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"Natural science does not simply describe and explain nature;
it is part of the interplay between nature and ourselves;

it describes nature as exposed to our nature of questioning."

— Werner Heisenberg [1]



A B S T R A C T

Entropy may be regarded as the physical quantity with the most
facets. It is successfully used to describe aspects of the three intriguing
phenomena: equilibrium, uncertainty and entanglement.

Despite its central meaning, formulating physical laws in terms of
entropy can become unfavorable, for which we give three examples:
the lack of well-defined continuum limits often prevents universal
descriptions for discrete, continuous and infinite-dimensional degrees
of freedom. The entropy of a subregion in a quantum field theory
exhibits an ultraviolet divergence, which can not be renormalized.
Entropies of marginal distributions do not capture the full information
about a global distribution.

The first two problems can be traced back to the entropy being
an absolute measure of missing information. To overcome these, we
propose a more regular use of relative entropy in situations where
entropy shows its flaws. Relative entropy allows us to unify entropic
descriptions or to extend them into new regimes of validity.

In this thesis, we use relative entropy to formulate a new principle
of inference, to develop thermodynamics in terms of model states, to
derive divergence-free second law-like inequalities for relativistic flu-
ids, to unify entropic uncertainty relations for discrete and continuous
variables and to deduce the first entropic uncertainty relation for a
quantum field.

The third problem becomes relevant in the context of entanglement
witnessing for continuous variable systems. In contrast to standard
separability criteria, which are based on measuring two observables
separately, we start from a phase space representation of the quantum
state. We find a perfect witness for pure state entanglement and derive
entropic and even more general separability criteria, allowing us to
certify entanglement in undetected regions.
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Z U S A M M E N FA S S U N G

Die Entropie kann als die facettenreichste physikalische Größe an-
gesehen werden. Man verwendet sie, um Aspekte von drei faszinie-
renden Phänomenen zu beschreiben: Gleichgewicht, Unschärfe und
Verschränkung.

Trotz ihrer zentralen Bedeutung kann es ungünstig sein, physikali-
sche Gesetze mit Entropie zu formulieren, wofür wir drei Beispiele
anführen: Das Fehlen wohldefinierter Kontinuumslimites verhindert
oft universelle Beschreibungen für diskrete, kontinuierliche und un-
endlich dimensionale Freiheitsgrade. Die Entropie einer Subregion in
einer Quantenfeldtheorie weist eine ultraviolette Divergenz auf, die
sich nicht renormieren lässt. Entropien von Marginalverteilungen er-
fassen nicht die vollständige Information über eine globale Verteilung.

Die ersten beiden Probleme lassen sich darauf zurückführen, dass
die Entropie ein absolutes Maß für fehlende Informationen ist. Um
diese zu überwinden, schlagen wir eine regelmäßigere Verwendung
der relativen Entropie in Situationen vor, in denen die Entropie ihre
Schwachstellen zeigt. Die relative Entropie ermöglicht es uns, entropi-
sche Beschreibungen zu vereinheitlichen oder sie auf neue Geltungs-
bereiche zu erweitern.

In dieser Arbeit verwenden wir die relative Entropie, um ein neues
Inferenzprinzip zu formulieren, die Thermodynamik mit Modellzu-
stände zu entwickeln, divergenzfreie zweite Hauptsatz-ähnliche Un-
gleichungen für relativistische Fluide abzuleiten, entropische Unschär-
ferelationen für diskrete und kontinuierliche Variablen zu vereinheitli-
chen und die erste entropische Unschärferelation für ein Quantenfeld
herzuleiten.

Das dritte Problem wird im Zusammenhang mit dem Nachweis von
Verschränkung für Systeme mit kontinuierlichen Variablen relevant.
Im Gegensatz zu standardmäßigen Separabilitätskriterien, die auf
der getrennten Messung zweier Observablen beruhen, gehen wir von
einer Phasenraumdarstellung des Quantenzustands aus. Wir finden
ein perfektes Kriterium für die Verschränkung reiner Zustände und
leiten entropische und noch allgemeinere Separabilitätskriterien ab,
die es uns ermöglichen, Verschränkung in unentdeckten Regionen
nachzuweisen.
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N OTAT I O N

Throughout this thesis, we work in terms of natural units h̄ = c =
kB = 1 and drop operator hats. Instead, operators are denoted by bold
symbols, e.g. X, while vectors are equipped with a vector symbol, e.g.
~x, and expectation values or classical variables are written in normal
font, e.g. X. The number of spacetime dimensions is labeled with d,
while for the Hilbert space dimension we use D = dimH. Vacuum
quantities are denoted with a bar, e.g. r̄. A composite system is called
12 with the subsystems 1 and 2. We generically use the symbol S for
every entropy and specify it further by its argument. For example, S(r)
denotes the von Neumann entropy of the quantum state r. However,
what is denoted as argument is sometimes not the argument of any
entropy functional in a strict sense. This applies in particular to a
conditional entropy S(r1|r2) and a mutual information I(r1 : r2).
Hence, entropic quantities are particularized based on their meaning.

A C R O N Y M S

QM Quantum Mechanics

QFT Quantum Field Theory

UV Ultraviolet

EUR Entropic Uncertainty Relation

MU Maassen-Uffink

BBM Białynicki-Birula-Mycielski

FL Frank-Lieb

REUR Relative Entropic Uncertainty Relation

WL Wehrl-Lieb

CPTP Completely Positive Trace-Preserving

PTP Positive Trace-Preserving

POVM Positive Operator-Valued Measure

PVM Projection-Valued Measure

LOCC Local Operations and Classical Communication

REoE Relative Entropy of Entanglement

PPT Positive Partial Transpose

EPR Einstein-Podolsky-Rosen

MGVT Mancini-Giovannetti-Vitali-Tombesi



DGCZ Duan-Giedke-Cirac-Zoller

WTSTD Walborn-Taketani-Salles-Toscano-de Matos Filho

IR Infrared

TMSV Two-Mode Squeezed Vacuum
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1 I N T R O D U C T I O N

"[...] every physical quantity, every it,
derives its ultimate significance from bits,

binary yes-or-no indications,
a conclusion which we epitomize in the phrase,

it from bit."

— John Archibald Wheeler [2]

���������� Modern physics provides a fascinating richness of
ideas and theories, including for example Quantum Mechanics (QM),
Quantum Field Theory (QFT) and General Relativity. What these theo-
ries have in common is that they shifted well-established paradigms
and were astonishingly successful in setting new standards on how
precise experimental outcomes can be predicted.

However, at first sight, they are concerned with different phenomena
on well separated scales and make use of rather dissimilar mathe-
matical methods and concepts. This not only raises the desire for
unification, but more importantly leads to the pressing question what
is fundamental?

Some physicists may answer quantum fields, others may say space-
time. Many years after Shannon published his groundbreaking work
on classical information theory [3, 4], information has become a valid
alternative. Most importantly, Shannon gave the abstract concept of in-
formation a rigorous framework by establishing entropy as the measure
for the missing information about a probability distribution.

At that time, entropy played an important role in physics already,
most prominently in the contexts of statistical physics [5–7], quantum
physics [8] and Szilard’s treatment of Maxwell’s demon [9]. However, it
was Shannon’s information theoretic approach which related entropy
and information, showing that information is physical [10].

In the last three decades, the information theoretic viewpoint be-
came a lot more common among physicists, especially in the context
of quantum physics [11–13]. Nowadays physical laws are often ex-
pressed in terms of information theoretic quantities and quantum
systems are regularly analyzed with information theoretic methods.
Timely examples include quantum computing [14, 15] or the black
hole information paradox [16–18].

However, some entropic descriptions are not satisfactory. In this
thesis, we develop several methods to overcome fundamental problems
of the entropy functional or to sharpen entropic statements. To that
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end, we make use of two underestimated concepts: relative entropy
[19–21] and entropy in quantum mechanical phase space [22, 23].

The relative entropy is a measure for the distinguishability of two
probability distributions. As a relative measure of information, it shows
rather universal properties. Especially, it often remains finite and keeps
its properties when the entropy does not, for example when taking
limits. Further, the entropy in phase space allows for a more complete
description as opposed to considering the entropies of position and
momentum separately.

We will apply our methods to describe the three phenomena equilib-
rium, uncertainty and entanglement. The problems or disadvantages
of established entropic descriptions thereof and our proposals to re-
solve these issues are discussed for each phenomenon separately.

����������� Classical distributions and quantum states describing
equilibrium situations can be derived from Jaynes’ maximum entropy
principle [24–27]. More precisely, the three thermodynamic ensembles
microcanonical, canonical and grand canonical follow when maximiz-
ing entropy and assuming proper normalization and fixed expectation
values for energy and particle number, respectively.

Although the maximum entropy principle was designed for this
task, its applicability goes far beyond statistical physics. It is a funda-
mental principle of inference and as such predicts the optimal prior
distribution or quantum state when only little information (often in
terms of expectation values of macroscopic quantities) is given. In
simple words, it expresses the intuition that the best guess should
have least information content [27].

In Chapter 5, we formulate an alternative: the principle of minimum
expected relative entropy for classical distributions (5.20) and quantum
states (5.39). It postulates that the optimal prior is least distinguishable
from other distributions on average and corresponds to the central
point on the manifold of allowed distributions. Also, it closes a gap to
the well-established principle of minimum discrimination information
[20]. Although the latter is formulated in terms of relative entropy
as well, it rather aims at updating a given prior distribution when
additional information becomes available.

With the principle of minimum expected relative entropy at hand we
reformulate thermodynamics in terms of relative entropy in Chapter 6,
for which our motivation is twofold.

First, we want to extend the concepts of thermodynamics such as
temperature and chemical potential beyond the situation where a
system is in equilibrium. We propose a formulation in terms of ther-
modynamic reference states, which allows us to assign temperature
and chemical potential to arbitrary states, see e.g. (6.28). Further, rela-
tive entropy captures thermal fluctuations (6.12) and encodes naturally
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the second law of thermodynamics (6.35) as a special case of a central
theorem about how quantum information can be processed.

Second, we want to understand better how thermodynamic con-
cepts can be applied locally in the context of fluid dynamics and QFT.
Here, entropy comes with two severe drawbacks. In fluid dynamics,
one typically works in terms of entropy current densities, which are
only well-defined in equilibrium. In addition, if one tries to define
such an entropy from a more fundamental QFT, one has to deal with
unavoidable Ultraviolet (UV) divergences due to entanglement. In con-
trast, a local relative entropy is free of such divergences and allows
one to work with thermodynamic model states outside of equilibrium.

We apply the ideas gathered in Chapter 6 to fluids and quantum
fields in Chapter 7. We establish a heuristic notion of local equilibrium
with relative entropy in (7.19) and derive divergence-free second law-
like inequalities in terms of relative entropy (7.37) from first principles.

����������� For a long time the uncertainty principle was ex-
pressed through variances by default. However, such descriptions are
unsatisfactory from an information theoretic perspective. The vari-
ance represents only the second moment of a measured probability
distribution and lacks information about the full distribution.

Nowadays, the uncertainty principle is conveniently formulated in
terms of Entropic Uncertainty Relations (EURs) [28, 29]. The three most
well-known relations are the Maassen-Uffink (MU) relation [30, 31]
for discrete variables (e.g. spin observables) and the Białynicki-Birula-
Mycielski (BBM) [32] and Frank-Lieb (FL) [33] relations for continuous
variables (e.g. position and momentum). Interestingly, the BBM relation
is strictly stronger and implies the well-known relation by Heisenberg
and Kennard, showing the supremacy of an entropic formulation.

In the field of EURs, entropy demonstrates its longest known flaw.
Overlooked by Shannon and noticed by Jaynes, the entropy func-
tional for discrete probabilities does not have a well-defined analog
for probability density functions [26]. More precisely, the so-called
differential entropy for probability densities (also defined by Shannon
in [4]) does not correspond to the continuum limit of Shannon’s dis-
crete entropy. Instead, an infinite negative constant has to be added,
breaking fundamental properties such as non-negativity.

Hence, it is not surprising that the two types of observables are
described by different EURs. So far, only the MU and the FL relations
have been unified, based on a formal measure-theoretic argument
[33]. We propose a more direct unification in terms of relative entropy,
the Relative Entropic Uncertainty Relation (REUR) (8.34), which we
formulate in Chapter 8.

This approach demonstrates its advantages when considering quan-
tum fields. In Chapter 9, we show that the field theory limit leads to
divergences for the entropy associated with the probability density
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functional of field configurations. These divergences are generic and
well-known, for example from the vacuum energy, rendering every
EUR ill-defined in the field theory limit. In contrast, relative entropy
does not exhibit these divergences, allowing us to derive the first
well-defined REUR for a scalar quantum field (9.36).

Also, we analyze EURs in canonical phase space by comparing re-
lations based on marginal distributions with the Wehrl-Lieb (WL)
relation [23, 34] formulated for a full phase space distribution in Chap-
ter 10. In particular, we investigate which relation is closest to equality
for a generic set of states. This is not only interesting by itself but is
also very relevant for entanglement detection.

������������ Entanglement is the defining feature of quantum
physics when considering one (or more) partitions of a system. En-
tanglement can cause the global entropy to be smaller than any local
entropy, which is impossible for classical systems [35]. It is nowa-
days believed that entanglement plays an important role for several
phenomena, including for example the thermalization of isolated quan-
tum systems [36–38], black hole evaporation [39–41] and quantum
supremacy [14].

However, it is rather hard to determine whether a given state is
entangled or not, which is the so-called separability problem [42]. This
problem remains unsolved except for a few special cases, for instance,
Hilbert spaces of small dimensions and Gaussian states. Continuous
variable systems with an infinite-dimensional Hilbert space prove to
be particularly challenging for certifying entanglement.

Typically, one formulates conditions which are fulfilled by all sep-
arable states, so-called separability criteria, whose violation shows
entanglement. For continuous variables, criteria were derived for the
second moments of position and momentum measurements [43–46].
Also entropic criteria, which are stronger than the latter especially in
the non-Gaussian regime, have been found [47–51].

These criteria have two things in common: First, they all make use
of an uncertainty relation and second, they are all based on measuring
position and momentum separately. Motivated by our findings in
Chapter 10, we formulate several separability criteria for a full phase
space distribution, pushing the boundaries of entanglement witnessing
in continuous variable systems.

In Chapter 11, we show that a mutual information of a full phase
space distribution (11.11) serves as a perfect witness for pure state
entanglement. Then, we derive entropic criteria for mixed states (12.15)
and show their outperfomance over other entropic criteria in Chap-
ter 12. Finally, we deduce a more general set of criteria (13.10) in
Chapter 13 for concave functions. Their experimental implementation
is outlined by applying them to discretized distributions (13.26).



Part I

A P R I M E R O N E N T R O P Y

We begin with introducing the three phenomena equi-
librium, uncertainty and entanglement and the informa-
tion theoretic methods required for a modern description
thereof. In particular, we discuss the role of entropy within
classical information (Chapter 2), quantum information
(Chapter 3) and quantum fields (Chapter 4). An emphasis
is put on how entropic quantities can be used to describe
the physical phenomena we are concerned with.



2 C L A S S I C A L I N F O R M AT I O N

In simple words, classical information theory is concerned with prob-
ability distributions and how the information they contain about the
underlying random variable can be quantified, stored and communi-
cated. The theory goes back to early ideas by Nyquist [52, 53], Hartley
[54], the groundbreaking papers of Shannon [3, 4] (see also [55]) and
the follow-up work by Kullback and Leibler [19] (see also [20]) and
Jaynes [24, 25] (see also [26, 27]).

Despite the success of QM, classical information theory is still of
great importance to modern-day research. Any measurement, indepen-
dent of whether the system of interest is well-described by a classical or
a quantum theory, produces classical probability distributions, which
have to be analyzed with the tools of classical information theory.

A rather significant distinction has to be made between discrete and
continuous variables, i.e. between probabilities and probability densi-
ties. In the following, we include both cases and point out important
differences. We follow standard literature on this subject [11, 12, 56].

�.� ����������� ������������� ��� ���������

������ ��������� Let us consider a random variable X which
can take values x in some set X , called alphabet, i.e. x 2 X . Whether
the random variable X is called discrete or continuous depends on the
cardinality of the alphabet X . For discrete variables, X is finite or at
least countable, whereas continuous variables are characterized by X

being uncountable, such that

X =

8
<

:
{ei}i2I with I ✓ N for discrete X,

(a, b) with a, b 2 R for continuous X.
(2.1)

����������� In the case of discrete variables, one can associate a
real number to every event x 2 X , which we call probability p(x). "[...] the theory of

probabilities is at
bottom only common
sense reduced to
calculus." -
Pierre-Simon Laplace
[57]

Instead, for continuous variables, we work with a real-valued function
f : (a, b) ! R, which we refer to as the probability density f (x). In both
cases, we speak of a distribution.

The probability p(x) and the probability density f (x) can be fully
characterized by the three Kolmogorov axioms [58], which require
that they are

17
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1. non-negative

p(x), f (x) � 0 for all x 2 X , (2.2)

2. normalized to unity

Â
x2X

p(x) =
Z

x2X
dx f (x) = 1, (2.3)

3. additive for mutually exclusive events xi 2 Xi of countably many
disjoint sets Xi ✓ X

p ([ixi) = Â
i

p(xi). (2.4)

The last axiom holds equivalently for continuous variables. This can
be seen after associating a probability for measuring a value in some
finite interval, i.e. x 2 Xj ✓ X with Xi being an uncountable subset of
the full alphabet X , by integrating over all elements in Xj, such that

p(x 2 Xj) =
Z

x2Xj

dx f (x). (2.5)

Furthermore, the three axioms imply many well-known basic rules of
probability theory, for example that probabilities are bounded from
above, i.e. p(x)  1 for all x 2 X (while probability densities remain
unbounded) or the sum rule for non mutually exclusive events.

�������: �������� ��� ���������� ������������� To illus-
trate Kolmogorov’s axioms and the conceptual differences between
the two cases of variables, we consider (a) probabilities of an unfair die
with X = {1, 2, 3, 4, 5, 6} (Figure 2.1a) and (b) a Gaussian probability
density f (x) of variance s2 = 1 with X = R (Figure 2.1b).

p1 p2
1 2 3 4 5 6

x0

0.1

0.2

0.3
p(x)

(a) Discrete probabilities

p1 p2
-4 -3 -2 -1 1 2 3 4

x

0.1

0.2

0.3

0.4

0.5
f(x)

(b) Continuous probability density

Figure 2.1: Comparison of (a) discrete probabilities and (b) a continuous
probability density. The non-negativity and normalization ax-
ioms can be read off, while the colored events/regions indicate
probabilities p1 ⇡ 0.273 and p2 ⇡ 0.157 of mutually exclusive
sets computed by using the additivity axiom.
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����� ��� ����������� ����������� The previous discussion can
be extended to two (or more) random variables. Here, we additionally
consider a second random variable Y with analogous notation as
above. Then, we can associate a joint probability p12(x, y) or a joint
probability density f12(x, y), respectively, to the joint measurement of
X and Y, which also fulfill Kolmogorov’s axioms.

Individual distributions p1(x) or f1(x) (analogously for the other
variable Y) can be computed from marginalization

p1(x) = Â
y2Y

p12(x, y), f1(x) =
Z

y2Y
dy f12(x, y). (2.6)

Moreover, if one of the two observables is measured, e.g. measuring Y
gives y, one can associate a conditional probability p1(x|y) or condi-
tional probability density f1(x|y) to the remaining random variable X,
which are defined via

p1(x|y) =
p12(x, y)

p2(y)
, f1(x|y) =

f12(x, y)
f2(y)

. (2.7)

Note that in the latter case it may be necessary to require strict posi-
tivity of the marginal density f (y) > 0.

If and only if the two random variables X and Y are uncorrelated,
the joint distributions factorize, i.e.

p12(x, y) = p1(x)⇥ p2(y), f12(x, y) = f1(x)⇥ f2, (y) (2.8)

and the conditional distributions reduce to the respective marginals

p1(x|y) = p1(x), f1(x|y) = f1(x). (2.9)

�.� ��������� ���������

������� ��� ������������ ������� Arguably one of the most
important contributions to information theory came from Shannon
in the invention of a reasonable measure for the missing information
about a distribution, which is the entropy. Although entropy is the
fundamental quantity in information theory, it can not be consistently
defined for discrete and continuous random variables [26]. This has
major consequences on how physical laws have to be formulated,
which will be one of our central topics.

Let us begin with the discrete case, where the entropy is named
after Shannon himself. The entropy S(p) of a discrete probability dis-
tribution p(x) can be constructed axiomatically (up to a multiplicative
constant) [3], but we rather follow an intuitive approach based on
the notion of surprise [59]. To any event x one can associate a sur-
prise � ln p(x), which is motivated by the surprise being small when
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the event x is likely and additive for independent events. Then, the
Shannon entropy is defined as the average surprise

S(p) = � Â
x2X

p(x) ln p(x). (2.10)

It serves as a measure for the missing information or uncertainty"My greatest
concern was what to

call it. I thought of
calling it

’information,’ but the
word was overly

used, so I decided to
call it ’uncertainty.’
When I discussed it

with John von
Neumann, he had a

better idea. Von
Neumann told me,
’You should call it

entropy, for two
reasons. In the first

place your
uncertainty function

has been used in
statistical mechanics
under that name, so

it already has a name.
In the second place,

and more important,
no one really knows
what entropy really

is, so in a debate you
will always have the
advantage." - Claude

E. Shannon [60]

about p(x). Also, it is non-negative S(p) � 0 (zero if and only if one
event x is certain) and attains a global maximum S(p) = ln N for the
uniform distribution p(x) = 1

N of a finite alphabet |X | = N.
For continuous variables, the differential entropy is defined as

S( f ) = �

Z

x2X
dx f (x) ln f (x). (2.11)

It can be interpreted as a measure for the localization of a prob-
ability density f (x) and, in contrast to the Shannon entropy S(p),
the differential entropy S( f ) can become negative if a distribution is
highly localized. Also, it is in general not invariant under a reparam-
eterization of the underlying random variable x ! x0(x). Hence, an
interpretation as a measure for missing information similarly to the
Shannon entropy is not possible. In fact, the two definitions (2.10) and
(2.11) are related via a negative infinite offset

S( f ) = lim
Dx!0

(S(p) + ln Dx) , (2.12)

where Dx is the width of a bin used to discretize f (x). However,
both entropies are concave, i.e. for a mixture of distributions p(x) =
Âi l(i)pi(x) or f (x) = Âi l(i) fi(x) with l(i) being a discrete proba-
bility distribution itself, we obtain

S(p) � Â
i

l(i)S(pi), S( f ) � Â
i

l(i)S( fi). (2.13)

�������: ��������� �� � ���� ��� � �������� We consider
the entropies of (a) a coin with alphabet X = {heads, tails} and a
probability p1 for heads (Figure 2.2a) and (b) a centered Gaussian
probability density f (x) of standard deviation s (Figure 2.2b).

�������� ������� Another fundamental quantity in information
theory is the relative entropy, also known as Kullback-Leibler diver-
gence [19, 20]. It turns out that the properties of the relative entropy
are universal in many contexts, which we will utilize often in this
thesis. Most importantly, it can consistently be defined for discrete as
well as continuous variables, i.e. it has a well-defined continuum limit.
Namely, for two probability distributions p(x) and p̃(x) it reads

S(pk p̃) = Â
x2X

p(x) (ln p(x)� ln p̃(x)) , (2.14)

while for two probability densities f (x) and f̃ (x) it is

S( f k f̃ ) =
Z

x2X
dx f (x)

�
ln f (x)� ln f̃ (x)

�
. (2.15)
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Maximum entropy
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(a) Shannon entropy of a coin
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(b) Differential entropy of a Gaussian

Figure 2.2: Comparison of (a) Shannon and (b) differential entropy. While
the former is non-negative and takes its maximum value ln 2 for
the uniform distribution p1 = 1

2 , the latter becomes negative for
s < 1p

2pe
and grows monotonically with the broadness of the

underlying distribution. Both functions are concave.

By Jensen’s inequality, the relative entropy is always non-negative
S(pk p̃), S( f k f̃ ) � 0 and zero if and only if the two distributions agree.
Also, it is jointly convex in its two arguments. Hence, it can be inter-
preted as a measure for the distinguishability of the two distributions
p(x) and p̃(x) (or f (x) and f̃ (x)). Nevertheless, it does not serve as
a distance measure on the space of probability distributions, as it is
neither symmetric nor fulfills a triangle inequality.

For our purposes, the second argument p̃(x) (or f̃ (x)) can be inter-
preted as a model or reference distribution for the true distribution given
in the first argument p(x) (or f (x)). Then, relative entropy measures
the uncertainty deficit about the true distribution given the model.

For the relative entropy to be finite, we have to require a support
condition supp [p(x)] ✓ supp [ p̃(x)] (or supp [ f (x)] ✓ supp

⇥
f̃ (x)

⇤
).

Otherwise, its value is set to +• indicating that the model can be
distinguished perfectly from the true distribution, as it predicts zero
probability for some possible events.

Also, the relative entropy is additive for independent distributions,
just as entropy itself. In contrast to entropy, relative entropy is invariant
under reparameterizations x ! x0(x), which we will utilize later.

����� ������� , ����������� ������� ��� ������ �����������
As for probabilities, the notion of entropy can be extended to the case
of more than one random variable. Following the discussion of joint
and conditional probabilities for two random variables X and Y, we
define the joint Shannon entropy as

S(p12) = � Â
x2X

Â
y2Y

p12(x, y) ln p12(x, y) (2.16)

and the conditional Shannon entropy as

S(p1|p2) = � Â
x2X

Â
y2Y

p12(x, y) ln p1(x|y). (2.17)
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Both definitions can be extended to the continuous variable case in a
similar fashion as shown above for the differential entropy, with the
differences to the discrete variable case pointed out earlier.

Assuming finiteness of all involved entropies we find

S(p12) = S(p1) + S(p2|p1) = S(p2) + S(p1|p2), (2.18)

revealing that the conditional Shannon entropy S(p1|p2) can be inter-
preted as the remaining uncertainty encoded in p1(x|y) after observing
the random variable Y. Non-negativity of conditional entropy implies

S(p12) � S(p1), S(p2), (2.19)

showing that joint uncertainty is never smaller than any marginal one.
At last, we define the mutual information as the relative entropy

between the joint probability distribution of interest p12(x, y) and the
uncorrelated model p1(x)⇥ p2(y)

I(p1 : p2) = S(p12|p1 ⇥ p2) = S(p1) + S(p2)� S(p12). (2.20)

This allows one to interpret the mutual information as a universal (i.e.
for discrete and continuous variables) measure for correlations.

By Jensen’s inequality, the mutual information is non-negative,
which is equivalent to classical entropies being subadditive and that
conditioning cannot increase entropy, i.e.

I(p1 : p2) � 0 , S(p12)  S(p1)+ S(p2) , S(p1|p2)  S(p1). (2.21)

All three relations carry over to the continuous variable case and
equality holds if and only if X and Y are uncorrelated.

�������: �������� ���� �������� We illustrate the entropic
quantities and their relations in terms of Venn diagrams in Figure 2.3
for discrete probability distributions p1(x) and p2(y) with unequal
entropies 0 < S(p1) < S(p2).The information

content of a system
can be entirely
encoded in the

correlations with
another system.

S(p12) = S(p1) + S(p2)

I(p1:p2) = 0

(a) No correlations

S(p12) < S(p1) + S(p2)

I(p1:p2) > 0

S(
p 1
|p 2

)

S(
p 2
|p 1

)

(b) Some correlations

S(p12) = S(p2)

I(p1:p2) = S(p1)

S(
p 2
|p 1

)

(c) Full correlations

Figure 2.3: Venn diagrams for entropic quantities with increasing correla-
tions from (a) to (c). Without correlations, entropy is additive.
For some correlations, conditioning reduces marginal entropies.
For full correlations, p2(y) contains all missing information.



3 Q U A N T U M I N F O R M AT I O N

In quantum information theory, classical information theoretic con-
cepts are lifted to the quantum level. This means that information
theoretic questions are directly addressed to the state of the quantum
system of interest. In this sense, the classical probability distribution
as a starting point is replaced by the quantum state.

In general, quantum information theory is concerned with similar
questions as classical information theory. As quantum theory comes
with a set of new physical phenomena, most notably entanglement
and uncertainty, the aim of a quantum information theoretic treatment
can also be to describe these phenomena as precisely as possible.

In the following, we give an introduction to the quantum infor-
mation theoretic framework based on common literature [11–13, 59].
Thereupon, we describe the role of entropy in thermodynamics [24,
25, 61], measurement protocols and the quantum phase space [13, 62,
63], entropic uncertainty [28, 29, 64] and entanglement [42, 64, 65].

�.� ������� ������ ��� ������� ��������

������� ������ The state of a quantum system is fully described
by the density operator r, which acts on the underlying Hilbert space H "[...] quantum

mechanics is
fundamentally a
theory about the
representation and
manipulation of
information, not a
theory about the
mechanics of
nonclassical waves
or particles." -
Jeffrey Bub [66]

with dimension D = dim(H). Similar to Kolmogorov’s construction of
probabilities in Section 2.1, the density operator r can be characterized
axiomatically. We denote the set of bounded linear operators from H

to H as B(H). Then, the density operator r 2 B(H) is defined to be

1. non-negative

r � 0, i.e. hy|r|yi � 0 for all |yi 2 H, (3.1)

2. normalized to unity

Tr{r} = 1, (3.2)

3. hermitian

r† = r. (3.3)

By the spectral theorem, these axioms guarantee that there always ex-
ists a spectral decomposition in a complete orthonormal bases {|yi}y,
such that

r = Â
y

p(y)|yi hy|, (3.4)

23
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where p(x) is a discrete probability distribution. In this basis, the
matrix representation of r is diagonal.

Every density operator falls into one of two classes. Namely, r is
either said to be pure, if and only if it is a projector r2 = r, which is
equivalent to p(y) = 1 for one particular y, such that r = |yi hy|. If
this is not the case, r is called mixed. This distinction can be subsumed
with the two conditions Tr{r2

} = 1 or Tr{r2
} < 1, respectively. Also,

(3.4) intuitively means that every quantum state r can be written as a
convex combination of pure states (see also Figure 3.2).

������� �������� Operations on a quantum state r are most
generally modeled by quantum channels. Mathematically, a quantum
channel is a linear map N : B(H) ! B(H) acting on the state r, which
is trace-preserving Tr{N (r)} = Tr{r} = 1 and completely positive,
i.e. (N ⌦ 1n)(r) � 0 for all n 2 N. Consequently, it is referred to as
a Completely Positive Trace-Preserving (CPTP) map. It can always be
written as [67, 68]

N : r ! N (r) = Â
a

AarA†
a, (3.5)

where Aa are the so-called Kraus operators fulfilling the normalization
condition Âa A†

a Aa = 1. In the following, we discuss four important
examples of quantum channels, which will play a major role in this
thesis.

������� ����� The notion of a quantum state can be extended to
the case where a quantum system consists of two (or more) parts.
This situation is often referred to as bipartition 12. Then, the system is
described by a joint Hilbert space H12 = H1 ⌦H2 with bases {|yi}y

and {|fi}f for H1 and H2, respectively, to which we assign a so-called
global state r12. The local states of the individual systems 1 and 2 follow
by tracing over complementary degrees of freedom, i.e.

r1 = Tr2{r12} = Â
f

hf|r12|fi , (3.6)

and analogously for r2. Therein, the partial trace Tri{.} with i = 1, 2 is
our first example for a quantum channel.

���� ��������� �� � ������ ������ For a closed quantum
system, the time evolution of its quantum state r is described by the
von Neumann equation

∂tr = �i[H, r], (3.7)

where H denotes the Hamilton operator of the system and [., .] is the
commutator. Note that we work in the Schrödinger picture where
states are time-dependent r = r(t) while observables are stationary.
For pure states r = |yi hy|, (3.7) reduces to the Schrödinger equation.
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The von Neumann equation is formally solved by the self-contained
expression

r(tf) = U(tf � ti) r(ti)U†(tf � ti), (3.8)

where tf > ti are two instances of time and U(tf � ti) denotes the
unitary time evolution operator from ti to tf, which reads

U(tf � ti) = e�iH(tf�ti) (3.9)

and fulfills UU† = U†U = 1. Hence, closed quantum systems evolve
unitarily in time. Also, (3.8) shows that unitary time evolution is a
quantum channel with the unitary time evolution operator (3.9) being
the Kraus operator.

���� ��������� �� �� ���� ������ An open quantum system
typically does not evolve unitarily, for example due to the exchange of
energy with its environment. Exemplary, one may think of a subsystem
of a closed system or a system which is in thermal contact with a heat
bath. The time evolution of an open system is, depending on the initial
conditions, described by a quantum channel N of the form (3.5), or
at least by a Positive Trace-Preserving (PTP) map M, which fulfills
M(r) � 0, but is not completely positive in general [69–71].

������������ In quantum information theory, measurements are
mathematically described in the framework of Positive Operator-
Valued Measures (POVMs). The measurement of an observable M can
be represented as a collection of hermitian operators {Mm}m, where
m denotes discrete or continuous outcomes drawn from the alphabet
M corresponding to the observable M. To those operators one can
associate the non-negative POVM elements

Em = M†
m Mm, (3.10)

which are equipped with a resolution of the identity, i.e.

1 = Â
m

Em, 1 =
Z

dm Em. (3.11)

Then, the probability p(m) or probability density f (m) to obtain the
measurement outcome m in the state r when measuring the observable
M can be computed with the simple formulas

p(m) = Tr{rEm}, f (m) = Tr{rEm}, (3.12)

respectively.
A special case of a POVM is a Projection-Valued Measure (PVM),

where all POVM elements Em coincide with their corresponding mea-
surement operators Mm. This is fulfilled if and only if all considered
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elements are orthogonal projectors, i.e. Em = M†
m Mm = Mm for or-

thogonal measurement operators, i.e. Mm Mm0 = dmm0 Mm for discrete
or Mm Mm0 = d(m � m0)Mm for continuous outcomes m.

Two remarks regarding the measurements performed in experi-
ments are in order. First, it is important to note that in experiments
one always works with PVMs. However, Naimark’s dilatation theorem
ensures that every POVM can be represented as a PVM on an enlarged
Hilbert space (see e.g. [72]). In practice, this requires coupling the sys-
tem of interest to an ancilla system and performing a PVM on the joint
system. Second, continuous measurements should be considered as an
idealized situation. In actual experiments, measurement outcomes are
always discrete as a consequence of finite resolution. We will further
comment on this issue and its implications in Section 13.3.

�������: ������� �������� The four discussed quantum chan-
nels are altogether depicted in Figure 3.1.

�12(ti)

�1(ti)

�12(tf )

�1(tf )�

�

Tr2{.}

U

p(m)=Tr1{�1Em}

Figure 3.1: Illustration of the four discussed quantum channels: partial trace
Tr2{.}, unitary time evolution of a closed system U, non-unitary
time evolution of an open subsystem governed by a CPTP N or
PTP map M and a measurement Tr1{r1Em}.

�.� ������� ���������

��� ������� ������� The idea of a measure for the missing
information about a probability distribution can straightforwardly be
extended to the quantum level. To that end, the classical probability
distribution is replaced by the full quantum state. Consequently, we
define the von Neumann entropy as [8]

S(r) = �Tr{r ln r}. (3.13)

Independent of whether the system of interest possesses discrete or
continuous degrees of freedom, the von Neumann entropy is non-
negative S(r) � 0 being zero if and only if the state is pure r =
|yi hy|. Hence, it can be thought of as a measure for the uncertainty
about or the mixedness of the state r.
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The von Neumann entropy S(r) is concave in r, i.e. for a mixture
r = Âi l(i)ri with l(i) being a probability distribution, we obtain

S(r) � Â
i

l(i)S(ri). (3.14)

Also, S(r) equals the Shannon entropy of the mixture probabilities
p(y) if we evaluate it in the eigenbasis of r as given in (3.4),

S(r) = S(p), (3.15)

implying that it takes its global maximum S(r) = ln D for the maxi-
mally mixed state r = Ây

1
D |yi hy|.

Another important property of the von Neumann entropy S(r) is
its invariance under unitary transformations U, i.e.

S(UrU†) = S(r). (3.16)

Together with (3.8) this implies that the mixedness of a closed quantum
system stays constant over time.

�������: ��� ������� ������� ������ We consider a three-
state system whose Hilbert space H is spanned by {|0i , |1i , |2i} and
a diagonal quantum state r = Â3

y=1 p(y)|yi hy|. Curves of constant
entropies S(r) are shown in Figure 3.2.

|0><0|

|1><1||2><2|

S(�)
ln 3

0

0.25

0.5

0.75

1

Figure 3.2: Curves of constant von Neumann entropy S(r) for a three-
level system on the simplex containing all states diagonal in
the {|0i , |1i , |2i} basis. Convexity of the state space as well as
increasing mixedness towards the center become visible.

������� �������� ������� The quantum relative entropy is defined
for two density operators r and r̃ as [21]

S(rkr̃) = Tr{r(ln r � ln r̃)}, (3.17)
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with the support condition supp[r] ✓ supp[r̃] understood. Analogous
to its classical counterpart, it is a non-negative and jointly convex
measure for the distinguishability of the two states r and r̃ being zero
if and only if r = r̃.

The quantum relative entropy is used to formulate one of the most
fundamental theorems in quantum information theory, which is re-Two states r and r̃

are typically harder
to distinguish after a

quantum operation.

ferred to as monotonicity of quantum relative entropy under quantum
channels N and reads

S(rkr̃) � S(N (r)kN (r̃)) (3.18)

with equality for unitary channels. This inequality has been proven
also for PTP maps in [73] and was further strengthened in [74].

����������� ��� ������� ������� ��� ������� ������ ��-
��������� In case of a bipartition 12, we can associate a von
Neumann entropy to the global state S(r12) as well as to the two local
states S(r1) and S(r2) in the sense of (3.13). As for the states them-
selves, these entropies are referred to as global and local entropies,
respectively.

Then, one can define the conditional von Neumann entropy via

S(r1|r2) = S(r12)� S(r2) (3.19)

as the remaining uncertainty about r1 when knowing the state r2,
provided that all involved entropies are finite [75]. It is concave in
r12, but in opposition to the classical case, the quantum version of the
conditional entropy can become negative,

S(r12) ⇤ S(r1), S(r2), (3.20)

which we will discuss in more detail in Section 3.6. Hence, quantum
theory allows for more uncertainty in the parts of a system than in the
system as a whole. The quantum analog of (2.19) is instead given by
the triangle inequality

S(r12) � |S(r1)� S(r2)|. (3.21)

Note that if the global state is pure S(r12) = 0, this implies that the
two local von Neumann entropies agree S(r1) = S(r2).

Also, we define a quantum mutual information

I(r1 : r2) = S(r12kr1 ⌦ r2) = S(r1) + S(r2)� S(r12), (3.22)

which is still a non-negative measure for the (quantum and classical)
correlations between the two subsystems 1 and 2.

In complete analogy to (2.21), non-negativity of quantum mutual
information is equivalent to subadditivity of quantum entropies and
that conditioning cannot increase quantum entropies, i.e.

I(r1 : r2) � 0 , S(r12)  S(r1)+ S(r2) , S(r1|r2)  S(r1), (3.23)

with equality if and only if the two subsystems are uncorrelated
r12 = r1 ⌦ r2.
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�.� ������� ������� ��� ��������������

��� ������� ������� ��������� So far, we have discussed the
notions of probabilities, states and how to describe their information
content with the methods of (quantum) information theory. However,
there remains the (probably most) elementary question of probabil-
ity theory: Given a physical system and some information about it,
typically in terms of expectation values of some observables, which
probability distribution or state should we assign to it? In other words,
how can we find an unbiased prior or what is the best guess? "[...], the ’subjective’

school of thought
regards probabilities
as expressions of
human ignorance;
the probability of an
event is merely a
formal expression of
our expectation that
the event will or did
occur, based on
whatever
information is
available. To the
subjectivist, the
purpose of
probability theory is
to help us in forming
plausible conclusions
in cases where there
is not enough
information available
to lead to certain
conclusions; thus
detailed verification
is not expected. The
test of a good
subjective probability
distribution is does it
correctly represent
our state of
knowledge as to the
value of X?" -
Edwin T. Jaynes [24]

An early attempt to solve this problem was given by Laplace, which
is referred to as the principle of indifference. It states that in absence
of any further information, the best guess is given by the uniform
distribution [27]. Although this approach appears to be natural, it
lacks of applicability in many cases. For example, it cannot make any
statements for continuous variables on unbounded intervals or when
there is indeed access to side information.

With the invention of the entropy as a measure for the missing
information of a distribution (or state), a more quantitative treatment
of such a question became possible, which led Jaynes to propose his
maximum entropy principle [24, 25].

According to this principle, the best guess is given by the distribu-
tion p(x) or state r, which respects the available side information and
maximizes the corresponding classical or quantum entropy S(p) or
S(r), respectively, i.e.

dS(p) !
= 0, dS(r) !

= 0, (3.24)

with side constraints implemented via the method of Lagrange multi-
pliers. Note that the normalization of probabilities or states is always
the minimal constraint.

To provide some heuristic argument for the reasonability of this
principle, let us consider the situation in which we have found two
distributions p(x) and p̃(x), which both respect all available side
information, and have entropies S(p) < S( p̃). As entropy is a measure
for missing information, the latter implies that p(x) contains additional
information, which cannot be accessed by the experiment performed.
Hence, we prefer p̃(x) over p(x) as our best guess should not include
information we do not have access to.

Note also that in absence of side information, the maximum entropy
principle reduces to the principle of indifference. Hence, it may be
regarded as an extension of the latter.

����������� ��������� �������� �� �������������� Statis-
tical physics may be regarded as the prime example for an application
of the maximum entropy principle. In fact, the latter was mainly de-
veloped for justifying the distributions and states describing classical
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and quantum equilibrium situations [24, 25]. Note that in the con-
text of thermodynamics, entropies are typically multiplied with the
Boltzmann constant kB to match the definition of the thermodynamic
Boltzmann entropy. As information theoretic entropies are only de-
fined up to a multiplicative factor, one may easily adapt to this choice.
For brevity, we keep natural units.

We illustrate the typical line of reasoning by making use of some
simplifying assumptions. We consider a macroscopic quantum system
in a finite volume V and a fixed particle number N, which is allowed
to exchange energy with a heat bath of temperature T. Such a system
may be described by a time-independent Hamiltonian H 6= H(t). Now,
we want to find the optimal prior r for this situation.

The Hamiltonian fulfills an eigenvalue equation

H |ni = E(n) |ni , (3.25)

where {|ni}n denotes the orthonormal basis of energy eigenstates
with corresponding eigenvalues E(n). For simplicity, we assume that
these eigenvalues are not degenerate, i.e. E(n) 6= E(m) for all n 6= m.
Then, the von Neumann equation (3.7) implies that any stationary
state r 6= r(t) is diagonal in the energy eigenbasis

r = Â
n

p(n)|ni hn|, (3.26)

where p(n) is a discrete probability distribution. By the relation (3.15),
the von Neumann entropy of such a state is equal to the Shannon
entropy of p(n), i.e. S(r) = S(p), which can be interpreted as a
classical limit and allows us to work with classical expressions in
the following. Note that such a relation does not hold for degenerate
eigenstates.

Furthermore, let us assume that we have access to the energy expec-
tation value

E(p) = Tr{rH} = Â
n

p(n)E(n). (3.27)

Then, the maximum entropy principle states that the best guess for
the distribution p(n) (or the state r) is the result of maximizing the
corresponding entropy S(p) (or S(r)) under the side constraints of nor-
malization and a given energy expectation value (3.27), implemented
via Lagrangian multipliers l and b, respectively. This optimization
problem is solved by the canonical state

rc = Â
n

pc(n)|ni hn|, (3.28)

with

pc(n) =
1
Zc

e�bE(n), (3.29)



�.� ������� ������� ��� �������������� 31

where Zc = Ân e�bE(n) follows from normalization and can be identi-
fied with the canonical partition sum, from which all thermodynamic
quantities can be derived. From the remaining side constraint (3.27)
we find

E(rc) = �
∂

∂b
ln Zc, (3.30)

such that the entropy becomes

S(rc) = ln Zc + bE(rc). (3.31)

Following the standard definition of temperature

1
T

⌘
∂S(rc)

∂E(rc)
, (3.32)

we can identify the second Lagrangian multiplier with the inverse
temperature

b =
1
T

. (3.33)

At last, we find that the free energy as the thermodynamic potential "The law that
entropy always
increases - the
second law of
thermodynamics -
holds, I think, the
supreme position
among the laws of
Nature. If someone
points out to you
that your pet theory
of the universe is in
disagreement with
Maxwell’s equations
- then so much the
worse for Maxwell’s
equations. If it is
found to be
contradicted by
observations - well,
these
experimentalists do
bungle things
sometimes. But if
your theory is found
to be against the
second law of
thermodynamics I
can give you no hope;
there is nothing for it
but to collapse in
deepest humiliation."
- Sir Arthur S.
Eddington [76]

is related to the canonical partition sum Zc via

F(rc) ⌘ E(rc)� TS(rc) = �T ln Zc. (3.34)

To summarize, the maximum entropy principle led us to a complete
description in terms of the canonical ensemble rc.

We will reformulate this principle in terms of relative entropy and
thereupon develop thermodynamics with relative entropy only in
Chapter 5 and Chapter 6, respectively.

������ ��� �� �������������� Let us now come to the second
law of thermodynamics, which may be considered as one of the most
central observations about nature. In simple words, it expresses the
tendency of nature to evolve towards states of higher entropy. In favor
of our entropic perspective, we state the second law following Clausius’
line of reasoning.

To that end, we reconsider the situation described before, i.e. a
system of finite volume V with fixed particle number N coupled to
a heat bath of temperature T, such that this system is well-described
by the canonical state rc. Now, imagine that the system undergoes
some process from time ti to time tf > ti, in which it exchanges
energy with the heat bath. Typically, one assumes processes to be
quasi-stationary within the framework of thermodynamics, but as we
will see later, such an assumption is not necessary to obtain second
law-like inequalities. Then, Clausius’ inequality states that the change
in entropy DS(rc) = Sf(rc)� Si(rc) is bounded from below

DS(rc) � bDE(rc), (3.35)
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where DE(rc) = Ef(rc)� Ei(rc) denotes the change in energy in the
system from time ti to time tf. The latter relation reduces to an equality
if and only if the quasi-stationary processes are reversible.

In Chapter 6 we will derive second law-like inequalities from the
monotonicity property of the quantum relative entropy, which we
then generalize to a local QFT in the framework of relativistic fluids in
Chapter 7.

������ ��� ����� Let us briefly mention other approaches to
thermodynamics and the second law, which we do not further consider.
Classical statistical physics may be developed starting from ergodic
theory [61, 77], while in quantum statistical physics the eigenstate
thermalization hypothesis has been put forward [78–82]. Alternatively,
one may derive the thermodynamic ensembles from a general analysis
of entanglement [36]. All these approaches also try to explain the
process of thermalization and under which conditions it occurs.

Furthermore, considerable effort has been put into defining ther-
modynamic entropy axiomatically in an operational way, with the
aim of extending its definition beyond the equilibrium case. Here, we
refer to numerous works by Lieb and Yngvason [83–85] and Zanchini
and Beretta [86–93]. These approaches are based on the concept of
adiabatic accessibility as an ordering relation between quantum states
and a set of axioms, from which also the second law can be derived.

�.� ������������ ��� ����� �����

���������� ���������: ������ ����������� In this introduc-
tory section we consider two degrees of freedom only. Generalizations
to more degrees of freedom are discussed in Chapter 9 and Chapter 11.

We start with the case of continuous variables, which is character-
ized by an infinite-dimensional Hilbert space D = •. The typical pair
of observables under consideration is position X and momentum K,
whose algebra is given by the canonical commutation relation

[X, K] = i. (3.36)

At first, we consider the so-called homodyne detection protocol, where
the corresponding measurement operators are constructed from the
eigenvalue equations

X |xi = x |xi , K |ki = k |ki . (3.37)

The eigenvectors are orthogonal but non-normalisable in the sense
that

hx|x0i = d(x � x0), hk|k0i = d(k � k0), (3.38)
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and are related via

hx|ki =
1

p
2p

eikx. (3.39)

Then, we can define two PVMs from the corresponding sets of eigen-
vectors as {|xi hx|}x and {|ki hk|}k. The probability densities follow
from (3.12) as

f (x) = hx|r|xi , g(k) = hk|r|ki , (3.40)

and contain the full information about their respective underlying
observable. However, they do not contain any information about
the correlations between X and K, raising the question after other
measurement schemes.

��������� �������� ������ Besides directly detecting position
and momentum by measuring in their corresponding eigenbases, there
is another possibility, for which we need to introduce canonical coherent
states. We loosely follow the group-theoretic approach [94, 95] (see also
[96–99]), which has the great advantage that the notion of coherent
states can be generalized to other algebraic structures.

We start with defining creation and annihilation operators via

a† =
1
p

2
(X � iK) , a =

1
p

2
(X + iK) , (3.41)

which fulfill the commutation relations

[a, a†] = 1. (3.42)

Together with the identity operator 1 and the number operator N =
a†a, these four form Heisenberg-Weyl algebra H4. We may define the
vacuum state |0i as the extremal state in the sense that

a |0i = 0. (3.43)

Then, the isotropy group, i.e. the largest subgroup which leaves the
vacuum invariant, is given by U(1)⌦ U(1). The operators generating
the canonical coherent states live in the corresponding coset space
H4/U(1)⌦ U(1). A convenient unitary representation of coset space
elements is given by the so-called displacement operator

D(a) = eaa†
�a⇤a, (3.44)

which fulfills D†(a) = D�1(a) = D(�a), with a complex-valued
parameter a. The set of canonical coherent states follows from acting
on the vacuum state |0i with the displacement operator

|ai = D(a) |0i . (3.45)
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Hence, canonical coherent states can geometrically be represented in
the complex plane, which corresponds to the quantum phase space
R2. Consequently, it is natural to work with the parameterization

a =
1
p

2
(x + ik) . (3.46)

Note that besides the group theoretic approach, one can also define
canonical coherent states as eigenstates of the annihilation operator

a |ai = a |ai . (3.47)

However, this definition does not allow for a straightforward general-
ization to other groups.

Let us proceed with listing three important properties of canonical
coherent states. They are not orthogonal

|ha|bi|2 = e�
1
2 ((x�x0)2+(k�k0)2), (3.48)

but nonetheless span an overcomplete basis

1 =
Z dx dk

2p
|ai ha| , (3.49)

and minimize several uncertainty relations (e.g. (3.80)).

���������� ���������: ����� ����������� From (3.49) we can
construct a POVM from pure coherent state projectors

Ea = |ai ha|, (3.50)

which is the so-called heterodyne measurement. It leads to the Husimi"The best thing one
can do is to measure

the probability of
finding a particle in

a state with minimal
uncertainty centered
around the classical

values of momentum
and position, i.e. in a

coherent state." -
Alfred Wehrl [23]

Q-distribution [100]

Q(x, k) = Tr{rEa} = ha|r|ai , (3.51)

which is a quasi-probability distribution in the quantum phase space
and as such contains the information about both variables X and K
and their correlations. It is normalized to unity with respect to the
phase space measure

Z dx dk
2p

Q(x, k) = Tr{r} = 1 (3.52)

and bounded

0  Q(x, k)  1, (3.53)

where the upper bound can heuristically be interpreted as a conse-
quence of the uncertainty principle [101, 102]. However, it has to be
understood as a quasi-probability distribution as coherent states are
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not orthogonal and hence the Husimi Q-distribution violates the third
axiom by Kolmogorov (2.4).

It is worth mentioning that the Husimi Q-distribution is related to
the wider known Wigner W-distribution by a Weierstrass transform
with respect to the vacuum, i.e.

Q(x, k) =
Z dx0 dk0

2p
W(x0, k0) 2 e�(x�x0)2

�(k�k0)2
. (3.54)

Hence, the Husimi Q-distribution can be interpreted as a broadened
version of the Wigner W-distribution, which removes the negativities
of the latter. Moreover, the probability densities f (x) and g(k) are in
fact the marginals of the Wigner distribution

f (x) =
Z dk

2p
W(x, k), g(k) =

Z dx
2p

W(x, k), (3.55)

indicating that the marginals of the Husimi Q-distribution correspond
to broadened versions of f (x) and g(k). For an overview of these and
other quasi-probability distributions see [94, 102–105].

���������� ��������� �� ��������� ����� ����� It is often
convenient to group the phase space operators X and K into a single
vector-valued operator

~c = (X, K). (3.56)

Then, the canonical commutation relations (3.36) can be rewritten as

[cj, ck] = iWjk, (3.57)

where W is the symplectic metric

W =

 
0 1
�1 0

!
, (3.58)

which fulfills WT = W�1 = �W and is an involution W2 = �1.

�������� ������ For continuous variable systems we often deal
with Gaussian states, i.e. states for which the Wigner W-distribution
(or equivalently the Husimi Q-distribution) is of Gaussian form. Hence,
these states are fully determined by their means

cj = Tr{rcj} (3.59)

and covariance matrix

gjk =
1
2

Tr{r(cjck + ckcj)}� Tr{rcj}Tr{rck}, (3.60)

which is by definition real, symmetric and positive semi-definite. It
can also be written as

g =

 
s2

x sxk

sxk s2
k

!
, (3.61)
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with s2
x and s2

k denoting the variances of position and momentum
measurements, respectively, while sxk is the covariance, highlighting
that g is the covariance matrix of the Wigner W-distribution. Via (3.54)
we find for the covariance matrix V of the Husimi Q-distribution

V = g +
1
2

1. (3.62)

Notably, Hudson’s theorem states that a pure state is Gaussian if and
only if its Wigner W-distribution is non-negative everywhere [106].

�������� ��������� ��� ���������� ��������������� Uni-
tary transformations are called Gaussian if and only if they map
Gaussian states to Gaussian states. Such transformations have sim-
ple representations in phase space. They transform the operator ~c
according to

~c ! S~c + ~d, (3.63)

where S 2 Sp(4, R) is a symplectic matrix

SWST = W (3.64)

and ~d is a real vector. Note that symplectic transformations have unit
determinant det S = det S�1 = det ST = 1 and transform the first two
moments (3.59) and (3.60) according to

~c ! S~c + ~d, g ! SgST, (3.65)

respectively. Examples include displacements generated by D(a),
which only influence ~d, orthogonal transformations SST = 1 (such
as rotations) and squeezing S = diag(a, 1/a) with a > 0. Starting
from the vacuum state, any pure Gaussian state can be generated by
applying one of these three transformations.

���������� ’� ������� A central theorem in the context of Gaus-
sian states is Williamson’s theorem [107]. It states that for every covari-
ance matrix g there exists a symplectic transformation S diagonalizing
it, i.e.

g = SGST, (3.66)

with G = diag(n, n) and n denoting the so-called symplectic eigenvalue.
Note that n is also the eigenvalue of G. Interestingly, a Gaussian state
is pure if and only if there exists a symplectic S such that

g =
1
2

SST, (3.67)

showing that pure Gaussian states are characterized by the symplectic
eigenvalue being n = 1

2 .
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�������: ��������� ����� ����� We sketch the action of the
canonical displacement operator D(a) on the vacuum state together
with the uncertainty principle in Figure 3.3a. In Figure 3.3b, we com-
pare the vacuum Husimi Q-distribution Q̄(x, k) with the marginal
distributions f̄ (x) and ḡ(k), which are all of Gaussian form.

k

x

�x

�k

D(�)

(a) Canonical displacement opera-
tor

Q(x,k)

f (x)

g(k)

(b) Canonical distributions of direct and joint
measurements

Figure 3.3: (a) Illustration of the canonical displacement operator and (b) the
phase space distributions stemming from a joint or two direct
measurements. As a result of the uncertainty principle, phase
space distributions cannot be arbitrarily concentrated around one
point. Also, one can read-off that the marginals of the Husimi Q-
distribution (blue dashed lines) are broader than the probability
densities f (x) and g(k). Note that the heights of the marginals
differ from the height of the Husimi Q-distribution as a result of
the factor 1

2p in the integral measure.

�������� ���������: ������ ������������ We close our anal-
ysis with the case of two discrete observables Y and Z, i.e. non-
degenerate operators with finite and bounded spectra, typically corre-
sponding to degrees of freedom of a finite-dimensional Hilbert space
D < •. In contrast to the continuous variable case, we do not spec-
ify an algebra at this point, such that we can start from the general
eigenvalue equations

Y |yi = y |yi , Z |zi = z |zi , (3.68)

where the eigenvectors now span an orthonormal basis, i.e.

hy|y0i = dyy0 , hz|z0i = dzz0 . (3.69)

These allow us to define two PVMs as {|yi hy|}y and {|zi hz|}z, lead-
ing to measurement probabilities

p(y) = hy|r|yi , q(z) = hz|r|zi . (3.70)

Interestingly, discrete measurements allow for a well-defined notion of
a post-measurement state without recording the result. For example,
when measuring the observable Y , the state after measurement reads

r ! rY = Â
y2Y

p(y)|yi hy|. (3.71)
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According to (3.15), the von Neumann entropy of this state is equal
to the Shannon entropy of the probability distribution S(rY ) = S(p).
Similar considerations fail for a continuous variable X as

r ! rX =
Z

x2X
dx f (x)|xi hx| (3.72)

is not a trace-class operator and hence cannot represent any physical
state. This is due to the fact that detecting a continuous variable would
require infinite precision (and therefore also infinite energy), which is
physically not feasible.

�.� �������� �����������

������ ������ ��������� The uncertainty principle lies at the
heart of quantum theory and is maybe more famous than the theory
itself. In simple words, it states that two non-commuting observables
can not be measured or prepared simultaneously with arbitrary preci-
sion [108].

To quantify the uncertainty for measuring two arbitrary observables
X and Y , various uncertainty relations have been derived. The most
well-known and also rather general formulation of the uncertainty
principle is due to Robertson [109]"The more

accurately the
position is known,

the less accurately is
the momentum

determined and vice
versa." - Werner

Heisenberg
(translated) [108]

s2
x s2

y �
1
4
|Tr{r[X, Y ]}|2, (3.73)

where s2
x denotes the variance of X, i.e.

s2
x = Tr{rX2

}� Tr{rX}
2. (3.74)

There exists also a stronger version of (3.73) with an extra term con-
taining the anti-commutator of X and Y derived by Schrödinger [110]
and Robertson [111]. We state it here for the special case of position X
and momentum K, where it can be written as

det g �
1
4

. (3.75)

Note that this relation is invariant under symplectic transformations
as det S = det ST = 1 and hence is tight for all pure Gaussian states.

For more than one mode, the uncertainty principle is typically
expressed as the condition [112]

g +
i
2

W � 0, (3.76)

or equivalently

n �
1
2

, (3.77)

showing that g is actually strictly positive-definite. For a single mode,
the three relations (3.75), (3.76) and (3.77) are equivalent, while for
more than one mode a multi-dimensional version of the former is
implied by the two latter relations.
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����� �� �������� Despite its simplicity, the formulation of the
uncertainty principle in terms of variances or other second moments
is not satisfactory from a quantum information theoretic perspective.
First, the variance s2

x is not a true measure of the uncertainty about
the classical distributions p(x) or f (x) obtained after measuring the
observable X several times. In fact, it is a second moment of this
distribution, i.e.

s2
x =

8
<

:
Âx2X p(x)x2

� (Âx2X p(x)x)2 for x discrete,
R

x2X dx f (x)x2
�
�R

x2X dx f (x)x
�2 for x continuous,

(3.78)

and hence lacks the information about all other moments of p(x)
or f (x). Second, it shows counter-intuitive behavior in certain cases
(see following example). Third, it can only be assigned to observables
taking numerical values and fourth, it is not invariant under relabeling
the measurement outcomes.

Hence, a more rigorous formulation in terms of entropy as the
measure for uncertainty is appropriate, leading us to the notion of
EURs. As classical information theory distinguishes between discrete
and continuous variables, we treat those two cases separately in the
following and start with the latter.

�������: �������� �� � ��� The counter-intuitive behavior of the
variance is exemplified for a particle in a box in Figure 3.4, showing
that the variance puts too much weight on the tails of a distribution
[28, 113].

x=0

L
(a) Without walls: sx ⇡ 0.29L

x=0a a
L

(b) With walls: sx ⇡ 0.5L

Figure 3.4: The position of a particle is measured inside a box of length L
(each measurement is depicted by a single point). We distinguish
the two cases (a) without walls and (b) with walls of width a ⌧ L.
The variance of the position s2

x is larger in the latter situation,
although the uncertainty on the particle’s position is lower on
the right.

����������-������-��������� ��� Following up on several works
[114–116], the best-known EUR was derived for direct position and
momentum measurements by BBM and reads [32]

S( f ) + S(g) � 1 + ln p. (3.79)
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Note that either of the two entropies can become negative. Interestingly,
one can easily show that this relation implies the variance based
relation for these variables

s2
x s2

k �
1
4

, (3.80)

which is the well-known relation by Heisenberg and Kennard [108,"[...] negative
entropies are due to

the fact that classical
density distributions
may be concentrated
on regions in phase

space with volume <
h." - Alfred Wehrl

[23]

117] (see also [118]). Note that this relation follows from (3.75) by
aligning the principal axes with the coordinate axes sxk = 0, showing
that (3.75) is tighter than (3.80) if and only if sxk 6= 0.

Using that the probability density function maximizing the differen-
tial entropy for a given variance is a Gaussian leads to

ln (2epsxsk) = S( fG) + S(gG) � S( f ) + S(g) � ln ep. (3.81)

Hence, the EUR in (3.79) is not only favorable from an information
theoretic perspective, but is also stronger than the variance based
relation (3.80).

In general, (3.79) is not invariant under rotations in phase space
and is tight for all squeezed coherent states. It is an interesting open
problem to formulate an EUR which is tight for all pure Gaussian states
and reduces to (3.75) in the case of Gaussian states (see [29, 119, 120]
and also [121, 122]).

In Chapter 9, we will derive the first EUR for quantum fields starting
from (3.79).

�����-���� ��� Another EUR which can be applied to direct posi-
tion and momentum measurements has been put forward by Frank
and Lieb based on a work by Rumin [123], which reads [33]

S( f ) + S(g) � ln 2p + S(r). (3.82)

In contrast to the state-independent bound of (3.79), the bound of
the latter relation contains the von Neumann entropy S(r), which
accounts for the mixedness of the quantum state r. However, for pure
states (3.82) is weaker than (3.79). In contrast to (3.79), the FL relation
becomes tight in the infinite temperature limit.

����� ������� ��� ��������� �����-���� ��� The properties
(3.52) and (3.53) allow us to associate an entropy with the Husimi
Q-distribution, which is the canonical Wehrl entropy [22, 23]

S(Q) = �

Z dx dk
2p

Q(x, k) ln Q(x, k). (3.83)

This notion of an entropy in phase space fulfills an EUR known as the
WL inequality [34, 124] (see also [125–128])

S(Q) � 1, (3.84)
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where equality is achieved if and only if the state under consideration
is a pure coherent state projector r = |ai ha|. Therefore, the canonical
Wehrl entropy S(Q) can be thought of as a measure for localization or
classicality in phase space.

Note that (3.84) is, in contrast to (3.79), invariant under rotations,
but not under squeezing. Note also that variants of WL inequality
(3.84) have been proven for various algebras, including SU(2) [124],
symmetric SU(K) [129] and SU(1, 1) [130], showing the generality of
the phase space approach. Moreover, S(Q) is an upper bound for the
quantum entropy of the state S(r), i.e.

S(r)  S(Q), (3.85)

which renders it a coarse-grained entropy.
In Chapter 10, we investigate the Wehrl entropy further and compare

the three EURs (3.79), (3.82) and (3.84) regarding their tightness.

�����-��������� �������-������ ��� Based on the works
[131, 132], the standard EUR for PVMs of discrete variables was formu-
lated by Maassen and Uffink [30]. Here, we directly put forward the
improved state-dependent version [31, 133]

S(p) + S(q) � � ln c + S(r), (3.86)

where

c = max
y,z

|hy|zi|2 (3.87)

denotes the maximum overlap between any two basis vectors |yi and
|zi, and S(r) improves the bound for mixed states. One may interpret
c as the quantum incompatibility of the two measurement bases. In
this sense, it plays a similar role as the commutator in Robertson’s
relation (3.73).

The MU EUR (3.86) can also be generalized for POVMs. It keeps its
form when measuring the sets {Ey}y and {Ez}z, with the quantum
incompatibility c substituted by [12, 134–136]

c = max
y,z

���
q

Ey Ez

q
Ey

���
•

, (3.88)

with k.k• being the infinity operator norm.
Note also that the relations (3.82) and (3.86) can be unified in a

rather formal way as done by Frank and Lieb in [33] (see [137] for
POVMs). This will be the starting point for a more direct unification in
terms of relative entropies carried out in Chapter 8.

������ ��� ����� Let us mention other directions in the wide
field of EURs, which are not further discussed in this thesis.
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First, refinements of the presented EURs were discussed extensively.
For example, the MU EUR was strengthened in [135, 136], while refine-
ments of the WL EUR are discussed in [138, 139].

Second, EURs have been formulated for bi- and tri-partite systems
in the presence of (quantum) memory, where entropies are replaced
by conditional entropies, see e.g. [31, 133, 140–145]. In this context,
there are also reformulations in terms of mutual information, which
are called information exclusion principles [136, 146, 147].

Third, besides the class of EURs presented so far, which are all
concerned with preparation uncertainty in the sense that they quantify
the incompatibility of measurements, there exists measurement EURs,
which describe the disturbance of observables caused by subsequent
measurements [148, 149].

Other topics include relations for energy and time [150–153], exten-
sions to Rényi entropies [30, 154] and relations for complementary
operator algebras [155–157].

�.� ������������

���������� �� ������������ ��� ������������ Quantum en-
tanglement may be regarded as the feature distinguishing classical
from quantum physics when at least two systems are considered. In"The phenomenon of

entanglement is the
essential fact of

quantum mechanics,
the fact that makes it

so different from
classical physics. It

brings into question
our entire

understanding about
what is real in the
physical world." -
Leonard Susskind

[158]

the following, we examine a bipartition 12 of two systems 1 and 2
with Hilbert space H12 = H1 ⌦H2.

We call the global state r12 a product state if it can be written as a
tensor product of the local states, i.e.

r12 = r1 ⌦ r2. (3.89)

In this case, the two subsystems 1 and 2 are uncorrelated.
Furthermore, we say that r12 is separable if it can be written as a

convex sum over product states, i.e.

r12 = Â
i

p(i)
�
ri

1 ⌦ ri
2
�
, (3.90)

where p(i) is a probability distribution and {ri
1}i and {ri

2}i denote
families of local states corresponding to subsystems 1 and 2, respec-
tively. From an operational point of view, this means that the two
subsystems 1 and 2 are classically correlated in the sense that the
state r12 can be created by two parties with Local Operations and
Classical Communication (LOCC) [159]. More precisely, if we imagine
two parties Alice and Bob having access to only their subsystems
1 and 2, respectively, Bob may produce the probability distribution
p(i) and send it to Alice via classical communication. This is enough
for both parties being able to prepare their local states, such that the
global state will be of the form (3.90). Also, note that a globally pure
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state is separable if and only if it is a product state of two pure local
states in the sense of (3.89).

If a decomposition of the form (3.90) can not be found, r12 is said
to be entangled. Then, the subsystems 1 and 2 exhibit quantum corre-
lations, which discriminate quantum from classical physics. Opera-
tionally, this means that every entangled state can be used in order to
execute some tasks with better performance than possible with any
separable state [159] and hence becomes some kind of useful resource.

The mathematical theory of entanglement is mostly concerned with
the separability problem: given some global state r12 or access to it via
some measurement procedure, how can we decide whether this state is
entangled or not? Often, it is also of great interest to ask: how can we
quantify the amount of entanglement? We will briefly discuss common
approaches in the following.

�������: ��� �� ��������� ������ The sets of separable and
entangled states are sketched in Figure 3.5 with an emphasis put on
the geometric meaning of purity.

mixed
separable

pure
product

pure
entangled

mixed
entangled

Figure 3.5: The set of mixed separable states (blue area) is the convex hull
of the set of all pure product states (red points). As the set of
all states is convex itself, pure product states as well as pure
entangled states (black points) serve as extremal points. The
leftover region (gray area) corresponds to the mixed entangled
states.

������������ �������� Let us start with the question how
entanglement can be quantified. To that end, we distinguish two cases,
namely we consider the global state r12 to be either pure or mixed.

If the global state is pure S(r12) = 0, the set of separable states is
given by all product states of the form (3.89). In this case we can apply
subadditivity of quantum entropies (cf. (3.23)) to find

r12 is

8
<

:
separable , S(r1) = S(r2) = 0,

entangled , S(r1) = S(r2) > 0.
(3.91)
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In simple words, the latter condition means that entanglement is
present if we know everything about the system as a whole, but not
everything about its parts. Note also that the latter two statements
can be reformulated with quantum conditional entropy becoming
negative if and only if the state r12 is entangled as evident from the
definition (3.19). Consequently, it is natural to measure the amount of
entanglement by the quantum entropies S(r1) = S(r2), which is why
they are conveniently called entanglement entropies.

Instead, if the global state is mixed S(r12) > 0, the situation becomes
more involved. General entanglement measures are defined via a set
of axioms, which follow the operational approach to entanglement
theory. Although there are numerous different characterizations, we
follow one of the most common approaches based on the following
four axioms [69, 159]. We say that E(r12) is an entanglement measure
for subsystems 1 and 2 if it

1. outputs a real non-negative number

E(r12) � 0 for all r12 2 B(H12), (3.92)

2. becomes zero if and only if the state is separable

E(r12) = 0 , r12 separable, (3.93)

3. does not increase under any LOCC represented by N

E(r12) � E(N (r12)), (3.94)

4. reduces to the entanglement entropy for pure states

E(r12) = S(r1) = S(r2) for all r12 = |yi hy|. (3.95)

One may regard the third axiom as central to this characterization and
it should be noted that this requirement can be motivated from the
fact that LOCCs can cannot create entanglement. Hence, a reasonable
entanglement measure should not increase when LOCCs are applied
to the global state. Furthermore, the third axiom immediately implies
that entanglement measures have to be invariant under local unitary
transformations. Note also that if the fourth axiom is not met, one we
speak of an entanglement monotone.

�������: �������� ������� �� ������������ Several quan-
tities which meet these four axioms exist. Exemplary, we discuss the
Relative Entropy of Entanglement (REoE), which is defined as the
optimization problem [69, 160]

EREoE(r12) = inf
r̃12 sep.

S(r12kr̃12), (3.96)

where the minimization is over all separable model states r̃12.
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From the definition of the quantum relative entropy it follows im-
mediately that the REoE fulfills axioms one and two, while its mono-
tonicity property (3.18) ensures the third axiom to be valid. Moreover,
for globally pure states it was proven that the REoE reduces to the
entanglement entropy in [160].

Note the close resemblance to the quantum mutual information,
which follows for r̃12 = r1 ⌦ r2, such that the REoE may be regarded
as the mixed state generalization of the quantum mutual information.
By definition they are related via EREoE(r12)  I(r1 : r2).

At last, let us mention that the REoE (and all other entanglement
measures) are often NP-hard to compute and therefore as hard as the
separability problem itself [161, 162].

������������ ��������� ��� ������������ �������� As a result
from our discussion of entanglement measures, it is evident that
the pure state case is trivial as the entanglement entropy provides a
unique measure and allows to decide easily whether the global state
is entangled or not. In contrast, mixed state entanglement turned out
to be NP-hard to quantify. Hence, we may formulate criteria which
are simple to evaluate on the cost of returning inconclusive results for
some states, allowing us to characterize at least some entangled states.

In the following, we speak of a separability criterion as a condition,
often formulated for measurable quantities, which is met by all separable
states. Therefore, the violation of a separability criterion by some state
certifies that this state is entangled. On the other hand, if some state
fulfills the criterion, we can not say whether this state is entangled
or not. In this sense, a separability criterion is a necessary condition
for a state to be separable, but is typically not sufficient. Hence, the "It would not make

sense for a mechanic
to say, ’I know
everything about
your car but
unfortunately I can’t
tell you anything
about any of its
parts.’ But that’s
exactly what
Einstein explained to
Bohr — in quantum
mechanics, one can
know everything
about a system and
nothing about its
individual parts —
[...]." - Leonard
Susskind [158]

violation of the criterion is a sufficient condition for entanglement.
However, in some rare cases, certain separability criteria turn out to
be sufficient conditions for separability as well. In these cases, the
separability problem is solved.

From an information theoretic perspective, there is a very simple
criterion based on the quantum conditional entropy, which states that

S(r1|r2), S(r2|r1) � 0. (3.97)

for all separable states. It follows from generalizing the trivial argu-
ment for pure states to mixed states via concavity. Hence, if a quantum
state has negative quantum conditional entropy, it is entangled [35].
Note again that this condition is also sufficient for pure states.

��� ��������� We proceed with the probably most well-known
separability criterion, which is the Peres-Horodecki criterion, also known
as Positive Partial Transpose (PPT) criterion. It states that any separable
state r12 has PPT [163, 164]

r12
T2
! (1 ⌦ T2) r12 � 0, (3.98)
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i.e. the operator (1 ⌦ T2) r12 resulting from using the partial transpose
on subsystem 2 (or analogously on subsystem 1), is non-negative.
The statement is a simple consequence from the definition (3.90). For
separable states (3.90), applying a partial transposition results in

r12
T2
! Â

i
p(i)

✓
ri

1 ⌦
⇣

ri
2

⌘T2
◆

. (3.99)

Since
�
ri

2
�T2 has the same eigenvalues as

�
ri

2
�
, the resulting operator

needs to be non-negative for separable states.
Interestingly, the PPT criterion is also sufficient for finite Hilbert

spaces with dimensions 2⇥ 2 and 2⇥ 3 [164]. In higher dimensions, the
PPT criterion is only necessary. In this case, there exist entangled states
with positive partial transpose, which are called bound entangled
states [165].

��� ���� ������� ������������ ��� ����������� The partial
transpose does not change the normalization and hermicity of the
initial state r12 and hence 1 ⌦ T2 is a PTP map. If the state under
consideration is separable, it becomes a CPTP map and the resulting
operator is a density operator representing a physical quantum state
as defined in Section 3.1 (see also [42] for the deep connection between
separability criteria and PTP maps). As such, all derived distributions
of non-commuting observables are constrained by the uncertainty
principle [166]. As a result, any uncertainty relation, when applied
to a partially transposed operator, can be used to infer a separability
criterion.

However, not all choices of observables are practical. If an uncer-
tainty relation exhibits symmetries, the resulting criteria are sometimes
fulfilled by all entangled states, too. Therefore, one has to come up
with appropriate observables, such that the derived criteria are vio-
lated by at least a couple of entangled states.

��� ��������� ��� ���������� ��������� We will discuss a few
of such criteria for continuous variable systems in the following. Inter-
estingly, the partial transpose has a simple geometric interpretation in
phase space: it corresponds to a mirror reflection in one local phase
space, i.e. for every quasi-probability distribution in phase space the
partial transpose transforms the coordinates as (see also Section 13.1)

~c12 = (x1, k1, x2, k2)
T2
! L~c12 = (x1, k1, x2,�k2), (3.100)

with the matrix

L = diag(1, 1, 1,�1). (3.101)

Several separability criteria can be obtained, depending on which
observables and uncertainty relations are considered.
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������ ������ �������� ��� ���������� ��������� When
employing second moment uncertainty relations, one can end up with
one of the following three well-known criteria. Simon [44] started with
(3.76) constraining the global phase space covariance matrix g12 and
obtained the separability criterion

g0

12 +
i
2

W � 0, (3.102)

where

g0

12 = Lg12L (3.103)

denotes the global covariance matrix corresponding to the partially
transposed operator (1 ⌦ T2)r12.

Another approach is based on considering non-local observables in
the spirit of Einstein-Podolsky-Rosen (EPR) [167]

X± = |a|X1 ±
1
a

X2, K± = |a|K1 ±
1
a

K2, (3.104)

with a 6= 0 being a real number (which accounts for local squeezing).
These operators fulfill the commutation relations

[X±, K±] = a2 +
1
a2 , [X±, K⌥] = a2

�
1
a2 . (3.105)

The variances s2
x± and s2

k± of the measured distributions f± ⌘ f (x±)
and g± ⌘ g(k±), respectively, are constrained by the uncertainty
principle in the form of Robertson’s relation (3.73). Now, applying the
PPT criterion according to (3.100) results in k± ! k⌥. Then, we end
up with the Mancini-Giovannetti-Vitali-Tombesi (MGVT) separability
criteria [45, 46]

sx±sk⌥ �
1
2

✓
a2 +

1
a2

◆
� 1. (3.106)

A weaker set of criteria, the Duan-Giedke-Cirac-Zoller (DGCZ) criteria,
can be obtained by bounding the left hand side from above, resulting
in [43]

s2
x± + s2

k⌥ � a2 +
1
a2 � 2, (3.107)

where we used that bc  1
2 (b

2 + c2) as a consequence of (b � c)2
� 0.

In both cases we also gave the minimum of the corresponding bound,
which leads to weaker criteria in general.

Note that the latter two criteria were originally derived without the
use of the PPT criterion. Note also that the second moment criteria by
Simon (3.102) and DGCZ (3.106) are formally equivalent and that all
three criteria coincide for Gaussian states, in which case they are also
sufficient criteria for separability.
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�������� �������� ��� ���������� ��������� What the sec-
ond moment criteria have in common is that they are all easy to
evaluate, but often return inconclusive statements for entangled but
non-Gaussian states. To overcome this problem, criteria involving
higher moments have been formulated [168, 169].

In contrast, the modern quantum information theoretic approach
relies on entropic criteria, which are generically more sensitive in the
non-Gaussian regime. For example, when considering the non-local
operators (3.104) with a = 1 and using the BBM EUR (3.79) instead of a
second moment uncertainty relation, one ends up with the entropic
criteria by Walborn-Taketani-Salles-Toscano-de Matos Filho (WTSTD)
[47] (see also [48, 49])

S( f±) + S(g⌥) � 1 + ln p. (3.108)

Again, the original derivation in [47] does not utilize the PPT criterion.
Extensions to Rényi entropies can be found in [49], while differential
conditional entropies are discussed in [51, 144, 145].

In Chapter 13 we will use the PPT criterion in phase space to derive
a general family of beyond-entropic separability criteria.

������ ��� ����� Let us close with a short list of topics connected
to entanglement theory, which will not be discussed any further in
this thesis.

First, there are many more separability criteria, especially in the
context of discrete variable quantum systems. A notable mention is the
reduction criterion [170, 171]. See also [142, 143, 172, 173] for various
entropic criteria for discrete variables.

Second, there is the large field of multipartite entanglement, i.e. the
study of entanglement between more than two parts of a system [42,
65]. This includes other interesting peculiarities of the phenomenon
entanglement, for example the monogamy of entanglement.

Third, entanglement is the defining feature in quantum metrology,
which allows one to perform experiments with higher precision than
any classical analog [174].

Fourth, entanglement is key for quantum computing as it is re-
sponsible for the performance gain over classical computations when
applied to suitable tasks [14, 15].



4 Q U A N T U M F I E L D S

We proceed with QFT, which underpins the modern construct of ideas
in physics. Especially in recent years, information theoretic methods
have been applied extensively to field-theoretic problems, for example
in the context of black holes [40, 175–178], the famous information
paradox [16–18], holography [41, 179–181], condensed matter physics
[182–184] or high energy physics [185–191].

In the following, we briefly introduce QFT for a scalar field within
the functional integral formalism [192] and discuss the role of entan-
glement in QFT based on [182, 183, 193–196].

�.� ���������� �������� �����������

��������� ������ In contrast to classical mechanics, classical fields
describe infinitely many degrees of freedom. More precisely, a real
scalar field f(x) attains some real value at every spacetime point x.
Heuristically, one may think of such a field as the limit of infinitely
many oscillator modes. This can be made explicit by working in terms
of a lattice theory, such that we deal with a field f(xi1...id) evaluated at
discretized spacetime points xi1...id = e (i1, ..., id)T, where e is the lattice
spacing between two neighboring modes and ij is integer-valued for
all 1  j  d. Then, we get back the continuous field in the continuum
limit, i.e. xi1...id ! x and f(xi1...id) ! f(x) for e ! 0 and N ! •,
where N is the number of modes per site.

A field theory is further specified by an action

S =
Z

dt L =
Z

ddx L, (4.1)

where L = L(f, ∂tf) denotes the Lagrangian and L the corresponding
density. Typically, L is a local function of the underlying field f(x)
and derivatives thereof in the sense that causality has to be respected,
which is especially the case if the interactions are local. On the lattice,
this requirement translates into nearest-neighbor interactions.

Next, we introduce the conjugate momentum field p(x) via

p(x) =
∂L

∂(∂tf)
, (4.2)

which allows us to define the Hamiltonian density H = H(f, p) as
the Legendre transform of the Lagrangian density L, i.e.

H = p(x)∂tf(x)� L. (4.3)

49
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Note that one obtains the Hamiltonian H by integrating the latter over
space

H =
Z

dd�1x H. (4.4)

Although it is sometimes convenient to work within the Hamiltonian
formalism, it is important to note that for relativistic theories the
Lagrangian density L is Lorentz-invariant, i.e. transforms as a scalar
under Lorentz transformations, while the Hamiltonian density H is
not. This can be seen from (3.9), which shows that the Hamiltonian H
generates translations in time and hence singles out a time direction.
Therefore, despite the fact that both formulations are covariant (in the
sense of form-invariant), the symmetries become manifest only when
working with L.

�������: ��������� ����� We sketch the continuum limit e !

0, N ! • of a d = 1 + 0-dimensional lattice theory in Figure 4.1.
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xi0
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�(xi)

(a) e = 0.5, N = 10
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(b) e = 0.25, N = 20
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x0
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1

1.5

2
�(x)

(c) e ! 0, N ! •

Figure 4.1: Continuum limit e ! 0, N ! • for a scalar field f(x) on a lattice
with (in-)decreasing lattice spacing e (number of modes N) from
(a) to (c).

���� ��������� �� ������� ������ �: ��������� ������������
The transition from classical to quantum fields can be made in two
ways. In the canonical formalism, the fields are promoted to field
operators f(x) ! f(x), p(x) ! p(x) and one imposes commutation
relations at every two points in spacetime

[f(x), p(x0)] = d(d)(x � x0). (4.5)

The field operators can be expanded in terms of creation and annihila-
tion operators, a†

~k
and a~k, respectively, where~k denotes a momentum.

For example, we obtain in the Schrödinger picture at a constant time t

f(~x) =
Z dd�1k

(2p)d�1
1p

2w(k)

⇣
a~k ei~k~x + a†

~k e�i~k~x
⌘

, (4.6)

where w(k) denotes the dispersion relation, which is specified by
the concrete theory of interest. This decomposition allows for the
useful interpretation that an excitation of the quantum field f(x)
corresponds to a free particle with definite momentum~k. To calculate
typical observables such as correlation functions, one may prefer the
following second option.
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���� ��������� �� ������� ������ ��: ���������� ���������
In the functional integral formalism, one instead takes Feynman’s path
integral approach in QM to the field-theoretic level, i.e. one constructs
a functional integral over all field configurations with a complex-valued
measure. We introduce the corresponding partition function as a
functional integral over all possible field configurations (constrained
by the state of interest)

Z =
Z

Df eiS = lim
e!0

 

’
i1,...,id2Z

Z
df(xi1...id) eiS

!
, (4.7)

where the functional integral
R
Df is defined via the continuum limit

e ! 0 and the complex-valued weighting factor is given by eiS.
In this formalism, correlation functions follow directly from the

partition function Z. If one introduces a source term J(x), the latter
becomes

Z[J] =
Z

Df eiS+
R

ddxJ(x)f(x). (4.8)

From this expression, correlation functions can be computed via func-
tional derivatives at vanishing sources. For example, the field expecta-
tion value can be computed from

hf(x)i =
1

Z[J]
dZ[J]
dJ(x)

���
J=0

=

R
Df f(x) eiS
R
Df eiS , (4.9)

with the functional derivative being defined through

df(x)
df(x0)

= dd(x � x0). (4.10)

Often, it is convenient to perform an analytic continuation (also called
Wick rotation), which transforms the complex-valued weighting fac-
tors eiS into real-valued factors e�S, allowing for convergence of the
functional integral. The analytic continuation is heuristically motivated
by the fact that the Euclidean and Minkowskian metrics are equivalent
if the time coordinate t of the former is imaginary and related to the
latter via t ! �it, such that S ! �iS. Consequently, one refers to the
latter two as Minkowskian (real time) and Euclidean (imaginary time)
formalism, respectively.

The connections between the Minkowskian and Euclidean theories
are studied in detail in the context of the Osterwalder-Schrader theo-
rem [197–199]. Interestingly, they are very hard to establish formally.
For example, it is one of the millennium problems to prove the ex-
istence of such a connection for gauge theories in d = 4 spacetime
dimensions in full mathematical rigor [200].
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������ ������������� ��� ������� ������ In QM, we con-
sidered quantum states at every instance of time r = r(t) (see (3.7)).
However, if we consider a quantum field on some generic background
geometry specified by a metric gµn, we have to work with a foliation
of spacetime instead. This corresponds to a family of so-called Cauchy
hypersurfaces S(t), which are (d � 1)-dimensional submanifolds of
spacetime equipped with a time-like normal vector nµ(x) at every
point x 2 S. The parameter t plays the role of a time coordinate and
sometimes indeed corresponds to a time measured by some particular
observer. In this sense, time evolution can be generalized to an evolu-
tion from an initial Cauchy hypersurface to a final hypersurface, i.e.
S(ti) ! S(tf).

Then, a quantum state can be associated with every hypersurface
S(t), i.e. r(t). Often, it is convenient to express the state (or other
operators) in terms of its matrix representation r[f+, f�] with respect
to the fields f+(x) and f�(x) evaluated on the hypersurface S, i.e.
x 2 S. As we will see in Chapter 9, the diagonal elements of this
matrix r[f, f] are of special interest to entropic uncertainty in QFT.

���� ��������� �� � ������ ������ Let us consider a closed
system and a unitary time evolution from a state r(ti) on one hyper-
surface Si to the next, i.e. to r(tf) on Sf. In the aforementioned matrix
representation, we can write the unitary time evolution equation (3.8)
as

r[ff+, ff�](tf) =
Z
Dfi+

Z
Dfi� U[ff+, fi+](ti, tf)

r[fi+, fi�](ti)U†[fi�, ff�](tf, ti),
(4.11)

wherein the unitary time evolution operator from Si to Sf is given by
the functional integral

U[ff, fi](ti, tf) =
Z

Df eiS[f] (4.12)

with the boundary conditions f(x) = fi(x) on Si and f(x) = ff(x)
on Sf understood. The functional integral (4.11) together with (4.12)
is referred to as the Schwinger-Keldysh double time path, as the
two unitary evolution operators in (4.11) correspond to an evolution
forward (with U) and backwards (with U†) in time [201, 202].

Starting from that, we will discuss information theoretic constraints
on the time evolution of an open quantum system in Chapter 7.

�������: ������ ������������� We sketch flat and curved
Cauchy hypersurfaces for a d = 1 + 1-dimensional theory in Fig-
ure 4.2a and Figure 4.2b, respectively.
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Figure 4.2: Families of Cauchy hypersurfaces with time-like normal vectors
(small black arrows) representing time evolution from a quantum
state r(ti) (blue line) to r(tf) (red line) via the unitary operator
U (large black arrow). In (a), we consider the special case of flat
hypersurfaces, i.e. gµn = hµn, such that the normal vector equals
the unit vector in time direction at every point. In (b), we picture
a more general situation in the presence of curvature.

������ �� ����������� For later purposes, we also discuss quan-
tum fields at finite temperature. In a field-theoretic setting, the thermal
density operator (3.28) can still be written as

rc =
1
Zc

e�bH , (4.13)

where the Hamiltonian operator H is now a local integral over the
Hamiltonian density operator H in analogy to (4.4). Note that more
generally, H is the time-time component of the energy-momentum
tensor Tµn. The latter will appear in the covariant generalization of
(4.13) to arbitrary Cauchy hypersurfaces, which will be the starting
point for the discussion of relativistic fluid dynamics in Chapter 7.

Moreover, let us briefly discuss the thermal state in the functional
integral formalism. Comparing the thermal density operator to the
unitary time evolution operator (3.9) reveals that the two are equivalent
if we set tf � ti ⌘ 0 � ib. Hence, from (4.12) we obtain the functional
integral representation of the thermal state

rc[f+, f�] =
1
Zc

Z
Df eiS[f] (4.14)

with an action

S[f] =
Z

�ib

0
dt
Z

dd�1x L[f] (4.15)

and boundary conditions f(x) = f+(x) for t = 0 and f(x) = f�(x)
for t = �ib, which imply that the functional integral goes over a torus
geometry in time direction t. Note that we get back the vacuum result
for b ! •.
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�.� ������������ ��� ������� ������

����������� �� � ��� In quantum theory, entanglement is studied
for systems with finitely many degrees of freedom. For example, one
may consider two spins or two harmonic oscillator modes. When
working with quantum fields, one has to deal with infinitely many
degrees of freedom, which requires a more careful treatment of the
phenomenon entanglement, as it comes with non-renormalizable UV
divergences for several quantities of interest.

To access these peculiarities, let us consider again a regularized
quantum field on some space-like hypersurface S. In this situation,
the inverse lattice spacing 1/e provides an UV-regulator. In this sense,
the continuum limit e ! 0 takes into account arbitrarily high energy
scales, while a finite e cuts off energy scales above 1/e. Also, in
the regularized theory, every discrete spatial position xi2...id 2 S is
endowed with a single mode and a corresponding Hilbert space
Hxi2...id

. Depending on the theory of interest these Hilbert spaces are
finite (for examples for spins) or infinite (for oscillator modes).

Now, the hypersurface S may be divided into two regions in several
ways. In this work, we only consider a finite spatial region 1 and its
complement 2 such that S = 1 [ 2 ⌘ 12 and 1 \ 2 = ∆. Alternatively,
one could study two half-infinite regions 1 and 2, for example two
half-lines in d = 1 + 1 spacetime dimensions. For the corresponding
Hilbert spaces we have a decomposition of the form

H12 = H1 ⌦H2 (4.16)

with

H1 =
O

xi2...id21
Hxi2...id

, H2 =
O

xi2...id22
Hxi2...id

. (4.17)

Interestingly, the continuum limit e ! 0 leads to severe problems
already on the level of the Hilbert space decomposition (4.16). In fact,
such a decomposition does not exist in a strict sense for e ! 0.

Mathematically, this is due to the Reeh-Schlieder theorem [203]. In
simple words, it states that operators localized to any region still suffice
to generate all other operators, indicating that there is entanglement
present between observables in any two regions.

Physically, the problems come from the presence of a (sharp) surface
between the two regions 1 and 2, which is the so-called entangling
surface. In our case, this corresponds to the boundary ∂1 of region 1,
which is typically assumed to be smooth. In the limit e ! 0, arbitrarily
high energy modes are present, which are localized to an arbitrarily
small region around the entangling surface ∂1. Hence, a bipartite
splitting of the Hilbert space becomes ambiguous.

To be on the safe side, we keep thinking in terms of a regularized
theory in the following, such that the global Hilbert space can indeed
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be decomposed according to (4.16). Starting from a global state r12,
we associate local states in analogy to (3.6)

r1 = Tr2{r12}, r2 = Tr1{r12}, (4.18)

with the regions 1 and 2, respectively. Based on that, we may ask
how much the two regions 1 and 2 are entangled by computing the
corresponding entanglement entropies.

�������: ������������ �� �� �� . ��� We illustrate bipartitions
for two (a) quantum spins in Figure 4.3a and (b) spatial regions in a
lattice field theory Figure 4.3b.

1 2

�

(a) Two entangled spins

� L

1

2

�1

(b) Two entangled regions

Figure 4.3: In quantum theory, entanglement is present between well-
separated objects, e.g. between two quantum spins 1 and 2
sketched in (a). For quantum fields regularized on a lattice with
lattice constant e in (b), we consider a region 1 of typical size L
and its complement 2, which are strongly entangled across the
boundary ∂1.

������ ��� ��� ������� ������ To appreciate the significance of
the area law discussed later, let us start with a naive estimation of the
entanglement entropy for typical pure states, in which case the entan-
glement entropy provides a meaningful measure for entanglement.

We consider the volume of the enclosed region 1 to be of the order
V ⇠ Ld�1 (cf. Figure 4.3b), i.e. we approximate 1 by a ball-shaped
region. Second, we assume the size of 1 to be much larger than the
cutoff-scale, i.e. L � e, but still small compared to the size of the full
system 12. Often quantum fields extend up to infinity, such that the
latter assumption reads L ⌧ •.

In such a situation we have that the Hilbert space H1 associated
with 1 is much smaller than H2, allowing us to apply Page’s theorem.
It states that for a random global pure state r12 constructed from the
unitarily invariant Haar measure, the local state r1 is close to being
maximally entangled [204–206]. Hence, we end up with

S(r1) ⇠ log D1 ⇠ (L/e)d�1, (4.19)
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which is the so-called volume law of entanglement entropy [183, 196].
We observe that the entanglement entropy of a typical state is pro-
portional to the number of modes enclosed in 1 and hence becomes
UV-divergent in the continuum limit e ! 0.

���� ��� ��� �������� ������ However, in QFTs one is typically
not concerned with random states, but rather with physical states,
such as the vacuum, low-lying excitations or thermal states. Moreover,
constraints come in when considering local QFTs, which is generically
the case for relativistic theories, but also for non-relativistic theories
with nearest-neighbor interactions in the lattice picture. In these cases,
one may heuristically argue that entanglement between 1 and 2 is
mainly caused by the constituents close to the entangling surface ∂1.
As a consequence, the entanglement entropy should in leading order
be proportional to the area of the boundary region ∂1.

The modes close to the boundary live in the UV-regime and hence
the dominant contributions to the entanglement entropy come from
UV-modes on small length scales. On such scales, the monotonic-
ity of quantum relative entropy (3.18) implies that the vacuum is
indistinguishable from any other finite energy state. Therefore, the
entanglement entropy needs to have a rather universal form.

To motivate the following result for the entanglement entropy (we
loosely follow [41, 207]), let us consider a theory, where no addi-
tional scales besides the size L of region 1 and the lattice constant e
are involved (cf. Figure 4.3b). We make the following ansatz for the
entanglement entropy

S(r1) ⇠
Z

∂1
dd�2x

p

h F[K, h], (4.20)

wherein x are coordinates, h the induced metric and K the extrinsic cur-
vature on the entangling surface ∂1, while F denotes some functional.
We may expand the functional F in terms of the extrinsic curvature K.
To that end, we note that K ⇠

1
L , which together with the fact that the

entropy is a dimensionless quantity implies

S(r1) ⇠
Ld�2

ed�2 + ... +
L
e
+ ln

L
e
+ const. (4.21)

More generally, one finds that the entanglement entropy of a physical
state fulfills a so-called area law [183, 194, 195]"[...] the leading

divergence in the
entanglement

entropy is universal
[...]." - Edward

Witten [193]

S(r1) =
gd�2(∂1)

ed�2 + ... +
g1(∂1)

e
+ g0(∂1) ln e + S̃, (4.22)

wherein gi(∂1) are local coefficients on the boundary ∂1 depending
on the theory, the state and the geometric form of the region 1 under
consideration, while S̃ is a finite part often depending on the volume
V. We observe that the leading order UV-divergence is proportional to
the area and not to the volume as estimated in (4.19). This shows that
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physical states occupy a very special region in the global Hilbert space
H12. Also, one should note that the lowest order coefficient g0(∂1) is
universal, i.e. independent of the regularization scheme, which is not
the case for all other coefficients, while S̃ can contain universal as well
as non-universal expressions.

Let us emphasize that although the area law (4.22) holds for all
states, it only allows for a clear statement about entanglement if
the global state r12 is pure. However, in this case, we need to have
S(r1) = S(r2), such that we can constrain (4.22) further extending
on our heuristic argument from before. As the complement 2 comes
with a sign change in the extrinsic curvature, only even powers in L

e
are allowed, and hence the area law does only contain even powers
too. Also, note that the term g0(∂1) ln L

e is absent in odd spacetime
dimensions.

The UV-divergence of the entanglement entropy is one of our main
motivations to study relative entanglement entropies in Chapter 7, which
do not exhibit such divergences and are well-defined in the continuum
limit e ! 0 [193, 208, 209] (see also [210–224] for recent works).

�������: ������������ ������� ��� ������� ����� We ex-
emplify the different contributions in the area law (4.22) for a thermal
state with temperature T in a conformal QFT in d = 1 + 1 spacetime
dimensions. A conformal QFT is invariant under conformal transfor-
mations and hence no other scales are present. We expect from (4.22)
a logarithmic divergence in leading order. We consider an interval 1
of length L with infinite complement 2. In d = 1 + 1 dimensions, the
volume of the interval is given by its length V = L. We find for the
entanglement entropy [195]

S(r1) = �
c
3

ln e +
c
3

ln
sinh pTL

pT
+ k, (4.23)

where c denotes the central charge of the conformal field theory and k
is some non-universal constant. Besides the universal UV-divergence
from the entangling surface ∂1, we obtain a finite part S̃ depending
on the interval length L and the temperature T.

As the length L and the inverse temperature 1b = 1
T provide two

competing length scales, let us consider the two asymptotic limits of
small and large thermal correlations lengths compared to the interval
size

S̃ =

8
<

:

c
3 ln L + k for L ⌧ b,
c
3 pTL + k for L � b.

(4.24)

This shows that the finite part of the entanglement entropy S̃ becomes
independent of the temperature T for small temperatures L ⌧ b and
reduces to the vacuum result. Moreover, S̃ is extensive for sufficiently
large temperatures L � b and in fact corresponds to the thermal
entropy in a conformal QFT of d = 1 + 1 spacetime dimensions.
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������ ��� ����� It is important to note that not all QFTs obey
an area law of the form (4.22). For example, in non-relativistic theories
with a Fermi surface the area law acquires a logarithmic correction
[225, 226]. Also, if the boundary ∂1 is not smooth, for example if it
contains cusps, additional UV-divergences arise [227].

Furthermore, it is worth mentioning that the entanglement entropy
can exhibit Infrared (IR)-divergences, for example when not including
a finite mass m, which typically acts as an IR-regulator, or if the theory
lives on a finite domain. These divergences do also carry over to
the relative entanglement entropy as well as the quantum mutual
information [194].



Part II

E Q U I L I B R I U M

We investigate how equilibrium can be described in terms
relative entropy and thermal model states. To that end, we
establish a statistical inference method based on relative
entropy (Chapter 5). We develop thermodynamics solely
with relative entropy and use the monotonicity of relative
entropy to derive second-law like inequalities (Chapter 6).
These ideas are generalized to relativistic fluids in the
context of local quantum field theory (Chapter 7).



5 R E L AT I V E E N T R O P Y
P R I N C I P L E S

This chapter is based on the first half of [F]. S. F. proposed and super-
vised the project. The principle of minimum expected relative entropy
was found by me. It was formalized and generalized to quantum states
by both authors. While both authors participated in the writing of the
text, I wrote the early versions of the draft. Also, I created all figures.

We develop a statistical inference method to find a prior distribution
or density operator based on (quantum) relative entropy, which we
call the minimum expected relative entropy principle. We will show that
it corresponds to a reformulation of the maximum entropy princi-
ple. Further, we will demonstrate that it allows for an information
geometric interpretation of a prior distribution for a simple example.

For relative entropy, there already exists the principle of minimum
discrimination information (also known as principle of minimum cross
entropy), which we review in Section 5.1 for classical distributions
[20, 56]. It is used to update a given prior distribution based on side
information, for example in the context of Monto Carlo simulations or
machine learning [228, 229]. In this sense, it is not capable of providing
a prior distribution, which raises the need for an alternative.

Our main motivation is to apply our methods in the context of
statistical physics, more precisely to formulate thermodynamics in
terms of relative entropy only, which is discussed in detail in Chapter 6.
We discuss classical distributions in Section 5.2 and then generalize
the formalism to density operators in Section 5.3. We concentrate on
discrete variables with finite alphabets and finite Hilbert spaces.

�.� �������� � ����� ������������

�������� ��������� ���� ����������� ������ We consider
a system whose discrete microstates x are drawn from a finite and
countable alphabet X of size |X | = N with N < •. Let us further
assume that we already constructed a discrete prior distribution p̃(x)
for the microstates x 2 X , which is in accordance with our knowledge
about the system. Afterwards, we perform j additional experiments
by measuring other observables Ai, where i 2 {1, ..., j}. Each of these
j observables takes values ai(x) in the microstates x 2 X . As this
additional information about the system is not contained in our prior
p̃(x), we want to find a new distribution p(x), which takes this side
information into account.
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To that end, we apply the principle of minimum discrimination
information, which states that we find p(x) by minimizing the relative
entropy S(pk p̃) with respect to p(x) under the j additional constraints
and normalization of p(x). Intuitively, this means that we search
for the distribution p(x) which is least distinguishable from p̃(x) and
additionally respects the available side information.

We formulate the optimization problem in terms of j Lagrangian
multipliers li, which are assigned to the j expectation values of the
observables Ai, and another multiplier g, which ensures normalization
of p(x). Hence, we formulate a Lagrange function

L(p, p̃, li, g)

= S(pk p̃) +
j

Â
i=1

li

 

Â
x2X

p(x)ai(x)� Ai

!
+ g

 

Â
x2X

p(x)� 1

!
(5.1)

and search for a minimum

dL(p, p̃, li, g) = 0 (5.2)

with respect to a variation in p(x). This optimization problem can be
solved in a straightforward manner and leads to

p(x) =
p̃(x)
Z0

e�Âj
i=1 li ai(x), (5.3)

wherein Z0 is a normalization factor. We observe that the updated
distribution p(x) is proportional to p̃(x) with the proportionality
constants being weighting factors containing the additional side infor-
mation about the j observables Ai.

�������: ����� �� �������� ����� To apply the principle of
minimum discrimination information to a physical problem, we con-
sider a collection of spins, which add up to a macroscopic spin. The
orientations of an individual spin make up the microstates x 2 X , to
which we associate a magnetic moment ~µ(x) = g~s(x). Therein, ~s(x)
denote the possible spin directions and g is a proportionality constant.

At first, we consider a situation where the macroscopic spin is in
thermal equilibrium with a heat bath of inverse temperature b and
in a ferromagnetic configuration at vanishing external magnetic field
H = 0. Evaluating the principle of maximum entropy gives us the
prior distribution

p̃(x) =
1
Z̃

e�bE(x) (5.4)

for the microstates x of the single spin. Without additional assump-
tions, the individual spin directions~s(x) are not constrained and hence
all directions are equally likely.

If we consider a group of individual spins, it is possible that we mea-
sure a non-vanishing magnetization ~M in this region, especially if the



62 �������� ������� ����������

macroscopic spin is in a ferromagnetic state. We can update the prior
(5.4) based on the additional side information about such a region,
i.e. we further constrain the magnetic moment ~µ(x) by a given local
magnet field ~B. Applying the principle of minimum discrimination
information leads us to the updated distribution

p(x) =
p̃(x)
Z0

ebg~B~s(x) =
1
Z

e�b(E(x)�g~B~s(x)) (5.5)

with normalization

Z = Z̃ Z0 = Â
x2X

e�b(E(x)�g~B~s(x)). (5.6)

In principle, the same logic can be applied for other regions in the
spin system as well. In this way, we would obtain a simple mean-field
description for the macroscopic spin.

����������� �� �������������� Although the updated distri-
bution (5.3) is of Boltzmann-type, it is not possible to apply the princi-
ple of minimum discrimination information to thermodynamics in a
straightforward way in general. More precisely, it is tempting to con-
clude that if we would have started from a microcanonical ensemble,
i.e. a uniform distribution with respect to energies of individual mi-
crostates, and included a given energy expectation value via (5.3), we
would have ended up with a canonical distribution. However, for most
systems, a uniform distribution with respect to energies is not a physi-
cal situation, but rather a formal limit of the canonical ensemble with
infinite temperature. As we will see later, the microcanonical ensemble
does rather assume a fixed total energy and asserts equal probabilities
to the microstates which are compatible with this assumption.

To summarize, the principle of minimum discrimination informa-
tion is neither capable of predicting a prior distribution nor can it be
applied easily to thermodynamics. Since we are interested in devel-
oping thermodynamics from a relative entropy perspective, we will
develop a new principle of inference in the following.

�.� ������� � ����� ��������� ������������

����������� �� ��� ����� �� ������������� Let us consider
again a discrete random variable x 2 X with countable |X | = N < •.
We want to construct an integral measure on the space of probabil-
ity distributions p(x). To that end, we have to respect all available
constraints on p(x), such that the integration is only over those dis-
tributions, which are compatible with these constraints. As always, a
minimal constraint is given by the normalization of distributions, i.e.
Kolmogorov’s second axiom (2.3). However, as we saw in many previ-
ous examples, one often has additional constraints, which nevertheless
allow for a large class of compatible probability distributions.
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To formalize this idea, it is important to note that the set of all
probability distributions corresponds to a manifold. Hence, we can
find coordinates x = {x1, ..., xm

} which parameterize the set of allowed
distributions, i.e. p(x) = p(x, x). Then, we can define an integral
measure on this manifold via

Z
Dp =

Z
dx1...dxm µ(x1, ..., xm), (5.7)

wherein µ(x1, ..., xm) is a function to be defined. Note that we have
chosen the functional integral notation in order to be as general as
possible. More precisely, if we consider continuous random variables
instead, the space of distributions becomes infinite-dimensional in
general, which requires an integration over functions.

�������������� ���������� To determine µ(x1, ..., xm), we re-
quire that our integral measure Dp is invariant under an arbitrary
coordinate transformation x ! x 0(x) resulting in

µ(x1, ..., xm) = det
✓

∂x 0a

∂xb

◆
µ0(x 01, ..., x 0m). (5.8)

This is fulfilled for example by Jeffreys’ prior [230, 231]

µ(x) µ
q

det gab(x), (5.9)

wherein gab(x) is the so-called Fisher metric corresponding to the
family of distributions p(x, x) with a, b = 1, ..., m. Its components are
defined as (there are two other convenient definitions in the literature,
which are equivalent to what follows) [232, 233]

gab(x) = Â
x2X

∂p(x, x)
∂xa

∂ ln p(x, x)

∂xb
. (5.10)

Note that for a continuous random variable x, the sum in the latter
expression is replaced by an integral. One may also introduce the
Fisher metric as the Hessian matrix of the relative entropy, i.e. for close
distributions p(x, x) and p(x, x + dx) we find

S(p(x, x + dx)kp(x, x)) =
1
2

gab(x)dxadxb + ... (5.11)

Moreover, the Fisher metric is symmetric gab(x) = gba(x) and cor-
responds to the Riemannian metric on the space of probability dis-
tributions. Hence, the canonical volume form

q
det gab(x) ensures

diffeomorphism invariance of our integral measure Dp. Nevertheless,
we could multiply Dp with any other diffeomorphism invariant func-
tion. For example, one may consider e�S(pk p̃) with p̃(x) being some
model distribution. However, we work with the volume form in the
following by convenience. In conclusion, we end up with a measure
which allows us to integrate a functional f [p] of the distribution p(x)

Z
Dp f [p] =

Z
dx1...dxm

q
det gab(x) f [p(x)]. (5.12)
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����������� ���������� Let us analyze this integration proce-
dure in more detail. In particular, we ask how the integral measureR
Dp transforms if we consider permutations of the individual discrete

probabilities, under which the entropy S(p) is known to be invariant.
We denote a permutation by x ! P(x), such that a permutation on
the probability distribution p(x) is given by the map

p ! P(p) : {p(x1), ..., p(xN)} ! {p(P(x1)), ..., p(P(xN))}. (5.13)

To answer this question, we choose a specific set of coordinates. In
information geometry, it is convenient to parameterize the discrete
probabilities p(x) in a way such that we are confined to a sphere. This
can be achieved by the choice [13, 233, 234]

p(x) =

8
<

:
(xx)2 for x = 1, ..., N � 1,

1 � (x1)2
� ... � (xN�1)2 for x = N.

(5.14)

In this coordinates, the Fisher metric takes the form

1
4

gab(x) = dab +
xaxb

1 � (x1)2 � ... � (xN�1)2 , (5.15)

which is the induced metric on the unit sphere SN�1. Geometrically, the
probabilities p(x) span a convex simplex embedded in N-dimensional
Euclidean space. Points on this simplex are mapped to a (N � 1)-
dimensional sphere, which is described by the coordinates xa. More-
over, the second line in (5.14) shows that the spherical geometry in
the coordinates xa is a consequence of the normalization condition
Âx2X p(x) = 1.

In the x coordinates, our integral measure Dp takes the form
Z

Dp =
2

WN

Z 1

�1
dx1...dxN�1

s

det
✓ gab(x)

4

◆
Q

 
1 �

N�1

Â
a=1

(xa)2

!

=
1

WN

Z 1

�1
dx1..dxN d

0

@1 �

vuut
N

Â
a=1

(xa)2

1

A , (5.16)

where

WN =
2p

N
2

G
�N

2
� (5.17)

denotes the area element of the (N � 1)-dimensional unit sphere with
G(t) being the Gamma function. From the latter equation, we can draw
two important conclusions. First, the integral measure Dp is indeed
normalized to one

R
Dp = 1 and second, it is invariant under the

permutations p ! P(p) introduced in (5.13). Hence, we end up with
the statementZ

Dp f [p] =
Z

Dp f [P(p)] (5.18)

for all functionals f [p] and permutations P, which will be of great use
in the following.
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��������� ��������� �� ������� �������� �������� �������
With a suitable integral measure Dp at hand, we now state our princi-
ple of minimum expected relative entropy or principle of least distin-
guishability on average. The basic idea is that the optimal prior p̃(x)
is located at a central position in the space of probability distributions
(see also dark brown point in Figure 3.2). This central point is deter- The optimal model

distribution is least
distinguishable on
average from all
other possible
distributions.

mined by minimizing the average relative entropy S(pk p̃) between
all allowed distributions p(x) and the optimal model p̃(x) under the
constraint that p̃(x) is normalized to one. Hence, we construct the
functional

B( p̃, l) =
Z

Dp

"
S(pk p̃) + l

 

Â
x2X

p̃(x)� 1

!#
(5.19)

with normalization being implemented via the Lagrangian multiplier
l and claim that the optimal model p̃(x) follows from minimizing the
latter with respect to p̃(x), i.e.

dB( p̃, l)
!
= 0. (5.20)

Strict joint convexity of relative entropy S(pk p̃) together with mono-
tonicity of the integral imply that the B-functional is also strictly con-
vex. Hence, if a local minimum of B( p̃) can be found, it corresponds
to a unique global minimum.

To obtain the optimal model p̃(x), we directly compute the variation
under the integral (instead of evaluating the integral first), which leads
us to

0 = dB( p̃, l) = Â
x2X

Z
Dp


�

p(x)
p̃(x)

+ l

�
d p̃(x). (5.21)

As a consequence of permutation invariance (5.18), we can conclude
that

R
Dp p(x) is independent of x and hence, p̃(x) is also independent

of x. By normalization, this implies that the optimal model is given by
the uniform distribution

p̃(x) =
1
N

, (5.22)

in accordance with Jaynes’ maximum entropy principle and Laplace’s
principle of indifference.

�������: ���-����� ������ - ���� � To shape the intuition for
the principle of minimum expected relative entropy, we consider a coin
with X = {heads, tails} such that |X | = 2 and compute all involved
quantities. The parameterization given in (5.14) evaluates to

p(heads) ⌘ p1 = (x1)2, p(tails) = 1 � p1 = 1 � (x1)2, (5.23)

such that the Fisher information (which is now a scalar) becomes

1
4

g = 1 +
(x1)2

1 � (x1)2 . (5.24)
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One can convince oneself that the integration measure Dp is normal-
ized to one as

Z
Dp =

2
W2

Z 1

�1
dx1

s

1 +
(x1)2

1 � (x1)2 =
2

2p
p = 1, (5.25)

where we used that the Q-function in (5.16) evaluates to unity. Simi-
larly, we find for the two individual probabilities

Z
Dp p1 =

Z
Dp (1 � p1) =

1
2

(5.26)

and for the B-functional at the extremum with respect to l

B( p̃) =
Z

Dp S(pk p̃)

= �

Z
Dp S(p)� Â

x2X
ln p̃(x)

Z
Dp p(x)

= 1 � 2 ln 2 �
1
2

ln ( p̃1(1 � p̃1)) ,

(5.27)

where we used p̃(heads) ⌘ p̃1 such that p̃(tails) = 1 � p̃1.
The first line of the latter equation suggests that the value of the

B-functional at a specific point p̃1 can be regarded as the area under a
relative entropy curve S(pk p̃) for a fixed model p̃1. We make this con-
nection explicit by plotting the relative entropy S(pk p̃) as a function
of p1 for three different models p̃1 in Figure 5.1a and the B-functional
B( p̃) together with the entropy S( p̃) as a function of p̃1 in Figure 5.1b.
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(a) Three relative entropies S(pk p̃)
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(b) B-functional B( p̃) and entropy S( p̃)

Figure 5.1: In (a), we observe that the relative entropy S(pk p̃) of a coin with
respect to the optimal model p̃1 = 0.5 takes its minimum at p1 =
0.5 and is symmetric. For other models, S(pk p̃) is asymmetric
and becomes minimal at p1 = p̃1. Additionally, we plot B( p̃) and
S( p̃) in (b). Interestingly, B( p̃) corresponds to the area under a
relative entropy curve S(pk p̃) (shaded regions in (a) correspond
to dots in (b)), such that it indeed becomes minimal for p̃1 = 0.5.
At this point, the entropy S( p̃) attains its maximum (gray dot),
showing consistency between the two entropy principles. Also,
we see that the B-functional is strictly convex rendering the local
minimum at p̃1 = 0.5 a unique global minimum.
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����������� ��������� �������������� ���� ��������� ���-
����� Although our principle of least distinguishability on average
was formulated with relative entropy S(pk p̃) as a measure for the dis-
tinguishability between two distributions p(x) and p̃(x), one should
be able to replace the relative entropy S(pk p̃) by any other statistical
divergence, i.e. a non-negative (possibly convex) functional being zero
if and only if p(x) = p̃(x), which defines a Riemannian metric in
second order. We collect some evidence in the following, but a formal
proof of this claim is left for future work.

To give our principle a solid information geometric interpretation,
we consider a special choice for the statistical divergence: the Hellinger
distance H(p, p̃). It is proportional the Euclidean distance on the space
of probability distributions [235, 236]

H(p, p̃) =
1
p

2

���
p

p �
p

p̃
���

2
=

1
p

2

vuutÂ
x2X

✓q
p(x)�

q
p̃(x)

◆2
, (5.28)

where k.k2 denotes the L2-norm, which equals the Euclidean dis-
tance. Note that the prefactor 1

p
2

ensures that the Hellinger distance
is bounded from above by one, i.e. 0  H(p, p̃)  1, which is a conse-
quence of the Cauchy-Schwarz inequality. Also, note the relation to
the relative entropy 2H4(p, p̃)  S(pk p̃).

The Hellinger distance H(p, p̃) is a statistical divergence. Addition-
ally, it is symmetric and fulfills a triangle inequality. Therefore, it
is a true distance measure on the space of probability distribution,
which allows us to make more rigorous statements when it comes to
information geometry.

With the Hellinger distance H(p, p̃), our B-functional reads

B( p̃, l) =
Z

Dp

"
H(p, p̃) + l

 

Â
x2X

p̃(x)� 1

!#
(5.29)

and the optimal model p̃(x) still follows from the variational principle
dB( p̃, l) = 0 with a variation with respect to p̃(x).

�������: ���-����� ������ - ���� �� We will not compute the
variation under the integral as done before, but rather evaluate the B-
functional for the simple coin example. Unfortunately, the complicated
structure of the integrand does only allow for a numerical evaluation.

We show Hellinger distance curves in Figure 5.2a and the Hellinger
B-functional in Figure 5.2b. Most importantly, our intuition from the
formulation in terms of relative entropies can be confirmed: the op-
timal model p̃(x) has the least mean Hellinger distance to all other
allowed distributions p(x). Hence, the optimal model p̃(x) is indeed
the central point on the manifold of distributions. Exemplary, we also
compare a collection of Hellinger distances for two models in Fig-
ure 5.2c, showing once again that the uniform model is preferred.
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(a) Five Hellinger distances H(p, p̃)

B(p̃)
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(b) Hellinger B-functional B( p̃)

p1,p̃1
0 0.25 0.5 0.75 1

H(1,0.5)=0.54H(0,0.5)=0.54

H(0.25,0.5)=0.18 H(0.75,0.5)=0.18

H(0,0.75)=0.71 H(1,0.75)=0.37

H(0.25,0.75)=0.37

H(0.5,0.75)=0.18

(c) Exemplary Hellinger distances for the two models p̃1 = 0.5, 0.75

Figure 5.2: (a) and (b) are similar to Figure 5.1 with the relative entropy
S(pk p̃) being replaced by the Hellinger distance H(p, p̃). We have
added two curves for the two certain models p̃1 = 0 and p̃1 = 1 in
(a) showing that the Hellinger distance H(p, p̃) is bounded from
above by one. Note the relative entropies S(pk0) and S(pk1)
are either zero or infinity in this case. As a consequence, the
Hellinger B-functional is also finite at p̃1 = 0 and p̃1 = 1, which
is emphasized in (b) through the two additional gray dots. In
(c), we show some exemplary Hellinger distances for the optimal
model p̃1 = 0.5 and a second model p̃1 = 0.75. One can easily
confirm that the mean Hellinger distance in the upper half is
smaller than in the lower half, although the mean has not been
taken with respect to all allowed distributions p1.

� ���� �� ����� ����������� If other constraints are given, the
situation becomes much more involved as they have to be respected
for the integration over all allowed distributions p(x) as well as for
the optimal model p̃(x). For the latter, adding Lagrange multipliers
suffices, while for the former we have to adjust our integral measure
Dp. However, a similar parameterization as in (5.14) is typically not
favorable, as the integration domain does no longer correspond to
the surface of a sphere. Nevertheless, from (5.21) together with per-
mutation invariance (5.18) we can conclude that the optimal model
should in any case correspond to the expectation value with respect
to all allowed p(x), i.e. p̃(x) = hp(x)i, where h.i =

R
Dp(.). However,

a more detailed investigation, especially for concrete examples, is left
for the future.
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� ���� �� ���������� ������ ��������� Another interesting
route for future work concerns continuous random variables. In this
case, our integral measure Dp becomes a functional integral over
probability density functions f (x) which are normalized to unity.
Therefore, the corresponding space of allowed distributions is infinite-
dimensional im general. It would be of great interest to see whether
the principle of minimum expected relative entropy is capable of
predicting the uniform model f̃ (x) = 1/(b � a) when restricting the
random variable to a finite interval x 2 [a, b]. If yes, one may also
attempt to implement further constraints, for example a given variance
s2

x .

�.� ������� � ����� ������� �����

����������� �� ��� ����� �� ������� ��������� We now
generalize our considerations to density operators r which act on
a Hilbert space H of finite dimension D < •. We are interested in
constructing an integral measure Dr, which allows us to integrate over
the space of density operators r. In complete analogy to the classical
case we choose coordinates x = (x1, ..., xm) to parameterize this space.
Also, we again use Jeffreys’ prior for the canonical volume form,
such that the integral measure Dr is by construction invariant under
arbitrary coordinate transformations x ! x 0(x). Then, a functional
f [r] can be integrated according to

Z
Dr f [r] =

Z
dx1...dxm

q
det gab(x) f [r(x)]. (5.30)

Therein, we used the quantum Fisher metric instead of its classical
counterpart, which is defined as [13, 237, 238] (see also [239–246] for
recent applications)

gab(x) = Tr
⇢

∂r(x)
∂xa

∂ ln r(x)

∂xb

�
, (5.31)

with the following definition for the symmetric logarithmic derivative
understood

1
2

r(d ln r) +
1
2
(d ln r)r = dr. (5.32)

Here, note that Tr{r(d ln r)} = Tr{dr} = 0, which implies that also
the quantum Fisher metric is symmetric gab(x) = gba(x). Furthermore,
the quantum Fisher metric corresponds to the Hessian matrix of the
quantum relative entropy, i.e.

S(r(x + dx)kr(x)) =
1
2

gab(x)dxadxb + ... (5.33)
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������� ���������� Instead of permutations as for the classical
case, we are now interested in unitary transformations r ! UrU†,
which leave the von Neumann entropy invariant (cf. (3.16)). As the
transformed density operator is itself a density operator again, a
unitary transformation corresponds to a coordinate transformation
x ! x 0(x), i.e.

r(x) ! r0(x) = Ur(x)U† = r(x 0). (5.34)

The coordinate transformation induced by the unitary operator U can
be constrained further by plugging the latter equation into the relative
entropy of nearby states

S(r(x + dx)kr(x)) = S(Ur(x + dx)U†
kUr(x)U†),

= S(r(x 0 + dx 0)kr(x 0))
(5.35)

where we used that the quantum relative entropy is also left invariant
by any unitary transformation. Comparing with (5.33) shows

gab(x)dxadxb = gab(x
0)dx 0adx 0b, (5.36)

implying that x ! x 0(x) in fact corresponds to an isometry on the
space of density operators. Hence, we can conclude that our integral
measure Dr behaves as

Z
Dr f [r] =

Z
Dr f [UrU†] (5.37)

for any functional f [r] under any unitary transformation U.

������� ��������� �� ������� �������� �������� �������
The optimal model state r̃ in a class of allowed states r can be found
by applying the quantum analog of the classical principle of minimum
expected relative entropy (5.20). To that end, we define the quantum
B-functional as an average of the quantum relative entropy S(rkr̃)

B(r̃, l) =
Z

Dr [S(rkr̃) + l (Tr{r̃}� 1)] , (5.38)

where l ensures normalization of r̃. Then, we claim that the optimalThe optimal model
state is least

distinguishable on
average from all

other possible states.

prior r̃ is the result of the minimization procedure

dB(r̃, l)
!
= 0. (5.39)

To solve this variational principle, we diagonalize the model state r̃
with the help of a unitary transformation U

r̃ = UDU†, (5.40)

where D is diagonal. Then, the quantum B-functional becomes

B(r̃) =
Z

Dr
h
S(rkUDU†) + l

⇣
Tr
n

UDU†
o⌘

� 1
i

=
Z

Dr
h
S(U†rUkD) + l (Tr {D})� 1

i

=
Z

Dr

"
S(rkD) + l

 
D

Â
i=1

Dii � 1

!#
,

(5.41)
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where we used again that the quantum relative entropy is invariant
under unitary transformations and that the integral measure fulfills the
invariance property (5.37). Also, we denoted the diagonal elements of
D in some generic basis as Dii. In conclusion, the quantum B-functional
does only depend on the eigenvalues of r̃ and gives the same result
for all model states r̃ which are related by unitary transformations.

For simplicity, we directly execute the variation with respect to the
diagonal elements Dii, which leads to

0 = dB(r̃, l) =
D

Â
i=1

Z
Dr


�

rii
Dii

+ l

�
dDii, (5.42)

in analogy to (5.21). The diagonal elements rii can be permuted by
special unitary transformations (for example, for D = 2 one may use
the second Pauli operator U = s2), i.e. rii ! rP(i)P(i) for r ! UrU†

with suitable U, such that the unitary invariance property (5.37) allows
us to conclude that

R
Dr rii is independent of the index i. Hence, the

optimal prior is given by the maximally mixed state

r̃ =
1
D

1. (5.43)

Interestingly, this result can also be obtained from the unitary invari-
ance property (5.37). As the optimal model r̃ has to be unique by strict
convexity of the B-functional, (5.41) implies that the optimal model r̃
has to satisfy

r̃ = Ur̃U† (5.44)

for all unitary transformations U, which already fully determines r̃ to
be the normalized identity operator.

� ���� �� ����� ����������� Similarly to the classical case,
let us briefly comment on the possibility of implementing further
constraints. As before, we argue that the optimal prior fulfills r̃ =
hri, although any explicit computation of the B-functional becomes
complicated as a result of a rather complex integral measure Dr.
To that end, we write out the variation of the B-functional at the
extremum with respect to l, i.e.

dB(r̃) =
Z

Dr Tr {r(d ln r̃)} ⌘ Tr {hri (d ln r̃)} . (5.45)

Using cyclicity of the trace we obtain

dB(r̃) =
1
2

Tr {hri (d ln r̃) + (d ln r̃) hri} (5.46)

For r̃ = hri and with the definition of the logarithmic derivative (5.32)
follows

dB(r̃) = Tr{dr̃} = 0, (5.47)

as a consequence of r̃ being normalized to unity. Hence, the B-
functional is indeed stationary for r̃ = hri.



6 T H E R M O DY N A M I C S F R O M
R E L AT I V E E N T R O P Y

Most of the following analysis is taken from the second half of [F].
While the project was proposed and supervised by S. F., I derived the
thermodynamic relations in terms of relative entropies and found the
relative entropy formulation for the third law. Also, I wrote early ver-
sions of the text, which was finalized by both authors. The discussion
of the second law is taken from section III. of [G], which is itself based
on [247]. The project was proposed by S. F. and the corresponding
discussion in [G] was mainly developed by N. D. and myself. All three
authors contributed to the writing and structuring of the text, while I
created the figures. The article [G] is also covered in a master thesis by
N. D. [248].

With the principle of minimum expected relative entropy at hand,
we formulate thermodynamics in terms of relative entropy only, for
which our motivation is threefold.

First, a relative formulation allows to work with a thermal model
state r̃ for given situation. As exemplified before, the principle of
minimum expected relative entropy gives these states an information
geometric meaning in the space of states. Using a distinguishability
measure with respect to these states allows us to relax the necessity
of the actual state r being thermal. In this sense, relative entropy
thermodynamics allows to make statements about thermal quantities
as for example temperature and chemical potential by comparing actual
states to thermal model states.

Second, as stressed throughout Part i, relative entropy may be
favored over entropy in general as it has universal properties in various
contexts and fulfills the powerful monotonicity relation (3.18). For
example, we will show that thermal fluctuations (see [249–251]) can
be characterized in terms of relative entropy and that the second law
of thermodynamics can be deduced from an information theoretic
perspective [247]. Further, relative entropy has been used in the context
of thermodynamics in [252–257].

Third, it is of interest to understand how thermodynamic concepts
can be applied locally, especially in the context of fluids and local QFT.
For example, it is known that the quark-gluon plasma [258, 259] or
the dark matter dominated cosmological fluid [260, 261] can, to good
extent, be described by QFTs on a microscopic level and by relativistic
fluids on a macroscopic level. To establish a more general connec-
tion between these two classes of theories, an information theoretic
understanding of local equilibrium may be in order. However, as we
have seen in Section 4.2, quantum fields are highly entangled in space,
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which resulted in an universal UV-divergence of the entanglement
entropy (4.22). Therefore, we suggest to work with relative (entan-
glement) entropies instead, as this allows for applications beyond
standard thermodynamics (see [217]). This will then be investigated
further in Chapter 7.

We will discuss thermodynamic relations for the three thermo-
dynamic ensembles in terms of relative entropy in Section 6.1 and
thereupon state relative entropic versions of the second and third law
of thermodynamics in Section 6.2.

�.� ������������� ��������� ��� ���������

�������� ���� ������������� ��������� Throughout this
chapter, we consider the standard setup, i.e. a quantum system con-
fined to a finite volume V described by a stationary Hamiltonian
H 6= H(t). For a generic quantum state r we denote the expectation
values of energy and particle number by

E(r) = Tr{rH}, N(r) = Tr{rN}. (6.1)

Depending on whether the energy or the particle number or their
expectation values are fixed, we have to work in one of the three
thermodynamic ensembles sketched in Figure 6.1.

�m

E,N

(a) microcanonical

�E

thermal bath

�c

T,N

(b) canonical

�N
�E

thermal/particle bath

�gc

T,�

(c) grand canonical

Figure 6.1: The three thermodynamic ensembles
The three thermodynamic ensembles: (a) isolated system with no
interaction with the outside, (b) system open to heat exchange in
contact with a heat bath and (c) system open to heat and particle
exchange in contact with a heat and particle bath.

�������������� �������� We start with the microcanonical en-
semble, i.e. we investigate an isolated quantum system with fixed total
energy H = E(r) and total particle number N = N(r) (cf. Figure 6.1a).
In the space of compatible quantum states the uniform distribution
is preferred as a result of the principle of minimum expected relative
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entropy as shown in Section 5.3. Hence, the microcanonical model
state is given by

rm =
1

Zm
d [H � E(rm)] d [N � N(rm)] , (6.2)

with Zm being a normalization constant

Zm = Tr {d [H � E(rm)] d [N � N(rm)]} . (6.3)

The quantum relative entropy between any allowed quantum state r
and the microcanonical model evaluates to

S(rkrm) = �S(r)� Tr{r ln rm}, (6.4)

wherein we recognize the von Neumann entropy S(r), while the sec-
ond term corresponds to the so-called cross entropy often denoted as
S(r, rm). The latter can be simplified by using that rm is proportional
to the identity in the space of allowed states

�Tr{r ln rm} = �Tr{rm ln rm} = S(rm), (6.5)

where the support condition supp[r] ✓ supp[rm] has to be respected.
As the microcanonical density operator (6.2) has full support for fixed
energy and particle number, the support condition can be expressed
as a condition on the total energy and the total particle number. It is
fulfilled if and only if the states r and rm have the same total energy
and total particle number in a strict sense. More precisely, not only the
expectation values of the latter have to agree, but also the dispersion
has to be zero. For the energy E, we denote this strict condition by

E(r) ⌘ E(rm) , E(r) = E(rm) and Tr{rH2
} = E2(rm), (6.6)

which works analogously for the particle number N.
Therefore, we end up with a quantum relative entropyThe quantum relative

entropy with respect
to a thermodynamic

model state
decomposes linearly. S(rkrm) =

8
>>><

>>>:

�S(r) + S(rm) for E(r) ⌘ E(rm)

and N(r) ⌘ N(rm),

+• else.

(6.7)

This means that the distinguishability between any state r and the
microcanonical model rm is given by the difference of their von Neu-
mann entropies, provided that their energies and particle numbers
agree in a strict sense. Otherwise, the relative entropy has to be set to
infinity, which means that the two states can be fully distinguished by
measuring either the energy or the particle number.

At this point, note that non-negativity of the relative entropy to-
gether with (6.7) shows that the microcanonical model rm does indeed
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correspond to the state with maximum entropy as S(rkrm) � 0 trans-
lates to

S(r)  S(rm) (6.8)

for all density operators r with E(r) ⌘ E(rm) and N(r) ⌘ N(rm).
As a next step, let us differentiate the relation (6.7). For dE(r) ⌘

dE(rm) and dN(r) ⌘ dN(rm) we find

dS(rkrm) = �dS(r) + dS(rm). (6.9)

Using the thermodynamic relation

dS(rm) = b dE(rm)� bµ dN(rm), (6.10)

where b = 1/T denotes the inverse temperature and µ the chemical
potential, the latter becomes

dS(rkrm) = �dS(r) + b dE(rm)� bµ dN(rm). (6.11)

This already indicates that the inverse temperature b as well as the
chemical potential µ may be defined as partial derivatives of the
relative entropy S(rkrm) with respect to the energy E(r) and the
particle number N(rm), respectively, at fixed von Neumann entropy
S(r). This will be made more explicit in the canonical and the grand
canonical ensemble.

������� ������������ We proceed with a discussion of thermal
fluctuations from an entropic perspective. It is well-known that even if
a system has equilibrated, thermodynamic quantities can fluctuate in
subsystems, which can be interpreted as a finite size correction to the
thermodynamic limit. Often, those fluctuations are stronger when the
subsystem under consideration is smaller, which we attempt to give
an information theoretic foundation.

Let us consider some macroscopic variables x = (x1, ..., xm), which
are allowed to fluctuate locally in a global microcanonical model state
rm. To these variables, we may associate a family of density operators
r(x) over a set of microstates, which have to be compatible with the
global value of x but also with all other possible constraints such as
conservation laws. Based on this, we wish to construct an expression
for the probability dW of a fluctuation in the volume element dmx in
the space of allowed density operators r(x).

A convenient ansatz in the literature is to take this probability
to be proportional to the number of possible microstates, which is
given by eS(r(x)) [249, 250]. Note here that S(r(x)) < S(rm) as a
consequence of the maximum entropy principle. For example, one
may use dW µ eS(r(x))�S(rm)dmx, where the exponent resembles the
right hand side of (6.7) up to a minus sign.
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More generally, we propose that this probability is governed by a
relative entropy, i.e. dW µ e�S(r(x)krm)dmx. This is also motivated by
the fact that S(r(x)krm) is bounded from above by the entropy of
the model state S(rm) = ln Dx . Here, Hx denotes the Hilbert space
spanned by the microstates being compatible with x. Therefore, if the
subsystem under consideration is smaller, the Hilbert space dimen-
sion Dx is typically smaller as well, reducing the upper bound on
S(r(x)krm). Hence, states become generically harder to distinguish
and as a consequence the probability for local fluctuations in x be-
comes large. Also, if we choose an incompatible state r(x) in the sense
that it does violate the strict support conditions, we obtain a vanishing
probability for a fluctuation in x, in accordance with our expectations.

Additionally, we want to implement reparameterization invariance,
such that we end up with the following expression for the probability
to find a fluctuation in xThe probability for

thermal fluctuations
is governed by

quantum relative
entropy.

dW =
1
Z

e�S(r(x))krm)
q

det gab(x), (6.12)

where Z is a normalization constant ensuring
R

dW = 1, while gab(x)
is the quantum Fisher metric with respect to the family of states r(x).

Let us also consider a rather special case. If we assume that the rel-
ative entropy S(r(x)krm) becomes minimal at x = x0, where we can
approximate r(x0) ⇡ rm, we can use that the relative entropy can be
expanded in terms of the Fisher metric according to (5.33), correspond-
ing to an approximation quadratic in x � x0. In this approximation,
we obtain

dW =
1
Z

e�
1
2 gab(x)(x�x0)a(x�x0)b

q
det gab(x), (6.13)

where Z = (2p)
m
2 .

We can conclude that fluctuations are to lowest order described by
a Gaussian in terms of the Fisher metric gab(x) (in agreement with
standard literature [250]) and in general by a relative entropy. Let us
remark that the previous discussion can be extended to the case where
the global model state is given by some other thermodynamic model
state by replacing the corresponding model in the relative entropy.

��������� �������� Next, we consider the canonical ensemble
describing a quantum system in contact with a heat bath (cf. Fig-
ure 6.1b). As discussed in Section 5.3, it is rather hard to show that
the canonical state rc can be derived from the principle of minimum
expected relative entropy, although it will be a stationary solution in
the sense of rc = hri. Therefore, we follow the textbook construction
of the canonical ensemble, see e.g. [250].

We start from an isolated system described by the microcanoni-
cal ensemble with fixed energy E(r) ⌘ E(rm) and particle number
N(r) ⌘ N(rm) and consider a bipartition 12 of a small subsystem
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1 and a heat bath 2 such that the two subsystems are allowed to ex-
change heat. To the two subsystems, we associate energies E(r1) and
E(r2) = E(r12)� E(r1), which are not fixed but instead fluctuate as
described before.

Although equilbriation requires an interaction between the two sub-
systems, for the equilibrium state itself we assume the corresponding
Hamiltonian to be small compared to the sum of the local Hamilto-
nians, such that H12 = H1 + H2. Under this assumption, the global
microcanonical model state (6.2) can be written as

rm µ
Z E(r12)

0
dE(r1)

dW
dE(r1)

⇥ d(H1 � E(r1))d(H2 � E(r12) + E(r1)),
(6.14)

where the integral goes over all local energies E(r1) allowed by energy
conservation. Note that the global state rm does not correspond to a
product state over local states with respect to local energies.

The local states in subsystem 1, which are compatible with energy
conservation, can be parameterized by the local energy x = E(r1), i.e.
r1 = r1(x). Let consider a family of product states

r12(x) = r1(x)⌦ r2(E12 � x), (6.15)

such that the global relative entropy becomes

S(r12(x)krm) = �S(r1(x))� S(r2(E12 � x)) + S(rm). (6.16)

The non-negativity of the relative entropy guarantees the existence
of a minimum with respect to x, at which we obtain the well-known
condition

∂

∂x
S(r1(x))

��
x=E(r1)

=
∂

∂x
S(r2(x))

��
x=E(r12)�E(r1)

, (6.17)

defining the inverse temperature

b =
∂

∂x
S(r1(x)) (6.18)

as an equivalence relation. To determine the state of system 1 in equi-
librium, we make use of the expression (6.12) for thermal fluctuations
in the variable x = E(r1). Expanding the relative entropy given in
(6.16) to linear order in b gives

S(r12(x)krm) = bE(r1), (6.19)

which can be inserted in (6.12). Then, replacing the energy E(r1) by
the corresponding Hamiltonian H1 leads to the canonical density
operator (we drop the bipartition notation in the following)

rc =
1
Zc

e�bH , (6.20)
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with the canonical partition sum Zc being given by

Zc = Tr{e�bH
}. (6.21)

Compared to the microcanonical expression (6.2), the energy is not
fixed anymore, but rather fluctuates, such that we have a mixture of
different energies, which are weighted by Boltzmann-type factors.

The relative entropy between a state r and the canonical model rc
evaluates to

S(rkrc) = �S(r) + ln Zc + bE(r), (6.22)

when imposing the strict support condition N(r) ⌘ N(rc). This
simplifies further when using

S(rc) = ln Zc � b
∂

∂b
ln Zc = ln Zc + bE(rc), (6.23)

such that we end up with

S(rkrc) =

8
<

:
�S(r) + S(rc) + b [E(r)� E(rc)] for N(r) ⌘ N(rc),

+• else.
(6.24)

We find that the relative entropy decomposes linearly into differences
of extensive quantities and that the support condition is less strict.
More precisely, the relative entropy is finite as long as the particle
numbers agree. Also, it is interesting to note that if the energy ex-
pectation values agree E(r) = E(rc), we get back the result from the
microcanonical model (6.7).

As a side note, we report that in [252–255] it was shown that the
relative entropy S(rkrc) is proportional to the available energy. If
the system is in the state r, this corresponds to the maximum work
one can extract when coupling the system to a heat bath of inverse
temperature b. This can be made more explicit if we choose the state to
be thermal itself, i.e. r = r0

c, with some other inverse temperature b0.
In this case, one finds that the relative entropy becomes proportional
to a difference of (generalized) free energies

S(r0

ckrc) = b
⇥
F(rc)� F(r0

c)
⇤

, (6.25)

where F(r0

c) has to be considered as a generalized free energy as it is
defined with respect to the inverse temperature b which may differ
from b0.

As a next step, we consider the differential of the relative entropy
given in (6.24). To that end, we restrict ourselves to the case where the
condition dN(r) ⌘ dN(rc) is fulfilled. We end up with

dS(rkrc) = �dS(r) + dS(rc) + [E(r)� E(rc)]db

+ b [dE(r)� dE(rc)]

= �dS(r) + b dE(r)� bµ dN(r)

+ [E(r)� E(rc)]db,

(6.26)
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where we used the thermodynamic relation

dS(rc) = b dE(rc)� bµ dN(rc) (6.27)

in the second step. For a general quantum state r, the quantities
S(r), E(r), N(r) and b are independent. Hence, we find the following
four partial differential relations from (6.26)

∂S(rkrc)

∂S(r)

���
E(r),N(r),b

= �1,

∂S(rkrc)

∂E(r)

���
S(r),N(r),b

= b,

∂S(rkrc)

∂N(r)

���
S(r),E(r),b

= �bµ,

∂S(rkrc)

∂b

���
S(r),E(r),N(r),b

= E(r)� E(rc).

(6.28)

How do we interpret these relations? The first relation is related
to the fact that the canonical state rc has maximum entropy. If the
entropy S(r) is decreasing, i.e. if the information about r increases,
S(rkrc) increases equally, as states with smaller entropy are easier to
distinguish from the thermal state rc.

The second and the third relations can be regarded as alternative
definitions for the inverse temperature b and the chemical potential µ
in terms of relative entropy S(rkrc) at fixed entropy S(r). Especially
the second relation is non-trivial as E(r) 6= E(rc) in general.

Finally, the fourth relation tells us that there exists an unique inverse
temperature b, for which the two energy expectation values agree,
defined through Through relative

entropy a unique
temperature can be
assigned to
nonequilibrium
states.

∂S(rkrc)

∂b

���
S(r),E(r),N(r),b

= 0 , E(r) = E(rc). (6.29)

We consider this inverse temperature as optimal in the sense that with
this choice the relative entropy S(rkrc) is minimized with respect to
b. For any other value of b, the relative entropy is larger. In simple
words, this temperature corresponds to the standard definition of
temperature as if r = rc would hold.

����� ��������� �������� We proceed with a similar analysis
for the grand canonical ensemble describing a quantum system which
is coupled to a heat and particle bath (cf. Figure 6.1c). In this case, the
optimal model is given by the grand canonical density operator (we
omit the construction of this state for brevity)

rgc =
1

Zgc
e�b(H�µN), (6.30)
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with Zgc denoting the grand canonical partition sum. Then, we find
for the relative entropy between any state r and the optimal model
rgc the expression

S(rkrgc) =� S(r) + S(rgc) + b
h

E(r)� E(rgc)
i

� bµ
h

N(r)� N(rgc)
i

,
(6.31)

where no additional support condition has to respected. Note that
strictly speaking, the two states have to correspond to the same volume
V in all cases, which was not made explicit out of convenience.

Similar to the canonical case, the relative entropy decomposes into
differences of extensive quantities. This also holds for the differentials

dS(rkrgc) =� dS(r) + b dE(r)� bµ dN(r)

+
h

E(r)� E(rgc)
i

db

�

h
N(r)� N(rgc)

i
d(bµ),

(6.32)

leading to the (additional) partial differential relations

∂S(rkrgc)

∂N(r)

���
S(r),E(r),b,µ

= �bµ,

∂S(rkrgc)

∂(bµ)

���
S(r),E(r),N(r),b

= �N(r) + N(rgc).

(6.33)

While the first line allows for a definition of the chemical potential µ
as a partial derivative of a relative entropy, the second line shows that
the optimal value for µ minimizing the relative entropy follows from
choosing a model state rgc with equal energy and particle number
expectation values as the state r, i.e. E(r) = E(rgc) and N(r) =
N(rgc), respectively.

�.� ���� �� ��������������

����� ��� The first law can be regarded as energy conservation
applied to thermodynamic systems and hence does not need to be
formulated in terms of entropy or relative entropy. Consequently,
we will omit a discussion here and focus on the two other laws of
thermodynamics where entropy plays a crucial role.

������ ��� We consider again the three thermodynamic ensem-
bles (cf. Figure 6.1) and relative entropies between a state of interest
r and the corresponding thermodynamic model state r̃ chosen such
that the thermodynamic quantities, i.e. temperature T and chemical
potential µ, are equal to those of the bath the system is coupled to.
Then, depending on whether the system is allowed to exchange heat or
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particles with the bath or not, the second law will take a specific form.
In the following, we reproduce these inequalities from an information
theoretic argument (see also [247]).

As pointed out in Section 3.1, the time evolution of a system (open
or closed) is often described by a CPTP-map [59]. This is always the
case if the global initial state is a product state, i.e. if the system and
the heat bath are initially uncorrelated. However, if already initially
one has classical or quantum correlations between the two systems,
the time evolution map is typically only positive but not completely
positive [70, 71]. The following argument holds for both types of maps
and therefore explicitly allows for initial correlations. However, we
are rather interested in making a general statement and hence do not
specify the initial conditions.

The main assumption we use is that we consider a PTP-map N

(possibly a CPTP-map depending on the initial conditions) which keeps
the appropriate thermodynamic model state invariant, i.e. we will use
N (r̃) = r̃. This can be regarded as a definition for a stochastic time
evolution. Then, one finds for the change in relative entropy during
such an evolution from ti to tf > ti

DS(rkr̃) = S(N (r)kN (r̃))� S(rkr̃)

= S(N (r)kr̃)� S(rkr̃).
(6.34)

As a consequence of the monotonicity property of the quantum relative
entropy (3.18), this change is always non-positive, i.e.

DS(rkr̃)  0, (6.35)

which can be considered as a generalized second law. As usual for The second law of
thermodynamics is a
consequence of
quantum
information
processing.

our relative entropy formulation, the actual state r does not have to
be an equilibrium state itself and also we did not had to assume a
quasi-stationary time evolution between equilibrium states. Rather, we
ended up with the simple result that any state r can not deviate more
from a suitable invariant thermodynamic model state r̃ over time. In
fact, one can expect that in most cases the relative entropy between
the two states decreases over time and converges to zero indicating
that the system has thermalized with the bath.

The connection to Clausius’ inequalities can be made explicit by us-
ing the expressions (6.7), (6.24) or (6.31) for the relative entropies (with
the appropriate strict support conditions understood), depending on
the physical situation. One can easily confirm that one finds for the
change in entropy DS(r) = S(N (r))� S(r) the following relations

DS(r) �

8
>>><

>>>:

0 for microcanonical ensemble,

bDE(r) for canonical ensemble,

bDE(r)� bµDN(r) for grand canonical ensemble.
(6.36)
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The microcanonical ensemble is a rather special case. The invariance
condition N (rm) = rm defines the map N to be unital. It is well
known that the change in entropy DS(r) is non-negative for unital
maps [11], which is equivalent to the first line of (6.36). In contrast,
the entropy might increase as well as decrease for the more general
map N describing a system coupled to a heat or particle bath, as seen
from the second and third lines of (6.36).

Let us also mention that one may derive a set of inequalities similar
to (6.36) when the state r̃ is not a thermodynamic model, but instead
describes a nonequilibrium steady state, such that N (r̃) = r̃ is still
fulfilled. In this case, DS(r) is also bounded from below, but the bound
may not have a clear physical interpretation [262, 263].

�������: �������� �����-����� ������ We consider an isolated
three-state system with Hilbert space H spanned by {|0i , |1i , |2i}
and some diagonal state r. The suitable model state is given by the
microcanonical state rm. The set of all states is shown in Figure 6.2,
where rm corresponds to the central point as a consequence of the
principle of minimum relative entropy.

Some generic initial state r can either evolve reversibly along a
contour of constant entropy, which corresponds in fact to a unitary
time evolution, or it might irreversibly evolve towards a state lying on
a contour with higher entropy. Note that the exact position of the final
states cannot be determined by the generalized second law, only the
final contour is known.

|0><0|

|1><1||2><2|

�
�(�)

�(�)

�m

S(�||�m)
ln 3

0

0.25

0.5

0.75

1

Figure 6.2: Time evolution of a state r describing an isolated three-state
system. By the generalized second law (6.35), the relative entropy
S(rkrm) with respect to the microcanonical model rm can not
increase under general time evolution N : r ! N (r).
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����� ��� We complete our analysis with the third law of thermo-
dynamics, which is rather closely related to the concept of entropy.
Following Planck’s formulation, the entropy becomes constant in the
limit of vanishing temperature T ! 0, i.e.

lim
T!0

S(r̃) = S(r̄), (6.37)

for any thermodynamic model r̃. The constant is given by the entropy
of the ground state r̄ with respect to the Hamiltonian H. Note that
often the ground state is degenerate or mixed, in which case the right
hand side of the latter equation evaluates to a positive number.

In terms of relative entropy, the third law can be formulated as
follows: for any thermodynamic model r̃ we need to have

lim
T!0

S(r̄kr̃) = 0, (6.38)

showing that the ground state r̄ becomes indistinguishable from any
thermodynamic model r̃ in the zero temperature limit T ! 0. Note
that even if r̄ is degenerate, the right hand side of (6.38) is zero.

If we choose a canonical model rc, the relative entropy decompo-
sition (6.24) shows that we have to assume N(r) ⌘ N(rc) and that
E(r̄)� E(rc) ! 0 for T ! 0 faster than T, such that we indeed obtain
Planck’s statements S(r̄) = S(rc) at vanishing temperature. Similarly,
we would have to assume N(r̄)� N(rgc) ! 0 for T ! 0 faster than
T/µ for the grand canonical model rgc.

As a concrete example, let us consider a situation where the en-
ergy eigenstates |ni defined through (3.25) are non-degenerate (cf.
Section 3.3). Then, the canonical model state becomes (cf. (3.28))

rc = Â
n

pc(n)|ni hn|, pc(n) =
1
Zc

e�bE(n), (6.39)

such that the unique ground state is characterized by

r̄ = Â
n

p̄(n)|0i h0|, p̄(n) = d0n. (6.40)

In this case, the relative entropy evaluates to

S(r̄krc) = S( p̄kpc) = � ln pc(0). (6.41)

Note that such a relation also holds if the model state is replaced by
any state which is diagonal in the energy eigenbasis.

A short calculation shows that in the zero temperature limit T ! 0
we find

lim
T!0

pc(0) = lim
b!•

e�bE(n)

Ân e�bE(n)

= 1 � lim
b!•

Ân>0 e�b(E(n)�E(0))

1 + Ân>0 e�b(E(n)�E(0))

= 1

(6.42)

as E(n) > E(0) for all n > 0, confirming our formulation of the third
law (6.38).



7 S E C O N D L A W F O R
R E L AT I V I S T I C F L U I D S

The analysis is taken from [G]. S. F. proposed and supervised the
project. All authors contributed equally to the development of the
theory. N. D. and myself wrote large parts of earlier versions of the
manuscript and all three authors finalized the draft. The figures were
produced by me. As stated earlier, the article [G] is also covered in a
master thesis by N. D. [248].

In Section 6.2, we have seen how a generalized second law for-
mulated in terms of relative entropy can arise from an information
theoretic argument. In this chapter, we generalize this formulation to
situations where a formulation in terms of entropy is less favorable,
which is in particular the case for relativistic fluids.

In general, fluid dynamics serves as an effective theory using con-
cepts such as local equilibrium applicable when the evolution of a
system is mainly governed by conservation laws, which are them-
selves consequences of continuous symmetries [264]. It turns out to be
a good approximation for example as a description for the quark-gluon
plasma [258, 259, 265] or for quantum magnets [266].

In the following, we specialize on relativistic fluid dynamics, which
is built upon the symmetries of the Poincaré group. It is an interesting
question how relativistic fluid dynamics arises from a local quantum
field theoretic description (see e.g. [267]), which is where an informa-
tion theoretic treatment could provide new insights. In particular, one
may ask whether local dissipation can be understood as entanglement
generation and whether such a statement can be expressed through a
local second law-like inequality.

In relativistic fluid dynamics, a local second law is postulated in
terms of an entropy current density sµ(x) [264, 268, 269],

rµsµ(x) � 0, (7.1)

where rµ denotes the covariant derivative with respect to a general
metric gµn. The entropy current density sµ(x) is well-defined in global
equilibrium, but is rather difficult to define in nonequilibrium situa-
tions. Also, it is important to note that the entropy current sµ(x) is a
local quantity. Hence, if one aims at defining such a quantity starting
from a local QFT, one needs to work with entanglement entropies.
As discussed in Section 4.2, entanglement entropy exhibit universal
UV-divergences, rendering its use less favorable.

In the affirmative, we derive second law-like inequalities in terms
of relative (entanglement) entropies following from the monotonicity
property (3.18). In this way, we give the local second law a solid
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information theoretic foundation and avoid UV-divergences. We start
with a brief introduction to relativistic fluid dynamics in Section 7.1
and discuss how a local notion of equilibrium can be defined through
relative entanglement entropy in Section 7.2. Thereupon, we describe
local time evolution in Section 7.3 and for such derive several second
law-like inequalities in Section 7.4.

�.� ������������ ����� ��������

������������ ���� We formulate relativistic fluid dynamics in
general coordinates xµ, such that we have to work with a general met-
ric gµn(x) and covariant derivatives rµ. Then, conservation laws for
energy and momentum are in fact a consequence of diffeomorphism
invariance and can be subsumed as

rµTµn(x) = 0, (7.2)

where Tµn(x) denotes the classical energy-momentum tensor.
Additionally, we assume that the theory exhibits a U(1) symmetry,

leading to the conservation of a particle number current

rµNµ(x) = 0. (7.3)

Apparently, (7.2) and (7.3) provide d + 1 equations, while Tµn(x) has
d(d + 1)/2 and Nµ(x) has d components. The fundamental assump- Relativistic fluid

dynamics emerges
from symmetry
considerations.

tion of relativistic fluid dynamics is now to parameterize these two
tensors in terms of d + 1 variables, which may chosen to be the tem-
perature current

bµ(x) =
uµ(x)
T(x)

, (7.4)

where uµ(x) denotes the local fluid velocity and T(x) is a local tem-
perature field, and the scalar field

a(x) =
µ(x)
T(x)

, (7.5)

with µ(x) being the local chemical potential field. The two variables
bµ(x) and a(x) are then determined by the two conservation laws (7.2)
and (7.3).

������� ��������� �� ����������� The appearance of these fields
can be further motivated from relativistic thermodynamics. To that
end, we consider an entropy current sµ(x), which is expected to fulfill
a local second law in the form of

rµsµ(x) � 0, (7.6)
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with equality in thermal equilibrium. Note again that this is a phe-
nomenological assumption, which we wish to understand better. Espe-
cially, it is not clear whether an entropy current sµ(x) can be defined
in general nonequilibrium situations at all or how it is linked to local
entropies in a QFT.

However, in global thermal equilibrium, we can write the entropy
current as a function of the other two conserved quantities sµ =
sµ(Tnl, Ns), such that

rµsµ =
∂sµ

∂Tnl
rµTnl +

∂sµ

∂Nn
rµNn. (7.7)

Then, combining (7.2) and (7.3) with (7.6) at equality leads to the
covariant generalizations of the usual thermodynamic relations

∂sµ

∂Tnl
= �bld

µ
n ,

∂sµ

∂Nn
= �ad

µ
n . (7.8)

In thermal equilibrium, the two fields bµ(x) and a(x) can be con-
strained from the requirement that rµsµ must be stationary, i.e.

rµdsµ = �rµbndTµn +�∂µadNµ = 0, (7.9)

implying that bµ(x) has to be a Killing vector field and that a(x) is
constant,

rµbn +rnbµ = 0, ∂µa = 0. (7.10)

In fact, one may define equilibrium by the latter two conditions. Note
that for a Minkowskian metric gµn = hµn, the Killing vector field
condition translates into the temperature being constant.

In a generic nonequilibrium situation, the two variables bµ(x) and
a(x) are not defined in a unique way. For example, one may choose
the fluid velocity uµ(x) to be parallel to the energy flow (the so-called
Landau frame definition) or parallel to the particle number flow (the
Eckart frame definition). Later, we will be concerned with the notion
of local equilibrium, where (7.10) will not hold anymore.

�������� ��������� Let us briefly discuss the gradient expansion,
which is typically used within a phenomenological approach to fluid
dynamics to account for local deviations from equilibrium. Most im-
portantly, fluid dynamics uses the concept of equilibrium locally as an
approximation. In the hydrodynamic gradient expansion (see [264]), i.e.
an expansion in terms of gradients of fluid velocity uµ(x), temperature
bµ(x), etc., this approximation becomes exact when these gradients
vanish, in which case we recover global equilibrium defined through
(7.10). Depending on how many terms in this derivative expansion are
kept, the energy-momentum tensor Tµn(x) and the particle number
current Nµ(x) take specific forms. For example, in lowest order, one
recovers ideal fluid dynamics, which will be discussed in more detail
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in Section 7.2. Higher-order terms can be seen as corrections to the
ideal fluid approximation and allow to describe dissipative effects.

Also, one may describe dissipative effects by introducing additional
parameters, which vanish in global equilibrium, but give corrections
to this approximation otherwise. For example, one may consider shear
stress pn(x), bulk viscous pressure pbulk(x) or the diffusion current
nµ(x) within the theory of Israel and Stewart [268], which then allow
to parameterize the energy-momentum tensor Tµn(x) and the particle
number current Nn(x) together with the aforementioned fields in
terms of the so-called constitutive relations. Although the number of
parameters is larger compared to the equilibrium case, it is still small
compared to the degrees of freedom of a general nonequilibrium state,
which emphasizing the approximation character of a local fluid-like
description.

�.� ������ ��� ����� �����������

������ ����������� Instead of pursuing the phenomenological
approach, we propose to use relative entanglement entropy to justify
a local equilibrium approximation. To that end, we ask how the local
parameters are related to local expectation values of the respective
quantum operators for given local quantum states and which role
entanglement plays for a fluid-like description to work. We begin with
a brief review of global equilibrium quantum states.

Let us consider a foliation of spacetime in terms of a family of
Cauchy hypersurfaces S(t) equipped with a unit time-like normal
vector nµ(x) fulfilling nµnµ = �1. On every hypersurface S(t), we
may define the global equilibrium state as the covariant generalization
of (6.30) with the conditions (7.10) understood, which gives

r̃ =
1
Z

exp

�

Z

S(t)
dSµ (bnTµn + aNµ)

�
(7.11)

where Z is the partition function

Z = Tr
⇢

exp

�

Z

S(t)
dSµ (bnTµn + aNµ)

��
. (7.12)

Therein, the hypersurface area element dSµ is given by

dSµ = dd�1y
q
|det hµn| nµ, (7.13)

with nµ being future oriented such that n0 > 0 (similar to a fluid ve-
locity) and where hµn denotes the induced metric on the hypersurface
S(t). Note also that the global equilibrium state (7.11) contains the
quantum operators Tµn(x) and Nµ(x).

As discussed above, such a state corresponds to the zeroth order in
the gradient expansion. In this case, there exists a unique fluid frame



88 ������ ��� ��� ������������ ������

(i.e. the Landau and Eckart frames are equivalent) in which (7.4) and
(7.5) become exact. For the corresponding expectation values of the
energy-momentum tensor and the particle number current one finds
the constitutive relations [264]

Tµn = euµun + pDµn, Nµ = nuµ, sµ = suµ, (7.14)

with s being the entropy density, e the energy density, n the particle
number density, p the pressure and Dµn = gµn + uµun a projector
orthogonal to uµ.

����� ���� ������������� ���� �������� ������� Let us now
split the global hypersurface S into a finite subregion 1 and its com-
plement 2 such that S = 1 [ 2 ⌘ 12 and 1 \ 2 = ∆, for example a
ball-shaped region of radius R around ~x1 2 S at some time x0

1. We
consider a generic global quantum state r12. This state is assumed
to be out-of-global equilibrium in general. To the local region 1 we
associate a local state

r1 = Tr2{r12}, (7.15)

Then, the expectation value of a local observable O1 can be computed
from

O1 = Tr1{r1O1}. (7.16)

As there exist many different global states r12, which have the same
local states r1 in the sense of (7.15), one can compute local expectation
values also when assuming the two regions 1 and 2 to be uncorrelated,
i.e. r12 = r1 ⌦ r2 = Tr2{r12}⌦ Tr1{r12}. It may be possible to under-
stand the local equilibrium approximation in this way. More precisely,
a fluid-like description in terms of local parameters may work rather
well when non-local effects such as entanglement between the two
regions 1 and 2 are neglected to some extent.

Note that such a statement is rather informal and should be inves-
tigated with much more mathematical rigor in the future. However,
it is not needed for what follows. Rather, it is essential that local pa-
rameters can be compatible with many global states, giving us some
freedom to choose a specific one. In particular, we may consider the
global equilibrium state r̃12 defined in (7.11), specified with param-
eters bµ(x) and a(x) which fulfill (7.10), and a corresponding local
state

r̃1 = Tr2{r̃12} (7.17)

in region 1. Based on this, we can define local equilibrium through an
argument involving distinguishability. We say that the generic state
r12 is in local equilibrium in the region 1 around ~x1, such that we
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may associate local parameters bµ(x) and a(x), when the relative
entanglement entropy between r1 and r̃1 becomes small

S(r1kr̃1) ! 0, (7.18)

such that r1 and r̃1 can be considered to be locally indistinguishable.
Hence, we may quantify the validity of a local equilibrium approxima-
tion from a quantum information theoretic perspective in terms of a
relative entanglement entropy.

Also, S(r1kr̃1) being small allows us to define what we call the
fluid cell approximation. In fact, (7.18) indicates the existence of an
intermediate scale, where the size R of the region 1 is large enough
compared to an UV regulator scale and at the same time small enough
compared to the scale where long-range effects become relevant. More
precisely, for a global nonequilibrium state r12 we have S(r1kr̃1) � 0
for sufficiently large R, but S(r1kr̃1) becomes small (i.e. receives a
non-trivial upper bound) on the size of a fluid cell.

����� ����������� The fluid cell approximation may be extended
from one local fluid cell to the entire hypersurface S by assigning
local parameters bµ(x) and a(x) to every fluid cell region where (7.18)
is approximately fulfilled when adjusting the model r̃ accordingly.
One might choose a global state of the form (7.11), but without the A local equilibrium

state may be
constructed from
local fluid cells.

conditions (7.10) on bµ(x) and a(x), i.e.

r̃12 =
1
Z

exp

�

Z

S(t)
dSµ (bnTµn + aNµ)

�
(7.19)

with

Z = Tr
⇢

exp

�

Z

S(t)
dSµ (bnTµn + aNµ)

��
. (7.20)

We may call (7.19) a local equilibrium state, in the sense that (7.18)
is fulfilled for every local fluid cell. Note that this does not imply
r12 = r̃12 on a global level, but rather represents some coarse-graining
of r12 on the scale set by a fluid cell. In particular, r12 may be pure,
while r̃12 is mixed and they can still be hard to distinguish locally.

As a side note, one may obtain a density operator of the form (7.19)
following Zubarev’s approach, using the maximum entropy principle
on every hypersurface with given constraints on the expectation values
of the energy-momentum tensor and the particle number [270, 271].

�.� ����� ���� ��������� �� ������ �����
���� ������

����� ���� ��������� Ultimately, we want to understand local
time evolution of an open quantum system on a scale where a fluid-
like description is applicable. To that end, one could investigate the
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local system directly in terms of local density operators, which requires
detailed considerations taking care of the subtleties in the field theory
limit. We leave this task for future work [272, 273].

In the following, we propose an alternative strategy to overcome the
conceptual difficulties of local states. In particular, we make statements
about a general global state r12 by comparing it to the global or local
equilibrium states r̃12 discussed above, with the caveat that the global
time evolution is chosen such that it is effectively local.

To explicitly focus on time evolution only in a local region 1, we
choose a family of hypersurfaces S(t) which differ only in region 1(t),
but remain stationary in the complement region 2 6= 2(t). Then, the
time evolution is indeed essentially local. For such a construction to
work, we need to have the normal vectors nµ(x) on each surface S(t)
pointing into a timelike (or lightlike as a limit) direction. Moreover,
they have to be ordered in a way compatible with time running
forward only. Apart from these two constraints, the family S(t) can
be chosen rather freely.

With this idea in mind, we ask how the phenomenological local
second law (7.6) can be understood from a quantum information
theoretic point of view. In a local spacetime region W, which can be
chosen such that its boundaries are given by local regions on two
subsequent hypersurfaces S(tf) and S(ti), i.e. ∂W = 1(tf) [ 1(ti), the
integrated form of (7.6) reads

Z

W
ddx

q
det gµnrµsµ(x) =

I

∂W
dSµsµ(x) � 0. (7.21)

Therein, we have used again the hypersurface area element dSµ as
given in (7.13). However, it is the first time we have to deal with a
closed surface integral, where some subtleties regarding the orienta-
tion of the normal vector have to be specified. For the chosen metric
signature (�,+,+,+), nµ(x) does unambiguously point to the out-
side if it is spacelike. If it is timelike instead, the normal vector is
pointing to the inside (see e.g. [274] Sec. B.2, [275] Sec. 16 or [276]
for more details). For the closed surface ∂W, for which nµ(x) points
in a time-like direction, the orientation of nµ(x) flips between two
subsequent hypersurfaces. More precisely, n0 > 0 for the past and
n0 < 0 for the future hypersurfaces, respectively.

Interestingly, the generalized divergence theorem implies that (7.21)
follows from (7.6) for any spacetime region W with properly chosen
boundaries ∂W. At the same time, (7.21) can also imply (7.6) if it
can be proven for an arbitrarily small region around a point x 2 W.
Nevertheless, it remains unclear how (or if at all) the left hand side
of (7.21) is related to a von Neumann entropy of a nonequilibrium
density operator. To overcome this problem, we work with relative
entropies in Section 7.4, such that we never have to define an entropy
current outside of equilibrium.



�.� ����� ���� ��������� �� ������ ����� ���� ������ 91

������ ����� ���� A geometry which represents the aforemen-
tioned situation is the double light cone as sketched in Figure 7.1 for
d = 1 + 1 spacetime dimensions. The double light cone is constructed
from the future light cone of some point p in the past and the past
light cone of another point q in the future. In this setup, the light cone
associated with p can be understood as an initial hypersurface, while
the light cone associated with q as a final hypersurface with respect
to the time evolution inside the light cone. Hence, the dynamics are
restricted to the region within the double light cone and the non-local
information from outside the double light cone is entirely encoded in
the initial hypersurface. In this sense, there is no transfer of quantum The double light cone

is causally closedinformation through the boundaries. As a consequence, entropy pro-
duction, possible caused by an interaction with another system, will
be localized within the double light cone.

x

t

q

p

22 1

�i

�f

�

�

Figure 7.1: A double light cone bounded by the future light cone of p and the
past light cone of q (dashed black lines). Local time evolution is
modeled by a family of Cauchy hypersurfaces S(t) which differ
only in region 1(t) (solid blue curves) within the double light
cone, while the complement 2 (solid red lines) remains static.
Mathematically, the time evolution is represented by the map N ,
which is specified depending on whether the system of interest is
isolated or coupled to another system. Generally, two subsequent
hypersurfaces S(tf) and S(ti) enclose a spacetime region W
(shaded blue region), where each hypersurface is equipped with
timelike normal vectors nµ(x) (indicated by small black arrows).

As shown in Figure 7.1, one can choose a foliation of spacetime
S(t) with timelike unit normal nµ(x), where t plays the role of a
generalized time coordinate, such that the dynamics are constrained
to a local region 1(t) ✓ S(t) within the double light cone. The
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complement region 2 ✓ S(t) remains static. The two regions intersect
where the two light cones intersect, which may be considered as fixed
points as these points are part of all hypersurfaces S(t). For d = 1 + 1
spacetime dimensions, the fixed points are actually points, while for
d = 3 + 1 the fixed points are given by 2-spheres.

�������� �� � ���� ����� The time evolution of an arbitrary
global state r12 from one hypersurface S(ti) to the next S(tf) is gen-
erated by a map N via

N : r12(ti) ! N (r12(ti)) = r12(tf). (7.22)

If the system under consideration is closed, N is unitary. As this
corresponds to a rather uninteresting situation, we couple the field of
interest locally to a so-called bath fluid through an interaction parame-
ter l, such that we end up with an open system whose time evolution
is again non-trivial. Hence, despite the fact that we are interested in
a causally closed region, quantum information is not conserved, but
instead constrained by a local second law-like inequality.

Then, the map N is a CPTP- or at least a PTP-map and we choose
it such that it keeps a particular equilibrium reference state r̃12 form
invariant similar to the considerations in Section 6.2. Also, in the limit
l ! 0, this map becomes unitary again. In the following, we derive
second law-like inequalities for an arbitrary global quantum state r12
for three different physical situations encoded in the choice of the
invariant reference state r̃12.

�.� ������ ���-���� ������������

���� ����� �� ������ ����������� We start with the simplest
case, i.e. a bath fluid in global equilibrium, such that a suitable model
state is given by (7.11) with (7.10) understood. An example for such a
situation is a gas consisting of electron and positrons which is coupled
to a bath of electromagnetic radiation at some temperature T(x) and
vanishing chemical potential µ(x) = 0. In this case, the coupling l is
given by the elementary charge e.

For a global equilibrium state r̃12, the corresponding von Neumann
entropy S(r̃12) decomposes according to

S(r̃12) = ln Z +
Z

dSµ (bnTµn(r̃12) + aNµ(r̃12)) (7.23)

where we have introduced the expectation values

Tµn(r̃12) = Tr {r̃12Tµn
} , Nµ(r̃12) = Tr {r̃12Nµ

} , (7.24)

which are assumed to be renormalized such that they vanish in the
vacuum T = µ = 0.
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In global equilibrium, S(r̃12) is extensive and can be written as an
integral over a local entropy current sµ(x), such that

S(r̃12) = �

Z
dSµ sµ(r̃12), (7.25)

where the minus sign in the last line is a consequence of dSµ and sµ(x)
being future oriented with dS0, s0(x) > 0 together with the metric
signature convention (�,+,+,+).

Also the Schwinger functional (at vanishing sources) can be written
as an integral

W = ln Z = �

Z
dSµ pbµ, (7.26)

where p denotes the pressure with p = 0, i.e. Z = 1, in the vacuum
T = µ = 0. Hence, the entropy current density reads

sµ = �bnTµn
� aNµ + pbµ. (7.27)

This expression is consistent with the constitutive relation sµ = suµ for
an ideal fluid (7.14), which follows from the Gibbs-Durham relation
e + p = sT + µn together with the other two relations in (7.14).

Next, we consider the quantum relative entropy between an arbi-
trary global state r12 and the global equilibrium state r̃12. We find a
decomposition similar to (6.31), i.e.

S(r12kr̃12)

= �S(r12) + ln Z + Tr
⇢

r12

Z
dSµ (bnTµn + aNµ)

�

= �S(r12) +
Z

dSµ

⇣
� sµ(r̃12)

+ bn [Tµn(r12)� Tµn(r̃12)] + a [Nµ(r12)� Nµ(r̃12)]
⌘

,

(7.28)

where, except for the non-local quantity S(r12), all quantities can be
written as local integrals over a full Cauchy hypersurface S(t).

Between two times ti and tf, the relative entropy changes by an
amount of

DS(r12kr̃12) = S(r12(tf)kr̃12(tf))� S(r12(ti)kr̃12(ti)). (7.29)

Through the coupling to the bath fluid, the time evolution is given by
a PTP-map (or possibly CPTP map) N which leaves r̃12(ti) invariant
in the sense that r̃12(tf) is of the same form, but defined on a differ-
ent hypersurface S(tf). By the monotonicity of the quantum relative
entropy (3.18), we can conclude that

DS(r12kr̃12)  0 (7.30)

with equality for a unitary time evolution, which corresponds to
vanishing coupling l = 0. This inequality can be considered as a
global second law for relativistic fluids.
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To derive a local form of the latter inequality, we use (7.28). Then,

DS(r12kr̃12) = �DS(r12)�
I

∂W
dSµ

⇣
� sµ(r̃12)

+ bn [Tµn(r12)� Tµn(r̃12)]

+ a [Nµ(r12)� Nµ(r̃12)]
⌘

,

(7.31)

where the integral goes over the closed surface ∂W = 1(tf) [ 1(ti) and
where we introduced the change in entropy as

DS(r12) = S(r12(tf))� S(r12(ti)). (7.32)

Note that by convention, we have an additional minus sign in front of
the integral (cf. discussion around (7.21)). Note also that all contribu-
tions from region 2 canceled as this region remains static.

Although the von Neumann entropy S(r12) is non-local in general,
the change in entropy DS(r12) is local since it is caused by the interac-
tion with the bath fluid, which is assumed to be local in a relativistic
QFT. Hence, we may write

DS(r12) =
Z

W
ddx

q
det gµn s(r12)(x), (7.33)

where the local quantity s(r12) is well-defined for all density operators
and does not rely on assuming equilibrium as it was the case for the
entropy current sµ(x).

Then, (7.31) becomes with the generalized divergence theorem

0 � DS(r12kr̃12)

=
Z

W
ddx

q
det gµn

⇣
� s(r12)� bnrµTµn(r12)

� arµNµ(r12)
⌘

,

(7.34)

where we used the equilibrium conditions (7.10) together with the
conservation laws (7.2), (7.3) and (7.6) for the global equilibrium state
r̃12. Since the latter inequality must be fulfilled for any choice of the
Cauchy hypersurfaces S(t), its local form must be fulfilled as well.
Hence, we obtain the local second law-like inequalityThe local change in

entropy is
well-defined outside

of equilibrium and
constrained by a

second law-like
inequality.

s(r12) � �bnrµTµn(r12)� arµNµ(r12), (7.35)

which corresponds to the local form of the third line in (6.36).
Let us also formulate a local form of (7.30). Repeating the argument

that interactions are local we can write

0 � DS(r12kr̃12) =
Z

W
ddx

q
det gµn s(r12kr̃12), (7.36)

such that we obtain the local statement

s(r12kr̃12)  0, (7.37)

showing that the local relative entropy production is non-positive. In
this sense, states become locally less distinguishable over time.
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�������� ������������ ������� ����������� Having found
a local form of the second law in terms of a local change in entropy
(7.35) and also in relative entropy (7.37), let us specify further to local
density operators in the region 1 defined through (7.15). The analog
of (7.30) in terms of relative entanglement entropy then reads

DS(r1kr̃1) = S(r1(tf)kr̃1(tf))� S(r1(ti)kr̃1(ti))  0, (7.38)

where we used that the local states evolve in time according to modi-
fied operators N1 such that

r1(tf) = N1(r1(ti))

= N1(Tr2{r(ti)})

= Tr2{N (r(ti))}

= Tr2{r(tf)},

(7.39)

showing that N1 is also a CPTP- or at least a PTP-map, allowing us to
apply the monotonicity property (3.18).

For local interactions with the bath fluid we can write

0 � DS(r1kr̃1) =
Z

W
ddx

q
det gµn s(r1kr̃1). (7.40)

Finally, let us remark that by construction it is highly plausible that the
local changes in relative entropy and relative entanglement entropy
agree,

s(r1kr̃1) = s(r12kr̃12), (7.41)

such that also

DS(r1kr̃1) = DS(r12kr̃12). (7.42)

This would allow to formulate a local second law-like inequality in
terms of local states. However, a more detailed investigation including
a formal proof of the latter two equalities is required. We leave such
an analysis for future work.

���� ����� �� ����� ����������� We now generalize the latter
considerations to the case where the bath fluid is of local equilibrium
form (7.19) without the conditions (7.10). Again, we assume the time
evolution map N to be a CPTP- or at least PTP-map which leaves the
form of the global reference state r̃12 invariant.

In this scenario, the von Neumann entropy S(r̃12) is still of the form
(7.23), i.e. it can be written in terms of a Schwinger functional W = ln Z
and expectation values of energy-momentum tensor Tµn(r̃12) and
particle number current Nµ(r̃12). In [277] it was argued that W is
extensive also in this case, such that it can be written as

W = ln Z = �

Z
dSµ wµ(r̃12), (7.43)
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allowing us to define a nonequilibrium entropy current

sµ(r̃12) = �bnTµn(r̃12)� aNµ(r̃12) + wµ(r̃12), (7.44)

such that (7.25) holds. Note that for wµ = pbµ we indeed obtain from
the latter equation the entropy current in the Landau frame within
the first order gradient expansion, which may be seen as a justifica-
tion. However, a more detailed investigation from a field theoretic
perspective may be in order.

Let us now consider the change in relative entropy DS(r12kr̃12)
again. As before, the relative entropy admits a decomposition of the
form (7.31), where the two parameter fields bµ(x) and a(x) do not
fulfill the global equilibrium conditions (7.10) anymore. Then, by
using monotonicity of quantum relative entropy (3.18) together with
the locality of the change in entropy (7.32) we obtain

0 � S(r12kr̃12)

=
Z

W
ddx

q
det gµn

⇣
� s(r12) +rµsµ(r̃12)

� bnrµ [Tµn(r12)� Tµn(r̃12)]� arµ [Nµ(r12)� Nµ(r̃12)]

� (rµbn) [Tµn(r12)� Tµn(r̃12)]� (∂µa) [Nµ(r12)� Nµ(r̃12)]
⌘

.

(7.45)

By using the definition of the entropy current (7.44), this simplifies to

0 � S(r12kr̃12)

=
Z

W
ddx

q
det gµn

⇣
� s(r12) +rµwµ(r̃12)

� bnrµTµn(r12)� arµNµ(r12)

� (rµbn)Tµn(r12)� (∂µa)Nµ(r12)
⌘

.

(7.46)

If no energy, momentum or particles are exchanged between the field
of interest and the bath fluid, the third lines in the latter two equations
drop out, such that we may write a local change in relative entropy as

0 � s(r12kr̃12)

= �s(r12) +rµsµ(r̃12)

�
1
2
�
rµbn +rnbµ

�
[Tµn(r12)� Tµn(r̃12)]

� (∂µa) [Nµ(r12)� Nµ(r̃12)]

= �s(r12) +rµwµ(r̃12)

� (rµbn)Tµn(r12)� (∂µa)Nµ(r12),

(7.47)

giving us a generalization of (7.35).
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���� ����� ���� ������� ����������� ���� At last, we study
a rather general class of density operators, which we call general expo-
nential density operators. They generalize global and local equilibrium
states, but are still of exponential form

r̃12 =
1
Z

exp
Z

S(t)
dSµ

⇣
�hµ

abTab
� lµ

a Na
⌘�

(7.48)

with a nonequilibrium partition function

Z = Tr
⇢

exp
Z

S(t)
dSµ

⇣
�hµ

abTab
� lµ

a Na
⌘��

. (7.49)

Here, hµ
ab(x) and lb

a (x) are local parameter fields, which can be under-
stood as Lagrange multipliers which enforce unrestricted expectation
values Tµn(r̃12) and Nµ(r̃12). In particular, the expectation values do
not need to coincide with those in local or global equilibrium.

It is important to note that for a given hypersurface S(t) with
normal vector nµ(x), only the contractions nµ(x)hµ

ab(x) and nµ(x)lµ
a (x)

enter in the last equation. Hence, the components orthogonal to nµ(x)
can be changed without changing the state r̃12 given in (7.48). In this
sense, the degrees of freedom in the energy-momentum tensor and
particle number current match with those of the parameter fields.

As before, the exponential form of (7.48) allows for a simple decom-
position of the von Neumann entropy

S(r̃12) = ln Z +
Z

S(t)
dSµ

⇣
hµ

abTab(r̃12) + lµ
a Na(r̃12)

⌘
. (7.50)

If the Schwinger function W = ln Z is local (which has to be tested),
one may define a nonequilibrium local entropy current via

sµ(r̃12) = �hµ
abTab(r̃12)� lµ

a Na(r̃12) + wµ(r̃12), (7.51)

with (7.25) implied.
For the relative entropy between an arbitrary state r12 and a refer-

ence state r̃12 of the form (7.48) we then find

S(r12kr̃12)

= �S(r12) + ln Z +
Z

S(t)
dSµ

⇣
hµ

abTab(r12) + lµ
a Na(r12)

⌘

= �S(r12) +
Z

S(t)
dSµ

⇣
� sµ(r̃12)

+ hµ
ab

h
Tab(r12)� Tab(r̃12)

i
+ lµ

a [Na(r12)� Na(r̃12)]
⌘

.

(7.52)

The time evolution from S(ti) to S(tf) generated by the map N is
constrained by the generalized second law in form of (7.30). Similar to
before, one may construct a corresponding local form with respect to
the model density operator r̃12 using the latter identity. We omit the
corresponding inequalities for brevity.



Part III

U N C E R TA I N T Y

We propose a formulation of the uncertainty principle in
terms of relative entropy, allowing us to describe discrete
and continuous variable quantum systems (Chapter 8) as
well as quantum fields consistently (Chapter 9). Further,
we investigate entropic uncertainty in phase space (Chap-
ter 10).



8 R E U R F O R Q U A N T U M S Y S T E M S

The following discussion was published in [E]. S. F. proposed and
supervised the project. B. H. was involved in the early developments
of an EUR formulated with relative entropy in the form of a bachelor
thesis [278]. However, none of the results presented in [E] are contained
in [278]. The REUR was found by me and I wrote early versions of the
draft. S. F. and I finalized the manuscript.

As anticipated in Section 3.5, there exist various EURs for discrete
and continuous variables. However, the two cases of variables have
only been unified in a rather formal way in [33] (see also the related
works [123, 137, 144]), with the discrete MU relation (3.86) and the
continuous FL relation (3.82) as special cases. The difficulties in such
a unification can be traced back to the inconsistency of the Shannon
entropy S(p) and the differential entropy S( f ) in the continuum limit
(2.12). We reformulate the results of [33] in terms of relative entropies,
to obtain a relation which is capable of describing both types of
variables at once. Besides being an interesting task by itself, this paves
the ground for quantum fields, see Chapter 9.

Although the formulation of the uncertainty principle in terms of
relative entropy has not been investigated so far, relative entropy is
important in the context of entropic uncertainty. First, the monotonic-
ity property (3.18) of the quantum relative entropy allows for a simple
proof of the discrete MU relation (3.86) (see [12, 133, 279]). Second, the
uncertainty principle can be formulated in terms of mutual informa-
tion (which is defined as a relative entropy) in the presence of classical
or quantum memory [136, 146, 147]. These relations state that the
measurement outcomes of two non-commuting observables can not
be arbitrarily correlated with a memory system and are consequently
called information exclusion principles. Third, measurement EURs,
which describe the disturbance of an observable caused by a previous
measurement of another observable, have been formulated in terms of
relative entropy in [280, 281].

The main idea is to consider reference distributions of maximum
entropy, allowing for a decomposition of the relative entropy (similar
to e.g. (6.24)). We discuss various choices explicitly for discrete vari-
ables in Section 8.1 and for continuous variables in Section 8.2. These
considerations are unified in a single relation, the REUR, in Section 8.3.
As the logic of this relation is in some sense reversed, we discuss it at
length. Finally, we discuss two examples in Section 8.4.
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�.� �������� ���������

�� ����� ����������� Let us consider a discrete quantum sys-
tem with D < • and two discrete observables with operators Y and
Z. Measuring them leads to the two distributions p(y) and q(z) as
defined in (3.70). A formulation of the uncertainty principle in terms
of relative entropy mainly requires a specification of two reference
distributions p̃(y) and q̃(z). We will see that suitable reference distri-
butions are given by Boltzmann-type distributions or more generally
by distributions maximizing an entropy. In this way, additional infor-
mation about the distributions of interest will be encoded directly in
the resulting uncertainty relation.

We start with the simplest case where no prior information about
p(y) and q(z) is available. A suitable reference distribution is picked
with the maximum entropy principle (or equivalently the principle of
minimum expected relative entropy), which postulates the uniform
distribution

p̃(y) = pmax(y) =
1
D

. (8.1)

The corresponding relative entropy S(pkpmax) simplifies to

S(pkpmax) = �S(p) + S(pmax) = �S(p) + ln D, (8.2)

such that the MU relation (3.86) becomes

S(pkpmax) + S(qkqmax)  ln c � S(r) + 2 ln D. (8.3)

Interestingly, a sum of relative entropies is bounded from above in a
non-trivial way: the trivial bound 2 ln D, which is a consequence of

S(pkpmax) + S(qkqmax)  S(pmax) + S(qmax) = 2 ln D, (8.4)

is reduced by the quantum incompatibility measure c (note here that
ln c  0) and the mixedness of the quantum state S(r).

To exemplify the information theoretic significance, let us consider
the special case where Y and Z are mutually unbiased such that
perfect knowledge about one observable implies no knowledge about
the other. In this case we have

c = |hy|zi|2 =
1
D

(8.5)

for all y and z, such that ln c = � ln D. Further, we consider the state
to be maximally mixed with S(r) = ln D. Then, the right hand side of
(8.3) reduces to zero and hence p(y) and q(z) become indistinguishable
from uniform distributions with maximum entropy.
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����� ����������� ������ Next, we consider a situation where
we have access to a set of expectation values. Note that this includes
the possibility of measuring other observables, as long as their mea-
surement outcomes are distributed according to the same probability
distributions. This is fulfilled in particular if the two observables
commute as a consequence of the definition (3.70).

For example, we may consider the mean value of Y ,

µy = Â
y

p(y)y, (8.6)

such that p̃(y) is required to have the same mean value, i.e.

µ̃y = Â
y

p̃(y)y ⌘ µy. (8.7)

The associated maximum entropy distribution is chosen as reference
distribution

p̃(y) = pmax(y) =
1

Zy
e�gyy, (8.8)

with gy being a Lagrange multiplier and Zy denoting a normalization
constant.

The mean values of other commuting observables can be included
in the same way. An interesting choice can be made when the Hamil-
tonian H commutes with Y , i.e. [H, Y ] = 0. Then, one may measure
the energy expectation value to obtain a thermal reference distribution
p̃(y) = pmax(y), which is uniquely determined by the optimal inverse
temperature by.

For the Boltzmann-type reference distribution (8.8) the relative en-
tropy becomes

S(pkpmax) = �S(p) + S(pmax) = �S(p) + ln Zy + gyµy. (8.9)

Hence, a reformulation of the MU EUR (3.86) reads

S(pkpmax)+S(qkqmax)  ln c�S(r)+ ln(ZyZz)+gyµy +gzµz. (8.10)

Note that the additional quantities appearing in the bound can be
computed from the true distributions p(y) and q(z), such that they
can be fully determined after measuring p(y) and q(z).

One can generalize these considerations and choose a maximum
entropy reference distribution p̃(x) such that the measured expectation
value µy does not agree with µ̃y. In this case, the relative entropy
becomes

S(pkpmax) = �S(p) + S(pmax) + gy(µy � µ̃y). (8.11)

However, as the additional term is also contained in the maximum
entropy expression S(pmax), the relation (8.10) remains unmodified.
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����� ��� �� ������� We go one step further and allow for an
arbitrary set of moments to be constrained. More precisely, we fix the
M expectation values

hmji = Â
y

p(y)mj(y), (8.12)

with m1(y), ..., mM(y) being polynomials in y. Then, the reference
distribution needs to fulfill the set of constraints

aj(p, p̃) = Â
y
( p̃(y)� p(y))mj(y) = 0 (8.13)

for all j 2 {1, ..., M}. If a solution to this optimization problem exists,
which is typically the case for discrete, but not for continuous variables,
it can be computed from the maximum entropy principle

p̃(y) = pmax(y) = exp

 
M

Â
j=0

ljmj(y)

!
. (8.14)

Therein, l0 ensures normalization, while lj with j > 0 implement
the M conditions aj(p, p̃) = 0. Note that the form of this solution is
the same for constraints given in terms of inequalities aj(p, p̃) � 0,
requiring additional constraints lj � 0 for all j 2 {1, ..., M} [228, 229].

����������� ������ �� ����� �� �������� ��������� At last,
we consider another rewriting of the MU relation (3.86). In particular,
we also want the quantum entropy S(r) to be replaced by a suitable
quantum relative entropy S(rkr̃). To that end, we consider maximum
entropy states by starting from the maximum entropy distribution
pmax(y) and constructing the corresponding measured quantum state
rY ,max via

rY ,max = Â
y

pmax(y)|yi hy|. (8.15)

We then find for the quantum relative entropy between the state r and
such a reference state

S(rkr̃) = S(rkrY ,max) = �S(r) + S(rY ,max)

= �S(r) + S(pmax).
(8.16)

Moreover, if one chooses the maximally mixed state

rmax =
1
D

1 (8.17)

as a reference distribution, the corresponding quantum relative en-
tropy can be written as

S(rkr̃) = S(rkrmax) = �S(r) + ln D. (8.18)
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Combining the latter equations leads to a reformulation of (3.86) solely
in terms of relative entropies

S(pkpmax) + S(qkqmax)

 ln(cD)� S(rkrmax) + S(rkrY ,max) + S(rkrZ,max).
(8.19)

Note that the maximum overlap fulfills c �
1
D such that ln(cD) � 0,

with equality if and only if the measurement bases are mutually
unbiased.

�.� ���������� ���������

���� �� ������������� For position X and momentum K, the
overlap is given by (3.39), showing that

c = |hx|ki|2 =
1

2p
(8.20)

for all x, k, rendering the bases {|xi}x and {|ki}k mutually unbiased
in a continuous sense.

However, it is important to note that one can not measure contin-
uous outcomes in practice. More precisely, any actual experiment is
only capable of measuring X and K with finite precision Dx and Dk,
respectively. For example, one ends up with a discrete probability
distribution [113]

p(x) =
Z (x+1/2)Dx

(x�1/2)Dx
dx0 f (x0). (8.21)

describing the probability to measure the position somewhere in the
interval [(x � 1/2)Dx, (x + 1/2)Dx].

Unfortunately, the limit of infinite precision Dx ! 0 leads to a di-
verging Shannon entropy S(p) as described in Section 2.2. Such prob-
lems might be avoided when working in terms of relative entropies.
We discuss the effects of discretization in more detail in Section 13.3.

�������� ������������� �� ������� ������ Also for continu-
ous variables one could consider a given mean value

µx =
Z

dx f (x) x (8.22)

as side constraint to obtain a suitable reference distribution, as investi-
gated in Section 8.1. Furthermore, if the quantum system of interest
has a finite length, e.g. x 2 [�L/2, L/2], one may choose the uniform
reference distribution f̃ (x) = fmax(x) = 1/L for position measure-
ments if no constraints are given. Note that the uniform distribution
may not be chosen for both continuous variables simultaneously as
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x 2 [�L/2, L/2] still allows for (discrete) k 2 (�•, •), in which case
the uniform distribution does not exist.

However, for continuous variables, a fixed variance

s2
x =

Z
dx f (x)(x � µx)

2 (8.23)

is of special interest, as the corresponding maximum entropy distribu-
tion is given by a Gaussian

f̃ (x) = fmax(x) =
1p

2ps2
x

e�
1
2 (

x�µx
sx )

2

. (8.24)

Its differential entropy reads

S( fmax) =
1
2

ln
�
2pes2

x
�

, (8.25)

such that the FL EUR (3.82), which can be considered the continuous
variable analog of the MU relation (3.86), becomes

S( f k fmax) + S(gkgmax)  �S(r) + 1 + ln(sxsk). (8.26)

Similar to the discrete case, the additional terms in the bound follow
from the two distributions f (x) and g(k).

���� �� ��������� ���� ������� �������� ������� Unfor-
tunately, we did not find a way to rewrite the latter relation solely
in terms of relative entropy, which is due to the non-existence of a
post-measurement state for measurements of continuous variables
(cf. Section 3.4). Hence, a similar line of reasoning as presented in
Section 8.1 fails.

���� �� ��������� ��� ��� �������� Instead of rewriting the FL
relation (3.82) in terms of relative entropies with respect to Gaussian
models, one may equally well consider the BBM EUR (3.79), which leads
to a different upper bound

S( f k fmax) + S(gkgmax)  ln 2 + ln(sxsk). (8.27)

This relation will be the starting point of formulating the concept
of entropic uncertainty for quantum fields in Chapter 9. Also, this
rewriting is particularly useful to understand in which sense the BBM
relation is stronger than Heisenberg’s relation (3.80). Solving for the
variance deviation product gives

s2
x s2

k �
1
4

e2S( f k fmax)+2S(gkgmax), (8.28)

showing that the BBM relation is stronger than the Heisenberg relation
if and only if the distributions f (x) and g(k) are of non-Gaussian
form, with non-Gaussianity measured in terms of relative entropies
(see also [29, 282, 283]). However, the relation (8.27) holds only for
continuous variables and thus is not suitable for formulating a relation
being capable of describing discrete as well as continuous variables
simultaneously.
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�.� �������� �������� ����������� ��������
- ���� �

����� ������������� �� ������� ������� Having discussed
the basic strategy from various perspectives, let us now formalize our
considerations to obtain our desired unified relation. Consequently,
we use the expressions p(y) and q(z) for both types of distributions,
i.e. discrete as well as continuous, in the following.

We have seen that it is useful to pick the reference distributions p̃(y)
and q̃(z) such that the relative entropies S(pk p̃) and S(qkq̃) become
differences of entropies. It is simple to show that this occurs if and
only if they correspond to maximum entropy distributions.

Let us start from the definition of the classical relative entropy

S(pk p̃) = �S(p) + S(p, p̃), (8.29)

where the second term is the so-called cross entropy

S(p, p̃) = �Â
y

p(y) ln p̃(y). (8.30)

Note that for continuous distributions the sum is replaced by an The relative entropy
decomposes linearly
whenever the
reference distribution
maximizes an
entropy.

integral. The reference distribution p̃(y) should be chosen such that

S(p, p̃) = S( p̃) (8.31)

for a set of constraints

aj(p, p̃) = 0 (8.32)

with j 2 {1, ..., M} where M 2 N. Examples for these constraints have
been discussed in detail in the two previous sections.

Plugging the condition (8.31) into the definition of the relative
entropy (8.29) together with non-negativity of the latter yields

S(pk p̃) = �S(p) + S( p̃) � 0 , S(p)  S( p̃) (8.33)

for all allowed distributions p(y). Hence, p̃(y) does necessarily cor-
respond to the maximum entropy distribution p̃(y) = pmax(y) under
the constraints (8.32). In this sense, this choice is optimal.

Note that if the condition (8.31) is released such that terms linear
in the constraints are allowed, we still obtain a maximum entropy
distribution. However, it is less optimal as not all of its properties
agree with those of the true distribution. For example, their mean
values could differ, i.e. µy 6= µ̃y.

Furthermore, optimal model distributions do often fulfill the sup-
port condition supp [p(y)] ✓ supp [pmax(y)] for all y, such that the
corresponding relative entropy S(pk p̃) remains finite. To be more pre-
cise, the support condition is always fulfilled for discrete variables. For
continuous variables, it can be violated. We will further elaborate on
this issue when discussing the quantum origin of the resulting bound
on a sum of two relative entropies.
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����������� �������� ��� ���������� Without further ado, we
state the REUR for two (discrete or continuous) distributions p(y) and
q(z) with respect to maximum entropy reference distribution pmax(y)
and qmax(z) under some constraintsThe REUR describes

discrete and
continuous variables. S(pkpmax) + S(qkqmax)  ln c � S(r) + S(pmax) + S(qmax), (8.34)

where c still denotes the maximum overlap between any two eigen-
states for PVMs (3.87) or its generalization for POVMs (3.88). As it
corresponds to a reformulation of the measure-theoretic formulation
in [33], we omit a proof for brevity. The main ingredients in a proof
are the Golden-Thompson inequality and Gibbs variational principle.

To better understand how this relation expresses the uncertainty
principle, let us discuss it in detail.

a) Sum of relative entropies is bounded from above.

A sum of two relative entropies is trivially bounded from below
by zero as relative entropy is non-negative. The non-trivial bound
expressing uncertainty comes from above and not from below.
This shows that the joint distinguishability of p(y) and q(z)
with respect to reference distributions of minimum information
content is bounded.

In general, it requires more information about a distribution
p(y) additional to the information encoded in the maximum
entropy reference p̃(y) to distinguish the two. This surplus of in-
formation is measured in terms of relative entropy and bounded
from above, which is in accordance with the usual logic of the
uncertainty principle, i.e. the fact that one can never have the
full information about two non-commuting observables.

b) Bound is of quantum origin.

At first, note that ln c� S(r)  0. Hence, a classical upper bound
can be obtained by considering the absence of missing informa-
tion about the state S(r) = 0 and two measurement bases which
share at least one eigenvector such that ln c = 0. This leads to

S(pkpmax) + S(qkqmax)  S(pmax) + S(qmax). (8.35)

For discrete variables, the largest classical upper bound

S(pmax) + S(qmax)  2 ln D (8.36)

is finite for a finite Hilbert space dimension D < •. This bound
gets reduced (by a finite amount) by the uncertainty principle in
terms of the quantum incompatibility c and the state’s mixedness
S(r) impeding to distinguish the distributions from each other.

For continuous variables, the Hilbert space dimension is infinite
D = • and hence the classical upper bound S(pmax) + S(qmax)
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may diverge to +•. For example, considering one Gaussian ref-
erence distribution for a fixed variance in the limit of arbitrarily
large width leads to a diverging entropy. Nevertheless, this (pos-
sibly infinite) classical bound gets still reduced by ln c � S(r).

Hence, we can conclude that in both cases the uncertainty princi-
ple provides a smaller bound than any classical bound showing
its quantum origin. This is in accordance with the corresponding
EURs (3.86) and (3.82), whose minimum classical lower bounds
are given by 0 and �•, respectively. However, they encode the
uncertainty principle by lifting a lower bound instead of reduc-
ing an upper bound.

c) MU and FL relations are special cases.

As already discussed in the previous two sections, our REUR
given in (8.34) reproduces the MU relation (3.86) for discrete
and the FL relation (3.82) for continuous variables, respectively.
Consequently, its tightness depends on the type of variables. For
discrete variables, equality is achieved for states being diagonal
in one of the two bases which have to be mutually unbiased.
For continuous variables, the relation is tight in the infinite
temperature limit.

d) Discrete and continuous spectra are unified.

In contrast to all other existing EURs, the REUR is simultaneously
well-defined for discrete as well as continuous variables, which
is one of the main advantages relative entropy has over entropy.
Note that the entropies appearing in the bound can always be
expressed in terms of the constrained quantities after plugging
in the corresponding expressions for pmax(y) and qmax(z), ren-
dering the bound free of ambiguities. Also, the bound in (8.34)
is indeed well-behaved in the continuum limit as all possible
infinities appearing in c and S(pmax) + S(qmax) cancel out.

e) Bound contains side information.

Again in contrast to other EURs, the bound in the REUR (8.34)
contains side information in terms of the reference distributions
pmax(y) and qmax(z), which is interesting for experimental appli-
cations.

f) Invariance under change of normalization.

Another advantage relative entropy has over entropy is its in-
variance under scaling transformations, which immediately car-
ries over to the left hand side of the REUR (8.34). For the right
hand side, we consider a transformation |yi ! |y0i = a |yi
with a 2 R and |a| 6= 1, which corresponds to a change of
normalization of the basis {|yi}y. The integration measure trans-
forms as dy ! dy0 = a�2dy such that the probability p(y)dy !
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p(y0)dy0 = p(y)dy remains unchanged. However, the probability
density scales as p(y) ! p(y0) = a2 p(y) and hence the quantities
in the bound transform according to

ln c ! ln c + ln a2, S(pmax) ! S(pmax)� ln a2, (8.37)

showing that also the bound remains invariant under scaling
transformations.

�.� ��������

����-� ����������� To illustrate the logic of the REUR (8.34) we
consider spin observables Jx, Jy, Jz, which fulfill a SU(2) algebra

[Jk, Jl ] = ieklm Jm, (8.38)

where k, l, m 2 {x, y, z} label spatial dimensions and eklm denotes the
totally antisymmetric Levi-Civita tensor. The spin operators fulfill
eigenvalues equations of the form

Jk |jki = jk |jki , (8.39)

where jk 2 {�1, 0, 1} denote the eigenvalues and |jki the correspond-
ing normalized eigenvectors.

We restrict our analysis to a fixed total spin of J = 1, in which
case the spin operators live in the adjoint representation of SU(2).
Then, the three sets of eigenvectors span orthonormal bases for the
3-dimensional Hilbert space H from which one can construct PVMs,
each describing the measurement of one spin component Jk. When
measuring two spatial components simultaneously, we are limited by
the uncertainty principle as a result of the non-trivial commutation
relation (8.38).

Without loss of generality we work in the basis spanned by {|jzi}jz ,
which we denote with {|�1i , |0i , |1i}. In R3 the state vectors are
conveniently represented as unit vectors

|1i b=

0

BB@

1
0
0

1

CCA , |0i b=

0

BB@

0
1
0

1

CCA , |�1i b=

0

BB@

0
0
1

1

CCA . (8.40)
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In this basis, Jz becomes diagonal and the spin operators are repre-
sented by hermitian 3 ⇥ 3 matrices

Jx =
1
p

2
(|1i h0|+ |0i h1|+ |0i h�1|+ |�1i h0|)

b= 1
p

2

0

BB@

0 1 0
1 0 1
0 1 0

1

CCA ,

Jy =
i

p
2
(�|1i h0|+ |0i h1|� |0i h�1|+ |�1i h0|)

b= i
p

2

0

BB@

0 �1 0
1 0 �1
0 1 0

1

CCA ,

Jz = |1i h1|+ |�1i h�1|b=

0

BB@

1 0 0
0 0 0
0 0 �1

1

CCA .

(8.41)

The eigenvectors of the Jx and Jy operators are given by (ordered
corresponding to the eigenvalues 1, 0,�1, respectively)

{jx}jx =

(
1
2

⇣
|1i+

p

2 |0i+ |�1i
⌘

,
1
p

2
(|1i � |�1i) ,

1
2

⇣
|1i �

p

2 |0i+ |�1i
⌘)

,

{jy}jy =

(
1
2

⇣
� |1i � i

p

2 |0i+ |�1i
⌘

,
1
p

2
(|1i+ |�1i) ,

1
2

⇣
� |1i+ i

p

2 |0i+ |�1i
⌘)

,

(8.42)

showing that the corresponding measurement bases are not mutu-
ally unbiased. Note that only the Pauli matrices sk, which live in
the fundamental representation of SU(2), have mutually unbiased
eigenvectors.

We want to measure Jy and Jz, in which case we are limited by the
quantum incompatibility (3.87), which evaluates to

c = max
⇢

0,
1
4

,
1
2

�
=

1
2

. (8.43)

The entropies of the measured distributions f (jy) = hjy|r|jyi and
g(jz) = hjz|r|jzi are bounded from below by the MU relation (3.86)

S(p) + S(q) � ln 2 + S(r), (8.44)
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while the relative entropies with respect to uniform model distribu-
tions are bounded from above by the REUR (8.34)

S(pkpmax) + S(qkqmax)  ln
9
2
� S(r). (8.45)

Note that for discrete variables we also have

S(r)  S(p), S(q). (8.46)

We consider now the case where the state is pure S(r) = 0. Without
loss of generality we assume that the measurement of Jy is neverBounding an entropy

from below is
equivalent to

bounding a relative
entropy from above.

more uncertain than the measurement of Jz, such that S(p)  S(q).
Then, for S(p) � 0 the uncertainty principle implies S(q) � ln

p
2.

Equivalently, we have S(pkpmax)  ln 3 and hence S(qkqmax)  ln 3
p

2
.

The equivalence of these two statements is illustrated in Figure 8.1.

jy=1

jy=0jy=-1

pmax

S(p)�0S(p||pmax)�ln3

(a) Allowed p(jy)

jz=1

jz=0jz=-1

qmax

S(q)�ln 2S(q||qmax)�ln3/ 2

(b) Allowed q(jz)

Figure 8.1: Allowed regions for the distributions p(jy) (blue area) in (a) and
q(jz) (red area) in (b) describing Jy and Jz measurements in
a spin-1 system as required by the uncertainty principle and
S(p)  S(q). While entropies (black solid lines) are bounded
from below, relative entropies (black dotted lines) are bounded
from above.

����� ��� ������� �������� At last, we demonstrate the
strengths of quantifying entropic uncertainty in terms of relative
entropy by considering a particle on a ring of radius R, which is
characterized by the z-component of its angular momentum Jz and its
position in terms of an angle f. In particular, we exemplify how the
bound behaves when taking the continuum and infinite volume limits.

We consider again the angular momentum eigenstates |jzi defined
through (8.39). The corresponding Hilbert space has the dimension
D = 2J + 1, where J denotes the total angular momentum, which is a
half-integer in general. As the set {|jzi}jz forms a orthonormal basis
for H, the set {|jzi hjz|}jz is a PVM.

The continuous angle states can be defined via [284]

|fi =
1

p
2J + 1

J

Â
jz=�J

e�ijzf
|jzi , (8.47)
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which is consistent with periodicity |fi = |f + 2pi or more generally
that the angular momentum operator Jz generates rotations on the
ring

e�ijJz |fi = |f + ji . (8.48)

The angle states have a non-trivial overlap

hj|fi =
1

2J + 1
sin
⇥�

J + 1
2
�
(j � f)

⇤

sin
⇥ 1

2 (j � f)
⇤ (8.49)

and resolve the identity

1 = (2J + 1)
Z 2p

0

df

2p
|fi hf| =

J

Â
jz=�J

|jzi hjz|. (8.50)

Hence, they form an overcomplete basis similar to canonical coherent
states introduced in Section 3.4, and the set {|fi hf|}f forms a POVM.
One can also consider a discrete subset of angle states |qji

qj = q0 +
2p j

2J + 1
(8.51)

with j 2 {0, ..., 2J} and q0 2 [0, 2p) being a free parameter, which is
typically set to zero. These angle states are chosen such that they are
orthonormal hqj|qki = djk, which follows from (8.49), and hence their
measurement corresponds to a PVM.

The limit J ! • renders the discrete states dense and therefore
can be considered as a continuum limit. However, the resulting angle
states differ in normalization from the continuous angle states (8.47).
Also, one may consider the infinite volume limit R ! •, which can
be implemented after introducing positions x = 2pRf and conjugate
momenta k = jz/(2pR). In the following, we discuss the behavior of
the REUR (8.34) for these two limits.

For finite J, the measurement of the angular momentum operator Jz
leads to a discrete probability distribution q(jz). Hence, suitable refer-
ence distributions can be found by fixing moments of this distribution
as discussed in Section 8.1. For example, one may take the uniform
distribution qmax(jz) = 1

D if no additional information is available, or,
for known hJzi and hJ2

zi one may use

qmax(jz) = exp
�
l0 + l1 jz + l2 j2z

�
, (8.52)

with Lagrange multipliers lj. To compute the contribution to the
bound of the REUR, we evaluate the entropy of such a distribution

S(qmax) = �l0 � l1 hJzi � l2 hJ2
zi . (8.53)

In the continuum limit J ! •, the distribution (8.52) is normalizable
as long as l2 < 0. In this case, it corresponds to a Gaussian-like
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distribution, which becomes continuous if one also takes the infinite
volume limit R ! •.

For the discrete angle states (8.51) and finite J the situation is com-
pletely analogous to the angular momentum eigenstates. Also, the
overlap evaluates to

c = |hjz|qji|
2 =

1
2J + 1

=
1
D

(8.54)

for all jz, qj showing that the two measurement bases are mutually
unbiased. Exemplary, we depict such a measurement in Figure 8.2a
for J = 1/2.

The measurement of the continuous angles f requires a more care-
ful analysis. If no additional information is available, the (circular)
uniform distribution pmax(f) = 1

2p is still a reasonable reference dis-
tribution as the angle f is drawn from a finite range f 2 [0, 2p). The
corresponding entropy is S(pmax) = ln(2p), which corresponds to a
global maximum.

It is also interesting to consider side information about moments.
In directional statistics, which deals with probability distributions on
spheres, it is convenient to introduce the so-called circular moments,
which are defined as the expectation values of powers of the complex-
valued variable eif [285]. Fixing the first circular moment heif

i leads
to the von Mises distribution

pmax(f) =
ek cos(f�µ)

2p I0(k)
, (8.55)

where µ 2 [0, 2p) and k 2 R+ are similar to mean and the inverse
variance for a Gaussian distribution, while Ij(k) denotes the modi-
fied Bessel function of first kind of order j. Note that the von Mises
distribution reduces to the uniform distribution in the limit k ! 0.

The first circular moment evaluates to

heif
i =

I1(k)
I0(k)

eiµ, (8.56)

which can be used to fix µ and k as these quantities are encoded in
the phase and the magnitude of the latter expression, respectively.

Then, we can compute the entropy, which gives

S(pmax) = ln [2p I0(k)]� k
I1(k)
I0(k)

. (8.57)

Finally, the quantum incompatibility, now computed through (3.88),
is given by c = 1/(2p), such that the bound is fully determined. A
measurement of continuous angles is shown in Figure 8.2b.

If one would have started with the discrete angles qj and taken
the continuum limit J ! • instead, S(pmax) would have acquired a
(diverging) negative offset ln 2p

2J+1 , which would have been canceled
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(a) Discrete angles (b) Continuous angles

Figure 8.2: Discrete angles qj = q0 + p j with j 2 {0, 1} in (a) versus continu-
ous angles f in (b) for a total spin J = 1

2 . While for the discrete
angular momenta jz we do not implement any side information,
i.e. qmax(jz) = 1

2 , we have chosen reference distributions which
overweight certain angles. In (a) we have pmax(q0) > pmax(q1)
by fixing hJzi (indicated by the size of the red dots) and in (b)
we have chosen a von Mises distribution (8.55) with fixed µ = p

2
and k = 2 (indicated by the distance of the blue dashed line to
the ring).

out by an analogous term in the quantum incompatibility ln c. This
shows again that the bound is well-behaved in the continuum limit.

Finally, let us mention that if k becomes large, the von Mises distribu-
tion approaches a Gaussian distribution around f = µ with variance
1/k. If one additionally takes the infinite volume limit R ! •, both
reference distributions are optimal for a given variance (see also dis-
cussion in Section 8.2).



9 R E U R F O R Q U A N T U M F I E L D S

This chapter is taken from [B]. S. F. proposed and supervised the
project. The field-theoretic REUR was discovered by me. M. S. and I did
the calculations. I wrote large parts of the manuscript and produced
the figures. All authors contributed in finalizing the draft.

Information theoretic concepts have become more and more impor-
tant for a deeper understanding of QFTs. Examples include intriguing
phenomena such as entanglement [193–195], thermalization [G, 187,
191] and black holes [175–177]. However, a rigorous information theo-
retic treatment of the uncertainty principle has been missing so far.

Relative entropy turned out to be useful for formulating EURs in a
rather universal way. In particular, it allowed us to describe discrete
and continuous variables in a single relation. In this chapter, we go
one step further and extend the concept of entropic uncertainty to
quantum fields. Due to divergences in the field theory limit (not to
be confused with the UV-divergences of the entanglement entropy
(4.22)), no EUR for a QFT has been formulated so far. We overcome this
problem by formulating the BBM relation in terms of relative entropies.

Another motivation is the close connection between uncertainty
relations and entanglement witnesses (see discussion in Section 3.6 and
also Chapter 12 and Chapter 13). However, describing entanglement
in field theories accurately is a rather hard task. In particular, we have
seen that the entanglement entropy is UV-divergent in the field theory
limit (cf. Section 4.2), showing that one needs to follow a different
line of reasoning compared to finite quantum systems. In this sense,
the field-theoretic REUR paves the ground for well-defined entropic
entanglement witnesses in QFTs.

We will develop the field-theoretic REUR for a free scalar quantum
field. In this simple case the commutation relation of the field opera-
tors is bosonic (in this sense it is the field-theoretic extension of the
Heisenberg algebra between position and momentum operators) and
the vacuum state is of Gaussian form. Extensions to interacting theo-
ries are expected to be possible in the perturbative regime, although
the bound of the relation might be modified by additional terms.

We start with an introduction to the Schrödinger functional for-
malism in Section 9.1. Then, we show that functional entropies are
ill-defined and thereupon derive our field-theoretic REUR in Sec-
tion 9.2. We discuss several examples and the connection to the
multi-dimensional Heisenberg relation in Section 9.3, where we also
comment on the measurability of the involved distributions.
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�.� ���������� ����������� ���������

���� ���������� ����� �� � ������� ����� To make the
dependence of all quantities on the number of modes explicit, we start
from a set of coupled harmonic oscillators in d = 1 + 1 spacetime
dimensions (note that the whole argument can be generalized easily
to more than one spatial dimensions) with Hamiltonian

H =
1
2 Â

j
e


p2

j +
1
e2

�
fj � fj�1

�2
+ m2f2

j

�
. (9.1)

Therein, the N 2 N modes are labeled by the index j 2 {1, ..., N} and
carry the two real degrees of freedom fj and pj. We assume periodic
boundary conditions f0 = fN , connecting the chain of oscillators to
a ring. The distance between two neighboring modes is given by the
lattice constant e. The continuum limit is given by e ! 0 (with the
effect that the UV-regulator 1/e is released), while the oscillator picture
can be emphasized with the choice e = 1.

To diagonalize the Hamiltonian (9.1), we use a discrete Fourier
transformation

fj = Â
l

Dk
2p

eiDklejf̃l , pj = Â
l

Dk
2p

e�iDklejp̃l , (9.2)

where we introduced a new integer-valued index �
N
2  l < N

2 for
the momentum modes. As usual, we have the relations f̃⇤

l = f̃�l and
p̃⇤

l = p̃�l as both fields are complex-valued in momentum space. The
corresponding lattice constant reads Dk

2p , such that the length of the
ring is given by L = Ne. The oscillator picture is then obtained with
L = 1.

We transform f̃ and p̃ to real fields by a unitary transformation

f̃l =
1
2
(1 + i) fl +

1
2
(1 � i) f�l ,

p̃l =
1
2
(1 � i)pl +

1
2
(1 + i)p�l .

(9.3)

Then, the Hamiltonian is diagonal in the sense that all modes are
decoupled

H =
1
2 Â

l

Dk
2p

⇥
p2

l + w2
l f2

l
⇤

, (9.4)

and the frequencies read

wl ⌘

s
4
e2 sin2

✓
Dkle

2

◆
+ m2. (9.5)

We quantize the two fields by imposing canonical commutation rela-
tions on the hermitian field operators in momentum space

[fl , p l0 ] = i
2p

Dk
dll0 , [fl , fl0 ] = [p l , p l0 ] = 0. (9.6)
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To describe excitations, we introduce creation and annihilation opera-
tors

a†
l ⌘

1
p

2wl
(wlfl � ip l) , al ⌘

1
p

2wl
(wlfl + ip l) . (9.7)

From (9.6) follows then [al , a†
l0 ] =

2p
Dk dll0 .

It is instructive to express the quantum version of the Hamiltonian
(9.4) in terms of creation and annihilation operators

H = Â
l

Dk
2p

wl

✓
a†

l al +
1
2

2p

Dk
1

◆
. (9.8)

The second term shows that the vacuum energy diverges in the field
theory limit. We will see later that the entropy of field configurations
shows a similar divergence.

The lattice theory we have set up so far has two interesting limits.
First, the continuum limit e ! 0, N ! • with L = Ne fixed. In
this case, the spatial positions become continuous in the sense of
fj ⌘ f(je) ! f(x) with x 2 [0, L] and the discrete Hamiltonian (9.1)
becomes the Hamiltonian of a free massive scalar field with relativistic
dispersion relation (cf. (9.5)). The periodic boundary conditions then
imply that the momenta are discrete but unbounded, i.e. l 2 Z.

Second, we can take the infinite volume limit L ! • (which cor-
responds to Dk ! 0) and N ! •, with e = L

N fixed. The momenta
become continuous such that fl ⌘ f(Dkl) ! f(k), but are restricted
to the Brillouin zone k 2

⇥
�

p
e , p

e

⇤
. Also, the commutation relations

(9.6) attain a distributional character

[f(k), p(k0)] = id(k � k0), [f(k), f(k0)] = [p(k), p(k0)] = 0 (9.9)

and have to be used with respect to an integral measure dk
2p .

We speak of the field theory limit when we take both limits. Then,
we obtain back the standard Fourier transform

f(x) =
Z dk

2p
eikxf̃(k), p(x) =

Z dk
2p

e�ikxp̃(k) (9.10)

and a relativistic theory on an infinite space with Hamiltonian

H =
1
2

Z
dx
h
p2(x) + (∂xf(x))2 + m2f2(x)

i
(9.11)

and relativistic dispersion relation w(k) =
p

k2 + m2.
In the following, we will work in momentum space only. We chose

the convention to label momentum space expressions by the indices
l, l0 and l00 in the lattice theory and by the arguments k, k0 and k00 in
the field theory. In most cases, the field theory limit can be taken
without further ado, which applies in particular to the appearing
bilinear forms.
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����������� ���������� ��������� In analogy to QM, we in-
troduce sets of eigenstates

fl |fi = fl |fi , p l |pi = pl |pi , (9.12)

with fl and pl being the corresponding eigenvalues, which are the
main building blocks in the Schrödinger functional formalism (see
[192] for a comprehensive introduction). Without loss of generality
we focus on the field f in the following. In the field basis {|fi}f the
momentum operator is given by a functional derivative

p l = �i
d

dfl
, (9.13)

and the density operator r has the matrix representation [187, 192]

r[f+, f�] = hf+|r|f�i . (9.14)

In analogy to the measured distribution f (x) in QM, we define the
functional probability density as the diagonal elements of the latter
expression

F[f] = r[f, f] = hf|r|fi . (9.15)

One may think of F[f] as the probability density to measure the
quantum field fl in the configuration fl .

As the state r is by definition a non-negative and normalized oper-
ator, the functional probability distribution is non-negative F[f] � 0
and normalized

R
Df F[f] = Tr{r} = 1 as well. Note that for a pure

state r = |yi hy| the matrix representation r[f+, f�] becomes a scalar
product of Schrödinger wave functionals Y[f] = hf|yi. In this case,
Born’s rule applies [286]

F[f] = |Y[f]|2, (9.16)

which justifies the probabilistic interpretation of F[f].
One of the advantages of the Schrödinger functional formalism is

that expectation values can be computed from functional integrals

hfli =
Z

Df fl F[f],

hpli = �i
Z

Df
dr[f+, f�]

df+l

���
f+=f�=f

,
(9.17)

where we used the functional integral measure
Z

Df = ’
l

Z
dfl

r
Dk
2p

. (9.18)

In the same manner one can compute n-point correlation functions.
In a free theory, propagators are of special interest, which is why we
label the connected two-point correlators by

Mll0 = hflfl0 i � hfli hfl0 i , Nll0 = hplpl0 i � hpli hpl0 i . (9.19)
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������ ��� �������� ������ We continue with setting up the
functional probability densities of coherent states, which will serve as
reference distribution in our field-theoretic REUR, and we start with
the vacuum state |0i. Its wave functional Ȳ[f] is the solution of the
stationary Schrödinger equation HȲ[f] = ĒȲ[f]. Plugging in the
operator-valued version of the Hamiltonian (9.4) and employing the
functional derivative representation of the momentum operator (9.13)
gives the expressions

Ȳ[f] =
1q
Z̄f

exp

 
�

1
4 Â

l

Dk
2p Â

l0

Dk
2p

fl M̄
�1
ll0 fl0

!
,

Ȳ[p] =
1p
Z̄p

exp

 
�

1
4 Â

l

Dk
2p Â

l0

Dk
2p

pl N̄
�1
ll0 pl0

!
.

(9.20)

The normalization constants evaluate to products over all single vac-
uum contributions

Z̄f = ’
l

r
p

wl
, Z̄p = ’

l

p
pwl , (9.21)

and the inverse covariance matrices read

M̄
�1
ll0 =

2p

Dk
2wldll0 , N̄

�1
ll0 =

2p

Dk
2

wl
dll0 (9.22)

in the lattice theory. Note that matrices in momentum space are in-
verted according to

Â
l0

Dk
2p

M̄
�1
ll0 M̄l0 l00 =

2p

Dk
dll00 , (9.23)

such that the covariance matrices themselves are given by

M̄ll0 =
2p

Dk
1

2wl
dll0 , N̄ll0 =

2p

Dk
wl
2

dll0 . (9.24)

One can convince oneself that the latter expressions have distributional
analogs in the field theory limit, i.e.

Z dk0

2p
M̄

�1(k, k0)M̄(k0, k00) = 2pd(k � k00) (9.25)

and

M̄(k, k0) =
p

w(k)
d(k � k0), N̄ (k, k0) = pw(k)d(k � k0). (9.26)

As the diagonal elements of the continuous covariance matrices are
formally infinite M̄(k, k) ⇠ d(0), they have to be understood under an
integral when considering the field theory limit. Dealing with these
divergences is one of the main challenges for formulating an EUR for
quantum fields.
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The Schrödinger wave functionals Ȳ[f] and Ȳ[p] do only differ in
their covariance matrices. Hence, we leave out the expressions for
the momentum field p in the following as they can be obtained by
replacing M̄ with N̄ . We apply Born’s rule (9.16) to compute the
vacuum functional probability density

F̄[f] =
1

Z̄f
exp

 
�

1
2 Â

l

Dk
2p Â

l0

Dk
2p

fl M̄
�1
ll0 fl0

!
. (9.27)

Displacing the vacuum state in phase space, i.e. changing the field
expectation values, generates the set of coherent states (cf. Section 3.4)
and hence their functional probability densities read

Fa[f] =
1

Z̄f
exp

 
�

1
2 Â

l

Dk
2p Â

l0

Dk
2p

(fl � fa
l )M̄

�1
ll0 (fl0 � fa

l0)

!
, (9.28)

with the notation hflia ⌘ fa
l and hplia ⌘ pa

l understood. The index a
is the complex phase field

al =
1
p

2
(fa

l + ipa
l ) , (9.29)

which parameterizes the set of coherent states in analogy to (3.46).
Note that the vacuum is the special case fa

l = pa
l = 0.

�.� �������� �������� ����������� ��������
- ���� ��

���������� �� ��� ���������� ������� To the functional prob-
ability density F[f] we associate a functional entropy by summing
over all field configurations in a continuous sense

S[F] = �

Z
Df F[f] ln F[f]. (9.30)

In the field theory limit, the functional entropy S[F] corresponds to the
infinite-dimensional generalization of the differential entropy S( f ) of
a single oscillator and reduces to the latter when considering d = 0+ 1
spacetime dimensions.

In the lattice theory with finite N < •, the functional entropy S[F] is
well-defined as it reduces to a multi-dimensional differential entropy.
In this case, the BBM EUR can be generalized to [29]

S[F] + S[G] � N(1 + ln p), (9.31)

with a bound which scales with the total number of modes N. This
shows that the continuum as well as the infinite volume limits, which
both require N ! •, lead to a divergent bound, indicating that also
the functional entropies are divergent.
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Indeed, we find that the functional entropy S[F] is divergent in the
field theory limit for all quantum states. For example, when consid-
ering the vacuum state and the corresponding functional probability
density (9.27), we find formally

S[F̄] = ln Z̄f +
1
2

Tr
n
M̄

�1
M̄

o

= ln Z̄f +
1
2

Z
dk d(0)

! •.

(9.32)

However, divergences are typical in QFTs and the present divergence is
similar to the one of the vacuum energy expectation value Ē = Tr{r̄H}.
Using the field-theoretic Hamiltonian (9.11) we obtain

Ē =
1
2

Z
dk w(k)d(0) ! •. (9.33)

Physically, this divergence arises from adding up infinitely many
equal and finite contributions of oscillators in their ground states.
Therefore, one argues that energies have to be measured with respect
to the (divergent) vacuum energy, such that excitations have a finite
energy by definition. In this argument, taking the vacuum energy as a
reference energy appears to be the natural choice, as the vacuum state
minimizes the energy.

The same logic applies to functional entropies, whose absolute val-
ues do not have any physical meaning. Instead, one has to work with
relative measures when asking questions about entropic uncertainty in
field theories, leading us to the notion of functional relative entropies.
Then, the remaining task is to find meaningful references distributions.

���������� �������� ������� The universality of the relative
entropy dictates the definition of the functional relative entropy. We
consider a functional distribution F[f] and some reference distribution
F̃[f] such that it readsThe functional

relative entropy is
the extension of the
differential relative

entropy to infinitely
many degrees of

freedom.

S[FkF̃] =
Z

Df F[f]
�
ln F[f]� ln F̃[f]

�
. (9.34)

By an infinite-dimensional analog of Jensen’s inequality, S[FkF̃] is non-
negative and zero if and only if F[f] = F̃[f] everywhere. As usual,
we require the support condition supp [F(f)] ✓ supp

⇥
F̃(f)

⇤
to hold,

otherwise we set S[FkF̃] = +•. Note that this condition is always
fulfilled if the reference distribution F̃[f] is of Gaussian form, which
will indeed be the case in our field-theoretic REUR.

In contrast to the functional entropy S[F], the functional relative
entropy S[FkF̃] is well-defined and its properties are preserved in the
field theory limit, just as it was the case for the limit from discrete
to continuous variables (cf. Section 2.2). Although (9.34) suggests
that a definition is directly possible in the continuum theory (i.e.
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without introducing an UV-regulator in the first place), this should be
investigated within algebraic QFT in more detail in the future.

�������� ��� �����-��������� ���� Let us start with the multi-
dimensional BBM relation (9.31). One of the main takeaways of Chap-
ter 8 was that an EUR can be formulated as a REUR by choosing ref-
erence distributions F̃[f] which maximize an entropy for a given
side constraint. As we deal with a free theory, coherent states have
a Gaussian functional probability density Fa[f] and hence maximize
the functional entropy S[F̃] for given vacuum two-point correlation
functions M̄ and field expectation values fa

l . Additionally, coherent
distributions appear as natural choices as coherent states minimize all
uncertainty relations. In this sense, entropic uncertainty is measured
with respect to minimum uncertainty distributions just as energy is
measured with respect to the vacuum.

By using S[Fa] = S[F̄] and (9.32) we find for the entropic uncertainty
of some generic distribution F[f] with two-point function M and field
expectation value jl with respect to a coherent reference distribution
a linear decomposition

S[FkFa] = �S[F] + ln Z̄f +
1
2

Tr
n
M̄

�1
M

o

= �S[F] + S[F̄]

+
1
2

Tr
n
M̄

�1 �
M� M̄

�o
+

1
2

sM̄�1s,

(9.35)

with sl = fl � fa
l denoting the difference of field expectation values.

It is left to decide which of the coherent distributions we should
pick. As the family of coherent states is parameterized by the two field
expectation values fa

l and pa
l , we choose the coherent state such that

both agree with the field expectation values of the true state r, which
uniquely determines both reference distributions F̃[f] = Fa[f] and
G̃[p] = Ga[p]. These distributions minimize the functional relative
entropy (9.35) with respect to s and can hence be considered as optimal
coherent references.

With this choice, we take (9.31), plug in (9.35) for optimal coherent
reference distributions and use that S[F̄] + S[Ḡ] = N(1 + ln p), to end
up with the field-theoretic REUR The field-theoretic

REUR describes
many modes and
fields
simultaneously.

S[FkFa] + S[GkGa]


1
2

Tr
n
M̄

�1(M� M̄) + N̄
�1(N � N̄ )

o
.

(9.36)

If one would have chosen coherent, but not optimal coherent ref-
erences, two bilinear forms as in the last line of (9.35) would have
appeared in the bound. In any case, the two distributions F[f] and
G[p] correspond to an arbitrary state r.
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���������� A few comments on the field-theoretic REUR are in
order.

a) Bound does not depend on number of modes.

The most important observation is that the bound in (9.36) does
only contain differences between the true and the vacuum co-
variance matrices. It does not depend on the total number of
oscillator modes N and holds especially in the field theory limit.
Hence, the field-theoretic REUR describes entropic uncertainty
for many oscillators as well as for quantum fields.

b) Sum of relative entropies is bounded from above.

As we have seen already for the REUR for finite quantum sys-
tems (8.34), a sum of relative entropies has an upper bound
which expresses the uncertainty principle. More precisely, the
(joint) distinguishability with respect to minimum uncertainty
distributions (which are at the same time maximum entropy
distributions) is limited.

Also, the bound carries some state-dependence through the true
two-point correlators M and N . Note that this state-dependence
does not mean that the bound is more tight compared to the
(multi-dimensional) BBM relation, it rather expresses the fact
that the reference distributions are of Gaussian form. Hence, the
relation becomes tight for all (squeezed) coherent states, in which
case both sides of the inequality are (finite) zero. The relevance
of coherent states for uncertainty relations is emphasized in this
formulation.

Furthermore, one may appreciate that the bound is of such
simple form and can be computed even if the relative entropies
can not. This may allow for applications which go beyond our
scope.

c) Bound is of quantum origin.

It is instructive to consider the classical limit for the bound.
To that end, we reinsert Planck’s reduced constant h̄ and take
h̄ ! 0 afterwards. To shape the intuition, we start with the multi-
dimensional BBM EUR (9.31) under the assumption that N < •.
One finds that the lower bound disappears

S[F] + S[G] �
1
2

ln det
�
h̄M̄ · h̄N̄

�
! �•, (9.37)

as both distributions F[f] and G[p] can be localized arbitrarily
at the same time. We refer to [28, 113] for the mindful reader
who noticed that we have put an h̄ inside a logarithm.
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For our field-theoretic REUR (9.36), similar considerations show
that in the same manner the upper bound is released in the
classical limit

S[FkFa] + S[GkGa]


1
2

Tr
⇢
M̄

�1

h̄
�
M� h̄M̄

�
+

N̄
�1

h̄
�
N � h̄N̄

��

! +•.

(9.38)

Therefore, we can conclude that the bound is indeed of quantum
origin.

�.� �������� ��� �������������

������� ������ With the REUR (9.36) at hand, let us exemplify the
finiteness of the bound and quantify the entropic uncertainty for some
interesting states. We start with excited states. In free theories, these
states often have a (quasi)-particle interpretation. We consider the most
general case where we can have nk excitations in mode k (in the field
theory limit, this corresponds to nk excitations with momentum k),
where k is drawn from an index set k 2 I containing all excited modes
[192]. Such a state is constructed by applying the creation operator a†

k
for the mode k to the vacuum nk times for every k 2 I

Ynk [f] = ’
k2I

1
p

nk!

 r
Dk
2p

a†
k

!nk

Ȳ[f]. (9.39)

Note that all appearing factors are a matter of normalization. Using
the Schrödinger representation of the momentum field operator (9.13),
the creation and annihilation operators can be written as

a†
k =

1
p

2wk

✓
wkfk �

d

dfk

◆
, ak =

1
p

2wk

✓
wkfk +

d

dfk

◆
, (9.40)

leading to

Fnk [f] = ’
k2I

1
nk!

H2
nk

 
fkp
M̄kk

!
F̄[f], (9.41)

with Hnk(fk) denoting the probabilist’s Hermite polynomials

Hnk(fk) = nk!
b

nk
2 c

Â
g=0

(�1)g fnk�2g
k

g! (nk � 2g)! 2g
. (9.42)

It is important to note that these states are not normalizable in the
field theory limit. More precisely, their overlap contains infinite factors
additional to those of the vacuum state, which come again from
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M̄(k, k) ⇠ d(0). Physically, this issue is related to the fact that a free
particle in a relativistic QFT has a definite momentum and is completely
delocalized. We will also discuss mathematically well-defined notions
of excitations later by considering averaged fields.

Let us now analyze the REUR (9.36) for excited states (9.41). We
first note that F[f] contains only even powers of f, such that the
Gaussian integral for the field expectation value evaluates to zero.
Hence, the optimal coherent reference distribution is given by the
vacuum distribution F̄[f]. To compute the bound, we start from the
definition of the connected two-point correlator

M
nk
ll0 =

Z
Df

"
flfl0 ’

k2I

1
nk!

H2
nk

 
fkp
M̄kk

!#
F̄[f] (9.43)

and consider off-diagonal and diagonal components separately. In the
former case, we again deal with Gaussian integrals of odd polynomials,
such that M

nk has to be of diagonal form. To obtain the diagonal
elements M

nk
ll , we first note that an entry corresponding to a non-

excited mode fl with l /2 I is given by the vacuum entry M̄ll .
The only non-trivial contribution comes with excited modes fl with

l 2 I. The corresponding entry M
nk
ll can be calculated by noting that

f2
k = H2

1(fk), then using the recurrence relation

Ha+1(fl) = H1(fl)Ha(fl)� aHa�1(fl) (9.44)

and finally employing orthogonality between two Hermite polynomi-
als

Z +•

�•
dfl Ha(fl)Hb(fl)e�

1
2 f2

l =
p

2pa!dab, (9.45)

to obtain

M
nk
ll = M̄ll(1 + 2nl) (9.46)

for l 2 I.
In addition, the full two-point correlator reads

M
nk
ll0 = M̄ll0 + Â

k2I

2nk

M̄kk
M̄lkM̄l0k, (9.47)

showing that only components corresponding to excited modes are
modified by a positive term accounting for the excitations.

We are now ready to compute the first term of the bound of the
field-theoretic REUR (9.36). For the lattice theory we find

1
2

Tr
n
M̄

�1(Mnk � M̄)
o

= Â
l

Dk
2p Â

l0

Dk
2p

M̄
�1
ll0 Â

k2I

nk

M̄kk
M̄lkM̄l0k

= Â
k2I

nk

M̄kk
M̄kk

= Â
k2I

nk,

(9.48)



�.� �������� ��� ������������� 125

where we used (9.23) for inverse matrices.
In the field theory limit the correlators M

nk(k0, k00) have to be un-
derstood in a distributional sense, rendering their diagonal entries
formally infinite M

nk(k0, k0) ⇠ d(0). Nevertheless, the bound term
remains finite as

1
2

Tr
n
M̄

�1(Mnk � M̄)
o

=
Z dk0

2p

dk00

2p
M̄

�1(k0, k00) Â
k2I

nk

M̄(k, k)
M̄(k0, k)M̄(k00, k)

= Â
k2I

nk

M̄(k, k)
M̄(k, k)

= Â
k2I

nk.

(9.49)

Furthermore, we obtain exactly the same result as in the lattice theory,
showing again the universality of uncertainty relations formulated in
terms of relative entropy.

The contribution from the two-point correlator N nk of the momen-
tum field p follows analogously as the functional probability dis-
tributions are of the same form. Thus, we end up with the simple
expression for the bound All divergences in

the bound cancel out.
1
2

Tr
n
M̄

�1(Mnk � M̄) + N̄
�1(N nk � N̄ )

o
= Â

k2I
2nk, (9.50)

which does indeed not depend on the total number of modes N. For a
finite number of excitations, this bound remains finite and constraints
the entropic uncertainty for (quasi-)particle excitations especially of a
quantum field.

Let us also analyze the functional relative entropies on the left hand
side of the field-theoretic REUR (9.36). Unfortunately, the computation
of an entropy or relative entropy for arbitrary excitations is very
complex due to the appearance of Hermite polynomials inside the
logarithm (see Section 10.2 for more details in the case of one oscillator
mode). Hence, we only consider one excited mode k being excited
once, which corresponds to a free particle with energy w(k) in the
continuum theory. In this case, the REUR evaluates to

S[F1kkF̄] + S[G1kkḠ] = 4 � ln 4 � 2g  2, (9.51)

where g ⇡ 0.577 denotes the Euler-Mascheroni constant. The dif- The entropic
uncertainty of a
single excited mode
and a free particle in
a relativistic field
theory agree.

ference between the two sides of the inequality, which we call the
uncertainty deficit, agrees with the result of a single oscillator (cf.
corresponding values for BBM relation in Section 10.2). A similar result
is expected to hold for arbitrary excitations, but this (rather technical)
discussion is omitted for brevity.
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������� ����� We also consider the thermal state (cf. (6.20)), which
will add a caveat in the infinite volume limit. Its functional probability
density is of Gaussian form and reads

Fc[f] =
1

Zc
f

exp

 
�

1
2 Â

l

Dk
2p Â

l0

Dk
2p

fl(M
c
ll0)

�1fl0

!
, (9.52)

with the thermal covariance matrix

M
c
ll0 = (1 + 2nBE(wl)) M̄ll0 . (9.53)

The modes are occupied following the Bose-Einstein distribution

nBE(wl) =
1

ebwl � 1
(9.54)

with nBE(wl) � 0. In the zero temperature limit b ! • we get back
the vacuum expression limT!0 Fc[f] = F̄[f] as nBE(wl) ! 0 for all
wl > 0.

Starting with the lattice theory and plugging (9.53) into the bound
of the REUR (9.36) yields

1
2

Tr
n
M̄

�1(Mc
� M̄) + N̄

�1(N c
� N̄ )

o
= 2L Â

l

Dk
2p

nBE(wl). (9.55)

Let us discuss the continuum and infinite volume limits separately.
In the continuum limit e ! 0, N ! • with L = Ne fixed the range
of the sum over l becomes unbounded. However, the Bose-Einstein
distribution nBE(wl) decreases exponentially for large energies wl , for
which we have wl ! l. Hence, the series in (9.55) still converges and
we obtain a finite result.

In contrast, the infinite volume limit L ! •, N ! • with e fixed
leads to divergences outside of the integral as the discrete bound (9.55)
is proportional to L. Hence, we obtain

1
2

Tr
n
M̄

�1(Mc
� M̄) + N̄

�1(N c
� N̄ )

o

= 4pd(0)
Z dk

2p
nBE(w(k)),

(9.56)

with L = 2p
Dk ! 2pd(0) being an infinite volume factor. However, the

integral is well-defined and finite as a result of the exponential fall-off
of nBE(w(k)) for large k.

Again, we note the similarities between entropic uncertainty and the
energy expectation value. The latter has an infinite energy difference
to the vacuum state Ec � Ē ⇠ d(0), which is why one either considers
energy densities or puts the theory in a box, i.e. does not take the
infinite volume limit.

With the same argument one can regularize the field-theoretic REUR
(9.36). Hence, we can conclude that if the state of interest has finite
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energy, the bound is also finite. If this is not the case, we can consider
functional relative entropy densities, in which case both sides of the
REUR are divided by the same infinite volume factor d(0) to end up
with finite quantities again.

At last, let us also compute the functional relative entropies. As the
distributions are of Gaussian form, this is easily done. For the lattice
theory we find

S[FckF̄] + S[GckḠ]

= L Â
l

Dk
2p

[2nBE(wl)� ln (1 + 2nBE(wl))] .
(9.57)

We plot both sides of the REUR for a single oscillator mode, which
is achieved by setting N = L = e = 1, Dk = 2p in Figure 9.1. The
uncertainty deficit vanishes in the zero temperature limit b ! • and
grows boundless in the infinite temperature limit b ! 0.

0 2 4 6 8 10
��0

0.1

0.2

0.3

0.4

0.5

S[Fc ||F] + S[Gc ||G]
Bound

Figure 9.1: Both sides of the field-theoretic REUR (9.36) for a single mode and
a thermal distribution (9.52) as a function of bw.

���������� �� ���������� ’� �������� In Section 3.5 we have
seen that the BBM EUR implies the second moment Heisenberg relation
(3.80). By using relative entropy in Section 8.2 we obtained (8.28),
which showed that the former is tighter than the latter whenever the
measured distributions are non-Gaussian. Let us investigate how this
statement can be expressed in the field-theoretic setting.

To that end, we use the same strategy as in Section 8.2 and refor-
mulate the field-theoretic REUR by choosing Gaussian references F̃[f]
and G̃[p] with the same expectation values and two-point correlators
as the true distributions F[f] and G[p] instead of choosing optimal
coherent reference distributions. For given correlators and expectation
values, these distributions have maximal functional entropy and hence
we write F̃[f] = Fmax[f] (analogously for the momentum field p).

Then, the REUR (9.36) becomes

S[FkFmax] + S[GkGmax]  DS[Fmax] + DS[Gmax], (9.58)
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with

DS[Fmax] = S[Fmax]� S[F̄] =
1
2

ln
detM
detM̄

, (9.59)

being the functional entropy difference between the Gaussian reference
Fmax[f] and the vacuum F̄[f]. Note that this relation is the exact field-
theoretic analog of the REUR (8.34) discussed in Section 8.3. Again, the
bound is independent of the number of modes N and hence finite for
finite energy states. Combining the latter two relations, it reads

DS[Fmax] + DS[Gmax] =
1
2

ln
det (M·N )

det
�
M̄ · N̄

� (9.60)

and we find the field-theoretic analog of (8.28) to be

det (M·N )

det
�
M̄ · N̄

� � e2S[FkFmax]+2S[GkGmax] � 1. (9.61)

Note that also this formulation of Heisenberg’s relation is free of
divergences in the field theory limit.

������� �� ������������� Our discussion about entropic uncer-
tainty for quantum fields has been a rather theoretical one. We treated
the quantum field operator f and the conjugate momentum field
operator p as normal observables and assumed that the correspond-
ing functional probability densities F[f] and G[p] can be measured.
However, it is well-known that f and p do not constitute operators,
but rather operator-valued distributions.

Physically, this problem comes from considering the fields at single
points in spacetime (or in momentum space). Such fields can never be
measured as this requires infinite precision and hence infinite energy.
Instead, any real measurement device is limited by its accuracy, which
is always finite.

To formulate a QFT in terms of well-defined field operators, one
takes the operator-valued distributions and applies to them a test
function, which is a standard procedure in algebraic QFT [199, 287].
The test functions need to fulfill some regularity conditions and may
be chosen inspired by the structural conditions of the measurement
device. This leads to an averaged or wave-packet quantum field opera-
tor, which constitutes a proper observable. See [288] for a discussion
of Heisenberg’s uncertainty relation in a similar setup.

A convenient choice are Gaussian test functions A(p), which are
Schwartz functions Ak(p) 2 S (R). Also, Gaussians often approxi-
mate experimental procedures rather well. As we work in momentum
space, we choose a Gaussian centered around a momentum k, which
we write as Ak(p), to define an averaged field operator corresponding
to the momentum k as

f (Ak) =
Z dp

2p
Ak(p)f(p). (9.62)
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As the quantum field itself, this operator fulfills an eigenvalue equation
in analogy to (9.12)

f (Ak) |f (Ak)i = f (Ak) |f (Ak)i , (9.63)

with f (Ak) being the classical eigenvalues.
We wish to investigate the field-theoretic REUR (9.36) for averaged

quantum fields and exemplarily consider a single excitation. The
corresponding averaged Schrödinger wave functional reads

Y1k [f] =
f[Ak]p
M̄(k, k)

Ȳ[f] (9.64)

and by Born’s rule (9.16) we can compute the functional probability
density

F1k [f] =
f2[Ak]

M̄(k, k)
F̄[f], (9.65)

which is a measurable object, in principle. Its normalization constant
Z1

f fulfills

Z1
f = Z̄f M̄(k, k), (9.66)

but the diagonal entries of the vacuum two-point correlator are now
finite as

M̄(k, k) = p
Z dk0

2p

A
2
k(k

0)

w(k0)
< •. (9.67)

As a consequence, not only the bound of the REUR is finite, but also
all terms appearing during the calculation. Omitting a few technical
steps, we find that

1
2

Tr
n
M̄

�1
⇣
M

1k � M̄

⌘o
=

p

M̄(k, k)

Z dk0

2p

A
2
k(k

0)

w(k0)
= 1,

(9.68)

where we used (9.67) in the second step.
Hence, we can conclude that the REUR (9.36) does not only accurately

describe entropic uncertainty for many modes and quantum fields, but
also for averaged quantum fields. Actually, the bound attains the same
value in all cases, emphasizing again the universality of formulating
uncertainty relations with relative entropy.



10 E N T R O P I C U N C E R TA I N T Y I N
P H A S E S PA C E

This chapter is taken from the first half of [D]. I proposed the project
and S. F. served as supervisor. The calculations were done by H. M.-
G. and me and I produced all figures. All authors contributed to the
writing, while I wrote large parts of the text. Most of what is presented
here is also covered in the bachelor thesis by H. M.-G. [289].

In the previous two chapters we have discussed entropic uncertainty
in terms of distributions obtained after measuring two observables
separately, i.e. following the homodyne protocol. However, the hetero-
dyne protocol, i.e. a POVM consisting of pure coherent state projectors
as introduced in Section 3.4 for position and momentum, provides an
alternative. In contrast to the former approach, it outputs a full phase
space distribution, namely the Husimi Q-distribution, which may be
advantageous for certain questions. In particular, this distribution con-
tains information about the correlations between the two observables,
which is not included in the marginal distributions.

In the following, we ask whether the EUR in phase space (3.84) is
closer to equality for typical states than the EURs by BBM (3.79) and
FL (3.82) based on marginal distributions. Our discussion focuses on
the continuous variables position and momentum. We leave a similar
analysis for other observables for future work.

Our question is not only interesting by itself, but also paves the
ground towards tighter separability criteria. In simple words, tighter
uncertainty relations allow for better separability criteria in the sense
that more entangled states can be detected. As the main conclusion
of this chapter is the conjecture that the WL inequality is tighter than
the usual BBM relation almost everywhere, we derive new and strong
separability criteria in phase space in Part iv.

��.� ������� �� ��� ����������

��������� �� ����� ����� We consider a continuous variable
quantum system with position X and momentum K. While the het-
erodyne detection gives us access to Q(x, k), the homodyne detection
gives us f (x) and g(k). For all distributions we know EURs, namely the
WL inequality for S(Q) and the BBM and FL relations for S( f ) + S(g).

On first sight, S(Q) and S( f ) + S(g) are rather different quantities,
as the first is an entropy of a two-dimensional phase space distribution
and the latter is a sum of one-dimensional entropies. This raises
the question if the comparison of these quantities is feasible at all.
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However, one can translate the two marginal distributions f (x) and
g(k) (uniquely) into the phase space distribution f (x)g(k), which by
definition neglects the correlations between X and K. As such, it
corresponds to the Wigner W-distribution in a special case.

Then, the two-dimensional phase space entropies of the distrbutions
Q(x, k)/(2p) and f (x)g(k) are given by

S
✓

Q
2p

◆
= �

Z
dx dk

Q(x, k)
2p

ln
✓

Q(x, k)
2p

◆

= S(Q) + ln(2p),

S( f g) =
Z

dx dk f (x)g(k) ln ( f (x)g(k))

= S( f ) + S(g).

(10.1)

This shows that they are, up to additive constants, related with the The BBM and FL
relations describe
entropic uncertainty
in phase space for x
and k being
uncorrelated.

left hand sides of the three EURs (3.84), (3.79) and (3.82). In this sense,
all three EURs and in particular the two EURs (3.79) and (3.82) contain-
ing only entropies of marginal distributions make a statement about
entropic uncertainty in the full phase space.

� ���� �� ��������� We analyze the tightness of the three EURs
in terms of the uncertainty deficit. Hence, we investigate how close the
entropies on the left hand side are to the bounds set by the uncertainty
principle. A small uncertainty deficit is favorable as this indicates
the strength of the statement. Let us emphasize that this does not
necessarily mean that if one relation is tighter than another one for
certain states that one can deduce a formal implication between them.

Also, let us recall that the three EURs are tight, i.e. reach the bound,
for different sets of states. The WL inequality is tight only for pure
coherent state projectors, while the BBM relation is additionally tight
for squeezed coherent states provided that the (x, k) axes are aligned
with the principal axes. In contrast, the FL relation is tight only in the
infinite temperature limit.

It is an interesting open problem to find an EUR which is tight for
all pure Gaussian states. Note also that such a relation exists in terms
of second moments (cf. (3.75)), but not in terms of entropies.

����������� ��� ���� As the three EURs of our interest have
different right hand sides, we rearrange them accordingly. In this
chapter, we compare the following three relations

WL S(Q) + ln p

BBM S( f ) + S(g)
FL S( f ) + S(g)� S(r) + ln e/2

9
>=

>;
� ln ep. (10.2)

We study the relations systematically by considering (pure and mixed)
number eigenstates, which form a basis and hence allow us to test
several regions of the Hilbert space. For simplicity, we restrict ourselves
to states which are diagonal in this basis.
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��.� ���� ������ �����������

������ ��� ������������� We start our analysis with pure num-
ber eigenstates

r = |ni hn|. (10.3)

The state vector |ni can be obtained from the vacuum |0i defined
through a |0i = 0 by repeatedly applying the creation operator a†

|ni =
1

p
n!

⇣
a†
⌘n

|0i . (10.4)

As the state is pure S(r) = 0, the FL EUR is always less tight than the
BBM relation.

To compute the Husimi Q-distribution, it is useful to note that a pure
coherent state |ai can be expanded in terms of number eigenstates

|ai =
•

Â
n=0

e�
1
2 (x2+k2) (x + ik)n

p
2nn!

|ni , (10.5)

where we used the parameterization (3.46). Hence, the overlap between
a coherent state and a number eigenstate is given by

hn|ai = e�
1
2 (x2+k2) (x + ik)n

p
2nn!

, (10.6)

which leads to

Qn(x, k) = |hn|ai|2 =
(x2 + k2)n

2nn!
e�

1
2 (x2+k2). (10.7)

The probability density functions f (x) and g(k) have equal shape and
read

fn(x) = |hn|xi|2 =
H2

n(x)
p

p 2nn!
e�x2

, (10.8)

where Hn(x) denotes the physicist’s Hermite polynomials.

�������� ������� Computing the entropies S( fn) and S(gn) is a
surprisingly hard task, which can be traced back to the appearance of
the Hermite polynomials Hn(x) inside the logarithm [290–293]. More
precisely, one can easily confirm that the entropy evaluates to

S( fn) = ln
�p

p2nn!
�
+ n +

1
2
+

1
p

p2nn!
E(Hn). (10.9)

However, it is complicated to compute E(Hn), which denotes the
Hermite polynomial entropy. At the end one finds

E(Hn) = �

Z +•

�•
dx e�x2

H2
n(x) ln H2

n(x)

= ng � 2
n

Â
i=1

x2
n,i 2F2

✓
1, 1;

3
2

, 2;�x2
n,i

◆

+
n

Â
k=1

✓
n
k

◆
(�1)k2k

k

n

Â
i=1

1F1

✓
k,

1
2

,�x2
n,i

◆
,

(10.10)
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where again g ⇡ 0.577, 2F2(a, b; c, d; z) is a generalized hypergeometric
function, 1F1(a, b; z) is Kummer’s confluent hypergeometric function
for z 2 C and xn,i are the roots of the n-th Hermite polynomial Hn(x2).
Note that this expression has to be evaluated numerically for all
n 2 N.

Let us also investigate the limiting behavior for large n � 1. Al-
though the Hermite polynomial entropy (10.10) is a complicated ex-
pression, one can find an approximation for the differential entropy

S( fn) ⇡
1
2
�
�2 + ln 2p2n

�
(10.11)

for n � 1. See also [291] for a numerical investigation.

����� ������� Interestingly, the Wehrl entropy S(Qn) can be
computed analytically in a straight forward manner. Note that this is
often the case and is a general advantage over the marginal entropies
S( fn) and S(gn). After performing a few Gaussian integrals one ends
up with (see also [294])

S(Qn) = 1 + n (1 + g � hn) + ln n! (10.12)

with hn being the nth harmonic number, i.e.

hn =
n

Â
j=1

1
j
, (10.13)

with the convention h0 = 0. In the limit of large n � 1, we can apply
Stirling’s formula n! ⇡

p
2pn

� n
e
�n, which for n � 1 leads to the

simple result

S(Qn) ⇡
1
2
(1 + ln 2pn) . (10.14)

���������� We plot the three resulting EURs with the expressions
(10.9) and (10.12) together with the bound ln ep in Figure 10.1a. Be-
sides the trivial result that the FL relation is worst for pure number
eigenstates, we find that the WL inequality is tighter than the BBM
relation for n > 1. For n = 0, the two agree, while for n = 1 the BBM
relation is tightest. We can conclude that the WL relation is tightest
almost everywhere.

Also, we plot the WL relation against the BBM relation together with
their expressions for large n � 1 in Figure 10.1b, showing that the
latter grows much faster than the former. Further, we can read off that
the approximation (10.14) works rather well for n ⇠ 1, while (10.11) is
approached by (10.9) only for sufficiently large n � 1.
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Figure 10.1: (a) EURs in (10.2) for pure number eigenstates (10.3) with
n 2 {0, ..., 10}. Note that for n = 1 we obtain S(Q1) + ln p ⇡

2.72 > S( f1) + S(g1) ⇡ 2.69, while for n = 2 we have
S(Q2) + ln p ⇡ 2.992 < S( f2) + S(g2) ⇡ 2.997. The curves
represent interpolations. (b) WL and BBM relations with their
approximations for large n � 1 (indicated by the two curves).

��.� �������� �� ������ �����������

������ ��� ������ ����������� Let us now investigate mix-
tures of number eigenstates. We start with mixing two number eigen-
states |ni and |mi, such that the density operator reads

rnm = q|ni hn|+ (1 � q)|mi hm|. (10.15)

Therein, q 2 [0, 1] denotes the probability to obtain the pure state
|ni hn| and can be interpreted as a mixing parameter. The marginal
entropies S( fnm) and S(gnm) as well as the Wehrl entropy S(Qnm) have
to be computed numerically for fixed n, m as in both cases one ends
up with a logarithm of a sum. The von Neumann entropy evaluates
to a Shannon entropy S(r) = S(q). Exemplarily, we show the three
EURs for n = 0 and m = 1 in Figure 10.2a, for n = 2 and m = 5 in
Figure 10.2b and for n = 6 and m = 7 in Figure 10.2c. We observe that
WL inequality is closer to equality compared to the BBM relation for
almost all q 2 [0, 1]. Only for q ⇡ 0 and m = 1, which corresponds
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Figure 10.2: EURs in (10.2) for a mixture of two number eigenstates (10.15).
The WL relation is tighter than the BBM relation almost every-
where, while the FL relation can become tightest for highly
mixed and low-lying number eigenstates.

to r ⇡ |1i h1|, the BBM relation is tighter, which is accordance with
our findings in Figure 10.1. We also find that the WL inequality is
less concave in q compared to the BBM relation. Finally, the relation
by Frank and Lieb is tightest for sufficiently mixed states, i.e. around
q ⇡ 0.5, but becomes less tight than the WL relation when mixing
higher excitations.
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������� ����� At last, we consider the thermal state for the
Hamiltonian of a quantum harmonic oscillator H = w

�
N + 1

2
�

with
N = a†a being the particle number operator. It reads

rc =
1
Zc

e�bH =
1
Zc

•

Â
n=0

e�bw(n+ 1
2 ) |ni hn|, (10.16)

with

Zc =
•

Â
n

e�bw(n+ 1
2 ) =

1
2 sinh bw

2

(10.17)

ensuring normalization of the state.
The marginal distributions fc(x) and gc(p) are again of the same

form and can be computed using Mehler’s formula [295]. One finds
that the distribution f (x) is a centered Gaussian

fc(x) =
1
Z

•

Â
n=0

|hn|xi|2e�bw(n+ 1
2 ) =

1p
2ps2

c
e�

1
2 ( x

sc )
2

, (10.18)

with a variance of the form

s2
c =

✓
2 tanh

bw

2

◆�1
(10.19)

Then, the sum of the two marginal entropies is given by

S( fc) + S(gc) = 1 + ln p � ln
✓

tanh
bw

2

◆
. (10.20)

As expected, the BBM relation becomes tight in the zero temperature
limit b ! •.

For large temperatures, the thermal state is highly mixed, which is
expressed through the von Neumann entropy

S(rc) = � ln
⇣

1 � e�bw
⌘
+

bw

ebw � 1
, (10.21)

such that the left hand side of the FL relation becomes

S( fc) + S(gc)� S(rc) + ln
e
2

= 2 + ln

 
p

2
1 � e�bw

tanh bw
2

!
�

bw

ebw � 1

(10.22)

The Husimi Q-distribution can be calculated in a simpler way by
using the MacLaurin series of the exponential function

Qc(x, k) =
1
Zc

•

Â
n=0

(x2 + k2)n

2nn!
e�

1
2 (x2+k2) e�bw(n+ 1

2 )

=
1
Zc

e�
1
2 (x2+k2)(1�e�bw)� bw

2

(10.23)
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and is also of Gaussian form. We find for the left hand side of the WL
inequality

S(Qc) + ln p = 1 +
bw

2
+ ln

✓
p

2
csch

bw

2

◆
. (10.24)

As for the BBM relation, the WL inequality becomes tight in the zero
temperature limit b ! •.

The three resulting EURs are shown in Figure 10.3. We find that the
WL relation is closer to equality than the BBM relation and that both
become tight for b ! •. Only for high temperatures the FL relation is
tightest and becomes tight for b ! 0.

Bound

0 2 4 6 8 10
��

ln e�
2.25

2.5

2.75

3
EURs

WL

BBM

FL

Figure 10.3: EURs in (10.2) for the thermal state (10.16). The WL relation is
tighter than the BBM relation. Both become tight for b ! •. For
sufficiently high temperatures, the FL relation becomes tightest
as the state becomes more mixed. Also, it is tight in the infinite
temperature limit b ! 0.

������� ������� ��� � ���������� Extrapolating the concrete
evidence we have collected in the previous two sections allows us
to conjecture that the WL inequality is tightest almost everywhere.
To be more precise, we consider the subspaces of the full Hilbert Is the WL relation

tightest almost
everywhere?

space H
0,H00

⇢ H for which the BBM or the FL relations are closer to
equality than the WL inequality, respectively. Then, our conjecture is
that D0, D00

⌧ D. We have more evidence for the first statement, which
is the important one regarding entanglement witnessing. A formal
proof for both statements, which is expected to be rather complicated
especially in the latter case, is left for future work.

Also, we have seen that the Wehrl entropy is often easier to compute
than marginal entropies, which might be of relevance depending on
the application.
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Part IV

E N TA N G L E M E N T

We derive new separability criteria in phase space in terms
of the Husimi Q-distribution. For pure states, we con-
sider the Wehrl mutual information (Chapter 11), while
for mixed states we deduce entropic criteria (Chapter 12),
which are then generalized to concave functions (Chap-
ter 13)



11 A N A LY S I S O F E N T R O P I C
W E H R L Q U A N T I T I E S

We follow the second half of [D], which is not contained in the bachelor
thesis by H. M.-G. [289]. The project was supervised by S. F. and
proposed by me. Most calculations were done by me, some together
with H. M.-G.. I created all figures and wrote the early versions of the
manuscript. All authors contributed in finalizing the draft.

We now turn to the phenomenon entanglement, which is a cen-
tral feature of quantum systems. Again, we consider the continuous
variables position and momentum, for which we discussed several
separability criteria to detect entanglement in Section 3.6. What all
reviewed approaches have in common is that they rely on the detection
of the two marginal distributions f (x) and g(k).

In the following, we investigate how separability criteria can be
formulated starting from the Husimi Q-distribution. Besides work
on entanglement monotones for pure states based on a variant of
the Wehrl entropy in [296], the Husimi Q-distribution has not been
considered in this regard so far. We may speculate that this might
be a consequence of the Husimi Q-distribution being the result of a
joint measurement, which does not allow to violate any Bell inequality
[297–299]. Nevertheless, the Husimi Q-distribution contains the full
information about the underlying quantum state and hence one can
indeed formulate separability criteria.

Also, in the previous chapter we have seen that the WL inequality
is often tighter than the BBM relation, which is typically used to ob-
tain entropic separability criteria (e.g. the WTSTD criteria (3.108)). As
uncertainty relations are fundamentally linked to separability criteria
and tighter uncertainty relations typically lead to stronger separability
criteria, it is worth to study the Husimi Q-distribution in this regard.

In this chapter, we analyze the Wehrl conditional entropy and the
Wehrl mutual information in Section 11.1, which turn out to be use-
ful for the detection of pure entangled states as exemplified in Sec-
tion 11.2.

��.� ����������� ������� ��� ������ �����-
������

��������� ������ ��� ��������� ����� We consider the most
general setup, i.e. a bipartition 12 where the subsystems 1 and 2 con-
sist of N and M modes, respectively. Every single mode l is described

139
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by the two degrees of freedom X l and Kl , which fulfill the Heisenberg
algebra [X l , Kl0 ] = idll0 . Typically, these operators correspond to posi-
tion and momentum. Then, we can associate vectors ~X j = (X1, ..., XN)

and ~K j = (XN+1, ..., XN+M) and Hilbert spaces Hj with every subsys-
tem j 2 {1, 2}. The coherent state of a subsystem is given by a tensor
product over single coherent states, for example

|~ai =
NO

l=1
|ali (11.1)

for subsystem 1. Similarly, we associate |~bi with subsystem 2, such
that the global coherent states read |~a~bi = |~ai ⌦ |~bi.

The global Husimi Q-distribution is (N + M)-dimensional and is cal-
culated from the global state r12, i.e. Q12(~x1,~k1,~x2,~k2) = h~a~b|r12|~a~bi.
The local Husimi Q-distributions can either by obtained from the local
states or from integrating out the complementary subsystem in the
global Husimi Q-distribution. For example, for subsystem 1 we have

Q1(~x1,~k1) = h~a|r1|~ai =
Z d~x2 d~k2

(2p)M Q12(~x1,~k1,~x2,~k2). (11.2)

We also consider conditional Husimi Q-distributions, which describe
one subsystem after having measured the other one first. If a het-
erodyne measurement of subsystem 2 produces the outcome ~b, the
conditional Husimi Q-distribution of subsystem 1 is given by

Q1(~x1,~k1|~x2,~k2) = Tr

(
h~b|r12|

~bi

h~b|r2|
~bi

|~ai h~a|

)

=
h~a~b|r12|~a~bi

h~b|r2|
~bi

=
Q12(~x1,~k1,~x2,~k2)

Q2(~x2,~k2)
,

(11.3)

which is in complete analogy to classical probability distributions (cf.
Section 2.1). Note that h~b|r12|

~bi is an operator acting on H1.

����� �������� ������� To define the Wehrl conditional entropy
and the Wehrl mutual information properly, we define the Wehrl
relative entropy first. In complete analogy to its standard definition
it is defined for two Husimi Q-distributions Q1(~x1,~k1) and Q̃1(~x1,~k1)
(for brevity we only consider subsystem 1 here)

S(Q1kQ̃1)

=
Z d~x1 d~k1

(2p)N Q1(~x1,~k1)
⇣

ln Q1(~x1,~k1)� ln Q̃1(~x1,~k1)
⌘

.
(11.4)

If the support condition supp
h

Q1(~x1,~k1)
i
✓ supp

h
Q̃1(~x1,~k1)

i
is vio-

lated, we set to S(Q1kQ̃1) = +•. As usual, the Wehrl relative entropy
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serves as a measure for the distinguishability between the two Husimi
Q-distributions. Although the Husimi Q-distribution is bounded from
above, the facts that it is non-negative and normalized suffice to show
that the Wehrl relative entropy is non-negative. More precisely, apply-
ing Jensen’s inequality to the convex function f (t) = � ln t for t � 0
indeed gives [12]

S(Q1kQ̃1) � � ln

 Z d~x1 d~k1

(2p)N Q1(~x1,~k1)
Q̃1(~x1,~k1)

Q1(~x1,~k1)

!

= � ln

 Z d~x1 d~k1

(2p)N Q̃1(~x1,~k1)

!

= 0,

(11.5)

where we assumed the support condition to be fulfilled. As � ln t is
strictly convex for t > 0, equality holds if and only if the two Husimi
Q-distributions agree.

Let us also note that the Wehrl relative entropy does not fulfill the
monotonicity property of the quantum relative entropy. In fact, not
even a weaker property, namely invariance under unitary transforma-
tions, holds.

����� ����������� ������� In Section 3.6 we have seen that
separable states have a non-negative quantum conditional entropy,
while entangled states may have have a negative quantum conditional
entropy. In general, it is expected that correlations between the two
subsystems manifest in reducing conditional entropies (classical and
quantum).

Also, conditional classical entropies of measured distributions of
non-commuting observables, are, just as classical entropies, constrained
by EURs. In this case, one of the two subsystem plays the role of a
memory system and one speaks of an EUR in the presence of memory.
We will analyze the Wehrl conditional entropy in these two regards in
the following.

As we deal with infinite-dimensional Hilbert spaces, we need to
impose finiteness of all involved entropies to have well-defined quan-
tities [75]. Assuming S(Q1) < • allows us to the Wehrl conditional
entropy in analogy to (2.18)

S(Q1|Q2) = S(Q1)� S(Q12kQ1 ⇥ Q2), (11.6)

which can be rewritten as

S(Q1|Q2) = S(Q12)� S(Q2) (11.7)

provided that S(Q2) < •. It is well-known that the Wehrl conditional
entropy is non-negative, or, in other words, that the Wehrl entropy is
monotonous with respect to the partial trace [23]

S(Q1|Q2) � 0, (11.8)
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which is a consequence of Q1(~x1,~k1) � Q12(~x1,~k1,~x2,~k2).
However, we can easily show that there exists a stronger bound

as a consequence of the uncertainty principle. We rewrite the Wehrl
conditional entropy with the conditional Husimi Q-distribution

S(Q1|Q2) =�

Z d~x2 d~k2

(2p)M Q2(~x2,~k2)

⇥

Z d~x1 d~k1

(2p)N Q1(~x1,~k1|~x2,~k2) ln Q1(~x1,~k1|~x2,~k2),
(11.9)

which is in complete analogy to the other standard definition (2.17).
As the conditional Husimi Q-distribution is a Husimi Q-distribution
itself, we can apply the WL inequality to the second row of the latter
equation to obtainThe Wehrl

conditional entropy
is bounded from

below by the
uncertainty

principle.

S(Q1|Q2) � N, (11.10)

which is an EUR for the Wehrl conditional entropy in the presence
of classical memory. This shows that the Wehrl conditional entropy
behaves like a classical conditional entropy and that it cannot be
used for entanglement witnessing in the same way as the quantum
conditional entropy. Nevertheless, its behavior for correlated states is
quite surprising and will be investigated in more detail in Section 11.2.

Note also that in [300] (see also [138, 139]), an EUR in the presence
of quantum memory was found, for which classical-quantum states
and corresponding Wehrl entropies have been used. However, such a
relation can not be utilized easily in an experiment as it requires the
knowledge of the quantum state of one of the two subsystems.

����� ������ ����������� The Wehrl mutual information is
defined as the Wehrl relative entropy with respect to a product Husimi
Q-distribution, i.e.

I(Q1 : Q2) = S(Q12kQ1 ⇥ Q2). (11.11)

The Wehrl mutual information is non-negative and zero if and only if
the global Husimi Q-distribution factorizes, which corresponds to the
global state being a product state r12 = r1 ⌦ r2. One can rewrite it as

I(Q1 : Q2) = S(Q1) + S(Q2)� S(Q12)

= S(Q1)� S(Q1|Q2),
(11.12)

provided that all involved Wehrl entropies are finite.The Wehrl mutual
information is a

measurable perfect
witness for pure

state entanglement.

The Wehrl mutual information measures quantum and classical
correlations. Hence, if we restrict ourselves to globally pure states
S(r12) = 0, I(Q1 : Q2) quantifies only quantum correlations between
the two subsystems being zero if and only if entanglement is not
present. Hence, we can conclude that I(Q1 : Q2) = 0 is a necessary
and sufficient condition for pure states to be separable.
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It should be noted that for pure states many necessary and sufficient
criteria exists. This includes the PPT criterion (3.98) as well as the
quantum conditional entropy being non-negative (3.97). However,
these criteria require the knowledge of the full quantum state r12. The
crucial advantage of our approach lies in the measurability of the
Husimi Q-distribution.

Furthermore, let us remark that the Wehrl mutual information is
neither an entanglement measure, nor an entanglement monotone, as
it does not fulfill the minimum requirement of invariance under local
unitaries

I(Q0

1 : Q0

2) 6= I(Q1 : Q2) (11.13)

with r0

12 = (U1 ⌦ U2)r12(U
†
1 ⌦ U†

2) where U1 and U2 are unitary
operators. A counterexample is given by U1 = 1 and U2 = S(a) with
S(a) being the squeezing operator on subsystem 2 and a > 0.

However, there is an interesting relation between the Wehrl mutual
information and the quantum mutual information [127]

I(Q1 : Q2)  I(r1 : r2), (11.14)

showing that the true quantum and classical correlations are never
overestimated by the Wehrl mutual information. For pure states, we
obtain the inequality The Wehrl mutual

information tells
how much a globally
pure state is
entangled at least.

1
2

I(Q1 : Q2)  S(r1) = S(r2). (11.15)

Although the Wehrl mutual information is only a perfect entanglement
witness and not an entanglement measure, it is a lower for the entan-
glement entropy. Hence, it can not only be used to decide whether a
globally pure state is entangled or not, it also provides a lower bound
on the entanglement measure for pure states. If the global state is not
pure, (11.14) allows to make a statement about how much the state is
correlated at least.

���� �� �������� ������ ������������ Let us remark that a
marginal mutual information, e.g. I( f1 : f2), does not serve as a perfect
witness as it does not capture correlations in or with other observables.
Only distributions from informationally complete measurements can
be used in this sense. For marginal mutual informations there is an
open conjecture resembling (11.14) (see [301])

I( f1 : f2) + I(g1 : g2)
?
 I(r1 : r2). (11.16)

Even is this relation is true, correlations between positions and mo-
menta are not included. This shows once again the advantage of
detecting a full phase space distribution.



144 �������� �� �������� ����� ����������

��.� �������� ������ ��� ��������

�������� ������ Let us start with a general (not necessarily pure)
global Gaussian state r12 (see Section 3.4). Without loss of generality
we assume that the expectation values of all quadratures vanish, which
is justified by the translation invariance of all entropies. The global
Husimi Q-distribution is of Gaussian from

Q12(~x1,~k1,~x2,~k2) =
1
Z

e�
1
2 (~x1,~k1,~x2,~k2)C12(~x1,~k1,~x2,~k2)T

, (11.17)

where we introduced a real, symmetric and positive definite matrix

C12 =

 
C1 CM

CT
M C2

!
, (11.18)

which can be identified with the inverse covariance matrix of the global
Husimi Q-distribution C12 = V�1

12 , and a normalization constant

Z =
p

det C12. (11.19)

Recall that a pure Gaussian state is characterized by (3.67), i.e. has a
covariance matrix C�1

12 = V12 = 1
2 (1 + SST) for some symplectic matrix

S 2 Sp(2N + 2M, R).
Reordering the exponent in (11.17) according to contributions from

the two subsystems gives

Q12(~x1,~k1,~x2,~k2)

=
1
Z

e�
1
2 (~x1,~k1)C1(~x1,~k1)T

�
1
2 (~x2,~k2)C2(~x2,~k2)T

�(~x1,~k1)CM(~x2,~k2)T
,

(11.20)

showing that correlations (classical and quantum) between the two
subsystems are encoded in the mixing term (~x1,~k1)CM(~x2,~k2)T. For
CM = 0, this term vanishes and the global Husimi Q-distribution
factorizes into the two local Husimi Q-distributions.

Let us now compute the entropies. After a straightforward exercise
in Gaussian integration one finds for the global Wehrl entropy

S(Q12) = �
1
2

ln det C12 + N + M. (11.21)

As the Wehrl entropy is maximized by a Gaussian Husimi Q-distribution
for a given covariance matrix V12 = C�1

12 , the global WL inequality im-
plies a second moment uncertainty relation in phase space

det C12  1 , det
✓

g12 +
1
2

1

◆
� 1. (11.22)

Compared to the multi-dimensional Robertson-Schrödinger relation
(cf. (3.75))

det g12 �
1

4N+M , (11.23)
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which is invariant under symplectic transformations and hence tight
for all pure Gaussian states, our relation (11.22) is only tight for
unsqueezed pure Gaussian states. This can be seen from the condition
STS = 1, which needs to be fulfilled to reach equality in (11.22) and
shows that S has to be an orthogonal matrix corresponding to rotations
and displacements in phase space.

To compute the local entropies, we have to calculate the local Husimi
Q-distributions first (we consider subsystem 2 in the following). Inte-
grating out the complementary subsystem gives

Q2(~x2,~k2) =

s
det C12

det C1
e�

1
2 (~x2,~k2)(C2�CT

MC�1
1 CM)(~x2,~k2)T

, (11.24)

leading to a local Wehrl entropy

S(Q2) = �
1
2

ln det C12 +
1
2

ln det C1 + M. (11.25)

Here, we employed the identity

det C12 = det C1 det
⇣

C2 � CT
MC�1

1 CM

⌘
, (11.26)

which holds true provided that det C1 6= 0. Note that the local WL
inequality implies

det C12  det C1. (11.27)

Now, we can compute the two quantities of our interest. We assume
that all entropies are finite and obtain

S(Q1|Q2) = N �
1
2

ln det C1,

I(Q1 : Q2) =
1
2

ln
det C1 det C2

det C12
.

(11.28)

Surprisingly, the Wehrl conditional entropy is independent of the
correlations encoded in CM, which is in contrast to other classical (and
also quantum) conditional entropies. Applying the conditional WL
inequality leads to local uncertainty relations (11.10)

det C1  1, det C2  1. (11.29)

Also, the necessary and sufficient separability criterion for pure states
I(Q1 : Q2) = 0 translates into CM = 0, as expected.

����� ������ ����������� ��� ����� ��������� CM = 0 is
equivalent to VM = 0 and gM = 0, which actually implies separability
via the PPT criterion, see e.g. [44, 302, 303]. To show the converse, i.e.
that CM = 0 is also implied by the PPT criterion, we consider the Simon
criterion (3.102). Hence, we restrict to N = M = 1 for simplicity in the
following.
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For a pure Gaussian state we can write g12 = 1
2 SST with S 2

Sp(4, R) and the multi-dimensional Robertson-Schrödinger relation
(11.23) becomes tight det g12 = 1

16 . It is convenient to perform local
symplectic transformations S0 = diag(S1, S2) to write g12 = S0D12S0T

with D12 being the normal form of g12 [44, 63]

D12 =

0

BBBB@

b 0 m1 0
0 b 0 m2

m1 0 c 0
0 m2 0 c

1

CCCCA
, (11.30)

with b, c, m1, m2 2 R. As symplectic transformations have unit deter-
minant, we have det g12 = det D12 and hence our first purity condition
reads

�
bc � m2

1
� �

bc � m2
2
�
=

1
16

. (11.31)

We can find another purity condition for these four parameters by
recalling that the symplectic eigenvalues li (cf. (3.77)), which are all
equal to 1

2 for pure Gaussian states, do also appear (in ± pairs) in the
matrix iW12D12. Here, W12 = 1 ⌦ W where W denotes the symplectic
metric for a single mode, cf. (3.58). One then finds the second purity
condition

det g1 + det g2 + 2 det gM = b2 + c2 + 2m1m2 =
1
2

. (11.32)

Note the appearance of the four invariants I1 = det g1, I2 = det g2, I3 =
det gM and I4 = Tr(Wg1WgMWg2WgT

M) under the local symplectic
transformations S0, which fulfill det g12 = I1 I2 + I2

3 � I4 [44].
Let us now apply the PPT criterion in phase space (3.100). It corre-

sponds to a mirror reflection in one of the two local phase spaces and
produces a new normal form covariance matrix D0

12. Assuming the PPT
condition to be fulfilled, D0

12 must be physical, i.e. fulfill both purity
conditions. The local mirror reflection only affects det g0

M = �det gM
and one can easily write down the second purity condition for D0

12

det g1 + det g2 � 2 det gM = b2 + c2
� 2m1m2 =

1
2

, (11.33)

showing that the PPT criterion implies det gM = m1m2 = 0. Without
loss of generality, we assume m2 = 0 in the following. Then, combining
(11.31) with (11.32) and using that bc � 0 leads to

f (b) = b2
✓

1
2
� b2

◆
�

1
16

. (11.34)

However, the function f (b) has a global maximum for b = 1
2 with

f (b = 1
2 ) =

1
16 , and hence b = c = 1

2 and m1 = m2 = 0, which finally
implies gM = CM = 0 for all pure separable Gaussian states. In this
sense, the Wehrl mutual information being zero and the PPT criterion
for Gaussian states, i.e. the Simon criterion (3.102), are equivalent.
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���-���� �������� ������ ����� We proceed with a more
specific example, which is the Two-Mode Squeezed Vacuum (TMSV)
state for N = M = 1 modes [63]

|yiTMSV =
p

1 � l2
•

Â
n=0

(�l)n
|n1i ⌦ |n2i . (11.35)

Sometimes, the squeezing parameter l 2 [0, 1] is also expressed in
terms of another parameter r 2 [0, •), which are related via

l = tanh r. (11.36)

The TMSV state is rather special as it is a pure Gaussian state which is
entangled for all l > 0 while for l = 0 it corresponds to two uncor-
related vacua. In the opposite limit l ! 1 it becomes the maximally
correlated EPR state first described in the famous paper [167]. Note
that this state is the purification of the thermal state and hence both
subsystems look thermal with a local temperature depending on the
squeezing parameter l.

The covariance matrix C12 is determined by

C1 = C2 = 1, CM = diag(l,�l), (11.37)

showing that the state is separable if and only if l = 0 in which case
the global Husimi Q-distribution factorizes into two vacua. Plugging
the latter block matrices into (11.28) gives

S(Q1|Q2) = 1, I(Q1 : Q2) = � ln
�
1 � l2� . (11.38)

We show the two quantities together with the quantum mutual infor-
mation (which can be computed following [63, 304]) in Figure 11.1.

Vacua EPR

0 0.2 0.4 0.6 0.8 1
�0

0.5

1

1.5

2

2.5

I(�1:�2)
I(Q1:Q2)
S(Q1|Q2)

Figure 11.1: Wehrl entropic quantities S(Q1|Q2) and I(Q1 : Q2) together
with the quantum mutual information I(r1 : r2) for the TMSV
state (11.35) as a function of the squeezing parameter l 2 [0, 1].

Interestingly, the lower bound for the Wehrl conditional entropy is
attained for all values of the squeezing parameter l, despite the two
subsystems exhibiting quantum correlations for l > 0. This allows
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for a straightforward application when trying to prepare the TMSV
state (11.35). In a typical experiment, the precise value of l fluctu-
ates between subsequent realizations, which leads to a larger Wehrl
conditional entropy S(Q1|Q2) > 1 as a consequence of conditional
entropies being concave. Hence, any measured deviation from 1 shows
additional (unwanted) classical correlations.

Furthermore, the Wehrl mutual information increases monotonically
for increasing l starting from zero for l = 0 and becomes infinite for
l ! 1 showing that the EPR state exhibits a formally infinite amount
of quantum correlations.

���� ������ At last, we consider a non-Gaussian example: the
class of NOON states for N = M = 1 modes

|yiNOON =
1p

2(1 + d0n)
(|ni ⌦ |0i+ |0i ⌦ |ni) , (11.39)

with n 2 N. Note that the normalization is chosen such that |yiNOON =
|0i ⌦ |0i for n = 0. A NOON state is separable if and only if n = 0.
Note also that for n = 1 we obtain one of the four Bell states.

The global and local Husimi Q-distributions read

Q12(x1, k1, x2, k2) =
e�

1
2 (x2

1+k2
1+x2

2+k2
2)

2n+1n!(1 + d0n)

⇥ [(x1 � ik1)
n + (x2 � ik2)

n]

⇥ [(x1 + ik1)
n + (x2 + ik2)

n] ,

Q2(x2, k2) =
e�

1
2 (x2

2+k2
2)

2n+1n!

h�
x2

2 + k2
2
�n

+ 2nn!
i

.

(11.40)

The entropic Wehrl quantities have to be computed numerically, while
the quantum mutual information evaluates to I(r1 : r2) = 2 ln 2 for
all n 2 N. The results are shown in Figure 11.2.
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Figure 11.2: Wehrl quantities S(Q1|Q2) and I(Q1 : Q2) together with the
quantum mutual information I(r1 : r2) for the NOON states
(11.39) as a function of n. The curves represent interpolations.
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It important to notice that no other entropic separability criterion
is capable of witnessing the NOON states for all n > 0. The strong
entropic criteria (which are also only valid for globally pure states)
in [47] and [49] can only detect NOON states up to n = 5 and n = 6,
respectively. In contrast, the Wehrl mutual information is positive for
all n > 0 and hence it can witness all entangled NOON states. Also,
the Wehrl mutual information increases monotonically for n � 2 and
approaches the value of the quantum mutual information, which is
independent of n.



12 E N T R O P I C S E PA R A B I L I T Y
C R I T E R I A

This chapter is taken from [C]. I proposed the project and S. F. and M. G.
jointly supervised the work. I derived the entropic separability criteria
and did all calculations. Also, I wrote the early drafts. The figures
were produced by O. S., while I computed all quantities involved. All
authors contributed in the writing of the manuscript.

For continuous variable systems, we have seen that the Wehrl mutual
information provides a necessary and sufficient criterion for separabil-
ity in the case of globally pure states. However, experiments have to
deal with many imperfections in the form of additional classical cor-
relations and also finite statistics. Although experimentally prepared
states are often of high purity, they are never perfectly pure. To deal
with this issue, we have to derive separability criteria, which are also
valid for mixed separable states.

Instead of considering the global and local Husimi Q-distributions,
we construct non-local variables similar to the setup discussed in
Section 3.6. We adapt this strategy for the Husimi Q-distribution and
derive new entropic separability criteria in Section 12.1. We apply these
criteria to Gaussian states in Section 12.2 to obtain new second moment
criteria and to study their behavior under symplectic transformations.
Finally, we consider two classes of entangled non-Gaussian states,
where other (entropic) criteria fail, in Section 12.3.

��.� ���������� ����� �� ������� ����� ��-
��������

������ Q-������������ ��� ����� ��������� We start from
a bipartition of 1 + 1 modes each being described by continuous
variables X j and Kk fulfilling the Heisenberg algebra

⇥
X j, Kk

⇤
= idjk

and with the subsystems being labeled by j, k 2 {1, 2}. We allow every
local variable pair (X j, K j) to be rotated in its local phase space by
introducing angles Jj 2 [0, 2p), leading to rotated variables

 
Rj

Sj

!
=

 
cos Jj sin Jj

� sin Jj cos Jj

! 
X j

K j

!
. (12.1)

The rotated variables still fulfill the Heisenberg algebra
⇥
Rj, Sk

⇤
= idjk.

It is important to note that this seemingly technical step is necessary to
end up with more general separability criteria. More precisely, the two
angles Jj provide optimization parameters. At this point, note also that
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the angles may be selected post-measurement, which is an advantage
of the Husimi Q-distribution over the marginal distributions f (x)
and g(k), as the latter have to be measured along preselected axes.
Furthermore, the local and global Wehrl entropies are invariant under
such transformation as rotations have unit determinant, such that
also the Wehrl mutual information and the Wehrl conditional entropy
remain unmodified.

We associate local coherent states |ai and |bi with the rotated
variables via (cf. (3.45))

|ai = D(a) |0i (12.2)

and similarly for |bi. This allows to define the global Husimi Q-
distribution as Q12(r1, s1, r2, s2) = (ha|⌦ hb|)r12(|ai ⌦ |bi). Note that
one may equivalently start from Q12(x1, k1, x2, k2) and apply the two
local rotations with Jj.

���-����� ��������� To derive separability criteria, we consider
non-local EPR-type operators in the spirit of (3.104) (with a = 1)

R± = R1 ± R2, S± = S1 ± S2, (12.3)

which are designed to reveal information about the correlations be-
tween two local variables of the same type. Let us emphasize that their
commutation relations are given by

[R±, S±] = 2i, [R±, S⌥] = 0, (12.4)

showing that the twisted assignment (R±, S⌥) constitutes a set of com-
muting observables and that these variables are normalized differently
as the local variables.

As the canonical phase space R2 is a vector space, the non-local oper-
ators fulfill eigenvalue equations just as their local counterparts, allow-
ing us to work with the global phase space coordinates (r+, s+, r�, s�)
instead of (r1, s1, r2, s2), which are related via

r± = r1 ± r2, s± = s1 ± s2. (12.5)

Transforming the global Husimi Q-distribution accordingly gives

Q12(r1, s1, r2, s2)

!Q0

12(r+, s+, r�, s�)

=
1
4

Q12

✓
r+ + r�

2
,

s+ + s�
2

,
r+ � r�

2
,

s+ � s�
2

◆
.

(12.6)

The Jacobi determinant of this transformation yields the prefactor 1
4 ,

which ensures that both global Husimi Q-distributions are normalized
with respect to phase space measures of the same form

1 =
Z dr1 ds1

2p

dr2 ds2

2p
Q12 =

Z dr+ ds+
2p

dr� ds�
2p

Q0

12. (12.7)
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Starting from the transformed distribution Q0

12, we integrate out two
variables in a way that we end up with a phase space distribution of
twisted variables

Q±(r±, s⌥) =
Z dr⌥ ds±

2p
Q0

12(r+, s+, r�, s�). (12.8)

Although we denote these two distributions with Q±, they are not
Husimi Q-distributions in a strict sense, as the underlying operators
R± and S⌥ commute instead of fulfilling the Heisenberg algebra.
Nevertheless, Q± is normalized to one with respect to the standard
phase space measure as a consequence of (12.7), non-negative and
bounded from above by unity. Hence, we can still associate on entropy
to it, in terms of which we will formulate our separability criteria.

������������ �������� ��� ���� ������ We start with globally
pure states, in which case separable states are given by product states
of the form r12 = r1 ⌦ r2 (cf. (3.89)). As usual, the global Husimi
Q-distribution factorizes

Q12(r1, s1, r2, s2) = Q1(r1, s1)⇥ Q2(r2, s2), (12.9)

which, after another variable transform, reveals that the marginalized
distribution Q± reduces to a convolution

Q±(r±, s⌥) =
Z dr1 ds1

2p
Q1(r1, s1) Q2(⌥r1 ± r±,±s1 ⌥ s⌥)

=
⇣

Q1 ⇤ Q(±)
2

⌘
(r±, s⌥),

(12.10)

with the convention Q(±)
2 (r, s) = Q2(±r,⌥s).

This allows us to employ the entropic power inequality, which
holds for all non-negative and normalized distributions irregardless
of whether they are bounded from above or not. It provides a lower
bound on the entropy of a convoluted distribution. Interestingly, the
well-known fact that the variances of two Gaussian distributions are
added up under a convolution is a special case of this inequality.

In two dimensions and applied to our setup the entropy power
inequality reads [4, 56, 305]

eS(Q±) � eS(Q1) + eS(Q2), (12.11)

where we used that entropies are invariant under mirror reflections,
i.e. S(Q(±)

2 ) = S(Q2). Thus, every pure product state needs to satisfy

S(Q±) � ln
⇣

eS(Q1) + eS(Q2)
⌘

. (12.12)

Violation of the latter inequality for a globally pure state witnesses
entanglement.

We can obtain a weaker and state-independent bound by applying
the WL EUR to both local entropies, resulting in the two inequalities

S(Q±) � 1 + ln 2, (12.13)

which have to be fulfilled by all pure product states.
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�������������� �� ����� ������ The advantage of the weaker
criteria (12.13) is that they can be generalized to mixed separable states
of the form r12 = Âi p(i)(ri

1 ⌦ ri
2) with p(i) � 0 and Âi p(i) = 1 (cf.

(3.90)). For such states, the marginal distribution Q± obeys a similar
decomposition

Q±(r±, s⌥) = Â
i

p(i)Qi
±(r±, s⌥). (12.14)

Then, by using that any classical entropy is concave (cf. Section 2.2),
we find that the weaker criteria (12.13) generalize identically to mixed
states The entropy of Q± is

bounded from below
by 1 + ln 2 for all
separable states.

S(Q±) � Â
i

p(i)S(Qi
±) � 1 + ln 2, (12.15)

which are our general entropic criteria. Violation of these inequalities
flags entanglement regardless of whether the state of interest is pure
or mixed.

Note that one could also generalize the stronger criteria (12.12) in
the same manner to

S(Q±) � Â
i

p(i) ln
⇣

eS(Qi
1) + eS(Qi

2)
⌘

. (12.16)

However, the resulting bound contains the mixing probabilities p(i).
Determining them is equally hard as determining whether the state is
separable or not. Hence, these criteria are not useful in practice and
we do not consider them any further.

��.� ������ ������ ��������

�������� ������ ������ �������� Let us consider the class of
Gaussian states. Without loss of generality, we assume all mean values
to vanish. In this case, the twisted distribution Q± is of the form

Q±(r±, s⌥) =
1
Z

e�
1
2 (r±,s⌥)V�1

±
(r±,s⌥)T

(12.17)

with

V± = g± + ḡ =

 
s2

r± sr±s⌥

sr±s⌥ s2
s⌥

!
+ 1 (12.18)

denoting the corresponding covariance matrix and Z = det�1/2 V±

being a normalization constant. The diagonal entries of the covariance
matrix g± of the Wigner W-distribution are the standard variances
of the marginal distributions f (r±) and g(s⌥), while the covariance
sr±s⌥ is non-vanishing whenever the coordinate axes are not aligned
with the principal axes. Note the absence of the prefactor 1

2 in ḡ as
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consequence of the different normalization of the non-local variables,
see (12.4).

As the entropy S(Q±) is maximized by the Gaussian distribution
(12.17) for a given covariance matrix V±, we can infer a set of second
moment criteria from (12.15), i.e.

1 +
1
2

ln det V± � S(Q±) � 1 + ln 2, (12.19)

implying

det V± � 4. (12.20)

For Gaussian states, the criteria (12.20) and (12.15) are equivalent. In
all other cases, the entropic criteria (12.13) are stronger than the second
moment criteria (12.20) in the sense of (12.19).

�������� ����� ���������� ��������������� It is interesting
to investigate how the separability criteria behave under symplec-
tic transformations S 2 Sp(2, R). While the Wigner W-distribution
transforms as a scalar field under symplectic transformations (see
e.g. [44]), the Husimi Q-distribution does not transform in a simple
manner. This is due to the additional convolution with the Wigner
W-distribution of the vacuum, which overweights specific widths and
does not allow for a simple representation of squeezing transforma-
tions. Hence, we restrict the symplectic analysis to the second moment
criteria, where the latter fact translates into the absence of invariance
under squeezing.

We start from the covariance matrix of the Wigner W-distribution
g±, which transforms as

g± ! g0

± = S g± ST, (12.21)

such that its determinant is invariant det g± ! det g0
± = det g± as

det S = det ST = 1.
In contrast, the covariance matrix of the Husimi Q-distribution

transforms according to

det V± ! det V 0

± = det
⇣

S g± ST + ḡ
⌘

= det
✓

g± + ḡ
⇣

STS
⌘�1

◆
,

(12.22)

where we used that ḡ = 1. This shows that the second moment criteria
(12.20) are invariant under rotations and displacements, for which
we have STS = 1, but not invariant under equal amounts of local
squeezing described by S = diag(a, 1/a) with a being positive and
real. Hence, the orientation of the axes in the twisted phase space is
unimportant for entanglement witnessing when using a full phase
space distribution.
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���������� �� �������� ������ ������ �������� In Sec-
tion 3.6 we reviewed the two well-known MGVT (3.106) and DGCZ
(3.107) separability criteria, which are also formulated for variances
of non-local observables. As they are based on detecting marginal
distributions and allow for squeezing in the local variables (cf. (3.104)),
we reformulate our second moment criteria (12.20) for a comparison.
Using (12.18) and (12.22) for S = diag(a, 1/a) we find

�
s2

r± + a2�
✓

s2
s⌥ +

1
a2

◆
� 4 + s2

r±s⌥ , (12.23)

where we included the effect of squeezing with a > 0 being a non-
negative real number.

To examine the tightness of the criteria (12.23) we minimize the left
hand side over a. A unique minimum can be found for a2 =

sr±
ss⌥

, in
which case we end up with

(sr±ss⌥ + 1)2
� 4 + s2

r±s⌥ . (12.24)

When aligning the axes with the principles aces, for which s2
r±s⌥ � 0,

we obtain

sr±ss⌥ � 1, (12.25)

which corresponds to the weak version of the MGVT criteria (3.106).
This shows that after optimizing over the squeezing parameter a and
the orientation of the distribution in phase space, our second mo-
ment criteria (12.23) and the weak MGVT criteria (3.106) are equivalent,
which is depicted in Figure 12.1b.

This finding implies that the criteria (12.23) are not necessary for
separability in the case of Gaussian states as they are strictly weaker
then the full MGVT criteria (3.106) in general. Nevertheless, we can
conclude that our entropic criteria (12.15) and the entropic WTSTD
criteria (3.108) are equivalent in the Gaussian regime as both reduce
to the weak MGVT criteria after optimization.

We compare the three weak second moment criteria (12.20), (3.106)
and (3.107), i.e. for a = 1 and sr±s⌥ = 0, in Figure 12.1a. In this case,
our criteria are stronger than the DGCZ criteria, but weaker than the
MGVT criteria.

Is is also interesting to note that the three criteria transform rather
differently under symplectic transformations. Our criteria (12.23) and
the weak MGVT criteria behave complementary with respect to rota-
tions and squeezing: while our criteria are invariant under rotations,
but not under squeezing (cf. (12.22)), it is the opposite for the weak
MGVT criteria. In contrast, the weak DGCZ criteria are neither invariant
under rotations, nor under squeezing.
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Figure 12.1: Weak DGCZ criteria (blue regions), second moment criteria
(12.23) (red and green regions) and MGVT criteria (gray regions)
as functions of the two marginal standard deviations sr± and
ss⌥ . The colored regions show where the criteria are fulfilled,
such that entanglement is certified below the curves. As a refer-
ence, we indicate the TMSV state (11.35) for all l 2 [0, 1] (black
dashed line) between the two vacua sr± = ss⌥ = 1 (black dot)
and the maximally correlated EPR state sr± = ss⌥ = 0 (black
square). In (a) we show all three criteria for a = 1 and sr±s⌥ = 0.
The MGVT criteria are strongest, while the DGCZ are weakest.
Also, the curves touch for the two vacua. In (b) one can see that
optimizing our second moment criteria over a leads to the weak
MGVT criteria. More precisely, every point on the latter curve can
be touched by the curves corresponding to our second moment
criteria when adjusting a.
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��.� ��������

���� ������ To benchmark the performance of our entropic cri-
teria (12.15) in comparison with the entropic WTSTD criteria (3.108)
in the non-Gaussian regime, we consider two non-trivial examples.
We begin with the NOON states, which were investigated already
with the Wehrl mutual information in Section 11.2 around (11.39). The
corresponding distributions Q±(r±, s⌥) can be calculated analytically
for n 2 N in general, but we omit the corresponding expressions for
brevity.

We recall that the NOON states can not be witnessed by any second
moment criterion and that also the entropic WTSTD criteria based on
marginal distributions fail. The strong version of the WTSTD entropic
criteria for pure states (in analogy to our stronger criteria (12.12))
witnesses entanglement up to n = 5, while their Rényi-improved
criterion works up to n = 6 [49].

Similarly, our entropic criteria (12.15) do also not certify any entan-
glement. However, the strong entropic criteria for pure states (12.12)
witness entanglement up to n = 11 when using Q+, which is shown
in Figure 12.2 for J1 = J2 = 0.

We can conclude that existing entropic criteria are outperformed.
Nevertheless, we recall that the Wehrl mutual information already
provides a perfect witness for pure state entanglement and hence
works even better than our stronger entropic criteria for pure states
(12.12).

0 2 4 6 8 10 12 14
n

1.5

2

2.5

3

3.5

S(Q+)
strong

general

Figure 12.2: General (12.15) and strong entropic criteria for pure states
(12.12) for the first fifteen NOON states. Entanglement is wit-
nessed by the strong criteria up to n = 11, while the general
criteria fail for all n > 0.
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�������� ����������� ��� ����� As a true hardness test, we
consider the dephased Schrödinger cat state, which is specified by the
density operator [47]

r = N(r, s)
h
(|ai ⌦ |ai) (ha|⌦ ha|)

+ (|�ai ⌦ |�ai) (h�a|⌦ h�a|)

� (1 � z)
⇣
(|ai ⌦ |ai) (h�a|⌦ h�a|)

+ (|�ai ⌦ |�ai) (ha|⌦ ha|)
⌘i

,

(12.26)

where 0  z  1 is a parameter controlling its purity (the state is pure
if and only if z = 0) and

N(r, s) =
1
2

⇣
1 + (1 � z) e�2(r2+s2)

⌘
(12.27)

is a normalization constant. It is parameterized by the positions (r, s)
(cf. also (3.46)) of the two local coherent states and for J1 = J2 = 0 its
Husimi Q-distribution takes the form

Q(r1, s1, r2, s2) = N(r, s)
h
e�

1
2 ((r�r1)2+(s�s1)2+(r�r2)2+(s�s2)2)

+ e�
1
2 ((r+r1)2+(s+s1)2+(r+r2)2+(s+s2)2)

+ 2(1 � z) e�r2
�s2

�
1
2 (r2

1+s2
1+r2

2+s2
2)

⇥ cos (r(s1 + s2)� s(r1 + r2))
i
.

(12.28)

As only the absolute value of a is of relevance in the twisted variables,
we set s = 0 without loss of generality, in which case we can give an
analytical expression (again for J1 = J2 = 0)

Q±(r±, s⌥) =
e� 1

4 (r
2
±+s2

⌥)

2
�
e2r2 + 1 � z

�

⇥

8
<

:
1 � z + er2 cosh(r r+) for (r+, s�),

e2r2
+ er2

(1 � z) cos(r s+) for (r�, s+).

(12.29)

Despite this state being entangled for all z < 1 and (r, s) 6= (0, 0), it
is notoriously hard to detect entanglement for the whole parameter
range. Unsurprisingly, entanglement can not be witnessed for any
choice of parameters by any second moment criterion. The entropic
WTSTD criteria (3.108) witness entanglement at least for r & 2.5, s = 0
and z < 1 when using J1 = J2 = 0 [47].

In contrast, our criteria witness entanglement for all values of r >
0, s = 0 and z < 1 when using Q�, which is shown in Figure 12.3.
Also, we see that our criteria (12.13) are violated most in the regime
0 . r . 1.5, while for r & 2 the violation becomes exponentially small.
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Figure 12.3: Entropic criteria (12.15) for the dephased Schrödinger cat state
(12.26) as a function of the mixing parameter z and the position
r. Entanglement is witnessed for all z < 1 and r > 0, s = 0,
which is indicated by negative values for W = S(Q�)� 1� ln 2.
The separable regions z = 1 and r = 0 are represented by black
lines. The witness performs best in the region 0 . r . 1.5 and
converges to zero from below exponentially outside this region.

We can conclude that the dephased Schrödinger cat state is fully
witnessed with our method, which is not possible with any other
entropic separability criteria. Hence, the phase space approach turned
out to be valuable for entanglement detection, which is why we amend
our idea further in Chapter 13.



13 G E N E R A L S E PA R A B I L I T Y
C R I T E R I A

The following discussion is based on [A, B]. The project covered in
[A] was proposed by me and S. F. and M. G. jointly supervise it. I
derived the general separability criteria and did all calculations. I
wrote the current version of the manuscript. All authors participate in
the ongoing discussion of the project.

We have seen that EURs lead to separability criteria which can be
stronger than second moment criteria. In this chapter, we extend
the ideas of Chapter 12, i.e. entropic separability criteria for a phase
space distribution of twisted non-local variables, to arbitrary concave
functionals of this distribution. The resulting criteria are rather general
and have entropic and second moment criteria as special cases. As
they come with the freedom to optimize over a large class of functions,
the ability to detect entanglement is further improved, especially when
applying them to discretized distributions.

We derive our general separability criteria in Section 13.1 and show
that the previously derived criteria follow as special cases in Sec-
tion 13.2. Finally, we discuss their experimental implementation and
deduce their discretized analog in Section 13.3, which is applied to an
example.

��.� ���������� ����� �� ��� ���������

���-����� ��������� ��� ����-������� ������� Following
up on the discussion of non-local variables in Section 12.1, we start
with the global transformed Husimi Q-distribution Q0

12(r+, s+, r�, s�).
Now, instead of integrating out two variables such that we obtain a
distribution of twisted variables Q±(r±, s⌥), we consider the marginal
distributions

Q0

±(r±, s±) =
Z dr⌥ ds⌥

2p
Q0

12(r+, s+, r�, s�). (13.1)

As the underlying measurement operators fulfill the Heisenberg alge-
bra (cf. (12.4)), Q0

±(r±, s±) are true Husimi Q-distributions.
As a consequence, Q0

±(r±, s±) is constrained by the uncertainty
principle. Most generally, the uncertainty principle is expressed by the
Lieb-Solovej theorem [84]. Adapted to our situation, it states that for
any concave function f : [0, 1] ! R with f (0) = 0 and any bipartite
quantum state r12 the following inequality holds

Z dr± ds±
2p

f
�
Q0

±

�
�

Z dr± ds±
2p

f
�
Q̄0

±

�
, (13.2)
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where

Q̄0

±(r±, s±) =
1
2

e�
1
4 (r2

±+s2
±) (13.3)

denotes the vacuum Husimi Q-distribution associated with the non-
local operators R± and S±. By translation invariance, one may equally
well take any pure coherent state on the right hand side of (13.2).

Note that the right hand side of (13.2) evaluates to a constant as
soon as the concave function f is fixed, while the left hand side is
state-dependent. Note also that (13.2) reduces to the WL inequality,
which in this case reads S(Q0

±) � 1+ ln 2, for the choice f (t) = �t ln t.
In this sense, (13.2) is the generalization of an EUR in phase space to
arbitrary concave functions.

��� ��������� �� ����� ����� In Section 3.6 we have already
seen that uncertainty relations can be used to formulate separability
criteria by employing the PPT criterion. With the rather general form of
the uncertainty principle (13.2) at hand, let us apply the PPT criterion
in phase space.

As seen in (3.100), the transposition in one of the two subsystems
corresponds to a mirror reflection in the corresponding local phase
space. To show this explicitly for the Husimi Q-distribution, let us
consider two local bases {|n1i}n and {|n2i}n with n 2 N denoting
number eigenstates, such that any global state r12 may be written as

r12 = Â
n1n0

1n2n0

2

pn1n0

1
n2n0

2

�
|n1i hn0

1|⌦ |n2i hn0

2|
�

(13.4)

with pn1n0

1
n2n0

2
2 R specifying the state. The corresponding global Husimi

Q-distribution reads

Q12(r1, s1, r2, s2) = Â
n1n0

1n2n0

2

pn1n0

1
n2n0

2
ha1|n1i hn0

1|a1i ha2|n2i hn0

2|a2i (13.5)

with the overlaps given by (cf. (10.6))

hai|nii = e�
1
2 (r

2
i +s2

i )
(ri � isi)ni
p

2ni ni!
. (13.6)

Now, applying a partial transpose to subsystem 2 exchanges n2 with
n0

2, which transforms Q12 according to

Q12(r1, s1, r2, s2)
T2
! Â

n1n0

1n2n0

2

pn1n0

1
n2n0

2
ha1|n1i hn0

1|a1i ha2|n0

2i hn2|a2i , (13.7)

showing that the overlaps corresponding to subsystem 2 are replaced
by their complex conjugates. Together with (13.6) this implies the
mirror reflection property

Q12(r1, s1, r2, s2)
T2
! Q12(r1, s1, r2,�s2), (13.8)
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as desired. Then, we can deduce that the marginals (13.1), which are
true Husimi Q-distributions, transform as

Q0

±(r±, s±)
T2
! Q±(r±, s⌥), (13.9)

showing the importance of the twisted variables in Q±(r±, s⌥) for
entanglement witnessing.

������� ������������ �������� ��� ������� ��������� The
PPT criterion (3.98) tells us that any separable state has a positive
partial transpose. Hence, Q±(r±, s⌥) has to be physical for every
separable state and as such has to fulfill the uncertainty principle. In
particular, it has to fulfill the Lieb-Solovej theorem (13.2).

Hence, every separable state satisfiesAny concave phase
space functional of

Q± is bounded from
below for all

separable states.

Z dr± ds⌥
2p

f (Q±) �
Z dr± ds⌥

2p
f (Q̄±) (13.10)

for any concave f : [0, 1] ! R with f (0) = 0. These are our most gen-
eral separability criteria in phase space. Violation of these inequalities
for any f implies that r12 is entangled.

Note that for f (t) = b t with b 2 R being some parameter the rela-
tion (13.10) reduces to an equality for all states r12 as the distribution
Q± is normalized. Note also that if the requirement f (0) = 0 is left
out, both sides of the inequality (13.10) are either +• or �•. However,
also for f (0) = 0 it could still be that one side evaluates to ±•.

��.� ������� �������� �� ��������

�������� �������� �� �������� �������� Let us show how sep-
arability criteria for entropic families arise. To that end, we apply a
monotonically increasing function g : R ! R to our criteria (13.10) to
obtain

g
✓Z dr± ds⌥

2p
f (Q±)

◆
� g

✓Z dr± ds⌥
2p

f (Q̄±)

◆
(13.11)

for all separable states r12. It is important to note that the function
g does not strengthen or weaken the criteria (13.10) in the sense that
neither more (or less) entangled states can be detected nor the signal-
to-noise ratio can be improved (or worsened). Note also that one
may allow g to be monotonically decreasing, in which case one has
to choose f to be convex. In this case, the inequality (13.11) is not
reversed.

We are particularly interested in quantities which are significant
from an information theoretic perspective (see [12, 56] for overviews
of families of classical entropies). For example, we obtain the family
of Rényi-Wehrl entropies

Sb(Q±) =
1

1 � b
ln
✓Z dr± ds⌥

2p
Qb

±(r±, s⌥)
◆

(13.12)
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when choosing f (t) = tb for b 2 (0, 1) [ (1, •) and g(t) = ln t
1�b ,

which are concave/convex and monotonically increasing/decreasing
functions for b < 1/b > 1, respectively. Then, the corresponding
entropic separability criteria read

Sb(Q±) �
ln b

b � 1
+ ln 2. (13.13)

In the limit b ! 1, the Rényi-Wehrl entropy (13.12) reduces to the
ordinary Wehrl entropy, in which case (13.13) gives back the entropic
criteria (12.13) discussed in Chapter 12. Alternatively, the same result
can be obtained when choosing the concave function f (t) = �t ln t in
(13.10).

With the same choice for f (t) = tg and a modified g(t) = 1�t
1�g , we

obtain another set of entropic criteria

Sg(Q±) �
1

1 � g

✓
1 �

21�g

g

◆
(13.14)

for Tsallis-Wehrl entropies

Sg(Q±) =
1

1 � g

✓
1 �

Z dr± ds⌥
2p

Qg
±(r±, s⌥)

◆
(13.15)

with g 2 (0, 1) [ (1, •). Note that the Tsallis-Wehrl entropies are also
well-defined for g < 0. However, in this case the condition f (0) = 0 is
violated, such that we have to restrict to g > 0 for the corresponding
separability criteria.

�������� ������ ������ �������� One might ask whether
the general criteria (13.10) imply stronger second moment criteria
as (12.20), which were implied by our entropic criteria (12.13).

To that end, we consider Gaussian states, which are characterized by
a distribution of the form (12.17). We start with the class of monomials
f (t) = ±tb for b 7 1, which (after applying suitable g functions)
correspond to the Rényi-Wehrl and Tsallis-Wehrl entropic families. An
analytical calculation leads to

1
b

⇣
±det(1�b)/2V± ⌥ 21�b

⌘
� 0 , det V± � 4, (13.16)

showing that we do not obtain an improvement over the already
established second moment criteria (12.20).

We expect that this result generalizes to all concave functions f with
f (0) = 0. While a proof is left for future work, this claim is supported
by further numerical evidence. We have checked the functions f (t) =
sin t, f (t) = tanh t, f (t) = 1 � et and f (t) = ln(1 � t) and can report
that in all cases we obtained the second moment criteria (12.20). One
might speculate that this is related to the fact that the lower bounds
in the Lieb-Solovej theorem (13.2) and the WL inequality (3.84) are
attained by the same states.
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��.� ������������ �����������

�������� ������������ ������������ So far we have mainly
focused on developing separability criteria and the discussion has
been a rather theoretical one. Let us now comment on possible ways to
detect the Husimi Q-distribution and comment on how finite measure-
ment accuracy affect the various separability criteria we have derived
throughout Part iv.

The measurement of the Husimi Q-distribution has been accom-
plished for several experimental setups. In principle, one can either
employ a tomographic approach by displacing the state of interest and
projecting it onto the vacuum afterwards or one can perform a hetero-
dyne measurement. These strategies have been successfully applied
in quantum optics [306–309]. Rather recently, similar techniques were
used for Bose-Einstein condensates [310, 311], cold atoms in optical
cavities [312, 313] and circuit quantum electrodynamics architectures
[314]. Besides the method used in [311], the listed works were con-
cerned with monopartite Husimi Q-distributions. Hence, extensions
to bipartite systems are required, which is an ongoing challenge.

In any case, one of the main advantages of detecting a full phase
space distribution over two marginal distributions is that one does
not have to preselect the local angles Ji, such that angle tomography,
which requires a lot of experimental runs, is avoided. Also, especially
in cold atoms systems, these angles are difficult to control. On top of
that, our phase space criteria showed great performance.

�������������� �� ����� ����� For an experimental application
of the general separability criteria (13.10) (or any other of our criteria)
it is important to consider experimental limitations. Although we
deal with continuous phase space variables (r, s), any measurement
procedure is fundamentally limited, for example by the precision of
a detector or finite statistics effects. In particular, an experiment will
produce a discrete empirical sample distribution or (possibly after
binning) a histogram for discrete probabilities associated with bins
instead of a smooth probability density function.

Discretizing distributions corresponds to coarse-graining and hence
it is not surprising that the entropy (or any other concave phase space
functional) grows. Therefore, discretized witnesses are generically
weaker than their continuous analogs, excluding the possibility of
false-positive results. However, finite statistics can cause the entropy
of a (possibly discretized) distribution to be under- or overestimated,
which is why in this case the proper inclusion of statistical errors
becomes important. These effects are beyond our scope for the follow-
ing discussion, but have to be taken into account when applying any
entanglement witness in an actual experiment.
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In the following, we adapt our criteria (13.10) for discrete histograms
(see also [50, 113]). We start with discretizing phase space into bins
with discrete coordinates (at the center of each bin)

ri = i Dri, sj = j Dsj, (13.17)

with i, j 2 Z labeling these discrete coordinates and DriDsj being the
phase space area element associated with the (ri, sj)-th bin. Note that
with this construction we allow for adaptive bin sizes.

To every bin we associate a discrete probability by integrating the
Husimi Q-distribution over the corresponding bin

q(ri, sj) =
1

2p

Z Dri(i+1/2)

Dri(i�1/2)
dr
Z Dsj(i+1/2)

Dsj(i�1/2)
ds Q(r, s). (13.18)

This distribution is normalized to unity as an ordinary probability
distribution

1 =
•

Â
i,j=�•

q(ri, sj) (13.19)

and resembles the continuous Husimi Q-distribution in the sense

2p

Dri Dsj
q(ri, sj) ! Q(r, s), (13.20)

in the continuum limit Dri Dsj ! 0.
Additionally, we define another distribution

Q(r, s; ri, sj) =

8
<

:

Q(r,s)
q(ri ,sj)

for (r, s) 2
�
Dri(i ± 1/2), Dsj(j ± 1/2)

�
,

0 else,
(13.21)

which is the distribution over (r, s) conditioned on measuring inside
the (ri, sj)-th bin. In simple words, it corresponds to the averaged
Husimi Q-distribution over this bin. It is normalized to unity with
respect to the standard phase space measure

1 =
1

2p

Z Dri(i+1/2)

Dri(i�1/2)
dr
Z Dsi(i+1/2)

Dsi(i�1/2)
ds Q(r, s; ri, sj). (13.22)

We are interested in discretizing expressions of the form
R dr ds

2p f (Q)
for functions f fulfilling our usual conditions. To that end, we plug in
(13.21) and break up the integral into integrals over single bins

Z dr ds
2p

f (Q) =
•

Â
i,j=�•

1
2p

Z Dri(i+1/2)

Dri(i�1/2)
dr
Z Dsj(i+1/2)

Dsj(i�1/2)
ds

⇥ f
�
q(ri, sj) Q(r, s; ri, sj)

�
.

(13.23)
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For every single integral we can use that the uniform distribution
Q(r, s; ri, sj) =

2p
Dri Dsj

is majorized by all others, i.e., in simple words, is
most spread out over a single bin [121]. As f is concave, we obtain an
upper bound for our quantity of interest in terms of the discretized
Husimi Q-distribution (13.18)

Z dr ds
2p

f (Q) 
•

Â
i,j=�•

Dri Dsj

2p
f
✓

2p

Dri Dsj
q
◆

. (13.24)

�������: ����� ������� Exemplary, we consider the Wehrl en-
tropy defined via f (t) = �t ln t for equal bins Dri Dsj ⌘ Dr Ds, such
that (13.24) evaluates to

S(Q)  S(q) + ln
Dr Ds

2p
. (13.25)

Equality is reached in the continuum limit Dr Ds ! 0, in accordance
with the definition of the differential entropy (2.11) in Section 2.2.

(a) q̄(ri, sj) for Dr Ds = 0.5 (b) q̄(ri, sj) for Dr Ds = 1.5

0 0.5 1 1.5 2
�r�s

1

1.05

1.1

1.15

S(q)+ln �r�s
2�

S(Q)

(c) Wehrl entropy bound (13.25) for varying Dr Ds

Figure 13.1: We depict the discretized vacuum Husimi Q-distribution
q̄(ri, sj) for Dr Ds = 0.5 in (a) and for Dr Ds = 1.5 in (b). Both
sides of the entropic inequality (13.25) are shown as a function
of the phase space area element Dr Ds in (c). The right hand
side is approximately linear in this regime, which ceases to be
the case for sufficiently large Dr Ds (not shown in the figure).
The blue and red points correspond to the distributions in (a)
and (b), respectively. The relation (13.25) becomes tight in the
continuum limit Dr Ds ! 0.
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We show both sides of the latter inequality as a function of the
discrete area element Dr Ds for the vacuum in Figure 13.1c together
with two exemplary discretized Husimi Q-distributions q̄(ri, sj) in
Figure 13.1a (with Dr Ds = 0.5) and Figure 13.1b (with Dr Ds = 1.5).

����������� ����� ������ �� ������������ �������� The pre-
vious considerations allow us to formulate (weaker) separability cri-
teria for a discrete distribution q± obtained from Q± in the sense of
(13.18). Applying (13.24) to our general separability criteria (13.10)
results in the discretized criteria

•

Â
i,j=�•

Dr±,i Ds⌥,j

2p
f
✓

2p

Dr±,i Ds⌥,j
q±
◆
�

Z dr± ds⌥
2p

f (Q̄±) , (13.26)

which are fulfilled for all separable states (3.90) and all concave f with
f (0) = 0. Note that if one works with sampled data, in which case the
bin sizes are not fixed a priori, one can optimize the left hand side
over the bin sizes Dr±,i Ds⌥,j.

To end up with discretized versions of entropy functionals on the
left hand side of (13.26), it is necessary to assume equal bin sizes
Dr±,i Ds⌥,j ⌘ Dr± Ds⌥. For example, we find the chain of inequalities

Sb(q±) + ln
Dr± Ds⌥

2p
� Sb(Q±) �

ln b

b � 1
+ ln 2 (13.27)

for the family of discretized Rényi-Wehrl entropies

Sb(q±) =
1

1 � b
ln

 
•

Â
i,j=�•

qb
±(r±,i, s⌥,j)

!
. (13.28)

In contrast, one cannot write down criteria for discretized Tsallis-Wehrl
entropies in simple form, as the latter result was established using
that the logarithm of a product equals the sum of two logarithms.

�������� ����������� ��� ����� We examine the tightness
of the discretized separability criteria for the family of Rényi-Wehrl
entropies (13.27) and the dephased Schrödinger cat state (12.28). To
that end, we consider the values s = z = 0 and vary r 2 [0, 2], which
corresponds to the front slice in Figure 12.3.

In this regime, our entropic criteria (12.13) witnessed entanglement,
while all other entropic and second moment criteria failed. We show
the continuous and discretized Rényi-Wehrl criteria (13.13) and (13.27),
respectively, for b = 1 (corresponding to the ordinary Wehrl entropy)
in Figure 13.2a, for b = 2 in Figure 13.2b and for b = 10 in Figure 13.2c.

Detection of entanglement is (depending on the bin size Dr� Ds+)
prevented for sufficiently small and large r, which is inherent with
discretization. However, the possibility of optimizing over b can reduce
this effect noticeably indicating the potential of the general discrete
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separability criteria (13.26). In particular, one might prefer to choose
large values for b, such that small values of q±(r±,i, s⌥,j), which are
hard to detect, are suppressed.
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(a) b = 1
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(b) b = 2
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(c) b = 10

Figure 13.2: Continuous vs. discretized Rényi-Wehrl entropic criteria (cf.
(13.27)) for the dephased Schrödinger cat state (12.26) with
s = z = 0 as a function of r for various bin sizes Dr� Ds+.
Entanglement is witnessed for negative Wb, which is defined
as the difference of the two sides in (13.27). We show the Wehrl
criteria in (a), while (b) and (c) depict higher-order Rényi-Wehrl
entropies with b = 2 and b = 10, respectively. For discretized
data, detecting entanglement becomes harder for small r . 0.25
and large r & 1.5.



14 C O N C L U S I O N A N D O U T LO O K

������� ����������� We have used relative entropy and entropy
in the quantum mechanical phase space to describe equilibrium, un-
certainty and entanglement. In doing so, especially the concept of
relative entropy turned out to be an all-purpose tool. From our various
analyses, it is tempting to believe that distinguishability may be even
more fundamental than information. In any case, many more investi-
gations are needed to formulate physical laws with the methods of
information theory. For this purpose, relative entropy will certainly
be one of the fundamental tools. In the following, we discuss our
contributions successively and formulate open problems.

����������� In Chapter 5, we formulated a principle of inference in
terms of relative entropy for classical distributions and quantum states.
We have shown that it correctly predicts the uniform distribution and
the maximally mixed state as priors if no further information is given.
We demonstrated that relative entropy can be replaced by a true
distance measure, the Hellinger distance, allowing us to conclude that
the optimal prior corresponds to the central point on the manifold of
allowed distributions for a simple example. However, there are three
main open problems.

First, the complexity of the integral over allowed distributions or
states prevented us from implementing further constraints in a straight-
forward way. Although we have shown that the optimal prior is always
given by the expectation value over all allowed distributions or states,
it is left to provide methods to evaluate our principle in general cases.

Second, for continuous variables the aforementioned integral be-
comes a functional integral, complicating the integration procedure
even more. In this case, one should at least try to confirm that the
uniform prior is correctly predicted when considering a finite interval.

Third, it is interesting to check how generic the functional used
for comparing two distributions can be. It could be that all statistical
divergences are well-suited or even that only convexity with respect
to the argument which is integrated out is sufficient to arrive at a
satisfactory principle of inference.

In Chapter 6, we developed thermodynamics in terms of thermo-
dynamic reference states and relative entropy. This description goes
beyond equilibrium situations as the thermodynamic variables tem-
perature and chemical potential can be associated also with nonequi-
librium states. In this formulation the second law of thermodynamics
is a simple consequence of the monotonicity property of quantum

169
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relative entropy when assuming that thermodynamic reference states
are left invariant by time evolution.

Here, it is of special interest to see whether the principle of minimum
expected relative entropy is capable of predicting the canonical state
for a given energy expectation values along the lines of Section 3.3.
Also, a more detailed investigation regarding the CPTP and PTP maps
which leave the thermodynamic reference state invariant is in order.
In particular, finding an explicit form of the Kraus operators and
checking which other states are left invariant is desirable.

In Chapter 7, we derived second law-like inequalities for relativistic
fluids in the context of local QFT. We made use of relative (entangle-
ment) entropy rendering all involved quantities finite and well-defined.

As our discussion was rather conceptual, a more concrete formalism
needs to be developed. In particular, one has to find general ways to
compute relative entanglement entropies in QFTs, which is an ongoing
effort [272]. Also, our construction made use of the double light cone,
which is of course a simplifying assumption. It is of great importance
to generalize our ideas to general open systems. What we have in
mind here is a local version of the Schwinger-Keldysh formalism in
QFT, which is also a current project [273]. Such a formalism would
allow us to study the time evolution of a local region influenced by
the interaction with its complement. It would be of great interest to
verify our second law-like relations in such a scenario, at least for
some concrete examples.

����������� In Chapter 8, we formulated the uncertainty principle
in terms of relative entropy. Our REUR holds naturally for discrete as
well as continuous variables. In particular, it keeps its form in the
continuum limit.

For future work it is of particular interest to generalize this ansatz
to bipartite systems where one system acts as (quantum) memory. The
corresponding EURs are typically formulated in terms of conditional
entropy and can be applied for example for entanglement witnessing.
A formulation in terms of conditional relative entropy is desirable as
it would unify existing discrete and continuous variable relations.

In Chapter 9, we extended the concept of entropic uncertainty to
QFT culminating in the field-theoretic REUR. We argued that relative
entropy is the natural measure for entropic uncertainty in field theories
and showed that the relation remains divergence-free in the continuum
limit. In particular, we considered a free particle and concluded that
its entropic uncertainty agrees with the one of a single mode.

As our work marks the first step in this direction, it brings a lot of
questions and new problems.

First, it is interesting to investigate interacting theories, for example
a scalar field with a f4 interaction term. We expect that our argu-
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ment still works and that the resulting REUR acquires higher-order
correlation functions in the bound.

Second, one might study other field theories and corresponding
EURs as starting points. A formulation of the WL inequality for a scalar
quantum field has been worked out in [315]. One might also try to
find a formulation for spin degrees of freedom starting from the
MU relation, which is of interest for experimental purposes. Another
interesting type of theories are gauge theories as in this case the
functional integral is overcounting the physical field configurations,
such that a gauge fixing procedure is required.

Third, it is highly interesting to investigate how a field-theoretic
REUR can be used to constrain entanglement in field theories. It might
be easiest to analyze the Wehrl and quantum mutual informations in
this regard as every mutual information is UV-finite in the continuum
limit, but also formulations in terms of conditional relative entropy
might be possible.

In Chapter 10, we investigated EURs in phase space for various
classes of states. From our analytical and numerical evidence we con-
jectured that the WL relation is closest to equality almost everywhere.

Of course, it is natural to attempt to prove this conjecture. Let us
also recall that so far there is no proven EUR in phase space which is
tight for all pure Gaussian states. If such a relation is found, it might
itself be closer to equality than the WL relation almost everywhere.

Furthermore, one may conduct a similar comparison for quantum
spin systems described by an SU(2) algebra. In particular, one may
analyze the tightness of the MU relation and an EUR in phase space.
For quantum spins, the corresponding phase space has the geometry
of a 2-sphere embedded into the space spanned by the three spatial
components of the angular momentum operator J. Using spin coherent
states, a Husimi Q-distribution can be defined on this sphere, whose
entropy is constrained by an analog of the WL inequality.

������������ In Chapter 11, we investigated the Wehrl condi-
tional entropy and the Wehrl mutual information for the canonical
phase space. For the former we found an EUR strengthening the well-
known monotonicity property of the Wehrl entropy, while the latter
turned out to be a perfect witness for entanglement and a lower bound
on the entanglement entropy for pure states. As such, it was able to
witness the whole class of NOON states, which is not possible with
any other entropic criterion.

As pointed out already, it is of interest to extend these concepts to
QFT. More importantly, one should try to generalize these ideas to
other observables characterized by other algebras. Here, the crucial
advantage of the phase space approach may become visible. For ex-
ample, the mutual information of a full phase space distribution will
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always be a perfect witness for pure state entanglement, see e.g. [316]
for a study of spin observables described by a SU(2) algebra.

In Chapter 12, we constructed entropic separability criteria based on
the Husimi Q-distribution. These criteria circumvented angle tomogra-
phy and outperformed known entropic criteria, which we exemplified
with the dephased Schrödinger cat state. Our entropic criteria were
the first being capable of witnessing entanglement for this state for
the full parameter ranges.

Also here generalizations to other observables are most interesting.
Note that existing entropic separability criteria for discrete and con-
tinuous variable systems can not be related due to the divergences
the classical entropy exhibits in the continuum limit. In contrast, a
phase space distribution is always continuous and it is rather the
geometry of the phase space, which depends on the observables under
consideration.

Hence, the phase space approach would not only lead to new en-
tropic criteria for other systems, but would also constitute a system
independent approach to entropic separability criteria. Note that for
such generalizations it is probably more convenient to start from the
PPT criterion and apply a suitable EUR in phase space, similarly to the
argument presented in Chapter 13, instead of trying to generalize the
entropy power inequality.

In Chapter 13, we derived general separability criteria for concave
functions and generalized them to discretized distributions. Especially
the latter criteria should be of high interest to the experimental com-
munity. These criteria leave us with the freedom to optimize over the
set of concave functions, allowing us to witness entanglement where
our discretized entropic crtieria failed.

For future work, it is most interesting to apply these criteria in an
actual experiment. In particular, one might try to certify entanglement
where other criteria fail, for example because of too poor resolution,
which may be circumvented by choosing suitable concave functions.

Also, a generalization to quantum spins with SU(2) algebra should
be striven for as an analog of the Lieb-Solovej theorem has been proven
already in this case [85].



B I B L I O G R A P H Y

[1] W. Heisenberg, Physics and Philosophy: The Revolution in Modern
Science (New York: Harper, 1958).

[2] J. A. Wheeler, “Information, Physics, Quantum: The Search for
Links,” in Proceedings III International Symposium on Foundations
of Quantum Mechanics (1989), pp. 354–358.

[3] C. E. Shannon, “A mathematical theory of communication,”
Bell Syst. Tech. J. 27, 379–423 (1948).

[4] C. E. Shannon, “A mathematical theory of communication,”
Bell Syst. Tech. J. 27, 623–656 (1948).

[5] L. Boltzmann, Vorlesungen über Gastheorie, 1896.

[6] J. W. Gibbs, “On the Equilibrium of Heterogeneous Substances,”
Trans. Conn. Acad. Arts Sci. 3, 300–320 (1879).

[7] J. W. Gibbs, Elementary principles in statistical mechnics (Yale
University Press, 1902).

[8] J. von Neumann, Mathematical Foundations of Quantum Mechanics
(Princeton University Press, 1955).

[9] L. Szilard, “Über die Entropieverminderung in einem thermo-
dynamischen System bei Eingriffen intelligenter Wesen,” Z.
Phys. 53, 840–856 (1929).

[10] R. Landauer, “Information is Physical,” Phys. Today 44, 23–29
(1991).

[11] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information: 10th Anniversary Edition (Cambridge University
Press, 2010).

[12] M. M. Wilde, Quantum Information Theory (Cambridge Univer-
sity Press, 2013).

[13] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States,
2nd ed. (John Wiley and Sons, 2017).

[14] R. Jozsa and N. Linden, “On the Role of Entanglement in
Quantum-Computational Speed-Up,” Proc. Math. Phys. Eng.
Sci. 459, 2011–2032 (2003).

[15] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53
(2010).

[16] D. Marolf, “The black hole information problem: past, present,
and future,” Rep. Prog. Phys. 80, 092001 (2017).

173

https://philpapers.org/rec/WHEIPQ
https://philpapers.org/rec/WHEIPQ
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.11588/heidok.00013220
https://doi.org/10.1007/BF01341281
https://doi.org/10.1007/BF01341281
https://doi.org/10.1063/1.881299
https://doi.org/10.1063/1.881299
http://www.jstor.org/stable/3560059
http://www.jstor.org/stable/3560059
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1088/1361-6633/aa77cc


174 ������������

[17] J. Polchinski, “The Black Hole Information Problem,” in New
Frontiers in Fields and Strings (2016) Chap. 6, pp. 353–397.

[18] D. Harlow, “Jerusalem lectures on black holes and quantum
information,” Rev. Mod. Phys. 88, 015002 (2016).

[19] S. Kullback and R. A. Leibler, “On Information and Sufficiency,”
Ann. Math. Stat. 22, 79–86 (1951).

[20] S. Kullback, Information Theory and Statistics (Dover Publications,
1968).

[21] H. Umegaki, “Conditional expectation in an operator algebra.
IV. Entropy and information,” Kodai Math. Semin. Rep. 14,
59–85 (1962).

[22] A. Wehrl, “General properties of entropy,” Rev. Mod. Phys. 50,
221–260 (1978).

[23] A. Wehrl, “On the relation between classical and quantum-
mechanical entropy,” Rep. Math. Phys. 16, 353–358 (1979).

[24] E. T. Jaynes, “Information Theory and Statistical Mechanics,”
Phys. Rev. 106, 620–630 (1957).

[25] E. T. Jaynes, “Information Theory and Statistical Mechanics II,”
Phys. Rev. 108, 171–190 (1957).

[26] E. T. Jaynes, “Information Theory and Statistical Mechanics
(Notes by the lecturer),” in Statistical physics 3 (1963), pp. 181–
218.

[27] E. T. Jaynes, Probability Theory: The Logic of Science, edited by
G. L. Bretthorst (Cambridge University Press, 2003).

[28] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic
uncertainty relations and their applications,” Rev. Mod. Phys.
89, 015002 (2017).

[29] A. Hertz and N. J. Cerf, “Continuous-variable entropic uncer-
tainty relations,” J. Phys. A Math. Theor. 52, 173001 (2019).

[30] H. Maassen and J. B. M. Uffink, “Generalized entropic uncer-
tainty relations,” Phys. Rev. Lett. 60, 1103–1106 (1988).

[31] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Ren-
ner, “The uncertainty principle in the presence of quantum
memory,” Nat. Phys. 6, 659–662 (2010).

[32] I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for
information entropy in wave mechanics,” Commun. Math. Phys.
44, 129–132 (1975).

[33] R. L. Frank and E. H. Lieb, “Entropy and the Uncertainty
Principle,” Ann. Henri Poincaré 13, 1711–1717 (2012).

[34] E. H. Lieb, “Proof of an entropy conjecture of Wehrl,” Commun.
Math. Phys. 62, 35–41 (1978).

https://doi.org/10.1142/9789813149441_0006
https://doi.org/10.1142/9789813149441_0006
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.2996/kmj/1138844604
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1016/0034-4877(79)90070-3
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://bayes.wustl.edu/etj/articles/brandeis.pdf
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1088/1751-8121/ab03f3
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1038/nphys1734
https://doi.org/10.1007/BF01608825
https://doi.org/10.1007/BF01608825
https://doi.org/10.1007/s00023-012-0175-y
https://doi.org/10.1007/BF01940328
https://doi.org/10.1007/BF01940328


������������ 175

[35] N. J. Cerf and C. Adami, “Negative Entropy and Information
in Quantum Mechanics,” Phys. Rev. Lett. 79, 5194–5197 (1997).

[36] S. Popescu, A. Short, and A. Winter, “Entanglement and the
foundations of statistical mechanics,” Nat. Phys. 2, 754–758
(2006).

[37] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko,
P. M. Preiss, and M. Greiner, “Quantum thermalization through
entanglement in an isolated many-body system,” Science 353,
794–800 (2016).

[38] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukinand, M. Rispoli,
and M. Greiner, “Measuring entanglement entropy in a quan-
tum many-body system,” Nature 528, 77–83 (2015).

[39] J. Maldacena and L. Susskind, “Cool horizons for entangled
black holes,” Fortschr. Phys. 61, 781–811 (2013).

[40] S. N. Solodukhin, “Entanglement Entropy of Black Holes,”
Living Rev. Relativ. 14, 8 (2011).

[41] T. Nishioka, S. Ryu, and T. Takayanagi, “Holographic entangle-
ment entropy: an overview,” J. Phys. A Math. Theor. 42, 504008
(2009).

[42] O. Gühne and G. Tóth, “Entanglement detection,” Phys. Rep.
474, 1–75 (2009).

[43] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability
Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84,
2722–2725 (2000).

[44] R. Simon, “Peres-Horodecki Separability Criterion for Continu-
ous Variable Systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).

[45] S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entan-
gling Macroscopic Oscillators Exploiting Radiation Pressure,”
Phys. Rev. Lett. 88, 120401 (2002).

[46] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, “Charac-
terizing the entanglement of bipartite quantum systems,” Phys.
Rev. A 67, 022320 (2003).

[47] S. P. Walborn, B. G. Taketani, A. Salles, F. Toscano, and R. L. de
Matos Filho, “Entropic Entanglement Criteria for Continuous
Variables,” Phys. Rev. Lett. 103, 160505 (2009).

[48] S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and P. H. S.
Ribeiro, “Revealing Hidden Einstein-Podolsky-Rosen Nonlocal-
ity,” Phys. Rev. Lett. 106, 130402 (2011).

[49] A. Saboia, F. Toscano, and S. P. Walborn, “Family of continuous-
variable entanglement criteria using general entropy functions,”
Phys. Rev. A 83, 032307 (2011).

https://doi.org/10.1103/PhysRevLett.79.5194
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1038/nature15750
https://doi.org/10.1002/prop.201300020
https://doi.org/10.12942/lrr-2011-8
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.88.120401
https://doi.org/10.1103/PhysRevA.67.022320
https://doi.org/10.1103/PhysRevA.67.022320
https://doi.org/10.1103/PhysRevLett.103.160505
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevA.83.032307


176 ������������

[50] J. Schneeloch and G. A. Howland, “Quantifying high-dimen-
sional entanglement with Einstein-Podolsky-Rosen correlations,”
Phys. Rev. A 97, 042338 (2018).

[51] J. Schneeloch, C. C. Tison, M. L. Fanto, P. M. Alsing, and
G. A. Howland, “Quantifying entanglement in a 68-billion-
dimensional quantum state space,” Nat. Commun. 10, 1–7
(2019).

[52] H. Nyquist, “Certain Factors Affecting Telegraph Speed,” Trans.
AIEE XLIII, 412–422 (1924).

[53] H. Nyquist, “Certain Topics in Telegraph Transmission Theory,”
Trans. AIEE 47, 617–644 (1928).

[54] R. V. L. Hartley, “Transmission of Information,” Bell Syst. Tech.
J. 7, 535–563 (1928).

[55] C. E. Shannon and W. Weaver, The Mathematical Theory of Com-
munication (The University Of Illinois Press, 1964).

[56] T. M. Cover and J. A. Thomas, Elements of Information Theory,
Second Edition (John Wiley and Sons, 2006).

[57] P.-S. Laplace, A Philosophical Essay On Probabilities, trans. by F. W.
Truscott and F. L. Emory (John Wiley & Sons and Chapman &
Hall, 1902).

[58] A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung
(Verlag von Julius Springer, 1933).

[59] V. Vedral, “The role of relative entropy in quantum information
theory,” Rev. Mod. Phys. 74, 197–234 (2002).

[60] M. Tribus and E. C. McIrvine, “Energy and Information,” Sci.
Am. 225, 179–190 (1971).

[61] R. Jancel, Foundations of Classical and Quantum Statistical Me-
chanics: International Series of Monographs in Natural Philosophy
(Elsevier, 1963).

[62] W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Ver-
lag Berlin, 2001).

[63] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum infor-
mation,” Rev. Mod. Phys. 84, 621 (2012).

[64] A. Hertz, “Exploring continuous-variable entropic uncertainty
relations and separability criteria in quantum phase space,”
PhD thesis (Université libre de Bruxelles, 2018).

[65] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
“Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).

[66] J. Bub, “Quantum Mechanics is About Quantum Information,”
Found. Phys. 35, 541–560 (2005).

https://doi.org/10.1103/PhysRevA.97.042338
https://doi.org/10.1038/s41467-019-10810-z
https://doi.org/10.1038/s41467-019-10810-z
https://doi.org/10.1109/T-AIEE.1924.5060996
https://doi.org/10.1109/T-AIEE.1924.5060996
https://doi.org/10.1109/T-AIEE.1928.5055024
https://archive.org/details/bstj7-3-535/page/n5/mode/2up
https://archive.org/details/bstj7-3-535/page/n5/mode/2up
https://doi.org/10.1103/RevModPhys.74.197
https://www.jstor.org/stable/10.2307/24923125
https://www.jstor.org/stable/10.2307/24923125
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1007/s10701-004-2010-x


������������ 177

[67] K. Kraus, States, Effects and Operations: Fundamental Notions of
Quantum Theory, Lecture Notes in Physics 180 (Springer-Verlag
Berlin Heidelberg, 1983).

[68] M. Ozawa, “Quantum measuring processes of continuous ob-
servables,” J. Math. Phys. 25, 79–87 (1984).

[69] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quan-
tifying Entanglement,” Phys. Rev. Lett. 78, 2275–2279 (1997).

[70] P. Pechukas, “Reduced Dynamics Need Not Be Completely
Positive,” Phys. Rev. Lett. 73, 1060–1062 (1994).

[71] S. Milz, F. A. Pollock, and K. Modi, “An Introduction to Opera-
tional Quantum Dynamics,” Open Syst. Inf. Dyn. 24, 1740016
(2017).

[72] R. Beneduci, “Notes on Naimark’s dilation theorem,” J. Phys.
Conf. Ser. 1638, 012006 (2020).

[73] A. Mueller-Hermes and D. Reeb, “Monotonicity of the Quan-
tum Relative Entropy Under Positive Maps,” Ann. Henri Poincaré
18, 1777–1788 (2017).

[74] M. Berta, M. Lemm, and M. M. Wilde, “Monotonicity of quan-
tum relative entropy and recoverability,” Quantum Inf. Comp.
15, 1333–1354 (2015).

[75] A. A. Kuznetsova, “Conditional Entropy for Infinite-Dimensional
Quantum Systems,” Theory Probab. Its Appl. 55, 709–717
(2011).

[76] S. A. S. Eddington, The Nature of the Physical World (Cambridge
University Press, 1948).

[77] P. Walters, An Introduction to Ergodic Theory (Springer-Verlag
New York, 1982).

[78] J. M. Deutsch, “Quantum statistical mechanics in a closed sys-
tem,” Phys. Rev. A 43, 2046–2049 (1991).

[79] M. Srednicki, “Chaos and quantum thermalization,” Phys. Rev.
E 50, 888–901 (1994).

[80] M. Rigol, V. Dunjko, and M. Olshanii, “Thermalization and its
mechanism for generic isolated quantum systems,” Nature 452,
854–858 (2008).

[81] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics,” Adv. Phys. 65, 239–362 (2016).

[82] J. M. Deutsch, “Eigenstate thermalization hypothesis,” Rep.
Prog. Phys. 81, 082001 (2018).

[83] E. H. Lieb and J. Yngvason, “The physics and mathematics
of the second law of thermodynamics,” Phys. Rep. 310, 1–96
(1999).

https://doi.org/10.1063/1.526000
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevLett.73.1060
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1088/1742-6596/1638/1/012006
https://doi.org/10.1088/1742-6596/1638/1/012006
https://doi.org/10.1007/s00023-017-0550-9
https://doi.org/10.1007/s00023-017-0550-9
https://dl.acm.org/doi/10.5555/2871378.2871383
https://doi.org/10.1137/S0040585X97985121
https://doi.org/10.1137/S0040585X97985121
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1016/S0370-1573(98)00082-9
https://doi.org/10.1016/S0370-1573(98)00082-9


178 ������������

[84] E. H. Lieb and J. Yngvason, “The entropy concept for non-
equilibrium states,” Proc. Phys. Soc. A 469, 1–15 (2013).

[85] E. H. Lieb and J. Yngvason, “Entropy meters and the entropy
of non-extensive systems,” Proc. Phys. Soc. A 470, 1–9 (2014).

[86] E. Zanchini, “On the definition of extensive property energy
by the first postulate of thermodynamics,” Found. Phys. 16,
923–935 (1986).

[87] E. Zanchini, “Thermodynamics: Energy of closed and open
systems,” Il Nuovo Cimento B 101, 453–465 (1988).

[88] E. Zanchini, “Thermodynamics: Energy of nonsimple systems
and second postulate,” Il Nuovo Cimento B 107, 123–139 (1992).

[89] E. Zanchini and G. P. Beretta, “Rigorous Axiomatic Definition
of Entropy Valid Also for Non-Equilibrium States,” AIP Conf.
Proc. 1033, 296–301 (2008).

[90] E. Zanchini and G. P. Beretta, “Removing Heat and Conceptual
Loops from the Definition of Entropy,” Int. J. Thermodyn. 13,
67–76 (2010).

[91] G. P. Beretta and E. Zanchini, “Rigorous and General Definition
of Thermodynamic Entropy,” in Thermodynamics (IntechOpen,
2011), pp. 23–50.

[92] E. Zanchini and G. P. Beretta, “Recent Progress in the Definition
of Thermodynamic Entropy,” Entropy 16, 1547–1570 (2014).

[93] G. P. Beretta and E. Zanchini, “New definitions of thermo-
dynamic temperature and entropy not based on the concepts
of heat and thermal reservoir,” Atti della Accademia Pelori-
tana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e
Naturali 97, 1–28 (2019).

[94] W.-M. Zhang, D. H. Feng, and R. Gilmore, “Coherent states:
Theory and some applications,” Rev. Mod. Phys. 62, 867–927
(1990).

[95] A. M. Perelomov, “Coherent states for arbitrary Lie group,”
Commun. Math. Phys. 26, 222–236 (1972).

[96] J. M. Radcliffe, “Some properties of coherent spin states,” J.
Phys. A 4, 313–323 (1971).

[97] R. Gilmore, “On Properties Of Coherent States,” Rev. Mex. de
Fis. 23, 143–187 (1974).

[98] A. M. Perelomov, Generalized Coherent States and Their Applica-
tions (Springer, Berlin, Heidelberg, 1986).

[99] A. Z. Goldberg, A. B. Klimov, M. Grassl, G. Leuchs, and L. L.
Sánchez-Soto, “Extremal quantum states,” AVS Quantum Sci.
2, 044701 (2020).

https://doi.org/10.1098/rspa.2013.0408
https://doi.org/10.1098/rspa.2014.0192
https://doi.org/10.1007/BF00765339
https://doi.org/10.1007/BF00765339
https://doi.org/10.1007/BF02828923
https://doi.org/10.1007/BF02722911
https://doi.org/10.1063/1.2979048
https://doi.org/10.1063/1.2979048
https://doi.org/10.5772/13371
https://doi.org/10.3390/e16031547
https://doi.org/10.1478/AAPP.97S1A1
https://doi.org/10.1478/AAPP.97S1A1
https://doi.org/10.1478/AAPP.97S1A1
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1007/BF01645091
https://doi.org/10.1088/0305-4470/4/3/009
https://doi.org/10.1088/0305-4470/4/3/009
http://www.physics.drexel.edu/~bob/GroupTheory/Prop_Coh_States.pdf
http://www.physics.drexel.edu/~bob/GroupTheory/Prop_Coh_States.pdf
https://doi.org/10.1116/5.0025819
https://doi.org/10.1116/5.0025819


������������ 179

[100] K. Husimi, “Some formal properties of the density matrix,”
Proc. Phys.-Math. Soc. Jap. 3rd Ser. 22, 264–314 (1940).

[101] N. D. Cartwright, “A non-negative Wigner-type distribution,”
Phys. A 83, 210–212 (1976).

[102] H.-W. Lee, “Theory and application of the quantum phase-
space distribution functions,” Phys. Rep. 259, 147–211 (1995).

[103] E. P. Wigner, “On the Quantum Correction For Thermodynamic
Equilibrium,” Phys. Rev. 40, 749–759 (1932).

[104] R. J. Glauber, “Coherent and Incoherent States of the Radiation
Field,” Phys. Rev. 131, 2766–2788 (1963).

[105] E. C. G. Sudarshan, “Equivalence of Semiclassical and Quantum
Mechanical Descriptions of Statistical Light Beams,” Phys. Rev.
Lett. 10, 277–279 (1963).

[106] R. Hudson, “When is the wigner quasi-probability density
non-negative?” Rep. Math. Phys. 6, 249–252 (1974).

[107] J. Williamson, “On the Algebraic Problem Concerning the Nor-
mal Forms of Linear Dynamical Systems,” Am. J. Math. 58,
141–163 (1936).

[108] W. Heisenberg, “Über den anschaulichen Inhalt der quanten-
theoretischen Kinematik und Mechanik,” Z. Phys. 43, 172–198
(1927).

[109] H. P. Robertson, “The Uncertainty Principle,” Phys. Rev. 34,
163–164 (1929).

[110] E. Schrödinger, “Zum Heisenbergschen Unschärfeprinzip,”
Sitzungsberichte der Preußischen Akademie der Wissenschaften.
Physikalisch-mathematische Klasse 14, 296–303 (1930).

[111] H. P. Robertson, “A general formulation of the uncertainty
principle and its classical interpretation,” Phys. Rev. 35, 667
(1930).

[112] R. Simon, N. Mukunda, and B. Dutta, “Quantum-noise matrix
for multimode systems: U(n) invariance, squeezing, and normal
forms,” Phys. Rev. A 49, 1567–1583 (1994).

[113] I. Białynicki-Birula and Ł. Rudnicki, “Entropic Uncertainty Re-
lations in Quantum Physics,” in Statistical Complexity (Springer,
Dordrecht, 2011).

[114] H. Everett, “’Relative State’ Formulation of Quantum Mechan-
ics,” Rev. Mod. Phys. 29, 454–462 (1957).

[115] I. I. Hirschman, “A Note on Entropy,” Am. J. Math. 79, 152–156
(1957).

[116] W. Beckner, “Inequalities in Fourier Analysis,” Ann. Math. 102,
159–182 (1975).

https://doi.org/10.11429/ppmsj1919.22.4_264
https://doi.org/10.1016/0378-4371(76)90145-X
https://doi.org/https://doi.org/10.1016/0370-1573(95)00007-4
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/https://doi.org/10.1016/0034-4877(74)90007-X
https://www.jstor.org/stable/pdf/2371062.pdf
https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01397280
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1007/978-90-481-3890-6_1
https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.2307/2372390
https://doi.org/10.2307/2372390
https://doi.org/10.2307/1970980
https://doi.org/10.2307/1970980


180 ������������

[117] E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungs-
typen,” Z. Phys. 44, 326–352 (1927).

[118] H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig,
1928).

[119] A. Hertz, M. G. Jabbour, and N. J. Cerf, “Entropy-power un-
certainty relations: towards a tight inequality for all Gaussian
pure states,” J. Phys. A Math. Theor. 50, 385301 (2017).

[120] A. Hertz, O. Oreshkov, and N. J. Cerf, “Multicopy uncertainty
observable inducing a symplectic-invariant uncertainty relation
in position and momentum phase space,” Phys. Rev. A 100,
052112 (2019).

[121] Z. Van Herstraeten and N. J. Cerf, “Quantum Wigner entropy,”
Phys. Rev. A 104, 042211 (2021).

[122] Z. V. Herstraeten, M. G. Jabbour, and N. J. Cerf, “Continuous
majorization in quantum phase space,” arXiv:2108.09167, 1–13
(2021).

[123] M. Rumin, “Balanced distribution-energy inequalities and re-
lated entropy bounds,” Duke Math. J. 160, 567–597 (2011).

[124] E. H. Lieb and J. P. Solovej, “Proof of an entropy conjecture for
Bloch coherent spin states and its generalizations,” Acta Math.
212, 379–398 (2014).

[125] M. Grabowski, “Wehrl-Lieb’s inequality for entropy and the
uncertainty relation,” Rep. Math. Phys. 20, 153–155 (1984).

[126] E. A. Carlen, “Some integral identities and inequalities for
entire functions and their application to the coherent state
transform,” J. Funct. Anal. 97, 231–249 (1991).

[127] E. H. Lieb and R. Seiringer, “Stronger subadditivity of entropy,”
Phys. Rev. A 71, 062329 (2005).

[128] M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer-
Verlag Berlin Heidelberg, 1993).

[129] E. H. Lieb and J. P. Solovej, “Proof of the Wehrl-type Entropy
Conjecture for Symmetric SU(N) Coherent States,” Commun.
Math. Phys. 348, 567–578 (2016).

[130] E. H. Lieb and J. P. Solovej, “Wehrl-type coherent state entropy
inequalities for SU(1,1) and its AX+B subgroup,” in Partial dif-
ferential equations, spectral theory, and mathematical physics (2021),
pp. 301–314.

[131] D. Deutsch, “Uncertainty in Quantum Measurements,” Phys.
Rev. Lett. 50, 631–633 (1983).

[132] K. Kraus, “Complementary observables and uncertainty rela-
tions,” Phys. Rev. D 35, 3070–3075 (1987).

https://doi.org/10.1007/BF01391200
https://doi.org/10.1088/1751-8121/aa852f
https://doi.org/10.1103/PhysRevA.100.052112
https://doi.org/10.1103/PhysRevA.100.052112
https://doi.org/10.1103/PhysRevA.104.042211
https://arxiv.org/abs/2108.09167
https://doi.org/10.1215/00127094-1444305
https://doi.org/10.1007/s11511-014-0113-6
https://doi.org/10.1007/s11511-014-0113-6
https://doi.org/10.1016/0034-4877(84)90029-6
https://doi.org/10.1016/0022-1236(91)90022-W
https://doi.org/10.1103/PhysRevA.71.062329
https://doi.org/10.1007/s00220-016-2596-9
https://doi.org/10.1007/s00220-016-2596-9
https://doi.org/10.4171/ECR/18-1/18
https://doi.org/10.4171/ECR/18-1/18
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevD.35.3070


������������ 181

[133] P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, “Uncertainty
Relations from Simple Entropic Properties,” Phys. Rev. Lett.
108, 210405 (2012).

[134] M. Krishna and K. R. Parthasarathy, “An Entropic Uncertainty
Principle for Quantum Measurements,” Ind. J. Stat. 64, 842–851
(2002).

[135] M. Tomamichel, “A Framework for Non-Asymptotic Quantum
Information Theory,” PhD thesis (Eidgenössische Technische
Hochschule Zürich, 2012).

[136] P. J. Coles and M. Piani, “Improved entropic uncertainty re-
lations and information exclusion relations,” Phys. Rev. A 89,
022112 (2014).

[137] M. Rumin, “An Entropic Uncertainty Principle for Positive
Operator Valued Measures,” Lett. Math. Phys. 100, 291–308
(2012).

[138] G. D. Palma and D. Trevisan, “The Conditional Entropy Power
Inequality for Bosonic Quantum Systems,” Commun. Math.
Phys. 360, 639–662 (2018).

[139] G. D. Palma, “The Wehrl entropy has Gaussian optimizers,”
Lett. Math. Phys. 108, 97–116 (2018).

[140] J. M. Renes and J.-C. Boileau, “Conjectured Strong Comple-
mentary Information Tradeoff,” Phys. Rev. Lett. 103, 020402
(2009).

[141] M. Tomamichel and R. Renner, “Uncertainty Relation for Smoo-
th Entropies,” Phys. Rev. Lett. 106, 110506 (2011).

[142] B. Bergh and M. Gärttner, “Entanglement detection in quantum
many-body systems using entropic uncertainty relations,” Phys.
Rev. A 103, 052412 (2021).

[143] B. Bergh and M. Gärttner, “Experimentally Accessible Bounds
on Distillable Entanglement from Entropic Uncertainty Rela-
tions,” Phys. Rev. Lett. 126, 190503 (2021).

[144] R. L. Frank and E. H. Lieb, “Extended Quantum Conditional
Entropy and Quantum Uncertainty Inequalities,” Commun.
Math. Phys. 323, 487–495 (2013).

[145] F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz, and M. Chris-
tandl, “Position-momentum uncertainty relations in the pres-
ence of quantum memory,” J. Math. Phys. 55, 122205 (2014).

[146] M. J. W. Hall, “Information Exclusion Principle for Comple-
mentary Observables,” Phys. Rev. Lett. 74, 3307–3311 (1995).

[147] M. J. W. Hall, “Quantum information and correlation bounds,”
Phys. Rev. A 55, 100–113 (1997).

https://doi.org/10.1103/PhysRevLett.108.210405
https://doi.org/10.1103/PhysRevLett.108.210405
https://doi.org/https://www.jstor.org/stable/25051432
https://doi.org/https://www.jstor.org/stable/25051432
https://doi.org/10.1103/PhysRevA.89.022112
https://doi.org/10.1103/PhysRevA.89.022112
https://doi.org/10.1007/s11005-011-0543-4
https://doi.org/10.1007/s11005-011-0543-4
https://doi.org/10.1007/s00220-017-3082-8
https://doi.org/10.1007/s00220-017-3082-8
https://doi.org/10.1007/s11005-017-0994-3
https://doi.org/10.1103/PhysRevLett.103.020402
https://doi.org/10.1103/PhysRevLett.103.020402
https://doi.org/10.1103/PhysRevLett.106.110506
https://doi.org/10.1103/PhysRevA.103.052412
https://doi.org/10.1103/PhysRevA.103.052412
https://doi.org/10.1103/PhysRevLett.126.190503
https://doi.org/10.1007/s00220-013-1775-1
https://doi.org/10.1007/s00220-013-1775-1
https://doi.org/10.1063/1.4903989
https://doi.org/10.1103/PhysRevLett.74.3307
https://doi.org/10.1103/PhysRevA.55.100


182 ������������

[148] P. Busch, P. Lahti, and R. F. Werner, “Colloquium: Quantum
root-mean-square error and measurement uncertainty rela-
tions,” Rev. Mod. Phys. 86, 1261–1281 (2014).

[149] F. Buscemi, M. J. W. Hall, M. Ozawa, and M. M. Wilde, “Noise
and Disturbance in Quantum Measurements: An Information-
Theoretic Approach,” Phys. Rev. Lett. 112, 050401 (2014).

[150] M. J. W. Hall, “Almost-periodic time observables for bound
quantum systems,” J. Phys. A Math. Theor. 41, 255301 (2008).

[151] A. Boette, R. Rossignoli, N. Gigena, and M. Cerezo, “System-
time entanglement in a discrete-time model,” Phys. Rev. A 93,
062127 (2016).

[152] M. J. W. Hall, “Entropic Heisenberg limits and uncertainty
relations from the Holevo information bound,” J. Phys. A Math.
Theor. 51, 364001 (2018).

[153] P. J. Coles, V. Katariya, S. Lloyd, I. Marvian, and M. M. Wilde,
“Entropic Energy-Time Uncertainty Relation,” Phys. Rev. Lett.
122, 100401 (2019).

[154] I. Bialynicki-Birula, “Formulation of the uncertainty relations
in terms of the Rényi entropies,” Phys. Rev. A 74, 052101 (2006).

[155] H. Casini, M. Huerta, J. M. Magán, and D. Pontello, “Entangle-
ment entropy and superselection sectors. Part I. Global symme-
tries,” J. High Energy Phys. 2020, 14 (2020).

[156] H. Casini, M. Huerta, J. M. Magán, and D. Pontello, “Entropic
order parameters for the phases of QFT,” J. High Energy Phys.
2021, 277 (2021).

[157] J. M. Magan and D. Pontello, “Quantum complementarity
through entropic certainty principles,” Phys. Rev. A 103, 012211
(2021).

[158] L. Susskind and A. Friedman, Quantum Mechanics: The Theoreti-
cal Minimum (Penguin, 2015).

[159] M. B. Plenio and S. Virmani, “An Introduction to Entanglement
Measures,” Quantum Inf. Comput. 7, 1–51 (2007).

[160] V. Vedral and M. B. Plenio, “Entanglement measures and pu-
rification procedures,” Phys. Rev. A 57, 1619–1633 (1998).

[161] S. Gharibian, “Strong NP-Hardness of the Quantum Separabil-
ity Problem,” Quantum Inf. Comput. 10, 343–360 (2010).

[162] Y. Huang, “Computing quantum discord is NP-complete,” 16,
033027 (2014).

[163] A. Peres, “Separability Criterion for Density Matrices,” Phys.
Rev. Lett. 77, 1413–1415 (1996).

https://doi.org/10.1103/RevModPhys.86.1261
https://doi.org/10.1103/PhysRevLett.112.050401
https://doi.org/10.1088/1751-8113/41/25/255301
https://doi.org/10.1103/PhysRevA.93.062127
https://doi.org/10.1103/PhysRevA.93.062127
https://doi.org/10.1088/1751-8121/aad50f
https://doi.org/10.1088/1751-8121/aad50f
https://doi.org/10.1103/PhysRevLett.122.100401
https://doi.org/10.1103/PhysRevLett.122.100401
https://doi.org/10.1103/PhysRevA.74.052101
https://doi.org/10.1007/JHEP02(2020)014
https://doi.org/10.1007/JHEP04(2021)277
https://doi.org/10.1007/JHEP04(2021)277
https://link.aps.org/doi/10.1103/PhysRevA.103.012211
https://link.aps.org/doi/10.1103/PhysRevA.103.012211
https://doi.org/10.5555/2011706.2011707
https://doi.org/10.1103/PhysRevA.57.1619
https://doi.org/10.5555/2011350.2011361
https://doi.org/10.1088/1367-2630/16/3/033027
https://doi.org/10.1088/1367-2630/16/3/033027
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413


������������ 183

[164] M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of
mixed states: necessary and sufficient conditions,” Phys. Lett.
A 223, 1–8 (1996).

[165] M. Horodecki, P. Horodecki, and R. Horodecki, “Mixed-State
Entanglement and Distillation: Is there a “Bound” Entangle-
ment in Nature?” Phys. Rev. Lett. 80, 5239–5242 (1998).

[166] H. Nha and M. S. Zubairy, “Uncertainty Inequalities as Entan-
glement Criteria for Negative Partial-Transpose States,” Phys.
Rev. Lett. 101, 130402 (2008).

[167] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechan-
ical Description of Physical Reality Be Considered Complete?”
Phys. Rev. 47, 777–780 (1935).

[168] E. Shchukin and W. Vogel, “Inseparability Criteria for Contin-
uous Bipartite Quantum States,” Phys. Rev. Lett. 95, 230502
(2005).

[169] E. V. Shchukin and W. Vogel, “Nonclassical moments and their
measurement,” Phys. Rev. A 72, 043808 (2005).

[170] M. Horodecki and P. Horodecki, “Reduction criterion of sep-
arability and limits for a class of distillation protocols,” Phys.
Rev. A 59, 4206–4216 (1999).

[171] N. J. Cerf, C. Adami, and R. M. Gingrich, “Reduction criterion
for separability,” Phys. Rev. A 60, 898–909 (1999).

[172] O. Gühne, “Characterizing Entanglement via Uncertainty Rela-
tions,” Phys. Rev. Lett. 92, 117903 (2004).

[173] O. Gühne and M. Lewenstein, “Entropic uncertainty relations
and entanglement,” Phys. Rev. A 70, 022316 (2004).

[174] V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quan-
tum metrology,” Nat. Photon. 5, 222–229 (2011).

[175] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “Quantum
source of entropy for black holes,” Phys. Rev. D 34, 373–383
(1986).

[176] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71, 666–669
(1993).

[177] C. Callan and F. Wilczek, “On geometric entropy,” Phys. Lett.
B 333, 55–61 (1994).

[178] J. H. Cooperman and M. A. Luty, “Renormalization of entan-
glement entropy and the gravitational effective action,” J. High
Energy Phys. 2014, 45 (2014).

[179] S. Ryu and T. Takayanagi, “Aspects of holographic entangle-
ment entropy,” J. High Energy Phys. 2006, 045 (2006).

https://doi.org/https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.101.130402
https://doi.org/10.1103/PhysRevLett.101.130402
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.95.230502
https://doi.org/10.1103/PhysRevLett.95.230502
https://doi.org/10.1103/PhysRevA.72.043808
https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1103/PhysRevA.60.898
https://doi.org/10.1103/PhysRevLett.92.117903
https://doi.org/10.1103/PhysRevA.70.022316
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1007/JHEP12(2014)045
https://doi.org/10.1007/JHEP12(2014)045
https://doi.org/10.1088/1126-6708/2006/08/045


184 ������������

[180] S. Ryu and T. Takayanagi, “Holographic Derivation of Entan-
glement Entropy from the AdS/CFT Correspondence,” Phys.
Rev. Lett. 96, 181602 (2006).

[181] H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation
of holographic entanglement entropy,” J. High Energy Phys.
2011, 36 (2011).

[182] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, “Entanglement
in many-body systems,” Rev. Mod. Phys. 80, 517–576 (2008).

[183] J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium: Area laws
for the entanglement entropy,” Rev. Mod. Phys. 82, 277–306
(2010).

[184] P. Calabrese, J. Cardy, and B. Doyon, “Entanglement entropy in
extended quantum systems,” J. Phys. A Math. Theor. 42, 500301
(2009).

[185] D. E. Kharzeev and E. M. Levin, “Deep inelastic scattering as a
probe of entanglement,” Phys. Rev. D 95, 114008 (2017).

[186] E. Shuryak and I. Zahed, “Regimes of the Pomeron and its
Intrinsic Entropy,” Ann. Phys. (NY) 396, 1–17 (2018).

[187] J. Berges, S. Floerchinger, and R. Venugopalan, “Dynamics of
entanglement in expanding quantum fields,” J. High Energy
Phys. 2018, 145 (2018).

[188] J. Berges, S. Floerchinger, and R. Venugopalan, “Thermal exci-
tation spectrum from entanglement in an expanding quantum
string,” Phys. Lett. B 778, 442–446 (2018).

[189] A. Kovner, M. Lublinsky, and M. Serino, “Entanglement en-
tropy, entropy production and time evolution in high energy
QCD,” Phys. Lett. B 792, 4–15 (2019).

[190] N. Armesto, F. Domínguez, A. Kovner, M. Lublinsky, and V. V.
Skokov, “The Color Glass Condensate density matrix: Lindblad
evolution, entanglement entropy and Wigner functional,” J.
High Energy Phys. 2019, 25 (2019).

[191] Z. Tu, D. E. Kharzeev, and T. Ullrich, “The EPR paradox and
quantum entanglement at sub-nucleonic scales,” Phys. Rev. Lett.
124, 062001 (2020).

[192] B. Hatfield, Quantum Field Theory Of Point Particles And Strings
(CRC Press, 2018).

[193] E. Witten, “APS Medal for Exceptional Achievement in Re-
search: Invited article on entanglement properties of quantum
field theory,” Rev. Mod. Phys. 90, 045003 (2018).

[194] H. Casini and M. Huerta, “Entanglement entropy in free quan-
tum field theory,” J. Phys. A Math. Theor. 42, 504007 (2009).

https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1103/PhysRevD.95.114008
https://doi.org/10.1016/j.aop.2018.06.008
https://doi.org/10.1007/JHEP04(2018)145
https://doi.org/10.1007/JHEP04(2018)145
https://doi.org/10.1016/j.physletb.2018.01.068
https://doi.org/10.1016/j.physletb.2018.10.043
https://doi.org/10.1007/JHEP05(2019)025
https://doi.org/10.1007/JHEP05(2019)025
https://doi.org/10.1103/PhysRevLett.124.062001
https://doi.org/10.1103/PhysRevLett.124.062001
https://doi.org/10.1103/RevModPhys.90.045003
https://doi.org/10.1088/1751-8113/42/50/504007


������������ 185

[195] P. Calabrese and J. Cardy, “Entanglement entropy and quantum
field theory,” J. Stat. Mech. Theory Exp. 2004, P06002 (2004).

[196] M. Headrick, “Lectures on entanglement entropy in field theory
and holography,” arXiv:1907.08126, 1–66 (2019).

[197] K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s
functions,” Commun. Math. Phys. 31, 83–112 (1973).

[198] K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s
functions II,” Commun. Math. Phys. 42, 281–305 (1975).

[199] R. Haag, Local quantum physics: Fields, particles, algebras (Springer-
Verlag Berlin Heidelberg, 1996).

[200] A. Jaffe and E. Witten, “Quantum Yang-Mills Theory,” Clay
Mathematics Institute, 1–14 (2000).

[201] L. V. Keldysh, “Diagram Technique For Nonequilibrium Pro-
cesses,” Soviet Physics JETP 20, 1018–1026 (1964).

[202] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics:
Green’s Function Methods in Equilibrium and Nonequilibrium Prob-
lems (CRC Press, 1962).

[203] H. Reeh and S. Schlieder, “Bemerkungen zur unitäräquivalenz
von lorentzinvarianten feldern,” Il Nuovo Cimento (1955-1965)
22, 1051–1068 (1961).

[204] D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett.
71, 1291–1294 (1993).

[205] S. K. Foong and S. Kanno, “Proof of Page’s conjecture on the
average entropy of a subsystem,” Phys. Rev. Lett. 72, 1148–1151
(1994).

[206] S. Sen, “Average Entropy of a Quantum Subsystem,” Phys. Rev.
Lett. 77, 1–3 (1996).

[207] T. Hartman, Lectures on Quantum Gravity and Black Holes, 2015.

[208] H. Araki, “Relative Entropy for States of von Neumann Alge-
bras II,” Publ. Res. Inst. Math. Sci. 13, 173–192 (1977).

[209] S. Hollands and K. Sanders, Entanglement Measures and their
Properties in Quantum Field Theory (Springer, 2018).

[210] H. Casini, “Relative entropy and the Bekenstein bound,” Class.
Quantum Gravity 25, 205021 (2008).

[211] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, “Proof of a
quantum Bousso bound,” Phys. Rev. D 90, 044002 (2014).

[212] R. Bousso, H. Casini, Z. Fisher, and J. Maldacena, “Entropy on
a null surface for interacting quantum field theories and the
Bousso bound,” Phys. Rev. D 91, 084030 (2015).

[213] D. D. Blanco, H. Casini, L.-Y. Hung, and R. C. Myers, “Relative
entropy and holography,” J. High Energy Phys. 2013, 60 (2013).

https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/1907.08126
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01608978
http://www.claymath.org/sites/default/files/yangmills.pdf
http://www.claymath.org/sites/default/files/yangmills.pdf
http://www.claymath.org/sites/default/files/yangmills.pdf
http://www.claymath.org/sites/default/files/yangmills.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
https://doi.org/10.1007/BF02787889
https://doi.org/10.1007/BF02787889
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.77.1
https://doi.org/10.1103/PhysRevLett.77.1
https://doi.org/10.2977/prims/1195190105
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1088/0264-9381/25/20/205021
https://doi.org/10.1103/PhysRevD.90.044002
https://doi.org/10.1103/PhysRevD.91.084030
https://doi.org/10.1007/JHEP08(2013)060


186 ������������

[214] A. C. Wall, “Proof of the generalized second law for rapidly
evolving Rindler horizons,” Phys. Rev. D 82, 124019 (2010).

[215] A. C. Wall, “Proof of the generalized second law for rapidly
changing fields and arbitrary horizon slices,” Phys. Rev. D 85,
104049 (2012).

[216] A. C. Wall, “Erratum: Proof of the generalized second law for
rapidly changing fields and arbitrary horizon slices [Phys. Rev.
D 85, 104049 (2012)],” Phys. Rev. D 87, 069904 (2013).

[217] R. E. Arias, D. D. Blanco, H. Casini, and M. Huerta, “Local
temperatures and local terms in modular Hamiltonians,” Phys.
Rev. D 95, 065005 (2017).

[218] N. Lashkari, “Relative Entropies in Conformal Field Theory,”
Phys. Rev. Lett. 113, 051602 (2014).

[219] N. Lashkari, “Modular Hamiltonian for Excited States in Con-
formal Field Theory,” Phys. Rev. Lett. 117, 041601 (2016).

[220] G. Sárosi and T. Ugajin, “Relative entropy of excited states in
two dimensional conformal field theories,” J. High Energy Phys.
2016, 114 (2016).

[221] T. Ugajin, “Mutual information of excited states and relative
entropy of two disjoint subsystems in CFT,” J. High Energy
Phys. 2017, 184 (2017).

[222] P. Ruggiero and P. Calabrese, “Relative entanglement entropies
in 1+1-dimensional conformal field theories,” J. High Energy
Phys. 2017, 39 (2017).

[223] D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, “Rela-
tive entropy equals bulk relative entropy,” J. High Energy Phys.
2016, 4 (2016).

[224] T. Takayanagi, T. Ugajin, and K. Umemoto, “Towards an entan-
glement measure for mixed states in CFTs based on relative
entropy,” J. High Energy Phys. 2018, 166 (2018).

[225] M. M. Wolf, “Violation of the Entropic Area Law for Fermions,”
Phys. Rev. Lett. 96, 010404.

[226] D. Gioev and I. Klich, “Entanglement Entropy of Fermions in
Any Dimension and the Widom Conjecture,” Phys. Rev. Lett.
96, 100503 (2006).

[227] E. Fradkin and J. E. Moore, “Entanglement Entropy of 2D
Conformal Quantum Critical Points: Hearing the Shape of a
Quantum Drum,” Phys. Rev. Lett. 97, 050404 (2006).

[228] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method,
A Unified Approach to Combinatorial Optimization, Monte-Carlo
Simulation and Machine Learning (Springer New York, 2004).

https://doi.org/10.1103/PhysRevD.82.124019
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1103/PhysRevD.85.104049
https://doi.org/10.1103/PhysRevD.87.069904
https://doi.org/10.1103/PhysRevD.95.065005
https://doi.org/10.1103/PhysRevD.95.065005
https://doi.org/10.1103/PhysRevLett.113.051602
https://doi.org/10.1103/PhysRevLett.117.041601
https://doi.org/10.1007/JHEP07(2016)114
https://doi.org/10.1007/JHEP07(2016)114
https://doi.org/10.1007/JHEP10(2017)184
https://doi.org/10.1007/JHEP10(2017)184
https://doi.org/10.1007/JHEP02(2017)039
https://doi.org/10.1007/JHEP02(2017)039
https://doi.org/10.1007/JHEP06(2016)004
https://doi.org/10.1007/JHEP06(2016)004
https://doi.org/10.1007/JHEP10(2018)166
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/PhysRevLett.96.100503
https://doi.org/10.1103/PhysRevLett.97.050404


������������ 187

[229] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A
Tutorial on the Cross-Entropy Method,” Ann. Oper. Res. 134,
19–67 (2005).

[230] H. Jeffreys, “An Invariant Form for the Prior Probability in
Estimation Problems,” Proc. Phys. Soc. A 186, 453–461 (1946).

[231] E. T. Jaynes, “Prior Probabilities,” IEEE Trans. Syst. Cybern. 4,
227–241 (1968).

[232] R. A. Fisher, “Theory of Statistical Estimation,” Math. Proc.
Camb. Philos. Soc. 22, 700–725 (1925).

[233] S.-i. Amari, Information Geometry and Its Applications (Springer,
Tokyo, 2016).

[234] M. L. Gromov, In a Search for a Structure, Part 1: On Entropy,
2012.

[235] E. Hellinger, “Neue Begründung der Theorie quadratischer
Formen von unendlichvielen Veränderlichen.,” J. Reine Angew.
Math. 1909, 210–271 (1909).

[236] F. Nielsen, “An elementary introduction to information geome-
try,” arXiv:1808.08271, 1–56 (2020).

[237] D. Petz and C. Ghinea, “Introduction to Quantum Fisher Infor-
mation,” in Quantum probability and related topics (2011), pp. 261–
281.

[238] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, “Quantum Fisher
information matrix and multiparameter estimation,” J. Phys. A
Math. Theor. 53, 023001 (2019).

[239] S. L. Braunstein and C. M. Caves, “Statistical distance and the
geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443
(1994).

[240] P. Facchi, R. Kulkarnid, V. I. Man’ko, G. Marmo, E. C. G. Su-
darshanh, and F. Ventrigliaf, “Classical and quantum fisher
information in the geometrical formulation of quantum me-
chanics,” Phys. Lett. A 374, 4801–4803 (2010).

[241] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,
L. Pezzè, A. Smerzi, and M. K. Oberthaler, “Fisher information
and entanglement of non-Gaussian spin states,” Science 345,
424–427 (2014).

[242] N. Lashkari and M. V. Raamsdonk, “Canonical energy is quan-
tum Fisher information,” J. High Energy Phys. 2016, 153 (2016).

[243] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, “Measuring
multipartite entanglement through dynamic susceptibilities,”
Nat. Phys. 12, 778–782 (2016).

[244] V. I. Man’ko, G. Marmo, F. Ventriglia, and P. Vitale, “Metric on
the space of quantum states from relative entropy. Tomographic
reconstruction,” J. Phys. A Math. Theor. 50, 335302 (2017).

https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1098/rspa.1946.0056
https://doi.org/10.1109/TSSC.1968.300117
https://doi.org/10.1109/TSSC.1968.300117
https://doi.org/10.1017/S0305004100009580
https://doi.org/10.1017/S0305004100009580
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://arxiv.org/abs/1808.08271
https://doi.org/10.1142/9789814338745_0015
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1016/j.physleta.2010.10.005
https://doi.org/10.1126/science.1250147
https://doi.org/10.1126/science.1250147
https://doi.org/10.1007/JHEP04(2016)153
https://doi.org/10.1038/nphys3700
https://doi.org/10.1088/1751-8121/aa7d7d


188 ������������

[245] S. Banerjee, J. Erdmenger, and D. Sarkar, “Connecting Fisher in-
formation to bulk entanglement in holography,” J. High Energy
Phys., 1 (2018).
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