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"The brain is a monstrous, beautiful mess. Its billions of nerve cells – called neurons – lie in a 

tangled web that displays cognitive powers far exceeding any of the silicon machines we 

have built to mimic it." 

William F. Allman1 

 

 

 

 
1 Allman, W. F. (1989). Apprentices of Wonder: Inside the Neural Network Revolution: Bantam Books.  
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1. Introduction 

 

1.1 A brief Introduction into corticostriatal circuit anatomy and function 

The basic anatomy and functions of corticostriatal circuits are well established and have been the 

subject of numerous textbooks and review articles (Alexander, DeLong, & Strick, 1986; DeLong, 1990; 

Gerfen & Surmeier, 2011; Haber, 2003; Nelson & Kreitzer, 2014; O'Reilly & Frank, 2006; Parent & 

Hazrati, 1995; Seger, 2006). Briefly, human corticostriatal circuits subserve goal-directed and habitual 

behaviors and are organized in several multisynaptic loops, which connect a particular area of the 

cortex with a specific area of the basal ganglia (BG) and the thalamus, whose efferents project back to 

the cortex. The BG play a key role within corticostriatal circuits and consist of five subcortical nuclei, 

namely, nucleus caudatus (caudate), putamen, globus pallidus (pallidum), substantia nigra and 

subthalamic nucleus. The nucleus caudatus and putamen are also known as the striatum and form the 

BG input relay and an integrative hub for information processing across species (McCutcheon, Abi-

Dargham, & Howes, 2019; Nelson & Kreitzer, 2014). Further, the area where the striatum is continuous 

is known as the ventral striatum or nucleus accumbens.  

 

The original description of corticostriatal circuits consisted of five loops, i.e., motor, oculomotor, 

dorsolateral prefrontal, lateral orbitofrontal, and anterior cingulate loop (Alexander et al., 1986), a 

model that has been later revised to four major loops (Bohlin & Janols, 2004), thereby merging the 

oculomotor and the anterior cingulate loop (Chudasama & Robbins, 2006; Seger, 2006), illustrated in 

figure 1. The anatomy and function of corticostriatal loops are both highly regular and complicated: 

On the one hand, these loop-shaped neural networks run in parallel and functionally segregated from 

each other. At the same time, by exchanging and channeling information between nodes, they also 

work in an integrative fashion (Draganski et al., 2008; McCutcheon et al., 2019; Schroll & Hamker, 

2013). Each loop follows a basic design and receives input from multiple cortical areas, which pass 

through specific regions of the striatum, pallidum, substantia nigra, thalamus subnuclei, and 

afterwards "closing the loop" by projecting back to its cortical origin, see figure 1 (Alexander et al., 

1986; Seger, 2006). 

 

The original description of corticostriatal circuits (Alexander et al., 1986) included a tripartite model of 

basal ganglia, where specific anatomical subregions are linked to certain cortical regions, e.g., caudate 

with prefrontal cortical regions. More research in this field has extended the original work and 

demonstrated a topographical segregation even within basal ganglia subregions (Kemp & Powell, 

1970; Parent, 1990; Parent & Hazrati, 1995).  Further, the segregation is assumed more a continuum 
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with overlapping boundaries than a distinct division (Draganski et al., 2008; Kim, Park, & Park, 2013). 

In general, there is a “rostro-caudal” and a “dorso-ventral” gradient of projections. For example, within 

the striatum, rostral areas are connected to cognitive domains of the cortex, e.g., prefrontal cortex, 

whereas more caudal areas are connected to motor areas, e.g., M1. In addition, the ventral area of the 

striatum, also known as nucleus accumbens, plays an important role in motivation or aversion 

(Draganski et al., 2008; Haber, 2003; Kim et al., 2013). 

 

 

 

Figure 1: Revised version of the corticostriatal circuitries.  

Panel A: conceptually modified illustration from Seger (2006), demonstrating the revised four corticostriatal 

circuitries subserving different functional domains in humans, e.g., cognition or motor control. Within each loop, 

input from cortical areas passes through a particular region of the striatum, then through pallidum or substantia 

nigra, and afterwards through the thalamus. Eventually, the information is projected back to the original cortical 

area. Panel B: Own anatomical illustration of the executive loop with cortical and subcortical structures (using 

MRIcronGL; anatomical labeling according to the automated anatomical labeling (AAL) atlas, Tzourio-Mazoyer et 

al., (2002)). Abbreviations: GPi = Globus pallidus internal part, SNr = substantia nigra pars reticulata, SMA = 

supplementary motor area. 
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Within each corticostriatal loop, there is a direct and indirect pathway (Albin, Young, & Penney, 1989; 

DeLong, 1990), which is displayed in figure 2. In both pathways, cortical pyramidal neurons (from layer 

five) provide excitatory (glutamatergic) projections to the striatum. Striatal medium spiny neurons 

(MSN) provide inhibitory (GABAergic) projections to globus pallidus internus (GPi) and externus (GPe) 

and “form” a direct and indirect pathway. Direct pathway-forming MSNs express dopaminergic D1 

receptors and project to GPi, while indirect pathway-forming MSNs express D2 receptors and project 

via several synapses (through GPe and subthalamic nucleus) indirectly to GPi (Gerfen & Surmeier, 

2011; Girasole & Nelson, 2015). Further, the projections from GPi to the thalamus are GABAergic. 

However, thalamic projections back to the cortex are excitatory, i.e., glutamatergic (Chevalier & 

Deniau, 1990; Deniau & Chevalier, 1985).  

 

Through the direct pathway, which is assumed to facilitate cortical activity, e.g., in the motor cortex, 

firing from cortex and striatal neurons results in an inhibition of GPi and thus in a disinhibition of the 

thalamus. Proposed functions of the direct pathway are, for example, motor facilitation, working 

memory gating and maintenance, and precise initiation of responses (Schroll & Hamker, 2013). Within 

the indirect pathway, cortical input passes to the striatum and GPe and additionally with an inhibitory 

projection to the subthalamic nucleus (STN). Projections from STN to the thalamus are excitatory, 

resulting in an inhibition of GPi and an inhibition of the thalamus. Thus, the indirect pathway is 

considered the inhibitory pathway, and suggested functions are the inhibition of motor programs or 

the termination of executed responses (Schroll & Hamker, 2013).  

Of importance is the modulation of cortical glutamatergic signals at the striatal level by dopaminergic 

projections arising from the ventral midbrain. The ventral midbrain includes components such as 

substantia nigra (pars compacta and pars reticulate), ventral tegmental area, or the retrorubral field. 

Within the substantia nigra, the pars compacta (SNc) is the primary source of dopaminergic (DA) 

projections to the striatum (nigrostriatal pathway), the pars reticulata is part of the cortico-striatal 

circuits, and projections are GABAergic (see figure 2). Dopamine modulates glutamate signaling of 

cortical inputs at the level of the MSN within the striatum via D1 (direct pathway) and D2 receptors 

(indirect pathway), which is displayed in figure 2 (Gerfen, 2000; Gerfen & Surmeier, 2011; Girasole & 

Nelson, 2015). 
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Figure 2. The direct and indirect pathways within corticostriatal circuitries.  

Own illustration conceptually based on Gerfen (2000) and O’Reilly & Frank (2006). Green arrows indicate 

excitatory connections via glutamate, red arrows indicate inhibitory connections via GABA, blue arrows 

demonstrate the modulatory effect of dopamine via D1 (excitatory) or D2 (inhibitory) receptors. Abbreviations: 

GPe = Globus pallidus externus, GPi = Globus pallidus internus, SNr = substantia nigra pars reticulata, SNc = 

substantia nigra pars compacta; STN = subthalamic nucleus. 

 

 

 

 

1.2 Basal ganglia function 

BG contribute to a wide range of cognitive and behavioral functions. Over the last decades, a role as a 

selective gating mechanism within the motor system has been well established (Frank, Loughry, & 

O'Reilly, 2001a; Hikosaka, Takikawa, & Kawagoe, 2000; Mink, 1996; Schroll & Hamker, 2013). In detail, 

BG have been associated with gating adequate movement programs to the motor cortex while 

preventing the execution of less appropriate and competing motor plans (movement control), the 

performance of sequences, or controlling eye movements (Chevalier & Deniau, 1990; Mink, 1996; 

Schroll & Hamker, 2013).   

 

Growing evidence from recent fMRI studies showed that BG are not only primarily engaged in the 

control function of the motor system but also within other corticostriatal circuits. In this context, it has 
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1.2 Basal ganglia function 

BG contribute to a wide range of cognitive and behavioral functions. Over the last decades, a role as a 
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BG have been associated with gating adequate movement programs to the motor cortex while 

preventing the execution of less appropriate and competing motor plans (movement control), the 

performance of sequences, or controlling eye movements (Chevalier & Deniau, 1990; Mink, 1996; 

Schroll & Hamker, 2013). 

Growing evidence from recent fMRI studies showed that BG are not only primarily engaged in the 

control function of the motor system but also within other corticostriatal circuits. In this context, it has 

been proposed that the BG, in particular the striatum, filter internal cognitive and emotional states 
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(Schroll & Hamker, 2013; Trapp, Schroll, & Hamker, 2012). Within the cognitive (executive) loop, the 

striatum was associated with the control of working memory (WM) processes (e.g., WM gating), 

especially during the encoding process of a working memory task phase (Chang, Crottaz-Herbette, & 

Menon, 2007; McNab & Klingberg, 2008; Moore, Li, Tyner, Hu, & Crosson, 2013; O'Reilly & Frank, 2006; 

Schroll & Hamker, 2013). Other data suggest that the striatal “gating” mechanism during working 

memory encoding may extend to other task-relevant stimulus attributes, including the novelty or 

increased cognitive demands of the stimulus (Chang et al. 2007; Landau et al. 2004; Nee and Brown 

2013). Further, striatal activation was associated with the ability to suppress irrelevant or distractive 

information (McNab & Klingberg, 2008), especially under high memory load (Chang et al., 2007), and 

to control salience-driven attention switching (van Schouwenburg, den Ouden, & Cools, 2010). Overall, 

the studies mentioned above reported increased recruitment of striatal regions during working 

memory tasks, independent of task modality and particularly pronounced during the encoding process, 

supporting the BG gating mechanism. However, little is known about the relative contributions of the 

striatum to working memory function in the encoding relative to the retrieval process and for different 

degrees of stimulus novelty. Moreover, the proposed corticostriatal control mechanism that supports 

the gating mechanism during working memory encoding is still underexplored. 

 

 

1.3 Striatal neurochemistry & genetic influences 

As previously introduced in section 1.1, the most critical transmitters within the corticostriatal circuits 

are glutamate, GABA, and dopamine. The interaction between glutamate and GABA (cholinergic 

system) results either in an excitatory (direct pathway) or in an inhibitory (indirect pathway) output 

within the individual corticostriatal circuits (Albin et al., 1989; DeLong, 1990). A detailed description is 

given in section 1.1. 
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Within the dopaminergic system, five subtypes of dopaminergic receptors, namely, D1, D2, D3, D4, 

and D5, have been identified, among which D1 and D2 play a particularly crucial role within the 

corticostriatal circuits. For example, the well-studied motor gating mechanism has been associated 

with the interplay between D1 and D2 receptors of medium spiny neurons (MSN). The activation of 

excitatory MSN via D1 receptors leads to disinhibition of the corticostriatal loop, which results in 

facilitating information flow into the prefrontal cortex. On the contrary, the inhibition of MSN via D2 

receptors blocks the corticostriatal information flow (Chatham & Badre, 2015; Frank, Loughry, & 

O'Reilly, 2001b; Gerfen, 2000; Shepherd, 2013). For more details, see figure 2 in section 1.1. Further, 

dopaminergic impacts have been associated with long-term potentiation (LTP) via facilitating the direct 

pathway (D1 receptors) and long-term depression via the indirect pathway (D2 receptors), thus 

modulating synaptic plasticity within a corticostriatal circuitry (Gerfen, 2000; Gerfen et al., 1990; 

Schroll & Hamker, 2013; W. Shen, Flajolet, Greengard, & Surmeier, 2008). Even the specific location of 

the dopaminergic receptor within the striatum seems to have an impact. For instance, rodent studies 

have revealed that dopamine signaling in dorsal regions is associated with novelty and intensity of a 

stimulus and threat-related information, while ventral regions seem to be more linked to stimulus 

value (McCutcheon et al., 2019; Menegas, Akiti, Amo, Uchida, & Watabe-Uchida, 2018; Menegas, 

Babayan, Uchida, & Watabe-Uchida, 2017). Another noteworthy mechanism of the dopaminergic 

neurons is the ability to co-release. Most dopaminergic neurons can co-release GABA and a smaller 

section also glutamate (McCutcheon et al. 2019), allowing to moderate the interaction between the 

dopaminergic and cholinergic system, depending on their location within the striatum (Chuhma, 

Mingote, Moore, & Rayport, 2014).  

 

Aside from neurotransmitters themselves, the genetic regulation of their signaling plays a fundamental 

role. There are numerous candidate genes among those Catechol-O-methyltransferase (COMT) and 

brain-derived-neurotrophic factor (BDNF) are crucial in the field of memory and learning. Both the 

COMT and the BDNF genes have functional single nucleotide polymorphism (SNP), resulting in an 

amino acid substitution from valine [Val] to methionine [Met] at a specific codon, 158 for COMT (COMT 

Val158Met (nucleotide rs4680)) and codon 66 for BDNF (BDNF Val66Met (nucleotide rs6265)), leading 

to a significant decrease in enzymatic activity (Meyer-Lindenberg et al., 2006). The dopamine-

regulating gene, COMT, controls the presynaptic reuptake in the prefrontal cortex or modulates striatal 

dopamine activity and has been extensively studied in the past decades. The COMT risk variant 

(Val158Met), which reduces the thermostability of the encoded enzyme, has been associated with 

impaired prefrontal functioning in WM or reward tasks and has also been linked to an increased risk 

of psychiatric disorders such as schizophrenia (Brehmer et al., 2009; Bruder et al., 2005; J. Chen et al., 
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2004; Egan et al., 2001; Frank & Fossella, 2011; Goldberg & Weinberger, 2004; Meyer-Lindenberg et 

al., 2005; Wang et al., 2015).  

 

BDNF protein, as a member of the neurotrophin family of growth factors, has become the most widely 

studied neutrophin (Notaras & van den Buuse, 2019). BDNF receptors are widely distributed among 

the human brain but notably highly expressed in regions essential for learning and memory, such as 

the cortex, striatum, and hippocampus (Hariri et al., 2003; von Bastian & Oberauer, 2014).  

 

Prior behavioral studies demonstrated poorer performance among risk allele carrier (Met allele carrier) 

in several cognitive fields such as WM (Baig et al., 2010; Egan et al., 2003; Hariri et al., 2003; Harris et 

al., 2006; Hashimoto et al., 2008; Kambeitz et al., 2012; Karnik, Wang, Barch, Morris, & Csernansky, 

2010), verbal learning (O. Gruber et al., 2012; Schofield et al., 2009), episodic memory (Hashimoto et 

al., 2008) as well as long-term memory (Montag et al., 2014). The substitution of valine to methionine 

at codon 66 within the BDNF pro-domain interferes with a Sortilin binding. As a consequence, 

intracellular trafficking and the activity-dependent release of BDNF is disrupted (Chen et al., 2015; Z. 

Y. Chen et al., 2004; Chiaruttini et al., 2009; Notaras, Hill, & van den Buuse, 2015; Notaras & van den 

Buuse, 2019),  which might result in inefficient LTP (Figurov, Pozzo-Miller, Olafsson, Wang, & Lu, 1996; 

Jovanovic, Czernik, Fienberg, Greengard, & Sihra, 2000; Y. X. Li, Zhang, Lester, Schuman, & Davidson, 

1998; Notaras et al., 2015; Tyler & Pozzo-Miller, 2001). Unfortunately, most behavioral studies on 

BDNF were conducted in a cross-sectional design. Only a few pre-post training studies have been 

performed, with varying time intervals ranging from one day (Goldberg et al., 2008) to several days 

(Montag et al., 2014) or months (LeMoult, Carver, Johnson, & Joormann, 2015). These studies showed 

poorer memory performance in Met allele carriers, which was compensated for after several repetitive 

training days in very few studies (Freundlieb et al., 2015; McHughen, Pearson-Fuhrhop, Ngo, & Cramer, 

2011).  

 

In the field of imaging studies, Met allele carrier showed increased activation and inefficient functional 

connectivity in prefrontal regions in WM or cognitive control tasks (Dennis et al., 2011; Egan et al., 

2003; Jabbi et al., 2017; Schweiger et al., 2019) and reduced grey matter volume, e.g. in the prefrontal 

cortex (Soltesz et al., 2014).  Similarly, reduced grey matter (Dennis et al., 2011; Soltesz et al., 2014) 

and abnormal activation have been reported in the hippocampus (Hariri et al., 2003; Hashimoto et al., 

2008; Notaras et al., 2015). Likewise, most imaging genetic studies with BDNF Val66Met have followed 

a cross-sectional or a pre-post longitudinal approach, thus not reflecting the time course of learning 

and the corresponding neural correlates, e.g. reduced activation in striatal and frontal regions.  
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Overall, this section demonstrates that genetic predispositions affecting transmitter and neurotrophic 

action in corticostriatal circuits are linked to individual differences in memory and learning and further 

emphasizes the importance of interaction among different neurotransmitters and their regulating 

genes. BDNF activity-dependent secretion in corticostriatal areas is performed via NMDA receptors 

(Gibon & Barker, 2017; Park, Popescu, & Poo, 2014), which are essential for LTP and thus plasticity. 

Besides, BDNF influences striatal dopamine release and thus interacts with COMT, which also plays an 

important role in the corticostriatal circuitries, especially within the frontostriatal loop (von Bastian & 

Oberauer, 2014; Wang et al., 2015; Wang et al., 2014). 

 

While these findings collectively suggest that genetic predispositions related to BDNF contribute to 

individual differences in learning and memory, a comprehensive longitudinal characterization of BDNF 

effects, including the behavioral and neural level, has to my knowledge, not been conducted yet.  

 

 

1.4 Basal ganglia dysfunction  

Irregularities in corticostriatal circuitries facilitate neurological diseases or psychiatric disorders such 

as Parkinson's disease, Huntington's disease, schizophrenia, or substance abuse (Peters, Dunlop, & 

Downar, 2016).  

 

Parkinson's disease is a neurodegenerative disease characterized by a progressive cell loss of 

dopaminergic neurons, especially in the brain stem nuclei and the substantia nigra, leading to a 

decreased amount of striatal dopamine. In short, the output via the direct pathway decreases while 

the output via the indirect pathway increases (followed by decreased activity in GPe and an increase 

in GPi). For a detailed explanation of the pathways, see section 1.1 and figure 2. This imbalance within 

the dopaminergic system causes the cardinal motor symptoms of bradykinesia, rigidity, and resting 

tremor (Parkinsonism) (Kreitzer & Malenka, 2008; Nelson & Kreitzer, 2014). In addition, knowing that 

the direct pathway is involved in movement selection and initiation explains other symptoms such as 

difficulties in initiating movements, e.g., freezing or performing movements, e.g., reduced swinging of 

arms, hypomimia, micrographia. As the disease progresses, psychiatric and cognitive symptoms such 

as personality changes, depression, apathy, or memory impairment progress and emphasize the 

involvement of BG in non-motor fields.   
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Another neurodegenerative disease related to BG dysfunction is Huntington's disease, an autosomal 

dominant genetic disease with high penetrance caused by a pathological trinucleotide repeat 

expansion (Marreiros, Cagnan, Moran, Friston, & Brown) in the huntingtin gene, resulting in a 

successive striatal and later prefrontal cortical cell loss. Within the striatum, preferentially neurons of 

the indirect pathway seem to be affected (Reiner, Dragatsis, & Dietrich, 2011), leading to a reduced 

amount of inhibitory control causing the main symptoms chorea and hyperkinesia. Cell loss in 

prefrontal areas is associated with cognitive deficits, affect dysregulations, depression, and in later 

stage dementia (Peters et al., 2016). 

 

Among psychiatric diseases, schizophrenia is a relatively common and well-investigated chronical 

illness, associated with positive symptoms (such as hallucinations and delusions), negative symptoms 

(such as flattened affect and lack of motivation) as well as cognitive symptoms (such as lack of 

concentration, WM deficits) (Gaebel & Zielasek, 2015; Girdler, Confino, & Woesner, 2019). The 

dopaminergic system plays an important role in the etiology of schizophrenia. Early models proposed 

a dysfunction within the dopaminergic system, which causes hyperdopaminergia (Creese, Burt, & 

Snyder, 1976; Seeman & Lee, 1975; Seeman, Lee, Chau-Wong, & Wong, 1976; Snyder, 1976). Later 

research specified the abnormal dopamine signaling to specific regions, i.e., subcortical 

hyperdopaminergia and prefrontal hypodopaminergia (Davis, Kahn, Ko, & Davidson, 1991; Peters et 

al., 2016). Recent imaging studies, using fMRI or PET, emphasize the role of dorsal striatal regions 

(McCutcheon et al., 2019), showing that greater activity in dorsal striatum or increase in striatal 

dopamine correlates with psychotic symptoms (McCutcheon et al., 2019; Sorg et al., 2013). Other 

symptoms of schizophrenia such as WM deficits are linked to lower levels of dopamine or 

hypoactivation in frontal regions, as well as disconnectivity between BG and prefrontal regions (Fusar-

Poli et al., 2010; O. Howes, McCutcheon, & Stone, 2015; O. D. Howes, McCutcheon, Owen, & Murray, 

2017; McCutcheon et al., 2019; Meyer-Lindenberg, 2010; Meyer-Lindenberg & Weinberger, 2006; 

Tost, Alam, & Meyer-Lindenberg, 2010).  

 

Aside from schizophrenia, accumulating evidence has highlighted the involvement of the dopaminergic 

system in substance abuse. Dopamine plays an important role in the addiction cycle (Koob & Volkow, 

2010), and its dysfunctions have been associated with drug-seeking behavior and impulsivity (Koob & 

Volkow, 2010; Menon, 2011; Peters et al., 2016). 

To summarize, this section emphasizes the central role of corticostriatal circuitries in the onset of 

several psychiatric disorders or neurological diseases. 
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1.5 Memory and Learning  

Memory is a fundamental function in human cognition. Conceptually, it can be seen as a storing and 

processing unit where existing knowledge is updated and previously acquired experiences are 

compared (Robertson, 2002). It can be divided into two major types, i.e., explicit memory (including 

facts and events) and implicit memory (including skills, habits, unconscious learning). Historically, Hebb 

proposed a distinction (for explicit memory) into short-term memory (STM) system and a long-term 

memory system (LTM) (Baddeley, 2003; Hebb, 1949; Robertson, 2002). Later, several revised memory 

models arose, e.g., Atkinson & Shiffrin Model, and most studies classified memory according to time 

into three different types: STM, WM, and LTM (Atkinson & Shiffrin, 1968; Baddeley, 2003; Robertson, 

2002). Briefly, STM can be considered as a temporary buffer, where we shortly hold information for 

seconds, such as a telephone number. If we rehearse and repeatedly use this information, it can be 

kept in WM for minutes to hours, if not, it will not be consolidated towards forming a long-term 

memory representation. Depending on the amount of usage and rehearsal, it can be stored in the LTM 

for years or even a lifetime (Robertson, 2002). 

 

The WM itself was proposed as a three-component WM model including a central executive and two 

storage systems, namely a phonological loop and visuospatial sketchpad (Baddeley & Hitch, 1974). This 

WM model has been extended to the multicomponent WM model, including a fourth component, the 

episodic buffer (Baddeley, 2000). In general, WM is responsible for temporary storage and "online" 

manipulation of information. Depending on the subcomponent, WM is, among other functions, 

essential for attention, learning, speech, orientation, and comprehension of stimuli (Baddeley, 2003, 

2010). Typically, the capacity of WM is known to be around seven items (Miller's magical number 

seven) or chunks, which are meaningful units of information (Goh, Beason-Held, An, Kraut, & Resnick, 

2013; Guida, Gobet, Tardieu, & Nicolas, 2012; Miller, 1956). In the last decades, neuroimaging and 

brain lesions studies were able to identify the neural correlates for the individual WM components. 

Inferior parietal regions (BA 40), Broca's area (BA 6/44), and the SMA (BA 6) were linked to the 

phonological loop (Baddeley, 2003; Muller & Knight, 2006; G. Vallar, Di Betta, & Silveri, 1997; G. P. 

Vallar, C., 2002), whereas prefrontal (BA 9/46), inferior frontal (BA 6/44) and parietal (BA 7/40) regions 

were related to the central executive network (Baddeley, 2003; Braver et al., 1997; Cohen et al., 1997). 

 

In a similar approach, lesion and neuroimaging studies identified critical regions for LTM, including the 

hippocampus, entorhinal, and parahippocampal cortex. The hippocampus is one of the oldest parts of 

the human brain and crucial for encoding and retrieval of information (Eichenbaum, 2004; Staresina, 

Cooper, & Henson, 2013). Similar to corticostriatal circuitries, the hippocampal functions are 
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represented in a neural circuitry, which is displayed in figure 3. Briefly, the hippocampus receives high-

level, diverse, and widespread cortical input, either directly through the entorhinal cortex or indirectly 

via the parahippocampal or perirhinal cortex. The entorhinal cortex can be seen as a “portal” between 

the cortex and the hippocampal subregions, i.e., dentate gyrus, cornu ammonis (CA1 - 3), and 

subiculum (Shastri, 2002). Of particular interest for memory encoding is subregion CA3, which is known 

as a "conjunctive code," merging items into memory. Granule cells in the dentate gyrus send “mossy 

fiber axons” to the CA3 region (Hainmueller & Bartos, 2020; Rebola, Carta, & Mulle, 2017; Shastri, 

2002). Cells in this region have recurrent and widespread connections and are mainly glutamatergic. 

For example, subregion CA3 projects via the “Schaffer collaterals” into subregion CA1, which then 

projects back to the entorhinal cortex and then returns to the originated cortex. Further, the CA3 

region directs information through other complex loops within the hippocampus, including 

hippocampal areas such as CA2, subiculum, and dentate gyrus (Goode, Tanaka, Sahay, & McHugh, 

2020; Hainmueller & Bartos, 2020; Lazarov & Hollands, 2016; Rebola et al., 2017; Shastri, 2002).  

 

The hippocampus is well known for rapid synaptic plasticity or experience-dependent remodeling of 

the functional efficacy of synaptic connections, also called long-term potentiation (LTP) (Bliss & 

Collingridge, 1993; Bliss & Lomo, 1973). LTP is the most common cellular model for learning and 

memory and is highly related to glutamate and NMDA receptors (see section 1.3 for more information). 

Once glutamatergic synapses are high-frequently stimulated, a rapid and long-lasting increase in 

strength of transmission between them occurs, which can persist, e.g., for many days or longer (Bliss 

& Collingridge, 1993; Nicoll, 2017). In addition to glutamate, dopamine is critical for learning and 

memory formation. Previous studies demonstrated that dopamine antagonists can block LTP, thus 

emphasizing the role of dopamine in the entry of novel information (Bunzeck & Thiel, 2016). The 

hippocampus has widespread connections with multiple brain regions such as the prefrontal, temporal 

or parietal cortex (Robertson, 2002). 
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Figure 3. Hippocampus anatomy and hippocampal circuits. 

Panel A) Own illustration of hippocampal circuits based on Shastri (2002). Panel B) Panel B: Own anatomical 

illustration of the hippocampus (using MRIcronGL; anatomical labeling according to the automated anatomical 

labeling (AAL) atlas, Tzourio-Mazoyer et al. (2002)). Panel C) Own anatomical mapping (using MRIcronGL; 

anatomical labeling according to Suwabe et al. (2018). Blue dashed line from CA3 to CA1 = Schaffer collaterals. 

Green dashed line from Dentate gyrus to CA2 = mossy fiber. Abbreviations:  CA = cornu ammonis, SUB = 

subiculum, PRC = perirhinal cortex, EC = entorhinal cortex, DG = dentate gyrus.  

 

Previous evidence suggested that hippocampal and cortical areas have powerful learning capacities 

but reflect different stages and mechanisms (McClelland, McNaughton, & O'Reilly, 1995; O'Reilly & 

Rudy, 2001). For instance, the hippocampus is considered as rapid learning of individual events or 

episodes, while the cortex is proposed to gradually extract regularities over many experiences. 

Furthermore, growing evidence supports that repeated activation of the hippocampal-cortical 

network, e.g., during rehearsal or recall, may provide the basis for an extended consolidation of 

memories within the cerebral cortex (Eichenbaum, 2004). 

 

A topic closely related and interlinked to memory is the ability to learn and practice. "Practice makes 

perfect" is a proverbial truism, referring to the observation that practice results in improvement in 

performance. A long history of behavioral studies described a characteristic shape of performance 

improvement over time, known as learning curves (Gulliksen, 1934; Mazur & Hastie, 1978; Restle & 

Greeno, 1970; Thurstone, 1919), which were defined as an exponential, hyperbolic or logistic function. 

An important aspect is that performance improvement can be described along two dimensions: 
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learning speed and learning gain (i.e., the amount of improvement). Newell & Rosenbloom (1981) 

proposed the term "law of practice," which followed a power function, i.e., log-log linear learning 

function, also called the power law of practice. While learning curves were historically associated with 

"skill acquisition" in motor behavior tasks, Newell & Rosenbloom proposed a universal quantitative 

law that includes all types of cognitive behavior (Newell & Rosenbloom, 1980). More recent research 

demonstrated that an exponential law of practice could describe learning curves better than a power 

function (Evans, Brown, Mewhort, & Heathcote, 2018).  

 

In the WM literature, the best-studied mechanism for explaining this "practice effect" is the formation 

of "chunks" (Guida et al., 2012; Miller, 1956; Newell & Rosenbloom, 1980). A chunk is a meaningful 

and effective reorganization of information, which is usually accompanied by the compression of 

information. Early learning studies proposed chunking as the mechanism to acquire expertise in fields 

such as morse codes or chess play (Bryan & Harter, 1899; Chase & Simon, 1973). Several WM studies 

demonstrated that the chunking mechanism improves (WM) performance and reduces cognitive load, 

leading to more efficient WM capacity (Bor, Cumming, Scott, & Owen, 2004; Ericcson, Chase, & Faloon, 

1980). The recruitment of lateral prefrontal areas, such as the DLPFC, has been linked to the selection 

of appropriate chunks (Bor et al., 2004; Bor, Duncan, Wiseman, & Owen, 2003; Goh, An, & Resnick, 

2012; Goh et al., 2013). A reasonable explanation might be the usage of long-term memory traces or 

memory engrams, leading to a functional reorganization and eventually re-facilitating memory 

processes (Bor et al., 2004; Goh et al.,2013). 

 

In general, learning and practice are examples of plasticity processes, which have been demonstrated 

in several cross-sectional and longitudinal studies. See figure 4 for an illustration. Typically, the 

improvement in performance has been quantified by an increase in accuracy and/or a decrease in 

reaction time, often modeled linearly. The neural correlates of behavioral improvement, e.g., induced 

by short-term or long-term training, is reduced activation or increase in grey matter, which has been 

reported within the motor (Draganski et al., 2004; Floyer-Lea & Matthews, 2005; Lehericy et al., 2005) 

as well as the cognitive systems. In WM tasks, a decrease in activation has been particularly shown in 

striatal and frontal regions, e.g., DLPFC (Garavan, Kelley, Rosen, Rao, & Stein, 2000; Sankar, Adams, 

Costafreda, Marangell, & Fu, 2017; van Raalten, Ramsey, Duyn, & Jansma, 2008; van Raalten, Ramsey, 

Jansma, Jager, & Kahn, 2008). Unfortunately, most of the studies were either conducted in a cross-

sectional design or used a simple pre-post longitudinal approach without specific modeling of 

behavioral improvement and its neural correlates. A more promising approach to investigate plasticity 

is to characterize learning-induced changes in behavior and brain function by applying an exponential 

function in the sense of the previously explained "law of practice." So far, only a few studies in the field 
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of motor learning were conducted, where an exponential function was used to estimate learning 

parameters, such as movement time, learning speed, or error level (Bassett, Yang, Wymbs, & Grafton, 

2015; Kodama et al., 2018). These studies have also found corresponding brain adaptations, e.g., 

increased hippocampal grey matter volume (Kodama et al., 2018), or decrease in learning-induced 

integration of cognitive systems (Bassett et al., 2015). Another important aspect in studying the effect 

of plasticity is the consideration of genetic influences. As previously outlined (see section 1.3), BDNF 

plays an essential role in synaptic plasticity and has been extensively studied. However, most of the 

conducted imaging genetic studies with BDNF Val66Met have followed either a cross-sectional or a 

longitudinal design with a simple pre-post approach. A comprehensive longitudinal characterization of 

BDNF effects at the behavioral and neural levels has not been studied extensively, and to my 

knowledge, at least not in the context of applying exponential learning curves.  

 

 

Figure 4. Illustration of the cross-sectional design (study1) and the longitudinal design (study2) used to 

investigate plasticity during working memory (WM) learning. 
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1.6 Aims 

As outlined above, corticostriatal circuitries play an essential role in basic and high-level functions of 

the human brain, such as control of motor function, goal-director behavior, cognition, as well as 

learning and memory function. The neurotransmitters glutamate and dopamine, as well as the 

neurotrophin BDNF, are critically involved in the process of memory and learning. Malfunctioning 

within corticostriatal circuitries is associated with several neurological and psychiatric diseases.  

 

In general, study 1 of this thesis, focuses on short term effects of WM learning. In particular, on defining 

the underlying effects of striatal gating and possible modulatory influences by frontal areas, thereby 

following a cross-sectional design. Study 2 of this thesis aims to investigate short-term and long-term 

effects of corticostriatal functioning and examine possible influences of BDNF by applying exponential 

learning curves.  Thus, study 2 was conducted in a longitudinal design. See figure 4 for an illustration.  

 

Study 1 aims to investigate 1 whether striatal activation during working memory varies across task 

phase (i.e., encoding and retrieval) and novelty of the presented materials, and 2 by which 

corticostriatal connectivity mechanism the task-phase specific engagement of the striatum during 

novelty processing is plausibly achieved. Therefore, fMRI activation and connectivity analyses in 74 

healthy volunteers, performing a Sternberg working memory task with different task phases and 

degrees of stimulus familiarity, were performed (section 2.1). Based on the literature mentioned 

above, more pronounced striatal activations in the encoding (vs. retrieval) phase of the task and during 

the processing of the cognitively more demanding novel (vs. practiced) Sternberg items are 

hypothesized. Further, to investigate whether the observed effects are best explained by a model 

assuming a modulatory influence of stimulus encoding on the information flow between the DLPFC 

and the striatum, and if so, whether the winning model hypothesizes a top-down, bottom-up, or 

reciprocal increase in effective connectivity. 

 

While the cross-sectional study 1 focuses on defining the circumstances of striatal gating and possible 

modulatory influences by DLPFC, the main focus of study 2 is to investigate corticostriatal functioning 

in a longitudinal design and examine possible influences of BDNF by applying exponential learning 

curves.   

 

Study 2 aims to characterize learning-induced changes in cognitive behavior and brain function during 

a two-week learning period with consecutive training and fMRI acquisition on a regular basis and the 

modulation of these learning-induced changes by the plasticity marker BDNF. Therefore, a sample of 
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23 subjects performing a modified Sternberg working memory task was examined, and exponential 

decay modeling (learning curves) was used to examine two key dimensions of learning, i.e., the 

parameters for learning speed () and learning gain (, reflecting the amount of change). Based on 

prior mentioned work, the following hypotheses were postulated. 1 Carriers of the BDNF plasticity 

risk variant (Met carrier) would show performance deficits, e.g., higher error rates, during longitudinal 

working memory learning, and 2 display differences in temporal characteristics of working memory 

learning across the training interval, 3 learning-related behavioral alterations can be linked to neural 

learning parameters estimated from frontal-striatal activation and connectivity estimates, and 4 

these measures of frontal-striatal function would be impacted by BDNF genotype. 

 

 

Please note that several parts of this thesis have already been published or are about to be published 

by the doctoral candidate as a first author. Therefore, certain sections, tables, or figures of this thesis 

will be identical to the following publications:  

Geiger, L. S., Moessnang, C., Schafer, A., Zang, Z., Zangl, M., Cao, H., van Raalten, T., Meyer-Lindenberg, 

A., Tost, H. (2018). Novelty modulates human striatal activation and prefrontal-striatal effective 

connectivity during working memory encoding. Brain Struct Funct. doi:10.1007/s00429-018-1679-0 

Geiger, L. S., Zang, Z., Melzer, M., Witt, S., Rietschel, M., van Raalten, T. R., Meyer Lindenberg, A., 

Moessnang, C., Wüstenberg, T. & Tost, H. (2021). Longitudinal behavioral and brain functional effects 

of a plasticity-related variant in BDNF on verbal working memory learning. In presubmission to Proc 

Natl Acad Sci U S A (PNAS).  
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2. Empirical studies  

 

2.1 Study 1: NOVELTY MODULATES HUMAN STRIATAL ACTIVATION AND PREFRONTAL–

STRIATAL EFFECTIVE CONNECTIVITY DURING WORKING MEMORY ENCODING2 

 

2.1.1 Abstract 

The functional role of the basal ganglia in the gating of suitable motor responses to the cortex is well 

established. Growing evidence supports an analogous role of the BG during working memory encoding, 

a task phase in which the “input-gating” of relevant materials (or filtering of irrelevant information) is 

an important mechanism supporting cognitive capacity and the updating of working memory buffers. 

One important aspect of stimulus relevance is the novelty of working memory items, a quality that is 

understudied with respect to its effects on corticostriatal function and connectivity. To this end, 

functional magnetic resonance imaging (fMRI) was applied in 74 healthy volunteers performing an 

established Sternberg working memory task with different task phases (encoding vs. retrieval) and 

degrees of stimulus familiarity (novel vs. previously trained). Activation analyses demonstrated a highly 

significant engagement of the anterior striatum, in particular during the encoding of novel working 

memory items. Dynamic causal modeling (DCM) of corticostriatal circuit connectivity identified a 

selective positive modulatory influence of novelty encoding on the connection from the dorsolateral 

prefrontal cortex (DLPFC) to the anterior striatum. These data extend prior research by further 

underscoring the relevance of the BG for human cognitive function and provide a mechanistic account 

of the DLPFC as a plausible top-down regulatory element of striatal function that may facilitate the 

“input-gating” of novel working memory materials. 

 

 

2.1.2 Methods 

Participants 

Seventy-four healthy right-handed subjects (43 females, age: 26 ± 7.0 years) participated in this study. 

Informed consent was obtained from all individual participants included in the study. The protocol was 

approved by the Ethics Committee of the Medical Faculty Mannheim at the University of Heidelberg. 

 
2 Published as: Geiger, L. S., Moessnang, C., Schafer, A., Zang, Z., Zangl, M., Cao, H., van Raalten, T., Meyer-

Lindenberg, A., Tost, H. (2018). Novelty modulates human striatal activation and prefrontal-striatal effective 

connectivity during working memory encoding. Brain Struct Funct. doi:10.1007/s00429-018-1679-0 
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Subjects had no history of neurological illness, psychiatric disorders, or substance abuse. Handedness 

was assessed using the Edinburgh Handedness Inventory (Oldfield, 1971).  

 

fMRI experiment 

Subjects performed a modified Sternberg item recognition task with four task conditions and a total 

duration of 8.4 minutes (figure 5a). Similar paradigms have been previously used to study brain 

activations related to the processing of novel and automated stimulus-response relationships during 

verbal working memory (Jansma JM, 2001; van Raalten, Ramsey, Duyn, et al., 2008; van Raalten, 

Ramsey, Jansma, et al., 2008).  Each trial consisted of an encoding phase (3500 ms) during which a 

target set of five consonants was presented and had to be memorized. After a variable interstimulus 

interval (358 ms – 1790 ms, randomly jittered in steps of 358 ms), ten single-letter probes were 

presented consecutively for 1400 ms each, followed by a fixation cross for 800ms in the retrieval phase 

(total duration of 26 s). For every single probe, the subjects had to indicate whether the letter was part 

of the target set (or not) by pressing the left (or right) button on a magnetic-resonance-compatible 

response pad.  

Since this task aimed at investigating memory phase-dependent differences in the neural processing 

of novel and practiced working memory items, specific stimuli were trained and automatized prior to 

the fMRI scan. For this, subjects practiced three series of trials consisting of a fixed encoding stimulus 

set (i.e., FGMPT) and a fixed set of 50 letter probes (i.e., 25 target and 25 non-target probes) that were  

presented in a pseudo-randomized order in the retrieval phase. During the actual fMRI scan, novel and 

previously practiced working memory stimuli were presented along with a low-load cognitive control 

condition and a rest condition. While entirely novel target sets and probes were presented in the novel 

condition (e.g., DCKWX), the previously practiced target set and practiced probes were shown in the 

practiced condition. In the low-load cognitive control condition, the target set consisted of five 

identical vowels (AAAAA), and only two probes (one target and one non-target probe) were presented 

five times each during retrieval. In the rest condition, the German word for "rest" ("Ruhe") was 

displayed instead of a target set followed by a fixation cross, and no response was required. All 

conditions were presented four times in a pseudo-randomized and counterbalanced order. All stimuli 

were presented at fixed positions on the screen to minimize condition-dependent differences in spatial 

attention and eye movements. The basic motor and sensory processing demands of the novel and 

practiced conditions were comparable. Since the analyses were restricted to the direct comparison of 

novel and practice conditions, the low-load cognitive control condition and the rest condition were not 

analyzed further in this study. 
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Behavioral data analysis 

Mean reaction times (RT) for target and non-target stimuli were calculated for the novel and practiced 

conditions. Accuracy was recorded for each condition as percentage of correctly identified probes. The 

performance parameters of the novel and practiced task conditions were compared using paired 

sample t-tests. A significance level of p < 0.05 was applied.  

 

 

 
 

Figure 5 Sternberg task and behavioral results.  

Panel A: Structure of the Sternberg task consisting of two task phases (encoding, retrieval) and four different task 

conditions (novel, practiced, low-load cognitive control, and rest). Panel B: Behavioral results of the Sternberg 

task, with accuracy given in percent correct and reaction time given in milliseconds for the novel and practiced 

task conditions, respectively (** indicates p < 0.001). Abbreviation: SEM = standard error of the mean.  

 

 

Image acquisition 

Functional data were acquired on a 3 Tesla whole-body MR Scanner (Siemens, Erlangen, Germany), 

with a 32-channel head coil (parallel imaging; generalized autocalibrating partially parallel acquisition 

(GRAPPA); iPAT=2). Functional images were acquired in descending order with a gradient-echo echo-

planar imaging (EPI) sequence (TR = 1790 ms, TE = 28 ms, flip angle = 76°, 34 axial slices, 3 mm slice 

thickness, 1 mm gap, matrix size: 64 × 64, field of view (FoV): 192 × 192 mm; whole brain coverage was 

ensured by tilting the FoV to -25° from the individual anterior commissure – posterior commissure 

line). 
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Figure 5 Sternberg task and behavioral results. 

Panel A: Structure ofthe Sternberg task consisting oftwo task phases (encoding, retrieval) and four different task 

conditions (novel, practiced, Iow-load cognitive control, and rest). Panel B: Behavioral results of the Sternberg 

task, with accuracy given in percent correct and reaction time given in milliseconds for the novel and practiced 

task conditions, respectively (** indicates p < 0.001). Abbreviation: SEM = standard error ofthe mean. 

Image acquisition 

Functional data were acquired on a 3 Tesla whole-body MR Scanner (Siemens, Erlangen, Germany), 

with a 32-channel head coil (parallel imaging; generalized autocalibrating partially parallel acquisition 

(GRAPPA); iPAT=2). Functional images were acquired in descending order with a gradient-echo echo- 

planar imaging (EPI) sequence (TR = 1790 ms, TE = 28 ms, flip angle = 76°, 34 axial slices, 3 mm slice 

thickness, 1 mm gap, matrix size: 64 x 64, field of view (FoV): 192 x 192 mm; whole brain coverage was 

ensured by tilting the FoV to -25° from the individual anterior commissure — posterior commissure 

line). 
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Image preprocessing 

Data preprocessing was performed using standard routines of the Statistical Parametric Mapping 

software (SPM8; http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Briefly, this included a two pass 

realignment procedure (i.e., functional images were registered to the mean of the images after a first 

realignment to the first image), slice time correction, normalization to the Montreal Neurological 

Institute (MNI) EPI template (using the mean functional image as the source image and the MNI EPI 

template as the template image), and spatial smoothing with an 8mm full-width at half-maximum 

(FWHM) Gaussian kernel. To rule out excessive frame-to-frame motion in the sample, mean framewise 

displacement was assessed. For this, mean relative RMS (root mean squared) displacement according 

to (Jenkinson, Bannister, Brady, & Smith, 2002) we computed. The resulting values (mean = .07 mm, 

SD = .03 mm, min = .03 mm, max = .21 mm) suggest that overall motion in the sample was low (see 

also Ciric et al. (2017)). 

 

Activation analysis 

The activation analysis followed a two-level procedure in SPM8. At the first level, general linear models 

(GLM) were defined for each subject that included eight separate regressors for each stimulus type 

(novel, practiced, low-load cognitive control, and rest) and memory phase (i.e., encoding, retrieval). 

Regressors were modeled using delta (stick) functions for the encoding phases and boxcar functions 

for the retrieval phases. The six head motion parameters from the realignment step were included as 

nuisance covariates into the model to account for head motion. During model estimation, the data 

were high-pass filtered with a cutoff of 128 s, and an autoregressive model of the first order was 

applied. Contrast images were calculated for each subject to assess the 1) main effect of memory phase 

(encoding > retrieval, retrieval > encoding), 2) main effect of stimulus type (novel > practiced, practiced 

> novel), and 3) the encoding specific effect of stimulus type (encoding-novel > encoding-practiced, 

encoding-practice > encoding-novel). The first-level contrast images were entered into second-level 

random-effects models using age and sex as covariates of no interest, and one-sample t-tests were 

calculated for statistical inference at the group level (p < 0.05, whole brain family-wise error (FWE) 

corrected). Note that results for the main effect of memory phase are reported in the supplemental 

material (figure S1, page 30; table S1, page 73 and 74,) since the direct comparison of encoding and 

retrieval phases is of limited interpretability given profound differences in visual stimulation, task 

demands, and duration.  
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Dynamic causal modeling (DCM) 

In addition to the activation analysis, DCM was conducted to explore the proposed role of prefrontal-

striatal interactions for the regulation of the access of novel information into working memory. In brief, 

DCM allows clarifying how a specific brain region intrinsically exerts influences on another brain region 

and how this influence is modulated by the experimental conditions of a task. DCM models three brain 

dynamics in the context of external stimuli (Friston, Harrison, & Penny, 2003; Stephan, Weiskopf, 

Drysdale, Robinson, & Friston, 2007): the endogenous coupling between two regions (intrinsic 

connections), the impact of experimental conditions on the regions themselves (driving inputs) and on 

the strength of the coupling between the regions (modulatory effects). Based on the published 

literature (A. J. Gruber, Dayan, Gutkin, & Solla, 2006; O'Reilly & Frank, 2006) and own activation 

findings, focus was laid on the functional interaction of two key cognitive nodes in the corticostriatal 

circuitry, the DLPFC and the downstream input node for excitatory projections from the prefrontal 

cortex at the level of the basal ganglia in the anterior striatum. Specifically, the aim was to examine 

potential modulatory effects of the encoding phase of novel and practiced items on the DLPFC and its 

effective connectivity to the striatum in the context of this Sternberg working memory task. 

 

Definition of subject-specific volumes of interest (VOIs) 

Subject-specific VOIs were defined in two steps. First, two anatomical masks from the Automated 

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) representing the DLPFC and the 

striatum were derived. The DLPFC mask covered the AAL regions of Brodmann area (BA) 46, whereas 

the striatum mask covered the merged AAL regions of the putamen and caudate nucleus. Due to the 

focus on the dorsolateral prefrontal loop (executive loop) within the corticostriatal circuits (Alexander 

et al., 1986), only the anterior part of the putamen and the head of the caudate nucleus were chosen 

(MNI y ≥ -1). Then, subject-specific VOIs were defined by superimposing the masks to the first-level 

statistical images of the "encoding-novel > encoding practice" contrast, identifying the peak statistical 

voxel within each mask, centering 6mm spheres around the peak voxels, and extracting the first 

eigenvariate from these spheres. The VOI time series were adjusted for the effects of interest (EOI), 

which accounts for movement artifacts based on the realignment parameters and mean-corrects the 

data. Following previous literature demonstrating predominantly left hemispheric lateralization for 

verbal WM items (Nagel, Herting, Maxwell, Bruno, & Fair, 2013) and confirming a higher involvement 

of the left hemisphere during similar Sternberg tasks (Cairo, Liddle, Woodward, & Ngan, 2004; Chang 

et al., 2007; van Raalten, Ramsey, Duyn, et al., 2008), VOIs were defined within the left hemisphere. 

For an illustration of the distribution of individual VOIs, see figure 6. 
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Figure 6. Illustration of individual peak voxels of the encoding novel > encoding practice contrast images in 

normalized space.  

Distribution of individual peak voxels within the anatomical striatum mask (ROI mask) superimposed on T1-

weighted images. For DCM VOI definition, 6-mm spheres were constructed around individual peaks. 

Abbreviations: DCM = dynamic causal modeling, ROI/VOI = region/volume of interest. 

 

 

DCM model space definition and estimation  

DCM12 toolbox implemented in SPM12 (r6685) was used for model definition and estimation of 

deterministic DCMs. In order to test whether the experimentally induced influence is consistent with 

a "top-down" and/or "bottom-up" regulatory effect, the following brain dynamics were included in the 

definition of DCM models. 1) Intrinsic connections: Consistent with the anatomy of corticostriatal 

circuits (Alexander et al., 1986; Shepherd, 2013), a bidirectional intrinsic connection between the 

DLPFC and the basal ganglia was assumed. 2) Driving inputs: All four conditions (encoding-novel [EN], 

encoding-practice [EP], retrieval-novel [RN], retrieval-practice [RP]) were used as driving input to 

DLPFC, striatum or both (i.e.  2^4 - 1 = 15; no input at all was ignored). 3) Modulatory effects: The two 

encoding conditions (EN, EP) were included as modulatory effects, either jointly or separately, on the 

bidirectional intrinsic connections (i.e., DLPFC to striatum vs. striatum to DLPFC; 2^4 =16). Systematic 

variation of these dynamics resulted in a total of 2^4 * (2^4-1) = 240 models. An illustration of all brain 

dynamics taken into account for model definition is provided in figure 7. 

 

In a first step, model families were defined by modulation patterns, resulting in 2^4 = 16 families, and 

compared using random effects Bayesian model selection (BMS) to identify the winning family.  In a 

second step, the individual models within the winning family (15 models) were compared by means of 

random effects BMS to determine the model that most likely generated the observed data (winning 

model) assessed by the protected exceedance probability. The protected exceedance probability 

measures how likely any given model is more frequent than all other models in the comparison set 

and is, other than the exceedance probability per se, protected against the possibility that the 

alternative hypothesis is not true (Penny et al., 2010; Rigoux, Stephan, Friston, & Daunizeau, 2014;   
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Stephan, Penny, Daunizeau, Moran, & Friston, 2009; Stephan et al., 2010). In a last step, Bayesian 

Parameter Averaging (BPA) was used for a detailed description of the winning model. 

 

 

 

Figure 7. Illustration of model families. 

Bilateral intrinsic connections (light grey arrows) between DLPFC and striatum were fixed (i.e., not varied) across 

models. The two encoding conditions (EN, EP) were defined as modulatory effects (black arrows), either jointly 

or separately, on the bidirectional intrinsic connections (DLPFC to striatum vs. striatum to DLPFC). Model families 

resulted from the variation of modulatory effects. Dashed box indicates the winning family. Abbreviations: DLPFC 

= dorsolateral prefrontal cortex, EN = encoding-novel, EP = encoding-practice. 

Stephan, Penny, Daunizeau, Moran, & Friston, 2009; Stephan et al., 2010). In a last step, Bayesian 

Parameter Averaging (BPA) was used for a detailed description of the winning model. 
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Figure 7. Illustration of model families. 

Bilateral intrinsic connections (light grey arrows) between DLPFC and striatum were fixed (i.e., not varied) across 

models. The two encoding conditions (EN, EP) were defined as modulatory effects (black arrows), either jointly 

or separately, on the bidirectional intrinsic connections (DLPFC to striatum vs. striatum to DLPFC). Model families 

resulted from the variation of modulatory effects. Dashed box indicates the winning family. Abbreviations: DLPFC 

= dorsolateral prefrontal cortex, EN = encoding-novel, EP = encoding-practice. 
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2.1.3 Results 

 

Behavioral data 

During memory retrieval, subjects achieved accuracies of 82 % (standard error of the mean (SEM) = 

1.0 %) in the novel condition and of 93 % (SEM = 1.5 %) in the practiced condition. Mean reaction times 

were 721 ms (SEM = 7 ms) for the novel condition and 662 ms (SEM = 7 ms) for the practiced condition 

(figure 5B, page 19). The statistical comparison confirmed a significant increase in accuracy (t[73] = 8.9, 

p < 0.001) and a decrease in reaction time (t[73] = 14.3, p < 0.001) during the retrieval of practiced stimuli 

relative to the retrieval of novel stimuli, consistent with a successful automatization of the trained 

working memory items prior to the scan. 

 

Activation analysis 

A significant main effect of stimulus type manifesting as a significant bilateral activation increases in 

the putamen (tmax = 10.26) and DLPFC (tmax = 6.1) during the processing of novel relative to practiced 

stimuli (figure 8A) was detected. Other significant regions included the anterior insula, anterior 

cingulate cortex, and higher order motor and visual areas. In the opposite contrast, the comparison of 

practiced to novel items revealed increased activation bilaterally in the angular gyrus and in the left 

precuneus (table 1).  

 

For the encoding specific effect of stimulus type, a relative increase of activation during encoding of 

novel relative to practiced stimuli in the putamen (tmax = 10.43) and several other cortical and 

subcortical areas, including the DLPFC (figure 8A), was observed. The opposite contrast revealed 

activation in the bilateral angular gyrus and left precuneus (table 2).  

 

For all contrasts revealing striatal activations, i.e., contrasts reflecting increased activation during 

encoding and during the processing of novel items, clusters were located in the anterior putamen, i.e., 

dorsal and rostral to the anterior commissure. For illustration purposes, figure 8B depicts the response 

profile of the DLPFC and putamen within the VOIs that were subsequently used for DCM.  

 

Dynamic Causal Modeling  

BMS analysis of the model families, which varied by modulation pattern, identified a clear winning 

family (model family # 16; family exceedance probability: p = .94). This model family comprised a full 

modulation pattern, i.e., a modulation of both intrinsic connections (DLPFC to striatum and striatum 

to DLPFC) by the two encoding conditions (EN, EP; figure 9A). 
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Within the winning family, the highest protected exceedance probability was observed for the model, 

including the input from all four conditions exclusively to DLPFC (model # 9; protected exceedance 

probability: p = .86; Figure 9a,b).  

 

 

 

Figure 8 Brain activations at group level.  

Panel A: Activation maps for the main effect of stimulus type (novel > practice) and the encoding specific effect 

of stimulus type (encoding-novel > encoding-practiced). All maps are thresholded at p < 0.05, family-wise error 

corrected (PFWE) for the whole brain. Color bars represent t values. Panel B:  Bar graph illustrations of the mean 

beta estimates (± SEM) across subjects for the different task conditions within the striatum and DLPFC volumes 

of interest used for DCM; Abbreviations: DLPFC = dorsolateral prefrontal cortex, AU = arbitrary units, DCM = 

Dynamic causal modeling.  
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Figure 8 Brain activations at group level. 

Panel A: Activation maps for the main effect of stimulus type (novel > practice) and the encoding specific effect 

of stimulus type (encoding-novel > encoding-practiced). All maps are thresholded at p < 0.05, family-wise error 

corrected (Prwe) for the whole brain. Color bars represent t values. Panel B: Bar graph illustrations of the mean 

beta estimates (+ SEM) across subjects for the different task conditions within the striatum and DLPFC volumes 

of interest used for DCM; Abbreviations: DLPFC = dorsolateral prefrontal cortex, AU = arbitrary units, DCM = 

Dynamic causal modeling. 
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TABLE 1: Regional brain activations related to stimulus type. 

Region (Brodmann area) Cluster size t value 
Peak MNI coordinates 

x                           y                              z 

Novel > practice           

Insula (BA 13) 4106 10.34 33 23 6 

Anterior Putamen  10.26 18 14 6 

SMA (BA 6)  9.67 6 8 60 

Insula (BA 13)  8.82 -36 23 3 

Middle Cingulum (BA 32)  8.49 9 20 36 

Anterior Putamen  8.35 -18 8 6 

SMA (BA 6)  7.99 -3 11 54 

Middle Cingulum (BA 32)  7.99 -6 17 42 

Precentral Gyrus (BA 6)  7.82 -42 -7 48 

Precentral Gyrus (BA 6)  7.51 48 -1 45 

Thalamus  7.22 6 -4 3 

Thalamus  6.47 -6 -7 3 

DLPFC (BA 10/46)  6.1 -45 32 18 

Superior parietal gyrus (BA 7) 1399 8.95 27 -64 45 

Parietal inferior gyrus  (BA 40)  7.07 45 -40 48 

Middle occipital gyrus (BA 18/19)  7.51 36 -85 12 

Inferior occcipital gyrus (BA 20/37)  8.06 45 -61 -15 

Fusiform gyrus (BA 19/37)  8.06 45 -61 -15 

Superior parietal gyrus (BA 7) 1560 8.85 -24 -64 54 

Middle occipital gyrus (BA 18/19)  8.6 -27 -76 24 

Parietal inferior gyrus (BA 40)  7.55 -42 -40 42 

Inferior occipital gyrus (BA 20/37)  6.72 -48 -61 -15 

Fusiform gyrus (BA 19/37)  7.19 -30 -64 -12 

DLPFC (BA 10/46) 39 6.08 39 41 27 

Cerebellum 12 5.94 -39 -58 -24 

Cerebellum 19 5.72 36 -52 -27 

Practice > Novel           

Precuneus (BA 31) 109 6.68 -6 -58 27 

Angular gyrus (BA 39/40 127 6.53 -51 -70 39 

Angular gyrus (BA 39/40 31 6.11 54 -67 36 

Note: Regions were classified according to the AAL Atlas (Tzourio-Mazoyer et al., 2002). Coordinates in MNI space 

and statistical information refer to the peak voxel in the corresponding area. Cluster size is given at p <0.05 

(family-wise error corrected for the whole brain). Abbreviations: Automated Anatomical Labeling (AAL), 

Montreal Neuroimaging (MNI), supplementary motor area (SMA), dorsal premotor cortex (dPMC), dorsolateral 

prefrontal cortex (DLPFC). 
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Montreal Neuroimaging (MNI), supplementary motor area (SMA), dorsal premotor cortex (dPMC), dorsolateral 

prefrontal cortex (DLPFC). 
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TABLE 2: Regional brain activations related to encoding specific effects of the stimulus type. 

Region (Brodmann area) Cluster size t value 
Peak MNI coordinates 

x                           y                              z 

Novel (encoding > retrieval) > practiced (encoding < retrieval) 

Anterior Putamen 3536 9.43 21 14 6 

Insula (BA 13)  8.8 33 23 6 

Pre-SMA (BA 6)  8.23 6 5 63 

dPMC/DLPFC (BA 6/9)  7.51 48 -1 45 

Anterior Putamen  7.42 -18 8 3 

Middle Cingulum (BA 32)  7.38 9 20 36 

Insula  7.29 -36 23 3 

Middle Cingulum (BA 32)  6.98 -6 17 39 

Pre-SMA  6.82 -3 5 63 

Inferior frontal Gyrus (BA 44/45)  6.72 -54 8 18 

Inferior frontal Gyrus  6.41 48 11 18 

dPMC/DLPFC (BA 6/9)  6.03 -51 -1 36 

Thalamus  5.41 9 -7 0 

Thalamus  5.29 -6 -10 0 

Middle occipital gyrus (BA 18/19) 1228 7.76 36 -85 12 

Inferior occcipital gyrus (BA 20/37)  6.86 45 -64 -6 

Parietal inferior gyrus (BA 40)  5.38 45 -37 48 

Fusiform gyrus (BA 37)  5.15 39 -61 -12 

Middle occipital gyrus (BA 18/19) 1179 7.57 -36 -88 3 

Superior parietal gyrus (BA 7)  7.31 -21 -64 54 

Fusiform gyrus (BA 37)  6.66 -30 -64 -12 

Superior parietal gyrus (BA 7)  6.51 27 -61 51 

Inferior occcipital gyrus (BA 20/37)  5.62 -45 -73 -6 

Parietal inferior gyrus (BA 40) 102 5.34 -39 -40 45 

Practice (encoding < retrieval) > novel (encoding > retrieval) 

Angular gyrus (BA 39/40 100 5.42 -48 -70 42 

Precuneus (BA 31) 51 5.36 -6 -58 24 

Angular gyrus (BA 39/40 24 5.22 54 -64 36 

Note: Regions were classified according to the AAL Atlas (Tzourio-Mazoyer et al., 2002). Coordinates in MNI space 

and statistical information refer to the peak voxel in the corresponding area. Cluster size is given at p <0.05 

(family-wise error corrected for the whole brain). Abbreviations: Automated Anatomical Labeling (AAL), 

Montreal Neuroimaging (MNI), supplementary motor area (SMA), dorsal premotor cortex (dPMC), dorsolateral 

prefrontal cortex (DLPFC). 

 

Further inspection of the winning model parameters using BPA revealed a significant input from 

encoding novel and encoding practice to DLPFC as well as a significant top-down connection from 

DLPFC to striatum. Further, a significant modulatory effect for encoding novel on the top-down 

connection from DLPFC to striatum (p = 1) was found. Bayesian parameter averages, including 

TABLE 2: Regional brain activations related to encoding specific effects of the stimulus type. 
Peak MNI coordinates 

  

  

  

Region (Brodmann area) Cluster size t value 
x y z 

Novel (encoding > retrieval) > practiced (encoding < retrieval) 

Anterior Putamen 3536 9.43 21 14 6 

Insula (BA 13) 8.8 33 23 6 

Pre-SMA (BA 6) 8.23 6 5 63 

dPMC/DLPFC (BA 6/9) 7.51 48 -1 45 

Anterior Putamen 7.42 -18 8 3 

Middle Cingulum (BA 32) 7.38 9 20 36 

Insula 7.29 -36 23 3 

Middle Cingulum (BA 32) 6.98 -6 17 39 

Pre-SMA 6.82 -3 5 63 

Inferior frontal Gyrus (BA 44/45) 6.72 -54 8 18 

Inferior frontal Gyrus 6.41 48 11 18 

dPMC/DLPFC (BA 6/9) 6.03 -51 -1 36 

Thalamus 5.41 9 -7 0 

Thalamus 5.29 -6 -10 0 

Middle occipital gyrus (BA 18/19) 1228 7.16 36 -85 12 

Inferior occcipital gyrus (BA 20/37) 6.86 45 -64 -6 

Parietal inferior gyrus (BA 40) 5.38 45 -37 48 

Fusiform gyrus (BA 37) 5.15 39 -61 -12 

Middle occipital gyrus (BA 18/19) 1179 7.57 -36 -88 3 

Superior parietal gyrus (BA 7) 731 -21 -64 54 

Fusiform gyrus (BA 37) 6.66 -30 -64 -12 

Superior parietal gyrus (BA 7) 6.51 27 -61 51 

Inferior occcipital gyrus (BA 20/37) 5.62 -45 -73 -6 

Parietal inferior gyrus (BA 40) 102 5.34 -39 -40 45 

Practice (encoding < retrieval) > novel (encoding > retrieval) 

Angular gyrus (BA 39/40 100 5.42 -48 -70 42 

Precuneus (BA 31) 51 5.36 -6 -58 24 

Angular gyrus (BA 39/40 24 5.22 54 -64 36 
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prefrontal cortex (DLPFC). 

Further inspection of the winning model parameters using BPA revealed a significant input from 

encoding novel and encoding practice to DLPFC as well as a significant top-down connection from 

DLPFC to striatum. Further, a significant modulatory effect for encoding novel on the top-down 

connection from DLPFC to striatum (p = 1) was found. Bayesian parameter averages, including 
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posterior probabilities of the winning model, are shown in table 3. The winning model, including 

significant BPA results, is displayed in figure 9B. In order to rule out an effect of the thalamus on DLPFC-

driven top-down modulation of the striatum (Perakyla et al., 2017), a supplemental DCM analysis was 

performed, which included the thalamus as a VOI and had no impact on the main outcome of the initial 

analysis (i.e., modulation of the connection from DLPFC to striatum). For more detail, see 

supplementary results in section 2.1.4 (page 29) and Table S2 in section 6 (page 74).  

 

 

Figure 9. DCM results with Bayesian model estimation and Bayesian parameter averaging.   

Panel A, left: Bayesian model estimation results for the model families. Winning model family (# 16), with family 

exceedance probability of p = .94. Panel A, right: Bayesian parameter averaging results within the winning family. 

Winning model (# 9) with p = .86. Panel B: Illustration of the winning model. Driving inputs from all conditions 

are directed to DLPFC. Red arrow indicates the modulation of the connection from DLPFC to striatum. 

Abbreviations: EN = encoding novel, EP = encoding practice, RN = retrieval novel, RP = retrieval practiced, DLPFC 

= dorsolateral prefrontal cortex, Str = striatum. 
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Figure 9. DCM results with Bayesian model estimation and Bayesian parameter averaging. 

Panel A, left: Bayesian model estimation results for the model families. Winning model family (# 16), with family 

exceedance probability of p = .94. Panel A, right: Bayesian parameter averaging results within the winning family. 

Winning model (# 9) with p = .86. Panel B: Illustration of the winning model. Driving inputs from all conditions 

are directed to DLPFC. Red arrow indicates the modulation of the connection from DLPFC to striatum. 

Abbreviations: EN = encoding novel, EP = encoding practice, RN = retrieval novel, RP = retrieval practiced, DLPFC 

= dorsolateral prefrontal cortex, Str = striatum. 
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TABLE 3: Bayesian parameter averages of the winning model  

Intrinsic connections  

  From 

 

To 

 DLPFC Striatum 

DLPFC -.720 (1.00) .018 (.844) 

Striatum -.008 (.974) -1.238 (1.00) 

 

Modulation of connectivity  

 

  

 Encoding novel Encoding practice 

DLPFC to Striatum 1.090 (1.00) .040 (.74) 

Striatum to DLPFC .043 (.710) -.146 (.88) 

 

Input  

 Encoding novel Encoding practice 

DLPFC .305 (1.00) -.066 (1.00) 

(Striatum) - - 

 Retrieval novel Retrieval practice 

DLPFC .003 (0.96) -.004 (0.99) 

(Striatum) - - 

Note: Significant parameters are in bold print. Posterior probabilities are in parenthesis. Abbreviation: DLPFC = 

dorsolateral prefrontal cortex.  

 

2.1.4 Supplemental analyses  

Supplemental results – main effect of working memory phase 

For the main effect of working memory phase, a significant bilateral activation increase in the putamen 

(tmax = 10.98) and DLPFC (tmax = 9.99) during the encoding relative to the retrieval of working memory 

items (see figure S1) was detected. Other regions surviving whole-brain correction (pFWE < 0.05) 

included the anterior insula, middle temporal gyrus, anterior cingulate cortex, hippocampus, and 

higher order motor and visual areas (Table S1, page 73 and 74). In the opposite contrast, a single cluster 

in the left postcentral gyrus was observed (Table S1, page 73 and 74).   
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Figure S1. Activation maps for the main effect of working memory phase (encoding > retrieval).  

Regions were thresholded at p < 0.05, family-wise error corrected (FWE) for the whole brain. Color bar represents 

t values. Please note that this contrast's interpretation is limited by the differences in visual stimulation, task 

demands, and duration between both task phases. 

 

 

Supplemental DCM analysis 

In order to rule out that the DCM finding was dependent on an unaddressed influence of the thalamus, 

a supplemental DCM analysis including a VOI for the thalamus was conducted. The subject-specific 

thalamic VOIs were defined as follows: First, in order to ensure regional specificity, a mask from the 

group peak activation of the "encoding novel > encoding practiced" contrast by centering a 6-mm 

sphere around the peak voxel within a structural ROI of the thalamus (AAL atlas) was derived. This 

empirically defined thalamus mask was used to subsequently localize the individual peak voxel in each 

subject's contrast image and to extract the first eigenvariate from 6-mm spheres centered around this 

individual peak. Second, the thalamus was included as an additional region using the same connection 

and modulation scheme as in the winning model described in the manuscript. Then the location of the 

input was determined by varying the input to the striatum, DLPFC, and thalamus, respectively, which 

resulted in three full models. Random effects Bayesian model selection analysis yielded a winning 

model with the highest protected exceedance probability for the input to the DLPFC (p=.83), followed 

by the striatum (p = .122) and the thalamus (p = .05). Subsequent Bayesian parameter averaging (BPA) 

suggests that the modulation of the connection from DLPFC to striatum is robust to the inclusion of 

the thalamus in the model (see table S2, page 74, all parameters shown have evidence > .95).  
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individual peak. Second, the thalamus was included as an additional region using the same connection 

and modulation scheme as in the winning model described in the manuscript. Then the location ofthe 

input was determined by varying the input to the striatum, DLPFC, and thalamus, respectively, which 

resulted in three full models. Random effects Bayesian model selection analysis yielded a winning 

model with the highest protected exceedance probability for the input to the DLPFC (p=.83), followed 

by the striatum (p = .122) and the thalamus (p = .05). Subsequent Bayesian parameter averaging (BPA) 

suggests that the modulation of the connection from DLPFC to striatum is robust to the inclusion of 

the thalamus in the model (see table S2, page 74, all parameters shown have evidence > .95). 
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2.2 Study 2: LONGITUDINAL BEHAVIORAL AND BRAIN FUNCTIONAL EFFECTS OF A 

PLASTICITY-RELATED VARIANT IN BDNF ON VERBAL WORKING MEMORY LEARNING3 

 

2.2.1 Abstract  

Corticostriatal brain circuits play a key role in higher cognitive processes such as working memory 

function and are important targets for neurotrophin signaling, such as the brain-derived-neurotrophic 

factor (BDNF). BDNF promotes neural and synaptic growth and has been associated with short-term 

and long-term memory performance, particularly the polymorphism BDNF Val66Met. The effect of this 

polymorphism on brain function and behavior has been investigated in previous studies suggesting 

that genetic predispositions related to BDNF contribute to individual differences in learning and 

memory. However, the longitudinal effects of working memory (WM) learning on the functional 

plasticity of corticostriatal brain circuits, the behavioral significance of their modifiability, and the 

relationship to BDNF transmission in humans are not widely understood. A promising approach to 

investigate plasticity is to characterize learning-induced changes in behavior and brain function by 

applying exponential learning curves. So far, only a few studies in the field of motor learning have 

applied learning parameters. To address this gap, a longitudinal neuroimaging study, with a two-week 

training period and 14-week follow-up assessment, was conducted in healthy carriers and non-carriers 

of BDNF Val66Met polymorphism, performing a modified Sternberg WM task. To characterize learning-

induced changes in task performance and corticostriatal function, exponential decay modeling with 

learning parameters  (learning speed) and (learning gain) was applied. Further, voxelwise Linear 

discriminant analysis (LDA) and brain-behavior correlation methods were used to study the role of 

BDNF genotype. BDNF-deficient 66Met-allele carriers showed a significant WM deficit at the beginning 

and the 14 week follow up measurement, a delayed prefrontal signal decay, and a lack in an increase 

in sustained corticostriatal connectivity across the training interval. In addition, a positive association 

between behavioral learning speed and the speed of signal decay in the striatum and DLPFC was absent 

in risk allele carriers. Further, a faster and higher increase in functional connectivity resulted in a better 

follow-up performance, indicating the importance of forming a connectivity “scaffold” for long-term 

consolidation, which seems to be limited in BDNF risk allele carriers. These results extend existing 

literature by showing that carriers of a functional genetic risk variant linked to inefficient BDNF 

signaling and impaired neural plasticity show immediate, training-independent deficits in verbal 
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working memory learning that are not fully rescuable by repeated short-term training and persist at 

long-term follow-up.  

 

 

2.2.2 Methods 

Participants and genotyping procedures  

Twenty-three healthy right-handed individuals (28 ± 7.7 years, 16 females) participated in this 

longitudinal study, chosen from a larger cohort of research-interested participants based on the BDNF 

genotype. The Val66Met single-nucleotide polymorphism (rs6265) in the 5' promoter region of the 

BDNF-Gene was determined using PsychChip arrays (Illumina, San Diego, CA). We used standard 

methods to extract genomic DNA from lymphoblastoid cell lines and genotype individual single-

nucleotide polymorphisms (SNPs) for BDNF val66met single-nucleotid polymorphism (rs6265), using 

the microarrays PsychChip-v1.1-A and PsychChip-v1.0-B (Illumina Inc). Eleven subjects were Val/Val 

homozygous, ten subjects were Val/Met heterozygous, and two subjects were Met/Met homozygous 

(see table S6, in section 6, supplemental tables, page 77). One participant with a BDNF Val/Met 

genotype participated in sessions 1-5 but was unable to take part in the 14-week follow-up assessment 

(session 6). None of the enrolled participants reported a history of severe general medical, neurological 

or psychiatric illness or substance abuse. All individuals provided written informed consent for a 

protocol approved by the Ethics Committee of the University of Heidelberg.  

 

Study protocol, verbal working memory paradigm, and task training 

23 Participants underwent five fMRI sessions within 12 days (i.e., on day 1, 2, 5, 9, 12) and an additional 

session in week 14 after study onset (Mean 90.6 days ± 10.74 days). In each fMRI session, study 

participants performed a modified Sternberg working memory task (27-29) consisting of two task 

phases and four task conditions (Fig. 8). In the encoding phase (3500 ms), individuals were asked to 

memorize stimulus sets of seven letters. In the following response phase, participants were asked to 

indicate, by button press, whether or not six consecutively presented single letter probes (presentation 

time 1400 ms, interstimulus interval 358 ms – 1790 ms, randomly jittered in steps of 358 ms) had been 

part of the encoding stimulus set.  
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Figure 10. Study protocol and learning task.  

Panel A: Subjects performed five sessions of a modified Sternberg task (B) within 12 days (day 0, 1, 4, 8, 11) 

labeled as session 1-5 (S1-S5) and a follow-up session (S6) after 14 weeks. From the second session onwards, 

fMRI scans were preceded by a practice session where subjects were trained to memorize a fixed target set. 

Panel B: The longitudinal Sternberg task consisted of two task phases (encoding, retrieval) and four task 

conditions (novel, shuffled, practiced, and a low-level control condition).  

 

Within the task, the type and familiarity of the encoding sets were systematically varied to match four 

different task conditions. Each condition was presented six times, and the order of conditions was 

pseudo-randomized and counterbalanced. Specifically, in the "practiced" condition, a fixed encoding 

set of seven consonants was presented across the task and in all scanning sessions of an individual 

(e.g., "TRKQZSV"). In addition, the "practiced" encoding was explicitly trained since, from the second 

fMRI session onwards, each fMRI scan was preceded by an offline practice session in which the 

individuals were trained in memorizing their specific "practiced" encoding set (8.8 minute duration, 24 

task trials). In the "shuffled" condition, the pre-trained encoding set of individuals was presented in 

different, randomly shuffled orders (e.g., "KTVRSQZ"). In the "novel" condition, subjects had to 

memorize entirely novel sets of randomized consonants (e.g., "PXGMWFN"). None of the "novel" 

consonants were part of any of the "practiced" or "novel" encoding sets. The encoding stimulus set of 

the low-level control condition consisted of seven identical vowels (e.g., "AAAAAAA").   
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Figure 10. Study protocol and learning task. 

Panel A: Subjects performed five sessions of a modified Sternberg task (B) within 12 days (day O0, 1, 4, 8, 11) 

labeled as session 1-5 (S1-S5) and a follow-up session (S6) after 14 weeks. From the second session onwards, 

fMRI scans were preceded by a practice session where subjects were trained to memorize a fixed target set. 

Panel B: The longitudinal Sternberg task consisted of two task phases (encoding, retrieval) and four task 

conditions (novel, shuffled, practiced, and a low-level control condition). 

Within the task, the type and familiarity of the encoding sets were systematically varied to match four 

different task conditions. Each condition was presented six times, and the order of conditions was 

pseudo-randomized and counterbalanced. Specifically, in the "practiced" condition, a fixed encoding 

set of seven consonants was presented across the task and in all scanning sessions of an individual 

(e.g., "TRKQZSV"). In addition, the "practiced" encoding was explicitly trained since, from the second 

fMRI session onwards, each fMRI scan was preceded by an offline practice session in which the 

individuals were trained in memorizing their specific "practiced" encoding set (8.8 minute duration, 24 

task trials). In the "shuffled" condition, the pre-trained encoding set of individuals was presented in 

different, randomly shuffled orders (e.g., "KTVRSOZ"). In the "novel" condition, subjects had to 

memorize entirely novel sets of randomized consonants (e.g., "PXGMWFN"). None of the "novel" 

consonants were part of any ofthe "practiced" or "novel" encoding sets. The encoding stimulus set of 

the low-level control condition consisted of seven identical vowels (e.g., "AAAAAAA"). 
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fMRI data acquisition, preprocessing, and first-level analysis 

Functional neuroimaging of the Sternberg task was performed on a 3 Tesla whole body MR Scanner 

(Siemens, Erlangen, Germany), with a 32-channel head coil (parallel imaging; generalized 

autocalibrating partially parallel acquisition (GRAPPA); iPAT=2). Functional images were acquired in 

descending order with a gradient-echo echo-planar imaging (EPI) sequence (TR = 1790 ms, TE = 28 ms, 

flip angle = 76°, 34 axial slices, 3 mm slice thickness, 1 mm gap, matrix size: 64 × 64, field of view (FoV): 

192 × 192 mm; whole brain coverage was ensured by tilting the FoV to -25° from the individual anterior 

commissure – posterior commissure line). 

 

Data preprocessing was performed using the Statistical Parametric Mapping software (SPM12; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Briefly, this included a two-pass realignment 

procedure (i.e., functional images were registered to the mean of the images after a first realignment 

to the first image), slice time correction, normalization to the Montreal Neurological Institute (MNI) 

EPI template (using the mean functional image as the source image and the MNI EPI template as the 

template image), and spatial smoothing with an 8mm full-width at half-maximum (FWHM) Gaussian 

kernel.  

 

For the first level analysis, a general linear model (GLM) for each subject including the following 

regressors was defined: four regressors for the encoding phase (novel, shuffled, practiced, low-load 

cognitive control), one regressor for the cue (indicating a new trial), and four regressors for the 

retrieval phase. These regressors were modeled using delta (stick) functions for the encoding phases 

and boxcar functions for the retrieval phases. Based on the results of study 1, demonstrating the 

sensitivity of task for the encoding process, the second study focused on the encoding phase only. To 

correct for unspecific effects (e.g. attention, motivation), the low-level control condition was 

subtracted from the novel, shuffled and practiced condition and defined the following contrasts: 

[encoding – novel > encoding low-level control], [encoding – shuffled > encoding low-level control], 

[encoding – practiced > encoding low-level control] 

 

Effects of BDNF genotype on pre-and post-training behavioral performance  

Mean error rates were calculated for each task condition for the first, fifth, and last session (follow-up) 

to assess the effect of BDNF genotype on working memory performance. The data of the practiced, 

shuffled, and novel conditions were corrected for non-specific effects such as attention or fatigue by 

subtracting the respective error rates obtained by the low-level control condition. Analysis of variance 

(ANOVA; SPSS22 (IBM SPSS Statistics, Chicago, IL)) was used to compare error rates between genotype 

fMRI data acquisition, preprocessing, and first-level analysis 

Functional neuroimaging of the Sternberg task was performed on a 3 Tesla whole body MR Scanner 

(Siemens, Erlangen, Germany), with a 32-channel head coil (parallel imaging; generalized 

autocalibrating partially parallel acquisition (GRAPPA); iPAT=2). Functional images were acquired in 

descending order with a gradient-echo echo-planar imaging (EPI) sequence (TR = 1790 ms, TE=28 ms, 

flip angle = 76°, 34 axial slices, 3 mm slice thickness, 1 mm gap, matrix size: 64 x 64, field of view (FoV): 

192 x 192 mm; whole brain coverage was ensured by tilting the FoV to -25° from the individual anterior 

commissure - posterior commissure line). 

Data preprocessing was performed using the Statistical Parametric Mapping software (SPM12; 

http://www fil.ion.ucl.ac.uk/spm/software/spm12/). Briefly, this included a two-pass realignment 

procedure (i.e., functional images were registered to the mean of the images after a first realignment 

to the first image), slice time correction, normalization to the Montreal Neurological Institute (MN]) 

EPI template (using the mean functional image as the source image and the MNI EPI template as the 

template image), and spatial smoothing with an 8mm full-width at half-maximum (FWHM) Gaussian 

kernel. 

For the first level analysis, a general linear model (GLM) for each subject including the following 

regressors was defined: four regressors for the encoding phase (novel, shuffled, practiced, low-load 

cognitive control), one regressor for the cue (indicating a new trial), and four regressors for the 

retrieval phase. These regressors were modeled using delta (stick) functions for the encoding phases 

and boxcar functions for the retrieval phases. Based on the results of study 1, demonstrating the 

sensitivity of task for the encoding process, the second study focused on the encoding phase only. To 

correct for unspecific effects (e.g. attention, motivation), the low-level control condition was 

subtracted from the novel, shuffled and practiced condition and defined the following contrasts: 

[encoding —- novel > encoding low-level control], [encoding - shuffled > encoding low-level control], 

[encoding - practiced > encoding low-level control] 

Effects of BDNF genotype on pre-and post-training behavioral performance 

Mean error rates were calculated for each task condition for the first, fifth, and last session (follow-up) 

to assess the effect of BDNF genotype on working memory performance. The data of the practiced, 

shuffled, and novel conditions were corrected for non-specific effects such as attention or fatigue by 

subtracting the respective error rates obtained by the low-level control condition. Analysis of variance 

(ANOVA; SPSS22 (IBM SPSS Statistics, Chicago, IL)) was used to compare error rates between genotype 

34



35 

 

groups and task conditions. Significance threshold for report and discussion was set to α = 0.05. If 

necessary, degrees of freedom were Greenhouse-Geisser corrected. 

 

The following higher-level analyses were conducted by means of in-house scripts in MatLab (The 

Mathworks, version 2019a), using routines included in the Matlab statistics toolbox 

(https://www.mathworks.com/products/statistics.html). These scripts are available upon request. 

 

Exponential modeling of behavioral and brain data 

Following the law of practice (detailed description in section 1.6), an exponential model of the general 

form Y(t) =  et was fitted to the data time series of the training interval. The model parameter  

reflects mainly the amplitude (i.e. the amount) of change over time in performance, brain response, 

and functional connectivity (e.g., positive estimates of  indicating a better performance after 

learning.) The model parameter  reflects the speed of change over time in performance, brain 

response, and functional connectivity (e.g., the more negative estimates of  are, the faster the 

learning process). Models were fitted using in-house Matlab scripts (The Mathworks, version 2019a) 

using a restricted maximum likelihood parameter estimation. Modeling success was tested as 

goodness of fit (GoF) for each condition by computing variance explanation R2. Only parameter 

estimates from sufficiently good models (GoF: R2 ≥ 0.25) were subjected to post-hoc analyses. 

 

Analysis of effects of training and genotype on behavioral performance using exponential modeling 

The model parameters  and  served (1) as dependent variables in two separate 2x3 repeated 

measures ANOVA with between-subject predictor genotype (Val/Met-carrier) and within-subject 

predictor condition (practiced, shuffled, novel); all corrected for control) and (2) two-dimensional 

linear discriminant analysis (LDA). Statistical analyses were performed in SPSS22 (IBM SPSS Statistics, 

Chicago, IL). Significance threshold for report and discussion was set to α = 0.05. If necessary, degrees 

of freedom were Greenhouse-Geisser corrected. 

 

Analysis of effects of training and genotype on brain responses using exponential modeling  

For each training session, beta estimates of brain responses in the encoding phase were calculated. 

The beta estimates of the practiced condition (which yielded the strongest behavioral effects of 

genotype) were corrected for unspecific time-variant effects by contrasting them against the 

respective beta estimates of the low-level control condition. The exponential model was then fitted 

into the resulting contrast image time series to obtain parameter estimates for  and  for each brain 

voxel. GoF maps were used to localize brain regions that were responsive to cross-session learning. 
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Based on the hypothesis of a key role of the cognitive frontostriatal loop in verbal learning, the further 

analyses were restricted to learning-responsive voxels within anatomical masks of the left middle 

frontal gyrus and left striatum (combined mask of putamen, caudatus, and ventral striatum, displayed 

in figure 11), derived from Harvard Oxford cortical and subcortical structural atlases (Desikan et al., 

2006; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006). The resulting mask consisted of 

1926 voxels (V≈52 cm3). In a second step, to avoid spurious effects in subsequent LDA-analyses, all 

voxels with a worse model fit (GoF: R2 < 0.25) were excluded for the brain response and the functional 

connectivity map separately. The remaining masks consisted of 849 voxels (V≈23 cm3) for brain 

response models and 780 voxels (V≈19cm3) for the functional connectivity models. 

 

Figure 11. Illustration of regions of interest for the learning-responsive areas.  

This is a joint mask from the Harvard Oxford Brain Atlas of the middle frontal gyrus, putamen, caudatus, and 

ventral striatum. 

 

For these ROIs (figure 11), separate voxel-wise two-dimensional LDA-analyses for brain response (BR) 

and functional connectivity (FC) were conducted, using the model parameter estimates  and . The 

resulting classification maps were subjected to a voxel-wise Chi-square test.  

 

To account for the problem of massive multiple testing, a Monte-Carlo-simulation based approach was 

applied. This simulation as well as the prior estimation of the smoothness of the Chi-square maps was 

done by means of AlphaSim as implemented in the software package RESTplus (V1.23, released 

20200428, http://www.restfmri.net/forum/REST). For each between-group comparison, 1000 

simulations were performed within the a-priory masks using the smoothness estimates of the 

corresponding statistical map for brain response and functional connectivity and a voxel alpha 

threshold of P < .05. The size of the first cluster with a probability of occurrence less than 5% was used 

to threshold the corresponding statistical map. Only clusters with a size equal to or larger than this 

threshold were considered for report and discussion. This procedure revealed a minimum cluster size 
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resulting classification maps were subjected to a voxel-wise Chi-square test. 

To account for the problem of massive multiple testing, aMonte-Carlo-simulation based approach was 

applied. This simulation as well as the prior estimation of the smoothness of the Chi-square maps was 

done by means of AlphaSim as implemented in the software package RESTplus (V1.23, released 

20200428, http://www.restfmri.net/forum/REST). For each between-group comparison, 1000 

simulations were performed within the a-priory masks using the smoothness estimates of the 

corresponding statistical map for brain response and functional connectivity and a voxel alpha 

threshold of P< .05. The size of the first cluster with a probability of occurrence less than 5% was used 

to threshold the corresponding statistical map. Only clusters with a size equal to or larger than this 

threshold were considered for report and discussion. This procedure revealed a minimum cluster size 
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of 15 voxels for brain response maps and 16 voxels for functional connectivity maps (see table S4 in 

section 6, page 77). These cluster sizes in combination with a statistical threshold of pChi > .05 were 

applied to the Chi-square maps to identify voxels with the genotype-specific pattern of model 

parameters.  

 

Analysis of effects of training on functional connectivity using exponential decay modeling  

To test the effect of genotype on learning-related changes in frontostriatal functional connectivity, a 

generalized psycho-physiological interaction (gPPI) analysis was used to assess sustained and task-

modulated functional connectivity for each session. Seeds were defined as 5-mm spheres centered on 

the previously defined GoF peak in the left dorsal striatum (MNI x = -18, y = 5, z = 6). Seed time courses 

were extracted as the first eigenvariate and adjusted for effects of interest (i.e., removal of effects of 

motion). gPPI regressors were generated as the element-by-element product of each encoding 

condition (i.e., psychological regressors) and the seed time course (physiological regressor), all of 

which were de-convolved for multiplication and subsequently re-convolved with the hemodynamic 

response function (HRF). The seed time series and the resulting gPPI regressors were included in a first-

level general linear model, along with the task regressors, convolved with the HRF, and the six 

realignment parameters to account for head motion. During first-level model estimation, data were 

high-pass filtered with a cutoff of 128 s, and an autoregressive model of the first order was applied. To 

quantify task-modulated functional connectivity (tmFC), a gPPI contrast that reflected the differential 

connectivity between the practiced condition and the low-level control condition was computed. 

Sustained connectivity (sFC) was defined by contrasting the VOI regressor to the implicit baseline. After 

estimating subject-level gPPI models, the resulting contrast images were analyzed similarly to the brain 

response data. Voxel-wise signal decay models were fitted to the two connectivity estimates (sFC and 

tmFC). For each connectivity type, voxels with sufficient model fit (mean GoF: r > 0.5) were subjected 

to a voxel-wise LDA of the model parameter estimates and  . Significance was assessed within the 

predefined DLPFC mask detailed above.  

 

Analysis of brain-behavior relationships of learning parameters 

To test for genotype-specific associations between behavior-derived and brain-derived learning 

parameters (),  voxel-wise parameter maps were subjected to a multiple regression model in SPM, 

and behavioral learning parameters for each genotype group were entered as covariates of interest. 

Then, both covariates were compared using an F-contrast [1 -1] to identify the effect of genotype on 

brain-behavior associations. Results were masked with the previously defined mask of learning-

responsive regions (GoF > 0.5). 
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Sustained connectivity (sFC) was defined by contrasting the VOl regressor to the implicit baseline. After 

estimating subject-level gPPl models, the resulting contrast images were analyzed similarly tothe brain 

response data. Voxel-wise signal decay models were fitted to the two connectivity estimates (sFC and 

tmFC). For each connectivity type, voxels with sufficient model fit (mean GoF: r > 0.5) were subjected 

to a voxel-wise LDA of the model parameter estimates a and r. Significance was assessed within the 

predefined DLPFC mask detailed above. 

Analysis of brain-behavior relationships of learning parameters 

To test for genotype-specific associations between behavior-derived and brain-derived learning 

parameters (a,t), voxel-wise parameter maps were subjected to a multiple regression model in SPM, 

and behavioral learning parameters for each genotype group were entered as covariates of interest. 

Then, both covariates were compared using an F-contrast [1 -1] to identify the effect of genotype on 

brain-behavior associations. Results were masked with the previousiy defined mask of learning- 

responsive regions (GoF > 0.5). 

37



38 

 

Predictive modeling of follow-up behavioral performance 

To test whether and how the behavioral performance  of the remaining 21 participants at 

the follow-up measurement (14 weeks after training) can be predicted by parameter estimates of the 

individual exponential models for brain response and functional connectivity, a linear multiple 

regression model to the performance data was fitted, without distinguishing between genotypes.  

 

In total, three linear fixed-effects models were tested, which resulted from the combination of the 

brain-derived predictors  and extracted for brain responses (DLPFC or striatum) and the sustained 

functional connectivity (striatum to DLPFC). The three models had the following form:  

 

~1 + ( | ) + ( | ) 

~1 + ( ) + ( ) 

~1 + ( ) + ( ) 

 

The medians of the parameter estimates (,*were computed and z-scaled within the DLPFC-

clusters (brain response and functional connectivity) and the striatum-cluster (brain response only). 

Model generalizability was tested subsequently by means of 999 10-fold model cross-validations. 

Models were compared using a simulated Likelihood ratio test (LRT) with 1000 simulations. Finally, the 

best model was selected based on LRT statistics, the median R2 of the original, and the corrected Akaike 

information criterion (cAIC).   

 

Role of head movement and image quality 

For fMRI data quality assurance, the individual head motion parameters and the signal-to-noise ratio 

were computed using SPM12. Using the corresponding parameter estimates, the average translation 

and rotation across the time series and the frame-wise Euclidean displacement (Power, Barnes, 

Snyder, Schlaggar, & Petersen, 2012) were calculated, and it's average. The displacement time series 

were then inspected regarding spikes and quantified individual numbers of spikes and average frame-

wise displacement (Van Dijk, Sabuncu, & Buckner, 2012). Then, a statistical comparison of the image 

quality measures between the two genotype groups was conducted with SPSS22 (IBM SPSS Statistics, 

Chicago, IL) using repeated measures ANOVA (time as within-subject factor and genotype as a 

between-subject factor). 

Predictive modeling of follow-up behavioral performance 

To test whether and how the behavioral performance Acc5#_..r of the remaining 21 participants at 

the follow-up measurement (14 weeks after training) can be predicted by parameter estimates of the 

individual exponential models for brain response and functional connectivity, a linear multiple 

regression model to the performance data was fitted, without distinguishing between genotypes. 

In total, three linear fixed-effects models were tested, which resulted from the combination of the 

brain-derived predictors a and t extracted for brain responses (DLPFC or striatum) and the sustained 

functional connectivity (striatum to DLPFC). The three models had the following form: 

FU 
Accpr_cr”1 + Apccstriatum|DLPFC) + Trc(striatum|DLPFc) 

FU 
Accpr_cr“1 + Apriodıprc) + TBR(DLPFC) 

FU 
Accpr_cr”1+ Aprcstriatum) + TBR(Striatum) 

The medians of the parameter estimates (a, z, @*z)were computed and z-scaled within the DLPFC- 

clusters (brain response and functional connectivity) and the striatum-cluster (brain response only). 

Model generalizability was tested subsequently by means of 999 10-fold model cross-validations. 

Models were compared using a simulated Likelihood ratio test (LRT) with 1000 simulations. Finally, the 

best model was selected based on LRT statistics, the median R? ofthe original, and the corrected Akaike 

information criterion (cAIC). 

Role of head movement and image quality 

For fMRI data quality assurance, the individual head motion parameters and the signal-to-noise ratio 

were computed using SPM12. Using the corresponding parameter estimates, the average translation 

and rotation across the time series and the frame-wise Euclidean displacement (Power, Barnes, 

Snyder, Schlaggar, & Petersen, 2012) were calculated, and it's average. The displacement time series 

were then inspected regarding spikes and quantified individual numbers of spikes and average frame- 

wise displacement (Van Dijk, Sabuncu, & Buckner, 2012). Then, a statistical comparison of the image 

quality measures between the two genotype groups was conducted with SPSS22 (IBM SPSS Statistics, 

Chicago, IL) using repeated measures ANOVA (time as within-subject factor and genotype as a 

between-subject factor). 

38



39 

 

2.2.3 Results  

 

Effects of BDNF genotype on behavioral performance 

BDNF Met-allele carriers showed significantly higher error rates compared to the Val/Val homozygotes 

at session 1 (F(1,21) = 11.338, P = 0.003). There were no differences in error rates after repeated 

training (session 5, F(1,21) = 2.41, P = 0.136) but at the 14 week follow-up assessment (session 6, 

F(1,20) = 6.029, P = 0.023). The genotype effect was not modulated by task condition (genotype x 

condition interaction: F(1,42) < .882, P > .406).  

 

Effects of BDNF genotype on behavioral performance during training 

To characterize learning throughout the training interval (sessions 1-5), learning curves (i.e., 

exponential decay models) were fitted to session-wise error rates with learning gain () and learning 

speed () as free parameters (Figure 12A). The goodness of fit (GoF) analyses confirmed a sufficiently 

good model fit for all task conditions and genotype groups (mean r  values: .62–.84; no significant main 

effect of interaction: all P > .429). For more detail, see Table S3 on page 75. BDNF Met-allele carriers 

showed a higher learning gain compared to Val/Val homozygotes across conditions (F(1,21) = 5.10, P 

= 0.04; post-hoc comparison: t(13.4) = 2.74, P = 0.02, Table S3, page 75), consistent with their overall 

lower pre-training performance level in session 1, but displayed similar performance level at the end 

of the training in session 5 (figure 12 A). Learning speed was not impacted by genotype (F(1,21) = 0.53, 

P = 0.48), and no genotype x condition effects emerged (all F < 1.68, all P > 0.06), see table S3, page 75 

for more details.  
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Figure 12. Behavioral results. 

Panel A: Effect of genotype on learning performance (error rates) for each task condition (practiced, shuffled, 

novel) across sessions. Displayed are mean error rates and the mean fitted model. Standard error of means are 

indicated by error bars and shaded areas. Panel B: Results of two-dimensional LDA for each task condition 

(practiced, shuffled, novel) using α and τ as parameters to distinguish between the genotype groups. Linear 

discriminant curves are shown as gray dashed lines. Abbreviations: LDA = linear discriminant analysis, Acc = 

Accuracy, SEM = standard error of mean. 

 

 

Subsequent two-dimensional linear discriminant analysis (LDA) showed that the consideration of both 

learning parameters  and , allowed for the best discrimination between genotype groups in the 

practiced condition, the task with the highest learning and automatization demands (accuracy: 0.78, P 

= 0.003; figure 12B, table S3). Taken together, these findings suggest that the consideration of both 

dimensions of the learning process is a sensitive mean to detect BDNF-dependent genotype effects 

and encouraged the subsequent analysis of learning curves in functional brain space. 

 

Exponential decay modeling in brain functional space 

Signal decay models for the training interval (sessions 1-5) were fitted to each subject’s brain responses 

during verbal working memory performance in the practiced condition. Unspecific psychological 

effects (e.g., basic attention, motivation) were controlled by accounting for low-level conditions 

(control). Models were fitted for each brain voxel, yielding estimates for the amount () and speed () 

of signal decay for the adjusted beta estimates across training sessions. To identify brain voxels that 

followed the decay model, hereafter referred to as learning-responsive voxels, GoF maps across groups 
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Figure 12. Behavioral results. 

Panel A: Effect of genotype on learning performance (error rates) for each task condition (practiced, shuffled, 

novel) across sessions. Displayed are mean error rates and the mean fitted model. Standard error of means are 

indicated by error bars and shaded areas. Panel B: Results of two-dimensional LDA for each task condition 

(practiced, shuffled, novel) using a and t as parameters to distinguish between the genotype groups. Linear 

discriminant curves are shown as gray dashed lines. Abbreviations: LDA = linear discriminant analysis, Acc = 

Accuracy, SEM = standard error of mean. 

Subsequent two-dimensional linear discriminant analysis (LDA) showed that the consideration of both 

learning parameters a and t, allowed for the best discrimination between genotype groups in the 

practiced condition, the task with the highest learning and automatization demands (accuracy: 0.78, P 

= 0.003; figure 12B, table S3). Taken together, these findings suggest that the consideration of both 

dimensions of the learning process is a sensitive mean to detect BDNF-dependent genotype effects 

and encouraged the subsequent analysis of learning curves in functional brain space. 

Exponential decay modeling in brain functional space 

Signal decay models for the training interval (sessions 1-5) were fitted to each subject’s brain responses 

during verbal working memory performance in the practiced condition. Unspecific psychological 

effects (e.g., basic attention, motivation) were controlled by accounting for low-level conditions 

(control). Models were fitted for each brain voxel, yielding estimates for the amount (a) and speed (t) 

of signal decay for the adjusted beta estimates across training sessions. To identify brain voxels that 

followed the decay model, hereafter referred to as learning-responsive voxels, GOF maps across groups 
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(mean r > 0.5; Figure 13 B) were computed. The best model fit was observed in the left dorsal striatum 

(r = 0.68 Montreal Neurological Institute (MNI) coordinates x = -18, y = 5, z = 6) which is displayed in 

figure 14A. This finding is well in line with the established role of the striatum for verbal working 

memory learning and automatization (Draganski et al., 2008; Geiger et al., 2018; van Raalten, Ramsey, 

Duyn, et al., 2008). Based on the hypothesis of BDNF genotype effects on frontostriatal brain function, 

only learning-responsive voxels within the previously defined a-priori mask (figure 11, page 36) were 

selected for further analyses. More GoF maps, such as group specific maps and GoF maps for functional 

connectivity are displayed in figure 13. 

 

 

 
 

 

Figure 13. Illustration of Goodness of Fit maps in the practiced condition. 

Panel A: GoF maps for brain response within each genotype group. Panel B: Combined GoF maps for functional 

connectivity. Panel C:  GoF maps for functional connectivity within each genotype group.  All GoF maps are shown 

for the practiced condition. Higher GoF values indicate brain regions where changes in functional activation 

follow the postulated signal decay. Abbreviations: GoF = Goodness of Fit, Met = Met allele carrier, Val = Val allele 

carrier. 
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figure 14A. This finding is well in line with the established role of the striatum for verbal working 

memory learning and automatization (Draganski et al., 2008; Geiger et al., 2018; van Raalten, Ramsey, 
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Figure 13. Illustration of Goodness of Fit maps in the practiced condition. 

Panel A: GoF maps for brain response within each genotype group. Panel B: Combined GoF maps for functional 

connectivity. Panel C: GoF maps for functional connectivity within each genotype group. All GoF maps are shown 

for the practiced condition. Higher GoF values indicate brain regions where changes in functional activation 

follow the postulated signal decay. Abbreviations: GoF = Goodness of Fit, Met = Met allele carrier, Val = Val allele 

carrier. 
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Figure 14. Results of genotype on brain response and functional connectivity. 

Panel A: Illustration of mean Goodness of fit (GoF) maps for the full sample in the practiced condition (MNI y = 

5, z = 26) and distribution among genotype groups in striatum (left plot). Highest mean GoF was observed in the 

left dorsal striatum (MNI x = -18, y = 5, z = 6). Panel B: Maps of vwLDA analysis (using α and τ as parameters to 

distinguish between the genotype groups) within brain response (BR) in striatum (left plot) and DLPFC (middle 

plot) and functional connectivity (FC) in DLPFC, illustrated within VOI mask for DLPFC. Panel C: Illustration of 

decay curves extracted from the GoF peak voxel in the left striatum (left plot) and for the accuracy peak voxel 

within the left DLPFC for brain response and functional connectivity (middle plot, right plot). Shaded areas 

indicate the 95 % confidence interval of the exponential model fit. Panel D: Results of vwLDA analysis for BR in 

striatum (left plot) and DLPFC (middle plot) and FC in DLPFC. Linear discriminant curves are shown as gray dashed 

lines. Abbreviations: MNI = Montreal Neurological Institute, vwLDA = voxelwise linear discriminant analysis, BR 

= brain response, FC = functional connectivity, VOI = volume of interest, SEM = standard error of mean, DLPFC = 

dorsolateral prefrontal cortex.  
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Figure 14. Results of genotype on brain response and functional connectivity. 

Panel A: Illustration of mean Goodness of fit (GoF) maps for the full sample in the practiced condition (MNI y = 

5, z= 26) and distribution among genotype groups in striatum (left plot). Highest mean GoF was observed in the 

left dorsal striatum (MNI x = -18, y = 5, z = 6). Panel B: Maps of vwLDA analysis (using a and t as parameters to 

distinguish between the genotype groups) within brain response (BR) in striatum (left plot) and DLPFC (middle 

plot) and functional connectivity (FC) in DLPFC, illustrated within VOI mask for DLPFC. Panel C: Illustration of 

decay curves extracted from the GoF peak voxel in the left striatum (left plot) and for the accuracy peak voxel 

within the left DLPFC for brain response and functional connectivity (middle plot, right plot). Shaded areas 

indicate the 95 % confidence interval of the exponential model fit. Panel D: Results of vwLDA analysis for BR in 

striatum (left plot) and DLPFC (middle plot) and FC in DLPFC. Linear discriminant curves are shown as gray dashed 

lines. Abbreviations: MNI = Montreal Neurological Institute, vwLDA = voxelwise linear discriminant analysis, BR 

= brain response, FC = functional connectivity, VOI = volume of interest, SEM = standard error of mean, DLPFC = 

dorsolateral prefrontal cortex. 
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Effects of genotype on brain signal decay  

Consistent with the behavioral analyses, a voxel-wise LDA analysis of the model parameters and  

was performed to test for BDNF genotype-specific differences in learning-responsive voxels within the 

search regions (see figure 14D). This revealed a cluster within the left DLPFC with good to excellent 

discrimination between genotype groups (MNI [-39, 11, 30], AccPeak = 0.87, cluster size = 47 voxels; P < 

.001 cluster size corrected for multiple comparisons; Fig. 14B), while there was no significant effect in 

striatum. For illustration purposes, figure 14C shows decay curves extracted from DLPFC and striatum 

for each genotype group. The DLPFC decay curves suggest a stronger initial involvement and 

subsequently delayed decay of activation in the DLPFC in the Met-allele carriers (figure 14C). This 

pattern is in line with the higher learning gain () on the behavioral level and suggests that Met-allele 

carriers initially rely more strongly on prefrontal functional resources during verbal working memory 

learning.  

 

Effects of genotype on brain-behavior correlation 

To test whether the model parameters for brain response and behavior were correlated, a voxel-wise 

regression analysis was performed for each of the two learning parameters  and in the search 

regions.  Behavioral learning parameters were applied as predictor and genotype as between-subject 

factor. This revealed a significant effect of genotype on brain-behavior correlations for  in the DLPFC 

(MNI [-37 17 39], F(1,20) = 10.75, cluster size =233 voxels; P < .001 cluster size corrected for multiple 

comparisons) and striatum (MNI [-12, 11, 9], F(1,20) = 13.96, cluster size = 82 voxels, P = .027 cluster 

size corrected for multiple comparisons), see figure 15.  

Figure 15.  Effect of genotype on brain-behavior correlations for  in the left striatum and left DLPFC.  

For brain responses, the mean -values within the respective clusters are shown. Blue and red shades indicate 

the 95% CI for genotype-specific brain-behavior correlations (Spearman's ) using 999 bootstrapping operations. 

Abbreviations: DLPFC = dorsolateral prefrontal cortex.  
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search regions (see figure 14D). This revealed a cluster within the left DLPFC with good to excellent 

discrimination between genotype groups (MNI [-39, 11, 30], Accpeak = 0.87, cluster size = 47 voxels; P< 

.001 cluster size corrected for multiple comparisons; Fig. 14B), while there was no significant effect in 

striatum. For illustration purposes, figure 14C shows decay curves extracted from DLPFC and striatum 

for each genotype group. The DLPFC decay curves suggest a stronger initial involvement and 
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Figure 15. Effect of genotype on brain-behavior correlations for 1 in the left striatum and left DLPFC. 

For brain responses, the mean r-values within the respective clusters are shown. Blue and red shades indicate 

the 95% CI for genotype-specific brain-behavior correlations (Spearman's p) using 999 bootstrapping operations. 

Abbreviations: DLPFC = dorsolateral prefrontal cortex. 
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For post-hoc comparisons between groups, a 95% confidence interval (CI) for genotype-specific brain-

behavior correlations (Spearman's rho) was estimated using 999 bootstrapping operations. The 

comparison of CI-estimates confirmed robust differences in brain-behavior association in both regions 

(Striatum: Val/Val [0.48, 0.97], Met-carrier [-0.88, -0.36]; DLPFC: Val/Val [0.65, 0.98], Met-carrier [-

0.79, 0.31]). Specifically, both groups showed significant and opposite brain-behavior correlations in 

the striatum (Val/Val: rho = 0.65, P = .037; Met: rho = -0.67, P = .020). In contrast, in the DLPFC, a 

significant association was only found for the Val/Val homozygotes (Val/Val: rho = 0.75, P = .010; Met: 

rho = -0.20, P = .528).  

 

Effects of genotype on brain connectivity decay 

The observation of a comparable striatal but differential prefrontal activation decay between BDNF 

genotype groups substantiated the hypothesis of an effect of the variant on the functional interaction 

of frontostriatal networks. Therefore, the effect of genotype on learning-related changes in 

frontostriatal functional connectivity was tested using generalized context-dependent 

psychophysiological interaction (gPPI) analysis and voxel-wise linear discriminant analysis (vwLDA). 

Genotype groups could not be discriminated based on their task-modulated functional connectivity 

profiles. However, a significant discrimination of genotype groups was observed for sustained 

functional connectivity (sFC) in a cluster mapping to the left DLPFC (MNI [-35, 36, 35], AccPeak = 0.91, 

cluster size = 49 voxels, P < .001 cluster size corrected for multiple comparisons). Within this cluster, 

frontostriatal sFC increased in Val/Val homozygotes throughout the training, while it continuously 

decreased in the Met-allele carries, see right panel of figure 14C and D). 

 

Predictive value of neural learning parameters ( and ) on later performance 

To answer the question, whether individual decay curves in the striatum and DLPFC were predictive of 

behavioral performance in the practiced condition at follow-up (i.e., 14 weeks after training), three 

fixed-effect models were tested (see section 2.2.1, page 38 for more details). The comparison of the 

models revealed that the follow-up behavioral performance was best predicted by model M1, which 

is illustrated in figure 16 and has the following form: 

 

~0.024 (0.022|0.025) + 0.175 (0.170|0.180) ( | )

+ 0.175 (0.170|0.180) ( | ) 

 

For post-hoc comparisons between groups, a 95% confidence interval (Cl) for genotype-specific brain- 

behavior correlations (Spearman's rho) was estimated using 999 bootstrapping operations. The 

comparison of Cl-estimates confirmed robust differences in brain-behavior association in both regions 

(Striatum: Val/Val [0.48, 0.97], Met-carrier [-0.88, -0.36]; DLPFC: Val/Val [0.65, 0.98], Met-carrier [- 

0.79, 0.31]). Specifically, both groups showed significant and opposite brain-behavior correlations in 

the striatum (Val/Val: rho = 0.65, P = .037; Met: rho = -0.67, P = .020). In contrast, in the DLPFC, a 

significant association was only found for the Val/Val homozygotes (Val/Val: rho = 0.75, P = .010; Met: 

rho = -0.20, P = .528). 

Effects of genotype on brain connectivity decay 

The observation of a comparable striatal but differential prefrontal activation decay between BDNF 

genotype groups substantiated the hypothesis of an effect of the variant on the functional interaction 

of frontostriatal networks. Therefore, the effect of genotype on learning-related changes in 

frontostriatal functional connectivity was tested using generalized context-dependent 

psychophysiological interaction (gPPI) analysis and voxel-wise linear discriminant analysis (vwLDA). 

Genotype groups could not be discriminated based on their task-modulated functional connectivity 

profiles. However, a significant discrimination of genotype groups was observed for sustained 

functional connectivity (sFC) in a cluster mapping to the left DLPFC (MNI [-35, 36, 35], Accpeak = 0.91, 

cluster size = 49 voxels, P< .001 cluster size corrected for multiple comparisons). Within this cluster, 

frontostriatal sFC increased in Val/Val homozygotes throughout the training, while it continuously 

decreased in the Met-allele carries, see right panel of figure 14C and D). 

Predictive value of neural learning parameters (x and 7) on later performance 

To answer the question, whether individual decay curves in the striatum and DLPFC were predictive of 

behavioral performance in the practiced condition at follow-up (i.e., 14 weeks after training), three 

fixed-effect models were tested (see section 2.2.1, page 38 for more details). The comparison of the 

models revealed that the follow-up behavioral performance was best predicted by model M1, which 

is illustrated in figure 16 and has the following form: 

Accpr_cr-0.024 (0.022|0.025) + 0.175 (0.170]0.180)@rccstriatum|DLPFc) 

+ 0.175 (0.170|0.180)Trccstriatum|DLPFc) 
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Figure 16: Plot of the best predictive model M1.  

Prediction of follow-up performance (accuracy PT-CT, y-axis) using exponential model parameters z-axis) and 

y-axis) of the individual exponential models for brain functional connectivity (striatum to DLPFC) for the whole 

sample. Parameter estimates are z-scaled, indicated at z() and z(). Abbreviations: PT = practiced condition, CT 

= control condition). 

 

The three models and individual goodness parameters are shown in Table 4. The results of model 

comparisons are shown in Table 5. The median R2 of and the 95% CI of the cross-validated model M1 

was 0.155 (0.055|0.269). The association suggests that more positive values (i.e., a slower signal 

decay or even faster increase in connectivity) and more positive  values (i.e., higher amount of signal 

change) are related to better performance in the follow-up measurement. In fact, BDNF risk-allele 

carriers showed significantly more negative values of  (T(19) = 1.86, p = .008), indicating a more 

prominent decay of frontostriatal connectivity, relating to poorer behavioral performance at the 

follow-up assessment (table S5, page 77).  

 

Table 4: Model goodness parameters of all three fixed-effect models 

Model   med ( ) cAIC ln(L) 

M1 ~1 + ( | ) + ( | ) 0.293 0.155 -79.65 43.83 

M2 ~1 + ( ) + ( ) 0.115 0.041 -74.95 41.48 

M3 ~1 + ( ) + ( ) 0.075 0.050 -73.94 40.97 

Abbreviations: FU = follow-up, PT = practice condition, CT = control condition, FC = functional connectivity; BR = 

brain response, adj = adjusted; cv = cross-validated; cAIC = corrected Akaike information criterion; ln(L) = log-

likelihood. 
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Figure 16: Plot of the best predictive model M1. 

Prediction of follow-up performance (accuracy PT-CT, y-axis) using exponential model parameters «a, (z-axis) and 

t (y-axis) of the individual exponential models for brain functional connectivity (striatum to DLPFC) for the whole 

sample. Parameter estimates are z-scaled, indicated at z(t) and z(«). Abbreviations: PT = practiced condition, CT 

= control condition). 
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Table 5: Model comparison using simulated Likelihood Ratio Test 

Model comparison LRT-Statistics p-Value (95%CI) 

M1 > M2 4.67 0.047* (0.036 | 0.063) 

M1 > M3 5.71 0.030* (0.020 | 0.043) 

M2 > M3 1.01 0.225  (0.199 | 0.252) 

Note: Likelihood ratio test (LRT) with 1000 simulations, * significant at p < .05.  

Abbreviations: CI = confidence interval. 

 

 

Role of head movement and image quality 

For fMRI data quality assurance, the individual head motion parameters and the signal-to-noise ratio 

were computed. As detailed in Table S6 (page 77), both genotype groups were balanced well for all 

data quality assurance measures (all P values > 0.12). This suggests that the above-reported findings 

are unlikely influenced by genotype-dependent differences in image quality. 

 

  

Table 5: Model comparison using simulated Likelihood Ratio Test 
  

Model comparison LRT-Statistics p-Value (95%CI) 

M1>M2 4.67 0.047* (0.036 | 0.063) 

M1>M3 5.71 0.030* (0.020 | 0.043) 

M2>M3 1.01 0.225 (0.199 | 0.252) 
  

Note: Likelihood ratio test (LRT) with 1000 simulations, * significant at p < .05. 

Abbreviations: Cl = confidence interval. 

Role of head movement and image quality 

For fMRI data quality assurance, the individual head motion parameters and the signal-to-noise ratio 

were computed. As detailed in Table S6 (page 77), both genotype groups were balanced well for all 

data quality assurance measures (all P values > 0.12). This suggests that the above-reported findings 

are unlikely influenced by genotype-dependent differences in image quality. 

46



47 

 

3. Discussion  

The cognitive loop of the cortical-striatal circuitry is anatomically well-defined (Alexander et al., 1986; 

Draganski et al., 2004; Lehericy et al., 2005; Seger, 2006) and plays an essential role in higher cognitive 

processes such as access control into working memory (A. J. Gruber et al., 2006; McNab & Klingberg, 

2008; O'Reilly & Frank, 2006). One important aspect of the “gating” mechanism is the relevance of 

working memory items, such as novelty, a quality that is understudied with respect to its effects on 

corticostriatal function and connectivity.  Study 1 of this thesis was performed as a cross-sectional fMRI 

study using DCM in a sample of 74 healthy participants performing a Sternberg working memory task, 

aiming to investigate whether striatal activation during working memory varies across task phase (i.e., 

encoding and retrieval) and stimulus familiarity (novel vs. practiced) of the presented materials. And 

further, to explore by which corticostriatal connectivity mechanism the task-phase specific 

involvement of the striatum is achieved (i.e., top-down or bottom-up control).   

 

There is broad consensus that corticostriatal circuitries are important targets for neurotrophin 

signaling (Bimonte-Nelson, Hunter, Nelson, & Granholm, 2003; B. Li, Arime, Hall, Uhl, & Sora, 2010). In 

this context, BDNF is the most widely studied plasticity marker. Unfortunately, most imaging genetic 

studies with BDNF Val66Met have followed either a cross-sectional or a longitudinal design with a 

simple pre-post approach. A comprehensive longitudinal characterization of BDNF effects on cognitive 

behavior and brain function has not been studied extensively. Furthermore, the effects of a BDNF 

polymorphism (Val66Met) have to my knowledge, not been studied by applying exponential decay 

modeling (i.e., learning curves). Study 2 of this thesis was performed as a longitudinal fMRI study using 

exponential decay modeling in a sample of 23 healthy participants performing a modified version of 

the cross-sectional Sternberg task within a two-week training period and a 14-week follow-up 

measurement. The main goals were to investigate the longitudinal effects of working memory learning 

on cognitive behavior and brain function (brain activation and connectivity) and examine a possible 

influence of an established BDNF variant (Val66Met) on the longitudinal effects of working memory 

learning.   

 

 

3.1 Results of the cross-sectional study (study 1) 

Firstly, in line with prior reports (Jansma JM, 2001; van Raalten, Ramsey, Duyn, et al., 2008; van 

Raalten, Ramsey, Jansma, et al., 2008), the behavioral response to novel working memory items was 

significantly slower and less accurate. This observation is consistent with the theory that previously 
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practiced stimuli invoke the execution of a well-developed and automatic skill, while novel items 

demand a more controlled, effortful, and capacity-limited mode of information processing (Shiffrin & 

Schneider, 1977). 

 

Secondly, the fMRI results showed a highly significant increase in DLPFC and striatal activation during 

encoding and during the process of cognitively more demanding novel items. This is in line with prior 

work reporting an increase in activation in working memory-related regions such as the left DLPFC, left 

anterior insula, superior parietal cortex, anterior cingulate cortex, and the pre-supplementary motor 

area during the processing of novel relative to practiced Sternberg items, was observed (Jansma JM, 

2001; van Raalten, Ramsey, Duyn, et al., 2008). Such activation increases have previously been 

explained by the inability for a capacity-relieving “chunking” - or binding of separate stimulus-response 

associations in a higher order representation with fewer information elements - in the context of novel 

and continuously changing materials (Guida et al., 2012; Jansma JM, 2001; Landau, Schumacher, 

Garavan, Druzgal, & D'Esposito, 2004). Moreover, as in prior studies with short-term training regimens, 

the detected activation differences in working memory-related cortical areas were quantitative rather 

than qualitative in nature. This opinion is supported by the observation that short-term training led to 

an activation decrease in the very same areas that were engaged during the processing of novel 

Sternberg items while practice-related activation increases in other regions were not detected (Guida 

et al. 2012; Landau et al. 2004). A plausible explanation that has been offered for this observation is 

that short-term acquisition of working memory is restrained to chunk formation within frontal-parietal 

areas and that the novelty-induced increase in regional activation reflects a decrease in neural 

efficiency and cognitive capacity (Guida et al. 2012). It should be noted, however, that while our 

experiment was set out to assess the effects of novelty in the context of working memory processing, 

we cannot rule out an additional modulation of corticostriatal responses by long-term memory 

representations in the context of the trained (as compared to the novel) stimulus sets. Despite similar 

sensory and motor requirements, the comparison of novel to practiced conditions additionally 

revealed activation in higher-level motor and visual areas. The involvement of these areas is in line 

with well-known down-stream effects of top-down control mechanisms (e.g., attention) and is 

reflective of the higher degree of complexity/task difficulty of novel as compared to practiced trials 

(Gilbert & Li, 2013; Hertrich, Dietrich, & Ackermann, 2016). 

 

These results extend prior knowledge by demonstrating a highly significant engagement of the frontal-

striatal circuitry during working memory, which was selective for the encoding relative to the retrieval 

phase of the task. Here, the effect was mostly explained by an activation increase during the encoding 

phase of the cognitively more demanding novel stimuli, for which a higher-order representation 
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through “chunking” was prevented by the continuous changes in stimulus-response relationships and 

the related requirements for frequent updating. Notably, the detected activation foci in the putamen 

were dorsal and rostral to the anterior commissure, consistent with recruitment of the associative (i.e., 

cognitive) territories of the corticostriatal circuitry (Alexander et al. 1986). Although prior working 

memory studies have mostly focused on effects within frontal-parietal areas (Guida et al. 2012), 

activation increases in the dorsal anterior putamen have been related to the encoding of stimuli with 

a higher cognitive load (Chang et al., 2007; Landau et al., 2004), increased level of abstraction (Nee & 

Brown, 2013), or the requirement for frequent updating (Dahlin, Neely, Larsson, Backman, & Nyberg, 

2008). In addition, more ventral (but occasionally also dorsal) responses in the anterior striatum have 

been associated with the presentation of novel or surprising non-rewarding stimuli (Murty, Ballard, 

Macduffie, Krebs, & Adcock, 2013; van Schouwenburg et al., 2010; Wittmann, Daw, Seymour, & Dolan, 

2008; Zink, Pagnoni, Martin, Dhamala, & Berns, 2003) and related shifts in attention (van 

Schouwenburg et al., 2010). 

 

Further, these data support a role for the anterior striatum in the stimulus encoding process that goes 

beyond the traditional roles of the basal ganglia in motor control and reward processing. 

Computational models propose that the mechanisms of the basal ganglia, by which it supports working 

memory, are evolved implementations of the same basic machinery supporting the gating of adaptive 

responses in the “more primitive” striatal motor circuitry (O'Reilly and Frank 2006). Indeed, the 

increased engagement of the anterior putamen during the encoding of novel Sternberg materials may 

serve as a critical gating signal for prefrontal working memory buffers. It may indicate, for example, 

that the presented items are behaviorally relevant and require a more controlled and resourceful 

neural strategy for their effective handling. Conversely, the relative absence of striatal responses 

during the encoding of practiced stimuli may signal the availability of “pre-chunked rule sets” or 

automatized neural representations in the frontal-parietal cortex, allowing for their efficient neural 

processing. 

 

Next, the conducted DCM analyses extend the activation findings by highlighting a potential 

mechanism by which the proposed corticostriatal gating function during the processing of novel 

working memory items might be achieved. The data were best explained by a model assuming 

significant intrinsic connectivity from DLPFC to anterior striatum, as well as an enhancing significant 

modulatory effect of the encoding phase of novel items on the connection from the DLPFC to the 

striatum. In general, this observation is in good agreement with the known excitatory projections from 

the cortex to the striatum (Alexander et al. 1986) and the role of the DLPFC in the top-down control of 

subcortical structures. The observed modulation of prefrontal-striatal connectivity reflects a 
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mechanism by which the DLPFC signals the need for a more resourceful neural strategy (or absence of 

“pre-chunked cortical rule sets”) for the successful handling of novel items during stimulus encoding. 

Although such a strategy could plausibly facilitate the enhanced signaling (or gating of relevant 

stimulus information) in the anterior striatum, further research is needed to substantiate this proposal. 

Of note, a negative driving input of the practice conditions to the DLPFC was found, an observation 

that parallels the relative reduction of the activation of the region in these conditions. Similar to prior 

reports (Jung et al., 2018), we interpret these findings as related, i.e., the reduction of the overall 

activity in DLPFC during the practice condition as a consequence of the negative driving input, which 

may be the result of an interaction between excitatory and inhibitory interneurons in the region.  

 

 

3.2 Results of the longitudinal study (study 2) 

Study 2 was performed as a longitudinal fMRI study using exponential decay modeling to investigate 

the longitudinal effects of working memory learning on the behavior as well as on corticostriatal brain 

activation and connectivity and its modulation by a common BDNF polymorphism (Val66Met). 

 

Firstly, the behavioral analysis revealed that BDNF-deficient 66Met-allele carriers showed significantly 

higher error rates at the first and the 14-weeks follow-up measurement (i.e., long after the training 

interval has been completed). This poorer working memory performance suggests the presence of 

deficits in both the initial encoding and long-term consolidation of working memory contents in Met 

allele carriers. This observation in risk allele carriers is in line with previous studies showing deficits in 

both mnemonic subprocesses (Goldberg et al., 2008; Montag et al., 2014). Notably, no prior fMRI study 

and only a few behavioral studies (Freundlieb et al., 2015; McHughen et al., 2011) applied a similarly 

long-lived learning experiment with extended training periods and follow-up assessments covering 

weeks and months.  However, there were no significant differences in behavioral performance directly 

after the two-week training period. This observation supports the notion that BDNF Met allele carriers 

are able to compensate, at least in parts, for genotype-associated deficits in verbal working memory 

performance by repeated training. A result that has been reported in a comparable study with 

consecutive training (Freundlieb et al., 2015; McHughen et al., 2011). The longitudinal study of this 

thesis extends prior knowledge on the behavioral level in two ways. To date, prior longitudinal studies 

have mainly used performance measures such as “change” in accuracy, reaction time, or baseline, thus 

were not able to quantify the evolution of performance (Freundlieb et al., 2015; McHughen et al., 

2011; Montag et al., 2014). The application of specific learning parameters (learning speed and  

= learning gain), as used in this thesis, gives an explanation for this outcome. In detail, Met allele 
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carriers showed a higher learning gain () compared to Val/Val homozygotes, which directly reflects 

the behavioral compensatory mechanism. Further, due to the 14-weeks follow-up measurement, this 

thesis presents evidence that this compensation mechanism is not enduring and the poorer 

performance level reemerges when the training has stopped.  

 

Besides the poor working memory performance in behavior, this study was able to reflect these deficits 

on the brain level. Secondly, over the two-week training period, a signal decay in learning-responsive 

brain regions such as DLPFC and striatum was observed in both genetic groups, but Met allele carrier 

showed a delayed prefrontal signal decay, which was confirmed by a significant discrimination of these 

groups in the vwLDA analysis. This is in accordance with the initially observed WM deficits on the 

behavior level and reflects the increased DLPFC recruitment or protracted deactivation in Met allele 

carrier, which is in line with prior work suggesting an inefficient activity in this risk allele group (Dennis 

et al., 2011; Quide, Morris, Shepherd, Rowland, & Green, 2013; Soltesz et al., 2014).  

 

Thirdly, a brain-behavior regression analysis showed a positive association between behavioral 

learning speed () and speed of signal decay () in striatum and DLPFC in Val/Val homozygotes, 

indicating that a faster brain signal decay is advantageous for faster learning. The same analysis 

revealed a negative association in Met allele carriers, which was only significant for the DLPFC, which 

might indicate that the observed protracted brain signal decay seems to be beneficial for faster 

learning in the Met allele group. Taken together, these findings suggest that dynamic changes in 

corticostriatal functional activation are directly linked to behavioral improvement during learning and 

that this link is only beneficial in the carriers of the plasticity-related protective variant, the BDNF 

Val/Val genotype. Moreover, the lack of an association between behavior and brain response in the 

DLPFC may signal an inefficient top-down control of learning-related neural responses in the BDNF risk 

allele carriers. 

 

Next, the conducted connectivity analyses showed a frontostriatal increase in sustained functional 

connectivity (sFC) in Val/Val genotype group during the two-week training period but a continuous 

decrease in the Met allele carrier. This was confirmed by a vwLDA analysis, which revealed a significant 

discrimination between the two genetic groups in a cluster within the DLPFC. This observation may 

suggest that Val homozygotes established a basic frontostriatal “scaffold” supporting tight interactions 

between striatum and DLPFC. In contrast, Met allele carriers show an inability to increase frontostriatal 

connectivity and do not seem to strengthen sustained frontostriatal functional interactions as a 

function of repeated learning. The previously described elongated activation of the DLPFC in Met allele 

carriers showed a higher learning gain (a) compared to Val/Val homozygotes, which directly reflects 
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between striatum and DLPFC. In contrast, Met allele carriers show an inability to increase frontostriatal 

connectivity and do not seem to strengthen sustained frontostriatal functional interactions as a 

function of repeated learning. The previously described elongated activation of the DLPFC in Met allele 
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carriers may indicate a compensatory mechanism for the inability to acquire a basic frontostriatal 

connectivity “scaffold.”  

 

Further, a significant brain-behavior association between parameter estimates ( and derived from 

corticostriatal sFC within a cluster in the DLPFC and behavioral performance at the 14-week follow-up 

measurement was found. This association suggests that more positive values (i.e., faster increase in 

connectivity) together with more positive  values (i.e., a higher increase in connectivity) are related 

to a better performance in the follow-up measurement. In other words, the more a subject's functional 

connectivity between the striatum and DLPFC increased during the learning phase, the better was the 

performance at the follow-up measurement. Notably, BDNF risk-allele carriers showed more negative 

values, indicating a more prominent decay of frontostriatal connectivity. These results suggest that 

the formation of sustainable frontostriatal connectivity is central for long-term consolidation and that 

this process seems to be limited in BDNF risk allele carriers. 

 

The existing literature provides several mechanisms through which BDNF influences higher-order 

cognitive processes such as learning. BDNF has a high affinity to the tropomyosin receptor kinase B 

(TrkB), which is essential to synaptic plasticity (Kuipers & Bramham, 2006). TrkB activates three 

intracellular signaling cascades, namely, mitogen-activated protein kinase (MAPK), phosphoinositide-

3kinase (PI3K), and phospholipase C (PLC)-gamma (Numakawa, Odaka, & Adachi, 2018). The BDNF 

Val66Met polymorphism has been linked to deficient activity-dependent (i.e., phasic but not 

constituent) secretion of BDNF in Met allele carrier, leading to disrupted intracellular trafficking via 

TrkB. This results in a lower (protein synthesis-independent) early-phase LTP and with a subsequent 

decrease synaptic transmission efficacy and short-term memory impairments (Chen et al., 2015; Z. Y. 

Chen et al., 2004; Chiaruttini et al., 2009; Egan et al., 2003; Notaras et al., 2015; Notaras & van den 

Buuse, 2019). This mechanism is a plausible explanation of the initially observed BDNF encoding deficit 

in the Met allele group. Further, strong evidence points to the role of BDNF in late-phase LTP, which 

requires a de-novo synthesis of proteins and induces structural changes at the synapse via protein 

kinase (PKA) and MAPK pathways. Moreover, prior work demonstrated that the BDNF risk allele variant 

might alter the encoding of engrams (Notaras & van den Buuse, 2019), which is in line with the 

observed deficits in working memory maintenance in the longitudinal study of this thesis. 

Furthermore, accumulating evidence supports a Val66Met polymorphism-related signaling effect on 

the onset of neurological and psychiatric disorders, e.g., Parkinson’s disease, schizophrenia, or 

affective disorders (Lin & Huang, 2020; Numakawa et al., 2018; T. Shen et al., 2018).  
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3.3 Sternberg working memory task and corticostriatal circuitries  

The two modified versions of the Sternberg working memory task used in this thesis were found to be 

highly sensitive in examining the “executive loop” of the corticostriatal circuitries. Both versions of the 

task differed slightly in the cross-sectional and longitudinal study. See figure 5 (page 19) and figure 10 

(page 33) for more detail. In the cross-section study, the task consisted of the following conditions: a 

novel, practiced, low-cognitive control, and rest condition, which were repeated four times, to 

investigate the “circumstances” of striatal gating. In line with prior work (Chang et al., 2007; McNab & 

Klingberg, 2008; Moore et al., 2013; O'Reilly & Frank, 2006; Schroll & Hamker, 2013), this thesis 

confirmed that striatal gating occurs in the encoding phase of the working memory process. During 

the course of the first study, behavioral analyses showed a “ceiling” effect in the practice condition, 

confirming a high practice or automatization effect (due to prior training), which was also reflected in 

brain signal and can be explained by the “chunking” mechanism. To avoid an immediate ‘‘ceiling 

effect’’ in the longitudinal study and to capture the effects of recurrent training on different degrees 

of stimulus familiarity, several adjustments have been made. The initial “encoding set” consisting of 

five letters was extended to seven letters (in line with the well-established WM capacity of seven items 

or magical number seven). To increase the task sensitivity for the fMRI analyses, every condition was 

repeated six times (compared to four). Further, to expand the temporal resolution of learning and 

examine different degrees of stimulus familiarity, a new task condition, namely “shuffled,” was 

created, filling the gap between entirely new and highly practiced stimuli. While the practiced 

condition involved constant letters and a constant configuration, the novel condition contained 

variable (i.e., entirely new) letters and a variable configuration. The shuffled condition represents an 

intermediate condition, which includes constant letters (same as in practiced condition) combined 

with a variable configuration (new shuffled order in every trial). Regarding WM load, the conditions 

can be defined as novel = high cognitive load/low chunkability, shuffled = intermediate 

load/intermediate chunkability and practiced = lower cognitive load/high chunkability.   

 

The above-outlined modifications were effective as reflected by a continuous improvement of time, 

independently of the genetic group, without showing an immediate ‘’ceiling effect”. Further, the 

behavioral results of the longitudinal study demonstrated a successful modification of the task 

conditions, showing a significant condition effect for  in the whole-group analyses. In detail, the 

fastest decay was observed in the practiced condition, followed by the shuffled condition and novel 

condition, hereby confirming the proposed WM load or chunkability of stimuli. Moreover, this task 

modification enabled the discrimination of BDNF Val66Met groups over a two-week training period. 

To my knowledge, the original or “unmodified” version of the Sternberg task has, so far, not been 
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applied to study the effects of BDNF Val66Met, and the latest created version was newly conducted 

within this thesis.   

 

Unfortunately, the analyses of the longitudinal study were limited to the effects of BDNF Val66Met on 

the practiced condition. A detailed analysis of other task conditions, especially of the shuffled 

condition, in brain activation and connectivity, is beyond the scope of this thesis. Nonetheless, the 

Sternberg WM task, and its task condition modification, demonstrate that this task facilitates the 

“chunking mechanism,” especially during the course of repetitive training.  

 

Taken together, the Sternberg WM task is suitable for investigating the “executive loop” of 

corticostriatal circuitries. Further, the applied modifications into a novel, shuffled, and practiced 

condition makes it an ideal candidate to investigate WM load, different degrees of stimulus familiarity, 

and the chunking mechanism, be it in a cross-sectional or longitudinal design.  

 

 

 

3.4 Limitations and further directions  

First, the Sternberg WM task and its modifications are highly suitable to investigate corticostriatal 

circuitry function and plasticity processes. Unfortunately, the repetition of each task condition was 

restricted to four or six repetitions, which may not be ideal. A higher repetition of task trials (e.g., eight 

or ten repetitions) might have led to more accurate results, especially for connectivity analyses such 

as DCM, and should be considered in further studies.  

 

Furthermore, the sample size in the longitudinal study was relatively small (n = 23), especially after 

allocating them into two genotype groups. Further, the BDNF Val66Met subgroup of Met homozygotes 

(Met/Met) was underrepresented (only two subjects). This specific allele is very rare (ca. 5% in a 

Caucasian population; T. Shen et al. (2018)) and thus difficult to recruit. As a consequence, all Met 

allele carriers (Val/Met and Met/Met) were summarized into a single group, and a potential “additive” 

or “dosage” BDNF effect could not be investigated. A source of concern in longitudinal studies are high 

dropout rates, especially in designs with multiple measurements and follow-up assessments.  

Fortunately, dropout rates in the presented longitudinal study were very low (n = 1). Furthermore, 

longitudinal studies are time-intensive, need a high amount of staff members, and cost implications 

are high. Future studies with much higher sample sizes on this topic are therefore needed, e.g., to 

replicate the presented behavioral and brain function results. 
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Another limitation closely related to imaging genetic studies is the focus on a single genetic 

polymorphism. As outlined in the introduction, BDNF interacts with several other polymorphisms such 

as COMT Val66Met. Further studies should investigate corticostriatal circuitry functioning and 

plasticity processes in polymorphisms, e.g., in COMT, ideally multiple polymorphisms (divided into 

separate groups) in one longitudinal study.  Further, the effects of NMDA-Receptor antagonists such 

as Ketamine or other drug challenges should be considered. One of the major advantages of the 

longitudinal study presented in this thesis, is the “consecutive” training protocol, nonetheless, training 

was not conducted daily. To ensure the maximal evolution of training and learning processes, further 

studies should consider daily training.   Besides, an additional “late-follow-up” measurement, e.g., after 

6 or 12 months, would have been advantageous to explore a “potential end” of a learning effect. The 

partly diverging results of a BDNF effect or the present longitudinal study and previously reported 

studies, such as the compensation mechanism in Met allele carrier, could be explained by different 

task and study protocols, e.g., consecutive training, pre-post-measurement. This should be addressed 

in further studies by combining two learning tasks, e.g., motor and cognitive tasks, or by comparing 

subgroups of different tasks and genetic groups in a single longitudinal study.  

 

Both studies presented in this thesis investigated solely healthy participants. However, dysfunctions in 

corticostriatal circuitries are linked to several neurological diseases and psychiatric disorders. 

Unfortunately, the results of this thesis are not immediately applicable to clinical populations. Future 

studies should target corticostriatal functioning and plasticity processes in patients, e.g., suffering from 

schizophrenia, depression, or Parkinson’s disease, especially in a longitudinal study approach. Further, 

an examination of post-stroke patients would be of great interest.   

 

Finally, the here newly created version of the Sternberg WM task proved to be highly sensitive to study 

learning and WM, especially the different degrees of stimulus familiarity as well as the “chunking” 

mechanism. Moreover, it is suitable to investigate short-term and long-term plasticity effects related 

to genetic polymorphism, e.g., BDNF Val66Met, in brain function and behavior. I am confident that this 

task will serve as a base for future studies. Ideally, this Sternberg WM task should be applied in a 

longitudinal approach, over a two-week training protocol with daily training and multiple follow-up 

sessions (e.g., 3, 6, 9, 12, 24 months) considering several genetic polymorphisms and/or multiple 

patient groups.  
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4. Summary 

Corticostriatal brain circuitries play an essential role in basic and high-level functions of the human 

brain, such as motor control, goal-director behavior, cognition, as well as learning and memory. 

Growing evidence supports a “gating” function of basal ganglia, particularly the striatum, within the 

motor and cognitive domains. Study 1 of this thesis was conducted as a cross-sectional functional 

magnetic resonance imaging (fMRI) study in a sample of 74 healthy participants performing a 

Sternberg working memory (WM) task to investigate whether striatal activation during working 

memory varies across task phase (i.e., encoding and retrieval) and stimulus familiarity (novel vs. 

practiced items). Further connectivity analyses (using dynamic causal modeling) were applied to 

explore by which corticostriatal connectivity mechanism the task-phase specific involvement of the 

striatum is achieved (i.e., top-down or bottom-up control). Activation analyses demonstrated a highly 

significant engagement of the anterior striatum, particularly during the encoding of novel WM items. 

Dynamic causal modeling (DCM) of corticostriatal circuit connectivity identified a selective positive 

modulatory influence of novelty encoding on the connection from the dorsolateral prefrontal cortex 

(DLPFC) to the anterior striatum. These data extend prior research by further underscoring the 

relevance of the basal ganglia for human cognitive function and provide a mechanistic account of the 

DLPFC as a plausible top-down regulatory element of striatal function that may facilitate the “input-

gating” of novel working memory materials.  

The brain derived neurotrophic factor (BDNF) promotes neural synaptic growth and has become the 

most widely studied neutrophin. Growing evidence demonstrates that a specific BDNF polymorphism, 

Val66Met, impacts memory performance and brain function, resulting in poor performance and 

abnormal brain activity or connectivity in risk-allele carriers (Met allele carrier). Study 2 of this thesis 

was conducted in a longitudinal approach, over a two-week learning period with regular fMRI 

acquisition and additional 14-week follow-up measurement. The aim was to characterize learning-

induced changes in cognitive behavior and brain function and its modulation by effects of the BDNF 

Val66Met genotype. Therefore, a sample of 23 healthy subjects performing a modified Sternberg WM 

task was examined, and exponential decay modeling (i.e., learning curves) was applied using the 

parameters   (learning speed) and  (learning gain) to examine learning-induced effects. Behavioral 

analyses demonstrated that BDNF risk allele carriers (Met allele carriers) showed significant WM 

deficits at the beginning and at the 14-week follow-up measurement (i.e., long after the training 

interval). Interestingly, Met allele carriers were able to compensate for the initially disadvantageous 

effect by repetitive training. The behavioral WM deficits could be directly linked to a delayed signal 

decay in the DLPFC and a lack in the increase in frontostriatal connectivity in Met allele carrier. Further, 

a faster and higher increase in functional connectivity resulted in a higher follow-up performance, 
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indicating the importance of forming a connectivity “scaffold” for long-term consolidation, which 

seems to be limited in BDNF risk allele carriers. These results extend prior knowledge by demonstrating 

immediate and long-term WM learning deficits and impaired neural plasticity in BDNF risk allele 

carriers. Taken together, this thesis highlights the role of corticostriatal circuits for WM learning and 

may provide new insights into the relationship between regulated BDNF signaling on short-term and 

long-term plasticity. 
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6. Supplemental Tables  

TABLE S1: Brain activations for the main effect of memory phase and their respective coordinates in 

MNI space from AAL atlas.  

Region (Brodmann area) Cluster size t value 
Peak MNI coordinates 

x                           y                              z 

Encoding > retrieval           

Middle occipital gyrus (BA 18) 30.559 17.04 -30 -94 9 

Inferior occipital gyrus (BA 19)  16.39 33 -85 -9 

Inferior occipital gyrus (BA 19)  16.14 -39 -82 -9 

Fusiform gyrus  (BA 19/37)  15.84 42 -64 -12 

Fusiform gyrus (BA 19/37)  15.68 -39 -70 -12 

Middle Cingulum (BA 23)  15.42 -3 -31 33 

Precuneus (BA 7)  15.38 27 -64 45 

Middle occipital gyrus (BA 18)  14.51 30 -88 -12 

Middle Cingulum (BA 23)  14.16 3 -31 33 

Precuneus (BA 7)  13.98 -27 -61 51 

Insula (BA 13)  13.72 -33 23 0 

Precentral gyrus (BA 4)  13.36 -48 -7 42 

Insula (BA 13)  13.22 36 26 -3 

Middle temporal gyrus (BA 22)  13.1 -54 -34 0 

Anterior Cingulum (BA 32)  13.1 12 26 27 

Superior temporal gyrus (BA 39/40)  13.1 -54 -34 0 

Middle temporal gyrus (BA 22)  12.98 48 -28 -3 

Superior temporal gyrus (BA 39/40)  12.98 48 -28 -3 

SMA (BA 6)  12.71 -3 5 63 

Hippocampus  12.35 -21 -31 -6 

Anterior Cingulum (BA 24/32)  12.34 -9 32 24 

Precentral Gyrus (BA 4)  11.67 51 -1 42 

Hippocampus  11.2 21 -31 -6 

Thalamus  11.01 6 -10 0 

Anterior Putamen  10.98 -18 14 3 

SMA (BA 6)  10.81 3 5 63 

Anterior Putamen  10.64 18 14 0 

Thalamus  10.35 -6 -13 0 

DLPFC (BA 10/46)  9.99 51 35 15 

Parietal inferior gyrus (40)  9.81 42 -58 48 

Cerebellum/Vermis  9.11 -3 -73 -27 

DLPFC (10/46)  8.27 -48 35 15 

Cerebellum  7.92 -27 -64 -30 

Parietal inferior gyrus (BA 40)  7.55 -42 -43 45 

Inferior frontal gyrus (BA 44/45)  7.05 -54 17 6 

Cerebellum  6.52 33 -61 -33 

Inferior frontal gyrus (BA 44/45)  6.22 51 23 3 
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Region (Brodmann area) Cluster size t value 
Peak MNI coordinates 

x                           y                              z 

Retrieval > novel           

Postcentral gyrus (BA3) 24 5.69 -39 -28 57 

Note: Regions are p < 0.05 family-wise error corrected for the whole brain and classified according to the AAL Atlas (Tzourio-

Mazoyer et al., 2002). Coordinates (MNI space) and statistical information refer to the peak voxel in the corresponding area. 

Abbreviations: Automated Anatomical Labeling (AAL), Montreal Neuroimaging (MNI), supplementary motor areas (SMA), 

dorsal premotor cortex (dPMC), dorsolateral prefrontal cortex (DLPFC).  
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TABLE S2: Bayesian parameter averages of the winning model. 

Intrinsic connections 

DLPFC 

To 

Striatum 

Thalamus 

Modulation of connectivity 

DLPFC 

To 

Striatum 

Thalamus 

DLPFC 

To 

Striatum 

Thalamus 

Input 

To DLPFC 

  

  

  

  

  

From 

DLPFC Striatum Thalamus 

-.74 -.03 -.02 

-.04 -1.30 -.14 

.03 -.03 -1.54 

Encoding novel 

From 

DLPFC Striatum Thalamus 

- 0.87 -1.28 

1.33 - .64 

.29 47 - 

Encoding practiced 

From 

DLPFC Striatum Thalamus 

- not significant -.85 

.14 - 1.46 

not significant .49 - 

  

Encoding novel 

.24 

Encoding practiced 

-.09 
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Table S3: Behavioral analysis of short-term effects (learning curves) 

 
 Descriptive statistics Inference statistics 

 Mean (SD) 2x3 rmANOVA Post-hoc 

 Val/Val 

(N = 11) 

Met-carrier 

(N = 12) Effect F-statistics 2 T-statistics 

LEARNING CURVE  

 - GoF3)   

P 0.76 (0.29) 0.72 (0.35) Genotype: F(1,21) = 0.09,       p = .761 .005  

S 0.75 (0.34) 0.84 (0.29) Condition: F(1.73,36.4) = 0.83, p = .429 .038  

N 0.74 (0.25) 0.62 (0.33) Interaction: F(1.73,36.4) = 0.77, p = .454 .035  

 - learning gain  

P 0.12 (0.05) 0.26 (0.17) Genotype: F(1,21) = 5.10,      p = .035* .195 Met>Val:a T(13.4) = 2.74, p = .016* 

S 0.20 (0.10) 0.30 (0.16) Condition: F(2.0,41.3) = 1.68, p = .200 .074  

N 0.22 (0.14) 0.25 (0.13) Interaction: F(2.0,41.3) = 1.68, p = .266 .061  

 - learning speed  

P -2.21 (2.65) -1.11 (1.03) Genotype: F(1,21) = 0.53,     p = .475 .025  

S -1.03 (1.86) -1.52 (1.79) Condition: F(1.8,37.6) = 3.69, p = .039* .150 (PT)<(ST):b T(22) = 0.70, p = .489 

(PT)<(NT):b T(22) = 3.22, p = .004* 

(ST)<(NT):b T(22) = 1.76, p = .091✢ 

N -0.79 (1.81) -0.26 (0.36) Interaction: F(1.8,37.6) = 1.80, p = .182 .079  

Discrimination analyses (LDA)     

 ACC (%)c 

p 

(uncorr.)d 

Class. robustness (%) 

Mean (SD)e 2 - statistics 

P 78.26 .003 76.49 (10.19) 10.48, p = .005* 

S 56.52 .418 59.75 (12.21) 2.99, p = .224 

N 52.17 .590 56.77 (12.64) 2.03, p = .362 

a T-test for independent samples, b T-test for dependent samples, c original data and, d k-fold, split-half, cross-validated means 

± SDs with k = 9999, eestimated using 9999 permutation operations, * significant at p < .05; ✢ statistical trend p < .1. For 

inference statistics, -values were Fisher z-scaled. Degrees of freedom Greenhouse-Geisser corrected for sphericity 

violations; all tests were performed two-tailed. Abbreviations: P = practiced stimuli, S = shuffled stimuli, N = novel stimuli, 

LDA = linear discriminant analyses, ACC = discrimination accuracy. 
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Table S4: Monte-Carlo-simulation based estimation of corrected cluster sizes 

     
Cluster Size Frequency Cum Prop  p/Voxel Max Freq Alpha 

Brain response 

1 10674 0.592769  0.042716 0 1 

2 3472 0.785583  0.030144 10 1 

3 1505 0.869162  0.021965 66 0.99 

4 879 0.917976  0.016647 132 0.924 

5 494 0.94541  0.012505 156 0.792 

6 317 0.963014  0.009596 134 0.636 

7 202 0.974232  0.007356 124 0.502 

8 131 0.981507  0.00569 90 0.378 

9 116 0.987949  0.004456 91 0.288 

10 65 0.991559  0.003226 56 0.197 

11 45 0.994058  0.002461 39 0.141 

12 34 0.995946  0.001878 31 0.102 

13 15 0.996779  0.001397 14 0.071 

14 18 0.997779  0.001167 18 0.057 

15 10 0.998334  0.00087 9 0.039 

Sustained Functional connectivity 

1 5985 0.516973  0.035555 1 1 

2 2332 0.718407  0.027882 28 0.999 

3 1126 0.815669  0.021903 69 0.971 

4 695 0.875702  0.017572 102 0.902 

5 405 0.910685  0.014008 119 0.8 

6 281 0.934957  0.011412 120 0.681 

7 219 0.953874  0.00925 120 0.561 

8 142 0.96614  0.007285 102 0.441 

9 114 0.975987  0.005828 85 0.339 

10 78 0.982724  0.004513 66 0.254 

11 57 0.987648  0.003513 51 0.188 

12 37 0.990844  0.002709 33 0.137 

13 34 0.993781  0.00214 33 0.104 

14 13 0.994904  0.001573 12 0.071 

15 18 0.996458  0.00134 18 0.059 

16 10 0.997322  0.000994 10 0.041 

Note: Monte-Carlo-simulation using of AlphaSim as implemented in the software package RESTplus 

(http://www.restfmri.net/forum/REST). Voxel alpha threshold of P < .05., Number of Monte Carlo simulations = 1000. The 

size of the first cluster with a probability of occurrence less than 5% was used to threshold the corresponding statistical map.  
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Table S5: Group comparison of parameter estimates ( derived from sFC 

 
Val/Val 

(N = 11) 

Met-carrier 

(N = 10) 
T-statistics (2 sample t-test) 

Mean SD -3.6364e-05 (0.1448)  -0.1532 (0.2248) T(19) = 1.86, p = .008✢ 

MeanSD 0.0970 (0.0355) 0.1151 (0.0468) T(19) = -1.01, p = .327  

Note: Parameter estimates (derived from the DLPFC cluster) were z-scaled; T-test for independent samples, ✢ statistical 

trend P < .1; Abbreviations: sFC = sustained functional connectivity, DLPFC = dorsolateral prefrontal cortex  

 

 

Table S6: Sample characteristics and data quality measures.  

 
Val/Val 

(N = 11) 

Met-carrier     

(N = 12) 
T, χ² or F value P-value 

Demographic information     

Age (year) 27.00 ± 5.422 28.67 ± 9.58 -0.51 0.62 

Sex (male / female) 4/7 3/9 0.35 0.44 

Education (year) 16.00 ± 1.00 15.20 ± 1.30 1.62 0.12 

Head motion parameters     

Mean translation(mm) 0.41 ± 0.15 0.38 ± 0.11 0.41 0.53 

Mean rotation(degree) 0.32 ± 0.08 0.37 ± 0.03 0.24 0.63 

Mean frame-wise displacement 

(mm) 
0.13 ± 0.01 0.15 ± 0.00 0.57 0.46 

fMRI image quality     

Signal-to-noise ratio 290.84 ± 13.6 290.60 ± 3.47 0.32 0.58 

Number of spikes 6.88 ± 2.77 11.62 ± 7.60 0.83 0.37 

Note: Characteristics are displayed as mean ± standard deviation of the mean.  T-test for independent samples, significance 

level at P < 0.05.  Abbreviations: Val = Valine, Met = Methionine.  
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