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Abstract
In this thesis, I study how biological prior knowledge and high throughput biological data can
be systematically integrated to yield mechanistic biological insights. I focused the scope of
my work mainly on signalling pathways and metabolism, especially how these two biological
functions interact and control each other. The overall goal of this work is to better
characterise the molecular driver of complex diseases and chronic health conditions such as
cancer, metabolic syndromes and fibrosis. Indeed, if we can better and more systematically
understand these conditions, we may be able to design better, more targeted treatments and
even prevent them more efficiently.
In the first chapter, I draw a state of the art of multi-omic data generation and how to analyze
them in mechanistic contexts. What we call omic data are datasets where the abundance of
hundred to thousand unique biological molecules are measured in parallel. Then, in the
second chapter, I present a collection of scientific studies where I could learn and apply the
principles detailed in the first chapter. In the third chapter, I present my attempt at developing
a way to systematically analyse and integrate multiple types of omic data together. The
resulting tool, named COSMOS, is presented in the context of a kidney cancer study using
multiple types of omic data generated from a cohort of patients. In the final chapter, I present
a tool called ocEAn, which aims at estimating metabolic enzyme activity changes from
metabolomic data.

Zusammenfassung
In dieser Arbeit untersuche ich, wie biologisches Wissen und biologische
Hochdurchsatzdaten systematisch integriert werden können, um mechanistische
Erkenntnisse zu gewinnen. In meiner Arbeit konzentrierte ich mich hauptsächlich auf
Signalwege und Stoffwechsel, insbesondere wie diese beiden Vorgänge interagieren und
sich gegenseitig kontrollieren. Das übergeordnete Ziel dieser Arbeit ist es, den molekularen
Treiber komplexer Krankheiten und chronischer Gesundheitszustände wie Krebs,
metabolische Syndrome und Fibrose besser zu charakterisieren. Wenn wir diese
Erkrankungen besser und systematischer verstehen, können wir möglicherweise bessere
und gezieltere Behandlungen entwickeln und ihnen sogar effizienter vorbeugen.
Im ersten Kapitel beschreibe ich den Stand der Technik der Multi-Omic-Datengenerierung
und deren Analyse in mechanistischen Zusammenhängen. Was wir Omic-Daten nennen,
sind Datensätze, in denen die Häufigkeit von hunderten bis tausenden einzigartigen
biologischen Molekülen parallel gemessen wird. Im zweiten Kapitel präsentiere ich dann
eine Sammlung wissenschaftlicher Studien, in denen ich die Prinzipien des ersten Kapitels
angewandt habe. Im dritten Kapitel beschreibe ich meinen Versuch, einen Weg zur
systematischen Analyse und Integration mehrerer Arten von Omic-Daten zu entwickeln. Das
resultierende Tool mit dem Namen COSMOS wird im Kontext einer Nierenkrebs Studie
vorgestellt, bei der mehrere Arten von Omic-Daten verwendet werden, die von einer
Patientenkohorte generiert wurden. Im letzten Kapitel präsentiere ich ein Tool namens
ocEAn, das darauf abzielt, Veränderungen der Enzymaktivität aus metabolischen Daten
abzuschätzen.
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Chapter 1 : From pathways to mechanistic
insights; state of the art of multi-omic data analysis
and integration

Chapter 1 is a preliminary version of a review that was published in Current opinion in
Systems Biology : Footprint-based functional analysis of multi-omic data (Dugourd &
Saez-Rodriguez, 2019a). It was written solely by A. Dugourd.

Abstract
Omic technologies allow us to generate extensive data, including transcriptomic, proteomic,

phosphoproteomic and metabolomic. These data can be used to study signal transduction,

gene regulation and metabolism. In this review, we summarize resources and methods to

analysis these types of data. We focus on methods developed to recover functional insights

using footprints. Footprints are signatures defined by the effect of molecules or processes of

interest. They integrate information from multiple measurements whose abundances are

under the influence of a common regulator. For example, transcripts controlled by a

transcription factor or peptides phosphorylated by a kinase. Footprints can also be

generalised across multiple types of omic data. Thus, we also present methods to integrate

multiple types of omic data and features (such as the ones derived from footprints) together.

We highlight some examples of studies that leverage such approaches to discover new

biological mechanisms.
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1. Introduction
In a cell, numerous molecules are constantly interacting and reacting to adapt to the

environment and preserve homeostasis. These molecules can be separated in distinct

classes, mostly DNA, RNA of various natures (messenger RNA, microRNA, etc,…), proteins

and metabolites. They can be subjected to various chemical modifications such as

methylation, phosphorylation, ubiquitinilation or glycosylation. Each of these modifications

can affect the physical properties of these molecules and, consequently, their functions. In

particular, modifications of proteins are often organised in cascades. These cascades are

interlinked, forming a complex network that controls most cellular functions. Over the past

decades, subparts of this network have been characterized and defined according to the

types of reactions and molecules interacting together, notably signaling pathways, regulatory

networks, and metabolic networks. Roughly, signaling and regulatory networks represent

subnetworks composed mainly of kinases, phosphatases and transcription factors (TFs)

connecting proteic sensors (such as membrane receptors) to gene expression. Kinases are

responsible for the phosphorylation of proteins while TFs, which are also interconnected,

regulate the abundance of RNA transcripts. Metabolic networks are mainly composed of

small molecules (metabolites) that are transformed into one another through reactions

catalyzed by metabolic enzymes (Figure 1 A and B). Thus, changes in the abundance of

phosphorylated proteins, transcripts and metabolites hold information about the functional

states of signaling, regulatory and metabolic networks, respectively.
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Figure 1 - From pathway to footprint for functional analysis of omic data.

(A,B) Schematic representation of the interactions between signaling, gene regulation and

metabolism. The main type of omic data to study them are highlighted. (C) A certain pathway (green)

and the potential footprint of perturbing this pathway (blue). The question marks represent the

uncertainty of the functionality of interaction in the pathway in a specific context.

Today, it is possible to measure the abundance of thousands of RNA transcripts,

protein peptides (chemically modified or not) and metabolites. Such datasets, along with the

systematic characterization of other biomolecules (e.g. lipidomics, genomics), are referred to

as omic datasets. All these abundances can be considered as the molecular signature of a

biological sample in a specific condition, for example cells treated with an enzymatic

inhibitor. This concept can also be scaled down at the level of specific enzymes, such as

transcription factors or kinases: the abundances of the target transcripts of a transcription

factor (TF) can be viewed as the footprint of the TF activity. The same concept applies to the

target phospho-peptides of a kinase. A footprint can also be derived for a pathway or

process and inform us on their activity. In a classic ‘mapping’ strategy, the activity of a

pathway is inferred from measurements of its own components and the activity of enzymes

is estimated from measurements of their corresponding transcripts/proteins. In contrast,

footprints based strategies estimate activities from molecular readouts considered to be

downstream of the pathway/enzyme (Figure 1 C).

In this review, we will cover recent methods to analyze and extract relevant functional

and mechanistic information using molecular signatures applied to omic data. We will also

present strategies to integrate together multiple types of omic data. We will focus mainly on

molecular measurements directly related to signaling pathways and metabolic reaction

networks that can be obtained from transcriptomic, (phospho)proteomic and metabolomic

data. We leave out of the scope of the review other omic data, in particular (epi)genomic.

Accordingly, we will describe features derived from this data, in particular using footprints.

First, we present different types of online knowledge databases that can be used to extract

functional insights from omic datasets. Then we summarize mapping and footprint methods,

as well as network-based approaches. Finally, we will discuss how these methods can be

used to integrate together different types of omic datasets.
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2. Prior knowledge resources

2.1 Ontologies and protein-protein interaction databases
A powerful strategy for the analysis of any omic dataset is to integrate it with the current

knowledge of the underlying biology. This knowledge is available in multiple

resources(Miryala et al, 2018), see Table 1. For example, Gene Ontology(Ashburner et al,

2000) (GO) is arguably the most used resource for gene annotation. These annotations are

very useful to quickly get an overview of molecular functions, cellular compartments and

biological processes associated with specific genes. Many other type of annotations, such as

signaling pathways, cancer hallmarks, chemical and genetic perturbation signatures, are

available in databases such as MSigDB(Liberzon et al, 2011). Large resources for

protein-protein interactions (PPI) are also available (Miryala et al, 2018). For example,

STRINGdb(Szklarczyk et al, 2015) pulls together many different sources of PPI, from

experimentally validated interactions to automatic literature search, while Omnipath(Türei et

al, 2016) focuses on databases of curated interactions.

Table 1 : Selected Prior knowledge resources discussed in this review.

Database Content Link

Brenda Metabolic enzyme/substrate interactions,
reaction networks and enzyme structures.

https://www.brenda-enzymes.or
g/

CophosK Kinase/substrate interaction inference. http://compbio.case.edu/omics/
software/cophosk/

Gene Ontology Molecular functions, biological processes
and cellular components

http://geneontology.org/

KEA2 Kinase/substrate interactions from multiple
resources.

http://www.maayanlab.net/KEA
2/index.html

KEGG Metabolic enzyme/substrate interactions
and reaction networks.

https://www.genome.jp/kegg/

Kinomexplorer Kinase/substrate interaction inference. http://kinomexplorer.info/

MSigDB Gene sets of hallmarks, positions,
pathways and perturbation signatures,
motifs, gene ontology, oncogenic and
immunologic.

http://software.broadinstitute.or
g/gsea/msigdb
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Omnipath Protein-protein interactions pulled from
various resources (Mainly curated).
Kinase/substrate interactions. Transcription
factor/target interactions (DoRothEA).

http://omnipathdb.org/

Pathway commons Signaling and metabolic pathways from
various databases.

http://www.pathwaycommons.o
rg/

PTMSigDB Post-translational modification signatures. https://github.com/broadinstitut
e/ssGSEA2.0

Reactome Metabolic enzyme/substrate interactions
and reaction networks.

https://reactome.org/

STITCHdb Chemical/proteins interactions. http://stitch.embl.de/

STRIBGdb Protein-protein interactions pulled from
various resources (curated and inferred).

https://string-db.org/

Transfac Transcription factor/target interactions.
(Commercial)

http://gene-regulation.com/pub/
databases.html

TRRUST Transcription factor/target interactions. https://www.grnpedia.org/trrust/

2.2 Enzyme/substrate databases

Databases that capture relationships between enzymes and their substrates are useful to

extract relevant information about enzymes from transcriptomic and phosphoproteomic data.

These relationships are either predicted with computational methods or experimentally

validated.

Transcription factor (TF) targets are available in databases like TRANSFAC(Matys et al,

2006) or TRRUST(Han et al, 2018). TRRUST uses consensus sequence pattern search to

infer potential TF targets, and some of these interactions may be experimentally validated.

Hence, the level of confidence in a TF-target interaction can vary. DoRothEA(Garcia-Alonso

et al, 2018a), which is also embedded in Omnipath(Türei et al, 2016), integrates multiple

transcription factor target resources (including TRRUST). DoRothEA annotates TF-target

interactions with a confidence index based on the source of the interaction (pattern search,

experimental validation, etc...). Higher confidence interactions such as experimentally
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validated ones seems to yield better estimations of transcription factor activity

(Garcia-Alonso et al, 2018a).

Similar databases exist for kinases. PhosphositePlus(Hornbeck et al, 2012) contains curated

information about phosphosites such as their function and kinase/substrate interactions.

PTMSigDB(Krug et al, 2018), a database of post translational modification signatures

combines consensual perturbation footprint across thousands of phosphoproteomic

datasets, curated kinase targets and pathways. KinomeExplorer(Horn et al, 2014) infers

substrate of kinases with amino-acid pattern search and known PPIs. CophosK(Ayati et al,

2018) complements experimentally validated databases with correlated phosphosite based

on phosphoproteomic data, thus creating context specific kinase/substrate networks.

KEA2(Lachmann & Ma’ayan, 2009) and Omnipath(Türei et al, 2016) combine together

multiple databases of kinase/substrate interactions.

Finally ,information on metabolic enzymes and their targeted metabolites exists in resources

such as KEGG(Kanehisa & Goto, 2000), Brenda(Jeske et al, 2019), Reactome(Fabregat et

al, 2018) and REcon3D(Brunk et al, 2018).

2.3 Multi-level interaction databases

Some multi-level interaction databases (spanning across multiple different biological

processes) already exist. STITCH(Szklarczyk et al, 2016), a complement of STRING,

combines interactions between chemicals and proteins with PPIs. Omnipath combines

TF/targets, kinase/substrate, PPIs and drugs. Pathway Commons combines signaling and

metabolic pathways from various databases(Cerami et al, 2011). In the future, it is likely that

more databases that combine together multiple types of molecular interactions will appear.

As more multi-omic datasets are generated, the importance of such combinations of

resources will increase.

3. Gene set and pathway enrichment analysis
Gene sets are groups of genes that share a common characteristic (for example, genes that

participate in the same biological process). These are available in annotation resources

described in 2. Prior knowledge resources. Gene sets can be analysed using multiple

methods that can be largely classified as either over-representation or enrichment analysis.

Over-representation analysis (ORA) usually tries to answer the following question: when
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comparing genes differentially expressed between two conditions, are there sets of genes

that contain significantly more differentially expressed genes than expected? Statistical

enrichment analysis (EA; often referred to as GSEA-like approaches), tries to answer a

slightly different question: when comparing genes differentially expressed between two

conditions, are there some sets in which the overall difference of expression is more extreme

than expected? EA approaches do so by summarising measurement-level statistics (e.g.

fold-changes, t-values, p-values) belonging to the same group/set into a single score and

estimate if this summarised score is significantly more extreme than expected (Figure 2 A,

see 4. Footprint analysis for a concrete example and (Ackermann & Strimmer, 2009)). While

they answer slightly different questions, EA has the advantage that it doesn’t require to

decide a-priori which genes are significantly changed or not. DAVID(Huang et al, 2008) is

widely used to run gene set analysis using ORA with GO. Gene Set Enrichment Analysis

(GSEA)(Subramanian et al, 2005) and Parametric Analysis of Gene Set Enrichment

(PAGE)(Kim & Volsky, 2005) are examples of statistical enrichment analysis tools.

EnrichR(Kuleshov et al, 2016) is a popular platform that provides an intuitive user interface

to perform gene set analysis with ORA or EA methods. These tools can also be used with

pathway ontologies such as the one present in MSigDB(Liberzon et al, 2011) in order to

perform pathway enrichment analysis (Figure 2 B). Recent developments in EA take

advantage of the underlying topology of pathway. This is done either in a data-driven manner

based on correlation between measurements of the same set (Alhamdoosh et al, 2017) or

using prior knowledge of interactions between members of a pathway (Amadoz et al, 2018).
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Figure 2 - Comparison between pathway and kinase enrichment analysis

(A) Simplified representation of the fundamental idea of statistical enrichment analysis. Pathways,

gene annotation and enzyme targets are sets of molecular features. The goal of an enrichment

analysis is to characterise the significance of an overall change of each set compared to the rest of all

measured molecular features in a specific condition. (B) In a classic pathway enrichment analysis, the

features used to compute the enrichment scores are the members of the pathway itself. In contrast, a

kinase enrichment analysis computes the enrichment score with targets of the kinase, but not the

kinase itself. The same principle applies for transcription factor and pathway footprint enrichment

analysis.

Originally, gene set/pathway enrichment analysis was mainly used to assess whether a

specific gene annotation is significantly enriched with extremely deregulated genes.

However, this method is very flexible and can be adapted for many different uses. For

example, associations between drugs and their expression signature (such as those found in

LINCS L1000(Subramanian et al, 2017) and DSigDB(Yoo et al, 2015)) can be used to

identify and repurpose drugs with transcriptome and/or proteomic data.

4. Footprint analysis
EA approaches can also be used for footprint analysis, such as transcription factor and

kinase enrichment analysis. Even though the algorithm is the same as for pathway

enrichment analysis, the prior knowledge sources are sets of enzyme-targets, fundamentally

changing the interpretation and usefulness of enrichment scores. This is possible because,

in the case of EA approaches, the enrichment score of a given set directly summarises the

changes of the members of the set. Thus, an enrichment score obtained from a set of

functional targets of an enzyme can be interpreted directly as a proxy of the activity of this

enzyme (Figure 2 B). An example of the procedure to estimate the activity of a kinase with

statistical enrichment is shown in Figure 3.
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Figure 3 - Example of kinase activity estimation with statistical enrichment analysis

Consider an experiment where the changes in phosphosite abundance were measured between two

specific conditions. Given a kinase K that can phosphorylate six phosphosites (a, b, c, d, e, f), one

could assume that the changes in abundance of the six phosphosites mirror changes in the activity of

kinase K. To estimate this change of activity, the statistics (t-values in this example) associated with

the change of abundance of the six targets of kinase K are summarised (using e.g. mean or variance).

This summary statistic is called the enrichment score. Then, we need to estimate whether this

enrichment score is significantly different from what would be expected from any given set of six

phosphosites. To this end, six phosphosites are sampled randomly n times from all the phosphosites

available in this study to generate a null distribution of enrichment scores. The enrichment score of

kinase K is then normalised with this distribution. Thus, the resulting normalised enrichment score

represents how extreme the change in the activity of kinase K is compared to possible kinases

randomly associated to phosphosites.

4.1 Transcription factor activity

VIPER is an enrichment analysis method building up on Parametric Analysis of Gene Set

Enrichment (PAGE). VIPER can estimate the activity of proteins, typically transcription

factors, using the abundance changes of their targets as a proxy of their activity(Alvarez et

al, 2016). Originally, VIPER uses data-driven inferred TF-targets interactions, but any type of

set collection can be used, and it has been applied to the DoRothEA TF-targets interactions

mentioned above(Garcia-Alonso et al, 2018b).
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Osmanbeyoglu et al.(Osmanbeyoglu et al, 2017) developed an approach based on bilinear

regression to estimate the activity of transcription factors with transcriptomic and

phosphoproteomic. This approach directly accounts for phosphorylation events measured

upstream of transcription factors when estimating their activity change.

4.2 Kinase activity

Analogously to TFs, the activity of kinases can be estimated from the abundance changes of

their substrates from phospho-proteomic data. As for TFs, different statistical models can be

used, for example KSEA (Wiredja et al, 2017; Casado et al, 2013) or KinasePA (Yang et al,

2016), an approach specifically tailored to handle datasets with more than two conditions. In

(Hernandez-Armenta et al, 2017), kinase activity change estimations obtained from various

statistical models were compared with kinases knock-out and ligand perturbation datasets. It

was shown in this context that simple statistics of the footprint can displayed slightly better

agreement with experimental data than more complex statistics such as GSEA or

multivariate linear regression models. Yet, the quality of the target set collection seemed to

be the main determinant of performance.

4.3 Pathway activity
Tools presented in 3. Gene set and pathway enrichment analysis can yield insight about the

activity of pathways using gene expression data (Lim et al, 2018). However, these

approaches remain limited by the fact that the expression of a gene only partially correlates

with the activity of the corresponding protein in a pathway (Krawczenko et al, 2017). This

limits the amount of information that can be retrieved about the functional state of a pathway

from expression measurements related to the members of the pathway itself. An alternative

approach is to estimate the activity of the pathway by looking at the genes that are known to

change when the pathway is activated or inhibited, akin the footprint methods for kinases

and TFs. PROGENy(Schubert et al, 2018) (an extension of SPEED(Parikh et al, 2010))

learns transcriptomic footprints of a specific pathway from multiple experiments where the

pathway is perturbed. Such footprints represent indirect targets downstream of the pathway .

They can then be used with the same algorithms presented in 4.1 Transcription factor

activity and 4.2 Kinase activity. These footprint genesets have been shown to be more

informative than the mapping/ontology genesets (Cantini et al, 2018)(Schubert et al, 2018).
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5. Multi-scale networks

5.1 Correlation-based methods for multi-omic integration
Joint analysis of omic datasets allow us to study the interactions between biological

processes. The arguably simplest and most intuitive approach is to use correlation-based

methods: correlation between different omic measurements across samples suggests that

the processes reflected in one omic regulate the processes reflected by the other, or that

there is co-regulation by a third (often unknown) process. This makes it possible to

reconstruct networks of interactions based on correlations between multiple measurements

and features. For example, correlations between metabolite and metabolic enzyme transcript

abundance was estimated in (Auslander et al, 2016). This enabled to find mRNA predictors

of metabolic abundances. The predicted abundances of these metabolites were, in turn,

good predictors of cancer patient survival. A combination of Principal Component Analysis

and partial correlation was also used to systematically find pairs of metabolites that are

coregulated by either transcriptional or post-transcriptional mechanisms (Schwahn &

Nikoloski, 2018). MOFA is a method that generalises Principal Component Analysis to

handle multiple omic data(Argelaguet et al, 2018). The method was originally applied on a

dataset including somatic mutations, RNA expression and DNA methylation, but is in

principle applicable to other type of omic datasets such as proteomic, phosphoproteomic and

metabolomic and their corresponding footprints (e.g. kinase and transcription factor

activities).

Indeed, correlation based approaches can also be used downstream of footprint analysis to

connect activity scores with other measurements. For example, kinase activities estimated

from phosphoproteomics were correlated with metabolites to find kinases that regulate the

activity of metabolic enzymes through post translational modifications (Gonçalves et al,

2017).

5.2 Network contextualisation

Most network resources (such as the ones presented in 2. Prior knowledge resources) are

generic. They recapitulate all known interactions between omic data in different organisms.

However, not all proteins are expressed in all types of cell. Different mutational backgrounds,

specially in cancer, can also alter the properties of proteins, such as enzymatic activity and

binding ability. Thus, various tools exist to contextualize networks according to specific
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conditions (Chen et al, 2014)(Tényi et al, 2016). These methods combine protein

interactions and omic datasets to find significantly deregulated subsets of a larger interaction

network. They usually rely on a static protein-protein interaction network and graph theory.

Alternative approaches find the most coherent subnetwork connecting perturbation targets

(i.e. known proteins that are altered in some way) with deregulated transcripts (Melas et al,

2015; Bradley & Barrett, 2017). To do so, protein networks are abstracted as causal models,

where nodes (proteins) and edges (interactions) can be active or not. Then, the signed

subnetworks that lead to the best fit between its output and experimental measurements are

identified. A similar approach was also used in the context of phosphoproteomic data to

reconstruct signaling pathways from a generic kinase/substrate network (Terfve et al, 2015;

Köksal et al, 2018). The pathways reconstructed in this way often share similarities with

canonical pathways. However, since they use generic prior knowledge networks, they can

include nodes that are usually absent from canonical pathways.

In the future, it is likely that such approaches will be generalised to directly integrate multiple

type of omic measurements at the same time, combining both measurements and/or output

of footprint analysis. In fact, there are already a few examples of recent methods to

contextualise networks with multiple type of omic data. The prize-collecting Steiner forest

algorithm has been used to find optimal subnetworks in a prior combination of PPI and

reaction network based on metabolic and protein abundance measurements (Pirhaji et al,

2016). The TieDIE (Drake et al, 2016) algorithm can contextualise signaling pathways with

specific types of cancer based on transcriptomic and phosphoproteomic data. A pipeline

developed by Huna et al. (Huan et al, 2018) first extracts relevant metabolic pathways based

on metabolomic data and then overlays proteomic and transcriptomic data on these

subnetworks. Finally, the HotNet (Reyna et al, 2018) algorithm generalises approaches

based on graph theory (Chen et al, 2014) to find altered subnetwork across multiple

biological scales and integrate different types of omic data together.

6. Multi-omic network to find potential actionable treatment
targets
To conclude, we believe that integrating multiple types of omic data together using biological

knowledge and appropriate computational models will allow us to better understand cellular

mechanisms in many contexts (Figure 4). Novel types of regulatory mechanisms in E. coli

have been discovered by integrating genomic, transcriptomic, ribosomal profiling, proteomic

and metabolomic data (Ebrahim et al, 2016). Global network reprogramming events occuring
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in diabetes have been studied by simultaneously looking at transcriptomic, proteomic,

phosphoproteomic and metabolomic changes over a time course (Kawata et al, 2018).

Post-translation regulatory mechanisms in Fumarate hydratase deficient cancer cells were

decoded by integrating proteomic, phosphoproteomic and metabolomic data together

(Gonçalves et al, 2018). These three studies illustrate how generating multiple parallel omic

datasets targeted toward signaling pathway and metabolism can yield very valuable insight

to understand the molecular features of diseases. In the future, it is very likely that more

multi-omic datasets will be generated to reconstruct a global regulatory picture of cellular

functions. The methods discussed in 4. Footprint analysis and 5. Footprint based multi-omic

network can be useful for the analysis of such multi-omic datasets. They can generate

insights into cellular mechanisms spanning across signaling, regulatory and metabolic

networks. Indeed, these methods mainly rely on principles that are conserved across

signaling and metabolism, such as enzyme/substrate relationships, and are specifically

designed to provide functional insights.

Figure 4 - Summarised representation of the multi-omic analysis workflow

On the left, statistical enrichment analysis is used to estimate activity of kinases, transcription factors

and pathways. Then, multiple types of omic data can be connected together with these activities by

correlation/regression methods. They can also be combined with prior knowledge networks through

network contextualisation methods (optimisation, graph theory and mapping). Finally, the output of

network contextualisation and correlation-based methods can be used, independently or combined, to

generate multi-omic context specific networks.
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Chapter 2 : Omic data exploratory and functional

analysis in various contexts

During the course of my PhD, I developed omic data analysis skills (such as the ones

presented in Chapter 1) that allowed me to be involved in a variety of collaboration with

experimental laboratories that generated such datasets. While such collaborations were

subject to a severe attrition from initial data analysis to actual publication, a handful of

projects actually yielded significant publication. In this chapter, I present highlights from

these projects and give some details about my involvement and contribution to each of them.

1. Kinetic modelling of quantitative proteome data predicts

metabolic reprogramming of liver cancer(Berndt et al, 2020)

In this paper, I analysed a proteomic dataset generated from biopsies of liver tumor and

healthy liver tissues. I first applied a naive exploratory analysis on all samples to get a feel of

what the dataset looked like. This comprised hierarchical clustering of the proteomic

abundance profiles and also of their corresponding cross-correlation matrix, and principal

component analysis. Thus, I made sure that the proteomic dataset could clearly discriminate

between the healthy and tumor samples. Then I performed a differential analysis using

LIMMA(Ritchie et al, 2015), an R package that boosts the hypothesis testing statistical

power by leveraging information shared across all the tested features. Finally, I performed a

pathway enrichment analysis using the Piano R package. Piano estimates enrichment

scores by integrating the scores of multiple enrichment analysis algorithms together (such

as GSEA or PAGE). It also allows recovery of pathways that are significantly enriched with

subsets of genes that are regulated in opposing directions. This supported the hypothesis

that glycolysis was strongly deregulated in liver tumors. Overall, the proteomic data analysis

results were coherent with the hypothesis generated by the kinetic modelling of tumor

metabolism and helped to support the model’s hypotheses.
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2. NADH Shuttling Couples Cytosolic Reductive Carboxylation

of Glutamine with Glycolysis in Cells with Mitochondrial

Dysfunction(Gaude et al, 2018)

In this paper, we dissected the molecular consequences of mitochondrial dysfunction in

tumor cell lines. Thus, I analysed a proteomic dataset generated from a new cell line model

of mitochondrial dysfunctions. This cell line effectively allows the experimentalist to culture

them with controlled levels of mitochondrial dysfunction. I applied the same analysis pipeline

as the ones described in the previous part (Kinetic modelling...). This time, the analysis

notably highlighted that cells were displaying levels of cytoskeletal and cell mobility

deregulation that were proportional to the level of mitochondrial dysfunction.

3. Gli1+ Mesenchymal Stromal Cells Are a Key Driver of Bone

Marrow Fibrosis and an Important Cellular Therapeutic

Target(Schneider et al, 2017)

In this paper, we studied a subpopulation of stromal cells in bone marrow that is suspected

to play a critical role in bone marrow fibrosis progression (Gli1+ stromal cells, or fibrosis

driving stromal cells). I analysed a transcriptomic dataset generated from fibrosis driving

stromal cells. The stromal cells were extracted from inducible bone marrow fibrosis mouse

models, in healthy and bone marrow fibrosis conditions. I applied the same analysis pipeline

as in the first study (Kinetic modelling...). The pathway enrichment analysis was able to

highlight the strong deregulation of inflammation associated metabolic pathways such as

leukotriene and prostaglandin pathways. Interestingly, both pathways use the same

precursor, the arachidonic acid. This finding was particularly interesting as it was able to

connect metabolic deregulation with a tissue-level phenotype (inflammation). The pathway

enrichment analysis also allowed the analysis on the CXCL4 gene. This gene was

particularly deregulated in bone marrow fibrosis and seemed to be a major driver of the

inflammation and fibrosis progression. I also estimated the activity changes of pathways and

transcription factors in bone marrow fibrosis using Progeny and DOROTHEA. While the

pathway and TF activities were not directly reported in this paper, they helped shape up the

follow up analysis that I present later in more detail (Increased CXCL4 expression...).
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4. Increased CXCL4 expression in hematopoietic cells links

inflammation and progression of bone marrow fibrosis in

myeloproliferative neoplasms(Gleitz et al, 2020)

In this paper, we followed up on our previous work with fibrosis driving stromal cells (Gli1+

Mesenchymal Stromal Cells...) with a focus on the role of CXCL4. A cell co-culture model

was established with megakariocytes and stromal cells extracted from fibrotic bone marrow.

Transcriptomic datasets were generated from these cells at early and late time points of

fibrosis progression. I applied the same pipeline of differential analysis and pathway

enrichment analysis as presented previously (Kinetic modelling...). This showed that fibrosis

driving stromal cells displayed dramatically different pathway activity profiles in early and

late time points of fibrosis progression (Figure 1). Furthermore, this highlighted the fact that

CXCL4 was actually over-expressed in megakariocytes but not in fibrosis driving stromal

cells at an early fibrosis progression time point. CXCL4 seemed to be over-expressed in

fibrosis driving stromal cells only at a late progression time point. This further supported the

hypothesis that CXCL4 was actually not initially produced in fibrosis driving stromal cells, but

rather they were aberrantly expressed in megakaryocytes at the start of the fibrotic

transformation. CXCL4 seems to serve as a mediator for megakaryocytes to recruit and

reprogram fibrosis driving stromal cells.
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Figure 1 - Significance of progeny pathway activity changes in early and late fibrotic stromal

cells and early fibrotic hematopoietic stem cells.

Then, a CXCL4 megakariocyte knockout experiment was designed to validate this

hypothesis. Knocking out CXCL4 in megakaryocytes indeed partially recovered the fibrotic

phenotype. I analysed a transcriptomic dataset generated from the co-culture CXCL4 KO

model to understand better the molecular role of CXCL4 in the fibrosis progression. I

compared the effect of fibrosis induction in megakaryocytes and fibrosis driving stromal cells

both in WT and KO conditions. I used progeny and DOROTHEA to characterise pathway

and TF activities in these different conditions. This highlighted that the JAK-STAT pathway

activity was strongly down-regulated in stromal cells when fibrosis was induced in the

CXCL4 knockout condition. This stands opposed to its up-regulation in stromal cells when

fibrosis is induced in the WT condition. Overall, the CXCL4 KO markedly reduced the activity

of pro-inflammatory pathways (Trail, NFkB and TNFalpha) in stromal cells when fibrosis was

induced. As a next step, we hope to use the co-culture model to study more deeply the cell

to cell communication by connecting TF and pathway deregulations across different cell

types (Figure 2).
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Figure 2 - Schematic representation of the first steps to study cell/cell communications

between megakaryocytes and stromal cells.

We connect progeny and TF activity scores with simple linear regression. The linear models predict

TF activities from pathway activities in the context of intracellular connections. The model direction is

the opposite in the context of cell to cell communications, with pathway activities from one cell

population being predicted from TF activities from another cell population.

5. Proteomes in 3D: in situ protein structural states as a

readout for proteome functional alterations (Cappelletti et al,

2021)

In this paper, a new mass-spectrometry based method is presented. This method allows to

measure the abundance changes of specific conformations of proteins at a large scale,

allowing us to look at proteomic data from a completely new angle. A dataset of proteomic

conformation changes was generated from yeast submitted to osmotic stress. In parallel, the

experimentalist also generated a phosphoproteomic dataset from the same yeast culture. I

estimated kinase/phosphatase activity changes from the phosphoproteomic dataset and I
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systematically highlighted protein conformational changes that could be explained by

changes in the activity of upstream kinases and phosphatases. I notably highlighted how

SNF1, STE20, PBS2 and HOG1, canonical responder of osmotic stress, were displaying

cascading changes of protein conformation and kinase activities (Figure 3).

Figure 3 - Network representation of kinase/phosphatase activity changes with their target

phosphorylation and conformational changes.

Square/diamond represent kinase/phosphatases. Small octogones represent phosphorylation sites.

Grey circles are proteins that display at least one peptide with significant conformational change.

Green/orange represent up/down regulation of kinase and phosphatase activities. Red/Blue represent

30



up/down-regulation of phosphorylation site abundance.

6. SREBP1-induced fatty acid synthesis depletes macrophages

antioxidant defences to promote their alternative activation

(Bidault et al. 2021)

In this paper, molecular determinants of macrophage activation are studied. It especially

highlighted the link between metabolic reprogramming of fatty acid to support generation of

Radical Oxidative Species and subsequent activation of macrophages. I notably analysed

transcriptomic data from SCAP knockout macrophages exposed to IL4 (IL4 is a known

activator of macrophages). This notably showed that oxidative stress response pathways

were significantly down-regulated when SCAP was knocked out compared to wild-type

macrophages. Since SCAP is a notable activator of SREBP1, which supported the

hypothesis that SREBP1 was a critical intermediate of macrophage metabolic

reprogramming to support their IL4 dependent activation.

7. The Global Phosphorylation Landscape of SARS-CoV-2

Infection (Bouhaddou et al, 2020)

In this paper, a functional profile of Sars-Cov-2 infection is built from a large

phosphoproteomic dataset generated from airway derived cells infected by Sars-cov-2. This

analysis helped to understand the signaling pathway reprogramming following infection by

Sars-Cov-2 and to propose and validate in-vitro potential new therapeutic targets to block

virus proliferation. I set up the part of the analysis pipeline that served as a template to

analyse transcriptomic data generated from the same conditions. The analysis pipeline

covered differential analysis, TF and pathway activity estimation, and subsequent signaling

pathway contextualisation with CARNIVAL. The results of the TF enrichment analysis were

put in perspective of kinase activity estimations and showed that the downstream

transcription factors of the deregulated p38/MAPK pathway were coherently among the top

deregulated TFs in airway derived cell lines infected by Sars-Cov-2.
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Chapter 3 : Causal integration of multi-omics data

with prior knowledge to generate mechanistic

hypotheses

Chapter 3 is a preliminary version of a manuscript that was later published in bioRxiv and
Molecular Systems Biology : Causal integration of multi-omics data with prior knowledge to
generate mechanistic hypotheses (Dugourd et al, 2021). This work was also featured as the
cover of Molecular Systems Biology (Volume 17; Issue 1).  The text and figures used in this
chapter were written solely by A. Dugourd.

Abstract

Multi-omics datasets can provide molecular insights beyond the sum of individual omics.

Diverse tools have been recently developed to integrate such datasets, but there are limited

strategies to systematically extract mechanistic hypotheses from them. Here, we present

COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates

phosphoproteomics, transcriptomics, and metabolics datasets. COSMOS combines

extensive prior knowledge of signaling, metabolic, and gene regulatory networks with

computational methods to estimate activities of transcription factors and kinases as well as

network-level causal reasoning. COSMOS provides mechanistic hypotheses for

experimental observations across multi-omics datasets. We applied COSMOS to a dataset

comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy and

cancerous tissue from nine renal cell carcinoma patients. We used COSMOS to generate

novel hypotheses such as the impact of Androgen Receptor on nucleoside metabolism and

the influence of the JAK-STAT pathway on propionyl coenzyme A production. We expect that

our freely available method will be broadly useful to extract mechanistic insights from

multi-omics studies.
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1. Introduction
“Omics” technologies measure at the same time thousands of biological molecules in

biological samples, from DNA, RNA and proteins to metabolites. Omics datasets are an

essential component of systems biology, and are made possible by the popularization of

analytical methods such as Next Generation Sequencing or Mass-Spectrometry. Omics data

have enabled the unbiased characterization of the molecular features of multiple human

diseases, particularly in cancer(Iorio et al, 2016; Jelinek & Wu, 2012; Subramanian et al,

2017). It is becoming increasingly common to characterize multiple omics layers in parallel,

with so-called “trans-omics analysis”, to gain biological insights spanning multiple types of

cellular processes(Sciacovelli et al, 2016; Kawata et al, 2018; Vitrinel et al, 2019).

Consequently, many tools are developed to analyze such data(Argelaguet et al, 2018;

Sharifi-Noghabi et al, 2019; Tenenhaus et al, 2014; Singh et al, 2019; Liu et al, 2019b),

mainly by adapting and combining existing “single omics” methodologies to multiple parallel

datasets. These methods identify groups of measurements and derive integrated statistics to

describe them, effectively reducing the dimensionality of the datasets. These methods are

useful to provide a global view on the data, but additional processing is required to extract

mechanistic  insights from them.

To extract mechanistic insights from datasets, some methods (such as pathway enrichment

analysis) use prior knowledge about the players of the process being investigated. For

instance, differential changes in the expression of the genes that constitute a pathway gene

expression are used to infer the activity of that pathway. Methods that a priori define groups

of measurements based on known regulated targets (that we call footprints(Dugourd &

Saez-Rodriguez, 2019b)) of transcription factors (TFs)(Alvarez et al, 2016; Garcia-Alonso et

al, 2019), kinases/phosphatases(Wiredja et al, 2017) and pathway perturbations(Schubert et

al, 2018), provide integrated statistics that can be interpreted as a proxy of the activity of a

molecule or process. These methods seem to estimate more accurately the status of

processes than classic pathway methods (Cantini et al, 2018; Dugourd & Saez-Rodriguez,

2019b; Schubert et al, 2018). Since each of these types of footprint methods work with a

certain type of omics data, finding links between them could help to interpret them

collectively in a mechanistic manner. For example, one can use a network diffusion

algorithm, such as TieDIE(Paull et al, 2013), to connect different omics footprints

together(Drake et al, 2016). This approach provides valuable insights, but diffusion (or

random walk) based algorithms do not typically take into account causal information (such
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as activation/inhibition) that is available and are important to extract mechanistic information.

TieDIE partially addressed this problem by focusing the diffusion process on causally

coherent subparts of a network of interest, but it is thus limited to local causality.

Recently, we proposed the CARNIVAL tool(Liu et al, 2019a) to systematically generate

mechanistic hypotheses connecting TFs through global causal reasoning supported by

Integer Linear Programming. CARNIVAL connects activity perturbed nodes such as drug

targets with deregulated TFs activities by contextualizing a signed and directed Prior

Knowledge Network (PKN). We had hypothesized how such a method could potentially be

used to actually connect footprint based activity estimates across multiple omics

layers(Dugourd & Saez-Rodriguez, 2019b).

In this study, we introduce COSMOS (Causal Oriented Search of Multi-Omics Space), an

approach that builds on CARNIVAL to connect TF and kinase/phosphatases activities as

well as metabolite abundances with a novel PKN spanning across multiple omics layers

(Figure 1). COSMOS uses CARNIVAL’s Integer Linear Programming (ILP) optimization

strategy to find the smallest coherent subnetwork causally connecting as many deregulated

TFs, kinases/phosphatases and metabolites as possible. The subnetwork is extracted from a

novel integrated PKN spanning signaling, transcriptional regulation and metabolism of >

67000 edges. CARNIVAL’s ILP formulation effectively allows to evaluate the entire network's

causal coherence given a set of known TF, kinases/phosphatases activities and metabolite

abundances. While we showcase this method using transcriptomics, phosphoproteomics

and metabolomics inputs, COSMOS can theoretically be used with any other additional

inputs, as long as they can be linked to functional insights (for example, a set of deleterious

mutations). As a case study, we generated transcriptomics, phosphoproteomics, and

metabolomics datasets from kidney tumor tissue and corresponding healthy kidney tissue

out of nine clear cell renal cell carcinoma (ccRCC) patients. We estimated changes of

activities of TFs and kinase/phosphatases as well as metabolite abundance differences

between tumor and healthy tissue. We integrated multiple curated resources of interactions

between proteins, transcripts and metabolites together to build a trans-omics PKN. Next, we

contextualized the trans-omics PKN to a specific experiment. To do so, we identified causal

pathways from our prior knowledge that connect the observed changes in activities of TFs,

kinases, phosphatases and metabolite abundances between tumor and healthy tissue.

These causal pathways can be used as hypothesis generation tools to better understand the

molecular phenotype of kidney cancer.
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Figure 1 - Overview of analysis pipeline

From left to right: We sampled and processed 11 patient tumors and healthy kidney tissues from the

same kidney through RNA sequencing and 9 of those same patients through mass-spectrometry to

characterise their transcriptomics, phospho-proteomics, and metabolomics profiles. We calculated

differential abundance for each detected gene, phospho-peptide and metabolite. We estimated kinase

and transcription factor activities using the differential analysis statistics and footprint-based methods.

We used the estimated activities alongside the differential metabolite abundances to contextualise (i.

e. extract the subnetwork that better explains the phenotype of interest) a generic trans-omics causal

network.

2. Results

2.1 Building the multi-omics dataset
To build a multi-omics dataset of renal cancer, we performed transcriptomics,

phosphoproteomics, and metabolomics analyses of renal nephrectomies and adjacent

normal tissues of renal cancer patients (for details on the patients see methods). First, we

processed the different omics datasets to prepare for the analysis. For the transcriptomics

dataset, 15919 transcripts with average counts > 50 were kept for subsequent analysis. In

the phosphoproteomics dataset, 14243 phosphosites detected in at least four samples were

kept. In the metabolomics dataset 107 metabolomics detected across 16 samples were kept.

Principal Component Analysis (PCA) of each omics dataset independently showed a clear

separation of healthy and tumor tissues on the first component (transcriptomics : 40% of
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explained variance (EV), phosphoproteomics : 26% of EV, metabolomics : 28% of EV,

Supplementary Figure 1), suggesting that tumor sample displayed molecular deregulations

spanning across signaling, transcription and metabolism. Each omics dataset was

independently submitted to differential (tumor vs healthy tissue) analysis using

LIMMA(Ritchie et al, 2015). We obtained 6699 transcript and 21 metabolites significantly

regulated with False Discovery Rate (FDR) < 0.05. While only 11 phosphosites were found

under 0.05 FDR, 447 phosphosites had an FDR < 0.2. This result confirmed that tumor

samples displayed molecular deregulations spanning across signaling, transcription, and

metabolism but that TF dysregulation is more pervasive. The differential statistics for all

transcripts, phospho-proteins and metabolites were then used for further downstream

analysis.

2.2 Footprint based transcription factor, kinase and phosphatase activity

estimation

We then performed computational footprint analysis to estimate the activity of proteins

responsible for changes observed in specific omics datasets. For transcriptomics and

phosphoproteomics data, this analysis estimates transcription factor and

kinases/phosphatase activity, respectively. 32586 Transcription Factor (TF) to target

interactions (i. e. transcript under the direct regulation of a transcription factor) were obtained

from DOROTHEA(Garcia-Alonso et al, 2019), a meta-resource of TF-target interactions.

Those TF-target interactions span over 452 unique transcription factors. In parallel, 33616

interactions of kinase/phosphosphate and their phosphosite targets (i. e. phosphopeptides

directly (de)phosphorylated by specific kinases(phosphatases)) were obtained from

Omnipath(Türei et al, 2016) kinase substrate network, a meta resource focused on curated

information on signaling processes. Only TFs and kinases/phosphatases with at least 25 and

5 detected substrates, respectively, were included. This led to the activity estimation of 229

TFs and 174 kinases. In line with the results of the differential analysis, where fewer

phosphosites were deregulated than transcripts, TF activities displayed a stronger

deregulation than kinases. TF activity scores reached a maximum of eight standard

deviations (sd) for Transcription Factor AP-2 Gamma (TFAP2C) (compared to the null score

distribution) while kinase activity scores reached a maximum of 4.6 sd for Casein Kinase 2

Alpha 1 (CSNK2A1). In total, 102 TFs and kinases/phosphatase had an absolute score over

1.7 sd (p-val<0.05) and were considered significantly deregulated in kidney tumor samples.

The presence of several known signatures of ccRCC corroborated the validity of our

analysis. For instance, hypoxia (HIF1A, EPAS1), inflammation (STAT1/2) and oncogenic
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(MYC, Cyclin Dependent Kinase 2 and 7 (CDK2/7)) markers were up-regulated in tumors

compared to healthy tissues (Figure 2). Furthermore, among suppressed TFs we identified,

HNF4A has been previously associated with ccRCC(Lucas et al, 2005).

Figure 2 TF, kinase and phosphatase activities that change the most between cancer and

healthy tissue

A) Bar plot displaying the Normalised Enrichment Score (NES, proxy of activity change) of the 30

most changing TF, kinase and phosphatases activities between kidney tumor and adjacent healthy

tissue. Blue/red color represent the sign of the activity change (negative/positive, respectively). B)

Right panel shows the 10 most changing RNA abundances of the STAT2 regulated transcripts. Left

panel shows the change of abundances of all STAT2 regulated transcripts that were used to estimate

its activity change. X axis represents log fold change of regulated transcripts multiplied by the sign of

regulation (-1 for inhibition and 1 for activation of transcription). Y axis represents the significance of

the log fold change (-log10 of p-value). C) Right panel shows the 10 most changing phospho-peptide

abundances of the CDK7 regulated phospho-peptides. Left panel shows the change of abundances of

all CDK7 regulated phospho-peptides that were used to estimate its activity change.

2.3 Causal network analysis
We set out to find potential causal mechanistic pathways that could explain the changes we

observed in TF, kinases/phosphatase activities, and metabolic abundances. Thus, we

developed a systematic approach to search in public databases, via OmniPath, for plausible

causal links between significantly deregulated TFs, kinases/phosphatases and metabolites.

In brief, we investigated if changes in TF, kinase/phosphatase activities, and metabolite
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abundance can explain each other with the support of literature-curated molecular

interactions. An example of such a mechanism can be the activation of the transcription of

MYC gene by STAT1. Since both STAT1 and MYC display increased activities in tumors, and

there is evidence in the literature that STAT1 can regulate MYC transcription(Kharma et al,

2014; Ramana et al, 2000), it may indicate that this mechanism is responsible for this

observation.

First, we needed to map the deregulated TFs, kinases and metabolites on a causal prior

knowledge network spanning over signaling pathways, gene regulation, and metabolic

networks. Hence, we combined multiple sources of experimentally curated causal links

together to build a trans-omics causal prior knowledge network (trans-omics PKN). This

trans-omics PKN must include direct causal links between proteins (kinase to kinase, TF to

kinase, TF to metabolic enzymes, etc…), between proteins and metabolites (reactants to

metabolic enzymes and metabolic enzymes to products) and between metabolites and

proteins (allosteric regulations). High confidence (>= 900 combined score) allosteric

regulations of the STITCH database(Szklarczyk et al, 2016) were used as the source of

causal links between metabolites and enzymes (Figure 3A). The directed signed interactions

of the Omnipath database were used as a source of causal links between proteins (Figure

3B). The human metabolic network Recon3D(Brunk et al, 2018) (without cofactors and

hyper-promiscuous metabolites, see methods) was converted to a causal network and used

as the source of causal links between metabolites and metabolic enzymes (Figure 3C). The

resulting trans-omics PKN consists of 69517 interactions and contains causal paths linking

TF/kinase/phosphatase with metabolites and vice-versa in a machine readable format. This

network is available at http://metapkn.omnipathdb.org/.
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Figure 3 - Graphical explanation of trans-omics PKN sources

Schematic representation of the trans-omics generic network (trans-omics PKN) created combining

STITCHdb, Omnipath and Recon3D. A) STITCHdb provides information on inhibition/activation of

enzyme activities mediated by metabolites. B) Omnipath provides information inhibition/activation of

enzyme activities mediated by other enzymes based mainly on curated resources. C) Recon3D

provides information on reactants and products associated with metabolic enzymes. To make this

information compatible with the causal edges from Omnipath and STITCH, the interactions of

recon3D are converted so that reactants “activate” their metabolic enzymes, which themselves

“activate” their products.

We then used the trans-omics PKN to systematically search causal paths between the

deregulated TFs, kinases/phosphatases and metabolites. The CARNIVAL(Liu et al, 2019a)

tool uses Integer Linear Programming (ILP) to find causal paths between perturbations and

deregulated TFs using a PKN and infers the state of intermediate nodes when it is unknown.

Here we use CARNIVAL with our trans-omics PKN to find the smallest sign-coherent

subnetwork connecting as many deregulated TFs, kinases/phosphatases, and metabolites

as possible. CARNIVAL is first used to find causal paths going from

TFs/kinases/phosphatases to the metabolites (the ‘forward network’). Then, in order to

complete the loop, CARNIVAL is used to go from metabolites to TFs/Kinases/phosphatases

(‘backward network’).
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When applied to our kidney cancer data, the two resulting (forward and backward) networks

are then combined into a single network of 250 signed directed interactions (Supplementary

Figure 2). These interactions are directly interpretable as mechanistic hypotheses. We

present some of them using official symbol nomenclature for genes and metabolites. For

example, it appears that Androgen Receptor (AR) activity inhibition could be responsible for

the observed downregulation of uridine, adenine, and inosine metabolism by

down-regulating the expression of ACPP, DBI, and SMS metabolic enzymes (Figure 4A). Of

note, AR expression has a protective role in ccRCC progression (Zhao et al, 2016; Zhu et

al, 2014). Interestingly, the COSMOS network shows adenine depletion could lead to

adenosine depletion (since adenosine can be produced from adenine). Adenosine is a

known activator of the C-X-C Motif Chemokine Receptor 4 (CXCR4) (Rolland-Turner et al,

2013; Richard et al, 2006), so its depletion could lead to the predicted down-regulation of

CXCR4 activity. The combined AR and CXCR4 down-regulation might indicate that these

tumors are not metastatic (Wang et al, 2017; Vanharanta et al, 2013; Rodrigues et al, 2018).

The COSMOS network also shows that CXCR4 regulates

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Gamma (PIK3CG), which

itself regulates 3-Phosphoinositide Dependent Protein Kinase 1 (PDPK1). Thus, CXCR4

down-regulation could then explain PDPK1 activity down-regulation through the inhibition of

PIK3CG. COSMOS further proposes that the activation of JAK kinase would be a good

explanation for the apparent activation of STAT transcription factors in the tumor, leading to

activation of IRF1 and MYC (Figure 4B). Interestingly, JAK2 was found to be amplified in

ccRCC (Network & The Cancer Genome Atlas Research Network, 2013). The STAT3

activation could explain the depletion of o-propanoylcarnitine due to the downregulation of

metabolic enzymes responsible for the transport of its precursor, Sterol Carrier Protein 2

(SCP2). CDK2 could itself explain the activity of ATM and TP53 through Forkhead Box M1

(FOXM1) and Aurora Kinase B (AURKB) signaling, leading to the activation of Dual

specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2), HIF1A and the

accumulation of L-Glutamine (Figure 4C). FOXM1 was recently highlighted as a particularly

important driver of metabolic changes in ccRCC(Pandey et al, 2020). Finally, the COSMOS

network shows that the down-regulation of PDPK1 appears as a good explanation for

L-Citrulline accumulation and ethanolamine depletion, by indirectly modulating the activity of

Nitric Oxide Synthase 1 (NOS1) and Phospholipase D1 (PLD1) metabolic enzymes (Figure

4D). Furthermore, PDPK1 directly controls the activity of the Protein Kinase C protein family

(PRKCA, PRKCD, PRKCE and PRKACA). These kinases are known to be involved in

metastasis progression (Brenner et al, 2003; Engers et al, 2000). Their down-regulation
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predicted by COSMOS further supports the idea that these tumors are not metastatic. These

results demonstrate how the pipeline can be used to extract relevant mechanistic

hypotheses explaining the enzymatic and metabolic deregulations at signaling and

transcriptional levels.

Figure 4 - Systematically generated mechanistic hypotheses explaining changing TF, kinase,

phosphatase activities and metabolic abundances

COSMOS generates mechanistic hypotheses which are represented in the form of a context specific

causal network. This network links the significant changes in estimated enzyme activities and

metabolic abundance (192 nodes and 250 edges). Diamond shapes represent TFs , hexagon shape

represents kinases and phosphatases, octagon shape represents metabolic enzymes and ellipse

shape represents metabolites. Blue/red color represents inhibited/activated enzyme activities and
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depleted/accumulated metabolites. Edges with arrowheads represent activatory interactions and

T-shaped ones represent inhibitory interactions. A full-page version of this figure is available as

Supplementary Figure 2 A) ,B) ,C) and D) represent subnetworks extracted to zoom on specific

hypotheses. For example, B) represents how AR activity can lead to the inhibition of nucleotides and

isovaleryl carnitine synthesis observed in tumors compared to healthy tissues, in turn explaining the

inhibited activity of PDPK1.

2.4 Consistency analysis
Due to the combined effect of experimental noise and incompleteness of prior knowledge

(kinase/substrate interactions, TF/targets interactions and meta PKN), it is critical to assess

the performance of the pipeline presented above. We first looked if some of the generated

hypotheses (see 2.3) were supported by parts of the datasets that were not directly used by

CARNIVAL (Supplementary Figure 3). We couldn’t estimate the True Negative Rate of

CARNIVAL in this multi-omics context. Indeed, nodes that are not integrated in the final

subnetwork by CARNIVAL are simply not considered informative to explain the relationship

between the input protein activities and metabolites. Yet, that doesn’t inform us on their

actual functional state. Consequently, we focused on the True Positive Rate (TPR), for which

we had reasonable estimates. The TF activity displayed by CARNIVAL can come from two

distinct sources. The first source consists of the original footprint based activity estimation

(using DOROTHEA and transcript abundances of target genes). The second source consists

of actual CARNIVAL activity predictions based on molecular signal propagation through

activating/inhibiting links (not using transcript abundances) connecting TF, kinases and

phosphatases together. This is the case as some TFs can serve as intermediate links to

connect upstream perturbations with downstream nodes. Consequently, in the case of a TF,

CARNIVAL will implicitly model its action on the direct downstream targets. Thus, for every

TF/target regulation of the CARNIVAL network, we checked whether the change of

abundance of the target transcripts was actually coherent with the predicted activity of the

TF displayed by CARNIVAL. We tested this over a range of differential transcript abundance

t-value threshold between 0 and 2. Nine transcripts were regulated by TF whose activity

was predicted by CARNIVAL only (second source), that is, the transcripts were not used as

inputs to build the COSMOS model. Out of those nine transcripts, the TPR ranged between

0.62 and 0.15 depending on the t-value threshold (n = 13) (Supplementary Figure 4). It

performed better than a random baseline for considered t-value thresholds ranging from 0 to

1.7.
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Another way to estimate the performance is to check if the CARNIVAL mechanistic

hypotheses correspond to correlations observed in tumor tissues. Thus, on the one hand, a

topological driven coregulation network was generated from the CARNIVAL network. The

assumption behind this network is that direct downstream targets of the same enzymes

should be co-regulated. On the other hand, a data driven correlation network of TFs, kinases

and phosphatases was generated from tumor tissues alone. Assuming thresholds of

absolute values of correlation ranging between 0 and 1 to define true positive co-regulations,

the comparison between the topological driven coregulation network and the data driven

correlation network yielded a TPR of ranging between 0.6 and 0 (n = 157) for the carnival

predictions (Supplementary Figure 4). It performed consistently better than a random

baseline over the considered range of correlation coefficient thresholds. These results

indicate that while some of the causal links predicted by CARNIVAL are potentially valid,

some of them don’t find direct support in the data at hand. Thus, we sought to investigate if

some of the mechanistic hypotheses could be experimentally validated.

3. Discussion
In this paper, we present COSMOS, an analysis pipeline to systematically generate

mechanistic hypotheses by integrating multi-omics datasets with a broad range of curated

resources of interactions between protein, transcripts and metabolites. We have first shown

how TF, kinase and phosphatase activities could be coherently estimated from

transcriptomics and phosphoproteomics datasets using footprint based analysis. This is a

critical step before further mechanistic exploration. Indeed, transcript and phosphosite

usually offer limited functional insights by themselves as their relationship with

corresponding protein activity is usually not well characterised. Yet, they can provide

information on the activity of the upstream proteins regulating their abundances. Thus, the

functional state of kinases, phosphatases, and TFs is estimated from the observed

abundance change of their known targets, i. e. their molecular footprint. Thanks to this

approach, we could simultaneously characterise protein functional states in tumors at the

level of signaling pathway and transcriptional regulation. Key actors of hypoxia response,

inflammation pathway and oncogenic genes were found to have especially strong alteration

of their functional states, such as HIF1A, EPAS1, STAT1/2, MYC and CDK2. Loss of VHL is

a hallmark of ccRCC, and is directly linked to the stability of the HIF (HIF1A and EPAS1)

proteins found deregulated by our analysis(Maxwell et al, 1999; Ivan et al, 2001; Jaakkola et

al, 2001). Finding these established signatures of ccRCC to be deregulated in our analysis is

a confirmation of the validity of this approach.
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We then used CARNIVAL with a novel trans-omics causal Prior Knowledge Network

spanning signaling, transcription and metabolism to systematically find potential

mechanisms linking deregulated protein activities and metabolite concentrations. To the best

of our knowledge, this is the first attempt to integrate these three omics layers together in a

systematic manner using causal reasoning. Previous methods studying signaling pathways

with multi-omics quantitative datasets (Drake et al, 2016) connected TFs with kinases and

they were limited by the preselected locally coherent subnetwork of the TieDIE algorithm.

Introducing global causality with CARNIVAL along with metabolomics data allows us to

obtain a direct mechanistic interpretation of links between proteins at different regulatory

levels and metabolites. The goal of our approach is to find a coherent set of such

mechanisms connecting as many of the observed deregulated protein activities and

metabolite concentrations as possible. Using CARNIVAL is particularly interesting as all the

proposed mechanisms between pairs of molecules (proteins and metabolites) have to be

plausible not only in the context of their own pairwise interaction but also with respect to all

other molecules that we wish to include in the model. For example, the proposed activation

of MYC by STAT1 is further supported by IRF1 activation, because STAT1 is also known to

activate IRF1. CARNIVAL allows us to scale this type of reasoning up to the entire PKN with

all significantly deregulated protein activities and metabolites.

With our dataset, the resulting network showed that AR inhibition, a known tumor suppressor

in kidney cancer (Uhlen et al, 2017), would be a good candidate to explain the inhibition of

nucleotide metabolism. It also predicted a depletion of adenine and consequently the

down-regulation of PDPK1 activity through CXCR4 (Figure 4A). Footprint analysis showed a

down-regulation of PDPK1 (that is, the abundance of phosphorylation on its direct target

phosphosites is decreasing) activity, which is surprising since its expression is usually

associated with slower proliferation of kidney tumor cells(Zhou et al, 2019; Emmanouilidi &

Falasca, 2017). Yet, the observed coordinated depletion of adenine, hypoxanthine and

inosine strongly support the estimated down-regulation of PDPK1 activity. A consequence of

PDPK1 activity down-regulation could also be the up-regulation of citrulline production by

NOS1 (Figure 4C). COSMOS additionally predicted how JAK-STAT pathway activation could

lead to an inhibition of the production of propanoyl-carnitine (Figure 4B). Diminution of

carnitine and its derivative have been indeed previously observed in kidney cancer as a

consequence of cachexia(Sayed-Ahmed, 2010). Finally we could show the importance of

CDK2 as a master regulator of many kinases and transcription factors such as MYC,
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AURKB, E2F4 and consequently TP53 and ATM activities (Figure 4D). In particular, AURKB,

which directly controls TP53 and ATM activities, appears to be a promising marker of kidney

cancer(Wan et al, 2019; Tang et al, 2017; Bertran-Alamillo et al, 2019).

Then we assessed the performances of the approach in two ways. First, we used some of

the data that was not directly used by CARNIVAL (i. e. genes that were not used for TF

activity estimation and correlation between TF/kinase/phosphatase activities) to check the

coherence of CARNIVAL predictions. Second, we used a tumor specific correlation network

of TF and kinase activities to compare it to the co-regulation predicted by CARNIVAL. This

yielded encouraging results, though imperfect, underscoring the fact that the mechanisms

proposed by COSMOS - like those by any similar tool - are hypotheses.

There are three main known limits to the predictions of COSMOS. First, the input data is

incomplete. Only a limited fraction of all potential phosphosites and metabolites are detected

by mass spectrometry. This means that we have no information on a significant part of the

PKN; part of the unmeasured network is kept in the analyses and the values are estimated

as intermediate ‘hidden values’. Second, not all regulatory events between TFs, kinase and

phosphatases and their targets are known, and activity estimation is based only on the

known regulatory relationships. Thus, many TFs, kinase and phosphatases are not included

because they have no curated regulatory interactions or no detected substrates in the data.

Third, and conversely, COSMOS will find putative explanations within the existing prior

knowledge that may not be the true mechanism, in particular if the latter is not captured in

our knowledge.

These problems mainly originate from the importance that is given to prior knowledge in this

method. Since prior knowledge is never perfect, the next steps of improvement could consist

in finding ways to extract more knowledge from the observed data to weight in the

contribution of prior knowledge. For instance, one could use the correlations between

transcripts, phosphosites and metabolites to quantify the interactions available in databases

such as Omnipath. Importantly, any other omics that relate to active molecules (such as

miRNAs or metabolic enzyme fluxes) or can be used to estimate protein activities through

footprint approaches (such as DNA accessibility or PTMs other than phosphorylation) can be

seamlessly integrated. Moreover, COSMOS was designed to work with bulk omics datasets,

and it will be very exciting to find ways of applying this approach to single cell datasets.

Encouragingly, the footprint methods that bring data into COSMOS seem fairly robust to the
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characteristics of single-cell RNA data such as dropouts(Holland et al, 2020). Finally, we

expect that in the future data generation technologies will increase coverage and our prior

knowledge will become more complete, reducing the mentioned limitations. In the meantime,

we believe that COSMOS is already a useful tool to extract causal mechanistic insights from

multi-omics studies.

4. Methods

4.1. Sample collection and processing
We included a total of 22 samples from 11 renal cancer patients (6 men, age 65.0+/-14.31, 5

women, age 65.2+/-9.257(mean+/-SD)) for transcriptomics and a subset of 18 samples from

9 of these patients (6 men, age 65+/-14.31; 3 women, age 63.33+/-11.06(mean+/-SD)) for

metabolomics and phosphoproteomics analysis. Patients underwent nephrectomy due to

renal cancer. We processed tissue from within the cancer and a distant unaffected area of

the same kidney.

For details about the sample processing to generate the omic data, see :

https://www.biorxiv.org/content/10.1101/2020.04.23.057893v1

4.2 Data normalisation and differential analysis
In the phosphoproteomics dataset, 19285 unique phosphosites were detected across 18

samples. Visual inspection of the raw data PCA first 2 components indicated two major

batches of samples. Thus, each batch was first normalised using the VSN R

package(Välikangas et al, 2018; Huber et al, 2002). We removed p-sites that were detected

in less than 4 samples, leaving 14243 unique p-site to analyse. Visual inspection of the PCA

first two components of the normalised data revealed that the first batch of samples could

itself be separated in 3 batches (4 batches across all samples). Thus, we used the

removeBatchEffect function of LIMMA to remove the linear effect of the 4 batches.

Differential analysis was performed using the standard sequence of lmFit, contrasts.fit and

eBayes functions of LIMMA, with FDR correction.

For the transcriptomics data, counts were extracted from fast.q files using the RsubRead R

package and GRCh37 (hg19) reference genome. Technical replicates were averaged, and

genes with average counts under 50 across samples were excluded, leaving 15919 genes

measured across 22 samples. In order to allow for logarithmic transformation, 0 count values

were scaled up to 0.5 (similar to the voom function of LIMMA). Counts were then normalised
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using the VSN R package function and differential analysis was performed with LIMMA

package, in the same way as the phosphoproteomics data.

For the metabolomics data, 107 metabolites were detected in 16 samples. Intensities were

normalised using the VSN package. Differential analysis was done using limma in the same

manner as for phosphoproteomics and transcriptomics. All data is available at

https://github.com/saezlab/COSMOS.

4.3 Footprint based analysis
TF-target collection was obtained from DOROTHEA A,B and C interaction confidence levels

through the Omnipath webservice using the URL

“http://omnipathdb.org/interactions?datasets=tfregulons&tfregulons_levels=A,B,C&genesym

bols=1&fields=sources,tfregulons_level” (version of 2020 Feb 05). For the enrichment

analysis, the viper algorithm(Alvarez et al, 2016) was used with the limma moderated t-value

as gene level statistic(Zyla et al, 2017). The eset.filter parameter was set to FALSE. Only

TFs with at least 25 measured transcripts were included.

Kinase-substrate collection was obtained using the default resource collection of Omnipath,

with the URL “http://omnipathdb.org/ptms?fields=sources,references&genesymbols=1”

(version of 2020 Feb 05). For the enrichment analysis, the viper algorithm was used with the

limma limma moderated t-value as phosphosite level statistic. The eset.filter parameter was

set to FALSE. Only TFs with at least 5 measured transcripts were included. All data is

available at https://github.com/saezlab/COSMOS.

4.4 Meta PKN construction
In order to propose mechanistic hypotheses spanning through signaling, transcription and

metabolic reaction networks, multiple types of interactions have to be combined together in a

single network. Thus, we built a meta Prior Knowledge Network (PKN) from three online

resources, to incorporate three main types of interactions. The three types of interactions are

protein-protein interactions, metabolite-protein allosteric interactions and metabolite-protein

interactions in the context of a metabolic reaction network. Protein-protein interaction were

imported from omnipath with the URL http://omnipathdb.org/interactions?genesymbols=1

(version of 2019 Feb 05), and only signed directed interactions were included (is_stimulation

or is_inhibition columns equal to 1). Metabolic-protein allosteric interactions were imported

from the STITCH database (version of 2019 November 06), with combined confidence score

>= 900 after exclusion of interactions relying mainly on text mining.
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For metabolic-protein interactions in the context of metabolic reaction network, Recon3D

was downloaded from https://www.vmh.life/#downloadview (version of 2019 Feb 19). Then,

the gene rules (“AND” and “OR”) of the metabolic reaction network were used to associate

reactants and products with the corresponding enzymes of each reaction. When multiple

enzymes were associated with a reaction with an “AND” rule, they were combined together

as a single entity representing an enzymatic complexe. Then, reactants were connected to

corresponding enzymatic complexes or enzymes by writing them as rows of Simple

Interaction Format (SIF) table of the following form : reactant;1;enzyme. In a similar manner,

products were connected to corresponding enzymatic complexes or enzymes by writing

them as rows of a Simple Interaction Format (SIF) table of the following form :

enzyme;1;product. Thus, each row of the SIF table represents either an activation of the

enzyme by the reactant (i.e. the necessity of the presence of the reactant for the enzyme to

catalyse it’s reaction) or an activation of the product by an enzyme (e.i. the product presence

is dependent on the activity of its corresponding enzyme). Most metabolite-protein

interactions in metabolic reaction networks are not exclusive, thus measures have to be

taken in order to preserve the coherence of the reaction network when converted to the SIF

format. First, metabolites that are identified as “Coenzymes” in the Medical Subject Heading

Classification (as referenced in the Pubchem online database) were excluded. Then, we

looked at the number of connections of each metabolite and searched the minimum

interaction number threshold that would avoid excluding main central carbon metabolites.

Glutamic acid has 338 interactions in our Recon3D SIF network and is the most connected

central carbon metabolite, thus any metabolites that had more than 338 interactions was

excluded. An extensive list of Recon3D metabolites (pubchem CID) with their corresponding

number of connections is available in supplementary table 2. Metabolic enzymes catalyzing

multiple reactions were uniquely identified for each reaction to avoid cross-links between

reactants and products of different reactions. Finally, exchange reactions were further

uniquely identified according to the relevant exchanged metabolites, as to avoid confusion

between transformation of metabolites and simply exchanging them between compartments.

Finally, each network (protein-protein, allosteric metabolite-protein and reaction network

metabolite-protein) was combined into a single SIF table. This network is available at

http://metapkn.omnipathdb.org/.

4.5 Meta PKN contextualisation
Given a set of nodes with corresponding activities (-1, 0 or 1) and a causal PKN, CARNIVAL

finds the smallest coherent signed subnetworks connecting as many of the given nodes as
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possible. CARNIVAL needs a set of starting and end nodes to look for paths in between.

TFs, kinases and phosphatases absolute normalised enrichment scores greater than 1.7

standard deviation were considered deregulated. Coherently, metabolites with uncorrected

p-values smaller than 0.05 were considered deregulated. These values were chosen as they

allow to generate a set of input of comfortable size to run CARNIVAL. Then, we first set the

deregulated kinases, phosphatases and TFs as starting points and deregulated metabolites

as end points (forward run). This direction represents regulations first going through the

signaling and transcriptional part of the cellular network and stops at deregulated

metabolites in the metabolic reaction network. However, since metabolite concentration can

also influence the activity of kinases and TFs through allosteric regulations, we also ran

CARNIVAL by setting deregulated metabolites as starting points and deregulated TFs,

kinases and phosphatases as end points (backward run). For the forward run, after 7200

second of run time, CARNIVAL yielded a network of 76 edges, a feasible solution which

proved to be within the 11.24% gap from the optimal. For the backward run, CARNIVAL

found a solution within the 2.44% gap from the optimal after 7200 second of run time,

yielding a network of 177 edges.

Since there were no incoherences in the predicted activity signs between the common part

of the two resulting networks, they were simply merged together, resulting in a combined

network of 250 unique edges.

4.6 Coherence between CARNIVAL mechanistic hypotheses and omics
measurements
To assess the robustness of CARNIVAL predictions, we used two different methods. First,

the CARNIVAL network contains cases where a protein activity is modelled by CARNIVAL as

up- or down-regulated under the control of a TF. If such hypotheses are correct, then one

would expect to see the abundance of the corresponding transcript of the proteins to be

coherently up or down-regulated (since the control of the TF is carried through regulation of

transcript abundance) (Supplementary Figure 3). Thus, a True Positive (TP) is defined as a

carnival node that is directly downstream of a TF and has the same sign (-1 or 1) as a

significantly deregulated corresponding transcript. Transcripts with LIMMA moderated

absolute t-values ranging between 0 and 2 were considered as significantly deregulated.

Since CARNIVAL predictions are discrete (-1, 0, 1), we can’t make a classic receiving

operator curve. Furthermore, we are lacking knowledge of True Negative. Indeed, node

activities set to 0 by CARNIVAL cannot be interpreted because measurements and activities
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inputs only cover a fraction of the PKN and consequently most of the PKN nodes will be set

to 0 by default. We showed that the TPR were relatively stable between 0 and 1.7, and more

volatile between 1.7 and 2, likely due to the number of significantly deregulated transcripts

considered becoming too small (see Supplementary Figure 4A). To estimate the baseline

TPR of a random algorithm, we consider the following question : If i take any transcript that

was measured and randomly assign it a value of 1 (or -1), what is the probability that the

transcript will indeed be significantly up-regulated (or down-regulated), for given a t-value

threshold. This probability can be simply estimated from the actual proportion of transcripts

that are significantly up-related. For absolute t-values ranging between 0 and 1.7 (number of

transcripts = 13), carnival TPR was consistently higher than the random baseline, but

performed equal or worse than random above 1.7, again likely due to the number of

significantly deregulated transcripts considered becoming too small.

Second, when multiple nodes are co-regulated by a common parent node in the CARNIVAL

network, we can assume that the activity of the co-regulated nodes should be correlated.

Thus, we create a correlation network with the TF and kinase/phosphatase activities

estimated at a single sample level. To estimate the single sample level activities, normalised

RNA counts and phosphosite intensities were scaled (minus mean over standard deviation)

across samples. Thus, the value of each gene and phosphosite is now a z-score relative to

an empirical distribution generated from the measurements across all samples. We used

these z-scores as input for the viper algorithm to estimate kinase/phosphatases and TF

activities at single sample level. Thus, the resulting activity scores in a sample are relative to

all the other samples. Then, a correlation network was built using only tumor samples. Thus,

the correlation calculated this way represents co-regulations that are supported by the

available data in tumor (number of coregulations = 157. We defined the ground truth for

co-regulations as over a range of absolute correlation coefficients between 0 and 1 with a

0.01 step. Thus, a True Positive here is a co-regulation predicted from the topology of the

carnival network that also has a corresponding absolute correlation coefficient in tumor

samples above the given threshold. Since defining a ground truth in such a manner can yield

many false positives (a correlation can often be spurious), the TPR of COSMOS was always

compared to a random baseline.

4.7 Code availability
All code used in this study is available at : https://github.com/saezlab/cosmos_prototype

50



4.8 Data availability
Data used in this study is available at :

https://github.com/saezlab/cosmos_prototype/tree/main/data
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Supplementary Materials

Supplementary Figure 1

PCA of Metabolomics, Phosphoproteomics and transcriptomics datasets for tumor and

healthy tissues samples. For each omics dataset, PCA is run independently on normalised

datasets and the first two components are plotted. Each omics shows a clear separation

between tumor and healthy tissue.

52



Supplementary Figure 2

Causal network summarising the mechanistic hypotheses systematically generated by

CARNIVAL. (see Figure 4 for legend). The network comprises 250 edges. It represents the

propagation of signals connecting the deregulated kinases, phosphatases, TFs and

metabolites in kidney cancer.
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Supplementary Figure 3

Coherence assessment between CARNIVAL hypotheses and underlying data. On the left,

the predicted activity TF targets of the COSMOS network are compared to the actual t-value

(tumor - healthy) of their corresponding transcript to determine true positive rate (TPR). On

the right, coregulations predicted by COSMOS are compared against a correlation network

of kinase/TF activities to determine TPR.

Supplementary Figure 4

Exploration of TPR stability in function of the chosen t-value/correlation threshold. A) For

TF/transcriptomics data coherence. True positive rates are estimated over a range of t-value

between 0 and 2 with 0.1 steps. B) For the correlation/topology coherence. True positive

54



rates are estimated over a range of Pearson correlation between 0 and 1 with 0.01 steps. In

A) and B) COSMOS (CARNIVAL) performance is compared to a random baseline. COSMOS

consistently outperforms the random baseline.
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Chapter 4 : Metabolic enzyme footprint analysis

Abstract
The functional insights that metabolomic data sets contain currently lies under-exploited.

This is in part due to the complexity of metabolic reaction networks and the indirect

relationship between reaction fluxes and metabolite abundance. Yet, footprint-based

methods have been available for decades in the context of other omic data sets such as

transcriptomic and phosphoproteomic. Here, we present ocEAn, a method that defines

metabolic enzyme footprint from a curated reduced version of the recon2 reaction network

and use them to explore coordinated deregulations of metabolite abundances with respect to

their position relative to metabolic enzymes in the same manner as Kinase-substrate and

TF-targets Enrichment analysis. We show how ocEAN can consistently help identify

deregulated metabolic enzyme activities by comparing its output with proteomic data and a

chemical enzyme inhibition experiment.

1. Introduction
The signaling machinery of cells has evolved with the prime goal of allowing ancestral single

cell organisms to adapt their energy metabolism to shifting environmental conditions. This

effectively places the study of metabolism at the heart of understanding cell biology.

Ultimately, even an organism as complex as a human being can be conceptualised as a

population of cells differentiating and cooperating to secure an overall constant intake of

energetic substrates (I eat, therefore I am, therefore I eat, etc..). Coherently, many diseases

and chronic health conditions, such as cancer and kidney fibrosis, are associated with

striking cellular metabolic reprogramming ((Chen & Xiong, 2020; Cocetta et al, 2020;

Sulkowski et al, 2020)). A common way of studying cell metabolism is to measure the

abundance of dozens to hundreds of metabolites at the same time in a tissue/cell culture

using mass-spectrometry coupled with liquid chromatography (LC-MS) or gas

chromatography(GC-MS), generating what is referred to as “metabolomic” data sets. Despite

an ever growing body of available metabolomic datasets, extracting functional insights out of

those remains very challenging, likely due partially to the very complex and nonlinear nature

of their underlying metabolic reaction networks.
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In this context, we sought to translate the footprint based analysis we had worked

extensively on with transcriptomic and phosphoproteomic data(Garcia-Alonso et al, 2019;

Holland et al, 2020; Hernandez-Armenta et al, 2017; Terfve et al, 2015) to metabolomic data.

The goal of such an approach is to estimate the activity change of a metabolic enzyme by

integrating the metabolic abundances changes happening downstream and upstream of its

position in a complex metabolic reaction network. It is widely accepted that

blocking/increasing the activity of a specific metabolic enzyme results in

accumulation/depletion of its reactants and/or a symmetrical depletion/accumulation of its

products, respectively. This concept was the ground assumption of the reporter

reaction(Cakir et al, 2006). The reporter reaction method was trying to identify reactions that

were in the middle of coordinated (up/down) metabolic abundance deregulations. This

hypothesis was later further supported by additional experimental evidence(Ewald et al,

2013). These metabolic abundances changes are also expected to propagate to a certain

extent to other up and downstream metabolites. Thus, a more recent method called

metabolic network segmentation (MNS) aimed to exploit this assumption to find key

deregulated metabolic enzymes in the reaction network by integrating topological clusters of

coordinated metabolic abundance deregulations(Kuehne et al, 2017). It essentially used the

topology of the network reaction to define groups of metabolites based on their proximity in

the network and how well coordinated their abundance changes were. However, MNS only

highlights pivotal (right in between clusters of up and down-regulated metabolites) reactions.

In this study we present ocEAn (Metabolic enzyme Metabolite Set enrichment analysis), a

method based on footprint-based activity estimation such as TFEA and KSEA (see 4.

Footprint analysis) and exploiting the same metabolic assumption as the Reporter Reaction

and NMS methods. It has the advantage over NMS to report scores of activity for all

enzymes of a metabolic reaction network. It also relies on a curated human metabolic

network, which allows more accurate estimations. Finally, it also provides activity score

estimations that are coherent with the ones provided by other footprint-based methods. We

applied ocEAn on a metabolomics dataset generated from a kidney cancer cell line model

(786-O) and validated our findings using proteomic data, metabolic labelling experiments

and targeted inhibition of metabolic enzymes.
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2. Results and methods

2.1 Causal format of reduced recon2 human metabolic reaction model
The first thing we need to run ocEAn on any type of metabolomic data are the sets of

metabolites that are associated with each metabolic enzyme. This information can be

extracted from the metabolic reaction network, which informs us on which metabolite is

downstream or upstream of each metabolic reaction. Thus, we used a reduced manually

curated and thermodynamically proofed version of the Recon2 human metabolic reaction

network to generate the metabolite sets. The thermodynamic proofing was performed to

exclude reaction directions that were not thermodynamically feasible with the TFBA

algorithm (Kiparissides & Hatzimanikatis, 2017).

In order to get a relevant idea of the relative position of metabolites with respect to enzymes,

it is also important to filter out accessory elements of the reaction network such as cofactors

and over-promiscuous metabolites. Over-promiscuous metabolites are metabolites that are

used as reactants by a very large number of reactions. Thus, changes in over-promiscuous

metabolites abundances hold little discriminating power to estimate metabolic enzyme

activities. Furthermore, they are often not the main reactant of a reaction and will create

many irrelevant bridges between unrelated reactions in the network. For that, metabolites

classified as cofactors and nucleotides according to the KEGG BRITE classification were

removed, as well as CO2, ITP, IDP, NADH and all metabolites composed of less than 4

atoms. This procedure effectively filtered out 100 metabolites, bringing the number of

metabolites in the reaction network from 421 to 321. The network was then “causalised”

using the same procedure as described in 4.4 Meta PKN construction. The resulting causal

reaction network allows to easily follow paths connecting metabolic enzymes with distant

metabolites. The next step consist in associating each enzyme of the network and all

metabolites of the network with weights representing the minimum distance of metabolites

relative to enzymes and a sign representing whether a each metabolite is upstream (-1) or

downstream (1) of a given enzyme (See Figure 1).

In order to compute a weight, we used a function that progressively decreases a weight

value. The weight value starts at 1 for direct reactant and products of a given enzyme and

decrease in a stepwise manner (xi+1 = xi * penalty, with x0 = 1 and penalty ranging between 0

and 1), for each reaction step separating the given metabolite from a given enzyme. The

range is defined between 0 and 1 to yield a ‘contribution of metabolite statistic’ to the final
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score ranging between 0 to 100% of their respective abundance change. The penalty

(ranging between 1 and 0) will determine how fast a metabolite loses its influence on the

score of a given enzyme with increasing distance in the metabolic reaction network (Figure

2).A penalty set to 0 would mean that only direct reactants and products are taken into

account when estimating an enzyme activity score (which would correspond to the Reporter

Reaction method). A penalty of 1 would mean that all metabolites that are exclusively

upstream or downstream of an enzyme are taken into account equally.

Since a lot of cycles are present in the metabolic reaction network, metabolites are usually

both upstream and downstream of enzymes. To recover a weight that represents the actual

relative position of a metabolite with respect to a given enzyme, the upstream and

downstream weight of each metabolite-enzyme associations are averaged.

Figure 1

Schematic of the procedure applied to convert a causal reaction network into sets of

metabolites.

The resulting metabolite sets are then ready to be used with enrichment algorithms such as

viper to estimate metabolic enzyme activities from metabolomic data sets, as is done with
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phosphoproteomic for kinase activities and transcriptomic for transcription factor activities (4.

Footprint analysis).

Figure 2

Decrease of weight with increasing distance (reaction steps) between a metabolite and a

given enzyme for different penalty values.

2.2 Systematic metabolic enzyme activity estimation
In order to test the ocEAn method, we applied it on a metabolomic data set generated from

HK2 and 786-O cell lines. HK2 cells are immortalised kidney cells while 786-O are cells

derived from a kidney tumor. Thus, in order to study the potential metabolic reprogramming

occuring in kidney cancer, we performed a limma differential analysis of 76 cellular

metabolites detected across 17 biological replicates of HK2 and 17 biological replicates of

786-O. The t-values resulting from the limma differential analysis were used alongside the

metabolite sets generated above with the viper algorithm to estimate metabolic enzyme

activity changes in 786-O compared to HK2. The distance penalty of the metabolite set was

60



set to 0.6, in order to give a moderate importance to metabolites situated far away from

enzymes. Indeed, it is hard to know which value for this parameter will really yield the best

results, and it is very likely context dependent (coverage of the metabolic reaction network,

which part of the metabolic reaction network is best covered, etc...). Thus, a cutoff of 0.6

seemed like a sensible intermediate value. This choice and the impact of the full range of

penalties between 0.1 and 1 in this specific analysis context are studied in the next section

(2.3).

This analysis yielded activity estimation for 726 unique enzyme and metabolic enzyme

complexes in 3580 unique reactions (each enzyme is associated with multiple different

reactions and directions). The results were further interpreted biologically and yielded

interesting insights such as a drainage of mitochondrial metabolites (through BCAT2,

Supplementary figure 1). It also hinted at a reprogramming of branching amino-acid

metabolism to provide Alpha-keto-glutarate (Akg) and aspartate to support the heavy

nucleotide synthesis activity of cancer cells through rewiring of branching amino-acid

metabolism (through BCAT1, GOT and MDH family enzymes, Supplementary figure 1).

These results are being further explored in the context of a manuscript currently in

preparation, dissecting the metabolic landscape of kidney tumor progression.

2.3 Comparison of metabolic enzyme activity with proteomic data and
validation
It is quite challenging to estimate the actual performance of a metabolic enzyme activity

estimation tool as the ground truth corresponding to its prediction is very hard to access. The

activity output of a metabolic enzyme is essentially how many reactants are converted in

products in a given interval. This is often referred to as a metabolic enzyme flux. The net flux

of a metabolic enzyme is the sum of it’s fluxes in both directions and is what is usually

measured. Experimentally measured net fluxes at the scale of a few selected reactions is

already difficult to estimate, and currently impossible to obtain in a systematic manner. In

order to get a rough idea of the performances of ocEAn, we compared its result to enzyme

abundances changes obtained from proteomic data and to a chemical inhibition of the

BCAT1 metabolic enzyme data set. We chose BCAT1 because it was consistently predicted

to be up-regulated in 786-O compared to HK2 by ocEAn.

First, limma differential analysis was performed on a proteomic dataset generated from the

same cell lines as previously (786-O and HK2). Then a Receiving Operator Curve (ROC)

and Precision Recall Curve (PRC) analysis was performed to systematically compare the
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ocEAn output activity estimations with 1) the significant positive proteomic abundance

changes (t-value > 1.7) and 2) the significant negative proteomic abundance changes

(t-value < -1.7). For 1) positive changes, his showed that the best area under the ROC

(AUROC) was obtained when the penalty was set to 0.3 or 0.9, which corresponds to the

maximum weights given to far away metabolites out of all tested penalties. However, the

AUROC values were not very different from penalty 0.3 to 0.9 (0.58 to 0.59 in positive

changes, 0.58 to 0.61 for negative changes) (Figure 3, Figure 4). This also hinted that

ocEAn’s output seems slightly more consistent with negative abundance changes than

positive ones. The PRC analysis showed similar results, with 1) positive changes

comparison yielding best area under PRC (AUPRC) value for the penalty value 0.5, and 2)

negative changes comparison yielding best AUPRC values for penalties between 0.6 and

0.9. These AUROC are consistent with the expectation that only a minor part of the variance

of an enzyme activity is actually explained by its abundance. Indeed, we expect to see many

cases where a change of metabolic enzyme activity will be inconsistent with the direction of

its protein abundance change. Thus, an AUROC value of 1 is not the expected goal in this

analysis. Furthermore, this analysis was only performed in the context of one comparison

between two conditions. These results made it apparent that a clear answer to which is the

best penalty value may need further studies. Thus, a distance penalty of 0.6 for further

analysis seemed a reasonable choice at this point, as it falls between the best AUROC and

AUPRC values. The same analysis was performed using transcriptomic data instead of

proteomic. It showed that ocEAn outputs were much less consistent with transcriptomic

changes than with proteomic ones. Indeed, for both positive and negative abundance

changes, the AUROC values remained around 0.5 for all penalties, while the AUPRC values

were barely above the random baseline (Supplementary figure 2). All code to reproduce the

AUROC and AUPRC analysis can be found at: https://github.com/saezlab/ocean_thesis

Then, another metabolomic data set was generated from 786-O and HK2 cell lines were the

BCAT1 and 2 enzymes were chemically inhibited. This enzyme was chosen as it is a key

enzyme of branching amino acid metabolism, a pathway that is known to be severely

deregulated in kidney cancer. Furthermore, the BCAT2 isoforms of the enzymes was

predicted to be strongly up-regulated by ocEAn in 786-O compared to HK2. ocEAn predicted

consistently a downregulation of the activity of BCAT2 in the BCAT inhibited 786-O cells as

well as in HK2 but to a much milder degree. This is consistent with the expected result since

BCAT1 and 2 are thought to be much more active in the 786-O cell than in HK2.
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Figure 3

A) AUROC and B) AUPRC for the comparison between up-regulated protein abundances

with ocEAn metabolic enzyme activity estimations for a range of penalty values between 0.1

(p1) and 0.9 (p9).
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Figure 4

A) AUROC and B) AUPRC for the comparison between down-regulated protein abundances

with ocEAn metabolic enzyme activity estimations for a range of penalty values between 0.1

(p1) and 0.9 (p9).

3. Discussion

In this chapter, we showed how footprint based methods designed for transcriptomic and

phosphoproteomic can be translated to metabolomic data by adapting the specificities of

metabolic reaction networks to generate metabolic enzyme footprints. The metabolic

enzyme footprints were then used as metabolite sets to perform metabolic enzyme

enrichment analysis in a similar fashion as Kinase-substrate/TF enrichment analysis with a

method called ocEAn. ocEAn seems to be performing relatively well to estimate metabolic

enzyme activity when compared to proteomic data or chemical inhibition of specific

metabolic enzymes. It can be theoretically applied to any metabolomic dataset generated

from human cells. It is currently being developed further in the context of an analysis of the

metabolic landscape of kidney cancer. In the future, it will be interesting to see how much of

the quality of ocEAn estimates are dependent on the quality of the metabolic reaction

network used to generate the set of metabolite-enzyme distances. Indeed, I suspect that an

adequate prior-knowledge source is usually what impacts the quality of footprint-based

activity estimations the most, which will need to be further investigated. Finally, since ocEAn

yields metabolic enzyme activities that are conceptually similar to TF and Kinase activities

estimated with TFEA and KSEA, a logic future step could consist in integrating the ocEAn

metabolic enzyme activities with TF and kinase activities across multiple omic layers. This

could be done for example by connecting metabolic enzyme, TF and kinase activities with

tools such as COSMOS.
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4. Supplementary figures
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Supplementary figure 1

Activity estimations for branching amino acid metabolism related metabolic enzymes. The

activity score is a normalised enrichment score estimated with a weighted mean normalised

through metabolite shuffling.

Supplementary figure 2

A) AUROC and AUPRC for the comparison between up-regulated transcript abundances

with ocEAn metabolic enzyme activity estimations for a range of penalty values between 0.1

(p1) and 0.9 (p9). D) AUROC and AUPRC for the comparison between down-regulated

transcript abundances with ocEAn metabolic enzyme activity estimations for a range of

penalty values between 0.1 (p1) and 0.9 (p9).
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Final conclusion
Cancer and fibrosis can be referred to as systemic diseases, due to the broad range of

effects they can have on their host. With the ever increasing amount of prior-knowledge

generated by the scientific community and along with the sharpening of measurement tools

resolution, systematic analysis methods are a very powerful approach to extract relevant

information from omics data sets. Indeed, they help to find which are the relevant

mechanisms that govern the deep phenotypic reprogramming that can occur in the diseased

cells. In this thesis, I have presented how footprint-based analysis and prior knowledge

guided causal reasoning can be used to analyse large ‘omics’ biological data sets.

Footprint-based methods have proven particularly useful to extract functional insights from

measurements of abundances. I have especially shown that these functional insights were

crucial in order to be able to connect multiple omic layers together with causal networks.

Indeed, while different types of omics will focus on different types of molecules, such as

RNAs, proteins and metabolites, footprint-based enzyme activities allow to bring back this

data to more homogeneous features, e.g. transcription factors and kinases. With COSMOS,

I presented the first attempt to systematically connect such TF, kinases and metabolic

together with a global causal reasoning approach. This type of approach is helpful to

connect together cellular processes spanning across multiple compartments and functions.

For example, connecting signaling and metabolism together with such an approach can

prove particularly useful to understand deregulation happening in complex multifactorial

diseases such as cancer and fibrosis.

Parallel to this, metabolomic data still hold a great depth of under-exploited information. In

this context, I developed ocEAn to systematically extract relevant functional information from

metabolomic datasets. A key aspect of ocEAn metabolic enzyme activity estimations is that

these functional outputs could then be connected to other omic layers, in the same way as it

was done with TFs and kinases. For this reason, I hope that in the future these metabolic

enzyme activities could be further integrated with tools like COSMOS.

Thus, COSMOS and ocEAn can help to pin-point relevant pathways and biological

molecules that can serve as disease markers or therapeutic targets. They may also serve as

a groundwork to provide functional insights from omic datasets that could then further be

used to connect processes across multiple cell types and tissues. With the help of pan-tissue

and pan-cell type prior knowledge networks, we can hold the hope of building descriptive
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disease models recapitulating their broad effect over an entire body. We will also increase

the resolution of our tools to a single cell resolution data set, in an effort to generate

mechanistic insights from the whole organism to single cell scales. While there is still a long

way before reaching this point, the direction technology is currently evolving makes this goal

appear as more and more realistic every day.

“Imaginary mountains build themselves from our efforts to climb them, and it’s our repeated

attempt to reach the summit that turns those mountains into something real.”

Bennett Foddy

70



References
Ackermann M & Strimmer K (2009) A general modular framework for gene set enrichment analysis.

BMC Bioinformatics 10: 47

Alhamdoosh M, Ng M, Wilson NJ, Sheridan JM, Huynh H, Wilson MJ & Ritchie ME (2017) Combining
multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics
33: 414–424

Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH & Califano A (2016) Functional
characterization of somatic mutations in cancer using network-based inference of protein activity.
Nat Genet 48: 838–847

Amadoz A, Hidalgo MR, Çubuk C, Carbonell-Caballero J & Dopazo J (2018) A comparison of
mechanistic signaling pathway activity analysis methods. Brief Bioinform

Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W & Stegle O
(2018) Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data
sets. Mol Syst Biol 14: e8124

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS,
Eppig JT, et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 25: 25–29

Auslander N, Yizhak K, Weinstock A, Budhu A, Tang W, Wang XW, Ambs S & Ruppin E (2016) A joint
analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling
in breast cancer. Sci Rep 6: 29662

Ayati M, Wiredja D, Schlatzer D, Maxwell S, Li M, Koyuturk M & Chance M (2018) CoPhosK: A
Method for Comprehensive Kinase Substrate Annotation Using Co-phosphorylation Analysis.
bioRxiv: 251009

Berndt N, Egners A, Mastrobuoni G, Vvedenskaya O, Fragoulis A, Dugourd A, Bulik S, Pietzke M,
Bielow C, van Gassel R, et al (2020) Kinetic modelling of quantitative proteome data predicts
metabolic reprogramming of liver cancer. Br J Cancer 122: 233–244

Bertran-Alamillo J, Cattan V, Schoumacher M, Codony-Servat J, Giménez-Capitán A, Cantero F,
Burbridge M, Rodríguez S, Teixidó C, Roman R, et al (2019) AURKB as a target in non-small cell
lung cancer with acquired resistance to anti-EGFR therapy. Nat Commun 10: 1812

Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE,
Ulferts S, Kaake RM, et al (2020) The Global Phosphorylation Landscape of SARS-CoV-2
Infection. Cell 182: 685–712.e19

Bradley G & Barrett SJ (2017) CausalR: extracting mechanistic sense from genome scale data.
Bioinformatics 33: 3670–3672

Brenner W, Färber G, Herget T, Wiesner C, Hengstler JG & Thüroff JW (2003) Protein kinase C eta is
associated with progression of renal cell carcinoma (RCC). Anticancer Res 23: 4001–4006

Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Preciat Gonzalez
GA, Aurich MK, et al (2018) Recon3D enables a three-dimensional view of gene variation in
human metabolism. Nat Biotechnol 36: 272–281

Cakir T, Patil KR, Onsan ZI, Ulgen KO, Kirdar B & Nielsen J (2006) Integration of metabolome data
with metabolic networks reveals reporter reactions. Mol Syst Biol 2: 50

Cantini L, Calzone L, Martignetti L, Rydenfelt M, Blüthgen N, Barillot E & Zinovyev A (2018)

71

http://paperpile.com/b/VpWBXd/yWphd
http://paperpile.com/b/VpWBXd/yWphd
http://paperpile.com/b/VpWBXd/hlp2c
http://paperpile.com/b/VpWBXd/hlp2c
http://paperpile.com/b/VpWBXd/hlp2c
http://paperpile.com/b/VpWBXd/YP0j5
http://paperpile.com/b/VpWBXd/YP0j5
http://paperpile.com/b/VpWBXd/YP0j5
http://paperpile.com/b/VpWBXd/jH8GN
http://paperpile.com/b/VpWBXd/jH8GN
http://paperpile.com/b/VpWBXd/DKuhF
http://paperpile.com/b/VpWBXd/DKuhF
http://paperpile.com/b/VpWBXd/DKuhF
http://paperpile.com/b/VpWBXd/Pusb4
http://paperpile.com/b/VpWBXd/Pusb4
http://paperpile.com/b/VpWBXd/Pusb4
http://paperpile.com/b/VpWBXd/lfyTv
http://paperpile.com/b/VpWBXd/lfyTv
http://paperpile.com/b/VpWBXd/lfyTv
http://paperpile.com/b/VpWBXd/49zNq
http://paperpile.com/b/VpWBXd/49zNq
http://paperpile.com/b/VpWBXd/49zNq
http://paperpile.com/b/VpWBXd/HSO01
http://paperpile.com/b/VpWBXd/HSO01
http://paperpile.com/b/VpWBXd/HSO01
http://paperpile.com/b/VpWBXd/8gYpX
http://paperpile.com/b/VpWBXd/8gYpX
http://paperpile.com/b/VpWBXd/8gYpX
http://paperpile.com/b/VpWBXd/gzMG
http://paperpile.com/b/VpWBXd/gzMG
http://paperpile.com/b/VpWBXd/gzMG
http://paperpile.com/b/VpWBXd/D8NU8
http://paperpile.com/b/VpWBXd/D8NU8
http://paperpile.com/b/VpWBXd/VYiDR
http://paperpile.com/b/VpWBXd/VYiDR
http://paperpile.com/b/VpWBXd/dAxQe
http://paperpile.com/b/VpWBXd/dAxQe
http://paperpile.com/b/VpWBXd/dAxQe
http://paperpile.com/b/VpWBXd/YYpT
http://paperpile.com/b/VpWBXd/YYpT
http://paperpile.com/b/VpWBXd/lDlHE


Classification of gene signatures for their information value and functional redundancy. NPJ Syst
Biol Appl 4: 2

Cappelletti V, Hauser T, Piazza I, Pepelnjak M, Malinovska L, Fuhrer T, Li Y, Dörig C, Boersema P,
Gillet L, et al (2021) Dynamic 3D proteomes reveal protein functional alterations at high
resolution in situ. Cell 184: 545–559.e22

Casado P, Rodriguez-Prados J-C, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S & Cutillas PR
(2013) Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling
pathway activation in leukemia cells. Sci Signal 6: rs6

Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD & Sander C
(2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39:
D685–90

Chen B, Fan W, Liu J & Wu F-X (2014) Identifying protein complexes and functional modules--from
static PPI networks to dynamic PPI networks. Brief Bioinform 15: 177–194

Chen L-L & Xiong Y (2020) Tumour metabolites hinder DNA repair. Nature
doi:10.1038/d41586-020-01569-1 [PREPRINT]

Cocetta V, Ragazzi E & Montopoli M (2020) Links between cancer metabolism and cisplatin
resistance. Int Rev Cell Mol Biol 354: 107–164

Drake JM, Paull EO, Graham NA, Lee JK, Smith BA, Titz B, Stoyanova T, Faltermeier CM,
Uzunangelov V, Carlin DE, et al (2016) Phosphoproteome Integration Reveals Patient-Specific
Networks in Prostate Cancer. Cell 166: 1041–1054

Dugourd A, Kuppe C, Sciacovelli M, Gjerga E, Gabor A, Emdal KB, Vieira V, Bekker-Jensen DB,
Kranz J, Bindels EMJ, et al (2021) Causal integration of multi-omics data with prior knowledge to
generate mechanistic hypotheses. Mol Syst Biol 17: e9730

Dugourd A & Saez-Rodriguez J (2019a) Footprint-based functional analysis of multi-omic data.
Current Opinion in Systems Biology

Dugourd A & Saez-Rodriguez J (2019b) Footprint-based functional analysis of multiomic data. Current
Opinion in Systems Biology 15: 82–90

Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, Lerman JA, Lechner A, Sastry A, Bordbar A,
et al (2016) Multi-omic data integration enables discovery of hidden biological regularities. Nat
Commun 7: 13091

Emmanouilidi A & Falasca M (2017) Targeting PDK1 for Chemosensitization of Cancer Cells. Cancers
9

Engers R, Mrzyk S, Springer E, Fabbro D, Weissgerber G, Gernharz CD & Gabbert HE (2000) Protein
kinase C in human renal cell carcinomas: role in invasion and differential isoenzyme expression.
Br J Cancer 82: 1063–1069

Ewald JC, Matt T & Zamboni N (2013) The integrated response of primary metabolites to gene
deletions and the environment. Mol Biosyst 9: 440–446

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger
F, May B, et al (2018) The Reactome Pathway Knowledgebase. Nucleic Acids Res 46:
D649–D655

Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D & Saez-Rodriguez J (2019) Benchmark and
integration of resources for the estimation of human transcription factor activities. Genome Res
29: 1363–1375

Garcia-Alonso L, Ibrahim MM, Turei D & Saez-Rodriguez J (2018a) Benchmark and integration of

72

http://paperpile.com/b/VpWBXd/lDlHE
http://paperpile.com/b/VpWBXd/lDlHE
http://paperpile.com/b/VpWBXd/6kza
http://paperpile.com/b/VpWBXd/6kza
http://paperpile.com/b/VpWBXd/6kza
http://paperpile.com/b/VpWBXd/2NC1m
http://paperpile.com/b/VpWBXd/2NC1m
http://paperpile.com/b/VpWBXd/2NC1m
http://paperpile.com/b/VpWBXd/LtIu5
http://paperpile.com/b/VpWBXd/LtIu5
http://paperpile.com/b/VpWBXd/LtIu5
http://paperpile.com/b/VpWBXd/JyXqX
http://paperpile.com/b/VpWBXd/JyXqX
http://paperpile.com/b/VpWBXd/ZkWV
http://paperpile.com/b/VpWBXd/ZkWV
http://dx.doi.org/10.1038/d41586-020-01569-1
http://paperpile.com/b/VpWBXd/ZkWV
http://paperpile.com/b/VpWBXd/e3vz
http://paperpile.com/b/VpWBXd/e3vz
http://paperpile.com/b/VpWBXd/HPtxi
http://paperpile.com/b/VpWBXd/HPtxi
http://paperpile.com/b/VpWBXd/HPtxi
http://paperpile.com/b/VpWBXd/DAd7
http://paperpile.com/b/VpWBXd/DAd7
http://paperpile.com/b/VpWBXd/DAd7
http://paperpile.com/b/VpWBXd/hwOh
http://paperpile.com/b/VpWBXd/hwOh
http://paperpile.com/b/VpWBXd/6rVC2
http://paperpile.com/b/VpWBXd/6rVC2
http://paperpile.com/b/VpWBXd/6fhIv
http://paperpile.com/b/VpWBXd/6fhIv
http://paperpile.com/b/VpWBXd/6fhIv
http://paperpile.com/b/VpWBXd/vwtIm
http://paperpile.com/b/VpWBXd/vwtIm
http://paperpile.com/b/VpWBXd/iN3SE
http://paperpile.com/b/VpWBXd/iN3SE
http://paperpile.com/b/VpWBXd/iN3SE
http://paperpile.com/b/VpWBXd/ZMCq
http://paperpile.com/b/VpWBXd/ZMCq
http://paperpile.com/b/VpWBXd/QCa6r
http://paperpile.com/b/VpWBXd/QCa6r
http://paperpile.com/b/VpWBXd/QCa6r
http://paperpile.com/b/VpWBXd/yDPPX
http://paperpile.com/b/VpWBXd/yDPPX
http://paperpile.com/b/VpWBXd/yDPPX
http://paperpile.com/b/VpWBXd/ZDWUp


resources for the estimation of human transcription factor activities. bioRxiv: 337915

Garcia-Alonso L, Iorio F, Matchan A, Fonseca N, Jaaks P, Peat G, Pignatelli M, Falcone F, Benes CH,
Dunham I, et al (2018b) Transcription Factor Activities Enhance Markers of Drug Sensitivity in
Cancer. Cancer Res 78: 769–780

Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, Saez-Rodriguez J, O’Neill JS,
Szabadkai G, Minczuk M, et al (2018) NADH Shuttling Couples Cytosolic Reductive
Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Mol Cell 69:
581–593.e7

Gleitz HFE, Dugourd AJF, Leimkühler NB, Snoeren IAM, Fuchs SNR, Menzel S, Ziegler S, Kröger N,
Triviai I, Büsche G, et al (2020) Increased CXCL4 expression in hematopoietic cells links
inflammation and progression of bone marrow fibrosis in MPN. Blood 136: 2051–2064

Gonçalves E, Raguz Nakic Z, Zampieri M, Wagih O, Ochoa D, Sauer U, Beltrao P & Saez-Rodriguez
J (2017) Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism
in Yeast. PLoS Comput Biol 13: e1005297

Gonçalves E, Sciacovelli M, Costa ASH, Tran MGB, Johnson TI, Machado D, Frezza C &
Saez-Rodriguez J (2018) Post-translational regulation of metabolism in fumarate hydratase
deficient cancer cells. Metab Eng 45: 149–157

Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, et al (2018) TRRUST
v2: an expanded reference database of human and mouse transcriptional regulatory interactions.
Nucleic Acids Res 46: D380–D386

Hernandez-Armenta C, Ochoa D, Gonçalves E, Saez-Rodriguez J & Beltrao P (2017) Benchmarking
substrate-based kinase activity inference using phosphoproteomic data. Bioinformatics 33:
1845–1851

Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP, Mereu E, Joughin BA, Stegle O,
Lauffenburger DA, Heyn H, et al (2020) Robustness and applicability of transcription factor and
pathway analysis tools on single-cell RNA-seq data. Genome Biol 21: 36

Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V & Sullivan M
(2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of
experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res
40: D261–70

Horn H, Schoof EM, Kim J, Robin X, Miller ML, Diella F, Palma A, Cesareni G, Jensen LJ & Linding R
(2014) KinomeXplorer: an integrated platform for kinome biology studies. Nat Methods 11:
603–604

Huang DW, Sherman BT & Lempicki RA (2008) Systematic and integrative analysis of large gene lists
using DAVID bioinformatics resources. Nat Protoc 4: 44

Huan T, Palermo A, Ivanisevic J, Rinehart D, Edler D, Phommavongsay T, Benton HP, Guijas C,
Domingo-Almenara X, Warth B, et al (2018) Autonomous Multimodal Metabolomics Data
Integration for Comprehensive Pathway Analysis and Systems Biology. Anal Chem 90:
8396–8403

Huber W, von Heydebreck A, Sültmann H, Poustka A & Vingron M (2002) Variance stabilization
applied to microarray data calibration and to the quantification of differential expression.
Bioinformatics 18 Suppl 1: S96–104

Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Gonçalves E,
Barthorpe S, Lightfoot H, et al (2016) A Landscape of Pharmacogenomic Interactions in Cancer.
Cell 166: 740–754

73

http://paperpile.com/b/VpWBXd/ZDWUp
http://paperpile.com/b/VpWBXd/I2ANi
http://paperpile.com/b/VpWBXd/I2ANi
http://paperpile.com/b/VpWBXd/I2ANi
http://paperpile.com/b/VpWBXd/oCwlm
http://paperpile.com/b/VpWBXd/oCwlm
http://paperpile.com/b/VpWBXd/oCwlm
http://paperpile.com/b/VpWBXd/oCwlm
http://paperpile.com/b/VpWBXd/Ycub
http://paperpile.com/b/VpWBXd/Ycub
http://paperpile.com/b/VpWBXd/Ycub
http://paperpile.com/b/VpWBXd/GSMnV
http://paperpile.com/b/VpWBXd/GSMnV
http://paperpile.com/b/VpWBXd/GSMnV
http://paperpile.com/b/VpWBXd/VIkxJ
http://paperpile.com/b/VpWBXd/VIkxJ
http://paperpile.com/b/VpWBXd/VIkxJ
http://paperpile.com/b/VpWBXd/sC1tN
http://paperpile.com/b/VpWBXd/sC1tN
http://paperpile.com/b/VpWBXd/sC1tN
http://paperpile.com/b/VpWBXd/hO49p
http://paperpile.com/b/VpWBXd/hO49p
http://paperpile.com/b/VpWBXd/hO49p
http://paperpile.com/b/VpWBXd/xm979
http://paperpile.com/b/VpWBXd/xm979
http://paperpile.com/b/VpWBXd/xm979
http://paperpile.com/b/VpWBXd/GMKvI
http://paperpile.com/b/VpWBXd/GMKvI
http://paperpile.com/b/VpWBXd/GMKvI
http://paperpile.com/b/VpWBXd/GMKvI
http://paperpile.com/b/VpWBXd/cfWPq
http://paperpile.com/b/VpWBXd/cfWPq
http://paperpile.com/b/VpWBXd/cfWPq
http://paperpile.com/b/VpWBXd/ds15N
http://paperpile.com/b/VpWBXd/ds15N
http://paperpile.com/b/VpWBXd/fvtrM
http://paperpile.com/b/VpWBXd/fvtrM
http://paperpile.com/b/VpWBXd/fvtrM
http://paperpile.com/b/VpWBXd/fvtrM
http://paperpile.com/b/VpWBXd/vaLsj
http://paperpile.com/b/VpWBXd/vaLsj
http://paperpile.com/b/VpWBXd/vaLsj
http://paperpile.com/b/VpWBXd/PIgfI
http://paperpile.com/b/VpWBXd/PIgfI
http://paperpile.com/b/VpWBXd/PIgfI


Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS & Kaelin WG Jr
(2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for
O2 sensing. Science 292: 464–468

Jaakkola P, Mole DR, -M. Tian Y, Wilson MI, Gielbert J, Gaskell SJ, v. Kriegsheim A, Hebestreit HF,
Mukherji M, Schofield CJ, et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau
Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science 292: 468–472
doi:10.1126/science.1059796 [PREPRINT]

Jelinek D & Wu X (2012) Faculty of 1000 evaluation for The Cancer Cell Line Encyclopedia enables
predictive modelling of anticancer drug sensitivity. F1000 - Post-publication peer review of the
biomedical literature doi:10.3410/f.14264142.15777309 [PREPRINT]

Jeske L, Placzek S, Schomburg I, Chang A & Schomburg D (2019) BRENDA in 2019: a European
ELIXIR core data resource. Nucleic Acids Res 47: D542–D549

Kanehisa M & Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res
28: 27–30

Kawata K, Hatano A, Yugi K, Kubota H, Sano T, Fujii M, Tomizawa Y, Kokaji T, Tanaka KY, Uda S, et
al (2018) Trans-omic Analysis Reveals Selective Responses to Induced and Basal Insulin across
Signaling, Transcriptional, and Metabolic Networks. iScience 7: 212–229

Kharma B, Baba T, Matsumura N, Kang HS, Hamanishi J, Murakami R, McConechy MM, Leung S,
Yamaguchi K, Hosoe Y, et al (2014) STAT1 drives tumor progression in serous papillary
endometrial cancer. Cancer Res 74: 6519–6530

Kim S-Y & Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics
6: 144

Kiparissides A & Hatzimanikatis V (2017) Thermodynamics-based Metabolite Sensitivity Analysis in
metabolic networks. Metab Eng 39: 117–127

Köksal AS, Beck K, Cronin DR, McKenna A, Camp ND, Srivastava S, MacGilvray ME, Bodík R,
Wolf-Yadlin A, Fraenkel E, et al (2018) Synthesizing Signaling Pathways from Temporal
Phosphoproteomic Data. Cell Rep 24: 3607–3618

Krawczenko A, Bielawska-Pohl A, Wojtowicz K, Jura R, Paprocka M, Wojdat E, Kozłowska U,
Klimczak A, Grillon C, Kieda C, et al (2017) Expression and activity of multidrug resistance
proteins in mature endothelial cells and their precursors: A challenging correlation. PLoS One 12:
e0172371

Krug K, Mertins P, Zhang B, Hornbeck P, Raju R, Ahmad R, Szucs M, Mundt F, Forestier D,
Jane-Valbuena J, et al (2018) A curated resource for phosphosite-specific signature analysis. Mol
Cell Proteomics

Kuehne A, Mayr U, Sévin DC, Claassen M & Zamboni N (2017) Metabolic network segmentation: A
probabilistic graphical modeling approach to identify the sites and sequential order of metabolic
regulation from non-targeted metabolomics data. PLoS Comput Biol 13: e1005577

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL,
Jagodnik KM, Lachmann A, et al (2016) Enrichr: a comprehensive gene set enrichment analysis
web server 2016 update. Nucleic Acids Res 44: W90–7

Lachmann A & Ma’ayan A (2009) KEA: kinase enrichment analysis. Bioinformatics 25: 684–686

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P & Mesirov JP (2011)
Molecular signatures database (MSigDB) 3.0. Bioinformatics 27: 1739–1740

Lim S, Lee S, Jung I, Rhee S & Kim S (2018) Comprehensive and critical evaluation of individualized

74

http://paperpile.com/b/VpWBXd/hADJV
http://paperpile.com/b/VpWBXd/hADJV
http://paperpile.com/b/VpWBXd/hADJV
http://paperpile.com/b/VpWBXd/YD255
http://paperpile.com/b/VpWBXd/YD255
http://paperpile.com/b/VpWBXd/YD255
http://paperpile.com/b/VpWBXd/YD255
http://dx.doi.org/10.1126/science.1059796
http://paperpile.com/b/VpWBXd/YD255
http://paperpile.com/b/VpWBXd/2NQxX
http://paperpile.com/b/VpWBXd/2NQxX
http://paperpile.com/b/VpWBXd/2NQxX
http://dx.doi.org/10.3410/f.14264142.15777309
http://paperpile.com/b/VpWBXd/2NQxX
http://paperpile.com/b/VpWBXd/i6fjt
http://paperpile.com/b/VpWBXd/i6fjt
http://paperpile.com/b/VpWBXd/OV84p
http://paperpile.com/b/VpWBXd/OV84p
http://paperpile.com/b/VpWBXd/hN8Ms
http://paperpile.com/b/VpWBXd/hN8Ms
http://paperpile.com/b/VpWBXd/hN8Ms
http://paperpile.com/b/VpWBXd/TzfJD
http://paperpile.com/b/VpWBXd/TzfJD
http://paperpile.com/b/VpWBXd/TzfJD
http://paperpile.com/b/VpWBXd/R4B32
http://paperpile.com/b/VpWBXd/R4B32
http://paperpile.com/b/VpWBXd/TQB7
http://paperpile.com/b/VpWBXd/TQB7
http://paperpile.com/b/VpWBXd/HZl5D
http://paperpile.com/b/VpWBXd/HZl5D
http://paperpile.com/b/VpWBXd/HZl5D
http://paperpile.com/b/VpWBXd/U6Lu6
http://paperpile.com/b/VpWBXd/U6Lu6
http://paperpile.com/b/VpWBXd/U6Lu6
http://paperpile.com/b/VpWBXd/U6Lu6
http://paperpile.com/b/VpWBXd/Emdvf
http://paperpile.com/b/VpWBXd/Emdvf
http://paperpile.com/b/VpWBXd/Emdvf
http://paperpile.com/b/VpWBXd/QEIn
http://paperpile.com/b/VpWBXd/QEIn
http://paperpile.com/b/VpWBXd/QEIn
http://paperpile.com/b/VpWBXd/0UKMw
http://paperpile.com/b/VpWBXd/0UKMw
http://paperpile.com/b/VpWBXd/0UKMw
http://paperpile.com/b/VpWBXd/U2M0b
http://paperpile.com/b/VpWBXd/gWsQJ
http://paperpile.com/b/VpWBXd/gWsQJ
http://paperpile.com/b/VpWBXd/Nqgvl


pathway activity measurement tools on pan-cancer data. Brief Bioinform

Liu A, Trairatphisan P, Gjerga E, Didangelos A, Barratt J & Saez-Rodriguez J (2019a) From
expression footprints to causal pathways: contextualizing large signaling networks with
CARNIVAL. NPJ Syst Biol Appl 5: 40

Liu W, Payne SH, Ma S & Fenyö D (2019b) Extracting Pathway-level Signatures from Proteogenomic
Data in Breast Cancer Using Independent Component Analysis. Mol Cell Proteomics 18:
S169–S182

Lucas B, Grigo K, Erdmann S, Lausen J, Klein-Hitpass L & Ryffel GU (2005) HNF4 α reduces
proliferation of kidney cells and affects genes deregulated in renal cell carcinoma. Oncogene 24:
6418–6431

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull
M, Hornischer K, et al (2006) TRANSFAC® and its module TRANSCompel®: transcriptional gene
regulation in eukaryotes. Nucleic Acids Res 34: D108–D110

Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW,
Maher ER & Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible
factors for oxygen-dependent proteolysis. Nature 399: 271–275

Melas IN, Sakellaropoulos T, Iorio F, Alexopoulos LG, Loh W-Y, Lauffenburger DA, Saez-Rodriguez J
& Bai JPF (2015) Identification of drug-specific pathways based on gene expression data:
application to drug induced lung injury. Integr Biol 7: 904–920

Miryala SK, Anbarasu A & Ramaiah S (2018) Discerning molecular interactions: A comprehensive
review on biomolecular interaction databases and network analysis tools. Gene 642: 84–94

Network TCGAR & The Cancer Genome Atlas Research Network (2013) Comprehensive molecular
characterization of clear cell renal cell carcinoma. Nature 499: 43–49 doi:10.1038/nature12222
[PREPRINT]

Osmanbeyoglu HU, Toska E, Chan C, Baselga J & Leslie CS (2017) Pancancer modelling predicts
the context-specific impact of somatic mutations on transcriptional programs. Nat Commun 8:
14249

Pandey N, Lanke V & Vinod PK (2020) Network-based metabolic characterization of renal cell
carcinoma. Sci Rep 10: 5955

Parikh JR, Klinger B, Xia Y, Marto JA & Blüthgen N (2010) Discovering causal signaling pathways
through gene-expression patterns. Nucleic Acids Res 38: W109–17

Paull EO, Carlin DE, Niepel M, Sorger PK, Haussler D & Stuart JM (2013) Discovering causal
pathways linking genomic events to transcriptional states using Tied Diffusion Through
Interacting Events (TieDIE). Bioinformatics 29: 2757–2764

Pirhaji L, Milani P, Leidl M, Curran T, Avila-Pacheco J, Clish CB, White FM, Saghatelian A & Fraenkel
E (2016) Revealing disease-associated pathways by network integration of untargeted
metabolomics. Nat Methods 13: 770–776

Ramana CV, Grammatikakis N, Chernov M, Nguyen H, Goh KC, Williams BRG & Stark GR (2000)
Regulation of c-myc expression by IFN-γ through Stat1-dependent and -independent pathways.
The EMBO Journal 19: 263–272 doi:10.1093/emboj/19.2.263 [PREPRINT]

Reyna MA, Leiserson MDM & Raphael BJ (2018) Hierarchical HotNet: identifying hierarchies of
altered subnetworks. Bioinformatics 34: i972–i980

Richard CL, Tan EY & Blay J (2006) Adenosine upregulates CXCR4 and enhances the proliferative
and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int J Cancer 119:

75

http://paperpile.com/b/VpWBXd/Nqgvl
http://paperpile.com/b/VpWBXd/gk8zt
http://paperpile.com/b/VpWBXd/gk8zt
http://paperpile.com/b/VpWBXd/gk8zt
http://paperpile.com/b/VpWBXd/vBeMP
http://paperpile.com/b/VpWBXd/vBeMP
http://paperpile.com/b/VpWBXd/vBeMP
http://paperpile.com/b/VpWBXd/GpCkM
http://paperpile.com/b/VpWBXd/GpCkM
http://paperpile.com/b/VpWBXd/GpCkM
http://paperpile.com/b/VpWBXd/0dR6t
http://paperpile.com/b/VpWBXd/0dR6t
http://paperpile.com/b/VpWBXd/0dR6t
http://paperpile.com/b/VpWBXd/Sp2fH
http://paperpile.com/b/VpWBXd/Sp2fH
http://paperpile.com/b/VpWBXd/Sp2fH
http://paperpile.com/b/VpWBXd/Ygo1j
http://paperpile.com/b/VpWBXd/Ygo1j
http://paperpile.com/b/VpWBXd/Ygo1j
http://paperpile.com/b/VpWBXd/4ca8R
http://paperpile.com/b/VpWBXd/4ca8R
http://paperpile.com/b/VpWBXd/VAEej
http://paperpile.com/b/VpWBXd/VAEej
http://dx.doi.org/10.1038/nature12222
http://paperpile.com/b/VpWBXd/VAEej
http://paperpile.com/b/VpWBXd/VAEej
http://paperpile.com/b/VpWBXd/gbS8F
http://paperpile.com/b/VpWBXd/gbS8F
http://paperpile.com/b/VpWBXd/gbS8F
http://paperpile.com/b/VpWBXd/I8Yt8
http://paperpile.com/b/VpWBXd/I8Yt8
http://paperpile.com/b/VpWBXd/yiEnC
http://paperpile.com/b/VpWBXd/yiEnC
http://paperpile.com/b/VpWBXd/ZnglY
http://paperpile.com/b/VpWBXd/ZnglY
http://paperpile.com/b/VpWBXd/ZnglY
http://paperpile.com/b/VpWBXd/XpTyX
http://paperpile.com/b/VpWBXd/XpTyX
http://paperpile.com/b/VpWBXd/XpTyX
http://paperpile.com/b/VpWBXd/KkVqK
http://paperpile.com/b/VpWBXd/KkVqK
http://paperpile.com/b/VpWBXd/KkVqK
http://dx.doi.org/10.1093/emboj/19.2.263
http://paperpile.com/b/VpWBXd/KkVqK
http://paperpile.com/b/VpWBXd/n6z60
http://paperpile.com/b/VpWBXd/n6z60
http://paperpile.com/b/VpWBXd/wk8fq
http://paperpile.com/b/VpWBXd/wk8fq


2044–2053

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W & Smyth GK (2015) limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43: e47

Rodrigues P, Patel SA, Harewood L & Olan I (2018) NF-κB–Dependent Lymphoid Enhancer Co-option
Promotes Renal Carcinoma Metastasis. Cancer Discov

Rolland-Turner M, Goretti E, Bousquenaud M, Léonard F, Nicolas C, Zhang L, Maskali F, Marie P-Y,
Devaux Y & Wagner D (2013) Adenosine stimulates the migration of human endothelial
progenitor cells. Role of CXCR4 and microRNA-150. PLoS One 8: e54135

Sayed-Ahmed MM (2010) Role of carnitine in cancer chemotherapy-induced multiple organ toxicity.
Saudi Pharm J 18: 195–206

Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, Bindels EM,
Heckl D, Büsche G, Fleck D, et al (2017) Gli1+Mesenchymal Stromal Cells Are a Key Driver of
Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell 20:
785–800.e8

Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, Garnett MJ, Blüthgen N &
Saez-Rodriguez J (2018) Perturbation-response genes reveal signaling footprints in cancer gene
expression. Nat Commun 9: 20

Schwahn K & Nikoloski Z (2018) Data Reduction Approaches for Dissecting Transcriptional Effects on
Metabolism. Front Plant Sci 9: 538

Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E, Drubbel AV, Theobald
SJ, Abbo SR, Tran MGB, et al (2016) Fumarate is an epigenetic modifier that elicits
epithelial-to-mesenchymal transition. Nature 537: 544–547

Sharifi-Noghabi H, Zolotareva O, Collins CC & Ester M (2019) MOLI: multi-omics late integration with
deep neural networks for drug response prediction. Bioinformatics 35: i501–i509

Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ & Cao K-AL (2019) DIABLO: an
integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics
35: 3055–3062 doi:10.1093/bioinformatics/bty1054 [PREPRINT]

Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA,
Asiedu JK, et al (2017) A Next Generation Connectivity Map: L1000 Platform and the First
1,000,000 Profiles. Cell 171: 1437–1452.e17

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy
SL, Golub TR, Lander ES, et al (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:
15545–15550

Sulkowski PL, Oeck S, Dow J, Economos NG, Mirfakhraie L, Liu Y, Noronha K, Bao X, Li J, Shuch
BM, et al (2020) Oncometabolites suppress DNA repair by disrupting local chromatin signalling.
Nature doi:10.1038/s41586-020-2363-0 [PREPRINT]

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A,
Santos A, Tsafou KP, et al (2015) STRING v10: protein–protein interaction networks, integrated
over the tree of life. Nucleic Acids Res 43: D447–D452

Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P & Kuhn M (2016) STITCH 5: augmenting
protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:
D380–D384

Tang A, Gao K, Chu L, Zhang R, Yang J & Zheng J (2017) Aurora kinases: novel therapy targets in

76

http://paperpile.com/b/VpWBXd/wk8fq
http://paperpile.com/b/VpWBXd/KK4Ox
http://paperpile.com/b/VpWBXd/KK4Ox
http://paperpile.com/b/VpWBXd/ELILK
http://paperpile.com/b/VpWBXd/ELILK
http://paperpile.com/b/VpWBXd/xxKBE
http://paperpile.com/b/VpWBXd/xxKBE
http://paperpile.com/b/VpWBXd/xxKBE
http://paperpile.com/b/VpWBXd/KeD3y
http://paperpile.com/b/VpWBXd/KeD3y
http://paperpile.com/b/VpWBXd/uG2DO
http://paperpile.com/b/VpWBXd/uG2DO
http://paperpile.com/b/VpWBXd/uG2DO
http://paperpile.com/b/VpWBXd/uG2DO
http://paperpile.com/b/VpWBXd/QKdEk
http://paperpile.com/b/VpWBXd/QKdEk
http://paperpile.com/b/VpWBXd/QKdEk
http://paperpile.com/b/VpWBXd/m3RIj
http://paperpile.com/b/VpWBXd/m3RIj
http://paperpile.com/b/VpWBXd/RZSAk
http://paperpile.com/b/VpWBXd/RZSAk
http://paperpile.com/b/VpWBXd/RZSAk
http://paperpile.com/b/VpWBXd/ezVAO
http://paperpile.com/b/VpWBXd/ezVAO
http://paperpile.com/b/VpWBXd/qGLo5
http://paperpile.com/b/VpWBXd/qGLo5
http://paperpile.com/b/VpWBXd/qGLo5
http://dx.doi.org/10.1093/bioinformatics/bty1054
http://paperpile.com/b/VpWBXd/qGLo5
http://paperpile.com/b/VpWBXd/f0u81
http://paperpile.com/b/VpWBXd/f0u81
http://paperpile.com/b/VpWBXd/f0u81
http://paperpile.com/b/VpWBXd/yCdiv
http://paperpile.com/b/VpWBXd/yCdiv
http://paperpile.com/b/VpWBXd/yCdiv
http://paperpile.com/b/VpWBXd/yCdiv
http://paperpile.com/b/VpWBXd/H3AC
http://paperpile.com/b/VpWBXd/H3AC
http://paperpile.com/b/VpWBXd/H3AC
http://dx.doi.org/10.1038/s41586-020-2363-0
http://paperpile.com/b/VpWBXd/H3AC
http://paperpile.com/b/VpWBXd/tYW94
http://paperpile.com/b/VpWBXd/tYW94
http://paperpile.com/b/VpWBXd/tYW94
http://paperpile.com/b/VpWBXd/nj1mO
http://paperpile.com/b/VpWBXd/nj1mO
http://paperpile.com/b/VpWBXd/nj1mO
http://paperpile.com/b/VpWBXd/j6jMj


cancers. Oncotarget 8: 23937–23954

Tenenhaus A, Philippe C, Guillemot V, Le Cao K-A, Grill J & Frouin V (2014) Variable selection for
generalized canonical correlation analysis. Biostatistics 15: 569–583

Tényi Á, de Atauri P, Gomez-Cabrero D, Cano I, Clarke K, Falciani F, Cascante M, Roca J & Maier D
(2016) ChainRank, a chain prioritisation method for contextualisation of biological networks. BMC
Bioinformatics 17: 17

Terfve CDA, Wilkes EH, Casado P, Cutillas PR & Saez-Rodriguez J (2015) Large-scale models of
signal propagation in human cells derived from discovery phosphoproteomic data. Nat Commun
6: 8033

Türei D, Korcsmáros T & Saez-Rodriguez J (2016) OmniPath: guidelines and gateway for
literature-curated signaling pathway resources. Nat Methods 13: 966–967

Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et
al (2017) A pathology atlas of the human cancer transcriptome. Science 357

Välikangas T, Suomi T & Elo LL (2018) A systematic evaluation of normalization methods in
quantitative label-free proteomics. Brief Bioinform 19: 1–11

Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, Viale A, Reuter VE, Hsieh JJ-D, Scandura JM
& Massagué J (2013) Epigenetic expansion of VHL-HIF signal output drives multiorgan
metastasis in renal cancer. Nat Med 19: 50–56

Vitrinel B, Koh HWL, Kar FM, Maity S, Rendleman J, Choi H & Vogel C (2019) Exploiting inter-data
relationships in next-generation proteomics analysis. Mol Cell Proteomics

Wan B, Huang Y, Liu B, Lu L & Lv C (2019) AURKB: a promising biomarker in clear cell renal cell
carcinoma. PeerJ 7: e7718

Wang K, Sun Y, Tao W, Fei X & Chang C (2017) Androgen receptor (AR) promotes clear cell renal cell
carcinoma (ccRCC) migration and invasion via altering the
circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394: 1–12

Wiredja DD, Koyutürk M & Chance MR (2017) The KSEA App: a web-based tool for kinase activity
inference from quantitative phosphoproteomics. Bioinformatics

Yang P, Patrick E, Humphrey SJ, Ghazanfar S, James DE, Jothi R & Yang JYH (2016) KinasePA:
Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis.
Proteomics 16: 1868–1871

Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, Jeon M, Kang J & Tan AC (2015) DSigDB: drug
signatures database for gene set analysis. Bioinformatics 31: 3069–3071

Zhao H, Leppert JT & Peehl DM (2016) A Protective Role for Androgen Receptor in Clear Cell Renal
Cell Carcinoma Based on Mining TCGA Data. PLoS One 11: e0146505

Zhou W-M, Wu G-L, Huang J, Li J-G, Hao C, He Q-M, Chen X-D, Wang G-X & Tu X-H (2019) Low
expression of PDK1 inhibits renal cell carcinoma cell proliferation, migration, invasion and
epithelial mesenchymal transition through inhibition of the PI3K-PDK1-Akt pathway. Cellular
Signalling 56: 1–14 doi:10.1016/j.cellsig.2018.11.016 [PREPRINT]

Zhu G, Liang L, Li L, Dang Q, Song W, Yeh S, He D & Chang C (2014) The expression and evaluation
of androgen receptor in human renal cell carcinoma. Urology 83: 510.e19–24

Zyla J, Marczyk M, Weiner J & Polanska J (2017) Ranking metrics in gene set enrichment analysis:
do they matter? BMC Bioinformatics 18: 256

77

http://paperpile.com/b/VpWBXd/j6jMj
http://paperpile.com/b/VpWBXd/o9Jid
http://paperpile.com/b/VpWBXd/o9Jid
http://paperpile.com/b/VpWBXd/A9OJ7
http://paperpile.com/b/VpWBXd/A9OJ7
http://paperpile.com/b/VpWBXd/A9OJ7
http://paperpile.com/b/VpWBXd/LtOWK
http://paperpile.com/b/VpWBXd/LtOWK
http://paperpile.com/b/VpWBXd/LtOWK
http://paperpile.com/b/VpWBXd/aywvi
http://paperpile.com/b/VpWBXd/aywvi
http://paperpile.com/b/VpWBXd/DSWII
http://paperpile.com/b/VpWBXd/DSWII
http://paperpile.com/b/VpWBXd/FtA4c
http://paperpile.com/b/VpWBXd/FtA4c
http://paperpile.com/b/VpWBXd/hTkx9
http://paperpile.com/b/VpWBXd/hTkx9
http://paperpile.com/b/VpWBXd/hTkx9
http://paperpile.com/b/VpWBXd/uAwr5
http://paperpile.com/b/VpWBXd/uAwr5
http://paperpile.com/b/VpWBXd/jYUz8
http://paperpile.com/b/VpWBXd/jYUz8
http://paperpile.com/b/VpWBXd/nqxWX
http://paperpile.com/b/VpWBXd/nqxWX
http://paperpile.com/b/VpWBXd/nqxWX
http://paperpile.com/b/VpWBXd/cKZRk
http://paperpile.com/b/VpWBXd/cKZRk
http://paperpile.com/b/VpWBXd/egrrT
http://paperpile.com/b/VpWBXd/egrrT
http://paperpile.com/b/VpWBXd/egrrT
http://paperpile.com/b/VpWBXd/w50h6
http://paperpile.com/b/VpWBXd/w50h6
http://paperpile.com/b/VpWBXd/iiYvt
http://paperpile.com/b/VpWBXd/iiYvt
http://paperpile.com/b/VpWBXd/eNVRS
http://paperpile.com/b/VpWBXd/eNVRS
http://paperpile.com/b/VpWBXd/eNVRS
http://paperpile.com/b/VpWBXd/eNVRS
http://dx.doi.org/10.1016/j.cellsig.2018.11.016
http://paperpile.com/b/VpWBXd/eNVRS
http://paperpile.com/b/VpWBXd/YUYGQ
http://paperpile.com/b/VpWBXd/YUYGQ
http://paperpile.com/b/VpWBXd/xgEnS
http://paperpile.com/b/VpWBXd/xgEnS

