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Summary
The dynamics of quantum fields in curved spacetime give rise to various intriguing

phenomena. Among them is the production of particles in an expanding spacetime. This
process is likely responsible for seeding the Universe’s large-scale structure, which, in
turn, causes the temperature fluctuations in the cosmic microwave background and grows
into the distribution of galaxies and galaxy clusters we observed today. In this work, we
simulate this process in an ultracold quantum gas. The simulation is based on a novel
and particularly straightforward mapping between a mass-less, free, relativistic scalar field
in a curved spacetime and the phononic excitations of a Bose-Einstein condensate. Here,
the density distribution and speed of sound of the background condensate determine the
geometry of the spacetime.

Additionally, this thesis introduces a new ultracold atom machine that creates and controls
a quasi-two-dimensional Bose-Einstein condensate of potassium-39. This experimental sys-
tem combines a high control over the condensate’s density with the possibility to dynamically
adjust the atomic interaction – and thus the speed of sound – via a broad Feshbach resonance.
We use this control to implement the two aspects of a Friedmann-Lemaître-Robertson-Walker
(FLRW) metric: spatial curvature and the expansion of space.

To demonstrate spatial curvature, we probe wave packet dynamics and show that a
harmonically trapped Bose-Einstein condensate approximates a hyperbolically curved space.

For the expansion of space, we perform a global change of the speed of sound. We realize
three different power-law expansions, corresponding to accelerated, uniform, and decelerated
expansion. For all three, we observe the emergence of fluctuations equivalent to cosmological
particle production. To characterize these fluctuations, we compute their correlation function
and power spectrum. In the time evolution of these quantities after the expansion, we identify
an intriguing feature. It is connected to a complex phase of the produced quantum state and
shows a clear dependence on the expansion history. Understanding if and how such a feature
can be used in real cosmological observations is an intriguing prospect for future research.

Additionally, a good agreement between our experimental results and analytical predic-
tions confirms that our experimental system simulates the dynamics of a quantum field in a
curved and expanding space. This is the starting point for the future investigation of more
complex spacetime geometries.





Zusammenfassung
Die Dynamik von Quantenfeldern in einer gekrümmten Raumzeit führt zu einer Reihe

faszinierender Phänomene, darunter die Erzeugung von Teilchen in einer expandierenden
Raumzeit. Im frühen Universum erzeugt dieser Prozess vermutlich den Ausgangspunkt
der großskaligen Strukturen, die wir heutzutage in den Temperaturschwankungen des kos-
mischen Mikrowellenhintergrunds und der Verteilung der Galaxien und Galaxienhaufen
beobachten. In dieser Arbeit simulieren wir einen solchen Prozess in einem ultrakalten
Quantengas. Dies basiert auf einer neuartigen und besonders direkten Transformation zwis-
chen einem Masse-losen, freien, relativistischen Skalarfeld in einer gekrümmten Raumzeit
und den phononischen Anregungen eines Bose-Einstein-Kondensats. Hierbei bestimmen
Dichteverteilung und des Hintergrundkondensats die Geometrie der Raumzeit.

Diese Arbeit beginnt mit der Beschreibung eines neuen experimentellen Aufbaus,
welcher ein quasi-zweidimensionales Bose-Einstein-Kondensat aus Kalium-39 Atomen
erzeugt. Der Aufbau erlaubt eine feine Kontrolle der Kondensat-Dichte, kombiniert mit
der Möglichkeit, die atomare Wechselwirkung – und damit die Schallgeschwindigkeit –
dynamisch einzustellen. Letzteres wird durch die breite Feshbach Resonanz von Kalium-39
ermöglicht. Dies nutzen wir, um die beiden Aspekte einer Friedmann-Lemaître-Robertson-
Walker (FLRW)-Metrik zu simulieren: räumliche Krümmung und die zeitliche Ausdehnung
des Raums.

Für die räumliche Krümmung untersuchen wir die Dynamik von Wellenpaketen und
können zeigen, dass ein Kondensat in einer harmonischen Falle näherungsweise einen
hyperbolisch gekrümmten Raum implementiert.

Die Ausdehnung des Raumes erreichen wir mit einer globalen Änderung der Schall-
geschwindigkeit. Für drei verschiedene Expansions-Szenarien (beschleunigt, gleichmäßig
und abgebremst) beobachten wir das Auftreten von Fluktuationen, die der kosmologis-
chen Teilchenproduktion entsprechen. Wir charakterisieren die Fluktuationen durch ihre
Korrelations-Funktion sowie ihr Leistungsspektrum. In der Zeitentwicklung dieser Größen
nach der Expansion identifizieren wir ein besonderes Merkmal. Dieses ist mit einer
komplexen Phase des erzeugten Quantenzustands verbunden und zeigt eine deutliche Ab-
hängigkeit von der Expansionsgeschichte. Ob und wie ein solches Merkmal für reale
kosmologischen Beobachtungen genutzt werden kann, ist eine faszinierende Fragestellung
für zukünftige Forschung.

Darüber hinaus bestätigt die gute Übereinstimmung unserer Messergebnisse mit ana-
lytischen Vorhersagen, dass unser experimentelles System in der Tat die Dynamik eines
Quantenfeldes in einer gekrümmten und expandierenden Raumzeit simuliert. Dies dient als
Ausgangspunkt für die Untersuchung komplexerer Raumzeit-Geometrien in der Zukunft.
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Chapter1
Introduction

Quantum field theory and general relativity are two fundamental pillars of mod-
ern physics. The first describes a vast variety of quantum processes, containing
phenomena as strange and wonderful as entanglement or the fluctuations of the
vacuum. The latter is an elegant formulation of gravity as the curvature of spacetime.
While considerable effort is being put into combining these into a comprehensive
theory of quantum gravity, this has not yet been achieved.

In semi-classical approaches, the dynamics of quantum fields are evaluated on
a curved spacetime. So far, this approach has led to the prediction of Hawking
radiation, emitted at the horizon of a black hole [1, 2], and Unruh radiation detected
by an accelerated observer. In the context of cosmology, the expansion of spacetime
itself leads to the creation of particles [3, 4]. During inflation, a phase of rapid
expansion shortly after the Big-Bang, this process likely seeded the large-scale
structure of our Universe. This structures can be seen in the temperature fluctuations
of the cosmic microwave background and grow into galaxy clusters and the cosmic
web in the more recent Universe [5]. To better understand the phenomenon of
cosmological particle creation and the interplay between quantum fields and curved
spacetimes in general, an experimental approach to this field of physics is highly
desirable. The control over spacetime itself is far beyond our experimental reach
since it is notoriously stiff, and huge masses or energies are necessary to curve it.
However, the dynamics of quantum fields in curved spacetimes can be simulated in
experimentally accessible model systems.

In 1981, Unruh [6] realized that the same mathematical model describes both the
dynamics of a scalar field in a curved metric and wave excitations in a classical fluid
with a distinctive flow pattern. He proposed to use this analogy for the simulation
of a black hole event horizon with water. The idea lay dormant for almost ten
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Chapter 1. Introduction

years until it was picked up and developed further [7–9]; and it took almost another
ten years until a community had formed and the idea gathered momentum under
the name of analog gravity. More exotic fluids or fluid-like model systems were
introduced including superfluids like 4He [10, 11] and Bose-Einstein condensates in
ultra-cold atomic gases [12–15]. Thanks to impressive theoretical and experimental
developments, black hole analogs have been realized both in classical [16–18] and
superfluids [19–22], and the dynamical Casimir effect has been observed in ultracold
gases [23]. Theoretical developments are well summarized in the reviews [24, 25]
and [26] focuses on the experimental progress.

The investigation of analog expanding spacetimes in the form of Friedmann-
Lemaître-Robertson-Walker (FLRW) metrics started in 2003. The FLRW metric
describes a homogeneous and isotropic space and allows for the expansion of space
as well as spherical, flat or hyperbolic spatial curvature. Research into analog
FLRW spacetimes was sparked by progress in the ultracold atom community: the
experimental demonstration of a Feshbach resonance [27, 28]. Magnetic Feshbach
resonances change the scattering properties of atoms. They can be used to adjust
the interaction between atoms and thus the speed of sound in an ultracold atomic
gas. Control over the speed of sound, in turn, allows the simulation of an expanding
spacetime: in a cosmological setting, the distance between two points can be defined
by the duration of light propagation between those points. In an expanding space,
light needs a longer time to cross from one point to the other. The same is true if
the light becomes slower. Thus, the expansion of space is, at least mathematically,
equivalent to a decrease in the speed of light. In a model system, the speed of
light is replaced by the speed of sound. Feshbach resonances supply the necessary
experimental control to implement this idea. Many variations on an analog FLRW
metric have been explored [29–35], which differ in their mappings between the
cosmological setting and the analog system. While Feshbach resonances are by now
widely used, for example in quench experiments [36, 37], the only experimental
realizations of an FLRW metric, so far, rely instead on an expanding one-dimensional
ring-condensate [38, 39] or on a fluid of light [40].

Here, we report on the realization of an analog FLRW metric in a quasi-two
dimensional Bose-Einstein condensate of potassium-39. The expansion of space
is implemented by tuning the interaction between atoms. The second parameter
of the FLRW metric, spatial curvature, is realized via the density distribution of
the condensate. It is based on a novel and particularly direct mapping between
the dynamics of a relativist, massless, scalar field and the condensate’s phononic
excitations. The mapping was developed within our collaboration and published
in [41]. Potassium-39 was chosen for its broad Feshbach resonance, which allows
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fine experimental control of the atomic interactions. However, potassium-39 is more
difficult to cool and to condense than other atomic species.

This thesis focuses on the experimental side of implementing curved spacetimes.
It consists of four major parts: the theoretical background for understanding the BEC,
the FLRW metric, and their connection, the description of the experimental machine
that creates and controls the two-dimensional condensate, the implementation of
spatially curved geometries, and finally the realization of expanding spacetimes, and
the observation of cosmological pair creation in the condensate. The results of the
latter two parts are also published in [42].

Chapter 2 start with the mathematical description of a Bose-Einstein condensate
and its excitations. Afterward, in chapter 3, the FLRW metric for an expanding,
homogeneous, and isotropic spacetime is derived and connected with its application
to cosmology. Chapter 4 derives the acoustic metric, i.e., it maps the dynamics of the
phononic field of the condensate to those of a scalar field in the FLRW metric. The
following two chapters are dedicated to the experimental machine itself. Chapter 5
introduces the methods for trapping an atomic cloud and cooling it to degeneracy,
and chapter 6 gives a detailed description of the experimental setup. Chapter 7 takes
a closer look at spherical and hyperbolically curved spaces and their implementation
in the acoustic metric of a two-dimensional condensate. The experimental realization
of a hyperbolic space is investigated in chapter 8 by tracing the propagation of
wave packets in the condensate. Chapter 9 and chapter 10 describe the theoretical
and experimental realisation of an expanding spacetime. The theoretical part also
summarizes an analytic model for particle-pair creation in an expanding spacetime,
and the experimental part reports on the observation and analysis of this intriguing
phenomenon. Finally, chapter 11 summarizes the main results of this work and
discusses open questions and prospects for future research.
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Chapter2
Theory of Bose-Einstein

condensates

To simulate the dynamics of a quantum field in a curved spacetime, the dynamics
of the field are mapped to the phononic excitations of a Bose-Einstein condensate
(BEC). The analog metric of these excitations is connected to the sound-speed struc-
ture of the background condensate (see section 4.1). To experimentally achieve an
analog spacetime, we need to understand how shape a condensate and its excita-
tions. The purpose of this chapter is to provide this understanding. It starts with
the Thomas-Fermi approximation in section 2.1, and the reduction to a quasi-two-
dimensional BEC by ‘freezing out’ excitations along one direction in section 2.2.
This defines the properties of the background condensate. The following two sections
introduce perturbations on that background. Section 2.3 describes the Bogoliubov
approximation, defines the acoustic regime, and connects the speed of sound to the
properties of the condensate. Finally, the local density approximation is introduced
in section 2.4 which allows for a position-dependent speed of sound.

2.1 Thomas-Fermi approximation

In the limit of classical fields, the atoms of a condensate are described by a
collective wave function φ which fulfills the Gross-Pitaevskii equation

i~ ∂tφ =

(
−
~2

2m
~∇2 + V(~x) + g|φ|2

)
φ , (2.1)
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with the three-dimensional trapping potential V(~x) and the coupling g. The latter is
related to the s-wave scattering length as of the atom-atom interaction by

g =
4π~2

m
as . (2.2)

The kinetic term can be neglected for a dense cloud and a large trapping potential,
which is the Thomas Fermi approximation. In this limit, the Gross-Pitaevski equation
is solved by the ansatz

φ0 =
√

n3d(~x) exp(−iµ0t/~) . (2.3)

Inserting it into the simplified Gross-Piatevski equation yields

n3d(~x) =
µ0 − V(~x)

g
, (2.4)

where µ0 can be identified with the chemical potential. This shows the direct
dependence of the density distribution on the trap’s shape. Within the approximation,
the condensate fills the potential to the energy µ0, like water filling a bowl. Figure 2.1
illustrates this for the example of a harmonic trap in one dimension, which results
in a parabolic density profile. The distance from the center at which the density
vanishes is called the Thomas Fermi radius rT F . A real-world condensate will not
have this exact shape. The density decreases towards the edges, and the Thomas-
Fermi approximation breaks down as the kinetic term can no longer be neglected.
As a consequence, the density profile of a harmonically trapped condensate has a
parabolic density profile around the center but displays slightly broadened wings at
the edges.

2.2 Quasi two-dimensional BEC
A BEC can be reduced to quasi-two-dimensions by suppressing its excitations

of along one direction. This is achieved by tight confinement. For the confined
direction, the energy difference between the ground state and excited states is large.
If the confinement is strong enough, excited states can no longer be populated and the
dynamics of the BEC will be restricted to the remaining two dimensions. In typical
settings, the length scale of atom-atom interaction is still small compared to the
confinement. This is also the case for the experiments described in this work. Thus,
scattering processes must still be treated as three-dimensional, and the coupling g
remains unchanged. By integrating the strongly-confined direction, one can define an

6



2.3. Perturbations - Bogoliubov approximation

effective 2d-density and effective 2d-coupling λ. For a harmonic trap in z-direction
with frequency ωz, the normalized ground state wave function along that direction is

φ =
1(

πl2)1/4 exp
(
−

z2

2l2

)
, (2.5)

with the characteristic length scale l =
√
~/(mωz) of the harmonic oscillator. The

integration of the confined dimension needs to be performed on the level of the
Hamiltonian. The Hamiltonian has a standard kinetic and potential term and a
quartic interaction Hint = g φ∗φφ∗φ. While the kinetic and potential term remain
unchanged during the integration, the interaction term changes to

Hint =
g

πl2

∫
dz exp

(
−2z2/l2

)
φ∗2dφ2dφ

∗
2dφ2d = λ φ∗2dφ2dφ

∗
2dφ2d , (2.6)

where eq. (2.2) was used for the 3d-coupling g and the effective 2d-coupling was
defined as

λ = as

√
8π~3ωz/m . (2.7)

Thus, the equation of motion for φ2d is the Gross-Pitaevski equation with the coupling
g replaced by λ. In the scope of this work, we will always work in this effective 2d
description and use n = φ∗2dφ2d to denote the effective two-dimensional density.

2.3 Perturbations - Bogoliubov approximation
Perturbations on a background condensate are described in the Bogoliubov

approximation. The wave function is split into the mean-field φ0 and a complex-
valued perturbation δφ

φ = φ0 + δφ , (2.8)

which is inserted into the Gross-Pitaevski equation. Subtracting the background
solution for φ and keeping only terms up to second order in the perturbation yields
the equation

i~∂t δφ = −
~2

2m
~∇2δφ + V(~x) δφ + 2g|φ0|

2 δφ + g φ2
0 δφ

∗ . (2.9)

This is a differential equation for the perturbations which still couple to the back-
ground. It is solved by the ansatz

δφ = e−iµt/~
(
u(~x) e−iωt − v∗(~x) eiωt

)
. (2.10)
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V(x)

0 rTF

Thomas-Fermi approx:

�0 �

Bogoliubov approx:

background BEC

perturbations

x

n0(x)

0 rTF

x

Local Density approx:

locally flat density

x0

n0(x)

x0

local Bogoliubov modes

n(x)
�(x)

Bogoliubov 
dispersion

k

E = h�

E=�

k�kac

linear dispersion

Figure 2.1: Thomas-Fermi, Bogoliubov and Local Density approximation. In the
Thomas-Fermi approximation the kinetic term in the Gross-Pitaevski equation is neglected.
In this approximation, the density distribution of a condensate fills a trap up to the chemical
potential µ0. The Bogoliubov approximation describes perturbations on a homogeneous
background density. The dispersion relation of the perturbations is linear for small momenta
and quadratic for large momenta. The slope of the linear part defines the speed of sound for
phononic excitations. Characteristic momentum scales mark the transition point between
linear and quadratic regimes, like the momentum of the healing length kξ or kac. For a
non-homogeneous background, the local density approximation treats the background as
locally flat. On the flat patches, the Bogoliubov approximation is used to define a local
dispersion relation and speed of sound.
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2.3. Perturbations - Bogoliubov approximation

Note that the u and v in this chapter are not the same as the u and v in the calculations
for particle creation in chapter 9. For a constant trap potential V = const = µ − gn,
the ansatz results in two equations for the positive and negative frequency solutions
exp(±iωt), respectively(

−
~2

2m
~∇2 + gn − ~ω

)
u = gnv ,

(
−
~2

2m
~∇2 + gn + ~ω

)
v = gnu , (2.11)

where eq. (2.3) was used for the background condensate. A final ansatz u, v =

exp
(
±i~k~x

)
yields the Bogoliubov dispersion relation

~ω =

√
~2|k|2

2m

(
~2|k|2

2m
+ 2gn

)
. (2.12)

For large k, the dispersion relation is approximately quadratic

ω ≈
~k2

2m
(2.13)

and the perturbations have particle-like character. For small momenta k, the disper-
sion relation is approximately linear with

ω ≈ csk , cs =

√
gn
m

=

√
µ

m
. (2.14)

which corresponds to sound waves, i.e., collective phononic excitations with the
speed of sound cs. Accordingly, it is called the acoustic or phononic regime. To
distinguish the two cases, length and momentum scales can be defined, which mark
the position of the transition between the two. A very common one is the healing
length ξh and the corresponding momentum kξ = 1/ξh, defined via

~2

2m ξ2
h

!
= µ ⇔ ~kξ =

√
2 mcs . (2.15)

The healing length marks the position of the onset of the ´knee’ in the dispersion
relation (see Fig.2.1). A second scale is closer to the phononic regime and thus
a more secure marker for the validity of a phononic approximation. We define it
via the k-mode for which the energy in the linear dispersion equals the chemical
potential

~ωac
!
= µ ⇔ ~kac = mcs . (2.16)

This measure will be used in chapter 10 when the validity of the linear regime is
estimated for the real experiment.
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2.4 Local density approximation
The Bogoliubov approximation in the previous section assumed a constant poten-

tial and thus a homogeneous density distribution. For a BEC in an inhomogeneous
trap, excitation can be treated in the local density approximation. It assumes that
the condensate is locally sufficiently homogeneous to define a position-dependent
dispersion relation and speed of sound (see Fig 2.1). For a circularly symmetric,
quasi-two-dimensional BEC, the sound speed is given by

cs(r, ϕ) =

√
n(r, ϕ) · λ

m
. (2.17)

Using appropriate traps, the density distribution and thus the sound speed of the
condensate can be controlled. For this work, this will become important for realizing
hyperbolic spaces in the condensate.
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Chapter3
Expanding and curved spacetimes

With the properties of a Bose-Einstein condensate discussed in the previous
chapter, this chapter focuses on the metric-side of the analogy between a condensate
and a curved spacetime. It starts with the brief description of general relativity
(GR) in section 3.1 and describes which of its effects can be captured in analog
models. Section 3.2 focuses on geodesics, and section 3.3 introduces the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric of a homogeneous and isotropic space.
This metric allows for space to expand, and different types of expansion are defined
in section 3.4. A connection between this metric and cosmology is established in
section 3.5 and section 3.6 finally discusses cosmological particle production during
a process called inflation and its possible connection to our Universe. This chapter is
based on the works [5, 43–45].

3.1 General relativity and analog gravity models
The theory of general relativity connects gravity to the curvature of spacetime. It

can be summarized by two effects. First, in a curved spacetime, particles and light
propagate along generalized straight lines, the geodesics as is illustrated in fig. 3.1.
Second, the presence of matter and energy curves the spacetime according to the
Einstein equations. The interplay between both effects makes GR a formidable non-
linear theory since the dynamics of matter, and the curvature of spacetime depend
on each other and must be solved simultaneously. Analytically, this is only possible
for very few selected geometries with strong symmetry assumptions. Among them
is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric which describes a
homogeneous and isotropic space that may expand or contract. Analog systems, like
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Chapter 3. Expanding and curved spacetimes

particles and light propagate
along geodesics

geodesic equation

geodesic

Matter and energy
curve space

Einstein equations

curved space

Figure 3.1: Curvature of spacetime and particle propagation in general relativity. In
a curved space, particles and light propagate along geodesics. The matter and energy
themselves lead to the curvature of space as is described in the Einstein equations. This
leads to a back-reaction of the propagating matter on the spacetime itself. Thus, for a full
solution of general relativity, the curvature of spacetime and the propagation of matter must
be solved simultaneously.

the two-dimensional Bose-Einstein condensate considered in this work, simulate the
dynamics of a quantum field in the curved spacetime (upper arrow in fig. 3.1), but
they cannot capture the full non-linear dynamics. The back-reaction of the matter on
the geometry of spacetime, (lower arrow), is not trivially included in these analog
models [24]. For cosmological solutions, the back-reaction determines different
expansion scenarios depending on the matter and energy content of the respective
universe (see section 3.5). Therefore, in analog systems, the expansion must be
imposed manually to probe the dynamics of a quantum field during the different
scenarios.

3.2 Geodesics - propagation in curved spacetimes

A part of GR that is naturally captured in analog models is the propagation of
excitations along geodesics which can be seen as the generalization Newton’s first
law to curved space. For flat space, the law states that objects move along straight

12



3.3. Friedmann-Lemaître-Robertson-Walker metric

lines, which is mathematically formulated for one coordinate xµ as

d2xµ

dt2 = 0 . (3.1)

A straight line is a curve for which the tangent vector always points along the curve
itself. This concept is generalized to curved space by the geodesic equation

d2xµ

dτ2 + Γµσν
dxν

dτ
dxσ

dτ
= 0 , (3.2)

with τ a parameter of the curve, e.g. the eigentime of a moving particle. The second
term takes into account that the tangent vector changes during movement on the
curved surface. This is encoded in the connection Γ, the Christoffel symbol defined
as

Γµσν =
1
2
gµκ

(
∂gνκ
∂xσ

+
∂gσκ
∂xν
−
∂gσν
∂xκ

)
. (3.3)

Geodesics are essential for the definition of distance between points. In flat space, the
distance between two points is determined by the length of a straight line connecting
them. In curved space, the same is true for the length of a geodesic, which is the
shortest connection between the points. Therefore, the distance between points is
calculated by integrating the line element along the geodesic connecting them. In
this work, we will encounter geodesics in chapter 7 and chapter 8 for spaces with
constant spherical and hyperbolic curvature. In these highly symmetric spaces, we
will not solve the geodesic equation explicitly but use geometric arguments.

3.3 Friedmann-Lemaître-Robertson-Walker metric
The FLRW metric describes spacetimes that are spatially homogeneous and

isotropic. These assumptions bring the metric into the very simple form discussed in
this section. In general, a metric gµν encodes distances between points in a spacetime,
where the greek indices µ and ν run over the time and all spatial dimensions. The
metric is a symmetric tensor tensor which has ten degrees of freedom in 3 + 1
dimensions and six degrees of freedom in 2 + 1 dimensions. Each symmetry of the
spacetime reduces these degrees of freedom. For example, the 3 + 1 dimensional
spacetime of special relativity - Minkowski space - has the ten symmetries of the
Lorentz group. These are three spatial translations, three spatial rotations, one
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Chapter 3. Expanding and curved spacetimes

translation in time, and the three Lorentz boosts. Thus, the Minkowski metric has no
degrees of freedom left. It takes the form

gµν = diag(−c2, 1) , (3.4)

with 1 representing he unit matrix with the size corresponding to the number of
spatial dimensions. Often, the geometry is encoded by the line-element

ds2 ≡ gµν dxµdxν , (3.5)

where dxµ describes infinitesimal changes of the coordinates and a sum over repeated
indices is implied according to the Einstein sum convention. For Minkowski space,
the line element is

ds2 = −c2dt2 + d~x 2, (3.6)
(3.7)

with ~x denoting the spatial coordinate vector. The shape of both the metric and
the line-element depend on the chosen coordinates. A coordinate transformation to
spherical (polar) coordinates brings the line element of Minkowski space into the
form

ds2 = −c2dt2 + dr2 + r2dΩ , (3.8)

with r the radial coordinate, and dΩ the solid angle element. In three dimensions it
is dΩ = sin2 ϑ dϕ2 + dϑ2, while it takes the form dΩ = dϕ2 in two dimensions.

The Friedmann-Lemaître-Robertson-Walker metric is also based on strong sym-
metry assumptions, namely spatial homogeneity and isotropy. This assumption is
known as the cosmological principle and sometimes also called copernican principle.
It is equivalent with the statements that there is no extraordinary point or direction
and that all observers will make equivalent observations along all directions. In
comparison with Minkowski space, the time-symmetry is lifted which leaves a single
time-dependent degree of freedom, the scale factor a(t). In addition, the FLRW
metric allows for (homogeneous) spatial curvature,1 which leads to the line element

ds2 = −c2dt2 + a2(t)
(

du2

1 − κr2 + u2dΩ2
)
, (3.9)

1Note, that for different curvatures, the exact form of the symmetries changes but their number is
not reduced.
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with a(t) the aforementioned scale factor and κ the curvature. The sign of κ deter-
mines the type of curvature: spherical curvature for κ > 0, hyperbolic curvature
for κ < 0, and a flat space for κ = 0 (see chapter 7 for details). The time depen-
dent function a(t) is the aforementioned scale factor. As a(t) increases/decreases
in time, so do spatial distance which describes the expansion/contraction of space.
As mentioned above, the exact form of the line-element depends on the choice of
coordinates. The coordinates chosen here are called reduced circumference coordi-
nates (see chapter 7 for more detail). These coordinates are comoving coordinates,
i.e. they are time-independent. This is in contrast to physical coordinates, which
absorb the time-dependence into the coordinates themselves.

For the above metrics and the line elements, distances are measured in the unit
of length. Instead, distances can be measured in units of time - the time light needs
to cover the respective distance. This is commonly used for the unit ‘light year’. The
FLRW metric then takes the form

ds2 = −dt2 +
a2(t)

c2

(
du2

1 − κr2 + u2dΩ2
)
, (3.10)

which will be compared later to the acoustic metric in a Bose-Einstein condensate.

3.4 Accelerated, decelerated, or uniform expansion
The expansion of a universe can be accelerated, decelerated or uniformly expand-

ing, depending on its matter content. To classify models the deceleration parameter
q is used with

q = −
äa
ȧ2 . (3.11)

Here, q > 0 is a decelerated universe, q = 0 a uniformly expanding one and q < 0 an
accelerated one. For power-law expansions with

a(t) ∝ tγ , (3.12)

the deceleration parameter is

q =
1 − γ
γ

. (3.13)

Uniform expansion takes place for γ = 1, accelerated for γ > 1 and decelerated for
γ < 1.
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Chapter 3. Expanding and curved spacetimes

3.5 Connection to cosmology
So far, this chapter described the FLRW metric defined by the symmetry as-

sumptions of spatial homogeneity and isotropy and how matter moves on geodesics,
corresponding to the upper arrow in fig. 3.1. This is already all the information we
need for implementing and testing an FLRW metric in an analog system. In this
section and the following one, we lay the groundwork for possible future connections
between observations in an analog system and a cosmological interpretation. This
part can be skipped without loosing the narrative of the thesis. Reading should then
continue with the derivation of the acoustic metric in chapter 4.

To establish the connection between an expansion scenario and the matter and
energy content and curvature of a spacetime, the Einstein equations must be solved
for the FLRW metric. The Einstein equations read

Gµν + Λ gµν =
8πG
c4 Tµν , (3.14)

where Λ is the cosmological constant. Gµν is the Einstein tensor which has the form

Gµν ≡ Rµν −
1
2

Rgµν , (3.15)

with the Ricci-tensor Rµν and Ricci scalar R

Rµν = Rα
µαν , R = gµνRµν , (3.16)

which are in turn defined via the Riemann curvature tensor

Rα
µσν = ∂σΓανµ − ∂νΓ

α
σµ + ΓασλΓ

λ
νµ − ΓανλΓ

λ
σµ . (3.17)

Here, Γ again denotes the Christoffel symbols eq. (3.3) that already appeared in the
section on geodesics section 3.2. In the last term of the Einstein equations contains
the stress-energy tensor Tµν which describes all forms of matter and energy in the
spacetime. For an ideal fluid with density ρ and pressure P, the stress-energy tensor
has the form

Tαβ =

(
ρ +

P
c2

)
uαuβ − Pgαβ , (3.18)

with u the four-velocity of the fluid and gµν the inverse metric defined by gµσ gσν = δνµ.
To solve the Einstein equations for the FLRW metric, we need to compute the

Einstein tensor and the stress-energy tensor (Tµν - note the lower indices) within
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3.5. Connection to cosmology

that metric.Within the formalism used here, the Einstein tensor is derived by direct
but lengthy calculation: From the metric and its derivatives follow the Christoffel
symbols eq. (3.3), which allow to compute the Ricci tensor and scalar eq. (3.16)
by using the definition of the Riemann curvature tensor eq. (3.17). This yields all
components to assemble the Einstein tensor. The calculation in 3 + 1 dimensions can
be found in most standard textbooks on General Relativity and in the more technical
cosmology books including [5, 43]. Here, we show the slightly shorter calculation
for 2 + 1 dimensions. Using polar coordinates, the metric and inverse metric read

gµν =


−c2

a2

1−κr2

a2r2

 , gµν =


− 1

c2

1−κr2

a2
1

a2r2

 . (3.19)

The non-zero Cristoffel symbols are

Γ1
10 = Γ1

01 = Γ2
20 = Γ2

02 =
ȧ
a
, Γ0

22 =
aȧr2

c2 , (3.20)

Γ0
11 =

aȧ
c2(1 − κr2)

, Γ1
22 = −r(1 − κr2) ,

Γ1
11 =

κr
1 − κr2 , Γ2

12 = Γ2
21 =

1
r
.

and the non-vansihing elements of the Ricci tensor are

R00 = −2
ä
a
, (3.21)

R11 =
äa + ȧ2 + κc2

c2(1 − κr2)
, (3.22)

R22 =
r2

c2 (aä + ȧ2 + κc2) , (3.23)

which results in the Ricci scalar

R =
2
c2

(
2ä
a

+
ȧ2

a2 +
κc2

a2

)
. (3.24)

The stress energy tensor must fulfill the same symmetry assumptions as the FLRW
metric, namely homogeneity and isotropy. This implies a static fluid, since any
fluid flow would define a direction and thus violate isotropy. The four-velocity then
reduces to uα = (c, 0, 0, 0) and the stress-energy tensor 3.18 takes the form

Tµν =

(
ρc4 0
0 P gi j

)
(3.25)
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Chapter 3. Expanding and curved spacetimes

with gi j the space-space part of the metric.
Inserting eq. (3.25), eq. (3.21) and eq. (3.24) in the Einstein equation, yields two

different equations - one from the time-time element and one from the space-space
elements. These are the Friedmann equations in 2 + 1 dimensions [46]( ȧ

a

)2

= 8πGρ −
κc2

a2 + Λc2 , (3.26)

ä
a

= −
8πG
c2 P + Λc2 , (3.27)

where H = ȧ/a is named Hubble parameter. For comparison, the Friedmann
equations in 3 + 1 dimensions are( ȧ

a

)2

=
8πG

3
ρ −

κc2

a2 +
Λc2

3
, (3.28)

ä
a

= −
4πG
c2

(ρ + 3P) + Λc2 . (3.29)

They describe the evolution of the scale factor depending on the spatial curvature κ,
the presence of a cosmological constant Λ and on the matter content of the universe.
The matter is described by its density ρ and pressure P and different forms of matter
are distinguished by their relation between these two quantities, the equation of
state. For a fluid, the two Friedmann equations can be combined into a mass-energy
conservation equation

d
dt

(ρad) = −
P
c2

d
dt

(ad) , (3.30)

with d the number of spatial dimensions. This equation directly describes how the
density and pressure change during expansion. Depending on the relation of the
different terms in the Friedmann equations, different expansion scenarios can be
distinguished:

• A de-Sitter universe or dark energy dominated universe is an empty, flat
universe with cosmological constant. In 2 + 1 dimensions, it expands with

ȧ
a

=
√

Λc = const. , (3.31)

which corresponds to an exponential expansion

a ∝ t
√

Λc . (3.32)

The same is true for a 3 + 1-dimensional universe with the constant divided by√
3. A scalar quantum field will lead to such an exponential expansion [47].
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3.5. Connection to cosmology

• A matter-dominated universe has no curvature and no cosmological constant.
In the cosmological context a fluid is called ‘matter’ if it has a vanishing
pressure P = 0. This is true the for collision-less dark matter and a reasonable
approximation for ‘ordinary’ matter at low densities and temperatures. As can
be derived with the conservation equation eq. (3.30), the energy density of this
matter decreases with ρ = ρ0 a−d as the universe expands. Here, d denotes the
number of spatial dimensions. This simply means that the same amount of
matter is stretched over a larger space. Inserting these assumptions into the
first Friedmann equation yields( ȧ

a

)2

=
8πGρ0

a2 ⇔ a(t) ∝ t 2 + 1 dimensions, (3.33)

and ( ȧ
a

)2

=
8πGρ0

a3 ⇔ a(t) ∝ t2/3 3 + 1 dimensions. (3.34)

• A flat radiation dominated universe contains only radiation. In the context
of cosmology radiation denotes not only photons but all forms of highly
relativistic matter. These have a pressure P = ρ/d. The density of radiation
changes in an expanding space as ρ = ρ0 a−(d+1). The additional factor of
1/a is attributed to the redshift - a shift in wavelength, and hence energy, of
relativistic matter due to the expansion. In the first Friedmann equation this
leads to expansion( ȧ

a

)2

=
8πGρ0

a3 ⇔ a(t) ∝ t2/3 2 + 1 dimensions, (3.35)

and ( ȧ
a

)2

=
8πGρ0

a4 ⇔ a(t) ∝ t1/2 3 + 1 dimensions. (3.36)

• Apart from matter and radiation, mixtures of the two can be imagined. Or a
universe may contain strange forms of matter with a different relation between
density and pressure. In general, the density of a fluid in d spatial dimensions
with the equation of state P = wρ depends on the scale factor by

ρ = ρ0 a−d(1+w) , (3.37)

where w is called equation of state parameter. The corresponding time evolu-
tion of the scale factor is

a ∝ tγ with γ =
2

d(1 + w)
. (3.38)
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• The best-fit model for our Universe allows for curvature, matter, radiation,
and dark energy in the form of the cosmological constant. The parameters
of the model as well as the Hubble parameter today can be determined by
various observations. Among the most important ones are the observation
of fluctuations in the cosmic microwave background, the measurement of
the Hubble parameter using Type 1a supernovae as standard candles, the
relative abundance of light elements in stars, and the distribution of the large
scale structure of the Universe. Together they constrain the parameters to a
universe with vanishing curvature, approximately 70% dark energy content,
25% dark matter, 5% ordinary matter and 0.01% radiation. Within the model,
the expansion history of the Universe can be computed from the Friedmann
equations: The early hot universe was in a radiation dominated era. As it
expanded, radiation density decreased faster than matter density and radiation-
domination gave way to a matter-dominated era. Both radiation and matter
density decreased further until the cosmological constant becomes important
and exponential expansion takes over. Currently, we are at the transition point
from the matter domination into the exponential expansion of dark energy
domination.

3.6 Particle production during inflation
On top of the homogeneous background, our Universe contains structures. These

are observed as temperature fluctuations in the cosmic microwave background and
grow into the large scale structure of the Universe today. The most widespread theory
of the origin of this structure is an early rapid expansion of the Universe, directly
after the Big Bang which is called inflation [5]. Such an expansion could be driven
by a scalar quantum field [47], the inflaton. Usually, an expansion of at least 28
orders of magnitude (60e-folds) is assumed to take place in less than 10−32 s [5]. This
vast expansion thins out all forms of matter and dilutes curvature until the observable
universe is practically empty and spatially flat. However, the expansion itself leads
to particle-pair creation within the inflaton field. This is the process of cosmological
particle production that we will investigate with the phononic excitations of the
Bose-Einstein condensate.

After inflation, the Universe is in an empty state, except for the excitations of
the inflaton. It is commonly assumed that the inflaton field decays into ordinary
matter and radiation via a parametric resonance in a process called reheating. This
not only stops the exponential expansion but also refills the universe with matter and
energy. During that process, the fluctuations of the inflaton field are translated into
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3.6. Particle production during inflation

fluctuations of matter. Thus it is possible that traces of the quantum state produced
during inflation are still detectable in the observables of today’s Universe [48].

One of these observables are the baryon acoustic oscilations. These are sound
waves in the early universe that propagate in the mixture of ionized atomic nuclei,
electrons and radiation. With the expansion of space, the temperature of the matter-
radiation mixture decreases. Once the fluid has sufficiently cooled for atomic nuclei
and electrons to combine to atoms, the radiation decouples from the matter and the
universe is suddenly rendered transparent. The now freely-propagating radiation
is observable today as the cosmic microwave background (CMB). Imprinted on
this radiation is the density distribution of the matter-light mixture at the moment
of its release; the fluctuation of the density lead to the temperature fluctuations of
the radiation. The CMB thus contains a snapshot of the density distribution of the
very early stage of the universe, around 380.000 years after the Big Bang. At the
same time, the decoupling of matter and light abruptly stops the propagation of
the sound-waves and freezes the density fluctuations. These are the seeds for the
large-scale structure in the Universe. During the following 13.5 billion years, they
have grown into galaxies, galaxy clusters, and the cosmic web. One distinctive
feature in density correlation of the structure is still directly connected to the baryon
accoustic oscillations. It is a correlation peak at a distance of 120 Mpc (MegaParsec).
This marks the distance that spherical sound waves have traveled at the moment the
CMB decoupled.

Especially the baryon acoustic oscillations may show traces of the original
quantum state produces during inflation. Identifying and understanding these traces
is an intriguing direction of research. While an analog system cannot capture
the complex dynamics of the Universe, it helps to isolate and better understand
processes like particle-pair creation. And it might even be possible to identify and
test observables for the quantum processes in the very early Universe.
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Chapter4
Acoustic metric of a

Bose-Einstein condensate

So far, we have introduced the FLRW metric of an expanding and curved space-
time and described a Bose-Einstein condensate and its perturbations. This chapter
combines these two topics by deriving the acoustic analog of an FLRW metric in a
Bose-Einstein condensate. For that purpose, it introduces a novel mapping between
a mass-less, free, relativist scalar field and the phononic excitations of a condensate.
Within the mapping, laboratory time and the coordinate time of the metric coincide,
and a simple coordinate transformation relates spatial coordinates in the laboratory
and in the analog FLRW metric. This makes the comparison between laboratory and
simulated spacetime particularly straightforward. The mapping was developed by
the theory side of our collaboration and is published in [41]. In this work, we only
sketch the crucial steps and assumptions of the derivation and refer to this publication
for the details. At the end of this chapter, section 4.2 discusses the potential and
limitations of experiments in the analog system.

4.1 Derivation of the acoustic metric
The derivation of the acoustic metric starts from the action of a quasi-two-

dimensional Bose-Einstein condensate of atoms with mass m

Γ[Φ] =

∫
dt d2r

(
i~Φ∗(∂t + iA0)Φ −

~2

2m
(~∇ − i~A)Φ∗(~∇ + i~A)Φ −

λ

2
(Φ∗Φ)2

)
,

(4.1)
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Chapter 4. Acoustic metric of a Bose-Einstein condensate

with the 2d-coupling λ introduced in eq. (2.7). The coupling is proportional to the
s-wave scattering length as. Normally, the scattering length is written without the
subscript s in the cold atom community. Unfortunately, the same symbol is used for
the scale factor in an FLRW metric. For this work a, ai, a f denote the (initial and
final) scale factor and as, as,i, as, f the (initial and final) s-wave scattering length.

Within the action, the gauge field A is used to enforce a local U(1) symmetry of
the action (see [41] for details), and its zero-component is related to the trapping
potential V(t,~r) and the chemical potential µ of the condensate by

A0(t,~r) =
(
V(t,~r) − µ

)
/~ . (4.2)

For a vanishing chemical potential and ~A = 0, the equation of motion for this
action is the Gross-Pitaevski equation eq. (2.1) reduced to two dimensions. The
Gross-Pitaevski equation describes the dynamics of a BEC in the limit of classical
fields, and its solutions were discussed in more detail in chapter 2. It can be brought
in a fluid-like form by using the Madelung representation, [49] which splits the
background field into contributions of the density n0 and the phase S 0

φ0(t,~r) =
√

n0(t,~r) eiS 0(t,~r) . (4.3)

In the acoustic limit, the Gross-Pitaevski equation takes the form of a continuity and
Euler equation

∂tn0 + ~∇(n0~v) = 0 , ~∂tS 0 + V + λn0 +
~2

2m
(~∇S 0)2 = 0 , (4.4)

were the gradient of the phase can be defined as the velocity ~v = ~
m
~∇S 0. In the Euler

equation, the quantum pressure term

q = −
~2

2m

~∇2√n0
√

n0
, (4.5)

was already neglected. This is plausible if the curvature of the wave function is small
compared to its amplitude which is true for long-wavelength modes. As is described
in section 2.3, long-wavelength perturbations have a linear dispersion relation. Thus
neglecting the quantum-pressure term is equivalent to being in the acoustic regime.

In a second step, perturbations are added on top of the classical field solution. In
previous works [32, 50], perturbations have been introduced as density and phase
perturbations which can be directly inserted into the hydrodynamic equations. For

24



4.1. Derivation of the acoustic metric

this work, a different choice of perturbation is used: The field φ is decomposed into
the background field φ0 and the two real-valued perturbations φ1 and φ2 defined as

Φ(t,~r) = φ0(t,~r) +
1
√

2

[
φ1(t,~r) + iφ2(t,~r)

]
. (4.6)

To characterize the dynamics of the fluctuation, the action 4.1is expanded around
the classical field limit up to second order in these perturbations. It takes the form
Γ[Φ] = Γ[φ0] + Γ2[φ1, φ2], where Γ[φ0] describes the dynamics of the background
field which were already discussed above. Γ2[φ1, φ2] only contains terms quadratic
in the perturbations. It reads

Γ2[φ1, φ2] =

∫
dt d2r

{
~φ2∂tφ1 −

~2

4m

[
(~∇φ1)2 + (~∇φ2)2

]
(4.7)

−
1
2

~A0 + ~2
~A2

2m

 (φ2
1 + φ2

2) −
~2

2m
~A(φ1~∇φ2 − φ2~∇φ1)

−
λ

2
(φ1, φ2)

(
n0 + 1

2 (φ∗0 + φ0)2 1
2 (φ∗0 + φ0)(iφ∗0 − iφ0)

1
2 (φ∗0 + φ0)(iφ∗0 − iφ0) n0 + 1

2 (iφ∗0 − iφ0)2

) (
φ1

φ2

)}
.

Since all terms linear in the perturbations cancel around the classical field limit, Γ2 is
the leading order term and defines the dynamics of the fluctuations. In the following,
we will show that Γ2 in the acoustic limit is equivalent to the action of a scalar field
in a curved spacetime. The detailed derivation can be found in [41]; here, we only
sketch the different steps and assumptions:

• An equivalent of the Madelung representation is introduced by the transforma-
tion

φ0 +
1
√

2

[
φ1 + iφ2

]
→ e−iS 0

(
φ0 +

1
√

2

[
φ1 + iφ2

])
, (4.8)

which is inserted into eq. (4.7). At the same time, A0 and ~A are adjusted such,
that the transformation of Γ2 is a local U(1) gauge transformation. In this
gauge, the background field φ0 becomes real. Note, that the perturbations φ1

and φ2 were defined as real fields before but become complex in this gauge.
The hydrodynamic equations for the background field eq. (4.4) are used for
further simplifications. After these steps Γ2 is independent of the trapping
potential and only the density and phase of the background field appear.

• For the implementation of the FLRW metric, we introduce an additional
restriction on the density of the background field. Namely, that the density
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Chapter 4. Acoustic metric of a Bose-Einstein condensate

of the background is static, i.e. that the velocity of the background field
vanishes ~v = 0 = ~∇S 0. The more general case is discussed in [41]. With these
assumptions, the effective action for the perturbations becomes

Γ2[φ1, φ2] =

∫
dt d2r

− ~2

4m
(~∇φ2)2 −

1
2
φ1

2λn0 − ~
2
~∇2

2m

 φ1 − ~φ1∂tφ2

 .
(4.9)

• The acoustic approximation enters in the form 2λn0 φ
2
1 � ~

2/2m φ1∇
2φ1 which

is valid for small momenta/long wavelength. In this regime, the latter term,
which is the kinetic term for φ1, can be neglected. Then, thee action does not
contain any derivatives of the field φ1 which makes the next step possible.

• In the acoustic approximation, the field φ1 can be integrated out with a Gaussian
integral.1 With defining the field φ ≡ φ2/

√
2m, the action takes its final form

Γ2[φ] =
~2

2

∫
dt d2r

{
1
c2

s
(∂tφ)2 − (~∇φ)2

}
, (4.10)

where we identified the time and radius-dependent speed of sound (see sec-
tion 2.3 for comparison)

c2
s(t, r) =

λ(t) n0(t,~r)
m

. (4.11)

The integral also defines a relation between φ1 and φ2

φ1 = −
~

2λ(t)n0(r)
∂tφ2 = −

~

2λ(t)n0(r)
1
√

2m
φ̇ , (4.12)

which connects φ1 to the time derivative of the scalar field φ̇. This will become
important for deriving suitable experimental observables in chapter 10.

The action 4.10 is equivalent to the action of a free, mass-less, relativistic scalar field
in a curved spacetime

Γ2[φ] = −
~2

2

∫
dt d2r

√
g gµν∂µφ ∂νφ , (4.13)

1The integration is performed in the partition function Z ∝ eiΓ2 from which observables are
derived. The integration over φ1 will lead to an additional factor in front of the partition function.
However, all observables need to be normalized by the partition function and this factor is be canceled.
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with the acoustic metric(
gµν

)
=

(
−1 0
0 1

c2
s
δi j

)
, (4.14)

and g = gµν g
µν. Thus, the perturbations φ of a background condensate exhibit

the same dynamics as a quantum field in a curved spacetime. It remains to be
checked that the correct commutation relations are fulfilled between the field φ and
its conjugate momentum

π(t, u, ϕ) =
δΓ2[φ]
δφ̇

= ~2√gφ̇ . (4.15)

The commutation relations define the quantization of the action. In an experiment,
we can only simulate quantum effects, if the fluctuation of the condensate indeed
fulfill this quantization. Here, we will only state that the commutation relations are
indeed correct and refer once more to [41] for the calculation.

Later we will work with a circular symmetric condensate, for which polar coor-
dinates are a natural choice. In these coordinates, the line element of the acoustic
metric is

ds2 = gµνdxµdxν = −dt2 +
1

c2
s(t, r)

(
dr2 + r2dϕ2

)
= −dt2 +

m
λ(t) n0(r)

(
dr2 + r2dϕ2

)
. (4.16)

The metric can be made time-dependent via the coupling λ(t) and thus the s-wave
scattering length. This is used to realize an expanding spacetime in chapter 10. The
curvature of the spatial part of the metric can be designed using the radial dependence
of the density profile n0(r) as is discussed in chapter 8.

4.2 Limitations of analog models
Simulating an FLRW metric in a Bose-Einstein condensate is an enticing tool.

However, it has its limitations, and it is crucial to keep in mind what such a simulation
can and cannot achieve. First of all, it cannot implement general relativity as was
already discussed in chapter 3 since the back-reaction of matter on the curvature of
spacetime is not contained in the analog systems. Furthermore, the analogy between
the universal speed of light in a spacetime and the propagation speed of excitations
in the analog system is imperfect. Excitations travel at a uniform speed only in
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Chapter 4. Acoustic metric of a Bose-Einstein condensate

the limit of large wavelengths in the acoustic regime. For larger wavelengths, the
excitations of a condensate are no longer collective phononic excitations. Instead,
they are particle-like with a quadratic dispersion relation (see section 2.3). For
these high-momentum modes, the analogy between the dynamics of excitations in a
condensate and the dynamics of a scalar field breaks down. Later in this work, when
simulating particle-pair creation in an expanding spacetime in chapter 10, this must
be taken into account for choosing suitable experimental parameters.
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Chapter5
Atoms, light, and magnetic fields -

the experimental toolkit

Atoms can be trapped, cooled, and controlled using laser light and magnetic fields.
This chapter introduces the underlying physical processes and describes how they
are used experimentally. It is based on [51, 52] if not mentioned otherwise. A strong
focus is on the atom species used for the experiments in this work, potassium-39.

The first section introduces the basic properties of potassium-39 including its
level structure. Section 5.4 then describes the property that makes potassium-39
so desirable as an atom: its broad Feshbach resonance. Afterwards section 5.2
and section 5.3 discuss light and magnetic forces, and section 5.5 gives a general
overview of how these forces are used experimentally. Section 5.6 and section 5.7
describe the types of conservative traps in more detail, namely magnetic traps and
dipole traps. The latter section also introduces the trap geometries relevant for this
work - a focused Gaussian beams and a pancake trap. The remaining chapters cover
the different cooling methods needed to creation of a Bose-Einstein condensate of
potassium-39. These are magneto-optical traps in section 5.8, Sisyphus cooling and
grey molasses cooling in in section 5.9 and section 5.10 and evaporative cooling in
section 5.11. Finally, section 5.12 and section 5.13 describe imaging of the atomic
density distribution in general and for the special case of potassium-39 at high
magnetic fields.
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Chapter 5. Atoms, light, and magnetic fields - the experimental toolkit

5.1 Basic properties of potassium-39
Potassium-39 is a bosonic alkali atom with a nuclear spin of I = 3/2 and the

typical level structure shown in fig. 5.1. Its ground state is the 2S 1/2 state. The first
excited state is divided by the fine structure splitting into the 2P1/2 and 2P3/2 states.
The transition frequencies between the ground state and these excited states are
770.108 nm (D1-line) and 766.70 nm (D2-line), respectively. The coupling between
nuclear spin I and electron spin J to a total spin F leads to the further hyperfine
splitting of ground and excited states. The ground state is split into the F = 1 and
F = 2 states with a frequency splitting of 461.7 MHz. The excited states are also
split in two (F = 1, F = 2 for 2P1/2) and four hyperfine states (F = 0 till F = 3 for
2P3/2). A special property of potassium is that the hyperfine splitting of the excited
states – especially of the 2P3/2 state – is on the order of the natural linewidth of the
transitions Γ/2π ≈ 6 MHz [53, 54]. It is impossible to address a single hyperfine
level by an optical transition selectively. This has immediate consequences for the
cooling in a magneto-optical trap (MOT) and an optical molasses as is discussed in
section 5.8 and section 5.10. In analogy to Rubidium, the transition from the F = 2
ground state to one of the excited states is called cooling transition and the transition
from the F = 1 ground state repumping transition. Lasers with these frequencies are
be called cooler and repumper in the scope of this work.

5.2 Breit-Rabi diagram and magnetic forces
Neutral atoms often have an intrinsic magnetic dipole moment, responsible for

the Zeeman splitting of the atomic levels in a magnetic field B. For non-vanishing
magnetic fields, a level with total spin F is split into 2F + 1 magnetic substates with
mF ∈ [−F . . . F], as their degeneracy is broken. Depending on the magnetic substate,
the atom’s energy level is either lowered, unaffected, or increased by the presence
of the magnetic field. The Zeeman splitting is approximately linear in B in weak
magnetic fields. For stronger magnetic fields, the interplay between nuclear spin I,
the total angular momentum of the electron J, and magnetic field changes. At very
high fields, the electron spin and nuclear spin couple independently to the magnetic
field (Paschen-Back regime) instead of first forming a total spin F. At intermediate
magnetic fields, the atom is in neither of the regimes. At such intermediate fields,
neither mF nor mI and mJ are good quantum numbers as they do not coincide with
eigenenergy states of the atom. The energy states can be derived by diagonalization
of the full interaction Hamiltonian, resulting in the Breit-Rabi formula [53, 55–57].
The corresponding eigenvectors indicate the decomposition of the energy states into
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Figure 5.1: Potassium level scheme The ground state of potassium is the 2S 1/2 state. The
electron spin-orbit coupling leads to the fine structure splitting of the excited state into 2P3/2
and 2P1/2; the respective transitions are called D2 and D1 lines. The coupling between
electron angular momentum and nuclear spin I = 3/2 leads to a further splitting, the
hyperfine splitting. The two fine-structure levels of the ground state are split by 461.7 MHz,
the excited states show only a small splitting compared to the natural linewidth of 6 MHz.
In analogy to the cooling lights of Rubidium in a magneto-optical trap, the transitions
from the upper/lower ground state level to the excited states are called cooler/repumper
transitions.
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Figure 5.2: Breit-Rabi diagram. Under the influence of a magnetic field, the magnetic
substates are no longer degenerate. Their energy splitting is shown for the ground state
manifold (left-hand side) and the 2P3/2 excited state (right-hand side). At zero magnetic
field, the eigenenergy states g1 to g8 and e1 to e16 are |F,mF〉 states. At high magnetic
field (Paschen-Back regime), the eigenenergy states are |mJ ,mI〉 states. This regime is
already reached for the excited state at the magnetic fields shown here; for the ground
state manifold, this is only the case for higher magnetic fields. In between regimes, the
eigenenergy states are a superposition on either basis. The Bose-Einstein condensate
discussed in this work is in the g3 ground state (red) which is the F = 1,mF = −1 state and
becomes the mJ = −1/2,mI = +1/2 at very high magnetic fields.
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5.3. Atom-light interaction and light forces

the |F,mF〉 or |mJ,mI〉 states.
Figure 5.2 shows the Breit-Rabi diagram – the level structure of potassium-39

in dependence on the magnetic field – for the ground state manifold and the 2P3/2

excited state manifold (D2 line). The states have the general names g1 to g8 and e1

to e16 since they cannot be associated with quantum numbers over the entire range
of the magnetic field. At zero magnetic field the states g1 to g3 correspond to the
states with F = 1 and mF = +1, 0,−1 state and g4 till g8 to the states with F = 2 and
mF = −2,−1, 0, 1, 2, respectively. At very high magnetic fields, the states g1 to g4

correspond to the states mJ = −1/2 and mI = +3/2,+1/2,−1/2 − 3/2 and the states
g5 to g8 to the states mJ = +1/2 and mI = −3/2,−1/2,+1/2 + 3/2.1 In the excited
state manifold a similar identification is possible (see fig. 5.2, more details can be
found in [58–61]).

In an inhomogeneous magnetic field, the level structure of an atom becomes
position-dependent. This directly translates into a potential energy landscape in
which the atom moves - trading kinetic energy against the potential energy of its
internal state. Gradients in the potential result in a force

~F = ~∇
(
~µ · ~B

)
, (5.1)

with ~µ the magnetic dipole moment of the atomic substate. The magnetic moment
is given by the slope of the Breit-Rabi diagram at the respective magnetic field.
The sign of the slope determines whether an atom is pulled into regions of high
magnetic fields (high field seeker) or pushed into regions of low magnetic field (low
field seeker). If the state’s energy decreases with a higher magnetic field, it is a
high-field-seeking state and vice versa.

5.3 Atom-light interaction and light forces
The interaction of atoms with light can be conceptually separated into off-

resonant and resonant interactions. Close to the resonance, the light induces transi-
tions between the internal states of the atom. Far away from resonance, the interaction
mainly results in a shift of the internal energy levels. A semi-classical model already
provides a complete mathematical treatment. Here, the atom is quantized and a
classical oscillating electric field describes the light. For a two-level system, this
results in the optical Bloch equations (see for example [52]), which contain both
resonant and off-resonant interactions. However, an intuitive understanding is more

1Note, that mF = mI + mJ is always fulfilled. This is very helpful for tracing states from low to
high magnetic fields.
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Chapter 5. Atoms, light, and magnetic fields - the experimental toolkit

easily reached in separate pictures for the two forces. For the off-resonant interaction,
the main features can be understood with a classical driven harmonic oscillator.
The resonant interaction can be best visualized with the absorption and emission of
photons by the atom.

Before taking a closer look at these two regimes, we first take a look at the
conditions for a resonance. The first condition concerns the frequency of the light.
The energy of a photon must be the same as the energy difference between the
ground and excited state. In addition, the ground and excited state need to have a
non-vanishing transition dipole element. A third condition poses requirements on
the light’s angular momentum, which is essential if the magnetic-substates are non-
degenerate. The magnetic substates themselves correspond to an angular momentum
of the atom’s internal state. The difference in angular momentum between ground
and excited states needs to be provided by the angular momentum of the absorbed
photon and thus the light’s polarization. The latter two requirements are reflected in
the transition rules. The strength of a transition – and whether it is allowed at all –
is determined by the transition dipole element and the angular-momentum addition
rules described by the Clebsch-Gordon coefficients. Transition strengths at zero
magnetic field are listed in standard textbooks on atomic physics [52]. For potassium-
39, detailed calculations of the allowed transitions at higher magnetic fields can be
found in [58, 60]. These rules will become important again for the imaging scheme
described in section 5.13. With the occurrence of resonances defined, we can begin
the discussion of the forces caused by atom-light interaction.

Close to resonance, the atom-light interaction is dominated by the absorption
and emission of photons. Whenever a photon is absorbed, its momentum p = ~~k
is transferred to the atom due to momentum conservation. During the emission of
a photon, the atom receives a momentum opposite to the one of the photon. For
absorption and consecutive stimulated emission, the effect of both processes cancels,
and the atom remains unaffected. However, if the emission is spontaneous, the
photon is emitted in a random direction. For many absorption and spontaneous
emission cycles, absorption results in a net momentum transfer, while the momentum
kicks due to spontaneous emissions average to zero. The combination of absorption
and spontaneous emission thus leads to an effective force directed in the propagation
direction of the laser beam. This force is called light pressure force or scattering
force.

A side-effect of the scattering force is a heating effect. The momentum kicks due
to spontaneous emission can be interpreted as a random walk in momentum space.
This broadens the velocity distribution of an atom cloud similar to an increase in
temperature. This heating process sets a lower limit to temperatures achievable by

34



5.3. Atom-light interaction and light forces

methods using the scattering force. A lower fundamental temperature limit is set by
the energy of a single photon kick, called the recoil limit.

Far away from a resonance, in a purely classical picture, the oscillating electric
field of the light polarizes the atom by inducing an electric dipole moment. The
interaction between the light field and the induced dipole changes the energy of
the combined system. This energy shift can be positive or negative, depending on
the relative orientation between the external field and the induced electric dipole in
the atom. The orientation can be understood by the dynamics of a driven harmonic
oscillator. The eigenfrequency of the oscillator is the frequency of the atomic
resonance ω0, and the frequency of the light ω sets the driving force. For red-detuned
light – light with a frequency below the atomic resonance – the induced electric
dipole can perfectly follow the driving, leading to a decrease in energy. For blue-
detuned light – light with a frequency above the atomic resonance – the induced
dipole moment lags behind the driving force by phase of π; its orientation is always
opposite to the ‘ideal’ one, leading to an increase in energy. In both cases, the energy
shift is proportional to the intensity of the irradiating light.

In an inhomogeneous light field, this creates a potential landscape called the
dipole potential. The negative gradient of the potential is the corresponding dipole
force. A quantitative analysis within the harmonic oscillator picture can be found in
[62] and semi-classical treatment yields in the same result. The dipole potential is

Udip(~x) = −
3πc2

2ω3
0

Γ

∆
I(~x) , (5.2)

with ∆ = ω0 − ω the detuning, I(~x) the intensity of the light, and Γ the damping
of the harmonic oscillator. The origin of the damping cannot be understood in the
classical picture. For a quantum system, it is the natural linewidth of the transition
due to spontaneous decay. Also, a real atom has more than one resonance, which
must be considered. For potassium-39, for optical and infrared light, the relevant
transitions are the D1 and D2 lines (see section 5.1). For linearly polarized light, the
dipole potential is

Udip(~x) = −
πc2Γ

2ω3
0

(
2
∆2

+
1
∆1

)
I(~x) , (5.3)

with ∆2 and ∆1 the detunings from the D2 and D1 line, respectively [62].
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5.4 Atom-atom interaction and
Feshbach resonances

Next to magnetic and light forces, one more tool is available to manipulate
atoms. That is the interaction between the atoms themselves. A detailed discussion
of the scattering can be found in [51]. For a neutral atom, the interaction consists
of the attractive van der Waals interaction and the repulsion between the atomic
nuclei at small distances. These effects lead to the combined potential for the
atom interaction shown in fig. 5.3. The scattering process between two atoms is
described by the solutions of the Schrödinger equation in this potential. The solutions
are a superposition of an ingoing plane wave and outgoing waves. The latter are
decomposed into spherical harmonics to capture the spherical symmetry of the
atomic potential. For ultracold atoms, only the spherical harmonic with vanishing
angular momentum (s-wave) has a relevant contribution. It is parametrized by a
single parameter as – the s-wave scattering length – related to the relative phase
between the ingoing and outgoing wave. In this regime, the scattering problem is
equivalent to an interaction with a delta function that leads to the same phase shift as
the atomic potential.

The scattering process is reduced to the phase change of the wave function during
the interaction. It depends on the exact shape of the atomic interaction potentials and
the internal magnetic states of the interacting atoms. These parameters determine the
background scattering length abg of the interaction. The scattering length changes
drastically at specific magnetic fields, a phenomenon known as a Feshbach resonance.
A detailed treatment can be found in [63]. The underlying phenomenon is related to
the bound states (molecular states) in the interaction potential. Two initially unbound
atoms are forbidden from permanently entering into these states due to momentum
and energy conservation. However, if their energy is close to the molecular state,
they can form a temporary bound state before separating. In the wave picture, this
temporary bound state strongly influences the phase of the outgoing wave and hence
the s-wave scattering length. For ultracold atoms, the combined energy of the atoms
is always close to zero. The energy of the molecular state depends on the magnetic
field and can be shifted by applying such a field. Feshbach resonances occur at the
magnetic field value B0 where the energy level of the molecular state is the same as
the energy of the initially free incoming atoms. Around the resonance, the s-wave
scattering length changes as

as(B) = as,bg

(
1 −

∆

B − B0

)
, (5.4)
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Figure 5.3: Feshbach resonances - mechanism and potassium-39 resonances. The
left-hand side shows the interaction potential between two neutral atoms. The interaction
potential of two unbound atoms is the open channel (black potential). The closed channel
describes a molecular state of the atoms (orange potential). A magnetic field shifts the
relative energies between the open and the closed channel. When the energy of a bound state
in the closed channel coincides with the combined energy of the free atoms, a Feshbach
resonance appears. Even though the atom pair can not enter the molecular state due to
momentum conservation, it can form a temporary bound state. This prolonged interaction
changes the phase of the wave function during the interaction and thus the s-wave scattering
length. The right-hand side shows the Feshbach resonances for the F = 1,mF = −1 state
(at low magnetic field) of potassium-39. Especially the broad resonance at 562 G allows a
fine adjustment of the scattering length. Within the area marked in orange, adjustments of
the scattering length between large positive values and negative values are possible.

with abg and B0 the aforementioned background scattering length and magnetic field
position of the resonance and ∆ the width of the resonance.

The F = 1 ground state of potassium-39 has three Feshbach resonances at
moderate magnetic fields, two of which are broad. The existence of these resonances
is the property that makes potassium-39 a versatile candidate for ultra-cold atom
experiments. The exact location of the resonances is slightly different for the different
magnetic substates. The intra-species Feshbach resonances for the | F = 1,mF = −1 〉
states (at zero magnetic field) are shown in fig. 5.3. Experiments will be performed
on the low-magnetic field side of the resonance at B0 = 562.2G. Due to its width
of ∆ = 55G, a fine experimental adjustment of the scattering length is possible in a
range from slightly negative to large positive values.
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5.5 Assembling the tool kit
In ultracold atom experiments, forces on atoms are used for trapping and cooling.

Both the magnetic and the dipole force can only be used for trapping. They both lead
to a conservative energy landscape where the atoms can be confined. Heating effects
in this trap are minimal since the forces do not depend on the scattering of photons.
Thus, these traps can store atomic clouds with temperatures far below the recoil
limit. Especially blue-detuned dipole traps combine complex trap geometries with
minimal heating. The third force, the scattering force, has a dissipative component
used for cooling. Cooling schemes employ this force by making photon absorption
dependent on the atom’s velocity. Combinations of cooling and trapping with the
scattering force are possible if the photon absorption becomes position-dependent.
More advanced cooling schemes combine dipole or magnetic forces with photon
scattering and manage even to break the recoil limit. Finally, there is one cooling
scheme – evaporative cooling – that depends only on atom-atom interaction and has
no fundamental physical limit on achievable temperatures. The following sections
will describe both magnetic and dipole traps and a selection of cooling schemes
necessary to create a potassium-39 Bose-Einstein condensate.

5.6 Magnetic traps
Magnetic traps are solely based on the magnetic force described earlier in sec-

tion 5.2. The traps consist of an inhomogeneous magnetic field in which the atoms
are confined. The internal magnetic moment of the atomic state determines whether
an atom is pulled into regions of high magnetic field (high-field seekers) or pushed
into regions of low magnetic field (low-field seekers, see section 5.2). In principle,
Earnshaw’s theorem forbids the stable, static trapping of charges by magnetic fields,
and the theorem can be extended to magnetic dipoles. However, stable trajectories
are possible around a magnetic minimum, and low-field seekers can be trapped. For
the F = 1 ground state of potassium at small magnetic fields, the mF = 1 (g1) and
mF = 0 (g2) states are high-field seekers and the mF = −1 (g3) state is a low-field
seeker (see fig. 5.2). Thus, only the mF = −1 state will be caught in a magnetic trap.

A rudimentary magnetic trap is created by a pair of coils with opposite currents,
similar to an anti-Helmholtz pair. Magnetic traps are typically not deep enough
to catch room-temperature atoms for experimentally realistic coil geometries and
electrical currents. However, atoms pre-cooled by a magneto-optical trap (see
section 5.8) or even an optical or grey molasses (see section 5.10) can be caught.
The anti-Helmholtz configuration has a significant disadvantage: the magnetic field
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strength vanishes at the trap’s center. At that point, the magnetic substates of an atom
become degenerate, and flips from one state to the other are possible. In particular,
an atom might switch from being in a low field seeking state to being a high field
seeker (Majorana spin-flip). Such a flip results in the atom being ejected from the
trap. For atoms loaded from a MOT or molasses, this effect is small. But it becomes
a significant loss channel if temperatures are further decreased, and densities rise
around the magnetic zero-point. More complex magnetic traps avoid the zero-point
by adding a rotating magnetic field (TOP trap). This time-dependent offset field
moves the zero point around a time-averaged center of the trap. Alternatively, more
refined coil geometries add a bias field to the field gradient (Ioffe-Pritchard traps or
Cloverleaf traps) [64].

For cooling of potassium-39, the anti-Helmholtz configuration is sufficient. Very
high densities in a magnetic trap cannot be reached because evaporative cooling
in the magnetic trap is not possible for potassium-39 (see section 5.11 for details).
The trap is only used for temporary confinement, selection of one atomic state, and
compression of the cloud. For this, the magnetic zero-point of the anti-Helmholtz
configuration is not restricting.

5.7 Dipole traps
Just like magnetic traps are based on the magnetic force in an inhomogeneous

magnetic field, dipole traps are based on the dipole force in an inhomogeneous
light field far detuned from an atomic resonance (see section 5.3). Dipole traps can
realize much smaller structures and thus more complex trap geometries than the
broad and smooth magnetic traps. The simplest trap geometry is a focused Gaussian
laser beam. For red-detuned light, atoms are caught in the region of the highest
intensity around the focus. Due to the wave properties of light, a small focus (strong
localization) leads to a momentum uncertainty and hence divergence of the beam on
both sides of the focus. The intensity profile of such a beam is depicted in fig. 5.4.
In cylindrical coordinates (r, ϕ, z) it is described by

I(r, z) = I0

(
w0

w(z)

)2

exp
(
−

2r2

w(z)2

)
, (5.5)

where w(z) characterizes the radial size of the beam at position z, and w0 is the radial
size at the position of the focus, called beam waist. It is the only free parameter in a
Gaussian beam. Along the beam, in the z direction, the size of the focus region is
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described by the Rayleigh range

zR =
πw2

0

λ
, (5.6)

defined as the distance z at which w(r) =
√

2w0. For small waists, the Rayleigh range
is sufficiently small that a single beam can confine atoms in all three dimensions. The
Rayleigh range is large for broader waists, and atoms can escape the trap along the
beam direction. In this case, trapping in three dimensions is commonly achieved by
crossing two or more beams. Experimentally, a laser beam emitted from an optical
single-mode fiber has a Gaussian shape, 2 and a single lens creates the focus. The
focal length and size of the initial beam determine the beam waist; a tight focus
is reached with a small focal length or a large initial beam. Asymmetric focus
geometries are also possible. For example, a cylindrical telescope can broaden
the initial beam along one direction before the beam is focused. The focus region
is tighter along the initially broadened direction but remains unchanged in the
orthogonal direction. Achievable waists sizes are limited by aberrations of the lenses
and deviations from the Gaussian beam profile. For this work, beam waists down to
5 µm are realized with Gaussian beams.

A trap with tight confinement in only one direction can be achieved by the
interference of two laser beams. For that purpose, two collimated, coherent laser
beams are crossed under an angle α (see fig. 5.4). In the overlap region, the beams
interfere and form a characteristic pattern. Without loss of generality, the propagation
direction of the two beams is described by the k-vectors
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The collimated laser beams can be approximated by plane waves, which results in
the intensity field

I(x, z, ϕ) =
∣∣∣∣ √I1 exp
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(
α
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)
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]
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2The Gaussian mode is the lowest mode of the electrical field in the fiber. For single-mode fibers,
all other modes are suppressed.
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Figure 5.4: Dipole trap geometries Dipole traps are often realized by a focused laser
beam (orange beam). The size of the inital collimated beam and the focal length of the
focusing lens determine the beam waist w0 at the focus. Along the propagation direction
of the beam, the Rayleigh range is defined as the distance where the beam size increased
to
√

2w0. It thus characterizes the divergence of the beam. A trap with tight confinement
in only one direction can be realized with a pancake interferometer (blue beams). Two
coherent laser beams are crossed under an angle α. In the overlap region, the light interferes
and forms light sheets stacked along the x direction, similar to a stack of pancakes. In such
a trap, only the x direction is tightly confined.
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with I1 and I2 the intensities of the single beams and ϕ the phase difference between
both beams. This intensity pattern describes sheets of lights extended in the y-z
plane and stacked in the x-direction. These sheets resemble a stack of pancakes and,
consequently, this trap is often called a pancake trap. The spacing ∆x between sheets
depends on the wavelength of the trapping light and the angle between the beams

∆x =
λ

2
1

sin(α/2)
. (5.11)

In the limit of counter-propagating beams, α = π, the spacing is ∆x = λ/2 as
expected from a standing wave or lattice configuration. For smaller angles, the
spacing increases. For light red-detuned to an atomic resonance, atoms are caught
in the intensity maxima of the light sheets; for blue-detuned light, atoms are caught
between the sheets. The latter has the advantage that the atom cloud is confined in
a low-intensity region. The intensity even drops to zero if the beams have equal
intensity I1 = I2. In such a region, residual photon scattering is minimal, and heating
effects are reduced significantly.

The relative phase ϕ between beams shifts the interference pattern along the
z-axis. Experimentally, the phase is used for precise adjustment of the position of
the light sheets. However, the phase is also prone to disturbances ranging from
temperature changes in optical fibers to air fluctuations along the beam path. Phase
noise results in a random shaking of the light sheets, which heats the atom cloud.
Luckily, the relevant quantity is not noise on a global phase but the noise on the
relative phase between the two beams. Relative noise is reduced in a compact,
free-space, symmetric interferometer setup located as close to the trap region as
possible. In such a setup, most of the phase noise simultaneously influences both
beams such that the relative phase remains unaffected.

For both Gaussian beams and the pancake trap, a region around the potential
minimum is well approximated by a harmonic trap with trap frequency ω = 2π f . To
characterise traps, these frequencies can be measured experimentally.

Especially versatile traps are realized with a Digital Micromirror Devise (DMD),
which projects arbitrary two-dimensional light patterns [61, 65, 66]. Such a trap is
not described in detail here as it is not used in the experiments described in this work.
However, it is an essential tool for future experiments on the dynamics of quantum
fields in analog curved spacetimes.
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5.8 Magneto-optical trap

A magneto-optical trap (MOT) is the first stage of a cold atom experiment. It
can cool and confine atoms that are initially at room temperature or even higher
temperatures. An MOT uses the scattering force to combine a cooling process with
spatial confinement. For cooling, the force needs to counteract the atoms’ movement.
In one dimension, this is realized in a setup of two counter-propagating laser beams,
which are red-detuned to an atomic resonance. The movement of an atom leads to a
Doppler-shift that is opposite for the two beams. Suppose the atom moves with the
propagation direction of the laser, the frequency shifts away from resonance. The
other way around, if the atom moves against the propagation direction of the laser,
the frequency is shifted towards the resonance. Thus, the atom scatters more photons
from the laser counter-propagating to its movement, resulting in a force opposite to
its velocity. By combining three pairs of counter-propagating lasers, atoms can be
slowed in all three spatial directions. This cooling process is called Doppler cooling.
In the absence of spatial confinement, such a cooling setup is called optical molasses,
inspired by the velocity dependence of the force similar to friction.

Spatial trapping is achieved by a carefully chosen combination of magnetic fields
and polarisation of the laser lights. The working principle is best understood for an
atomic transition from a ground state with a vanishing magnetic moment F = 0 to
an excited state with a magnetic moment of F = 1 (see fig. 5.5). A magnetic field
with a zero-point at the center is added to the previously described one-dimensional
setup with two counter-propagating, red-detuned laser beams. From the center, the
magnetic field strength increases outwards with the field’s orientation pointing away
from the center. The Zeeman shift splits the magnetic substates of the excited state.
The splitting increases with the magnetic field strength away from the center. The
energy of the mF = −1 substate decreases, and the light of the red-detuned laser
is closer to resonance. The energy increases for the mF = +1 substate, and the
laser light is further detuned. A spatially dependent scattering force arises if one
laser beam mainly drives transitions to mF = +1 state and the other beam mainly
drives the transition to mF = −1. This results in an imbalance of scattered photons
from the two beams and hence a force. Since the two transitions mentioned above
are a σ− and a σ+ transition, the selective addressing can be achieved by a circular
polarisation of the laser light. Here, both beams have the same handedness relative
to their propagation direction3. The resulting force always points towards the trap’s
center because the magnetic field switches directions there. Thus the role of the two

3Unfortunately, there are different conventions for defining left-handed and right-handed polar-
ization. We will avoid this terminology here
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Figure 5.5: Working principle of a magneto-optical trap. A magneto-optical trap
(MOT) achieves simultaneous cooling and trapping of atoms; the trapping is illustrated in
the left-hand side of the figure for one spatial dimension. The model system for a MOT is a
ground state with mF = 0 and an excited state, which is split into three magnetic substates
mF = [−1, 0, 1]. A magnetic field gradient makes the substate energies spatially dependent.
For trapping, the magnetic field – and thus the magnetic substates’ energy shifts– requires a
particular form, with a magnetic zero-point at a center and increasing field strength in both
directions. Two circular-polarized laser beams (with the same handedness) are crossed with
opposite propagation directions (large arrows). On the left of the magnetic field gradient,
the laser beam from the left is σ− polarized with respect to the magnetic field and drives
the transition from the ground state to the mF = −1 excited state. The laser from the right
is σ+ polarized and drives the transition to the mF = +1 excited state (see small arrows).
Due to the energy shifts of the levels in the magnetic field, the σ− transition (left laser) is
closer to resonance, and more photons are scattered from the left laser. The net scattering
force accelerates the atoms towards the center of the trap. At the right side of B = 0, the
transitions of the laser beams are reversed. An atom will again be accelerated towards the
center and trapped there. The setup for three-dimensional MOT is shown on the right-hand
side. Two magnetic coils in anti-Helmholtz configuration create a magnetic quadrupole
field with a zero point at the center. Three pairs of counter-propagating laser beams create
the cooling forces. For the horizontal beams, the handedness of the polarization must be
opposite to the handedness of the vertical beams. This is caused by the orientation of the
magnetic field relative to the propagation direction of the beams, which is opposite for the
horizontal and vertical beams.
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laser beams a reversed on the two sides of the zero-point. For spatial trapping in
three dimensions, the spatial forces are achieved with a quadrupole magnetic field,
as is illustrated in fig. 5.5. The magnetic field points away from the center in the
horizontal directions for the depicted configuration. This is the situation described
in the above one-dimensional configuration. The magnetic field points towards the
center in the vertical direction, and the handedness of the light’s polarisation needs
to be reversed. This results in the same σ+ and σ− polarisation of the beams.

The great advantage of a magneto-optical trap is the large range of atom velocities
that can be captured. This trapping range cannot only be explained by the Doppler
shift. For potassium-39, the Doppler-shift at the D2 line is 1.2 MHz/(m/s). For a
typical laser detuning of a few 10 MHz at maximum, only slow atoms can be cooled.
Typical velocities for a room temperature atomic gas are around 300 m/s. However,
due to the magnetic forces and optical pumping of atoms between the magnetic
substates, atoms can be considerably slowed while crossing the trapping region until
they enter the velocity range of the Doppler cooling. Thus, a magneto-optical trap
can capture and cool a significant amount of atoms already from a room-temperature
atomic gas. The constant scattering of photons limits the final temperature of the
atoms in the trap. A fundamental temperature limit is set by the natural linewidth Γ of
the optical transition, which determines the scattering rate. This temperature is called
the Doppler limit with the Doppler temperature T = ~Γ/2kB. For potassium-39,
temperatures of the atomic cloud in the MOT are typically on the order of several
hundred micro Kelvin.

A special property of potassium-39 is the poorly resolved hyperfine manifold.
This makes it impossible to address a single hyperfine level by an optical transi-
tion selectively, which has a direct consequence for the magneto-optical trap. For
potassium-39, a MOT is realized on the D2 line with the | F = 2〉 → F′ = 3 transition
(see section 5.1). The polarization-setup of the MOT beams pumps atoms in the
|F = 2,mF = 2〉 /|F = 2,mF − 2〉 state and drive the transition to the |F′ = 3,mF = 3〉
/|F′ = 3,mF − 3〉 state. The excited state can only decay back to this particular
ground state, leading to a closed transition. However, the other excited states are
excited off-resonantly, and can decay back into the F = 1 ground state. Atoms in
this state are no longer cooled and lost from the MOT. They must be re-excited
into the cooling cycle by adding a second laser with the appropriate frequency – a
repumper laser. Atom-loss is a minor effect for some atomic species – like rubidium
– and only small repumping intensities are needed. For potassium-39, a decay to the
F = 1 ground state occurs with almost 50% probability. Consequently, cooling and
repumping lights must be overlapped in all MOT beams with approximately equal
intensity since both lights significantly contribute to the cooling forces.
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5.9 Sub-Doppler cooling
For a laser-cooled atomic sample, temperatures can be lowered by increasing the

cooling force relative to the scattering rate or by trapping very cold atoms in a dark
state where they do not scatter photons anymore. Sisyphus cooling and polarization
gradient cooling [67] in an optical molasses belongs to the first category, while grey
molasses cooling (following section) falls into the second category.

Sisyphus cooling is realized in the light field of two counter-propagating, linearly
polarized laser beams with their polarization orthogonal to each other (lin ⊥ lin
configuration). The resulting light field has a constant intensity, but its polarisation
changes from linear to σ+ polarized, to linear polarized, to σ− polarized on the
length of half a wavelength (see fig. 5.6). In the atomic level structure shown on the
left-hand side of that figure, the different states are affected by the presence of the
light field. The eigenenergy states of the atom-light system are a superposition of the
unperturbed ground states. These eigenenergy states are called dressed states. The
exact decomposition and the energy of the dressed states depend on the light field’s
polarisation. Thus, the polarisation gradient created by the ‘lin ⊥ lin’ configuration
leads to a position-dependent energy shift and thus to an effective potential landscape.
The two ground states have an opposite modulation, as depicted in fig. 5.6.

To understand the cooling process, we start with an atom in one of the two dressed
states. As it moves along the potential landscape, it slows whenever ‘climbing a
hill’ as kinetic energy is converted into internal energy. The other way around, it
accelerates when ‘rolling down a hill.’ Cooling occurs if the atom climbs hills much
more often than it rolls down. For that purpose, the atom must be optically pumped
between the two states at the right moment. This is the case for red-detuned laser
light. The ‘top of the hill’ is then closer to resonance, and a photon is more likely to
be absorbed in that position. Spontaneous emission may occur into the other ground
state, which has a valley at that position. The energy difference between the two states
is radiated away by the emitted photon. Following its remaining momentum, the
atom climbs the next hill, which initiates the next scattering event. Inspired by Greek
mythology, these cycles of hill-climbing and scattering to a valley are called Sisyphus
cycles and the cooling process Sisyphus cooling. The cooling is most effective if the
next scattering event occurs once the atom reaches the next hilltop, i.e., if the atom
travels a distance of λ/4 on the time scale of a scattering event. For potassium-39,
with the transition at 770 nm and a natural linewidth of Γ = 2π · 6 MHz this is the
case for a speed of approximately 7 m/s. Thus, Sisyphus cooling is only effective
for precooled atomic clouds. Increasing the laser detuning reduces the scattering
rate, which moves the most effective cooling to smaller velocities. A steady increase
of the detuning collects atoms and sweeps them to ever lower momenta. At the
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same time, a lowered scattering rate also reduces the heating caused by spontaneous
emission. In combination, temperatures far below the Doppler limit are possible.
For potassium-39, the minimum temperature is limited by the poor resolution of
the hyperfine manifold, which in turn limits the maximal detuning. Nonetheless,
temperatures as low as 25 µK have been reached [68–70].

Sub-Doppler cooling is often realized not in the lin ⊥ lin configuration but in a
configuration with counter-propagating σ+ and σ− beams. While the setup seems
similar to Sisyphus cooling, the underlying physical process is entirely different.
The light field of the σ+–σ− configuration is always linearly polarized, with the
polarization rotating in space. This polarization pattern can be described by a rotating
quantization axis. For a moving atom, this amounts to an effective rotating frame that
constantly redistributes populations and builds up an imbalance in the ground state
populations. Since the scattering rates of the ground states are different for σ+ and σ−

light, photon scattering is more effective from one of the counter-propagating laser
beams. A quantitative treatment (see for example[67]) shows that this indeed results
in a velocity-dependent force and temperatures comparable to Sisyphus cooling. The
σ+–σ− configuration has the advantage that the polarisation of the laser beams is the
same as in a magneto-optical trap. A direct transition from an MOT to sub-Doppler
cooling is possible simply by switching off the magnetic fields.

5.10 Grey molasses cooling
Grey molasses cooling combines Sisyphus-like cooling cycles with a coherent

dark state. Experimentally, this scheme requires much more effort than Sisyphus
cooling since it cannot simply reuse the laser setup from a magneto-optical trap.
However, for potassium-39, grey molasses cooling reaches lower temperatures than
Sisyphus cooling.

The model system for this type of cooling is a Λ-system shown in fig. 5.6
with two ground states |g1〉 and |g2〉 connected to an excited state |e〉 via a σ+ and
σ− transition. The system is irradiated with light of two frequencies in a Raman
condition, i.e., the two frequencies have the same detuning δ to their respective
transitions. In the Raman condition, there is destructive interference between the two
transitions, as is the case in electromagnetically induced transparency (EIT) [71].
The interference is reflected in the dressed state picture, where a superposition of the
original states describes the eigenenergy states of the combined atom-light system.
For an atom at rest, the ground state manifold is divided into a bright state |b〉 and
a dark state |d〉. An atom in the bright state still scatters photons and experiences
light pressure forces and heating due to spontaneous emission. However, an atom
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Figure 5.6: Sisyphus and grey molasses cooling. The minimal atom model for Sisyphus
cooling (left-hand side) has two ground and four excited states. It is irradiated by two
counter-propagating, red-detuned laser beams in the ‘lin⊥lin’ configuration. The resulting
polarization gradient shifts from linear polarization to σ+, to linear, to σ−, and so on. De-
pending on the polarisation, different transitions between the ground and excited states are
possible. In the dressed state picture, this results in a spatial modulation of the eigenenergy
states |+〉 and |−〉 of the combined atom-light system. The energy modulation is an effective
potential landscape. As the atom moves, it undergoes Sysiphus-cycles depicted in the
lower-left part. In each cycle, the atom moves up a potential hill and slows down as kinetic
energy is converted into internal energy. The increased internal energy is radiated away in a
scattering event to the second ground state. Similar scattering cycles are realized in gray
molasses cooling (right-hand side). Here the atom model requires two ground states and an
excited state in a Λ-configuration. It is again radiated with counter-propagating beams in
the ‘lin⊥lin’ configuration and experiences the resulting polarization gradient. In this case,
however, both beams contain two frequencies in a Raman condition and are blue-detuned
to their respective transition. The Raman condition creates a dark state |d〉 and a bright state
|b〉 with the energy of the bright state modulated in the polarization gradient. By motional
coupling, atoms cross from the dark to the bright state. They then convert kinetic to internal
energy while climbing the potential hill. A scattering event brings the atom back into the
dark states and radiates the difference in internal energy.
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in the dark state no longer interacts with the light. In particular, it will no longer be
heated by photon scattering. If the atom is at rest in the dark state, it will remain
there indefinitely. For a moving atom, there is a non-zero probability of changing
from the dark state into the bright state (motional coupling). The faster the atom,
the higher is the probability of a transition into the bright state. Once the atom is
in the bright state, it scatters photons, and its velocity changes with each scattering
event. Every spontaneous decay might bring it back into the dark state. If the
atom is slow after that last scattering, it will remain trapped in a dark state. If it is
fast, it will once again couple to the bright state and repeat the cycle. Over time, a
population of slow atoms accumulates in the dark state. This phenomenon is known
as velocity-selective coherent population trapping (VSCPT). The temperature of
the collected atom sample can be even below the recoil limit since the last random
photon emission might leave the atom below the recoil velocity [72].

Grey molasses cooling combines the trapping in a dark state with an active
cooling force [73]. For that purpose, laser beams are arranged in a ‘lin ⊥ lin’
configuration, creating a polarization gradient as described in the previous section. In
this case, however, the laser beams contain the frequencies of both transitions in the
Raman condition. The energy level of the dark state is unaffected by the polarization
gradient, but the bright state is modulated as shown in fig. 5.6. In the potential
of the bright-state, Sisyphus-like cooling cycles take place. An atom initially in
the dark state couples to the bright state due to its motion. The transition is most
probable at a potential minimum of the bright state, where dark and bright states are
closest together. Once in the bright state, the atom slows as it moves in the potential
landscape to higher potential energies. A scattering event may bring it back into the
dark state. It is most probable at the potential maximum of the bright state, where
the overlap with the excited state is largest. The scattering event radiates the energy
converted from kinetic to potential energy. For an average over many cycles, atoms
are actively cooled into the dark state, where they remain unaffected by heating
processes caused by photon scattering. Note that the level structure shown in fig. 5.6
is only achieved for blue-detuned light. For a red detuning, the energy of the dark
state will be above the energy of the bright state. In this case, motional coupling is
most likely at a potential maximum of the bright state, and atoms are heated instead
of cooled.

In potassium-39, grey molasses cooling can be realized on the D1 transition. The
D1 cooler and D1 repumper (see section 5.1 for the naming convention) are the two
laser lights necessary for the cooling scheme. Both lights need to be blue detuned to
the entire excited state manifold. The level structure of potassium-39 is much more
complicated than the Λ model system described above. For a complete treatment,
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all levels need to be considered when calculating the eigenstates of the dressed
state picture. For lithium-6, which has a similar level structure as potassium-39, a
complete calculation can be found in [74]. For this complex level structure, there are
no dark states but grey states instead. The name of the cooling scheme is derived
from these states. Grey states couple only weakly to the excited state and are thus
only very lightly modulated by the polarization gradient. Between the grey states
and the strongly modulated bright states, Sysiphus-like cooling cycles take place.
Atoms cooled into a grey state still scatter photons but with a low enough probability
that very low temperatures become possible. In three dimensions, the necessary
polarization gradient can also be created with three pairs of counter-propagating
laser beams in the σ+–σ− configuration. In such a setup, temperatures down to 6 µK
have been reached for potassium-39 [75, 76].

5.11 Evaporative cooling
All optical cooling schemes are ultimately limited by heating due to (residual)

photon scattering. Reachable temperatures are typically on the order of a few
micro Kelvin, which is still far above the temperature needed for Bose-Einstein
condensation, normally around 50 − 100 nK. The only currently known way to
reach these low temperatures is evaporative cooling. This method takes advantage
of the fact that, in a thermal cloud, most of the ensemble’s energy is carried by
few fast atoms. By discarding these fast atoms, energy can be effectively removed.
Initially, the remaining atoms are not in thermal distribution since the high-energy
tail is missing. Scattering processes between the atoms redistribute energies until
the distribution is once again thermal. In particular, the high-energy tail needs to
form, and, once again, few atoms receive a lot of energy. This energy must be
provided by the bulk of the ensemble. Thus, most of the atoms lose energy during
thermalization, and the temperature of the ensemble decreases. By repeating this
process – removing the high-energy tail and letting the remaining atoms thermalize –
ever lower temperature can be reached. This process is only limited by the number
of atoms that can be discarded.

Evaporative cooling can only take place if the atoms can rethermalize effectively.
For this to happen, atoms need to have a high collision rate and thus a high s-wave
scattering length. For some atom species, like rubidium, this is naturally the case at
zero magnetic field; for others, including potassium-39, it is not. In these species,
evaporative cooling can only be performed in combination with interaction-tuning
at a Feshbach resonance (see section 5.4). This implies that evaporative cooling is
not possible in a magnetic trap. Instead, trapping must be realized in a dipole trap

50



5.12. Fluorescence and absorption imaging

combined with a strong homogeneous magnetic field for Feshbach-tuning. In a dipole
trap, cooling is initiated by a slow and continuous lowering of the trap’s intensity
and thus the trap depth. The most energetic atoms escape from the trap, and the
remaining atoms become colder. Lowering of the trap continues until the temperature
gap between optical cooling (around 10 µK) and Bose-Einstein condensation (around
50 − 100 nK) is bridges and a condensate forms. More than 99.9% of the atoms are
lost during that process.

5.12 Fluorescence and absorption imaging
A direct observable in ultra-cold atom experiments is the density distribution of

the atoms. It can be measured both by absorption and fluorescence imaging. For this
work, absorption imaging is used for the main experiments. Fluorescence imaging
only is employed for monitoring a magneto-optical trap.

For both types of imaging, atoms are irradiated with a resonant laser. Absorption
and spontaneous emission lead to the scattering of photons from the imaging beam
into random directions. Fluorescence imaging detects the scattered photons. For
that purpose, a camera is placed such that it does not see the imaging beam itself.
With the help of lenses, the atom plane is imaged on the camera’s CCD chip. The
intensity of detected light reflects the atomic density. For absorption imaging, the
camera is placed such that the imaging beam falls onto its chip. Again the atomic
plane is imaged onto the camera’s CCD chip. Using a saturated absorber model, the
density distribution of the atoms can be inferred from the absence of light compared
to a reference image of the unperturbed laser beam [77]. Both fluorescence and
absorption imaging are destructive measurements since the scattering of photons
heats and thus destroys the condensate. Therefore, the entire cooling cycle and the
experiment must be repeated for every image.

For optimal imaging, the atoms need to scatter as many photons as possible in a
short time. Hence, the imaging laser should thus be resonant to the atomic transition.
In addition, atoms need to remain in states addressed by the laser. If there is a decay
channel to a different state, atoms need to be re-excited into the imaging cycle by
adding a corresponding second laser frequency. For potassium-39 at zero magnetic
field, imaging light should contain an equal amount of D2 cooling and D2 repumping
light. Imaging becomes more involved at higher magnetic fields. This includes
imaging at the magnetic field strength of the Feshbach resonance at 562G where the
experiments described later in this work take place.
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Figure 5.7: Imaging scheme at high magnetic fields. At magnetic fields close to the
Feshbach resonance, around 550 − 560 G, only view transitions are still allowed between
the eight ground state and the 16 excited states of potassium-39 (see section 5.2 for a
definition of the states). The solid lines indicate allowed transitions, and different colors
encode the polarization of the respective transition. The dashed lines show additional (weak)
decay channels. In the experiment, atoms are initially in the g3 ground state (red) which
corresponds to F = 1,mF = −1 state at zero magnetic field. For imaging, the transition
g3 → e3 is used. From this excited state, atoms decay back to g3, but a residual decay is
possible to g5. An additional laser light excites atoms from g5 to e13. Here, decay occurs
back to g5; and the original ground state g3. This leads to a closed imaging scheme in a
reduced form on the right-hand side. This figure is adapted from [60].

5.13 Imaging of potassium-39 at moderate to high
magnetic fields

The experiments described later in this work take place at magnetic fields around
the Feshbach resonance at 562 G, and imaging of the atomic density needs to be
performed at these fields. For that, the level structure of potassium-39 at high
magnetic fields needs to be taken into account. At these fields, all eight ground states
of potassium-39 have distinct energies. They are named |g1〉 to |g8〉. The same is true
for the 16 excited states |e1〉 to |e16〉 (see section 5.2 or fig. 5.2 for the levels). At
the magnetic field strength of the Feshbach resonance, the eigenenergy states of the
atoms are best described in the |mJ,mI〉 basis. Here I = 3/2 is the nuclear spin, J
the total electron spin and mI and mJ the respective magnetic quantum numbers. In
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this basis, the excited states only have a single |mJ,mI〉-component. However, most
ground states are in a superposition of two basis states. They consist to 98% percent
of a main |mJ,mI〉 state but have a 2% admixture of a second state. This influences the
allowed optical transitions shown in fig. 5.7. In the |mJ,mI〉 basis, optical transitions
are allowed that change mJ by +1, 0 or −1 for σ+, π or σ− polarized light. The
solid lines show the transitions allowed for each state’s dominant component. The
dashed lines mark the additional transitions caused by the 2% admixture of a second
|mJ,mI〉 to the ground states. If the atoms are imaged with only one frequency, these
additional decay channels result in atom loss to a dark state. A closed imaging cycle
can be reached using a two-frequency scheme [60, 78, 79].

For this work, atoms are caught in the | F = 1,mF = −1 〉 state at low magnetic
field, corresponding to the |g3〉 ground state. At high magnetic fields they are imaged
with the |g3〉 → |e3〉 transition [58]. While most atoms decay back into the |g3〉

ground state, a significant fraction instead decays into the |g5〉 state, which is a dark
state. If the transition is saturated, half the atoms will be lost to this dark state on a
time scale of 2.2 µs [79] which limits the absorption signal. To increase the signal,
a second laser light is added, which drives the |g5〉 → |e13〉 transition to a second
excited state. From this excited state, atoms can only decay back into the same two
ground states |g3〉 and |g5〉. This leads to the closed imaging cycle depicted on the
right-hand side of fig. 5.7. With this imaging scheme, only 2% of the atoms are lost
to dark states for a typical imaging pulse of 10 µs. The residual losses are caused by
the remaining admixture of the excited states in the |mJ,mI〉 (on the order of 10−4). In
our experimental setup, an optimal signal to noise at a high magnetic field is reached
for equal intensities of both imaging lights. More details on this four-level scheme
together with an atom-number calibration for the imaging can be found in [79] and
[61].
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Chapter6
Experimental system and setup

This chapter describes our experimental setup that creates and controls a quasi-
two-dimensional Bose-Einstein condensate (BEC) of potassium-39. To construct the
setup and implement the different traps and cooling schemes, we could build upon
results and experiences from previous BEC experiments [70, 76, 80–82].

After a brief overview of the cooling and trapping scheme of our setup in sec-
tion 6.1, section 6.2 describes the experiment control, section 6.3 the vacuum system,
and section 6.4 the setup of magnetic field coils and their calibration. The different
imaging setups that monitor the different cooling stages and record experimental
results are explained in section 6.5. The following sections describe the setups for the
different cooling stages. These include the magneto-optical traps section 6.6, the grey
molasses section 6.7, a magnetic trap section 6.8 and dipole traps section 6.9. The
latter includes the dipole traps used for evaporation and the final trap that shapes the
quasi-two-dimensional BEC. Finally, section 6.10 shows the laser systems needed
for the different stages of the experiment.

6.1 In a nutshell
A Bose-Einstein condensate forms once the phase-space density of the atomic

cloud surpasses a critical value.1 Thus, for the experimental realization of a BEC, an
atomic cloud must be first caught and then simultaneously compressed and cooled
until the critical phase-space density is reached.

1The critical phase-space density is given by nλ3
dB ≥ ζ(2/3) ≈ 2.6 [52], with n the density, λdB

the thermal deBroglie wavelength and ζ the Riemann zeta function.
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Chapter 6. Experimental system and setup

In our setup, the trapping and cooling of the atoms starts with a two-dimensional
magneto-optical trap (MOT) loaded from a background vapor of potassium. The
2d-MOT creates an atom beam that loads a 3d-MOT in a region of lower vapor
pressure. A short compressed MOT terminates this first stage and increases the
density of the atom cloud. Afterward, the magnetic fields switch off to allow for a
stage of grey molasses cooling using the D1 transition. A subsequent magnetic trap
catches a single magnetic substate and further compresses the cloud adiabatically.
Due to the small negative scattering length of potassium-39 at a low magnetic field,
evaporative cooling within the magnetic trap is not possible. Instead, the atoms
are directly loaded into a dipole trap. In this optical trap, the scattering length is
adjusted by applying a homogeneous magnetic field with its field strength close
to a Feshbach resonance of potassium-39. Lowering of the trap’s depth initializes
evaporative cooling, which proceeds until the atoms reach degeneracy.

After condensation, the cloud is levitated by a magnetic field gradient counteract-
ing the gravitational force, compressed in gravity direction, and loaded into a single
sheet of a pancake trap. Radial trapping is achieved by a Gaussian beam perpen-
dicular to the pancake trap. At this point, the atoms form a quasi-two-dimensional,
radially symmetric condensate whose radial size and scattering length can be con-
trolled via the laser power in the radial trap and the magnetic field strength around
the Feshbach resonance, respectively. This is the starting point for the experimental
runs.

At the end of each run, an absorption image is taken at the high magnetic field
using a four-level scheme with two distinct laser frequencies.

6.2 Experiment control
In order to cool a cloud of atoms to degeneracy and perform a measurement, many

subsequent steps are necessary at exact timings down to sub-millisecond precision.
Their control requires a digital-to-analog interface that translates a programmed
experimental sequence into voltage signals that regulate the different components of
the experiment. For our machine, the interface consists of five National Instrument
cards2 with a total of 32 analog and 80 digital output channels. The digital channels
switch between voltages of 0 V and 5 V signifying logical 0 and 1 in a transistor-
transistor logic (TTL). These channels are used to switch components between
two states. The analog channels support voltages between −10 V and +10 V with
a resolution of 0.3 mV. They are used to regulate continuous variables like the

2four PXI-6733 and one PXI-6254
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Figure 6.1: Top view of the vacuum system. On the left-hand side, a potassium oven fills
the 2d-MOT chamber with a thin gas of potassium. A differential pumping stage separates
this region of relatively high pressure (10−8 mbar) from the science chamber with a pressure
of 10−11 mbar on the right. Here the condensate is created and experiments performed.

power of a laser beam or the frequency applied to an acousto-optic modulator. In
our setup, each channel can be programmed with a time resolution of 50 µs. Their
synchronization and programming is described in [83].

6.3 Vacuum system
The vacuum system is divided into two parts connected by a long and narrow

tube (see Fig 6.1). The tube serves as a differential pumping stage; different pressures
can be maintained on each side. On the low-pressure side, an ion pump maintains
a pressure around 10−11 mbar. On this side, a glass cell – the science chamber – is
attached in which an atom cloud is initially caught in a magneto-optical trap (MOT)
and cooled till degeneracy in each experimental run. To reduce the heating of the
atom cloud during experiments, the pressure on this side needs to be as low as
possible. The downside of the low pressure is that not enough atoms are available
for a sufficient loading of the initial magneto-optical trap. Instead, the MOT must
be loaded from the vacuum chamber’s ‘high’ pressure side. This chamber is also
constantly pumped but additionally connected to a potassium oven. A second oven
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Chapter 6. Experimental system and setup

containing Rubidium is connected but not active. The potassium oven is heated to a
temperature of ∼ 70◦C and fills the chamber with a potassium vapor at a pressure
of 10−8 mbar. At this pressure, enough potassium atoms are distributed around
the vacuum chamber to load a 2d-MOT from the background gas efficiently. The
2d-MOT creates a directed atom beam that passes through the differential pumping
stage and loads the 3d-MOT. With this setup, fast loading of the 3d-MOT can be
combined with low pressure in the glass cell. A more detailed description of the
vacuum system and its components can be found in [84, 85].

6.4 Magnetic fields and coil setup
Different magnetic field configurations or even the absence of magnetic fields

are essential for several steps in cooling the atoms and Feshbach-tuning during
measurements.

On the high-pressure side of the vacuum, only a single configuration is needed
for the 2d-MOT. This is a quadrupole field with a gradient of ≈ 14G/cm. It is
realized by a set of two elongated coils (see fig. 6.2). These coils have a large enough
distance from the final condensate that their current can be permanently turned on;
any residual influence on the atoms is easily compensated.

Different field configurations are needed on the low-pressure side, and fast
switching between them is necessary during the experimental sequence. These
configurations are

• A three-dimensional quadrupole field with a gradient of ∼ 8 − 15G/cm for the
MOT and with a gradient of ∼ 60 G/cm for the magnetic trap

• Vanishing magnetic field for the grey molasses cooling

• Homogeneous magnetic field around 560 G for the tuning of the s-wave scat-
tering length near the Feshbach-resonance for both evaporative cooling and
the experimental measurements

• Magnetic field gradient in gravity direction (z direction), canceling the gravita-
tional force in the homogeneous field configuration

• Vanishing magnetic field gradients along the horizontal direction in the homo-
geneous field configuration

These requirements are met by the coil setup shown in fig. 6.2. Both the quadrupole
field and the homogeneous field are created by the pair of large coils at the center,

58



6.4. Magnetic fields and coil setup

2d-MOT coils

2d-MOT
atom beam MOT

BEC

gradient wire

gradient wire

offset coils

Figure 6.2: Coil setup for all magnetic field configurations. The elongated quadrupole
field for the 2d-MOT is created by a dedicated set of coils with opposite current flow
through the coils (left-hand side). The right-hand side shows the coil setup around the
region of the MOT, magnetic trap, and finally, the condensate. The large coils at the center
(orange coils) are used in two different configurations. If the current flows in opposite
directions in the two coils, they create the quadrupole field for MOT and magnetic trap.
For current flowing in the same direction, they create a homogeneous field. Switching
between the two configurations is achieved by reversing the current in the upper coil. A
gradient in gravity direction can be created with a larger current through the upper coil in
the homogeneous field configuration. The coils depicted in blue are three Helmholtz pairs
that create homogeneous offset fields in all three spatial directions. Together with the two
gradient wires, they are used for the compensation of residual fields and field gradients.

which is described in detail in [86]. The distance between the coils is a compromise
between an Anti-Helmholtz and a Helmholtz configuration. The upper coil of this
pair is connected to an H-bridge circuit (see fig. 6.3), which can reverse the direction
of the current flow (see again [86] for details). As illustrated in the figure, this permits
switching between a quadrupole field (right-hand side) and a homogeneous field
(left-hand side). The strength of the current is regulated by two passbanks (for the
passbank design, see also [86]). Opening of passpank ‘one’ in fig. 6.3 allows equal
current flow through both upper and lower coil. It thus creates either a quadrupole or
a homogeneous field. The second pass bank is only used in the homogeneous field
configuration. It allows additional current flow through the upper coil but bypasses
the lower one. This creates a magnetic field gradient in addition to the homogeneous
field. Since the upper coil carries more current, the field is stronger there. For atoms
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Figure 6.3: Control circuit for the large coils. The large coils can create either a homoge-
neous field for Feshbach-tuning or a gradient field for MOT and magnetic trap. Switching
between the two configurations is achieved with an H-bridge. Two passbanks regulate the
current through the coils. Passbank one creates a current that flows simultaneously through
both coils; passbank two adds a current only to the upper coil but bypasses the lower. A
larger current in the upper coil creates a magnetic field gradient that can levitate atoms
against gravity.

in a high-field-seeking state, this results in a magnetic force counteracting gravity.
By careful adjustments, an exact cancellation of the gravitational and magnetic force
is possible, and the atoms are levitated.

Both passbanks are regulated via proportional-integral control loops (PI loops).
Two low-noise current transducers3 measure the current through the upper coil and
lower coil, respectively. The difference between the two sensors is a measure for the
gradient and is the input signal for controlling the gradient passbank. The sum of the
currents is proportional to the strength of the homogeneous field and is the input for
the main passbank. The set value for the latter control circuit is split into a fast and a
slow channel to reduce noise from the experimental control. High-frequency noise is
removed from the slow channel by a low-pass filter. The fast channel is attenuated
by a factor of 20, reducing the noise by the same factor. This channel permits fast
(but comparably small) changes of the magnetic field, which are required for the
Feshbach tuning during measurements.

3Current Transducer: LEM, IT 400-S ULTRASTAB
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6.4. Magnetic fields and coil setup

The remaining coils shown in fig. 6.2 are three Helmholtz pairs (see [87] for
details) called offset coils. Their primary purpose is to cancel residual magnetic
fields during the stage of grey molasses cooling. Additionally, they shift the zero
point of the quadrupole field during the magnetic trap to correct for long-term drifts
in the position of the molasses and the dipole traps. The current in these coils can be
adjusted via the experimental control but is not actively stabilized.

Two gradient wires complete the magnetic field setup. They create a magnetic
field gradient in the two horizontal directions. At a high magnetic field, they cancel
parasitic gradients from the supply wires of the large coils and other non-identified
residual gradients. Just as for the offset coils, the current for the gradient wires can
be adjusted but is not externally stabilized.

With the gradients compensated, the leading order deviation from a homogeneous
magnetic field is a quadratic contribution from the large coils, called the curvature of
the coils. At the typical field strength for Feshbach-tuning, slightly below 560 G, it
creates a rotational symmetric attractive harmonic trap in the horizontal plane with a
trap frequency of ω = 2π · 5.5Hz. This trap is not very relevant for this particular
work since optical traps always provide stronger confinement. In the context of other
experiments, this trap is used to measure the momentum distributions of a condensate
similar to [88].

6.4.1 Calibration of the homogeneous field

To adjust the scattering length via Feshbach-tuning, precise control of the mag-
netic field strength at the position of the atoms is necessary. For this purpose,
coil-currents must be calibrated against measurements of the homogeneous mag-
netic field. The most precise magnetic field sensor are the atoms in the condensate
themselves. Their eigenenergy states depend on the magnetic field (see section 5.2),
and a spectroscopy of the transition frequency between two states is a precise mea-
surement of the magnetic field strength. The transitions between the ground state
and excited state manifold of potassium-39 are optical (see section 5.2). Due to
their natural linewidth of Γ = 6 MHz, they are not optimal transition for an exact
measurement. Instead, we use a transition within the ground-state manifold. These
are microwave-frequency (MF) transitions with a negligible natural linewidth. In
the Bose-Einstein condensate, atoms are in the g3 ground state, which is also the
state detected by absorption imaging. For MF-spectroscopy, the transition from
that state to the g6 ground state is used, which flips the electron spin but leaves
the nuclear spin unchanged (see section 5.2). The transition is driven by an addi-
tional small coil placed directly at the glass cell. The current through the coil is
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Figure 6.4: Microwave spectroscopy for magnetic field calibration. A transition in the
ground-state manifold of the atoms is driven with an oscillating magnetic field. At the
resonance, atoms are removed from the imaged state. The frequency at which the frequency
occurs is a measurement of the magnetic field.

modulated with the microwave frequencies around the resonance. On resonance,
atoms will be removed from the g3 ground state, which results in a clear loss signal
in the atom number. By repeating such a measurement at different magnetic field
strengths, precise calibration of the magnetic field and the corresponding coil current
is possible.

Two typical measurements at field values close to the Feshbach resonance are
shown in fig. 6.4. The width of the measured resonances is below 0.5 MHz. At these
high fields, the resonance frequency of the transition changes with 2.67 MHz/G. A
conservative estimate for the error of the magnetic field calibration is thus ∆B ∼ 0.2 G.
With this precision of the calibration, the main uncertainty for Feshbach-tuning is
the position of the resonance with an error of 1.5 G [89].

6.5 Imaging setups
The experimental setup includes several imaging paths to monitor the atomic

cloud during the experimental sequence and to detect the atomic density distribution
at the end of each measurement run. This includes two cameras and a photodiode
that detects the fluorescence signal of the magneto-optical trap shown in fig. 6.5.
The cameras are not exactly in the horizontal plane; one is above it and one below.
Combined, this gives a three-dimensional impression of the shape of the atomic
cloud. Together with the fast signal from a photodiode, the alignment of the MOT
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beams and the power balancing between beams can be optimized.

Figure 6.5 additionally shows two imaging paths in the horizontal plane, which
take absorption images from the side. These are used to optimize the cooling stages
and the loading of the traps. They also allow time-of-flight measurements at different
stages to detect the temperature of the atomic cloud. The light frequencies can
be switched between resonant light at zero and at high magnetic field in all three
absorption beams. Section 6.10.2 describes how this is achieved.

The first imaging path is a comparably simple setup. A single lens images
the atom plane onto a Guppy camera4 with a magnification of approximately 0.9
(de-magnification). This setup is used to monitor and optimize the earlier stages
of the experimental sequence, namely the compressed MOT, grey molasses, the
magnetic trap, and the beginning of evaporative cooling. The second absorption
imaging from the side reaches a magnification of ∼ 29. It uses a combination of a
home-build objective with an effective focal length of f ∼ 35 mm in combination
with a secondary lens with f = 1000 mm. At its correct position for imaging, the
objective blocks the beams of the magneto-optical trap. It is thus mounted on an
automatic stage and is moved away from the glass cell for the early stages of the
experimental sequence (or if not in use).

The main absorption imaging is used for the experimental measurements. It
resolves the density distribution of the quasi-two-dimensional condensate. The
condensate extends in the horizontal plane and is restricted along the gravity direction.
Thus, the imaging beam is oriented along the gravity direction as shown in fig. 6.6.
The figure also shows the vertical beams of the magneto-optical trap (in orange),
which must share the same axis. They are described in detail in section 6.6. For
imaging, the optical components marked in orange (a lens and a mirror) are removed
from the path. The atoms are illuminated by the imaging beam from the top (blue
beam). The atoms (red dot) scatter photons and thus remove light from the beam. As
shown in fig. 6.12, the absorption signal is collected and collimated by an objective5

with an effective focal length of f = 35.0 mm and a numerical aperture NA = 0.5. A
secondary lens with a focal length of f = 1000 focuses the signal onto the CCD chip
of the main camera6. Note that the beam path after the atoms (light blue) depicts the
absorption signal, i.e., the signal of a point source in the imaging plane (it does not
show the imaging beam itself). The secondary lens is mounted on a piezo stage7

4Guppy camera, Allied Vision
5Custom made objective from ‘Special Optics,’ see thesis by Maurus Hans [61] for details of the

objective, its mounting and adjustment.
6ProEM-HS 1024 Bx3, Princeton Instruments
7Translation Stage with Resonant Piezoelectric Motors, Thorlabs - ELL20/M
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Figure 6.5: Imaging and monitoring setups – top view. During the different stages of
cooling and trapping, the atoms are monitored by several fluorescence and absorption
imaging setups. Two cameras and a photo-diode detect the MOT fluorescence. The cameras
are not exactly in the horizontal plane allowing for a three-dimensional impression of the
atomic cloud during the MOT stage. Two absorption imaging systems with a magnification
of 0.9 (Guppy camera) and 29.0 (Pixis camera) can show the atomic cloud at the different
stages of the experimental sequences. They are used to optimize the cooling and loading of
the various traps.
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Figure 6.6: Main imaging setup and vertical MOT beams. The main absorption imag-
ing is oriented along the gravity direction to resolve the density distribution of the quasi-
two-dimensional condensate extended in the horizontal plane. The imaging beam contains
two lights, the high-field σ+ and high-field σ− lights described in section 5.13. The vertical
beams of the magneto-optical trap follow the same axis, and the lower beam needs to pass
through the objective. A mirror and a lens are moved in and out of the imaging path to
combine both imaging and MOT setup. They are marked orange for their position during
the MOT stage and blue for their position during imaging.
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with which the focal plane of the imaging system can be adjusted to the plane of the
atoms. The chip of the CCD camera is protected against scattered light by a band
path filter and a mechanical shutter 8. The magnification of the main imaging was
measured independently with the dynamics of the atoms after a Bragg pulse. For
the Bragg pulse, the condensate is illuminated with a retro-reflected dipole beam.
This creates a lattice with the spacing of half the light’s wavelength λ. A short pulse
of that lattice imprints a phase structure on the condensate which is equivalent to
exciting a momentum mode at p = ~k = 4π

λ
. Due to the momentum, part of the atoms

are ejected from the condensate with v = p/m. Their movement can be traced with
time of flight measurements. Since the atoms’ velocity is known very precisely from
the wavelength of the light, the magnification can be inferred. The magnification is
35-fold magnification, and a single pixel on the camera’s CCD chip corresponds to
0.455 µm in the condensate. The optical resolution is around 0.8µm.

6.6 Magneto-optical traps
Cooling of the atoms begins with the magneto-optical traps. In the ‘high-pressure’

part of the vacuum cell (see section 6.3), a 2d-MOT is loaded from the background
vapor pressure. It creates an atom beam that, in turn, loads the 3d-MOT. The 3d-
MOT is the starting point for later cooling stages and, ultimately, the Bose-Einstein
condensate. For potassium-39, closed cooling cycles in an MOT can be realized for
the D2 line with light red-detuned to the F = 2→ F′ = 3 transition. However, due
to the poorly resolved hyperfine manifold (see section 5.1), atoms are likely to be
lost into the F = 1 ground state and need to be re-excited by the repumper transition
from the F = 1 ground state to the excited state manifold. For optimal cooling,
cooler and repumper light must be overlapped in all MOT beams with almost equal
intensity such that both lights contribute to the cooling forces (see section 5.8 for
details).

6.6.1 Two-dimensional MOT
The 2d-MOT is built as a four-beam (non-retro-reflected), free space setup with an

additional push beam. A schematic sketch can be found in fig. 6.7 and appendix A.3
shows the detailed setup. The magnetic quadrupole field for the MOT is created by
the dedicated coils described in section 6.4. For the 2d-MOT beams, around 350 mW
of mixed D2-cooler and D2-repumper light are used. Both lights are red-detuned to

8Uniblitz optical shutter, the camera internal shutter was removed to avoid vibrations
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the entire excited state manifold with the exact detunings shown in fig. 6.8. The light
is split into the four MOT beams, which are collimated with telescopes to a 1/e2-
diameters of 15 mm. The polarization of the beams is adjusted with λ/4-plates to
be left-handed circular polarized for the horizontal beams and right-handed circular
polarized for the vertical beams in accordance with the orientation of the quadrupole
field.9 This setup creates an elongated cloud of atoms that are cooled and trapped
in two spatial directions but can propagate freely in the third direction. A push
beam blocks the propagation in one direction such that the atoms move towards the
low-pressure region of the vacuum chamber. The light for the push beam arrives at
the table in a separate optical fiber. It contains 8 mW cooler light and no repumper
light. It has a beamwidth of 2 mm and is adjusted to left-handed polarization. The
resulting atom-beam passes through the differential pumping stage described in
section 6.3 and loads the 3d-MOT. Loading efficiency can be significantly improved
with the power-balancing between counter-propagating beams and the pointing of
the push-beam.

6.6.2 Three-dimensional MOT
The 3d-MOT uses a circularly symmetric magnetic quadrupole field created

with the large coils described in 6.4. For the MOT, the magnetic field gradient is
7.5 G/cm in gravity direction and 3.8 G/cm in the radial direction. Similar to the
2d-MOT, the 3d-MOT is realized with three pairs of counter-propagating free space
beams that overlap at the minimum of the magnetic quadrupole field. In total, the
six beams contain a power of 25 mW of D2 cooler and 20 mW of D2 repumper
light with a 1/e2-beam diameter of 13.5 mm. The horizontal beams are adjusted to a
left-handed circular polarization and the vertical beams to right-handed polarization.
The schematic setup for the horizontal beams is shown in fig. 6.7 with the details
in the appendix appendix A.1. The vertical beams require a more complicated
setup because the main imaging setup shares their propagation axis. This places an
objective in the path of the lower MOT beam, as is shown in fig. 6.6. The other way
around, a MOT mirror blocks the path of the imaging beam. The imaging setup is
kept static to minimize shot-to-shot fluctuations and signal loss for the imaging. This
means that the optical components of the lower MOT beam must be moved during
each experimental cycle. For the MOT phase, a lens is moved into the beam path
to compensate for the focusing effect of the objective, and a MOT mirror is moved

9There are different conventions for naming the handedness of the polarization. For this work,
we use the definition of an observer that looks into the beam (against the propagation direction)
following the polarization analyzer used for measurements (Polarization Analyzer SK010PA, Schäfter-
Kirchhoff)
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Figure 6.7: Setup for magneto-optical traps. Both 2d-MOT and 3d-MOT are realized
in a free space set up with four and six independent beams, respectively. The 2d-MOT
has an additional push beam that keeps atoms from escaping the 2d-MOT in the unwanted
direction. The atoms then form a beam propagating from the 2d-MOT to the 3d-MOT. The
setup of the vertical 3d-MOT beams is in fig. 6.6, and a detailed drawing of the MOT setups
can be found in appendix A.1.

out of the imaging path at the end of the molasses phase. Both movable components
are mounted on air-pressure-driven stages.10 The air-pressure stages were chosen
because they can move without magnetic components, which could influence the
atoms during experiments.

6.6.3 Compressed MOT
The previously described MOT stage is optimized to collect and precool as many

atoms as possible. This requires a large trapping region and strong trapping forces.

10air pressure mini stage: Festo, DGST-8-80-Y12A (magnetic position indicators are removed),
magnetic valve: Festo, VUVG-L10_M52-MT-M5-1R8L. The stage contains a magnet for

position sensing, which we removed for our purpose
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The density of the atom cloud is limited by photon rescattering and light-assisted
collisions, and the temperature of the cloud is limited by the photon scattering itself.

Once the atoms are trapped in the MOT, the cloud’s density is increased during a
5 ms compressed MOT. For the compression, the magnetic field gradient is increased
by a factor of 4, which results in tighter confinement. The detunings of cooler
and repumper light are changed to the configuration shown in fig. 6.8. It results
in a more compact and colder cloud. At the end of the stage, the cloud has a
temperature of approximately 500 µK. The temperature is determined with time-
of-flight measurements using the Guppy absorption imaging11. At the end of the
compressed MOT, the D2 lights and the magnetic field are turned off for the grey
molasses stage. The MOT stage and compressed MOT are included in the sketch of
the experimental sequence fig. 6.9.

6.7 Grey molasses
A grey molasses as described in section 5.10 can be realized in potassium-39

on the D1 transition. It needs cooler and repumper light in a Raman condition and
requires a light field with polarization gradients. The beam setup for the magneto-
optical trap with three pairs of circularly polarized light creates such a polarization
gradient field. Thus, the same beam setup used for the MOT can be reused for
molasses. For that purpose, D1 light is coupled into the same optical fiber as the
MOT-lights (as described in section 6.10.1). Optimal cooling is achieved for an
intensity ratio between cooler and repumper of 3 : 1. In total, we use around 25 mW
of D1 cooler light and 8 mW of D1 repumper light, which is distributed between the
six beams. The efficiency of the grey molasses is very sensitive to magnetic fields.
For cooling to proceed, the gradient field for the MOT is turned off, and residual
magnetic fields are compensated with the offset coils (see section 6.4).

While cooling is very efficient during the molasses, this process cannot offer
spatial confinement, and the atom cloud expands and loses density. To limit this
effect, the entire molasses stage only last 4 ms. In the first 1.5 ms, light intensities
and detunings are held at a constant value to achieve high cooling forces. During the
next 2.3ms, the frequencies of both lights are swept to larger detuning, and intensities
are lowered as illustrated in fig. 6.9. This reduces heating due to photon scattering,
and lower final temperatures can be reached. The most critical parameter in the

11The time-of-flight measurements are not very precise at this point. There is a necessary time
gap between the end of the MOT and imaging to allow the magnetic fields of the MOT to turn off.
Due to the still high temperatures, the atom cloud already expands significantly and is already too
large in size for the camera setup designed to image colder clouds.
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molasses is the Raman condition. Special care is taken to keep this condition fulfilled
during the frequency sweeps. This is described in detail in the section on the laser
system section 6.10.1. Temperatures down to around 6 µK have been achieved in
our experiment, and even without frequent adjustments, temperatures are reliably
between 6 µK − 10 µK. In the last 0.2 ms of the molasses stage, the D1 cooler light
is turned off, which transfers the atoms to the F = 1 ground state.

The end of the molasses marks the end of the cooling processes using resonant
light. For the following cooling stages, resonant light must be blocked from the
experimental chamber since already very low intensities of resonant light lead to
significant heating during the long evaporative ramps. For that reason, the resonant
laser system is located on a separate, shielded optical table, and the light reaches the
table only via optical fibers. At this point in the sequence, mechanical shutters close
before the 2d-MOT and 3d-MOT fibers and effectively prevent resonant light from
reaching the atoms.

6.8 Magnetic trap
The magnetic trap selects a single atomic sub-state. Additionally, it is used as a

transition trap to catch and hold the atoms after the molasses and help the loading of
the dipole traps described in the following section12.

The depumping at the end of the grey molasses leaves the atoms in the F = 1
ground state with equal populations in the three mF = [−1, 0, 1] sub-states. The
magnetic trap catches the mF = −1 state, which is a magnetic low-field seeker (see
section 5.2) and is thus trapped in the magnetic field minimum of the magnetic
quadrupole field. The other two states are anti-trapped, the mF = 1 state already due
to the linear Zeeman effect and the mF = 0 state due to the quadratic Zeeman shift.
This means that two-thirds of the carefully collected and cooled atoms are lost and
fall under the influence of gravity. The remaining third, however, is a one-component
atomic gas needed for evaporative cooling and the final condensate.

The offset coils are used to shift the magnetic field minimum to the position
of the molasses cloud. Slow ramps of the offset field move the magnetic field
to the position of the dipole traps. The magnetic trap can compensate for slight
misalignment between molasses and dipole traps.

12Loading the dipole traps directly from the grey molasses is difficult due to the light shift induced
by the dipole traps themselves. The light shift changes the detuning of the D1 lights at the position of
the dipole beams. For deep traps, the detuning might even change from blue-detuned to red-detuned.
The atom cloud will then be cooled outside of the traps but heated in the traps.
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Figure 6.9: Experimental sequence - MOT, molasses, magnetic trap and loading of
the dipole trap. The sequence starts with an MOT followed by a compressed MOT. For
the latter, the frequencies switch to the values indicated in fig. 6.8, and the magnetic field
gradient increases linearly. For the grey molasses, detunings and power of D1 cooler and
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decreases the temperature of the atomic cloud. The repumper switches off 0.2 ms before
the cooler to transfer all atoms into the F = 1 ground state. A magnetic trap catches and
compresses atoms in the F = 1, mF = −1 state. A transfer of the atoms into the dipole traps
is achieved by a slow increase of the power in the reservoir beams and the condenser. Once
they reached full power, the magnetic trap ramps down and turns off.

72



6.8. Magnetic trap

1.6W

20
0 

m
s

ev
ap

or
at

io
n

scattering length

top beam

1.2W

60mW 4mW

1.9W

0.4W

195aB

co
m

pr
es

si
on

50aB

60mW

pa
nc

ak
es

 lo
ad

in
g

ad
ju

st
m

en
t t

o 

ex
pe

rim
en

t v
al

s

10
0 

m
s

40
0 

m
s

1.
5 

s

1.6W

2.
0 

s

3.
0

s

4.
2 

s

0.
3 

s

reservoir beams

condensor

compressor

co
nd

en
sa

tio
n 

tr
ap

s

Im
ag

in
g

E
X

P
E

R
IM

E
N

TA
L 

R
U

N

 

re
la

xa
tio

n

E
X

P
E

R
IM

E
N

T

Levitation turns on 

(during 100ms) 

10
 �

s
RF-switch off

(beam off)

10
0m

s

fin
al

 tr
ap

RF-switch off 

(beam off)

RF-switch off

(beam off)BEC

10
0m

s

4mW

pancakes

H-bridge switches

to homogeneous field

1W
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homogeneous field. Evaporation proceeds at a scattering length of 195 aB. The ramps of
different dipole beams are optimized for cooling while maintaining high densities within the
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the values of the experimental run.

73



Chapter 6. Experimental system and setup

Once the magnetic trap is loaded, a slow increase of the gradient of the quadrupole
field compresses the atomic cloud adiabatically (see fig. 6.9), which leads to a
higher density but also increases the temperature to typically 50 − 60 µK. After
the compression, the atoms are transferred into a dipole trap described in more
detail in the following section. While the magnetic trap is held static, the intensity
of the dipole trap is slowly increased during a 2 s period. The majority of the
atoms are then confined by the dipole traps, and a slow turnoff of the magnetic trap
concludes the transfer. Once the atoms are trapped in the light-field of the dipole
traps, the orientation of the large coils is switched from the gradient configuration
to the homogeneous field configuration. The homogeneous field is necessary for
Feshbach-tuning during evaporative cooling.

6.9 Dipole traps
In our setup, dipole traps fulfill different purposes. First, they provide con-

finement during evaporative cooling until the phase transition to the Bose-Einstein
condensate takes place. Second, dipole traps create the trap geometry that holds the
quasi-two-dimensional, rotational symmetric condensate. Finally, a tightly-focused
repulsive Gaussian beam is used for curvature measurements described in chapter 8
to introduce a local under-density in the condensate.

The evaporation trap is formed by overlapping several red-detuned, attractive
Gaussian beams with a wavelength of 1064 nm as described in section 5.7. The power
of the beams is actively stabilized (see 6.10) and can be dynamically adjusted via the
experiment control. For the final trap, the tight confinement in gravity direction is
achieved with a repulsive pancake interferometer at 532 nm. Radial confinement is
provided by an additional attractive Gaussian beam perpendicular to the pancakes.

6.9.1 Evaporation traps

For evaporative cooling, a trap needs to initially hold a large cloud of atoms. It
thus requires a large trapping volume and a good overlap with the magnetic trap from
where it loads the atoms. Additionally, the initial dipole trap needs to be deep enough
to confine atoms at the corresponding temperature. During evaporative cooling, the
intensity in the trapping light field beams must be decreased. This will lead to a more
shallow trap which in turn lowers the density of the atoms. This effect is unwanted
since evaporation is more efficient at high densities. Also, a high density is crucial
for condensation itself, which occurs a critical phase-space density.
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6.9. Dipole traps

To combine a large initial cloud with high densities during the cooling process,
the evaporation trap consists of a large trap region, called reservoir trap, overlapped
by a tighter trap. The reservoir is created by two attractive Gaussian beams that are
crossed under an angle of 10◦ degrees (see fig. 6.11). Lenses with a focal length of
f = 600 mm focus both beams to a beam waist of 50 µm. Each beam contains up
to 12 W of laser power. Both beams combined a trap with approximately 700 nK
trap depth. Since a single-mode optical fiber cannot transport such high powers,
the reservoir beams are free-space beams. The tighter trap is again formed by two
crossed laser beams called condenser and compressor. The beams are in the same
vertical plane and intersect at the positions of the atoms under a 10◦ angle. Hereby,
the compressor is in the horizontal plane and the condenser tilted downwards at the
specified angle. Both beams are fiber coupled with a maximal power of 2 W each.
The compressor is spherically shaped with a beam waist of 35 µm. The compressor
is flattened in vertical direction, with a beam waist of 17 µm and 51 µm, respectively
(surfboard geometry). The tighter waist in the vertical direction facilitates the loading
of the final trap. Figure 6.13 shows recorded cross-sections of the light field of the
compressor and condenser in comparison to the pancake trap.

The evaporation sequence is illustrated on the left-hand side of fig. 6.10. In a
2 s-ramp, the power of the reservoir trap decreases to 10% of its original power while
the condenser remains at full loading power. The cooling atom cloud collapses into
the trap minimum around the condenser, increasing the density of the atoms. During
a second 4.2 s ramp, the reservoir traps turns off completely. Simultaneously, the
compressor ramps up to ensure tight confinement despite the lowered trap depth. At
the same time, a beam of the final trap turns on already - the top beam (see following
section). The top beam is not necessary for condensation. However, loading of
the final trap is easier if this beam already contributes to the evaporation. If turned
on, it already moves the trap minimum to the correct position for later loading.
Compressor, condenser, and top beam decrease their power in a third and final ramp
until the atoms reach degeneracy.

6.9.2 Final trap

To create a quasi-two-dimensional, circular symmetric condensate, the final trap
needs circular symmetric confinement in the horizontal plane and tight confinement
in the gravity direction. The latter is achieved with a repulsive pancake trap (see
5.7). In our setup, the interferometer is realized with blue-detuned λ = 532nm
light. To reach a spacing between the pancake sheets of ∆z = 5µm, two beams
are crossed at an angle of 6◦. They are Gaussian beams with a 1/e2-diameter of
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Figure 6.11: Dipole traps - view from the top. The two reservoir beams form a large and
deep trap for loading a large atomic cloud from the magnetic trap. During evaporation, the
condenser and compressor beams provide a locally tighter trap which increases the density
of the cloud. The final trap is created by the pancake interferometer and the top beam.

76



6.9. Dipole traps

 
ob

je
ct

iv
e

glass cell

ob
je

ct
iv

e

gr
av

ity

 

condenser

compressor
pancake

pancake

top beam

l.h.

l.h.

l.h.

l.h.

l.h.

probe
beam

1064nm beams

mirrors

linear
polarisation

532nm beams

l.h.

l.h.

Figure 6.12: Dipole traps - view from the front and the side. This view shows the
orientation of the pancake interferometer and the attractive beams. The top beam passes
through a mirror which reflects the imaging and MOT light. From the bottom enters the
probe beam, again through a mirror for the MOT and imaging lights. The reservoir beams
are not shown in this depiction; they would be in the horizontal plane.

77



Chapter 6. Experimental system and setup

1 mm. The maximal (stable) total power in the interferometer is P = 1.6W which is
divided evenly between the two arms of the interferometer. This results in a trapping
frequency in z-direction of ωz = 2π · 1.6 kHz. In x and y direction, the trap is slightly
repulsive due to the finite size of the beams. Numerical calculations of the horizontal
trap frequencies are ωx = 2π · 0.5 Hz and ωy = 2π · 8 Hz, for perfectly aligned beams.
The true values are probably lower due to minor misalignment of the beams.

The radial confinement in the final trap is provided by an attractive Gaussian
beam called top beam. In future versions of the experiment, this beam will be
replaced by a digital micromirror device to shape arbitrary potentials [61, 66]. The
top beam was implemented as a makeshift solution, and its exact size at the focus is
unknown. It has a maximum power of 2 W. The important parameter of the radial
trap - the trap frequency - is determined experimentally (see section 6.9.4).

For a better loading of the final trap from the evaporation trap, the top beam
is already turned on during the final evaporation ramp. For the loading itself, first,
the power of the compressor is increased, and the condenser is turned off, as is
depicted in fig. 6.10. This flattens the BEC along gravity direction and allows to
load a single pancake, i.e., to transfer all atoms between two light sheets of the
pancake trap. Figure 6.14 shows an absorption image of the atoms taken from the
side with the Pixis imaging (see section 6.5) without the stage of compression. Here,
several pancakes are loaded. Only with the compression stage the loading of a single
pancake becomes possible. Once the pancake trap is at full power, the compressor
power slowly decreases to zero, and the beam turns off. The atoms are now held
only in the top beam and the pancake trap. The condensate preparation is concluded
by a waiting time of 100 ms to let the atoms settle into the trap. The condensate is
now ready for experiments.

6.9.3 Stability of the dipole traps - the wedge

For loading a single pancake, the minimum between two light sheets must
coincide with the position of the atoms in the evaporation trap. For that purpose, the
relative position between the compressor, condenser, and the sheets of the pancake
trap must be precisely adjusted. Additionally, the beams must be very stable with
respect to each other. In our setup, stability is achieved by mounting the beam setups
on a solid and heavy block of aluminum. The block itself is connected to the optical
table by only three spheres to decouple it from vibrations of the table (see fig. 6.15).
The block is cut in the shape of a wedge with an angle of 25◦. On both sides, 2 cm
thick aluminum plates are attached. The first plate carries the setup for the pancake
interferometer. The plate’s position can be coarsely adjusted and is then fixed to the
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Figure 6.13: Beam profiles of the compressor, condenser, and pancake trap. The light
distribution of the three beams is recorded at the position of their overlap. These are the
three beams mounted on the wedge (see section 6.9.3). The images were taken before
installing the wedge in the experiment. For each image, only one of the beams is turned on.
From left to right: compressor, condenser, and the pancake trap’s interference pattern. The
spacing of the light-sheets is approximately 5 µm. (The ring-structures appearing on the
pancake trap are dust artifacts.)

10 �m

Figure 6.14: Atoms in the pancake trap without compression. Density distribution of
the atoms in the final trap inferred from absorption image with the Pixis camera. Regions
of higher density are darker. Without compression, several pancakes are loaded as shown
here. With the compression stage, only one pancake is loaded.
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Figure 6.15: Mounting of pancake trap, compressor, and condenser. To ensure the
stability of the final trap and its loading, the pancake interferometer and the compressor
and condenser beams are mounted on a solid block of aluminum. The block itself is cut
into a wedge shape and is connected to the table only by three press-fitted spheres into the
aluminum block. Each sphere rests on a custom-made foot with a v-shaped cutout which
can be fixed to the table with a clamp. This decouples the aluminum block from vibrations
of the table. Plates are mounted on each side of the block. They carry the setups for the
pancake interferometer, and the compressor and condenser, respectively. The wedge is cut
such that all beams overlap in the region of the atoms in the glass cell. The following page
shows the detailed setup of both plates. The insets indicate the direction of view (black
arrows).
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wedge with the two central screws. Fine adjustment is achieved with the mirrors
of the interferometer. The path length of one of the beams can be changed by a
piezo mirror. This permits a precise adjustment of the relative phase between the
arms of the interferometer, which shifts the interference pattern up and down (see
section 5.7). The minimum between two light sheets is centered on the atomic cloud
by a fine adjustment of the piezo mirror.

The second plate contains the setup for the compressor and condenser. The
position and angle of the wedge are chosen such that the beams overlap with the
pancake trap in the region of the atoms. For fine adjustments, the entire mounting
plate can be moved. The plate rests on two micromirror screws13 which allow vertical
movement and tilt. For the remaining two axes, movements and tilts are realized
by a combination of spring-loaded screws that push the plate towards the wedge
and differential micrometer screws14 that act against that push. Adjustments of the
micrometer screws thus move and tilt the plate. This is similar to the front plate
of a mirror holder. A contact point at the back of the plate completes the setup.
Additionally, the condenser can be adjusted with mirrors to overlap the two beams
of this plate. Also, their focus positions are adjusted independently via the focusing
lenses, which are mounted on small manual translation stages15.

The setup is passively stable. Only on the time scale of several weeks a readjust-
ment of the piezo mirror is necessary to correct for relative drifts in the position of
the pancakes relative to the atoms.

6.9.4 Characterization of the final trap
For the experiments described in chapter 8 and chapter 10, the parameters of the

final trap, namely the trap frequencies, are important. They are best measured by
once again using the condensate itself. For measuring the frequencies in the radial
directions, a short pulse with the magnetic gradient wires (see section 6.4) displaces
the atoms from the center of the trap. Afterward, the condensate oscillates with
the trap frequency. Such a measurement is shown in fig. 6.16 at a high intensity
of the top beam of I = 1 W. For lower intensities, the trap frequency decreases
approximately with the square root of the intensity.

For measuring the trap frequency in the gravity direction, direct oscillations are
hard to observe in the tight trap. The amplitude of the oscillations is too low to be
well resolved by the imaging. Instead, we modulated the pancake trap at different

13Thorlabs: APM03/M - adjustable kinematic positioner
14Thorlabs: DM10 - differential adjuster for translation stages, 1/2" Travel
15Thorlabs: MS1S/M - 6.5 mm travel single-axis translation stage
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Figure 6.16: Trap frequency measurements for the final trap. For the trap frequency
measurement in radial directions, a short pulse with the magnetic field gradients displaces
the atoms inside the trap, and the subsequent oscillations are recorded (left-hand side). In
gravity direction, the trap frequency is measured with parametric heating. The pancakes
are modulated, and atoms are excited and lost from the trap on resonance with the trap
frequency The right-hand side shows the resonance for two different powers in the pancake
interferometer. For the experiments, the total power of 1.6 W is used (blue line).

frequencies. Resonance at the trap frequency leads to parametric heating, and atoms
are lost. If the number of remaining atoms is imaged for different modulation
frequencies, the resonance is visible. This is shown on the right-hand side of fig. 6.16
for two different powers in the pancake interferometer. For later measurements, the
power of 1.6 W is used, which corresponds to the trap frequency of ω = 2π · 1.6 kHz.

6.9.5 Probe beam

A final dipole beam will be needed for curvature measurements in chapter 8,
where it is used to create a local under-density. The beam is blue-detuned to the
potassium-39 resonance with a wavelength of 532 nm and a beam waist of ∼ 5 µm
by design. The beam enters the setup around the glass cell from the very bottom as
shown in fig. 6.12 and is focused on the atoms by the imaging objective itself. When
in use, the probe beam turns on simultaneously with the pancake trap. In contrast to
the other dipole beams, it is not actively power-stabilized.
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6.10 Laser systems
The experimental setup comprises a total of four laser systems. Two of them

have resonant light. The first creates the light for the magneto-optical traps and the
grey molasses, and the second produces the imaging lights. In total, they contain
four lasers;16 two frequency stabilized master lasers for the D1 and D2 line and two
imaging lasers which are offset-locked onto the D2 master. The master lasers are
the ones used for MOT and molasses. The resonant laser systems are located on a
separate, shielded optical table to keep unwanted resonant light away from the atoms.
In addition, there are two high-power setups for the dipole traps, one with 1064 nm
light17 for the attractive beams and one with 532 nm light18 for the repulsive pancake
trap which are both located on the main experiment table.

6.10.1 Laser system for MOT and grey molasses

For the magneto-optical trap and the grey molasses, two master lasers are locked
on the D2 and D1 transitions at 770 nm and 766 nm. Frequency stabilization is
achieved using Doppler-free absorption spectroscopy [90, 91]. Both lasers are
locked on the same spectroscopy cell containing potassium vapor. The exact setup
can be found in appendix A.2 and in [92]. An error signal is created by applying
a magnetic field to the atoms in the spectroscopy cell. The magnetic field strength
is modulated at a frequency of 86 kHz. Lock-in amplifiers selectively enhance the
absorption signal at that frequency. For the correct choice of the phase parameter
in the lock-in amplifier, this yields the derivative of the absorption signal, which is
an error signal. This is used as the input signal for a proportional-integral controller
regulating the length of the laser cavity and hence its frequency.

For the D2 line, the separation between the excited states is not large enough to
resolve the different levels; all lines blend into one absorption line. In the Doppler-
free absorption spectroscopy, the master laser is locked to the minimum of the ground
state crossover resonance of that line. Drawn into the potassium level scheme fig. 6.8,
this corresponds to a transition from the center between the two ground states to a
point 1.9 MHz blue detuned of the F′ = 2 state. For the D1-line, the laser is locked
from the crossover of the ground state to a point 27.8 MHz blue detuned to the F′ = 2
excited state.19

16External cavity diode lasers, Toptica, DL Pro
171064 nm laser: Coherent, Mephisto MOPA 55 W
18532 nm laser: Coherent, Verdi V10
19the detuning is half the fine structure splitting of the excited state.
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Figure 6.17: Laser system for MOT and molasses. Two master lasers are locked on
the D1 and D2 lines, respectively, by Doppler-free absorption spectroscopy. Their light
is amplified and the frequencies adjusted with acousto-optic modulators in a double-pass
configuration. The cooler and repumper lights for 3d-MOT and molasses are all coupled
into the same fiber using a tunable bandpass to combine D1 and D2 light. For the 2d-MOT,
cooler and repumper lights are amplified with the same tapered amplifier. A push beam,
containing only D2 cooler light, completes the setup. Laser detunings for all lights are
illustrated in fig. 6.8 and a detailed drawing of the setup can be found in appendix A.2 and
appendix A.3.
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Home-built fiber-coupled tapered amplifiers then amplify the laser power of
both master lasers (see [93] for the design and [92] an alignment strategy). After
amplification, we get 650 mW power of D2 light and of 350 mW for the D1 light.

The fine adjustment of the laser frequencies proceeds with acousto-optic mod-
ulators20 (AOMs) with a center frequency of 110 MHz. To adjust the frequencies
for cooler and repumper lights for the 3d-MOT, the 2d-MOT, and the grey molasses,
six AOM paths are needed. These are built in a double-pass setup in the cat-eye
configuration (similar to [94]), which ensures a high-frequency bandwidth. The
detailed setup of all six AOM paths including the consecutive mixing of the lights
and coupling into fibers is shown schematically in appendix A.3 and in full detail in
fig. 6.17. For 2d-MOT, 3d-MOT, and molasses, the respective cooler and repumper
lights are mixed on non-polarizing 50-50 beamsplitters. The lights for the 3d-MOT
and grey molasses are again combined on a tunable bandpass,21 and all four lights
are coupled into a single polarization-maintaining single-mode fiber. After the last
fiber, we get around 30 mW for the D2 cooler, 20 mW for the D2 repumper, 25 mW
for the D1 cooler and 8 mW for the D1 repumper.

For the 2d-MOT, the mixed cooler and repumper light is also coupled into a fiber
and further amplified by one of the home-built tapered amplifiers. Simultaneous
amplification of both lights is possible and yields stable intensities, as discussed in
[92]. The simultaneous amplification creates sidebands that, however, do not seem
to perturb the performance of the 2d-MOT. After the tapered amplifier, we get a
total of 350 mW power from the fiber, with approximately equal power in cooler
and repumper light. Before mixing, part of the 2d-MOT cooler light is split off

and coupled into a separate fiber for the 2d-MOT push beam, with an approximate
power of 7 mW after the fiber. The different AOM paths are separated by polarizing
beamsplitter cubes, shown in the schematic setup. These cubes keep unwanted
back-reflections from entering into the 3d-MOT/molasses fiber and significantly
contribute to the stability of the experiment.

The frequencies of the AOMs for 3d-MOT and molasses are adjusted during the
experimental sequence to yield the laser frequencies shown in fig. 6.8. Special care
is taken for the frequency adjustment of the D1 cooler and repumper. These lights
must be in a Raman condition for the molasses stage and must remain so during a
frequency sweep. If the frequency signal for the cooler and repumper AOM path are
created independently, slight differences in electronic components may break that
condition during the sweep. This is circumvented by using a reference frequency
at half the fine-structure splitting of the two ground states. The frequency for the

20Acousto optic modulator: Gooch and Housego, AOM 3110-120
21Tunable bandpass, Semrock, TBP01-790/12
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molasses repumper AOM is created as the difference between the frequency of the
molasses cooler AOM and this reference frequency. Subtraction of the two signals
can be achieved by standard electronic radio-frequency components (for details see
[95]). For the double-pass configurations of an AOM, the frequency shift on the
light is twice the frequency on the AOM. Thus, the frequency difference between
cooler and repumper light is always exactly the hyperfine splitting of the ground
state. This enforces the Raman condition, independent of the detuning from the
atomic resonance.

6.10.2 Laser system for imaging

The imaging lights are created by two separate lasers that are offset-locked [96]
onto the D2 master laser. The D2 reference light reuses the 0th order light of an
acousto-optic modulator (AOM) path for the 2d-MOT (see fig. 6.17). The reference
light is mixed with the light of the two imaging lasers, respectively, as is shown
in fig. 6.18 and in full detail in appendix A.5. For each of the lasers, the mixed
lights are coupled into a fiber connected to a fast photodiode.22 The photodiode
detects the beating signal caused by the frequency difference between laser and D2
reference light. On the electronic side, the beat signal is mixed again with the signal
of a voltage-controlled oscillator (VCO). This results in a new beating signal at a
lower frequency. The low frequency signal is used to create an error signal in an
interferometric setup. For that purpose, the signal is split in two. One of the signals
passes through a delay line before remixing both signals. The amplitude of the signal
after the last mixing depends on the frequency of the beating signal and thus on the
frequency difference of the laser and the D2 master laser. It is the input signal for a
proportional-integral controller that adjusts the cavity length and thus the frequency
of the lasers. With this setup, the imaging lasers are stabilized to a fixed frequency
difference compared to the D2 master laser. The frequency difference can be adjusted
via the VCO. For the detailed setup – including necessary frequency filters – see
[59].

The laser light must be switched rapidly for absorption imaging since a typical
imaging pulse only lasts 10 µs. It is way too fast for mechanical shutters. Instead,
AOM23 are used as fast switches and also for frequency adjustment for the lights at
zero magnetic field. The setup of the AOM paths is shown in fig. 6.18 and in full
detail in appendix A.4.

22Thorlabs: DET025AFC/M, 2GHz Fiber-Coupled Si-Detector 400-1100nm
23Acousto optic modulator: Gooch and Housego, AOM 3110-120
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Figure 6.18: Laser system for imaging lights. For the imaging lights, two lasers are
offset-locked on the D2-master laser. One laser produces the light for the imaging at zero
magnetic field. In a different lock-setting, the same laser produces the σ−-light for imaging
at high magnetic fields. The second laser creates the light for the σ+-light for imaging
at high magnetic field. Switching of light and final frequency adjustment is done with
acousto-optical modulators. The lights are mixed and coupled into the fibers for the three
absorption imaging setups. All imaging setups can be switched between imaging at zero
and at high magnetic field and the polarizations are adjusted to the respective requirements.
The detailed setup including the polarization is shown in appendix A.4 and appendix A.5.
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For imaging at low magnetic field, only one laser is needed. In the low-field
configuration, it is locked to a small frequency offset to the D2 master of only
10 MHz (see [59] for details). Two AOM paths change the frequency of the light
such that it is in resonance with the cooler and repumper transition, respectively.

At the magnetic fields close to the Feshbach resonance, the frequency difference
between the two imaging lights is too large to be easily reached with AOMs. For
example, at a magnetic field of 550 G, the σ− light has a frequency difference to
the D2 master of ∆ f = −847 MHz and the σ+ light of ∆ f = +845 MHz. Thus, for
imaging at the high magnetic field, the two lights are created by the separate lasers.
The frequencies of the offset lock together with the frequency shifts from the AOMs
are chosen such that both lights are exactly on resonance at the respective field. For
the σ− light, one of the low-field imaging AOM paths is reused.

To be able to choose between high-field and low-field imaging in all three
absorption imaging setups (see section 6.5), the lights are mixed and coupled into the
three different optical fibers. In doing so, the polarization of the different lights needs
to be taken into account. At the position of the atoms, the homogeneous magnetic
field points upwards. The imaging beams for the Guppy and Pixis camera are in the
horizontal plane. For this beam setup, both high-field lights need to be horizontal
linear polarized. This polarization is an equal superposition of σ+ and σ− light. Thus,
half of the light is in the necessary polarization which is the best possible fraction
for horizontal beams.

For the main imaging with the ProEM camera, the light path is vertical. Optimal
signal to noise is reached when the high-field imaging lights have the polarisation
they are named after: σ+ and σ−. To achieve this, the lights are mixed with their
polarisations at a 90◦ angle with respect to each other. This is possible by mixing
with a polarizing beamsplitter. A single λ/4-plate then creates the desired circular
polarization. The exact mixing setup together with the polarization adjustment after
the fibers is shown in appendix A.5.

6.10.3 Laser system for attractive dipole traps
There is a total of five attractive dipole beams - the two reservoir beams, com-

pressor and condenser beams, and the top beam - which all get their light from a
55 W laser at 1064 nm24. A schematic drawing of the setup is shown in fig. 6.19, and
the detailed illustration of the optical setup is in appendix A.6.

The two reservoir beams carry up to 12 W of power each, too much to be carried
in a single-mode optical fiber. Thus, the reservoir beams are free-space beams. The

24Coherent, Mephisto MOPA 55W
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Figure 6.19: High power laser system for attractive dipole traps. A high-power laser
provides up to 50 W of 1064 nm light. It is split into five separate dipole beams, which
can be switched via acousto-optical modulators. The modulators also regulate the power
within the beams. The two reservoir beams are free-space beams, since they carry up to
12 W power each. The remaining three beams have a maximum power of 2 W and are
fiber-coupled.

other three beams are all fiber coupled25 with a maximum power of 2 W after the fiber.
The power of each beam is regulated by an AOM26 (AOM). After the fiber output,
pickup-plates reflect about 5% of the beam power onto a photodiode. The photodiode
signal is the input for a proportional-integral control loop that actively stabilizes the
power in the beam. By changing the set value of the loop, well-controlled power
ramps are possible. Beams can be turned off entirely by a radio-frequency switch27

that interrupts the frequency signal for the AOM. The frequencies of the AOMs are

25Schäfter-Kirchhoff, fiber: PMC-E-980-8.5-NA009-3-APC.EC-500-P, coupler: 60FC-4-M15-37
26Gooch and Housego: AOM 3080-199, 80 MHz, 1064 nm, Aperture 2.5 mm
27Mini Circuits: ZASWA-2-50DRA+
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Figure 6.20: Laser system for repulsive dipole traps. Similar to the setup for attractive
dipole beams, the laser light is split into the different beams, which can be switched on and
off via an AOM. The beam for the pancake-interferometer is power-stabilized and carries up
to 2 W. It is coupled into a photonic crystal fiber. The probe beam is not power-stabilized
and only needs powers below 1 mW and is thus coupled into a conventional single-mode
fiber.

all chosen differently to avoid interference effects between the separate dipole beams.
A final detail is that the top beam uses a zeroth AOM-order from one of the

reservoir beams. This is possible since the top beam and the reservoir beam are never
used simultaneously at full power.

6.10.4 Laser system for pancake traps and probe beam
The fourth laser system provides the light for the pancake interferometer and for

the probe beam which are both repulsive dipole traps. A laser28 at 532 nm creates
a beam of up to 10 W of power which is split in two as illustrated schematically in
fig. 6.20 and in full detail in appendix A.7. Both beams pass through AOMs29 and
the first diffraction order is coupled into a fiber. The AOMs are used as fast switches
and, in the case of pancake beam, also for active stabilization of the beam power.
The probe beam only needs powers around a few Milliwatt and a standard optical
fiber can be used. However, for the pancake beam, we need up to 2 W of power
after the fiber. For green-light, such high power cannot be carried in a standard
single-mode fiber due to stimulated Brioullin scattering [97]. For high intensities, the

28Coherent: Verdi V10
29Goose and Housego: AOM 3080-1916, 80 MHz, 532nm, 4.0mm aperture (high-power beam)
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light itself creates an optical lattice inside the fiber, which in turn back-reflects the
light. This effect sets a limit to the maximal intensity inside the fiber. For green light,
this maximal intensity is reached at much lower total output power than for light of
longer wavelength. This is due to the mode-field diameter inside the single-mode
fiber, which is much smaller for green light than for longer wavelengths. Thus, high
intensities inside the fiber are already reached at lower output power. However, there
exist fibers that can circumvent this limitation: photonic crystal fibers allow for
much wider mode diameter and thus lower intensities and are still single-mode and
polarization-maintaining. For the pancake beam, we combine a photonic crystal fiber
with a special fiber end30 that dissipates non-coupled light and thus reduces the risk
of burning the input facet of the fiber.

30NKT Photonics: LMA-PM-10 and fiber ends SMA-905 and FC/APC. The fiber coupler and
collimator are from Schäfter-Kirchhoff 60FC-SMA-T-23-A18-01 for the SMA-905 connector and
60FC-4-M10-01 to collimate the pancake beam.
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Chapter7
Mathematical description

of curved spaces

With the experimental setup described in the previous chapter, we can now focus
on the spacetimes we want to investigate and their realization in the condensate.
This chapter concentrates on the theoretical description of spatial curvature in two
dimensions. The following chapter then describes its experimental implementation.

While spatial curvature is one of the degrees of freedom in the FLRW metric of
an expanding universe (see section 3.3), it can be discussed in a static setting. We will
use this simplified setting to introduce different coordinate choices that will become
important in the next chapter. As is the case for the FLRW metric, we demand
spatial homogeneity and isotropy such that the curvature takes the same constant
value at every point of the space. This leaves three different types of geometries: flat
(zero curvature), spherical (positive curvature), and hyperbolic (negative curvature).
Two-dimensional curved spaces can be visualized by embedding them in three-
dimensional space. The two-dimensional spherical space is the surface of a sphere,
the hyperbolic space is the surface of a hyperboloid, and flat space is a plane.
However, embedding is not necessary. Instead, one can imagine observers that
are entirely restricted to their dimensional worlds and determine the curvature by
intrinsic measurements. In discussing curved spaces, switching between the intrinsic
and embedded descriptions is often useful, depending on the phenomenon one
wants to understand. This chapter starts with intrinsic observers that construct the
metric of their respective curved spaces. Section 7.2 then introduces two coordinate
changes, one that brings the metric to the form commonly used for the FLRW metric
and a second coordinate transformation that will later be identified with laboratory
coordinates in a Bose-Einstein condensate experiment. Section 7.3 describes and
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parametrizes the curved spaces in their three-dimensional embedding, which is used
to calculate distances in section 7.4. Using the distances, section 7.5 connects the
intrinsic and embedded interpretations. Finally, section 7.6 discusses distortion due
to projection effects for different observers.

7.1 Construction of a metric from intrinsic
observations

Imagine three different observers living in a flat, spherically curved, and hy-
perbolically curved space, respectively. These observers only experience the two-
dimensional surfaces and know nothing of the embedding. Still, they can characterize
their space and determine its curvature. They could look at the tilt of a vector that is
parallel transported along a closed curve or measure the sum of internal angles of
a triangle. Here, we use a method that depends on the relation between radial and
angular distance in a coordinate system with cylindrical symmetry.

We start the discussion with a definition of coordinate distance and physi-
cal/proper distance. For our purpose, a unit of physical distance is best defined
as the product of the speed of light (or sound in an analog system) multiplied by a
unit of time d = c · t. The distance is connected to a specific choice of coordinates
via the metric. A different choice of coordinates changes the form of the metric.
However, the physical distances defined by the line element need to remain the
same as they have a direct physical interpretation and reflect the geometry of the
underlying space. To determine the curvature of their spaces, the three observers
need to characterize this distance structure. To do so, they all choose a coordinate
system as illustrated in fig. 7.1 with the following three criteria:

• The observer is at the origin of a spherically symmetric coordinate system
with one radial and one angular coordinate.

• The spacing of the radial coordinate ξ is the same as the physical distance, i.e.,
the distance traveled by light in a unit of time.

• The angular coordinate ϕ runs from 0 to 2π.

In a second step, each observer measures the circumference of the circle at ra-
dius ξ. In flat space, the circumference is 2πξ, as we are used to from Euclidean
geometry. However, this is not the case in the two curved spaces. In spherical
space the circumference is lower 2π sin

(√
κ ξ

)
/
√
κ, in hyperbolic space it is larger

2π sinh
(√
−κ ξ

)
/
√
−κ. Here, κ is the value for the curvature, which is positive for
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Figure 7.1: Curvature measurement and coordinate construction by an intrinsic ob-
server. An observer restricted to a two-dimensional space can determine the curvature of
the space by comparing the radius and circumference of a circle. The left-hand side shows
how the observer defines a radial coordinate ξ via the travel distance of light (red arrow) in
a time interval. In a second step, she measures the circumference of the circle of radius
ξ (right-hand side). For a flat space, the circumference is 2πξ, smaller for a spherically
curved one, and larger for a hyperbolic one.

spherically curved space, negative for the hyperbolic one, and zero for a flat space.
This strategy will yield the same result independent of the observer’s position for
spaces with a homogeneous curvature. While the origin of the coordinate system
seems to be a special point, it is arbitrarily chosen, and any point could be the origin.
The observers can construct their respective metrics by taking the angular increments
corresponding to the circumferences. For the described coordinates, they read

d~x 2 = dξ2 +


sin2(√κ ξ)

κ
dϕ2 , κ > 0 spherical

ξ2 dϕ2 , κ = 0 flat
sinh2(√−κ ξ)

−κ
dϕ2 , κ < 0 hyperbolic

. (7.1)

7.2 Two new coordinate systems

The metric constructed in the last section corresponds to a particular choice
of coordinates, which is only one among many possible ones. In the context of
cosmology, it is conventional to use reduced-circumference polar coordinates [43].
Here, a new radial coordinate u is redefined such that the influence of curvature shifts
from the angular to the radial part of the metric. The new radial coordinate is related
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to ξ by

u(ξ) =


sin(√κ ξ)
√
κ

, spherical

ξ ,flat
sinh(√−κ ξ)
√
−κ

, hyperbolic

and du =
√

1 − κu2 dξ , (7.2)

which brings the metric into the compact form

d~x2 =
du2

1 − κu2 + u2dϕ2 ,


κ > 0 , spherical
κ = 0 , flat
κ < 0 , hyperbolic

. (7.3)

For this choice of coordinates, the physical circumference of a circle is 2πu. In
the radial direction, the physical distance and coordinate distance are not the same
anymore (see fig. 7.2 for illustration).

The third choice of coordinates maps both spherical and hyperbolic space onto a
finite-sized disk of radius R and are thus be called disk coordinates or – anticipating
results from the next chapter – lab coordinates. The radial coordinate r ∈ [0,R) is
defined as

u(r) =


r

1+ r2

R2

, spherical

r ,flat
r

1− r2

R2

, hyperbolic
with

dr2(
1 ∓ r2

R2

)2 =
du2

1 ± 4 u2

R2

. (7.4)

The maximal radius R is related to the curvature by κ = 4/R2 in the spherical case
and κ = −4/R2 for a hyperbolic space. The corresponding metric is

d~x 2 =


(
1 + r2

R2

)−2
(dr2 + r2dϕ2) , spherical

dr2 + r2dϕ2 ,flat(
1 − r2

R2

)−2
(dr2 + r2dϕ2) , hyperbolic

. (7.5)

Neither the radial coordinate distance nor the circumference of a circle agrees with
physical distances in this choice of coordinates. To visualize the structure of these
coordinates, the rightmost panel of fig. 7.2 shows concentric lines that have the
same physical distance between them. These circles seem to be further apart with
increasing coordinate distance for the spherical case. For the hyperbolic case, the
lines come closer together as the radial coordinate r approaches the maximal radius
R. At r = R, both the physical distance in radial direction and the circumference of
the circles diverge. Thus, the infinitely extended two-dimensional hyperbolic space
is mapped onto a finite-sized disk, known as the Poincare disk.
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Figure 7.2: Comparison of the three coordinate systems for curved spaces. The left
panel shows the coordinate system (ξ, ϕ) in which radial coordinate and physical distance
are the same. The circumference of a circle at radius ξ depends on the curvature of the
space. For the coordinates (u, ϕ) shown in the middle, this is reversed: The circumference
of a circle is related to the coordinate by 2πu, but the physical distance is not the same
as the coordinate distance u. Neither the circumference nor the radial coordinate distance
agrees with the physical distances for the disk coordinates (r, ϕ) shown on the right. Here,
the concentric circles are drawn to have equal spacing in the physical distance, i.e., the
orange arrows have the same physical length.

7.3 Embedding the curved spaces in three
dimensions

For embedding, we consider a three-dimensional space with the three coordinate
directions ~x = (x1, x2, x3)T. A two-dimensional positively curved space is the surface
of a three-dimensional sphere of radius R, which is described by the parameter
equation

x2
1 + x2

2 + x2
3 = R2 . (7.6)

The curvature depends on the radius of the sphere κ = 1/R2; a small sphere has a
large curvature and the other way around. Similarly, a two-dimensional hyperbolic
surface with pseudo radius R is defined by

x2
1 + x2

2 − x2
3 = −R2 , (7.7)
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which is a hyperboloid with the curvature κ = −1/R2. While the sphere’s surface is
finite in size, the hyperboloid is infinitely extended.

The parameter equation for the spherical surface is fulfilled by three-dimensional
spherical coordinates with a fixed radius

~x = R ·

cosϕ sin θ
sinϕ sin θ

cos θ

 , (7.8)

with the conventional angles ϕ ∈ [0, 2π) and θ ∈ [0, π) together with the Euclidean
scalar product between two position vectors

~x · ~y = x1y1 + x2y2 + x3y3 = |~x| |~y| cosα . (7.9)

Here, we defined the direct angle α between the two position vectors.
For a hyperbolic space, a similar parametrization is possible by replacing the

azimuthal angle θ by the pseudo-angle σ ∈ [0,∞) such that

~x = R ·

cosϕ sinhσ
sinϕ sinhσ

coshσ

 , (7.10)

together with the hyperbolic scalar product

~x ◦ ~y := x1y1 + x2y2 − x3y3 = |~x| · |~y| · cosh η , (7.11)

where we defined the direct pseudo-angle η.By using sinh2(σ) − cosh2(σ) = −1,
direct calculation shows that the combination of coordinates and scalar product
indeed fulfills the parameter equation 7.7.

7.4 Calculating distances
The distance between two points is defined as the distance along a geodesic

between those points. For a given metric, the geodesic can be found by solving the
geodesic equation (see section 3.2). The distance is then found by integrating the
line element along that path. For the highly symmetric spherical and hyperbolic
spaces we consider here, the distances between two points can also be derived by
using geometric arguments for the embedded spaces.

On the surface of a sphere, geodesics are the great circles, that is, circles with
maximal radius. The distance between two points with coordinates (θ, ϕ) and (θ′, ϕ′)
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is then given by the fragment of the great circle connecting them. The size of the
fragment is determined by direct angle α between the two position vectors eq. (7.9).
For the sphere with radius R, the distance is

Lspherical = R · α =
1
√
κ

cos−1 (
cos θ cos θ′ + sin θ sin θ′ cos

(
ϕ − ϕ′

))
, (7.12)

where we used the relation between radius and curvature as well as cosϕ cosϕ′ +

sinϕ sinϕ′ = cos(ϕ − ϕ′) in the derivation of the direct angle.
In analogy, distances between two points on the hyperbolic surface with coordi-

nates (σ, ϕ) and (σ′, ϕ′) are calculated from the direct pseudo-angle of the position
vectors eq. (7.11). The distance is

Lhyperbolic = R · η =
1
√
−κ

cosh−1 (
coshσ coshσ′ − sinhσ sinhσ′ cos

(
ϕ − ϕ′

))
.

(7.13)

For completeness, we also state the distance in a flat space for the polar coordinates
(u, ϕ). Since geodesic in flat space are straight lines, the distance follows directly
from the Pythagorean theorem applied to polar coordinates, which gives

Lflat = [u2 + u′2 − 2uu′ cos
(
ϕ − ϕ′

)
]1/2 . (7.14)

7.5 Connecting intrinsic interpretation and
embedding

Many aspects of curved spaces can be understood more quickly in the intrinsic
interpretation, and others become clearer for the embedding. To switch between
the two interpretations, this section establishes the connection between the disk
coordinates and the embeddings. This is straightforward for the angle ϕ; it is the
same in all coordinates and in the parametrization of the embedding. The radial
coordinates and the parameters of the embedding are connected via the quantity all
interpretations must agree on: the physical distances. In the intrinsic interpretation,
the radial coordinate ξ is the physical distance in radial direction. In the embedding,
the physical distance in radial direction is given by eq. (7.12) for θ′ = 0 in the
spherical case and eq. (7.13) for σ′ = 0 in the hyperbolic case

ξ =


θ
√
κ

, spherical

u ,flat
σ
√
−κ

, hyperbolic
. (7.15)
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Figure 7.3: Projection between embedded spherical and hyperbolic space and disk
coordinates. A half-sphere (upper row) and hyperboloid (lower row) with (pseudo-)radius
R can be projected onto a disk with radius R = 2R. The exact definitions and spacings of
the projection are defined in the two-dimensional representation on the left-hand side. The
right-hand side shows the same projection in three dimensions. The blue projection lines
are the same on the left and the right. For the hyperbolic two-dimensional projection, the
inset shows the definition of the hyperbolic sine and cosine, where the pseudo-angle σ is
the size of the gray area. The orange dashed lines mark the boundary that the hyperboloid
approaches towards infinity. The three-dimensional projections additionally contain a
geodesic (orange line) connecting the two points marked by the orange dots. The geodesic
is a great circle on the half-sphere and curves towards the center for the disk coordinates
in spherical space. In hyperbolic space, it curves towards the edges and intersects the
boundary of the disk at a right angle.
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7.6. Coordinate distortions in the projection

Together with eq. (7.2) and 7.4 this relates the lab coordinate r and the reduced
circumference coordinate u to the angle and pseudo-angle

θ = sin−1
(√
−κu

)
= sin−1

2 r
R

1 + r2

R2

 ⇔
r
R

= tan
θ

2
, (7.16)

σ = sinh−1
(√
κu

)
= sinh−1

2 r
R

1 − r2

R2

 ⇔
r
R

= tanh
σ

2
, (7.17)

where, we used the curvature κ to connect the radius of the sphere/hyperboloid R
with the parameter R in lab coordinates. The curvature is 4/R2 = κ = 1/R2 and hence
R = 2R.

Geometrically, this corresponds to the projections shown in fig. 7.3. The right-
hand side of the figure shows the three-dimensional projection from the embedded
curved spaces (spherical on top, hyperbolic on the bottom) onto the finite-sized disk
of the disk coordinates. The left-hand side shows a cut of the projection, which
illustrates the parameters of the projection.

7.6 Coordinate distortions in the projection
For all described spaces, the coordinate systems, as well as the embeddings, are

centered around one specific point. It is important to keep in mind that this origin is
an arbitrarily chosen point in a homogeneous space.

For the case of a hyperbolic space, this is illustrated in fig. 7.4. Here, two
observers live in the same hyperbolically curved space. They both perform the
procedure described in section 7.1 to construct a coordinate system with themselves
at the origin. Both observers will perceive themselves at the center of a circular
symmetric coordinate system. However, if the black observer in fig. 7.4 draws
the blue coordinate system, it seems distorted. This is a projection effect which is
illustrated for the Poincare disk at the top of the figure. The other way around, the
blue observer perceives her own coordinates as symmetric and the black coordinates
as distorted. An appropriate transformation allows to change between the frames
of two observers. It is calculated via the distances derived above. In the following
chapter, we perform such a frame change on experimental data to probe the geometry
of analog curved space implemented in the quasi-two-dimensional Bose-Einstein
condensate.
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Figure 7.4: Two observers in a hyperbolic space If two observers are located at different
points of a hyperbolic space, they can both set up a circular symmetric coordinate system,
with themselves at the center. Both coordinate systems will be equivalent due to the
homogeneity of the space. Both observers can transform to the coordinates of the Poincare
disk. They both see themselves at the center of the disk. Caused by the projection, they
perceive the coordinate system of the other observer as distorted.
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Chapter8
Implementation of spatial curvature

in the two-dimensional BEC

A spatially curved analog space can be implemented in a two-dimensional Bose-
Einstein condensate by shaping its density distribution. Based on [41], this chapter
first derives the exact density profiles for a homogeneous space with spherical,
flat, and hyperbolic curvature in section 8.1 and shows that a harmonically trapped
condensate approximates a hyperbolic space. Section 8.2 presents measurements
that probe the analog geometry of a harmonically trapped condensate using the
propagation of wave packets. These results have been published in [42].

8.1 Density profiles for analog spatial curvature

For the implementation of homogeneous curved spaces in a two-dimensional
Bose-Einstein condensate, the spatial dependence of the sound speed in the acoustic
metric eq. (4.16) can be adjusted via the spatial dependence of density distribution
n0(r) of the background condensate. The sound velocity structure defines both the
geometry and the coordinate system for the analog spacetime. This is different
from curved spaces in the context of general relativity, where the coordinate choice
has no physical correspondence at all. This gives the freedom to select among the
coordinate system introduced in the previous section and choose the one best suited
for the analog system. In the real world, a Bose-Einstein condensate is always limited
in size. Thus, the coordinates (r, ϕ) defined in (7.5) are an ideal choice since they
parametrize a finite-sized disk. The line element of a homogeneous curved space in
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Chapter 8. Implementation of spatial curvature in the two-dimensional BEC

the disk coordinates is

ds2 = −dt2 + d~~x , d~x 2 =


(
1 + r2

R2

)−2
(dr2 + r2dϕ2) , spherical

dr2 + r2dϕ2 ,flat(
1 − r2

R2

)−2
(dr2 + r2dϕ2) , hyperbolic

. (8.1)

From the comparison with the acoustic metric of static, radially symmetric BEC
eq. (4.16)

ds2 = −dt2 +
1

c2
s(r, t)

(
dr2 + r2dϕ2

)
, (8.2)

one can directly identify the necessary sound speed structure

cs(r, t) = c̄s(t)


1 + r2

R2 , spherical
1 ,flat
1 − r2

R2 , hyperbolic
, (8.3)

with c̄s(t) = cs(r = 0, t) the sound speed at the center of the condensate. For the
moment, we demand a time-independent sound speed, corresponding to a static
curved space. Since cs ∝

√
n0(r) (see section 2.4), the homogeneous curved spaces

can be realized with the density profiles of the condensate

n0(r) = n̄0


(
1 + r2

R2

)2
, spherical

1 ,flat(
1 − r2

R2

)2
, hyperbolic

, (8.4)

which are illustrated in fig. 8.1. Experimentally, the density profiles are shaped by the
potential of the trap that holds the condensate (see section 2.1). For dipole traps, the
potential is proportional to the light intensities of far-detuned light (see section 5.7).
Fine spatial control of the intensities can be achieved with a digital micromirror
device (DMD) [98, 99]. However, the installation of a DMD needs a sophisticated
optical setup and was not ready in time for this work. Much easier to realize is a
harmonic trapping potential around the minimum of an attractive Gaussian beam.
In such a trap, the density distribution of a BEC is well described by the parabolic
Thomas-Fermi profile nT F(r) which approximates the ideal density profile for the
hyperbolic geometry

n0(r) = n̄0

(
1 −

r2

R2

)2

≈ n̄0

(
1 − 2

r2

R2 + O(4)
)

= nT F(r) + O(4) . (8.5)
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8.2. Curvature measurement in a harmonically trapped BEC
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Figure 8.1: Density profiles for implementing spatially curved metrics. The density
profiles that implement a spherically curved, flat, and hyperbolic space are shown from
left to right. The disks represent the spherical condensate and show a square lattice – two
orthogonal sets of parallel geodesics – in the analog space. The orange density profile
is the parabolic density of a harmonically trapped condensate. It well approximates the
hyperbolic profile around the center but drops faster towards the edges and reaches zero at
rT F = R

√
2.

The right panel of fig. 8.1 shows the parabolic density profile in orange in addition
to the exact hyperbolic profile. The two profiles match around the center of the
condensate; towards the edges, the density of the harmonically trapped condensate
drops faster than the ideal profile. It reaches zero at the Thomas-Fermi radius
rT F = R/

√
2 which sets the curvature of the analog hyperbolic space to κ = − 2

r2
T F

.
Thus, deviations from a homogeneous hyperbolic space are only expected towards
the edges. The following section tests this prediction with a quantitative analysis of
wave packet dynamics in the harmonically trapped condensate.

8.2 Curvature measurement in a harmonically
trapped BEC

To test the analog geometry of a harmonically trapped BEC experimentally, we
perform measurements similar to the Gedanken-experiments in the previous section,
in which intrinsic observers used the propagation of light to probe their surround-
ing space. In the analog spacetime, we instead use the propagation of phononic
excitations. For that purpose, a blue-detuned repulsive laser beam (probe beam, see
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Chapter 8. Implementation of spatial curvature in the two-dimensional BEC

20um

0ms 4ms 8ms

Figure 8.2: propagation of a phononic excitation in a harmonically trapped conden-
sate The upper row shows average images of the perturbed condensate for the initial
perturbation and two later times during the propagation of the under-density. The lower
row shows the difference between the perturbed and unperturbed condensate for the same
time steps; under densities are blue, overdensities red.

section 5.7) is focused onto a small patch of the condensate, which creates a local
under-density. Once the laser is turned off, the under-density propagates radially
outwards. Its movement is traced by recording the atom density by absorption
imaging (see section 6.5) at different times during the propagation. For compari-
son, images of the unperturbed condensate are recorded for each time step. The
condensate is formed by approximately 23.000 atoms held in a harmonic trap and
magnetically levitated against gravity. By Feshbach-tuning, the s-wave scattering
length is adjusted to as = 100aB with aB the Bohr radius. In gravity direction, the
condensate is frozen to the ground state of a tight trap of ωz = 2π · 1.6 kHz. In the
remaining dimensions, the condensate is confined by a circular symmetric trap with
frequency ω = 2π · 12.4 Hz and has the Thomas-Fermi radius rT F = 24.5 µm (see
section 6.9.2 for details of the trap). This initial perturbation is created at a distance
of 0.4 rTF from the center of the condensate. Around 100 realizations are recorded
and averaged for each time step. Figure 8.2 shows examples for the propagation.
The lower row of the figure shows the difference in mean density ∆ρ between the
perturbed and unperturbed condensate.

To compare the propagation of the perturbation to the prediction to the structure
of a hyperbolic space, we evaluate the propagation along a geodesic. The propagation
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Figure 8.3: propagation of the phononic excitation along a straight geodesic. The
left-hand side shows the geodesics in the Poincare disk emanating from the position of the
initial under-density. Only the geodesic connecting this initial position with the center of
the condensate appears straight in laboratory coordinates (orange line). The right-hand
side shows the profile of the normalized density-difference along that line for different
propagation times. The propagation of the under-density traces the sound cone of the analog
space. The orange dots mark the position of the under-density extracted by a parabolic fit
around the minimum. A linear fit to the three open symbols yields the speed of sound at
the center of the condensate. The solid lines show the prediction for the propagation in the
harmonically trapped condensate (grey) and in a homogeneous hyperbolic space (blue).
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Chapter 8. Implementation of spatial curvature in the two-dimensional BEC

speed along the geodesic can be compared with the predictions of the metric. The
left-hand side of fig. 8.3 shows geodesics emanating from the point of the initial
perturbation. Here the grey shaded area marks the condensate’s size within the
expected Poincare disk. The geodesic connecting the perturbation with the center
of the condensate (orange line) is the only geodesic that is a straight line in the lab
coordinates. Along that line, the profiles of the density difference ∆ρ are obtained as
an average over a 10◦ slice. These density profiles – normalized by the maximum
depth of the perturbation – are shown on the right-hand side of fig. 8.3. The position
of the minimum is determined by a parabolic fit around the minimum value of each
profile and is marked by the orange symbol. The speed of sound at the center of the
condensate is extracted by a linear fit to the three open symbols. It is c̄s = 1.5µm/ms
in accordance with the speed of sound predicted from GPE simulations of the ground
state.

The sound speed at the center of the condensate, together with the Thomas-Fermi
radius and the position of the initial perturbation, predict the entire trajectory. The
time at which a position in lab coordinates is reached is given by t = d/c̄s, where
d is the analog distance between that position and the initial perturbation. For the
hyperbolic space, the distance is given by eq. (7.13) in combination with eq. (7.17)
and can be simplified using hyperbolic addition rules. For the simple case of the
straight geodesic, the distance alternatively is found by direct integration of the line
element of the acoustic metric. Since phonons propagate with the speed of sound,
their trajectories are light-like with ds2 = 0. For the analog hyperbolic space, this
yields

ds2 = 0 = −dt2 +
1
c̄2

s

(
1 −

r2

R2

)−2

dr2 , (8.6)

where r2dϕ2 = 0 for this particular trajectory since dϕ = 0 at all points except the
origin where r = 0. The above equation can be solved via separation of variables
which yields

t(r) =

√
2rT F

c̄s

∣∣∣∣∣∣ tanh−1
(

r
√

2rT F

)
∓ tanh−1

(
r′
√

2rT F

) ∣∣∣∣∣∣ , (8.7)

with r′ the radial coordinate of the initial perturbation. The minus sign must be used
if both points r and r′ lie on the same side of the origin and the positive sign if they
lie on opposite sides. The direct integration is also possible for the parabolic density
distribution which yields

ds2 = 0 = −dt2 +
1
c̄2

s

(
1 − 2

r2

R2

)−1

dr2 , (8.8)
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and

t̃(r) =
rT F

c̄s

∣∣∣∣∣∣ sin−1
(

r
rT F

)
∓ sin−1

(
r′

rT F

) ∣∣∣∣∣∣ . (8.9)

The right-hand side of fig. 8.3 shows both the prediction for the parabolic condensate
(grey line) and for the analog hyperbolic space (blue line). The experimental data
agree well with the predicted propagation of the phononic perturbation. Only at
a distance of ≈ 20µm = 0.8 rT F , the measurement deviates from the hyperbolic
prediction but still agrees with the harmonically trapped condensate.

To analyze the propagation of the perturbation in the entire two-dimensional
space, we extract the 2d-shape of the under-density for each time step. For each angle
from the initial perturbation, the radial position of the under-density is determined
as an average over a 10◦ segment. Figure 8.4 shows these positions. As a guide
to the eye, concentric circles around the perturbation are drawn (black lines). The
rings of the under-density are distorted in comparison. This setting corresponds to
the scenario described in section 7.6 where two observers compare their coordinate
systems. In terms of observers, the image taken in laboratory coordinates corresponds
to the coordinate system of an observer located at the center of the condensate, as
is sketched in fig. 8.4. The propagating perturbation can be interpreted as a signal
sent by a second observer located at the initial position of the perturbation. Using
eq. (7.13) together with eq. (7.15), we can transform into the coordinate system
(ξ, ϕ) of that observer, which is shown on the right-hand side of fig. 8.4. Here
the propagation indeed becomes concentric. Since the transformation relies on the
hyperbolic geometry, this confirms that the parabolic condensate implements the
inner part of the Poincare disk and thus a hyperbolic space.
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Figure 8.4: propagation of the phononic excitation for two observers. The lower-
left side shows the position of the propagating under-density as the colored lines for a
propagation times from 2 ms (dark blue) in 2 ms steps till 14 ms (dark orange). The outer
bold black circle marks the Thomas-Fermi radius of the condensate. Around the initial
position of the under-density (black dot), concentric circles are drawn in black as a guide
to the eye. The colored lines do not coincide with these lines. This corresponds to the
perceived coordinate distortion for an observer at the center of the condensate/Poincare disk.
The right-hand side shows the same propagation transformed to the ‘physical distances’ of
an observer located at the position of the initial under-density. Here, the colored lines fall
onto the equally spaced concentric lines. This shows that the propagation is indeed circular
symmetric in the coordinate frame of that observer and confirms the hyperbolic geometry
of the analog space.
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Chapter9
Theory of cosmological

particle production

The expansion of space in itself leads to the production of particles. Schrödinger
first mentioned this phenomenon in his 1939 paper ‘The proper vibrations of the
universe’ [100]. For him, the production of particles from the vacuum was still
an alarming prospect. Today, this process is a likely candidate for creating the
initial seeds for the cosmological large-scale structure. This chapter summarizes the
derivation of correlation functions and excitation spectra for a scalar quantum field
in an expanding spacetime. It summarized the calculations found in [41] and [101].
Here, we only consider the case of spatially flat spacetimes the modifications for
curved spaces can be found in the above-mentioned papers.

9.1 A scalar field in expanding flat space
In a static space, a free, mass-less scalar field φ needs to fulfill the equation of

motion

0 = φ̈ −
∆

a2φ , (9.1)

with φ̈ the second time derivative of the field and a ∈ R – for now – an arbitrary
factor. In a spatially flat space, ∆ is the Laplace operator. Solutions of this equation
factorise into a spatial and a time-dependent part φ =

∑
jH j(~x) · v j(t). The spatial

part needs to be an eigenfunction of the Laplace operator

∆H j = h jH j , (9.2)
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with hi the eigenvalue for the ith eigenfunctionHi. In two-dimensional polar coordi-
nates with radius u and angle ϕ, the Laplace operator takes the form

∆ = ∂2
u + 1

u∂u + 1
u2∂

2
ϕ . (9.3)

Its eigenfunctions are Hankel functions (drum modes)

Hkm(u, ϕ) = eimϕJm(ku) , (9.4)

with Jm(ku) Bessel functions of the first kind and m ∈ Z and the eigenvalues are
hk = −k2. Note that the eigenfunctions would be Fourier modes for a choice of
Euclidean coordinates. The choice of polar coordinates and thus Hankel functions
reflects the local isotropy of cosmological spacetimes. The same assumption is made
later in this work in the analysis of experimental data.

The time-dependent part of the above ansatz needs to solve the equation

0 = v̈k −
hk

a2 vk . (9.5)

This is fulfilled for the mode functions (see [101] for the proper choice of normaliza-
tion)

vk =
exp(−iωkt)

a
√

2~ωk
, (9.6)

with the eigenvalues

ωk =

√
−hk

a
=
|k|
a
. (9.7)

Thus, in static space, the mode functions oscillate in time with their frequency
proportional to the mode’s momentum k. The field can then be written as a field
operator

φ(t, ~x) =

∫
k,m

(
âkmHkm(u, ϕ) vk(t) + â†kmH

∗
km(u, ϕ) v∗k(t)

)
. (9.8)

The operators â†i and âi are the creation and annihilation operator of the ith mode,
which fulfill bosonic commutation relations, and integral is an abbreviation for∫

k,m
=

∫
dk
2πk

∑∞
m=−∞. This is a decomposition of the field φ into pairs of modes

with the same k but positive and negative frequencies. In addition, the annihilation
operators define a vacuum state |Ω〉 by

â j |Ω〉 = 0 . (9.9)
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9.2. Particle-pair production

9.2 Particle-pair production
In expanding space, the equation of motion for the field φ acquires an additional

term (see [41] for details)

0 = 2aȧφ̇ + a2φ̈ − ∆φ , (9.10)

where the time-dependent function a(t) now has the meaning of the cosmological
scale factor. Note that we again use the convention, that distances are measured in
time and the scale factor has the unit of an inverse velocity. Compared to the equation
of motion of a static spacetime eq. (9.1), a friction term appears. This friction is
caused by the expansion of space itself and is thus called Hubble friction [47]. The
spatial part of the solution stays the same as in the static case, but the mode functions
v j(t) now need to fulfill the mode equation

v̈k + 2
ȧ
a
v̇k −

hk

a2 vk = 0 . (9.11)

During the expansion, the v j will not only oscillate but show a non-trivial evolution
that will ultimately lead to particle creation.

For a quantitative treatment of this phenomenon we consider the scenario de-
picted in fig. 9.1. Here, the space starts in a static situation with scale factor ai.
Following [41] this will be called region I. This is followed by a phase of expansion
or contraction during the time ∆t (region II) described by a(t) with a(0) = ai and
a(∆t) = a f . The expansion/contraction terminates in a second static situation (region
III) with scale factor a f . For the initial and final static region, we get the oscillating
solutions with vk, âkm, â†km and ωki = |k|/ai, the mode functions, annihilation oper-
ators, creation operators and angular frequencies in region I; and uk, b̂km, b̂†km and
ωk f = |k|/a f the same objects in region III.

The annihilation operators in the region I and region III define two different
vacua

â j |Ω〉 = 0 , b̂ j |Ψ〉 = 0 . (9.12)

Region I contains the vacuum state |Ω〉 and the field operator φ. Both remain
unchanged during the period of expansion/contraction. However, in region III, |Ω〉
is no longer the vacuum state, and also the definitions of the mode functions and
ladder operators have changed. In general, the mode functions vk in region I and uk

in region III can be expressed as the superposition

uk = αkvk + βkv
∗
k , vk = α∗kuk − βku∗k , (9.13)
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Figure 9.1: Expansion scenario for particle production and a schematic sketch of the
calculation. The scenario for particle production starts and ends with a static space (region
I and III). Between these regions, space expands/contracts during a period ∆t. The important
quantity for particle production is the evolution of the mode functions. In regions I and
III, modes oscillate. In region II, the evolution is described by the mode equation and
depends on the expansion itself. On the boundaries between regions, the mode functions
and their derivatives must be matched. This connects mode functions in region I and region
III, which in turn defines a Bogoliubov transformation between creation and annihilation
operators in these regions.

with complex coefficients αk and βk. The field operator eq. (9.8) then is

φ(t, ~x) =

∫
k,m

[
(α∗kâkm − β

∗
k(−1)mâ†k,−m )Hkm uk + (αk(−1)ma†k,−m − βkâkm)H∗km u∗k

]
!
=

∫
k,m

[
b̂kmHkm uk + b̂†kmH

∗
km u∗k

]
, (9.14)

where the property of the Bessel functions J−m(ku) = (−1)mJm(ku) was used. This
defines a Bogoliubov transformation between the creation and annihilation operators
in region I and region III

b̂km = α∗kâkm − β
∗
k(−1)mâ†k,−m , b̂†km = αk(−1)ma†k,−m − βkâkm . (9.15)
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This especially means that the original vacuum state |Ω〉 is no longer empty

b̂km |Ω〉 = −β∗k(−1)m â†k,−m|Ω〉 , 0 . (9.16)

What remains is to determine the coefficients αk and βk, which depend on the
expansion/ contraction of the spacetime in region II. To do so, the mode functions vk

must be ‘transported’ from region I, through the expanding region II to the boundary
with region III. There they are projected onto the uk (eq. (9.6), modified to region
III) to determine the coefficients αk and βk. The evolution of vk is described by
eq. (9.6) in the static regions and eq. (9.11) during expansions. At the boundaries
between regions, the value and derivative of vk must be matched. Taking into account
proper normalization as well as the correct commutation relations between φ and
its canonical momentum (see [41] for details), the coefficients are given by the
Wronskian

αk = −i Wr[uk, v
∗
k] = −i a2

f ~
[
ukv̇
∗
k − u̇kv

∗
k
]
, (9.17)

βk = i Wr[uk, vk] = i a2
f ~ [ukv̇k − u̇kvk] ,

where vk and v∗k are evaluated in region II at the border to region III and the uk and u∗k
in region III at the border to region II.

9.3 Correlations function and power spectrum
With the Bogoliubov transformation and its coefficients established, correlation

functions of the field and its time derivative can be calculated for times t after the
expansion/contraction (region III). Expressions for several correlation functions can
be found in [101]. One correlation function is of particular interest for this work
since it will be connected to observable quantities in a BEC in the following chapter.
This is the statistical, connected, equal time, two-point correlation function of the
time derivative of the field

Gφ̇φ̇(L) =
〈 {
φ̇(t, u, ϕ), φ̇(t, u′, ϕ′)

} 〉
c
. (9.18)

Note, that the correlation function depends only on the the distance L between the two
points (u, ϕ) and (us, ϕ′). This is due to the isotropy and homogeneity in an FLRW
metric. Direct calculation relates the correlation function to the time-dependent
power-spectrum S k(t)

Gφ̇φ̇(L) =

∫
k
F (k, L)

√
−h(k)
a3

f

S k(t) . (9.19)

115



Chapter 9. Theory of cosmological particle production

where, the integral abbreviates
∫

k
=

∫
dk
2πk and F (k, L) = J0(kL) are Bessel-functions

of the first kind. Thus, the above expressions are Bessel transformations between the
spectrum and the correlation function. The spectrum itself has the form

S k(t) = 1
2 + Nk + ∆Nk(t) , (9.20)

with

Nk = 〈Ω | b̂†km b̂km |Ω〉 = |βk|
2 (9.21)

∆Nk = 〈Ω | b̂†km b̂†k,−m |Ω〉 = Re
[
αkβk exp(2iωkt)

]
. (9.22)

where t ≥ ∆t is the time passed since the beginning of the expansion (beginning of
region II). The spectrum is decomposed into the time-independent populations Nk

and the oscillating coherences ∆Nk(t). Splitting the oscillation into amplitude and
phase, it can be written as

∆Nk = |αkβk| cos(Θk + 2ωkth) , (9.23)

with th ≥ 0 the time after the end of the expansion/contraction and Θk the initial
phase

Θk = Arg(αkβk) + 2ωk ∆t . (9.24)

If the particle production does not start from a vacuum but from a thermal state, the
particle-pair production is enhanced by the thermal fluctuations [41]. The spectrum
after the ramp then is modified to

S k(t) = (1 + 2N in
k )

(
1
2

+ Nk + ∆Nk(t)
)
, (9.25)

The initial fluctuations have the thermal spectrum

N in
k (T ) =

1
exp

(
~ωki/kBT

)
− 1

, (9.26)

and Nk and ∆Nk stil given by eq. (9.21) and eq. (9.23).
For particle-pair production in curved spaces, the calculations must be modified.

These modifications are described in [41] and [101].
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Chapter10
Expanding spacetime in a BEC

The process of cosmological particle pair production is a general feature of a
scalar field in an expanding spacetime and can be simulated in an analog expanding
spacetime. Based on the works of our collaboration [41, 42], this chapter is dedicated
to the implementation of such an expanding space and the experimental observation
of particle-pair creation. It starts with the general idea for achieving an analog
expanding space in a BEC in section 10.1. Sections 10.2, 10.3, 10.4 describe different
details of the implementation, namely power-law expansion scenarios, the calibration
for ensuring a static density distribution, and the choice of exact experimental
parameters using the adiabaticity criterion. Section 10.5 shows examples for density
distributions after the ramp, which show enhanced fluctuations. It also identifies a
proper observable and presents correlation functions of that observable. Additional
information is extracted from the time evolution of the correlation functions in
section 10.6 and their power spectra in section 10.7. The latter reveals characteristic
features in the particle-pair production for different expansion scenarios. Finally,
section 10.8 establishes a connection between the adiabaticity criterion and an analog
Hubble horizon and discusses a possible connection to the observed feature.

10.1 Implementation in the BEC

To realize an expanding spacetime in a two-dimensional, radially symmetric
Bose-Einstein condensate (BEC), its acoustic metric eq. (4.16) needs to take the
form of an FLRW metric eq. (3.10) in two dimensions. For a BEC with stationary
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Chapter 10. Expanding spacetime in a BEC

density distribution, this yields

ds2 = −dt2 +
1

c2
s(r, t)

(
dr2 + r2dϕ2

) !
= −dt2 + a(t)2

(
du2

1 − κu2 + u2dϕ2
)
, (10.1)

with the cosmological scale factor a(t), the curvature κ, the speed of sound cs(t, r)
and polar coordinates (r, ϕ) and (u, ϕ), respectively. The right hand side of the
equation is not exactly the FLRW metric, but is connected to it by a trivial conformal
transformation with a constant factor 1/c2. In this form, the scale factor a(t) has
the units of an inverse velocity and distances are measured in units of time. The
sound speed depends on the atomic mass, density distribution of the background
n0(r) and the 2d-coupling λ(t) by c2

s(t, r) = λ(t) n0(r)/m. Chapter 7 and chapter 8
already established the connection between the lab coordinates (r, ϕ) and the reduced
circumference coordinates (u, ϕ) in eq. (7.4) and identified the density profiles n0(r)
that implement a spherical, flat and hyperbolic space in eq. (8.4). Using d~x 2(κ) as an
abbreviation for the spatial part of the metric in the different curvatures, the acoustic
metric is

ds2 = −dt2 +
1

c̄2
s(t)

d~x 2(κ) , (10.2)

with c̄s(t) the speed of sound at the center of the condensate. This connects the scale
factor in the analog metric to the sound speed in the condensate

a(t) =
1

c̄s(t)
=

√
mn̄0

λ(t)
=

(
m3n̄2

0

8πωz~3

)1/4

as(t)−1/2 , (10.3)

where n̄0 is the density in the trap’s center, and λ(t) is the time-dependent 2d-
coupling. The coupling, in turn, is proportional to the s-wave scattering length as(t)
(see eq. (2.7)). Equation (10.2) and eq. (10.3) imply that the expansion of space can
be implemented by a global decrease in the speed of sound via the s-wave scattering
length. This is illustrated in fig. 10.1. The left-hand side shows the expansion of
space as it is often depicted in the cosmological context. The distance between
the two orange points increases over time, proportional to the scale factor a. The
distance increase is indicated by the appearance of additional concentric rings, which
indicate proper distances from the central point. This proper distance is defined as
the distance that light – or sound in the analog model – can travel in a fixed time
step (see chapter 7 for comparison). The right-hand side shows the same scenario in
the interpretation of the analog model. The two orange points remain at the same
coordinate distance, corresponding to the condensate’s static background density.
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Figure 10.1: Analog expansion of space. Expansion of space can be understood as the
increase of distance between any two points. The left-hand side shows this for the two
orange points. Their distance increases proportionally to the scale factor a. The concentric
equidistant lines serve as a ruler for the proper distances from the central point. Their
spacing is defined by the distance that light (or sound) travels in a fixed time. The same
expansion scenario is depicted on the right-hand side. Here the coordinate distance between
the points stays the same, but the speed of light (or sound) decreases. This leads to a closer
spacing of the concentric circles, a ‘shrinking of the ruler.’ For the analog spacetime of a
BEC, the speed of sound is decreased with the s-wave scattering length, as indicated by the
inset.

However, the scattering length and thus the speed of sound is decreased, as indicated
by the inset and the concentric rings marking proper distance move closer together.
Over time, more and more rings fit between the two points, indicating the increase in
proper distance. The increase in proper distance is, by definition, the expansion of
space.

10.2 Power law expansion

For typical expansion scenarios of an FLRW universe, the scale factor evolves
with a power-law a(t) ∝ tγ, which is implemented with the s-wave scattering length
as(t) ∝ t−2γ. For an expansion of duration ∆t, starting from the initial scale factor ai

and scattering length as,i and ending at the final scale factor a f and scattering length
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as, f the power law ramps are

a(t) = ai

1 −
1 − (

a f

ai

) 1
γ

 t
∆t


γ

⇔ as(t) = as,i

1 −
1 − (

as, f

as,i

)− 1
2γ
 t

∆t


−2γ

.

(10.4)

The scattering length is controlled via the magnetic field at a Feshbach-resonance.
To calculate the necessary magnetic field, the shape of the resonance must be taken
into account (see section 5.4 for details). The required magnetic field is

B(t) = B0 + ∆

(
1 −

as(t)
as,bg

)−1

, (10.5)

with B0 and ∆ the position and width of the resonance and as,bg the background
scattering length. For different values of γ, different expansion scenarios can be
implemented. Depending on the deceleration parameter q = −äa/ȧ2 (see section 3.4),
accelerated and decelerated expansions are possible. In this work, we consider the
three different cases

• uniform expansion with γ = 1 and q = 0 ,

• decelerated expansion with γ = 1/2 and q = 1 ,

• accelerated expansion with γ = 3/2 and q = −1/3.

10.3 Calibration for a static density distribution
As previously described, the density distribution of the condensate must remain

static during and after the ramps of the scattering length. Experimentally, the density
must be actively controlled since a condensate in a harmonic trap collapses during a
decrease of the scattering length. Lowering the trap frequency counters this effect
and keeps the density distribution static.

For that purpose, we calibrate the size of the condensate against the scattering
length and the intensity in the trapping beam. Figure 10.2 shows the Thomas-Fermi
radius of the cloud for different intensities and scattering lengths. The orange lines
show cuts of a fit function that describes all data points simultaneously. The inverted
fit represents the necessary change of the trapping beams’ intensity during a change
of the scattering length. It is implemented as a feed-forward that ensures a constant
Thomas-Fermi radius during the different sweeps.
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Figure 10.2: Calibration for a static density profile. The size (Thomas-Fermi radius) of
the condensate is measured for different scattering lengths and intensities I of the trapping
beam. A model is fitted to all data points simultaneously. For the given intensities the
corresponding fit curves are plotted in orange. The blue line marks the condensate’s size in
the experimental runs. To keep the size constant during a ramp of the scattering length, the
intensity of the trapping beam is adjusted using the inverse of the fit-function.

10.4 Choosing experimental parameters

For the power-law ramps described in the previous sections, four free parameters
remain, the initial scattering length as,i, the final scattering length as, f , the duration
of the ramp ∆t, and the initial frequency of the harmonic trap confining the atoms. In
choosing appropriate parameters, several fundamental and technical boundaries must
be taken into account. First of all, the size of the atomic cloud sets an upper limit for
the observable wavelength of perturbations which defines a minimal k-mode. 1 Here
we define kmin = 2π/(2 rT F) with rT F the Thomas-Fermi radius of the condensate. A
maximal resolvable k-mode is given by the camera’s imaging resolution of ∼ 0.8µm
and pixel size of 0.455 µm. The imaging resolution is the stronger constraint and
leads to kmax ∼ 4 µm−1. A much tighter bound on the maximal momentum mode is
set by the breakdown of the acoustic regime in the Bogoliubov dispersion relation.
To be in the acoustic regime is an important assumption in the derivation of the

1For a hyperbolic space projected on the Poincare disk, space is infinite, and modes with arbitrarily
large wavelength should be possible. Even though the condensate approximates a Poincare disk,
the assumptions made in the derivation of the acoustic metric break down towards the edges of the
condensate.
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Chapter 10. Expanding spacetime in a BEC

acoustic metric and the analogy between spacetime and condensate breaks down
outside this regime. We estimate the upper limit of the acoustic regime by demanding
the energy of a mode to be smaller than the chemical potential (see eq. (2.16) for
comparison), which leads to

kac(t) < m cs(t)/~ . (10.6)

An additional requirement concerns the duration of the power-law ramps. If the
change in scattering length is too slow, modes will not be populated. This principle is
formulated in the adiabatic theorem [102, 103]. It states that a quantum mechanical
system remains in its current eigenstate if changes are slow compared to the intrinsic
time scale of the system. For the case Bogoliubov modes, the latter is determined
by the system’s energy ~/E, and the time scale of the change is the inverse relative
energy change E/Ė. Thus, a mode of energy E can only be excited if the time scale
of its energy change is small compared to its intrinsic time scale

~

E
>

E
|Ė|

⇔
|Ė|
E2 ~ > 1 . (10.7)

Modes within the linear part of the Bogoliubov energy have the energy and energy
change in the experimental setting

E = ~cs|k| = ~

√
λ(t) n(x)

m
|k| ; Ė =

~

2

√
n(x)
λ(t) m

λ̇(t) |k| , (10.8)

with λ(t) the 2d-coupling proportional to the scattering length as(t). Thus, a mode
can be populated if

|kcrit| <

∣∣∣∣∣ 1
2cs(x, t)

ȧs(t)
as(t)

∣∣∣∣∣ . (10.9)

For the three power-law ramps from the previous section with γ ∈ [1/2, 1, 3/2], the
criterion yields

γ = 1
2 : |kcrit| <

∣∣∣∣∣∣ 1
2 ∆t cs,i(r)

(
1 − as,i

as, f

) [
1 −

(
1 − as,i

as, f

) t
∆t

]− 1
2

∣∣∣∣∣∣ , (10.10)

γ = 1 : |kcrit| <

∣∣∣∣∣∣ 1
∆t cs,i(r)

(
1 −

√
as,i

as, f

)∣∣∣∣∣∣ , (10.11)

γ = 3
2 : |kcrit| <

∣∣∣∣∣∣∣ 3
2T cs,i(r)

(
1 −

(
as,i

as, f

) 1
3
) [

1 −
(
1 −

(
as,i

as, f

) 1
3
) t

∆t

] 1
2

∣∣∣∣∣∣∣ , (10.12)
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with as,i and as, f the scattering length at the beginning and end of the ramp and cs,i(r)
the initial sound speed before the ramp. The sound speed depends on the radial
distance from the center r; it is maximal at the center of the trap c̄s,i and decreases
due to the parabolic density profile of the condensate as

cs,i(r) = c̄s,i

√
1 −

(
r

rT F

)2

. (10.13)

Figure 10.3 shows all these criteria for a condensate of 23, 000 atoms, with a
tight trap in gravity direction with ωz = 1.6 kHz and radial trapping of 23.2 Hz. At
an initial scattering length of 400 aB this results in a Thomas-Fermi radius of 30 µm
and a speed of sound of c̄s,i = 3.6 µm/ms at the center of the trap. The figure shows
the critical momentum mode kcrit for ramps with initial scattering length of 400 aB

and final scattering length 50 aB for the three power-law exponents γ = [0.5, 1, 1.5]
and for two ramp durations ∆t = [1.5 ms, 3.0 ms]. The critical mode is evaluated at
the center of the condensate and at distances of 0.5 rT F and 0.7 rT F . Additionally,
the figure contains the limits from the system size kmin as well as the breakdown of
the acoustic regime at the three positions in the condensate. The grey color marks
the ‘forbidden’ areas. The white area corresponds to modes that are phononic but
adiabatic. These modes cannot be excited by the ramp. Finally, the colored areas are
the modes that become non-adiabatic and can hence be excited by the ramp. The
experimental parameters were chosen such that the excitable modes are larger than
kmin but still within the acoustic regime. In the analysis of the experimental data
in the following section, only the area up to 0.5 rT F will be considered. The figure
also shows a clear difference in the time evolution of the critical mode for the three
different ramp types. This will become important in section 10.8.

A final limitation is technical: the change of the scattering length is experimen-
tally implemented by a rapid magnetic field change. The inductivity of the magnetic
coils will counteract the change. Special care was taken in the construction of the
coils to allow for these rapid changes (see [86] for details). To check the quality
of the ramps, the current in the coils was measured during the six different ramps
described above (using the current transducer in the control circuit of the coils).
From the current, the magnetic field and scattering length are calculated and are
shown in fig. 10.4 for single ramp-realizations together with their residual to the
optimal ramp. Systematic deviations from the optimal ramp shape are visible in
the data. For the fast ramp with ∆t = 1.5 ms deviations around 0.8 G appear at the
beginning of the ramp. Due to the non-linear relation between the magnetic field
and the scattering length in the vicinity of a Feshbach resonance, deviations in the
magnetic field influence the scattering length primarily at the beginning of the ramp.
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Figure 10.3: Time dependence of the critical mode for different ramp parameters.
Modes can only be populated by an experimental ramp of the scattering length if they
become non-adiabatic. kcrit marks the boundary between adiabatic and non-adiabatic modes
at the center of the condensate and at a distance of 0.5 rT F and 0.7rT F . The grey areas show
modes that are forbidden due to the size of the system kmin or due to the breakdown of the
acoustic regime kac. The latter is again shown for three different positions in the condensate.
The different panels show different sets of experimental parameters, namely three different
power-law exponents γ = 0.5 (left), γ = 1.0 (center) and γ = 1.5 (right) and two different
ramp speeds ∆t = 1.5 ms (blue) and ∆t = 3.0 ms (orange). All ramps start at a scattering
length of 400 aB and end at a scattering length of 50 aB.
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Figure 10.4: Measured ramp shapes. The magnetic field and scattering length during
are extracted from a measurements of the current in the magnetic coils for the six different
ramps with γ = 0.5 (blue), γ = 1.0 (orange) and γ = 1.5 (black) and for the two ramp
durations ∆t = 1.5 ms (left) and ∆t = 3.0 ms (right). The grey areas mark the time during
which the magnetic field is ramped and the inset show the residuals to the optimal ramp.

Apart from the first short peak at the onset of the ramp, the error in scattering length
is always below 20 aB and much better for the slower ramp and the second half
of the fast ramp. Thus we explicitly show that the different ramps can be clearly
distinguished, and the selected ramp speeds are experimentally realizable.

The second dynamical adjustment is the change of trap frequency to ensure
the static density distribution (see section 10.3). It is done via an acoustic optic
modulator (AOM) that regulates the power in the trapping beam. This process is fast
compared to the time scale of the ramp.
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Chapter 10. Expanding spacetime in a BEC

10.5 Density fluctuations and their correlation
Experimental runs with the previously determined parameters indeed show the

appearance of structures, that are clearly visible even in single realizations. Fig-
ure 10.5 shows an example for the density distribution before the ramp in comparison
with an image of the condensate after a 1.5 ms ramp with γ = 0.5. For a quantitative
analysis of the fluctuation, we need the right observable. To identify this observable,
we need to revisit the definition of the analog scalar field in the derivation of the
acoustic metric. In eq. (4.6), the field Φ of the entire condensate was split into the
background φ0 and the real and imaginary part of the fluctuations φ1 and φ2

Φ = φ0 + φ1 + iφ2 . (10.14)

The perturbations φ1 and φ2 are related to the scalar field φ in the acoustic metric
by φ2 ∝ φ and φ1 ∝ φ̇/n0(r) with n0(r) the density distribution of the background
(see eq. (4.12)). To first order in the perturbations, the density distribution of the
condensate is

n(t, r, ϕ) = 〈Φ∗Φ〉 = n0(r) +
√

n0(r) φ1 + O(|φ1|
2, |φ2

2|) , (10.15)

where φ∗0 = φ0 and φ2
0 = n0(r) was used. Note that the leading term in the perturbation

is an interference term with the background condensate. This amplifies the fluctuation
signal and allows the detection of phases between the background condensate and
the fluctuations. This will become very important later in this chapter. Reshuffling
of the above formula together with the definition of φ1 relates the derivative of the
scalar field φ̇ to the density contrast defined as

φ̇ ∝ δ ≡

√
n0(r)

n̄3
0

[
n(t, r, ϕ) − n0(r)

]
. (10.16)

The density contrast is rendered dimensionless by the normalization with the density
at the center of the condensate n̄0. The lower panels in fig. 10.5 show the density
contrast for the single realizations before and after the ramp, with under-densities
shown in blue and over-densities shown in red.

The right-hand side of fig. 10.5 shows the central region of the condensate
for three such realizations. The appearing fluctuation pattern is random between
realizations. Thus, the background density can be experimentally determined as an
average overall realizations

n0(x, y) = 〈n(x, y)〉e , (10.17)
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Figure 10.5: Appearance of fluctuations. The panels show the density and density
contrast for single images of the condensate before and after a ramp with the ramp duration
∆t = 1.5ms and the power-law exponent γ = 0.5 (decelerated expansion). The right-hand
shows the random patterns in three different realizations. Only the central region of the
condensate up to half the Thomas-Fermi radius is shown. This is the region used for the
extraction of the correlation function.

where x and y denote the position of pixels in the image and the subscript, e abbre-
viates the ensemble average. The next higher statistical moment is the two-point
correlation function Gδδ(u, u′, ϕ, ϕ′) = 〈δ(u, ϕ)δ(u′, ϕ′)〉. In two dimensions, the full
density-density correlation is a four-dimensional object depending on the position
of both points. However, the implemented analog spacetime is homogeneous and
isotropic and all statistical objects in this space need to fulfill the same symmetries.
Thus they can only depend on the distance L between points. In particular, this is the
case for the correlation function Gφ̇φ̇ eq. (9.18) which is proportional to the two-point
correlation of the density contrast

Gδδ(t, L) =
~2m
λ2

f n̄
3
0

Gφ̇φ̇(t, L) , (10.18)

with the prefactor taken from [41]. Here, λ f the 2d-coupling at the end of the analog
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expansion and m the atomic mass. Since the two correlation functions are connected
only by a constant factor, Gδδ must, in turn, fulfill the same symmetries as Gφ̇φ̇. It
thus only depends on the distances L between points. Hereby, distances must be
evaluated in the analog metric (see section 7.4 for the distances in the curved spaces).
Experimentally, this is a great advantage. It allows the evaluation of the correlation
function as

Gδδ(t, L) = 〈δ(t, x, y)δ(t, x′, y′)〉e, distance(x,y,x′,y′)=L , (10.19)

where the average runs overall realizations and over all pairs of pixels with distance
L. This greatly improves statistical power for a limited number of experimental
realizations. For the data shown here, around a 100 realizations per parameter set
are available for analysis. To improve the signal-to-noise ratio, four pixels (two by
two) are averaged before the start of the analysis. Numerically, the evaluation of the
correlation function requires the distance evaluation and binning of all pixel-pairs.
To perform the computation in a feasible time, it was implemented without loop
logic. Details on the exact implementation and the analysis routine can be found in
appendix B.

The condensate in a harmonic trap approximates a hyperbolic space described
by the Poincare disk with the value of the curvature related to the Thomas-Fermi
radius by κ = −rT F/2 (see section 8.1). To extract the two-point correlation function
of the density contrast, we use only a region up to half the Thomas-Fermi radius.
At the edge of this region, the density of the condensate is already decreased to
three-quarters of the central density. However, the implemented analog metric of the
Poincare disk is still very well approximated by a flat Euclidean disk. To confirm
this, the correlation function is evaluated using both a flat and a hyperbolic metric.
The results are shown in fig. 10.6 together with the correlation function of the initial
condensate. The close agreement between the flat and the hyperbolic evaluations
justifies the analysis in the flat metric. It will be used for the remainder of this work.

Of particular interest is the difference between the correlation functions of the
perturbed and unperturbed condensate. For the latter, the correlation function flattens
quickly after the initial peak. After the sweep of the scattering length, however, the
correlation shows a pronounced anti-correlation at a length scale of 5 µm followed
by a correlation peak. This is the first indication of analog particle production in the
condensate.
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Figure 10.6: Density-contrast correlation function. A clear difference is visible between
the correlation function of the condensate before the ramp (grey), and after the ramp (blue).
The correlation functions are computed once with a flat metric (solid line) and with a
hyperbolic metric (dashed line). The good agreement between flat and hyperbolic analysis
justifies the continued use of the flat metric. The insets give examples for pixel-pairs
entering in the calculation of the correlation functions.

10.6 Time evolution of the correlation
A single snapshot in time only partly characterizes the quantum state created

during the ramp of the scattering length. Similar to [36, 37, 40], we extract additional
information about the quantum state from the time evolution of its correlation
functions.

For that purpose, the scattering length is held constant for a time th after the ramp,
before imaging the density distribution of the atoms. The density-contrast correlation
function is extracted as described in the previous section and the results are shown in
fig. 10.7 for a ramp with γ = 1/2 (decelerated expansion) and two different ramp
durations. It reveals propagation of the correlation structure to larger distances. In
the data, the correlation peak propagates with the velocity of

vprop = 2.5 ± 0.1
µm
ms

, (10.20)
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Figure 10.7: Time evolution of the density-contrast correlation. During hold time th
after the ramp at constant scattering length, the correlation feature propagates towards
larger distances. The extracted propagation speed is the same for both ramp durations and
is consistent with the speed of sound. The right-hand side shows a real-space interpretation
of the propagation. Perturbations created during the ramp are the seeds for circular waves,
and their interference forms a complex pattern. However, the structure of the circular wave
leaves a distinctive correlation peak at the diameter of the sound cone.
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for both ramp durations. The speed of sound can be predicted from GPE simulation
of the condensate groundstate to be cs = 1.3 µm/ms2. The propagation of the
correlation peak is consistent with twice the speed of sound. An interpretation of this
observation is shown on the right-hand side of fig. 10.7: the ramp of the scattering
length creates perturbations at random positions in the condensate. The perturbations
propagate radially outwards with the speed of sound. The superposition of several
perturbations creates a complex interference pattern, but the underlying sound cone
is still detectable in the correlation. It results in a correlation peak appearing at
the cone’s diameter, which grows with twice the speed of sound. The evolution is
the real space equivalent of Sakharov oscillations [104] in momentum space. To
understand this phenomenon, the power spectrum of the correlations is computed in
the following section.

10.7 The spectrum and its time evolution
The propagation of the correlation peak can be understood in more detail in mo-

mentum space. For that purpose, we compute the power spectrum of the fluctuations
from the density-contrast correlation function using eq. (10.18) and eq. (9.19). In
a flat metric, the correlation function and the power spectrum are connected by a
Hankel transform with m = 0

S k =
n̄0 m
~ a f

1
k

∫
dL L J0(kL) 〈δcδc〉 (L), (10.21)

where J0(kL) are the Bessel functions of the first kind. As argued before, the
approximation of the flat metric is justified for the analyzed region of the condensate.
The Hankel transform is the equivalent to a Fourier transform in polar coordinates.
This reflects the rotational symmetry that already reduced the correlation function to
an object that only depends on distances3. Both n̄0 = c2

s, f λ f and a(t f ) = 1/cs, f are
directly related to the speed of sound and the 2d-coupling λ (eq. (2.7)) at the end of
the ramp. As a value for the speed of sound cs, f we take half the propagation velocity
of the peak in the correlation function. The Hankel transformation is performed
numerically using the Matlab package [105]. Figure 10.8 shows the spectra for

2The speed of sound can also be estimated in the Thomas-Fermi approximation from the size
of two-dimensional condensate in the trap. However, this assumes the condensate to be truly two-
dimensional, which is not the case. The estimated sound speed is lower than the GPE simulation
value.

3Note that this is not the spherical symmetry of the condensate but the symmetry of the imple-
mented spacetime.
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Figure 10.8: Time evolution of the power spectrum. The power spectra are a Hankel
transform of the density-contrast correlation function. The spectra show a clear increase in
power for all the six different ramps compared to the unperturbed condensate (black line).
As expected from adiabaticity arguments, larger k modes are excited for the faster ramp.
The time evolution after the ramp (different colors) can even result in an increase in power
even though particle-pair production has ceased. This is caused by a phase evolution of a
coherence term which is detectable by an interference between the background condensate
and the different k-modes.
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Figure 10.9: Oscillations of the momentum modes. Each momentum mode oscillates in
time with a frequency proportional to 2cs, f k. The solid lines are fits of that frequency with
offset initial phase and amplitude as fit parameters.

the three different power-law exponents and the two different ramp durations. The
plots show the time evolution of the spectra after the ramp and reveal an intriguing
feature. The power in many k-modes increases after the ramp even though particle
creation should have ceased with the end of the analog expansion. A plot of the
power in each k-mode against time in fig. 10.9 reveals an oscillating behavior. These
are Sakharov oscillations caused by a buildup of phase difference between two
counter-propagating modes of the same k. Sakharov oscillations are a typical sign
for particle-pair creation and have been observed in quench experiments [36, 37, 40].
They are connected to the coherence term ∆Nk eq. (9.23) that appears in the spectrum
eq. (9.20). From the coherence term, the complex phase of each k-mode is predicted
to oscillate with a frequency of 2ωk = 2cs, f k. In the experiment, these oscillations
become visible due to an interference of the momentum modes with the background
condensate, similar to a heterodyne detection in quantum optics. Figure 10.9 checks
this prediction against the experimental data. It shows the time evolution of each
k-mode together with a cosine fit. The frequency of the fit is fixed according to
the above prediction with the speed of sound taken from the propagation of the
correlation peak in fig. 10.7. For the fit, an offset, amplitude, and the initial phase of
the oscillation are left as free parameters.

The best-fit values for the phase and amplitude are shown in fig. 10.10 together
with the analytical predictions from particle pair creation in an expanding spacetime4.
The theoretical prediction use a final speed of sound of cs, f = 1.2 µm/ms and an

4courtesy of the theory team of our collaboration: Álvaro Parra-Lopéz, Mireia Tolosa-Simeón,
Natalia Sánchez-Kuntz, Tobias Haas and Stefan Flörchinger
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initial scattering length of as,i = 350 aB and a condensate temperature of T = 40 nK.
The first two values are within the error bounds of the experimentally extracted speed
of sound and the position of the Feshbach resonance, respectively. The temperature
of the condensate was independently determined from its density distribution in
the trap [106] to be T = 60 ± 10 nK. We attribute the discrepancy between the
two temperatures to the location of thermal fluctuations in a harmonically trapped
condensate: they are pushed towards the edges of the cloud [106], which results
in an effectively lower temperature in the analyzed region around the center of the
condensate. The good agreement between predictions and measurements confirms
that we indeed observe the analog process of particle-pair creation in an expanding
spacetime. This confirms the successful implementation of the dynamics of a scalar
field in an analog curved spacetime and paves the way for future experimental
investigation of such phenomena.

Remarkably by itself is the k-dependence of the phase in the lower right panel
in fig. 10.10. This is the phase eq. (9.24) in the coherence term of the produced
quantum state corresponding to the initial phases of the k-mode oscillation in the
experimental data. Both prediction and observation show a clear difference for
the three different expansion scenarios. The theoretical prediction shows that this
feature is independent against the temperature of the initial state. In addition, it is
robust against noise. Noise sources may easily add power to different k-modes in the
spectrum but will not create an oscillating signal. Other effects, like damping, may
distort the oscillation amplitude but not its phase. The observed phase feature is thus
a reliable marker for the expansion history.

10.8 Connection to horizons?
The marker for the expansion history identified in the previous section can

possibly be explained in terms of horizons. Horizons have been discussed in the
context of the mode equation (9.11) which in term determines the spectrum of the
produced particles [33, 101]. Here, we will take an approach that connects the
Hubble horizon to the critical mode in the adiabaticity criterion (see section 10.4).

For the definition of the Hubble horizon, imagine an observer located in a
homogeneous and isotropic expanding space. Due to the expansion, objects will
move away from her, with the velocity proportional to the distance (Hubble’s law
[5]). At any time t, the Hubble radius is defined as the distance at which this velocity
is equal to the speed of light. This is equivalent to

RHubble =
1
H
, (10.22)
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Figure 10.10: Amplitude and initial phase of the coherent oscillations. The amplitude
|∆Nk | and initial phase Θ of the k-mode oscillations are shown for two different ramp
durations ∆t = 1.5 ms (left) and ∆t = 3.0 ms (right), and the three different expansion
scenarios (colors). The experimental data points are the fit parameters of the oscillations
with a one-std error from the fit. The solid lines are the theory predictions from the
quantum state produced during the ramps. The good agreement confirms that the observed
fluctuations in the condensate are caused by the process of cosmological particle pair
production in the analog expanding spacetime. Remarkable in itself is the feature appearing
in the initial phases of the slow ramp (lower-right panel). It shows a clear dependence on
the different expansion scenarios and is a robust marker for the expansion history.
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Figure 10.11: Evolution of the comoving Hubble horizon. For the uniform expansion
with γ = 1.0 (orange), the comoving Hubble horizon remains at the same momentum mode.
The solid line describes the fast ramp with ∆t = 1.5ms and the dashed line the slow ramp
with ∆t = 3 ms.5 For the accelerated expansion (black line), the horizon moves to larger
k during the ramp, i.e., the horizon shrinks. For the decelerated expansion (blue line) the
horizon grows.

with H = ȧ/a the Hubble parameter. As in the previous chapters, a has the unit of an
inverse velocity, and distances are measured in time. In comoving coordinates, the
Hubble radius is

ηHubble =
RHubble

a
=

1
ȧ
, (10.23)

which can be connected to the adiabaticity criterion (see section 10.4). The latter
states that a mode with energy E and dispersion relation ω = csk can be occupied if∣∣∣∣∣ ~E

∣∣∣∣∣ > ∣∣∣∣∣EĖ
∣∣∣∣∣ ⇔ |kcrit| <

∣∣∣∣∣∣ ċs

c2
s

∣∣∣∣∣∣ = |ȧ| =
1

ηHubble
. (10.24)

Here, the relation between the scale factor and the speed of sound cs = 1/a and
ċs = −ȧ/a2 in the acoustic metric was used. This shows that modes can only be
populated if their momentum is smaller than the inverse horizon. These are modes
with a wavelength larger than the horizon (super-horizon modes). Modes with
wavelengths smaller than the horizon (sub-horizon modes) cannot be excited.

The evolution of the horizon during the different expansions (see fig. 10.10)
qualitatively explains the different features in the k-dependence of the initial phase.
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For the uniform expansion with γ = 1, the horizon is at a fixed k for the entire ramp
duration. Two neighboring modes on different sides of the horizon experience a very
different evolution during the ramp, leading to the very sudden jump in the initial
phase. For γ = 1.5, the accelerated expansion, the comoving horizon shrinks, and the
k corresponding to the horizon grow over time. Thus, k modes cross from inside the
horizon to outside. They can be excited only after that crossing. Two neighboring
modes differ in the time of their crossing but are not clearly separated by the horizon.
This softens the jump of the initial phase in fig. 10.10. For the decelerated expansion
with γ = 0.5, the comoving horizon grows, and modes cross from outside the horizon
to inside. The k-range swept by the horizon is very wide, which explains the slow
change of the initial phase for this scenario.

While this discussion may explain the shapes of the phase features for the
different types of evolution, this order-of-magnitude estimation does not predict the
correct position of the jumps. We suspect that the exact position may be related to the
cosmological event horizon, which differs from the Hubble horizon for power-law
expansions. However, understanding these relations and connecting them to the
mode equation remains a task for the future.
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What was achieved

and what is to come

With this work, we introduce a new cold atom experiment of potassium-39 that
has recently become operational and will grow into an integral part of the Heidelberg
research. This new machine was used to experimentally test a novel mapping
between the dynamics of a scalar field in a curved and expanding spacetime and the
phononic excitations of a circularly symmetric, quasi-two-dimensional Bose-Einstein
condensate.

The first major result is the experimental confirmation that a harmonically con-
fined Bose-Einstein condensate can implement a hyperbolic space with constant
curvature – one of the possible spatial curvatures of an FLRW metric. This is the
first demonstration of such a space in an analog system. Building on these results, a
straightforward upgrade of the experimental setup by a digital micromirror device
(DMD) will enable the implementation of different curvatures. Just recently, our
experimental team has achieved this upgrade, and first measurements in an analog
spherical geometry have been successfully performed [42]. With the DMD, more
complex, non-homogeneous spaces can be implemented. This opens intriguing
possibilities for the study of scalar fields in curved spaces beyond the symmetry
assumptions of theoretical models.

The second result of this work is the realization of an analog expanding spacetime,
implemented with a ramp of the scattering length. We observe the appearance of
fluctuations in the condensate and extract their correlation functions and power
spectra. Using the time evolution of these observables, we characterize the quantum
state created by the expansion. The good agreement with theoretical predictions
confirms that the fluctuations in the condensate are indeed caused by particle-pair
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production. We thus simulate the quantum process that likely seeds the Universe’s
large-scale structure. Furthermore, we identified a clear and robust marker for the
spacetime’s expansion history in the time evolution of the power spectrum. To the
best of our knowledge, it is the first time this feature has been identified. It is not
yet clear whether this marker can be connected to observations of real cosmological
phenomena, like the baryon acoustic oscillations, but it is an intriguing prospect for
future research.

This work also has implications for phenomena intrinsic to a Bose-Einstein
condensate, which can be reinterpreted and thus better understood in the framework
of curved spacetimes and differential geometry. The concepts of curvature, cosmo-
logical particle production, or horizons can be applied to phenomena native to a
Bose-Einstein condensate. This can significantly contribute to our understanding of
quantum phenomena and may lead to entirely new avenues of research.
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A.1 Setup magneto-optical traps
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Figure A.1: Detailed drawing of the 2d-MOT and 3d-MOT setups.
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A.2 Frequency stabilisation D1 and D2 master lasers
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Figure A.2: The D2 and D1 master lasers are locked on the potassium-39 resonances with
Doppler-free absorption spectroscopy. For the creation of the error signal, a magnetic field
at the potassium vapor cell is modulated with 86 kHz. The light of each laser is coupled into
a single-mode, polarization-maintaining optical fiber and amplified by tapered amplifiers
(the amplification is not shown here).
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A.3 Frequency adjustment and mixing for MOTs
and molasses
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Figure A.3: The amplified lights from the D2 and D1 master lasers are adjusted to the right
frequencies for 2d-MOT, 3d-MOT, and grey molasses. This is done with acousto-optical
modulators in a double pass setup. The lights are mixed and coupled into the respective
fibers. The light for 3d-MOT and grey molasses use the same fiber, mixing is done with a
tunable bandpass.
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A.4 Imaging laser - offset lock

low field D2 C & R 
 

high field �-

 
high field �+

D2 master
light

PI

PI

frequency
monitoring

anomorphic
prism pair

mirror

polarizing
beamsplitter

non-polarizing
beamsplitter

�/2 plate

fiber coupler

Fabry-Pérot
interferometer

PI

RF splitter

RF mixer delay line

proportional-
integral control

photo diode

VCOVCO

low-pass
filter

VCO voltage controlled
oscillator

Figure A.4: The imaging lasers are offset locked onto reference light from the D2 master
laser. The first laser creates the light for low field imaging. For a different offset in the lock,
it also creates the σ−-light for high field imaging. The second laser creates the σ+ light for
high-field imaging. Both lasers are coupled into fibers to be transported to the mixing setup
(next figure).
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A.5 Imaging laser - mixing
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Figure A.5: Switching and frequency adjustment of the imaging lights is done with acousto-
optical modulators in a double-pass setup. For imaging at zero magnetic fields, the second
and third AOM paths (from the left) are used. For imaging at the high magnetic field, the
first and the third path are used. The lights are mixed and coupled into three fibers for
the three different absorption imagings. The polarization of the lights is indicated for the
different mixing steps and after the fibers (insets on the left).
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A.6 High power laser system 1064 nm light
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Figure A.6: For the attractive dipole beams, a total of five beams is used. The two reservoir
beams have up to 12 W each and are arranged in a free-space setup. The other three beams
(compressor, condenser, and top beam) are fiber-coupled with a maximum of 2 W in each
beam. Switching and power control are done with acousto-optical modulators. For the top
beam, the zeroth AOM order from one of the reservoir beams is reused.
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A.7 High power laser system 532 nm light
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Figure A.7: There are two repulsive dipole traps using 532 nm light. Switching and power
control are achieved with acousto-optical modulators. The probe beam needs less 1 mW
in power and a normal fiber can be used. The beam for the pancake interferometer needs
up to 2 W after the fiber. For green light, this is not possible with an ordinary single-mode
fiber due to induced Brillouin scattering. A photonic crystal fiber is used instead. A moving
mirror blocks the light from reaching the fiber during the early stages of the experimental
sequence. This allows keeping the pancake AOM turned on most of the time. This reduces
the thermal effects in the AOM and leads to a more stable coupling into the fiber.
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Extraction of correlation functions and spectra

For the extraction of the correlation function, all experimental shots within one parameter
set are used that deviate less than 10% from the mean atom number (see fig. B.1 for
illustration). To improve the signal to noise, four pixels (two by two) are averaged to form
a larger pixel. For each image, an offset is determined from the regions far away from the
atom cloud, and this offset is subtracted. An average over all shots yields a mean image. The
Thomas-Fermi radius rT F is extracted from a fit to the profile. A mask is created that leaves
pixel values unchanged for the central region up to half the Thomas-Fermi radius and sets all
other pixels to NaN values. This mask is used both on the mean image and on all individual
images. To correct for fluctuations in the atom number, the mean image is scaled to each
individual shot. The factor for this scaling is chosen such that the signal for the mask region
is the same in the individual shots and in the mean image. From each pair of images and
corresponding rescaled mean image, the density contrast (eq. (10.16)) is calculated. From
the density contrast, the two-point correlation functions are evaluated for each image and
then averaged for the final result. Finally, the power spectrum is calculated by a Hankel
transform of the correlation function.

A loop-free algorithm is used for the extraction of the calculation functions. It is written
in such a way, that it also works if distances between two points are evaluated for hyperbolic
and spherical geometry. fig. B.2 illustrates the extraction for a small mask region, containing
only five pixels. In the first step, all non-NaN pixels are arranged in two matrices as is
illustrated in the picture. The matrices are constructed such, that they contain all pairs of
pixels exactly once (with the first ‘member’ of the pair in the first matrix and the second
‘member’ in the second matrix). This matrix structure is used to record the x and y-positions
of the pixels and for the pixel values themselves. From the position, the distance between the
pixels of each pair is calculated. The figure illustrates this for a flat metric, but instead, a
spherical or hyperbolic distance measure can be used. For each distance (or distance-bin in
the real data), a distance mask is created. These masks select the corresponding pixel pairs in
the matrices of the pixel values. Once masked, an entry-wise multiplication and average over
the non-NaN pixels yield the value for the correlation function at the corresponding distance.
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