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born in: Weingarten, Germany

Oral examination: 14.02.2022





Quantitative and Structural Description of

Molecular Crowding

Using In-Cell Cryo-Electron Tomography

Referees:

Prof. Dr. Michael Knop

Dr. Judith Zaugg





This project was conducted in the Structural and Computational Biology (SCB) unit

at the European Molecular Biology Laboratory (EMBL) Heidelberg from October

2017 to November 2021 supervised by Dr. Julia Mahamid.





Contents

1 Introduction 5

1.1 Cellular organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Molecular crowding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Sub-cellular organization into membrane-less compartments . . . . . . 8

1.4 Factors driving cellular phase separation . . . . . . . . . . . . . . . . 8

1.5 The physical phases of cellular condensates . . . . . . . . . . . . . . . 9

1.6 Investigating molecular architectures of cellular condensates . . . . . 10

1.7 Yeast as a model organism to study nutrient stress . . . . . . . . . . 11

1.8 Solidification of the yeast cytosol upon energy depletion . . . . . . . . 12

1.9 Nutrient-dependent condensation of metabolic enzymes . . . . . . . . 15

1.10 The role of type I fungal fatty acid synthase in yeast lipid metabolism 16

1.11 Nutritional stress affects translation and ribosome conformations . . . 18

1.12 Visualizing cellular landscapes by cryo-electron tomography . . . . . 20

1.13 The cryo-electron tomography workflow: advances and challenges . . 20

1.13.1 Cryo-sample preparation . . . . . . . . . . . . . . . . . . . . . 21

1.13.2 Cryo-correlative light microscopy . . . . . . . . . . . . . . . . 23

1.13.3 Cryo-FIB milling . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.13.4 Image formation in transmission electron microscopy . . . . . 26

1.13.5 Cryo-ET acquisition and tomogram reconstruction . . . . . . . 27

1.13.6 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.13.7 Subtomogram averaging . . . . . . . . . . . . . . . . . . . . . 30

2 Aim of this work 32

3 Materials 34

3.1 Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Compounds, buffers and media . . . . . . . . . . . . . . . . . . . . . 35

3.3 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Software and databases . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Methods 40

4.1 Yeast cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



CONTENTS

4.2 Nutritional and osmotic stress of yeast cells . . . . . . . . . . . . . . 40

4.3 Plunge freezing cells for cryo-ET . . . . . . . . . . . . . . . . . . . . . 40

4.4 Cryo-FIB milling of cellular samples . . . . . . . . . . . . . . . . . . . 41

4.5 Cryo-CLEM workflow for targeted FIB milling . . . . . . . . . . . . . 43

4.6 Cryo-FIB SEM volume imaging . . . . . . . . . . . . . . . . . . . . . 44

4.7 Cryo-ET data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Tomogram reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Tomogram segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Ribosome localization in yeast cryo-electron tomograms . . . . . . . . 48

4.11 FAS localization in yeast cryo-electron tomograms . . . . . . . . . . . 49

4.12 Calculation of cytosolic concentrations and volume occupancies . . . 50

4.13 Subtomogram analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.13.1 Data pre-processing and subtomogram reconstruction . . . . . 50

4.13.2 Subtomogram 3D alignments and classifications of ribosomes . 50

4.13.3 Subtomogram 3D alignments and classifications of FAS . . . . 51

4.14 Confocal light microscopy . . . . . . . . . . . . . . . . . . . . . . . . 52

4.14.1 Time-lapse experiments of FAS-mCherry in energy-depleted

and osmotically stressed yeast cells . . . . . . . . . . . . . . . 52

4.14.2 Distribution of FAS-mCherry and acidification in glucose-depleted

yeast cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.14.3 Acidification and membrane morphologies in yeast cells upon

nutrient stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 FRAP measurements of FAS-mCherry in yeast cells upon energy de-

pletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Results 59

5.1 Methods towards high-throughput in-cell cryo-ET . . . . . . . . . . . 59

5.1.1 Cryo-sample optimization . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Automation of focused-ion beam milling for multi-modal cryo-

electron tomography applications . . . . . . . . . . . . . . . . 60

5.1.3 Automated cryo-electron tomography acquisition . . . . . . . 75

5.1.4 CNN-based data mining enables objective and fast organelle

segmentation and particle localization . . . . . . . . . . . . . . 77

5.2 Nutrient-dependent reorganization of the yeast cytosol . . . . . . . . 108

2



CONTENTS

5.2.1 Cryo-electron tomography of the yeast cytosol in normal nu-

trient state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Nutritional stress induces changes in organelle morphologies

and lattice formation on S. pombe mitochondria surfaces . . . 111

5.2.3 Nutritional stress induces a variety of structured supramolec-

ular assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.4 FAS forms assemblies upon energy depletion in a species-

dependent manner . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Quantification of molecular concentrations hints at yeast species-

dependent changes in crowding upon energy depletion . . . . . . . . . 120

5.4 Nutrient-dependent structural variations of ribosomes . . . . . . . . . 126

5.5 Nutrient- and species-dependent structural differences of FAS . . . . 140

5.6 Dynamics of stress-induced reorganization of the yeast cytosol . . . . 145

5.6.1 The fatty acid synthase reveals species-dependent assembly

dynamics upon energy depletion . . . . . . . . . . . . . . . . . 145

5.6.2 Fatty acid synthase assembly formation is stress type-dependent149

5.6.3 Cytosolic acidification depends on the type of nutritional stress150

6 Discussion 152

6.1 Sample optimization for in-cell structural biology . . . . . . . . . . . 152

6.2 Establishment of high-throughput cryo-FIB milling workflows . . . . 153

6.3 Automated in-cell cryo-electron tomography acquisition . . . . . . . . 156

6.4 DeePiCt automates data mining to explore macromolecules in their

cellular context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Nutrient stress induces morphological changes of specific organelles

with implications for the metabolic state of yeast cells . . . . . . . . . 159

6.6 Cryo-ET unveils nutrient-dependent supramolecular assemblies in the

cytosol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 Cytosolic ribosome concentrations inform on global, species

-dependent changes in molecular crowding upon energy depletion . . 162

6.8 Energy-depleted yeast reveal non-translating stationary state

ribosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.9 Energy depletion-induced FAS assemblies are condensates with

species-dependent organization and structural variation . . . . . . . . 165

3



6.10 Deciphering the mechanisms driving liquid- to solid-like state

transition and cytosolic polymerization . . . . . . . . . . . . . . . . . 167

7 Conclusions 169

8 Contributions 171

9 Acknowledgements 172

10 Appendix 174

10.1 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2 List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11 References 186



CONTENTS

Summary

Living cells are densely populated with macromolecules (Fulton 1982). To under-

stand how proteins and nucleic acids dynamically inhabit and function in cellular

volumes, knowledge of molecular crowding is critical to appreciate their modes of

interactions and their spatio-temporal distributions. However, none of the existing

approaches to measure molecular crowding allow for label-free and spatially-resolved

analyses at the molecular scale. In this thesis, I quantitatively and structurally de-

scribed molecular crowding inside cells utilizing recent advances in cryo-electron

tomography (cryo-ET) (Koning et al. 2018, Schaffer et al. 2017, Turk and Baumeis-

ter 2020). Specifically, I investigated intracellular crowding in yeast cells under

varying nutritional conditions. As their cytosol undergoes a dramatic transition

from a liquid- to a solid-like state upon starvation (Joyner et al. 2016, Munder et

al. 2016), I mapped changes in local molecular concentrations of ribosomes and

fatty acid synthase (FAS) complexes, as well as structural rearrangements of these

macromolecules, and other meso-scale protein assemblies. For this purpose, I co-

developed methods for automated, high-throughput cryo-sample preparations, in

particular cryo-focused ion beam (FIB) milling, and automated data mining uti-

lizing deep-learning algorithms. These workflows allow for the analysis of large

datasets which take stochastic cell-to-cell variations into account and are also ap-

plicable to other cell types. The automated methods will increase throughput and

enable exploration of new biological questions in the long term.

In this thesis, I showed that energy-depletion leads to large-scale reorganization of

the wild-type yeast cytosol, including variations in particle distributions, confor-

mational changes of specific macromolecular species and the formation of various

higher-order assemblies. Determination of their structures provided novel insights

into local alterations of macromolecules within the cellular context under different

physiologically-relevant conditions. In particular, for both ribosomes and FAS dis-

tinct structural conformations were observed upon energy depletion which hint at

stationary states, possibly protecting these molecular machines during stress. Fu-

ture structural analysis of all visualized macromolecular assemblies in combination

with coarse-grain and molecular dynamics modeling, will ultimately enable a more

holistic understanding of cytosolic phase transitions at a molecular level.
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Zusammenfassung

Lebende Zellen sind dicht mit Makromolekülen gepackt (Fulton 1982). Um zu ver-

stehen, wie Proteine und Nukleinsäuren dynamisch zelluläre Räume einnehmen und

dort funktionieren, ist die Kenntnis der molekularen Verdrängung, auch molekula-

res ’Crowding’ genannt, entscheidend. Dies trägt zudem zum Verständnis über die

Art ihrer Interaktionen und über ihre räumlich-zeitliche Verteilung bei. Keiner der

bestehenden Ansätze zur Bestimmung von molekularem Crowding ermöglicht je-

doch räumlich aufgelöste Analysen auf molekularer Ebene ohne die Markierung von

bestimmten Makromolekülen. In der vorliegenden Arbeit habe ich das molekulare

Crowding innerhalb von Zellen quantitativ und strukturell beschrieben und dabei

die neuesten Fortschritte in der Kryo-Elektronentomographie genutzt (Koning et

al. 2018, Schaffer et al. 2017, Turk und Baumeister 2020). Konkret untersuchte ich

das intrazelluläre Crowding in Hefezellen unter verschiedenen Nährstoffbedingun-

gen. Da ihr Zytosol unter Hungerbedinungen eine drastische Transformation von

einem flüssigen in einen feststoffähnlichen Zustand erfährt (Joyner et al. 2016, Mun-

der et al. 2016), bestimmte ich die lokalen Molekülkonzentrationen von Ribosomen

und Fettsäure-Synthasen (FAS) sowie die strukturelle Neuordnung dieser Makromo-

leküle und anderer Proteinansammlungen. Zu diesem Zweck habe ich Methoden für

die automatisierte Kryoprobenbereitung mit hohem Durchsatz mitentwickelt, insbe-

sondere die mikrotechnische Bearbeitung von Zellen mit einem fokussierten Ionen-

strahl, sowie die automatisierte Datenprozessierung, die Deep-Learning-Algorithmen

verwendet. Diese Arbeitsabläufe ermöglichen die Analyse großer Datensätze unter

Berücksichtigung stochastischer Variationen zwischen individuellen Zellen und sind

auch auf andere Zelltypen anwendbar. Die automatisierten Methoden werden die

Verarbeitungsmenge erhöhen und langfristig die Erforschung neuer biologischer Fra-

gen, die über den Rahmen der vorliegenden Arbeit hinausgehen, ermöglichen.

In dieser Arbeit habe ich gezeigt, dass Energieentzug zu einer groß angelegten Reor-

ganisation des Zytosols wildtypischer Hefen führt. Dies umfasst Variationen in der

Partikelverteilung, Konformationsänderungen spezifischer makromolekularer Spezi-

es und der Bildung verschiedener Proteinzusammenlagerungen von höherer Ord-

nung. Die Charakterisierung ihrer Strukturen ermöglichte neue Einblicke in lokale

Veränderungen von Makromolekülen im zellulären Kontext unter verschiedenen phy-

siologisch relevanten Bedingungen. Insbesondere wurden sowohl für Ribosomen als
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auch für FAS unterschiedliche strukturelle Konformationen bei Energieentzug be-

obachtet, die auf stationäre Zustände hindeuten, um diese molekularen Maschinen

möglicherweise bei Stress zu schützen. Zukünftige Strukturanalysen aller visuali-

sierten makromolekularen Ansammlungen in Kombination mit Grobkornmodellie-

rung und der Verwendung von Molekulardynamikmodellen werden letztlich zu einem

ganzheitlicheren Verständnis der Phasenübergänge im Zytosol auf molekularer Ebe-

ne beitragen.
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1 INTRODUCTION

1 Introduction

1.1 Cellular organization

The basic unit of life is a cell (Mazzarello 1999). The essential characteristic of this

entity is its physical separation from the environment by a membrane that confines

biomolecules in a dedicated space. Consequently, a cell concentrates molecules and

establishes intricate conditions for biochemical reactions. However, the ubiquitously

crowded interior of cells is much more complex than a random turmoil of molecules.

In order to fulfill a plethora of functions the molecules of life: proteins, nucleic acids,

metabolites and lipids, are highly organized in space and time. This self-organization

establishes coherent macromolecular architectures within whole cells (Figure 1 A).

The complex cellular interior is built up by smaller units or compartments which

are ubiquitous. They are established on the micron scale of membrane-bound or

membrane-less organelles, meso-scale assemblies such as cytoskeletal filaments or

even on the nanometer scale of protein complexes such as the proteasome with

specialized reaction chambers (Erdmann et al. 2018, Harold 2005). These unique

cellular structures are highly modular to enable dynamic processes from very ba-

sic reactions to complex pathways. The resulting intricate, local environments are

required for replication and growth and thus make the innumerable forms of life

possible.

The organizational concept of modularity which has been described in many scien-

tific fields (Callebaut 2005), is already apparent at the level of proteins. They are

constituted by domains, interact with different factors and substrates, and assemble

into larger multi-enzyme complexes or polymers. However, protein functions arise

not only from their structures and the connected enzymatic activities but are also

determined by their localization in the cell and the interactions with neighboring

biomolecules (Gavin et al. 2006, Huh et al. 2003). Proteins indeed have large inter-

action networks that cover transient or more persistent encounters. The underlying

interactions are determined by the protein’s surface characteristics and are either

functional, often via high affinity binding, or compete with promiscuous non-specific

protein-protein interactions (Levy et al. 2012). This “molecular sociology” (Beck

and Baumeister 2016) of either intentional or random encounters depends on both
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protein abundance and distribution. For example, a single yeast cell is predicted

to have around 5,000 protein-coding genes with a total of around 5-6 * 10 7 pro-

tein molecules per cell (Carpy et al. 2014, Futcher et al. 1999, Marguerat et al.

2012). The levels of the expressed, individual proteins vary between 1.1 * 10 6 to

less than 100 copies per cell (Carpy et al. 2014, Ho et al. 2018, Marguerat et

al. 2012). In general, protein concentrations are regulated to meet the functional

demands and usually change during the cell cycle, but not during growth, which

indicates that protein abundances are scaled with growing cell sizes (Campbell et

al. 2020, Marguerat et al. 2012). The question on how individual proteins meet

and how protein interaction networks are orchestrated on a whole cell level is highly

dependent on protein localization (Levy et al. 2014). Molecular crowding describes

these variations in local macromolecule concentrations and how they affect their

surrounding cellular environment. A quantitative and structural understanding of

this phenomenon will thus provide a more holistic view of cellular organization.

Figure 1: The interior of living cells is ubiquitously crowded. A) Macromolecules with

varying sizes and shapes such as dynamic microtubules (bright blue, fountain-like filament), ribo-

somes (dark blue) which actively translate nascent peptide chains (pink), actin filaments (bright

blue filaments with a twist) and many other macromolecules (green) occupy cytosolic space. Il-

lustration by David S. Goodsell (Goodsell 2005). B) Depending on the size, molecules exclude a

certain amount of volume. Small particles can freely diffuse while larger molecules are limited due

to steric repulsion.

1.2 Molecular crowding

Molecular crowding describes the phenomenon that macromolecules occupy and thus

exclude a significant fraction (5-40 %) of the cellular volume (Ellis and Minton 2003,

Fulton 1982). In fact, the total weight per volume concentrations of all proteins and

6
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RNA molecules inside a cell range from 80 g/L to over 400 g/L (Fulton 1982, McGuf-

fee and Elcock 2010, Sharp 2015, Zimmerman and Trach 1991). In extreme cases,

such as yeast spores, the cellular mass density can reach 1 kg/L (Jiang et al. 2010).

Thereby, different numbers, sizes and shapes of macromolecules encounter each other

and generate varying local crowding, contributing to unique environments for bio-

chemical processes. Variations in local crowding can affect many physicochemical

equilibria and protein properties such as diffusion, viscosity, conformational states,

association, protein folding, (self-) oligomerization and aggregation, as well as the

efficiency of molecular chaperones and enzymes (Boersma et al. 2015, Ellis 2001,

Garenne et al. 2020, Kuznetsova et al. 2014, Kuznetsova et al. 2015, Levy et al.

2012, McGuffee and Elcock 2010, Mourao et al. 2014). These alterations can be

caused by non-specific steric repulsion between macromolecules competing for phys-

ical space, which is further influenced by cellular compartmentalization, and leads

to an entropic effect of volume exclusion. As a consequence, less solvent is acces-

sible to macromolecules which can in turn favor non-specific or weak interactions

and change their effective concentrations (Figure 1 B). In addition, altered protein

hydration shells can have severe effects on structure, conformation, stability and

activity (Ebbinghaus et al. 2007, Pocker 2000). The solubility is further affected by

salt and metabolite concentrations which also add to local crowding (Madeira et al.

2012, Sharp 2015, Theilet et al. 2017, Theillet et al. 2014).

In vitro studies of individual proteins in solution are not ideal to investigate molec-

ular crowding, as they do not represent accurately the crowded intracellular milieu.

Therefore, in vivo experimental systems have been developed to analyze the be-

havior of tracer molecules inside living cells or measure intracellular mass density

(Abuhattum et al. 2018, Boersma et al. 2015, Joyner et al. 2016, Miyagi et al.

2021, Munder et al. 2016, Smith et al. 2016). However, studying the effects of

crowding with a single, labeled protein species can potentially perturb cellular func-

tions, or produce diffusion rates that are relevant only for the specific size of the

analyzed particle. These methods also have limited spatial resolution and thus do

not describe in detail the heterogeneous distribution of molecules in a cell.

Thus, in silico computational modelling has been employed to gain insights on

molecular crowding. Molecular dynamics simulations of atomistic models repre-

senting the cytosol with macromolecules, metabolites, ions and water, have been

7
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conducted to connect molecular with cellular behavior (Feig et al. 2017, Yu et al.

2016). However, they are still limited by a lack of experimental data, especially in

the case of eukaryotic cells, to describe the cellular heterogeneity and complexity in

molecular detail. Thus, the ultimate goal is to generate realistic cell models by inte-

grating data across scales from different imaging modalities in order to understand

how subcellular organization creates various crowded environments with particular

functions.

1.3 Sub-cellular organization into membrane-less compartments

As described above, cells need to organize and compartmentalize their interior in or-

der to control or regulate biochemical reactions in the crowded cellular environment.

Complementing the classical view of cellular organization into membrane-bound or-

ganelles and deterministic assembly of molecules into structured complexes, a new

concept of membrane-less compartments has emerged in the last decade (Banani et

al. 2017, Hyman et al. 2014, Shin and Brangwynne 2017, Walter and Brooks 1995).

The formation of these biomolecular condensates is suggested to be driven by the

regulated process termed liquid-liquid phase separation (LLPS), a well-known con-

cept from the field of physical chemistry. When macromolecules reach their solubility

limit, they can phase separate into a dense phase, co-existing with the more dilute

cytosol (Hyman et al. 2014, Shin and Brangwynne 2017). Phase separation thus

organizes molecules in space and time in a dynamic and concentration-dependent

manner without the need of sealed compartments which require dedicated trans-

porters for exchange with the surrounding environment.

1.4 Factors driving cellular phase separation

Phase-separated compartments are constituted by many components. The fine in-

terplay of their constituents influences their assembly and biophysical state (Banani

et al. 2016, Guillen-Boixet et al. 2020). Molecular characteristics driving LLPS

are intrinsically disordered protein domains (IDRs), low-complexity sequences and

interactions between multivalent, globular domains (Banani et al. 2017). Factors

affecting condensation include local macromolecular concentrations, pH, salt, os-

molytes and metabolites, and post-translational modifications (PTMs). These have

mainly been investigated by in vitro studies or modeled computationally while some

factors have also been shown to drive phase separation in vivo (Franzmann et al.

8
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2018, Hofweber and Dormann 2019, Nott et al. 2015, Von Bulow et al. 2019).

Especially, crowding can increase local molecular concentrations, which may favor

the formation of weak, multivalent interactions between molecules, ultimately driv-

ing phase separation (Alberti 2017, Hyman et al. 2014, Woodruff et al. 2017).

The growing awareness of subcellular organization in non-membrane-bound com-

partments and the considerable influence of molecular crowding on their formation

by phase separation demonstrated in vitro (Banani et al. 2017, Hyman et al. 2014,

Walter and Brooks 1995) highlight the relevance to quantitatively characterize this

fundamental cellular phenomenon.

1.5 The physical phases of cellular condensates

Inside cells, biomolecular condensates constituting various physical states have been

described on the micron scale (Alberti and Dormann 2019). Their biophysical prop-

erties vary from true liquid, liquid-, gel-, or glass-like, and even solid states. A bona

fide liquid phase is defined by fast dynamics of freely diffusing, soluble molecules

with weak and transient interactions and no memory of the previous configuration.

Phase transitions towards more rigid states show decreasing mobility of their com-

ponents and increasing strength of the interaction networks. This process can be

highly dynamic and functional in order to meet cellular demands. For example, the

pericentriolar matrix (PCM) seems to change its physical phase during cell cycle. It

first forms liquid-like assemblies that grow at the onset of mitosis and transition into

a gel-like scaffold which can counteract microtubule pulling forces in metaphase. A

subsequent brittle state during anaphase has been observed which is followed by

disassembly of the PCM (Mittasch et al. 2020, Raff 2019, Woodruff et al. 2017).

Other cellular phases are purely solid with positional order and long-range inter-

actions. In a functional form they represent for example highly structured, in-vivo

grown protein crystals. D. punctate embryos contain a crystalline compartment con-

stituted by glycosylated milk proteins that bind lipids. Thereby, nutrients are stored

in a more concentrated way than it would be possible in a liquid phase (Banerjee

et al. 2016, Mudogo et al. 2020). However, when phase separation is not regulated

tightly, it can lead to thermodynamically stable, solid states in the form of aggre-

gates or amyloid structures which are often connected to neurodegenerative diseases

(Alberti and Dormann 2019, Guo et al. 2018, Patel et al. 2015). This irreversible
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phase transition is driven by hydrophobic interactions of unfolded proteins or IDRs

and can be enhanced by mutations or specific PTMs. For some proteins, in vitro

experiments have shown that liquid droplets can age and solidify over time (Franz-

mann et al. 2018, Murakami et al. 2015, Patel et al. 2015). In order to prevent

aberrant phase transitions in vivo, adenosine tri-phosphate (ATP)-dependent chap-

erones are employed to preserve the liquid state. Their mode of action involves the

stabilization of proteins in an unfolded but refolding-competent state, as they are

otherwise prone to misfolding and aggregation. For instance, HSP70, HSP27 and

HSPB8 chaperone phase-separating proteins, such as TDP-43 and FUS (Boczek et

al 2021, Mateju et al 2017, Yu et al 2021). Physical phases thus need to be actively

controlled inside cells, where energy is consumed to preserve the metastable, liquid

state of biomolecular condensates (Alberti 2017, Alberti et al. 2019, Brangwynne

et al. 2015).

1.6 Investigating molecular architectures of cellular condensates

On the structural level, the variety of molecular architectures constituting cellu-

lar condensates is remarkable. As these assemblies are highly sensitive to their

physicochemical environment, in-cell methods, in particular cryo-electron tomogra-

phy (cryo-ET) and cross-linking mass spectrometry (CL-MS), are required to probe

their protein interaction networks and molecular architectures, as well as potential

formation mechanisms (Zhang and Mahamid 2020). In combination with light mi-

croscopy experiments, these methods have revealed that liquid cellular condensates

show a spectrum of structural organization. From highly ordered, liquid crystals to

structured complexes with disordered linkers, such as the Rubisco complex in the

C. reinhardtii pyrenoid, and even functional amorphous condensates like the Ede1-

containing autophagy compartments in yeast (Rosenzweig et al. 2017, Tarafder et

al. 2020, Wilfling et al. 2020). This wide range of un-/structured constituents

of cellular phases also hints at complex assembly scenarios (Goetz and Mahamid

2020). In the material sciences the classical concept of crystal growth via monomer

addition has been challenged by observations of crystal formation via amorphous,

metastable phases observed for biological mineralization (Addadi et al. 2003, De

Yoreo et al. 2015). Multiple pathways are therefore also conceivable for the phase

separation processes of cellular condensates, especially the ones displaying struc-

tured organization. Folded globular proteins can condense into clusters and form
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colloid solutions while they can also oligomerize in a repetitive manner to establish

biological polymers, such as cytoskeletal filaments. In addition, the specific (phys-

iological) conditions and cellular cues that induce the transition from one physical

state to another remain to be exlored. For example, environmental stresses such

as nutrient scarcity can cause biomolecular condensation and change the overall

biophysical properties of a cell. Such strains can interfere with the underlying, del-

icate cellular architectures leading to rearrangements of meso-scale macromolecular

assemblies and conformational changes of the sub-nanometer protein structures.

1.7 Yeast as a model organism to study nutrient stress

Yeast is a well-established model system for molecular biology and the investigation

of conserved protein machineries in eukaryotes. It has been employed to study LLPS

by light microscopy in the context of many cellular processes in vivo (Franzmann

et al. 2018, Fuller et al. 2020, Noda et al. 2020, Oshidari et al. 2020, Wheeler

et al. 2016). Yeast is easy to manipulate, has short reproduction times, and, due

to its small size, it can provide information on the level of individual cells and

whole populations by light microscopy techniques. The two yeast species Saccha-

romyces cerevisiae (S. cerevisiae, budding yeast) and Schizosaccharomyces pombe

(S. pombe, fission yeast) separated around 1.1 million years ago and, like other bio-

logical systems, have evolved to dynamically cope with and adapt on many levels to

environmental fluctuations, harsh conditions and perturbations in order to survive

(De Virgilio 2012, Lennon and Jones 2011, Toone and Jones 2004). Yeast cells can

adjust their metabolism, growth rates and change their morphologies upon external

strains such as heat shock (De Virgilio et al. 1990, Meaden et al. 1999), osmotic and

oxidative stresses (Hohmann 2002, Jamieson 1998). Moreover, they transition into

dormancy upon nutrient scarcity. This dormant state is reversible and characterized

by low metabolic activity upon starvation conditions. The starved state depends on

the type of nutrient limitation (Klosinska et al. 2011, Winderickx et al. 2003). For

instance, the whole proteome can change tremendously upon challenging nutrient

conditions in both S. pombe and S. cerevisiae (Marguerat et al. 2012, Murphy et

al. 2015).

In particular, in S. cerevisiae glucose depletion induces a reduction in transcrip-

tion and mRNA degradation (Jona et al. 2000), inhibition of translation (Ashe
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et al. 2000, Castelli et al. 2011) as well as alteration of autophagy (Lang et al.

2014, Mejlvang et al. 2018, Weber et al. 2020). Metabolites, including ATP, are

rapidly depleted within 1 h of glucose starvation (Weber et al. 2020). In this low

energy state, endogenous components are subjected to vacuolar hydrolysis and beta-

oxidation in order to provide energy for a minimal set of metabolic actions required

for survival. Thereby plasma membranes are internalized to catabolize membrane

proteins and lipids. In addition, lipases hydrolyze triacyl glycerides (TAGs) in lipid

droplets (LDs) to free fatty acids for beta-oxidation at the inner mitochondrial mem-

brane (Weber et al. 2020). This can also be observed on a structural level at the

LD’s periphery where crystalline layers of sterol esters form upon glucose restriction

(Rogers et al. 2021).

Nutrient scarcity also changes organelle morphologies in yeast. Mitochondria fission

into smaller, spherical compartments upon glucose starvation in S. pombe and S.

cerevisiae (Bagamery et al. 2020, Liu et al. 2019, Zheng et al. 2019). Furthermore,

S. cerevisiae vacuoles fuse and swell upon glucose depletion similarly to what has

been observed under hypo-osmotic stress (Li and Kane 2009). S. pombe vacuoles are

small and spherical under ideal growth conditions. Upon hypo-osmotic stress they

rapidly fuse occupying more space to keep the cytosol isotonic (Bone et al. 1998).

1.8 Solidification of the yeast cytosol upon energy depletion

One strategy of unicellular organisms to promote survival of unfavorable conditions

is the adjustment of the physical properties of the cytosol, for example in the form

of spores or seeds (Lennon and Jones 2011). A particularly striking example of

phase transition inside cells is the solidification of the yeast cytosol induced by en-

ergy depletion (ED) (Joyner et al. 2016, Munder et al. 2016). Under experimental

conditions, ED is achieved through inhibition of glycolysis with the glucose analog

2-Deoxyglucose (2-DG) and suppression of ATP production in the respiratory chain

with Antimycin A. This leads to a reduction of cellular ATP levels below 1 % (Ser-

rano 1977, Takaine et al. 2019). Yeast cells likely encounter similarly challenging

environments in their natural habitats (De Virgilio 2012). Energy depletion affects

yeast cells in several ways. It leads to cytosolic acidification measured by endoge-

nously expressed, pH-sensitive, fluorescent proteins (Joyner et al. 2016, Munder et

al. 2016). ED also induces a reduction in cell volume of around 7 % and decreases
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the mobility of organelles, endogenous macromolecules and foreign tracers probed by

single particle tracking of fluorescent fusion proteins (Joyner et al. 2016, Munder et

al. 2016) (Figure 2). In addition, the formation of supramolecular protein assemblies

was observed upon ED and visualized using fluorescence light microscopy and room

temperature electron tomography (Munder et al. 2016, Marini et al. 2020). The

reduced particle dynamics suggested a transition from a liquid to a solid-like state

with increased mechanical stability. This was further investigated by spheroblasting

experiments, which revealed no deformation of energy-depleted cells upon enzymatic

cell wall removal. In comparison, this treatment relaxes cells into spherical shapes

under control conditions. Atomic force microscopy measurements of spheroblasted

cells also confirmed increased stiffness (Joyner et al. 2016, Munder et al. 2016).

The question on how the previously described solidification is established upon ED

remains elusive. The gain in mechanical stability was suggested to be caused by

either a general increase in molecular crowding or to be constituted by the self-

assembly of proteins into dense compartments that collectively establish solid-like

physical properties (Joyner et al. 2016). For S. pombe an overall increase in mass

density has been observed by optical diffraction tomography upon lowering intra-

cellular pH, which was employed to mimic energy depletion conditions (Abuhattum

et al. 2018). Upon ATP depletion increased cytosolic viscosity was described by

fluorescence recovery after photobleaching (FRAP) experiments and suggested to

be caused by glycogen and trehalose production which adds to cellular crowding

(Persson et al. 2020). Furthermore, metabolomics experiments revealed that within

1 h of glucose depletion, proteasomal degradation does not play a role in ATP gen-

eration and that autophagy processes only start to contribute cellular ATP after

several hours of nutritional stress (Weber et al. 2020, Adachi et al. 2017). This

suggests that within 1 h of ED, protein abundances stay the same but a spatial re-

organization of the proteome is taking place. These observations together with the

described energy depletion-induced reduction in cell size, suggest a general increase

in molecular crowding which potentially drives the liquid-to-solid phase transition.

It may also influence local phase-separation behavior and likely influences biomolec-

ular condensation.

Aside from the influence of molecular crowding on the cytosolic properties, the de-

crease in ATP levels upon ED might also contribute to solidification by driving
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self-assembly of proteins into condensed phases. It has been shows that ATP func-

tions not only as a provider of energy, but it also acts at millimolar concentrations

as a biological hydrotrop (Patel et al. 2017, Traut 1994). Under normal nutrient

conditions the cellular concentration of ATP is around 2 mM (Koc et al. 2004),

keeping protein solutions soluble, while a decrease in ATP levels reduces their solu-

bility.

Furthermore, the cytosolic pH of around 7.4 in normal nutrient conditions (Joyner et

al. 2016) is rapidly and reversibly regulated by the glucose metabolism, in particular

by the vacuolar ATPase. This proton pump requires energy to maintain the acidic

milieu inside vacuoles (Dechant et al 2010). Thus, cytosolic acidification, which was

documented to accompany energy depletion in yeast (Joyner et al. 2016, Munder et

al. 2016), is likely caused by the inactivity of the vacuolar ATPase. The observed

drop in cytosolic pH can change protein surface charges and thereby might also be

a driver of biomolecular condensation or oligomerization in concert with increased

local molecular crowding (Munder et al 2016, Petrovska et al 2014).

Figure 2: Adaptation of yeast cells to nutrient conditions. The schematic illustrates

how energy depletion induces a decrease in cell volume, changes in organelle morphologies and

condensation of smaller particles. This cytosolic reorganization is reversible once nutrients are

supplied. Figure inspired by Marini et al. 2020.
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1.9 Nutrient-dependent condensation of metabolic enzymes

In yeast, a surprising number of proteins involved in metabolism and stress response

form cytosolic foci displaying assembly and dissolution based on nutrient-specific

availability (Franzmann et al. 2018, Narayanaswamy et al. 2009, Noree et al. 2019a,

Noree et al. 2010b, Park and Horton 2019, Prouteau and Loewith 2018, Stoddard et

al. 2020). Indeed, protein sequences have evolved very close to protein self-assembly

in E. coli. This was shown by single point mutations that can lead to polymerization

in vivo via heterologous expression in yeast (Garcia-Seisdedos et al. 2017). Thus,

it is not surprising that upon unpredictable environmental conditions such as nutri-

ent stress, several metabolic enzymes also have been shown to form highly-ordered

filaments with varying molecular organization (Park and Horton 2019, Prouteau

and Loewith 2018). For instance, upon nutrient scarcity in S. cerevisiae the as-

paragine synthetase paralogs Asn1p and Asn2p co-assemble into a common filament

(Noree et al. 2010a, Noree et al. 2019b) and the acetyl-CoA carboxylase forms

large self-assemblies (Shen et al. 2016). Other yeast proteins that polymerize upon

nutritional stress are septins in S. pombe (Heimlicher et al. 2019, Liu et al. 2019)

and the eukaryotic translation initiation factor 2B (eIF2B) in S. cerevisiae which

forms filaments upon energy depletion, protecting it from degradation and indirectly

inhibiting translation (Marini et al. 2020). Upon cytosolic acidification, which is

inducible via glucose starvation, proteins such as the glutaminase 1 (Gln1 (Petro-

vska et al. 2014)) form filaments. In comparison, enzyme filamentation can also be

induced by metabolites. In S. cerevisiae the actin-fold protein glucokinase 1 (Glk1)

polymerizes at high cellular concentrations upon glucose addition. In the formed

filaments, Glk1 gets trapped in a closed, ligand-bound conformation which is not ac-

tive and prevents ATP-dependent sugar phosphorylation. Here, filament formation

is a regulatory mechanism which counteracts a toxic imbalance between the early

steps of glycolysis which consume ATP and the subsequent steps which produce it

(Stoddard et al. 2020).

In all these cases, oligomerization is reversible upon stress relieve. Filamentation is

suggested to be a general mechanism in order to control enzyme activity and cellular

homeostasis upon environmental strains. Polymerization of folded, inactive proteins

protects and stores them in their functional conformations and allows rapid re-entry

into an active state once stress is relieved. However, the described filaments have
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so far mainly been studied in labeled or mutated, over-expressed systems and their

structures determined in isolation. It remains to be explored whether they also poly-

merize under more native conditions and what the underlying filament formation

processes are. Future in-cell structural biology studies may decipher whether they

entail classical growth by monomer addition, liquid demixing, a transition via inter-

mediate physical phases such as an amorphous state, or other types of coacervation

(Goetz and Mahamid 2020).

1.10 The role of type I fungal fatty acid synthase in yeast lipid metabolism

Lipid biosynthesis is essential for the metabolic state of a cell. The fungal type I fatty

acid synthase (FAS) is a crucial protein complex in the lipid metabolism of yeast.

It catalyzes the formation of long-chain fatty acids which are important building

blocks for membranes, energy storage in the form of TAGs in LDs or precursors of

second messenger molecules (Johansson et al. 2009). Due to its particular structural

signature and thermal stability, FAS has been employed early for structural studies

using negative-staining EM and X-ray crystallography (Lynen 1980, Oesterhelt et

al. 1969, Stoops et al. 1992). This 2.6 megadalton multienzyme complex exhibits

a D3-symmetric barrel-shaped architecture with two half domes and a central al-

pha helical wheel (Figure 3). Both alpha wheel and half dome are comprised of

each six FAS1/β and FAS2/α subunits. One half dome contains six catalytic sites

between which substrate and intermediates are shuttled by the dynamic acyl car-

rier protein (ACP). Three ACPs are confined to each half dome, establishing close

local proximity between the catalytic sites and this substrate shuttling domain to

facilitate efficient catalysis of fatty acid elongation. Upon activation of the ACP

via attachment of a phosphopantetheine moiety via the phosphopantetheine trans-

ferase (PPT), fatty acid synthesis is initialized by transferring the acetyl group of

the substrate acetyl-CoA on to the ACP. For the production of C16-C18 saturated

fatty acids, the primed ACP then moves the substrate in the following sequence to

the malonyl/palmitoyl transferase (MPT), the ketoacyl synthase (KS), the ketoacyl

reductase (KR), the dehydratase (DH), and the enoyl reductase (ENR) (Johansson

et al. 2009, Makarova et al. 2020).
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Figure 3: The yeast fatty acid synthase complex. A) Electron micrograph of negatively

stained FAS (Lynen 1980). B) 2D slice through a cryo-electron tomogram of the S. pombe cytosol,

acquired for the present work, depicting the barrel-shaped FAS in its native cellular environment.

C) Single-particle cryo-EM reconstruction of S. cerevisiae FAS (Joppe et al. 2020) with two

individual FAS1/β and FAS2/α subunits represented as molecular surfaces in petrol and orange,

respectively. D) Domain organization of the two FAS subunits adapted from (Johansson et al.

2009, Johansson et al. 2008).

The localization of the ACPs is suggested to be linked to the activity of the whole

multi-enzyme complex and to be species-dependent. Lack of electron density for the

ACP in an X-ray crystal structure has been explained by its dynamics (Jenni et al.

2007), specific localizations have been connected to stalled states where substrate

was missing in the sample preparations (Leibundgut et al. 2007) or the inhibitor

cerulenin was added (Gipson et al. 2010). Recently, the γ subunit was discov-

ered and revealed varying ACP localizations and two distinct rotational states of

FAS in dependence of NADPH concentrations (Singh et al. 2020). Also, species-

dependent differences in ACP localization have been observed. For example, in C.

thermophilium (Kastritis et al. 2017) it is in close vicinity to the catalytic ENR

domain or in T. lanuginosus the ACP was not observed and thus was suggested to

be disordered (Jenni et al. 2007).

Under normal nutrient conditions FAS is evenly distributed within the yeast cytosol

but has been shown to condense into distinct foci upon four days of glucose starvation
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in S. cerevisiae (Suresh et al. 2015). The complex has been confirmed to be still

functional but its activity state, as well as structural integrity and arrangement

within the condensates, remained elusive. As the polymerization of several metabolic

enzymes has been connected to specific functions, in addition to their storage and

protection, FAS foci might also display an additional stress-induced purpose.

1.11 Nutritional stress affects translation and ribosome conformations

Ribosomal translation is a crucial step in eukaryotic protein biosynthesis. The ri-

bosome, a large RNA-protein complex decodes mRNA coupled to peptide bond

formation. It is constituted by two subunits: the small 40S and the large 60S sub-

unit (Figure 4). Yeast cells are highly crowded with ribosomes that occupy around

20 % of the cytosolic volume and thereby affect the effective concentrations of other

biomolecules in a size-dependent manner. In order to estimate nutrient-dependent

changes in crowding on a molecular level, cytosolic ribosome concentrations can be

used as an approximation (Delarue et al. 2018). Furthermore, ribosomes consume

large amounts of resources to produce proteins for cellular homeostasis, proliferation

and growth. Several ribosomes can assemble on and translate the same mRNA and

thereby organize into higher-order structures, called polysomes (Figure 4 D, (Afon-

ina et al. 2014, Afonina et al. 2015, Zhou et al. 2020)). The intricate interplay

between ribosomal RNA (rRNA), ribosomal proteins, mRNA and tRNAs, as well

as auxiliary translation factors, tightly regulates each step of the translation cycle

which is the most energy consuming cellular process (Lindqvist et al. 2018). Pro-

tein synthesis requires energy in form of ATP for initiation and elongation (around

20 % of cellular levels (Buttgereit and Brand 1995)), and GTP for termination (Lei-

bovitch and Topisirovic 2018). It is therefore tightly connected to the metabolic

state of a cell, where nutrient limitation can lead to reversible translation shutdown.

Upon glucose starvation, polysomes have been shown to disassemble and translation

was reduced in S. cerevisiae (Ashe et al. 2000, Brengues et al. 2005). However,

partial recovery has been observed after 60 min of glucose withdrawal suggesting

an upregulated translation of proteins crucial for starvation adaptation (Arribere et

al. 2011). Polysome profiling experiments have also revealed polysome disassem-

bly and downregulation of translation within 10 min of energy depletion (Nuske et

al. 2020). Translation termination under normal growth conditions results in sub-

unit dissociation by the termination factor Dom34, Hsp70 subfamily B suppressor
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1 (Hbs1) and the ATP-dependent factor RNase L inhibitor 1 (Rli 1, corresponding

to human ABCE1 (Heuer et al. 2017, Van den Elzen et al. 2014)). However, the

ribosomal subunits can also associate in a hibernating state in a nutrient-limiting

environment. In this stationary state, fully assembled S. cerevisiae 80S ribosomes

have a vacant peptidyl transferase center (PTC) lacking tRNAs. It can be protected

by different factors such as Stm1 and Lso2 (Van den Elzen et al. 2014, Wells et al.

2020). The latter is suggested to promote a recycling-competent state for rapid

translation re-activation upon nutrient supply.

Figure 4: The S. cerevisiae ribososome. A) 2D slice through a cryo-electron tomogram

of the S. cerevisiae cytosol. Dark globular structures are ribosomes (some highlighted by white

arrowheads). B) 2D slice through the published ribosome subtomogram average of S. cerevisiae

(EMDB 4372 (Delarue et al. 2018)). C) 3D visualization of the S. cerevisiae ribosome depicted in

B. The peptidyl transferase center (PTC) between the small subunit (SSU, yellow) and the large

subunit (LSU, cyan) contains a P-site tRNA. D) Polysome arrangement of HeLa cell ribosomes on

a single mRNA (green) adapted from Mahamid et al. 2016.

Structural studies can thus provide valuable information on the functional state of

ribosomes under stress conditions in the context of this thesis. The S. cerevisiae

80S ribosome has been heavily studied by various structural biology techniques.

Furthermore, a cryo-ET study has revealed an in-cell ribosome subtomogram aver-

age, giving insights on structural configurations in the functional, cellular context

of normal nutrient state S. cerevisiae (Delarue et al. 2018). To date, there is no
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S. pombe 80S ribosome structure available. The nutrient-dependent structures of S.

cerevisiae and S. pombe ribosomes thus still need to be explored, especially in their

native environments.

1.12 Visualizing cellular landscapes by cryo-electron tomography

Cryo-electron tomography (cryo-ET) unravels crowded molecular landscapes inside

cells (Danev et al. 2014, Pfeffer and Mahamid 2018). The power of such in-cell

studies is that they image cellular volumes with the structures preserved in a close-

to-native, vitrified state. Thus, cryo-ET provides snapshots of not only specific but

all nanoscale macromolecular assemblies in their micron scale pleomorphic habitats

(Beck and Baumeister 2016, Mahamid et al. 2016). Unlike other structural biology

methods, molecules are not studied in isolation but they are imaged in their func-

tional context capturing even weak or transient interactions and thus providing a

more holistic view of the cellular interior. Cryo-ET is a label-free method and can

be applied to a large variety of cells, both prokaryotes and eukaryotes. Pioneering

cryo-ET studies have visualize liquid-like condensates starting to give unprecedented

insights on their underlying architectures exhibiting molecular organization on a

spectrum from disordered, amorphous states to highly structured component and

even crystalline arrangements (Albert et al. 2020, Bauerlein et al. 2017, Dahlberg

et al. 2020, Gruber et al. 2018, Lasker et al. 2020, Rosenzweig et al. 2017, Tarafder

et al. 2020, Wilfling et al. 2020, Yasuda et al. 2020, Yu et al. 2021). Recent ad-

vances in cryo-ET enable the 3D reconstruction of highly abundant macromolecules

at sub-nanometer resolution, while at the same time obtaining information about

their local distribution and interaction partners inside a cell (O’Reilly et al. 2020,

Tegunov et al. 2021). Cryo-ET can thus provide quantitative structural and spatial

details on molecular crowding of large complexes with unique structural signatures

inside cells (Delarue et al. 2018).

1.13 The cryo-electron tomography workflow: advances and challenges

In order to visualize macromolecules by in-cell cryo-ET, samples have to be vitrified

to preserve their delicate cellular structures, cryo-light microscopy performed for

targeted specimen preparations or imaging, and samples thinned via cryo-focused

ion beam (FIB) milling to render them electron-transparent. The generated cellular

slices, called lamellae, are subsequently imaged in a transmission electron microscope
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(TEM) operated at cryo-temperature, in particular at liquid nitrogen temperatures

of -196 ◦C (Figure 5). In the following chapters I will describe the state-of-the-art

cryo-ET workflow and point out current challenges that need to be overcome to

achieve higher throughput for quantitative studies.

Figure 5: Cryo-ET workflow. Main sample preparation steps are displayed and highlighted in

boxes. Optional targeting using fluorescently labeled structures of interest is feasible via cryo-light

microscopy (grey box). Figure inspired by Erdmann et al. 2018.

1.13.1 Cryo-sample preparation

Imaging biological samples by cryo-electron tomography requires the preservation

of cellular structures and their fine details in a frozen-hydrated state, that is also

electron-transparent at a thickness below approximately 300 nm when imaged in a

21



1 INTRODUCTION

cryo-TEM. This can be achieved by trapping water molecules, and thus the cells, in

a glass-like, termed vitreous, state by either plunge freezing (Dubochet et al. 1988,

Dubochet and Mcdowall 1981) or for volumes and samples larger than 5 µm, such

as whole organisms or tissues, via high pressure freezing (Dubochet 1995). Both

methods prevent the formation of crystalline ice which would destroy the delicate

cellular structures. In the case of plunge freezing, cells are applied to a TEM-grid,

typically made of metal (e. g., Cu with a mesh of 200 openings per inch) and a

holey support foil with a specific mesh size (e. g., R2/1 with circular holes of 2

µm diameter at a spacing of 1 µm). This supports the sample but allows excess

liquid to be blotted away from the back (Figure 6). Adherent cells can be guided

by micropatterning to grow in the center of grid squares which are easier to access

by subsequent TEM imaging or cryo-FIB lamella preparation (Toro-Nahuelpan et

al. 2020). Immediately after blotting, cells are vitrified by rapidly plunging the

grid in liquid ethane at around -185 ◦C, cooled with liquid nitrogen, right above its

melting point. Henceforth, samples are kept in cryo-conditions, i.e. stored, handled,

manipulated and imaged in vacuum at liquid nitrogen temperatures (-196 ◦C).

Figure 6: Plunge-freezing cells to preserve their interior structures for cryo-ET. Ad-

herent cells are either grown on grids or cell suspensions are applied right before blotting. Access

liquid is removed from the back of the grid and the sample is then immediately plunged into liquid

ethane at -185 ◦C, cooled with liquid nitrogen.
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1.13.2 Cryo-correlative light microscopy

In order to visualize and track a specific molecule or event across different scales,

cryo-correlative light and electron microscopy (cryo-CLEM) can be employed (Jun

et al. 2019, Plitzko et al. 2009, Schorb et al. 2017). Low-abundant or dynamic sub-

cellular structures are fluorescently tagged or stained to achieve precise, site-specific

targeting in subsequent sample thinning approaches (Arnold et al. 2016). Fluo-

rescent fiducials, such as microbeads, are externally applied and act as markers for

the correlation between different imaging modalities. Several fluorescent dyes and

labels can be used at cryo-temperatures as their behaviors have been characterized

in detail under these conditions (Tuijtel et al. 2019). The sample is then imaged

in a cryo-wide field or confocal fluorescence light microscope (FLM). The resolution

limit is determined by the diffraction of light, a trade-off between the objective’s nu-

meric aperture, the so-far limited availability and compatibility of cryo-immersion

liquids (Faoro et al. 2018), and the working distance which for current state-of-

the-art instruments restricts cryo-CLEM to features of interest of a size larger than

approximately 400 nm (Arnold et al. 2016, Van Driel et al. 2009). To overcome this

limitation, correlative super resolution cryo-CLEM methods are being developed to

advance the resolvable feature size closer to the sub-nanometer scale of TEM imag-

ing (Moser et al. 2019, Tuijtel et al. 2019).

Moreover, light microscopy imaging prior to cryo-fixation, which has been imple-

mented in a microfluidic chip, allows time-dependent freezing of a specific event

(Fuest et al. 2019). This also minimizes sample transfers as the grid does not have

to be moved from the plunger to the cryo-FLM. Transferring vitrified specimen bears

the risks of sample damage, de-vitrification and introduction of contaminants such

as ice crystals that obscure TEM imaging, which all increase with the number of

different instruments and therefore transfers. Built-in solutions for cryo-FLM and

cryo-FIB microscopes and hardware improvements for sample loading stations try to

prevent such contaminations and handling-induced sample loss (Bieber et al. 2021,

Tacke et al. 2021).

For common applications, 3D FLM stacks are collected which are subsequently

deconvolved to remove delocalized signal such as out-of-focus noise (Shaw 2006).

The z-stacks can then be resliced and are transformed (including scaling, rotation
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and translation) based on the matching of fiducials between imaging modalities

(Arnold et al. 2016). For example, the signal can be projected on FIB images

for site-specific sample thinning and followingly registered with a low magnification

map of the lamella recorded in a TEM to guide tomography acquisition (Klein et

al. 2021).

1.13.3 Cryo-FIB milling

Whole cells are too thick to be imaged by TEM. Thus, the next step of cellular

cryo-ET sample preparation is the step-wise ablation of the vitrified samples to

access the underlying ultrastructures. The mean free path, meaning the maximal

distance that electrons can traverse through a sample with the least amount of in-

terference, in a 300 kV TEM is around 400 nm (Russo and Passmore 2016a). Thus,

samples need to be thinner in order to retrieve the contained information at a suffi-

cient signal-to-noise ratio (SNR) that is otherwise hampered by inelastic scattering

events. Serial-sectioning of vitrified samples is feasible with a cryo-microtome, but

has the drawback of potential sample deformations (Al-Amoudi et al. 2005). Thus,

non-compressing ablation of biological material with a focused ion beam (FIB) of

gallium ions (Ga+) has become the state-of-the-art method (Rigort et al. 2012,

Rigort and Plitzko 2015, Schaffer et al. 2015, Schaffer et al. 2017, Villa et al. 2013).

In a step-wise manner with decreasing ion beam currents, a thin cellular slice is

created with a thickness of around 200 nm, supported by the remaining cellular

material (Figure 7). The entire process is monitored and guided by imaging with

a built-in scanning electron microscope (SEM). Larger samples are also amenable

to cryo-FIB milling. Lamella lift-out techniques allow retrieval of a slab from a

high pressure-frozen sample with a micromanipulator, and subsequent thinning to

electron transparency (Mahamid et al. 2015, Schaffer et al. 2019). In addition, the

waffle method enables lamella preparation from large, high-pressure frozen volumes

containing many cells, resolving preferred sample orientations induced by adherence

and blotting (Kelley et al. 2021).

One current limitation of cryo-FIB milling is the slow ablation rate of Ga+ ions which

has led to the development of fast-ablating plasma FIB instruments. However, these

still need to be adjusted to cryo-workflows (Burnett et al. 2016). Moreover, cryo-FIB

milling requires a high level of expertise. To make the technique more accessible,
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automation procedures have been established, which require less user supervision

and additionally ensure a high degree of reproducibility (Buckley et al. 2020, Kuba

et al. 2020, Zachs et al. 2020). However, these software are limited to standard on-

grid lamella preparations. More advanced cryo-FIB approaches, such as cryo-FIB

SEM volume imaging, cryo-CLEM, lamella lift-out or other future workflows, re-

quire more modular solutions (Figure 7). A platform that combines several modules

for such cryo-FIB approaches has been co-developed within the scope of this thesis

and is presented in chapter 5.1.2 (Klumpe, Fung and Goetz et al. 2021).

Figure 7: Cryo-FIB milling of vitrified cellular samples. Standard on-grid lamella prepa-

ration of a single, eukaryotic cell. B) Site-specific, cryo-light microscopy-guided FIB milling. Tar-

geting a particular cellular position is indicated in red. C) Cryo-FIB SEM volume imaging: serial

slice removal by the FIB (yellow arrow) and imaging with the SEM from the top. D) Lamella lift-

out approach: a micromanipulator removes a slab from bulk cellular material. Drawings kindly

provided by Jürgen Plitzko and figure adapted from Villa et al. 2013 and Klumpe, Fung and Goetz

et al. 2021.

Another important consideration for cryo-FIB milling is sample stability. Vitrified

samples demand gentle handling as the thin layer of ice and the support can easily

fracture, rendering the frozen cellular sample instable. Also, vitrification can cause

internal stresses and differential compression due to varying heat expansion coeffi-
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cients of grid and support materials (Naydenova et al. 2020, Russo and Passmore

2016b, Thorne 2020). The tension can be released upon milling leading to lamella

bending or even breakage. Micro-expansion joints cut into the peripheral parts of a

vitrified cell prior to lamella preparation relieve stress from the sample (Wolff et al.

2019).

First generation commercial cryo-FIB microscopes struggle with imperfect vacuum

and do not contain a cryo-trap to prevent condensation of amorphous ice from

the remaining partial water vapor on the vitrified sample. This currently limits

microscope time after the last milling step has been completed to around 1 h (for

condensation rates of 50 nm/h) and thus affects the number of lamellae that can

be prepared on a single grid during one session. It also hampers more advanced

workflows which would benefit from automated overnight operations. Hardware

improvements will likely resolve these issues in the future (Tacke et al. 2021).

1.13.4 Image formation in transmission electron microscopy

In transmission electron microscopy, electrons traverse through a specimen and are

subsequently captured on a detector. The thinner a sample, the more incident

electrons are transmitted and do not interact with the biological material, while a

fraction of electrons is scattered by the Coulomb potential of the underlying atoms.

Scattering can be elastic (without energy loss) or inelastic, in which case energy is

transferred to the specimen. TEM images are thereby formed via amplitude and

phase contrast (Orlova and Saibil 2011). Amplitude contrast is caused by electrons

that are absorbed by the sample or deflected by the objective aperture located at

the back-focal plane of the microscope’s objective lens. This modulates the intensity

of the incident beam. As vitrified, biological specimen are composed of light atoms

(C, H, N, O, S and P) and therefore hardly absorb any electrons, amplitude contrast

contributes very little (around 7 % (Penczek 2010)) to the image formation process.

These sample types can be approximated as weak phase objects (Glaeser 2013) that

elastically scatter a fraction of the electrons which interfere at the image plane with

the unscattered electron beam resulting in phase contrast. The induced phase shift

of the electron wave is close to zero when the sample is imaged in focus, causing

low image contrast. Changing the focus of the objective lens induces a phase shift

that results in improved image contrast. The modulation of contrast is described
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by the contrast transfer function (CTF). This equation models several factors of

image formation, including defocus, phase shift and optical aberrations. The CTF

can be fitted to the radial average of a TEM image’s Fourier spectrum and thus its

modulations, such as defocus values, are determined and the image can subsequently

be corrected.

1.13.5 Cryo-ET acquisition and tomogram reconstruction

In cryo-electron microscopy, 2D projection images of (biological) samples are col-

lected. For cryo-electron tomography (cryo-ET) the specimen, such as a cryo-FIB

milled lamella, is physically tilted and projections are collected at varying, incre-

mental angles relative to the electron beam in order to sample a 3D cellular volume

at multiple orientations. This creates an inherent limitation of cryo-ET as it suffers

from missing information in form of a wedge in Fourier space at the angles below

and above around ± 60◦ which cannot be reached due to increased sample thickness

and the finite tilt range of the grid holder on the microscope stage.

As frozen-hydrated, biological specimens are highly radiation sensitive, cryo-ET is

usually performed with low electron doses, distributed over several tilts via different

acquisition schemes (Hagen et al. 2017). In general, cryo-EM is operated in so-called

“low dose mode” which results in a low SNR but prevents electrons from damaging

the sample early-on. This preserves the high-frequency information, in particular

fine structural details, which are required for high-resolution structural analysis.

Therefore, dose-symmetric tilt schemes are employed in cryo-ET that start from 0◦

of the sample, perpendicular to the electron beam, resulting in the shortest mean

free path for electrons to traverse through the sample. Consequently, the least scat-

tering events happen, which improves the SNR and sustains high-resolution features

as the sample has not yet suffered from radiation damage. Subsequent projections

are collected at increasing tilts with accumulating electron doses.

Recent technological developments have further advanced cryo-ET and significantly

improved SNR, contrast, and resolution in cryo-electron tomograms. Direct electron

detectors record movies for each tilt and subsequent computational alignment of in-

dividual movie frames account for beam-induced movement and stage drift which

otherwise blur the images (Brilot et al. 2012, Li et al. 2013). In addition, energy

27



1 INTRODUCTION

filters reduce noise as they remove unwanted, inelastically scattered electrons based

on their wavelength before they can hit the detector (Fukuda et al. 2015). Further-

more, phase plates have been developed to improve image contrast. In particular,

the Volta potential phase plate (VPP) has been proven to be practical in identifying

structural features and visual segmentations (Danev et al. 2014, Danev et al. 2017,

Mahamid et al. 2016). The VPP is located at the back-focal plane and conditioned

by the electron beam to generate an electrostatic potential that ideally leads to a

90◦ phase shift of the scattered electron wave which results in improved contrast

when it is recombined with the unscattered electrons at the image plane (Orlova

and Saibil 2011). However, it has been observed that VPPs hamper high-resolution

signal and are prone to unwanted charging effects and electron scattering (Buijsse

et al. 2020, Turonova et al. 2020). Further promising developments of laser phase

plates will likely enable stable and tunable phase shifts for reliable enhancement of

image contrast in cryo-ET (Schwartz et al. 2019).

Another challenge for cryo-ET is inconsistent vitrification of the sample. Areas that

are not properly vitrified often stem from too thick samples or cellular features such

as nuclei in eukaryotic cells. Devitrification can occur during transfers between mi-

croscopes when samples are not sufficiently cooled. Here, also ice contaminations

on top of the sample can get introduced, leading to ice reflections and obscuring

areas to be imaged. They also limit the information that can be retrieved from

the biological sample. The collection of tomograms on FIB-milled lamellae can be

further constricted by the remaining cellular material that is holding the cellular

slice (cf. Figure 7); if the lamella is not perfectly aligned with the TEM’s tilt axis,

these areas come into the field of view at higher tilts and thus do not allow data

collection in their vicinity.

Another challenge in cryo-ET is the small sample size. A tomogram usually rep-

resents less than 1 % of the volume of a whole cell and thus high throughput is

required to achieve datasets for quantitative analysis. Advanced, batch acquisition

schemes are being developed and faster and better performing cameras employed

to overcome this obstacle and gain more output from traditionally low-throughput

cryo-ET (Mastronarde 2005, Mastronarde 2018, Myasnikov et al. 2018).
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New software developments allow bundled pre-processing of the collected data in-

cluding estimation of the contrast transfer function (CTF) to inform on data quality

and the theoretical resolution limit (Tegunov and Cramer 2019). Batch applica-

tions align frames and movie sums of each tilt and generate a 3D reconstruction

of the imaged cellular volume utilizing different algorithms, such as weighted back-

projection (WBP) or the simultaneous iterations reconstruction technique (SIRT)

(Mastronarde and Held 2017).

1.13.6 Data mining

Reconstructed tomograms are grey-scale intensity matrices representing the 3D

Coulomb potential of the imaged cellular material. In order to retrieve and in-

terpret the convoluted biological information contained in this voxel-based intensity

distribution, image analysis pipelines are required to segment cellular structures and

localize particles. The identification and localization of macromolecules in the in-

herently low contrast tomograms is a major bottleneck of cryo-ET. Thus, software

solutions often need to be tailored to specific structures. In many cases, manual

inspection and voxel-based classification, called segmentation, are used, at least as

a starting point. This visual pattern recognition task is very time-consuming and

requires a high level of expertise. The result is influenced by the complexity of the

imaged cellular interior and biased by the analyst. Thus, automated solutions need

to be developed to capture the quantitative structural and spatial information con-

voluted in cryo-electron tomograms in a more objective manner.

As a first step in data mining, image contrast can be enhanced by filtering or de-

noising (Bepler et al. 2020, Buchholz et al. 2019, Tegunov and Cramer 2019). New

methods utilize machine learning to generate missing information (Liu et al. 2021,

Moebel and Kervrann 2020). Software to identify and trace cellular structures such

as membranes or cytoskeletal filaments exist but do not yet provide satisfactory

segmentations (Chen et al. 2017, Martinez-Sanchez et al. 2014, Martinez-Sanchez

et al. 2020, Stalling et al. 2005).

For determining the coordinates of a protein complex of interest, called particle

picking, the traditionally used method is template matching (TM) which is a com-

putationally expensive and time-consuming 3D cross correlation search with an a
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priori reference structure (Bohm et al. 2000, Hrabe et al. 2012). However, it

is limited to easily detectable, large structures such as ribosomes. The advent of

deep-learning methods has revolutionized and automated the localization of sin-

gle particles in cryo-EM (Sanchez-Garcia et al. 2018, Tegunov and Cramer 2019,

Wagner et al. 2019). It is now starting to also advance pattern recognition in cryo-

electron tomograms (Chen et al. 2017, Moebel et al. 2021). Here, a great challenge

is the limited publicly available ground truth data with expert annotations, which

is required for supervised training of convolutional neural networks (CNNs). In ad-

dition, libraries of ready-to-use CNNs which are already available for single particle

cryo-EM are still not provided for data mining in cryo-electron tomograms. Unsu-

pervised networks are also emerging and harbor the potential of determining the

coordinates of all structured macromolecules contained in the reconstructed cellular

volume (Gubins et al. 2019, Martinez-Sanchez et al. 2020, Zeng et al. 2021).

1.13.7 Subtomogram averaging

In order to retrieve structural information of the localized macromolecules, subto-

mograms are either extracted from tomograms or reconstructed individually. They

are subsequently 3D-aligned and averaged to generate 3D density maps of the under-

lying structures (Bharat and Scheres 2016, Briggs 2013, Castano-Diez 2017, Galaz-

Montoya et al. 2015, Hrabe et al. 2012, Zivanov et al. 2018). Subtomogram

averaging thus improves the signal-to-noise ratio of individual particles and reveals

overall structural configurations. 3D classifications can further provide details on

heterogeneous particle populations inside cells. The achievable resolution depends

on the data quality, the particle number and the flexibility of the analyzed structure,

the latter of which contributes to the noise of subtomogram averages (Rosenthal and

Henderson 2003). Improved per-particle tilt series alignments taking local sample

deformations such as doming effects into account (Fernandez et al. 2018, Himes

and Zhang 2018, Tegunov et al. 2021) and per-particle 3D CTF estimation and

correction (Turonova et al. 2017) have advanced subtomogram averaging. This

has led to the recent achievement of sub-nanometer resolution ribosome subtomo-

gram averages with in-cell cryo-electron tomography (Tegunov et al. 2021). Other

methods employ different data acquisition and processing schemes which utilize 2D

projections. They are developed to improve 3D reconstructions further in order to

retrieve high-resolution information together with the functional context provided
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by cryo-ET (Faelber et al. 2019, Lucas et al. 2021).

Published high-resolution structures obtained by the myriad of structural biology

methods can be docked or modeled into the resulting maps. Depending on the

resolution, even atomic models can be built based on the cryo-ET density and the

underlying complexes unambiguously identified (O’Reilly et al. 2020, Tegunov et

al. 2021). The large number of available structures and maps deposited in pub-

lic databases, as well as AlphaFold2 models (Jumper et al. 2021) that provide a

solution to the long-standing problem of protein prediction, open the possibility

to register potentially all protein complexes inside cryo-electron tomograms. This

visual proteomics approach combined with automated segmentations of organelles

will facilitate our understanding of how macromolecules inhabit cellular landscapes,

“socialize” and thereby give rise to specific functions (Bauerlein and Baumeister

2021, Beck and Baumeister 2016). Consequently, higher throughput cryo-ET sam-

ple preparation and data mining pipelines will allow to quantify cell-to-cell and sub-

cellular structural variations, as well as the effect of perturbations on local particle

distributions.
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2 Aim of this work

Cryo-ET is a label-free method that visualizes the internal organization of cells and

thereby reveals local distribution of macromolecular complexes in a holistic manner.

This enables the development of new approaches to measure molecular crowding

in terms of quantitative, spatial and structural information on the variations in

crowding at a molecular level in the context of an unperturbed cell. In order to

generalize observations from the tomographic scale to whole cell models, cryo-ET

has to become a higher-throughput method. To achieve this, I have set the following

aims:

1) Establishment of high-throughput cryo-sample preparations and processing

pipelines

2) Characterization of nutrient-dependent cytosolic reorganization in unlabeled,

wild-type yeast

3) Quantification of molecular crowding in cryo-electron tomograms

4) Structural analysis of macromolecules to assess local variations and nutrient-

dependent conformational changes

5) Combining cryo-ET results with light microscopy experiments in live cells to

investigate condensation dynamics

In order to test the feasibility of this approach, I analyzed the structural proper-

ties of normal and energy-depleted yeast cells. As outlined above, recent studies

have shown that during starvation, the biophysical properties of the yeast cytosol

are dramatically altered. Thus, the transition of the cytoplasm from a liquid- to

a solid-like state in energy-depleted yeast cells represents an appropriate biological

model to investigate molecular crowding with cryo-ET. For calculating molecular

concentrations that inform on changes in local crowding, the distributions of large

reference macromolecules of known structures that pose great effects on local crowd-

ing, such as ribosomes, have been mapped and structurally analyzed. Dynamics of

fatty acid synthases by light microscopy inform further on the biophysical state of

energy depletion-induced structural assemblies into condensates. Changes in protein

conformations and distributions together with particle dynamics provide functional

insights. Integrating these data in the future to generate whole cell models will
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enable a more holistic understanding of the cytosolic organization and the influence

of perturbations (Earnest et al. 2017).
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3 Materials

3.1 Strains

S. pombe

ID Background Genotype Source

fjm1 K972 Sp h- Häring lab, EMBL

(originally from Paul

Nurse)

fjm9 K972 Sp h- FAS2-mCherry: :Nat Mahamid lab, EMBL,

generated by Ievgeniia

Zagoriy

S. cerevisiae

ID Background Genotype Source

yjm1 W303 MATα, ade2-1, trp1-1, can1-100,

leu2-3,112,his3-11,15, ura3, GAL,

psi+

Häring lab, EMBL

(originally from Paul

Nurse)

yjm6 BY4742 MATα

his3∆1;leu2∆0;lys2∆0;ura3∆0

Fas1-mcherry: :kanMX6

Bukau and Mogk lab,

university of Heidel-

berg (Suresh et al.

2015)

Strains of HeLa, Sum159, E. huxleyi and C. reinhardtii cells used for automated

lamella milling with SerialFIB are described in detail in Klumpe, Fung and Goetz

et al. 2021.
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3.2 Compounds, buffers and media

Medium Source

Normal nutrient (NN), full medium for

S. pombe

YES broth (Formedium)

NN, full medium agar for growing S.

pombe on plates

YES agar (Formedium)

Glucose control medium for S. pombe EMM Broth without dextrose

(Formedium), 20 mM D-Glucose

ED medium for S. pombe EMM Broth without dextrose

(Formedium), 20 mM 2-Deoxy-

Glucose, 10 µM Antimycin A

Glucose depletion medium for S. pombe EMM Broth without dextrose

(Formedium)

Sorbitol medium for S. pombe EMM Broth without dextrose

(Formedium), 20 mM D-Glucose,

1.2 M sorbitol

NN, full medium for S. cerevisiae YPD medium (Formedium)

NN, full medium agar for growing S.

cerevisiae on plates

YPD agar (Formedium)

Glucose control medium for S. cere-

visiae

Complete supplement mixture (CSM,

Formedium), Yeast nitrogen base with-

out aminoacids (Formedium), 20 mM

D-Glucose

ED medium for S. cerevisiae Complete supplement mixture (CSM,

Formedium), Yeast nitrogen base with-

out aminoacids (Formedium), 20 mM

2-Deoxy-Glucose, 10 µM Antimycin A
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Chemical or buffer Description

D(+)-Glucose monohydrate (Merck) Dissolved in deionized water at a con-

centration of 20 %(w/v), sterile filtered

(0.2 µm) and stored at +8 ◦C

2-Deoxy-D-Glucose (Sigma Aldrich) Stored at +8 ◦C

Antimycin A from Streptomyces sp.

(Sigma Aldrich)

Dissolved in methanol at 1 mM (1000x

stock) and stored at -20 ◦C

D-Sorbitol (Sigma Aldrich) Stored at room temperature

Concanavalin A (Sigma Aldrich) Dissolved in PBS at 1 mg/ml and

stored at -20 ◦C

5(6)-Carboxy-2’,7’-dichlorofluorescein

diacetate (CDCFDA) (Sigma Aldrich)

10 mM stock solution, stored at -20 ◦C

FM4-64 (invitrogen) 1 mg/mL in DMSO, stored at -20 ◦C

PBS (Sigma Aldrich) 1x stock prepared by the media kitchen

at EMBL, Heidelberg

BSA (Sigma Aldrich) Stored at -20 ◦C

Ampicillin (Sigma Aldrich) Dissolved in deionized water at a con-

centration of 100 mg/mL and stored at

-20 ◦C
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3.3 Equipment

Item Description

Pelco Easy glow Glow discharger

Quantifoil R1/2, Cu 200 mesh, holey

carbon or SiO2 film; R1.2/20 Ti 200

mesh SiO2; R1/4, Au 200 mesh SiO2

TEM grids

Ultraspec 2100 pro (Amersham Bio-

Sciences)

Photometer to measure optical densi-

ties (ODs) at 600 nm

Cuvettes, semi-micro PS (ratiobal) Cuvettes for photometer

Minisart syringe filters 0.2 µm (sarto-

rius)

Filters for sterile filtering solutions

Eppendorf centrifuge 5424R Centrifuge for up to 2 mL reaction

tubes

Megafuge 16 (Thermo Fisher Scientific) Centrifuge for up to 50 mL falcons

NCU-Shaker mini (Benchmark) Shaker for liquid cell cultures

MyTemp mini digital incubator (Ben-

schmark Scientific)

Incubator used for yeast agar plates

Thermomixer compact (Eppendorf) Table top shaker

Whatman filter paper circles diameter

55 mm (GE Healthcare Life Sciences)

Filter paper for plunger

Leica EM GP or GP2 Plunger for vitrification

Titan Krios (Thermo Fisher Scientific) Cryo-electron microscope

Volta potential phase plate (VPP,

Thermo Fisher Scientific, (Danev et al.

2017))

Phase plate for cryo-EM

Quantum post column energy filter

(Gatan)

Energy filter for cryo-EM

K2 Summit direct detection or K3

(Gatan)

Camera for cryo-EM

Aquilos Dual beam microscope (Ther-

moFisher Scientific)

Cryo-FIB SEM microscope

LSM 780 or 880 (Zeiss) Confocal light microscopes for fluores-

cence imaging
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3.4 Software and databases

Software and databases Description

Serial EM (Mastronarde 2005, Mas-

tronarde 2018)

Cryo-EM and tomography acquisition

Warp (Tegunov and Cramer 2019) Cryo-EM data pre-processing

M (Tegunov et al. 2021) Multi-particle cryo-EM refinement

Amira (version 2020.2, Thermo Fisher

Scientific)

Segmentation of EM data

Pytom, tom toolbox (Hrabe et al.

2012)

Python-based toolbox for localization

of macromolecules

ImageJ/Fiji (Schindelin et al. 2012) Platform for biological image analysis

UCSF Chimera (Pettersen et al. 2004),

UCSF ChimeraX (Pettersen et al.

2021)

3D structure visualization tools

MATLAB (version 2016b, Matworks) Programming language and environ-

ment

Python (Van Rossum 2020, Van

Rossum and Drake 2011)

Programming language and environ-

ment

Snakemake (Mölder et al. 2021) Python-based data analysis workflow

tool

Relion 3 (Zivanov et al. 2018) Cryo-EM structure determination soft-

ware

MAPS (Thermo Fisher Scientific) Navigation software for Aquilos Dual

beam microscopes

ZEN (black edition, Zeiss) Software for confocal Zeiss microscopes

Ilastik (version 1.3.3 (Berg et al. 2019,

Haubold et al. 2016))

Machine-learning-based image analysis

R (version 3.6.3 (R Core Team 2013))

and Rstudio (version 1.2.5033 (Allaire

2012))

Programming language and environ-

ment for statistical computing

EMDB (https://www.ebi.ac.uk/

emdb/)

Electron microscopy databank

PDB (https://www.rcsb.org) Protein databank
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3.5 Code availability

Software Description Version date

SerialFIB https://github.com/sklumpe/

SerialFIB/

17.05.2021

3DCT https://github.com/hermankhfung/

3dct https://github.com/

hermankhfung/tools3dct

27.05.2021

DeePiCt 2D CNN for

compartment segmen-

tations

https://git.embl.de/mattausc/

tomo-organelle-detection

15.05.2020

DeePiCt 3D CNN

for particle local-

ization, membrane

and cytoskeleton

segmentations

https://git.embl.de/trueba/

3d-unet

28.04.2021

FRAPAnalyser 2.1.0 https://github.com/ssgpers/

FRAPAnalyser

28.10.2016

Microscopy Pipeline

Constructor (MyPiC)

https://git.embl.de/

grp-ellenberg/mypic/-/wikis/home

28.10.2018
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4 Methods

4.1 Yeast cell culture

S. pombe and S. cerevisiae were recovered from frozen stocks and streaked onto

YES or YPAD agar plates, respectively. After incubation at 30 ◦C for 1-3 days or at

room temperature for three days, cells were streaked on fresh agar plates containing

respective media. For liquid cultures, single colonies were picked and inoculated

in full media or glucose control media with equivalent osmolarity compared to en-

ergy depletion media. Initial liquid culture volumes varied between 5-20 mL and

were incubated in Erlenmeyer glass flasks with a size fitting 10 times the volume of

the culture, shaking at 180-200 rpm and 30 ◦C overnight (NCU-Shaker mini, Bench-

mark). Cell densities were measured the next day, if necessary diluted and incubated

again, to use yeast cells in their exponential growth phase at OD600 = 0.2-0.6.

4.2 Nutritional and osmotic stress of yeast cells

Cell cultures of S. pombe and S. cerevisiae were nutritionally stressed via medium

exchange. For energy depletion, respective media containing 10 µM Antimycin A

and 20 mM 2-DG were used. For glucose depletion, respective synthetic media

lacking glucose were utilized. Osmotic stress was induced with synthetic medium

containing 1.2 M sorbitol and 20 mM D-Glucose. First, 3-5 mL liquid culture in

glucose control media were centrifuged at 4000 rpm for 3 min (Megafuge 16, Thermo

Fisher Scientific). The supernatant was discarded, the cell pellet was resuspended

in 1 mL of energy depletion media and transferred into 1.5 mL Eppendorf tubes.

This wash step was repeated three times with centrifugation at 4000 rpm for 3 min

(Eppendorf 5424R centrifuge). After final resuspension, the solution was added to

the respective depletion medium in order to obtain the desired experimental cell

density in an Erlenmeyer glass flask with a size fitting 10 times the volume of the

culture. This was selected as the zero-time point. Cultures were then incubated at

30 ◦C while shaking at 165-200 rpm, for varying times depending on the experiment.

4.3 Plunge freezing cells for cryo-ET

Yeast cells were vitrified with a Leica EM GP (Leica Microsystems) at liquid ni-

trogen temperatures. The cell suspension was diluted to an OD600 of around 0.3 in

respective medium or, following a prior wash step, in PBS containing 5 % or 10 %
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BSA as cryo-protectant. TEM grids (Quantifoil R1/2, Cu 200 mesh, holey carbon

or SiO2 film) were glow discharged on both sides for 45 s at 0.26 mbar and 15 mA

(Pelco Easy glow) immediately before usage. Within the plunger chamber, 4 µl of

the cell solution was directly applied to the grids and excess liquid removed via

blotting from the back side of the support for 1-2 s at 22 ◦C and 99 % humidity.

Cells were plunge frozen in liquid ethane (∼ -185 ◦C) and stored in grid boxes until

further usage.

Cryo-samples of HeLa and Sum159 cells were provided by Ievgeniia Zagoriy and

Wioleta Dudka, E. huxleyi by Zohar Eyal and C. reinhardtii by Sven Klumpe and

are described in detail in Klumpe, Fung and Goetz et al. 2021.

4.4 Cryo-FIB milling of cellular samples

Sample transfer and subsequent cryo-focused ion beam (cryo-FIB) milling were per-

formed at liquid nitrogen temperatures. Vitrified TEM grids were fixed in autogrids

with a cut-out to enable micromachining at shallow angles. Grids were transferred

on a shuttle into an Aquilos Dual beam microscope (ThermoFisher Scientific). Cells

were sputtered with platinum for 10-20 s (1 kV, 10 mA, 10 Pa). Subsequently, a layer

of organometallic platinum was applied by opening the gas injection system (GIS,

reservoir at 28 ◦C) for 8-11 s at a stage height of 10.6-11.6 mm. Lamellae were pre-

pared at a milling angle of 15°-20°. Single cells (HeLa or Sum159) or agglomerations

of several cells (S. cerevisiae, S. pombe, E. huxleyi) were thinned either manually or

by utilizing the developed automation software SerialFIB (Klumpe, Fung and Goetz

et al. 2021) in three steps of rough milling to thicknesses of 5 µm, 3 µm and 1 µm

with a constant ion beam voltage of 30 kV and 1 nA, 0.5 nA and 0.3 nA currents,

respectively. The scanning electron microscope beam (SEM, 10 kV, 50 pA) was

utilized to visually inspect the milling progress between each milling step. Lamellae

were fine-milled to a target thickness of around 200 nm by either manual operation

at 50 pA or using SerialFIB and the parameters specified in Supplementary Table

S1. Milling parameters were optimized empirically. For cryo-TEM imaging, cellular

slices were sputtered with platinum for 3-5 s (1 kV, 10 mA, 10 Pa) to render them

conductive. The grid was transferred into a dedicated box and stored in a Dewar

filled with liquid nitrogen.

41



4 METHODS

Table S1: Optimized milling parameters for lamella generation using SerialFIB. Au-

tomation parameters for S. pombe micro-expansion joint and fine milling did not provide optimal

results and require further optimization (grey). Table adapted from Klumpe, Fung and Goetz et

al. 2021.

Micro-expansion

joints milling
Rough milling

Optimized fine

milling parameters

Sample distance

from

lamella

[µm]

width

[µm]

current

[nA]

time

[sec]

step nominal

lamella

thick-

ness

[µm]

current

[nA]

time

[sec]

step nominal

lamella

thick-

ness

[nm]

current

[pA]

time

[sec]

Sum 159 4 0.3 1 30 1 5 1 480 1 400 100 210

2 3 0.5 210 2 300 50 150

3 1 0.3 210

HeLa 4 0.3 1 30 1 5 1 540 1 300 50 360

2 3 0.5 300

3 1 0.3 270

E. huxleyi 4 0.3 1 120 1 5 1 600 1 800 100 240

2 3 0.5 480 2 600 50 240

3 1 0.3 480 3 300 30 240

C. reinhardtii 5 0.5 0.3 60 1 5 0.3 210 1 800 50 90

2 3 0.3 120 2 800 50 90

3 1 0.1 120 3 600 50 90

S. cerevisiae 5 0.5 0.3 60 1 5 0.3 210 1 800 50 90

2 3 0.3 120 2 600 50 90

3 1 0.1 120 3 400 50 60

S. pombe 4 0.5 1 15 1 5 1 150 1 300 50 140

2 3 0.5 100

3 1 0.3 100
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4.5 Cryo-CLEM workflow for targeted FIB milling

Cryo-CLEM samples were prepared and imaged by Ievgeniia Zagoriy and Wioleta

Dudka on a prototype Leica cryo-confocal microscope based on the Leica TCS SP8

system, equipped with a cryo-stage, 50x objective, NA 0.90 and two HyD detectors.

As described in Klumpe, Fung and Goetz et al. 2021, z-stacks were collected of

HeLa cells on clipped Au SiO2 or Ti SiO2 grids. Prior to plunge freezing, cells were

stained with MitoTracker Green FM (Thermo Fisher Scientific), BODIPY 558/568

(Thermo Fisher Scientific) and Crimson Microspheres applied (1.0 µm diameter,

Thermo Fisher Scientific). Laser excitation at 488 nm was used to detect BODIPY

at 500-545 nm, excitation at 552 nm to detect MitoTracker at 561-630 nm and mi-

crobeads at 673-731 nm. Grids were transferred to the cryo-FIB SEM microscope

(Aquilos, ThermoFisher Scientific) and SEM and fluorescence overview images were

matched in 2D using the software MAPS (Thermo Fisher Scientific). Grid posi-

tions with individual cells located in the center of grid squares that also encompass

evenly distributed fiducials on the grid squares were chosen for 3D correlation of

microbeads in 3D FLM volumes and SEM images using 3DCT (Arnold et al. 2016).

The calculated transformations were rotated to match the FIB view and adjusted

to optimize the correlation. Lipid droplets were then selected and projected onto

FIB images. FIB images and corresponding 3DCT outputs were imported into Se-

rialFIB and targeted lamellae were prepared via rough and fine milling as described

above. Post-milling correlations were performed in 3DCT utilizing new features

developed by Herman Fung including masking of the FLM volume to the size of

the SEM lamella and generation of individual FLM slices (along the FIB y-axis)

with a thickness of 300 nm. Their maximum intensities were projected onto SEM

images and TEM overviews of the prepared lamellae in Fiji using BigWarp (Bogovic

et al. 2016, Schindelin et al. 2012) to guide tomography acquisition and compare

the fluorescence signal of lipid droplets and beads with the structural signatures in

the TEM projections. Deformations of the specimens in the FIB, such as warping

or doming effects, were analyzed by Herman Fung using bUnwarpJ (Sorzano et al.

2005). Elastic registration of FIB images of the same grid positions before and after

milling were performed and broken squares or ice contaminations were masked out.
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4.6 Cryo-FIB SEM volume imaging

Cryo-samples of Sum159 and HeLa cells were subjected to cryo-FIB SEM volume

imaging. Cellular slices were ablated in 100 nm steps with “rectangular cross-

section” patterns using the FIB operating at 30 kV, 0.5 nA for 10-20 s. SEM

data were collected at 5 kV, 50 pA, a dwell time of 1 µs, and line integration of 16,

which resulted in a dose of 0.464 e–/Å2 per image (Goggin et al. 2020). Images

were acquired with dimensions of 3072 x 2048 on an Everhart-Thornley detector

(ETD) and a pixel size of 10.377 nm and 19.271 nm for Sum159 and HeLa cells,

respectively. In total, a volume of 14.3 µm x 2.0 µm x > 13.0 µm of Sum159 and

25.9 µm x 6.2 µm x > 16.0 µm of HeLa cells was ablated and imaged.

SEM image stacks were postprocessed using a python-based script which is avail-

able on the SerialFIB GitHub repository (s. code availability 3.5). The following

steps were performed: cropping to the FIB-milled area using Fiji (Schindelin et al.

2012), removal of curtaining artifacts with pywt (Spehner et al. 2020) by wavelet

decomposition and Gaussian blurring of the vertical component (sigma = 6), charge

compensation by masking with a Gaussian-blurred, two times eroded image, and

local contrast enhancement by limited adaptive histogram equalization with a slope

of three in Fiji (CLAHE, (Zuiderveld 1994)). With the SIFT algorithm (Fiji, (Schin-

delin et al. 2012)) images were aligned and stretched in y by 1/sin (52°) to compen-

sate for image distortion by the angle between FIB and SEM beams. Lipid droplets

and the nucleus in Sum159 cells, as well as lipid droplets and fiducial microbeads in

HeLa cells were manually segmented in cryo-FIB SEM volumes using Amira 2020.2

(Thermo Fisher Scientific).

For the Hela cell sample, the cryo-FIB SEM volume was registered to the cryo-FLM

volumes by Herman Fung in the following steps: centroids of lipid droplet and fidu-

cial bead segmentations were extracted by connected-component labeling in Matlab

(Mathworks) and iteratively fitted to 1D and 2D Gaussian curves in 3DCT (Arnold

et al. 2016). Points (n = 133) within cryo-FLM volumes of lipid droplets and fiducial

beads were fitted to 2D projections of the cryo-FIB SEM segmentations in 3DCT.

An affine transform between the extracted cryo-FIB SEM and cryo-FLM points was

calculated in OpenCV using three different approaches (RANSAC, L-BFGS-B-based

local minimization starting from the TEASER algorithm (Heng et al. 2020), basin-
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hopping coupled to L-BFGS-B-based local minimization). A python-based script

to perform the registration is available on the SerialFIB github repository (s. code

availability 3.5).

4.7 Cryo-ET data acquisition

Autogrid-clipped grids containing lamellae were loaded under liquid nitrogen into

a cassette and transferred via a capsule into a Titan Krios microscope (Thermo

Fisher Scientific). During loading, grids were orientated in a way that the lamel-

lae were aligned with the milling direction perpendicular to the tilt axis of the

microscope. The transmission electron microscope equipped with a Quantum post-

column imaging energy filter was operated at 300kV in EFTEM, in zero-energy loss

and dose-fractionation mode. The different yeast datasets were collected with vary-

ing cryo-ET acquisition parameters (Supplementary Table S2). Depending on the

direct electron detector, tomograms were collected at 42,000x or 26,000x magnifica-

tion and a resulting calibrated pixel size of 3.3702 Å or 3.425 Å for K2 Summit and

K3 (both Gatan), respectively. Tilt series were collected using automation scripts in

SerialEM, at 2-4 µm underfocus (Mastronarde 2018, Weis and Hagen 2020). Starting

from the lamella pre-tilt, movies were collected at each tilt in 2-3° increments for up

to ± 64° in a dose-symmetric fashion (Hagen et al. 2017) with a constant dose per

image resulting in a maximal total dose of 147 e–/Å2. Defocus-only (DEF) tomo-

grams were collected with a 70 µm objective aperture. A Volta potential phase plate

(VPP, Thermo Fisher Scientific, (Danev et al. 2017)) was used after conditioning

for around 5 min.
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Table S2: Cryo-ET data acquisition of yeast cells under different nutritional conditions

and cryo-samples utilized for benchmarking SerialFIB on-grid lamella preparation.

Data collection parameters including the number of sessions (#), tomograms (tomo) and usage

of a Volta potential phase plate (VPP) are summarized. For all tilt series, a dose-symmetric tilt

scheme was used (Hagen et al. 2017). Defocus-only data for S. cerevisiae NN was provided by

Matteo Allegretti (Allegretti et al. 2020) indicated by (1).

Sample # VPP pixel

size

[Å]

tilt

range

[°]

starting

tilt [°]
tilt

step

[°]

total

dose

[e-/Å2 ]

thick-

ness

[nm]

under-

focus [µm]

Tomo

S. pombe NN 1 N/Y 3.3702 50 to -50 0 2 120 80-390 2 to 4 in

steps of 0.5

36

2 Y 3.3702 50 to -50 0 2 108 110-300 2 to 4 in

steps of 0.5

23

3 Y 3.3702 58 to -42 8 2 104 200-400 2 to 4 in

steps of 0.5

39

4 Y 3.3702 50 to -50 0 2 102 220-390 2 to 4 in

steps of 0.5

7

5 N 3.425 64 to -50 10 2 121 130-470 2 to 4 in

steps of 0.5

7

6 Y 3.3702 60 to -44 8 2 116 150-430 2 to 4 in

steps of 0.5

26

S. pombe 1 h

ED

1 N 3.3702 48 to -62 -12 2 116 95-485 3 to 4 in

steps of 0.25

45

2 Y 3.3702 60 to -44 8 2 111 175-400 2 to 4 in

steps of 0.5

32

3 Y 3.3702 54 to -62 -10 2 120 120-270 3 to 4 in

steps of 0.25

21

4 Y 3.3702 48 to -60 -12 2 125 135-430 2 to 4 in

steps of 0.5

19

S. pombe 3.5

h ED

1 N 3.425 62 to -48 12 2 116 190-520 2 to 4 in

steps of 0.25

35

2 N 3.425 62 to -48 12 2 117 260-520 2 to 4 in

steps of 0.25

41

S. pombe 17 h

ED

1 N 3.3702 60 to -48 12 2 117 215-485 3 to 4 in

steps of 0.25

34

S. pombe 4 d

glucose deple-

tion

1 N 3.425 48 to -58 -12 2 111 205-410 2 to 4 in

steps of 0.25

31

S. cerevisiae

NN

1 N (1) 3.3702 50 to -64 -13 3 147 170-350 2.5 to 4 in

steps of 0.25

10

2 Y 3.3702 60 to -50 8 2 111 190-340 2 to 4 in

steps of 0.5

30

3 Y 3.3702 50 to -62 -10 2 124 160-310 2.5 24

S. cerevisiae

1 h ED

1 N 3.3702 48 to -62 -12 2 120 130-295 3 to 4 in

steps of 0.25

29

2 Y 3.3702 48 to -60 -8 2 121 160-400 2 to 4 in

steps of 0.5

33

S. cerevisiae

6 h ED

1 N 3.425 48 to -62 -12 2 112 190-480 2 to 4 in

steps of 0.25

47

2 N 3.425 62 to -48 12 2 116 190-370 2 to 4 in

steps of 0.25

9

HeLa 1 Y 3.3702 50 to -48 0 2 107 100-450 2.5 to 4.5

steps of 0.5

37

Sum159 1 Y 3.3702 52 to -64 -12 2 134 70-410 2 to 4 in

steps of 0.25

25

E. huxleyi 1 N 2.129 62 to -50 12 2 133 175-470 2.5 to 4.5 in

steps of 0.25

28
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4.8 Tomogram reconstruction

Tilt movie frames were aligned using a SerialEM plug-in (Mastronarde 2018). To-

mograms were initially reconstructed in etomo (IMOD/4.9.4 software package (Mas-

tronarde and Held 2017)) for visual inspection and particle picking. For this purpose,

four times binned tilt series were filtered by Fourier cropping according to the ac-

cumulated dose utilizing the mtffilter function (IMOD/BETA4.10.12 (Mastronarde

and Held 2017)). Dose-symmetric tilt stacks were sorted by tilt angle using a python

script. Tilts (movie sums) were then aligned using patch tracking or via platinum

fiducials which were deposited on top of the lamella during sputtering after FIB

milling. Tomograms were reconstructed using weighted back-projection. Tomogram

visualization and thickness measurements were performed in 3dmod (IMOD, (Mas-

tronarde and Held 2017), cf. Supplementary Table S2).

4.9 Tomogram segmentation

Ground truth annotations of cellular features and compartments including organelles,

cytosol, membranes, ED filaments and ED FAS condensates were performed in

Amira on four times binned tomograms (version 2020.2, Thermo Fisher Scientific).

Approximately every 5 th-15 th slice was annotated and 3D segmentations calculated

via interpolation and subsequent manual cleaning.

DeePiCt 2D CNNs for organelles and cytosol were based on the U-net architecture

(Ronneberger et al. 2015) with a depth of D = 5 and initial features IF = 16. Input

tomograms were four times binned and preprocessed via amplitude spectrum match-

ing to the tomogram depicted in Figure 18 A with a low-pass cut-off at 350 voxel and

smoothening of the sigmoid curve at a cut-off of 20 voxel in Fourier space. Prediction

parameters included a patch size of 288 x 288 voxel cropped by 40 voxel to avoid

2D tile stitching artifacts and a z-cut-off of 200 to only predict 100 slices above and

below the z center of the tomogram. Predictions were post-processed via assembly

of 2D tiles into 3D volumes, filtering with a 1D Gaussian along the z-axis (sigma = 5)

to remove false positives and thresholding at 0.7 for the CNN’s output score applied.

Calculation of physical 3D volumes was performed in MATLAB (Matworks) by inte-

grating all classified voxel in binary matrixes of the respective cytosol segmentations.

Voxel-based volumes were multiplied by pixel sizes and binning factors to calculate
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physical sizes of the cellular volume occupied by the segmented compartments.

4.10 Ribosome localization in yeast cryo-electron tomograms

Ribosomes were localized in four times binned tomograms (13.48 Å and 13.70 Å

pixel sizes for K2 and K3 data, respectively). Template matching (TM) using the

pyTOM toolbox (Hrabe et al. 2012) was performed with the large subunit (60S) of

the published S. cerevisiae ribosome (EMDB 3228). This reference was scaled to

the corresponding pixel size in a box of 128 voxel and a sphere mask with a 100-

voxel diameter (smoothed by a Gaussian, sigma = 5) was applied. Using the EMBL

high performance cluster, a 3D cross-correlation search over 1,944 Euler angle com-

binations was performed. In MATLAB (version 2016 b, Matworks), the resulting

scoring matrix was multiplied with a lamella mask to remove false positives on top

and below the cellular volume in the tomogram. The coordinates corresponding to

the top 2,000-3,000 scores with a radius of 10 voxel, contained inside the tomogram

with an edge of 20 voxel to the tomogram’s boundaries, were extracted. Subsequent

visual inspection was performed in four times binned, filtered tomograms (Gaussian,

sigma = 3) using tom chooser (pyTOM toolbox (Hrabe et al. 2012)).

For ground truth generation of ribosomes in each of the 10 VPP and DEF S. pombe

NN tomograms, utilized to develop DeePiCt, the TM coordinates served as initial in-

put for three rounds of 3D CNN training. The output was inspected in tom chooser

as described above. Remaining, undetected ribosomes were manually picked in up

to three rounds in four times binned, filtered (Gaussian, sigma = 3) tomograms using

e2spt boxer.py in EMAN2 (Tang 2019).

Ground truth generation in other datasets (S. pombe 1 h ED, S. cerevisiae NN and

1 h ED) was performed via TM, manual inspection in tom chooser (pyTOM toolbox

(Hrabe et al. 2012)) and picking with e2spt boxer.py in EMAN2 (Tang 2019) for

up to three rounds as described above.

A 3D CNN for ribosome detection trained in 10 VPP S. pombe NN tomograms based

on the U-net architecture (Ronneberger et al. 2015) constituted by a depth of D = 2,

initial features IF = 4 and batch normalization BN was used to predict ribosomes in

all remaining datasets (s. Supplementary Tables S6-S13). Input tomograms were
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preprocessed via amplitude spectrum matching (s. above). Predictions were per-

formed with a box size of 64 voxel and post-processed via thresholding at 0.5 for the

CNN’s output score. Ribosome coordinates were calculated from centroids of clus-

ters with a minimal size of 100 voxel and further intersected with predicted cytosol

masks at a contact size of 10 voxel in order to remove false positives in organelles and

the extracellular area or within 25 nm distance to specific organelle segmentations

(for endoplasmic reticulum (ER) and mitochondria-associated ribosome analysis).

Performance analysis via precision and recall was conducted to compare DeePiCt

predictions with ground truth annotations and a 10-voxel tolerance radius to identify

corresponding particles was used.

4.11 FAS localization in yeast cryo-electron tomograms

FAS particles were picked manually in four times binned, Gaussian-filtered (sigma =

3) tomograms using e2spt boxer.py in EMAN2 (Tang 2019) because TM with the

S. cerevisiae FAS map (EMDB 1623) as reference was not successful. For the DeeP-

iCT ground truth dataset (S. pombe NN), the coordinates were utilized to train

3D CNNs to localize undetected FAS. The new particles were visually revised with

e2spt boxer.py in EMAN2 and additional FAS manually detected. For all other

datasets only manually detected FAS complexes were utilized (cf. Supplementary

Tables S6, S9 and S11).

FAS predictions by DeePiCT utilized a 3D CNN based on the U-net architecture

with a depth of D = 2, initial features of IF = 16 and batch normalization BN, which

was trained on the VPP ground truth dataset for S. pombe NN. Predictions were

performed with a box size of 64 voxel and post-processed via thresholding at 0.5 for

the CNN’s output score. FAS coordinates were calculated from centroids of clusters

with a minimal size of 500 voxel and further intersected with predicted cytosol masks

at a contact size of 10 voxel in order to remove false positives in organelles and the

extracellular area. Performance analysis via precision and recall was performed to

compare DeePiCt predictions with ground truth annotations and used a 10-voxel

tolerance radius to identify corresponding particles.
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4.12 Calculation of cytosolic concentrations and volume occupancies

For particle concentrations, the numbers of detected ribosome or FAS particles (lo-

calizations described above) were divided by the physical cytosolic or ED volumes

that they occupied per tomogram. For cytosolic volume occupancy of filaments in

ED tomograms, their respective segmented volumes were converted into physical

units of µm3 (as described above) and divided by the cytosolic volume plus the

volume that they occupied.

4.13 Subtomogram analysis

4.13.1 Data pre-processing and subtomogram reconstruction

Raw tomography data were pre-processed in Warp (Tegunov and Cramer 2019)

starting from either the frames, utilizing built-in movie alignments to compensate

for beam-induced motion, or from movie sums generated via the above described

SerialEM plug-in (Mastronarde 2018). Following CTF estimation and tilt stack

sorting, tilt series alignments from etomo were imported. Particle coordinates were

utilized to reconstruct subtomograms and corresponding CTF models in Warp with

unbinned pixel sizes (cf. Supplementary Table S2), and box sizes of 140 x 140 x 140

voxel and a diameter of 350 Å for volume normalization of ribosomes, or 160 x 160

x 160 voxel and a diameter of 400 Å for FAS.

4.13.2 Subtomogram 3D alignments and classifications of ribosomes

Subtomograms were 3D-aligned, averaged and 3D-classified in RELION (version

3.0.7 (Zivanov et al. 2018)). An initial average was generated via 3D classifica-

tion into a single class with the published S. cerevisiae structure (EMDB 3228) as

reference, which was scaled to the corresponding unbinned pixel size (cf. Supple-

mentary Table S2), a box size of 140 x 140 x 140 voxel and low-pass filtered at 60

Å. Subsequent 3D refinements utilized this single class average as a reference and

resulted in an initial map of all particles per dataset. In the case of DEF data, per-

particle tilt series alignments and CTF models of this initial average were refined

in M (Tegunov et al. 2021) with three sub-iterations and the usage of 60 % of the

available resolution in the first sub-iteration. Geometries were refined for particle

poses. Image warping was performed with a grid of 3 x 3 tiles, volume warping

with a grid of 3 x 3 x 2 tiles and 10 frames utilized in order to model non-linear
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deformations. Optimized particles and CTF models were reconstructed and subse-

quent hierarchical 3D classifications into two classes with 25 iterations per job were

performed in RELION. For VPP data, the initial RELION-refined alignments were

used for hierarchical 3D classifications with the same parameters as for DEF data.

Focused classifications with binary masks indicated in the respective figures (Figure

30 for densities close to the head of the 40S subunit and Figure 31 for exit tunnel

densities) did not employ image alignments.

Finally, well-aligned classes were further refined in M using the same geometry

settings but utilizing CTF refinements of defocus values in case that the averages

achieved resolutions better than 10 Å. Resolutions indicated in the corresponding

figures were either calculated in RELION (post-processing step) or in M via Fourier

shell correlations (FSCs) between two half-maps. The averages were then filtered to

their respective resolutions (FSC cut-off criterion 0.143 (Rosenthal and Henderson

2003)) and visualized using Chimera (Pettersen et al. 2004) or ChimeraX (Pettersen

et al. 2021). These software were further utilized to fit publicly available maps into

the reconstructed densities and to calculate a cross-correlation (CC) score.

4.13.3 Subtomogram 3D alignments and classifications of FAS

FAS particles were 3D-aligned in RELION using the 3D classification task and the

published S. cerevisiae structure as a starting reference (EMDB 1623 (Gipson et al.

2010)), rescaled to the corresponding unbinned pixel size (cf. Supplementary Table

S2) and a box of 160 x 160 x 160 voxel, as well as low-pass filtered at 60 Å. The

resulting single class subtomogram average was used as a reference for subsequent

3D refinements with applied D3 symmetry. For DEF data, this average was further

optimized in M with applied D3 symmetry using either the ribosome-refined image

and volume models or refining the FAS alignments for the same geometries as for

ribosomes (s. above). Optimized particles and corresponding CTF models were

reconstructed in M and hierarchical 3D classifications performed in RELION with

each 25 iterations and clustering into two classes. For VPP data, the RELION-

refined average was used for hierarchical 3D classifications.

Well-aligned classes were post-processed in RELION. FSCs were calculated as de-

scribed above for ribosomes and the averages were filtered to their respective reso-
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lutions. FAS subtomogram averages were visualized using Chimera (Pettersen et al.

2004) or ChimeraX (Pettersen et al. 2021).

4.14 Confocal light microscopy

Confocal light microscopy experiments were performed with Willram Scholz and

supported by Ievgeniia Zagoriy. Fluorescence images of tagged or stained yeast

cells were acquired at 30 ◦C on an LSM 880 (Zeiss) confocal light microscope and a

Plan-Apochromat 63x/1.4 Oil DIC M27 objective, unless stated otherwise. The C-

terminally tagged FAS-mCherry was excited at a wavelength of 561 nm and detected

at 578-696 nm, in order to investigate stress-dependent cellular distribution of FAS

over time. Changes in pH were observed with the compound CDCFDA, which stains

acidic environments once it is activated by hydrolyzation via intracellular esterases

(Richards et al. 2012). It was excited at 488 nm and detected at 499-562 nm.

The lipophilic styryl compound FM4-64 which stains membranes was utilized to

observe organelle morphology changes and endocytosis. This dye was excited with a

wavelength of 561 nm and detection at 571-695 nm. Microscopy slides (µ-slide 8 well,

Ibidi) were incubated for 10 min at room temperature with 200 µL of Concavalin

A (at 1 mg/mL concentration) and then washed two times with deionized water.

Wells were dried and then 300 µL of cells were applied in different media depending

on the experiment. For all light microscopy experiments, data was visualized in Fiji

(Schindelin et al. 2012).

4.14.1 Time-lapse experiments of FAS-mCherry in energy-depleted and

osmotically stressed yeast cells

S. pombe (fjm9) and S. cerevisiae (yjm6) expressing C-terminally tagged FAS-

mCherry were grown in liquid cultures to exponential growth phase (OD600 ∼ 0.2-

0.6) and washed three times with respective energy depletion, glucose control and

osmotic stress media as described above. If required, cell cultures were diluted with

the same medium to achieve an OD600 of ∼ 0.2-0.4 prior to application of 300 µL

in an imaging well. Z-stacks were collected at three positions per yeast strain and

condition, covering more than 40 individual cells, with a z-spacing of 644 nm, a total

number of 20 z-slices with image dimensions of 688 x 688 pixels and a pixel size of

98.1 nm.
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For energy depletion time lapse experiments, the Microscopy Pipeline Constructor

(MyPiC) was utilized to recall positions and collect z-stacks at intervals of 1 h for

a total of 12 time points. For osmotic stress conditions, z-stacks were manually

collected at 15 min, 30 min, 55 min and 3 h after treatment.

FLM data was quantified in terms of number of foci per cell over time of energy

depletion. An automated analysis pipeline was empoyed which was developed by

Willram Scholz and uses Fiji (Schindelin et al. 2012) to detect foci within the full

field of view containing several cells, ilastik (version 1.3.3 (Berg et al. 2019, Haubold

et al. 2016)) to segment individual cells and R (version 3.6.3 (R Core Team 2013)

and RStudio version 1.2.5033 (Allaire 2012)) to integrate the data and calculate

foci numbers per cell. First, the central image z-slice was automatically selected

in Fiji by detection of the slice with the highest standard deviation of fluorescence

intensity. The position was refined within a range of two slices above and below the

initial estimation using the lowest integrated intensity in the bright field channel pro-

cessed with an IsoData threshold algorithm (Ridler and Calvard 1978). Within an

area of four slices above and below the central z-slice, the 3D object counter (Bolte

and Cordelières 2006) was utilized with a minimal voxel size of nine and an empir-

ically determined threshold intensity of 132 plus the average FAS-mCherry intensity.

To segment individual cells in ilastik, maximum intensity z-projections of the central

slice, as well as one slice above and below, in the bright filed channel were subjected

to pixel classification. Cell wall and background (including out-of-focus cells) were

manually labeled to train a network with the selected features of Gaussian smooth-

ing, Laplacian of Gaussian, Gaussian gradient magnitude, difference of Gaussians,

structure tensor eigenvalues and Hessian of Gaussian eigenvalues. The resulting

probability maps served as input for subsequent boundary-based cell segmentations.

Employing a watershed algorithm with empirically determined thresholds of 0.2 to

0.3 and a pre-smoothing of 1.0 to 2.0. Initial minimum boundary and superpixel

sizes were set to 0, clustered seed labeling and thin structure preservation were em-

ployed to train a network that classified segmentation edges that could iteratively

be selected or excluded. The final multicut segmentation was then performed with

the Nifty FMGreedy solver (implemented in ilastik) and a bias parameter of 0.4. In

order to generate individual cell segmentations, object classification was performed

with the multicut segmentation and bright field z-projections as input. The ilastik
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output was a binary mask that was multiplied with the multicut segmentations in R

to generate a mask with 0 intensity values for all background (including out-of-focus

cells) and individual integers for each cell. Finally, this result was integrated with

the foci counts from the 3D object counter to evaluate foci numbers per cell over

the imaged ED periods.

Automatically detected central z-slices of FAS-mCherry FLM volumes were further

utilized to calculate mean, maximum and minimum intensities per field of view in

both yeast strains upon ED. Intensity values were min-max normalized, three repli-

cates were averaged and the resulting values are displayed in Supplementary Table

S3 and plotted in Supplementary Figure S1.

Table S3: Averaged and normalized mean intensities of FAS-mCherry in glucose

control and ED time lapse microscopy experiments. Mean intensities were measured in

Fiji for central z-slices, which were automatically selected based on the image analysis pipeline

desribed above. Intensities of three replicates were min-max normalized and averaged. Minimal

values are displayed for the ED times.

Time

[min]

S. pombe FAS-mCherry

intensity

S. cerevisiae FAS-mCherry

intensity

Glucose control ED Glucose control ED

50 0.57 0.28 0.00 0.62

110 1.00 1.00 0.34 1.00

170 0.73 0.85 0.56 0.55

230 0.60 0.55 0.88 0.24

290 0.41 0.47 0.96 0.23

350 0.22 0.55 0.96 0.15

410 0.14 0.14 0.95 0.19

470 0.18 0.32 0.97 0.15

530 0.01 0.27 0.92 0.14

590 0.04 0.22 0.82 0.10

650 0.05 0.21 0.87 0.01

980 0.00 0.00 0.29 0.21
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Figure S1: Averaged and normalized mean intensities of yeast FAS-mCherry treated

with glucose control or ED media. Intensities detected by light microscopy (cf. Supplementary

Table S3) are plotted against the time of treatment. Intensities initially increased in all conditions

either due to foci formation (ED) or cell growth and division (control). At later time points

fluorescence intensities decreased which could be caused by dissolution of FAS assemblies (ED),

protein degradation (ED and control) or false z-slice detection in overgrown wells (control).
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4.14.2 Distribution of FAS-mCherry and acidification in glucose-depleted

yeast cells

The distribution of FAS-mCherry expressed in S. pombe (fjm9) and S. cerevisiae

(yjm6), as well as the acidification of cellular compartments stained by CDCFDA,

were investigated upon up to 7 days of glucose depletion. As described above,

exponentially growing yeast cells were washed three times with respective synthetic

media lacking glucose and diluted to an OD600 of around 0.03 in a total volume of 20

mL in a glass flask. In addition, Ampicillin was added to a final concentration of 100

µg/mL to prevent bacteria contamination during prolonged incubations. Cultures

were kept shaking at 200 rpm and 30 ◦C. Around 1 h after treatment, cells were

imaged which equals day 0. At an interval of 1 d for a total of seven days, 400 µL

of cell suspension were retrieved from the culture and 0.4 µL CDCFDA added to a

final concentration of 10 µM. 300 µL were transferred into a well of an imaging slide.

Three positions were selected covering at least ten individual cells and z-stacks of

mCherry and CDCFDA fluorescence signals were collected with a spacing of 640

nm, a total of 18 z-slices and with an image size of 792 x 792 pixel at a pixel size of

85.2 nm.

4.14.3 Acidification and membrane morphologies in yeast cells upon

nutrient stress

Glucose and energy depletion were applied to S. pombe (fjm1) and S. cerevisiae

(yjm1) wild-type strains and acidification was monitored via CDCFDA staining, as

well as membrane morphologies were observed with FM4-64. Exponentially growing

cells were collected and washed three times as described above. The samples were

diluted to achieve an OD600 of around 0.2 in a volume of 1 mL. CDCFDA was

added in a 1:1000 dilution resulting in a concentration of 10 µM. A volume of 300

µL was then transferred into the imaging well. Finally, 0.6 µL of FM4-64 were added

directly to the well to achieve a final concentration of 2 µg/mL. The samples were

imaged with the same parameters as for the prolonged glucose depletion experiments

described above (cf. 4.14.2). The only exception was the total number of 19 slices

per z-stack. Images were collected at an interval of 10 min and a total of 14 images

collected starting from around 1 h after treatment with either glucose or energy

depletion media.
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4.15 FRAP measurements of FAS-mCherry in yeast cells upon energy

depletion

In order to analyze the mobility of FAS upon energy depletion, fluorescence recovery

after photobleaching was measured at different time points after treatment. FAS-

mCherry expressing S. pombe (fjm9) and S. cerevisiae (yjm6) were imaged at an

OD600 of around 0.1 on an LSM 880 (Zeiss) confocal light microscope.

For S. pombe FAS-mCherry (fjm9), a C-Apochromat 40x/1.2 W Korr FCS M27

water objective was utilized to collect single z-slices of 140 x 120 pixel with a pixel

size of 117 nm fitting individual cells. Imaging was performed with 2 % laser power

(DPSS laser), 2.46 µs pixel dwell time and 0.1 s frame time. A series of 500 im-

ages was collected at an interval of 1 s to record fluorescence mCherry signal. A

rectangular area (44 x 16 pixel) covering parts of a single cell including cytosol

and FAS assemblies in energy depletion conditions (cf. Figure 53 C) was bleached

once after image 40 with 100 % laser power (DPSS laser) and a pixel dwell time of

7.49 µs. Five replicates (corresponding to five different positions and cells) were per-

formed for each condition (glucose control, ED for > 10 min, > 180 min, > 470 min).

For S. cerevisiae FAS-mCherry (fjm6), FRAP was measured with a Plan-Apochromat

63x/1.4 Oil DIC M27 oil objective. A total of 300 individual z-slices with a dimen-

sion of 132 x 132 pixel and a pixel size of 85.2 nm were collected. Imaging was

performed with a time interval of 0.10 s, a laser intensity of 15 %, 1.65 µs pixel

dwell time and a frame time of 0.07 s. A rectangular area (63 x 16 pixel) covering

parts of the cytosol including ED foci (cf. Figure 53 C) was bleached after image

20 employing 40 % laser power (DPSS laser) and a pixel dwell time of 3.30 µs. 21

replicates (corresponding to 21 different positions and cells) were measured for each

glucose control and energy depletion for > 300 min.

FRAP data were analyzed with the FRAPAnalyser (version 2.1.0, cf. code avail-

ability 3.5). Data was double-normalized against the background and a reference

region. In the case of S. pombe a whole cell reference was employed which was gen-

erated by segmentation using the above described pipeline in Fiji and ilastik. For

S. cerevisiae a rectangular area of the same size as the bleach area was used which

covered parts of a neighboring, unbleached cell. For normalization, the following
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equation was employed (Halavatyi and Terjung 2017):

Inorm(t) =
Ifrap(t)− Iback(t)

〈Ifrap(t)〉pre − 〈Iback(t)〉pre
· 〈Iref (t)〉pre − 〈Iback(t)〉pre

Iref (t)− Iback(t)
(1)

The normalized intensity values (Inorm(t)) were calculated with the intensity values

of the bleached region (Ifrap(t)), the reference region (Iref (t)) and the background

region (Iback(t)), as well as the averaged values prior to bleaching 〈...〉pre over time (t).

After normalization, replicates were averaged and fitted using the Levenberg-Marquardt

(gradient) method utilizing a single (glucose control) or double exponential model

(ED) with the following equations (Halavatyi and Terjung 2017):

FRAP (t) = I0 + I1 ·
(

1− e
t−tbleach

τ

)
(2)

FRAP (t) = I0 + I1 ·
(

1− e
t−tbleach

τ1

)
+ I2 ·

(
1− e

t−tbleach
τ2

)
(3)

From these equations recovery half-times were calculated with t1/2 = τ · ln2. The

immobile fractions were calculated for each condition with (1-I0-I1)/(1-I0) (cf. Table

5).
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5 Results

5.1 Methods towards high-throughput in-cell cryo-ET

The exploration of molecular crowding inside yeast cells required first the generation

of a large cryo-electron tomography dataset in order to sample multiple cells and

various nutritional conditions. Subsequently, data processing pipelines were devel-

oped to retrieve quantitative and structural information from the imaged molecular

landscapes to gain biological insights.

Rendering cryo-ET a high-throughput method to investigate molecular crowding

inside cells under varying nutritional conditions required:

1) Cryo-sample optimization

2) Automation of cryo-FIB milling to streamline lamella preparations

3) Automated tilt series acquisition

4) High-throughput data processing pipelines to mine and localize particles and

segment organelles inside cryo-electron tomograms

In the following, I will illustrate the obtained results for each step of the pipeline and

the developed tools that enabled me to prepare and analyze a large yeast cryo-ET

dataset.

5.1.1 Cryo-sample optimization

First, cryo-preservation of yeast cells by plunge-freezing was optimized to facilitate

subsequent cryo-FIB milling. Initial trials with a Vitrobot (Thermo Fisher Scientific)

resulted in a gradient of cell concentrations over the whole grid (Figure 8 A). In this

instrument the blotting paper is applied in an angle to achieve a gradient distribution

of ice thicknesses over the whole grid which is desirable for protein solutions to

increase the chance of obtaining optimal grid squares for single-particle cryo-EM.

However, for cells, the generated gradient is unwanted. Thus blotting in a parallel

manner, meaning that the blotting paper is aligned parallel to the grid, is preferred

to get even distributions of cells (cf. Figure 6). Such a parallel set-up is feasible in

a Leica plunger and was therefore used to evenly distribute cells on a grid (Figure
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8 B). In addition, cell concentrations and blotting times were optimized. Yeast cell

densities were adjusted to OD600 = 0.2-0.3 (optical density/absorbance at 600 nm,

unitless) and resulted together with a blotting time of 1 s in optimal grids. The

agglomerations of several cells in the center of many grid squares were ideal for

targeting with the FIB (Figure 8 C-E).

Figure 8: SEM images of yeast cells plunge-frozen on TEM grids under various con-

ditions. A) Gradient of S. pombe cells plunge-frozen at OD600 0.6 with a Vitrobot on a TEM

grid. Empty grid squares framed in orange. B) S. pombe plunge-frozen at OD600 0.3 with a Leica

plunger. C) Zoom into the grid in B) (boxed area) reveals optimal ice thickness and homogenous

distribution of cells on many grid squares. Individual grid squares show optimal agglomerations of

D) S. pombe and E) S. cerevisiae cells that were targeted for FIB-milling.

5.1.2 Automation of focused-ion beam milling for multi-modal cryo-

electron tomography applications

Sampling a variety of intracellular landscapes under varying conditions requires high

throughput of cryo-FIB milling to produce lamellae of sufficient quality for cryo-ET.

Automation of this process facilitates the otherwise laborious task and renders it

more reproducible as manual operation entails a high level of expertise.
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In collaboration with Sven Klumpe and Herman Fung, I developed a modular open-

source software tool with a graphical user interface (GUI) to automate cryo-FIB

milling procedures and streamline standard, as well as more advanced, workflows.

In this section I will illustrate the results jointly produced with Sven Klumpe and

Herman Fung (Klumpe, Fung and Goetz et al. 2021).

5.1.2.1 SerialFIB software design

The automation software, termed SerialFIB, was developed to facilitate cryo-FIB

milling for a broad set of cryo-sample preparations. It enables a) automated on-

grid lamella milling, b) targeted lamella milling utilizing prior localization by 3D

correlative light microscopy, c) cryo-FIB SEM volume imaging and d) custom milling

procedures, e. g. for lamella lift-out workflows (Mahamid et al. 2015, Schaffer et al.

2019). SerialFIB is python-based and encompasses a driver script that connects the

graphical user interface (GUI, Figure 9) with specific functions and the microscope’s

application programming interface (API) to perform customizable tasks. It also

includes a scripting interface (Script Editor) that allows the user to tailor milling

procedures to their needs by directly implementing python scripts. In addition,

Lamella Designer, Pattern Designer and Volume Designer further allow the user

to customize their own protocols and adjust milling parameters to their demands

without the need for scripting.
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Figure 9: Graphical user interface (GUI) of SerialFIB. Main functions such as taking

images or starting an automated milling protocol can be chosen from the top left buttons panel.

A list of acquired reference images is stored in the image buffer. Additional buttons for volume

imaging, custom milling tasks or to load fluorescence images for correlation are selectable below.

Stage positions are stored in the coordinate navigator (middle) and connected to their respective

reference images and milling patterns via the buttons panel on the left hand side. A log file

is created and displayed to inform the user about each step and selected parameters. Lamella,

Pattern and Volume Designers, as well as the Script Editor, are available via the tools tab on the

top panel. Figure adapted from (Klumpe, Fung and Goetz et al. 2021) and produced jointly with

Sven Klumpe and Herman Fung.
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5.1.2.2 SerialFIB workflow

Similar to manual procedures (Schaffer et al. 2015, Schaffer et al. 2017, Villa et al.

2013), positions of interest on the sample are selected and the coincidence height

between ion and electron beams is determined by the user on the microscope PC.

The corresponding stage parameters are then stored in the GUI’s navigator (Figure

9). A reference ion beam image and user-defined target sites as well as milling

patterns relative to each position, are connected to each item. The milling patterns

define extreme points at the top and bottom of the targeted lamella site (along the

FIB y-axis) at which ablation of biological material will start. Setting up site-specific

patterns individually for each target site prevents milling of obstacles such as ice

crystals or grid bars. The software then automatically moves the sample to each

saved stage position, takes an ion beam image at low currents (10 pA) and realigns

to the previously saved reference image in order to accurately recall the target site

(Figure 10). The alignment is based on image cross correlation (Guizar-Sicairos et

al. 2008) and calculated offsets are applied by either stage movements (above 10 µm)

or image shifts (below 10 µm) to compensate for stage drift or sample movements.

When changing between ion beam currents, another image-based alignment step is

performed, which utilizes image shifts only and accounts for misalignments between

currents.
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Figure 10: Automated cryo-FIB milling workflow implemented in SerialFIB. In general,

for each target site, the following series of steps is performed: the stage is moved to the respective

position, the ion beam current changed and the milling process is started using prior defined milling

patterns (main tasks highlighted in dark green). Reference, first (pre-milling) and final (post-

milling) images are taken at 10 pA. Depending on the quality of the image alignments subsequent

steps after registration are triggered (diamond-shaped boxes). Figure adapted from Klumpe, Fung

and Goetz et al. 2021 and produced jointly with Sven Klumpe and Herman Fung.
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5.1.2.3 Automated on-grid lamella milling

Similar to manual procedures, automated lamella preparation from cryo-fixed cells

on grids can be split into two main tasks of rough and fine milling. An initial step of

cutting micro-expansion joints in order to relieve tension in the sample (Wolff et al.

2019) is also feasible and implemented in SerialFIB. During rough milling, cells are

thinned in three consecutive steps to target thicknesses of 5 µm, 3 µm and finally 1

µm with ion beam currents of 1 nA, 0.5 nA and 0.3 nA, respectively. Samples are

fine-milled with an ion beam current of 50 pA to a final thickness of around 200 nm,

at which the frozen specimens are electron-transparent for subsequent TEM imaging.

For example, I employed automated rough milling using SerialFIB to micromachine

both energy-depleted (ED) S. pombe and S. cerevisiae cells on different supports

(Cu 200 R2/1 SiO2 or Carbon). Milling of micro-expansion joints was only feasible

on grids with SiO2 support as Carbon got immediately torn and damaged. As grids

were rather dry and did not have a continuous layer of amorphous buffer, SerialFIB

was utilized only for rough milling, aiming at a target thickness of 1 µm. The fi-

nal lamella thickness of around 200 nm was reached by manual micromachining to

account for lamella bending (Figure 11). Subsequent tomogram acquisition enabled

lamella thickness estimation and visually confirmed similar quality in comparison to

manual lamella preparations.

Milling parameters, such as the number of steps and milling times, were bench-

marked and successfully applied to six different cellular samples, namely Sum159,

HeLa, E. huxleyi, C. reinhardtii, S. cerevisiae and S. pombe. A total of 145 sites

were targeted with success rates of 91.5 % and 83.1 % for rough and fine milling, re-

spectively (Table 1). The causes of automation failure were either sample instability

(i. e., lamella bending or breaking of the support) or non-optimal milling parame-

ters during initial stages of parameter optimization for each cell type. While expert

users likely achieve success rates of up to 100 %, as milling can simply be stopped

manually to prevent sample damage, unexperienced users should benefit from the

successful generation of high-quality lamellae using SerialFIB. All users will further

save time as the automation software does not require manual intervention during

FIB milling.
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Figure 11: Automated lamella milling of S. pombe after 17 h ED. FIB (A-C) and SEM

(D-F) views of targeted cells (A, B), rough milling to 1 µm target thickness (B, E, rough milling

patterns indicated in A by yellow dashed boxes), and manual fine-milling to around 200 nm of an

agglomeration of cryo-preserved S. pombe. G) TEM overview of the lamella in C (indicated by

yellow arrowheads) and F displays individual cells with nuclei (N) and vacuoles (V). Curtaining

artifacts from milling lipid droplets (white arrowheads), ice crystals (asterisks) and the protective

platinum layer (Pt) at the lamella front are observable. H) Tomographic slice of the highlighted

area in G reveals the cellular interior of an S. pombe cell after 17 h ED.
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Table 1: Statistics of automated cryo-FIB milling with SerialFIB. For Sum159 and HeLa

cells, two lamellae each were subjected to cryo-FIB SEM volume imaging and therefore only fine-

milled in SerialFIB (*). Energy depletion (ED) samples were manually fine-milled due to lamella

bending (cf. Figure 11 C). Data produced jointly with Sven Klumpe and Herman Fung (Klumpe,

Fung and Goetz et al. 2021).

Sample # Target sites # Rough-

milled lamellae

# Fine-milled

lamellae

Lamella thick-

ness [nm]

Sum159 22 18* 19 70-410

HeLa 22 19* 18 100-450

E. huxleyi 9 9 9 175-470

C. reinhardtii 16 16 10 140-350

S. cerevisiae 8 8 8 190-300

S. cerevisiae ED 29 22 N/A 180-400

S. pombe ED 39 37 N/A 200-490

Total 145 92 64

Success rate [ %] 91.5 83.1

Each sample type required empirical optimization of milling protocols (Supplemen-

tary Table S1). This accounts for the fact that the cellular content depends on cell

type. For example, lipid droplets in S. pombe are very dense and thus require longer

ablation times by the FIB (Figure 11). Similarly, the breast cancer cell line Sum159

exhibits a large amount of lipid droplets which lead to curtaining effects (Figure 12

B). Such artifacts are also caused by other cellular high-density objects such as cal-

cium carbonate crystals, which are formed by the single-cell algae coccolithophore

E. huxleyi. Extended milling times were therefore employed in SerialFIB to remove

curtaining artifacts, which are observable in the direction of milling (Figure 12).
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Figure 12: Automated lamella preparation of Sum159 and E. huxleyi with milling

artifacts caused by dense features. A) TEM lamella overview of a Sum159 cell containing

many lipid droplets (examples labeled LD) which result in curtaining artifacts (white arrowheads)

along the FIB milling direction. B) E. huxleyi cells with intra- and extracellular CaCO3 crystals

which require longer ablation times by the FIB and thus impair even removal of biological material

(curtains highlighted with white arrowheads). Cryo-samples of Sum159 cells provided by Ievgeniia

Zagoriy and E. huxleyi cells by Zohar Eyal.
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5.1.2.4 Cryo-CLEM workflow for targeted lamella preparations

Creating a lamella at a specific site within a cellular sample for subsequent cryo-

ET acquisition requires cryo-correlative light and electron microscopy (cryo-CLEM)

workflows. In order to correlate fluorescence light microscopy (FLM) data with SEM

or FIB images, features need to be identified in both imaging modalities. Fluorescent

fiducials which are visible in SEM and FIB images allow the transformation (scaling,

rotation and translation) and projection of a cryo-FLM volume onto corresponding

2D SEM and FIB images (Arnold et al. 2016). Thus, a lamella can be created at

the correlated site of a fluorescently labeled cellular feature. To demonstrate the

feasibility of using SerialFIB for such CLEM procedures, fluorescently stained lipid

droplets (diameter of around 200-500 nm) were targeted in HeLa cells (Figure 13).

Correlations were calculated with the software tool 3DCT (Arnold et al. 2016). In a

first step, fiducials were selected on FLM maximum intensity projections and manu-

ally assigned to their corresponding signatures on an SEM image. Knowledge of the

geometric relationship between SEM and FIB views enabled in a next step the appli-

cation of the correlation transformations to the FIB view, by detecting fiducials in a

semi-automated manner. These fiducial transformations can be extrapolated to the

whole cryo-fixed sample allowing the projection of cellular fluorescence signals onto

the FIB image for targeted lamella preparation (Figure 13 A-B). The FIB images

of a target lamella site can then be imported into the SerialFIB GUI together with

the correlated positions calculated in 3DCT. This enables site-specific lamella and

milling pattern generation for subsequent automatic rough and fine milling (Figure

13 C).

In four FIB sessions corresponding to four grids, a total of 15 sites were correlated

to target lipid droplets in HeLa cells using SerialFIB. During optimization of milling

parameters, one lamella was lost resulting in 14 fine-milled lamellae. In all cases,

the final lamella height (along y in the FIB view) did not coincide with the target

position prior to milling. This is likely due to sample deformations over time, which

can already be observed on grid squares that do not even contain cells (Figure 14).

As fiducials are selected on grid bars evenly surrounding the target cell, displacement

of the grid square support in y likely lead to a mismatch between FLM and FIB

view in this area.
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Figure 13: CLEM workflow using SerialFIB for targeted lamella creation of lipid

droplets inside a HeLa cell. A) Maximum intensity projection (MIP) of fluorescence volumes

of lipid droplets (red), mitochondria (cyan) and microbeads used as fiducials (yellow) for correlation

and transformation onto the SEM view of a HeLa cell in the center of a grid square. B) MIP of the

same fluorescence signals as in A projected onto the FIB view via semi-automated transformation.

C) FIB view with marked correlated lipid droplet positions including the target position (white

arrowhead) for which lamella and milling patterns (yellow arrowheads and dashed box) were created

in SerialFIB. D) FIB view after trench (T), rough and fine milling resulted in a lamella (yellow

arrowheads) 169 nm below the target lipid droplet (white arrowhead). E) Overlay of TEM lamella

map with MIP of a 300 nm fluorescence slice at the lamella height displayed in D shows misplaced

fluorescence signal for the target lipid droplet (red, white arrowhead). Curtaining artifacts are

caused by internalized fiducials (F). Ice crystals (*) occupy parts of the lamella. At the lamella

front, a continuous platinum layer (Pt) is visible. F) Overlay of TEM lamella map with MIP

of a 300 nm fluorescence slice at the target lipid droplet site which fits best with the structural

signatures in the TEM map (white arrowhead). G) Cryo-electron tomogram depicting the target

lipid droplet highlighted in F (dashed box) in close proximity to a mitochondrion (M) and a

microtubule (MT). Data produced jointly with Herman Fung, adapted from Klumpe, Fung and

Goetz et al. 2021.
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In order to assess successful retention of the target lipid droplet independent of

sample deformations, TEM maps were acquired of each lamella. The observed in-

tracellular features were then compared to the fluorescence signal of different y-slices

(in the FIB view) retrieved from the transformed FLM volume prior to FIB-milling

using a new 3DCT feature (s. code availability 3.5). This enabled the calculation

of relative distances from the best fitting fluorescence y-plane determined by visual

comparison, to the original target height and to the post-milling lamella position.

The targeted lipid droplet could be identified in seven out of 10 lamellae created on

three TiSiO2 grids whereas none of the four lamellae created on one AuSiO2 support

contained the aimed feature. In the cases where the target LD was preserved in the

final cellular slice, distances between the best fitting fluorescence y-plane and the

target height ranged between +337 nm to -506 nm. The offset between the best fit-

ting fluorescence y-plane and the post-milling lamella height was -337 nm to -1518

nm. Thus, all final lamellae were located below the best fitting plane indicating

overall sinking of the sample.

Collection of cryo-electron tomograms from successfully correlated, FIB-milled lamel-

lae, visualized the specific lipid droplets in their cellular environments (Figure 13).

This confirms the usability of SerialFIB for cryo-CLEM workflows. Consequently,

the software can be used to target other features of interest, such as biomolecular

condensates in yeast cells, in future studies.

Figure 14: FIB images before and after milling of a HeLa cell show sample deforma-

tions within the whole field of view. A) Overlay of FIB views before (magenta) and after

(cyan) FIB milling of an example HeLa cell. Deformations are also visible on grid squares without

cells (*). B) Displacement in y across the field of view with the area of lamella creation masked.

Fiducials used for correlation between FLM and FIB view are highlighted in yellow. Data produced

jointly with Herman Fung, adapted from Klumpe, Fung and Goetz et al. 2021.
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5.1.2.5 Cryo-FIB SEM volume imaging

Another application implemented in SerialFIB is cryo-FIB SEM volume imaging.

This module enables the collection of an SEM image series of a defined cellular vol-

ume with valuable nano-scale information of organelle sizes, localizations and dis-

tributions. Applying this workflow in a consistent and streamlined manner requires

automated approaches, such as the implementation in SerialFIB. The observed cel-

lular features may also guide the user to find a suitable position for subsequent

lamella preparation in SerialFIB, potentially mitigating the adverse effects of local

specimen deformation in 3D CLEM described in the previous section. Cellular slices

of Sum159 cells were iteratively ablated with the FIB in 100 nm steps and the re-

maining cross-sections imaged with the SEM. Imaging parameters were empirically

adjusted to generate sufficient signal-to-noise ratios in the unstained sample (e.g.,

via dwell time and line integration), but also to minimize acquisition times and ex-

posure doses. Image post-processing, including contrast enhancement and removal

of milling artifacts such as curtaining from lipid droplets readily visualized the cellu-

lar organelle organization and facilitated manual segmentation of lipid droplets and

the nucleus (Figure 15).

After collection of a serial FIB-SEM volume containing the nucleus and its periph-

ery, a lamella was prepared roughly 100 nm below the last exposed surface imaged

by the SEM. On this lamella, cryo-electron tomograms were collected that are of

similar quality as conventionally prepared on-grid lamellae (Figure 15).

The feasibility of multimodal imaging to correlate cryo-FIB SEM volumes with cryo-

FLM data was tested for HeLa cells with fluorescent signals for lipid droplets, mito-

chondria and fiducial microbeads. After correlation in 3DCT, an area between two

cells was subjected to serial cryo-FIB SEM imaging. The resulting SEM slices were

post-processed as described above to enhance contrast and remove curtaining arti-

facts. Subsequently, beads and lipid droplets were manually segmented. Centroids

of fluorescence signals from beads and lipid droplets were affine transformed and

registered to centroids calculated from the cryo-FIB SEM volume annotations. Al-

though outliers were observed, the overall fitting accuracy with a root-mean-square

residual of 386 nm lies within the current resolution limits of cryo-FLM (around

400 nm (Arnold et al. 2016, Van Driel et al. 2009)) and is thus adequate for 3D-
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targeted lamella preparations. This confirmed the possibility to combine multiple

cryo-imaging modalities and may facilitate targeted lamella preparations using cryo-

FLM signals in larger cellular volumes in the future.
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Figure 15: Multimodal cryo-FIB SEM volume imaging using SerialFIB. A) FIB view

of a Sum159 cell which was targeted for cryo-FIB SEM volume imaging (yellow dashed box) and

subsequent lamella milling (yellow arrowheads). B) The same cell as in A after trench milling

and cryo-FIB SEM volume imaging. C) The final lamella (yellow arrowheads) from the Sum159

cell in A and B at a target thickness of 200 nm. D) Raw serial FIB-SEM image of the cellular

interior showing the nuclear periphery with curtains caused by lipid droplets (white arrowheads)

along the direction of FIB milling. E) SEM slice in D) after image processing including wavelet

decomposition to remove milling artifacts and contrast enhancement. F) Overlay of E with manual

segmentations of lipid droplets (red) and the nucleus (N, cyan). G) TEM lamella overview of the

lamella created in C below the area where the FIB-SEM volume was ablated. Ice contaminations

(*) and the platinum (Pt) layer at the front of the lamella are visible. H) 2D slice of a reconstructed

cryo-electron tomogram depicting a lipid droplet (LD) and a microtubule (MT) highlighted in G

(dashed box). I) Overlay of an SEM view of two HeLa cells with maximum intensity projections

of correlated and transformed fluorescence volumes of lipid droplets (red), mitochondria (cyan)

and fiducial microbeads (yellow). The highlighted area (dashed box) is enlarged in J after serial

sectioning with the FIB visualizing the two nuclei (N) and the cytosol of the two cells. J) The

cellular features overlay nicely with their respective fluorescence signals (root-mean-square residual

of 386 nm). Data produced jointly with Herman Fung, adapted from Klumpe, Fung and Goetz et

al. 2021.
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5.1.3 Automated cryo-electron tomography acquisition

High-throughput lamella preparation using SerialFIB generated a large number of

cellular slices for cryo-electron tomography. Automation of this imaging technique

reduces microscope time, minimizes supervision and intervention by the user, and

thus streamlines large scale data generation for quantitative analysis.

In order to investigate molecular crowding inside yeast cells, optimized cryo-specimen

preparations, and the subsequent manual and automated FIB-lamella milling, re-

sulted in over 25 TEM-grids (with 5-6 lamellae per grid) and more than 140 lamellae

in total. Each of these slices contained sections through several yeast cells repre-

senting cellular areas spanning tens of micrometers. To image the full spectrum of

cellular compartments, the acquisition of around 10 tilt series on one lamella by

cryo-electron tomography was automated with the help of Wim Hagen and Felix

Weis using SerialEM (Figure 16, (Mastronarde 2005, Mastronarde 2018, Weis and

Hagen 2020)). Stage positions are linked to reference images at intermediate and

high magnifications and saved in the software’s navigator panel (6,500x resulting in

pixel sizes of 22.84 Å or 28.04 Å, and 42,000x or 26,000x which correspond to pixel

sizes at the specimen of 3.37 Å and 3.43 Å, depending on the camera type, K2 or

K3, respectively). Running batch tilt series acquisition, the sample is sequentially

moved to the saved coordinates and image alignments performed to recall the origi-

nal position on the lamella. A single tomogram covered a field of view of around 1.3

or 1.4 µm x 1.3 or 2.0 µm depending on the camera type (K2 or K3, respectively).

Followingly, tilt series were collected with user-defined parameters (e.g., defocus

values, exposure time and dose, maximal tilt angles and tilt increments, cf. Supple-

mentary Table S2). Thereby, a single cryo-ET session can potentially provide over

50 tomograms of cellular landscapes (assuming one TEM grid with five lamellae). In

total, I acquired over 560 tomograms of yeast cells under different cellular conditions

(detailed in chapter 5.2) in more than 20 sessions with thickness ranges of 95-520 nm.
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Figure 16: TEM overview of a lamella created from an agglomerate of S. pombe cells

after 1 h energy depletion. On the lamella map, cellular areas of nine individual S. pombe cells

surrounded by a dense cell wall are observable, containing nuclei (N), mitochondria (M, highlighted

orange area is enlarged in inset), vacuoles (V), lipid droplets (LD), and for the very left cell a fission

septum (S). 10 tomogram positions were selected for automated cryo-ET acquisition (dashed boxes,

one tomogram position covered by orange inset). Tomogram thicknesses (along z) were determined

from 3D reconstructions, and increased along the direction of milling (bottom to top). Tomogram

reconstruction was not possible for the top left target position as tracking during acquisition failed

after the third tilt. Ice contaminations (*) obscure areas of the lamella that cannot be imaged.

The lamella front is covered by platinum (Pt).
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5.1.4 CNN-based data mining enables objective and fast organelle seg-

mentation and particle localization

In order to obtain quantitative biological and structural information from the large

number (> 500) of cryo-electron tomograms generated with the methods described

above, cellular structures need to be segmented and particle coordinates determined.

Traditional pattern recognition techniques detect and segment cellular features.

They often need to be tailored to the specific structures of interest as they oth-

erwise do not provide satisfactory results. Due to the inherently low signal-to-noise

ratio, imaging artifacts within cryo-electron tomograms and the crowded nature of

the native cytosol, they further require a high level of expertise and are labori-

ous. To overcome these limitations, we developed a supervised deep-learning based

software, termed DeePiCt (Deep Picker in Context), to automatically detect cellu-

lar structures and macromolecules in cryo-electron tomograms. Due to the lack of

annotated experimental (real) cryo-ET data, the implementation of DeePiCt first

required expert-supervised segmentations of organelles, cytosol, membranes, as well

as determination of ribosome and fatty acid synthase (FAS) coordinates in yeast

cryo-electron tomograms. The comprehensively annotated data set then enabled

training and testing of 2D and 3D convolutional neural networks (CNNs) for cel-

lular compartment segmentation and particle picking procedures, respectively. The

software thus provides information on macromolecules in their native cellular con-

text. In addition, it not only facilitates analysis of the data acquired for yeast cells

under varying nutritional conditions, but also allows transfer to other organisms,

and thus biological questions. The method and results illustrated below were de-

veloped and jointly produced with Irene de Teresa and Alexander Mattausch (De

Teresa and Goetz et al., 2021, joint manuscript in preparation).

5.1.4.1 Ground truth data set construction

The training and validation data set for developing DeePiCt consisted of 20 se-

lected high-quality cryo-electron tomograms visualizing intracellular landscapes of

wild-type S. pombe grown in normal nutrient conditions (full medium). For this

purpose, I FIB-milled lamellae from cryo-preserved cells and acquired cryo-ET data

with varying defocus values (2 µm to 4 µm). For 10 of the tomograms, a Volta

potential phase plate (VPP) was used to enhance phase contrast which facilitates
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the detection of cellular structures. The other 10 tomograms were acquired only

with varying defocus values (DEF), as with this data type higher resolution subto-

mogram averages can be achieved (Turonova et al. 2020). In the reconstructed VPP

and DEF tomograms, organelles, cytosol, and membranes were segmented (Figure

18). Organelle and cytosol volumes were annotated manually on every 10th-15th

slice, followed by interpolation in Amira (Thermo Fisher Scientific). Membranes

were first continuously segmented in five tomograms. These annotations were con-

verted into binary volumes and used to train a CNN to predict in the remaining

tomograms. Membrane predictions were further manually optimized and completed.

For the CNN-based localization of macromolecules, I determined the coordinates

of ribosomes in three steps: first, template matching (TM, (Hrabe et al. 2012))

using the large subunit (LSU, 60S) of a published S. cerevisiae 80S ribosome map

(EMDB 3228) as a reference and subsequent visual review of the top 2,000-3,000

cross-correlation hits in each tomogram. Next, in three iterative rounds, CNNs were

trained first with the cleaned TM results and then with the newly detected particles

from the previous CNN round. In the case of DEF ground truth generation, the

first CNN was trained on DEF TM results, whereas the following CNN rounds uti-

lized CNNs trained in the VPP data. After each round, predictions were manually

inspected and cleaned. Finally, all remaining, yet undetected particles, were picked

manually inside cryo-electron tomograms. The complete ribosome ground truth is

constituted on average by initial 30 % TM, additional 32 % by DeePiCt predictions

and ultimately 38 % manual annotations (Figure 17). Finally, particle lists were

cleaned by calculating the elliptic distance between the coordinates to remove par-

ticles that were picked twice (Supplementary Table S4).

For FAS ground truth annotations, TM with the published S. cerevisiae FAS (EMDB

1623) as reference failed. Therefore, I localized particles in a first step by manual

picking. The determined coordinates were used to train a CNN, of which predictions

were obtained and manually revised. In a third step, additional FAS were detected

manually and the complete annotations (on average 29 % DeePiCt, 71 % manual,

Figure 17) cleaned to remove any duplicates (Supplementary Table S5).
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Figure 17: Ribosome and FAS ground truth construction in 20 S. pombe tomograms.

A) Ribosomes were initially localized by TM (30 %). In a second step, over three iterative rounds

DeePiCt detected additional particles (32 %) and finally remaining undetected ribosomes were

manually picked (38 %). B) FAS particles were initially manually picked as TM failed. These

annotations were utilized by DeePiCt detecting additional particles (29 %). The ground truth

annotation was completed by a final manual step, adding on average 71 % of the complete ground

truth. Data produced jointly with Irene De Teresa.

Figure 18 depicts an example VPP tomogram and its comprehensive annotations

for membranes, organelles, ribosomes and fatty acid synthases. It visualizes up to

around 0.18 µm3 of an average cellular volume, accounting for less than 1 % per-

cent of an S. pombe cell (approximately up to 150 µm3 total volume (Nurse 1975,

Wu and Pollard 2005)). It is one of the above described 20 fully annotated tomo-

grams (10 VPP and 10 DEF). On average, 2,561 ± 1,089 ribosomes and 53 ± 29

FAS particles were picked per tomogram. This, of course, depends on the imaged

cytosolic volume. In general, similar ribosome numbers were picked in VPP and

DEF tomograms (2,532 ± 948 and 2,591 ± 1,267, for VPP and DEF, respectively).

The fraction of ribosomes that was only detected by DeePiCt (new true positives)

resembles the subtomogram averages of all ground truth ribosomes (cf. Figure 18

F). However, more FAS particles were detected in VPP tomograms (69 ± 25 and 37

± 23, for VPP and defocus, respectively), likely due to the more optimal contrast

necessary to localize this rather hollow structure.

Taken together, the mined data is considered “ground truth”. However, it has to be

taken into account that it may not be complete or still contains false annotations

due to the limitations of each particle picking approach, manual segmentations and

revisions, as well as the complexity of cellular cryo-ET data. Nevertheless, subtomo-

gram averages of all cytosolic ribosome and FAS particles confirm their structural
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identity in both VPP and defocus-only data (Figure 18 F, G). This is further un-

derpinned by hierarchical 3D classifications in RELION (Figures 19-21). For both

ribosomes and FAS, a well-aligned class was identified. In the case of 3D classifica-

tions of ribosomes, more than half of DEF particles did not cluster in well-aligned

averages, whereas all VPP classes appear defined (Figures 19-20). In addition, a

class that only contained the 60S large subunit (LSU) was detected in VPP, but

not recovered in DEF, although both datasets were acquired on the same sample.

This observation is likely due to the improved signal-to-noise ratio in raw VPP to-

mograms which appeared to facilitate 3D classifications.
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Figure 18: Ground truth annotations of cellular structures and macromolecules in

S. pombe cryo-electron tomograms. A) 2D slice (xy view) of an example VPP tomogram

from the ground truth dataset. Cellular features enclosed by the cell wall (CW) such as ribosomes

(abundant dark objects in the cytosol), fatty acid synthases (FAS, white circles), a mitochondrion

(M) with ATP synthases decorating cristae (white dashed box), actin filament (A), vesicle (V)

and the endoplasmic reticulum (ER) are readily identifiable by eye. B) Rotation of the tomogram

in A by -90° around x allows the estimation of tomogram thickness. The thinnest point at the

lamella front (left) is 100 nm. A gap between cellular volume and Pt layer at the top reveals a

layer of condensed water. C) 3D representation of ground truth annotations for organelles (grey),

membranes (purple), ribosomes (yellow) and FAS (pink). D) XZ view of the segmentation volume

in C without membranes. E) Particle numbers per tomogram. On average 2561 ± 1089 cytosolic

ribosomes (left plot) were detected with 2532 ± 948 and 2591 ± 1267 for VPP and defocus data,

respectively. In total, 53 ± 29 FAS particles were picked per tomogram (right plot). Overall, more

FAS particles were detected in VPP data (69 ± 25) than in defocus-only tomograms (37 ± 23 FAS).

The mean of each dataset is marked by a grey horizontal line. F) Subtomogram averages of all

cytosolic ribosomes (yellow) and true positives (TP) newly detected by DeePiCt (blue). Particles

were localized in VPP (top) and defocus tomograms (bottom). G) FAS subtomogram averages

detected in VPP (top) and defocus (bottom) tomograms. Data produced jointly with Irene De

Teresa.
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Figure 19: Cytosolic VPP ground truth ribosomes hierarchically 3D-classified starting

from initial alignments. 25,311 roughly aligned particles were stepwise clustered into two classes

per step (indicated by branching points). This process dissected a fraction that only contained the

60S large ribosomal subunit (highlighted in cyan). For each class, 3D averages of iteration 25 are

displayed as 2D slices. Figure adapted from De Teresa and Goetz et al., 2021, joint manuscript.
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Figure 20: Cytosolic defocus ground truth ribosomes hierarchically 3D-classified.

Starting from 25,901 M-refined particles, ribosomes were clustered into two classes at each step

(indicated by branching points). A well-aligned class was extracted (yellow box) which could be

refined to a resolution of 9.3 Å in M (Tegunov et al. 2021). More than half of the particles ended

up in poorly defined classes (left branch). For each class, 3D averages of iteration 25 are displayed

as 2D slices. Figure adapted from De Teresa and Goetz et al., 2021, joint manuscript.
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Figure 21: VPP and defocus ground truth FAS 3D classifications. FAS annotated in

A) VPP and B) defocus ground truth (gt) datasets and 3D-refined with applied D3 symmetry.

For both, two 3D classes were separated (without specified symmetry and indicated by branching

points) of which one was better aligned than the other. The resulting classes were 3D refined in

RELION with applied D3 symmetry and for defocus data also in M (Danev et al. 2017). For each

class, 3D averages of iteration 25 are displayed as 2D slices or post-processed averages (bottom).

Figure adapted from De Teresa and Goetz et al., 2021, joint manuscript.
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5.1.4.2 DeePiCt workflow design

The established ground truth annotations in S. pombe cryo-ET data enabled train-

ing and testing of supervised deep-learning networks. The DeePiCt workflow is

python-based and consists of two CNNs implemented as independent Snakemake

procedures (Mölder et al. 2021): A 2D CNN segments cellular compartments, such

as organelles and cytosol, and a 3D CNN localizes particles (macromolecules such

as ribosomes) and predicts cellular features (such as membranes, nuclear pore com-

plexes (NPCs) and cytoskeletal elements). The combination of both networks has

two advantages: compartment segmentations can optimize particle localizations (e.

g., cytosol masking reduces false positive hits in other organelles) and provide cel-

lular context to macromolecules, such as direct organelle interactions.

The CNNs were designed on the basis of the U-Net architecture (Figure 22) (Ron-

neberger et al. 2015), which uses a data augmentation strategy to overcome limi-

tations by small training data sets such as the 10 ground truth VPP tomograms.

The input is either 2D or 3D tomography data with binary masks of ground truth

annotations of the cellular features to be learned. Raw tomograms exhibit different

signal-to-noise ratios due to varying sample thicknesses and acquisition parameters,

especially defocus values and the usage of the VPP. To account for these differences,

the user can employ an initial pre-processing step which adjusts the tomogram’s

amplitude spectrum to match that of a tomogram with high image contrast (Figure

22 top). For example, the amplitude spectrum of a VPP tomogram acquired on a

lamella of around 110 nm thickness was used as reference (cf. Figure 18 A).

The cellular compartment segmentation task was implemented in 2D as this is faster

and less computationally expensive. 2D operations were feasible for organelles and

cytosol as they are large and easy to be recognized on a tomographic slice. Data

was augmented by random flipping and rotation in 90° steps of input tiles. Particle

picking was performed in 3D since macromolecular complexes are much smaller than

organelles and have finer structural details. Thus, they require more dimensional

sampling and per-particle adjustable model parameters to facilitate localization in

cryo-electron tomograms. 3D input data was extended by adding noise (salt-and-

pepper or Gaussian), and applying random translations, stretching and compression

(elastic deformations), and rotations.
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The network architecture for both 2D and 3D networks consists of two symmetric

paths, one for down and one for up sampling (Figure 22 middle). The CNN’s depth

(D) is defined by the number of max pooling operations along the spatial axes to

contract the data. Successive up-sampling from the deepest point by concatenation

with maps from the down-sampling path or padding with zeros, returns the output

at the original resolution. On each level, convolutional layers that basically involve

application of filters and a rectified linear unit (ReLU) to the input data, result in

feature maps. The network adjusts these filters over time of the training process.

The down and up sampling paths are therefore also called encoder and decoder. In

the DeePiCt implementation, the number of feature maps on the first level of the

encoder path, called initial features (IF), is variable and can be adjusted per target

structure to be learned. On each subsequent layer, a defined number of two filters

are applied. In addition, hyperparameters of batch normalization (BN) and optional

dropout are implemented on each layer. BN normalizes the output of the previous

layer and thereby standardizes the input of the current layer. Dropout is a method

for regularization that randomly drops nodes of the CNN. Both BN and dropout

are used to avoid overfitting of the model and to accelerate the training by reducing

the number of epochs required for the network to converge (Ioffe and Szegedy 2015,

Srivastava et al. 2014).

The 2D CNN for compartment segmentation consists of five layers (D = 5) and 16

initial features (IF = 16). The 3D CNN architecture depends on the cellular feature

to be learned and therefore D, IF and dropout parameters can be adjusted by the

user. This accounts for the structural complexity, abundance, size of specific macro-

molecules and the amount and quality of training data. For FAS IF = 16 was found

to be optimal whereas IF = 4 was sufficient for ribosome and membrane networks.

A depth of two was employed for the three 3D networks.

During CNN training, the output is compared to the input after each run through

the network. An error is calculated using Adam optimizer and the dice loss func-

tion. Over time and depending on the number of epochs (repetitions of learning

cycles) the loss function should drop off to a minimal error, which indicates that the

training has converged.
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Trained CNNs can readily be applied to unseen tomograms. In the case of the 2D

CNN, pixel-based compartment slices are predicted and in a post-processing step

combined to a 3D volume (Figure 22 bottom). False positives are further removed

by thresholding and applying a 1D Gaussian filter along the z-axis.

The 3D CNN outputs a scoring matrix, which is either converted to particle coor-

dinates by clustering, cluster size filtering and centroid fitting in the case of macro-

molecule localizations (ribosomes and FAS), or voxel-based clusters by thresholding

and cluster size filtering for membranes, NPCs and cytoskeletal elements. In a post-

processing step, predictions can be integrated and optimized with the contextual

information (e.g., provided by the 2D CNN, Figure 22 bottom). Particle coordinate

lists can be intersected with compartment masks (e.g. ribosomes with the cytosol),

clusters in contact with organelles selected (e.g., NPC predictions with the nucleus),

or particles colocalized in proximity to specific organelles (e.g., mitochondrion-bound

ribosomes). In addition, predictions can be evaluated based on previous (ground

truth) annotations if they are provided (s. chapter 5.1.4.3 performance analysis).

87



5 RESULTS

88



5 RESULTS

Figure 22: DeePiCt workflow. Raw tomography data can be input as a stack of 2D slices

for compartment segmentations or 3D volumes for particle picking. Pre-processing by filtering to

match the amplitude spectrum of a high contrast tomogram can be applied (top right). Together

with binary masks for the features to be learned, the data is employed in a deep-learning network

based on the U-net architecture (middle, Ronneberger et al. 2015). The user can specify initial

features (IF), depth (D), batch normalization (BN) and dropout. Trained networks can directly

be applied to unseen tomograms. Post-processing of predictions provides 3D segmentations of

for example the cytosol in the case of a 2D CNN and FAS and ribosome coordinates, as well as

membrane annotations from 3D CNNs (bottom left). The outputs from the different networks

can be combined providing contextual information of for example all cytosolic ribosomes (bottom,

right). Figure adapted from De Teresa and Goetz et al., 2021, joint manuscript.

5.1.4.3 DeePiCt performance analysis

The performance of DeePiCt networks trained in VPP data was first analyzed within

the VPP domain. For this, 10 S. pombe VPP tomograms from the ground truth

data set were used to train DeePiCt CNNs with specific hyperparameters D and

IF. 2D CNNs were employed for cytosol and organelles (D = 5, IF = 16), and 3D

networks for FAS, ribosomes and membranes (D = 2, IF = 16, 4 and 4, respectively).

For the performance analysis within the same (VPP) domain, cross validations were

carried out by training in eight tomograms and leaving two out for testing.

As CNNs are considered classifiers, their performance was evaluated by the quality

of their predictions in comparison to the ground truth annotations. Therefore, preci-

sion and recall were calculated. Precision is a measure of specificity which describes

how correctly the network recalls voxel or coordinates and thus classifies true nega-

tives (TN) and true positives (TP). Recall defines how sensitive the network is. In

detail, it measures how much of the positively classified data (P), which can include

false negatives (FN), are detected as true positive. For each DeePiCt prediction a

precision recall curve (PRC) was calculated using the following assumptions:

Precision =
TP

TP + FP
(4)
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Recall =
TP

P
=

TP

TP + FN
(5)

Figure 23 shows an example precision recall curve (PRC) produced with the scikit-

learn python package (Pedregosa et al. 2011) illustrating the area under the PRC

(auPRC). The auPRC is a commonly used performance score for classifiers and

does not require thresholding. In general, the higher an auPRC value, the better a

classifier performs with a theoretical maximum score of 1. In practice, a network’s

performance is of high quality if the auPRC is between 1 and a baseline. This

threshold is defined by the amount of true positive observations within the complete

dataset.

In the case of the compartment segmentation pipeline, two 2D CNNs were trained

with binary masks for either cytosol or all organelles combined. The average auPRC

for cytosol and organelle predictions was 0.969 and 0.893, respectively. This means

that in many cases the voxels of these compartments were precisely recovered. The

baseline for cytosol and organelles in the ground truth data is 0.340 and 0.113, re-

spectively. This reflects the fact that these compartments occupy a large volume

fraction of the ground truth data.

3D networks were also evaluated based on the auPRC. In the case of particle local-

ization, the precision and recall of coordinates within a user-definable radius (known

or evaluated size of a particle, e. g., 10 voxel) was determined. VPP 3D networks

for ribosomes and FAS localization, resulted in cross validation average auPRCs of

0.579 and 0.234, respectively. While the value for ribosomes means that DeePiCt

precisely recalls many of the ground truth ribosomes, the average auPRC of the FAS

network is rather low. However, this CNN still performs better than TM and is less

time consuming than manual detection. Thus, this 3D CNN can be used for particle

localization and subsequent subtomogram analysis but currently should not be used

to predict trends in FAS numbers within cryo-electron tomograms. In general, for

particle picking the baseline is close to zero due to the smaller number of labeled

voxels in comparison to the complete ground truth.
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Figure 23: Performance analysis for cytosol segmentations predicted by a DeePiCt

2D CNN. An example precision recall curve (PRC) is plotted for five S. pombe tomograms (DEF,

1 h ED) in which cytosol volumes were predicted by a DeePiCt 2D CNN trained in 10 ground

truth VPP tomograms. The area under the PRC (auPRC) is highlighted in mint blue.

These results highlight that DeePiCt reliably detects structures in cryo-electron to-

mograms. Its performance speed is also high in comparison to manual annotations

and traditional approaches such as TM which in the case of FAS completely failed.

Utilizing the EMBL high performance cluster configurations and hardware (Nvidia

GPUs), TM required more than 5 h per tomogram (4x binned with dimensions of

928 x 960 x 500 voxel or 1,024 x 1,440 x 500 voxel and a resulting voxel size of 13.5

Å or 13.7 Å for data acquired with K2 and K3 cameras, respectively) with a search

of 1,944 Euler angle combinations (Hrabe et al. 2012). Visual inspection and seg-

mentations took several hours per tomogram depending on the cellular complexity

and data quality. In comparison, the above described DeePiCt networks required

several hours for training, but once this was accomplished, they could readily be

applied to unseen tomograms. Predictions were obtained in only around 2 min for

cytosol segmentations and around 30 min for ribosome localizations for the same

tomogram dimensions as described above.
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5.1.4.4 Domain adaptation of DeePiCt for ribosome localization

The reliable and fast performance of trained DeePiCt networks within the VPP do-

main opens the possibility of applying these CNNs to any cryo-electron tomogram.

Leveraging pre-trained networks eliminates the need to generate more training an-

notations for new data. This facilitates data mining in large tomography datasets

that were and will be acquired with the automated and streamlined cryo-sample

preparation and data collection pipelines described above. Here, I applied trained

VPP CNNs to S. pombe tomograms with different acquisition parameters (DEF),

nutritional state (energy depletion, ED) and to another yeast species, namely S.

cerevisiae.

First, learning transfer between VPP and DEF domains was tested for ribosomes.

The 3D CNN trained in VPP was applied to the 10 DEF S. pombe tomograms

from the ground truth data set and the network’s average performance was 0.596

auPRC (Figure 24). In addition, the applicability to different nutritional states was

tested in five fully expert-annotated DEF tomograms of S. pombe after 1h of energy

depletion (ED). The resulting average auPRC was 0.688 (Figure 24, Supplementary

Table S6). Applying this network also to another yeast species was evaluated on

three fully expert-annotated S. cerevisiae DEF tomograms for each normal nutrient

state and 1 h ED. In both cases, the VPP 3D CNN for ribosomes performed well

with average auPRCs of 0.828 and 0.708, respectively (Figure 24, Supplementary

Tables S9 and S11).
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Figure 24: Performance analysis for ribosomes predicted by a DeePiCt 3D CNN

trained in VPP and applied to DEF. In comparison to ground truth annotations in defocus

data for 10 S. pombe normal nutrient (NN) state, five S. pombe 1 h energy depletion (ED), three S.

cerevisiae NN and three S. cerevisiae 1 h ED tomograms, the network resulted in average auPRCs

of 0.596, 0.688, 0.828 and 0.708, respectively. Average values are indicated by grey horizontal lines.

5.1.4.5 Structural analysis of different DeePiCt-predicted particle

populations in the unperturbed S. pombe cytosol

The establishment of high performing DeePiCt networks renders this method a valu-

able tool for pattern recognition in cryo-ET and in particular for macromolecular

structural analysis in the cellular context. The trained VPP 2D and 3D CNNs were

thus applied to the 10 DEF tomograms of S. pombe in normal nutrient conditions,

particles structurally analyzed in RELION and compared to the ground truth an-

notations. An example tomogram and its assembled 3D segmentation provided by

DeePiCt is shown in Figure 25. It readily visualizes the crowded S. pombe cytosol

occupied by different ribosome species and the fatty acid synthase. In agreement

with the performance analysis, the visual output is comparable to the ground truth

annotations (Figure 26). The obtained DeePiCt-predicted particle lists were further
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used for subtomogram averaging and 3D classifications in RELION to dissect dif-

ferent subpopulations.
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Figure 25: DeePiCt predicts particle populations in their cellular context. A) 2D slice

of a raw S. pombe DEF tomogram (bottom left triangle) and after amplitude spectrum-matching

(top right triangle). Ribosomes in the crowded cytosol (abundant dark objects) and organelles such

as a vacuole (V), a mitochondrion (M, mito) and ER (highlighted dashed box K) are observable.

Different z-slices of the highlighted areas (dashed boxes) are depicted in K and L. B) The predicted

3D segmentations from DeePiCt networks trained in VPP data mine organelles (grey), membranes

(purple), FAS (pink) and ribosomes (yellow). Ribosomes were further analyzed by 3D classifications

(focused on head (dark blue) and exit tunnel densities (cyan)) or by integrating the contextual

information provided by the organelle segmentations (mito-bound ribosomes (green) and ER-bound

(orange)). C-N) Subtomogram averages from predictions in all 10 DEF ground truth tomograms.

C) The 3D-refined FAS density (pink) from 108 particles resembles the typical barrel-like shape

and matches the published S. cerevisiae structure (cyan, PDB 2uv8 (Leibundgut et al. 2007)). Per

half dome, along the equatorial plane of the α-wheel, three densities fitting the phosphopantetheine

transferase (PPT) and three extra, unassigned densities can be observed. D) Cross-section through

the half dome reveals three densities close to the α-wheel which fit acyl carrier proteins (ACPs,

white asterisks). E) Subtomogram average of all 26,866 cytosolic ribosomes (yellow). F) Sub-

class of 5,815 cytosolic ribosomes detected in 3D classifications and refined to 9.4 Å in M. G-H)

Cross-sections through the average in F show the peptidyl transferase center (PTC) with a P-site

tRNA and the L1 stalk facing the E-site. I) Subset of 3,348 ribosomes (dark blue) classified for an

additional density close to the head of the 40S subunit and with extra density at the exit tunnel

(white arrowheads). The eukaryotic elongation factor eEF3 (red, EMDB 12062 (Ranjan et al.

2021)) could be assigned to the additional head density. J) Classification for the extra density

below the exit tunnel recovered 1,503 cytosolic ribosomes (cyan). The S. cerevisiae ribosome with

ES27L in a particular configuration fits the extra density (left, purple, EMDB 1667 (Becker et

al. 2009), PDB 3izd (Armache et al. 2010)). The remaining density right below the exit tunnel

(white arrowhead) fits different factors with a MetAP-like fold such as Arx1 (purple, EMD-3151

(Greber et al. 2016)). K-L) Different z-slices of the areas highlighted in A with ribosomes (white

arrowheads) decorating ER and a mitochondrion (M). M) Density of 249 ribosomes bound to the

ER membrane via a linker. N) Subtomogram average of 519 mitochondria-bound ribosomes with

a connecting density to the membrane. Both sub-classes interact with the respective organelle

membranes at different angles with an offset of around 35°. Figure adapted from De Teresa and

Goetz et al., 2021, joint manuscript.
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Figure 26: Ground truth annotations of the defocus tomogram depicted in Figure

25. Comprehensive annotations for organelles (grey), FAS (pink), ribosomes (yellow) with subsets

displaying extra densities close to the 40S head (dark blue) and the ribosomal exit tunnel (cyan) as

well as mitochondria-bound (green) and ER-bound (orange) particles. Membranes (purple) were

predicted by DeePiCt. Data jointly produced with Irene De Teresa.
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For FAS, 108 particles were localized which is less than the 366 instances in the defo-

cus ground truth annotations. Nevertheless, a subtomogram average at a resolution

of 28 Å (with applied D3-symmetry) resembled the heterododecameric (α6β6), 2.6-

megadalton type I FAS complex with the particular barrel-like shape (Figure 25 C).

As neither S. pombe and not any cryo-FIB lamella-derived cryo-ET FAS subtomo-

gram averages are publicly available, the density was compared to published X-ray

crystallography or single particle cryo-EM structures of other yeast species. The fact

that it matches well with the published FAS structures of S. cerevisiae (Figure 25 C

and D, PDB 2uv8, (Leibundgut et al. 2007)), P. pastoris (EMDB 12139, (Snowden

et al. 2021)), and the defocus and VPP ground truth subtomogram averages (Figure

27), confirmed its structural integrity. At the equatorial plane along the α-wheel,

three additional densities were observable. These could be assigned to the phospho-

pantetheine transferase (PPT), which acts as activation domain. Three additional

densities could not be ascribed based on published structures. Inside each half

dome, the three densities are located close to the α-wheel and to the ketosynthase

(KS) domain (Figure 25 D). They fit acyl carrier proteins (ACPs), which shuttle

the growing acyl chain to each catalytic site. The ACP’s location within each half

dome or absence of its density due to potential flexibility and substrate-shuttling

dynamics have been associated with the activity of the whole FAS complex (Gipson

et al. 2010, Jenni et al. 2007, Kastritis et al. 2017, Leibundgut et al. 2007, Singh

et al. 2020). The particular localization of the ACPs that was observed here in

the FAS subtomogram average derived from lamellae prepared within exponentially

growing S. pombe cells was also resolvable in the ground truth DEF data, but not

in VPP subtomogram averages. This is likely due to the previously observed ham-

pering of high-resolution features in cryo-ET acquisitions with the VPP and thus

fine structural details such as ACPs could not be resolved.
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Figure 27: Comparison of FAS subtomogram averages from DEF ground truth and

DeePiCt-predicted 3D classifications. A-B) The FAS ground truth (gt) subtomogram average

fits the published structures of S. cerevisiae and P. pastoris (cyan, PDB 2uv8 and EMDB 12139)

with ACPs close to the α-wheel (bottom, white asterisks). C-D) The FAS gt density also matches

well the VPP and DeePiCt derived subtomogram averages. ACPs could not be resolved in the

VPP data (D bottom, white asterisks). E) 3D classification of DeePiCt-predicted FAS in defocus-

only tomograms. 2D slices after classification for 25 iterations without applied symmetry and

3D subtomogram averages of the refined classes with applied D3 symmetry, are depicted. Figure

adapted from De Teresa and Goetz et al., 2021, joint manuscript.

In the case of ribosomes, a total of 26,866 cytosolic ribosomes were localized by

DeePiCt, matching the range of 25,901 ribosomes from the defocus ground truth

annotations and in agreement with the performance analysis. The resulting subto-

mogram averages for the DEF and DeePiCt datasets, both at a resolution of 11 Å

after M refinements, confirmed overall structural integrity of the eukaryotic ribo-

some (Figure 25 E and 28). Sub-nanometer resolution densities (5,815 particles at

9.4 Å for DeePiCt and 10,970 particles at 9.3 Å for DEF ground truth) were ob-

tained for well-aligned classes recovered via 3D classifications (Figure 25 F, Figures

20 and 29). Here, the peptidyl transferase center (PTC) was clearly occupied by a

P-site tRNA and the L1 stalk observed facing the E-site (Figure 25 G, H, Figure

28). The tRNA was not resolvable in the VPP dataset. Furthermore, hierarchical

3D classifications of ribosomes from defocus-only data (both DeePiCt predictions

and ground truth annotations cf. Figures 20 and 29) sort out more than half of the

particles into poorly defined classes, even when initial alignments were optimized

in M (Tegunov et al. 2021). Moreover, a 60S large ribosomal subunit class could

not be detected. Thus, VPP data seemed to be more suited for hierarchical 3D
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classification due to the improved image contrast of the raw data. However, the

observed density differences within the PTC show that defocus-only subtomograms

provide higher-resolution information elucidating finer structural details.

Figure 28: Comparison of ribosome subtomogram averages. A) Subtomogram average

of all 25,901 ribosomal particles annotated in the defocus ground truth (gt) data set. B) A well-

aligned class detected through 3D classifications could be refined in M to 9.3 Å resolution. C-D)

Cross-sections through B reveal the peptidyl transferase center (PTC) occupied by P-site tRNA

and the L1 stalk facing the E-site. E-F) The subtomogram average of all DEF gt ribosomes

matches the DEF DeePiCt (grey, E) and VPP densities (grey, F). Figure adapted from De Teresa

and Goetz et al., 2021, joint manuscript.
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Figure 29: Hierarchical 3D classifications of ribosomes detected by DeePict in DEF.

Starting from 26,866 M-refined particles, ribosomes were clustered into two classes at each step

(indicated by branching points). A well-aligned class was extracted (yellow box) which could be

refined to a resolution of 9.4 Å in M. More than 70 % of the particles ended up in poorly defined

classes (right branch). For each class 3D averages of iteration 25 are displayed as 2D slices. Figure

adapted from De Teresa and Goetz et al., 2021, joint manuscript.

In order to gain deeper insights into ribosome subpopulations within the S. pombe

cytosol, 3D classifications of all DeePiCt-predicted ribosomes focused on the head

region of the small subunit were performed. 3,348 ribosomes with extra densities

at this location, as well as at the ribosomal exit tunnel, which was not included in

the mask, were classified and refined to a resolution of 15 Å (Figure 25 I). Similar

subtomogram averages were obtained from VPP and DEF ground truth annotations
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(3,482 and 3,601 particles at 12 Å and 21 Å, respectively, Figure 30). In the de-

focus data, P- and E-site tRNAs, as well as the L1 stalk facing towards the E-site

were clearly resolvable (Figure 30). Due to the lack of published S. pombe ribosome

structures, the average was compared to the S. cerevisiae ribosome with the bound

eukaryotic elongation factor eEF3 (EMDB 12062) which fits well into the extra head

density (CC 0.8972, Figure 25 I, Figure 30). Its function is to facilitate binding of

a new tRNA to the A-site via the aminoacyl-tRNA–eEF1A–GTP complex during

translation (Andersen et al. 2006, Ranjan et al. 2021).

The extra density observed at the exit tunnel could not readily be assigned ow-

ing to the fact that many factors bind to this site. Focused 3D classifications at

this location within all cytosolic DeePiCt-derived ribosomes recovered a subset of

1,503 particles with the additional exit tunnel density refined to 16 Å (Figure 25

J). A similar class was detected in defocus and VPP ground truth data (3,349 and

5,755 particles refined to 11 Å and 20 Å, respectively, Figure 31). The flexible 60S

rRNA expansion segment in its exit configuration fits well into a part of the extra

density (Figure 25 J). This orientation of ES27L has an implied function in transla-

tion fidelity. It is connected to the remaining density at the point where the growing

nascent peptide chain exits the ribosome. Different factors are known to be recruited

by ES27L and to bind the ribosome at the exit tunnel. The remaining density fits

a domain with a MetAP-like fold, such as for example the methionine aminopepti-

dase (MetAP (Fujii et al. 2018)) and a domain of the N-terminal acetyltransferase

A (NatA (Knorr et al. 2019)), which both co-translationally modify the nascent

peptide chain. In addition, the S. cerevisiae nuclear export factor Arx1 which is

supposed to be released in the cytosol upon maturation of the large subunit and its

human homologue the translation regulator Ebp1, which was found to be bound to

fully assembled 80S ribosomes, match the density below the exit tunnel (Figure 31,

(Greber et al. 2016, Kowalinski et al. 2007, Wild et al. 2020)).
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Figure 30: Focused 3D classification of an extra density close to the head of the 40S

small subunit and subtomogram average comparison between datasets. A-C) 3D clas-

sifications of VPP ground truth (gt), DEF gt and DeePiCt-predicted cytosolic ribosomes focused

on a density close to the 40S head. The used classification mask (blue sphere) is displayed in A.

In the case of VPP gt data in A the extra head density can already be observed on the level of the

2D slice of the class average after iteration 25. D) Overlay of the subtomogram average from DEF

gt data with the published S. cerevisiae eEF3-bound (white arrowhead) ribosome (red, EMDB

12062 (Ranjan et al. 2021)). E) Cross-section through D revealing the PTC occupied by E- and

P-site tRNAs as well as the L1 stalk facing the E-site. F) Top views of eEF3 fitting the extra

head density. G) and H) Overlays of DEF gt with DeePiCt-predicted and VPP densities (grey),

respectively. Figure adapted from De Teresa and Goetz et al., 2021, joint manuscript.
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Figure 31: Focused 3D classification at the ribosomal exit tunnel and subtomogram

average comparison between datasets. A-C) Hierarchical 3D classifications of VPP ground

truth (gt), DEF gt and DeePiCt-predicted cytosolic ribosomes focused on an additional exit tunnel

density. The used classification mask (cyan sphere) is displayed in A. 2D slices of 3D class aver-

ages after iteration 25 are depicted and the 3D-refined final averages (below). D) Subtomogram

average of the DEF gt ribosome with extra exit tunnel density (white arrowhead). E) The ribo-

somal expansion segment ES27L (purple, PDB 3izd) fits well into a part of the additional density

connecting the remaining density (white arrowhead) to the exit tunnel. F) Zoom into the exit

tunnel area in E with the human Ebp1-bound ribosome (grey, EMDB 1068) fitted into the map.

G) and H) The DEF gt subtomogram average matches well with the DeePiCt-derived and VPP

gt densities (grey). Figure adapted from De Teresa and Goetz et al., 2021, joint manuscript.
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5.1.4.6 Contextual DeePiCt predictions reveal ribosome-organelle inter-

actions

Ribosomes bound to specific organelles, such as the ER, have been structurally

described and enable co-translational insertion of nascent peptide chains into their

destined compartments via specialized transporters (Pfeffer et al. 2015, Mahamid et

al. 2016, Gold et al. 2017). For instance, ribosomes were previously detected to be

attached to in vitro-purified mitochondria membranes (Gold et al. 2017). However,

their in-cell configurations remain to be explored. As the segmentation and local-

ization of macromolecules in the vicinity of specific organelles is quite tedious with

traditional pattern recognition techniques, DeePiCt was employed to investigate its

potential of gaining new biological insights. By synergizing compartment segmen-

tation and particle picking networks, ribosomes were detected and analyzed based

on their proximity to the ER and mitochondria. Ribosomes decorating specific or-

ganelles could already be observed in the raw 2D tomographic slices (Figure 25 K,

L). Particles were picked within 25 nm distance to the respective organelle segmen-

tations which were manually selected from the CNN predictions. 3D classifications

of each organelle-related subset distinguished two classes: one with and one without

a clear membrane density. This was also observed for defocus and VPP ground truth

annotations (Figure 32). The recovery of classes without clear membrane density is

likely due to the fact that the yeast cytosol is so crowded that ribosomes end up in

random orientations in the close vicinity of ER and mitochondria. It can potentially

also be emphasized by incorrect organelle and particle predictions.
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In the case of the ER subset, 249 ribosomes from six tomograms revealed a connect-

ing density from the exit tunnel to the organelle’s membrane at a resolution of 34

Å (Figure 25 K, M). This average matches published structures (Becker et al. 2009,

Gold et al. 2017, Mahamid et al. 2016) and was also found in defocus and VPP

ground truth datasets (118 and 466 particles at 36 Å and 31 Å, respectively, Figure

32). It likely connects the ribosome to the translocon, which channels proteins into

the ER or facilitates lateral insertion of membrane proteins. However, the direct in-

teraction could not be resolved in the VPP subtomogram average despite the larger

number of ER-bound particles. This is likely due to the VPP which hampers the

fine, high-resolution features in cryo-electron tomograms.

Mitochondria-bound ribosomes (359 particles from three tomograms refined to 34

Å) were found to interact with the membrane at a different angle than at the ER

(angular offset of around 35°, Figure 25 L, N). A connecting density originating from

below the large subunit close to the interface with the small subunit could be de-

tected in DEF (DeePiCt and ground truth) but not in the VPP dataset (Figure 33).

It likely originates from a factor that connects the ribosome to the translocase of

the outer membrane (TOM) complex for co-translational nascent peptide insertion

(Avendano-Monsalve et al. 2020).

The findings for ribosomes bound to ER and mitochondria highlight the potential

of using DeePiCt to explore particles in their cellular context. The high-throughput

and sufficient performance render it a valuable tool to explore further datasets.
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Figure 32: 3D classification of ER-bound ribosomes and subtomogram average com-

parison between datasets. A-C) Focused 3D classifications of ribosome subpopulations within

25 nm distance to the ER in VPP ground truth (gt), DEF gt and DEF DeePiCt datasets, respec-

tively. The spherical mask positioned at the peptide exit tunnel indicated in Figure 31 A was used

for focused classification. 2D slices of 3D class averages after iteration 25 (top) and the 3D-refined

final averages (below) are depicted at similar thresholds revealing in all cases a class with and

one without (partial) membrane density. D) and E) Subtomogram average of the DEF gt ribo-

some bound to the ER membrane (orange) overlaid with the DeePiCt-predicted and VPP densities

(grey), respectively. F) and G) The density also fits well with published ER-bound S. cerevisiae

(EMDB 3764) and HeLa (EMDB 8056) ribosomes (both grey), respectively. Figure adapted from

De Teresa and Goetz et al., 2021, joint manuscript.
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Figure 33: 3D classification of mitochondria-bound ribosomes and subtomogram av-

erage comparison between datasets and the ER-bound density. A-C) Hierarchical 3D

classifications of all ribosome subsets found within 25 nm distance to ground truth annotations of

mitochondria in VPP ground truth (gt), DEF gt and DEF DeePiCt datasets, respectively. The

spherical mask positioned at the peptide exit tunnel indicated in Figure 31 A was used for focused

classification. 2D slices of 3D class averages after iteration 25 (top) and the 3D-refined final av-

erages (below) are depicted revealing in all cases a class with and one without membrane density.

D) and E) Subtomogram average of the DEF gt ribosome bound to the mitochondrion membrane

(green) matches the DeePiCt and VPP densities (grey), respectively. F) and G) Overlays between

mitochondria-bound (green) and ER bound (orange) DEF gt and VPP subtomogram averages.

The structural analysis reveals different interaction surfaces of the ribosome with ER and mito-

chondria with an angular offset of 33-35°. Figure adapted from De Teresa and Goetz et al., 2021,

joint manuscript.
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5.2 Nutrient-dependent reorganization of the yeast cytosol

The results described in chapter 5.1 render in-cell cryo-electron tomography a higher-

throughput method. Sample preparation was optimized, cryo-FIB milling auto-

mated with SerialFIB and tomography data acquisition streamlined in SerialEM.

The developed DeePiCt pipeline further allowed for fast and reliable annotation of

the generated large datasets.

These tools enabled me to explore molecular crowding inside native, cryo-preserved

yeast cells. As mentioned above, the yeast cytosol transitions upon energy deple-

tion from a liquid- to a solid-like state with an expected change in global and local

macromolecule distributions. The cytosolic reorganization upon nutritional stress

was therefore analyzed in wild-type S. cerevisiae and S. pombe. Over 370 tomo-

grams were collected visualizing the reshaped yeast cytosol upon nutrient scarcity.

Cells were fully deprived of energy for different time windows using synthetic com-

plete medium lacking sugars, supplemented with the glycolysis inhibitor 2-deoxy-

D-glucose and the respiratory chain inhibitor Antimycin A (cf. methods chapter

4). This treatment has been shown to lead to an immediate arrest of cell cycle

and metabolism similar to a dormant state achieved by long periods of starvation

(Munder et al. 2016). In addition, S. pombe cells were glucose-depleted for four days

in order to compare this more natural type of nutrient limitation with the severe

response to energy depletion. As a control, more than 200 tomograms were collected

from exponentially growing cells in normal nutrient (NN) conditions. The acquired

and reconstructed data sets are summarized in Table 2 (acquisition parameters in

Supplementary Table S2). In the following sections I will compare the different nu-

tritional states and the observed changes, first on the level of organelle morphologies,

followed by characterization of diverse cytosolic assemblies, and finally, on the fine

detail of conformations of protein complexes in cryo-electron tomograms.
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Table 2: Cryo-electron tomography summary of yeast cells grown in varying nutrient

conditions. Further details including acquisition parameters are described in Supplementary

Table S2.

Sample # Sessions # Tomograms

S. pombe NN 6 138

S. pombe 1 h ED 4 117

S. pombe 3.5 h ED 2 76

S. pombe 17 h ED 1 34

S. pombe 4 d glucose

depletion

1 31

S. cerevisiae NN 3 64

S. cerevisiae 1 h ED 2 62

S. cerevisiae 6 h ED 2 56

SUM 21 578

5.2.1 Cryo-electron tomography of the yeast cytosol in normal nutrient

state

Tomograms of cryo-FIB-milled lamellae revealed the crowded nature of the yeast

cytosol under normal nutrient conditions (S. cerevisiae Figure 34 and S. pombe

Figures 18 and 25). Mitochondria were elongated and displayed ATP synthases dec-

orating their cristae. This is in line with tubular mitochondria networks that have

been detected in light microscopy studies (Jakobs et al. 2020). S. cerevisiae cells

usually contain around two medium-sized and S. pombe several smaller, spherically

shaped vacuoles (Li and Kane 2009, Zhou 2004). Structured filaments that could be

observed are microtubules and actin filaments, which together with septins in the

case of S. pombe, constitute the cytoskeleton. Macromolecules such as ribosomes

or the fatty acid synthase could also be detected by eye. These complexes were

evenly distributed in NN conditions, as confirmed by automated picking allowing

for subsequent quantitative characterization.
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Figure 34: Cellular landscapes of exponentially growing S. cerevisiae cells. A) 2D slice

of a VPP tomogram depicting the cytosol and an elongated mitochondrion (M). The inset shows the

highlighted area (dashed box) with the mitochondrion’s cristae decorated by ATP synthases (white

arrowheads). Inside the nucleus and within its periphery microtubules (MT) are observable. B) The

tomographic slice acquired with a VPP visualizes the crowded cytosol with ribosomes (abundant

dark shapes) and FAS (white circles) with a typical barrel-like shape (inset). ER can be observed

close to the cell wall (CW) where an actin filament (A) is located close to the plasma membrane. C-

D) Defocus tomogram Gaussian low-pass filtered (sigma = 3) to enhance image contrast for manual

segmentations in D. The nucleus (yellow) surrounded by the nuclear envelope (petrol) is connected

to the cytosol via nuclear pore complexes (NPCs). The cytosol contains elongated mitochondria

(M, green), vesicle (V, red) in close proximity to a tubular compartment (likely Golgi apparatus,

orange) and the ER (purple) close to the cell wall. Segmentations visualized in 3D.
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5.2.2 Nutritional stress induces changes in organelle morphologies and

lattice formation on S. pombe mitochondria surfaces

Morphological changes of mitochondria could be observed in cryo-electron tomo-

grams of both yeast strains upon different periods of energy depletion and four days

of glucose depletion. Under normal nutrient conditions, these dynamic organelles

are tubular (cf. Figures 18 A and 34, (Jakobs et al. 2020)). Here, in tomograms of

nutritionally stressed yeast cells, they appeared smaller with more spherical shapes

and contained ATP synthases decorating cristae membranes (Figure 35). Mitochon-

dria fissioning in S. pombe upon glucose starvation has also previously been shown

in light microscopy experiments and electron tomography at room temperature (Liu

et al. 2019, Zheng et al. 2019). Here, mitochondrion fission could directly be ob-

served in cryo-electron tomograms but on the tomogram level no clear structure was

identified at their neck (Figure 35 D). Furthermore, energy-depleted S. pombe cells

exhibited an additional lattice on the mitochondrion outer membrane (MOM) (Fig-

ure 35 A-D). These macromolecular assemblies could be observed in 18-24 % of the

acquired S. pombe tomograms depending on the duration of energy depletion (Table

3). The structural signature is reminiscent of cryo-EM maps of Dnm1 assemblies

(Francy et al. 2017, Ingerman et al. 2005, Mears et al. 2011). This GTPase is a

dynamin-related protein and has been shown to be required for mitochondria divi-

sion. It can bind to the outer membrane, where it self-assembles which is supposed

to drive membrane constriction upon GTP hydrolysis (Mears et al. 2011). Further

segmentation and subtomogram averaging of the surface lattice will likely identify

the components of this energy-depletion induced structure. Dnm1 assemblies might

be arrested in this membrane bound state due to the lack of energy which is required

for GTP hydrolysis and subsequent membrane fission.

Another organelle changing its morphology upon nutritional stress is the lipid droplet

(LD). LDs are metabolic compartments confined by a monolayer serving multiple

functions such as storage of TAGs among others (Mahamid et al. 2019, Rogers et

al. 2021). In normal nutrient conditions, LDs have a spherical shape. Upon energy

depletion, they showed altered morphologies (Figure 36 A-F). Some were engulfed

by vacuoles, others connected to the nuclear envelope or displayed deformations.

In several cases, peripheral crystalline layers were visible which are caused by lipid

phase transition. This happens when TAGs are broken down by lipases to mobilize
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Figure 35: Mitochondria morphologies upon nutritional stress revealed by cryo-ET.

A-C) Spherically shaped mitochondria (M, green) were observed in 2D tomographic slices of S.

pombe upon ED. 3D segmentations of ER (purple), vesicle (red) and vacuoles (grey) are displayed.

B) A surface lattice in direct connection (cyan arrowheads) to the mitochondria outer membrane

(MOM) could be observed in this zoom of the highlighted area in A (cyan, dashed box). C) Top

(xz) view of the lattice in B revealed regular interspacing of this structure (cyan arrowheads). D)

Mitochondrion (M) division was directly observed in S. pombe by cryo-ET after 3.5 h ED. A MOM-

lattice was located close to the fission point (cyan arrowheads). E) Fractionation of mitochondria

(M) was also detected in S. cerevisiae after 1 h ED. The highlighted area (dashed box) showed ATP

synthases decorating mitochondrion cristae. Tomographic xy slices are displayed unless marked

otherwise.

fatty acids as energy source (Figure 36 A, B, D, (Mahamid et al. 2019, Rogers et

al. 2021)). However, the changes in LD morphology may also in part be attributed

to the highly heterogeneous and dynamic character of this organelle (Zhang et al.

2017).

LDs were also observed in connection to vacuoles. In S. pombe these organelles were

fractionated by monolayers of FAS. Vacuole fractionation can also be caused by hy-

perosmotic stress. As this leads to a reduction in cytosolic volume, the fractionation

of vacuoles into smaller vesicles was suggested to maintain osmotic pressure in the
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Figure 36: Cryo-ET revealed nutrient-stress induced alterations of organelle mor-

phologies. A-F) Changes in LD morphologies could be observed in 2D tomographic slices of

yeast cells upon nutrient scarcity. A) In S. pombe after 1 h ED, lipid droplets (LD) were invagi-

nated by membrane-bound compartments which are likely vacuoles based on their texture (V). B)

Zoom into the highlighted region in A (dashed box) revealed crystalline layers at the outer part

of the lipid droplet (white arrowhead). C) Another LD in proximity of the nucleus (N) was in

contact with the nuclear envelope and a vacuole. D) An LD close to vacuoles displayed peripheral

crystalline layers (white arrowhead) in S. pombe after 17 h ED. E) In S. cerevisiae after 1 h ED, an

LD is still spherical and located in proximity to a vacuole and the nucleus. F) In S. pombe after 3.5

h ED, an LD is squeezed between vacuoles which are fractionated by FAS monolayer arrays (white

circles). Reflections (asterisk) are caused by interference of the electron beam with crystalline ice

which was not properly vitrified inside the vacuoles. G) The same sample as in F displays dense,

unstructured areas (white dashed line and asterisks) in the nucleus, cytosol and inside a mitochon-

drion (M). H) After 4 days of glucose depletion, S. pombe cells revealed altered nuclear envelope

volumes (highlighted with white arrowheads), spherical mitochondria and deformed vacuoles close

to the cell wall (CW).

cytosol and keep protein concentrations at an isotonic level (Bone et al. 1998, Li

and Kane 2009). Thus, the observed morphological adaptation of vacuoles likely

also has a functional role in the nutritional stress-response.
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Furthermore, at later time points of ED (>3.5 h) dense, unstructured clusters could

be observed in nucleus, cytosol and organelles (Figure 36 G). These areas could

contain condensed amorphous or aggregated biomolecules. They are likely caused

by phase transitions to either cope with the stress in a reversible manner or display-

ing a malfunctional thermodynamic end state due to the prolonged energy depletion.

A particular nuclear envelope alteration was observed in S. pombe after 4 days of

glucose depletion (Figure 36 H). Here, the distance between the two membranes was

enlarged which might indicate changes in nuclear envelope tension that could also

have functional implications on nuclear-cytosolic transport (Zimmerli et al. 2021).

5.2.3 Nutritional stress induces a variety of structured supramolecular

assemblies

Cryo-electron tomography revealed that the cellular interior of wild-type yeast cells

reorganized upon energy depletion. In cryo-electron tomograms of 1 h energy-

depleted (ED) yeast, both unstructured, identified by the presence of ribosome-

excluded areas, as well as a large variety of highly-structured meso-scale assemblies

could be observed (Table 3, Figure 37). Depending on the type and duration of nutri-

ent stress in 18-45 % of the stochastically acquired tomograms, at least five different

classes of macromolecular assemblies were visually distinguishable in the cytosol

and nucleus of S. pombe and S. cerevisiae cells (Table 3). Likewise, supramolecular

structures formed and occupied large cytosolic areas upon four days of glucose star-

vation in S. pombe (Figure 37 F).

The structural signatures and dimensions of the observed assemblies were distinct

from known cytoskeletal filaments (cf. Figure 34). The architectures were for exam-

ple constituted by filaments traversing through the cytosol displaying elongated, or

hollow structures with a pitch, and clusters resembling lattice formations or rhom-

boid grids. These assemblies occupied on average 5 % of the cytosolic volume after

1 h ED (Figure 38). At later time points (3.5 h and 17 h for S. pombe and 6 h for

S. cerevisiae identified as relevant time points by light microscopy movies described

in chapter 5.6.1) the assemblies seemed to qualitatively occupy even larger fractions

of the cellular space (Figure 37 D, E). These observations of highly structured as-

semblies confirm previous findings by light microscopy studies (Narayanaswamy et
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al. 2009, Noree et al. 2019a) revealing that certain protein complexes colocalize or

condense upon nutrient stress also in unlabeled, wild-type yeast cells.

Table 3: Quantification of nutrient-dependent supramolecular assemblies in cryo-

electron tomograms. Total number of tomograms acquired on stochastically selected positions

(# Tomo) and instances in which cytosolic and nuclear filaments, lattices on the mitochondrion

(mito) outer membrane and FAS assemblies were observed.

Sample #

Tomo

# Fila-

ments

# Cy-

tosolic

fila-

ments

# Nu-

clear

fila-

ments

Tomo

with fil-

aments

[ %]

# Mito

lattice

Tomo

with

mito

lattice

[ %]

# FAS

assem-

blies

Tomo

with

FAS

assem-

blies

[ %]

S. pombe 1 h ED 117 39 36 3 33 26 22 43 37

S. pombe 3.5 h ED 76 26 25 1 34 18 24 53 70

S. pombe 17 h ED 34 12 11 1 35 6 18 9 26

S. pombe 4 d glucose

depletion

31 14 13 1 45 0 0 0 0

S. cerevisiae 1 h ED 62 14 11 3 23 0 0 10 16

S. cerevisiae 6 h ED 56 10 7 3 18 0 0 8 14
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Figure 37: Examples of nutritional stress-induced macromolecular assemblies revealed

by cryo-ET. A-C) In 2D tomographic slices of S. pombe after 1 h ED, assemblies with different

polymeric architectures could be observed. The structures had characteristics of A) filaments

displaying elongated, hollow structures with a pitch of around 30 nm (insets), B) large lattice

formations close to a division septum (S) and vesicles (V) or C) rhomboid grids with 10 subunits

(inset, cyan arrowheads). D-F) Macromolecular assemblies were also observed at later time points

of ED and upon 4 d of glucose depletion (F). They seemed to occupy larger fractions of the cellular

volume over time. I-H) Likewise, nutrient stress-induced macromolecular assemblies were revealed

in S. cerevisiae tomograms. Elongated polymers in both cytosol (I, inset) and nucleus (G) were

observed upon 1 h ED. The assemblies seemed to occupy larger volume fractions after 6 h ED

(H). Tomographic xy slices are displayed unless marked otherwise. Manual 3D segmentations of

organelles are colored for membrane-bound compartments in orange, nucleus in yellow, nuclear

envelope in petrol, vesicles in red, mitochondrion (M) in green and ED assemblies are highlighted

in cyan.

Figure 38: Cytosolic volume fractions occupied by filaments observed after 1 h ED.

Cytosol (excluding organelles) and filament volumes were determined by manual segmentations.

Cytosolic volume fractions were calculated with the assumption that the combined cytosol and

filament volumes correspond to 100 %. The mean is indicated by a horizontal line.
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5.2.4 FAS forms assemblies upon energy depletion in a species-dependent

manner

The fungal type I fatty acid synthase (FAS) exhibited rearrangement upon energy

depletion in yeast tomograms. This observation confirms previous reports by light

microscopy movies that show the formation of FAS foci in S. cerevisiae upon glucose

depletion (Suresh et al. 2015). Under normal nutrient conditions, this multienzyme

complex is evenly distributed within the yeast cytosol (cf. Figures 18 A, 25 B, 34).

Due to the clear structural signature of FAS, co-localization of individual particles

was readily detectable in the cytosol of energy-depleted, unlabeled wild-type S. cere-

visiae and S. pombe cells (Figure 39). In S. pombe, FAS assembled into ordered,

monolayer arrays which appear separated by membrane-bound compartments (Fig-

ure 39 A-D). The overall meso-scale arrangement did not change over time; however,

from 1 h to 3.5 h ED, the arrays per tomogram increased (from 37 % to 70 % of to-

mograms) and then became less frequent at 17 h of energy depletion (observed in

26 % of tomograms, cf. Table 3).

Compared to the membrane-bound FAS monolayers in S. pombe, energy-depleted

S. cerevisiae showed co-localization of FAS, without the presence of membranes in

the vicinity and qualitatively occupied more space over time (Figure 39 E, F). In S.

cerevisiae, the seemingly unorganized meso-scale assemblies contained fully assem-

bled FAS complexes. These assemblies could be observed in 16 % and 14 % of the

stochastically collected tomograms after 1 h and 6 h of energy depletion, respectively.
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Figure 39: Fatty acid synthases form species-dependent assemblies in the energy-

depleted yeast cytosol. A-D) 2D tomographic slices of S. pombe upon ED revealed monolayers

of FAS identified based on the structural signature of this barrel-shaped complex (examples high-

lighted with pink circles). The arrays were layered between membrane stacks (indicated by white

arrowheads) and connected to vacuoles (grey, V) or other organelles (data not shown). A) After

1 h ED, 3D segmentations showed the colocalization of FAS assemblies (pink, single ones high-

lighted by circles) with other membrane-bound compartments (orange) and ED-filaments (cyan).

In addition, vesicles (red) and ER (purple) close to the cell wall (CW) occupied the cytosol. B)

FAS complexes were arranged like beads on a string. C) After 3.5 h ED, FAS monolayers frac-

tionate vacuoles, which are also connected to a deformed lipid droplet (LD), or connect to the

nucleus where high density, unstructured areas were observable (asterisks). D) Upon 17 h ED,

FAS arrays are still observable between membrane stacks (white arrowheads) and in proximity

to an ED-filament assembly (highlighted in cyan). E) In S. cerevisiae, FAS complexes colocalize

in seemingly random orientations (purple) within the cytosol after 1 h ED. Vesicles are displayed

in red. F) After 6 h ED FAS assemblies were concentrated in larger areas of the cytosol. An

ED-filament assembly could be observed in the vicinity (cyan dashed line).
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5.3 Quantification of molecular concentrations hints at yeast species-

dependent changes in crowding upon energy depletion

As described above, cryo-electron tomograms depicting the yeast cytosol were col-

lected under varying nutrient conditions (cf. Table 2). These visualized ribosomes

occupying the cytosol in which energy depletion-induced concentration changes were

not qualitatively observable. However, for FAS nutrient-dependent localization in-

cluding the formation of highly structured assemblies was detected (cf. Figure 39).

In order to estimate nutrient-dependent changes in crowding on a molecular level,

I assessed a) global changes in crowding in terms of cytosolic ribosome concentra-

tions as an approximation, and b) variations in the distribution of individual protein

species forming nutrient-dependent local assemblies or condensates with FAS as a

model complex. For this purpose, I determined molecular concentrations of ribo-

somes and FAS from ground truth annotations in cryo-electron tomograms. I first

calculated cytosolic volumes from manual cytosol segmentations (cf. Figures 34,

38, 35, 39) in five tomograms of S. pombe 1 h ED and three tomograms of S. cere-

visiae for each NN and 1 h ED (Supplementary Tables S6-S11). In these defocus-

only datasets, I localized ribosome and FAS particles by first visual inspection of

template matching (TM) results in the case of ribosomes, followed by subsequent

iterative manual annotations based on their structural signatures for both particle

species. For S. pombe NN, the comprehensive ground truth annotations described

in chapter 5.1.4 were used (20 tomograms comprised of 10 VPP and 10 defocus-

only datasets, cf. Supplementary Tables S4-S5). This enabled the calculation of

ribosome and FAS numbers per physical, cytosolic volume. To expand the data

and analyze later time points of ED, I used DeePiCt predictions for ribosomes and

cytosol in defocus-only tomograms based on the CNNs described in chapter 5.1.4

(cf. Supplementary Tables S6-S13).

The calculated ribosome concentrations for yeast grown in normal nutrient condi-

tions are within the range of published values from MS and EM/cryo-ET studies

(Table 4). However, FAS concentrations determined in cryo-electron tomograms

were underestimated in comparison to MS studies. This is likely due to the lower

abundance and hollow structural signature in comparison to ribosomes which make

it more difficult to detect FAS in the noisy images.
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Also, only fully assembled complexes could be detected while unassembled proteins

can still be identified in proteomic studies.

Table 4: Molecular concentrations of ribosomes and FAS in exponentially growing

yeast cells. Values labeled “present work” were calculated for ground truth annotations from

cryo-electron tomograms and scaled to particles/cell assuming a 30 % cytosolic volume fraction

(Wu and Pollard 2005) of total cell volumes of around 150 µm3 for S. pombe (Mitchison 1957,

Nurse 1975) and 54 µm3 for S. cerevisiae (Jorgensen et al. 2002, Powell et al. 2003, Tyson et

al. 1979). Mass spectrometry (MS (Marguerat et al. 2012 (1), Von der Haar 2008 (2), Warner

1999 (3), Carpy et al. 2014 (4), Lu et al. 2007 (5)), room temperature EM (Maclean 1965 (6),

Yamaguchi et al. 2011 (7)) and cryo-EM data (Delarue et al. 2018 (8)) were directly derived from

the indicated publications.

Sample Present

work

[ribo/

µm3]

Present

work

[ribo/cell]

MS

[ribo/cell]

EM

[ribo/cell]

Cryo-ET

[ribo/

µm3]

Present

work

[FAS/

µm3]

Present

work

[FAS/cell]

MS

[FAS/cell]

S. pombe 14,918

± 2,149

∼6.7 * 10 5 ∼1.5 * 10 5

(1)

∼2.5-7.3 * 10 5

(6)

- 363 ± 255 ∼1.6 * 10 4 5.8-23.2 * 10 4

(1, 4)

S. cerevisiae 18,385

± 1,720

∼3.0 * 10 5 ∼1.9-2 * 10 5

(2, 3)

∼2.2 * 10 5 (7) ∼14,000 (8) 690 ± 84 ∼1.1 * 10 4 1.2-6.8 * 10 4

(5)

In Figure 40, a slight trend to increased ribosome concentrations was observable

in S. pombe upon 1 h ED in the ground truth annotations (20 tomograms for NN

and 5 for ED). Ribosome concentrations increased by 9 % from average 14,918 ±
2,149 to 16,285 ± 3,005 particles/µm3 (p = 0.125 one-tailed t-test assuming equal

variances according to F-statistics). Molecular concentrations from DeePiCt predic-

tions showed an effective decrease by 4 %, 13 % and 15 % for 1 h, 3.5 h and 17 h

ED in comparison to NN, respectively. The observed change between NN and ED

became significant after 3.5 h ED (p = 0.002 one-tailed t-test assuming equal vari-

ances according to F-statistics). The differences in molecular concentrations after

1 h ED determined from ground truth and DeePiCt annotations are likely caused

by imperfect predictions of cytosol segmentations and ribosome coordinates, as the

utilized CNNs were trained only on normal nutrient state tomograms.

For S. cerevisiae, a two-fold increase in ribosome concentrations upon energy deple-

tion has previously been reported for room temperature electron tomograms (Marini

et al. 2020). In Figure 40, 1 h energy-depleted S. cerevisiae revealed increased ri-

bosome concentrations by an average of 16.7 % from 18,385 ± 1720 to 21,456 ±
1272 ribosomes/µm3 in ground truth annotations of each three NN and 1 h ED
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Figure 40: Cytosolic ribosome concentrations in S. pombe and S. cerevisiae in normal

nutrient (NN) state and upon ED. Particle numbers and cytosolic volumes determined in

cryo-electron tomograms with ground truth annotations (gt) and DeePiCt predictions (pred). In

S. pombe, ribosome concentrations decreased over time and were significant after 3.5 h and 17 h

ED. S. cerevisiae ribosome concentrations increased significantly from normal nutrient state (NN)

to 1 h ED in both ground truth and DeePiCt predictions. A decrease could be observed at 6h

ED. The mean of each dataset is marked by a grey horizontal line. Black horizontal lines on top

indicate non-significant (ns, p>0.05) and significant differences between datasets with * (p<0.05),

** (p<0.01), *** (p<0.001).

cryo-electron tomograms. DeePiCt ribosome predictions with an average auPRC

of 0.828 and 0.708 for each of the three NN and 1 h ED tomograms (cf. chap-

ter 5.1.4) resulted in average ribosome concentrations of 9,080 ± 3,383 to 16,197

± 1,548 particles/µm3 in nine NN and 16 ED tomograms. This corresponds to a

78,4 % increase from NN to 1 h ED (Figure 40). The increased ribosome concen-

tration upon 1 h ED for both ground truth annotations and DeePiCt predictions

is significant with p-values of 0.034 and <0.001, respectively (one-tailed t-tests as-

suming equal variances according to F-statistics). The different increase upon 1 h

ED in ground truth and DeePiCt-derived ribosome concentrations likely stems from

imperfect predictions of both cytosol segmentations and ribosome localizations in

122



5 RESULTS

S. cerevisiae as the networks were trained in S. pombe tomograms. In addition, the

ground truth annotations represent only three tomograms for each condition while

the predictions were derived from nine NN and 16 ED tomograms. Furthermore,

DeePiCt predictions in 33 S. cerevisiae tomograms after 6 h ED showed average

ribosome concentrations of 10,805 ± 3,376 particles/µm3 (Figure 40). This increase

of 21 % from normal nutrient state is not significant (p = 0.057 one-tailed t-test as-

suming the variances are unequal according to F-statistics), but the decrease from 1

h ED is pronounced (p<0.001 one-tailed t-test assuming equal variances according

to F-statistics). Thus, molecular crowding approximated by ribosomes significantly

increased upon 1 h ED and decreased after 6 h ED in S. cerevisiae.

In general, DeePiCt predictions underestimated ribosome concentrations (Figure

40). This is likely due to both undetected ribosomes and overestimated cytosol

predictions. Although the mean auPRCs for the limited number of comprehen-

sively annotated tomograms showed satisfactory results in direct comparison to the

ground truth annotations, the predictions were not perfect and the performances

varied between individual tomograms (cf. Figure 24). For example, nuclear volumes

containing pre-ribosomal particles were often detected as false positives, leading to

misrepresentation of the cytosolic volume (data not shown). In addition, the ob-

served changes in organelle morphology likely also influence the CNNs performance

in ED, as the training was conducted in NN tomograms. Furthermore, the statisti-

cal evaluation for some conditions has to be considered with caution, as they reflect

only a limited number of datasets.

Local variations in the distribution of individual macromolecules were estimated

using ground truth annotations of FAS. For different tomography acquisition pa-

rameters, the cytosolic concentrations of FAS in S. pombe NN varied between 510 ±
265 to 215 ± 136 particles/µm3 for VPP and defocus-only tomograms, respectively.

The improved image contrast in VPP tomograms facilitated particle detection in

the case of FAS and thus higher concentration estimates were obtained. As ED FAS

particles were localized solely in DEF tomograms, molecular concentrations were

only compared to this acquisition type.

Increased local molecular concentrations upon energy depletion were observed for

FAS in both S. cerevisiae and S. pombe (Figure 41). The particles were concen-
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trated in differently organized assemblies depending on the yeast species (cf. Figure

39). In addition, FAS could still be observed in the cytosol of nutritionally stressed

yeast cells. In S. pombe cytosolic FAS concentrations slightly increased from average

215 ± 136 to 253 ± 99 particles/µm3. However, upon 1 h ED, most particles were

sequestered into monolayered FAS assemblies. Their volumes were manually seg-

mented (cf. Figure 39). In these ED compartments, local molecular concentration

increased by more than 200-fold to 43,423 ± 7,727 particles/µm3.

In S. cerevisiae, cytosolic FAS concentrations increased more than 2-fold upon en-

ergy depletion from average 690 ± 84 to 1464 ± 617 particles/µm3. A single an-

notated ED assembly revealed FAS concentration of almost 250-fold to 170,332

particles/µm3 (Figure 41).

The determined molecular concentrations for both ribosomes and FAS clearly hint at

a) global changes in molecular crowding and b) local variations in particle distribu-

tions upon energy depletion in both S. cerevisiae and S. pombe. The overall change

in molecular crowding approximated by ribosome concentrations likely affects other

biomolecules, especially their effective concentrations, and could drive phase sepa-

ration. Together with the condensation of individual particle species such as the

observed FAS assemblies, this likely influences the global biophysical properties of

the whole cell.
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Figure 41: FAS concentrations in S. pombe and S. cerevisiae in normal nutrient

(NN) state and upon 1 h energy depletion (ED). Particle numbers and cellular volumes

determined in cryo-electron tomograms with ground truth annotations in the cytosol (cyt) or within

ED-induced assemblies. In S. pombe NN VPP tomograms (bright blue), more FAS were detected

on average and thus higher concentrations obtained than in defocus-only tomograms (dark blue).

Cytosolic FAS concentrations increased from NN (dark blue) upon 1 h ED without significance, but

the particles were significantly concentrated in ED assemblies. S. cerevisiae FAS concentrations

increased in both cytosol and ED assemblies upon 1 h ED. The mean of each dataset is marked

by a grey horizontal line. Black horizontal lines on top indicate non-significant (ns, p>0.05) and

significant differences between datasets with * (p<0.05), ** (p<0.01), *** (p<0.001).
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5.4 Nutrient-dependent structural variations of ribosomes

In addition to the above-described nutrient-dependent changes in local molecular

concentrations of ribosomes, their translational activity was also found to be altered

during nutrient starvation in previous studies (Arribere et al. 2011, Ashe et al.

2000, Brengues et al. 2005). To explore this on a structural level, I generated 3D

reconstructions of yeast 80S ribosomes, visualizing translational states under normal

nutrient (NN) conditions and 1 h of energy depletion (ED). For this purpose, I used

the particles detected in defocus-only cryo-electron tomograms described in chapters

5.1.4 and 5.3 which were localized by a combination of template matching and man-

ual detection for ground truth annotations, and extended by DeePiCt predictions

(cf. Supplementary Tables S4-S11). For S. pombe NN, I utilized these annotations

of 25,901 ribosomes from 10 tomograms and for ED 46,120 ribosomes from 20 to-

mograms. In S. cerevisiae 22,986 ribosomes were detected in nine NN tomograms

and 54,398 ribosomes in 16 ED tomograms. Subtomograms were reconstructed in

Warp (Tegunov and Cramer 2019), classified and aligned in RELION (Zivanov et

al. 2018), and refined in M (Tegunov et al. 2021) to obtain 3D averages (Figure

42).

Structural comparisons between the nutritional states showed overall resemblance

with the published S. cerevisiae ribosome structure and subtomogram average (PDB

6tnu (Buschauer et al. 2020), EMDB 4372 (Delarue et al. 2018)). A large number

of fully assembled ribosomes (s. particle numbers above) was detected for both S.

cerevisiae and S. pombe upon 1 h ED. This confirmed conformational similarity and

structural integrity between the different densities (Figure 43 A). From 3D classifica-

tions, well-aligned classes were obtained, which could be refined in M to resolutions

of 11.1-8.4 Å (Figure 42 and 43 B). The lower resolution obtained for the S. cere-

visiae NN average is potentially caused by the smaller number of ribosomes that

were used for structural analysis, as well as a different cryo-ET acquisition scheme

with 3° tilt increments (cf. Supplementary Table S2). However, the reconstructions

from all four datasets exhibited slightly lower resolutions for the 40S small riboso-

mal subunit (SSU) which may hint at ratcheting movements potentially connected

to translational activity (Zhang et al. 2009). Further 3D classifications did not sep-

arate an LSU class in any of the datasets. In addition, a large fraction of particles

could not be properly aligned (Figures 44-46). This is in line with the previous
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observations described above and is likely due to the low contrast in defocus data

(cf. chapter 5.1.4, Figure 20).

In order to gain deeper insights into ribosome subpopulations, focused classifications

close to the head of the SSU and at the ribosomal exit tunnel were performed, as

additional densities had been detected for S. pombe NN (described in chapter 5.1.4).

An additional density connected to the head of the SSU was resolved in a subset

(2,314 particles) of S. cerevisiae NN ribosomes and fitted eEF3 well (Figure 43 F,

47-49 A). However, it could not be observed in any of the ED states. The eEF3 facil-

itates binding of a new tRNA to the A-site via the aminoacyl-tRNA–eEF1A–GTP

complex (Andersen et al. 2006, Ranjan et al. 2021). It is crucial during translation

elongation, and thus its absence likely hints at a non-translating, nutritionally ar-

rested ribosome state. A sub-class with an additional density at the ribosomal exit

tunnel was detected in all datasets (Figures 43 D, 47-49 B). It could accommodate

the ribosomal RNA expansion segment ES27L in its particular exit configuration,

leaving an extra density right below the exit tunnel empty (EMDB 1667 (Becker

et al. 2009), PDB 3izd (Armache et al. 2010)). The unassigned density could fit

several factors with a MetAP-like fold including Arx1 (EMDB 3151 (Greber et al.

2016), Figure 43 D, G).

Independent of the nutritional state, all well-aligned classes depicted at lower in-

tensity thresholds showed additional densities at positions typical for neighboring

ribosomes within polysomes (Figure 43 H). As a comparison, previous polysome

profiling experiments for S. cerevisiae showed polysome disassembly within 10 min

of ED (Nuske et al. 2018). This was also reported upon glucose depletion, but

in this case polysomes were detected again after 60 min of withdrawal. A restart

of translation to synthesize proteins required for the stress response was suggested

for the polysome reformation (Arribere et al. 2011). Here, the observation of a

polysome fraction in the ED ribosome datasets may represent a similar restart of

translation as part of the stress adaptation. However, this observation of polysomes

is contradicted by an overall open head conformation of the 1 h ED ribosome aver-

ages which is connected to a non-translating, trapped state (Figure 43 C, E).
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Figure 42: Resolutions of yeast 80S ribosomes at different nutritional states. A) Local

resolution maps of well-aligned ribosome classes. B) Top views of the averages depicted in A. C)

Fourier shell correlation (FSC) curves of well-aligned ribosome sub-classes refined in M. D) FSC

curves of 3D reconstructions from all ribosomes at each of the analyzed nutritional states and

refined in RELION. FSC threshold of 0.143 indicated as dotted line in C and D (Rosenthal and

Henderson 2003).
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Figure 43: Nutrient-dependent structural states of the yeast 80S ribosome elucidated

by cryo-electron tomography. A) Subtomogram averages of all cytosolic ribosomes retrieved

from tomograms with ground truth annotations and DeePiCt predictions. The 3D reconstructions

of S. pombe NN (yellow), 1 h ED (grey), S. cerevisiae NN (cyan) and 1 h ED (grey) resemble

the overall ribosome structure with large and small subunits (LSU and SSU). B) Sub-classes of

well-aligned cytosolic ribosomes detected in 3D classifications and refined in M. C) Comparisons

between S. pombe NN and 1 h ED ribosomes showed a head rotation with a closed conformation

towards the PTC in the case of nutrient scarcity (grey). D) 3D classifications focused on the exit

tunnel recovered a sub-class for S. pombe 1 h ED (top) fitting the S. cerevisiae ribosome with

ES27L in an exit configuration (purple, EMDB 1667 (Becker et al. 2009), PDB 3izd (Armache et

al. 2010), CC 0.7905). A similar subset was detected in S. pombe NN ribosomes and the remaining

density right below the exit tunnel (white arrowhead) fits different factors with a MetAP-like fold

such as Arx1 (bottom purple, EMDB 3151 (Greber et al. 2016), CC 0.8777). E) Comparisons

between S. cerevisiae NN and 1 h ED ribosomes showed a head rotation with a more closed

conformation towards the PTC in the case of nutrient scarcity (grey). F) Sub-class of S. cerevisiae

NN ribosomes classified for an additional density close to the head of the 40S subunit (highlighted

dashed white box below in H). The eukaryotic elongation factor eEF3 (pink, EMD-12062 (Ranjan

et al. 2021), CC 0.8481) could be assigned to the additional head density. G) Classification of S.

cerevisiae ribosomes for an extra density below the exit tunnel recovered similar sub-classes as for

S. pombe depicted in E. The S. cerevisiae ribosome with ES27L in a particular configuration fits the

extra density (left, purple, EMDB 1667 (Becker et al. 2009), PDB 3izd (Armache et al. 2010), CC

0.7673). The remaining density right below the exit tunnel (white arrowhead) fits different factors

with a MetAP-like fold. H) Rotation by 90° and lowering the intensity threshold recovered density

of neighboring ribosomes for all four maps in B. Black dotted lines indicate potential mRNA paths.
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Figure 44: Hierarchical 3D classifications of S. pombe 1 h ED ribosomes. Starting from

46,120 M-refined particles, ribosomes were clustered into two classes at each step (indicated by

branching points). A well-aligned class was extracted (cyan box) and refined to a resolution of 9.0

Å in M. More than half of the particles ended up in poorly defined classes (left branch). For each

class, 3D averages of iteration 25 are displayed as 2D slices.
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Figure 45: Hierarchical 3D classifications of S. cerevisiae NN ribosomes. Starting from

22,986 M-refined particles, ribosomes were clustered into two classes at each step (indicated by

branching points). A well-aligned class was extracted (cyan boxes) and refined to a resolution of

11.1 Å in M. More than half of the particles ended up in poorly defined classes. For each class, 3D

averages of iteration 25 are displayed as 2D slices.
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Figure 46: Hierarchical 3D classifications of S. cerevisiae 1 h ED ribosomes. Starting

from 54,398 M-refined particles, ribosomes were clustered into two classes at each step (indicated

by branching points). A well-aligned class was extracted (cyan boxes) and refined to a resolution

of 8.4 Å in M. More than half of the particles ended up in poorly defined classes (right branch).

For each class, 3D averages of iteration 25 are displayed as 2D slices.
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Figure 47: Focused 3D classifications of S. pombe 1 h ED cytosolic ribosomes. A) No

density close to the 40S head could be observed. The spherical mask indicated in Figure 30 A was

used for focused classification. B) A subset of 3,741 ribosomes fitting ES27L with an unassigned

density below the exit tunnel was detected. The spherical mask indicated in Figure 31 A was used

for focused classification. C) Two classes with distinct PTC densities were obtained.

Figure 48: Focused 3D classifications of S. cerevisiae NN ribosomes. A) A density

close to the 40S head could be observed in 2,314 ribosomes, which were refined in M to 28 Å.

The spherical mask indicated in Figure 30 A was used for focused classification. B) A subset of

10,726 ribosomes fitting ES27L with an unassigned density below the exit tunnel was detected.

The spherical mask indicated in Figure 31 A was used for focused classification. C) Two classes

with distinct PTC densities were obtained.
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Figure 49: Focused 3D classifications of S. cerevisiae 1 h ED ribosomes. A) No density

close to the 40S head could be observed. The spherical mask indicated in Figure 30 A was used for

focused classification. B) A subset of 6,638 ribosomes fitting ES27L with an unassigned density

below the exit tunnel was detected. The spherical mask indicated in Figure 31 A was used for

focused classification. C) Two classes with distinct PTC densities were obtained.
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To elucidate the translation activity of the individual nutritional states of the ri-

bosome on a structural level, detailed characterization of the peptidyl-transferase

center (PTC) was performed (Figures 47-49 C, 50). Focused 3D classifications of

all cytosolic ribosomes separated two classes with distinct PTC occupancies in the

four datasets.

In the case of S. pombe NN, one class contained 32.5 % of the particles with a promi-

nent P-site tRNA and an aminoacyl-tRNA density at the PTC entry site (Figure 50

A). A second class, which clustered 67.5 % of the ribosomes, revealed A- and P-site

tRNAs, as well as an additional density at the E-site which did not fit an E-site

tRNA but could accommodate the eukaryotic initiation factor 5a (eIF5a). The two

observed classes containing P-site tRNAs confirmed active translation expected for

exponentially growing yeast cells.

For S. cerevisiae NN, despite the lower resolutions, also two distinct PTC classes of

ribosomes could be identified (Figure 50 C). Class 1 was reconstructed from 16.9 %

of the ribosomes and had no tRNA in the PTC, but an extra density at the E-site

fitting eIF5a. This ribosome fraction is not actively translating. However, the ma-

jority of particles clustered into class 2 (83.1 %) and contained a prominent P-site

tRNA as well as an aa-tRNA at the PTC entry site which confirmed active transla-

tion.

Upon 1 h ED, the S. pombe PTC contained no tRNAs, which confirmed a non-active

state upon nutritional scarcity (Figure 50 B). An extra density at the tRNA entry

site could be detected in all ribosomes, which was further analyzed. Class 1 clus-

tered most particles (93.9 %). Here, the eukaryotic release factor 1 (eRF1, (Brown

et al. 2015)) could be fitted, which recognizes STOP codons in the A-site and

initiates nascent chain release and ribosome recycling (Schuller and Green 2018).

In the second, much smaller class (6.1 % of ribosomes), a larger additional density

was observed which could fit the eukaryotic elongation factor 2 (eEF2, (Spahn et

al. 2004)). This factor is mainly known to facilitate translocation of mRNA and

peptidyl-tRNA during translation elongation, but has also been detected in inactive

ribosomes (Liu and Qian 2016). On a structural level, it was identified previously

together with the SERPINE mRNA binding protein 1 (SREPB1) which binds at

the mRNA entrance site of non-translating ribosomes with a vacant PTC (Brown et
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al. 2018). At the resolution of 14 Å for the here reported ribosome class, SREPB1

could not be recognized. Also, other factors like the ATP-dependent factor RNase

L inhibitor 1 (Rli1 corresponding to human ABCE1) that is required for subunit

splitting and recycling after translation termination (Heuer et al. 2017, Van den

Elzen et al. 2014), bind the 40S subunit at a similar site as eEF2 and thus higher

resolution averages would be required to unambiguously identify the extra density.

Moreover, in both S. pombe 1 h ED classes, an extra density in the PTC’s E-site did

not resemble a tRNA or the proposed hibernation factors Stm1 and Lso2. Structural

comparison with the NN map (Figure 50 A, class 2) and published ribosome struc-

tures bound to translation factors suggested eIF5a as a potential candidate for this

additional density. Initially identified as initiation factor, eIF5a binds to the E-site

and conducts important functions during all steps of translation as it enhances the

peptidyl-transfer reaction during elongation and peptidyl-tRNA hydrolysis during

termination (Schmidt et al. 2016, Schuller et al. 2017). It belongs to the top 50

highest expressing genes in S. cerevisiae and S. pombe, with levels equivalent to that

of ribosomes (Kulak et al. 2014, Von der Haar 2008). In addition to its high abun-

dance, eIF5a binds tightly to 80S ribosomes (approximate dissociation constant of

9 nM (Rossi et al. 2016)), suggesting that it could theoretically interact with all ri-

bosomes that contain an empty E-site, potentially enabling mutual protection from

stress-induced degradation together with the other factors bound to the PTC entry

site. Thus, the discovered energy-depleted stationary ribosome in an eIF5a-bound

state might represent a novel mechanism for translational arrest, which still main-

tains polysomal arrangements (cf. Figure 43 H).

S. cerevisiae subjected to 1 h ED revealed ribosomes clustered into a class contain-

ing 21.6 % of all particles with a P-site tRNA and an extra E-site density fitting

eIF5a (Figure 50 D). This subtomogram average hints at a fraction of ribosomes

that is still actively translating despite the harsh nutritional stress that the cells

were subjected to. It could hint at an adaptation mechanism previously observed

in polysome profiling experiments, wherein polysomes were found to reform after 1

h of glucose depletion (Arribere et al. 2011). Nevertheless, most of the ribosomes

(78.4 %) contained an empty PTC except for an E-site density matching eIF5a and

an additional density at the tRNA entry site which could fit eRF1. This confirmed

the expected non-active ribosome state upon energy depletion.
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The subtomogram analysis of lamella-derived, cellular ribosomes thus provided func-

tional insights on translation in connection with the energy state of yeast cells. All S.

pombe NN ribosome classes contained P-site tRNAs which confirmed active transla-

tion. However, a ribosome class with a vacant PTC was identified in S. cerevisiae NN

which revealed the variety of translational activity in exponentially growing yeast

cells. Polysome formation could be observed in all datasets including the energy-

depleted states. Yet, both S. cerevisiae and S. pombe ED ribosomes revealed vacant

PTCs lacking tRNA densities and the overall open conformation suggested no active

translation. This was further confirmed by the lack of a class with an extra density

fitting eEF3. However, for S. cerevisiae ED, a class encompassing 21.6 % of all ri-

bosomes still contained a P-site tRNA, which could hint at low levels of translation

after 1 h ED.
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Figure 50: Nutrient-dependent PTC occupancies in yeast 80S ribosomes. 3D classifica-

tions focused on the PTC revealed two classes per dataset. Cross-sections from different views are

presented to demonstrate the fitting of translation factors. A) S. pombe NN ribosomes contained

a P-site tRNA and either an aminoacyl (aa-) tRNA (class 1, PDB 5lzs (Shao et al. 2016)) or

an A-site tRNA, as well as an extra density at the E-site which could fit eIF5a (class 2, PDB

5gak (Schmidt et al. 2016)). B) S. pombe ED ribosomes revealed an empty PTC with an E-site

density fitting eIF5a (PDB 5gak (Schmidt et al. 2016)) and PTC entry site densities which could

accommodate eRF1 (PDB 3jah, class 1) or eEF2 (PDB 4v4b, class 2). C) Class 1 of S. pombe

NN ribosomes had an empty PTC, except for an extra density at the E-site which could fit eIF5a

(class 1, PDB 5gak (Schmidt et al. 2016)). Class 2 revealed a P-site tRNA and a density at the

PTC entry site that could fit an aa-tRNA (PDB 5lzs, (Shao et al. 2016)). D) S. cerevisiae ED

ribosomes contained either a P-site tRNA (class 1) or revealed an empty PTC (class 2). In both

classes a density at the E-site which could fit eIF5a was observable (PDB 5gak (Schmidt et al.

2016)). Class 2 had an additional density at the tRNA entry site which could fit eRF1 (PDB 3jah).
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5.5 Nutrient- and species-dependent structural differences of FAS

As described in chapter 5.2.4, cytosolic FAS assemblies were observed in cryo-

electron tomograms of energy-depleted S. pombe and S. cerevisiae and varied sig-

nificantly in terms of subcellular localization. The membrane association of FAS

in S. pombe suggested potential conformational changes resulting in an altered 3D

structure in comparison to the normal nutrient state and to the S. cerevisiae com-

plex. Due to the clear structural signature of FAS, I determined particle coordinates

manually in defocus-only cryo-electron tomograms of either exponentially growing

or 1 h energy-depleted cryo-FIB-milled S. pombe and S. cerevisiae cells (cf. chap-

ters 5.1.4 and 5.3, Supplementary Tables S5-S11). For S. pombe NN, I utilized

these annotations of 366 FAS from 10 tomograms and for ED 3,993 FAS from 16

tomograms. In S. cerevisiae 310 FAS were detected in three NN tomograms and

346 FAS in an ED assembly of one tomogram. Subtomograms were reconstructed in

Warp (Tegunov and Cramer 2019), classified and aligned in RELION (Zivanov et al.

2018), and refined in M (Tegunov et al. 2021) to obtain 3D averages (Figures 51, 52).

The overall conformation of all four maps matched the barrel-like shape of the pub-

lished crystal structure of purified S. cerevisiae FAS (Figure 52 top row, PDB 2uv8,

cyan (Leibundgut et al. 2007)). The dodecameric (α6β6), 2.6 megadalton, fungal

FAS I complex consists of two half domes, each comprised of three FAS1/β subunits,

connected via a central wheel constituted by six Fas2/α subunits. The phosphopan-

tetheinyl transferase (PPT) domain was clearly visible in all four subtomogram

averages at the C-terminus of Fas2/α. This domain is required to activate FAS by

attaching CoA to the acyl carrier protein (ACP) (Leibundgut et al. 2007). Further-

more, an extra density on the level of the α-wheel connected to the N-terminus of

Fas2/α was detected in all four datasets. It was more pronounced in S. pombe, and

could not be assigned by fitting published structures.

In energy-depleted S. pombe, FAS organized into highly ordered monolayer arrays

between stacked membrane compartments (cf. Figure 39). The subtomogram av-

erage of these complexes complements this architecture as two adjacent membrane

densities on top and below the barrel-shaped structure could clearly be resolved

(Figure 52 A). The thickness of the membrane was 4 nm corresponding to a phos-

pholipid bilayer. Three densities on top of each half dome connected the barrel
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structure to the membrane, probably anchoring the complex at this site. These

densities were not detected in the normal nutrient state FAS and their composition

could not be identified based on published structures (Figure 52 B). Connecting

densities to neighboring FAS complexes could also not be resolved by the center-

focused 3D alignments, even when D3 symmetry was applied. This could hint at

flexibility or disorder of a potential linker which could establish the highly ordered

arrangement of FAS into monolayers upon energy depletion.

Compared to the membrane-bound FAS monolayers in S. pombe, energy-depleted S.

cerevisiae showed co-localization of FAS in foci that lack long range order (cf. Fig-

ure 39). The seemingly unorganized meso-scale assemblies, which appeared to grow

over time, contained fully assembled FAS complexes, which match the NN structure

(Figure 52 C, D). Neither extra densities nor adjacent membranes were observed.

Structural comparison between the two nutritional states of S. pombe FAS further

revealed that the acyl transferase domain (ATD) of FAS1/β appeared rotated (Fig-

ure 52 B, inset). This may have a functional implication on the enzymatic activity

of the whole complex during energy depletion. Therefore, the localization of the

acyl carrier protein, which shuttles the growing acyl chain to each catalytic site and

is thus connected to the activity state of FAS, was analyzed in all four datasets. In

both S. pombe and S. cerevisiae, three densities fitting acyl carrier proteins (ACPs)

could be observed at the top of each half dome in energy-depleted FAS (Figure

52 lower panel, middle). In contrast to this observation, NN FAS contained three

densities located at the FAS2/α subunits in close proximity to the ketosynthase

(KS) domain. They could fit ACPs of S. cerevisiae (PDB 2uv8) and P. pastoris

(EMDB 12139), providing new insights on the structural configuration of FAS in

different nutritional states (Figure 52 F, H, bottom (Gipson et al. 2010, Leibundgut

et al. 2007, Singh et al. 2020)). Here, in-cell fatty acid synthase complexes within

lamellae prepared from exponentially growing and 1 h energy-depleted yeast cells

revealed nutrient-dependent ACP localizations. This data lay the foundation for

future work on the connection between the different ACP locations and the activity

of the multi-enzyme complex.
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Figure 51: FSC curves of FAS subtomogram averages from S. pombe and S. cerevisiae.

A-D) Fourier shell correlation (FSC) curves of 3D reconstructions from well-aligned FAS classes at

each of the analyzed nutritional states and refined in RELION. FSC threshold of 0.143 indicated

as dotted line in A-D (Rosenthal and Henderson 2003).
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Figure 52: Nutrient-dependent structural variation of FAS in S. pombe and S. cere-

visiae. A) Averaging of 3D-classified, well-aligned particle classes for each of the four datasets

refined with applied D3 symmetry resulted in 3D reconstructions of FAS with isotropic angular

distribution. The complexes resembled the published S. cerevisiae structure (PDB 2uv8, cyan)

comprised of two half domes separated by a central α wheel. The phosphopantetheinyl transferase

(PPT) domain was resolved at the C-terminus of Fas2/α and an extra density linked to the α wheel

could not be assigned. A) S. pombe 1 h ED FAS particles were picked within monolayer arrays and

the resulting complex was positioned between two lipid membranes. On the top and bottom, three

connections to the adjacent membranes were visible. Neighboring FAS complexes were detectable

on a 2D slice through the S. pombe 1 h ED subtomogram average (bottom left, cyan triangles) but

no connecting density was resolved. The membrane had a thickness of 4 nm, typical for a phos-

pholipid bilayer (bottom right). B) The overlay of S. pombe FAS from normal nutrient conditions

(NN, pink) with 1 h ED (grey) revealed that the extra equatorial density was also observed in the

control state, but the connecting densities and the adjacent membranes were missing. Zoom into

the upper half dome (white dashed box) revealed a rotation of the ETD domain between the two

nutritional states (bottom inset). C) For S. cerevisiae 1 h ED, the PPT could be resolved, but in

comparison to the S. pombe 1 h ED map (grey, below) the extra, unassigned densities were not

observed. D) FAS subtomogram average from exponentially growing S. cerevisiae cells matched

the published structure (PDB 2uv8, cyan) and the 1 h ED map (grey, below). E) Rotating the

complexes by 90° and cutting through the densities from the top at different levels revealed the D3

symmetry of the complex with three connecting densities for S. pombe 1 h ED (grey in E and G,

example highlighted with a black circle). ACPs were located at the top of each half dome after 1 h

ED (E and G) and close to the α wheel in control FAS (F and H) independent of the yeast species.

The ACP location in normal nutrient yeast cells agreed with the published structure (PDB 2uv8,

cyan).
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5.6 Dynamics of stress-induced reorganization of the yeast cytosol

In order to assess whether the different architectures of nutrient-dependent cytoso-

lic restructuring in S. cerevisiae and S. pombe were accompanied by species-specific

assembly dynamics, fluorescence microscopy movies were recorded of endogenously

tagged FAS-mCherry constructs, as model. In addition, fluorescence recovery after

photobleaching (FRAP) was employed to investigate the biophysical state of the ob-

served ED-triggered assemblies. The cells were further treated with different stresses

and changes in cytosolic pH were analyzed to investigate the drivers of cytosolic so-

lidification. The following experiments were supported by Ievgeniia Zagoriy and

performed and analyzed together with Willram Scholz, a master student intern who

I supervised.

5.6.1 The fatty acid synthase reveals species-dependent assembly

dynamics upon energy depletion

Fluorescence microscopy movies elucidated that in less than one hour, FAS localized

in hollow, spherical shapes within the S. pombe cytosol, reaching the highest num-

ber of assemblies at around 3.5 h (Figure 53 A, B top). At later time points, the

assemblies dissolved. In contrast, FAS foci formed slower in S. cerevisiae reaching

a plateau of two to three assemblies per cell at around 6 h of ED (Figure 53 A,

B bottom). FAS localized into globular punctae distinct from FAS arrangements

detected in S. pombe. Thus, in agreement with the cryo-electron tomography obser-

vations (cf. chapter 5.2.4), energy depletion led to time- and species-specific FAS

condensate formation. In general, fluorescence intensities first increased within the

first hours of treatment and decreased at later time points (cf. Supplementary Ta-

ble S3 and Supplementary Figure S1). This could hint at protein degradation upon

prolonged nutrient stress, as cells in the glucose control sample continued dividing

and therefore also reached a stationary state after around 8 h.

In order to assess whether these assemblies displayed liquid- or solid-like properties,

the mobility of FAS within the yeast cytosol was measured by fluorescence recovery

after photobleaching (FRAP). As the foci are small (< 0.8 µm) or dispersed, and

the bleaching area is restricted by the point spread function of the microscope, a

mix of cytosolic and FAS foci were bleached and analyzed. Under normal nutrient

conditions, FAS freely diffused within the cytosol displaying fast FRAP with a half
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time of around 1-3 s (Figure 53 C, D, Table 5). In the case of S. pombe, FAS dy-

namics slowed down immediately after energy depletion and the signal could not

fully recover (immobile fraction of around 90 %, Table 5). Recoveries decelerated

even more after 3 h of ED suggesting a solidified state, whereas at around 8 h, FAS

seemed to become slightly more dynamic (Figure 53 C, D top panels), in agreement

with the dissolution of condensates in light microscopy movies and less frequent

observations in cryo-electron tomograms (cf. Table 3). As the overall fluorescence

intensity decreased in time-lapse movies, FAS-mCherry was potentially degraded at

later time points of ED. For S. cerevisiae, FRAP of FAS assemblies was investigated

in glucose control and after 6 h of ED when cells consistently contained large foci.

Here, dynamics also slowed down drastically and the signal could not be fully recov-

ered (Table 5). Also, the immobilized fraction increased from initial 45 % (glucose

control) to 93 % (> 300 min ED).

These FRAP results showed a clear decrease in FAS mobility upon energy depletion.

This suggests a change in the cellular biophysical properties, which could either re-

flect the overall solidification of the cytosol or, in addition, direct interactions within

the assemblies leading to a more gel-like state. The observed increase in mobility

in S. pombe cells at later time points could further indicate an adaptation to the

prolonged stress or potentially also degradation.

146



5 RESULTS

147



5 RESULTS

Figure 53: Dynamics of fatty acid synthase complexes upon energy depletion. A)

In S. pombe, FAS immediately co-localized upon energy depletion into spherical assemblies (top

panel). In contrast, S. cerevisiae FAS assembled over longer time scales into spherical foci (bottom

panel). B) Quantification of assembly counts per cell revealed species-dependent differences in

assembly dynamics. For yeast cells grown in glucose control medium, no foci were observed (cf.

glucose control in C. After more than 8 h, control samples could no longer be analyzed as they

were over-grown. C) Example images of FRAP experiments in Fas2-mCherry expressing S. pombe

(top panel) and Fas1-mCherry expressing S. cerevisiae (bottom panel) under varying nutritional

conditions. D) FRAP curves revealed that recovery drastically slowed down upon energy depletion

in both yeast strains (cf. Table 5). All images display individual z-slices and scale bars of 5 µm.

S. pombe data produced jointly with Willram Scholz.

Table 5: Fitting parameters of FAS-mCherry FRAP curves. Due to their small size, a

cytosolic area larger than individual FAS condensates was bleached. Recovery curves were fitted

with either a one-step (glucose control) or two-step exponential model (ED), accounting for the

two populations of cytosolic and condensed proteins upon nutrient stress. The resulting half times

and immobilized fractions (Iimm) are displayed for normalized intensities (cf. Methods 4). For S.

pombe five replicates per time point were normalized to background and whole cell intensities for

each condition. 21 S. cerevisiae replicates of individual cells in each > 300 min ED and control

conditions were double-normalized to intensities of the background and a reference fluorescence

signal in another cell within the field of view. S. pombe data produced jointly with Willram Scholz.

Species Condition I0 I1 (1) I1 (2) t1/2 (1)

[s]

t1/2 (2)

[s]

Iimm

(1)

Iimm

(2)

S. pombe Gluc. control 0.66 0.35 - 13.27 - 0.00 -

> 10 min ED 0.23 0.10 0.39 15.16 158.67 0.87 0.56

> 180 min ED 0.18 0.06 0.39 19.33 485.53 0.93 0.58

> 470 min ED 0.18 0.11 0.23 9.85 209.33 0.86 0.75

S. cerevisiae Gluc. control 0.64 0.20 - 3.94 - 0.45 -

> 300 min ED 0.44 0.04 0.02 1.18 38.25 0.93 0.98
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5.6.2 Fatty acid synthase assembly formation is stress type-dependent

FAS sequestration has previously been observed in light microscopy experiments of

S. cerevisiae after four days of glucose depletion (Suresh et al. 2015). The above

described findings for energy-depleted yeast thus opened the question whether the

more physiological stress of glucose depletion, which yeast cells likely encounter in

their natural habitats, also leads to FAS assembly formation in S. pombe. To investi-

gate this, S. cerevisiae cells were treated first with minimal medium lacking glucose

to reproduce the results by Suresh et al. 2015. This confirmed that similar FAS foci

formed, but on different time scales than upon ED (Figure 54 A, cf. Figure 53 A

lower panel). In addition, staining by the pH-sensitive dye CDCFDA showed a shift

from acidic vacuoles to lower pH in the cytosol over several days of glucose deple-

tion. In comparison, in S. pombe glucose depletion conditions induced a different

cell shape and increased FAS signal close to the nucleus after two days of treatment

(Figure 54 B, cf. Figure 53 A top panel). This less elongated cell shape could also

be observed in TEM overviews of lamellae prepared from 4-day glucose-depleted S.

pombe cells (data not shown). Morphologically, FAS assemblies were different from

the observed ED arrays, but likely still surrounded vacuoles which also changed their

cellular distribution as observed in TEM overviews (data not shown). The energy

state of the cell has been suggested to mediate cytosolic pH. Monitoring cellular

acidification, CDCFDA initially stained vacuoles and enabled the tracking of their

morphological changes during one day of glucose depletion. At later time points,

no fluorescence signal could be detected which was either caused by the fact that

the stain could not enter the cells upon glucose depletion or the dye could not be

hydrolyzed by endogenous enzymes to produce fluorescence.

Molecular crowding has been implied to induce phase separation (Kuznetsova et

al. 2014, Petrovska et al. 2014). Increased ribosome concentrations, which serve

as an approximation for cellular crowdedness, were observed for S. cerevisiae upon

1 h ED, while no significant change was detected for S. pombe (cf. chapter 5.3).

However, colocalization and local increase in FAS concentrations was observed in

both species. Hyper-osmotic stress was applied ectopically to induce crowding in

FAS-mCherry tagged yeast. For S. pombe, this treatment showed condensation of

FAS and redistribution at time scales different from energy depletion (Figure 54 C).

In S. cerevisiae FAS condensation could not be observed upon osmotic stress in the
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time scales of ED-induced assembly formation (data not shown). Thus, molecular

crowding could induce similar FAS assemblies as in energy depleted S. pombe cells

and therefore is a potential driver of cytosolic condensation, ultimately leading to a

more solid state.

Figure 54: FAS assembly formation varied depending on strain and stress type. A) Glu-

cose depletion over several days induced FAS foci formation and acidification (CDCFDA staining in

green) of the S. cerevisiae cytosol. B) Vacuole morphology and FAS assembly in glucose-depleted

S. pombe was distinct from energy-depleted cells. Here, CDCFDA could either not enter the cells

upon glucose depletion beyond day 1 or it could not be hydrolyzed by endogenous enzymes to show

fluorescence. C) Hyper-osmotic stress induced in S. pombe upon treatment with 1.2 M sorbitol in

glucose-containing medium caused FAS co-localization similar to energy depletion, but on differ-

ent time scales. All images display individual, central z-slices with scale bars of 5 µm. Glucose

depletion data produced jointly with Willram Scholz.

5.6.3 Cytosolic acidification depends on the type of nutritional stress

Energy depletion was shown to induce cytosolic acidification in yeast (Munder et

al. 2016). As a change in cellular pH alters protein surface charges, it thereby

might drive protein oligomerization and thus cytosolic solidification. To investigate

nutrient stress-dependent cytosolic acidification, light microscopy movies of wild-

type yeast cells treated with different starvation media were recorded. Changes

in cellular pH were observed with the pH-sensitive dye CDCFDA and membrane

morphology alterations detected with the lipophilic membrane stain FM4-64. The

cytosolic pH changed similarly upon energy and glucose depletion in S. cerevisiae

and revealed cytosolic acidification (Figure 55 A). For S. pombe different scenarios
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were observed. Here, glucose depletion did not induce a decrease in cytosolic pH,

but rather a change in vacuole morphology resembling the fractionation previously

described upon hyperosmotic stress (Figure 55 B, (Bone et al. 1998)). Oversatu-

ration of the CDCFDA signal upon acidification did not allow for a quantitative

analysis of this change.

In addition, the internalization of plasma membrane proteins and lipids and their

subsequent hydrolysis was found to provide energy during nutrient scarcity (Lang et

al. 2014). The FM4-64 signal showed that endocytosis still happened in both yeast

species upon glucose depletion but not during energy depletion.

Future experiments including induction of direct cytosolic acidification with acidic

medium and treatment with a protonophore permeabilizing the membranes for

strains with fluorescently-tagged proteins, identified in the oligomeric assemblies,

will help to disentangle the influence of these factors on the large-scale self-assemblies

observed in cryo-electron tomograms.

Figure 55: Cellular acidification upon nutritional stress. A) In S. cerevisiae CDCFDA

(green) stained acidic environments. In normal nutrient conditions (control), it highlighted vacuoles

and upon energy depletion, as well as after 5 h of glucose depletion, the yeast cytosol. The non-

specific membrane dye FM4-64 (red) visualized the plasma membrane and endocytic vesicles. B) In

S. pombe vacuoles were acidic in control and glucose-depleted cells, whereas cytosolic acidification

could only be observed after 5 h of energy depletion. All images display individual, central z-slices

with scale bars of 5 µm. Data produced jointly with Willram Scholz.
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6 Discussion

In this thesis, I presented the development of automated cryo-sample preparation

and data collection workflows, as well as data mining software, which enabled me to

collect and analyze large cryo-ET datasets. I utilized these advances to investigate

nutrient-dependent reorganization of the yeast cytosol. In the following, I will first

discuss the obtained results for automating the cryo-ET workflow, challenges that

still reside and opportunities that these new tools enable. Then, I will highlight the

gained biological insights on cytosolic organization and local variations in molecular

crowding and structural variations in specific macromolecular species. Finally, I will

address open questions for future studies.

6.1 Sample optimization for in-cell structural biology

Cryo-electron tomography of cellular samples enables the direct visualization of

macromolecules in their native environments. In order to obtain high quality and

large tomography datasets, specimen need to first be optimized (cf. Figure 8). Cells

have to be properly vitrified in order to preserve their delicate, internal structures

in a frozen-hydrated state. The localization of individual mammalian cells or an

agglomerate of smaller cells, such as yeast, in the center of a grid square is required

for subsequent cryo-FIB milling. Optimized grids contain several such positions

and thus increase throughput by providing a sufficient number of potential lamella

preparation sites. Using parallel blotting from the back side of a grid, implemented

in the Leica grid plunger, resulted in even distribution of vitrified yeast cells on TEM

grids. The concentration of cells grown in suspension, which are directly applied to

grids prior to vitrification, further influences the cell density and therefore the num-

ber of cells from which a lamella is created. This subsequently impacts the number

of areas that can be imaged by cryo-ET. In comparison, lamellae prepared from

mammalian cells usually contain cellular material from only 1-2 cells and therefore

their positioning requires optimization with for example micro-patterning techniques

(Toro-Nahuelpan et al. 2020). For single-particle cryo-EM, tools are already avail-

able that deposit small volumes of protein solutions in a controlled manner directly

onto grids prior to vitrification (Dandey et al. 2020, Ravelli et al. 2020). Although

these instruments have yet to be tested for cellular samples, further development

will likely facilitate optimal positioning of cells and save resources by application of

multiple conditions or cell-types on a single grid.
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In addition, sample stability plays an important role in the subsequent steps of

sample thinning by cryo-FIB milling and targeting of intracellular structures via

cryo-CLEM. First of all, gentle handling of the fragile, plunge-frozen grids and

minimizing the number of transfers between instruments is required to reduce me-

chanical damage or sample loss. Unifying designs for sample holders (Kuba et al.

2020), combining several imaging modalities in a single instrument (Bieber et al.

2021, Gorelick et al. 2019), and optimizing transfer and loading stations (Tacke et

al. 2021) will likely improve cryo-sample throughput in the future.

Grid types (mesh and hole spacings) and substrate properties also need to be consid-

ered for optimal sample stability. Matching heat expansion coefficients between grid

and support materials decrease internal stresses and differential compression (Russo

and Passmore 2016b, Thorne 2020). Also, vitreous buffer surrounding cellular sam-

ples can bear tension (Naydenova et al. 2020). The introduction of micro-expansion

joints post vitrification relieves such sample strains and prevents lamella bending

(Wolff et al. 2019). This renders the sample more stable during lamella milling and

subsequent cryo-ET imaging.

6.2 Establishment of high-throughput cryo-FIB milling workflows

Cryo-samples need to be thinned in order to elucidate the underlying structures of

cellular landscapes by cryo-ET. Creating around 200 nm thin, cellular slices by cryo-

FIB milling is a manual process which requires a high level of expertise, is tedious

and time-consuming (Schaffer et al. 2015, Schaffer et al. 2017, Villa et al. 2013).

Therefore, the development of automated procedures has facilitated high-throughput

lamella generation for cryo-ET (Buckley et al. 2020, Kuba et al. 2020, Zachs et

al. 2020). The here presented SerialFIB software (Klumpe, Fung and Goetz et al.

2021) also automates such on-grid lamella preparations with a success rate of 91.5 %

for rough milling and 83.1 % for fine milling tested on six different cell types (cf.

Table 1). Although manual operations by expert users likely achieve success rates

of up to 100 %, as milling can simply be stopped before the lamella gets damaged,

automated workflows reliably and reproducibly achieve high-quality lamellae from

optimized samples. This is especially beneficial for unexperienced users. For this

purpose, SerialFIB entails an easy-to-use GUI and established milling protocols for

several use-cases which represent a valuable resource. Furthermore, the microscope
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does not require supervision while milling and therefore this time is saved for the

user.

In addition, the modularity of SerialFIB enables targeted lamella milling utilizing

prior localization by 3D correlative light microscopy, cryo-FIB SEM volume imaging

and custom milling procedures, e. g. for lamella lift-out workflows (Mahamid et al.

2015, Schaffer et al. 2019), as well as additional modules that will likely be devel-

oped for new use-cases in the future owing to the scripting interface of SerialFIB.

The current major bottleneck to achieve higher throughput for lamella preparations

is dictated by a) the slow ablation rates of Ga+ ions that will likely be improved

by plasma FIB instruments (Burnett et al. 2016), and b) the number of samples

that can be loaded into a cryo-FIB instrument and therefore processed to generate

lamellae during one session. A solution to this challenge requires cryo-FIB micro-

scopes with better vacuum and integrated cryo-traps resulting in lower amorphous

ice condensation rates on the sample (Tacke et al. 2021), improved cooling systems

that will allow longer and overnight operations, and sample storage devices to se-

quentially mill lamellae on more than the currently possible two grids without the

need to transfer samples in or out of the microscope.

Furthermore, SerialFIB is applicable to cryo-CLEM approaches to generate lamel-

lae in a site-specific manner. Here, lipid droplets were targeted in HeLa cells in

four sessions corresponding to four grids and 15 lamellae sites. 14 lamellae were

successfully fine-milled, while one was lost during empirical optimization of milling

parameters. Sample deformations were observed on grid squares with thin vitreous

ice, regardless of whether cellular material was present (cf. Figure 14). Although

sample deformations compromise correlation accuracy, the targeted lipid droplets

were maintained in seven out of 10 lamellae created on three TiSiO2 grids whereas

none of the four lamellae created on one AuSiO2 support contained the aimed fea-

ture. This was validated by a comparison between lipid droplet signal in different

cryo-FLM slices and the structural signature in TEM overview of the cellular slices.

Cryo-ET also produced high-quality tomograms from lamellae prepared with Se-

rialFIB, which confirmed the usability of the automation software for cryo-CLEM

workflows and the potential usage of lipid droplets as intracellular fiducials for cryo-

ET (Klein et al. 2021, Okolo et al. 2021, Scher et al. 2021). This also opens
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the possibility, in combination with super-resolution techniques (Moser et al. 2019,

Moser et al. 2021), to target even smaller objects relative to LDs acting as internal

reference points. Thus, it will likely facilitate correlation of other cellular features,

such as biomolecular condensates in yeast cells, in the future.

SerialFIB also enabled automated acquisition of cryo-FIB SEM volumes of two

mammalian cell types (i. e., HeLa and Sum159) revealing nanoscale information

of organelle (i. e., lipid droplets and nuclei) sizes, localization and distributions.

Subsequent lamella preparation below the FIB-micromachined and SEM-imaged

area, followed by cryo-ET acquisition confirmed the feasibility to collect high-quality

tomograms with this approach. The cellular context together with on-the-fly seg-

mentations, which might become available in the future, can thus guide lamella

preparations in the vicinity of specific cellular structures at higher precision.

The correlation of cryo-FLM and cryo-FIB SEM volumes of HeLa cells with stained

lipid droplets and fiducial beads was demonstrated using SerialFIB’s cryo-FIB SEM

volume imaging modality. Affine transformations between centroids of lipid droplets

and fiducial beads in both imaging modalities resulted in an average residual error

of 386 nm which is within the current resolution limit of around 400 nm for cryo-

confocal light microscopy (Arnold et al. 2016, Van Driel et al. 2009). The error

might also stem from imperfect FIB slicing, which influences the centroid fitting

of lipid droplet and bead segmentations in the cryo-FIB SEM volume. However,

the observation of local point clusters with similarly behaving residual vectors (data

not shown) may allow the refinement of local correlations with lipid droplets tak-

ing internal sample deformations into account. 3D correlations utilizing the here

demonstrated combined cryo-FLM and cryo-FIB SEM volume imaging will likely

also enable targeting in larger high-pressure frozen volumes for lift-out approaches.

In summary, the method developments for cryo-FIB workflows presented in this the-

sis enable automated, high-throughput generation of lamellae with high quality for

subsequent cryo-ET. SerialFIB facilitates cryo-FIB-milling of cellular samples for

users with different levels of expertise and thereby streamlines cryo-sample prepa-

rations. Furthermore, this software represents a modular platform for diverse cryo-

preparations including cryo-FIB SEM volume imaging and trench milling for lift-out

approaches. Especially its scriptable and open-source interface will serve the in-cell
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structural biology community for future developments of more advanced cryo-FIB

procedures.

6.3 Automated in-cell cryo-electron tomography acquisition

For this study, more than 140 lamellae were generated using automated, high-

throughput on-grid cryo-FIB milling in SerialFIB, as well as manual operations.

Imaging the biological information contained in these cellular slices by cryo-ET was

automated with the help of Wim Hagen and Felix Weis using SerialEM (cf. Figure

16, (Mastronarde 2005, Mastronarde 2018, Weis and Hagen 2020)) and resulted in

over 500 tomograms of yeast cells under varying nutritional conditions. Newly de-

veloped features in SerialEM (version 3.8 (Mastronarde 2018)) include the tilt series

controller which enables abortion of tilt series acquisition in user-definable cases.

For instance, when tracking is off, the signal recorded by the camera is too dim

at high tilts or when obstacles such as crystalline ice or bulk cellular material at

the edge of a lamella obstruct the field of view. This implementation saves time

and thus increases tomography throughput. Further software tools support TEM

data collection with SerialEM and utilize virtual maps on which target sites are

selected and set-up while the microscope is already acquiring tomograms on previ-

ously defined positions (Schorb et al. 2019). Furthermore, the development of new

acquisition schemes that circumvent the trade-off between field of view and resolu-

tion, and allow the acquisition of tomographic data across the complete lamella at

high resolutions, are currently being developed to increase the biological information

that can be obtained from a single lamella (Peck et al. 2021).

6.4 DeePiCt automates data mining to explore macromolecules in their

cellular context

With optimized high-throughput cryo-sample generation and acquisition of high-

quality tomograms described above, data mining in cryo-electron tomograms be-

comes the major challenge of the cryo-ET workflow. Traditional methods such as

template matching (Hrabe et al. 2012) are computationally expensive, require care-

ful manual inspection, do not detect all target structures, which is likely due to the

crowdedness of the cytosol, and are only amenable to particles which show good con-

trast in inherently low signal-to-noise tomograms (cf. Figure 17). CNN-based tools

for pattern recognition in cryo-electron tomograms, once trained, enable fast and
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reliable detection of many different structural features (Chen et al. 2017, Moebel

et al. 2021). The here presented DeePiCt workflow is based on the U-net architec-

ture (Ronneberger et al. 2015) and entails 2D CNNs for compartment segmentation

which provide functional context to the output of 3D CNNs for cellular structure

annotations, as well as particle localizations. The development of this software

required first the generation of ground truth, expert annotations for training and

evaluation in real cryo-ET data which are not yet publicly available. Therefore,

cellular compartments, including organelles and cytosol, membranes, ribosomes and

FAS were fully segmented and localized in 20 high-quality cryo-electron tomograms

depicting cellular landscapes of exponentially growing wild-type S. pombe. The an-

notated ribosome and FAS particles resulted in subtomogram averages providing

valuable structural insights into S. pombe enzyme complexes inside exponentially-

growing cells which are not yet publicly available.

Moreover, the ground truth data set consists of 10 tomograms acquired with a Volta

potential phase plate and 10 tomograms acquired with defocus only (DEF). This

enabled the training of networks with 10 VPP tomograms, which were applied to

individual datasets of different acquisition parameters, and precision and recall were

evaluated (cf. chapter 5.1.4).

The DeePiCt 2D CNN readily discriminates cellular compartments with average

auPRCs of 0.969 for cytosol and 0.893 for organelles in the VPP domain. The

resulting segmentations can be used to mask certain cellular areas to improve par-

ticle localizations by either removing false positives or by the detection of specific

structures in their cellular context, such as ribosomes close to organelles (e.g., ER

and mitochondria). The successful discrimination of cytosol and organelles further

opens the possibility to train DeePiCt networks which segment and classify specific

organelle types and structured ED filaments or condensates with newly generated

ground truth data in the future.

For DeePiCt particle predictions in the VPP domain, the auPRC values for ribo-

somes and FAS calculated by cross validation of 0.579 and 0.234, respectively, were

rated adequate and was further confirmed by subtomogram averaging (cf. Figure

18). For the ground truth construction, DeePiCt outperformed TM as the software

recovered more ribosomes and also FAS particles for which the traditional method
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completely failed (cf. Figure 17). In the future, detailed method comparisons with

the newly developed 3D CNN-based DeepFinder will be performed to analyze DeeP-

iCt’s performance in more detail (Moebel et al. 2021).

For this thesis, I utilized DeePiCt to further detect ribosomes in both S. pombe and

S. cerevisiae under normal nutrient and energy depletion conditions in DEF tomo-

grams. The predictions showed satisfactory performances and added a substantial

number of particles to the individual datasets (cf. Figure 24, Supplementary tables

S4-S13). This enabled subtomogram averaging of ribosomes to high-resolutions at

which structural and functional insights on nutrient-dependent ribosome configu-

rations were revealed (cf. Figures 25, 50). While the performance was sufficient

for improving subtomogram averaging by increasing particle numbers, DeePiCt pre-

dictions are not yet suited to calculate absolute particle numbers in the cytosolic

volume. This was especially apparent for S. cerevisiae NN where the combination

of cytosol and ribosome predictions resulted in less than half of the ground truth

ribosome concentration. Although this is sufficient to detect general trends, it is

not enough to provide quantitative data on global molecular crowding with ribo-

somes as an approximation. As the utilized DeePiCt network was trained on VPP

S. pombe data, retraining with comprehensive annotations for S. cerevisiae under

specific nutrient conditions might improve the method’s performance in the future.

Moreover, DeePiCt networks trained in the here discussed S. pombe VPP dataset can

be directly applied to other species as demonstrated for S. cerevisiae, various exper-

imental conditions (cf. chapter 5.4), and even unseen tomograms of other organisms

such as HeLa cells (data not shown), and objectively predict macromolecules in their

cellular context. These results lay the ground for automated particle detection and

subtomogram averaging in other large cryo-ET datasets in the future. Thus, the pre-

sented real cryo-ET ground truth together with pre-trained and ready-to-use CNNs

represent a major contribution to the cryo-ET community for both method devel-

opment and immediate segmentation tasks. Users can easily apply trained models

to unseen tomograms, which takes only minutes. The flexibility of the DeePiCt

workflow design further allows users to tailor the network’s architecture to their

needs dictated by the structures to be trained which will likely take several hours

depending on the data size and cluster configurations.
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DeePiCt also harbors a major advantage in comparison to other particle picking

procedures, which is the cellular context provided by the 2D CNNs. This was

demonstrated for ribosomes in close proximity to mitochondria and ER. Subtomo-

gram averaging and 3D classifications revealed for both ribosome classes connecting

densities to the adjacent membrane (cf. Figure 25). Interestingly, the ribosomes

were oriented differently with an angular offset of around 35° facing the membrane.

This highlights the fact that DeePiCt can predict particles in their cellular context

providing new biological insights.

Taken together, the presented results emphasize the potential of deep-learning meth-

ods such as DeePiCt. A community effort to provide trained CNNs on imaging data

from different modalities has already started and will likely enable faster and higher

throughput data segmentation in a multitude of organisms in the future (ModelZoo,

(Koh 2021)). Also, further development of unsupervised methods for cryo-ET will

enable mapping of many more structural features than the ones shown here (Gubins

et al. 2019, Martinez-Sanchez et al. 2020, Zeng et al. 2021). Harnessing the valuable

information deposited in protein structure data bases and the ground-breaking pro-

tein structure predictions of AlphaFold2 (Jumper et al. 2021) may accelerate these

developments and help to generate holistic cell models at high resolutions within

the cellular context provided by large scale cryo-ET datasets.

6.5 Nutrient stress induces morphological changes of specific organelles

with implications for the metabolic state of yeast cells

By employing cryo-electron tomography, utilizing the improved cryo-sample prepa-

ration workflows described above, I showed that energy and glucose depletion in-

duced large scale structural rearrangement of the yeast cytosol in unlabeled, wild-

type strains. Upon nutritional stress, yeast cells displayed a variety of organelles

changing their morphologies, including mitochondria and lipid droplets. In addition,

unstructured high-density assemblies were observed upon prolonged starvation con-

ditions which could represent aggregates. Also, the nuclear envelope was expanded

upon four days of glucose depletion in S. pombe. Despite these observations of al-

tered cellular ultrastructures, continuity of the membranes and overall compartment

integrity, especially of mitochondria, were observed in all cryo-electron tomograms

of energy-depleted yeast. This showed that the cells can cope and adapt to the
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harsh nutrient stress without inducing cell death, or apoptosis, which would lead to

mitochondria outer membrane rupture and leakage (Ader et al. 2019). However,

the unstructured, high density assemblies observed at later time points of energy de-

pletion could represent amorphous protein aggregates which hint at a shift towards

non-reversible, solid phases. This could indicate that prolonged nutrient starva-

tion ultimately leads to cell death as observed in many protein aggregation diseases

(Bauerlein et al. 2017, Patel et al. 2015, Shin and Brangwynne 2017).

Mitochondria fissioned and adopted a more spherical shape in both investigated

yeast species confirming previous studies (Bagamery et al. 2020, Liu et al. 2019,

Zheng et al. 2019). These organelles are the energy producing factories of the

cell and provide ATP for many cellular processes under normal nutrient conditions.

Thus, the observed morphological changes might be attributable to the low energy

state of the cells. The inhibition of the Cytochrome C reductase and therefore of

the respiratory chain via Antimycin A stops ATP generation upstream of the ATP

synthase which likely explains the observation of seemingly intact dimers decorating

cristae in S. cerevisiae (cf. Figure 35 E).

Furthermore, in S. pombe an additional layer on the surface of the mitochondrion’s

outer membrane was detected (cf. Figure 35). Its structural signature resembled

cryo-EM maps of Dnm1 polymers, constituted by this self-assembling dynamin-

related GTPase which is implied to facilitate mitochondria fission (Francy et al.

2017, Ingerman et al. 2005, Mears et al. 2011). However, this structure was not

captured by tomography directly at the neck of dividing mitochondria where it

was suggested to fulfill its function. Thus, the assembly displays another energy

depletion-induced supramolecular architecture which might indicate a trapped state

of Dnm1 due to the lack of energy. Segmentation and subsequent subtomogram av-

eraging will confirm the identity of the structure and, depending on the resolution,

reveal its functional state based on catalytic site occupancy.

In addition, lipid droplets were observed with altered morphologies upon nutrient

deprivation. As these organelles store and provide energy, they are highly relevant

for the metabolism and their morphologies inform on the energy state of yeast

cells. LDs are usually spherical to reduce surface tension via a minimal contact

area between the aqueous cytosol and the lipid interior (M’barek et al. 2017).
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Here, energy-depletion induced deformation of these organelles in several instances

and showed connections to vacuoles hinting at a potential utilization of the stored

lipids to provide the cells with energy (cf. Figure 36). Also, peripheral crystalline

layers of sterol esters caused by a phase transition via lipases that free fatty acids

from the stored TAGs were observed in accordance with other studies (Mahamid

et al. 2019, Rogers et al. 2021). The free fatty acids could then be subjected to

beta-oxidation in order to provide energy to the cells (Weber et al. 2020). As no

double membrane-bound compartments which correspond to autophagosomes were

observed in cryo-electron tomograms, utilizing free fatty acids could respresent a

potential adaptation mechanism to survive energy depletion and compensate for a

lack of macro autophagy (Lang et al. 2014). However, it has to be considered that

individual cells often display an inherent variety of lipid droplet morphologies and in

the scope of this thesis no comprehensive analysis of all observed LDs was performed.

Also complementing metabolomics studies might reveal changes in the lipidome of

energy-depleted yeast cells. Nevertheless, the examples of LD morphological changes

together with the observed FAS condensates, which will be discussed in detail below,

hint at nutrient-dependent changes in the lipid metabolism of yeast cells.

6.6 Cryo-ET unveils nutrient-dependent supramolecular assemblies in

the cytosol

A number of distinct supramolecular assemblies were observed in cryo-electron to-

mograms of the S. cerevisiae and S. pombe cytosol and nucleus. Their structural

features were different from known cytoskeletal filaments, as observed in exponen-

tially growing yeast cells. The assemblies occupied a large fraction of the cytosolic

volume (around 5 %, cf. Figures 37, 38) and seemed to grow over time, which was

indicated by qualitative observations in tomograms collected at later time points.

This suggested that within one hour of energy depletion, despite previously be-

ing reported to result in cytosolic solidification (Joyner et al. 2016, Munder et al.

2016), condensation of structured assemblies did not yet reach a steady state, but

rather continued to evolve over longer periods of time. The accompanied excluded

volume effect has been suggested to drive polymerization in addition to attractive

protein-surface interactions (Banani et al. 2017, Hyman et al. 2014, Walter and

Brooks 1995). Segmenting these polymeric structures either manually or by train-

ing a dedicated DeePiCt 2D network will allow a quantitative analysis in all acquired
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tomograms. This unique data set will then be utilized for meso-scale modelling to

understand how the global changes in molecular organization lead to polymerization

and ultimately establish cytosolic solidification as a strategy for survival (Minton

2019).

In accordance with previous light microscopy findings (Narayanaswamy et al. 2009,

Park and Horton 2019, Petrovska et al. 2014, Prouteau and Loewith 2018), the

components of these higher-order biomolecular assemblies are likely protein com-

plexes, which may self-assemble upon energy depletion or require nucleic acids

and/or metabolites to do so. Specific macromolecules are concentrated and possi-

bly condensed within individual meso-scale architectures. Many metabolism-related

enzymes have been shown to reversibly form polymers (Park and Horton 2019,

Prouteau and Loewith 2018, Stoddard et al. 2020) and are interesting candidates

for identifying the filament-forming components. However, it is unclear whether

their formation represents an example of liquid-liquid demixing, as most of the so

far described phase-separated condensates are comprised of intrinsically disordered

proteins (Banani et al. 2017, Shin and Brangwynne 2017, Pak et al. 2016) and

only some were observed to be highly structured assemblies (reviewed in Goetz and

Mahamid 2020). Therefore segmentation and subsequent subtomogram averaging

will be combined with mass-spectrometry approaches to unambiguously identify the

components of the detected supramolecular architectures. This integrated approach

may further decipher whether conformational changes, post-translational modifica-

tion, accessibility of catalytic sites and ligand binding, as well as specific interac-

tion surfaces drive self-assembly. The structural analysis in combination with light

microscopy movies of the identified molecular species will further inform on their

physical phase and dynamics which may also enable an understanding of potential

molecular condensation and growth pathways.

6.7 Cytosolic ribosome concentrations inform on global, species

-dependent changes in molecular crowding upon energy depletion

Molecular crowding was hypothesized to increase upon nutrient stress, based on

the observed energy-depletion induced reduction in cell volume (Joyner et al. 2016,

Marini et al. 2020, Munder et al. 2016) and the expectation that the yeast proteome

does not significantly change in 1 h of treatment. The here presented quantitative
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analysis of molecular crowding in cryo-electron tomograms which directly depict

native molecular landscapes was performed via evaluation of the concentration of

ribosomes as an approximation for global changes in molecular crowding. The ri-

bosomes themselves are also likely to have a major contribution to crowding due to

their large size and high abundance. Ribosome concentrations calculated with this

approach were within the reported range of other studies for exponentially growing

yeast cells (cf. Table 4).

In S. pombe a non-significant increase in ribosome concentrations, which was not

reflected by DeePiCt predictions, was observed within 1 h of ED. Vacuoles have

been observed to fission and this morphology change was suggested to compensate

for the reduction of cellular volume in context of hyperosmotic stress, while keeping

cytosolic concentrations isotonic (Bone et al. 1998). Thus, S. pombe cells likely

already adapt to the energy depletion-induced changes in macromolecule concen-

trations within 1 h of treatment. For the later time points, DeePict predictions

suggested a decrease in cytosolic ribosome concentrations which could indicate dis-

assembly of the protein complex and potentially degradation. However, these obser-

vations for ribosome concentrations will have to be confirmed by light microscopy

and mass spectrometry experiments.

In agreement with the expectations, for S. cerevisiae a significant average increase

of 16.7 % in ribosome concentrations (based on ground truth annotations) was ob-

served upon 1 h energy depletion. This could stem not only from the previously

observed cell size reduction but also the expansion of vacuoles which further reduces

the available cytosolic volume. For S. cerevisiae, molecular concentrations changed

during prolonged stress (6 h ED) upon which ribosomes were still more concentrated

than in normal nutrient conditions but less crowded than upon 1 h ED.

Taken together, these findings suggest that energy-depletion induces significant

changes in global molecular crowding, approximated by ribosome concentrations,

in S. cerevisiae. As the molecular concentrations seem to be dynamic, indicated by

a dependence on the duration of stress, cells likely adapt in a time-dependent man-

ner potentially also with different strategies to cope with the energy deprivation.

In addition, the observed changes in ribosome concentrations, which due to their

high abundance and large size exclude a significant fraction of the cytosolic volume,
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likely influence other molecular species. Thereby, they might influence their effective

concentrations and biophysical properties via phase separation or polymerization.

6.8 Energy-depleted yeast reveal non-translating stationary state

ribosomes

The development of high-throughput cryo-ET sample preparation and particle pick-

ing workflows enabled the generation of large cryo-ET datasets of nutrient-dependent

ribosomes. In addition to the gained information on particle concentrations and dis-

tributions inside cells, subsequent subtomogram averaging further informed on the

nutrient-dependent functional states of yeast ribosomes. Comparisons between nor-

mal nutrient state and 1 h energy depletion confirmed overall structural similarity

between S. pombe and S. cerevisiae maps and published S. cerevisiae structures

(cf. Figure 43, (Buschauer et al. 2020, Delarue et al. 2018)). The achievement of

sub-nanometer resolutions for well-aligned classes allowed the analysis of the ribo-

some interactome (cf. Figure 50). In normal nutrient conditions, ribosomes were

identified in a translating state based on PTC occupancies with P-site tRNAs, as

well as additional densities fitting various translation factors including eIF5a, eEF3

and eEF2. Also, ribosome sub-classes showed the expansion segment ES27L in an

exit configuration connecting an extra density to the ribosomal exit tunnel.

Upon 1 h of energy depletion, fully assembled ribosomes were detected with vacant

PTCs (cf. Figure 50). Additional densities were observed at the E-site likely fitting

eIF5a and at the PTC entry site matching eRF1 or eEF2. Also, a sub-class with

an additional density close to the head of the 40S subunit fitting eEF3 was not

detectable. This suggested a stationary non-translating ribosome state as the cells

are lacking energy to synthesize new proteins. Nevertheless, the observed complete

80S structures represent a large pool of functional complexes which are ready to be

recycled and re-start translation once energy is supplied again. Furthermore, the

assembly of ribosomes in polysomes was observed in all four datasets (cf. Figure

43 H). Coordinate-based distance analysis between neighboring ribosomes could be

further performed in the future to identify polysomes and to quantify the fraction of

ribosomes that form these assemblies in the different nutritional states and species.

In combination with the identified functional states, this will likely inform further

on translational activity of ribosomes inside yeast cells.
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While a clear distinction between occupied and empty PTCs was observed for normal

nutrient and energy-depleted S. pombe ribosomes, S. cerevisiae ribosomes revealed

a mix of translational states in both nutrient conditions (cf. Figure 50). Despite the

applied harsh nutritional stress, a class containing 21.6 % of all detected S. cerevisiae

ribosomes revealed a P-site tRNA occupying the PTC and could hint at ongoing

translation activity and thus protein synthesis. The newly produced proteins are

likely relevant for the stress response and this observation is in accordance with

previous polysome profiling experiments indicating reversible translation inhibition

upon glucose depletion (Arribere et al. 2011). The structural analysis and classifi-

cations of PTC occupancies at later time points of ED may also inform on dynamic

ribosome conformations. This will complement the observed changes in ribosome

crowding which can be combined with proteome profiling experiments to inform on

abundance changes and potential degradation upon prolonged starvation.

6.9 Energy depletion-induced FAS assemblies are condensates with

species-dependent organization and structural variation

Cryo-electron tomography and light microscopy movies revealed that FAS complexes

were evenly distributed under normal nutrient conditions and colocalized in species-

dependent 3D assemblies upon energy depletion (cf. Figures 39 and 53). Overall,

cytosolic FAS concentrations in exponentially growing cells were underestimated in

comparison to mass spectrometry methods (cf. Table 4). This is likely caused by

the fact that this enzyme complex is rather difficult to detect in cryo-electron tomo-

grams due to its hollow structure. More particles were identified by boosting image

contrast in tomograms acquired with a VPP. In addition, only fully assembled com-

plexes can be localized with this method, while mass spectrometry approaches also

detect individual peptides of non-assembled proteins.

In addition to the observed FAS foci upon 1 h of energy-depletion, individual com-

plexes were still detected randomly distributed in the cytosol at similar concentra-

tions as in normal nutrient conditions for S. pombe and increased particle numbers

per cytosolic volume in S. cerevisiae tomograms (cf. Figure 41). This complements

the findings for ribosome concentrations and therefore emphasizes species-dependent

global changes in crowding upon 1 h of energy depletion.
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Moreover, the instances of FAS foci observed in tomograms at different time points

of ED match the species-dependent assembly dynamics of fluorescently-tagged FAS

in light microscopy movies (cf. Table 3 and Figure 53). This is expected as the flu-

orescence data was used to select time points of interest for tomography acquisition

upon prolonged energy depletion.

Inside the condensates, FAS concentrations were drastically increased and the fully

assembled complexes clearly separated from the surrounding cytosol (cf. Figures

39 and 41). In the case of S. pombe, FAS arranged in monolayer arrays connected

to adjacent membranes. In these almost crystalline architectures, FAS was concen-

trated more than 200-fold which likely indicates a space-efficient way to store this

important enzyme complex in its functional, folded state. The seemingly unorga-

nized condensates observed in S. cerevisiae, also contained fully assembled complexes

with an increase in local concentrations of almost 250-fold for a single annotated

tomogram. In both cases fluorescence recoveries after photobleaching (FRAP) were

reduced in the condensed state which could not be disentangled from the overall

cytosolic solidification due to the small foci size (cf. Figure 53). Together with the

increase in local concentration, FAS assemblies represent an example of nutrient-

dependent demixing and a phase transition towards a more solid state. The fact

that in S. pombe faster recoveries were observed in FRAP experiments at later time

points further highlights that the stress response is a dynamic, time-dependent pro-

cess and a steady state is not reached in 1 h of energy depletion.

Structural analysis of individual FAS complexes by subtomogram averaging further

revealed nutrient-dependent conformations indicating different functional states (cf.

Figure 52). Normal nutrient state FAS complexes showed overall structural similar-

ity and matched published X-ray structures of S. cerevisiae FAS (Leibundgut et al.

2007). The ACPs fitted a density localized close to the α-wheel which implied an

active state in which this protein shuttles the growing acyl chain to the individual

catalytic sites of the multi-enzyme complex in order to synthetize long chain fatty

acids. Furthermore, it might also indicate a kinetically controlled step in the fatty

acid synthesis in which the otherwise dynamic protein resides most of the time in

this specific position and is thus captured by cryo-ET.
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Upon 1 h of energy depletion, the densities fitting ACPs were detected at the top

of each half dome suggesting a stalled, hibernating state of the otherwise intact

complex. This is in line with previous observations where fluorescently-tagged FAS

foci formed after 4 d of glucose depletion in S. cerevisiae and contained functional

complexes (Suresh et al. 2015).

In S. pombe, additional densities connecting to the adjacent, in many cases vacuolar,

membranes were observed and could not be assigned based on published structures.

However, they likely represent proteins anchoring the complex in the membrane

and thus contribute to the formation of the highly organized assemblies. As no

additional linkers between individual FAS complexes were detected by subtomogram

averaging, they either do not exist or are unstructured and flexible. Similar to other

studies of structured condensates, future analysis of packaging densities together

with molecular dynamic simulations will likely inform on the biophysical state of

FAS assemblies to complement the light microscopy experiments (Dai et al. 2018,

Oltrogge et al. 2020, Rosenzweig et al. 2017). Interestingly, on the micron scale of

light microscopy experiments with hyperosmotic stress, which induces intracellular

molecular crowding (Abuhattum et al. 2018), S. pombe FAS assembled into similar

foci but dissolved in less than 1 h in comparison to energy depletion (cf. Figures 53

and 54). As the oligomerization of several metabolic enzymes has been connected to

specific functions, in addition to their storage and protection (Park and Horton 2019,

Prouteau et al. 2017, Prouteau and Loewith 2018), FAS foci might also serve another

stress-induced purpose. Further metabolomic experiments of energy-depleted yeast

together with cross-linking mass spectrometry to identify the unassigned densities,

will likely complement and further inform on the functional states of FAS.

6.10 Deciphering the mechanisms driving liquid- to solid-like state

transition and cytosolic polymerization

Cytosolic solidification upon energy depletion was suggested to be driven by an

overall increase in molecular crowding and/or polymerization of macromolecules es-

tablishing interaction networks that provide mechanical stability (Abuhattum et al.

2018, Joyner et al. 2016, Munder et al. 2016). The determined ribosome concen-

trations in cryo-electron tomograms of yeast cells in different nutrient states sug-

gested species-dependent changes in global molecular crowding. Using this valuable
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quantitative information on crowders inside cells in combination with the observed

supramolecular assemblies occupying a large fraction of the cellular volume will en-

able coarse grain modeling to obtain a more holistic understanding of subcellular

organization. This will likely elucidate whether the excluded volume effect is suffi-

cient to drive phase transition to a solid-like state in energy-depleted cells (Minton

2019).

The structural elucidation of individual assemblies at different time points readily vi-

sualized intermediate formation states (cf. Figure 39). In addition, light microscopy

movies displaying changes in cytosolic pH upon energy and glucose depletion re-

vealed similar cytosolic acidification in S. cerevisiae, but different scenarios for S.

pombe. Here, glucose depletion did not induce a decrease in cytosolic pH, but rather

a change in vacuole morphology (cf. Figure 54). Also, applying osmotic stress to ec-

topically induce crowding showed condensation of FAS at time scales different from

energy depletion for S. pombe but no foci formation for S. cerevisiae (cf. Figure 54

C). While crowding can increase the number of encounters between individual pro-

teins, a change in pH influences protein surface charges and thus the “stickiness” of

surface patches which likely increases interactions (Levy et al. 2012). Thus, comple-

mentary light microscopy experiments using yeast strains with fluorescently-tagged

proteins identified in the oligomeric assemblies and applying active cytosolic acidifi-

cation will disentangle the influence of these factors on the large-scale self-assembly.

By combining the findings on changes in pH and crowding affecting condensation

similar to ED, molecular dynamics simulations can be employed to investigate how

in addition to global excluded volume effects changes in conformation and surface

charges influence condensate or molecular assembly and growth pathways.
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7 Conclusions

In this thesis, I explored the potential to harness in-cell cryo-ET to quantita-

tively and structurally investigate intracellular crowding and revealed the nutrient-

dependent organization of the wild-type yeast cytosol. This required method devel-

opments and resulted in the following conclusions:

• The co-developed modular platform SerialFIB enables and facilitates high-

throughput cryo-FIB preparations. This software was benchmarked with six

different cell types for on-grid high-quality lamella generation. Furthermore,

SerialFIB encompasses modules for cryo-CLEM-guided lamella preparation,

cryo-FIB SEM volume imaging and trench milling for lift-out procedures and

bears the potential to implement other, more advanced approaches in the

future.

• Data mining workflows utilizing Deep-Learning algorithms were co-developed

to overcome limitations of traditional template matching methods. The es-

tablished software DeePiCt synergizes particle localization and compartment

segmentations in cryo-electron tomograms. It is applicable to data acquired

with different acquisition parameters. This revealed particle populations in

the cellular context of the S. pombe cytosol. In detail, ribosomes bound to

mitochondria were structurally analyzed and showed a particular orientation

facing the membrane, which was different from ER-associated ribosomes.

• Automated cryo-ET acquisition on lamellae micromachined from yeast cells

under varying nutritional conditions resulted in >500 cryo-electron tomograms

reavealing the underlying structural architectures. These data provide a great

opportunity to quantitatively characterize structural reorganization inside cells

in response to environmental strains.

• Upon energy depletion morphological changes of organelles and the formation

of large-scale supramolecular assemblies were observed in the cytosol and nu-

cleus of S. cerevisiae and S. pombe. These results confirm previously debated

observations by genome-wide light microscopy screens with tagged proteins

(Narayanaswamy et al. 2009, Noree et al. 2019a), and open the possibility

to derive a mechanistic understanding of large-scale molecular assemblies in

response to stress.
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• Significant global changes in molecular crowding were detected upon energy-

depletion in the S. cerevisiae cytosol, but not in S. pombe, approximated by

ribosome concentrations. These results suggest divergent mechanisms of stress

response and adaptation.

• Nutrient stress led to structural variations of the ribosome, that while fully

assembled into an 80S complex and engaged in polysomes, exhibited a vacant

PTC. This hints at a stationary, non-active state which potentially represents

a protective mechanism of yeast cells to survive in energy-scarce environments.

• Energy-depletion induced condensation of FAS. These assemblies revealed high

local concentrations of fully assembled complexes, species-dependent dynamics

and organization into higher-order structures. In both characterized yeast

species, nutrient stress led to a particular structural reconfiguration of the

individual FAS complexes with ACPs located at the top of each half dome

indicating a potential hibernating state.

• Light microscopy experiments confirmed previously described acidification of

the cytosol upon energy depletion (Joyner et al. 2016, Munder et al. 2016).

A similar reduction in cytosolic pH was observed upon glucose depletion in

S. cerevisiae, but not in S. pombe where a change in vacuole morphology was

detected. To investigate the influence of molecular crowding on FAS condensa-

tion, hyperosmotic stress was ectopically applied and revealed assemblies in S.

pombe at time scales different from ED, but no foci formation in S. cerevisiae.

These results hint at different strategies of the two yeast species to adapt to

environmental perturbations.

In the future, the here presented data across scales will be essential to model global

cytosolic solidification and local molecular condensation of the observed oligomers

in order to gain a more holistic understanding of the molecular details governing

phase transitions inside cells.
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8 Contributions

SerialFIB, the modular platform for cryo-FIB workflows, was jointly developed and

data produced with Sven Klumpe and Herman Fung. E. huxleyi samples were kindly

provided by Zohar Eyal and Assaf Gal. Sum159 and HeLa cell samples were kindly

prepared by Ievgeniia Zagoriy and Wioleta Dudka.

DeePiCt, the deep-learning based software for particle localization and cellular com-

partment segmentation was jointly developed and data produced with Irene de

Teresa and Alexander Mattausch.

Matteo Allegretti and Christian Zimmerli provided defocus-only tomography data

for S. cerevisiae NN. Christian Zimmerli also annotated NPC data utilized to train

DeePiCt networks (data not shown).

Tobias Walter inspected TM results for S. pombe and S. cerevisiae 1 h ED tomo-

grams.

Ievgeniia Zagoriy cloned the S. pombe FAS-mCherry construct and supported con-

focal microscopy experiments. Confocal microscopy and FRAP experiments were

jointly performed and analyzed with Willram Scholz.
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10 Appendix

10.1 Supplementary Tables

Supplementary Tables 1-3 are part of the methods section (cf. chapter 4).

Table S4: Ribosome ground truth construction in 20 S. pombe tomograms. Data

produced jointly with Irene De Teresa.

VPP Tomo Step 1

# TM

Step 1

# true

positive

TM

Step 2

DeePiCt

# TM

unde-

tected

Ribo

Step 2

DeePiCt

# true

positive

TM un-

detected

Ribo

Step

3 #

manual

Total Clean

TRUE 1.4 2000 1662 1980 1912 394 3968 2450

TRUE 1.5 2000 1371 2170 1855 415 3641 2342

TRUE 1.6 2000 1377 1450 1342 563 3282 3373

TRUE 1.21 2000 1260 2242 1699 481 3440 2429

TRUE 1.24 2000 1262 3061 2092 681 4035 2967

FALSE 1.26 2000 533 359 122 621 1276 838

FALSE 1.27 2000 881 969 699 1037 2617 1673

FALSE 1.28 2000 718 1125 307 5280 6305 5305

FALSE 1.29 2000 713 1346 905 2177 3795 2897

FALSE 1.30 2000 682 1132 541 2247 3470 2783

FALSE 1.34 3000 770 932 380 3015 4165 3783

FALSE 1.37 3000 590 710 242 1414 2246 1646

FALSE 1.41 3000 537 1657 694 1908 3139 2813

FALSE 1.43 3000 1263 872 513 1742 3518 1815

FALSE 1.45 3000 358 762 235 2239 2832 2348

TRUE 2.3 3000 1391 3296 2648 517 4556 3571

TRUE 2.4 3000 981 1302 1039 238 2258 1336

TRUE 2.5 3000 495 775 558 131 1184 617

TRUE 2.18 3000 1066 2268 1747 668 3481 2744

TRUE 3.27 3000 1243 2280 2115 421 3779 3482
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Table S5: FAS ground truth construction in 20 S. pombe tomograms. Data produced

jointly with Irene De Teresa.

VPP Tomo Step

1 #

man-

ual

Step 2

DeeP-

iCt #

unde-

tected

FAS

Step 2

DeePiCt

# true

positive

unde-

tected

FAS

Step

3 #

manual

Total Clean

TRUE 1.4 86 96 14 2 102 102

TRUE 1.5 50 37 15 16 81 81

TRUE 1.6 - 166 34 32 66 66

TRUE 1.21 45 32 8 6 59 59

TRUE 1.24 84 61 18 10 112 112

FALSE 1.26 9 2 2 5 16 16

FALSE 1.27 27 47 22 7 56 56

FALSE 1.28 29 191 41 6 76 76

FALSE 1.29 27 42 12 3 42 42

FALSE 1.30 38 53 17 9 64 64

FALSE 1.34 19 90 11 7 37 37

FALSE 1.37 7 66 10 5 22 22

FALSE 1.41 8 224 9 1 18 18

FALSE 1.43 9 44 3 5 17 17

FALSE 1.45 5 188 8 5 18 18

TRUE 2.3 22 44 20 11 53 47

TRUE 2.4 17 7 1 52 70 70

TRUE 2.5 6 11 2 19 27 27

TRUE 2.18 34 69 14 16 64 60

TRUE 3.27 - 54 34 30 64 64
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Table S6: S. pombe 1 h ED Ribosome and FAS particle picking results. Tomograms

were collected with defocus only. For manual picking, up to three rounds were performed using

EMAN2 (Tang et al. 2007). # total corresponds to the ribosome particles used for subtomogram

averaging. FAS particles were only detected manually and sorted depending on their location in

ED assemblies (# ED) or the cytosol (# cyt). Highlighted rows (cyan) correspond to ground truth

(gt) data.

Tomo Ribosome FAS

# TM

cleaned

#

man-

ual

#

DeeP-

iCt

total

#

DeeP-

iCt

unde-

tected

auPRC # total #

man-

ual

# ED # cyt

1 1,020 - 2,001 1,309 - 2,329 - - -

2 1,010 - 1,407 782 - 1,792 - - -

3 - - - - - - 233 233 0

4 907 2,133 2,230 522 0.81 3,040 22 0 22

5 1,147 1,514 2,475 1,068 0.74 2,661 647 584 63

6 894 - 3,006 2,398 - 3,292 - - -

7 557 - 1,596 1,252 - 1,809 - - -

9 - - - - - - 348 348 0

10 669 - 1,655 1,168 - 1,200 - - -

11 494 1,398 1,699 726 0.48 1,892 32 0 32

12 - - - - - - 132 132 -

13 934 - 2,372 1,860 - 2,794 - - -

14 615 - 995 665 - 1,280 - - -

15 790 2,530 2,319 709 0.68 3,320 82 28 54

16 - - - - - - 274 274 0

17 652 - 1,593 1,146 - 1,798 - - -

18 708 - 1,624 1,113 - 1,789 - - -

19 752 - 3,174 2,689 - 3,441 - - -

20 910 - 2,093 1,488 - 2,398 - - -

21 763 - 1,448 936 - 1,699 - - -

22 - - - - - - 194 194 -

23 970 1,539 2,180 650 0.73 2,509 93 93 37

26 761 - 2,395 1,832 - 2,593 - - -

28 - - - - - - 162 162 -

29 819 - 1,766 1,217 - 2,036 - - -

30 665 - 2,255 1,783 - 2,448 - - -

31 - - - - - - 46 46 -

32 - - - - - - 225 225 -

33 - - - - - - 203 203 -

35 - - - - - - 390 390 -

37 - - - - - - 261 261 -

43 - - - - - - 428 428 -

45 - - - - - - 392 392 -

Average 802 1,823 2,014 1,266 0.69 2,306 231 222 26

STD 170 488 541 591 0.12 660 164 162 25

Total 16,037 9,114 40,283 25,313 - 46,120 4,164 3,993 208
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Table S7: S. pombe 1 h ED cytosolic volumes and particle concentrations. Volumes

determined from manual ground truth (gt) segmentations, DeePiCt predictions (pred). ED-induced

FAS assemblies and filaments were also manually segmented. Highlighted rows are ground truth

(gt) data.

Tomo Cellular volumes Particle concentrations

cytosol

gt

[µm3]

cytosol

pred

[µm3]

FAS

ED

[µm3]

Fil ED

[µm3]

Fraction

Fil ED

[ %]

gt ribo

[part/

µm3]

pred

ribo

[part/

µm3]

FAS

cyt

[part/

µm3]

FAS

ED

[part/

µm3]

1 - 0.153 - - - - 13,065 - -

2 - 0.130 - - - - 10,835 - -

3 - 0.031 - - - - - - -

4 0.184 0.179 - 0.005 0.029 16,965 12,444 120 -

5 0.165 0.198 0.012 0.013 0.073 13,419 12,481 382 48,100

6 - 0.213 - - - - 14,101 - -

7 - 0.122 - - - - 13,105 - -

9 - 0.096 - - - - - - -

10 - 0.126 - - - - 13,159 - -

11 0.103 0.135 - - - 14,021 12,591 311 -

12 - 0.129 - - - - - - -

13 - 0.171 - - - - 13,902 - -

14 - 0.120 - - - - 8,310 - -

15 0.240 0.158 0.001 0.014 0.057 21,002 14,670 225 34,504

16 - 0.008 - - - - - - -

17 - 0.106 - - - - 14,985 - -

18 - 0.105 - - - - 15,517 - -

19 - 0.235 - - - - 13,529 - -

20 - 0.158 - - - - 13,244 - -

21 - 0.128 - - - - 11,318 - -

22 - 0.153 - - - - - - -

23 0.162 0.157 0.001 0.007 0.041 16,020 13,919 229 47,665

26 - 0.184 - - - - 12,983 - -

28 - 0.177 - - - - - - -

29 - 0.137 - - - - 12,937 - -

30 - 0.163 - - - - 13,833 - -

Average 0.17 0.14 0.00 0.01 0.05 16,285 13,046 253 43,423

STD 0.05 0.05 0.01 0.00 0.02 3,005 1,577 99 7,727
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Table S8: S. pombe long ED cytosolic volumes and ribosome concentrations. Volumes

and particles determined from DeePiCt predictions (pred).

Tomo S. pombe 3.5 h ED Tomo S. pombe 17 h ED

Ribosome Cellular

volumes

particle

concen-

trations

Ribosome Cellular

volumes

particle

concen-

trations

# DeeP-

iCt total

cytosol

pred

[µm3]

pred ribo

[part/

µm3]

# DeeP-

iCt total

cytosol

pred

[µm3]

pred ribo

[part/

µm3]

1 3,725 0.30 12,607 1 929 0.09 10,492

2 4,256 0.40 10,653 20 1,434 0.17 8,568

5 2,757 0.31 8,814 21 2,098 0.17 11,990

6 3,908 0.31 12,702 22 2,846 0.20 14,509

9 4,966 0.40 12,554 23 1,701 0.14 11,801

11 2,783 0.22 12,626 25 1,431 0.13 10,852

12 2,584 0.22 11,526 26 3,086 0.24 13,031

14 4,142 0.35 11,728 47 2,222 0.21 10,410

15 4,506 0.34 13,094 48 1,053 0.11 9,199

16 4,004 0.30 13,221 61 2,314 0.20 11,356

17 3,603 0.34 10,494 73 1991 0.16 12,361

18 3,863 0.34 11,454 76 3,249 0.25 13,221

- - - - 86 1,431 0.15 9,460

- - - - 87 2,892 0.20 14,590

Average 3,758 0.32 11,789 Average 2,048 0.17 11,560

STD 730 0.06 1,299 STD 758 0.05 1,873

Total 45,097 - - Total 28,677 - -
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Table S9: S. cerevisiae NN Ribosome and FAS particle picking results. Tomograms

were collected with defocus only by Matteo Allegretti (Allegretti et al. 2020). For manual picking,

up to three rounds were performed using EMAN2 (Tang et al. 2007). # total corresponds to

the ribosome particles used for subtomogram averaging. FAS particles were detected manually.

Highlighted rows are ground truth (gt) data.

Tomo Ribosome FAS

# TM

cleaned

# man-

ual

# DeeP-

iCt total

# DeeP-

iCt unde-

tected

auPRC # total # man-

ual

24 - - 1,855 - - 1,855 -

32 - - 1,472 - - 1,472 -

37 893 1,820 1,480 248 0.89 2,713 85

50 - - 1,188 - - 1,188 -

54 982 1,434 1,160 235 0.80 2,416 97

154 - - 1,689 - - 1,689 -

215 - - 3,338 - - 3,338 -

289 994 2,063 2,259 506 0.79 3,057 128

295 - - 3,569 - - 3,569 -

Average 956 1,772 2,001 330 0.83 2,366 103

STD 55 317 891 153 0.05 859 22

Total 2,869 5,317 18,010 989 - 22,986 310

Table S10: S. cerevisiae NN cytosolic volumes and particle concentrations. Volumes de-

termined from manual ground truth segmentations (gt, highlighted rows) and DeePiCt predictions

(pred).

Tomo Cellular volumes particle concentrations

cytosol gt

[µm3]

cytosol

pred

[µm3]

gt ribo

[part/

µm3]

pred ribo

[part/

µm3]

FAS

[part/

µm3]

24 - 0.24 - 7,869 -

32 - 0.20 - 7,458 -

37 0.14 0.25 19,895 5,846 623

50 - 0.15 - 7,941 -

54 0.15 0.26 16,513 4,448 663

154 - 0.17 - 9,955 -

215 - 0.22 - 14,863 -

289 0.16 0.23 18,747 9,848 785

295 - 0.26 - 13,488 -

Average 0.15 0.22 18,385 9,080 690

STD 0.01 0.04 1,720 3,383 84
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Table S11: S. cerevisiae 1 h ED Ribosome and FAS particle picking results. Tomo-

grams (Tomo) were collected with defocus only. For manual picking, up to three rounds were

performed using EMAN2 (Tang et al., 2007). # total corresponds to the ribosome particles used

for subtomogram averaging. FAS particles were only detected manually and sorted depending on

their location in ED assemblies (# ED) or the cytosol (# cyt). Highlighted rows correspond to

ground truth (gt) data.

Tomo Ribosome FAS

# TM

cleaned

# man-

ual

# DeeP-

iCt total

# DeeP-

iCt unde-

tected

auPRC # total # man-

ual

# ED # cyt

1 632 - 2,826 2,334 - 2,966 - - -

4 876 - 3,312 2,623 - 3,499 - - -

5 876 - 3,051 2,426 - 3,302 - - -

7 774 - 3,028 2,445 - 3,219 - - -

10 534 - 2,943 2,504 - 3,038 - - -

12 943 - 4,805 4,146 - 5,089 - - -

13 665 - 1,635 1,178 - 1,843 - - -

15 760 - 3,420 2,892 - 3,652 - - -

17 858 2,229 2,505 587 0.74 3,674 264 0 264

21 788 - 2,742 2,203 - 2,991 - - -

22 1,051 - 2,942 2,106 - 3,157 - - -

23 750 - 2,981 2,432 - 3,182 - - -

25 738 1,693 2,291 659 0.61 3,090 125 0 125

28 777 4,316 4,226 921 0.78 6,014 443 346 97

32 826 - 2,469 1,850 - 2,676 - - -

36 573 - 2,737 2,433 - 3,006 - - -

Average 776 2,746 2,995 2,109 0.71 3,400 277 115 162

STD 134 1,386 735 910 0.09 955 159 200 89

Total 12,421 8,238 47,913 33,739 - 54,398 832 346 486
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Table S12: S. cerevisiae 1 h ED cytoplasmic volumes and particle concentrations.

Volumes determined from manual ground truth segmentations (gt, highlighted rows) and DeeP-

iCt predictions (pred). ED-induced FAS assemblies and filaments (Fil ED) were also manually

segmented.

Tomo Cellular volumes Particle concentrations

cytosol gt

[µm3]

cytosol

pred

[µm3]

FAS ED

[µm3]

Fil ED

[µm3]

Fraction

Fil ED

[%]

gt ribo

[part/

µm3]

pred ribo

[part/

µm3]

FAS cyt

[part/

µm3]

FAS ED

[part/

µm3]

1 - 0.197 - - - - 14,379 - -

4 - 0.208 - - - - 15,928 - -

5 - 0.199 - - - - 15,333 - -

7 - 0.187 - - - - 16,201 - -

10 - 0.207 - - - - 14,249 - -

12 - 0.257 - - - - 18,692 - -

13 - 0.109 - - - - 14,986 - -

15 - 0.212 - - - - 16,112 - -

17 0.140 0.149 - 0.004 0.028 22,214 16,823 1,900 -

21 - 0.180 - - - - 15,267 - -

22 - 0.168 - - - - 17,554 - -

23 - 0.171 - - - - 17,382 - -

25 0.120 0.141 - 0.009 0.070 19,988 16,267 1,028 -

28 0.230 0.216 0.002 - - 22,166 19,523 - 170,332

32 - 0.150 - - - - 16,428 - -

36 - 0.195 - - - - 14,025 - -

Average 0.163 0.184 - 0.007 0.049 21,456 16,197 1,464 -

STD 0.059 0.036 - 0.004 0.030 1,272 1,548 617 -
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Table S13: S. cerevisiae 6 h ED cytosolic volumes and ribosome concentra-

tions.Volumes and particles determined from DeePiCt predictions (pred).

Tomo Ribosome Cellular

volumes

particle

concen-

trations

# DeeP-

iCt total

cytosol

pred

[µm3]

pred ribo

[part/µm3]

1 3,745 0.30 12,621

2 3,476 0.39 8,805

3 4,496 0.34 13,173

6 2,752 0.30 9,291

9 3,532 0.33 10,547

11 4,160 0.31 13,286

15 5,651 0.43 13,045

19 2,797 0.30 9,274

21 6,448 0.46 14,032

22 6,684 0.45 14,720

23 6,391 0.48 13,343

28 4,711 0.47 10,078

29 2,537 0.45 5,598

34 3,648 0.46 7,922

35 5,504 0.38 14,421

36 2,604 0.41 6,309

37 4,231 0.38 11,108

39 6,123 0.48 12,665

41 4,907 0.38 12,905

45 3,506 0.44 7,998

46 4,038 0.35 11,428

47 2,243 0.31 7,353

49 3,523 0.34 10,316

52 3,982 0.37 10,765

54 4,085 0.32 12,855

55 4,789 0.27 17,520

56 5,743 0.40 14,457

57 3,789 0.26 14,489

58 4,330 0.41 10,603

59 2,667 0.37 7,237

62 4,965 0.44 11,373

64 3,187 0.36 8,883

67 3,463 0.33 10,555

Average 4,203 0.38 11,181

STD 1,219 0.06 2,778

Total 138,707 - -
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10.2 List of Abbreviations

ACP . . . . . . . . . . acyl carrier protein

API . . . . . . . . . . . application programming interface

auPRC . . . . . . . . area under the precision recall curve

CC . . . . . . . . . . . . cross correlation

cryo-CLEM . . . . cryo-correlative light and electron microscopy

CNN . . . . . . . . . convolutional neural network

Cryo-EM . . . . . . cryo-electron microscopy

Cryo-ET . . . . . . . cryo-electron tomography

CTF . . . . . . . . . . contrast transfer function

DEF . . . . . . . . . . defocus-only

DH . . . . . . . . . . . . dehydratase

ED . . . . . . . . . . . . energy depletion

EMM . . . . . . . . . . Edinburgh minimal media

ENR . . . . . . . . . . enoyl reductase

ER . . . . . . . . . . . . endoplasmic reticulum

FAS . . . . . . . . . . . fatty acid synthase

FIB . . . . . . . . . . . focused ion beam

FLM . . . . . . . . . . fluorescence light microscopy

FRAP . . . . . . . . . fluorescence recovery after photobleaching

FSC . . . . . . . . . . . Fourier shell correlation

gt . . . . . . . . . . . . . ground truth

GUI . . . . . . . . . . . graphical user interface
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IDR . . . . . . . . . . . intrinsically disordered region

KR . . . . . . . . . . . . ketoacyl reductase

KS . . . . . . . . . . . . ketosynthase

LD . . . . . . . . . . . . lipid droplet

LLPS . . . . . . . . . . liquid-liquid phase separation

LSU . . . . . . . . . . . 60S large ribosomal subunit

MIP . . . . . . . . . . . maximum intensity projection

MOM . . . . . . . . . mitochondrion outer membrane

MPT . . . . . . . . . . malonyl/palmitoyl transferase

NN . . . . . . . . . . . . normal nutrient

NPC . . . . . . . . . . nuclear pore complex

P . . . . . . . . . . . . . . positively classified data

PCM . . . . . . . . . pericentriolar matrix

PPT . . . . . . . . . . . phosphopantetheine transferase

PRC . . . . . . . . . . precision recall curve

PTC . . . . . . . . . . peptidyl transferase center

PTM . . . . . . . . . post-translational modification

RT . . . . . . . . . . . . room temperature

SIRT . . . . . . . . . . simultaneous iterations reconstruction technique

SSU . . . . . . . . . . . 40S small ribosomal subunit

OD600 . . . . . . . . . absorbance (optical density) measured at 600 nm

2-DG . . . . . . . . . . 2-Deoxyglucose

Rpm . . . . . . . . . . rounds per minute
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SEM . . . . . . . . . . scanning electron microscope

STD . . . . . . . . . . . standard deviation

TAG . . . . . . . . . . triacyl glyceride

TEM . . . . . . . . . transmission electron microscopy

TM . . . . . . . . . . . . template matching

TN . . . . . . . . . . . . true negative

TP . . . . . . . . . . . . true positive

VPP . . . . . . . . . . Volta potential phase plate

WBP . . . . . . . . . . weighted back projection

YES . . . . . . . . . . yeast extract with supplements

YP(A)D . . . . . . . yeast extract-peptone (adenine) dextrose
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