
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics of the
Ruperto-Carola University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by
Svetlana Ovchinnikova, M.Sc.

born in Vitebsk, Belarus

Oral examination: 26th of November 2021

Visual and Interactive
Exploration of Omics Data

Referees: Prof. Dr. Henrik Kaessmann
Prof. Dr. Benedikt Brors

Abstract

Today many biological studies rely on high-throughput techniques that
yield data on thousands of samples or cells with tens of thousands of measured
features. Exploring such an amount of data poses a visualisation challenge,
that can be solved by switching from static plots to interactive ones. This
provides a way of intuitive navigation through large datasets in a manner that
helps the user to grasp the bigger picture visually. The field of interactive
visualisation of biological data is an actively developing one. However, it
is more often used only for data presentation and is still not so common
during a research project’s early, exploratory stages. This project is aimed
to explore and propose solutions to fill this “visualisation gap”.

I investigate the possible benefits for biological studies of the combination
of JavaScript and R programming languages. R is one of the most common
tools in biostatistics and provides a wide variety of implemented libraries for
processing omics data. JavaScript is a language for enabling user’s interaction
with a web page and nowadays is used by most available web resources.
Thus, the two languages are very effective in their own application fields,
and interactive visualisation of omics data lies precisely in their combination.
As an outcome of the project, I present three R packages (one of which also
provides a purely JavaScript interface) for data visualisation.

The first one, ”jrc”, is intended for package developers and serves as
a foothold for further project steps. ”jrc” provides direct communication
between a web page and a running R session. It allows the user to run R
code from a web page and execute JavaScript code from an R session. In
addition, it provides a basis for publicly available interactive apps deployed
on a server. With this, ”jrc” can be used as a foundation for the packages
that use JavaScript to visualise data stored and processed in an R session.

The second one is ”sleepwalk”. It is a simple but effective tool to explore
distortions introduced by dimensionality reduction techniques when visual-
ising biological data. These approaches (such as MDS, t-SNE, UMAP, etc.)
are particularly but not exclusively popular in single-cell studies. There,
researchers commonly visualise cells as points on 2D embedding and then
study the obtained clusters and trajectories. ”sleepwalk” helps one explore
the underlying patterns of such plots by interactively comparing the dis-

1

played neighbourhoods to the original distances in the high-dimensional fea-
ture space.

Finally, ”rlc” (or LinkedCharts) is a plotting library that allows one to
construct one’s interactive app with minimal effort and coding skills. It
is designed in a way that does not require users to learn special complex
syntax. Instead, I adjusted it to routinely used practices in the omics data
exploration. I also left a broad space for customisation so that users could
adapt the apps to their particular tasks rather than trying to fit their data
into the predefined templates. With all this, the ”rlc” can be a powerful
tool to facilitate exploratory data analysis by interactive visualisation. It
centers on but is not limited to the idea of linking multiple charts when a
user’s manipulation with one plot affect another one (for example, a click on
a point shows more specific information on the thus selected sample).

Overall, the packages presented here can be helpful when applied in ev-
eryday analyses and serve as a basis and inspiration for new solutions in the
interactive visualisation of biological data.

2

Zusammenfassung

Heute basieren viele biologische Studien auf Hochdurchsatz-Techniken, die
Daten von Tausenden von Proben oder Zellen erzeugen mit Zehntausenden
von gemessenen Merkmalen. Derartige Datenmengen zu sichten stellt eine
Herausforderung dar im Bereich der Datenvisualisierung, die gelöst werden
kann, indem man statische durch interaktive Plots ersetzt. Dies bietet eine
intuitive Navigation durch große Datensätze in einer Art, die dem NButzer
hilft, das großere Ganze visuell zu erfassen. Das Forschungsgebiet der
interaktiven Darstellung biologischer Daten entwickelt sich aktiv fort.
Dennoch wird diese oft nur zur Präsentation der Daten verwendet, während
eine Nutzung in den frühen Stadien eines Forschungsprojekts noch selten
ist. Das vorliegende Projekt zielt darauf, diese ”Visualisierungs-Lücke” zu
erforschen und Lösungen zu ihrer Schließung vorzuschlagen.
Ich untersuche den möglichen Nutzen einer Kombination der
Programmiersprachen JavaScript und R für biologische STudien. R ist
eines der meistgenuzten Werkzeuge der Biostatistik und bietet eine große
Vielfalt and Bibliotheken zyr Verarbeitung von Omics-Daten. JavaScript ist
eine Sprache um die Interaktion des Nutzers mit einer Webseite zu
ermöglichen und wird heute von den meisten Web-Resourcen genutzt.
Somit sind diese beiden Sprachen von hohem Nutzen in ihren jeweiligen
Anwendungsgebieten, und die interaktive Visualisierung von Omics-Daten
liegt daher genau in ihrer Verbindung. Als Ergebnis des Projekts stelle ich
drei R-Pakete zur Datenvisualisierung vor (eines davon bietet auch eine
reine JavaScript-Schnittstelle an).
Das erste Paket, ”jrc”, ist für Paket-Entwickler gedacht und dient als
Grundstein für die weiteren Schritte des projekts. ”jrc” ermöglich direkte
Kommunikation zwischen einer Webseite und einer laufenden R-Sitzung. Es
erlaubt dem Nutzer, von der Webseite aus R-Code laufen zu lassen, und
von der R-Sitzung aus JavaScript-Code. Darüberhinaus bietet es eine
Grundlage für öffentlich verfügbare, auf einem Server aufgespielte
interaktive Apps. Damit kann R als Grundlage genuzt werden für Pakete,
die JavaScript nutzen, um Daten zu visualisieren, die in einer R-Sitzung
gespeichert sind und dort verarbeitet wurden.
Das zweite Paket ist ”sleepwalk”. Hier handelt es sich um ein einfaches
aber wirksames Wekrzeug um die Verzerrungen zu erkunden, die durch

3

Techniken zur Dimensionsreduktion entstehen, wenn biologische Daten auf
diesem Weg visualisiert werden. Diese Techniken (MDS, t-SNE, UMAP,
usw.) sind besonders in Einzel-Zell-Studien beliebt, aber nciht auf diese
beschränkt. Dort stellen Forscher Zellen als Punkte in einer
zweidimensionalen Einbettung dar und studieren dann die erhaltenen
Cluster und Trajektorien. ”sleepwalk” hilft, die solchen Plots zugrunde
liegenden Muster zu untersuchen, indem man interaktiv die
Nachbarschaften in der Darstellung vergleicht mit den ursprünglichen
Abständen im hochdimensionalen Merkmalsraum.
Schliesslich ist ”rlc” (oder ”LinkedCharts”) eine Bibliothek zur
Datenvisualisierung, die es erlaubt, interaktive Apps mit minimalem
Aufwand und geringen Programmierkenntnissen zu bauen. Es ist so
gestaltet, dass der Nutzer keine spezielle komplizierte Syntax erlernen muss.
Stattdessen habe ich es den Standardpraktiken der
Omics-Daten-Exploration angepasst. Ich habe auch breiten Raum gelassen
um Nutzern zu ermöglichen die App an die Aufgaben anzupassen, anstatt
die Daten in vorbestimmt Schablonen pressen zu müssen. All dies macht
”rlc” ein leistungsstarkes Werkzeug zur explorative Datenanalyse durch
interaktive Visualisierung. Ohne darauf beschränkt zu sein, steht dabei im
MIttelpunkt die Idee, mehrere Plots so zu verknüpfen, dass Nutzereingaben
in einem Plor auch einen anderen beeinflussen kann. (Zum Beispiel kann
ein Klick auf einen Datenpunkt Detailinformationen zu der so ausgewählten
Probe anzeigen.)
Zusammengenommen sind die hier vorgestellten Paket nützlich für die
routinemäßige Anwendung in Analysen und dient als Grundlage und
Inspiration für neue Lösungen in der interaktiven Darstellung biologischer
Daten.

4

Contents

1 Introduction 7
1.1 Visualisation and big data in bioscience 7

1.1.1 Basics of visualization 8
1.1.2 Limitations of visualisation 8

1.2 Interactivity . 10
1.2.1 Existing solutions . 11
1.2.2 Visualization gap . 12

2 Methods and datasets 14
2.1 Types of datasets . 14

2.1.1 Omics data . 15
2.1.2 High-throughput screening of biologically active com-

pounds . 17
2.1.3 Medical data . 18

2.2 Example datasets . 20
2.3 Tools and dependencies . 22

2.3.1 The R programming language 22
2.3.2 The JavaScript programming language 23
2.3.3 Web server . 24
2.3.4 Websocket connection 27
2.3.5 “httpuv” package . 27
2.3.6 D3.js . 28

3 Results 31
3.1 The “jrc” package . 32

3.1.1 Message exchange . 34
3.1.2 Multiple sessions . 35
3.1.3 Local environments and function evaluation 36

5

3.1.4 Security restrictions . 38
3.2 The “sleepwalk” package . 39

3.2.1 Distances transformation in dimensionality reduction . 39
3.2.2 Exploring an embedding 44
3.2.3 Feature-space distances 44
3.2.4 Comparing embeddings 45
3.2.5 Comparing samples . 47
3.2.6 Comparing distance metrics 48
3.2.7 Beyond single-cell transcriptomics 50
3.2.8 Implementation and usage 52
3.2.9 Data processing . 54

3.3 The “rlc” package (LinkedCharts) 56
3.3.1 Linking charts . 57
3.3.2 Basic syntax . 60
3.3.3 Use cases . 62
3.3.4 Further customization 79
3.3.5 Implementation . 79

4 Discussion 81
4.1 Role of interactivity in visualisation 81
4.2 “sleepwalk“ . 82
4.3 Linked Charts . 84

4.3.1 Code simplicity . 85
4.3.2 Customisation . 86

4.4 JavaScript for enhanced interactivity 87

6

Chapter 1

Introduction

1.1 Visualisation and big data in bioscience

Since the late 2000s, due to the advances in sequencing and high-throughput
techniques, the amount of generated biological data has been growing expo-
nentially [1]. The automatisation in data generation called for automatisation
also in the data processing. Tools that previously only facilitated research
work now turned into an absolute necessity. A researcher cannot realistically
perform calculations for hundreds of samples and thousands of measurements
without delegating at least some of this work to various algorithms.

However, besides challenges in data logistics, storage and exploration [2],
the growing amount of information also poses a question of trust both in the
data and in the conclusions drawn from it. Here, we are not talking about
intentional mispresenting of results or any fraudulent behaviour. Rather,
in a manually performed experiment, the researcher pays attention to every
single sample and has a reasonable chance to notice if something is wrong.
By contrast, in a high-throughput experiment, one has to rely on automatic
quality assessments to filter out spurious data. Yet, there are just too many
things that can theoretically go wrong to envisage all of them in a pipeline.
Therefore, it is essential for the researchers to be able to look at their data.
Since it is no longer possible to do so directly when dealing with big data,
various visualisation techniques have become of extreme importance.

Nowadays, in biological studies, visualisation is not anymore just about
sharing the results with the audience. It is of vital importance during most
steps of any research work. The goal of this thesis is to develop tools to assist

7

the exploratory analysis of big data with the least possible effort from the
user’s side.

1.1.1 Basics of visualization

The fundamental visualisation principles have been evolving since the first
attempts to draw a map or other geometric diagrams. Long before any
studies on cognitive perception, people already intuitively understood that
information in the form of an image could be grasped more effectively than
text or numbers. Moreover, history knows some examples of visualisation
playing a pivotal role in problem-solving [3]. Yet, it still took centuries for
today’s most common ways of visualising information to appear and then to
be acknowledged in most areas that involve research and communication [4].
Only in the 20th century, first attempts to approach the problem of effective
visualisation became systematic, which was probably a result of computer
graphics becoming widely available [5]. Today it is pretty hard to imagine a
scientific biological paper without compelling and informative images.

The scope of this thesis lies in the visualisation of biological data of a par-
ticular structure. Here, we talk about some objects (samples, cells, patients,
etc.) and a set of related measurements, which we call features. For such
data, the visualisation task is to encode objects as graphic symbols (dots,
lines, bars, etc.) and features as their properties (colour, position, size, etc.).
The overview of possible static visual channels in such plots is given in Figure
1.1 which is based on [6].

1.1.2 Limitations of visualisation

Even from the definition of the visualisation type we want to concentrate
on, one can see the main limitations for the data that can be effectively
visualised.

The first one is the amount of data. The number of objects one can add
to a plot is limited by the size of features that the human eye can distinguish
[9]. By now, we have reached the point when, in an average study, printing
a plot on a poster-size sheet of paper or using a modern 4K display may not
be enough to distinguish all the dots of a scatter plot or all the cells of a
heatmap. Of course, some kinds of charts allow objects to be put on top
of each other, yet it works only up to a certain scale, and the problem of
overplotting is quite well-known [10].

8

Secondly, there is only a certain amount of visual channels one can use to
display known characteristics of the objects. Not only the size but also the
complexity of information grows with the increase of collected and processed
data. Today, we are still in the process of understanding how complex are
biological systems that we study. And with this grows the number of factors
that one may want to display to get a complete picture. Yet, overburdening a
plot with too much information makes it harder to read. There are attempts
to find creative solutions to present complex data [7, 11]. Still, even if the
employed visual channels do not overlap, one may find it confusing to follow
too many patterns at once.

Thus, when presenting data as a static image, a researcher has to decide
what information to use and what to put aside to convey the message better
[7]. It is, doubtless, an essential step since data often contain a lot of noise
and information irrelevant to the point one tries to make. Yet, it may be
helpful to provide the readers with a way to estimate the relevance of the
omitted piece of data on their own to avoid biases [12] and boost confidence
in the reported data patterns.

Limitations of visualisation during the exploratory phase of a study are
even more pressing. Early in the project, the researcher does not yet know
what information is relevant and what is noise. The urge to put as much
information into the plot as possible is only natural at this point since omit-
ting something may lead to missing a critical pattern. Even though in ex-
ploratory analysis, one may be willing to do with plots that are hard to read,
the boundaries of how much information can be put there cannot be moved
endlessly.

1.2 Interactivity

Today, engaging interactivity offers a solution to the problem of excessively
complex and detailed plots. By now, the vast majority of scientific plots are
no longer drawn by hand but generated with the help of some software. And
the image, generated and stored electronically, does not have to be static as
a printed one. Instead, various interfaces allow the user to manipulate plots
with the most basic mouse actions, thus making the image interactive.

Attempts to utilise interactivity to facilitate plots’ exploration started
since the technology first allowed that [13, 14], and till nowadays, this field
undergoes active development. In an interactive figure, there is no need to fix

10

all the parameters or to exclude any data that do not contribute to the main
idea. Instead, the user gets a chance to experiment with data and details
quickly and intuitively, concentrating at once on the plot’s most exciting or
suspicious parts.

The advantage of interactivity lies beyond just simplifying navigation
through big or complex data. When it takes just a click or two to add changes
to a plot, it urges a researcher not to put aside ideas or concerns and thus
go through the data more thoroughly. At the same time, readers can check
the conclusions and claims of a paper on the fly without going through all
the scripts and analysis, thus making the findings more credible. Therefore,
I believe that further integration of interactive tools in a researcher’s routine
can significantly improve the quality of studies [15, 16].

1.2.1 Existing solutions

Numerous tools [17] now provide means of creating interactive visualisations
not only for research [18–21] but also for any area that involves data analysis
and presentation of any kind [22, 23].

Overall, we can classify the existing tools into three major categories.

• Low-level grammars such as D3 [24], or Vega [25] offer principles and
the most basic tools, rather than ready-made solutions. These packages
require good coding skills and some time for practice. Yet, since only
the basic primitives are predefined, one can use these grammars to
design an interactive app almost exactly to fit one’s ideas. They can be
used directly by experienced users to design tailored graphics solutions
or become building material for more high-level packages.

• There is an assortment of more high-level, but still generally purposed
packages that offer their primitives in the form of basic plot types [26,
27]. They also come with a predefined logic of how interactivity is
ensured. Generally, they can be customised to quite a great extent,
yet the syntax, accepted form of input data, and variety of available
kinds of plots remain fixed. One of the earliest examples of this cat-
egory is Vega-Lite [28], which allows specifying multiple plots and in-
teractions between them in JSON format, the multi-language plotting
library Plotly and the R package “shiny” [29]. The latter two can now
be combined to provide more functional apps [30].

11

• The most abundant category of interactive apps are highly specialised
packages that are usually designed for a particular task or to facilitate
exploration with a specific type of data. These packages generally offer
one or a couple of very easy-to-use functions or work just as a web
resource. However, the amount of possible customisation is very limited
if at all present. They can be quite helpful if one wants to apply them
to the specific task they were designed for, but an attempt to even
slightly change their functionality can become problematic. Therefore,
the most popular tools of this category are the ones that bolster the
most common steps during the research work. Here is just a couple of
examples: ReconMap allows one to explore human metabolic network
[18], Bandage visualises de novo genome assembly [19], Cerebro works
with single-cell RNA-Seq data [20].

1.2.2 Visualization gap

Today many authors accompany their papers with an interactive resource to
present their data and results (for example, [31–33] and many more). Though
these visualisations are often useful and provide a comprehensive insight into
the data, they chiefly serve presentation and communication purposes. Only
after most of the work on the project is finished, researchers spend a couple
of days deploying a fancy interactive app to share their data and results with
the scientific community. Such a tendency can be called an interactive visu-
alisation gap during the exploratory analysis [34], and it remains despite the
growing diversity of tools for interactive visualisation. I believe that interac-
tivity should become a part of everyday routine to facilitate data exploration.
To this end, the tool to produce interactive apps should be both simple and
highly customisable.

Simplicity should serve as an incentive to use interactivity whenever there
is any slightest hint that it may be helpful. If a tool is too complicated, one
may prefer to do most of the analysis by more habitual static means and
wait for a special occasion when it is worthwhile to invest time and effort
into an interactive app. It should also be similar in design to most common
visualisation means since tools with too specific interfaces tend to be used by
people with more extensive programming skills. Even if a researcher with less
expertise in coding has an eager-to-help colleague, he or she may be unwilling
to ask for assistance in petty everyday tasks and wait for something big.

Still, an attempt to simplify a tool may end in hardcoding and presetting

12

too many parameters. As a result, a simple-to-use tool can require a particu-
lar data structure and be fit only for precise data flow patterns. Any attempt
of going beyond in-built limitations, if at all possible, can cost a considerable
effort. It is not necessarily a disadvantage since much of the routine work in
the lab involves steps and data types typical for the given research area. Yet,
it may be useful if one does not try to force the problem in the predefined
mould but instead makes the visualisation tool fit the given task. For that,
a reasonable degree of flexibility is required.

This work attempts to overcome the interactive visualisation gap with the
tools that were designed and polished in collaboration with several biological
labs to most effectively fit their everyday needs. As a result, I here present
three R packages:

jrc a tool for package developers to build interactive apps;

sleepwalk a package to interactively explore 2D embeddings by comparing
them to the original distances in the feature space;

rlc an interactive plotting library based on the concept of linikng
charts.

13

Chapter 2

Methods and datasets

2.1 Types of datasets

Visualisation is an extensive area even within the limits of bioscience. It is
impossible to address all kinds of visualisation tasks, from complex interac-
tion networks to 3D structures of big molecules, with the same approach.
Therefore the scope of this thesis has to be limited to only a specific kind
of data, which I will call “feature data”. In machine learning, a feature is
an individual measurable property or characteristic of a phenomenon being
observed [35]. So as “feature data” I define a set of objects of similar type
(samples, cells, patient, etc.), each described by multiple measured or calcu-
lated features (specific molecule abundance in a sample, methylation level at
a given position, phenotypical data, etc.). These data can be as simple as
the weight of a group of mice or as complex as methylation levels of millions
CpGs in hundreds or thousands of samples.

Feature data comprise quite a significant fraction of available biological
knowledge. They are very diverse and present scientists with various tasks
and problems that have to be solved to uncover biological patterns. Ap-
proaches to visualise this type of data can also be quite diverse since many
researchers make a considerable effort to present their findings most convinc-
ingly. Yet, the most basic principles of visualisation here generally remain
the same. Biological objects are commonly represented as graphical ones of
a specific type. They can be lines, dots, circles, squares, etc. Their measured
or calculated characteristics (features) define their position, colour, opacity,
size, etc. (See Figure 1.1 for possible visual channels.) That is, probably,

14

the most common and the most straightforward way of visualising data, yet
there is still a demand for new tools to generate plots of this kind.

Since not all biological data can be visualised in such a manner, here I
will mention some most common types of feature data in bioscience.

2.1.1 Omics data

“Omics” is a relatively new and still informal term in biology. According to
The American Heritage Medical Dictionary [36], “omics is an analysis of large
amounts of data representing an entire set of some kind, especially the entire
set of molecules, such as proteins, lipids, or metabolites, in a cell, organ, or
organism or any of the fields employing this approach.” [37] defines omics
the following way:

“Since the process of mapping and sequencing the human genome
began, new technologies have made it possible to obtain a huge
number of molecular measurements within a tissue or cell. These
technologies can be applied to a biological system of interest to
obtain a snapshot of the underlying biology at a resolution that
has never before been possible. Broadly speaking, the scientific
fields associated with measuring such biological molecules in a
high-throughput way are called “omics”.”

As one can see, omics studies are one of the primary sources of big data
in bioscience and, hence, also the area where the proper visualisation tools
may be crucial for understanding underlying biological patterns.

Here, I am primarily interested in data that describe the abundance of
molecules rather than in their structure or interactions. Such data can come
from various omics fields.

In transcriptomics, the number of transcripts for a given gene in the sam-
ple is estimated by converting mRNA molecules into complementary DNA,
followed by sequencing the obtained cDNA molecules. The reads are then
aligned to the known genome and, thus, the number of transcripts per gene
is generated [38–40]. This technique is known as RNA-Seq (RNA Sequenc-
ing) [41]. Earlier, the hybridisation-based microarray technique was used
to estimate gene expression [42]. For microarray studies, one would need a
chip tiled with cDNA probes, each occupying a particular region on the chip.
mRNA is first converted to cDNA and then transcribed again in the presence

15

of ribonucleotides labelled with some dye or biotin. The amount of mRNA
in the sample is estimated by the observed density of the dye at the region
that corresponds to a certain probe [43, 44].

Much of the efforts in proteomics is dedicated to reconstructing protein
interaction networks [45]. Though this area also depends on good visualisa-
tion tools and benefits from interactivity, I am more interested in data on
protein presence or abundance in the sample. Such studies are commonly
performed with a combination of liquid chromatography and tandem mass
spectrometry (LC-MS/MS, [46]). In this experimental setting, the proteins
of a sample are first broken into smaller peptides. LC-step is used to separate
peptides based on their retention time to ensure that only a limited number
of different peptides enter the mass spectrometer at any given moment. The
first MS-step scans the entire sample and produces peaks that correspond
to each of the detected peptides. The peak area allows one to quantify the
peptide, and the mass of the peptide is defined by the peak’s position. The
second MS-step is used to identify the peaks. The peptides that enter the
second mass spectrometer are broken into even smaller pieces, and their mass
spectre is used to reconstruct the structure. Only one at a time kind of pep-
tide can be scanned during the second MS-step, and that’s why the initial
separation in the LC-step is important. As a result, one gets a dataset with
the amount of each detected peptide in all the samples, which also fits my
definition of “feature data”. The examples of such datasets can be found in
[47–49].

Translatomics aims at estimating the translation efficiency of a given pro-
tein within the sample [50]. Translatomics studies can be based on sequenc-
ing techniques or mass spectrometry analysis. The first type of translatome
studies tries to separate free mRNA in the sample from mRNA that is being
translated at the moment. These mRNA molecules are then sequenced and
aligned to learn what genes are actively translated in the sample. In ribo-
some profiling (Ribo-Seq) [51], for example, only small pieces of RNA that
are protected by ribosomes are retained. The full-length translating mRNA
sequencing (RNC-seq) [52] proposes a way to capture entire mRNA molecules
that are bound to the ribosome-nascent chain complex (RNC). Eather of the
techniques gives a snapshot of translational activities at the moment when
the cells were lysed [53, 54]. Another approach to translatome studies is to
measure the amount of translated proteins directly, the same way it is done
in proteomics studies. One can label and then detect all newly synthesised
proteins over some period of time [55] or only nascent proteins at a given

16

moment [56].
Epigenomics studies modification of genetic material that can affect genome

accessibility or transcription factor binding efficiency and, as a result, the
transcription profile of a cell. The most common epigenetic factors are var-
ious histone modifications, and DNA methylation [57]. In this thesis, I am
more interested in the latter since it involves “feature data” that require vi-
sualisation. In the genome, any cytosine followed by a guanine (a CpG site)
can be methylated by DNA methyltransferases. A feature in a methylome
dataset is a single CpG site, defined by its position in the genome, and the
measured value is the fraction of methylated reads of this cite in the sample
relative to all reads. Detection of methylated sites is achieved by bisulfite
treatment of the extracted DNA. Bisulfite replaces cytosine with uracil, but
only if it is unmethylated. After DNA amplification, the introduced uracil
will be replaced with thymine. Now, one needs to find out which of the
known CpG sites are intact and which have thymine instead of cytosine. As
in transcriptomics, earlier approaches involve methylation chips (such as, for
example, the Infinium HumanMethylation450 BeadChip with over 480000
CpG probes [58]), with direct sequencing gaining more popularity over time
(known as bisulfite sequencing [59]). Examples of methylation datasets can
be found in [60, 61].

This list is in no way complete and only provides examples of the most
common areas and techniques. The “omics” field undergoes active develop-
ment as new technologies come to life, making it possible to quantify more
features that describe cell life cycle and reaction to various stimuli. Yet,
even from the provided examples of omics “feature data” one can see how
diverse and ubiquitous are these data. With the advances of single-cell stud-
ies that measure the same features, but now for thousands and even hundred
thousands of cells in a sample [39, 40, 61], visualisation becomes even more
critical. For such vast datasets, there is just no other reliable way to explore
data rather than visualising them with an appropriate tool.

2.1.2 High-throughput screening of biologically active
compounds

According to [62], “high-throughput screening (HTS) is the use of automated
equipment to rapidly test thousands to millions of samples for biological
activity at the model organism, cellular, pathway, or molecular level.” It

17

means that most of the techniques discussed in the previous section can also
be called HTS. In this section, however, I want to mention another important
source of “feature data”: the screening of chemical compounds. In simple
words, one can describe this kind of assays as putting together hundreds
of chemicals and substrates to check which of them react with each other.
Technologically, there are just three things that are required to make HTS
possible. The first one is a robot capable of automatically pipetting hundreds
of samples on a microliter plate. The second one is a way to measure the
read-out automatically. To this end, plate readers that measure fluorescence,
absorbance, luminescence, etc. in each well are used. And finally, a reaction
in question must be designed in a way that leads to the accumulation of some
dye that a plate reader can detect. Overall, HTS is used in biology since
the late 1980’s [63], and further technological advances scaled its efficiency
significantly.

There are various published datasets generated by HTS assays. Drugs
can be tested against cell cultures in cancer studies [64, 65] or to estimate
their toxicity [66, 67]. One can also perform an HTS assay to find compounds
that bind to a certain molecule [68, 69].

A peculiar thing about these datasets is that there is no fixed separation
into “features” and “objects”. Suppose multiple drugs are tested against
numerous samples. Should we say that samples are characterised by their
interaction with various drugs, or drugs are described by their effect on dif-
ferent samples? Commonly, that is defined by the aim of the study. In [64],
for example, the drugs are in the focus of the research and tested cell lines
are features to measure their efficiency. At the same time, [65] uses a set of
drugs as another way to characterise patient samples in addition to several
omics assays. It is also true that in omics studies, one can inverse a dataset
and turn features into objects, yet there is some agreement in the community
on what is the straight way and what is inversed.

2.1.3 Medical data

Medical data is a collection of records about one’s health state and received
medical treatment. Such logs have been accumulated since the dawn of
centralised health care systems, yet for such data to become of interest for
data scientists, they had to be digitalised first. Digitalisation started to
happen more systematically since the late 2000s with the introduction and
adoption of electronic health records (EHR) [70, 71]. Although authorities

18

have recommended the use of EHR in many countries, its adoption is still an
ongoing process due to various pending issues [72, 73]. Nevertheless, EHR
has already been proved to be helpful in clinical research [74], which can
also benefit from the right visualisation tools, as any study that involves the
exploration of big datasets.

From the point of view of visualisation tasks for medical data, two points
should be highlighted.

The health data now are not just digitalised more actively but are also
generated at a tremendous rate. People are now using their smartphones,
smartwatches, and other wearable gadgets to measure and record their pulse,
blood oxygenation rate, physical activity and other health parameters in
real-time. Therefore, it is easy to obtain vast amounts of so-called Patient-
Generated Health Data from multiple subjects [75, 76]. Here, we are facing
the same challenge as with the growing amount of omics data. When there
are too many samples and measurements, visualisation turns from being one
of many exploration instruments to the only way of getting a data overview.
And interactivity here is required to prevent overburdening plots with too
much data without omitting it.

Another point refers to more traditional clinical studies. There is some
segregation in training and expertise between medical practitioners and re-
searchers. However, a study based on clinical records generally requires col-
laboration between these two worlds, and people who work in medicine are
known to have too much work and not enough time. There are even attempts
to come up with recommendations for EHR visualisation that address this
issue: lack of time a medical doctor could spare [77]. Thus, a collaboration
with medical practitioners poses a visualisation problem. To get medical in-
put in such a study, one should present data in a form that combines the
most challenging aspects of exploratory analysis and delivering final results.
The person who looks at visualisation should grasp the central message of
the data, yet the message itself is still unknown to the one who generates
this visualisation. Thus, this highly collaborational field is one of the most
demanding for the right interactive tools. And the collaborations themselves
are vital if one needs to make an impact on the medical field as fast as pos-
sible, as it happened, for example, during the recent Covid-19 pandemic [78,
79].

19

2.2 Example datasets

In this thesis, various datasets are used to illustrate the presented approaches
to visualisation. Here is a list of all these datasets with a short description.

• Data from [39] are based on a single-cell RNA sequencing of a hu-
man cord-blood sample with some spiked in mouse epithelial cells. It
contains transcriptomes of 8617 cells with 36280 detected genes or non-
coding RNA transcripts (before filtering out suspicious cells or too lowly
expressed genes). In addition, epitope sequencing (CITE-seq) provides
data on the abundance of 13 protein markers for each sequenced cell.
The dataset allows one to explore major blood cell types, such as T
cells, B cells, Monocytes, etc. Surface proteins provide a robust way to
assign cell type labels and thus to estimate the performance of various
clustering approaches or dimensionality reduction techniques. In this
thesis, I will refer to this dataset as “cord-blood data”. The data are
available at Gene Expression Omnibus (GEO) via accession GSE100866

• In [38] samples from 19 patients with oral cancer have been taken. From
each patient, three tissue samples were obtained: one of the normal
oral mucosa, one of epithelial dysplasia (i.e., abnormal but not yet
malignant tissue), and one sample of the tumour. RNA from each of
the 57 samples was extracted and sequenced to estimate the expression
of 58037 genes and non-coding RNAs. These data are a typical example
of the ones used in differential expression studies to find genes that are
up- or downregulated in a specific type of tissue or cell type. In this
thesis, I will refer to this dataset as “oral cancer data”.

• [53] is a study on co-evolution of translation and transcription. To check
whether there is any connection between evolutionary changes in gene
expression and translation efficiency, three samples of three tissue types
(brain, liver and testis) were taken from six species (human, macaque,
mouse, opossum, platypus and chicken). Each sample was split in two,
and for one part, RNA was extracted and sequenced. In the other
part of each sample, RNA was lysed except for the pieces protected by
attached ribosomes (Ribo-Seq [51], see Section 2.1.1). The remaining
RNA molecules were also sequenced, thus, providing a snapshot of the
ongoing translation in the sample. To make a comparison between
the species, only 1:1 orthologues across all the studied species were

20

left, leaving 5060 genes and in total 103 sequenced samples (50 RNA-
Seq samples and 53 Ribo-Seq samples). This data can be seen as an
example of a non-typical study that requires a customised visualisation
approach. In this thesis, I will refer to this dataset as “translatome
data”.

• [80] focuses on the study of the developing murine cerebellum. Samples
of the forming cerebellum tissue were taken at 8 embryonal stages from
e10 to e17, followed by four postnatal stages between P0 and P21. Each
sample is supported by a biological replicate from a separate pregnancy.
Samples were processed to obtain single-cell transcriptomes, yielding
400-3000 sequenced cells per sample. Single-cell RNA sequencing of
a developing tissue allows one to study developmental trajectories of
differentiating cell types. As in most single-cell studies, dimensionality
reduction and further visualisation of the uncovered trajectories plays
an important role. Here, I use only three samples for demonstrational
purposes: two replicates from day e13.5 and one from day e14.5. In
this thesis, I will refer to this dataset and “murine cerebellum data”.
The data can be downloaded from the European Nucleotide Archive
under the accession number PRJEB23051.

• As an example of a high-throughput drug screening experiment, I used
data from a study on drug interaction [64]. Yet, for the sake of simplic-
ity, only a subset of generated results is used. Instead of interactions
between drugs, I am using only single drug tests. Overall, 527 drugs
were tested against 21 pancreatic cancer cell lines. The viability of cells
in the presence of each drug was evaluated with a cell viability [81] and
a cell toxicity [82] assay in 5 different concentrations for each drug. The
obtained values were used then to calculate a Drug Sensitivity Score
(DSS, [83]) that is used as a measure for drug’s effect on a cell culture.
This dataset is used to explore the possible benefits of interactive visual
exploration of a typical pipeline output. In this thesis, I will refer to
this dataset as “drug screening data”.

21

2.3 Tools and dependencies

2.3.1 The R programming language

The Programming language R [84] is commonly used for statistical compu-
tations by bioinformaticians and biologists. It is free and is accompanied by
an integrated development environment “RStudio” [85], which also offers a
free, fully-functional version and can be used for computations on a remote
machine (with the “RStudio Server” version).

R’s high-level syntax is quite different from many other programming
languages, which is often considered a disadvantage since the learning curve
for a beginner can be steep. However, the differences stem from the fact that
the creators of R had a particular purpose in mind, which is data analysis
[86]. Therefore, the syntax is subjected particularly to this single goal: to
facilitate statistical computing. And while it can confuse newcomers from
other programming areas, beginners with a biological background can find
R easier to learn and use than existing alternatives (such as Python [87] or
Julia [88], for example). And this compromise probably is one of the reasons
behind R’s popularity: Experienced programmers are more likely to invest
much time into learning a new language than those who are simply looking
for a more professional alternative to processing data with Microsoft Excel
or other similar software.

Another advantage of R is its comprehensiveness. Since it has already
gained vast popularity among statisticians in academia and industry, any
new algorithm is likely to be implemented as an R package. The Compre-
hensive R Archive Network (CRAN) offers more than seventeen thousand
packages (as of March 2021) and is very easy to contribute. There is also a
separate repository for expressly biostatistical packages called “Bioconduc-
tor” [89], which shows how important R is for research in bioscience. For
more experienced users R offers packages such as “reticulate” [90], “rJava”
[91], “Rcpp”[92–94], and others to exploit functionality of other programming
languages.

R also has some disatvantages. It can be relatively slow and has some
memory issues since it loads all variables (including full datasets) into the
operative memory. Yet, there are community efforts to solve these and other
occurring issues. For example, “tidyverse” [95] facilitates and speeds up
work with scientific data by offering a systematized approach to treating
datasets and reimplementing some functionality. “future” [96] introduces

22

parallel computations that are not implemented in base R. “hdf5r” [97] pro-
vides an interface for working with very large datasets.

Overall, R is an instrument for everyday use for many bioscientists all over
the world. As such, I believe that developing visualisation tools in the form
of R packages can greatly impact data analysis in bioscience. Though R pro-
vides a number of established packages for data visualization both static (“gg-
plot2” [98], “pheatmap” [99], etc.) and interactive (“shiny” [29], “plotly”[30],
etc.), I feel like there is still plenty of room for improvements.

2.3.2 The JavaScript programming language

Though, as described in Section 2.3.1, R is a prevalent choice for people inter-
ested in data analysis, its possibilities to develop a graphical user interface
(GUI) are limited. Therefore to utilise the full power of interactivity, one
should look for some other tool. Especially since, as was mentioned above,
R offers several ways to employ other programming languages.

Here, one may want to have a closer look at JavaScript. In the same
way as R was designed for data analysis, JavaScript was introduced to
add dynamic behaviour to previously static web pages. Nowadays, vari-
ous JavaScript (or TypeScript, which is an extension of JavaScript) libraries,
such as “Angular” or “react.js”, hold leading positions when designing a
front-end of a website. Currently (March 2021), above 97% of existing sites
are using JavaScript at the client-side.

All this makes JavaScript a natural choice when one wants to make an
app to combine interactivity and data visualisation without much care about
complex computations and performance (for this, we will use R). In addi-
tion, HTML pages containing JavaScript can be run in any modern browser
without installing additional software and loaded directly in the viewer of
RStudio. Potentially, such an app can also be converted into a single HTML
page that contains all the data and functionality. This page can then be used
as a supplement to a paper or sent to collaborators.

To my knowledge, there is no direct link between R and JavaScript, e.g.
a way to directly utilise JavaScript functionality from R in the form of a
native R interface. However, R can open web pages in a browser or the
RStudio Viewer. If the loaded web page contains some JavaScript, it will be
executed automatically, and all in-built reactions to user events will be in
place. Therefore, to be able to use JavaScript for interactive visualisation of
data that are loaded into the R session, we need two things:

23

• A way to generate a web page, populate it with the relevant data, and
open it on request from an R session.

• A maintained double-sided connection between the R session and the
opened web page. R should be able to react to user interactions with the
web page by starting new calculations or storing information for further
use. It should also push new data or results to the web page without
restarting the app. Even though many JavaScript-based interactive
visualisations do without such a connection, I feel that it is important
for genuinely customisable apps to facilitate exploratory analysis.

2.3.3 Web server

Web servers are generally used for generating web pages and sending them
back to the client. The term “server” often refers to a stand-alone piece
of computer hardware; however, it can also mean a program. By definition,
anything that provides functionality to other scripts and hardware is a server,
whether it is a script itself or a separate device. There are various types of
servers based on their purpose: computing, mail, file storage and sharing,
proxy, etc. Web servers are the ones that host websites and, as such, are the
ones that most of us interact with daily.

To explain what is a web server and how it works, let us go step by
step through what happens when someone tries to open a web page myWeb-
site.com/somePage.

First of all, computers connected to the Internet do not identify each
other by name. A numerical label called an IP address is used instead.
Internet Protocol version 4 (IPv4, [100]) standard defines an IP address as
a 32-bit number, which is usually displayed as a set of four numbers from
0 to 255 separated by dots. In version 6 (IPv6, [101]), an IP address uses
128 bits and is commonly displayed in hexadecimal format as eight quartets
separated by semicolons. Therefore, myWebsite.com needs to be resolved as
an IP address. To this end, the local computer exchanges messages with one
of 13 name servers located all over the world to comprise the Domain Name
System (DNS). The IP address of a name server must be known in advance
and is usually a part of the operating system settings. When the IP address
is known, the local computer can establish a connection with the web server,
hosting the requested web page.

Internet Protocol ensures message exchange between any two machines

24

worldwide by defining how information packages travel through hubs and
routers. However, successful communication also requires a standardised
form of the messages themselves. IP defines their structure to some extent,
but only to ensure that the message reaches the recipient. The body of the
message can contain arbitrary data and has to be specified by another set of
rules so that the two remote computers can understand each other. The two
most common protocols for that are TCP (Transmission Control Protocol,
[102]) and UDP (User Datagram Protocol, [103]). TCP is more reliable and
more commonly used: It makes sure that each piece of the sent data reaches
the recipient, and the receiving application will interpret them in order. Yet,
it is also more heavyweight and supports only communications between two
endpoints. UDP is more straightforward and, therefore, more lightweight. It
does not ensure reliability but can be used for broadcasting the same data
to multiple recipients.

The IP protocol belongs to the so-called Network layer of the Open Sys-
tems Interconnection model (OSI model, [104]). It is responsible solely for
delivering a piece of information to the specified address. TCP and UDP are
both parts of the Transport layer. As a part of the Network layer they send
not just some bits of information but a specified message that will be received
and processed on the other side. For instance, these protocols can split mes-
sages into pieces and assemble them back upon receiving. TCP, in addition,
can check the integrity of the received message and request the sender for
the missing parts, if any. After an IP/TCP connection is established, we can
be sure that, in our example, the browser can send and receive messages to
and from the server.

The next step is to define how exactly the browser will ask the server
for the somePage at myWebsite.com and in what form it will get it. To
this end Hypertext Transfer Protocol (HTTP, [105]) or its secure encrypted
version HTTPS is used. This protocol is request-response based. It means
that the client (the browser) makes various requests to the server, and the
server responds to them with data (plain text, HTML, images, data, etc.).
The received responses are processed by the browser and displayed to the
user.

Therefore, the steps to open myWebsite.com/somePage are the following:

• myWebsite.com is resolved into an IP address. To do that, the browser
first checks the cached list of names and, if myWebsite.com is not there,
sends a request to the DNS server specified in the system settings.

25

• A TCP/IP connection is established between the local computer and
the server hosting the website (based on the server’s IP).

• The browser sends an HTTP GET request for somePage and displays
the HTML code that the server sends in response.

• If the page contains some additional resources (such as stylesheets, im-
ages, scripts), the browser will request them in separate GET requests.

Note that HTTP (or HTTPS) can be used not only to ask the server
for the content but also to send some data to the server with a POST re-
quest. HTTP also defines other types of requests (PUT, DELETE, OP-
TIONS, TRACE, CONNECT, PATCH and HEAD), but POST and GET
are the most common ones.

With all this, if we have a server app running in the background, the R
session can send some data to it and request the generated HTML page with
the JavaScript code to visualise the data and ensure interactivity. Previously,
we talked only about communication between remote computers over the In-
ternet, but the server app can run on the same machine as the R session.
In modern operating systems, the localhost name is used to define the local
computer. Any messages to the localhost will not be sent outside but instead
will be received by the host itself via the loopback network interface. From
the browser’s point of view, there is no difference between connecting to a
local or a remote server. For this project, it means that the visualisation
apps based on the message exchange with the local server can also be eas-
ily accessed from the outside. Therefore, it is effortless to make such apps
publicly available.

The last thing we need to take care of is to make sure that the exchange
of messages between the app and the R session does not interfere with other
network services. Here, we need to take a step back to the transport pro-
tocols described above. Both TCP and UDP introduce a logical construct
that is called port. A port is identified by a 16-bit number and defines a
communication endpoint. Ports allow a computer to maintain multiple in-
dependent connections simultaneously. Messages sent to different ports can
be processed in different ways. For example, several network apps (such as
browsers, messengers, etc.) can run simultaneously by using different ports
and not knowing of each other. A server can use different ports for different
kinds of communication (mailing service, HTTP requests, file transfer via

26

the File Transfer Protocols, etc.). So it is enough to make sure that our app
uses a free port and the R session knows its number.

2.3.4 Websocket connection

As mentioned in the previous section, HTTP is a request-response based
protocol. It means that the server (the R session in our case) can only
respond to requests from the client (the browser) but not send data on its
own accord. Therefore it is not suited for a double-sided conversation. For
the R session to have any effect on the web page, the latter has to send
requests continuously, asking if there are any pending changes.

However, in 2011 WebSocket protocol [106] was introduced. Like HTTP,
it is based on top of TCP, and the connection is established by sending
a specific HTTP request and getting a response. Therefore a Websocket
connection can use the same port as the initial HTTP connection. But
unlike HTTP, a Websocket connection is fully double-sided. The client and
the server can send messages at any moment, and they do not need to be
followed by responses.

A WebSocket connection can also be faster than HTTP. Any exchange of
a request and a response via HTTP or HTTPS happens within a separate
TCP connection, which is closed after the client receives the response from
the server. A new connection must be established for the subsequent request,
even if it takes place immediately after the first one. TheWebSocket protocol,
on the contrary, maintains the same TCP connection.

With an established WebSocket connection, not only the app can trigger
new calculations in R, but also the R session can at any moment execute
JavaScript commands on the web page and, thus, keep the visualisation up-
to-date.

2.3.5 “httpuv” package

All the functionality, mentioned in Sections 2.3.3 and 2.3.4, is already im-
plemented in R as the “httpuv” package [107]. This package relies on the
ability of R to run C and C++ code with the “Rcpp” package [92–94]. It is
build on top of “libuv” and “http-parser” C libraries and implicitly, via the
“websocket” R package [108], depends on the “websocketpp” C++ library.

“libuv” is used to run a server process and enables asynchronous han-
dling of incoming and outgoing messages. “http-parser” facilitates work with

27

HTTP requests and responses by parsing them into more suitable data for-
mat. “websocketpp” enables double-sided communication via the WebSocket
protocol.

Directly from an R session, “httpuv” can start a TCP server that will
listen to the specified port. It is possible to define an R function to process
all HTTP requests coming through the port and generate custom responses.
“httpuv” is also capable of establishing and maintaining any number of Web-
Socket connections, calling R functions in response to incoming messages, and
sending messages via a specific WebSocket.

With all the abovementioned functionality, “httpuv” is a perfect founda-
tion for this project.

2.3.6 D3.js

On the JavaScript side of the project, there is also no need to start from the
basics (so-called “Vanilla JS”). JavaScript is well known for a large number of
various libraries, from minimalistic helper packages for specific functionality
to huge frameworks that introduce new syntax principles and have communi-
ties and plugins of their own. There is even an entire programming language,
TypeScript, that is an extension of JavaScript.

One of such major JavaScript frameworks, developed for interactive data
visualization, is D3.js [24]. “D3” stands for Data-Driven Documents. D3
offers not just functionality but the entire concept of how to approach the
problem of data visualisation. In D3, every instance of the visualised dataset
is bound to a single element of the plot. After that, its characteristics are
defined based solely on the values stored in the corresponding data instance
in a user-defined fashion. Therefore, any changes in the dataset can easily
be traced and lead to changes in the visualisation.

To understand how D3 works, one needs to know how an HTML document
is structured. Any HTML page can be represented with a Document Object
Model (DOM). DOM is a tree-like structure, where each node is a specific
element of the document. For example, a table, a single cell of a table, a
paragraph, a navigation menu, or a single line of that menu. More general
elements can contain others. For instance, an entire table is a DOM element.
All its rows are also DOM elements and children of the table element. In
turn, each row contains individual cells that are also DOM elements. Each
has a set of attributes that define its properties, such as border width, size,
font, actions to perform when clicked, a name or an ID. In addition to the

28

attributes, CSS (Cascading Style Sheets) offers a way to set styles for each
element. Generally, styles are used to define all kinds of visual decorations,
while attributes set other options. But in fact, the border between them
is quite vague, and the two often overlap. In an HTML document, DOM
is defined by tags, where each tag corresponds to a DOM element, and the
tree-like structure is achieved by putting children tags inside their parents.

Introduced in 2014, HTML version 5 supports Scalable Vector Graphics
(SVG), which plays an essential role in data visualisation tasks. SVG is
a graphics format that is also based on DOM. Its base elements are various
graphics primitives: circles, rectangles, custom paths. Their attributes define
colour, border width, opacity, etc., and their position inside the parent SVG
element. In practice, there is no difference in functionality between SVG
elements and HTML tags. They are defined and modified in the same fashion,
which is important to D3.js since most of its functionality concerns various
manipulations with DOM elements.

D3 is based upon three major building blocks.

• A selection is simply a collection of one or several DOM elements.
Selections are defined with CSV selectors (using a tag name, a class
name, an element ID, etc.) and allow easy access to attributes and
styles of the selected elements. A very similar concept of selections
exists in a well-known JavaScript framework, “jQuery”, and thus is
familiar to many of those who worked with JavaScript.

• Transitions offer a simple in-built interface to trace any changes of
styles and attributes of the elements inside a selection. The changes
are displayed as a smooth transformation from one state to another.
In this way, the user can easily trace any effect on the visualised data
that his or her interaction caused.

• Data binding is the core concept of D3, as follows from its name. The
idea is that every element of any selection can be bound to a specific
instance in the dataset. One can define what should happen if the
instance is removed or a new one is added to the dataset (for example,
to remove the corresponding element and add a new one). D3 also
offers an easy way to access the data bound to the element and use
them to specify the element’s attributes and styles.

Besides the very basic functionality linked to its central concepts, D3 also
offers several primitives that can be used for data visualisation. For example,

29

continuous and categorical scales can be used separately or linked to axes,
some predefined layouts to make force networks, parsers to process the most
common data types, and many other plugins. Yet, even with all the diverse
possibilities and functions, it is still required to have some coding experience
with JavaScript to create D3 visualisations.

30

Chapter 3

Results

In this section, I will go through the three packages developed in the course of
this project. The packages tackle the problem of combining R and JavaScript
for interactive visualisation from different sides. They are applicable to real-
life practical tasks and represent each its own idea of how to approach vi-
sualisation challenges. All the packages described in this section are written
for the R programming language (“rlc” also provides a JavaScript interface).
They are open source and are freely available on CRAN and GitHub.

• I start from the “jrc” package (Section 3.1). It is not directly intended
for visualising biological or any other kind of data (though still capable
of it), but rather designed to be used by developers as a basis for other
packages. It serves as a bridge between an R session and a web page
and allows one to run any JavaScript code from the R session and vice
versa.

• The second package in the scope of this thesis is “sleepwalk” (Section
3.2). It is a simple interactive tool to explore distortions in distances
caused by dimensionality reduction techniques. It utilises interactivity
to help the user to explore the effect of the dimensionality reduction
on the neighbourhoods and make his or her own conclusions about it.
“sleepwalk” is written almost entirely in JavaScript and only waits to
receive data from the R session with the underlying “jrc” package. In
this way, the app does not rely on an active connection and can be
easily saved as an HTML file. However, such a use of the predefined
JavaScript template makes it hard to customise the app.

31

• Finally, Section 3.3 tells about LinkedCharts. This toolbox is available
both in R (as the “rlc” package) and in JavaScript (as the linked-
charts.js library). LinkedCharts is a general-purpose plotting library
for generating interactive apps. It is not bound to a specific task and
only provides the user with a set of plotting primitives and a way
to link them together to ensure interactivity. As “sleepwalk”, it also
is based on the “jrc” package, but unlike it, it is based on a clear
task separation between the utilised languages. All the data processing
happens exclusively on the R side, while JavaScript only visualises data
and reports the user’s activity to the R session. This separation requires
a constant message exchange between the R session and the web page,
and as a result, the app cannot be directly encapsulated within an
HTML file. Instead, the provided JavaScript interface should be used.
(See Section 3.3.3 for more details.) However, such an approach ensures
flexibility since R users can fine-tailor the behaviour of the app without
ever touching JavaScript.

3.1 The “jrc” package

Unlike the two other packages, described further in this thesis, “jrc” is in-
tended for people with a computer science, rather then a biological back-
ground. Therefore, this section is much more technical then the rest of the
thesis.

For all further work to be concentrated solely on visualization tasks, we
first decided to establish an efficient bridge between the R and JavaScript
programming languages. As explained in Section 2.3.5, the existing “httpuv”
package solves the technical part of the problem, employing several C and
C++ libraries. Nevertheless, “httpuv” is still a very low-level tool. It pro-
vides a possibility of communication but does not regulate the communication
itself. A WebSocket connection can be used to exchange messages between
an R session and a web page, but the rules on how to process the messages
still have to be defined on both sides. To this end, I devised a package called
“jrc”, which stands for which stands for JavaScript-R Connection. It is
based on the “httpuv” package, and its main goal is to allow for exchange of
any JavaScipt code between a running R session and a web page. Since “jrc”
is supposed to work on both sides of the connection, it consists of two parts:
R and JavaScript. A TCP server is set up by the “httpuv” package and is

32

defined in a way that it inserts the JavaScript part of the “jrc” package to
any served HTML page, thus ensuring the package’s full functionality. More
details on web servers and TCP/IP connections can be found in Section 2.3.3.

To give a feeling of how “jrc” works, here is a very basic example:

1 k <- 0

2 openPage()

3 sendCommand(paste0(

4 "button = document.createElement('input');",

5 "button.type = 'button';",

6 "button.addEventListener('click', function() {",

7 "jrc.sendCommand('k <<- k + 1')",

8 "});",

9 "button.value = '+1';",

10 "document.body.appendChild(button);",

11 collapse = "\n"))

12 closePage()

This example opens a web page with a single “+1” button. Each time
the button is pressed, it increases the value of the variable k by one. At any
moment, the variable and its current value can be accessed in the R session.
Line 1 of this example sets a default value of k. Lines 2 and 12 initialise
and close the app, respectively. The most important part of this example
app, in particular, and the “jrc” package, in general, is in Lines 3 and 7.
There, one can find the sendCommand function that is responsible for sending
custom code from the R session and back and executing it on the other side.
sendCommand from Line 3 takes a chunk of JavaScript code and runs it on
the web page, adding a button. jrc.sendCommand (Line 7) is a JavaScript
function that runs a piece of R code in the R session, increasing k by one. The
sendCommand function and its alternatives in the “jrc” package are described
in Section 3.1.1. Lines 4-10 are responsible for adding the button to the web
page. The JavaScript code here may seem overly lengthy. However, partly
it is caused by the use of “Vanilla JS” for the sake of generality. Modern
JavaScript frameworks can do the same with much more concise commands.
Alternatively, one does not need to use JavaScript for static elements. “jrc”
can open a pre-made HTML file with all the elements, such as this button,
already added to it.

33

<input type="button" value="+1"

onclick="jrc.sendCommand('k <<- k + 1');" />

Having a myFile.html file with the code above, one can get the same app
simply by running

k <- 0

openPage(startPage="myFile.html")

3.1.1 Message exchange

Messages between R and JavaScript are exchanged via a WebSocket connec-
tion. (See Section 2.3.4 for more details.) In “jrc”, messages are sent as plain
text, then they are interpreted and processed based on their type. Overall,
there are four types of messages:

• A command (COM) is a piece of R or JavaScript code that is sent
to the other side of the WebSocket connection and directly evaluated
there. It is the most straightforward way to control a web page or an
R session. The code is passed as a plain text and executed as-is, no
matter the result. It is up to the user to make sure that the code can
run without errors.

• A function call (FUN) contains a name of an R or JavaScript function, a
list of arguments and a name of the variable where to store the returned
value if any. If a function with the specified name is defined, it is called
upon receiving the message with the provided arguments. In a request
to the R session, one can also set a package where to look for the
function. The package must be already installed but not necessarily
loaded.

• data (DATA) are transferred in JSON format. Such a message also con-
tains a name of the variable where to store the data. Since browsers
are not usually effective in storing large amounts of data, it is recom-
mended not to send big datasets at once from the R session. It will
make an app more robust if necessary data are transferred on demand.

• HTML is the only type of message that can go only in one direction:
from an R session to a web page. Such a message contains plain HTML

34

code that will be appended to the ”body” element of the page. Even
though JavaScript code is allowed inside a “script” HTML tag, this code
will not be processed by the browser. Therefore this type of message
cannot be used instead of COM messages.

To handle each of these four message types “jrc” offers an R and a
JavaScript function. R functions are sendCommand, sendData, callFunction
and sendHTML. JavaScript functions are jrc.sendCommand, jrc.sendData,
jrc.callFunction. The full list of their arguments can be found in the pack-
age’s documentation on CRAN. JavaScript functions are described together
with the corresponding R functions in the “Details” section.

3.1.2 Multiple sessions

There are two ways of using an interactive app. It can be run locally when
the same person runs the R script and interacts with the web page. In this
case, there is typically a single WebSocket connection, through which all the
messages are sent and received; all the messages are trustworthy since they
are generated by the user who controls both sides of the connection; and at
any given moment, there is just one state of the app that has to be stored.

Things change when we put the app online. Now several users can access
the app simultaneously. It means that for each message, “jrc” has to know
where it comes from and where to send the reply. In addition, each con-
nection may require its own set of variables to correctly react to the user’s
actions. Finally, if the app is published outside of some protected network,
the incoming messages can be harmful. “jrc” tackles all three issues. The
security measures are described in Section 3.1.4. This section is about the
inner structure of the “jrc” app and its role in managing multiple connections
to the same app (several opened web pages).

Partially, the problem is already solved by the “httpuv” package. Multiple
connections can be established, and corresponding handles are generated.
The storage and usage of the handles, however, is governed by the “jrc”.

An entire “jrc” app is encapsulated inside an “R6” class object [109].
This object of class App contains full information about a jrc app. It stores
the server handle and information about all active connections. Methods
of this object are used to monitor and force close connections, control data
accessibility and the security permits of the app within the current R session.
All the essential for the app’s functionality information is stored within this

35

single object, making it possible to have several apps running simultaneously
within the same R session.

Similarly, all the information that is related to a single connection to a web
page is stored in a separate object of class Session. Instances of this class
are initialized whenever a new WebSocket connection is established and are
stored inside the App object. After a connection is closed, the corresponding
object is removed from the memory. Session holds a connection to the web
page, processes all the incoming and outgoing messages, stores local variables
and controls memory usage.

Session objects are completely separated from each other and the cor-
responding App object. There is no shared information and no way for one
session to influence another. The App object, however, has complete control
over each session. An object of class Session can be retrieved only through
the App object via the randomly generated ID that is assigned to each ses-
sion upon initialization. Therefore number and functionality of simultaneous
connections are limited only by resources available to the R session and the
app’s settings. (See Section 3.1.4 for more details.)

However, ‘jrc” is also intended to serve as a basis for easy-to-use inter-
active apps for everyday exploratory analysis. It can be too much to expect
people to learn about the “R6” classes, which are not part of the casual R
usage for the data analysis, or to keep in mind the structure of a jrc app.
Therefore, the “jrc” package also provides a set of wrapper functions for local
usage. If there is only one active connection (for example, to the RStudio
viewer), the app can be fully controlled with these functions that internally
access all the required R6 class objects. In this way, the “jrc” can be used
simply as a bridge between the RStudio and a single opened web page with-
out any knowledge about Sessions and Apps. The wrapper function can also
control multiple sessions, but then they will need to get a session ID as one
of their arguments.

3.1.3 Local environments and function evaluation

Briefly mentioned in Section 3.1.2, but very important for understanding
principles upon which the “jrc” package is built, is non-standard function
evaluation [110]. In “jrc”, it solves the problem of local variables, i.e. the
variables defined for each client session to store some specific information,
such as the app’s current state for the given user.

Each object of class Session has an environment assigned to it. I am

36

going to call them local environments. Another environment is assigned to
the entire app (app environment). The app environment is a parent of all
the local ones. By default, the environment where the app was initialized is
used as an app environment, but the app’s settings can change it.

All session variables are stored inside the local environments. Each session
can access its own variables, data from the app environment and its parents,
if any. There is no way for one session to get to the variables of another
session. One can also protect global variables by masking them (creating a
local variable with the same name) or by orphaning the app environment.
In the latter case, the entire app will not affect anything outside of the app
environment.

A specific procedure was designed to control how the messages incoming
through the WebSocket are processed to achieve this effect. As it was men-
tioned before, it is the Session object that is responsible for receiving and
sending messages. This object has the most direct access to the correspond-
ing local environment.

• Commands are evaluated inside the local environment. Therefore both
search for a variable and assignment occurs according to common R
principles. Any assignment with the usual <- operator happens in the
local environment, and <<- operator searches for the variable with the
given name along the parent chain. A default R search path is used to
read a variable, e.g. R searches for a variable with the specified name
first in the local environment, then in the app environment and then
in its parents, until the variable is found or the global environment is
reached.

• Data are assigned to the variable with the specified name in the local
environment if there is a session variable with such a name and in the
app environment otherwise.

• For functions, “jrc” changes their enclosing environment to the local
one, unless the function is defined inside some package’s namespace.
The arguments are evaluated inside the local environment, and the
result is assigned the same way as the incoming data.

Even though non-standard function evaluation may lead to some confu-
sion and unexpected results for the user, especially when trying to solve some
non-trivial tasks, in “jrc” it is still employed to ensure simplicity for the users

37

with less experience in programming. Message evaluations and function calls
are organized to make it possible to use the same app locally and as a public
app with only minimal changes in the code. Specifically, in most cases, one
should only provide all the session variables with their default values to the
sessionVariables argument of the openPage function (which starts any
“jrc” app). Everything else will be taken care of automatically.

3.1.4 Security restrictions

If a jrc app is made public, anyone who can open it in a browser also gets
access to the WebSocket connection to the R session running somewhere on
a server. The client can then send his or her own messages that will be
processed by the R session, as are those that come from the app. And the
R session, in turn, has a wide range of possibilities to access local files and
interact with the operating system. The problem is especially relevant for
the direct code evaluation, but other “jrc” functions (enumerated in Section
3.1.1) can also be maliciously misused by someone creative. Therefore some
security restrictions have to be set for an app. Though the “jrc” package pro-
vides similar capabilities for both ends of the WebSocket connection, security
limits are, in fact, asymmetric.

At any moment, the R session has complete control over each opened
connection. Specifically, any JavaScript code can be evaluated on the web
page, local variables can be inspected and manipulated, information on the
duration and activity of the connection can be obtained, and the connec-
tion can be closed at any moment. This is permissible because a jrc app is
incapable of doing anything more than running some JavaScript code in a
browser. Thus, the privacy of the person who requests a page from the jrc
app is protected by the in-built browser limitations for JavaScript, which are
quite strict.

On the other hand, many of the commands incoming from the web page to
the R session must be authorized before execution. Specifically, any custom
code always requires authorization. As for the function calls and variable
assignments, one can specify a list of functions that a web page is allowed
to call and variables that may be overwritten. Everything else will require
manual authorization. There are also limitations for the local files that the
server can access: by default, these are only files that are stored in the root
directory of the server. One can also add other directories to the list of
allowed directories. Attempt to access files outside of the specified locations

38

will cause a ”403: Forbidden” response.

3.2 The “sleepwalk” package

In Section 3.1, I have described the “jrc” package as a foundation for other
packages for interactive visualisation. Here and in Section 3.3, I am going to
give examples of what kind of packages can be made on top of “jrc”. First,
we will talk about “sleepwalk”: a tool to interactively explore 2D embeddings
of high dimensional data.

The text and figures of this section (the entire Section 3.2) are taken from
[111] with only minor changes. The paper is currently distributed under the
Creative Commons Attribution-Non-Commercial 4.0 International License
and was originally written by myself.

3.2.1 Distances transformation in dimensionality re-
duction

Whenever one is presented with large amounts of data, producing a suitable
plot to get an overview is an important first step. So-called dimension re-
duction methods are commonly used if the data have a matrix shape. In
Section 2.1, I refer to this kind of data as “feature data” and also provide
examples of the assays that produce them. When working with feature data,
it is common practice, especially if the dataset contains many objects, to
perform principal component analysis (PCA) on a suitably normalised and
transformed feature matrix and then plot the objects’ first two principal com-
ponents as a scatter plot. Of course, PCA has more uses than just providing
such an overview plot (See [112] for a primer.), but nevertheless, the user’s
expectation is often simply that objects with similar feature profiles should
appear close together (“cluster together”), while objects with substantial dif-
ferences should appear farther apart. PCA’s popularity in biology notwith-
standing, the literature offers many methods designed specifically with this
goal in mind, with the best-known classic example perhaps being classical
multidimensional scaling (classical MDS, also known as principal coordinate
analysis, PCoA), Kruskall’s non-metric multidimensional scaling [113] and
Kohonen’s self-organising maps (SOM) [114].

The recent rapid progress of single-cell RNA-seq methods, now enabling
the measurement of expression profiles of thousands of individual cells in

39

Figure 3.1: Example of a t-SNE plot: These are cord-blood mononuclear
cells studied by [39]. The embedding and the assignment of cell types have
been taken from the Seurat [115] tutorial that uses this dataset as an example
[116]. See Section 2.2 for more details.

a sample, has renewed biologists’ interest in dimension reduction methods.
Here, t-distributed stochastic neighbour embedding (t-SNE, [117], Figure 3.1)
and Uniform Manifold Approximation and Projection (UMAP, [118]) have
become a de-facto standard. Other dimension reduction methods, developed
specifically for single-cell RNA-Seq include Destiny [119] (a method based on
diffusion maps [120]), the Monocle methods [121, 122], DDRTree [123] and
more. (See [124] for a review.) Due to the popularity of these methods for
single-cell RNA-Seq studies, in this section, I will use this type of datasets
as examples. Therefore, if not stated otherwise, we are discussing feature
data with individual cells as objects and gene expression values as features.
Section 3.2.7 goes through other possible applications of the “sleepwalk”

40

package.
These varied methods have been developed with different design goals:

For example, some methods strive to primarily preserve the neighbourhood,
others to represent the overall structure or larger-scale relations. Neverthe-
less, when using any of them in the field of single-cell transcriptomics, the
practitioner’s primary expectation is usually that cells depicted close to each
other or within the same apparent structure or cluster have more or less
similar expression profiles. In contrast, cells depicted in different regions of
the plot or in different structures are more different. In other words, it is
the preservation of neighbourhood relationships that is of importance. The
term “neighbourhood” should here be understood as follows: We consider a
high-dimensional space, the so-called feature space, in which each dimension
corresponds to one gene and each cell is represented by a point, whose co-
ordinates along the many dimensions are given by the expression strength
of the corresponding gene. Two cells with similar expression profiles will
hence have similar coordinates and thus will be close to each other in feature
space. Around each cell, we can imagine a hypersphere of nearby points and
consider all cells within the hypersphere as neighbours.

Any attempt to provide a two-dimensional representation of the neigh-
bourhood relations in this high-dimensional space will have to face what in
[117] is called the “crowding problem”. The volume of a high-dimensional
sphere is exponentially larger than the area of a two-dimensional disk. There-
fore, a cell can easily have many more close neighbours in feature space than
cells can be drawn within a sufficiently small circle around the point repre-
senting the cell in two-dimensional space.

This is, of course, not the only obstacle in achieving a faithful two-
dimensional representation of feature space, and the many possible kinds
of distortions have been widely discussed in the literature. (See e.g. [125]
and [126].) However, in single-cell sequencing, this is of particular relevance:
given a dimension-reduced representation such as a t-SNE or UMAP embed-
ding, how can we know for a specific cell of interest how far its neighbourhood
reaches? Knowing this is of paramount importance to correctly interpret an
embedding.

As a part of this project, we devised the “sleepwalk” package, an inter-
active tool that provides an intuitive solution to the task just outlined.

It works as follows: The user provides an embedding, i.e., the two-
dimensional coordinates output by a dimension-reducing method, as well as
information on the distances between cells in feature space in some suitable

41

Figure 3.2: (Caption on the following page.)

42

Figure 3.2: The “sleepwalk” app, being used to explore the t-SNE rendition
of the cord-blood dataset from Figure 3.1. The plots here are snapshots of a
running “sleepwalk” app. The red arrow shows the current mouse position.
(A) By moving the mouse cursor through the embedding, we find, e.g., that
the CD4+ T cell cluster is very tight and homogeneous, as can be seen
from the fact that all cells show a colour indicating that they are all close
to each other. (B) The monocyte cluster, in contrast, shows much more
heterogeneity when comparing the colouring at the same colour scale: now
only a few monocytes are coloured green and are hence as similar to the cell
under the mouse cursor as most of the T cells were in (A). (C) Placing the
mouse on this small tip of the monocyte cluster reveals that the cells there
are more similar to the T cells than to the other monocytes, indicating that
the cluster boundary might be inaccurate in both the t-SNE rendition and
the SNN clustering on which the Seurat workflow’s cell-type assignment is
based. (D) With the colour scale set to a wider distance range, we can assess
similarities between clusters: As expected, B cells are somewhat similar to T
cells, less so to NK cells and monocytes, and distant to erythrocytes and the
spiked-in mouse cells.

metric or their coordinates in an appropriately transformed feature space.
Whenever the user moves the mouse cursor over a cell, all cells are coloured
according to their distance to this cell in feature space, thus indicating the
cell’s closest neighbours with the strongest colour (Figure 3.2A-C). By mov-
ing the mouse over all the cells in the plot, the user can quickly obtain an
intuitive overview of how neighbourhoods may have been rendered differently
in different plot regions. Buttons are provided to adjust the colour scale so
that the user can choose which feature-space distance should be considered
a “close neighbourhood” and hence given the strong (dark, green) colours.

One can pause here and try Sleepwalk himself or herself. At https:

//anders-biostat.github.io/sleepwalk, there is a short description of
the package with some basic commands to run the app and live examples,
including the one demonstrated in Figure 3.2. Any “sleepwalk” app runs in
any Javascript-enabled web browser, i.e., it suffices to open the page in a
browser without installing anything.

43

https://anders-biostat.github.io/sleepwalk
https://anders-biostat.github.io/sleepwalk

3.2.2 Exploring an embedding

Sleepwalk makes aspects visible that are not apparent from a dimension
reduction alone. For example, the two large clusters under the cursor in
Figure 3.2A and Figure 3.2B have quite different characteristics. In the T
cell cluster (Figure 3.2A), most of the cells are very close to each other:
the cluster shows up as a large green cloud no matter where one points the
mouse. The monocyte cluster (Figure 3.2B), however, spreads over more
considerable distances: only a part shows up in green, which “follows” the
mouse. In a static t-SNE plot (such as Figure 3.1), this cannot be seen.

We can also check the cluster borders and discover, for instance (Figure
3.2C), that some cells in the monocyte cluster are more similar to those in
the T cell cluster than to those in their own cluster. They may have been
assigned the wrong cell type, or might be doublets. Thus, the Sleepwalk
exploration can alert the analyst to the need for further investigation of
possibly misleading features of a dimension-reduced embedding.

In Figure 3.2A-C, the colour scale was left at the automatically chosen
range of only very small distances. When switching the colour scale to a
wider distance range, we can also see here how relationships between clusters
(Figure 3.2D) appear in the supplied distance values: we see which clusters
are more and which are less similar to each other – information that a static
t-SNE does not show, due to the method’s design focus on faithful represen-
tation only of neighbourhoods. Care is needed here, however: once the con-
sidered distances exceed what one might recognise as “close neighbourhood”,
the choice of distance metric used will strongly influence interpretability of
the visualisation, as was discussed in Section 3.2.3.

3.2.3 Feature-space distances

The colours in Sleepwalk are meant to indicate similarity or dissimilarity
between the cells’ expression profiles, quantified as distances. There are
multiple suggestions for useful distance measures in the literature, and the
users can provide whichever they prefer. To produce the t-SNE embedding
in Figure 3.1, I followed the Seurat workflow [116], which calculates distances
in a specific manner, and these are then also used by the t-SNE routine. In
more details, the data preparation is described in Section 3.2.9. I have also
used these exact distances to colour the points in the Sleepwalk rendition
(Figure 3.2), thus allowing us to see directly where t-SNE succeeded and

44

where it failed in its design goal of preserving the neighbourhood relation in
its input data.

t-SNE uses a flexible approach to define the distance scale over which
cells are considered neighbours: it adjusts the distance scale for each cell
such that all cells have approximately the same number of neighbours (the
so-called perplexity). Sleepwalk, in contrast, uses a fixed distance scale. This
is on purpose: it allows us to note where the neighbourhood has a longer or
shorter range (as shown in the comparison of Figures 3.2A and 3.2B). The
app offers two buttons to increase or decrease the scale of the distance-to-
colour mapping, allowing the user to manually choose what distance should
be considered as the close ones.

3.2.4 Comparing embeddings

With the availability of choice in dimension reduction methods, the question
arises of which one to use. Benchmark comparisons may address this question
in general; see for example [127] for a comparison of UMAP with t-SNE
and related methods. When working on a specific dataset, however, simply
calculating multiple embeddings and comparing them side by side might be
even more helpful. I demonstrate this here using murine cerebellum data
[80]. (See section 2.2 for more details on the dataset.) In Figure 3.3, I show
cells from development time point E13.5, first visualized with t-SNE (Figure
3.3A), then with UMAP (Figure 3.3B).

To compare the two embeddings, we need, at minimum, a way to see
which points in the two plots correspond to the same cells. A classical ap-
proach is “brushing” [14]: selecting with the mouse a group of adjacently
depicted cells in one plot causes them to be highlighted in the other one,
too. Sleepwalk adapts this idea, but instead of the usual brush, it simply
uses in all embeddings the same colour for points corresponding to the same
cell. Moving the mouse over points in one plot then highlights the neigh-
bourhood structure induced by the feature-space distance chosen for that
embedding not only there but also in all displayed embeddings and so links
them. It allows us to see for a structure in one embedding whether there are
corresponding structures in the other embeddings.

In the example shown in Figure 3.3, there is a clear correspondence be-
tween the major structures generated by t-SNE and by UMAP. Even the
arrangement of cells within these structures is the same, which one can fol-
low in the life version of the app. The app can be found on the package’s

45

Figure 3.3: Sleepwalk being used to compare two embeddings of the same
single-cell data of a developing murine cerebellum at embryonal time point
E13.5 [80]: t-SNE on the left and UMAP on the right. The user can explore
one embedding in the same ways as in Figure 3.2, while all other embeddings
that are displayed concurrently are “slaved” to the one under the mouse
cursor: each cell has the same colour in all embeddings. The red arrow
shows the current mouse position.

web page at https://anders-biostat.github.io/sleepwalk/. There are,
however, also differences: The cells at the mouse position in Figure 3.3 are
part of the connecting “filament” in the t-SNE embedding but lie in an ex-
ternal “protrusion” in the UMAP. Further exploration in the live version of
Figure 3.3 can suggest that UMAP forced the two branches to intersect while
still trying to repel cells of different lineages away from each other (note the
gap in the highlighted branch in Figure 3.3B). It is another example of di-
mensionality reduction artefacts that are hard to notice from a static image
but can be uncovered with Sleepwalk.

46

https://anders-biostat.github.io/sleepwalk/

Figure 3.4: Sleepwalk in multi-sample mode, comparing three samples of a
developing murine cerebellum: two samples of two different mice embryos
at time point E13.5 (A, B) and the third (C) from E14.5. The red arrow
shows the current mouse position. The dashed grey lines roughly indicate
two different lineages and their common progenitor cells (more details on the
marker genes used to draw these boundaries and their expression one can
find in Section 3.2.9). By following the GABAergic branch, one can notice
that its very tip in the E13.5 samples corresponds to cells in the middle of the
branch in E14.5, indicating that the cells have differentiated further during
the elapsed day.

3.2.5 Comparing samples

Until recently, most single-cell RNA-seq studies analysed only a single sam-
ple comprising many cells. However, the full value of the technique might
become apparent only when it is used to compare between many samples.
One currently popular approach to do so visually is to simply combine the
data from the cells of all samples into one large expression matrix and per-
form t-SNE or UMAP on this. Often, global differences between samples,
typically due to technical effects [128], will prevent similar cells from different
samples to appear in the same cluster or structure in the dimension-reduced
embedding. Methods to automatically remove such sample-to-sample dif-
ferences (e.g., the CCA-based method in [115], and the MNN method in
[129]) address this issue but will not always work and may risk also removing
biological signal.

47

A visual alternative is to produce a dimension-reduced embedding sep-
arately for each sample and then try to find correspondences between the
features in these. In Figure 3.4, it is shown how Sleepwalk allows to per-
form such an exploration comparing UMAP renderings for the two E13.5
and one of the E14.5 samples of the mouse cerebellum dataset. (See Sec-
tion 2.2 for more details.) Exploring the data with the mouse shows the
two E13.5 samples (Figures 3.4A and 3.4B) are almost identical. The two
branches (GABAergic and glutamatergic neurons) can be clearly followed
from the early progenitor cells to the most differentiated ones. Comparing
the two E13.5 replicates reveals which aspects of the peculiar two-pronged
shape of the glutamatergic branch are simply due to random variation and
what seems reproducible. In the later E14.5 sample, the branches have dis-
connected from the progenitor cells, but Sleepwalk still allows us to identify
corresponding cells. Sleepwalk can show that the GABAergic lineage is dif-
ferentiated further in E14.5 than in E13.5 samples, as the endpoint of the
branch in E14.5 corresponds to an intermediate point in E13.5. Sleepwalk al-
lows one to discover such details immediately, with minimal effort. Of course,
such a visual exploration cannot replace a tailored, detailed analysis, but it
does provide a starting point and a first overview.

Crucially, using Sleepwalk’s multi-sample comparison mode does not re-
quire any removal of global sample-to-sample differences with batch-effect
correction methods. If the user selects a cell with the mouse in one sample,
the cells that are similar to it will be highlighted, both in the same sample
as well as in all other samples. It works even if the cells in the other samples
seem more distant due to the additional sample-to-sample distance; we only
might need to increase the scale of the distance-to-colour mapping for the
cross-sample comparisons.

3.2.6 Comparing distance metrics

In the examples discussed so far, I have always coloured cells according to
the default distance calculated by the Seurat workflow, namely the Euclidean
distance in the space spanned by the first few principal components according
to a PCA performed after certain preprocessing. The reason for this was not
that this specific distance metric should be considered more correct or more
“true” than any of the alternatives discussed in the literature, but simply
because it is the distance metric that has been used as input to t-SNE and
UMAP when calculating the discussed embeddings.

48

While this specific distance metric is popular due to its appearing in stan-
dard workflows such as Seurat’s, this is, of course, no reason to consider it
as more correct or “true” than possible alternatives or modifications. For
instance, we may either choose to use all genes in the distance calculation or
only some genes, which may either be chosen for having high expression or
high signal-to-noise ratio or perhaps chosen, via manual curation, as espe-
cially informative with respect to cell type or state. We may use the genes
as they are or aggregate them before into meta- or eigen-genes, e.g., by a
principal component analysis (as done in the Seurat workflow). The way
how the expression data has been transformed, normalised or preprocessed
can be understood as part of the choice of distance metric. The last but
not the least choice is, of course, the metric itself. There are numerous ways
how to calculate distances from the selected and possibly preprocessed set of
features. Besides Euclidean, one can calculate angular (“cosine”) or correla-
tion distance or use kernel functions [130] as it has been done, for instance,
in [131]. Metrics can even be learned to suit the specific task researcher
has in mind [132]. Dimensionality reduction techniques are typically based
on the assumption that, in feature space, cells are located on the surface of
a smooth manifold. The methods attempt to learn the manifold and then
to replace the original distance with a geodesic one (i.e., distance within the
manifold) [133, 134]. Diffusion distances [120] are a popular way of obtaining
a manifold-following distance simply and efficiently.

Some of these metrics may yield similar results; others can drastically
change cell-to-cell distances. In order to study the impact of the metric
choice, Sleepwalk offers a variant to the mode for comparing embeddings
described above, in which points that correspond to the same cell will get
different colours in different panels of the app, each showing the same em-
bedding but having a different distance matrix assigned to it. By hovering
the mouse over a cell, the user can see how the cells’ neighbourhoods differ
between the distance metrics.

Figure 3.5 shows Sleepwalk in the distance comparison mode. Once again,
I use the murine cerebellum dataset (specifically, stage E13.5, visualised with
UMAP) as an example. As before, I used the 2131 genes chosen by the Seu-
rat workflow as “variable”, and then calculated distance matrices using four
metrics: (i) Euclidean distance based directly on the normalised and log-
arithmised expressions of these genes, (ii) Euclidean distance in the space
spanned by the first 50 principal components of a PCA performed using the
variable genes, (iii) diffusion distance based on directly on the genes’ expres-

49

sion or (iv) on the first 50 principal components. As expected, Euclidean
distance calculated on all variable genes (i) is almost useless when applied
to so many dimensions. Most of the distances are condensed around some
median value, making it almost impossible to distinguish any patterns in the
data. However, all other distances are already good enough to see the two
developmental branches, with perhaps the diffusion distance separating them
most clearly.

One should keep in mind that, in the example of Figure 3.5, we are
comparing the four metrics not just to each other but also to the fifth one:
The distance that was used to generate the embedding. UMAP is one of the
manifold learning dimensionality reduction techniques. As such, it might be
more similar to diffusion distances than to the Euclidean metric, even though
the Euclidean distance in PCA space (distance (ii)) was used as input for the
UMAP process. Taking this together, one might expect the combination of
diffusion distance and PCA to correspond especially well with the embedding.
However, which of the four metrics should be considered “best” is an entirely
different question, as the suitability of a metric will depend on the task at
hand. While a metric can be effective in separating specific cell types, it
might at the same time fail to arrange cells by their cell cycle stage [135],
and this can be considered a good or a bad thing, depending on whether
differences due to cell cycle are considered a nuisance or a topic of interest in
one’s experiment. Therefore, any opinions or guidance on this question would
be out of the topic of this thesis, which is the visualisation of omics data.
What Sleepwalk does offer here is a means to explore differences between
metrics and embeddings and understand them, not necessarily to perform
benchmarks. Once a researcher is aware of such differences, it is up to him
or her to decide if they affect data interpretation.

3.2.7 Beyond single-cell transcriptomics

In all the examples discussed so far, the points correspond to individual cells
in samples assessed with single-cell transcriptomics. However, dimensionality
reduction methods can be used for any kind of feature data described in
Section 2.1. Clearly, Sleepwalk can also be helpful to explore these dimension-
reduced embeddings as well. For example, prominent use case for dimension-
reduction methods are large-scale studies comprising dozens or even hundreds
of samples. In [136], for example, a collection of 131 bulk RNA-seq datasets
comparing organ samples from several species is described and provide an

50

Figure 3.5: (Caption on the following page.)

51

Figure 3.5: Metric comparison using Sleepwalk. All four panels now show
the same embedding: A UMAP visualisation of the E13.5 sample of murine
cerebellum. The cells are now coloured based on four different metrics: Eu-
clidean distance-based directly on the normalised and logarithmised genes’
expressions (A); Euclidean distance in the space spanned by the first 50 prin-
cipal components of a PCA performed using the variable genes (B); diffusion
distance based on directly on the genes’ expression (C) or on the first 50
principal components (D). The red arrow shows the current mouse position,
which is at the intersection of GABAergic and glutamatergic lineages. Colour
scales were adjusted so that they roughly stretch along the entire selected
branch. The spread of colouring onto the other developmental branch shows
how good is the metric in separating the two lineages.

overview PCA plot is provided as their Figure 1. In [137] a t-SNE plot is
used to illustrate similarities and differences between their 246 blood cancer
samples.

Research on dimension reduction originated in the machine learning field,
with the original applications being the study of training data for machine
learning applications. Of course, in this area, as well as in other applications
of dimension reduction, Sleepwalk should also prove useful.

3.2.8 Implementation and usage

The R package “sleepwalk” is built on top of the “jrc” package, and thus
relies on the principles described in Section 3.1. All essential “sleepwalk”
features are implemented in JavaScript, while R is used mainly to format and
send the input data to the web page. It means that a “sleepwalk” app can
remain functional even without maintaining a WebSocket connection. (See
Section 2.3.4 for more details.) As a result, it is possible to easily store an
offline version of an app as an HTML file that can be opened in any modern
browser without an R session running in the background or even installed. It
can be helpful when an analyst wishes to share a Sleepwalk visualisation with
colleagues or provide it on a web page or in a paper supplement. Moreover,
such a possibility is also implemented in the package.

The central function of the package is also called “sleepwalk”. The user
provides it with the 2D coordinates for each object (cell) in the embedding,
a square matrix of cell-to-cell distances, or, alternative to the latter, a data

52

matrix from which Sleepwalk can calculate Euclidean or angular distances.
For both these parameters, the user can also supply multiple matrices to dis-
play multiple embeddings concurrently for comparison. It can be done either
such that each embedding represents the same objects (as in Figure 3.3), or
that each embedding represents a different set of objects, but distances are
also given between objects in different embeddings (as in Figure 3.4).

“sleepwalk” can easily be used in combination with other single-cell anal-
ysis frameworks. To visualise, for example, a Seurat data object after running
RunPCA and RunTSNE one can use one of the following lines of code:

• for Seurat version 2.x:

sleepwalk(seu@dr$tsne@cell.embeddings,

seu@dr$pca@cell.embeddings)

• for Seurat version 3.x:

sleepwalk(Embeddings(Reductions(seu, "tsne")),

Embeddings(Reductions(seu, "pca")))

This code takes the t-SNE embedding stored in the Seurat data object seu
and displays it with “sleepwalk”. If RunUMAP was used instead of RunTSNE,
occurrences of tsne in the code above should be replaced with umap.

Though a WebSocket connection to a running R session is not required,
it can provide some additional useful features that are unavailable in the
“offline” mode.

One of them is “lasso”: The user can encircle a group of points with
the mouse, and the indices of these points are then reported back to the R
session, where they can be queried with a callback function. It can be helpful
if the analyst spots an interesting set of cells while exploring an embedding
and wishes to perform further analysis on them.

There is also a slw_snapshot function that also requires a WebSocket
connection. This function queries for a specific state of the app and generates
a static plot, such as ones that are used as figures in this section. The plots
are generated with the “ggplot2” package [98].

The colour scheme used to depict distances is the “cubehelix” palette, a
colour map initially developed for astronomy and optimised for good visual
separation between levels throughout its dynamic range [138].

53

For a description of further arguments of the sleepwalk function, please
see the documentation. The package is open-source and is available on CRAN
at https://CRAN.R-project.org/package=sleepwalk.

3.2.9 Data processing

To illustrate possible applications of the “sleepwalk” package two of the
datasets described in Section 2.2 were used. Specifically, “CITE-seq data”
[39] and “murine cerebellum data” [80].

CITE-seq data were used to produce Figures 3.1 and 3.2. To this end, the
raw UMI counts were processed following the Seurat workflow proposed for
exactly this dataset [116]. Data were normalised and log-transformed. 976
variable genes were detected with y.cutoff = 0.5. These genes were scaled
and used for principal components analysis. For further analysis, the first
13 principal components were used, which explain around 23% of the total
variance. The t-SNE (Figures 3.1, 3.2) and UMAP (Figure 3.2) embeddings
were calculated using the default functions from the Seurat package. The
assignments of cell types to clusters was taken, too, from the Seurat tutorial
workflow [116]. The resulting Seurat object can be downloaded from Figshare
(doi:10.6084/m9.figshare.7908059).

The raw reads of the murine cerebellum data were aligned and counted
using the Cell Ranger [139] software (output files are accessible from Figshare,
doi:10.6084/m9.figshare.7910483; this has been done by Kevin Leiss). Some
genes and droplets were filtered out following the Methods section of [80].
All the cells with more than 10% of all UMIs coming from mitochondrial
genes were removed. After that, all ribosomal and mitochondrial genes were
excluded as well. Next, only cells that contain from 3500 to 15000 UMIs were
kept. Lastly, I omitted all genes with zero expression in all the remaining
cells. The filtered raw data were then used to create Seurat objects that can
be found at Figshare, doi:10.6084/m9.figshare.7910483). Seurat was used
to normalise and log-transform raw counts and find variable genes. The
“irlba” R package [140, 141] was used to generate a PCA embedding of the
data (each sample separately, only variable genes). The first 50 principal
components were used for further analysis. The t-SNE embeddings were
rendered with the “Rtsne” package [142], a wrapper around the code from
[143]. The “uwot” package [144] was used for UMAP embeddings. Distances
between cells from different samples (Figure 3.4) were calculated based on
the variable genes shared between all the samples and a PCA embedding

54

https://CRAN.R-project.org/package=sleepwalk
https://doi.org/10.6084/m9.figshare.7908059
https://doi.org/10.6084/m9.figshare.7910483
https://doi.org/10.6084/m9.figshare.7910483

Figure 3.6: Gene markers used to identify lineages in Figure 3.4. In order to
recognise patterns visible in UMAP visualisations of the murine cerebellum
data, the expression of the three established gene markers was used: Msx3
for early progenitors (top row), Meis2 for the glutamatergic lineage (mid-
dle row), and Lhx5 for the GABAergic lineage (bottom row). The colour
scale shows the normalised and logarithmised expression values in each cell.
Generally, a single marker is not enough for robust identification of the cell
type in single-cell RNA-Seq studies. However, the discussion in Section 3.2.5
involves only approximate detection of main cerebellum cell lineages.

55

for all the cells. Euclidean distances in the space defined by the first 50
principal components are used to colour the points. To distinguish early
progenitors from further differentiated cells of glutamatergic and GABAergic,
the following marker genes were used: Msx3 for early progenitors, Meis2 for
the glutamatergic lineage, and Lhx5 for the GABAergic lineage (Figure 3.6).
Contours in Figure 3.4 are drawn to include around 90% of cells that express
each of the markers above a certain threshold using the geom_mark_ellipse
function of the “ggforce” package [145].

Calculation of diffusion distance in Figure 3.5 is based on the “destiny”
package [119]. Internal functions of the package were used to find nearest
neighbours, to calculate local diffusion scale parameters sigma and to get
initial transition probabilities. Then the diffusion was manually propagated
with 16-time steps and calculated the resulting distances.

3.3 The “rlc” package (LinkedCharts)

In Section 1.2, I have outlined the benefits of interactive data visualisation
compared to more traditional static plots and gave a short overview of this
actively developing area. However, interactivity is still rarely used during the
exploratory phase of a research project due to the amount of effort it usually
takes to generate a customised interactive app. Some packages offer simple
shortcuts to the benefits of interactivity. Nevertheless, the simplicity is often
reached by hardcoding and presetting too many aspects of an app and thus
making it applicable only to some specific data types.

With LinkedCharts, we tried to find a balance between the complexity of
usage and possibilities for customisation to make it suitable for interactive
data exploration. It requires only basic coding skills to produce fully func-
tional apps for ad hoc analysis. With a little more effort, one can make a
nicer looking app and customise the most commonly used plot settings (such
as colours, labels, axes, etc.). Furthermore, with the time and effort generally
required for the same task with other packages, one can use LinkedCharts to
make a presentable app deployed on a server. Since the library is JavaScript-
based, it can be combined with various existing web solutions. One can also
write custom scripts that will change even hardcoded aspects of the library
without making changes to the source code, making LinkedCharts extremely
flexible.

LinkedCharts is not fixed on any specific task. It is a toolbox, and its

56

blocks can be combined in any manner, the same way as one combines plots
for a complex paper figure. All blocks share the same interface and very sim-
ilar interactivity capabilities, which means that understanding one of them
is enough to grasp the entire concept of LinkedCharts.

With all these, I hope that LinkedCharts can become a valuable asset for
a scientific community that can be used both for everyday routine and for
presenting one’s research to a greater audience. LinkedCharts is available
as an R package (“rlc”) and as a JavaScript library. The R implementa-
tion of LinkedCharts, which is the focus of this thesis, is also referred to as
R/LinkedCharts.

3.3.1 Linking charts

The central concept behind LinkedCharts is, as follows from the name, link-
ing and focusing [147]. We connect two or more plots so that manipulations
with one of them affect the others. It is easier to understand how this concept
works in LinkedCharts with a simple example. Here, I use the oral cancer
data briefly described in Section 2.2. It contains gene expression values from
several tissue types (normal, cancerous, and dysplasia) from multiple pa-
tients, and the first natural question to ask based on these data is about
differential expression between various tissue types. Several packages offer
functionality to answer such questions [146, 148]. Here, the function voom

from the “limma” package was applied to compare normal and cancerous
tissues. It is common to visualise such a comparison with an MA plot [149]
showing the average gene expression on the X-axis and log fold change be-
tween the two groups on the Y-axis (Figure 3.7A). Red dots correspond to
genes that are considered significantly different between the two conditions
(adjusted p-value < 0.1). However, how does the difference in expression
look like for every single patient? Is it consistent across all the patients or
only detected in some of them? Are there any artefacts or outliers that cause
the p-value to be too small?

To find answers to these questions, one can add another plot that shows
expression values (CPMs) for all the patients (Figure 3.7B). This plot can
show expression for only one selected gene at a time, but LinkedCharts allows
to link it to the MA plot. Now, any click on a point from the MA plot makes
the plot to the right show expression of the corresponding gene. Figure 3.7 is
based on a real LinkedCharts app that can be easily reproduced by anyone
who has R and the “rlc” package installed. An interactive version of the app

57

7 colour = ifelse(adj.P.Val < 0.1, "red", "black"),

8 on_click = function(k) {

9 gene <<- k

10 updateCharts("A2")

11 }),

12 "A1", with = voomResult)

13

14 lc_scatter(dat(

15 x = patient,

16 y = normCounts[gene,],

17 colourValue = tissue,

18 logScaleY = 10),

19 "A2", with = sampleTable)

It works as follows. In Line 2, an index of the gene to show in the
expression plot is stored in the gene variable. This index is used to tell the
chart which line of the normCounts matrix (where the normalised counts are
stored) to use as y values of the expression plot (Line 16). Almost every chart
of the R/LinkedCharts library has the on_click argument, which allows the
user to define a function that will be called each time someone clicks on an
element of the plot (point, line, cell of a heatmap, etc.). In this example,
whenever this happens, the value of the gene variable is changed to the index
of the clicked point (Line 9). Then R/LinkedCharts is told to update the
second plot (Line 10, “A2” is its ID set in Line 19 of the example code).
Updating means that the package will reevaluate all arguments inside the
dat() function and change the chart accordingly. In this case, a new value
of gene will yield new y values for the expression plot.

This simple logic is not limited to just two plots and provides a base to cre-
ate various simple and complex apps. For example, the tutorial at https://
anders-biostat.github.io/linked-charts/rlc/tutorials/citeseq1.html

gives detailed instructions to generate an app for single-cell data exploration.
The app consists of four charts, three of which are scatter plots, and one is
an information table to show genes that define a selected cell cluster.

Besides a click, LinkedCharts can react to other events, such as moving
the mouse cursor over or out of an element, selecting or deselecting elements
with the Shift key pressed, clicking on any position of a plot or a heatmap
label. The complete list can be found on the man page of any function
of the “rlc” package. Understanding how to define these functions (above

59

https://anders-biostat.github.io/linked-charts/rlc/tutorials/citeseq1.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/citeseq1.html

example, where vectors of values were used as x and y coordinates of points
or their colours. The same principle works in most plotting libraries. For
example, Figure 3.8 shows a comparison of the syntax in R/LinkedCharts
(“rlc” package) and ggplot (“ggplot2” [98] package) for a simple scatter plot.
Lines are arranged to match the same aspects of the plots; above each code
block, there is its output. One can see that the input data structure is
identical, and there is hardly any difference between the two.

An important thing to notice here is the dat() function. One can set
properties both inside and outside of it, but only those that are inside the
dat() function will be evaluated on each updateCharts call. Everything
outside this function will remain constant. There is a small example that
can illustrate the effect of the dat() function.

lc_scatter(

dat(x = rnorm(30)),

y = rnorm(30))

Running this code will produce a scatter plot with 30 randomly located
points. Now, every time one calls the updateCharts function, the x coordi-
nates of each dot will change to new random values, but all the y coordinates
will remain the same.

So far, I have mentioned only scatter plots, but R/LinkedCharts is not
limited to them. There are 15 main functions in the “rlc” package. Each
generates a specific type of plot (such as scatter plot, heatmap, bar plot,
etc.) or a navigation element (such as sliders or text fields). Figure 3.9
shows them all together with some basic examples. Each plot, as it has been
already mentioned, is defined by its properties: some of them are required
(such as x and y for a scatter plot or value for a heatmap) many others
are optional (palette, title, ticks, etc.). A full list of all the properties
with live examples is available at https://anders-biostat.github.io/

linked-charts/rlc/tutorials/props.html and also on the R man page
of each plotting function. Many of the properties accept minor variations in
spelling (colour/color or labels/label).

61

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html

and cancerous tissue samples, noticeably more genes with higher expression
levels in the cancerous tissue and that the difference in genes downregulated
in tumour samples seems to be more pronounced. For each gene, the data
from 38 samples (dysplasia samples not included) are summarised to just
three numbers: average expression, logarithmised fold change in expression
between normal and cancerous tissues, and the significance estimate of this
difference. Such a generalisation allows one to see the bigger picture but
loses details on individual samples.

Similar approaches are a part of almost any pipeline used in a biological
study. Each step takes the output from the previous one and modifies it,
usually by summarising it to produce more interpretable data. However,
some information is inevitably put aside. And from the resulting picture
alone, it is hard, if not impossible, to see whether the raw data had any
problems that could influence further conclusions. Various quality checks are
devised to detect any possible issues with the omitted data. These are often
quite helpful in pointing the researcher’s attention towards some spurious
artefacts in the data. Yet, especially in studies involving big data, these
checks are fully automated. The researcher only looks at some summarised
reports and may also have a look at some random examples. If these look
reasonable, the general assumption is that all the data not filtered out are
valid. However, while there is only one way for everything to be correct,
there are numerous ways for the data to be either wrong or not as one has
expected. Therefore, it is essential to have a possibility to look back before
making any conclusions from a figure that shows a condensed result.

To illustrate this idea, we can have a look at a typical drug screening
pipeline based on the drug screening data which have been described in
Section 2.2. In this study [64], a cohort of drugs was tested against pancreatic
cancer cell lines and the value of interest was a score to measure durgs’
efficiency. A pipeline was established to transform raw read-outs into more
interpretable scores and then use them to explore drug profiles. Its flow
is shown in Figure 3.10. The experiment starts from a cell viability assay
on a microplate. The measured value is an intensity of fluorescence from
each well that can be visualised as a heatmap with each cell representing a
microplate well (Figure 3.10A). Then the raw values are normalised to obtain
a percentage of metabolically active cells in each well. These values are now
used to score each tested drug with the Drug Sensitivity Score (DSS, [83]).
The score is based on the area under the sigmoid curve fitted to all five tested
concentrations of the drug. Figure 3.10B shows some of these curves. Now

63

Figure 3.10: (Caption on the following page.)

64

Figure 3.10: The main idea behind the LinkedCharts library is shown based
on a drug screening experiment. The blue arrow shows the direction of a typ-
ical pipeline used in drug screening experiments. (A) We start with reading
intensity values from plates with different cell lines grown in the presence of
studied drugs. These values are then normalised and turned into a fraction of
the cells that remained metabolically active (RealTime-GloTM assay, [81]) or
maintain membrane integrity (CellToxTM assay, [82]). (B) A sigmoid curve is
fitted to the obtained viability or toxicity values at different drug’s concentra-
tions, and the area under the fitted curve yields a single score for each drug.
(D) Different drugs’ scores are compared to each other across all the tested
cell lines. (C) A drug-drug correlation heatmap is then produced to identify
clusters of similar drugs. Red arrows illustrate the visualisation direction. It
starts with the summary heatmap plot (C). Suppose the researcher is inter-
ested in a particular drug combination or a cluster of drugs. In that case,
he or she can examine the corresponding drug scores simply by clicking on
the heatmap cell (D). Then, she or he can examine the exact viability values
for any given drug (B). And finally, if needed, it is possible to take one more
step back and to look at raw readouts to inspect them for the presence of any
artefacts (A). Though this figure illustrates a theoretical concept on which
the LinkedCharts library is based, I have also made a working app based on
the pipeline described above. It is available at https://anders-biostat.
github.io/linked-charts/thesis/drug_full.html and is followed by the
code to generate it in R or JavaScript and links to download all the necessary
data.

there is a single value per drug-cell line combination. To find drugs with a
similar efficiency profile, we can plot all the DSS values for each of the 21
tested cell lines against each other with two selected drugs as x and y axes
(Figure 3.10D). Such a comparison produces a correlation value for each pair
of drugs. Figure 3.10C shows them as a heatmap with clustered rows and
columns, which allows one to study general patterns of drug groups with a
similar effect on the cell lines. In Figure 3.10 this flow of data generation is
shown with the blue arrows.

To visualise the data with LinkedCharts, we should go backwards (red
arrows in Figure 3.10). We start with the most generalised plot, which, in this
case, is a correlation heatmap 3.10C. This is what a researcher would usually
rely on to draw conclusions. However, one may want to manually check an

65

https://anders-biostat.github.io/linked-charts/thesis/drug_full.html
https://anders-biostat.github.io/linked-charts/thesis/drug_full.html

interesting or suspicious pattern in the data before making any further claims.
To this end, LinkedCharts allows to easily add another explanatory plot, that
for each heatmap cell display all the DSS values for the two corresponding
drugs against each other (Figure 3.10D). A pair of drugs is selected by simply
clicking on a heatmap cell. The drug score is also a generalised value that
may be influenced by hidden artefacts in the data. If the researcher sees
something out of place, he or she may want to check that as well. So we add
another plot, showing the viability percentage for all five concentrations of
the two selected drugs and the chosen cell line with the fitted sigmoid curve
(3.10B). Just as the drugs are selected with mouse clicks on the heatmap,
the cell line is picked by clicking on a point in the drug-drug plot. Finally,
it is also possible to add the raw readouts as the fourth plot (3.10A). In this
example, it is linked to the drug-drug plot since all five concentrations reside
on the same plate. But under other conditions, it can be linked to a viability
plot and display the plate with the specific test.

Such a chain of charts where each one represents a major step of the data
pipeline and is explained in detail by the next one is what R/LinkedCharts
is particularly good at. These apps would allow a quick and easy spot check
of uncovered data patterns and give the researcher a better understanding of
inner connections between the data. For instance, to what extent noise can
influence the signal or what is the scale of changes in the value of interest is
typical to the data.

Exploratory analysis

While interactivity is already increasingly used to present results of finished
studies to the research community, with R/LinkedCharts, I would like to
point out its usefulness for everyday exploratory analysis. To this end,
R/LinkedCharts is designed in a way that requires one to spend not more
time designing an app than it would take to perform a similar analysis with
static plots. One may think of R/LinkedCharts as a container where the
researcher can put his or her code to turn it into an interactive app. It will
not perform a complex analysis automatically, but it will also not ask for
much more than the usual routine coding, one should do with or without
interactivity. Basic yet custom and functional apps do not require any spe-
cial knowledge of the package’s underlying structure or HTML layout. With
this, I have attempted to encourage researchers to try out interactivity as a
more improvised and need-based approach.

66

Let us return to the example from Figure 3.7. There, I show a typi-
cal part of a differential expression study: an MA plot (Figure 3.7A) and
a plot with expression values for each sample to explore it (Figure 3.7B). I
have already shown in Figure 3.8 (Section 3.3.2) that making a static plot
in R/LinkedCharts is not much different in comparison to popular plotting
libraries. It will take the same effort and same data structuring and prepro-
cessing to make these plots with, for example, the “ggplot2” library, as with
“rlc”. Now, the plot in Figure 3.7B serves for spot-checking. It allows one
to dive into the details of expression patterns, but only for one gene at a
time. Of course, one may decide to only rely on the general overview that
is provided by the MA plot (Figure 3.7A). However, a better practice is to
make sure that there are no unexpected expression artefacts in the genes of
interest. To do that, one would usually try to get a list of genes to check by
filtering, using some special R tools, or somehow else, and then make a plot
like the one in Figure 3.7A for each of them.

In the most simple case it would take copying and pasting the code for
the spot check plot and replacing y = normCounts["MyGene",] with y =

normCounts["AnotherMyGene",] (See the code chunk in Section 3.3.1). A
little improvement to that would be to write y = normCounts[myGene,]

and keep updating the myGene variable: myGene <- "MyGene", then myGene

<- "AnotherMyGene". After each update one should stil copy a piece of
code that generates the plot into the console. Finally, the most effective
way is to place this constantly copied and pasted code into a function, let
say, makePlot and to call it, when necessary: makePlot("MyGene"), then
makePlot("AnotherMyGene").

Now, one pause here and return to Section 3.3.1, where the code to pro-
duce the app from Figure 3.7 is given. The onClick function does the same
thing that is described in the previous paragraph. It stores the new gene into
the variable k. It then performs an equivalent of copying and pasting to the
console the code for the second plot, which in the “rlc” library can be done
with just the updateCharts function for the sake of simplicity. The core idea
here is so identical to the usual spot-checking routine that one can add our
imaginary makePlot function to the “rlc” chart, and it will still work. It is
only essential to be aware that in this case, the argument to the makePlot

will be an index of the selected gene and not its name.
Thus, there are simply no additional requirements to the data or en-

vironment, no new concepts that one should adopt to perform the usual
exploratory analysis or even to convert an existing script into an interactive

67

app. Figure 3.11 shows such a transformation in details for another example
of a common spot check practice.

This example is also based on the oral cancer data [38]. (See Section
2.2 for more details.) Above, we have looked at differentially expressed genes
between normal and cancerous tissues. Still, before getting there, a researcher
who has just obtained these data may want to get some overview of the
samples. He or she may want to check for the presence of batch effects,
clusters or outliers. It is also useful to check whether the samples group
together by origin or by type. One of the ways to do so is to generate a
2D embedding of the high-dimensional data. This approach is in the focus
of Section 3.2.1. Another option to get an overview is to have a look at a
correlation heatmap (Figure 3.11A and 3.11C). In Figure 3.11AC, one can,
for example, easily spot a small but tight cluster of samples and two outliers:
the two samples to the right and bottom that are further from their nearest
neighbours than most samples are from the majority of all others. The next
most natural question to ask is how exactly these two samples are different
from others. To answer it, one can plot gene expression values for several
pairs of samples against each other (Figure 3.11B and 3.11D). It will give
the researcher a feeling of what “similar” means for the particular dataset
and how the outliers do not fit this pattern. Therefore, the visualisation
task at hand reminds the one described above and illustrated by Figure 3.7.
Figure 3.11 shows how to solve this problem with commonly used static plots
(a heatmap from the “pheatmap” [99] package and a base R scatter plot,
Figure 3.11AB) and with R/LinkedCharts (Figure 3.11CD). Below each set
of charts, there is the code necessary to generate and update them. Neither
the output nor the required commands are much different between the two.
However, the R/LinkedCharts app is interactive. Besides linking, it provides
other useful features such as zooming in and out, reclustering heatmap and
showing sample names when the mouse hovers above them.

This similarity makes R/LinkedCharts a helpful tool for exploration. The
required effort to produce an interactive app is the same as to make tradi-
tional static plots. The only significant difference in the coding style that
the user needs to get used to is to update one of the plots with a custom
function and not by copying and pasting the same piece of code. However,
such an approach is usually considered a better practice. In addition, the
on-the-fly draft apps that were used for exploratory analysis can later be
combined into a more complex app to present final results without a need to
start from scratch.

68

Public apps

All R/LinkedCharts apps start a server that listens to a given or randomly
chosen port. To any request by a browser for the start page, this server
answers with all the charts the user has added so far. More details on the
principles of communication with the server in general and specifically in
the “rlc” package can be found in sections 2.3.3 and 3.1.2. In practice,
it means that multiple users can access any R/LinkedCharts app if they
can send a request to the server. Any of the examples I have shown in
this thesis can be made public by running them on a machine that can be
accessed via the Internet. The code can run without any changes setting
additional parameters, and already multiple users can access these apps, but
their sessions will not be independent.

For the complete functionality, there is one more thing that has to be set.
In a LinkedCharts app, one or several “state” variables are used. These are
generally global variables that store currently selected genes, samples, etc.
and are changed inside callback functions: gene from the example in Section
3.3.1, xSample and ySample from the example in Figure 3.11. If several users
are working with these apps simultaneously, each click will change the state
variables and consequently change the current state of charts for all the users.
It can nevertheless be helpful if, for example, several people are using the
app as a visual addition to an online meeting. Still, in most cases, one would
like interactivity to be independent for each user.

To this end, it is only needed to enumerate state variables within the
openPage function and give them some default values. For instance, the
example from Figure 3.11 can be turned into a public app simply by adding
the following line in the beginning:

openPage(sessionVars = list(xSample = 1, ySample = 2))

Now, multiple users can work with the app.
Of course, there are other settings to customise a public app. In addition

to the charts, one can specify other default content for the page or scripts
to be run for each new user. R/LinkedCharts provides tools to control each
client session: for example, to close sessions inactive for specified time, limit
memory usage or the number of simultaneously active connections. Still,
all these parameters are optional. More information about possible options
can be found on the R man pages for classes App and Session of the “jrc”
package. (See Section 3.1 for more details.)

70

Stand-alone apps

Any app made with R/LinkedCharts (“rlc” package) requires a connection
to a running R session. However, the R session is only responsible for send-
ing the data to the app and updating them, while all the visualisation and
interactivity handling happens on the JavaScript side. This fact makes it
possible to use LinkedCharts for generating stand-alone apps in the form of
an HTML page. Such a page can then be sent to a collaborator or used as a
supplement file for a paper. Unlike a link to an app deployed somewhere on a
server, this kind of interactive supplement will be available to any user with
an installed web browser at any moment, without a need for the research
team to maintain a running app on the server.

Such an app was made for [53] and is published alongside it. A screenshot
of this app is shown in Figure 3.12. Data for this example is described in
Section 2.2 as the translatome data.

The goal of the study was to check whether there is any connection be-
tween evolutionary changes in transcription and translation patterns. To this
end, multiple samples from three tissues and six species were collected. RNA-
Seq and Ribo-Seq assays were used to estimate transcription and translation
efficiency, respectively (for more details about the assays, see Section 2.1.1
or the original paper [53]). If there is no connection between the evolution of
transcription and translation, then the changes should accumulate for both
of them at an equal pace. As a result, one can expect to see more variance
on a translational layer than on the transcriptional one since translatome,
in addition to its own variance, is also affected by the changes in the tran-
scriptome. Therefore, to check if it is the case, we need a way to compare
the amount of between species variance for any gene. As such, the so-called
∆-score was introduced as a standardised measure of the difference between
the amount of variance in transcriptome and translatome. It now can be
easily shown that the distribution of the score is noticeably skewed towards
negative values for all three tested tissues, which means that there is even
less variance in the translatome to the transcriptome. It suggests that the
variation in translation efficiency, in fact, tend to compensate for the changes
in the transcriptome.

From the visualisation point of view, this study is interesting because it
does not rely on established analysis pipelines or any well-known approaches.
Therefore it is of particular importance to make sure that the reader under-
stands the methods behind the conclusions, and one of the most complicated

71

concepts here to grasp from the text description alone is, probably, ∆-score.
However, it becomes clear if one spends some time going through examples:
some genes with positive ∆-scores and some with negative scores. And an
interactive app is a perfect tool for such an exploration. The app is available
at https://ex2plorer.kaessmannlab.org/.

Such apps are possible since underneath “rlc” there is a fully functional
and user-friendly JavaScript library linked-charts.js. “rlc” simply offers a
wrapper around linked-charts.js and by means of the “jrc” package uses its
JavaScript interface. Now, one can decide to do without the wrapper and
use the linked-charts.js library directly, and this is how stand-alone apps
are made. Of course, they require some familiarity with JavaScript syn-
tax and basic concepts. The extensive knowledge may only be necessary
to perform complicated calculations directly in JavaScipt or define complex
reactions to interactive events. “rlc” and linked-charts.js are based on the
same principles since one utilises the other. Because of this similarity, the
conversion for simple apps is pretty straightforward. Every chart property
turns from an argument of a plotting function into a method of the cor-
responding chart object. In most cases, neither property name nor input
requirements changes, but callback functions to define property values are
recommended for smoother interactivity. To get a feeling of these changes,
one can look at the example gallery at https://anders-biostat.github.
io/linked-charts/. There, every example is provided together with R code
and its equivalent in JavaScript.

The most complicated part of LinkedCharts stand-alone apps is loading
the data. Due to security restrictions, JavaScript in a browser cannot ac-
cess local files without the user explicitly uploading them. This makes data
input quite tricky, despite a variety of existing parsers for most commonly
used formats. The easiest way for an R user to solve this problem is to
convert data into JSON format and directly insert it into the JavaScript
code. JavaScript can then interpret the data as an array or an object. There
are also other ways of loading data into a JS/LinkedCharts app, described
in our tutorial https://anders-biostat.github.io/linked-charts/js/
tutorials/data.html.

Besides the “Data input” tutorial, on the same website, one can find
several others that can walk an interested person through both basic and
complex aspects of the linked-charts.js library.

• “Properties” describes the most important part of linked-charts.js : prop-

73

https://ex2plorer.kaessmannlab.org/
https://anders-biostat.github.io/linked-charts/
https://anders-biostat.github.io/linked-charts/
https://anders-biostat.github.io/linked-charts/js/tutorials/data.html
https://anders-biostat.github.io/linked-charts/js/tutorials/data.html

erties (they play the same role as arguments of the plotting functions in
the “rlc” package). It will explain how to set and retrieve a property’s
value, how static and dynamic properties are different from each other,
how to manipulate properties of several layers of the same chart, and
even how to define a custom property.

• “Types of charts” goes through available chart types and provides ex-
amples of how to use each of them.

• “Layers” explains the concept of layers in linked-charts.js and how to
manipulate them. In the end, it goes through the structure of a layer
and shows how to define a custom type of chart.

• “Data input”, as mentioned above, shows examples of how to load data
in a JavaScript app.

All tutorials are accompanied by interactive examples that allow one to
change and rerun the code directly on the tutorial’s page without download-
ing or installing anything (note run and update buttons in the right-upper
corner of code chunks).

Unfortunately, I cannot provide users with an automated converter of
R/LinkendCharts apps into their JavaScript counterparts. Unrestricted cus-
tomisation is an essential part of the “rlc” package. We want to provide
researchers with a way to wrap any scientific ideas into an interactive app
rather than fit the problem into a preset pattern. To this end, we do not limit
users by a predefined set of callbacks, strict rules for data structuring or any
other manipulations with the app. From a running R session, the user gets
truly complete control over the app. Therefore, for reliable transformation
of a “rlc” app into an HTML file, one needs a converter of R language to
JavaScript, which, to my knowledge, does not exist.

Overall, one may find it complicated to get used to an unfamiliar lan-
guage; however, I would like to conclude this section by pointing out the
benefits of LinkedCharts stand-alone apps:

• no R session needed;

Not all hosting services allow to run R in the background, but a stand-
alone app can be deployed almost everywhere. For instance, all the
tutorials and examples mentioned in this thesis are hosted on GitHub

74

Pages, a free and easy-to-use way to share one’s project. In addi-
tion, stand-alone apps can be incorporated into an HTML presentation
(made with reveal.js [151] or a similar framework).

• no server needed;

In fact, a stand-alone app does not even need a server to be deployed
since it can be downloaded by a user. A server generally requires some
maintenance, renewed subscription, etc. Something may change over
time that makes the app no longer accessible, and the research group
may be no longer interested in keeping it running. A stand-alone app
can be deposited together with the paper, and it will be available as
long as the paper is. For example, check the supplement files for our
paper [111].

• an HTML file can be opened locally with any web browser.

A stand-alone app is contained within a single HTML file (or several
files for the sake of interpretability of the HTML code or to include
figures). This file can be opened on any computer with a modern
browser, and no other software installation is required. Thus, the app
can be easily shared with collaborators from different areas of research
who may be utterly unfamiliar with R.

GUI apps

Broad possibilities for customisation make it possible to use R/LinkedCharts
for tasks beyond its primary goal (which is, as it follows from the name, link-
ing several charts together for intuitive exploration). Since callback functions
of the “rlc” package are not restricted to any predefined list of tasks, one can
access the full spectrum of R functionality. Interaction with a chart cannot
only update the app state but also store information in variables or external
files, read new input from a file or ask the user for input, trigger some com-
plicated calculations, send requests and data to a server. With all this, an
R/LinkedCharts app can work as a graphical user interface for a custom R
task.

To this end, the “rlc” package (lc_input function, see Figure 3.9G) of-
fers a collection of elements to gather user input. The function provides a
LinkedCharts interface to HTML “input” tag to add buttons, checkboxes,
radio buttons, scrolls and text fields to the app. As any chart of the “rlc”

75

package, the lc_input can get an R callback that is triggered every time
the user changes the state of an input element (clicks a button or enters new
text).

A screenshot of such a GUI app is shown in Figure 3.13. The app is a part
of the project dedicated to applying loop-mediated isothermal amplification
(LAMP, [154]) for detecting SARS-CoV-2 virus [152].

At the beginning of 2020, the advance of Covid-19 infection quickly led to
the overloading of available testing capacities and, in turn, hindered prompt
detection of the disease spread, especially by asymptomatic carriers. To
address the issue, LAMP tests were offered at the University of Heidelberg
as a cheaper and simpler alternative to commonly performed qPCR tests.
Like PCR, LAMP allows detecting the presence of a specified DNA sequence
in a saliva or swab sample, amplifying it with the help of pre-made primers.
However, LAMP reaction does not require cyclic temperature changes and,
thus, is much easier to perform. The disadvantage of this technique is that
it is more stochastic than qPCR, and one may want to test each sample
multiple times to increase accuracy.

Within a few months, a pipeline for RT-LAMP tests for the presence
of SARS-CoV-2 viral RNA in saliva samples was successfully established.
In this pipeline, after RNA extraction, each sample was split to fill four
wells of a microplate. Three wells were used for testing and one for positive
control (with other primers that will lead to product accumulation in any
sample). LAMP tests can be run as colourimetric or as fluorescent assays.
In both cases, the plates were heated up to 65◦C and changes in absorbance
or fluorescence were measured periodically for the next 50 minutes. If the
sample is positive, in about 20 minutes, it should change colour from red to
yellow (which can be measured as a difference of absorbance on 560 nm and
437 nm wavelengths) or become fluorescent. Due to the stochastic nature of
the LAMP reaction, the resulting curve of absorbance or fluorescence changes
over time should be observed manually for reliable conclusions. And that is
where interactive visualisation is most helpful.

After establishing the pipeline, the lab offered its testing capacity for
students and employees on the campus of the University of Heidelberg who
wanted to get tested for Covid-19 infection and, later, for randomly chosen
participants of the SARS-CoV-2 surveillance study [153]. For their conve-
nience, a website was created where people could register their samples and
query the result. The interactive app from Figure 3.13 was designed as a
mediator between the output of the plate reader and the web platform.

77

It served multiple purposes. First of all, it was used by the involved lab
members to inspect the results of colourimetric or fluorescence RT-LAMP
scans. This is important due to the stochastic nature of the LAMP reaction.
The results of all four performed tests are displayed in the app as four sets
of curves showing changes in absorbance or fluorescence over time. To the
right, there is a 96-well plate layout used for RNA extraction, coloured by
either the well content (sample, control, empty) or by the assigned status
(positive, negative, inconclusive, failed). If the user hovers the mouse over a
particular well, all four corresponding curves are highlighted (as it is shown
in Figure 3.13). And vice versa: hovering the mouse over any of the curves,
highlights all other curves and the well for the corresponding sample. Thus,
it was easy for the lab members to conclude the final status of the sample.

Another purpose of the app is manual classification. An automated clas-
sification is also performed as an initial step. However, in some cases, manual
adjustments are required to account for some randomness in the reaction. In
addition, a “failed” status, which means that the sample can not be tested
at all, can only be set manually. Any sample can be selected to assign a new
status by pressing a corresponding button in the right bottom corner. One
can also add a comment to any sample. The results can be then stored as a
.csv file.

Finally, the third purpose of the app was to push all the results to the
server, where they could be queried by people who have provided the samples.
A new dialogue window then appears for the user to log in to the server, and
then a report is generated both as a log file and as an information table.

The app was used during the SARS-CoV-2 surveillance study [153] and
for free voluntary testing for Covid-19 infection offered on the campus of the
Heidelberg University during the pandemic of 2020/2021. This app is made
for in-house usage and tailored for the pipeline of the specific lab and, thus, is
not published. However, the source code is available on GitHub at https://
github.com/anders-biostat/lamp_plate_analysis. It is provided in the
form of an R script that reads in and processes the output of the microplate
reader and then uses it to add interactive charts to the pre-made HTML
page. The page contains an empty layout and functions to populate and
ensure the functionality of non-LinkedCharts interactive elements. The R
script is also responsible for storing any changes that are made in the app,
saving them as an external file and pushing the results to the server. All this
functionality is defined either as charts’ callbacks or independent functions
called by the “jrc” package.

78

https://github.com/anders-biostat/lamp_plate_analysis
https://github.com/anders-biostat/lamp_plate_analysis

Overall, the app is an example of not only a GUI made with the “rlc”
package but also how one can utilise the power of JavaScript and R for
interactivity in combination with R/LinkedCharts to ensure the behaviour
that perfectly fits the needs of the given project.

3.3.4 Further customization

Since LinkedCharts is JavaScript-based, it can be combined with many exist-
ing web solutions without changing the source code of the package. One can
customise the charts’ appearance with CSS, add additional scripts, specify
an HTML layout. R/LinkedCharts can add interactive charts to an exist-
ing HTML page supplied as startPage argument of the openPage. Addi-
tional images, files or scripts can be loaded from a directory specified by the
rootDirectory argument. In addition, more experienced users can take a
step back and utilise the “jrc” package (which is described in Section 3.1)
to employ the full power of JavaScript for reacting to user’s actions. The
“rlc” package is based on “jrc” and inherits its main classes and, therefore,
full “jrc” functionality is available for any R/LinkedCharts app by default.
All this gives the user full control of what the app looks like and how it
functions. Therefore a LinkedCharts app can be fitted to the specific needs
of the particular project.

3.3.5 Implementation

All visualisation and interactivity handling in the LinkedCharts is imple-
mented in JavaScript based on the D3.js library. (See Section 2.3.6 for more
details.) The JavaScript basis of the “rlc” package is by itself a fully func-
tional tool for interactive data visualisation that can be used to create stand-
alone apps (Section 3.3.3). In linked-charts.js every chart is represented by
an object and with a collection of properties to set any aspect of the chart.
In addition to the set of properties, the charts have a collection of initialising
and update functions, each responsible for maintaining a specific area: up-
dating styles, adding or removing elements, positioning them, updating axes,
etc. These functions are modularised, and therefore it is easy to customise
behaviour even of a predefined chart. It is also possible to specify an entirely
new type of a chart simply by providing a collection of update functions.
The interactivity is ensured by providing the charts instructions where to
look for property values in the form of callback functions rather than the

79

values themselves. Therefore, any update causes linked-charts.js to request
the most recent value of the property and display it accordingly. The com-
plete information on the linked-charts.js principles and syntax, interactive
examples, tutorials and download links can be found on our website https://
anders-biostat.github.io/linked-charts/js/. The source code is avail-
able on GitHub at https://github.com/anders-biostat/linked-charts.

The “rlc” package is an R wrapper around linked-charts.js with addi-
tional functionality for maintaining multiple connections to the same app. It
extends the App class of the “jrc” package (Section 3.1). Unlike App in “jrc”,
the LCApp also stores all current charts and automatically places them on the
opened web page. It also handles client events and transforms R commands
into the form that can be processed by linked-charts.js. It consists of an R
and a JavaScript part, and the latter is loaded automatically into any served
HTML page. The same way as the “jrc” package, “rlc” offers a collection
of wrapper functions for every public method of the LCApp class and thus
can be used by people without any knowledge of the inner structure of the
package.

The “rlc” package is available on CRAN https://CRAN.R-project.org/

package=rlc or GitHub https://github.com/anders-biostat/rlc.

80

https://anders-biostat.github.io/linked-charts/js/
https://anders-biostat.github.io/linked-charts/js/
https://github.com/anders-biostat/linked-charts
https://CRAN.R-project.org/package=rlc
https://CRAN.R-project.org/package=rlc
https://github.com/anders-biostat/rlc

Chapter 4

Discussion

4.1 Role of interactivity in visualisation

Interactivity has, on many occasions, proved itself to be useful for data visual-
isation. Static plots can accommodate only a limited amount of information,
while data size and complexity are growing bigger with new technology ad-
vances. To make a static plot, one has to make a decision on what data to
put aside, and it is not always evident that these data are, in fact, not sig-
nificant. In big data exploration and presentation, a static plot is generally
only a piece of a puzzle. It is crucial to put all such pieces together to see
the entire picture, and interactivity is what can glue them to each other in
an intuitive manner.

A static plot is also fixed. Any change, no matter how small, requires to
redo the plot. This can be not very easy, for example, for a paper reader,
since it takes to download the data and run the code if it is at all provided
by the author. Even during the data exploration phase, when a researcher
already has all the data and knows the code better than anyone else, it
can still be annoying to keep changing colours, scales, sizes or opacity and
rerunning the same lines over and over. Thus, one can be more inclined to
believe a conclusion rather than thoroughly check it from all possible sides.
Interactivity becomes handy in both cases.

It helps a reader to believe the results providing a fast and easy way to
check that presented visualisations are not cherry-picked and do not contain
hidden patterns. Interactivity is engaging. In the same way, as images attract
more attention than plain text, interactive visualisation is often more catchy

81

than static graphics. Some online news portals now employ this phenomenon
by interactively presenting their graphs even if their amount of data can easily
be put in a static plot. Interactivity helps others to browse the presented
results at their own pace rather than following someone else’s mind flow.
The readers familiarise themselves with the data by trying out their ideas or
just playing around, which helps to get on the same page with the author.
Overall, interactivity is a great way to attract the reader’s attention and
quickly give him or her an overview of the data.

It is also a powerful tool for the researcher. A possibility to dive into
the data with just a couple of mouse clicks and moves inspires exploration
and, therefore, leads to a more thorough inspection of the data. There is no
switching between coding and observing a result, no need to think about how
exactly to specify the desired effect on the plot. Even an experienced user
working with static plots constantly has to keep in mind two problems: how
to plot something and how to examine the result. Interactivity allows one to
start with the first task and then completely immerse in the latter without
any distractions. It is only more important for the researchers who are not
that confident with their coding skills since presented with a new problem
(such as how to make a similar plot, but with points coloured somehow
differently), they can easier lose track of some minor issues in the back of
their mind.

Interactivity can even add an extra dimension to the visualisations, which
is time. Not only is it possible to observe several various states and snapshots
of the data, but also to trace the transition from one state to another, which
can be in some cases more helpful than just comparing multiple static images.

The field of interactive visualisation is an actively developing one with
some already well known and established tools such as “shiny” [29] or “plotly”
[30]. However, possible benefits of interactivity are far from being exhausted,
and this work contributes to some less explored areas. Here, I have presented
three packages to facilitate the use of interactivity for visualising biological
data.

4.2 “sleepwalk“

This section is copied from [111] originally written by myself.
Dimension-reduced embeddings such as those provided by t-SNE and

UMAP have become a core tool in single-cell transcriptomics. They provide

82

an overview of a study, help to check for expected and unexpected features in
the data, allow researchers to form new hypotheses and to plan and organise
the subsequent analysis. As they generally contain artefacts, a common
concern is that these plots may be over-interpreted.

Dimension reduction is a research area with a rich history, long predating
the use of these techniques for single-cell biology. The issue with distortions
has been long discussed, with the possible distortions being classified [125]
and quantified [126], and advice on careful interpretation derived from these
[155]. To visually alert the viewer to distortions, some authors have suggested
colouring each point by its so-called stress, i.e., the deviation of the point’s
on-screen distance to the other points from the distances in feature space
[156]. Others proposed to colour the area around the points according to
the amount of compression or stretching that the manifold underwent locally
due to projection [157].

Such visualisations are valuable tools for developing and improving di-
mension reducing methods. Our approach, however, offers a novel aspect
that is crucial: rather than merely alerting the user to distortions, Sleepwalk
allows the user to directly see the underlying “truth” for the selected cell.
It is possible due to our use of interactivity: by allowing the user to rapidly
move the focus from cell to cell and the app instantly following in redraw-
ing the colours, we are effectively escaping the confines of a two-dimensional
representation (or, three-dimensional, if we also count static colouring as a
dimension).

I have shown how this novel approach gives insights into dimension-
reduced embeddings that would otherwise stay hidden and thus solves a core
problem in the practical use of dimension reduction methods. I envision that
Sleepwalk will be used in two manners: first, as a tool of exploratory data
analysis, helping researchers to better understand their data, but also second
as a reporting and communication tool, allowing researchers to present their
results more transparently. For this latter application, Sleepwalk’s ability
to produce stand-alone HTML pages is crucial, as these pages can then be
used, e.g., as supplements to publications, where they allow readers to check
embeddings themselves, without the need to install any software.

I should be clear that a visual, interactive data exploration with Sleep-
walk does not replace formal inference but complements or typically precedes
it. Once one has formed a hypothesis about one’s data using Sleepwalk, one
should employ suitable formal analysis methods, such as statistical hypothe-
ses tests, to confirm them. That analysis will then typically be done on the

83

full, high-dimensional data. Dimension reduction methods are data reduc-
tion methods: this sacrifice of data is done to allow for visual inspection but
is a hindrance for any numerical analysis.

The principle of Sleepwalk is beneficial not only for inspection of a single
dataset but also lends itself for generalisation to comparative tasks. I have
shown several possible modes of comparison: between different embeddings
of the same data, between embeddings from several samples, and between
different ways of preprocessing data and obtaining distances. The compari-
son between samples will find direct application in any study working with
multiple samples; the other two are helpful in method selection and method
development, as they allow for the comparison of data processing pipelines.

I, therefore, expect that Sleepwalk will find broad use not only in single-
cell transcriptomics but essentially all instances of big data where experi-
mental units (cells, samples, or the like) are described in a high-dimensional
feature space.

4.3 Linked Charts

Unlike Sleepwalk, which solves an important but quite specific problem,
LinkedCharts is a general purpose library. By now, interactive data presenta-
tions have become very common. However, researchers are still not so likely
to employ interactivity for their everyday routine and prefer to generate nu-
merous static plots instead of one app. Interactivity is generally something
used only on special occasion: to share information with colleagues or to
make an overview of an essential stage of the project. These apps are often
not even done by the same people who performed most of the analysis and
are instead delegated to collaborators with more coding experience. As a
result, interactivity is still underused during routine data exploration.

As I have shown, R/LinkedCharts addresses this issue. It is designed to
be used spontaneously for on-the-fly testing of any current ideas. To this
end, it relies on two pillars: code simplicity and extensive possibilities for
customisation to fit any given task.

With all this, I believe easy exploratory analysis to be the leading niche for
R/Linked charts. As I have shown, it allows users to generate visualisations
with the same effort as one generally puts into routine data digging and
exploration. However, interactive apps are much more engaging than the
static plots commonly used in the early stages of any project. When checking

84

an idea or concern takes just a click, the researcher is more likely to go
through the data thoroughly and, with this, hopefully, save time on the
further steps of the analysis.

Once the need to present final or intermediate results to colleagues arises,
the same essential apps that were previously used as “quick and dirty” so-
lutions can be prettified and shared by deploying the app on a server. The
required changes for an R/LinkedCharts app to work on a server are min-
imal, and therefore there is no need to start from scratch. One can utilise
the same scripts as personal drafts for exploration and as a basis for result
presentation.

The JavaScript basis of R/LinkedCharts offers an interface of its own that
is also very simple and similar to the “rlc” syntax. Therefore, a user familiar
with JavaScript or willing to learn its essentials gets a way to convert an R
app into a stand-alone one fully contained within an HTML page. Such an
app does not require any side resources, can be shared by email between col-
laborators and opened in any browser. It does not need to have a constantly
running R session and can be published on any hosting, including the most
simple ones that do not allow to run other software in the background.

The structure of the JS/LinkedCharts library and even principles of JavaScript
as a language to manipulate DOM elements can allow an experienced user
to customise not just the ecosystem in which LinkedCharts will be em-
bedded but the charts themselves without a need to dive into the source
code. One can go as far as defining custom types of charts (see https://

anders-biostat.github.io/linked-charts/js/tutorials/layers.html

for more details on that).
Overall, R/LinkedCharts serves two primary purposes: to facilitate data

exploration and presentation. It offers an easy way to utilise interactivity
for everyday research tasks. And it also provides the user with a possibility
to fully employ the power of JavaScript for presenting the data. The latter
aspect addresses more experienced users and thus has no limits for possible
customisation of a LinkedCharts app.

4.3.1 Code simplicity

In order to encourage people to employ visualisation routinely, it is not
enough to make it just simple. It should also be familiar to potential users.
This motivation is what has driven the design of R/LinkedCharts syntax. As
a result, R/LinkedCharts consists of two major parts, both of which are set

85

https://anders-biostat.github.io/linked-charts/js/tutorials/layers.html
https://anders-biostat.github.io/linked-charts/js/tutorials/layers.html

as arguments to various plotting functions.
First of all, we have a set of static properties that define all required

and optional aspects of a chart, such as styling, coordinates, axes settings,
labels and titles, etc. They are not different from commonly used plotting
libraries and, thus, can be easily grasped by any user who produces any
kind of plots in R. The list of all available properties can be found on the
man page for any plotting function of the “rlc” package or, with examples,
on our website at https://anders-biostat.github.io/linked-charts/

rlc/tutorials/props.html.
Linking is done by means of callback functions that correspond to specific

user actions (mouse click, double click or hovering, selecting elements with
pressed Shift key). These functions are called any time the corresponding
event occurs, and they describe the app’s reaction to this event. Though
it may sound complicated for someone who is not very confident in his or
her coding skills, the content of such a function is simply the code that is
repeatedly copied and pasted while working with static plots. For example,
if one keeps making the same plot for different genes to browse through
the data, he or she can wrap the required code in a function and use it as
on_click argument of some summary plot in a R/LinkedCharts app.

Therefore, as I have shown in Section 3.3.3, making an interactive app
with the “rlc” package is more similar to restructuring the existing code
rather than writing something new. In addition, there is an updateCharts

function that can be used instead of replacing an existing plot with a new one.
The only concept in R/LinkedCharts apps that may be new for less advanced
users is utilising custom functions. However, it is in any case considered good
practice to arrange pieces of code that perform a specific task as a function
since it makes code more robust and interpretable. Therefore, adopting such
a habit can be beneficial for a user regardless of whether he or she then
decides to use R/LinkedCharts.

4.3.2 Customisation

A tool for exploration should also possess a high degree of flexibility. We do
not want a researcher to formulate questions to fit the app. Instead, we want
an app to be capable of facilitating the search for answers for a wide range of
possible problems. To this end, R/LinkedCharts works with custom callback
functions instead of providing a predefined list of possible reactions to user’s
interactions with the app.

86

https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/props.html

In Section 3.3 I have provided code for several interactive apps and their
linking functions. Those were the simplest examples of on_click callbacks
which include only changing one of the state variables (the ones that store
currently selected gene, sample, etc.) and a call to the updateCharts func-
tion. It is, in fact, a ubiquitous and yet powerful form of a callback for “rlc”.
However, it does not have to be that simple. A callback can include any ad-
ditional calculations, results storing, or any other kind of analysis one may
need. One of our tutorials, for instance, https://anders-biostat.github.
io/linked-charts/rlc/tutorials/citeseq1.html uses a callback that looks
for the genes with higher expression levels in the selected cluster than in
the other cells and prints the top ten of them as a table. Therefore, the
R/LinkedCharts app can be customised to the point when it does not even
use chart linking and instead works as a graphical user interface for a given
task.

The linking mechanism itself is also not fixed to any particular scheme.
Every chart can be linked to any other or multiple ones. Any kind of back-
wards or partial linking is also possible. As a result, there are no requirements
for the data structure. For any given chart, there are, of course, predefined
input formats. However, the overall data arrangement is up to the user. All
the data may be stored as a single list, or there can be several variables.
Each chart of an app may use its own data variable, or it can take parts of
multiple variables. One may have to convert the data into some format for
complicated apps, but even then, it would serve only for code simplification.
Generally, no data conversion or reordering is required.

4.4 JavaScript for enhanced interactivity

Both visualisation solutions, “sleepwalk” and “rlc”, are R packages but rely
heavily on JavaScript. It emphasises a more general idea about interactive
visualisation that I would like to promote with this work.

JavaScript, as was mentioned in Section 2.3.2, was developed to add in-
teractive elements to previously static web pages. And till now, interactivity
remains its main goal. Therefore it seems only natural to look at JavaScript
when talking about interactive visualisations. Moreover, the infrastructure
that is built around the R programing language makes it easy to combine
the two languages in a user-friendly manner. The idea itself is not new, and
JavaScript has already been used by various R packages such as “plotly” [30],

87

https://anders-biostat.github.io/linked-charts/rlc/tutorials/citeseq1.html
https://anders-biostat.github.io/linked-charts/rlc/tutorials/citeseq1.html

“htmlwidgets” [158] and many others. However, I think that the connection
between R and JavaScript should become more straightforward to let users
apply their JavaScript knowledge directly and provide a way to utilise any
of the available JS libraries.

As a way of such a direct interaction, I have proposed the “jrc” package.
Its core idea can be summarised just in one sentence: It allows users to run
any JavaScript command from R and any piece of R code from JavaScript.
Section 3.1 goes into more detail through its full functionality. However,
all the features are there only to facilitate this main purpose: exchanging
messages between an R session and a web page. “jrc” is not a package for
visualisation but rather a tool to make such packages. And any package,
built on top of “jrc”, inherits this capability of exchanging messages, and
hence access to any custom JavaScript features.

Both “sleepwalk” and “rlc” a based on “jrc”, but in two distinct manners.
“sleepwalk” is written mainly in JavaScript. R only performs input checks

and then passes the data to the web page, where they are processed and
displayed. The same principle is used in the “htmlwidgets” package, and it
is useful when one wants to later save the generated app as a fully functional
.html file. Nevertheless, “sleepwalk” retains the ability to maintain an open
connection, which is used, for instance, by its lasso selection function (when
indices of the selected points are sent back to the R session). It also can be
used to influence the content of the web page from the R session, if needed.

“rlc”, on the other hand, relies on the web socket connection all the time.
JavaScript performs no calculations, and the data are passed only by request;
most of the reactions to mouse events trigger a call to an R function. Such
an active connection makes it easy to control the app from an R session
and, thus, ensures possibilities for customisation even for those unfamiliar
with JavaScript. Moreover, users who know web applications or are willing
to learn some basics can also make changes directly in JavaScript, either by
loading custom scripts or using the inherited methods of the “jrc” package.
The app described in Section 3.3.3 and in Figure 3.13 is an example where
both approaches are used. The .html file utilised by the app contains a
custom layout and additional JavaScript functionality. Also, some of the
default LinkedCharts elements are modified from the R session after the
charts are added.

The difference between the presented visualisation packages is defined
by the way how they utilise the underlying “jrc” package. “sleepwalk” uses
it to run a specified JavaScript interface, while “rlc” extends it by adding

88

possibilities to store and display charts. Both approaches explore possible
benefits of the direct communication between R and JavaScript provided by
the “jrc” package. I believe that not only package developers can benefit
from it, but also end-users, who now get an opportunity to customise their
apps to the extent that the package developer may have not even imagined,
since direct access to JavaScript functionality allows one to do anything with
the visualisation app.

89

Bibliography

1. Marx, V. The big challenges of big data. Nature 498, 255–260 (2013).

2. Demchenko, Y., Zhao, Z., Grosso, P., Wibisono, A. & De Laat, C.
Addressing big data challenges for scientific data infrastructure in 4th
IEEE International Conference on Cloud Computing Technology and
Science Proceedings (2012), 614–617.

3. Rieber, L. P. A historical review of visualization in human cognition.
Educational technology research and development 43, 45–56 (1995).

4. Friendly, M. & Denis, D. J. Milestones in the history of thematic car-
tography, statistical graphics, and data visualization. URL http://www.
datavis. ca/milestones 32, 13 (2001).

5. Bertin, J. Semiology of Graphics: Diagrams, Networks, Maps isbn:
9781589482616. https://books.google.de/books?id=X5caQwAACAAJ
(ESRI Press, 2011).

6. Wilkinson, L. The grammar of graphics (Springer Science & Business
Media, 2013).

7. O’Donoghue, S. I. et al. Visualization of biomedical data. Annual Re-
view of Biomedical Data Science 1, 275–304 (2018).

8. Deng, L. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine
29, 141–142 (2012).

9. Heer, J., Kong, N. & Agrawala, M. Sizing the horizon: the effects of
chart size and layering on the graphical perception of time series visu-
alizations in Proceedings of the SIGCHI conference on human factors
in computing systems (2009), 1303–1312.

90

https://books.google.de/books?id=X5caQwAACAAJ

10. Fisher, D. Big data exploration requires collaboration between visual-
ization and data infrastructures in Proceedings of the Workshop on
Human-In-the-Loop Data Analytics (2016), 1–5.

11. Keahey, T. A. Using visualization to understand big data. IBM Busi-
ness Analytics Advanced Visualisation (2013).

12. Bresciani, S. & Eppler, M. J. The risks of visualization. Identität und
Vielfalt der Kommunikations-wissenschaft (2009), 165–178 (2009).

13. Newman, W. M. Principles of interactive computer graphics tech. rep.
(1979).

14. Becker, R. A. & Cleveland, W. S. Brushing scatterplots. Technometrics
29, 127–142 (1987).

15. Shander, B. 5 Reasons to Visualize Your Data and Make it Interac-
tive 2016. https://medium.com/@billshander/5- reasons- to-
visualize-your-data-and-make-it-interactive-65442d8612f6.

16. Yuk, M. & Diamond, S. Data visualization for dummies (John Wiley
& Sons, 2014).

17. Caldarola, E. G. & Rinaldi, A. M. Big Data Visualization Tools: A
Survey in Proceedings of the 6th International Conference on Data
Science, Technology and Applications (2017), 296–305.

18. Noronha, A. et al. ReconMap: an interactive visualization of human
metabolism. Bioinformatics 33, 605–607 (2017).

19. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: inter-
active visualization of de novo genome assemblies. Bioinformatics 31,
3350–3352 (2015).

20. Hillje, R., Pelicci, P. G. & Luzi, L. Cerebro: interactive visualization
of scRNA-seq data. Bioinformatics 36, 2311–2313 (2020).

21. Broman, K. W. R/qtlcharts: interactive graphics for quantitative trait
locus mapping. Genetics 199, 359–361 (2015).

22. Zhao, J., Chevalier, F., Collins, C. & Balakrishnan, R. Facilitating
discourse analysis with interactive visualization. IEEE Transactions
on Visualization and Computer Graphics 18, 2639–2648 (2012).

23. Wu, Y. et al. OpinionSeer: interactive visualization of hotel customer
feedback. IEEE transactions on visualization and computer graphics
16, 1109–1118 (2010).

91

https://medium.com/@billshander/5-reasons-to-visualize-your-data-and-make-it-interactive-65442d8612f6
https://medium.com/@billshander/5-reasons-to-visualize-your-data-and-make-it-interactive-65442d8612f6

24. Bostock, M., Ogievetsky, V. & Heer, J. D3 data-driven documents.
IEEE transactions on visualization and computer graphics 17, 2301–
2309 (2011).

25. Satyanarayan, A., Russell, R., Hoffswell, J. & Heer, J. Reactive vega:
A streaming dataflow architecture for declarative interactive visualiza-
tion. IEEE transactions on visualization and computer graphics 22,
659–668 (2015).

26. P’ng, C. et al. BPG: Seamless, automated and interactive visualization
of scientific data. BMC bioinformatics 20, 1–5 (2019).

27. Sievert, C. et al. Extending ggplot2 for Linked and Animated Web
Graphics. Journal of Computational and Graphical Statistics 28, 299–
308 (2019).

28. Satyanarayan, A., Moritz, D., Wongsuphasawat, K. & Heer, J. Vega-
lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics 23, 341–350 (2016).

29. RStudio, Inc. Easy web applications in R.URL: http://www.rstudio.
com/shiny/ (2013).

30. Sievert, C. Interactive Web-Based Data Visualization with R, plotly,
and shiny isbn: 9781138331457. https://plotly-r.com (Chapman
and Hall/CRC, 2020).

31. Travaglini, K. J. et al. A molecular cell atlas of the human lung from
single-cell RNA sequencing. Nature 587, 619–625 (2020).

32. Roider, T. et al. Dissecting intratumour heterogeneity of nodal B-cell
lymphomas at the transcriptional, genetic and drug-response levels.
Nature Cell Biology 22, 896–906 (2020).

33. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial
cells. Cell 180, 764–779 (2020).

34. Batch, A. & Elmqvist, N. The interactive visualization gap in ini-
tial exploratory data analysis. IEEE transactions on visualization and
computer graphics 24, 278–287 (2017).

35. Bishop, C. M. Pattern recognition and machine learning (Springer,
2006).

36. The American Heritage Medical Dictionary 2007.

92

http://www.rstudio.com/shiny/
http://www.rstudio.com/shiny/
https://plotly-r.com

37. Omenn, G. S., Nass, S. J., Micheel, C. M., et al. Evolution of transla-
tional omics: lessons learned and the path forward (2012).

38. Conway, C. et al. Elucidating drivers of oral epithelial dysplasia for-
mation and malignant transformation to cancer using RNAseq. Onco-
target 6, 40186–40201. issn: 1949-2553. https://www.oncotarget.
com/article/5529/ (2015).

39. Stoeckius, M. et al. Simultaneous epitope and transcriptome measure-
ment in single cells. Nature Methods 14, 865 (2017).

40. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs cre-
ates a Tabula Muris: The Tabula Muris Consortium. Nature 562, 367
(2018).

41. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool
for transcriptomics. Nature reviews genetics 10, 57–63 (2009).

42. Lockhart, D. J. et al. Expression monitoring by hybridization to high-
density oligonucleotide arrays. Nature biotechnology 14, 1675–1680
(1996).

43. Callow, M. J., Dudoit, S., Gong, E. L., Speed, T. P. & Rubin, E. M.
Microarray expression profiling identifies genes with altered expression
in HDL-deficient mice. Genome research 10, 2022–2029 (2000).

44. Abe, T. et al. Time-course microarray transcriptome data of in vitro
cultured testes and age-matched in vivo testes. Data in Brief 33,
106482 (2020).

45. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic acids
research 48, D498–D503 (2020).

46. Grebe, S. K. & Singh, R. J. LC-MS/MS in the clinical laboratory–
where to from here? The Clinical biochemist reviews 32, 5 (2011).

47. Bassani-Sternberg, M. et al. Direct identification of clinically relevant
neoepitopes presented on native human melanoma tissue by mass spec-
trometry. Nature communications 7, 1–16 (2016).

48. Bojkova, D. et al. Proteomics of SARS-CoV-2-infected host cells re-
veals therapy targets. Nature 583, 469–472 (2020).

49. Mertins, P. et al. Proteogenomics connects somatic mutations to sig-
nalling in breast cancer. Nature 534, 55–62 (2016).

93

https://www.oncotarget.com/article/5529/
https://www.oncotarget.com/article/5529/

50. Zhao, J., Qin, B., Nikolay, R., Spahn, C. M. & Zhang, G. Trans-
latomics: the global view of translation. International journal of molec-
ular sciences 20, 212 (2019).

51. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S.
Genome-wide analysis in vivo of translation with nucleotide resolution
using ribosome profiling. science 324, 218–223 (2009).

52. Wang, T. et al. Translating mRNAs strongly correlate to proteins in
a multivariate manner and their translation ratios are phenotype spe-
cific. Nucleic acids research 41, 4743–4754 (2013).

53. Wang, Z.-Y. et al. Transcriptome and translatome co-evolution in
mammals. Nature 588, 642–647 (2020).

54. Zhang, M. et al. A peptide encoded by circular form of LINC-PINT
suppresses oncogenic transcriptional elongation in glioblastoma. Na-
ture communications 9, 1–17 (2018).

55. Chen, X., Wei, S., Ji, Y., Guo, X. & Yang, F. Quantitative proteomics
using SILAC: principles, applications, and developments. Proteomics
15, 3175–3192 (2015).

56. Aviner, R., Geiger, T. & Elroy-Stein, O. Genome-wide identification
and quantification of protein synthesis in cultured cells and whole tis-
sues by puromycin-associated nascent chain proteomics (PUNCH-P).
Nature protocols 9, 751 (2014).

57. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic func-
tion. Neuropsychopharmacology 38, 23–38 (2013).

58. Bibikova, M. et al. High density DNA methylation array with single
CpG site resolution. Genomics 98, 288–295 (2011).

59. Frommer, M. et al. A genomic sequencing protocol that yields a pos-
itive display of 5-methylcytosine residues in individual DNA strands.
Proceedings of the National Academy of Sciences 89, 1827–1831 (1992).

60. Oakes, C. C. et al. DNA methylation dynamics during B cell matura-
tion underlie a continuum of disease phenotypes in chronic lymphocytic
leukemia. Nature genetics 48, 253–264 (2016).

61. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing
for assessing epigenetic heterogeneity. Nature methods 11, 817–820
(2014).

94

62. Wexler, P. et al. Encyclopedia of toxicology (Academic Press, 2005).

63. Pereira, D. & Williams, J. Origin and evolution of high throughput
screening. British journal of pharmacology 152, 53–61 (2007).

64. He, L. et al. in Cancer systems biology 351–398 (Springer, 2018).

65. Argelaguet, R. et al. Multi-Omics Factor Analysis—a framework for
unsupervised integration of multi-omics data sets. Molecular systems
biology 14, e8124 (2018).

66. Berg, E. L., Kunkel, E. J., Hytopoulos, E. & Plavec, I. Characteriza-
tion of compound mechanisms and secondary activities by BioMAP
analysis. Journal of pharmacological and toxicological methods 53, 67–
74 (2006).

67. Fliri, A. F., Loging, W. T., Thadeio, P. F. & Volkmann, R. A. Analysis
of drug-induced effect patterns to link structure and side effects of
medicines. Nature chemical biology 1, 389–397 (2005).

68. White, E. L. et al. A novel inhibitor of Mycobacterium tuberculosis
pantothenate synthetase. Journal of biomolecular screening 12, 100–
105 (2007).

69. Klaeger, S. et al. The target landscape of clinical kinase drugs. Science
358 (2017).

70. Gunter, T. D. & Terry, N. P. The emergence of national electronic
health record architectures in the United States and Australia: models,
costs, and questions. Journal of medical Internet research 7, e3 (2005).

71. Hoerbst, A & Ammenwerth, E. Electronic health records. Methods Inf
Med 49, 320–336 (2010).

72. Layman, E. J. Ethical issues and the electronic health record. The
health care manager 39, 150–161 (2020).

73. Yi, M. Major Issues in Adoption of Electronic Health Records. Journal
of Digital Information Management 16 (2018).

74. Cowie, M. R. et al. Electronic health records to facilitate clinical re-
search. Clinical Research in Cardiology 106, 1–9 (2017).

75. Hicks, J. L. et al. Best practices for analyzing large-scale health data
from wearables and smartphone apps. NPJ digital medicine 2, 1–12
(2019).

95

76. Clarke, A. & Steele, R. Smartphone-based public health information
systems: Anonymity, privacy and intervention. Journal of the Associ-
ation for Information Science and Technology 66, 2596–2608 (2015).

77. Huang, H., Zhang, R. & Lu, X. A Recommendation Model for Medical
Data Visualization Based on Information Entropy and Decision Tree
Optimized by Two Correlation Coefficients in Proceedings of the 9th
International Conference on Information Communication and Man-
agement (2019), 52–56.

78. Moradian, N. et al. The urgent need for integrated science to fight
COVID-19 pandemic and beyond. Journal of translational medicine
18, 1–7 (2020).

79. Liu, Q. et al. A web visualization tool using T cell subsets as the pre-
dictor to evaluate COVID-19 patient’s severity. Plos one 15, e0239695
(2020).

80. Carter, R. A. et al. A Single-Cell Transcriptional Atlas of the Devel-
oping Murine Cerebellum. Current Biology 28, 2910–2920.e2. issn:
09609822. https://linkinghub.elsevier.com/retrieve/pii/
S0960982218309928 (2019) (Sept. 2018).

81. TM431. RealTime-GloTM MT Cell Viability Assay Technical Manual
Promega Corporation (). https://www.promega.de/resources/
protocols/technical-manuals/101/realtimeglo-mt-cell-viability-

assay-protocol/.

82. TM375. CellToxTM Green Cytotoxicity Assay Technical Manual Promega
Corporation (). https://www.promega.de/resources/protocols/
technical-manuals/101/celltox-green-cytotoxicity-assay-

protocol/.

83. Yadav, B. et al. Quantitative scoring of differential drug sensitivity for
individually optimized anticancer therapies. Scientific reports 4, 1–10
(2014).

84. R Core Team. R: A Language and Environment for Statistical Comput-
ing R Foundation for Statistical Computing (Vienna, Austria, 2020).
https://www.R-project.org/.

85. RStudio Team. RStudio: Integrated Development Environment for R
RStudio, PBC. (Boston, MA, 2020). http://www.rstudio.com/.

96

https://linkinghub.elsevier.com/retrieve/pii/S0960982218309928
https://linkinghub.elsevier.com/retrieve/pii/S0960982218309928
https://www.promega.de/resources/protocols/technical-manuals/101/realtimeglo-mt-cell-viability-assay-protocol/
https://www.promega.de/resources/protocols/technical-manuals/101/realtimeglo-mt-cell-viability-assay-protocol/
https://www.promega.de/resources/protocols/technical-manuals/101/realtimeglo-mt-cell-viability-assay-protocol/
https://www.promega.de/resources/protocols/technical-manuals/101/celltox-green-cytotoxicity-assay-protocol/
https://www.promega.de/resources/protocols/technical-manuals/101/celltox-green-cytotoxicity-assay-protocol/
https://www.promega.de/resources/protocols/technical-manuals/101/celltox-green-cytotoxicity-assay-protocol/
https://www.R-project.org/
http://www.rstudio.com/

86. Ihaka, R. & Gentleman, R. R: a language for data analysis and graph-
ics. Journal of computational and graphical statistics 5, 299–314 (1996).

87. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual isbn:
1441412697 (CreateSpace, Scotts Valley, CA, 2009).

88. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh
approach to numerical computing. SIAM review 59, 65–98 (2017).

89. Gentleman, R. C. et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome biology 5, 1–16
(2004).

90. Ushey, K., Allaire, J. & Tang, Y. reticulate: Interface to ’Python’
R package version 1.18 (2020). https :/ /CRAN .R - project .org /
package=reticulate.

91. Urbanek, S., Urbanek, M. S. & JDK, S. J. Package ‘rJava’ (2020).

92. Eddelbuettel, D. & François, R. Rcpp: Seamless R and C++ Inte-
gration. Journal of Statistical Software 40, 1–18. https : / / www .

jstatsoft.org/v40/i08/ (2011).

93. Eddelbuettel, D. Seamless R and C++ Integration with Rcpp ISBN
978-1-4614-6867-7 (Springer, New York, 2013).

94. Eddelbuettel, D. & Balamuta, J. J. Extending extitR with extitC++:
A Brief Introduction to extitRcpp. The American Statistician 72, 28–
36. https://doi.org/10.1080/00031305.2017.1375990 (2018).

95. Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source
Software 4, 1686 (2019).

96. Bengtsson, H. A Unifying Framework for Parallel and Distributed Pro-
cessing in R using Futures 2020. arXiv: 2008.00553 [cs.DC]. https:
//arxiv.org/abs/2008.00553.

97. Hoefling, H. & Annau, M. hdf5r: Interface to the ’HDF5’ Binary Data
Format R package version 1.3.3 (2020). https://CRAN.R-project.
org/package=hdf5r.

98. Wickham, H. ggplot2: Elegant Graphics for Data Analysis isbn: 978-
3-319-24277-4. https://ggplot2.tidyverse.org (Springer-Verlag
New York, 2016).

99. Kolde, R. pheatmap: Pretty Heatmaps R package version 1.0.12 (2019).
https://CRAN.R-project.org/package=pheatmap.

97

https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://www.jstatsoft.org/v40/i08/
https://www.jstatsoft.org/v40/i08/
https://doi.org/10.1080/00031305.2017.1375990
https://arxiv.org/abs/2008.00553
https://arxiv.org/abs/2008.00553
https://arxiv.org/abs/2008.00553
https://CRAN.R-project.org/package=hdf5r
https://CRAN.R-project.org/package=hdf5r
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=pheatmap

100. Postel, J. et al. Internet protocol (1981).

101. Deering, S., Hinden, R., et al. Internet protocol, version 6 (IPv6) spec-
ification 1998.

102. Postel, J. et al. Transmission control protocol (1981).

103. Postel, J. et al. User datagram protocol (1980).

104. Zimmermann, H. OSI reference model-the ISO model of architecture
for open systems interconnection. IEEE Transactions on communica-
tions 28, 425–432 (1980).

105. Fielding, R. et al. Hypertext transfer protocol–HTTP/1.1 1999.

106. Fette, I. & Melnikov, A. The WebSocket protocol RFC 6455 (Internet
Engineering Task Force, 2011). https://tools.ietf.org/html/
rfc6455.

107. Cheng, J. & Chang, W. httpuv: HTTP and WebSocket Server Library
R package version 1.5.4 (2020). https://CRAN.R- project.org/
package=httpuv.

108. Chang, W., Cheng, J., Dipert, A. & Borges, B. websocket: ’WebSocket’
Client Library R package version 1.3.2 (2021). https://CRAN.R-
project.org/package=websocket.

109. Chang, W. R6: Encapsulated Classes with Reference Semantics R pack-
age version 2.5.0 (2020). https://CRAN.R-project.org/package=R6.

110. Wickham, H. Advanced r (CRC press, 2019).

111. Ovchinnikova, S. & Anders, S. Exploring dimension-reduced embed-
dings with Sleepwalk. Genome research 30, 749–756 (2020).

112. Ringnér, M. What is principal component analysis? en. Nature Biotech-
nology 26, 303–304. issn: 1087-0156, 1546-1696. http://www.nature.
com/articles/nbt0308-303 (2019) (Mar. 2008).

113. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. en. Psychometrika 29, 1–27. issn: 1860-
0980. https://doi.org/10.1007/BF02289565 (1964).

114. Kohonen, T. Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43, 59–69. issn: 1432-0770. https://
doi.org/10.1007/BF00337288 (Jan. 1982).

98

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://CRAN.R-project.org/package=httpuv
https://CRAN.R-project.org/package=httpuv
https://CRAN.R-project.org/package=websocket
https://CRAN.R-project.org/package=websocket
https://CRAN.R-project.org/package=R6
http://www.nature.com/articles/nbt0308-303
http://www.nature.com/articles/nbt0308-303
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/BF00337288

115. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrat-
ing single-cell transcriptomic data across different conditions, technolo-
gies, and species. Nature Biotechnology 36, 411–420. issn: 1087-0156,
1546-1696. http://www.nature.com/doifinder/10.1038/nbt.4096
(2019) (Apr. 2, 2018).

116. Satija Lab. Using Seurat with multi-modal data Mar. 24, 2018. https:
//satijalab.org/seurat/multimodal_vignette.html.

117. Van der Maaten, L. & Hinton, G. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9, 2579–2605.
http://www.jmlr.org/papers/v9/vandermaaten08a.html (2008).

118. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Ap-
proximation and Projection for dimension Reduction arXiv:1802.03426
[cs, stat]. Feb. 2018. http://arxiv.org/abs/1802.03426 (2019).

119. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell
data in R. Bioinformatics 32, 1241–1243. issn: 1367-4803, 1460-2059.
https://academic.oup.com/bioinformatics/article-lookup/

doi/10.1093/bioinformatics/btv715 (2019) (Apr. 15, 2016).

120. Coifman, R. R. & Lafon, S. Diffusion maps. Applied and Computational
Harmonic Analysis 21, 5–30 (2006).

121. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nature Biotechnol-
ogy 32, 381–386. issn: 1087-0156, 1546-1696. http://www.nature.
com/articles/nbt.2859 (2019) (Apr. 2014).

122. Qiu, X. et al. Reversed graph embedding resolves complex single-cell
trajectories. Nature Methods 14, 979 (2017).

123. Mao, Q., Wang, L., Goodison, S. & Sun, Y. Dimensionality Reduc-
tion Via Graph Structure Learning in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM, Sydney, NSW, Australia, 2015), 765–774. isbn: 978-1-
4503-3664-2. http://doi.acm.org/10.1145/2783258.2783309.

124. Nguyen, L. H. & Holmes, S. Ten quick tips for effective dimensionality
reduction. PLOS Computational Biology 15, 1–19. https://doi.org/
10.1371/journal.pcbi.1006907 (June 2019).

99

http://www.nature.com/doifinder/10.1038/nbt.4096
https://satijalab.org/seurat/multimodal_vignette.html
https://satijalab.org/seurat/multimodal_vignette.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv715
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv715
http://www.nature.com/articles/nbt.2859
http://www.nature.com/articles/nbt.2859
http://doi.acm.org/10.1145/2783258.2783309
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.1371/journal.pcbi.1006907

125. Aupetit, M. Visualizing distortions and recovering topology in con-
tinuous projection techniques. Neurocomputing 70, 1304–1330. issn:
09252312. https://linkinghub.elsevier.com/retrieve/pii/
S0925231206004814 (2019) (Mar. 2007).

126. Kaski, S. et al. Trustworthiness and metrics in visualizing similarity of
gene expression. BMC Bioinformatics 4, 48 (2003).

127. Becht, E. et al. Dimensionality reduction for visualizing single-cell data
using UMAP. Nature Biotechnology 37, 38 (2019).

128. Tung, P.-Y. et al. Batch effects and the effective design of single-cell
gene expression studies. Scientific Reports 7, 39921. https://doi.
org/10.1038/srep39921 (Jan. 3, 2017).

129. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by matching
mutual nearest neighbors. Nature Biotechnology 36, 421. https://
doi.org/10.1038/nbt.4091 (Apr. 2, 2018).

130. Phillips, J. M. & Venkatasubramanian, S. A Gentle Introduction to
the Kernel Distance arXiv:1103.1625. 2011. http://arxiv.org/abs/
1103.1625.

131. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Vi-
sualization and analysis of single-cell RNA-seq data by kernel-based
similarity learning. Nature Methods 14, 414 (2017).

132. Yang, L. & Jin, R. Distance metric learning: A comprehensive survey
tech. rep. (Michigan State University, 2006). http://www.cs.cmu.
edu/~liuy/frame_survey_v2.pdf.

133. Cayton, L. Algorithms for manifold learning tech. rep. CS2008-0923
(University of California at San Diego, 2005). http://www.lcayton.
com/resexam.pdf.

134. Moon, K. R. et al. Manifold learning-based methods for analyzing
single-cell RNA-sequencing data. Current Opinion in Systems Biology
7, 36–46 (2018).

135. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity
in single-cell RNA-sequencing data reveals hidden subpopulations of
cells. Nature Biotechnology 33, 155–160. https://doi.org/10.1038/
nbt.3102 (Jan. 2015).

100

https://linkinghub.elsevier.com/retrieve/pii/S0925231206004814
https://linkinghub.elsevier.com/retrieve/pii/S0925231206004814
https://doi.org/10.1038/srep39921
https://doi.org/10.1038/srep39921
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1038/nbt.4091
http://arxiv.org/abs/1103.1625
http://arxiv.org/abs/1103.1625
http://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf
http://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf
http://www.lcayton.com/resexam.pdf
http://www.lcayton.com/resexam.pdf
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1038/nbt.3102

136. Brawand, D. et al. The evolution of gene expression levels in mam-
malian organs. Nature 478, 343–348. issn: 0028-0836, 1476-4687. http:
//www.nature.com/articles/nature10532 (2019) (Oct. 2011).

137. Dietrich, S. et al. Drug-perturbation-based stratification of blood can-
cer. Journal of Clinical Investigation 128, 427–445. https://www.
jci.org/articles/view/93801 (Jan. 2018).

138. Green, D. A. A colour scheme for the display of astronomical intensity
images. Bulletin of the Astromical Society of India 39, 289–295 (2011).

139. 10x Genomics.What is Cell Ranger? 2019. https://support.10xgenomics.
com/single-cell-gene-expression/software/pipelines/latest/

what-is-cell-ranger.

140. Baglama, J., Reichel, L. & Lewis, B. W. irlba: Fast Truncated Singular
Value Decomposition and Principal Components Analysis for Large
Dense and Sparse Matrices R package version 2.3.3 (2019). https:
//CRAN.R-project.org/package=irlba.

141. Baglama, J. & Reichel, L. Augmented Implicitly Restarted Lanczos
Bidiagonalization Methods. SIAM Journal on Scientific Computing
27, 19–42 (2005).

142. Krijthe, J. H. Rtsne: T-Distributed Stochastic Neighbor Embedding us-
ing Barnes-Hut Implementation R package version 0.15 (2015). https:
//github.com/jkrijthe/Rtsne.

143. Van der Maaten, L. Accelerating t-SNE using Tree-Based Algorithms.
Journal of Machine Learning Research 15, 3221–3245. http://jmlr.
org/papers/v15/vandermaaten14a.html (2014).

144. Melville, J. uwot: The Uniform Manifold Approximation and Projec-
tion (UMAP) Method for Dimensionality Reduction R package version
0.0.0.9010 (2019). https://github.com/jlmelville/uwot.

145. Pedersen, T. L. ggforce: Accelerating ggplot2 R package version 0.2.0
(2019). https://CRAN.R-project.org/package=ggforce.

146. Ritchie, M. E. et al. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Research 43,
e47 (2015).

101

http://www.nature.com/articles/nature10532
http://www.nature.com/articles/nature10532
https://www.jci.org/articles/view/93801
https://www.jci.org/articles/view/93801
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://CRAN.R-project.org/package=irlba
https://CRAN.R-project.org/package=irlba
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
http://jmlr.org/papers/v15/vandermaaten14a.html
http://jmlr.org/papers/v15/vandermaaten14a.html
https://github.com/jlmelville/uwot
https://CRAN.R-project.org/package=ggforce

147. Buja, A., McDonald, J. A., Michalak, J. & Stuetzle, W. Interactive
data visualization using focusing and linking in Proceedings of the 2nd
conference on Visualization’91 (1991), 156–163.

148. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome biology
15, 1–21 (2014).

149. Dudoit, S., Yang, Y. H., Callow, M. J. & Speed, T. P. Statistical meth-
ods for identifying differentially expressed genes in replicated cDNA
microarray experiments. Statistica sinica, 111–139 (2002).

150. Lebeau, F. d3-beeswarm plugin 2017. https://bl.ocks.org/Kcnarf/
5c989173d0e0c74ab4b62161b33bb0a8.

151. Hattab, H. E. reveal.js: The HTML Presentation Framework 2021.
https://revealjs.com/.

152. Herbst, K. et al. Colorimetric RT-LAMP and LAMP-sequencing for
detecting SARS-CoV-2 RNA in clinical samples. Bio-protocol 11, e3964–
e3964 (2021).

153. Deckert, A. et al. Effectiveness and cost-effectiveness of four differ-
ent strategies for SARS-CoV-2 surveillance in the general popula-
tion (CoV-Surv Study): a structured summary of a study protocol
for a cluster-randomised, two-factorial controlled trial. Trials 22, 1–4
(2021).

154. Notomi, T. et al. Loop-mediated isothermal amplification of DNA.
Nucleic acids research 28, e63–e63 (2000).

155. Wattenberg, M., Viégas, F. & Johnson, I. How to Use t-SNE Effec-
tively. Distill. http://doi.org/10.23915/distill.00002 (2016).

156. Seifert, C., Sabol, V. & Kienreich, W. Stress Maps: Analysing Local
Phenomena in Dimensionality Reduction Based Visualisations in Eu-
roVAST 2010: International Symposium on Visual Analytics Science
and Technology (eds Kohlhammer, J. & Keim, D.) (The Eurographics
Association, 2010). isbn: 978-3-905673-74-6.

157. Lespinats, S. & Aupetit, M. CheckViz: Sanity Check and Topological
Clues for Linear and Non-Linear Mappings. Computer Graphics Forum
30, 113–125. issn: 01677055. http://doi.wiley.com/10.1111/j.
1467-8659.2010.01835.x (2019) (Mar. 2011).

102

https://bl.ocks.org/Kcnarf/5c989173d0e0c74ab4b62161b33bb0a8
https://bl.ocks.org/Kcnarf/5c989173d0e0c74ab4b62161b33bb0a8
https://revealjs.com/
http://doi.org/10.23915/distill.00002
http://doi.wiley.com/10.1111/j.1467-8659.2010.01835.x
http://doi.wiley.com/10.1111/j.1467-8659.2010.01835.x

158. Vaidyanathan, R. et al. htmlwidgets: HTML Widgets for R R pack-
age version 1.5.3 (2020). https://CRAN.R-project.org/package=
htmlwidgets.

103

https://CRAN.R-project.org/package=htmlwidgets
https://CRAN.R-project.org/package=htmlwidgets

	Introduction
	Visualisation and big data in bioscience
	Basics of visualization
	Limitations of visualisation

	Interactivity
	Existing solutions
	Visualization gap

	Methods and datasets
	Types of datasets
	Omics data
	High-throughput screening of biologically active compounds
	Medical data

	Example datasets
	Tools and dependencies
	The R programming language
	The JavaScript programming language
	Web server
	Websocket connection
	``httpuv'' package
	D3.js

	Results
	The ``jrc'' package
	Message exchange
	Multiple sessions
	Local environments and function evaluation
	Security restrictions

	The ``sleepwalk'' package
	Distances transformation in dimensionality reduction
	Exploring an embedding
	Feature-space distances
	Comparing embeddings
	Comparing samples
	Comparing distance metrics
	Beyond single-cell transcriptomics
	Implementation and usage
	Data processing

	The ``rlc'' package (LinkedCharts)
	Linking charts
	Basic syntax
	Use cases
	Further customization
	Implementation

	Discussion
	Role of interactivity in visualisation
	``sleepwalk``
	Linked Charts
	Code simplicity
	Customisation

	JavaScript for enhanced interactivity

