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1 Introduction 
1.1 Lung cancer 
Lung cancer is the leading cause of cancer-related mortality worldwide. With an estimated 
1.8 million fatalities each year, it is responsible for nearly 1 in 5 (18.4%) cancer deaths (Bray et 
al. 2018). Tobacco usage is the most frequent cause of the disease, accounting for >80% of 
cases in countries were smoking is common (Alberg et al. 2013). Strategies for eradicating 
tobacco usage, like nicotine-replacement therapy, counselling or taxation are key to the 
global fight against lung cancer (Hays and Ebbert 2008). However, besides prevention, 
increasingly sophisticated measures for early disease detection as well as advancements in 
therapy are required to lower the number of fatalities. The need for a timely detection of 
lung cancer becomes evident when comparing the estimated 5-year survival of lung cancer 
patients at different pathological stages. Approximately two thirds (65.7%) of lung cancer 
patients present with locally advanced (stage III) or metastatic disease (stage IV) 
(Morgensztern et al. 2010). At these stages, the 5-year survival rate is only 25% and 5%, 
respectively, whereas earlier diagnoses have much more favorable outcomes (stage I: 80% 
and stage II: 57% 5-year survival rate) (Goldstraw et al. 2016). Benefits of diagnosis when the 
disease is still localized have been demonstrated in several studies performing low-dose 
computed tomography (LDCT) in individuals with high-risk to develop lung cancer. These 
studies resulted in a mortality reduction of up to 20% in LDCT-screened participants, 
however, at the expense of high rates of overdiagnosis and potential harm due to radiation 
(de Koning et al. 2020; Field et al. 2016; National Lung Screening Trial Research et al. 2011). 
Therapy decision in lung cancer is influenced by several factors, including disease stage, 
general medical condition of the patient, as well as histology of the tumor and its molecular 
profile. Surgery, often in combination with perioperative chemo- and/or radiotherapy, is the 
recommended treatment for early-stage and some locally advanced lung cancers (National 
Institute for Health and Care Excellence 2019; Vansteenkiste et al. 2014). In advanced stages, 
histological assessment of the tumor is pivotal for therapy decision (Vansteenkiste et al. 
2014). Histopathologically, lung cancer can be divided into small cell lung cancer (SCLC), 
representing ~15% of patients, and non-small cell lung cancer (NSCLC; ~85% of patients). 
The latter is further subdivided into adenocarcinoma (LUAD; 50.4%), squamous cell 
carcinoma (LUSC; 22.6%) and large cell carcinoma (LCC; 1.3%) (Figure 1A) (Howlader et al. 
2017). Each histological subtype is associated with discrete treatment guidelines. For 
advanced-stage SCLC treatment options are limited to platinum-based chemotherapy and 
radiotherapy, NSCLC patients can profit from a wider range of therapies (National Institute 
for Health and Care Excellence 2019). For example, a subset of NSCLC patients with a 
programmed death-ligand 1 (PD-L1) tumor proportion score ≥50% can be treated with 
immune checkpoint inhibitors while molecular alterations, such as a mutation in the 
epidermal growth factor receptor (EGFR), may render the patient susceptible to targeted 
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therapy using tyrosine kinase inhibitors (TKIs). Both treatment options were demonstrated 
to result in substantially prolonged overall (OS) and progression-free survival (PFS) 
compared to platinum-based cytotoxic therapy alone, highlighting the importance of 
therapeutic advancements in lung cancer (Brahmer et al. 2015; Excellence; 2019; Langer et al. 
2016; Mok et al. 2009; Reck et al. 2016; Shaw and Solomon 2015; Solomon et al. 2014). 
 

 
Figure 1: Histological and molecular subtypes of lung cancer. (A) Lung cancer is histologically classified into small cell 
(SCLC) and non-small cell lung cancer (NSCLC). NSCLC can be further subdivided into lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (SCC) and large cell carcinoma (LCC). Data source: (Howlader et al. 2017). (B) Frequency of driver 
mutations in LUAD. Oncogenic drivers with approved targeted therapy are highlighted. Adapted from Hirsch et al. 2016. ALK, 
anaplastic lymphoma kinase; BRAF, v-raf murine sarcoma viral oncogene homolog B; EGFR, epidermal growth factor receptor; 
HER2, Erb-B2 receptor tyrosine kinase 2; KRAS, v-Kir-Ras2 Kirsten rat sarcoma viral oncogene homolog; MET, MET proto-
oncogene; NRAS, neuroblastoma RAS viral oncogene homolog; NTRK1, neurotrophic tyrosine kinase receptor type 1; PIK3CA, 
phosphatidylinositol-4,5-bisphosphate 3-kinase; RET, RET proto-oncogene; ROS1, ROS proto-oncogene 1. 
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1.2 Molecular subtypes and precision therapy in lung 
adenocarcinoma 

The emergence of next-generation sequencing (NGS) approaches expanded the histology-
based classification of LUAD towards considering the molecular profile of the tumor. Large 
cooperative studies identified a variety of genomic alterations in LUAD that led to a better 
understanding of the molecular causes of the disease and allowed a more detailed 
classification based on the presence of mutually exclusive oncogenic drivers (Figure 1B) 
(Campbell et al. 2016; Collisson et al. 2014). The mutational landscape of LUAD is very 
heterogeneous. With a median frequency of 8.7 somatic mutations per megabase (Mb), 
LUAD ranked third among cancers with the highest tumor mutational burden (TMB) 
(Alexandrov et al. 2013; Lawrence et al. 2014). However, mutation frequencies can vary 
considerably between patients, ranging from 0.1 to 100 mutations per Mb (Lawrence et al. 
2013b). Recurrent molecular alterations in LUAD include silencing mutations and deletions 
of tumor suppressor genes, such as tumor protein p53 (TP53; 46% of LUADs), kelch-like 
ECH-associated protein 1 (KEAP1; 17%) or serine/threonine kinase 11 (STK11; 19%) 
(Collisson et al. 2014). Additionally, pathways regulating cell proliferation and survival often 
become constitutively activated through genomic aberrations. The receptor tyrosine kinase 
(RTK)/Ras/Raf signaling pathway harbors carcinogenic alterations in 75 to 85% of LUADs 
(Campbell et al. 2016). Activating mutations in the v-Kir-Ras2 Kirsten rat sarcoma viral 
oncogene homolog (KRAS) and EGFR are the most common alterations in this pathway, 
occurring in 25 and 15% of cases, respectively (Hirsch et al. 2016). Moreover, oncogenic 
rearrangements of the anaplastic lymphoma kinase (ALK (Soda et al. 2007)), ROS 
proto-oncogene 1 (ROS1 (Bergethon et al. 2012)), RET proto-oncogene (RET (Wang et al. 
2012a)), and neurotrophic tyrosine kinase receptor type (NTRK (Vaishnavi et al. 2013)) as 
well as amplifications of the MET proto-oncogene (MET (Awad et al. 2016)) and Erb-B2 
receptor tyrosine kinase 2 (HER2 (Pillai et al. 2017)) have been described to promote 
tumorigenesis. 
In the early 2000s, it was discovered that LUAD patients with activating mutations in the 
tyrosine kinase domain of EGFR exhibit drastic clinical response to the EGFR-specific TKI, 
gefitinib (Lynch et al. 2004; Paez et al. 2004). Since then, lung cancer – and in particular 
LUAD – has emerged as a cancer entity in which precision medicine has been 
transformative. As of today, targeted treatment using TKIs is approved for seven oncogenic 
driver genes, comprising EGFR (Maemondo et al. 2010; Soria et al. 2018; Yang et al. 2015), 
ALK (Shaw et al. 2017; Solomon et al. 2014), MET (Frampton et al. 2015; Wolf et al. 2020), 
ROS1 (Shaw et al. 2017; Shaw et al. 2014), RET (Ackermann et al. 2019), BRAF (Planchard et 
al. 2017), and NTRK1 (Vaishnavi et al. 2013). As a result, almost one third of LUAD patients 
can potentially be treated with TKI-based therapy (Figure 1B). A multitude of studies has 
proven the superior outcome of patients treated with TKIs when compared to conventional 
chemotherapy. Although targeted therapies in LUAD can be very effective, objective 
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response and duration of response differ substantially between patients (Camidge et al. 2020; 
Mok et al. 2009; Shaw et al. 2014; Soria et al. 2018). Here, inherent and acquired resistance 
mechanisms are major confounding factors, limiting the efficacy of TKI therapy. Those 
resistance mechanisms include alterations in the targeted driver gene (i.e. secondary 
mutations or amplification of the tumor driver), mutation or amplification of other 
oncogenes (e.g. MET or BRAF mutations in EGFR-driven tumors), and/or activation of 
bypass signaling pathways (e.g. EGFR, HER2 or KIT signaling) (Camidge et al. 2014; Gainor 
et al. 2016). As a consequence, targeted agents are constantly developed and refined to cope 
with the emergence of resistances. For instance, the most common acquired resistance under 
first generation EGFR inhibitor treatment is the secondary mutation T790M (threonine-to-
methionine substitution in codon 790). Due to the development of the third generation TKI, 
osimertinib, T790M mutated patients can still benefit from a targeted therapy (Mok et al. 
2017). Moreover, osimertinib demonstrated superior outcome in therapy naïve patients and 
is now considered the preferred option as first-line therapy for EGFR-mutated NSCLC 
(Ramalingam et al. 2019). 
 
 

1.3 ALK rearrangements in lung adenocarcinoma 
1.3.1 Biology of ALK+ tumors 

The ALK tyrosine kinase receptor was first described as a contributor to malignant 
transformation in anaplastic large-cell non-Hodgkin´s lymphomas (Morris et al. 1994). While 
its role under normal physiological conditions is not yet fully elucidated, ALK 
rearrangements have been extensively characterized in the context of LUAD. 
Oncogenic ALK in LUAD arises from its fusion to the echinoderm microtubule-associated 
protein-like 4 (EML4) gene. EML4-ALK fusions occur due to a paracentric inversion on 
chromosome 2. Here, the ALK gene is truncated close to the 5´-end of exon 20, excluding the 
extracellular domain and the transmembrane helix, while preserving the entire ALK kinase-
coding domain in the fusion gene. The breakpoint in EML4 is variable and thereby 
responsible for the existence of multiple EML4-ALK fusion variants. The most common 
breakpoints are proximal to exon 13 (variant 1; V1), exon 20 (variant 2; V2), and exon 6 
(variant 3; V3). All variants retain the trimerization domain of EML4, which confers ALK 
autophosphorylation, leading to its constitutive activation (Figure 2A) (Sanders et al. 2011; 
Soda et al. 2007). Notably, EML4 is not the only fusion partner of ALK. Other fusion genes 
include TPR (translocated promoter region, nuclear basket protein (Choi et al. 2014)), KIF5B 
(kinesin family member 5B (Takeuchi et al. 2009)) and PRKAR1A (protein kinase CAMP-
dependent type I regulatory subunit alpha (Ali et al. 2016)). In vitro studies showed that 
EML4-ALK fusion proteins interact with a complex network of proteins and affect several 
downstream signaling pathways, including RTK/Ras/Raf, JAK/STAT and PI3K/AKT. The 
activation of these pathways promotes tumorigenesis, driving aberrant cell proliferation, 
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survival and angiogenesis (Figure 2B) (Chiarle et al. 2008; Zhang et al. 2016). A profound 
understanding of the downstream effects of EML4-ALK fusions is crucial for the 
development and improvement of ALK-directed therapies. Additionally, the dysregulation 
of pathways during chronic TKI exposure could advance the understanding of therapy 
resistance. 
 

 
Figure 2: Oncogenic EML4-ALK fusion and the activated downstream signaling.(A) Paracentric inversion within 
chromosome 2p, fusing the echinoderm microtubule-associated protein-like 4 (EML4) gene to the tyrosine kinase domain of the 
anaplastic lymphoma kinase (ALK). EML4-ALK fusion proteins variant 1 (V1), variant 2 (V2) and variant 3 (V3) are displayed 
below. Adapted from Manicone et al. 2017. (B) Constitutive activation of the EML4-ALK fusion protein results in constant 
signaling of PLCγ, JAK-STAT, RTK/Ras/Raf, and PI3K-AKT pathways. This leads to aberrant regulation of a number of genes 
ultimately driving cellular survival, proliferation, and angiogenesis. Adapted from Lin et al. 2017. HELP, hydrophobic EML 
protein; TD, trimerization domain; WD, tryptophan-aspartic acid repeats. 
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1.3.2 ALK-directed therapy and therapy resistance 

With a prevalence of 4 to 7%, ALK-driven (ALK+) tumors represent the second most 
abundant molecular subtype in advanced LUAD with approved targeted treatment 
regimens (Hirsch et al. 2016; Skoulidis and Heymach 2019). Prior to the availability of ALK 
inhibitors, metastatic ALK+ LUAD was associated with poor patient outcomes (median OS 
<1.5 years) (Pilkington et al. 2015). Today, the median life expectancy of those patients 
exceeds five years under sequential TKI administration (Duruisseaux et al. 2017). In 2011, the 
first ALK inhibitor, crizotinib, was approved by the U.S. Food and Drug Administration for 
the treatment of advanced ALK+ LUAD. In the following years, second (i.e. ceritinib, 
alectinib, and brigatinib) and third generation ALK-TKIs (i.e. lorlatinib) have been developed 
and approved for therapy in metastatic ALK+ LUAD. Compared to crizotinib, all second and 
third generation TKIs are more potent and exhibit improved efficiency in the brain – a 
common site of metastases in ALK+ patients. Despite the elongated PFS and OS in ALK-TKI- 
vs. chemotherapy-receiving patients, tumors inevitably relapse due to the development of 
drug resistances (Figure 3) (Shaw et al. 2013; Solomon et al. 2014). Some of the drug 
resistances developed under crizotinib treatment can be overcome by subsequent 
administration of the more potent TKIs. For example, the most prevalent on-target resistance 
mechanism following crizotinib treatment is a L1196M (leucine-to-methionine substitution in 
codon 1196) mutation in the exon coding for the ALK tyrosine kinase domain. L1196M-
mutated patients can still benefit from ceritinib, brigatinib or lorlatinib therapy. In contrast, 
treatment options for G1202R-mutated tumors are limited. Here, only lorlatinib therapy can 
overcome the acquired resistance (Figure 3) (Gainor et al. 2016). To administer the available 
TKIs in the most effective manner – and thereby maximize the patient´s duration of response 
– it is essential to identify resistance mechanisms and select therapy lines based on this 
information. Ideally, the checkup for therapy resistance should be reiterated at every 
instance of tumor progression. In this way, a second and possibly third disease remission 
could be achieved in patients failing first line ALK-TKI therapy (Duruisseaux et al. 2017). 
Besides acquired drug resistances, there are other molecular features of ALK+ tumors that 
need to be considered during the selection of targeted therapy regimens. Tumors carrying 
the EML4-ALK fusion variant V3 are less sensitive towards second and third generation 
TKIs, when compared to V1 and V2 tumors, leading to earlier patient relapse (Woo et al. 
2017). Additionally, V3 tumors present a higher incidence of metastases and have an 
unfavorable prognosis independent of therapy type (Christopoulos et al. 2018; Noh et al. 
2017). The ALK fusion partner is another molecular factor worth considering during therapy 
selection. For instance, PRKAR1A-ALK fusions were repeatedly associated with a low 
sensitivity towards first, second and third generation ALK-TKIs (Childress et al. 2018). 
The genetic complexity of ALK+ LUAD is relatively low for a tumor of the lungs 
(mean TMB = 2.0 mutations/Mb (Cerami et al. 2012; Gao et al. 2013; Jordan et al. 2017)). Yet, 
co-mutations can severely influence the clinical phenotype of a patient. Twenty to 25% of 
ALK+ tumors carry an additional TP53 mutation that is associated with increased metastatic 
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dissemination and short survival under TKI therapy. This is especially pronounced in 
EML4-ALK V3 patients with a TP53 co-mutation (Christopoulos et al. 2019; Jordan et al. 
2017; Kron et al. 2018). 
Thus, it is crucial to characterize molecular risk factors (i.e. fusion variant, co-mutations, and 
fusion partner) at diagnosis but also during the course of a patient´s therapy (i.e. resistance 
mutations and occurrence of new co-mutations). 
 

 
Figure 3: Resistance mechanisms and TKI sensitivity in ALK rearranged tumors. The pie chart illustrates acquired 
resistance mechanisms occurring in ALK+ LUAD patients after relapse from crizotinib treatment. Recurrent resistance 
mutations in the ALK tyrosine kinase domain and their effect on tyrosine kinase inhibitors (TKIs) are highlighted in the table. 
Green cells indicate potent and yellow cells intermediate inhibition by the given drug. Mutations conferring drug resistance are 
indicated by red cells. Inhibitory concentrations were determined in vitro based on phosphorylation of ALK in Ba/F3 cells. 
Adapted from Camidge et al. 2014 and Gainor et al. 2016. ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor 
receptor; IC50, inhibitory concentration of 50%; KIT, KIT proto-oncogene; nM, nanomolar. 
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1.4 Epigenetics of lung adenocarcinoma 
Epigenetic processes modify gene expression profiles and genomic stability without altering 
the coding DNA sequence. These changes in the genome´s function can occur on multiple 
levels, including chromatin remodeling, histone and DNA modifications, as well as 
expression alterations through non-coding RNAs. Under normal physiological conditions, 
epigenetic modifications occur in a highly controlled manner and regulate processes such as 
DNA imprinting, X chromosome inactivation and transcriptional (in-)activation of genes and 
repetitive elements (Greenberg and Bourc'his 2019). Genome-wide studies on large patient 
cohorts have provided important insights into epigenetic alterations occurring in various 
cancer entities (Collisson et al. 2014; Joehanes et al. 2016; Zhang et al. 2020b). In LUAD, 
epigenetic alterations have been identified during tumor initiation, progression and 
metastatic dissemination (Duruisseaux and Esteller 2018). Further investigations on those 
alterations are important for a better understanding of the disease and hold promise as 
reliable biomarkers for early diagnosis, molecular classification and prediction of therapy 
efficiency. 
 
The modification of DNA represents a pivotal element in the epigenetic profiles of human 
cells. It occurs primarily at cytosine residues in the context of cytosine-guanine dinucleotides 
(CpGs). The most abundant DNA modification is 5-methylcytosine (5mC), occurring at 70 to 
80% of CpG sites (Azzi et al. 2014). DNA methyltransferases (DNMTs) catalyze the covalent 
attachment of methyl groups to the carbon-5 position of cytosines (DNMT3a/b (Okano et al. 
1999; Okano et al. 1998)) and faithfully maintain them during replication (DNMT1 (Bostick et 
al. 2007)). More recently, it was discovered that 5mC can be reverted to its unmodified state 
through an iterative oxidation process. Active DNA demethylation is mediated by members 
of the ten-eleven translocation (TET) enzyme family. TET enzymes oxidize 5mC to 
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Ito 
et al. 2011; Tahiliani et al. 2009). Those intermediates are either reverted to unmodified 
cytosines during replication or actively removed by thymine DNA glycosylase (TDG)-
mediated base excision repair (BER; Figure 4A) (He et al. 2011; Zhang et al. 2012). Despite its 
substantially lower abundance compared to 5mC (5mC: 3-4% vs. 5hmC: 0.1-1% of all 
cytosines (Brazauskas and Kriaucionis 2014)), 5hmC has been recognized to be more than an 
intermediate state during DNA demethylation. It demonstrates a stable relative abundance 
over several cell divisions and was shown to have distinct effects on gene regulation 
(Bachman et al. 2014; Globisch et al. 2010). While high levels of 5mC at gene regulatory 
elements (i.e. promoters and enhancers) are commonly associated with a repressed 
transcriptional state, 5hmC frequently correlates with active gene expression. These effects 
are particularly pronounced at regions of elevated CpG density, so called CpG islands 
(CGIs). Two-thirds of genes within the human genome contain a CGI in their promoter 
region. Actively transcribed genes usually have a hypomethylated promoter CGI. 5hmC 
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prevents 5mC from spreading into the hypomethylated CGI by accumulating at its borders 
(Figure 4B; dark red and dark blue lines). Additionally, both 5mC and 5hmC levels within 
gene bodies were shown to correlate with gene expression. However, this correlation 
appears to be more distinct for 5hmC (Greenberg and Bourc'his 2019; Hansen et al. 2011; 
Mellén et al. 2012; Thomson et al. 2012). As regulators of transcription, 5mC and 5hmC 
profiles differ in accordance to their tissue/cell type of origin. Hence, both are used as 
biomarkers for cellular origin and identity (Brandeis et al. 1993; Eden and Cedar 1994; 
Forloni et al. 2016). 
 

 
Figure 4: Active DNA demethylation and 5mC/5hmC abundances at actively transcribed genes. (A) DNA 
methyltransferases (DNMTs) catalyze the attachment of methyl groups to unmodified cytosines (5C). 5-methylcytosine (5mC) 
can be actively removed through ten-eleven translocation (TET) enzymes, iteratively oxidizing 5mC to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). The intermediate oxidation states can 
be reverted to 5C during replication or enzymatically removed (thymine DNA glycosylase [TDG]-mediated base excision repair 
[BER]). Chemical structures and relative abundances of each cytosine modification are illustrated alongside the active DNA 
demethylation cycle. Adapted from Brazauskas et al. 2014 and Wu et al. 2017. (B) Conceptual illustration of 5mC (red) and 
5hmC (blue) levels at an actively transcribed gene locus. Dark red and blue lines indicate the 5mC and 5hmC abundance under 
normal physiological conditions. Light colors highlight altered 5mC/5hmC abundances in cancer. Adapted from Skvortsova et 
al. 2019b and Thomson et al. 2017. CpG, cytosine-guanine dinucleotide. 

 
Alterations of 5mC and 5hmC profiles have been identified in various cancer entities, 
including LUAD (Baylin and Jones 2011; Baylin and Ohm 2006; Song et al. 2017; Zhang et al. 
2018b). On a global scale, 5mC abundance is reduced in tumors compared to adjacent normal 
tissue. Genome-wide hypomethylation coincides with high chromosomal instability and 
increases aneuploidy, both common characteristics of cancer genomes (Feinberg and 
Vogelstein 1983; Jones and Baylin 2007; Skvortsova et al. 2019b). Additionally, tumors 
frequently exhibit focal alterations in their 5mC profile. These changes predominantly occur 
at promoter CGIs and confer the activation (hypomethylation) or inactivation 
(hypermethylation) of associated genes (Figure 4B; light red line). In LUAD, promoter 
hypomethylation and consequential transcriptional upregulation was shown for oncogenes, 
such as RAB25 and MUC4. The activation of these genes correlated with poor patient 
outcome (Selamat et al. 2012; Yokoyama et al. 2017). Hypermethylation of promoters is 
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commonly observed in the context of tumor suppressor silencing and often occurs early 
during carcinogenesis. Genes affected by aberrant hypermethylation are involved in a 
variety of cellular processes during the progression from normal lung cells to 
adenocarcinomas: cell cycle control (CDKN2A), regulation of apoptosis (DAPK), DNA repair 
(MGMT), Ras signaling (RASSF1A), and immortalization (hTERT) (Licchesi et al. 2008a; 
Licchesi et al. 2008b; Selamat et al. 2012; Selamat et al. 2011; Tsou et al. 2007). In proof-of-
concept studies, CDKN2A promoter hypermethylation, as detected in bronchoalveolar 
lavage, was used as a diagnostic epigenetic biomarker for early LUAD detection (Ahrendt et 
al. 1999; Kim et al. 2004). 
Furthermore, CDKN2A methylation levels were demonstrated to increase with tumor 
progression, suggesting its applicability for the prediction of tumor stage or disease 
progression (Belinsky et al. 1998). Aberrations in the hydroxymethylome have been observed 
in all human cancer entities. Here, the widespread reduction of 5hmC is a common feature 
during carcinogenesis (Figure 4B; light blue line) (Haffner et al. 2011; Lian et al. 2012a). In 
cancers of the lung, global 5hmC abundance was shown to decrease in a stage-dependent 
manner. Therefore, genome-wide 5hmC abundance could indicate disease progression in 
these tumors (Song et al. 2017). The lower 5hmC levels in cancer can partially be explained 
by inactivating mutations in genes coding for TET enzymes or lack of co-factors required for 
TET activity. Reduced activity of TET1 has been reported in many cancer entities, including 
LUAD (Lian et al. 2012a; Yang et al. 2013; Yang et al. 2012). Recently, a number of studies 
identified alterations in the 5hmC levels of individual genes or gene panels and successfully 
used them for early cancer detection, diagnosis and staging in plasma DNA derived from 
cancer patients and healthy individuals (Guler et al. 2020; Song et al. 2017; Zhang et al. 
2018b). 
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1.5 Liquid Biopsy 
Molecular tumor profiling is essential for selecting the appropriate therapy in clinical 
practice (Vogelstein et al. 2013). Currently, tissue biopsies are employed for cancer 
genotyping at diagnosis. However, the invasive procedure of obtaining tissue specimens 
often presents an inherent risk to the patient (Overman et al. 2013). Furthermore, needle 
biopsies often fail to capture the intratumor heterogeneity of the primary tumor tissue and 
cannot provide information about metastases (Gerlinger et al. 2012; McGranahan and 
Swanton 2015; Vogelstein et al. 2013). Selective pressure during therapy and/or disease 
progression can alter the tumor genome (Vogelstein et al. 2013). Therefore, repeat biopsies 
are vital to provide a real-time representation of the evolving tumor. Especially in advanced 
stages, re-biopsies are usually not feasible due to the poor medical conditions of the patient. 
Liquid biopsies represent a promising alternative to the conventional analysis of cancerous 
tissue. Liquid biopsy analysis comprises the study of body fluids, which carry material 
originating from tumor cells (Wan et al. 2017). The most widely used body fluid for liquid 
biopsy approaches is blood (i.e. plasma or serum), however, tumor-derived material was 
also identified in urine (Botezatu et al. 2000; Smith et al. 2020), cerebrospinal fluid (Pan et al. 
2015; Wang et al. 2015), saliva (Mithani et al. 2007), pleural fluid (Sriram et al. 2012), bile 
(Shen et al. 2019a), and exhaled breath condensate (Koc et al. 2019). The sampling of such 
material presents little risk to the patient and therefore allows repeated tumor assessment 
over time (Pantel and Alix-Panabières 2013). In addition, tumor material within a liquid 
biopsy sample may originate from any growth site of the tumor (i.e. primary tumor and 
metastases) and might better reflect its heterogeneity compared to tissue biopsies (Murtaza 
et al. 2015). Today, a plethora of tumor-informative circulating analytes has been discovered. 
These include various types of nucleic acids, such as cell-free DNA (cfDNA), mitochondrial 
DNA, viral DNA, and microRNA (miRNA) (González-Masiá et al. 2013), but also proteins, 
extracellular vesicles (Garcia-Romero et al. 2018), circulating tumor cells (CTCs) (Alix-
Panabières and Pantel 2021), as well as tumor-educated platelets (Best et al. 2015; Best et al. 
2018). Among these potential biomarkers, cfDNA and its subfraction of tumor-derived DNA 
fragments (ctDNA; circulating tumor DNA) is a promising tool for precision medicine. For 
example, Diehl and colleagues (Diehl et al. 2008) were the first to show that detectable 
ctDNA in colorectal cancer patients following surgical tumor resection can predict early 
relapse. Other studies made similar observations in additional cancer entities, including lung 
cancer (Abbosh et al. 2017; Beaver et al. 2014; Tie et al. 2015). Furthermore, a variety of 
studies used mutation profiling from plasma samples to monitor therapy response and to 
estimate overall disease burden (Dawson et al. 2013; Dietz et al. 2020; Mok et al. 2015; 
Riediger et al. 2016). 
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1.5.1 Biology and characteristics of cfDNA 

Apart from the potential clinical applications of cfDNA, the biology behind its release into 
the bloodstream has moved into the focus of research. In 2001, Jahr et al. (Jahr et al. 2001) 
were the first to show that the distinct size profile of cfDNA might contain information about 
its mechanisms of release. The characteristic fragment length of cfDNA, centered around 
167 bp (and multiples thereof), reflects the length of a DNA molecule wrapped around the 
nucleosomal core unit (~147 bp) plus a 20 bp linker DNA fragment (Figure 5A). This size 
profile is reminiscent of DNA subjected to caspase-dependent cleavage and suggests that a 
large fraction of cfDNA is released from cells undergoing apoptosis. However, other forms 
of cell death (e.g. necrosis), active secretion through extracellular vesicles, and cellular 
proliferation might also contribute to the repertoire of circulating DNA (Galluzzi et al. 2018; 
Jeppesen et al. 2019). Notably, tumor-derived cfDNA fragments were reported to exhibit 
shorter size profiles (~145 bp) compared to non-tumor fragments, suggesting differences in 
the release mechanisms between ctDNA and cfDNA (Jiang et al. 2015; Mouliere et al. 2018b). 
Recently, studies on the cell-free methylome and histone modifications (i.e. H3K4me1/2/3) in 
plasma provided important insights into the different cell and tissue types contributing to 
the cfDNA pool. By comparing the profiles of these epigenetic marks to publicly available 
reference data, hematopoietic cells were identified as the major contributor to cfDNA in 
plasma (Guo et al. 2017; Lehmann-Werman et al. 2016; Moss et al. 2018; Serpas et al. 2019; 
Sun et al. 2015). The most comprehensive study in this regard used reference methylation 
data from 25 cell and tissue types to allow a detailed deconvolution of the cfDNA 
composition in healthy subjects. Their data suggests that ~85% of cfDNA in plasma 
originates from blood cells. Furthermore, vascular endothelial cells (8.6%) and hepatocytes 
(1.2%) were identified as frequent contributors to plasma cfDNA (Figure 5B) (Moss et al. 
2018). In cancer, the cfDNA composition changes with the pathological condition of the 
patient. For example, lung cancer patients were reported to exhibit higher proportions of 
methylation patterns specific for lung cells (Guo et al. 2017; Moss et al. 2018). 
A limitation of cfDNA-based liquid biopsies is the low quantity of tumor-derived DNA 
fragments detectable in the circulation. While total cfDNA concentrations consistently 
increase in the presence of a tumor (even at early stages (van der Pol and Mouliere 2019)), 
the ctDNA fraction varies considerably (<0.01 to >60% (Bettegowda et al. 2014; Diehl et al. 
2008; Thierry et al. 2014)) and is affected by a multitude of parameters, including the cancer 
entity, tumor burden and disease stage, vascularization, cell turnover rate, histology, and 
proliferation capacity of the tumor (Bettegowda et al. 2014; Diehl et al. 2008; Thierry et al. 
2014). Moreover, cfDNA is rapidly cleared from the bloodstream (half-life: 4 min to 2 h) 
(Khier and Lohan 2018). Therefore, highly sensitive analytical approaches are needed to 
accurately detect the minute amounts of tumor-derived DNA fragments in circulation. 
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Figure 5: Fragment size distribution and cellular contributors to plasma cfDNA. (A) Schematic representation of the size 
profile of cfDNA isolated from plasma of a healthy donor (blue) and an advanced stage cancer patient (red). Fragment lengths 
of ~167 and ~335 bp reflect DNA wrapped around mono- and dinucleosomal core units. Adapted from Chan et al. 2016. (B) 
Cellular contributors to the plasma cfDNA composition in healthy individuals, as determined by methylation-based cell type 
deconvolution. Adapted from Moss et al. 2018. 

 

1.5.2 Cancer specific genetic variants in cfDNA 

The detection of ctDNA in plasma of cancer patients holds promise for clinical applications, 
ranging from early disease detection to therapy monitoring at advanced stages (Figure 6) 
(Wan et al. 2017). To cope with the low amounts of ctDNA in the circulation, methods had to 
be developed that identify those tumor-derived DNA fragments with high sensitivity and 
specificity. Today, the most widely used ctDNA-based assays focus on the detection of 
cancer-specific genomic alterations, including single nucleotide variants (SNVs), gene 
rearrangements, and copy number alterations (CNAs). These technologies can be divided 
into targeted and untargeted approaches (Siravegna et al. 2019). The targeted strategies 
require a priori knowledge of the cancer-associated feature to be analyzed. For instance, 
Cancer Personalized Profiling by deep Sequencing (CAPP-seq) uses biotinylated 
oligonucleotides that specifically enrich for recurrently mutated regions in the cancer of 
interest, followed by deep sequencing of the enriched fraction. It is designed to detect 
multiple classes of tumor-specific alterations (i.e. indels [insertions or deletions], 
rearrangements, and CNAs) and allows highly specific mutation detection in large gene 
panels down to variant allele frequencies (VAFs) of 0.01% (Newman et al. 2014; Newman et 
al. 2016). Whole-genome (WGS) and whole-exome sequencing (WES) are untargeted 
methods for ctDNA detection. They provide insights into cancer-associated alterations 
present in cfDNA, yet, at the expense of high sequencing costs and low analytic sensitivities 
(1 to 5% VAF) (Murtaza et al. 2013; Ulz et al. 2016). In contrast, shallow WGS (sWGS; <0.5x 
genome coverage) provides an alternative method for the assessment of CNAs. The majority 
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of metastatic cancers harbor somatic CNAs, making sWGS a cost-effective application for 
ctDNA detection in advanced staged patients, especially when mutations remain 
undetectable (Adalsteinsson et al. 2017; Dietz et al. 2020; Mouliere et al. 2018b; Smith et al. 
2020). 
One of the biggest advantages of liquid biopsies over conventional tissue evaluation is the 
feasibility of repeated sampling. This allows narrow monitoring of a patient´s disease both 
after surgical tumor resection and during systemic therapy (e.g. chemotherapy or TKI 
treatment). A number of studies demonstrated the practicality of ctDNA detection by 
targeted SNV profiling for the monitoring of minimal residual disease (MRD) (Abbosh et al. 
2017; Chaudhuri et al. 2017; Chen et al. 2017; Murtaza et al. 2015; Ng et al. 2017). A study 
conducted by Chaudhuri et al. (Chaudhuri et al. 2017) used CAPP-seq for the surveillance of 
early stage lung cancer patients previously treated with curative intent. They could show 
that detectable ctDNA levels in the first post-treatment sample coincided with earlier 
relapse. Additionally, ctDNA detection preceded radiographic progression in 72% of 
patients with a mean lead time of 5.2 months. Another promising application of ctDNA 
detection is the monitoring of therapy resistance. TKI treatment is associated with inevitable 
relapse due to the development of drug resistance, and the early identification of these 
processes is crucial to maximize the clinical benefit for a patient. Since ALK+ patients can 
benefit from the sequential administration of several targeted agents (Duruisseaux et al. 
2017), serial plasma genotyping by NGS was demonstrated to be a reliable method for the 
detection of ALK fusions and resistance mutations. During sequential TKI therapy, ALK 
mutations emerged and cleared in accordance to the administered drug. In addition, the 
abundance of the ALK fusion, as measured in cfDNA, frequently increases during 
progression (Dagogo-Jack et al. 2018; Dietz et al. 2020; Li et al. 2021; Zhang et al. 2020a). This 
highlights the potential of plasma-based analyses to monitor and guide the selection of ALK-
TKI therapies. We (Dietz et al. 2020) have recently integrated targeted NGS (based on CAPP-
seq) with sWGS-based profiling to monitor the therapy of metastatic ALK+ patients. A 
previously developed metric to infer global copy number changes, termed “trimmed median 
absolute deviation from copy number neutrality” (t-MAD) (Mouliere et al. 2018b), was 
derived from the sWGS data. The t-MAD score has been demonstrated to correlate with the 
tumor fraction in cfDNA samples and was used as a surrogate to evaluate the tumor burden 
at a given time point. In this study, t-MAD scores allowed therapy monitoring in patients 
without detectable ALK fusions or mutations. 
Despite the advancement of ctDNA detection technologies, sensitivity remains a limiting 
factor, especially in cases where the tumor fraction in plasma is low (e.g. early disease, MRD 
detection, or sampling time points at therapy response). Moreover, important information 
about a patient´s tumor, such as its localization, cannot be derived from genomic analyses of 
ctDNA and require alternative methodologies. 
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Figure 6: Potential clinical applications of ctDNA detection throughout a patient´s disease. Schematic time course of a 
hypothetical patient undergoing surgical tumor resection and systemic therapy. Potential applications of circulating tumor 
DNA (ctDNA) detection are indicated and include: cancer screening, (early) diagnosis, surveillance, minimal residual disease 
(MRD) detection, as well as therapy and resistance monitoring. The divergent detection limits of radiologic imaging and ctDNA 
detection assays are indicated on the right side. Adapted from Wan et al. 2017. TKI, tyrosine kinase inhibitor. 

 

1.5.3 Epigenomic analysis of cfDNA in cancer 

Profiling the cell-free epigenome of cancer patients represents an alternative to the classical 
evaluation of genomic aberrations that might advance the clinical utility of liquid biopsies. 
Nowadays, a variety of epigenomic features can be assessed through the analysis of cfDNA. 
These include epigenetic marks such as histone modifications (Serpas et al. 2019), DNA 
methylation (Liu et al. 2020; Moss et al. 2018; Shen et al. 2018) and hydroxymethylation 
(Bergamaschi et al. 2020; Guler et al. 2020; Song et al. 2017), as well as fragmentation profiles 
of cfDNA (e.g. shorter fragment length of tumor-derived cfDNA (Jiang et al. 2015; Mouliere 
et al. 2018b), inference of nucleosomal positioning through cfDNA coverage (Snyder et al. 
2016; Ulz et al. 2016), and recurrent sequence motifs at the ends of cfDNA molecules (Jiang et 
al. 2020)). 
The detection of these epigenetic alterations – in particular DNA methylation and 
hydroxymethylation changes – has several advantages over the assessment of genomic 
aberrations. Aberrant 5(h)mC events occur early during carcinogenesis and might present 
better biomarkers for early disease detection as well as cancer screening (Dor and Cedar 
2018). The tissue specificity of 5(h)mC patterns allows to not only detect a tumor but also 
localize its tissue-of-origin. Here, a prime example is the usage of cfDNA-based methylation 
profiling to localize the primary growth site in cancers of unknown primary (CUPs) (Moss et 
al. 2018). Additionally, cancer-associated alterations of the (hydroxy-)methylome are both 
more prevalent and more pervasive when compared to mutations. Therefore, 5(h)mC-based 
assays for ctDNA detection are more likely to identify cancer-specific alterations and can be 
applied to a wider range of patients. This translates into a higher sensitivity of those assays 
(Kandoth et al. 2013; Li and Zhou 2020). Despite the advantages of harnessing the cell-free 
(hydroxy-)methylomes for minimal invasive cancer detection, several conceptual and 
technical limitations remain. The high sensitivity of epigenetic assays comes at the expense 
of a reduced tumor specificity of the detected alterations. Changes in the 5(h)mC profile do 
not only occur in a cancer- or tissue-specific manner but also as stochastic events 
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accumulating with age (Dor and Cedar 2018). Bisulfite conversion is an essential step in 
many assays for 5(h)mC profiling. It is commonly associated with extensive DNA 
degradation and results in low cfDNA recovery rates (22% to 66%) (Worm Ørntoft et al. 
2017). This presents a limiting factor considering the low amounts of cfDNA available in 
most clinical settings. New approaches circumvent the necessity for bisulfite conversion in 
using prior enrichment of the DNA modification of interest. Shen et al. (Shen et al. 2018) 
developed an immunoprecipitation-based protocol for the enrichment of methylated cfDNA 
fragments followed by sequencing. This method, termed cell-free methylation DNA 
immunoprecipitation (cfMeDIP), interrogates 5mC events on a genome-wide scale, while 
requiring only minute amounts of DNA (i.e. 1 to 10 ng). Thus, cfMeDIP-seq is applicable in 
most clinical settings, even when cfDNA quantities are scarce. This was demonstrated by 
two studies that used cfMeDIP-seq on patients with intracranial malignancies and renal cell 
carcinomas. Both cancer types usually shed little amount of ctDNA and are difficult to detect 
in liquid biopsies. cfMeDIP-seq accurately identified both tumor types and could even 
distinguish different primary brain tumors that are usually difficult to discern by imaging 
(Nassiri et al. 2020; Nuzzo et al. 2020). Another enrichment-based approach found wide-
spread application for the analysis of 5hmC from plasma samples (Bergamaschi et al. 2020; 
Guler et al. 2020; Song et al. 2017; Tian et al. 2018; Zhang et al. 2018b). Hydroxymethylation-
selective chemical labeling (hMeSEAL) enzymatically modifies the hydroxyl-groups on 
cfDNA fragments in a two-step process, finally resulting in its biotinylation. Subsequently, 
hydroxymethylated DNA fragments are recovered using streptavidin-coated magnetic 
beads, followed by sequencing of the enriched fraction (Song et al. 2011; Song et al. 2017). 
This method has been applied to plasma samples of multiple different cancer entities (e.g. 
lung, liver, colorectal, pancreatic, and breast cancer) and demonstrated promising results for 
the (early) detection and classification of cancers (Bergamaschi et al. 2020; Guler et al. 2020; 
Song et al. 2017; Tian et al. 2018; Zhang et al. 2018b). Notably, 5hmC levels within gene 
bodies were reported to positively correlate with the gene´s transcriptional status, 
encouraging the concept of 5hmC as a surrogate for minimal invasive expression inference 
(Song et al. 2017). 
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1.6 Aim of this study 
NSCLC patients with ALK+ tumors demonstrate significant clinical benefit from ALK-
directed TKIs, however, eventually relapse due to the development of drug resistances. 
Timely detection of therapy resistance and disease progression is crucial to guide subsequent 
therapy lines. We and others have demonstrated the utility of mutation and CNA profiling 
from cfDNA for the monitoring of ALK+ patients under sequential TKI treatment. Genomic 
alterations in cfDNA are often tumor-specific, yet suffer from a limited sensitivity due to 
their low relative abundance throughout the genome. Epigenetic alterations occur much 
more frequently in the cancer genome and might present a more sensitive alternative for the 
detection of tumor-derived DNA from blood samples. 
In this study, genome-wide 5mC and 5hmC profiles were generated from longitudinally 
taken cfDNA samples of ALK+ NSCLC patients receiving TKI therapy. The study´s first 
objective was to enrich for tumor-derived alterations in the (hydroxy-)methylome by 
excluding genomic regions with high 5(h)mC levels in cell types abundant in non-tumor 
cfDNA. For this purpose, 5(h)mC profiles of primary monocytes, neutrophils and erythroid 
progenitor cells were generated and used to filter the patient-derived 5(h)mC datasets. This 
step intended to facilitate the identification of tumor 5(h)mC alterations and thereby allow 
cancer assessment in samples with low ctDNA burden. The second objective was to utilize 
the tumor-enriched 5(h)mC signals to infer cancer-specific gene expression from cfDNA. 
This would provide information about the tumor which cannot be obtained from the 
analysis of genomic alterations in cfDNA and might enable the identification of additional 
drug resistance mechanisms (i.e. bypass signaling pathway activation). Finally, the study 
aimed to compare the utility of tumor-specific 5(h)mC signatures to genomic alterations in 
cfDNA for minimal-invasive therapy monitoring in ALK+ patients receiving TKI therapy. 
Hereby, the high prevalence of perturbations in the cancer (hydroxy-)methylome might 
translate into sensitive 5(h)mC markers and allow for therapy surveillance in patients 
without detectable genomic cfDNA alterations. The epigenetic biomarkers were correlated to 
mutations and CNAs detected in the same cfDNA samples. Dynamic changes in the marker 
abundance were examined in serial plasma samples.  
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2 Materials and Methods 
2.1 Materials 
Table 1: Equipment 

Name Manufacturer 

Bioruptor® Pico sonication device Diagenode, Seraing, Belgium 

Capillary electrophoresis system, Bioanalyzer 2100 Agilent Technologies, Santa Clara, USA 

Centrifuge Heraeus Megafuge 16 R ThermoFisher Scientific, Waltham MA, USA 

Fluorometer, Qubit 2.0 ThermoFisher Scientific, Waltham MA, USA 

Heating bock, Thermomixer comfort Eppendorf, Hamburg, Germany 

LightCycler® 480 Roche, Mannheim, Germany 

Magnetic separator, 0.2 mL PCR Strip Permagen Labware, Peabody, USA 

Magnetic stand, 1.5 mL tubes ThermoFisher Scientific, Waltham MA, USA 

Microcentrifuge, Heraeus™ Fresco™ ThermoFisher Scientific, Waltham MA, USA 

Micropipettes, Pipetman (10, 20, 100, 200, 1000 µL) Gilson, Middleton, USA 

Multichannel pipet, Rainin pipet lite L-10 (1-10 µL) Mettler-Toledo, Columbus, USA 

Multichannel pipet, Rainin pipet lite L-200 (20-200 µL) Mettler-Toledo, Columbus, USA 

Thermocycler, T100™ Bio-Rad Laboratories, Hercules, USA 

Tube rotator, Rotobot Benchmark Scientific, Edison NJ, USA 

Vortexer, Vortex-Genie 2 Scientific Industries, Bohemia, USA 

 
 
Table 2: Consumables 

Name Manufacturer 

Bioruptor® microtubes (1.5 mL) Diagenode, Seraing, Belgium 

Conical tubes (15 mL, 50 mL) BD Bioscience, Bedford, USA 

Filter tips (10 µL, 20 µL, 100 µL, 200 µL, 1000 µL ) Neptune, San Diego, USA 

Gloves, Microflex XCEED Microflex, Reno, USA 

LightCycler® 480 Multiwell Plate 384, white Roche, Mannheim, Germany 

LightCycler® 480 Sealing Foil Roche, Mannheim, Germany 

Microcentrifuge tubes (0.5 mL, 1.5 mL, 2.0 mL) Eppendorf, Hamburg, Germany 

PCR plate 96, semi-skirted Eppendorf, Hamburg, Germany 

PCR strips (0.2 mL) Steinbrenner, Wiesenbach, Germany 

Reagent Reservoirs ThermoFisher Scientific, Waltham MA, USA 

Serological pipettes (5 mL, 10 mL, 25 mL, 50mL) BD Bioscience, Bedford, USA 

S-Monovette 7.5 mL K3 EDTA tubes Sarstedt, Nürnberg, Germany 

QIAshredder Qiagen, Hilden, Germany 
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Table 3: Molecular biology kits 

Kit Manufacturer 

Agilent High Sensitivity DNA Kit Agilent Technologies, Santa Clara, USA 

AllPrep DNA/RNA/miRNA Universal Kit Qiagen, Hilden, Germany 

Ambion® Buffer Kit ThermoFisher Scientific, Waltham MA, USA 

AmpliSeq RNA Lung Cancer Fusion Panel ThermoFisher Scientific, Waltham MA, USA 

CpG methyltransferase (M.SssI)  ThermoFisher Scientific, Waltham MA, USA 

HpyCH4IV  New England Biolabs, Ipswich, USA 

iPure Kit v2 Diagenode, Seraing, Belgium 

KAPA Dual-Indexed Adapter Kit (15 µM) Roche, Mannheim, Germany 

KAPA HyperPrep Kit Roche, Mannheim, Germany 

MagMeDIP qPCR Kit Diagenode, Seraing, Belgium 

Phusion® High-Fidelity PCR Kit New England Biolabs, Ipswich, USA 

Platinum™ SuperFi™ DNA Polymerase ThermoFisher Scientific, Waltham MA, USA 

QIAamp MinElute ccfDNA Kit Qiagen, Hilden, Germany 

Qubit dsDNA HS Assay Kit ThermoFisher Scientific, Waltham MA, USA 

 
 
Table 4: Reagents 

Reagent Manufacturer 

5-hydroxymethyl-dCTP Jena Bioscience, Jena, Germany 

5-methyl-dCTP Jena Bioscience, Jena, Germany 

Ambion uclease-free water ThermoFisher Scientific, Waltham MA, USA 

D5F3 clone Roche, Mannheim, Germany 

DBCO-PEG4-biotin Jena Bioscience, Jena, Germany 

Dynabeads™ M270 ThermoFisher Scientific, Waltham MA, USA 

Ethanol absolute Sigma-Aldrich, St. Louis, USA 

Gibco™ Dulbecco´s Phosphate-Buffered Saline (no 
calcium, no magnesium) 

ThermoFisher Scientific, Waltham MA, USA 

Isopropyl alcohol Sigma-Aldrich, St. Louis, USA 

Lambda-DNA ThermoFisher Scientific, Waltham MA, USA 

PrimaQuant CYBR qPCR master mix Steinbrenner, Wiesenbach, Germany 

SPRI AMPure XP magnetic beads Beckman Coulter, Brea, USA 

T4 phage ß-glucosyltransferase enzyme New England Biolabs, Ipswich, USA 

Tween-20 ThermoFisher Scientific, Waltham MA, USA 

UDP-azide-glucose Active Motif, Carlsbad, USA 

UltraPure™ salmon sperm DNA  ThermoFisher Scientific, Waltham MA, USA 

ZytoLight SPEC ALK probe ZytoVision, Bremerhaven, Germany 
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Table 5: Primary cells 

Cell type Number of cells Supplier 

Erythroid progenitor cells 1x106 StemExpress, Folsom CA, USA 

Monocytes 1x107 Stemcell Technologies, Vancouver, Canada 

Neutrophils 1x107 HemaCare, Los Angeles CA, USA 

 
 
Table 6: Primer pairs for spike-in amplicon generation 

Spike-in 
name 

Forward primer (5´-3´) Reverse primer (5´-3´) 
Amplicon 
size (bp) 

5C spike-in CGTTTCCGTTCTTCTTCGTC TACTCGCACCGAAAATGTCA 184 

5mC spike-in GTGGCGGGTTATGATGAACT CATAAAATGCGGGGATTCAC 183 

5hmC spike-in TGAAAACGAAAGGGGATACG GTCCAGCTGGGAGTCGATAC 185 
Primers were synthesized and purchased at Eurofins Genomics (Ebersberg, Germany) 
 
 
Table 7: Fragments and primer pairs for lambda filler DNA generation 

Fragment 
name 

Forward primer (5´-3´) Reverse primer (5´-3´) 
Amplicon 
size (bp) 

1CpG GAGGTGATAAAATTAACTGC GGCTCTACCATATCTCCTA 196 

5CpG CATGTCCAGAGCTCATTC GTTTAAAATCACTAGGCGA 269 

10CpG CTGACCATTTCCATCATTC GTAACTAAACAGGAGCCG 359 

15CpG ATGTATCCATTGAGCATTGCC CACGAATCAGCGGTAAAGGT 461 

20LCpG GAGATATGGTAGAGCCGCAGA TTTCAGCAGCTACAGTCAGAATTT 495 

20SCpG CGATGGGTTAATTCGCTCGTTGTGG GCACAACGGAAAGAGCACTG 274 
Primers were synthesized and purchased at Eurofins Genomics (Ebersberg, Germany) 
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Table 8: Software 

Software Company 

Bioanalyzer 2100 Expert Software Agilent Technologies, Santa Clara, USA 

LightCycler® 480 Software Roche, Mannheim, Germany 

Microsoft Excel 2010 Microsoft, Redmond, USA 

R Studio R Studio, Boston, USA 
 
 
Table 9: Bioinformatic tools and R packages 

Tool Reference 

Bedtools v2.29.2 Quinlan et al., 2010 

Bowtie2 v2.2.6.2 Langmead et al., 2012 

clusterprofiler v4.0.0 Yu et al., 2012 

CNAclinic v0.2.0 Mouliere et al., 2018 

chromHMM v1.22 Ernst et al., 2012 

Cutadapt v.1.16 Martin et al., 2011 

DKFZ Galaxy instance Giardine et al., 2005 

edgeR v3.34.0 Robinson et.al., 2010 

FastQC v0.11.2 Andrews et al., 2010 

GenomicRanges v1.44.0 Lawrence et al., 2013 

ggplot2 v3.3.4 Wickham et al., 2016 

HOMER v4.11 Heinz et al., 2010 

HMMcopy Suite v1.34.0 Lai et al., 2021 

ichorCNA Adalsteinsson et al., 2017 

limma v3.48.0 Ritchie et al., 2015 

MACS2 v2.1.1 Zhang et al., 2008 

MEDIPS v1.44.0 Lienhard et al., 2014 

minfi v1.38.0 Aryee et al., 2014 

pheatmap v1.0.12 Kolde et al., 2015 

regioneR v1.24.0 Gel et al., 2015 

SAMtools v1.3.1 Lie et al., 2009 

Subread v1.5.3 Liao et al., 2014 

VennDiagram v1.6.20 Chen et al., 2011 
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2.2 Methods 
2.2.1 Plasma samples 

All individuals provided informed consent and the study was approved by the ethics 
committees at Heidelberg (S-270/2001, S-445/2015, S-296/2016) and Lübeck Universities (AZ 
12-238). Peripheral blood was drawn from 31 metastatic ALK+ NSCLC patients (Table S1) 
and 14 healthy donors at the Thoraxklinik Heidelberg / LungenClinic Grosshansdorf, 
Germany, and provided via the Lung Biobank Heidelberg. Eleven patients provided multiple 
samples throughout TKI therapy (range: 2 – 14 samples per patient), resulting in a total of 93 
blood samples. Plasma isolation from whole blood was performed within one hour of blood 
draw at the site of collection. In brief, whole blood was collected in S-Monovette 7.5 mL K3 
EDTA tubes, followed by centrifugation (Centrifuge Heraeus Megafuge 16 R) at 1,600 x g for 
10 min (no brakes). Subsequently, plasma was aspirated and re-centrifuged at 3,400 x g for 10 
min (no brakes) to remove cell debris and stored at -80 °C until use. 
Molecular tumor characterization was performed at the Institute of Pathology Heidelberg, 
Heidelberg University Hospital. Diagnosed ALK rearrangements were based on positivity of 
at least two of the following assays: ALK immunohistochemistry (D5F3 clone), ALK 
fluorescent in situ hybridization (ZytoLight SPEC ALK probe), and RNA-based next-
generation sequencing (NGS, AmpliSeq RNA Lung Cancer Fusion Panel). Clinical data and 
radiographic assessments by chest/abdominal computed tomography (CT) and brain 
magnetic resonance imaging (MRI) were collected based on patient record reviews with a 
cut-off on May 30, 2020. 
 

2.2.2 Primary blood cell samples 

Cryopreserved primary monocytes, neutrophils and erythroid progenitor cells were 
purchased for 5mC and 5hmC profiling. Extraction procedures are described by the 
commercial providers as follows: Monocytes (Stemcell Technologies) and neutrophils 
(HemaCare) were isolated from peripheral blood using immunomagnetic separation of 
CD14+ mononuclear cells (monocytes) and red cell lysis followed by density gradient 
centrifugation (neutrophils). Erythroid progenitors (StemExpress) were isolated from bone 
marrow mononuclear cells. Immunomagnetic anti-CD34 beads were used to enrich for 
CD34+ cells. CD34+ cells were then cultured for 10 days in serum-free expansion media 
supplemented with SCF, EPO and IL-3. Thereby, the differentiation of CD34+ to CD36+ 
erythroid progenitor cells was promoted. The providers confirmed a purity >90% of the 
primary cell types by flow cytometry. 
  



Materials and Methods 

 23 

2.2.3 Isolation of cfDNA from plasma 

Plasma samples were thawed on ice and centrifuged at 10,000 x g for 1 min at room 
temperature (RT) to remove residual blood cells. CfDNA isolation was performed from 0.5 to 
3 mL of plasma using the QIAamp MinElute ccfDNA Kit. In brief, cfDNA was bound to 
magnetic beads by combining 30 µL of beads, 55 µL proteinase K and 150 µL bead binding 
buffer, followed by a 10 min incubation step at RT. Subsequently, samples were placed on a 
magnetic rack to separate the beads from the cfDNA-free plasma. To detach cfDNA from the 
beads, 200 µL of bead elution buffer were added and incubated for 5 min at RT. CfDNA was 
then mixed with 1.5 volumes of ACB buffer and bound to a QIAamp mini spin column by 
centrifugation. Following one wash step (500 µL ACW2 buffer), the silica membrane of the 
spin column was dried at 56 °C for 3 min (RT). Afterwards, cfDNA was eluted in 30 µL 
nuclease-free water by centrifugation at 20,000 x g for 1 min and stored at -20 °C until further 
use. Wash steps and cfDNA binding to the membrane was performed by centrifugation at 
6,000 x g for 1 min at RT. 
 

2.2.4 Isolation of genomic DNA from blood cells 

Genomic DNA (gDNA) of primary blood cells was isolated using the 
AllPrep DNA/RNA/miRNA Universal Kit, following the DNA isolation steps of the protocol 
“Simultaneous purification of genomic DNA and total RNA, including miRNA, from cells”. 
DNA isolation was performed from 5x105 to 5x106 cells. Briefly, cell pellets were lysed by 
adding 350 µL RLT plus buffer, followed by homogenization using QIAshredder spin 
columns. The homogenized lysate was then bound to AllPrep DNA Mini spin columns by 
centrifugation at 20,000 x g for 30 sec at RT. Subsequently, DNA was washed with 350 µL 
AW1 buffer and subjected to proteinase K digestion (5 min at RT). The digestion step was 
followed by two wash cycles (350 µL AW1 and 500 µL AW2 buffer) and DNA elution in 
150 µL EB buffer. Wash steps and DNA elution was performed by centrifugation at 
20,000 x g for 30 sec at RT. 
 

2.2.5 Qubit fluorometric DNA quantification 

Quantification of DNA and NGS libraries was performed with the Qubit dsDNA HS Assay 
Kit reagents. To prepare a working solution, Qubit dsDNA HS dye was diluted 1:200 in 
Qubit dsDNA HS buffer. For the quantification, 1 µL of sample was added to 199 µL of 
Qubit dsDNA HS buffer-dye-mixture, briefly vortexed and incubated for 2 min at RT. The 
resulting fluorescence intensity was measured using the Qubit 2.0 Fluorometer and 
concentrations were inferred based on an external standard provided in the Qubit dsDNA 
HS Assay Kit. 
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2.2.6 DNA quality assessment by capillary electrophoresis 

Fragment size distribution and integrity of DNA samples and NGS libraries was assessed by 
capillary gel electrophoresis using the Bioanalyzer 2100 instrument with the High Sensitivity 
DNA Kit reagents. Sample preparation and instrument loading was performed according to 
the manufacturer´s instructions, applying 1 µL of undiluted DNA sample or NGS library. 
 

2.2.7 Genomic DNA shearing 

Genomic DNA was sheared to a mode fragment length of 180 bp using the Bioruptor® Pico 
sonication device. Per sample, 500 ng of gDNA (in 100 µL nuclease-free water) were 
transferred to a 1.5 mL Bioruptor® microtube and sonicated in the Bioruptor® Pico device at 
4 °C for 12 cycles applying the 30-second on/off settings. DNA fragment length was 
confirmed by capillary electrophoresis using the Bioanalyzer 2100 instrument. 
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2.2.8 Global methylation and hydroxymethylation profiling 

Genome-wide 5mC and 5hmC profiles were prepared by cfMeDIP-seq and hMeSEAL-seq 
using the protocols established by Shen et al. 2019 (Shen et al. 2019b) and Song et al. 2017 
(Song et al. 2017). Both methods are based on selective labeling of the respective epigenetic 
DNA modification followed by pull-down-based enrichment and sequencing of the enriched 
fraction (Figure 7). The following sections describe (i) the preparation of spike-in amplicons 
for the assessment of 5(h)mC enrichment efficiency, (ii) lambda filler DNA generation to 
adapt cfMeDIP to low cfDNA input quantities, and (iii) 5mC enrichment by cfMeDIP-seq as 
well as (iv) 5hmC enrichment by hMeSEAL-seq. All steps were carried out in 0.2 mL PCR 
stripes if not stated otherwise. 
 

 
Figure 7: Schematic workflow of the library preparation and 5(h)mC enrichment protocol. 
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Spike-in amplicon preparation 
Spike-in controls were generated by PCR amplification of lambda-DNA using the Phusion® 
High-Fidelity PCR Kit. Three types of amplicons were generated, containing either 
unmodified (5C spike-in), methylated (5mC spike-in) or hydroxymethylated CpG sites 
(5hmC spike-in). 5C spike-ins were prepared using a standard dNTP mix (i.e. dATP, dGTP, 
dTTP, and dCTP). For 5mC and 5hmC spike-ins, dCTPs were substituted by a mixture of 
90% dCTPs and 10% 5-methyl-dCTPs or 10% 5-hydroxymethyl-dCTPs, respectively. The 
PCR reaction and temperature program was adapted from the Phusion® High-Fidelity PCR 
Kit protocol using 35 cycles and the primer sequences listed in Table 6. Resulting amplicons 
were purified by immobilization to 2 volumes of SPRI AMPure XP magnetic beads for 
10 min at RT, washed twice using 200 µL freshly prepared 80% ethanol and eluted in 50 µL 
nuclease-free water. Spike-in controls were diluted to a working concentration of 5 pg/µL. 
 
Generation of lambda filler DNA 
Lambda filler DNA acts as a carrier for the immunoprecipitation reaction of cfMeDIP, 
thereby enhancing its specificity to allow the use of very low cfDNA input quantities. Filler 
DNA consists of a mixture of in vitro methylated and unmethylated lambda-DNA amplicons 
of fragment sizes resembling the length of sequencing adapter ligated cfDNA (Table 7). In a 
first step, lambda-DNA was diluted to 0.1 ng/µL and PCR amplified using 10 µL 5x SuperFi 
Buffer, 1 µL dNTPs (10 mM), 0.5 µL Platinum™ SuperFi™ DNA Polymerase (2 U/µL) as 
well as 3 µL of the appropriate primer pairs (10 µM) listed in Table 7. Samples were 
amplified at 98 °C for 30 sec, 30 cycles of 98 °C for 10 sec, 57 °C for 10 sec, 72 °C for 15 sec, 
followed by 5 min at 72 °C. Resulting PCR products were purified by immobilization to 1 
volume of SPRI AMPure XP magnetic beads (for 10 min at RT), followed by two wash cycles 
(200 µL 80% ethanol) and elution in 100 µL nuclease-free water. Amplicon sizes were 
verified using the Bioanalyzer 2100 and quantified with the Qubit 2.0 Fluorometer. In vitro 
methylation of amplicons 1CpG, 5CpG, 10CpG, 15CpG, and 20LCpG was carried out using 
the CpG methyltransferase (M.SssI) by adding 2 µL M.SssI buffer, 0.4 µL 
S-adenosylmethionine (SAM) and 1 µL M.SssI  enzyme per 1 µg of amplicon. Subsequently, 
samples were incubated for 15 min at 37 °C, followed by 20 min at 65 °C. Methylated 
amplicons were again purified and quantified as described previously. Efficiency of the 
methylation reaction was examined by subjecting aliquots of both methylated and 
unmethylated amplicons to restriction enzyme digest by the methylation non-sensitive 
HpyCH4IV enzyme. Two µL of CutSmart buffer, 1 µL HpyCH4IV enzyme and 100 ng 
amplicon were combined in a total volume of 20 µL and incubated for one hour at 37 °C, 
followed by 20 min at 65 °C. Fragment sizes of the restriction enzyme treated amplicons 
were checked using the Bioanalyzer 2100, verifying the digestion only in unmethylated 
fragments. Methylated fragments were pooled at equal concentrations and mixed in a 50:50 
ratio with the unmethylated 20SCpG amplicon to generate the final filler DNA pool. Filler 
DNA was adjusted to a concentration of 5 ng/µL.  
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Cell-free methylation DNA immunoprecipitation (cfMeDIP) 
NGS libraries for genome-wide 5mC profiling were prepared from 87 plasma samples of 29 
ALK+ NSCLC patients and 14 healthy donors as well as sheared gDNA from primary 
monocytes, neutrophils and erythroid progenitor cells using the cfMeDIP protocol. Six of the 
complete set of 93 plasma samples were excluded due to insufficient amount of cfDNA. On 
average, 6.9 ng cfDNA (range: 2 – 10 ng) and 250 ng gDNA served as starting material. The 
cfMeDIP protocol comprises (1) ligation of sequencing adapters, (2) enrichment of 
methylated cfDNA fragments, and (3) library amplification.   
 
Ligation of sequencing adapters 
Initially, sequencing adapters were ligated to the cfDNA using the KAPA HyperPrep Kit 
with KAPA Dual-Indexed Adapters for Illumina platforms. To achieve optimal ligation 
efficiency, cfDNA was end-repaired and A-tailed by adding 7 µL End-repair/A-tailing buffer 
and 3 µL End-repair/A-tailing enzyme mix to 50 µL of sample. Upon incubation at 20 °C for 
30 min and 65 °C for 30 min, 30 µL of adapter ligation buffer, 10 µL DNA ligase and 10 µL 
750 nM dual-indexed KAPA adapters were added for adapter ligation. Thereby, differently 
barcoded sequencing adapters were used for sample indexing to allow library pooling and 
multiplexed sequencing. Following overnight incubation at 16 °C, the adapter ligated 
libraries were purified using SPRI AMPure XP magnetic beads. In a first step, remaining, 
unbound sequencing adapters and adapter dimers were removed by adding 0.8 volumes of 
SPRI AMPure XP magnetic beads for 10 min at RT. After two consecutive washing cycles 
using 200 µL 80% ethanol, libraries were eluted from the beads with 50 µL nuclease-free 
water. Next, SPRI AMPure XP magnetic beads were used for a double-sided size selection to 
further exclude short DNA fragments and remaining long fragments (>800 bp) potentially 
derived from blood cell contamination. To this end, long fragments were immobilized by 
adding 0.25 volumes of SPRI AMPure XP magnetic beads to the sample. After 10 min 
incubation at RT, the supernatant, containing all but long DNA fragments, was transferred to 
a fresh tube and mixed with 0.8 volumes of SPRI AMPure XP magnetic beads to remove 
short fragements. Libraries were incubated and washed as described previously, following 
their elution in nuclease-free water. At this point, lambda filler DNA (5 ng/µL) was added to 
the libraries to increase the final amount of DNA (adapter ligated cfDNA and lambda filler 
DNA) to 100 ng in a total volume of 51 µL. In case DNA input quantities were >100 ng, no 
filler DNA was added. 
 
Enrichment of methylated DNA fragments 
Adapter ligated libraries were enriched for DNA fragments containing methylated CpG sites 
using the MagMeDIP qPCR Kit. First, 24 µL 1x MagBuffer A, 6 µL 1x MagBuffer B and 15 pg 
of each spike-in control (5C, 5mC and 5hmC) were added to the libraries. During 10 min 
incubation at 95 °C, the libraries were denatured into single strands, facilitating the 
subsequent binding of the 5mC antibody to CpG sites. All following steps were performed 
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on ice to prohibit re-hybridization of DNA fragments. Per sample, 11 µL of MagBeads were 
washed twice with 30 µL 1x MagBuffer A and eluted in 22 µL of the same buffer. 
Afterwards, the 5mC antibody was diluted 1:15 in nuclease-free water. Five µL of the 
antibody dilution alongside 20 µL washed MagBeads were added to the sample. Antibody 
binding to methylated DNA was carried out on a rotator (10 rpm) at 4 °C for 18 hours. After 
the incubation, the samples underwent four consecutive washing cycles: (i) bead separation 
and supernatant removal on a magnetic stand, (ii) bead resuspension in 100 µL MagWash 
Buffer-1, and (iii) incubation on a rotator (15 rpm) at 4 °C for 4 min. For the last washing 
step, MagWash Buffer-1 was replaced by MagWash Buffer-2. Separation from the 5mC 
antibody and purification of methylated DNA was performed using the iPure Kit v2. 
Fifthy µL iPure elution buffer were added per sample and incubated on a rotator (15 rpm) 
for 15 min at RT. The supernatant was separated from the MagBeads on a magnetic stand 
and transferred into a fresh 0.2 mL PCR strip. The previous DNA elution steps were 
repeated with another 50 µL of iPure elution buffer to optimize DNA recovery from the 
beads. Libraries were purified by adding 2 µL iPure carrier DNA, 100 µL 100% isopropyl 
alcohol and 10 µL iPure magnetic beads, followed by incubation on a rotator (15 rpm) for 
10 min at RT. Samples were washed two times (5 min per washing step) on a rotator using 
first 100 µL iPure wash buffer 1 and then 100 µL iPure wash buffer 2. Afterwards, the 
supernatant was aspirated and the beads were air-dried for 2 min on a magnetic stand. To 
elute the libraries from the beads, 25 µL iPure buffer C were added and samples were 
incubated for 30 min on a rotator (15 rpm) at RT. The supernatant containing the 5mC-
enriched libraries was then separated from the beads on a magnetic stand and transferred to 
a fresh 0.2 mL PCR strip. Two µL per 5mC-enriched library were taken for the assessment of 
enrichment efficiency and specificity, further described in section 2.2.9. 
 
Library amplification 
To obtain sufficient material for the consecutive sequencing analysis, libraries were PCR 
amplified using 22 µL of 5mC-enriched library, 25 µL of KAPA HiFi HotStart Ready mix and 
5 µL of KAPA Library Amplification primer mix per sample. Amplification was carried out 
at 98 °C for 45 sec, 12 cycles of 98 °C for 15 sec, 60 °C for 30 sec, 72 °C for 30 sec, followed by 
1 min at 72 °C. Amplified libraries were purified using 0.8 volumes SPRI AMPure XP 
magnetic beads as described previously and eluted in 15 µL nuclease-free water. Fragment 
sizes, library integrity and quantity were assessed using the Bioanalyzer 2100 and Qubit 2.0 
Fluorometer, respectively. 
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Hydroxymethylation-selective chemical labeling of cfDNA (hMeSEAL) 
5hmC-enriched NGS libraries were generated from all 93 plasma samples of 31 ALK+ NSCLC 
patients and 14 healthy donors as well as sheared gDNA from primary monocytes, 
neutrophils and erythroid progenitor cells using the hMeSEAL protocol. On average 7.5 ng 
cfDNA (range: 2.5 – 10 ng) and 250 ng gDNA were used as starting material. Ligation of 
sequencing adapters and library amplification was performed analogous to the descriptions 
of the cfMeDIP method with three exceptions: (1) spike-in controls were added directly after 
the double-sided size selection of NGS libraries, (2) lambda filler DNA was not included for 
the preparation of hMeSEAL libraries and (3) libraries were amplified while still attached to 
magnetic streptavidin beads using 14 PCR cycles. 
 
Enrichment of hydroxymethylated DNA fragments 
cfDNA fragments containing hydroxymethylated CpG sites were first enzymatically coupled 
to azide-modified uridine diphosphoglucose (UDP-glucose), using the T4 phage 
ß-glucosyltransferase enzyme (T4-BGT). Three µL 10x NEBuffer 4, 3 µL T4-BGT (10 U/µL), 
and 1 µL UDP-glucose (3 mM) were added to the adapter ligated libraries (20 µL) and filled 
up to 30 µL with nuclease-free water, following one hour of incubation at 37 °C. To minimize 
carry over of unbound UDP-glucose, libraries were purified using 1 volume SPRI AMPure 
XP magnetic beads, as described previously, and eluted in 20 µL nuclease-free water. 
Utilizing Huisgen cycloaddition (click-) chemistry (Huisgen et al. 1963), 
dibenzylcyclooctyne-polyethylenglycol-4-distearylether-biotin conjugate (DBCO-PEG4-
biotin) was attached to the azide-residue of the UDP-glucose. To this end, 5 µL DBCO-PEG4-
biotin (1 mM) was added per sample, incubated for 1.5 hours at 37 °C, purified using 1 
volume SPRI AMPure XP magnetic beads and eluted in 30 µL nuclease-free water. Next, 
biotin-tagged DNA fragments were immobilized on streptavidin-coupled magnetic 
Dynabeads™ M270. Per sample, 5 µL Dynabeads™ M270, pre-blocked with 50 µg 
UltraPure™ salmon sperm DNA, were added and filled up to 150 µL, using Buffer 1 (5 mM 
Tris-HCl (pH 7), 1 M NaCl, 0.5 mM EDTA, and 0.2% Tween-20) (Ambion® Buffer Kit). After 
30 min of rotation (15 rpm) at RT, beads underwent four 5-min washes each with Buffer 1, 
Buffer 2 (Buffer 1 without NaCl), Buffer 3 (Buffer 1 with Tris-HCl (pH 8)), and Buffer 4 
(Buffer 3 without NaCl). In brief, samples were placed on a magnetic stand, supernatant was 
removed without disturbing the beads, beads were resuspended in 200 µL of buffer and 
rotated (15 rpm) for 5 min at RT. After the last washing step, the bead-coupled 5hmC-
enriched libraries were resuspended in 25 µL nuclease-free water. Two µL per library were 
taken for the assessment of enrichment efficiency and specificity, further described in section 
2.2.9. 
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2.2.9 Evaluation of 5mC and 5hmC enrichment efficiency and specificity 

For each 5mC- and 5hmC-enriched NGS library, enrichment specificity and efficiency was 
evaluated before subjecting samples to sequencing analysis. To this end, 2 µL per library 
were taken before library amplification and diluted in 28 µL nuclease-free water. Spike-in 
controls were quantified in triplicates by quantitative PCR (qPCR) using the 
LigthCycler® 480 instrument. Per reaction, 2 µL of diluted library were mixed with 5.5 µL 2x 
PrimaQuant CYBR qPCR master mix, 0.31 µL of the primer pairs (2.5 µM) used for spike-in 
amplicon generation (Table 6) and filled up to 11 µL with nuclease-free water. The qPCR was 
carried out in a LightCycler® 480 Multiwell Plate 384 using the following temperature 
program: 3 min at 98 °C, followed by 50 cycles of 10 sec at 98 °C and 30 sec at 60 °C. 
Concentrations of 5C, 5mC and 5hmC amplicons were determined based on external DNA 
standard curves. 
 

2.2.10 Next-generation sequencing 

Next-generation sequencing of 5mC- and 5hmC-enriched libraries was performed at the 
High Throughput Sequencing Unit of the DKFZ Genomic and Proteomics Core Facility. 
Libraries were pooled in equimolar concentrations to a final of 10 µM for multiplexed 
sequencing. For 5mC-enriched libraries, eight samples were pooled per sequencing run. 
5hmC-enriched libraries were 23-plexed. All libraries were subjected to 75 bp paired-end 
sequencing on the Illumina NextSeq 550 system (high throughput). Flow-cell loading, cluster 
formation and NGS were performed according to the manufacturer´s recommendations. 
 

2.2.11 NGS data processing and alignment 

Initial NGS data processing was composed of the following steps: (i) raw sequence data 
quality assessment, (ii) removal of contaminating adapter sequences, (iii) read alignment to 
the human reference genome (hg19/GRCh38.p2), followed by (iv) duplicate collapsing and 
quality filtering. All processing steps were performed on the Galaxy instance of the DKFZ 
(Giardine et al. 2005). Raw sequence quality was determined using FastQC v0.11.2 (Andrews 
et al. 2012), followed by removal of Illumina universal sequencing adapters by Cutadapt 
v1.16 (Martin 2011). Next, adapter-trimmed sequencing reads in fastq format were mapped 
to the human reference genome hg19/GRCh38.p2 (obtained from the GENCODE release 22 
(Frankish et al. 2019)) using Bowtie2 v2.2.6.2 (Langmead and Salzberg 2012). Paired-end 
options were enabled, removing paired reads with insert sizes <30 bp and >700 bp. Duplicate 
reads were marked using the RmDup function of SAMtools v1.3.1 (Li et al. 2009) and 
collapsed to allow only one read per alignment position. Finally, reads were filtered 
according to the following criteria (SAMtools v1.3.1): keep reads with a mapping quality 
score (MAPQ) > 10, keep properly paired reads and discard unmapped reads. Reads 
mapping to chromosomes X and Y as well as the mitochondrial genome were removed. 
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2.2.12 Quality control of 5mC- and 5hmC-enriched sequencing data 

The R package MEDIPS v1.44.0 (Lienhard et al. 2014) was used to generate quality metrics of 
the sequenced libraries. This comprises the assessment of library saturation, CpG enrichment 
and CpG coverage. Saturation analysis was performed to assess whether the given set of 
paired reads is sufficient to create saturated – and therefore reproducible – coverage profiles 
of the human genome. First, sequencing reads were artificially doubled and then randomly 
divided into two sets. Afterwards, read coverage at 300-bp genomic windows was calculated 
using both sets and compared by Pearson correlation. Read coverages resulting in Pearson 
correlation coefficients >0.8 were considered to yield reproducible results. Both 5mC- and 
5hmC-enriched libraries were expected to contain high CpG densities. The CpG enrichment 
score compares the relative frequency of CpG dinucleotides in the reference genome 
(genome.CpGrel) to the CpG frequency in the sequenced fragments (fragments.CpGrel). The 
number of CpGs within the human genome (genome.cg) and the sequencing data 
(fragments.cg) were first counted and then divided by the total number of bases in the 
reference genome (m) and sequencing reads (n). Subsequently, CpG enrichment scores were 
calculated as: 
 

𝐶𝑝𝐺	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑠𝑐𝑜𝑟𝑒 = 	
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠. 𝐶𝑝𝐺!"#
𝑔𝑒𝑛𝑜𝑚𝑒. 𝐶𝑝𝐺!"#

 

 

where 
 

𝑔𝑒𝑛𝑜𝑚𝑒. 𝐶𝑝𝐺!"# =	
𝑔𝑒𝑛𝑜𝑚𝑒. 𝑐𝑔

𝑚
 

 
and 
 

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠. 𝐶𝑝𝐺!"# =
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠. 𝑐𝑔

𝑛
 

 
 
Afterwards, the number of CpGs covered at least once by the given set of reads was 
calculated. Additionally, the depth of coverage per CpG sites was determined. Fragments 
containing no CpG dinucleotide were counted as a measure for unspecific DNA pull-down. 
  



Materials and Methods 

 32 

2.2.13 5mC and 5hmC peak calling 

Model-based analysis of ChIP-seq 2 (MACS2) v2.1.1 (Zhang et al. 2008) was used to identify 
genomic regions containing 5(h)mC modifications. For each sample, peak calling was 
performed using the “callpeak” command with parameters set to: “--format BAMPE --
genome hs --keep-dup all --nolambda --p 1e-05 --call-summits”. Peak summits were 
extended by ±100 bp to a total width of 201 bp. Fixed-width peaks were chosen to reduce the 
bias of differing peak widths during the comparison between 5mC- and 5hmC-enriched 
regions. To minimize the effect of varying sequencing depths on the peak calling algorithm, 
5mC and 5hmC datasets were downsampled to a common coverage. When patient samples 
were compared to healthy controls, 5mC data was downsampled to a maximum of 
15 million and 5hmC to 10 million paired reads per sample. 5mC- and 5hmC-enriched loci 
were compared in samples with both datasets available. Here, read coverage was adjusted to 
the sample with the lower sequencing depth. Downsampling was performed using the 
“view” command of SAMtools v1.3.3 (Li et al. 2009). 
 

2.2.14 Peak annotation to genomic features and chromatin states 

5(h)mC-enriched peaks were associated with genomic features using the “annotatePeaks.pl” 
command of the HOMER software v4.11 (Heinz et al. 2010) with default parameters. The 
following features were considered: promoter regions, 5´- and 3´-untranslated regions 
(UTRs), first exons and other exons, introns, transcription end sites (TESs), and intergenic 
regions. The core 15-state model containing coordinates of genomic regions associated with 
different functional chromatin states was downloaded from the ROADMAP epigenomics 
project (https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/Chmm 
Models/coreMarks/jointModel/final/E116_15_coreMarks_segments.bed). The chromatin 
states were inferred from chromatin immunoprecipitation DNA-sequencing data (ChIP-seq; 
H3K4me3, H3K4me1, H3K36me3, H3K9me3, and H3K27me3) of GM12878 cells using the 
chromHMM software v1.22 (Ernst and Kellis 2012). Inferred states included active 
transcription start sites (TSSs), flanking active TSSs, sites of strong transcription, 
transcription at 5´ and 3´ of genes, sites of weak transcription, genic enhancers, enhancers, 
zinc finger nuclease (ZNF) genes and repeats, heterochromatin, bivalent/poised TSSs, 
flanking bivalent TSSs/enhancers, bivalent enhancers, repressed polycomb, weak repressed 
polycomb, and quiescent regions. 5(h)mC-enriched peaks were counted at each chromatin 
state using the “countOverlaps” function of the GenomicRanges R package v1.44.0 
(Lawrence et al. 2013a). 
Enrichment of 5(h)mC peaks at genomic features and chromatin states was determined by 
comparing the observed number of peaks to the peak number following random 
permutation of the peak set throughout the human genome. This was performed for each 
sample individually. Bedtools v.2.29.2 (Quinlan and Hall 2010) was employed for peak set 
permutation using the “shuffle” command with default parameters. 
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2.2.15 Gene ontology analysis 

Gene ontology (GO) analysis of genes containing 5(h)mC-enriched peaks was performed 
using the clusterprofiler R package v4.0.0 (Yu et al. 2012) with the included “enricher” 
function. Gene sets were obtained from the Molecular Signature Database (MSigDB) v7.4. 
 

2.2.16 Processing of primary blood cell 5mC and 5hmC data 

Monocytes, neutrophils and erythroid progenitor cells are major contributors to the cfDNA 
pool in healthy individuals (Moss et al. 2018). Genomic regions with high 5(h)mC levels in 
these cell types are unlikely to be tumor-informative in plasma samples of cancer patients. 
The “featureCounts” function of Subread v1.5.3 (Liao et al. 2014) was used to obtain read 
coverages at 300-bp genomic windows from 5mC- and 5hmC-enriched NGS libraries of 
primary monocytes, neutrophils and erythroid progenitors. Paired-end options were enabled 
for read counting and fragments were assigned to the genomic window with the largest 
overlap. Afterwards, count data was normalized to the sample´s respective library size and 
by trimmed mean of M-values (TMM) normalization using the edgeR R package v3.34.0 
(Robinson et al. 2009). The cell type´s 5mC and 5hmC signals at 300-bp windows were then 
multiplied by its relative contribution to cfDNA in plasma of healthy individuals (Figure 5B) 
(Moss et al. 2018). As the profiled cell types account for 72.2% of the predicted cfDNA 
composition, relative contributions were scaled to 100% (i.e. monocytes: 14.5%, neutrophils: 
44.3%, and erythroid progenitors: 41.1%). Subsequently, count data of the three blood cell 
types were combined by summation to yield profiles approximating the 5(h)mC levels in 
healthy plasma. 
 

2.2.17 Differential methylation and hydroxymethylation analysis 

Differentially methylated (DMRs) and hydroxymethylated regions (DhMRs) between cfDNA 
samples from ALK+ NSCLC patients and healthy individuals were determined using the R 
packages limma v3.48.0 (Ritchie et al. 2015) and edgeR v3.34.0. For each sample, read 
coverages at 300-bp genomic windows were determined and TMM normalized as described 
in section 2.2.16. Genomic windows with counts >20% of the total number of samples across 
both groups were considered for differential analysis. In addition, genomic windows 
covering no CpG dinucleotide were excluded. Normalized counts were subjected to the 
“voom” function of limma. Variance modeling on the observation level (voom) estimates the 
mean-variance relationship of log2-counts, generating a precision weight for each 
observation (Law et al. 2014). Next, a linear model using weighted least squares was fit for 
each gene and standard errors were smoothed by empirical bayes smoothing. DMRs and 
DhMRs at p < 0.01 and |log2(fold-change)| > 1 were extracted and associated to genomic 
features as well as their nearest TSS using the “annotatePeaks.pl” function of HOMER. For 
heatmap and principle component analysis (PCA) visualization, z-scores were calculated 
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from TMM normalized counts of DMRs and DhMRs. Heatmaps were generated using the 
pheatmap R package v1.0.12 (Kolde 2013) with Euclidean distance and Ward clustering. 
Principle components were calculated using the “prcomp” function of the stats R package. 
5mC and 5hmC signals displayed in boxplots and plots showing disease kinetics refer to 
TMM normalized counts per million (CPM). 
 

2.2.18 Acquisition and processing of reference datasets 

Reference tissue methylation and expression datasets used in this study were analyzed as 
part of The Cancer Genome Atlas (TCGA) project and downloaded from the GDC data 
portal as IDAT files (methylation data) or raw counts (expression data) (Grossman et al. 
2016; Weisenberger 2014). Illumina 450k methylation array data of cfDNA from healthy 
individuals was obtained from GSE122126 (Moss et al. 2018) and whole blood expression 
data from the Genotype-Tissue Expression (GTEx) project v6 (Aguet et al. 2017). 
 
Illumina 450k methylation array data 
5mC profiles from primary tumor tissue of LUAD (n = 469), breast carcinoma (BRCA; 
n = 789), colon adenocarcinoma (COAD; n = 295), prostate adenocarcinoma (PRAD; n = 502), 
kidney renal clear cell carcinoma (KIRC; n = 322), and stomach adenocarcinoma (STAD; 
n = 395) patients were downloaded as raw IDAT files. Additionally, 5mC data of non-
malignant adjacent lung, breast, colon, prostate, as well as kidney tissue (n = 29 per tissue 
type) and cfDNA of 4 healthy individuals was obtained. Normal stomach tissue was 
excluded due to only two samples with methylation data available. IDAT files were 
uniformly processed using the minfi R package v1.38.0 (Aryee et al. 2014). CpG sites 
represented by less than three beads or mapping to chromosomes X/Y or the mitochondrial 
genome were excluded. The detection p-value was set to <0.01. To adapt the base resolution 
450k array data to the 5mC signals at 300-bp genomic windows determined from cfMeDIP-
seq, β-values of CpGs mapping to the same window were averaged, resulting in one β-value 
per genomic window. Differential analysis between LUAD and all non-malignant tissue 
samples (n = 145) was performed as described in section 2.2.17. LUAD-specific DMRs were 
extracted at p < 0.001 and |Δβ| > 0.15, with Δβ referring to the mean β-value difference 
between LUAD and non-malignant tissue samples. Next, regions uniquely hyper- and 
hypomethylated in each of the six considered cancer entities were determined adapting the 
feature selection procedure described by Moss and colleagues (Moss et al. 2018). In a first 
step, regions with β-value variances <0.1% across all samples were excluded. Afterwards, 
mean β-values were calculated across samples for each cancer entity. A methylation matrix X 
with N rows (genomic regions) and d columns (cancer entities) was built and each value 
within a row was divided by the sum of the same row to obtain relative 5mC levels 
comparing the six cancer types (Xi´). 
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The top 100 hypermethylated regions with the highest Xi,j´ were determined for each cancer 
entity j. Uniquely hypomethylated regions were identified using the same strategy with an 
inversed methylation matrix (1 – X). 
 
 
RNA sequencing data 
RNA sequencing data of primary tumor tissues from LUAD patients (n = 533) and non-
malignant tissues (i.e. lung, breast, colon, prostate, kidney, and stomach; n = 29 samples per 
tissue type) were downloaded as raw counts. LUAD-specific gene expression was 
determined by differential analysis between LUAD and normal tissues (n = 174) using the 
procedure described in section 2.2.17. Differentially expressed genes were extracted at 
p < 0.001 and |log2(fold-change)| > 1. Whole blood cell gene expression data from 755 
healthy individuals were downloaded as fragments per kilobase per million reads (FPKM). 
 

2.2.19 Copy number inference from 5mC and 5hmC data 

Genome-wide copy number profiles were estimated from 5mC- and 5hmC-enriched 
sequencing data of patient and healthy control samples using the ichorCNA R package v0.2.0 
(Adalsteinsson et al. 2017). In a first step, reads were counted at 1 Mb genomic windows and 
corrected for GC content and mappability bias by the HMMcopy Suite v1.34.0 (Lai et al. 
2021). CNAs were then predicted by a Bayesian statistical framework of the hidden Markov 
model and an expectation-maximization algorithm. 5mC and 5hmC profiles of healthy 
individuals were used as a copy number neutral reference. 
The CNAclinic R package (Mouliere et al. 2018a) was used to calculate t-MAD scores from 
5mC- and 5hmC-enriched sequencing data. First, sequencing reads were randomly 
downsampled to 5 million paired reads per sample using SAMtools v1.3.3, as described in 
2.2.13. Subsequently, reads were counted at 1 Mb genomic windows and corrected for GC 
content and mappability. Samples from healthy controls were processed identically and 
normalized by their median genome-wide count. Log2-transformed copy number ratios were 
calculated comparing patient to control samples. The median absolute deviation from the 
log2-transformed copy number ratio was determined and denotes the t-MAD score. 
 

2.2.20 Determination of molecular alterations from plasma samples 

As part of another project, molecular alterations (i.e. SNVs and the EML4-ALK fusion) and 
CNAs were determined from the same ALK+ NSCLC patient plasma samples by CAPP-seq 
and sWGS, respectively. Experimental procedures and data analysis were described 
previously (Dietz et al. 2020). 
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2.2.21 Statistical analyses 

Quantitative data was represented as boxplots with center lines indicating the median and 
boxes showing the interquartile range with Tukey whiskers. Unpaired two-sided Wilcoxon 
tests were performed to accept or reject the null hypothesis that there is no difference 
between two sample groups. Permutation tests were used to estimate the significance of 
overlap between two sets of genomic regions. Random permutations were generated using 
the regioneR R package v1.24.0 (Gel et al. 2015) and p-values were computed using a normal 
standard distribution. P-values < 0.01 were considered significant. 
 

2.2.22 Data visualization 

Visualization of data was performed using R packages ggplot2 v3.3.4 (Wickham 2016), 
VennDiagram v1.6.20 (Chen and Boutros 2011) and pheatmap v1.0.12 (Kolde 2013). 
Infographics were prepared in BioRender (BioRender, Toronto, Canada). 
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3 Results 
3.1 Patient characteristics 
Seventy-nine plasma samples from 31 patients were collected at the Thoraxklinik Heidelberg 
and LungenClinic Großhansdorf, Germany. For 11/31 patients, serial plasma samples 
(range: 2 – 14 samples) taken throughout therapy were obtained (Figure 8 and Table S1). All 
patients were diagnosed with metastatic ALK+ NSCLC as confirmed by molecular 
pathological tissue examination at the Institute of Pathology in Heidelberg. In addition, 14 
plasma samples from healthy donors, i.e. subjects without known current disease, were 
collected at the Thoraxklinik Heidelberg. 
Comprehensive clinical annotations were available for 24 patients, comprising 72 plasma 
samples (Table 10). Per patient demographics are listed in Table S1. For healthy reference 
samples, demographic information was unavailable. Clinical information included results of 
radiological assessment of therapy success and disease status (by chest CT and brain MRI), 
molecular information about ALK fusion variants and TP53 co-mutations, and number/type 
of sequentially administered therapy regimens. On average, patients received 3.9 lines of 
sequential therapy (range: 1 – 8) since first diagnosis, including at least one line of ALK-TKI. 
The median OS since diagnosis of stage IV disease was 31 months, and 13 patients deceased 
during follow-up. Plasma-based mutation and CNA profiling was performed on the same 24 
patients, as part of another project (Dietz et al. 2020). Targeted panel sequencing from cfDNA 
(CAPP-seq) revealed mutations in 22 out of 24 patients in at least one of the longitudinally 
taken plasma samples (oncoprint (Dietz et al. 2020); Figure S1). The ALK fusion variant was 
detectable in 41.7% patients and 7 patients had additional resistance mutations in the 
ALK gene (Table S1). 
 

 
Figure 8: Cohort overview. Swimmer plot providing an overview of longitudinally taken plasma samples, survival and 
administered therapy lines. Dots and diamonds represent plasma sampling at non-progressive (non-PD) and progressive (PD) 
time points, respectively. Available datasets are indicated by black or gray colors. Genomic data includes profiling of 
molecular alterations by targeted panel sequencing and chromosomal instability inference from shallow whole-genome 
sequencing data. Administered therapy lines since first plasma sampling are indicated by the background colors. 
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Table 10: Patient characteristics (n = 31) 

 ALK+ NSCLC patients 

Age (mean, range)  57.5 (42 – 84) 

Gender, % male  45.2% 

Histology, % adenocarcinoma  100.0% 

Stage IV 29 

 no data 2 

ALK fusion variant EML4-ALK V1 11 

 EML4-ALK V2 3 

 EML4-ALK V3 9 

 others1 2 

 no data 6 

TP53 status, mutated positive 6 

 negative 17 

 no data 8 

Treatment, sample number 1st gen ALK TKI 21 

 2nd gen ALK TKI 32 

 3rd gen ALK TKI 6 

 chemotherapy 9 

 immunotherapy 1 

 naive 9 

 no data 1 

Follow-up, months (median, range)  36.6 (3 – 130) 

Number of samples per patient (mean,  range)  2.5 (1 – 14) 

Number of therapy lines (mean, range)  3.9 (1 – 8) 

Radiological evaluation at sampling, sample number PD 32 

 SD 36 

 PR 4 

 no data 7 
ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein-like 4; gen, generation; SD, stable 
disease; PD, progressive disease; PR, partial response. 
1 one patient with a K9A20 and one with an E9A10 fusion. 
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3.2 Sample characteristics 
cfDNA was isolated from 93 plasma samples, using on average 1.6 mL (range: 0.5 – 3.0 mL) 
of plasma as starting material. DNA concentrations varied considerably between samples 
with a range from 2.85 to 218.40 ng DNA per mL of plasma (mean = 29.68 ng/mL). Consistent 
with the literature (van der Pol and Mouliere 2019), significantly higher DNA concentrations 
were observed in plasma samples from patients when compared to healthy donors 
(Figure 9A; p = 3e-05). No significant difference was observed comparing cfDNA 
concentrations by demographic and molecular characteristics as well as radiologically 
assessed disease status (Figure S2A-E). The significantly increased cfDNA concentrations of 
samples taken during the second line of therapy is likely derived from the 
overrepresentation of samples taken from patient P012 (comprising 5 out of 14 plasma 
samples in this group) and not due to increased cfDNA shedding at this therapy line 
(Figure S2F). Assessment of cfDNA integrity revealed the presence of small DNA fragments 
with a mode size of 167 bp (range: 161 – 178 bp) in all samples (Figure 9B). Thirty-one out of 
93 samples showed additional peaks at double and/or triple the length of the first peak. High 
molecular weight DNA (>700 bp) was observed in a minor fraction of the cfDNA samples 
(11/93) and comprised on average 28% of the total DNA content. Fragment length profiles 
were unaffected by demographic or clinicopathological parameters (data not shown). The 
quality and quantity of all samples was sufficient for subsequent library preparation. No 
sample was excluded. 
 

 
Figure 9: Concentration and integrity of cfDNA samples. (A) CfDNA concentrations comparing healthy donors (n = 14) and 
NSCLC patients (n = 79). Each dot represents one cfDNA sample. (B) Integrity and fragment length distribution of all cfDNA 
samples (n = 93). The black line indicates the median fragment length profile. Gray lines show the profiles of the individual 
samples. Statistical analysis was performed using a two-sided Wilcoxon test. Boxplot center lines indicate the median and boxes 
represent interquartile range with Tukey whiskers. 
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3.3 Performance evaluation of 5mC and 5hmC profiling 
3.3.1 Preparation of 5mC- and 5hmC-enriched sequencing libraries 

After cfDNA isolation, sequencing libraries were prepared combining the KAPA Hyper Prep 
library preparation kit and 5(h)mC enrichment methods (Shen et al. 2019b; Song et al. 2017). 
DNA input for library preparation varied depending on the available quantity of cfDNA per 
sample (Table 11). 5hmC-enriched libraries were prepared from all 93 samples, whereas for 
5mC enrichment, six samples had to be excluded due to insufficient amounts of cfDNA 
starting material (<2 ng). Quantity, integrity and enrichment efficiency was evaluated in all 
180 sequencing libraries. All libraries were of sufficient quantity for sequencing analysis 
(Table 11). Capillary gel electrophoresis revealed high library quality, resembling the DNA 
laddering observed in the cfDNA input (Figure S3A). The fragment sizes of the libraries are 
shifted to higher molecular weights due to the attachment of Illumina sequencing adapters. 
Prior to 5(h)mC enrichment, libraries were spiked with three amplicons carrying either 
methylated, hydroxymethylated or unmodified CpGs. Following enrichment, the residual 
spike-in quantity was measured by qPCR (external standard curves; Figure S3B). Both 
protocols showed high enrichment efficiencies and specificities towards their respective 
epigenetic mark (Figure 10). All 180 sequencing libraries passed the quality criteria and were 
sequenced at the DKFZ core facility.  
 
Table 11: Quality metrics of 5(h)mC enrichment and sequencing data 

  5mC 5hmC 

DNA input, ng (mean, range)  6.9 (2.0 – 10.0) 7.5 (2.5 – 10.0) 

NGS library quantity, ng (mean, range)  93.4 (19.8 – 264.0) 94.1 (10.6 – 356.0) 

Recovered spike-in DNA, pg (mean) 5C 0.050 0.003 

 5mC 1.700 0.001 

 5hmC 0.090 1.600 

Number of paired reads, x1e6 (mean, range) raw 55.4 (29.2 – 72.8) 22.0 (14.0 – 27.6) 

 after QC 26.4 (7.7 – 41.5) 12.9 (3.4 – 19.6) 

Non-duplicate mapping rate, % (mean, range) 57.3 (52.1 – 61.9) 62.0 (25.3 – 74.7) 

Saturation analysis, r (mean, range)  0.98 (0.96 – 0.98) 0.86 (0.66 – 0.92) 

CpGs covered, % (mean, range)  68.8 (50.0 – 82.1) 56.5 (30.7 – 66.1) 

CpGs covered >5x, % (mean, range)  32.7 (12.9 – 43.2) 10.3 (0.4 – 19.3) 

CpG enrichment score (mean, range)  2.9 (2.5 – 3.3) 2.0 (1.8 – 2.3) 

Reads covering no CpG site, % (mean, range) 3.1 (1.3 – 10.9) 3.1 (1.1 – 10.8) 
CpG, cytosine-guanine dinucleotide; ng, nanogram; pg, picogram; QC, quality control. 
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Figure 10: Spike-in recovery following 5mC and 5hmC enrichment. Boxplots represent the recovered spike-in quantities in 
5mC- (A) and 5hmC-enried (B) sequencing libraries. Each dot represents one sample. 

 

3.3.2 Evaluation of sequencing performance 

The following quality parameters were considered for the evaluation of sequencing 
performance: (i) total read coverage after quality filtering, (ii) sequencing library saturation 
at the given read coverage, (iii) CpG enrichment, (iv) CpG coverage, and (v) number of reads 
covering no CpG site. Based on recent literature, I aimed for sequencing coverages of 
20 million (5mC) and 10 million (5hmC) paired reads following sequence quality filtering 
and deduplication (Shen et al. 2019b; Song et al. 2017). With an average of 26.4 million (5mC) 
and 12.9 million (5hmC) paired reads, this number was surpassed in the majority of samples 
(Table 11 and Figure 11A; x-axis). Three 5mC-enriched and one 5hmC-enriched samples 
were excluded due to low sequence coverage (<50% of the desired number of reads). 
Saturation analysis was performed to evaluate the reproducibility of each library at the given 
read coverage. Libraries with an estimated Pearson correlation coefficient <0.8 were excluded 
due to insufficient reproducibility (Lienhard and Chavez 2016). 5mC-enriched samples were 
highly reproducible (mean Pearson, r = 0.98), while 5hmC-enriched samples demonstrated 
lower correlation coefficients (mean Pearson, r = 0.86; Figure 11A) at similar sequencing 
depths. Four additional 5hmC-enriched libraries had to be excluded due to low 
reproducibility. Next, the density of CpG sites within the sequenced fragments was 
determined and compared to the expected CpG abundance in the human genome (CpG 
enrichment score). The CpG enrichment score was used as a quality metric for the 5(h)mC 
precipitation reaction. A mean 2.9-fold enrichment of CpG sites in 5mC- and mean 2.0-fold 
enrichment in 5hmC-enriched samples was observed, confirming the successful pull-down 
of both epigenetic marks (Figure 11B). On average, 68.8% and 56.5% of CpGs were covered 
by the 5mC and 5hmC datasets, respectively. High sequence coverage (>5x) was observed at 
32.7% (5mC) and 10.3% (5hmC) of CpG sites (Figure 11B). Only a small fraction of reads 
(mean = 3.1% in both datasets) covered no CpG site, suggesting low unspecific DNA 
pull-down in both protocols.   
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Figure 11: Quality metrics of 5(h)mC sequencing data. (A) Estimated saturation of 5mC (red) and 5hmC (blue) libraries at 
their respective sequencing coverage. Pearson correlation coefficients were calculated by dividing the sequencing data of each 
library into two random sets, followed by their artificial doubling and correlation. The dotted horizontal line represents the cut-
off at a Pearson correlation coefficient of 0.8. (B) CpG enrichment scores, percent of CpGs covered ≥1x and >5x for each sample. 
Each dot represents one sample. CpG, cytosine-guanine dinucleotide; NSCLC, non-small cell lung cancer. 

  



Results 

 43 

3.4 Genome-wide distribution of 5mC and 5hmC loci 
To locate the genomic regions associated with 5mC and 5hmC in cfDNA, I first identified 
5(h)mC-enriched loci using MACS2 peak calling (Zhang et al. 2008), defining 201-bp 
windows around the peak summit as 5(h)mC-enriched. Only samples with both 5mC and 
5hmC data available (n = 84) were considered for this analysis, representing 28 NSCLC 
patients and 13 healthy donors. Comparing the total number of peaks between the 5mC and 
5hmC datasets, a significantly higher number of 5mC loci was observed (Figure 12A; 
p < 2.2e-16), whereas the comparison between NSCLC patient samples and healthy donors 
showed no significant difference in both datasets (Figure S4A and B). Next, the distribution 
of 5mC and 5hmC peaks across eight genomic regions was assessed: promoters, 5´- and 3´-
UTRs, first exons, exons, introns, TESs, and intergenic regions. The majority of 5mC and 
5hmC peaks occurred within non-coding regions of the genome (introns and intergenic 
regions; Figure S5). However, compared to the genomic background, enrichment in both 
datasets was observed at (first) exons, promoters, 5´-/3´-UTRs, TESs and introns. Peaks at 
intergenic regions were underrepresented in both datasets (Figure 12B). The most significant 
differences between the two datasets were observed at introns (p < 2.2e-16), promoters 
(p < 2.2e-16) and 5´-UTRs (p < 2.2e-16), all showing a higher abundance of 5hmC peaks. The 
comparison between samples from patients and healthy donors revealed no significant 
difference at these genomic features (Figure S4A and B). 
I then aimed to evaluate whether the differences in the mapping of 5mC and 5hmC peaks 
can be associated with the different functional roles of these epigenetic marks. To this end, 
an annotation file was downloaded which segments the genome of the human 
lymphoblastoid cell line GM12878 into 15 chromatin states. These chromatin states were 
inferred from ChIP-seq data of histone marks with well characterized functional associations 
(H3K4me3, H3K4me1, H3K36me3, H3K9me3, and H3K27me3), using the chromHMM 
software (Ernst and Kellis 2012). GM12878 data was used as reference for the comparison to 
cfDNA 5mC and 5hmC profiles, since the majority DNA fragments in plasma are derived 
from white blood cells (Lehmann-Werman et al. 2016; Moss et al. 2018; Sun et al. 2015). 5mC 
and 5hmC peaks were mapped to these chromatin states and relative enrichment compared 
to the genome background was calculated (Figure 12C). This analysis revealed higher 
enrichment of 5hmC peaks at chromatin states associated with active transcription and 
enhancer regions, while 5mC peaks were associated with repressed elements of the genome 
(heterochromatin, weak repressed polycomb and quiescent regions). Especially regions 
proximal to the TSS of actively transcribed genes showed enrichment for 5hmC and 
underrepresentation of 5mC peaks. This might reflect the association of 5hmC and 5mC with 
active and repressed gene expression, respectively. 
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Figure 12: Differential enrichment of 5mC and 5hmC at genomic features and chromatin states. (A) Number of 5mC 
(red; n = 84) and 5hmC (blue; n = 84) peaks per million paired reads. Each dot depicts a plasma sample. (B) Boxplots illustrate 
the log2-transformed enrichment of 5mC and 5hmC peaks at genomic features. Log2 enrichment compares the actual number of 
peaks per feature to the peak number expected by random chance. Positive values represent enrichment and negative values 
underrepresentation of 5(h)mC peaks at the respective feature. (C) 5mC (red) and 5hmC (blue) occupancy at 15 chromatin states 
inferred from histone modification profiles generated from GM12878 cells (data obtained from ENCODE). For each chromatin 
state, histone mark, genomic elements and TSS neighborhood association is provided, with dark blue colors indicating high 
abundances. NSCLC patient and control samples were combined in (A), (B) and (C). Only samples with both 5mC and 5hmC 
enrichment data available were used for the illustrated comparisons (n = 84). CpG, cytosine-guanine dinucleotide; ENCODE, 
Encyclopedia of DNA Elements; kb, kilobase; NSCLC, non-small cell lung cancer; TES, transcription end site; TSS, transcription 
start site; UTR, untranslated region; ZNF, zinc finger nuclease. 
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3.5 TSS-proximal DNA hydroxymethylation is associated 
with active gene expression 

The role of 5mC and 5hmC in the regulation of gene expression is well characterized. 
Especially when located within or proximal to promoter regions, 5mC is associated with 
repressed transcription, while 5hmC confers an active transcriptional status (Greenberg and 
Bourc'his 2019; Thomson et al. 2012). Earlier, high abundances of 5hmC peaks proximal to 
the TSS (±1,500 bp) of actively transcribing genes were observed (Figure 12C), suggesting 
their 5hmC-mediated transcriptional regulation. Therefore, I investigated whether 5mC 
and/or 5hmC abundances near promoter regions can be used to infer the expression status of 
genes in cfDNA. 
The majority of cfDNA in healthy individuals is derived from hematopoietic cells (Lehmann-
Werman et al. 2016; Moss et al. 2018; Sun et al. 2015). To test whether blood cell-associated 
expression profiles can be inferred from plasma, genes with at least one TSS-proximal 
(±1,500 bp) 5mC or 5hmC peak were extracted from the 5mC and 5hmC profiles of 13 
healthy donors. Genes with 5mC or 5hmC peaks in at least 7/13 samples were considered as 
high confidence peaks and, therefore, used for following analysis. This resulted in 4,474 
5mC- and 2,341 5hmC-associated genes as well as 2,065 genes with both 5mC and 5hmC 
peaks near their TSS (Figure 13A). Subsequently, gene expression data of 755 whole blood 
samples was obtained from the GTEx project v6 (Aguet et al. 2017). Expression levels of 
genes with TSS-proximal DNA modifications (i.e. 5mC, 5hmC or both) were compared to an 
equal number of randomly selected genes without 5(h)mC marks. The whole blood 
expression level of 5hmC-associated genes was significantly higher compared to genes 
without 5hmC peaks near their TSS (Figure 13B; p < 2.2e-16). Unexpectedly, also significantly 
higher expression of 5mC-associated genes was observed (p < 2.2e-16). However, the mean 
whole blood expression of 5hmC genes was 3.1-fold greater compared to genes with 5mC 
peaks proximal to the TSS, suggesting a closer association of 5hmC to active transcription. 
Genes with co-modified TSSs had a 2.2-fold higher mean expression (mean = 6.34 FPKM) 
when compared to genes carrying only 5mC marks. Similar associations with transcriptional 
activity were observed when comparing the 5mC and 5hmC related gene sets to various 
other tissue types (data not shown). Next, MSigDB was inspected to identify biological 
functions (C5.Ontology gene sets) associated with genes with 5mC- and 5hmC-specific 
modifications (Figure 13C). Genes with 5mC peaks near their TSS were mainly associated 
with processes involved in cell division (meiosis I cell cycle process, meiotic cell cycle, and 
meiotic cell cycle process). 5hmC genes were enriched in gene sets with functional 
associations with cytokine production as well as various GO terms regarding the migration 
of different blood cell types. These results suggested that especially 5hmC profiling from 
plasma samples can capture blood cell-derived biological signals. 
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Figure 13: Association of plasma 5(h)mC levels of healthy individuals with gene expression in whole blood and gene 
ontology analysis . (A) Venn diagram illustrating the overlap between TSS-proximal (±1,500 bp) 5mC and 5hmC peaks. (B) 
Boxplots showing the difference in FPKM between genes with TSS near 5mC (red; n = 4,474 genes) and 5hmC peaks (blue; 
n = 2,341 genes) compared to an equal number of genes without TSS associated DNA modification. Gene expression was 
measured in whole blood of 755 individuals (obtained from GTEx). (C) Dots illustrate the 15 most significantly enriched gene 
sets with TSS-proximal 5mC (left) and 5hmC (right) peaks (MSigDB: C5.Ontology gene sets). FPKM, fragments per kilobase per 
million reads; GTEx, Genotype-Tissue Expression project; MSigDB, molecular signature database; piRNA, piwi-interacting 
RNA; TSS, transcription start site. 
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3.6 Identification of NSCLC-specific 5mC biomarkers by 
cfMeDIP-seq 

To identify NSCLC-specific 5mC signatures from plasma, a bioinformatic workflow that 
aims to enrich tumor-derived signals from genome-wide methylation data was established. 
The ctDNA fraction in plasma can vary considerably between patients and is commonly 
lower than the non-tumor fraction (Bettegowda et al. 2014). With the majority of non-tumor 
cfDNA originating from blood cells (Moss et al. 2018), I first intended to exclude genomic 
regions exhibiting high methylation signals in blood. I reasoned that these regions are likely 
masked by the blood cell methylation pattern and are therefore not informative about the 
patient´s tumor. After the exclusion of these sites, DMRs were identified comparing samples 
from healthy donors to NSCLC patient samples. The tumor specificity of the identified 
DMRs was then validated using TCGA methylation data generated from LUAD tissue 
(Figure 14). In a last step, 5mC signals of selected DMRs were correlated to genomic tumor 
biomarkers quantified in the same plasma samples and their utility for therapy monitoring 
was examined. 
 

 
Figure 14: 5(h)mC biomarker identification workflow.  
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3.6.1 Exclusion of genomic regions hypermethylated in blood cells unmasks 
tumor-derived 5mC signals 

Moss and colleagues (Moss et al. 2018) used genome-wide methylation profiles to quantify 
the major cell types contributing to cfDNA in healthy individuals (Figure 5B). This data was 
used as a basis to identify genomic regions hypermethylated in non-tumor cfDNA. By 
excluding these regions, I aimed to reduce the uninformative background signals to reveal 
tumor-derived 5mC signatures. To this end, genome-scale 5mC data from primary 
monocytes, neutrophils and erythroid progenitor cells was generated by cfMeDIP-seq. These 
cell types account for the majority of the non-tumor cfDNA fraction (72.2%). On average, 
48.1 million deduplicated paired reads were obtained from blood cell cfMeDIP-seq and CpG 
enrichment scores were comparable to those determined from cfDNA samples (mean = 3.03), 
confirming successful 5mC enrichment (further quality metrics are listed in Table S2). To 
generate combined blood cell 5mC signals, sequencing depth normalized read density at 
300-bp genomic windows was determined. Next, the read density of each window was 
multiplied by the cell type´s relative contribution to normal plasma, followed by summation. 
Then, I prepared an orthogonal 5mC dataset using 450k methylation array data from 
primary tumor tissue of LUAD patients (n = 469) (Weisenberger 2014) and cfDNA from 
healthy individuals (n = 4) (Moss et al. 2018). To increase the comparability between the two 
datasets, β-values falling into the same 300-bp genomic window were averaged. The mean 
β-value difference between LUAD tissue and healthy cfDNA was correlated to the 
log2-transformed fold-changes comparing cfMeDIP-seq data from NSCLC patients (n = 71) to 
controls (n = 13). A modest correlation was observed when the entire dataset was considered 
(Figure 15A; Spearman, r = 0.11). Spearman rank correlation coefficients increased when 
genomic regions hypermethylated in the combined blood cells were excluded. The highest 
correlation was observed when genomic loci with a 5mC blood cell signal <20% of the 
median 5mC signal in NSCLC plasma were retained (Figure 15B and Table 12; Spearman, 
r = 0.26). In the following, this cut-off was used to exclude genomic regions with high blood 
cell methylation. Notably, the correlation of the cfMeDIP-seq data to other cancer types 
(Illumina 450k methylation array data obtained from TCGA) resulted in similar high 
Spearman rank correlation coefficients, while non-malignant lung tissue showed lower 
correlation (Table 12). 
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Figure 15: Correlation of differential methylation between cfDNA of NSCLC patients and primary LUAD tissue. Density 
plots illustrate the overlap between differentially methylated regions (DMRs) comparing plasma of NSCLC patient samples to 
healthy controls (cfMeDIP-seq; y-axis) and DMRs comparing lung adenocarcinoma tissue (LUAD) to healthy cell-free DNA 
(450k methylation array; x-axis), considering the entire cfMeDIP-seq dataset (A) and only genomic regions with blood cell 
methylation <20% (B). Hex bin colors indicate the number of overlaps at the given bin and linear regression lines are shown in 
black. cfDNA, cell-free DNA; cfMeDIP-seq, cell-free methylation DNA immunoprecipitation sequencing; log2FC, 
log2-transformed fold-change; NSCLC, non-small cell lung cancer. 

 
 
Table 12: Correlation of differential methylation between cfDNA of NSCLC patients and tissue from various primary 
tumors and normal lung. Filtering stringency refers to the comparison between the combined blood cell 5mC signal 
(i.e. monocytes, neutrophils and erythroid progenitors) and the median 5mC signal of NSCLC patient plasma samples at 
individual 300-bp genomic windows. For instance, at a cut-off of 50%, genomic windows with a blood cell 5mC level >50% of 
the median patient 5mC signals are excluded. Spearman rank correlation coefficients are listed for six cancer entities and non-
malignant lung tissue. 

Filtering 
stringency 

Spearman correlation coefficient (r) Remaining 
genomic 
regions LUAD BRCA COAD PRAD KIRC STAD Lung 

No filtering 0.11 0.11 0.09 0.12 0.11 0.08 0.10 9,603,454 

90% 0.15 0.16 0.13 0.16 0.14 0.11 0.12 2,584,031 

80% 0.16 0.16 0.13 0.17 0.15 0.11 0.13 2,204,550 

70% 0.17 0.17 0.14 0.18 0.16 0.11 0.14 1,825,746 

60% 0.18 0.19 0.15 0.20 0.17 0.13 0.15 1,484,681 

50% 0.21 0.21 0.17 0.21 0.18 0.16 0.16 1,338,865 

40% 0.23 0.23 0.20 0.23 0.20 0.18 0.17 937,531 

30% 0.24 0.24 0.21 0.24 0.21 0.20 0.18 719,468 

20% 0.26 0.26 0.23 0.25 0.22 0.22 0.18 577,701 

10% 0.26 0.26 0.23 0.24 0.21 0.23 0.17 468,683 
BRCA, breast carcinoma; cfDNA, cell-free DNA; COAD, colon adenocarcinoma; KIRC, kidney renal clear cell carcinoma; 
LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; PRAD, prostate adenocarcinoma; STAD, stomach 
adenocarcinoma. 
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In the next step, I investigated whether the blood cell 5mC filtering can facilitate the 
identification of cancer-specific 5mC signals from plasma. First, LUAD-specific 5mC 
alterations were identified from 450k methylation array data by differential analysis between 
primary tumor tissue of LUAD patients (n = 469) and various non-malignant tissues (i.e. 
lung, breast, colon, prostate, and kidney [n = 32 samples per tissue type]). I identified 3,276 
hyper- and 5,637 hypomethylated regions specific to LUAD and intersected them with the 
cfMeDIP-seq dataset. Next, summed 5mC signals (cfMeDIP-seq) were computed per sample 
at the LUAD-specific hypermethylated sites and compared between NSCLC patient samples 
and healthy controls. No difference in the 5mC signals was observed between the two 
groups when all 3,276 hypermethylated sites were included (Figure 16A, left; p = 0.058). In 
contrast, when only the sites remaining after blood cell filtering (n = 207) were considered, 
significantly higher 5mC signals in NSCLC patients compared to the healthy controls were 
found (Figure 16A, right; p = 2.3e-05). LUAD-specific hypomethylated sites showed no 
difference in the 5mC signals between the two groups (data not shown). Furthermore, I 
assessed whether the blood cell-filtered cfMeDIP-seq data can discriminate NSCLC patient 
samples from other cancer entities. For this purpose, I selected the top 100 uniquely hyper- 
and hypomethylated genomic regions of the six most common cancer types (i.e. lung, breast, 
colon, prostate, kidney, and stomach cancer) from 450k array data (Figure 16B and 
Figure S6B). The summed cfMeDIP-seq signal was computed at each cancer entity-unique set 
of regions and compared between patient and control samples. The LUAD-unique 
hypermethylated regions showed a significantly higher 5mC signal in the patient samples 
compared to the controls (Figure 16C; p = 3.0e-04). For the other cancer entity-unique sets of 
regions, only PRAD demonstrated a significantly increased 5mC signal in NSCLC patient 
samples (p = 0.03). Without blood cell filtering, I also observed a significantly higher sum of 
5mC signal in NSCLC patient samples at the LUAD-unique set of genomic regions. 
However, the difference between patients and controls was less pronounced (Figure S6A; 
p = 0.003). At hypomethylated sites, 5mC signals were lower in NSCLC patients compared to 
healthy individuals for all cancer entity-unique sets of regions when the entire cfMeDIP-seq 
data was considered. After blood cell filtering, there was no difference between patients and 
controls (Figure S6C), reflecting the lower accuracy of cfMeDIP-seq for the detection of 
hypomethylated regions. 
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Figure 16: 5mC signal comparison between NSCLC patients and healthy controls at cancer-specific loci. Boxplots 
illustrate the summed cfMeDIP-seq signal per sample comparing healthy controls (n = 13) to NSCLC patient plasma (n = 71). (A) 
cfMeDIP-seq signal comparison at genomic windows specifically hypermethylated in LUAD tissue compared to normal tissue 
types before (left; n = 3,276 genomic regions) and after (right; n = 207 genomic regions) exclusion of genomic regions 
hypermethylated in blood cells (i.e. monocytes, neutrophils and erythroid progenitors). (B) Heatmap of the top 100 uniquely 
hypermethylated genomic regions of the six most common cancer types determined from TCGA methylation data. 
(C) cfMeDIP-seq signal comparison at the entity-unique hypermethylated regions illustrated in (B), following the exclusion of 
regions hypermethylated in blood cells. The number of genomic regions remaining after blood cell signal filtering is indicated 
above the graphs for each cancer entity. BRCA, breast carcinoma; cfMeDIP-seq, cell-free methylation DNA 
immunoprecipitation sequencing; COAD, colon adenocarcinoma; CPM, counts per million; KIRC, kidney renal clear cell 
carcinoma; LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; PRAD, prostate adenocarcinoma; STAD, stomach 
adenocarcinoma. 

 
Finally, I assessed if the blood cell-filtered cfMeDIP-seq data was able to differentiate NSCLC 
patient samples from healthy individuals. To this end, patient samples were stratified based 
on chromosomal instability (t-MAD) scores determined from the same plasma samples by 
sWGS. The t-MAD score has been demonstrated to positively correlate with the tumor 
fraction in cfDNA (Dietz et al. 2020; Mouliere et al. 2018a). Therefore, high t-MAD score 
samples are potentially easier to differentiate from healthy controls. For this study, samples 
exceeding the third quartile of the cohort t-MAD score were defined as t-MADhigh (0.0174), 
while samples below the first quartile were graded t-MADlow (0.0074). PCA using the 0.5% 
most variable genomic windows with low blood cell methylation (n = 2,889) could partition 
t-MADhigh samples and most samples with an intermediate t-MAD score 
(0.0074 < t-MADmid < 0.0174) from the healthy controls. t-MADlow samples clustered closest to 
the controls (Figure 17A). When the PCA clustering was repeated using the top 0.5% variable 
genomic regions without blood cell filtering (n = 35,016), only t-MADhigh samples could be 
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discriminated from healthy individuals (Figure 17B). Combined, these results suggested that 
the exclusion of genomic regions hypermethylated in blood cells facilitates the identification 
of tumor-derived 5mC alterations. 
 

 
Figure 17: Principle component analysis of 5mC signals measured from NSCLC patient samples and healthy controls 
with and without blood cell filtering.  Principle component analyses of the top 0.5% genomic regions with the most variable 
5mC signals. (A) Plasma sample clustering after the exclusion of regions hypermethylated in blood cells (i.e. monocytes, 
neutrophils and erythroid progenitors) and (B) without blood cell filtering. Each dot represents one plasma sample from 13 
healthy controls (black) and 71 NSCLC patients (red). The different shades of red indicate patient samples with high (>0.0174; 
dark red), intermediate (0.0074 < t-MAD < 0.0174; red) and low (<0.0074; light red) t-MAD scores. The comparison between 
control samples and individual patient groups stratified by their t-MAD score are illustrated separately for better visualization. 
t-MAD, trimmed median absolute deviation from copy number neutrality. 
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3.6.2 Identification of differentially methylated regions between NSCLC 
patients and healthy controls 

Following the exclusion of genomic regions hypermethylated in non-tumor cfDNA, 
differential analysis was performed between NSCLC patient samples and healthy 
individuals to identify tumor-informative 5mC signals from the genome-wide cfMeDIP-seq 
data. For patients with longitudinal follow-up samples available, only the sample with the 
highest t-MAD score was included (n = 26). These samples contain the highest ctDNA 
fraction and are therefore easier to distinguish from healthy controls. The differential 
analysis was performed on 300-bp genomic windows remaining after blood cell 5mC signal 
filtering (n = 577,701), comparing 26 NSCLC patient to 13 control samples. In total, 5,297 
hyper- and 202 hypomethylated DMRs were identified (Figure 18A). The majority of DMRs 
were associated with intergenic regions and introns (Figure 18B). However, the highest 
enrichment of DMRs was found within the first exon, at promoter regions, 5´-UTRs, exons 
and TESs. Introns, intergenic regions and 3´-UTRs were only slightly enriched or 
underrepresented (Figure 18C). 
 

 
Figure 18: Differential analysis results comparing 5mC profiles of NSCLC patients to healthy individuals. (A) Volcano 
plot of differentially methylated regions (DMRs) determined from plasma samples of NSCLC patients (n = 26) versus healthy 
individuals (n = 13). Regions with p < 0.01 and |log2(fold-change)| > 1 are indicated in red. (B) Relative genomic distribution of 
DMRs. (C) DMR abundance at genomic elements relative to that expected by random distribution throughout the genome. 
Expressed as log2 enrichment with positive values indicating enriched more than expected. NSCLC, non-small cell lung cancer; 
TES, transcription end site; UTR, untranslated region. 

 
Hierarchical clustering using the entire 5,499 DMRs clearly separated all NSCLC samples 
from those of healthy individuals (Figure 19). Furthermore, it could be observed that the 
longitudinally taken samples clustered according to their t-MAD scores rather than with 
samples from the same patient. For example, 14 serial plasma samples taken from patient 
P028 are separated into three clusters of high, intermediate and low t-MAD scores. Similar 
observations were made for patients P012, P025 or P044. 
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Figure 19: Heatmap of differentially methylated regions comparing NSCLC patients to healthy controls. The heatmap 
illustrates clustering of 71 NSCLC patient samples and 13 healthy controls (Euclidean distance and Ward clustering) based on 
5,499 differentially methylated regions (DMRs) identified between cases and controls following exclusion of genomic regions 
hypermethylated in blood cells (i.e. monocytes, neutrophils and erythroid progenitors). Patient identifiers are provided for each 
column with “P” representing NSCLC patients and “N” controls. NSCLC, non-small cell lung cancer; t-MAD, trimmed median 
absolute deviation from copy number neutrality. 

 
Earlier, I demonstrated that the exclusion of genomic regions hypermethylated in blood cells 
could identify cancer-associated 5mC alterations in plasma of NSCLC patients. Here, I 
investigated whether differential analysis could further enhance the detectability of tumor-
derived 5mC signals. For this purpose, DMRs were intersected with the same genomic 
regions previously determined to be hypermethylated specifically in LUAD tissue (LUAD vs. 
non-cancerous tissue types; LUAD-specific) and uniquely hypermethylated in LUAD 
compared to other cancer entities (entity-unique). In total 25 LUAD-specific and three entity-
unique genomic regions overlapped with the DMRs. Notably, none of the genomic regions 
uniquely hypermethylated in other cancer entities (i.e. breast, colon, prostate, kidney, and 
stomach cancer) could be intersected. Significantly higher summed 5mC signals were 
observed in NSCLC patient samples compared to healthy controls at both the LUAD-specific 
(Figure 20A; p = 1.3e-06) and entity-unique DMRs (Figure 20B; p = 9.1e-05). The difference in 
the summed 5mC signal between the two groups after selection of DMRs was higher when 
compared to the exclusion of blood cell hypermethylated regions alone (Figure 16A; 
p = 2.3e-05 and Figure 16C; p = 3.0e-04). 
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Figure 20: 5mC signals at LUAD-specific genomic regions. Boxplots show the summed 5mC signal – as normalized counts 
per million (CPM) – for 13 healthy controls and 71 NSCLC patients. (A) 5mC signal of DMRs at genomic regions 
hypermethylated specifically in LUAD tissue versus various non-malignant tissue types (n = 25) and (B) at regions uniquely 
hypermethylated in LUAD tissue compared to other cancer entities (n = 3). NSCLC, non-small cell lung cancer. 

 
 
3.6.3 TSS-proximal hypermethylation is associated with low expression in lung 

adenocarcinoma tissue 

Repression of tumor suppressor genes by promoter hypermethylation is a common event in 
cancer (Greenberg and Bourc'his 2019; Hansen et al. 2011). The previously identified DMRs 
were enriched at genomic elements proximal to TSSs (i.e. promoter regions, 5´-UTRs and 
first exons). Therefore, I investigated whether the 5mC signal at these elements would allow 
inferring the transcriptional status of associated genes from plasma of NSCLC patients. 
TCGA RNA sequencing data (Grossman et al. 2016) was used to determine LUAD-specific 
expression patterns comparing primary tumor tissue of LUAD patients (n = 533) to various 
non-cancerous tissues (i.e. lung, breast, colon, prostate, kidney, and stomach [n = 29 samples 
per tissue type]). This resulted in 7,133 differentially expressed genes (3,457 up- and 3,676 
downregulated). To identify gene regulatory DMRs, LUAD-specific differentially expressed 
genes were overlapped with DMRs located within promoters, 5´-UTRs and first exons 
(Figure 21A). Fifty-four hypermethylated DMRs at 45 genes (Table S3) coincided with 
downregulated expression in LUAD tissue, while only 18 hypermethylated sites were 
located at genes with elevated expression. No hypomethylated DMRs overlapped with 
differentially expressed genes. Permutation testing was performed to assess the significance 
of overlap between hypermethylated DMRs and differentially regulated genes. This revealed 
significant enrichment of DMRs coinciding with downregulated (p = 1.0e-04) but not with 
upregulated expression (p = 0.284) at promoters, 5´-UTRs and first exons (Figure S7A). Other 
elements (i.e. exons, TESs, 3´-UTRs, introns, and intergenic regions) showed no enrichment 
of DMRs at genes down- or upregulated in LUAD tissue (Figure S7B). 
The following investigations focused on the 54 DMRs associated with downregulated gene 
expression in LUAD tissue. These genes are likely to be epigenetically regulated by their 
TSS-proximal 5mC levels. The NSCLC-specific cfDNA hypermethylation of 35 DMRs was 
confirmed in LUAD tissue, using TCGA methylation data (LUAD vs. normal tissue). Six 
DMRs were hypo- or not differentially methylated in LUAD tissue and 13 DMRs were not 
covered by the 450k array (Table S3). The majority of the genes associated to downregulated 
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expression coded for transcription factors (n = 12) or long non-coding RNAs (lncRNA; n = 9). 
In total, 30 out of 45 genes were previously described in the context of cancer; with 24 genes 
associated with tumor suppressive functions (Figure 21B). Some of the most significantly 
hypermethylated DMRs included members of the GATA transcription factor family (i.e. 
GATA3 and GATA4) as well as homeobox genes such as HOXA9 (Figure 21C). This was in 
line with previous reports, showing promoter hypermethylation and consequential 
expression downregulation of these genes in NSCLC (Faryna et al. 2012; Gao et al. 2019; 
Zhao et al. 2019). SOX9-AS1 was the most significantly hypermethylated lncRNA gene. It has 
been described as a regulator of SOX9, which promotes proliferation in NSCLC cell lines via 
activation of Wnt/b-catenin signaling. Epigenetic silencing of SOX9-AS1 therefore favors 
NSCLC tumorigenesis (Barter et al. 2017; Guo et al. 2018). Interestingly, three of the 
identified genes (HOXA9, GATA4 and CDO1) were recently included in an 8-gene-panel 
whose promoter hypermethylation measured from cfDNA was used for the diagnosis of 
stage I NSCLC (nodule size ≤ 3.0 cm) (Chen et al. 2020a). Table S3 summarizes literature 
search on the cancer association of all 45 genes. 
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Figure 21: Relationship between TSS-proximal cfDNA methylation and gene expression in LUAD tissue. (A) Starburst 
plot comparing cfDNA methylation (NSCLC patients vs. healthy controls) and gene expression (LUAD tissue vs. non-cancerous 
lung, breast, colon, prostate, kidney, and stomach tissue). Each dot represents a TSS-associated genomic region and colors 
indicate significance of the differential expression/methylation analysis. Differentially methylated regions (DMRs) and genes 
with p < 0.01 and -1 < log2(fold-change) < 1 were considered significant. Percentages refer to the relative number of both 
differentially expressed genes and differentially methylated regions within each quadrant of the plot. (B) Overview of the 
cancer association of the 45 genes with TSS-proximal hypermethylation in plasma of NSCLC patients and downregulated 
expression in LUAD tissue. (C) CfDNA 5mC signal and tissue expression of representative genes with TSS-associated DMRs. 
Plasma 5mC levels (left) are illustrated for healthy controls (n = 13) and NSCLC patient samples (n = 71) with each dot 
representing one sample. Gene expression boxplots (right) compare LUAD (n = 533 samples) to normal tissue (n = 174; same 
tissue types as in (A)). CfMeDIP-seq, cell-free methylation DNA immunoprecipitation sequencing; CPM, counts per million; 
FPKM, fragments per kilobase per million reads; LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; TSS, 
transcription start site. 
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3.6.4 Selection of diagnostic and prognostic 5mC biomarkers 

To identify diagnostic and prognostic 5mC biomarkers from plasma, samples were divided 
into three groups: (1) NSCLC patient plasma taken at time points of radiologically 
progressive disease (PD; n = 28), (2) patient plasma sampled at non-PD time points (i.e. stable 
disease [SD], partial response [PR], and initial diagnosis; n = 37), and (3) plasma from healthy 
individuals (n = 13). A sensitive diagnostic 5mC marker should discriminate PD but also 
non-PD samples from healthy controls, while a prognostic marker should be able to 
differentiate PD from non-PD plasma samples. To reduce the number of potential 
biomarkers, I focused on hypermethylated DMRs associated with LUAD biology as 
determined from TCGA methylation and expression data. These included (i) TSS-proximal 
DMRs associated with downregulated gene expression in LUAD tissue, (ii) DMRs 
hypermethylated in LUAD but not in non-malignant tissue types, and (iii) DMRs uniquely 
hypermethylated in LUAD tissue compared to other cancer entities. LUAD-specific 
methylation and expression datasets were determined as described in sections 3.6.1 and 3.6.3 
and overlapped with 71 DMRs at 57 genes (Figure 22A). The majority of genes were either 
associated with transcription factors (TFs; n = 16) or lncRNAs (n = 11). The 57 potential 
marker genes were not enriched at lung cancer associated gene sets obtained from MSigDB 
(data not shown). For biomarker identification, 5mC signals of DMRs mapping to the same 
gene were combined by summation.  
The 5mC levels at 54 genes were significantly increased in PD samples, and 44 genes could 
additionally discriminate non-PD samples from healthy controls. Furthermore, 31 potential 
prognostic marker genes with significantly higher 5mC signals were found in PD compared 
to non-PD samples. A total of 21 5mC biomarkers differentiated between non-PD and 
healthy samples as well as PD and non-PD samples (Figure S8A). Among these, 
HOXA10-AS, SOX9-AS1, PRAC1 and PTGER4 presented the most significant differences 
between the sample groups (Figure 22B). TCGA LUAD data demonstrated transcriptional 
downregulation of HOXA10-AS, SOX9-AS1 and PRAC1 in tissue coinciding with TSS-
proximal hypermethylation determined from plasma. LUAD-specific hypermethylation 
compared to non-malignant tissues was found at HOXA10-AS, PRAC1 and PTGER4. Recent 
literature described SOX9-AS1 to have tumor suppressive properties in NSCLC (Barter et al. 
2017; Guo et al. 2018), while PRAC1 was defined as tumor suppressor in renal, colon and 
prostate cancer (Hu et al. 2018). Notably, transcriptional repression of PRAC1 by promoter 
hypermethylation in colon cancer was associated with co-regulation of HOXB13 (Hu et al. 
2018), a tumor suppressor that was also hypermethylated in the 5mC dataset of this study. 
While the role of PTGER4 in NSCLC tumors remains elusive, its promoter hypermethylation 
– in combination with SHOX2 hypermethylation – has been used as a plasma-based 
biomarker for the diagnosis of NSCLC (Weiss et al. 2017). SHOX2 was also identified to be 
hypermethylated in plasma of NSCLC patients but was not associated with methylation or 
expression in LUAD tissue. Another study demonstrated that reduced PTGER4 plasma 
methylation indicated therapy success in stage IV NSCLC patients (Schotten et al. 2021). The 
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lncRNA HOXA10-AS was found to be co-expressed with HOXA10 and regulates its 
transcription initiation by recruitment of the SNF2L chromatin remodeling complex. Both 
HOXA10 and HOXA10-AS were described to be highly expressed in various cancer entities – 
including NSCLC – and associated with oncogenic functions (i.e. increased cell proliferation, 
migration, invasiveness and inhibition of apoptosis) (Shao et al. 2018; Sheng et al. 2018). The 
consequences of HOXA10-AS hypermethylation in cancer have not yet been elucidated. 
Further potential diagnostic and prognostic 5mC biomarkers are illustrated in Figure S8, and 
literature search on their association to cancer is summarized in Table S3. 
 

 
Figure 22: Representative diagnostic and prognostic 5mC biomarkers. (A) Venn diagram illustrating the overlap between 
genomic regions hypermethylated in NSCLC patient plasma compared to healthy controls at genes associated to 
downregulated expression in LUAD tissue (expression-associated), specifically hypermethylated in LUAD tissue compared to 
non-malignant tissue types (LUAD-specific) and uniquely hypermethylated in LUAD compared to other cancer entities (entity-
unique). Genes are listed alongside their log2 fold-changes in brackets. (B) Representation of the top four most significant 5mC 
biomarker genes capable of differentiating healthy control samples (n = 13) from non-progressive (non-PD; n = 37) samples and 
non-PD from progressive (PD; n = 28) samples. LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer.  
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3.6.5 5mC biomarkers correlate with tumor-specific genomic markers 
measured from the same plasma samples  

Genomic alterations detected in cfDNA of cancer patients are often tumor-specific (van der 
Pol and Mouliere 2019). To confirm the tumor association of the identified 5mC biomarkers, 
5mC signals were correlated to genomic alterations determined from the same plasma 
samples. As part of another project, CAPP-seq and sWGS was performed to capture the 
genomic landscape (i.e. SNVs and CNAs) in plasma of NSCLC patients (Dietz et al. 2020). 
The quantified genomic biomarkers included the EML4-ALK fusion gene as well as ALK 
resistance mutations, TP53 co-mutations and chromosomal instability (t-MAD scores). 
Figure 23 depicts the correlation of four 5mC biomarkers – previously identified to be 
diagnostic and prognostic in the presented cohort – to the abundance of the EML4-ALK 
fusion gene, the maximal variant allele frequencies (VAFmax), and the t-MAD score. VAFmax 
represents the sum of all quantified mutations in the gene panel used. This metric provides 
an estimation of the total genomic tumor burden within a plasma sample and accounts for 
tumor heterogeneity and polyclonality (Velimirovic et al. 2020). Positive correlations were 
observed between all 5mC biomarkers and the genomic tumor-derived alterations. 5mC 
signals were most similar to the t-MAD score, with PTGER4 demonstrating the overall 
highest Pearson correlation coefficient (r = 0.86). Other 5mC marker genes with high 
correlations to genomic alterations in plasma include HTR1B, CELF2, CLEC14A and HOXA9 
(Table S4). Table S4 additionally provides the Pearson correlation coefficients and 
corresponding p-values comparing 5mC biomarkers to the abundance of TP53 and ALK 
resistance mutations (i.e. L1196M and G1202R) in cfDNA. 
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Figure 23: 5mC biomarker correlation to genomic markers measured from the same plasma samples. Correlation of 
the 5mC signal (cfMeDIP-seq) at four marker genes (HOXA10-AS, SOX9-AS1, PRAC1, and PTGER4) and genomic tumor 
biomarkers (EML4-ALK fusion gene, VAFmax, and t-MAD score) measured from the same plasma samples. VAFmax represents 
the summed up variant allele frequency of all mutations detected per plasma sample. Linear regression lines are displayed in 
black for each marker combination and Pearson correlation coefficients are illustrated. ALK, anaplastic lymphoma kinase; 
CPM, counts per million; EML4, echinoderm microtubule-associated protein-like 4; t-MAD, trimmed median absolute 
deviation from copy number neutrality; VAFmax, maximal variant allele frequency. 

 
 

3.6.6 Plasma 5mC biomarkers reflect therapy response and disease 
progression in longitudinal samples 

The presented cohort included eleven patients with longitudinally taken plasma samples 
available, ranging from two to 14 samples per patient (Figure 8). All plasma samples were 
analyzed retrospectively and did not influence therapy decision. The 5mC signals at selected 
marker genes were compared to the patients´ clinical courses and the co-measured genomic 
tumor biomarkers. In most cases, 5mC signals reflected the clinical status of the respective 
patient, rising at TKI failure and time points of radiologically progressive disease and 
decreasing at successful therapeutic interventions (Figure 24A-E and Figure S9-13). The 
cohort comprised nine instances of disease progression with available plasma samples from 
a previous SD time point. Rising 5mC levels from the SD to the PD time point indicated 
progression in 7/9 (HOXA10-AS), 5/9 (PRAC1), 8/9 (SOX9-AS1), and 9/9 (PTGER4) cases. 
Eight patients deceased shortly after the last sampling time point. Increased 5mC levels were 
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observed in the plasma samples taken before the patient´s death in the majority of cases 
(6/8, HOXA10-AS; 8/8, SOX9-AS1; 6/8 PRAC1; 7/8, PTGER4). Similar results were obtained 
when the kinetics of genomic tumor biomarkers were inspected. For patient P028 
(Figure 24A), 14 serial plasma samples were available for 5mC analysis. This allowed narrow 
therapy surveillance over the course of multiple lines of TKI and chemotherapy. Steadily 
increasing SOX9-AS1 5mC levels correctly indicated both alectinib failure and ineffective 
ceritinib treatment, which was accompanied by the emergence of the ALK G1202R resistance 
mutation. 5mC levels dropped following lorlatinib administration (active against ALK 
G1202R), indicating initial response of the patient. The patient´s response was additionally 
reflected by the clearance of ALK G1202R and decreasing abundances of all genomic tumor 
markers. Lorlatinib failure coincided with an elevated 5mC signal and temporary disease 
control due to chemotherapy was reflected by low 5mC levels. At disease progression under 
chemotherapy, treatment was switched to brigatinib which stabilized the patient´s disease 
and resulted in a drop of both 5mC and genomic markers. Shortly after, steep increase of the 
5mC signal together with rising genomic tumor biomarkers reflected rapid disease 
progression, followed by the patient´s death. The course of patient P028 suggested that 5mC 
signals could indicate molecular progression earlier than radiological disease evaluation. 
Clinical progression under alectinib treatment was first identified at day 161. However, 
SOX9-AS1 5mC levels already indicated progression by a 2.5-fold increase of the 5mC signal 
at day 49 (112 days earlier). Afterwards, the 5mC signal persistently rose until successful 
therapeutic intervention. 5mC levels of HOXA10-AS and PTGER4 indicated progression at 
the same time point. Notably, genomic biomarkers also predicted progression prior to 
radiological disease assessment (emergence of the EML4-ALK fusion gene, ALK G1202R 
mutation and rising t-MAD score), albeit at a later time point (day 106). Other instances of 
early identification of disease progression were observed in patient P044 (PTGER4; day 481; 
Figure S11), patient P025 (HOXA10-AS; day 112) and patient P012 (HOXA10-AS; day 273; 
Figure S9), preceding radiology by 27, 47 and 119 days, respectively. Here, genomic 
biomarkers predicted progression at the same time points or earlier. 
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Figure 24: Representative profiles of patients illustrating the utility of SOX9-AS1 hypermethylation in cfDNA as 
biomarker for therapy monitoring of ALK+ NSCLC patients. SOX9-AS1 methylation (cfMeDIP-seq), molecular alterations 
(CAPP-seq) and t-MAD score (sWGS) dynamics in plasma cfDNA during sequential ALK-directed tyrosine kinase inhibitor 
treatment and chemotherapy of patients (A) P028, (B) P044, (C) P012, (D) P025, and (E) P019. The dotted horizontal line 
represents the median SOX9-AS1 5mC signal of 13 healthy individuals. Radiological disease assessments are indicated above 
each plot and administered therapy lines are shown by the background colors. Each dot represents one plasma sample. ALK, 
anaplastic lymphoma kinase; CAPP-seq, Cancer Personalized Profiling by deep sequencing; cfMeDIP-seq, cell-free methylation 
DNA immunoprecipitation; CPM, counts per million; CTx, chemotherapy; EML4, echinoderm microtubule-associated protein-
like 4; IDx, initial diagnosis; PD, progressive disease; PR, partial response; SD, stable disease; t-MAD, trimmed median absolute 
deviation from copy number neutrality; VAFmax, maximal variant allele frequency. 
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3.7 Identification of NSCLC-specific 5hmC biomarkers by 
hMeSEAL-seq 

To identify NSCLC-specific 5hmC signatures from cfDNA, I adapted the bioinformatic 
workflow previously described for the identification of tumor-informative 5mC alterations 
(Figure 14). This comprised the exclusion of genomic regions with high 5hmC levels in blood 
cells (i.e. monocytes, neutrophils and erythroid progenitors), followed by differential 
analysis between NSCLC patient and healthy control samples. As reference 5hmC profiles 
were not available for this study, blood cell filtering was performed based on the threshold 
established on the basis of the 5mC data. Moreover, D(h)MRs were only associated with 
LUAD tissue expression data. 
Genome-wide 5hmC profiles were generated from primary monocytes, neutrophils and 
erythroid progenitor cells to identify genomic regions hyper-hydroxymethylated in non-
tumor plasma cfDNA. On average, 55.7 million paired reads were obtained and CpG 
enrichment scores (mean = 1.73) confirmed successful 5hmC precipitation (further 
sequencing quality metrics are provided in Table S2). The blood cells´ 5hmC signals were 
integrated at 300-bp genomic windows as described in section 3.6.1 and regions with 
combined blood cell 5hmC signals <20% of the median signals in NSCLC plasma were 
retained for further analysis. This resulted in 499,681 out of 9,603,454 genomic regions 
remaining. PCA clustering analysis on the 0.5% genomic regions with the most variable 
5hmC signals was performed with (Figure 25A; n = 2,498) and without (Figure 25B; 
n = 37,121) exclusion of blood cell signals. Hereby, it was evaluated whether the blood cell 
filtering facilitates the differentiation between patient and healthy control samples. Patients 
were stratified by their t-MAD scores to test if samples with high tumor-fractions (t-MADhigh) 
are easier to distinguish from controls compared to samples with lower ctDNA content 
(t-MADmid and t-MADlow). Patient samples without available t-MAD scores were excluded 
from this analysis, resulting in 68 patient and 14 control samples remaining. PCA clusters 
without blood cell filtering revealed no clear separation between NSCLC and control 
samples irrespective of the sample t-MAD score. However, an improved separation was 
observed when compared to the PCA results following the exclusion of hyper-
hydroxymethylated regions in blood cells (Figure 25A and B). Notably, separation between 
patient and control samples did not improve in t-MADhigh samples as observed in the 5mC-
enriched sequencing data (Figure 17A and B). The improved PCA clustering after blood cell 
filtering suggested a higher tumor association of the remaining genomic regions compared 
to the consideration of all regions. Therefore, further analysis steps were carried out on blood 
cell-filtered 5hmC profiles. 
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Figure 25: Principle component analysis of 5hmC signals measured from NSCLC patient samples and healthy controls 
with and without blood cell filtering. Principle component analyses of the top 0.5% genomic regions with the most variable 
5hmC signals with (A) and without (B) the exclusion of genomic regions hyper-hydroxymethylated in blood cells (i.e. 
monocytes, neutrophils and erythroid progenitors). Each dot represents one plasma sample from 14 healthy controls (black) 
and 68 NSCLC patients (blue). The different shades of blue indicate patient samples with high (>0.0174; dark blue), intermediate 
(0.0074 < t-MAD < 0.0174; blue) and low (<0.0074; light blue) t-MAD scores. The comparison between control samples and 
individual patient groups stratified by their t-MAD score are illustrated separately for better visualization. t-MAD, trimmed 
median absolute deviation from copy number neutrality. 
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3.7.1 Identification of differentially hydroxymethylated regions between 
NSCLC patients and healthy controls 

For the identification of tumor-informative 5hmC alterations, I performed differential 
analysis between NSCLC and healthy control samples. Analogous to the identification of 
DMRs (section 3.6.2), only the sample with the highest t-MAD score per patient was 
included, resulting in 28 patient and 14 control samples. Differential analysis was carried out 
on 499,681 300-bp genomic windows. A total of 424 hyper- and 71 hypo-hydroxymethylated 
DhMRs were identified (Figure 26A). Most DhMRs were found within or proximal to genes, 
with the majority mapping to introns. Sixteen TSS-proximal DhMRs (±1,500 bp) were 
identified and 21 DhMRs were associated with exons, TESs or 3´-UTRs (Figure 26B). 
 

 
Figure 26: Differential analysis results comparing 5hmC profiles of NSCLC patients to healthy controls. (A) Volcano plot 
showing differentially hydroxymethylated regions (DhMRs) determined from plasma of NSCLC patients (n = 28) and healthy 
individuals (n = 14). Regions with p < 0.01 and |log2(fold-change)| > 1 are indicated in blue. (B) Relative genomic distribution of 
DhMRs. NSCLC, non-small cell lung cancer; TES, transcription end site; UTR, untranslated region. 

 
A separation between all NSCLC (n = 74) and healthy control samples (n = 14) was observed 
after hierarchical clustering using the 495 DhMRs (Figure 27). Similar to the clustering based 
on DMRs (Figure 19), samples with high t-MAD scores demonstrated close association with 
one another. This could be observed at several instances where longitudinally taken samples 
cluster closer to those with similar t-MAD scores than samples taken from the same patient. 
For example, the t-MADhigh plasma samples of patients P012, P028 and P044 demonstrated 
similar 5hmC profiles at the 495 DhMRs. These samples were taken shortly before the 
respective patient´s death, highlighting their progressive disease status and the elevated 
ctDNA fraction. This suggests that the identified DhMRs capture tumor-derived 5hmC 
alterations. 
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Figure 27: Heatmap of differentially hydroxymethylated regions comparing NSCLC patients to healthy controls. 
Clustering of 74 NSCLC patient and 14 healthy control samples (Euclidean distance and Ward clustering) based on 495 
differentially hydroxymethylated regions (DhMRs). DhMRs were identified between patients and controls following exclusion 
of genomic regions hyper-hydroxymethylated in blood cells (i.e. monocytes, neutrophils and erythroid progenitors). Patient 
identifiers are provided for each column with “P” representing NSCLC patients and “N” controls. NSCLC, non-small cell lung 
cancer; t-MAD, trimmed median absolute deviation from copy number neutrality. 

 
 

3.7.2 5hmC signals in cfDNA are associated with gene expression in lung 
adenocarcinoma tissue 

The accumulation of 5hmC within gene bodies as well as immediate upstream regions was 
demonstrated in several studies and positively correlated with the expression of associated 
genes (Madzo et al. 2014; Neri et al. 2013; Song et al. 2011; Szulwach et al. 2011). Previously, I 
observed that genes with TSS-proximal (±1,500 bp) 5hmC peaks in cfDNA of healthy donors 
showed higher expression in whole blood compared to genes without 5hmC modifications 
near their TSS (see 3.5; Figure 13B). Here, I assessed whether the 5hmC signal of the 
identified DhMRs could inform about tumor-related transcriptional processes. For this 
purpose, 5hmC signals of TSS-proximal as well as gene body associated DhMRs were 
compared with LUAD-specific gene expression determined from TCGA RNA sequencing 
data (Grossman et al. 2016) as described in section 3.6.3 (Figure 28A). Two out of 16 TSS-
proximal DhMRs were associated with differentially expressed genes. KPNA7 and KIF25 
were both hydroxymethylated at a higher level in cfDNA of NSCLC patients and were 
upregulated in LUAD tissues. Both genes have not yet been described in the context of lung 
cancer, however, high expression of KPNA7 was demonstrated to increase cell proliferation 
in pancreatic and breast cancer cell lines (Vuorinen et al. 2018), while KIF25 – alongside other 
members of the kinesin gene family – was shown to be highly expressed in estrogen 
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receptor-positive breast cancer cells (Zou et al. 2014). The inclusion of all gene body 
associated DhMRs identified 14 additional hyper-hydroxymethylated DhMRs that coincide 
with elevated gene expression in LUAD tissues. Eleven out of 16 genes (including KPNA7 
and KIF25) have been described to be associated with oncogenic properties in different 
cancer entities. Two genes were related to tumor suppressive functions, and three were not 
yet described in a cancer context (Figure 28B and Table S5). The most significantly hyper-
hydroxymethylated DhMRs were found within introns of FOXD4L1, HECW2, ALCAM, and 
IL1RAP and in the promoter region of KPNA7. Expression levels of the cell adhesion 
molecule ALCAM were previously described to be upregulated in NSCLC, breast, and 
prostate cancer patients and are associated with poor prognosis (Burkhardt et al. 2006; 
Münsterberg et al. 2020; Sanders et al. 2019). In vitro and in vivo models revealed reduced cell 
adhesion and tumor cell dissemination upon ALCAM knockout, demonstrating its role as a 
promoter of brain metastasis formation (Sanders et al. 2019). Interestingly, ALCAM 
expression was also detectable in circulating tumor cells (CTCs) of NSCLC patients and 
correlated with its expression in matched brain metastasis tissue (Sanders et al. 2019). 
IL1RAP codes for a co-receptor of the interleukin-1 receptor and is overexpressed in various 
solid tumors, including lung cancer (Lv et al. 2021; Millrud et al. 2020). Currently, two 
clinical trials investigate the efficacy of an IL1RAP-targeting antibody (CAN04) in 
combination with platinum-based chemotherapy (NCT03267316) and immune checkpoint 
inhibition by pembrolizumab (NCT04452214) in solid tumors (i.e. NSCLC, urothelial 
carcinoma, malignant melanoma, and head and neck squamous cell carcinoma). FOXD4L1 
and HECW2 have not yet been described in a cancer context. Notably, the majority of hyper-
hydroxymethylated DhMRs within gene bodies (48/75) coincided with downregulated gene 
expression, suggesting a weaker association to active gene expression compared to TSS-
proximal DMRs. 
Eight transcriptionally downregulated genes in LUAD contained hypo-hydroxymethylated 
DhMRs within their gene body, all of which were located within introns (Table S6). Three of 
these (PDZRN4, ANGPTL1, and PRKG2) have been reported to act as tumor suppressors in 
different cancer types, while only FGF1 was associated with oncogenic properties (the others 
have not been described in cancer yet). The literature search on hyper- and hypo-
hydroxymethylated DhMRs associated with upregulated and downregulated gene 
expression is summarized in Table S5 and Table S6, respectively. 
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Figure 28: Relationship between TSS-proximal and gene body associated cfDNA hydroxymethylation and gene 
expression in LUAD tissue. (A) Starburst plot comparing cfDNA hydroxymethylation (NSCLC patients vs. healthy controls) 
and gene expression (LUAD tissue vs. non-cancerous lung, breast, colon, prostate, kidney, and stomach tissue). Each dot 
represents one TSS- or gene body-associated genomic region and colors indicate significance of the differential 
expression/hydroxymethylation analysis. Percentages refer to the relative number of both differentially expressed genes and 
differentially hydroxymethylated regions within each quadrant of the plot. (B) Overview of the cancer association of the 16 
genes (Table S5) with upregulated gene expression in LUAD tissue and hyper-hydroxymethylated genomic regions in cfDNA 
of NSCLC patients. (C) Boxplots illustrate cfDNA 5hmC signals and LUAD tissue expression of representative genes. 5hmC 
levels (left) are illustrated for healthy controls (n = 14) and NSCLC patient samples (n = 74) with each dot representing one 
sample. Gene expression boxplots (right) compare LUAD (n = 533 samples) to normal tissue (n = 174; same tissue types as in 
(A)). CPM, counts per million; FPKM, fragments per kilobase per million reads; hMeSEAL, hydroxymethylation selective 
chemical labeling; LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; TSS, transcription start site. 

 
 

3.7.3 Selection of 5hmC biomarkers 

For the identification of potential 5hmC biomarkers, I focused on DhMRs mapping to genes 
previously associated with upregulated expression in LUAD tissue and validated in the 
recent literature to have oncogenic properties in NSCLC or other cancer entities. This 
resulted in eleven marker candidates listed in Table S5. The 5hmC signals of these DhMRs 
were correlated to the abundance of genomic alterations measured from the same plasma 
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samples (Dietz et al. 2020). The same genomic alterations as described in section 3.6.5 were 
used (i.e. SNVs and CNAs). This step aimed to validate the tumor association of the 
identified 5hmC markers. DhMRs at KPNA7 and KIF25 were the only 5hmC biomarkers with 
significant correlations to at least one of the assessed genomic alterations (Figure 29A and B; 
Table S5). The highest correlation was observed between KPNA7 and the t-MAD score 
(Pearson, r = 0.40). Interestingly, DhMRs at KPNA7 and KIF25 were the only biomarker 
candidates located within promoter regions; all other candidate marker DhMRs mapped 
within introns. Compared to 5mC biomarkers, the 5hmC associated marker genes 
demonstrated lower correlations to the genomic alterations. 
Analogous to the identification of 5mC biomarkers, I assessed whether the 5hmC signals at 
the selected marker candidates could distinguish between cfDNA samples from NSCLC 
patients and healthy controls as well as PD from non-PD patient samples. More than half of 
the marker genes (7/11) demonstrated significantly higher 5hmC signals in patient samples 
compared to the healthy controls. Differentiation between PD and non-PD samples was 
possible only based on the 5hmC levels at the IL1RAP gene locus (Figure 29C). 
 

 
Figure 29: Representative 5hmC biomarker candidates. Correlation of (A) KPNA7 and (B) KIF25 5hmC signals to t-MAD 
scores determined in the same plasma samples from shallow whole-genome sequencing data. Each dot represents one plasma 
sample and Pearson correlation coefficients are illustrated. (C) IL1RAP 5hmC signals compared between healthy controls 
(n = 14), patient samples taken at non-progressive time points (non-PD; n = 37) and samples taken at progressive time points 
(PD; n = 31). Each dot represents one plasma sample. CPM, copies per million; t-MAD, trimmed median absolute deviation 
from copy number neutrality. 
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3.7.4 5hmC biomarkers predict therapy failure in longitudinally taken plasma 
samples 

To investigate whether 5hmC signals could predict therapy success in longitudinally 
collected LUAD samples, KPNA7, KIF25 and IL1RAP were chosen as candidate biomarkers. 
The 5hmC signals at these genes were either significantly correlated with genomic alterations 
(i.e. t-MAD and VAFmax) or significantly elevated in PD compared to non-PD samples. In 
four patients, the radiologically assessed disease state was reflected by the abundance of 
5hmC signals at the investigated marker regions (Figure 30A-D). The response of patient 
P044 (Figure 30A) to crizotinib treatment was accompanied by successively decreasing 
IL1RAP 5hmC signals. Disease progression at day 508 was indicated by increasing 5hmC 
levels and ineffective ceritinib treatment coincided with high 5hmC signals at day 640, 
shortly before the patient´s death. Genomic alterations (i.e. t-MAD score, VAFmax and the 
EML4-ALK fusion), the previously identified 5mC biomarkers and radiology captured 
ceritinib failure earlier compared to the 5hmC marker. Similarly, response to crizotinib of 
patient P005 (Figure 30B) coincided with decreasing IL1RAP 5hmC levels, while 5hmC 
signals increased in the plasma sample taken few days before the patient´s death. In total, 
eight patients deceased shortly after the last plasma sampling time point. The patients´ 
deaths were preceded by increasing IL1RAP 5hmC signals at 6/8 cases, while KPNA7 and 
KIF25 5hmC levels increased in 3/8 and 4/8 patients, respectively. At ten instances, 5hmC 
profiles of PD samples and preceding SD samples were available. The 5hmC signal increase 
from the SD to the PD time point correctly indicated disease progression in 6/10 (IL1RAP), 
5/10 (KIF25) and 2/10 (KPNA7) cases. Persistently rising IL1RAP 5hmC signals during 
alectinib treatment of patient P028 (Figure 30D) could predict therapy failure already at day 
49, while radiological progression was first detected 112 days later. 5mC biomarkers 
predicted therapy failure at the same time point, and cfDNA genomic alterations (i.e. t-MAD 
score, EML4-ALK fusion and ALK G1202R) preceded radiological progression by 55 days. 
KIF25 5hmC levels indicated alectinib failure at the same time point as IL1RAP 
hydroxymethylation. 5hmC markers did not precede radiological disease assessment in 
other patients. 
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Figure 30: Representative patients illustrating the utility of IL1RAP 5hmC levels in cfDNA as biomarker for therapy 
monitoring of ALK+ NSCLC patients. IL1RAP 5hmC levels, molecular alterations (CAPP-seq) and t-MAD score (sWGS) 
dynamics in plasma cfDNA during sequential ALK-directed tyrosine kinase inhibitor treatment and chemotherapy of patients 
(A) P044, (B) P005, (C) P012, and (D) P028. The dotted horizontal line represents the median IL1RAP 5hmC signal of 14 healthy 
individuals. Radiological disease assessments are indicated above each plot and administered therapy lines are shown by the 
background colors. Each dot represents one plasma sample. ALK, anaplastic lymphoma kinase; CAPP-seq, Cancer Personalized 
Profiling by deep sequencing; cfMeDIP-seq, cell-free methylation DNA immunoprecipitation; CPM, counts per million; CTx, 
chemotherapy; EML4, echinoderm microtubule-associated protein-like 4; IDx, initial diagnosis; PD, progressive disease; PR, 
partial response; SD, stable disease; t-MAD, trimmed median absolute deviation from copy number neutrality; VAFmax, 
maximal variant allele frequency. 
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3.8 Inference of copy number alterations from 5mC data 
Somatic CNAs are common in many metastatic cancers and can provide estimates for tumor 
burden based on cfDNA samples. Commonly, sWGS is used as a cost-effective method for 
the assessment of copy number changes from liquid biopsies (Dietz et al. 2020; Mouliere et 
al. 2018b; Smith et al. 2020). Here, I explored whether genome-wide 5mC and/or 5hmC 
profiles can also be used to detect CNAs from cfDNA. This would allow simultaneous 
genomic and epigenomic tumor assessment from the same dataset. As a reference, copy 
number profiles from sWGS data (Dietz et al. 2020) at 1 Mb bins were generated using the 
ichorCNA software (Adalsteinsson et al. 2017). Afterwards, CNAs in the corresponding 
5mC- and 5hmC-enriched sequencing datasets were analyzed using the same algorithm. 
Matched CNA patterns were found in several patient samples when comparing copy 
number profiles from 5mC-enriched sequencing data to sWGS data. CNA profiles detected 
from 5hmC-enriched cfDNA were more diffuse and missed some of the copy number 
changes detected in the other two datasets (Figure 31A and Figure S13). Next, t-MAD scores 
were calculated from 5mC- and 5hmC-enriched as well as sWGS data for a quantitative 
comparison between the three data types. All three data types were downsampled to a 
common read coverage of 5 million paired reads per samples to mitigate the effect of varying 
sequencing depths on the t-MAD score calculation. Bin sizes were kept at 1 Mb as for CNA 
profiling by ichorCNA. A high positive correlation between t-MAD scores derived from 
sWGS and 5mC-enriched data was found (Pearson, r = 0.88; Figure 31B). The t-MAD scores 
derived from 5hmC-enriched data presented a lower correlation to sWGS data (Pearson, 
r = 0.39; Figure 31C). Especially the 5hmC-enriched dataset tended to underestimate 
chromosomal instability in samples with high t-MAD scores determined from sWGS data. 
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Figure 31: Inference of copy number alterations from sWGS, 5mC- and 5hmC-enriched sequencing data. 
(A) Exemplary copy number profiles inferred from shallow whole-genome (sWGS; top), 5mC-enriched (middle) and 5hmC-
enriched sequencing data (bottom) of cfDNA from patient P028 at a time point of progressive disease. Colors indicate copy 
number neutrality (blue), deletions (green), copy number gain (brown; 3 copies), and amplifications (red; >3 copies). Scatter 
plots show the correlation of t-MAD scores derived from sWGS data to 5mC (B) and 5hmC data derived t-MAD scores (C). The 
dotted line indicates a perfect correlation between both datasets. Pearson correlation coefficients are displayed. cfMeDIP; cell-
free methylation DNA immunoprecipitation; hMeSEAL, hydroxymethylation-selective chemical labeling; t-MAD, trimmed 
median absolute deviation from copy number neutrality. 
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4 Discussion 
Targeted therapies are of high relevance for the treatment of advanced NSCLC with genomic 
alterations: Patients harboring tumors with actionable oncogenic drivers – such as EGFR, 
ALK or ROS1 – demonstrate significant clinical benefits from directed TKI treatment 
(Maemondo et al. 2010; Shaw et al. 2014; Solomon et al. 2014; Soria et al. 2018). Multiple TKIs 
are approved for the management of advanced ALK+ tumors and immensely improved 
patient prognosis. Despite the benefits of ALK-directed therapies, clinical courses vary 
widely due to the development of drug resistances such as mutations in the ALK kinase 
domain, ALK amplifications or the activation of bypass signaling pathways (Shaw et al. 2013; 
Solomon et al. 2014). Some of these resistances can be overcome by second and third 
generation ALK-TKIs that allow sustained disease remission even after first TKI failure 
(Camidge et al. 2014). Therefore, it is crucial to detect therapy failure early to guide 
subsequent therapy lines and optimize the patient´s benefit from the treatment. Liquid 
biopsies can discover tumor-derived material from blood samples of cancer patients. The 
minimal-invasive sample collection procedure allows repeated sampling throughout patient 
treatment and provides the opportunity to capture early signs of disease progression (Wan et 
al. 2017). We and others measured cancer-specific genomic alterations in cfDNA (e.g. SNVs 
and CNAs) to monitor the therapy of ALK+ NSCLC patients (Dagogo-Jack et al. 2018; Dietz 
et al. 2020; Li et al. 2021; Zhang et al. 2020a). These alterations are commonly very specific to 
the patient´s tumor, yet suffer from limited sensitivity due to their low relative abundance in 
the cancer genome (van der Pol and Mouliere 2019). The profiling of epigenomic alterations 
in cfDNA presents a promising alternative. Cancer-specific changes in the methylome and 
hydroxymethylome are more prevalent and more pervasive compared to genomic 
alterations, providing a higher level of sensitivity (Kandoth et al. 2013; Li and Zhou 2020). 
Additionally, DNA modifications can inform about the tumor´s tissue-of-origin and their 
role in transcriptional regulation might identify active or repressed gene expression 
signatures (Moss et al. 2018; Song et al. 2017; Sun et al. 2015). 
 
In this study, genome-wide 5mC and 5hmC profiles were analyzed from cfDNA of 
metastatic ALK+ NSCLC patients and healthy individuals. The first objective was the 
establishment of a workflow that enriches for tumor-derived 5(h)mC signatures by: 
(1) Exclusion of genomic regions with high 5(h)mC levels in cell types contributing to non-
tumor cfDNA, followed by (2) differential analysis between patient and healthy donor 
samples. The second objective was to associate tumor-specific 5(h)mC patterns with 
activation and repression of genes in LUAD tissue. The third objective was to correlate 
5(h)mC biomarkers with cancer-specific genomic alterations co-measured in the same 
plasma samples. Finally, dynamic changes in biomarker abundances were followed in 
longitudinal plasma samples to monitor the patients´ ALK-directed TKI therapy.  
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4.1 Technical performance of 5mC and 5hmC enrichment 
Experimentally, cfMeDIP- and hMeSEAL-seq precipitate cfDNA fragments containing 
methylated or hydroxymethylated CpG dinucleotides (Shen et al. 2019b; Song et al. 2017). By 
sequencing only the enriched cfDNA fraction, (hydroxy-)methylome profiling is feasible at 
low sequencing costs. Additionally, bisulfite conversion is not needed, rendering the 
protocols applicable to samples with low cfDNA content (Shen et al. 2019b). These 
advantages outweigh the protocols´ lower resolution (down to ~100-bp genomic regions) 
compared to bisulfite conversion-based methods (single nucleotide level) and favor their 
application on cfDNA samples. 
As part of this study, the technical performance of cfMeDIP- and hMeSEAL-seq was 
compared and revealed distinct differences. Although spike-in recovery was similar in both 
protocols, 5mC libraries demonstrated a comparatively higher enrichment for CpG sites than 
5hmC libraries. While 5mC is commonly located within CGIs (Greenberg and Bourc'his 
2019), 5hmC was reported to occur at less CpG dense regions (e.g. CGI borders) (Li et al. 
2016; Skvortsova et al. 2019a). This likely results in high per fragment CpG densities in 5mC 
libraries, thereby explaining the different enrichments between the 5mC and 5hmC datasets. 
The determined CpG enrichment scores in 5mC libraries were coherent with those reported 
in the recent literature (Shen et al. 2018). For 5hmC-enriched data, this quality metric has not 
yet been applied in other studies. Saturation analysis was performed to address whether the 
given number of paired reads suffices to generate reproducible coverage profiles (Lienhard 
et al. 2014). Lower reproducibility at similar sequencing depths was observed in 5hmC 
compared to 5mC libraries, indicating that higher sequence coverage in the 5hmC dataset 
could improve the detection of tumor-derived 5hmC alterations. The comparatively lower 
reproducibility suggests a higher complexity of the generated 5hmC profiles. This is in 
contrast to the lower abundance of 5hmC compared to 5mC marks throughout the genome 
(Brazauskas and Kriaucionis 2014), which suggests that fewer sequencing reads are needed 
to sufficiently cover the hydroxymethylome. The reason for the reduced reproducibility of 
the 5hmC libraries remains unclear. However, a lower specificity of hMeSEAL-seq, 
compared to cfMeDIP-seq, is unlikely since similar quantities of unspecific binding events 
(number of reads covering no CpG site) and comparable enrichment efficiencies (spike-in 
recovery) were found. A more plausible explanation resides in the different binding 
mechanisms of the two protocols: While the enzymatic 5hmC labeling of hMeSEAL-seq 
captures hydroxymethylated cytosines irrespective of local 5hmC density or CpG-context 
(Thomson et al. 2013), the antibody-based cfMeDIP-seq has a higher specificity for regions of 
high or intermediate 5mC occupancy (Taiwo et al. 2012). This could result in cfMeDIP-seq 
missing single 5mC marks, which would reduce the number of genomic regions captured by 
this method. Consequently, fewer sequencing reads are needed to reproducibly cover these 
regions.  
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4.2 Identification of tumor-derived 5mC and 5hmC 
alterations 

Tumor DNA can be detected in plasma of cancer patients and offers the possibility of 
minimal-invasive cancer assessment (Bettegowda et al. 2014; Newman et al. 2014). cfDNA is 
regarded as a mixture of DNA derived from different cell and tissue types, with ctDNA 
presenting only a minor fraction in most cancer patients (Moss et al. 2018; Sun et al. 2015). 
Therefore, a major challenge for cfDNA-based cancer detection is to identify the minute 
amounts of tumor-derived DNA fragments in the total cfDNA pool. 
 

4.2.1 Generation of genome-wide 5mC and 5hmC reference profiles from 
primary blood cells 

Recently it was demonstrated that the majority of non-tumor cfDNA is derived from 
hematopoietic cells (Lehmann-Werman et al. 2016; Sadeh et al. 2021; Sun et al. 2015). The 
most detailed study in this regard used methylation data to deconvolute the relative 
contributions of individual cell types to the cfDNA composition in healthy individuals (Moss 
et al. 2018). 
Here, I used this information as a basis to identify and subtract non-tumor cfDNA from 
genome-wide 5mC and 5hmC profiles measured in cfDNA of ALK+ NSCLC patients. By 
exclusion of hypermethylated or hyper-hydroxymethylated genomic regions in healthy 
cfDNA, I aimed to enrich for cancer-associated 5(h)mC alterations. For this purpose, 5mC 
and 5hmC profiles were generated from primary monocytes, neutrophils and erythroid 
progenitor cells. Combined, these cell types constitute 72.2% of the non-tumor cfDNA 
repertoire (Moss et al. 2018). Other contributors only account for minor fractions of healthy 
cfDNA and were not considered in this study. Creating in-house 5(h)mC reference profiles 
has conceptual advantages over the usage of publicly available datasets: (1) Publicly 
available blood cell reference data was generated using Illumina 450k methylation arrays 
which cover only a small fraction of the genome. In contrast, 5mC and 5hmC profiles 
determined by cfMeDIP- and hMeSEAL-seq, respectively, enable the identification and 
exclusion of blood cell-derived genomic regions on a genome-wide scale. (2) Using the same 
methodology for the analysis of cfDNA samples and blood cell gDNA improves data 
comparability. (3) Blood cell 5hmC profiles were not available from the literature and had to 
be generated to enable the filtering of hyper-hydroxymethylated genomic regions. 
The analysis of individual blood cell types permitted to weight and combine 5(h)mC signals 
based on their relative abundance in healthy cfDNA. This presents a considerable advantage 
over the usage of bulk 5(h)mC profiles from peripheral mononuclear cell or whole blood. 
The contribution of different blood cells to cfDNA was shown to deviate from their relative 
abundance in the circulation (Moss et al. 2018). Therefore, weighted integration of individual 
blood cell 5(h)mC levels should provide a more accurate reflection of non-tumor cfDNA. 
However, there are limitations to the blood cell reference datasets used for this study: First, 
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the considered cell types only account for 72.2% of healthy cfDNA and cannot exclude the 
entire non-tumor cfDNA. Second, the list of cell types contributing to healthy cfDNA (Moss 
et al. 2018) might not be complete, and, third, reference datasets were generated from only 
one individual per cell type. Averaging the 5(h)mC profiles of multiple individuals would 
likely provide a more robust representation of the cell types´ (hydroxy-)methylomes. 
 

4.2.2 Enrichment of tumor-derived cfDNA by the exclusion of genomic 
regions associated with high 5(h)mC levels in blood cells 

Methylation data from LUAD and non-malignant tissues (TCGA) were used as reference to 
(1) establish a cut-off at which genomic regions were excluded due to high blood cell 5(h)mC 
levels and (2) validate the tumor association of the remaining regions. Due to the 
unavailability of 5hmC tissue data, these steps were solely performed on the 5mC dataset. A 
moderate correlation between 5mC profiles of NSCLC cfDNA and LUAD tissue was evident 
which successively increased with rising blood cell filtering stringency. Similar observations 
were made in another study that correlated blood cell-filtered cfDNA and tissue 5mC 
profiles of glioma patients (Nassiri et al. 2020). This suggested increased tumor association of 
the 5mC signals remaining after the filtering step. A justified explanation for this result is 
that the partial removal of non-tumor cfDNA signals facilitates the identification of cancer-
associated 5mC signatures from the huge amount of non-tumor derived cfDNA. Other 
studies demonstrated the utility of different approaches to unmask cancer-derived 
alterations from non-tumor cfDNA. Mouliere et al. enriched for ctDNA by focusing their 
analysis on short cfDNA fragments (90 – 150 bp). Thereby, they increased the sensitivity of 
their assay to identify otherwise undetectable CNAs (Mouliere et al. 2017). Larson and 
colleagues determined cancer-specific cell-free RNA (cfRNA) signatures by restricting their 
analysis to genes rarely detected in a non-cancer reference group. Using this approach, they 
could reduce the likelihood of false-positive cfRNA signals and increase sensitivity (Larson 
et al. 2021). I chose a filtering cut-off at blood cell 5mC levels <20% of the median NSCLC 
cfDNA signal in the same genomic region. This cut-off presented the closest tumor 
association (highest correlation to LUAD tissue methylation), while retaining the largest 
number of genomic regions for subsequent analyses. A limitation of deriving a blood cell 
filtering cut-off by correlation to LUAD tissue data is the employed reference. TCGA 5mC 
data was generated by Illumina 450k methylation arrays and contains only three patient 
samples with confirmed EML4-ALK fusions (Weisenberger 2014). The preparation of 
cfMeDIP-seq dataset from matched tumor tissue would increase dataset comparability and 
enable the identification of 5mC alterations specific to ALK+ NSCLC patients. 
Notably, removal of cfDNA from blood cells also increased the correlation between 5mC 
profiles in NSCLC cfDNA and tissues of various other tumors as well as non-malignant 
lung. The methylome of blood cells is highly distinctive from most somatic tissues (Lowe et 
al. 2013; Lowe et al. 2015; Varley et al. 2013). Therefore, it is reasonable that the partial 



Discussion 

 79 

removal of blood cell 5mC profiles increases the association between NSCLC cfDNA and 
various tissues. Correlations between NSCLC cfDNA methylation and different tumor 
tissues were similar, while normal lung 5mC profiles demonstrated a comparatively lower 
association to NSCLC cfDNA. In conclusion, the majority of the tumor-derived 5mC 
signatures revealed after blood cell filtering reflected methylome perturbations common to 
several cancer entities and not exclusive to lung cancers.  
To validate the increased tumor association of NSCLC cfDNA after blood cell filtering, 5mC 
signals in patient and control samples were compared. At hypermethylated genomic regions 
in LUAD tissue, 5mC signals were higher in patient compared to healthy control cfDNA. 
Without blood cell filtering, no difference between the two groups was noted. This again 
demonstrated that the blood cell filtering step facilitates the identification of tumor-derived 
5mC alterations by removing uninformative background signals. Genomic regions 
hypermethylated in LUAD, but not in other cancer entities, also exhibited higher 5mC 
signals in NSCLC compared to healthy donor cfDNA. The difference between the groups 
was increased following blood cell filtering and absent at regions uniquely hypermethylated 
in other cancer entities. These observations underline the capability of cfMeDIP-seq to 
capture entity-specific 5mC alterations from patient cfDNA and suggest its suitability for 
tumor classification. This is in line with studies showing the application of 5mC signatures 
for tissue-of-origin inference from cfDNA of cancer patients (Guo et al. 2017; Lehmann-
Werman et al. 2016; Moss et al. 2018; Sun et al. 2015). In addition, Shen and colleagues 
demonstrated that cfMeDIP-seq can distinguish tumors of patients harboring diverse cancer 
types (Shen et al. 2018). Moreover, blood cell filtering might be a reasonable approach to 
facilitate cancer classification by enhancing the tumor signal in cfDNA samples. 
The analysis of hypomethylated genomic regions in LUAD tissue gave less conclusive 
results. This can be attributed to the limitation of cfMeDIP-seq to provide an “unmethylated 
signal”. The absence of 5mC signals at genomic regions might either reflect a lack of 
methylation or a poor representation of the regions in the cfDNA sample (Shen et al. 2019b), 
impeding the interpretation of a missing signal. 
Additionally, I observed that patient and control samples were easier to distinguish based on 
their 5mC profiles after blood cell filtering (PCA clustering), compared to the unfiltered data. 
The best separation was found between healthy controls and t-MADhigh samples. Samples 
with high t-MAD scores commonly contain elevated tumor fractions in cfDNA (Dietz et al. 
2020; Mouliere et al. 2018a). This suggests that the tumor-derived 5mC signal is the driving 
force differentiating patient samples from controls and shows that the ctDNA fraction is 
enriched after blood cell filtering. PCA clustering was also performed using the 5hmC-
enriched dataset. Here, the same blood cell filtering cut-off as for the 5mC dataset was used. 
The separation between patients and controls improved after blood cell 5hmC signal 
filtering, however, differentiation between groups was less clear. In addition, t-MAD scores 
did not affect clustering, potentially reflecting a lower tumor association of the remaining 
5hmC signals compared to the 5mC dataset.  
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4.2.3 Differential analysis identifies tumor-specific 5(h)mC alterations 

The blood cell-filtered 5mC and 5hmC datasets were subjected to differential analysis 
between NSCLC patient and healthy control samples. This aimed to further enrich for 
tumor-derived epigenetic alterations. Differential analysis of 5mC data resulted in a 
considerably higher number of hyper- compared to hypomethylated DMRs. A similar 
imbalance was found for the 5hmC dataset. Other studies using cfMeDIP- or hMeSEAL-seq 
for cfDNA-based 5(h)mC profiling showed corresponding imbalances (Shen et al. 2018; Tian 
et al. 2018; Zhang et al. 2018b). A potential explanation for this observation is the high non-
tumor background signal in cfDNA of cancer patients, masking the hypomethylation or 
hypo-hydroxymethylation status of the tumor fraction. Although hyper-D(h)MRs can also be 
masked by the non-tumor cfDNA signal, they can be more readily identified at regions of no 
or low 5(h)mC signals in healthy donors. Approximately 11-fold more DMRs, compared to 
DhMRs, were identified in this study. In part, this difference can be attributed to the higher 
sequence coverage of the 5mC dataset. High sequencing depth increases the statistical power 
of the negative-binomial test used by edgeR, resulting in a higher sensitivity of DMR 
detection (Gontarz et al. 2020; Liu et al. 2014). Additionally, the lower reproducibility of the 
5hmC (compared to 5mC) dataset indicates that increased sequence coverage could improve 
the detection of cancer-associated 5hmC alterations (discussed in section 4.1). However, 
biological factors might also contribute to the detection of more DMRs. The abundance of 
5hmC modifications throughout the human genome is much lower compared to 5mC 
(Brazauskas and Kriaucionis 2014). This potentially translates into fewer tumor-associated 
5hmC alterations retrievable from cfDNA. 
Hierarchical clustering based on all DMRs or DhMRs separated patient from healthy control 
samples. This represents an improvement compared to the sole blood cell filtering – which 
could only partially differentiate samples by disease status (PCA clustering) – and suggests 
that the differential analysis further enriches for tumor-informative 5(h)mC alterations. The 
preferential clustering of samples with similar t-MAD scores was already noted after blood 
cell filtering in the 5mC dataset. This was preserved after differential analysis and became 
additionally apparent in the 5hmC-enriched samples, further emphasizing that the ctDNA 
content in the cfDNA samples is a major factor contributing to the differentiation between 
patients and controls. 5mC signals of DMRs overlapping with LUAD tissue-specific sites 
were significantly higher in patients compared to controls and the difference between these 
two groups increased compared to performing blood cell filtering alone. By this means, it 
was further confirmed that the differential analysis after blood cell filtering is a reasonable 
approach to enrich for tumor-derived alterations in cfDNA.  
 
In summary, non-tumor background signals can be efficiently reduced by the exclusion of 
genomic regions with high 5(h)mC signals in blood cells and subsequent differential analysis 
(patient vs. control samples). This might facilitate several downstream analysis steps, such as 
the identification of cancer- or tissue-specific biomarkers and inference of tumor expression 
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profiles. Especially, in clinical settings with low ctDNA content (e.g. MRD monitoring or 
early disease detection) filtering of blood cell-derived signals could enable a better tumor 
detection. For this study, a larger non-cancer cohort and the inclusion of patients with other 
lung-related diseases could further refine the set of identified D(h)MRs. 
 
 

4.3 Inference of gene expression from 5mC and 5hmC 
signals in cfDNA 

The role of DNA methylation and hydroxymethylation in the regulation of gene expression 
is well characterized. At TSS-proximal regions, DNA hypermethylation is commonly 
described to repress transcription, while high 5hmC levels are associated with active genes 
(Greenberg and Bourc'his 2019; Thomson et al. 2012). In this study, it was assessed whether 
5mC and 5hmC profiles can infer gene expression from cfDNA samples. 
 

4.3.1 Inference of whole blood expression 

The inference of cancer-associated transcription from cfDNA is challenging due to the low 
tumor DNA content in most samples (Bettegowda et al. 2014; Diehl et al. 2008). Previous 
studies used plasma of healthy individuals to derive cfDNA characteristics informative of 
gene expression in hematopoietic cells (Snyder et al. 2016; Ulz et al. 2016). The high 
abundance of blood cell DNA in these samples (~85%) (Moss et al. 2018; Sadeh et al. 2021; 
Sun et al. 2015) allows a more straightforward inference of gene expression that can be 
transferred to patient cfDNA in the next step. I compared TSS-proximal (±1,500 bp) 5mC and 
5hmC signals in cfDNA of healthy individuals to whole blood gene expression obtained 
from the GTEx project. DNA modifications around the TSS are frequently described to 
regulate transcription (Greenberg and Bourc'his 2019; Thomson et al. 2012). Additionally, 
this study showed an enrichment of 5hmC, but not 5mC, peaks proximal to the TSS of genes 
predicted to be active in the GM12878 lymphoblastoid cell line. Therefore, it is reasonable to 
assume that 5(h)mC levels at these regions might inform about gene expression. 
Occupation of 5hmC sites near TSSs demonstrated higher expression levels compared to 
genes without DNA modification (i.e. 5mC or 5hmC) in the same region and 5hmC-
associated TSSs were enriched in gene sets regulating various blood cell-related processes 
(e.g. leukocyte, neutrophil and macrophage migration). These findings match the activating 
function of 5hmC, which is described in the literature (Ehrlich and Ehrlich 2014; Mellén et al. 
2012; Thomson et al. 2012) and propose that TSS-proximal 5hmC can inform about 
transcriptional processes occurring in blood cells. Against the expectations, genes with 5mC 
peaks near their TSS also demonstrated higher expression compared to genes without DNA 
modifications. However, expression levels of 5hmC-associated genes were 3.1-fold higher 
compared to 5mC genes. This suggests a closer connection of TSS-proximal 5hmC to active 
transcription and favors 5hmC as a proxy for gene expression inference in cfDNA. 
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A limitation of this approach to deduce gene expression is that the cell types giving rise to 
cfDNA in healthy individuals are heterogeneous and not accurately reflected by the relative 
abundance of cells in whole blood. For example, erythroid progenitor cells are believed to 
shed DNA into the circulation during the generation of enucleated red blood cells (i.e. 
during cell birth rather than cell death) and are likely to be underrepresented in whole blood 
data (Moss et al. 2018). This reduces the comparability of the cell-free 5(h)mC profiles to the 
utilized expression data, thereby impeding the inference of transcription activity. 
Additionally, it has to be considered that transcription regulation is not exclusively conferred 
by DNA modifications (Yilmaz and Grotewold 2010). Other processes, such as modifications 
on the histone level or expression regulation by small RNAs, cannot be inferred in this study. 
 

4.3.2 Inference of lung adenocarcinoma tissue expression 

To conclude about tumor-derived expression from cell-free 5(h)mC profiles in NSCLC 
patients, I restricted the analysis to genomic regions with low (or no) signals in cfDNA of 
healthy individuals (i.e. regions remaining after blood cell filtering and differential analysis). 
By focusing on these background-reduced regions, a high tumor-specificity is ensured and 
the challenge of the low ctDNA content in most patient samples might be overcome. The 
cancer-associated 5(h)mC profiles were compared to LUAD tissue expression data to 
evaluate their role in the regulation of gene activity. 
DMRs were found to be enriched at TSS-proximal regions (i.e. promoters, 5´-UTRs and first 
exons). Most of them exhibited characteristics supporting their validity as tumor-specific and 
involvement in regulation of expression: (1) Genes associated to hypermethylated DMRs 
significantly overlapped with those repressed in LUAD tissue (45/63), (2) LUAD-specific 
hypermethylation was confirmed at 35/45 genes, and (3) previous reports associated 30/45 
genes to cancer-related processes with 24/30 exhibiting tumor suppressive functions. GATA4 
is an example for a gene that matches all of these criteria. It belongs to the GATA zinc finger 
TF family. Loss of GATA4 function has been linked to various malignancies (e.g. ovarian, 
gastric, colorectal, and lung cancer) (Akiyama et al. 2003; Bai et al. 2000; Gao et al. 2019; 
Lassus et al. 2001). In NSCLC, GATA4 deficiency is accomplished by promoter 
hypermethylation (Gao et al. 2019; Guo et al. 2004). This is consistent with this study, which 
shows elevated GATA4 5mC levels in plasma of NSCLC patients, but not in healthy 
individuals. GATA4 is considered a pioneer modifier, opening closed chromatin to facilitate 
TF binding (Cirillo et al. 2002). Its overexpression in NSCLC cell lines induces senescence via 
inhibition of TGF-b signaling, conferred by GATA4-mediated TGFBR1 downregulation. This 
demonstrates the tumor suppressive role of GATA4 in NSCLC. Interestingly, GATA4 
promoter hypermethylation is present in several molecular subtypes of LUAD (i.e. EGFR, 
KRAS and EML4-ALK-driven tumors) as well as in LUSC (Gao et al. 2019). This highlights the 
potential of GATA4 methylation in cfDNA as universal lung cancer biomarker. Among the 
DMRs associated with downregulated expression in LUAD, many additional TFs (e.g. 
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GATA3, HOXA9, NKX2-8, PAX6, and TBX3; n = 12/45) were identified. These were 
predominantly depicted in a tumor suppressive context and TSS-proximal hypermethylation 
was confirmed in LUAD tissue for 10/12 genes. The overrepresentation of 5mC-mediated TF 
silencing might reflect the disruption of large-scale transcriptional processes in the NSCLC 
patient tumors. Commonly, TFs control the expression of several downstream targets. 
Dysregulation of established cell regulatory networks secondary to epigenetic TF silencing is 
frequently described during carcinogenesis (Akiyama et al. 2003; Suvà et al. 2014; Winslow et 
al. 2011). 
The second most abundant group of genes within the identified DMRs were lncRNAs (e.g. 
HOXA10-AS1, SOX9-AS1 and ZNF667-AS1; n = 9/45). Similar to TFs, lncRNAs participate in 
many regulatory pathways (e.g. chromatin organization and transcriptional regulation), 
frequently controlling multiple targets by acting as scaffolds, miRNA sponges or competitors 
to endogenous RNA (Yang et al. 2014). This further highlights the potential association of the 
identified DMRs with the disruption of global transcriptional processes. Dysregulation of 
lncRNA expression is a pervasive event during NSCLC pathogenesis and oftentimes 
conferred by epigenetic alterations (Ashouri et al. 2016; Yan et al. 2015). SOX9-AS1 was the 
most significantly hypermethylated lncRNA in cfDNA of NSCLC patients within this study. 
It functions as a regulator of SOX9, a TF reported to induce proliferation by activating 
Wnt/b-catenin signaling in NSCLC and hepatocellular carcinoma cell lines (Guo et al. 2018; 
Zhang et al. 2019b). Although the role of SOX9-AS1 has not yet been described in NSCLC, its 
expression downregulation in LUAD tissue proposes SOX9-AS1-mediated repression of 
SOX9. The TSS-proximal hypermethylation in NSCLC cfDNA found in this study indicates 
epigenetic silencing of SOX9-AS1, supporting this hypothesis. 
After blood cell filtering and differential analysis of the 5hmC-enriched sequencing data, 16 
genes with DhMRs near their TSS remained. Of these genes, two (KPNA7 and KIF25) were 
also differentially expressed in LUAD tissue data from TCGA. In line with the frequently 
reported transcription activating role of 5hmC (Ehrlich and Ehrlich 2014; Mellén et al. 2012; 
Thomson and Meehan 2017) and its association with elevated expression in whole blood 
shown in this study, KPNA7 and KIF25 are overexpressed in LUAD compared to various 
normal tissues. Both genes were previously portrayed to confer oncogenic functions in 
cancer cell lines (Laurila et al. 2014; Vuorinen et al. 2018; Zou et al. 2014). While KPNA7 is 
highly expressed during embryogenesis, transcription is drastically reduced or absent in 
most adult tissues. In pancreatic and breast cancer cell lines, KPNA7 is re-expressed and its 
silencing reduces cell proliferation via p21 induction and G1 arrest (Laurila et al. 2014; 
Vuorinen et al. 2018). The kinesin family member, KIF25, is one of 19 kinesin genes 
upregulated in estrogen-receptor-positive breast cancer cells and associated with increased 
cell growth and survival (Zou et al. 2014). KPNA7 and KIF25 overexpression in LUAD tissue 
might indicate similar oncogenic properties in lung cancer, potentially regulated by TSS-
proximal hyper-hydroxymethylation. Previous studies showed that 5hmC abundances 
throughout the gene body can also inform about the transcriptional status of genes (Guler et 



Discussion 

 84 

al. 2020; Song et al. 2017; Tian et al. 2018; Zhang et al. 2018b). In contrast, the gene body-
associated DhMRs of this study were not enriched at genes overexpressed in LUAD tissue, 
suggesting a more pronounced regulatory effect of 5hmC near TSSs. 
 
The results of this study highlight that gene regulatory DNA modifications in tissues are 
detectable in cfDNA of cancer patients. By focusing on genomic regions with low 5(h)mC 
levels in blood cells, tumor-derived transcription can be inferred at individual genes. To 
verify the connection between the cell-free (hydroxy-)methylome and tumor transcription, 
expression profiling from matched tumor tissue could be employed. This would enable to 
depict transcription specific to the investigated ALK+ molecular subtype. 
 
 

4.4 Therapy monitoring using 5(h)mC biomarkers in cfDNA 
Several studies have shown the utility of cfDNA-based SNV and CNA detection for therapy 
monitoring in cancer (Diehl et al. 2008; Abbosh et al. 2017; Dagogo-Jack et al. 2018; Dietz et 
al. 2020). In some patients, genomic alterations in cfDNA could anticipate disease relapse in 
advance of radiological assessments, highlighting the potential clinical benefit of treatment 
surveillance using liquid biopsies (Abbosh et al. 2017; Dietz et al. 2020). Epigenetic 
alterations occur at high frequencies in most cancers and their abundance translates into an 
increased sensitivity compared to genomic ctDNA profiling (Kandoth et al. 2013; Li and 
Zhou 2020). However, in many clinical settings (e.g. MRD monitoring after successful 
therapeutic intervention or early disease detection) the required sensitivity to detect tumor-
derived alterations is not achievable by interrogating genomic changes. 
The present study demonstrates that cancer-derived alterations in the cell-free 
(hydroxy-)methylome are suitable biomarkers for therapy monitoring of metastatic ALK+ 
NSCLC patients receiving TKIs. Candidate markers for treatment surveillance were selected 
from the tumor-enriched D(h)MRs identified by blood cell filtering and differential analysis 
between patient and control samples. Further, public datasets with tumor tissue methylation 
and expression were leveraged to identify the most promising candidates associated with 
LUAD biology. Among these, I focused on D(h)MRs whose 5(h)mC signal could distinguish 
between cfDNA samples from healthy individuals and NSCLC as well as PD from non-PD 
patients. These D(h)MRs likely represent prognostic biomarkers suitable for therapy 
monitoring in longitudinal plasma samples. 5mC markers (n = 21) were highly correlated to 
tumor-specific genomic alterations (i.e. SNVs, EML4-ALK fusion and t-MAD scores) 
measured in matched cfDNA samples. This confirmed the cancer association of the selected 
DMRs. The highest correlations were noted when 5mC biomarkers were compared to the 
t-MAD score and VAFmax. Individual mutations (i.e. ALK resistance and TP53 mutations) and 
the EML4-ALK fusion resulted in lower correlations. t-MAD and VAFmax are estimators of the 
total tumor burden within a cfDNA sample (Dietz et al. 2020; Mouliere et al. 2018a; 
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Velimirovic et al. 2020), supporting a view of cfDNA 5mC markers as a reflection of the 
entire tumor rather than informing about particular subclones. This is in line with the notion 
that 5mC alterations occur early during carcinogenesis (Greenberg and Bourc'his 2019). 
Consequently, methylome perturbations should be present in most (if not all) tumor 
subclones. The overall highest correlation was observed between the PTGER4 5mC levels 
and the t-MAD score. PTGER4 hypermethylation in cfDNA was described to allow 
differentiation of lung cancer from non-malignant diseases (i.e. chronic obstructive 
pulmonary disease and benign lung lesions) and healthy controls (Schotten et al. 2021; Weiss 
et al. 2017). Additionally, PTGER4 methylation was reported to be more sensitive in therapy 
response prediction compared to established protein markers (i.e. CA125, CEA, Cyfra211, 
and NSE) (Zhang et al. 2020c), highlighting the coherence of the identified 5mC biomarkers 
to the recent literature. In contrast to 5mC markers, 5hmC profiling revealed one potentially 
prognostic marker (IL1RAP; intron 3). Most DhMRs, including IL1RAP, were not correlated 
to the co-measured genomic alterations, suggesting a lower tumor association of 5hmC 
compared to 5mC markers. Only genes with TSS-proximal DhMRs (KPNA7 and KIF25) were 
significantly associated with at least one of the genomic markers. 
The utility for therapy monitoring was evaluated for four 5mC (i.e. HOXA10-AS, SOX9-AS1, 
PTGER4, and PRAC1) and three 5hmC (i.e. IL1RAP, KPNA7 and KIF25) biomarkers. 5mC 
marker abundances in longitudinal plasma samples reflected therapy response in the 
majority of patients and corresponded with dynamic changes of the co-measured genomic 
alterations. Radiological disease progression was accompanied by rising 5mC levels and 
successful therapeutic interventions coincided with decreased marker abundances. Similarly, 
other studies demonstrated that 5mC markers can predict therapeutic success/failure from 
serial plasma samples in breast and renal cell carcinoma patients (Lasseter et al. 2020; Moss 
et al. 2020). Here, the evaluated 5hmC biomarkers presented a lower sensitivity for therapy 
surveillance, detecting disease progression in fewer cases compared to the 5mC markers. A 
combination of multiple 5hmC markers might increase the sensitivity and enhance the 
suitability of 5hmC profiling for treatment monitoring. The feasibility of this approach was 
shown by Song et al., who used linear discriminant analysis to combine hepatocellular 
carcinoma-specific 5hmC alterations into a single score, which accurately tracked treatment 
and response in hepatocellular carcinoma patients following surgical tumor resection (Song 
et al. 2017). Moreover, increased sequencing depth will likely contribute to the detection of 
additional 5hmC markers and might enhance sensitivity. We previously demonstrated that 
genomic ctDNA profiling can reveal disease progression earlier than radiologic assessments 
(Dietz et al. 2020). This study showed similar results using 5(h)mC markers, with patient 
P028 representing an illustrative example. Alectinib failure in this patient was indicated by 
successively rising levels of genomic alterations (i.e. t-MAD, EML4-ALK fusion, ALK G1202R 
mutation) in cfDNA before imaging-based determination of PD. Elevated SOX9-AS1, 
HOXA10-AS and PTGER4 methylation as well as IL1RAP hydroxymethylation levels 
suggested disease progression earlier than genomic ctDNA markers. Furthermore, crizotinib 
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failure in patients P012 and P044 as well as alectinib failure in P025 could be detected earlier 
than radiology from 5mC marker abundances. In these patients, epigenetic and genetic 
alterations detected relapse at the same time point. 
Combined, these results illustrate that 5(h)mC alterations in cfDNA are valuable biomarkers 
for therapy monitoring and in some cases can anticipate tumor relapse earlier than 
radiological diagnosis. The case of patient P028 showed that 5(h)mC profiling might have 
sensitivity advantages over the assessment of genomic alterations. However, a systematic 
evaluation on more samples would be required to confirm this hypothesis. Targeted 5(h)mC 
sequencing panels could be designed for the identified marker regions to further increase the 
sensitivity for treatment monitoring. Here, (oxidative) bisulfite and bisulfite-free options 
have been proposed in literature (Chen et al. 2020c; Liu et al. 2019). Moreover, the integration 
of multiple 5mC and 5hmC markers together with genomic alterations is likely to further 
enhance cfDNA-based therapy monitoring. 
 
 

4.5 Detection of copy number alterations from 5mC data 
Somatic CNAs are common in metastatic tumors and their profiling from cfDNA has been 
applied in various cancer entities (Jensen et al. 2019; Mouliere et al. 2018a). The advancement 
of statistical and bioinformatic methods allows cost effective cfDNA-based analysis of CNAs 
from sWGS data (<0.5x genome coverage) (Adalsteinsson et al. 2017; Mouliere et al. 2018a). 
This study showed that algorithms trained to infer CNAs from sWGS data (i.e. ichorCNA 
and CNAclinic) are also capable to reliably detect copy number changes from 5mC-enriched 
sequencing reads (cfMeDIP-seq). Regions with abnormal copy numbers observed in 
cfMeDIP-seq data were largely coherent with those found by sWGS. Additionally, t-MAD 
scores of both analysis types were highly correlated. Hence, cfMeDIP-seq allows 
simultaneous assessment of epigenomic and genomic biomarkers without additional costs. 
The integration of tumor-derived 5mC alterations and CNAs might contribute to more 
sensitive cancer detection. In contrast, CNA inference from 5hmC-enriched sequencing data 
was less accurate: Only large chromosomal regions with copy number gains/losses were 
detectable and genome-wide chromosomal instability (t-MAD) was underestimated in 
t-MADhigh samples. Song et al. similarly demonstrated that hMeSEAL-seq data can detect 
large CNAs in lung cancer patient cfDNA, albeit at a lower resolution compared to non-
enriched WGS data (Song et al. 2017). The applied CNA-calling algorithms are based on 
depth of coverage and rely on an even distribution of sequencing reads throughout the 
genome (Adalsteinsson et al. 2017; Mouliere et al. 2018a; Raman et al. 2019). Genome-wide 
5hmC abundances are low (0.1 – 1% of cytosines (Brazauskas and Kriaucionis 2014)) and 
predominantly associated with genes (Song et al. 2017; Zhang et al. 2018b). Additionally, 
5hmC quantities were reported to be reduced in lung cancers (Song et al. 2017). Therefore, 
uniform genome coverage is unlikely to be achieved by hMeSEAL-seq. This might explain 
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the low resolution of CNA profiling from hMeSEAL-seq data. Although it is also depleted in 
most cancers (Jones and Baylin 2007; Skvortsova et al. 2019b), 5mC occurs at a higher 
abundance (3 – 4% of cytosines (Brazauskas and Kriaucionis 2014)) than 5hmC and provides 
a more accurate reflection of the entire genome. Consequently, the higher CNA-calling rate 
from cfMeDIP-seq data is expected. 
 
 

4.6 Conclusion and outlook 
The aim of this study was to identify tumor-derived 5(h)mC alterations from cfDNA of ALK+ 
NSCLC patients, associate the cancer-specific 5(h)mC biomarkers to gene expression and 
assess their suitability for tracking cancer dynamics under TKI therapy in longitudinally 
taken plasma samples. 
In summary, the findings of this study propose a ctDNA enrichment strategy that, first, 
determines and excludes genomic regions highly (hydroxy-)methylated in the non-tumor 
fraction of cfDNA and, second, performs differential analysis between patient and control 
samples to further enrich for regions harboring tumor-derived 5(h)mC signals. The 
comparison to tissue methylation data and hierarchical clustering confirmed the tumor 
association of the genomic regions remaining following ctDNA enrichment and identified 
potential 5mC biomarkers for cancer classification. This strategy was applied to facilitate the 
characterization of cancer-derived 5(h)mC alterations and improve the accuracy of cfDNA-
based tumor detection and monitoring. Future studies might benefit from the genome-wide 
blood cell (hydroxy-)methylome data generated within this project and 5(h)mC profiling of 
additional cell types contributing to non-tumor cfDNA (e.g. lymphocytes or vascular 
endothelial cells) will likely improve the identification of cancer-associated 5(h)mC 
alterations. In particular, the tumor-enriched 5mC profiles were capable of inferring the 
transcriptional status of individual genes associated with LUAD biology, demonstrating that 
regulatory 5mC marks are preserved in cfDNA. However, cancer associated processes, such 
as regulation of signaling pathways, could not be derived in this study. Here, higher 
sequencing depth – especially for the 5hmC dataset – would increase the sensitivity and 
likely result in the identification of additional gene regulatory DNA modifications. 
Moreover, expression data from matched tumor tissue could allow for the determination of 
transcriptional processes specific to the investigated ALK+ molecular tumor subtype. This 
was not feasible with the given reference data derived from LUAD tumors of various 
molecular drivers. Cancer-specific 5(h)mC biomarkers correlated with genomic alterations 
measured from the same plasma samples and their quantification in serial plasma samples 
enabled continuous monitoring of ALK-directed TKI therapy. In some cases, 5(h)mC 
alterations could be detected prior to clinical progression and, in one patient, 5(h)mC 
biomarkers were superior to both imaging and genomic alterations in detecting therapy 
relapse. 
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In conclusion, this study demonstrates that tumor-derived alterations in cfDNA can be 
identified from genome-wide 5(h)mC profiles and their assessment in longitudinal plasma 
samples tracks cancer dynamics during therapy. The high prevalence of 5(h)mC alterations 
could translate into sensitive tumor monitoring and allow therapy surveillance in 
individuals without detectable genomic alterations. Further, the tissue specificity and gene 
regulatory roles of 5(h)mC provide information beyond genomic markers. In the future, the 
integrated analysis of epigenetic and genomic features retrievable from cfDNA will be 
crucial to improve cancer detection, especially in challenging clinical scenarios where tissue 
samples are not available. Hereby, the high specificity of genomic alterations could 
complement the sensitivity and tissue specificity of epigenomic aberrations. 
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5 Summary 
Targeted therapies improve the prognosis of advanced anaplastic lymphoma kinase-driven 
non-small cell lung cancer (ALK+ NSCLC) patients. However, clinical courses vary 
considerably due to acquired drug resistance. Thus, timely detection of treatment failure is 
crucial to guide subsequent therapies and optimize patient outcome. The analysis of tumor 
alterations in cell-free DNA (cfDNA) represents a novel approach to monitor cancer 
dynamics during therapy in longitudinal plasma samples. Besides mutations and copy 
number alterations, cancer-specific epigenomic changes have emerged as promising 
biomarkers for cfDNA-based tumor assessment. 
This thesis aimed to identify tumor-derived methylation (5mC) and hydroxymethylation 
(5hmC) alterations in cfDNA of metastatic ALK+ NSCLC patients, associate these epigenetic 
biomarkers to gene expression in lung cancer and assess their suitability for monitoring of 
tyrosine kinase inhibitor therapy in serial plasma samples. 
To this end, 79 longitudinal plasma samples from 31 patients were collected alongside 
plasma of 14 healthy individuals. Genome-wide 5mC and 5hmC profiles were generated by 
cell-free methylation immunoprecipitation and 5hmC selective chemical labeling, followed 
by sequencing. Additionally, 5(h)mC profiles of primary monocytes, neutrophils and 
erythroid progenitor cells were prepared using the same methods. These hematopoietic cells 
constitute the major non-tumor contributors (72.2%) to cfDNA of cancer patients. 
A technical novelty of this study was the enrichment for tumor-derived 5(h)mC signals in 
cfDNA by excluding genomic regions highly (hydroxy-)methylated in the reference blood 
cell types. Of 9,603,454 300-bp genomic loci, 577,701 (5mC; 6.0%) and 499,681 (5hmC; 5.2%) 
exhibited low (or no) signal in the profiled blood cells. The blood cell signal-reduced 5mC 
regions demonstrated an increased correlation to lung cancer tissue methylation (Spearman, 
r = 0.26), compared to the entire dataset (r = 0.11), and revealed cancer- as well as tissue-
specific 5mC signals. Cancer versus control analysis at the remaining genomic regions 
identified 5,499 differentially methylated (DMRs) and 495 differentially hydroxymethylated 
regions (DhMRs). Hierarchical clustering analysis based on the D(h)MRs cleanly separated 
patient from control samples and clustered patient cfDNA according to the inferred tumor 
burden within the samples. This suggests that sample separation is primarily driven by 
tumor-derived signals and confirms that the identified D(h)MRs are enriched for cancer 
5(h)mC alterations. DMRs proximal to transcription start sites were enriched at genes 
downregulated in lung cancer tissue, demonstrating that cancer-specific gene regulatory 
5mC marks can be retrieved from cfDNA. Many of these genes (e.g. GATA4 and HOXA9) 
were previously described to confer tumor suppressive functions in NSCLC. 5(h)mC levels 
in cfDNA correlated with tumor-derived genomic alterations (e.g. EML4-ALK fusion and 
global chromosomal instability [t-MAD score]) determined in matched plasma samples. The 
highest correlation was observed between PTGER4 methylation and t-MAD scores (Pearson, 
r = 0.86). Four 5mC (SOX9-AS1, HOXA10-AS, PRAC1, and PTGER4) and three 5hmC 
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biomarkers (IL1RAP, KPNA7 and KIF25) were employed for therapy monitoring in ten 
patients with available longitudinal samples (³2). In particular 5mC biomarkers mirrored 
cancer dynamics found by radiologic imaging and genomic tumor alterations in cfDNA. At 
four instances, cfDNA 5mC levels anticipated therapy relapse in advance of imaging with a 
maximum lead time of 481 days. In one patient, both 5mC and 5hmC biomarkers detected 
disease progression ahead of imaging and genomic alterations in cfDNA, highlighting the 
sensitivity of 5(h)mC-based tumor assessment. 
In conclusion, 5mC and 5hmC profiling from cfDNA provides an opportunity for sensitive 
cancer detection and therapy monitoring. The tissue-specificity and the regulatory functions 
of these DNA modifications provide data about the tumors that currently cannot be obtained 
by copy number or single nucleotide variation profiling.  
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6 Zusammenfassung 
Zielgerichtete Therapien verbessern die Prognose von fortgeschrittenen anaplastische 
Lymphomkinase-getriebenen nicht-kleinzelligen Bronchialkarzinom (ALK+ NSCLC)-
Patienten. Dennoch variiert das Ansprechen, aufgrund des Auftretens von 
Therapieresistenzen während der Behandlung, erheblich. Die zeitnahe Detektion von 
Therapieversagen ist essentiell, um Folgebehandlungen zu leiten und dadurch den 
klinischen Ausgang zu optimieren. Die Analyse von tumorassoziierten Veränderungen in 
zellfreier DNA (cfDNA) bietet die Möglichkeit Tumordynamiken und Therapieansprechen 
in longitudinal gesammelten Plasmaproben zu überwachen. Neben Mutationen und 
Kopienzahlveränderungen, stellen epigenetische Veränderungen im Tumor 
vielversprechende Biomarker für cfDNA-basierte Analysen dar. 
Das Ziel dieser Arbeit war die Identifizierung von tumorassoziierten Methylierungs- (5mC) 
und Hydroxymethylierungsveränderungen (5hmC) in cfDNA von metastasierten ALK+ 
NSCLC Patienten. Zudem wurden diese epigenetischen Marker mit Genexpressionsdaten 
aus Lungenkrebsgewebe assoziiert und deren Eignung für die Überwachung von 
Tyrosinkinaseinhibitor-Therapien in seriellen Plasmaproben geprüft. 
Zu diesem Zweck wurden 79 longitudinale Plasmaproben von 31 Patienten und 14 Proben 
von gesunden Spendern gesammelt. Das Erstellen von genomweiten 5mC und 5hmC 
Profilen erfolgte durch Immunpräzipitation von methylierter cfDNA, sowie chemischer 
Markierung und anschließender Präzipitation von hydroxymethylierter cfDNA. Die 
angereicherten cfDNA-Fraktionen wurden anschließend sequenziert. Zudem wurden 
5(h)mC-Profile von primären Monozyten, neutrophilen Granulozyten und erythroiden 
Vorläuferzellen generiert. Diese hämatopoetischen Zelltypen generieren den Großteil 
(72.2%) der nicht-tumorassoziierten cfDNA in Krebspatienten. 
Eine technische Neuheit dieser Studie war die Anreicherung von tumorassoziierten 5(h)mC 
Veränderungen in cfDNA durch Ausschluss von genomischen Regionen mit hohen 
(Hydroxy-)methylierungssignalen in den analysierten Blutzelltypen. Von 9.603.454 300-bp 
Regionen wiesen 577.701 (5mC; 6.0%) und 499.681 (5hmC; 5.2%) geringe (oder keine) Signale 
in den Blutzellen auf. Im Vergleich zu dem gesamten Datensatz zeigten die 
blutzellgefilterten Regionen eine erhöhte Korrelation zu Methylierungsdaten aus 
Lungenkrebsgewebe (Spearman, r = 0.11 vs. r = 0.26). Zudem wurden krebs- und 
gewebespezifische 5mC-Veränderungen identifiziert. Die Gegenüberstellung der 
blutzellgefilterten genomischen Regionen von Patienten- und Kontrollproben resultierte in 
5.499 differenziell methylierten (DMRs) und 495 differenziell hydroxymethylierten Regionen 
(DhMRs). Anhand der D(h)MRs konnte eine eindeutige Separation der Proben von Patienten 
und gesunden Spendern erzielt werden (hierarchische Clusteranalyse). Patientenproben mit 
vergleichbarem Tumorgehalt in der cfDNA wiesen die höchste Ähnlichkeit auf. Dies deutet 
darauf hin, dass vom Tumor stammende 5(h)mC Signale die Probenseparation maßgeblich 
beeinflussen und die identifizierten D(h)MRs größtenteils tumorassoziiert sind. Die 
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Anreicherung von DMRs nahe Transkriptionsstartpunkten von Genen mit 
herunterregulierter Expression in Lungenkrebsgewebe zeigte, dass regulatorische 5mC-
Markierungen aus cfDNA abgeleitet werden können. Viele dieser 5mC-regulierten Gene 
(z.B. GATA4 oder HOXA9) wurden zuvor als Tumor-Suppressoren in NSCLC beschrieben. 
5(h)mC-Signale korrelierten mit genomischen Alterationen (z.B. EML4-ALK Fusion und 
globale chromosomale Instabiliät [t-MAD score]), gemessen aus den gleichen Plasmaproben. 
PTGER4-Methylierung und der t-MAD score zeigten die höchste Korrelation (Pearson, 
r = 0.86). Die Eignung von vier 5mC (SOX9-AS1, HOXA10-AS, PRAC1, und PTGER4) und 
drei 5hmC (IL1RAP, KPNA7 und KIF25) Biomarkern zur Therapieüberwachung von zehn 
Patienten mit longitudinalen Plasmaproben (³2) wurde getestet. Besonders 5mC-Marker 
spiegelten dynamische Veränderungen des Tumors wider, die bereits durch bildgebende 
Verfahren und in cfDNA-basierter genomischer Analyse gefunden wurden. In vier Fällen 
ließen 5mC Signale das Rezidiv des Tumors vor radiologischem Progress erkennen (max. 481 
Tage früher). Der Progress eines Patienten wurde sowohl durch 5mC- als auch 5hmC-
Biomarker vor der Bildgebung und der genomischen cfDNA Analyse erkannt. 
Zusammenfassend wurde gezeigt, dass die Analyse von tumorassoziierten 5mC- und 5hmC-
Veränderungen in cfDNA sensitive Möglichkeiten zur Detektion von Tumoren und 
Therapieüberwachung darstellen. Die Gewebespezifität dieser DNA-Modifikationen sowie 
deren Rolle in der Regulierung von Genexpression ermöglicht Einblicke in den Tumor, die 
gegenwärtig durch die Detektion von Kopienzahlveränderungen oder Mutation nicht 
gewährleistet werden kann. 
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Figure S1: Oncoprint of molecular alterations determined by targeted panel and shallow whole-genome 
sequencing (Dietz et al. 2020). Molecular alterations and t-MAD scores are represented for 24 NSCLC patients for whom 
both genomic and 5(h)mC data are available. Alterations are noted if they were present in at least one plasma sample. Patients 
exceeding the third quartile of the cohort t-MAD (0.0174) in at least one sample were graded t-MADhigh and otherwise 
t-MADlow. Percentages indicate the frequency of molecular alterations in the cohort. t-MAD, trimmed median absolute 
deviation from copy number neutrality. 
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Figure S2: cfDNA concentration comparison. cfDNA concentration (ng/mL of plasma) by (A) gender, (B) age, (C) ALK 
fusion variant, (D) TP53 status, (E) clinical status and (F) number of previous therapy lines. Age groups refer to the mean cohort 
age of 57.5 years (Low: ≤57.5 / High: >57.5). Each dot represents one cfDNA sample. cfDNA, cell-free DNA; PD, progressive 
disease; V1/2, ALK fusion variant 1 or 2; V3, ALK fusion variant 3. 
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Figure S3: Integrity of 5(h)mC sequencing libraries and spike-in amplicon quantification standard curves. (A) Integrity 
and fragment length distribution of 5mC (left) and 5hmC (right) sequencing libraries. The median fragment length of all cfDNA 
samples is indicated in red (n = 87 samples) and blue (n = 93). Gray lines show size profiles of individual samples. Illustrated 
peak sizes refer to the median of all samples. (B) Standard curves for the quantification of unmodified (5C), methylated (5mC) 
and hydroxymethylated (5hmC) spike-ins. Each dot represents a technical replicate, linear repression lines refer to their median, 
and Pearson correlation coefficients are illustrated. cfDNA, cell-free DNA; Ct, cycle threshold. 
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Figure S4: Peak number comparison between healthy control and NSCLC patient samples at genomic features. 
Individual boxplots illustrate the number of 5mC (A) and 5hmC (B) peaks per million paired reads throughout the entire 
genome (total) and at different genomic features. Plasma from healthy controls (n = 13) is compared to NSCLC patient samples 
(n = 71). TES, transcription end site; UTR, untranslated region. 
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Figure S5: Relative abundance of 5(h)mC peaks at genomic features. Relative abundance of 5mC (A) and 5hmC 
(B) peaks at gene associated and intergenic regions. TES, transcription end site; UTR, untranslated region. 

 
 

 
Figure S6: Cancer association of 5mC signals without the exclusion of genomic regions hypermethylated in blood 
cells. (A) Summed 5mC signal at the top 100 entity-unique hypermethylated genomic regions (illustrated in Figure 16B) for the 
six most common cancer types determined from TCGA 450k methylation array data. All 100 sites per entity were considered 
without exclusion of genomic regions hypermethylated in blood cells (i.e. monocytes, neutrophils and erythroid progenitors). 
Boxplots compare the 5mC signal between healthy controls (n = 13) and NSCLC patient plasma (n = 71) with each dot 
representing one sample. (B) Heatmap of the top 100 uniquely hypomethylated genomic regions in the six most common cancer 
entities determined from TCGA methylation data. (C) The summed 5mC signal at genomic regions uniquely hypomethylated in 
LUAD without (left) and with (right) exclusion of genomic windows hypermethylated in blood cells. BRCA, breast carcinoma; 
cfMeDIP-seq, cell-free methylation DNA immunoprecipitation sequencing; COAD, colon adenocarcinoma; CPM, counts per 
million; KIRC, kidney renal clear cell carcinoma; LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; PRAD, 
prostate adenocarcinoma; STAD, stomach adenocarcinoma; TCGA, The Cancer Genome Atlas. 
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Figure S7: Permutation test and relationship between 5mC signals and gene expression in LUAD tissue. (A) Permutation 
analysis of the overlap between differentially hypermethylated regions in NSCLC patient samples (mapping to promoter 
regions, 5´-UTRs and first exons) and genes down- (left) or upregulated in LUAD compared to normal tissue types (right). 
Histograms show the expected null distribution of overlaps from 10,000 permutations. The mean number of overlaps from all 
permutation events (Evperm) is indicated as black line and the observed number of overlaps (Evobs) is represented as red line. (B) 
Starburst plots showing the number of differentially methylated regions (DMRs) with respect to the expression status of 
associated genes in LUAD compared to normal tissue types. Each plot illustrates DMRs mapping to the indicated genomic 
feature. cfMeDIP, cell-free methylation DNA immunoprecipitation sequencing; TSS, transcription start site; UTR, untranslated 
region. 
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Figure S8: Diagnostic and prognostic 5mC biomarker candidates. (A) Overlap between diagnostic and prognostic 5mC 
biomarker candidates. Diagnostic markers were defined to present a significantly increased 5mC signal at PD but also non-PD 
plasma samples compared to samples from healthy controls. Prognostic markers show a higher 5mC signal in PD compared to 
non-PD samples. Genes associated with 5mC biomarkers with both diagnostic and prognostic value (n = 21) are listed alongside 
the Venn diagram (ordered by ascending p-values). (B) Illustration of further 5mC biomarker candidates capable of 
differentiating healthy samples (n = 13) from non-PD (n = 37) and non-PD from PD (n = 28) samples, extending the markers 
shown in Figure 22B. PD, progressive disease. 
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Figure S9: HOXA10-AS 5mC signal kinetics followed throughout therapy of ALK+ NSCLC patients. Dynamic changes of 
the plasma 5mC signal at HOXA10-AS throughout ALK-directed tyrosine kinase inhibitor treatment and chemotherapy are 
illustrated for eleven patients with at least two longitudinal plasma samples available. Kinetics of molecular alterations and the 
t-MAD score – measured from the same plasma samples – are shown alongside the 5mC signal. Each dot represents one plasma 
sample. Radiological disease assessment is indicated above each plot and therapy lines are shown by the background colors. 
ALK, anaplastic lymphoma kinase; BPD, brain progressive disease; CPM, counts per million; CTx, chemotherapy; EML4, 
echinoderm microtubule-associated protein-like 4; Idx, initial diagnosis; PD, progressive disease; PR, partial response; SD, 
stable disease; t-MAD, trimmed median absolute deviation from copy number neutrality; VAFmax, maximal variant allele 
frequency. 
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Figure S10: PRAC1 5mC signal kinetics followed throughout therapy of ALK+ NSCLC patients. Dynamic changes of the 
plasma 5mC signal at PRAC1 throughout ALK-directed tyrosine kinase inhibitor treatment and chemotherapy are illustrated 
for eleven patients with at least two longitudinal plasma samples available. Kinetics of molecular alterations and the t-MAD 
score – measured from the same plasma samples – are shown alongside the 5mC signal. Each dot represents one plasma 
sample. Radiological disease assessment is indicated above each plot and therapy lines are shown by the background colors. 
ALK, anaplastic lymphoma kinase; BPD, brain progressive disease; CPM, counts per million; CTx, chemotherapy; EML4, 
echinoderm microtubule-associated protein-like 4; Idx, initial diagnosis; PD, progressive disease; PR, partial response; SD, 
stable disease; t-MAD, trimmed median absolute deviation from copy number neutrality; VAFmax, maximal variant allele 
frequency. 
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Figure S11: PTGER4 5mC signal kinetics followed throughout therapy of ALK+ NSCLC patients. Dynamic changes of the 
plasma 5mC signal at PTGER4 throughout ALK-directed tyrosine kinase inhibitor treatment and chemotherapy are illustrated 
for eleven patients with at least two longitudinal plasma samples available. Kinetics of molecular alterations and the t-MAD 
score – measured from the same plasma samples – are shown alongside the 5mC signal. Each dot represents one plasma 
sample. Radiological disease assessment is indicated above each plot and therapy lines are shown by the background colors. 
ALK, anaplastic lymphoma kinase; BPD, brain progressive disease; CPM, counts per million; CTx, chemotherapy; EML4, 
echinoderm microtubule-associated protein-like 4; IDx, initial diagnosis; PD, progressive disease; PR, partial response; SD, 
stable disease; t-MAD, trimmed median absolute deviation from copy number neutrality; VAFmax, maximal variant allele 
frequency. 
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Figure S12: SOX9-AS1 5mC signal kinetics followed throughout therapy of ALK+ NSCLC patients. Dynamic changes of 
the plasma 5mC signal at SOX9-AS1 throughout ALK-directed tyrosine kinase inhibitor treatment and chemotherapy are 
illustrated for six out of eleven patients with at least two longitudinal plasma samples available. The remaining five patient 
time courses are shown in Figure 24. Kinetics of molecular alterations and the t-MAD score – measured from the same plasma 
samples – are shown alongside the 5mC signal. Each dot represents one plasma sample. Radiological disease assessment is 
indicated above each plot and therapy lines are shown by the background colors. ALK, anaplastic lymphoma kinase; BPD, 
brain progressive disease; CPM, counts per million; CTx, chemotherapy; EML4, echinoderm microtubule-associated protein-
like 4; IDx, initial diagnosis; PD, progressive disease; PR, partial response; SD, stable disease; t-MAD, trimmed median 
absolute deviation from copy number neutrality; VAFmax, maximal variant allele frequency. 
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Figure S13: Copy number profiles inferred from sWGS, 5mC- and 5hmC-enriched sequencing data. Copy number 
profiles generated from shallow whole-genome (sWGS; left), 5mC-enriched (middle) and 5hmC-enriched sequencing datasets 
(right) of patients P005, P010, P012, P013, and P044. Sampling time points were chosen to exemplify progressive, stable and 
responsive disease states. Colors indicate copy number neutrality (blue), deletions (green), copy number gain (brown; 3 copies), 
and amplifications (red; >3 copies). 
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Table S1: Individual patient characteristics 

Patient 
ID 

Gender 
(m/f) 

Age Stage EML4-
ALK 

fusion 
variant 

TP53 
status 

Number 
of 

samples 

Available datasets 

5h
m

C
 

5m
C

 

SN
V

 

C
N

A
 

P001 m 54 IV V3 positive 1 X X X X 

P002 f 51 IV V1 negative 1 X X X X 

P003 m 46 IV E9A10 positive 4 X X X X 

P004 f 74 IV V3 negative 1 X - X X 

P005 m 56 IV V1 positive 3 X X X X 

P007 f 56 IV V2 negative 3 X X X X 

P010 f 56 IV V3 negative 2 X X X X 

P012 f 67 IV K9A20 negative 5 X X X X 

P013 f 53 IV V1 negative 9 X X X X 

P014 m 63 IV NA NA 1 X X X X 

P015 f 48 IV V1 negative 1 X X X X 

P016 m 71 IV V1 negative 1 X - X X 

P019 f 69 IV V3 positive 2 X X X X 

P020 m 64 IV V1 negative 3 X X X X 

P021 f 80 IV V2 positive 1 X X X X 

P023 m 47 IV V2 negative 1 X X X X 

P025 m 52 IV V1 negative 8 X X X X 

P027 m 51 IV V1 negative 1 X X X X 

P028 f 57 IV V3 positive 14 X X X X 

P031 f 44 IV V1 negative 1 X X X X 

P032 m 65 IV V1 negative 1 X X X X 

P037 m 42 IV V3 negative 1 X X X X 

P044 m NA NA V3 negative 6 X X X X 

P046 m NA NA V3 negative 1 X X X X 

P047 f NA IV V1 NA 1 X X - - 

P071 f NA IV V3 NA 1 X X - - 

P102 f NA IV NA NA 1 X X - - 

P163 f NA IV NA NA 1 X X - - 

P166 m NA IV NA NA 1 X X - - 

P169 f NA IV NA NA 1 X X - - 

P174 f NA IV NA NA 1 X X - - 
ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein-like 4, NA, data not available. 
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Table S2: Quality metrics of 5(h)mC-enriched sequencing data from primary blood cells 

 5mC 5hmC 

Number of raw paired reads, x1e-06 Monocytes 76.4 83.4 

 Neutrophils 71.2 98.8 

 Erythroid progenitors 84.4 100.4 

Number of paired reads after QC, x1e-06 Monocytes 43.2 58.6 

 Neutrophils 37.5 61.5 

 Erythroid progenitors 52.9 47.1 

Non-duplicate mapping rate, % Monocytes 56.5 70.3 

 Neutrophils 52.7 62.2 

 Erythroid progenitors 62.7 46.9 

Saturation analysis, r Monocytes 0.99 0.98 

 Neutrophils 0.99 0.99 

 Erythroid progenitors 0.99 0.98 

CpGs covered, % Monocytes 80.0 74.7 

 Neutrophils 72.0 83.6  

 Erythroid progenitors 77.1 85.9 

CpGs covered >5x, % Monocytes 46.5 32.9 

 Neutrophils 45.3 35.8 

 Erythroid progenitors 49.9 24.9 

CpG enrichment score Monocytes 2.9 1.9 

 Neutrophils 3.1 1.8 

 Erythroid progenitors 3.1 1.5 

Reads covering no CpG site, % Monocytes 9.9 8.2 

 Neutrophils 2.8 13.6 

 Erythroid progenitors 4.5 34.2 
CpG, cytosine-guanine dinucleotide; QC, quality control. 

  



Appendix 

 135 

Table S3: Literature search summary of genes associated with differentially methylated regions in plasma of NSCLC 
patients. This table includes genes with associated differentially hypermethylated regions in NSCLC patient plasma that were 
either associated with downregulated gene expression in LUAD tissue (inclusion criterion 1; Incl.), specifically hypermethylated 
LUAD compared to normal tissue types (2), and/or uniquely hypermethylated in LUAD compared to other cancer entities (3). 
Genes not previously described in the context of cancer were excluded from the table (C8orf88, FAM181B, FAM181A, FOXG1-
AS1, LINC01443, LMO2, NHLRC4, PDE1C, PRAC1, QRFPR, SERPINA6, SKIDA1, SMAD13, SYT6, and ZNF366). The Db-values 
refer to the mean difference between b-values in LUAD and non-malignant lung, breast, prostate, colon, and kidney tissue at 
the differentially methylated region in NSCLC plasma. Genes without Db-value (NA) are not covered by the 450k methylation 
array. 

Gene Class Role in 
cancer Description Δβ Incl. 

AFF3 Transcription 
factor 

Tumor 
suppressor 

Expression downregulation enhances proliferatory capacity 
in NSCLC cells (Zhang et al. 2018a). -0.23 1 

ANK2 Transporter Oncogene 
Low expression reduces proliferation of pancreatic cancer 
cells in vitro and in vivo via negative regulation of FAK, 
ERK1/2 and p38 (Chen et al. 2010). 

NA 1 

C5orf66-
AS1 lncRNA Tumor 

suppressor 
Expression downregulation increases proliferation, invasion 
and migration in oral squamous cell carcinoma cells (Lu et 
al. 2018). 

0.08 1 

CDO1 Enzyme Tumor 
suppressor 

Promoter hypermethylation is found in tissue of patients (Yin 
et al. 2020). 5mC levels in cfDNA of stage I NSCLC patients 
are significantly higher compared to healthy controls (Chen 
et al. 2020a). 

NA 1 

CELF2 RNA-binding 
protein 

Tumor 
suppressor 

Negative regulator of PI3K/AKT signaling counteracting the 
inhibition of PTEN. Expression downregulation is associated 
with poor survival in NSCLC patients (Yeung et al. 2020). 

0.24 2 

CLEC14A Plasma 
protein 

Tumor 
suppressor 

Promoter hypermethylation and reduced expression in 
NSCLC tissue. High expression correlates with improved 
clinical outcome (Su et al. 2019). 

0.33 2 

CYP4F2 Enzyme Tumor 
suppressor 

Low expression levels are associated with poor prognosis in 
liver cancer patients. Overexpression inhibits cell proliferation 
and migration in liver cancer cell lines (Wan et al. 2020). 

NA 1 

EDNRB Receptor Tumor 
suppressor 

Downregulated by promoter hypermethylation in NSCLC 
(Knight et al. 2009). Inhibits proliferation and migration of 
NSCLC cell lines by regulating the ERK pathway (Wei et al. 
2020). 

-0.14 1 

EMX2 Transcription 
factor 

Tumor 
suppressor 

Reduced expression and promoter hypermethylation in 
NSCLC tissue. Knockdown promotes proliferation, 
invasiveness and Wnt signaling in NSCLC cell lines (Okamoto 
et al. 2010). 

0.22 1 

ERBB4 Receptor Oncogene Overexpression increases proliferation rates in NSCLC cells 
(Starr et al. 2006). 0.02 1 

EVX2 Transcription 
factor 

Tumor 
suppressor 

Reduced expression and promoter hypermethylation in 
NSCLC tissue. Knockdown promotes proliferation, 
invasiveness and Wnt signaling (Okamoto et al. 2010). 

0.22 1/2 

GATA3 Transcription 
factor Unknown Low expression in NSCLC tissue (Zhao et al. 2019). 0.22 1 

GATA4 Transcription 
factor 

Tumor 
suppressor 

Promoter hypermethylation and low expression in NSCLC 
tissue. Overexpression in NSCLC cells downregulates TGFβ-
signaling and thereby enhances senescence (Gao et al. 
2019). Plasma 5mC levels are significantly increased in stage I 
NSCLC patients compared to healthy control (Chen et al. 
2020a). 

0.17 1 

GLYATL1 Enzyme Tumor 
suppressor 

Downregulated expression by promoter hypermethylation in 
liver cancer patients (Guan et al. 2020). 0.28 1/2 

HIST1H3D Histone 
protein Oncogene 

Upregulated expression in NSCLC tissue and cell lines. Drives 
proliferation, cell cycle progression and inhibits apoptosis in 
NSCLC cells (Rui et al. 2017). 

0.24 3 
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HOPX Transcription 
factor 

Tumor 
suppressor 

Downregulated expression in NSCLC cell lines mediated by 
promoter hypermethylation. Overexpression activates MAPK 
signaling via oncogenic Ras and, thereby increases 
proliferation, migration, and invasion (Chen et al. 2015). 

0.48 2 

HOXA10-
AS lncRNA Oncogene 

Upregulated expression in NSCLC tissue. Silencing in NSCLC 
cells inhibits tumor progression, while high expression 
increases Wnt/β-catenin signaling (Sheng et al. 2018). 

0.37 1/2 

HOXA11-
AS lncRNA Oncogene 

Increased expression in NSCLC tissue and cells. Knockdown 
inhibits proliferation and promotes apoptosis in NSCLC cell 
lines (Bai et al. 2019). 

0.24 1 

HOXA9 Transcription 
factor 

Tumor 
suppressor 

Promoter methylation is a negative predictor for recurrence-
free survival in NSCLC patients (Hwang et al. 2015). Plasma 
5mC levels are significantly increased in stage I NSCLC 
patients compared to healthy control (Chen et al. 2020a). 

0.38 1/2 

HOXA-
AS1 lncRNA Tumor 

suppressor 

Decreased expression in NSCLC tissue. In vitro knockdown 
promotes cell cycle progression, growth and invasiveness in 
NSCLC cells (Chen et al. 2020b). 

0.32 1/2/3 

HOXB13 Transcription 
factor 

Tumor 
suppressor 

Promoter hypermethylation is associated with high  
proliferation as well as high expression of estrogen and 
proesterone receptors in breast cancer patients (Sui et al. 
2018). 

0.13 2 

HTR1B Receptor Tumor 
suppressor 

Promoter methylation and decreased expression is observed 
in NSCLC but not normal lung tissue (Takai et al. 2001). 0.13 1 

KCTD8 Not specified Unknown Increased methylation levels in low-grade breast cancer 
patients (Faryna et al. 2012). 0.17 1 

LIN28B RNA-binding 
protein Oncogene Inhibits apoptosis in ovarian cancer cells (Lin et al. 2018). 0.34 2 

MAB21L1 Not specified Tumor 
suppressor 

Promoter hypermethylation in prostate cancer (Wu et al. 
2016). 0.16 1 

NEFL Not specified Tumor 
suppressor 

Promoter hypermethylation in NSCLC cells. Overexpression 
inhibits NF-κB signaling and thereby decreases invasiveness 
and migration of NSCLC cells (Shen et al. 2016). 

0.10 1 

NKX2-8 Transcription 
factor 

Tumor 
suppressor 

Overexpression in bladder cancer cells inhibits EMT, thereby 
reducing motility and invasiveness (Yu et al. 2018). 0.21 1 

NXPH1 Not specified Unknown Increased methylation levels in low-grade breast cancer 
patients (Faryna et al. 2012). 0.31 2 

OTX2-
AS1 lncRNA Tumor 

suppressor 
Increased abundance in exosomes of bladder cancer 
patients compared to healthy controls (Berrondo et al. 2016). 0.30 2 

PAX6 Transcription 
factor 

Tumor 
suppressor 

Promoter hypermethylation is associated with poor overall 
survival and correlates with the presence of distance 
metastasis and TNM stage in NSCLC patients (Kiselev et al. 
2018). 

0.21 1 

PCDH10 Receptor Tumor 
suppressor 

Promoter methylation predicts poor prognosis following 
curative resection of stage I NSCLC (Harada et al. 2015). 
Overexpression reduces proliferation and migration in NSCLC 
cells (Tang et al. 2012). 

0.16 1 

POU3F3 lncRNA Oncogene 
Overexpressed in NSCLC compared to adjacent normal 
tissue. Positively regulates proliferation, migration and 
invasion in NSCLC cells (Zeng et al. 2020). 

0.16 1 

PRAC1 Not specified Tumor 
suppressor 

Promoter hypermethylation and consequential expression 
downregulation in prostate, renal and colon cancer (Hu et 
al. 2018). 

0.31 1/2 

PRDM14 Transcription 
factor Oncogene Confers chemotherapy resistance in NSCLC cell lines (He et 

al. 2021). 0.38 2 

PTGER4 Receptor Unknown 
Plasma hypermethylation can differentiate between NSCLC 
and non-malignant diseases (as part of a 2-marker-panel 
together with SHOX2) (Schotten et al. 2021; Weiss et al. 2017). 

0.20 2 
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SLC7A8 Transporter Tumor 
suppressor 

Low expression levels in NSCLC patients are associated with 
shorter overall survival (Asada et al. 2020). NA 1 

SOX9-
AS1 lncRNA Unknown 

Regulator of SOX9 (Barter et al. 2017), which promotes 
proliferation in NSCLC cell lines via activation of the Wnt/β-
catenin signaling pathway (Guo et al. 2018). 

0.1 1 

ST8SIA3 Enzyme Oncogene 
Elevated expression in breast cancer versus adjacent normal 
tissue [276]. 0.19 1 

TAL1 Transcription 
factor 

Tumor 
suppressor 

Silenced by promoter hypermethylation in NSCLC patients. 
High expression is associated with good prognosis (Tang et al. 
2019) 

0.04 1 

TBX3 Transcription 
factor 

Tumor 
suppressor 

Downregulated in NSCLC. TBX family members suppress cell 
cycle progression and positively regulate genes implicated in 
cancer development (Khalil et al. 2018). 

0.18 1/3 

ZNF471 Transcription 
factor 

Tumor 
suppressor 

Downregulated expression by promoter hypermethylation in 
various cancer types (Cao et al. 2018; Sun et al. 2020). 
Overexpression reduces invasiveness in NSCLC cells (Wang et 
al. 2020). 

0.2 1 

ZNF582-
AS1 lncRNA Tumor 

suppressor 

Promoter hypermethylation and consequential expression 
downregulation in colon cancer tissue correlates with poor 
survival (Kumegawa et al. 2016). 

0.13 1 

ZNF667-
AS1 lncRNA Tumor 

suppressor 

Reduced expression in colon cancer tumor tissue is 
associated to poor prognosis. Overexpression in colon 
cancer cells inhibits proliferation, migration and invasion by 
downregulation of JAK2 (Zhuang et al. 2021). 

0.17 1 

LINC, long intergenic non-coding; lncRNA, long non-coding RNA; NSCLC, non-small cell lung cancer; TNM, tumor-nodes-
metastases. 
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Table S4: Correlation coefficients between diagnostic/prognostic 5mC biomarkers and molecular alterations 
measured in the same plasma samples. Pearson correlation coefficients and corresponding p-values (gray) are listed for the 
comparison of each 5mC biomarker to co-measured molecular alterations. 

5mC 
biomarker 

Molecular alteration 

EML4-ALK 
fusion G1202R L1196M TP53 

mutation VAFmax t-MAD score 

HOXA10-AS 0.50 <0.001 0.60 0.005 0.21 0.472 0.48 <0.001 0.57 <0.001 0.70 <0.001 

SOX9-AS1 0.40 0.001 0.76 <0.001 0.34 0.238 0.51 <0.001 0.57 <0.001 0.67 <0.001 

PRAC1 0.40 0.001 0.43 0.056 0.41 0.148 0.38 0.002 0.39 0.001 0.54 <0.001 

PTGER4 0.68 <0.001 0.74 <0.001 0.33 0.244 0.75 <0.001 0.77 <0.001 0.86 <0.001 

PCDH10 0.35 0.004 0.17 0.475 0.11 0.709 0.11 0.365 0.23 0.069 0.41 0.001 

NXPH1 0.35 0.004 0.62 0.004 0.10 0.745 0.30 0.014 0.46 <0.001 0.53 <0.001 

CELF2 0.64 <0.001 0.81 <0.001 0.33 0.253 0.78 <0.001 0.79 <0.001 0.83 <0.001 

HTR1B 0.61 <0.001 0.82 <0.001 0.36 0.200 0.80 <0.001 0.83 <0.001 0.84 <0.001 

SYT6 0.43 <0.001 0.37 0.112 0.19 0.517 0.33 0.006 0.39 0.001 0.48 <0.001 

HOXA9 0.45 <0.001 0.60 0.005 0.19 0.518 0.45 <0.001 0.51 <0.001 0.64 <0.001 

CDO1 0.48 <0.001 0.41 0.076 0.06 0.832 0.33 0.007 0.42 <0.001 0.59 <0.001 

POU3F3 0.49 <0.001 0.46 0.042 0.41 0.144 0.47 <0.001 0.49 <0.001 0.67 <0.001 

PRDM14 0.38 0.002 0.47 0.035 0.46 0.099 0.34 0.006 0.40 0.001 0.63 <0.001 

QRFPR 0.20 0.108 0.13 0.582 0.35 0.222 0.08 0.552 0.21 0.100 0.32 0.010 

PAX6 0.44 <0.001 0.62 0.003 -0.12 0.67 0.46 <0.001 0.50 <0.001 0.52 <0.001 

CLEC14A 0.51 <0.001 0.76 <0.001 -0.14 0.636 0.52 <0.001 0.67 <0.001 0.70 <0.001 

EVX2 0.47 <0.001 0.54 0.013 0.16 0.573 0.39 0.001 0.47 <0.001 0.60 <0.001 

HOXA-AS1 0.22 0.074 0.03 0.894 0.20 0.501 0.06 0.655 0.12 0.354 0.27 0.028 

FOXG1-AS1 0.37 0.002 0.64 0.002 0.04 0.879 0.42 0.001 0.53 <0.001 0.63 <0.001 

HOXA11-AS 0.38 0.002 0.52 0.020 0.11 0.698 0.32 0.009 0.44 <0.001 0.56 <0.001 

ST8SIA3 0.20 0.105 0.36 0.118 -0.23 0.434 0.12 0.342 0.21 0.092 0.33 0.008 

ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein-like 4; t-MAD, trimmed median absolute 
deviation from copy number neutrality; VAFmax, maximal variant allele frequency. 
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Table S5: Literature search summary of genes with TSS-proximal or gene body associated hyper-hydroxymethylated 
DhMRs. Cancer association of genes with TSS-proximal (±1,500 bp) or gene body associated differentially hydroxymethylated 
regions (DhMRs) that coincide with upregulated gene expression in lung adenocarcinoma tissue. Genes not previously 
described in the context of cancer were excluded from the table (FOXD4L1, HECW2 and UGT2B4). 

Gene Class Role in 
cancer Description 

ALCAM Plasma 
protein Oncogene 

ALCAM expression promotes brain metastasis formation in NSCLC by increased 
cell dissemination and interaction with brain endothelial cells (Münsterberg et al. 
2020). 

BAIAP2L1 Not 
specified Oncogene 

Upregulated expression in NSCLC tissue and cell lines compared to non-
cancerous tissue. In vitro silencing decreases cell viability and colony formation 
capacity (Xu et al. 2019). 

DMBT1 Not 
specified 

Tumor 
suppressor Low expression in NSCLC tissue and cell lines (Takeshita et al. 1999). 

FRMD5 Not 
specified 

Tumor 
suppressor 

In vitro FRMD5 knockdown promotes cell migration and invasion in NSCLC cell 
lines (Wang et al. 2012b). 

IL1RAP Plasma 
protein Oncogene 

Elevated expression in stomach cancer tissue and acute myeloid leukemia. 
Knockdown reduces proliferation, migration and invasion in vivo and in vitro (Lv et 
al. 2021; Mitchell et al. 2018). 

KIF25 Kinesin-like 
protein Oncogene Highly expressed in estrogen receptor-positive breast cancer cells (Zou et al. 2014). 

KPNA7 Transporter Oncogene KPNA7 silencing reduces cell proliferation in breast and pancreatic cancer cell 
lines (Vuorinen et al. 2018). 

MALL Not 
specified Oncogene Upregulated expression in lung adenocarcinoma cell lines (A549, ABC-1) 

(Watanabe et al. 2010). 

MEPE Not 
specified Oncogene MEPE expression downregulation decreases proliferation, colony formation and 

invasion in Hela cells (Hong Yan 2020). 

PTP4A3 Enzyme Oncogene PTP4A3 knockdown in the ALK+ NSCLC cell line H1299 inhibits cell growth and 
colony formation (Lian et al. 2012b). 

PTPRG-
AS1 lncRNA Oncogene PTPRG-AS1 is highly expressed in NSCLC tissues. Its overexpression promotes 

viability and radioresistance under X-ray irradiation (Ma et al. 2020). 

SPINK1 Plasma 
protein Oncogene Elevated expression in NSCLC compared to adjacent normal tissue. SPINK1 

promotes tumor cell growth and inhibits apoptosis in vitro (Guo et al. 2019). 

TMC5 Not 
specified Oncogene 

High expression in prostate cancer tissue compared to normal controls. TMC5 
knockdown inhibits cell proliferation by inducing cell cycle arrest (Zhang et al. 
2019a). 

ALK, anaplastic lymphoma kinase; TSS, transcription start site; NSCLC, non-small cell lung cancer. 

 
 
Table S6: Literature summary of genes with TSS-proximal or gene body associated hypo-hydroxymethylated DhMRs. 
Cancer association of genes with TSS-proximal (±1,500 bp) or gene body associated differentially hypo-hydroxymethylated 
regions that coincide with downregulated gene expression in lung adenocarcinoma tissue. Genes not previously described in 
the context of cancer were excluded from the table (ANO2, APCDD1L, GPR146, PRKG2, and SV2C). 

Gene Class Role in 
cancer Description 

ANGPTL1 Not 
specified 

Tumor 
suppressor 

Anti-angiogenic factor that inhibits endothelial cell proliferation, migration and 
adhesion. High expression in liver cancer patients is associated with improved 
clinical outcome and reduced metastasis formation (Chen et al. 2016). 

FGF1 Growth 
factor Oncogene High expression in NSCLC tissue is associated with larger tumor size and poor 

prognosis (Li et al. 2015). 

PDZRN4 Not 
specified 

Tumor 
suppressor 

Downregulated expression in liver and colon cancer tissue. Ectopic expression 
inhibits cell proliferation and colony formation in liver cancer cell lines (Hu et al. 
2015). 

TSS, transcription start site; NSCLC, non-small cell lung cancer.  
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Table S7: Correlation coefficients between 5hmC biomarkers and molecular alterations measured in the same 
plasma samples. Pearson correlation coefficients and corresponding p-values (gray) are listed for the comparison of each 5mC 
biomarker to co-measured molecular alterations. 

5hmC 
biomarker 

Molecular alteration 
EML4-ALK 

fusion G1202R L1196M TP53 
mutation VAFmax t-MAD 

score 
ALCAM 0.11 0.361 0.14 0.558 0.19 0.519 0.15 0.220 0.08 0.532 0.12 0.349 

BAIAP2L1 0.10 0.400 0.51 0.023 0.04 0.905 0.07 0.554 0.14 0.265 0.20 0.098 

IL1RAP 0.07 0.573 0.07 0.767 0.29 0.311 0.17 0.169 0.10 0.434 0.14 0.257 

KIF25 0.20 0.103 0.69 0.001 -0.32 0.260 0.26 0.033 0.32 0.007 0.39 0.001 

KPNA7 0.12 0.337 0.70 0.001 0.09 0.769 0.26 0.028 0.32 0.007 0.40 0.001 

MALL 0.17 0.170 0.26 0.259 0.41 0.146 0.21 0.080 0.23 0.059 0.15 0.221 

MEPE -0.02 0.860 0.04 0.852 0.09 0.747 0.14 0.258 0.08 0.496 0.11 0.381 

PTP4A3 0.21 0.080 0.41 0.071 0.17 0.558 0.10 0.397 0.16 0.200 0.22 0.070 

PTPRG-AS1 0.11 0.353 0.37 0.113 -0.19 0.526 0.06 0.645 0.15 0.234 0.07 0.563 

SPINK1 0.31 0.010 0.55 0.013 0.01 0.969 0.26 0.034 0.30 0.013 0.27 0.023 

TMC5 0.01 0.956 0.35 0.134 0.09 0.756 0.12 0.318 0.12 0.333 0.07 0.551 

ALK, anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein-like 4; t-MAD, trimmed median absolute 
deviation from copy number neutrality; VAFmax, maximal variant allele frequency. 
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