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Abstract 

Multicellular organisms rely on the concerted interaction of a multitude of cells, 

which are often highly specialised and give rise to complex tissues. As vastly different 

cellular phenotypes emerge from the same genotype that is shared across all cells of 

an organism, the transcriptome represents a key mediator driving different cell types 

and cell states that give rise to functional tissues. These are also subject to 

environmental factors or intrinsic changes that may disrupt homeostasis and lead to 

disease. In the human lung, the effects of tobacco smoke exposure, still the greatest 

risk factor for lung cancer, have not been fully resolved at the cellular level. 

Moreover, cellular heterogeneity may be significant for the emergence of lung cancer 

in never smokers, a growing proportion of global cases. A focused investigation of 

cellular heterogeneity in the healthy lung and lung cancers is therefore highly 

warranted.  

During the last decade, technological advancements have made it possible to 

interrogate the transcriptome of single cells by novel next generation sequencing 

approaches. While previous studies were limited to averaging transcriptome 

information over many cells, single cell RNA sequencing (scRNA-seq) technologies 

are now enabling the investigation of cellular phenotypes in healthy and diseased 

tissues at unprecedented resolution. 

In this thesis, I adapt different scRNA-seq technologies to process fresh or biobanked 

samples from different tissues and species, thus enabling comparisons across diverse 

origins. We identify specific advantages, limitations and experimental challenges 

associated with each technology.  

I then perform a comprehensive single-cell transcriptomics study of healthy lung and 

lung adenocarcinoma (LADC). Based on twelve healthy lung samples, we generate 

a reference cell atlas that provides a rich resource for investigating cellular diversity 

in the human alveolar lung. Its utility is demonstrated by probing the expression of 

genes that are implicated in host cell entry of SARS-CoV-2 virus, thereby 
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contributing to our understanding of coronavirus infections. By comparing single cell 

profiles from smokers and never smokers, we also resolve the involvement of distinct 

cell types in the maintenance of an inflammatory state in smoker lungs, and we 

identify key mediators of inflammatory processes induced by tobacco smoke exposure 

in fibroblasts and endothelial cells. 

To investigate cell type diversity and microenvironment interactions in LADC, I 

analyse 26 tumour tissue samples and resolve functional malignant cell 

subpopulations linked by a differentiation hierarchy in both smokers and never 

smokers. They comprise proliferating and intermediate undifferentiated cells as well 

as two differentiated tumour cell states implicated in cancer progression and 

invasiveness. Distinct macrophage and fibroblast subpopulations which contribute 

to a tumourigenic environment are also detected. A subset of proliferating tumour 

cells show differential immune modulating activity dependent on smoking status, 

with implications for future treatment approaches. 

Taken together, these results provide a comparison of rapidly developing scRNA-seq 

technologies for use in further studies and demonstrate their utility to dissect cellular 

heterogeneity and identify transcriptional programmes in the healthy and diseased 

lung. By applying these technologies, I add to our understanding of SARS-CoV-2 

entry into human lung cells, define the alveolar lung cell types affected by tobacco 

smoke exposure, and provide deeper insight into cellular heterogeneity of LADC and 

the tumour microenvironment. These findings represent a valuable reference for 

future translational studies. 
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Zusammenfassung 

Mehrzellige Organismen sind auf das koordinierte Zusammenspiel einer Vielzahl von 

Zellen angewiesen, die oftmals hochspezialisiert sind und sich zu komplexen Geweben 

zusammenfügen. Das Transkriptom setzt dabei phänotypische Unterschiede 

zwischen den Zelltypen und Zuständen funktionaler Gewebe um, die alle aus 

demselben Genotypen hervorgehen. Diese Gewebe sind außerdem Umweltfaktoren 

oder intrinsischen Veränderungen ausgesetzt, die die Homöostase stören und zu 

Krankheiten führen können. In der menschlichen Lunge sind die Auswirkungen von 

Tabakrauch, der immer noch den größten Risikofaktor für Lungenkrebs darstellt, 

bisher nicht vollständig auf zellulärer Ebene aufgeklärt worden. Außerdem könnte 

zelluläre Heterogenität von Bedeutung für die Entstehung von Lungenkrebs bei 

Nierauchern sein, die einen zunehmenden Anteil der globalen Krankheitsfälle 

ausmachen. Eine zielgerichtete Untersuchung zellulärer Heterogenität in der 

gesunden Lunge und Lungenkrebs ist daher dringend erforderlich. 

Technologische Fortschritte im Verlauf der letzten zehn Jahre ermöglichen es 

inzwischen, das Transkriptom einzelner Zellen mittels neuartiger 

Sequenzierungsmethoden zu analysieren. Während vorherige Studien darauf 

beschränkt waren, den Durchschnitt transkriptioneller Information über viele Zellen 

zu messen, kann man mittels Einzelzell-RNA-Sequenzierung nun zelluläre 

Phänotypen in gesunden und erkrankten Geweben in noch nie dagewesener 

Auflösung entschlüsseln. 

In dieser Dissertation implementiere ich unterschiedliche Technologien der 

Einzelzell-RNA-Sequenzierung, um Gewebe aus frischen Biopsien oder einer Biobank 

zu prozessieren, sodass Proben unterschiedlichen Ursprungs verglichen werden 

können. Wir identifizieren dabei die spezifischen Vorteile, Einschränkungen und 

experimentellen Herausforderungen der jeweiligen Technologien. 

Anschließend führe ich eine umfassende Einzelzell-Transkriptom-Studie von 

gesundem Lungengewebe und Adenokarzinom der Lunge (LADC) durch. Basierend 
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auf zwölf Proben von gesundem Lungengewebe generieren wir einen Zellatlas, der 

als Referenz und Ressource dient, um zelluläre Diversität in der distalen 

menschlichen Lunge zu untersuchen. Seinen Nutzen demonstrieren wir anhand der 

Expression von Genen, die am Wirtszelleintritt des SARS-CoV-2-Virus beteiligt 

sind, und tragen damit zu unserem Verständnis von Coronavirus-Infektionen bei. 

Indem wir Einzelzell-Profile von Rauchern und Nierauchern vergleichen, bestimmen 

wir auch die Beteiligung verschiedener Zelltypen an der Aufrechterhaltung eines 

inflammatorischen Milieus in Raucherlungen und identifizieren Schlüsselfaktoren 

von Entzündungsprozessen, die durch Tabakrauch in Fibroblasten und 

Endothelzellen induziert werden. 

Um die Diversität von Zelltypen in LADC und deren Interaktionen mit dem 

Mikromilieu zu beleuchten, analysiere ich auch 26 Tumorgewebeproben und ermittle 

funktionale maligne Zellpopulationen in Rauchern und Nierauchern, die durch eine 

Differenzierungshierarchie verbunden sind. Sie beinhalten sich teilende und 

differenzierende Zellen sowie zwei ausdifferenzierte Tumorzellstadien, die mit 

Tumorprogression und Invasivität assoziiert sind. Wir detektieren auch verschiedene 

Subpopulationen von Makrophagen und Fibroblasten, die zu einer tumorfördernden 

Umgebung beitragen. In Abhängigkeit vom Raucherstatus weist eine Untergruppe 

der sich teilenden Tumorzellen unterschiedliche Immunmodulationsaktivität auf, mit 

Relevanz für zukünftige Behandlungsansätze. 

Insgesamt liefern diese Ergebnisse einen Vergleich neuartiger Technologien für die 

Einzelzell-RNA-Sequenzierung, der in zukünftigen Studien genutzt werden kann. Sie 

demonstrieren ihren Nutzen für die Analyse zellulärer Heterogenität und die 

Entschlüsselung von Transkriptionsprogrammen in gesundem und erkranktem 

Lungengewebe. Durch Anwendung dieser Technologien trage ich zu unserem 

Verständnis des Eintritts von SARS-CoV-2 in menschliche Lungenzellen bei, 

bestimme die Zelltypen der distalen Lunge, die durch Tabakrauch beeinträchtigt 

werden, und zeige die zelluläre Heterogenität in LADC und dessen 

Tumormikroumgebung auf. Diese Erkenntnisse stellen eine wertvolle Referenz für 

zukünftige translationale Studien dar.  
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1 Introduction 

1.1 Characterisation of cellular phenotypes 

Cells are the basic unit of life on earth and every multicellular organism comprises 

a multitude of morphologically and functionally very distinct cells that rely on the 

same genome. Our understanding of cells as the fundamental building blocks of 

organisms arises from works such as the ‘Cell Theory’ by Rudolf Virchow, and 

others, formulated in the 19th century. These observations were based on two 

centuries of scientific discovery, including Robert Hooke’s first description of a cell 

in 1665 which was made possible by Antoni van Leeuwenhoek’s microscope [1]. 

Since then, researchers have tried to classify cells into different cell types that react 

to and interact with their environment in a characteristic way, and thereby 

contribute to the makeup of tissues and ultimately whole organisms. This 

classification was initially based on morphological differences between cells, but with 

increasing knowledge and understanding of the molecular processes underlying 

cellular phenotypes, descriptions were expanded to include their different constituent 

molecular layers, namely DNA, RNA and proteins.  

A typical cell contains 6 pg of DNA, 50,000-300,000 mRNA molecules (5-30 pg) and 

millions of proteins (20-200 pg) [2-5]. For the longest time, classification of 

phenotypes at the level of single cells focused on the identification of proteins using 

microscopy technologies, like immunofluorescence light microscopy. Through 

progressive improvements in these technologies, imaging based classification of cells 

now encompasses the quantitative characterisation of molecular traits, for example 

of RNA molecules using fluorescence in-situ hybridisation (RNA-FISH) and 

structural characteristics of DNA using various fluorescent dyes [6-8]. However, all 

of these approaches require some prior knowledge about the target, such as protein 

structure for epitope detection by antibodies, or RNA molecules for hybridisation to 

a consensus sequence. 
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The first step towards an unbiased method to interrogate the molecular makeup of 

cells was taken with microarray technology, where isolated RNA was transcribed to 

cDNA, fluorescently labelled and hybridised to known complementary DNA 

sequences [9]. While this increased the number of genes that could be probed, the 

first truly untargeted approach only emerged with the ability to reconstruct the 

sequence of an unknown DNA molecule [10]. Today, a variety of what are now called 

next generation sequencing technologies (NGS) allow us to determine the sequence 

of any given DNA or RNA molecule at high precision [11, 12]. Fundamentally, these 

sequencing technologies rely on fragmenting DNA into smaller pieces (typically 

around 300 nucleotides) or transcribing RNA into cDNA with a reverse 

transcriptase. Nucleotide fragments are then fixated to a surface, and a DNA 

polymerase catalyses the sequential incorporation of fluorescently labelled 

nucleotides into antisense strands. By fluorescence imaging of this replication 

process, the order of nucleotides in the given fragment – the sequence – can be 

inferred. This sequence can now be compared to a reference genome of the 

appropriate species to determine its original genomic position, or the position of its 

template in the case of RNA.  

The first human reference genome was made available by a huge international 

collaborative effort, the Human Genome Project, which started in 1990 and finished 

in 2003 [13]. With the availability of NGS, this reference has since been refined, and 

reference genomes for a multitude of other species have also been constructed. While 

the Human Genome Project cost as much as $3 billion, these new technologies enable 

the sequencing of a whole human genome in a matter of days at the cost of just a 

few thousand US dollars, making it feasible to address scientific questions rapidly 

and at scale [13].  

However, until recently, our ever-improving capability to characterise the molecular 

phenotype of cells was not applicable at the level of single cells, because the amount 

of material required for NGS technologies far exceeded the typical quantity of DNA 

or RNA found in one cell and technologies to capture and amplify nucleic acids at 

single cell resolution were lacking. Studies of cellular genomes and transcriptomes 
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were therefore limited to averaging over a large number of cells. When tissue samples 

were processed, this typically included multiple distinct cell types; and even in cases 

where individual cell types could be isolated beforehand by sorting techniques, bulk 

analyses were likely to overlook profound heterogeneity in gene expression between 

cells, given accumulating evidence for transcriptomic variability even within the 

same cell type [14, 15]. 

1.2 Single cell RNA sequencing 

While DNA sequencing plays a vital role in the diagnosis of genetic diseases and the 

identification of mutations in cancers, RNA sequencing provides a snapshot of the 

transcriptional activity of a cell, its transcriptome, as a proxy for its functional state 

at a given timepoint. Sequencing the transcriptome of one single cell was pioneered 

in the early 1990s, when methods to create cDNA from the minute amounts of RNA 

present in a cell were developed [16, 17] and later applied to microarray-based 

identification of gene expression [18-21]. The first analysis of single cell 

transcriptomes based on NGS was published in 2009 on early embryonic 

development [22]. Since then, single cell RNA sequencing (scRNA-seq) technology 

has developed rapidly and is now applied across all areas of biology, sprouting large 

international efforts to study biological systems at unprecedented resolution. One 

such effort, the Human Cell Atlas Project, aims to chart the transcriptomes of all 

cells in the human body [23]. 

This rapid spread of a rather new methodology was made possible by the 

development of various technological approaches to address three major obstacles 

inherent in studying the molecular makeup of a single cell. Firstly, cells have to be 

isolated from their natural environment and compartmentalised in separate reaction 

volumes. Secondly, the minute amount of RNA in one cell requires novel 

experimental procedures for recovering and amplifying this material. Thirdly, the 
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acquired sequence data poses novel challenges for analysis due to high technical 

variability and sparseness in single cell derived transcriptome datasets (Figure 1.1). 

Figure 1.1 Challenges of single cell sequencing. There are three main challenges in scRNA-seq studies. 
(i) Isolation of cells from their natural environment and separation in distinct reaction volumes. (ii) Construction 
of sequencing libraries from minute amounts of material and appropriate sequencing. (iii) Computational analysis 
of extremely sparse data with high technical variability. 

1.2.1 Isolation of single cells 

To analyse the transcriptomes of single cells without prior knowledge, they first need 

to be isolated from the surrounding tissue and contacts with other cells or 

macromolecules such as the extracellular matrix (ECM) have to be broken 

enzymatically, chemically or mechanically. This process of extraction leads to the 

loss of spatial information about the cell and its natural microenvironment, and 

might also induce changes in the transcriptome which can affect downstream 

analysis [24-26]. 

Subsequent isolation of each cell’s RNA into separate reaction compartments is the 

next critical step for sequencing individual transcriptomes. Initially, this was 

achieved by manual manipulation of single cells by pipetting [22] or limiting dilution 

[27]. However, the inefficiency of these technique made it unfeasible to process more 

than a few hundred cells. One of the earliest methods employed to increase the 

throughput of single cell RNA sequencing was flow cytometry, which allows for 

sorting of cells into separate wells of a reaction plate based on their physical 

properties or fluorescence signal (FACS) [28, 29]. When combined with fluorescence 

labelling of marker proteins, flow cytometry thereby also enables the analysis of 

specific subpopulations of cells [30]. 

A major breakthrough that finally enabled the sequencing of thousands or even 

millions of single cell transcriptomes in a single study was achieved by 



Introduction 

 5 

miniaturisation of the reaction volume to the nanolitre scale. This advancement not 

only reduced the cost of reagents, but also considerably improved the sensitivity of 

these assays, enabling scRNA-seq approaches to construct a more faithful 

representation of the actual transcriptome in a single cell [31]. Miniaturisation is 

here most commonly realised through microfluidic [32-34] (compare Figure 2.1) or 

plate-based technologies [35, 36]. Recent approaches have aimed to further reduce 

costs by utilising the cell itself as a reaction compartment, confining RNA molecules 

inside the cell membrane while rendering them accessible to the required reagents 

[37]. This method avoids the need for expensive microfluidic equipment, and it has 

been shown to identify cell types at similar efficiency compared to competing 

technologies while being much easier to scale at lower cost. Still in the developing 

stage, future investigations of this technology will provide more insights into its 

applicability for different tissues and experimental robustness [37]. 

1.2.2 Library construction for NGS 

After the successful isolation of each cell’s RNA, a sequencing library suited for NGS 

has to be constructed. This typically consists of three steps, including cell lysis, 

reverse transcription of RNA into 

cDNA, and cDNA amplification to 

provide enough input material for 

sequencing technologies. 

Lysis is typically achieved using a 

hypotonic buffer and mild detergents, 

and first strand cDNA synthesis is 

performed with a poly(dT) primer and 

reverse transcriptase to select for 

poly(A) messenger RNA (mRNA). As 

current approaches result in reverse 

transcription of only 10-20% of RNA 

Figure 1.2 Template switching. By using a specific 
reverse transcriptase paired with a primer that anneals 
to introduced, protruding nucleotides at the 3’ end of 
the nascent cDNA, template switching improves 
transcription efficiency and enables transcription of the 
full length of an mRNA molecule. 
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molecules, this step introduces another major bias into the scRNA-seq data [38, 39]. 

Different strategies for reverse transcription of mRNA exist, but the most common 

today are poly(A)-tailing and template switching [40], with the majority of all 

current high-throughput protocols relying on the latter.  

Template switching not only provides superior efficiency for the minute RNA input 

amounts in scRNA-seq, it also ensures, unlike poly(A)-tailing, transcription of the 

full length of an mRNA molecule. This technology harnesses a specific property of 

the Moloneymurine leukemia virus (MMLV) reverse transcriptase, which is thought 

to add three protruding nucleotides (+CCC) to the 3’ end of the nascent cDNA [41, 

42] (Figure 1.2). A second primer (template switching oligo; TS-oligo) containing a 

matching sequence of three riboguanosins (rGrGrG) can then anneal to the nascent 

cDNA and allows the reverse transcriptase to switch templates; thus, the transcript 

can be elongated with a known nucleotide sequence and the entire mRNA sequence 

can be amplified. 

Subsequently, the extremely low amount of transcribed cDNA needs to be further 

increased either by linear in-vitro amplification or exponential polymerase chain 

reaction (PCR). While linear amplification is less prone to introduce bias by 

preferential amplification of certain genes or different ratios of gene products, most 

protocols rely on exponential PCR as it is much less labour intensive [43, 44]. 

Therefore, the majority of scRNA-seq technologies are fundamentally based on the 

SMART method, which combines reverse transcription by template switching and 

PCR to generate a sequencing library suited for modern NGS from the extremely 

low amounts of RNA in one cell [40]. 

To date, single cell sequencing technologies have predominantly focused on 

examining the transcriptome of single cells, but sequencing-based methods have also 

been developed for other molecular properties. These include DNA [45, 46], 

epigenetic modifications and chromatin accessibility [47-49], and protein expression 

as determined by antibody sequencing [50]. Recent advancements even enable the 

integration of different approaches to simultaneously analyse multiple modalities 

from the same cell, termed multiomics [50-63].  
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1.2.3 Challenges in scRNA-seq data analysis 

After using NGS to acquire sequence information for each library molecule, termed 

the sequencing reads, this data has to be pre-processed before downstream analysis. 

Usually, standard quality measures for RNA sequencing are applied, including a 

certainty score for each base of the sequence and overall base composition to discard 

low quality libraries [64]. In scRNA-seq approaches, reads also need to be assigned 

to the cell they derive from; this is achieved by a barcode sequence unique to each 

cell which is integrated into each read during reverse transcription of the cDNA or 

library construction. To translate sequence information into gene expression data, 

each read is aligned to a reference genome and a matrix of read counts per gene in 

each cell is constructed. However, due to the often-used exponential amplification of 

the sequencing library and missed molecules, these counts may not reflect the true 

molecule count of RNA across different cells (section 1.2.2). To circumvent this 

problem, bulk RNA sequencing and early scRNA-seq methods added a mix of known 

RNA molecules during library construction, reasoning that the read counts for this 

“spike-in” RNA would enable inference of any technical bias that should affect the 

cell’s native RNA in the same way [65]. The main problem with this method for 

single cell transcriptomics is that the amount of “spike-in” RNA needs to be delicately 

balanced. While too little might not result in useful information, too much would 

mask the signal from the cells’ RNA [65]. Given the high variability in RNA amount 

and composition for each individual cell, this method is consequently not very well 

suited for scRNA-seq. Therefore, most technologies now introduce short sequences 

called unique molecular identifiers (UMI) into each molecule during reverse 

transcription. As they are unique to each molecule, these identifiers can then be used 

to distinguish and remove PCR duplicates emerging during amplification, reducing 

potential biases introduced in the cDNA amplification step. 

Another fundamental problem for the analysis of scRNA-seq data is the substantial 

sparseness of the data, meaning a high number of zero-counts, often referred to as 

“drop-outs” [66-68]. The latter term, however, is somewhat misleading, because zero-
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counts include values that occur due to technical noise as well as values that 

represent truly unexpressed genes [67, 68]. Zero values attributable to technical 

variation can be caused by different degradation susceptibility of RNA molecules, 

transcription as well as amplification differences or stochastic events during 

sequencing, especially in lowly expressed genes. Thus, beyond the expression level of 

each gene, data sparsity is affected by cell capture technology, library construction 

method and sequencing depth. Together with biological noise, e.g. oscillating 

expression of cell cycle genes, this hampers cell type and cell state identification and 

further downstream analyses [69, 70]. Suitable normalisation techniques for scRNA-

seq data are therefore required to mitigate the bias introduced by zero-counts. 

Finding the optimal normalisation method remains an unsolved challenge although 

new techniques are constantly developed, which often model RNA counts using 

probabilistic approaches to estimate the true gene expression for each cell [66, 70-

78]. 

The complex nature of many biological problems demands sampling not only once 

but e.g. at different time points, different locations or across different organisms. In 

scRNA-seq studies, methods to account for technical and biological noise are thus 

required when handling multiple samples. Accordingly, apart from normalization 

techniques, the development of computational approaches to correct for batch effects 

is also a rapidly evolving field. Depending on the specific experimental set-up, the 

most suitable method can be selected for batch correction [76, 79-94]. 

 

To derive biological insight from the data thus processed, a common approach is to 

define groups of cells with shared transcriptional characteristics. Most often this is 

achieved by reducing the dimensionality of the data by principal component 

analysis (PCA) [95] and finding communities of cells by constructing a shared 

nearest neighbour (SNN) graph [96]. The distinguishing features of cell populations 

are then characterised for example by differential gene expression analysis, often 

using the Wilcoxon rank sum test [97] or other methods specifically developed for 

single cell RNA analysis [98, 99]. 
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Another popular method to distinguish groups of cells with similar expression profiles 

is non-negative matrix factorisation (NMF), which decomposes the gene-by-cell 

count matrix V into the product of two matrices, V = W x H (Figure 1.3). Gene 

sets that contribute to each factor may then be determined based on the gene-by-

factor matrix W, while groups of cells with similar expression profiles may be 

inferred from the factor-by-cell matrix H. In practice, the dimensions of the factor 

matrices W and H are usually chosen to be much smaller than those of the original 

matrix [100] and the factorisation is approximated by V = W x H + U, where the 

contribution of the residual matrix U is minimised. A soft clustering approach may 

then be used to identify populations as well as subpopulations of cells from the 

factor-by-cell matrix H without the need for iterative clustering. 

 

 

Figure 1.3 Illustration of approximate matrix decomposition. Matrix V is decomposed into the 
product of two matrices W and H.  

However, choosing a meaningful value for the number of factors presents a challenge 

and relies on biological insight. Ultimately, the cell populations identified by NMF 

with their transcriptional characterisations can give insight into the diversity of 

distinct cell types present in the tissue, as well as different functional states that 

may be occupied by cells of the same cell type. 

In most tissues, cells exist not only in transcriptionally distinct populations of cell 

types but on a continuum of gradual changes, for example along a differentiation 

path such as the development from lymphoid progenitor cells to dendritic cells, B 

cells, T cells and natural killer cells, which may again comprise different cell states 

(e.g. activated and non-activated T cells). To analyse these trajectories, over 70 



 10 

computational methods have already been developed [101]. They all aim to sort cells 

based on their transcriptional similarity along an axis of change most often termed 

pseudotime. The unknown topology of the underlying process represents a significant 

challenge here. Most methods therefore assume a linear or tree like model of cell 

state relation [102, 103], but new approaches also try to infer pseudotemporal 

ordering in complex graph based topologies [101, 104]. Once a trajectory is 

determined, a major hurdle in the further downstream analysis of transcriptome data 

is the identification of genes that change along this trajectory. Until now, most 

analytical approaches are limited to differential gene expression between branches 

of the trajectory or distinct subpopulations of cells along the pseudotime axis. 

 

Despite the challenges and open problems associated with scRNA-seq data 

processing, single cell transcriptomics has already led to remarkable discoveries 

during the past decade, including the identification of a new cell type in the lung 

[105] and the application of single-cell technologies to guide therapeutic intervention 

[106]. As I will explore further in this work, it also offers a promising avenue to 

better understand tumour heterogeneity and evolution [107, 108]. 

1.3 Cell types of the human lung 

As described above, cell type characterisation has long been driven by microscopic 

approaches. In the lung, they have led to the discovery of dozens of cell types [109, 

110]. In recent years, microscopic imaging has been complemented with molecular 

analyses of marker protein expression that enable a more refined description of lung 

cell types [111, 112]. Single cell transcriptomics, in particular, has now been 

employed to further resolve the diversity of cell types in the lung, and has facilitated 

the detection of a novel rare cell type as well as the subdivision of known cell types 

into multiple classes [105, 113-115]. With increasing amounts of data resulting in 

more fine-grained classifications, the traditional distinction between defined cell 
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types on the one hand and different states of the same cell type on the other hand 

is beginning to blur [116]. In this section, I will introduce the major cell types of the 

lung as they are canonically classified today (Figure 1.4). 

As the lung constitutes a metabolically very active tissue and to permit gas exchange 

between air and blood, there is a high degree of vascularisation in the lung, facilitated 

by endothelial cells that line arteries, veins and lymphatic vessels [117, 118]. The 

basic structural and functional integrity of the lung is maintained by stromal cells, 

comprising smooth muscle cells, pericytes, mesothelial cells and various 

fibroblasts [119].  

The main function of the lung is gas exchange, which requires a huge surface area. 

Starting from the trachea, human lung airways therefore progressively split from 

proximal to distal into ever smaller passages that total about 2^21 – 2^23 branches, 

culminating in highly vascularised spherical structures, the alveoli, which represent 

99% of the total surface area in the lung [110, 120]. Lung airways are lined with a 

continuous epithelial layer predominantly comprised of basal, ciliated, club, goblet, 

mucous, serous and neuroendocrine cells. The composition of these epithelial cells 

changes from proximal to distal airways, with fewer mucosal, ciliated and basal cells 

and increased numbers of club and other secretory cells in more distal branches [121, 

122]. In addition, the more specialised alveolar type 1 and type 2 cells (AT1/2) are 

found only in the alveoli [110, 121, 123]. Here, cell composition differs entirely from 

the proximal branches as alveoli contain a single squamous epithelial layer of thin, 

flat AT1 cells that are the main facilitators of gas exchange and in close contact 

with the vascular system [124, 125]. AT2 cells are also found in large numbers, 

mainly responsible for the maintenance of alveolar surface tension by surfactant 

production and regulation. They further play a role in immune regulation and 

interaction with the microenvironment via secretory factors [126, 127]. While basal 

cells predominantly effect tissue homeostasis and damage repair in the proximal lung 

[128, 129], AT2 cells in alveoli can also undergo proliferation and are capable of 

differentiation into AT1 cells, making them another prominent candidate for lung 

cancer cells of origin [127, 130, 131]. 
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Apart from its role in gas exchange, the lung serves as a first line of defence against 

toxins and pathogens, due to its direct contact with the environment. Therefore, 

immune cell types are abundant in the lung, comprising the main cell types of the 

immune system, such as B and T lymphocytes, plasma, natural killer and basophil 

cells, as well as neutrophils, monocytes, dendritic cells and different macrophage 

populations, including specialised alveolar macrophages [119, 132-134]. 

Figure 1.4 Cell types in human lung alveoli. The alveolar space of the lung comprises specialised cell types 
such as alveolar type 1 and 2 cells (AT1/2) and alveolar macrophages (AvM), as well as cells also found in more 
proximal parts of the lung such as basal (Bas), ciliated (Cil), secretory (Sec), neuroendocrine (NeuN), smooth 
muscle (SM), endothelial (EC), lymphatic endothelial cells (LE) and fibroblasts (Fib). Immune cells, including 
B cells (BC), plasma cells (PC), T cells (TC), macrophages (MC) and dendritic cells (DC), are also present in 
the lung. 

1.4 SARS-CoV-2 

In the work culminating in this thesis, I generated scRNA-seq data of samples from 

healthy lung and lung tumours with the goal to study lung cancer heterogeneity. In 

a first step, as detailed in section 2.2.1, this resulted in an atlas of healthy lung cell 

types that supports and refines the cell type classification described above. While 

this work was in progress, in late 2019, a novel coronavirus variant affecting the 

respiratory system emerged and rapidly spread across the globe [135-137]. Due to its 

similarity to other respiratory syndrome coronaviruses, such as severe acute 

respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory 

syndrome coronavirus (MERS-CoV), it was named SARS-CoV-2, and the disease it 
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causes became known as COVID-19 [138]. Since this virus predominantly provokes 

damage in the lung, we decided to share insights gained from our healthy lung 

samples with the scientific community to help address this severe global health 

threat [139]. 

Like other coronaviruses, SARS-CoV-2 has a major spike protein that initiates cell 

infection by binding to a receptor on the target cell membrane, leading to fusion of 

the viral lipid envelope with the cell’s membrane. To be activated, after receptor 

binding but before membrane fusion, the spike protein needs to undergo proteolytic 

cleavage. Several proteases have been suggested as potential activators of the spike 

protein, including Furin, Cathepsin L, Transmembrane Serine Protease 2 

(TMPRSS2), TMPRSS11A and TMPRSS11D [140-142]. Of these, Furin and 

TMPRSS2 are most often observed to play a role in activation of a broad range of 

virus proteins [143]. Studies conducted soon after the emergence of SARS-CoV-2 

showed that infection was dependent on the virus binding to Angiotensin-Converting 

Enzyme 2 (ACE2), and entry of the virus was blocked by a TMPRSS2 inhibitor in 

a cell culture model [144-146]. These results suggested that ACE2 represents the 

receptor binding SARS-CoV-2 while TMPRSS2 activates the spike protein.  

We therefore used our atlas of healthy lung cells to add to the knowledge of cell type 

specific expression of ACE2 and candidate proteases as described in section 2.2.2. 

1.5 Lung cancer 

While our characterisation of healthy lung cell types contributed to the 

understanding of SARS-CoV-2 entry into cells [139], the main focus of this thesis 

was the investigation of cellular heterogeneity and microenvironment interactions in 

healthy lung tissue and lung cancer in patients with or without a smoking history. 

In addition to the characterisation of healthy lung samples as described in section 

2.2.1, scRNA-seq was therefore also performed on lung cancer samples, specifically 

lung adenocarcinoma (LADC). 



 14 

Lung cancer is the leading cause of cancer deaths worldwide and has the third highest 

incidence among all cancer types, after breast and prostate cancer, with an age 

standardised rate (ASR) of 31.5 per 100,000 in men and 14.6 per 100,000 in women 

worldwide. Among all cancers, it has the highest mortality rate in men (25.9 ASR 

per 100,000) and the second highest in women (11.2 ASR per 100,000) after breast 

cancer [147].  

The vast majority of lung cancer cases can be attributed to tobacco smoke, which 

accounts for about 90% of all cases [148]. Accordingly, the incidence of lung cancer 

has declined since the 1980s in the United States of America and other industrialised 

countries, after the health risks imposed by tobacco smoke were acknowledged and 

smoking prevention programmes established [147, 149, 150]. One of the most 

important demographic contributors to lung cancer cases, as with many other cancer 

types, is age [147, 151]. More than 90% of all cases occur in patients over 55 years 

of age, with the highest incidence in women between 75 and 79 (365.8 per 100,000) 

and men between 85 and 89 (585.9 per 100,000) years of age [150]. Other 

occupational and environmental risk factors include asbestos [152, 153], indoor 

smoke from cooking and heating with fire, air pollution and diesel exhaust [154-156], 

radon [150, 157], as well as radiation therapy [158, 159]. In addition, there are other 

lung diseases that have been associated with an increased risk for developing lung 

cancer, most likely due to inflammatory responses [160]. As an example, chronic 

obstructive pulmonary disease (COPD), a chronic inflammation of the lung, elevates 

the risk for lung cancer two to six times. While it is estimated that up to 50% of 

lifelong smokers develop COPD and the mortality rate of lung cancer correlates with 

the presence of this comorbidity, it also acts as a risk factor independent of age, 

smoking or sex [161, 162]. 

Clinical manifestations of lung cancer are diverse and classification has traditionally 

been based on pathological observations. Therefore, all lung cancers are broadly 

divided into two subclasses based on histopathology, non-small cell lung carcinoma 

(NSCLC) and small cell lung carcinoma (SCLC), with NSCLC according for about 

80% of all cases [163, 164]. As indicated by the name, SCLC presents as very small 



Introduction 

 15 

cells with little cytoplasm; it is highly aggressive and, in contrast to NSCLC, most 

often not suited for surgical resection [165]. NSCLC is further divided into 

adenocarcinoma, squamous cell carcinoma and large cell carcinoma [164]. Technical 

developments and an improved understanding of biological mechanisms that drive 

cancer progression have enabled an even more refined stratification of these 

histological classes to provide guidance for more targeted therapeutic decisions [166].  

While SCLC is very highly associated with smoking and ionising radiation [167], the 

most frequent type of NSCLC, lung adenocarcinoma, is most prevalent in non-

smoking patients [168]. LADC presently accounts for about 40% of all lung cancer 

cases, and as tobacco consumption is declining in high income countries, it appears 

likely that its share will increase further in the future [169-171]. To address this 

challenge, novel mechanistic insights into LADC biology and the role of tobacco 

smoke in its aetiology are urgently needed. In this thesis, I will thus focus on LADC 

and its molecular composition at the single-cell level in smokers compared to never-

smokers. 

1.5.1 Lung adenocarcinoma 

The histopathology of LADC shows an invasive epithelial neoplasm with high 

heterogeneity in growth patterns, which include lepidic, acinar, papillary, 

micropapillary and solid [163, 164, 172] (Figure 1.5). Lepidic growth, common in 

LADC, occurs along alveolar structures. Acinar patterns represent glandular 

structures in the stroma. Papillary and micropapillary tumours have a protruding 

papillary architecture, while the micropapillary type lacks vascularisation in its core. 

Solid growth is defined by the absence of the distinct features shown by the other 

patterns, and appears as homogenous sheets [163, 173]. Since most LADC cases 

present as a mixed phenotype, tumours are classified according to the most prevalent 

histopathological pattern, with notice of those co-occurring. 
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Figure 1.5 Subtypes of lung cancer based on histopathology. The histological subtypes of lung cancer 
include (A) small cell lung carcinoma and (B-I) non-small cell lung carcinoma. The latter is subdivided into 
(B) squamous and (C) large cell carcinoma and (D-I) various subtypes of lung adenocarcinoma. These comprise 
(D) lepidic, (E) papillary, (F) solid, (G) acinar, (H) micropapillary and (I) mucinous growth patterns. 
(adapted from [174-176]; original magnification: 40x for A,C and 400x for B,D-I). 

As our understanding of the molecular mechanisms involved in LADC development 

and the availability of targeted treatment options are improving, the 

histopathological classification of LADC is usually augmented using molecular 

features acquired by sequencing the tumour genome [164]. Most commonly in LADC, 

mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS), epidermal growth 

factor receptor (EGFR) and proto-oncogene B-Raf (BRAF), as well as a EML4-ALK 

translocation are detected, with EGFR and KRAS found to be mutually exclusive 
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[166]. Mutations are also often detected in PIK3CA, MET, HER2, MEK, NRAS, 

AKT and TP53 [166, 177-179]. Major advances over the past years have resulted in 

specific therapies targeting several of these aberrations, with one of the highest 

success rates in using tyrosine kinase inhibitors for tumours harbouring mutations 

in EGFR, HER2 or ALK [166].  

Clear relationships between these mutations and the aforementioned histological 

patterns would facilitate diagnostic procedures, but evidence for an association of 

histological phenotypes with one or the combination of several mutations remains 

contradictory [172, 180-184]. The co-occurrence of histological patterns in mixed 

tumours, impeding unambiguous classification, probably represents a major obstacle 

here. 

While knowledge of the mutations present in the tumour genome can contribute to 

selecting the appropriate therapy for each patient, a better mechanistic 

understanding of phenotypic changes in cancer cells may be achieved through 

transcriptome studies. RNA sequencing of tumour samples has consequently 

provided additional insight into more complex mutational landscapes [185] and 

suggested biomarkers on the RNA level for stratification of NSCLC [186]. In this 

way, many genes involved in LADC and other lung cancers have been discussed, 

such as genes regulating oxidative phosphorylation, DNA replication and 

proliferation [187]. In addition, connections between gene expression and overall 

survival have been proposed, as e.g. AGER and SPP1 have been associated with 

poor survival [188]. 

While these analyses have already had enormous impact on the treatment of 

patients, they lack the resolution to characterise the biology of single tumour cells 

and their interactions with the microenvironment. Both genetic and transcriptomic 

data are routinely generated by sequencing a piece of tissue acquired via biopsy, 

which comprises all of the different cell types found in a tumour, and thus represent 

an average across these cell types. In contrast, recent single cell sequencing 

technologies enable the refinement of mechanistic insights into cell types and cell 
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states as discrete units, with immense potential to resolve intratumoural 

heterogeneity and tackle challenges for personalised therapy in diverse tumours. 

1.5.2 Single cell RNA sequencing of LADC 

During the tumourigenesis of LADC, several molecular processes contribute to 

increasing cellular diversity. Genomic instability occurs especially during the early 

stages of tumour development and leads to mutations, as detailed in section 1.5.1, 

as well as structural changes such as copy number variations [189-192]. Together 

with epigenetic alterations such as DNA methylation, histone modification and non-

coding RNAs, this results in altered expression and regulation of oncogenes and 

tumour suppressor genes [193, 194]. By successive acquisition of these alterations, 

neoplastic and finally malignant cells emerge. This progression not only results in 

phenotypic differences between individual patient tumours, but also drives an 

evolutionary process that generates great heterogeneity within a single tumour [108, 

195]. Intratumoural heterogeneity in LADC has up to now mainly been characterised 

by histology and immunofluorescent imaging, requiring a targeted investigation with 

a high degree of prior knowledge, or by multiregional sequencing [196-198]. Only 

within the last few years, it has become possible to investigate this heterogeneity 

with single cell sequencing approaches (section 1.2). 

The first scRNA-seq studies examining transformed cells in LADC confirmed 

substantial intratumoural heterogeneity and found evidence for specific 

transcriptional signatures in subsets of cells. By conducting a longitudinal study of 

patients before, during and after targeted treatment, a signature resembling alveolar 

cells was found in tumours that persisted after treatment, while progressing tumours 

showed an increase in inflammatory signalling that declined in residual tumours 

[199]. Other studies identified deregulation of epithelial transcriptional programmes 

in tumour cells and possible differentiation paths to ciliated or alveolar phenotypes 

[200]. 



Introduction 

 19 

It is well acknowledged that cancer can only be fully understood by taking into 

account the tumour microenvironment (TME), which may hinder or contribute to 

tumour progression [189, 201]. Many studies have therefore focused on investigating 

this compartment. Different types of fibroblasts in the tumour microenvironment 

have been described, distinguished by the expression of genes such as different sets 

of collagens and endothelial cell expression signatures, that might contribute to 

angiogenesis and tissue remodelling [119, 200]. The immune compartment with its 

major role in cancer development has also received keen attention, especially due to 

its involvement in tumourigenic inflammatory processes and the need for tumour 

cells to evade destruction by the immune system [189]. 

Importantly, inflammation caused by extrinsic factors such as air pollution, tobacco 

smoke or virus infection has been linked to providing an immunosuppressive and 

tumourigenic environment [202]. Following the onset of neoplasia, the interplay of 

different immune cell types and other cells of the TME is very complex and 

contradicting observations have sometimes been reported, possibly caused by 

sampling at different disease stages or interpatient heterogeneity. Yet there is good 

evidence for changes in cell type composition and transcriptome profiles in the 

immune compartment that occur in the presence of LADC. These include a depletion 

of immune cells at the tumour site or compositional changes within the immune 

compartment that compromise anti-tumour immunity. For example, the number of 

cytolytic B cells is reduced while immunosuppressive, PPARG-expressing 

macrophages emerge in the presence of LADC. A multi-region single cell 

transcriptome study also found evidence for a loss of immune checkpoints in areas 

spatially closer to the tumour [203]. In addition, tumour-associated macrophages 

have also been observed to produce high levels of IL6 which may promote 

tumourigenesis, and tumours may themselves trigger inflammatory responses [204-

206]. 

The diverse interactions between LADC and the immune compartment have 

profound implications for immunotherapy, which has proven very successful in only 

a subset of patients. As our understanding of this interplay is still nascent, it remains 
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poorly understood how underlying interpatient differences in the immune 

compartment, but also heterogeneity within one tumour, might influence therapeutic 

outcomes [207-209]. 

1.5.3 Smoking and LADC 

Many different diseases have been associated with tobacco smoke exposure, with 

chronic obstructive pulmonary disease and lung cancer having the highest 

mortality [210, 211]. The risk of developing lung cancer is increased 20-fold in 

smokers compared to never smokers [152]. 

The exact mechanisms by which tobacco smoke affects lung physiology are still not 

fully discerned, partly because tobacco smoke comprises a complex mixture of more 

than 5,000 chemicals [212]. It is, however, well established that smoking causes 

damage to the epithelium and alveoli of the lung [213, 214] and leads to impairment 

in ciliary function [215]. It also causes immigration of immune cells into the lung 

tissue [214] and invokes an inflammatory response [216]. In addition, many of the 

compounds found in tobacco smoke are known carcinogens that introduce genomic 

alterations, which have been shown to persist even in former smokers for many years 

[217, 218].  

Among lung cancers, smoking is strongly associated with all histological 

subtypes (Figure 1.5). Smokers are especially likely to develop squamous cell 

carcinomas, while never smokers more often develop LADC [219-221] and small cell 

carcinomas only represent an estimated 1.5% of lung cancer cases among never 

smokers [222]. Tobacco smoke exposure also affects the genetic composition of lung 

cancers. Within NSCLC, the high mutational burden imposed by smoking is 

reflected in a higher overall mutation frequency in smokers [223], and there is 

evidence for a difference in driver mutations between smokers and never smokers. 

Specifically, EGFR mutations seem to be more common in never smokers, with one 

study finding EGFR mutations in 45% of all never smoking patients compared with 

7% of smoking patients [224].  
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With the availability of whole transcriptome sequencing, it became feasible to assess 

smoking related changes in the lung on a more mechanistic level. Gene expression 

changes due to tobacco smoke exposure have thus been identified, some of which 

persisted for decades after smoking cessation [225-227]. The most significant of these 

transcriptional differences were related to immune processes, inflammation and cell 

death [228]. Smoking-induced inflammation has also been detected based on higher 

plasma levels of cytokines like IL6, CRP and fibrinogen in smokers [229], and an 

increase in alveolar macrophages as mediators of inflammation in the alveolar 

fluid [230-232] and histological sections [233]. 

As described in the previous section 1.5, an inflammatory environment is thought to 

contribute to cancer initiation and progression [160, 234, 235]. In smokers, persistent 

inflammation may prompt normally quiescent stem cells to proliferate, facilitating 

neoplastic transformation of lung epithelial cells [236, 237]. This transformation 

could be initiated or promoted by reactive oxygen species, released by immune cells 

like alveolar macrophages recruited to the site of inflammation, that might damage 

the DNA of surrounding cells and add to the already heavy mutational burden 

induced by the various DNA damaging agents contained in tobacco smoke [238].  

Most of the work on the effects of smoking on the lung and its implication for lung 

cancer development has been conducted using lavage to obtain cells from the lung 

lumen or bulk biopsy material, therefore representing an average across diverse cell 

types. More recently, single cell RNA sequencing has been employed to interrogate 

the effects of tobacco smoke on individual cell types. This has uncovered 

dysregulation of peripheral blood monocytes in smokers [239], a shift in metabolic 

gene expression in bronchial cells [240], and transcriptomic changes which may 

impair tissue regeneration after injury in tracheal epithelial cells of smoker lungs 

[241]. While these studies revealed important mechanistic consequences of tobacco 

exposure for systemic immune cells and upper airway epithelial cells, little is known 

about alterations of single cell transcriptomes in the distal lung, with its distinct 

cellular composition, and how they might affect chronic lung disease initiation and 

progression. 
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1.5.4 LADC in women 

In the year 2000, it was estimated that more than 50% of global lung cancer cases 

in women occurred in non-smokers, compared to only 15% in men [242]. While these 

numbers indicate a pronounced gender bias, there has been substantial controversy 

about whether female non-smokers are truly at a higher risk of developing lung 

cancer compared to their male counterparts, or whether the disparity is rather due 

to other factors like social behaviour or the longer life-span of women [243-245].  

Besides this ongoing debate, there is good evidence for differences in disease 

mechanisms and therapeutic outcomes between women and men. In particular, 

younger patients, i.e. those under 50 years of age, are more often female, indicating 

a gender-associated risk for this patient group [246-251]. Smoking seems to have 

gender-specific effects on DNA integrity, as differences in smoking-induced DNA 

adducts have been identified in women and attributed to different metabolic 

processing of chemicals contained in tobacco smoke [252, 253]. Hormonal differences 

between men and women have been discussed as candidate drivers of this 

asymmetry. In LADC, estrogen receptor beta (ERβ) was found to be expressed more 

often in non-smoking patients, and in a higher proportion of women compared to 

men [254]. Expression of this receptor might directly impact therapeutic strategies, 

since ERβ has been shown to interact with EGFR, the LADC driver mutation most 

frequent in never-smokers (section 1.5.3), by facilitating the release of EGFR ligands 

from cells after ERβ stimulation [255, 256]. A lot of research has therefore focused 

on the role of ERβ in LADC development, but a clear mechanistic link to hormone 

levels or hormonal replacement therapy remains elusive as other confounding factors 

and the difficulty of defining discrete patient subgroups have presented major 

obstacles [257-262]. 
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1.6 Aim of this study 

Healthy tissues comprise a multitude of specialised cells that can each occupy various 

defined functional states to fulfil distinct tasks in a highly concerted manner.  

The transcriptome of individual cells mediates the translation of genetic and 

epigenetic information into phenotypic traits and communication of cells with the 

environment. It therefore serves as a proxy from which cellular identity, as well as 

the susceptibility of cells to adverse environmental events such as viral infection or 

tobacco smoke exposure, may be inferred. Transcriptomic disruptions also 

accompany diseased cell states and neoplastic transformations. Moreover, in the 

same way that healthy tissues rely on the concerted interaction of different cell types, 

tumours rely on the interplay of heterogenous populations of neoplastic cells and 

their interactions with the environment. 

During the last decade, a variety of new technologies have been developed to study 

cell identities and changes in the transcriptome at single cell resolution. Harnessing 

these technologies to answer biological questions first requires an evaluation of their 

suitability for different cases of application. 

This thesis therefore aims to provide a comparison of four of the first commercially 

available single cell transcriptomics technologies and discusses their suitability for 

different biological applications. Using heterogeneous well-characterised tissues, 

mouse brain as well as testis, I demonstrate the successful implementation of each 

technology and highlight their advantages and disadvantages. I also compare single 

cell transcriptomes acquired from freshly dissected tissue to single nuclei 

transcriptomes obtained from fresh frozen tissue, further broadening the scope of 

applications to include biobanked samples. 

In the second part of this thesis, I apply single cell transcriptomics to create a 

reference atlas of the human lung and study the susceptibility of different cell types 

to coronavirus infection based on the expression of mediators of viral infection. I 

further explore changes in cell type composition or the transcriptome after tobacco 

smoke exposure and in the presence of lung adenocarcinoma, as well as intratumoural 
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heterogeneity in lung adenocarcinoma. As there is evidence for increased 

susceptibility to lung adenocarcinoma in young female never smokers compared to 

male never smokers, I particularly focus on this demographic. My results determine 

functional heterogeneity at the single cell level with translational relevance. 
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2 Results  

 

 

The work presented in this thesis initially started with the aim of identifying and 

implementing appropriate single cell transcriptomics technologies to investigate 

cellular heterogeneity in a variety of mammalian species across a range of tissues, 

including brain and testis. To establish a suitable technology in the laboratory, I 

investigated approaches for tissue dissociation, and also obtained single nuclei from 

frozen samples to enable the handling of rare samples after storage or transport. 

Single cell technologies rapidly evolved and permitted to increase the numbers of 

analysed cells, resulting in a more faithful representation of cell type diversity in a 

given tissue. I therefore tested four different technologies as they became available 

(C1, iCell8, Dolomite-scRNASeq, 10x-Chromium; Figure 2.1). I successfully 

implemented each technology in our laboratory, enabling comparisons across tissues 

and species. Within the scope of my dissertation, I then applied this expertise to 

focus on single cell transcriptomics studies of the human lung. 

Using surgical biopsy samples obtained from LADC patients, we explored cell type 

diversity in human lung tissue to create a cell atlas of the healthy human lung. This 

atlas was harnessed to identify potential mediators of SARS-CoV-2 infection, as well 

as changes in cell type composition and transcriptional profiles in response to tobacco 

smoke exposure. In addition to healthy lung tissue, we applied scRNA-seq to 

investigate LADC tumour samples, with a particular focus on comparing their 

developmental architecture and transcriptional profiles in smokers and never 

smokers. 

In this chapter, I will first describe the implementation of the different experimental 

single cell RNA sequencing approaches and compare their outputs (section 2.1). I 

will then present a census of healthy lung cell types (section 2.2.1), and report on 

candidate effectors of SARS-CoV-2 infection (section 2.2.2) as well as smoking-
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induced inflammation (section 2.2.3). The chapter will conclude with a 

comprehensive investigation of malignant cell type heterogeneity and the tumour 

microenvironment in LADC (section 2.3). Figures and text in sections 2.2 and 2.3 

are partly adapted from associated publications [139, 263]. I am joint first author of 

both publications and wrote the original manuscript for the latter. 

2.1 Evaluation of different single cell transcriptomics technologies 

Modern scRNA-seq technologies enable the simultaneous processing of thousands of 

cells from diverse tissues. When the work for this thesis started, the field of single 

cell genomics was still in its early stages, and studies at the time were limited to a 

few hundred cells at relatively high cost. In addition, protocols for the preparation 

and dissociation of tissues into healthy cells suitable for single cell applications had 

only been developed for a small number of tissues, including easily accessible and 

dissociable ones like the hematopoietic system or tissues with wide availability of 

reference data such as embryonic mouse brain [264, 265]. 

The first commercially available scRNA-seq solution was the C1-96 system 

(Fluidigm) [32], a circuit-based microfluidic system with a throughput of at most 96 

cells at a time. Recent updates to the C1 system have increased the throughput to 

10,000 cells, but were not available at the time this work was conducted. Its 

application is highly labour intensive and extremely expensive, at a cost of about 

70 € per cell. As the microfluidic cell capture sites only allow for a narrow range of 

cell diameters to be processed, it also restricts experiments to the simultaneous 

analysis of cells that are similar in size. Using the C1 system, we processed live cells 

isolated from mouse embryonic forebrain tissue and identified characteristic gene 

expression profiles for different cell populations known to be present in this 

tissue (section 2.1.3). These successful results demonstrated the applicability of the 

C1 system; however, the emergence of novel (commercial) solutions enabling a higher 

throughput at a lower cost led us to apply new technologies to achieve a more 
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comprehensive representation of single cells transcriptomic profiles in complex 

tissues. 

These newer technologies included the iCell8 system (Takara Bio) [36], based on a 

flat chip containing 5,184 nanowells into which cells are distributed by limiting 

dilution. By keeping the reaction volume for reverse transcription of RNA in the 

nanolitre range, it ensures higher gene capture efficiency compared to other well 

based methods (see sections 1.2 and 4.2.3.2). The iCell8 system permits the 

simultaneous assessment of about 1,300 single cells and includes the possibility to 

image the chip before library construction, so that damaged cells or cell doublets 

can be excluded from further processing at an early experimental stage.  

Droplet microfluidic systems offer an even higher throughput by encapsulating cells 

in oil immersed water droplets for cell lysis and mRNA capture. Among those, the 

scRNA-seq system from Dolomite-Bio as well as the Chromium Controller from 10x 

Genomics were tested in the context of this thesis. Similarly to the iCell8 system, 

they also limit the reaction volume to nanolitres (see sections 1.2, 4.2.3.3 and 

4.2.3.4). However, reverse transcription in the Dolomite system takes place in 

millilitre reactions of pooled cells, whereas in the Chromium protocol RNA capture 

as well as reverse transcription happen inside the droplets, theoretically increasing 

sensitivity for lowly abundant genes. Unlike the previous systems, both the 

Dolomite-Bio and the Chromium system do not offer any imaging capability and 

therefore require rigorous quality control steps after sequencing to identify and 

exclude damaged cells and cell doublets. 
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Figure 2.1 Technology overview. Overview of the four scRNA-seq technologies discussed in this thesis, 
including the respective cell and mRNA capturing technology as well as library generation methods. The C1 
system uses consecutive microfluidic chambers to capture cells and conduct reverse transcription and cDNA 
amplification in nanolitre volumes separately for each cell. Libraries are generated in microliter reaction volumes 
for each cell using tagmentation, achieving full length transcript libraries. In the iCell8 system, limiting cell 
dilutions are dispensed across a chip containing nanolitre-sized wells, with single-cell capture achieved 
stochastically. Reverse transcription is conducted in nanolitre volumes for each cell separately inside the chip. 
In the Dolomite system, cell and mRNA capture are completed inside nanolitre droplets generated by 
microfluidics. In both the iCell8 and the Dolomite system, cDNA amplification and library generation are 
performed on pooled samples using one-sided tagmentation to enrich for 3’ end fragments. The Chromium system 
uses nanolitre droplets for cell and mRNA capture as well as reverse transcription. cDNA amplification and 
library generation are performed on pooled samples by enzymatic fragmentation, A-tailing (addition of a non-
template adenine), barcoded sequence ligation and 3’ enriched PCR amplification. All techniques use PCR to 
amplify cDNA as well as the complete sequencing library to increase material available for NGS. A detailed 
description of the library generation process can be found in section 4.2.3. PCR: PCR-primer; SP: sequencing 
primer; CBC: cell barcode; SBC: cell barcode; UMI: unique molecular identifier. (images of C1 workflow are 
adapted from [32]) 



Results 

 29 

2.1.1 Sequencing of single cells and single nuclei 

The first and one of the most crucial steps in scRNA-seq is isolating intact single 

cells. Cell connections and extracellular matrix components vary between different 

organs and species. Methods to isolate single cells from a tissue therefore need to be 

adapted to minimise any bias towards certain cell types or alterations to the 

transcriptome. I first developed and adapted methods to dissociate different tissues 

from several species, including Mus musculus (section 4.2.1) and Anolis carolinensis 

[266]. These dissociation methods, however, might not be most suitable for 

morphologically complex cell types such as neurons, since they require the disruption 

of all cell contacts which could damage the cell and significantly affect the 

transcriptome [24, 267]. Further, these methods are not applicable to frozen material, 

as the cytoplasmic membrane becomes porous when frozen and intact living cells are 

thus difficult to recover [267, 268]. 

A promising approach for these more challenging samples is single nucleus RNA 

sequencing (snRNA-seq), where intact nuclei are isolated and subsequently processed 

using analogous workflows to scRNA-seq. The nucleus harbours different RNA 

species compared to the cytoplasm, with a higher percentage of unspliced, early 

response and short turnover RNA [269-271]. Nevertheless, it has been shown to 

provide a faithful representation of the cell’s transcriptome, enabling cell type 

identification and detection of rare subpopulations of cells [267, 268, 272-274]. To be 

able to process samples procured from human donors, for example precious biopsies 

stored in biobanks, I adapted snRNA-seq to study frozen samples. The most widely 

used method for this purpose today, using mild detergent and mechanical force, 

proved suitable for isolating single nuclei from healthy tissue (section 4.2.2). 

However, solid tumour tissue such as LADC required a harsher protocol employing 

a citric acid buffer, which enabled consistent isolation of single nuclei with fewer 

nuclei doublets or clumps compared to other protocols using detergents (Figure 2.2). 

Originally developed to prevent RNA degradation in ribonuclease-rich tissues such 
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as the pancreas, it dramatically decreased undesirable extranuclear debris in tumour 

tissue samples (section 4.2.2). 

Having established protocols to isolate intact single cells from fresh mouse forebrain 

and testis tissue as well as nuclei from fresh frozen samples of mouse forebrain, testis, 

human lung and lung cancer, I proceeded to compare different sequencing library 

generation protocols. 

 

 

Figure 2.2 Comparison of nuclei isolation protocols. Intact nuclei were isolated by mechanical force either 
in the presence of the detergent NP40 (left) or citric acid (right). The latter protocol resulted in fewer nuclei 
doublets or clumps. 

2.1.2 Library preparation, data pre-processing and quality control 

The experimental implementation and comparison of scRNA-seq approaches focused 

on mouse testis and forebrain, representing two tissues with contrasting physiological 

roles and biological properties. All mouse samples were taken from SWISS mice 

(section 4.1.2) at embryonic (E13.5), juvenile (4 weeks) or adult (9 weeks) 

developmental stages. Testis or forebrain was dissected and immediately processed 

for single cell analysis or fresh frozen in liquid nitrogen. Single cells were isolated 

from fresh tissue by a combination of enzymatic digestion and mechanical 

dissociation, depending on the sample (section 4.2.1). From fresh frozen tissue, intact 

nuclei were isolated by chemical and mechanical disruption of the cytoplasmic 

membrane and washing of the extracted nuclei to reduce ambient cytoplasmic RNA. 
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Viability and integrity of cells and nuclei, respectively, was assessed by trypan blue 

staining. 

Single cell transcriptomics libraries were created according to the technology specific 

protocols and sequenced on a MiSeq, NextSeq500 or HiSeq4000 next generation 

sequencer from Illumina (for more detail see section 4.2.3). 

Single cell RNA sequencing data from each technology was first assessed for its 

quality by commonly used methods, namely cDNA fragment size analysis during 

library preparation as well as phred base quality score [275] and relative nucleotide 

contents after sequencing (Supplementary Figure 1 A-D). Data were discarded if 

predefined quality standards were not met (compare section 4.3.2). Reads were 

assigned to individual cells using the barcode added to each cell’s scRNA-seq-library 

during preparation, and the resulting gene expression data was filtered to exclude 

cells with low read numbers identified as lying below the inflection point of 

cumulatively summed reads (e.g. Supplementary Figure 1 E). Following the 

alignment of the sequencing reads to the appropriate genome (section 4.3.1), libraries 

with low genome mapping ratio were also excluded. Successful alignment results in 

a count matrix of detected genes by cells. The count matrix was further filtered for 

cells with a minimum number of genes detected (> 200), as entries below this 

threshold most likely represent partial cells or ambient RNA captured from the cell 

suspension. Likely cell doublets were excluded by discarding cells with an 

exceptionally high number of genes or RNA molecules detected, depending on the 

experiment (e.g. Supplementary Figure 2; Table 1; section 4.3.2). 

After quality control, general metrics for each experiment (Table 2) including 

number of detected RNA molecules and genes per cell were assessed (Figure 2.3 

A,B). The number of cells obtained from each experiment reflected the expected 

differences between technologies (Figure 2.1), with an average of 49 cells for C1, 237 

cells for iCell8 (using a quarter of the chip capacity), 1,841 cells for Dolomite and 

1,274 cells for Chromium experiments. 

To compare the number of genes detected per cell across technologies, differences in 

read depth must be accounted for. Given the observed variety in read numbers, 
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counts in all data sets were downsampled to equal numbers in each cell (section 

4.3.3). This revealed that the adjusted average number of genes detected per cell is 

comparable for single cells and single nuclei of the forebrain using either the C1 or 

iCell8 system (Figure 2.3 C). On the contrary, in the case of testis, a significantly 

higher number of genes were detected from single cells compared to single nuclei, 

irrespective of the technology used (iCell8, Dolomite or Chromium), with the iCell8 

system having a higher gene detection rate compared to the other technologies. 

These results indicate a strong difference in sensitivity depending on the adopted 

technology and the interrogated cell type, as we also found in a subsequent 

collaborative multi-centre study focused on benchmarking different scRNA-seq 

technologies to which I contributed the expertise gained from these explorative 

experiments [276]. 
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Figure 2.3 General scRNA-seq metrics. scRNA-seq libraries were generated using different technologies 
(Chromium 10x, Dolomite, iCell8, C1) from single cells (sc) of fresh tissue or single nuclei (sn) of fresh frozen 
tissue, either from mouse forebrain (Fb) or testis (GT). Each library was sequenced and aligned to the 
appropriate reference genome in order to relate reads to their corresponding genes. Violin plots show (A) read 
counts per cell and (B) the number of detected genes per cell. (C) To compare the number of detected genes 
across technologies, reads for each cell were downsampled to equal numbers for each cell. Box plots show the 
number of detected genes per cell after downsampling. An overview of all experiments can be found in Table 2. 

2.1.3 Comparison of technologies using mouse forebrain single cells 

As the first commercially available technologies for single cell transcriptomics, we 

compared the C1 and iCell8 systems by processing mouse embryonic forebrain, a 

tissue that had already been well characterised by scRNA-seq approaches in previous 

studies [265, 277]. Following dissection of the forebrain (section 4.1.2), single cells 
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were isolated by enzymatic digestion (section 4.2.1) and subjected to the 

microfluidics-based workflow implemented in the C1 system or dispensed into 

nanowells using the iCell8 system (section 4.2.3). After sequencing and quality 

control, computational methods implemented in the R package ‘Seurat’ were 

employed to identify different cell types based on transcript count matrices (section 

4.3.3). To this end, cells were clustered by first calculating the k-nearest neighbours 

(knn) and then constructing a shared nearest neighbour graph. Clusters were 

visualised using the Uniform Manifold Approximation and Projection (UMAP) 

algorithm for dimensionality reduction (Figure 2.4 A,C). Cell types were assigned 

using previously published reference data [277] by calculating a similarity score of 

single cell transcriptomes to the reference (compare section 4.3.7) and confirmed by 

gene set enrichment analysis of differentially expressed genes (Figure 2.4 B,D; 

section 4.3.9). 

Using the iCell8 system, we could identify interneurons, neuronal progenitor, radial 

glia and endothelial cells as well as cells originating from the cortex or the choroid 

plexus (Figure 2.4 C). On the contrary, the cell clusters identified using the C1 

system did not show unambiguous agreement with known cell types (Figure 2.4 A). 

Nevertheless, differential gene expression analyses among the different clusters 

revealed the specific expression of genes involved in cell proliferation, neuronal 

morphogenesis and oxidative processes, indicative of cellular functions expected in 

the developing mouse brain (Figure 2.4 B,D).  
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Figure 2.4 Cell identities in the mouse forebrain. Single cells from fresh mouse forebrain tissue (embryonic 
day E13.5) were used to generate scRNA-seq libraries. The resulting single cell transcriptomes were clustered by  
knn clustering. By comparison to reference data sets, cell identities were established for the iCell8 data, while 
the cell clusters identified in the C1 data did not show unambiguous agreement with known cell types. (A,C) 
UMAP visualisation of single cell transcriptomic data generated with (A) the C1 system or (C) the iCell8 
system. Colours indicate inferred cell identities for the iCell8 data and cell clusters for the C1 data. (B,D) Gene 
set enrichment analysis of differentially expressed genes per cell identity or cluster corresponding to the UMAP 
visualisation shows gene ontology (GO) terms enriched in different cell populations. Dot sizes indicate the ratio 
of member genes present in the gene set that were detected in each cell population. Colours represent p-values 
(hypergeometric test after Benjamini-Hochberg correction). 

These results demonstrate the applicability of both the C1 and iCell8 systems for 

explorative studies of tissue development, but also highlight the need for sufficient 

cell numbers to identify different cell types and states. While unambiguous cell type 
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annotation could not be achieved based on the sparse data from the C1 system (147 

cells; 3 experiments), cell numbers in the range of those obtained with the iCell8 

system (768 cells; 3 experiments at quarter capacity) already enable significant 

observations in the mouse brain. 

Therefore, it became apparent from an early time point that studying complex 

tissues would require transcriptomic data for several hundreds to thousands of cells. 

As the C1-96 system permits processing of only a very limited number of cells, the 

cost of using this system would thus have been prohibitively high [278], therefore we 

excluded this system from subsequent analyses. Instead, we focused on comparisons 

between the other three technologies (iCell8, Dolomite and Chromium). 

2.1.4 Comparison of technologies using single nuclei from mouse testis 

To evaluate the capability of the iCell8, Dolomite, and Chromium systems to 

generate data that allows the identification of distinct cell types, we compared their 

performance using mouse testis, which represents a very heterogenous tissue 

comprising cell types with a known developmental progression during 

spermatogenesis and other specialised cells [279]. To isolate single nuclei, samples 

from fresh frozen tissue were processed by mechanical dissociation in the presence of 

a detergent (section 4.2.2) and single cells from fresh tissue were isolated as detailed 

in section 4.2.1. After sequencing, we followed the same approach for data processing, 

dimensional reduction and visualisation as described above for mouse forebrain 

(section 2.1.3) to determine transcriptionally different cell clusters. Cell types were 

then assigned by differential expression of marker genes based on the literature 

(Figure 2.5). 

In data obtained from the different scRNA-seq technologies, cell types were not 

represented in equal proportions (Figure 2.5). This discrepancy could be due to a 

divergent sampling bias between technologies or it might reflect the difference in the 

number of sampled cells (Figure 2.3), with lower cell numbers insufficient to capture 

the full complexity of the tissue. For example, the size of microfluidic channels might 
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prevent the processing of cells with a certain size or shape, while different cell 

densities may lead to sedimentation bias during pipetting steps. While all of the 

major testis cell types were detected with the Chromium system, including the main 

stages of spermatogenesis, Sertoli cells were not detected in the Dolomite data and 

Leydig and spermatogonia in the iCell8 data (Figure 2.5). 

To further probe differences between scRNA-seq technologies in capturing 

transcriptional profiles of single cells, correlation coefficients of cell type specific gene 

expression patterns were calculated based on the average expression of highly 

expressed marker genes from the downsampled expression matrices (sections 4.3.4 

and 4.3.5). While it was possible to assign cell types manually using known marker 

genes, the overall gene expression levels detected in these experiments were highly 

dependent on the technology used (Figure 2.6 A). To correct for this bias, we 

integrated data from the different systems using dimensionality reduction by 

canonical correlation (CCA) and mutual nearest neighbour (MNN) analysis (section 

4.3.6). Following data integration, we observed a high degree of correlation between 

technologies for the gene expression profiles of the different cell types. This result 

demonstrates not only that the integration method employed here is capable of 

reducing technology-related noise which would otherwise obscure biological signals 

in the data, but also that representative transcriptional signatures for each cell type 

were extracted through our approach independent of library technology (Figure 

2.6 B). 
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Figure 2.5 Cell types of mouse testis. Single cell data from one scRNA-seq experiment of fresh frozen mouse 
testis for each technology (Chromium, Dolomite, iCell8) was clustered by knn clustering and each cluster was 
assessed for expression of known cell type marker genes. (A-C) Inferred cellular identities for each cluster are 
shown on UMAP representations, indicated by colour. (D-F) The scaled average expression of known cell type 
marker genes is visualised across all clusters. Dot sizes represent the proportion of cells in each cluster where 
expression was detected. 
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Figure 2.6 Correlation of cell type transcriptomes. Hierarchical clustering of Spearman correlation values 
representing the association between gene expression averaged across all cells of a given cell type processed with 
each technology. Correlation coefficients were calculated either based on (A) raw or (B) computationally 
integrated count matrices. 
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2.2 Cell type diversity in the healthy human lung 

The comparison of scRNA-seq technologies described in the previous section showed 

that each technology was successful at resolving cell type diversity, while differences 

between technologies mostly concerned the number of cells that could be processed 

in one experiment, the associated cost, and the ease of implementation. Due to its 

superior throughput and robustness, the Chromium system has thus emerged as the 

technology of choice for many scRNA-seq applications, and I employed this system 

for the investigation of single cell heterogeneity in healthy lung and LADC presented 

below.  

To study healthy human lung cells as well as LADC in patients with or without a 

smoking history, fresh frozen surgical lung tissue samples from patients with LADC 

were retrospectively obtained from the Lung Biobank Heidelberg and subjected to 

single nucleus RNA sequencing. In addition to tumour tissue, additional samples 

from normal lung tissue distant from the tumour had been obtained for a subset of 

patients during surgery. Samples originated from four patient groups: eight female 

smokers between 40 and 60 years of age, eight female never smokers and three male 

never smokers from the same age group, as well as seven elderly female never smokers 

between 75 and 90 years of age (Table 3 and Table 4). This diversity of sample 

origins allowed us to a analyse the composition and characteristic features of healthy 

lung and LADC taking into account age, gender and smoking history as potential 

determinants. 

2.2.1 Identification of cell types in healthy human lung tissue 

To create a reference map of gene expression profiles in untransformed human lung 

cells, I initially considered only the samples from healthy lung tissue, which 

comprised a total of 41,061 cells from three individuals for each of the patient groups 

after quality control as described earlier in section 2.1.2 (Supplementary Figure 2; 

Table 5; section 4.3.2). Their transcriptome profiles were first integrated using CCA 
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and MNN analysis to eliminate technical variation, as described above (compare 

section 4.3.6), and clustered based on principal component analysis (PCA) (section 

4.3.3 and Supplementary Figure 3 A,B). Cell clusters where then investigated for 

canonical marker gene expression. In addition, differential gene expression analysis 

using a Wilcoxon rank test to identify cluster specific genes and gene set enrichment 

analysis were performed to infer the cell type identity of each cluster (section 4.3.9). 

In this way, all of the major cell types that have been described for human lung 

alveoli to date could be identified in our data (Figure 2.7). They comprise the 

epithelial cells that line the alveoli and distal bronchi (basal cells, alveolar type 1 

and 2 cells, ciliated cells, secretory cells, neuroendocrine cells), endothelial cells, 

smooth muscle cells, fibroblasts and different immune cells (B cells, T cells, dendritic 

cells, macrophages, alveolar macrophages). 
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Figure 2.7 Cell type identity in healthy human lung. 
Single cell libraries of fresh frozen human healthy lung samples 
were generated and transcriptomes clustered by knn clustering. 
(A) Examples of canonical marker gene expression across cell 
types. Circle size indicates the proportion of cells in the cluster 
expressing each gene and fill colour depicts normalised, scaled 
average gene expression over all cells in each cluster. (B) 
UMAP representation of integrated healthy lung transcriptome 
data. Colours indicate cell type identity. Abbreviations of cell 
types as in Figure 1.4: alveolar type 1 and 2 cells (AT1/2); 
alveolar macrophages (AvM); basal cells (Bas); ciliated cells 
(Cil); secretory cells (Sec); neuroendocrine cells (NeuN); 
smooth muscle cells (SM); endothelial cells (EC); lymphatic 
endothelial cells (LE); fibroblasts (Fib); B cells (BC); T cells 
(TC), macrophages (MC) and dendritic cells (DC). 

2.2.2 Susceptible cell types in the lung for SARS-CoV-2 infection 

2.2.2.1 Expression of mediators of SARS-CoV-2 infection 

Our single cell transcriptomics atlas of the diverse cell types in healthy lung alveoli 

provides a valuable resource for investigating changes in response to toxin exposure, 

neoplastic processes, infections and other challenges to tissue homeostasis. In the 

early stage of the SARS-CoV-2 pandemic, we harnessed this capability to investigate 

the expression of genes that are involved in SARS-CoV-2 infection. Specifically, we 

analysed the expression of the genes encoding ACE2, the receptor to which the virus 

binds, and TMPRSS2 as well as FURIN, two proteases that have been suggested to 
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activate the viral spike protein and thereby enable virus entry into the cell (see 

section 1.4). 

ACE2 expression was very low across cell types, 

with under five counts per million (CPM) 

(Figure 2.9 A; section 4.3.8). Therefore, we 

aggregated counts per sample and cell type for 

further analysis. As expected based on the 

literature, ACE2 expression was highest in AT2 

cells, and a slightly higher number of AT2 cells 

expressed ACE2 compared to the other cell types 

(Figure 2.9 A,D). TMPRSS2 was expressed at 

much higher levels overall, with above 150 CPM 

(Figure 2.9 C), and expression was also biased 

towards AT2 cells in accordance with previous 

studies [280]. FURIN, which has more recently 

been suggested as an alternative activator of the spike protein enabling virus entry 

into the host cell (see section 1.4), was expressed at high levels and with a bias 

towards AT2 cells as well (Figure 2.9 B). If FURIN, as well as TMPRSS2, can 

activate the spike protein, our data indicate that this would increase the number of 

cells susceptible to virus infection by 12%, although susceptible cells continue to 

represent only a small fraction (around 0.7%) of all alveolar cells (Figure 2.8). 

FURIN may also be present not only inside the cells expressing it but also in their 

local neighbourhood [281], which could further potentiate tissue susceptibility to 

SARS-CoV-2 infection, although intercellular activity of FURIN in lung tissue 

remains to be validated. 

Figure 2.8 Number of cells 
expressing ACE2, TMPRSS2 and 
FURIN. The Venn diagram indicates 
the number of cells expressing one or a 
combination of ACE2, TMPRSS2 and 
FURIN in healthy lung tissue. In total, 
25,557 cells were examined. 
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Overall, these findings suggest that only a small proportion of alveolar cells are 

susceptible to SARS-CoV-2 infection via expression of ACE2 and TMPRSS2, while 

FURIN acting as another activator of the viral spike protein after ACE2 receptor 

binding increases overall susceptibility to SARS-CoV-2 infection in lung alveoli by 

equipping more cells with proteolytic activity. 

Figure 2.9 Expression levels of ACE2, TMPRSS2 and FURIN in healthy lung. (A-C) Read counts 
were normalised per cell, aggregated for each cell type and CPM values calculated for ACE2, TMPRSS2 and 
FURIN per cell type. (D-F) Percentage of cells of each cell type expressing ACE2, TMPRSS2 or FURIN. * 
indicate significant differences between the CPM values or proportion of positive cells, respectively, of one cell 
type compared to all others (Mann-Whitney test; p-value < 0.01). 
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2.2.2.2 Correlation of sex, age and smoking history with ACE2 expression 

Initial studies of COVID-19 spreading suggested that susceptibility to SARS-CoV-2 

infection correlates with age, sex and smoking status [282-285]. We therefore 

investigated these possible risk factors for COVID-19 in our data (Figure 2.10). We 

found no correlation of ACE2 expression with regard to sex, age or smoking habit 

on the level of individual cell types (Figure 2.10 A-C). 

Figure 2.10 ACE2 expression by age, sex and smoking habit. (A-C) ACE2 transcript counts were 
normalised per cell, aggregated for each cell type and CPM values calculated. Shown are CPM values per cell 
type by (A) age, (B) sex and (C) smoking habit. 
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However, differences by age were observable when aggregating all reads from 

individual patients (Figure 2.11); this was likely due to the low overall expression 

levels of ACE2 impeding detection in the unaggregated data. In samples from female 

patients, we identified a trend towards higher ACE2 expression levels with older 

age (Figure 2.11 A; R^2 = 0.35; p = 0.09; ANOVA). We were not able to examine 

this relationship in men because our cohort only included male patients from the 

younger age group. When comparing three samples from male patients to five 

samples from female patients within the younger age group, we detected higher 

ACE2 expression levels in males (Figure 2.11 B; p = 0.002; two-sided t-test). 

While the small size of our cohort and the extremely low detection levels of ACE2 

imply clear limitations to our observations, these results contributed to rapidly 

increasing our knowledge of SARS-CoV-2 infection mechanisms and provided 

valuable initial insights for further studies. 

Figure 2.11 Correlation of ACE2 expression with age and sex. ACE2 read counts were normalised per 
cell, aggregated for each sample and CPM values calculated. (A) CPM values for ACE2 as a function of patient 
age across female samples. A linear model was fitted to estimate R^2 and p-values. (B) CPM values for ACE2 
as a function of patient age for samples from young female and male patients (under the age of 55). 
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2.2.3 Effects of smoking on the healthy lung 

2.2.3.1 Increase in alveolar macrophages and AT2 cells in smoker lungs 

Exposure to toxins is capable of affecting cell 

type composition and the transcriptional 

landscape of lung alveoli. As our single cell 

atlas of healthy human lung transcriptomes 

was initially constructed to serve as a 

reference for the analysis of gene expression 

in LADC, I proceeded to investigate 

differences between samples from patients 

with or without a history of tobacco smoke 

exposure based on the cell type assignments 

determined above (section 2.2.1). 

While cell type composition was broadly 

comparable between patient groups, we 

employed a Bayesian model of 

compositional changes ([286]; section 4.3.9) 

to evaluate statistically significant 

differences and identified fold changes (FC) 

of cell type frequencies between patient 

groups. Compared to young female never 

smokers, young female smoker lung samples showed increased numbers of alveolar 

macrophages (20.4% in young female smokers compared to 10.4% in never smokers; 

log2(FC)=1.12) and AT2 cells (43.1% in young female smokers compared to 34.1% 

in never smokers; log2(FC)=0.43) (Figure 2.12). These changes might reflect the 

adverse influence of smoking on lung cell type composition and increase of immune 

activity in the tissue. 

Figure 2.12 Cell type composition of 
healthy lung tissue in patient groups. 
Proportion of cells corresponding to each cell 
type in elderly female never smokers (e-f), 
young female never smokers (y-f), young male 
never smokers (y-m) and young female 
smokers (y+f). * denotes cell type proportions 
that differ significantly from those in young 
female never smokers based on a Bayesian 
model of compositional changes. 
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2.2.3.2 Inflammation in smoking patients 

Exposure to tobacco smoke causes damage to the lung and elevates cell death, 

leading to increased infiltration of leukocytes and activation of cellular repair 

mechanisms [213, 214]. This inflammatory environment is thought to promote lung 

cancer development and progression. To investigate the effect of smoking on gene 

expression for the diverse lung cell types, we focused on healthy tissue samples from 

female smokers and never smokers between 40 and 60 years of age, thus excluding 

age and gender as potential confounding factors. 

Differential expression and gene ontology analysis revealed an enrichment of gene 

sets relating to inflammation and activation of immune response in smokers (Figure 

2.13 A). Enrichment in gene ontology sets representing response to interleukin 1 was 

observed especially in alveolar type 2 cells, fibroblasts and endothelial cells. 

Fibroblasts and endothelial cells also exhibited a significant increase in expression of 

genes involved in cytokine mediated activity and myeloid leukocyte migration as 

well as T cell activation. Immune related cells, such as dendritic cells, macrophages 

and alveolar macrophages, showed higher expression of genes implicated in the 

response to interferon gamma. Genes involved in these pathways that were 

upregulated in smokers included S100A9, SLC11A1 and NFKB, which contribute to 

leukocyte activation and migration, as well as CCL2, CSF3 and IL6, as general 

mediators of inflammation (Figure 2.13 B).  

To identify cell type interactions mediating this inflammatory response, I evaluated 

the expression levels of a curated set of ligand receptor pairs across immune cell 

types (dendritic cells, T cells, macrophages and alveolar macrophages) as well as 

fibroblasts, endothelial cells and smooth muscle cells of the alveolar region in female 

smokers and never smokers (section 4.3.13). 

The overall number of putative ligand receptor interactions is equivalent in smoking 

and never-smoking patients (Figure 2.14 A). However, interactions of certain drivers 

of inflammation are increased in smoker lung samples as inferred from an increase 
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in mean gene expression of ligand receptor pairs with significant specificity to given 

pairs of cell types (Figure 2.14 B).  

 

Figure 2.13 Inflammation in smoker lung. (A) Differential gene expression and gene set enrichment 
analysis between cells derived from never smokers and smokers by cell type. Dot sizes indicate the proportion of 
genes from each gene set enriched in a given cell type, while colours represent p-values (hypergeometric test 
after Benjamini-Hochberg correction). Cell types on the x axis as in Figure 1.4. (B) Violin plots of normalised 
single cell expression levels of inflammatory pathway genes across different cell types, split by smoking status 
(green: never smokers, red: smokers). 

For example, inflammatory cytokines IL6 and CSF3 display an increased expression 

level in endothelial cells and fibroblasts, promoting activation of their corresponding 

ubiquitous receptors expressed from IL6R and CSF1R (Figure 2.14 C and 

Supplementary Figure 4 B). We also identified increased interactions of ICAM1 on 

endothelial cells, fibroblasts and muscle cells with various integrin complexes on cells 

of the immune system (Figure 2.14 B). 

All patients included in this study were not under current antibiotic or anti-

inflammatory medication, except for one young female smoker who received cortison 

treatment due to an underlying chronic condition. As cortison reduces inflammatory 

responses, we concluded that this single case was unlikely to bias our results, and at 

most would lead us to underestimate the increased inflammation seen in smokers. 
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Thus, gene expression changes in fibroblasts and endothelial cells contribute to an 

inflammatory environment in normal lung tissue in smoking patients, prompting the 

question whether these differences translate into different tumour phenotypes 

according to smoking status. 
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Figure 2.14 Cell interactions in smoker lung. (A) Overall number of inferred cell-to-cell interactions 
between the different annotated cell types, showing no significant difference by smoking habit. (B) Putative 
ligand-receptor interactions inferred from gene expression data, based on the mean expression of known ligand-
receptor pairs in two given cell types. Cell type pairs on the x axis indicate the direction of the interaction (e.g. 
End | DC: ligand on endothelial cells and receptor on dendritic cells). Dot sizes represent the likelihood of cell-
type specificity of a given receptor-ligand interaction, computed based on a random permutation of cell cluster 
labels as described in section 4.3.13. (C) Expression levels of inflammation mediating ligands IL6 and CSF3 in 
individual cells from never smokers and smokers. UMAP representation as in Figure 2.7 B. 
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2.3 Lung adenocarcinoma in female smokers and never smokers 

Following the analysis of human lung cell type diversity and transcriptional changes 

in the context of SARS-CoV-2 infection and smoking, the following section will 

present my results on cellular heterogeneity and microenvironment interactions in 

LADC. Here, in addition to the twelve healthy lung tissue samples used to construct 

the single cell atlas described in the previous section, we also considered an 

additional 26 tumour tissue samples from the four patient groups, adding a total of 

81,718 cells to the analysis. Tumour samples originated from eight female smokers 

between 40 and 60 years of age, eight female never smokers and three male never 

smokers from the same age group, as well as seven elderly female never smokers 

between 75 and 90 years of age (Table 3 and Table 4). 

Importantly, samples obtained from the tumour bulk of lung adenocarcinomas 

during surgery consist not only of transformed cells, but also contain normal lung 

cells that shape the microenvironment around the tumour [189, 287]. Separating 

malignant from non-malignant cells is therefore a key task in single cell cancer 

analysis to enable the assessment of tumour heterogeneity and changes in non-

transformed tissue cell types. 

2.3.1 Identification of neoplastic and tumour microenvironment cells 

Utilizing the established gene expression patterns of healthy lung tissue 

(section 2.2.1), we analysed cell type identities in all tumour samples. To this end, 

samples were integrated as described above (compare section 4.3.6 and 

Supplementary Figure 3 C-E); cells were then clustered and functionality within the 

‘Seurat’ R package was used to calculate similarity scores that quantify the 

correspondence between each cell in the tumour samples and the cell types identified 

in healthy lung samples (section 4.3.7; Supplementary Figure 3 F). Additionally, 

clusters were manually probed for expression of cell type specific genes.  
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All cell types identified in healthy tissue were also detected in tumour samples, as 

verified by their expression of canonical marker genes (Figure 2.15). Cell type 

composition was comparable in tumours from all patient groups, and no statistically 

significant difference could be detected employing a Bayesian model of compositional 

changes (Figure 2.15 B; section 4.3.9). In addition, 37,596 cells derived from the 

tumour samples showed low similarity scores with known lung cell types 

(Supplementary Figure 3 F) and did not specifically express any of the used marker 

genes (Figure 2.15 C), suggesting that they represent neoplastic cells. 
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Figure 2.15 Cell type identity in lung tumour samples. Single cell libraries of fresh frozen LADC samples 
were generated and transcriptomes clustered by knn clustering. (A) UMAP representation of integrated 
transcriptome data from all lung samples, including healthy and tumour tissue. Grey cells represent cells that 
could not be assigned to any known lung cell type. (B) Cell type composition per patient group. Elderly female 
never smokers (e-f), young female never smokers (y-f), young male never smokers (y-m) and young female smokers 
(y+f). (C) Examples of canonical marker gene expression across the cell types identified. Circle size indicates 
the proportion of cells in the cluster expressing each gene and fill colour depicts scaled normalised average 
expression over all cells in each cluster. Colours indicate cell type identity in panels (A) and (B) and 
corresponding marker genes in (C). 
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The deviation from endogenous gene expression signatures in tumour tissue is often 

caused by mutations or large-scale structural genomic aberrations, such as gains or 

deletions of chromosomal parts [288, 289]. To corroborate the malignant identity of 

unassigned cells, we inferred copy number variations (CNV) from transcriptomic 

data by comparing the average expression levels of genes in close proximity on the 

genome to a baseline derived from patient-matched normal lung samples (Figure 

2.16). Clustering of cells according to their CNV profiles (Figure 2.16 A) revealed 

two clusters devoid of copy number variations, which included cells from all patients 

analysed (cluster 4 and 5). These two clusters mostly comprised cells which could 

be assigned a healthy lung cell type based on the similarity scores calculated 

previously, and were therefore deduced to represent cells belonging to the tumour 

microenvironment. In contrast, the remaining clusters harboured distinct losses or 

gains and were mostly patient-specific. These clusters were also enriched for cells 

that had not been assigned any healthy lung cell type based on transcriptional 

similarity scores (Figure 2.16 B). 

 

Figure 2.16 CNV profiles of tumour cells. (A) Heatmap of inferred CNV profiles from all cells of tumour 
samples with matched healthy tissue data. Colours indicate residual normalised expression levels (see section 
4.3.11). Cell clusters with patient-specific gains (red) or losses (blue) were identified by hierarchical clustering. 
(B) Proportion of cells for each cluster in (A) by patient origin (left) or cell type identity (right). Patient groups 
comprised elderly never smokers female (e-f), young never smokers female (y-f), young smokers female (y+f) and 
young never smokers male (y-m). Cell type labels are defined in Figure 2.15.  
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We thus inferred that these previously unassigned cells correspond to the malignant 

tumour cell population. The distinct CNV profiles exhibited by individual patient 

tumours underline interpatient heterogeneity observable at the level of structural 

genomic aberrations (Figure 2.16 B). 

2.3.2 High intratumoural heterogeneity with distinct cellular subtypes 

in young female patients 

After harnessing our transcriptomics data from all patient groups for cell type 

assignment as described above, we focused our subsequent analysis on young female 

smokers and never smokers to compare single cell transcriptomes between patients 

with and without a smoking history, excluding sex and age as potential confounders. 

It has been widely demonstrated that solid tumours do not consist of one 

homogeneous malignant cell population but represent a heterogenous tissue of 

diverse cellular states [108]. A high degree of interpatient heterogeneity has also been 

observed in LADC [290, 291]. 

Clustering of the subset of 37,596 malignant cells from young female LADC patients 

based on their transcriptomes identified ten distinct cell clusters (Figure 2.17 A). All 

ten clusters comprised cells from both smokers and never smokers, with some 

heterogeneity between patients (Figure 2.17 B). 

To elucidate the functional relevance of cell clusters, gene set enrichment analysis 

was performed based on genes differentially upregulated in each cluster. Enriched 

gene ontology (GO) terms were summarised into meta-signatures reflecting 

functional processes and used to guide naming of the clusters (Figure 2.18 A,B; 

Table 6). 
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Figure 2.17 Malignant cell heterogeneity. (A) UMAP representation of cell clusters within the malignant 
cell compartment. Cluster names are defined in the text below. (B) Proportions of cells in malignant cell clusters 
by patient. Elderly female never smokers (e-f), young female never smokers (y-f), young female smokers (y+f ) 
and young male never smokers (y-m). 

Interestingly, we found that signatures overlap between clusters. While cells from 

the proliferative cluster labelled ‘Prol_1’ showed exclusive enrichment in mitosis 

related GO terms, e.g. MITOTIC_NUCLEAR_DIVISION and CELL_- 

CYCLE_G2_M_PHASE_TRANSITION, cells from cluster ‘Prol_2’ in addition 

expressed genes from GO terms related to cellular respiration, such as 

ATP_SYNTHESIS_COUPLED_ELECTRON_TRANSPORT and 

OXIDATIVE_PHOSPHORYLATION. Gene expression of mitotic marker genes, 

such as AURKB and TOP2A, was highly elevated in these two clusters compared 

to all others. Three further clusters showed elevated expression of respiration 

associated genes (‘Res_1-3’). Two of these were also enriched for transcription 

related GO terms while one cluster, ‘Res_3’, was exclusively enriched for respiratory 

terms. While all cells in our data expressed genes related to respiration (e.g. COX6B1 

and NDUFA4) and transcription (e.g. RPL38 and SPCS1) to varying degrees, these 

genes were most highly detected in clusters Prol_2 and Res_1-3 (Figure 2.18 B). 
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These overlapping signatures might represent different cell states or cell types 

differentiating from highly proliferating cells to more specialised functions, with the 

respiratory signature also indicating the high energy demand of tumour 

development. 

Other tumour cells showed no specific expression of cell cycle associated genes, but 

had distinct signatures with GO terms involved in cell adhesion mediated by 

integrins (‘Adh_1’; CELL_ADHESION_MEDIATED_BY_INTEGRIN) and cell 

morphology (‘Mor_1’; e.g. REGULATION_OF_CELL_MORPHOGENESIS, 

ACTIN_BASED_CELL_PROJECTION). Associated genes showed distinct 

expression in the respective clusters, such as the integrin ITGB8 in cluster ‘Adh_1’ 

and the fibroblast growth factor FGF13 in cluster ‘Mor_1’. These cells therefore 

likely contribute to the spatial architecture and integrity of the tumour tissue and 

are possibly involved in the initiation of metastatic processes, with cluster ‘Mor_1’ 

also being the largest cluster overall (15,884 cells).  

One other cluster specifically expressed genes related to metabolism (‘Met_1’), with 

distinct expression of e.g. the insulin mediator IRS2 and the solute carrier 

SLC16A14. Another cluster was enriched for genes involved in phospholipid binding 

(‘Phos_1’), such as FCHSD2, whose product promotes endocytosis of EGFR in 

cancer cells and thus reduces EGFR signalling [292], and the Growth Factor 

Receptor Bound Protein 2-Associated Protein 2 (GAB2), which also showed a low 

level of expression across the other clusters. 

We further identified an immune related gene expression signature comprising GO 

terms such as LEUKOCYTE_PROLIFERATION, T_CELL_PROLIFERATION 

and MHC_CLASS_II_PROTEIN_COMPLEX. This signature was exclusively 

enriched in one cluster, ‘Imm_1’, which also showed enrichment of other functional 

terms including proliferation and morphology. The signature comprised genes such 

as SLC11A1, a divalent ion transporter, which contributes to natural resistance 

against infections with certain natural parasites and modulates macrophage 

mediated inflammation [293, 294]. In addition, ‘Imm_1’ displayed higher expression 

of CD86 typically expressed by antigen presenting cells and IRAK3, which is part 
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of the Toll-like receptor immune signal transduction pathway and is thought to 

promote tumour progression by contributing to an inflammatory environment [295]. 

Sets of genes are usually regulated by different transcription factors associated with 

distinct cellular functions. We analysed the regulation of gene sets through 

transcription factors employing a three-step algorithm, which first infers a list of 

putative target genes for each transcription factor based on coexpression. To avoid 

false positive target gene assignment, each gene list is filtered for the presence of 

associated transcription factor binding motifs in the genes’ transcription start site. 

These genes are further ranked by importance based on expression level for each cell 

separately (section 4.3.12). In this way, we determined gene regulatory networks 

contributing to the functional heterogeneity observed before (Figure 2.18 C). 

Proliferating cells (Prol) highly express genes linked to networks regulated by ATF4, 

which is involved in stress responses and amino acid homeostasis [296, 297], and 

POU5F1, also known as OCT4, with a critical role in embryonic stem cell self-

renewal [298, 299]. Cells enriched for the immune modulating signature (Imm) show 

additional expression of genes regulated by transcription factors FOXN3 and 

MEF2A, which are known to be involved in cell cycle checkpoint control and 

contribute to epithelial-to-mesenchymal transition (EMT) [300, 301]. 

Together, these results identify eight functional subpopulations of malignant LADC 

cells in both smokers and never-smokers. 
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Figure 2.18 Functional heterogeneity of malignant LADC cells. (A) Gene set enrichment analysis of 
differentially expressed genes in malignant cells of female patients identified 44 cluster-specific GO terms 
(Table 6) that were combined into 8 functional signatures, named Proliferating (Prol_1/2), Respiration 
(Res_1/2), Adhesion (Adh_1), Metabolism (Met_1), Morphological (Mor_1), Phospholipid binding (Phos_1) 
and Immune modulation (Imm_1). Dot sizes indicate the ratio of member genes present in the gene set that 
were detected in each cell population. Colours represent p-values (hypergeometric test after Benjamini-Hochberg 
correction). (B) Normalised expression of representative genes for each functional signature across malignant 
cell clusters in female patients. (C) Transcription factor network analysis of all malignant cell clusters. Shown 
are enrichment scores for regulons, which consist of transcription factors and genes associated with a matching 
transcription factor binding site that are co-expressed in our data (see section 4.3.12).  
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2.3.3 Trajectory of differentiation and characterisation of malignant 

cells in the context of smoking history 

As tumours are evolving and differentiating tissues [302], we applied a graph-based 

trajectory inference method (section 4.3.14) to malignant cell transcriptomes from 

young female never smokers and smokers to discern a differentiation trajectory 

linking the eight functional malignant cell subpopulations identified above. Pseudo-

temporal ordering assigned cells to four branches labelled S1-4, with the junction 

point S0 (Figure 2.19). One branch (S0-S1) consisted of mitotic cells (cluster 

‘Prol_1’) and immune related signatures (cluster ‘Imm_1’) and was therefore 

selected as the trajectory origin, with pseudotime subsequently increasing through 

the junction point S0 towards the most distant points on each of the other 

branches (Figure 2.19 A,B). Differential expression and gene set enrichment analysis 

confirmed cell cycle related gene expression in cells on branch S0-S1, in line with 

previous findings. Branch S0-S4 comprised cells from all identified malignant clusters 

and was not significantly enriched for specific GO terms; as it was limited to cells 

at intermediate pseudotimes, some of which were cycling, this branch likely 

represents undifferentiated tumour cells. Cells on branch S0-S3 consistently 

expressed genes related to morphology (cluster ‘Mor_1’), as well as cell adhesion, 

substrate binding and wound healing. Branch S0-S2 mainly harboured respiratory 

cells (clusters ‘Res_1’ and ‘Res_2’) with gene expression related to 

autophagy (Figure 2.19 C). Together with the respiratory signature of these clusters, 

this reflects the tight connection between oxidative phosphorylation and autophagic 

processes due to mitochondrial turnover or nutritional need in highly active 

tissues [303]. 
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Figure 2.19 Malignant cell trajectory in female patients. (A) Three-dimensional projection of cellular 
gene expression profiles by Modified Locally Linear Embedding of all identified malignant cells from young 
female patients to infer a trajectory of differentiation with four branches (S1-4). (B) Same projection as in (A) 
with cells coloured by pseudotime. (C) Malignant cluster proportions along pseudotime are depicted. Differential 
expression and gene set enrichment analysis performed for each branch indicate enrichment of proliferative (S1-
S0), undifferentiated (S4-S0), autophagy (S2-S0) or wound healing (S3-S0) signatures, as highlighted by the bar 
plots, with the x axis showing the proportion of gene set members enriched on each branch and the colour 
representing adjusted p-values (hypergeometric test after Benjamini-Hochberg correction). Full names of GO 
terms can be found in Table 7. 
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The developmental trajectory of LADC thus comprises proliferating and 

intermediate undifferentiated cells as well as two distinct differentiated tumour cell 

states. Importantly, equivalent trajectories were identified when this analysis was 

performed separately on malignant cells from young female smokers or never 

smokers (Figure 2.20), indicating shared functional tumour cell types and a 

conserved differentiation hierarchy regardless of smoking status. 

Figure 2.20 Malignant cell trajectory by smoking habit. Three-dimensional projection of cellular gene 
expression profiles by Modified Locally Linear Embedding of malignant cells from only (A) young female never 
smokers or (B) young female smokers. 

While LADC from smokers and never smokers in our cohort share the same 

functional malignant cell types and differentiation trajectory (compare above and 

Supplementary Figure 5), tobacco smoke exposure might induce more subtle gene 

expression differences within malignant cell types. Comparing gene expression 

between smokers and never smokers for each malignant cell cluster separately, I 

observed that the majority of differentially expressed genes were unique to one or 

two patients, indicating substantial inter-patient transcriptional heterogeneity in 

agreement with the previous analyses (Figure 2.16 B and Supplementary Figure 

3 C). 

We therefore restricted our attention to genes that were differentially expressed in 

at least half of the female patients of the same smoking habit, and identified 

consistent gene expression changes across patients only for cluster ‘Imm_1’ (Figure 
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2.21). Here, gene set enrichment analysis uncovered a difference in immune 

modulating pathway gene expression, with genes including ANXA1, C1QB and 

PAEP upregulated in smokers, and genes such as HLADQA2, HLA-DRB5 and 

WFDC2 upregulated in never smokers. We also observed differential expression of 

genes involved in migration, EMT and metabolism, with MSLN and FNDC3B 

upregulated in smokers and AGR3, CLDN10, IG2FR and PCDH7 upregulated in 

never smokers. 

To validate our observations at the transcriptomic level, two exemplary candidate 

proteins involved in immune modulation pathways were stained in samples from 

both smokers and never smokers by immunohistochemistry (Figure 2.21 B,C). 

Representative stainings indicate an increased expression of ANXA1 and glycodelin 

(PAEP) at the protein level in the majority of female smokers. Quantification of 

staining intensity revealed a trend for upregulation of both proteins in young female 

smokers compared to never smokers. Moreover, staining intensity and average gene 

expression level based on scRNA-seq for each patient correlated for glycodelin, with 

a trend also observed for ANXA1 (Figure 2.21 D,E). 

This divergence implies differential immune modulating capacity of proliferating 

tumour cells in female never smokers compared to smokers. 



Results 

 65 

 

Figure 2.21 Immune modulating cell population in smokers and never smokers. Cells from young 
female patients in cluster Imm_1 were assessed for gene expression differences by smoking habit. (A) Dot plot 
indicates enriched GO terms in Imm_1 cells from smokers (+) and never smokers (-). Dot sizes indicate the 
ratio of member genes present in the gene set that were detected in each population. Colours represent p-values 
(hypergeometric test after Benjamini-Hochberg correction). Violin plots depict representative genes with 
significantly different expression levels between never smokers (green) and smokers (red). 
(B) Immunohistochemistry (IHC) staining of ANXA1 and glycodelin (PAEP) in tumour cryosections from 
samples of young female smokers and never smokers. For each patient, one representative staining is shown. 
(C) Quantification of IHC staining. Scoring was performed using five randomly selected tumour sections based 
on a combination of staining intensities and the number of positive cells; displayed are the mean ± s.e.m. (D,E) 
Correlation of protein expression determined by quantitative scoring of immunohistochemistry staining and 
average gene expression across all tumour cells for (D) Glycodelin (PAEP) and (E) ANXA1. Correlation 
visualised by a linear model and coefficient calculated using Pearson correlation. Immunohistological staining 
and scoring was performed by Marc A. Schneider. 
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2.3.4 Deregulation of the tumour microenvironment transcriptome in 

LADC 

Transformed tumour cells are greatly dependent on interactions with their local 

surroundings, which might either hinder or promote tumour development [201]. 

Based on the gene expression signatures derived from healthy lung tissue, we already 

identified diverse cell types of the tumour microenvironment in the LADC tumour 

samples as described above (section 2.3.1). To delineate transcriptomic states within 

this compartment that may contribute to tumour progression, I used non-negative 

matrix factorisation (NMF) to decompose the gene expression matrix for all non-

malignant cell types from both tumour and healthy lung tissue samples into the 

product of two matrices, with the first comprising signatures of co-expressed genes 

(factors) across all cells and the second capturing the contribution of all genes to 

these factors. This approach revealed factors that contribute to cell type identity, 

but also factors that separate cell types into distinct cell states (Figure 2.22). 

Two of these factors (factor 5 and 6) represent two cell states within the macrophage 

population with decreased expression in tumour tissue compared to healthy 

lung (Figure 2.22 B,C), and contain genes involved in immune cell activation and 

inflammation (e.g. PPARG, C1QA, MARCO, GRN and SLC11A1, MSR1, 

GPCPD1, CD68). Specifically, factor 5 contains genes whose products play a role in 

macrophage activation such as PLXDC1, a receptor of ligand PEDF that enhances 

tumouricidal activity of macrophages [304, 305], and SLC11A1, a divalent transition 

metal transporter whose activity is associated with pro-inflammatory processes [306]. 

Downregulation of this signature indicates a reduced activation of macrophages in 

the presence of LADC. Factor 6 delineates another subpopulation of macrophages 

with lower expression of inflammatory genes in tumour tissue, including PPARG 

and MARCO. The latter has been suggested as a possible treatment target in 

NSCLC [307], since antibody targeting of MARCO expressing macrophages reduced 

tumour growth in a recent study [308]. Consistent with our observation that only a 

subset of macrophages downregulate MARCO, the same study found MARCO 
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expression in only a subset of tumour-associated macrophages. Anti-MARCO 

antibody treatment was therefore most effective in combination with antibodies 

against other immune checkpoint markers [308]. 

Along with macrophages, fibroblasts can also support or hinder tumour 

development. NMF identified a population of fibroblasts with decreased expression 

of genes in the SLIT/ROBO pathway in tumour samples (factor 2). The 

SLIT/ROBO pathway has often been found to be differentially regulated in cancer, 

where its complex involvement in tumour progression may include beneficial as well 

as detrimental effects on tumour growth [309]. The decreased expression of SLIT2 

observed in tumour-associated fibroblasts here could facilitate tumour survival and 

progression [309], while SLIT3 downregulation might enhance EMT [310]. Another 

population of fibroblasts showed increased expression of type I and type III collagens 

in neoplastic tissue (factor 10). As part of the tumour microenvironment, different 

extracellular matrix components provided by fibroblasts have been found to affect 

tumour behaviour [311]. Increased expression of type I and type III collagens, as 

observed here, is thought to promote invasion and metastasis in lung cancer [312-

314]. 

Our results thus resolve different macrophage and fibroblast subpopulations in 

LADC, with distinct gene expression signatures contributing to a tumourigenic 

environment in both smokers and never-smokers. 
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Figure 2.22 Microenvironment deregulation in the presence of LADC. (A) Using all non-malignant 
cells from young female patients in tumour and normal lung samples, gene expression signatures delineating cell 
types and states were identified by NMF. Colour scale indicates factor representation in each cell. (B) 
Contribution of selected factors to observed gene expression in different cell types is depicted separately for 
tumour and non-tumour tissue samples from never smokers (•/•) and smokers (•/•). * depict p-values < 0.001 
calculated by two-sided ANOVA with post-hoc test using the Tukey's ‘Honest Significant Difference’ method. 
Statistical analysis is only shown for cell types of interest. (C) Expression levels of significant genes represented 
in the factors shown in (B), across tumour and non-tumour tissue samples from never smokers (•/•) and 
smokers (•/•). 
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3 Discussion 

 

 

Rapid technological developments over the past decade have enabled the 

interrogation of molecular features at the level of single cells using next generation 

sequencing. Through the miniaturisation of experimental procedures, lower 

sequencing costs and improved computational capabilities, it is now possible to 

investigate gene expression in large datasets comprising thousands or even millions 

of cells. 

While previous studies at the bulk level largely provided insights into transcriptional 

features averaged over different cell types, single-cell profiling advances now enable 

the testing and re-evaluation of hypotheses at the level of individual cells. Distinct 

cell types, including those that occur at low frequency, and relationships between 

them may thus be identified. Moreover, differences in cellular composition or 

function between sample groups can now be interrogated at the single cell level, both 

in healthy tissues and under pathological conditions.  

As a result, we have witnessed an explosion of new findings across all fields of the 

life sciences during the past few years [4, 315]. For example, single cell technology 

has facilitated charting previously inaccessible branches of the tree of life by 

investigating hard to culture microorganisms [316]. It has allowed invaluable insight 

into early embryonic development [317-320], interactions between fetal and maternal 

tissue [321] and spermatogenesis [322, 323]. Rare cell types with distinct roles in 

physiological or pathophysiological processes have been discovered in several tissues, 

including a new cell type of the mammalian lung involved in fluid regulation [105]. 

In addition, single cell approaches have made it possible to chart the immune system 

with its plethora of versatile cell types and functional states at unprecedented 

resolution [324], which led to the discovery of organ specific natural killer cell 

populations [325] as well as new subtypes of dendritic cells and monocytes [326]. 
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As these examples indicate, the benefits of single cell technologies become especially 

apparent when investigating rapidly developing, evolving and heterogenous tissues. 

Single cell profiling is therefore also particularly suited to studying cancers, which 

often exhibit a high degree of cellular heterogeneity. Within a tumour cell 

population, rapid replication cycles and genomic instability drive evolutionary 

processes that determine tumour progression [195, 327]. These processes might also 

lead to adaption or resistance to therapeutic interventions [108], as has been 

demonstrated for NSCLC under tyrosine kinase inhibitor treatment [328]. To better 

understand the complex cellular architectures and behaviours underlying cancer 

disease trajectories, single cell sequencing technologies have therefore been employed 

to assess heterogeneity within and between patients in a great number of cancers 

[329-331], with important implications for patient stratification and treatment [332, 

333]. 

3.1 Comparison of scRNA-seq technologies 

To study single cell transcriptomes, a huge variety of different technologies have 

been developed over the past decade (compare section 1.2). With the initial aim to 

investigate cellular composition and single cell transcriptomes of different tissues 

across species, I compared four commercially available approaches in terms of their 

performance and suitability. These included the C1 (Fluidigm), the ICell8 

(Wafergen) and the Single Cell RNA Seq-System (Dolomite-Bio), as well as the 

Chromium Controller (10x Genomics). 

I successfully implemented all four of these technologies in our lab and used them to 

generate single cell transcriptome profiles from mouse forebrain and testis cells as 

well as nuclei, demonstrating their applicability for assessing cells of diverse 

morphology and their compatibility with different tissue dissociation protocols. As 

a result of system design, the number of single cell transcriptomes acquired per 

experiment varied greatly between technologies. We obtained data for an average of 
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49 cells in the C1, 237 cells in the iCell8 (using a quarter of the chip capacity), 

1,841 cells in the Dolomite and 1,274 cells in the Chromium system.  

The average number of genes detected per cell was also highly variable when 

accounting for read depth (Figure 2.3), with the highest number of genes per cell 

detected with the iCell8 system and comparable results in the C1 and Chromium 

systems. The lowest number of genes was detected using the Dolomite system, which 

might be due to its early developmental stage leaving room for optimisation. 

Detection of genes was comparable in nuclei and whole cells, despite the lower 

amount of input material. 

Interestingly, recent studies have shown that increasing the number of cells is not 

strictly necessary for adding statistical power to single cell sequencing experiments, 

given sufficient read depth [39, 334]. To achieve an 80% true positive detection rate 

of genes across a simulated range of fold differences between two populations of cells, 

it has been estimated that 99 cells are required at a read depth of 1 million reads 

per cell. With a read depth of 500,00 reads per cell, the requisite cell number 

increased to 135, and the most cost effective was using 254 cells at a read depth of 

250,000 per cell [334]. When designing single cell sequencing experiments, the trade-

off between cell number and read depth for the desired sensitivity thus needs to be 

taken into account. 

Apart from the sensitivity required to detect even lowly expressed genes, additional 

factors might also need to be considered during the design of a single cell 

transcriptomics study. At present, the C1 and iCell8 systems are the only available 

fully automated platforms that can generate full-length transcriptomic sequence 

information. When the experiments presented here were conducted, this was only 

true for the C1 system. The other single-cell profiling systems, in contrast, only 

provide data that is enriched for sequences from the 3’ or 5’ end of mRNA molecules. 

While this information may be sufficient for many scientific questions, as highlighted 

above (section 1.2), additional full-length information can be utilised to study 

otherwise undetectable transcriptional isoforms [22, 335-337], gene expression 
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dynamics and splice variants [338], which are still only rarely considered in single 

cell sequencing studies.  

Due to their geometry, the C1 and Chromium systems place considerable restrictions 

on the range of cell sizes that can be processed. The flexible microfluidic chip design 

of the Dolomite system is more permissive. However, only the iCell8 system is 

capable of examining very large cells such as multinucleated cardiomyocytes [339] 

or even multicellular structures like small cell spheroids and organoids [340]. To 

facilitate the processing of challenging samples like microorganisms or plant cells, 

the iCell8 and the Dolomite system (as well as its successor, the Nadia system) also 

allow for the flexible exchange of reagents and other technical parameters, extending 

the range of potential applications. 

Finally, another aspect that might determine experimental design is the imaging 

capability built into the C1 and iCell8 systems. While the quality of the acquired 

images is limited, it enables the exclusion of cell doublets already at the stage of 

conducting the experiment, and offers the possibility to link morphological or other 

phenotypic information to single cell transcriptome data.  

 

Comparison of single-cell transcriptome data for mouse testis generated using the 

Dolomite, iCell8 and Chromium technologies showed that all three enabled the 

identification of distinct cell types. Based on canonical marker gene expression, the 

Chromium system made it possible to identify all major cell types of mouse testis 

and sperm development and testis tissue, comprising Leydig and Sertoli cells, 

spermatogonia, spermatocytes, round and elongating spermatids. In contrast, Sertoli 

cells were not detected when using the Dolomite system, while the iCell8 system did 

not identify spermatogonia (section 2.1.4). For the iCell8 system, this might be 

primarily due to the low number of cells obtained, whereas the lower number of 

genes detected using the Dolomite system might hamper distinction of cell types. 

Consistently, cluster separation was clearest in the Chromium data, which might 

also be due to ambient RNA present in the single-nucleus solutions or lower 

sensitivity for the other systems.  
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When comparing single-cell transcriptomes across technologies, we also observed a 

higher correlation between different cell types processed with the same method, than 

between the same cell types using different methods. This indicates a significant 

degree of technical bias that is introduced by each method, affecting the observed 

transcriptome data. However, I demonstrated that this bias could be successfully 

corrected for using computational data integration methods (section 2.1.4), revealing 

the underlying cell type identity across technologies. Appropriate computational 

approaches thus enable the identification of common transcriptional features when 

comparing data from different single cell sequencing technologies, even in the 

presence of technical variation. 

 

The data presented in this dissertation on the comparison of single cell sequencing 

technologies has some limitations. There is natural variation in the sampling process 

of tissue which might affect cell type composition. Moreover, the read depth per cell 

was not nearly exhausted and varies between experiments, which can only partly be 

overcome by subsampling of reads. To facilitate a more comprehensive comparison 

of different technologies, we therefore used the expertise acquired here in the context 

of an international multi-centre study that assessed differences between technologies 

and their applicability for creating cell atlases in a highly controlled manner [276]. 

As part of this study, we processed cells from a standardised mixture of cells from 

different tissues and species, distributed across all sites, using the Dolomite system. 

As in the above comparison of mouse testis tissue, the study revealed pronounced 

differences between technologies in the number of genes detected per cell and cell 

type composition, reinforcing the need for computational approaches to integrate 

data from different technologies when assembling large cell atlases. This study as 

well as our previous evaluation of the different technologies let us conclude that, 

given the distinct advantages of each technology, the most suitable choice at present 

for investigating heterogeneity in diverse tissues with a large number of cells would 

be the Chromium system as it provides high throughput, experimental robustness 

and relatively low cost. 
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3.2 Characterisation of healthy human lung tissue 

Having implemented these scRNA-seq technologies in our lab, we sought to 

investigate tumour heterogeneity in healthy human lung tissue as well as lung 

adenocarcinoma of smokers and never smokers. As discussed above, the Chromium 

system was judged the most suitable for this task, with the most robust experimental 

workflow being imperative for the processing of rare clinical samples. The majority 

of single cell transcriptomics studies to date have relied on the acquisition of fresh 

material from surgical samples to isolate living cells, which poses significant logistical 

challenges especially when diseases occur relatively rarely, as is the case for lung 

adenocarcinoma in never smokers. Here, we present a retrospective approach 

performing single nuclei RNA sequencing from biobanked material. Consistent with 

our findings, recent studies have demonstrated that single-nucleus RNA sequencing 

provides adequate sensitivity and classification of cell types compared to using whole 

cells [341]. 

 

To create a cell atlas of the human alveolar lung that could serve as a reference for 

the comparison with LADC tumour tissue, we used patient matched samples of 

healthy tissue obtained at a distance from the tumour during surgery. These samples 

comprised a total of 41,061 cells from three individuals for each of four patient groups 

(young female smokers and never smokers, elderly female never smokers and young 

male never smokers). Based on this data, we established a reference map for all 

major cell types of the human lung, including epithelial and endothelial cell types, 

smooth muscle cells, fibroblasts and different immune cells (Figure 2.7). 

3.2.1 SARS-CoV-2 infection of human lung cells 

While our study of smoking effects on healthy lung tissue and LADC at the 

transcriptional level was underway, in 2019, the COVID-19 pandemic arose and 

many patients presented with severe lung disease following SARS-CoV-2 infection. 
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As this fast emerging global public health threat called for a concerted scientific 

effort to understand the pathophysiology of this new disease, we used our single cell 

transcriptome data to probe the expression of putative mediators of SARS-CoV-2 

infection in healthy lung tissue [139]. Through rapid publication of our results, we 

contributed our reference cell atlas of the healthy human alveolar lung as a resource 

for the community and provided valuable information about human host factors for 

SARS-CoV-2 infection. Our findings thus supported the ongoing research on SARS-

CoV-2 and might in the future be of further use to better understand the 

transcriptome of the lung in health and disease.  

As the human lung single-cell atlas we generated was not initially intended for the 

study of viral infection, its use for this purpose certainly comes with limitations, 

including the relatively small cohort size. Nonetheless, our data include both smokers 

and never smokers from two adult age groups (40 to 56 years and 75 to 79 years) 

and thus comprise patient groups at a high risk for severe COVID-19, providing 

meaningful and immediately relevant insights. As the small sample number still 

limits the scope of my data for understanding the pathogenicity of SARS-CoV-2 in 

the context of different confounding factors such as age, gender and smoking history, 

investigation of gene and protein expression levels in a larger patient cohort will be 

required to test any hypothesis derived from this data. 

Bearing in mind these limitations, we harnessed this lung single-cell atlas to assess 

the expression levels of ACE2 across all human lung cell types. As ACE2 is currently 

the only receptor known to mediate SARS-CoV-2 binding to the host cell membrane, 

its expression is thought to render a cell susceptible to SARS-CoV-2 infection. We 

found ACE2 expressed at extremely low levels overall, but with a significant 

enrichment in AT2 cells. Consistently, results from other groups quantifying ACE2 

expression in various tissues, including cell types of the respiratory tract such as 

nasal epithelia and lung, have corroborated a very low expression level in the lung 

and enrichment in AT2 cells [342-344]. While we did not observe an association of 

ACE2 expression with age, sex or smoking status at the level of individual cell types, 

we observed a trend for age dependency of ACE2 expression aggregated over all cell 
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types. This finding was subsequently confirmed in a large meta study including the 

data presented here [345]. By making use of a greater number of cells, the meta 

analysis was also able to resolve cell type specific changes. It found that ACE2 

expression increased with age in AT2 cells and was elevated in men compared to 

women in secretory cells, AT1 and AT2 cells. Basal and secretory cells of past or 

current smokers displayed higher, and AT2 cells lower ACE2 expression.  

While these findings are suggestive of differential susceptibility to SARS-CoV-2 

infection, it should be noted that socioeconomic factors may obstruct the assessment 

of age, sex and smoking as independent risk factors. A clear association of higher 

age with infection risk therefore remains controversial. The observed increased 

expression of ACE2 in men compared to women supports observations of male 

individuals having a higher infection risk for SARS-CoV-2 [346, 347]. However, an 

increased infection risk has not been observed for smokers so far, although smoking 

has been associated with more severe symptoms [348]. 

 

An emergent question in COVID-19 research is why the viral load and possibly 

duration of infectiousness is much higher for SARS-CoV-2 compared to other 

coronaviruses, such as SARS-CoV or MERS-CoV [349]. Potential explanations 

comprise enhanced cleavage of the SARS-CoV-2 spike protein, resulting in higher 

infection rate, or an increased number of susceptible cell types. Employing our 

reference map of the human alveolar lung, we investigated additional host factors 

that might be involved in SARS-CoV-2 cell entry. 

Coronaviruses are known to be able to enter into host cells via different endocytic 

pathways in the presence of proteases [146, 350-352]. SARS-CoV and SARS-CoV-2 

both bind to the cell surface receptor ACE2, while TMPRSS2 has been identified as 

the main protease facilitating host cell entry [144, 145, 353, 354]. However, other 

proteases were also previously shown to enable coronavirus infection [343]. Of note, 

SARS-CoV-2 has a cleaving site for the protease FURIN that is absent in SARS-

CoV [355, 356]. Recent studies suggest an increased binding affinity for ACE2 upon 

virus spike protein cleavage by FURIN [355], hypothesised to be caused by structural 



Discussion 

 79 

rearrangements of the cleaved spike protein as shown for other coronavirus spike 

proteins [357-359], which has now been confirmed by various in-vitro and animal 

model experiments [360-365]. 

We therefore investigated co-expression of ACE2, TMPRSS2 and FURIN in the 

healthy human lung and found that the proposed contribution of FURIN to SARS-

CoV-2 host cell entry would increase the number of cells susceptible to virus infection 

by about 12%, although susceptible cells continue to represent only a small fraction 

(0.7%) of all alveolar cells. Interestingly, FURIN might not only be active in its 

membrane bound form, but a secreted form has also been identified [281], which 

could further potentiate tissue susceptibility to SARS-CoV-2 infection in the 

neighbourhood of FURIN expressing cells. This intercellular activity of FURIN, 

however, still requires further exploration by future experimental approaches. 

 

Taken together, these findings indicate that only a small proportion of alveolar cells 

are directly vulnerable to SARS-CoV-2 infection via ACE2 and TMPRSS2 

expression, while FURIN might increase susceptibility by functioning as an 

additional protease able to cleave the virus spike protein and possibly even extending 

this effect to surrounding cells. Despite its limitations due to small sample numbers 

and the difficulty of assessing lowly expressed genes in scRNA-seq experiments, our 

healthy lung data provides a rich resource aiding further research into SARS-CoV-

2 infection and acts as a reference for studies including primary samples of COVID-

19 patients. 

3.2.2 Smoking effects on non-tumour lung tissue 

While the investigation of possible mediators of coronavirus infection using our 

healthy lung transcriptome data demonstrates its broader utility to the research 

community, the data was initially intended to serve as a reference for investigating 

transcriptional changes in response to tobacco smoke exposure and LADC. Analysing 

normal lung tissue samples in this context, we identified an increase in inflammation 
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and immune activation induced by tobacco smoke exposure, with inflammatory 

signalling molecules such as CSF3, ICAM1 and IL6 mediating communication 

between immune cells as well as fibroblasts and endothelial cells (Figure 2.14).  

Cell type composition was comparable across patient groups overall. However, an 

increased proportion of alveolar macrophages and AT2 cells in smoking patients was 

observable (Figure 2.12). These compositional changes might be a consequence of 

adverse effects of tobacco smoke. Furthermore, AT2 cells serve as alveolar stem cells 

and are capable of transdifferentiating into AT1 cells upon injury of the alveolar 

compartment [130]. Our findings are therefore suggestive of tissue damage and an 

overall inflammatory response with accompanying macrophage invasion into the 

tissue, consistent with higher alveolar macrophage numbers in smoker lungs also 

found in other studies [230, 233]. The increased proportion of AT2 cells that we 

observed might also reflect a higher proliferative activity of AT2 cells in smokers. 

Through increased cell division rates, AT2 cells could constitute a potential cell type 

of origin of LADC, in line with previous studies [366]. 

Similar consequences of tobacco smoke exposure have been proposed based on 

histology, lavage, elevated inflammatory molecules in peripheral blood or bulk 

transcriptome samples [213-216, 367]. While more recent single cell transcriptomic 

studies investigated the effects of tobacco smoke in systemic immune cells and upper 

airway epithelial cells [239-241], cell types in the alveolar region and their interplay 

had not been addressed at this resolution. My results therefore contribute to an 

improved understanding of smoking effects in the alveolar lung and might aid in the 

identification of therapeutic agents that could counteract the known tumourigenic 

effects of inflammation, a challenge that remains unsolved [368, 369]. 
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3.3 LADC in female smokers and never smokers 

The cell atlas of the human alveolar lung described in the previous section was 

established based on samples of healthy lung tissue obtained during surgery from 

patients with LADC. The second pillar of my work were samples obtained from the 

tumours themselves, which were also fresh frozen and subsequently processed for 

single nucleus RNA sequencing using the Chromium system. In total, 81,718 cells 

from tumour samples were included in this study after quality control, comprising 

26 samples from four patient groups (young female smokers and never smokers, 

elderly female never smokers and young male never smokers). Patient-matched 

healthy lung samples, as already characterised (section 2.2.1), were available for 

three patients from each group. These data allowed me to explore cellular 

heterogeneity and interactions within LADC and the tumour microenvironment in 

patients with or without a smoking history. As lung cancer cases in never smokers 

exhibit a pronounced bias towards women [242], my study focused particularly on 

female smokers and never smokers. 

A significant obstacle in the analysis of tumour tissues within this study was the 

substantial inter-patient heterogeneity, which precluded the direct inference of gene 

expression differences between male and female never smokers. Due to differences in 

genetic background, epigenetic modifications, patient history and comorbidities, this 

can only partly be overcome by larger sample sizes and molecular patient 

stratification. Computational methods that exclude patient specific features without 

losing biologically relevant signals will be necessary to further refine analyses of 

malignant cell populations across patients at the single cell level. In addition, our 

results based on single cell transcriptomics could be tested in larger patient 

collectives using bulk omics approaches. As smoking prevalence decreases, future 

studies should also address other environmental and intrinsic factors contributing to 

inflammation. These include inflammatory diseases such as chronic obstructive 

pulmonary disorder (COPD), which increases the risk of lung cancer independent of 

age, sex and smoking status [162, 370]. 
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3.3.1 Identification of neoplastic and tumour microenvironment cells 

Our atlas of single-cell transcriptomes from healthy lung tissue was used as a 

reference to annotate tumour sample cells, and cells that could not be assigned to 

any endogenous lung cell type were hypothesised to be the transformed cells of the 

tumour. The deviation from endogenous gene expression signatures in tumour tissue 

is often caused by mutations or large-scale structural genomic aberrations, such as 

gains or deletions of chromosomal parts [288, 289]. To corroborate the malignant 

identity of unassigned cells, we deduced copy number variations (CNV) from 

transcriptomic data by comparing the average expression levels of genes in close 

proximity on the genome to a baseline derived from patient-matched normal lung 

samples (section 2.3.1). Clustering of cells according to their inferred CNV profiles 

revealed cells devoid of copy number variations, which included cells from all 

patients analysed, as well as cells harbouring distinct losses or gains that were mostly 

patient-specific. Clusters containing CNVs were enriched for cells not representative 

of any healthy lung cell type, confirming that these previously unassigned cells are 

of malignant origin, while the remaining cells with low CNV prevalence were 

correctly annotated as cells belonging to the tumour microenvironment. 

With this analysis, we were able to distinguish neoplastic cells and cells from the 

tumour microenvironment, which is still a challenging task in single cell 

transcriptomic experiments of cancer [371]. Here, we could make use of patient 

matched healthy lung samples as an appropriate reference for the comparison of 

tumour cell transcriptional profiles, thus overcoming a main obstacle for this 

inference analysis. Inferred CNV profiles could in principle be further analysed to 

investigate patient group specific genomic changes, although the present data did 

not establish any correlation with known genomic alterations in LADC (compare 

section 1.5.1) or identify novel variations with sufficient certainty. Single cell 

approaches assessing the genome or even new approaches to obtain DNA and RNA 

profiles from the same cell [55, 372] would greatly enhance the accuracy of 

distinguishing neoplastic cells and enable future investigations into genomic 
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alterations at the single cell level as well as their relationship with transcriptional 

signatures. 

3.3.2 High intratumoural heterogeneity with distinct cellular subtypes 

in young female patients 

Tumour cell heterogeneity is increasingly recognised to play a crucial role in tumour 

progression, with implications for tumour evolution and efficacy of treatments [108, 

199]. Previous single cell transcriptomic studies of LADC were often focused on 

resolving heterogeneity in the tumour microenvironment, rather than within 

malignant cells. Initial transcriptomic investigations of the neoplastic compartment 

have confirmed intratumoural cellular heterogeneity within single tumour sites [203], 

often driven by mutational differences [373]. However, an extensive characterisation 

of different subtypes of malignant cells is hampered by high interpatient 

heterogeneity and the difficulty of separating transformed cells from the TME. 

Having identified the malignant cells in tumour samples from our cohort, we 

therefore proceeded to investigate possible tumour heterogeneity within LADC. 

The analysis of malignant cell transcriptomes revealed ten distinct cell populations 

with characteristic gene expression. Enrichment analysis of genes specific for each 

population identified eight expression signatures comprising proliferation, 

transcription, cellular respiration, cell adhesion, metabolism, morphological changes, 

phospholipid binding and immune related profiles. By linking these signatures to 

transcription factor networks, we found an association of proliferating malignant 

cells with stress response and amino acid homeostasis mediated by ATF4 [296, 297], 

and with stem cell renewal mediated by POU4F1, also known as OCT4 [298, 299]. 

ATF4 inhibition is currently under debate as a possible drug target for cancer 

therapy. While only tested in biological in-vitro model systems so far, several 

strategies have been proposed for targeting ATF4, including upstream suppression 

of ATF4 translation by inhibiting eukaryotic translation initiation factor 2 (EIF2A) 

phosphorylation, downstream suppression of ATF4 targets, or inhibition of 
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transcriptional activity [296]. Furthermore, the cell population enriched for an 

immune modulating signature showed additional expression of genes regulated by 

transcription factors FOXN3 and MEF2A. Both are involved in cell cycle checkpoint 

control and contribute to EMT [300, 301]. 

Together, these results identified eight functional subpopulations of malignant 

LADC cells in both smokers and never smokers and provided mechanistical insight 

into underlying regulatory pathways that might aid in understanding and targeting 

LADC tumour heterogeneity in the clinic. 

3.3.3 Trajectory of differentiation and characterisation of malignant 

cells in the context of smoking history 

Despite the decline of tobacco smoking in industrialised countries, lung cancer 

remains the cancer with the highest mortality worldwide, and an increasing 

percentage of lung cancer patients present without a smoking history (section 1.5.3). 

Among never smokers that develop LADC, there also exists a bias towards women. 

I therefore used the single cell transcriptomic data to examine differences in the 

identified malignant cell clusters between young female smokers and never smokers.  

To probe the data for potential differences in the cellular differentiation hierarchy 

of the tumour, we employed pseudotemporal ordering and graph based trajectory 

inference to derive a differentiation trajectory. At its apex, this trajectory included 

the immune modulating cell population (‘Imm_1’) which comprised proliferating 

cells. We identified a differentiation path from proliferating through undifferentiated 

cells towards two differentiation states representing signatures of either autophagy 

or wound healing processes. Wound healing mechanisms have long been suggested 

to be involved in cancer progression, invasion and metastasis by creating a niche 

that fosters proliferation and tissue remodelling [374-378]. The role of autophagy, on 

the other hand, remains subject to debate; this process has been implicated in 

mitochondrial turnover in metabolically highly active cells as well as nutrient 

deficiency in poorly vascularised tissue [303, 379, 380]. The detected autophagy 
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signature may thus reflect high metabolic activity or damage of cells along the 

trajectory. 

Notably, no distinct cell populations unique to female smokers or never smokers were 

detected in either normal or malignant tissue samples, and the differentiation 

hierarchy was comparable across patient groups (section 2.2.1 and 2.3.1; Figure 

2.20). However, we resolved distinct transcriptional properties of the cluster of 

malignant immune modulating cells (‘Imm_1’) according to smoking history, with 

increased expression of immune-related genes such as ANXA1, C1QB, SLC11A1, 

CD68, PAEP in smoker cells and HLA-DQA2, HLA-DRB5, WFDC2 in female never 

smokers. In the same cell cluster, we also identified genes involved in migration and 

development that were specifically expressed in smokers (MSLN, FNDC3B) or never 

smokers (AGR3, CLDN10, IGF2R, PCDH7). These cells might therefore 

differentially modulate the immune microenvironment according to patient 

background and smoking status, with potential significance for immunotherapies. 

A previous study applied trajectory inference approaches to LADC and normal lung 

cell transcriptomes simultaneously to investigate tumour progression, demonstrating 

that LADC comprise both transformed cells with high transcriptional similarity to 

normal epithelial cells and a subset of distinct tumour cells with increased expression 

of genes related to proliferation and migration [200]. Here, we focused exclusively on 

the tumour cells and determined a differentiation trajectory within the malignant 

cell population that consistently includes cycling as well as differentiating tumour 

cell states, in both smokers and never smokers. 

3.3.4 Tumour microenvironment transcriptome is highly deregulated in 

LADC 

Transformed tumour cells rely to a large extent on interactions with their 

surroundings, which might either hinder tumour development or work to its 

benefit [201]. We detected two distinct cell states within the macrophage population 

of tumour tissue with decreased expression of defined gene signatures compared to 
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healthy lung (Figure 2.22). These signatures comprise genes involved in immune cell 

activation and inflammation, with one signature containing genes with a role in 

macrophage activation. Their downregulation in the tumour vicinity therefore 

indicates a more permissive environment for tumour growth. My results are 

consistent with findings from previous studies showing that a reduction in immune 

cell activation and a bias towards less tumouricidal immune cells in the tumour 

environment and might contribute to tumour progression [119, 381]. In particular, a 

subpopulation of macrophages expressing MARCO and PPARG was also identified 

in a recent single cell transcriptomics study of myeloid cells in NSCLC and associated 

with less favourable outcome [381]. 

Other cells of the tumour environment along with macrophages can also support or 

hinder tumour growth. We identified two populations of fibroblasts, one contributing 

to changes in extracellular matrix composition that are beneficial for tumour 

invasion and metastasis and another promoting EMT. Consistently, a recent single 

cell transcriptomic study of the tumour microenvironment in NSCLC found distinct 

fibroblast subpopulations with differential expression of EMT related genes [119]. 

Fibroblasts derived from tumour samples in this study also showed increased 

expression levels of type I and type III collagens compared to fibroblasts from healthy 

lung tissue, in agreement with my findings. 

These results resolve how different macrophage and fibroblast subpopulations in 

LADC contribute to a tumourigenic environment, with implications for the design 

of therapeutic strategies targeting the TME. 
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3.4 Conclusion 

Single cell sequencing technologies have transformed our ability to investigate 

cellular properties in health and disease, as well as across species, at unprecedented 

resolution. Ambitious efforts are underway, often as part of large international 

consortia, to chart the diverse cell types and states that make up all human tissues. 

By sequencing single cells under disease conditions, comparative information is 

additionally obtained that promises to enhance our understanding of 

pathophysiological processes.  

Such ventures are driven by the explosion of technological approaches in the field of 

single cell sequencing over the past decade. To ensure their validity, it is necessary 

to carefully define experimental conditions and workflows that are appropriate for 

generating reproducible single cell data across laboratories.  

The research presented in this thesis therefore initially set out to compare emerging 

technologies for single cell RNA sequencing and assessed their applicability for 

comparison between species, as well as between healthy and tumour tissue. Valuable 

insights into the specific advantages, limitations and experimental challenges of four 

popular technologies were obtained. Moreover, my results also contributed to a 

larger multi-centre study assessing the suitability of these technologies for 

collaborative cell atlas projects.  

The ability to profile individual cells is particularly beneficial for investigating cell 

types and states as well as their interactions in complex tissues. Single cell 

sequencing research has already begun to transform our understanding of tumour 

heterogeneity and its interplay with the TME in a variety of cancers. Here, I applied 

the experimental insights gained from the comparison of different technologies to 

investigate healthy lung tissue, as well as tumour heterogeneity and the TME in 

LADC of smokers and never smokers, as discussed in the second part of this thesis. 

To address the challenge of limited sample availability, I adapted a protocol for 

single nucleus sequencing of biobanked fresh frozen material. My results demonstrate 

the feasibility of using this valuable material for retrospective studies, which greatly 
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facilitates the investigation of rare diseases at single cell resolution and circumvents 

logistic obstacles for multi-institutional studies. 

The single cell transcriptomics data I generated from healthy lung tissue provides a 

rich resource for investigating cellular diversity in the alveolar part of the human 

lung. Following the emergence of the SARS-CoV-2 virus, which severely affects this 

anatomical region in many patients, I harnessed my data to probe the expression of 

genes that are implicated in host cell entry and was thus able to make a timely 

contribution to our understanding of cellular susceptibility to coronavirus infection. 

Having demonstrated the utility of the human lung cell atlas for investigating 

pathophysiological mechanisms, I proceeded to address cellular heterogeneity in lung 

tissue and LADC in smokers and never smokers. Through my analysis of the single 

cell transcriptomics data I generated from healthy lung tissue, human lung cell types 

and mediators of inflammatory processes induced by tobacco smoke exposure in the 

alveolar part of the lung were resolved for the first time at single cell resolution. As 

female never smokers are particularly susceptible to LADC compared to their male 

counterparts, I investigated LADC samples with a focus on female patients. My 

results provide a refined description of cellular heterogeneity within LADC tumours 

and their microenvironment, defining transcriptional signatures for distinct 

transformed cell states. While the cell type composition and differentiation hierarchy 

of LADC were comparable in female smokers and never smokers, I identified a subset 

of cells with differential immune modulating activity dependent on smoking status. 

These findings will aid in the selection and development of treatments that take into 

account the complex interplay of disease aetiology, intratumoural heterogeneity and 

interactions with the tumour microenvironment. 
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4 Material and Methods 

4.1 Sample procurement and Ethics agreement 

4.1.1 LADC patients 

Cryopreserved surgical lung tissue from patients with lung adenocarcinoma was 

provided by the Lung Biobank Heidelberg. All subjects gave their informed consent 

for inclusion before participation in the study. 

This study was conducted in accordance with the Declaration of Helsinki and the 

Department of Health and Human Services Belmont Report. The use of biomaterial 

for this study was approved by the local ethics committee of the Medical Faculty 

Heidelberg (S-270/2001 (biobank vote) and S-056/2021 (study vote)). 

Tumour tissue and an additional representative part of normal lung tissue distant 

from the tumour (> 5 cm) was collected during routine surgical intervention. Pieces 

of 0.5-1 cm3 were cut immediately after resection snap-frozen in liquid nitrogen 

within 30 min after resection, with no direct contact of samples and nitrogen. After 

snap-freezing, the vials were stored at -80°C and monitored regarding temperature 

until use. 

4.1.2 Mice 

All tissues from mice were obtained from outbred strain RjOrl:SWISS (Janvier 

Labs). From sacrificed mice of developmental age E13.5 the forebrain and for mice 

4 weeks or 9 weeks after birth testis tissue was either snap frozen in liquid nitrogen 

for nuclei extraction (section 4.2.2) or immediately processed to isolate single cells 

(section 4.2.1). All procedures were approved by the Interfaculty Biomedical 

Research Institute of the University of Heidelberg, Germany, in accordance with 

federal guidelines. 
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In detail, mouse embryonic forebrain was dissected by retrieving the embryo from 

the freshly dissected uterus, put immediately in ice-cold phosphate buffered saline 

pH 7.4 (PBS). The whole procedure was performed within 30 min under a stereo 

microscope in ice-cold PBS. Decidua and Placenta were separated from the embryo 

by cutting the visceral yolk sac around these tissues. The visceral yolk sac was then 

cut from the embryo, and the brain freed from the embryos soft skin and skull. 

Forebrain was then cut before the midbrain, containing both cerebral hemispheres. 

The olfactory lobe was cut off. Testis tissue was dissected without the epididymis.  

4.2 Experimental methods 

Detailed information about reagents can be found in Table 9 and 10. 

4.2.1 Isolation of cells from fresh tissue 

Intact, living cells were isolated from fresh tissue immediately after dissection. 

Mouse forebrain tissue was processed using the papain dissociation system 

(Worthington Biochemical) as to the manufacturer’s instructions. All steps were 

conducted under sterile conditions. In detail the tissue was incubated for 30 min at 

37°C under constant rotation, in prewarmed Earle’s Balanced Salt Solution (EBSS) 

containing 20 U/ml papain, 1 mM L-Cystein, 1 mM EDTA and 0.005% DNase. 

Before use EBSS was saturated with O2 by vigorous shaking. To break up the tissue, 

it was pipetted two times with a 10 ml blow out pipette. 

After incubation the mixture was triturated 10 times with a 10 ml blow out pipette 

and larger pieces were allowed to settle to the bottom. The cell suspension was 

carefully removed and laced in a 15 ml screw capped tube (Thermo Fisher Scientific) 

and centrifuged at room temperature and 300 g for 5 min. The supernatant was 

discarded and cells resuspended in 3 ml EBSS containing 1 mg/ml albumin, 1 mg/ml 

ovomucuoid inhibitor and 0.005 % DNase to stop the protease activity of papain 

and remove extracellular DNA. Cells were further cleared of any debris using a 
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discontinues density gradient. The cell suspension was carefully layerd ontop of 5 ml 

EBSS containing 10 mg/ml albumin and 10 mg/ml ovomucuoid inhibitor in a 15 ml 

screw capped tube and centrifuged at 70 g for 6 min at 4°C. The cell pellet at the 

bottom was resuspended in ice cold Hanks Balanced Salt Solution (HBSS) (Sigma-

Aldrich) containing 0.3% glucose (Sigma-Aldrich), filtered through a 20 µm cell 

strainer (pluriSelect Life Science) and kept at 4°C until further processing. 

Mouse testis were processed with the mouse tumour dissociation kit (Milteny 

Biotech) according to the manufacturers protocol. Briefly whole testis tissue was 

placed together with 2.5 ml of the prewarmed vendors enzyme solution into a 

gentleMACS tube (Milteny Biotech), processed with a gentleMACS Dissociater 

(Milteny Biotech) running m_impTumor_02 and incubated at 37°C under constant 

rotation for 40 min. Afterwards the gentleMACS Dissociater program 

m_impTumor_03 was run and the mixture strained with a 70 µm strainer 

(pluriSelect Life Science) into a 15 ml screw cap tube. The strainer was washed with 

10 ml RPMI-1640 (Gibco) and centrifuged for 7 min at 300 g. The supernatant was 

discarded and cells resuspended in 1 ml HBSS and kept at room temperature until 

further processing. 

Cells were counted on a LUNA cell counter (Logos Biosystems). 

4.2.2 Nuclei isolation from frozen tissue 

For nuclei isolation an adaptation of a previously published protocol [268] was used. 

All solutions and material were precooled to 4°C and kept on ice for the whole 

procedure. Frozen tissue pieces, cut to cubes of about 5 mm, were placed in 1 ml of 

ice-cold homogenisation buffer (250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM 

Tris buffer ph 7.5, 1 µM DTT, 0.4 U/µl RNAseIn, 0.2 U/µl SuperasIn, 0.1% NP40, 

1 µg/ml Hoechst 33342) in a 1 ml Dounce Homogenizer (Wheaton) and crushed 

using five strokes of the lose pestle. After incubation at 4°C for 5 min the tissue was 

further homogenised by ten strokes of the tight pestle and strained through a 35 µm 

sized cell strainer into a 5 ml round bottom test tube (Corning). The strainer was 
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washed with 500 µl homogenisation buffer and the mixture then centrifuged at 4°C 

and 500 g for 5 min. the cell pellet was resuspended carefully in 200 µl 

homogenisation buffer without NP40 using a 200 µl pipette and titrated ten times. 

Another 800 µl of detergent free homogenisation buffer was added and the solution 

centrifuged at 4°C, 500 g for 5 min. After discarding the supernatant, the pellet was 

resuspended in 200 µl detergent free homogenisation buffer using a 200 µl pipette 

and filtered again through a 35 µm cell strainer. The strainer was washed using 

600 µl of ice-cold PBS and the solution mixed three times with a 1000 µl pipette. 

Isolated nuclei were now kept on ice until further processing. 

 

Intact nuclei from snap frozen tissue of lung adenocarcinoma patients were isolated 

adopting the protocol described in [274]. Still frozen tissue was cut into cubic pieces 

of approximately 5 mm. They were transferred to a chilled 1 ml Dounce 

Homogenizer, filled with 1 ml of ice-cold homogenisation buffer (0.25 M Sucrose, 

25 mM Citric Acid, 1 µg/ml Hoechst 33342). The tissue was broken by one stroke 

of the loose pestle and incubated for 5 min at 4°C and afterwards further broken 

down by five additional strokes of the loose pestle After another 5 min incubation 

at 4°C, the tissue was homogenised with ten strokes of the tight pestle and filtered 

through a 35 µm sized cell strainer. The filtrate was centrifuged at 500 g, 4°C for 

5 min and the supernatant discarded. Nuclei in the pellet were resuspended in 700 µl 

homogenisation buffer, transferred into a new 1.5 ml Eppendorf Tube and again 

centrifuged at 500 g, 4°C for 5 min. After discarding the supernatant nuclei were 

resuspended in 100 µl, ice cold resuspension buffer (25 mM KCl, 3 mM MgCl2, 

50 mM Tris-buffer pH 7.5, 0.4 U/µl RNaseIn, 0.4 U/µl SuperasIn, 1 µg/ml 

Hoechst 33342) and kept on ice until further processing.  

 

Nuclei were counted on a Countess II FL Automated Cell Counter (Thermo Fisher 

Scientific) and diluted in resuspension buffer to 1 Mio nuclei/µl or less. 
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4.2.3 Single cell RNA sequencing library construction 

4.2.3.1 Library construction C1 

Cells were processed using the C1 Single-Cell Auto Prep System (Fluidigm) with 

the C1 Reagent Kit for mRNA Seq (Fluidigm) and SMARTer Ultra Low RNA 

Kit (Clontech). Cells were counted using Trypan blue solution (Gibco) with the 

LUNA automated cell counter and used in a concentration of 700 cells/µL. For 

loading of an IFC microfluidic chip (Fluidigm) designed for 5 to 10 µm cells, 6 µL 

cell suspension and 4 µL C1 suspension reagent were mixed and loaded with the 

mRNA Seq: Cell Load script. Cells are then captured at specific sites on the 

translucent IFC chip. Using a bright field microscope, the chip inspected for capture 

sites containing a single, viable cell. Doublets and dead cells were in this way 

excluded from further processing. Lysis, reverse transcription, and cDNA 

amplification were performed in the C1 system according to the manufacturer's 

instructions.  

Subsequent library preparation was done using the Nextera XT DNA Library 

Preparation Kit (Illumina) as to the manufacturer’s instructions.  

Molar concentration of the sequencing libraries was quantified using the Qubit 

Fluorometer (Thermo Fisher Scientific), and fragment length was assessed using a 

Bioanalyzer 2100 (Agilent Technologies). 

All libraries constructed with this protocol were sequenced on a MiSeq sequencer 

(Illumina) using paired-end protocol (75 bp). 

4.2.3.2 Library construction iCell8 

Living cells and nuclei were processed using the iCell8 single-Cell System 

(WaferGen) and iCell8 chip and reagent kit (WaferGen). Cell suspensions were 

stained with ReadyProbes Cell Viability Imaging Kit (Thermo Fisher Scientific), 

containing Hoechst 33342 and propidium iodide for 20 min at RT. Cell suspension 

was then diluted to 20 cell/ul and distributed with the liquid handler of the iCell8 

System, into 5,184 the nanowell chip (WaferGen) and centrifuged at 300 g for 5 min 
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at RT. After imaging all wells with the fluorescent microscope of the iCell8 System, 

cells were frozen in the chip at -80°C over night. Well images were inspected for 

single intact cells. Empty as well as wells containing dead or multiple cells were 

excluded from further processing. The nanowell chip was then thawed for 10 min at 

RT to lyse the cells and centrifuged at 3,220 g for 3 min at 4°C. Free polyA mRNA 

was annealed to pre-printed primers in the chip by heating the chip for 3 min at 

73°C in a modified PCR cycler (Bio-Rad T100). The chip was subsequently 

centrifuged at 3,220 g for 3 min at 4 C and reverse transcription reagents applied to 

selected wells using the iCell8 System liquid handler. Reverse transcription was 

carried out with template switch extension at 42°C for 90 min and cDNA collected 

by centrifugation using the iCell8 Collection Kit (WaferGen) in a 1.5 ml 

microcentrifuge tube. 

cDNA was then concentrated with the DNA Clean & ConcentratorTM-5 kit (Zymo 

Research) and single stranded DNA eliminated by exonuclease treatment 

(Exonuclease I; 37°C for 30 min and 80°C for 20 min). The product was further 

amplified by PCR (90°C for 1 min; 18 cycles of 95°C for 15 s and 65°C for 30 s; 68°C 

for 6 min; 72°C for 10 min). Library construction was then performed using the 

Nextera XT DNA Library Preparation Kit as by the manufacturer’s instructions, 

which includes tagmentation to introduce amplification and sequencing primer, but 

amplification only using sequences included in the Nextera Transposase Sequence 

and the pre-printed polyT oligonucleotides. This enriches for 3’ cDNA fragments of 

about 300 nt length. 

Concentration of the sequencing libraries were quantified using the Qubit 

Fluorometer, and fragment length was assessed using an Agilent Bioanalyzer 2100.  

All libraries constructed with this protocol were sequenced on a HiSeq500 (Illumina) 

sequencer in high‐output mode, paired‐end 26 x 49 bp. 

4.2.3.3 Library construction RNA-Seq System Dolomite 

Single cell RNA libraries were constructed using the Dolomite µEncapsulator system 

(Dolomite Bio) as to the manufacturer’s instructions and published protocols [34]. 
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In detail, 600,000 barcoded beads (ChemGenes) were resuspended in 1,000 µl lysis 

buffer (500 µl nuclease free water; 300 µl of 20 % Ficoll PM-400; 10 µl of 20 % 

Sarkosyl; 30 µl of 0.5 M EDTA; 100 µl of 2 M Tris pH 7.5; 50 µl of 1 M DTT). All 

tubing was primed using either the same buffer as used for the cell suspension or 

QX200TM Droplet Generation Oil for EvaGreen (Bio-Rad). The single cell suspension 

was placed in a 1.5 ml Eppendorf tube inside a magnetic stirrer to prevent settlement 

of cells. Beads were resuspended and injected into the 10 m sample loop using a 1 ml 

luer lock syringe. Connect the microfluidic chip to the appropriate tubing and start 

the oil, cell and bead pump with following setting (oil: 200 µl/min; cells: 60 µl/min; 

beads: 60 µl/min). Continuous flow of liquids in all tubing and homogenous 

formation of water droplets in oil was observed using a high speed camera (Dolomite 

Bio). After stable formation of droplets was established, droplets are collected in a 

50 ml falcon tube.  

After collection of about 1 ml of droplet emulsion, the oil phase (clear, lower phase) 

is removed using a 1000 µl pipette and droplets are broken by adding 30 ml 6x SSC 

buffer (Sigma-Aldrich) and 1 ml of perfluoroctanol (Sigm-Aldrich) under a fume 

hood, followed by vigorous shaking for three times. The solution is then centrifuged 

at 1,000 g for 1 min to create two separate phases with beads accumulating at the 

interface. The upper phase is removed until only a few millilitres remain above the 

interface and 30 ml 6x SCC buffer is added. After a few minutes two phases have 

again separated and the upper phase, containing the beads is transferred to a new 

50 ml falcon tube. This phase is centrifuged at 1,000 g for 1 min and all supernatant 

but 1 ml are carefully removed. The remaining liquid is mixed and transferred to a 

1.5 ml Eppendorf tube and centrifuged at 1,000 g for 1 min. The supernatant is 

discarded and beads are washed two times using 1 ml of 6x SCC buffer and one time 

with 300 µl of 5x RT buffer for Maxima H minus reverse transcriptase (Thermo 

Fisher). 

The supernatant is removed and beads are resuspended in 200 µl of reverse 

transcription mix (75 µl nuclease free water; 40 µl Maxima 5x RT buffer; 40 µl of 

20 % Ficoll PM-400; 20 µl of 10 mM dNTPs; 5 µl of RNAse inhibitor (40 U/µl); 
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10 µl of 50 µM template switch oligo; 10 µl Maxima H minus reverse transcriptase). 

The suspension was then incubated at RT for 30 min, followed by 90 min at 42°C 

with rotation at 1,000 rpm. 

Beads are then washed with 1 ml of 10 mM Tris pH 8.0, by centrifugation at 1,000 g 

for 1 min and resuspended in 200 µl exonuclease mix (170 µl nuclease free water; 

20 µl of 10x Exo I buffer; 10 µl Exo I). After incubation at 37°C for 45 min with 

rotation at 1,000 rpm, beads were washed as described above using one time 1 ml 

TE-SDS (10 mMTris pH 8.0; 1 mM EDTA; 0.5 % SDS), two times 1 ml TE-

TW(10 mMTris pH 8.0; 1 mM EDTA; 0.01 % Tween-20) and one time 1 ml 

nuclease free water. 

Amplification of cDNA by PCR is done on batches of 2,000 beads in 50 µl of PCR-

mix (24.6 µl nuclease free water; 0.4 µl of 100 µM SMART PCR Primer; 25.0 µl of 

2x Kapa HiFi Hotstart buffer) in a thermal cycler (95°C for 3 min; 4 cycles of: (98°C 

for 20 s; 65°C for 45 s; 72°C for 3 min); 9 cycles of: (98°C for 20 s; 67°C for 20 s; 

72°C for 3 min); 72°C for 5 min). For cDNA prepared from nuclei 4 +11 cycles were 

used. 

Amplification product was purified adding 30 µl AMPure XP beads (Beckman 

Coulter) and incubation for 5 min at RT, by subsequent pelletising and washing of 

magnetic beads on a magnetic stand twice with 200 µl of 80 % ethanol (Thermo 

Fisher Scientific). The pellet was air dried for 2 min and DNA eluted in 10 µl 

nuclease free water by incubation for 5 min at RT. 

Yield and expected size of 1,300-2,000 nt) was determined using a BioAnalyzer High 

Sensitivity DNA Chip (Agilent Technologies). 

600 pg of purified DNA in a total volume of 5 µl nuclease free water was transferred 

to a new PCR-tube and 10 µl of Nextera TD buffer (Illumina) as well as 5 µl 

Amplicon Tagment enzyme (Illumina) were added and mixed by pipetting on ice. 

After incubation at 55°C for 5 min in a thermal cycler 5 µl Neutralisation buffer was 

added, mixed by pipetting and incubated for 5 min at RT. Afterwards 15 µl of 

Nextera PCR mix, 8 µl nuclease free water, 1 µl of 10 µM DropSeq-P5 SMART PCR 

primer and 1 µl of appropriate 10 µM Nextera N70x oligo was added in this order. 
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PCR was run in a thermal cycler with following settings: (95°C for 30 s; 12 cycles 

of: (95°C for 10 s; 55°C for 30 s; 72°C for 30 s); 72°C for 5 min).  

The Final library was purified as described above using 30 µl AMPure XP beads 

and elution in 10 µl nuclease free water. 

Fragment size and concentration was analysed using a BioAnalyzer High Sensitivity 

DNA Chip. 

All libraries constructed with this protocol were sequenced on a HiSeq500 sequencer 

(Illumina) in high‐output mode, paired‐end 26 x 49 bp. 

4.2.3.4 Library construction ChromiumTM 

Single cell RNA libraries were constructed with the Single Cell 3’ Reagents Kit v2 

(120237; 120236; 120262; 10x Genomics) and the ChromiumTM Controller (10x 

Genomics) according to the manufacturer’s instructions using 16,000 nuclei as input.  

Briefly, 33.8 µl of cell suspension containing 16,000 nuclei were mixed with RT-

master mix and carefully pipetted 5x on ice. The chip was loaded with 90 µl of 

cell/master mix suspension. After vortexing for 30 s, 40 µl RNA capture gel beads 

were loaded on the chip as well as 270 µl of partitioning oil according to the 

manufacturer’s instructions. Subsequently the prepared chip was placed in the 

chromium controller and Single Cell A program run. 

After completion, 100°µl of gel beads-in-emulsion (GEM) was transferred to a 8-tube 

strip (Thermo Fisher Scientific) and remaining emulsion was checked with the 

Countess II FL Automated Cell Counter for successful encapsulation of nuclei and 

beads. 

Reverse transcription was carried out in a thermal cycler (Bio-Rad) with following 

specifications. 53°C for 45 min; 85°C for 5 min. cDNA was then cleaned using 

DynaBeads MyOne Silane (Thermo Fisher Scientific). After addition of 125 µl 

Recovery Agent and incubation at RT for 60 s, the lower phase containing recovery 

agent and partitioning oil was discarded. 200 µl of DynaBead Cleanup Mix was 

added (9 µl nuclease free water; 182 µl buffer sample clean up 1; 4 µl DynaBeads 

MyOne Silane; 5 µl Additive A), mixed by pipetting and incubated at RT for 10 min. 
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Solution was cleared using a magnet stand (10x Genomics) and the supernatant 

removed. 300 µl of 80 % ethanol were added and removed after 30 s. This wash was 

repeated one time, the tube strip briefly centrifuged and remaining ethanol removed. 

After air drying the pellet for 1 min it was resuspended in 35.5 µl Elution Solution 

(98 µl Buffer EB: 1 µl of 10 % Tween 20; 1 µl Additive A), mixed and incubated for 

1 min. Solution was cleared using the magnet and 35 ml of the supernatant 

transferred to a new 8-tube-strip. 

Cleaned cDNA was amplified by addition of 65 µl of Amplification Reaction Mix 

(8 µl nuclease free water, 50 µl amplification master mix; 5 µl cDNA Additive; 2 µl 

cDNA Primer Mix) and incubated in a thermal cycler using following PCR settings: 

98°C for 3 min; 10 cycles of: (98°C for 15 s; 67°C for 20 s; 72°C for 1 min); 72°C for 

1 min. After amplification 60 µl of SPRIselect Reagent Mix (Beckman Coulter) was 

added and magnetic beads washed with ethanol as described above. DNA was eluted 

using 40.5 µl Buffer EB and after incubation at RT for 2 min, 40 µl were transferred 

to a new 8-tube-strip. Successful reverse transcription and cDNA amplification was 

assessed using an Agilent TapeStation High Sensitivity D1000 ScreenTape (Agilent 

Technologies). 

DNA was then fragmented and A-tailing achieved by adding of 15 µl Fragmentation 

Enzyme blend (2:1 in fragmentation buffer) on ice and incubating in a precooled 

thermal cycler (4°C) at 32°C for 5 min and 65°C for 30 min. Fragmented and A-

tailed DNA was recovered using 30 µl of SPRIselect Reagent Mix. After incubation 

for 5 min and clearance with a magnet, the supernatant was transferred to a new 

tube strip. DNA in the supernatant was then cleaned using 10 µl of SPRIselect 

Reagent Mix as described above using two ethanol washes. DNA was eluted in 

50.5 µl Buffer EB, incubated for 2 min, cleared with a magnet and 50 µl transferred 

to a new tube strip. 

Sequencing libraries were constructed by ligation of adaptors, adding 50 µl of 

Adaptor Ligation Mix on ice (17.5 µl nuclease free water; 20 µl ligation buffer; 10 µL 

DNA ligase; 2.5 µl adaptor mix) and incubating at 20°C for 15 min. Ligation product 

was cleaned using 80 µl of SPRIselect Reagent Mix as described above, discarding 
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the supernatant. DNA was eluted in 30.5 µl Buffer EB, incubated for 2 min, cleared 

with a magnet and 30 µl transferred to a new tube strip. 

Individual indexing and amplification of each library was done by addition of 60 µl 

sample Index PCR Mix (8 µl nuclease free water; 50 µl amplification master mix; 

2 µl SI-PCR primer and 10 µl of individual chromium i7 sample index) on ice. PCR 

was executed using following settings: 98°C for 45 s; 15 cycles of: (98°C for 20 s; 

54°C for 30 s; 72°C for 20 s); 72°C for 1 min. The finished library was recovered 

using 60 µl of SPRIselect Reagent Mix. After incubation for 5 min and clearance 

with a magnet, the supernatant was transferred to a new tube strip. DNA in the 

supernatant was then cleaned using 20 µl of SPRIselect Reagent Mix as described 

above using two ethanol washes. DNA was eluted in 35.5 µl Buffer EB, incubated 

for 2 min, cleared with a magnet and 35 µl transferred to a new tube strip. 

Quantity and quality of each library were assessed using an Agilent TapeStation 

High Sensitivity D1000 ScreenTape. 

All libraries constructed with this protocol were sequenced on HiSeq4000 (Illumina), 

paired-end 26x74 bp, one sample per lane. 

4.2.4 Immunohistochemical staining 

Paraffin-embedded tissue sections were deparaffinized and peroxidases were blocked 

for 10 min at room temperature (RT) using 3 % H2O2 (Applichem, Darmstadt, 

Germany). Antigen retrieval was performed in a steamer with sodium-citrate-buffer 

(10 mM sodium citrate, 0.05% Tween 20, pH 6.0) for 15 min. The staining procedure 

for the polyclonal anti-glycodelin antibody (sc-12289, Santa Cruz Biotechnology, 

Heidelberg, Germany) was performed with DAKO EnVision+ System-HRP (AEC) 

for rabbit primary antibodies (Dako, Hamburg, Germany). The tissue slides were 

incubated overnight at 4°C with an anti-glycodelin antibody at a concentration of 

2.5 µg/ml. A linker (rabbit anti-goat IgG, A27001, Thermo Scientific) antibody was 

used for 30 min at room temperature before tissue sections were incubated with 

secondary antibody for another 30 min at room temperature. Visualization of 
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glycodelin was performed with AEC+ Substrate-Chromogen (Dako). For ANXA1 

staining, the staining procedure was performed with SignalStain® DAB Substrate 

Kit (#8059, Cell Signaling) according to manufacturer’s instructions. Cell nuclei 

were stained using Mayer’s Hematoxylin Solution (Sigma-Aldrich, Munich, 

Germany). Staining was observed with an Olympus IX-71 inverted microscope. 

Pictures were taken with an Olympus Color View II digital camera and Olympus 

Cell-F software (cellSense dimension, V1.11, Olympus, Hamburg, Germany). Tiffs 

were assembled into figures using Photoshop CS6 (Adobe, San José, CA, USA). Only 

changes in brightness and contrast were applied. Scoring was performed by 

multiplication of staining intensity (0-3) with the proportion of positive cells (0-4). 

For each patient, five randomly selected pictures were analysed and median was 

calculated. 

4.3 Computational analysis of single cell transcriptomic data 

All computational analysis was performed on an HPC system running CentOS Linux 

v7.6.1810 using R v3.6, python v3.7.6, command line tools and software packages 

with versions indicated in Table 8. All statistical analysis was conducted using R 

with the indicated methods or as described in individual software packages. 

Visualisation was done employing the ggplot2 [382] or ComplexHeatmaps [383] 

packages in R. 
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4.3.1 Sequence alignment 

For all sequence alignments the human GRCh37 or mouse GRCm38 genome 

assembly of the Genome Reference Consortium was used. 

4.3.1.1 zUMIs 

For alignment of scRNA-seq data generated with the C1-, iCell8- or Dolomite system 

the zUMI pipeline v2.9.4 has been employed [384]. Briefly this pipeline filters reads 

by user defined quality settings and spurious barcodes under a set threshold. Here 

phred score [275] of 20 and a minimum number of reads per barcode of 100 was used. 

Then reads are mapped using the STAR aligner v2.7.3a, which is aware of splicing 

sites and can therefore determine intronic and exonic reads [385]. Reads are then 

assigned to genes using Rsubread v2.0.0 featureCounts [386] and count matrices are 

generated using R, considering information from UMIs to correct for amplification 

biases during library construction. 

4.3.1.2 CellRanger 

scRNA-seq data generated with the Chromium system (section 4.2.3.4) were aligned 

using an implementation of the STAR alignment method [385] made available as 

CellRanger v2.1.1. This workflow considers UMIs and therefore corrects for 

amplification biases during library construction. The output is a matrix of cell 

barcodes and counted observations of genes. 

4.3.2 Quality control 

As a measure of data quality, several parameters commonly used in next generation 

sequencing analysis, have been considered. 

First library quality has been determined by fragment size and libraries deviating 

from a theoretical optimal size and distribution were not processed further. cDNA 

was expected to be around 2,000 nt to ensure full length reverse transcription, no 
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RNA degradation and no contamination with genomic DNA for human and mouse 

samples. 

Sequence data was further assessed for Phred base quality score [275], which should 

have a uniform high value above 25 for at least 30 bases and a base content, which 

is expected to be uniform across the length of the read, with equal amounts for T 

and A or C and G bases. For this the implementation of FastQC v0.11.9 was used. 

Sequence data not fulfilling these criteria were not further processed (e.g. 

Supplementary Figure 1 A-D). 

In addition, data with a mapping efficiency of less than 80 % total reads mapped to 

the reference genome, as given by the respective alignment algorithm was discarded. 

All these measures were taken to avoid analysing data were library construction or 

sequencing failed. 

Barcodes belonging to intact and not partial single cells or nuclei or empty reaction 

volumes with ambient RNA where filtered by building the cumulative sum of all 

reads over barcodes, starting from the barcode with the highest number of associated 

reads. Only barcodes up to the first infliction point of the curve have been considered 

valid barcodes (e.g. Supplementary Figure 1 E). 

In single cell or nuclei sequencing there is also a likelihood of doublets or multiplets, 

RNA of more than one cells with the same barcode, which would hinder meaningful 

analysis. To avoid this, the count matrices for each sample after sequence alignment 

was filtered for cells having an extreme number of genes or UMIs detected, which 

indicates RNA from multiple cells. Further, cells with extremely low number of 

detected genes and UMIs have been discarded to avoid analysing cell fragments or 

empty reaction compartments harbouring only ambient RNA. Detailed information 

of threshold applied to each experiment can be found in Table 1 and Table 5. 
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4.3.3 Data processing, clustering and visualisation 

First assessment, clustering and visualisation of individual data has been done using 

functionalities implemented in the Seurat software package v3.1.3 [88]. 

Briefly, to account for differences in total amount of RNA found in individual cells 

read count data was normalised by dividing counts for each cell by the total number 

of counts in this cell, multiplied by 10,000 and natural-log transformed. 

Data was then centred so that each gene has a mean of 0 across the whole data set 

and scaled by the standard deviation of each gene. To reduce outlier effects scaled 

data higher than 10 was set to 10. 

Dimensionality of the data is reduced using PCA, which is used as an input to 

construct a Shared Nearest Neighbour (SNN) Graph, by first determining the k-

nearest neighbours of each cell and then calculating the neighbourhood overlap 

between each cell and a set number of its nearest neighbours. 

Clusters of cells are then determined by an algorithm using the SNN graph and 

louvain clustering [96, 387]. 

The data is then visualised with the Uniform Manifold Approximation and 

Projection for Dimension Reduction algorithm [388]. 

4.3.4 Downsampling of read counts 

Counts from each cell were downsampled to 20,000 reads per cell using the 

SampleUMI function implemented in the Seurat software. Cells that were below this 

threshold have been discarded. 

4.3.5 Correlation of average gene expression in cell types 

Average expression per cell type was calculated on downsampled data and Spearman 

correlation calculated between cell types determined by the same and all used 

scRNA-seq technologies as implemented in the R stats package. 
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4.3.6 Sample integration 

To correct for technical biases between different single cell sequencing library data 

and preserve biological differences data from different samples were integrated as 

implemented in the Seurat analysis R package [88]. 

This approach uses canonical correlation analysis to perform dimension reduction on 

all data sets that will be aligned. To do this, canonical correlation vectors are 

identified that describe a shared gene correlation structure between two data sets. 

In contrast to e.g. multiple regression analysis, correlations of genes inside and 

between data sets can be taken into account. Canonical correlation vectors are 

further L2-normalised, that is the sum of the squares of all elements will be up to 1, 

to mitigate global effects such as sampling differences. In this dimensionally reduced 

space, k-nearest neighbours for all cells inside a data set are calculated for a given k. 

Afterwards, for each cell in one data set the k-nearest neighbours in the other data 

set is calculated. If two cells are both found to be in the set of cells defined as nearest 

neighbours of each other, they are considered to be mutual nearest neighbours and 

considered to serve as anchors between the data sets, since they are likely belonging 

to the same cell type and state.  

The algorithm further applies a two-step method to avoid incorrectly identified 

anchors. First, for every pair of mutual nearest neighbours identified in the 

dimensionally reduced space, k-nearest neighbours of the second cell of the pair are 

identified in the original high-dimensional data that included the first cell. If the 

first cell of the pair does not appear within the first 200 nearest neighbours, the pair 

will be removed from the list of anchors, thereby filtering out false anchor pairs. 

This search is performed using the top 200 genes that have the highest contribution 

to the previously identified canonical correlation vectors. Second, for each cell of an 

anchor pair, k-nearest neighbours in its own and the paired data set are calculated 

with k equal to 30. This results in four matrices that are combined to calculate a 

neighbourhood graph. On this the shared neighbour overlap for each anchor pair is 

calculated. Together with the distance of each cell from the first data set to the 
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anchor, a weight matrix is calculated. Using the identified anchors, a matrix is 

calculated where each column is the difference between the two vectors defined by 

each of the anchor cells. This matrix, together with the weight matrix, is then used 

to calculate a transformation matrix, that is applied to the original data and results 

in an expression matrix of the same dimensions as the original data [88]. 

4.3.7 Cell type inference from reference data 

Cell type prediction from scRNA-seq reference data is implemented in the 

‚TransferData‘ function of the Seurat R package [88]. Briefly, anchor cells in the 

reference data that define a mapping between the query and the reference data are 

determined as described above (compare section 4.3.6). The resulting weight matrix 

is multiplied by a binary anchor identity matrix of cell type labels times anchor cells, 

which results in a prediction score for each query cell and possible cell type label. 

4.3.8 Calculation of CPM values 

Read count data was normalised by dividing counts for each cell by the total number 

of counts in this cell, multiplied by 10,000 followed by natural-log transformation. 

CPM values were then calculated by aggregating reads for each cell type separate 

for each sample and dividing aggregated reads through the sum of all reads in this 

cell type followed by multiplication with 1,000,000. 

4.3.9 Cell type compositional changes 

The statistical analysis of cell type compositional changes has to overcome many 

obstacles inherent to single cell experiments, including low number of replicates and 

sample size as well as high technical variability. It further has to take into account 

proportional changes, so that a reduction in one cell type is not falsely interpreted 

as an increase in other cell types. We therefore employed here a Bayesian model 
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approach developed and published as ‘sccoda’ [286], which is based on a hierarchical 

Dirichlet-Multinomial distribution. 

4.3.10 Differential expression and gene set enrichment analysis 

Differential expression analysis to find which genes in one population of cells is higher 

expressed than in another population of cells, is performed using the Mann-Whitney 

U test as implemented in Seurat’s FindMarker (as test.use = “wilcox”) [97], if not 

stated otherwise. This non-parametric test finds genes for which the probability to 

have a higher expression value in one population of cells (Y) compared to another 

(X) is different than the probability of a higher expression in X compared to Y. 

To decrease the influence of interpatient heterogeneity in the analysis of differences 

between patients with different smoking habit, the before mentioned differential 

expression analysis was performed as follows for two populations of cells (X and Y), 

where cells from one patient could only belong to one population of cells at a time. 

All cells from one patient were compared to all cells from all patients belonging to 

the respective other population of cells. Then differentially expressed genes for each 

patient were sorted by average logarithmic fold change and p-value. Only genes with 

a p-value less than 0.01 have been considered. Of this sorted list, the first 150 genes 

were taken. Afterwards each differentially expressed gene was counted for its 

occurrence in their group of patients belonging to the same population. From this 

list, only genes were considered to be differentially expressed between X and Y, that 

were found in at least 30 % of patients from this group. 

Genes that were found to be differentially expressed were further analysed for their 

enrichment in gene sets from The Molecular Signatures Database (MSigDB) [389], 

specifically C5 (Gene Ontology) v7.2. For this enrichment analysis as implemented 

in clusterProfiler v3.14.0 [390] has been employed. Here a hypergeometric test 

assessed the significance of defined differentially expressed genes being 

overrepresented in given sets of genes compared to random sampling. 
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4.3.11 Copy number variation inference from mRNA expression data 

Cancer genomes are inherently instable [288, 289] and may therefore have a 

divergent copy number for parts of the genome, from the usual two copies in the 

human genome. This is termed copy number variation (CNV). 

To assess possible differences in CNVs a method included in the inferCNV package 

v1.2.0 [391] was used. This method compares RNA expression changes in genes on 

proximal genomic position to a reference. As a reference single cell transcriptome 

data from patient matched normal samples was used to infer these changes in tumour 

samples. In detail, the average expression of genes in a moving window of 100 genes 

from a list, ordered by genomic position was used and compared to the average 

expression of the same genomic location in the reference. Higher average expression 

in the tumour sample was then considered to potentially harbour a gain in genome 

copies in this region, while lower expression potentially harbours a loss of genome 

copies. 

4.3.12 Transcription factor network analysis 

Transcription factors are a major regulator for expression of genes that together 

promote a phenotypic trait in a cell. Therefore, a cell state should be better defined 

by this regulatory network rather than the expression of a single gene. 

We investigated these networks employing the pySCENIC software package 

v0.10.3 [392], that infers gene regulatory networks for a known set of transcription 

factors in single cell transcriptomic data, by a three-step algorithm. 

First, a ranked list of pairwise comparisons between target genes and regulators (i.e. 

transcription factors) is produced. For this, an algorithm using a Random Forest 

Model to predict the strength of putative links between target gene and transcription 

factor as described in Huynh-Thu and implemented in GRNBoost2 [392] was used. 

Sets of genes were derived from this list of genes, that have been assigned a potential 

regulator and a relevance score, by discarding gene – regulator pairs with less than 
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0.001 relevance score and deriving sets that have either a higher than 0.001 or 0.005 

relevance score. From these sets the 50 genes for each transcription factor were taken 

and only the top 5, 10 and 50 transcription factors for each gene kept. For these 

gene sets the spearman correlation between transcription factor and gene are 

calculated and the sets are split in positive and negative correlation. Further only 

gene sets with more than 20 members were further analysed. 

This list is only based on co-expression and might therefore harbour many false 

positive results. To filter these potential false positives each set of genes was therefore 

analysed in a next step for enrichment of transcription factor binding motifs, by 

searching for motifs that are enriched in the transcription start site of the gene and 

for each motif putative target genes in the gene set are predicted. For further 

analysis, only genes that have a positive correlation with the transcription factor 

binding motif are kept. This is implemented in RcisTarget [392] and references based 

on the GRCh37 genome as provided by [393]was used. 

Finally, in a third step each gene set is scored for their importance in each cell using 

the AUCell method described in [392]. This method ranks all genes for one cell and 

all genes in the gene set by expression in this cell. Subsequently the area under the 

curve is calculated for a curve constructed on a cartesian system with x values 

representing the ranked genes from high to low expression and y values being the 

position of the particular gene in the ordered gene set list (e.g. 1 for gene at position 

1, 2 for gene at position 2). Therefore, an enrichment of highly expressed genes in 

the gene set results in a high area under the curve value. 

The final result is now a matrix of cells and gene sets, that are defined by a 

transcription factor (transcription factor modules), with entries being the area under 

the curve scores. For comparison with gene expression in identified cell types, the 

median for AUC scores by cell type was calculated and the most informative modules 

determined by hierarchical clustering and PCA. 
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4.3.13 Receptor – Ligand interactions 

Cell to cell interactions via ligand and receptor proteins mediate diverse biological 

processes and shape a cell’s and therefore tissues phenotype. Based on the RNA 

expression levels for these proteins we inferred likely interactions in the single cell 

data. For this a curated database of ligand-receptor pairs, that also considers the 

subunit composition for the receptor, and statistical framework as implemented in 

CellPhoneDB v 2.1.4 [394] was used. The analysis first calculates the mean 

expression for each gene in the database, pooled by cell cluster annotation and the 

percentage of cells in this cluster expressing the gene. Through iterative random 

shuffling of cell labels a null distribution for each gene pair is then derived (1,000 

iterations), taking into account the expression levels. This is compared to the 

observed mean of ligand and receptor in two clusters of cells and a p-value for their 

expression specifically in this pair of clusters derived from the null distribution. 

Ligand-receptor pairs are then ranked by p-value and significant interactions 

determined. For this analysis integrated expression matrices, as described in section 

4.3.6 were used. 

4.3.14 Trajectory inference  

Inference of a possible developmental trajectory of cells was realised using a 

framework employing principal graph inference, published as STREAM v1.0 [102]. 

Integrated expression matrices (section 4.3.6) were used to first define variable genes 

using non-parametric local regression, which were then used to reduce the 

dimensionality of the data employing modified locally linear embedding [102]. This 

method provides a continuous embedding, by considering local similarity to its 

neighbours. In this space cells are clustered using the affinity propagation 

method [395]. The result is then used to construct a minimum spanning tree to use 

as an initial tree structure for the construction of an elastic principal graph [396]. 
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4.3.15 Non-negative matrix factorisation 

To assess sets of genes expressed in a similar way across genes an implementation of 

non-negative matrix factorisation, NNLM v0.4.3 [100] with initialisation adopted 

from [397]. 

Briefly integrated count data was used for this analysis (section 4.3.6) and all 

negative values set to zero. Genes that were not expressed in the data have been 

discarded for further analysis. The data is then natural log transformed and the 

expression matrix decomposed into two matrices with a chosen number of factors. 

One gene by factor matrix and a second factor by cell matrix. The influence of each 

factor on a given cell is then assessed by dividing each factor value of a cell through 

the sum of factor values in a cell from the second matrix. Accordingly, the influence 

of each gene on a given factor was calculated on the second matrix.  
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6 Appendix 

6.1 Supplementary Figures 

 

Supplementary Figure 1 Quality control for sequencing and alignment. After sequencing, read files 
are assessed for base content per position in (A) read 1, containing the cell barcode and UMI and (B) read 2, 
containing RNA sequence information. The base content should be comparable across the whole read length 
assuming an equal distribution of bases. Reads were also assessed using the phred quality score for identification 
of the base (compare section 4.3.2) for (C) read 1 and (D) read 2. (E) After alignment and generation of gene 
counts per cell, those data that correspond to intact cells are identified by the first infliction point of the ordered 
UMI count distribution (green), while the remainder are discarded as background (grey). Example data of sample 
ENSF_1 is shown. 
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Supplementary Figure 2 Cell filtering based on read and gene count. To avoid analysis of partial cells, 
all cells with less than 200 detected genes are filtered out of the data set. To minimise the amount of multiplets 
in the data set, a maximum cut-off of detected genes (here 6,000) and detected molecules (here 25,000) was 
chosen for each experiment individually (compare section 4.3.2). Depicted are detected genes by number of RNA 
molecules per cell (A) before and (B) after filtering. Example data of sample ENSF_1 is shown. 
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Supplementary Figure 3 Integration of LADC data sets. scRNA-seq count data from healthy tissue 
samples of LADC patients (A) before and (B) after integration using MNN and CCA (section 4.3.6) and 
visualised by UMAP. scRNA-seq count data from tumour samples of LADC patients (C) before and (D) after 
integration using MNN and CCA (section 4.3.6) and visualised by UMAP. (E) Projection of clusters identified 
for one individual patient (YNSF_1) through separate analysis onto the integrated UMAP representation of all 
tumour samples, showing that sample integration does not affect cluster identity. (F) For cells originating from 
tumour tissue samples, cell types were assigned by comparing gene expression signatures to the healthy lung 
reference data. Depicted are confidence scores for the assignment (see section 4.3.7). 
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Supplementary Figure 4 Ligand and receptor expression. Ligand and receptor gene expression of selected 
chemokines across all non-malignant cells. UMAP representation is the same as in Figure 2.7. 

 

Supplementary Figure 5 UMAP by smoking habit. UMAP representation of cells from all smokers and 
never smokers separated by smoking habit. 
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6.2 Supplementary Tables 

Table 1 QC filter parameters for technology evaluation samples 

Pseudonym minimal gene 
count 

maximal 
gene count 

maximal 
percent 
mitochondrial 

maximal 
molecule count 

Default 200 10000 0.1 10000 

iCell8_1 200 10000 0.1 200000 

iCell8_4 200 16000 0.1 1000000 

iCell8_2 200 8000 0.1 60000 

iCell8_6 200 12000 0.1 180000 

iCell8_3 200 10000 0.1 130000 

iCell8_5 200 16000 0.1 1000000 

iCell8_7 200 14000 0.1 300000 

Dolomite_1 200 3000 0.1 7500 

Dolomite_2 200 3000 0.1 5000 

Dolomite_3 400 5000 0.1 20000 

Dolomite_4 200 800 0.1 1400 

C1_1 200 100000 0.1 3000000 

C1_2 200 100000 0.1 3000000 

C1_3 200 100000 0.1 3000000 

Table 2 Overview of experiments for technology evaluation 

Experiment ID scRNA-seq 
technology 

Species Isolation Tissue Cell Number 

C1_1 C1 mouse single cells Forebrain 51 

C1_2 C1 mouse single cells Forebrain 54 

C1_3 C1 mouse single cells Forebrain 42 

Chromium_1 10x mouse single nuclei Testis 965 

Dolomite_1 Dolomite mouse single nuclei Testis 786 

Dolomite_2 Dolomite mouse single nuclei Testis 1351 

Dolomite_3 Dolomite mouse single nuclei Testis 3081 

iCell8_1 iCell8 mouse single cells Forebrain 206 

iCell8_2 iCell8 mouse single cells Forebrain 443 

iCell8_3 iCell8 mouse single cells Forebrain 119 

iCell8_4 iCell8 mouse single cells Testis 80 

iCell8_5 iCell8 mouse single cells Testis 64 

iCell8_6 iCell8 mouse single nuclei Testis 329 

iCell8_7 iCell8 mouse single nuclei Testis 417 
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Table 3 Cohort description of LADC samples 

Cohort Description 

Parameter n (%) 

Median Age 52 (40–88)   

Total 26 100 

Male 3 12 

Female 23 88 

Histology     

Adeno 26 100 

Therapy     

OP 15 58 

OP/RT 1 4 

OP/ChT 9 34 

OP/RT/ChT 1 4 

Smoking status     

Never Smokers 18 69 

Smokers 8 31 

Pathological Stage (7th TNM edition) 

IA 2 8 

IB 9 35 
IIA 4 15 

IIB 2 8 

IIIA 7 27 

IIIB 2 8 

ECOG     

0 26 100 
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Table 4 LADC patient sample information 

Pseudonym Age Sex Packyears Smoking Habit 
ENSF_1 75 F 0 never smoker 

ENSF_2 78 F 0 never smoker 

ENSF_3 79 F 0 never smoker 

ENSF_4 85 F 0 never smoker 

ENSF_5 88 F 0 never smoker 

ENSF_6 76 F 0 never smoker 

ENSF_7 79 F 0 never smoker 

YNSF_1 50 F 0 never smoker 

YNSF_2 55 F 0 never smoker 

YNSF_3 40 F 0 never smoker 

YNSF_4 57 F 0 never smoker 

YNSF_5 45 F 0 never smoker 

YNSF_6 51 F 0 never smoker 

YNSF_7 54 F 0 never smoker 

YNSF_8 56 F 0 never smoker 

YSF_1 52 F 40 smoker 

YSF_2 47 F 45 smoker 

YSF_3 51 F 30 smoker 

YSF_4 45 F 30 smoker 

YSF_5 46 F 35 smoker 

YSF_6 52 F 80 smoker 

YSF_7 53 F 100 smoker 

YSF_8 44 F 40 smoker 

YNSM_1 49 M 0 never smoker 

YNSM_2 45 M 0 never smoker 

YNSM_3 46 M 0 never smoker 
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Table 5 QC filter parameters for LADC samples 

Pseudonym minimal gene count maximal gene 
count 

maximal molecule 
count 

ENSF_1 200 6000 25000 

ENSF_1_N 200 6000 50000 

ENSF_2 200 9000 30000 

ENSF_3 200 10000 50000 

ENSF_4 200 9000 40000 

ENSF_5 200 7000 25000 

ENSF_6 200 6000 20000 

ENSF_6_N 200 7000 30000 

ENSF_7 200 4000 12000 

ENSF_7_N 200 6000 40000 

YNSF_1 200 8000 30000 

YNSF_1_N 200 6000 30000 

YNSF_2 200 9000 40000 

YNSF_3 200 10000 30000 

YNSF_4 200 6000 30000 

YNSF_5 200 8000 20000 

YNSF_5_N 200 6000 30000 

YNSF_6 200 6000 12000 

YNSF_7 200 3000 7000 

YNSF_8 200 7500 15000 

YNSF_8_N 200 8000 40000 

YNSM_1 200 8000 40000 

YNSM_1_N 200 6000 30000 

YNSM_2 200 6000 20000 

YNSM_2_N 200 9000 70000 

YNSM_3 200 9000 50000 

YNSM_3_N 200 5000 15000 

YSF_1 200 9000 90000 

YSF_2 200 7500 30000 

YSF_2_N 200 6500 50000 

YSF_3 200 7500 30000 

YSF_4 200 7000 25000 

YSF_4_N 200 6000 20000 

YSF_5 200 7500 25000 

YSF_6 200 10000 20000 

YSF_7 200 7000 30000 

YSF_8 200 8000 30000 

YSF_8_N 200 4000 10000 
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Table 6 GO signatures for malignant cell clusters. GO annotations as in Figure 2.18 with 
corresponding signature annotation. 
IDs GO_TERMS Signature 

1 ORGANELLE_FISSION Mitotic 

2 MITOTIC_NUCLEAR_DIVISION Mitotic 

3 CHROMOSOMAL_REGION Mitotic 

4 CONDENSED_CHROMOSOME Mitotic 

5 CHROMOSOME_CENTROMERIC_REGION Mitotic 

6 CELL_CYCLE_G2_M_PHASE_TRANSITION Mitotic 

7 REGULATION_OF_CELL_CYCLE_G2_M_PHASE_TRANSITION Mitotic 

8 SMALL_GTPASE_BINDING Mitotic 

9 ANAPHASE_PROMOTING_COMPLEX_DEPENDENT_CATABOLIC_PROCESS Respiration 

10 ATP_SYNTHESIS_COUPLED_ELECTRON_TRANSPORT Respiration 

11 RESPIRATORY_ELECTRON_TRANSPORT_CHAIN Respiration 

12 ATP_METABOLIC_PROCESS Respiration 

13 OXIDATIVE_PHOSPHORYLATION Respiration 

14 RESPIRASOME Respiration 

15 RESPIRATORY_CHAIN_COMPLEX Respiration 

16 PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM Transcription 

17 ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM Transcription 

18 COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE Transcription 

19 CYTOSOLIC_RIBOSOME Transcription 

20 NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_PROCESS_NONSENSE_MEDIATED_DECAY Transcription 

21 CELL_ADHESION_MEDIATED_BY_INTEGRIN Adhesion 

22 RESPONSE_TO_MOLECULE_OF_BACTERIAL_ORIGIN Adhesion 

23 PROTEIN_COMPLEX_INVOLVED_IN_CELL_ADHESION Adhesion 

24 INTEGRIN_BINDING Adhesion 

25 EXOGENOUS_PROTEIN_BINDING Adhesion 

26 ORGANIC_ACID_TRANSPORT Metabolism 

27 UNSATURATED_FATTY_ACID_METABOLIC_PROCESS Metabolism 

28 ICOSANOID_METABOLIC_PROCESS Metabolism 

29 PROSTANOID_METABOLIC_PROCESS Metabolism 

30 MONOCARBOXYLIC_ACID_TRANSPORT Metabolism 

31 NEURON_PROJECTION_ARBORIZATION Morphology 

32 ACTIN_BASED_CELL_PROJECTION Morphology 

33 CELL_LEADING_EDGE Morphology 

34 REGULATION_OF_CELL_MORPHOGENESIS Morphology 

35 SYNAPSE_ORGANIZATION Morphology 

36 ACTIN_BINDING Morphology 

37 PHOSPHOLIPID_BINDING Phospholipid Binding 

38 RESPONSE_TO_IMMOBILIZATION_STRESS Phospholipid Binding 

39 PHOSPHATIDYLINOSITOL_BINDING Phospholipid Binding 

40 MHC_CLASS_II_PROTEIN_COMPLEX Immune Related 

41 LEUKOCYTE_PROLIFERATION Immune Related 

42 REGULATION_OF_LEUKOCYTE_PROLIFERATION Immune Related 

43 T_CELL_PROLIFERATION Immune Related 

44 PHAGOCYTOSIS Immune Related 
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Table 7 GO signatures for trajectory identity. GO annotations depicted in Figure 2.19. 
Branch ID GO term 

(S1,S0) Sister chromatid segregation GO_SISTER_CHROMATID_SEGREGATION 
 

Organelle fission GO_ORGANELLE_FISSION 
 

Mitotic chromatid segregation GO_MITOTIC_CHROMATID_SEGREGATION 
 

Mitotic nuclear division GO_MITOTIC_NUCLEAR_DIVISION 
 

Chromosome segregation GO_CHROMOSOME_SEGREGATION 

(S0,S4) GTPase regulation GO_REGULATION_OF_GTPASE_ACTIVITY 
 

Positive GTPase regulation GO_POSITIVE_REGULATION_OF_GTPASE_ACTIVITY 
 

Nucleoside triphosphate activity GO_NUCLEOSIDE_ TRIPHOSPHATASE_REGULATORY_ACTIVITY 
 

GTPase regulator GO_GTPASE_REGULATOR_ACTIVITY 
 

Epithelial cell proliferation GO_EPITHELIAL_CELL_PROLIFERATION 

(S0,S3) Sarcolemma GO_SARCOLEMMA 
 

Response to oxygen GO_RESPONSE_TO_OXYGEN_LEVELS 
 

Wound healing GO_REGULATION_OF_WOUND_HEALING 
 

Response to wounding GO_REGULATION_OF_RESPONSE_TO_WOUNDING 
 

Protein autophosphorylation GO_NEG_REGULATION_OF_PROTEIN_AUTOPHOSPHORYLATION 

(S0,S2) Multivesicular body GO_MULTIVESICULAR_BODY 
 

Late endosome GO_LATE_ENDOSOME 
 

Chemical homeostasis GO_CHEMICAL_HOMEOSTASIS_WITHIN_A_TISSUE 
 

Autolysosome GO_AUTOLYSOSOME 
 

Apical part of cell GO_APICAL_PART_OF_CELL 

Table 8 Software versions 

Software Version 
CellPhoneDB 2.1.4 

CellRanger 2.1.1 

clusterProfiler 3.14.0 

FastQC 0.11.9 

inferCNV 1.2.0 

NNLM 0.4.3 

pySCENIC 0.10.3 

Python 3.7.6 

R 3.6.0 

Rsubread 2.0.0 

Seurat 3.1.3 

STAR 2.7.3a 

STREAM 1.0.0 

zUMIs 2.9.4 
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Table 9 Reagents and materials 

Name Vendor Catalogue 
Number 

Agilent High Sensitivity D1000 Agilent Technologies 5067-4626 

AMPure beads Beckman Coulter A63880 

Beads, barcoded Chemgenes MACOSKO-

2011-10 

BSA Sigma Aldrich A8806 

C-tubes Milteny Biotech 130-093-237 

C1 Reagent Kit for mRNA Seq Fluidigm 100-6201 

C1 Single-Cell Auto Prep IFC for mRNA Seq (5-
10 μm) 

Fluidigm 100-5759 

Cell Strainer, 20 µm pluriSelect Life Science 43-50020 

Cell Strainer, 70 µm pluriSelect Life Science 43-50070 

Chromium i7 Multiplex Kit 10x Genomics PN-120262 

Chromium Single Cell 3’ Library & Gel Bead Kit v2 10x Genomics PN-120237 

Chromium Single Cell A Chip Kit 10x Genomics PN-120236 

Citric Acid Monohydrate Sigma Aldrich C1909-500G 

Dissociation Kit, mouse tumor Milteny Biotech 130-096-73 

DNA Clean & Concentrator-5 Zymo Research D4013 

dNTPs 10 mM Takara 4025 

Dounce Homogeniser Wheaton T7482-1 

Droplet Oil, EvaGreen Bio-Rad 186-4006 

DTT (1M) AppliChem A3668 

Dyna Beads MyOne silane Thermo Fisher Scientific 37002D 

Earle’s Balanced Salt Solution Thermo Fisher Scientific 10010 

EDTA 0.5 M Thermo Fisher Scientific 15575-20 

Ethanol Thermo Fisher Scientific E/0600DF/C17 

Exonuclease I enzyme and buffer New England Biolab M0293L 

Ficoll PM-400 20% Sigma-Aldrich F5415 

Glucose Sigma-Aldrich G7021-100G 

Hanks Balanced Salt Solution Thermo Fisher Scientific 14175095 

Hoechst 33258 Thermo Fisher Scientific H3569 

iCell8 chip and reagent kit WaferGen 430-000233 

Isopropanol Thermo Fisher Scientific P/7500/PC17 

Kapa HiFi Hotstart Readymix Sigma-Aldrich KK3605 

Magnesium chloride, Rnase free (1 M MgCl2) Thermo Fisher Scientific AM9530 

Maxima H- Rtase and 5x RT Buffer Thermo Fisher Scientific EP0753 

N70X oligo Illumina FC-131-2001 
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Nextera XT DNA Library Preparation Kit Illumina FC-131-1024 

NP-40 Surfact-Amps Detergent Solution Thermo Fisher Scientific 28324 

Nuclease free water Thermo Fisher Scientific AM9937 

Papain Dissociation System Worthington LK003150 

Perfluorooctanol Sigma-Aldrich 370533 

Phosphate Buffered Saline Thermo Fisher Scientific AM9625 

Potassium Chloride, Rnase free (2 M KCl) Thermo Fisher Scientific AM9640G 

ReadyProbes Cell Viability Imaging Kit Thermo Fisher Scientific R37610 

RNase Inhibitor (RNAseIn) 40 U/μL-2,500 units Thermo Fisher Scientific AM2682 

Round Bottom Polystyrene Test Tube 5 mL , with 
Cell Strainer Snap Cap 

Falcon 352235 

RPMI-1640 Gibco 21875034 

Sarkosyl 20 % Sigma-Aldrich L7414 

SDS (20% in H20) Sigma-Aldrich 5030 

SMARTer Ultra Low RNA Kit Takara 634833 

SMARTer® Ultra® Low RNA Kit for the Fluidigm® 
C1™ System 

Clontech 634833 

SPRIselect Beckman Coulter B23317 

SSC, 20x Thermo Fisher Scientific 15557036 

Sucrose Sigma-Aldrich S9378-1KG 

SUPERase•In™ Nase Inhibitor (20 U/μL) 
10,000 units 

Life Technologies AM2696 

Tris buffer, pH7.5; Rnase free (2M) Sigma-Aldrich T2944 

Tris buffer, pH8; Rnase free (1M) Thermo Fisher Scientific AM9856 

Trypan Blue Solution Gibco 15250061 

TWEEN-20 Sigma-Aldrich P7949 

Table 10 Primer sequences 

Name Sequence Vendor 
Primer TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG Exiqon 

Primer SMART PCR AAGCAGTGGTATCAACGCAGAGT Exiqon 

New-P5-SMART PCR 
oligo 

AATGATACGGCGACCACCGAGATCTACACGC 

CTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 

(*locked nucleic acid) 

Exiqon 

Custom Read 1 primer GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC Exiqon 
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6.5 Abbreviations 

AT1 alveolar type 1 cells 
AT2 alveolar type 2 cells 
AvM alveolar macrophages 
Bas basal cells 
BC B cells 
CCA  canonical correlation analysis 
Cil ciliated cells 
CNV copy number variation 
COPD chronical obstructive pulmonary disease 
CPM counts per million 
DC dendritic cells 
DNA deoxyribonucleic acid 
EC endothelial cells 
ECM extracellular matrix 
EMT epithelial to mesenchymal transition 
FACS fluorescence activated cell sorting 
FC fold change 
Fib fibroblasts 
FISH fluorescence in situ hybridisation 
IHC immunohistochemistry 
knn k-nearest neighbours 
LADC lung adenocarcioma 
LE lymphatic endothelial cells  
MC macrophages 
MMLV moloneymurine leukemia virus 
MNN mutual nearest neighbour 
mRNA messenger ribonucleic acid 
MSigDB molecular signature database 
NeuN neuroendocrine cells 
NGS next generation sequencing 
NMF non-negative matrix factorisation 
NSCLC non-small cell lung carcinoma 
PC plasma cells 
PCA principal component analysis 
PCR polymerase chain reaction 
RNA ribonucleic acid 
SARS-CoV severe acute respiratory syndrome corona virus 
SCLC small cell lung carcinoma 
scRNA-seq single cell RNA sequencing 
Sec secretory cells 
SM smooth muscle cells 
SMART Switching Mechanism at the 5′ end of RNA Template 
snRNA-seq single nucleus RNA sequencing 
TC T cells 
TME tumour microenvironment  
UMAP uniform manifold approximation and projection 
UMI unique molecular identifier 
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Units 

°C degree Celsius 
ASR age standardised rate 
cm centimeter 
g gravitational force equivalent 
h hours 
M molar 
mg milligram 
min minutes 
ml milliliter 
mm millimeter 
mM millimolar 
ng nanogram 
nl nanoliter 
nm nanometer 
nt nucleotide 
pg picogram 
rpm revolutions per minute 
RT room temperature 
s seconds 
μg microgram 
μl microliter 
μm micrometer 
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Gene names 

ACE2 angiotensin-converting enzyme 2 
AGR3 anterior gradient 3 
ALK anaplastic lymphoma receptor tyrosine kinase 
ANXA1 annexin A1 
ATF4 activating transcription factor 4 
AURKB aurora kinase B 
BRAF proto-oncogene B-Raf 
C1QB complement component 1, Q subcomponent, B chain 
CD68 cluster of differentiation 68 
CD86 cluster of differentiation 86 
CLDN10 claudin 10 
COX6B1 cytochrome C oxidase subunit 6B1 
EGFR epidermal growth factor receptor 
eIF2a eukaryotic translation initiation factor 2 alpha 
EML4 echinoderm microtubule associated protein like 4 
ERbeta estrogen receptor beta 
FCHSD2 FCH and double SH3 domains 2 
FGF13 fibroblast growth factor 13 
FNDC3B fibronectin type III domain containing 3B 
FOXN3 forkhead box N3  
GAB2 growth factor receptor bound protein 2-associated protein 2 
HLA-DQA2 human leukocyte antigen class II histocompatibility antigen, DQ Alpha 2 
HLA-DRB5 human leukocyte antigen class II histocompatibility antigen, DR-5 beta 
IGF2R insulin like growth factor 2 receptor 
IRAK3 interleukin 1 receptor associated kinase 3 
IRS2 insulin receptor substrate 2 
ITGB8 integrin subunit beta 8 
KRAS kirsten rat sarcoma viral oncogene homolog 
MARCO macrophage receptor with collagenous structure 
MEF2A myocyte enhancer factor 2A 
MSLN mesothelin 
NDUFA4 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 
PAEP progestagen associated endometrial protein 
PCDH7 protocadherin-7 
POU4F1 POU class 4 homeobox 1 
POU5F1 POU class 5 homeobox 1 
PPARG peroxisome proliferator-activated receptor gamma 
RPL38 ribosomal protein L38 
SLC11A1 solute carrier family 11 member 1 
SLC16A14 solute carrier family 16 member 14 
SPCS1 signal peptidase complex subunit 1 
TMPRSS2 transmembrane serine protease 2 
TOP2A DNA topoisomerase II alpha 
WFDC2 whey-acidic protein type disulfide core domain 2 

 


