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1 INTRODUCTION 

1.1 Sex, drugs and addiction 

‘Sex does matter’ – this is the main statement of the Institute of Medicines report on 

the state of research regarding sex differences, published already at the turn of the 

millennium (Pardue & Wizemann, 2001). Since then, there has been a blast of new 

results suggesting differences between female and male cells, animals, and humans 

and consequently underlining even more that sex is a ‘variable that should be 

considered when designing and analyzing studies in all areas’ (Pardue & Wizemann, 

2001). 

Furthermore, there is increasing scientific evidence indicating sex differences 

regarding drug use and dependence patterns. But, as stated in the publication on this 

thesis, how these differences ‘are manifested at a neurochemical level remains 

unclear‘ (Egenrieder, Mitricheva, Spanagel, & Noori, 2020).  

 

Thus, the present thesis aims to investigate if there are sex differences in the 

changes of the neurotransmitter dopamine in the nucleus accumbens (NAc) and 

caudate putamen (CPu) after the administration of different drugs of abuse. 

In the next paragraphs, a definition of the terms used in this thesis is made. 

Furthermore, the prevalence of addiction and the sex gap in preclinical and clinical 

research, from the past until now, are discussed. Hereafter, the distinct findings of 

sex differences – and similarities – are presented. 

 

1.1.1 Definitions 

In this section the terms ‘addiction’, ‘drugs’/’psychotropic substances’ and 

‘sex’/’gender’ are described and, if needed, interpreted in the historical and 

sociocultural context.  

 

The understanding of mental health and mental illness is, like the society that defines 

them, subject to constant change. This applies to the term ‘addiction’ and 

consequently as well to the term ‘drug’. Therefore, there has been a constant 
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development through the centuries since there are indications that humans are 

evolutionarily predisposed to use drugs (Anderson, Gual, & Rehm, 2018; Spanagel, 

2009).  

The perception of the border between culturally accepted consumption and 

pathological abuse depends on the surrounding society and its norms and habits. 

The cultural definition and attribution influence who (ab)uses which drugs in which 

situations and influences the risk of developing an addiction (Becker, McClellan, & 

Reed, 2016).  

 

To approach a modern definition of ‘addiction’ the Diagnostic and Statistical Manual 

of Mental Disorders (DSM) can serve as an important tool. In its current fifth version 

under the category ‘addictions and related disorders’ the term ‘substance use 

disorder’ is established. It replaces, compared to the previous fourth DSM version, 

the two terms ‘substance abuse’ and ‘substance dependence’. These terms 

implicated that there is a separated and, by definition, milder disease of just abusing 

a substance without being dependent to it.  

In the newest DSM version, the criteria of these two previously separated main 

disorders are now combined and the degree of severity can be specified by ‘mild’, 

‘moderate’ or ‘severe substance use disorder’ according to the number of the criteria 

that are met.  

This emphasizes the continuum in the development of an addiction that already 

begins by using a substance rather than specifying two separated diagnoses with 

one being less harmful than the other (Hasin et al., 2013). 

The criteria that define the substance use disorder, according to the DSM-5, are the 

following: craving, spending a lot of time obtaining the drug, taking larger amounts 

and over a longer period than intended, not being able to cut down, the inability to 

carry out responsibilities, social impairment, drug use despite physical or 

psychological difficulties, risky use or signs of tolerance or withdrawal. 

Another important medical classification list is the International Classification of 

Diseases and Health Problems (ICD-10) by the WHO. It is used worldwide for the 

whole spectrum of diseases, not only for mental disorders.  

The term ‘dependence syndrome’ is characterized as a ‘cluster of psychological, 

behavioral, and cognitive phenomena in which the use of a substance or a class of 
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substances takes on a much higher priority for a given individual than other behaviors 

that once had greater value’ (World Health Organization, 2018).  

In this thesis the term ‘addiction’ will be used with reference to the heading and the 

definition of the DSM-5, because it is the standard classification list for psychiatric 

disorders, and often serves as a reference in scientific work.  

Special focus lies with the aspect of considering addiction as a continuum starting by 

using a substance and undergoing a series of stages that spiral and escalate: 

binge/intoxication, withdrawal/negative affect and preoccupation/anticipation 

(craving) (Koob & LeMoal, 1997). 

 

 

Figure 1: Stages of the development of an addiction according to Koob et al.  

(Koob & LeMoal, 1997) 

 

The understanding of the term ‘drug’ has as well changed over the centuries and, as 

Jonathan Lewy states: ‘…the collective basket of “drugs” lacks a single definition 

because the idea that drugs exist as a single concept is historical’ (Lewy, 2017). In 

addition, the line between drug and medication is not strictly drawn in English. Thus, 

in this work the term drug will be used meaning psychotropic substances that are 

thought to be habit-forming and therefore regulated by the governments of different 

countries (Lewy, 2017).  

This definition includes the licit drugs alcohol and nicotine as well. In the present 

thesis morphine is the only representative of the crucial group of legally prescribed 

drugs, in spite of the fact that they account for a not inconsiderable part of the overall 

number of addicts. 

 

This work includes only rats as subjects, and the term ‘sex’ will be used in the context 

of the biological division into females and males. In contrast, the term ‘gender’ refers 

to the socialized male and female characteristics and will only be used in regard to 

humans. 

Binge/ 
intoxication

Withdrawal/ 
negative affect

Preoccupation/ 
anticipation 

(craving)
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1.1.2 Prevalence of addiction 

In this section the prevalence and some consequences of drug use and addiction are 

presented. 

 

According to Anderson et al., who refer to the ALICE RAP project of the European 

Union (EU), there have been 10.4 million of deaths worldwide and more than one 

million of deaths in the EU due to alcohol, cigarettes and illicit drugs just in the year 

2016. The lion’s share is caused by the licit drugs alcohol and nicotine.  

If morbidity is taken into account, the consequences are even greater: an estimated 

number of 25 million years are lost either to premature death or disability only in the 

EU (Anderson et al., 2018). 

When it comes to sex differences the 2015 Epidemiological Survey of Substance 

Abuse tobacco products have been used by 28.7 % and alcohol by 72.8 % of the 

German respondents during the last 30 days. A clinically relevant use of alcohol 

could be found in 28.3 % of men and 9.6 % of women (Matos, Atzendorf, Kraus, & 

Piontek, 2016).  

Kraus et al. compared those findings to earlier surveys: although German men drank 

less alcohol compared to the previous 20 years, the overall prevalence of drinking 

and episodic heavy drinking is still higher in men than in women. Still, the heavy 

drinking episodes increased as well for women.  

Both sexes used less tobacco products but the smokers rate is slightly higher in 

Germany than in other EU countries, probably due to a relatively higher prevalence 

among women (Kraus, Piontek, Atzendorf, & Matos, 2016; Matos et al., 2016).  

For illicit drugs Matos et al. found the highest prevalence for cannabis during the 12 

months before questioning: 7.4 % of the males and 4.9 % of the females indicated 

consumption. One percent of the responders had consumed amphetamine. The 

percentages for all other illicit drugs were even under one percent each.  

Generally, a cross-national survey shows the tendency that men consume more 

drugs than women, although females are partly closing the gap, at least for some 

substances and in the cohorts of younger age (Degenhardt et al., 2008). 

 

Apart from the individual suffering, addiction generates a considerable socio-

economical damage by producing direct, direct non-medical and indirect costs as 
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high as an estimated 65.7 million Euro in 2010 in the EU (Olesen et al., 2012). The 

negative balance is even worse if the millions of victims of the war on (illicit) drugs 

and the considerable amount of money spent by governments worldwide for 

incarceration would be included (Keefer, 2010; Miron & Waldock, 2010). 

 

Summarizing the prevalence, it can be stated that substance use and addiction are 

frequent phenomena that occur more often in men and have a considerable impact 

on overall disability and mortality.  

 

1.1.3 Sex gap in research 

This section deals with the inequality in the distribution of female and male subjects 

in preclinical and clinical trials and the approaches that have been made to establish 

sex balance. The development in the US serves as an example, with special focus on 

the National Institutes of Health (NIH) and its recommendations as a leading 

institution for the setting of frameworks for research worldwide. Furthermore, the 

NIH’s PubMed online library was used for this meta-analysis. 

 

As Beery et al. showed, female subjects have been systemically ignored in the past 

for various reasons in clinical trials as well as in basic research. In part because of 

the assumption that the results for males do equally apply to females and partly for 

fear of an increased variability of the results due to the females’ cycle and thus of 

another possible confounder (Beery & Zucker, 2011).  

Moreover, in the clinical field, researchers hesitate to expose women of childbearing 

potential to adverse side effects (Geller, Goldstein, & Carnes, 2006).  

After hints that men and women show symptoms and react to drugs differently, the 

approach was made to close that sex gap at least for federally supported clinical 

trials: the NIH Revitalization Act of 1993 required the inclusion of women in clinical 

trials (Freedman et al., 1995).  

Since then some progress has been made regarding the inclusion of female subjects, 

but there is still an underrepresentation especially in studies about drugs (Geller et 

al., 2006; Geller, Koch, Pellettieri, & Carnes, 2011). 
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For basic research this development took longer. In May 2014 the director of 

Research on Women's Health of the NIH published a first announcement, that as well 

studies with animals and tissues should include both sexes (Clayton & Collins, 2014).  

In 2016 this was implemented into the scientific process by requiring applicants to 

plan the consideration of sex as a biological variable, and advising peer reviewers to 

focus on it (Tannenbaum, Schwarz, Clayton, de Vries, & Sullivan, 2016). Similar 

efforts were undertaken lately in Europe by the European commission (Klinge, 2008). 

 

Simultaneously, there is a growing number of evidence, that females are not 

generally more variable than males (Becker, Prendergast, & Liang, 2016; 

Prendergast, Onishi, & Zucker, 2014) and thereby the pressure against the automatic 

exclusion of female subjects is increased. 

 

Thus, some progress has been made but the goal of sex balance is currently still at a 

distance. This diminishes our understanding of the females’ biology and 

physiopathology. More research is needed to clarify which exact differences exist 

between males and females regarding tissues, laboratory animals and humans. 

 

1.1.4 Sex differences  

In the following chapter, examples are given of the distinct reaction of males and 

females (humans as well as rats) to drugs to get a first impression of the state of 

research about sex differences regarding addiction. Moreover, some of the 

underlying mechanisms for the described differences are approached. 

 

As the biological differences between genders/sexes are a contentious issue 

(Becker, McClellan, et al., 2016) it is important to emphasize that these findings 

should not be understood as hard-wired determinations (Becker, McClellan, & Reed, 

2017). Due to the plasticity of the brain they are – regarding humans – product of an 

interplay between biological and sociological/behavioral influences because addiction 

is a phenomenon at the interface between environment and biology (Becker et al., 

2017).  
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‘Recent clinical and preclinical studies suggest sexual dimorphisms in the entire 

disease dynamic of drug abuse and dependence’ (Egenrieder et al., 2020): although 

the prevalence of substance abuse is higher in men (Carvalho, Heilig, Perez, Probst, 

& Rehm, 2019), there is consistent evidence that female rats acquire drug self-

administration faster (Carroll & Lynch, 2016; Lynch & Carroll, 1999) and consume in 

some settings more drugs than males (Carroll & Lynch, 2016; Davis, Clinton, Akil, & 

Becker, 2008; Priddy et al., 2017). 

Also women, who are highly at risk to develop an addiction, escalate faster from first 

occasional use to compulsive drug intake (Becker et al., 2017; Bobzean, DeNobrega, 

& Perrotti, 2014; Davis et al., 2008). But this tendency is not reflected in the general 

US-American population (Becker et al., 2017; Keyes, Martins, Blanco, & Hasin, 

2010).  

Isolation influences rats of both sexes: socially housed animals show a lower intake 

of drugs than isolated ones (Raz & Berger, 2010; Westenbroek, Perry, Jagannathan, 

& Becker, 2017). Solely cocaine is an exception to this effect: the decreasing effect 

did only apply for females, not for males (Westenbroek, Perry, & Becker, 2013). 

 

During withdrawal from nicotine female rats show more adverse effects associated 

with lower dopamine levels in the nucleus accumbens (Carcoba, Flores, Natividad, & 

O'Dell, 2017). Women also show more symptoms of withdrawal than men (Hogle & 

Curtin, 2006) and they are less likely to look for treatment, but when they do, they 

have similar outcomes as men (Greenfield et al., 2007).  

Additionally, women have a higher relative risk excess for coronary heart disease, 

stroke (Hackshaw, Morris, Boniface, Tang, & Milenkovic, 2018), and lung cancer 

(Bjartveit & Tverdal, 2005), when they consume the same number of cigarettes as 

males. Nevertheless, the absolute risk is still higher in men (Bjartveit & Tverdal, 

2005). 

 

‘Similarities in animal and human studies, for instance on how patterns of drug 

acquisition and relapse differ between the sexes, suggest a common biological basis 

of sex differences in vulnerability to drug abuse’ (Egenrieder et al., 2020): the ovarian 

hormones, namely estrogen, appear to have an effect on the females’ brain (Becker, 

2016; Becker, Perry, & Westenbroek, 2012; Bobzean et al., 2014; Lacy, Strickland, 

Feinstein, Robinson, & Smith, 2016; Shams, Cossette, Shizgal, & Brake, 2017). It 
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increases dopaminergic transmission and its overflow in response to drugs in various 

brain regions, including the dorsal striatum (Shams, Sanio, Quinlan, & Brake, 2016), 

the ventral tegmental area, and the nucleus accumbens (Bobzean et al., 2014). 

Furthermore, its administration aggravates addiction-like behavior (Becker, 1990; 

Becker & Cha, 1989; Becker & Rudick, 1999; Hu, Crombag, Robinson, & Becker, 

2004). 

Most of the previously described differences between the sexes are provided by 

studies containing only a small number of animals per trial group and meta-analyses 

are still missing. Therefore, ‘a large-scale between-study analysis allows us (in this 

thesis) to evaluate the robustness of conclusions made by individual studies’ 

(Egenrieder et al., 2020) 

 

Summarized, it can be said, that there are sex differences as well as similarities in 

the different stages of addiction, although the current state of knowledge lacks big 

data approaches – as it will also be shown in the next chapter. Nevertheless, it is a 

major aim to understand the mechanisms in both sexes and to stress the importance 

of sex-specific approaches for optimal prevention and treatment strategies for 

addiction.  

 

 

1.2 Meta-analysis 

In the following passage, there is a short description of the strengths and 

weaknesses of meta-analyses in general, and their gaining importance in preclinical 

science over the course of the last years. Furthermore, specific factors of the present 

thesis are given. 

In the clinical field, there is a long history of performing systematic reviews and meta-

analyses and they have become a fundamental instrument for clinicians to imply 

scientific evidence into their daily practice (Gurevitch, Koricheva, Nakagawa, & 

Stewart, 2018).  

 

In preclinical research, meta-analyses have been rather seldom conducted for 

decades; but the recent years have shown many areas in which they can provide 

crucial results especially in basic biology.  
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There has been an explosion of significant and groundbreaking meta-analyses such 

as the many publications based on the genome-wide association study (GWAS): in 

silico approaches led to the identification of a variety of genetic markers for Crohn’s 

(Franke et al., 2010) or Alzheimer’s (Lambert et al., 2013) disease. Furthermore, 

regarding the Covid-19 pandemic as a highly topical issue, recently a potential 

involvement of the ABO blood type system in the development of respiratory failure 

has been reported (Ellinghaus et al., 2020). Thereby, big data science supplies a first 

indication on the pressing matter of risk factors for the development of severe 

disease progression. 

These scientific breakthroughs were made possible by the additional statistical power 

and had a massive impact on highly topical developments in the clinical field. 

 

With the PRISMA guidelines (preferred reporting items for systematic reviews and 

meta-analyses), which were published in 2009, a new standard has been set to 

ensure the quality and comparability of reviews and meta-analyses. The work 

process is structured in four phases: ‘identification’, ‘screening’, ‘eligibility’ and 

‘inclusion’ and can be evaluated by means of a 27-item checklist (Moher, Liberati, 

Tetzlaff, & Altman, 2010). PRISMA also served as a guideline for this present work.  

 

Furthermore, there is increasing evidence that single preclinical studies often lack 

reproducibility, and are therefore not always as reliable as the scientific world used to 

assume (Arrowsmith, 2011; Begley & Ioannidis, 2015; Peers, Ceuppens, & Harbron, 

2012; Prinz, Schlange, & Asadullah, 2011).  

This problem was already addressed by Begley and Ellis in 2012 in Nature: they 

demanded a raise in the quality of basic research, by ‘establishing large cancer cell-

line collections with easy investigator access’ (Begley & Ellis, 2012). In this way, they 

promoted another data basis for further meta-analyses in the preclinical field.  

 

In general, big data provides a whole new spectrum of opportunities for modern life 

sciences in the online age. As pointed out in the corresponding publication on this 

thesis ‘data derived from a meta-analysis are useful for textbook knowledge, provide 

better comparability of data given by the generalization of already existing data (and) 

should be seen within the framework of the 3R principle of animal experimentation’ 

(Egenrieder et al., 2020).  Since the sample size in animal studies is generally rather 
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small, they often allow only limited conclusions (Vesterinen et al., 2014). Performing 

a meta-analysis is a valuable tool in preventing unnecessary repeated testing and 

further suffering and therefore spares animal lives (Vesterinen et al., 2014).  

Another important indication is when different experiments lead to contradictory 

results and a meta-analysis clarified the situation.  

Furthermore, regarding sex differences, the available data are ‘based on within-study 

statistics with relatively small numbers of animals and a global comparison of male-

female findings of different studies is still missing’ (Egenrieder et al., 2020). Thereby, 

the topic of this thesis is predisposed to be treated in the form of a meta-analysis, 

since there are few studies available with female subjects. 

 

‘In this study, we use an established (Noori, Fliegel, Brand, & Spanagel, 2012; Noori 

et al., 2018) hypothesis-free, global approach to statistically compare two large 

bodies of evidence’ (Egenrieder et al., 2020). The method used was already applied 

before by the work group at the Institute of Psychopharmacology of the Central 

Institute of Mental Health (Medical Faculty Mannheim/Heidelberg University) (Brand, 

Fliegel, Spanagel, & Noori, 2013; Fliegel, Brand, Spanagel, & Noori, 2013; Fritze, 

Spanagel, & Noori, 2017; Hirth et al., 2016; Staudenmaier, 2017).  

Owing to this fact, these previous results have a similar structure and can be 

gathered, pooled, or compared with new results of meta-analyses – as it was done in 

this study. They may also contribute to new results in a greater context in the future 

(Sena, Currie, McCann, Macleod, & Howells, 2014).  

 

 

1.3 In vivo microdialysis 

As microdialysis is used by the papers that are subject to this thesis, in the next 

chapters there will be an overview of the background and history, the single steps of 

conducting the experiment, and some advantages and disadvantages of the 

procedure. 

 

In general, microdialysis is a minimal invasive method to measure changes of 

chemical agents in the extracellular fluid of different tissues and organs over time. It 
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is an in vivo procedure that can be conducted in awake and freely moving animals 

e.g. during drug administration. 

 

 

Figure 2: Experimental setup of the microdialysis procedure 

 

In brief, a dialysis probe is placed in the rat's brain and perfused continuously with a 

fluid with defined contents. At its tip it has a semipermeable membrane. Due to the 

concentration gradient hormones, neurotransmitters, or electrolytes of the 

extracellular fluid can freely diffuse through this membrane into the solution of the 
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probe. Samples are taken at defined time intervals and analyzed for the content of 

interest to show its time course. For an overview of the experimental setup see 

Figure 2. 

 

1.3.1 Background and history 

In this paragraph, the subject is the emergence of the idea of microdialysis and its 

development in the last decades. 

 

Monitoring neurochemical processes in vivo has been a challenge for scientists: On 

the one hand, the aim is an insight into the brain’s tissue. But on the other hand, a 

maximum of integrity is needed, to imitate natural conditions for valid results. 

Almost fifty years ago, Professor Urban Ungerstedt of the Karolinska Institute in 

Stockholm had the thought of mimicking a blood vessel: he built a dialysis catheter 

with a semipermeable membrane at its tip (Ungerstedt & Hallstrom, 1987; Ungerstedt 

& Pycock, 1974). This was the beginning of microdialysis and enabled the monitoring 

of monoamines in vivo with a reduced damage to the brain’s tissue. Thus, it was 

possible to observe the changes of constituents in one subject.  

Since then, this technique was improved and performed in a variety of studies, 

tissues, and animals. The majority had rats as its subject and focused on the 

changes of monoamines in the brain (Chefer, Thompson, Zapata, & Shippenberg, 

2009). Moreover, during the last three decades, it was even adopted in clinical 

practice: it is used as a monitor in neurocritical care for the treatment of patients with 

acute brain injury (Hutchinson et al., 2015). 

 

1.3.2 Preparation and surgery 

Before the microdialysis experiment can be conducted, the animals need to undergo 

surgery. This passage describes each step from the preparation until the post-

operative care. 

 

Firstly, the rat is usually anesthetized and fixed in a stereotaxic apparatus to avoid 

the displacement of the head. The skin is shaved and cleaned, and a borehole is 
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drilled into the skull – either unilateral or, for some experiments, on both sides of the 

rat's brain. A guide cannula is placed into the hole aiming at the brain region of 

interest for later insertion of the microdialysis probe. The correct location (in mm, 

relative to the bregma), and angle of the cannula can be achieved by means of an 

atlas of the stereotaxic coordinates of the rat brain e.g. from Paxinos and Watson 

(Paxinos & Watson, 2007). The cannula is fixed to the scull with glue and covered 

with a plastic guard.  

Sometimes, if needed, other surgical procedures are done during surgery: e.g. 

ovariectomy, castration, implantation of a silastic tube containing estradiol, or 

cannulation for following i.v.-drug-application.  

In some experiments, a further cannula is implanted into another brain region to be 

able to administer drugs locally or to take measurements in different regions 

simultaneously. The animals are allowed to recover from surgery for a certain period 

of time and are sometimes treated with antibiotics to prevent infection. 

 

1.3.3 Microdialysis procedure and analysis 

This section contains a detailed explanation of the microdialysis experiment with its 

variable properties, and a short overview of the analysis of the obtained specimen.  

 

Firstly, the microdialysis probe is inserted into the guide cannula – usually under a 

short anesthesia to avoid pain and stress for the animal.  

There are probes at different lengths and diameters that can be chosen. The inlet 

and the outlet tubing of the microdialysis probe are held by a tether that can swing 

over the testing chamber, allowing the animal to freely move (if the rat is not 

anesthetized). Normally, the animals are given some time to acclimatize to the probe 

insertion and the new environment. Food and water may be available. 

The tip of the probe extends some millimeters beyond the guide cannula into the 

brain region of interest. In the probe’s interior, there is a thin tubing whose inlet is 

connected to an infusion pump that continuously drives fluid through it. For an 

enlarged view of the tip of the probe see Figure 3. The flow rate and the perfusion 

fluid may be freely chosen, e.g. some microliters per minute and – in most of the 

experiments – Ringer’s solution, or artificial cerebrospinal fluid (aCSF) with a defined 

content of constituents.  
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Figure 3: Schematic representation of the functioning of a microdialysis probe. DA = 
dopamine molecules. 

 

At the ending of the tubing the fluid changes direction and flows back at the outer 

side of the probe. While passing the semipermeable membrane chemical agents can 

diffuse freely into the perfusate. The membrane has a specific molecular weight cut 

off (in Dalton) that may be chosen suitable for the analyte of interest. At the probes’ 

outlet, samples of dialysate can be collected in specific time intervals into Eppendorf 

tubes. A distinct period – usually some hours – is set as a washout period allowing 

the concentration gradient to find an equilibrium.  
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At the beginning of the experiment, before the administration of the drug, some 

samples are taken to get an average basal value. This basal value represents 100 % 

and serves as a reference for the peak percentage baseline values that can be 

obtained after drug administration. Usually the sample time lies between five and 

thirty minutes. In some experiments simultaneous behavioral testing is conducted. 

The obtained samples are immediately frozen – e.g. on dry ice – and analyzed 

afterwards. The concentration of the transmitter of interest is mostly detected via high 

performance liquid chromatography with electrochemical detection (HPLC-EC).  

At the end of the experiment, rats are euthanized, and some microliter of dye can be 

injected into the probe to verify the correct placement in the brain region subjected. 

There are many settings that influence the accuracy and the outcome of the 

microdialysis experiments: e.g. the flow rate, the perfusate, its calcium concentration, 

the sample time, or if the rat is anesthetized or awake. 

 

1.3.4 Advantages and disadvantages of microdialysis 

As microdialysis already exists since 1974, it is well-established and advantages as 

well as drawbacks of the procedure are well-known and will be shortly discussed in 

this section. 

 

Compared to other techniques, microdialysis has a limited time resolution. Since it is 

an invasive procedure, it changes the direct environment in the tissue: the damage 

may cause inflammatory processes, or impair the blood-brain barrier (Plock & Kloft, 

2005). Depending on the composition of the perfusion fluid, the relation of the 

chemical agents surrounding the probe may be altered. Anesthesia and surgery are 

needed, and the probe is a foreign body placed in a wound with consequences for 

possible group housing.  

Another problem is the exact quantification of the extraction fraction i.e. the relation 

between the concentration reached in the fluid and the concentration in the 

interstitium. 

 

Some of the advantages have been mentioned earlier: the variety of tissues, 

compounds and species that the microdialysis procedure can be used for, the fact 
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that the samples are taken directly at the region of interest, the opportunity of 

simultaneous measurement in different brain regions, or of directly infusing drugs. 

 

 

1.4 Idea and objective of this study 

Humans – like other mammals – tend to consume inebriating substances. Therefore, 

drug use and related disorders are worldwide phenomena with many consequences 

– not only for the individual, but also concerning economic and health-care issues.  

 

The prevalence of drug-related disorders is drastically different regarding men and 

women: males consume drugs more often and in larger amounts than females, and 

notably have higher rates of drug related disorders. Nevertheless, females seem to 

be more prone to addiction in some phases of the development of the disease.  

The biological and/or sociocultural mechanisms that are responsible for this 

contradiction, have still not been fully clarified. Nevertheless, some of the 

neurochemical reactions are known to be different in male and female laboratory 

animals and one of the identified underlying mechanisms appears to be the cycle – 

notably the altering level of estrogen – influencing the female’s brain and 

neurotransmission. 

Despite these sex differences, women and female animals were – and still are – 

underrepresented as subjects in research, although efforts have been made to close 

this sex gap. It used to originate in various reasons: partly female subjects were 

ignored for fear that they are more variable; partly because of the assumption that the 

results for males equally account for females. But none of these contradictory 

assumptions were well-founded. 

In vivo microdialysis is a well-established method to detect neurotransmitter changes 

in rats during drug administration. Most of the single microdialysis experiments have 

small groups (e.g. about 6 animals), and therefore little generalizable informative 

value.  

 

Meta-analyses are more and more conducted in basic research and have become a 

fundamental mean to gain groundbreaking knowledge through their additional 

statistical power – in particular in the field of animal studies with small trial groups. 
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As described in the corresponding paper on this thesis, ‘we used a well-established, 

hypothesis-free, global approach in order to statistically compare two large bodies of 

evidence, namely findings from all publications reporting on dopamine concentrations 

in the nucleus accumbens and the caudate putamen of male and/or female rats’ 

(Egenrieder et al., 2020). Therefore, systematic data mining on PubMed, the online 

portal of the National Library of Medicine, was performed, focusing on studies that 

used in vivo microdialysis and dealt with the acute administration of drugs of abuse 

(alcohol, amphetamine, cocaine, morphine, nicotine and tetrahydrocannabinol).  

Furthermore, this thesis aims to provide an overview of the microdialysis studies that 

include female subjects and to investigate whether they monitor and mention the 

state of the estrous cycle.  

 

The global purpose of this thesis is to set a framework for future research by 

providing average values for male and female rats and an analysis of the sex 

differences and/or similarities in the reaction to drugs of abuse.  

Thereby the present work intends to diminish the unknown factors that were reason 

for the ignorance of female rats in both, clinical and preclinical science, and in either 

way – nonmatter if differences or similarities are found – raise the pressure to include 

humans, animals and cell lines of both sexes. 

 

 
This work uses a meta-analysis approach to establish, whether microdialysis studies 

robustly indicate sex differences or similarities in striatal dopamine levels in rats after 

acute drug administration 
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2 METHODS 

2.1 Choice of the neurotransmitter dopamine and two brain regions 

The effects of drugs are mediated over various brain regions and neurotransmitters 

(Koob & Volkow, 2010). The role that the caudate putamen, the nucleus accumbens 

and dopamine play in this neuronal network is described in the following passages, in 

order to show why they are subject to the present thesis. 

 

2.1.1 The neurotransmitter dopamine 

The topics of this section are the effect and the occurrence of dopamine in the brain 

and a description of its main pathways. 

 

Dopamine is, like noradrenalin, a catecholamine that has various effects on the body 

and the brain: it contributes in motivation and emotion, motor control (Bjorklund & 

Dunnett, 2007), and memory (Hefco et al., 2003). Furthermore, it is the key 

neurotransmitter for reward, and its efflux is sensitized by drugs of abuse (Berridge, 

2007).  

The psychostimulants cocaine and amphetamine even take their main effect in an 

increase of dopamine (Koob & Volkow, 2010). This mechanism is also crucial for the 

other three drugs of abuse of this thesis that are described in the next chapter (Di 

Chiara & Imperato, 1988), even though there are also other neurotransmitters 

involved (Koob & Volkow, 2010).  

 

Although dopaminergic transmission can be found in a variety of brain regions (Noori, 

Spanagel, & Hansson, 2012), there are three main pathways that can be 

distinguished, anatomically and functionally: the nigrostriatal, the mesolimbic, and the 

mesocortical system (Bjorklund & Dunnett, 2007). In this thesis the focus lies on the 

caudate putamen and the nucleus accumbens because they are part of two of them: 

the nigrostriatal and the mesolimbic pathway. Both mediate the acutely rewarding 

and the habit-forming effects of drugs (Wise, 2009). 
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2.1.2 Striatum, caudate putamen and nucleus accumbens 

In the following passage, a short overview of the striatum – that means the caudate 

putamen and the nucleus accumbens – is given, focusing on its function and 

corresponding afferents and efferences. Moreover, the anatomical nomenclature is 

clarified and a distinction between these brain regions is conducted in general, and 

for the present work in particular.  

 

The striatum is part of the basal ganglia and plays a role in motor activity and 

learning processes (Kreitzer & Malenka, 2008). It is involved in the cortico-striatal-

thalamic circuit which is associated with craving and obsessive-compulsive behavior 

(Koob & Le Moal, 2001). It can be functionally separated into a ventral and a dorsal 

part. In rodents the caudate putamen builds the dorsal part whereas the ventral 

striatum consists of the nucleus accumbens and the olfactory tubercle.  

The caudate putamen, or the dorsal striatum, receives dopaminergic afferents from 

the substantia nigra and the ventral tegmental area and sends GABAergic and 

cholinergic efferences to the nucleus accumbens (Noori, Spanagel, et al., 2012). It is 

merely activated in the compulsive state of addiction than in the acute rewarding 

phase of occasional consumption (Koob & Volkow, 2010).  

 

As it was also described in the corresponding publication (Egenrieder et al., 2020), ‘a 

common issue of pre-clinical studies is the inconsistent use of anatomical 

nomenclature. While a few studies report accurate coordinates for probe placement, 

the designation of the targeted brain area often differs.’  

Therefore, Noori et al. developed a unified nomenclature using a cluster analysis  

(Noori et al., 2017; Noori, Spanagel, et al., 2012). According to the terminology 

established, in this thesis the following regions will be considered as caudate 

putamen: dorsal striatum, striatum, neostriatum. The ventral striatum and the nucleus 

accumbens shell and core will be grouped as nucleus accumbens.  

Nevertheless, the historical inconsistent use is also reflected in this thesis: regarding 

the keywords for the PubMed search, the term ‘striatum’ is still present, as it used to 

be utilized synonymously with the caudate putamen. But, apart of that, this thesis will 

use ‘striatum’ for the entity of dorsal and ventral striatum (equaling caudate putamen 
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and nucleus accumbens) and ‘caudate putamen’ will be used meaning the dorsal 

striatum only. 

 

According to the striatum and caudate putamen, the following passage deals with the 

function, subdivisions, afferents and efferences of the nucleus accumbens. 

As mentioned before, the nucleus accumbens lies in the ventral striatum and can be 

divided into an inner core and an outer shell. It is functionally part of the mesolimbic 

system that is also referred to as the ‘reward pathway’: it originates in the ventral 

tegmental area that sends dopaminergic transmission to the nucleus accumbens 

(Koob & Le Moal, 2001; Noori, Spanagel, et al., 2012) and the olfactory tubercle.  

This seems to be the correlate to the concept of incentive salience i.e. directly 

rewarding effects of drugs during the first state of binge and intoxication (Berridge, 

2007; Koob & Volkow, 2010; Spanagel & Weiss, 1999). 

 

Like the caudate putamen, the nucleus accumbens also receives dopaminergic 

afferents from the substantia nigra and the ventral tegmental area and sends 

GABAergic and cholinergic efferences to the caudate putamen (Noori, Spanagel, et 

al., 2012). 

 

 

2.2 Choice of drugs of abuse 

In the following, five drugs of abuse are investigated exemplarily representing the 

wide field of consumed and abused psychotropic substances.  

 

Alcohol and nicotine were included because of the high prevalence of their 

consumption. For the same reason cannabis was included initially as a sixth drug, but 

no eligible microdialysis studies could be found. Therefore, it will not be further 

mentioned.  

Morphine is the archetype opioid and, in this thesis, the only representative for the 

crucial group of legally prescribed drugs that is in some countries responsible for a 

growing number of addicts, e.g. regarding the opioid crisis in the United States. 

Amphetamine and cocaine were chosen as two relatively widely consumed 

stimulants. 
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In the following chapters, the definition and relevance, the origin or production 

process, and the effect on striatal dopamine of the five drugs will be shortly 

discussed, starting with those with the most harm done worldwide. 

 

2.2.1 Nicotine 

Nicotine is an alkaloid produced by many plants of the nightshades family to avert 

herbivores. It is the main psychotropic substance of tobacco that is thought to be 

motivational for the initiation and maintenance of smoking (Fiore, Smith, Jorenby, & 

Baker, 1994).  

 

Tobacco is the deadliest drug worldwide (Forouzanfar, 2016), due to its negative 

effects including a variety of different cancers, or diseases of the respiratory and 

cardiovascular system. In 2016 a share of 15.1 % of deaths in the EU were attributed 

to tobacco – compared to 7.7 % attributed to alcohol and 1.0 % to all illicit drugs 

(Anderson et al., 2018). Recent findings show that even one to five cigarettes a day 

lead to a considerable increase of the relative risk for ischemic heart disease and 

dying of any other cause (Bjartveit & Tverdal, 2005). 

Nicotine passes the blood brain barrier and reaches the brain within seconds after 

smoking (World Health Organization, 1994). It is an agonist to nicotinic acetylcholine 

receptors that are even named due to this fact (Koob & Le Moal, 2001).  

The rewarding effect of nicotine is mediated by an increased dopamine transmission 

from the ventral tegmental area to the striatum (Koob & Le Moal, 2001). Moreover, 

there are also other neurotransmitter systems influencing the rewarding effect, and 

there seems to be a long-lasting increase of the sensitivity for following rewards 

(Kenny & Markou, 2006). 

 

Due to the emerging phenomenon of electronic cigarettes, the question of the 

harmfulness of nicotine itself, without the side effects of smoking, gains more 

relevance.  
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2.2.2 Alcohol 

The term alcohol usually refers to ethanol as the psychoactive ingredient in many 

kinds of beverages that is produced by fermentation of sugars by yeasts. In 

chemistry, the term describes an organic compound that carries at least one hydroxyl 

functional group bound to a carbon atom. It therefore includes – in its true meaning – 

a variety of alcohols (propanol, methanol etc.). Nevertheless, in this work, the term 

will be used meaning ethanol (C2H5OH). It is one of the oldest and most widely used 

drugs worldwide (World Health Organization & Unit, 2014). 

 

Because of its toxicity and broad acceptance in many cultures, it is the drug that 

causes almost as much harm as nicotine: in 2012 3.3 million deaths worldwide were 

caused by alcohol, meaning 7.9 % of the male and 4 % of the female population died 

because of its adverse effects (World Health Organization & Unit, 2014). Or, 

regarding the burden of disease, 139 million DALYs (disability-adjusted life years) 

were lost due to alcohol drinking, most of them for the European region (World Health 

Organization & Unit, 2014).  

There is a considerable amount of diseases associated with alcohol consumption that 

range from acute intoxication to alcohol-induced brain damage, cirrhosis or alcoholic 

cardiomyopathy, or the fetal alcohol syndrome after alcohol consumption during 

pregnancy.  

Recent results show that there is no threshold for alcohol being toxic, but rather an 

increasing risk of harm ‘with the level of exposure’ (Anderson et al., 2018). 

 

Alcohol interacts with various neurotransmitter systems in the brain. According to 

Koob et al. dopamine plays an important role for the acute effects of occasional 

consumption, while other neurotransmitter systems also seem involved in its 

reinforcing effect (Koob & Le Moal, 2001).  

Acute alcohol consumption increases the dopamine concentration, preferentially in 

the nucleus accumbens and also in the caudate putamen (Di Chiara & Imperato, 

1988). 
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2.2.3 Morphine 

Morphine is the prototypical alkaloid of the opium poppy. Opioids were used long 

before in medicine as analgesics: first proofs exist from the 4th century b.c. (Köhler, 

2008). Morphine is produced from the poppy seeds and was first isolated in 1804 by 

the German pharmacist Friedrich Wilhelm Sertürner (1783-1841) (Geschwinde, 

2013).  

It is an agonist to the µ-receptor, where it takes its main medical effect. Cells with this 

receptor are concentrated at several locations in the central nervous system (CNS) 

e.g. in the limbic system, the corpus striatum or the spine (Geschwinde, 2013).  

 

Morphine is also produced in small amounts by the body itself. Therefore, it belongs, 

among others, to the endorphins, the group of endogen produced opioid 

neuropeptides. They inhibit pain in physically challenging situations, like during long 

runs (‘runner’s high’) and are involved in states of pleasure during laughter or food 

intake (Chaudhry & Bhimji, 2018). 

Both, acute and chronic morphine administration increase dopamine in the nucleus 

accumbens (Pothos, Rada, Mark, & Hoebel, 1991) and, to a lesser extent, in the 

dorsal striatum (Di Chiara & Imperato, 1988).  

 

2.2.4 Amphetamine 

The term is contracted from α-methylphenethylamine and refers to a group of indirect 

sympathomimetic stimulants. Amphetamine exists in its two enantiomers, the less 

potent levoamphetamine (l-amphetamine) and the more potent dextroamphetamine 

(d-amphetamine). Furthermore, there is the racemase of both (d+l-amphetamine, see 

Figure 4).  

In most of the experiments with rats d-amphetamine is administered. Therefore, for 

the sake of clarity, in the following tables the term amphetamine – if not further 

specified – refers to the more frequently used dextro-enantiomer.  For the rare cases 

when the rats received the racemase, ‘d+l’ will be added.  

There were no studies included that used levoamphetamine. Substituted 

amphetamines as methamphetamine or related substances like methylphenidate 

were not included in this thesis. 
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Figure 4: The two enantiomers of the amphetamine molecule: dextroamphetamine top, 
levoamphetamine below 

 

The first amphetamine was synthetized in 1887 by the Romanian chemist Lazăr 

Edeleano (Edeleano, 1887). Today, amphetamines are in some countries prescribed 

for attention deficit hyperactivity disorder (ADHD) and narcolepsy (Heal, Smith, 

Gosden, & Nutt, 2013). They are as well misused recreationally, or to improve 

cognitive performance (Teter, McCabe, LaGrange, Cranford, & Boyd, 2006). 

Amphetamine acts as an indirect dopamine agonist (Wise, 2009) and causes an 

increase of dopamine in the striatum (Di Chiara & Imperato, 1988; Sharp, 

Zetterstrom, Ljungberg, & Ungerstedt, 1987). 

 

2.2.5 Cocaine 

Cocaine, like amphetamine, is a potent central nervous system stimulant. It is 

extracted from the coca plant that is preferentially grown at the mountain ranges of 

South America (Geschwinde, 2013).  

Seen historically, it was used in ceremonial contexts and for painful medical 

procedures, like trephinations, e.g. in present-day Peru (Goldstein, DesLauriers, & 

Burda, 2009). Until today, the leaves of the coca plant are chewed or prepared as a 

tea to cope with altitude or physical work.  
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The Austrian explorer Karl von Scherzer first brought the leaves to Europe in 1850 

(Von Scherzer, 1865), and in the following decades it was established as a local 

anesthetic (Ruetsch, Boni, & Borgeat, 2001). Besides that, it was used to treat 

morphine dependence in accordance with the recommendation of Sigmund Freud 

(Doneith, 2008) – presumably with dubious success, from a more modern point of 

view. In the 1900th century it was sold without restriction for various indications and 

was a compound in the original receipt for Coca Cola (Goldstein et al., 2009) and 

therefore also used recreationally.  

 

Acute cocaine administration dose-dependently increases dopamine in the nucleus 

accumbens (Frank, Krumm, & Spanagel, 2008) and the caudate putamen (Church, 

Justice, & Byrd, 1987; Di Chiara & Imperato, 1988). This increase is, in relation to the 

basal values, higher in the nucleus accumbens than in the caudate putamen (Di 

Chiara & Imperato, 1988). 

 

 

2.3 Data-Mining 

This section covers the methods applied on the online search on PubMed, the criteria 

for in- or exclusion, and the process of structured extraction of parameters from the 

selected publications. The methods used were already described in the 

corresponding publication on this thesis (Egenrieder et al., 2020) and may also be 

viewed there. 

 

2.3.1 Search methods 

In this section, the method of the literature search on PubMed and the sources of the 

preexisting datasets that were included are presented. 

 

As previously reported (Brand et al., 2013; Fliegel et al., 2013; Fritze et al., 2017; 

Hirth et al., 2016; Noori, Fliegel, et al., 2012; Noori et al., 2018; Staudenmaier, 2017), 

and also described in the corresponding paper on this thesis (Egenrieder et al., 

2020), a robust, standardized workflow for data-mining was developed and 
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established by the workgroup. ‘This approach allows an accurate extraction of a 

maximum amount of data with a minimized chance of missing critical information and 

was therefore applied’ (Egenrieder et al., 2020). 

 

A systematic literature search was conducted on PubMed, the free, online archive of 

biomedical and life sciences journals at the U.S. National Institutes of Health's 

National Library of Medicine (https://www.ncbi.nlm.nih.gov/pubmed/). PubMed 

provides more than 28 million citations that were published since 1948. The search 

query included all articles that were released until the 31.03.2018, without any filter or 

preference for authors or journals.  

The following combinations of keywords were applied: rat (AND) microdialysis (AND) 

(female (OR) sex (OR) gender) (AND (striatum (OR) nucleus accumbens) (AND) 

(alcohol (OR) ethanol (OR) (d,l)-amphetamine (OR) cocaine (OR) morphine (OR) 

nicotine (OR) tetrahydrocannabinol (OR) THC). For details see figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Keyword combinations for the specific search for female animals: above the line.  
Search for male rats, administered with cocaine: below the line. 

 

The same combination of keywords – apart from (female (OR) sex (OR) gender) and 

any other drug than cocaine – was applied to identify studies that investigated the 

administration of cocaine to male animals. Each dose that was found during this 

query was included in the further analysis, regardless if there was a matching female 

group.  

         alcohol   

         amphetamine 

female OR sex OR gender cocaine 

         morphine 

         nicotine 

microdialysis +            ___________________ ___________________________________     

      rat + 

       nucleus accumbens 

   dopamine + cocaine   

         striatum 

 
Figure 5: Keyword combinations for the conducted PubMed search 
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The results for male animals administered with the other drugs of abuse could be 

received by preexisting meta-analyses. Data for amphetamine were kindly provided 

by Schabel et al. and for morphine by Gruhlke et al., respectively (neither published 

yet). Ethanol data were received from Brand et al. (Brand et al., 2013) and for 

nicotine from Staudenmaier et al. (Staudenmaier, 2017). The corresponding dosages 

of the drugs were extracted, matched and gathered into groups with those that were 

found in the female query.  

 

The results on PubMed before any further selection were a total of 320 publications 

for female animals and 454 for male rats that were administered with cocaine. Apart 

of that the excerpted results of 187 studies were received from meta-analyses of the 

working group. 

 

2.3.2 Selection criteria 

This passage is about the criteria that were used to in- or exclude the 

papers/experiments found on PubMed by means of the search query described 

above. The method used was already described in the corresponding publication on 

this thesis (Egenrieder et al., 2020) and may also be viewed there. 

 

Following the robust workflow, a well-defined list of in- and exclusion criteria was 

applied in order to maximize consistency of the included datasets: the focus was on 

microdialysis studies that contained a peak percentage baseline value of dopamine 

after a single acute administration of the respective drug of interest, i.e. alcohol, 

amphetamine, cocaine, morphine, or nicotine. Experiments with all other drugs were 

excluded. The measurements had to take place in the striatal complex, meaning the 

caudate putamen and the nucleus accumbens. Every other brain region examined 

was excluded. 

Publications in English with rats as subjects were included. Papers in any other 

language or with primates, mice or other animals were not further taken into 

consideration.  

All articles like reviews, comments, or meta-analyses without new experimental 

results were ignored, and only original research articles were further analyzed, 
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following the guidelines for meta-analyses of pre-clinical studies (Vesterinen et al., 

2014). 

 

The animals had to be drug naïve without any co- or pretreatment except for 

hormonal modifications like progesterone, estrogen, or testosterone. Therefore, 

studies that contained the concurrent administration of other drugs were excluded as 

well as those with animals that were trained to self-administer substances before the 

microdialysis experiment.  

Furthermore, only in vivo microdialysis experiments could be taken into 

consideration, in vitro settings were not subject to this thesis. 

Excessive other treatments like stress by isolation, prolonged food restriction, or 

changed environmental settings (e.g. altered temperature) were excluded likewise 

and were not considered further in the analysis. Moreover, animals that underwent 

surgery like intracerebral lesions, or were genetically modified, were excluded. 

Because the keyword combination was aiming at female animals, all experiments 

that subjected only male animals were excluded – except for those receiving cocaine, 

(as there were no pre-existing data available for this subgroup, see also the 

described search methods). 

 

2.3.3 Data collection 

In this passage, the variables that were extracted from the included papers for further 

analysis are listed. The method used was already described in the corresponding 

publication on this thesis (Egenrieder et al., 2020) and may also be viewed there. 

 

As previously reported (Brand et al., 2013; Fliegel et al., 2013; Fritze et al., 2017; 

Hirth et al., 2016; Noori, Fliegel, et al., 2012), the standardized workflow that was 

used included three categories of variables that were extracted (if available) from the 

included studies: variables of the experimental setup (i.e. microdialysis parameters), 

variables of the laboratory animals and variables of the outcome. This strictly defined 

process of data collection ensured the comparability of the dataset for female animals 

with those obtained from other meta-analyses. See table 1 for an overview of the 

three categories and the extracted variables. 
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The following values were extracted regarding the microdialysis experimental setup: 

the brain region that was examined (caudate putamen/nucleus accumbens); the 

administered drug (alcohol, amphetamine, cocaine, morphine, nicotine) and dose 

(mg/kg, g/kg, µM for local administration) and the route of administration (i.p., i.v., 

s.c., locally, nasally); time of the sampling rate (min), i.e. for how many minutes each 

sample was collected and thereby representing the temporal resolution of the 

experiment; the perfusion rate (µl/min); the perfusion fluid (Ringer’s solution, aCSF or 

other fluids) and its calcium concentration (mM); and lastly the length (mm) and the 

outer diameter of the active microdialysis membrane. 

 

Table 1: Categories and extracted variables 

Category Extracted variables 

Experimental 

procedure 

• brain region  

• drug name and applied dose 
• route of drug administration 

• sampling rate (min) 

• perfusion rate (μl/min)  

• perfusion fluide (e.g. Ringer solution)  

• calcium concentration in perfusate (mM)  

• length (mm), outer diameter of microdialysis membranes 

Biological 

variables 

• age or weight 

• sex 

• estrous cycle  

• ovariectomy or hormonal pre-treatment  

• rat strain 

• state of consciousness (anesthetic agent, route of administration 
and dosage) 

• housing and details of housing (size of group if group housed) 

• number of animals used in each experiment 

Outcome • peak % compared to baseline 

• the time at which the maximum occurred  

 

The second category included all biological variables, namely the traits of the 

laboratory animals: the age  (or, if not available, the rats’ weight that was 

subsequently used to extrapolate the age); the sex (female/male); the estrous cycle 

(mentioned/not mentioned) and, if available, the exact state (proestrous, estrous, 

metestrous, and diestrous); if the rat was ovariectomized or hormonal pretreated 

(estrogen, progesterone, testosterone when males were included); the strain (e.g. 
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Sprague Dawley, Wistar etc.); the state of consciousness (awake/anesthetized and if 

so: agent, dose and route of administration of anesthetic); housing conditions 

(individually/group housed and if so: number and traits of other animals in group 

housing); and the number of animals used in each experiment. 

The third category covered the outcome parameters of the experiments: the 

maximum drug dose effect, given as peak percentage value compared to its 

corresponding baseline before drug administration, and the time at which this 

maximum occurred. If the peak was not given in a numerical manner, the graphics 

were analyzed, and the peak percentage baseline value was calculated. 

 

A standardized panel was used to collect as many variables as possible out of each 

publication. If the authors added a link to another experimental setup for further 

information, instead of listing all the variables, the referred publication was screened 

for further information. 

 

 

2.4 Statistical analysis 

This paragraph covers the description of the presentation of the PubMed findings and 

the statistical analysis of the included datasets. The statistical method used was 

already described in the corresponding publication on this thesis (Egenrieder et al., 

2020) and can likewise be found there. 

The method performed was used before by the work group and served as an 

example for this thesis. For details see again Brand et al. (2013), Fliegel et al. (2013) 

Staudenmaier et al. (2017), Fritze et al. (2017) and Noori et al. (Brand et al., 2013; 

Fliegel et al., 2013; Fritze et al., 2017; Noori et al., 2018; Staudenmaier, 2017). 

 

Firstly, a global analysis of the conducted PubMed query was done by presenting the 

number of the included and excluded papers. Also, the animals obtained per drug 

were recorded and the distribution of their different properties (sex, strain, age, state 

of consciousness and route of administration of the drug) are presented in percent.  

If possible, averages, standard error of the mean, median, minimum and maximum 

were calculated for the given parameters (e.g. microdialysis parameters like outer 

diameter and length of active membrane).  
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The peak percentage baseline value of dopamine was set as the primary outcome of 

this thesis, while the variety of other variables was defined as potential effect 

modifiers. This includes all the traits collected in the categories ‘biological’ and 

‘experimental’ variables, like the animals' weight, sex, age, or the experimental 

settings like the flow rate, the perfusion fluid etc. 

As previously reported (Noori et al., 2018), a weighted meta-analyses of the 

maximum drug effects was conducted with respect to the effect modifiers. Thereby 

the dataset was subdivided into groups, e.g. awake versus anesthetized (for a 

specific drug, brain region and dose, respectively). Subsequently, an analysis of 

variance (ANOVA) was conducted to detect statistically significant differences in the 

dopamine levels of the subgroups with different traits. The global level of significance 

was chosen as α = 0.05.  

If multiple testing was needed, Bonferroni correction was used to minimize the risk of 

a type I error. If there were significant differences in the peak percentage baseline 

values between subgroups, the weighted averages were calculated and presented 

separately with their respective standard error of the mean (SEM).  

 

A correlation analysis was conducted to further examine the dopamine changes after 

the administration of the five drugs. Pearson's correlation coefficient was used to 

detect dose-dependent relationships.  

Calculation was done with IBM SPSS Statistics 24 and the diagrams were created 

with Microsoft Excel® for office 365 MSO. The results are organized in tables and 

diagrams. The results of meta-analyses are often presented in forest plots (Gurevitch 

et al., 2018), a tool that was used also in this work. 

 

Although the focus of the present work was on the parameters mentioned above, the 

context of the whole experiment was kept in mind: the results used were always 

averages of an experimental group, containing several animals, or even an average 

of several experimental groups. Thus, the data refer as well to the whole setting of 

the experiment as this was performed and described before (Brand et al., 2013; 

Fliegel et al.; Staudenmaier). 
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3 RESULTS 

3.1 Global statistics 

This section focuses on the origin and the properties of the included studies and 

animals and the distribution of the settings of the included microdialysis experiments.  

The drug specific effects and the comparison of the peak percentage baseline values 

will be described in a separate chapter for each drug respectively. 

 

In sum, this thesis gathered 45 publications containing female rats (n = 842) in order 

to statistically compare them with data from 6402 male rats. A total amount of 459 

studies with 7244 animals were included.  

 

3.1.1 Origin of the included datasets 

As described earlier, the datasets were obtained partly by a conducted PubMed 

search, partly by pre-existing meta-analyses about male animals. In the following 

passages the exact origin of the datasets is shown, and further details are given for 

both: the datasets received by other meta-analyses and the exact results of the 

PubMed search query.  

 

For a list of the total numbers of studies and animals per source see table 2, the 

percentages for the included animals per source may be found in figure 6. 

 

Table 2: Total amount of studies and animals per source 

Source of data Number of studies Number of animals

PubMed results for female animals 45 1074

PubMed results for males/cocaine 262 3805

Preexisting data for males 187 2365

Sum of studies in analysis
459                       

(without duplicates)
7244

 

 



Results 

 

40 

 

 

Figure 6: Included animals (n = 7244) in regard of the three different sources 

 

All the included studies, no matter if they were received from PubMed or from other 

meta-analyses, provide a peak percentage baseline value of dopamine either in the 

nucleus accumbens or the caudate putamen.  

Overall, 187 studies containing 2365 animals were extracted from other projects of 

the work group at the Institute of Psychopharmacology of the Central Institute of 

Mental Health (Medical Faculty Mannheim/Heidelberg University).  

The main part of these preexisting results was the amphetamine group, containing 

1831 animals out of 145 studies kindly provided by Schabel et al. Another 534 

animals out of 42 studies were received from Gruhlke et al. for acute morphine 

administration, from Staudenmaier et al. for animals that received nicotine, and from 

Brand et al. for alcohol administration (for exact numbers see table 3). 

 

Table 3: Number of studies and animals received from preexisting meta-analyses 

Included studies Number of animals

145 1831

11 184

16 208

15 142

187 2365

Drug (Author)

Amphetamine (Schabel et al.)

Alcohol (Brand et al.)

Morphine (Gruhlke et al.)

Nicotine (Staudenmair et al.)

Sum  

 

PubMed results 
(female animals)

15%

PubMed results (male 
animals/cocaine)

52%

Preexisting data for 
males
33%

Source of included animals
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The online search on PubMed led to 734 original publications for the two queries: 

female animals receiving the different drugs of abuse and male animals receiving 

cocaine (applying the keyword combinations described in the method section, 

respectively). These unfiltered search results were screened and selected according 

to the inclusion criteria that are described above. See the flow diagram in figure 7 for 

an overview of the workflow, orientated towards the PRISMA guidelines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Flow diagram of study identification and selection process oriented towards 
the PRISMA guidelines 

 

734 Non-duplicate citations from the National Library of 
Medicine screened until March 2018 

Exclusion criteria applied: 

• Animals other than rats 

• Only male animals (exception: cocaine administration) 

• Genetic, behavioural or surgical manipulation (exception: 
ovariectomy/castration) 

• Pharmacological pre-treatment (exception: hormones such as oestradiol) 

• Techniques other than in vivo microdialysis 

• Commentaries, reviews, meta-analyses 

• Other transmitters than dopamine 

• Other brain regions than nucleus accumbens and caudate putamen 

• No basal values or acute drug effects 

Inclusion/exclusion 
criteria applied  

443 Articles excluded after full text 
screening and data extraction 

291 Articles included 
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Of the 734 publications that were identified in the search query, 39.6%, equaling 291 

studies, could be included for further analysis. The remaining 443 papers (60.4%) 

had to be excluded. Another keyword combination searching for 

tetrahydrocannabinol, provided only four papers of which none could be included and 

will therefore not be further mentioned. 

 

The main part of the results, meaning 454 studies, were found for the search for male 

rats. Out of those results 257 papers (equaling 57.7%) could be included.  

Much less studies were found for the specific search for female animals even though 

the keywords included five drugs, not only cocaine: 320 articles matched these 

keywords. Also, the percentage of included papers was smaller for the female query 

than for the male/cocaine search: 45 studies being equivalent to 14% met the 

inclusion criteria.  

 

Table 4: PubMed findings per keyword and number and percentage of included and excluded 
studies 

Pubmed 

findings

Included 

studies

in 

%

Excluded 

studies
in %

n of 

studies in 

dataset

Amphetamine 99 17 17 82 83 16

Cocaine 48 17 35 31 65 13

Alcohol 173 12 7 161 93 8

Morphine 31 5 16 26 84 5

Nicotine 24 6 25 18 75 3

320 45 14 275 86 45

….males Cocaine 454 257 57 197 43 246

734 291 40 443 60 291
Sum females + males                                     

(without duplicates)

Keyword combination 

for…

…females

Sum females                   

(without duplicates)

 

 

Viewed per drug, the query for alcohol produced most of the results. Nevertheless, 

relatively few papers could be included: only eight publications or 7% met the criteria. 

The highest percentage of included papers was reached for cocaine with 35%. For a 

detailed presentation of the findings for each keyword combination see the table 4. 
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3.1.2 Sex and estrous cycle 

In the following paragraphs the distribution of the properties (sex, strain, age, 

consciousness, route of administration) of the overall number of animals is given and 

presented for each drug respectively. The impact of these effect modifiers on the 

dopaminergic overflow after acute administration of drugs is described later for each 

drug in a separate chapter. 

 

Firstly, the sex of the rats was analyzed and presented: the online search for females 

provided a total amount of 45 publications containing 1074 included animals. But 

since sometimes the sex was not specified in these studies or both, males and 

females were used without explicit assignment, or the experiments contained also 

males, not all of those 1074 animals were actually female rats. If only those animals 

were taken into consideration, that were explicitly categorized as ‘female’ and half of 

the ‘male/female’ mixed groups, they add up to 842. Table 5 shows the distribution of 

the included females per drug and the corresponding percentages. 

Overall, 11.6% of the animals in this thesis were females. The other 88.4% were 

either male animals or animals that had no labeled sex in the original publication. 

 

Table 5: Female animals included per drug 

Included animals Percentage

200 24

314 37

178 21

102 12

48 6

842 100

Drug 

Alcohol

Amphetamine 

Morphine 

Sum

Nicotine

Cocaine

 

 

The main part of the female animals, meaning 314, received amphetamine. This 

number was followed by an amount of 200 rats that were administered with alcohol 

and 178 with cocaine. For morphine and nicotine only 102 and 48 animals were 

included, respectively. In the nicotine group all measurements took place in the 

nucleus accumbens and there were no experiments that had the caudate putamen 

as brain region of interest. The results of all other drugs contained values out of both 

brain regions. 
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Secondly, an analysis of the mentioning and monitoring of the estrous cycle was 

conducted on the 45 studies containing female animals. The results for the keyword 

combination for male animals that received cocaine are not taken into consideration 

in this overview. 

Overall, 62% of the studies did not mention the hormonal state of the animals at all. 

Regarding those studies that took it into account (38%) there were different levels 

(see figure 8): in nine of the 45 studies the females were described as 

ovariectomized, which amounts to a share of 20%. Another three studies (or 7%) did 

not measure the estrous cycle but stated that it was counterbalanced due to the 

experimental setup, e.g. through planning the experiments on different days for 

different animals.  

 

 

Figure 8: Percentages of the mentioning and monitoring of the estrous cycle  

(n = 45 studies) 

 

In four studies (9%) the cycle was monitored but as there was no effect on the 

results, it was not presented. Only one study mentioned and monitored the concrete 

state of the estrous cycle. Therefore, a share of 2% of the included studies contained 

the state of the estrous cycle, which does not provide sufficient data to analyze the 

effect on drug-induced changes in striatal dopamine concentrations.  

 

'Ovariectomized'
20%

State of cycle 
'counterbalanced'

7%

Cycle monitored but 
data not presented

9%

Exact state of the 
cycle given

2%

Not mentioned
62%

Inclusion of the estrous cycle
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3.1.3 Strain 

In a further step, the included studies were analyzed in regard to the other properties 

of the rats they used as subjects. Therefore, the total number of experimental groups 

(n = 512 datasets) was set as 100% as a basis for the calculation in the following 

chapters.  

 

Most of the animals that were used by the included experiments were Sprague-

Dawley rats with 64%. The second largest group consisted of Wistar rats with 18%. 

Another 16% were composed of other strains, mainly Long Evans (6%), and in 2% of 

the papers, the authors did not specify the strain. Special breeds like for example 

alcohol avoiding or obesity-prone rats were counted as ‘other strain’. For details see 

figure 9. 

 

 

Figure 9: Percentages of the strains used by the included experiments (n of datasets = 512) 

 

The preponderance of Sprague-Dawley and Wistar rats was found for four drugs of 

abuse. The only exception were studies with alcohol, probably due to the fact that in 

those experimental setups sometimes special breeds are used, like alcohol preferring 

or alcohol avoiding rats, that are contained in the section ‘other strains’. For details 

about the distribution of strains for the different drugs see table 6. 

Wistar
18%

Spague-Dawley 64%

Other strains
16%

Not specified 2%

Strain
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Table 6: Distribution of strains per drug 

Drug
% Sparague-

Dawley
%Wistar % Other strains

Strain not 

specified

Cocaine 68 15 15 2

Amphetamine 60 21 17 2

Alcohol 20 35 45 0

Morphine 68 23 9 0

Nicotine 70 10 20 0

All Drugs 64 18 16 2  

 

Overall, the results of this thesis should be considered referring mainly to Sprague-

Dawley rats. 

 

3.1.4 Age 

Every age of subjects was included: most of the experiments (86%) were carried out 

in adult animals. Another 7% of the studies had adolescent subjects and again 7% 

did not mention the rats’ age. For the distribution of the animals’ age see figure 10.  

  

 

Figure 10: Percentages of the age of the animals used by the included experiments (n of 
datasets = 512) 

 

A relatively high percentage of adolescent animals was present in the two smallest 

drug groups: among the animals that received morphine or nicotine 14%, or 25%, 

Adult
86%

Adolescent
7%

Not specified 7%

Age
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respectively, were adolescent. For the three other drugs the share of adolescent 

animals was under 10%, or even under 5%. Therefore, the outcomes of this study 

relate almost exclusively to adult animals. For detailed information about the 

distribution of age among the included animals per drug see table 7.  

Some authors did not explicitly mention the rats’ age but their weight. In these cases, 

the age was estimated by means of standard growth curves of the respective strain. 

 

Table 7: Distribution of age per drug 

Drug % Adult % Adolescent % Age not specified

Cocaine 86 7 7

Amphetamine 92 4 4

Alcohol 85 5 10

Morphine 68 14 18

Nicotine 70 25 5

All Drugs 86 7 7  

 

3.1.5 State of consciousness 

Generally, most of the microdialysis experiments are conducted on freely moving 

(awake) animals.  

 

 

Figure 11: Percentages of the different states of consciousness of the animals used by the 
included experiments (n of datasets = 512) 

Awake
66%

Anesthetized
13%

Not specified
21%

State of consciousness
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Regarding the included studies of this meta-analysis, this tendency could also be 

detected: all in all, 66% of the animals were described as awake, 13% were explicitly 

anesthetized and in 22% of the studies the authors did not point out the state of 

consciousness. Most likely the animals were also awake in many of these undefined 

cases, as no description of any anesthetic procedure was given. When a hint on 

anesthesia was mentioned, the studies were counted as ‘anesthetized’. The 

distribution can be seen in figure 11. 

 

Viewed for each drug separately, cocaine and amphetamine were administered to 

both, awake and anesthetized (11% and 19% of the experiments) animals. The 

remaining three drugs were only administered to awake and freely moving animals. 

Therefore, the present work does provide data for the effect of anesthetics on 

cocaine and amphetamine administration. See table 8. 

 

Table 8: Distribution of state of consciousness per drug 

Drug % Awake
% 

Anesthetized

% Consciousness not 

specified

Cocaine 67 11 22

Amphetamine 57 19 24

Alcohol 80 0 20

Morphine 91 0 9

Nicotine 95 0 5

All Drugs 66 13 21  

 

3.1.6 Route of administration 

There were five different routes of administration in the included publications: most of 

the drugs were administered via the peritoneum with 64%, followed by the 

subcutaneous route, with 18% and the intravenous administration with 10%.  

In some cases, meaning 6%, the drugs were administered via reverse microdialysis 

directly into different brain regions (local administration). In one experiment the rats 

got cocaine intranasally. For the distribution of the different routes of administration 

see figure 12. 
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Figure 12: Distribution of the route of administration in the included experiments (n of 
datasets = 512) 

 

Cocaine and alcohol were the drugs that were most frequently administered 

intraperitoneally and had therefore the lowest percentages of the subcutaneous route 

of administration (8% or 0% of the cases).  

Nicotine has a relatively high share of subcutaneous administrations and therefore 

the lowest intraperitoneally administered cases with 5%. Local administration could 

be detected for alcohol, cocaine, nicotine and amphetamine. 

For the distribution of the different routes of administration per drug, see table 9. 

 

Table 9: Distribution of the route of administration 

Drug

% 

intraperiton

eal

% 

subcutaneo

us

% 

intravenous
% local % intranasal

% not 

specified

Cocaine 75 8 14 2 1 1

Amphetamine 54 35 6 4 0 1

Alcohol 75 0 10 15 0 0

Morphine 55 41 4 0 0 0

Nicotine 5 85 0 5 0 5

All drugs 64 18 10 6 1 1  

 

i.p.
64%

s.c.
18%

i.v.
10%

local
6%

intranasal
1%

Not specified
1%

Route of administration
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3.1.7 Microdialysis parameters 

There were different solutions used as a perfusion fluid in the included publications: 

two thirds of the experiments used artificial cerebrospinal fluid (aCSF) or Ringer’s 

solution. Another 16% named other fluids and 8% did not specify the selected 

medium. For a graphical representation see figure 13. 

 

 

Figure 13: Percentage of the perfusion fluid used by the included experiments (n of datasets 
= 512) 

 

As described above, further parameters of the microdialysis experiments were 

recorded: the length of the active membrane and the outer diameter of the probe, the 

sample time, the flowrate, and the calcium concentration of the perfusion fluid. As 

these parameters were the same for all experiments of one publication, the overall 

number of studies was set as 100% for the calculation of the following percentages. 

 

The active membrane had an average length of 2.4 ± 0.98 mm and an outer diameter 

of 318 ± 110.82 µm. But not many papers mentioned the latter one: only 180 out of 

the total amount of 459 publications named the exact outer diameter.  

The flowrate, the sample time and the calcium concentration were relatively often 

specified. The sample time ranged from 2 to 40 minutes and had its median at 20 

minutes. The fluid was perfused at an average rate of 1.58 ± 0.75 µl/min and 

aCSF
49%

Ringer
27%

Others
16%

Not specified
8%

Perfusion fluide
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contained an average of 1.51 ± 0.52 µM calcium. For the average, median, minimum, 

maximum, and the number of the papers without values see table 10. 

 

Table 10: Average ± SEM, median, minimum and maximum of the different microdialysis 
parameters 

Microdialysis parameter Average Median Minimum Maximum

Not specified                    

(number of 

studies)

Length of active 

membrane (mm)
2.4 ± 0.98 2 1 8.5 84

Outer diameter (µm) 318 ± 110.82 300 150 600 279

Sample time (min) 18.33 ± 5.69 20 2 40 35

Flow rate (µl/min) 1.58 ± 0.75 1.5 0.16 5 35

Calcium concentration 

(mMol)
1.51 ± 0.52 1.2 0 1.4 78

 

 

 

3.2 Drug specific effects 

In the following sections, the results of the statistical analysis of the peak percentage 

baseline values are presented. A correlation analysis was conducted per drug and 

brain region and one-way ANOVA was done in regard of the effect modifiers for each 

dosage separately. Therefore, the specific results will be presented by drug/brain 

region. 

 

The references for the presented single values are in the list of appendices, for 

reasons of clarity. A table that gives a gathered summary of all dose-dependent 

effects of the five different drugs is to be found in the discussion. Forest plots were 

created for those dosages that contained more than 250 animals. This was the case 

for two groups that received amphetamine (0.5 mg/kg, nucleus accumbens and 2 

mg/kg, caudate putamen) and three dosages of cocaine (5, 10, and 20 mg/kg, 

nucleus accumbens). 
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3.2.1 Alcohol 

Overall, twelve studies (n = 200) contained measurements of extracellular dopamine 

concentrations in the striatal complex (NAc and CPu) of females after the 

administration of alcohol. Another eleven studies were included from Brand et al., 

leading to 23 publications with alcohol administration: Blanchard & Glick, 1995; 

Blanchard, Steindorf, Wang, & Glick, 1993; Blanchard, Steindorf, Wang, LeFevre, et 

al., 1993; Bustamante et al., 2008; Campbell & McBride, 1995; Cummings, 

Jagannathan, Jackson, & Becker, 2014; Ding, Ingraham, Rodd, & McBride, 2016; 

Ding et al., 2012; Ding, Rodd, Engleman, & McBride, 2009; C. Heidbreder & De 

Witte, 1993; Howard, Schier, Wetzel, Duvauchelle, & Gonzales, 2008; Kohl, Katner, 

Chernet, & McBride, 1998; Maisonneuve & Glick, 1999; Mocsary & Bradberry, 1996; 

Philpot & Kirstein, 1999; D. L. Robinson, Howard, McConnell, Gonzales, & 

Wightman, 2009; Tobiansky et al., 2016; Yan, 1999; Yan, Zheng, Feng, & Yan, 2005; 

Yoon et al., 2004; Yoshimoto, Komura, & Kawamura, 1992; Yoshimoto, McBride, 

Lumeng, & Li, 1992a, 1992b. 

Alcohol was administered in a range of 0.25 to 3 g/kg systemically and in 

concentrations varying between 50 to 300 mg% locally into the ventral tegmental 

area.  

 

3.2.1.1 Nucleus accumbens 

For measurement in the nucleus accumbens, ten different dosages (five systemically 

administered, five locally administered) of alcohol could be found including a total 

number of 403 animals, of which 156 were females.  

 

The systemically administered dosages ranged from 0.25 to 3 g/kg (n = 347) and the 

local doses from 50 to 300 mg% (n = 56). Alcohol was perfused through the posterior 

ventral tegmental area in all experiments with local administration. 

At 3 g/kg, only female rats were used as subjects. The five experiments with local 

administration of alcohol were also conducted on female animals only. In the 

remaining dose groups both sexes were present and therefore a comparison 

between the peak percentage values of the females and males could be conducted. 
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Table 11: Peak percentage baseline values in the nucleus accumbens after different dosages 
of ethanol, locally administrated dosages below the grey line 

Dose 
(g/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

n 
of rats 

n of 

females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

0.25 178.45 ± 8.41 - 31 15.5 (50) - - 

0.5 
127.10 ± 1.76 Male 62 0 (0) 

0,018 
4.84 

(1,11) 171.74 ± 10.73 Female 28 28 (100) 

1 155.43 ± 1.93 - 139 29.5 (21) - - 

2 151.53 ± 1.42 - 75 22.5 (30) - - 

3 200 ± 25 - 4 4 (100) - - 
       

50mg
% 

85 ± 4 - 7 7 (100) - - 

100m
g% 

122.27 ± 4.32 - 11 11 (100) - - 

150m
g% 

145 ± 12 - 7 7 (100) - - 

200m
g% 

138.15 ± 4.60 - 27 27 (100) - - 

300m
g% 

145 ± 10 - 4 4 (100) - - 

 

However, while all doses consistently increased the level of dopamine (see table 11), 

only a moderate correlation (r = 0.46) between the administered dosage of ethanol 

and the dopaminergic overflow could be detected – at least regarding the systemic 

route of administration. Rats of both sexes had higher values of dopamine at the 

lower dosage of 0.25 g/kg systemically administered ethanol, compared to the 0.5 

g/kg dose. In locally administered rats, a high linear correlation between the 

administered dose of alcohol and the increase of dopamine could be seen (r = 0.79).  

See figure 14a and b. 
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Figure 14a, b: Averages of the dose-dependent effect of ethanol on accumbal dopamine (n = 
403 rats) 

Systemic administration (above): n = 347 rats. R² = 0.22, the relationship may not be linear.  

Local administration (below): n = 56 rats, perfused with different concentrations of ethanol 
into the posterior ventral tegmental area. R² = 0.63 and indicates a linear relationship. 

For number of animals per dose, percentages of female rats and significant differences 
between groups see table above. 

 

Only in one dose group a significant difference was detected through ANOVA: at 0.5 

g/kg ethanol the peak percentage baseline value was higher in female rats, F (1,11) 

= 4.84, p = 0.018.  
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Table 12: Peak percentage baseline values of dopamine in female vs. male rats in the 
nucleus accumbens.  

Sex 
Peak percentage baseline 

value after 0.5 g/kg ethanol 

Male 127.10 ± 1.76 

Female 171.74 ± 10.73 

 

Interestingly, in the other mixed-sex dose groups (that means 0.25, 1, and 2 g/kg) 

there were no significant findings regarding sex differences, whatsoever (see table 

11). Detailed information including the references for the presented values and the 

respective peak times are set out in the appendix in chapter 7.2. 

 

3.2.1.2 Caudate putamen 

For the caudate putamen, four different dosages of ethanol could be found with a 

total amount of 168 rats (90 females). The query generated no results with local 

administration. In all included dose groups both sexes were present. 

 

The conducted ANOVA did not show any differences between the subgroups; in 

particular, no sex differences could be identified. See table 13 for all peak percentage 

baseline values. 

 

Table 13: Peak percentage baseline values in the caudate putamen after different dosages of 
ethanol. 

Dose 
(g/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

n 
of rats 

n of 

females 

(%) 

P-
valu

e 

Critical 
value 

(degrees 
of 

freedom) 

 0.25 140.77 ± 4.45 - 31 15.5 (50) - - 

0.5 160.01 ± 2.73 - 52 27.5 (53) - - 

1 123.28 ± 2.04 - 49 27.5 (56) - - 

2 95.54 ± 6.72 - 35 19 (55) - - 
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There was no positive dose-response relationship, but all dosages of ethanol 

increased dopamine levels in the caudate putamen. On the contrary, the analysis 

showed a negative correlation between the administered dose of ethanol and the 

dopamine level (r = - 0.90): the peak value of dopamine was, apart from the 0.5 g/kg 

value compared to the 0.25 g/kg value, inversely proportional to the administered 

dose of ethanol. See figure 15 and the chapter 7.2 in the appendix for more details, 

the respective peak times and the references for each dose group. 

 

 

Figure 15: Averages of the dose-dependent effect of ethanol on dopamine in the caudate 
putamen (n = 167 rats) 

For number of animals per dose and percentages of female rats see table above.  R² = 0.81 
and indicates a linear relationship. 

 

3.2.2 Amphetamine 

The conducted search led to data of 314 female rats excerpted from 18 original 

studies about the effect of amphetamine on the striatal complex: Becker & Cha, 

1989; Becker & Rudick, 1999; Byun et al., 2014; Castaneda, Whishaw, Lermer, & 

Robinson, 1990; Castner, Xiao, & Becker, 1993; Ferguson, Flynn, Delclos, Newbold, 

& Gough, 2002; Geiger et al., 2009; Glick, Rossman, Wang, Dong, & Keller, 1993; 

Kehoe, Shoemaker, Arons, Triano, & Suresh, 1998; Kehoe, Shoemaker, Triano, 

Hoffman, & Arons, 1996; Maisonneuve, Keller, & Glick, 1992; McCallum, Cowe, 
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Lewis, & Glick, 2012; Nowak et al., 2008; T. E. Robinson & Camp, 1990, 1991; T. E. 

Robinson, Jurson, Bennett, & Bentgen, 1988; Shams et al., 2016; Shoblock, Sullivan, 

Maisonneuve, & Glick, 2003.  

Another 144 studies were included from Schabel et al., adding up to an overall 

amount of 162 publications examining the striatal dopamine after amphetamine 

administration. The drug was systemically applied in a range of 0.5 to 7.5 mg/kg and 

there was one local dose that had a concentration of 1µM administered directly into 

both brain regions (NAc and CPu).  

As already described in the methods, for the sake of clarity, in the following tables the 

term amphetamine – if not further specified – refers to the more frequently used 

dextro-enantiomer. For the rare cases when the rats received the racemase, ‘d+l’ will 

be added. There were no studies included that used levoamphetamine. 

 

3.2.2.1 Nucleus accumbens 

Amphetamine was administered at nine different dosages for measurement in the 

nucleus accumbens to a total amount of 1048 animals, including one local dose with 

33 animals.  

 

There were no experiments that contained the administration of the racemate or 

levoamphetamine. Male and female rats were available at all dosages with an overall 

share of 105 female animals. 

Amphetamine at all dosages has a strongly enhancing impact on the dopaminergic 

transmission in the nucleus accumbens (table 14). However, no dose-response 

relationship could be identified: the correlation analysis showed no clear dose-

dependent effect of amphetamine on the dopamine overflow in the nucleus 

accumbens (r = - 0.12).  

Analogous to the other drugs studied, the dopaminergic response to amphetamine 

was examined with respect to the animals’ sex and other properties. Again, there 

were no significant differences in the average dopamine levels between the 

subgroups, notably between males and females. For further details see table 14 and 

chapter 7.3 in the appendix containing the references and averaged peak times of 

the presented results. 
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Figure 16: Averages of the dose-dependent effect of d-amphetamine on accumbal dopamine 
(n = 1015 rats) 

For number of animals per dose and percentages of female rats see table below.  R² = 0.02, 
the relationship may not be linear.  

 

Table 14: Peak percentage baseline values in the nucleus accumbens after different dosages 
of d-amphetamine, locally administrated dosage below the grey line 

Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

N 
of rats 

n of 

females 

(%) 

P-
valu

e 

Critical 
value 

(degrees 
of 

freedom) 

0.5 392.15 ± 1.39 - 260 15.5 (6) - - 

0.75 352.27 ± 42.05 - 11 6 (55) - - 

1 791.46 ± 4.23 - 235 4 (2) - - 

1.25 903.83 ± 45.88 - 30 12 (40) - - 

1.5 523.90 ± 2.05 - 168 18 (11) - - 

2 1213.16 ± 9.03 - 199 13 (7) - - 

3 1024.77 ± 84.53 - 65 5 (8) - - 

7.5 387.8 ± 65.9 - 25 12.5 (50) - - 
       

1µM 342.42 ± 12.12 - 33 6 (18) - - 
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Figure 17: Averaged peak percentage baseline values of 25 publications (row 2 – 26, in 
chronological order) in relation to their weighted average in row 1 (0.5 mg/kg amphetamine, n 
= 260 rats).  

The vertical line extends the weighted average. Horizontal lines represent the respective 
standard error of the mean (SEM). 2 Pani et al. 1990; 3 Steketee et al. 1992; 4 Di Chiara et 
al 1993; 5 Stewart et al. 1994; 6 Paulson et al. 1995; 7 Harmer et al. 1997; 8 Kehoe et al. 
1998; 9 Darracq et al. 1998*; 10 Hall et al. 1998; 11 Birrell et al. 1998; 12 Cagiano et al. 
1998; 13 Ichikawa et al. 1998; 14 Hall et al. 1999; 15 Rowley et al. 2000; 16 Badiani et al. 
2000; 17 Porras et al. 2002*; 18 Tronci et al. 2006; 19 Mattsson et al. 2007; 20 Pacchioni et 
al. 2007; 21 Rahman et al. 2008; 22 Sotty et al. 2009; 23 Sotty et al. 2009; 24 Auclair et al. 
2010; 25 Fabricius et al. 2011; 26 Choi et al. 2014. *Two publications contained no SEMs. 

 

The forest plot (figure 17) shows the position of the single peak percentage baseline 

value of each experimental group in relation to the calculated weighted average.  

All publications that administered 0.5 mg/kg amphetamine are listed in the 

chronological sequence of their publication. Row 1 shows the calculated average, the 
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single experiments are presented from row 2 on, each value with its respective 

standard error of the mean (SEM). 

 

3.2.2.2 Caudate putamen 

Ten different dosages (including one local dose) of amphetamine were administered 

to 1185 animals, containing 207 female animals.  

There was no positive dose-response relationship in the caudate putamen (r = 0.14) 

for the administration of amphetamine (see figure 18). In this figure, all dose groups 

are included, also those that contained only males. 

 

 

Figure 18: Averages of the dose-dependent effect of d-amphetamine and d+l-amphetamine 
on dopamine in the caudate putamen (n = 1175 rats). 

For number of animals per dose, percentages of female rats and significant differences 
between groups see tables below and in the appendix. R² = 0.02, the relationship may not be 
linear. 

*d+l-amphetamine was administered at 0.5 and 2.5 mg/kg; at 1 mg/kg both d+l- and d-
amphetamine were administered, d-amphetamine at all other dosages.  

 

Analogous to the nucleus accumbens, all doses of amphetamine have a strongly 

enhancing impact on dopaminergic transmission in the caudate putamen. 

Interestingly, for most of the dosages, no differences between the sexes could be 
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identified. See table 15 (for reasons of clarity, only those dosages that contained 

female animals are presented). 

 

Table 15: Peak percentage baseline values in the caudate putamen after different dosages of 
amphetamine (only dosages that contained female animals are presented) 

Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

N 
of rats 

n of 

females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

0.5 
d+l-

amph 

477.05 ± 15.24 Male 44 0 (0) 
0.001 

4.84 

(1,11) 901.02 ± 16.36 Female 49 49 (100) 

0.75 368.95 ± 2.98 - 19 7 (37) - - 

1.25 
780.21 ± 27.59 Male 24 0 (0) 

0.039 
5.50 
(1,7) 1038.25 ± 30.11 Female 24 24 (100) 

1.5 

696.64 ± 4 Awake 192 8.5 (4) 

0.010 4.26 
(1,24) 2001.52 ± 68.96 

Anesth
etized 

33 0 (0) 

2 

1122.92 ± 4.78 Awake 254 45 (18) 

0.004 4.09 
(1,40) 2231.91 ± 44.22 

Anesth
etized 

105 0 (0) 

2.5 
d+l-

amph 

2595 ± 25.56 - 89 49 (55) - - 

3 2769.21 ± 114.78 - 38 7 (18) - - 

 

Two dose groups formed an exception: there were significantly higher values 

reached in female animals at 0.5 mg/kg (F (1,11) = 4.84 and p = 0.001) and 1.25 

mg/kg (F (1,7) = 5.5 and p = 0.039), see table 16.  

 

Table 16: Peak percentage baseline values of dopamine in female vs. male rats in the 
caudate putamen  

Dose of administered 
amphetamine 

Peak percentage baseline value 

0.5 mg/kg 
Male 477.05 ± 15.24 

Female 901.02 ± 16.36 
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Dose of administered 
amphetamine 

Peak percentage baseline value 

1.25 mg/kg 

Male 780.21 ± 27.59 

Female 1038.25 ± 30.11 

 

Further analysis of modifying factors revealed differences regarding the two 

enantiomers and the state of consciousness: as mentioned earlier, in most of the 

experiments and dosages d-amphetamine was used. The dextro-, levoamphetamine 

racemate was administered at 0.5 and 2.5 mg/kg.  

At the dose of 1 mg/kg both, d+l-amphetamine and d-amphetamine were 

administered. At this concentration d-amphetamine produces, compared to the 

racemate, a significantly higher peak percentage baseline value of dopamine, F 

(1,44) = 4.06, p = 0.007. For the averages of the two types of amphetamine see table 

17. Both groups contained only male animals.  

 

Table 17: Peak percentage baseline values of dopamine in the caudate putamen of animals 
administered with either d-amphetamine or d+l-amphetamine (only male animals) 

Administered enantiomer 
Peak percentage baseline 

value after 1 mg/kg of 
amphetamine 

D+l-amphetamine 489.3 ± 3.3 

D-amphetamine 1060 ± 6.92 

 

There was as well a significant difference regarding the route of administration of  

1 mg/kg in the d-amphetamine subgroup. As this dose contained also only males it is 

not separately presented here but in the detailed list in the appendix. As already 

mentioned, only those seven dosages that include female animals are considered 

and shown from here on. 
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The data suggest that the dopamine level was higher in anesthetized rats. This is 

reflected at two dosages: in the 1.5 mg/kg group the freely moving rats had an 

average peak percentage baseline value of 696.64 ± 4 compared to the anesthetized 

animals with 2001.52 ± 68.96 (F (1,24) = 4.26, p = 0.010).  

 

Table 18: Peak percentage baseline values of dopamine in anesthetized vs. awake rats in 
the caudate putamen 

Dose of administered 
amphetamine 

Peak percentage baseline value 

1.5 mg/kg 
Awake 696.64 ± 4 

Anesthetized 2001.52 ± 68.96 

2 mg/kg 

Awake 1122.92 ± 4.78 

Anesthetized 2231.91 ± 44.22 

 

The same trend showed in the 2 mg/kg amphetamine group: the conscious animals 

had half of the dopamine peak compared to the average anesthetized rat. 1122.92 ± 

4.78 versus 2231.91 ± 44.22, F (1.40) = 4.09, p = 0.004. 

 

For the other variables, no significant differences were found (as shown in table 15). 

A detailed list with all results, the corresponding references and the averaged peak 

times is available in the appendix, chapter 7.3.  

 

The forest plot (figure 19) shows the position of the single peak percentage baseline 

value of each experimental group in relation to the calculated weighted average. All 

publications that administered 2 mg/kg amphetamine are listed in the chronological 

sequence of their publication. Row 1 shows the calculated average, the single 

experiments are presented from row 2 on, each value with its respective standard 

error of the mean (SEM). 
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Figure 19: Averaged peak percentage baseline values of 27 publications (row 2 – 28, in 
chronological order) in relation to their weighted average in row 1 (2 mg/kg amphetamine, n = 
359 rats).  

The vertical line extends the weighted average. Horizontal lines represent the respective 
standard error of the mean (SEM). 2 Butcher et al. 1988*; 3 Becker et al. 1989; 4 Robinson 
et al 1991; 5 Robertson et al. 1991; 6 Camp et al. 1992; 7 Yamamoto et al. 1992; 8 Ichikawa 
et al. 1992; 9 Castner et al. 1993; 10 Di Chiara et al. 1993; 11 Bjelke et al. 1994; 12 Herrera-
Marschitz et al. 1994; 13 Loidl et al. 1994; 14 Dietze et al. 1994; 15 Heeringa et al. 1995; 16 
Cadoni et al. 1995; 17 Kuczenski et al. 1995; 18 Miller et al. 1996; 19 Badiani et al. 1998; 20 
Mc Tavish et al. 1999; 21 Miele et al. 2000; 22 Laviola et al. 2001; 23 Jaworski et al. 2001; 24 
Ferguson et al. 2002; 25 Porras et al. 2002; 26 Porras et al. 2002; 27 Ferguson et al. 2003; 
28 Kääriäinen et al. 2008. *Publication contained no SEM. 

 

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0 1000 2000 3000 4000 5000 6000

Experiment

Peak percentage baseline of striatal dopamine



Results 

 

65 

 

3.2.3 Cocaine 

Overall, the search produced data of female animals (n = 178) out of 14 studies with 

dosages varying between 1 and 30 mg/kg of cocaine: Chapman, See, & Bissette, 

1992; Cummings, Jagannathan, Jackson, & Becker, 2014; Grotewold, Wall, Goodell, 

Hayter, & Bland, 2014; Holly, Shimamoto, Debold, & Miczek, 2012; Johnson, Eodice, 

Winterbottom, & Mokler, 2000; Kosten, Zhang, & Kehoe, 2003; Maisonneuve, Archer, 

& Glick, 1994; Maisonneuve & Glick, 1992; Philpot & Kirstein, 1999; T. E. Robinson & 

Camp, 1991; Shimamoto, Debold, Holly, & Miczek, 2011; Shimamoto, Holly, Boyson, 

DeBold, & Miczek, 2015; Szumlinski, McCafferty, Maisonneuve, & Glick, 2000; 

Tobiansky et al., 2016.  

Another 246 studies were collected for male animals, adding up to an overall amount 

of 260 studies that examined dopamine levels in the striatal complex after cocaine 

administration. 

 

3.2.3.1 Nucleus accumbens 

Cocaine was administered systemically at 33 dosages and at ten dosages locally to 

3433 animals in total – including 184 female rats – for measurement in the nucleus 

accumbens. Some of the systemic administrations were conducted in a continuous 

manner and are therefore presented separately. 

 

There were six dosages with systemically administered animals of both sexes; the 

remaining groups contained only males. For local administration, cocaine was 

administered directly into the nucleus accumbens during simultaneous dopamine 

detection. All animals that were locally administered were males.  

In the following chapter, all dosages (also those including only males) will be 

analyzed for a dose-response relationship; the analysis with respect to the effect 

modifiers will be presented afterwards with a special focus on the groups containing 

female rats. 

In general, all doses of cocaine increase accumbal dopamine levels. For the 

correlation analysis, all dosages with the same unit (mg/kg or mg/kg/h for the 

systemic, mole for the local administration) were gathered within a separate sheet 

and analyzed for dose dependency: there was a moderate dose-dependent increase 
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of dopamine after the systemic administration of cocaine (r = 0.56) but the 

relationship may not be linear (R² = 0.31). 

 

 

 

Figure 20a, b: Averages of the dose-dependent effect of systemic administration of cocaine 
on accumbal dopamine (n = 2702) 

Single, acute administration (above): n = 2690 rats. R² = 0.31, the relationship may not be 
linear. 

Continuous perfusion (below): n = 12 rats. R² = 1, the relationship is linear.  

For number of animals per dose, percentages of female rats and significant differences 
between groups see tables below and the detailed table in the appendix.   
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When cocaine was continuously perfused, there was a strongly positive correlation 

with r = 1. See figure 20a, b. The correlation analysis for the locally administrated 

groups showed no (r = 0.21) linear relationship, see figure 21. Assembling the results 

of the correlation analyses, a dose-response relationship for continuously perfused, 

but not for systemically, or locally administered cocaine was found. 

 

 

Figure 21: Averages of the dose-dependent effect of locally (nucleus accumbens) 
administered cocaine on accumbal dopamine (n = 155 rats, only male animals)  

Animals perfused locally with fluid containing a defined amount of cocaine (in mole). R² = 
0.04, the relationship may not be linear. 

 

For reasons of clarity, only the six dosages that include female animals are presented 

from here on. For the complete results including the significant differences between 

male animals, the corresponding references and peak times of all results see tables 

in the appendix, chapter 7.4. 

 

The animals’ sex had no significant impact on the cocaine-induced dopamine 

alterations in the nucleus accumbens, whatsoever. Neither had the strain any effect. 

Differences were found regarding the animals’ consciousness (at 1 and 10 mg/kg), 

the animals age (as well at 10mg/kg) and the route of administration (at 5 mg/kg). 
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The data show significant differences for the state of consciousness: at 1 mg/kg (F 

(1,18) = 4.41, p = 0.003) and 10 mg/kg (F (12,79) = 3.95, p = 0.000): The 

anesthetized animals had a higher peak percentage baseline value than those that 

were awake during the experiment. See table 19. 

 

Table 19: Peak percentage baseline values of dopamine in anesthetized vs. conscious rats in 
the nucleus accumbens 

Dose of administered 
cocaine 

Peak percentage baseline value  

1 mg/kg 
awake 198.25 ± 26.98 

anesthetized 299.45 ± 13.94 

10 mg/kg 

awake 330.72 ± 0.16 

anesthetized 593.26 ± 5.92 

 

Table 20: Peak percentage baseline values of dopamine in adolescent vs. adult rats in the 
nucleus accumbens 

Age 
Peak percentage baseline 

value after 10 mg/kg of 
cocaine 

Adolescent 289.33 ± 2.2 

Adult 372.53 ± 0.21 

 

 

In the same dose group (also at 10mg/kg), there was a significant difference 

regarding the rats’ age, even though it was not as highly significant as the difference 

between awake and anesthetized rats: adult animals had a higher peak percentage 

baseline value than adolescent rats. F (1,116) = 3.92, p= 0.027. See table 20. 
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There was a significant difference regarding the route of administration at 5 mg/kg: 

the intraperitoneal/subcutaneous group had a lower peak than the intravenous group. 

F (2,36) = 3.26, p = 0.005, see table 21. 

 

Table 21: Peak percentage baseline values of dopamine in intraperitoneally/subcutaneously 
vs. intravenously administered rats in the nucleus accumbens 

Route of administration 
Peak percentage baseline 

value after 5 mg/kg of 
cocaine 

i.p./s.c. 218.69 ± 0.44 

i.v. 562 ± 79.87 

 

No other significances were found in the groups that included female animals. For 

further details see table 22 and the detailed list in the appendix for the groups with 

male subjects only. 

 

Table 22: Peak percentage baseline values in the nucleus accumbens after different dosages 
of cocaine 

Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

N 
of rats 

n of 

females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

1 

198.25 ± 26.98 Awake 85 4 (5) 

0.003 
4.41 

(1,18) 299.45 ± 13.94 
Anesth
etized 

29 0 (0) 

2 244.03 ± 6.02 - 36 7 (19) - - 

2.5 187.5 ± 3.75 - 12 6 (50) - - 

5 
218.69 ± 0.44  

i.p. + 
s.c. 

252 6 (2) 
0.005 

3.26 
(2,36) 

562 ± 79.87 i.v. 18 0 (0) 

10 

330.72 ± 0.16  Awake 736 52 (7) 

0.000 
3.95 

(12,79) 593.26 ± 5.92 
Anesth
etized 

90 0 (0) 

289.33 ± 2.2 Adoles 70 6 (9) 0.027 3.92 
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Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

N 
of rats 

n of 

females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

cent (1,116) 

372.53 ± 0.21 Adult 713 76 (11) 

20 399.13 ± 0.63 - 416  18 (4) - - 

 

Forest plots were created for those dosages that included a total amount of 250 

animals or more. This was the case regarding three different doses of cocaine.  

The following figures show the position of the single peak percentage baseline value 

of each publication in relation to the calculated weighted average. Figure 22 contains 

all experiments that administered 5 mg/kg cocaine. For the publications that 

administered 10 or 20 mg/kg cocaine see figure 23 or figure 24 respectively.  

 

Row 1 shows the calculated average, the single experiments are presented from row 

2 on, each with its respective standard error of the mean (SEM). The publications are 

listed in the chronological sequence of their appearance, respectively.  
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Figure 22: Averages of the peak percentage baseline values of 22 publications (row 2 – 23, 
in chronological order) in relation to their weighted average in row 1 (5 mg/kg cocaine, n = 
270 rats).  

The vertical line extends the weighted average. Horizontal lines represent the respective 
standard error of the mean (SEM). 2 Carboni et al. 1989; 3 Brown et al. 1991; 4 Camp et al 
1994; 5 Giorgi et al. 1997; 6 Koch et al. 1997; 7 Parsons et al. 1998; 8 Gambarana et al. 
1999; 9 Gambarana et al. 1999; 10 Cadoni et al. 2000; 11 Mangiavacchi et al. 2001; 12 Masi 
et al. 2001; 13 Mikkola et al. 2001; 14 Steketee et al. 2002; 15 Cadoni et al. 2003; 16 Kosten 
et al. 2003; 17 Leggio et al. 2003; 18 Nanni et al. 2003; 19 Lecca et al. 2004; 20 Kosten et al. 
2005; 21 Raje et al. 2005; 22 Cadoni et al. 2007; 23 Othman et al. 2007. 
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Figure 23: Averages of the peak percentage baseline values of 82 publications (row 2 – 83, 
in chronological order) in relation to their weighted average in row 1 (10 mg/kg cocaine, n = 
825 rats).  

The vertical line extends the weighted average. Horizontal lines represent the respective 
standard error of the mean (SEM). References are to find on the next page. 
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2 Pani et al. 1990; 3 Pani et al. 1990; 4 Hoger et al 1991; 5 Brown et al. 1992; 6 Rosetti et al. 
1992; 7 Segal et al. 1992; 8 Weiss et al. 1992; 9 Fontana et al. 1993; 10 Kimura et al. 1993; 
11 Parsons et al. 1993; 12 Essman et al 1994; 13 Maisonneuve et al. 1994; 14 Nation et al. 
1994; 15 Camp et al. 1994; 16 Maisonneuve et al. 1995; 17 Pap et al. 1995; 18 Rouge-Pont 
et al. 1995; 19 Strecker et al. 1995; 20 Cervo et al 1996; 21 Clark et al. 1996; 22 
Kankaanpaa et al. 1996; 23 Martin-Fardon et al. 1996; 24 Neisewander et al. 1996; 25 
Shimda et al. 1996*; 26 Willins et al. 1998; 27 Parsons et al. 1998; 28 Cadoni et al. 1999; 29 
Parsons et al. 1999; 30 Tolliver et al. 1999; 31 Cadoni et al. 2000; 32 Johnson et al. 2000; 33 
Lutfy et al. 2001; 34 Alvarez Fischer et al. 2001; 35 Andrews et al. 2001; 36 Mikkola et al. 
2001; 37 Muller et al. 2002; 38 Steketee et al. 2002; 39 Kosten et al. 2003; 40 Bubar et al. 
2003; 41 Cadoni et al. 2003; 42 Mc Farland et al. 2003; 43 Navailles et al. 2004; 44 O’Dell et 
al. 2004; 45 De Deurwaerdere et al. 2005; 46 Kosten et al. 2005; 47 Lodge et al. 2005; 48 
Tanda et al. 2005; 49 Valdomero et al. 2005; 50 Caille et al. 2006; 51 Izawa et al. 2006; 52 
Jocham et al. 2006; 53 Cadoni et al. 2007; 54 Jocham et al. 2007; 55 Leri et al. 2007; 56 
Tanda et al. 2007; 57 Xi et al. 2007*; 58 Navailles et al. 2008; 59 Peng et al. 2008; 60 Peng 
et al. 2008; 61 Nelson et al. 2009; 62 Leggio et al. 2009; 63 Espana et al. 2010; 64 Panos et 
al. 2010; 65 Xi et al. 2010; 66 Xi et al. 2010; 67 Espana et al. 2011; 68 Miczek et al. 2011; 69 
Shimamoto et al. 2011; 70 Devoto et al. 2012; 71 Holly et al. 2012; 72 Pan et al. 2012; 73 
Tanda et al. 2013; 74 Thongsaard et al. 2013; 75 Devoto et al. 2014; 76 Boyson et al. 2014; 
77 Cummings et al. 2014; 78 Kohut et al. 2014; 79 Verheij et al. 2014; 80 Ogbonmwan et al. 
2015; 81 Shimamoto et al. 2015; 82 Tanda et al. 2016; 83 Tobiansky et al. 2016. *Two 
publications contained no SEMs. 
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Figure 24: Averages of the peak percentage baseline values of 40 publications (row 2 – 41, 
in chronological order) in relation to their weighted average in row 1 (20 mg/kg cocaine, n = 
416 rats).  

The vertical line extends the weighted average. Horizontal lines represent the respective 
standard error of the mean (SEM). References are to find on the next page. 
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2 Maisonneuve et al. 1992; 3 Maisonneuve et al. 1994; 4 Chen et al 1996; 5 Heidbreder et 
al. 1996; 6 Martin-Fardon et al. 1996; 7 Morgan et al. 1997; 8 Morgan et al. 1997; 9 Reith et 
al. 1997; 10 Heidbreder et al.1998; 11 Morgan et al. 1998; 12 Parsons et al. 1998; 13 Hedou 
et al. 1999; 14 Kuczenski et al. 1999; 15 Philpot et al. 1999; 16 Ferraro et al. 2000; 17 
Gerasimov et al. 2000; 18 Szumlinski et al. 2000; 19 Schiffer et al. 2000; 20 Martin-Fardon et 
al. 2001*; 21 Molina et al. 2001; 22 Chefer et al. 2002; 23 Gerasimov et al. 2002; 24 
Kankaanpaa et al. 2002; 25 Steketee et al. 2002; 26 Chefer et al. 2003; 27 Leri et al. 2003; 
28 Schiffer et al. 2003; 29 Schiffer et al. 2003; 30 De Deurwaerdere et al. 2005; 31 Cadoni et 
al. 2007; 32 Frantz et al. 2007; 33 Leri et al. 2007; 34 Jang et al. 2008; 35 Mc Dougall et al. 
2008; 36 Kurling-Kailanto et al. 2010; 37 Panos et al. 2010; 38 Kailanto et al. 2011; 39 Puig 
et al. 2012; 40 Vazquez-DeRose et al. 2013; 41 Tanda et al. 2016. *Publication contained no 
SEM. 
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3.2.3.2 Caudate putamen 

In total 20 different dosages of cocaine (13 systemically and 7 locally administered) 

were included that took measurements in the caudate putamen of 858 animals. All in 

all, 44 animals were female.   

 

In the experiments with local administration, cocaine was perfused directly into the 

caudate putamen during concurrent dopamine detection. Only in one experimental 

group at the dose of 1000 µM the drug was perfused into the substantia nigra. 

Three of the 13 systemic dosages contained female subjects, the remaining groups 

consisted of males. All locally administered animals were also male rats. In those 

groups no comparison between the sexes could be conducted. 

 

All doses of cocaine increased the level of dopamine in the caudate putamen, in 

analogy to the nucleus accumbens. For the correlation analyses, all animals that 

received corresponding dosages – meaning that they were given in the same unit – 

were considered: there is neither a dose-dependent effect of systemically 

administered cocaine (r = 0.22), nor for local administration (r = 0.30). See figure 25a, 

b. In summary, no dose-response relationship was identified for the dopaminergic 

transmission in the caudate putamen, whatsoever. 

 

For clarity reasons, the following presentation of the significant results is focused on 

the mixed-sex groups. There were 17 groups that contained only male subjects that 

will not be further mentioned. The complete results for all dosages can be found in 

the appendix in chapter 7.4.  
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Figure 25a, b: Averages of the dose-dependent effect of cocaine on dopamine in the caudate 
putamen (n = 704 rats) 

Systemic administration (above): (n = 635 rats). R² = 0.05, the relationship may not be linear. 
Local administration (below): (n = 69 rats), all administered via the caudate putamen, except 
for one experiment at the 1000 µM group that administered cocaine into the substantia nigra.  
For number of animals per dose, percentages of female rats and significant differences 
between groups see tables below. R² = 0.09, the relationship may not be linear. 
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Analogous to the other drugs studied, dopaminergic response to cocaine was 

examined with respect to the animals’ sex. There is only a limited number of studies 

on cocaine-induced effects on the caudate putamen. Nevertheless, there were 

significant differences for one dose group only: male animals had a significantly 

higher dopamine value at 15 mg/kg cocaine than females (table 23). F (1,8) = 5.32, p 

= 0.009.  

 

Table 23: Peak percentage baseline values of dopamine in female vs. male rats in the 
caudate putamen 

Sex 
Peak percentage baseline 

value after 15 mg/kg cocaine 

Female 295.22 ± 24.06 

Male 364.21 ± 3.03 

 

Table 24: Peak percentage baseline values in the caudate putamen after different dosages of 
cocaine 

Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

N 
of rats 

n of 

females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

10 309.89 ± 0.89 - 213 22 (10) - - 

15 
295.22 ± 24.06 Female 9 9 (100) 

0.009 
5.32 

(1,8) 364.21 ± 3.03 Male 57 0 (0) 

20 

267.14 ± 1.56 
Other 
strains 

122 6 (5) 

0.008 
4.35 

(3,18) 
392.5 ± 101.25 

Long 
Evans 

24 0 (0) 

 

Regarding the other effect modifiers, no significant differences were detected, except 

for the rats’ strain: at 20 mg/kg ANOVA showed a higher peak percentage baseline 

value in Long Evans. F (3,18) = 4.35, p = 0.008. See table 25. 
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Table 25: Peak percentage baseline values of dopamine in female vs. male rats in the 
caudate putamen 

*Sprague-Dawley, Wistar and spontaneously hypertensive rats 

Strain 
Peak percentage baseline 

value after 20 mg/kg cocaine 

Other strains* 267.14 ± 1.56 

Long Evans 392.5 ± 101.25 

 

3.2.4 Morphine 

The online search led to data of 102 female rats, provided by 5 original publications. 

Another 16 studies were included from Gruhlke et al., leading to an overall amount of 

21 publications with measurements in the striatal complex after acute morphine 

administration: Borg & Taylor, 1997; Cadoni & Di Chiara, 2007; Di Giannuario, 

Pieretti, Catalani, & Loizzo, 1999; Fadda, Scherma, Fresu, Collu, & Fratta, 2003; 

Johnson & Glick, 1993, 1994; Jonsson, Adermark, Ericson, & Soderpalm, 2014; M. 

R. Kim et al., 2005; Maisonneuve & Glick, 1999; Maisonneuve, Keller, & Glick, 1991; 

Pearl, Maisonneuve, & Glick, 1996; Pothos et al., 1991; E. N. Pothos, Creese, & 

Hoebel, 1995; Pozzi, Trabace, Invernizzi, & Samanin, 1995; Rada, Mark, Pothos, & 

Hoebel, 1991; Steinmiller, Maisonneuve, & Glick, 2003; Sustkova-Fiserova, Jerabek, 

Havlickova, Kacer, & Krsiak, 2014; Szumlinski, Maisonneuve, & Glick, 2000; Tanda & 

Di Chiara, 1998; Willins & Meltzer, 1998; Yong et al., 2012. 

 

In this passage, the results for both brain regions will be presented together. 

Regarding the nucleus accumbens, three different dosages (5, 20 and 30 mg/kg) of 

morphine were administered, with a total amount of 229 animals, including 77 female 

rats. Some of the animals had concurrent measurements in both brain regions. 

Concerning the caudate putamen, only two dosages (5 and 30 mg/kg), which 

included 62 animals (54 females), were administered.  

There were no studies with local administration.  
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At the dosage of 30 mg/kg, only female rats were present – for both brain regions. 

The other two dosages contained animals of both sexes and therefor made a 

comparison between females and males possible. 

 

At the dose of 5 mg/kg, dopamine levels in both brain regions were increased. 

Moreover, also the 20 mg/kg dose led to an enhancement in the nucleus accumbens. 

There were no sex differences regarding the peak percentage baseline levels of 

dopamine at these dosages, see table 26.  

 

Table 26: Peak percentage baseline values of striatal dopamine after different dosages of 
morphine, NAc above, CPu below the grey line 

Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

N 
of rats 

n of 
females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

5 195.09 ± 0.73 - 138 23 (17) - - 

20 262.49 ± 17.48 - 55 18 (33) - - 

30 92 ± 1.6 - 30 30 (100) - - 
 

5 165.46 ± 2.87 - 26 18 (58) - - 

30 92 ± 1.6 - 30 30 (100) - - 

 

Surprisingly, at the highest dosage of 30 mg/kg, there was a reduction of dopamine 

to about 90% of the baseline concentration of both brain regions. The data for both 

groups came from the same three studies (Johnson & Glick, 1993, 1994; 

Maisonneuve, Keller, & Glick, 1991). Regarding the low number of studies in these 

dose groups, more data is needed for a reliable conclusion.  

 

Consequently, the correlation analyses showed no positive dose-response 

relationship for neither brain region: in the nucleus accumbens, the highest dose of 

30 mg/kg produced the lowest average peak percentage baseline and there was no 

dose-dependent effect, whatsoever (r = -0.51).  

In the caudate putamen there was a negative dose-dependent correlation (r = -1). 

See figure 26a and b for a graphical representation and for the respective references 

and peak time see chapter 7.5 in the appendix. 
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Figure 26a, b: Averages of the dose-dependent effect of morphine on striatal dopamine (n = 
291 rats) 

NAc above: n = 229 animals. R² = 0.26, the relationship may not be linear. 

CPu below: n = 62 animals. There is a linear relationship, R² = 1. 

For number of animals per dose and percentages of female rats see table above   
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3.2.5 Nicotine 

There was only data for measurement in the nucleus accumbens of 48 female rats, 

obtained by six studies. Another 15 studies have been provided by Staudenmaier et 

al., adding up to 21 included studies in total: Balfour, Birrell, Moran, & Benwell, 1996; 

Bassareo, De Luca, & Di Chiara, 2007; Benwell, Balfour, & Birrell, 1995; Birrell & 

Balfour, 1998; Cadoni & Di Chiara, 2000; Cadoni, Muto, & Di Chiara, 2009; Cadoni, 

Solinas, Valentini, & Di Chiara, 2003; Carboni, Silvagni, Rolando, & Di Chiara, 2000; 

Dewey et al., 1999; Ding et al., 2012; Eggan & McCallum, 2016, 2017; Ferrari, Le 

Novere, Picciotto, Changeux, & Zoli, 2002; Iyaniwura, Wright, & Balfour, 2001; 

Jonsson, Adermark, Ericson, & Soderpalm, 2014; Maisonneuve & Glick, 1999; 

McCallum, Cowe, Lewis, & Glick, 2012; Mirza, Pei, Stolerman, & Zetterstrom, 1996; 

Shoaib & Shippenberg, 1996; Steinmiller, Maisonneuve, & Glick, 2003; Wang et al., 

2015. 

 

Nicotine was administered at 0.4 mg/kg systemically, and locally at 200 µM to a total 

amount of 190 animals. For local administration nicotine was perfused directly into 

the posterior ventral tegmental area. There were no male rats found that were 

administered locally. Therefore, the data allowed no comparison in this group. In the 

bigger 0.4 mg/kg group, both sexes were present, and therefore a male-female 

comparison was possible. 

 

Table 27: Peak percentage baseline values in the nucleus accumbens after different dosages 
of nicotine 

Dose 
(mg/kg) 

 

Peak% BL 
(weighted average) 

± SEM 

Sub 
group 

n 
of rats 

n of 
females 

(%) 

P-
value 

Critical 
value 

(degrees 
of 

freedom) 

0.4 157.73 ± 0.36 - 175  32.5 (19) - - 

200 µM 125 ± 15 - 9 9 (100) - - 

 

At a dose of 0.4mg/kg, systemically administered nicotine increased dopamine levels 

without any difference between male and female animals. In analogy to the systemic 

administration, locally administered nicotine also enhanced dopamine transmission in 
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the nucleus accumbens. See table 27 and chapter 7.6 in the appendix for the 

corresponding references and peak times.   

As the results provided only one dose for systemic and one for local administration, 

the dose-dependent effect of nicotine could not be studied through a correlation 

analysis. 
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4 DISCUSSION 

In this section, the results are interpreted in the order they were presented earlier and 

put in the context of previous findings. Moreover, some limitations of this thesis, a 

conclusion and a short outlook are given. 

 

In recent years, the topic of sex differences has rightfully become a focus of scientific 

research (Bangasser & Valentino, 2014; Bobzean et al., 2014; Kaczkurkin, 

Raznahan, & Satterthwaite, 2019; Rubinow & Schmidt, 2019) and current findings 

suggest sexual dimorphisms in the neurophysiological brain pathways that are crucial 

for drug intake and addictive behavior (Becker & Chartoff, 2018). ‘Yet, how potential 

sex differences are manifested at a neurochemical level remains unclear’ (Egenrieder 

et al., 2020).  

Nevertheless, female subjects have been systemically ignored for decades in the 

field of microdialysis experiments and therefore, most of the studies using female 

animals provide only small numbers. Moreover, there is increasing evidence that 

single preclinical studies often lack reproducibility (Arrowsmith, 2011; Begley & 

Ioannidis, 2015; Peers et al., 2012; Prinz et al., 2011). Therefore, this thesis used a 

hypothesis-free meta-analysis approach that provides adequate statistical power for 

this subject area. 

 

Microdialysis is a well-established method to detect neurotransmitter concentrations 

in rats. Although it has existed for several decades there are neither standardized 

procedures nor generally accepted basal values.  

Therefore, the main aim of this meta-analysis was to screen the online library 

PubMed for microdialysis experiments with female rats, in order to analyze whether 

the data indicate a difference in the dopaminergic overflow in reaction to drugs of 

abuse in male and female rats. The search query focused on studies containing the 

acute administration of alcohol, amphetamine, cocaine, morphine or nicotine (and 

tetrahydrocannabinol), and the following detection of dopamine (DA) in the striatal 

complex – that is the nucleus accumbens (NAc) and the caudate putamen (CPu).  
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Hence, this thesis provides a wide overview of the distribution of female rats in 

microdialysis studies in the field of addiction research. Additionally, it presents a 

variety of averages of the peak percentage baseline value of striatal dopamine after 

the acute administration of five different drugs of abuse for both, male and female 

rats. It therefore offers a universal framework for preclinical experimental designs. 

 

4.1 Global statistics: included animals and microdialysis settings 

The included experiments were analyzed globally: the main part of the distribution of 

the rats’ properties was similar to previous meta-analyses by the work group. 

Regarding the animals’ sex, the share of female rats was relatively low, even though 

the specific aim of this thesis was to find datasets of females: 11.6% (n = 842) of the 

animals were female. But, as expected, this sex gap was smaller than in previous 

meta-analyses on microdialysis studies that did not put their focus on female animals 

(Fliegel et al., 2013; Fritze et al., 2017; Noori, Fliegel, et al., 2012).  

Overall, this thesis provides the peak percentage baseline values of DA of 7244 rats 

out of 459 publications and 103 different administered dosages of the five drugs of 

abuse. Some of the dosages of administered cocaine and amphetamine did not 

contain females at all. Some other dosages (3 g/kg alcohol, all local dosages of 

alcohol, morphine at 30 mg/kg in the nucleus accumbens and the caudate putamen 

and nicotine, locally administered) did only contain females and therefore allowed no 

comparison.  

 

Regarding the other properties of the included animals, the preponderance of 

Sprague-Dawley is consistent with other meta-analyses on microdialysis experiments 

(Fliegel et al., 2013; Frank et al., 2008; Fritze et al., 2017; Noori, Fliegel, et al., 2012). 

Also, the fact that most of the included animals were adult (Fritze et al., 2017), 

administered via the peritoneum (Fliegel et al., 2013; Frank et al., 2008; Fritze et al., 

2017) and awake (Fliegel et al., 2013; Fritze et al., 2017) is concordant with other 

authors.  

 

There is a variety of different settings for a microdialysis experiment. The distribution 

found in this study is also mostly consistent with the findings of previous analyses 

(Fliegel et al., 2013; Frank et al., 2008; Fritze et al., 2017; Noori, Fliegel, et al., 2012). 
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In conclusion, this means that even though there are no standardized procedures for 

microdialysis experiments yet, at least the sum of the single settings of the studies is 

quite similar in different meta-analyses. Therefore, comparability is given and the 

concept of this work to combine the obtained results with data of other meta-analyses 

seems to be reasonable. 

 

4.2 Comparison of the level of dopamine 

For the further analysis of the dopamine levels regarding the animals’ sex, one-way 

ANOVA was conducted on the different dosages of the five drugs of abuse. 

 

Overall, no sex differences were found regarding the variety of drugs and doses, 

except for some single dosages. Females had higher levels of DA at two dosages of 

amphetamine in the CPu and at one dose of ethanol in the NAc. For one dose of 

cocaine an opposing tendency was found in the CPu. Analyzing all other drugs and 

dosages, there were no significant differences in the dopamine overflow of males and 

females, whatsoever. 

Interestingly, further calculations in the published paper on this thesis (Egenrieder et 

al., 2020), that included also the basal values of dopamine, showed that ‘the most 

critical effect modifier was ovariectomy (OVX)’. Hence, as female rats are often 

ovariectomized and ‘OVX leads to a significant reduction of basal DA levels in 

caudate putamen but not in nucleus accumbens’ (Egenrieder et al., 2020) this may 

be one explanation for previous results suggesting sex differences in CPu. 

Thereby, as stated in the paper ‘consequently, a procedure such as OVX that leads 

to a significant change in basal levels in comparison to non-ovariectomized females 

will affect all following pharmacological manipulations. Therefore, statistical tests of 

drug response in OVX and male rats are objectively not optimal to address sex 

differences, even when a hormonal pre-treatment was applied’ (Egenrieder et al., 

2020).  

In this thesis, 20% of the studies that included female animals described the subjects 

explicitly as ovariectomized. Another 62% did not mention the hormonal state of the 

subjects at all, indicating that some of those may as well have been OVX. Only in five 

experiments (equaling 18% of all included studies with females) the estrous cycle 

was mentioned, and the exact state was only given in one study, which equals 2% of 
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the included studies. Therefore, the dataset of this thesis did not provide sufficient 

data for a further analysis of the impact of the females’ cycle on drug-dependent 

effects and did therefore not allow any conclusion. This clearly is both, an important 

outcome and a limitation of the present work. 

 

Although no sex differences were found, the data suggest that almost all dosages of 

the five drugs of abuse consistently increase the extracellular level of dopamine in 

the CPu and the NAc. This is in accordance with the other publication on this work 

that put the data in a greater context by combining the results of this thesis with those 

of several datasets of the work group at the Institute of Psychopharmacology of the 

Central Institute of Mental Health (Noori et al., 2018). Thereby, Noori et al. show an 

interaction of about 260 neuropsychiatric drugs with the dopaminergic system and 

raise the question ‘if dopamine possesses the necessary specificity to be considered 

as a reliable marker for drug effects’ (Egenrieder et al., 2020). 

 

Concerning the state of consciousness, as mentioned earlier, only cocaine and 

amphetamine were administered to anesthetized animals. Therefore, this work can 

only draw conclusions regarding these two drugs. Almost all dose groups showed no 

significant difference when the rats were anesthetized, consistent with earlier findings 

described by other authors (Fink-Jensen et al., 1994; Hamilton, Mele, & Pert, 1992). 

The only significances found by the present work indicated that anesthetized animals 

had a higher peak percentage baseline value in the CPu at two doses of 

amphetamine, or in the NAc at two doses of cocaine. 

The route of administration affected in some cases of amphetamine or cocaine 

administration the dopaminergic overflow. As might be expected, it was highest when 

the rats received the drugs intravenously. The subcutaneous or intraperitoneal route 

of administration led to lower peak percentage baseline values. 

The peak percentage baseline values were consistently stable for almost all drugs 

and dosages with respect to the animals’ age and strain.  

Unsurprisingly, there was a significantly higher dopamine overflow in the CPu when 

d-amphetamine was administered, compared to the dextro-, levoamphetamine 

racemate, as d-amphetamine is known to be the enantiomer with a higher potency. 

 



Discussion 

 

88 

 

4.3 Dose-dependent effects of the drugs of abuse 

A correlation analysis was done for each drug and brain region to detect linear 

relationships. Local and systemic administration were distinguished and calculated 

separately. For a systematic overview of the dose-dependent effects of the drugs see 

table 28. 

A dose-dependent increase of dopamine (↑) in the nucleus accumbens was found for 

systemically and locally administered alcohol and systemically administered cocaine.   

In the caudate putamen higher levels of systemically administered alcohol or locally 

administered cocaine had a decreasing effect (↓) on the dopamine overflow. A dose-

dependent decrease was also found for morphine in both brain regions, but as 

mentioned earlier, regarding the low number of studies in these dose groups, more 

data is needed for a reliable conclusion. 

Amphetamine had no dose-dependent effects (↔). Neither was there a correlation 

between the local administration of cocaine and the accumbal dopamine overflow. 

For nicotine the results did not provide enough datasets for a correlation analysis. 

 

Table 28: dose-dependent effect of the five drugs of abuse: systemic administration above, 
local administration below the grey line  

(↑ = increase, ↓ = decrease, ↔ = no dose-dependent effect on DA overflow) 

Cocaine was administered either once or continuously perfused. Tendency for the latter one 
is given in parenthesis. 

For nicotine there were only single doses with measurement in the nucleus accumbens and 
no measurements in the caudate putamen. Therefore, no tendency could be detected 

Drug 

 
Brain region Effect 

Alcohol 

nucleus accumbens ↑ 

caudate putamen ↓↓↓ 

Amphetamine 

nucleus accumbens ↔ 

caudate putamen ↔ 

Cocaine  

nucleus accumbens 
↑↑  

  (↑↑↑) 

caudate putamen ↔  
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Drug 

 
Brain region Effect 

Morphine  

nucleus accumbens ↓↓ 

caudate putamen ↓↓↓ 

Nicotine  

nucleus accumbens - 

caudate putamen - 

 

Alcohol  nucleus accumbens ↑↑↑ 

Cocaine  

nucleus accumbens ↔  

caudate putamen ↓ 

 

This lack of a positive dose-dependent relation for some drugs could be explained by 

the fact that the focus was only on those dosages that included female rats. 

Therefore, some dosages contained rather small groups of animals that led to an 

overrepresentation of single experiments and a disrupting effect with regard to the 

correlation analysis.  

Due to the search method, only cocaine provided each dosage without the focus on 

those containing female animals. The dose-dependent relationship is in accordance 

with previous studies (Frank et al., 2008). 

 

4.4 Drawbacks and limitations 

The focus of this thesis lied on the imitated situation of single acute drug intake. But 

this is, as Koob et al. showed, far from the complex evolution of an addiction and 

ignores the crucial long-term neuroadaptive changes that finally result in the disease 

(Koob & Volkow, 2010). Neither does this work pay attention to the essential 

environment-individual interactions that are an important part of the disease. In 

consequence, there is a limited transferability of the results to humans and the 

clinical field. 
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As mentioned before, big data approaches are valuable and powerful means in 

modern life science and notably in evidence-based medicine and have recently 

demonstrated their importance regarding basic research. Nevertheless, although this 

is the particular strength of this thesis, it implies also drawbacks: as mentioned 

earlier, until today, there are no standardized procedures that guarantee a 

comparability of the different studies. For instance, laboratory methods can differ 

between the work groups and over the course of time. For the included studies the 

years of publication range from 1986 to 2017, equaling more than three decades. ‘In 

addition, the accuracy of the outcomes of a meta-analysis strongly depends on the 

quality of the experimental procedures and reporting of the studies that it integrates’ 

(Egenrieder et al., 2020).  

Moreover, the fact that a part of the data was received by other meta-analyses, could 

be a weakness: other authors may have slightly varying interpretation of the in- and 

exclusion criteria.  

Another possible limitation is inherent to the specific question of this thesis: the lack 

of studies with female subjects leads to small numbers and therefore made it, as 

mentioned earlier, in some cases difficult to draw conclusions or to establish 

generalizations based on the dataset. 

Another example for the lack of standardized procedures are the distinct 

experimental settings, e.g. the basal level of dopamine: each laboratory defines its 

own baseline, depending on the first few samples of the experiment. That can lead to 

differing underlying values and therefore produce calculated peaks of varying highs. 

Furthermore, ‘there is large variability in perfusion rates, exact positioning of 

microdialysis probe, age of the animals and even in how the results are reported that 

may affect the overall findings’ (Egenrieder et al., 2020). 

 

Apart of that, during the PubMed query, no difference was made in the quality of the 

included papers. Therefore, as Sena et al. stated: ‘Empirical evidence suggests that 

too many preclinical experiments lack methodological rigor, and this leads to inflated 

treatment effects’ (Sena et al., 2014).  

Another limitation is the choice of drugs that necessarily excludes other important 

substances and diseases. For example, all the legally prescribed drugs (apart of 

morphine) or the substance-independent addictions (gambling and others). 



Discussion 

 

91 

 

Furthermore, there could be sex differences in other neuro-circuits, brain regions and 

neurotransmitter systems that were not subject to this present thesis. 

 

Keeping these limitations in mind, the present thesis aims to present a variety of 

averages of the peak percentage baseline value of dopamine (DA) in the nucleus 

accumbens (NAc) or the caudate putamen (CPu) after acute drug administration.  

Its purpose is to offer a universal framework for preclinical experimental designs.  

 

4.5 Conclusion and outlook 

There are two contrary paradigms that have been stated as reasons for the exclusion 

of females: they were thought to be either more variable or to react exactly like male 

subjects (and therefore have not to be further considered). These two hypotheses 

must be either verified or falsified before they can further serve as a basis to 

systemically exclude female animals.  

 

In conclusion, this thesis found no overall differences in the drug induced overflow of 

male and female rats within the striatal complex. However, the few differences that 

were found seem to be due to small sample sizes and may as well be affected by the 

fact that a share of the female animals were ovariectomized. Because, as the 

corresponding publication on this thesis showed, ‘the most critical effect modifier was 

ovariectomy’ (Egenrieder et al., 2020). And moreover, ‘an impact of ovariectomie on 

basal levels was found’ (Egenrieder et al., 2020). Therefore, pharmaceutical 

interventions on ovariectomized females lead to biased results, compared to females 

without previous operation. For the females that were not ovariectomized, the 

frequency of the monitoring of the estrous cycle was analyzed: the exact state was 

mentioned by one author only. 

 

Besides, all drugs under investigation enhanced the dopaminergic transmission in 

the striatal complex, i.e. the caudate putamen and the nucleus accumbens. The 

enhancement accounted for both sexes equally.  

Correlation analysis showed a positive dose-response relationship for some drugs 

but not for all. Alcohol and cocaine had a positive correlation regarding the 

administered dose and the accumbal dopamine overflow. In the caudate putamen the 
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magnitude of the administered dose had no (amphetamine and cocaine) or even a 

negative (alcohol and morphine) dose-dependent effect. 

The dataset showed robustness of the traits strain, age, stage of consciousness and 

route of administration, which is concordant with previous findings of the work group. 

 

Overall, the neglect of female subjects in basic research, which had lasted for 

decades and is far from defeated, was a phenomenon well reflected in the search 

query and the results of this thesis: there were few studies that included female 

animals compared to the amount of male-focused experiments. 

Therefore, as soon as both sexes will equally be used as subjects, a whole new 

aspect of research will emerge in general and for the reward circuit. For example, 

there will be new possibilities for the analysis of different housing conditions. 

Regarding single-sex experiments, it is already known that the fact if an animal is 

either group or individually housed influences the dopamine neurotransmission as 

well as the amount of drug self-administration (Engleman, Ingraham, O'Brien, 

McBride, & Murphy, 2004; Westenbroek et al., 2017). If both sexes are included, it is 

possible that the housing condition has an even greater effect: a more naturalistic 

setting could be established by studying the influence of mixed-sex pair or group 

housing.  

Even more potential lies in the exact monitoring of the state of the estrous cycle, 

since this is often named as a reason for the exclusion of female subjects. Since (as 

shown also in this work) the cycle is seldom monitored, there are insufficient data on 

the subject which impact it has on dopaminergic transmission. 

It can be also stated that standardized procedures for the microdialysis technique 

seem to be overdue but at least the sum of the single settings of the studies is quite 

similar in different meta-analyses and thereby, comparability is given.  

The present work aims to provide a framework for both: for the standardization of 

microdialysis studies in general and for the inclusion of females in studies about the 

neurobiological mechanisms of addiction. 
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5 SUMMARY 

In recent years, the topic of sex differences has rightfully become a focus of scientific 

research. Current findings suggest sexual dimorphism in the neurophysiological brain 

pathways that are crucial for drug-seeking and addictive behavior, but how this 

affects the underlying neurochemical processes, is still widely unexplored. 

Nevertheless, female subjects have been systemically ignored for decades in the 

field of microdialysis experiments and the few existing studies using female animals 

provide only small numbers. Moreover, there is increasing evidence that single 

preclinical studies often lack reproducibility.  

Therefore, a hypothesis-free meta-analysis approach was used that provides 

adequate statistical power for this subject area. The main question of this thesis was 

whether data of microdialysis experiments indicate a difference in the dopaminergic 

overflow in reaction to drugs of abuse in male and female rats.  

Thereby, systematic data mining was performed on the PubMed online library 

(https://www.ncbi.nlm.nih.gov/pubmed/) focusing on studies measuring extracellular 

dopamine concentrations in the striatal complex. The focused lied on six drugs of 

abuse (alcohol, amphetamine, cocaine, nicotine, morphine and tetrahydrocannabinol) 

and two brain regions (caudate putamen and nucleus accumbens). 

 

Data from 45 microdialysis experiments on female rats (number of animals = 842) 

were extracted and statistically compared with data from 6402 male rats. Overall, 291 

studies were included, providing averages of the peak percentage baseline value of 

dopamine for 103 different dosages. All drugs under investigation notably increased 

the dopaminergic transmission in the striatal complex. For some drugs, a positive 

dose-response relationship was detected.  

Regarding the entity of dose groups, no sex differences in the dopaminergic 

response to drugs of abuse were found, but for some small subgroups. Neither did 

the rats’ age, strain, stage of consciousness or the route of administration have an 

impact on the overall peak percentage baseline values, suggesting robustness of 

these parameters. Attempts were also made to extract the rats’ estrous cycle as a 

variable, but only one study monitored it. 

https://www.ncbi.nlm.nih.gov/pubmed/
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Overall, the neglect of female subjects in basic research, which had lasted for 

decades and is far from defeated, was a phenomenon well reflected in the results of 

the search query in this thesis.  

What can be therefore concluded, is that future research should intensify its efforts to 

include female subjects and to close the sex-gap in preclinical as well as in clinical 

research. This will provide more data that are crucial to get valid results about sex 

similarities or differences, as this thesis only shed light on a small subdivision. 
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7 LIST OF APPENDICES 

7.1 Global statistics 

Table 29: Number of animals per drug/ keyword combination 

Drug Number of included animals

Amphetamine 402

Cocaine females                                                            

(male rats)

282                                                              

(3805)

Alcohol 289

Morphine 54

Nicotine 48

SUM 4879  

 

Table 30: Used perfusion solutions in percent 

% aCSF % Ringer % Others % Not specified

49 27 16 8  

 

 

7.2 Alcohol 

7.2.1 Nucleus accumbens 

Table 31: Peak percentage baseline values of accumbal dopamine after the administration of 
different doses of alcohol 

D
o
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e
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Peak% 
BL 

(weight
ed 

averag
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± SEM 
(peak 

time[m
in]) 
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group 

n 
of 
rat
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% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.25 178.45 
± 8.41 

(82.26) 
- 31 50 - - 

(Blanchard & Glick, 1995; Blanchard, 
Steindorf, Wang, & Glick, 1993) 

0.5 

171.74 
± 10.73 

(100) 
female 28 100 

0,018 
4.84 

(1,11) 

(Blanchard & Glick, 1995; Blanchard, 
Steindorf, Wang, & Glick, 1993; 
Blanchard, Steindorf, Wang, 
LeFevre, et al., 1993) 

127.10 ± 1.76 male 62 0 
(Blanchard & Glick, 1995; Blanchard, 

Steindorf, Wang, & Glick, 1993; 
Blanchard, Steindorf, Wang, 

LeFevre, et al., 1993; Howard, 
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± SEM 
(peak 

time[m
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of 
rat
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% 
of 

rats 
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ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
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References 

(32.37)  Schier, Wetzel, Duvauchelle, & 
Gonzales, 2008; Mocsary & 
Bradberry, 1996; Yan, 1999; 

Yoshimoto, McBride, Lumeng, & Li, 
1992a, 1992b) 

1 155.43 
± 1.93 

(53.09) 
- 

13
9 

21 - - 

(Blanchard & Glick, 1995; Blanchard, 
Steindorf, Wang, & Glick, 1993; 
Blanchard, Steindorf, Wang, 
LeFevre, et al., 1993; Bustamante et 
al., 2008; Campbell & McBride, 1995; 
C. Heidbreder & De Witte, 1993; 
Howard et al., 2008; Mocsary & 
Bradberry, 1996; D. L. Robinson, 
Howard, McConnell, Gonzales, & 
Wightman, 2009; Yan, 1999; Yan, 
Zheng, Feng, & Yan, 2005; Yoon et 
al., 2004; Yoshimoto, McBride, et al., 
1992a, 1992b) 

2 151.53 
± 1.42 

(51.23) 
- 75 15 - - 

(Blanchard, Steindorf, Wang, & Glick, 
1993; Campbell & McBride, 1995; 
Kohl, Katner, Chernet, & McBride, 
1998; Mocsary & Bradberry, 1996; D. 
L. Robinson et al., 2009; Yan, 1999; 
Yan et al., 2005; Yoshimoto, 
McBride, et al., 1992a, 1992b) 

3 200 
± 25 

(40) 
- 4 100 - - (Kohl et al., 1998) 

50mg
% 

85 
± 4 

(20) 
- 7 100 - - 

(Ding, Ingraham, Rodd, & McBride, 
2016) 

100m
g% 

122.27 
± 4.32 

(47.27) 
- 11 100 - - 

(Ding et al., 2012; Ding, Rodd, 
Engleman, & McBride, 2009) 

150m
g% 

145 
± 12 

(20) 
- 7 100 - - (Ding et al., 2016) 

200m
g% 

138.15 
± 4.60 

(44.44) 
- 27 100 - - (Ding et al., 2012; Ding et al., 2009) 

300m
g% 

145 
± 10 

(40) 
- 4 100 - - (Ding et al., 2009) 
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7.2.2 Caudate putamen 

Table 32: Peak percentage baseline values of dopamine in caudate putamen after the 
administration of different doses of alcohol 

D
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Peak% 
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(weight
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averag
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± SEM 
(peak 

time[m
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Sub 
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of 
rat
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% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.25 140.77 
± 4.45 

(93.87) 
- 31 50 - - 

(Blanchard & Glick, 1995; 
Blanchard, Steindorf, Wang, & 
Glick, 1993) 

0.5 160.01 
± 2.73 

(40) 
- 52 53 - - 

(Blanchard & Glick, 1995; 
Blanchard, Steindorf, Wang, & 
Glick, 1993; Blanchard, 
Steindorf, Wang, LeFevre, et al., 
1993) 

1 123.28 
± 2.04 

(41.02) 
- 49 22 - - 

(Blanchard & Glick, 1995; 
Blanchard, Steindorf, Wang, & 
Glick, 1993; Blanchard, 
Steindorf, Wang, LeFevre, et al., 
1993) 

2 95.54 
± 6.72 

(68) 
- 35 55 - - 

(Blanchard, Steindorf, Wang, & 
Glick, 1993; Yoshimoto, Komura, 
& Kawamura, 1992) 

 

 

7.3 Amphetamine 

7.3.1 Nucleus accumbens 

Table 33: Peak percentage baseline values of accumbal dopamine after the administration of 
different doses of amphetamine 
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s
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time[m
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rat
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% 
of 

rats 
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Critic
al 

value 

(degr
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freed
om) 

References 

0.5 392.15 
± 1.39 

(45.86) 
- 

26
0 

6 - - 

(A. L. Auclair et al., 2010; Badiani et al., 
2000; Birrell & Balfour, 1998; Cagiano et 
al., 1998; Choi, Ahn, Wang, & Phillips, 
2014; Darracq, Blanc, Glowinski, & Tassin, 
1998; Di Chiara, Tanda, Frau, & Carboni, 
1993; Fabricius, Steiniger-Brach, Helboe, 
Fink-Jensen, & Wortwein, 2011; Hall et al., 
1998; Hall, Wilkinson, Humby, & Robbins, 
1999; Harmer, Hitchcott, Morutto, & Phillips, 
1997; Ichikawa, Kuroki, & Meltzer, 1998; 
Kehoe, Shoemaker, Arons, Triano, & 
Suresh, 1998; Mattsson, Olson, Svensson, 
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of 
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% 
of 
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fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
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References 

& Schilstrom, 2007; Pacchioni, Cador, 
Bregonzio, & Cancela, 2007; Pani, Kuzmin, 
Diana, et al., 1990; Paulson & Robinson, 
1995; Porras, Di Matteo, Fracasso, et al., 
2002; Rahman et al., 2008; Rowley et al., 
2000; Sotty, Damgaard, et al., 2009; Sotty, 
Montezinho, Steiniger-Brach, & Nielsen, 
2009; Steketee & Kalivas, 1992; Stewart, 
Deschamps, & Amir, 1994; Tronci, Simola, 
Carta, De Luca, & Morelli, 2006) 

0.75 352.27 
± 42.05 

(31.36) 
- 11 55 - - 

(A. Auclair, Blanc, Glowinski, & Tassin, 
2004; T. E. Robinson & Camp, 1990) 

1 791.46 
± 4.23 

(39) 
- 

23
5 

2 - - 

(Afanas'ev, Ferger, & Kuschinsky, 2000; 
Byun et al., 2014; Carboni, Imperato, 

Perezzani, & Di Chiara, 1989; Choi et al., 
2014; Coutureau, Lena, Dauge, & Di Scala, 
2002; De Deurwaerdere, Moison, Navailles, 
Porras, & Spampinato, 2005; Di Chiara et 

al., 1993; Frantz, Hansson, Stouffer, & 
Parsons, 2002; Hall et al., 1998; Hamilton, 

Redondo, & Freeman, 2000; Ichikawa, 
Kuroki, Kitchen, & Meltzer, 1995; Ichikawa 

& Meltzer, 1992b, 1995; Kim, Austin, 
Tanabe, Creekmore, & Vezina, 2005; 
Kimura, Nomikos, & Svensson, 1993; 

McCallum, Cowe, Lewis, & Glick, 2012; 
Meyer & Bardo, 2015; Moghaddam & 
Bunney, 1989; Nicholson et al., 2009; 
Peleg-Raibstein & Feldon, 2006; T. E. 

Robinson & Camp, 1990; Vezina, 1993; 
Warburton, Mitchell, & Joseph, 1996) 

1.25 903.83 
± 45.88 

(40) 
- 30 40 - - 

(Glick, Rossman, Wang, Dong, & Keller, 
1993; Lategan, Marien, & Colpaert, 1990; 
Maisonneuve, Keller, & Glick, 1992; Olson 

& Justice, 1993) 

1.5 523.90 
± 2.05 

(40.05) 
- 

16
8 

11 - - 

(Castaneda, Moss, Oddie, & Whishaw, 
1991; Druhan, Rajabi, & Stewart, 1996; 

Fiorino & Phillips, 1999; Geiger et al., 2009; 
Hertel et al., 1995; Huang, Wang, Tai, Tsai, 
& Peng, 1995; Humby, Wilkinson, Robbins, 
& Geyer, 1996; Imperato et al., 1996; King, 
Zigmond, & Finlay, 1997; Naef et al., 2011; 
Nomikos, Damsma, Wenkstern, & Fibiger, 
1991; Nomikos, Zis, Damsma, & Fibiger, 
1991; E. N. Pothos, Creese, & Hoebel, 
1995; Reid, Ho, Tolliver, Wolkowitz, & 
Berger, 1998; T. E. Robinson & Camp, 
1990; Rowley et al., 2000; Stewart & 

Rajabi, 1996; Tolliver, Ho, Reid, & Berger, 
1996; Wan, Giovanni, Kafka, & Corbett, 
1996; Whishaw, Fiorino, Mittleman, & 

Castaneda, 1992; Wilkinson et al., 1993) 

2 
1213.1

6 

± 9.03 

(47.93) 
- 

19
9 

7 - - 

(Arnold, Nelson, Neigh, Sarter, & Bruno, 
2000; A. Auclair et al., 2004; Badiani et al., 
1998; Darracq et al., 1998; Di Chiara et al., 

1993; Flagstad et al., 2004; Hall et al., 
1998; L. Hernandez, Stanley, & Hoebel, 

1986; Ichikawa & Meltzer, 1992a; 
Kaariainen et al., 2008; McKittrick & 

Abercrombie, 2007; C. L. Nelson, Sarter, & 
Bruno, 2000; Olsson et al., 2009; Porras, Di 

Matteo, De Deurwaerdere, Esposito, & 
Spampinato, 2002; Porras, Di Matteo, 
Fracasso, et al., 2002; Reid, Herrera-
Marschitz, & Ungerstedt, 1991; T. E. 

Robinson, Jurson, Bennett, & Bentgen, 
1988; Shoblock, Sullivan, Maisonneuve, & 

Glick, 2003; Wilkinson et al., 1994) 

3 
1024.7

7 

± 84.53 

(29.47) 
- 65 8 - - 

(Bradberry, Gruen, Berridge, & Roth, 1991; 
Y. C. Chen, Choi, Andersen, Rosen, & 

Jenkins, 2005; Nicholson et al., 2009; T. E. 
Robinson & Camp, 1990) 

7.5 387.8 ± 65.9 - 25 50 - - 
(Kehoe, Shoemaker, Triano, Hoffman, & 

Arons, 1996) 



List of Appendices 

 

144 

 

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

(30) 

1µM 342.42 
± 12.12 

(53.94) 
- 33 18 - - 

(Birrell & Balfour, 1998; Brown, Nomikos, 
Wilson, & Fibiger, 1991; Glick et al., 1993; 

Huang et al., 1995) 

 

7.3.2 Caudate putamen 

Table 34: peak percentage baseline values of dopamine in caudate putamen of 
intraperitoneally vs. intravenously and subcutaneously administered animals 

Route of administration 
Peak percentage baseline 

value after 1 mg/kg of  
d-amphetamine 

i.p. 334.05 ± 6.46 

i.v. + s.c. 1372.82 ± 12.35 

 

Table 35: Peak percentage baseline values of dopamine in caudate putamen after the 
administration of different doses of amphetamine 

Dosages with female animals in bold characters 

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.5 

d+l-
amph 

901.02 
± 16.36 

(39.18) 
Female 49 100 

0.001 
4.84 

(1,11) 

(Feifel, Shilling, Kuczenski, & Segal, 2003; 
Florin, Kuczenski, & Segal, 1994; 
Kuczenski & Segal, 1989; Nowak et al., 
2007; Sershen et al., 2008; Shams et al., 
2016; Sharp et al., 1987; Tepper, Creese, & 
Schwartz, 1991) 

477.05 
± 15.24  

(30.73) 
Male 44 0  
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D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.75  368.95 
± 2.98 

(64.21) 
- 19 36 - - 

(T. E. Robinson & Camp, 1990; Zhu, 
Sullivan, & Brioni, 1999) 

1 

d+l-
amph 

489.3 
± 3.3 

(46.39) 

d+l-
amph 

14
9 

0 0.007 
4.06 

(1,44) 

(al-Tajir & Starr, 1993; Balla, Koneru, 
Smiley, Sershen, & Javitt, 2001; L. 

Hernandez et al., 1994; Javitt et al., 2004; 
Kankaanpaa, Lillsunde, Ruotsalainen, 
Ahtee, & Seppala, 1996; Kihara, Ikeda, 

Matsubara, & Matsushita, 1993; Kuczenski 
& Segal, 1989; Melega, Williams, Schmitz, 
DiStefano, & Cho, 1995; Murzi et al., 1996; 
Nowak, Brus, & Kostrzewa, 2001; Nowak, 
Brus, Oswiecimska, Sokola, & Kostrzewa, 

2002; Nowak et al., 2006; Nowak et al., 
2008; Pehrson & Moghaddam, 2010; 

Sershen et al., 2008; Sood, Cole, Fraier, & 
Young, 2009) 

1 

d-
amph 

1372.8
2 

± 12.35 

(32.23)  

i.v. + 
s.c. 

10
3 

0 

0.006 3.44 
(2,22) 

(Balcioglu, Zhang, & Tarazi, 2003; 
Bredeloux, Dubuc, & Costentin, 2007; Byun 
et al., 2014; Carboni et al., 1989; Di Chiara 

et al., 1993; Fink-Jensen et al., 1994; 
Hamilton et al., 1992; Ichikawa et al., 1995; 
Ichikawa & Meltzer, 1992b, 1995; Kimmel, 
Justice, & Holtzman, 1998; Ren, Xu, Choi, 
Jenkins, & Chen, 2009; T. E. Robinson & 

Camp, 1990) 

334.05 
± 6.46 

(30.84) 
i.p. 42 0 

(Harsing et al., 1992; Kashiwagi et al., 
2015; Mele, Fontana, & Pert, 1997; 

Nicholson et al., 2009; Polissidis et al., 
2014) 

1.25 

1038.2
5 

± 30.11 

(50) 
female 24 100 

0.039 5.50 
(1,7) 

(Castner, Xiao, & Becker, 1993; Glick et al., 
1993; Maisonneuve et al., 1992) 

780.21 
± 27.59 

(43) 
Male 24 0 (Castner et al., 1993; Lategan et al., 1990; 

Pehek, 1999) 

1.5 

696.64 
± 4 

(40.76) 
Awake 

19
2 

5 

0.010 4.26 
(1,24) 

(Cass, Manning, & Dugan, 1998; 
Castaneda et al., 1991; Castaneda, 

Whishaw, Lermer, & Robinson, 1990; 
Castaneda, Whishaw, & Robinson, 1990, 

1992; King & Finlay, 1995; Lienau & 
Kuschinsky, 1997; Nomikos, Damsma, et 

al., 1991; Pacchioni, Gioino, Assis, & 
Cancela, 2002; E. N. Pothos et al., 1995; T. 
E. Robinson & Camp, 1990; T. E. Robinson, 

Yew, Paulson, & Camp, 1990; Rowley et 
al., 2012; Skutella et al., 1997; Tran-

Nguyen, Castaneda, & MacBeth, 1996; 
Whishaw et al., 1992; Zhu et al., 1999) 

2001.5
2 

± 68.96 

(38.79) 

Anesth
etized 

33 0 
(Feigenbaum & Howard, 1997; Hurd & 

Ungerstedt, 1989a, 1989c) 

2 
1122.9

2 

± 4.78 

(41.34) 
Awake 

25
4 

22 0.004 4.09 
(1,40) 

(Badiani et al., 1998; Becker & Cha, 1989; 
Bjelke et al., 1994; Cadoni, Pinna, Russi, 

Consolo, & Di Chiara, 1995; Camp & 
Robinson, 1992; Castner et al., 1993; Di 
Chiara et al., 1993; Dietze & Kuschinsky, 
1994; Ferguson, Flynn, Delclos, Newbold, 

& Gough, 2002; Ferguson, Gough, & Cada, 
2003; Heeringa & Abercrombie, 1995; 
Ichikawa & Meltzer, 1992a; Jaworski, 

Gonzales, & Randall, 2001; Kaariainen et 
al., 2008; Kuczenski, Segal, Cho, & 

Melega, 1995; Laviola, Pascucci, & Pieretti, 
2001; Miele et al., 2000; Miller & 

Abercrombie, 1996; G. S. Robertson, 
Damsma, & Fibiger, 1991; Yamamoto & 

Meltzer, 1992) 
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D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

2231.9
1 

± 44.22 

(40.92) 

Anesth
etized 

10
5 

0 

(Butcher, Fairbrother, Kelly, & Arbuthnott, 
1988; Herrera-Marschitz, Luthman, & Ferre, 
1994; Loidl et al., 1994; McTavish, Cowen, 

& Sharp, 1999; Porras, Di Matteo, De 
Deurwaerdere, et al., 2002; Porras, Di 

Matteo, Fracasso, et al., 2002) 

2.5 

d+l-
amph 

2595 
± 25.56 

(32.08) 
- 89 55 - - 

(Becker & Rudick, 1999; Kuczenski & 
Segal, 1989; Kuczenski & Segal, 1990, 

1997; Melega et al., 1995; Segal & 
Kuczenski, 1999) 

3 
2769.2

1 

± 
114.78 

(24.69) 

- 38 18 - - 

(Y. C. Chen et al., 2005; Y. I. Chen et al., 
2008; Feigenbaum & Howard, 1997; Fink-
Jensen et al., 1994; Nicholson et al., 2009; 
Ren et al., 2009; T. E. Robinson & Camp, 

1990) 

7.5 530 
± 100 

(60) 
- 6 0 - - (Bredeloux et al., 2007) 

1µM 364 
± 58 

(48) 
- 10 60 - - 

(Glick et al., 1993; Nomikos, Damsma, 
Wenkstern, & Fibiger, 1990) 

 

 

7.4 Cocaine 

7.4.1 Nucleus accumbens 

Table 36: Peak percentage baseline values of dopamine in the nucleus accumbens in 
intraperitoneally and subcutaneously vs. intravenously administered animals, no females 
included 

Route of administration 
Peak percentage baseline 

value after 3 mg/kg cocaine 

i.p. + s.c. 235.32 ± 2 

i.v. 594.07 ± 13.36 
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Table 37: Peak percentage baseline values of accumbal dopamine after the administration of 
different doses of cocaine 

Dosages with female animals in bold characters  

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.083 140 
± 6.5 

(37.5) 
- 14 0 - - (Howes, Dalley, Morrison, Robbins, & 

Everitt, 2000) 

0.1 128 
± 14 

(10) 
- 10 0 - - (Garces-Ramirez et al., 2011; Tanda et al., 

2016) 

0.25 183.63 
± 9.43 

(25) 
- 8 0 - - (Pettit & Justice, 1989; Sziraki, Sershen, 

Benuck, Hashim, & Lajtha, 1998) 

0.3 150 
± 7 

(20) 
- 5 0 - - (Baumann, Char, De Costa, Rice, & 

Rothman, 1994) 

0.32 200 
± 20 

(10) 
- 8 0 - - (Garces-Ramirez et al., 2011) 

0.33 278 
± 11.25 

(10) 
- 12 0 - - (Crespo, Sturm, Saria, & Zernig, 2006) 

0.37 155 
± 2.5 

(10) 
- 18 0 - - (Frantz, O'Dell, & Parsons, 2007) 

0.5 170 
± 18 

(10) 
- 8 0 - - (Pontieri, Tanda, & Di Chiara, 1995) 

0.75 290 
± 5 

(10) 
- 5 0 - - (Pettit & Justice, 1989) 

1 

198.25 
± 26.98 

(26.98) 
Awake 85 5 

0.003 
4.41 

(1,18) 

(Baumann et al., 1994; Bradberry, Lee, & 
Jatlow, 1999; Carboni et al., 1989; Garces-

Ramirez et al., 2011; Kohut et al., 2014; 
Maisonneuve, Archer, & Glick, 1994; 

Pepper, Baumann, Ayestas, & Rothman, 
2001; Pontieri et al., 1995; Roth-Deri et al., 
2009; Tanda, Ebbs, Newman, & Katz, 2005; 

Tanda et al., 2007) 

299.45 
± 13.94 

(24.14) 

Anesth
etized 

29 0 
(Baptista, Weiss, & Post, 1993; Bradberry 

et al., 1993; Bradberry & Roth, 1989; 
Moghaddam & Bunney, 1989) 

1.25 800 
± 40 

(10) 
- 3 0 - - (Pettit & Justice, 1989) 

1.5 291.09 
± 6.65 

(13.44) 
- 32 0 - - 

(D'Souza & Duvauchelle, 2006; Espana et 
al., 2010; Ferris, Mateo, Roberts, & Jones, 

2011; Maier, Ledesma, Seiwell, & 
Duvauchelle, 2008; Mateo, Lack, Morgan, 

Roberts, & Jones, 2005) 
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D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

2 244.03 
± 6.02 

(25.28) 
- 36 19 - - 

(Grotewold, Wall, Goodell, Hayter, & Bland, 
2014; Moghaddam & Bunney, 1989; Philpot 

& Kirstein, 1999; Roth-Deri et al., 2009) 

2.5 187.5 
± 3.75 

(97.5) 
- 12 50 - - (Kosten, Zhang, & Kehoe, 2003) 

3 

235.32 
± 2 

(22.86) 

i.p. + 
s.c. 

98 0 

0.005 4.38 
(1,20) 

(Hemby et al., 1995; Izawa, Yamanashi, 
Asakura, Misu, & Goshima, 2006; Justinova 

et al., 2011; Kohut et al., 2014; Mascia et 
al., 2011; Schad, Justice, & Holtzman, 
1995; Strecker, Eberle, & Ashby, 1995; 
Tanda et al., 2005; Tanda et al., 2007; 

Tanda et al., 2013; Zernig, O'Laughlin, & 
Fibiger, 1997) 

594.07 
± 13.36 

(22.15) 
i.v. 33 0 

(Baumann et al., 1994; Ikegami & 
Duvauchelle, 2004; Roth-Deri et al., 2009; 

Rothman, Ayestas, & Baumann, 1996) 

3.19 715 
± 25 

(15) 
- 5 0 - - 

(Panin, Cathala, Piazza, & Spampinato, 
2012) 

3.3 230 
± 50 

(20) 
- 6 0 - - 

(Desai, Paronis, Martin, Desai, & Bergman, 
2010) 

4 690 
± 100 

(20) 
- 13 0 - - (Baptista et al., 1993) 

4.2 315 
± 2.5 

(10) 
- 8 0 - - 

(Duvauchelle, Ikegami, Asami, et al., 2000; 
Duvauchelle, Ikegami, & Castaneda, 2000) 

5 

218.69 
± 0.44  

(34.09) 

i.p. + 
s.c. 

25
2 

2 

0.005 3.26 
(2,36) 

(Brown, Finlay, Wong, Damsma, & Fibiger, 
1991; Cadoni, Solinas, & Di Chiara, 2000; 

Cadoni, Solinas, Valentini, & Di Chiara, 
2003; Camp, Browman, & Robinson, 1994; 
Carboni et al., 1989; Gambarana, Ghiglieri, 
et al., 1999; Gambarana, Masi, et al., 1999; 

Giorgi et al., 1997; Kosten et al., 2003; 
Lecca, Piras, Driscoll, Giorgi, & Corda, 

2004; B. Leggio et al., 2003; Mangiavacchi 
et al., 2001; Masi et al., 2001; Mikkola, 

Honkanen, Piepponen, Kiianmaa, & Ahtee, 
2001; Nanni et al., 2003; Parsons, Kerr, & 
Weiss, 1998; Steketee & Goeders, 2002) 

562 
± 79.87 

(38.29) 
i.v. 18 0 

(Koch, Piercey, Galloway, & Svensson, 
1997; Othman, Newman, & Eddington, 

2007; Raje et al., 2005) 

5.6 240 
± 4 

(20) 
- 6 0 - - (Desai et al., 2010) 

7.5 294.44 
± 58.33 

(20) 
- 9 0 - - 

(Fadda, Scherma, Fresu, Collu, & Fratta, 
2003; Pap & Bradberry, 1995)(Fadda, 

Scherma, Fresu, Collu, & Fratta, 2003; Pap 
& Bradberry, 1995) 

10 330.72 
± 0.16  

(32.37) 
Awake 

73
6 

11 0.000 
3.95 

(12,79
) 

(Alvarez Fischer et al., 2001; Andrews & 
Lucki, 2001; Boyson et al., 2014; Brown & 

Fibiger, 1992; Bubar, McMahon, De 
Deurwaerdere, Spampinato, & 

Cunningham, 2003; Cadoni & Di Chiara, 
1999, 2007; Cadoni et al., 2000; Cadoni et 
al., 2003; Caille & Parsons, 2006; Camp et 
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al., 1994; Cervo, Pozzi, & Samanin, 1996; 
Clark, Ashby, Dewey, Ramachandran, & 

Strecker, 1996; Cummings, Jagannathan, 
Jackson, & Becker, 2014; De Deurwaerdere 
et al., 2005; Devoto, Flore, Saba, Cadeddu, 
& Gessa, 2012; Espana, Melchior, Roberts, 

& Jones, 2011; Espana et al., 2010; 
Fontana, Post, & Pert, 1993; Holly, 

Shimamoto, Debold, & Miczek, 2012; 
Horger, Wellman, Morien, Davies, & 

Schenk, 1991; Izawa et al., 2006; Jocham, 
Lauber, Muller, Huston, & de Souza Silva, 

2007; Jocham et al., 2006; Johnson, 
Eodice, Winterbottom, & Mokler, 2000; 
Kimura et al., 1993; Kohut et al., 2014; 
Kosten et al., 2003; Kosten, Zhang, & 

Kehoe, 2005; Leri et al., 2007; Lodge & 
Grace, 2005; Maisonneuve, Ho, & Kreek, 

1995; Maisonneuve & Kreek, 1994; Martin-
Fardon et al., 1996; McFarland, Lapish, & 

Kalivas, 2003; Miczek, Nikulina, 
Shimamoto, & Covington, 2011; Mikkola et 

al., 2001; Muller et al., 2002; Nation & 
Burkey, 1994; Neisewander, O'Dell, Tran-
Nguyen, Castaneda, & Fuchs, 1996; A. M. 
Nelson, Larson, & Zahniser, 2009; O'Dell & 
Parsons, 2004; Ogbonmwan et al., 2015; 
Pan et al., 2012; Pani, Kuzmin, Diana, et 

al., 1990; Pani, Kuzmin, Stefanini, Gessa, & 
Rossetti, 1990; Panos & Baker, 2010; Pap 

& Bradberry, 1995; Parsons & Justice, 
1993; Parsons et al., 1998; Parsons, Koob, 

& Weiss, 1999; Peng, Li, Gilbert, et al., 
2008; Peng, Li, Li, et al., 2008; Rossetti, 
Hmaidan, & Gessa, 1992; Rouge-Pont, 

Marinelli, Le Moal, Simon, & Piazza, 1995; 
Segal & Kuczenski, 1992; Shimada, 

Yamaguchi, & Yanagita, 1996; Shimamoto, 
Debold, Holly, & Miczek, 2011; Shimamoto, 

Holly, Boyson, DeBold, & Miczek, 2015; 
Steketee & Goeders, 2002; Strecker et al., 

1995; Tanda et al., 2005; Tanda et al., 
2007; Tanda et al., 2013; Tanda et al., 
2016; Thongsaard & Marsden, 2013; 

Tobiansky et al., 2016; Tolliver et al., 1999; 
Valdomero, Isoardi, Orsingher, & Cuadra, 
2005; Verheij, Karel, Cools, & Homberg, 

2014; Willins & Meltzer, 1998; Xi, Kiyatkin, 
et al., 2010; Xi, Li, et al., 2010; Xi et al., 

2007) 

593.26 
± 5.92 

(31.23) 

Anesth
etized 

90 0 

(Essman, Singh, & Lucki, 1994; 
Kankaanpaa et al., 1996; G. M. Leggio et 
al., 2009; Lutfy, Do, & Maidment, 2001; 
Navailles, De Deurwaerdere, Porras, & 
Spampinato, 2004; Navailles, Moison, 

Cunningham, & Spampinato, 2008; Weiss, 
Paulus, Lorang, & Koob, 1992) 

289.33 
± 2.2 

(31) 

Adoles
cent 

70 9 

0.027 
3.92 

(1,116
) 

(Boyson et al., 2014; Cervo et al., 1996; 
Devoto, Flore, Ibba, Fratta, & Pani, 2001; 
Devoto et al., 2012; Kosten et al., 2003; 

Lutfy et al., 2001; A. M. Nelson et al., 2009; 
Ogbonmwan et al., 2015; Pani, Kuzmin, 

Diana, et al., 1990; Pani, Kuzmin, Stefanini, 
et al., 1990; Willins & Meltzer, 1998) 

372.53 ± 0.21 Adult 
71
3 

11 

(Alvarez Fischer et al., 2001; Andrews & 
Lucki, 2001; Brown & Fibiger, 1992; Bubar 

et al., 2003; Cadoni & Di Chiara, 1999, 
2007; Cadoni et al., 2000; Cadoni et al., 

2003; Caille & Parsons, 2006; Clark et al., 
1996; Cummings et al., 2014; De 

Deurwaerdere et al., 2005; Espana et al., 
2011; Espana et al., 2010; Essman et al., 
1994; Fontana et al., 1993; Holly et al., 
2012; Horger et al., 1991; Izawa et al., 

2006; Jocham et al., 2007; Jocham et al., 
2006; Johnson et al., 2000; Kankaanpaa et 
al., 1996; Kimura et al., 1993; Kohut et al., 
2014; Kosten et al., 2005; G. M. Leggio et 
al., 2009Navailles, 2004 #2133; Leri et al., 
2007; Lodge & Grace, 2005; Maisonneuve 
et al., 1995; Maisonneuve & Kreek, 1994; 
Martin-Fardon et al., 1996; Miczek et al., 
2011; Mikkola et al., 2001; Muller et al., 

2002; Nation & Burkey, 1994; Navailles et 
al., 2008; Neisewander et al., 1996; O'Dell 

& Parsons, 2004; Pan et al., 2012; Panos & 
Baker, 2010; Pap & Bradberry, 1995; 

Parsons & Justice, 1993; Parsons et al., 
1998; Parsons et al., 1999; Peng, Li, 

Gilbert, et al., 2008; Peng, Li, Li, et al., 
2008; Rossetti et al., 1992; Rouge-Pont et 

al., 1995; Segal & Kuczenski, 1992; 
Shimada et al., 1996; Shimamoto et al., 

2011; Shimamoto et al., 2015; Steketee & 
Goeders, 2002; Strecker et al., 1995; Tanda 
et al., 2005; Tanda et al., 2007; Tanda et al., 

2013; Tanda et al., 2016; Thongsaard & 
Marsden, 2013; Tobiansky et al., 2016; 
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Tolliver et al., 1999; Valdomero et al., 2005; 
Weiss et al., 1992; Xi, Kiyatkin, et al., 2010; 

Xi, Li, et al., 2010; Xi et al., 2007) 

15 277.17 
± 0.25 

(35.20) 
- 

57
9 

0 - - 

(Barr et al., 2015; Barrot, Marinelli, et al., 
2000; Barrot, Rettori, et al., 2000; Benwell, 
Balfour, & Lucchi, 1993; Beyer & Steketee, 
1999, 2000, 2002; Birrell & Balfour, 1998; 

Bradberry et al., 1993; Chambers, Sentir, & 
Engleman, 2010; De Souza Silva et al., 

1997; Feifel et al., 2003; Garcia-Keller et 
al., 2013; Giustino, Cuomo, & Marsden, 

1998; Gurkovskaya, Palamarchouk, 
Smagin, & Goeders, 2005; Hooks, Colvin, 

Juncos, & Justice, 1992; Hooks, Duffy, 
Striplin, & Kalivas, 1994; Hooks, Jones, 

Smith, Neill, & Justice, 1991; Horger, 
Valadez, Wellman, & Schenk, 1994; Jin et 
al., 2017; Jonsson, Adermark, Ericson, & 
Soderpalm, 2014; Kalivas & Duffy, 1993; 

Kalivas, Duffy, & Mackler, 1999; Lack, 
Jones, & Roberts, 2008; Lee et al., 2008; 

Lu, Liu, Huang, & Zhang, 2003; Mabrouk et 
al., 2017; Maisonneuve et al., 1995; 

Maisonneuve & Kreek, 1994; Mitrano et al., 
2012; Navailles et al., 2004; Pierce, Born, 
Adams, & Kalivas, 1996; Pierce, Meil, & 

Kalivas, 1997; Placenza, Rajabi, & Stewart, 
2008; Porras, Di Matteo, De Deurwaerdere, 

et al., 2002; Reid & Berger, 1996; Sorg & 
Kalivas, 1991; Steketee, 1993, 1997, 

1998a, 1998b; Steketee & Kalivas, 1991; 
Steketee, Sorg, & Kalivas, 1992; Steketee 

& Walsh, 2005; Szumlinski, Frys, & Kalivas, 
2004; Torres, Rivier, & Weiss, 1994; 

Vollbrecht, Mabrouk, Nelson, Kennedy, & 
Ferrario, 2016; Wolf, Xue, White, & Dahlin, 
1994; Xie & Steketee, 2009; Zayara et al., 

2011) 

17 440 
± 20 

(20) 
- 6 0 - - (Kohut et al., 2014) 

18 295 
± 35 

(40) 
- 11 0 - - (Andrews & Lucki, 2001) 

20 399.13 
± 0.63 

(51.12) 
- 

41
6 

5 - - 

(Cadoni & Di Chiara, 2007; Chefer & 
Shippenberg, 2002; Chefer, Zakharova, & 

Shippenberg, 2003; J. Chen, Marmur, 
Paredes, Pulles, & Gardner, 1996; De 

Deurwaerdere et al., 2005; Ferraro et al., 
2000; Frantz et al., 2007; Gerasimov et al., 

2000; Gerasimov et al., 2002; Hedou, 
Feldon, & Heidbreder, 1999; C. A. 
Heidbreder, Schenk, Partridge, & 

Shippenberg, 1998; C. A. Heidbreder, 
Thompson, & Shippenberg, 1996; Jang et 

al., 2008; Kailanto, Kankaanpaa, & 
Seppala, 2011; Kankaanpaa, Meririnne, & 
Seppala, 2002; Kuczenski & Segal, 1999; 
Kurling-Kailanto, Kankaanpaa, & Seppala, 
2010; Leri, Flores, Rajabi, & Stewart, 2003; 
Leri et al., 2007; Maisonneuve et al., 1994; 
Maisonneuve & Glick, 1992; Martin-Fardon 
et al., 1996; Martin-Fardon, Kerr, Deleuze-

Masquefa, Kamenka, & Weiss, 2001; 
McDougall et al., 2008; Molina, Ahmed, 

Gatley, Volkow, & Abumrad, 2001; Morgan 
& Dewey, 1998; Morgan, Horan, Dewey, & 
Ashby, 1997; Morgan, Porter, et al., 1997; 

Panos & Baker, 2010; Parsons et al., 1998; 
Philpot & Kirstein, 1999; Puig, Noble, & 

Benturquia, 2012; Reith, Li, & Yan, 1997; 
Schiffer, Azmoodeh, et al., 2003; Schiffer, 

Gerasimov, Bermel, Brodie, & Dewey, 
2000; Schiffer, Marsteller, & Dewey, 2003; 

Steketee & Goeders, 2002; Szumlinski, 
McCafferty, Maisonneuve, & Glick, 2000; 

Tanda et al., 2016; Vazquez-DeRose et al., 
2013) 

25 465.79 
± 39.21 

(40) 
- 19 0 - - 

(Andrews, Kung, & Lucki, 2005; Andrews & 
Lucki, 2001) 

30 983.24 
± 14.75 

(28.83) 
- 73 0 - - 

(Barrot, Rettori, et al., 2000; Kohut et al., 
2014; Leri et al., 2007; Navailles et al., 

2004; Pettit, Pan, Parsons, & Justice, 1990; 
Pierce et al., 1997; M. W. Robertson, 

Leslie, & Bennett, 1991; Strecker et al., 
1995; Tanda et al., 2005) 

40 798.19 ± 57.81 - 27 0 - - 
(Kuczenski & Segal, 1999; Kuczenski, 

Segal, & Aizenstein, 1991; Tolliver et al., 
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(35.76) 1999) 

1.25 
mg/kg
/min 

3000 
± 210 

(30) 
- 8 0 - - 

(Whittington, Virag, Vulliemoz, Cooper, & 
Morishima, 2002) 

1.75 
mg/kg
/h 

200 
± 10 

(240) 
- 5 0 - - 

(G. Hernandez, Trujillo-Pisanty, Cossette, 
Conover, & Shizgal, 2012) 

10 
mg/kg
/h 

605 
± 52 

(260) 
- 7 0 - - (G. Hernandez, Haines, & Shizgal, 2008) 

1 µM 181.4 
± 3.7 

(84) 
- 10 0 - - (Smith & Justice, 1994; Tolliver et al., 1999) 

3 µM 190 
± 25 

(20) 
- 4 0 - - 

(Tateyama, Ohta, Nagao, Hirobe, & Ono, 
1993) 

10 µM 446.05 
± 21.71 

(37.30) 
- 37 0 - - 

(J. Chen et al., 1996; Tolliver et al., 1999; 
Yan, 2003; Yoshimoto et al., 2000) 

20 µM 1049 
± 47.78 

(55.56) 
- 18 0 - - 

(Smith & Justice, 1994; Yoshimoto et al., 
2001) 

50 µM 780 
± 45 

(20) 
- 7 0 - - (J. Chen et al., 1996) 

100 
µM 

696.19 

± 
134.29 

(65.24) 

- 21 0 - - 
(Andrews & Lucki, 2001; J. Chen et al., 

1996; Tolliver et al., 1999) 

3 mM 702.22 

± 50.37 

(137.78
) 

- 27 0 - - 
(Andrews et al., 2005; Andrews & Lucki, 

2001) 

7.5 
mM 

805 
± 215 

(40) 
- 18 0 - - (L. Hernandez, Guzman, & Hoebel, 1991) 

10 
mM 

610.77 
± 28.46 

(98.46) 
- 13 0 - - (Andrews & Lucki, 2001) 

20 µg 3444 
± 1472 

(20) 
- 12 0 - - 

(L. Hernandez & Hoebel, 1988; Tateyama 
et al., 1993) 
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7.4.2 Caudate putamen 

Table 38: Peak percentage baseline values of dopamine in caudate putamen after the 
administration of different doses of cocaine 

Dosages with female animals in bold characters 

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

N 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.5 335.59 
± 30.72 

(12.94) 
- 17 0 - - (Y. I. Chen et al., 2010; Schwarz et al., 

2004) 

1 173.33 
± 17.88 

(30) 
- 30 0 - - (Carboni et al., 1989; Hurd & Ungerstedt, 

1989b; Tanda et al., 2005) 

1.5 307.05 
± 4.50 

(13.92) 
- 41 0 - - 

(Cao, Lotfipour, Loughlin, & Leslie, 2007; 
D'Souza & Duvauchelle, 2006; Hurd, Kehr, 

& Ungerstedt, 1988; Hurd & Ungerstedt, 
1989b) 

2 370.63 
± 70.94 

(7.75) 
- 8 0 - - (Hurd & Ungerstedt, 1989b; Shou, Ferrario, 

Schultz, Robinson, & Kennedy, 2006) 

3 179.48 
± 3.73 

(17.17) 
- 23 0 - - 

(Church et al., 1987; Schad et al., 1995; 
Schad, Justice, & Holtzman, 2002; Tanda et 

al., 2005) 

5 452.27 
± 95.61 

(51.52) 
- 17 0 - - (Carboni et al., 1989; Martin-Fardon et al., 

1996; Weikop, Egestad, & Kehr, 2004) 

7.5 146 
± 21 

(40) 
- 4 0 - - (Ivens, Janak, & Martinez, 1992) 

10 309.89 
± 0.89 

(31.48) 
- 

21
3 

10 - - 

(Chapman, See, & Bissette, 1992; Church 
et al., 1987; Coury, Blaha, Atkinson, & 

Phillips, 1992; Cummings et al., 2014; Ivens 
et al., 1992; Kankaanpaa et al., 1996; Kraft, 
Noailles, & Angulo, 2001; Kuczenski et al., 
1991; Lienau & Kuschinsky, 1997; Loonam, 

Noailles, Yu, Zhu, & Angulo, 2003; 
Maisonneuve et al., 1995; Maisonneuve & 
Kreek, 1994; Martin-Fardon et al., 1996; 

McNeish, Svingos, Hitzemann, & Strecker, 
1993; Mikkola et al., 2001; Navailles et al., 
2004; A. M. Nelson et al., 2009; Noailles & 
Angulo, 2002; Porras, De Deurwaerdere, 

Moison, & Spampinato, 2003; Segal & 
Kuczenski, 1992; Tanda et al., 2005; 

Valdomero et al., 2005) 

15 

295.22 
± 24.06 

(20) 
Female 9 100 

0.009 
5.32 

(1,8) 

(T. E. Robinson & Camp, 1991) 

364.21 
± 3.03 

(34.21) 
Male 57 0 

(Barrot et al., 2001; Chambers et al., 2010; 
Devroye et al., 2015; Maisonneuve et al., 

1995; Maisonneuve & Kreek, 1994; 
Navailles et al., 2004; Porras et al., 2003; 
Wasik, Romanska, & Antkiewicz-Michaluk, 

2010) 

20 267.14 ± 1.56 
Other 
strains 

12
2 

 0.008 (3,18) 
(Dewey et al., 1997; Florin, Kuczenski, & 
Segal, 1995; Gabriele, Pacchioni, & See, 

2012; Gatley et al., 1996; Gehrke, Chefer, & 
Shippenberg, 2008; C. A. Heidbreder et al., 
1998; Inada, Polk, Jin, et al., 1992; Inada, 
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D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

N 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

(40.66) Polk, Purser, et al., 1992; Kreuter, Mattson, 
Wang, You, & Hope, 2004; Kuczenski & 

Segal, 1999; Maisonneuve & Glick, 1992; 
Martin-Fardon et al., 1996; McDougall et 

al., 2008; Porras et al., 2003) 

392.5 

± 
101.25 

(50) 

Long 
Evans 

24 0 
(Keller, Maisonneuve, Carlson, & Glick, 

1992) 

25 210 
± 11.67 

(50.67) 
- 15 27 - - (Cortez et al., 2010) 

30 781.94 
± 48.55 

(31.79) 
- 34 21 - - 

(Chapman et al., 1992; Church et al., 1987; 
Dewey et al., 1997; Di Paolo, Rouillard, 
Morissette, Levesque, & Bedard, 1989; 

Navailles et al., 2004; Tanda et al., 2005) 

40 

176.22 
± 10.78 

(30) 

Anesth
etized 

9 0 

0.010 
18.51 

(1,2) 

(Inada, Polk, Jin, et al., 1992) 

393.12 
± 10.04 

(49.57) 
Awake 12 0 

(Kuczenski & Segal, 1999; Martin-Fardon et 
al., 1996) 

1 µM 311.54 
± 57.69 

(46.15) 
- 13 0 - - 

(Hurd & Ungerstedt, 1989b; Nomikos et al., 
1990; Woodward, Compton, Balster, & 

Martin, 1995) 

2.5 
µM 

757 
± 13.3 

(n.g.) 
- 6 0 - - 

(Manley, Kuczenski, Segal, Young, & 
Groves, 1992) 

10 µM 488.89 
± 88.89 

(17.78) 
- 9 0 - - 

(Hurd & Ungerstedt, 1989b; Woodward et 
al., 1995) 

50 µM 706.45 
± 51.29 

(27.74) 
- 16 0 - - 

(Moghaddam & Bolinao, 1994; Shimizu, 
Duan, Hori, & Oomura, 1990) 

100 
µM 

1178.2
8 

± 
139.74 

(22.76) 

- 15 0 - - (Hurd & Ungerstedt, 1989b; Rothman et al., 
1991; Woodward et al., 1995) 

1 mM 

(1000
µM) 

397.5 

± 
146.25 

(35) 

- 10 0 - - 
(Hurd & Ungerstedt, 1989b; Rothman et al., 

1989) 

1 
mg/kg 

1000 
± 200 

(20) 
- 7 0 - - (Thiriet et al., 2001) 
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Table 39: Peak percentage baseline values of dopamine in anesthetized vs. awake rats in 
the caudate putamen, no females included 

State of consciousness 
Peak percentage baseline 

value after 40 mg/kg cocaine 

Anesthetized 176.22 ± 10.78 

Awake 393.12 ± 10.04 

 

 

7.5 Morphine  

7.5.1 Nucleus accumbens 

Table 40: Peak percentage baseline values of accumbal dopamine after the administration of 
different doses of morphine 

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

5 195.09 
0.73 

(138) 
- 

13
8 

17 - - 

(Borg & Taylor, 1997; Cadoni & Di Chiara, 
2007; Di Giannuario, Pieretti, Catalani, & 

Loizzo, 1999; Fadda et al., 2003; Jonsson 
et al., 2014; M. R. Kim et al., 2005; 

Maisonneuve & Glick, 1999; Maisonneuve 
et al., 1991; Pearl, Maisonneuve, & Glick, 

1996; Pozzi, Trabace, Invernizzi, & 
Samanin, 1995; Steinmiller, Maisonneuve, 
& Glick, 2003; Sustkova-Fiserova, Jerabek, 
Havlickova, Kacer, & Krsiak, 2014; Tanda & 

Di Chiara, 1998; Willins & Meltzer, 1998) 

20 262.49 
17.48 

(88) 
- 55 33 - - 

(Pothos et al., 1991; E. N. Pothos et al., 
1995; Rada, Mark, Pothos, & Hoebel, 1991; 

Steinmiller et al., 2003; Szumlinski, 
Maisonneuve, & Glick, 2000; Yong et al., 

2012) 

30 92 
1.6 

(160) 
- 32 100 - - (Johnson & Glick, 1993, 1994; 

Maisonneuve et al., 1991) 
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7.5.2 Caudate putamen 

Table 41: Peak percentage baseline values of dopamine in caudate putamen after the 
administration of different doses of morphine 

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

5 165.46 
2.87 

(74) 
- 26 58 - - 

(Maisonneuve & Glick, 1999; Maisonneuve 
et al., 1991; Pearl et al., 1996; Pozzi et al., 

1995) 

30 92 
1.6 

(120) 
- 30 100 - - (Johnson & Glick, 1993, 1994; 

Maisonneuve et al., 1991) 

 

 

7.6 Nicotine 

Table 42: Peak percentage baseline values of accumbal dopamine after the administration of 
different doses of nicotine 

D
o

s
e

 (m
g

/k
g

) 

Peak% 
BL 

(weight
ed 

averag
e) 

± SEM 
(peak 

time[m
in]) 

Sub 
group 

n 
of 
rat
s 

% 
of 

rats 

fem
ale 

P-
value 

Critic
al 

value 

(degr
ees 
of 

freed
om) 

References 

0.4 157.73 
0.36 

(50.03) 
- 

17
5 

19 - - 

(Balfour, Birrell, Moran, & Benwell, 1996; 
Bassareo, De Luca, & Di Chiara, 2007; 

Benwell, Balfour, & Birrell, 1995; Birrell & 
Balfour, 1998; Cadoni & Di Chiara, 2000; 

Cadoni, Muto, & Di Chiara, 2009; Cadoni et 
al., 2003; Carboni, Silvagni, Rolando, & Di 
Chiara, 2000; Dewey et al., 1999; Eggan & 
McCallum, 2016, 2017; Ferrari, Le Novere, 

Picciotto, Changeux, & Zoli, 2002; 
Iyaniwura, Wright, & Balfour, 2001; Jonsson 

et al., 2014; Maisonneuve & Glick, 1999; 
McCallum et al., 2012; Mirza, Pei, 

Stolerman, & Zetterstrom, 1996; Shoaib & 
Shippenberg, 1996; Steinmiller et al., 2003; 

Wang et al., 2015) 

200 
µM 

125 
15 

(20) 
- 9 100 - - (Ding et al., 2012) 
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