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Summary 
Telomere maintenance mechanisms are crucial for cancer cells as they are required 

for their unlimited proliferation capacity. While most cancers reactivate the reverse 

transcriptase telomerase, a significant fraction of tumors maintains telomere length without 

it. These cancers employ the alternative lengthening of telomeres (ALT) pathway, which relies 

on DNA repair and recombination to extend telomere repeats. ALT presence is primarily 

confirmed with the C-circle assay as gold-standard, which detects extrachromosomal 

telomere repeats that are only found in ALT-positive cells. Mutations within the repeat 

repressor ATRX/DAXX/H3.3 are overrepresented in ALT cancers. ALT presence is crucial for 

long-term survival in tumor entities where it is active. However, beyond the above-mentioned 

mutations, it is unclear which molecular features are key to understanding the mechanism by 

which ALT operates. This thesis addresses this issue with three aims: (i) Describing ALT activity 

heterogeneity in primary tumor samples; (ii) Using sequencing readouts to define molecular 

ALT features and extract a characteristic signature; (iii) Inhibiting epigenetic modifiers with 

drugs and observing their effect on viability in relation to ALT activity. 

Firstly, I quantified C-circle levels in 687 primary tumor biopsies from sarcomas. The 

heterogeneous distribution indicates that ALT-activity can vary about tenfold within the same 

tumor entity. Next, I conducted ATAC-seq and RNA-seq of long and short RNAs in ALT positive 

and negative cell lines from pediatric glioblastoma and osteosarcoma to find shared ALT 

features. Information on open chromatin regions, transcriptome, miRNA, transposable 

elements, and piRNA was extracted from these data. From the ATAC-seq data, it was found 

that ALT+ cell lines had predominantly increased chromatin accessibility in non-coding 

regions. Binding motifs for AP-1 and RUNX transcription factors (TF) were enriched, whilst 

downregulated accessible regions result from reduced SOX TFs. The differential gene 

expression analysis revealed that immune TFs were enriched in upregulated ALT genes. This 

led to the identification of NFATC2 as a potential ALT biomarker, as it was found in promoter 

regions of upregulated genes and through ATAC-seq based TF motif analysis. The immune-

related TFs may be affected by the genetic instability inherent to ALT. However, the multi-

omics ALT signature indicated that the cell lines have a reduced response to oxidative stress. 

These factors may cooperate in inducing a heightened inflammatory state that drives 

chromatin accessibility and gene expression. Differential miRNAs were extracted and could 
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explain both TERT and SOX downregulation and RUNX upregulation, indicating another gene 

regulatory mechanism employed by ALT cell lines. Furthermore, an integrative multi-omics 

analysis was performed to extract an ALT signature, which was governed by gene expression, 

miRNA, and chromatin accessibility. As more upregulated open regions in ATAC data were 

observed, inhibitors for EZH2 that sets the repressive histone H3 lysine 27 trimethylation 

(H3K27me3) and DNA methylases were correlated with an ALT-specific lethality and survival, 

respectively. Another aberrant epigenetic feature found in ALT, an H3.3S31p chromosome-

wide signal during mitosis, was studied with different inhibitors. The kinase HASPIN was found 

to reduce aberrant H3.3S31 phosphorylation upon treatment with a corresponding inhibitor. 

This kinase is involved in chromosomal segregation and links ALT genetic instability to DNA 

damage signaling during mitosis.  

In summary, the findings from this thesis reveal that ALT activity is heterogeneous in 

primary tumor cells. The analysis with different omics readouts points to significant 

differences in the transcriptome, chromatin accessibility, and miRNA expression and yields a 

multi-omics signature to identify ALT presence. Lastly, the correlation between cell viability 

and ALT-activity upon treatment with EZH2 and DNA methylase inhibitors and the HASPIN 

mediated aberrant H3.3S31p signal during mitosis point to ALT-specific epigenetic features. 

These could be further exploited in preclinical studies for patient stratification and 

identification of novel drug targets specific for ALT.  
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Zusammensfassung 
Telomer-Instandhaltungs-Mechanismen sind kritisch für Krebszellen, da sie für deren 

unbegrenzte Proliferationskapazität nötig sind. Die meisten Krebszellen halten ihre Telomere 

durch Reaktivierung der reversen Transkriptase Telomerase instand. Ein signifikanter Teil der 

Tumoren ist jedoch nicht auf Telomerase angewiesen und nutzt stattdessen alternative, 

telomerverlängernde Mechanismen (ALT). Diese basieren auf DNA-Reparatur und 

Rekombinantionsprozessen. Die Quantifizierung von extrachromosomalen 

Telomersequenzen durch den „C-circle assay“ dient als Goldstandard-Nachweis für das 

Vorhandensein von ALT in Krebszellen. ALT-positive Tumore zeigen überproportional häufiges 

Auftreten von Mutationen in Proteinen des ATRX/DAXX/H3.3-Komplexes. Es wird vermutet, 

dass diese Mutationen mit Funktionsstörungen der Telomere assoziiert sind. Obwohl der ALT-

Status eines Tumors die Langzeitüberlebensrate beeinflusst, ist es zum gegenwärtigen 

Zeitpunkt nicht möglich, ALT durch Analyse von „Omics“-Daten zu erkennen. Während in den 

letzten Jahrzehnten viele Fortschritte gemacht wurden, sind auch die molekularen 

Grundlagen von ALT noch immer nicht bekannt. Diese Dissertation beleuchtet diese offenen 

Fragen aus drei verschiedenen Richtungen: i) Analyse und Beschreibung der ALT-

Heterogenität in primären Tumorproben; ii) Beschreibung von ALT auf Grundlage von 

Sequenzierungsdaten und Entwicklung einer ALT-Signatur; iii) Inhibition von epigenetischen 

Modifikationsmechanismen und Beschreibung des Effektes auf das Überleben von ALT-Zellen. 

Ich habe zunächst die „C-Circles“ in 687 primären Sarkombiopsien quantifiziert. Ich 

konnte zeigen, dass die Menge der C-Circles in den Tumorproben einer heterogenen 

Verteilung folgt und sich um bis zu zehnfach innerhalb derselben Tumorart unterscheidet. 

Anschließend habe ich ALT-positive und ALT-negative Glioblastom- und Osteosarkom-

Zelllinien über ATAC-seq und RNA-seq auf gemeinsame ALT-Charakteristika untersucht. 

Informationen zu offenen Chromatinregionen, Transkriptom, miRNAs, transposablen 

Elementen, und piRNAs wurden aus diesen Daten extrahiert. Die ATAC-seq Daten zeigten, 

dass ALT-positive Zelllinien generell erhöhte Chromatinzugänglichkeit in nicht-kodierenden 

Regionen des Genoms zeigen. Dabei waren Bindungsmotive der Transkriptionsfaktoren (TF) 

AP-1 und RUNX gehäuft, Motive der SOX TFs wurden dagegen weniger häufig als erwartet 

gefunden. Die Transkriptomananalyse zeigte, dass Immun-TFs eine wichtige Rolle in den 

beobachteten Genexpressionsveränderungen spielen. Daraus folgte die Identifikation des TF 
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NFATC2 als möglichem ALT-Biomarker. Bindungsmotive von NFATC2 wurden in 

Promoterregionen von hochregulierten Genen gefunden. Weiterhin wurde NFATC2 in der 

ATAC-seq Motivanalyse gefunden. 

Genetische Instabilität, ein fundamentales ALT-Charakteristikum, könnte die bereits 

erwähnten Immun-TF beeinflussen. Die integrierte „Omics“-Analyse zeigte jedoch, dass ALT-

positive Zelllinien eine verringerte Reaktion auf oxidativen Stress zeigen. Diese verschiedenen 

Faktoren könnten zusammen für den erhöhten Entzündungsstatus dieser Zellen 

verantwortlich sein und als Folge Chromatinzugänglichkeit und Genexpression beeinflussen. 

Die Analyse von miRNA Expression konnte sowohl die TERT- und SOX-

Herunterregulierung, als auch die RUNX-Hochregulierung bestätigen. Dies deutet auf einen 

weiteren genregulatorischen Mechanismus von ALT Zellen hin. Zusätzlich zu den 

beschriebenen Einzelanalysen wurde eine integrative „Multi-Omics“ Analyse durchgeführt 

mit dem Ziel, eine ALT-Signatur zu extrahieren. Die gefundene Signatur beinhaltete Daten aus 

Genexpression, miRNAs, und Chromatinzugänglichkeit.  

Da in der ATAC-seq Analyse mehr zugängliche Chromatinregionen in ALT gefunden 

wurden, habe ich Inhibitorwirkungen gegen EZH2, das für die repressive H3 Lysin 23 

Dreifachmethylierung verantwortlich ist, und Methylasen mit ALT-spezifischen Effekten auf 

Zellviabilität korreliert. Weiterhin habe ich ein anderes epigenetisches Charakteristikum von 

ALT, das chromosomenweite Auftreten von H3.3S31p während der Mitose, mit 

verschiedenen Inhibitoren untersucht. Meine Experimente konnten zeigen, dass die Kinase 

HASPIN für das erwähnte H3.3S31p Signal verantwortlich ist. Diese Kinase ist Teil des 

Chromosomentrennungsmechanismus und verknüpft daher genetische Instabilität in ALT mit 

Signalwegen, die während der Mitose durch DNA-Schäden aktiviert werden. 

Die Erkenntnisse dieser Dissertation zeigen, das ALT-Aktivität in primären Tumorzellen 

heterogen ist. Die „Multi-Omics“ Analyse zeigt signifikante Unterschiede bezüglich 

Transkriptom, Chromatinzugänglichkeit, und miRNA Expression auf. Weiterhin ergibt sich 

eine ALT-Signatur, mit der sich ALT aufgrund der vorhergenannten Daten identifizieren lässt. 

Die Korrelation zwischen Viabilität und ALT-Aktivität nach EZH2- und DNA-Methylase-

Inhibition, sowie die HASPIN-abhängigen Änderungen im H3.3S31p Signal während der 

Mitose deuten auf ALT-spezifische, epigenetische Charakteristika hin. Diese könnten in 
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zukünftigen präklinischen Studien zur Patientenstratifikation und Entdeckung neuer, ALT-

spezifischer pharmazeutischer Wirkungsmechanismen genutzt werden. 
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Introduction 

1 Telomere structure and maintenance 
Telomeres, the ends of the linear chromosomes, need to be protected from being 

recognized as a double-stranded break by the cell’s DNA repair machinery. This is avoided by 

shelterin proteins, which hide the exposed 3’ end of the telomere into an upstream telomeric 

repeat and forms the T-loop (1). Another impact of linear genomes is the end-replication 

problem (2). Due to the necessity of RNA primers for replicating the lagging strand, the most 

distal 3’ end will not be replicated entirely. Dividing cells, therefore, experience 50-200 bp 

telomere loss upon each completed replication cycle (3). As a cell continues to divide, 

telomeres will reach a point where they cannot form T-loops, shelterin proteins lose their 

binding to telomeres, and DNA repair processes will recognize the exposed 3’ end. This forces 

the cells into a replicative crisis, whereby senescence and cell death processes will keep this 

cell from proliferating (4). Hence, differentiated somatic cells experience progressive 

telomere erosion, forcing somatic cells to rely on telomere elongation during embryogenesis 

by the telomerase holoenzyme (5). Some cells can incur mutations to escape replicative crisis 

and may further progress into cancer. To this end, most cancers simply reactive telomerase 

and maintain replicative immortality (6). Still, it was noted early in the 1990s that some 

cancers had no detectable telomerase activity and employed a telomere maintenance 

mechanism (TMM) that was eventually termed the alternative lengthening of telomeres (ALT) 

(7). As our collective knowledge increased, it was established that ALT is a complex 

phenomenon through which telomere stress and DNA repair cooperate in telomere extension 

(8). 
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1.1 Telomeres in a physiological setting 

Human telomere sequences consist of repeats of the TTAGGG hexamer, where 

telomere lengths in newborn skin and blood cells are around 10 kb (9). The telomere length 

decreases to around 7 kb in similar tissues in elderly people (10). Due to the end-replication 

problem, telomeres contain a single-stranded 3’ overhang (2). The shelterin complex conceals 

this exposed end by first forming a partial strand separation in the so-called displacement-

loop (D-loop) upstream of the 3’ overhang (Figure 1)(1). As the telomere folds back into a T-

loop, the exposed 3’ invades the double-stranded telomere repeat regions and form a D-loop 

stabilized by the shelterin proteins (1). This complex is comprised of TRF1 and TRF2, which 

bind the double-stranded telomeric sequences. In addition, POT1 binds the single-stranded 

3’ telomeric overhang, followed by recruitment of TIN2 and TPP1, which binds TRF1 and TRF2. 

Lastly, the Rap1 protein stabilizes the complex by binding to TRF2, and the T-loop is formed 

by linking all these components (1). The shelterin complex is essential to cell viability, and 

without its function, each telomere end would activate the DNA damage kinases ATM/ATR 

(11). This is seen in cells undergoing replicative crisis, where the telomere reaches a critically 

short length, at which point T-loop formation is impossible.  

Figure 1. Shelterin proteins bridge telomere 3’ overhangs to avoid activation of DNA damage 
sensing pathways. The shelterin proteins form the displacement loop (D-loop), which the 
exposed 3’ telomere end is concealed into. The entire structure of the D-loop and subsequent 
telomere strand looping is called the T-loop. 
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The replicative crisis is believed to occur when telomeres shorten below 4-6 kb (12). 

When the exposed telomere is recognized by DNA damage signaling pathways, the cells 

undergo apoptosis or senesce via p53 and RB (13). Like all repetitive elements, telomeres are 

genetically fragile sites, meaning they are susceptible to DNA damage (14). Furthermore, non-

B-DNA structures called G-quadruplexes can form from the G-rich telomere strand, which 

impedes the replisome and causes replication fork collapse. This is resolved by numerous 

specialized helicases, such as WRN, BLM, and ATRX (15-17), and in their absence, failure to 

solve replication fork collapse leads to DNA damage (18). Telomeres may also be more 

sensitive to DNA base damage, such as the formation of 8-oxoguanine from reactive oxygen 

species, although it is unknown why (19). The shelterin proteins mediate telomeric DNA 

repair, which strictly orchestrates specific DNA repair pathways depending on the DNA 

damage in question (20). The shelterin proteins are also believed to actively inhibit non-

homologous end joining to avoid accidental telomere end-joining (21), and show a general 

preference towards homologous recombination (HR), and excision repair pathways (22). 

1.2 Telomere extension in human cells 

Telomere elongation mainly occurs during embryogenesis in embryonal stem cells, 

where the reverse transcriptase telomerase is activated and extends the telomere repeats 

(23). Telomerase consists of a protein component called TERT, an RNA-component called 

TERC, and the DKC1 protein together with three small nucleolar RNA (snoRNA) (NHP2, NOP10, 

GAR1) (24). TERT functions as the reverse transcriptase, TERC as an RNA component that 

serves as a template, and the DKC1 protein with snoRNAs stabilizes telomerase and enhances 

DNA synthesis (18). Telomerase can only add around 50 bp telomere repeats per strand and 

cell cycle (25, 26), and thus any telomere erosion occurring faster than this will result in a net 

loss. For example, adult stem cells are distinct from embryonal stem cells in that they show 

gradual aging and exhaustion despite active telomerase (27). Additionally, other cells show 

signs of telomere extension, such as keratinocytes, germ cells, and actively proliferating B and 

T cells (28). Again, the active telomerase does not result in a net gain of telomere length (29). 

Therefore, it is likely that mesenchymal stem cells and cancer cells are the only known entities 

that show a net gain of telomeres to sustain their proliferation (28, 30).  
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1.3 Epigenetic state of the telomere 

Telomeres were initially thought to be in a heterochromatic state, with an enrichment 

of the repressive histone marks H3K9me3 and H4K20me3 (31). Furthermore, other telomere 

features, such as high nucleosome density (32), compact chromatin (33), and that repetitive 

elements are generally repressed (34), pointed towards a heterochromatic state. 

Nevertheless, telomeric chromatin may be much more dynamic than previously thought. A 

recent study was able to differentiate between internal telomere sequences (ITS) from actual 

telomere repeats and compared ChIP-seq data from primary and embryonal cells. ITSs are 

telomeric repeats outside the telomere and are considerably enriched in the telomere 

adjacent regions called subtelomere. These telomeric sequences, however, may be 

differently regulated than actual telomeres (35). By distinguishing between ChIP signals from 

telomeres and ITS more carefully, the authors found a bivalent state of telomeric chromatin, 

comprising both euchromatic and heterochromatic marks (36). As such, it is worth noting that 

the epigenetic state of physiological telomeres is still debated. Since telomeres are more 

euchromatic during pluripotency (37), it is duly possible that the epigenetic state of telomeres 

depends on cell-specific circumstances. Future research built on telomeric capture strategies 

from the above-mentioned study will undoubtedly be informative in settling this question.  

1.4 The relationship between subtelomere and telomere 

The telomere sequences do not abruptly stop at a given locus, but rather the telomeric 

repeats are gradually more interspersed with other genetic elements (including coding genes 

such as ISG15) in a transition state called the subtelomere (35). The subtelomere is a 

genetically diverse region, both between different chromosomes and individuals (35). The 

subtelomere is also associated with innate immunity. For example, ISG15 (an interferon-

induced protein) is upregulated upon telomere shortening and causes inflammation (38). This 

indicates that short telomeres may induce pathways that are independent of T-loop loss. The 

process of telomere length affecting the subtelomeric region is called telomere position effect 

over long distance (TPE-OLD) (39), and consists of the telomere looping into the subtelomeric 

region. TERT expression is also connected to TPE-OLD, where again long telomeres repress 

TERT, and short telomeres allow its expression. This has been implicated explicitly in TERT re-

expression in actively proliferating T-cells (40) and could prove an essential mechanism for 

TERT expression in other tissues and cancer. Another critical feature of subtelomeres is the 
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high levels of CpG DNA methylation, the extent of which is ultimately associated with 

telomere length (41). Studies in patients with ICF syndrome, an immunodeficiency and 

developmental disease caused by mutations within DNMT3B and related DNA methylation 

proteins, have been enlightening in this case. These patients have hypomethylated 

subtelomeres and short telomeres (42). The telomere shortening mechanism has not been 

fully elucidated, but it is noted that high expression of the long non-coding RNA (lncRNA) 

TERRA may be involved (43). TERRA is transcribed from the subtelomeric region and may span 

into the telomeric sequences as well. Therefore, its length varies between 100 bp to 9 kb and 

includes telomeric and non-telomeric sequences (44). TERRA has been further implicated in 

having a diverse role in telomere maintenance (45), and can negatively regulate telomere 

length by forming telomeric R-loops, which cause replication stress (46, 47). 

1.5 ATRX/DAXX/H3.3 in a physiological setting 

The best-known mutations in ALT cancers are within the ATRX/DAXX/H3.3 deposition 

pathway (84). These proteins are instrumental in suppressing transcription from 

heterochromatic regions (85). While it is known that this complex is also associated with 

telomeres, its functions there are less clear. As described above, the heterochromatic state 

of the physiological telomere is debated, but it is clear that disrupting this pathway leads to 

telomere dysfunction (86-88). ATRX is a multifunctional chromatin remodeler of 260 kDa 

molecular weight (89). It was initially identified as commonly mutated within the rare X-linked 

alpha-thalassemia/mental retardation (ATR-X) syndrome (90). This syndrome consists of a 

complex disease spectrum, including intellectual disabilities, alpha-thalassemia, and 

developmental defects. ATRX mutations in this disease were mainly found in the ATRX-

DNMT3-DNMT3L (ADD) and helicase domains (Figure 3).  

Figure 2. ATRX domains and protein interaction regions. 
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The ADD domain is believed to be responsible for reading H3K4me2 and H3K9me3, 

where the latter interaction is essential for targeting ATRX to heterochromatic compartments 

in the genome in the absence of H3K4 methylation (91). Mutations within the helicase domain 

have been linked to resolving G-quadruplexes, as evidenced by alpha-thalassemia and 

mutated ATRX. In this case, G-rich sequences above the α-globin gene can form G-

quadruplexes that impede this gene's expression (92, 93). ATRX contains EZH2 and HP1 

binding domains that are important for maintaining facultative and constitutive 

heterochromatin (84, 94). The EZH2 binding site has proven crucial for X-inactivation, where 

ATRX binds both the lncRNA XIST and the PRC2 complex to form facultative heterochromatin 

on the inactive X-chromosome (95, 96). The HP1 binding site is believed to target ATRX to 

heterochromatin (97). Within the N-terminal region of ATRX, there is an additional tentative 

binding site to a histone variant called macroH2A (98); however, in this instance, ATRX is 

believed to regulate macroH2A on G-rich regions negatively. Although the exact mechanism 

is unclear, replacing macroH2A from telomeres with H3.3 may resolve G-quadruplexes (99). 

The chromatin remodeling activities of ATRX lie in the SNF2 ATPase domain and helicase 

domain (84). These cooperate with the abovementioned protein interaction sites to properly 

integrate H3.3 into chromatin, and the latter domain is believed to confer identification and 

binding to G-quadruplexes (100). Lastly, towards the C-terminal end of the protein, two 

interaction sites for MECP2 and PML were identified, respectively (101, 102). MECP2 is crucial 

for neuronal development, and its general function concerns repressing genes with DNA 

methylation and is also involved in X-inactivation (103, 104). The MECP2 binding function of 

ATRX has been explicitly implicated in causing intellectual disabilities for patients with ATR-X 

syndrome (89). In this instance, lack of ATRX-MECP2 binding may lead to dysfunction in neural 

progenitors and thus affects neurodevelopment (105). The interaction site with PML connects 

ATRX to various processes, including virus repression (106, 107) and heterochromatin 

function (108). In the middle of the ATRX protein lies the DAXX interaction domain, which is 

essential in depositing H3.3 (84).  

DAXX was initially identified as a FAS receptor ligand (109). Its function has since been 

implicated in many different pro-apoptotic processes, where one finding was that DAXX is 

recruited to the PML nuclear body to promote apoptosis (110). Still, its role as an H3.3 

chaperone is the most important in this context (111). H3.3 is a histone variant that only 
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differs from canonical H3 by 4/5 amino acids and is expressed from the H3F3A and H3F3B 

locus irrespective of replication (112). H3.3 is deposited onto euchromatic regions via HIRA 

and to heterochromatic and telomeric regions via ATRX/DAXX (112) (see Figure 4). The former 

process is critical for actively transcribed genes and regulatory elements and the latter for 

repressing heterochromatic regions and maintaining telomere stability (113). 

Figure 3. Deposition of the H3.3/H4 dimer by the ATRX/DAXX proteins onto repetitive regions 
and by the HIRA/UBN1/CABIN proteins onto regulatory elements and active genes and 
promoters. Figure adapted from (112). 
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As previously mentioned, H3.3 shows a high degree of homology with canonical H3. 

The unique S31 residue can be phosphorylated, whilst the other amino acids are chaperone 

motifs significant for DAXX or HIRA binding (112). During mitosis, H3.3S31p is localized to the 

pericentromeric region (114). This phosphorylation may have various functions, such as 

inducing gene expression pathways in cell differentiation (115), resolving UV damage during 

replication (116), and inducing cell death when chromosomes are missegregated (117).  

 

2 Telomere maintenance mechanisms in cancer 

2.1 Cancer telomere maintenance mechanisms 

Most cancer cells employ telomere maintenance mechanisms (TMM) to elude 

replicative crisis. Approximately 90 % of all cancer entities show signs of telomerase activity, 

and about 10 % use the ALT mechanism (48). An exception is the ever-shortening telomere 

(EST) phenotype found in some neuroblastomas (49), which can spontaneously regress due 

to lack of TMM (50, 51). ALT is overrepresented in cancers of mesenchymal origin, namely 

soft tissue, nervous system, and bone cancers (48). It is still unclear why, as previously stated, 

mesenchymal stem cells are the only somatic cells that have a net gain TMM via telomerase 

(28, 30). However, this could indicate that these cells are not constrained by specific 

differentiation processes occurring in other cancers (48). ALT presence has a profound impact 

on long-term survival depending on the tumor entity. For example, ALT-positive 

neuroblastomas show low overall survival irrespective of initial tumor grading (52). On the 

other hand, ALT adult gliomas show a more favorable prognosis (53). As such, ALT presence 

can confer prognostic capabilities depending on the tumor entity. Intriguingly, immortalized 

cell lines show a high degree of ALT as well (54). There appears to be no common link between 

immortalization strategies, e.g., SV40 transduction or spontaneous transformation.  

2.2 Telomere maintenance mechanism as a therapeutic target 

The TMM has long been thought of as a golden-bullet strategy for specific cancer 

drugs. Telomerase represents a specific target that can be inhibited by various means, yet so 

far, no anti-telomerase drug has excited clinical trials successfully (55). There may be various 

reasons, such as the presence of telomerase in, e.g., stem cells and keratinocytes lowering 

therapeutic tolerance for patients and noncanonical functions of telomerase itself (56). There 
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is also additional concern that targeting telomerase may instead lead to the emergence of 

ALT cancer populations. It has been shown that both TMMs can coexist within one given 

cancer population in vitro (57, 58) and in vivo (59). As such, any TMM drug would need to 

target both telomerase and ALT. However, druggable targets of ALT are currently lacking. 

Even if one could successfully interrupt the TMM, it is questionable if these cancers would 

reach replicative crisis before killing the patient. A back-of-the-envelope calculation of a 10 

kb telomere shows that the cells can continue growing for about 60 population doublings. 

This assumes that crisis occurs at 4 kb telomere length, with telomere attrition at 100 bp per 

division. Assuming no cells die, 5.5·1017 cells can be formed from one clone with no active 

TMM. Assuming cells weigh one nanogram (60), this would create a theoretical maximum of 

a 500,000-kilo tumor from one single cell. While this is obviously an oversimplification, it 

shows that even if the TMM is inhibited, the cancers may grow long before entering 

replicative crisis. In parallel, neuroblastomas that regress spontaneously are not wholly 

dependent on short telomeres but rather work in conjunction with immune clearance, growth 

factor deprivation, and DNA methylation (51). Taking inspiration from this, any TMM 

therapeutic would most likely be a combinatorial treatment. For example, by inhibiting both 

TMMs and using compounds that actively shorten telomeres in fast-dividing cells. The latter 

option could consist of G-quadruplex stabilizers that create DNA damage in both ALT and 

telomerase-positive cancers (61, 62). However, to get to this stage, we must further our 

knowledge in ALT to find druggable targets or susceptibilities inherent to ALT.  

2.3 ALT mechanistic details 

The ALT mechanism is dependent on replication stress which drives recombination 

(63). An overview of all of the ALT hallmarks and their biological background is seen in Table 

1. Mutations within ATRX/DAXX, the introduction of telomere variants, and R-loops from 

TERRA exacerbate the replication stress already inherently present in telomeres (63). 

Mutations within the ATRX/DAXX/H3.3 deposition axis will be discussed further in section 2.4 

(75, 76). Telomere variants, such as TCAGGG and TGAGGG, are introduced by mutagenesis 

and are a common feature in ALT (63, 77). They reduce shelterin binding and might elicit 

aberrant DNA repair processes that would typically be suppressed. The variants can also 

directly mediate binding by nuclear receptors, which aggravates replication stress (78). TERRA 
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also contributes to replication stress, perhaps by forming DNA:RNA hybrids (R-loops) which 

hinder polymerases and DNA repair proteins (46). 

Table 1. Hallmarks of ALT. 

 

It was recently shown that two distinct homologous recombination (HR) mechanisms 

are present in ALT cancer cells (Figure 2). These consist of break-induced replication (BIR) 

pathway, which is mainly active in G2/M (79), and the mitotic DNA synthesis (MiDAS) pathway 

during mitosis (80, 81). The BIR pathway has been known in yeast model systems for decades, 

though its role in telomeric human DNA repair was only recently elucidated (79). As the 

telomere experiences double-stranded breaks from replicative stress, it likely undergoes 

recombination with other telomeres in specialized nuclear compartments termed ALT-

associated PML bodies (APBs). The APBs contain factors critical for HR and DNA damage 

response (e.g., RAD52) (69, 82).  

Hallmark Readouts Biological background 
Aberrant H3.3S31p H3.3S31p IF Chromosome-wide staining 

of the usually centromeric 
mitotic H3.3S31p. Unclear 
background (64) 

APB IF of PML colocalization with 
telomere FISH signal 

Proposed active sites of 
telomeric recombination 
(65) 

C-circles Amplification of C-rich 
extrachromosomal telomere 
repeats 

Proposed byproduct and/or 
template  for ALT  telomere 
extension (48, 66) 

G-quadruplexes  Fluorescent G-quadruplex 
ligands/BG4 antibody at 
telomeres 

Induces replication stress, 
especially in the ALT context 
(17, 67) 

High TERRA levels TERRA FISH signal or qPCR May be induced by short 
telomeres (45) 

Long telomeres Telomere signal from FISH, 
qPCR, or sequencing 

General features of ALT 
recombination (68) 

Non-S Phase DNA synthesis IF of arrested cells with 
BrdU, amongst other 
specialized methods 

BIR/MiDAS is active outside 
S-phase (69, 70) 

Telomere dysfunction 
induced foci 

IF of 53BP1 and  γH2AX with 
telomere FISH 

DNA damage at telomeric 
foci (71) 

Telomere sister chromatid 
exchange 

Chromosome oriented 
telomere FISH 

A general feature of ALT 
recombination (72) 

Telomere variants Sequencing, variant FISH 
probes 

Mutagenic byproduct 
possibly from BIR (73, 74) 
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Figure 4. Possible mechanism of ALT telomere recombination. Adapted from (69). 

 

The damaged telomere is elongated via BIR using the healthy telomere as a template. 

ALT BIR consists of two processes that are either dependent on RAD52 or independent, where 

the latter process is believed to generate circular C-rich extrachromosomal telomere repeats 

(C-circles). C-circles are currently the best quantifiable markers of ALT-activity (66), and as 

such, the RAD52 independent pathway may be more critical. An alternative model for the 

generation of C-circles is the sporadic release of telomere-internal single-stranded loops upon 

damage or telomere processing (83).  It is not known whether both BIR and MiDAS can drive 

ALT recombination, if at all. One functional consequence of BIR, which is more mutagenic 

than other HR pathways (74), could be telomere variants. While many questions remain 

regarding the ALT recombination mechanism, it is evident that many different factors cause 

replication stress which then drives DNA damage at telomeres. The damage is resolved by 

different HR pathways, which in turn elongate the ALT telomere.  

2.4 ATRX/DAXX/H3.3 mutations in ALT 

ATRX and, to a lesser extent, DAXX are recurrently mutated in ALT cancers (84). 

However, their many functions make it difficult to answer why they act as ALT suppressors. 

ATRX/DAXX mutations generally tend to lead to loss of expression (84). Whilst DAXX 

mutations are only found in a specific tumor entity, ATRX mutations are found throughout 

ALT cancers (84, 109, 118). As such, research has been mainly focused on the connection 
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between ALT and ATRX. Studies elucidating this link saw that loss of ATRX by itself causes 

extensive genome instability (119, 120). Reintroducing functional ATRX in ALT cell lines leads 

to suppression of ALT, perhaps by resolving G-quadruplexes and replication stress (93). 

Another study indicated a central role in replacing macroH2A with H3.3 at telomeres, 

whereby macroH2A accumulation causes replication stress and DNA damage (121). 

Therefore, it appears that ATRX disruption drives the replication stress that is fundamental to 

ALT extension.  

H3.3 is a common mutation in pediatric brain cancers, and these mutations are almost 

entirely found in the same cancers (76). Therefore, its relevance to ALT is unclear. The two 

H3.3 mutations concern amino acid substitutions at K27 and G34, located in the histone tail 

(122). The first mutation leads to a methionine (M) substitution in K27 and profoundly alters 

the global H3K27me3 distribution (123). While the exact mechanism is still debated, 

especially concerning ALT, the K27M mutant probably sequesters the PRC2 complex that 

forms the repressive H3K27me3 (123, 124). Thereby, introducing the K27M mutant changes 

gene expression associated with many different cancer pathways (123, 125). The second 

mutation encodes an amino acid switch from G34 to lysine (K) or arginine (R). The G34V/R 

substitution is less characterized, but it is probable that it restricts neighboring H3K36me3 by 

inhibiting SETD2 binding (126). Some evidence also suggests that G34V/R inhibits PRC2 

binding to H3K27 in a manner distinct from K27M mutants (127). Altogether, both H3.3 

mutants change the epigenetic landscape that appears to be integral for driving pediatric 

brain cancers.  

3 Scope of the thesis 
Telomere maintenance mechanisms are a key feature of cancer cells and an attractive 

therapeutic target promising cancer specificity with few side effects. Cancer cells can either 

express the reverse transcriptase TERT or induce a recombinational process called Alternative 

lengthening of telomeres (ALT) (48). Much work has been done on targeting telomerase in 

cancers, yet no anti-telomerase therapeutic has excited clinical trial successfully (55). 

Furthermore, cell line models have also shown that targeting telomerase may lead to the 

emergence of ALT-positive clones (128, 129). In theory, this means that any successful 

treatment regimen for TMM must target both telomerase and ALT pathways. As no ALT-
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specific drug exists, there is a critical need for understanding mechanistic implications of ALT 

and what susceptibilities are introduced in these cancers. ALT presence is confirmed by 

cytidine-rich extrachromosomal telomere repeats (C-circles), exclusively found in ALT cancers 

(66). C-circles are byproducts of telomere recombination (8), and thus represent ALT-activity 

as well. Mutations within the repeat repressors ATRX/DAXX are overrepresented in ALT (84). 

While many studies have focused on the telomere-specific effects of this pathway, and indeed 

so has most other ALT-related research, it is vital to understand how the general chromatin 

environment cooperates in promoting ALT. In this thesis, I investigated three main areas of 

ALT research. (i) ALT-activity in sarcoma biopsies. (ii) Molecular features of ALT from different 

sequencing-based readouts and their integration into an omics signature. (iii) Inhibiting 

epigenetic marks in ALT cell lines using drugs.  

To address these questions, I performed a C-circle screen of more than 600 mixed-

lineage sarcoma samples. The resulting analysis showed that ALT-activity is heterogeneous. 

Next, by assembling a heterogeneous ALT cell line panel, I performed small and long RNA-seq 

together with ATAC-seq. ALT presence was found in chromatin accessibility, gene expression, 

and miRNA expression. Increased chromatin accessibility was driven by TFs within the AP-1 

and RUNX family, whilst decreased accessibility was linked to SOX TFs. The upregulated 

miRNAs 138/142 could explain the lower activity of SOX4, whereas the downregulation of 

miR-218 could increase RUNX1 activity. Upregulated ALT genes had enrichment of immune-

related TFs, which may be indicative of inflammation. GO-term analysis revealed that 

developmental genes were both up and downregulated, whereas pathway analysis further 

saw the presence of angiogenesis and activin/inhibin signaling. By integrating ATAC and 

transcriptome, the putative ALT biomarkers BRSK2 and NFATC2 could be found. Additionally, 

by performing multi-omics integration, an ALT signature could be extracted. Lastly, by testing 

different compounds in terms of cell viability, it was found that disrupting H3K27me3 and 

DNA methylation led to differences in viability relating to ALT activity. ALT cell lines with a 

high ALT activity were more sensitive to H3K27me3 inhibition but more resistant to DNA 

methylation inhibition. 

In conclusion, this thesis characterized three areas that are vital for current and future 

ALT research. ALT cancers have a very heterogeneous ALT activity, which needs to be 

accounted for when identifying common features. Nevertheless, different omics readouts 
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could be correlated with the presence of ALT in a cell line panel. ALT specific features included 

specific TF families as well as deregulated pathways. Additionally, integrating the different 

omics could be used to define a multi-omics ALT signature. Lastly, inhibiting repressive 

epigenetic modifiers revealed some correlation between cell viability and ALT activity.  
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Materials and Methods 

1 Materials 

1.1 Kits  

Kit Reference number Company 
Bioanalyzer high sensitivity 
DNA kit 5067-4626 Agilent Technologies, USA 

CellTiter Glo G7571 Promega, USA 
Clarity western ECL blotting 
substrate 1705061 Bio-Rad, USA 

MinElute PCR purification Kit 28004 QIAGEN, Germany 
MODified histone peptide 
array 13005 Active-Motif, USA 

NEBNext HF 2X PCR master 
mix  M0541S New England Biolabs, USA 

NEBNext multiplex oligos for 
Illumina E7500S, E7780S New England Biolabs, USA 

NEBNext multiplex small RNA 
library prep set for Illumina E7560, E7580 New England Biolabs, USA 

NEBNext rRNA depletion kit E6310X New England Biolabs, USA 
NEBNext ultra II RNA library 
prep kit for Illumina E7770L New England Biolabs, USA 

phi29 DNA polymerase kit M0269S ThermoFisher Scientific, USA 
QuBit dsDNA HS assay kit Q32851 New England Biolabs, USA 
SP NucleoSpin kit 740971.50 Macherey-Nagel, Germany 
TeloTAGGG telomere length 
assay 12209136001 Merck, USA 

 

1.2 Reagents and chemicals 

Compound name Reference number Company 
0.4 % tryphan blue  T13001 Logos Biosystems, South Korea 
5-azacytidine S1782-1ML Selleckchem, USA 
Agencourt AMPure XP  A63881 Beckman Coulter, USA 
Agencourt RNACLEAN XP A63987 Beckman Coulter, USA 
AZD7648 S8843-5MG Selleckchem, USA 
BIBR-1532 S1186 Selleckchem, USA 
BSA 20 mg/ml B9000S New England Biolabs, USA 
CC1 pan-kinase inhibitor N266A Promega, USA 
cGAMP tlrl-nacga23-02 InvivoGen, USA 
Colcemid in HBSS D1925-20ML Sigma-Aldrich, USA 
CP2 cyclic peptide S8601-1MG Selleckchem, USA 
CX-5461 18392-5MG Cayman Chemicals, US 
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DAPI 62248 ThermoFisher Scientific, USA 
DIG easy hyb granules 11796895001 Roche, Switzerland 
DMSO D2650-100ML Sigma Aldrich, USA 
dNTP mix  R0191 ThermoFisher Scientific, USA 
Epredia EZ double cytofunnel A78710005 ThermoFisher Scientific, USA 
Falcon 70 µm cell strainer 352350 Corning, USA 
G10 S8954-5MG Selleckchem, USA 
GSK343 2281-5MG BioVision, USA 
IKK-16 S2882 Selleckchem, USA 
ImmEdge hydrophobic barrier 
PAP Pen H-4000 Vector Laboratories, USA 

KU-55933 S1092 Selleckchem, USA 
LDN-192960 S3406-5MG Selleckchem, USA 
LUNA cell counting slides L12001 Logos Biosystems, South Korea 
LY2603618 (rabusertib) S2626-5MG Selleckchem, USA 
MLN8237 S1133-5MG Selleckchem, USA 
NEBNext multiplex oligos for 
Illumina (dual index primers) E7780S New England Biolabs, USA 

Phosphatase inhibitor cocktail 1862209 ThermoFisher Scientific, USA  
Pierce 16% Formaldehyde 
methanol-free 28908 ThermoFisher Scientific, USA 

Pierce 96-well polystyrene plates, 
white opaque 15042 ThermoFisher Scientific, USA 

ProLong Diamond antifade 
mountant P36965 ThermoFisher Scientific, USA 

ProLong Gold antifade mountant 
with DAPI P36931 ThermoFisher Scientific, USA 

Propidium iodide  P3566 ThermoFisher Scientific, USA 
QuBit assay tubes Q32856 ThermoFisher Scientific, USA 
Roti-Nylon plus 0.45 µM K058.1 Carl Roth, Germany 
RU.521 inh-ru521 InvivoGen, USA 
Shandon Cytoslide 5991056 ThermoFisher Scientific, USA 
Shandon filter cards 5991022 ThermoFisher Scientific, USA 
SYBR green S7536 ThermoFisher Scientific, USA 
Tn5 tagmentase 15027865 Illumina, USA 
Tn5 tagmentase buffer 14027866 Illumina, USA 
ZM44739 S1103-5MG Selleckchem, USA 

 

1.3 Buffers 

Buffer Composition 

Annexin V binding buffer (1X) 10 mM HEPES, 2.5 mM CaCl2, 140 mM NaCl, 
dissolved in PBS (1x) 

Hypotonic cell swelling buffer (KCl, 1X) 100 mM KCl dissolved in PBS (1x) 

PBS (pH 7.4, 20X) 7 mM KCl, 1.7 mM KH2PO4, 137 mM NaCl 
10 mM Na2HPO4 
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SSC (20X) 3 M NaCl, 0.3 M C6H8O7Na3. pH 7 

KCM buffer 120 mM KCl, 20 mM NaCl, 10 mM Tris-HCl 
pH 7.5, 0.5 mM EDTA, 0.1 % Triton 

 

1.4 Antibodies  

Antibody Reference number Company Dilution 
Anti-H1 (mouse) 05-457 Merck, USA 1:5000 
Anti-H3.3S31p (rabbit) 39637 Active Motif, USA 1:100 
Anti-CENP-A (mouse) ADI-KAM-CC006-E Enzo Life Science, USA 1:250 
Goat anti-mouse alexa 
Fluor 488 A11029 ThermoFisher Scientific, USA 1:250 

Goat anti-rabbit alexa  
Fluor 488 Ab150077 Abcam, UK 1:250 

Goat anti-rabbit alexa  
Fluor 568 A11036 ThermoFisher Scientific, USA 1:250 

Anti-mouse IgG HRP 
linked antibody #7076 Cell Signaling, USA 1:2000 

 

1.5 Cell culture reagents 

Medium/supplement Reference number Company 
Amniopan complete medium  P04-70100 PAN-biotech, Germany 
Cryo-SFM C-29910 Promocell, Germany 
DMEM high glucose, pyruvate, no 
glutamine, no phenol red 31053028 ThermoFisher 

Scientific, USA 
DMEM low glucose, pyruvate, no 
glutamine, no phenol red 11880036 ThermoFisher 

Scientific, USA 
Fetal bovine serum (FBS) Standard P30-3306 PAN-biotech, Germany 
L-glutamine P04-80100 PAN-biotech, Germany 
Penicillin-Streptomycin P06-07050 PAN-biotech, Germany 
Trypsin  P10-023100 PAN-biotech, Germany 

 

1.6 Primers 

Primer name Sequence 
Intronic POU5F1 forward primer  TTGGCTCTGGACCTTATCCC 
Intronic POU5F1 reverse primer TTCCATCACTGGCTCGTAGC 
ND4 forward primer  ACAAGCTCCATCTGCCTACG 
ND4 reverse primer  TTATGAGAATGACTGCGCCG 
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1.7 Instruments 

 

1.8  Software 

Software Version Reference 
Array analysis software 16.1 (130) 
Ataqv 1.1.1 (131) 
Bamtools 2.5.1 (132) 

BEDTools 2.29.2 (nf-core atacseq), 
 2.30.0 (system) (133) 

Bowtie1 1.2.3 (134) 
BWA 0.7.17-r1188 (135) 
Deeptools 3.4.3 (136) 
FASTQC 0.11.9 (137) 
FASTX 0.0.14 (138) 
FeatureCounts 2.0.1 (139) 
FlowJo 10.8.0 (140) 
GraphPad 9.2.0 (141) 
HOMER 4.9 (142) 
IGV 2.9.4 (143) 
ImageLab 6.1 (144) 
JAVA 11.0.9.1 (145) 
MACS2 2.2.7.1 (146) 
MiRDeep2 2.0.1.2 (147) 
Mirtop 1.2 (148) 
mirtrace 1.9 (149) 
MultiQC 1.9 (150) 
NF-core 20.10.0 (151) 

Instrument Company 
Andor Dragonfly 500 Oxford Instruments, UK 
Bio-dot apparatus Bio-Rad, USA 
Chemidoc XRS+ Bio-Rad, USA 
DMI6000 TCS SP5 Leica Microsystems, Germany 
HiSeq 2000 Illumina, USA 
HiSeq 4000 Illumina, USA 
LSRFortessa II Becton, Dickinson and Company, USA 
Luna cell counter Logos Biosystems, South Korea 
NovaSeq 6000 Illumina, USA 
Qubit 4.0 ThermoFisher Scientific, USA 
Shandon Cytospin 2 ThermoFisher Scientific, USA 
Shandon Cytospin 4 ThermoFisher Scientific, USA 
StepOnePlus real-time PCR system ThermoFisher Scientific, USA 
T100 thermal cycler Bio-Rad, USA 
Tapestation 2200 Agilent Technologies, USA 
Tecan Infinite M200 Tecan, Switzerland 
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NF-core atacseq 1.2.1 (152) 
NF-core smrnaseq (modified) 1.1 dev (153) 
Picard 2.23.1 (154) 
Pysam 0.15.3 (155) 
Python 3.8.2 (156) 

R 
3.6.2 (NF-core atacseq),  
3.6.3 (NF-core smrnaseq),  
4.0.2 (system) 

(157) 

RSEM 1.3.0 (158) 
RSeQC 2.6.6 (159) 
RStudio Server 1.4.1717 (160) 

Samtools 1.9 (NF-core smrnaseq), 
1.8 (RNA-seq pipeline) (161) 

SortMeRNA 2.1 (162) 
STAR 2.5.3 (163) 
Trim Galore! 0.6.4_dev (164) 

 

1.9 R-packages 

Package Package version Reference 

BiocManager 3.12 https://cran.r-
project.org/web/packages/BiocManager/ 

ChIPseeker  1.26.0 (165) 
DEseq2 1.30.1 (166) 
EnhancedVolcano 1.8.0 (167) 
GenomicRanges 1.42.0 (168) 
ggplot2 3.3.3 (169) 
ggpubr 0.4.0 (170) 
ggrepel 0.9.1 (171) 
Limma 3.46.0 (172) 
magrittr 2.0.1 (173) 
MOFA2 1.1.15 (174) 
Msigdbr 7.2.1 (175) 
Org.Hs.eg.db 3.12.0 (176) 
PCAtools 3.13 (177) 
RColorBrewer 1.1.2 (178) 
reticulate 1.18.9007 (179) 
Rsubread 2.4.2 (180) 
rtracklayer 1.50.0 (181) 
Tidyverse 1.3.0 (182) 
TxDb.Hsapiens.UCSC.hg3
8.knownGene 3.10.0 (183) 
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1.10 External data sources 

Database Version Reference 
ENSEMBL gene annotation 
version 94  94 http://ftp.ensembl.org/pub/

release-94/ 
ENSEMBL regulatory build 
for GRCh38 20210107 (184) 

Human reference genome 
index GRCh38 GRCh38 

https://www.ncbi.nlm.nih.g
ov/assembly/GCF_0000014
05.26/ 

Mirbase  22 ftp://mirbase.org/pub/mirb
ase/CURRENT/ 

MSigDB V6.0.C5 

https://software.broadinstit
ute.org/cancer/software/gs
ea/wiki/index.php/MSigDB_
v6.0_Release_Notes 

piRNAdb 1.7.6 homo sapiens 

https://www.pirnadb.org/d
ownload/downloadarchive/
pirna/piRNAdb.hsa.v1_7_6.f
a.zip 

Repeat masker  4.1.2 
https://www.repeatmasker.
org/RepeatMasker/Repeat
Masker-4.1.2-p1.tar.gz 

TelNet database N/A (185) 
 

2 Cell culture 
An overview of the cell line and growth conditions can be found in Table 2. Cal72, 

U2OS, Saos2 were purchased from DSMZ (Braunschweig, Germany). HOS and MG.63 were 

purchased from CLS Cell line services GMBH (Eppelheim, Germany). Pediatric glioblastoma 

cell lines were a kind gift from Prof. Stefan Pfister (DKFZ, Heidelberg, Germany). ATRX 

knockout cell lines (NEM168 ATRX KO clone B5 and F2) were generated previously in the lab 

by Dr. Inn Chung. Cell line identity was verified by single nucleotide polymorphism profiling 

(Multiplexion GmbH, Germany) and regularly tested for mycoplasma contamination with 

VenorGeM Advance. Cells were cultured at 37 °C with 5 % CO2, split by washing flasks with 

PBS twice, and by dissociation with trypsin. Flasks were agitated every 2 minutes, and 

detachment was visually confirmed with a brightfield microscope. Trypsin was deactivated 

using 3x complete medium. Media were kept at 4 °C for a maximum of three months for 

DMEM based medium and two months for Amniopan.  
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Table 2. Cell line growth condition. 

Tumor entity Cell lines Growth condition Cryopreservation 

Osteosarcoma U2OS, Saos2, 
MG.63, Cal72, HOS 

Low glucose DMEM, 10 % FBS, 
2 mM L-glutamine, 100 µg/ml 
penicillin/streptomycin 

20 % DMSO, 20 
% FBS, 60 % 
medium 

Pediatric 
glioblastoma 

KNS42, MGBM1, 
SF188 

High glucose DMEM, 10 % 
FBS, 2 mM L-glutamine, 100 
µg/ml penicillin/streptomycin 

20 % DMSO, 20 
% FBS, 60 % 
medium 

Pediatric 
glioblastoma 

NEM157, NEM165, 
NEM168, NEM168 
ATRX -/- clones B5 
and F2 

Amniopan complete medium  Cryo-SFM 

 

3 C-circle screen of 688 mixed-lineage sarcomas 

3.1 C-circle amplification of sarcoma DNA samples and analysis 

Based on the initial protocol from Henson et al. (186), a quantitative C-circle assay was 

developed to analyze large sets of primary tumor samples. Genomic DNA was obtained from 

Dr. Priya Chudasama (NCT, Heidelberg, Germany), and C-circle assays were conducted with 

technical support from Caroline Knotz (Division of Chromatin Networks, DKFZ, Heidelberg, 

Germany). 688 mixed-lineage sarcoma DNA samples were obtained in H2O and stored at -80 

°C until amplification was performed. DNA content was first assayed using the QuBit 4.0 high-

sensitivity program, and samples were diluted to contain 20 ng DNA per reaction. Six samples 

were prepared per membrane, where three included polymerase (+Pol) and three without 

polymerase (-Pol), as well as a U2OS standard curve for sample signal extrapolation. Each 

sample contained 5.05 µL nuclease-free H2O, 0.1 M DTT, 2 µL phi29 buffer, 0.4 µL BSA, 0.2 µL 

10 % Tween-20, and 0.8 µL dNTP mix. Additionally, samples with polymerase had 0.75 µL 

phi29 polymerase, whereas the -Pol controls contained the same volume in nuclease-free 

water. This was added to the 10 µL sample, briefly vortexed, spun, and placed in a thermal 

cycler. The reactions were incubated for 8 h at 30 °C and then at 20 min at 65 °C. A Roti Nylon 

plus membrane was used for dot-blotting and was hydrated prior using 2X SSC diluted in PBS. 

Samples were prepared by mixing 40 µl 2X SSC and then blotted onto the membrane using a 

Bio-Dot apparatus. The membrane was then heated at 120 °C for 20 min and hybridized using 

TeloTAGGG telomere length assay kit following the manufacturer’s protocol. Membranes 

were pre-hybridized with 18 mL DIG easy hyb for 60 min at 42 °C, and the solution was 
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discarded. Meanwhile, 10 mL fresh DIG easy hyb was added together with 2 µL telomere 

probe. Hybridization was performed overnight at 42 °C, the membrane was washed in 

stringent wash buffer I, and incubated for 5 min at RT. The wash was done twice, and then 

the membranes were washed using stringent wash buffer II twice. These washes were done 

for 20 minutes at  50 °C. Membranes were then washed again using 1x SSC buffer for 5 min 

at RT and then blocked for 30 min at RT using the blocking solution provided in the kit. Anti-

DIG-AP was diluted 1:10000 in blocking solution, added, and incubated with the membranes 

for 30 min at RT. The membranes were then rinsed twice for 15 min at RT using 1x SSC buffer, 

and detection buffer was added to the membranes. This was placed in the dark for 5 min at 

RT, then discarded. Membranes were visualized using chemiluminescence in the Chemidoc 

High-sensitivity program. 10-40 images were taken over the course of 300 seconds, and the 

image which contained the longest exposure without oversaturation was chosen. 

Oversaturated images were used for creating masks in ImageLabs, and densitometric values 

were extracted. Each +Pol sample was normalized to the sample that lacked polymerase and 

background. Then, the +Pol signal was averaged for each sample, and the C-circle ratio 

relative to the U2OS standard was calculated. 

3.2 Data transformation and statistical testing 

The C-circle ratios were log2 transformed using the equation Y = Log2(𝑋𝑋 + 0.05) 

with 𝑋𝑋 being the untransformed C-circle ratio, and 𝑌𝑌 being the final transformed C-circle ratio. 

Fitting of the distribution to a sum of two Gaussians was performed with Graphpad Prism 

using nonlinear regression (curve fit) function. Mean, standard deviation, and other statistical 

metrics were obtained from this analysis and used to calculate the 10th and 90th percentile for 

ALT- and ALT+ populations, respectively. This was done by using the equation 𝑋𝑋 = µ +  𝑍𝑍𝑍𝑍, 

where  µ stands for the population mean, 𝑍𝑍 for the Z-score and 𝑍𝑍 as the variance. 𝑋𝑋 is defined 

in this case as the C-circle ratio where the nth percentile is contained within. 

4 Cell viability assays 

4.1 Luminescent cell viability assay  

Cells were dissociated and counted using a Luna Cell counter. Clear flat bottomed 96 

well plates were seeded for 24 h with 500 cells per well and 100 µL medium in total. Three 

wells per condition were reserved for medium only to account for background signal. Next, 
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cells were treated for six days at 37 °C and 5 % CO2. GSK343 was reapplied every third day 

due to heat instability. All treatment concentrations had equal amounts of DMSO, and the 

maximum DMSO concentration in the medium was below 0.2 %. Cell-Titer Glo, which 

measures cell viability by forming luminescence from ATP, was performed according to the 

manufacturer’s recommendations. Plates were equilibrated at RT for 20 minutes; meanwhile, 

lysis reagent was prepared using a 1:1 solution together with complete medium and 

equilibrated at RT for 30 min. The supernatant in the plate was flicked off, and 200 µL of 

lysis:medium mixture was added per well. The plate was then agitated using a plate shaker at 

600 RPM for 6 min. Wells were resuspended using a multichannel, with great care not to form 

bubbles. The samples were then transferred to an opaque white-walled 96-well plate and 

analyzed using a Tecan plate reader (luciferase program, integration time 1 ms). Each 

condition was averaged, and then the background signal was removed and normalized to 

DMSO controls for each cell line. EC50 values were calculated using the log inhibitor vs. 

normalized response function in Graphpad Prism.  

4.2 Cell death flow cytometry assay 

50,000 cells were seeded in a T-25 24 h prior and then treated with DMSO or 6 µL 

GSK343 for six days. GSK343 was reapplied every third day. The medium was collected 

together with trypsinized cells and spun at 300 x g for 5 min. 2 million cells were used per 

sample and resuspended in 1 mL Annexin binding buffer. Samples were kept on ice whenever 

possible and washed twice with ice-cold PBS. Samples were strained using a 70-micron cell 

strainer mesh and transferred to FACS tubes. 5 µL of Annexin V FITC and 10 µL of propidium 

iodide were added and incubated for 15 min RT in the dark. 400 µL Annexin binding buffer 

was added, and the samples were transported on ice and analyzed using a FORTESSA II in the 

DKFZ flow cytometry core facility. Each cell line contained single-stain controls for propidium 

iodide and Annexin V FITC for downstream compensation, and experiments without 50,000 

detected events were discarded. FlowJo was used for gating and fluorescence compensation, 

and % live versus dead was calculated in Excel. Dead cells were defined as any event that was 

positive for positive propidium iodide/FITC or both. Live cells were defined as propidium 

iodide and FITC negative.  
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5 Analysis of histone H3 phosphorylation at serine 31 

(H3.3S31p) during metaphase 

5.1 H3.3S31p antibody validation with histone peptide array 

To validate the specificity of the primary H3.3S31p antibody that was used in 

metaphase spreads (see section 5.2), the MODified histone peptide array was used. This array 

contains 384 combinations of histone modifications. This assays how combinations of histone 

modifications can impact primary antibody binding. It should be noted that the H3.3S31p 

peptide was not part of the histone peptide array. 3 ml blocking solution (provided in the kit) 

was added to the array and incubated on a shaker for 1 hr at RT. The blocking solution was 

discarded, and the array was rinsed in TTBS buffer (provided in the kit). The primary H3.3S31p 

antibody was added to the blocking solution and incubated with the array for 1 hr at RT. 

Following this, the array was quickly rinsed with TTBS buffer and then washed three times for 

5 min with new TTBS buffer. The secondary HRP conjugated antibody was added to the 

blocking solution and incubated with the array for 1 hr RT in the dark. The array was then 

washed again, three times for 5 mins with TTBS buffer, and Clarity ECL substrate was prepared 

by mixing Clarity western peroxide reagent and Clarity western luminol reagent 1:1. 5 ml of 

the ECL was added onto the array, incubated in the dark for 5 min RT, and then the 

chemiluminescence was detected in the Chemidoc XP.  

The resulting detection can be found in Figure 5. The non-specific binding was then 

assayed using the Array analyze software provided from Active-motif. The resulting analysis 

is found in Figure 6. Without H3.3S31p on the array, it is challenging to know the ratio 

between H3.3S31p and non-specific binding. However, the non-specific signal is still readily 

detected through chemiluminescence. The main hit was H4K12ac, followed by H4R19me2 

and H4K5ac. Histone 4 (H4) marks are not as well characterized as the Histone 3 counterparts; 

however, both H4K12ac and H4K5ac are also centromeric marks (187). Future studies with 

recombinant H3.3S31p will be informative in observing how much of the centromeric 

H3.3S31p signal consists of these H4 marks.  
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Figure 5. Chemiluminescent detection in the histone peptide array. 1:100 primary H3.3S31p 
was used, and the non-specific binding to other histone peptides was imaged  

 

Figure 6. Output from Array analysis software regarding H3.3S31p non-specific binding. The 
specificity factor is calculated by dividing the signal intensity for the histone peptide by the 
background staining. 

 

5.2 Optimized metaphase spreads of mitotically arrested cells 

Metaphase spreads were performed with technical assistance from Caroline Knotz. 

200,000 MGBM1 cells were seeded in a 10 cm dish 24 h prior to exposure. 12.5 µL Colcemid 

was added to each plate, together with the respective inhibitor or equivalent volume of 

DMSO. 16 h later, the cells were dissociated using trypsin and centrifuged at 500 x g for 10 

min. The supernatant was removed, and pellets were washed with 400 µL PBS. 10 µL cell 

pellet was mixed with 10 µL tryphan blue, and cell number and viability were assessed using 
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the Luna cell counter. 30,000 cells were used for metaphase spreads and were resuspended 

in 1 mL KCl hypotonic buffer for 10 min at RT. Cytospin funnels and slides were prepared in 

parallel. Slides had been previously cleaned with 80 % ethanol and stored at – 20 °C until use. 

EZ double funnels and Shandon filter papers were mounted onto the slides, and 500 µL 

sample was added per funnel. Cells were spun on a Shandon Cytospin 4 at 1,600 RPM for 10 

min, and cell spots were demarcated using a hydrophobic barrier pen. Great care was taken 

as not to dry the slides, and they were immediately fixed using 4 % PFA in PBS for 10 min at 

RT. The slides were washed three times with PBS and then permeabilized using 0.02 % TX-100 

in PBS for 5 min. Following a brief PBS wash, the slides were blocked using 4 % BSA in PBS for 

1 hr at RT, meanwhile having been placed in a humidity chamber. The slides were then 

washed three times for 5 min with PBS, and 50 µL primary antibody diluted in blocking 

solution was added onto each cell spot. Slides were placed in a humidity chamber for 1 hr at 

RT and then washed three times for 5 min with PBS each. Secondary antibodies were added, 

and the slides were washed in the same manner. However, the slides were protected from 

light. DAPI was diluted in PBS 1:2,000, and 50 µL was added onto each cell spot for 15 min at 

RT and in a humidity chamber. Following a triple rinse with PBS, the cells were rinsed with 

water and then 70 % ethanol. Dehydration was performed by submerging the slides in 100 % 

ethanol for 2 min and then air-dried for 5 min. Slides were mounted using ProLong Diamond 

and coverslips and allowed to cure for 24 h. Lastly, the coverslips were sealed using nail polish 

and imaged using either the Leica SP5 (60x oil objective) or Andor Dragonfly (100x silicone 

objective). Chromosome segmentation was done using FIJI, where images were pre-

processed using Gaussian blurring. Segmentation was then performed on the DAPI channel 

using Otsu’s method and overlayed with the H3.3S31p channel. Intensities were extracted 

using the ROI manager. 

5.3 Metaphase spreads of mitotically arrested cells exposed to different 

inhibitors 

Confluent MGBM1 cells in a T-25 were split 1:3 and grown until 70 % confluent. At this 

stage, the cell line was treated with 5 µL Colcemid, together with inhibitors or DMSO. After 4 

hours, the flasks were vigorously shaken to detach mitotic cells, and the medium was 

collected and spun at 300 x g for 5 mins. Cells were then counted, and 2,000 cells were 

resuspended in 1 ml 0.5 % sodium citrate in H2O. The sample was incubated for 10 min at 37 
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°C and 5 % CO2 and then put on ice. The samples were on ice for approximately 15 min and 

then loaded onto a Cytospin 2 with a funnel sandwich. The funnel sandwich consisted of EZ 

double funnels together with filter paper and cytospin slides. 500 µL sample was loaded onto 

each funnel and spun at 1,500 revolutions per minute (RPM) for 10 min. The slides were dried 

and then put in KCM buffer for 15 min RT. The cell spots were then demarcated using a 

hydrophobic barrier pen and fixed with 4 % PFA in PBS for 10 min in RT and washed two times 

in KCM buffer for 5 min each. Slides were then incubated with primary H3.3S31p antibody 

dissolved in 10 % goat serum in PBS overnight in a humidity chamber. Following this, the slides 

were washed two times in KCM buffer for 5 min. Secondary alexa fluor 488 was diluted in 10 

% goat serum in PBS and added onto the slides for 1 hr RT in a humidity chamber. The cells 

were then washed for 5 min in H2O and dried. Lastly, slides were mounted with ProLong Gold 

with DAPI and a coverslip and allowed to cure for 24 hr in RT and protected from light. Image 

acquisition was made with a Leica SP5.  

6 RNA-seq of long and small RNA and subsequent 

computational methods 

6.1 Sample lysis and preparation for long and small RNA-seq 

A total of 1·106 cells were processed and lysed according to the manufacturer’s 

recommendation using the MinElute kit, with technical assistance from Caroline Knotz. 

Briefly, 300 µl ML buffer was added, and the cell pellet was resuspended by pipetting. 

Following 5 min incubation at RT, the lysis mixture was added onto a NucleoSpin filter and 

centrifuged for 1 min at 11,000 x g. The filter was discarded, and 100% ethanol was added to 

the flow-through. Samples were briefly vortexed and incubated for 5 min at RT, then placed 

onto a NucleoSpin RNA column. The flow-through, containing small RNAs > 200 nt, was saved. 

The column containing long RNAs < 200 nt was then subjected to desalting by adding 350 µl 

MDB buffer and centrifuged for 1 min at 11,000 x g.  

The saved fraction containing small RNAs underwent protein precipitation by adding 

350 µl MP buffer, vortexed, and then centrifuged for 3 min at 11,000 x g. The supernatant 

was carefully removed by pipetting and then placed on a NucleoSpin protein removal column. 

Samples were centrifuged for 1 min at 11,000 x g, columns were discarded, and the flow-

through was mixed with 800 µl MX buffer. 725 µl mixture was added onto a new NucleoSpin 
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RNA column, centrifuged for 30 s at 11,000 x g. The flow-through was discarded, and the 

remaining sample mixture was loaded on the same column and centrifuged as previously. 600 

µl MW1 buffer was added and then centrifuged for 30 s at 11,000 x g, the flow-through was 

discarded, and then 700 µl MW2 buffer was added to the columns and spun as previously. 

250 µl MW2 buffer was added and centrifuged for 2 min at 11,000 x g, ensuring that the 

column's silica membrane was dry. The small RNA bound in the column was then eluted by 

adding 30 µl nuclease-free H2O. 

6.2 Small RNA-seq library preparation 

The small RNA was prepared using the NEBNext multiplex small RNA library prep set. 

600 ng RNA was used, and nuclease-free H2O was added so that each sample contained 6 µL. 

1 µL 3’ SR adaptor for Illumina was added and incubated in a thermal cycler for 2 min at 70 

°C. Then, 10 µL 3’ ligation reaction buffer and 3 µL 3’ ligation enzyme mix were added. 

Following a 1 hr incubation at 25 °C, 1 µL SR RT Primer for Illumina and 4.5 µL nuclease-free 

water were added. Samples were then placed in a thermal cycler at the following program: 1) 

5 min at 75 °C. 2) 15 min at 37 °C. 3) 15 min at 25 °C. In parallel, 5’ SR adaptor was diluted in 

120 µL nuclease-free water and then denatured in a thermal cycler for 2 min at 70 °C. 1 µL 5’ 

SR adaptor was added to the samples, together with 1 µL 5’ ligation buffer and 2.5 µL 5’ 

ligation enzyme mix. The samples were placed anew in a thermal cycler for 1 hr at 25 °C, and 

then the reverse transcription was performed by adding 8 µL first-strand synthesis reaction, 

1 µL murine RNase inhibitor, and 1 µL ProtoScript II reverse transcriptase. Samples were again 

placed in a thermal cycler for 1 hr at 50 °C. Following this, PCR amplification was done by 

adding 5 µL nuclease-free water, 2.5 µL index primer, 2.5 µL SR primer for Illumina, and 50 µL 

LongAmp Taq master mix. The samples were mixed well and then placed in a thermal cycler 

at the following program: 1) 30 sec at 94 °C. 2) 12 cycles of 15 sec at 94 °C, 30 sec at 62 °C, 15 

sec at 70 °C. 3) 5 min at 70 °C. The samples were then cleaned up using AmPure XP beads, 

where 180 µL beads were added per sample. Following a 5 min incubation at RT, the tubes 

were placed on a magnetic rack for 2 min at RT for separation. Supernatant was discarded, 

and 200 µL 80 % ethanol was added gently as not to disturb the beads. This was incubated for 

30+ sec at RT, gently removed, and then the ethanol wash was repeated once again. The 

beads were left to dry for 10 min at RT, and cDNA was eluted using 25 µL nuclease-free water. 

The tubes were placed on a magnetic rack for 2 min at RT, and the supernatant was gently 
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pipetted into a new tube. cDNA content was assessed using QuBit high sensitivity program, 

and a 0.5 µL sample was used to determine library size using the Tapestation high sensitivity 

screentape. Samples were submitted for 50 bp single-read sequencing at the DKFZ genomics 

core facility on the HIseq 2000. 

6.3 Long RNA-seq library preparation 

The long RNAs from above were depleted for rRNA using the NEBNext rRNA depletion 

kit. First, libraries were hybridized with probes by adding 11 µl total RNA, 2 µl NEXTNext v2 

rRNA depletion solution, and 2 µl NEBNext probe hybridization buffer for a total volume of 

15 µl per reaction. Samples were then mixed thoroughly by resuspension, briefly spun, and 

then placed in a thermocycler with the following program: 2 min at 95 °C, cooling down to 22 

°C (0.1°C /sec) and then held at 22 °C for 5 min. Samples were then spun and placed on ice. 

The samples were then RNase H digested on ice by adding 2 µl RNase H reaction buffer, 2 µl 

NEBNext thermostable RNase H, and 1 µl nuclease-free water for a total volume of 20 µl. The 

samples were again mixed thoroughly by resuspension, briefly spun, and then placed in a 

thermocycler for 30 min at 50°C. The samples were then subjected to DNase I digestion by 

adding 5 µl DNase I reaction buffer, 2.5 µl NEBNext DNase I, and 22.5 µl nuclease-free water 

for a total volume of 50 µl. The samples were placed in a thermocycler for 30 min at 37 °C, 

and then the RNA was purified using Agencourt RNAClean XP beads. 90 µl 1.8X beads was 

added, mixed thoroughly by resuspension, and then incubated for 15 min on ice. Then the 

tube was placed on a magnetic rack, where the supernatant was carefully removed and 

discarded. 200 µl 80 % ethanol was added to the beads, incubated at RT for 30 s, and then 

the supernatant was carefully discarded. The whole bead purification was repeated twice, 

and then residual ethanol was removed by air drying the beads for up to 5 min. The tubes 

were then removed from the magnetic rack, and the RNA was eluted by adding 7 µl nuclease-

free water. The samples were mixed thoroughly and then incubated at RT for 2 min. Then the 

beads were separated by putting the tubes back on the magnetic rack. The supernatant, now 

containing the long RNA, was transferred to a new tube and stored at -80 °C. The RNA was 

then subjected to library preparation, using NEBNext ultra II according to the manufacturer’s 

recommendation. The RNA was firstly assessed using High sensitivity RNA screentape, where 

0.5 ng RNA was added per lane. Samples containing RNA integrity number (RIN) below 7 were 

discarded; otherwise, the samples were fragmented and primed by adding 5 µl sample, 4 µl 
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NEBNext first-strand synthesis reaction buffer, and 1 µl random primers for a total volume of 

10 µl. This mixture was mixed by resuspension and placed on a thermocycler for 7 min at 94 

°C. The tubes were then put on ice, and cDNA was synthesized by adding 8 µl nuclease-free 

water and 2 µl NEBNext first-strand synthesis enzyme mix for a total volume of 20 µl. The 

sample was then put on a thermocycler with the following program: 10 min at 25 °C, 15 min 

at 42 °C, 15 min at 70 °C, and then held at 4 °C. 8 µl NEBNext second-strand synthesis reaction 

buffer, 2 µl NEBNext second strand synthesis enzyme mix and 48 µl nuclease-free water was 

added to a total volume of 80 µl. The sample was resuspended and incubated for 1 hr at 16 

°C and then purified using AmPure XP beads. 144 µl beads were added to the sample, mixed 

well by resuspension, and then incubated for 5 min at RT. Samples were spun briefly, then 

placed on a magnetic rack for bead separation. The supernatant was discarded, and 200 µl 80 

% ethanol was added and then incubated for 30 s at RT. The supernatant was discarded, and 

the beads were again washed with ethanol twice. The beads were then air-dried for 5 min on 

the magnetic rack, and the tubes were removed from the magnetic rack. DNA was eluted by 

adding 53 µl 0.1X TE buffer, incubated for 2 min at RT, and placed on the magnetic rack. 50 µl 

supernatant was transferred to a clean PCR tube, and finally, the library was prepped using 

the supernatant and adding 7 µl NEBNext Ultra II end prep reaction buffer and 3 µl NEBNext 

Ultra II end prep enzyme mix for a total volume of 60 µl. Samples were resuspended and 

placed in a thermocycler with the following program: 30 min at 20 °C and 30 min at 65 °C. 

Adaptors were then ligated by adding 2.5 µl adaptor, 1 µl NEBNext ligation enhancer, and 30 

µl NEBNext ultra II ligation master mix for a total volume of 93.5 µl. Samples were 

resuspended at incubated for 15 min at 20 °C, then 3 µl USER enzyme was added. The library 

was again purified with AmPure XP beads, where 87 µl beads were added to the samples, 

resuspended, and then incubated for 5 min at RT. The tubes were then spun and placed on a 

magnetic rack for 5 min. The supernatant was discarded, and 200 µl 80 % ethanol was added, 

incubated at RT for 30 s, and then the supernatant was discarded again. This was repeated 

twice, and then the beads were air-dried for 5 min while on a magnetic rack. The DNA was 

eluted using 17 µl 0.1x TE buffer and incubated for 2 min at RT. The samples were then placed 

on a magnetic rack, and 15 µl supernatant was transferred to a new PCR tube. The DNA was 

then amplified using PCR, where 25 µl NEBNext ultra II Q5 master mix  and 19  µl index prime 

mix were added for a total volume of 50 µl. The samples were placed on a thermocycler using 

the following program: 1) 30 sec at 94 °C. 2) 12 cycles of; 15 sec at 94 °C, 30 sec at 62 °C, 15 
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sec at 70 °C. 3) 5 min at 70 °C. Samples were submitted for 50 bp single-read sequencing to 

the DKFZ genomics core facility and analyzed using a HiSeq 4000.  

6.4 Transcriptome alignment pipeline 

Merged FASTQ files were aligned using a previously established in-house pipeline. 

FASTQ files were unzipped using gunzip, aligned to GRCh38 using STAR, and ribosomal reads 

were removed using SortMeRNA. Quality control was done using RSEM, RseQC, FastQC, and 

MultiQC. The resulting BAM files were utilized by featureCounts for count table generation, 

and genes were annotated using ENSEMBL (v.94).  

6.5 Eigenvalues of correlation between principal components and cell line 

metadata for individual omics 

Count data from each omics was variance-stabilizing transformed and subjected to 

principal component analysis (PCA) using the R-package PCAtools. The number of principal 

components was determined by the elbow method, and the Pearson correlation coefficient 

between cell line metadata and principal component was calculated using the function 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(). It was shown that most principal components had variations related to 

tumor entity, which was used then used for normalization within DEseq2 and multifactor 

omics analysis.  

6.6 Transcriptome differential expression analysis 

Count tables from ENSEMBL annotated genes were obtained from the pipeline and 

then used in DESeq2. Fold change cutoffs were set at 1.5, with a statistical cutoff of a 

Benjamini-Hochberg adjusted p-value of 0.01. Additionally, reads containing fewer than 5 

normalized reads in 4 samples were discarded. Confounding effects of tumor entity were 

normalized by using the design factor: 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 =  ~ 𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑒𝑒𝑒𝑒𝑑𝑑𝑡𝑡. Volcano plots were generated using 

EnhancedVolcano. 

6.7 Gene-ontology of differentially expressed genes 

Down and upregulated genes were separated and used in gene-ontology analysis 

(http://geneontology.org/, 2021-09-01 release). The category “biological process” was used, 

and the top 10 GO-terms with respect to the false discovery rate (FDR) were extracted.  

http://geneontology.org/
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6.8 Transcription factor motif analysis of promoters of differentially expressed 

genes 

Differentially expressed genes were divided into down and upregulated, and the 

ENSEMBL IDs were then pasted into PASTAA (188), using ranked analysis and sorting 

according to the fold change of the genes. Motifs without known proteins were removed, and 

results were plotted using ggplot2 and ggrepel. Association score consists of the -Log of the 

most significant hypergeometric p-value.  

6.9 TelNet annotation of differentially expressed genes 

All differentially expressed genes were analyzed in the TelNet database 

(https://malone2.bioquant.uni-heidelberg.de/fmi/webd/TelNet) using the “list search” 

function. Gene name and functions were extracted, and all transcription factors were 

manually annotated by searching genecards (https://www.genecards.org/) for the terms 

“transcription factor”.  

6.10 Normalized gene counts visualization 

Gene counts were constructed first by collapsing replicate values using DESeq2 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒() function, and normalized counts were plotted using DEseq2 

plotCounts(normalized = True). 

6.11 Pathway analysis with Reactome 

Raw counts of all ensemble-annotated genes were averaged across replicates using R. 

These were then fed into Reactome (https://reactome.org) using the “analyze gene 

expression” function. Pathway analysis with down-weighting of overlapping genes (PADOG) 

was used for gene set enrichment analysis. Samples were compared in terms of ALT+/ALT- 

and the top 10 results in terms of FDR were used.  

6.12 miRNA alignment pipeline 

FASTQ files from small and long RNA-seq were merged for each replicate. These FASTQ 

files were processed using a newly established NF-core pipeline found here (https://nf-

co.re/smrnaseq). The pipeline was forked from GitHub, and additional scripting was done by 

Simon Steiger (Division of Chromatin Networks, DKFZ, Heidelberg, Germany). The modified 

pipeline can be found here: https://github.com/Simontuk/smrnaseq/tree/v1-dev-alt. 

https://malone2.bioquant.uni-heidelberg.de/fmi/webd/TelNet
https://www.genecards.org/
https://reactome.org/
https://nf-co.re/smrnaseq
https://nf-co.re/smrnaseq
https://github.com/Simontuk/smrnaseq/tree/v1-dev-alt
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Adapters were trimmed with Trim Galore!, and aligned to mature and hairpin miRNAs using 

bowtie1 to the Mirbase annotation (v 22) as a reference. Post-alignment processing was done 

using SAMtools and mirtop. Quality control was done with FastQC, MultiQC, edgeR, and 

mirtrace. Count tables were constructed by MiRDeep2  

6.13 miRNA differential expression 

Count tables from mature miRNAs were obtained from the pipeline and then used in 

DESeq2. Cutoffs were established as mentioned above, apart from not removing low count 

reads. DESeq2 analysis was done using the same design factor as above. Volcano plots were 

generated using EnhancedVolcano. miRNAs were additionally subgrouped using miEAA 2.0 

(189) by choosing “annotations derived over miRTarBase (Gene Ontology)” where miRNAs 

with the gene ontology term “negative regulation of telomere maintenance via telomere 

lengthening” were extracted.  

6.14 Transposable element and piRNA alignment pipeline 

Transposable elements (TE) and piRNA were aligned using the in-house RNA-seq 

pipeline, except for permissive multimapping (𝑒𝑒𝑡𝑡𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑚𝑚𝑒𝑒𝑜𝑜𝑡𝑡𝑚𝑚𝑜𝑜 = 100) in STAR. 

TE was aligned with the repeat masker (4.1.2) database, and reads from individual TE 

transcripts were grouped into TE families. piRNAs were aligned with piRNAdb (v.1.7.6). In both 

instances, count tables were constructed using featureCounts and allowing for multimappers 

using 𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑜𝑜𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑚𝑚𝑑𝑑𝑑𝑑 =  𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇.  

6.15 Transposable element and piRNA differential expression 

TE and piRNA count tables were used in DEseq2 with fold change and statistical cutoffs 

as previously mentioned, apart from not removing low count reads. Volcano plots were made 

with EnhancedVolcano.  

7 ATAC-seq and subsequent computational methods 

7.1 ATAC-seq tagmentation and quality control 

ATAC-seq tagmentation and quality control were performed with technical assistance 

from Caroline Knotz. A total of 1·105 cells were harvested and washed with 1x ice-cold PBS 

and then spun at 300 x g for 5 h at 4 °C. The supernatant was discarded, and the cells were 

lysed with the following tagmented using the following recipe: 9.75 µL H2O, 23.50 µL 
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transposase buffer, 0.25 µL PIC, 2 µL Tn5 tagmentase, and 0.5 µL 0.5% digitonin. Samples 

were left to lyse for 30 min at 37 °C and then put on ice. Afterward, purification was done 

using Qiagen MinElute kit. 62.5 µl Buffer PB was added to the tagmented sample and placed 

onto a MinElute column. The sample was centrifuged for 1 min at 11 000 x g, and the flow-

through was discarded. 750 µl PE buffer was added onto the column, spun as previously, and 

then the column was placed in a new collection tube. Columns were dried by spinning as 

previously and then placed into a 1.5 ml microcentrifuge tube. Each column was eluted in 12 

µL EB buffer, where the flow-through was put onto the column one additional time. 2 µL of 

the sample was reserved for qPCR quality control. To this end, samples were diluted to 0.5 

ng/µL in water. In total, six reactions were made from each sample. Three reactions were 

used as replicates for mitochondrial enrichment (ND4), and the other three were used as 

replicates for non-specific enrichment (intronic POU5F1). Dr. Lara Klett (Division of Chromatin 

Networks, DKFZ, Heidelberg, Germany) had previously validated these primers as reasonable 

proxies for ATAC quality. Each replicate contained 1 µL sample, 2 µL H2O, 0.5 µL forward and 

reverse primer respectively, 1 µL 10x SYBR green and 5 µL NEBNext HF PCR master mix. These 

were mixed onto a 96 well plate and analyzed using the StepOnePlus Real-Time PCR system 

in the following program: 1) 5 min at 72 °C. 2) 30 sec at 98 °C. 3) 25 cycles of; 10 sec at 98 °C, 

30 sec at 63 °C, 1 min at 72 °C. Values from qPCR were submitted to an Excel template made 

by me. The template averaged the mean Ct of the three replicates calculated the ΔCt 

enrichment calculation. Samples containing ΔCt enrichment of > 2.5 for mitochondrial reads 

and > 2 for non-specific products were discarded.  

7.2 ATAC library preparation 

The samples that passed the qPCR quality control were then mixed with 10 µL H2O, 

2.5 µL index primer 1, 2.5 µL index primer 2, 25 µL NEBNext HF PCR master mix, and 10 µL 

tagmented sample. PCR enrichment was done with the following program: 1) 5 min at 72 °C. 

2) 30 sec at 98 °C. 3) 12 cycles of; 10 sec at 98 °C, 30 sec at 63 °C, 1 min at 72 °C. 4) 1 min at 

72 °C. The samples were purified using Agencourt AMPure XP beads, where 80 µl beads were 

used per 50 µL reaction. The samples were incubated with the beads for 5 min at RT, then 

separated using magnets for 5 min. The supernatant was removed, and the pellet was washed 

twice with 80 % ethanol for five seconds per wash. The beads were dried (around 3-6 minutes) 

and eluted in 50 µL EB buffer for 5 min.  Supernatant was used for additional purification using 
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beads, where 25 µL beads were added per sample and incubated for 5 min at RT. The mixture 

was separated using magnets for 5 min, and the supernatant was transferred into new tubes. 

45 µL beads were added anew, incubated for 5 min, separated with magnets for 4 min, and 

then washed twice with 80 % ethanol for 5 sec per wash. Samples were dried for 3-6 minutes 

and eluted in 15 µL EB buffer for 5 min. The DNA was measured with QuBit high sensitivity 

program, and 0.5 ng was added onto a Tapestation high-sensitivity DNA Screen Tape for 

library size analysis. The samples were then sequenced for 50 bp paired-end sequencing in 

the DKFZ genomics core facility using a NovaSeq 6000.  

7.3 ATAC alignment pipeline 

ATAC reads were processed using an atacseq NF-core pipeline (https://nf-

co.re/atacseq/1.2.1), which was implemented with the help of Simon Steiger. Briefly, 

adapters were trimmed with TrimGalore!, and aligned with BWA to GRCh38. Duplicates were 

marked with picard and BAMTools. SAMtools. BEDtools and pysam were used for removing 

reads from blacklisted regions and other low-quality metrics. BigWig files were created using 

BEDTools. Additional quality control of the processed reads was done with ATAQV, FastQC, 

and MultiQC. Consensus peak sets and individual sample count tables were constructed with 

featureCounts.  

7.4 ATAC differential peak analysis 

Count tables of all samples were constructed by merging individual count tables 

generated by the pipeline. The Y-chromosome and decoy sequences were removed and then 

used for DESeq2. Fold change cutoffs were set at 1.5, with a statistical cutoff of a Benjamini-

Hochberg adjusted p-value of 0.01. Additionally, reads containing fewer than 5 normalized 

reads in 4 samples were discarded. Confounding effects of tumor entity were normalized by 

using the design factor:  

𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 =  ~ 𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑒𝑒𝑒𝑒𝑑𝑑𝑡𝑡. Volcano plots were 

generated using EnhancedVolcano. 

7.5 ATAC differential peak annotation 

Differential ATAC peaks were imported into R using Granges readPeakFile(), and 

annotated using the ChIPSeeker R-package with the function annotatePeak(). Pie diagrams 

were constructed using the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒() function.  

https://nf-co.re/atacseq/1.2.1
https://nf-co.re/atacseq/1.2.1
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7.6  ATAC transcription factor motif analysis 

Downregulated and upregulated peaks were separated into separate bed files using 

R, and transcription factor motifs were extracted using HOMER 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑚𝑚𝑎𝑎𝑑𝑑.𝑒𝑒𝑒𝑒. 

Enrichment was calculated by dividing the % of motifs in the background versus the % of 

motifs in target sequences. Results were plotted using ggplot2 and ggrepel.  

8 Omics integration 

8.1 Integration of differential ALT+ ATAC peaks and expressed genes 

The differentially expressed genes were converted into bed-format using ENSEMBL 

BioMart (https://m.ensembl.org/biomart/martview/). ATAC peaks were divided into 

upregulated and downregulated peaks, and promoter regions were extracted using 

ChIPSeeker and the function 𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑(), with ENSEMBL regulatory build providing the 

promoter reference. Each promoter was annotated to a gene using the same reference. 

Enhancers were annotated by using the Bedtools 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑤𝑤𝑚𝑚 function and obtaining 

differentially accessible regions that overlapped with annotated enhancers from the 

ENSEMBL regulatory build. These were, in turn, annotated to genes, where ATAC-enhancer 

peaks inside gene bodies were annotated to respective genes, and ATAC-enhancer peaks 

outside gene bodies were annotated to the nearest gene. Gene names from 

enhancer/promoter regions and differentially expressed genes were extracted, as were all 

the genes in the TelNet database, and overlaps were found using 

http://www.interactivenn.net/.  

8.2 ATAC RNA overlaps count and gene track visualization 

Gene counts were constructed first by collapsing replicate values using DESeq2 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒() function, and normalized counts were plotted using DEseq2 

plotCounts(normalized = True). Gene tracks were made using bigwig files for ATAC-seq, 

and .tdf files for RNA-seq provided from the respective pipelines and imported into IGV.  

8.3 Multi-omics factor analysis  

Count tables for TE, piRNA, miRNA, ATAC peaks and expressed genes were first 

transformed using the DEseq2 function 𝑚𝑚𝑑𝑑𝑑𝑑𝑚𝑚𝑒𝑒(𝑣𝑣𝑑𝑑𝑒𝑒). These variance stabilizing transformed 

count tables were then normalized to tumor entity using Limma 𝑐𝑐𝑒𝑒𝑡𝑡𝑒𝑒𝑣𝑣𝑒𝑒𝑅𝑅𝑚𝑚𝑒𝑒𝑒𝑒ℎ𝑇𝑇𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒(). 

https://m.ensembl.org/biomart/martview/
http://www.interactivenn.net/
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The count tables were then imported into multifactor omics analysis (MOFA). Each count 

table was sorted in descending variance for each feature, and the top 100-10,000 features 

were used for comparison. 1,000 features were chosen for downstream analysis where the 

distinction between ALT+ and ALT- cell lines was the highest. The number of analyzed factors 

was determined by the elbow method. GO-term analysis of weighted genes was done using 

the MSigDB V6.0.C5 database and the MOFA function 𝑒𝑒𝑡𝑡𝑒𝑒_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(). 
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Results 

1 C-circle screen of 688 soft-tissue sarcoma samples 

1.1 C-circle screen workflow and representative image 

C-circles are routinely used to assay alternative lengthening of telomeres (ALT) activity 

and have proven to be a promising biomarker for ALT-positive cell lines and primary cancers. 

As part of a collaboration with Priya Chudasama (NCT, Heidelberg, Germany), a quantitative 

C-circle assay was developed (Figure 7) to analyze 688 soft tissue sarcomas. This represents 

the most extensive set of patient samples of a tumor entity for which a C-circle assay 

normalized to a reference signal (U2OS) has been conducted. By using such a vast collection 

of primary tumor samples, I could describe the distribution of ALT-activity in primary cancer 

cells and assess ALT heterogeneity. By applying statistical modeling, the criteria for ALT+ 

samples could be more reliably defined than in previous studies. Figure 8 shows a 

representative image of a C-circle dot blot membrane, with ALT+ samples in red, and the - Pol 

controls shown with the high-exposure image. Each sample was performed in triplicates, 

where the + Pol denotes samples that were amplified by polymerase. 

Figure 7. Workflow of C-circle screening of 688 mixed-lineage sarcomas. 
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To account for non-amplified circular DNA background, reactions omitting polymerase 

(- Pol) were also included. Telomere probes that allow for chemiluminescent detection were 

used. Each membrane was imaged in a time series through 300 sec, where the highest 

exposure without oversaturation was used for densitometry analysis. High-exposure 

conditions were used to aid in creating masks for dot localization and subsequent 

quantification. These masks encompassed + Pol and - Pol samples, as well as the background. 

Each + Pol reaction was then normalized to background as well as - Pol. The triplicate values 

were then merged into an average signal and extrapolated onto a standard curve. The C-circle 

signal was then expressed as a fraction of the U2OS signal using a standard curve. If the U2OS 

standard curves had R2 values below 0.5, a standard curve with R2 values above 0.5 was 

obtained from membranes performed on the same day. This quantitative C-circle approach 

yielded very robust results and set the threshold for ALT+ in the C-circle screen in a well-

defined manner. 

Figure 8. Representative image of C-circle membrane. + Pol denotes samples with complete C-
circle amplification, and – Pol is the reaction background control. Each sample was performed 
in triplicates, and the U2OS standard curve was constructed using 6 different DNA 
concentrations. The – Pol is shown with high-contrast to show the reaction background of 
each sample. 
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1.2 The C-circle distribution shows that most samples have low detectable C-

circles 

The 687 samples that were successfully analyzed are plotted in Figure 9. Only one 

sample was omitted due to insufficient gDNA to repeat the C-circle amplification following an 

irregular standard curve. The scatter plot shows that most samples could be classified as 

having low C-circle ratios (with 64 % of samples below 0.1). A few samples had negative values 

attributed to a high background signal. The positive values trailed between 0.1 and 4, and 

only two samples contained a C-circle ratio higher than 4.  

 

Figure 9. C-Circle distributions of analyzed samples. Scatter plot of C-circle ratio values from 
687 sarcoma samples. 439 samples are shown between -0.1 and 0.1, 248 samples are binned 
between 0.1 and 6. 

 

1.2 Two-gaussian distribution fit describes a heterogeneous ALT+ population   

Cutoffs for the ALT+ population was determined based on normal distributions for two 

populations after log transformation. As previously stated, most samples had C-circle ratios 

around zero (Figure 10A). The C-circle values from the sarcoma samples were then 

transformed by adding a 0.05 pseudocount to avoid negative values that would be 

incompatible with the Log2 transformation. The null value, now between -6.3 and -3.5, 

contained the fit for the ALT- population (Figure 10B). Above -2.8 were the ALT+ cancers, with 

the fit encompassing all values above this threshold and reaching a maximum of 2.8. This 

corresponds to a variation of the normalized C-circle signal by about tenfold.  
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Figure 10. Data transformation and two-Gaussian fitting. A) Histogram of raw C-circle values, 
in bins of 0.7 with the y-axis in Log2. (B) Two-Gaussian fitting to Log2 and pseudocount 
transformed data, showing the ALT- population in red and ALT+ population in blue. Y-axis is in 
Log2. 

The parameters obtained from the fit of two Gaussian distributions can be seen in Table 3. 

The cutoff for the ALT+ samples was determined using the 90th percentile for the ALT- and 

the 10th percentile for the ALT+. Accordingly, I could identify 148 samples considered ALT+ 

and 510 samples that were considered ALT-. The ALT+ had a mean at 0.95 normalized C-circle 

ratios, with a high standard deviation. This shows that the C-circle values associated with ALT+ 

samples were highly heterogeneous, whereas ALT- samples were almost entirely within the 

null value. 29 samples (4%) fit neither population cutoff and were termed “ambiguous”. This 

population may instead represent a transition state between ALT+ and ALT- cancers; 

however, the low overall sample number may also be a byproduct of imposing percentile 

cutoffs for each population.  

Table 3. Population statistics of two-gaussian distributions with number of samples 

Population n samples 
10th 

percentile 
90th 

percentile 

C-circle ratio 

Mean S.D. 

ALT- 510 N/A 0.069 0.00 0.01 

ALT+ 148 0.2 2.27 0.95 0.91 

Ambiguous 29 N/A N/A 0.12 0.03 
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2 Sequencing analysis 

2.1 Cell line panel assembly for downstream projects 

The findings mentioned in the C-circle screening section indicated that ALT-activity is 

highly heterogeneous in primary tumor samples. To this end, I assembled a cell line panel 

consisting of osteosarcoma (OS) and pediatric glioblastoma (pGBM) cell lines that were 

heterogeneous in ALT-activity as well as for mutations within ATRX and H3.3 (Table 4). The 

choice of cell lines was made using tumor entities enriched in ALT and having well-

characterized ALT features. The NEM157, NEM165, NEM168 cell lines were kindly provided 

by Prof. Stefan Pfister (DKFZ, Heidelberg, Germany), and the NEM168 ATRX knockout clone 

B5 were made by Dr. Inn Chung (Division of Chromatin Networks, DKFZ, Heidelberg, Germany) 

using CRISPR-Cas9 (190).  

Table 4. Cell line panel consisting of two tumor entities. NEM168 clone (cl.) B5 constitutes an 
ATRX knockout cell line with an increased C-circle ratio. C-circle ratio expressed as mean and 
the SEM in parentheses.  

 

Tumor 
entity Cell line C-circle 

ratio 
TMM 
status ATRX mutations H3.3 mutations 

Pe
di

at
ric

 g
lio

bl
as

to
m

a 

KNS42 0.0 (0.0) ALT- WT G34V 

MGMB1 2.1 (0.6) ALT+ Yes G34R 

SF188 0.0 (0.0) ALT- WT WT 

NEM157 0.04 (0.0) Weak 
ALT+ Yes K27M 

NEM165 0.01 (0.0) Weak 
ALT+ WT K27M 

NEM168 0.03 (0.0) Weak 
ALT+ WT K27M 

NEM168 cl. B5 0.3 (0.05) ALT+ Yes K27M 

O
st

eo
sa

rc
om

a 

HOS 0.0 (0.0) ALT- WT WT 

MG.63 0.0 (0.0) ALT- WT WT 

Cal72 0.7 (0.1) ALT+ Yes WT 

Saos-2 1.1 (0.0) ALT+ Yes WT 

U2OS 1.0 (0.1) ALT+ Yes WT 
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All C-circle ratios were measured with technical assistance from Lukas Frank and 

Caroline Knotz (Division of Chromatin Networks, DKFZ, Heidelberg, Germany). Samples were 

binned in ALT- (0 C-circles), weakly ALT+ (0.01-0.1 C-circles), or ALT+ (>0.1 C-circles). 

Mutations within ATRX and H3.3 were either obtained by genomic analysis by Dr. Katarina 

Deeg (Division of Chromatin Networks, DKFZ, Heidelberg, Germany) for the pediatric 

glioblastoma cell lines (190), or were previously published for the osteosarcoma cell lines 

(191). ILSE-identification numbers from the DKFZ core facility for each sequencing readout 

and cell line replicate are found in Supplemental Table 1. 

Long and small RNA-seq, together with ATAC-seq, were performed in duplicates for 

each cell line. An overview of the sequencing and respective downstream analysis is found in 

(Figure 11). The long RNA-seq fraction with both protein-coding and non-coding genes is 

referred to here as the transcriptome. and thus active enhancers and promoters, offered a 

unique perspective in observing Some larger transposable elements (TE) can also be found in 

this data (192). The small RNA-seq provided information on miRNA as well as TE and their 

silencers piRNA. The ATAC-seq, which includes information on open chromatin regions 

processes not necessarily found in transcriptomic data. Altogether, the latter sequencing 

readouts have not been performed previously from an ALT-specific viewpoint.  

 

Figure 11. Overview of the sequencing workflow and downstream analyses. 

 

The downstream computational analysis was performed by observing differential 

expression with DESeq2. The first step consisted of evaluating which genes were differentially 

expressed and what transcription factor (TF) motifs were found in up or downregulated 
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genes. The differentially expressed genes were annotated by gene ontology and overlapping 

these genes with the ALT gene database Telnet (185). Moreover, pathway analysis was 

performed on transcriptomic data. miRNAs were also analyzed for differential expression. 

However, due to limited curated miRNA annotations, the miRNA analyses were mainly 

evaluated using literature search and databases with gene-target predictions. Transposable 

elements (TE) and piRNA were evaluated for differential features as well. Due to limited 

annotation databases, these elements were only tested for whether ALT+ samples contained 

significant differences. ATAC-seq provided information on the epigenomic state of the ALT+ 

chromatin where differentially accessible peaks were assigned to genomic elements, such as 

promoters or intergenic regions, and analyzed for TF motifs. Altogether these individual 

readouts provided information on which elements were the most accessible from sequencing 

data and could then be passed on to multi-omics integration. The first step consisted of 

selecting ALT gene candidates by overlapping differential ATAC peaks with promoters and 

enhancers and then connecting these to differential ALT genes. This further homed in on the 

potential biomarkers that could be analyzed in the future. Lastly, I investigated whether an 

ALT signature could be extracted from all the individual omics using an unsupervised multi-

omics factor analysis (MOFA) (174). MOFA allowed discerning more discrete data patterns 

and answered whether an ALT-signature is readily found throughout the sequencing data or 

if it could be confounded by other factors (e.g., sequencing run or cell line gender). 

 

2.2 Eigencorrelation analysis shows that tumor entity is a confounding factor 

in omics data 

The first step of the omics data analysis was to evaluate the presence of ALT and any 

confounding cell line metadata. The analysis was done using principal component analysis 

(PCA) and performing correlations between each component (PC) and cell line metadata. The 

metadata provided was cell line gender, sequencing run, tumor entity, telomere maintenance 

mechanism (TMM), and the cell line itself. It was found that the TMM was primarily present 

in PC1, which would be the component that can explain most of the variance in the data 

(Figure 12). However, the TMM often co-occurred with the tumor entity. This is best seen for 

transcriptome, miRNA, piRNA and ATAC. It was therefore decided to normalize for tumor 

entity. This was performed for the differential analysis of individual readouts by including the 
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tumor entity within the design factor for DEseq2 (see Materials and Methods section 6.6). For 

multi-omics factor analysis (MOFA), this was done by using the batch correction functionality 

from Limma (see Materials and Methods section 8.3). 

Figure 12. Eigencorrelation between cell line metadata and principal components. 
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3 Individual sequencing read-outs 

3.1 Transcriptome quality control 

The quality control for the long RNA-seq was determined by investigating how many 

reads were aligned to the hg38 genome build. This metric consisted of at least 100 million 

reads, which was achieved for each sample (Figure 13). 

 

Figure 13. Quality control of aligned transcriptomic reads. 

 

3.2 Gene expression changes are robustly identified in ALT+ samples 

Out of the 64,915 ENSEMBL annotated genes, 37,848 genes passed the low-read 

cutoff. The resulting DESeq2 analysis revealed 295 downregulated and 912 upregulated genes 

between ALT- and ALT+ cell lines (Figure 14). Additionally, 78 genes (of which 54 were 

upregulated and 24 downregulated) had an adjusted p-value below 1⋅10-10 (see Supplemental 

Table 2 for complete gene list). The differential genes were then selected to find consistent 

expression changes in the ALT+/ALT- cell lines. The top consistently downregulated genes 

were the BRSK2 kinase, the TBX1 transcription factor, and the long noncoding RNA FENDRR. 

The top consistently upregulated genes were PTN, a secreted growth factor, and INHBA, a 

membrane protein subunit related to activin and inhibin signaling. Another consistently 

upregulated gene was the transcription factor NFATC2, which was close to the high p-value 

cutoff. The long noncoding RNA LINC02203, the novel transcripts AL139327.1 and 
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AC068205.1, and the small nucleolar RNA (snoRNA) SNORD114-5 had very high p-values and 

fold changes. However, these were highly upregulated in only a subset of ALT+ samples.  

 

Figure 14. Volcano plot of ALT+ 
differentially expressed genes. Red 
indicates peaks that passed both 
fold change (1.5) and adjusted p-
value cutoffs (0.01). Green shows 
peaks that only passed fold change 
cutoff, and grey shows peaks below 
both cutoffs. Blue dots show the 
differential genes with an adjusted 
p-value above 1·1010. 295 
downregulated and 912 upregulated 
genes could be identified above 
statistical and fold-change cutoffs. 
Genes in bold denote expression 
levels that were consistently 
up/down in most ALT+/ALT- 
samples. 

 

 

3.3 Transcription factor motif analysis of differentially expressed genes 

indicates that inflammation upregulates genes 

The differentially expressed genes were then used for transcription factor (TF) motif 

enrichment. The enrichment was calculated 10 kb upstream of the transcription start site. For 

the downregulated genes, the top motif was associated with the TFs Egr-1 and Egr-2 (Figure 

15). The Egr TFs work downstream of NF-kB signaling pathways to promote apoptosis (193). 

The second top motif was the Max/c-Myc motif. This is of particular interest, as c-Myc is 

believed to upregulate TERT in ALT- cancers (194). As this TF motif is associated with both c-

Myc and Max, there is a chance that this c-Myc/Max dimer is particularly crucial in inhibiting 

ALT. Another downregulated TF motif found in the downregulated ALT differentially 

expressed genes was Hic1, which is a tumor suppressor that can maintain genetic stability 

(195). The upregulated genes contained immune-related TFs, such as STAT1 (alpha and beta 

isoforms) 3, 6, and NFAT1/2. STAT 1,3 and 6 are activated by interferons, which are 
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inflammatory cytokines (196), and NFATs are TFs that regulate T-cell response (197). NFAT2 

is the protein name for NFATC2 gene, which was found consistently upregulated in ALT 

transcriptome (Figure 14). 

Figure 15. Transcription factor motif analysis in promoter regions of differentially expressed 
ALT genes. Motifs with a p-value lower than 0.01 were omitted. Y-axis is the Log10 p-value 
plotted, and x-axis shows the association score which is calculated from the -Log10 
hypergeometric p-value. (A) Transcription factor motifs in downregulated genes. (B) 
Transcription factors in upregulated genes. Red denotes transcription factors involved in 
immune processes. 

 

3.4 GO-term analysis of differential genes reveals changes within 

developmental programs 

The differentially expressed genes were divided into upregulated and downregulated 

genes and then used for GO-term analysis to identify biological processes. Most of the terms 

were connected to developmental processes (Table 5). Of note was the negative enrichment 
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in proteins related to nucleic acid metabolic processes, indicating that this process is 

noticeable absent in upregulated ALT+ differential genes. Positive enrichment for 

biological/cell adhesion and cell differentiation were also found, showing a relationship 

between upregulated genes and cancer cell invasion and motility. Lastly, the GO-term  

“generation of neurons” was found as well.  

Table 5. Top 10 GO-terms associated with upregulated ALT+ differentially expressed genes. 

 

The downregulated GO-terms show an overlap with the upregulated GO-terms, 

consisting of anatomical structure development, system development, cellular development 

process, and multicellular organismal process (Table 6). This implies that rather than relying 

on specific genetic programs, the ALT+ differential genes are involved in fine-tuning 

developmental programs beneficial to the tumors.  

Table 6. Top 10 GO-terms associated with downregulated ALT+ differentially expressed genes. 

GO-term ID GO-term Enrichment FDR 
GO:0022610 Biological adhesion + 4.42E-10 
GO:0007155 Cell adhesion + 1.35E-09 
GO:0032501 Multicellular organismal process + 1.06E-08 
GO:0090304 Nucleic acid metabolic process - 3.03E-08 
GO:0048731 System development + 2.26E-07 
GO:0048869 Cellular developmental process + 3.95E-07 
GO:0048856 Anatomical structure development + 3.95E-07 
GO:0032502 Developmental process + 4.35E-07 
GO:0030154 Cell differentiation + 4.42E-07 
GO:0048699 Generation of neurons + 4.49E-07 

GO-term ID GO-term Enrichment FDR 

GO:0009653 Anatomical structure morphogenesis + 7.66E-04 
GO:0007417 Central nervous system development + 9.34E-04 
GO:0032502 Developmental process + 9.40E-04 
GO:0048513 Animal organ development + 9.98E-04 
GO:0032501 Multicellular organismal process + 1.07E-03 
GO:0048856 Anatomical structure development + 1.09E-03 
GO:0007275 Multicellular organism development + 1.26E-03 
GO:0030154 Cell differentiation + 1.35E-03 
GO:0048731 System development + 2.10E-03 
GO:0048869 Cellular developmental process + 2.22E-03 
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3.5 Annotation with the Telnet database points to diverse functions in ALT 

The differential genes were then annotated using the Telnet database to delve further 

into which ALT+ genes play an essential biological role. Telnet is a manually curated database 

that consists of ALT-related genes and proteins in both yeast and human cells (185). The 

overlap yielded 50 genes and constituted a plethora of functions relating to cell biology. 

Among them were the two top downregulated genes, TBX1 and BRSK2, and the upregulated 

gene NFATC2 (Figure 16).  

 

Figure 16. Volcano plot of 
differentially expressed genes in ALT+ 
samples. Red indicates genes that 
passed both fold change (1.5) and 
adjusted p-value cutoffs (0.01). 
Green shows genes that only passed 
fold change cutoff, and grey shows 
genes below both cutoffs. Blue shows 
genes annotated in the Telnet 
database. Genes in bold denote 
expression levels that were 
consistently up/down in most 
ALT+/ALT- samples. 

 

 

 

The full list of Telnet annotated genes is shown in Table 7. The Telnet annotations 

revealed that BRSK2 was identified as a positive telomerase regulator in an RNAi kinase screen 

(198), whereas TBX1 was found in pulldown experiments using shelterin components (199). 

Another three genes in the high p-value group were annotated within the Telnet database, 

consisting of MYOCD, PKIB, and TSPYL5. Of note, however, was that these genes were highly 

expressed in some ALT+ cell lines, but not the majority. The transcription factor NFATC2, while 

not belonging to the high p-value group, had consistent upregulation in almost all ALT+ cell 

lines, found as a TF in upregulated genes (see Results section 3.3), and was also annotated in 

the Telnet database. 
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NFATC2 was annotated as a telomerase-enhancing hit as its motif is found in TERT promoters 

(200). HIC1 encodes the Hic1 TF which was found in downregulated ALT genes, and its Telnet 

annotation shows that it found deregulated in ALT+ cell lines (119).  

 

Table 7 Differential ALT+ genes annotated in the Telnet database. Bold denotes genes that 
were consistently downregulated/upregulated in most cell lines. 

Gene name Function  Gene name Function 
TDRD6 Cell differentiation  BRSK2 Protein kinase 
TDRKH Cell differentiation  CAMK1G Protein kinase 
TSPYL5 Cell growth  MAPK15 Protein kinase 
ANOS1 Cell membrane  PKIB Protein kinase 
ARL4C Cell membrane   PPP1R17 Protein kinase 
ELOVL7 Cell membrane  HIC1 RNA transcription 

and processing 
IFITM1 Cell membrane   MOV10L1 RNA transcription 

and processing 
ABCC9 Cell membrane  MYOCD RNA transcription 

and processing /  TF 
MAGEA4 Cell membrane  NFATC2 RNA transcription 

and processing /  TF 
PAGE2 Cell membrane  PARM1 RNA transcription 

and processing  
PAGE5 Cell membrane  ESR1 RNA transcription 

and processing /  TF 
LRRC63 Cell membrane  ARPP21 RNA-binding 
HDAC9 Chromatin 

organization 
 ARHGAP15 Signaling 

HIST1H4F Chromatin 
organization 

 NLRP2 Signaling 

KMT2A Chromatin 
organization 

 PLCD1 Signaling 

SETDB1 Chromatin 
organization 

 FOXP2 TF 

CDK15 Cyclin kinase  FOXR1 TF 
CDKL2 Cyclin kinase  GATA2 TF 
ANKLE1 DNA replication and 

repair 
 GATA5 TF 

LRATD1  DNA replication and 
repair 

 KLF12 TF 

AKR1B10 Metabolism  KLF8 TF 
ASS1 Metabolism  SOX5 TF 
EPHX2 Metabolism  TBX1 TF 
SULT4A1 Metabolism  TFEC TF 
TNIP3 Metabolism    
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3.6 Reactome analysis of ALT+ samples finds neuronal and developmental 

pathways 

Another approach for functionally determining gene expression changes in ALT+ 

samples was made by pathway analysis. Count tables from transcriptome alignment were 

used, and replicates were merged by averaging gene expression. These were then submitted 

for pathway analysis using the down-weighting of overlapping genes (PADOG) method (201). 

Using PADOG resulted in increased sensitivity of the gene set enrichment analysis. The 

Reactome pathway enrichment was then calculated, and the top 10 pathways were extracted 

in terms of Q-value (Table 8).  

Table 8. Top 10 Reactome pathways in ALT+ cell lines. 

 

These showed a relationship between activin and follistatin signaling, in which the top 

upregulated gene INHBA (see Results section 3.2) is a key factor of inhibiting activin signalling. 

Neuronal signaling pathways relating to semaphorins and NGF-independent TRKA activation 

were found, where the former was upregulated, and the latter was downregulated. 

Angiogenesis also seemed to be disrupted, where neuropilin interactions with VEGF/R were 

upregulated, yet VEGF ligand-receptor interactions and VEGF/R receptor dimerization were 

downregulated. This illustrates that ALT shows a specific preference for the VEGF ligands and 

the neuropilin receptor, bypassing the more canonical VEGF receptors. While neuropilin is 

physiologically relevant in neuronal outgrowth, cancer cells can also use it to regulate 

Reactome pathway Directionality Q-value 

Signaling by activin Up 2.0E-05 

Antagonism of activin by follistatin Up 2.0E-05 

Other semaphorin interactions Up 2.0E-05 

NGF-independent TRKA activation Down 2.0E-05 

Neuropilin interactions with VEGF and VEGFR Up 2.0E-05 

VEGF ligand-receptor interactions Down 2.0E-05 

VEGF binds to VEGFR leading to receptor dimerization Down 2.0E-05 

RUNX1 regulates estrogen receptor mediated transcription Up 2.0E-05 

RUNX1 regulates transcription of genes involved in 
differentiation of myeloid cells 

Up 2.0E-05 

RUNX1 regulates transcription of genes involved in WNT 
signaling 

Up 2.0E-05 
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angiogenesis (202). RUNX1, a TF whose motif was found in upregulated ATAC peaks (see 

Results section 3.12), had upregulated pathways related to estrogen receptor transcription, 

myeloid differentiation, and WNT signaling. Of note is the identical Q-value for these top 10 

pathways, where the low sample size of the 12 averaged cell lines most likely influenced the 

binning used for the Q-values. 

3.7 Quality control parameters for miRNA-seq pipeline 

To investigate the influence of miRNA in ALT+ samples, a new miRNA analysis pipeline 

was implemented. The minimum number of aligned reads for each sample was 3 million, 

which was achieved for all replicates (Figure 17A). The following quality metric concerned 

how many miRNA hairpins were detected, with a maximum of 1,551 known hairpins . The 

cutoff was set at 1,000 hairpins (Figure 17B), where each replicate attained this goal. In this 

case, the reason for choosing hairpins is due to the biology and computational analysis that 

is generally performed for miRNA. miRNAs are generated as miRNA hairpins, which are then 

cleaved into mature miRNAs that are biologically functional (203).  

Figure 17. Quality control parameter for miRNA pipeline. (A) Aligned reads in hundred million. 
(B) miRNA hairpins detected.  
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3.8 Identification of differentially expressed miRNAs show telomere 

maintenance-related hits 

The mature miRNA reads were used to construct count tables and analyzed with 

DEseq2. When passing low-read filtering, 822 out of 2,425 mature miRNAs were used for 

differential expression. A total of 52 miRNA were identified as differentially expressed (Figure 

18), with 8 downregulated and 44 upregulated miRNAs. More upregulated features than 

downregulated features were found. The corresponding miRNA IDs can be found in Table 9. 

Of the 52 differentially expressed miRNA, 17 had GO-term “negative regulation of telomeres” 

based on which mRNA they can regulate. 

 

 

Figure 18. Volcano plot of ALT+ 
differentially expressed miRNA. Red 
indicates peaks that passed both fold 
change (1.5) and adjusted p-value 
cutoffs (0.01). Green shows peaks that 
only passed fold change cutoff, and 
grey shows peaks below both cutoffs. 
Blue shows the 17 miRNAs with the 
gene ontology (GO) term “negative 
regulation of telomere elongation”. 
2,425 mature miRNAs passed low read 
cutoffs, where 8 downregulated and 
44 upregulated miRNAs could be 
identified above statistical and fold-
change cutoffs. 
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Table 9. All differentially expressed miRNA, divided into downregulated (downreg.) and 
upregulated (upreg.). miRNAs associated with telomere-related gene ontology terms are 
denoted in bold. 

 

3.9 Investigating transposable elements and piRNA 

Next, transposable elements (TEs) and their piRNA silencers were investigated. Count 

tables were generated from aligned reads with an in-house RNA-seq pipeline, allowing 

multimapping reads (see Materials and Methods section 6.14 ). Reads mapping to exonic 

counts were excluded. While 1,180 TE families were detected, none were differentially 

expressed (Figure 19A). This might be due to TEs being comprised of thousands of different 

transcripts that were grouped into families (such as LINE-1) (204). Thus, individual transcript 

changes were not represented within their family. Another option was that the TEs were 

already being silenced to the extent that they were not differentially expressed. To support 

the latter statement, two downregulated, and 12 upregulated piRNAs were be found (Figure 

19B). While future analysis with piRNA target prediction would be beneficial in answering 

Downreg. miRNA  Upreg. miRNA  Upreg. miRNA cont. 
hsa-miR-199b-5p  hsa-miR-34a-5p  hsa-miR-490-3p 
hsa-miR-214-3p  hsa-miR-105-5p  hsa-miR-512-3p 
hsa-miR-214-5p  hsa-miR-105-3p  hsa-miR-516a-5p 
hsa-miR-3120-3p  hsa-miR-122b-5p  hsa-miR-519a-3p 
hsa-miR-3120-5p  hsa-miR-122-5p  hsa-miR-519a-2-5p 
hsa-miR-4677-5p  hsa-miR-129-5p  hsa-miR-519d-5p 
hsa-miR-6716-3p  hsa-miR-129-1-3p  hsa-miR-520b-5p 
hsa-miR-10399-5p  hsa-miR-129-2-3p  hsa-miR-520f-5p 
  hsa-miR-138-5p  hsa-miR-522-3p 
  hsa-miR-138-1-3p  hsa-miR-708-3p 
  hsa-miR-139-5p  hsa-miR-708-5p 
  hsa-miR-139-3p  hsa-miR-767-3p 
  hsa-miR-142-3p  hsa-miR-767-5p 
  hsa-miR-146a-3p  hsa-miR-876-3p 
  hsa-miR-204-3p  hsa-miR-1284 
  hsa-miR-204-5p  hsa-miR-3117-3p 
  hsa-miR-218-5p  hsa-miR-3167 
  hsa-miR-323a-3p  hsa-miR-3909 
  hsa-miR-323b-3p  hsa-miR-4652-5p 
  hsa-miR-372-3p  hsa-miR-4662a-5p 
  hsa-miR-375-3p  hsa-miR-5579-3p 
  hsa-miR-377-5p  hsa-miR-5579-5p 
  hsa-miR-485-5p   
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what specific TE transcripts are targeted, this result still indicates that piRNAs are 

differentially expressed and of interest in ALT. 

 

Figure 19. Differential expression of transposable elements (A) and piRNA (B). 1,180 
transposable element families and 1,926 piRNAs were detected. Red indicates features that 
passed both fold change (1.5) and adjusted p-value cutoffs (0.01). Green shows features that 
only passed fold change cutoff, and grey shows features below both cutoffs. 

 

3.10 Quality control parameters for ATAC-seq pipeline 

The samples were sequenced at a read depth of approximately 50 million reads using 

paired-end sequencing. A quality cutoff at a minimum of 20 million aligned reads was used, 

and Figure 20A shows that this was achieved. The second parameter was how many peaks 

could be identified, where a minimum of 50,000 peaks was to be expected. Again, this was 

achieved as seen in Figure 20B. The last important metric analyzed was the Fractions of Reads 

in Peaks (FRiP), which indicated the fraction of ATAC reads were found in an identified peak. 

The FRiP cutoff was put at 0.1, which all samples passed (Figure 20C). 
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Figure 20. Quality control parameters for ATAC-seq pipeline. (A) Aligned reads in 10 million. 
(B) The number of identified peaks through peak calling. (C) FRiP score for each replicate. 

 

3.11 Differential expression analysis identifies thousands of differential peaks 

mainly in the noncoding genome 

A count table was constructed against the consensus peak set created from the ATAC-

seq pipeline, and the Y-chromosome was removed to avoid gender bias. The resulting count 

table contained 471,337 peaks. The corresponding volcano plot is shown in Figure 21A, with 

2,015 downregulated and 3,418 upregulated peaks above the cutoff criteria. More 

upregulated peaks were found than downregulated ones, indicating a general opening of 
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chromatin in ALT+ cells. The differential peaks were then annotated to their genomic location 

(Figure 21B). Most of the peaks were found in non-coding regions, such as intronic and distal 

intergenic (83%). Only 9 % were found in promoters, and 6 % were found in exons. This 

suggests that most of the ALT+ changes in chromatin accessibility occurred within non-coding 

regions. 

 

Figure 21. Differential accessibility in ATAC peaks and annotation. (A) Volcano plot of 
differentially accessible peaks in ALT+ samples. Red indicates peaks that passed both fold 
change (1.5) and adjusted p-value cutoffs (0.01). Green shows peaks that only passed fold 
change cutoff, and grey shows peaks below both cutoffs. 471,337 peaks passed low-read 
cutoffs, 2,015 downregulated, and 3,418 upregulated peaks were identified above statistical 
and fold-change cutoffs. (B) Annotation of differentially expressed peaks.  

 

3.12 ATAC-peaks are enriched in developmental and cell-survival transcription 

factor families 

The differentially accessible peaks were then analyzed for TF motifs. A cutoff p-value 

of 1·1060 was used, and additionally, the enrichment was calculated by dividing the % of motifs 

in the background versus the % of motifs in target sequences. For the downregulated peaks, 

almost all the top TF motifs in terms of p-value belonged to TFs in the SOX family (Figure 22A). 

The upregulated peaks were identified to contain members in the RUNX and AP-1 family 

motifs exclusively (Figure 22B). 
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Figure 22. Transcription factor motifs in ALT+ differentially accessible peaks. Shown with the 
y-axis as the -Log10 p-value and the x-axis as the -Log10 motif enrichment. (A) Motifs in 
downregulated peaks, with SOX  family motifs in red. (B) Motifs in upregulated peaks, with 
RUNX family motifs in red and AP-1 family motifs in yellow. 

 

Both SOX and RUNX are involved in developmental processes (205, 206), yet the 

distinct downregulation of SOX and upregulation of RUNX indicate that the chromatin state 

of ALT+ cell lines specifically favors RUNX but not SOX. Additionally, RUNX-AML motifs were 

also found. This motif is based on RUNX1 mutations in hematological cancers and correlates 

with poor prognosis in acute myeloid leukemia (207). SOX5, while being found as 

downregulated in transcriptomic data (Table 7), was not present in the TF motif analysis. This 

is most likely be due to gene expression not being a complete determinant of TF activity and 

TFs are extensively regulated via post-translational modifications (208). The AP-1 family has 

a broad function relating to cell survival and is commonly deregulated in cancer (209). It has 
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also been shown that the AP-1 transcription factors are connected to inflammation (210). This 

may be particularly relevant as TF motif analysis of differentially expressed genes showed that 

upregulated genes contained many immune-related TF motifs (Figure 15). Therefore, it could 

point towards gene expression programs in ALT being influenced by immune signaling 

pathways.  

4 Integrative omics analysis 

4.1 ATAC and RNA integration reveal two potential ALT biomarkers 

To investigate whether differentially accessible peaks and expressed genes showed 

signs of coregulation, differential ATAC peaks were divided into promoters or enhancers for 

genes. The ENCODE database defined the promoter region, ordinarily close to the 

transcription start site of a gene. These promoter sites were then expanded to include 1 kb 

upstream or downstream of the promoter sites. The enhancers were defined according to 

ENCODE annotated enhancers, and each activate enhancer was connected to the nearest 

gene. These active promoters and enhancers were further linked to differentially expressed 

genes from section 3.2 and the Telnet database by overlapping gene names. For the 

upregulated genes and peaks, 10 hits could be found (Figure 23A). 142 differentially 

expressed genes contained an upregulated promoter/enhancer but without being annotated 

to a gene within the Telnet database. Two hits were observed for the downregulated genes 

and peaks (Figure 23B). 13 genes with active promoters/enhancers outside the Telnet were 

also found. The ATAC and RNA-seq integration further reinforced the notion that NFATC2 and 

BRSK2 genes are potential ALT biomarkers. For NFATC2, most ALT+ cell lines showed an 

increase in normalized counts, except for the U2OS cell line (Figure 24A). Nevertheless, its 

expression was virtually absent in ALT- cell lines (Figure 24C). Three differentially accessible 

peaks were found 15 kb upstream of the gene, and these showed a relationship with the gene 

expression. Notably, the increased accessibility was not seen for the U2OS cell line, which did 

not contain high levels of NFATC2 transcript. BRSK2 was the top downregulated gene for ALT+ 

samples and contained one differentially accessible peak was identified 13 kb upstream of 

the gene. Its expression was almost absent in all ALT+ samples (Figure 24C).  
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Figure 23. Results from overlaps between gene expression, promoter/enhancer ATAC signal, 
and Telnet database. Bold shows consistently up/downregulated genes in most cell lines (A) 
Upregulated gene and promoter/enhancers overlap with Telnet. (B) Downregulated gene and 
promoter/enhancers overlap with Telnet. 
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Figure 24. Examples of differentially expressed genes in ALT+ samples with differential ATAC 
peaks. (A) NFATC2, (B) BRSK2. Gene tracks on the right show ATAC (cyan) and RNA (blue). 
Differentially expressed ATAC peaks are shown on the leftmost panel with the protein-coding 
gene on the right. (C) Normalized counts of the NFATC2 and BRSK2 gene, each cell line is color-
coded according to legend, with OS as circles and pGBM cells as triangles. 
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4.2 Multi-omics integration reveals a robust ALT signature 

To find an ALT+ signature spanning all the different sequencing approaches, a multi-

omics integration was performed. Count tables from expressed genes, ATAC, miRNA, TE, and 

piRNA, were transformed using variance stabilizing transformation and normalized for cancer 

entity. These count tables were sorted on features with the highest standard deviation in the 

samples and used for multi-omics factor analysis (MOFA). The analysis parameters were 

optimized by choosing how many variable features should be used and limiting how many 

features should be contained within the signature (Figure 25A). Irrespective of the number of 

features, TMM was the principal factor of variance in the data. The number of features 

analyzed was chosen based on the best distinction between ALT+ and ALT- groups, which was 

1,000 features. Subsequently, the number of analyzed factors was limited to 6 factors based 

on the elbow method (Figure 25B). The elbow method consisted of observing the point of 

diminishing returns to explaining the variance when adding more factors.  

 

Figure 25. Optimization of multifactor omics analysis. (A) Beeswarm plots of a varying number 
of features. Y-axis denotes the factor weight of each cell line. Colored in red for ALT+ and blue 
as ALT- cell lines. Circles are OS and diamonds as pGBM. Pearson correlation of factor to TMM 
is shown for each beeswarm plot, with red showing negative correlation and blue positive 
correlation expressed as a Pearson score. The size of the dots also relates to the Pearson score. 
(B) Scree plot of % variance explained for a cumulative number of factors. The total number 
of explained variance is 100 %. 
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The resulting analysis was then further characterized by testing the correlation 

between cell line metadata and factors. Factor 1 was heavily linked to TMM, with smaller 

correlations between cell-cell heterogeneity or cell gender (Figure 26A). As expected, when 

normalizing the count tables, no correlation could be seen between the factors and tumor 

entity. The other factors show a mix of correlations with no apparent relation, except for 

factor 6, which was strongly linked to sequencing run. The Pearson correlation coefficient was 

extracted between each factor to observe whether factor 1 was influenced by other factors 

(Figure 26B).  

Figure 26. Testing robustness of telomere maintenance mechanism (TMM) factor. (A) Pearson 
correlation between factors and cell line data. Red shows negative association, and blue shows 
positive association. (B) Factor-factor Pearson correlation. (C) Factor-factor scatter plots with 
ALT+ cells in red and ALT- cells in cyan. (D) UMAP constructed of all factors, ALT+ shown in 
blue and ALT- in red. Circles are OS and diamonds as pGBM. 
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Some correlation can be seen between factors 2,3 and 6; however, the correlations 

were minor ( > 0.4). The distinction between ALT+ and ALT- cell lines was always present, even 

when comparing factor 1 to other factors (Figure 26C). The only noticeable difference in 

sample clustering occurred in factor 6, which further separated the groups into sequencing 

run. Lastly, uniform manifold approximation and projection (UMAP) visualization of all factors 

showed the distinction between ALT- and ALT+ was ever-present in the data (Figure 26D), 

further indicating that the principal source of variance in the data stemmed from TMM and 

with little interference from other factors. As such, it was concluded that MOFA robustly 

extracted an ALT signature throughout the omics. Notably, the ALT signature was the principal 

source of variation and was not confounded by other factors. 

 

4.3 The ALT gene expression signature is linked to oxidative stress and cell 

motility 

I then performed a functional analysis of the ALT signature. The functional analysis 

consisted in testing what omics contribute most to the signature. In this case, transcriptome 

described most of the variance (27%), followed by miRNA (19%) and ATAC (14%) (Figure 27A). 

piRNA and TE only explained 9 % and 7 % of the variance, respectively. This shows that ALT+ 

samples could be best identified through transcriptome, miRNA, and chromatin accessibility. 

As gene expression was the most significant determinant of ALT+ in omics data, GO-terms 

were extracted for the negatively and positively weighed genes for factor 1. It is to be 

emphasized that the genes that were negatively weighted for factor 1 were instead positively 

weighted for ALT+ samples, as ALT+ samples themselves were negatively weighted for factor 

1 (Figure 25A). GO-terms related to cellular response to alcohol, cell motility, and 

neurogenesis were seen for the positively weighted genes. The last two terms are also 

represented within the GO-term analysis from section 3.4. The identical p-values most likely 

originated from the same genes annotated to all five pathways (Supplemental Figure 1B). 

The response to reactive oxygen species was highly enriched for the negatively 

weighted genes, with other GO-terms denoting cochlea development, retinoic acid response, 

and negative neuron death regulation. Reactive oxygen species may relate to intrinsic 

mitochondrial dysfunction and drive pro-survival pathways through cell signaling (211). This 
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was further indicated by the “response to retinoic acid” GO-term, where ALT cell lines may 

modulate fatty acid metabolism to either counter or potentiate oxidative stress (212). 

Additionally, genes annotated in negative regulation of neuron death may be related to 

countering reactive oxygen species induced apoptosis, and cellular protein complex assembly 

may be related to ER stress (213, 214). 

Figure 27. MOFA factor 1 characterization. (A) Variance explained between each omics and 
factor. The leftmost plot shows the cumulative variance between all the factors and all the 
omics, and the rightmost plot shows the variance explained by each omics in factor 1. (B) GO-
term analysis from negatively or positively weighted genes in ALT.  
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5 Perturbing epigenetic marks in ALT with drugs 

5.1 ALT+ viability is affected by inhibition of DNA methylation and H3K27 

trimethylation 

To investigate whether ALT cells showed susceptibilities for chemical inhibitors, I 

assembled 15 chemical compounds that were of potential ALT interest and were considered 

specific for their targets at the time (Table 10). These compounds targeted DNA repair, 

epigenetic processes, innate immunity sensing, and telomerase. Mitotic kinases were also 

screened to determine non-lethal concentrations used for metaphase spreads (see Results 

section 5.6). DNA repair was previously established as a potential ALT+ therapeutic (215), 

while epigenetic inhibitors have not been tested previously from an ALT perspective. Innate 

immunity sensing was chosen based on the finding that C-circles induced DNA-sensing 

pathways via the cGAS/STING signaling pathway (216). To this end, an inhibitor for cGAS and 

two STING agonists were used. The latter of which encompassed the natural cGAS second 

messenger cGAMP and the small molecule G10. 

Table 10. List of compounds used to find ALT-specific susceptibility or resistance in terms of 
cell viability. Bold denotes positive hits. 

 

A reduced screening format was utilized to find compounds that showed differences 

in ALT+ cell viability. This was done using two cell lines, KNS42 as an ALT- control and MGBM1 

Compound name Target 
5-azacytidine DNA methylation 
AZD7648 DNA-PK 
CC1 pan-kinase inhibitor Broad kinase inhibitor 
BIBR 1532 Telomerase 
cGAMP cGAS-STING second messenger 
CP2 KDM4 
CX-5461 rRNA synthesis 
G10 STING (agonist) 
GSK343 EZH2 mediated H3K27me3 
IKK-16 IKK 
KU-55933 ATM 
LDN-192960 Haspin 
LY2603618 Chk1 
RU.521 cGAS 
ZM 447439 AURKA/B 
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as an ALT+ control. The compounds that showed noticeable cell viability differences were 

then subjected to cell viability tests with the entire cell line panel consisting of eight pediatric 

glioblastoma cell lines (Table 11). These cell lines were the same as those used in the 

sequencing analysis (Table 4), with the addition of the NEM168 ATRX knockout clone F2. The 

pGBM cell lines constituted a variety of mutations in H3.3 and ATRX and different ALT 

activities. From the 14 compounds screened, two were investigated further. These were 5-

azacytidine, which targeted DNA methylation, and GSK343 which targeted PRC2 mediated 

H3K27me3 deposition. It is noted that at the time of the experiment, the cGAS inhibitor 

RU.521 was novel and believed to be specific to human cGAS (217). However, subsequent 

studies have shown that RU.521 is mainly active on murine cGAS and much less so for human 

cGAS (218). Still, due to the negative results for the STING agonists G10 and cGAMP, it was 

concluded that ALT+ cell lines were not highly sensitive to disruption of DNA sensing. 

 

Table 11. Cell line panel used in inhibitor experiment. NEM168 clones B5 and F2 constitute 
ATRX knockouts where ALT activity was increased. C-circle ratios shown as mean and SEM in 
parentheses. µM EC50 is shown as means with standard deviation in parentheses. EC50 results 
stem from three biological replicates consisting of three technical replicates. 

Tumor 
entity 

Cell line 
C-circle 

ratio 
TMM  

ATRX 
mutation 

H3.3 
mutation 

Aberrant 
H3.3s31p 

µM EC50 

5-
Azacytidine 

GSK343 

Pe
di

at
ric

 g
lio

bl
as

to
m

a 

KNS42 0 (0.0) ALT- WT G34V No 7.1 (0.85) 7.9 (1.6) 

SF188 0 (0.0) ALT- WT WT No 6.5 (0.78) 9.6 (1.6) 

MGBM1 2.1 (0.6) ALT+ Yes G34R Yes 23.2 (0.70) 5.9 (1.9) 

NEM157 0.04 (0.0) 
Weak 
ALT+ 

Yes K27M Yes 20.7 (0.75) 6.4 (1.3) 

NEM165 0.01 (0.0) 
Weak 
ALT+ WT K27M No 5.1 (0.77) 

10.3 
(1.8) 

NEM168 0.03 (0.05) 
Weak 
ALT+ WT K27M No 9.2 (0.78) 

10.3 
(1.8) 

NEM168 
cl. B5 0.3 (0.0) ALT+ Yes K27M No 12.3 (0.77) 9.6 (1.6) 

NEM168 
cl. F2 

1.4 (0.6) ALT+ Yes K27M No 12.7 (0.85) 5.1 (1.6) 
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5.2 5-azacytidine treatment shows a weak correlation between ALT activity 

and cell viability 

The first hit was the DNA methylation inhibitor 5-azacytidine. A trend was observed 

regarding cell lines with higher C-circle values being more resistant to 5-azacytidine (Figure 

28). While most cell lines with low (weakly ALT) or no discernable C-circles (ALT-) had low EC50 

values when compared to samples binned to higher C-circle values (ALT). One exception was 

the NEM157 cell line, which although being binned as weakly ALT, had EC50 values 

comparative to the MGBM1 cell line (which had the highest C-circle ratios of all cell lines) (see 

values in Table 11). 

 

Figure 28. EC50 for cell 
survival in two ALT- cell 
lines (red) and 6 ALT+ cell 
lines (blue). The X-axis 
shows the normalized C-
circle ratios for each cell 
line, and the Y-axis the 
effective concentration at 
which 50 % of cell signal is 
lost. The sample size 
consists of three technical 
replicates repeated three 
times. r2 denotes the 
correlation coefficient. 

 

 

5.3 GSK343 is heat-labile which affects downstream applications 

The heat lability for GSK343 was determined due to initial findings showing highly 

irregular cell viability results. DMSO or 16 µM GSK343 were pre-incubated by mixing with cell 

medium and incubated at 37 °C at 5 % CO2. These were in turn added to the MGBM1 cell line 

(Figure 29). As is evident, at 16 µM GSK343 the cell viability decrease was absent when the 

compound was pre-incubated for three days. For the cell viability assay, the GSK343 

compound was therefore reapplied every three days. While it is noted that even at one-day 
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pre-incubation, roughly 25 % of cells survive, a repeated medium change caused cell 

detachment, especially in high-dose conditions where the cells were already stressed.  

 

 

Figure 29. Heat lability test 
for GSK343 in the MGBM1 
cell line. Y-axis shows % 
survival normalized to 
DMSO. Average of three 
technical replicates. 

 

 

 

 

5.4 GSK343 shows a weak correlation between ALT activity and cell viability  

GSK343 was then applied to the full cell line panel after the optimization described 

above. A general trend was seen in cell lines with higher ALT-activity being more susceptible 

to EZH2 inhibition (Figure 30A). In juxtaposition to a previously published study (219), this 

susceptibility was not connected to H3K27M mutants. As seen in Table 11, the NEM cell lines 

binned to weakly ALT+, which contained H3K27M substitutions, did not have markedly 

different viability than ALT- samples. Instead, the MGBM1 and NEM168 ATRX -/- clone F2, 

which had the highest C-circle ratios, were more susceptible. This indicated that EZH2 

inhibition targets cell viability in cells with higher ALT activity. The next question was in which 

cell death modality the compound reduced the cell viability signal.  

By performing a cell death flow cytometry assay, I tested whether apoptosis (Annexin 

V-FITC positive populations) and necrosis (propidium iodide positive populations) were 

different between DMSO and cell lines exposed to 6 µM GSK343 (Figure 30B). KNS42 and 

SF188 were chosen as ALT- controls, MGBM1 as a high ALT activity control, and NEM157 as a 

weakly ALT+ sample. While being in an inhibitor concentration well within the range of the 

EC50 values, the cell lines did not show a significant increase in any kind of cell death. The 

KNS42 cell line showed a slight increase in apoptotic/necrotic cells; however, this value was 
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around 3 %. For the other cell lines, while having error bars spanning -5% to +5% cell death 

increase, the conclusion was still drawn that GSK343 inhibits cell proliferation.  

 

Figure 30. GSK343 lethality experiments and characterization. A) EC50 for cell survival in two 
ALT- cell lines (red) and 6 ALT+ cell lines (blue). The X-axis shows the normalized C-circle ratios 
for each cell line. The sample size consists of three technical replicates repeated three times. 
r2 denotes the Pearson correlation. B) % cell death induction in four cell lines treated with 6 µL 
GSK343 for six days. Average of three technical replicates repeated three times. 

 

5.5 Establishing imaging methods for H3.3S31p  

To investigate the ALT-specific aberrant H3.3S31p, which consists of chromosome-

wide spreading rather than the usual centromeric localization of H3.3S31p. I established a 

protocol for arresting cells in mitosis and image condensed chromosomes using antibody 

labeling and immunofluorescence. I included a pan-kinase inhibitor to function as a positive 

control for future H3.3S31p inhibitor testing, which potently diminished H3.3S31p signal 

(Figure 31A). Another aspect was to establish antibody stainings that could discern between 

aberrant and centromeric H3.3S31p spreading. This would be used to test inhibitors that 

could cause aberrant H3.3S31p in non-aberrantly spreaded cells or classify aberrant spreading 

in new cells. Therefore, the centromeric histone CENP-A was chosen and this signal largely 

overlapped with H3.3S31p in a non-spreaded cell line (Figure 31B). 
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Figure 31. Metaphase spread optimizations. The white bar shows 1 µm length. (A) New 
protocol for MGBM1 cells using H1 as counterstaining, together with DAPI and H3.3S31p. 
Comparison between DMSO and CC1 pan-kinase inhibitor. (B) Testing CENP-A as 
counterstaining for centromeric H3.3S31p, using KNS42. N=1. 

 

5.6 Aberrant H3.3S31p spreading in ALT cells may involve the mitotic kinase 

HASPIN 

The kinase(s) responsible for depositing aberrant H3.3S31p has not been conclusively 

found to this date. A preliminary experiment indicated that inhibiting a mitotic kinase called 

HASPIN reduced H3.3S31p signal intensity (Figure 32B). In contrast to previous results 

studying the CHK1 kinase (64), I could not find a signal decrease when using a CHK1 inhibitor.  
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Figure 32. Metaphase spreads of the MGBM1 cell line treated with kinase inhibitors. (A) 
Inhibitors LDN-192960 (HASPIN), LY2603618 (CHK1), MLN8237 (AURKA), or DMSO were used. 
Merged images of blue fluorophore being DAPI and green fluorophore α-H3.3S31p Alexa Fluor 
488. The white bar shows 1 µm length. B) Bar plot showing H3.3S31p intensity of segmented 
chromosomes when treated with DMSO, HASPIN, CHK1, or AURKA inhibitors. N=1.
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Discussion 
This thesis characterizes molecular features of the ALT pathway that depends on 

aberrant DNA repair and recombination, where many factors cooperate to amplify replicative 

stress that elongate telomeres via aberrant DNA repair. ALT can affect long-term survival in 

cancers and obtaining an omics signature would thus be valuable for patient stratification. 

Since ALT can also coexist with telomerase cancers (57), interventions targeting telomere 

elongation in cancer will require combinatorial treatment regimens that equally affect 

telomerase and ALT tumors. To get to this point, however, will require better knowledge of 

how ALT functions. In this thesis, I describe that ALT cancers are highly heterogeneous and 

yet have common features across tumor entities. I find that ALT cancers display distinct 

profiles concerning gene and miRNA expression and chromatin accessibility. I further 

characterize gene regulation networks that modulate the genetic environment in the 

presence of ALT. Using an integrative omics approach, I dissect tentative biomarkers and 

extract a multi-omics ALT signature. Thereafter, using a panel of chemical inhibitors on 

pediatric glioblastoma (pGBM) ALT cell lines, I find a relationship between ALT-activity and 

sensitivity to EZH2 and DNA methylation inhibitors. Lastly, by assaying different kinase 

inhibitors, I report initial results that point to HASPIN as a kinase responsible for aberrant 

H3.3S31p spreading during mitosis in ALT.  

1 C-circle analysis of 687 mixed-lineage sarcomas show 

heterogeneous ALT activities 
The C-circle assay has proven the most reliable assay for detecting ALT presence (66). 

Nevertheless, there appear to be some ALT cell lines that do not have high C-circle levels 

(Table 4). I find that out of 687 mixed-lineage sarcomas, 148 (22 %) were C-circle positive 

(Results section 1.2). The same percentage was obtained in another study that assayed ALT+ 

cancers in mixed-lineage sarcomas (220). The study in question used telomere-FISH to 

quantify telomere length, which is a more downstream biomarker for ALT. This would further 

indicate that C-circle amplification is an accurate way to capture ALT presence. 

C-circles are quantitatively correlated with ALT activity. When using gamma-radiation 

to induce high ALT activity via telomeric double-strand breaks exogenously, C-circles are 
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increased (221). This notion is also supported in other studies that modulate replication stress 

factors or induce DNA damage to increase ALT activity  (119, 222-224). The large spread in C-

circle ratios I found indicates that ALT cancers are heterogeneous in their activity. This finding 

is also not restricted to ALT sarcomas. A study conducted in 720 neuroblastomas saw a similar 

large spread in C-circle values (52). Taken together, my findings show that the C-circle assay 

accurately captures ALT presence and that ALT cancers have a spectrum of recombinational 

activity. The cause for the heterogeneity is not yet confirmed; however, it is possible that the 

large spread in ALT activity constitutes a spectrum of increased DNA damage and telomere 

recombination. Interestingly, new findings reveal that two general telomere elongation 

mechanisms exist in ALT and that only one of these mechanisms may contribute to C-circle 

formation (69). Thus, there is a possibility that some ALT cancers would remain undetected 

using the C-circle assay. 

2 Modulating H3K27me3 may be related to ALT-activity 

irrespective of existing H3.3 mutations 
With all the inferred epigenetic changes in ALT, it should come as no surprise that ALT 

cell lines show differential viabilities when treated with epigenetic drugs (see Results section 

5.1. The trend towards decreased viability to the EZH2 inhibitor GSK343 in high-activity ALT 

samples (Figure 30A) would imply that ALT-activity is underpinned by epigenetic derepression 

irrespective of H3.3 mutations. Additionally, Figure 30B shows that the loss of viability 

resulted from cell lines not proliferating. A study on diffuse intrinsic pontine glioma (DIPG) 

cells discerned that GSK343 treatment resulted in a loss of viability in cancers with H3K27M 

mutations (219). Similarly, the authors found that GSK343 inhibited cell proliferation and saw 

via RNA-seq that this was due to the expression of the oncosuppressor p16ink4a. p16ink4a is a 

common cancer mutation due to its senescence-inducing capabilities (225) and could explain 

the sudden stop in cell proliferation found in both this study as well as the cell death analysis 

that was performed (Figure 30B). It is known that DIPGs are enriched in ALT, which also 

contain H3K27M or H3.3K27M mutations (226). However, the authors did not check the 

presence of ALT in their tumor samples. Thus, further work is needed to fully characterize 

why ALT cells stop proliferating during PRC2 inhibition by assessing whether treated cells 

become senescent with β-galactosidase assays.  
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3 DNA methylation perturbation leads to differential 

survival connected to ALT-activity 
The mode of action of 5-azacytidine’s mechanism is not entirely understood, although 

its inhibitory effect on DNA methylation is well-established (227). Incorporating 5-azacytidine 

instead of cytosine residues trap DNA methyltransferases and leads to global DNA 

methylation reduction (227). The lack of DNA methylation can induce cytotoxicity either by 

modulating gene expression programs or inducing innate immunity from expressed TEs (228). 

Therefore, the increased survival in high-ALT cell lines would indicate that ALT-activity confers 

resistance to these processes. It could also be inferred that innate immunity is heavily 

disrupted in ALT and that expression of TEs does not yield inflammation-mediated cell death. 

Another possibility is that methylation levels at ALT subtelomeres are already low. It has been 

shown that subtelomeres are hypermethylated when telomerase is active (229). While the 

methylation status of ALT subtelomeres has not been assayed, it is possible that they are 

hypomethylated. Furthermore, telomere position over long distances (TPE-OLD) studies 

showed that short telomeres lead to DNA methylation patterns which allow TERT expression 

(230). As such, long telomeres, which are unique to ALT cancers, may by themselves change 

subtelomeric DNA methylation in a hitherto unknown fashion. Therefore, it could be so that 

the cells with high ALT activity have longer telomeres that sustain DNA methylation through 

5-azacytidine-insensitive mechanisms. 

4 Haspin may coordinate H3.3S31p deposition 
As previously mentioned, H3.3S31p is usually a pericentric mitotic histone mark. In the 

majority of ALT cell lines, the mitotic spreading for H3.3S31p is chromosome-wide, and this 

aberrant spreading phenotype can be a good ALT marker (64). Furthermore, H3.3S31p drives 

enhancer activation in embryonal stem cells and might aid in resolving UV damage in DNA 

(115, 116). Despite this, it is unclear how H3.3S31p is involved in ALT, as it is aberrantly 

deposited in a chromosome-wide manner for many but not all ALT cell lines (64). Multiple 

studies have attempted to elucidate which kinase(s) are involved in its deposition. One study 

used a siRNA screening platform to investigate which kinase knockdowns led to a reduced 

H3.3S31p signal (231). They observed that the kinases AURKB and BUB1B, which drive mitotic 

checkpoint processes together, reduced the S31 phosphorylation greatly (232). However, it is 
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worth mentioning that this study was performed on HEK293 cells, which are ALT- (233). 

Another study done in ALT+ cell lines showed that the DNA-repair kinase CHK1 is involved 

(64). However, the authors used inhibitor concentrations multiple orders of magnitude above 

the IC50 value. In the inhibitor study I performed, I chose values close to the IC50 values to 

avoid potential side effects. In my experiments, the only inhibitor that reduced the mitotic 

H3.3S31p signal was the HASPIN inhibitor. HASPIN has been described to phosphorylate 

threonine 3 in H3 (H3T3) in mitosis and has been implicated in proper chromosomal alignment 

(234). HASPIN activity also depends on phosphorylation by AURKB (235). Given the genetic 

instability present in ALT, it is conceivable that mitotic defects go together with this instability. 

Thus, findings from an earlier study that observed the function of H3.3S31p as a sensor for 

misaligned chromosomes could apply to aberrant H3.3S31p ALT cells (117). This model would 

suggest that H3.3S31p is a consequence of ALT-induced genetic instability, rather than it being 

involved in differentiation or gene expression pathways. Future studies should use AURKB 

inhibitors to verify its relationship to H3.3S31p. Additionally, the cause-or-consequence 

question for aberrant H3.3S31p should be investigated further as well. In this regard, it would 

be beneficial to induce aberrant H3.3S31p spreading in ALT cell lines with normal spreading 

patterns and test if this affects ALT activity. Another experiment to perform in the same cell 

line would be to induce chromosomal missegregation using microtubule inhibitors and 

observe whether aberrant H3.3S31p is formed. 

5 Different omics approaches identify ALT specific features 
C-circles are established biomarkers for ALT, but omics signatures for ALT are lacking. 

Since ALT can profoundly influence long-term survivability in cancers (53, 236), it is vital to 

investigate whether ALT presence can be linked to sequencing-based readouts. In this study, 

I performed RNA-seq of long and short RNAs as well as ATAC-seq on a heterogeneous tumor 

panel with varying mutations in ATRX, H3.3, and ALT activity with the approach depicted in 

Figure 33. One challenge is that tumor entity could confound the ALT signature, which needs 

further consideration in future validation experiments. This is evidenced by the eigenfactor 

correlation analysis I performed (Figure 12), where both PC1 and PC2 showed a high 

correlation to both TMM as well as tumor entity for most omics approaches.  
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Regarding the ALT signature found in the different omics, it appears that the most 

differential features are obtained from transcriptome, chromatin accessibility, and miRNA. 

This is also reflected when performing multi-omics factor analysis (MOFA) (see Results section 

4.2). In this regard, I obtained the NFATC2 and BRSK2 genes that showed both differential 

expression in transcriptome and chromatin accessibility. NFATC2 could also be confirmed 

through transcription factor (TF) analysis from upregulated ALT transcriptomic genes, 

indicating that its activation can drive the differentially expressed ALT genes. However, these 

genes would have to be functionally validated and observed in primary cancers. One extensive 

ALT omics study was performed in neuroblastoma cancers, where RNA-seq and proteomics 

were used to identify ALT-related proteins and genes (52). The authors did not observe a 

differential expression of my candidate hits BRSK2 and NFATC2. Both of these genes may be 

down or upregulated via inflammation-related processes (see Discussion section 7), and one 

explanation could be that ALT neuroblastomas are less prone to inflammation. Similarly, a 

study used the TCGA cancer cohort to dissect ALT-related genes and found enrichment of GO-

terms relating to reactive oxygen species, hypoxia, and angiogenesis in most ALT tumors 

(237). However, the TCGA cohort does not include pediatric cancers, and thus, neuroblastoma 

is not included in this analysis (238).  

 

Figure 33. The different sequencing readouts when evaluating ALT omics signature 
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6 Role of SOX and RUNX transcription factors in ALT 
ATAC-seq identified more than 5,000 differentially accessible peaks in ALT+ cell lines, where 

most peaks were found in non-coding genetic elements (Figure 21). RUNX TF family motifs 

were enriched while SOX motifs were depleted, indicating that ALT+ cell lines selectively 

utilize these developmental pathways. SOX and RUNX TFs are crucial in diverse differentiation 

processes and similarly have a wide range of chromatin targets (226, 227). These TFs were 

not found as differentially expressed genes in the transcriptome TF analysis. However, it is 

well established that post-translational modifications also regulate TF activity, and these TFs 

may thus be vital in inducing ALT-specific developmental states (208). It is also interesting that 

the transcriptome contained many developmentally related GO-terms, which could be 

regulated by the SOX and RUNX TFs (Table 5 and Table 6). Another open question is why these 

specific TF families are up or downregulated. One potential mechanism could be miRNAs. It 

was shown that SOX4, one of the downregulated motifs in my TF analysis, can be 

downregulated or have its activity inhibited by miR-138 and miR-142 (239, 240). These 

miRNAs were upregulated in my differentially expressed miRNA analysis (Supplemental Table 

3). Similarly, for RUNX, one of the upregulated differentially expressed miRNA miR-218 

increased RUNX2 expression in osteoblasts (241). The reason for the RUNX TFs being 

upregulated may also be due to higher activity of the AP-1 family, as well as STATs and various 

other immune-related TFs (242-244) (Figure 15). Lastly, RUNX TFs may induce specific 

pathways not captured by chromatin accessibility or transcriptome TF analysis. The pathway 

analysis revealed that RUNX1 induced gene expression pathways involving estrogen receptor 

activation, WNT signaling, and differentiation of myeloid cells. The pathway analysis of down-

weighted genes (PADOG) improves gene set analysis significantly and could explain why 

similar GO-terms were not enriched (201).  

7 AP-1 and immune-related transcription factors are 

indicative of inflammation in ALT+ cell lines 
The highest enrichment of TF motifs found in the chromatin accessibility analysis was 

for the AP-1 family. These TFs can heterodimerize in multiple combinations to result in 

different transcriptional profiles (209). Notably, AP-1 TFs can be activated in response to DNA 

damage and inflammation (210, 245). These stressors may be a common theme in ALT cancers 
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and could cause specific upregulation of AP-1 TFs.  Interestingly, in an ALT induction model, 

the authors saw increased inflammatory markers (such as TGFβ) but reduced AP-1 TFs (246). 

The authors do not go into great detail explaining this pathway. However, it is possible that 

in transitioning to become ALT+, the cancer cells modulate downstream pathways of 

inflammation, such as AP-1, to avoid apoptosis. This would also indicate that cell lines that 

have ALT rely on high AP-1 activity at a later stage. However, an open question is how the ALT 

cell lines disrupt inflammation so as not to show signs of, e.g., TGFβ signaling in GO-term 

analysis.  

It was recently shown that C-circles induce an innate immune response and that ALT 

cancers disrupt DNA sensing mechanisms to avoid apoptosis (216). This could explain why 

modulating key components of the DNA sensing pathway did not result in differential viability 

(see Results section 5.1), as these pathways are simply quiescent. Nevertheless, it would also 

make sense that the ALT cancer utilizes this heightened state of inflammation to drive tumor 

growth. This process has been described in many cancer-related features, such as tumor 

microenvironment and cancer proliferation (247). Upregulated genes show many enriched 

immune-related transcription factors for ALT cell lines, such as STATs and NFATs (Figure 15B). 

This indicates that existing inflammatory processes influence ALT transcriptome. The 

identification of NFATC2 from transcriptomic data further supports this (see Results section 

3.3). NFATC2 is a transcription factor generally expressed in resting T-cells (248), yet it was 

highly upregulated in ALT+ cell lines (Figure 14) and amongst the top TF motif in upregulated 

ALT+ genes (Figure 15B).  

C-circles and chromosomal instability may account for some of the inflammatory 

signaling. In addition, the multi-omics factor analysis with the MOFA software revealed that 

ALT+ cell lines had a reduced response to oxidative stress (Figure 27B), which could in turn 

lead to an increase in reactive oxygen species mediated damage. Oxidative stress is a 

significant source of inflammation (249), and telomeres in particular are susceptible to 

oxidative damage (250). Additionally, GO-terms related to negative regulation of neuron 

death and cellular protein assembly may further indicate the presence of oxidative stress. 

Neurons are susceptible to reactive oxygen species and mitochondrial dysfunction (213), and 

so is the protein assembly complex (251). It was shown within the TCGA cancer cohort that 

GO-terms relating to reactive oxygen species were upregulated in most ALT tumors (237). 
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Together with findings that mitochondria may be dysfunctional in ALT (128), these studies 

and my own study suggest that oxidative stress and mitochondria are connected to the ALT 

pathway. However, it can additionally be seen in the MOFA signature that oxidative stress 

damage is actively promoted in ALT and could possibly be a critical route for cells to induce 

DNA damage and drive telomeric recombination. It can also be speculated that ER stress is 

induced in ALT due to reactive oxygen species. This may also be related to one of the top 

downregulated genes in ALT+, namely BRSK2. It was shown that BRSK2 mediates ER-stress-

induced apoptosis and that its expression is downregulated in cancer cell lines to escape cell 

death (252).  

The diverse set of findings from the omics analysis may be related to the heterogeneity 

in ALT activity described in Results section 1.2. The large spread in ALT activity can be 

underpinned by different degrees of DNA damage which facilitate DNA recombination. 

Inflammation would go hand-in-hand with increased levels of genetic instability (253), and it 

is known that inflammation can be modulated into pro-survival processes in cancer (254). This 

can be confirmed experimentally by inducing cell death, for example, whether apoptosis is 

induced to the same degree in ALT+ cell lines. Furthermore, it is also possible that a constant 

state of inflammation can lead to ALT tumors being more infiltrated by immune cells (255). 

Additionally, as ALT cancers have a heterogeneous level of activity, it can be postulated that 

ALT cancers with high activity can lead to increased levels of immune cell infiltration. This 

could be utilized in immune checkpoint blockades, such as CTLA-4 and PD-1/PDL-1 

therapeutics (256). 

8 ALT transcriptomic signature indicates modulation of 

signaling pathways 
While the GO-terms related to differentially expressed ALT genes were quite broad 

and included many developmental pathways, some enrichment of neuronal pathways was 

apparent when doing pathway analysis (Table 8). It pointed to activin/inhibin as well as 

Neuropilin signaling. Activin ligands are a member of the TGF-β superfamily of ligands (257). 

The activin ligands bind to activin receptors, which induce gene expression changes via SMAD 

and MAPK pathways and are vital in cell proliferation (258-260). Activin signaling has also 

been implicated in many inflammatory diseases and cancers (261, 262), and thus its activation 
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could be due to increased inflammation in ALT. The activin signaling pathway is negated by 

the inhibin ligands and follistatin, which compete for the same receptors but result in non-

productive signaling (263, 264). One of the top upregulated ALT+ genes is INHBA, an inhibin 

ligand. Perhaps the ongoing inflammation in ALT+ cell lines leads to activin signaling, which is 

inhibited by upregulating INHBA. Thus, it would be worthwhile to investigate whether activin 

gene expression is detrimental to ALT, for example, by performing knockouts of INHBA.  

Semaphorin pathways and three different VEGF pathways indicate that ALT+ cell lines 

are distinct with respect to angiogenetic pathways (265). Neuropilin is a neuronal membrane 

receptor that binds to semaphorin and VEGF ligands and has diverse functions in cancer (266, 

267). The ALT cell lines appear to favor the neuropilin signaling axis while inhibiting the 

canonical VEGF/VEGFR axis. Another possible gene involved in angiogenesis is PTN, which was 

the most upregulated ALT gene. The PTN protein is a growth factor expressed in many cancers 

(268-270). PTN is a potent inducer of angiogenesis, with potential mechanisms including VEGF 

upregulation or binding to the receptors αvβ3 integrin and PTPRZ1 (271-273). However, the 

reason why the ALT cell lines require upregulation of angiogenesis is unclear. It is known that 

hypoxia and inflammation can upregulate angiogenesis (274), and both of these processes 

may occur to a higher degree in ALT cells. Hypoxia can be crucial in producing reactive oxygen 

species (275), and together with the reduction in oxidative stress response found in the multi-

omics ALT signature, hypoxia could be yet another cause of oxidative stress. Within the TCGA 

study of ALT cancers, hypoxia and angiogenesis were also observed (238). Nevertheless, the 

lack of hypoxia-related findings in the sequencing results may rule this out. Hypoxia-related 

GO-terms should be present in the GO-term analysis, as well as finding the hypoxia TF HIF1α 

in the TF motif analysis. A possibility is that ALT cells utilize different pathways for their 

maintenance, and to confirm this, sequencing studies including ALT cell lines from one of the 

tumor entities that show a hypoxia phenotype would need to be performed.  

9 Small RNA-seq identifies many telomere-related miRNAs 
Of the 52 differentially expressed miRNAs identified in ALT cell lines (see Results 

section 3.8), 17 had the GO-term “negative regulation of telomere elongation”. However, it 

is worth noting that miRNAs may have thousands of potential binding targets. miRNA bind 

and repress mRNA transcripts via complementary sequences (276), and target prediction 
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databases are mainly concerned with this mechanism (277). The GO-terms were calculated 

by performing enrichment analysis of the miRNA targets. Yet, with thousands of putative 

mRNA targets, each miRNA can have many different GO-terms associated with it. 

Additionally, miRNAs can themselves be regulated via other miRNA or via lncRNA that act as 

miRNA “sponges” (278). Therefore, miRNA functions can be heavily dependent on a specific 

context that must be considered. 

A newly published paper investigated miRNA in ALT+ cell lines using microarrays (279). 

Their top hit was miR-708, the second-highest miRNA in terms of adjusted p-value from my 

differentially expressed miRNA analysis. The authors of the study characterized this miRNA, 

whereby its overexpression led to a loss of invasion and angiogenesis via repression of the TF 

CARF. The authors observed that this miRNA suppressed proliferation in ALT- cells but 

promoted it in ALT+ cell lines. This was believed to occur via regulation of BRCA1 and MRE11, 

which are key components of homologous recombination (HR) (280). The genes for these 

proteins, together with CARF, were not found in my differentially expressed genes or the TF 

analysis for CARF. This could be due to limitations in the target prediction, which, as previously 

stated, are computationally calculated and are primarily focused on miRNA-mRNA 

interactions. Another miRNA that was studied in the context of telomerase was miR-512. It 

was found downregulated in ALT-  head and neck cancers, most likely due to degrading TERT 

(281). This suggests that ALT cancers require active repression of TERT, in this case via the 

miR-512. Altogether, the differential miRNAs found in my sequencing analysis tentatively 

show a role of these regulatory moieties in ALT. While experimental evidence is lacking, they 

may influence gene expression pathways that sustain ALT. One example could be to 

downregulate telomerase and, by doing so, induce ALT. Another would be to sustain cell 

proliferation by modulating HR proteins. As discussed in the sections above, some miRNAs 

regulate TF activity and expression and may explain how the specific TF families are induced 

or suppressed in ALT.  

10 Transposable elements and piRNA involvement in ALT 
Transposable elements (TE) are viral remnants from ancient infections, and subtypes 

of TEs can still be transcribed into active proteins (282). This is exemplified by the long-

interspersed element-1 (LINE-1) families, which can be retrotransposed and integrated into 
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genes de novo (283). From an evolutionary perspective, LINE-1 has been central in forming 

pseudogenes by inserting and duplicating itself with functional genes (284), and in recent 

years LINE-1 expression has been identified as a hallmark of human cancers (283, 285). LINE-

1 insertions within coding genes can disrupt gene expression or regulatory elements to stifle 

oncosuppressor expression further (260). A counterbalance to TEs are the piRNAs, which like 

miRNA, degrade transcripts that have sequence complementary. The piRNAs also induce 

epigenetic silencing of the active TE locus using DNA and histone methylation (286). In recent 

years it was also shown that piRNAs could mediate protein-coding gene expression either via 

mRNA degradation or by inducing epigenetic silencing (287-289). My genomic analysis found 

no differentially expressed TE families and a handful of piRNAs (see Results section 3.9). The 

first finding is surprising, as the additional genetic instability incurred by expressed TEs could 

theoretically further drive ALT. Additionally, the increased chromatin accessibility in ALT could 

also lead to TE expression. Three reasons for this are possible. (i) TEs are already 

transcriptionally silent due to piRNAs and other epigenetic repression mechanisms. (ii) The 

strategy for generating TE count tables requires further optimization. (iii) There are no 

differences in TE transcription between ALT+ and ALT- cell lines.  

With respect to the first point, I found 14 differentially expressed piRNAs (Figure 19B), 

which would indicate that TEs are already being repressed. This is further supported by two 

upregulated genes involved in piRNA-mediated repression found when doing the TelNet 

overlap (Table 7), namely TDRD6 and TDRKH. These are Tudor domain-containing proteins, 

which are crucial in synthesizing piRNAs and repressing TEs (290). However, due to lacking 

target prediction databases, the targets for the differentially expressed piRNAs would have 

to be investigated. This can be addressed by downregulating piRNA expression or inducing TE 

expression. To address the second question, the TE computational analysis is performed 

either from individual transcripts (e.g., L1PB2_dup77), followed by the family (e.g., LINE-1), 

and then by the class (e.g., LINE). Individual transcripts are not well suited for assaying TE 

expression, as one TE transcript maps to many different individual transcripts (291). 

Therefore, the best practice in identifying TEs is to look at the family or class expression. To 

address the third question, there is also the chance that TEs are equally repressed in ALT-

/ALT+ cell lines and that there is no ALT-specific mechanism by which TEs are derepressed. 

Although ChIP-seq or ATAC-seq would be employed to observe whether TE sites gain active 
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genetic marks or chromatin accessibility, TEs are often found at so-called blacklisted sites 

(292), which are prone to artifacts when using sequencing methods that are based on 

chromatin shearing (ChIP-seq) or transposase (ATAC-seq). Regardless, it is interesting that the 

TEs and piRNAs are both equally present in the multi-omics ALT signature (Figure 27A). 

However, their contribution to the ALT-signature was minor, and altogether this would 

indicate that TE and piRNA expression are not good predictors of ALT. 

 

Conclusion and Future Directions  
This thesis studied how specific transcription and epigenetic programs could translate 

into functional downstream effects crucial for ALT cancer cells, as summarized in the scheme 

depicted in Figure 34. The TF analysis by ATAC-seq and RNA-seq identified an increased 

activity of RUNX and AP-1 family members in ALT. AP-1 may be activated by inflammation, 

which in turn can drive RUNX activity (210, 244). Inflammation can also be the cause of 

immune-related TFs found in upregulated genes. Downregulated ATAC peaks are enriched in 

TF motifs from the SOX family, where one specific mode of repression may be the increase of 

miR-138/142, which modulates SOX4 activity (239). Additionally, downregulated genes are 

enriched in the EGR-1/2, c-Myc and Hic-1 TFs. The gene expression layer is upregulated by the 

immune TFs, and RUNX1 as evidenced from pathway analysis. The down- and upregulated 

genes then converge into developmental processes, as identified through GO-term analysis. 

Specific developmental pathways may also be upregulated due to hypomethylation and/or 

low H3K27me3. Additionally, the MOFA signatures relating to oxidative stress may explain 

the downregulated gene BRSK2 (252). The cellular protein assembly is negatively weighted, 

as is the negative regulation of neuron death. The latter signature may be related to neuronal 

signaling, which in turn is modulated by the developmental processes. Additionally, this layer 

contains miR-512, which can downregulate TERT expression (281). The functional 

downstream effects of the developmental processes can be connected to the top upregulated 

ALT genes PTN and INHBA. PTN has a role in angiogenesis, where it interacts with VEGF (271). 

As inferred from the pathway analysis, VEGF may induce signaling via neuropilin and 

semaphorin receptors to cause angiogenesis. INHBA, on the other hand, suppresses activin 
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signaling and its downstream targets in gene expression (263). Lastly, the miR-708 

upregulation might enhance proliferation of ALT cells (279).  

Figure 34. Layers of chromatin regulation and gene expression involved in ALT.  

 

In summary, the multi-omics analysis revealed novel ALT features, which can guide 

future research. One crucial question from this analysis is emerging: Does high ALT activity 

also elicits more inflammation, and is oxidative stress signaling involved in this process? Using 
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ALT cancers with known C-circle levels and investigating the presence of 8-oxoguanine in 

chromatin could further our knowledge in this process. Additionally, performing proteomics 

or immune cytokine ELISA on these cancers would be beneficial in answering whether 

inflammation is induced by ALT. This could potentially result in ALT cancers with high activity 

being more susceptible to therapeutics targeting inflammation, such as drugs targeting 

immune checkpoints. Applying multi-omics ALT signatures as done here could be crucial in 

detecting the presence of ALT in tumor sequencing data, but this signature will have to be 

validated against primary tumor samples. This would have to be performed in tumors with 

known C-circle levels and ALT activity and then use the omics signature to predict TMM status. 

An omics-derived ALT signature would present a substantial advancement for predicting TMM 

status in a clinical context since telomere maintenance is a key cancer hallmark.  
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Appendix  

I. Cell lines and sequencing IDs 

Supplemental Table 1. ILSE IDs for each sequencing experiment.  

 

 

  

Tumor 
entity Cell line Replicate Long RNA-seq ID Small RNA-seq ID 

ATAC-seq ID 

R1 R2 

Pe
di

at
ric

 g
lio

bl
as

to
m

a 

KN
S4

2 1 AS-512665-LR-52219_R1 AS-512637-LR-52459_R1 
AS-535533-LR-53335_R1 AS-535533-LR-53335_R2 
AS-535510-LR-53334_R1 AS-535510-LR-53334_R2 

2 AS-512706-LR-52335_R1 AS-565990-LR-55484_R1 
AS-535510-LR-53335_R1 AS-535510-LR-53335_R2 
AS-535535-LR-53334_R1 AS-535535-LR-53334_R2 

M
G

M
B1

 

1 AS-512667-LR-52219_R1 AS-512639-LR-52459_R1 
AS-535519-LR-53334_R1 AS-535519-LR-53334_R2 
AS-535519-LR-53335_R1 AS-535519-LR-53335_R2 

2 AS-512708-LR-52335_R1 AS-512729-LR-52870_R1 
AS-535543-LR-53334_R1 AS-535543-LR-53334_R2 
AS-535543-LR-53335_R1 AS-535543-LR-53335_R2 

SF
18

8 1 AS-512662-LR-52218_R1 AS-512634-LR-52458_R1 
AS-535521-LR-53334_R1 AS-535521-LR-53334_R2 
AS-535521-LR-53335_R1 AS-535521-LR-53335_R2 

2 AS-512703-LR-52334_R1 AS-512724-LR-52869_R1 
AS-535545-LR-53334_R1 AS-535545-LR-53334_R2 
AS-535545-LR-53335_R1 AS-535545-LR-53335_R2 

N
EM

15
7 

1 AS-512669-LR-52219_R1 AS-512641-LR-52459_R1 
AS-535523-LR-53334_R1 AS-535523-LR-53334_R2 
AS-535523-LR-53335_R1 AS-535523-LR-53335_R2 

2 AS-512710-LR-52335_R1 AS-512731-LR-52870_R1 
AS-535547-LR-53334_R1 AS-535547-LR-53334_R2 
AS-535547-LR-53335_R1 AS-535547-LR-53335_R2 

N
EM

16
5 

1 AS-512674-LR-52331_R1 AS-565994-LR-55483_R1 
AS-535525-LR-53334_R1 AS-535525-LR-53334_R2 
AS-535525-LR-53335_R1 AS-535525-LR-53335_R2 

2 AS-512683-LR-52332_R1 AS-565992-LR-55483_R1 
AS-535549-LR-53334_R1 AS-535549-LR-53334_R2 
AS-535549-LR-53335_R1 AS-535549-LR-53335_R2 

N
EM

16
8 

1 AS-512676-LR-52331_R1 AS-512646-LR-52460_R1 
AS-535527-LR-53334_R1 AS-535527-LR-53334_R2 
AS-535527-LR-53335_R1 AS-535527-LR-53335_R2 

2 AS-512685-LR-52332_R1 AS-512736-LR-52871_R1 
AS-535551-LR-53334_R1 AS-535551-LR-53334_R2 
AS-535551-LR-53335_R1 AS-535551-LR-53335_R2 

N
EM

16
8 

AT
RX

 -
/-
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lo

ne
 

B5
 1 AS-512678-LR-52331_R1 AS-512648-LR-52460_R1 

AS-535529-LR-53334_R1 AS-535529-LR-53334_R2 
AS-535529-LR-53335_R1 AS-535529-LR-53335_R2 

2 AS-512687-LR-52332_R1 AS-512738-LR-52871_R1 
AS-535553-LR-53334_R1 AS-535553-LR-53334_R2 
AS-535553-LR-53335_R1 AS-535553-LR-53335_R2 

O
st

eo
sa

rc
om

a 

H
O

S 1 AS-512653-LR-52217_R1 AS-512625-LR-52457_R1 
AS-535508-LR-53334_R1 AS-535508-LR-53334_R2 
AS-535508-LR-53335_R1 AS-535508-LR-53335_R2 

2 AS-512694-LR-52333_R1 AS-512715-LR-52868_R1 
AS-535533-LR-53334_R1 AS-535533-LR-53334_R2 
AS-535533-LR-53335_R1 AS-535533-LR-53335_R2 

M
G

.6
3 1 AS-512655-LR-52217_R1 AS-512627-LR-52457_R1 

AS-535516-LR-53334_R1 AS-535516-LR-53334_R2 
AS-535516-LR-53335_R1 AS-535516-LR-53335_R2 

2 AS-512696-LR-52333_R1 AS-512717-LR-52868_R1 
AS-535541-LR-53334_R1 AS-535541-LR-53334_R2 
AS-535541-LR-53335_R1 AS-535541-LR-53335_R2 

Ca
l7

2 1 AS-512660-LR-52218_R1 AS-512632-LR-52458_R1 
AS-535512-LR-53334_R1 AS-535512-LR-53334_R2 
AS-535512-LR-53335_R1 AS-535512-LR-53335_R2 

2 AS-512701-LR-52334_R1 AS-512722-LR-52869_R1 
AS-535537-LR-53334_R1 AS-535537-LR-53334_R2 
AS-535537-LR-53335_R1 AS-535537-LR-53335_R2 

Sa
os

-2
 

1 AS-512658-LR-52218_R1 AS-512630-LR-52458_R1 
AS-535514-LR-53334_R1 AS-535514-LR-53334_R2 
AS-535514-LR-53335_R1 AS-535514-LR-53335_R2 

2 

AS-512689-LR-
52332_R1, AS-512699-

LR-52334_R1, AS-
512699-LR-52334_R1 

AS-565988-LR-55484_R1 
AS-535539-LR-53334_R1 AS-535539-LR-53334_R2 

AS-535539-LR-53335_R1 AS-535539-LR-53335_R2 

U
2O

S 1 
AS-512651-LR-

52217_R1, AS-512680-
LR-52331_R1 

AS-512623-LR-52457_R1 
AS-535506-LR-53334_R1 AS-535506-LR-53334_R2 

AS-535506-LR-53335_R1 AS-535506-LR-53335_R2 

2 AS-512692-LR-52333_R1 AS-565986-LR-55483_R1 
AS-535531-LR-53334_R1 AS-535531-LR-53334_R2 
AS-535531-LR-53335_R1 AS-535531-LR-53335_R2 
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II. Differentially expressed genes adjusted p-value > 1·1010  

Supplemental Table 2. All differentially expressed genes when comparing ALT+ and ALT- cell 
lines with an adjusted p-value above 1·1010.  

Ensembl ID Gene name baseMean log2FoldChange pvalue padj 
ENSG00000105894 PTN 882.9065 7.788914 2.64E-60 9.97E-56 
ENSG00000280709 LINC02203 49.13565 24.55739 1.20E-40 2.26E-36 
ENSG00000121388 AL139327.1 53.4065 24.69942 2.30E-38 2.90E-34 
ENSG00000122641 INHBA 7705.56 7.205526 9.14E-36 8.64E-32 
ENSG00000174672 BRSK2 293.1548 -2.77144 6.71E-26 5.07E-22 
ENSG00000184058 TBX1 2036.707 -7.66955 6.11E-25 3.85E-21 
ENSG00000199798 SNORD114-5 209.2706 26.22195 3.36E-23 1.82E-19 
ENSG00000283217 AC068205.1 35.03619 23.4611 5.63E-23 2.66E-19 
ENSG00000051523 CYBA 1625.359 -6.69797 5.45E-22 2.29E-18 
ENSG00000149256 TENM4 6145.347 7.488519 2.04E-21 7.30E-18 
ENSG00000176658 MYO1D 2474.749 5.838109 2.13E-21 7.30E-18 
ENSG00000116183 PAPPA2 895.9513 7.529534 6.06E-21 1.91E-17 
ENSG00000118785 SPP1 4061.356 9.97863 3.56E-20 1.03E-16 
ENSG00000118946 PCDH17 406.5143 6.698643 7.09E-20 1.91E-16 
ENSG00000060140 STYK1 97.14748 5.245483 7.82E-20 1.97E-16 
ENSG00000129596 CDO1 141.3338 5.204402 1.58E-18 3.73E-15 
ENSG00000154678 PDE1C 4685.581 6.23908 3.07E-18 6.52E-15 
ENSG00000140538 NTRK3 1623.736 8.225666 3.11E-18 6.52E-15 
ENSG00000132329 RAMP1 940.3237 -4.29955 1.55E-17 3.08E-14 
ENSG00000178033 CALHM5 416.6219 3.376114 1.94E-17 3.67E-14 
ENSG00000011677 GABRA3 873.3832 7.345791 2.24E-17 4.02E-14 
ENSG00000157680 DGKI 554.2693 4.656007 4.43E-17 7.47E-14 
ENSG00000103710 RASL12 748.1367 -7.70457 4.55E-17 7.47E-14 
ENSG00000169515 CCDC8 662.1255 -7.85399 6.18E-17 9.73E-14 
ENSG00000149292 TTC12 344.2773 -9.5901 7.68E-17 1.16E-13 
ENSG00000180543 TSPYL5 1865.298 9.363672 9.05E-17 1.32E-13 
ENSG00000188620 HMX3 432.0144 -7.48066 9.92E-17 1.39E-13 
ENSG00000188848 BEND4 1657.857 -6.91559 1.52E-16 2.05E-13 
ENSG00000196581 AJAP1 6723.008 9.029328 1.79E-16 2.34E-13 
ENSG00000130675 MNX1 180.9574 -7.34707 2.63E-16 3.31E-13 
ENSG00000113494 PRLR 121.3976 4.453885 2.81E-16 3.43E-13 
ENSG00000176293 ZNF135 190.9945 5.372333 3.37E-16 3.98E-13 
ENSG00000197249 SERPINA1 582.0168 7.165605 4.10E-16 4.70E-13 
ENSG00000154646 TMPRSS15 818.6865 7.631573 7.79E-16 8.66E-13 
ENSG00000150051 MKX 2123.662 -5.42205 9.10E-16 9.82E-13 
ENSG00000156968 MPV17L 660.1479 -2.32633 1.32E-15 1.39E-12 
ENSG00000221866 PLXNA4 4114.911 6.498053 1.89E-15 1.93E-12 
ENSG00000280241 AC079298.3 20.25047 7.590574 2.20E-15 2.19E-12 
ENSG00000102755 FLT1 376.919 -4.9778 2.59E-15 2.51E-12 
ENSG00000165071 TMEM71 136.0187 6.050602 3.08E-15 2.87E-12 
ENSG00000110665 C11orf21 83.33669 -5.11051 3.11E-15 2.87E-12 
ENSG00000153707 PTPRD 781.8681 6.876697 4.76E-15 4.28E-12 
ENSG00000069482 GAL 290.4932 -7.40348 5.87E-15 5.16E-12 
ENSG00000154556 SORBS2 491.0218 4.65777 8.38E-15 7.03E-12 
ENSG00000268388 FENDRR 4196.511 -8.17881 8.29E-15 7.03E-12 
ENSG00000196154 S100A4 5116.903 -3.72743 1.14E-14 9.36E-12 
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ENSG00000236969 GGT8P 96.03426 3.950628 1.26E-14 1.01E-11 
ENSG00000141052 MYOCD 525.4517 7.138946 1.81E-14 1.43E-11 
ENSG00000172260 NEGR1 1910.198 4.153833 1.87E-14 1.44E-11 
ENSG00000181072 CHRM2 55.83296 8.326651 1.98E-14 1.50E-11 
ENSG00000229807 XIST 6390.972 8.566679 2.87E-14 2.13E-11 
ENSG00000135549 PKIB 535.7891 6.708132 3.66E-14 2.66E-11 
ENSG00000138356 AOX1 2843.203 4.260794 5.50E-14 3.92E-11 
ENSG00000230500 MKX-AS1 14.85446 -5.95641 7.68E-14 5.37E-11 
ENSG00000143013 LMO4 3780.748 3.1356 9.87E-14 6.74E-11 
ENSG00000224732 MAGEA7P 31.25368 6.264835 9.99E-14 6.74E-11 
ENSG00000158125 XDH 218.8856 4.985375 1.04E-13 6.91E-11 
ENSG00000196460 RFX8 350.0143 6.307928 1.18E-13 7.68E-11 
ENSG00000170954 ZNF415 241.9737 4.008162 1.38E-13 8.85E-11 
ENSG00000152208 GRID2 245.1863 8.032148 1.47E-13 9.27E-11 
ENSG00000206557 TRIM71 129.6151 -6.33977 1.66E-13 1.03E-10 
ENSG00000183671 GPR1 615.7035 5.030572 1.71E-13 1.04E-10 
ENSG00000221867 MAGEA3 2069.183 7.349727 2.10E-13 1.26E-10 
ENSG00000164161 HHIP 1080.792 5.030536 2.93E-13 1.73E-10 
ENSG00000154319 FAM167A 1547.834 4.199812 3.16E-13 1.84E-10 
ENSG00000176049 JAKMIP2 613.9904 4.969614 3.67E-13 2.09E-10 
ENSG00000164687 FABP5 1229.525 -5.40989 3.71E-13 2.09E-10 
ENSG00000159674 SPON2 847.5757 -3.54659 4.38E-13 2.43E-10 
ENSG00000203930 LINC00632 5863.406 4.884529 5.02E-13 2.75E-10 
ENSG00000231114 AC078842.2 10.00695 6.589997 5.81E-13 3.14E-10 
ENSG00000235385 LINC02154 148.1644 5.711891 6.37E-13 3.39E-10 
ENSG00000180347 CCDC129 43.56958 6.842791 7.70E-13 3.99E-10 
ENSG00000069431 ABCC9 1502.059 6.62949 7.70E-13 3.99E-10 
ENSG00000189001 SBSN 360.5687 6.563917 8.43E-13 4.31E-10 
ENSG00000021355 SERPINB1 852.3861 -4.72981 9.80E-13 4.94E-10 
ENSG00000118473 SGIP1 615.8778 7.177536 1.51E-12 7.49E-10 
ENSG00000164778 EN2 309.0029 -7.42978 1.64E-12 8.03E-10 
ENSG00000160886 LY6K 592.2258 -4.20583 1.91E-12 9.25E-10 

baseMean , average normalized count values which have in turn been normalized to library 
size factor; Log2FoldChange, average fold change expressed in Log2; p-value, non-adjusted 
average p-value for gene; padj, average Benjamini-Hochberg adjusted p-value.  

III. miRNA differential expression 

Supplemental Table 3. All differentially expressed miRNAs when comparing ALT+ and ALT- cell 
lines. Bold rows denote miRNAs with the GO-term “negative regulation of telomeres”. 

miRNA ID baseMean log2FoldChange lfcSE stat p-value padj 
hsa-miR-485-5p 103.7805395 23.74752621 2.091117 11.07663 1.63E-28 1.73E-25 
hsa-miR-708-5p 3892.689986 7.264947052 0.678781 9.841096 7.49E-23 3.97E-20 
hsa-miR-767-5p 542.2954246 8.04462707 0.819773 9.099622 9.06E-20 3.21E-17 
hsa-miR-105-5p 1051.810962 7.712397692 0.786521 9.061934 1.28E-19 3.40E-17 
hsa-miR-377-5p 59.41758256 24.20149455 2.863699 8.246848 1.63E-16 3.45E-14 
hsa-miR-3167 35.3434349 6.36090216 0.755065 7.649541 2.02E-14 3.57E-12 
hsa-miR-708-3p 1334.986645 5.830520544 0.731637 7.169567 7.52E-13 1.14E-10 
hsa-miR-4652-5p 7.967968373 22.36014243 3.185574 6.835547 8.17E-12 1.08E-09 
hsa-miR-105-3p 23.03863142 6.761829679 0.96956 6.370753 1.88E-10 2.22E-08 
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hsa-miR-5579-3p 16.07228189 6.422509978 0.940723 6.205345 5.46E-10 5.79E-08 
hsa-miR-767-3p 30.89226155 7.344326101 1.094828 6.173868 6.66E-10 6.43E-08 
hsa-miR-204-5p 276.4130963 5.630930794 0.828096 6.093411 1.11E-09 9.77E-08 
hsa-miR-3120-5p 238.2050991 -6.562024071 0.993275 -6.01749 1.77E-09 1.34E-07 
hsa-miR-199b-5p 440.0676537 -4.807150735 0.715253 -5.90302 3.57E-09 2.52E-07 
hsa-miR-139-5p 1279.712325 4.546044042 0.72283 5.479909 4.26E-08 2.81E-06 
hsa-miR-214-3p 689.1759457 -6.108409186 1.00975 -5.47008 4.50E-08 2.81E-06 
hsa-miR-5579-5p 7.861152725 5.720317536 0.963698 5.32876 9.89E-08 5.83E-06 
hsa-miR-6716-3p 83.79944333 -3.047082809 0.465777 -5.28597 1.25E-07 6.98E-06 
hsa-miR-138-5p 290.0261065 3.141467768 0.486688 5.252788 1.50E-07 7.95E-06 
hsa-miR-520f-5p 83.68967803 6.63399073 1.188198 5.090895 3.56E-07 1.80E-05 
hsa-miR-522-3p 47.87319285 6.881653716 1.247065 5.049179 4.44E-07 2.14E-05 
hsa-miR-138-1-3p 25.59621833 3.354545841 0.550481 5.031137 4.88E-07 2.25E-05 
hsa-miR-129-2-3p 295.5711586 6.095149395 1.120096 4.919355 8.68E-07 3.84E-05 
hsa-miR-519d-5p 141.6618525 6.40855763 1.193808 4.878136 1.07E-06 4.55E-05 
hsa-miR-129-5p 14575.41183 5.390471303 1.004527 4.783814 1.72E-06 6.76E-05 
hsa-miR-139-3p 53.89802208 4.138250282 0.755176 4.705195 2.54E-06 9.61E-05 
hsa-miR-3909 329.1472688 1.906169642 0.28847 4.579927 4.65E-06 0.00017 
hsa-miR-204-3p 11.29913537 5.585052046 1.122078 4.456064 8.35E-06 0.000295 
hsa-miR-490-3p 25.54226318 6.510750486 1.337742 4.429666 9.44E-06 0.000323 
hsa-miR-129-1-3p 29.69725573 6.230345756 1.298049 4.3491 1.37E-05 0.000453 
hsa-miR-214-5p 1164.062053 -4.199604413 0.841516 -4.29535 1.74E-05 0.000561 
hsa-miR-142-3p 23.86603606 3.877506414 0.770555 4.272901 1.93E-05 0.000602 
hsa-miR-3120-3p 89.95014726 -3.525383223 0.689941 -4.26179 2.03E-05 0.000615 
hsa-miR-372-3p 25.4339154 5.883600603 1.25354 4.22691 2.37E-05 0.000698 
hsa-miR-3117-3p 12.10842629 6.381595492 1.400878 4.137831 3.51E-05 0.000954 
hsa-miR-323b-3p 655.3639747 6.425428894 1.409069 4.144886 3.40E-05 0.000954 
hsa-miR-519a-3p 14.05638776 6.059578824 1.322759 4.138757 3.49E-05 0.000954 
hsa-miR-218-5p 9226.277131 3.030621899 0.595681 4.10559 4.03E-05 0.001044 
hsa-miR-34a-5p 1344.972613 3.651937015 0.746231 4.109903 3.96E-05 0.001044 
hsa-miR-519a-2-5p 7.717589898 5.875451556 1.297878 4.07623 4.58E-05 0.001129 
hsa-miR-520b-5p 7.717589898 5.875451556 1.297878 4.07623 4.58E-05 0.001129 
hsa-miR-512-3p 10.61673812 5.210568832 1.142544 4.048484 5.16E-05 0.001243 
hsa-miR-323a-3p 1022.523981 5.90847078 1.326748 4.012421 6.01E-05 0.001417 
hsa-miR-122-5p 75.80511244 2.844168008 0.570747 3.958264 7.55E-05 0.001741 
hsa-miR-146a-3p 29.32171218 6.034233386 1.437352 3.79116 0.00015 0.003385 
hsa-miR-516a-5p 45.95966578 6.056353514 1.445981 3.783835 0.000154 0.003414 
hsa-miR-10399-5p 18.54781669 -2.644159104 0.550346 -3.74157 0.000183 0.00396 
hsa-miR-1284 9.080007248 2.984079988 0.644855 3.720342 0.000199 0.004222 
hsa-miR-876-3p 6.725854433 4.030120611 0.930618 3.701969 0.000214 0.004451 
hsa-miR-122b-5p 18.89013071 2.98962442 0.687372 3.498289 0.000468 0.0092 
hsa-miR-375-3p 194.1498475 3.835935052 0.928549 3.501092 0.000463 0.0092 
hsa-miR-4677-5p 9.097388935 -1.785090372 0.34305 -3.49829 0.000468 0.0092 
hsa-miR-4662a-5p 6.642004326 4.251717395 1.054373 3.477629 0.000506 0.009759 

baseMean , average normalized count values which have in turn been normalized to library 
size factor; Log2FoldChange, average fold change expressed in Log2; p-value, non-adjusted 
average p-value for gene; padj, average Benjamini-Hochberg adjusted p-value.  
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IV. Gene ontology analysis of genes in ALT multi-omics factor analysis signature 

Supplemental Figure 
1. Gene weights for 
gene ontology (GO) 
terms in ALT 
signature. The top 
two genes per GO-
term are shown, with 
the rest in gray. (A) 
GO terms negatively 
weighted for ALT+ 
samples. (B) GO-terms 
positively weighted 
for ALT+ samples. N 
genes denotes the 
total amount of found 
genes in the dataset, 
p-val is adjusted p-
value. 
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	Appendix i
	Summary
	Telomere maintenance mechanisms are crucial for cancer cells as they are required for their unlimited proliferation capacity. While most cancers reactivate the reverse transcriptase telomerase, a significant fraction of tumors maintains telomere length without it. These cancers employ the alternative lengthening of telomeres (ALT) pathway, which relies on DNA repair and recombination to extend telomere repeats. ALT presence is primarily confirmed with the C-circle assay as gold-standard, which detects extrachromosomal telomere repeats that are only found in ALT-positive cells. Mutations within the repeat repressor ATRX/DAXX/H3.3 are overrepresented in ALT cancers. ALT presence is crucial for long-term survival in tumor entities where it is active. However, beyond the above-mentioned mutations, it is unclear which molecular features are key to understanding the mechanism by which ALT operates. This thesis addresses this issue with three aims: (i) Describing ALT activity heterogeneity in primary tumor samples; (ii) Using sequencing readouts to define molecular ALT features and extract a characteristic signature; (iii) Inhibiting epigenetic modifiers with drugs and observing their effect on viability in relation to ALT activity.
	Firstly, I quantified C-circle levels in 687 primary tumor biopsies from sarcomas. The heterogeneous distribution indicates that ALT-activity can vary about tenfold within the same tumor entity. Next, I conducted ATAC-seq and RNA-seq of long and short RNAs in ALT positive and negative cell lines from pediatric glioblastoma and osteosarcoma to find shared ALT features. Information on open chromatin regions, transcriptome, miRNA, transposable elements, and piRNA was extracted from these data. From the ATAC-seq data, it was found that ALT+ cell lines had predominantly increased chromatin accessibility in non-coding regions. Binding motifs for AP-1 and RUNX transcription factors (TF) were enriched, whilst downregulated accessible regions result from reduced SOX TFs. The differential gene expression analysis revealed that immune TFs were enriched in upregulated ALT genes. This led to the identification of NFATC2 as a potential ALT biomarker, as it was found in promoter regions of upregulated genes and through ATAC-seq based TF motif analysis. The immune-related TFs may be affected by the genetic instability inherent to ALT. However, the multi-omics ALT signature indicated that the cell lines have a reduced response to oxidative stress. These factors may cooperate in inducing a heightened inflammatory state that drives chromatin accessibility and gene expression. Differential miRNAs were extracted and could explain both TERT and SOX downregulation and RUNX upregulation, indicating another gene regulatory mechanism employed by ALT cell lines. Furthermore, an integrative multi-omics analysis was performed to extract an ALT signature, which was governed by gene expression, miRNA, and chromatin accessibility. As more upregulated open regions in ATAC data were observed, inhibitors for EZH2 that sets the repressive histone H3 lysine 27 trimethylation (H3K27me3) and DNA methylases were correlated with an ALT-specific lethality and survival, respectively. Another aberrant epigenetic feature found in ALT, an H3.3S31p chromosome-wide signal during mitosis, was studied with different inhibitors. The kinase HASPIN was found to reduce aberrant H3.3S31 phosphorylation upon treatment with a corresponding inhibitor. This kinase is involved in chromosomal segregation and links ALT genetic instability to DNA damage signaling during mitosis. 
	In summary, the findings from this thesis reveal that ALT activity is heterogeneous in primary tumor cells. The analysis with different omics readouts points to significant differences in the transcriptome, chromatin accessibility, and miRNA expression and yields a multi-omics signature to identify ALT presence. Lastly, the correlation between cell viability and ALT-activity upon treatment with EZH2 and DNA methylase inhibitors and the HASPIN mediated aberrant H3.3S31p signal during mitosis point to ALT-specific epigenetic features. These could be further exploited in preclinical studies for patient stratification and identification of novel drug targets specific for ALT. 
	Zusammensfassung
	Telomer-Instandhaltungs-Mechanismen sind kritisch für Krebszellen, da sie für deren unbegrenzte Proliferationskapazität nötig sind. Die meisten Krebszellen halten ihre Telomere durch Reaktivierung der reversen Transkriptase Telomerase instand. Ein signifikanter Teil der Tumoren ist jedoch nicht auf Telomerase angewiesen und nutzt stattdessen alternative, telomerverlängernde Mechanismen (ALT). Diese basieren auf DNA-Reparatur und Rekombinantionsprozessen. Die Quantifizierung von extrachromosomalen Telomersequenzen durch den „C-circle assay“ dient als Goldstandard-Nachweis für das Vorhandensein von ALT in Krebszellen. ALT-positive Tumore zeigen überproportional häufiges Auftreten von Mutationen in Proteinen des ATRX/DAXX/H3.3-Komplexes. Es wird vermutet, dass diese Mutationen mit Funktionsstörungen der Telomere assoziiert sind. Obwohl der ALT-Status eines Tumors die Langzeitüberlebensrate beeinflusst, ist es zum gegenwärtigen Zeitpunkt nicht möglich, ALT durch Analyse von „Omics“-Daten zu erkennen. Während in den letzten Jahrzehnten viele Fortschritte gemacht wurden, sind auch die molekularen Grundlagen von ALT noch immer nicht bekannt. Diese Dissertation beleuchtet diese offenen Fragen aus drei verschiedenen Richtungen: i) Analyse und Beschreibung der ALT-Heterogenität in primären Tumorproben; ii) Beschreibung von ALT auf Grundlage von Sequenzierungsdaten und Entwicklung einer ALT-Signatur; iii) Inhibition von epigenetischen Modifikationsmechanismen und Beschreibung des Effektes auf das Überleben von ALT-Zellen.
	Ich habe zunächst die „C-Circles“ in 687 primären Sarkombiopsien quantifiziert. Ich konnte zeigen, dass die Menge der C-Circles in den Tumorproben einer heterogenen Verteilung folgt und sich um bis zu zehnfach innerhalb derselben Tumorart unterscheidet. Anschließend habe ich ALT-positive und ALT-negative Glioblastom- und Osteosarkom-Zelllinien über ATAC-seq und RNA-seq auf gemeinsame ALT-Charakteristika untersucht. Informationen zu offenen Chromatinregionen, Transkriptom, miRNAs, transposablen Elementen, und piRNAs wurden aus diesen Daten extrahiert. Die ATAC-seq Daten zeigten, dass ALT-positive Zelllinien generell erhöhte Chromatinzugänglichkeit in nicht-kodierenden Regionen des Genoms zeigen. Dabei waren Bindungsmotive der Transkriptionsfaktoren (TF) AP-1 und RUNX gehäuft, Motive der SOX TFs wurden dagegen weniger häufig als erwartet gefunden. Die Transkriptomananalyse zeigte, dass Immun-TFs eine wichtige Rolle in den beobachteten Genexpressionsveränderungen spielen. Daraus folgte die Identifikation des TF NFATC2 als möglichem ALT-Biomarker. Bindungsmotive von NFATC2 wurden in Promoterregionen von hochregulierten Genen gefunden. Weiterhin wurde NFATC2 in der ATAC-seq Motivanalyse gefunden.
	Genetische Instabilität, ein fundamentales ALT-Charakteristikum, könnte die bereits erwähnten Immun-TF beeinflussen. Die integrierte „Omics“-Analyse zeigte jedoch, dass ALT-positive Zelllinien eine verringerte Reaktion auf oxidativen Stress zeigen. Diese verschiedenen Faktoren könnten zusammen für den erhöhten Entzündungsstatus dieser Zellen verantwortlich sein und als Folge Chromatinzugänglichkeit und Genexpression beeinflussen.
	Die Analyse von miRNA Expression konnte sowohl die TERT- und SOX-Herunterregulierung, als auch die RUNX-Hochregulierung bestätigen. Dies deutet auf einen weiteren genregulatorischen Mechanismus von ALT Zellen hin. Zusätzlich zu den beschriebenen Einzelanalysen wurde eine integrative „Multi-Omics“ Analyse durchgeführt mit dem Ziel, eine ALT-Signatur zu extrahieren. Die gefundene Signatur beinhaltete Daten aus Genexpression, miRNAs, und Chromatinzugänglichkeit. 
	Da in der ATAC-seq Analyse mehr zugängliche Chromatinregionen in ALT gefunden wurden, habe ich Inhibitorwirkungen gegen EZH2, das für die repressive H3 Lysin 23 Dreifachmethylierung verantwortlich ist, und Methylasen mit ALT-spezifischen Effekten auf Zellviabilität korreliert. Weiterhin habe ich ein anderes epigenetisches Charakteristikum von ALT, das chromosomenweite Auftreten von H3.3S31p während der Mitose, mit verschiedenen Inhibitoren untersucht. Meine Experimente konnten zeigen, dass die Kinase HASPIN für das erwähnte H3.3S31p Signal verantwortlich ist. Diese Kinase ist Teil des Chromosomentrennungsmechanismus und verknüpft daher genetische Instabilität in ALT mit Signalwegen, die während der Mitose durch DNA-Schäden aktiviert werden.
	Die Erkenntnisse dieser Dissertation zeigen, das ALT-Aktivität in primären Tumorzellen heterogen ist. Die „Multi-Omics“ Analyse zeigt signifikante Unterschiede bezüglich Transkriptom, Chromatinzugänglichkeit, und miRNA Expression auf. Weiterhin ergibt sich eine ALT-Signatur, mit der sich ALT aufgrund der vorhergenannten Daten identifizieren lässt. Die Korrelation zwischen Viabilität und ALT-Aktivität nach EZH2- und DNA-Methylase-Inhibition, sowie die HASPIN-abhängigen Änderungen im H3.3S31p Signal während der Mitose deuten auf ALT-spezifische, epigenetische Charakteristika hin. Diese könnten in zukünftigen präklinischen Studien zur Patientenstratifikation und Entdeckung neuer, ALT-spezifischer pharmazeutischer Wirkungsmechanismen genutzt werden.
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	3 Scope of the thesis

	Telomeres, the ends of the linear chromosomes, need to be protected from being recognized as a double-stranded break by the cell’s DNA repair machinery. This is avoided by shelterin proteins, which hide the exposed 3’ end of the telomere into an upstream telomeric repeat and forms the T-loop (1). Another impact of linear genomes is the end-replication problem (2). Due to the necessity of RNA primers for replicating the lagging strand, the most distal 3’ end will not be replicated entirely. Dividing cells, therefore, experience 50-200 bp telomere loss upon each completed replication cycle (3). As a cell continues to divide, telomeres will reach a point where they cannot form T-loops, shelterin proteins lose their binding to telomeres, and DNA repair processes will recognize the exposed 3’ end. This forces the cells into a replicative crisis, whereby senescence and cell death processes will keep this cell from proliferating (4). Hence, differentiated somatic cells experience progressive telomere erosion, forcing somatic cells to rely on telomere elongation during embryogenesis by the telomerase holoenzyme (5). Some cells can incur mutations to escape replicative crisis and may further progress into cancer. To this end, most cancers simply reactive telomerase and maintain replicative immortality (6). Still, it was noted early in the 1990s that some cancers had no detectable telomerase activity and employed a telomere maintenance mechanism (TMM) that was eventually termed the alternative lengthening of telomeres (ALT) (7). As our collective knowledge increased, it was established that ALT is a complex phenomenon through which telomere stress and DNA repair cooperate in telomere extension (8).
	Human telomere sequences consist of repeats of the TTAGGG hexamer, where telomere lengths in newborn skin and blood cells are around 10 kb (9). The telomere length decreases to around 7 kb in similar tissues in elderly people (10). Due to the end-replication problem, telomeres contain a single-stranded 3’ overhang (2). The shelterin complex conceals this exposed end by first forming a partial strand separation in the so-called displacement-loop (D-loop) upstream of the 3’ overhang (Figure 1)(1). As the telomere folds back into a T-loop, the exposed 3’ invades the double-stranded telomere repeat regions and form a D-loop stabilized by the shelterin proteins (1). This complex is comprised of TRF1 and TRF2, which bind the double-stranded telomeric sequences. In addition, POT1 binds the single-stranded 3’ telomeric overhang, followed by recruitment of TIN2 and TPP1, which binds TRF1 and TRF2. Lastly, the Rap1 protein stabilizes the complex by binding to TRF2, and the T-loop is formed by linking all these components (1). The shelterin complex is essential to cell viability, and without its function, each telomere end would activate the DNA damage kinases ATM/ATR (11). This is seen in cells undergoing replicative crisis, where the telomere reaches a critically short length, at which point T-loop formation is impossible. 
	Figure 1. Shelterin proteins bridge telomere 3’ overhangs to avoid activation of DNA damage sensing pathways. The shelterin proteins form the displacement loop (D-loop), which the exposed 3’ telomere end is concealed into. The entire structure of the D-loop and subsequent telomere strand looping is called the T-loop.
	The replicative crisis is believed to occur when telomeres shorten below 4-6 kb (12). When the exposed telomere is recognized by DNA damage signaling pathways, the cells undergo apoptosis or senesce via p53 and RB (13). Like all repetitive elements, telomeres are genetically fragile sites, meaning they are susceptible to DNA damage (14). Furthermore, non-B-DNA structures called G-quadruplexes can form from the G-rich telomere strand, which impedes the replisome and causes replication fork collapse. This is resolved by numerous specialized helicases, such as WRN, BLM, and ATRX (15-17), and in their absence, failure to solve replication fork collapse leads to DNA damage (18). Telomeres may also be more sensitive to DNA base damage, such as the formation of 8-oxoguanine from reactive oxygen species, although it is unknown why (19). The shelterin proteins mediate telomeric DNA repair, which strictly orchestrates specific DNA repair pathways depending on the DNA damage in question (20). The shelterin proteins are also believed to actively inhibit non-homologous end joining to avoid accidental telomere end-joining (21), and show a general preference towards homologous recombination (HR), and excision repair pathways (22).
	Telomere elongation mainly occurs during embryogenesis in embryonal stem cells, where the reverse transcriptase telomerase is activated and extends the telomere repeats (23). Telomerase consists of a protein component called TERT, an RNA-component called TERC, and the DKC1 protein together with three small nucleolar RNA (snoRNA) (NHP2, NOP10, GAR1) (24). TERT functions as the reverse transcriptase, TERC as an RNA component that serves as a template, and the DKC1 protein with snoRNAs stabilizes telomerase and enhances DNA synthesis (18). Telomerase can only add around 50 bp telomere repeats per strand and cell cycle (25, 26), and thus any telomere erosion occurring faster than this will result in a net loss. For example, adult stem cells are distinct from embryonal stem cells in that they show gradual aging and exhaustion despite active telomerase (27). Additionally, other cells show signs of telomere extension, such as keratinocytes, germ cells, and actively proliferating B and T cells (28). Again, the active telomerase does not result in a net gain of telomere length (29). Therefore, it is likely that mesenchymal stem cells and cancer cells are the only known entities that show a net gain of telomeres to sustain their proliferation (28, 30). 
	Telomeres were initially thought to be in a heterochromatic state, with an enrichment of the repressive histone marks H3K9me3 and H4K20me3 (31). Furthermore, other telomere features, such as high nucleosome density (32), compact chromatin (33), and that repetitive elements are generally repressed (34), pointed towards a heterochromatic state. Nevertheless, telomeric chromatin may be much more dynamic than previously thought. A recent study was able to differentiate between internal telomere sequences (ITS) from actual telomere repeats and compared ChIP-seq data from primary and embryonal cells. ITSs are telomeric repeats outside the telomere and are considerably enriched in the telomere adjacent regions called subtelomere. These telomeric sequences, however, may be differently regulated than actual telomeres (35). By distinguishing between ChIP signals from telomeres and ITS more carefully, the authors found a bivalent state of telomeric chromatin, comprising both euchromatic and heterochromatic marks (36). As such, it is worth noting that the epigenetic state of physiological telomeres is still debated. Since telomeres are more euchromatic during pluripotency (37), it is duly possible that the epigenetic state of telomeres depends on cell-specific circumstances. Future research built on telomeric capture strategies from the above-mentioned study will undoubtedly be informative in settling this question. 
	The telomere sequences do not abruptly stop at a given locus, but rather the telomeric repeats are gradually more interspersed with other genetic elements (including coding genes such as ISG15) in a transition state called the subtelomere (35). The subtelomere is a genetically diverse region, both between different chromosomes and individuals (35). The subtelomere is also associated with innate immunity. For example, ISG15 (an interferon-induced protein) is upregulated upon telomere shortening and causes inflammation (38). This indicates that short telomeres may induce pathways that are independent of T-loop loss. The process of telomere length affecting the subtelomeric region is called telomere position effect over long distance (TPE-OLD) (39), and consists of the telomere looping into the subtelomeric region. TERT expression is also connected to TPE-OLD, where again long telomeres repress TERT, and short telomeres allow its expression. This has been implicated explicitly in TERT re-expression in actively proliferating T-cells (40) and could prove an essential mechanism for TERT expression in other tissues and cancer. Another critical feature of subtelomeres is the high levels of CpG DNA methylation, the extent of which is ultimately associated with telomere length (41). Studies in patients with ICF syndrome, an immunodeficiency and developmental disease caused by mutations within DNMT3B and related DNA methylation proteins, have been enlightening in this case. These patients have hypomethylated subtelomeres and short telomeres (42). The telomere shortening mechanism has not been fully elucidated, but it is noted that high expression of the long non-coding RNA (lncRNA) TERRA may be involved (43). TERRA is transcribed from the subtelomeric region and may span into the telomeric sequences as well. Therefore, its length varies between 100 bp to 9 kb and includes telomeric and non-telomeric sequences (44). TERRA has been further implicated in having a diverse role in telomere maintenance (45), and can negatively regulate telomere length by forming telomeric R-loops, which cause replication stress (46, 47).
	The best-known mutations in ALT cancers are within the ATRX/DAXX/H3.3 deposition pathway (84). These proteins are instrumental in suppressing transcription from heterochromatic regions (85). While it is known that this complex is also associated with telomeres, its functions there are less clear. As described above, the heterochromatic state of the physiological telomere is debated, but it is clear that disrupting this pathway leads to telomere dysfunction (86-88). ATRX is a multifunctional chromatin remodeler of 260 kDa molecular weight (89). It was initially identified as commonly mutated within the rare X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome (90). This syndrome consists of a complex disease spectrum, including intellectual disabilities, alpha-thalassemia, and developmental defects. ATRX mutations in this disease were mainly found in the ATRX-DNMT3-DNMT3L (ADD) and helicase domains (Figure 3). 
	Figure 3. ATRX domains and protein interaction regions.
	The ADD domain is believed to be responsible for reading H3K4me2 and H3K9me3, where the latter interaction is essential for targeting ATRX to heterochromatic compartments in the genome in the absence of H3K4 methylation (91). Mutations within the helicase domain have been linked to resolving G-quadruplexes, as evidenced by alpha-thalassemia and mutated ATRX. In this case, G-rich sequences above the α-globin gene can form G-quadruplexes that impede this gene's expression (92, 93). ATRX contains EZH2 and HP1 binding domains that are important for maintaining facultative and constitutive heterochromatin (84, 94). The EZH2 binding site has proven crucial for X-inactivation, where ATRX binds both the lncRNA XIST and the PRC2 complex to form facultative heterochromatin on the inactive X-chromosome (95, 96). The HP1 binding site is believed to target ATRX to heterochromatin (97). Within the N-terminal region of ATRX, there is an additional tentative binding site to a histone variant called macroH2A (98); however, in this instance, ATRX is believed to regulate macroH2A on G-rich regions negatively. Although the exact mechanism is unclear, replacing macroH2A from telomeres with H3.3 may resolve G-quadruplexes (99). The chromatin remodeling activities of ATRX lie in the SNF2 ATPase domain and helicase domain (84). These cooperate with the abovementioned protein interaction sites to properly integrate H3.3 into chromatin, and the latter domain is believed to confer identification and binding to G-quadruplexes (100). Lastly, towards the C-terminal end of the protein, two interaction sites for MECP2 and PML were identified, respectively (101, 102). MECP2 is crucial for neuronal development, and its general function concerns repressing genes with DNA methylation and is also involved in X-inactivation (103, 104). The MECP2 binding function of ATRX has been explicitly implicated in causing intellectual disabilities for patients with ATR-X syndrome (89). In this instance, lack of ATRX-MECP2 binding may lead to dysfunction in neural progenitors and thus affects neurodevelopment (105). The interaction site with PML connects ATRX to various processes, including virus repression (106, 107) and heterochromatin function (108). In the middle of the ATRX protein lies the DAXX interaction domain, which is essential in depositing H3.3 (84). 
	DAXX was initially identified as a FAS receptor ligand (109). Its function has since been implicated in many different pro-apoptotic processes, where one finding was that DAXX is recruited to the PML nuclear body to promote apoptosis (110). Still, its role as an H3.3 chaperone is the most important in this context (111). H3.3 is a histone variant that only differs from canonical H3 by 4/5 amino acids and is expressed from the H3F3A and H3F3B locus irrespective of replication (112). H3.3 is deposited onto euchromatic regions via HIRA and to heterochromatic and telomeric regions via ATRX/DAXX (112) (see Figure 4). The former process is critical for actively transcribed genes and regulatory elements and the latter for repressing heterochromatic regions and maintaining telomere stability (113).
	Figure 4. Deposition of the H3.3/H4 dimer by the ATRX/DAXX proteins onto repetitive regions and by the HIRA/UBN1/CABIN proteins onto regulatory elements and active genes and promoters. Figure adapted from (112).
	As previously mentioned, H3.3 shows a high degree of homology with canonical H3. The unique S31 residue can be phosphorylated, whilst the other amino acids are chaperone motifs significant for DAXX or HIRA binding (112). During mitosis, H3.3S31p is localized to the pericentromeric region (114). This phosphorylation may have various functions, such as inducing gene expression pathways in cell differentiation (115), resolving UV damage during replication (116), and inducing cell death when chromosomes are missegregated (117). 
	Most cancer cells employ telomere maintenance mechanisms (TMM) to elude replicative crisis. Approximately 90 % of all cancer entities show signs of telomerase activity, and about 10 % use the ALT mechanism (48). An exception is the ever-shortening telomere (EST) phenotype found in some neuroblastomas (49), which can spontaneously regress due to lack of TMM (50, 51). ALT is overrepresented in cancers of mesenchymal origin, namely soft tissue, nervous system, and bone cancers (48). It is still unclear why, as previously stated, mesenchymal stem cells are the only somatic cells that have a net gain TMM via telomerase (28, 30). However, this could indicate that these cells are not constrained by specific differentiation processes occurring in other cancers (48). ALT presence has a profound impact on long-term survival depending on the tumor entity. For example, ALT-positive neuroblastomas show low overall survival irrespective of initial tumor grading (52). On the other hand, ALT adult gliomas show a more favorable prognosis (53). As such, ALT presence can confer prognostic capabilities depending on the tumor entity. Intriguingly, immortalized cell lines show a high degree of ALT as well (54). There appears to be no common link between immortalization strategies, e.g., SV40 transduction or spontaneous transformation. 
	The TMM has long been thought of as a golden-bullet strategy for specific cancer drugs. Telomerase represents a specific target that can be inhibited by various means, yet so far, no anti-telomerase drug has excited clinical trials successfully (55). There may be various reasons, such as the presence of telomerase in, e.g., stem cells and keratinocytes lowering therapeutic tolerance for patients and noncanonical functions of telomerase itself (56). There is also additional concern that targeting telomerase may instead lead to the emergence of ALT cancer populations. It has been shown that both TMMs can coexist within one given cancer population in vitro (57, 58) and in vivo (59). As such, any TMM drug would need to target both telomerase and ALT. However, druggable targets of ALT are currently lacking. Even if one could successfully interrupt the TMM, it is questionable if these cancers would reach replicative crisis before killing the patient. A back-of-the-envelope calculation of a 10 kb telomere shows that the cells can continue growing for about 60 population doublings. This assumes that crisis occurs at 4 kb telomere length, with telomere attrition at 100 bp per division. Assuming no cells die, 5.5·1017 cells can be formed from one clone with no active TMM. Assuming cells weigh one nanogram (60), this would create a theoretical maximum of a 500,000-kilo tumor from one single cell. While this is obviously an oversimplification, it shows that even if the TMM is inhibited, the cancers may grow long before entering replicative crisis. In parallel, neuroblastomas that regress spontaneously are not wholly dependent on short telomeres but rather work in conjunction with immune clearance, growth factor deprivation, and DNA methylation (51). Taking inspiration from this, any TMM therapeutic would most likely be a combinatorial treatment. For example, by inhibiting both TMMs and using compounds that actively shorten telomeres in fast-dividing cells. The latter option could consist of G-quadruplex stabilizers that create DNA damage in both ALT and telomerase-positive cancers (61, 62). However, to get to this stage, we must further our knowledge in ALT to find druggable targets or susceptibilities inherent to ALT. 
	The ALT mechanism is dependent on replication stress which drives recombination (63). An overview of all of the ALT hallmarks and their biological background is seen in Table 1. Mutations within ATRX/DAXX, the introduction of telomere variants, and R-loops from TERRA exacerbate the replication stress already inherently present in telomeres (63). Mutations within the ATRX/DAXX/H3.3 deposition axis will be discussed further in section 2.4 (75, 76). Telomere variants, such as TCAGGG and TGAGGG, are introduced by mutagenesis and are a common feature in ALT (63, 77). They reduce shelterin binding and might elicit aberrant DNA repair processes that would typically be suppressed. The variants can also directly mediate binding by nuclear receptors, which aggravates replication stress (78). TERRA also contributes to replication stress, perhaps by forming DNA:RNA hybrids (R-loops) which hinder polymerases and DNA repair proteins (46).
	Table 1. Hallmarks of ALT.
	It was recently shown that two distinct homologous recombination (HR) mechanisms are present in ALT cancer cells (Figure 2). These consist of break-induced replication (BIR) pathway, which is mainly active in G2/M (79), and the mitotic DNA synthesis (MiDAS) pathway during mitosis (80, 81). The BIR pathway has been known in yeast model systems for decades, though its role in telomeric human DNA repair was only recently elucidated (79). As the telomere experiences double-stranded breaks from replicative stress, it likely undergoes recombination with other telomeres in specialized nuclear compartments termed ALT-associated PML bodies (APBs). The APBs contain factors critical for HR and DNA damage response (e.g., RAD52) (69, 82). 
	Figure 2. Possible mechanism of ALT telomere recombination. Adapted from (69).
	The damaged telomere is elongated via BIR using the healthy telomere as a template. ALT BIR consists of two processes that are either dependent on RAD52 or independent, where the latter process is believed to generate circular C-rich extrachromosomal telomere repeats (C-circles). C-circles are currently the best quantifiable markers of ALT-activity (66), and as such, the RAD52 independent pathway may be more critical. An alternative model for the generation of C-circles is the sporadic release of telomere-internal single-stranded loops upon damage or telomere processing (83).  It is not known whether both BIR and MiDAS can drive ALT recombination, if at all. One functional consequence of BIR, which is more mutagenic than other HR pathways (74), could be telomere variants. While many questions remain regarding the ALT recombination mechanism, it is evident that many different factors cause replication stress which then drives DNA damage at telomeres. The damage is resolved by different HR pathways, which in turn elongate the ALT telomere. 
	ATRX and, to a lesser extent, DAXX are recurrently mutated in ALT cancers (84). However, their many functions make it difficult to answer why they act as ALT suppressors. ATRX/DAXX mutations generally tend to lead to loss of expression (84). Whilst DAXX mutations are only found in a specific tumor entity, ATRX mutations are found throughout ALT cancers (84, 109, 118). As such, research has been mainly focused on the connection between ALT and ATRX. Studies elucidating this link saw that loss of ATRX by itself causes extensive genome instability (119, 120). Reintroducing functional ATRX in ALT cell lines leads to suppression of ALT, perhaps by resolving G-quadruplexes and replication stress (93). Another study indicated a central role in replacing macroH2A with H3.3 at telomeres, whereby macroH2A accumulation causes replication stress and DNA damage (121). Therefore, it appears that ATRX disruption drives the replication stress that is fundamental to ALT extension. 
	H3.3 is a common mutation in pediatric brain cancers, and these mutations are almost entirely found in the same cancers (76). Therefore, its relevance to ALT is unclear. The two H3.3 mutations concern amino acid substitutions at K27 and G34, located in the histone tail (122). The first mutation leads to a methionine (M) substitution in K27 and profoundly alters the global H3K27me3 distribution (123). While the exact mechanism is still debated, especially concerning ALT, the K27M mutant probably sequesters the PRC2 complex that forms the repressive H3K27me3 (123, 124). Thereby, introducing the K27M mutant changes gene expression associated with many different cancer pathways (123, 125). The second mutation encodes an amino acid switch from G34 to lysine (K) or arginine (R). The G34V/R substitution is less characterized, but it is probable that it restricts neighboring H3K36me3 by inhibiting SETD2 binding (126). Some evidence also suggests that G34V/R inhibits PRC2 binding to H3K27 in a manner distinct from K27M mutants (127). Altogether, both H3.3 mutants change the epigenetic landscape that appears to be integral for driving pediatric brain cancers. 
	Telomere maintenance mechanisms are a key feature of cancer cells and an attractive therapeutic target promising cancer specificity with few side effects. Cancer cells can either express the reverse transcriptase TERT or induce a recombinational process called Alternative lengthening of telomeres (ALT) (48). Much work has been done on targeting telomerase in cancers, yet no anti-telomerase therapeutic has excited clinical trial successfully (55). Furthermore, cell line models have also shown that targeting telomerase may lead to the emergence of ALT-positive clones (128, 129). In theory, this means that any successful treatment regimen for TMM must target both telomerase and ALT pathways. As no ALT-specific drug exists, there is a critical need for understanding mechanistic implications of ALT and what susceptibilities are introduced in these cancers. ALT presence is confirmed by cytidine-rich extrachromosomal telomere repeats (C-circles), exclusively found in ALT cancers (66). C-circles are byproducts of telomere recombination (8), and thus represent ALT-activity as well. Mutations within the repeat repressors ATRX/DAXX are overrepresented in ALT (84). While many studies have focused on the telomere-specific effects of this pathway, and indeed so has most other ALT-related research, it is vital to understand how the general chromatin environment cooperates in promoting ALT. In this thesis, I investigated three main areas of ALT research. (i) ALT-activity in sarcoma biopsies. (ii) Molecular features of ALT from different sequencing-based readouts and their integration into an omics signature. (iii) Inhibiting epigenetic marks in ALT cell lines using drugs. 
	To address these questions, I performed a C-circle screen of more than 600 mixed-lineage sarcoma samples. The resulting analysis showed that ALT-activity is heterogeneous. Next, by assembling a heterogeneous ALT cell line panel, I performed small and long RNA-seq together with ATAC-seq. ALT presence was found in chromatin accessibility, gene expression, and miRNA expression. Increased chromatin accessibility was driven by TFs within the AP-1 and RUNX family, whilst decreased accessibility was linked to SOX TFs. The upregulated miRNAs 138/142 could explain the lower activity of SOX4, whereas the downregulation of miR-218 could increase RUNX1 activity. Upregulated ALT genes had enrichment of immune-related TFs, which may be indicative of inflammation. GO-term analysis revealed that developmental genes were both up and downregulated, whereas pathway analysis further saw the presence of angiogenesis and activin/inhibin signaling. By integrating ATAC and transcriptome, the putative ALT biomarkers BRSK2 and NFATC2 could be found. Additionally, by performing multi-omics integration, an ALT signature could be extracted. Lastly, by testing different compounds in terms of cell viability, it was found that disrupting H3K27me3 and DNA methylation led to differences in viability relating to ALT activity. ALT cell lines with a high ALT activity were more sensitive to H3K27me3 inhibition but more resistant to DNA methylation inhibition.
	In conclusion, this thesis characterized three areas that are vital for current and future ALT research. ALT cancers have a very heterogeneous ALT activity, which needs to be accounted for when identifying common features. Nevertheless, different omics readouts could be correlated with the presence of ALT in a cell line panel. ALT specific features included specific TF families as well as deregulated pathways. Additionally, integrating the different omics could be used to define a multi-omics ALT signature. Lastly, inhibiting repressive epigenetic modifiers revealed some correlation between cell viability and ALT activity. 
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	An overview of the cell line and growth conditions can be found in Table 2. Cal72, U2OS, Saos2 were purchased from DSMZ (Braunschweig, Germany). HOS and MG.63 were purchased from CLS Cell line services GMBH (Eppelheim, Germany). Pediatric glioblastoma cell lines were a kind gift from Prof. Stefan Pfister (DKFZ, Heidelberg, Germany). ATRX knockout cell lines (NEM168 ATRX KO clone B5 and F2) were generated previously in the lab by Dr. Inn Chung. Cell line identity was verified by single nucleotide polymorphism profiling (Multiplexion GmbH, Germany) and regularly tested for mycoplasma contamination with VenorGeM Advance. Cells were cultured at 37 °C with 5 % CO2, split by washing flasks with PBS twice, and by dissociation with trypsin. Flasks were agitated every 2 minutes, and detachment was visually confirmed with a brightfield microscope. Trypsin was deactivated using 3x complete medium. Media were kept at 4 °C for a maximum of three months for DMEM based medium and two months for Amniopan. 
	Table 2. Cell line growth condition.
	Based on the initial protocol from Henson et al. (186), a quantitative C-circle assay was developed to analyze large sets of primary tumor samples. Genomic DNA was obtained from Dr. Priya Chudasama (NCT, Heidelberg, Germany), and C-circle assays were conducted with technical support from Caroline Knotz (Division of Chromatin Networks, DKFZ, Heidelberg, Germany). 688 mixed-lineage sarcoma DNA samples were obtained in H2O and stored at -80 °C until amplification was performed. DNA content was first assayed using the QuBit 4.0 high-sensitivity program, and samples were diluted to contain 20 ng DNA per reaction. Six samples were prepared per membrane, where three included polymerase (+Pol) and three without polymerase (-Pol), as well as a U2OS standard curve for sample signal extrapolation. Each sample contained 5.05 µL nuclease-free H2O, 0.1 M DTT, 2 µL phi29 buffer, 0.4 µL BSA, 0.2 µL 10 % Tween-20, and 0.8 µL dNTP mix. Additionally, samples with polymerase had 0.75 µL phi29 polymerase, whereas the Pol controls contained the same volume in nuclease-free water. This was added to the 10 µL sample, briefly vortexed, spun, and placed in a thermal cycler. The reactions were incubated for 8 h at 30 °C and then at 20 min at 65 °C. A Roti Nylon plus membrane was used for dot-blotting and was hydrated prior using 2X SSC diluted in PBS. Samples were prepared by mixing 40 µl 2X SSC and then blotted onto the membrane using a Bio-Dot apparatus. The membrane was then heated at 120 °C for 20 min and hybridized using TeloTAGGG telomere length assay kit following the manufacturer’s protocol. Membranes were pre-hybridized with 18 mL DIG easy hyb for 60 min at 42 °C, and the solution was discarded. Meanwhile, 10 mL fresh DIG easy hyb was added together with 2 µL telomere probe. Hybridization was performed overnight at 42 °C, the membrane was washed in stringent wash buffer I, and incubated for 5 min at RT. The wash was done twice, and then the membranes were washed using stringent wash buffer II twice. These washes were done for 20 minutes at  50 °C. Membranes were then washed again using 1x SSC buffer for 5 min at RT and then blocked for 30 min at RT using the blocking solution provided in the kit. Anti-DIG-AP was diluted 1:10000 in blocking solution, added, and incubated with the membranes for 30 min at RT. The membranes were then rinsed twice for 15 min at RT using 1x SSC buffer, and detection buffer was added to the membranes. This was placed in the dark for 5 min at RT, then discarded. Membranes were visualized using chemiluminescence in the Chemidoc High-sensitivity program. 10-40 images were taken over the course of 300 seconds, and the image which contained the longest exposure without oversaturation was chosen. Oversaturated images were used for creating masks in ImageLabs, and densitometric values were extracted. Each +Pol sample was normalized to the sample that lacked polymerase and background. Then, the +Pol signal was averaged for each sample, and the C-circle ratio relative to the U2OS standard was calculated.
	The C-circle ratios were log2 transformed using the equation Y=Log2𝑋+0.05 with 𝑋 being the untransformed C-circle ratio, and 𝑌 being the final transformed C-circle ratio. Fitting of the distribution to a sum of two Gaussians was performed with Graphpad Prism using nonlinear regression (curve fit) function. Mean, standard deviation, and other statistical metrics were obtained from this analysis and used to calculate the 10th and 90th percentile for ALT- and ALT+ populations, respectively. This was done by using the equation 𝑋=µ + 𝑍𝜎, where  µ stands for the population mean, 𝑍 for the Z-score and 𝜎 as the variance. 𝑋 is defined in this case as the C-circle ratio where the nth percentile is contained within.
	Cells were dissociated and counted using a Luna Cell counter. Clear flat bottomed 96 well plates were seeded for 24 h with 500 cells per well and 100 µL medium in total. Three wells per condition were reserved for medium only to account for background signal. Next, cells were treated for six days at 37 °C and 5 % CO2. GSK343 was reapplied every third day due to heat instability. All treatment concentrations had equal amounts of DMSO, and the maximum DMSO concentration in the medium was below 0.2 %. Cell-Titer Glo, which measures cell viability by forming luminescence from ATP, was performed according to the manufacturer’s recommendations. Plates were equilibrated at RT for 20 minutes; meanwhile, lysis reagent was prepared using a 1:1 solution together with complete medium and equilibrated at RT for 30 min. The supernatant in the plate was flicked off, and 200 µL of lysis:medium mixture was added per well. The plate was then agitated using a plate shaker at 600 RPM for 6 min. Wells were resuspended using a multichannel, with great care not to form bubbles. The samples were then transferred to an opaque white-walled 96-well plate and analyzed using a Tecan plate reader (luciferase program, integration time 1 ms). Each condition was averaged, and then the background signal was removed and normalized to DMSO controls for each cell line. EC50 values were calculated using the log inhibitor vs. normalized response function in Graphpad Prism. 
	50,000 cells were seeded in a T-25 24 h prior and then treated with DMSO or 6 µL GSK343 for six days. GSK343 was reapplied every third day. The medium was collected together with trypsinized cells and spun at 300 x g for 5 min. 2 million cells were used per sample and resuspended in 1 mL Annexin binding buffer. Samples were kept on ice whenever possible and washed twice with ice-cold PBS. Samples were strained using a 70-micron cell strainer mesh and transferred to FACS tubes. 5 µL of Annexin V FITC and 10 µL of propidium iodide were added and incubated for 15 min RT in the dark. 400 µL Annexin binding buffer was added, and the samples were transported on ice and analyzed using a FORTESSA II in the DKFZ flow cytometry core facility. Each cell line contained single-stain controls for propidium iodide and Annexin V FITC for downstream compensation, and experiments without 50,000 detected events were discarded. FlowJo was used for gating and fluorescence compensation, and % live versus dead was calculated in Excel. Dead cells were defined as any event that was positive for positive propidium iodide/FITC or both. Live cells were defined as propidium iodide and FITC negative. 
	To validate the specificity of the primary H3.3S31p antibody that was used in metaphase spreads (see section 5.2), the MODified histone peptide array was used. This array contains 384 combinations of histone modifications. This assays how combinations of histone modifications can impact primary antibody binding. It should be noted that the H3.3S31p peptide was not part of the histone peptide array. 3 ml blocking solution (provided in the kit) was added to the array and incubated on a shaker for 1 hr at RT. The blocking solution was discarded, and the array was rinsed in TTBS buffer (provided in the kit). The primary H3.3S31p antibody was added to the blocking solution and incubated with the array for 1 hr at RT. Following this, the array was quickly rinsed with TTBS buffer and then washed three times for 5 min with new TTBS buffer. The secondary HRP conjugated antibody was added to the blocking solution and incubated with the array for 1 hr RT in the dark. The array was then washed again, three times for 5 mins with TTBS buffer, and Clarity ECL substrate was prepared by mixing Clarity western peroxide reagent and Clarity western luminol reagent 1:1. 5 ml of the ECL was added onto the array, incubated in the dark for 5 min RT, and then the chemiluminescence was detected in the Chemidoc XP. 
	The resulting detection can be found in Figure 5. The non-specific binding was then assayed using the Array analyze software provided from Active-motif. The resulting analysis is found in Figure 6. Without H3.3S31p on the array, it is challenging to know the ratio between H3.3S31p and non-specific binding. However, the non-specific signal is still readily detected through chemiluminescence. The main hit was H4K12ac, followed by H4R19me2 and H4K5ac. Histone 4 (H4) marks are not as well characterized as the Histone 3 counterparts; however, both H4K12ac and H4K5ac are also centromeric marks (187). Future studies with recombinant H3.3S31p will be informative in observing how much of the centromeric H3.3S31p signal consists of these H4 marks. 
	Figure 5. Chemiluminescent detection in the histone peptide array. 1:100 primary H3.3S31p was used, and the non-specific binding to other histone peptides was imaged 
	Figure 6. Output from Array analysis software regarding H3.3S31p non-specific binding. The specificity factor is calculated by dividing the signal intensity for the histone peptide by the background staining.
	Metaphase spreads were performed with technical assistance from Caroline Knotz. 200,000 MGBM1 cells were seeded in a 10 cm dish 24 h prior to exposure. 12.5 µL Colcemid was added to each plate, together with the respective inhibitor or equivalent volume of DMSO. 16 h later, the cells were dissociated using trypsin and centrifuged at 500 x g for 10 min. The supernatant was removed, and pellets were washed with 400 µL PBS. 10 µL cell pellet was mixed with 10 µL tryphan blue, and cell number and viability were assessed using the Luna cell counter. 30,000 cells were used for metaphase spreads and were resuspended in 1 mL KCl hypotonic buffer for 10 min at RT. Cytospin funnels and slides were prepared in parallel. Slides had been previously cleaned with 80 % ethanol and stored at – 20 °C until use. EZ double funnels and Shandon filter papers were mounted onto the slides, and 500 µL sample was added per funnel. Cells were spun on a Shandon Cytospin 4 at 1,600 RPM for 10 min, and cell spots were demarcated using a hydrophobic barrier pen. Great care was taken as not to dry the slides, and they were immediately fixed using 4 % PFA in PBS for 10 min at RT. The slides were washed three times with PBS and then permeabilized using 0.02 % TX-100 in PBS for 5 min. Following a brief PBS wash, the slides were blocked using 4 % BSA in PBS for 1 hr at RT, meanwhile having been placed in a humidity chamber. The slides were then washed three times for 5 min with PBS, and 50 µL primary antibody diluted in blocking solution was added onto each cell spot. Slides were placed in a humidity chamber for 1 hr at RT and then washed three times for 5 min with PBS each. Secondary antibodies were added, and the slides were washed in the same manner. However, the slides were protected from light. DAPI was diluted in PBS 1:2,000, and 50 µL was added onto each cell spot for 15 min at RT and in a humidity chamber. Following a triple rinse with PBS, the cells were rinsed with water and then 70 % ethanol. Dehydration was performed by submerging the slides in 100 % ethanol for 2 min and then air-dried for 5 min. Slides were mounted using ProLong Diamond and coverslips and allowed to cure for 24 h. Lastly, the coverslips were sealed using nail polish and imaged using either the Leica SP5 (60x oil objective) or Andor Dragonfly (100x silicone objective). Chromosome segmentation was done using FIJI, where images were pre-processed using Gaussian blurring. Segmentation was then performed on the DAPI channel using Otsu’s method and overlayed with the H3.3S31p channel. Intensities were extracted using the ROI manager.
	Confluent MGBM1 cells in a T-25 were split 1:3 and grown until 70 % confluent. At this stage, the cell line was treated with 5 µL Colcemid, together with inhibitors or DMSO. After 4 hours, the flasks were vigorously shaken to detach mitotic cells, and the medium was collected and spun at 300 x g for 5 mins. Cells were then counted, and 2,000 cells were resuspended in 1 ml 0.5 % sodium citrate in H2O. The sample was incubated for 10 min at 37 °C and 5 % CO2 and then put on ice. The samples were on ice for approximately 15 min and then loaded onto a Cytospin 2 with a funnel sandwich. The funnel sandwich consisted of EZ double funnels together with filter paper and cytospin slides. 500 µL sample was loaded onto each funnel and spun at 1,500 revolutions per minute (RPM) for 10 min. The slides were dried and then put in KCM buffer for 15 min RT. The cell spots were then demarcated using a hydrophobic barrier pen and fixed with 4 % PFA in PBS for 10 min in RT and washed two times in KCM buffer for 5 min each. Slides were then incubated with primary H3.3S31p antibody dissolved in 10 % goat serum in PBS overnight in a humidity chamber. Following this, the slides were washed two times in KCM buffer for 5 min. Secondary alexa fluor 488 was diluted in 10 % goat serum in PBS and added onto the slides for 1 hr RT in a humidity chamber. The cells were then washed for 5 min in H2O and dried. Lastly, slides were mounted with ProLong Gold with DAPI and a coverslip and allowed to cure for 24 hr in RT and protected from light. Image acquisition was made with a Leica SP5. 
	A total of 1·106 cells were processed and lysed according to the manufacturer’s recommendation using the MinElute kit, with technical assistance from Caroline Knotz. Briefly, 300 µl ML buffer was added, and the cell pellet was resuspended by pipetting. Following 5 min incubation at RT, the lysis mixture was added onto a NucleoSpin filter and centrifuged for 1 min at 11,000 x g. The filter was discarded, and 100% ethanol was added to the flow-through. Samples were briefly vortexed and incubated for 5 min at RT, then placed onto a NucleoSpin RNA column. The flow-through, containing small RNAs > 200 nt, was saved. The column containing long RNAs < 200 nt was then subjected to desalting by adding 350 µl MDB buffer and centrifuged for 1 min at 11,000 x g. 
	The saved fraction containing small RNAs underwent protein precipitation by adding 350 µl MP buffer, vortexed, and then centrifuged for 3 min at 11,000 x g. The supernatant was carefully removed by pipetting and then placed on a NucleoSpin protein removal column. Samples were centrifuged for 1 min at 11,000 x g, columns were discarded, and the flow-through was mixed with 800 µl MX buffer. 725 µl mixture was added onto a new NucleoSpin RNA column, centrifuged for 30 s at 11,000 x g. The flow-through was discarded, and the remaining sample mixture was loaded on the same column and centrifuged as previously. 600 µl MW1 buffer was added and then centrifuged for 30 s at 11,000 x g, the flow-through was discarded, and then 700 µl MW2 buffer was added to the columns and spun as previously. 250 µl MW2 buffer was added and centrifuged for 2 min at 11,000 x g, ensuring that the column's silica membrane was dry. The small RNA bound in the column was then eluted by adding 30 µl nuclease-free H2O.
	The small RNA was prepared using the NEBNext multiplex small RNA library prep set. 600 ng RNA was used, and nuclease-free H2O was added so that each sample contained 6 µL. 1 µL 3’ SR adaptor for Illumina was added and incubated in a thermal cycler for 2 min at 70 °C. Then, 10 µL 3’ ligation reaction buffer and 3 µL 3’ ligation enzyme mix were added. Following a 1 hr incubation at 25 °C, 1 µL SR RT Primer for Illumina and 4.5 µL nuclease-free water were added. Samples were then placed in a thermal cycler at the following program: 1) 5 min at 75 °C. 2) 15 min at 37 °C. 3) 15 min at 25 °C. In parallel, 5’ SR adaptor was diluted in 120 µL nuclease-free water and then denatured in a thermal cycler for 2 min at 70 °C. 1 µL 5’ SR adaptor was added to the samples, together with 1 µL 5’ ligation buffer and 2.5 µL 5’ ligation enzyme mix. The samples were placed anew in a thermal cycler for 1 hr at 25 °C, and then the reverse transcription was performed by adding 8 µL first-strand synthesis reaction, 1 µL murine RNase inhibitor, and 1 µL ProtoScript II reverse transcriptase. Samples were again placed in a thermal cycler for 1 hr at 50 °C. Following this, PCR amplification was done by adding 5 µL nuclease-free water, 2.5 µL index primer, 2.5 µL SR primer for Illumina, and 50 µL LongAmp Taq master mix. The samples were mixed well and then placed in a thermal cycler at the following program: 1) 30 sec at 94 °C. 2) 12 cycles of 15 sec at 94 °C, 30 sec at 62 °C, 15 sec at 70 °C. 3) 5 min at 70 °C. The samples were then cleaned up using AmPure XP beads, where 180 µL beads were added per sample. Following a 5 min incubation at RT, the tubes were placed on a magnetic rack for 2 min at RT for separation. Supernatant was discarded, and 200 µL 80 % ethanol was added gently as not to disturb the beads. This was incubated for 30+ sec at RT, gently removed, and then the ethanol wash was repeated once again. The beads were left to dry for 10 min at RT, and cDNA was eluted using 25 µL nuclease-free water. The tubes were placed on a magnetic rack for 2 min at RT, and the supernatant was gently pipetted into a new tube. cDNA content was assessed using QuBit high sensitivity program, and a 0.5 µL sample was used to determine library size using the Tapestation high sensitivity screentape. Samples were submitted for 50 bp single-read sequencing at the DKFZ genomics core facility on the HIseq 2000.
	The long RNAs from above were depleted for rRNA using the NEBNext rRNA depletion kit. First, libraries were hybridized with probes by adding 11 µl total RNA, 2 µl NEXTNext v2 rRNA depletion solution, and 2 µl NEBNext probe hybridization buffer for a total volume of 15 µl per reaction. Samples were then mixed thoroughly by resuspension, briefly spun, and then placed in a thermocycler with the following program: 2 min at 95 °C, cooling down to 22 °C (0.1°C /sec) and then held at 22 °C for 5 min. Samples were then spun and placed on ice. The samples were then RNase H digested on ice by adding 2 µl RNase H reaction buffer, 2 µl NEBNext thermostable RNase H, and 1 µl nuclease-free water for a total volume of 20 µl. The samples were again mixed thoroughly by resuspension, briefly spun, and then placed in a thermocycler for 30 min at 50°C. The samples were then subjected to DNase I digestion by adding 5 µl DNase I reaction buffer, 2.5 µl NEBNext DNase I, and 22.5 µl nuclease-free water for a total volume of 50 µl. The samples were placed in a thermocycler for 30 min at 37 °C, and then the RNA was purified using Agencourt RNAClean XP beads. 90 µl 1.8X beads was added, mixed thoroughly by resuspension, and then incubated for 15 min on ice. Then the tube was placed on a magnetic rack, where the supernatant was carefully removed and discarded. 200 µl 80 % ethanol was added to the beads, incubated at RT for 30 s, and then the supernatant was carefully discarded. The whole bead purification was repeated twice, and then residual ethanol was removed by air drying the beads for up to 5 min. The tubes were then removed from the magnetic rack, and the RNA was eluted by adding 7 µl nuclease-free water. The samples were mixed thoroughly and then incubated at RT for 2 min. Then the beads were separated by putting the tubes back on the magnetic rack. The supernatant, now containing the long RNA, was transferred to a new tube and stored at -80 °C. The RNA was then subjected to library preparation, using NEBNext ultra II according to the manufacturer’s recommendation. The RNA was firstly assessed using High sensitivity RNA screentape, where 0.5 ng RNA was added per lane. Samples containing RNA integrity number (RIN) below 7 were discarded; otherwise, the samples were fragmented and primed by adding 5 µl sample, 4 µl NEBNext first-strand synthesis reaction buffer, and 1 µl random primers for a total volume of 10 µl. This mixture was mixed by resuspension and placed on a thermocycler for 7 min at 94 °C. The tubes were then put on ice, and cDNA was synthesized by adding 8 µl nuclease-free water and 2 µl NEBNext first-strand synthesis enzyme mix for a total volume of 20 µl. The sample was then put on a thermocycler with the following program: 10 min at 25 °C, 15 min at 42 °C, 15 min at 70 °C, and then held at 4 °C. 8 µl NEBNext second-strand synthesis reaction buffer, 2 µl NEBNext second strand synthesis enzyme mix and 48 µl nuclease-free water was added to a total volume of 80 µl. The sample was resuspended and incubated for 1 hr at 16 °C and then purified using AmPure XP beads. 144 µl beads were added to the sample, mixed well by resuspension, and then incubated for 5 min at RT. Samples were spun briefly, then placed on a magnetic rack for bead separation. The supernatant was discarded, and 200 µl 80 % ethanol was added and then incubated for 30 s at RT. The supernatant was discarded, and the beads were again washed with ethanol twice. The beads were then air-dried for 5 min on the magnetic rack, and the tubes were removed from the magnetic rack. DNA was eluted by adding 53 µl 0.1X TE buffer, incubated for 2 min at RT, and placed on the magnetic rack. 50 µl supernatant was transferred to a clean PCR tube, and finally, the library was prepped using the supernatant and adding 7 µl NEBNext Ultra II end prep reaction buffer and 3 µl NEBNext Ultra II end prep enzyme mix for a total volume of 60 µl. Samples were resuspended and placed in a thermocycler with the following program: 30 min at 20 °C and 30 min at 65 °C. Adaptors were then ligated by adding 2.5 µl adaptor, 1 µl NEBNext ligation enhancer, and 30 µl NEBNext ultra II ligation master mix for a total volume of 93.5 µl. Samples were resuspended at incubated for 15 min at 20 °C, then 3 µl USER enzyme was added. The library was again purified with AmPure XP beads, where 87 µl beads were added to the samples, resuspended, and then incubated for 5 min at RT. The tubes were then spun and placed on a magnetic rack for 5 min. The supernatant was discarded, and 200 µl 80 % ethanol was added, incubated at RT for 30 s, and then the supernatant was discarded again. This was repeated twice, and then the beads were air-dried for 5 min while on a magnetic rack. The DNA was eluted using 17 µl 0.1x TE buffer and incubated for 2 min at RT. The samples were then placed on a magnetic rack, and 15 µl supernatant was transferred to a new PCR tube. The DNA was then amplified using PCR, where 25 µl NEBNext ultra II Q5 master mix  and 19  µl index prime mix were added for a total volume of 50 µl. The samples were placed on a thermocycler using the following program: 1) 30 sec at 94 °C. 2) 12 cycles of; 15 sec at 94 °C, 30 sec at 62 °C, 15 sec at 70 °C. 3) 5 min at 70 °C. Samples were submitted for 50 bp single-read sequencing to the DKFZ genomics core facility and analyzed using a HiSeq 4000. 
	Merged FASTQ files were aligned using a previously established in-house pipeline. FASTQ files were unzipped using gunzip, aligned to GRCh38 using STAR, and ribosomal reads were removed using SortMeRNA. Quality control was done using RSEM, RseQC, FastQC, and MultiQC. The resulting BAM files were utilized by featureCounts for count table generation, and genes were annotated using ENSEMBL (v.94). 
	Count data from each omics was variance-stabilizing transformed and subjected to principal component analysis (PCA) using the R-package PCAtools. The number of principal components was determined by the elbow method, and the Pearson correlation coefficient between cell line metadata and principal component was calculated using the function 𝑒𝑖𝑔𝑒𝑛𝑐𝑜𝑟𝑝𝑙𝑜𝑡(). It was shown that most principal components had variations related to tumor entity, which was used then used for normalization within DEseq2 and multifactor omics analysis. 
	Count tables from ENSEMBL annotated genes were obtained from the pipeline and then used in DESeq2. Fold change cutoffs were set at 1.5, with a statistical cutoff of a Benjamini-Hochberg adjusted p-value of 0.01. Additionally, reads containing fewer than 5 normalized reads in 4 samples were discarded. Confounding effects of tumor entity were normalized by using the design factor: 𝑑𝑒𝑠𝑖𝑔𝑛= ~ 𝑡𝑢𝑚𝑜𝑟 𝑒𝑛𝑡𝑖𝑡𝑦 + 𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚. Volcano plots were generated using EnhancedVolcano.
	Down and upregulated genes were separated and used in gene-ontology analysis (http://geneontology.org/, 2021-09-01 release). The category “biological process” was used, and the top 10 GO-terms with respect to the false discovery rate (FDR) were extracted. 
	Differentially expressed genes were divided into down and upregulated, and the ENSEMBL IDs were then pasted into PASTAA (188), using ranked analysis and sorting according to the fold change of the genes. Motifs without known proteins were removed, and results were plotted using ggplot2 and ggrepel. Association score consists of the -Log of the most significant hypergeometric p-value. 
	All differentially expressed genes were analyzed in the TelNet database (https://malone2.bioquant.uni-heidelberg.de/fmi/webd/TelNet) using the “list search” function. Gene name and functions were extracted, and all transcription factors were manually annotated by searching genecards (https://www.genecards.org/) for the terms “transcription factor”. 
	Gene counts were constructed first by collapsing replicate values using DESeq2 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒() function, and normalized counts were plotted using DEseq2 plotCounts(normalized=True).
	Raw counts of all ensemble-annotated genes were averaged across replicates using R. These were then fed into Reactome (https://reactome.org) using the “analyze gene expression” function. Pathway analysis with down-weighting of overlapping genes (PADOG) was used for gene set enrichment analysis. Samples were compared in terms of ALT+/ALT- and the top 10 results in terms of FDR were used. 
	FASTQ files from small and long RNA-seq were merged for each replicate. These FASTQ files were processed using a newly established NF-core pipeline found here (https://nf-co.re/smrnaseq). The pipeline was forked from GitHub, and additional scripting was done by Simon Steiger (Division of Chromatin Networks, DKFZ, Heidelberg, Germany). The modified pipeline can be found here: https://github.com/Simontuk/smrnaseq/tree/v1-dev-alt. Adapters were trimmed with Trim Galore!, and aligned to mature and hairpin miRNAs using bowtie1 to the Mirbase annotation (v 22) as a reference. Post-alignment processing was done using SAMtools and mirtop. Quality control was done with FastQC, MultiQC, edgeR, and mirtrace. Count tables were constructed by MiRDeep2 
	Count tables from mature miRNAs were obtained from the pipeline and then used in DESeq2. Cutoffs were established as mentioned above, apart from not removing low count reads. DESeq2 analysis was done using the same design factor as above. Volcano plots were generated using EnhancedVolcano. miRNAs were additionally subgrouped using miEAA 2.0 (189) by choosing “annotations derived over miRTarBase (Gene Ontology)” where miRNAs with the gene ontology term “negative regulation of telomere maintenance via telomere lengthening” were extracted. 
	Transposable elements (TE) and piRNA were aligned using the in-house RNA-seq pipeline, except for permissive multimapping (𝑜𝑢𝑡𝐹𝑖𝑙𝑡𝑒𝑟𝑀𝑢𝑙𝑡𝑖𝑚𝑎𝑝𝑁𝑚𝑎𝑥=100) in STAR. TE was aligned with the repeat masker (4.1.2) database, and reads from individual TE transcripts were grouped into TE families. piRNAs were aligned with piRNAdb (v.1.7.6). In both instances, count tables were constructed using featureCounts and allowing for multimappers using 𝑐𝑜𝑢𝑛𝑡𝑀𝑢𝑙𝑡𝑖𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑅𝑒𝑎𝑑𝑠 = 𝑇𝑅𝑈𝐸. 
	TE and piRNA count tables were used in DEseq2 with fold change and statistical cutoffs as previously mentioned, apart from not removing low count reads. Volcano plots were made with EnhancedVolcano. 
	ATAC-seq tagmentation and quality control were performed with technical assistance from Caroline Knotz. A total of 1·105 cells were harvested and washed with 1x ice-cold PBS and then spun at 300 x g for 5 h at 4 °C. The supernatant was discarded, and the cells were lysed with the following tagmented using the following recipe: 9.75 µL H2O, 23.50 µL transposase buffer, 0.25 µL PIC, 2 µL Tn5 tagmentase, and 0.5 µL 0.5% digitonin. Samples were left to lyse for 30 min at 37 °C and then put on ice. Afterward, purification was done using Qiagen MinElute kit. 62.5 µl Buffer PB was added to the tagmented sample and placed onto a MinElute column. The sample was centrifuged for 1 min at 11 000 x g, and the flow-through was discarded. 750 µl PE buffer was added onto the column, spun as previously, and then the column was placed in a new collection tube. Columns were dried by spinning as previously and then placed into a 1.5 ml microcentrifuge tube. Each column was eluted in 12 µL EB buffer, where the flow-through was put onto the column one additional time. 2 µL of the sample was reserved for qPCR quality control. To this end, samples were diluted to 0.5 ng/µL in water. In total, six reactions were made from each sample. Three reactions were used as replicates for mitochondrial enrichment (ND4), and the other three were used as replicates for non-specific enrichment (intronic POU5F1). Dr. Lara Klett (Division of Chromatin Networks, DKFZ, Heidelberg, Germany) had previously validated these primers as reasonable proxies for ATAC quality. Each replicate contained 1 µL sample, 2 µL H2O, 0.5 µL forward and reverse primer respectively, 1 µL 10x SYBR green and 5 µL NEBNext HF PCR master mix. These were mixed onto a 96 well plate and analyzed using the StepOnePlus Real-Time PCR system in the following program: 1) 5 min at 72 °C. 2) 30 sec at 98 °C. 3) 25 cycles of; 10 sec at 98 °C, 30 sec at 63 °C, 1 min at 72 °C. Values from qPCR were submitted to an Excel template made by me. The template averaged the mean Ct of the three replicates calculated the ΔCt enrichment calculation. Samples containing ΔCt enrichment of > 2.5 for mitochondrial reads and > 2 for non-specific products were discarded. 
	The samples that passed the qPCR quality control were then mixed with 10 µL H2O, 2.5 µL index primer 1, 2.5 µL index primer 2, 25 µL NEBNext HF PCR master mix, and 10 µL tagmented sample. PCR enrichment was done with the following program: 1) 5 min at 72 °C. 2) 30 sec at 98 °C. 3) 12 cycles of; 10 sec at 98 °C, 30 sec at 63 °C, 1 min at 72 °C. 4) 1 min at 72 °C. The samples were purified using Agencourt AMPure XP beads, where 80 µl beads were used per 50 µL reaction. The samples were incubated with the beads for 5 min at RT, then separated using magnets for 5 min. The supernatant was removed, and the pellet was washed twice with 80 % ethanol for five seconds per wash. The beads were dried (around 3-6 minutes) and eluted in 50 µL EB buffer for 5 min.  Supernatant was used for additional purification using beads, where 25 µL beads were added per sample and incubated for 5 min at RT. The mixture was separated using magnets for 5 min, and the supernatant was transferred into new tubes. 45 µL beads were added anew, incubated for 5 min, separated with magnets for 4 min, and then washed twice with 80 % ethanol for 5 sec per wash. Samples were dried for 3-6 minutes and eluted in 15 µL EB buffer for 5 min. The DNA was measured with QuBit high sensitivity program, and 0.5 ng was added onto a Tapestation high-sensitivity DNA Screen Tape for library size analysis. The samples were then sequenced for 50 bp paired-end sequencing in the DKFZ genomics core facility using a NovaSeq 6000. 
	ATAC reads were processed using an atacseq NF-core pipeline (https://nf-co.re/atacseq/1.2.1), which was implemented with the help of Simon Steiger. Briefly, adapters were trimmed with TrimGalore!, and aligned with BWA to GRCh38. Duplicates were marked with picard and BAMTools. SAMtools. BEDtools and pysam were used for removing reads from blacklisted regions and other low-quality metrics. BigWig files were created using BEDTools. Additional quality control of the processed reads was done with ATAQV, FastQC, and MultiQC. Consensus peak sets and individual sample count tables were constructed with featureCounts. 
	Count tables of all samples were constructed by merging individual count tables generated by the pipeline. The Y-chromosome and decoy sequences were removed and then used for DESeq2. Fold change cutoffs were set at 1.5, with a statistical cutoff of a Benjamini-Hochberg adjusted p-value of 0.01. Additionally, reads containing fewer than 5 normalized reads in 4 samples were discarded. Confounding effects of tumor entity were normalized by using the design factor: 
	Differential ATAC peaks were imported into R using Granges readPeakFile(), and annotated using the ChIPSeeker R-package with the function annotatePeak(). Pie diagrams were constructed using the 𝑝𝑙𝑜𝑡𝐴𝑛𝑛𝑜𝑃𝑖𝑒() function. 
	𝑑𝑒𝑠𝑖𝑔𝑛= ~ 𝑡𝑢𝑚𝑜𝑟 𝑒𝑛𝑡𝑖𝑡𝑦 + 𝑡𝑒𝑙𝑜𝑚𝑒𝑟𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚. Volcano plots were generated using EnhancedVolcano.
	Downregulated and upregulated peaks were separated into separate bed files using R, and transcription factor motifs were extracted using HOMER 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑃𝑒𝑎𝑘𝑠.𝑝𝑙. Enrichment was calculated by dividing the % of motifs in the background versus the % of motifs in target sequences. Results were plotted using ggplot2 and ggrepel. 
	The differentially expressed genes were converted into bed-format using ENSEMBL BioMart (https://m.ensembl.org/biomart/martview/). ATAC peaks were divided into upregulated and downregulated peaks, and promoter regions were extracted using ChIPSeeker and the function 𝑔𝑒𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑒𝑟𝑠(), with ENSEMBL regulatory build providing the promoter reference. Each promoter was annotated to a gene using the same reference. Enhancers were annotated by using the Bedtools 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 −𝑤𝑎 function and obtaining differentially accessible regions that overlapped with annotated enhancers from the ENSEMBL regulatory build. These were, in turn, annotated to genes, where ATAC-enhancer peaks inside gene bodies were annotated to respective genes, and ATAC-enhancer peaks outside gene bodies were annotated to the nearest gene. Gene names from enhancer/promoter regions and differentially expressed genes were extracted, as were all the genes in the TelNet database, and overlaps were found using http://www.interactivenn.net/. 
	Gene counts were constructed first by collapsing replicate values using DESeq2 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒() function, and normalized counts were plotted using DEseq2 plotCounts(normalized=True). Gene tracks were made using bigwig files for ATAC-seq, and .tdf files for RNA-seq provided from the respective pipelines and imported into IGV. 
	Count tables for TE, piRNA, miRNA, ATAC peaks and expressed genes were first transformed using the DEseq2 function 𝑎𝑠𝑠𝑎𝑦(𝑣𝑠𝑡). These variance stabilizing transformed count tables were then normalized to tumor entity using Limma 𝑅𝑒𝑚𝑜𝑣𝑒𝐵𝑎𝑡𝑐ℎ𝐸𝑓𝑓𝑒𝑐𝑡(). The count tables were then imported into multifactor omics analysis (MOFA). Each count table was sorted in descending variance for each feature, and the top 100-10,000 features were used for comparison. 1,000 features were chosen for downstream analysis where the distinction between ALT+ and ALT- cell lines was the highest. The number of analyzed factors was determined by the elbow method. GO-term analysis of weighted genes was done using the MSigDB V6.0.C5 database and the MOFA function 𝑟𝑢𝑛_𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡().
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	C-circles are routinely used to assay alternative lengthening of telomeres (ALT) activity and have proven to be a promising biomarker for ALT-positive cell lines and primary cancers. As part of a collaboration with Priya Chudasama (NCT, Heidelberg, Germany), a quantitative C-circle assay was developed (Figure 7) to analyze 688 soft tissue sarcomas. This represents the most extensive set of patient samples of a tumor entity for which a C-circle assay normalized to a reference signal (U2OS) has been conducted. By using such a vast collection of primary tumor samples, I could describe the distribution of ALT-activity in primary cancer cells and assess ALT heterogeneity. By applying statistical modeling, the criteria for ALT+ samples could be more reliably defined than in previous studies. Figure 8 shows a representative image of a C-circle dot blot membrane, with ALT+ samples in red, and the - Pol controls shown with the high-exposure image. Each sample was performed in triplicates, where the + Pol denotes samples that were amplified by polymerase.
	Figure 7. Workflow of C-circle screening of 688 mixed-lineage sarcomas.
	To account for non-amplified circular DNA background, reactions omitting polymerase (- Pol) were also included. Telomere probes that allow for chemiluminescent detection were used. Each membrane was imaged in a time series through 300 sec, where the highest exposure without oversaturation was used for densitometry analysis. High-exposure conditions were used to aid in creating masks for dot localization and subsequent quantification. These masks encompassed + Pol and - Pol samples, as well as the background. Each + Pol reaction was then normalized to background as well as - Pol. The triplicate values were then merged into an average signal and extrapolated onto a standard curve. The C-circle signal was then expressed as a fraction of the U2OS signal using a standard curve. If the U2OS standard curves had R2 values below 0.5, a standard curve with R2 values above 0.5 was obtained from membranes performed on the same day. This quantitative C-circle approach yielded very robust results and set the threshold for ALT+ in the C-circle screen in a well-defined manner.
	Figure 8. Representative image of C-circle membrane. + Pol denotes samples with complete C-circle amplification, and – Pol is the reaction background control. Each sample was performed in triplicates, and the U2OS standard curve was constructed using 6 different DNA concentrations. The – Pol is shown with high-contrast to show the reaction background of each sample.
	The 687 samples that were successfully analyzed are plotted in Figure 9. Only one sample was omitted due to insufficient gDNA to repeat the C-circle amplification following an irregular standard curve. The scatter plot shows that most samples could be classified as having low C-circle ratios (with 64 % of samples below 0.1). A few samples had negative values attributed to a high background signal. The positive values trailed between 0.1 and 4, and only two samples contained a C-circle ratio higher than 4. 
	Figure 9. C-Circle distributions of analyzed samples. Scatter plot of C-circle ratio values from 687 sarcoma samples. 439 samples are shown between -0.1 and 0.1, 248 samples are binned between 0.1 and 6.
	Cutoffs for the ALT+ population was determined based on normal distributions for two populations after log transformation. As previously stated, most samples had C-circle ratios around zero (Figure 10A). The C-circle values from the sarcoma samples were then transformed by adding a 0.05 pseudocount to avoid negative values that would be incompatible with the Log2 transformation. The null value, now between -6.3 and -3.5, contained the fit for the ALT- population (Figure 10B). Above -2.8 were the ALT+ cancers, with the fit encompassing all values above this threshold and reaching a maximum of 2.8. This corresponds to a variation of the normalized C-circle signal by about tenfold. 
	Figure 10. Data transformation and two-Gaussian fitting. A) Histogram of raw C-circle values, in bins of 0.7 with the y-axis in Log2. (B) Two-Gaussian fitting to Log2 and pseudocount transformed data, showing the ALT- population in red and ALT+ population in blue. Y-axis is in Log2.
	The parameters obtained from the fit of two Gaussian distributions can be seen in Table 3. The cutoff for the ALT+ samples was determined using the 90th percentile for the ALT- and the 10th percentile for the ALT+. Accordingly, I could identify 148 samples considered ALT+ and 510 samples that were considered ALT-. The ALT+ had a mean at 0.95 normalized C-circle ratios, with a high standard deviation. This shows that the C-circle values associated with ALT+ samples were highly heterogeneous, whereas ALT- samples were almost entirely within the null value. 29 samples (4%) fit neither population cutoff and were termed “ambiguous”. This population may instead represent a transition state between ALT+ and ALT- cancers; however, the low overall sample number may also be a byproduct of imposing percentile cutoffs for each population. 
	Table 3. Population statistics of two-gaussian distributions with number of samples
	C-circle ratio
	90th percentile
	10th percentile
	S.D.
	Mean
	n samples
	Population
	0.01
	0.00
	0.069
	N/A
	510
	ALT-
	0.91
	0.95
	2.27
	0.2
	148
	ALT+
	0.03
	0.12
	N/A
	N/A
	29
	Ambiguous
	The findings mentioned in the C-circle screening section indicated that ALT-activity is highly heterogeneous in primary tumor samples. To this end, I assembled a cell line panel consisting of osteosarcoma (OS) and pediatric glioblastoma (pGBM) cell lines that were heterogeneous in ALT-activity as well as for mutations within ATRX and H3.3 (Table 4). The choice of cell lines was made using tumor entities enriched in ALT and having well-characterized ALT features. The NEM157, NEM165, NEM168 cell lines were kindly provided by Prof. Stefan Pfister (DKFZ, Heidelberg, Germany), and the NEM168 ATRX knockout clone B5 were made by Dr. Inn Chung (Division of Chromatin Networks, DKFZ, Heidelberg, Germany) using CRISPR-Cas9 (190). 
	Table 4. Cell line panel consisting of two tumor entities. NEM168 clone (cl.) B5 constitutes an ATRX knockout cell line with an increased C-circle ratio. C-circle ratio expressed as mean and the SEM in parentheses. 
	TMM status
	C-circle ratio
	Tumor entity
	H3.3 mutations
	ATRX mutations
	Cell line
	G34V
	WT
	ALT-
	0.0 (0.0)
	KNS42
	G34R
	Yes
	ALT+
	2.1 (0.6)
	MGMB1
	WT
	WT
	ALT-
	0.0 (0.0)
	SF188
	Weak ALT+
	K27M
	Yes
	0.04 (0.0)
	NEM157
	Weak ALT+
	K27M
	WT
	0.01 (0.0)
	NEM165
	Pediatric glioblastoma
	Weak ALT+
	K27M
	WT
	0.03 (0.0)
	NEM168
	K27M
	Yes
	ALT+
	0.3 (0.05)
	NEM168 cl. B5
	WT
	WT
	ALT-
	0.0 (0.0)
	HOS
	WT
	WT
	ALT-
	0.0 (0.0)
	MG.63
	WT
	Yes
	ALT+
	0.7 (0.1)
	Cal72
	WT
	Yes
	ALT+
	1.1 (0.0)
	Saos-2
	Osteosarcoma
	WT
	Yes
	ALT+
	1.0 (0.1)
	U2OS
	All C-circle ratios were measured with technical assistance from Lukas Frank and Caroline Knotz (Division of Chromatin Networks, DKFZ, Heidelberg, Germany). Samples were binned in ALT- (0 C-circles), weakly ALT+ (0.01-0.1 C-circles), or ALT+ (>0.1 C-circles). Mutations within ATRX and H3.3 were either obtained by genomic analysis by Dr. Katarina Deeg (Division of Chromatin Networks, DKFZ, Heidelberg, Germany) for the pediatric glioblastoma cell lines (190), or were previously published for the osteosarcoma cell lines (191). ILSE-identification numbers from the DKFZ core facility for each sequencing readout and cell line replicate are found in Supplemental Table 1.
	Long and small RNA-seq, together with ATAC-seq, were performed in duplicates for each cell line. An overview of the sequencing and respective downstream analysis is found in (Figure 11). The long RNA-seq fraction with both protein-coding and non-coding genes is referred to here as the transcriptome. and thus active enhancers and promoters, offered a unique perspective in observing Some larger transposable elements (TE) can also be found in this data (192). The small RNA-seq provided information on miRNA as well as TE and their silencers piRNA. The ATAC-seq, which includes information on open chromatin regions processes not necessarily found in transcriptomic data. Altogether, the latter sequencing readouts have not been performed previously from an ALT-specific viewpoint. 
	Figure 11. Overview of the sequencing workflow and downstream analyses.
	The downstream computational analysis was performed by observing differential expression with DESeq2. The first step consisted of evaluating which genes were differentially expressed and what transcription factor (TF) motifs were found in up or downregulated genes. The differentially expressed genes were annotated by gene ontology and overlapping these genes with the ALT gene database Telnet (185). Moreover, pathway analysis was performed on transcriptomic data. miRNAs were also analyzed for differential expression. However, due to limited curated miRNA annotations, the miRNA analyses were mainly evaluated using literature search and databases with gene-target predictions. Transposable elements (TE) and piRNA were evaluated for differential features as well. Due to limited annotation databases, these elements were only tested for whether ALT+ samples contained significant differences. ATAC-seq provided information on the epigenomic state of the ALT+ chromatin where differentially accessible peaks were assigned to genomic elements, such as promoters or intergenic regions, and analyzed for TF motifs. Altogether these individual readouts provided information on which elements were the most accessible from sequencing data and could then be passed on to multi-omics integration. The first step consisted of selecting ALT gene candidates by overlapping differential ATAC peaks with promoters and enhancers and then connecting these to differential ALT genes. This further homed in on the potential biomarkers that could be analyzed in the future. Lastly, I investigated whether an ALT signature could be extracted from all the individual omics using an unsupervised multi-omics factor analysis (MOFA) (174). MOFA allowed discerning more discrete data patterns and answered whether an ALT-signature is readily found throughout the sequencing data or if it could be confounded by other factors (e.g., sequencing run or cell line gender).
	The first step of the omics data analysis was to evaluate the presence of ALT and any confounding cell line metadata. The analysis was done using principal component analysis (PCA) and performing correlations between each component (PC) and cell line metadata. The metadata provided was cell line gender, sequencing run, tumor entity, telomere maintenance mechanism (TMM), and the cell line itself. It was found that the TMM was primarily present in PC1, which would be the component that can explain most of the variance in the data (Figure 12). However, the TMM often co-occurred with the tumor entity. This is best seen for transcriptome, miRNA, piRNA and ATAC. It was therefore decided to normalize for tumor entity. This was performed for the differential analysis of individual readouts by including the tumor entity within the design factor for DEseq2 (see Materials and Methods section 6.6). For multi-omics factor analysis (MOFA), this was done by using the batch correction functionality from Limma (see Materials and Methods section 8.3).
	Figure 12. Eigencorrelation between cell line metadata and principal components.
	The quality control for the long RNA-seq was determined by investigating how many reads were aligned to the hg38 genome build. This metric consisted of at least 100 million reads, which was achieved for each sample (Figure 13).
	Figure 13. Quality control of aligned transcriptomic reads.
	Out of the 64,915 ENSEMBL annotated genes, 37,848 genes passed the low-read cutoff. The resulting DESeq2 analysis revealed 295 downregulated and 912 upregulated genes between ALT- and ALT+ cell lines (Figure 14). Additionally, 78 genes (of which 54 were upregulated and 24 downregulated) had an adjusted p-value below 1⋅10-10 (see Supplemental Table 2 for complete gene list). The differential genes were then selected to find consistent expression changes in the ALT+/ALT- cell lines. The top consistently downregulated genes were the BRSK2 kinase, the TBX1 transcription factor, and the long noncoding RNA FENDRR. The top consistently upregulated genes were PTN, a secreted growth factor, and INHBA, a membrane protein subunit related to activin and inhibin signaling. Another consistently upregulated gene was the transcription factor NFATC2, which was close to the high p-value cutoff. The long noncoding RNA LINC02203, the novel transcripts AL139327.1 and AC068205.1, and the small nucleolar RNA (snoRNA) SNORD114-5 had very high p-values and fold changes. However, these were highly upregulated in only a subset of ALT+ samples. 
	Figure 14. Volcano plot of ALT+ differentially expressed genes. Red indicates peaks that passed both fold change (1.5) and adjusted p-value cutoffs (0.01). Green shows peaks that only passed fold change cutoff, and grey shows peaks below both cutoffs. Blue dots show the differential genes with an adjusted p-value above 1·1010. 295 downregulated and 912 upregulated genes could be identified above statistical and fold-change cutoffs. Genes in bold denote expression levels that were consistently up/down in most ALT+/ALT- samples.
	The differentially expressed genes were then used for transcription factor (TF) motif enrichment. The enrichment was calculated 10 kb upstream of the transcription start site. For the downregulated genes, the top motif was associated with the TFs Egr-1 and Egr-2 (Figure 15). The Egr TFs work downstream of NF-kB signaling pathways to promote apoptosis (193). The second top motif was the Max/c-Myc motif. This is of particular interest, as c-Myc is believed to upregulate TERT in ALT- cancers (194). As this TF motif is associated with both c-Myc and Max, there is a chance that this c-Myc/Max dimer is particularly crucial in inhibiting ALT. Another downregulated TF motif found in the downregulated ALT differentially expressed genes was Hic1, which is a tumor suppressor that can maintain genetic stability (195). The upregulated genes contained immune-related TFs, such as STAT1 (alpha and beta isoforms) 3, 6, and NFAT1/2. STAT 1,3 and 6 are activated by interferons, which are inflammatory cytokines (196), and NFATs are TFs that regulate T-cell response (197). NFAT2 is the protein name for NFATC2 gene, which was found consistently upregulated in ALT transcriptome (Figure 14).
	Figure 15. Transcription factor motif analysis in promoter regions of differentially expressed ALT genes. Motifs with a p-value lower than 0.01 were omitted. Y-axis is the Log10 p-value plotted, and x-axis shows the association score which is calculated from the -Log10 hypergeometric p-value. (A) Transcription factor motifs in downregulated genes. (B) Transcription factors in upregulated genes. Red denotes transcription factors involved in immune processes.
	The differentially expressed genes were divided into upregulated and downregulated genes and then used for GO-term analysis to identify biological processes. Most of the terms were connected to developmental processes (Table 5). Of note was the negative enrichment in proteins related to nucleic acid metabolic processes, indicating that this process is noticeable absent in upregulated ALT+ differential genes. Positive enrichment for biological/cell adhesion and cell differentiation were also found, showing a relationship between upregulated genes and cancer cell invasion and motility. Lastly, the GO-term  “generation of neurons” was found as well. 
	Table 5. Top 10 GO-terms associated with upregulated ALT+ differentially expressed genes.
	FDR
	Enrichment
	GO-term
	GO-term ID
	4.42E-10
	+
	Biological adhesion
	GO:0022610
	1.35E-09
	+
	Cell adhesion
	GO:0007155
	1.06E-08
	+
	Multicellular organismal process
	GO:0032501
	3.03E-08
	-
	Nucleic acid metabolic process
	GO:0090304
	2.26E-07
	+
	System development
	GO:0048731
	3.95E-07
	+
	Cellular developmental process
	GO:0048869
	3.95E-07
	+
	Anatomical structure development
	GO:0048856
	4.35E-07
	+
	Developmental process
	GO:0032502
	4.42E-07
	+
	Cell differentiation
	GO:0030154
	4.49E-07
	+
	Generation of neurons
	GO:0048699
	The downregulated GO-terms show an overlap with the upregulated GO-terms, consisting of anatomical structure development, system development, cellular development process, and multicellular organismal process (Table 6). This implies that rather than relying on specific genetic programs, the ALT+ differential genes are involved in fine-tuning developmental programs beneficial to the tumors. 
	Table 6. Top 10 GO-terms associated with downregulated ALT+ differentially expressed genes.
	FDR
	Enrichment
	GO-term
	GO-term ID
	7.66E-04
	+
	Anatomical structure morphogenesis
	GO:0009653
	9.34E-04
	+
	Central nervous system development
	GO:0007417
	9.40E-04
	+
	Developmental process
	GO:0032502
	9.98E-04
	+
	Animal organ development
	GO:0048513
	1.07E-03
	+
	Multicellular organismal process
	GO:0032501
	1.09E-03
	+
	Anatomical structure development
	GO:0048856
	1.26E-03
	+
	Multicellular organism development
	GO:0007275
	1.35E-03
	+
	Cell differentiation
	GO:0030154
	2.10E-03
	+
	System development
	GO:0048731
	2.22E-03
	+
	Cellular developmental process
	GO:0048869
	The differential genes were then annotated using the Telnet database to delve further into which ALT+ genes play an essential biological role. Telnet is a manually curated database that consists of ALT-related genes and proteins in both yeast and human cells (185). The overlap yielded 50 genes and constituted a plethora of functions relating to cell biology. Among them were the two top downregulated genes, TBX1 and BRSK2, and the upregulated gene NFATC2 (Figure 16). 
	Figure 16. Volcano plot of differentially expressed genes in ALT+ samples. Red indicates genes that passed both fold change (1.5) and adjusted p-value cutoffs (0.01). Green shows genes that only passed fold change cutoff, and grey shows genes below both cutoffs. Blue shows genes annotated in the Telnet database. Genes in bold denote expression levels that were consistently up/down in most ALT+/ALT- samples.
	The full list of Telnet annotated genes is shown in Table 7. The Telnet annotations revealed that BRSK2 was identified as a positive telomerase regulator in an RNAi kinase screen (198), whereas TBX1 was found in pulldown experiments using shelterin components (199). Another three genes in the high p-value group were annotated within the Telnet database, consisting of MYOCD, PKIB, and TSPYL5. Of note, however, was that these genes were highly expressed in some ALT+ cell lines, but not the majority. The transcription factor NFATC2, while not belonging to the high p-value group, had consistent upregulation in almost all ALT+ cell lines, found as a TF in upregulated genes (see Results section 3.3), and was also annotated in the Telnet database.
	NFATC2 was annotated as a telomerase-enhancing hit as its motif is found in TERT promoters (200). HIC1 encodes the Hic1 TF which was found in downregulated ALT genes, and its Telnet annotation shows that it found deregulated in ALT+ cell lines (119). 
	Table 7 Differential ALT+ genes annotated in the Telnet database. Bold denotes genes that were consistently downregulated/upregulated in most cell lines.
	Function
	Gene name
	Function
	Gene name
	Protein kinase
	BRSK2
	Cell differentiation
	TDRD6
	Protein kinase
	CAMK1G
	Cell differentiation
	TDRKH
	Protein kinase
	MAPK15
	Cell growth
	TSPYL5
	Protein kinase
	PKIB
	Cell membrane
	ANOS1
	Protein kinase
	PPP1R17
	Cell membrane 
	ARL4C
	RNA transcription and processing
	HIC1
	Cell membrane
	ELOVL7
	RNA transcription and processing
	MOV10L1
	Cell membrane 
	IFITM1
	RNA transcription and processing /  TF
	MYOCD
	Cell membrane
	ABCC9
	RNA transcription and processing /  TF
	NFATC2
	Cell membrane
	MAGEA4
	RNA transcription and processing 
	PARM1
	Cell membrane
	PAGE2
	RNA transcription and processing /  TF
	ESR1
	Cell membrane
	PAGE5
	RNA-binding
	ARPP21
	Cell membrane
	LRRC63
	Signaling
	ARHGAP15
	Chromatin organization
	HDAC9
	Signaling
	NLRP2
	Chromatin organization
	HIST1H4F
	Signaling
	PLCD1
	Chromatin organization
	KMT2A
	TF
	FOXP2
	Chromatin organization
	SETDB1
	TF
	FOXR1
	Cyclin kinase
	CDK15
	TF
	GATA2
	Cyclin kinase
	CDKL2
	TF
	GATA5
	DNA replication and repair
	ANKLE1
	TF
	KLF12
	DNA replication and repair
	LRATD1 
	TF
	KLF8
	Metabolism
	AKR1B10
	TF
	SOX5
	Metabolism
	ASS1
	TF
	TBX1
	Metabolism
	EPHX2
	TF
	TFEC
	Metabolism
	SULT4A1
	Metabolism
	TNIP3
	Another approach for functionally determining gene expression changes in ALT+ samples was made by pathway analysis. Count tables from transcriptome alignment were used, and replicates were merged by averaging gene expression. These were then submitted for pathway analysis using the down-weighting of overlapping genes (PADOG) method (201). Using PADOG resulted in increased sensitivity of the gene set enrichment analysis. The Reactome pathway enrichment was then calculated, and the top 10 pathways were extracted in terms of Q-value (Table 8). 
	Table 8. Top 10 Reactome pathways in ALT+ cell lines.
	Q-value
	Directionality
	Reactome pathway
	2.0E-05
	Up
	Signaling by activin
	2.0E-05
	Up
	Antagonism of activin by follistatin
	2.0E-05
	Up
	Other semaphorin interactions
	2.0E-05
	Down
	NGF-independent TRKA activation
	2.0E-05
	Up
	Neuropilin interactions with VEGF and VEGFR
	2.0E-05
	Down
	VEGF ligand-receptor interactions
	2.0E-05
	Down
	VEGF binds to VEGFR leading to receptor dimerization
	2.0E-05
	Up
	RUNX1 regulates estrogen receptor mediated transcription
	2.0E-05
	Up
	RUNX1 regulates transcription of genes involved in differentiation of myeloid cells
	2.0E-05
	Up
	RUNX1 regulates transcription of genes involved in WNT signaling
	These showed a relationship between activin and follistatin signaling, in which the top upregulated gene INHBA (see Results section 3.2) is a key factor of inhibiting activin signalling. Neuronal signaling pathways relating to semaphorins and NGF-independent TRKA activation were found, where the former was upregulated, and the latter was downregulated. Angiogenesis also seemed to be disrupted, where neuropilin interactions with VEGF/R were upregulated, yet VEGF ligand-receptor interactions and VEGF/R receptor dimerization were downregulated. This illustrates that ALT shows a specific preference for the VEGF ligands and the neuropilin receptor, bypassing the more canonical VEGF receptors. While neuropilin is physiologically relevant in neuronal outgrowth, cancer cells can also use it to regulate angiogenesis (202). RUNX1, a TF whose motif was found in upregulated ATAC peaks (see Results section 3.12), had upregulated pathways related to estrogen receptor transcription, myeloid differentiation, and WNT signaling. Of note is the identical Q-value for these top 10 pathways, where the low sample size of the 12 averaged cell lines most likely influenced the binning used for the Q-values.
	To investigate the influence of miRNA in ALT+ samples, a new miRNA analysis pipeline was implemented. The minimum number of aligned reads for each sample was 3 million, which was achieved for all replicates (Figure 17A). The following quality metric concerned how many miRNA hairpins were detected, with a maximum of 1,551 known hairpins . The cutoff was set at 1,000 hairpins (Figure 17B), where each replicate attained this goal. In this case, the reason for choosing hairpins is due to the biology and computational analysis that is generally performed for miRNA. miRNAs are generated as miRNA hairpins, which are then cleaved into mature miRNAs that are biologically functional (203). 
	Figure 17. Quality control parameter for miRNA pipeline. (A) Aligned reads in hundred million. (B) miRNA hairpins detected. 
	The mature miRNA reads were used to construct count tables and analyzed with DEseq2. When passing low-read filtering, 822 out of 2,425 mature miRNAs were used for differential expression. A total of 52 miRNA were identified as differentially expressed (Figure 18), with 8 downregulated and 44 upregulated miRNAs. More upregulated features than downregulated features were found. The corresponding miRNA IDs can be found in Table 9. Of the 52 differentially expressed miRNA, 17 had GO-term “negative regulation of telomeres” based on which mRNA they can regulate.
	Figure 18. Volcano plot of ALT+ differentially expressed miRNA. Red indicates peaks that passed both fold change (1.5) and adjusted p-value cutoffs (0.01). Green shows peaks that only passed fold change cutoff, and grey shows peaks below both cutoffs. Blue shows the 17 miRNAs with the gene ontology (GO) term “negative regulation of telomere elongation”. 2,425 mature miRNAs passed low read cutoffs, where 8 downregulated and 44 upregulated miRNAs could be identified above statistical and fold-change cutoffs.
	Table 9. All differentially expressed miRNA, divided into downregulated (downreg.) and upregulated (upreg.). miRNAs associated with telomere-related gene ontology terms are denoted in bold.
	Next, transposable elements (TEs) and their piRNA silencers were investigated. Count tables were generated from aligned reads with an in-house RNA-seq pipeline, allowing multimapping reads (see Materials and Methods section 6.14 ). Reads mapping to exonic counts were excluded. While 1,180 TE families were detected, none were differentially expressed (Figure 19A). This might be due to TEs being comprised of thousands of different transcripts that were grouped into families (such as LINE-1) (204). Thus, individual transcript changes were not represented within their family. Another option was that the TEs were already being silenced to the extent that they were not differentially expressed. To support the latter statement, two downregulated, and 12 upregulated piRNAs were be found (Figure 19B). While future analysis with piRNA target prediction would be beneficial in answering what specific TE transcripts are targeted, this result still indicates that piRNAs are differentially expressed and of interest in ALT.
	Figure 19. Differential expression of transposable elements (A) and piRNA (B). 1,180 transposable element families and 1,926 piRNAs were detected. Red indicates features that passed both fold change (1.5) and adjusted p-value cutoffs (0.01). Green shows features that only passed fold change cutoff, and grey shows features below both cutoffs.
	The samples were sequenced at a read depth of approximately 50 million reads using paired-end sequencing. A quality cutoff at a minimum of 20 million aligned reads was used, and Figure 20A shows that this was achieved. The second parameter was how many peaks could be identified, where a minimum of 50,000 peaks was to be expected. Again, this was achieved as seen in Figure 20B. The last important metric analyzed was the Fractions of Reads in Peaks (FRiP), which indicated the fraction of ATAC reads were found in an identified peak. The FRiP cutoff was put at 0.1, which all samples passed (Figure 20C).
	Figure 20. Quality control parameters for ATAC-seq pipeline. (A) Aligned reads in 10 million. (B) The number of identified peaks through peak calling. (C) FRiP score for each replicate.
	A count table was constructed against the consensus peak set created from the ATAC-seq pipeline, and the Y-chromosome was removed to avoid gender bias. The resulting count table contained 471,337 peaks. The corresponding volcano plot is shown in Figure 21A, with 2,015 downregulated and 3,418 upregulated peaks above the cutoff criteria. More upregulated peaks were found than downregulated ones, indicating a general opening of chromatin in ALT+ cells. The differential peaks were then annotated to their genomic location (Figure 21B). Most of the peaks were found in non-coding regions, such as intronic and distal intergenic (83%). Only 9 % were found in promoters, and 6 % were found in exons. This suggests that most of the ALT+ changes in chromatin accessibility occurred within non-coding regions.
	Figure 21. Differential accessibility in ATAC peaks and annotation. (A) Volcano plot of differentially accessible peaks in ALT+ samples. Red indicates peaks that passed both fold change (1.5) and adjusted p-value cutoffs (0.01). Green shows peaks that only passed fold change cutoff, and grey shows peaks below both cutoffs. 471,337 peaks passed low-read cutoffs, 2,015 downregulated, and 3,418 upregulated peaks were identified above statistical and fold-change cutoffs. (B) Annotation of differentially expressed peaks. 
	The differentially accessible peaks were then analyzed for TF motifs. A cutoff p-value of 1·1060 was used, and additionally, the enrichment was calculated by dividing the % of motifs in the background versus the % of motifs in target sequences. For the downregulated peaks, almost all the top TF motifs in terms of p-value belonged to TFs in the SOX family (Figure 22A). The upregulated peaks were identified to contain members in the RUNX and AP-1 family motifs exclusively (Figure 22B).
	Figure 22. Transcription factor motifs in ALT+ differentially accessible peaks. Shown with the y-axis as the -Log10 p-value and the x-axis as the -Log10 motif enrichment. (A) Motifs in downregulated peaks, with SOX  family motifs in red. (B) Motifs in upregulated peaks, with RUNX family motifs in red and AP-1 family motifs in yellow.
	Both SOX and RUNX are involved in developmental processes (205, 206), yet the distinct downregulation of SOX and upregulation of RUNX indicate that the chromatin state of ALT+ cell lines specifically favors RUNX but not SOX. Additionally, RUNX-AML motifs were also found. This motif is based on RUNX1 mutations in hematological cancers and correlates with poor prognosis in acute myeloid leukemia (207). SOX5, while being found as downregulated in transcriptomic data (Table 7), was not present in the TF motif analysis. This is most likely be due to gene expression not being a complete determinant of TF activity and TFs are extensively regulated via post-translational modifications (208). The AP-1 family has a broad function relating to cell survival and is commonly deregulated in cancer (209). It has also been shown that the AP-1 transcription factors are connected to inflammation (210). This may be particularly relevant as TF motif analysis of differentially expressed genes showed that upregulated genes contained many immune-related TF motifs (Figure 15). Therefore, it could point towards gene expression programs in ALT being influenced by immune signaling pathways. 
	To investigate whether differentially accessible peaks and expressed genes showed signs of coregulation, differential ATAC peaks were divided into promoters or enhancers for genes. The ENCODE database defined the promoter region, ordinarily close to the transcription start site of a gene. These promoter sites were then expanded to include 1 kb upstream or downstream of the promoter sites. The enhancers were defined according to ENCODE annotated enhancers, and each activate enhancer was connected to the nearest gene. These active promoters and enhancers were further linked to differentially expressed genes from section 3.2 and the Telnet database by overlapping gene names. For the upregulated genes and peaks, 10 hits could be found (Figure 23A). 142 differentially expressed genes contained an upregulated promoter/enhancer but without being annotated to a gene within the Telnet database. Two hits were observed for the downregulated genes and peaks (Figure 23B). 13 genes with active promoters/enhancers outside the Telnet were also found. The ATAC and RNA-seq integration further reinforced the notion that NFATC2 and BRSK2 genes are potential ALT biomarkers. For NFATC2, most ALT+ cell lines showed an increase in normalized counts, except for the U2OS cell line (Figure 24A). Nevertheless, its expression was virtually absent in ALT- cell lines (Figure 24C). Three differentially accessible peaks were found 15 kb upstream of the gene, and these showed a relationship with the gene expression. Notably, the increased accessibility was not seen for the U2OS cell line, which did not contain high levels of NFATC2 transcript. BRSK2 was the top downregulated gene for ALT+ samples and contained one differentially accessible peak was identified 13 kb upstream of the gene. Its expression was almost absent in all ALT+ samples (Figure 24C). 
	Figure 23. Results from overlaps between gene expression, promoter/enhancer ATAC signal, and Telnet database. Bold shows consistently up/downregulated genes in most cell lines (A) Upregulated gene and promoter/enhancers overlap with Telnet. (B) Downregulated gene and promoter/enhancers overlap with Telnet.
	Figure 24. Examples of differentially expressed genes in ALT+ samples with differential ATAC peaks. (A) NFATC2, (B) BRSK2. Gene tracks on the right show ATAC (cyan) and RNA (blue). Differentially expressed ATAC peaks are shown on the leftmost panel with the protein-coding gene on the right. (C) Normalized counts of the NFATC2 and BRSK2 gene, each cell line is color-coded according to legend, with OS as circles and pGBM cells as triangles.
	To find an ALT+ signature spanning all the different sequencing approaches, a multi-omics integration was performed. Count tables from expressed genes, ATAC, miRNA, TE, and piRNA, were transformed using variance stabilizing transformation and normalized for cancer entity. These count tables were sorted on features with the highest standard deviation in the samples and used for multi-omics factor analysis (MOFA). The analysis parameters were optimized by choosing how many variable features should be used and limiting how many features should be contained within the signature (Figure 25A). Irrespective of the number of features, TMM was the principal factor of variance in the data. The number of features analyzed was chosen based on the best distinction between ALT+ and ALT- groups, which was 1,000 features. Subsequently, the number of analyzed factors was limited to 6 factors based on the elbow method (Figure 25B). The elbow method consisted of observing the point of diminishing returns to explaining the variance when adding more factors. 
	Figure 25. Optimization of multifactor omics analysis. (A) Beeswarm plots of a varying number of features. Y-axis denotes the factor weight of each cell line. Colored in red for ALT+ and blue as ALT- cell lines. Circles are OS and diamonds as pGBM. Pearson correlation of factor to TMM is shown for each beeswarm plot, with red showing negative correlation and blue positive correlation expressed as a Pearson score. The size of the dots also relates to the Pearson score. (B) Scree plot of % variance explained for a cumulative number of factors. The total number of explained variance is 100 %.
	The resulting analysis was then further characterized by testing the correlation between cell line metadata and factors. Factor 1 was heavily linked to TMM, with smaller correlations between cell-cell heterogeneity or cell gender (Figure 26A). As expected, when normalizing the count tables, no correlation could be seen between the factors and tumor entity. The other factors show a mix of correlations with no apparent relation, except for factor 6, which was strongly linked to sequencing run. The Pearson correlation coefficient was extracted between each factor to observe whether factor 1 was influenced by other factors (Figure 26B). 
	Figure 26. Testing robustness of telomere maintenance mechanism (TMM) factor. (A) Pearson correlation between factors and cell line data. Red shows negative association, and blue shows positive association. (B) Factor-factor Pearson correlation. (C) Factor-factor scatter plots with ALT+ cells in red and ALT- cells in cyan. (D) UMAP constructed of all factors, ALT+ shown in blue and ALT- in red. Circles are OS and diamonds as pGBM.
	Some correlation can be seen between factors 2,3 and 6; however, the correlations were minor ( > 0.4). The distinction between ALT+ and ALT- cell lines was always present, even when comparing factor 1 to other factors (Figure 26C). The only noticeable difference in sample clustering occurred in factor 6, which further separated the groups into sequencing run. Lastly, uniform manifold approximation and projection (UMAP) visualization of all factors showed the distinction between ALT- and ALT+ was ever-present in the data (Figure 26D), further indicating that the principal source of variance in the data stemmed from TMM and with little interference from other factors. As such, it was concluded that MOFA robustly extracted an ALT signature throughout the omics. Notably, the ALT signature was the principal source of variation and was not confounded by other factors.
	I then performed a functional analysis of the ALT signature. The functional analysis consisted in testing what omics contribute most to the signature. In this case, transcriptome described most of the variance (27%), followed by miRNA (19%) and ATAC (14%) (Figure 27A). piRNA and TE only explained 9 % and 7 % of the variance, respectively. This shows that ALT+ samples could be best identified through transcriptome, miRNA, and chromatin accessibility. As gene expression was the most significant determinant of ALT+ in omics data, GO-terms were extracted for the negatively and positively weighed genes for factor 1. It is to be emphasized that the genes that were negatively weighted for factor 1 were instead positively weighted for ALT+ samples, as ALT+ samples themselves were negatively weighted for factor 1 (Figure 25A). GO-terms related to cellular response to alcohol, cell motility, and neurogenesis were seen for the positively weighted genes. The last two terms are also represented within the GO-term analysis from section 3.4. The identical p-values most likely originated from the same genes annotated to all five pathways (Supplemental Figure 1B).
	The response to reactive oxygen species was highly enriched for the negatively weighted genes, with other GO-terms denoting cochlea development, retinoic acid response, and negative neuron death regulation. Reactive oxygen species may relate to intrinsic mitochondrial dysfunction and drive pro-survival pathways through cell signaling (211). This was further indicated by the “response to retinoic acid” GO-term, where ALT cell lines may modulate fatty acid metabolism to either counter or potentiate oxidative stress (212). Additionally, genes annotated in negative regulation of neuron death may be related to countering reactive oxygen species induced apoptosis, and cellular protein complex assembly may be related to ER stress (213, 214).
	Figure 27. MOFA factor 1 characterization. (A) Variance explained between each omics and factor. The leftmost plot shows the cumulative variance between all the factors and all the omics, and the rightmost plot shows the variance explained by each omics in factor 1. (B) GO-term analysis from negatively or positively weighted genes in ALT. 
	To investigate whether ALT cells showed susceptibilities for chemical inhibitors, I assembled 15 chemical compounds that were of potential ALT interest and were considered specific for their targets at the time (Table 10). These compounds targeted DNA repair, epigenetic processes, innate immunity sensing, and telomerase. Mitotic kinases were also screened to determine non-lethal concentrations used for metaphase spreads (see Results section 5.6). DNA repair was previously established as a potential ALT+ therapeutic (215), while epigenetic inhibitors have not been tested previously from an ALT perspective. Innate immunity sensing was chosen based on the finding that C-circles induced DNA-sensing pathways via the cGAS/STING signaling pathway (216). To this end, an inhibitor for cGAS and two STING agonists were used. The latter of which encompassed the natural cGAS second messenger cGAMP and the small molecule G10.
	Table 10. List of compounds used to find ALT-specific susceptibility or resistance in terms of cell viability. Bold denotes positive hits.
	A reduced screening format was utilized to find compounds that showed differences in ALT+ cell viability. This was done using two cell lines, KNS42 as an ALT- control and MGBM1 as an ALT+ control. The compounds that showed noticeable cell viability differences were then subjected to cell viability tests with the entire cell line panel consisting of eight pediatric glioblastoma cell lines (Table 11). These cell lines were the same as those used in the sequencing analysis (Table 4), with the addition of the NEM168 ATRX knockout clone F2. The pGBM cell lines constituted a variety of mutations in H3.3 and ATRX and different ALT activities. From the 14 compounds screened, two were investigated further. These were 5-azacytidine, which targeted DNA methylation, and GSK343 which targeted PRC2 mediated H3K27me3 deposition. It is noted that at the time of the experiment, the cGAS inhibitor RU.521 was novel and believed to be specific to human cGAS (217). However, subsequent studies have shown that RU.521 is mainly active on murine cGAS and much less so for human cGAS (218). Still, due to the negative results for the STING agonists G10 and cGAMP, it was concluded that ALT+ cell lines were not highly sensitive to disruption of DNA sensing.
	Table 11. Cell line panel used in inhibitor experiment. NEM168 clones B5 and F2 constitute ATRX knockouts where ALT activity was increased. C-circle ratios shown as mean and SEM in parentheses. µM EC50 is shown as means with standard deviation in parentheses. EC50 results stem from three biological replicates consisting of three technical replicates.
	µM EC50
	Aberrant H3.3s31p
	H3.3 mutation
	ATRX mutation
	C-circle ratio
	Tumor entity
	TMM 
	Cell line
	5-Azacytidine
	GSK343
	7.9 (1.6)
	7.1 (0.85)
	No
	G34V
	WT
	ALT-
	0 (0.0)
	KNS42
	9.6 (1.6)
	6.5 (0.78)
	No
	WT
	WT
	ALT-
	0 (0.0)
	SF188
	5.9 (1.9)
	23.2 (0.70)
	Yes
	G34R
	Yes
	ALT+
	2.1 (0.6)
	MGBM1
	Weak ALT+
	6.4 (1.3)
	20.7 (0.75)
	Yes
	K27M
	Yes
	0.04 (0.0)
	NEM157
	10.3 (1.8)
	Weak ALT+
	5.1 (0.77)
	No
	K27M
	WT
	0.01 (0.0)
	NEM165
	10.3 (1.8)
	Weak ALT+
	9.2 (0.78)
	No
	K27M
	WT
	0.03 (0.05)
	NEM168
	Pediatric glioblastoma
	NEM168 cl. B5
	9.6 (1.6)
	12.3 (0.77)
	No
	K27M
	Yes
	ALT+
	0.3 (0.0)
	NEM168 cl. F2
	5.1 (1.6)
	12.7 (0.85)
	No
	K27M
	Yes
	ALT+
	1.4 (0.6)
	The first hit was the DNA methylation inhibitor 5-azacytidine. A trend was observed regarding cell lines with higher C-circle values being more resistant to 5-azacytidine (Figure 28). While most cell lines with low (weakly ALT) or no discernable C-circles (ALT-) had low EC50 values when compared to samples binned to higher C-circle values (ALT). One exception was the NEM157 cell line, which although being binned as weakly ALT, had EC50 values comparative to the MGBM1 cell line (which had the highest C-circle ratios of all cell lines) (see values in Table 11).
	Figure 28. EC50 for cell survival in two ALT- cell lines (red) and 6 ALT+ cell lines (blue). The X-axis shows the normalized C-circle ratios for each cell line, and the Y-axis the effective concentration at which 50 % of cell signal is lost. The sample size consists of three technical replicates repeated three times. r2 denotes the correlation coefficient.
	The heat lability for GSK343 was determined due to initial findings showing highly irregular cell viability results. DMSO or 16 µM GSK343 were pre-incubated by mixing with cell medium and incubated at 37 °C at 5 % CO2. These were in turn added to the MGBM1 cell line (Figure 29). As is evident, at 16 µM GSK343 the cell viability decrease was absent when the compound was pre-incubated for three days. For the cell viability assay, the GSK343 compound was therefore reapplied every three days. While it is noted that even at one-day pre-incubation, roughly 25 % of cells survive, a repeated medium change caused cell detachment, especially in high-dose conditions where the cells were already stressed. 
	Figure 29. Heat lability test for GSK343 in the MGBM1 cell line. Y-axis shows % survival normalized to DMSO. Average of three technical replicates.
	GSK343 was then applied to the full cell line panel after the optimization described above. A general trend was seen in cell lines with higher ALT-activity being more susceptible to EZH2 inhibition (Figure 30A). In juxtaposition to a previously published study (219), this susceptibility was not connected to H3K27M mutants. As seen in Table 11, the NEM cell lines binned to weakly ALT+, which contained H3K27M substitutions, did not have markedly different viability than ALT- samples. Instead, the MGBM1 and NEM168 ATRX -/- clone F2, which had the highest C-circle ratios, were more susceptible. This indicated that EZH2 inhibition targets cell viability in cells with higher ALT activity. The next question was in which cell death modality the compound reduced the cell viability signal. 
	By performing a cell death flow cytometry assay, I tested whether apoptosis (Annexin V-FITC positive populations) and necrosis (propidium iodide positive populations) were different between DMSO and cell lines exposed to 6 µM GSK343 (Figure 30B). KNS42 and SF188 were chosen as ALT- controls, MGBM1 as a high ALT activity control, and NEM157 as a weakly ALT+ sample. While being in an inhibitor concentration well within the range of the EC50 values, the cell lines did not show a significant increase in any kind of cell death. The KNS42 cell line showed a slight increase in apoptotic/necrotic cells; however, this value was around 3 %. For the other cell lines, while having error bars spanning -5% to +5% cell death increase, the conclusion was still drawn that GSK343 inhibits cell proliferation. 
	Figure 30. GSK343 lethality experiments and characterization. A) EC50 for cell survival in two ALT- cell lines (red) and 6 ALT+ cell lines (blue). The X-axis shows the normalized C-circle ratios for each cell line. The sample size consists of three technical replicates repeated three times. r2 denotes the Pearson correlation. B) % cell death induction in four cell lines treated with 6 µL GSK343 for six days. Average of three technical replicates repeated three times.
	To investigate the ALT-specific aberrant H3.3S31p, which consists of chromosome-wide spreading rather than the usual centromeric localization of H3.3S31p. I established a protocol for arresting cells in mitosis and image condensed chromosomes using antibody labeling and immunofluorescence. I included a pan-kinase inhibitor to function as a positive control for future H3.3S31p inhibitor testing, which potently diminished H3.3S31p signal (Figure 31A). Another aspect was to establish antibody stainings that could discern between aberrant and centromeric H3.3S31p spreading. This would be used to test inhibitors that could cause aberrant H3.3S31p in non-aberrantly spreaded cells or classify aberrant spreading in new cells. Therefore, the centromeric histone CENP-A was chosen and this signal largely overlapped with H3.3S31p in a non-spreaded cell line (Figure 31B).
	Figure 31. Metaphase spread optimizations. The white bar shows 1 µm length. (A) New protocol for MGBM1 cells using H1 as counterstaining, together with DAPI and H3.3S31p. Comparison between DMSO and CC1 pan-kinase inhibitor. (B) Testing CENP-A as counterstaining for centromeric H3.3S31p, using KNS42. N=1.
	The kinase(s) responsible for depositing aberrant H3.3S31p has not been conclusively found to this date. A preliminary experiment indicated that inhibiting a mitotic kinase called HASPIN reduced H3.3S31p signal intensity (Figure 32B). In contrast to previous results studying the CHK1 kinase (64), I could not find a signal decrease when using a CHK1 inhibitor. 
	Figure 32. Metaphase spreads of the MGBM1 cell line treated with kinase inhibitors. (A) Inhibitors LDN-192960 (HASPIN), LY2603618 (CHK1), MLN8237 (AURKA), or DMSO were used. Merged images of blue fluorophore being DAPI and green fluorophore α-H3.3S31p Alexa Fluor 488. The white bar shows 1 µm length. B) Bar plot showing H3.3S31p intensity of segmented chromosomes when treated with DMSO, HASPIN, CHK1, or AURKA inhibitors. N=1.
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	This thesis characterizes molecular features of the ALT pathway that depends on aberrant DNA repair and recombination, where many factors cooperate to amplify replicative stress that elongate telomeres via aberrant DNA repair. ALT can affect long-term survival in cancers and obtaining an omics signature would thus be valuable for patient stratification. Since ALT can also coexist with telomerase cancers (57), interventions targeting telomere elongation in cancer will require combinatorial treatment regimens that equally affect telomerase and ALT tumors. To get to this point, however, will require better knowledge of how ALT functions. In this thesis, I describe that ALT cancers are highly heterogeneous and yet have common features across tumor entities. I find that ALT cancers display distinct profiles concerning gene and miRNA expression and chromatin accessibility. I further characterize gene regulation networks that modulate the genetic environment in the presence of ALT. Using an integrative omics approach, I dissect tentative biomarkers and extract a multi-omics ALT signature. Thereafter, using a panel of chemical inhibitors on pediatric glioblastoma (pGBM) ALT cell lines, I find a relationship between ALT-activity and sensitivity to EZH2 and DNA methylation inhibitors. Lastly, by assaying different kinase inhibitors, I report initial results that point to HASPIN as a kinase responsible for aberrant H3.3S31p spreading during mitosis in ALT. 
	The C-circle assay has proven the most reliable assay for detecting ALT presence (66). Nevertheless, there appear to be some ALT cell lines that do not have high C-circle levels (Table 4). I find that out of 687 mixed-lineage sarcomas, 148 (22 %) were C-circle positive (Results section 1.2). The same percentage was obtained in another study that assayed ALT+ cancers in mixed-lineage sarcomas (220). The study in question used telomere-FISH to quantify telomere length, which is a more downstream biomarker for ALT. This would further indicate that C-circle amplification is an accurate way to capture ALT presence.
	C-circles are quantitatively correlated with ALT activity. When using gamma-radiation to induce high ALT activity via telomeric double-strand breaks exogenously, C-circles are increased (221). This notion is also supported in other studies that modulate replication stress factors or induce DNA damage to increase ALT activity  (119, 222-224). The large spread in C-circle ratios I found indicates that ALT cancers are heterogeneous in their activity. This finding is also not restricted to ALT sarcomas. A study conducted in 720 neuroblastomas saw a similar large spread in C-circle values (52). Taken together, my findings show that the C-circle assay accurately captures ALT presence and that ALT cancers have a spectrum of recombinational activity. The cause for the heterogeneity is not yet confirmed; however, it is possible that the large spread in ALT activity constitutes a spectrum of increased DNA damage and telomere recombination. Interestingly, new findings reveal that two general telomere elongation mechanisms exist in ALT and that only one of these mechanisms may contribute to C-circle formation (69). Thus, there is a possibility that some ALT cancers would remain undetected using the C-circle assay.
	With all the inferred epigenetic changes in ALT, it should come as no surprise that ALT cell lines show differential viabilities when treated with epigenetic drugs (see Results section 5.1. The trend towards decreased viability to the EZH2 inhibitor GSK343 in high-activity ALT samples (Figure 30A) would imply that ALT-activity is underpinned by epigenetic derepression irrespective of H3.3 mutations. Additionally, Figure 30B shows that the loss of viability resulted from cell lines not proliferating. A study on diffuse intrinsic pontine glioma (DIPG) cells discerned that GSK343 treatment resulted in a loss of viability in cancers with H3K27M mutations (219). Similarly, the authors found that GSK343 inhibited cell proliferation and saw via RNA-seq that this was due to the expression of the oncosuppressor p16ink4a. p16ink4a is a common cancer mutation due to its senescence-inducing capabilities (225) and could explain the sudden stop in cell proliferation found in both this study as well as the cell death analysis that was performed (Figure 30B). It is known that DIPGs are enriched in ALT, which also contain H3K27M or H3.3K27M mutations (226). However, the authors did not check the presence of ALT in their tumor samples. Thus, further work is needed to fully characterize why ALT cells stop proliferating during PRC2 inhibition by assessing whether treated cells become senescent with β-galactosidase assays. 
	The mode of action of 5-azacytidine’s mechanism is not entirely understood, although its inhibitory effect on DNA methylation is well-established (227). Incorporating 5-azacytidine instead of cytosine residues trap DNA methyltransferases and leads to global DNA methylation reduction (227). The lack of DNA methylation can induce cytotoxicity either by modulating gene expression programs or inducing innate immunity from expressed TEs (228). Therefore, the increased survival in high-ALT cell lines would indicate that ALT-activity confers resistance to these processes. It could also be inferred that innate immunity is heavily disrupted in ALT and that expression of TEs does not yield inflammation-mediated cell death. Another possibility is that methylation levels at ALT subtelomeres are already low. It has been shown that subtelomeres are hypermethylated when telomerase is active (229). While the methylation status of ALT subtelomeres has not been assayed, it is possible that they are hypomethylated. Furthermore, telomere position over long distances (TPE-OLD) studies showed that short telomeres lead to DNA methylation patterns which allow TERT expression (230). As such, long telomeres, which are unique to ALT cancers, may by themselves change subtelomeric DNA methylation in a hitherto unknown fashion. Therefore, it could be so that the cells with high ALT activity have longer telomeres that sustain DNA methylation through 5-azacytidine-insensitive mechanisms.
	As previously mentioned, H3.3S31p is usually a pericentric mitotic histone mark. In the majority of ALT cell lines, the mitotic spreading for H3.3S31p is chromosome-wide, and this aberrant spreading phenotype can be a good ALT marker (64). Furthermore, H3.3S31p drives enhancer activation in embryonal stem cells and might aid in resolving UV damage in DNA (115, 116). Despite this, it is unclear how H3.3S31p is involved in ALT, as it is aberrantly deposited in a chromosome-wide manner for many but not all ALT cell lines (64). Multiple studies have attempted to elucidate which kinase(s) are involved in its deposition. One study used a siRNA screening platform to investigate which kinase knockdowns led to a reduced H3.3S31p signal (231). They observed that the kinases AURKB and BUB1B, which drive mitotic checkpoint processes together, reduced the S31 phosphorylation greatly (232). However, it is worth mentioning that this study was performed on HEK293 cells, which are ALT- (233). Another study done in ALT+ cell lines showed that the DNA-repair kinase CHK1 is involved (64). However, the authors used inhibitor concentrations multiple orders of magnitude above the IC50 value. In the inhibitor study I performed, I chose values close to the IC50 values to avoid potential side effects. In my experiments, the only inhibitor that reduced the mitotic H3.3S31p signal was the HASPIN inhibitor. HASPIN has been described to phosphorylate threonine 3 in H3 (H3T3) in mitosis and has been implicated in proper chromosomal alignment (234). HASPIN activity also depends on phosphorylation by AURKB (235). Given the genetic instability present in ALT, it is conceivable that mitotic defects go together with this instability. Thus, findings from an earlier study that observed the function of H3.3S31p as a sensor for misaligned chromosomes could apply to aberrant H3.3S31p ALT cells (117). This model would suggest that H3.3S31p is a consequence of ALT-induced genetic instability, rather than it being involved in differentiation or gene expression pathways. Future studies should use AURKB inhibitors to verify its relationship to H3.3S31p. Additionally, the cause-or-consequence question for aberrant H3.3S31p should be investigated further as well. In this regard, it would be beneficial to induce aberrant H3.3S31p spreading in ALT cell lines with normal spreading patterns and test if this affects ALT activity. Another experiment to perform in the same cell line would be to induce chromosomal missegregation using microtubule inhibitors and observe whether aberrant H3.3S31p is formed.
	C-circles are established biomarkers for ALT, but omics signatures for ALT are lacking. Since ALT can profoundly influence long-term survivability in cancers (53, 236), it is vital to investigate whether ALT presence can be linked to sequencing-based readouts. In this study, I performed RNA-seq of long and short RNAs as well as ATAC-seq on a heterogeneous tumor panel with varying mutations in ATRX, H3.3, and ALT activity with the approach depicted in Figure 33. One challenge is that tumor entity could confound the ALT signature, which needs further consideration in future validation experiments. This is evidenced by the eigenfactor correlation analysis I performed (Figure 12), where both PC1 and PC2 showed a high correlation to both TMM as well as tumor entity for most omics approaches. 
	Regarding the ALT signature found in the different omics, it appears that the most differential features are obtained from transcriptome, chromatin accessibility, and miRNA. This is also reflected when performing multi-omics factor analysis (MOFA) (see Results section 4.2). In this regard, I obtained the NFATC2 and BRSK2 genes that showed both differential expression in transcriptome and chromatin accessibility. NFATC2 could also be confirmed through transcription factor (TF) analysis from upregulated ALT transcriptomic genes, indicating that its activation can drive the differentially expressed ALT genes. However, these genes would have to be functionally validated and observed in primary cancers. One extensive ALT omics study was performed in neuroblastoma cancers, where RNA-seq and proteomics were used to identify ALT-related proteins and genes (52). The authors did not observe a differential expression of my candidate hits BRSK2 and NFATC2. Both of these genes may be down or upregulated via inflammation-related processes (see Discussion section 7), and one explanation could be that ALT neuroblastomas are less prone to inflammation. Similarly, a study used the TCGA cancer cohort to dissect ALT-related genes and found enrichment of GO-terms relating to reactive oxygen species, hypoxia, and angiogenesis in most ALT tumors (237). However, the TCGA cohort does not include pediatric cancers, and thus, neuroblastoma is not included in this analysis (238). 
	Figure 33. The different sequencing readouts when evaluating ALT omics signature
	ATAC-seq identified more than 5,000 differentially accessible peaks in ALT+ cell lines, where most peaks were found in non-coding genetic elements (Figure 21). RUNX TF family motifs were enriched while SOX motifs were depleted, indicating that ALT+ cell lines selectively utilize these developmental pathways. SOX and RUNX TFs are crucial in diverse differentiation processes and similarly have a wide range of chromatin targets (226, 227). These TFs were not found as differentially expressed genes in the transcriptome TF analysis. However, it is well established that post-translational modifications also regulate TF activity, and these TFs may thus be vital in inducing ALT-specific developmental states (208). It is also interesting that the transcriptome contained many developmentally related GO-terms, which could be regulated by the SOX and RUNX TFs (Table 5 and Table 6). Another open question is why these specific TF families are up or downregulated. One potential mechanism could be miRNAs. It was shown that SOX4, one of the downregulated motifs in my TF analysis, can be downregulated or have its activity inhibited by miR-138 and miR-142 (239, 240). These miRNAs were upregulated in my differentially expressed miRNA analysis (Supplemental Table 3). Similarly, for RUNX, one of the upregulated differentially expressed miRNA miR-218 increased RUNX2 expression in osteoblasts (241). The reason for the RUNX TFs being upregulated may also be due to higher activity of the AP-1 family, as well as STATs and various other immune-related TFs (242-244) (Figure 15). Lastly, RUNX TFs may induce specific pathways not captured by chromatin accessibility or transcriptome TF analysis. The pathway analysis revealed that RUNX1 induced gene expression pathways involving estrogen receptor activation, WNT signaling, and differentiation of myeloid cells. The pathway analysis of down-weighted genes (PADOG) improves gene set analysis significantly and could explain why similar GO-terms were not enriched (201). 
	The highest enrichment of TF motifs found in the chromatin accessibility analysis was for the AP-1 family. These TFs can heterodimerize in multiple combinations to result in different transcriptional profiles (209). Notably, AP-1 TFs can be activated in response to DNA damage and inflammation (210, 245). These stressors may be a common theme in ALT cancers and could cause specific upregulation of AP-1 TFs.  Interestingly, in an ALT induction model, the authors saw increased inflammatory markers (such as TGFβ) but reduced AP-1 TFs (246). The authors do not go into great detail explaining this pathway. However, it is possible that in transitioning to become ALT+, the cancer cells modulate downstream pathways of inflammation, such as AP-1, to avoid apoptosis. This would also indicate that cell lines that have ALT rely on high AP-1 activity at a later stage. However, an open question is how the ALT cell lines disrupt inflammation so as not to show signs of, e.g., TGFβ signaling in GO-term analysis. 
	It was recently shown that C-circles induce an innate immune response and that ALT cancers disrupt DNA sensing mechanisms to avoid apoptosis (216). This could explain why modulating key components of the DNA sensing pathway did not result in differential viability (see Results section 5.1), as these pathways are simply quiescent. Nevertheless, it would also make sense that the ALT cancer utilizes this heightened state of inflammation to drive tumor growth. This process has been described in many cancer-related features, such as tumor microenvironment and cancer proliferation (247). Upregulated genes show many enriched immune-related transcription factors for ALT cell lines, such as STATs and NFATs (Figure 15B). This indicates that existing inflammatory processes influence ALT transcriptome. The identification of NFATC2 from transcriptomic data further supports this (see Results section 3.3). NFATC2 is a transcription factor generally expressed in resting T-cells (248), yet it was highly upregulated in ALT+ cell lines (Figure 14) and amongst the top TF motif in upregulated ALT+ genes (Figure 15B). 
	C-circles and chromosomal instability may account for some of the inflammatory signaling. In addition, the multi-omics factor analysis with the MOFA software revealed that ALT+ cell lines had a reduced response to oxidative stress (Figure 27B), which could in turn lead to an increase in reactive oxygen species mediated damage. Oxidative stress is a significant source of inflammation (249), and telomeres in particular are susceptible to oxidative damage (250). Additionally, GO-terms related to negative regulation of neuron death and cellular protein assembly may further indicate the presence of oxidative stress. Neurons are susceptible to reactive oxygen species and mitochondrial dysfunction (213), and so is the protein assembly complex (251). It was shown within the TCGA cancer cohort that GO-terms relating to reactive oxygen species were upregulated in most ALT tumors (237). Together with findings that mitochondria may be dysfunctional in ALT (128), these studies and my own study suggest that oxidative stress and mitochondria are connected to the ALT pathway. However, it can additionally be seen in the MOFA signature that oxidative stress damage is actively promoted in ALT and could possibly be a critical route for cells to induce DNA damage and drive telomeric recombination. It can also be speculated that ER stress is induced in ALT due to reactive oxygen species. This may also be related to one of the top downregulated genes in ALT+, namely BRSK2. It was shown that BRSK2 mediates ER-stress-induced apoptosis and that its expression is downregulated in cancer cell lines to escape cell death (252). 
	The diverse set of findings from the omics analysis may be related to the heterogeneity in ALT activity described in Results section 1.2. The large spread in ALT activity can be underpinned by different degrees of DNA damage which facilitate DNA recombination. Inflammation would go hand-in-hand with increased levels of genetic instability (253), and it is known that inflammation can be modulated into pro-survival processes in cancer (254). This can be confirmed experimentally by inducing cell death, for example, whether apoptosis is induced to the same degree in ALT+ cell lines. Furthermore, it is also possible that a constant state of inflammation can lead to ALT tumors being more infiltrated by immune cells (255). Additionally, as ALT cancers have a heterogeneous level of activity, it can be postulated that ALT cancers with high activity can lead to increased levels of immune cell infiltration. This could be utilized in immune checkpoint blockades, such as CTLA-4 and PD-1/PDL-1 therapeutics (256).
	While the GO-terms related to differentially expressed ALT genes were quite broad and included many developmental pathways, some enrichment of neuronal pathways was apparent when doing pathway analysis (Table 8). It pointed to activin/inhibin as well as Neuropilin signaling. Activin ligands are a member of the TGF-β superfamily of ligands (257). The activin ligands bind to activin receptors, which induce gene expression changes via SMAD and MAPK pathways and are vital in cell proliferation (258-260). Activin signaling has also been implicated in many inflammatory diseases and cancers (261, 262), and thus its activation could be due to increased inflammation in ALT. The activin signaling pathway is negated by the inhibin ligands and follistatin, which compete for the same receptors but result in non-productive signaling (263, 264). One of the top upregulated ALT+ genes is INHBA, an inhibin ligand. Perhaps the ongoing inflammation in ALT+ cell lines leads to activin signaling, which is inhibited by upregulating INHBA. Thus, it would be worthwhile to investigate whether activin gene expression is detrimental to ALT, for example, by performing knockouts of INHBA. 
	Semaphorin pathways and three different VEGF pathways indicate that ALT+ cell lines are distinct with respect to angiogenetic pathways (265). Neuropilin is a neuronal membrane receptor that binds to semaphorin and VEGF ligands and has diverse functions in cancer (266, 267). The ALT cell lines appear to favor the neuropilin signaling axis while inhibiting the canonical VEGF/VEGFR axis. Another possible gene involved in angiogenesis is PTN, which was the most upregulated ALT gene. The PTN protein is a growth factor expressed in many cancers (268-270). PTN is a potent inducer of angiogenesis, with potential mechanisms including VEGF upregulation or binding to the receptors αvβ3 integrin and PTPRZ1 (271-273). However, the reason why the ALT cell lines require upregulation of angiogenesis is unclear. It is known that hypoxia and inflammation can upregulate angiogenesis (274), and both of these processes may occur to a higher degree in ALT cells. Hypoxia can be crucial in producing reactive oxygen species (275), and together with the reduction in oxidative stress response found in the multi-omics ALT signature, hypoxia could be yet another cause of oxidative stress. Within the TCGA study of ALT cancers, hypoxia and angiogenesis were also observed (238). Nevertheless, the lack of hypoxia-related findings in the sequencing results may rule this out. Hypoxia-related GO-terms should be present in the GO-term analysis, as well as finding the hypoxia TF HIF1α in the TF motif analysis. A possibility is that ALT cells utilize different pathways for their maintenance, and to confirm this, sequencing studies including ALT cell lines from one of the tumor entities that show a hypoxia phenotype would need to be performed. 
	Of the 52 differentially expressed miRNAs identified in ALT cell lines (see Results section 3.8), 17 had the GO-term “negative regulation of telomere elongation”. However, it is worth noting that miRNAs may have thousands of potential binding targets. miRNA bind and repress mRNA transcripts via complementary sequences (276), and target prediction databases are mainly concerned with this mechanism (277). The GO-terms were calculated by performing enrichment analysis of the miRNA targets. Yet, with thousands of putative mRNA targets, each miRNA can have many different GO-terms associated with it. Additionally, miRNAs can themselves be regulated via other miRNA or via lncRNA that act as miRNA “sponges” (278). Therefore, miRNA functions can be heavily dependent on a specific context that must be considered.
	A newly published paper investigated miRNA in ALT+ cell lines using microarrays (279). Their top hit was miR-708, the second-highest miRNA in terms of adjusted p-value from my differentially expressed miRNA analysis. The authors of the study characterized this miRNA, whereby its overexpression led to a loss of invasion and angiogenesis via repression of the TF CARF. The authors observed that this miRNA suppressed proliferation in ALT- cells but promoted it in ALT+ cell lines. This was believed to occur via regulation of BRCA1 and MRE11, which are key components of homologous recombination (HR) (280). The genes for these proteins, together with CARF, were not found in my differentially expressed genes or the TF analysis for CARF. This could be due to limitations in the target prediction, which, as previously stated, are computationally calculated and are primarily focused on miRNA-mRNA interactions. Another miRNA that was studied in the context of telomerase was miR-512. It was found downregulated in ALT-  head and neck cancers, most likely due to degrading TERT (281). This suggests that ALT cancers require active repression of TERT, in this case via the miR-512. Altogether, the differential miRNAs found in my sequencing analysis tentatively show a role of these regulatory moieties in ALT. While experimental evidence is lacking, they may influence gene expression pathways that sustain ALT. One example could be to downregulate telomerase and, by doing so, induce ALT. Another would be to sustain cell proliferation by modulating HR proteins. As discussed in the sections above, some miRNAs regulate TF activity and expression and may explain how the specific TF families are induced or suppressed in ALT. 
	Transposable elements (TE) are viral remnants from ancient infections, and subtypes of TEs can still be transcribed into active proteins (282). This is exemplified by the long-interspersed element-1 (LINE-1) families, which can be retrotransposed and integrated into genes de novo (283). From an evolutionary perspective, LINE-1 has been central in forming pseudogenes by inserting and duplicating itself with functional genes (284), and in recent years LINE-1 expression has been identified as a hallmark of human cancers (283, 285). LINE-1 insertions within coding genes can disrupt gene expression or regulatory elements to stifle oncosuppressor expression further (260). A counterbalance to TEs are the piRNAs, which like miRNA, degrade transcripts that have sequence complementary. The piRNAs also induce epigenetic silencing of the active TE locus using DNA and histone methylation (286). In recent years it was also shown that piRNAs could mediate protein-coding gene expression either via mRNA degradation or by inducing epigenetic silencing (287-289). My genomic analysis found no differentially expressed TE families and a handful of piRNAs (see Results section 3.9). The first finding is surprising, as the additional genetic instability incurred by expressed TEs could theoretically further drive ALT. Additionally, the increased chromatin accessibility in ALT could also lead to TE expression. Three reasons for this are possible. (i) TEs are already transcriptionally silent due to piRNAs and other epigenetic repression mechanisms. (ii) The strategy for generating TE count tables requires further optimization. (iii) There are no differences in TE transcription between ALT+ and ALT- cell lines. 
	With respect to the first point, I found 14 differentially expressed piRNAs (Figure 19B), which would indicate that TEs are already being repressed. This is further supported by two upregulated genes involved in piRNA-mediated repression found when doing the TelNet overlap (Table 7), namely TDRD6 and TDRKH. These are Tudor domain-containing proteins, which are crucial in synthesizing piRNAs and repressing TEs (290). However, due to lacking target prediction databases, the targets for the differentially expressed piRNAs would have to be investigated. This can be addressed by downregulating piRNA expression or inducing TE expression. To address the second question, the TE computational analysis is performed either from individual transcripts (e.g., L1PB2_dup77), followed by the family (e.g., LINE-1), and then by the class (e.g., LINE). Individual transcripts are not well suited for assaying TE expression, as one TE transcript maps to many different individual transcripts (291). Therefore, the best practice in identifying TEs is to look at the family or class expression. To address the third question, there is also the chance that TEs are equally repressed in ALT-/ALT+ cell lines and that there is no ALT-specific mechanism by which TEs are derepressed. Although ChIP-seq or ATAC-seq would be employed to observe whether TE sites gain active genetic marks or chromatin accessibility, TEs are often found at so-called blacklisted sites (292), which are prone to artifacts when using sequencing methods that are based on chromatin shearing (ChIP-seq) or transposase (ATAC-seq). Regardless, it is interesting that the TEs and piRNAs are both equally present in the multi-omics ALT signature (Figure 27A). However, their contribution to the ALT-signature was minor, and altogether this would indicate that TE and piRNA expression are not good predictors of ALT. 
	Conclusion and Future Directions
	This thesis studied how specific transcription and epigenetic programs could translate into functional downstream effects crucial for ALT cancer cells, as summarized in the scheme depicted in Figure 34. The TF analysis by ATAC-seq and RNA-seq identified an increased activity of RUNX and AP-1 family members in ALT. AP-1 may be activated by inflammation, which in turn can drive RUNX activity (210, 244). Inflammation can also be the cause of immune-related TFs found in upregulated genes. Downregulated ATAC peaks are enriched in TF motifs from the SOX family, where one specific mode of repression may be the increase of miR-138/142, which modulates SOX4 activity (239). Additionally, downregulated genes are enriched in the EGR-1/2, c-Myc and Hic-1 TFs. The gene expression layer is upregulated by the immune TFs, and RUNX1 as evidenced from pathway analysis. The down- and upregulated genes then converge into developmental processes, as identified through GO-term analysis. Specific developmental pathways may also be upregulated due to hypomethylation and/or low H3K27me3. Additionally, the MOFA signatures relating to oxidative stress may explain the downregulated gene BRSK2 (252). The cellular protein assembly is negatively weighted, as is the negative regulation of neuron death. The latter signature may be related to neuronal signaling, which in turn is modulated by the developmental processes. Additionally, this layer contains miR-512, which can downregulate TERT expression (281). The functional downstream effects of the developmental processes can be connected to the top upregulated ALT genes PTN and INHBA. PTN has a role in angiogenesis, where it interacts with VEGF (271). As inferred from the pathway analysis, VEGF may induce signaling via neuropilin and semaphorin receptors to cause angiogenesis. INHBA, on the other hand, suppresses activin signaling and its downstream targets in gene expression (263). Lastly, the miR-708 upregulation might enhance proliferation of ALT cells (279). 
	Figure 34. Layers of chromatin regulation and gene expression involved in ALT. 
	In summary, the multi-omics analysis revealed novel ALT features, which can guide future research. One crucial question from this analysis is emerging: Does high ALT activity also elicits more inflammation, and is oxidative stress signaling involved in this process? Using ALT cancers with known C-circle levels and investigating the presence of 8-oxoguanine in chromatin could further our knowledge in this process. Additionally, performing proteomics or immune cytokine ELISA on these cancers would be beneficial in answering whether inflammation is induced by ALT. This could potentially result in ALT cancers with high activity being more susceptible to therapeutics targeting inflammation, such as drugs targeting immune checkpoints. Applying multi-omics ALT signatures as done here could be crucial in detecting the presence of ALT in tumor sequencing data, but this signature will have to be validated against primary tumor samples. This would have to be performed in tumors with known C-circle levels and ALT activity and then use the omics signature to predict TMM status. An omics-derived ALT signature would present a substantial advancement for predicting TMM status in a clinical context since telomere maintenance is a key cancer hallmark. 
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