X ∈ C.
(ii) For X ∈ C, given a decomposition of X into X≥, X≤ such that X =

X≥ ∪ X≤ and such that X0 := X≥ ∩ X≤ is codimension 1 and stratified
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bi-collared in X, with the restriction of the bi-collar to both X≥ and X≤ a
collar, then (X≥, X0) ∈ C and (X≤, X0) ∈ C.

(iii) For X, Y ∈ C ⇒ X ∪ Y ∈ C, whenever gluing along boundary-components
in the sense of Lemma 1.4.25 applies.

(iv) Given X ∈ C and (M,∂M) a compact manifold ⇒
(︂
X ×M, (X × ∂M) ∪

(∂X ×M)
)︂

∈ C
(v) The ∅n ∈ C is an element1 in any dimension n ≥ 0.

Part (iv) can be weakened to the case M = I, which would only remove the
statement about being a module over the manifold-cobordism-ring from the final
result.

The “properness” assumption ensures that dimension is “well-defined” (indepen-
dent of the connected component), because MHSS are assumed to be stratified by
dimension. Note, that clearly:

Lemma 2.1.2: If C and C ′ are two stable classes, then C ∩ C ′ is also stable.

The very closely related concept of fixing a bordism-theory through allowable links
has proven successful in the past (see e. g. [Sie83; Ban11; Fri15]), we have already
seen an example of such a class

Example 2.1.3: A condition that depends only on holink-fibers and codimension
is stable. This also holds for local (stratified) holinks, see Chapter 3 (“Multiple
Strata”).

Thus, the class C = Witt of MHSS satisfying the Witt-condition of Section 1.12
(“Witt-Condition and Signature of MHSS”) is stable.

The class of proper MHSS is stable.
Proof: This follows from Lemma 1.4.21, because stratified (bi-)collared subsets

are stratified NDRs. Also (X≥, X0) and (X≤, X0) are automatically MHSS with
boundary, by locality of being MHSS, the collar of X0 given by hypothesis, and X0
being a stratified NDR.

Codimensions are preserved (see above) so for the stability of being proper only
density of the top-stratum remains to be checked. But again, a stratified (bi-)collar
shows, that a boundary (or cut X0) also has dense top-stratum. □

We had also seen, that gluing works for spaces with at most two meeting strata
(Def. 1.4.22), which – in anticipation of the multi-stratum theory in Chapter 3
(“Multiple Strata”) – motivates the following definition and subsequent observation:

1So we formally consider ∅n as a n-dimensional MHSS.
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Definition 2.1.4: A MHSS X has at most k meeting strata, if for all x ∈ X,
there are at most k different strata Xi with x ∈ closure(Xi).

Example 2.1.5: For fixed k ≥ 1, the class of spaces with at most k meeting strata
is stable.

One may also notice the following famous non-example:

Non-Example 2.1.6: The class consisting of the n-disk and ∅n in dimension n
is not stable: Cutting a disk, in the sense of condition (ii), such that the result
is not a disk is easy, e. g. let X0 be a (n− 1)-sphere, X≤ its “inside” and X≥
its “outside”.

This is (closely related to) why (unstable) homotopy-groups do not form a
homology-theory. (They do not satisfy excision.)

So “stability” as defined here is not needed for well-defined bordism-groups
(clearly homotopy-groups are well-defined and functorial), but already anticipates
the incorporation of excision. By Lemma 2.2.2 it will become clear, why we call
such conditions “stable”, and do not content ourselves with a weaker requirement
here.

Next, we define an equivalence relation over topological pairs

Definition 2.1.7: Fix a pair (A,B) of topological spaces. Given a stable class
C, two oriented spaces (X, ∂X) and (Y, ∂Y ) in C, with orientations2 OX , OY ,
and continuous maps of pairs f : (X, ∂X) → (A,B) and g : (Y, ∂Y ) → (A,B)
define:
f and g are bordant over (A,B), f ∼C g, iff there is an oriented W ∈ C with

orientation OW and ∂W = W0 ∪W1 ∪W∗ together with F : W → A such that
(i) F (W∗) ⊂ B

(ii) ∂W0 = W0 ∩ W∗ and ∂W1 = W1 ∩ W∗ and ∂W∗ = ∂W0 ∪ ∂W1 while
W0 ∩W1 = ∅.

(iii) W0,W1,W∗ ∈ C
(iv) W0 =3 X and W1 = Y

(v) F |W0 = f and F |W1 = g

2We may define an orientation as a choice of isomorphism from the orientation-sheaf to the constant
sheaf, a viewpoint which lends itself well to sheaf-theoretic treatments of intersection-homology
(see Section 1.12 (“Witt-Condition and Signature of MHSS”)). But really, we are free to use any
(meaningful) formal definition of orientation.

3One may require orientation-preserving, stratified homeomorphic instead, although this is not
entirely trivial here, and is discussed more in-depth in Rmk. 4.1.2, after discussing stratified
homeomorphisms and their mapping cylinders.
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(vi) OX = O∂W |W0 and OY = −O∂W |W1

We will usually drop the explicit reference to C, where no confusion arises.
Instead we will often write ∼W or ∼F in explicit reference to the bordism W .

Remark 2.1.8: As is most evident from (ii), the restriction F |W∗ to W∗ is a
bordism from f |∂W0 to g|∂W1 over B. This observation will be useful to construct
well-defined boundary-maps.

It is, of course, also possible to define an “unoriented” theory by simply dropping
the orientation-requirements.

Before we continue to study further structure on equivalence-classes, we want to
check, that this is indeed an equivalence relation.

Lemma 2.1.9: Bordism, as defined above (Def. 2.1.7), is an equivalence relation.

Proof: “Reflexivity”: Given X ∈ C and f : (X, ∂X) → (A,B), since C is stable
by hypothesis, W :=

(︂
X × I, (X × ∂I) ∪ (∂X × I)

)︂
∈ C. Let W0 := X × {0},

W1 := X × {1} and W∗ := ∂X × I, further, F : W → A, (x, t) ↦→ f(x). Then F is a
bordism f ∼ f , because F (W∗) = f(∂X) ⊂ B.

“Symmetry”: Given f ∼F g, by F : W → A, using the inverse orientation −OW

and exchanging W0 with W1, we obtain a bordism “−F” that realizes g ∼ f .
“Transitivity”: Given f ∼F g ∼F ′ h, using that C is stable, thus compatible with

the gluing construction of Lemma 1.4.25, we obtain F ∪ F ′ : W ∪W1=W ′
0
W ′ → A, a

bordism f ∼F∪F ′ h. The orientations of W and W ′ fit together, because of the sign
OW ′

0
= OY = −OW1 in the definition. □

Further the equivalence-classes define an abelian group for each dimension:

Definition 2.1.10: Fix a pair (A,B) of topological spaces. Given a stable class
C, the bordism groups ΩCn(A,B) in degree n ≥ 0 are the equivalence classes
[f : (X, ∂X) → (A,B)] with dim(X) = n of the equivalence-relation defined by
bordism. For n < 0, set ΩCn(A,B) = 0.

The group-operation is given by disjoint union:

[f : (X, ∂X) → (A,B)] + [g : (Y, ∂Y ) → (A,B)]
:= [f ⊔ g : (X ⊔ Y, ∂X ⊔ ∂Y ) → (A,B)]

If B = ∅, we write ΩC∗(A) for ΩC∗(A, ∅).
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We required “stability” not only for X × I but for any compact manifold M , so
this is actually a module over ΩSTOP

∗ = ΩSTOP
∗ ({pt}), the oriented manifold-bordism-

groups (see below, Cor. 2.1.13–1).
Next, we check that this defines, in fact, abelian groups:

Lemma 2.1.11: The so defined bordism “groups” are abelian groups.
Proof: The operation is clearly well-defined (the bordism-relation ∼ can be treated

component-wise), and associative (because disjoint union is).
The neutral element in degree n is ∅n ∈ C. We formally allow continuous maps

from the empty set.
The inverse of an element [f : (X, ∂X) → (A,B)] is “[−f ]”, obtained by inverting

the orientation-class of X. A null-bordism [f ] + [−f ] ∼ [∅] = 0 is the product
with the closed interval f × idI as described in the “reflexivity”-part of the proof of
Lemma 2.1.9 (∼ is an equivalence relation), but with W0 := X × ∂I and W1 = ∅.

There is no inherent ordering of components in the theory, so disjoint union, and
thus “+”, is commutative. □

This construction, with induced group-homomorphisms defined by composition, is
functorial

Lemma 2.1.12: The assignment (A,B) ↦→ Ω∗(A,B) and(︂
α : (A,B) → (A′, B′)

)︂
↦→

(︂
α∗ : Ω∗(A,B) → Ω∗(A′, B′), [f ] ↦→ [α ◦ f ]

)︂
is a covariant functor from pairs of topological spaces to abelian groups.

Proof: It has been shown above that Ω∗(A,B) are abelian groups, the composition
of a disjoint union (of maps) is the disjoint union of compositions (so induced
mappings are group-homomorphisms) and composition of morphisms is clear from
the definition (composition of maps is associative). □

While the definition of “stable classes” (Def. 2.1.1) required that products with
manifolds still lie in the class C, we only used this for the interval (I, ∂I). However,
more generally, this allows for the following product-constructions:

Lemma 2.1.13: Let ΩSTOP
∗ denote the oriented topological manifold bordism-

groups (i. e. in the notation above: STOP is the class containing all compact,
orientable manifolds) and ΩC∗ those of another stable class C. Then there is a
“product”:

ΩSTOP
i (A′, B′) ⊗ ΩCj (A,B) → ΩCi+j((A′, B′) × (A,B)), induced by
( [f ′ : (M,∂M) → (A′, B′)], [f : (X, ∂X) → (A,B)] )
↦→ [f ′ × f : (M,∂M) × (X, ∂X) → (A′, B′) × (A,B)]

where (A′, B′) × (A,B) := (A′ × A, A′ ×B ∪B′ × A).
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Corollary 2.1.13–1: ΩC∗(A,B) is a module over ΩSTOP
∗ := ΩSTOP

∗ ({pt}).

Proof: By Def. 2.1.1 f ′×f is allowed as a representative and bilinearity are clear. It
remains to show that the equivalence-class [f ′× f ] does not depend on the choices of
representatives of [f ] and [f ′]. Let g∼F f and g′∼F ′ f ′. Then F ′×F is an allowable
bordism in ΩC∗ (again by Def. 2.1.1), because F ′ : W ′ → A′ is defined on a manifold
W ′. So g′ × g∼F ′×F f

′ × f . □

Note, that a more general ring-structure on all of ΩC∗ (instead of ΩSTOP
∗ ) does not

work well with restrictions on the number of strata. The example given in the next
sections below, is for spaces with at most two strata, where products may have up
to four strata.

So far, this is not fundamentally different from the well-known theory on manifolds.
The main difficulty is in constructing an excision-isomorphism to obtain a homology
theory, for a class C, that is still “interesting” to study.

2.2 Transversality Properties
The properties studied here identify classes of spaces with “good enough” transversali-
ty-properties to construct an excision-isomorphism (in the sense of Eilenberg–Steenrod
axioms).

We will mostly define purely abstract properties. It will not immediately be
evident that stable classes with these properties actually exist, but an example will
be provided later in this section. The next chapter, Chapter 3 (“Multiple Strata”)),
is primarily concerned with providing more involved examples.

Finally we show, that the bordism-groups defined for classes of spaces with such
transversality-properties satisfy the excision-axiom of a generalized homology-theory.

The main problem of constructing an excision-isomorphism is to “cut” spaces in
the following sense:

Definition 2.2.1: Given a MHSS X and closed disjoint subspaces B+, B− ⊂ X,
we say, that X can be cut between B+ and B−, iff there is a map g : X → [−1, 1]
transverse to 0 (in the sense of Def. 1.6.3), mapping g(B±) ⊂ {±1}. We will, in
this case, refer to the bi-collared MHSS X0 := g−1({0}) as the cut. The spaces

(X≤, X0 ∪ ∂−X) :=
(︃
g−1([−1, 0]), g−1({0}) ∪

(︂
g−1([−1, 0]) ∩ ∂X

)︂)︃
(X≥, X0 ∪ ∂+X) :=

(︃
g−1([0,+1]), g−1({0}) ∪

(︂
g−1([0,+1]) ∩ ∂X

)︂)︃

are automatically MHSS with boundary (by bi-collaredness of X0 and locality of
being MHSS).
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We call X a weak transversality-space (weak t-space), iff given any closed
disjoint B± ⊂ X, it can be cut between B±.

We call a subclass C ⊂ ∂-MHSS a weak transversality-class (weak t-class), iff
any X ∈ C is a weak t-space.

We call a subclass C ⊂ ∂-MHSS a strong transversality-class (strong t-class),
iff it is a weak t-class and stable (Def. 2.1.1), thus for any such “cut”, the spaces
X≤ and X≥ are again in C.

These are compatible with further restriction to stable subclasses in the sense of

Lemma 2.2.2: Given a weak / strong t-class T and a stable class S, the combina-
tion T ∩ S is a weak / strong t-class.

Proof: T ∩ S is a weak t-class, because its elements are in T , so can be cut.
If T is a strong t-class, then it is stable, so by Lemma 2.1.2, T ∩ S is stable. Any

cutting of a space X ∈ T ∩ S yields spaces X≥, X≤ in T . As a cut, by definition,
they satisfy the hypothesis of part (ii) in the definition of stable classes (Def. 2.1.1;
essentially this means, they intersect in a bi-collared X0), so X≥ and X≤ are also in
S (which is stable by hypothesis). □

In view of Quinn’s controlled-end theorem as stated in Section 1.9 (“Mapping-
Cylinder Neighborhoods”) and the transversality- theorem of Connolly and Vajiac as
stated in Section 1.6 (“Stratified Transversality”), we define the following property
(and thus class) of MHSS:

Definition 2.2.3: Given a MHSS X (with at most two meeting strata), we say
X has simple links if: For all components Bi of the (disjoint) minimal strata
and all components Lij of the fiber of the respective homotopy-link, it holds
that ∀k ≥ 0 Wh(π1(Lij) × Zk) = 0. Since the Whitehead-groups do not (within
connected components) depend on a choice of base-point, we suppress base-points
in the notation of π1 (see Rmk. 1.9.9).

See Def. 3.1.10 for a more general definition, including spaces with more than
two strata.

This condition is for example satisfied, if links are simply connected:
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Example 2.2.4: “Supernormal” spaces4 in the sense of [Wei94, §12.1 (p. 202f)],
with at most two meeting strata, i. e. MHSS with simply connected local holinks,
have simple links.

In fact, any MHSS X with holink-fibers, whose (component-wise) fundamental-
groups are torsion-free and poly-(finite / cyclic), has simple links. Poly-(finite /
cyclic) means, there is a normal-series (a filtration by subgroups, normal in the
respective next one) with quotients, which are either finite groups or infinite-cyclic
(see Def. 1.9.5).

Proof: It is non-trivial, but true, that Wh(Zk) = 0, this is famously known as the
Bass–Heller–Swan theorem [BHS64].

Farrell and Hsiang [FH81, Thm. 3.2 (p. 308)] show, that for any torsion-free and
poly-(finite / cyclic) group Γ it holds that Wh(Γ) = 0. If G is torsion-free and poly-
(finite / cyclic), then so is G× Zk. Note, that also Zk is torsion-free and poly-(finite /
cyclic). □

And using this condition, we can give the first examples of t-classes:

Example 2.2.5: For spaces with at most two meeting strata, it holds that
(i) The class Manifolds ⊂ MHSS of compact, orientable manifolds is a strong

t-class.
(ii) The class Wh≥6

2 ⊂ MHSS given by all compact, orientable and proper
(without codimension 1 stratum and with dense top-stratum) MHSS X
with at most two meeting strata, where dim(∂X) ≥ 6 or ∂X = ∅ and
dim(X) ≥ 6, with simple links is a weak t-class.

(iii) The class Whgap 5
2 ⊂ MHSS given by all compact, orientable and proper

MHSS X with at most two meeting strata where the codimensions of
minimal strata Bi in X are ≥ 5 with simple links is a strong t-class.

Proof: Part (i) follows from manifold-transversality: By regularity of the (metric)
X, there is a continuous g : X → [−1, 1] such that g(B±) ⊂ {±1}, apply Cor. 1.5.9–2
with ϵ = 1/2 (any ϵ < 1 will do), on D = X and relC ∪ C∂ = ∅ to obtain g⊥
transverse to 0 at c and 1/2-close to g. Define X0 := g−1

⊥ ({0}) and X≥ := g−1
⊥ ([0, 1])

and X≤ := g−1
⊥ ([−1, 0]). By closeness to g, this decomposition satisfies B+ ⊂ X≥ and

B− ⊂ X≤, while X0 is bi-collared by c. It is immediately clear from the definition,
that X≥ ∪X≤ = X and X≥ ∩X≤ = X0, and that these are manifolds with boundary
(compact, with induced orientation).

Part (ii): As before, there is a continuous g : X → [−1, 1] such that g(B±) ⊂ {±1}.
We can (by normality of the metric X), pick disjoint open neighborhoods Ni of the
(disjoint) minimal strata Bi, which are MHSS (as open subsets of the MHSS X)
with dim ≥ 6 (by density of the top-stratum of X), so the controlled end-theorem

4A space is called normal, if its links are path connected, that is, if π0(L) is trivial. This led to
the term “super-normal”, referring to spaces where even π1(L) = 0 is trivial.
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Thm. 1.9.3 applies (on each Ni) and because X has simple links, by Lemma 1.9.8,
the obstruction-group, and thus the obstruction q0 vanish.

If X has no boundary, we thus obtain mapping-cylinder neighborhoods of the Bi

(individually and component-wise), within these Ni, thus disjoint in X, so Cor. 1.6.4–1
applies to make g transverse to 0.

If X has non-empty boundary, we may either apply the end-theorem to the
boundaries first (these have simple links as stratified NDR, and dim(∂X) ≥ 6 by
hypothesis), then extend (the cylinder-neighborhood) into X using a boundary-collar
to extend them as a product to an open neighborhood of the boundary, and the
relative end-theorem [Qui79, Thm. 2.1 (p. 282)] to then extend them further to
cylinder-neighborhoods of parts of the Bi outside of the boundary-collar. Next, apply
Cor. 1.6.4–2 to make g transverse to 0.

Alternatively, we may use a formulation using spaces with more than two strata
to “absorb the boundary” as will be detailed in Section 3.2 (“Absorbing Boundary”)
to then apply Cor. 3.2.3–1 to make g transverse to 0. These two possibilities were
also discussed in Section 1.6 (“Stratified Transversality”).

In any case we obtain a close to g, transverse to 0 map g⊥. This means precisely,
defining X0, X≥, X≤ as before, that X can be “cut” according to Def. 2.2.1 so is a
“weak t-space”. As X was arbitrary in Wh≥6

2 , this is a weak t-class.
Part (iii): The “stability” part follows, because the operations required to be

“stable” do not change the homotopy-type of holink-fibers (see Lemma 1.4.21) or the
codimension, see also Example 2.1.3 and by Example 2.1.5 restricting to spaces with
at most two meeting strata is also stable.

The difficulty in choosing the class of spaces “correctly”, so that it is a strong
t-class, is repeated application of the cutting property, eventually leading to low
(absolute) dimensions, where mapping-cylinder-existence (Thm. 1.9.3) and boundary-
collaring (Thm. 1.4.15) may not apply anymore. We treat four cases separately, and
we assume there is only one minimal stratum Bi =: B, as different Bi (being closed,
disjoint) can be treated individually (in exactly the same way as in the proof of
Cor. 1.6.4–1 and in part (ii) above).

“Case dim(∂X) ≥ 6 or ∂X = ∅ and dim(X) ≥ 6”: X satisfies the hypothesis of
part (ii), i. e. is in Wh≥6

2 and can thus be cut. Both X≥ and X≤ are still in Whgap 5
2 ,

by stability of the holink-fiber and codimension conditions: The hypotheses of (iii)
are local, so we only need to check them near the “new” boundary-segment X0,
but X0 is bi-collared in X (thus stratified NDR, thus p-NDR), so has the same
homotopy-link fibers (up to homotopy) and either only one stratum or a stratum of
the same codimension as B ⊂ X, which is ≥ 6 (see again Example 2.1.3).

“Case dim(∂X) = 5”: The following is a slight modification of the proof of
Cor. 1.6.4–1, which showed transversality on spaces with at most two meeting strata
without boundary.

By the codimension-requirement, the boundary of the lower stratum ∂B is of
dimension ≤ 0 (a finite point-set), so we can absorb ∂B into the rel parts B+ and
B−, e. g. by B− ↦→ B− ∪ (∂B −B+), with B± still being closed and disjoint. Since
∂X ∩ B = ∂B and ∂B ⊂ B+ ∪ B−, there is ϵ > 0 such that for x ∈ ∂X ∪ B with
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dist(x, ∂B) < ϵ: g(x) ̸= 0. We apply manifold-transversality Cor. 1.5.9–2 for (the
manifolds) ∂X − ∂B and B on D∂ := ∂X − (∂B)ϵ and on DB := B − (∂B)ϵ, using
(∂B)ϵ := {x ∈ X| dist(X, ∂B) < ϵ}, to g (for the “new” B±) with ϵ′ := min(ϵ/2, 1/2).
The resulting gB

⊥ and g∂
⊥ are (by choice of ϵ′) such that the transverse preimages

are disjoint (gB
⊥)−1({0}) ∩ (g∂

⊥)−1({0}) = ∅ and B ∩B+ ⊂ (gB
⊥)−1([0, 1]), similar for

B− and for ∂X. On the open neighborhood N := Bδ of B, with δ > 0 such that
N∩(g∂

⊥)−1({0}) = ∅, there is a cylinder-neighborhood of (B−∂B)∩N ⊂ (X−∂X)∩N
by Thm. 1.9.3 (because dim(X) = dim(∂X) + 1 ≥ 6 and X having simple links, thus
via Lemma 1.9.8 vanishing obstruction-group, thus q0 = 0), so by Cor. 1.6.4–1, there
is g′⊥ extending gB

⊥ to a transverse to 0 map on N − ∂X. By making this smaller
than ϵ′/2, and potentially replacing N by a smaller open neighborhood of B, we may
assume dist

(︂
(g∂
⊥)−1({0}), ∂X

)︂
> ϵ′/4.

Next, construct g′′⊥ : X → [−1, 1] such that g′′⊥ = g′⊥ near (gB
⊥)−1({0}) and g′′⊥ = g∂

⊥
near (g∂

⊥)−1({0}), by picking a ϵ′/8-thick (i. e. dist(X − im(b), ∂X) < ϵ′/8) boundary-
collar b : ∂X × [0, 2γ) → X and ηB, η∂ with ηB = 1 near (g′⊥)−1({0}) and ηB = 0
on a neighborhood of the complement of N , and η∂ = 1 near b((g∂

⊥)−1({0}) × [0, γ))
and η∂ = 0 near X − b((g∂

⊥)−1({0})ϵ′/4 × [0, 2γ)). Then define, using the subset
Lb := b((g∂

⊥)−1({0})ϵ′/4 × [0, 2γ)) of the boundary-collar (near the zeros of g∂
⊥):

g′′⊥(x) :=

⎧⎪⎪⎨⎪⎪⎩
g∂
⊥(π∂Xb

−1(x))η∂(x) + g(x)(1 − η∂(x)) if x ∈ Lb

g′⊥(x)ηB(x) + g(x)(1 − ηB(x)) if x ∈ N

g(x) otherwise

which is transverse to 0 near B∪∂X: Away from (g∂
⊥)−1({0})∪(gB

⊥)−1({0}), obviously
g ̸= 0, making it trivially transverse to 0 (if g′′⊥|−1({0}) = ∅, then g′′⊥| is transverse to
0), and near (g∂

⊥)−1({0}) ∪ (gB
⊥)−1({0}) by construction of g′′⊥.

Finally, use manifold-transversality Cor. 1.5.9–1, to make this transverse on the
top-stratum, rel a neighborhood of B ∪ ∂X intersected with the top-stratum. The
construction of X0, X≥ and X≤ remains the same as before.

“Case dim(X) = 5”: Now dim(∂B) < 0 and thus ∂B = ∅, while dim(B) ≤ 0, so B
consists of (finitely many) points and can again be “absorbed” into B−. Hence the
cut must be produced in the manifold-with-boundary (X − B, ∂X), which can be
done using manifold transversality as in part (i). The resulting space X0 is a manifold
with boundary, hence again in Whgap 5

2 , so are X≥, X≤, because near X0 (inside the
respective half of the bi-collar), they are manifolds with boundary, and away from
X0 they did not change, so they possess an open cover by spaces in Whgap 5

2 , with all
the required properties being local.

“Case dim(X) ≤ 4”: By the codimension-requirement, X is a manifold-with-
boundary. So by part (i) there is nothing to show. □

This example (iii) will be employed to construct a bordism-theory in Section 2.4
(“An Example-Theory”). It is slightly unsatisfactory with regard to multiple problems,
which will be elaborated on in Section 2.6 (“Improvements”) and the next chapters.
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Finally, we use these transversality-properties, to construct (the inverse of) the
excision-isomorphism in the sense of the Eilenberg–Steenrod axioms.

Lemma 2.2.6 (“Excision”): Let C be a strong t-class. Given a pair (A,B)
and D ⊂ B with closure(D) ⊂ interior(B), the map induced (in the sense of
Lemma 2.1.12) by the inclusion incl : (A−D,B−D) → (A,B) is an isomorphism
in all degrees j:

incl∗ : ΩCj (A−D,B −D) ∼−→ ΩCj (A,B)

Proof: We explicitly construct an inverse ψ. Let [f : (X, ∂X) → (A,B)] ∈ ΩCj (A,B).
Define B+ := X − interior(f−1(B)) and B− := f−1(closure(D)). Then B+ and B−
are closed (in the case of B− by continuity of f , in the case of B+ by definition) and
disjoint: By hypothesis, closure(D) ⊂ interior(B), so that B− ⊂ f−1(interior(B)) ⊂
interior(f−1(B)) = X − B+, where the second inclusion is due to continuity of f .
Further, any y ∈ X− (B+ ∪B−) is mapped to f(y) ∈ B−D: Firstly, y ̸∈ B− implies
f(y) ̸∈ closure(D), so f(y) ∈ A − closure(D) ⊂ A − D. Secondly, y ̸∈ B+ implies
y ∈ interior(f−1(B)) ⊂ f−1(B), so f(y) ∈ B.

Next, we check, that the boundary (or the corners, see below) does not “get in the
way”:
Claim: There is a representative f ′ of the equivalence class [f ] of f and, defining
B′± as before but now with f ′ in the place of f , a B̃′− ⊃ B′− closed and disjoint from
B′+ s. t. ∂X ⊂ B̃

′
−.

Proof of claim: We would want to set B̃− := B− ∪ ∂X, which, on first sight,
seems to work, because f(∂X) ⊂ B. However, B need not be open, thus f(∂X) ̸⊂
interior(B) in general. Thus, such a B̃− may not be disjoint from B+.

This problem can be avoided, by using collaredness of ∂X to “push” a neighbor-
hood of ∂X into B: Let c : ∂X × [0,∞) → X be a collar of ∂X. Define

T :
(︂
∂X × [0,∞)

)︂
× I → ∂X × [0,∞), ((x, s), t) ↦→

{︄
(x, s− t) : if s ≥ t

(x, 0) : if s ≤ t

H : X × I → A, (x, t) ↦→

⎧⎨⎩f(x) : if x /∈ im(c)
fc

(︂
T (c−1(x), t)

)︂
: if x ∈ im(c)

This is continuous, because by the choice of the collar-coordinate as [0,∞), the
translation T approaches the identity near X − im(c). Then W := X × I

H−→ A
satisfies W ∈ C by stability, and setting W0 := X × {0}, W1 := X × {1} and
W∗ := ∂X × I, it holds that H(W∗) = f(∂X) ⊂ B and H|W0 = f . So this is a
bordism f ∼ f ′ to f ′ := H1.

For this f ′ the choice B̃′− := B′− ∪ ∂X is valid (disjoint from B′+), because f ′
maps an open neighborhood c(∂X × [0, 1)) of ∂X into B. This finishes the proof
of the claim.



2.2 Transversality Properties 97

Next, we use that C is a weak t-class (because strong implies weak), to obtain
X≥ ⊃ B′+ and X≤ ⊃ B̃

′
−, where

(1) X≤ ⊂ X −B′+ thus f ′(X≤) ⊂ interior(B)
(2) X≥ ⊂ X − B̃

′
− ⊂ X −B′− thus f ′(X≥) ⊂ A−D

(3) ∂X≥ = X0 = X≥ ∩X≤ ⊂ X − (B′+ ∪ B̃
′
−) ⊂ X − (B′+ ∪B′−) thus, combining

this with (2), f ′(∂X≥) ⊂ B −D

We define the “inverse” ψ of incl∗ on [f ] as:

ψ
(︂
[f ]

)︂
:=

[︂
(X≥, X0)

f ′|X≥−−−→ (A−D,B −D)
]︂

There is a lot to check:
(a) [f ′|] is allowed as an element of ΩCj (A−D,B −D)
(b) The bordism class of ψ([f ]) does not depend on the choice of X≥, X≤ or X0

for a given representative f (thus a fixed X) and fixed f ′.
(c) The bordism class of ψ([f ]) does not depend on the choice of the representative

f (or X) or the collar c used to construct f ′.
(d) ψ is a group-homomorphism
(e) ψ ◦ incl∗ = id
(f) incl∗ ◦ψ = id

The individual statements together imply the statement claimed by the lemma.
(a) f ′| is a map of pairs, by (2) and (3). (X≥, X0) ∈ C, because C is a strong

t-class, thus stable.
(b) We first reduce this to the case “X≥ ⊃ X ′≥”: For fixed f ′, given two choices

X≥, X≤, X0 and X ′≥, X
′
≤, X

′
0, define B′′+ := B′+ ∪X≥ ∪X ′≥. This is closed (as finite

union of closed subsets), and it is disjoint from B̃
′
−, because all parts in the union

individually are. As before, use that C is a weak t-class to obtain X ′′≥, X ′′≤, X ′′0 , a cut
between B′′+ and B̃

′
−. By choice of B′′+, this satisfies X ′′≥ ⊃ X≥ and X ′′≥ ⊃ X ′≥.

We show that f |X≥ ∼ f |X′′
≥

∼ f |X′
≥
. Part (a) applies to X ′′≥, so this makes

sense. The claim then follows by transitivity of ∼. The argument for both bordisms
is the same, so we only explicitly give the first one. Define W := X ′′≥ × I and
F : W → A−D, (x, t) ↦→ f(x). With W0 := X ′′≥×{0}, W1 := X≥×{1} (which works
by X ′′≥ ⊃ X≥), and W∗ := X ′′0 ∪

(︂
X ′′≥− (X≥−X0)

)︂
× {0} this is a allowable bordism

f |X≥ ∼ f |X′′
≥

, because W is allowable (C is a strong t-class), F (W∗) ⊂ f(X ′′≥) ⊂ A−D,
by (2′′), hence im(F ) ⊂ A−D and F (W∗) ⊂ f(X≤) ⊂ B by (1).

(c) Let f, g be two representatives of [f ]. I. e. there is a bordism F : W → A. By
stability of C, W is a weak t-space. A neighborhood of W∗ ⊂ ∂W can be “pushed
into B” to yield F ′, so “corners” are in B− in the same way as in the claim at the
beginning of this proof. This can be done along a collar extending a given collar c in
X and c′ in Y , the domains of f ′, g′.
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Remark: On elements, by the initial claim of the proof, we never need to cut
spaces with boundary (or at least the cut can always be constructed away from
the boundary). This is not true for the well-definedness part anymore! This is
why the definition of “t-classes” requires the existence of cuts even for spaces
with boundary. But at least corners can be “pushed away” into B−, so we do
not need to worry about places where W0, W1 or W∗ meet each other.

Cutting W produces W≥ (again allowable by C being a strong t-class), with boundary
allowed as bordism (because corners are in B−) of f ′ ∼ g′.

Choosing f = g shows, that the choice of collar to construct f ′ does not matter.
This then also reduces (c) to (b) shown above.

(d) Cutting a disjoint union will yield a disjoint union of cuts. Ordering does not
matter, so this is a matter of well-definedness of individual cuts.

(e) Given [f ] ∈ ΩC(A−D,B −D), the image incl∗([f ]) maps to im(f) ⊂ A−D,
so X≥ := X is a valid choice of “cut”, thus by well-definedness of ψ, (c), there is
nothing to check, ψ(incl∗([f ])) = [f ′] = [f ].

(f) Given [f ] ∈ ΩCj (A,B), we have the representative given by ψ([f ]) = [f ′|X≥ ]
and by definition incl∗(ψ([f ])) = [incl ◦f ′|X≥ ]. We use again that W = X × I is
allowable, this time with boundary-subdivision W0 := X≥ × {0}, W1 := X × {1}
and W∗ := X≤ × {0} ∪ ∂X × I. This is a valid bordism, because f ′(X≤) ⊂ B and
f ′(∂X) ⊂ B. It shows incl ◦f ′|X≥ ∼ f ′, but by construction f ′ ∼ f . Therefore
incl∗(ψ([f ])) = [f ].

This finishes the proof of the lemma. □

This concludes the treatment of aspects reliant on transversality. The other axioms
of a generalized homology-theory are checked in the next section.

2.3 Generalized Homology Theory
Here, it is shown, that the bordism-groups as defined in Section 2.1 (“Bordism
Theories”) satisfy the axioms of a generalized homology theory, except for excision,
which was seen to hold for certain “strong transversality-classes” C in the previous
section, see Lemma 2.2.6.

By a generalized bordism-theory we mean:

Definition 2.3.1: A generalized5 homology theory H∗ is a collection of functors Hk

for k ∈ Z, from the category of pairs of topological spaces (and continuous maps
of pairs) to the category of abelian groups, together with natural transformations
∂k : Hk+1(X,A) → Hk(A, ∅) called the boundary homomorphisms such that the
Eilenberg–Steenrod-Axioms hold:

5The original treatment by Eilenberg and Steenrod normalized the homology theories by requiring
H0({pt}) = G, Hk ̸=0({pt}) = 0, in which case, they showed, the axioms “characterize” a theory
(uniquely on reasonable spaces), which was their main point of interest.
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(1) Homotopy: Homotopic maps (of pairs6) f ≃ g induce the same homomor-
phisms Hk(f) = Hk(g) on homology ∀k.

(2) Exactness: Given a pair of spaces (X,A), using the inclusions i : (A, ∅) →
(X, ∅) and j : (X, ∅) → (X,A), with induced maps i∗ := H∗(i) and
j∗ := H∗(j), there is a long exact sequence in homology:

. . .
∂k−→ Hk(A, ∅) ik−→ Hk(X, ∅) jk−→ Hk(X,A) ∂k−1−−→ Hk−1(A, ∅) ik−1−−→ . . .

(3) Excision: Given a pair (X,A) and B ⊂ A with closure(B) ⊂ interior(A),
then the inclusion i : (X −B,A−B) → (X,A) induces an isomorphism
in homology (i. e. it induces an isomorphism in each degree).

(4) Additivity: Co-products are mapped to co-products, i. e. given an (arbi-
trary) disjoint union X = ⊔αXα, then the inclusions iα : Xα → X induce
an isomorphism (in each degree k):

⊕αHk(Xα) +αHk(iα)−−−−−→ Hk(⊔αXα)

First we define the boundary-homomorphisms for the case of bordism-theories:

Definition 2.3.2: The boundary homomorphisms in degree k of Ω∗(A,B) are

∂k : Ωk+1(A,B) → Ωk(B),

[(X, ∂X) f−→ (A,B)] ↦→ [∂X f |∂X−−→ B]

Lemma 2.3.3: The so-defined boundary-homomorphisms are well-defined and
natural.

Proof: “Well-definedness:” By stability, ∂X is allowed as a “probing-space” (even
if it is empty, as we explicitly allowed the empty set as a space in any dimension).
Given two representatives f : (X, ∂X) → (A,B) and g : (Y, ∂Y ) → (A,B) of the
same bordism-class [f ] = [g], there is a bordism F : W → A with ∂W = X ∪Y ∪W∗,
which restricts to f and g respectively and where F (W∗) ⊂ B. Note (cf. Rmk. 2.1.8),
that F |W∗ is a bordism from f |∂X to g|∂Y in B. But these are just ∂∗(f) and ∂∗(g),
so these are bordant in Ω∗(B).

This is a group-homomorphism, because it clearly maps disjoint unions to disjoint
unions.

6Requiring this only for “absolute” groups (groups of pairs of the form (X, ∅)) is equivalent (when
combined with the other axioms) to requiring it for all pairs (X,A), because the long-exact
sequence plus the “5-lemma” imply the second from the first (the other direction is trivial).



100 2 Bordism Constructions

“Naturality:” We have to show: ∂k : Ωk+1(A,B) → Ωk(B) is a natural transfor-
mation of the indicated functors (mapping a pair (A,B) to either Ωk+1(A,B) or
Ωk(B, ∅) respectively).

Given α : (A,B) → (A′, B′), we thus have to show, that the diagram

Ωk+1(A,B)
αk+1 Ωk+1(A′, B′)

∂k

Ωk(B)

∂′k

Ωk(B′)
αk

commutes. Given [f : (X, ∂X) → (A,B)] ∈ Ωk+1(A,B), by definition

∂′k(αk+1([f ])) = ∂′k([α ◦ f ]) = [(α ◦ f)|∂X ]
αk(∂k([f ])) = αk([f |∂X ]) = [α ◦ (f |∂X)]

and, of course, (α ◦ f)|∂X = α ◦ (f |∂X). □

We continue by the homotopy axiom (a corresponding statement for pairs follows
from the long exact sequence of pairs and the five-lemma)

Lemma 2.3.4 (“Homotopy”): Given two homotopic maps α ≃ β : A → A′,
the induced maps α∗, β∗ : Ω∗(A) → Ω∗(A′) agree α∗ = β∗.

Proof: Let H : A× I → A′ be a homotopy from α to β. Let [f : X → A] ∈ Ω∗(A),
thus ∂X = ∅. By stability of the underlying class C, W := X × I is an allowable
space. Subdividing the boundary as W0 := A × {0}, W1 := A × {1} and W∗ = ∅,
this defines a bordism H ◦ (f × idI) : W → A′ of α ◦ f ∼ β ◦ f . By definition, this
means α∗([f ]) = β∗([f ]), and the lemma follows because [f ] was arbitrary. □

Next we show, there is a long exact sequence of a pair:

Lemma 2.3.5 (“Exactness”): Given a pair of spaces (A,B), there is a long
exact sequence

. . . → Ωk+1(A,B) ∂k−→ Ωk(B) i∗−→ Ωk(A) j∗−→ Ωk(A,B) → . . .

where i : (B, ∅) → (A, ∅) and j : (A, ∅) → (A,B) are the inclusions (of pairs).

Proof: We need to check exactness at each individual term:
Step 1: The sequence is exact at Ωk(B).
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“ker(i∗) ⊃ im(∂∗)”: Let [f : (X, ∂X) → (A,B)] ∈ Ωk+1(A,B). Then i∗∂k([f ]) =
i∗([f |∂X ]) = [i ◦ f |∂] = 0 via the null-bordism F = f : W = X → A.

“ker(i∗) ⊂ im(∂∗)”: Let [f : X → B] ∈ ker(i∗) ⊂ Ωk(B). Thus there is F : W → A,
with ∂W = X (as a valid bordism in Ω∗(B) = Ω∗(B, ∅), necessarily F (W∗) ⊂ ∅
so W∗ = ∅) and F |∂W = i ◦ f . Because F (∂W ) = i ◦ f(X) ⊂ B, we may define
[F : (W,∂W ) → (A,B)] ∈ Ωk+1(A,B), a valid element, with ∂k([F ]) = [F |∂W ] = [f ].

Step 2: The sequence is exact at Ωk(A).
“ker(j∗) ⊃ im(i∗)”: Let [f : X → B] ∈ Ωk(B). Then j∗(i∗([f ])) = [j ◦ i ◦ f ] = 0 ∈
Ωk(A,B), because F := (f ◦ πX) : W := X × I → A with W0 = X × {0}, W1 = ∅
and W∗ = X × {1} is a null-bordism, as F (W∗) = f(X) ⊂ B.

“ker(j∗) ⊂ im(i∗)”: Let [f : X → A] ∈ ker(j∗) ⊂ Ωk(A). Thus there is a null-
bordism F : W → A of [j ◦ f ] in Ωk(A,B), i. e. W1 = ∅ and F (W∗) ⊂ B. This
null-bordism in Ωk(A,B) can be used as a bordism f ∼F |W∗ in Ωk(A), by swapping
W1 ↔ W∗. This is allowed in Ω∗(A) = Ω∗(A, ∅), because W1 = ∅ is mapped to ∅ by
F and [f ] ∈ Ωk(A) ⇒ ∂X = ∅ ⇒ W0 ∩ W∗ = ∂W0 = ∂X = ∅ (so after swapping
W1 ↔ W∗, still W0 ∩ W1 = ∅ holds, as required for part (ii) of Def. 2.1.7). But
im(F |W∗) = F (W∗) ⊂ B, so [F |W∗ ] is in the image of i∗.

Step 3: The sequence is exact at Ωk(A,B).
“ker(∂∗) ⊃ im(j∗)”: ∂k−1j∗ = 0: Let [f : X → A] ∈ Ωk(A). Then ∂k−1([j ◦ f ]) =
[(j ◦ f)|∂X ] = [(j ◦ f)|∅] = 0 and there is nothing to show.

“ker(∂∗) ⊂ im(j∗)”: Let [f : (X, ∂X) → (A,B)] ∈ ker(∂k−1) ⊂ Ωk(A,B). Thus
there is a null-bordism F : W → B of ∂k−1([f ]) = [f |∂X ] in Ωk−1(B), i. e W1 = ∅ and
W∗ = ∅ (because F (W∗) ⊂ ∅), hence ∂W = W0 = ∂X and F |∂W = f |∂X . Glue f∪F :
X∪W0W → A by Lemma 1.4.25. Since ∂(X∪W0W ) = (∂X−W0)∪(∂W−W0) = ∅∪∅,
we have an element [f ∪ F ] ∈ Ωk(A). This gets mapped by j∗ to j ◦ (f ∪ F ), which
is bordant to f in Ωk(A,B) by the bordism

F ′ := (f ∪ F ) ◦ πX∪W0 W : W ′ := (X ∪W0 W ) × I → A

with the boundary-subdivision given by W ′
0 = (X ∪W0 W ) × {0}, W ′

1 = X × {1} and
W ′
∗ = W × {1}. This is allowed, because F ′(W ′

∗) = F (W ) ⊂ B, as F is a bordism in
Ωk−1(B). The result is hence, that j∗([f ∪ F ]) = [f ], and we have found a preimage.

This finishes the proof of “exactness”. □

Also additivity holds:

Lemma 2.3.6 (“Additivity”): Coproducts are preserved, i. e. given a disjoint
union over a family of topological spaces {Ai}i∈I , applying Ωk yields a direct
sum of abelian groups:

Ωk(
∐︂
i∈I

Ai) ∼=
⨁︂
i∈I

Ωk(Ai)
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Proof: Any [f : X → A], by f being continuous, thus mapping connected
components to connected images, can be described by its components, so the left
hand side is a subgroup of the product. Because X is compact, there is only a finite
number of components, and the image in the product is contained in the direct
sum, so the homomorphism (addition / disjoint union can be done component-wise)
indicated above is well-defined. It is injective, because given null-bordisms on all
components, the disjoint union of these null-bordisms is a null-bordism in Ωk(∐︁

i∈I Ai).
It is surjective, because any finite collection of ([fi : Xi ↦→ Ai])i∈I is the image of
[∐︁i∈I fi] (by finiteness, ∐︁

i∈I Xi is compact if the Xi are). □

Finally, all put together, we have proven the main result of this chapter:

Proposition 2.3.7: Given a strong t-class C ⊂ ∂-MHSS, the bordism-theory
ΩC∗(–, –) is a generalized homology theory.

Next, we will have a brief look at the bordism-theory defined by the strong t-class
of Example 2.2.5, i. e. the class C = Whgap 5

2 .

2.4 An Example-Theory
Combining the Example 2.2.5 and the strong t-class C = Whgap 5

2 it defines with
Prop. 2.3.7, one gets a first example for a topologically stratified bordism-theory,
with only algebraic-topological and homotopy-theoretical requirements to transitions
between strata. I. e. no bundle- or pl-hypothesis is needed.

Proposition 2.4.1: The bordism-theory ΩWhgap 5
2∗ (–, –), which allows as “probing”-

and “bordism”-spaces all compact, orientable, proper MHSS with boundary X,
with at most two meeting strata – the minimal ones having codimension ≥ 5 in
X – with simple links, i. e. holink-fibers L with Wh(π1(L) × Zk) = 0 ∀k ≥ 0, is
a generalized homology theory.

An “allowable” space X ∈ Whgap 5
2 of dimension n has a canonical “funda-

mental class” [X] ∈ ΩWhgap 5
2

n (X) given by

[X] := [id : X → X] ∈ ΩWhgap 5
2

n (X).

Using Lemma 2.2.2 with Example 2.1.3, the same results hold after replacing
Whgap 5

2 by Whgap 5
2 ∩ Witt, i. e. we may additionally require the allowable spaces

to be Witt.
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A discussion of implications and applications is deferred until after the generaliza-
tions provided by Chapter 3 (“Multiple Strata”) and Chapter 4 (“Homeomorphisms”).
See Chapter 5 (“The Main Theorem and its Applications”).

Remark 2.4.2: Note, that by the gap / codimension ≥ 5 requirement,

ΩWhgap 5
2

i (–, –) = ΩSTOP
i (–, –) for all i < 4

(in degree 4, the equivalence relation of bordism differs, as singular bordisms of
manifolds are allowed in ΩWhgap 5

2
i (–, –)), this theory agrees with manifold-bordism

in low degrees.
One might also fix a codimension k ≥ 5 and allow only one minimal stratum

of codimension exactly k (this is consistent with gluing). This produces bordism
groups ΩWh2,k

∗ , that agree with manifold-bordism in degrees i < k − 1, and with
natural transformations ΩWh2,k

i (–, –) ϕk−→ ΩWhgap 5
2

i (–, –).
These arguments work of course also, if we restrict to Witt-spaces, as manifolds

are trivially Witt.

While the bordism theory constructed so far is already quite interesting, there are
some evident improvements to be made. An overview of these will be discussed in
Section 2.6 (“Improvements”) and Section 6.3 (“Outlook and Further Ideas”).

2.5 Reduced Theories
This section describes, how to construct a reduced homology theory in a standard
way (see for example [Ati67; Hat02; Bre97]), but also gives a certain “geometric
description” of the suspension isomorphism.

The material of this section is relevant to the application to L-classes in Section 5.3
(“L-Classes”). The “geometric description” will give a connection to the transversality-
based construction of Goresky–MacPherson L-classes [GM80].

There are different (equivalent) ways to axiomatize reduced (generalized) homology
theories, the main “choice” to be made is, whether or not one combines long exact
sequence and excision into a “Mayer–Vietoris” sequence (or a MV-like long exact
sequence, see e. g. [Hat02, §2.3 (p. 160ff)] for a CW treatment), or treats excision
separately via a suspension-isomorphism. Since transversality / excision will usually
be the center of our attention, we use the latter one. This additionally allows for a
formulation analogously to the one given for (unreduced) theories in Def. 2.3.1. We
briefly show near the end of this section, how the axioms given here induce a “Mayer–
Vietoris-like” long exact sequence (and an actual Mayer–Vietoris-sequence). The
opposite-direction, deducing the suspension-isomorphism from the Mayer–Vietoris-
sequence, is also easily obtained.
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Definition 2.5.1: A reduced (generalized) homology theory h̃∗ is a sequence of
covariant functors from the category of well-pointed7 topological spaces (with
pointed maps) to the category of abelian groups with a sequence of natural
transformations susp : h̃k(–) → h̃k+1(Σ –), called the suspension-homomorphism,
such that

(1) Homotopy: Homotopic maps (of pointed spaces) f ≃ g induce the same
homomorphisms h̃k(f) = h̃k(g) on reduced homology ∀k.

(2) Exactness: Given a pair of pointed spaces (X,A), using the inclusions
i : A → X and j : X → c(i), where c(i) = cyl(i)/A is the mapping-cone,
with induced maps i∗ := h̃∗(i) and j∗ := h̃∗(j), there is an exact sequence
in reduced homology (for all k):

h̃k(A) ik−→ h̃k(X) jk−→ h̃k(c(i)).

(3) Excision / Suspension: The suspension homomorphisms suspk(X) are iso-
morphisms for all k and X.

(4) Wedge / Milnor-Additivity: Co-products are mapped to co-products, i. e.
given an (arbitrary) one-point-union X = ∨αXα, then the inclusions
iα : Xα → X induce an isomorphism (in each degree k):

⊕αh̃k(Xα) +αh̃k(iα)−−−−−→ h̃k(∨αXα)

When talking about pointed spaces, these are supposed to be well-pointed. One
can translate between reduced and unreduced homology-theories (see also Def. 2.5.15
for the “other direction”)

Definition 2.5.2: Given a generalized homology theory H∗(–, –), the associated
reduced theory H̃∗(–) is the covariant functor from pointed spaces to abelian
groups, given degree-wise on (X, ∗) as the cokernel (in the category of abelian
groups) of the homomorphism incl∗ = H∗(incl : {∗} → X) induced by the
base-point inclusion. Thus (degree-wise)

0 → Hi({∗}) incl∗−−→ Hi(X) q−→ H̃ i(X) → 0

is a short exact sequence. It splits (on the left side) via the homomorphism
induced by the unique map X → {pt}, so

Hi(X) ∼= H̃ i(X) ⊕Hi({pt})

with incl : {∗} → X inducing the summand-inclusion.
We write JfK for the equivalence class of [f ], that is JfK := q([f ]).
Induced maps are given as H̃∗(f)(JxK) = JH∗(f)([x])K, which is well-defined,

because the pointed map f factors the inclusion of the base-point into its target.
7Well-pointed means pointed, with the base-point-inclusion a co-fibration, see proof of Lemma 2.5.7.
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Evidently this “kills” the homology of contractible spaces.

Example 2.5.3: Given a contractible space X ≃ {pt}, we have H̃∗(X) = 0.
Proof: The inclusion-induced homomorphism incl∗ is an isomorphism by homotopy-

invariance and long exact sequence (of unreduced homology). □

This H̃ automatically has the properties of a reduced homology-theory. For
homotopy-invariance, and additivity implying the wedge-axiom, this is clear. The
exact sequence of a pair can be deduced from the (unreduced) long exact sequence
as follows (for a “long” version, see the Mayer–Vietoris-sequence Lemma 2.5.13 and
Cor. 2.5.13–1)

Lemma 2.5.4: Given a pointed pair (X,A) (i. e. A ⊂ X are pointed spaces, with
the same base-point ∗A = ∗X), there is a long exact sequence

. . . → H̃ i(A) → H̃ i(X) j̃∗−→ Hi(X,A) ∂̃∗−→ H̃ i−1(A) → . . .

where ∂̃∗ is the composition ∂̃∗ : Hi(X,A) ∂∗−→ Hi−1(A) q−→ H̃ i−1(A) and (see
proof) j̃∗(q(x)) := j∗(x).

Proof: Any y ∈ H̃ i(X) can be written as q(x) + η for x ∈ Hi(X) and η ∈ Hi({∗}),
using j : (X, ∅) → (X,A), define j̃∗(q(x) + η) := j∗(x) := H∗(j)(x). This is well-
defined, because incl∗ : Hi({∗}) → Hi(X) factors through Hi(A), as the topological
inclusion does, and by the long exact sequence (for the unreduced theory) of the pair
(X,A), thus j∗(incl∗(η)) = 0.

Note that in the diagram

0 0 0

. . . Hi({∗}) Hi({∗}) 0 . . .

. . . Hi(A) Hi(X) Hi(X,A) . . .

. . . H̃i(A) H̃i(X) Hi(X,A) . . .

0 0 0

the middle row is the long exact sequence (for the unreduced theory) of the pair (X,A)
and bottom row is trivially exact. The first two columns are short exact sequences
by the definition of the reduced theory, the last column is trivially short exact. By
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construction of j̃∗ and ∂̃∗ the diagram commutes. By a “standard” diagram-chase
argument (see Lemma 2.5.5 below), the first row is a long exact sequence. This
proofs the lemma. □

Corollary 2.5.4–1: Given a pointed pair (X,A), using the inclusions i : A → X
and j : X → c(i), there is a exact sequence

H̃ i(A) i∗−→ H̃ i(X) j∗−→ H̃ i(c(i))

Proof: The inclusion of the base-point of A into the contractible c(A) induces an
isomorphism while factoring (with i) the inclusion of the base-point into c(i). So
in the (unreduced) long exact sequence of the pair (c(i) = X ∪A c(A), c(A)), we
have ∂∗ = 0, thus by uniqueness of the cokernel, Hi(X,A) ∼= H̃ i(c(i)). Composing
this with j̃∗ is just j∗, because the η ∈ Hi({∗}) (see proof above) gets mapped to
the other summand (of Hi(c(i)) ∼= H̃ i(c(i)) ⊕ Hi({∗})), since, as was remarked in
Def. 2.5.2, this splitting is induced by the base-point-inclusion. □

This uses the following technical result (this is certainly well-know; see for example
“Nine-Lemma”)

Lemma 2.5.5: Given a commutative diagram

0 0 0

. . . A1 A2 A3
. . .

a0 a1 a2 a3

. . . B1 B2 B3
. . .

b0 b1 b2 b3

. . . C1 C2 C3
. . .

c0 c1 c2 c3

0 0 0

α1

β1

α2

β2

α3

β3

with long exact second “B∗” and third “A∗” row and short exact columns, then
the first row “C∗” is long exact.

Proof: By translational symmetry in the horizontal direction, we need only to check
this at C2. Note that by exactness of the columns, the β∗ are surjective, and the α∗
are injective. To maintain some amount of readability, variables are named with a
small letter corresponding to their row, and one, zero or two primes respectively for
the different columns (e. g. c ∈ C2, c′ ∈ C3 or a′′ ∈ A1 etc.)
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“im ⊂ ker”: Let c = c1(c′) ∈ im(c1). Because β1 is surjective, there is b′ ∈ B1
with β1(b′) = c′. So c2(c) = c2c1(c′) = c2c1β1(b′), and by commutativity, c2c1β1(b′) =
β3b2b1(b′). But the second row being exact implies b2b1(b′) = 0, thus c2(c) = 0.

“ker ⊂ im”: Let c ∈ ker(c2), i. e. c2(c) = 0. By surjectivity of β2, there is b ∈ B2
with β2(b) = c. Set b′′ := b2(b), then by commutativity β3(b′′) = c2(c) = 0. By
exactness of the third column, there is hence a′′ ∈ A3 with α3(a′′) = b′′. Note
that b3(b′′) = b3b2(b) = 0 by exactness of the middle row, so that by injectivity of
α4 and commutativity a3(a′′) = 0. Hence by exactness of the bottom row, there
is a ∈ A2 with a2(a) = a′′. Set b̃ := α2(a). By commutativity, b2(b̃) = b′ and
therefore b2(b − b̃) = b′ − b′ = 0, so that by exactness of the middle row, there
is b′′ ∈ B1 with b1(b′′) = b − b̃. Define c′′ := β1(b′′). Then by commutativity,
c1(c′′) = β2(b− b̃) = β2(b) − β2α2(a) (by definition of b̃) = β2(b) (by exactness of the
middle column) = c (by definition of b). So c′′ is the required preimage. □

Remark 2.5.6: From an abstract point of view, the axiomatization of a reduced
theory should not feature the unreduced groups H(–, –). While “H̃∗(X,A) :=
H∗(X,A) for A ̸= ∅” would solve this, one may want to keep the description of
H̃∗(–) as a functor with one argument. This can be achieved rather directly, by
restricting the category of spaces on which H̃ is defined, to (e. g.) CW-complexes,
where, for a (closed) subcomplex A < X (whose inclusion is automatically a co-
fibration), it holds that H∗(X,A) ∼= H̃(X/A). Hence in this case, the replacement
“H∗(X,A) ↦→ H̃(X/A)” in the formulation of the long exact sequence works. More
generally, we have to work with something like H̃∗(X∪c(A)). Such constructions
make sense, as long as spaces are at least well-pointed (see proof of Lemma 2.5.7
below).

There is a natural suspension, which is an isomorphism by excision

Lemma 2.5.7: There are natural suspension-isomorphisms

susp : H̃ i(X) → H̃ i+1(ΣX)

Proof: First note, that X is supposed to be well-pointed, thus so are ΣX and cX
and further reduced and unreduced suspensions are homotopy equivalent ΣX ≃ SX
(see e. g. [Bre97, Thm. VII.1.9 (p. 436)]. Write SX = c+X ∪ c−X. Then by the
(reduced) “long” exact sequence (Lemma 2.5.4) of the pair (ΣX, c−X) and c−X ≃
{pt} contractible, there is an isomorphism

j̃∗ : H̃ i+1(ΣX) → Hi+1(ΣX, c−X).

By the (reduced) “long” exact sequence (Lemma 2.5.4) of the pair (c+X,X) and
c+X ≃ {pt} contractible, there is an isomorphism

∂̃ : Hi+1(c+X,X) → H̃ i(X).
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Further by excision (of a small neighborhood N of the cone-point of c+X) and
homotopy-invariance, there is an isomorphism

exc : Hi+1(c+X,X) → Hi+1(ΣX, c−X),
so that, all combined, we can define susp as a composition of these isomorphisms

susp : H̃ i(X) ∂̃
−1
∗−−→ Hi+1(c+X,X)

exc−→ Hi+1(ΣX, c−X) j̃
−1
∗−−→ H̃ i+1(ΣX)

□

In fact, for the case of bordism-theories, the inverse is given by the following
geometric construction (very similar to the inverse homomorphism of excision):

Example 2.5.8: If H̃ is the reduced homology theory associated to a bordism
theory in the sense of Section 2.1 (“Bordism Theories”), then, for X = Sn a
sphere, the inverse of the suspension

susp−1 : H̃ i+1(Sn+1) → H̃ i(Sn)
applied to Jf : Y → Sn+1K ∈ H̃ i+1(Sn+1) is represented by the cut of Y over a
small deformation-retract-neighborhood U of the “equator” Sn ⊂ Sn+1, pushed
homotopically over the equator along the deformation-retraction.

Proof: By the proof of the lemma, susp−1 = ∂̃∗◦exc−1 ◦j̃∗. From the definition of j̃∗
(and the well-definedness arguments), j̃∗(JfK]) merely “interprets” the representative
f as representative in Hi+1(ΣX, c−X), so does not change f or Y .

The inverse of exc was constructed in Chapter 2 (“Bordism Constructions”) by
cutting (using ΣX ≃ SX, see proof of Lemma 2.5.7) between closure(SX − c−X)
and closure(N), where N is the small neighborhood of the cone-point of c+X from
the proof of the lemma. Clearly N can be chosen, such that c+X −N deformation
retracts to X, for example by restricting the cone-coordinate N := cϵX. This
produces exc−1([f ]) = [f |Y≥ ], where the boundary Y0 of Y≥ is the “cut”, because Y
was closed initially.

Finally ∂̃−1
∗ ([f |Y≥ ]) = [f |Y0 ], interpreted as the equivalence class Jf |Y0K = q([f |Y0 ])

in the reduced theory H̃ i(Sn). Choose U to contain c+X −N , e. g. by removing a
small cone (cϵX) on both sides, then the cut is over U . The deformation-retraction
of U to the equator pushes f |Y0 over the equator.

Hence susp−1(JfK) is indeed represented by the cut f |Y0 pushed over the equator.
□

For later reference, we want to formalize this connection of the geometric construc-
tion of susp−j to transversality. The example given afterwards should clarify the
intent / use-case of this definition.
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Definition 2.5.9: A reduced homology-theory, induced by a bordism-theory, has
a geometric description of suspension if, given f : X → ΣjSk and f⊥ ≃ f
transverse to Sk ⊂ ΣjSk = Sj+k, in the sense, that f−1

⊥ (Sk) is a MHSS and
there is a map (generalizing a stratified bi-collar) h : f−1

⊥ (Sk) × Rj → X, which
is a stratified homeomorphism to its image, such that f⊥ ◦ h is compatible with
the (trivial) normal-bundle of Sk ⊂ Sj+k (i. e. it is given by f⊥ ◦ h|Sk × idRj on
a trivialization). Then

susp−j : H̃ i+j(Sk+j) → H̃ i(Sk), JfK ↦→ Jf⊥K

i. e. the image of susp−j can be represented by Jf⊥K.

Note that such a f⊥ always exists by repeated cutting, but the point is that any
choice is valid, so for example:

Example 2.5.10: Let X be a pl-pseudomanifold with X ∈ Whgap 5
2 ∩ Witt. Then

a map φ : X → Sj = ΣjS0 can be made transverse, in the sense of the
definition above, but additionally, the transverse preimage can be chosen to be a
pl-pseudomanifold.

So, given a “geometric description of suspension” in the sense of Def. 2.5.9,
susp−j(JφK) can again be represented by a pl-pseudomanifold, if [φ] can, i. e.
desuspension properly restricts to geometric sub-classes where transversality is
available (potentially by other means).

Proof: For pl-compatibly stratified spaces, for example Akin’s [Aki75] arguments
apply to construct such cuts (see e. g. [Sie83]).

The reason this works in PL is due to the following observation: pl-objects always
(locally) have a “smallest scale”, and, by constructing structures “half that size” one
can always guarantee transversality. For example, given A± < X closed disjoint
subcomplexes, to cut between them, let N+ be a regular neighborhood of A+ in
the barycentric subdivision. Then ∂N+ is “between” A± as required, but it is also
transverse to the compatibly stratified strata (because it is on a simplex level).
Further, strata of the cut being manifolds, and the cut being a pseudomanifold, can
be decided by the links (which do not “considerably” change in the bi-collared cut).
For example in PL, knowing that the bi-collar M0 × R in a stratum is a manifold,
implies that M0, the stratum of the cut, is a manifold. In the topological category
this is not true (cf. [Bin58]).

By the “geometric description of suspension”, such a transverse (in the pl-sense)
φ⊥| represents susp−j(JφK). □

The motivating Example 2.5.8 given above for our bordism-theories (induced by
strong t-classes), shows, that the associated reduced theories have this “geometric”
property:
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Lemma 2.5.11: Given a strong t-class C, then Ω̃C∗(–) has a geometric description
of suspension.

Proof: From the geometric construction of desuspension Example 2.5.8, we find
that susp−j(JφK) is obtained by cutting near the equator, then near the equator of
the equator and so on j times. Finally we obtain a codimension j subspace of X,
say X[j] of X and ψ(Jf : X → Sk+jK) = Jf | : X[j] → SkK. The repeated bi-collars of
the cuts give a local structure of the form (. . . ((X[j] × R) × R) . . .× R), i. e. a trivial
normal-bundle (of rank j).

By well-definedness of the desuspension homomorphism, if we are given a transverse
f⊥ : X → ΣjSk ≃ f , we may successively pick these cuts (near M) as hyperplanes
in the normal-bundle. Then the image susp−j(Jf⊥K) is represented by f⊥|X[j] , where
X[j] = f−1

⊥ (Sk) and f ≃ f⊥ implies JfK = Jf⊥K.
These cuts are all “eligible” for use in the bordism-theory, because strong t-classes

were required to be stable classes, thus persist on a bi-collared cut automatically. □

In such cases, the suspension-isomorphisms and “suspension of maps” are are
compatible, at least for sufficiently “nice” target-space:

Lemma 2.5.12: Let H̃ be a reduced homology theory, given as bordism of a strong
t-class (so that there is a geometric description of the suspension-isomorphism
and the “multiplication” below is well-defined). Given a map φ : X → Sk, define
(not quite in the standard way, as we multiply the sphere on the left-hand-side,
rather than smashing it, hence the notation with a lower cross)

Σj
×φ : X × Sj φ×id−−−→ Sk × Sj → Sk × Sj/Sk ∨ Sj = Sk ∧ Sj = ΣjSk = Sk+j

and the “multiplication” (Lemma 2.1.13) with the (manifold) fundamental-class
[Sj id−→ Sj] ∈ ΩSTOP

j (Sj)

– ×[Sj] : H̃ i(X) → H̃ i+j(X × Sj), [Y f−→ X] ↦→ [Y × Sj f×id−−→ X × Sj]

for the induced homomorphisms on reduced homology:

(Σj
×φ)∗ ◦ (– ×[Sj]) = suspj ◦φ∗ : H̃ i(X) → H̃ i+j(Sk+j)

Proof: For well-definedness of the multiplication, see Lemma 2.1.13.
“Case j = 1”: Given Jf : Y → XK ∈ H̃ i(X), by definition (Σ1

×φ)∗(JfK × [S1]) =
JΣ1
×φ ◦ (f × idS1)K. The geometric description of desuspension Lemma 2.5.11 shows,

that susp−1(JΣ1
×φ◦ (f× idS1)K) is represented by restriction to a cut near the equator.

By well-definedness, we may use any such cut, we pick JΣ1
×φ ◦ (f × idS1)|Y×S0K,

which is clearly stratified bi-collared. But Σ1
×φ ◦ (f × idS1)|Y×S0 = φ ◦ f , so

susp−1 ◦(Σ1
×φ)∗(JfK × [S1]) = φ∗(JfK).
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“General j” (see also Section 5.4 (“Singular Transversality”)): Desuspending
repeatedly is the same as cutting repeatedly (Lemma 2.5.11; because susp−j =
susp−1 ◦ . . . ◦ susp−1, j-times, by definition), and we can do so over the respective
equators (Sj−1 ⊂ Sj , then Sj−2 ⊂ Sj−1 etc.). So we find susp−j ◦(Σj

×φ)∗(JfK×[Sj ]) =
JΣj
×φ ◦ (f × idSj )|Y×S0K, and as before Σj

×φ ◦ (f × idSj )|Y×S0 = φ ◦ f . □

Finally we return to the axiomatizations to indicate, how the transversality can
alternatively be encapsulated in suitable “boundaries”, by combining exact sequence
and suspension / excision into a long exact and a Mayer–Vietoris-sequence:

Lemma 2.5.13: Let h̃∗ be a reduced homology theory. Given a pair of pointed
spaces (X,A), there is a long exact sequence, using the inclusions i : A → X
and j : X → c(i)

. . . → h̃i(A) i∗−→ h̃i(X) j∗−→ h̃i(c(i)) ∂∗−→ h̃i−1(A) → . . .

Proof: The argument is the same one as commonly used for the constructing
homotopy exact sequences / Puppe-sequences. By repeated use of the exact sequence
for the pair (X,A) then for (c(i), X) one gets an exact sequence

h̃i(A) i∗−→ h̃i(X) j∗−→ h̃i(c(i)) k∗−→ h̃i(c(j)) l∗−→ h̃i(c(k))

Note that c(j) ≃ ΣA (see for example [Bre97, Proof of Cor. 5.4 (p. 446)]). By this
homotopy-equivalence indicated above and the (inverse) suspension-isomorphism

h̃i(c(j)) ∼= h̃i(ΣX) ∼= h̃i−1(X)

thus defining ∂∗ := susp−1 ◦k∗, we are only left with checking exactness at A. This
follows by l ≃ Σi (after identifying domains and targets up to the homotopy-
equivalences above; see again [Bre97, Proof of Cor. 5.4 (p. 446)]). □

Corollary 2.5.13–1: Let h̃∗ be a reduced homology theory. Given X and subsets
A,B ⊂ X with X ⊂ interior(A) ∪ interior(B) and A ∩ B ̸= ∅ (with a common
base-point in A ∩ B), there is a Mayer–Vietoris-sequence, i. e. a long exact
sequence

. . . → h̃i(A∩B) (iA
∗ ,iB

∗ )−−−−→ h̃i(A) ⊕ h̃i(B) jA
∗ −jB

∗−−−−→ h̃i(X) ∂MV
∗−−→ h̃i−1(A∩B) → . . .

where iA : A ∩B → A and jA : A → X, similarly for B, are the inclusions.
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Proof: We combine the sequences obtained via the lemma for the pairs (B,A ∩
B) and (X,A) into a commutative ladder (with vertical arrows inclusion-induced
homomorphisms):

. . . h̃i+1(B ∪ c(A ∩B)) h̃i(A ∩B) h̃i(B) h̃i(B ∪ c(A ∩B)) . . .

. . . h̃i+1(X ∪ c(A))

∼=

h̃i(A) h̃i(X) h̃i(X ∪ c(A))

∼=

. . .

The arrows marked by “∼=” are indeed isomorphisms, because by A ∩ B ̸= ∅ and
X ⊂ interior(A) ∪ interior(B) we find, that (X,B) is excisive with respect to X −A
in the sense, that closure(X − A) ⊂ interior(B), thus B ∪ c(A ∩ B) ≃ B ∪ c(A),
where the right-hand-side is simply X ∪ c(A) (by X = A ∪B).

Now, define ∂MV
∗ as the following composition: Starting at h̃i(X) in the bottom

row, go one step to the right, then up the inverse-isomorphism to the top-row, then
one step further to the right to h̃i−1(A ∩ B). Then fitting this in a long sequence
with the “direct sum” of the two arrows leaving h̃i−1(A ∩B) and then subtracting
arrows from there in h̃i−1(X) yields indeed a long exact sequence, as can be checked
by a diagram-chase. □

Conversely, the Mayer–Vietoris-sequence can be used to obtain suspension-iso-
morphisms

Lemma 2.5.14: Let h̃∗ be a functor satisfying the reduced homology-theory
axioms as stated in Def. 2.5.1, except for the suspension-isomorphisms, but
such that (natural) Mayer–Vietoris-sequences exist. Then there are (natural)
suspension-isomorphisms.

Proof: Given X, write ΣX = c+(X) ∪ c−(X), but choose the cones such that they
overlap as c+(X) ∩ c−(X) = X × (−ϵ, ϵ) in the middle. Apply the Mayer–Vietoris-
sequence to ΣX = c+(X)∪ c−(X). Since the cones are contractible h̃i(c±(X)) = 0 by
Example 2.5.3, so ∂MV

∗ : h̃i(ΣX) → h̃i−1(c+(X) ∩ c−(X)) is an isomorphism. Further
c+(X) ∩ c−(X) ≃ X, so this is the (inverse of the) suspension-isomorphism already.
□

For completeness, we note, that of course the other direction, reduced theories
defining unreduced ones also works (and the constructions are easily seen to be
“inverse” to each other).

Definition 2.5.15: Given a reduced homology-theory h̃∗, there is an associated
unreduced theory given by h(X,A) := h∗̃(X+ ∪ c(A+)), where X+ and A+ are the
union with a disjoint base-point. Boundary-homomorphisms can be constructed
from Lemma 2.5.13.
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To summarize, we have seen, that excision, suspension-isomorphisms and the
boundary-map of a Mayer-Vietoris-sequence are very similar concepts. In the
case of bordism-theories, they are further very closely related to transversality, as
was formalized for the suspension-isomorphisms in Def. 2.5.9, to allow for certain
“restrictions to geometric subclasses”, cf. Example 2.5.10.

2.6 Improvements
Here, possible and desirable improvements of the example given in Section 2.4 (“An
Example-Theory”) are discussed. These concern

(a) The large-codimension requirement.
(b) The discussion of homeomorphisms.
(c) The restriction to spaces with at most two meeting strata.
(d) The obstructions involved.

(a) The codimension requirement: The issue becomes clear from the proof of
Example 2.2.5, where repeated “cutting” of spaces eventually renders controlled
end-theory inapplicable through violation of the high-dimensionality requirement.

Still, this seems “accidental” / unnecessary from the point of view that we are
interested mostly in high-dimensional spaces. However, we are ultimately interested
in a strong geometric description (e. g. we want a signature-invariant), so working
“up to suspension” (in a “theory-of-spectra” sense) seems not to be the solution we
want.

It might be possible to transition into a smooth or pl theory on low skeleta, as
illustrated for the manifold case in the following example.

Example 2.6.1: Let M be a closed 4-manifold, g : M → [−1, 1] a continuous map.
The high-dimensional arguments of [KS77] do not apply to make g transverse to
0.

However 4-manifolds are close to being smooth, in the following sense [FQ90,
§8.8 (p. 131–133)]: There is a discrete point-set Σ ⊂ M such that M − Σ has a
smooth structure. By compactness Σ is finite, and g(Σ) can easily be “moved
away from” 0, for example by adding bump-functions supported only close to Σ.
Further, there is a close, smooth approximation of g|M−Σ, which in turn is close
to a (smoothly) transverse to 0 map (near the complement of a small neighborhood
of Σ). Here, “close” can be taken to mean half the minimum 1/2 min(g(Σ) ∪ {ϵ}),
for some fixed (target-size) ϵ. Thus g can be made transverse to 0 by small
modification – near Σ, it is trivially transverse to 0, because g|−1({0}) = ∅. A
small homotopy is given by the straight-line homotopy in [−1, 1].

Of course, the problem for manifolds has long been well-understood and there
are much stronger transversality-theorems known [Qui88b], but this example still
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serves well to see how “closeness” to the smooth category can help to understand
low-dimensional transversality problems in the topological category.

As it turns out, some aspects of this approach seem to apply to the MHSS case.
For example, mapping-cylinder neighborhoods away from a set of points would
clearly suffice for the cutting arguments, and Sard’s theorem allows to carry over
smooth cylinders to the cut (because the map into R is “usually” transverse on the
boundary / completion of the upper stratum, see Lemma 1.6.9). “Smooth enough”
(manifold) structures can be obtained through “almost smoothing” arguments [FQ90]
(for 5-manifolds8), so it would remain to smooth certain MAFs (with, for example, a
Whitehead-condition) without changing the stratified homeomorphism-type of the
mapping-cylinders. One may want to construct a (5+1)-dimensional h-cobordism
controlled by a smooth submersion (Ehresmann’s lemma provides most of the
“small-retractions”) to achieve this, but while smooth refinements of end- and h-
cobordism theorems (in dimension 5+1) seem to allow for a suitable smoothing of
individual “monotonic directions” (see Example 1.2.3 and discussion thereafter; use
end-completions to “divide” the space in h-cobordism-slices getting thinner towards
one side of the “large-scale” h-cobordism being constructed, see above, then use
the thin-h-cobordism-theorem on these slices), however making them independent9

seems to be hard. This may be due to closeness to 4- or 5-dimensional h-cobordisms
(even though certain singularities could be allowed, see footnote above).

It is unclear as of now, whether this issue can be resolved (e. g. for low dimension
of the lower stratum / “few directions” to be made independent) or if a connection to
4- or 5-dimensional h-cobordisms can be made precise (in which case the difficulty of
the problem could at least be understood to be rooted in the extraordinarily hard
problem of low dimensional h-cobordisms). Note, that nevertheless, this problem is
considerably “easier” than extending bundle structures (for example from the “sides”
of a mapping-cylinder of a homeomorphism), in that, for the “difficult cuts”, in
dimensions 4 and 5, one can allow for 1-dimensional, and 0-dimensional respectively,
singularities, where the “nice” structure can be interrupted (cf. Example 2.6.1).
Additionally, working with bundles, there is no easy way to preempt the issue by a
codimension-condition.

We briefly return to the dimensional-gap problem in Section 3.3 (“Special Gaps”),
where a very simple, but still useful special case (adding a minimal stratum, such that
the union with the next stratum one dimension higher, is a manifold with boundary)
is treated.

(b) (Un)stratified Homeomorphisms: One would hope, that intrinsic stratifica-
tions (cf. Section 1.10 (“Intrinsic Stratifications”)) can be used to deal even with

8The non-smooth set is 1-dimensional for 5-manifolds, so intersects the codimension 1 cut “generally”
in a point-set, which could be ignored for the subsequent cuts.

9Even up to, say, 1-dimensional a subspace, which would be tolerable, as it would (“generally”)
intersect the cut in a 0-dimensional, thus for subsequent cuts ignorable, region.
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unstratified homeomorphisms. There is a difficulty however: Stratifications of the
mapping-cylinder constructed using intrinsic stratifications (see [Ban07, (p. 136f)]
and [Fri15, (p. 14f)]) typically introduce “additional” strata, so even given a homeo-
morphism h : X ∼−→ Y , with both X and Y having only two strata, a stratification of
cyl(h) ∼= X × I ∼= Y × I will typically have more than two strata (see Section 4.2
(“Spaces With at Most Two Strata”)). So a treatment of unstratified homeomor-
phisms requires the material in Chapter 3 (“Multiple Strata”). A discussion is hence
given afterwards in Chapter 4 (“Homeomorphisms”).

(c) Multiple Strata: While statements and results become much harder to read,
the “underlying technology” used up until now – especially Quinn’s controlled end-
theory and the transversality-theorem by Connolly and Vajiac – is available, with
almost no further restrictions, on MHSS with more than two strata. This will be
used to extend our results in Chapter 3 (“Multiple Strata”).

Multiple strata – besides being desirable by their own right – are also important to
understand certain two-stratum properties, that are naturally connected to multiple-
stratum questions. These are, for example, unstratified homeomorphisms (see (b)
above), transversality on spaces with boundary (see Cor. 3.2.3–1) or products (see
Lemma 2.1.13).

(d) Obstructions: While extremely interesting, the questions discussed under this
point are far beyond the scope of this thesis.

The connection of transversality and end-theory goes in both directions, for
example Connolly and Vajiac [CV99] give a “backward direction” showing, that
near a bi-collared cut, there is also a mapping-cylinder (in high dimensions). This
allows them to state a one-to-one relation of the existence of extensions of bi-collared
cuts into higher strata and certain local end-obstructions near the cut in the lower
skeleton.

This is not quite what we want however. The transversality-question relevant to
bordism-theories as described here, fundamentally differs from this notion in at least
two ways. First, we need not only be able to extend one fixed in advance cut, rather,
it must be possible to extend any cut – up to what is the second difference: Extending
a fixed choice of cut in the lower stratum is not necessary for the transversality
properties we want. Really, what is required is the existence of some cut between
closed disjoint subsets D± that can be extended. This seems to be a “cohomological”
question, because we are asking for an obstruction defined on something closer to an
element of cohomotopy of the bottom-stratum π1(B) or framed manifold-bordism
ΩSO, framed

n−1 (B) than to a “rigid choice” of cut.
Quinn’s [Qui82a] obstruction theory, while it extends well beyond the “point-wise” /

fiber-wise vanishing of obstruction-groups – with regard to both providing groups
depending on B and obstruction-elements within those groups – does not seem to
answer this type of question. It is not event quite evident to what degree this actually
changes the problem, as illustrated by this example:
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Example 2.6.2: Given a MHSS X ⊃ B with dim(B) = 1 and either a cylinder-
neighborhood of B in X, or, both vanishing end-obstruction [Qui82a] q0(X,B) =
0 and dim(X) ≥ 6. For example, if the holink-evaluation is of the form p = p′×
idK with K a finite complex, then q0 is multiplicative with the euler-characteristic
χ(K) of K by q0(X,B) = χ(K)q0(X,B′) [Qui82a, Prop. 1.8c (p. 359)], so if
X = Y × S1 (with χ(S1) = 0), then these are satisfied.

In this case, transversality (in the sense of Section 1.6 (“Stratified Transver-
sality”)) by itself is not an issue, because a cylinder-neighborhood exists. Further
any resulting cut X0 has as lower stratum a finite point-set, which can be avoided
for further cuts.

Stability would, however, require that X0 × I be allowable, which is not evident
from this argument. In fact, the (end-)obstruction here is given by an element
over the point, thus again “fiber-wise”.

The “regression” of the last paragraph may indeed always happen (by “cutting
down” to B only points – automatically maintaining holink-fiber ho-types – and
then crossing with I). Note however, that even then, we would have an element q0
over the point, that we need to vanish – for any cut again however, so this advantage
may not persist either.

Since (compatibly) pl-spaces are “easy” to cut (see example below), but there is no
obvious reason why they would generally satisfy the Whitehead-condition as stated
here, one would expect some generalization to be possible.

Example 2.6.3: Cf. [Aki75]: Given a compatibly (skeleta are subcomplexes)
triangulated compact stratified space X, and two disjoint subcomplexes B+, B− <
X, one can cut between B+ and B− (near B−) by defining X0 as the boundary
of a regular neighborhood of B− in the first barycentric subdivision of (the
triangulation of) X.

This is (essentially) the same as picking a map g : X → [−1, 1], mapping B±
to ±1, triangulate [−1, 1] such that 0 is in the interior of some 1 simplex, and
use simplicial approximation on g to obtain g⊥. Since g⊥ is linear on simplices,
the preimage of 0 is bi-collared in X (and thus automatically inherits some
properties – for example concerning links – from the ambient X). One may want
to compare this to the usual proof of the excision-axiom for singular homology,
which works similarly.

While one could, of course just “brute force” this into the theory, by additionally
allowing skeleta if they have a compatibly pl neighborhood. However, this would not
help the treatment of non-pl homeomorphisms of such spaces.
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This chapter generalizes the treatment, so far given for spaces with at most two
strata, to spaces with arbitrarily (finitely) many strata.

First, in Section 3.1 (“Background”), generalized statements of the techniques
and definitions involved are given. This section is mostly technical. Afterwards, in
Section 3.2 (“Absorbing Boundary”), corresponding results for spaces with bound-
aries are given, by (temporarily) “absorbing” the boundary as a codimension 1
stratum. Then, Section 3.3 (“Special Gaps”) discusses a simple, but useful for
Chapter 4 (“Homeomorphisms”), special case where the codimension-requirement
can be weakened. Finally, the results are combined to construct a more general
transversality-class in Section 3.4 (“Transversality-Class”), which will be used in the
main theorem (Thm. 5.1.2) to obtain a corresponding generalized homology theory
realized as bordism-theory.

3.1 Background
The introductory Chapter 1 (“Background”) only introduced MHSS with two strata to
simplify notation. The relevant results from controlled topology and on transversality
remain valid in this case. Here, the formal statements and references are given,
preparing for the further treatment of the “multi-stratum” case.

We start by giving a definition of general MHSS

Definition 3.1.1: [Qui88a, Def. 3.1 (p. 30)]: A manifold homotopy stratified space
(MHSS) X is a separated, metric space, filtered by closed subsets Xn ⊃ · · · ⊃ X0,
such that:

(i) Strata Xi := X i −X i−1 are topological manifolds.
(ii) Strata meet such that ∀i < k : Xi ⊂ Xk ∪Xi is tame and

(iii) the homotopy-links ev0 : holink(Xk ∪Xi, Xi) → Xi are fibrations.
(iv) Local homotopy-links (see below) are compactly dominated. [Hug99b]

The dimension of X is the manifold-dimension of the top-stratum Xn := Xn −
Xn−1, i. e. dim(X) := dim(Xn). We assume X is filtered by dimension, i. e.
dim(Xi) = i for non-empty Xi.

If only (ii) and (iii) hold, we call X an HSS.

The “local homotopy-links” in this case are themselves stratified spaces:
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Definition 3.1.2: Let X be a topological space, Y ⊂ X, and X filtered by closed
subsets Xn ⊃ · · · ⊃ X0.

[Hug99b, §4 (p. 311f)]: The stratified homotopy-link holinkS(X, Y ) is the
filtered space given by the filtration (for i = 0, . . . , n)

holinki
S(X, Y ) :=

{︂
γ ∈ holink(X, Y )

⃓⃓⃓
γ

(︂
(0, 1]

)︂
⊂ Xi

}︂
.

[Hug99b, §5 (p. 317ff)]: Given x ∈ X, there is a unique k with x ∈ Xk, and
the local homotopy-link at x is the filtered space given by the filtration (for
i = 0, . . . , n)

holinki(X, x) :=
{︂
γ ∈ holinki

S(X,Xk)
⃓⃓⃓
γ(0) = x

}︂
.

[Hug99b, Def. 5.1 (p. 318)]: X has compactly dominated local holink at x ∈ X,
if there exist a compact K ⊂ holink(X, x) and a stratum-preserving deformation
of holink(X, x) into K. I. e. there is a stratum-preserving homotopy (Def. 1.3.7)
d : holink(X, x) × I → holink(X, x) with d0 = id and im(d1) ⊂ K.

Note, that this means we have two different notions of “links” / fibers: The fibers of
the homotopy-links of meeting strata Xi ⊂ Xk ∪Xi, and the “local homotopy-links”,
which are the fibers of the stratified homotopy-links of strata Xi ⊂ X.

While this definition is straight-forward from the two-stratum case, it raises a
couple of questions on the normal structure of skeleta – which one would expect to
be the relevant objects for inductive arguments. Before, the normal structure of the
lower stratum was controlled in the higher stratum by the holink-evaluation being a
fibration – which was seen to agree with cylinder-neighborhoods, if they exist, being
cylinders of MAFs.

To describe the normal structure of a skeleton – consisting itself of multiple
strata – in the next higher stratum, we need suitable notions replacing fibrations and
MAFs when mapping to stratified spaces rather than manifolds. There are different
modifications for generalizing to maps . . .

(a) . . . with stratified domain: “Stratified fibrations” [Hug99c, §5 (p. 6)] are defined
using lifting properties for stratified homotopies.

(b) . . . with stratified range: “Stratified systems of fibrations” [Qui88a, p. 469],
which is what we need for inductive arguments, and is thus defined formally
below.

(c) . . . with stratified domain and range: “stratified systems of stratified fibrations”
[Hug99c, §7 (p. 12)], are defined like stratified systems of fibrations (b), but
being stratified fibrations (a) over strata.

Corresponding “approximate” versions can be defined by replacing lifting-properties
by approximate lifting-properties, or – equivalently, but easier to formalize, for the
more complicated versions – by enforcing Hughes’ cylinder-theorem, that is, by
defining p : E → X is an “approximate stratified systems of approximate stratified
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fibrations” if and only if ev0 : holink(cyl(p), X) → X is a stratified systems of
stratified fibrations (this stance is taken for example in [Qui04]).

We formalize the case of “stratified systems of fibrations”, where the range is
stratified, which we need for an inductive step X i to X i+1 (the domain in this case
is Xi+1 = X i+1 −X i, hence a (“unstratified”) manifold if X is a MHSS).

Definition 3.1.3: See e. g. [Qui88a, p. 469] Stratified Systems of Fibrations:
(i) Recall Def. 1.4.11: Given a continuous map p : E → X, a subset Y ⊂ X

is a p-NDR if there is a deformation retraction r of a neighborhood of Y
in X, that is covered by a retraction R of a neighborhood of p−1(Y ) ⊂ E,
i. e. p ◦R(x, t) = r(p(x), t).

(ii) p is a a stratified system of fibrations if, for all i, its restrictions to strata
p| : p−1(Xi) → Xi are fibrations and skeleta X i ⊂ X are p-NDR.

Remark 3.1.4: These “stratified system of fibrations” do have an “approximate
lifting property” for stratified homotopies. [Qui88a, Lemma 3.3 (p. 469)]

Example 3.1.5: A stratified NDR Y ⊂ X is a p-NDR for p : holink(X, Y ) → Y .
See Lemma 1.4.12 for a more precise relation of stratified NDRs and p-NDRs.

A property of skeleta relevant to the question about normal-structure is the
following:

Definition 3.1.6: [Qui88a, p. 469]: Let X be a filtered space. A pure subset
Y ⊂ X is a closed subset, which is a union of components of strata.

Example 3.1.7: Suppose X is stratified by closed subsets, then skeleta X i ⊂ X
are pure.

This property allows to formalize the notion of HSS defined with normal structure
on a stratum-to-stratum level (Def. 3.1.1), having appropriate normal structure on a
skeleton-to-skeleton level:

Lemma 3.1.8: [Qui88a, Prop. 3.2 (p. 469)]: Suppose X is a HSS and Y ⊂ X a
pure subset (given the induced filtration). Then:

(i) If X i ⊂ Y , then X i is a p-NDR, where p = ev0 : holink(Y,X i) → X i.
(ii) There is a nearly strict and nearly stratum-preserving deformation retrac-

tion of a neighborhood of Y in X to Y .
(iii) ev0 : holink(X, Y ) → Y is a stratified system of fibrations.
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(iv) Y is a HSS. If X is a MHSS, then Y is a MHSS.

Proof: Parts (ii) and (iii) are immediate consequences of [Qui88a, Prop. 3.2 (p. 469)].
Part (i) follows from the inductive “conclusion (1)” in Quinn’s proof [Qui88a, Proof
of 3.2 (p. 471)] of that result.

It remains to validate part (iv). Clearly Y is a HSS, as their definition only depends
on conditions of pairs of (components of) strata, and the “pairs of (components
of) strata” of Y are a subset of the “pairs of (components of) strata” of X. If
X is an MHSS, Y is also separable, metric, because X is. Its strata consist of
components of manifolds (the strata of X), thus are manifolds. Local holinks are
compactly dominated, because, given y ∈ Y , holink(Y, y) ⊂ holink(X, x) is pure, so a
stratified deformation d of holink(X, x) into a compact K ⊂ holink(X, x) restricts to
a deformation of holink(Y, y) into the compact K∩holink(Y, y). The well-definedness
of the restriction follows from the initial d being stratified. □

Part (iii) uses an unstratified holink, hence the domain is indeed unstratified (but
may be complicated). However, for an inductive step X i to X i+1, this is fine, as
X i+1 is a MHSS, so applying the lemma to X i ⊂ X i+1 provides a “more reasonable”
difference Xi+1 = X i+1 −X i.

This is actually enough to provide the “full” end-theorem (the obstruction-groups
are explained below):

Theorem 3.1.9: [Qui88a, Thm. 1.7 (p. 446)]: Suppose X is a MHSS (stratified
by dimension) and i ≥ 6, then:

(i) There is an invariant q0(X i, X i−1) ∈ H lf
0 (X i−1; S(pi)).

(ii) There is a mapping cylinder neighborhood of X i−1 in X i (i. e. a completion
of the controlled end of Xi), if and only if q0(X i, X i−1) = 0.

(iii) [Qui82a, Thm. 1.1 b (p.357)]: Completions are unique up to controlled
h-cobordism.

Here the stratified system of fibrations pi = ev0 : holink(X i, X i−1) → X i−1 is the
holink-evaluation.

We will extend the discussion of the obstruction-groups H lf
0 (X i−1; S(pi)) beyond

what has been said in Section 1.9 (“Mapping-Cylinder Neighborhoods”) below, but
first we briefly recall the previous results and give a suitable (as it will turn out)
generalization of the “simple links”-condition.

First note, that S as defined in [Qui82a] is indeed a functor from stratified
systems of fibrations to spectra – which includes the special case of fibrations, that
appeared earlier when discussing spaces with at most two strata. Before, the spectral-
“cosheaves” where trivial, in the sense, that given a fibration, at least on individual
connected components of the lower stratum, the holink-fibers did not change. Thus
in the two-stratum case, a condition on links (holink-fibers) L of the form ∀k ≥ 0 :
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Wh(π1(L) × Zk) = 0, did suffice to show vanishing of the obstruction groups (see
Lemma 1.9.8).

For all (more than two) strata to fit together, it seems reasonable, that at least all
pairs of two strata should fit together in this sense. This motivates to the following
definition:

Definition 3.1.10: Let X be a MHSS. X has simple links if and only if for
all j > i, and for all connected components L of the fiber of the fibration
holink(Xj ∪ Xi, Xi) → Xi over all connected components of Xi it holds that
∀k ≥ 0 : Wh(π1(L) × Zk) = 0.

A suitable generalization of Lemma 1.9.8 is then:

Lemma 3.1.11: Let X be a MHSS (stratified by dimension) with simple links.
Then ∀i : H lf

j (X i−1; S(pi)) = 0 for j ≤ 1, where pi : holink(X i, X i−1) ev0−−→ X i−1

is the holink evaluation map.

Proof: The proof of this lemma is given below on page 126.

To prove this and to provide some understanding of the obstruction groups, we
very briefly outline some of the constructions involved to obtain H lf

∗ (X; S(p)).
First, we briefly outline the construction of the “finite structure spectrum” S of

[Qui82a, §5 (p. 388–402)] as a pseudo-isotopy spectrum.

Definition 3.1.12: Given a compact manifold M , a pseudo-isotopy θ of M is a
homeomorphism θ : M × I

∼−→ M × I with θ|M×{0}∪∂M×I = id and θ(M × {1}) ⊂
M × {1}.

Given a polyhedron K, pseudo-isotopy θ of M parametrized by K is a home-
omorphism θ : M × I ×K

∼−→ M × I ×K, that commutes with projection to K
and such that for fixed T ∈ K each θ(–, –, T ) is a pseudo-isotopy.

[Qui82a, Def. 5.1 (p. 388)]: Given maps E p−→ X and U r−→ E on a codimension
0 submanifold U ⊂ Rn and X metric, with proper composition pr, one can add
size-control and limit the support C ⊂ X (where C being compact suffices to
ensure U being compact by properness) as follows: Require θ to be defined on
(pr)−1(C) × I × K, and weaken θ|M×{0}∪∂M×I = id to θ|M×{0}∪∂M×I = incl,
require that the image of θ contains (pr)−1(C−ϵ) × I × K ⊂ im(θ) (here: C−ϵ

is X − (X − C)ϵ and Dϵ = {x ∈ X| dist(x,D) < ϵ}), and further, that both θ
and θ−1 (where defined) are ϵ-small (as a homotopy, i. e. rays prθ(x, –, T ) are
ϵ-small), when measured in X, i. e. after composition with pr.
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In the controlled case, there are certain operations, under which one wishes to
identify pseudo-isotopies (see [Qui82a, 5.2 (p. 389)]). These are “reduction” (to
smaller D ⊂ C and greater δ ≥ ϵ), “deletion” (of relative parts where θ is trivial)
and suspension (crossing U with Ik and θ with id; this is not quite canonical1).
Quinn [Qui82a] does so, by constructing a ∆-set P of pseudo-isotopies with these
identifications built into boundaries:

Definition 3.1.13: [Qui82a, Def. 5.3 (p. 389)]: Given E
p−→ X, and C ⊂ X

compact, ϵ > 0, there is a ∆-set P(X, p;C, ϵ) with k simplices the pseudo-
isotopies controlled by pr, with support C and size < ϵ, parametrized by the
standard-simplex ∆k. Boundary maps are defined up to suspension, reductions
and deletions. We denote by P(X, p), the ∆-set constructed in this way, allowing
any support C and size ϵ.

At this point, one can define a homotopy-limit which will become the space at
index −2 of the finite structure spectrum S:

Definition 3.1.14: [Qui82a, Def. 5.4 (p. 390)]: Given E
p−→ X, define S−2 as the

homotopy-limit S−2(X, Y ; p) := holimC⊃X−Y,ϵ→0 P(p;C, ϵ). This can be done
explicitly via paths to infinity: Give [0,∞) the simplicial (or ∆-set) structure
with vertices at integers and 1-simplices between them, then S−2(X, Y ; p) is
given by simplicial maps (really maps of ∆-sets) [0,∞) → P(X, p), such that
simplices in the image of ∆k × [N,∞) are in in P(X, p;CN , ϵN), where ϵi ↘ 0
is a sequence monotonically falling to zero, and Ci are compact subsets with
Ci ⊂ interior(Ci+1) and ∪iCi ⊃ X − Y .

Using suitable stability / shrinking results [Qui82a, Thm. 5.6 (p. 391) and ‘shrinking
lemma’ 5.8 (p. 395)] (cf. discussion in the proof of Example 1.7.9) to compose ϵ-small
objects into ϵ-small (rather than 2ϵ-small) objects (see e. g. [Qui82a, ‘homotopy
lemma’ 5.7 (p. 394)]), one obtains certain homotopy-equivalences:

Lemma 3.1.15: [Qui82a, Thm. 5.9 (p. 397)]: For X a locally compact metric
ANR, p a stratified system of fibrations, there are homotopy-equivalences

T : S−2(X; p) → ΩS−2(X × R; p× id).

These T can be used to define an Ω-spectrum in the obvious way:

1One needs to fix the “rel boundary” requirement, by a suitable homeomorphism hk of Ik depending
on the integer k where one cannot, in general, ensure, that hk × hl = hk+l.
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Definition 3.1.16: [Qui82a, Def. 5.10 (p. 400)]: Given E
p−→ X, a stratified

system of fibrations over a locally compact metric ANR X, there is an Ω-spectrum
S(X; p) with spaces

Sj(X; p) :=
{︄

Ω2−jS−2(X; p) if j < −2
S−2(X × Rj+2, p× id) if j ≥ −2

and structure-maps (adjoints of) T (of the previous lemma).

This construction turns out have reasonable properties, as long p is a stratified
system of fibrations (Def. 3.1.3). This can be formalized as follows (the overview
given here is mostly based on [Qui82a, §8 Appendix (p. 419–423)], a more detailed
treatment can for example be found in [Qui04, §6 (p. 50–64)]):

Definition 3.1.17: [Qui82a, p. 421]: A functor S(X; p) from stratified systems of
fibrations p over locally compact σ-compact ANR X to spectra is a locally finite
homology-theory with spectral cosheaf coefficients if it satisfies the following
axioms (we will only need the first one, and just indicate the other two):

(1) “Restriction”: Given an open W ⊂ X, there is a natural restriction-map
S(X; p) → S(W ; p|W ), such that if Y ⊂ X is a closed p-NDR, then
S(Y ; p|Y ) incl∗−−→ S(X; p) restr−−→ S(X − Y ; p|X−Y ) has composition the point-
map and is a homotopy-fibration.

(2) “Continuity”: The assignment from morphisms of stratified systems of
fibrations (as diagrams with compact-open-topology) to morphism of spectra
(as degree-wise maps of spaces with compact-open-topology) is continuous.

(3) “Inverse limit”: Restrictions define a homotopy-equivalence of S(X; p) to
holimY S(X − Y ; pX−Y ).

Example 3.1.18: [Qui82a, Thm. 5.11 (p. 400) and its proof]: The finite struc-
ture spectrum S(X; p) is a locally finite homology-theory with spectral cosheaf
coefficients.

Remark 3.1.19: A slightly different formulation of these axioms can be found
for example in the appendix of [Qui04].

Such theories are characterized by these axioms in the sense of Eilenberg–Steenrod,
i. e. they are determined block- / fiber-wise in a sense outlined below.

To make this precise (see Def. 3.1.20), we need to first say, what “determined
block- / fiber-wise” is supposed to mean. To this end, given S = S(X; p), one defines
a functor of spaces S(F ) (also denoted by S), that only encodes the information
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contained “fiber-wise” in S(X; p) (i. e. forgets the remainder of the structure and
data). Then, one further defines, for fixed p, a “spectral cosheaf” (see below) S(p),
by block-wise application. Such spectral cosheaves also determine a locally finite
homology-theory with spectral cosheaf coefficients, see Example 3.1.21 (similar to
the choice of coefficient groups in ordinary homology).

Quinn’s characterization-theorem (Thm. 3.1.22) then essentially says, that this
homology theory determined by coefficients (that contain only the block- / fiber-wise
information) is in fact the same as the original theory S(X; p). This means, no
information is actually lost, in forgetting the remainder of the structure, all of it can
be recovered.

Definition 3.1.20: See [Qui82a, p. 419f]:
There is a homotopy-invariant (homotopy-equivalences induce homotopy-equi-

valences of spectra) functor S(F ) from spaces F to spectra induced by S(X; p)
as S(F ) := S({pt};F → {pt}).

Given a map p, a functor from spaces to spectra S(F ) induces S(p) by “block-
wise” application: If X = |K| is a polyhedron, define S(p) :=

(︂
⊔σ∈KS(σ)×σ

)︂
/ ∼

p∗−→ |K|, where ∼ is the evident equivalence-relation on faces, and p∗ maps
(y, x) ∈ S(σ) × σ to x ∈ |K|. For general X, one can later (see below) use
a suitable holimit over neighborhoods U of the diagonal in X × X and K =
SU(X) := {σ|singlular simplices with supp(σ × σ) ⊂ U}.

Further, if p is a stratified system of fibrations, then S(p) p∗−→ X is a “spectral
cosheaf” (in the sense of e. g. [Qui04, Def. 6.7.3 (p. 58)]; in particular, the
structure maps glue in a suitable way to turn this into a spectrum again), and
there is a Ω-spectrum, called the homology-spectrum, defined, for X = |K| a
polyhedron as H(K,L; S(p)) := lim

→
Ωj

(︂
Sj(p)/i(K) ∪ p−1

∗ (L)
)︂
, where i : K → S(p)

is the inclusion σ ↦→ basepoint × σ. For general X, define H(X; S(p)) :=
holim H(SU(X); S(p)) as the homotopy inverse limit over neighborhoods U of
the diagonal in X ×X (see above).

The locally finite homology-spectrum is Hlf(X; S(p)) := holim H(X, Y ; S(p))
the homotopy inverse limit over Y ⊂ X with closure(X − Y ) compact. An
explicit form can be given for example if X is σ-compact, by taking the limit over
the complements of a compact exhaustion in a sense similar to the definition of
S−2 (Def. 3.1.14).

The locally finite homology groups H lf
k (X; S(p)) := πk(Hlf(X; S(p))) are the

(stable) homotopy-groups of this spectrum in the usual sense.

Example 3.1.21: [Qui82a, Prop. 8.4 (p. 421)]: If p is a stratified system of
fibrations, and S(F ) a homotopy-invariant functor from spaces to spectra, then
Hlf(X; S(p)) is a locally finite homology-theory with spectral cosheaf coefficients
in the axiomatic sense Def. 3.1.17.
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The characterization / uniqueness can then be formulated as follows:

Theorem 3.1.22: [Qui82a, Thm. 8.5 (p. 421)] “Characterization Theorem”:
Given a locally finite homology-theory with spectral cosheaf coefficients S(X; p),

then there is a homotopy-equivalence of spectra A : Hlf(X; S(p)) → S(X; p).

This essentially means, that any such S(X; p) is determined by its block-wise /
fiber-wise properties encoded in S(p).

To continue with the proof of simple links implying vanishing of end-obstruction
groups (Lemma 3.1.11), we quickly observe:

Lemma 3.1.23: Let X be a MHSS (stratified by dimension) and for i < j

pj
i := ev0 : holink(Xj ∪X i, X i) → X i

Then (restrictions are to be read as restrictions to the respective preimages)
(i) (pj

i )|Xi−1 = pj
i−1 and

(ii) (pj
i )|Xi

= ev0 : holink(Xj ∪Xi, Xi) → Xi.

Proof: The maps p of all holinks are evaluation at zero, so it suffices to check, that
the total-spaces restrict (map zero) correctly.

“Part (i)”:

holink
(︂
Xj ∪X i, X i

)︂
|Xi−1

=
{︂

γ : I → Xj ∪X i
⃓⃓⃓
γ(0) ∈ X i−1 and γ((0, 1]) ⊂ Xj ∪X i −X i

}︂
=

{︂
γ : I → Xj ∪X i−1

⃓⃓⃓
γ(0) ∈ X i−1 and γ((0, 1]) ⊂ Xj ∪X i−1 −X i−1

}︂
= holink

(︂
Xj ∪X i−1, X i−1

)︂
“Part (ii)”:

holink
(︂
Xj ∪X i, X i

)︂
|Xi

=
{︂

γ : I → Xj ∪X i
⃓⃓⃓
γ(0) ∈ Xi and γ((0, 1]) ⊂ Xj ∪X i −X i

}︂
=

{︂
γ : I → Xj ∪Xi

⃓⃓⃓
γ(0) ∈ Xi and γ((0, 1]) ⊂ Xj ∪Xi −Xi

}︂
= holink

(︂
Xj ∪Xi, Xi

)︂
□

Note, that the definition of “simple links” is modeled on holinks of the form (ii).
If X i = B is the lowest non-trivial skeleton (thus a stratum) then also (i) is of this
form.
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Now, we can finally proof the vanishing result for spaces with simple links:
Proof of Lemma 3.1.11: We will use the notation of the previous Lemma 3.1.23. In

this notation pi = pi
i−1, so we need to proof, that for any i > 0, H lf

∗ (X i; S(pi+1
i )) = 0

in degrees ∗ ≤ 1. Actually, we show the slightly stronger statement

H lf
∗ (X i; S(pj

i )) = 0 in degrees ∗ ≤ 1 for all j > i,

inductively over i, thus over skeleta.
First note, that we have already seen the two-stratum case, that

H lf
∗ (Xi; S(pj

i |Xi
)) = 0 in degrees ∗ ≤ 1 for all j > i,

i. e. vanishing of restrictions to strata in Lemma 1.9.8. This was essentially a
consequence of the coefficients (Lemma 1.9.10) vanishing under the simple links
hypothesis.

For once, this gives the start of induction over the skeleta, because the lowest non-
trivial skeleton is the lowest non-trivial stratum (say X0), so H lf

∗ (X0; S(pi
0|X0)) = 0

in degrees ∗ ≤ 1, for all i > 0.
On the other hand we will use it in the inductive step: Assume the claim is true on

the k-skeleton Xk, that is H lf
∗ (Xk; S(pj

k)) = 0 in degrees ∗ ≤ 1 for all j > k. Then,
use that Hlf(Xk+1; S(pl

k+1)) is, for all l > k + 1, a homology-theory in the sense of
Def. 3.1.17 by Example 3.1.21, because of holinks of skeleta being stratified systems
of fibrations (by Lemma 3.1.8, which applies by Example 3.1.7).

Hence by the restriction axiom, and the skeleton Xk being a pl
k+1-NDR in the (pure

in Xk+1 ∪Xl) skeleton Xk+1 (again by Lemma 3.1.8), there is a homotopy-fibration

Hlf
∗(Xk; S(pl

k+1|Xk)) incl∗−−→ Hlf
∗(Xk+1; S(pl

k+1))
restr−−→ Hlf

∗(Xk+1−Xk; S(pl
k+1|Xk+1−Xk))

where Xk+1 − Xk = Xk+1 is a stratum and (by Lemma 3.1.23 part (ii)) the two-
stratum result (see above) applies to the last term, i. e. for ∗ ≤ 1 :

π∗
(︂
Hlf(Xk+1,S(pl

k+1|Xk+1))
)︂

= H lf
∗ (Xk+1,S(pl

k+1|Xk+1)) = 0

and in the first term, using pl
k+1|Xk = pl

k (Lemma 3.1.23, part (i)), the inductive
hypothesis appears (for ∗ ≤ 1):

π∗
(︂
Hlf(Xk,S(pl

k))
)︂

= H lf
∗ (Xk,S(pl

k)) = 0

so that, by the diagram being a homotopy-fibration, we find that also (the homotopy-
groups of) the middle-term vanish (for ∗ ≤ 1):

H lf
∗ (Xk+1; S(pl

k+1)) = π∗
(︂
Hlf(Xk+1; S(pl

k+1))
)︂

= 0

This is exactly what we wanted to show. □
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Remark 3.1.24: The reader may have noticed the following: By the charac-
terization-theorem, knowledge of coefficients in low degrees (Lemma 1.9.10) is
already enough to fully determine the relevant (degree ≤ 1) obstruction-groups.
The role that the finite structure spectrum plays is essentially only that of
showing the existence of such a theory (extension to higher degrees is required
to obtain a well-defined theory in this sense).

This immediately raises the question about uniqueness (in higher degrees),
and indeed it turns out, that other suitable theories, for example controlled
K-theory in the sense of [Qui04] exist, that are not equivalent to the finite
structure spectrum in higher degrees.

One may use any such (suitable) theory, as it automatically yields the correct
relevant (degree ≤ 1) obstruction-groups by the characterization theorem, see
also [Qui02].

This result provides enough understanding of the obstruction-groups for our
purposes. So we return to the discussion of further (multi-stratum) results.

The transversality theorem remains valid without (beyond formal) changes, leading
to the evident inductive argument of the corollary below (for a sketch of the proof of
the theorem given by [CV99, Thm. 2.2 (p. 529)], see also Thm. 1.6.4):

Theorem 3.1.25: [CV99, Thm. 2.2 (p. 529)]: Let X be a MHSS of dimension n
(without boundary), s. t.

(i) Xn−1 = Xn−2
0 × (−1, 1) (for some closed MHSS Xn−2

0 ) and
(ii) there is p = (n, s) : ∂M ′ → Xn−1 = Xn−2

0 × (−1, 1) surjective, continuous,
s. t. X = cyl(p).

(M ′ is a manifold with boundary ∂M ′ such that Xn ⊂ M ′ and M ′−Xn ⊂ ∂M ′.)
Set

V := { [x, t] ∈ cyl(p) | s(x) ≤ t < 1 }
W := { [x, t] ∈ cyl(p) | 0 ≤ t ≤ s(x) }
U := { [x, t] ∈ cyl(p) | 0 ≤ s(x) = t < 1 }

with the induced stratifications. Then:
(a) U is a stratified (strong) deformation retract of both V and W
(b) V ∪W = X; V ∩W = U ;

V and W are closed subsets of X;
The next-to-top skeleta are V n−1 = Xn−2

0 × (−1, 0], W n−1 = Xn−2
0 × [0, 1)

and Un−2
B = Xn−2

0 × {0}
(c) U , V and W are stratified subspaces of X (i. e. ∂-MHSS with the induced

stratification), with boundaries ∂V = ∂W = U and ∂U = ∅.
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Corollary 3.1.25–1: See also [CV99, Cor. 1.17 (p. 527)]:2 Let X be a MHSS of
dimension n ≥ 6 (without boundary) with simple links and g : X → [−1, 1] a
map, s. t. on the (n− 1)-skeleton g|Xn−1 is transverse to 0 at cn−1.

Then, given ϵ > 0, there is g⊥ ≃ϵ g relXn−1 ∪ g−1
(︂
R − (−ϵ, ϵ)

)︂
transverse to

0 at cn with cn|Xn−1 = cn−1.

Proof of the corollary: X has simple links and thus vanishing end-obstruction
groups by Lemma 3.1.11, so that q0(Xn, Xn−1) = 0 in Thm. 3.1.9 which in turn (by
n ≥ 6), implies that there is a cylinder-neighborhood of Xn−1 ⊂ Xn.

The remainder of the proof, is essentially the same as the one of Cor. 1.6.4–
1: Apply Thm. 3.1.25 together with (the relative version of) Thm. 1.4.15, which
is again applicable by n ≥ 6, to extend cn−1 into the cylinder-neighborhood as
c′n. Define g′⊥ on X as the projection to the cylinder-coordinate πR(c′n)−1 near
Xn−1 and interpolate to g near the complement of the cylinder-neighborhood of
Xn−1 (e. g. by using a helper-function η : X → [0, 1], mapping a neighborhood of
Xn−1 to 1 and a neighborhood of the complement of the cylinder to 0, to define
g′⊥(x) := η(x)πR(c′n)−1(x) + (1 − η(x))g(x) within the cylinder neighborhood, and
g′⊥ = g outside).

Then, on the top-stratum Xn = X − Xn−1 (since dim(X) = n, X = Xn this
is a single stratum) obtain gM

⊥ ≃ g′⊥|X−Xn−1 transverse to 0 rel a neighborhood of
Xn−1 in X intersected with this top-stratum at cM , using manifold-transversality
Cor. 1.5.9–1.

Finally, by gM
⊥ = g′⊥|X−Xn−1 on a neighborhood of Xn−1, this fits together with

g′⊥|Xn−1 = g|Xn−1 and so does the bi-collar. Call this glued map g⊥ := gM
⊥ ∪ g|Xn−1 ,

which is transverse to 0 at the glued bi-collar cn = c′n ∪ cM .
Smallness can also be achieved in the same way as in Cor. 1.6.4–1: When construct-

ing g′⊥, choose the complement of the cylinder-neighborhood (where g′⊥ = g) large
enough, that g′⊥ is close to g (or equivalently: choose η small enough; this works, be-
cause g′⊥ = πR(c′n)−1 = g on Xn−1). Further, when applying manifold-transversality,
apply the size-controlling version thereof.

The homotopy g ≃ g⊥ can be chosen as the straight-line homotopy in R, which is
small if g and g⊥ are close, and relXn−1 (where they agree). □

The corollary can serve as an inductive step, because for any MHSS X with
simple links the n-skeleton Xn is again a MHSS with simple links. Since Xn−1 = ∅
is allowed (this is really the manifold case), this result may also be used as the
start of induction. However, manifold transversality does not require a dimensional
hypothesis, so as long as the 5-skeleton is a disjoint union of manifolds (of potentially
different dimensions), using manifold transversality directly as the start of induction
gives slightly stronger results.

2The obstruction-theory used by the reference is also based on Quinn’s [Qui82a], but is refined to
get an “if and only if”-statement, rather than a “stable” (in our sense) condition.
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With this formalization of the situation for more than two strata, the previous
arguments mostly carry over. First, the situation of obstructions for the case of
“cutting” MHSS with boundary is reviewed from the vantage point of spaces with
more than two strata by absorbing the boundary into the stratification (Section 3.2
(“Absorbing Boundary”)). The next section (Section 3.3 (“Special Gaps”)) proceeds
to give a slight modification to allow for a construction needed in Chapter 4 (“Home-
omorphisms”). Then, the generalized homology theory defined for two strata in
Section 2.4 (“An Example-Theory”), or rather, the underlying “strong t-class”, is
extended to the present context.

3.2 Absorbing Boundary
This sections analyzes, how a MHSS with boundary can be turned into a homeo-
morphic MHSS without boundary, and how a boundary can be “detected”. This
idea appears already in Quinn’s original paper [Qui88a] on HSS. We focus on high
(absolute) dimension, as this is the case we will need, as low (absolute) dimensions
can / must be treated by other means: For the most part, the “gap” / codimension
hypothesis on transversality classes makes sure, that low (absolute) dimension skeleta
are manifolds (see Section 3.3 (“Special Gaps”) for more details).

We start by defining what “absorbing the boundary” is supposed to mean precisely.

Definition 3.2.1: See [Qui88a, p. 491]: Let X be a MHSS of dimension n with
boundary (filtered by dimension). The stratification with absorbed boundary
X# of X is the stratification of the underlying space |X| given by the filtration
(by closed subsets)

Xn
# = Xn (the total space)

Xk
# = Xk ∪ ∂(Xk+1) for k ̸= n

thus with strata

(X#)n = Xn − ∂(Xn) (the top-stratum)
(X#)k = Xk ∪ ∂(Xk+1) − ∂(Xk) for k ̸= n

Remark 3.2.2: By definition of MHSS with boundary, and stratifications being
by dimension, ∂(Xk+1) = (∂X)k, i. e. the (manifold-)boundary of the (k + 1)-
stratum of X is the k stratum of the (MHSS-)boundary ∂X. Similarly for
skeleta ∂(Xk+1) = (∂X)k (as a MHSS this time).

This stratification does have reasonable properties:
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Lemma 3.2.3: Let X be a MHSS of dimension n with boundary.
(i) The “stratification with absorbed boundary” X# is an MHSS without

boundary.
(ii) If X has simple links then X# has simple links.

(iii) If X is proper (in the sense of Def. 1.4.16, i. e. the top-stratum is dense,
and there is no codim 1 stratum), then X can be recovered from X# in a
natural way.

Proof: “(i)”: To see, that X# is an HSS, we need to check the defining conditions on
pairs of components of strata. For pairs, where both meeting strata are in X − ∂X
or both in ∂X this is clear: X − ∂X and ∂X is an MHSS by definition of MHSS
with boundary.

For pairs Ai ⊂ (X − ∂X)i and Bj ⊂ (∂X)j, if i ≤ j, then closure(Ai) ⊂ X i so
that closure(Ai) ∩Bj = ∅ and closure(Bj) ⊂ ∂X so that closure(Bj) ∩ Ai = ∅ so all
conditions are fulfilled trivially.

So it remain pairs Ai ⊂ (X−∂X)i and Bj ⊂ (∂X)j , with i > j. Still closure(Bj)∩
Ai ⊂ ∂X ∩Ai = ∅, but Bj ∩X i may not be empty. Being an HSS is a local property,
so we may restrict to a collar of the boundary, thus Ai ⊂ (∂X)i−1 × [0,∞) and
Bj ⊂ (∂X)j × {0}. The only case where Ai, Bj ⊂ Ai ∪Bj are not disjoint connected
components occurs if j = i− 1 and (Ai ∪Bi−1, Bi−1) ⊂ (Xi, (∂X)i−1) is a manifold
with boundary.

In this case boundary-collaring for manifolds implies tameness, and the holink
is holink(Bj × [0,∞), Bj × {0}) → Bj × {0} which is a fibration with holink-fiber
≃ {pt}. So this also proves part (ii), via Example 2.2.4 (simply connected links),
because all other holink-fibers are those of pairs of strata in X − ∂X or ∂X, so have
vanishing Wh(π1(L) × Zk) by the simple links hypothesis on X.

Strata are manifolds (by construction) and compact domination of local homotopy-
links is a consequence of boundary-collaring (of ∂X in X): For a point x ∈ ∂X, the
local homotopy-link can be “pushed into” the corresponding local homotopy-link
in ∂X by using this stratified boundary collar. Then by ∂X being a MHSS, it can
be further deformed into a compact subset. For a point x ∈ (X − ∂X) this (local
property) is immediate from X − ∂X being a MHSS.

“(iii)”: Set (Xn, ∂(Xn)) := ((X#)n, (X#)n−1). Because, X did not have a codi-
mension 1 stratum, this is the only possible choice. By Lemma 1.4.18, ∂X =
closure(∂(Xn)) is uniquely determined by ∂(Xn). Hence we can simply promote
components of strata (X#)i ⊂ closure(∂(Xn)) in this boundary back into Xi+1 as
manifold-boundaries. □

Corollary 3.2.3–1: Extending3 [CV99, Cor. 1.17 (p. 527)]: Let (X, ∂X) be a
MHSS of dimension n ≥ 6 with boundary, with simple links and g : X → [−1, 1]

3Connolly and Vajiac where evidently aware of the possibility of absorbing boundary (as indicated
above, this idea appears already in [Qui88a, p. 491]) to obtain a theorem for spaces with boundary
[CV99, “if one wishes to apply this theorem to a manifold-stratified space with boundary, one
should first absorb this boundary into the stratification”, p. 523]. For their purposes – finding
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a map, s. t. on the (n− 1)-skeleton Xn−1 and the boundary ∂X the restriction
g|Xn−1∪∂X is transverse to 0 at c compatible with a restriction of a boundary
collar b of ∂X ⊂ X to one of ∂(Xn−1) ⊂ Xn−1.

Then, given ϵ > 0, there is g⊥ ≃ϵ g relXn−1∪∂X∪g−1
(︂
R−(−ϵ, ϵ)

)︂
transverse

to 0 at c′, with c′|Xn−1∪∂X = c and compatible with the boundary collar b.
Proof: First, we show, that g|Xn−1

#
is transverse to 0 as a map on the strati-

fication with absorbed boundary (see above). We start by the observation, that
Xn−1

# = Xn−1 ∪ ∂X. Further, we know, that gXn−1∪∂X is transverse to 0 at c,
which means, writing L := g−1({0}) ∩ (Xn−1 ∪ ∂X), there is a stratified bi-collar
c : L × (−ϵ′, ϵ′) → Xn−1 ∪ ∂X compatible with g, i. e. gc(x, t) = t. Now, the in-
duced (from X) stratification of the underlying space |Xn−1 ∪ ∂X| is coarser than
(has strictly larger skeleta than) Xn−1

# (the identity id : Xn−1
# → Xn−1 ∪ ∂X is a

coarsening Def. 1.3.6 (iii)). But the only difference is that boundaries of strata are
now part of the next smaller stratum. Since c was compatible with the boundary
collar b| (actually the strictness requirement built into our definition of stratified
transversality Def. 1.6.5 is already enough), we find c((L ∩ ∂X) × (−ϵ′, ϵ′)) ⊂ ∂X
and c((L − ∂X) × (−ϵ′, ϵ′)) ⊂ Xn−1 − ∂X, so this bi-collar c is already stratified
with respect to Xn−1

# .
Thus, g, as a map on X# is transverse to 0 on Xn−1

# at c. At this point, we can
apply the result without boundary Cor. 3.1.25–1, to obtain g′⊥ ≃ g relXn−1

# transverse
to 0 on X# at c′′.

Next, we glue an outside collar to X in the sense of Rmk. 1.6.7: Fix a (stratified
w. r. t. X) homeomorphism ν : ∂X × [0, γ) → ∂X × [−γ, γ), (y, t) ↦→ (y, 2t− γ), then
define

g⊥ : X → [−1, 1], x ↦→

⎧⎪⎪⎨⎪⎪⎩
g′⊥(y) if x ∈ im(b) and νb−1(x) = (y, t) ∈ ∂X × [−γ, 0]
g′⊥(x) if x ∈ im(b) and νb−1(x) ∈ ∂X × [0, γ)
g′⊥(x) otherwise

Then g⊥ = g′⊥ on Xn−1 (because g is compatible with b) and on ∂X (trivially, by
b(y, 0) = y). The same construction can be applied to c′′ producing c′. The result
g⊥ is transverse to 0 at c′ with respect to the stratification X, because it is on ∂X
(where the induced stratification from X# is the original one), and on the interior
(where, again, both stratifications agree), and it is compatible with the boundary by
the construction using an outside-collar.

Smallness can be achieved by producing a small g′⊥ by the small version of
Cor. 3.1.25–1, and by using a thin enough boundary-collar (small enough γ). As a
(small) homotopy, the straight-line homotopy can be used (as always). □

Again, this can be used inductively: Start with manifold transversality (with
boundary) on minimal strata, make the map transverse on the next higher skeleton

a boundary of an MHSS in the sense of end-theory – this aspect did not require a detailed
treatment.
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of the boundary by Cor. 3.1.25–1 (some care should be taken, as this may require
dim(∂X) ≥ 6, as opposed to dim(X) ≥ 6), then on the entire next skeleton by
Cor. 3.2.3–1. As we are dealing with spaces with finitely many strata only, these
contribute a finite number of small steps, so the construction can be made small (by
making steps ϵ/N-small).

Before we continue by defining a transversality class, we first give a slight general-
ization of the gap condition, that will turn out to be useful in Chapter 4 (“Homeo-
morphisms”).

3.3 Special Gaps
A general treatment of the “gap-hypothesis” (strata differing in dimension by at
least 5), for example by transitioning to a pl or smooth theory on low (absolute
dimension) skeleta might be possible, but seem rather hard to achieve technically
(see Section 2.6 (“Improvements”)).

Nevertheless, there are certain special cases, that can be included “trivially”:
For example, if “close” (in the sense of having a small dimension-gap) strata are
(compatibly) pl, one could certainly still cut those. This is, however, not really helpful
for treating intrinsically topological problems like (topological) homeomorphism-
invariance (Chapter 4 (“Homeomorphisms”)).

There is another, even topologically simple, special case: Manifold-boundaries are
collared ([Bro62], cf. Thm. 1.1.2), so transversality on manifolds with boundary is
not an issue (beyond “standard” manifold-transversality). Further manifolds with
boundary are stable under products and cutting.

This can be used directly to incorporate “special gaps” into the theory: We first
demonstrate this for spaces with three strata X ⊃ B ⊃ B′, where (B,B′) is a
manifold-with-boundary and dim(X) − dim(B) ≥ 5.

Example 3.3.1: Given a MHSS with boundary (X, ∂X), with at most three strata
X ⊃ B ⊃ B′, such that (B, ∂B := (B ∩ ∂X) ∪B′) is a manifold-with-boundary,
B′ ⊂ ∂B is a codimension 0 submanifold, dim(X) − dim(B) ≥ 5 and X has
simple links.4 Automatically, by X being manifold-stratified, (B−B′, B∩∂X) is
a manifold-with boundary, so this really means, that B′ can be added to B −B′

as a disjoint (from B ∩ ∂X) part of the boundary of a completion B of the end
of B −B′.

Then X can be cut, and further the resulting cut X0 and the parts X≤ and
X≥ of Def. 2.2.1 again satisfy the hypothesis of this example.

Proof: The corners (B ∩ ∂X) ∩B′ can be straightened, as we are working in the
topological category.

Cut the manifold-with-boundary (B, ∂B), using manifold-transversality Cor. 1.5.9–
2. The resulting cut (B0, ∂B0) is again a manifold with boundary, and so are B≥ and

4The link of B′ in B is automatically “simple”, as its fiber is homotopy-equivalent to a point.
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B≤. Next, extend the cut to ∂X using Cor. 3.1.25–1, then to X using Cor. 3.2.3–1.
The result is again of the form X0 ⊃ B0 ⊃ B′0, with B′0 := B0 ∩B′ (and for X≤, X≥
correspondingly) satisfying the hypothesis of the example. □

Remark 3.3.2: Such spaces do have sufficiently many local approximate tubular
neighborhoods (hence the Poincaré-duality and Witt-space treatment of [Fri09]
applies, see Section 1.12 (“Witt-Condition and Signature of MHSS”)): The
skeleton B ⊂ X has a cylinder-neighborhood, by the vanishing of the end-
obstruction-groups (as before), while B′ ⊂ B, as a manifold-boundary, is
collared, thus has a cylinder-neighborhood, too. Since a cylinder-neighborhood
restricts to a local approximate tubular neighborhood, this establishes the claim.

This may not seem like a particularly useful result, but it has two important
applications:

(a) Absorbing boundaries, for a treatment of spaces with boundary without rely-
ing on relative5 end-theorems, see previous section. However, absorption of
boundary is only used in high absolute dimensions, and “undone” before any
potential further cuts, so the arguments in Section 3.4 (“Transversality-Class”)
do not actually rely on this argument. This is why we will restrict our special
treatment to only the bottom stratum.

(b) “Terminating” certain strata in stratifications of mapping-cylinders of homeo-
morphisms, see Chapter 4 (“Homeomorphisms”).

There is nothing special about having exactly three strata (see Section 3.4
(“Transversality-Class”)), it is really the relation between B and B′ that is spe-
cial.

3.4 Transversality-Class
We extend the Example 2.2.5, which gave transversality-conditions based on a “simple
links” condition for spaces with at most two strata. For the multi-stratum case,
Section 3.1 (“Background”) identified the “correct” – in the sense of giving suitable
transversality results Cor. 3.1.25–1 and Cor. 3.2.3–1 – extension of what simple links
should mean (Def. 3.1.10).

To ensure a well-defined notion of boundaries, we assume spaces are “proper”
(Def. 1.4.16), i. e. have dense top-stratum and no codim 1 stratum.

Putting these together yields the following result:

Example 3.4.1: With the methods introduced in this chapter we obtain the
following transversality-classes:

5These are available, see e. g. [Qui79, Thm. 2.1 (p. 282)], but are not particularly well-documented
in the literature for cases of more than two strata.
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(i) The class Wh≥6
∗ ⊂ ∂-MHSS given by all compact, orientable, proper

MHSS X, with boundary, with simple links and where at most two strata
B ⊃ B′ are of dimension < 6, and (in that case are) such that B′ = ∅ or
(B, (B ∩ ∂X) ∪B′) is a manifold with boundary, B′ ⊂ (B ∩ ∂X) ∪B′ is a
codimension 0 submanifold, is a weak t-class.

(ii) The class Whgap 5
∗ ⊂ ∂-MHSS given by all compact, orientable, proper

MHSS X with boundary, with simple links and where for strata M and B
that meet, i. e. those with B ∩ closure(M) ̸= ∅, pairwise either

(a) dim(M) − dim(B) ≥ 5 or
(b) B is a minimal stratum (it meets only higher-dimensional strata,

cf. Def. 1.4.23) and (M ∪B, ∂M ∪B) is a manifold with boundary,
B ⊂ ∂M ∪B is a codimension 0 submanifold.

is a strong t-class.

Proof: Part (i): See also Example 3.3.1. Cut (B, (B ∩ ∂X) ⊔B′) using manifold-
transversality Cor. 1.5.9–2. Next, inductively extend the cut over skeleta of ∂X using
Cor. 3.1.25–1, and over skeleta of X using Cor. 3.2.3–1.

Part (ii): We start by analyzing the low-dimensional X5 ∪ ∂(X6) part.
First, we do so, for X5. There can be at most two (meeting) strata in X5: Either,

there is a pair of bottom-strata of the form (b), in which case one of these two is at
least of dimension 1, so the next (meeting) stratum must be of the form (a), thus
have dimension ≥ 1 + 5 = 6, hence is not in the 5-skeleton. Cut this pair using
manifold-transversality Cor. 1.5.9–2. Or, if two meeting strata in X5 are no such pair,
in which case they must be of the form (a), thus differ in dimension by 5, which is
possible only if one is of dimension 0 (and the other one is of dimension 5). In this case
the arguments of Example 2.2.5 (the two-stratum case) apply, i. e. the lower stratum
(which is a finite point-set) can essentially be ignored and manifold-transversality
Cor. 1.5.9–2 solves the problem. In either case, the 5-skeleton can be cut.

If ∂(X6) ̸= ∅, then on these components of X6, either X6 and X5 meet in the form
(b), so X6 can be cut as a manifold with boundary Cor. 1.5.9–2 (after straightening
corners). Or, on these components X5 = . . . = X2 = ∅. Further dim(∂(X1)) = 0,
so this is a finite point-set, thus can be essentially ignored (as in Example 2.2.5)
for cutting the boundary ∂(X6) (which is a manifold away from these finitely many
points). Similarly, cut X1 away from the finite point-set X0 ∪ ∂(X1). This yields
g′⊥ transverse to 0 on ∂(X6) ∪ X1. Apply Cor. 3.2.3–1 to extend this to the next
skeleton X6. The same argument is used (and additional details are provided) in the
proof of Example 2.2.5 part (iii) in the case “dim(∂X) = 5”.

Then continue, by inductively extending the cut over skeleta of ∂X (a space
without boundary) using Cor. 3.1.25–1 and then over X using Cor. 3.2.3–1.

Finally, strata in X≥, X≤ and X0 “meet” only if they come from strata in X, that
meet in X and by construction they meet in the respective cases (a) or (b) again.
Hence the cut is again in Whgap 5

∗ . □
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The important part of the statement is of course that Whgap 5
∗ is a strong transver-

sality-class, thus the constructions of Chapter 2 (“Bordism Constructions”) apply to
yield a bordism-theory. This is further discussed in Chapter 5 (“The Main Theorem
and its Applications”).





4 Homeomorphisms
First, we briefly investigate stratified homeomorphisms, and their connection to
gluing properties and definitions of bordism theories, in Section 4.1 (“Stratified
Homeomorphisms”).

With a theory of spaces with multiple strata at hand, we can also study certain
unstratified homeomorphisms, which we do for spaces with at most two strata (the
bordism will need a third stratum). These are considerably simpler, not only formally,
but also in the form of intrinsic stratifications, than the general case, which will
become apparent in Section 4.2 (“Spaces With at Most Two Strata”).

The arguments both use stratifications of mapping-cylinders as bordisms. The
construction is similar to the “half-intrinsic suspensions” of [Fri15, §4 (p. 14–19)]
(in the pl-pseudomanifold-case). Also stratifications as MHSS of (more general)
mapping-cylinders – although not as bordisms / spaces with (collared) boundary –
have also been studied by e. g. [CS95; Hug99a].

4.1 Stratified Homeomorphisms
Many authors define a bordism a∼ b by requiring an isomorphism (e. g. an orientation-
preserving stratified homeomorphism in our setup) from the boundary pieces W0,W1
to a and b instead of equality (and compositions for F instead of restrictions).

For our setup, the choice of isomorphisms is “weak”, in that it conserves strat-
ifications, but no (immediate) “compatibility data” (like cylinder-neighborhoods)
between strata beyond homeomorphism-type. So it is not actually obvious that a
formulation via isomorphisms on boundary pieces (see above) will work. In fact, for
the classes of spaces considered here, it does work as a consequence of Prop. 4.1.1
below. This is discussed further in Rmk. 4.1.2.

All the defining properties of being in Whgap 5
∗ are stratified-homeomorphism-

invariant, so one easily obtains:

Proposition 4.1.1: Given X, Y ∈ Whgap 5
∗ of dimension n and an orientation-

preserving stratified homeomorphism h : X → Y , then the “fundamental-classes”
[X] := [X idX−−→ X] are invariant in the sense of

h∗([X]) = [Y ] ∈ ΩWhgap 5
∗

n (Y )

If X, Y are additionally Witt, then equality holds in ΩWh∩Witt
n (Y ). Here

Wh ∩ Witt := Whgap 5
∗ ∩ Witt are the spaces in Whgap 5

∗ , that are also Witt
(Def. 1.12.5).

137
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Proof: The mapping-cylinder cyl(h) ∼= X × I ∼= Y × I is homeomorphic to the
actual cylinders, e. g. by cyl(h) → X × I, [x, t] ↦→ (x, t). As h is surjective, every
element of cyl(h) can be written as [x, t], since h is injective, this map is well-defined.
Its inverse is simply given by (x, t) ↦→ [x, t], and both are continuous by definition of
the quotient topology. Similarly, cyl(h) → Y × I, [x, t] ↦→ (h(x), t) (the collapse-map
plus the identity on I) is a homeomorphism (obviously compatible with the one to
X × I fixed above via X × I → Y × I, (x, t) ↦→ (h(x), t)). Define a stratification
of cyl(h) by pulling back the product one from X × I (or, equivalently by h being
stratified, from Y × I) and call this the stratified mapping-cylinder.

This stratified mapping-cylinder cyl(h) is by construction orientation-preserving
stratified homeomorphic to X × I which is an allowable bordism (X is allowable,
and Whgap 5

∗ ,Wh ∩ Witt are stable). Since the property of being allowable depends
only on topology and stratification, cyl(h) is allowable as a bordism.

Thus the collapse-map ph : cyl(h) → Y , mapping [x, t] ↦→ h(x) (again, since h
is surjective, every element of cyl(h) can be written as [x, t]) provides a bordism
[id : Y → Y ] ∼[h : X → Y ] = h∗([id : X → X]). □

This may seem a little tautological, the underlying problem is actually a bit more
involved:

Remark 4.1.2: Instead of using a “subclass” C we may use a category with
forgetful functor, as long as gluing etc. can be done within that category. For
example, we could investigate spaces with a fixed cylinder-neighborhood of
the lower stratum as part of the data. This complicates cutting and gluing
(but under certain circumstances is feasible, because our Whitehead condition
also makes h-cobordisms trivial; this is closely related to the treatment of
stratified homeomorphisms above) but gives a “finer” theory: Given a stratified
homeomorphism, the question of stratifiability of the cylinder, now becomes a
question about uniqueness of cylinder-neighborhoods!

We know these are unique up to h-cobordism (Thm. 1.9.3), but for, say
X ⊃ B, this only yields a MHSS X × I ⊃ B. Or in the notion of MAFs (using
Hughes’ cylinder-theorem Thm. 1.4.19): For the initial (fixed) neighborhoods
cẙl(f : ∂Mf → B) and cẙl(g : ∂Mg → B) there is a MAF F : ∂MF → B which
is a controlled h-cobordism from f to g. What we need is however a space with
lower stratum B × I (to get boundaries of the correct dimension in the lower
stratum to be a bordism). If the h-cobordism is trivial, i. e. ∂MF

∼= ∂Mf × I
(controlled over B), then F × idI is a MAF, and defines (again by Thm. 1.4.19)
a bordism with the “correct” lower stratum.

In high dimensions, our Whitehead-group requirements also make such h-
cobordisms trivial. This may be an “accident”, by having chosen too strong of a
hypothesis. However, gluing also relies (implicitly) on this effect: The “strong”
Whitehead-group hypothesis allows the condition we use to be formulated
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“pointwise” (on fibers), so gluing need only respect this local condition, which it
does along a collared boundary.

A “weaker” hypothesis would probably have to rely on certain global properties
of the lower stratum B. For example the existence of a cylinder (note that
this alone leads at most to a weak t-class, as the cut may not have a cylinder-
neighborhood) has an obstruction q0 ∈ H lf

0 (B; S(p)) (see Chapter 3 (“Multiple
Strata”)), where H lf

∗ (B; S(p)) behaves much like a homology-theory. However,
for a condition that requires global properties of B, gluing becomes much more
challenging (see also Example 2.6.2).

We also want to point out a particular problem, which arises when one tries to treat
topological (stratified) homeomorphisms in a pl-space context, that we can avoid by
working in a inherently topological setting. (For difficulties that arise when using
geometric bundle hypotheses, see paragraph (a) of Section 2.6 (“Improvements”).)

Example 4.1.3: Given two stratified homeomorphic MHSS with two (high-
dimensional) strata and simple links h : X ∼−→ Y , such that X and Y are
compatibly pl (the lower stratum is a subcomplex). This h need not be a pl-
homeomorphism, actually h can already be non-pl when restricted to strata
[Mil61b]. However, on manifolds this problem is well-understood, and this is not
the issue we are currently interested in. Rather, we want to see, what kind of
new issues may arise through the compatibility of strata.

Suppose a compatibly pl stratification of cyl(h) does exist. Then by the pl-
refinement of the (relative) end-theorem (Thm. 1.9.3, part (iv)), we can extend
pl-cylinder-neighborhoods of the lower strata in X and Y to the cylinder (by
X×I ∼= cyl(h) having simple links). We further specialize to isolated singularities
(lower strata being points), in which case the normal structure in X and Y near
the lower stratum is given by the choice of manifold-boundary ∂M ′

X and ∂M ′
Y

of the upper stratum (the cylinder-neighborhood is the cone / the cylinder of the
unique map to the point). The pl-cylinder-neighborhood in cyl(h) consists of a
manifold-boundary ∂M ′

cyl and a map to {pt} × I, which restricts to ∂M ′
X and

∂M ′
Y at 0 and 1. This ∂M ′

cyl is a pl-s-cobordism, because it is a topological
product, its (topologically invariant) Whitehead-torsion vanishes (cf. e. g. [KS77,
Thm. 4.1 (p. 25)]), so it is a pl-product, and ∂M ′

X
∼=PL ∂M

′
Y , i. e. X and Y have

the same (pl) normal structure, suggesting, that h was already pl (if it was pl on
strata).

Of course, the mapping-cylinder of h is only one possible choice for a bordism,
but it is not clear, how a non-pl-homeomorphism would otherwise induce a
bordism, probably other ideas would be required.

So the pointwise / stratified-homeomorphism-invariant formulation of our White-
head condition is actually pivotal to the realization of the theory, as becomes
particularly apparent from the “gluing issues” discussed in Rmk. 4.1.2.
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4.2 Spaces With at Most Two Strata
The construction of Quinn’s [Qui87] “intrinsic skeleta” X0,0 (see Section 1.10 (“Intrin-
sic Stratifications”)) leads to an interesting observation: The space X0,0 is obtained
from X by “promoting” connected components into higher strata. If X ⊃ B has
only two strata, we can treat components of B separately, hence may assume B
connected. Then there are only two possibilities: X0,0 is a manifold – the (only) one
component of the (only) lower stratum B was “promoted” into the top-stratum –
or X0,0 = X remains unchanged – if the (only) one component of the (only) lower
stratum B was not “promoted”. More formally:

Lemma 4.2.1: Let X ⊃ B be a MHSS with a most two strata. Then the intrinsic
stratification X0,0 is given as X ⊃ B′, where B′ ⊂ B is open and closed (i. e.
consists of connected components of B).

Let X ⊃ B be a MHSS with a most two meeting strata (Def. 1.4.22). Then
such a B′j exists for each of the disjoint minimal strata Bj.

Proof: By Thm. 1.10.2, the identity id : X → X0,0 is a coarsening, meaning, the
preimage of the component of a stratum of X0,0 is a union of components of strata
of X. Applied to the top-stratum, this implies B′ ⊂ B. Applied to B′, it implies,
that components of B′ are unions of components of strata of X, which by the above
must lie in B, so are components of B.

For a MHSS with at most two meeting strata, the same argument applies to
disjoint open neighborhoods of the (disjoint closed) minimal strata Bj (in the metric,
thus normal X). □

Corollary 4.2.1–1: Let X be a MHSS with a most two meeting strata. Homotopy-
links (also stratified and local ones) that appear in X0,0 also appear as ones in
X.

If X is Witt, then X0,0 is Witt.
Proof: There are fewer (meeting) strata in X0,0, so there are fewer (local / stratified)
holinks to check on, those, that remain, are already (local / stratified) holinks in X.
□

Since homeomorphic MHSS h : |X| → |Y | have the same (stratified homeomorphic
via h) “intrinsic skeleton” X0,0 ∼=strat Y0,0, and stratified homeomorphisms have
been described in Prop. 4.1.1, to show h∗([X]) = [Y ] ∈ Ω∗(Y ) – for some suitable
bordism-theory Ω∗ and if “fundamental classes” [X], [Y ] exist – it remains only to
understand the relation between X and X0,0. Further, the case X0,0 = X is clear, so
that the problem can be reduced to understanding how, for X ⊃ B with B connected
and |X| a manifold, X can be seen to be bordant to the filtration X0,0 = (|X| ⊃ ∅).

Similar intrinsic stratifications are available for pl-pseudomanifolds, and have been
used for similar constructions by [Fri15] and [BLM19].
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Before going into the details of this case in Lemma 4.2.3, we briefly note the
following technical result:

Lemma 4.2.2: If X is a metric space, B ⊂ X, then holink(X,B) is metrizable.
If X is further separable, then holink(X,B) is paracompact.

If X ∈ MHSS, B ⊂ X, then holink(X,B) is metrizable and paracompact. In
particular, this implies, that partitions of unity exist.

Proof: Because I is compact and Hausdorff, and X is metric, the compact-
open-topology on XI is induced by the uniform metric (by the supremum of
pointwise distances), see e. g. [Bre97, Thm. VII.2.12 (p. 440)]. Hence the subspace
holink(X,B) ⊂ XI is also metrizable.

Further if X is separable, i. e. there is a countable dense subset X̃ ⊂ X, then
∪n∈NX̃

{0, 1
n

,..., n−1
n

,1} is countable, and when included into XI (by linear interpolation),
is dense. Hence XI is separable. Subspaces of separable metric spaces are separable
(and of course metric), so holink(X,B) ⊂ XI is also separable. By Stone’s Theorem
holink(X,B) is thus paracompact.

Finally, X ∈ MHSS implies, by definition, that X is both metric and separable.
Metric spaces are Hausdorff, and paracompact Hausdorff spaces admit partitions of
unity subordinate to arbitrary open covers. □

The main line of argument starts with the important special case outlined above.
The “bordism” constructed has strata, whose dimensions differ only by one, however
they have the form of a manifold with boundary.

Lemma 4.2.3: Let X be a closed MHSS with at most two meeting strata and
dim(X) ≥ 5. Then there is a MHSS bordism W from X to X0,0. This bordism
W has the underlying topological space |W | = |X × I|.

The homotopy-links of W have fibers that are either homotopy-equivalent to
the fiber of a homotopy-link of X or to a point.

Further W has strata in dimensions dim(X) + 1, dim(Bj) + 1 and dim(Bj),
with the latter ones disjoint for different minimal strata Bj, and for the same
minimal stratum Bj such that their union is a manifold with boundary (cf.
Section 3.3 (“Special Gaps”)).

If X is Witt, then W is Witt.
Proof: By Thm. 1.10.2 and dim(X) ≥ 5, the intrinsic stratification X0,0 has manifold
strata, thus is a MHSS. By Lemma 4.2.1, X0,0 there are B′j with B′j ⊂ Bj a union of
components of Bj. Define, using B := ∪jBj and B′ := ∪jB

′
j,

W = X×[0, 1] ⊃
(︂
(B−B′)×[0, 1/2] ∪ B′×[0, 1]

)︂
⊃ (B−B′)×{1/2}

with boundary ∂W = X × {0} ⊔ (−X0,0) × {1}, where the orientation-part can be
seen as follows: The top-stratum (other than B) is not separated by a codimension
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1 stratum, so has the expected (uniquely fixed by X) orientation. Further, this is
evidently a filtration by closed subsets, and the (open) left and right halves X× [0, 1/2)
and X0,0 × (1/2, 1] are open subsets of the MHSS X × I and X0,0 × I, thus MHSS,
with holinks those of X (cf. Cor. 4.2.1–1 in the case of X0,0). Additionally, given
an open neighborhood U ′ of B′ with U ′ ∩B ⊂ B′, then U ′ × I is a MHSS (because
U ′ ⊂ X is open in the MHSS X) and a neighborhood of B′ × I in W (also with
“correct” holinks).

The conditions that have to be checked for the lemma (MHSS and form of holinks)
are local, so it is only left to check everything near (B − B′) × {1/2}. Again by
locality, this can be done independently near each component of (B −B′).

For the remainder of the proof, we will thus assume, that W = X × [0, 1] ⊃
B × [0, 1/2] ⊃ B × {1/2} with B connected, and X0,0 =: N a manifold, since the
remaining part of the proof can always be reduced to this form (see above).

Here, it remains to check – for all (combinations of) strata – that: Strata are
manifolds, tame and homotopy-links are fibrations with fibers L corresponding either
to those in X or trivial.
Step 1: The strata of W are manifolds.

The top-stratum is an open subset of the manifold W ∼= N × I, hence a manifold.
The middle-stratum B× [0, 1/2) is a manifold because B is. So is the bottom-stratum
B × {1/2}.

Step 2: The following subsets are tame:
(i) B × [0, 1/2) ⊂ X × I −B × {1/2}
(ii) B × {1/2} ⊂ B × [0, 1/2]
(iii) B × {1/2} ⊂ X × I −B × [0, 1/2)

(i) By hypothesis X is a MHSS, thus there is an open neighborhood U ⊂ X of
B ⊂ X, which deformation-retracts nearly-strictly to B by R : U × I → U . Define
U ′ := U × [0, 1/2) ⊂ X × I − B × {1/2}, an open neighborhood of B × [0, 1/2) ⊂
X × I − B × {1/2}. Then R′ : U ′ × I → U ′ given by R × id[0,1/2) is a nearly-strict
deformation retraction to B × [0, 1/2) as required.

(ii) Let U ′ := B × (1/4, 1/2] and R′ : U ′ × I → U ′,
(︂
(x, s), t

)︂
↦→

(︂
x, (1 − t)s+ t/2

)︂
.

(iii) Let U and R as in (i). Let

U ′ := U × (1/4, 3/4) −B × (1/4, 1/2) and
R′ : U ′ × I → U ′,

(︂
(x, s), t

)︂
↦→

(︂
Rt(x), (1 − t)s+ t/2

)︂
.

Then R′ is well-defined, because R is nearly-strict, and it deforms U ′ into B × {1/2}.
It is nearly-strict, because for any t < 1, in the case x /∈ B nearly-strictness of R
implies R′t(x, s) /∈ B × (1/4, 3/4) while in the case of x ∈ B (and (x, s) /∈ B × {1/2}),
by the form of U ′, s > 1/2, hence (1 − t)s+ t/2 > 1/2.

For the question of holinks being fibrations, Suppose we are given a lifting-problem
of the form
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A× {0}
F0 holink(. . . , stratum)

incl

A× I

ev0

stratum
f

F

for the individual choices of subsets / strata indicated below.
Step 3: holink

(︂
X × I −B × {1/2}, B × [0, 1/2)

)︂ ev0−−→ B × [0, 1/2) is a fibration with
fiber F ≃ FX where FX is the fiber of holink(X,B).

We want to use the hypothesis that X ∈ MHSS to lift the X-coordinate, to then
“trivially” construct lifts in the I-coordinate. However, generally some of the F0(a)(t)
(since F0(a) ∈ holink, it is a path, t denotes the path-coordinate) may reach into
the “right-hand-side”, where their first coordinate may take values in B for some
t ̸= 0, so do not “project” to well-defined elements of holink(X,B) as is. We us an
approach similar to Quinn’s ϵ-holinks – or rather his proof of their equivalence to the
ordinary ones [Qui88a, Proof of Lemma 4.2 (p. 454)] – to alleviate this complication:
Start by defining, for γ ∈ holink a set

Iγ := { t ∈ I | γ(t) ∈ X × [1/2, 1] }

and a number ϵγ := 1/2 min(Iγ) if Iγ ̸= ∅, ϵγ := 1 otherwise. The minimum is
defined, because γ−1(X× [1/2, 1]) is closed in the compact I. Further, ϵγ > 0, because
γ ∈ holink implies γ(0) ∈ B × [0, 1/2) and γ−1(X × [0, 1/2)) is open. Note also, that
by construction

γ ∈ Mϵγ :=
{︂

η ∈ holink
⃓⃓⃓
η([0, ϵγ]) ⊂ X × [0, 1/2)

}︂
,

which is an open subset of holink by definition of the compact-open-topology.
So {Mϵγ }γ∈holink is an open cover of holink. By paracompactness of the holink
(Lemma 4.2.2), there is a locally finite sub-cover, say indexed by α, and a partition
of unity θα (subordinate to that cover). Hence we may define (pointwise, the sum
has only a finite number of non-zero summands):

ϵ : holink → (0,∞), γ ↦→
∑︂

α

θα(γ)ϵα

By the choice of the Mγ in the cover, γ([0, ϵ(γ)]) ∈ X × [0, 1/2), because ϵ is smaller
than the maximum of the finitely many ϵα with γ ∈ Mϵα , and we only need to find
one, because all will satisfy the bounds. So there is a well-defined map

π : holink → holink(X,B), γ ↦→
(︂
t ↦→ πX ◦ γ(tϵ(γ))

)︂
.

Because holink(X,B) is a fibration by hypothesis, and π(F0(a))(0) = πB ◦ f(a, 0) (as
π does not change the B-coordinate at 0), there is a lift G : A× I → holink(X,B)
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of πB ◦ f starting at π ◦ F0, i. e.

G(a, s)(0) = πB ◦ f(a, s)
G(a, 0)(t) = π

(︂
F0(a)

)︂
(t) = πX ◦ F0(a)

(︂
tϵ(F0(a))

)︂
Use this to define F : A× I → holink (see Figure 4.1) with X-coordinate

f

B × [0, 1
2 ]

F0
‘(G, fI)’ Fs

f(s)

F0(1− s)

Figure 4.1: Sketch of the construction of the lift F in case (i). Here, A is drawn as a
point. F0 may “puncture” the B-plane to the right of 1/2.

FX(a, s) = t ↦→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G

(︂
a, s

)︂(︂
t/ϵ(a)

)︂
if t ∈ [0, ϵ(a)]

G
(︂
a, s− t+ ϵ(a)

)︂(︂
1

)︂
if t ∈ [ϵ(a), ϵ(a) + s]

πX ◦ F0(a)(t− s) if t ∈ [ϵ(a) + s, 1]

where ϵ(a) := ϵ(F0(a)), and I-coordinate

FI(a, s)(t) =

⎧⎨⎩ψ
(︂

πI ◦ f(a, s), πI ◦ F0(a)(t− st′)
)︂

if t ∈ [0, ϵ(a) + s]
πI ◦ F0(a)(t− s) if t ∈ [ϵ(a) + s, 1]

where, the terms t′, τ and ψ are given by

t′ := t

ϵ(a) + s
τ := t′ − s

t′ + s
ψ(x, y) =

(︃1 − τ

2 x+ 1 + τ

2 y
)︃

(1 − t′) + yt′

which is chosen, s. t. for t = 0 it is τ = −1 and t′ = 0, thus ψ(x, y) = x, and for
s = 0 it is τ = +1, thus ψ(x, y) = y. Finally, for t′ = 1, clearly ψ(x, y) = y. With
the choices of x, y as above, they fit together at s = 0 = t (because f(a, 0) = F0(a)),
so that the singularity of τ is not an issue. We may assume ψ(x, t) ∈ [0, 1], otherwise
replace ψ by max(min(ψ, 1), 0).

We will first validate, that F is continuous, then, that F is well-defined as a
mapping into the holink, and finally, that it is indeed a solution of the initial
lifting-problem.
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“Continuity of the X-coordinate”: At t → ϵ:

“Case 1”: G(a, s)(ϵ/ϵ) = G(a, s)(1)
“Case 2”: G(a, s)(a, s− ϵ+ ϵ)(1) = G(a, s)(1)

while at t → ϵ+ s:

“Case 2”: G(a, s)(a, s− (ϵ+ s) + ϵ)(1) = G(a, 0)(1) = πX ◦ F0(a)(ϵ)
“Case 3”: πX ◦ F0(a)((ϵ+ s) − s) = πX ◦ F0(a)(ϵ)

“Continuity of the I-coordinate”: At t → ϵ+ s, i. e. t′ → 1 thus ψ = y:

“Case 1”: πI ◦ F0(a)((ϵ+ s) − s1) = πI ◦ F0(a)(ϵ)
“Case 2”: πI ◦ F0(a)((ϵ+ s) − s) = πI ◦ F0(a)(ϵ)

“F maps into holink”: For t ∈ (0, ϵ+ s], the X coordinate FX(a, s)(t) is given by
G(. . .)(t > 0) ∈ X −B, because im(G) ⊂ holink(X,B). Thus F is not in B × [0, 1/2]
for these t. For t ∈ [ϵ+ s, 1], F (a, s)(t) = F0(a)(t− s), which, by F0(a) ∈ holink and
t− s ≥ ϵ+ s− s > 0 is not in B × [0, 1/2]. Finally, the case t = 0, will follow from
F (a, s)(0) = f(a, s) ∈ B × [0, 1/2) being a lift as shown below.

“F is a solution of the lifting-problem (X-coordinate)”: For t → 0:

FX(a, s)(0) = G(a, s)(0/ϵ) = G(a, s)(0) = πB ◦ f(a, s)

For s → 0:

FX(a, 0)(t) =
{︄
G(a, 0)(t/ϵ) = πX(F0(a)(t/ϵϵ)) if t ≤ ϵ

πX(F0(a)(t)) if t ≥ ϵ

= πX ◦ F0(a)(t)

“F is a solution of the lifting-problem (I-coordinate)”: For t → 0 (by choice of ψ):

FI(a, s)(0) = πI ◦ f(a, s)

For s → 0:

FI(a, 0)(t) =
{︄
πI ◦ F0(a)(t− 0t′) if t ≤ ϵ+ s

πI ◦ F0(a)(t− 0) if t ≥ ϵ+ s

= πI ◦ F0(a)(t)

So F solves the original lifting problem.
By Quinn’s ϵ-holink construction, holink ≃fibered holinkδ = holink(X × I, B ×

I)δ ≃fibered holink(X × I, B × I) for a suitable δ, e. g. δ(b, s) = 1/2 − s, the statement
about the fiber follows from holink(X × I, B × I) having the same (homotopy-type
of) fiber as holink(X,B). This finishes Step 3 of the proof.
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Step 4: holink
(︂
B × [0, 1/2], B × {1/2}

)︂ ev0−−→ B × {1/2} is a fibration with fiber
F ≃ {pt}.

This is just a (much) simpler version of (i): Define the path F (a, s) as starting at
f(a, s), moving away from B in the I-coordinate for a “time” proportional to s, then
move back along f (in a plane B × {something ∝ s} parallel to B × {1/2}) and then
continue “parallel” to the original F0, possibly rescaling the value in the I-coordinate
(proportionally to s) to avoid values < 0 (cf. (iii) below). The equivalence F ≃ {pt}
follows by the same argument as the final step of (iii) below, in fact we can use the
same deformation, with the I-coordinate mirrored at 1/2.

Step 5: holink
(︂
X × I − B × [0, 1/2), B × {1/2}

)︂ ev0−−→ B × {1/2} is a fibration with
fiber F ≃ {pt}.

We employ the intuition, that F0 may be “folded around” B × [0, 1/2), but cannot
actually intersect it. Hence we can “untangle” it from the left side, simply by pushing
along the I coordinate to the right. This leads to the following definition (whose
properties are checked below):

F (a, s)(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂

πBf(a, s), 1
2 + t

1+4s

)︂
if t ∈ [0, s](︂

πBf(a, 2s− t), 1
2 + s

1+4s

)︂
if t ∈ [s, 2s](︂

πX ◦ F0(a)(t− 2s), 1
2 + πI◦F0(a)(t−2s)+s−1/2

1+4s

)︂
if t ∈ [2s, 1]

where, to ensure that the second coordinate stays within the interval I, we formally
replace it by min(1, πIF ). This does not change continuity, well-definedness or the
property of being a lift.

Then F is a well-defined lift (see below) and continuous: Continuity of the
individual pieces, and at t = s follows from continuity of f (and t = s being
interchangeable at that point). At t = 2s pieces fit together by f(a, 0) = ev0 ◦F0(a) =
F0(a)(0) for the X-coordinate and by πIF0(a)(0) = 1/2 for the I-coordinate. Clearly
F (a, s)(0) = f(a, s), because πIf ∈ {1/2}, and F (a, 0) = F0(a), so this is a lift.

For well-definedness, it is to check that F indeed maps into the holink. First,
F (a, s)(0) ∈ B × {1/2} is clear (this is just f(a, s), see above), so we need to show
t > 0 ⇒ F (a, s)(t) /∈ B × [0, 1/2]. For the first two cases, the second coordinate is
always > 1/2 and this is evidently true, except, possibly, if s = 0. But for s = 0,
automatically t ∈ [2s, 1], so it is enough to check the third case.

In the third case, we know F0(a) ∈ holink thus F0(a)(t > 0) /∈ B × [0, 1/2]. This
implies

(︂
πIF0(a)(t) ≤ 1/2 ⇒ πXF0(a)(t) /∈ B

)︂
. Since, the I-coordinate of F is always

larger than the one of some F0, in the sense of πIF (a, s)(t) ≥ πIF0(a)(t − 2s) it
follows 1/2 ≥ πIF (a, s)(t) ≥ πIF0(a)(t− 2s) ⇒ πXF (a, s)(t) = πXF0(a)(t− 2s) /∈ B
and hence F (a, s)(t > 0) /∈ B × [0, 1/2].

Finally, we have the check, that F is indeed a solution to the lifting problem: This
requires, that ev0 ◦ F = f , which is clearly the case, as setting t = 0 in the definition
of F implies, we are always in the first case, and f : A× {0} → B × {1/2} certainly
maps the second coordinate to 1/2. On the other hand, we need to check, that the
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lift starts at F0, i. e. for s = 0 we should find F (a, 0) = F0(a). Here, we are always
in the last case, and the X-coordinate evidently is correct. Further s = 0 implies
that the denominator 1 + 4s = 1, thus the second coordinate is πI ◦ F0 as required.

Next, we analyze the fiber of this fibration. Let b0 ∈ B and Fb0 := ev−1
0 ({(b0, 1/2)}).

First, deform this into

D :=
{︃

γ ∈ Fb0

⃓⃓⃓⃓
(x, s) ∈ im(γ) ⇒ min

(︂
d(x,B), 1/4

)︂
≤ s− 1/2

}︃
by R : Fb0 × I → Fb0 , (γ, u) ↦→ γ′u, where

γ′u(t) :=
(︃
πX ◦ γ(t) , πI ◦ γ(t)(1 − u) + u

(︂
min

(︂
d(πX ◦ γ(t), B), 1/4

)︂
+ 1/2

)︂)︃
Again, where the second coordinate is ≤ 1/2, it is larger than πIγ(t), and γ ∈ holink
implies γ′u ∈ holink as above. Clearly γ′0 = γ, i. e. R0 = id and γ′1 ∈ D, i. e.
imR1 ⊂ D.

Note, that by construction for γ ∈ D it holds that πIγ(t) ≤ 1/2 ⇒ γ(t) ∈
B × {1/2} ⇒ t = 0.

By hypothesis B ⊂ X is tame, so there is RX : X × I → X retracting X into B
rel B.1 We use this to further deform D into

D′ :=
{︃

γ ∈ Fb0

⃓⃓⃓⃓
γ

(︂
(0, 1]

)︂
⊂ B ×

(︂
1/2, 1

]︂ }︃

by composition R′ : D × I → D, (γ, u) ↦→
(︂
RX

u ◦ πX ◦ γ, πI ◦ γ
)︂
.

From here, the final step is to deform D′ into a single point {t ↦→ (b0, 1/2 + t1/4)}.
Let R′′ : D′ × I → D′, (γ, u) ↦→ γ′′u, where

γ′′u(t) :=
(︃

πX ◦ γ
(︂
t(1 − s)

)︂
, πI ◦ γ(t)(1 − s) +

(︂
1/2 + t/4

)︂
s

)︃
As noted above πIγ(t) ≤ 1/2 ⇒ t = 0, so this stays in D′.

In conclusion, we have constructed F = Fb0 ≃R D ≃R′ D′ ≃R′′ {pt} as required.
Finally, we also note, that the homotopy-equivalence Fb0 ≃ {pt} is continuous in
b0 (the only part in the composition, that depends on b0 is R′, which clearly is
continuous in b0), so we actually have constructed a fiber-homotopy-equivalence of
the homotopy-link fibration to the identity on B. This finishes Step 5 of the proof.

Finally, it only remains to check, that W is Witt if X is Witt. This can be checked
locally (as it only depends on local holinks). Because |X −B′| = |X0,0 −B′| is the
top-stratum of the MHSS (see above) X0,0, it is (homeomorphic to) a manifold, so
it is Witt by Example 1.12.8, as W has no codimension 1 stratum (because the
Witt space X does not have one, see also Example 1.12.8). So it remains to check,
that W is Witt near B′ × I. But a (small enough, see e. g. U ′ at the beginning of

1Even nearly-strictly so, which would allow to integrate this step into the previous one, if we
wanted to.
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the proof) neighborhood of B′ × I agrees with (is stratified homeomorphic to) a
neighborhood of B′× I ⊂ X × I (see definition of W ), which is Witt, since X is and
the Witt-condition is stable (Example 2.1.3). □

Corollary 4.2.3–1: Let X be a closed proper MHSS Witt space with simple
links and with at most two meeting strata, with minimal strata of dim(Bj) ≤
dim(X) − 5.

Then there is a bordism W ∈ Whgap 5
∗ (in the strong t-class of Example 3.4.1)

from X to X0,0. This bordism W has the underlying topological space |W | =
|X × I|. Further, also X0,0 ∈ Whgap 5

∗ , and W and X0,0 are Witt if X is Witt.

Proof: This X satisfies the requirements of the lemma. The W obtained by the
lemma is a MHSS, and has simple links, because X has simple links, and W has only
holink-fibers that appear in X or have trivial fundamental group (by the lemma).
The (meeting) strata appearing in W either differ in dimension by 5, or are of the
“special” form Section 3.3 (“Special Gaps”), so W is allowed in Whgap 5

∗ .
Similarly the claim follows for X0,0 from Cor. 4.2.1–1. □

Additionally including a Witt-condition as well as maps (elements of bordism
groups not over the point), we obtain:

Proposition 4.2.4: Let X and Y be closed proper MHSS Witt spaces with simple
links and with at most two meeting strata, with minimal strata of dim(Bj) ≤
dim(X) − 5. Let h : X ∼−→ Y be a (not necessarily stratified) homeomorphism.

Then h∗([X id−→ X]) = [X h−→ Y ] = [Y id−→ Y ] in ΩWh∩Witt
∗ (Y ). Here

Wh ∩ Witt denotes the strong t-class of spaces that are both in the strong t-class
Whgap 5

∗ of Example 3.4.1 and are additionally Witt.

Proof: By Cor. 4.2.3–1 there are bordisms WX ,WY ∈ Whgap 5
∗ from X to X0,0 and

from Y to Y0,0 respectively, which are Witt, because X and Y are. These have
underlying topological spaces |WX | = |X × I| and |WY | = |Y × I|, so we can define
maps |WX | = |X × I| hπX−−→ |Y | and |WY | = |Y × I| πY−→ |Y |, that restrict to h and
idY on either side, making them into bordisms from X

h−→ |Y | to X0,0
h−→ |Y | and

from Y
id−→ |Y | to Y0,0

id−→ |Y | in ΩWh∩Witt
∗ (Y ).

By Thm. 1.10.2, the homeomorphism h is stratified with respect to the (topologi-
cally intrinsic) X0,0, Y0,0. So by Prop. 4.1.1, the stratified mapping-cylinder cyl(h) is
a bordism from X0,0

h−→ |Y | to Y0,0
id−→ |Y | in ΩWh∩Witt

∗ (Y ). Note, that this stratified
mapping-cylinder cyl(h) ∼=strat X × I (see Prop. 4.1.1), thus is Witt (because X is,
and the Witt-condition is stable Example 2.1.3).

Composing these, we find

(X h−→ Y ) ∼WX
(X0,0

h−→ Y ) ∼cyl(h)(Y0,0
id−→ Y ) ∼−WY

(Y id−→ Y ) in ΩWh∩Witt
∗ (Y )
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which finishes the proof. □

A very similar approach is to cone off the lower stratum in the middle (cf. [Ban07,
p. 137]). This could avoid the “special gaps” (see Section 3.3 (“Special Gaps”)), but
would turn B into a “link”, thus require B to satisfy a Whitehead condition on
its fundamental group. Further, a treatment beyond the coefficient case Ω∗({pt})
would require some contractibility hypothesis on B to be able define the map of the
bordism.

This means in a bordism-theory, fundamental classes of such two-stratum spaces
are invariant under unstratified homeomorphisms. See the Main Theorem (Section 5.1
(“The Main Theorem”)).





5 The Main Theorem and its Applications

In this chapter, the results of the thesis are collected together into a single theorem
(Section 5.1 (“The Main Theorem”)). Its range of applicability is briefly explored in
Section 5.2 (“Satisfying the Hypotheses”). Then this is applied to study the transport-
behavior of Goresky–MacPherson L-classes under homeomorphisms (Section 5.3
(“L-Classes”)). Finally, we give a separate transversality-statement in Section 5.4
(“Singular Transversality”), which is technically slightly stronger than what is used
in the the bordism-theory.

5.1 The Main Theorem
We start by a brief summary of hypotheses required in the theorem, and the reasons
why they appear.

The probably most evident requirement, is, that spaces have “simple links”. This
means, homotopy-links of pairs of strata must have fibers (more precisely: Path
components of fibers over path components of the lower stratum) with fundamental
groups π, such that ∀k ≥ 0: Wh(π×Zk) = 0. The reason for this condition to appear,
is, that the geometric objects which need to be constructed for the (inverse of the)
excision-isomorphisms, rely on the existence of certain manifold boundaries [CV99],
that are in turn constructed as (controlled) end-completions, in the sense of e. g.
[Qui79], of strata over the next lower skeleton. Excision may occur in different places
and potentially multiple times in sequence, so vanishing of an end-obstruction(-group)
or existence of a (single) cylinder-neighborhood do not suffice.

Next, there is a “dimensional gap” requirement, that any pair of (meeting) strata
differ in dimension by at least 5. This is related to problems occurring at low (absolute)
dimension: The end-theorem (being rather similar to the s-cobordism theorem) does
not work well in intermediate dimensions, in dimension 5 fundamental groups must
additionally be “good” (e. g. poly-(finite / cyclic)) [FQ90]. In dimension 4 not much is
known. Low (absolute) dimensions may always be reached by repeated application of
excision, the codimension requirement ensures however, that low-dimensional skeleta
are manifolds (up to finitely many points of a potential zero-stratum).

Remark 5.1.1: It seems plausible, that for “good” fundamental groups (in the
sense of [FQ90], see Def. 1.9.5), co-dimension 4 strata can be allowed, so that
the gap hypothesis may be reduced to ≤ 4 (see Rmk. 1.9.4).

This applies for example to poly-(finite / cyclic) groups (see Example 1.9.6),
thus many examples (e. g. links having free abelian Example 5.2.5, or more
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generally torsion-free poly-(finite / cyclic) Example 5.2.7, thus poly-(finite /
cyclic) fundamental groups) still apply.

Further, there is the implicit choice of working with MHSS [Qui88a] as probing
spaces. This is, because they both lend themselves well the study to end-completions
(see above), while also being defined purely topologically (without the requirement
of pl or geometric-bundle hypotheses) and have intrinsic stratifications, thus are
well-suited for the study of topological homeomorphisms.

Additionally, spaces are required to be Witt [Sie83; Fri09], providing enough rigidity
to ensure, that the theory obtained is non-trivial (for example the complex projective
spaces CP2k allowed over the point and are not null-bordant), and supplementing a
signature-homomorphism, which allows, for example, for the study of L-classes (see
Section 5.3 (“L-Classes”)).

Finally, by having “a geometric description of suspension” (in the sense of
Def. 2.5.9), representatives of a desuspension (in the reduced theory) can by chosen
“universally” with certain transversality properties, which allows for example to
conclude, that an element which can be represented as a pl-stratified pseudomanifold,
also has a representative of its desuspension which is a pl-stratified pseudomanifold
(see Example 2.5.10).

One may note, that transversality-constructions are done inductively over skeleta,
and only strata that meet (i. e. have common points in their closures closure(S1) ∩
closure(S2) ̸= ∅) will require normal structure for the inductive step. This means,
that also codimension (gap) conditions, and requirements on the number of strata
concern only meeting strata. So e. g. a MHSS with top-stratum M and more than
two minimal strata Bi, with all Bi closed and disjoint (from each other), is allowed
as a space with at most two meeting strata.

Theorem 5.1.2 (“The Main Theorem”): There is a generalized homology
theory ΩWh∩Witt

∗ (–, –) (realized as oriented bordism of certain MHSS Witt-spaces),
defined on topological pairs, with the following properties:

(1) ΩWh∩Witt
∗ is a module over ΩSTOP

∗ , the oriented bordism-groups of topolog-
ical manifolds.

(2) For any topological space X, there is a group-homomorphism

σ : ΩWh∩Witt
∗ (X) → Z.

(cf. 3. a for a normalization)

(3) An oriented closed “gapped” – in the sense, that meeting strata closure(M)∩
B ≠ ∅ must be “gapped” by dim(M) − dim(B) ≥ 5 – MHSS Witt-space X
with dense top-stratum, of dimension n, with “simple links” (that is, with
homotopy-links whose fibers over all connected components have connected
components with fundamental groups π, such that ∀k ≥ 0 Wh(π×Zk) = 0),
has a “fundamental class” [X] ∈ ΩWh∩Witt

n (X), such that:
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(a) The group-homomorphism σ of part (2) is normalized by σ([X]) =
sign(X), where sign(X) is the (middle-dimension, middle-perversity)
intersection-homology pairing signature of the MHSS Witt-space X.

(b) Let h : X ∼−→ Y be an orientation-preserving stratified homeomorphism
of such (satisfying the hypothesis of (3)) spaces X and Y . Then
h∗([X]) = [Y ] ∈ ΩWh∩Witt

n (Y ).
(c) Let h : X ∼−→ Y be an orientation-preserving homeomorphism (not

necessarily stratified) of such spaces X and Y , where X, Y both have
at most two meeting strata. Then h∗([X]) = [Y ] ∈ ΩWh∩Witt

n (Y ).

(4) The reduced theory Ω̃Wh∩Witt
∗ (–) has a geometric description of suspension

(in the sense of Def. 2.5.9).

Proof: We obtain a bordism-theory by applying Prop. 2.3.7 to the strong transver-
sality-class obtained from combining the strong t-class Whgap 5

∗ from Example 3.4.1
with the stable class Witt from Example 2.1.3 by Lemma 2.2.2 into Wh ∩ Witt :=
Whgap 5

∗ ∩ Witt. By Prop. 2.3.7, this is a generalized homology-theory and satisfies
“(1)”.

“(2)”: For [Y → X] ∈ ΩWh∩Witt
∗ (X), since Y is a MHSS Witt-space, there is a

well-defined signature sign(Y ) by Thm. 1.12.10. By Thom’s theorem (for MHSS)
Prop. 1.12.11 this signature does not depend on the choice of representative of
[Y → X], so σ([Y → X]) := sign(Y ) is well-defined. The group-operation on
ΩWh∩Witt
∗ (X) is defined by disjoint union (see Section 2.1 (“Bordism Theories”)),

and by the definition of the signature sign(Y ⊔ Y ′) = sign(Y ) + sign(Y ′), therefore σ
is group-homomorphism.

“(3)”: The spaces in (3) are allowed as “probing spaces” in the bordism-theory,
so [X] := [X id−→ X] ∈ ΩWh∩Witt

n (X) is a well-defined element. Part (a) follows
directly from the definition of σ (see above). Parts (b) and (c) follow from Chapter 4
(“Homeomorphisms”), more precisely from Prop. 4.1.1 and Prop. 4.2.4 respectively.

“(4)”: This was proved in Section 2.5 (“Reduced Theories”) as Lemma 2.5.11. □

In the subsequent sections, we first give a number of examples where the theorem
applies. Then the theorem is used to study the transport-behavior of singular
L-classes under certain (stratified) homeomorphisms.

5.2 Examples of Classes of Spaces Satisfying the
Hypotheses of the Main Theorem

This section collects a number of examples for spaces satisfying the different hypothe-
ses of the main-theorem.

First, all conditions rely on how strata fit together, so:
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Example 5.2.1: Let Mn be a closed oriented topological manifold. Then M has
a fundamental-class [M ] ∈ ΩWh∩Witt

n (M).
Further, given an element [Y f−→ X] ∈ ΩWh∩Witt

n (X) with n := dim(Y ) ̸=
5, there is a homological orientation [Y ]H ∈ Hn(Y ), which is the manifold
orientation-class if Y is a manifold, such that the evident map

ι : ΩSTOP
∗ (X) → ΩWh∩Witt

∗ (X), [f : M → X] ↦→ [f : M → X]

factors the Hurewicz-map from manifold-bordism

HurMfld : ΩSTOP
∗ (X) → H∗(X), [f : M → X] ↦→ H∗(f)([M ]H)

via another Hurewicz-map in degrees ∗ ≠ 5

HurMHSS : ΩWh∩Witt
∗ (X) → H∗(X), [f : Y → X] ↦→ H∗(f)([Y ]H)

i. e. HurMfld = HurMHSS ◦ι.

Remark 5.2.2: In dimension 5, one could likely use a teardrop-neighborhood of
the next-to-top skeleton (see Example 1.4.5 and discussion thereafter) instead
of a cylinder-neighborhood to remove the dimensional requirements.

Proof: Given [Y f−→ X] ∈ ΩWh∩Witt
n (X) = ΩWh∩Witt

n (X, ∅), thus ∂Y = ∅, a
homological orientation [Y ]H may be defined as follows: If n < 5, then Y is a closed
manifold and has an orientation-class. Otherwise, if dim(Y ) ≥ 6, since Y has simple
links, (by Lemma 3.1.11, the end-theorem Thm. 3.1.9 and the dimension-requirement)
there is cylinder-neighborhood, such that Y = M ′ ∪∂M ′ cẙl(g : ∂M ′ → Y n−5) rel
Y n−5 for some MAF g (or a suitable replacement thereof in the case of more than
two strata, see Chapter 3 (“Multiple Strata”)), mapping from the boundary ∂M ′ of
a compact manifold M ′ to the next-to-top skeleton of Y .

Because Y is oriented, there is an orientation [M ′, ∂M ′] ∈ Hn(M ′, ∂M ′), identifying
the cylinder-coordinate with the collar-coordinate of a boundary collar of ∂M ′ ⊂
M ′ we obtain a map πg : (M ′, ∂M ′) → (Y, Y n−5) inducing H∗(πg)([M ′, ∂M ′]) ∈
Hn(Y, Y n−5), but Hn−1(Y n−5) = 0 (for dimensional reasons), so by the long exact
sequence of the pair (Y, Y n−5) this comes from some unique, by Hn(Y n−5) = 0,
element [Y ]H ∈ Hn(Y ). If Y is in the image of ι, it is a manifold, it must be
closed, by [f ] ∈ ΩWh∩Witt

∗ (X, ∅), and oriented, so M ′ = Y and [Y ]H is the usual
manifold-orientation, thus indeed HurMfld = HurMHSS ◦ι holds.

Next we check, that the homological fundamental-class is well-defined (does
not depend on the choice of cylinder-neighborhood), because by the end-theorem
(Thm. 3.1.9) completions are unique up to (controlled) h-cobordism, thus by vanishing
of the obstruction-groups (again by Lemma 3.1.11), are unique up to homeomorphism
rel lower skeleton. The construction of the homological fundamental-class was natural,
so gets mapped “correctly” by this homeomorphism.
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Further, it remains to show, that these mappings are well-defined. For ι, this is
the case, because a manifold-bordism is also allowed as bordism in ΩWh∩Witt

∗ .
We briefly recall the manifold-case HurMfld: First, note, that [f : M → X] ∼[f ′ :

N → X] means, there is there is a manifold-with-boundary W and a continuous
F : W → X that restricts to F |∂W = f⊔f ′, where the orientations on the components
of ∂W are [M ]H and −[N ]H , i. e. the orientation [W,∂W ] ∈ Hn+1(W,∂W ) is such
that ∂∗([W,∂W ]) = [∂W ] = iM∗ [M ]H − iN∗ [N ]H ∈ Hn(∂W ). Thus (since f = F ◦ iM
and f ′ = F ◦ iN ), we find (F |∂W )∗(∂∗[W,∂W ]) = f∗([M ]H) − f ′∗([N ]H) and it suffices
to show, that the left-hand-side vanishes in Hn(X). But F also induces a map of
pairs (W,∂W ) → (X,X) and by naturality of the boundary, (F |∂W )∗(∂∗[W,∂W ]) =
∂∗(F∗([W,∂W ])) = 0, because F∗([W,∂W ]) ∈ Hn(X,X) = 0.

The MHSS case HurMHSS works exactly the same, as long as we can apply the
manifold argument to the (completed) top-stratum (Wn+1)′ of a bordism. Since
the bordism has itself a cylinder-neighborhood (as it has simple links) of its top-
stratum, and the homological orientation does not depend on the choice of cylinder-
neighborhood by uniqueness of end-completions (by having simple links, making
also the h-cobordism obstructions vanish, see Lemma 3.1.11; see above), such a
manifold-bordism of completed top-strata exists. □

More generally, stratified pseudomanifolds1 with suitable links can be used:

Example 5.2.3: If Xn is a closed stratified pseudomanifold and Q-Witt2, with
simple links and satisfying the gap-hypothesis, then X has a fundamental class
[X] ∈ ΩWh∩Witt

n (X) and part (3) of the main theorem applies.

Proof: X is a CS set in the sense of Siebenmann [Sie72] (see Def. 1.3.10), hence a
MHSS (Example 1.4.8).

The Witt-hypothesis on MHSS and stratified pseudomanifolds agrees (see Exam-
ple 5.2.8 below). □

For a space with more than two strata, the simple links condition (as of now)
cannot be checked on the stratified pseudomanifold-links, but rather concerns the
stratum-to-stratum links individually, see part (f) of Section 6.3 (“Outlook and
Further Ideas”). This corresponds to checking the condition on strata of links:

1By a stratified pseudomanifold, we mean one in the sense of Def. 1.3.10, that is, manifold-stratified,
locally-conelike, with no codimension 1 stratum, dense top-stratum and with links themselves
compact stratified pseudomanifolds of lower dimension.

2Either in the pseudomanifold or in the MHSS sense, both agree here by Example 5.2.8.
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Example 5.2.4: If Xn is a closed stratified pseudomanifold with links3 Li (in the
pseudomanifold-sense) with strata (Li)j, such that Wh(π1((Li)j) × Zk) = 0 for
all i, j, k, then X has simple links.

Proof: Again, X is a CS set in the sense of Siebenmann [Sie72] (see Def. 1.3.10),
hence a MHSS. Note, that it has local homotopy-links (see Example 1.4.8) Li.

For example in the two stratum case local homotopy-links are homotopy-link fibers
and nothing more would be required to be checked. In this case the L only have one
stratum.

In general, strata of the local homotopy-links are (by definition) those paths,
mapping into a single stratum (except at 0), so are the homotopy-links of pairs of
strata. The homotopy-link fibers are the fibers of these “homotopy-links of pairs”, so
satisfy the Whitehead-hypothesis for the main theorem, if they satisfy the hypothesis
of the example.

This can also be checked directly: By locality of holinks and local-conelikeness
of stratified pseudomanifolds, we may check this near a point p ∈ Xi on Ri × c◦(Li)
(with the stratification induced by Li, which is itself a stratified pseudomanifold, thus
stratified). The homotopy link of Xi = Ri × {c} in Xi ∪Xi+j+1 = Xi ∪ Ri × ((Li)j ×
(0, 1)) = Ri ×c◦((Li)j) has fiber Fij = (Li)j by pushing along the cone-coordinate (see
Example 1.4.8), so the Whitehead-hypothesis implies the “simple links”-condition. □

As already mentioned in Example 2.2.4 (the restriction to two strata is again
required for local holinks and pairwise-holinks to agree):

Example 5.2.5: If X is a “supernormal” ([Wei94, §12.1 (p. 202f)]) MHSS with
at most two meeting strata, then it has simple links.

One may, however, apply the algebraic knowledge (of Wh(Zk) = 0, [BHS64])
stratum-wise to links, e. g. for stratified pseudomanifolds (combining Example 5.2.4
and Example 5.2.5):

Example 5.2.6: If X is a closed stratified pseudomanifold and Q-Witt, satisfying
the gap-hypothesis, and with links Li such that the strata (Li)j of those links are
simply-connected, then X has a fundamental class [X] ∈ ΩWh∩Witt

n (X) and part
(3) of the main theorem applies.

Or slightly more general:

3In the case, where X is not pl, the links may not be known to be well-defined, but their
homotopy-types are (they are homotopy-equivalent to the homotopy-well-defined holink-fibers).



5.3 L-Classes 157

Example 5.2.7: If X is a closed stratified pseudomanifold and Q-Witt, satisfying
the gap-hypothesis, and with links Li such that the strata (Li)j of those links have
torsion-free poly-(finite / cyclic) (e. g. finitely generated free abelian) fundamental-
groups (see Example 2.2.4) then X has a fundamental class [X] ∈ ΩWh∩Witt

n (X)
and part (3) of the main theorem applies.

Proof: This is a consequence of the algebraic structure, see [BHS64; FH81, Thm. 3.2
(p. 308)] and Example 2.2.4 □

Also, not very surprisingly, but nevertheless quite useful:

Example 5.2.8: If X is a closed stratified pseudomanifold, then X is Witt as
stratified pseudomanifold if and only if it is Witt as MHSS.

Proof: X is a CS set in the sense of Siebenmann [Sie72] (see Def. 1.3.10), hence a
MHSS (see Example 1.4.8), so this makes sense.

The condition that incl : IHm̄ → IHn̄ be an isomorphism is the same, since the
intersection-homology-theories agree (they are determined by the Deligne-sheaf, see
[Fri09, Thm. 5.1 (p. 2177)] and [GM83]). The claim follows by Lemma 1.12.7 and its
analogue in the pseudomanifold-case. □

Now, having seen some possibilities to validate the hypotheses appearing in the
main theorem, we continue by an application to L-classes.

5.3 L-Classes
We start by some background on L-classes. Originally, L-classes on smooth manifolds
were introduced by Hirzebruch [Hir56, §1.5 (p. 13f)] to formulate, what is today
known as the “Hirzebruch Signature-Theorem” [Hir56, ‘Hauptsatz’ 8.2.2 (p. 85)] (see
also [Hir71]): It seems, that it had been known before, that the signature of a
(smooth) manifold can be written as a polynomial of its Pontryagin numbers [Tho53],
but using “multiplicative sequences” to explicitly construct these “L-polynomial”
(see e. g. [Hir71] or [Ban07, §5.6 (p. 117–119)]), Hirzebruch could actually prove the
general case of this “index-theorem”:

Theorem 5.3.1: “Hirzebruch Signature-Theorem” [Hir56, ‘Hauptsatz’ 8.2.2
(p. 85)]: The L-Polynomials, given as the multiplicative sequence associated
to x/tanh(x), define the L-Genus L(M) := ⟨Ln(p1(TM), . . . , pn(TM)), [M ]⟩ of a
smooth manifold Mn by formal application of Ln to the Pontryagin-classes pi

of the tangent-bundle TM of M , evaluated via the Kronecker-product4 on the
orientation-class [M ] of M .

4Since M is smooth, using de-Rham cohomology, this can of course also be expressed as an
integral.
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It then holds, that this is the signature of (the middle-dimension Poincaré- /
intersection-pairing) of M , that is L(M) = sign(M).

Note, that these L-polynomials have rational coefficients, while the signature is an
integer, so for smooth manifolds certain “divisibility”-rules must be satisfied (which
can be used to construct / verify certain examples of non-smooth manifolds [MS74,
p. 247f]).

It was shown by Novikov [Nov65], that (rational) Pontryagin-classes (and thus
L-classes) of manifolds are in fact topological invariants, i. e. even though they are
explicitly constructed as characteristic classes of the smooth tangent-bundle, the
choice of smooth structure does not actually matter:

Theorem 5.3.2: Novikov [Nov65, Thm. 1 (p. 921)]:
Given two smooth manifolds Mn

1 and Mn
2 , and a homeomorphism h : M1 →

M2, the rational Pontryagin-classes are invariant: h∗(pi(TM2; Q)) = pi(TM1; Q).

This result is actually far from trivial, since at that time not much was known
about transversality in the topological category. In fact, the methods of the proof
given by Novikov [Nov65] were an important ingredient in the development of such
transversality-methods [KS77].

While homeomorphism-invariant (on manifolds) the L-classes are not homotopy-
invariant, so it is meaningful to ask, which homology-equivalences (maps that induce
isomorphisms on homology-groups) leave L-classes invariant or which part of the
information contained in L-classes is homotopy-invariant (for example the top L-
class / signature is; more generally certain higher signatures can be introduced, see
e. g. [Ran95], the question about their invariance is famously known as the “Novikov
Conjecture”).

While generalizations of tangent-bundles to topological manifolds exist [Mil64],
and the Pontryagin-classes can be defined as characteristic-classes of topological
tangent-bundles in a suitable sense [RW10, Prop. 9.4 (p. 340)], this is not the approach
Novikov [Nov65] takes. This suggests a definition independent of tangent-bundles
should exist. To study invariants of stratified spaces, this is an important observation,
because tangent bundles are not readily available.

Such an alternative description was given by Thom [Tho58] (see also Ranicki
[Ran95, Prop 2.6 (p. 7)]) to handle the pl-case5 by general-position arguments, rather
than through tangent-bundles. The idea is, roughly-speaking, to invoke Hirzebruch’s
signature-theorem “backwards” to see, that the signatures of certain “special” sub-
manifolds combined contain exactly the information of the L-classes. Indeed, this is
also the perspective taken by [GM80] to define their “Goresky–MacPherson L-classes”
on pl-stratified pseudomanifolds.

5Again, transversality / general-position arguments, became available for the topological category
only later [KS77].
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The invariance of L-classes (and Pontryagin-classes), and its proof, has been
studied intensively, see for example [RW10]. An approach particularly relevant to
the present discussion of singular spaces, is the construction of Banagl, Laures, and
McClure [BLM19], even giving a fundamental class in L•-homology (see [Ran92])
for pl intersection-homology Poincaré (IP) spaces [GS83, §7 (p. 103f)] (these are
similar to Witt-spaces, but constructed for integral non-singular forms, see also
[Fri09] for a discussion of generalizations of base-rings), which, among other things,
implies invariance of Goresky–MacPherson L-classes under pl-homeomorphisms. The
argument is based on the use of ad-theories (these are similar to bordism, and in
this case based on Pardon’s [Par90] IP-bordism). Since it is known how to stratify
mapping-cylinders of pl-homeomorphisms, invariance ultimately traces back to having
a bordism-theory, which contains bordisms corresponding to pl-homeomorphisms.
The bordism-theory introduced in this thesis is designed to be compatible with
topological (stratified) homeomorphisms, so one may wonder, to what degree this
can be fit into the logic of [BLM19]. These ideas are also related to the treatment of
the manifold case given in [Ran92, Prop. 16.16 (p. 188)].

Treatments of the topological invariance of Goresky–MacPherson L-classes can
also be found in [CSW91] and [Wei94, p. 209f].

Before going into details, we briefly recall the (Thom-)construction as laid out
in [Ban07, §5.7 (p. 120–122)] of Goresky–MacPherson L-classes [GM80], see also
[Ran95] for a similar (non-singular) treatment.

This construction will yield homological L-classes, which are the Poincaré-duals
of the “usual” cohomological ones, where those are defined (on smooth manifolds).
We do not review the proof of this connection, this is, for example, done in [Ban07,
Prop. 5.7.2 (p. 122)].

Our transversality-statement is encapsulated in the homology-theory ΩWh∩Witt
∗

via excision, or, in the reduced case, via the (de-)suspension. This close relationship
is most apparent in the proof of excision and in the “geometric description” of the
suspension. Formally we could make elements of cohomotopy-groups transverse
directly (see Section 5.4 (“Singular Transversality”)), but well-definedness is easier
to check when using a detour through our bordism-theory (this also shows, that the
“weaker” – in that it allows moving things in the lower stratum while extending –
transversality-statement embedded in the bordism-theory is “good enough” for this
conclusion):

Definition 5.3.3: Let X be a closed oriented MHSS Witt-space. Let

ψ : Ω̃Wh∩Witt
i (Sk) susp−k

−−−−→ Ω̃Wh∩Witt
i−k (S0) ∼= ΩWh∩Witt

i−k ({pt})

and, using q([X]) ∈ Ω̃Wh∩Witt
∗ (X), the reduced equivalence-class of the “funda-

mental class” [X], see Section 2.5 (“Reduced Theories”), we can compose this
with the Hurewicz-map to obtain:

lk(X) : πk(X) → Z, [φ] ↦→ σ
(︂
ψ(φ∗(q([X])))

)︂
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Note that πk(X) may not be a group for small k, these cases can be avoided by
a stability argument however, see below.

These lk are stable under suspension in the sense, that:

Lemma 5.3.4: This l is stable in the sense that ∀[φ] ∈ πk(X)

lk+N(X × SN)([ΣN
×φ]) = lk(X)([φ])

where, given φ : X → Sk, we use the “suspension” (see Lemma 2.5.12)

ΣN
×φ : X × SN φ×id

SN−−−−→ Sk × SN π−→ Sk × SN/Sk ∨ SN = Sk ∧ SN ∼= Sk+N

Proof: Let n := dim(X). We need to check commutativity of the following diagram

πk(X) Ω̃Wh∩Witt
n (Sk) Ω̃Wh∩Witt

n−k (S0)

πk+N(X × SN) Ω̃Wh∩Witt
n+N (Sk+N)

[φ] ↦→ φ∗([X]) susp−k

ΣN
× (–) susp−N

susp−k−N

[ψ] ↦→ ψ∗([X × SN ])

The triangle to the right clearly commutes, as all maps are compositions of the
(inverse) suspension maps. For the left-hand side rectangle, we need

suspN(φ∗([X])) = (ΣN
×φ)∗([X × SN ])

i. e. both notions of suspensions must coincide. This has been shown in Lemma 2.5.12.
□

By the same construction as for (pseudo-)manifolds, these “stabilized” lk can be
represented in homology (essentially through the stable Hurewicz-map being an
isomorphism rationally / “Serre’s theorem”):

Lemma 5.3.5: For N large enough, rationally, there is a natural isomorphism

λN : Hom
(︂
πk+N(X × SN) ⊗ Q,Q

)︂
→ Hk(X; Q)

Given another such N ′ > N , then λ′N([ΣN ′−Nφ]) = λN([φ]).
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Proof: Let χ denote the universal-coefficient isomorphism (the ext-groups vanish
rationally)

χ : Hom
(︂
Hk+N(X × SN ; Q),Q

)︂
→ Hk+N(X × SN ; Q)

For N large enough the rational Hurewicz-map is an isomorphism

η : πk+N(X × SN) ⊗ Q → Hk+N(X × SN ; Q), [φ] ⊗ q ↦→ q[φ∗([SN ])]

so that its inverse induces

(η−1)∗ : Hom
(︂
πk+N(X × SN) ⊗ Q,Q

)︂
→ Hom

(︂
Hk+N(X × SN ; Q),Q

)︂
Finally the Künneth-theorem provides an isomorphism (for k < N)

κ : Hk+N(X × SN ; Q) → Hk(X; Q)

Setting λ := κ ◦ χ ◦ (η−1)∗ has the claimed properties (by Lemma 5.3.4). □

We define the “L-classes” as those homology-representatives:

Definition 5.3.6: Let X be a closed oriented MHSS Witt-space with simple links
and satisfying the gap-hypothesis. Define

Lk(X) := λN(lk+N(X × SN) ⊗ Q) ∈ Hk(X; Q)

where N is large enough that Lemma 5.3.5 applies.

This is well-defined by Lemma 5.3.4 and Lemma 5.3.5. Showing, that lk are indeed
group-homomorphisms (for large enough k, when πk(X) are actually groups) would
require a bit more work, however, it does not differ significantly from the “usual”
treatment, so we omit it here. Also, for the interesting cases (see below), we can
identify things on the “l∗-level” (before applying λ) with the classes by Goresky–
MacPherson, so, for the results concerning Goresky–MacPherson L-classes, we may
work with l∗ directly.

Lemma 5.3.7: Let X be a closed oriented pl-stratified pseudomanifold Witt-space
with simple links and satisfying the gap-hypothesis. Then Lk(X) = LGM

k (X) is
the Goresky–MacPherson L-class ([GM80]).
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Proof: By Example 5.2.3 the main theorem (including part (3) applies).
First, the construction of L∗ from l∗ via λ is the same as in the pseudomanifold-

case. So we only need to check, that the lk are actually “doing the right thing” with
[φ] ∈ πk(X).

Since X is a pl-stratified pseudomanifold, there is φ⊥ ≃ φ transverse to S0 ⊂ Sk

(see Example 2.5.10).
Because the reduced theory has a geometric description of suspension in the

sense of Def. 2.5.9, by Lemma 2.5.11, and using φ∗(q([X])) = JφK, the desuspension
susp−k(JφK) can be represented by Jφ⊥|X[k]K, where X[k] is the transverse preimage
of {pt} ⊂ S0.

Further lk is simply taking the signature of X[k], and Friedman’s [Fri09] intersection-
homology treatment on MHSS agrees with the one on stratified pseudomanifolds
Goresky and MacPherson [GM80] use (it is the Deligne-sheaf). Hence, this is the
signature of the transverse preimage of a transverse representative φ⊥ of [φ] in the
sense of [GM80], so that indeed lk(X)(q([φ])) is the same as the integer used in the
construction of Goresky–MacPherson L-classes. □

Finally, we use the Main Theorem to study transport of the L∗ under homeomor-
phisms. Note, that the homeomorphisms in the following statement are not pl. The
case of pl-homeomorphisms has been treated in great generality by [BLM19].

Proposition 5.3.8: These L-classes are invariant whenever the main-theorem
applies:

Let X and Y be closed oriented MHSS Witt-spaces with simple links and
satisfying the gap-hypothesis.

Let h : X → Y be a stratified homeomorphism. Then h∗
(︂
Lk(X)

)︂
= Lk(Y ).

If X and Y have at most two meeting strata, and h : X → Y is a homeomor-
phism (not necessarily stratified). Then h∗

(︂
Lk(X)

)︂
= Lk(Y ).

Corollary 5.3.8–1: On suitable pl-stratified pseudomanifolds, this holds for
Goresky–MacPherson L-classes:

Let X and Y be closed oriented pl-stratified pseudomanifold Witt-spaces with
simple links and satisfying the gap-hypothesis.

Let h : X → Y be a stratified homeomorphism. Then h∗
(︂
LGM

k (X)
)︂

= LGM
k (Y ).

If X and Y have at most two meeting strata, and h : X → Y is a homeomor-
phism (not necessarily stratified). Then h∗

(︂
LGM

k (X)
)︂

= LGM
k (Y ).

Proof of the proposition: By the Main Theorem, h∗([X]) = [Y ] in both cases and
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thus h∗(q([X])) = q([Y ]) on the reduced theory (by naturality of q). So

lk(Y )([φ]) = σ
(︂
ψ(φ∗(q([Y ])))

)︂
(by definition)

= σ
(︂
ψ(φ∗(h∗(q([X]))))

)︂
(by the Main Theorem)

= σ
(︂
ψ((φ ◦ h)∗(q([X]))))

)︂
by functoriality of Ω

= lk(X)([φ ◦ h]) (by definition)
= lk(X)(h∗[φ]) (def. of pullback on πk)

and thus (using stability Lemma 5.3.4)

Lk(Y ) = λ(lk+N(Y × SN)) (by definition)
= λ(lk(Y )) (by stability)
= λ

(︂
lk(X) ◦ h∗

)︂
(previous equation)

= λ
(︂
h∗(lk(X))

)︂
(def. of pushforward on Hom)

= λ
(︂
h∗(lk+M(X × SM))

)︂
(by stability)

= h∗
(︂
λ(lk+M(X × SM))

)︂
(by naturality of λ)

= h∗
(︂
Lk(X)

)︂
(by definition)

This is the result claimed by the proposition. □

Proof of the corollary: By Example 5.2.8 the proposition applies. By Lemma 5.3.7,
further Lk(X) = LGM

k (X). □

5.4 Singular Transversality
Transversality was used to construct (the inverse of) the excision-isomorphism. But
conversely one can also deduce a transversality statement from the bordism-theory,
as has been indicated in the previous section and Section 2.5 (“Reduced Theories”),
e. g. through the “geometric description” of (de)suspension.

However, the transversality statement, relative skeleta, that we use, is stronger
than what would be needed for the construction of a generalized homology-theory.
And conversely, the transversality statement, that is implied by the “geometric
description” of (de)suspension is weaker than the initial transversality statement.

This is, because for excision / suspension, some movement in the lower skeleton
would be acceptable when extending into the next stratum (as already discussed in
paragraph (d) in Section 2.6 (“Improvements”)), while the transversality result can
actually keep the lower skeleton (and also the boundary) fixed “exactly”.
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Hence, not only because it is of independent interest, but also because it is slightly
stronger (and can probably be improved further to allow for more general relative
statements and normal micro-bundles) than the version implicit in the main theorem,
we additionally provide a separate statement about transversality for trivial normal
(micro-)bundle in the target:

Definition 5.4.1: Given a continuous g = (g0, gν) : X → Y0 × Rm, where X is
a MHSS, we call g transverse to Y0 × {0}, if X0 := g−1(Y0 × {0}) is a MHSS
and there is a map ν : X0 × Rm → X, which is a stratified homeomorphism to
its image and such that there is a neighborhood of Y0 × {0} ⊂ Y0 × Rm, where
g ◦ ν(x0, t) = (g0(x0), t).

If Y0 = {pt}, we omit Y0 from the notation and call g transverse to 0.

Remark 5.4.2: This is a stratified version (because ν is stratified) of micro-bundle
map-transversality (see Section 1.5 (“Excursion: Manifold Transversality”)), to
the trivial normal micro-bundle of Y × {0} ⊂ Y0 × Rm.

One could formulate the next theorem on the basis of the “strong t-classes” of
Section 2.2 (“Transversality Properties”), making it a little bit more general.6 We
give a more direct version instead.

Proposition 5.4.3: Let (X, ∂X) be a compact MHSS with boundary, meeting
strata differing in dimension by at least 5 and with simple links.

Further, suppose g : X → Rm is continuous, g|Xk∪∂Xk+1 transverse to 0 and
ϵ > 0. Then g ≃ g⊥ relXk ∪ ∂X ∪ W , where W is the complement of an
arbitrary small open neighborhood of g−1({0}) ∩Xk+1 in X, by an ϵ-homotopy,
with g⊥|Xk+1 transverse to 0.

Proof: This follows by similar arguments as given in the proof of Example 3.4.1,
by inductive application of Cor. 3.2.3–1.

We construct g⊥ on Xk+1, and extend the result to the remainder of X at the end
of the proof. We do so, by induction over m (the dimension of the target space Rm),
so the start of induction is provided by Cor. 3.2.3–1, dealing with zero-strata as in
Example 3.4.1 to construct a transverse to 0 map on Xk+1.

For the inductive step, we are given g : Xk+1 → Rm+1, and make the projection
to the first m coordinates gm

⊥ ≃ πmg transverse to 0 by the inductive hypothesis.
This yields a MHSS X0, with meeting strata differing in dimension by at least
5 and with simple links, and a “normal-bundle” νm : X0 × (−ϵ, ϵ)m → Xk+1, a
stratified homeomorphism to its image, with πmg

m
⊥ ν

m(x, T ) = T for all x ∈ X0
and T ∈ (−ϵ, ϵ)m. Let πm+1 be the projection to the last coordinate, and make

6Our strong t-classes also do not seem to be the “correct” concept for this particular case, because
they require stability under products with manifolds, which is not needed here.
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πm+1g|X0 : X0 → R transverse to 0 by Cor. 3.2.3–1, again dealing with zero-strata
as in Example 3.4.1. This yields gm+1

⊥ : X0 → R, a MHSS X ′0, with simple links
and meeting strata differing in dimension by at least 5, further a stratified bi-collar
c′ : X ′0 × (−ϵ′, ϵ′) → X0, such that gm+1

⊥ c′(x′, t) = t, for all x′ ∈ X ′0 and t ∈ (−ϵ′, ϵ′).
We define (using γ := 1/2 min(ϵ, ϵ′))

g′⊥ : νm
(︂

im(c′) × (−ϵ, ϵ)m
)︂

→ Rm+1, x ↦→
(︂
gm
⊥ (x), gm+1

⊥ πX0(νm)−1(x)
)︂

ν : X ′0 × (−γ, γ)m+1 → Xk+1, (x0, T, t) ↦→ νm(c(x0, t), T )

and further, using a continuous η : X → [0, 1] such that η|im(ν) = 1 and η = 0 on the
complement of νm

(︂
im(c′) × (−ϵ, ϵ)m

)︂
(which exists by regularity of the metric Xk+1

and the choice of γ) to define

g⊥ : Xk+1 → Rm+1, x ↦→
{︄
η(x)g′⊥(x) + (1 − η(x))g(x) if x ∈ νm

(︁
im(c′) × (−ϵ, ϵ)m

)︁
(gm
⊥ , gm+1)(x) otherwise

where gm+1 is close to πm+1g (see below). This g⊥ is transverse to 0 at ν: First
g−1
⊥ ({0}) = X ′0 (see below), thus a MHSS, with simple links and meeting strata

differing in dimension by at least 5, and secondly

g⊥ν(x0, T, t) =
(︂
gm
⊥ (νm(c(x0, t), T )), gm+1

⊥ πX0(νm)−1(νm(c(x0, t), T ))
)︂

=
(︂
T, gm+1

⊥ (c(x0, t))
)︂

= (T, t)

Previously, when using such interpolations (in the proofs of earlier transversality-
results) we only needed the result to be transverse to 0, where η = 1, and g⊥
agrees with g′⊥. This is not entirely true here, as the claim g−1

⊥ ({0}) = X ′0, requires
additionally, that g⊥ does not have “new” zeros, in places, where g′⊥ did not have
zeros and which could spoil transversality to 0 away from νm(im(c′) × (−ϵ, ϵ)m).
However, we can ensure, that this does never actually happen by replacing πm+1g by
a δ-close gm+1 as follows: First, note, that by inductive hypothesis, gm

⊥ is transverse
to 0 (on all of Xm+1) at νm, so all the zeros of gm

⊥ are in νm(X0 × {0}). Since zeros
of (gm

⊥ , gm+1) are also zeros of gm
⊥ , this is also true for (gm

⊥ , gm+1), so we can focus on
νm(X0 × {0}) for now – extending gm+1 to the rest of Xk+1 is then works as in the
cases treated before, because we need not worry about introducing new zeros for g⊥
outside of νm(X0 × {0}) through the choice gm+1.

To this end, we separate N := νm
(︂

im(c′) × (−ϵ, ϵ)m
)︂

in two parts (the “sides” of
the new cut) N+ := (πm+1g

′
⊥)−1([0,∞)), and N− := (πm+1g

′
⊥)−1((−∞, 0]). Then,

given δ > 0, define

gm+1 : N −X ′0 → R, x ↦→
{︄

max( δ, πm+1g ) on N+ −X ′0
min( −δ, πm+1g ) on N− −X ′0

which is undefined at N+ ∩ N− = (πm+1g
′
⊥)−1({0}) = X ′0, but η = 1 near X ′0, so

g⊥ = g′⊥ near X ′0 independently of gm+1, i. e. g⊥ remains well-defined (and continuous).
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Further, we may assume g⊥m+1 is δ-close to πm+1g, because it is constructed as an
ϵ-close transverse map (where ϵ may be chosen arbitrarily small, thus smaller than
this δ, which can be chosen beforehand, see its use to ensure smallness below).
Thus gm+1 and πm+1g are 2δ-close: At points where gm+1 = πm+1g trivially so, at
points of N+, where gm+1 = δ, since g⊥m+1 > 0 on N+ and δ-close to πm+1g, we find
πm+1g > −δ, so that indeed |gm+1 − πm+1g| < |δ + δ| = 2δ. Similarly at points of
N−, where gm+1 = −δ.

Further, the relevancy of this construction is in avoiding new zeros of g⊥, which
it indeed does: On N+ − X ′0, both πm+1g > 0 (by definition of N+) and gm+1 > 0
(by construction), so their interpolation (by η) is positive as well. Similarly on
N− −X ′0 both are negative. On X ′0, η = 1, and thus g⊥ = g′⊥ = 0. So indeed, on N ,
g−1
⊥ ({0}) = X ′0. Outside of νm(X0 × {0}), as explained above, we need not worry

to accidentally introduce new zeros, so we may chose any suitable η′ to interpolate
(linearly) from gm+1 to πm+1g (which is between both, thus also still 2δ-close to
πm+1g, e. g. by triangle-inequality).

As a homotopy in Rm+1, use the straight-line homotopy, which is small, if g and
g⊥ are close, which in turn can be guaranteed by Cor. 3.2.3–1 and suitable choice of δ
in the construction of gm+1 (see above). In the same way, it can also be guaranteed,
that g and g⊥ agree outside of g−1((−ϵ, ϵ)m).

Finally, we need to extend this construction into the remainder (i. e. the higher
than k + 1 skeleta) of X. Apply the construction above small enough, to take place
in W ∩Xk+1 (by continuity of g, there is ϵ such that W ∩Xk+1 ⊂ g−1((−ϵ, ϵ)m), to
obtain g⊥ on Xk+1.

Next, pick ηW : X → [0, 1] such that ηW = 1 on g−1({0}) ∩ Xk+1 and ηW = 0
on W (recall, that W , is given as the complement of an open neighborhood of
g−1({0}) ∩Xk+1, so is closed, disjoint from g−1({0}) ∩Xk+1, thus by regularity of
X such an ηW exists). Further let R1 : N → Xk+1 the tameness-retraction of X
to Xk+1 (skeleta of MHSS are tame by Lemma 3.1.8 part (ii), this applies to the
boundary, whose retraction can be extended as a product – thus strict with respect
to the boundary – on the boundary-collar, and it applies to the interior, to produce
a retraction everywhere). We may assume, that X −W ⊂ N , otherwise replace W
by W ∩N . Further, let d∂ : X → [0, 1], x ↦→ min(distX(x, ∂X), 1). Then, define

g′′⊥ : X → Rm+1, x ↦→
{︄
ηW (x)d∂(x)g⊥(R1(x)) + (1 − ηW (x)d∂(x))g(x) on N

g(x) on X −N

This agrees with g⊥ on Xk+1 − ∂X by R1 being relXk+1 and the choice of ηW , on
∂X g⊥ = g was transverse by hypothesis, thus g′′⊥ is transverse to 0 on Xk+1 at c.
It agrees with g on ∂X, because d∂(x) = 0 on ∂X, thus the straight line-homotopy
to g is rel ∂X. It is continuous at ∂(Xk+1), because g⊥ was constructed rel this
boundary, i. e. it agrees with g there. By choice of ηW the straight line-homotopy to
g is relW ∪ ∂X and by construction of g⊥ (see above) it is additionally relXk. □
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Corollary 5.4.3–1: Let (X, ∂X) be a compact MHSS with boundary, meeting
strata differing in dimension by at least 5 and simple links.

Let Y0 ⊂ Y be a subspace with trivial normal micro-bundle (see Def. 1.5.3),
i. e. there is a neighborhood U ∼=h Y0 × Rm rel Y0 × {0}.

Given g : X → Y continuous, with g|Xk∪∂Xk+1 transverse to Y0, then there is
an ϵ-homotopic rel Xk ∪ ∂ ∪W transverse to Y0 on Xk+1 map g⊥, where W is
again an arbitrarily small open neighborhood of g−1({0}) ∩Xk+1.

Proof: Over U , write hg = (g0, gν) with g0 : X → Y0 and gν : X → Rm. Make gν

transverse to 0 on Xk+1 by the proposition above (w. l. o. g. ϵ < 1/2 diam(U)), then,
set

g⊥ : X → Y, x ↦→⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h−1
(︂
g0πX0c

−1(x), (gν)⊥(x)
)︂

if x ∈ im(c) and c−1(x) ∈ X0 ×B1(0)

h−1
(︂
g0T1(x), (gν)⊥(x)(2 −R(x)) + gν(x)(R(x) − 1)

)︂
if x ∈ im(c) and c−1(x) ∈ X0 × (B2(0) −B1(0))

h−1
(︂
g0T1(x), gν(x)

)︂
if x ∈ im(c) and c−1(x) /∈ X0 ×B2(0)

g(x) if x /∈ im(c)

where R(x) := |πRmc−1(x)| is the distance to the “center” X0 of c and T1(x) :=
c
(︂
πX0c

−1(x), πRmc−1(x)R(x)−1
R(x)

)︂
translates x by 1 towards the “center” (h was the

homeomorphism U → Y0 × Rm, see statement). Then g⊥ is transverse to Y0 (using
B1(0) ∼= Rm and restricting c accordingly) and all constructions can easily be made
small (for example by replacing c by c′ with small enough image; (gν)⊥ is already
arbitrary close to gν by the proposition). □

The evident inductive argument (over skeleta of the boundary, then skeleta)
recovers the transversality-statement as it is implicit in the bordism-theory.

Example 5.4.4: Let (X, ∂X) be a compact MHSS with boundary, meeting strata
differing in dimension by at least 5 and simple links and g : X → Rn with
n = dim(X) continuous.

Then Prop. 5.4.3 (inductively) yields g⊥ transverse to 0 at ν, where g−1
⊥ ({0}) =:

Σ is a finite set of points in the interior of the top-stratum (X − ∂X)n and for
p ∈ Σ, the restriction ν|{p}×Rn is a manifold-chart of this top-stratum near p.

Proof: Inductively apply Prop. 5.4.3 to skeleta of the boundary, than to skeleta.
During each such step, say from k- to (k + 1)-skeleton, the induction over m (the
target-dimension) in the proof of Prop. 5.4.3 will successively reduce the dimension
of the intersection of (gm

⊥ )−1({0}) with the next stratum (here: the (k + 1)-stratum)
by 1 for m = 1, . . . , n, so if k + 1 < n, after k + 2 of these steps, this intersection is
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empty. This matches the intuition, that the image of a (k + 1)-dimensional stratum
can be pushed off the origin in a (k + 2)-dimensional target-space by an arbitrarily
small move. So the only surviving points in (gm

⊥ )−1({0}) are in (the interior of)
the top-stratum, and the intersection must be of dimension n − n = 0, so Σ is a
0-submanifold of the compact top-stratum and framed (by ν), thus a finite point-set.

The restrictions ν|{p}×Rn are stratified homeomorphisms, but the stratification of
{p} × Rn is the trivial one, so im(ν) ⊂ (X − ∂X)n, i. e. these must have image in
the top-stratum, thus are manifold-charts mapping 0 to p. □

The reader may want to compare Prop. 5.4.3 to [CV99, Cor. 1.17 (p. 527)], which
treats the case m = 1, but gives a much more precise description of obstructions
for that case. Note, that for the result above, repeated cutting is used, so a gap
hypothesis (as opposed to an absolute-dimension hypothesis, cf. Cor. 3.1.25–1) and
“simple links” (as opposed to vanishing end-obstruction / a cylinder-neighborhood, cf.
Thm. 3.1.25) are required.



6 Conclusion

We conclude, by a summary of the technical results, a brief discussion of difficulties
encountered and their essentiality (why they are hard to circumvent), to finally point
out a number of open questions.

6.1 Summary of Results
We have seen, that under suitable hypotheses, a generalized homology theory can
be realized via certain stratified spaces, such that there are geometric fundamental-
classes, containing signature-information, which are invariant under stratified homeo-
morphisms and – at least in the case of at most two meeting strata – independent of
the choice of stratification.

These properties were seen to be suitable for the study of the invariance of
Goresky–MacPherson L-classes on such spaces.

As detailed in Chapter 1 (“Background”), Quinn’s MHSS seem to provide a good
context to study transversality in a topologically stratified setting, and thereby
invariance properties of geometric structures.

6.2 Encountered Problems
Even though we were interested in the study of high-dimensional spaces, certain
low-dimensional problems appeared, manifesting themselves in the gap-hypothesis
of the main-theorem. This is because, by repeated application of excision, absolute
dimensions can always become arbitrarily small. The geometric structures used for
the transversality-results are ultimately obtained using controlled topology versions
of end-theory (and h-cobordisms), which are not well-understood in low dimensions.

Note, that, while we construct a generalized homology-theory – which, from a
“theory of spectra” perspective is a stable limit anyway – there does not seem to be an
easy way to “stabilize” the problem while maintaining the geometric (fundamental-
class) properties, including the signature. The underlying issue seems to stem from
both, (fundamental groups of) links and co-dimensions (the hypotheses of the main
theorem), remaining unchanged under suspension (essentially crossing with an S1 for
probing spaces). It seems difficult to improve from this, as, while end-obstructions
do vanish when crossing with a 1-sphere (see Example 2.6.2), this only implies, that
after suspending, one can desuspend once, which is however trivial and does not help
the cause.
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Further, even in high dimensions, given geometric structures (vanishing obstruc-
tions), these do not seem to “survive” through cutting / gluing operations, forcing us
to use pointwise conditions on links (vanishing obstruction-groups) instead (see also
Example 2.6.2 and the discussion there).

6.3 Outlook and Further Ideas
Some of the potential paths forward have been outlined in Section 2.6 (“Improve-
ments”) already, after giving the baseline / simplest possible useful theory, because
the subsequent chapters are organized around answering some of the questions arising
there. So, here we will discuss only those possible “improvements” beyond what was
discussed before. Continuing the list from Section 2.6, we are left with the following
directions for further extension:

(e) A generalization of products to a ring-structure.
(f) The “obstruction-groups” used in the multi-stratum-case are unwieldy for

constructions like products (a ring-structure on Ω∗) and formulated for a notion
of “links” different from what typically is used in the theory of stratified spaces
(see Section 5.2 (“Satisfying the Hypotheses”)), see e. g. the Witt-condition
(Def. 1.12.5).

(g) The discussion of unstratified homeomorphisms relied heavily on two-stratum-
specific properties, although intrinsic stratifications exist well beyond that
case.

(h) The treatment of [BLM19] uses ad-theories to obtain (via Quinn-spectra) a
more general result on L•-homology.

(i) Is there a dual “mock-bundle”-theory in the sense of [BRS76]?

In more detail, these comprise:

(e) Ring-Structure: For the multi-stratum case, other than for the two-stratum
case, there is no fundamental reason, why products and thus a ring-structure should
be impossible to define. However, the “simple link” condition requires some care.
Some of the links, of say X × Y , are those of a holink ×stratum, thus have the fibers
of one of X or Y . These are the holinks of Xi × Yj in (Xk ∪ Xi) × Yj and so on.
There are also those of Xi × Yj in (Xk × Yl) ∪ (Xi × Yj) with i ̸= k and j ̸= l, where
it is not quite obvious what happens to fibers. Also, Whitehead groups behave
well only with respect to free products (i. e. coproducts in the category of groups)
where Wh(G ∗H) = Wh(G) ⊕ Wh(H) [Sta65], but the obstructions used here rely
on direct sum (i. e. coproducts in the category of abelian groups) with (free abelian)
torus-groups Zk in the argument of Wh(–).

(f) Multi-Stratum Obstructions: Quinn [Qui04, §6.10 (p. 62–64)] discusses Leray–
Serre-type spectral sequences for the obstruction-theory that also applies to controlled
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ends. It seems plausible, that these arguments allow for a reformulation of the link-
conditions in the multi-stratum case in terms of local homotopy-links, this seems
technically rather demanding, but might help the understanding of the obstructions
themselves and also could potentially make problems like the ring-structure (see
above) more approachable.

(g) Dependency on Stratification for more than two Strata: Note that, away
from zero-strata, the intrinsic stratifications of [Qui87], are compatible with bi-collars
in the sense that (X × R)0,0 = X0,0 × R. So it seems to be the case, that if X can
be cut, also X0,0 can be cut: Simply cut X, then take the intrinsic stratification
of the cut (X0)0,0, this is bi-collared in X0,0. A separate treatment of zero-strata
(or, easier to realize technically: of minimal strata) is required, but seems possible
in principle, e. g. using embedded manifold-transversality Thm. 1.5.11 to isotope a
(submanifold) 1-stratum of X (which goes away in X0,0) into general position with a
bi-collared cut. Thus, one could probably “complete” strong t-classes, by additionally
making the intrinsic stratifications of allowable spaces themselves allowable spaces
again. Similarly, one might allow for spaces that are obtained by gluing along
coarsenings to intrinsic stratifications (instead of along stratified homeomorphisms) –
e. g. allowing X × I ∪X0,0 × I, a bordism X ∼X0,0 – which can be cut, by cutting
the gluing-interface (as above, with a cut which is bi-collared both for the given
stratification and for the intrinsic stratification), and then extending this cut rel
boundary(-component) into the interiors of the glued parts (the cut is again of this
form). However, this requires some care, concerning for example the definition of
spaces with boundary: Generally, given a MHSS with (collared) boundary (X, ∂X),
the intrinsic skeleta (X0,0, (∂X)0,0) may not be such that (∂X)0,0 ⊂ X0,0 is collared
(if there are non-trivial, not 1-LC (see Appendix A (“Ends in MHSS”)), points in the
zero-skeleton (∂X)0

0,0, that are boundaries of 1-strata in X which got promoted in
(X − ∂X)0,0). However, using embedded manifold-transversality as indicated above,
it seems possible to ensure, that cuts always have (∂X)0

0,0 = (∂X)0, so it may be
possible to introduce this as an additional (consistent) requirement.

An alternative approach would be to put additional hypotheses similar to the
simple links condition on stratified homotopy-links. In the language of the approach
above, one might thereby ensure, that the “completion” of such a strong t-class
is the original (unchanged) t-class, which of course implies that the “completion”
is again a strong t-class, i. e. this is a strictly stronger statement than what was
discussed above. Thus it might be (considerably) harder to show, for example finding
a bordism X ∼X0,0 might be difficult.

(h) Ad-Theories: Typically, corners (as they occur in ad-theories during gluing)
are less of a concern in the topological category (than for example in the smooth
category). So it might be possible to generalize the theory as presented here to a
treatment similar to the one given by [BLM19]. This treatment uses (pl) IP-spaces
[GS83] and is closely related to their bordisms [Par90], but technically quite involved.
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IP-spaces are constructed to have non-singular integral intersection-pairings. The
argument does not rely on integral coefficients, and also coefficients other than Q
are treated by [Fri09], so could be integrated into the treatment given here rather
“easily” if need should be.

(i) Mock-Bundles: A mock-bundle theory in the sense of Buonchristiano, Rourke,
and Sanderson [BRS76] could also be an interesting subject to study, especially
since the classification approach of Hughes, Taylor, and Williams [HTW90; HTW91]
suggests, that there might be ways to factor the duality-isomorphism [BRS76,
Thm. 3.2 (p. 30)]. That duality occurs by “reinterpreting” a mock-bundle as a
bordism, while for MHSS, there is a description via (stratified) MAF and one through
their teardrops. For more than two strata, one could successively transition from
MAFs to their teardrops, starting in the bottom skeleton, going upwards, through
multiple intermediate stages.



A Ends in MHSS

The main concern of this appendix is to illustrate, how the definition of MHSS can be
translated into a more intuitive description of ends, as found for example in [Qui79].

The results of this chapter are also implicit in [Qui04] and in the cylinder-existence /
end-theorem [Qui88a, Thm. 1.7 (p. 446)] and are certainly known to people working
in that field, however it is hard to find a detailed treatment in the literature, thus
some details are given here.

A.1 Background on Controlled End-Theory
The following definitions and results (barring the examples) are from [Qui79]. Instead
of via MHSS and cylinder-neighborhoods (Section 1.9 (“Mapping-Cylinder Neigh-
borhoods”)), ends and completions are described via non-compact manifolds and
finding a boundary (Section 1.8 (“Excursion: End-Theory”)) with control added as
for h-cobordisms (Section 1.7 (“Excursion: Controlled Topology”)). For a treatment
of spaces with more than two strata see [Qui82a].

This first section identifies which properties of skeleta in MHSS have to be under-
stood, to formulate cylinder-neighborhood existence as an end-problem. A treatment
of said properties is given in the subsequent sections.

We start by formalizing what adding “control” to the definitions relevant to an
end-problem is supposed to mean:

Definition A.1.1: Let M be a manifold, X a locally compact space, e : M → X
a map. A completion of (the end of) e is a manifold-with-boundary M ′ ⊃ M with
M ′ −M ⊂ ∂M ′, together with an extension of e to a proper map e′ : M ′ → X.

A neighborhood of the end is an open subset U ⊂ M s. t. e|M−U is proper.

This is, of course, closely related to the MHSS and cylinder-neighborhood based
description used in the main text:

Example A.1.2: Let X be a compact MHSS with two strata M and B. There
exists a neighborhood N of B in M which deformation retracts to B by R (by the
forward-tameness condition). By im(R1) ⊂ B, we may set r = R1 : N → B the
induced retraction. Then a completion r′ of r|N−B provides a mapping-cylinder
neighborhood of B in X, namely cẙl(r′|∂N ′), where N ′ is the manifold with
boundary associated to the completion, s t. interiorN ′ = N −B.
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Further, neighborhoods of the end are (open) neighborhoods of B intersected with
N −B.

Proof: The boundary of N ′ is collared in N ′ [Bro62], let c∂ : ∂0N
′ × [0, 1) → N ′ be

such a collar. Define as (the cylinder identifies to B at 0):

ϕ : cyl(r′|∂N ′) → X

[x, t] ↦→
{︄
c∂(x, t) ∈ (N ′ − ∂0N

′) = N −B ⊂ X if t > 0
r′(x) ∈ B if t = 0

This ϕ is clearly continuous, one-one and onto a neighborhood of B, by compactness
(and the spaces being Hausdorff) ϕ is homeomorphism to its image (which is an open
neighborhood of B in X).
We may assume N is closed1 (thus compact) in X, and N − B an open manifold-
with-boundary (use manifold-transversality on M to “cut away” the part of X
far from B). Open neighborhoods U of B then have closed (therefore compact)
complement in N , making r|(N−B)−U proper. On the other hand, if r|(N−B)−U is
proper, then (N −B) − U ⊂ N −B is compact (B is closed as set, thus compact).
Thus Ũ := N − ((N −B) − U) is open and contains B. □

As has been indicated before (in the main text), there are other reasonable and
useful variations of tameness, like “reverse tameness”.

Definition A.1.3: A subset B ⊂ X (metric) is reverse tame in X iff there is a
retraction r : N → B of a neighborhood and ∀ϵ : Y → (0,∞) and neighborhood U
of B there exist a neighborhood V of B and a homotopy h : (X−B)×I → X−B
with

(i) h = id on (X −B) × {0} ∪ (X − U) × I

(ii) h((U −B) × I) ⊂ U −B

(iii) h((X −B) × {1}) ⊂ X − V

(iv) the radius of r ◦ h is < ϵ

This means, there is a homotopy pulling the complement of B away from B rel U
(cf. [Qui88a, p. 465]).

The following properties describe “nice” ends. These are the properties we want
to establish in MHSS.

Definition A.1.4: Compare [Qui79, Def. 1.1 & Def. 1.2 (p. 279f)]:
1Finding closed neighborhoods with the correct homotopy type is very hard in general, see Section 1.7

(“Excursion: Controlled Topology”), but this is not what we are doing here, the cylinder is just
a subset of N . The difficulty is contained in the assumption, that the completion r′ exists.



A.1 Background on Controlled End-Theory 175

(i) The end e : M → X is tame if for every neighborhood U of the end of e,
and for every ϵ : X → (0,∞), there is a neighborhood V ⊂ U of the end
of e and a homotopy h : M × I → M with h0 = idM , h1(M) ⊂ M − V
and ht(M − U) ⊂ M − V , diam(e ◦ h) < ϵ

(ii) The end e : M → X is 0-LC if for x ∈ X, V ⊂ X a neighborhood
of x and U ⊂ M a neighborhood of the end, there exist smaller such
neighborhoods U ′ and V ′ s. t. any y, y′ ∈ U ′ ∩ e−1(V ′) can be joined by an
arc in U ∩ e−1(V ).

(iii) The end e : M → X is 1-LC if additionally loops in U ′ ∩ e−1(V ′) can be
contracted in U ∩ e−1(V ).

(iv) The end e : M → X has locally constant fundamental group if it is 0-LC
and it exist neighborhoods U of the end of e and V of x ∈ X s. t. there is
a covering space of U ∩ e−1(V ) whose end is 1-LC.
The local fundamental group π1(e) is the group of covering-transformations
of this covering (well-defined up to isomorphism, see [Qui79] or below).

(v) The end e : M → X is onto if for any neighborhood U of the end e(U) = X.

Remark A.1.5: It is not quite clear from this definition, what “the end of
the covering space” is supposed to mean. To fix notation, call the covering
π : Ñ → N := U ∩ e−1(V ). Naïvely one may simply look at the end of e ◦ π.
This prompts two issues:
Once, for a non-finite covering, already the preimage of a (compact) point is
non-compact. The definition of a neighborhood Ũ of the end of e ◦ π would
require e ◦ π|Ñ−Ũ to be proper. Thus Ũ needs to contain “most of” Ñ , while we
are actually interested in behavior “close to the end”.
Second, U is required to be open (as a neighborhood of the end of e), hence N
has “two ends”, the one we are interested in, and one “on the outside”, that we
don’t really care about.

We will adopt the following “interpretation”:
The end e : M → X has locally constant fundamental group if it is 0-LC and
∀x ∈ X there are neighborhoods U0 of the end of e and V0 of x ∈ X and there
is a regular covering π : Ñ → N := U0 ∩ e−1(V0) s. t. for x ∈ V0, neighborhoods
V ⊂ V0 of x and U ⊂ M of the end of e, there are smaller such neighborhoods
U ′ and V ′ s. t.

(i) Given two points in π−1
(︂
e−1(V ′)∩U ′

)︂
, there exists an arc in π−1

(︂
e−1(V )∩

U
)︂

joining them.
(ii) Given a loop in π−1

(︂
e−1(V ′) ∩ U ′

)︂
, it contracts in π−1

(︂
e−1(V ) ∩ U

)︂
.

Inspecting the proof of the End-Theorem in [Qui79, p. 284f], the local funda-
mental group hypothesis is used in the construction of “tameness structures”
implicitly required for application of the “approximate End-Theorem” (cf. [Qui79,
§7 (p. 314f)]).



176 A Ends in MHSS

These are in turn constructed in [Qui79, §5 (p. 301ff)]. But the tameness
structures consist of subsets of M (the domain of e), the regular coverings
are only needed to see, that certain deformations are “(δ, 1)-connected”, which
follows from the interpretation above. Therefore this interpretations is really
sufficient for the application of the End-Theorem, and thus for all we intend to
use it for.

This definition also fits together with the “locally constant fundamental group
in the complement” of [Qui88a], see the proof of Cor. A.3.1–1.

As indicated above, the examples relevant to our treatment of ends with such
properties are neighborhoods of skeleta in MHSS. Much of the remainder of this
appendix collects the results necessary to prove the claims made in these examples
(see Section A.4 (“Previously Deferred Proofs of Examples”)).

Example A.1.6: A retraction to a subspace B ⊂ X (restricted to X − B) has
tame end if and only if B is forward and reverse tame in X.

Example A.1.7: Let X be a MHSS with two strata M , B and M dense in X.
Let r as before. Then the end of r is tame, 0-LC and onto, with locally constant
fundamental group π1(r) = π1(L), where L is the fiber of holink(X,B) → B.

Proof: This is shown below in Section A.4 (“Previously Deferred Proofs of
Examples”).

Quinn [Qui79] shows both an existence and a uniqueness theorem for completions
of such “nice” ends:

Theorem A.1.8: “Existence Theorem” [Qui79, Thm. 1.4]: Suppose X is locally
compact, locally 1-connected, metric and e : M → X is proper on ∂M , the end
of e is onto, 0-LC, with locally constant fundamental group s. t. ∀k : Wh(π1(e) ×
Zk) = 0 and dim(M) ≥ 6.

Then e has a completion e′ : M ′ → X.

Remark A.1.9: There are also a relative version [Qui79, Thm. 2.1 (p. 282)] and
a version for dim(M) = 5 if π1(e) is “good” [Qui82b, Thm. 2.1.2 (p. 505)], see
Rmk. 1.9.4.

So, based on the Example A.1.7 given above (to be proven below), we can formulate
a point-wise (dependent only on the fiber of the holink-fibration) version of [Qui88a,
Thm. 1.7 (p. 446)], recovering the version modeled on MHSS given in the main text
at Thm. 1.9.3).
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Example A.1.10: Let X be a MHSS with two strata M (dense in X) and B and
homotopy-link-fiber L, with connected components Lij over the components Bi

of B, s. t. Wh
(︂
π1(Lij) × Zk

)︂
= 0 for all k ≥ 0 and dim(M) ≥ 6. Then B has a

mapping-cylinder neighborhood in X.

Proof: Let r be a retraction of a neighborhood of B as before. By Example A.1.7
we can apply Quinn’s End-Theorem (Thm. A.1.8) to get a completion of r|N−B. By
Example A.1.2 this yields a mapping-cylinder neighborhood of B in X. □

So we have seen, how Example A.1.7 lets us recover (in Example A.1.10) the
formulation of the end-theorem as provided in the main text, from the more “direct”
approach of adding control to end-completions. It remains to prove the results
claimed by said example.

A.2 Local Fundamental Groups
This section analyzes, how local fundamental groups, in the sense of end-theory, are
connected to fundamental groups of fibers of homotopy-links.

The first, rather technical, result tells us, that given an MHSS X ⊃ B, over a
neighborhood U ⊂ X very close to B, the “rays” Rt stay close to R1 in B. This
follows directly from continuity of R through basic arguments.

Lemma A.2.1: Let (X, d) be compact metric, a subset B ⊂ X with a nearly-strict
deformation retraction R, given x ∈ B and open neighborhoods U2 ⊂ X of B,
V1 ⊂ V2 ⊂ B of x, s. t. dist(V1, B − V2) > 0, there exists an open neighborhood
U1 ⊂ U2 of B such that R(N1 × I) ⊂ N2, where Ni := R−1

1 (Vi) ∩ Ui, i = 1, 2.

Proof: Let ϵ0 := dist(V1, B − V2) > 0. By compactness of B there is an ϵ1 > 0 such
that Bϵ1 := {x ∈ X| dist(x,B) < ϵ1} ⊂ U2. Put ϵ := min(ϵ0/4, ϵ1/2).

Let N ′ ⊂ X be closed such that U2 ⊂ N ′ ⊂ N . Making U2 smaller strengthens
the statement, so we may replace it by a slightly smaller choice.) By compactness
of N ′ × I (and the Heine-Cantor-Theorem / uniform continuity, δ should depend on
(x, t), but compactness allows for the choice min(δx,t) > 0), there is a δ > 0, such
that ∀(x, t), (x′, t′) ∈ N ′ × I with d

(︂
(x, t), (x′, t′)

)︂
< δ ⇒

(︂
R(x, t), R(x′, t′)

)︂
< ϵ.

Let U1 := Bδ. Then, for x ∈ U1 there is b ∈ B, with d(x, b) < δ and hence (using
R(b, t) = b independently of t for b ∈ B) d(R(x, t), b) = d(R(x, t), R(b, t)) < ϵ,
thus d(R(x, t), R(x, t′)) ≤ d(R(x, t), b) + d(b, R(x, t′)) < 2ϵ. This already shows
d(R(x, t), R(x, 1)) < 2ϵ ≤ ϵ1, i. e. x ∈ U1 ⇒ R(x, t) ∈ U2.

Further d
(︂
R(R(x, t), 1), R(x, t)

)︂
= d

(︂
R(R(x, t), 1), R(R(x, t), 0)

)︂
< 2ϵ, implying

d
(︂
R1(R(x, t)), R1(x)

)︂
≤ d

(︂
R(R(x, t), 1), R(x, t)

)︂
+d

(︂
R(x, t), R(x, 1)

)︂
< 2ϵ+2ϵ ≤ ϵ0.

Hence x ∈ R−1
1 (V1) ⇒ R(x, t) ∈ R−1

1 (V2).
Combining both results shows R(N1 × I) ⊂ N2 as required. □
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This forms the technical basis for applicability of the next result. We will stick to
the notation Ni := R−1

1 (Vi) ∩ Ui in the following. The tameness-retraction relates
homotopy-links of different small neighborhoods in the following sense:

Lemma A.2.2: Given a forward-tame pair (X,B) (with R : N×I → I the nearly
strict tameness deformation retraction), a point x ∈ B and open neighborhoods
V1 ⊂ V2 ⊂ B of x and U1 ⊂ U2 ⊂ X of B, s. t. R(N1 × I) ⊂ N2, there is
a homotopy-commutative diagram (the lower-right triangle actually commutes
“exactly”):

holink(N1, V1) incl
≃ holink(N2 − (V2 − V1), V1)

ev1

N1 − V1

ev1

N2 − V2
incl

R̃

The inclusion of homotopy-links (the top row) is a homotopy-equivalence.
Proof: First define R̃ by R̃(x)(t) := R(x, 1 − t) this maps to the homotopy-link by

nearly-strictness of R and to holink(N2 −(V2 −V1), V1) by the choice of N1 ⊂ R−1
1 (V1)

and the hypothesis R(N1 × I) ⊂ N2.
The lower-right triangle thus commutes, as ev1(R̃(x)) = R̃(x, 1 − 1) = x.
To show commutativity up to homotopy of the upper-left triangle, define
H : holink(N2 − (V2 − V1), V1) × I × I → N2 as

(γ, t, s) ↦→

⎧⎨⎩γ(t) if t ≥ s

R
(︂
γ(s), s−t

s+t

)︂
if t ≤ s and (s, t) ̸= (0, 0)

which induces H̃ : holink(N2−(V2−V1), V1)×I → holink(N2−(V2−V1), V1), (γ, s) ↦→(︂
t ↦→ H(γ, t, s)

)︂
. We have to check multiple things: H̃ must be well-defined, i. e.

actually map to the homotopy-link, H must be continuous (then H̃ is continuous in
the compact open-topology), and this must actually define a homotopy of the maps
as claimed.
For H̃ to map into the homotopy-link, we need ∀γ, s that H(γ, 0, s) ∈ V1, while
∀t > 0 : H(γ, t, s) /∈ V1. We have H(γ, 0, s ̸= 0) = R(γ(s), 1) ∈ V1, and H(γ, 0, 0) =
γ(0) ∈ V1, while H(γ, s ≥ t > 0) = R(γ(s), s−t

s+t
) /∈ V1 because of γ(s > 0) /∈ V1 and

t ̸= 1 ⇒ s−t
s+t

̸= 1 together with nearly-strictness of R. Further H(γ, t > 0, s ≤ t) =
γ(t > 0) /∈ V1.
Continuity must be checked where s = t (the individual cases are continuous, as
evaluation is continuous in compact-open topology). If s = t ≠ 0 we have in the first
case γ(t) = γ(s) and in the second case R(γ(s), 0) = id(γ(s)) = γ(s). It remains to
check, that case one at (t, s) = (0, 0) is a continuous extension of case two. This
follows from γ(t) t→0−−→ γ(0) ∈ B by continuity of γ and R|V1 = id. Formally a
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uniform-continuity argument in the t variable is required, but by compactness of I
this follows via the Heine–Cantor theorem.
Finally H(γ, t, 0) = γ(t) and H(γ, t, 1) = R(γ(1), 1−t

1+t
) which is a reparametrization

of R̃(γ(1))(t). Hence composing H with a homotopy realizing this reparametrization
proves the claim about the commutativity up to homotopy.

The second statement concerning the inclusion of homotopy-links in the top row
being a homotopy-equivalence follows from [Qui88a, Corollary (3), p. 455]. The
argument given there is based on [Qui88a, Lemma 2.4, p. 454] which asserts that
the inclusion of the “δ-holink” – consisting of paths γ in the “ordinary” holink of
length smaller δ(γ(0)) > 0 – into the ordinary holink is a homotopy-equivalence (by
“contracting” γ, i. e. running through the path faster, thus reaching 1 closer to the base-
space, and finding a uniform “cutoff” larger zero). Putting δ(b) := dist(b,X−N1) > 0
the resulting δ-holink is a subset of both holink(N1, V1) and holink(N2 −(V2 −V1), V1).
Since the inclusions commute, the statement follows. □

Further, we will need to combine multiple such diagrams (“glue them side-to-side”,
see proof of Lemma A.2.4), for which we need the right-hand side to “look like”
the left-hand side of the next diagram. We are interested in MHSS, where B is
a manifold, and thus has nice local properties, so that, for example, the following
lemma applies:

Lemma A.2.3: Let B′ ⊂ B be a (strict) neighborhood deformation retract, (X,B)
s. t. ev0 : holink(X,B) → B is a fibration, then the inclusion
holink(X − (B −B′), B′) → holink(X,B) is a homotopy-equivalence.

Proof: Let r : B × I → B be the deformation (r0 = id, im(r1) ⊂ B′, relB′). It
induces r̃ : holink(X,B) × I → B, (γ, t) ↦→ r(γ(0), t), with r̃0 = ev0 ◦ id, hence it
lifts to ψ : holink(X,B) × I → holink(X,B) with ψ0 = id and ev0 ◦ ψ = r̃.
We note that the restriction ψ| to holink(X − (B −B′), B′) × I maps to holink(X −
(B−B′), B′) because r is relB′ and that ψ1 maps to holink(X−(B−B′), B′) because
of im(r1) ⊂ B′. We can therefore factor ψ1 = incl ◦ψ̄1.
Then, incl ◦ψ̄1 ≃ id by ψ and ψ̄1 ◦ incl ≃ id by ψ|. Thus ψ̄1 is a homotopy inverse of
the inclusion, finishing the proof. □

Now we have the tools at hand to prove the central result of this section, identifying
“nice” local-fundamental-group properties in MHSS:

Lemma A.2.4: Let (X,B) be a metric pair, with B ⊂ X tame, B a manifold and
holink(X,B) ev0−−→ B a fibration (e. g. X ⊃ B is a manifold homotopy stratified
set in the sense of Quinn). Let R : N × I → N be a nearly-strict tameness-
retraction, L := ev−1

0 ({∗}) the fiber of the homotopy-link. We assume L to be
path-connected, since its path-components can be treated independently. Then
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(i) The end of R1 has locally constant fundamental group π1(L).
(ii) The end of R1 is 0-LC.

(iii) The “control-map” N − B → holink(X,B), x ↦→
(︂
t ↦→ R1−t(x)

)︂
is (δ, 1)-

connected.

Proof: Fix x ∈ B, ϕ : Rn → B a manifold chart with 0 ↦→ x. Fix V0 := im(ϕ),
U0 := N (a neighborhood of the end of R1) and V1 := ϕ(B1(0)).
Lemma A.2.1 yields U1 ⊂ U0 with R(N1 × I) ⊂ N0. Apply Lemma A.2.2 to
U1 ⊂ U0 and V1 ⊂ V0 and replace the top-right object holink(N0 − (V0 − V1), V1)
by holink(N0, V0) using Lemma A.2.3 to get a homotopy-commutative diagram:

holink(N1, V1) incl
≃ holink(N0, V0)

ev1
1

N1 − V1

ev0
1

N0 − V0
incl

R10

There exists (by classifications of coverings) a regular covering π : Ñ → N1 − V1 of
N1 − V1 with im(π∗) = ker((R10)∗).
Claim: The covering-transformations of π are Deck(π) ∼= π1(L). Further (ev1

1)∗ is
injective and im((ev1

1)∗) ∼= π1(L).
The isomorphisms are canonical, so we can identify the deck transformations with
im((ev1

1)∗).
Proof of claim: The diagram above induces a diagram of fundamental groups (by
homotopy-commutativity), where the arrow in the top becomes an isomorphism.
Thus (R10)∗ is surjective, (ev1

1)∗ is injective. We know (by classifications of
coverings) that
Deck(π) ∼= π1(N1−V1)/ ker((R10)∗) ∼= im((R10)∗) ∼= π1

(︂
holink(N0−(V0−V1), V1)

)︂
∼= π1

(︂
holink(N1, V1)

)︂
.

The open restriction of the holink-fibration to V1 is a fibration. Further V1 = im(ϕ)
is contractible by construction. The long exact homotopy-sequence thus shows
π1

(︂
holink(N1, V1)

)︂ ∼= π1(L). Finally by injectivity of (ev1
1)∗, also im((ev1

1)∗) ∼=
π1

(︂
holink(N1, V1)

)︂
, finishing the proof of the claim.

We have to show, that for given y ∈ V1, and open neighborhoods U ⊂ N1 − V1 of the
end of R1 and V ⊂ V1 of y there are open neighborhoods U ′ ⊂ U and V ′ ⊂ V such
that:

(1) Given two points in e−1(V ′) ∩ U ′, there exists an arc in e−1(V ) ∩ U joining
them.

(2) Given a loop in e−1(V ′) ∩ U ′, it contracts in e−1(V ) ∩ U .
That is im(π) was chosen “large enough” for (1) to hold (a larger image means fewer
deck-transformations, which must have small representatives), and “small enough”
for (2) to hold (all the loops that come from the covering-space must be trivial in
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the slightly larger neighborhood).
We start by giving U ′ := U3 and V ′ := V3 for x, U , V .
V1 was defined as ϕ(B1(0)), and V ⊂ V1 is open, so we can assume there are a and
r > 0 with V2 = ϕ(B2r(a)) ⊂ V (with B2r(a) the open ball of radius 2r, centered at
a with ϕ(a) = y).
By Lemma A.2.1 there is U ′2 ⊂ U1 with R(N ′2 × I) ⊂ N1. Let U2 := U ∩ U ′2 ⊂ U .
Define V3 := ϕ(Br(a)), then again Lemma A.2.1 provides U3 s. t. R(N3 × I) ⊂
N2. Certainly V1, . . . , V3 satisfy the contractibility and deformation hypothesis of
Lemma A.2.3.
We find two additional diagrams from Lemma A.2.2 and by Lemma A.2.3 we can
“glue” them to the left of the one shown earlier in the proof (inclusions in the top
row are homotopy-equivalences):

holink(N3, V3)
≃ holink(N2, V2)

≃ holink(N1, V1)
≃ holink(N0, V0)

ev3
1

N3 − V3

ev2
1

N2 − V2

ev1
1

N1 − V1

ev0
1

N0 − V0

R32 R21 R10

Claim: Let z, z′ ∈ N3 − V3, then there is a path in N2 − V2 connecting them. Thus
the end of R1 is 0-LC.
Proof of claim: By the homotopy sequence of the holink-fibration and V2, L
path-connected, the homotopy-link holink(N2, V2) is also path-connected. Thus
there is a path p̃ connecting R32(z) to R32(z′). The composition p := ev1 ◦ p̃
connects z to z′ in N2 − V2 because the lower-right triangle actually commutes (cf.
Lemma A.2.2, and compositions from “gluing” / Lemma A.2.3 are only inclusions).

Claim: Let z, z′ ∈ π−1(N3 − V3), then there is a path in π−1(N2 − V2) connecting
them.
Proof of claim: The previous claim yields a path p in N2 − V2 from π(z) to π(z′).
Lift this path to p̃ : I → Ñ with starting point z and endpoint z′′ ∈ π−1(π(z′)).
This path p̃ is in π−1(N2 − V2) as required.
It is left to show, that there is a path connecting z′ to z′′. Since the covering
is regular (Deck(π) acts transitively), and z′, z′′ are in the same fiber, there is
[γ] ∈ im((ev1

1)∗) lifting to γ̃ : I → Ñ with γ̃(0) = z′ and γ̃(1) = z′′.
It remains to show, that [γ] has a small representative: In the “triple-diagram”
above, maps in the top row are homotopy-equivalences, and (ev1

1)∗ is injective (see
first claim above), thus [γ] comes from the top-left group, and by commutativity of
the diagram there is [γ′] ∈ im(ev3

1) mapped to [γ] by the inclusions in the bottom
row. In other words, there is γ′ ≃ γ with im(γ′) ⊂ N3 − V3 ⊂ N2 − V2. This lifts
to γ̃′ : I → π−1(N2 − V2) (by π−1(N2) ⊂ U as before) with γ̃′(0) = γ̃(0) = z′ and
γ̃′(1) = γ̃(1) = z′′.

Claim: Let γ be a loop in ∈ π−1(N3 − V3), then it contracts in π−1(N2 − V2).
Proof of claim: Observe, that a representative γ of [γ] ∈ π1(π−1(N3 − V3)) maps
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under π∗ to a loop in N3 − V3 and we start with π ◦ γ in the bottom left of
the “triple-diagram”. On the other hand im(π∗) = ker((R10)∗) and thus maps to
0 ∈ π1

(︂
holink(N0, V0)

)︂
in the top-right. Since the inclusions in the top row induce

isomorphisms and the diagram commutes (R32)∗ already maps π∗([γ]) to 0. Thus
under the map induced by the inclusion N3 − V3 → N2 − V2 (which factors as
(ev2

1)∗(R32)∗) it maps to 0 as well, meaning π ◦ γ contracts in N2 − V2. Lifting the
null-homotopy to Ñ yields one in π−1(N2 − V2) as required.

As indicated above, using U ′ = U3 and V ′ := V3, these last two claims finish the
proof of the Lemma, because U2 ⊂ U and V2 ⊂ V hence points (loops) over N3 − V3
connect (contract) over N2 − V2 ⊂ R−1

1 (V ) ∩ U .
Finally, it remains to show (iii):

Claim: The control-map f : N − B → holink(X,B), x ↦→
(︂
t ↦→ R1−t(x)

)︂
is

(δ, 1)-connected.
Proof of claim: Recall, that “(δ, 1)-connected” means, that given δ > 0, and a
lifting problem for a relative 2-complex (R, S)

S N −B holink(X,B)

R B

s

incl
r

f

R1 ev0

there is a δ-lift g : R → holink(X,B), i. e. g ◦ incl = f ◦ s and ev0 ◦ g is δ-close to
r (see Def. 1.7.10)

We construct this map g. To this end, cover B by open δ-balls, having local
fundamental group π1(L), there are ϵ-balls, and by the end being 0-LC further
γ-balls, such that the following construction works:

We start by lifting the zero-skeleton of R− S: By surjectivity of ev0, there is at
least one preimage for each vertex, pick an arbitrary one. This is zero-small when
measured in B. Next, by the 0-LC conditions, 1-simplices of R − S can be lifted,
such that they remain in the ϵ-balls. The lifts start at the “correct” vertex and
end at a point, that differs by a path γ from the correct one (we may assume L
is path-connected, and treat components independently), where, ev0 ◦ γ is a loop
in the ϵ-ball. We can pick the “balls” contractible, if we pick them for example
as φ(D̊r), where φ is a manifold-chart and r is the maximal (euclidean) distance
from 0 on the chart, such that diam

(︂
φ(D̊r)

)︂
< ϵ. By the homotopy-sequence of

the fibration ev0 and the local fundamental group being π1(L) (see above for the
actual mapping), γ can be homotoped to become small. Similarly, 2-cells are small
disks, bounding (thus contractible) 1-spheres, which can again be lifted by the
homotopy-sequence of the fibration ev0 and the local fundamental group being
π1(L).

This finishes the proof of the lemma. □
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Essentially, this means, that we understand local-fundamental-groups of neighbor-
hood-retractions in MHSS good enough, to know, how to apply “standard” controlled
end-theory, whenever we are able to establish suitable tameness-properties.

A.3 Tameness Properties
This section treats tameness, especially the reverse-tameness condition used in
Quinn’s controlled end-theorem and its relation to forward tameness as used e. g. in
the definition of MHSS.

If the top-stratum X − B is a manifold, Quinn shows – using a homological
characterization of forward / reverse tameness and Poincaré-duality – that both
notions of tameness coincide for the MHSS-related ends:

Lemma A.3.1: [Qui88a, Prop. 2.14 (p. 466)]: Let X be locally compact, B ⊂ X
closed with locally constant fundamental group in the complement (see below),
X −B a manifold without boundary. Then:
B ⊂ X forward tame ⇔ B ⊂ X reverse tame

Corollary A.3.1–1: Let X ⊃ B be a MHSS with two strata. R : N × I → N the
nearly strict deformation-retraction of a neighborhood N of B provided by the
forward tameness of B.
Then the end of R1 is tame.

Proof: The “locally constant fundamental group π in the complement” is defined
at [Qui88a, p. 464] as:

For x ∈ B there is a neighborhood N0 ⊂ X of x and α : π1(N0 −B) → π, and a
smaller neighborhood N with the property: Given ϵ > 0, there is δ > 0 s. t. a loop γ
in N − B of diameter smaller δ contracts in N0 − B by a homotopy of radius less
than ϵ if and only if α([γ]) = 0.

The corollary follows by Lemma A.2.4 and Quinn’s Lemma above, if we show:
B has locally constant fundamental group π in the complement, if R1 has locally
constant fundamental group π.

Remark: The other direction also follows from the proof of Lemma A.2.4, up
to the “0-LC” part included in the definition of locally constant fundamental
groups of ends, but is not needed in the following anyway.

Assume R1 has locally constant fundamental group π and let x ∈ B. There
are neighborhoods U0 of B, and V0 of x and a regular covering p, with Deck(p) =
π = π1(N0 − V0)/ im(p∗) (since p is regular), where N0 := R−1

1 (V0) ∩ U0. Let
α : π1(N0 − V0) → π be the quotient map.

Choose a slightly smaller V ⊂ V0, Lemma A.2.1 yields a U such that
R(N × I) ⊂ N0, where N := R−1

1 (V ) ∩ U .
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Let ϵ > 0. We may assume closure(N) is compact, as X is locally compact,
and we are allowed to choose N arbitrarily small. Define for all x ∈ V0 a ball Vx

s. t. R−1
1 (Vi) ∩ B

ϵ/2 has diameter less than ϵ. By the definition of locally constant
fundamental group of the end, for Bϵ/2 (as a neighborhood of the end) and Vx there
are U ′x and V ′x such that loops in the covering over R−1

1 (V ′x) ∩ U ′x contract over
R−1

1 (Vx) ∩ B
ϵ/2. Let δx > 0 be the largest possible number, such that B2δ(x) ⊂

R−1
1 (V ′x) ∩ U ′x. Clearly already the Bδ(x) cover the compact closure(V0). Thus there

is a finite collection x1, . . . , xn with Bδ(xi) covering V0. Let δ̃ := min(δx1 , . . . , δxn).
By a uniform continuity argument (using compactness of closure(N) × I, see

previous section) there is a δ > 0, s. t. d(x, x′) < δ ⇒ ∀t ∈ I : d(R(x, t), R(x′, t)) <
min(δ̃, ϵ/4).

Let γ be a loop in N − B of diameter smaller δ. The choice of δ, together with
R(x, 0) = x and R(N × I) ⊂ N0, allows us to pull γ arbitrary close to B in N0

using R, without increasing the size beyond min(δ̃, ϵ/4), thus assume γ is in B δ̃, thus
in some B2δ(xi), so a lift γ̃ contracts over R−1

1 (Vi) ∩ B
ϵ/2, which was chosen with

diameter less than ϵ.
If [γ] ∈ im(p∗) ⇔ α([γ]) = 0, then γ also contracts in R−1

1 (Vi) ∩ B
ϵ/2, thus by a

homotopy of diameter less than ϵ. Conversely, if [γ] /∈ im(p∗) ⇔ α([γ]) ̸= 0, assume
that ϵ small enough that γ is contained in an evenly covered neighborhood. Then
[γ] ̸= 0 ∈ Deck(p) lifts to a path leaving the evenly covered neighborhood. □

This shows, how tameness of strata in MHSS implies the tameness properties
required to apply “standard” controlled end-theory. Finally, it remains to assemble
the proofs, on which the first section, and the “rewriting” of the end-theorem in
terms of MHSS and cylinder-neighborhoods, were based.

A.4 Previously Deferred Proofs of Examples
In the first section it has been claimed in Example A.1.7, that for X a MHSS with
two strata M (dense in X), B and r as before, the end of r is tame, 0-LC and
onto, with locally constant fundamental group π1(r) = π1(L), where L is the fiber of
holink(X,B) → B.

Proof of Example A.1.7: The locally constant fundamental group and 0-LC parts
have been shown in Lemma A.2.4, the tameness has been shown in Cor. A.3.1–1.

For the onto part, assume U ⊂ X were an open neighborhood of B with r(U−B) ̸=
B. Let b ∈ B − r(U − B). Then i|B−{b} → N − {b} and r′ : N − {b} → B − {b}
are homotopy-inverse to each other, because R : N × I − {b} × I → N − {b} is
well-defined by nearly-strictness and r is rel B. Thus i : (B,B− {b}) → (N,N − {b})
is a strict homotopy-equivalence and therefore

H∗(N,N − {b}) ∼= H∗(B,B − {b}) ∼=

⎧⎨⎩Z if ∗ = dim(B) or 0
0 otherwise
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However by [Qui88a, Lemma 2.4 (p. 454)] (X,B) is also strict homotopy-equiva-
lent to the pushout of the homotopy-link (relB; using evaluation at 0 and at 1 as
maps). Using that ev0 is a fibration by hypothesis (with non-empty total-space
over every component of B by density of M ⊂ X), for any dim(B) = i-simplex
α ∈ Hi(B,B − {b}), we can lift its cone b ∗ α to β in the homotopy-link. Map the
cone-parameter to the cylinder of ev0 such that the base of the cone maps to B and
the rest of the cone to inside the cylinder of ev0, thus obtaining γ : b ∗ ∆i → cẙl(ev0)
with the boundary ∂γ = α∪{something in N-B}, thus α = 0 in Hdim(B)(N,N −{b}).
Hence Hdim(B)(N,N − {b}) = 0, in contradiction with the conclusion above, thus
there is x ∈ N −B with R(x) = b.

By excision, and U being an open neighborhood of B, the local-homology conclusion
remains true for N replaced by U , and using δ-holinks (cf. [Qui88a, Lemma 2.4
(p. 454)]) the construction leading to the contradiction can also be “pushed into” U .
□
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