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1 INTRODUCTION 

1.1 Background 

Mental disorders are highly prevalent conditions that cause enormous suffering, and a massive clinical 

and socioeconomic burden. 38.2% (164.8 million) of the adult European population has been affected 

by at least one mental disorder (Wittchen, Jacobi et al. 2011). The top three most frequent disorders 

are anxiety disorders (14.0%), insomnia (7.0%) and major depression (6.9%). Patients with mental 

disorders have a reduced life expectancy of up to 20 years (De Hert, Correll et al. 2011). This is mirrored 

in the fact that 1.5m people try to commit suicide every year in Europe alone (De Hert, Correll et al. 

2011). During the recent pandemic of covid-19 (2019~present), a significantly increased prevalence of 

mental disorders has been observed in Germany across all dimensions (Bauerle, Teufel et al. 2020), 

including anxiety (44.9%) and depression (14.3%).  

 

Schizophrenia is a severe mental disorder affecting 20 million individuals worldwide (James, Abate et 

al. 2018). Patients with schizophrenia experience a broad spectrum of clinical symptoms, frequently 

show reduced educational and occupational performance, have a 2 to 3 fold elevated risk for early 

death due to comorbid somatic diseases such as cardiovascular disease (Laursen, Nordentoft et al. 

2014),  and commonly experience stigma, and discrimination. The onset of schizophrenia typically 

occurs between late adolescence and early adulthood, with males frequently showing an 

approximately 5 years earlier age-of-onset and a sharper age-related incidence peak (DeLisi 1992). The 

extensive efforts made to advance biological and clinical research have thus far not resulted in 

substantial improvements of the illness’ clinical management, in particular due to our still incomplete 

understanding of its underlying biology. However, the field is now advancing to a stage where such 

progress appears within reach, due to the strongly intensifying collaborative integration of research 

efforts, the increasing availability of deeply phenotyped, transdiagnostic patient populations, and the 

rapidly advancing progress in data science. Leveraging this multidisciplinary expertise will advance our 

understanding of molecular mechanisms relevant at the individual patient level, and provide the basis 

for the development of novel approaches for diagnosis, at-risk identification, therapy selection, and 

the development of mechanistically-informed treatment approaches.  

1.1.1 Clinical features of schizophrenia 

The definition of schizophrenia by Emil Kraepelin dates back to over 100 years ago (Lehmann and Ban 

1997). Since then, the concept and boundary of schizophrenia has kept evolving with affected patients 

typically displaying a mixture of positive, negative, cognitive, mood and motor symptoms (Tandon, 

Nasrallah et al. 2009). Positive symptoms are related to the impaired perception of reality and include 

delusions and hallucinations. Negative symptoms refer to a reduction or loss of affective and cognitive 

functions, leading to e.g. avolition and apathy. The severity, composition and course of such symptoms 

varies widely between schizophrenia patients, causing extensive clinical heterogeneity at the patient 

group level. For example, the age of onset range is relatively broad and chronically hospitalized 

patients with an earlier age of onset have been reported to  be more strongly affected by cognitive 

impairment and negative symptoms (Johnstone, Owens et al. 1989). As further detailed below, this 

clinical heterogeneity goes hand-in-hand with a pronounced biological heterogeneity where illness-

related changes frequently cross diagnostic boundaries. This substantially complicates the 
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identification of illness-specific biological signatures and the characterization of the illness’ underlying 

biology.  

Numerous studies have explored the possibility to identify diagnostic biomarker signatures for 

schizophrenia, covering a broad spectrum of data modalities, e.g. including  neurocognitive 

dysfunction and brain morphology (Jablensky 2010). However, these signatures have thus far not been 

sufficiently sensitive and specific to be clinically useful as a diagnostic test for schizophrenia. The 

current diagnostic systems DSM-5 (Statistical Manual of Mental Disorders) and ICD-10 (the 

International Classification of Diseases 10) are thus still largely based on the evaluation of clinical 

symptoms and patient history.  

A similar lack of objective biological tools exists in the context of therapy selection. The major 

molecular targets of antipsychotic therapy are the dopamine D2 receptors and 5-HT2 receptors of the 

Central Nervous System (CNS). The antipsychotic drugs aim at blocking these receptors (Gaebel and 

Zielasek 2015) and are typically effective in reducing positive (e.g., delusions), but not negative 

symptoms or cognitive impairment (Seeman 2004). The so-called “atypical” antipsychotic drugs are 

not associated with the extrapyramidal side effects that frequently occur after treatment with first 

generation, “typical” antipsychotics, but often induce a spectrum of metabolic adverse effects (e.g., 

increase of plasma glucose). Due to the difficulties of predicting inter-individual differences of the 

susceptibility to such side-effects, or the likelihood of response to a given therapy, the clinical 

management of schizophrenia is unfortunately still characterized be repeated try-outs of treatment 

approaches.  

Therefore, although the current diagnostic system and approach to treatment have heuristic clinical 

utility, it is widely accepted that the clinical management, as well as the development of novel 

therapies could be substantially improved by a more in-depth understanding of illness biology, the 

development of mechanistically-informed biomarkers, and by advancing these insights to a more 

personalized approach to diagnosis and treatment.  

1.1.2 Genetics and pleiotropy of schizophrenia 

While the exact causes of schizophrenia have not been clearly understood, it is thought to arise from 

a complex interplay of genetic predisposition and exposure to environmental risk factors. 

Environmental risk factors, such as pregnancy and birth complications, childhood trauma, migration, 

social isolation, substance abuse, have been associated with an increased susceptibility for 

schizophrenia (Stilo and Murray 2019). Individual environmental factor typically demonstrate a modest 

effect size (~2 fold increase in risk), and none is specific to schizophrenia. However, the cumulative 

effect of individual factors has been associated with relevant clinical effects. For example, patients 

exposed to 4 environmental risk factors demonstrate an earlier age of onset compared to those 

exposed to 3 environmental risk factors (Stepniak, Papiol et al. 2014). , An interesting approach to 

disentangle this complex risk pattern has been to identify biological alterations that may modulate the 

effects of environmental risk on schizophrenia symptoms. For example, the elevation of dopamine 

synthesis has been shown to be associated with migration (Egerton, Howes et al. 2017), childhood 

abuse (Oswald, Wand et al. 2014) and low parental care (Pruessner, Champagne et al. 2004). Exploring 

biological interactions with environmental predisposition may lead to the identification of modifiable 

factors that could aid in the improvement of the clinical management of schizophrenia, or the 

development of novel preventative approaches.  

 
Genetics 
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The early genetic studies of schizophrenia, dating back to the middle of the 20th century, were primarily 

family history and twin studies (Kallmann 1946). These studies investigated the association of 

phenotypes from a set of blood-related samples and indirectly inferred the properties of the 

phenotype-associated genetic risk factors. Notably, the accumulated evidence from twin studies 

supports an 81% heritability of schizophrenia (Sullivan, Kendler et al. 2003).  In the 90s, advanced 

technology allowed the determination of DNA sequences. A milestone in this period was the 

completion of the human genome project in 2003, which successfully mapped DNA sequences to 

20,500 human genes, and started a new era for understanding nature from a molecular level. For 

genetics research of schizophrenia, genome-wide association studies (GWAS) became a central 

resource for providing the downstream investigations with evidence on risk-associated regions on the 

genome. GWAS determine the risk association of a given variant by regressing the diagnosis on the 

genotype of the variant in a large group of patients and controls. With the ever-increasing sample sizes, 

GWAS has profoundly impacted the understanding of schizophrenia genetics. In the course of two 

decades, an increasing number of genome-wide significant SNPs, and a more accurate estimation of 

genetic effects were determined. For example, a recent work (Ripke, Walters et al. 2020) identified 

329 genome-wide significant SNPs and 23% heritability from a large sample comprising 69,369 

schizophrenia patients and 236,642 controls.  

Despite these successes, the genome-wide significant SNPs explain individually, as well as in 

combination, only a small proportion of schizophrenia’s heritable variance. This might be due to the 

polygenic inheritance of schizophrenia (International Schizophrenia, Purcell et al. 2009), meaning that 

the heritability is attributable to a large number of weakly associated SNPs. The Polygenic Risk Scores 

(PRS) integrating effects over a large number of common variants currently predict the diagnosis with 

a modest accuracy (AUC=0.71) (Ripke, Walters et al. 2020). 

 

Pleiotropy 

Pleiotropy refers to a phenomenon that an identical genetic factor influences multiple traits. In the 

human genome, over 4.6% of SNPs and 17% of genes (Sivakumaran, Agakov et al. 2011) demonstrate 

a pleiotropic effect. In the context of mental illness, this effect appears to be even more substantial, 

where e.g., a 40% genetic correlation has been found between major depressive and bipolar disorder 

(Cross-Disorder Group of the Psychiatric Genomics, Lee et al. 2013, Lee, Ripke et al. 2013). For 

schizophrenia, pleiotropic effects have also been found across numerous mental and somatic illnesses. 

For example, schizophrenia shows a significant genetic correlation with bipolar disorder (68%) (Lee, 

Ripke et al. 2013), major depressive disorder (40%) (Bulik-Sullivan, Finucane et al. 2015) and 

amyotrophic lateral sclerosis (14.3%) (McLaughlin, Schijven et al. 2017). A detailed description of 

schizophrenia pleiotropy can be found elsewhere (Bulik-Sullivan, Finucane et al. 2015, Zheng, 

Erzurumluoglu et al. 2017, Watanabe, Stringer et al. 2019).  

The accurate analysis of pleiotropy relies on large-scale GWAS data and sophisticated analysis 

methodologies. Linear mixed models (Lee, Yang et al. 2012) and cross-trait LD score regression (Bulik-

Sullivan, Loh et al. 2015) are two major tools for this analyses that require different types of input data. 

Linear mixed models require the individual genotype data as input to estimate the genetic correlation. 

In contrast, cross-trait LD score regression only require the summary statistics data and are robust with 

respect to shared confounders. Due to data privacy protection concerns related to the sharing of 

genotype data and the ubiquitous presence of shared confounders, these benefits lead to the wide 

use of cross-trait LD score regression. However, these benefits also come at the cost of a high variance 

of the LD score regression model, requiring more samples to achieve the desired precision. A complete 
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review of methodologies for analyzing the pleiotropy of mental illnesses can be found in (Cao and 

Schwarz 2019). 

 

1.2 Multi-modal data integration using machine learning 

Biological research of schizophrenia is increasingly moving towards the integrative exploration of 

multiple data modalities, in order to integrate the diverse, individually weak biological changes and 

characterize more comprehensively the affected biological systems. Due to the strong heritability of 

schizophrenia, a critical element of such integrative efforts is the consideration of genetic 

predisposition. Large-scale GWAS studies have identified over 300 independent, genome-wide 

significant loci associated with the illness (Ripke, Walters et al. 2020). Functional genomics analyses 

have linked these genetic susceptibility effects encoded in common genetic variants to alterations in 

synaptic function, as well as histone and immune-system related effects(Fromer, Roussos et al. 2016) 

(Schwarz, Izmailov et al. 2016) (O'Dushlaine, Rossin et al. 2015). The integrative analysis of such genetic 

susceptibility effects with other data modalities, including neuroimaging, is a promising avenue to 

obtain deeper insight into their functional consequences. This thesis explores such integrative analysis 

using advanced multi-task machine learning, focusing on the genetic association, gene expression, as 

well as neuroimaging data. The following sections provide a high-level overview of these data 

modalities in the context of schizophrenia, and are followed by an in-depth description of the machine 

learning approaches developed and deployed as part of this thesis.  

1.2.1 Genomics 

Genomics studies explore an organism's DNA sequence by characterizing its structure, function, 

evolution, mapping and editing. DNA is described by an ordered sequence of nucleic acids. The first 

generation of sequencing technology was the Sanger method (Sanger, Nicklen et al. 1977) which 

utilized the so-called “chain termination method” to trace the molecules. In 1987, the Sanger method 

(Hood, Hunkapiller et al. 1987) was automated, indicating the maturation of the first-generation 

sequencing technique. The currently used technique is the so-called next-generation sequencing (NGS) 

technology. The key difference is the high-throughput sequencing volume, which allows hundreds of 

millions of DNA molecules to be measured simultaneously, due to the massive parallelization of a large 

number of reactions. The most important milestone of NGS was the success of the human genome 

project, which produced the first draft of the human genome (Lander, Linton et al. 2001). With the 

development of NGS and related technologies, the economic cost for the whole-genome sequencing 

of an individual kept decreasing rapidly over the years, leading to an increase in the availability of large 

number of human genomic datasets. 

These datasets, allow exploring the relationship between the genetic predisposition and clinical 

phenotypes, and locating the specific loci that contribute to this effect. This promoted the emergence 

of GWAS. GWAS is a powerful method to evaluate the association between a given genotyped marker 

and the phenotype. In a recent decade, GWAS achieved great success in exploring human genetics, 

with around 5,000 GWAS results covering over 400 unique studies and 3,000 unique traits (Watanabe, 

Stringer et al. 2019). Two types of phenotype-associated variants exist: rare variants of large effect and 

common variants of small effects. Characterizing risk architectures using GWAS is particularly effective 

for the former type, whereas the interpretation of findings related to common variants is challenging 

due to the complex polygenic structure of disorders such as schizophrenia. For both types, the power 

of GWAS is influenced by the heritability of the phenotype, which is commonly quantified as the 
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phenotypic variance explained by the genetic markers in a population. Technically, obtaining a deeper 

understanding of the explained variance depends on two factors: 1) the frequency of the risk variant 

in the population and 2) the effect size of the risk variant compared to that of the alternative variant. 

One drawback of GWAS is the inability to account for the linkage disequilibrium (LD) structure. 

Causative markers can be strongly associated with the many non-causative markers in the same LD 

block, which commonly induces significant, but mechanistically-uninformative GWAS associations. 

Another drawback is the frequently occurring missingness of data and low quality of measurements of 

the SNP array. Excluding either individuals or SNPs with high missingness can reduce the power of 

GWAS. However, this can be mitigated by data imputation techniques (Li, Willer et al. 2009), which 

complete the missing genotype according to the available haplotypes of other individuals in a sample. 

The underlying mathematical model facilitating this imputation is a Hidden Markov Model (HMM).  

Although it is difficult to directly identify the significant risk loci for common-variants-associations, the 

individual’s polygenetic risk can be determined by summarizing the weak risk contributions over a large 

number of common variants based on the GWAS results, as performed in polygenic risk score (PRS) 

analysis (Choi, Mak et al. 2020). While several methods exist to determined PRS, the standard approach 

is the so-called “C+T” (clumping + thresholding) (Choi, Mak et al. 2020). Clumping is used to control 

the biases caused by the LD effect because the SNP-SNP correlations are not uniformly distributed 

across the genome. Clumping selects independent SNPs using a statistical correlation metric as well as 

the pairwise physical distance on the genome (Prive, Vilhjalmsson et al. 2019). P-value thresholding 

aims at retaining the high-risk SNPs from the clumped SNP set. For this, a maximum P-value is set as 

the threshold to remove low-risk SNPs. However, this threshold is difficult to select and specific for a 

phenotype and its genetic architecture. Validation on an independent cohort would be commonly 

utilized to select the optimal threshold. The final score is obtained by multiplying the effect size of 

these high-risk SNPs and the genotypes of a given individual, and building the sum of these values. PRS 

analysis is particularly important for schizophrenia research due to the polygenic nature of the illness. 

A milestone work was the first study determining PRS on schizophrenia (International Schizophrenia, 

Purcell et al. 2009), which explained over 3% of the heritable variance. More importantly, the score 

was specific to schizophrenia compared to other psychotic and non-psychotic disorders. The work 

demonstrated the potential utility of PRS in translational schizophrenia research. With the increasing 

accumulation of genetic data, the most recent schizophrenia PRS explains a substantially higher 

portion of variance (Ripke, Walters et al. 2020). 

A particularly interesting line of research that originated from GWAS was eQTL (expression 

quantitative trait loci) analysis. eQTL refers to loci that explain a significant amount of  the variation of 

gene expression in a specific tissue. This analysis, instead of locating the risk loci that impact on the 

final phenotype (e.g., schizophrenia), aims at identifying variants that affect gene expression and 

regulation.  The corresponding association test is performed between the expression level of a given 

gene and the genotype of each SNP, followed by multiple hypothesis testing correction. In 

schizophrenia research, eQTL analysis was able to shed light on the functional effect of the identified 

susceptibility variants. A study (Bhalala, Nath et al. 2018) identified over 2000 cis-eQTL related to 40 

genes, including 11 non-coding RNAs. Interestingly, these eQTLs were overrepresented in brain tissue 

compared to blood, pointing to a brain-specific effect of genetic susceptibility on gene regulation.    

1.2.2 Transcriptomics   

Transcriptomics studies aim at characterizing a given organism’s entire transcriptome – a snapshot of 

all RNA transcripts in a cell. Transcriptomics studies started in the early 1990s, and two key 
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technologies have been developed for analysis at a genome-wide scale: microarray and RNA-seq. The 

early microarray technology utilizes a “library” of transcripts, against which the transcripts in a given 

sample are matched to facilitate quantitation. One of the drawbacks of this method is that RNA 

molecules that have no match in the library cannot be quantified. In contrast, the more recently 

developed RNA-seq allows the complete sequencing of an entire transcriptome. Compared to 

microarray, RNA-seq can measure more transcriptome information, including information on splice 

variants and non-coding transcripts (Rao, Van Vleet et al. 2018). 

In the context of genetic risk, it is notable that schizophrenia-associated common variants have been 

found enriched in genes expressed in the brain (Schizophrenia Working Group of the Psychiatric 

Genomics 2014) that aggregated into pathways related to synaptic functions, histone and immune 

systems (O'Dushlaine, Rossin et al. 2015). Since most risk loci are located outside of coding exons, it is 

assumed that the susceptibility of schizophrenia-associated variants is mediated via the regulation of 

gene expression. A large number of studies have explored gene expression differences in patients with 

schizophrenia, most frequently using case-control study designs. Compared to the genetic association 

studies, differences in gene expression typically show larger effect sizes but are more easily 

confounded by a large number of potential factors, including measurement batch and medication 

effects. This makes the validation of identified gene expression differences mandatory, in particular 

when algorithms integrate a large number of changes observed for different genes. Several studies 

have performed such independent validation [e.g. (Chen, Cao et al. 2020)] and have also been 

successful in identifying comparable signatures in other conditions, such as type 2 diabetes (Cao, Chen 

et al. 2017). In a more complex, multi-modal data analysis, transcriptomic analysis is able to play a 

particularly critical role as the intermediate phenotype to connect other data modalities. A notable 

example is the integrative analysis of genetic association, gene expression, and ontological annotation 

data in deep neural networks that substantially improved the ability to predict schizophrenia diagnosis 

compared to the conventional approach (Wang, Liu et al. 2018). 

Transcriptomic analyses are frequently interpreted in the context of the biological processes within 

they take place. Assigning genes to biological processes relies on gene ontological information that 

reflects a hierarchical representation of a biological system at a molecular level. Two of the most well-

known databases are the gene ontology (GO) and the kyoto encyclopedia of genes and genomes 

(KEGG). Both assign functionally-related genes into sets. The difference between the two databases is 

that GO aims at building an entire tree ranging from gene categories to the organism, whereas KEGG 

characterizes the dependency between genes within a given pathway, including their activity and the 

respective functions of the participating genes.  

These gene ontology databases support diverse analyses in molecular studies. First, the functional set 

enrichment analysis (e.g., gene set enrichment analysis) is commonly used to interpret the biological 

function of identified transcriptomic changes (e.g., affected biological pathways) (Wu, Hu et al. 2021). 

A widely used computational tool for this task is further described in (Wu, Hu et al. 2021). These 

databases are furthermore increasingly used to support machine learning analysis. Pathway-

annotation allows stratifying high-dimensional data into biologically meaningful, smaller datasets, 

making the training of machine learning models easier. Previous work has used this approach on 

genome-wide DNA methylation, as well as GWAS data, and then aggregated pathway-specific 

algorithms into a systems-level classifier, in order to test associations with brain function (Chen, Zang 

et al. 2020).  
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1.2.3 Neuroimaging 

Advances in imaging acquisition techniques have allowed neuroscientists to observe the structure and 

function of the brain in living individuals. The most widely-used techniques for neuroimaging are sMRI 

(structural magnetic resonance imaging) and fMRI (functional magnetic resonance imaging) due to 

their low invasiveness and the lack of radiation exposure (Xue, Chen et al. 2010). sMRI has been used 

to quantify the brain's anatomy through images with high contrast between gray and white matter 

based on differences of water content in the respective tissues. To analyze sMRI scans, researchers 

commonly use voxel-based morphometry as a computational tool to determine localized differences 

at the voxel level. sMRI supports several analyses, including the volumetric comparison of brain tissue, 

the assessment of the degree of cortical folding, and the exploration of the cortical gyrification pattern 

(Gifford, McCutcheon et al. 2020). fMRI is used to measure neural activity by identifying the changes 

in blood oxygenation because an increased activity in a given location is associated with increased 

energy consumption. The underlying principle is the differential magnetic properties of oxygenated 

and deoxygenated blood. This technique is commonly used to test the neural responses of subjects 

during a set of well-designed tasks or in a resting state.  

Neuroimaging has played a critical role for the characterization of functionally-relevant biological 

mechanisms of schizophrenia (Abi-Dargham and Horga 2016). With a complex genetic architecture, 

genetic susceptibility for schizophrenia is carried by a large number of risk variants with small effect 

sizes. This implies that no individual genes (or environmental factors) are fundamental to the disease 

process for most schizophrenia patients. Neuroimaging has provided a tool for determination of  

“intermediate phenotypes” to study schizophrenia, that are thought to be of fundamental relevance 

to the clinical phenotype, but closer to the underlying biology that the clinical manifestation (Meyer-

Lindenberg and Weinberger 2006). As a consequence, the effect sizes of, e.g. associations between 

risk variants and schizophrenia-relevant brain function, are expected to be larger. There is an extensive 

literature describing brain-structural, -functional and molecular differences in schizophrenia, e.g. 

dopamine hyperactivity (Hietala and Syvälahti 1996), N-Methyl-D-aspartate receptor alterations(Olney 

and Farber 1995), hippocampal hyperactivity (Lieberman, Girgis et al. 2018) and immune dysregulation 

(Dalmau, Gleichman et al. 2008). These and other findings gave rise to the “imaging genetics” field, 

aiming to explore the genetic underpinning of the effects.  

A large number of studies using conventional, “univariate” statistical analysis were performed for the 

analysis of such data. For example, the ENIGMA consortium has investigated the genetic basis for 

structural alterations (Medland, Grasby et al. 2020), and characterized the genetic pleiotropy of mental 

disorders in relation to subcortical brain volumes (Campbell, Jahanshad et al. 2021), or the effects of 

CNVs on cerebral and cognitive alterations (Sonderby, van der Meer et al. 2021). Meanwhile, to 

integrate the risk of genetic features as well as omics-derived data, machine learning is increasingly 

used in the psychiatric field. For example, the epigenetic signature of schizophrenia was learnt using 

machine learning and associated with the schizophrenia-relevant brain function (Chen, Zang et al. 

2020). 

1.2.4 Dimensional reconstruction of mental illness using machine learning  

Biological research has demonstrated that alterations found in patients with schizophrenia most 

frequently show small effect sizes and are widely distributed across different data modalities. 

Therefore, in order to integrate such changes and obtain deeper insight into biological mechanisms 

affected in schizophrenia, advanced computational tools are needed that can extract illness-associated 

signals in high-dimensional, multimodal data.  
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Machine Learning (ML) offers a well-established framework for integrating numerous phenotype-

associated alterations in a given high-dimensional data modality, in order to maximize the ability to 

predict a given phenotype. A large body of literature exists that has used machine learning for such 

tasks in biomedicine and more specifically, in biological psychiatry, and this has been reviewed recently 

in (Cao and Schwarz 2020). While ML has overwhelmingly focused on learning biological signatures 

from individual data modalities, the simultaneous capture of biological signatures from multiple data 

modalities may be advantageous for characterizing complex disease mechanisms. A particularly 

promising approach for such integrative analysis is the so-called ”multi-task learning” (MTL). MTL is an 

advanced ML technique for the simultaneous learning from multiple related datasets. It has been 

successfully used in numerous data-intensive fields, including biomedical informatics (Li, Wang et al. 

2016), natural language processing (Li, Liu et al. 2020), image processing and computer vision (Zhang, 

Luo et al. 2014), as well as web-based applications (Chapelle, Shivaswamy et al. 2010). In psychiatry, 

MTL has been applied to integrate the heterogeneous gene expression cohorts of schizophrenia to 

identify a predictable, stable and consistent signature (Cao, Meyer-Lindenberg et al. 2018).  

For molecular studies of psychiatric illnesses, MTL demonstrated utility as a dimensional approach for 

disentangling shared and specific biological alterations in multi-modal data cohorts(Han Cao and 

Schwarz).  

 

1.3 Regularization based machine learning  

 

Figure 1. Example of a linear ML model. The outcome y is predicted by the multiplication of feature 

matrix (x) and model (or coefficients) w. The learning procedure was to identify w. 

 

High dimensionality is a common characteristic of most molecular and neuroimaging data modalities, 

and constitutes a significant challenge for ML algorithms. The so-called “curse of dimensionality” 
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describes the typical scenario that the predictive accuracy of machine learning algorithms when tested 

on unseen datasets decreases as the dimensionality of the training data increases. This is because ML 

algorithms easily overfit the model on high-dimensional training data and do not generalize well on 

unseen data. The bias-variance tradeoff theory (Hastie, Tibshirani et al. 2009) showed that the model 

complexity is proportional to the chance of overfitting. Therefore compressing the model complexity 

has been a widely adopted strategy in high-dimensional data problems, e.g., in the form of a linear 

model with the utilization of a regularization technique. The bias-variance tradeoff theory shows that 

linear models have the lowest bias compared to more complex models (i.e., random forest). Figure 1 

shows a linear ML model for outcome prediction. A coefficient vector w is learnt for predicting the 

outcome and interpreted given the context of the application. However, the linear model has a high 

variance leading to a limited predictive power in an actual analysis. This situation becomes more severe 

in a high-dimensional setting due to the increased chance of overfitting. To mitigate this issue, 

regularization techniques were developed, which greatly reduced the model variance by introducing 

constructive prior information (a slight bias), in order to guide the optimization. During the evolution 

of regularization techniques over several decades, it has been explored as a tool of domain-knowledge 

integration by incorporating a well-defined prior information. 

 

min
w
ℒ(w|x, y) + λΩ(w)     (1) 

As shown in formulation (1), ℒ(w) is a data fitting term (also called the “loss function”), a major factor 

influencing the determination of the coefficient solution. The machine learning model (i.e., coefficients 

w) is obtained by minimizing this loss function given the data. A specific loss function is associated with 

a specific prediction task (i.e., the least-square loss is commonly used in regression tasks). 

The function Ω(w) is a regularization term and frequently called the “penalty”. This function aids in 

identifying a generalizable and interpretable solution by penalizing the unwanted characteristics of the 

coefficients. From the perspective of the penalty, regularization methods can be classified into two 

categories: I) penalization on the coefficients and II) penalization on the difference between the 

coefficients. Here, we explain each category in the context of biomedical studies. 

1.3.1 Penalization on coefficients  

In this category, the magnitudes of coefficients are penalized, leading to a sparse (or near-sparse) 

model – many coefficients are 0 (or near to 0). Examples for this class of methods are the Lasso 

( Ω(w) = λ||w||1 ), ridge regression (  Ω(w) = λ||w||2
2 ) and elastic net ( Ω(w) = λ(α||w||1 +

(1−α)

2
||w||2

2). Lasso assumes a sparse structure of the coefficients (i.e., many coefficients are 0) and 

applies the 𝑙1-norm to achieve this aim. This method works well for high-dimensional data applications 

because outcome-irrelevant features commonly existed in such data. One study  (Kohannim, Hibar et 

al. 2012) applied the Lasso to explore the genetic underpinnings of brain structure. However, as 

pointed out in one study (Zou and Hastie 2005), when there is a strong correlation structure among 

features, Lasso may select among such correlated features at random, leading to a potential loss of 

information and difficulties in interpreting the identified biological patterns. This situation is quite 

common in molecular studies where e.g. genetic co-expression and linkage disequilibrium (LD) cause 

a strong correlation structure between features. To capture this correlation structure in ML 

applications, the ‘elastic net’ was introduced based on the Lasso by adding an extra penalty (𝑙2-norm) 

term, in order to select sets of correlated predictors. For the ridge regression, only the 𝑙2-norm is 

applied to penalize the coefficients and unimportant coefficients are shrunken towards 0.  
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Besides the penalization of individual features, another research line explored penalizing groups of 

features. This approach is meaningful in biological applications since biological features can be 

frequently grouped according to ontological annotations (e.g., genes are grouped into pathways), 

which assists in biological interpretation when changes in higher-level biological function can be 

associated with a given outcome, compared to those in individual genes. One regularization approach 

for this aim is called the “group Lasso” with the form Ω(𝑤) = 𝜆∑ ||𝑤I𝑔||2
𝐺
𝑔=1  where 𝐺 represents a 

set of groups. This method has been used for tumor classification (Huo, Xin et al. 2020).  

An extension to the group lasso assumes the presents of sparsity within a given group, facilitating 

feature selection at the feature- as well as the group-level. This assumption is justified in numerous 

biological applications, for example when only some genes of a gene group (e.g. pathway) are 

associated with a given outcome. The regularization derived from this assumption is called the “sparse 

group Lasso” with penalty term Ω(𝑤) = 𝜆1||𝑤||1 + 𝜆2∑ ||𝑤I𝑔||2
𝐺
𝑔=1  (Simon, Friedman et al. 2013). 

One successful application of this approach was the unsupervised analysis across omics modalities (Lin, 

Zhang et al. 2013). 

1.3.2 Penalization on the difference of coefficients  

Instead of the penalization on the coefficients, another research line has explored penalizing the 

difference between coefficients. This class of regularization techniques is suitable for modeling the 

relationship between features within an ML framework, e.g., the sequential order or network structure 

of features. In molecular studies, such feature relationships are frequently encountered, e.g., in the 

form of LD structure and genetic co-expression networks.   

The ‘fused Lasso’ (Tibshirani, Saunders et al. 2005) (Ω(w) = λ1||w||1 + λ2∑ |wi −wi=1|
p
i=1 ) forces 

the sequential order of the features and encourages the smoothness over the sequence of coefficients. 

This strategy has been applied in GWAS studies to account for LD effects (Liu, Wang et al. 2013, Yang, 

Liu et al. 2016). Alternatively, the ‘network-based regularization’ (i.e. Ω(w) = λ1||w||1 + λ2w
TLw, 

where L  is the graph Laplacian) incorporates a network over features into the ML framework by 

encouraging coefficient similarity of features connected in the network. Such methods have been 

repeatedly applied in molecular biology, for example to incorporate PPI network (Wu, Wang et al. 

2015), or co-expression network (Li and Li 2008).  

The above methods naively assume that the coefficients connected via the network have the same 

signs (or association direction), which is unlikely in real biomedical applications. For example, it is quite 

common that two genes are inversely regulated by a third factor such that the expression values of 

these two genes are negatively associated. To address this, it can be useful to estimate the signs of the 

features prior to the ML stage. The studies (Li and Li 2008, Avey, Mohanty et al. 2017) estimated such 

signs as the association direction between the features and the outcome. It has been found that using 

this method to incorporate multiple biological networks can significantly improved pathway analysis 

(Avey, Mohanty et al. 2017). Another research line for tackling this issue focused on designing a more 

flexible penalty. One study(Yang, Liu et al. 2016) proposed a penalty ( Ω(w) = λ1||w||1 +

λ2∑ ||wi| − |wi−1||
p
i=1 ) to penalize the difference between the absolute values of the coefficients 

instead of the actual coefficients, reducing the impact of the signs of individual coefficients. However, 

this algorithm was not easy to solve due to its non-convex nature. A common approach was 

reformulating the penalty into the “DC” (difference of convex functions) form and solving by DC 

programming. Another strategy adopted a convex alternative formulation (Bondell and Reich 2008, 

Yang, Yuan et al. 2012), Ω(w) = λ1||w||1 + λ2∑ max
wi,wj

{|wi|, |wj|}(i,j)∈E . This min-max term penalizes 
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the larger absolute coefficient within a given coefficient pair such that the pair’s coefficients are 

penalized to 0 simultaneously if the features are both poor predictors.   

 

Regulariza

tion Name 

Type Subtype Math Form Effect Ref 

Lasso Machine 

Learning 

Penalization 

on 

coefficients 

Ω(𝑤) = 𝜆||𝑤||1 Remove irrelevant 

predictors 

(Tibshirani 
1996) 

Ridge 

Regressio

n 

Ω(𝑤) = 𝜆||𝑤||2
2 Prevent overfitting (Hoerl and 

Kennard 
1970) 

Elastic net 
Ω(𝑤) = 𝜆(𝛼||𝑤||1 +

(1 − 𝛼)

2
||𝑤||2

2 
Select important 

predictors with 

grouping effect 

(Zou and 
Hastie 
2005) 

Group 

Lasso Ω(𝑤) = 𝜆∑ ||𝑤I𝑔||2

𝐺

𝑔=1

 
Account for group 

structure over 

predictors 

(Meier, 
Van De 
Geer et al. 
2008) 

Sparse 

Group 

Lasso 

Ω(𝑤) = 𝜆1||𝑤||1 + 𝜆2∑||𝑤I𝑔||2

𝐺

𝑔=1

 
Account for sparse 

group structure 

over predictors 

(Simon, 
Friedman 
et al. 
2013) 

Fused 

Lasso 

Penalization 

on the 

difference 

between 

coefficients 

Ω(𝑤) = 𝜆1||𝑤||1 + 𝜆2∑|𝑤𝑖 −𝑤𝑖−1|

𝑝

𝑖=1

 
Account for 

ordered predictors 

(Tibshirani
, Saunders 
et al. 
2005) 

Absolute 

Fused 

Lasso 

Ω(𝑤) = 𝜆1||𝑤||1 + 𝜆2∑||𝑤𝑖| − |𝑤𝑖−1||

𝑝

𝑖=1

 
Account for 

ordered predictors 

(only magnitudes 

matter) 

(Yang, Liu 
et al. 
2016) 

Network 

based 

Regulariza

tion 

Ω(𝑤) = 𝜆1||𝑤||1 + 𝜆2𝑤
𝑇𝐿𝑤 

Ω(𝑤) = 𝜆1||𝑤||1 + 𝜆2 ∑ max
𝑤𝑖,𝑤𝑗

{|𝑤𝑖|, |𝑤𝑗|}

(𝑖,𝑗)∈𝐸

 

Incorporate 

network structure 

over predictors 

(Bondell 
and Reich 
2008, 
Yang, Yuan 
et al. 
2012) 

Joint 

Feature 

Selection 

Multi-Task 

Learning 

MTL with 

structural 

regularizatio

n 

Ω(𝑊) = 𝜆||𝑊||2,1 Select predictors 

important to all 

tasks 

simultaneously 

(Argyriou, 
Evgeniou 
et al. 
2007) 

Trace-

norm 

model 

Ω(𝑊) = 𝜆||𝑊||∗ Find the low-rank 

structure of the 

models 

(Ji and Ye 
2009) 

Mean-

regularize

d model 

MTL 

incorporatin

g pairwise 

task 

similarity 

Ω(𝑤1, …𝑤𝑖, …𝑤𝑡) = 𝜆∑||𝑤𝑖 −
1

𝑡
∑𝑤𝑗

𝑡

𝑗=1

||2
2

𝑡

𝑖=1

 
Identify the mean 

model as the latent 

model behind all 

tasks 

(Evgeniou 
and Pontil 
2004) 

Temporal 

Smoothne

ss Prior 

Ω(𝑤1, …𝑤𝑖, …𝑤𝑡) = 𝜆1∑||𝑤𝑖 −𝑤𝑖+1||2
2

𝑡−1

𝑖=1

+ 𝜆2||𝑊||2
2 

Incorporate 

temporal order 

among tasks to 

(Zhou, 
Yuan et al. 
2011, 
Zhou, Liu 
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Ω(𝑤1, …𝑤𝑖, …𝑤𝑡) = 𝜆1∑||𝑤𝑖 −𝑤𝑖+1||2
2

𝑡−1

𝑖=1

+ 𝜆2||𝑊||2,1 

Ω(𝑤1, …𝑤𝑖 , …𝑤𝑡) = 𝜆1∑||𝑤𝑖 − 𝑤𝑖+1||1

𝑡−1

𝑖=1

+ 𝜆2||𝑊||2,1 + 𝜆3||𝑊||1 

predict the disease 

progression 

et al. 
2012) 

Multi-task 

relationsh

ip learning 

Ω(𝑊, 𝑆) =
𝜆1
2
𝑡𝑟(𝑊𝑊𝑇) +

𝜆2
2
𝑡𝑟(𝑊𝑆−1𝑊𝑇) 

s.t.  {𝑆 ≽ 0, 𝑡𝑟(𝑆) = 1} 

Learn task-

relationship 

(Zhang 
and Yeung 
2012, Liu, 
Pan et al. 
2017) 

Convex 

Clustered 

MTL 

Ω(𝑊,𝑀) = 𝜆𝛼𝜂(1 + 𝜂)𝑡𝑟(𝑊(𝜂𝐼 +𝑀)−1𝑊𝑇) 

s.t. {𝑡𝑟(𝑀) = 𝑘,𝑀 ≼ 1,𝑀 ∈ 𝑆+
𝑚} 

Incorporate 

clustered structure 

between tasks 

(Jacob, 
Vert et al. 
2008, 
Zhou, 
Chen et al. 
2011) 

MTL with 

dirty 

model 

Accounting 

for biological 

variations 

Ω(𝑊) = 𝜆1||𝑃||∞,1 + 𝜆2||𝑄||1 

s.t. 𝑊 = 𝑃 + 𝑄 

Identify the shared 

and task-specific 

predictors 

simultaneously 

(Jalali, 
Sanghavi 
et al. 
2010) 

Robust 

MTL 

Ω(𝑊) = ||𝑃||2,1 + ||𝑄
𝑇||2,1 

s.t. 𝑊 = 𝑃 + 𝑄 

Detect the outlier 

tasks 

(Gong, Ye 
et al. 
2012) 

Multilinea

r MTL 

High-

order MTL 

 Ω(𝒲) = 𝜆||𝒲||∗ ,𝒲 = 𝑝 × 𝑡1 × 𝑡2 Model the complex 

task-relationships 

(Romera-
Paredes, 
Aung et al. 
2013) 

Multi-task 

predictor 

interactio

n learning 

 

Ω(𝒬) = 𝜆∑∑√∑(𝒬𝑖𝑗𝑘
2 + 𝒬𝑗𝑘

2 )

𝑡

𝑘=1

𝑝

𝑗=1

𝑝

𝑖=1

 

Ω(𝒬) = 𝜆∑ √∑ 𝒬𝑖𝑗𝑘
2

𝑡

𝑘=1𝑖,𝑗
 

Ω(𝒬) = 𝜆||𝒬||∗ , 𝒬 = 𝑝 × 𝑝 × 𝑡 

Identify the simple 

and representative 

structure of 

predictor 

interaction pattern 

across tasks 

(Lin, Xu et 
al. 2016) 

Table 1. Algorithms for regularization-based ML and cross-task regularization-based MTL . 

1.4 Cross-task regularization based multi-task learning 

MTL is an ML paradigm that simultaneously learns from multiple datasets while utilizing task-

relatedness to improve the model's generalizability. It has numerous interesting applications in 

molecular biology, e.g., illness comorbidity analysis, multi-omics analysis, and multiple outcome 

prediction. Different MTL algorithms adopt various strategies to transfer information among tasks, 

e.g., multi-task Gaussian process transfers information via the covariance structure; multi-task deep 

network shares the hidden layers directly among tasks. In high-dimensional data problems, a common 

approach is knowledge transfer via cross-task regularization.  
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Figure 2. Graphical illustration of multi-task learning with joint predictor selection. The identical 

predictor set is shared among three different tasks. The aim is to identify a predictable model with the 

selected shared predictors. 

 

min
w1,…wi,…wt

∑ ℒ(wi| Xi, Yi)
t
i=1 + λΩ(w1, …wi, …wt)   (2) 

The framework of cross-task regularization-based MTL can be represented as formulation (2). The 

regularization function Ω(w1, …wi, …wt) takes the coefficient vectors of all tasks as input and outputs 

a score describing the departure of the task-relatedness (of the current model) to that of the assumed 

one. And ∑ ℒ(wi| Xi, Yi)
t
i=1  was the sum of loss functions across all tasks, describing the model's fitness 

to the training data. Therefore, minimizing this composite objective leading to an interpretable and 

predictable model.   

Ω(w1, …wi, …wt) is commonly abbreviated as Ω(W), where W = [w1, …wi, …wt]. The feature and 

task spaces are represented as W's row-wise and column-wise elements (see Figure 2). This simplified 

form illustrates an essential class of regularization approaches, which aim at identifying a simple 

representation of a matrix W (i.e., the rank of W is low). This kind of “unsupervised approach” doesn’t 

assume a specific form of task-relatedness but learns from the data. Alternatively, another class of 

approaches explicitly assumes task-relatedness as a pair-wise similarity matrix. This method class aims 

at utilizing or learning this similarity matrix, in order to incorporate the task-relatedness. 

1.4.1 MTL with structural regularization 

Two commonly used “simplified” matrix forms within MTL are sparse or low-rank. For sparsity, a 

highly-cited work has described as “MTL with joint feature selection” (Argyriou, Evgeniou et al. 2007, 

Liu, Ji et al. 2009) ( Ω(W) = λ∑ ||Wi,||2i = λ||W||2,1). In this formulation, features unimportant to all 

tasks are simultaneously filtered out. This approach has been used in cancer genetics to identify a gene 

pattern from multiple cancer treatments (Xu, Xue et al. 2011). The low-rank model constrains the 



INTRODUCTION 

16 
 

model searching in a low-dimensional space. A representative approach uses the trace-norm penalty 

Ω(W) = ∑ |λi
(W)

|i = λ||W||∗ which is a convex-relaxation of low-rank model with penalization on the 

𝑙1 -norm of the singular values of W. Such method has been applied for predicting multiple drug 

responses (Yuan, Paskov et al. 2016). The results showed that the drug mechanism were reflective of 

the task-relatedness.  

1.4.2 MTL incorporating pairwise task similarity 

An early work in this class was the mean-regularized MTL (Evgeniou and Pontil 2004) 

(Ω(w1, …wi, …wt) = λ∑ ||wi −
1

t
∑ wj
t
j=1 ||2

2t
i=1 ). This MTL algorithm assumes all tasks’ models are 

derived from a single model, combined with the presence of a task-specific bias. Therefore, the 

regularization penalizes the difference between each model and the mean model. In psychiatry, this 

method has already been applied for identifying gene expression signatures of schizophrenia in 

multiple heterogeneous cohorts (Cao, Meyer-Lindenberg et al. 2018). This showed that the identified 

signature was more generalizable, robust, and consistent than those derived from other ML and MTL 

algorithms. Another interesting work was the prediction of Altzheimer’s disease progression by 

incorporating the temporal smoothness as the task-relatedness in MTL (Zhou, Yuan et al. 2011, Zhou, 

Liu et al. 2013). The regularization took the form  Ω(w1, …wi, …wt) = λ1∑ ||wi −wi+1||2
2t−1

i=1 +

λ2||W||2
2, where the difference between two sequential models was penalized.  

Instead of engineering a similarity matrix, some investigations have estimated it from the data. One 

study (Zhang and Yeung 2012) proposed a convex formulation for this aim: Ω(W, S) =
λ1

2
tr(WWT) +

λ2

2
tr(WS−1WT), s.t.  {S ≽ 0, tr(S) = 1}, where S is the similarity matrix (Zhang and Yeung 2012). 

Minimizing 
λ2

2
tr(WS−1WT)  leads to a learned rank-1 similarity matrix. Another similar approach 

assumed a clustering structure between models (i.e., the columns of W). It combined the clustering 

and MTL loss to incorporate a clustering structure given the number of clusters. For example, one work 

took the regularization form (Zhou, Chen et al. 2011) (Ω(W,M) = αη(1 + η)tr(W(ηI + M)−1WT), s.t. 

{tr(M) = k,M ≼ 1,M ∈ S+
m}, where M = t × t is the similarity matrix). This formulation was derived 

from a convex relaxation form of k-means.  

1.4.3 Federated MTL 

Machine learning techniques have the potential to revolutionize biomedicine. For example, in the 

medical imaging field, deep neural networks have achieved significant pattern recognition success. The 

success of ML models relies on the availability of biomedical datasets at a large scale, but the 

aggregation of such data resources is challenging due to legal and logistic reasons limiting the ability 

to combine data stored at different locations into a single storage system. Therefore, there is an 

increasing need for computational solutions that facilitate the “federated” analysis of such resources 

without the need for physically combining them. Towards this, federated learning (Konečný, McMahan 

et al. 2015) was introduced in biomedicine to learn from geo-distributed data cohorts and protect the 

personally identifiable information. Compared to the traditional distributed learning system, the 

federated learning approach emphasized two points:  1) communication cost was the bottleneck to 

the algorithmic efficiency and 2) ML-oriented privacy protection was crucial and challenging. Several 

communication-efficient federated optimization methods have been developed to address the former 

issue (Xie, Baytas et al. 2017, Smith, Forte et al. 2018). Researchers were attempting to solve the latter 

issue in part from the perspective of statistics and in part from that of cryptography. For example, 
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differential privacy (Dwork 2006) was introduced as a statistical method quantifying the level of privacy 

leakage and controlling the leakage by adding noise. The method guaranteed a presumed attacker’s 

prior and posterior view of an individual’s data was not “significantly different”. This method can 

prevent the leakage of sensitive from the final model but not the leakage from the individual device, 

e.g., the gradient information calculated from the mobile device of an individual can reveal sensitive 

information even with added noise.   

It is straightforward to transform a standalone MTL algorithm into a federated MTL application. 

Because for most MTL methods, the calculation on sensitive data (e.g., the calculation of the gradient) 

can be separated from the algorithmic coordination. As shown in Figure 3, the federated learning 

optimization can be seen as an iterative method containing the calculation on the server, the clients 

and the message passing over the internet. First, the operations on sensitive data are performed on 

the client to improve model fitness. Second, the model is sent from the clients to a server over the 

internet. Third, the server performs the coordination for the knowledge transfer (e.g., cross-task 

regularization).   

From a methodological perspective, compared to federated ML, federated MTL captures the cohort-

level heterogeneity among geo-distributed cohorts (Smith, Chiang et al. 2017). This is essential in 

biomedicine because geo-distributed biomedical datasets are commonly heterogeneous due to the 

various procedures of sample recruitment, data preprocessing, and numerous other confounding 

effects that might bias the result.  

 
Figure 3. Schematic overview of federated MTL. The figure shows the computations on the server and 

the client, and the message passing over the internet. The model is MTL with joint feature selection 

(see Table 1 for details). This algorithm would keep running until the model converges. 
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2 STUDY 1: RMTL: AN R LIBRARY FOR MULTI-TASK LEARNING 

2.1 Abstract 

Motivation: Multi-task learning (MTL) is a machine learning technique for simultaneous learning of 

multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms are 

currently not easily available, creating a bottleneck for their application in biomedical research. 

Results: We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising 10 

algorithms applicable for regression, classification, joint feature selection, task clustering, low-rank 

learning and incorporation of biological networks. We demonstrate the utility of the algorithms using 

simulated data. 

Availability: The RMTL package is an open source R package and is freely available at 

https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org 

2.2 Introduction 

Multi-task learning (MTL) is a machine learning technique that explores and exploits the relatedness 

across a set of different learning tasks. Since its inception (Caruana 1998), MTL has been used in 

numerous data-intensive research areas, including biomedical informatics (Xu, Pan et al. 2011, Widmer 

and Ratsch 2012, Zhou, Liu et al. 2013, Feriante 2015, Li, Wang et al. 2016, Yuan, Paskov et al. 2016), 

speech and natural language processing [i.e. (Wu, Valentini-Botinhao et al. 2015)], image processing 

and computer vision [i.e. (Wang, Zhang et al. 2009)], as well as web based applications [i.e. (Chapelle, 

Shivaswamy et al. 2010)].  

A strong motivation to develop biomedical MTL applications stems from the necessity to integrate 

diverse data sources to explore the biological underpinning of complex illnesses, such as schizophrenia. 

Previous research has already shown that for such illnesses, integrative multi-omics open a new 

avenue for identification of etiological mechanisms, for example by taking into account genetic, 

expression and methylation data simultaneously [i.e. (Lin, Zhang et al. 2014)].  For such applications, 

multi-task learning offers the possibility to directly explore illness-related biological profiles that are 

linked across data modalities and therefore a new route toward the identification of biomarker 

signatures.   

Previous implementations of MTL have focused on knowledge transfer via regularization(Zhou, Chen 

et al. 2011), Bayesian methods(Greenlaw, Szefer et al. 2017) or deep architectures(Yang and 

Hospedales 2016). Here, we developed the first R library for MTL, offering a comprehensive machine 

learning pipeline that covers several types of MLT algorithms and can be easily applied to high-

dimensional data.  

2.3 Methods 

This package provides an automated, simple-to-use implementation of MTL, comprising 5 classification 

and 5 regression algorithms, which share knowledge across tasks according to different priors via 

regularization. All algorithms aim to minimize the same objective: 

min
𝑊
∑

1

𝑛𝑖
𝐿(𝑊𝑖|𝑋𝑖 , 𝑌𝑖)

𝑡
𝑖 + Ω(𝑊)  

where 𝐿(∘) is the loss function (logistic loss for classification or least square loss for regression). 𝑋, 𝑌 

are feature matrices and the corresponding responses, 𝑊 is the coefficient matrix, and t is the number 
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of tasks. Accordingly,  𝑋𝑖, 𝑌𝑖   𝑊𝑖 and 𝑛𝑖 refer to the data matrix, responses, model parameter vector 

and the number of subjects of task 𝑖, respectively. Note that 𝑊𝑖 is the 𝑖th column of 𝑊. Knowledge 

transfer among tasks is achieved via a convex term Ω(𝑊) that jointly modulates models according to 

specific functionalities. In this package, five common regularization techniques are implemented to 

suit different applications, i.e. sparse structure, joint feature selection, low-rank structure, network 

constraint for task relatedness and task clustering. Here, we refer to the above regularization strategies 

as MTL_Lasso, MTL_L21, MTL_Trace, MTL_Graph and MTL_CMTL, in the same sequence. These 

strategies can be broadly categorized into two classes: strategies for predictor selection (MTL_Lasso 

and MTL_L21) and strategies for task relatedness exploration (MTL_Graph, MTL_Trace and 

MTL_CMTL). While the former class explores sparse patterns are explored over the predictor space, 

the latter class exploits task relatedness based on additional assumptions. For all algorithms, we 

implemented a solver based on the accelerated gradient descent method(Nesterov 2012). To solve the 

non-smooth and convex regularization, the proximal operator(Parikh and Boyd 2014) was applied. 

Overall, the solver achieves a complexity of O(1/k2), which is optimal among first-order gradient 

methods. Further methodological details are shown in the Supplementary Methods.  

2.4 Results 

Predictive performance and model interpretability of the implemented algorithms were explored using 

simulated data. The simulated datasets were constructed by the ground truth model 𝑊 , which is 

specified for a given prior (Supplementary Figure 1). We compared the ground truth and the learnt 

model as an indicator of model interpretability. For predictive comparison, the primary baseline 

method was the conventional lasso, which reflects single task learning performance. We further 

applied MTL with lasso (MTL_Lasso), to explore the effect of inappropriate prior choice as a second 

baseline method.  

2.4.1 Model interpretability 

Supplementary Figure 1a shows the coefficient matrix of MTL_Lasso and MTL_L21 and demonstrates 

that the number of predictors identified by MTL_Lasso was approximately half the number of ground 

truth predictors. This may be due to the fact that highly correlated predictors exist in the high-

dimensional space(Zou and Hastie 2005). As a consequence and similar to conventional Lasso, 

MTL_Lasso tended to select one among several correlated predictors. Despite this, 75% (precision) of 

selected predictors were ground truth predictors. For MTC_L21, the ground truth was highly sparse: 

only 40 out of 400 predictors were active predictors for all tasks. The simulation demonstrates that 39 

of the predictors were successfully identified (sensitivity: 97.5%), with a precision of 72%. These results 

indicate that MTL algorithms could successfully identify ground truth predictors.  

The relatedness of tasks was represented by pairwise correlation between models. Supplementary 

Figure 1b shows that all methods were able to capture correctly the pairwise relatedness compared 

to the ground truths. Particularly, MTL_Graph incorporated a strong network prior such that the “in-

group” differences became zero. This may be because the network prior provided the most complete 

information about task relatedness among all priors. 

2.4.2 Predictive performance 

Supplementary Figure 2 indicates that conventional Lasso failed to yield accurate predictions on all 

simulated datasets except when using the 𝑙21 prior. Compared to this baseline, the MTL models 
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improved the accuracy by 18.7% on average. The MTL_Lasso incorporating an inappropriate prior 

achieved an average accuracy of 67% and was substantially inferior to MTL models with appropriate 

priors (average accuracy: 79.2%).  

2.5 Conclusion 

In this study, we developed an R library for multi-task learning comprising 10 algorithms incorporating 

5 different priors. MTL models outperformed two baseline methods when applied on simulated data. 

High model-interpretability was observed in terms of predictor selection and task-relatedness 

compared to the respective ground truths.  

2.6 Supplements 

2.6.1 Supplementary methods 

Multi-task learning implementation 

This package provides an automated, simple-to-use implementation of MTL (classification and 

regression). The pipeline contains two core stages. First, a set of datasets is fed to (stratified) k-fold 

cross-validation (cv) for selection of model parameters. The output of this stage consists of the selected 

parameters, the minimum cv error and the corresponding plot. The training data and selected model 

parameters are then sent to the ‘training stage’. The output of this second stage contains the trained 

model and a statistical summary. Using this model, predictions can be performed on independent 

datasets. To train sparse models, the warm-start technique(O'Brien 2016) is used generate the entire 

solution path along the parameter sequence.  

As part of the library, we implemented 10 MTL algorithms (5 for classification and 5 for regression), 

which share knowledge across tasks according to different priors via regularization. All algorithms aim 

to minimize the same objective: 

min
𝑊
∑

1

𝑛𝑖
𝐿(𝑊𝑖|𝑋𝑖 , 𝑌𝑖)

𝑡
𝑖 + Ω(𝑊)  

where 𝐿(∘) is the loss function (logistic loss for classification or least square loss for regression). 𝑋, 𝑌 

are feature matrixes and the corresponding responses, 𝑊 is the coefficient matrix, and t is the number 

of tasks. Accordingly,  𝑋𝑖, 𝑌𝑖   𝑊𝑖 and 𝑛𝑖 refer to the data matrix, responses, model parameter vector 

and the number of subjects of task 𝑖, respectively. Note that 𝑊𝑖 is the 𝑖th column of 𝑊. 

Knowledge transfer among tasks is achieved via a convex term Ω(𝑊) that jointly modulates models 

according to specific functionalities. In this package, five common regularization techniques are 

implemented to suit different applications, i.e. sparse structure (Ω(𝑊) = ||𝑊||1) (Tibshirani 2011), 

joint feature selection (Ω(𝑊) = ||𝑊||2,1) (Liu, Ji et al. 2009, Liu and Ye 2009), low-rank structure 

( Ω(𝑊) = ||𝑊||∗ )(Pong, Tseng et al. 2010), network constraint for task relatedness ( Ω(𝑊) =

||𝑊𝐺||𝐹
2 )(Widmer, Kloft et al. 2012) and task clustering ((Ω(𝑊) = 𝜆1𝜂(1 + 𝜂)𝑡𝑟(𝑊(𝜂𝐼 + 𝑀)

−1𝑊𝑇)) 

(Jacob, Vert et al. 2008, Zhou, Chen et al. 2011). Here, we refer to the above regularization strategies 

as MTL_Lasso, MTL_L21, MTL_Trace, MTL_Graph and MTL_CMTL, in the same sequence.    

These strategies can be broadly categorized into two classes: strategies for predictor selection 

(MTL_Lasso and MTL_L21) and strategies for task relatedness exploration (MTL_Graph, MTL_Trace and 

MTL_CMTL). For the former class, sparse patterns are explored over the predictor space and different 

types of information, i.e. the strength of penalization (MTL_Lasso) or the predictive pattern (MTL_L21), 

are shared between tasks. For the latter class, task relatedness is explored based on additional 

assumptions. MTL_Trace assumes that all models are spanned in a low-rank space, thus highly 
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correlated models can be obtained via strong penalization. MTL_Graph assumes that all models are 

smooth over a given network. Such network encodes the task-task relatedness using edge information. 

Therefore, the task-task relatedness is incorporated in the model by penalizing the non-smoothness 

over network. MTL_CMTL assumes that a cluster structure exists in the models. The algorithm then 

attempts to optimize data fitting and cluster effects simultaneously. Conventional lasso used as 

baseline for predictive performance comparison was trained using the R library glmnet (Friedman, 

Hastie et al. 2010). 

For all algorithms, we implemented a solver based on the accelerated gradient descent 

method(Nesterov 2012), which takes advantage of information from the previous two iterations to 

calculate the current gradient and thus achieves a better convergent rate. To solve the non-smooth 

and convex regularization, the proximal operator(Parikh and Boyd 2014) was applied. Moreover, 

backward line search was used to determine the appropriate step-size for each iteration. Overall, the 

solver achieves a complexity of O(1/k2), which is optimal among first-order gradient methods. 

Construction of simulated data 

Simulated datasets were constructed as follows. Suppose 𝑡 = 10, 𝑛 = 200 and 𝑝 = 400, then each 

subject 𝑋𝑖𝑗~𝑁(0,1) , where 𝑖 ∈ {1,… , 𝑡}, 𝑗 ∈ {1,… , 𝑛} 𝑎𝑛𝑑 𝑋𝑖𝑗 ∈ 𝑅
𝑝 . And the responses  𝑌𝑖𝑗 =

𝑠𝑖𝑔𝑛(𝑋𝑖𝑗 ×𝑊𝑖 + 0.5𝜎), where 𝜎~𝑁(0,1) was random noise.  

To construct the ground truth model 𝑊, we sampled from 𝑊~𝑁(0,1), and then made modifications 

depending on the given prior. For example: 

 𝑙1 prior: half of all entries were randomly selected and set to 0 

 𝑙21 prior: 90% of features across tasks were set to 0 

 Low-rank prior: all eigenvalues were set to 0 except for the top 2.  

 Network prior and cluster prior: task 1~5 form a group 𝛼 and 6~10 forms the group 𝛽. Then 

𝑊𝑚 = {
𝑊𝛼 + 0.5𝜎,  𝑚 < 5
𝑊𝛽 + 0.5𝜎,  𝑚 > 5
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2.6.2 Supplementary Figures 

 
Supplementary Figure 1. Visualization of model interpretability. a) the coefficient matrices of 

MTC_Lasso and MTC_L21 are shown. The selected predictors are marked in red. b) pairwise correlation 

matrixes capturing between-model (MTC_Trace, MTC_Graph, MTC_CMTL) correlations  indicate the 

relatedness of tasks. For all algorithms, the learnt models are compared to their respective ground 

truths.  
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Supplementary Figure 2. Comparison of predictive performance between algorithms. MTL models 

were compared against the baseline models “conventional lasso” (single task learning) and MTC_Lasso 

(incorporating an inappropriate prior). The simulated datasets were created according to different 

priors. 
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3 STUDY 2: COMPARATIVE EVALUATION OF MACHINE LEARNING STRATEGIES 
FOR ANALYZING BIG DATA IN PSYCHIATRY 

3.1 Abstract 

The requirement of innovative big data analytics has become a critical success factor for research in 

biological psychiatry. Integrative analyses across distributed data resources are considered essential 

for untangling the biological complexity of mental illnesses. However, little is known about algorithm 

properties for such integrative machine learning. Here, we performed a comparative analysis of eight 

machine learning algorithms for identification of reproducible biological fingerprints across data 

sources, using five transcriptome-wide expression datasets of schizophrenia patients and controls as 

a use case. We found that multi-task learning (MTL) with network structure (MTL_NET) showed 

superior accuracy compared to other MTL formulations as well as single task learning, and tied 

performance with support vector machines (SVM). Compared to SVM, MTL_NET showed significant 

benefits regarding the variability of accuracy estimates, as well as its robustness to cross-dataset and 

sampling variability. These results support the utility of this algorithm as a flexible tool for integrative 

machine learning in psychiatry. 

3.2 Introduction 

Biological research on psychiatric illnesses has highlighted the scale of investigations required to 

identify reproducible hallmarks of illness(Sullivan 2010, Passos, Mwangi et al. 2016). In schizophrenia, 

collaborative analysis of common genetic variants has exceeded 150,000 subjects(Schizophrenia 

Working Group of the Psychiatric Genomics 2014), demonstrating the challenges tied to low-effect 

sizes of individual variants, large biological and clinical heterogeneity, and genetic complexity. Not 

surprisingly, these challenges are also found in other mental illnesses(Major Depressive Disorder 

Working Group of the Psychiatric, Ripke et al. 2013) and do not seem to be modality specific, as analysis 

of neuroimaging data, for example, faces similar problems(Wolfers, Buitelaar et al. 2015, Franke, Stein 

et al. 2016).  

The combined “mega-analysis” of data across cohorts and modalities has advantages compared to the 

more traditional meta-analysis(Major Depressive Disorder Working Group of the Psychiatric, Ripke et 

al. 2013, de Wit, Alonso et al. 2014), as it makes data amenable for a broader spectrum of 

computational analyses and allows consideration of confounders across studies. There is growing 

consensus that advanced computational strategies are required to extract biologically meaningful 

patterns from these data sources. Beyond functional analysis, a particular focus is on machine learning, 

which in other areas has shown substantial success in integrating weak signals into accurate 

classifiers(Jordan and Mitchell 2015). In addition to potential clinical use of such classifiers, the 

discovery of robust biological patterns may uncover new insights into etiological processes. However, 

the increasing scale and complexity of big data in psychiatry requires careful evaluation of the most 

suitable computational strategies. A particularly intuitive and very timely problem is the optimal 

integration of multi-cohort data, where simple concatenation of datasets may give suboptimal results, 

and even more so when integration is performed across modalities.  

The application of machine-learning techniques on biological problems in psychiatry has already 

yielded impressive results, including on the prediction of genetic risk, the identification of biomarker 

candidates or the exploration of etiological mechanisms (Iniesta, Stahl et al.). For example, the use of 

a Bayesian approach for the incorporation of LD information during polygenic risk score determination 
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led to a 5% improvement of accuracy in a large schizophrenia dataset (Vilhjalmsson, Yang et al.). In a 

study exploring the molecular basis of psychiatric comorbidity, an iterative LASSO approach was used 

for cross-tissue prediction and identified a schizophrenia expression signature that predicted a 

peripheral biomarker of T2D (Vos, Flaxman et al.). Beyond the analysis of individual data modalities, 

several machine-learning strategies have been developed for integrative multimodal analysis. For 

example, a study focusing on the IMAGEN cohort (Whelan, Watts et al.) applied an elastic net model 

to explore information patterns linked to binge drinking across multiple domains, including brain 

structure and function, personality traits, cognitive differences, candidate gene information, 

environmental factors, and life experiences. Similarly, another study (Xia, Ma et al.) explored the 

inherent data sparsity of neuroimaging and psychiatric symptom data, and successfully stratified 

subjects using sparse canonical correlation analysis. The study found four dimensions of 

psychopathology with different patterns of connectivity. In the present study we were particularly 

interested in the multi-task learning (MTL) which aims to improve generalizability by simultaneously 

learning multiple tasks  (such as case-control associations in different datasets) and these learning 

processes exchange information to achieve a globally optimal solution (Caruana 1998). Historically, 

MTL was developed as an extension of neural networks (Caruana 1998), and has since been used across 

data-intensive research areas, including biomedical informatics (Widmer , Xu, Pan et al. 2011, Zhou, 

Liu et al. 2013, Feriante 2015, Li, Wang et al. 2016, Yuan, Paskov et al. 2016), speech and natural 

language processing(Collobert and Weston 2008, Wu, Valentini-Botinhao et al. 2015), image 

processing and computer vision(Xiaogang, Cha et al. 2009, Zhang, Luo et al. 2014), and web based 

applications(Chapelle, Shivaswamy et al. 2010, Ahmed, Aly et al. 2012). In psychiatric research, MTL 

has been applied for integrating measures of cognitive functioning and structural 

neuroimaging(Marquand, Brammer et al. 2014), as well as for improved fMRI pattern recognition(Jing, 

Zhilin et al. 2012). In other research fields, MTL approaches have been proposed to combine different 

sources of biological data, including the linking of MRI or expression with genetic data (Wang, Nie et 

al. 2012, Lin, Zhang et al. 2014), as well as the integrative analysis of multi-cohort expression data (Xu, 

Xue et al. 2011).  

In the present study, we used MTL to differentiate schizophrenia patients from controls across multiple 

transcriptome-wide expression datasets. We hypothesized that MTL is particularly suited for this tasks, 

since it allows the consideration of different cohorts as separate classification tasks. As MTL aims to 

identify predictive patterns that are shared across tasks, it should uncover expression patterns that 

are biologically reproducible across cohorts. This may result in better and biologically more relevant 

classifiers compared to those derived from conventional single task learning (STL), which may be 

unduly influenced by strong signals present in individual cohorts. To test this, we performed a 

comparative analysis of different MTL and STL approaches in five transcriptome-wide datasets of 

schizophrenia brain expression. A ‘Leave-dataset-out’ procedure was applied to explore and compare 

the generalizability of the models, with specific focus on classification accuracy, and variability thereof, 

as well as model sensitivity to cross-dataset and sampling variability.  

3.3 Materials and Methods 

3.3.1 Datasets 

In the present study, five transcriptome-wide expression datasets from schizophrenia post-mortem 

brains and controls were used for analysis. Details of the datasets are shown in Table 2. All datasets 

were downloaded from the GEO (Gene Expression Omnibus). 
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Table 2. Overview of demographic details. Values are shown as mean ± sd. 

 

  
GSE12679 GSE35977 GSE17612 GSE21935 GSE21138 

Reference 
(Harris, Wayland 

et al. 2008) 

(Chen, Cheng et 

al. 2013) 

(Maycox, Kelly et 

al. 2009) 

(Barnes, Huxley-

Jones et al. 2011) 

(Narayan, Tang et 

al. 2008) 

n SZ 11 50 22 19 29 

n HC 11 50 22 19 29 

age SZ 46.1 ± 5.9 42.4 ± 9.9 76 ± 12.9 77.6 ± 11.4 43.3 ± 17.3 

age HC 41.7 ± 7.9 45.5 ± 9 68 ± 21.5 67.7 ± 22.2 44.7 ± 16.1 

sex SZ (m/f) 7/4 37/13 16/6 11/8 23/6 

sex HC (m/f) 8/3 35/15 11/11 10/9 24/5 

PMI SZ 33 ± 6.7 31.8 ± 15.4 6.2 ± 4.1 5.5 ± 2.6 38.1 ± 10.8 

PMI HC 24.2 ± 15.7 27.3 ± 11.8 10.1 ± 4.3 9.1 ± 4.3 40.5 ± 14 

brain pH SZ NA 6.4 ± 0.3 6.1 ± 0.2 6.1 ± 0.2 6.2 ± 0.2 

brain pH HC NA 6.5 ± 0.3 6.5 ± 0.3 6.5 ± 0.3 6.3 ± 0.2 

Genechip HGU HuG HGU HGU HGU 

Brain Region PFC PC APC STC PFC 

HGU: HG-U133_Plus_2; HuG = HuGene-1_0-st; APC: anterior prefrontal cortex; PFC: 

Prefrontal cortex; PC: parietal cortex; STC: superior temporal cortex; HC: healthy control; SZ: 

schizophrenia. 

3.3.2 Preprocessing 

Preprocessing was performed using the statistical software R (https://cran.r-project.org/). First, raw 

expression data were read using the ‘ReadAffy’ function. Then RMA (Multi-Array Average(Irizarry, 

Hobbs et al. 2003)) was applied for background correction, quantile normalization and log2-

transformation. Subsequently, multiple probes associated to one gene symbol were averaged. This 

was followed by selection of common genes across all datasets (17061 genes). For each dataset, 

propensity score matching was used to obtain a sample with approximate 1:1 matching for diagnosis, 

sex, ph, age and post-mortem interval (pmi). Next, all datasets were concatenated for quantile 

normalization and covariate correction. Specifically, the ‘Combat’ function from the R library sva(Leek, 

Johnson et al. 2012) was applied to correct for covariates (sex, ph, age, age2, pmi and a dataset 

indicator). Finally, datasets were separated again for feature standardization (z-score) to remove bias 

from the expressed genes with large variance and for downstream machine learning analysis. 

3.3.3 Machine learning approaches 

For MTL, multiple across-task regularization strategies were tested, such as MTL with network 

structure (MTL_NET), sparse network structure (MTL_SNET), joint feature learning (MTL_L21), joint 

feature learning with elastic net (MTL_EN) and low-rank structure (MTL_Trace). As a comparison, we 

selected logistic regression with lasso (LR), linear support vector machines (SVM) and random forests 

(RF) as representatives of conventional STL methods. For all models (except for RF), stratified 5-fold 

cross validation was used to select hyper-parameters. Methodological details of the respective 

methods are described below. All machine-learning analyses were performed using Matlab (R2016b). 

 

Multi-task learning 

ℒ(𝑊, 𝐶) =
1

𝑛𝑖
∑log(1 + 𝑒

(−𝑌𝑖,𝑗(𝑋𝑖,𝑗𝑊𝑖
𝑇+𝐶𝑖)))

𝑛𝑖

𝑗=1

  
             （1） 
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For all MTL formulations, logistic loss was used as the common loss function ℒ(∙), where 𝑋, 𝑌,𝑊 and 

𝐶 referred to the gene expression matrixes, diagnosis status, weight vectors and constants of all tasks, 

respectively. In addition, 𝑖 and 𝑗 denoted the index of the dataset and subject respectively, i.e. 𝑛𝑖 and 

𝑊𝑖
𝑇referred to the number of subject and weight vector of task 𝑖. This model aimed to estimate the 

effect size of each feature such that the likelihood (i.e. the rate of successful prediction in the training 

data) is maximized. During the prediction procedure, given the expression profile of a previously 

unseen individual, the model calculates the probability of belonging to the schizophrenia class (with 

subjects where the probability exceeded 0.5 being assigned to the patient group). Notably, while we 

focused on classification due to the categorical outcomes of the investigated datasets, the cross-task 

regularization strategies explored in the present study are not limited to classification but can also be 

applied for regression. All MTL formulations were used as implemented in the Matlab library 

Malsar(Zhou, Chen et al. 2012) or based on custom Matlab implementations.  

min
𝑊,𝐶

∑ℒ(𝑊,𝐶)

𝑡

𝑖=1

+ 𝜆∑||𝑊𝑖 −
1

𝑡
∑𝑊𝑗

𝑡

𝑗=1

||2
2

𝑡

𝑖=1

  
 

        （2） 

We selected the mean-regularized multi-task learning method(Evgeniou and Pontil 2004) as an 

algorithm for the MTL_NET framework. This algorithm assumes that a latent model exists underlying 

all tasks, which can be estimated as the mean model across tasks. Based on this assumption, the 

formulation attempts to identify the most discriminative pattern in the high-dimensional feature space, 

while limiting the dissimilarity between pairwise models. Dissimilarity is quantified with respect to the 

effect size of a given predictor and the sign of its association with diagnosis. We expected this 

combined dissimilarity measure to lead to biologically plausible predictive patterns that are 

characterized by consistent differences across tasks, both in terms of magnitude as well as 

directionality. Here, 𝜆 had a range of 10(−6:1:2). 

min
𝑊,𝐶

∑ℒ(𝑊,𝐶)

𝑡

𝑖=1

+ 𝜆(𝛼∑||𝑊𝑖 −
1

𝑡
∑𝑊𝑗

𝑡

𝑗=1

||2
2

𝑡

𝑖=1

+ (1 − 𝛼)||𝑊||
1
) 

 

（3） 

MTL_SNET was the sparse version of MTL_NET, and the sparsity was introduced by the 𝑙1 norm (i.e. 

coefficients of predictors with low utility are set to 0). Here, 𝜆 controls the entire penalty and α 

distributes the penalty to full-sparse and non-sparse terms. 𝜆  had a range of 10(−6:1:2)and α was 

chosen from the range [0:0.1:1].  

min
𝑊,𝐶

∑ℒ(𝑊,𝐶)

𝑡

𝑖=1

+ 𝜆||𝑊||2,1 
 

（4） 

The formulation of MTL_L21 introduced the group sparse term ||𝑊||2,1 = ∑ ||𝑊𝑖||2
𝑝
𝑖=1  , which aimed 

to select or reject the same group of genes across datasets. 𝜆 controlled the level of sparsity with a 

range of 10(−6:0.1:0). 

min
𝑊,𝐶

∑ℒ(𝑊, 𝐶)

𝑡

𝑖=1

+ 𝜆((1 − 𝛼)||𝑊||2,1 + 𝛼||𝑊||2
2) 

（5） 

The MTL_EN was formulated by adding the composite penalties, where ||𝑊||2
2  is the squared 

Frobenius norm. Similar to elastic net in conventional STL, such regularization helped to stabilize the 

solution when multiple highly correlated genes existed in the high-dimensional space(Tibshirani 2013). 

Here, 𝜆 had a range of 10(−6:0.1:0)and α was chosen from the range [0:0.1:1]. 
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min
𝑊,𝐶

∑ℒ(𝑊, 𝐶)

𝑡

𝑖=1

+ 𝜆||𝑊||∗ 
（6） 

MTL_Trace encouraged a low-rank model 𝑊 by penalizing the sum of its eigenvalues ||𝑊||∗. 𝜆 had a 

range of   10(−6:0.1:1) . By compressing the subspace spanned by weight vectors, models were 

structured (i.e. clustered structure). Thus, the models that were clustered together demonstrated high 

pairwise correlation.  

 

Conventional, single-task machine learning 
LR_L1: we trained logistic regression with lasso using the package “Glmnet”. The lambda parameter 

was chosen among the set 10(−10:0.5:1). 

SVM:  linear support vector machine was trained using the built-in Matlab function ‘fitcsvm’ with the 

box constraints in the range 10(−5:1:5). We only used the linear kernel to facilitate determination of 

predictor importance. 

RF: We used the Matlab built-in function ‘TreeBagger’ to train a random forest model with 5000 trees. 

The predictor importance was calculated according to the average error decrement for all splits on a 

given predictor. 

 

Assessment of predictive performance 
To quantify predictive performance and capture stability of decision rules against cross-dataset and 

sampling variability, we used a leave-dataset-out procedure. Specifically, the set of five expression 

datasets was denoted as 𝐷 = {𝑑1, 𝑑2, … , 𝑑5} and we calculated the power set 𝕡(𝐷) of D. Then for 

each subset 𝑑 ∈ 𝕡(𝐷), we trained a given algorithm on 𝑑 and tested the model on 𝐷 − 𝑑. For example, 

for 𝑑 = {𝑑1, 𝑑2}, we trained using the combination of datasets {𝑑1, 𝑑2} and then tested on {𝑑3, 𝑑4, 𝑑5}. 

For convenience, we organized these training procedures according to the size of 𝑑, noted as 𝑛𝑑 ∈

{2,3,… ,5}. We thus obtained a series of models trained using all subsets of the five datasets (except 

for single dataset) and they are referred to using 𝑛𝑑.  

The comparison of the predictive performance between methods was mainly based on 𝑛𝑑 = 4, i.e. 

when all but one dataset were used for training. To understand how dataset-specific confounders 

affect the prediction, models were trained on a range of 𝑛𝑑  from 2 to 4. Finally, to explore the 

convergence of genes’ coefficients across different training datasets, we compared the models trained 

when 𝑛𝑑 = 𝑖, 𝑖 ∈ {2,3…5}.  

During cross-validation (CV), as illustrated in Figure A1, subjects were randomly allocated to 5 folds, 

stratified for diagnosis and the dataset indicator. Subsequently, different strategies were specified for 

MTL and STL. For MTL, the training𝑐𝑣datasets were trained in parallel, and the models were tested on 

each test𝑐𝑣 dataset by averaging the prediction scores. To determine the final accuracy of the current 

fold, the accuracies retrieved from all test𝑐𝑣 datasets were averaged. For STL the training𝑐𝑣datasets 

were combined to train a single algorithm that was then predicted on the combined test𝑐𝑣datasets.  

Similar to CV, in the training procedure, MTL trained on datasets in parallel, while combining the 

prediction scores for testing.  

 

Consistency and stability analysis 
To compare the consistency and stability of markers between algorithms, we use the correlation 

coefficient as the similarity measure of pairwise transcriptomic profiles (i.e. the coefficient vector for 

all genes) learnt by algorithms. A high similarity between profiles implied that models shared important 
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predictors with respect to their weights and signs. Using this similarity measure, ‘consistency’ and 

‘stability’ were defined, respectively. These measures were derived from 100-fold stratified 

bootstrapping of subjects from a set of datasets. In each bootstrapping sample, we tested across the 

number of training sets (𝑛𝑑 = 𝑖, 𝑖 ∈ {2,3,… ,5}). For MTL, since the training procedure would output 

multiple coefficient vectors (i.e. training on three datasets would output three coefficient vectors), to 

compare the similarity between algorithms, the coefficient vectors were averaged.  

Consistency: With ‘consistency’ we quantified the pairwise similarity of models trained using 

overlapping or non-overlapping (i.e. 2 training datasets) datasets. For this, we differentiated two types 

of consistencies: ‘horizontal’ and ‘vertical’ consistency as illustrated in Figures A2a and A2b, 

respectively. Horizontal consistency quantified model robustness against cross-dataset variability. For 

this, we fixed the number of training datasets (𝑛𝑑), and determined the pairwise similarity between 

models. This was performed for all possible choices of 𝑛𝑑 (see supplementary methods for details). 

Vertical consistency measured the sensitivity of models to the number of training datasets. For this, 

we varied 𝑛𝑑 and quantified similarity between the model determined on all training datasets (𝑛𝑑 =

5)  and all models derived from lower training datasets numbers ( 𝑛𝑑 = 𝑖, 𝑖 ∈ {2,3,4} ) (see 

supplementary methods for details). Low vertical consistency would, for example, be observed when 

models trained on two training datasets led to vastly different transcriptomic profile compared to that 

using all five datasets for training.  

Stability: To quantify the stability of an algorithm against the sampling variability, we observed the 

variation of transcriptomic profiles learnt from different bootstrapping samples as illustrated in Figure 

A3. Then the variation of all models given  𝑛𝑑  was summarized as the stability (see supplementary 

methods for details). 

Success rate:  In addition to consistency and stability, to perform a side-by-side comparison of 

algorithms, we defined the success rate as the proportion of cases where one algorithm outperformed 

the other. For example, we quantified the success rate of consistency as the proportion of 

bootstrapping samples where the first algorithm demonstrated higher consistency than the second 

(see supplementary methods for details). The success rate of stability was quantified as the proportion 

of models, which were more stable for the first algorithm than that for the second (see supplementary 

methods for details).  

3.4 Results 

3.4.1 Accuracy comparison between MTL and STL 

Figure 1 shows a comparison of average classification accuracies when 4 out of 5 datasets were used 

for training and the remaining dataset for testing. The distributions of accuracies are shown for 10 

repetitions of the classification procedure, to assess the variability caused by parameter tuning via 

cross-validation. With an average accuracy of 0.73, MTL_NET outperformed all other methods, 

followed by SVM that had a marginally inferior accuracy of 0.72. Moderate accuracies were observed 

for MTL_Trace (0. 69), MTL_L21 (0. 66) and RF (0.68). The sparse logistic regression performed worst 

(0. 64). As an extension of MTL_NET and MTL_L21 respectively, MTL_SNET (0. 71) and MTL_EN (0. 66) 

achieved similar accuracies to their original algorithms. In the following analysis, we focused on the 

comparison of MTL_NET and SVM as representatives of MTL and STL, respectively. 

In Figure 1, the standard error of accuracies for SVM (0.011) was slightly smaller than that for MTL_NET 

(0.012), indicating that SVM might be more robust regarding parameter selection. A possible reason 

was that SVM obtained higher statistical power by comparing cases and controls across datasets. In 
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contrast, MTL_NET derived transcriptomic signatures using cases and controls within datasets, limiting 

the statistical power. 

3.4.2 Dependency of classification performance on the number of training datasets 

We performed a side-by-side comparison of MTL_NET and SVM to explore the dependency of 

classification performance on the number of available training datasets. Figure 2a shows that 

increasing accuracy was observed for both MTL_NET and SVM with increasing numbers of training 

datasets. Notably, MTL_NET only outperformed SVM at nd = 4 (4 datasets used for training), suggesting 

that MTL required a higher dataset number to identify a reproducible biological pattern. However, we 

observed that the variation of accuracies for MTL_NET substantially decreased with increasing 

numbers of training datasets (Figure 2b), which was not the case for SVM.  This suggested that 

MTL_NET was more conservative in that accuracy was not driven by highly successful prediction on 

individual test set, but by improved predictability observed for all test sets. 

 

Figure 1. Predictive performance comparison between 8 algorithms. The ‘leave- dataset-

out’ procedure was used for comparison. Four out of five datasets were combined for 

training, and then the model was tested on the remaining dataset. The distribution of 

accuracy estimates indicated the variation of parameter selection across 10 repetitions. The 

boxplots in gray denote the multi-task learning algorithms. 
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Figure 2. Distribution of classification accuracies and their standard errors across different 

numbers of training datasets.  The Figure shows the mean (a) and standard error (b) of 

classification accuracies obtained for different numbers of training datasets ( 𝑛𝑑 ). 

Performance was evaluated from the test datasets not used for training. The variation of the 

boxplot was due to the sampling variability during cross-validation. 

3.4.3 Consistency and stability of trained models 

Figures 3a and 3b show that, in terms of vertical and horizontal consistency, MTL_NET outperformed 

SVM, independently of the number of training datasets. This indicated that similar discriminative 

patterns of genes were identified by MTL across training datasets, and implied strong robustness 

against cross-dataset variability. In particular, the superior performance of vertical consistency for 

MTL_NET showed that this algorithm was less sensitive to the small numbers of training datasets 

compared to SVM. Table 1 shows the mean consistency (both horizontal and vertical) across 

bootstrapping samples. Compared to SVM, MTL_NET achieved higher mean consistency by 

approximately 1.6% for horizontal and 2.2% for vertical consistency. Notably, the success rate of 

consistency was 100%, independent of the number of training sets, showing that MTL_NET models 

consistently identified higher transcriptomic profile robustness across bootstrapping samples than 

SVM.  

 

Figure 3. Horizontal and vertical model consistency. To analyze the consistency of a given 

machine-learning algorithm against the cross-dataset variability, we quantified the horizontal 

and vertical model consistency. Specifically, horizontal consistency quantified the similarity 
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between models trained using the same number of number of datasets, and vertical 

consistency quantified the pairwise similarity of models, where one was trained using all 

datasets and the other was trained using less datasets. Stratified 100-fold bootstrapping 

procedure was applied to quantify the variation of the consistency. 

Table 1. Mean consistency, stability and success rate across the number of training sets 𝒏𝒅 

MTL_NET/SVM 𝒏𝒅 = 𝟐 𝒏𝒅 = 𝟑 𝒏𝒅 = 𝟒 𝒏𝒅 = 𝟓 

Horizontal consistency 0.26/ 0.24 0.39/ 0.37 0.51/ 0.49 - 

Vertical consistency 0.22/ 0.21 0.35/ 0.33 0.49/ 0.46 - 

Stability 0.64/ 0.63 0.65/ 0.64 0.65/ 0.64 0.654/ 0.645 

Success rate (horizontal consistency) 1 1 1 - 

Success rate (vertical consistency) 1 1 1 - 

Success rate (stability) 1 1 1 1 

To further identify the robustness of models against sampling variability, we quantified the algorithms’ 

stability. In Figure 4, across the number of training datasets nd, the increasing trend of stability 

demonstrated that both MTL_NET and SVM gained more robustness against sampling variability with 

an increasing number of subjects used for training. However, MTL_NET demonstrated higher stability 

than SVM independently of the number of training datasets (Figure 4). The mean stability across 

models also supported the result (Table 1). Moreover, the mean stability for MTL_NET was 1.2% higher 

than SVM (100% success rate of stability across all nd, Table 2). 

 

Figure 4. Stability comparison. The stability quantified the robustness of an algorithm against 

sampling variability. For each 𝑛𝑑, stability was computed as the pairwise similarity of models 

trained from two given bootstrap samples. The stability was then averaged across bootstrap 



Study 2: Comparative Evaluation of Machine Learning Strategies for Analyzing Big Data in Psychiatry 

33 
 

samples. In the figure, the distribution of the stability was due to the different combination 

of training datasets given 𝑛𝑑. 

We did not perform comparative functional analysis of markers identified by the two algorithms, since 

marker sets were quite similar. For example, using all five datasets for training, the average similarity 

over all bootstrapping samples was 98.75%, suggesting that similar functional implications would be 

derived for these algorithms. 

3.5 Discussion 

The present study provides a comparative evaluation of using MTL for integrative machine learning, 

compared to classical, single task learning in five transcriptome-wide datasets of schizophrenia brain 

expression. Overall, MTL showed similar accuracy, albeit with lower variability, compared to STL. 

Accuracy estimates varied by up to approximately 10% between algorithms, suggesting different 

sensitivities of algorithms to cross-dataset heterogeneity as well as sampling variability. Among all MTL 

formulations, MTL_NET was most predictive. This was likely due to the fact that it harmonized 

algorithms across tasks with respect to both predictor weight and sign of diagnosis association, 

resulting in biologically plausible predictive patterns. In contrast, MTL_L21 ignores the sign of 

association and MTL_Trace improves models’ correlation in each subspace but failed to modulate the 

cross-subspace correlation. Contrary to the usual assumption that simpler models show improved 

generalizability(O'Brien 2016), a sparse version of MTL_NET (MTL_SNET) did not improve the 

prediction. This may be due to the fact that the sparse model was trained by constructing a solution 

tree among an unlimited number of optimal solution trees. Although these solution trees have similar 

performance on the training dataset, they may show differently predictive ability on cross-modality 

test dataset because the i.i.d assumption may not hold. MTL_NET (as well as SVM), solves a strictly 

convex optimization problem, resulting in a uniform solution in the entire feature space, which may 

be equally effective when tested on independent test data. 

The higher consistency and stability of MTL_NET implied that a set of similar differentially expressed 

genes were identified for multiple training datasets. In addition, these genes demonstrated higher 

predictability and robustness against study-specific effects, which is particularly important for data 

integration in multi-modal analyses, such as the integrative analysis of genetic and expression 

data(Gandal, Haney et al. 2018) or the analysis of shared markers across multiple comorbid 

conditions(International Schizophrenia, Purcell et al. 2009, Cross-Disorder Group of the Psychiatric 

Genomics, Lee et al. 2013, Bulik-Sullivan, Finucane et al. 2015).  

An interesting observation of the present study was that for MTL_NET, the variance of the classification 

accuracy substantially decreased with increasing the number of training datasets. This suggested that 

MTL_NET selected biological signatures with similar effect sizes across independent training datasets, 

further supporting the biological reproducibility of the identified patterns. In contrast, SVM did not 

show a decreasing accuracy variance with increasing numbers of training datasets. This indicates that 

despite the increasing classification accuracy, the identified signatures worked well only for some, but 

not other test datasets. These results for these particular datasets highlight differences between single 

and multi-task learning regarding the variance of the test-set accuracy, which is a fundamentally 

important consideration for study design and interpretation of classifier reproducibility.  
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3.6 Supplements  

3.6.1 Supplementary Methods  

Consistency, stability and success rate 

Notations: 

 The model pairs trained using different (overlapping, or non-overlapping) combinations  of 

datasets were represented as 𝑀and �̃� respectively (i.e. 𝑀 represented the model trained using 

the training set d = {1, 2}, �̃� was trained using a different dataset combination, for example d =

{3,4} or d = {1, 2,… ,5}) 

 The notation of an algorithm: α, β (i.e. α=MTL_NET, β=SVM) 

 The index of the bootstrapping sample: 𝑏 ∈ {1,2, …100} and �̃� ∈ {1,2, …100}. For computational 

efficiency, bootstrapping was performed across all datasets d = {1, 2, … ,5} and data subsets were 

selected from this sampling.  

As an example, a model 𝑀𝑏
𝛼  could be trained based on bootstrap sample 𝑏 = 3, from which training 

sets d = {1, 2} were extracted, using algorithm α = SVM. The model trained on the same bootstrap 

sample based on a different combination of training sets and using algorithm α = SVM would be 

denoted as �̃�𝑏
𝛼.  

Consistency 

Given  𝑛𝑑 = 𝑖, 𝑖 ∈ {2,3,4}  and algorithm  𝛼 , we calculated the expected similarity for each 

bootstrapping sample 𝑏 as  

𝐶𝑏
𝛼,𝑛𝑑 = 𝔼𝑀,�̃�,𝑀≠�̃�⟦𝐶𝑜𝑟(𝑀𝑏

𝛼 , �̃�𝑏
𝛼)⟧  

Then the expected similarity list 𝐶𝛼,𝑛𝑑 = [𝐶1
𝛼,𝑛𝑑 , 𝐶2

𝛼,𝑛𝑑 , … , 𝐶100
𝛼,𝑛𝑑] over 𝑏  was the consistency list of 

algorithm 𝛼 for a given 𝑛𝑑. Here, the expectation was calculated empirically by enumerating all pairs 

of models 𝑀and  �̃�. By assigning different values to 𝑀and �̃�, horizontal and vertical consistency were 

differentiated. For horizontal consistency, 𝑀and  �̃� represented the pairwise models trained using the 

same number (𝑛𝑑 ) of datasets. For vertical consistency, �̃� was trained using 𝑛𝑑 = 5 datasets and 

𝑀was trained using fewer datasets. 

Stability 

Given 𝑛𝑑 = 𝑖, 𝑖 ∈ {2,3,4}, and algorithm 𝛼, we quantified the expected similarity between pairwise 

models (𝑀𝑏
𝛼  and 𝑀�̃�

𝛼) which were trained using the same datasets (𝑀) but different bootstrapping 

samples (𝑏 and �̃�) as 

𝑆𝑀
𝛼,𝑛𝑑 = 𝔼𝑏,�̃�,𝑏≠�̃�⟦𝐶𝑜𝑟(𝑀𝑏

𝛼 , 𝑀�̃�
𝛼)⟧ 

Over all models (𝑀),  𝑆𝛼,𝑛𝑑 = [𝑆1
𝛼,𝑛𝑑 , 𝑆2

𝛼,𝑛𝑑 , … , 𝑆
(
5
𝑛𝑑
)

𝛼,𝑛𝑑] was quantified as the stability list of algorithm 𝛼, 

given 𝑛𝑑. The expectation was estimated empirically by enumerating all pairs of bootstrapping samples 

𝑏 and �̃�.  

Success rate  

The success rate compared algorithms 𝛼 and 𝛽 side-by-side, and was measured as the proportion of 

cases where algorithm 𝛼 outperformed 𝛽. 

For example, given the consistency list of algorithm 𝛼 and 𝛽 (𝐶𝛼,𝑛𝑑  𝑎𝑛𝑑 𝐶𝛽,𝑛𝑑), we determined the 

proportion of bootstrapping samples where algorithm 𝛼  demonstrated higher consistency than 𝛽 , 

yielding the success rate of consistency: 

𝑆𝑅𝐶
𝑛𝑑 = 𝔼𝑏 ⟦1𝐶𝑏

𝛼,𝑛𝑑−𝐶𝑏
𝛽,𝑛𝑑>0

⟧ 
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Given the stability list of algorithm 𝛼  and  𝛽  (𝑆𝛼,𝑛𝑑  𝑎𝑛𝑑 𝑆𝛽,𝑛𝑑 ), we determined the proportion of 

models, which demonstrated higher stability for algorithm 𝛼, yielding the success rate of stability: 

𝑆𝑅𝑆
𝑛𝑑 = 𝔼𝑀 ⟦1𝑆𝑀

𝛼,𝑛𝑑−𝑆𝑀
𝛽,𝑛𝑑>0

⟧ 

3.6.2 Supplementary Figures 
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Figure A1. Procedure of 5-fold-stratified-cross-validation for STL and MTL (showing one fold 

as example).  Using 𝒏𝒅 = 𝟑 as an example, the specific procedure of the cross-validation 

procedure is shown. First, the subjects were randomly allocated to 5 folds, stratified for 

diagnosis per dataset. Subsequently, different strategies were specified for MTL and STL. For 

MTL, the training datasets were trained in parallel, and the three models (M1, M2 and M3) 

were tested on each test dataset by averaging the prediction score. The average across all 

accuracies was used as final accuracy for the current fold. In contrast, for STL the training 

datasets were combined to train a single algorithm that was then predicted on the combined 

test datasets. 

 

Figure A2. Illustration of model consistency calculation. Consistency quantified the 

robustness of an algorithm against the cross-dataset variability. To test this, we trained 

models using each subset of all 5 expression datasets and then categorized these models 

according to the number of training sets (𝒏𝒅). Different models were rendered as colored 

circles, categorized by 𝒏𝒅. For vertical consistency (a) the similarity was determined between 

the models learned on 𝒏𝒅 = 𝟐 to 𝒏𝒅 = 𝟒 and the model trained on 𝒏𝒅 = 𝟓.The resulting 

values were then averaged for a given category  𝒏𝒅. For horizontal consistency (b) the model 

similarity was calculated in each category  𝒏𝒅 and then averaged. 
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Figure A3. Illustration of model stability calculation. Stability quantified the robustness of an 

algorithm against sampling variability. This metric was computed by performing 100-fold-

stratified-bootstrapping. In the left panel, 5 expression datasets are shown as colored boxes. 

Using 𝒏𝒅 = 𝟐 as an example, two out of five datasets were combined for training in each 

bootstrapping sample. Thus, a series of models were obtained as illustrated as the colored 

circles in the right panel. The stability was determined as the average pairwise similarity for 

each model, calculated across all pairs of bootstrapping samples. 
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4 STUDY 3: DSMTL - A COMPUTATIONAL FRAMEWORK FOR PRIVACY-
PRESERVING, DISTRIBUTED MULTI-TASK MACHINE LEARNING 

4.1 Abstract 

Multitask learning allows the simultaneous learning of multiple ‘communicating’ algorithms. It is 

increasingly adopted for biomedical applications, such as the modeling of disease progression. As data 

protection regulations limit data sharing for such analyses, an implementation of multitask learning on 

geographically distributed data sources would be highly desirable. Here, we describe the development 

of dsMTL, a computational framework for privacy-preserving, distributed multi-task machine learning 

that includes three supervised and one unsupervised algorithms. dsMTL is implemented as a library 

for the R programming language and builds on the DataSHIELD platform that supports the federated 

analysis of sensitive individual-level data. We provide a comparative evaluation of dsMTL for the 

identification of biological signatures in distributed datasets using two case studies, and evaluate the 

computational performance of the supervised and unsupervised algorithms. dsMTL provides an easy-

to-use framework for privacy-preserving, federated analysis of geographically distributed datasets, 

and has several application areas, including comorbidity modeling and translational research focused 

on the simultaneous prediction of different outcomes across datasets. dsMTL is available at 

https://github.com/transbioZI/dsMTLBase (server-side package) and 

https://github.com/transbioZI/dsMTLClient (client-side package). 

4.2 Introduction 

The biology of many human illnesses is encoded in a vast number of genetic, epigenetic, molecular, 

and cellular parameters. The ability of Machine Learning (ML) to jointly analyze such parameters and 

derive algorithms with potential clinical utility has fueled a massive interest in biomedical ML 

applications. One of the fundamental requirements for such ML algorithms to perform well is the 

availability of data at a large scale, a challenge of steadily declining importance due to the ever-

increasing availability of biological data(Jahanshad, Kochunov et al. 2013, Kochunov, Jahanshad et al. 

2014, Schizophrenia Working Group of the Psychiatric Genomics 2014). As data can often not be freely 

exchanged across institutions due tothe need for protection of the individual privacy, the utility of 

‘bringing the algorithm to the data’ is becoming apparent. Technological solutions for this task have 

thus risen in popularity and exist in various forms. One of the most straightforward approaches is the 

so-called federated ML, where algorithms are simultaneously learned at different institutions and 

optimized through a privacy-preserving exchange of parameters. Other approaches for this task 

include the training of ML algorithms on temporarily combined data stored in working memory(Carter, 

Francis et al. 2016) or the more recently introduced ‘swarm-learning’ approach(Warnat-Herresthal, 

Schultze et al. 2021). One commonality of most ML algorithms, federated or not, is the assumption 

that all investigated observations (e.g. illness-affected individuals) represent the same underlying 

population. However, in biomedicine, this is rarely the case, as biological and technological factors 

frequently induce cohort-specific effects that limit the ability to identify reproducible biological 

findings. Multitask Learning (MTL) can address this issue through the simultaneous learning of 

outcome (e.g. diagnosis) associated patterns across datasets with dataset-specific, as well as shared, 

effects. Multi-task learning has numerous exciting application areas, such as comorbidity modeling, 

and has already been applied successfully for e.g. disease progression analysis(Zhou, Liu et al. 2013).  

https://github.com/transbioZI/dsMTLBase
https://github.com/transbioZI/dsMTLClient
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Here, we describe the development of dsMTL (‘Federated Multi-Task Learning for DataSHIELD’), a 

package of the statistical software R, for Federated Multi-Task Learning (FeMTL) analysis (Figure 1) . 

dsMTL was developed for DataSHIELD(Gaye, Marcon et al. 2014), a platform supporting the federated 

analysis of sensitive individual-level data that remains stored behind the data owner’s firewall 

throughout analysis(Wilson, Butters et al. 2017). dsMTL includes three supervised and one 

unsupervised federated multi-task learning algorithms that extend algorithms previously developed 

for non-federated analysis (for R implementations, see (Yang and Michailidis 2016, Cao, Zhou et al. 

2018)). Specifically, the dsMTL_L21 approach allows for cross-task regularization, building on the 

popular LASSO method, in order to identify outcome-associated signatures with a reduced number of 

features shared across tasks. The non-federated version of this approach has previously been applied 

to simultaneously predict multiple oncological outcomes using gene expression data(Xu, Xue et al. 

2011). The dsMTL_trace approach constrains the coefficient vectors in a low-dimensional space during 

the training procedure to penalize the complexity of task relationships, resulting in an improved 

generalizability of the models. In a non-federated implementation, this method has previously been 

used to predict the response to different drugs, and the identified models showed a high degree of 

interpretability in the context of the represented drug mechanism(Yuan, Paskov et al. 2016). 

dsMTL_net incorporates the task relationships that can be described as a graph, in order to improve 

biological interpretability. In a non-federated version, this technique has previously been used for the 

integrative analysis of heterogeneous cohorts(Cao, Meyer-Lindenberg et al. 2018) and for the 

prediction of disease progression(Zhou, Yuan et al. 2011). The dsMTL_iNMF approach is an 

unsupervised, integrative non-negative matrix factorization method that aims at factorizing the 

cohorts’ data matrices into shared and dataset-specific components. Such modeling has been applied 

to explore dependencies in multi-omics data for biomarker identification(Yang and Michailidis 2016, 

Fujita, Mizuarai et al. 2018). In addition to the FeMTL methods, we also implemented a federated 

version of conventional Lasso (dsLasso) (Tibshirani 1996) in dsMTL package due to its wide usage in 

biomedicine and as a benchmark for testing the performance of the federated MTL algorithms. 

To explore the utility of the dsMTL algorithms, we used a network comprising three servers. These 

servers hosted simulated data with variable degrees of cross-dataset heterogeneity, in order to test 

the ability of the MTL algorithms to suitably characterize shared and specific biological signatures. In 

addition, we analyzed actual RNA sequencing and microarray data across the three-server network, to 

show that the accurate analysis can be performed in acceptable runtime using dsMTL in real network 

latency.  

4.3 Results 

Here we show the results for two case studies. The first case study aims at demonstrating the utility of 

the supervised dsMTL_L21 algorithm to identify ‘heterogeneous’ target signatures across the data 

network. With ‘heterogeneous’ we describe signatures that involve the same features (e.g. genes) but 

with potentially differing signs (indicating differential directions of influences) across datasets. In 

contrast, ‘homogeneous’ signatures relate to the same features and signs across datasets. The second 

case study focuses on the unsupervised dsMTL_iNMF method and explores the utility of the federated 

implementation, compared to the aggregation of local NMF models, to disentangle shared and cohort-

specific components across datasets. For all case studies, we evaluated the signature identification 

accuracy as the major metric. For predictions of clinical outcomes, the prediction accuracy was also 

demonstrated.  
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Case study 1 – distributed MTL for identification of heterogeneous target signatures 

With the aim to identify ‘heterogeneous’ signatures, we compared the performance of dsMTL_L21, 

dsLasso and the bagging of glmnet models. As part of this, we explored the sensitivity of these methods 

to different sample sizes (n) relative to the gene number (p). Figure 2 shows the resulting prediction 

performance and gene selection accuracy, each averaged over 100 repetitions. dsLasso showed the 

worst prediction performance in this heterogeneous setting, and  dsMTL_L21 slightly outperformed 

the aggregation of local models (glmnet). Similarly, the gene selection accuracy of dsLasso was inferior 

to that of dsMTL_L21 and glmnet-bagging, which showed similar performance when the sample size is 

sufficiently large, e.g. the number of subjects approximately equal to the number of genes (n/p ~1). 

However, with a decreasing n/p ratio, dsMTL_L21 showed an increasing superiority over the other 

methods, especially for n/p=0.15, where the gene selection accuracy of dsMTL_L21 was over 2.8 times 

higher than that of the bagging technique.  

 

Case study 2 – distributed iNMF for disentangling shared and cohort-specific signatures 

Figure 3 shows the performance of distributed and aggregated local NMF methods for disentangling 

shared and cohort-specific signatures from multi-cohort data, given different ‘severities’ of the 

signature heterogeneity. For both types of signatures, dsMTL_iNMF outperformed the ensemble of 

local NMF models for any heterogeneity severity setting. Notably, even with increasing heterogeneity, 

the accuracy of dsMTL_iNMF to capture shared genes remained stable at approximately 100%, 

illustrating the robustness of dsMTL_iNMF against the heterogeneity’s severity shown in Figure 3c. In 

contrast, for the ensemble of local NMF, the gene selection accuracy of the shared signature 

continuously decreased to approximately 50% (20% of outcome-associated genes were shared among 

cohorts), while the gene selection accuracy of cohort-specific signatures continuously increased to 75% 

(20% of outcome-associated genes were shared among cohorts ) as shown in Figures 3a and 3b.  

 

Efficiency of supervised dsMTL  

We aimed at determining the efficiency of supervised dsMTL using the real molecular data and the 

actual latency of a distributed network. Using a three-server scenario (see Table 2 Supplementary 

Results; two servers at the Central Institute of Mental Health, Mannheim; one server at BioQuant, 

Heidelberg University) we analyzed four case-control gene expression datasets of patients with 

schizophrenia and controls (median n=80; 8013 genes). Supplementary Table 3 shows the comparison 

between dsLasso and mean-regularized dsMTL_net, which were trained (cross-validation + training) 

and tested in approximately 8min and 10min, respectively, with the time-difference being due to the 

increased network access of dsMTL. The prediction accuracy of dsMTL was slightly higher than that of 

dsLasso, consistent with our previous study(Cao, Meyer-Lindenberg et al. 2018). Regarding model 

interpretability, dsLasso captured a signature comprising 38 genes but could not distinguish shared 

and cohort-specific effects. Mean regularized dsMTL identified a signature with 10 genes shared 

among all cohorts, with 163 genes shared by two cohorts, as well as three cohort-specific signatures 

comprising 1532 genes.  

 

Efficiency of unsupervised dsMTL  

The cohorts and server information is shown in Supplementary Table 4. It took 34.9 minutes (1,003 

times network accesses) to train a dsMTL_iNMF model with 5 random initializations (~7 min for each 

initialization). The factorization rank k=4 was selected as the optimal parameter. In Supplementary 

Figure 1, the objective curve illustrates that the training time was sufficient for model convergence. In 
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this analysis, a shared signature comprising 473 genes between SCZ and BIP was identified, while two 

disease-specific signatures containing 37 genes for SCZ and 152 genes for BIP, respectively, were 

found.  

 

4.4 Discussion 

We here present dsMTL – a secure, federated multi-task learning package for the programming 

language R, building on DataSHIELD as an ecosystem for privacy-preserving and distributed analysis. 

Multi-task learning allows the investigation of research questions that are difficult to address using 

conventional ML, such as the identification of heterogeneous, albeit related, signatures across 

datasets. The implementation of a privacy-preserving framework for the distributed application of MTL 

is an essential requirement for the large-scale adoption of MTL. Using such a distributed server setup, 

we demonstrate the applicability and utility of dsMTL to identify biomarker signatures in different 

settings. For applications where the target biomarker signatures are different, but relate to an 

overlapping set of features (explored here as the ‘heterogeneous’ case), conventional machine 

learning would not be a meaningful algorithm choice. We show that MTL is able to identify the target 

signatures with high confidence and may thus be a reasonable choice for a diverse set of interesting 

analyses. As mentioned above, a particularly noteworthy application is comorbidity modeling, where 

the target signatures index the shared (although potentially heterogeneously manifested) biology of 

multiple, clinically comorbid conditions. Such analyses could potentially be a powerful, machine 

learning-based extension of comorbidity modeling approaches based on univariate statistics that have 

already been very useful for characterizing the shared biology of comorbid illness(Lichtenstein, Yip et 

al. 2009). We show that unsupervised MTL can disentangle the shared from cohort-specific effects, 

demonstrating its potential utility for comorbidity analysis. Other applications for this method include 

the analysis of biological patterns shared across clinical symptom domains, between clinical and 

demographic characteristics, or with digital measures, such as ecological momentary assessments. 

The use of dsMTL follows the concept of the so-called “freely composing script” in the DataSHIELD 

ecosystem. It organizes a given dsMTL workflow as a free composition of dsMTL, DataSHIELD, and local 

R commands (e.g. R base functions, customer-defined functions and CRAN packages) into a script, such 

that the geo-distribution of datasets and the federated computation are transparent to users. This 

concept is similar to that of the “freely composing apps” used in a recently presented federated ML 

application(Matschinske, Späth et al. 2021), which allows flexible scheduling of functions in the form 

of apps and improves the federated data analysis flexibility for users.  In addition to dsMTL, other 

packages in the DataSHIELD ecosystem exist for e.g. “big data” storage and management(Marcon, 

Bishop et al. 2021), various statistical tests(Gaye, Marcon et al. 2014, Marcon, Bishop et al. 2021) and 

deep learning(Lenz, Hess et al. 2021, Marcon, Bishop et al. 2021).  

Interesting future developments of the dsMTL approach could include the implementation of 

asynchronous communication, which provides a probabilistically approximate solution but faster 

convergence(Xie, Baytas et al. 2017, Zhang and Liu 2020). Furthermore, integration of other popular 

systems for ML, such as  tensorflow(Dahl, Mancuso et al. 2018), for which interfaces with the R 

language already exist, would provide valuable additions to the DataSHIELD system. Finally, a 

noteworthy consideration is an architecture underlying the distributed data infrastructure. 

DataSHIELD builds on a centralized (“client-server”) architecture and each data provider needs to 

install a well-configured data warehouse. Such infrastructure is suitable for long-term collaboration 

scenarios and large consortia projects that conduct a broad spectrum of complex analyses requiring 
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high flexibility. However, in other scenarios that require more temporary and easy-compute 

collaboration setups, a server-free or decentralized architecture(Warnat-Herresthal, Schultze et al. 

2020) might be more suitable, because the cost of data provider for participating is low. 

In conclusion, the dsMTL library for the programming language R provides an easy-to-use framework 

for privacy-preserving, federated analysis of geographically distributed datasets. Due to its ability to 

disentangle shared and cohort-specific effects across these datasets, dsMTL has numerous interesting 

application areas, including comorbidity modeling and translational research focused on the 

simultaneous prediction of different outcomes across datasets.  

4.5 Methods 

Modeling 

All methods part of dsMTL share the identical form,  

𝐦𝐢𝐧
𝛉
𝓛(𝛉) + 𝛌𝐒(𝛉) + 𝐂ℵ(𝛉) 

where ℒ(𝜃) is the data fitting term (or loss function), the major determinant of the solutions obtained 

from model training. ℵ(𝜃)  and 𝑆(𝜃)  are the penalties of 𝜃  with the aim to incorporate the prior 

information. ℵ(𝜃) is a non-smooth function and able to create sparsity, while 𝑆(𝜃) is smooth. 𝜆 and 𝐶 

are the hyper-parameters to control the strength of the penalties. More technical details can be found 

in the supplementary methods. 

In dsMTL, two approaches for sharing information across cohorts are included, 1) shared parameters 

and 2) cross-task regularization, leading to a slightly different distributed computation. The shared 

parameters are estimated using all cohorts. For cross-task regularization, the cohort-specific 

parameters are estimated using only the local data, and then tuned by considering parameters from 

other cohorts.  

Efficiency 

Most dsMTL methods aim at training an entire regularization tree. The determination of the λ 

sequence controls the tree's growth and is essential for computational speed. The λ sequence should 

be accurately scaled to both capture the highest posterior and avoid overwhelming computations. 

Inspired by a previous study(Friedman, Hastie et al. 2010), we estimate the largest and smallest λ from 

the data by characterizing the optima of the objective using the first-order optimal condition and then 

interpolate the entire λ sequence on a log scale (see supplementary methods for more details). In 

addition, several options are provided to improve the speed of the algorithms by decreasing the 

precision of the results, i.e., 1) the number of digits of parameters for transformation can be specified 

to reduce the network latency; 2) several termination rules are provided, some of which are relaxed; 

3) the depth of the regularization tree can be shortened. More details can be found in supplementary 

methods.  

Besides the efficiency of the federated ML/MTL methodology, the import/export of “big data” cohorts 

is also crucial for computational efficiency, where e.g. uncompressed GWAS data requires tens of 

gigabytes, leading to time-consuming data import. dsMTL was designed to support a wide variety of 

data types. For this, an architecture package resource (Marcon, Bishop et al. 2021) developed by the 

DataSHIELD community was incorporated to facilitate the efficient import and export of large-scale 

datasets in compressed formats. For example, in DataSHIELD, GWAS data of the PLINK file formats can 

be read and processed using the software PLINK(Purcell, Neale et al. 2007) as the backend(Marcon, 

Bishop et al. 2021). 

Security 
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dsMTL was developed based on DataSHIELD(Wilson, Butters et al. 2017), which provides 

comprehensive security mechanisms not specific to machine learning applications. For example, 1) 

DataSHIELD requires the data analysis to only occur behind the firewall; 2) each server is only allowed 

to communicate with a set of clients with fixed IP addresses; 3) the network communication is 

protected by an SSL protocol; 4) an R parser(Wilson, Butters et al. 2017) implemented on the server 

rejects the calling of unwanted functions; and 5) the so-called ‘disclosure control’(Wilson, Butters et 

al. 2017) on the server ensures that the returned response does not contain any disclosive information. 

In addition, several permissions can be set by the data providers to fully control the usage of their data. 

These permissions describe the degree of accessibility of data and functions on the server i.e. “which 

users can perform what actions on what data”. In an extremely secure example, a user could be 

granted to check the summary of a given dataset but cannot perform any actions because no functions 

were granted. With these settings, DataSHIELD allows customizing the security protection strategies 

according to the specific requirements of the applications. For statistical and machine learning 

analyses, DataSHIELD assumes that summary statistics are safe to share.   

dsMTL inherits all these security mechanisms. In addition, we considered potential ML-specific privacy 

leaks, such as membership inference attacks(Hu, Salcic et al. 2021) and model inverse 

attacks(Fredrikson, Lantz et al. 2014). Inverse attacks aim at extracting the individual observation-level 

information from the models. Membership inference attempts to decide if an individual was included 

in a given training set using the model. All these techniques require a complete model for inference. 

Since multi-task learning returns multiple matrices, returning an incomplete model could be one 

strategy against these attacks. For example, dsMTL_iNMF in dsMTL only returns the homogenous 

matrix (H), whereas the cohort-specific components (𝑉𝑘,𝑊𝑘) never leave the server. For example, in a 

two-server scenario, one (H) out of five output matrices is transmitted between the client and the 

servers. With such an incomplete model, inverse construction of the raw data matrix becomes difficult, 

and the risk of an inverse attack and membership inference is reduced. For most biomedical analyses, 

the H matrix is sufficient for subsequent studies. In addition, if the analyst was authorized to access 

the raw data of the server, the so-called “data key mechanism” (see supplement) would allow the 

analyst to retrieve all component matrices. For supervised multi-task learning methods in dsMTL, all 

models have to be aggregated within the clients, and thus we suggest the data providers enable the 

option on the server that rejects a returned coefficient vector containing parameter numbers 

exceeding the number of subjects. In this way, the model is not saturated and more robust to an 

inverse attack.  

Proof of concept with simulation and actual data 

Two case studies and speed-tests were conducted to demonstrate the suitability of dsMTL methods to 

analyze heterogeneous cohorts, compared to federated ML methods and ensemble of local models 

regarding the prediction performance, interpretability and computational speed. An overview of 

methodological aspects related to the case studies is detailed below. For an extensive methodological 

description, please see the supplementary Methods.  

Case study 1. In this case study, the heterogeneous cohorts were generated with the same set of 

outcome-associated genes. These however showed different directionality of their respective 

associations with the outcome. A three-server scenario was simulated. 150 out of 500 features with 

random signs across cohorts were simulated. Seven tests were created for simulating different n/p 

(
sample size 

gene number
) ratios. The n/p ratio was {1.2, 1, 0.9, 0.6, 0.5, 0.3, 0.15}  with the number of subjects 

{600, 500, 450, 300, 250, 150, 75} for each test. 500 genes were created for each server. The test 

sample consisted of 200 subjects for each server. Data were generated as follows: 
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Given gene number p = 500, the models of three cohorts were {𝑤(1), 𝑤(3), 𝑤(3)} where 𝑤(.) = p ×

1 . A shared signature comprising 150 genes was generated for each 𝑤(.)  but with random signs, 

𝑤(.)
𝑖 = {

2 × (𝜌 − 0.5) × 𝑁(1, 0.1) 1 < 𝑖 < 150 
0 others

, 𝜌~Bernoulli(
1

2
).  The expression values of each 

subject across cohorts were generated as x = 1 × p where 𝑥𝑗~𝑁(0,1). The numeric outcome (e.g. 

symptom severity) y = xw(𝑖)  in cohort i   was standardized in a normal distribution 𝑁(0, 1), then 

model-irrelevant noise with 50% of the variance of the true signal was added y = y + 𝑁(0, 0.5).  

dsMTL_L21 and dsLasso were trained as the federated learning system, and the hyper-parameter was 

selected using 10 fold in-cohort cross-validation. For glmnet, the ensemble technique was only applied 

on the gene selection due to the consistent gene set of their signatures. The mean squared error (mse) 

was used as the measure of prediction performance. To account for the sampling variance, we 

repeated each analysis 100 times.  

Case study 2. In this case study, two heterogeneous RNA-seq cohorts were created to simulate a 

comorbidity analysis, where the genes were separated to be part of either a shared signature among 

cohorts, cohort-specific signatures or diagnosis-unassociated genes. The dsMTL_iNMF was compared 

to the ensemble of local NMF regarding the selection accuracy of shared/cohot-specific genes, in 

particular impacted by the severity of heterogeneity. Here the severity of heterogeneity refers to the 

proportion of the genes harbored by the shared signature over all diagnosis-associated genes. The data 

simulation protocol for RNA-seq data can be found in the Supplementary Methods.   

A two-server scenario was simulated. As shown in Supplementary Table 1, for the data of each server, 

1000 genes and 200 subjects were simulated, 50% of the genes were diagnosis-unassociated and the 

remaining genes were part of the disease signature. The genes comprised by shared signatures were 

identical for data of two servers, and the genes comprised by cohort-specific signatures did not 

overlap. The case-control ratio was balanced for each server. Four tests were performed by varying 

the proportion of genes in the shared signature over all diagnosis-associated genes from 20% to 80%. 

The training of dsMTL_iNMF results in three outputs related to the original input data: the shared gene 

‘exposure’ (H), cohort-specific gene ‘exposure’ (V) and sample ‘exposure’ (W). We measured the 

association between the sample exposure and the diagnosis as the weight of each latent factor. The 

shared ( or specific) gene signature was identified as the weighted summation of the shared (or 

specific) gene exposures over latent factors. To quantify the important genes related to a given 

signature, we binarized the gene signature according to the mean (0-1 vector, values larger than the 

mean were assigned). To assess the performance of the gene identification, we associated the selected 

genes set with the ground truth (0-1 vector, signature genes were 1). The assessment was applied to 

shared and cohort-specific genes in parallel. Based on this metric, three gene sets were derived as 

output from dsMTL_iNMF, called dsMTL_iNMF-H, dsMTL_iNMF-V1 and dsMTL_iNMF-V2, and these 

related to the shared, cohort 1 specific and cohort 2 specific gene signature, respectively. The same 

strategy was applied to analyze the ensemble of local NMF models. For each cohort, the specific gene 

signature was the weighted summation of gene exposure over latent factors, and then binarized as 

the specific gene set (called local-NMF1 and local-NMF2). The shared gene signature was identified as 

the sum of the specific gene signature over cohorts, and then binarized as the shared gene set (NMF-

bagging). We then compared 1) NMF-bagging and dsMTL_iNMF-H for the accuracy related to the 

isolation of shared genes; 2) dsMTL_iNMF-V1 and local-NMF1 as well as dsMTL_iNMF-V2 and local-

NMF2 for the accuracy of isolating cohort-specific genes. 

Computational speed of supervised dsMTL. We aimed at identifying the efficiency of supervised 

dsMTL using real molecular data and given the real network latency. Four independent schizophrenia 

case-control cohorts were used for this analysis. The training cohorts consisted of three datasets 
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comprising prefrontal cortex gene expression data (available from the GEO repository under accession 

numbers GSE53987, GSE21138 and GSE35977). A detailed description of these datasets can be found 

in their respective original publications (Tang, Capitao et al. 2012, Chen, Cheng et al. 2013, Lanz, 

Reinhart et al. 2019). The dataset used for algorithm testing was from the HBCC (n=422) cohort 

comprising genome-wide gene expression data quantified by microarray (dbGAP ID: 

phs000979.v3.p2). A detailed description of this dataset can be found in the original publication 

(Fromer, Roussos et al. 2016). As shown in Supplementary Table 2, three servers were used for training 

algorithms. Two servers were held at the Central Institute of Mental Health, Mannheim while the third 

was positioned at the BioQuant institute, Heidelberg.  

Using this data, we repeated a previously described analysis(Cao, Meyer-Lindenberg et al. 2018), in 

order to evaluate computational speed in a federated analysis setting. Here we show the formulation 

of the mean regularized MTL using dsMTL_net: 

The cohort-level batch effect was assumed to be Gaussian noise affecting the true coefficient of gene 

i and cohort j 𝑤𝑖𝑗 = 𝑤𝑖 + 𝜖𝑗 , 𝜖𝑗 ∈ 𝑁(𝜇, 𝜎) . Hence, the average model 𝑤𝑖̅̅ ̅  across cohorts was an 

unbiased estimator for the true coefficient, and therefore the squared penalty |𝑤𝑖𝑗 −𝑤𝑖̅̅ ̅|
2

 was 

incorporated to penalize the departure of each model j to the mean. The complete formulation was 

min
𝑊
∑ ∑

1

𝑛𝑘

𝑛𝑘
𝑖=1 log(1 + 𝑒

−𝑌𝑖
(𝑘)
(𝑋𝑖

(𝑘)
𝑊,𝑘))3

𝑘=1 + 𝜆||𝑊||1 + 𝐶||𝑊𝐺||2
2, 
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Computational speed of unsupervised dsMTL. Here, we analyzed the time efficiency in applying 

dsMTL_iNMF on two real datasets based on the real network latency. Two processed RNA-seq case-

control cohorts comprising patients with schizophrenia (GSE164376(A; and R; 2021) ) and bipolar 

disorder (GSE134497(Kathuria, Lopez-Lengowski et al. 2020)) were retrieved from the GEO database 

and converted into a matrix format for the analysis. As shown in Supplementary Table 4, the data were 

stored on servers in Mannheim and Heidelberg.  

 

Figures 

 
Figure 1. Schematic illustration of dsMTL using comorbidity modeling of schizophrenia and 

cardiovascular disease as an example. Multiple datasets stored at different institutions are used as a 

basis for federated MTL. dsMTL was developed in the DataSHIELD ecosystem, which provides 
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functionality regarding data management, transmission and security. Data are analyzed behind a given 

institution’s firewall and only algorithm parameters that do not disclose personally identifiable 

information are exchanged across the network. dsMTL contains algorithms for supervised and 

unsupervised multi-task machine learning. The former aims at identifying shared, but potentially 

heterogeneous signatures across tasks (here, diagnostic classification for schizophrenia and 

cardiovascular disease). Unsupervised learning separates the original data into shared and cohort-

specific components, and aims at revealing the corresponding outcome-associated biological profiles.  

 

 
Figure 2. Analysis of ‘heterogeneous’ signatures of continuous outcomes in simulated data stored 

on three servers. The figure shows the a) prediction accuracy expressed as the mean squared error 

and b) the feature selection accuracy for different subject/feature number ratios. The respective 

values were averaged across the three servers, and across 100 repetitions, in order to account for the 

effect of sampling variability.  

 

 
Figure 3. The gene identification accuracy for shared and specific signatures using simulated data. a) 

the identification accuracy of important genes for cohort 1. b) the identification accuracy of important 

genes for cohort 2. c) the identification accuracy of genes comprised in the shared signature. Local-

NMF1 and Local-NMF2 were the cohort-specific gene sets identified by local NMF, which were 

combined into “NMF-bagging” for the shared gene set. dsMTL_iNMF-H was the predicted shared gene 
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set using dsMTL_iNMF. dsMTL_iNMF-V1 and dsMTL_iNMF-V2 were the predicted cohort-specific gene 

sets identified using dsMTL_iNMF (see Supplementary Figure 1). The proportion of genes harbored by 

the shared signature was varied from 20% to 80% illustrating the impact of the heterogeneity severity. 

The model was trained using rank=4 as model parameter. The results for a broader spectrum of rank 

choices can be found in Supplementary Figure 2 illustrating that the superior performance of 

dsMTL_iNMF was not due to the choice of ranks. 

 

 

4.6 Supplements  

4.6.1 Supplementary methods 

dsMTL framework  

In dsMTL, we included four federated multi-task (FeMTL) and one machine learning (FeML) methods 

covering supervised and unsupervised learning procedures. All models followed the consistent 

formulation,   

min
𝜃
ℒ(𝜃) + 𝜆𝑆(𝜃) + 𝐶ℵ(𝜃)     (1) 

ℒ(𝜃) was the data fitting term (or loss function), the major determinant of the solutions of the model 

training. ℵ(𝜃) and 𝑆(𝜃) were the regularization/penalty terms with the aim to incorporate the prior 

information and prevent overfitting. ℵ(𝜃) was a non-smooth function for creating the sparsity, while 

𝑆(𝜃) was smooth with the ability to stabilize the solution. 𝜆  and 𝐶  were the hyper-parameters to 

control the strength of the penalty, 𝜆 was learnt from cross-validation (CV) and 𝐶 was the constant.  

There are three loss functions in dsMTL, achieving the tasks of regression, classification and matrix 

factorization. They are summarized in Supplementary Table 1. 

 Unsupervised Learning Supervised Learning 

Matrix factorization Regression Classification 

Model [𝑋1, … , 𝑋𝑘 , …𝑋𝑡] = [(𝐻 + 𝐻𝑣1) ×𝑊1, … , (𝐻 + 𝐻𝑣𝑡) ×𝑊𝑡]) 

 
𝑓(𝑥) = 𝑥𝑤 

𝑃(𝑥) =
1

1 + 𝑒−(𝑥𝑤)
 

Loss 
function min

𝐻,
 𝑊1…,𝑊𝐾,
𝑉1…,𝑉𝐾 

∑||𝑋𝑘 − (𝐻 + 𝑉𝑘)𝑊𝑘||𝐹
2

𝑡

𝑘=1

 

 

min
𝑤

1

2𝑛
∑||𝑦𝑖

𝑛

𝑖=1

− 𝑥𝑖𝑤||
2 

 

min
𝑤

1

𝑛
∑log(1 + 𝑒−𝑦𝑖(𝑥𝑖𝑤))

𝑛

𝑖=1

 

 

Gradient  ∇𝐻𝑖,𝑗= 2∑ (𝐻𝑖,𝑗𝑊𝑘𝑖𝑊𝑘𝑖
𝑇 − 𝑋𝑘𝑖𝑊𝑘𝑖

𝑇)𝑡
𝑘=1  

∇𝑊𝑘𝑖,𝑗
= 2∑(𝐻𝑉𝑘)𝑚,𝑖 [(𝐻𝑉𝑘)𝑚,𝑖𝑊𝑘𝑖𝑗

𝑛𝑡

𝑚=1

− 𝑋𝑘𝑚,𝑗] 

∇𝑉𝑘𝑖,𝑗= 2(𝑉𝑖,𝑗𝑊𝑘𝑖𝑊𝑘𝑖
𝑇 − 𝑋𝑘𝑖𝑊𝑘𝑖

𝑇) 

∇𝑤

=
1

𝑛
(𝑥𝑇𝑥𝑤 − 𝑥𝑇𝑌) 

 

∇𝑤

= −
1

𝑛
𝑋𝑇 ×

[
 
 
 

𝑦1

1 + 𝑒𝑦1(𝑥1𝑤)…
𝑦𝑛

1 + 𝑒𝑦𝑛(𝑥𝑛𝑤)]
 
 
 
 

 
Supplementary Table 1. Summaries of loss functions used in dsMTL 

Termination rules Four termination rules were included in dsMTL to determine whether the 
optimization converges. The first three rules were applied to all methods in dsMTL, while the last was 
new designed for matrix factorization. The first rule checked whether the current objective value was 
close enough to 0. The second rule investigates the last two objective values and checks whether the 
decrement was close enough to 0. The third rule allowed the optimization to be performed for a certain 
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maximum number of iterations. The last rule specific to matrix factorization was described in the next 
section. 

Federated unsupervised method in dsMTL 

To discover the hidden structure in heterogeneous, high-dimensional biological data, we integrated 

the integrative matrix factorization method(Yang and Michailidis 2016) (iNMF) in our distributed 

learning framework, called dsMTL_iNMF. The major concept of dsMTL_iNMF is shown in 

Supplementary Figure 1, where the cohort matrices on three servers can be factorized simultaneously 

with the shared component matrix (𝐻) and cohort-specific component matrices(V, W).  The objective 

function was  

min
𝐻,

 𝑊1…,𝑊𝐾,
𝑉1…,𝑉𝐾 

∑||𝑋𝑘 − (𝐻 + 𝑉𝑘)𝑊𝑘||𝐹
2

𝑡

𝑘=1

+ 𝜆∑ ||𝑉𝑘𝑊𝑘||𝐹
2

𝑡

𝑘=1

+ 𝜆𝑠∑|𝑊𝑘|1

𝑡

𝑘=1

 

The robustness of the model was due to the decoupled setting of 𝐻 and 𝑉𝑘, where 𝐻 was to capture 

the shared information across cohorts and 𝑉𝑘  was to capture the cohort-specific information. To 

integrate the more information into shared component H, the magnitude of cohort-specific 

component was penalized ℵ(. ) = ∑ ||𝑉𝑘𝑊𝑘||𝐹
2𝑡

𝑘=1 . The sparse term S(. ) = ∑ |𝑊𝑘|1
𝑡
𝑘=1  was used to 

remove the redundant coefficients from the component matrices. 

Distributed variables update 

𝑊𝑘𝑖𝑗 ← 𝑊𝑖𝑗

((𝐻+𝑉𝑘)
𝑇𝑋𝑘)𝑖,𝑗

((𝐻𝑇𝐻+𝐻𝑉𝑘
𝑇+𝐻𝑇𝑉𝑘+(1+𝜆)𝑉𝑘

𝑇𝑉𝑘)𝑊𝑘)𝑖,𝑗+𝜆𝑠
         (2) 

   𝑉𝑘𝑖𝑗 ← 𝑉𝑖𝑗
(𝑋𝑘𝑊𝑘

𝑇)
𝑖,𝑗

(𝐻𝑊𝑘𝑊𝑘
𝑇+(1+𝜆)𝑉𝑘𝑊𝑘𝑊𝑘

𝑇)
𝑖,𝑗
+𝜆𝑠

      (3) 

𝐻𝑖𝑗 ← 𝐻𝑖𝑗 (
𝑋1𝑊1

𝑇+⋯+𝑋𝑡𝑊𝑡
𝑇

(𝐻+𝑉1)𝑊1𝑊1
𝑇+⋯+(𝐻+𝑉𝑡)𝑊𝑡𝑊𝑡

𝑇)
𝑖,𝑗

        (4) 

The variables were updated for non-federated applications as demonstrated in formulas (2) to (4).  In 

the federated scenario, the cohort-specific variables 𝑊𝑘 and 𝑉𝑘 were updated on server k using the 

local data as formulas (2) and (3). The shared matrix 𝐻 was updated on the client after receiving 

summary data (see Supplementary Figure 1) from all servers, where these were not-disclosed and 

calculated behind a given institution’s firewall. The distributed update of 𝐻 was 

𝐻𝑖𝑗 ← 𝐻𝑖𝑗 (
𝑠𝑒𝑟𝑣𝑒𝑟1(𝑋1𝑊1

𝑇)+⋯+𝑠𝑒𝑟𝑣𝑒𝑟𝑡(𝑋𝑡𝑊𝑡
𝑇)

𝑠𝑒𝑟𝑣𝑒𝑟1((𝐻+𝑉1)𝑊1𝑊1
𝑇)+⋯+𝑠𝑒𝑟𝑣𝑒𝑟𝑡((𝐻+𝑉𝑡)𝑊𝑡𝑊𝑡

𝑇)
)
𝑖,𝑗

   (5) 

After the aggregation, the client updates 𝐻 and a new iteration begin. The communications between 

the client and the servers are illustrated in Supplementary Figure 1.  
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Supplementary Figure 1. Communications between the client and opal servers for dsMTL_iNMF 

Algorithms 

Distributed solver 
For the privacy-preserving purpose, only the shared matrix 𝐻 was returned. The distributed solver of 

dsMTL_iNMF is shown in Algorithm 1.  

 
 
Termination rules 
For dsMTL_iNMF, we provided an additional termination rule developed in the ButchR 

package(Quintero, Hubschmann et al. 2020) to determine the convergence of the algorithm. In this 

method, each of the samples was assigned to a hidden factor (clustering membership) by j =

argmax
𝑗
|𝐻𝑖,𝑗| at every iteration. The convergence was determined when the assignments of samples 

Algorithm 1, Solver of distributed iNMF in dsMTL 

Input: 𝜆 > 0, 𝜆𝑠 > 0, maxIter > 0, 𝐻, 𝑊1… ,𝑊𝐾, 𝑉… , 𝑉𝐾 

Output: 𝐻 

1: for 𝑖 = 1 to maxIter do 

2:  Update 𝐻 according to (5) on client 

3: Send 𝐻 to all servers 

3:  Update 𝑊1… ,𝑊𝐾 according to (2) on server 1,… , 𝑘 

4:  Update 𝑉1… ,𝑉𝐾 according to (3) on server 1,… , 𝑘 

5: Send summary statistics back client according to (5) 

6:  If termination rule satisfied, return 

6: end for 
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remained unchanged. By default, if the samples were assigned to the same hidden factors consistently 

for over 10 iterations, the memberships were seen as stable, and the algorithm stopped. The rationale 

behind this procedure is that in order to maximize the power of clustering, the variance of the 

determined memberships must be small. Therefore, the proposed rule terminates the algorithm when 

the samples found stable memberships, such that the clustering can make a stable decision.  

 
Supplementary Figure 2. Schematic illustration of cluster membership optimization.  

 
Distributed model training 

In the default setting, Algorithm 1 was performed with 10 random initial points to approximately 

sample the distribution of the local optima considering the non-convex nature of the problem. The 

initialization of these component matrices were uniformly sampled from [0, 2]. For each initialization, 

Algorithm 1 was performed. A set of shared matrices were returned as the final results for subsequent 

analysis  

 

 
 

Federated supervised methods in dsMTL 

Algorithm 2 Training procedure of iNMF in dsMTL 

Input: 𝜆 > 0, 𝜆𝑠 > 0, maxIter > 0, rank, nInitialization, {𝑋1, …𝑋𝑘 , …𝑋𝑡} 

Output: 𝐻1, 𝐻2,… 

1: for 𝑖 = 1 to nInitialization do 

2: Initialize 𝐻𝑖~𝑈𝑛×𝑟𝑎𝑛𝑘(0,1), for each k, 𝑉𝑘~𝑈𝑛×𝑟𝑎𝑛𝑘(0,1), 𝑊𝑘~𝑈𝑟𝑎𝑛𝑘×𝑝𝑘(0,1) 

3:  𝐻𝑖 =Algorithm 1 (𝜆 = 𝜆, 𝜆𝑠 = 𝜆𝑠, 𝐻 = 𝐻𝑖, {𝑊1, … ,𝑊𝑡}, {𝑉1, … , 𝑉𝑡}) 

4: end for 
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We included one machine-learning (ML) and three multi-task learning (MTL) algorithms into 

supervised methods of dsMTL. In the federated scenario, the ML model was trained by averaging the 

summary statistics from geo-distributed cohorts with the synchronous communication, which leads to 

a model equivalent to the standalone ML model training on the concatenated cohorts. MTL, in the 

federated scenario, exchanges a small amount of information by regularization, such that the 

commonality of multi-cohort models was reinforced, but the cohort-specific element remained 

unchanged. In dsMTL, dsLasso was included as the federated ML variant of Lasso(Tibshirani 2011). The 

federated multi-task learning methods were adapted from our previously published package 

RMTL(Cao, Zhou et al. 2018). These methods adopted various strategies of cross-cohort regularization 

to select joint features, explore the low-rank structure and incorporate the network structure in 

multiple tasks. 

In the next sections, we introduce the theoretical derivations of each method to form the federated 

algorithm. Then a federated optimization framework is derived that was applied to all supervised 

methods. At the end, we show an executable algorithms for solving the objective and training the 

model.  

Models 

For each method, the objective function is first introduced as the major problem to solve. Second, we 

derive the subgradient of the objective to characterize the properties of the optima. Third, since all 

models are sparse, we aimed to solve the entire regularization tree(Zou and Hastie 2005) with a given 

positive  𝜆 sequence in decreasing order. The 𝜆𝑚𝑎𝑥 , the estimate of largest 𝜆 in the 𝜆  sequence, was 

derived from the subgradient, such that 𝜆𝑚𝑎𝑥  was the smallest 𝜆  guaranteeing the existence of 0 

optima. Last, to solve the non-smooth objective efficiently, the proximal mapping was applied, and the 

proximal point estimator was derived as the solution of the iteration-level sub-problem (see next 

section). 

Lasso (dsLasso) 
Objective function: 

min
𝑤

1

𝑛
∑ℒ(𝑤;𝑋, 𝑌)

𝑛

𝑖=1

+ 𝜆|𝑤| + 𝐶||𝑤||2
2 

Subgradient: 

𝜕𝑤 = ∇𝑤ℒ + 2𝐶𝑤 + 𝜆
𝑤

|𝑤|
 

Estimated 𝜆𝑚𝑎𝑥: 

𝜆𝑚𝑎𝑥 = {

1

𝑛
max
𝑗
|𝑋,𝑗

𝑇𝑌| 𝑓𝑜𝑟 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑜𝑠𝑠

1

2𝑛
max
𝑗
|𝑋,𝑗

𝑇𝑌|           𝑓𝑜𝑟 𝑙𝑜𝑔𝑖𝑡 𝑙𝑜𝑠𝑠

 

Proximal point estimation: 

prox
𝑓=
𝜆|𝑥|
𝐿

(𝑤) = sign(𝑤)max {𝑤 − 𝜆, 0} 
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The Lasso model(Tibshirani 2011) aimed to learn a sparse parameter vector 𝑤. 𝜆 was identified by 

cross-validation. ||𝑤||2
2 was used to stabilize the solution and incorporate the correlated features. 𝐶 

was selected by the user.  

  

MTL with Feature selection (dsMTL_L21) 
Objective function 

min
𝑊

∑∑
1

𝑛𝑘
ℒ (𝑊,𝑘; 𝑋𝑖

(𝑘)
, 𝑌𝑖

(𝑘)
)

𝑛𝑘

𝑖=1

𝑡

𝑘=1

+ 𝜆∑√||𝑊𝑗,||2
2

𝑝

𝑗=1

+ 𝐶||𝑊||2
2 

Subgradient: 

𝜕𝑊𝑗,
= ∇𝑊𝑗,

ℒ + 2𝐶𝑊𝑗, + 𝜆𝑣,  𝑣 = {𝑥 ∈ 𝑅𝑡: ||𝑥||2 ≤ 1} 

Estimated 𝜆𝑚𝑎𝑥: 

𝜆𝑚𝑎𝑥 =

{
 
 
 

 
 
 

max
𝑗
√∑(

< 𝑋,𝑗
(𝑘)
, 𝑌(𝑘) >

𝑛𝑘
)

2
𝑡

𝑘=1

𝑓𝑜𝑟 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑜𝑠𝑠

max
𝑗
√∑(

< 𝑋,𝑗
(𝑘)
, 𝑌(𝑘) >

2𝑛𝑘
)

2
𝑡

𝑘=1

           𝑓𝑜𝑟 𝑙𝑜𝑔𝑖𝑡 𝑙𝑜𝑠𝑠

 

Proximal point estimation: 

prox
𝑓=
𝜆||𝑥||2
𝐿

(𝑤) =(1 −
𝜆

max {||𝑤||
2
, 𝜆}
)𝑤 

The method(Liu, Ji et al. 2009) aimed to find a model with the same set of features. For this,  

∑ √||𝑊𝑗,||2
2𝑝

𝑗=1  was used to penalize the magnitudes of the coefficients of a given feature across the 

datasets. The 𝑊 = 𝑝 × 𝑡 was the solution matrix of 𝑡 tasks and p features. 

  

MTL with low-rank structure(dsMTL_Trace) 
Objective function: 

min
𝑊

∑∑
1

𝑛𝑘
ℒ (𝑊,𝑘; 𝑋𝑖

(𝑘)
, 𝑌𝑖

(𝑘)
)

𝑛𝑘

𝑖=1

𝑡

𝑘=1

++𝜆||𝑊||∗ + 𝐶||𝑊||2
2 

Subgradient: 

𝜕𝑊 = ∇𝑊ℒ + 2𝐶𝑊 + 𝜆𝜕||𝑊||∗ 

Estimated 𝜆𝑚𝑎𝑥: 
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𝜆𝑚𝑎𝑥 =

{
 
 

 
 max

𝑗
𝜎1([

𝑋(1)
𝑇
𝑌(1)

𝑛1
, … ,

𝑋(𝑡)
𝑇
𝑌(𝑡)

𝑛𝑡
]) 𝑓𝑜𝑟 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑜𝑠𝑠

max
𝑗
𝜎1([

𝑋(1)
𝑇
𝑌(1)

2𝑛1
, … ,

𝑋(𝑡)
𝑇
𝑌(𝑡)

2𝑛𝑡
])           𝑓𝑜𝑟 𝑙𝑜𝑔𝑖𝑡 𝑙𝑜𝑠𝑠

 

  Where 𝜎1(𝐴)is the largest singular value of matrix A 

Proximal point estimation: 

prox
𝑓=

𝜆||𝑥||∗
𝐿

(𝑊) =𝑈 × 𝐼max {𝜎−𝜆,0} × 𝑉, 

    where 𝑊 = 𝑈Σ𝑉, 𝜎 is the diagonal vector of Σ 

The method(Pong, Tseng et al. 2010) aimed to identify the coefficient vectors of multiple cohorts 

existing in the compressed low-dimensional space. For this, the trace norm of the coefficient matrix 

was used to compress the models’ space.  

 
MTL with network structure(dsMTL_Net)  
Objective function 

min
𝑊

∑∑
1

𝑛𝑘
ℒ (𝑊,𝑘; 𝑋𝑖

(𝑘)
, 𝑌𝑖

(𝑘)
)

𝑛𝑘

𝑖=1

𝑡

𝑘=1

+ 𝜆||𝑊||1 + 𝐶||𝐺𝑊||2
2 

Subgradient: 

𝜕𝑊 = ∇𝑊ℒ + 2𝐶𝐺𝐺
𝑇 + 𝜆

𝑊

|𝑊|
 

Estimated 𝜆𝑚𝑎𝑥: 

𝜆𝑚𝑎𝑥 =

{
 
 

 
 
max
𝑗,𝑘

𝑋,𝑗
(𝑘)𝑇

𝑌(𝑘)

𝑛𝑘
𝑓𝑜𝑟 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑜𝑠𝑠

max
𝑗,𝑘

𝑋,𝑗
(𝑘)𝑇

𝑌(𝑘)

2𝑛𝑘
           𝑓𝑜𝑟 𝑙𝑜𝑔𝑖𝑡 𝑙𝑜𝑠𝑠

 

  Where 𝜎1(𝐴)is the largest singular value of matrix A 

Proximal point estimation: 

prox
𝑓=
𝜆|𝑥|
𝐿

(𝑊) = sign(W)max {|𝑊| − 𝜆, 0} 

The method aimed to incorporate the relationships between cohorts as a graph into the model training 

procedure. ||𝐺𝑊||2
2 was used for this aim, where G was an pre-defined matrix describing the network 

structure. More details of G for variant applications can be found in (Cao and Schwarz). ||𝑊||1 was 

used to remove redundant coefficients. 𝜆 was identified by cross-validation. 

Distributed Optimization procedure 
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To solve these composite objective functions efficiently in the same framework, we rewrite the 

objective (1) as  

min
𝑥
𝐹(𝑥) + 𝜆Ω(𝑥)      (9) 

where 𝐹(𝑥) = ℒ(𝜃) + 𝐶𝑆(𝜃) was smooth component function and Ω(𝑥) = ℵ(𝜃) was non-smooth 

Solving sub-problem in each iteration 

Given the Lipschitz constant 𝐿 of the objective function above, the sequence of estimation points 

{𝑥0, 𝑥1, 𝑥2, … } were found by solving the below iteration-wise sub-problem ((Beck and Teboulle 

2009)) 

    𝑥𝑖+1 = arg min
𝑦

ℳ𝐿,𝑥𝑖
(𝑦)    (10) 

ℳ𝐿,𝑥𝑖
(𝑦) = 𝐹(𝑥𝑖) + 〈∇𝐹(𝑥𝑖), y − 𝑥𝑖〉 +

𝐿

2
||𝑦 − 𝑥𝑖||2

2
+ 𝜆Ω(𝑥)  (11) 

The first three terms on the right side were the second order approximation of 𝐹(. ) using Tylor 

expansion on point 𝑥𝑖.  After re-organization, we have (12) equal to (10). 

𝑥𝑖+1 = arg min
𝑦

𝐿

2
(𝑦 − (𝑥𝑖 −

∇𝐹(𝑥𝑖)

𝐿
))
2

+ 𝜆Ω(𝑥)  (12) 

Since  𝑥𝑖 −
∇𝐹(𝑥𝑖)

𝐿
 was known after the 𝑖th iterations, the above problem was applicable to the 

proximal algorithm framework(Parikh and Boyd 2014). For all sparse regularizations (Ω(𝑥)) used in 

dsMTL, they can be simplified and solved analytically in (13), and the results were derived and 

summarized above (see the “Proximal point estimation”) for each dsMTL method. 

𝑥𝑖+1 = prox
𝑓=

𝜆Ω(𝑥)

𝐿

(𝑥𝑖 −
∇𝐹(𝑥𝑖)

𝐿
)    (13) 

Line search 

Since 𝐿 was unknown in our framework, we estimated it using a backtracking line search approach. Set 

an increasing sequence of 𝐿 ∈ {𝐿0, 2𝐿0, 4𝐿0, 16𝐿0, … }given an constant 𝐿0, the smallest  𝐿 satisfying 

the condition ℳ𝐿,𝑥𝑖
(𝑥𝑖+1) ≥ 𝐹(𝑥𝑖+1) was selected. Here, 𝑥𝑖+1 was determined based on (12).  

Federated computation 

For supervised MTL, the variable matrix 𝑾 = 𝒑× 𝒕 = [𝒘,𝟏, 𝒘,𝟐, … ,𝒘,𝒕], where each column 

represents one task. So distributed proximal operator was: 

𝑊𝑖+1 = prox
𝑓=

𝜆Ω(𝑥)

𝐿

(𝑊𝑖 −
∇𝐹(𝑊𝑖)

𝐿
) = dist prox

𝑓=
𝜆Ω(𝑥)

𝐿

([𝑤,1𝑖 −
∇𝐹(𝑤,1𝑖;𝐷

(1))

𝐿
, … , 𝑤,𝑡𝑖 −

∇𝐹(𝑤,𝑡𝑖;𝐷
(𝑡))

𝐿
]) (14) 

where 𝑤,𝑘𝑖 −
∇𝐹(𝑤,𝑘𝑖)

𝐿
 was calculated on server k and sent back. {𝐷1,…, 𝐷𝑡} represented the data on t 

servers. Similarly, objective function 𝑂(𝑊) has to be evaluated in a distributed fashion, 
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𝑂(𝑊) = dist 𝑂(𝑊) = ∑𝐹(𝑊,𝑘;𝐷
(𝑘))

𝑡

𝑘=1

+ 𝜆Ω(𝑊) 

For supervised ML, the information aggregation was different. The variable vector 𝒘 = 𝒑 × 𝟏. The 

distributed proximal operator is 

𝑤𝑖+1 = prox
𝑓=
𝜆Ω(𝑥)
𝐿

(𝑤𝑖 −
∇𝐹(𝑤𝑖)

𝐿
) = dist prox

𝑓=
𝜆Ω(𝑥)
𝐿

(𝑤𝑖 −
1

𝐿
(∑∇ℒ(𝑤𝑖; 𝐷

(𝑗))
𝑛𝑡
𝑛

𝑡

𝑗=1

+ 𝐶∇ℵ(𝑤𝑖)) ) 

where ∇ℒ(𝑤𝑖; 𝐷
(𝑗)) was calculated on server j and sent back. Similarly, objective function 𝑂(𝑤) has 

to be evaluated in distributed federated fashion, 

𝑂(𝑤) = dist 𝑂(𝑤) = ∑ ℒ(𝑤𝑖; 𝐷
(𝑗))

𝑛𝑗

𝑛
𝑡
𝑗=1 + 𝐶ℵ(𝑤𝑖) + 𝜆Ω(𝑤). 

Accelerated algorithms 

Distributed solver 

To accelerate the optimization procedure,  we applied Nesterov’s acceleration approach(Liu and 

Jieping , Beck and Teboulle 2009, Nesterov 2012).  In the beginning of iteration 𝑖, the search point 

was first defined as the weighted combination of the results from the previous two steps: Si =
αi−1

αi
xi +

1−αi−1

αi
xi−1. Then the formulas (13) was applied on the Si.  

 
 
Training for sparse model 

Algorithm 3 Distributed solver of supervised learning methods in dsMTL 

Input: 𝜆 > 0, 𝐿0 > 0, 𝑊0, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 > 0 

Output: 𝑊𝑖+1 

1: Initialize 𝑊1 = 𝑊0, 𝛼−1 = 𝛼0 = 0, and 𝐿 = 𝐿0 

2: for 𝑖 = 1 to 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do 

3:  Set Si = Wi +
αi−1−1

αi
(Wi −Wi−1) 

4: Find smallest 𝐿 ∈ {𝐿𝑖−1, 2𝐿𝑖−1, 4𝐿𝑖−1, 16𝐿𝑖−1, … } such that 

   ℳ𝐿,𝑥𝑖
(𝑊𝑖+1) ≥ dist 𝑂(𝑊𝑖+1),  

where 𝑊𝑖+1 = dist prox
𝑓=

𝜆Ω(𝑥)

𝐿

(𝑊𝑖 −
∇𝐹(𝑊𝑖)

𝐿
) 

5:  Set 𝐿𝑖 = 𝐿, and 𝛼𝑖+1 =
1+√1+4𝛼𝑖

2

2
 

6:  If termination rule satisfied, return 

7: end for 
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In the high-dimensional data analysis, the performance of sparse ML models was highly related to the 

accuracy of sparse structure identification, thus 𝜆 selection was crucial. In dsMTL, we trained the entire 

regularization tree for a given hyper-paratemer C. Similar to the study(Friedman, Hastie et al. 2010), 

we estimated the 𝜆𝑚𝑎𝑥 as the largest 𝜆 of the sequence from the data. 𝜆𝑚𝑎𝑥 was selected by looking 

for the smallest 𝜆  such that  the equation 𝜕𝑊(𝐹(𝑥) + 𝜆Ω(𝑥)) ∋ 𝟎  hold. Due to the differential 

objective functions, 𝜆𝑚𝑎𝑥  of calssification model was different from that of regression model. The 

𝜆𝑚𝑖𝑛 was determined based on 𝜆𝑚𝑎𝑥, i.e. 0.1𝜆𝑚𝑎𝑥. Then the entire sequence was interpolated based 

on the log scale of 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛. For each method, 𝜆𝑚𝑎𝑥 was therotically different, and summarized 

above.  

 

Cross-validation 

We set up cross-cohort and in-cohort CV in dsMTL for all ML/MTL methods. For cross-cohort CV, t folds 

CV were established for t cohorts. In fold i, cohort i was as the test cohort and the model was trained 

on rest cohorts. The prediction performances were averaged and used to select 𝜆. Such CV aimed to 

identify a 𝜆 with an optimized generalization performance. For k-folds in-cohort CV, the samples of 

each cohort were randomly separated into k folds, such that the test folds across cohorts were 

combined for testing, and the training folds were combined for training. Such CV aimed to identify a 𝜆 

with the most representative sparse model across all cohorts. 

Introduction of DataSHIELD  

DataSHIELD(Wilson, Butters et al. 2017) is a platform software supporting federated data analysis 

without disclosing personally identifiable information. Two modules were included, the Ranalytic 

environment and the data warehouse opal. To mitigate the risk of sensitive data disclosure, the design 

of DataSHIELD considers to broader aspects: software architecture and statistics. The architecture of 

DataSHIELD provides several non-disclosure mechanisms to improve the system security, such as 1) 

data analysis only occurs behind the firewall; 2) each server is only allowed to communicate with a 

single client of a fixed IP; 3) the network communication was protected by the SSL protocol; 4) an R 

parser was implemented on the DataSHIELD server to reject unpermitted behaviors. A comprehensive 

set of permission settings were provided for data providers to fully control access to their data. These 

permissions were about users, data and functions for characterizing i.e. “which users could perform 

what behaviors to what data”. In an extremely secure example, a user could be granted to access a 

dataset but cannot perform any actions because no functions were granted. With these settings, 

DataSHIELD allows to customize the security strategies according to the specific requirement of the 

applications. From a statistical perspective, DataSHIELD assumes sharing summary statistics are safe 

Algorithm 4 Training procedure of sparse models in dsMTL 

Input: 𝜆1 > 𝜆2 > ⋯ > 0 

Output: 𝑊1, 𝑊2,… 

1: Initialize 𝑊0 = 𝑝 × 𝑡 = 0 

2: for 𝑖 = {1, 2, … } do 

3:  𝑊𝑖 =Algorithm 3 (𝜆 = 𝜆𝑖, 𝐿0 = 1, 𝑊0 = 𝑊𝑖−1, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 100) 

4: end for 
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for privacy-preserving applications. Such assumption is quite common in the biomedical field, and 

there is a large number of websites providing summary data for free download, such as the GWAS 

summary data of certain traits(Zheng, Erzurumluoglu et al. 2017) and eQTLs of tissues(Consortium 

2015). Another study(Jones, Sheehan et al. 2012) confirmed the non-disclosure property of 

DataSHIELD for regression analysis from a biostatistical perspective. 

Data key mechanism 

 

Supplementary Figure 3. Schematic illustration of the data key mechanism 

This mechanism allows the authorized users to obtain the complete model identified by multi-task 

learning from the server. The administrator generates two keys, stores the local key in the key 

database, and gives the remote key to a trustworthy user.  Then by sending the remote key, the client 

is seen as the data provider of the server, and can retrieve the complete model from the multi-task 

learning method. 

This mechanism was built for two reasons. 1) The custom-defined functions in DataSHIELD cannot 

obtain identity information from the users, and 2) specifying the identity of users via the IP address is 

not sufficiently safe.  

Generate RNA-seq count data for case study 2 

The RNA-seq count data was generated using the Negative Binomial distribution (NB distribution), 

which was the most common distribution used to model RNA-seq data. In case study 2, a two-cohort 

scenario was simulated. Four tests were conducted for different severity of heterogeneity. Here the 

severity of heterogeneity was characterized by the proportion (20%, 40%, 60% and 80%) of genes in 

the shared signature over all diagnosis-associated genes. The simulation procedure contained the 

following steps. First, the background data of two cohorts 𝑋1and 𝑋2were generated as sampled from 

the NB distribution 𝑋1~NB𝑝×𝑛1×(r = 2, p = 0.3) and 𝑋2~NB𝑝×𝑛2(r = 2, p = 0.3) , where  𝑝  was 

shared gene dimension, 𝑛1and 𝑛2 referred to the respective sample size. Then in cohort 𝑖, the first 50% 

samples, 𝑋𝑖[,1:
𝑛𝑖

2
], were selected as patients while the first 50% genes, 𝑋𝑖[1:

𝑝

2
, ], were selected as the 
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diagnosis-related genes. According to the specific proportion 𝜑𝜖{20%, 40%, 60%, 80%} of shared 

genes over all signature genes, the shared and cohort-specific disease effect was added to the 

background data of patients. Specifically, the diagnosis-related effect shared by both cohorts was 

added as 𝑋𝑖 [1:
𝑝𝜑

2
, 1:

𝑛𝑖

2
] = 𝑋𝑖 [1:

𝑝𝜑

2
, 1:

𝑛𝑖

2
] + NB𝑝𝜑

2
×
𝑛𝑖
2

(r = 2, p = 0.002) for cohort𝑖. The diagnosis-

related effect specific to cohort 1 was added as 𝑋1 [
2+𝑝𝜑

2
:
𝑝(1+𝜑)

4
, 1:

𝑛1

2
] = 𝑋1 [

2+𝑝𝜑

2
:
𝑝(1+𝜑)

4
, 1:

𝑛1

2
] +

NB𝑝(1−𝜑)
4

×
𝑛1
2

(r = 2, p = 0.002) . The diagnosis-related effect specific to cohort 2 was added as 

𝑋2 [
4+𝑝(1+𝜑)

4
:
𝑝

2
, 1:

𝑛2

2
] = 𝑋1 [

4+𝑝(1+𝜑)

4
:
𝑝

2
, 1:

𝑛2

2
] + NB𝑝(1−𝜑)

4
×
𝑛2
2

(r = 2, p = 0.002) . Here the specific 

effects were not overlapped between cohorts 1 and 2. 

Microarray expression data pre-processing 

Four independent cortical microarray gene expression datasets from schizophrenia case-control 

cohorts were used in this study. Three datasets were downloaded from the GEO repository with id: 

GSE53987, GSE21138 and GSE35977. A detailed data description can be found on GEO and the 

respective original studies(Tang, Capitao et al. 2012, Chen, Cheng et al. 2013, Lanz, Reinhart et al. 2019). 

The fourth dataset was the HBCC microarray dataset (dbGAP ID: phs000979.v3.p2). Th data description 

and sample acquisition methods can be found on dbGAP and the original publication(Fromer, Roussos 

et al. 2016). 

For GSE53987 and GSE21138, the expression levels were measured using the Affymetrix GeneChip 

Human Genome U133 Plus 2.0 Array, while the data of GSE35977 was measured using Affymetrix 

Human Gene 1.0 ST Array. A consistent pre-processing procedure was applied to all datasets. First, the 

raw data was extracted by the function ReadAffy() of the R package affy 1.64.0(Gautier, Cope et al. 

2004), followed by the rma(Bolstad, Irizarry et al. 2003) (Robust Multi-array Average) procedure for 

normalization. Values from multiple probes related to the same gene were averaged. Second, subjects 

with ages < 18 were excluded. Third, outliers were deleted as those outside of four standard deviations 

from the mean of the first two principal components. Fourth, 10 surrogate variables were determined 

using SVA(Leek, Johnson et al. 2012) from the R package sva 3.34.0. Fifth, multiple linear regression 

analysis was used to correct for the effect of potential confounders with the covariates age, age2, sex, 

PMI, pH, RIN, batch ID and 10 surrogate variables. Sixth, the resulting expression genes were z-

standardized.  

HBCC data was normalized and quality controlled as previously described(Fromer, Roussos et al. 2016). 

First, we extracted the raw dlpfc expression data using the function read.idat() from the R package 

limma 3.42.2 (Ritchie, Phipson et al. 2015). Second, we corrected for background noise using the 

negative probes followed by quantile normalization and log-transformation. Third, we retained the 

robustly expressed probes as those with a detection p-value<0.01 in at least half of individuals. Prior 

to sva analysis, the missing “pH” and “PMI” values were imputed using the average of available data. 

The covariates contained age, age2, sex, PMI, pH, RIN, ethnicity and 10 surrogate variables. The cohort 

contained 321 healthy controls and 191 patients with schizophrenia. All four datasets shared 8013 

overlapping genes.  
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4.6.2 Supplementary Results 

Supplementary Figure 1: the curve of objectives training dsMTL_iNMF with an initialization in case 

study 5. 100 iterations were sufficient to converge to a solution with an acceptable precision.  

 

 

 

 
Supplementary Figure 2. The gene identification accuracy for shared and specific signatures using 

simulated data using rank=5 (a) and rank=6 (b) as model parameters.  
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Index of 

test 

Proportion of 

homogenous 

signatures 

Number of 

samples 

Number of 

features 

Number of 

signatures 

Proportion of 

patients 

1 20%  

200 

 

1000 

 

500 

 

50% 2 40% 

3 60% 

4 80% 

Supplementary Table 1. The simulation data of each server. These parameters were same to each of 

two servers. The only difference is the set of heterogeneous signatures. 

 

 Server 1 Server 2 Server 3 Client 

Type Training Training Training Testing 

Location  Mannheim  Mannheim Heidelberg Mannheim 

Hardware CPU I7-4790 3.6GHz I7-4790 3.6GHz Intel Xeon 2.4 GHz I7-4790 3.6GHz 

Memory 4G 4G 4G 16G 

ID GSE35977 GSE21138 GSE53987 HBCC 

Number of Subjects  101 59 34 422 

Number of Genes 8013 8013 8013 8013 

Supplementary Table 2. Client-server architecture for the real data analysis.  

 

 dsLasso Mean regularized dsMTL 

Misclassification rate 0.34 0.29 

Time consumed 5-fold CV 7.5 mins 7.3 mins 

Training 1.7 mins 2.9 mins 

Number of network accesses 

for training 

70 137 

Non-zero coefficients 38 173 

Supplementary Table 3. Performance of dsML/MTL models on real data in real network. 

 

 Server 1 Server 2 

Type Training Training 

Location  Heidelberg Mannheim 

Hardware CPU Intel Xeon 2.4 GHz I7-4790 3.6GHz 

Memory 4G 4G 

ID GSE164376  GSE134497 

Number of Subjects  17 16 

Number of Genes 15215 15215 

Supplementary Table 4. Details of server configurations used for real data analysis. 
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5 DISCUSSION 

The biological understanding of complex disorders such as schizophrenia relies on the large-scale 

analysis of molecular data. The advances in sequencing technologies reduced the cost of data 

acquisition, leading to a fast increase in the availability of such data. In addition, the rapid progress in 

ML technology development has led to widespread availability of sophisticated computational tools to 

utilize these rich data resources to address complex biological questions. However, this progress has 

thus far not impacted significantly on the clinical management of severe mental illness, such as 

schizophrenia. An important factor contributing to this yet lacking clinical translation is our still 

incomplete mechanistic understanding of illness biology. ML approaches applied in biological 

psychiatry have thus far focused primarily on the investigation of individual data modalities, which 

likely captures only part of the complex disease process. The integrative analysis of multiple modalities, 

however, is a technological challenge, as cross-modality dependencies need to be appropriately 

captured and potential confounding effects accounted for. The overarching goal of this thesis was thus 

to develop a ML framework that could capture these effects using cross-task regularization, which led 

to a spectrum of multi-task learning algorithms that allow a dimensional deconstruction of 

schizophrenia and that identify an interpretable cross-modality landscape of biological signatures.  

In a preliminary work (Cao, Chen et al. 2017), we found a brain expression signature of schizophrenia 

that could predict a glycemic marker of type 2 diabetes (T2D) in blood. This work followed the 

conventional “sequential approach” in molecular studies that identifies an illness-related signature in 

a given data modality and then tests the association of this signature with clinical or biological 

outcomes in another. This thesis is based on the hypothesis that this sequential approach can be 

improved, as in high-dimensional data there may be a dimension that is optimally associated with 

multiple outcomes (e.g. as in the example above with schizophrenia and type 2 diabetes) and 

biologically interpretable but that cannot be identified from the analysis of an individual data modality. 

We hypothesize that this methodological gap can be closed via a “simultaneous approach” that jointly 

analyzed multi-modal data, and identifies a signature predictive of multiple outcomes. In Study 1, this 

was addressed with an algorithmic framework of MTL and the implementation of the first MTL 

software for the programming language R, called RMTL. The framework comprises ten well-known 

MTL algorithms, and simulation analysis supported their improved prediction performance and ability 

to identify reproducible biological signatures when applied to heterogeneous cohorts. This study 

further indicated that the prediction models built on multi-modal data could potentially be improved 

by incorporating an appropriate measure of task-relatedness. Using RMTL, Study 2 investigated the 

ability to identify gene expression signatures in multi-site gene expression data from patients with 

schizophrenia and controls, and explored the associated cohort-level heterogeneity. The comparative 

analysis against several conventional ML algorithms indicated that MTL-derived algorithms showed 

superior prediction accuracy and signature interpretability. One significant obstacle in applying such 

algorithms to multimodal data at large scale is the fact that no IT solutions exist where such data can 

be effectively brought together in a single data warehouse. Frequently, logistic and legal concerns 

prevent such data integration and have led to a geographically distributed landscape of individually 

large-scale data resources. To make maximal use of such distributed data, Study 3 developed dsMTL, 

a computational framework for privacy-preserving, federated multi-task machine learning. dsMTL 

models demonstrated strong robustness against the institution-level heterogeneity, supporting the 

suitability of dsMTL for the integrative analysis of heterogeneous, high-dimensional and geographically 

distributed data cohorts. 
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5.1 Shared molecular alterations between schizophrenia and T2D 

Our preliminary work (Cao, Chen et al. 2017) identified a schizophrenia signature in brain tissue (25% 

explained variance), that was reproducibly associated (23%~26% explained variance) with a glycemic 

marker of T2D in blood. The negative association between schizophrenia and HbA1c level indicated that 

T2D patients had lower predicted schizophrenia scores than healthy controls. This may be due to 1) 

compensatory mechanism present in the brain or 2) the shared molecular risk causing opposite 

expression in different tissues. This finding highlighted the molecular complexity of schizophrenia and 

supported the relevance of antipsychotic treatment for T2D risk.  

Four genes in the two pathways “Kidney development” and “respiratory electron transport chain” 

contributed to the cross-tissue prediction. These findings supported mitochondrial dysfunction and 

oxidative stress as a unifying theme underlying the comorbidity between schizophrenia and T2D. 

Notably, the identified signature demonstrated specificity for T2D compared to HIV encephalitis and 

AD. This is interesting, as the pathology of both AD and HIV is linked to the common pathway “oxidative 

stress”, which may imply that the molecular comorbidity between schizophrenia and T2D is linked to 

the same pathway (as HIV or AD) but might be regulated differently.     

5.2 Standalone and distributed MTL 

Study 1 and 3 implemented an algorithmic framework for a standalone (RMTL) and a distributed 

(dsMTL) MTL package, respectively. Study 1 indicated that MTL was able to capture specific task-

relatedness by incorporating cross-task regularization. This implied that MTL could suitably address 

the heterogeneity across cohorts, e.g., cohort-specific noise, during integrative data analysis. Besides 

accounting for unwanted heterogeneity, a core objective for the MTL method was to differentiate 

outcome-specific effects from those shared across outcomes. One important example for this type of 

investigation is comorbidity analysis, which is aimed at differentiating illness specific biological 

hallmarks from those indexing the shared biology of the comorbid conditions. For such applications, 

the simultaneous learning process employed by MTL is a promising technology to accelerate future 

translational research.  In order to make this technology applicable for geographically distributed data, 

we developed dsMTL as a secure federated MTL system that supports the joint analysis of 

geographically distributed data warehouses. The analysis of simulated data showed that dsMTL could 

better differentiate the shared and cohort-specific effects in heterogeneous data cohorts for both 

supervised and unsupervised analysis compared to the meta-analysis of local ML models. The raw 

expression (RNA-seq and microarray) data analysis in the actual network illustrated dsMTL was 

efficient for most gene expression studies (i.e., hundreds of subjects with ~10000 genes getting 

involved). Most security mechanisms of dsMTL were provided by the DataSHIELD ecosystem, which 

was not specific to ML applications. An interesting focus of future work is to implement cryptographic 

algorithms in dsMTL, in order to prevent ML-oriented attacks. 

5.3 Heterogeneity in brain expression data of individuals with schizophrenia 

Study 2 comprised a comparative analysis of 7 ML/MTL methods applied to five cortex expression 

datasets. After standard preprocessing, these datasets were considered as “near-homogenous” 

cohorts and were ready for data concatenation. The comparative analysis indicated the mean 

regularized MTL outperformed other methods (accuracy: 0.73). Comparing between mean regularized 

MTL and SVM (best ML model) models trained on varying numbers of training datasets, we found 

higher consistency and stability of the MTL model. These findings implied that the “near-homogenous” 
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expression cohorts were still sufficiently heterogeneous for the MTL application to yield a significant 

benefit in building predictive models through consideration of cohort-level noise. The superiority of 

the mean regularized MTL in the comparative analysis suggested that the cohort-level noise could be 

seen as Gaussian noise added to the true underlying signal. Therefore, the network constraint 

regularization was successful in disentangling the structure of this source of noise. In addition, the 

superior consistency and stability of MTL suggested that MTL can significantly capture shared effects 

in high-dimensional, heterogeneous cohorts against the variability of subjects and cohorts, as well as 

the data scarcity. These advantages are important for the identification of molecular signatures 

because 1) molecular data is commonly high-dimensional with far fewer observations than features, 

and 2) the cross-cohort reproducibility is an essential factor for assessing the quality of a given 

signature.  

5.4 Limitations 

Most methodologies included in RMTL and dsMTL assume that all tasks share the same task-

relatedness. For example, the MTL model with joint feature selection assumes that the identical set of 

features is relevant for all tasks. However, this is unlikely to be the case in real biological analysis. Due 

to the frequently occurring and often unmeasurable confounding effects, the signature set of 

otherwise “homogenous cohorts” could be slightly (or very) different. An extreme case is an outlier 

task with low data quality that does not share any significant features with other tasks. Including this 

outlier task in MTL analysis would lead to a twisted model with misleading signatures. A possible 

countermeasure against this is to wrap the MTL analysis in a cross-validation and statistical testing 

framework, in order to locate and remove the outlier tasks. However, this would lead to a data split 

required for the hold-out validation and reduce the statistical power of the MTL analysis. Alternatively, 

one could solve this issue inside the framework of MTL, with the so-called "dirty statistical 

models”(Yang and Ravikumar 2013). The approach superposed base models to represent a complex 

pattern, where one base model is used to capture the shared effect and the other is used to capture 

the unwanted effect. Based on this approach, one work (Gong, Ye et al. 2012) designed an MTL 

algorithm to simultaneously detect and remove the outlier tasks from the training procedure. The 

regularization takes the form (Ω(𝑊) = ||𝑃||2,1 + ||𝑄
𝑇||2,1  S.t. 𝑊 = 𝑃 + 𝑄 ). Here, the coefficient 

matrix is decomposed into a base model P capturing the shared signature over all tasks and a model Q 

capturing the signature of the outlier tasks. A similar idea was applied in a hybrid model (Jalali, 

Sanghavi et al. 2010). There, the regularization effect was stratified into a base model P capturing the 

shared signature (||𝑃||∞,1) across tasks and one Q model capturing a task-specific effect (||𝑄||1). This 

algorithm allowed learning any extent of features shared across tasks.  

5.5 Outlook 

There have been many exciting developments in the MTL community in recent years. Here I enumerate 

two fields with the highest potential for advancing neuroscience and psychiatry.  

High-order MTL. Figure 3 illustrates the evolutional path of machine learning technologies along an 

increasing availability of different data modalities. Conventional ML can be seen as a “one-to-one” 

functional mapping for predicting a single outcome on a single modality. Here, the model is a one-

dimensional vector. MTL coordinates the joint training procedure on multi-modal data and is still based 

on a “one-to-one” functional mapping. The MTL model can be represented as a two-dimensional 

matrix. In the future, as multimodal data becomes increasingly available, MTL would generalize to a 

“multiple-to-multiple” functional mapping, in order to capture more complex relationships between 
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modalities and outcomes. For example, multiple data modalities (X1~X3 in Figure 3) and multiple 

outcomes (Y1~Y3 in Figure 3) could be available, where any data modality can predict any outcome. 

The model of this “high-order” MTL can be represented as the three-dimensional tensor. This approach 

has enormous potential in neuroscience and psychiatry due to the representation of rich structures 

(e.g., biological annotation data) among modalities.  For example, one could select genetic, expression 

and methylation data as X1~X3, where each is used to predict imaging-derived measures of three brain 

regions (Y1~Y3). Here, the landscape of omics’ markers related to the neuroimaging-derived measures 

can be fully captured by the “high-order” model.  

From the experience of conventional MTL, the “high-order” model could overfit without regularization.  

One study (Romera-Paredes, Aung et al. 2013) built on the concept of traditional low-rank MTL model 

and proposed a tensor-based trace-norm model (Ω(𝒲) = ||𝒲||∗ ,𝒲 = p × t1 × t2) to identify the 

shared low-dimensional space across tasks. Similarly, another study (Lin, Xu et al. 2016) used a similar 

technique to explore the pairwise feature interactions explicitly in MTL. The functional mapping for 

the task was y = ∑ xiwi +
p
i=1 ∑ ∑ xixj𝒬ij

p
j=1

p
i=1 , where the coefficients form a 𝒬 = p × p interaction 

matrix. The cross-task penalty was performed on the stacked Q over tasks. We summarize the 

formulations in Table 1. In mental illness, a recent work (Brand, Wang et al. 2018) successfully utilized 

this technique to integrate longitudinal brain scans for modeling the progression of AD.  

 

 

Figure 3. The evolutionary path of ML/MTL. With an increasing availability of data modalities comes 

an increasing spectrum of interesting functional mappings. In ML, one data modality is mapped to one 

outcome. Conventional MTL adopts multiple “one-to-one” mappings to link different modalities to 

outcomes. In high-order MTL, the “multiple-to-multiple” mappings have the potential to connect every 

modality to every outcome. 

 

Deep MTL. Another fascinating progress regarding MTL development is the so-called “deep MTL”, 

which integrates deep learning techniques into the MTL framework. The core benefit of deep learning 

is to replace the so-called ‘feature engineering’ with “representation learning” based on the layered 

structures of neural networks. Here, the appropriate features can be extracted and learnt from the 

raw data automatically. This approach has been highly successful for the analysis of several data 

modalities, including images and text. In psychiatry, using neural imaging data, deep learning achieved 
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significant success (accuracies > 90%) for predicting the diagnosis of AD (Li, Habes et al. 2017), ADHD 

(Deshpande, Wang et al. 2015) and schizophrenia (Plis, Hjelm et al. 2014). A detailed review of deep 

learning in psychiatry can be found elsewhere (Durstewitz, Koppe et al. 2019).  

The deep MTL adopts a slightly different strategy for integrating information across tasks compared to 

regularization-based MTL. Instead of the cross-task regularization, deep MTL commonly shares hidden 

layers across tasks directly. The underlying principle is the abstraction of natural features into 

“semantic” features. For example, for imaging-based diagnosis prediction, the low-level layers (closer 

to the raw data) tend to capture pixel-related patterns, e.g., points or lines. In contrast, the high-level 

layers (closer to the diagnosis) tend to capture clinical phenotype-related patterns, e.g., behaviors. 

Such abstraction of natural features is useful for the training in large-scale datasets, in order to avoid 

overfitting. With the increasing data availability in psychiatry, it is likely that deep MTL will be a highly 

useful approach to support translational research. 
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6 SUMMARY 

Schizophrenia is a severe and heritable disorder affecting approximately 1% of the population. It has 

become clear that an improved mechanistic understanding of its underlying biology is a critical factor 

for improving the clinical management of schizophrenia, for refining the current diagnostic system, 

and for advancing psychiatry closer to precision medicine. Advanced sequencing technology has led to 

a fast accumulation of molecular data. Combined with the availability of extensive computing 

resources and sophisticated ML methods, data science is playing an increasingly important role in 

schizophrenia research. However, dimensionality of data, as well as the availability of different 

modalities, may increase faster than the number of individuals for whom such data is available, which 

may lead to a loss of predictive value and interpretability of algorithms derived from molecular studies 

(Xu, Xue et al. 2011, Cao, Meyer-Lindenberg et al. 2018). To address this, the present thesis conducted 

methodological developments in two areas. 

 

First, a significant effort at the algorithmic and computational level has been made to provide the MTL 

algorithms as a useful tool for both individual researchers and large-scale collaboration projects. RMTL 

(standalone MTL package) supports a “simultaneous approach” for signature identification in 

heterogeneous, multi-modal datasets, e.g., for comorbidity analysis and the prediction of multiple 

clinical outcomes. We showed that such heterogeneity could be captured by cross-task regularization. 

dsMTL (federated MTL package) supports a secure MTL analysis for geographically distributed datasets. 

Due to the requirement of privacy protection, the institution-level heterogeneity is challenging to 

remove when each dataset is analyzed individually. To address this, dsMTL provides a distributed 

learning system resilient to such heterogeneity. We also showed that dsMTL was computationally 

efficient for the typical scale of molecular studies.  

Second, focusing on gene expression studies of schizophrenia, this thesis explored computational 

approaches to extract meaningful and biologically reproducible signatures. We found an expression 

signature associated with schizophrenia as well as T2D, which implied mitochondrial dysfunction and 

oxidative stress as a unifying theme underlying the comorbidity of these conditions. We also identified 

a highly accurate, consistent and robust signature in heterogeneous expression cohorts of 

schizophrenia and controls using MTL.  

 

In summary, the work presented in this thesis introduced the multi-task learning paradigm for 

modeling the task-level heterogeneity during multi-modal data analysis, and explored its impact on 

signature identification in standalone and geo-distributed scenarios of molecular studies. This work 

expands our knowledge of complex learning systems with rich biological structures among data 

modalities and advances our insight into the molecular biology of schizophrenia. Hopefully, this work 

will also provide a foundation for the future development of more advanced and efficient MTL 

methods to further advance translational research in psychiatry.   
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