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Abstract
Deep Learning is becoming a standard tool across science and industry to optimally solve a variety
of tasks. A challenge of great importance for the research program carried over at the Large Hadron
Collider is realising a generative model to sample synthetic data from a desired probability density.
While generative models such as Generative Adversarial Networks and Normalizing Flows have been
originally designed to solve Machine Learning tasks such as classification and data generation, we
illustrate how they can also be employed to statistically invert Monte Carlo simulations of detector
effects. In particular, we show how conditional Generative Adversarial Networks and Normalizing
Flows are capable of unfolding detector effects, using ZW production at the LHC as a benchmarking
process.
Two technical by-products of interest stemming from these studies are the introduction of a Bayesian
Normalizing Flow and of the Latent Space Refinement (LaSeR) protocol. The former has been in-
troduced in order to address the crucial question of explainability and uncertainty estimation of deep
generative models, which is achieved by reformulating the training and prediction phases of Normal-
izing Flows as a Bayesian inference task. Finally, LaSeR is a method to refine a model’s output using
classifier weights. We show how LaSeR can critically improve the performances of a Normalizing Flow
whenever the training data contains topological obstructions.

Zusammenfassung
Deep Learning wird gegenwärtig in Wissenschaft und Industrie zu einem Standardwerkzeug, um un-
terschiedlichste Aufgaben optimal zu lösen. Eine Herausforderung von großer Bedeutung für LHC-
Analysen ist die Realisierung eines generativen Modells, um synthetische Daten aus einer gewünschten
Wahrscheinlichkeitsdichte zu generieren. Während generative Modelle wie Generative Adversarial Net-
works und Normalizing Flows ursprünglich entwickelt wurden, um Machine-Learning-Aufgaben wie
Klassifikation und Datengenerierung zu lösen, zeigen wir, wie sie auch verwendet werden können, um
Monte-Carlo-Simulationen von Detektoreffekten statistisch zu invertieren. Insbesondere zeigen wir,
wie conditional-Generative Adversarial Networks und -Normalizing Flows Detektoreffekte umkehren
können, indem wir die ZW-Produktion am LHC als Benchmarking-Prozess verwenden.
Zwei interessante technische Nebenprodukte aus diesen Studien sind die Einführung einer Bayesian-
Normalizing Flow und des Latent Space Refinement (LaSeR)-Protokolls. Ersteres wurde eingeführt,
um die entscheidende Frage der Erklärbarkeit und Unsicherheitsschätzung von tiefen generativen Mod-
ellen zu beantworten, die durch die Neuformulierung der Trainings- und Vorhersagephasen von Nor-
malizing Flows als Bayes’sche Inferenzaufgabe erreicht wird. Letzeteres ist eine Methode, um die
Ausgabe eines Modells mithilfe von Klassifikatorgewichten zu verfeinern. Wir zeigen, wie LaSeR die
Leistung einer Normalizing Flow entscheidend verbessern kann, wenn die Trainingsdaten topologische
Hindernisse enthalten.
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1 | Introduction

The research program carried out at the Large Hadron Collider (LHC) relies on vast amount of synthetic
data to perform hypothesis tests [1–4]. Simulations of parton level interactions and the subsequent
processes of parton showering and hadronization, as well as the simulation of detector effects, are
traditionally performed with Monte Carlo methods [5–8]. These methods are built using first-principles,
in the sense that they are expected to describe the corresponding physical system to the best of our
knowledge, being that a detector or a quantum field theory. However, precision and interpretability
do not come for free, and a major shortcoming of these methods lies in their computational efficiency.
In fact, Monte Carlo simulations take the biggest share of computational resources of collaborations
working at the LHC, with detector simulations being the biggest contributors [3]. As a notable example,
the time needed to fully simulate a detector response with Geant4 [9] can be of the order of minutes.
If we give up on the idea of simulating a physical system from first principles, we can reformulate the
problem entirely as a sampling task: a detector image may be for instance regarded as a sample from
an hypothetical distribution pdetector defined on some high-dimensional space. The same idea may be
applied to other stages of the simulation pipeline, such as the simulation of parton level events, or
parton showers. If samples drawn from such a distribution can be used as a surrogate for first principle
simulations, massive gains in computational time are theoretically possible, hence the recent interest
in the potential of deep generative models for particle physics [10–25].
Deep generative models are a natural tool for supporting (or replacing) traditional Monte Carlo simula-
tions, as they have the necessary expressive power to accurately reproduce complex, high-dimensional
and multi-modal distributions. Furthermore, the field of high energy physics does not suffer from a
typical bottleneck of deep learning, where clean, (labelled) natural images, texts, or biomedical data,
can be expensive to obtain or be protected by privacy laws. Conversely, truly large, particle physics
datasets are either publicly available or can be in most cases generated using open source software.
Furthermore, the potential of deep generative models goes beyond the production of synthetic data.
Depending on the particular framework, they can solve a variety of tasks, including unfolding [26–28]
classification [29, 30], model proposal [31], out-of-distribution detection [32–35], parton distribution
functions compression [36] and anomaly detection [37–40]. Given the variety of applications and the
number of publications on the topic, we refer to https://github.com/iml-wg/HEPML-LivingReview
for a complete overview.
The thesis is organized as follows: in the remaining part of Chap. 1 we give a definition of generative
models and introduce the unfolding problem, the two main topics of the thesis; in Chap. 2 we illustrate
a method for unfolding detector effects based on deep generative models; in Chap 3 we then address a
key aspect for a realistic use in LHC analysis, namely how to define uncertainties over a deep generative
model’s output; in Chap. 4 we introduce a method to handle topological obstructions induced by parton
level cuts. We conclude with a summary of the main results and with possible future directions. The
work of this thesis is based on Ref. [41–44].

1.1 Generative models
Given data instances X = {x1, . . . , xN}, a generative model is a probabilistic model of p(x), i.e. of the
underlying probability density from which X is sampled. In machine learning, generative modelling, or
density estimation, is the unsupervised task of approximating a probability density via a parametrized
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Chapter 1. Introduction

function Gθ, whose parameters θ are inferred in an automatic fashion. If Gθ is a good approximation
of p(x), new and realistic samples can be drawn from it. Similarly, if the data comes with labels Y, we
wish to approximate the conditional probability density p(x|y) with a conditional probabilistic model
Gθ(x|y). The underlying assumption of density estimation is that the manifold on which X lies can be
described by a number of parameters which is lower than the dimensionality of the data itself. This
way Gθ is forced to discover regularities and patterns of the input data.

1.1.1 Gaussian Mixture Models
As an example, given some multi-modal distribution p(x), we may represent it compactly with a finite
mixture

p(x) =
K∑
k=1

πkpk(x) (1.1)

with mixture weights πk constrained as

0 ≤ πk ≤ 1,
K∑
k=1

πk = 1. (1.2)

The components pk(x) belong to a family of a basic distributions, e.g. Gaussians Nk(x|µk,Σk), in
which case we call the model Gaussian Mixture Model (GMM) [45]. The model’s parameters θ =
{µk,Σk, πk; k = 1, . . . ,K} can be inferred via maximum likelihood. Assuming that the points in the
dataset X = {x1, . . . , xN} are identically and independently distributed, the likelihood can be written
in the factorized form

p(X|θ) =
N∏
n=1

p(xn|θ), p(xn|θ) =
K∑
k=1

πkNk(xn|µk,Σk), (1.3)

leading to the log-likelihood

L := log p(X|θ) =
N∑
n=1

log
K∑
k=1

πkNk(xn|µk,Σk). (1.4)

The optimal parameters θ∗ are those that maximize the log-likelihood, and can therefore be obtained
by solving for θ the equation dL/dθ = 0. As a concrete example, taking the derivative of L with
respect to µk yelds

∂L
∂µk

=
N∑
n=1

1
p(xn|θ)

∂p(xn|θ)
∂µk

=
N∑
n=1

(xn − µk)TΣ−1
k

πkN (xn|µk,Σk)∑K
j=1 πjN(xn|µj ,Σj)

(1.5)

=
N∑
n=1

rnk(xn − µk)TΣ−1
k . (1.6)

where we have defined the responsibilities

rnk = πkN (xn|µk,Σk)∑K
j=1 πjN(xn|µj ,Σj)

. (1.7)

Setting ∂L/∂µk = 0 we obtain

µ∗k = 1∑N
n=1 rnk

N∑
n=1

rnkxn, (1.8)
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Figure 1.1: Gaussian mixture model with two components. The equal probability surfaces are high-
lighted in colours.

Similarly, it is possible to show that both π∗k and Σ∗k can also be expressed in terms of rnk. As it
is often the case in machine learning, there is no closed form solution to the maximization problem
for k > 1, and we rely instead on an updating scheme which, starting from randomized values of θ,
iteratively finds a better approximation of θ∗. In the contest of GMMs, this iterative solution is called
Expectation-Minimization algorithm [46], and can be summarized as

• Initialize µk,Σk, πk;

• E-step: evaluate the responsibilities rnk using current parameters µk,Σk, πk;

• M-step: estimate the new values µ∗k,Σ∗k, π∗k using the current responsibilities.

Each E/M-step increases the likelihood [47]. The number of iterations and mixtures are hyperparam-
eters. In Fig. 1.1 we show a simple example of a Gaussian mixture model used to predict the density
of a 2-dimensional dataset.

1.2 Deep Generative Models
We may regard the GMM as the simplest form of statistical generative model. Recent years have seen
the advent of novel methods for generative modelling which we collectively refer to as Deep Generative
Models (DGM), in complete analogy to what deep learning means with respect to machine learning.
Before describing the most relevant forms of DGMs, and with no claim of completeness, we recall that
some of the key features of deep learning include

• models are parametrized by Neural Networks (NN) whose specific form depends on the particular
task;

• the NN parameters are inferred via a stochastic gradient descent approach;

• in order to really exploit NNs, vast amount of high-fidelity data is needed for their training.

The last bullet is particularly attractive for LHC analysis, in that not only scientific collaborations such
as ATLAS and CMS have already collected petabytes of data (with a lot more to come with the next
upgrade of the collider), but we can also prepare data in a controlled environment for benchmarking
models.
Concerning the practical realisation of DGMs, the three most successful frameworks studied and em-
ployed in the literature are

3
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G

Ḡ
z x

Generation

Inference

Figure 1.2: Schematic representation of a NF: a random variable z sampled from a fixed, simple
distribution is transformed via a map G to a sample x sampled from a complex target distribution. If
G is a bijection, and its inverse Ḡ = G−1 can be easily evaluated, the inverse direction can be used to
train the model with Maximum Likelihood.

• Normalizing Flows (NF [48–56]);

• Generative Adversarial Networks (GAN) [57–62];

• Variational Autoencoders [63,64].

The first two have been extensively employed in this thesis, and will be therefore further elaborated
in the following sections.

1.2.1 Normaling Flows

Normalizing Flow are defined in terms of a parametrized change of variable Gθ : z → x between
distributions

pX(x) = pZ(z)
∣∣∣∣det ∂Gθ(z)

∂z

∣∣∣∣−1
= pZ(Ḡθ(x))

∣∣∣∣det ∂Ḡθ(x)
∂x

∣∣∣∣ , (1.9)

where Ḡθ = G−1
θ . Regardless of how complicated pX(x) may be, if there exists a bijection Gθ such

that pZ(z) is a simple distribution, e.g. a Gaussian Nµ=0,Σ=I, we can draw samples from pX(x) via
the generative pipeline

z ∼ pZ(z) −→ x = Gθ(z) ∼ pX(x), (1.10)

see Fig. 1.2 for a schematic representation. Similar to the GMM example in Sec. 1.1, the parameters

4
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of Gθ are be chosen to minimize the negative log-likelihood

L = −
N∑
n=1

log
[
pZ(Ḡθ(xn))

∣∣∣∣det ∂Ḡθ(x)
∂xn

∣∣∣∣]

= −
N∑
n=1

log pZ(Ḡθ(xn)) + log
∣∣∣∣det ∂Ḡθ(xn)

∂xn

∣∣∣∣
=

N∑
n=1

(Ḡθ(xn))2

2 − log
∣∣∣∣det ∂Ḡθ(xn)

∂xn

∣∣∣∣ ,
(1.11)

where we have used pZ(z) = Nµ=0,Σ=I and have discarded irrelevant constant terms. In practice,
we only need to compute Ḡθ(xn), the corresponding determinant of the Jacobian, and minimize the
combination in the final line of Eq. 1.11.
This rather straightforward blueprint hides three complications one needs to carefully address. First of
all, not only Gθ must be a bijection, i.e. its inverse must exist, but both Gθ and Ḡθ must be efficiently
computable, as one is required for training and the other for generating. Finally, the map must have a
tractable Jacobian. If Gθ is parametrized by a standard NN, such as a Multi-Layer Perceptron (MLP),
none of the three properties is satisfied. These constraints restrict the class of allowed transformations,
limiting the expressive power at our disposal. However, not all hope is lost, as we can build progressively
more complex maps by simply stacking many simple functions, while maintaining the tractability of
the Jacobian. Given a bijection Gi with inverse Ḡi and a cheap Jacobian, the composition

G = Gn ·Gn−1 . . . ·G1 (1.12)

has inverse

Ḡ = Ḡ1 · . . . · Ḡn−1 · Ḡn, (1.13)

and its determinant is the product of each individual determinant

detG =
N∏
i=1

detGi. (1.14)

This means that a composition of bijections is again a bijection whose computational complexity simply
grows linearly with the number of compositions. As a result, this research line is primarily dedicated
to finding the optimal trade-off between computational complexity and model expressive power. In
the remaining of this section we give an overview of past and currently used methods.

Planar and Radial Flows
The original work on NFs [65] introduces the simple planar and radial flows. Despite representing
seemingly simple transformations, they are not easily invertible. A planar flow takes the form

G(x) = x+ uh(wTx+ b), (1.15)

where u,w, b are parameters and h is a non-linear activation function. This transformation expands
and contracts the distribution of x along certain axis. The planar flow has the simple Jacobian

det ∂G
∂x

= 1 + h
′
(wTx+ b)uTw (1.16)

which can be computed in O(D) time but cannot be inverted in closed form and its inverse does not
exist in general. Radial flows modify instead the distribution around a point x0 as

G(x) = x+ β

α+ ||x− x0||
(x− x0). (1.17)

The same considerations apply here, the determinant of a radial flow can be efficiently computed, but
its inverse is not always defined and cannot be computed in closed form.

5



Chapter 1. Introduction

Dimensional Partitioning
Introduced in [49,66], this approach builds an invertible transformation by splitting a D-dimensional
input x into two subspaces (x1, x2), and defining the bijection G, normally called a coupling layer, as

y1 = h(x1, f(x2)) (1.18)
y2 = x2. (1.19)

with inverse

x1 = h−1(y1, f(y2)) (1.20)
x2 = y2. (1.21)

The main feature of a coupling layer is that even if f is an arbitrary function, the Jacobian of G is
always a triangular matrix which does not depend on the derivative of f . Different strategies can be
used to perform the partitioning and ensure that every dimension gets transformed, such as alternating
splittings in half and random permutations [66], using masked flow [49] or using (1×1) convolutions [50].
This is the method of choice for all the studies in this thesis, and in Chap. 2 we explain in details our
implementation.

Autoregressive Flows
An autoregressive flow is a non-linear generalization of a multiplication by a triangular matrix [67,68].
Motivated by the product rule of probability, stating that a joint density can be computed as a product
of one dimensional conditionals

p(x) =
∏
i

p(xi|x1:i−1), (1.22)

in an autoregressive model the output y = G(x) is computed step-by-step as a function conditioned
on the previous entries, i.e.

yt = h(xt, ft(x1:t−1)), (1.23)

where x1:t = (x1, . . . , xt), and ft is an arbitrary map taking a t− 1 dimensional input. Similarly to a
coupling layer, since each output yt only depends on x1:t, the resulting Jacobian is again triangular and
its determinant can be efficiently computed. The main difference with respect to coupling layers is that
the inverse function, which can be trivially computed for the former, must be computed recursively as

xt = h−1(yt, ft(x1:t−1)). (1.24)

As this operation is inherently sequential, it cannot be parallelized and represent therefore a bottleneck
for training this kind of model. Depending on the application, one may want to either have a fast
forward direction, in which case one gets a so called masked autoregressive flow, or a fast inverse
direction, giving instead an inverse autoregressive flow.

Residual Flows and ODE
The last method we present is based on residual connections, i.e. maps with the form

G(x) = x+ f(x). (1.25)

Residual blocks have been used for a long time [69], and have been adapted into invertible architecture
in Ref. [70, 71]. Splitting input and output as (x1, x2), (y1, y2), the map

y1 = x1 + f(x2) (1.26)
y2 = x2 + l(y1) (1.27)

6



1.2. Deep Generative Models

is trivially invertible, but has an inefficient Jacobian. Ref. [70, 71] introduces strategies to enforce the
invertibility. Most notably, however, is the fact one can see a residual connection as the discretized
version of an ordinary differential equation. The starting point is an ordinary differential equation of
the form

d

dt
x(t) = F (x(t), θ(t)), (1.28)

where F : RD ×Θ→ RD encodes the dynamics of the system, Θ is a set of parameters and θ : R→ Θ
is a parametrization. The discrete version of Eq. 1.28

xn+1 − xn = εF (xn, θn), (1.29)

is equivalent to the equation of a residual connection with residual block εF . Starting from this
intuition, Ref. [55, 56, 72] propose to directly solve the continuous version Eq. 1.28, which in this
differential equation picture would correspond to training an infinitely deep network.

We conclude this subsection with a comment motivating the study of Chap. 4. As already stated,
invertible models are bijections, or homeomorphisms [72, 73] (note that this is a strict equivalence,
i.e. an invertible model does not approximate a homeomorphism, it is one), and as such they are by
construction unable to map manifolds with different topological features, such as the number of holes
and disconnected patches. In particular, if we stick to the standard formulation and only consider
Gaussian latent spaces, we may only be able to represent data whose underlying manifold is compact
and has genus zero. As this may be a limiting factor for the naive use of normalizing flows in particle
physics, in Chap. 4 we illustrate a possible method to account for it.

1.2.2 Generative Adversarial Networks
GANs introduce a brand new paradigm for generative modelling which, unlike the previously described
methods, does not involve computing the likelihood at all, and is therefore a form of likelihood-free
machine learning. Instead, GANs rely on a two-sample test between distributions, i.e. a statistical
test to determine whether or not two samples are drawn from the same distribution. This test is
formulated as a differentiable objective function so that it can be minimized with stochastic gradient
descent methods, in such a way that it is minimal iff the two distributions are statistically identical.
The statistical test is performed by a discriminator Dφ whose job is to tell apart real and fake samples.
The final piece of a GAN is a generator Gθ, a map from noise z to target samples x̃, see Fig. 1.3. In DL,
both Dφ and Gθ are properly shaped NNs. While many different ways to define the GAN objective
have been proposed, we refer to the original formulation [57] as it is close to the one employed in
Chap. 2. Formally, we consider the min-max game

min
θ

max
φ

Ex∼pX(x) [logDφ(x)] + Ez∼pZ(z) [log (1−Dφ(Gθ(z))] . (1.30)

For a fixed generator, this is nothing other than a binary classification task, and an optimal discrimi-
nator should output 1 for any x ∼ pX(x) and 0 otherwise, which we can summarize as

Dφ∗(x) = pX(x)
pX(x) + pG(x) , (1.31)

with pG(x) being the distribution implicitly defined by the generator. Fixing φ = φ∗, the generator
part of the objective is equivalent to minimizing the Jenson-Shannon divergence JS(pX , pG), with

JS (p, q) = 1
2

(
KL

(
p,
p+ q

2

)
+KL

(
q,
p+ q

2

))
, (1.32)

and KL(a, b) is the Kullback-Leibler divergence between p and q. This objective has a global minimum
for pG = pX . It turns out that if the discriminator is optimal, the objective function has vanishing
gradient for the generator, leading to the standard alternating training of GANs: every k updates of
φ we perform an update of θ, k being a hyperparameter. Training a GAN is a highly non trivial task
with many potential issues if extra care is not taken, notably
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z
x
x̃G D True/Fake

Figure 1.3: Schematic representation of a GAN: a generator G deterministically maps noise z to fake
samples x̃. The discriminator D is trained as a binary classifier of true versus fake data, while G tries
to fool it.

• the optimization procedure is typically unstable and needs to be regularized;

• for multi-modal targets, generators can collapse to a single mode;

• since the objective function is not convex, there is no clear way to evaluate the model perfor-
mances or to determine a stopping point.

An important difference between the two presented frameworks is that a GAN represents a target
density only implicitly, i.e. Gθ is only a sampler from pX , but cannot be used to estimate its value
(with the exception of low dimensional problems where kernel methods may be used to smooth a
binned distribution). On the other hand, the explicit value of the density can be trivially computed
with a NF from Eq. 1.9 if we assume a perfect map to the latent space distribution.

1.3 Unfolding
In any quantitative science we wish to be able to estimate the possible value of "true" parameters,
directly connected to some underlying theory, given that we are only able of observing a distorted
version of them in the best scenario, more realistically we will have to be satisfied with observing a
different set of parameters entirely. In particular, we are often interested in lifting the effects induced
by the detectors and possible physical and theoretical backgrounds. This procedure is normally called
de-convolution, and takes the name of unfolding in particle physics. In this section we first revise
a standard method for unfolding based on Bayesian inference, and then illustrate how to set-up a
deep-learning version of it.

1.3.1 Iterated Bayesian Unfolding
In this section we will define the fundamental ideas of unfolding following closely Ref. [74,75]. Bayesian
inference is a framework to estimate unknown parameters from observed data. A starting point for
Bayesian unfolding is the discretization of the problem, in the form of binning of observable distribution
of events, with each bin being treated as an independent variables. Borrowing the language of graphical
models, the problem can be described by the Bayesian network of Fig. 1.4, Ci being the true number
of events in each cause bin, given that we observe Ej events per bin. It’s important to notice that
as the links between cause and effect is probabilistic, so will be the number of true events per bin.
Concretely, given causes Ci and effects Ej , we wish to estimate the conditional distribution

P (Ci|Ej) (1.33)
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E1 E2 EN

C1 C2 CM

Figure 1.4: Graphical model of causes and effects. Each arrow represents a probabilistic link

Following standard Bayesian inference, Eq. 1.33 may be computed as

P (Ci|Ej) = P (Ej |Ci)P (Ci)∑nE
l=1 P (Ej |Cl)P (Cl)

, (1.34)

Eq. 1.34 is Bayes’ theorem stating that the posterior is proportional to the likelihood, provided that
we multiply by the prior

P (Ci|Ej) ∝ P (Ej |Ci)P (Ci), (1.35)

and the denominator is a normalization factor. The unfolding algorithm proceeds as follows:

• estimate the number of expected events in bin Ci given that n(Ei) is the observed counting bin Ej

n(Ci)|n(Ej) ∼ P (Ci|Ej)n(Ej); (1.36)

• include effects from all observations

n(Ci) =
∑
j

P (Ci|Ej)n(Ej); (1.37)

• correct for the effect of different efficiencies εi

ñ(Ci) = 1
εi
n(Ci) = 1

εi

nE∑
j=1

P (Ci|Ej)n(Ej); (1.38)

with the efficiencies computed from the smearing matrix as

εi =
nE∑
j=1

P (Ej |Ci) =
nE∑
j=1

λij , (1.39)

where λij = P (Ej |Ci) are the entries of a smearing matrix Λ estimated from Monte Carlo
simulations.
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The above algorithm is essentially the first form of Bayesian unfolding presented in Ref. [74]. Ref. [75]
introduced several improvements over the first version. A first improvements concerns the explicit
modelling of the smearing matrix. In the original formulation, one starts by generating a large number
of events in each cell and counting where they end up after the simulation. The entries λij are estimated
as

λij ∼
n(Ej)MC

n(Ci)MC
. (1.40)

We can both improve this estimate, and include its uncertainty, by employing again Bayes theorem
and computing a posterior over the λij . Given a column λi of Λ, we have

f(λi|n(E)MC , n(Ci)MC) ∝ P (n(E)MC |n(Ci)MC , λi)f(λi). (1.41)

If we choose a Dirichlet prior for λi it is possible to show

λi ∼ Dir(αposterior,i), αposterior,i = αprior,i + n(E)MC |n(Ci)MC , (1.42)

where

Dir(x|α) = xα1−1
1 . . . xαn−1

n . (1.43)

We can now account for the extra uncertainty in P (Ci|Ej) by computing

P (Ci|Ej) −→ P (Ci|Ej ,Λ); P (Ci|Ej) =
∫
P (Ci|Ej)f(Λ)dΛ, (1.44)

i.e. the posterior over causes depends explicitly on the smearing matrix Λ, which is sampled from
the posterior distribution f(Λ). Most notably, however, is the additional iteration of the algorithm.
Bayesian inference only makes sense when we have a prior belief of what the possible values of the
unobserved parameters are. Choosing a "correct" prior is a tricky task, as this choice, which is arbitrary,
affects the posterior distribution. Ref. [75] suggests that the dependence on the prior can be reduced
by iterating the unfolding procedure, by using the result of unfolding step n as the prior of unfolding
n+ 1. This method is therefore called Iterated Bayesian Unfolding (IBU).
We conclude with a brief discussions of the limitations of iterated Bayesian unfolding, and equiva-
lent methods. The first obvious limitation is that the method relies on binning measurements into
histograms. Binning can be problematic as aside with the exception of few limited case there is no
obvious best binning, and each individual observable typically requires an ad hoc manual choice of the
binning. Directly related to this is the fact that the total number of bins grows exponentially with
the number of dimensions, each being a different observable. This means that differential cross section
measurements beyond a few dimensions are impractical.

1.3.2 OmniFold
In parallel to the work of Ref. [41, 42], which constitutes the main content of Chap. 2, another deep-
learning framework for unfolding has been published. Because of its relevance as the only other
existing method for unfolding relying on deep-learning, and for its connection to IBU, we believe that
an explanation of the OmniFold method [26] deserves its own section.
OmniFold has been proposed to overcome the two main shortcomings of IBU, binning and han-
dling multiple dimensions, by generalizing the iterated version of Eq. 1.38 to the continuous, multi-
dimensional case. In Fig. 1.5 we illustrate schematically the method. Starting with particle level events
t with initial weights ν0(t) simulated with Monte Carlo, we produce a paired set of detector level events
m with induced weights νpush

0 (m) = ν0(t). We then compute new weights ω0(m), and use them to
obtain the next set of particle level weights ν1(t). The key idea to achieve the correct reweighting is
that the likelihood ratio

L
[
(w,X), (w

′
, X
′
)
]

(x) = pw,X(x)
pw′ ,X′ (x) , (1.45)
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Truth

Synthetic

Detector Particle

Pull

Push

Step 1

Step 2

Figure 1.5: Illustration of the OmniFold method: synthetic data is reweighted against the true data
at the detector level. This weights are pulled back at the particle level to induce weights on the
particle level data. In the second step the original synthetic particle level data is weighted to match
its reweighted version. The process is then iterated.

can be approximated using a classifier trained to distinguish (w,X) against (w′ , X ′) [76–80]. With the
likelihood ratio it is straightforward to reweight events as

ωn(m) = νpush
n−1 L

[
(1, truth, det)), (νpush

n−1 ,Synt, det))
]
, (1.46)

νn(t) = νn−1L [(ωn, synt, part)), (νn−1, synt, part))] . (1.47)

It is possible to show that after one iteration the new weights are given by

ν1psynt,part(t) =
∫
dm

′
p synt, part| Synt, Det(t|m

′
)ptruth, det(m

′
) (1.48)

which is a continuous version of Eq. 1.38. On top of that, OmniFold is not limited by the dimension-
ality of the observables, and can in principle unfold the full phase space of an event, provided that the
classifier employed is powerful enough.
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2 | Unfolding with deep generative
models

LHC analysis accounts for the distortion induced by detector measurements using an un-
folding procedure. Two shortcomings of existing unfolding techniques are their reliance
on binned distributions, and, consequentially, their restriction to a limited number of
selected observables. We show how conditional generative models can be used to map
detector level observables to a pre-defined hard process. Specifically, we consider ZW pro-
duction at the LHC, with either a fixed or variable number of QCD jets reconstructed by
the detector. While additional work remain to be done to assess the prior-independence
of generative unfolding, it represents a first step toward multi-dimensional unbinned un-
folding.

2.1 Introduction
Our understanding of LHC data from first principles is a unique strength of particle physics. It is based
on a simulation pipeline which starts from a hard process described by perturbative QCD, then adds the
logarithmically enhanced QCD parton shower, fragmentation and hadronization, and concludes with
a simulation of the detector [81]. In this henceforth called forward direction, simulations are based on
highly optimized, reliable Monte Carlo techniques, and ideally we would just compare measured and
simulated events to draw conclusions about a new physics hypothesis.
Because our simulation chain is well defined only in one direction, the typical LHC analysis starts with
a new, theory-inspired hypothesis encoded in a Lagrangian as new particles and couplings. For every
point in the new physics parameter space we simulate events, compare them to the measured data
using likelihood methods, and discard the new physics hypothesis.
We propose to use generative models to invert Monte Carlo simulations. Technically, we propose
to use GANs or INNs to invert part of the LHC simulation chain with a simplified template. This
application builds on a long list of one-directional applications of generative or similar networks to LHC
simulations, including phase space integration [82,83], amplitudes [84,85], event generation [19,86–89],
detector simulations [10, 11, 14, 15, 90–94], parton showers [95–98], or searches for physics beyond
the Standard Model [99]. In particle physics, INNs have proven useful for instance in phase space
generation [100], linking integration with generation [101,102], or anomaly detection [103].
This chapter is organized as follows: in Sec 2.2 we begin by revising the inverse problem and present
in details the data preparation for the reference process considered in this chapter. Then, in Sec. 2.3,
we show step-by-step how to formulate the generative inversion. We start with a naive GAN inversion
and see how a mismatch between local structures at parton level and detector level leads to problems,
leading to the introduction of a fully conditional GAN (FCGAN) . We will see how the conditional
setting gives us all the required properties of an inverted detector simulation. Building on that, in
Sec. 2.4 we show how the bijective structure of the INN makes their training especially stable. If we
add sufficiently many random numbers to the INN we can start generating probability distributions
in the parton-level phase space. The conditional INN [104, 105] adds even more sampling elements
to the generation of unfolded configurations. For arbitrary kinematic distributions we can test the
calibration of all proposed methods output using truth information and find that the cINN is capable
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Chapter 2. Unfolding with deep generative models

of generating meaningful posterior distributions in the multi-dimensional parton-level phase space.
Finally, we illustrate in Sec. 2.5 how the inversion can link two phase spaces with different dimension.
This allows us to unfold based on a model with a variable number of final state particles at the
detector level and is crucial to include higher-order perturbative corrections. We show how the cINN
can account for jet radiation and unfolds it together with the detector effects.

2.2 Unfolding basics
Unfolding particle physics events is a classic example for an inverse problem [106–108]. In the limit
where detector effects can be described by Gaussian noise, it is similar to unblurring images. However,
actual detector effects depend on the individual objects, the global energy deposition per event, and
the proximity of objects, which means they are much more complicated than Gaussian noise. The
situation gets more complicated when we add effects like QCD jet radiation, where the radiation
pattern depends for instance on the quantum numbers of the incoming partons and on the energy
scale of the hard process.
What we do know is that we can describe the measurement of phase space detector-level distributions
dσ/dxd as a random process. This means, in turn, that estimating parton-level distributions dσ/dxp
should also be treated as a problem of statistical inversion.

2.2.1 Binned toy model and locality

As a one-dimensional toy example we can look at a binned (parton-level) distribution σ(p)
j which gets

transformed into another binned (detector-level) distribution σ(d)
j by the kernel or response function

gij ,

σ
(d)
i =

N∑
j=1

gijσ
(p)
j . (2.1)

We can postulate the existence of an inversion with the kernel ḡ through the relation

σ
(p)
k =

N∑
i=1

ḡkiσ
(d)
i =

N∑
j=1

(
N∑
i=1

ḡkigij

)
σ

(p)
j with

N∑
i=1

ḡkigij = δkj . (2.2)

If we assume that we know the N2 entries of the kernel g, this form gives us the N2 conditions to
compute its inverse ḡ. We illustrate this one-dimensional binned case with a semi-realistic smearing
matrix

g =

1− x x 0
x 1− 2x x
0 x 1− x

 . (2.3)

We illustrate the smearing pattern with two input vectors, keeping in mind that in an unfolding
problem we typically only have one kinematic distribution to determine the inverse matrix ḡ,

σ(p) = n

1
1
1

 ⇒ σ(d) = σ(p) ,

σ(p) =

1
n
0

 ⇒ σ(d) = σ(p) + x

 n− 1
−2n+ 1

n

 . (2.4)

The first example shows how for a symmetric smearing matrix a flat distribution removes all informa-
tion about the detector effects. This implies that we might end up with a choice of reference process
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and phase space such that we cannot extract the detector effects from the available data. The second
example illustrates that for bin migration from a dominant peak the information from the original σ(p)

gets overwhelmed easily. We can also compute the inverse of the smearing matrix in Eq.(2.3) and find

ḡ ≈ 1
1− 4x

1− 3x −x x2

−x 1− 2x −x
x2 −x 1− 3x

 , (2.5)

where we neglect the sub-leading x2-terms whenever there is a linear term as well. We see from Eq. 2.5
that even in an idealized toy model, in which the inverse ḡ does exist and can be explicitly computed,
a local transfer matrix leads to a global unfolding matrix, though the most off-diagonal entries are
suppressed.

2.2.2 Bayes’ theorem and model dependence
Over the continuous phase space a detector simulation can be written as

dσ
dxd

=
∫

dxp g(xd, xp)
dσ
dxp

, (2.6)

where xd is a kinematic variable at detector level, xp the same variable at parton level, and g a kernel
or transfer function which links these two arguments. We ignore efficiency factors for now, because
they can be absorbed into the parton-level rate. To invert the detector simulation we define a second
transfer function ḡ such that [109–111]

dσ
dxp

=
∫

dxd ḡ(xp, xd)
dσ
dxd

=
∫

dx′p
dσ
dx′p

∫
dxd ḡ(xp, xd)g(xd, x′p) . (2.7)

This inversion is fulfilled if we construct the inverse ḡ of g defined by∫
dxd ḡ(xp, xd)g(xd, x′p) = δ(xp − x′p) , (2.8)

all in complete analogy to the binned form above. The symmetric form of Eq.(2.6) and Eq.(2.7)
indicates that g and ḡ are both defined as distributions. In the g-direction we use Monte Carlo
simulation and sample in xp, while ḡ needs to be sampled in g(xp) or xd. In both directions this
statistical nature implies that we should only attempt to unfold sufficiently large event samples.
The above definitions can be linked to Bayes’ theorem if we identify the kernels with probabilities.
We now look at ḡ(xd|xp) in the slightly modified notation as the probability of observing xd given the
model prediction xp and g(xp|xd) gives the probability of the model xp being true given the observation
xd [112, 113]. In this language Eq.(2.6) and (2.7) describe conditional probabilities, and we can write
something analogous to Bayes’ theorem,

ḡ(xp|xd)
dσ
dxd
∼ g(xd|xp)

dσ
dxp

. (2.9)

In this form ḡ(xp|xd) is the posterior, g(xd|xp) as a function of xp is the likelihood, dσ/dxp is the prior,
and the model evidence dσ/dxd fixes the normalization of the posterior. From standard Bayesian
analyses we know that the posterior will in general depend on the prior, in our case the kinematics of
the underlying particle physics process or model.
If the posterior ḡ(xp|xd) in general depends on the model dσ/dxp, then Eq.(2.7) does not look useful.
On the other hand, Bayesian statistics is based on the assumption that the prior dependence of the
posterior defines an iterative process where we start from a very general prior and enter likelihood
information step by step to finally converge on the posterior. The same approach can define a kinematic
unfolding algorithm [74]. We will not discuss these methods further, but come back to this model
dependence throughout the chapter.
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2.2.3 Reference process
As a benchmarking process we consider

pp→ ZW± → (`−`+) (jj) , (2.10)

One of the contributing Feynman diagrams is shown in Fig. 2.1. Having jets and leptons in the final
state, we can test the performances of the model for both small and large detector effects. We generate
the ZW events using Madgraph [6] without generation cuts and then simulate parton showering with
Pythia8 [114] and the detector effects with Delphes [5] using the standard ATLAS card. For jet
clustering we use the anti-kT algorithm [115] with R = 0.6 implemented in FastJet [116]. All jets are
required to have

pT,j > 25 GeV and |ηj | < 2.5 . (2.11)

For the hadronically decaying W -boson the limited calorimeter resolution will completely dominate
over the parton-level Breit-Wigner distribution. The absolute dimension of the dataset used will be
specified at every section, and data will always be split into 90% training and 10% test data.
Initially, we design a minimal set-up which allows us to directly relate the outcome of the hard process
to the detector-level observables. This is achieved by having a fixed number of reconstructed elements
at the detector level, matching exactly the number of parton level leptons and qcd jets, as well as by
switching off initial state radiation. For the data simulation, this means that we need to switch off
initial state radiation and select only events with exactly two jets and a pair of same-flavour opposite-
sign leptons. In this simplified set-up reconstructed jets and partons are matched by their angular
distance, while the detector and parton level leptons are directly assigned by charge. This gives us two
samples matched event by event, one at the parton level (xp) and one including detector effects (xd).
Each of them is given as an unweighted set of four 4-vectors. These 4-vectors can be simplified if we
assume all external particles at the parton level to be on-shell. This method can easily accommodate
weighted events.
In a second step we relax the constraints allowing both initial state radiation and a variable number
of detector-level jets. We still require a pair of same-flavor opposite-sign leptons and at least two jets
in agreement with the condition in Eq.(2.11). The four jets with highest pT are then used as input
to the network, ordered by pT . Events with less than 4 jets are zero-padded. This more challanging
set-up is only used for the conditional INN in Sec. 2.4.3.
This does not mean that in a possible application we take a parton shower at face value. All we do
is assume that there is a correspondence between a hard parton and its hadronic final state, and that
the parton 4-momentum can be reconstructed with the help of a jet algorithm. The question if for
instance an anti-kT algorithm is an appropriate description of sub-jet physics does not arise as long as
the jet algorithm reproduces the hard parton momentum.

2.3 GAN unfolding

W

Z

j

j

`+

`−

Figure 2.1: Sample Feynman diagram contributing to WZ production, with intermediate on-shell
particles labelled.
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G {xG}{xd} D

{xp}detector parton

LD

LGMMD

Figure 2.2: Structure of a naive unfolding GAN. The input {xd} describes a batch of events sampled
at detector level and {xG,p} denotes events sampled from the generator or parton-level data. The blue
(red) arrows indicate which connections are used in the training of the generator (discriminator).

2.3.1 Naive GAN
A standard method for fast detector simulation is smearing the outgoing particle momenta with a
detector response function. This allows us to generate and sample from a probability distribution
of smeared final-state momenta for a single parton-level event. For the inversion we need to rely on
event samples, as we can see from a simple example: we start from a sharp Z-peak at the parton level
and broaden it with detector effects. Now we look at a detector-level event in the tail and invert the
detector simulations, for which we need to know in which direction in the invariant mass the preferred
value mZ lies. This implies that unfolding detector effects requires a model hypothesis, which can
be thought of as a condition in a probability of the inversion from the detector level. The problem
with this point of view is that the parton-level distribution of the invariant mass requires a dynamic
reconstruction of the Breit-Wigner peak, which is not easily combined with a Markov process. In any
case, from this argument it is clear that unfolding only makes sense at the level of large enough event
samples.
Our GAN follows closely the description given in Sec. 1.2, and consists of a generator network G
competing against a discriminator network D in a min-max game, as illustrated in Fig. 2.2. For the
implementation we use Keras (v2.2.4) [117] with a TensorFlow (v1.14) backend [118]. As the
starting point, G is randomly initialized to produce an output, with the same dimensionality as the
target space. As the first toy set-up, we feed the generator samples {xd} of detector events as an input,
i.e. G({xd}) = {xG}. The discriminator is instead given batches {xG} and {xp} sampled from PG and
the parton-level target distribution Pp, where PG is the distribution induced by the generator over
the target space. The discriminator is trained as a binary classifier, such that D (x ∈ {xp}) = 1 and
D (x) = 0 otherwise. Following the conventions of Ref. [88] the discriminator loss function is defined
as

LD = 〈− logD (x)〉x∼Pp + 〈− log (1−D (x))〉x∼PG . (2.12)

We add a regularization and obtain the regularized Jensen-Shannon GAN loss function [119]

L
(reg)
D = LD + λD

〈
(1−D(x))2 |∇φ|2

〉
x∼Pp

+ λD
〈
D(x)2 |∇φ|2

〉
x∼PG

, (2.13)

with a properly chosen pre-factor λD and where we define φ(x) = log D(x)
1−D(x) . The discriminator

training at fixed Pp and PG alternates with the generator training, which is instead trained to maximize
the second term in Eq.(2.12) using the truth encoded in D. This can be written as

LG = 〈− logD (x)〉x∼PG . (2.14)

If the training of the generator and the discriminator with their respective losses Eq.(2.13) and Eq.(2.14)
is properly balanced, the distribution PG converges to the parton-level distribution Pp, while the
discriminator unable to distinguish between real and generated samples.
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Figure 2.3: Example distributions for parton level truth, after detector simulation, and GANned back
to parton level. The lower panels give the ratio of parton level truth and reconstructed parton level.

If we want to describe particularly sharp phase space features, such as invariant masses of unstable
resonances, it can be useful to add a maximum mean discrepancy (MMD) [120] contribution to the loss
function. It allows us to compare pre-defined distributions, for instance the one-dimensional invariant
mass of an intermediate particle. Given batches of true and generated parton-level events we define
the additional contribution to the generator loss as

MMD =
[
〈k (x, x′)〉x,x′∼PG + 〈k (y, y′)〉y,y′∼Pp − 2〈k (x, y)〉x∼PG,y∼Pp

]1/2
, (2.15)

with another pre-factor λG. Note that we use MMD instead of MMD2 to enhance the sensitivity of
the model [121]. In Ref. [88] we have compared common choices, like Gaussian or Breit-Wigner kernels
with a given width σ,

kGauss (x, y) = exp − (x− y)2

2σ2 or kBW (x, y) = σ2

(x− y)2 + σ2
. (2.16)

As a naive approach to GAN inversion, we use detector-level event samples as generator input. The
network input is always a set of four 4-vectors, one for each particle in the final state, with their
masses fixed. In practice, the GAN is trained to map detector-level events to parton-level events.
Both networks consist of 12 layers with 512 units per layer. With λG = 1, λD = 10−3 and a batch size
of 512 events, we run for 1200 epochs and 500 iterations per epoch.

For all GAN trainings we use a dataset of 300k events. While the smearing of the lepton momenta
is modest, the observed widths of the hadronically decaying W -boson will be much larger than the
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Figure 2.4: Parton level truth and GANned distributions when we train the GAN on the full data set
but only unfold parts of phase space defined in Eq.(7) and Eq.(8).

parton-level Breit-Wigner distribution. For this reason, we focus on showing hadronic observables to
benchmark the performance of our set-up.
In Fig. 2.3 we compare true parton-level events to the GAN’s output. We run the GAN on a set of
statistically independent, but simulation-wise identical sets of detector-level events. Both, the relatively
flat pT,j1 and the peaked mjj distributions agree well between the true parton-level events and the
GAN-inverted sample, indicating that the model is able to reproduce the parton level observables
correctly.
This first approach only serves as a check that the training procedure of the GAN leads to the correct
outcome, as it suffers from severe limitations. First of all, we wish to invert the detector simulation
stochastically, i.e. we want the full posterior distribution of possible parton level events associated to a
single detector level event. As this setting does not accommodate any random input, and the generator
itself is a deterministic map, this is not possible. Secondly, the detector information is completely
ignored by the model, as in the training batches of parton and detector get shuffled independently, and
there’s therefore no connection between each them. In order to illustrate this second point better, we
invert an event sample which is not statistically equivalent to the training data, specifically by testing
the GAN on data covering only part of the detector-level phase space. We apply the two sets of jet
cuts

Cut I : pT,j1 = 30 ... 100 GeV (7)
Cut II : pT,j1 = 30 ... 60 GeV and pT,j2 = 30 ... 50 GeV , (8)

which leave us with 88% and 38% of events, respectively. This approach ensures that the training has
access to the full information, while the test sample is a significantly reduced sub-set of the full sample.
In Fig. 2.4 we show a set of kinematic distributions with detector cuts propagated to the parton
level. As before, we compare the original parton-level shapes of the distributions with the results from
inverting the fast detector simulation. We see that while there’s a strong correlation in the paired
dataset used for the training, the model is completely insensitive to it, and simply reproduces the full
parton level information. This is clear indications that the naive GAN approach does not exploit the
fact that parton and detector events are paired. We discuss a solution in the next section.

2.3.2 Conditional GAN
The issues highlighted in the previous section can be simultaneously solved by switching to a conditional
GAN set-up [41], which we show in Fig. 2.2. First of all, we recover the physical intuition that this
entire mapping is statistical in nature by feeding the generator random numbers {z} sampled from a

19



Chapter 2. Unfolding with deep generative models

G{r} {xG} D

Condition

{xd}

{xp}

detector

parton

LD

LGMMD

Figure 2.5: Structure of our fully conditional FCGAN. The input {r} describes a batch of random
numbers and {xG,d,p} denotes events sampled from the generator, detector-level data, or parton-level
data. The blue (red) arrows indicate which connections are used in the training of the generator
(discriminator).

simple, fixed distribution, in our case a multivariate Gaussian with zero mean and the identity as the
covariance matrix. The input is taken with the same dimensionality as the target space. Secondly, the
detector-level information {xd} is used as an event-by-event conditional input on the link between a set
of random numbers and the parton-level output, i.e. G({r}, {xd}) = {xG}. This way the conditional
model can generate parton-level events from random noise but still using the detector-level information
as input.
In Fig. 2.5 we introduce a fully conditional GAN (FCGAN). While the training procedure is identical,
we need to modify the objective function as

LD → L
(FC)
D = 〈− logD (x, y)〉x∼Pp,y∼Pd + 〈− log (1−D (x, y))〉x∼PG,y∼Pd , (2.17)

and the regularized loss function changes accordingly,

L
(reg)
D → L

(reg, FC)
D = L

(FC)
D + λD

〈
(1−D(x, y))2 |∇φ|2

〉
x∼Pp,y∼Pd

+ λD
〈
D (x, y)2 |∇φ|2

〉
x∼PG,y∼Pd

,
(2.18)

again using the conventions of Ref. [88]. The generator loss function now takes the form

LG → L
(FC)
G = 〈− logD (x, y)〉x∼PG,y∼Pd . (2.19)

Note, that we do not build a conditional version of the MMD loss. The hyper-parameters of our
FCGAN are summarized in Tab. 2.1. Changing from a naive GAN to a conditional GAN we have to

Parameter Value Parameter Value

Layers 12 Batch size 512
Units per layer 512 Epochs 1200
Trainable weights G 3M Iterations per epoch 500
Trainable weights D 3M Number of training events 3 × 105

λG 1
λD 10−3

Table 2.1: FCGAN setup.
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Figure 2.6: Example distributions for parton level truth, after detector simulation, and FCGANned
back to parton level. The lower panels give the ratio of parton level truth and reconstructed parton
level. The lower panels give the deviation between parton level truth and reconstructed parton level.
To be compared with the naive GAN results in Fig. 2.3.

pay a price in the structure of the training sample. While the naive GAN only required event batches
to be matched between parton level and detector level, the training of the FCGAN actually requires
event-by-event matching.

In Fig. 2.6 we compare the truth and the generated events, trained on and applied to events covering the
full phase space. Compared to the naive GAN, inverting the detector effects now works even better.
The under-estimate of the GAN rate in tails no longer occurs for the FCGAN. The reconstructed
invariant W -mass forces the network to dynamically generate a very narrow physical width from a
comparably broad Gaussian peak. Using our usual MMD loss developed in Ref. [88] we reproduce the
peak position, width, and peak shape to about 90%. We emphasize that the MMD loss requires us
to specify the relevant one-dimensional distribution, in this case mjj , but it then extracts the on-shell
mass or width dynamically. The multi-kernel approach we use in this case is explained in the Appendix.
As for our naive ansatz we now test what happens to the network when the training data and the
test data do not cover the same phase space region. We train using the entire phase space, but we
then only invert to the 88% and 38% of events passing the jet cuts I and II defined in Eq.(7) and
Eq.(8). We show the results in Fig. 2.7. As observed before, especially the jet cuts with only 40%
survival probability shape our four example distributions. However, we see for example in the pT,jj
distribution that the inverted detector-level sample reconstructs the patterns of the true parton-level
events perfectly. This comparison indicates that the FCGAN approach deals with differences in the
training and test samples very well.
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Figure 2.7: Parton level truth and FCGANned distributions when we train the GAN on the full data
set but only unfold parts of phase space defined in Eq.(7) and Eq.(8). To be compared with the naive
GAN results in Fig.2.4.

In order to test to which degree the inversion holds, we move on to harsher cuts on the inclusive event
sample. We start with

Cut III : pT,j1 = 30 ... 50 GeV pT,j2 = 30 ... 40 GeV pT,`− = 20 ... 50 GeV , (12)

which 14% of all events pass. In Fig. 2.8 we see that also for this much reduced fraction of test
events corresponding to the training sample the FCGAN inversion reproduces the true distributions
extremely well, to a level where it appears not really relevant what fraction of the training and test
data correspond to each other.
Finally, we apply a cut which not only removes a large fraction of events, but also cuts into the leading
peak feature of the pT,j1 distribution and removes one of the side bands needed for an interpolation,

Cut IV : pT,j1 > 60 GeV . (13)

For this choice 39% of all events pass, but we remove all events at low transverse momentum, as can be
seen from Fig. 2.6. This kind of cut could therefore be expected to break the unfolding. Indeed, the red
lines in Fig. 2.8 indicate that we have broken the mjj reconstruction through the FCGAN. However,
all other (shown) distributions still agree with the parton-level truth extremely well. The problem with
the invariant mass distribution is that our implementation of the MMD loss is not actually conditional.
At this stage it means that, when pushed towards its limits, the network will first fail to reproduce
the correct peak width in the mjj distribution, while all other kinematic variables remain stable.
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Figure 2.8: Parton level truth and FCGANned distributions when we train the GAN on the full data
set but only unfold parts of phase space defined in Eqs.(12) and (13).

Finally, just like in Ref. [88] we show 2-dimensional correlations in Fig. 2.9. We stick to applying the
network to the full phase space and show the parton level truth and the FCGAN-inverted events in
the two upper panels. Again, we see that the FCGAN reproduces all features of the parton level truth
with high precision. The bin-wise relative deviation between the two 2-dimensional distributions only
becomes large for small values of Ej1 , where the number of training events is extremely small.

2.3.3 New physics injection
As discussed before, unfolding to a hard process is necessarily model-dependent. Until now, we have
always assumed the Standard Model to correctly describe the parton-level and detector-level events.
An obvious question is what happens if we train our FCGAN on Standard Model data, but apply it
to a different hypothesis. This challenge becomes especially interesting if this alternative hypothesis
differs from the Standard Model in a local phase space effect. It then allows us to test if the generator
networks maps the parton-level and detector-level phase spaces in a structured manner. Such features
of neural networks are at the heart of all variational constructions, for instance variational autoencoders
which are structurally close to GANs.
To this end we add a fraction of resonantW ′ events from a triplet extension of the Standard Model [122],
representing the hard process

pp→W ′
∗ → ZW± → (`−`+) (jj) (2.20)
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Figure 2.9: Two-dimensional parton level truth (upper left) and FCGANned (upper right) distributions
when we train the GAN on the full data set and unfold over the full phase space. The lower panels
show the relative deviation between truth and FCGANned and the one-dimensional Ej1 distribution
along fixed pT,``.

to the test data. We simulate these events with madgraph using the model implementation of Ref. [123]
and denote the new massive charged vector boson with a mass of 1.3 TeV and a width of 15 GeV asW ′.
For the test sample we combine the usual Standard Model sample with the W ′-sample in proportions
90%− 10%. The other new particles do not appear in our process to leading order. Because we want
to test how well the GAN maps local phase space structures onto each other, we deliberately choose a
small width ΓW ′/MW ′ ∼ 1%, not exactly typical for such strongly interacting triplet extensions.
The results for this test are shown in Fig. 2.10. First, we look at transverse momentum distribution of
final-state particles, which are hardly affected by the new heavy resonance. Both, the leading jet and
the lepton distributions are essentially identical for both truth levels and the FCGAN output. The
same is true for the invariant mass of the hadronically decaying W -boson, which nevertheless provides
a useful test of the stability of our training and testing.
Finally, we show the reconstructed W ′-mass in the lower-right pane. Here we see the different (nor-
malized) truth-level distributions for the Standard Model and the W ′-injected sample. The FCGAN,
trained on the Standard Model, keeps track of local phase space structures and reproduces the W ′
peak faithfully. It also learn the W ′-mass as the central peak position very well. The only issue is the
W ′-width, which the network over-estimates. However, we know already that dynamically generated
width distributions are a challenge to GANs and require for instance an MMD loss. Nevertheless,
Fig. 2.10 clearly shows that GAN unfolding shows a high degree of model independence, making use
of local structures in the mapping between the two phase spaces. We emphasize that the additional
mass peak in the FCGANned events is not a one-dimensional feature, but a localized structure in the
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Figure 2.10: Parton level truth and FCGANned distributions when we train the network on the
Standard Model only and unfold events with an injection of 10% W ′ events. The mass of the additional
s-channel resonance is 1.3 TeV.

full phase space. This local structure is a feature of neural networks which comes in addition to the
known strengths in interpolation.

2.4 INN unfolding
In Sec. 2.3 we have introduced and developed the idea of inverting Monte Carlo simulations using a
GAN. However, it should be clear from Sec. 1.2.1 that an invertible model is a more natural tool to
use, as the task we wish to solve consists precisely of inverting a well known forward simulation. We
will show in this section how the intuition built with the conditional GAN provides us with a useful
guideline.
We introduce the conditional INN in two steps, starting with the non-conditional, standard set-up.
The construction of the INN we use in our analysis combines two goals [48]:

1. the mapping from input to output is invertible and the Jacobians for both directions are tractable;

2. both directions can be evaluated efficiently. This second property goes beyond some other im-
plementations of normalizing flow [51,53].

While the final aim is not to actually evaluate our INN in both directions, we will see that these
networks can be extremely useful to invert a stochastic process like detector smearing.
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Figure 2.11: Structure of INN. The {xd,p} denote detector-level and parton-level events, {rd,p} are
random numbers to match the phase space dimensionality. A tilde indicates the INN generation.

In Sec. 2.4.3 we will show how the conditional INN retains a proper statistical notion of the inversion
to parton level phase space. This avoids a major weakness of standard unfolding methods, namely
that they only work on large enough event samples condensed to one-dimensional or two-dimensional
kinematic distributions. This could be a missing transverse energy distribution in mono-jet searches
or the rapidities and transverse momenta in top pair production. To avoid systematics or biases in
the full phase space coverage required by the matrix element method, the unfolding needs to construct
probability distributions in parton-level phase space, including small numbers of events in tails of
kinematic distributions.

2.4.1 Naive INN
While it is clear from our discussion in Sec. 2.3 that a standard INN will not serve our purpose, we still
describe it in some detail before we extend it to a conditional network. Following the conventions of
our GAN analysis and in analogy to Eqs.(2.6) to (2.8) we define the network input as a vector of hard
process information xp ∈ RDp and the output at detector level via the vector xd ∈ RDd . as the INN
is a change of variable, the input and output dimensionalities must be the same. If the dimensionality
of the spaces are such that Dp < Dd we can add a noise vector r with dimension Dd −Dp to define
the bijective, invertible transformation,(

xp
r

)
Pythia,Delphes:g→

←−−−−−−−−−−−−−−−−→
← unfolding:ḡ

xd . (2.21)

A correctly trained network g with the parameters θ then reproduces xd from the combination xp and
r. Its inverse ḡ instead reproduces the combination of xp and r from xd.
We have introduced in Sec. 1.2.1 the general features of invertible models, i.e. models that learn both
directions of the bijective mapping in parallel and encodes them into one network as illustrated in
Fig. 2.11 . In particular, we have explained how we can think of an INN as the composition of multiple
copies of a single base function with the required properties of invertibility and cheap Jacobian. For
our INN we have chosen invertible coupling layers [49, 66] based on dimensional partitioning. For
notational purposes we ignore the random numbers in Eq.(2.21) and assume that this layer links an
input vector xp to an output vector xd after splitting both of them in halves, xp,i and xd,i for i = 1, 2.
The relation between input and output is given by a sub-network, which encodes arbitrary functions
s1,2 and t1,2. Using an element-wise multiplication � and sum one could for instance define an output
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xd,1(xp) = xp,1 � s2(xp,2) + t2(xp,2). In order to avoid numerical instabilities caused by the division
with s(x) in the inverse direction, we include an exponential to obtain(

xd,1
xd,2

)
=
(
xp,1 � es2(xp,2) + t2(xp,2)
xp,2 � es1(xd,1) + t1(xd,1)

)
⇔

(
xp,1
xp,2

)
=
(

(xd,1 − t2(xp,2))� e−s2(xp,2)

(xd,2 − t1(xd,1))� e−s1(xd,1)

)
. (2.22)

By construction, this inversion works independent of the form of s and t. If we write the coupling block
function as g(xp) ∼ xd, again omitting the random numbers r, the Jacobian of the network function
has a triangular form

∂g(xp)
∂xp

=
(
diag es2(xp,2) finite

0 diag es1(xd,1)

)
, (2.23)

so its determinant is easy to compute. Such coupling layer transformations define the normalizing flow,
when we view it as transforming an initial probability density into a very general form of probability
density through a series of invertible steps. We can relate the two probability densities as long as the
Jacobians of the individual layers can be efficiently calculated.
Since the first use of the invertible coupling layer, much effort has gone into improving its efficiency.
The All-in-One (AIO) coupling layer includes two features, introduced by Ref. [49] and Ref. [50]. The
first modification replaces the transformation of xp,2 by a permutation of the output of each layer.
Due to the permutation each component still gets modified after passing through several layers. The
second modification includes a global affine transformation to include a global bias and linear scaling
that maps x → sx + b. Finally, we apply a bijective soft clamping after the exponential function in
Eq.(2.22) to prevent instabilities from diverging outputs.
The INN in our simplified example combines three contributions to the loss function. First, it tests
if in the Delphes direction of Eq.(2.21) we indeed find g(xp) = xd via the mean squared error
(MSE) function. While this is theoretically sufficient to obtain the inverse function, also testing the
inverse direction ḡ(xd) = xp greatly improves the efficiency and stability of the training. Third, to
resolve special sharp features like the invariant mass of intermediate particles we use the MMD loss
introduced in Sec. 2.3. For the INN architecture the Breit-Wigner kernel is the best choice to analyze
the distribution of the random numbers as part of the loss function [48].
We now use the INN network to map parton-level events to detector-level events or vice-versa. In a
statistical analysis we then use standard kinematic distributions and compare the respective truth and
INN-inverted shapes for both directions. The left panels of Fig. 2.12 shows the transverse momentum
distributions of the two jets and their invariant mass for both directions of the INN. The truth events
at parton level and at detector level are marked as dashed lines. Starting from each of the truth events
we can apply the INN describing the detector effects as xd = g(xp) or unfolding the detector effects as
xp = ḡ(xd) in Eq.(2.21). The corresponding solid lines have to be compared to the dotted truth lines,
where we need to keep in mind that at the parton level the relevant objects are quarks while at the
detector level they are jets.
For the leading jet the truth and INN-generated detector-level agree very well, while for the second
jet the naive INN fails to capture the hard cut imposed by the jet definition. For the invariant mass
we find that the smearing due to the detector effects is reproduced well with some small deviations
in the tails. In the unfolding direction both pT distributions follow the parton level truth. The only
difference is a systematic lack of events in the tail for the second quark. This is especially visible in
the ratio of the INN-unfolded events and the parton-level truth, indicating that also at small pT the
network does not fill the phase space sufficiently. Combining both directions we see that in forward
direction the INN produces a too broad pT -distribution, the unfolding direction of the INN produces a
too narrow distribution. The conceptual advantage of the INN actually implies a disadvantage for the
inversion of particular difficult features. Finally, the invariant mass of the W is reproduced perfectly
without any systematic deviation.

2.4.2 Noise-extended INN
While our simplified example in the previous section shows the potential of INNs, it fails to incorporate
key aspects of the physical process. First of all, the number of degrees of freedom is not actually the
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Figure 2.12: INN-generated pT,q and MW,reco distributions from a naive INN (left) and the noise-
extended eINN (right). In green we compare the detector-level truth to INNed events transformed
from parton level. In blue we compare the parton-level truth to INNed events transformed from
detector level. The secondary panels show the ratio of INNed events over parton-level truth. More
distributions can be found in the pdf files submitted to the arXiv.

same at parton level and at detector level. External partons are on their mass shell, while jets come with
a range of jet masses. This mismatch becomes crucial when we include missing transverse momentum
in the signature. We generally need fewer parameters to describe the partonic scattering than the
detector-level process. For a fixed set of parton-level momenta we usually smear each momentum
component to simulate the detector measurement. These additional degrees of freedom are of stochastic
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Figure 2.13: Left: illustration of the statistical interpretation of unfolded events for one event. Right:
calibration curves for pT,q1 extracted from the FCGAN and the noise-extended eINN.

nature, so adding Gaussian random variable on the parton side of the INN could be a first step to
address this problem.
To also account for potentially unobservable degrees of freedom at the parton level we extend each side
of the INN by a random number vector. The mapping in Eq.(2.21) now includes two random number
vectors with dimensions Drd = Dp and Drp = Dd,(

xp
rp

)
Pythia,Delphes:g→

←−−−−−−−−−−−−−−−−→
← unfolding:ḡ

(
xd
rd

)
. (2.24)

In addition, a pure MSE loss can not capture the fact that the additional noise generates a distribution
of detector-level events given fixed parton momenta. It would just predict a mean value of this
distribution and minimize the effect of the noise. A better solution is an MMD loss for each degree
of freedom in the event and the masses of intermediate particles, as well as the Gaussian random
variables. On the side of the random numbers this MMD loss ensures that they really only encode
noise. Again it is beneficial for the training to use the inverse direction and apply additional MMD
losses to the parton level events as well as the corresponding Gaussian inputs. Finally we add a weak
MSE loss on the four vectors of each side to stabilize the training.
In the right panels of Fig. 2.12 we show results for this noise-extended INN (eINN). The generated
distributions are similar to the naive INN case and match the truth at the parton level. A notable
difference appears in the second jet, the weak spot of the naive INN. The additional random numbers
and MMDs provide more freedom to generate the peak in the forward direction and also improve the
unfolding in the low-pT and high-pT regimes.

The noise extension allows for a statistic interpretation of the generated distributions and a test of the
integrity of the INN-inverted distributions. In the left panel of Fig. 2.13 we illustrate the goal of the
statistical treatment: we start from a single event at the detector level and generate a set of unfolded
events. For each of them we evaluate for instance pT,q1 . Already in this illustration we see that the
GAN output is lacking a statistical behaviour at the level of individual events, while the noise-extended
eINN returns a reasonable distribution of unfolded events.
To see if the width of this INN output is correct we take 1500 parton-level and detector-level event pairs
and unfold each event 60 times, sampling over the random variables. This gives us 1500 combinations
like the one shown in the left panel of Fig. 2.13: a single parton-level truth configuration and a
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Figure 2.14: Structure of the conditional INN. The input are random numbers {r} while {xd,p} denote
detector-level and parton-level data. The latent dimension loss L follows Eq.(2.25), a tilde indicates
the INN generation.

distribution of the INNed configuration. To see if the central value and the width of the INNed
distribution can be interpreted statistically as a posterior probability distribution in parton phase
space we analyse where the truth lies within the INN distribution for each of the 1500 events. For a
correctly calibrated curve we start for instance from the left of the kinematic distribution and expect
10% of the 1500 events in the 10% quantile of the respective probability distribution, 20% of events
in the 20% quantile, etc. The corresponding calibration curves for the noise-extended eINN are shown
in the right panel of Fig. 2.13. While they indicate that we can attempt a statistical interpretation of
the INN unfolding, the calibration is not (yet) perfect. A steep rise for the lower quantile indicates
that too many events end up in the first 10% quantile. In other words, the distributions we obtain by
sampling over the Gaussian noise for each event are too narrow.
While our noise-extended eINN takes several steps in the right direction, it still faces major challenges:
the combination of many different loss functions is sensitive to their relative weights; the balance
between MSE and MMD on event constituents has to be calibrated carefully to generate reasonable
quantile distributions; when we want to extend the INN to include more detector-level information
we have to include an equally large number of random variable on the parton level which makes the
training very inefficient. This leads us again [28] to adopt a conditional set-up.

2.4.3 Conditional INN
If a distribution of parton-level events can be described by n degrees of freedom, we should be able
to use normalizing flows or an INN to map a n-dimensional random number vector onto parton-level
4-momenta. To capture the information from the detector-level events we need to condition the INN
on these events [28, 41, 57], so we link the parton-level data xp to random noise r under the condition
of xd. Trained on a given process the network should now be able to generate probability distributions
for parton-level configurations given a detector-level event and an unfolding model. We note that the
cINN is still invertible in the sense that it includes a bi-directional training from Gaussian random
numbers to parton-level events and back. While this bi-directional training does not represent the
inversion of a detector simulation anymore, it does stabilize the training by requiring the noise to be
Gaussian.
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2.4. INN unfolding

A graphic representation of this conditional INN or cINN is given in Fig. 2.14. We first process the
detector-level data by a small subnet, i.e. xd → f(xd), to optimize its usability for the cINN [104].
The subnet is trained alongside the cINN and does not need to be reversed or adapted. We choose a
shallow and wide architecture of two layers with a width of 1024 internally, because four layers degrade
already the conditional information and allow the cINN to ignore it. When a deeper subnet is required
we advertise to use an encoder, which is initialized by pre-training it as part of an autoencoder. We
apply this technique when using the larger ISR input, where it leads to a more efficient training. After
this preprocessing, the detector information is passed to the functions si and ti in Eq.(2.22), which now
depend on the input, the output, and on the fixed condition. Since the invertibility of the network is
independent of the values of si and ti, the network remains invertible between the parton-level events
{xp} and the random variables {r}. This feature stabilizes the training. The cINN loss function is
motivated by the simple argument that for the correct set of network parameters θ describing si and
ti we maximize the (posterior) probability p(θ|xp, xd) or minimize

L = −〈log p(θ|xp, xd)〉xp∼Pp,xd∼Pd
= −〈log p(xd|xp, θ) + log p(θ|xp)− log p(xd|xp)〉xp∼Pp,xd∼Pd
= −〈log p(xd|xp, θ)〉xp∼Pp,xd∼Pd − log p(θ) + const.

= −
〈

log p(g(xp, xd)) + log
∣∣∣∣∂g(xp, xd)

∂xp

∣∣∣∣〉
xp∼Pp,xd∼Pd

− log p(θ) + const. ,

(2.25)

where we first use Bayes’ theorem, then ignore all terms irrelevant for the minimization, and finally
apply a simple coordinate transformation for the bijective mapping. The last term is a simple weight
regularization, while the first two terms are called the maximum likelihood loss. Since we impose
the latent distribution of the random variable p(g(xp, xd)) to produce a normal distribution centered
around zero and with width one, the first term becomes

log p(g(xp, xd)) = −||g(xp, xd))||22
2 . (2.26)

The final network set-up after tuning of the hyper-parameters are listed In Tab. 2.3. We verified that
the network performance is stable under small changes of these parameters.
In the left panels of Fig. 2.15 we show the unfolding performance of the cINN, trained and tested on the
same exclusive 2-jet events as the simpler INNs in Fig. 2.12. Unlike the naive and the noise-extended
INNs we cannot evaluate the cINN in both direction, detector simulation and unfolding, so we focus on
the detector unfolding. The agreement between parton-level truth and the INN-unfolded distribution

Parameter INN eINN

Blocks 24 24
Layers per block 2 2
Units per layer 256 256
Trainable weights ∼ 150k ∼ 270k
Epochs 1000 1000
Learning rate 8 · 10−4 8 · 10−4

Batch size 512 512
Training/testing events 290k / 30k 290k / 30k
Kernel widths ∼ 2, 8, 25, 67 ∼ 2, 8, 25, 67
Dp +Drp 12 + 4 12 + 16
Dd +Drd 16 + 0 16 + 12
λMMD 0.1 (masses only) 0.2
λMMD increase - -

Table 2.2: INN and noise-extended eINN setup and hyper-parameters, as implemented in PyTorch
(v1.2.0) [124].
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Figure 2.15: cINNed pT,q and mW,reco distributions. Training and testing events include exactly two
jets. In the left panels we use a data set without ISR, while in the right panels we use the two-jet
events in the full data set with ISR. The lower panels give the ratio of cINNed to parton-level truth.

is around 10% for the bulk of the pT distributions, with the usual larger relative deviations in the
tails. An interesting feature is still the cut pT,j > 20 GeV at the detector level, because it leads to a
slight shift in the peak of the pT,j2 distribution. Finally, the reconstructed invariant W -mass and the
physical W -width agree extremely well with the Monte Carlo truth owing to the MMD loss.

As in Fig. 2.13 we can interpret the unfolding output for a given detector-level event statistically. First,
in the left panel of Fig. 2.16 we show a single event and how the FCGAN, INN, and cINN output is
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Figure 2.16: Left: illustration of the statistical interpretation of unfolded events for one event. Right:
calibration curves for pT,q1 extracted from the FCGAN and the noise-extended eINN, as shown in
Fig. 2.13, and the cINN.

distributed in parton level phase space. The separation between truth and sampled distributions does
not have any significance, but we see that the cINN inherits the beneficial features of the noise-extended
eINN. In the right panel of Fig. 2.16 we again reconstruct the individual probability distribution from
the unfolding numerically. We then determine the position of the parton-level truth in its respective
probability distribution for the INN and the cINN. We expect a given percentage of the 1500 events to
fall into the correct quantile of its respective probability distribution. The corresponding calibration
curve for the cINN is added to the right panel of Fig. 2.16, indicating that without additional calibration
the output of the cINN unfolding can be interpreted as a probability distribution in parton-level phase
space for a single detector-level event, as always assuming an unfolding model. Instead of the transverse
momentum of the harder parton-level quark we could use any other kinematic distribution at parton
level. This marks the final step for a statistically interpretable unfolding.

2.5 Unfolding with jet radiation
In the previous chapter we used a simplified data set to explore different possibilities to unfold detector
level information with invertible networks. We limit the data to events with exactly two jets, by
switching off initial state radiation (ISR). This guarantees that the two jets come from the W -decay.
In a realistic QCD environment we do not have that information, because additional QCD jets will be
radiated off the initial and final state partons. In this section we demonstrate how we can unfold a
sample of events including ISR and hence with a variable number of jets. We know that with very few
exceptions [125] the radiation of QCD jets does not help us understand the nature of the hard process.
In such cases, we would like to interpret a measurement with an appropriately defined hard process,
leading to the question if an unfolding network can invert detector effects and QCD jet radiation.
Technically, this means inverting jet radiation and kinematic modifications to the hard process as, in
our case, done by Pythia.
We emphasize that this approach requires us to define a specific hard process with any number of
external jets and other features. We can illustrate this choice for two examples. First, a di-tau
resonance search typically probes the hard process pp→ µ+µ− +X, where X denotes any number of
additional, analysis-irrelevant jets. We invert the corresponding measurements to the partonic process
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pp → µ+µ−. A similar mono-jet analysis instead probes the process pp → Z ′j(j) + X, where Z ′ is a
dark matter mediator decaying to two invisible dark matter candidate. Depending on the analysis, the
relevant process to invert is pp → Z ′j or pp → Z ′jj, where a reported missing transverse momentum
recoils against one or two hard jets. Because our inversion network in trained on Monte Carlo data,
we automatically define the appropriate hard process when generating the training data. This covers
any combination of signal and background matrix elements contributing to such a hard process, even
non-SM processes to quantify a remaining model dependence. A final caveat — in the hard process we
do not include subjet aspects at this stage. As long as subjet information is used for tagging purposes
it factorizes from the hard process information and can easily be included in terms of efficiencies. A
problem would arise in unfolding or inverting analyses relying on different hard processes, like a fat
mono-jet analysis, where the above choice of recoil jets is left to a sub-jet algorithm.

2.5.1 Individual n-jet samples
In Sec. 2.4.3 we have shown that our cINN can unfold detector effects for ZW -production at the
LHC. The crucial new feature of the cINN is that it provides probability distribution in parton-level
phase space for a given detector-level event. The actual unfolding results are illustrated in Fig. 2.15,
focusing on the two critical distribution known from the corresponding FCGAN analysis [28]. The
event sample used throughout Sec. 2.4 includes exactly two partons from a W -decay with minimal
phase space cuts on the corresponding jets. Strictly speaking, these phase space cuts are not necessary
in this simulation. The correct definition of a process described by perturbative QCD includes a free
number of additional jets,

pp→ ZW± + jets→ (`−`+) (jj) + jets , (2.27)

For the additional jets we need to include for instance a pT cut to regularize the soft and collinear
divergences at fixed-order perturbation theory. The proper way of generating events is therefore to
allow for any number of additional jets and then cut on the number of hard jets. Since ISR can lead
to jets with larger pT than the W -decay jets, an assignment of the hardest jets to hard partons does
not work. We simply sort jets and partons by their respective pT and let the network work out their
relations. We limit the number of jets to four because larger jet number appear very rarely and would
not give us enough training events.
Combining all jet multiplicities we use 780k events, out of which 530k include exactly two jets, 190k
events include three jets and 60k have four or more jets. We split the data into 80% training data

Parameter cINN no ISR cINN ISR incl.

Blocks 24 24
Layers per block 2 3
Units per layer 256 256
Condition/encoder layers 2 8
Units per condition/encoder layer 1024 1024
Condition/encoder output dimension 256 256
Trainable weights ∼ 2 M ∼ 10 M
Encoder pre training epochs - 300
Epochs 1000 900
Learning rate 8 · 10−4 8 · 10−4

Batch size 512 512
Training/testing events 290k / 30k 620k / 160k
Kernel widths ∼ 2, 8, 25, 67 ∼ 2, 8, 25, 67
Dp 12 12
Dd 16 25
λMMD 0.5 0.04
λMMD increase - 1.6 / 100 epochs

Table 2.3: cINN setup and hyper-parameters, as implemented in PyTorch (v1.2.0) [124].
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Figure 2.17: cINNed pT,q and mW,reco distributions. Training and testing events include exactly three
(left) and four (right) jets from the data set including ISR.

and 20% test data to produce the shown plots. For the network input we zero-pad the event-vector
for events with less than four jets and add the number of jets as additional information. The training
samples are then split by exclusive jet multiplicity, such that the cINN reconstructs the 2-quark parton-
level kinematics from two, three, and four jets at the detector level.
As before, we can start with the sample including exactly two jets. The difference to the sample used
before is that now one of the W -decay jets might not pass the jet pT condition in Eq.(2.11), so it
will be replaced by an ISR jet in the 2-jet sample. Going back to Fig. 2.15 we see in the right panel
how these events are slightly different from the sample with only decay jet. The main difference is in
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Figure 2.18: cINNed example distributions. Training and testing events include two to four jets,
combining the samples from Fig. 2.15 and Fig. 2.17 in one network. At the parton level there exist
only two W -decay quarks.

pT,q2 , where the QCD radiation produces significantly more soft jets. Still, the network learns these
features, and the unfolding for the sample without ISR and the 2-jet exclusive sample has a similar
quality. In Fig. 2.17 we see the same distributions for the exclusive 3-jet and 4-jet samples. In this
case we omit the secondary panels because they are dominated by the statistical uncertainties of the
training sample. For these samples the network has to extract the parton-level kinematics with two
jets only from up to four jets in the final state. In many cases this corresponds to just ignoring the
two softest jets and mapping the two hardest jets on the two W -decay quarks, but from the pT,q2

distributions in Fig. 2.15 we know that this is not always the correct solution. Especially in the critical
mjj peak reconstruction we see that the network feels the challenge, even though the other unfolded
distributions look fine.

2.5.2 Combined n-jet sample
The obvious final question is if our INN can also reconstruct the hard scattering process with its
two W -decay quarks from a sample with a variable number of jets. Instead of separate samples as
in Sec. 2.5.1 we now interpret the process in Eq.(2.27) as jet-inclusive. This means that the hard
process includes only the two W -decay jets, and all additional jets are understood as jet radiation,
described either by resummed ISR or by fixed-order QCD corrections. The training sample consists of
the combination of the right panels in Fig. 2.15 and the two panels in Fig. 2.17. This means that the
network has to deal with the different number of jets in the final state and how they can be related
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Figure 2.19: cINNed example distributions. Training and testing events include two to four events,
combining the samples from Fig. 2.15 and Fig. 2.17 in one network. The parton-level events are stacked
by number of jets at detector level.

to the two hard jets of the partonic ZW → ``jj process. The number of jets in the final state is not
given by individual hard partons, but by the jet algorithm and its R-separation.
In Fig. 2.18 we show a set of unfolded distributions. First, we see that the pT,j thresholds at the
detector level are corrected to allow for pT,q values to zero. Next, we see that the comparably flat
azimuthal angle difference at the parton level is reproduced to better than 10% over the entire range.
Finally, the mjj distribution with its MMD loss re-generates the W -mass peak at the parton level
almost perfectly. The precision of this unfolding is not any worse than it is for the case where the
number of hard partons and jets have to match and we only unfold the detector effects.
In Fig. 2.19 we split the unfolded distributions in Fig. 2.18 by the number of 2, 3, and 4 jets in the
detector-level events. In the first two panels we see that the transverse momentum spectra of the
hard partons are essentially independent of the QCD jet radiation. In the language of higher-order
calculations this means that we can describe extra jet radiation with a constant K-factor, if necessary
with the appropriate phase space mapping. Also the reconstruction of the W -mass is not affected by
the extra jets, confirming that the neural network correctly identifies the W -decay jets and separates
them from the ISR jets. Finally, we test the transverse momentum conservation at the unfolded parton
level. Independent of the number of jets in the final state the energy and momentum for the pre-defined
hard process is conserved at the 10−4 level. The kinematic modifications from the ISR simulation are
unfolded correctly, so we can compute the matrix element for the hard process and use it for instance
for inference.
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2.6 Conclusions and outlook
In this chapter we have demonstrated how deep generative models have the required flexibility and
expressive power to invert Monte Carlo simulations like a a fast detector simulation. For our example
processWZ → (jj)(``) at the LHC we have worked out several possible configurations of (conditional-)
GANs and INNs, giving emphasis to the strengths and weaknesses of each version.
Starting with the GAN, we have shown how a naive approach works extremely well when the training
sample and the test sample are very similar. In that case the GAN benefits from the fact that we do
not actually need an event-by-event matching of the parton-level and detector-level samples.
If the training and test samples become significantly different we may use instead a conditional model.
It maps random noise parton-level events with conditional, event-by-event detector-level input and
learns to generate parton-level events from detector-level events. First, we noticed that the conditional-
GAN with its structured mapping provides much more stable predictions in tails of distributions, where
the training sample is statistics limited. Then, we have shown that a network trained on the full phase
space can be applied to much smaller parts of phase space, even including cuts in the main kinematic
features. The conditional-GAN successfully maintains a notion of events close to each other at detector
level and at parton level and maps them onto each other. This approach only breaks eventually because
the MMD loss needed to map narrow Breit-Wigner propagators is not (yet) conditional in our specific
setup.
In the second half of the chapter we have instead focused on invertible architectures. We have shown
how an INN and in particular a conditional INN can be used to unfold detector effects for the same
reference process. The cINN is not only able to unfold the process over the entire phase space, but
it also gives correctly calibrated posterior probability distributions over parton-level phase space for
given detector-level events.
Finally, we have extended the inversion to a variable number of jets in the final state. This situation
will automatically appear whenever we include higher-order corrections in perturbative QCD for a
given hard process. The hard process at parton level is defined at the training level. We find that
the cINN also unfolds QCD jet radiation in the sense that it identifies the ISR jets and corrects the
kinematics of the hard process to ensure energy-momentum conservation in the hard scattering.
In combination, these features should enable analysis techniques like the matrix element method and
efficient ways to communicate analysis results including multi-dimensional kinematic distributions.
While the ZW production process used in this analysis, we expect these results to carry over to more
complex processes with intermediate particles and the impact of a SM-training hypothesis should be
under control, the next step will be to test this new framework in a realistic LHC example with proper
analysis of the uncertainties.
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3 | What is the uncertainty of
generative models?

Following the growing interest in refining LHC simulations with deep generative models,
a crucial question to realistically use them in an analysis, is how to define and estimate the
uncertainty associated to models output. We illustrate how approximate Bayesian infer-
ence can be used to define an uncertainty over a generative model’s output. Our findings
show a highly non-trivial pattern in the model uncertainty, which may be understood in
terms of a functional fit of the learnt density.

3.1 Introduction
In Chap. 2 we have shown that deep generative models certainly possess the expressive power that
we need to produce realistic synthetic data. However, expressive power is not the only feature needed
for their realistic use in particle physics analysis. When data is simulated via standard Monte Carlo
methods, there’s a clear understanding of what is the associated statistical error.
Assuming a simple set-up in which we wish to estimate the observable

O =
∫
x

dxf(x), (3.1)

we can estimate O via Monte Carlo

E [O] = 1
N

N∑
i=1

f(xi) (3.2)

with uncertainty

Var [E [O]] = Var [f(x)]
N

. (3.3)

It is not within the scope of this chapter to discuss standard methods such as optimized importance
sampling to improve the standard integration described above, instead, we want emphasize that as O
is estimated using the "true" function f(x), the only relevant figure is the number of samples N . This
is clearly not the case for approaches like the one described in Ref. [88], where a generative model
completely replaces the integrator. As generative models only approximates a desired distribution,
in this case the integrand f(x), they should be used with caution if and when precision is required.
In other worlds, if an additional rejection sampling based on the truth is not added on top of the
generative model, our prediction will also include uncertainties from the fact that we generate samples
from some function f̃ ∼ f , and this extra uncertainty collects everything associated to model’s training.
This does not mean that such an approach should be discarded entirely, but rather that we should
think of a way to estimate this approximation uncertainty.
The fact that experiments, field theory calculations, and simulations control their uncertainties implies
that we can work with a complete uncertainty budget, including statistical, systematic, and theory
uncertainties. To sustain this approach at the upcoming HL-LHC, with a data set more than 25 times
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the current Run 2 data set, the challenge is to provide faster simulations while keeping full control of
the uncertainties.
In recent years it has been shown that modern machine learning can improve LHC event simulations
in various ways. Promising techniques include deep generative models such as generative adversarial
networks (GAN) [57,58], variational autoencoders [63,64], and invertible models [48–53,53,54]. Further
developments are fully NN-based event generation [19, 86–89], detector simulation [10, 11, 14, 15, 90–
94, 126], or parton showering [95–98, 127]. Generative models may also improve searches for physics
beyond the Standard Model [99], anomaly detection [103, 128], detector resolution [129, 130], and
inference [131, 132]. Finally, conditional GANs and INNs allow us to invert the simulation chain to
unfold detector effects [27,28] and extract the hard scattering process at parton level [42]. The problem
with these applications is that little is known about

1. how these generative networks work, and

2. what the uncertainty on the generative network output is.

As we will see in this chapter, these two questions may be related.
In general, we can track statistical uncertainties in neural network outputs with Bayesian net-
works [133–136]. Such networks have been used in particle physics for a long time [137–139]. For
the LHC we have proposed to use them to extract uncertainties in jet classification [140] and jet
calibration [141]. They can cover uncertainties related to statistical and structural limitations of the
training sample [142], while being obviously unable to track systematic uncertainties. Similar ideas
can be used as part of ensemble techniques [143]. We propose to use a Bayesian INN (BINN) to
extract uncertainties induced by the network training on a generated event sample.
Because invertible models allows to evaluate the likelihood exactly, they are a natural tool for evaluating
the uncertainty over the learnt distribution, compared to implicit models like generative adversarial
networks. While Bayesian classification [140] and regression networks [141] highlight the statistical
and nature of uncertainties, our Bayesian generative network exhibits a very different structure. We
will discuss the learning pattern of the Bayesian INN in details for a set of simple toy processes in
Sec. 3.3, before we apply the network to a semi-realistic LHC example in Sec. 3.4.

3.2 Generative networks with uncertainties
We start by reminding that in the literature it is often assumed that a generative model has learned
a phase-space density perfectly, so that the only remaining source of uncertainty is the statistics of
the generated sample binned in phase space. However, such an assumption is not realistic [140, 141],
and we need to estimate the effect of statistical limitations of the training data, as well as in the
representation power of the model and the training procedure. A problem with existing methods to
estimate models uncertainties is that they rely on training many networks, with the assumption that
randomly initializing their weights is enough to get independent samples and finally comparing their
outcome. For some applications this can be an infeasible option, so we will show how an alternative
solution could look.

3.2.1 Uncertainties on event samples
Uncertainties on a simulated kinematic or phase space distribution are crucial for any LHC analysis.
We denote the complete phase space weight for a given phase space point as p(x), such that we can
express a total cross section as

σtot =
∫ 1

0
dx p(x) with p(x) > 0 . (3.4)

In this simplified notation x stands for a generally multi-dimensional phase space. For each phase
space position, we can likewise define an uncertainty σ(x).
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One contribution to the error budget are systematic and theory uncertainties, σth/sys(x). The former
reflect our ignorance of aspects of the training data, which do not decrease when we increase the amount
of training data. The latter captures the degree to which we trust our prediction, for instance based
on self-consistency arguments. For example, we can account for possible large, momentum-dependent
logarithms as a simple function of phase space. If we use a numerical variation of the factorization
and renormalization scale to estimate a theory uncertainty, we typically re-weight events with the
scales. Another uncertainty arises from the statistical limitations of the training data, σstat(x). In the
Gaussian limit, a statistical uncertainty can be defined by binning the phase space and in that limit
we expect a scaling like σstat(x) ∼

√
p(x), and we will test that hypothesis in detail in Sec. 3.3.

Once we know the uncertainties as a function of the phase space position, we can account for them as
additional entries in unweighted or weighted events. For instance, relative uncertainties can be easily
added to unweighted events,

evi =


σstat/p
σsyst/p
σth/p
{xµ,j}
{pµ,j}

 , with µ = 0 ... 3 for each particle j. (3.5)

The entries σ or σ/p are smooth functions of phase space. The challenge in working with this definition
is how to extract σstat without binning. Specific theory counterparts can be either computed directly
or extracted by appropriately modifying the training data [140,141].

3.2.2 Bayesian INN
To model complex densities such as LHC phase space distributions, we can employ invertible models
of the kind described in Chap. 2.
An INN composes multiple transformation maps into coupling layers with dimensional partitioning.
The input vector z into a layer is split in half, z = (z1, z2), allowing us to compute the output
x = (x1, x2) of the layer as (

x1
x2

)
=
(
z1 � es2(z2) + t2(z2)
z2 � es1(x1) + t1(x1)

)
, (3.6)

where si, ti (i = 1, 2) are arbitrary functions, and � is the element-wise product. In practice, each is
a small multi-layer perceptron. This transformation has the benefit of being trivially invertible, given
a vector x = (x1, x2) the inverse is given by(

z1
z2

)
=
(

(x1 − t2(z2))� e−s2(z2)

(x2 − t1(x1))� e−s1(x1)

)
. (3.7)

Additionally, its Jacobian is an upper triangular matrix

∂G(z)
∂z

=
(
diag

(
es2(z2)) finite
0 diag

(
es1(x1))) , (3.8)

whose determinant is just the product of the diagonal entries, irrespective of the off-diagonal entries.
As such, it is computationally cheap and easily composable.
We refer to the overall map composing a sequence of such coupling layers as G(z; θ), where we collected
the parameters of the individual nets s, t of each layer into a joint θ. Note that each coupling layer
has a separate set of nets, whose indices we suppress (e.g. sl, tl for the l-th layer). We can then train
the model via a maximum likelihood approach. It relies on the assumption that we have access to a
data set of N samples D = {x1, . . . , xN} of the intractable target phase space distribution p∗X(x) and
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want to fit our model distribution pX(x; θ) via the INN G. The maximum likelihood loss is

LML = −
N∑
n=1

log pX(xn; θ)

= −
N∑
n=1

log pZ
(
G(xn; θ)

)
+ log

∣∣∣∣det ∂G(xn; θ)
∂xn

∣∣∣∣ . (3.9)

Given the structure of G(x; θ) and the base distribution pZ each of the terms is tractable and can be
computed efficiently. We can approximate the sum over the complete training data via a mini-batch
and optimize the overall objective with a stochastic gradient descent approach. Note that one can see
this maximum likelihood approach as minimizing the Kullback-Leibler (KL) divergence between the
true but unknown phase space distribution p∗X(x) and our approximating distribution pX(x; θ).
The invertible model provides us with a powerful generative model of the underlying data distribution.
However, it lacks a mechanism to account for the uncertainty in the parameters θthemselves. In order
to model it, we switch from deterministic to probabilistic transformations, replacing the deterministic
sub-networks s1,2 and t1,2 in each of the coupling layers with Bayesian neural nets. In this section, we
first review the structure of a classical Bayesian neural network (BNN) [144,145] as used in a supervised
learning task, and then explain how we can use BNNs for our problem of modelling the phase space
density, extending the INN into a Bayesian invertible neural network (BINN).

Bayesian Neural Networks Assuming a data set D consisting of N pairs of observations (xi, yi),
D = {(x1, y1), . . . , (xN , yN )}, in the supervised learning problem we want to model the relation y =
fθ(x) through a neural network parameterised by weights θ. Placing a prior over the weights and
allowing for some observation noise, the generative model is given as

θ ∼ p(θ) ,
yi|θ,xi ∼ p(yi|θ,xi), i = 1, . . . , N .

(3.10)

In case of a regression with yi ∈ R we often use a Gaussian likelihood, p(yi|θ,xi) = N
(
yi|fθ(xi), α−1),

and a Gaussian prior over the weights p(θ) = N
(
θ|0, β−11

)
, with precisions α, β and 1 the identity

matrix of suitable dimensionality [141]. We are not bound to these distributions and could for example
choose a prior with a strongly sparsifying character for further regularization [146, 147]. Given the
highly nonlinear structure of fθ the posterior p(θ|D) is, for practically relevant applications, analytically
intractable. While MCMC-based approaches can work for specific use cases and small networks [148],
they quickly become too expensive for large architectures, so we instead rely on variational inference
(VI) [149]. A VI-based model approximates the posterior p(θ|D) with a tractable simplified family
of distributions, qφ(θ), parameterized by φ. We will rely on mean-field Gaussians throughout this
work, learning a separate mean and variance parameter for each network weight. These parameters
are learned by minimizing the KL-divergence

min
φ

KL
(
qφ(θ), p(θ|D)

)
. (3.11)

However, this objective is intractable, as it relies on the unknown posterior. Using Bayes’ theorem we
reformulate it as

KL
(
qφ(θ), p(θ|D)

)
= −

∫
dθ qφ(θ) log p(D|θ)p(θ)/p(D)

qφ(θ)

= −
∫
dθ qφ(θ) log p(D|θ)−

∫
dθ qφ(θ) log p(θ)

qφ(θ) + log p(D) . (3.12)

Now, the log evidence log p(D) is bounded from below as

log p(D) = KL
(
qφ(θ), p(θ|D)

)
+
∫
dθ qφ(θ) log p(D|θ)−KL

(
qφ(θ), p(θ)

)
≥
∫
dθ qφ(θ) log p(D|θ)−KL

(
qφ(θ), p(θ)

)
. (3.13)
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Maximizing this evidence lower bound (ELBO) then is equivalent to minimizing Eq.(3.11), giving us
as the objective without the intractable posterior

LELBO =
N∑
i=1

〈
log p(yi|θ,xi)

〉
θ∼qφ(θ)

−KL
(
qφ(θ), p(θ)

)
. (3.14)

This turns the inference problem into an optimization problem, which allows us to take advantage of
gradient descent methods such as Adam [150]. As the choice of prior p(θ) is under our control, the
KL-term between the variational posterior and the prior is tractable. The intractable expectation in
the first term we can approximate by taking S samples from the variational posterior and instead of
computing the gradient over the whole data set in each iteration switch to a stochastic gradient setup,
approximating the sum with a mini-batch of size M , giving us

LELBO ≈
N

M

M∑
i=1

1
S

S∑
s=1

log p(yi|θ(s),xi)−KL
(
qφ(θ), p(θ)

)
with θ(s) ∼ qφ(θ) . (3.15)

In practice, it is often sufficient to approximate the expectation via a single sample (S = 1) per forward
pass to keep the computational cost low and further rely on local re-parametrization [151] to reduce
the variance of the gradients.

Bayesian INN As discussed in Sec. 3.2.2, our generative model consists of a map G : z → x
from a base distribution pZ(z) to the phase-space pX(x) parameterized via an INN. Replacing the
deterministic sub-networks s1,2 and t1,2 in Eq.(3.6) with BNNs we get as the generative pipeline for
our BINN

θ ∼ p(θ),

x|θ ∼ pX(x|θ) = pZ(G(x; θ))
∣∣∣det ∂G(x; θ)

∂x

∣∣∣ . (3.16)

Given a set of N observations D = {x1, . . . , xN} we can approximate the intractable posterior p(θ|D)
as before with a mean-field Gaussian as the variational posterior qφ(θ). Learning the map and the
posterior then is achieved by maximizing the equivalent of the ELBO loss in Eq.(3.15) for event samples,

L =
N∑
n=1
〈log pX(xn|θ)〉θ∼qφ(θ) −KL

(
qφ(θ), p(θ)

)
=

N∑
n=1

〈
log pZ

(
G(xn; θ)

)
+ log

∣∣∣det ∂G(xn; θ)
∂xn

∣∣∣〉
θ∼qφ(θ)

−KL
(
qφ(θ), p(θ)

)
≈ N

M

M∑
m=1

1
S

S∑
s=1

log pZ
(
G(xm; θ(s))

)
+ log

∣∣∣det ∂G(xm; θ(s))
∂xm

∣∣∣−KL
(
qφ(θ), p(θ)

)
, (3.17)

with a mini-batch of size M and S samples θ(s) from the variational posterior qφ(θ). By design all
three terms, the log likelihood, the log determinant of the Jacobian as well as the Kullback-Leibler
divergence can be computed easily. Automatic differentiation [124] allows us to get the gradients of
L with respect to φ in order to fit our generative pipeline via a stochastic gradient descent update
scheme.

3.3 Toy events with uncertainties
Before we tackle a semi-realistic LHC setup, we first study the behaviour of BINNs for a set of toy
examples, namely distributions over the minimally allowed two-dimensional parameter space where in
one dimension the density is flat. Aside from the fact that these toy examples illustrate that the BINN
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actually constructs a meaningful uncertainty distribution, we will use the combination of density and
uncertainty maps to analyse how an INN actually learns a density distributions. We will see that
the INN representation of the target density may be interpreted as a few-parameter fit, rather than
numerically encoding patches over the parameter space independently.
The default architecture for our toy models is a network with 32 units per layer, three layers per
coupling block, and a total of 20 coupling blocks. It’s implemented in PyTorch [124]. More details
are given in Tab. 3.1. Generally, moderate changes of the hyperparameters do not have a visible impact
on the performances. For each of the trainings we use a sample of 300k events. The widths of the
Gaussian priors is set to one. We check that variations of this over several orders of magnitude did
not have a significant impact on the performance.

3.3.1 Wedge ramp
Our first toy example is a two-dimensional ramp distribution, linear in one direction and flat in the
other,

p(x, y) = Linear(x ∈ [0, 1])× Const(y ∈ [0, 1]) = x× 2 . (3.18)

The second term ensures that the distribution p(x, y) is normalized to one, and the network output
is shown in Fig. 3.1. The network output is a set of points in the two-dimensional parameters space,
(x, y). We show one-dimensional distributions after marginalizing over the flat direction and find that
the network reproduces Eq.(3.18) well.
In Fig. 3.2 we include the predicted uncertainty given by the BINN. For this purpose we train a
network on the two-dimensional parameter space and evaluate it for a set of points with x ∈ [0, 1] and
a constant y-value. In the left panel we indicate the predicted uncertainty as an error bar around the
density estimate. Throughout the chapter we always remove the phase space boundaries, because we

Parameter Flow

Hidden layers (per block) 3
Units per hidden layer 32
Batch size 512
Epochs 300
Trainable weights 75k
Optimizer Adam
(α, β1, β2) (1 × 10−3, 0.9, 0.999)
Coupling layers 20
Training size 300k
Prior width 1

Table 3.1: Hyper-parameters for all toy models, implemented in pytorch(v1.4.0) [124].
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Figure 3.1: Two-dimensional and marginal densities for the linear wedge ramp.
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Figure 3.2: Density and predicted uncertainty distribution for the wedge ramp. In the left panel the
density and uncertainty are averaged over several lines with constant y. In the central and right panels,
the uncertainty band on σpred is given by their variation. The green curve represents a two-parameter
fit to Eq.(3.24).

observe that the model predicts there large uncertainties which would overall dominate the figures.
The relative uncertainty grows for small values of x and hence small values of p(x, y), and it covers
the deviation of the extracted density from the true density well. These features are common to all
our network trainings. In the central and right panel of Fig. 3.2 we show the relative and absolute
predicted uncertainties. The error bar indicates how much σpred varies for different choices of y. We
compute it as the standard deviation of different values of σpred, after confirming that the central values
agrees within this range. As expected, the relative uncertainty decreases towards larger x. However,
the absolute uncertainty shows a distinctive minimum in σpred around x ≈ 0.45. This minimum is a
common feature in all our trainings, so we need to explain it.
To understand this non-trivial uncertainty distribution σpred(x) we focus on the non-trivial x-
coordinate and its linear behavior

p(x) = ax+ b with x ∈ [0, 1] . (3.19)

Because the network learns a normalized density, we can remove b by fixing the normalization,

p(x) = a

(
x− 1

2

)
+ 1 . (3.20)

If we now assume that a network acts like a fit of a, , we can relate the uncertainty ∆a to an uncertainty
in the density

σpred ≡ ∆p ≈
∣∣∣∣x− 1

2

∣∣∣∣ ∆a . (3.21)

The absolute value appears because the uncertainties are defined to be positive, as encoded in the
usual quadratic error propagation. The uncertainty distribution has a minimum at x = 1/2, close to
the observed value in Fig. 3.2.
The differences between the simple prediction in Eq.(3.21) and our numerical findings in Fig. 3.2 is that
the predicted uncertainty is not symmetric and does not reach zero. To account for these sub-leading
effects we can expand our very simple ansatz to

p(x) = ax+ b with x ∈ [xmin, xmax] . (3.22)

Using the normalization condition we again remove b and find

p(x) = ax+
1− a

2 (x2
max − x2

min)
xmax − xmin

. (3.23)
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Again assuming a fit-like behaviour of the flow network we expect for the predicted uncertainty

σ2
pred ≡ (∆p)2 =

(
x− 1

2

)2
(∆a)2 +

(
1 + a

2

)2
(∆xmax)2 +

(
1− a

2

)2
(∆xmin)2 . (3.24)

Adding xmax adds an x-independent offset. Also accounting for xmin does not change the x-dependence
of predicted uncertainty. The slight shift of the minimum and the asymmetry between the lower and
upper boundaries in x are not explained by this argument. We ascribe them to boundary effects,
specifically the challenge for the network to describe the correct approach towards p(x)→ 0.
The green line in the lower panels of Fig. 3.2 gives a two-parameter fit of ∆a and ∆xmax to the σpred
distribution from the BINN. It indicates that there is a hierarchy in the way the network extracts the
x-independent term with high precision, whereas the uncertainty on the slope a is around 4%.

3.3.2 Quadratic ramp
We can test our findings from the linear wedge ramp using the slightly more complex quadratic ramp,

p(x, y) = Quadr(x ∈ [0, 1])× Const(y ∈ [0, 1]) = x2 × 3 . (3.25)

We show the results from the network training for the density in Fig. 3.3 and find that the network de-
scribes the density well, limited largely by the flat, low-statistics approach towards the lower boundary
with p(x)→ 0.
In complete analogy to Fig. 3.2 we show the complete BINN output with the density p(x, y) and
the uncertainty σpred(x, y) in Fig. 3.4. As for the linear case, the BINN reproduces the density well,
deviations from the truth being within the uncertainty in all points of phase space. The indicated error
bar on σpred(x, y) is given by the variation of the predictions for different y-values, after ensuring that
their central values agree. The relative uncertainty at the lower boundary x = 0 is large, reflecting the
statistical limitation of this phase-space region. An interesting feature appears again in the absolute
uncertainty, namely a maximum-minimum combination as a function of x.
Again in analogy to Eq.(3.22) for the wedge ramp, we start with the parametrization of the density

p(x) = a (x− x0)2 with x ∈ [x0, xmax] , (3.26)

where we assume that the lower boundary coincides with the minimum and there is no constant offset.
We choose to describe this density through the minimum position x0, coinciding the the lower end
of the x-range, and xmax as the second parameter. The parameter a can be eliminated through the
normalization condition and we find

p(x) = 3 (x− x0)2

(xmax − x0)3 . (3.27)
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Figure 3.3: Two-dimensional and marginal densities for the quadratic ramp.
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Figure 3.4: Density and predicted uncertainty distribution for the quadratic ramp. In the left panel the
density and uncertainty are averaged over several lines with constant y. In the central and right panels,
the uncertainty band on σpred is given by their variation. The green curve represents a two-parameter
fit to Eq.(3.28).

If we vary x0 and xmax we can trace two contributions to the uncertainty in the density,

σpred ≡ ∆p ⊃ 9
(xmax − x0)4

∣∣∣∣(x− x0)
(
x− x0

3 −
2xmax

3

)∣∣∣∣∆x0

and σpred ≡ ∆p ⊃ 9
(xmax − x0)4 (x− x0)2 ∆xmax , (3.28)

one from the variation of x0 and one from the variation of xmax. In analogy to Eq.(3.24) they need to
be added in quadrature. If the uncertainty on ∆x0 dominates, the uncertainty has a trivial minimum
at x = 0 and a non-trivial minimum at x = 2/3. From ∆xmax we get another contribution which
scales like ∆p ∝ p(x). In Fig. 3.4 we clearly observe both contributions, and the green line in the lower
panels is given by the corresponding 2-parameter fig to the σpred distribution from the BINN.

3.3.3 Gaussian ring
Our third example is a two dimensional Gaussian ring, which in terms of polar coordinates reads

p(r, φ) = Gauss(r > 0;µ = 4, w = 1)× Const(φ ∈ [0, π]) , (3.29)

We define the Gaussian density as the usual

Gauss(r) = 1√
2π w

exp
[
− 1

2w2 (r − µ)2
]

(3.30)
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Figure 3.5: Two-dimensional and marginal densities for the Gaussian (half-)ring.
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Figure 3.6: Cartesian density and predicted uncertainty distribution for the Gaussian ring. In the left
panel the density and uncertainty are averaged over several lines with constant φ. In the central and
right panels, the uncertainty band on σpred is given by their variation. The green curve represents a
two-parameter fit to Eq.(3.32).

The density defined in Eq.(3.29) can be translated into Cartesian coordinates as

p(x, y) = Gauss(r(x, y);µ = 4, w = 1) × Const(φ(x, y) ∈ [0, π])× 1
r(x, y) (3.31)

where the additional factor 1/r comes from the Jacobian. We train the BINN on Cartesian coordinates,
just like in the two examples before, and limit ourselves to y > 0 to avoid problems induced by learning
a non-trivial topology in mapping the latent and phase spaces. In Fig. 3.5 we once again see that our
network describes the true two-dimensional density well.
In Fig. 3.6 we show the Cartesian density but evaluated on a line of constant angle. This form includes
the Jacobian and has the expected, slightly shifted peak position at rmax = 2 +

√
3 = 3.73. The

BINN returns an uncertainty which grows towards both boundaries. The error band easily covers
the deviation of the density learned by the BINN and the true density. While the relative predicted
uncertainty appears to have a simple minimum around the peak of the density, we again see that the
absolute uncertainty has a distinct structure with a local minimum right at the peak. The question is
what we can learn about the INN from this pattern in the BINN.
As before, we describe our distribution in the relevant direction in terms of convenient fit parame-
ters. For the Gaussian radial density these are the mean µ and the width w used in Eq.(3.29). The
contributions driven by the extraction of the mean in Cartesian coordinates reads

σpred ≡ ∆p ⊃
∣∣∣∣G(r)
r

µ− r
w2

∣∣∣∣∆µ
and σpred ≡ ∆p ⊃

∣∣∣∣ (r − µ)2

w3 − 1
w

∣∣∣∣∆w . (3.32)

In analogy to Eq.(3.24) the two contributions need to be added in quadrature for the full, fit-like
uncertainty. The contribution from the the mean has a minimum at r = µ = 4 and is otherwise
dominated by the exponential behavior of the Gaussian, just as we observe in the BINN result. In
the opposite limit of ∆µ � ∆w the uncertainty develops the maxima at r = 3 and r = 5, which we
observe in Fig. 3.6. In the central and right panels we show a one-parameter fit of the BINN output
and find that the network determined the mean of the Gaussian as µ = 4 ± 0.037. We observe that
including ∆w does not improve the goodness of the fit.

3.3.4 Errors vs training statistics
Even though it is clear from the above discussion that we cannot expect the predicted uncertainties to
have a simple scaling pattern, like for the regression [141] and classification [140] networks, there still
remains the question of how the BINN uncertainties change with the size of the training sample.
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Figure 3.7: Dependence of the density (upper) and absolute uncertainty (lower) on the training statis-
tics for the quadratic ramp. We illustrate BINNs trained on 10k, 100k, and 1M events (left to right),
to be compared to 300k events used for Fig. 3.4. Our training routine ensures that all models receive
the same number of weights updates, regardless of the training set size.

In Fig. 3.7 we show how the BINN predictions for the density and uncertainty change if we vary the
training sample size from 10k events to 1M training events. Note that for all toy models, including
the quadratic ramp in Sec. 3.3.2, we use 300k training events. For the small 10k training sample, we
see that the instability of the BINN density becomes visible even for our reduced x-range. The peak-
dip pattern of the absolute uncertainty, characteristic for the quadratic ramp, is also hardly visible,
indicating that the network has not learned the density well enough to determine its shape. Finally,
the variation of the predicted density explodes for x > 0.4, confirming the picture of a poorly trained
model. As a rough estimate, the absolute uncertainty at x = 0.5 with a density value p(x, y) = 0.75
ranges around σpred = 0.11 ... 0.15.
For 100k training events we see that the patterns discussed in Sec. 3.3.2 begin to form. The density
and uncertainty encoded in the network are stable, and the peak-dip with a minimum around x = 2/3
becomes visible. As a rough estimate we can read off σpred(0.5) ≈ 0.06± 0.03. For 1M training events
the picture improves even more and the network extracts a stable uncertainty of σpred(0.5) ≈ 0.03±0.01.
Crucially, the dip around x ≈ 2/3 remains, and even compared to Fig. 3.4 with its 300k training events
the density and uncertainty at the upper phase space boundary are much better controlled.
Finally, we briefly comment on a frequentist interpretation of the BINN output. We know from simpler
Bayesian networks [140,141] that it is possible to reproduce the predicted uncertainty using an ensemble
of deterministic networks with the same architecture. However, from those studies we also know that
our class of Bayesian networks has a very efficient built-in regularization, so this kind of comparison
is not trivial. For the BINN results shown in this chapter we find that the detailed patterns in the
absolute uncertainties are extracted by the Bayesian network much more effectively than they would
be for ensembles of deterministic INNs. For naive implementations with a similar network size and no
fine-tuned regularization these patterns are somewhat harder to extract. On the other hand, in stable
regions without distinctive patterns the spread of ensembles of deterministic networks reproduces the
predicted uncertainty reported by the BINN.
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3.3.5 Marginalizing phase space
Before we move to a more LHC-related problem, we need to study how the BINN provides uncertainties
for marginalized kinematic distributions. In all three toy examples the two-dimensional phase space
consists of one physical and one trivial direction. For instance, the quadratic ramp in Sec. 3.3.2
has a quadratic physical direction, and in a typical phase space problem we would integrate out the
trivial, constant direction and show a one-dimensional kinematic distribution. From our effectively
one-dimensional uncertainty extraction we know that the absolute uncertainty has a characteristic
maximum-minimum combination, as seen in the lower-right panel of Fig. 3.4.
To compute the uncertainty for a properly marginalized phase space direction, we remind ourselves
how the BINN computes the density and the predicted uncertainty by sampling over the weights,

p(x, y) =
∫
dθ q(θ) p(x, y|θ)

σ2
pred(x, y) =

∫
dθ q(θ) [p(x, y|θ)− p(x, y)]2 . (3.33)

If we integrate over the y-direction, the marginalized density is defined as

p(x) =
∫
dy p(x, y) =

∫
dydθ q(θ) p(x, y|θ)

=
∫
dθ q(θ)

∫
dy p(x, y|θ) ≡

∫
dθ q(θ) p(x|θ) , (3.34)

which implicitly defines p(x|θ) in the last step, notably without providing us with a way to extract it
in a closed form. The key step in this definition is that we exchange the order of the y and θ integra-
tions. Nevertheless, with this definition at hand, we can define the uncertainty on the marginalized
distribution as

σ2
pred(x) =

∫
dθ q(θ) [p(x|θ)− p(x)]2 . (3.35)

We illustrate this construction with a trivial p(x, y) = p(x, y0), where we can replace the trivial y-
dependence by a fixed choice y = y0 just like for the wedge and quadratic ramps. Here we find,
modulo a normalization constant in the y-integration

σ2
pred(x) =

∫
dθ q(θ) [p(x|θ)− p(x)]2

=
∫
dθ q(θ)

∫
dy [p(x, y0|θ)− p(x, y0)]2

=
∫
dydθ q(θ) [p(x, y0|θ)− p(x, y0)]2 =

∫
dy σ2

pred(x, y0) = σ2
pred(x, y0) . (3.36)

Adding a trivial y-direction does not affect the predicted uncertainty in the physical x-direction.
As mentioned above, unlike for the joint density, p(x, y|θ) we do not know the closed form of the
marginal distributions p(x) or p(x|θ). Instead, we can approximate the marginalized uncertainties
through a combined sampling in y and θ. We start with one set of weights θi from the weight
distributions, based on one random number per INN weight. We now sample N points in the latent
space, zj , and compute N phase space point xj using the BINN configuration θi. We then bin the
wanted phase space direction x and approximate p(x|θi) by a histogram. We repeat this procedure
i = 1 ... M times to extract M histograms with identical binning. This allows us to compute a mean
and a standard deviation from M histograms to approximates p(x) and σpred(x). The approximation
of σpred should be an over-estimate, because it includes the statistical uncertainty related to a finite
number of samples per bin. For N � 1 this contribution should become negligible. With this procedure
we effectively sample N ×M points in phase space.
Following Eq.(3.34), we can also fix the phase space points, so instead of sampling for each weight
sample another set of phase space points, we use the same phase space points for each weight sampling.
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Figure 3.8: Marginalized densities and predicted uncertainties for the quadratic ramp. Instead of the
true distribution we now show the training data as a reference, to illustrate possible limitations. We
use 10M phase space point to guarantee a stable prediction.

This should stabilize the statistical fluctuations, but with the drawback of relying only on an effective
number of N phase space points. Both approaches lead to the same σpred for sufficiently large N ,
which we typically set to 105 ... 106. For the Bayesian weights we find stable results for M = 30 ... 50.

In Fig. 3.8 we show the marginalized densities and predicted uncertainties for the quadratic ramp.
In y-direction the density and the predicted uncertainty show the expected flat behaviour. The only
exception are the phase space boundaries, where the density starts to deviate slightly from the training
data and the uncertainty correctly reflects that instability. In x-direction, the marginalized density
and uncertainty can be compared to their one-dimensional counterparts in Fig.3.4. While we expect
the same peak-dip structure, the key question is if the numerical values for σpred(x) change. If the
network learns the y-direction as uncorrelated additional data, the marginalized uncertainty should
decrease through a larger effective training sample. This is what we typically see for Monte Carlo
simulations, where a combination of bins in an unobserved directions leads to the usual reduced
statistical uncertainty. On the other hand, if the network learns that the y-directions is flat, then
adding events in this direction will have no effect on the uncertainty of the marginalized distribution.
This would correspond to a set of fully correlated bins, where a combination will not lead to any
improvement in the uncertainty. In Fig. 3.8 we see that the σpred(x) values on the peak, in the dip,
and to the upper end of the phase space boundary hardly change from the one-dimensional results
in Fig.3.4. This strengthens our general observation, that the (B)INN learns a functional form of
the density in both directions, in close analogy to a fit. It also means that the uncertainty from the
generative network training is not described by the simple statistical scaling we observed for simpler
models [140,141].
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3.4 LHC events with uncertainties
As a physics example we consider the Drell-Yan process

pp→ Z → e+e− , (3.37)

with its simple 2 → 2 phase space combined with the parton density. The training set consists of an
unweighted set of 4-vectors simulated with madgraph [6] at 13 TeV collider energy with the NNPDF2.3
parton densities [152]. We fix the masses of the final-state leptons and enforce momentum conservation
in the transverse direction, which leaves us with a four-dimensional phase space. In our discussion we
limit ourselves to a sufficiently large set of one-dimensional distributions. For these marginalized
uncertainties we follow the procedure laid out in Sec. 3.3.5 with 50 samples in the BINN-weight space.
In Tab. 3.2 we give the relevant hyper-parameters for this section.
To begin with, we show a set of generated kinematic distributions in Fig. 3.9. The positron energy
features the expected strong peak from the Z-resonance. Its sizeable tail to larger energies is well
described by the training data to Ee ≈ 280 GeV. The central value learned by the BINN becomes
unstable at slightly lower values of 250 GeV, as expected. The momentum component px is not
observable given the azimuthal symmetry of the detector, but it’s broad distribution is nevertheless
reproduced correctly. The predicted uncertainty covers the slight deviations over the entire range.
What is observable at the LHC is the transverse momentum of the outgoing leptons, with a similar
distribution as the energy, just with the Z-mass peak at the upper end of the distribution. Again, the
predicted uncertainty determined by the BINN covers the slight deviations from the truth on the pole
and in both tails. In the second row we show the pz component as an example for a strongly peaked
distribution, similar to the Gaussian toy model in Sec. 3.3.3.
While the energy of the lepton pair has a similar basic form as the individual energies, we also show
the invariant mass of the electron-positron pair, which is described by the usual Breit-Wigner peak.
It is well known that this intermediate resonance is especially hard to learn for a network, because it
forms a narrow, highly correlated phase space structure. Going beyond the precision shown here would
for instance require an additional MMD loss, as described in Ref. [28]. This resonance peak is the only
distribution, where the predicted uncertainty does not cover the deviation of the BINN density from
the truth. This apparent failure corresponds to the fact that generative networks always overestimate
the width and hence underestimate the height of this mass peak [88]. This is an example of the network
being limited by the expressive power in phase space resolution, generating an uncertainty which the
Bayesian version cannot account for.
In Fig. 3.10 we show a set of absolute and relative uncertainties from the BINN. The strong peak
combined with a narrow tail in the Ee distribution shows two interesting features. Just above the
peak the absolute uncertainty drops more rapidly than expected, a feature shared by the wedge and
quadratic ramps at their respective upper phase space boundaries. The shoulder around Ee ≈ 280 GeV
indicates that for a while the predicted uncertainty follows the increasingly poor modelling of the phase

Parameter Flow

Hidden layers (per block) 2
Units per hidden layer 64
Batch size 512
Epochs 500
Trainable weights ∼ 182k
Number of training events ∼ 1M
Optimizer Adam
(α, β1, β2) (1 × 10−3, 0.9, 0.999)
Coupling layers 20
Prior width 1

Table 3.2: Hyper-parameters for the Drell-Yan data set, implemented in pytorch(v1.4.0) [124].
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Figure 3.9: One-dimensional (marginalized) kinematic distributions for the Drell-Yan process. We
show the central prediction from the BINN and include the predicted uncertainty from the BINN as
the blue band. The red band indicates the statistical uncertainty of the training data per bin in the
Gaussian limit.

space density by the BINN, to a point where the network stops following the truth curve altogether
and the predicted uncertainty is limited by the expressive power of the network. Unlike the absolute
uncertainty, the relative uncertainty keeps growing for increasing values of Ee. This behavior illustrates
that in phase space regions where the BINN starts failing altogether, we cannot trust the predicted
uncertainty either, but we see a pattern in the intermediate phase space regime where the network
starts failing.
The second kinematic quantity we select is the x-component of the momentum, which forms a relative
flat central plateau with sharp cliffs at each side. Any network will have trouble learning the exact
shape of such sharp phase space patterns. Here the BINN keeps track of this, the absolute and the
relative uncertainties indeed explode. The only difference between the two is that the density at the
foot of the plateau drops even faster than the learned absolute uncertainty, so their ratio keeps growing.
Finally, we show the result for the Breit-Wigner mass peak, the physical counterpart of the Gaussian
ring model of Sec. 3.3.3. Indeed, we see exactly the same pattern, namely a distinctive minimum in the
predicted uncertainty right on the mass peak. This pattern can be explained by the network learning
the general form of a mass peak and then adjusting the mean and the width of this peak. Learning the
peak position leads to a minimum of the uncertainty right at the peak, and learning the width brings
up two maxima on the shoulders of the mass peak. In combination Fig. 3.9 and 3.10 show that the
BINN traces uncertainties in generated LHC events just as for the toy models.

3.5 Conclusions and outlook
Controlling the output of generative networks and quantifying their uncertainties is the main task for
any application in LHC physics, be it in forward generation, inversion, or inference. We have proposed
to use a Bayesian invertible network (BINN) to quantify the uncertainties from the network training
for each generated event. For a series of two-dimensional toy models and an LHC-inspired application
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Figure 3.10: Absolute and relative uncertainties as a function of some of the kinematic Drell-Yan
observables shown in Fig. 3.9.

we have shown how the Bayesian setup indeed generates an uncertainty distribution, over the full
phase space and over marginalized phase spaces. As expected, the learned uncertainty shrinks with an
improved training statistics. Our method can be trivially extended from unweighted to weighted events
by adapting the simple MLE loss. An intriguing result from our study is that the combined learning
of the density and uncertainty distributions allows us to draw conclusions on how a normalizing-flow
network like the BINN learns a distribution. We find that the uncertainty distributions are naturally
explained by a fit-like behavior of the network, rather than a patch-wise learning of the density. For
the LHC, this can be seen for instance in the non-trivial uncertainty for an intermediate Breit-Wigner
resonance.
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4 | Topology improvement
for invertible architectures

Deep generative models are becoming widely used across science and industry for a variety
of purposes. A common challenge is achieving a precise implicit or explicit representation
of the data probability density. Recent proposals have suggested using classifier weights
to refine the learned density of deep generative models. We extend this idea to all types of
generative models and show how latent space refinement via iterated generative modelling
can circumvent topological obstructions and improve precision. This methodology also
applies to cases were the target model is non-differentiable and has many internal latent
dimensions which must be marginalized over before refinement. We demonstrate our
Latent Space Refinement (LaSeR) protocol on a variety of examples, focusing on the
combinations of Normalizing Flows and Generative Adversarial Networks. We make all
codes publicly available.

4.1 Introduction
In the previous chapters generative models have been introduced as essential tools for many aspects
of scientific and engineering workflows. First-principles simulations encode physical laws and then
samples from these simulations can be used for designing, performing, and interpreting a measurement.
However, these physics-based simulations can be too slow or not precise enough for a growing number
of studies. Deep learning-based techniques such as Generative Adversarial Networks (GAN) [57, 58],
Variational Autoencoders (VAE) [63,64], and Normalizing Flows (NF) [53,153] are powerful surrogates
that can accelerate slow simulations and model complex datasets that would otherwise be intractable
to describe from first principles. For example, a growing number of studies are exploring these tools
for high energy physics (HEP) applications HEPML-LivingReview
A key difference in generative modelling between many scientific applications, including HEP, and
typical industrial applications is that individual samples are often not useful. Inference is performed
on a statistical basis and so it is essential to model the probability density precisely and not just match
its support. Existing deep generative models have shown great promise in qualitatively modelling
complex probability densities, but it is often challenging to achieve precision.
A useful strategy to improve the precision of generative models is to refine their predictions. For
example, Ref. [154] showed how the classification part of a GAN can be used to reweight and resample
the input probability distribution of the random noise. A similar idea was introduced in Ref. [155]
that is not specific to GANs, whereby a classifier network is trained on the generated samples to
produce weights that improve the precision of the generated probability distribution. We combine and
extend these approaches by introducing the Latent Space Refinement (LaSeR) protocol, illustrated
in Fig. 4.1. Like DctrGAN [76,155], LaSeR starts with any generative model g(z) and trains a post-
hoc classifier to distinguish the generated samples from the target data. A challenge with DctrGAN
is that the results are weighted, which reduces the statistical power of a generated sample. The energy-
based framework of Discriminator Driven Latent Sampling (DDLS) [154] produces unweighted samples
by transferring the weights to the latent space and then performing Langevin Markov Chain Monte
Carlo (MCMC) to produce unweighted samples.
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Chapter 4. Topology improvement for invertible architectures

We develop a more general protocol that works for any generative model and is more efficient than
the Langevin MCMC approach of Ref. [154]. We begin by directly pulling back the weights from our
post-hoc classifier to the latent space (we also notice that in case our generator is not surjective, we
still may do this via the OmniFold method [26]). This procedure allows us to define the optimal
output as the one generated by the same nominal generative model, but the input is sampled from the
optimal distribution encoded in the classifier weights. The challenge is then to efficiently sample from
the optimal latent space. We propose to learn a second generative model Φ(y) that maps an auxiliary
latent space onto the refined latent space. Generating from the refined model amounts to sampling
from the auxiliary latent space and applying g(Φ(y)).
While this procedure is completely general and therefore independent on the particular baseline model,
we focus on the case where g is a normalizing flow and Φ is a GAN. This combination is particularly
interesting given their different topological properties. Furthermore, the procedure can be iterated for
further refinement. Learning a post-hoc generative model in a latent space was also studied by the
authors of Refs. [121,156,157], where a standard autoencoder becomes probabilistic via a second model
such as a NF trained on the bottleneck layer. Similarly, the authors of Ref. [158] proposed an iterative
VAE setup to bring the latent space closer to a target multidimensional Gaussian random variable.
This chapter is organized as follows. We review related work and describe the statistical properties
and challenges associated with existing generative models in Section 4.2. We introduce various ways of
implementing the LaSeR protocol in Sec. 4.3. Illustrative numerical examples are provided in Sec. 4.4
and the chapter ends with conclusions and outlook in Sec. 4.6.

2. Data space 
refinement via 
classification

3. Latent space 
refinement via 

generative models

1. Nominal generative model: 
a map from latent space to data space4. LASER Generative Model

g(z)g(z) Φ(z)

f(x)

Figure 4.1: A schematic diagram illustrating the LaSeR protocol. 1. The upper right part of the
diagram represents a given generative model g : RN → RM that maps features from a latent space
to a data space. 2. A classifier network f : RM → R is trained to distinguish between the generated
samples and real samples from data. The output of this classifier is interpreted as a likelihood ratio
between the generated samples and the real samples and is pulled back to the latent space. If f is
trained with binary cross entropy, the weights are approximated as w(x) = f(x)/(1− f(x)) and then
the weight of a latent space point z is w(g(z)). 3. Next, a second generative model Φ : RL → RN
is trained with these weights to transform the original latent space into a new latent space. 4. The
LaSeR model is then given by g(Φ(y)).
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4.2 Background
As explained in Chap. 1, a generator is a function g that maps a latent space Z ⊆ RN onto a target
or feature space X ⊆ RM , with underlying probability densities pZ and pX , respectively. Typically,
pZ is chosen to be simple (e.g. normal or uniform) so that it is efficient to generate data Z ∼ pZ . In
some cases, the latent space Z is broken into two components: one component that specifies the input
features of interest and one component that specifies auxiliary latent features that are marginalized
over. When this happens, the map g is viewed as a stochastic function of the first latent space
component. While our examples exclusively cover the case of deterministic maps from the full latent
space to the target space, our approach can accommodate both settings as we explain in more detail
below.
The function g can be constructed from first-principles insights about the dynamics of a system or it
can be learned from data. For example, commonly-used deep generative models include

• Generative adversarial networks (GANs) [57,58]

• Variational autoencoders (VAEs) [63,64]

• Normalizing flows (NFs) [51,53]

Apart from the specific learning objective, all generative models have their intrinsic advantages and
disadvantages. The relevant features to understand the LaSeR protocol are summarized in Table 4.1
and are further discussed in the following.

Table 4.1: A comparison of commonly used deep generative models.

Method Train on
data

Exact
log-

likelihood

Non-
topology
preserving

Variational Autoencoders 3 7 3
Generative Adversarial Networks 3 7 3
Normalizing Flows 3 3 7

4.2.1 Generative models and coordinate transformations
The three generative models introduced in the previous section can all be trained directly on unlabeled
data, and have different strategies for estimating pX . GANs and VAEs learn this density implicitly by
introducing an auxiliary task. In the case of GANs, the auxiliary task is performed by a discriminator
network that tries to distinguish samples drawn from pZ passed through g and those drawn from pX
directly. For VAEs, the generator is called the decoder and the auxiliary task requires an encoder
network h to satisfy g(h(x)) ≈ x, while regularizing the latent space probability density. Due to the
structure of these networks, N need not be the same size as M .
In contrast to GANs and VAEs, NFs explicitly encode an estimate for the probability density pX .
These networks rely on a coordinate transformation which maps the prior distribution pZ into a target
distribution pg with g now being invertible. This requiresM = N but allows for an analytic expression
for the probability density induced by g:

pg(x) ≡ pg(g(z)) =
∣∣∣∣∂g(z)
∂z

∣∣∣∣−1
pZ(z). (4.1)

In order to match pg and the data probability density pX , one can directly maximize the log-likelihood
of the data without resorting to an auxiliary task:

log pg(x) = log pZ(g−1(x)) + log
∣∣∣∣∂g−1(x)

∂x

∣∣∣∣ . (4.2)
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4.2.2 Topological obstructions
While the bijective nature of NFs allows for an explicit representation of the target probability density
estimate, they inevitably suffer from the significant drawback described at the end of Sec. 1.2.1. In
order to find a mapping g which satisfies Eq. (4.1) and matches the data probability density, the
manifolds defined by the prior distribution pZ and the target distribution pX need to be topologically
equivalent. A common way to describe the topological properties of manifolds are the Betti numbers

Definition 1:
The nth Betti number bn of a topological space X is defined as the rank of the nth homology group Hn

of X [159,160]

Informally, the nth Betti number denotes the number of n-dimensional holes of a topological
space. In fact, the first three Betti numbers do have simple geometrical interpretations:

• b0 is the number of connected components.

• b1 is the number of one-dimensional or circular holes.

• b2 is the number of two-dimensional voids.

For instance, in Fig. 4.2 we illustrate a torus which has one connected component b0 = 1, two one-
dimensional holes b1 = 2, and a single void enclosed within the surface b2 = 1.

Figure 4.2: For a torus, the first Betti number is b1 = 2 , which can be intuitively understood as the
number of circular holes.

It has been proven by Poincaré that these numbers are invariant under homeomorphisms. This implies
the following proposition:

Proposition 1:
Any bijective mapping g(z) is a homeomorphism and preserves the topological structure of the input
space

A proof can be found in Refs. [72, 161]. This mathematical statement has a major impact on
any generative model relying on bijective mappings, such as NFs. If the target space has a different
topological structure than the latent space, these models cannot properly describe the target space
topology as they inherently preserve the latent space topology. It is indeed possible that these
inconsistencies are hidden in some highly-correlated observable which might not be investigated
during or after optimization. Moreover, it has been shown in Ref. [162] that you can hide and diminish
the topological issues if you increase the network complexity. However, you can achieve better and
computationally cheaper results by relaxing the bijetivity constraint itself [162] or by augmenting
additional dimensions [72, 73]. Further, the issues arising by non-trivial topologies have also been
investigated in the context of autoencoders in Ref. [163].
Consequently, if we want to correctly reproduce the target space with a non-trivial topology, we either
need to modify the latent space to match the topological structure, or the bijective model g has to
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be replaced by a non-topology preserving model such as GANs or VAEs. While these models do have
more flexibility and do not suffer from the same topological obstructions, this freedom usually goes
hand in hand with training instabilities and more time-consuming hyperparameter searches. In order
to benefit from both worlds and to fix the topology of the latent space, we propose to use the LaSeR
protocol which is described in the following.

4.3 Proposed methods
The LaSeR protocol is illustrated in Fig. 4.1. The input is a generator g(z) that could either be a
neural network or a black-box (BB) simulator (e.g. a physics-based Monte Carlo).
As a first step, a classifier is trained to distinguish samples drawn from g and samples drawn from the
target data probability density. It is well-known [164, 165] (and forms the basis of the Dctr proto-
col [166]) that an ideally trained classifier f using the binary cross entropy (BCE) loss function will have
the property f/(1−f) ∝ p(x|target)/p(x|from g). The proportionality constant is p(target)/p(from g)
and is unity when the two datasets have the same number of samples. Other loss functions such as the
mean squared error have the same property. It is also possible to engineer the loss function to directly
learn the likelihood ratio [167,168]. Throughout this chapter, we use BCE.
Each generated sample is assigned a weight w(xi) = f(xi)/(1−f(xi)). These weights are then assigned
to the corresponding latent space point g(zi) = xi. When g is surjective, w is a proper function of z.
However, there are many potential applications where the generator has many internal latent degrees
of freedom that are marginalized over and are not part of Z. In this case, one can use the OmniFold
algorithm [26] which is an iterative expectation maximization-style approach that returns weights for
the zi that maximizes the likelihood in the data space. The weights extracted with OmniFold are a
proper function of the latent space. This is not necessarily the case for weights directly inferred from
the classifier, since the mapping g can send the same latent space point to different data space points.
In other words, the marginalized latent dimensions make g a stochastic function.
The final step of LaSeR requires to sample from weighted latent space (z, w(z)). This can be for
instance done directly using the following methods:

• Rejection sampling: We can use the weights w(z) to perform rejection sampling on the latent
space. This is simple, but ineffective if the weights are broadly distributed. Thus, we do not
employ this method in our experiments.

• Markov chain Monte Carlo (MCMC): The weights w(z) induce a new probability distribu-
tion

qZ(z) = pZ(z)w(z)/Z0, (4.3)

with some normalisation factor Z0. In general, this probability distribution is non-trivial and does
not allow to determine its quantile function analytically. However, if the probability distribution
qZ and its derivative ∂qZ/∂z are tractable a MCMC algorithm can be employed. While Ref. [154]
uses a simple Langevin dynamics algorithm, we suggest to use the more advanced Hamiltonian
Monte Carlo (HMC) [169,170] algorithm as it generates significantly better samples.

However, instead of using the above approaches, we suggest for the LaSeR protocol to convert the
weighted latent space (z, w(z)) into a new unweighted latent space. For this, we train a second
generative model Φ which we call the refiner. The refiner maps an auxiliary latent space Y ⊆ RL onto
the refined latent space Z ′ ⊆ RN , with underlying probability densities pY and pZ′ = qZ , respectively.
The refiner Φ can be either a GAN or a NF, where the latter requires L = N . In order to train the
model on the weighted latent space (z, w(z)) we accommodate the weights into the loss functions as
it was proposed in Refs. [171,172]. In contrast to the MCMC algorithm, this method does not require
to calculate the derivative of the weights ∂w/∂z.
At the end, we generate new samples from the refined generator by first sampling from the auxiliary
latent space, mapping that to the refined latent space, and then passing that through g. In some cases,
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the entire procedure can be iterated, i.e. if g is a neural network, its weights could be updated using
the refined latent space.
Table 4.2 illustrates some of the features of various combinations of generators g and latent space
refiner networks Φ.

Table 4.2: Comparison of various combinations of generator g and refiner network Φ.
Generator g Refiner Φ Note

GAN GAN Possible to iterate
GAN NF Possible to iterate
NF GAN Cannot iterate (density no longer explicit)
NF NF Suffers topological obstructions

4.4 Toy examples
We consider three different 2-dimensional examples which allows to visualize both the full output and
the latent space of the primary generator. All three sets of training data consist of 480k data points.
In all models and experimentes we used a batch size of 2000 points and an epoch is defined as iterating
through all points in the training set, giving 240 model updates per epoch. We run all our experiments
on our internal GPU cluster, which consists of multiple Nvidia GTX 1080 TI and Nvidia RTX 2080
Ti GPUs. Depending on the model the computation times range between 30 mins and 5 hours.

4.4.1 Implementation details
All models and the training routines are implemented in PyTorch 1.8 [173]. In the following we
specify the implementation details for the various networks and the chosen hyperparameters.

Baseline model. In all examples we use the Real-NVP [174] implementation of a NF as the baseline
model. Our implementation relies partially on the FrEIA library.∗ In the first two examples, the NF
consists of 12 coupling blocks, where each block consists of a fully connected multi-layer perceptron
(MLP) with 3 hidden layers, 48 units per layer and leaky ReLU activation functions. In the third
more complex example, we increase the number of coupling blocks to 20 and the number of units to
60. In all cases the model is trained for 100 epochs by minimizing the negative log-likelihood with
an additional weight decay of 10−5. The optimization is performed using Adam [175] with default β
parameters and α0 = 10−3. We further employ a exponential learning rate schedule, i.e. αn = α0 γ

n,
with γ = 0.999 which decays the learning rate after each epoch.

Post-hoc classifier. As a post-hoc classifier we employ a MLP with 8 hidden layers, 96 units
per layer and leaky ReLU activation functions. We train it for 50 epochs by minimizing the BCE
loss between true data samples and samples from the generator g. Optimization is again performed
using Adam with default β parameters and α0 = 10−3 and an exponential learning rate schedule with
γ = 0.999.

Refiner network. Finally, the refiner network is a GAN consisting of a discriminator and a gen-
erator, both MLPs with 3 hidden layers, 40 units per layer and Leaky ReLU activation functions. As
a GAN does not require to have the same dimensions in the latent space as in the feature space we
choose 4-dimensional auxiliary latent space to simplify the task of the generator. The standard GAN
objective is replaced by the weighted BCE loss introduced in Ref. [171] to accommodate the weights

∗Framework for Easily Invertible Architectures: https://github.com/VLL-HD/FrEIA
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of the weighted training data. The GAN is trained for 200 epochs using the Adam optimizer with
(α, β1, β2) = (10−4, 0.5, 0.9) and also using an exponential learning rate schedule with γ = 0.999. To
compensate an imbalance in the training we update the discriminator four times for each generator
update.

Hamiltonian Monte Carlo (HMC). In order to have full control of all parameters and inputs
we implemented our own version of Hamiltonian Monte Carlo in PyTorch, using its automatic dif-
ferentiation module to compute the necessary gradients to run the algorithm. For all examples, we
initialize a total of 100 Markov Chains running in parallel to reduce computational overhead and solve
the equation of motions numerically using the leapfrog algorithm [170] with a step size of ε = 0.004
and 50 leapfrog steps. To avoid artifacts originating from the random initialization of the chains, we
start with a burn-in phase and discard the first 3000 points from each chain.

4.4.2 Probability distance measures
In order to quantify the performance of the base model and its refined counterparts, we implemented
two measures of distance:

Jensen–Shannon divergence (JSD). A simple but commonly used distance measure between
two probability distributions p(x) and q(x) is the Jensen–Shannon divergence

JSD(p, q) = 1
2

∫
dx p(x) log

(
2p(x)

p(x) + q(x)

)
+ q(x) log

(
2p(x)

p(x) + q(x)

)
. (4.4)

In contrast to the Kullback–Leibler (KL) divergence it is symmetric and always returns a finite value.

Earth mover distance (EMD). Another common distance measure between two probability
distributions p(x) and q(x) is the earth mover’s distance (EMD). The EMD is usually formulated as
an optimal transport problem. Lets assume the two distributions are represented as clusters P =
{(xi, p(xi)}Mi=1 and Q = {(yj , q(yj)}M

′

j=1. Then, the EMD between two probabilities is the minimum
cost required to rearrange one probability distribution p into the other q by discrete probability flows
fij from one cluster point xi to the other yj

EMD(p, q) = min
{fij>0}

M∑
i=1

M ′∑
i=1

fij ||xi − yj ||2,

M ′∑
j=1

fij ≤ p(xi),
M∑
i=1

fij ≤ q(yj),
M∑
i=1

M ′∑
i=1

fij = min

 M∑
i=1

p(xi),
M ′∑
j=1

q(yj)

 ,

(4.5)

where the optimal flow fij is found by solving this optimization problem. For an efficient implemen-
tation we used the POT library [176].

Numerical approximation. In order to calculate these quantities numerically we generate 2M
data points for all models and examples and approximate the probability densities from a 2-dimensional
histogram. As ground distance measure between clusters P and Q for the calculation of the EMD,
we consider the Euclidean distance between the center points of each bin. In order to estimate the
error by approximating the probabilities, we calculated the JSD and EMD score on equally large but
independent test samples drawn from the truth distribution. The extracted error estimations are
indicated in parenthesis in Table 4.3.
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Chapter 4. Topology improvement for invertible architectures

4.4.3 Experimental results
In the following we will simply refer to the LaSeR protocol using the Hamiltonian Monte Carlo as
HMC method, and we will refer to the LaSeR protocol using a refiner network as LaSeR method.
In the first example, illustrated in Fig. 4.3, we considered a multi-modal distribution which can be
topologically described by its Betti numbers b0 = 4 and bn≥1 = 0. In contrast, our non-refined latent
space is described by a 2-dimensional normal distribution with b0 = 1 and bn>0 = 0. As both spaces
are topologically different our baseline model fails to correctly reproduce the truth distribution. It is
obvious that the baseline model cannot properly separate the individual modes and always leaves a
connection between them. This is in agreement with Proposition 1 as our baseline model is a NF and
thus inevitably topology preserving. After training a post-hoc classifier the reweighted feature space
of the Dctr method clearly resolved the topological obstructions. Pulling back these weights onto the
orginal latent space induces a weighted latent space which is now also clearly separated into four pieces
and thus shows the same topological structure as the data distribution. This weighted latent space is
correctly reproduced in the refined latent spaces of the HMC and LaSeR method. Acting with our
generator g on these refined latent spaces shows a highly improved feature space distribution.
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Figure 4.3: Comparison of the baseline model and the refined outputs by either using the HMC, LaSeR
or Dctr method on a 2-dimensional multi-modal gaussian distribution with Betti numbers b0 = 4,
b1 = 0.

In Fig. 4.4, we considered a double donut distribution with Betti numbers b0 = 1, b1 = 2 and bn≥2 = 0
as a second example. This example does not have disconnected parts but contains two circular holes.
Again the baseline model has troubles to properly close the loops and reproduce the holes as these
topological features are not present in the non-refined latent space. After reweighting the latent space
with the Dctr weights, these topological features emerge as holes in the latent space. Both refined
latent spaces show the same topological structure as the reweighted latent space, resulting in an
improved feature space distribution for both the HMC and the LaSeR method.
Finally, in the last example we combine the topological features from the previous examples to make
our baseline model fail even more. In detail, we considered a set of 3 displaced rings which can be
topologically described by the Betti numbers b0 = 3, b1 = 3 and bn≥1 = 0, as illustrated in Fig. 4.5. As
with previous examples, the baseline model utterly fails to reproduce the true data distribution. As
the topological structure of the data distribution is more complex the reweighted latent space in the
Dctr method is considerably more involved then the weighted latent spaces of the previous examples.
Owing to this more complex structure of the weighted latent space our refiner model Φ has a much
harder job to properly reproduce these topological features in the refined latent space of the LaSeR
method. While being far from optimal the feature space distribution of the LaSeR refined generator
is notably improved in comparison to the baseline model. In this particular complicated example the
output of the HMC method seems to show slightly better agreement with the truth distribution than
the LaSeR method. However, these results can be improved by spending more time on a detailed
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Figure 4.4: Comparison of the baseline generator and the refined outputs by either using the HMC,
LaSeR or Dctr method on a 2-dimensional double donut distribution with Betti numbers b0 = 1,
b1 = 2.

network hyperparameter optimization.
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Figure 4.5: Comparison of the baseline generator and the refined outputs by either using the HMC,
LaSeR or Dctr method on a 2-dimensional triple ring distribution with Betti numbers b0 = 3, b1 = 3.

Table 4.3: Earth mover distance (EMD) and Jensen–Shannon divergence (JSD) on test data for the
baseline model and the proposed refinement methods for various two-dimensional examples. The
best results are written in bold face. The errors on the approximate EMD and JSD are indicated in
parenthesis.

Method Gaussians Double donut Rings
EMD JSD EMD JSD EMD JSD

Baseline 0.28(2) 0.66(4) 0.23(2) 0.27(4) 0.067(6) 0.21(2)
HMC 0.22(2) 0.12(4) 0.06(2) 0.07(4) 0.137(6) 0.07(2)
LaSeR 0.21(2) 0.24(4) 0.09(2) 0.09(4) 0.047(6) 0.08(2)
Dctr 0.09(2) 0.09(4) 0.11(2) 0.05(4) 0.037(6) 0.04(2)

In order to provide a quantitative comparison of performances, we calculated the EMD and JSC scores
of our baseline model and its refined counterparts for all examples. These scores are summarized
in Table 4.3 and show that the HMC method yields the best performance in most scenarios for the
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unweighted output. However, the LaSeR method is equally good or better for the the most complex
example, showing that the HMC method has troubles to sample from the highly tangled latent space.
Moreover, the HMC method cannot be used at all if the derivatives of the weights are not tractable,
in which case the LaSeR method is still applicaple. The overall best performance is achieved by the
Dctr method which however corresponds to a weighted feature space. As these weights are also used
to obtain the refined latent space for the HMC and LaSeR method the score of the Dctr yield as a
benchmark and provides lower limit. Indeed, we can ask ourselves why the EMD of both unweighted
methods are smaller than the EMD of the Dctr method for the double donut example. However, owing
to the the uncertainty on the numerical estimation of the scores, which are indicated in parenthesis,
all scores a statistically consistent.

4.5 LHC applications
The content of this section is part of currently active, and therefore unpublished, research projects.
In Sec. 4.4 we have shown how LaSeR) easily handle topology limitations in toy examples. Clearly
the key question is whether or not such obstructions are relevant for high energy physics applications.
We will immediately show that this is indeed the case. As a prime example, we consider the

pp→W+ +Nj (4.6)

scattering process, with N = 2, 3(, 4) jets. In order to stay in the perturbative regime of QCD we
apply a typical cut on the transverse momenta of the jets as

pT,j > 25 GeV. (4.7)

This process has a low phase-space dimensionality but still encodes typical topological features which
need to be correctly addressed by the generative model, as the cuts on the transverse momenta intro-
duce a number of holes in the process manifold equal to the number of jets (or any massless parton
in general). In Fig. 4.6 we illustrate how the typical parton level cut on the transverse momentum of
parton naturally leads to a topological obstruction.
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Figure 4.6: Left: the typical shape of the pT distribution of a jet. Right: the effect of the transverse
momentum cut visualized in the pX -pY plane.

A very important comment is in order: some extremely clever cook may think that using a different
set of variables rather then 4-momenta provide better results. This is logically flawed, as different
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4.5. LHC applications

representations, like {pT , η, φ} are again related to the 4-momenta by a change of variable. We conclude
by showing in Fig. 4.7 and 4.8 preliminary results on the application of the LaSeR protocol to pp→
W+ + 3j.
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Figure 4.7: Set of kinematic distributions for the W + 3jets process, with and without LaSeR refine-
ment.
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Figure 4.8: Two-dimensional distributions of one of the jets for the W + 3jets process, with and
without LaSeR refinement.
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4.6 Conclusions and outlook
We have presented the LaSeR protocol, which provides a post-hoc method to improve the performance
of any generative model. In particular, it has shown remarkable results on several numerical examples
and improved the EMD (JSD) score of the baseline model by 25-61% (62-67%). It further managed
to fix the topological obstructions encountered by the base model. While we have only explicitly
demonstrated LaSeR for refining normalizing flows as the primary generator, the protocol is also valid
for other deep generative models as well as other generative models that need not be differentiable or
surjective.
While LaSeR is a promising approach for generative model refinement, it also has some limitations.
First of all, there is some dependence on the efficacy of the primary generator. For example, if the
primary generator is a constant, then no amount of refining can recover the data probability density.
Furthermore, the refinement comes at a computational cost with an additional step on top what is
required to construct the original generative model. This can be particularly important when the new
latent space is sourced from a much bigger space than the original one. Finally, even though LaSeR
produces unweighted examples, the statistical precision of the resulting dataset may be limited by the
size of the training dataset. We leave further investigations of the statistical power of refined samples
and the interplay with hyperparameter choices for future research.
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5 | Summary and Outlook

In this thesis we have illustrated how LHC analysis may benefit from the introduction of deep learning-
based tools. In particular, we have focused on the possible application of a variety of deep generative
models to the problem of unfolding. In parallel we have defined a method to estimate the uncer-
tainty of generative models and an algorithmic procedure to remove topological obstructions from
data manifolds.

In Chap. 2 we have employed GANs and INNs as tools for inverting Monte Carlo simulations without
relying on binned histograms. We started with a naive GAN and shown that without a dedicated
training correlating parton and detector level information, the inversion is meaningless. Accordingly,
we changed our model to a conditional setting, showing how phase space slices at the detector level
are correctly propagated by the model down to the parton level. This insight is then applied to INNs.
We again started with a naive formulation, showing that our invertible architecture is powerful enough
to represent the parton level distributions. We then employed a conditional set-up superior to that of
the conditional GAN, showing that a conditional INN can generate posterior distributions over single
events. We have concluded the chapter by illustrating how the conditional INN is powerful enough
to handle a semi-realistic scenario with initial state radiation and a variable number of reconstructed
jets.

In Chap. 3 we have addressed to problem of defining estimating the uncertainty associated to distribu-
tions generated by deep generative models. Providing with a well-justified, reliable estimate of model’s
uncertainties is a fundamental aspect for the adoption of deep learning methods in LHC analysis.
While we believe that a lot more needs to be done both theoretically, and from the perspective of
more realistic examples, we have made a first step in the direction of "trustable" generative models, by
formulating the training of an INN as a Bayesian inference procedure.

Finally, in Chap. 4 we introduced the notion of topological obstructions between data manifolds, and
explained if and how they may represents a limitation for existing methods using invertible architec-
tures. We have therefore proposed a method which solves the problem by defining a refined latent
space via a classifier weights. We have provided toy examples as well as first results on a realistic
parton-level process.

The work presented mostly consists of proofs of principle in a new field with vast, unexplored directions.
As such, it opens up the path to several possible directions and follow-ups. Concerning the idea of
generative unfolding, we have presented in Fig. 2.10 how our method can be robust against the injection
of signal not included in the training set. This, however, is far from a complete proof that such a method
is independent of the prior distribution it is trained on. Furthermore, the method needs to be tested
against other deep learning frameworks and traditional approaches such as OmniFold and IBU.
An obvious direction for the application of topology refinement is in hybrid Monte Carlo/machine
learning approaches like i-flow [23,24]. i-flow uses a normalizing flow to replace the proposal function
of a standard Monte Carlo integrator like Sherpa. Phase-space cuts on the transverse momentum of
massless particles may affect the final efficiency of the proposed model, and latent space refinement
could be a simple way to boost their performances.

In conclusion, the field of deep learning for high energy physics is gaining more and more momentum,
with novel applications, architectures and training procedures being proposed on a daily basis. We
strongly believe that with a few more steps toward explainable machine learning, more mathematically
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rigorous approaches and in general better communication between theorists and experimentalists, this
technology will become a standard tool in the life of future researchers.
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A | Appendix: conditional GAN

A.1 Performance

While it is clear from the main text that the FCGAN inversion of the fast detector simulation works
extremely well, we can still show some additional standard measures to illustrate this. For instance, in
Fig. A.1 we show the event-wise normalized deviation between the parton-level truth kinematics and
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Figure A.1: Normalized deviation between the FCGANned sample and truth (residual) for some of
the kinematic variables.
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Figure A.2: Correlations between the FCGAN-inverted and parton-level truth kinematics, or migration
matrix.

the Delphes and FCGAN-inverted kinematics, for instance
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. (A.1)

The events shown in these histograms correspond to the full phase space inversion shown in Fig. 2.6,
but from the discussion in the main text it is clear that the picture does not change when we invert
only part of phase space. As expected, we see narrow peaks around zero, with a width in the ±10%
range for the jet momenta and much more narrow for the leptons, which are less affected by detector
smearing. For all distributions, but especially the reconstructed W -mass, we see that the FCGAN
reconstruction is significantly closer to the parton-level truth than the Delphes events are.
Finally, we show the migration matrix or correlation between true parton-level and reconstructed
parton-level events in terms of some of the kinematic variables in Fig. A.2. Not surprisingly, we
observe narrow diagonal lines.

A.2 Staggered vs cooling MMD
The MMD loss is a two-sample test looking at the distance between samples x, x′, drawn independently
and identically distributed, in terms of a kernel function k (x, x′). Implementations of such a kernel,
as given in Eq. 2.16, include a fixed width or resolution σ. We employ the MMD loss to reproduce
the invariant mass distribution of intermediate on-shell particles Mp. A natural choice of σ is the
corresponding particle width. However, this is inefficient at the beginning of the training, when any
generated invariant massMG is essentially a random uniform distribution. In that case (x− x′)2 � σ2

for any x, x′ ∼MG, and Eq. 2.15 reduces to

MMD (k;MG,MP ) '
√
〈k (y, y′)〉y,y′∼MP

' const , (A.2)

and provides little to no gradient.
This can be avoided by computing the MMD loss using multiple kernels with decreasing widths, so that
the early training can be driven by wide kernels. A drawback of this approach is that only the small
subset of kernels with a resolution close to the evolving width of MG gives a non-negligible gradient.
Alternatively, we can employ a cooling kernel, which we initialize to some large value and then shrink
to the correct particle width. This is an efficient solution at all stages of the training. A subtlety is
that the rate of the cooling has to follow the pace of the generator in producing narrower invariant
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Figure A.3: Invariant jet-jet mass distribution for different MMD loss implementations: single kernel
(upper left), multiple kernels (upper right), cooling kernel (lower left) and augmented multiple kernels
(lower right).

mass distributions. Ultimately, we want to avoid hand-crafting the cooling process, because it adds
hyper-parameters we need to tune. We use a dynamic kernel width as a fixed fraction of the standard
deviation of the MG distribution. This standard deviation as an estimate of the width of MG can be
replaced by any measure of the shape of MG, such as the full width at half maximum, and our tests
show that the performance is largely insensitive to the choice of the fraction.
Yet another approach is based on the observation that the MMD kernel test is not restricted to one-
dimensional distributions [121,177,178]. This allows us to improve the invariant mass reconstruction
by including additional physical information xi to the test, so that the discrepancy is not computed
just between the samples MP and MG of real and generated invariant masses, but rather between
(MP , xP ) and (MG, xG). In the FCGAN spirit we therefore augment the batches of true and generated
invariant masses with one of conditional invariant masses. From the same detector information used
to condition the generator and the discriminator, we can extract the detector level invariant masses
MD and accordingly compute MMD(k; (MG,MD), (MP ,MD)). Even tough this does not represent
a conditional MMD, training with multiple kernels benefits from using the augmented batches. In
Fig. A.3 we compare the same invariant mass distribution using these different MMD implementations.
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