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Contributions 

Sections of this thesis, including material and methods part and results from part 1 (Fig. 8) are 

based on a manuscript in preparation entitled “Integrated multi-ome dynamics of human 

adipocyte differentiation with focus on DNA hydroxymethylation”. The draft was written by me 

as first author but contains suggestions and corrections from co-authors. 

I performed all downstream bioinformatic data processing described in this thesis, including 

integration of published data and data visualization, mainly in R language, and in selected 

cases also in bash and python, using the indicated packages or own functions. 

Experimentally, in thesis part 1, I performed the adipocyte differentiation of experiment 1, using 

the Simpson-Golabi-Behmel syndrome (SGBS) cell line, generated the images, and performed 

the nucleic acids extractions and qPCR experiments (Fig. 8). 

SGBS adipocyte differentiation, as well as nucleic acids extraction of experiment 2 were 

performed by Linda Kessler under my co-supervision. Whole-genome bisulfite (WGBS) and 

oxidative bisulfite (WGoxBS) sequencing library preparation for this experiment were 

generated by myself (Fig. 8). 

hMeSeal library preparation for hydroxymethylation analysis and sequencing alignment was 

done by Florian Janke (Division Cancer Genome Research, German Cancer Research Center 

(DKFZ)) (Fig. 8 + 10).  

White adipose tissue samples were collected by collaboration partners of the PATHWAY-27 

consortium, Silvia Garelli, Marianna Farnè, Giampaolo Ugolini, Giancarlo Rosati, and Luigi 

Ricciardiello from the Department of Medical and Surgical Sciences, University of Bologna, 

Italy. The collection was coordinated by Alessandra Bordoni from the Department of 

Agricultural and Food Sciences, University of Bologna, Italy. Pulverization and nucleic acid 

extraction of the adipose tissue biopsies were performed by Annette Weninger and Karin 

Klimo. For ACT-seq analysis, Dieter Weichenhan purified the pA-Tn5ase protein, and Jessica 

Heilmann and Karin Klimo prepared the libraries for sequencing (Fig. 10).  

In thesis part 2, I performed the docosahexaenoic acid (DHA) complexation, the cytotoxicity 

experiments, DHA long-term cultivation experiments (experiment 5), as well as the nucleic 

acids extractions (Fig. 9).  
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Methylation and RNA-seq data for cultured untreated SGBS cells from Lisa Demoen (Student 

2, experiment 6) and Linda Kessler (Student 3, experiment 7) were included in this thesis to 

compare cell culture effects with experiment 5 (Fig. 9). 

Methylation analysis using 450k and EPIC arrays, RNA-seq library preparation, sequencing of 

all RNA-seq, hMeSeal, and WGBS/oxBS libraries were performed by the Genomics and 

Proteomics Core Facility of the DKFZ. Storage of sequencing data and alignment of RNA and 

WGBS/oxBS sequencing data were performed by the DKFZ Omics IT and Data Management 

Core Facility (Fig. 8 - 10). 

To indicate the contributions in each figure legend, I used the following abbreviations for each 

contributor (Table 1): 

Table 1| Abbreviations of contributors to this thesis.  

Contributor Abbreviation 
Alessandra Bordoni AB 
Annette Weninger AW 
Clarissa Feuerstein-Akgöz (Student 1) CFA 
Dieter Weichenhan  DW 
Florian Janke FJ 
Giancarlo Rosati GR 
Giampaolo Ugolini GU 
Jessica Heilmann JH 
Karin Klimo KK 
Lisa Demoen (Student 2) LD 
Linda Kessler (Student 3) LK 
Luigi Ricciardiello LR 
Marianna Farnè MF 
Silvia Garelli SG 
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Summary 

Metabolic Syndrome is a multifactorial metabolic disorder characterized by obesity in 

association with altered lipid profiles, elevated glucose levels, and/or increased blood 

pressure, forming a cluster of risk factors for cardiovascular diseases and type 2 diabetes. 

Changes in lifestyle and diet are powerful strategies in preventing the development of the 

metabolic syndrome. An evolving research field linked with preventable diseases is the 

consumption of bioactive-enriched foods since for some bioactives the dose for health-

promoting effects can only be achieved by enrichment. Docosahexaenoic acid (DHA) is an n-3 

fatty acid displaying lipid-lowering activity. In the liver, DHA inhibits lipogenesis thereby 

promoting an improved lipid profile in the blood. However, the impact of DHA on preadipocytes, 

the source for new adipocytes generated during adipogenesis for additional lipid storage, 

remains insufficiently characterized. 

Cell differentiation processes are controlled by epigenetic mechanisms including DNA 

hydroxymethylation and are associated with cell-type specific transcriptional regulation. To 

profile epigenetic gene regulation of our model system, I first characterized human adipocyte 

differentiation of Simpson-Golabi-Behmel Syndrome (SGBS) cells at the level of DNA 

hydroxymethylation (5hmC) using two whole-genome sequencing techniques. I observed gain 

in the 5hmC mark during adipocyte differentiation, particularly enriched at enhancer regions, 

around adipogenic transcription factor (TF) binding sites. Based on cluster analyses, I was 

able to describe clusters with different dynamics of hydroxymethylation associated with the 

binding of specific TFs. Early hydroxymethylation clusters were enriched with TF binding motifs 

involved, e.g., in clonal expansion at an early stage of adipogenesis. On the other hand, 

hydroxymethylation emerging during late adipogenesis was associated with TF binding in the 

second phase of chromatin remodeling, such as of the peroxisome proliferator-activated 

receptor gamma (PPARG) and of CCAAT/enhancer binding protein alpha (CEBPA). Integrated 

analysis of hydroxymethylation and gene expression recapitulated the involvement of 

hydroxymethylated enhancer regions in the regulation of gene expression programs 

characteristic of mature adipocytes. By maintaining mature adipocytes in culture for 14 days 

after completion of adipocyte differentiation, I could provide evidence for 5hmC as a stable 

epigenetic mark. In vivo relevance of these findings was confirmed by a high degree of overlap 

with hydroxymethylation in white adipose tissue (WAT). As 5hmC is often considered as an 

intermediated mark generated during DNA demethylation, I investigated potential mechanisms 

involved in 5hmC stabilization. I detected that acetylated nei like DNA glycosylase 1 (acNEIL1), 

reported previously as a hydroxymethylation binding protein, was enriched in WAT promoter 

and enhancer regions, but its binding was independent of the hydroxymethylation mark, 
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especially in promoter regions. Based on metabolome data, I rather hypothesize that declining 

α-ketoglutarate (αKG) levels during adipogenesis could compromise ten-eleven translocation 

(TET)-mediated demethylation and thereby contribute to stabilization of the 5hmC mark in non-

proliferating mature adipocytes.  

In the second part of my thesis, I investigated the effect of long-term cultivation (3 - 4 weeks) 

of SGBS in the presence of low-dose DHA on genome-wide DNA methylation (EPIC array) 

and gene expression levels (RNA-seq). DHA-treatment  resulted in massive methylation 

differences. However, these methylation differences mainly overlapped with gradual culture-

associated methylation changes. A subset of the differentially methylated CpGs was located 

in partially methylated domains (PMDs) associated with the nuclear lamina and characterized 

by late replication timing. These sites displayed gradual loss in methylation, correlating with a 

methylation-based mitotic score (EpiCMIT.hypo) and attributed to an impairment of DNA 

methylation maintenance during replication. At the gene expression level, I could separate 

effects directly attributable to DHA from culture-associated gene expression changes. Notably, 

I detected anti-inflammatory activity by reduction of tumor necrosis factor alpha (TNFα) 

signaling and repression of sterol regulatory element-binding protein 1/2 (SREBP1/2) 

signaling, possibly contributing to reduced lipogenesis and increased insulin sensitivity – two 

crucial mechanisms in the prevention of the metabolic syndrome. 

To sum up, molecular understanding of the interplay of cellular metabolism and epigenetics in 

gene regulation of human adipocyte differentiation might be crucial for the deeper 

understanding of the development of metabolic syndrome – a disease with altered energy 

metabolism. Furthermore, deciphering the molecular mechanisms of DHA in human 

preadipocytes might help to understand how to reverse some of the adverse effects of obesity 

and its associated metabolic complications, showing us a path towards improved public health. 
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Zusammenfassung 

Das metabolische Syndrom ist eine multifaktorielle Stoffwechselstörung, die durch 

Fettleibigkeit in Verbindung mit veränderten Lipidprofilen, erhöhten Glukosespiegeln und/oder 

erhöhtem Blutdruck gekennzeichnet ist und ein Cluster von Risikofaktoren für Herz-Kreislauf-

Erkrankungen und Typ-2-Diabetes bildet. Änderungen des Lebensstils und der Ernährung sind 

wirksame Strategien, um die Entwicklung des metabolischen Syndroms zu verhindern. Ein 

sich entwickelnder Forschungsbereich im Zusammenhang mit vermeidbaren Krankheiten ist 

der Verzehr von mit Bioaktivstoffen angereicherten Lebensmittel, da bei einigen 

Bioaktivstoffen die Dosis für gesundheitsfördernde Wirkungen nur durch Anreicherung erreicht 

werden kann. Docosahexaensäure (DHA) ist eine n-3-Fettsäure mit lipidsenkender Wirkung. 

In der Leber hemmt DHA die Lipogenese, wodurch ein verbessertes Lipidprofil im Blut 

gefördert wird. Die Wirkung von DHA auf Präadipozyten, die sich während der Adipogenese 

zu neuen Adipozyten für zusätzliche Lipidspeicherung entwickeln können, ist jedoch noch 

unzureichend charakterisiert. 

Zelldifferenzierungsprozesse werden durch epigenetische Mechanismen gesteuert, 

einschließlich DNA-Hydroxymethylierung, um die zelltypspezifische Genexpression zu 

regulieren. Um die epigenetische Genregulation unseres Modellsystems zu profilieren, habe 

ich zunächst die humane Adipozytendifferenzierung von Simpson-Golabi-Behmel 

Syndrom (SGBS) Zellen auf der Ebene der DNA-Hydroxymethylierung (5hmC) unter 

Verwendung von zwei Sequenzierungstechniken, die das gesamte Genom abdecken, 

charakterisiert. Ich beobachtete eine Zunahme von 5hmC während der 

Adipozytendifferenzierung, besonders an Enhancer-Regionen um die Bindungsstellen der 

adipogenen Transkriptionsfaktoren (TF) herum. Basierend auf Clusteranalysen konnte ich 

Cluster mit unterschiedlichen Dynamiken der Hydroxymethylierung beschreiben, die mit der 

Bindung spezifischer TFs assoziiert waren. Frühe Hydroxymethylierungscluster waren mit TF-

Bindungsmotiven angereichert, die z. B. an der klonalen Expansion im frühen Stadium der 

Adipogenese beteiligt sind. Andererseits war eine spätere Anreicherung der 

Hydroxymethylierung mit Bindung von TFs in der zweiten Phase des Chromatin-Umbaus 

assoziiert, wie z. B. des Peroxisom-Proliferator-aktivierten Rezeptor Gamma (PPARG) und 

von CCAAT/Enhancer-Binding-Protein Alpha (CEBPA). Die integrierte Analyse von 

Hydroxymethylierung und Genexpression rekapitulierte die Beteiligung von 

hydroxymethylierten Enhancer-Regionen an der Regulierung von 

Genexpressionsprogrammen, die für reife Adipozyten charakteristisch sind. Beispielsweise 

waren spät induzierte Hydroxymethylierungscluster um Gene lokalisiert, die am 
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Lipidstoffwechsel beteiligt sind. Indem ich reife Adipozyten für 14 Tage nach Abschluss der 

Adipozytendifferenzierung in Kultur hielt, konnte ich Hinweise darauf geben, dass die 

beobachtete Hydroxymethylierung eine stabile epigenetische Modifizierung ist. Die in vivo-

Relevanz dieser Befunde wurde durch einen hohen Grad an Überlappung mit der 

Hydroxymethylierung im weißen Fettgewebe (WAT) bestätigt. Da 5hmC oft als 

Zwischenprodukt der DNA-Demethylierung angesehen wird, habe ich mögliche Mechanismen 

untersucht, die an der 5hmC-Stabilisierung beteiligt sein könnten. Ich fand heraus, dass 

acetylierte nei-ähnliche DNA-Glykosylase 1 (acNEIL1), die zuvor als Hydroxymethylierungs-

bindendes Protein beschrieben worden war, in WAT-Promotor- und Enhancer-Regionen 

angereichert war, aber die Bindung unabhängig von der Hydroxymethylierung war, 

insbesondere in Promotor-Regionen. Basierend auf Metabolomdaten stelle ich eher die 

Hypothese auf, dass sinkende α-Ketoglutarat (αKG)-Konzentrationen während der 

Adipogenese die Ten-Eleven-Translokation (TET)-vermittelte Demethylierung beeinträchtigen 

und somit zur Stabilisierung der 5hmC-Modifizierung in nicht proliferierenden reifen Adipozyten 

beitragen könnten. 

Im zweiten Teil meiner Arbeit untersuchte ich die Wirkung einer Langzeitkultivierung (3 - 4 

Wochen) von SGBS Präadipozyten in Gegenwart von niedrig dosiertem DHA auf die 

genomweite DNA-Methylierung (EPIC-Array) und Genexpressionsniveaus (RNA-

Sequenzierung). DHA-behandelte Proben zeigten im Vergleich zu Kontrollproben massive 

Methylierungsunterschiede. Diese Methylierungsunterschiede überschnitten sich jedoch 

hauptsächlich mit graduellen Zellkultur-assoziierten Methylierungsänderungen. Ein Teil der 

differenziell methylierten CpGs befand sich in partiell methylierten Domänen (PMDs), die mit 

der Nuklearlamina assoziiert sind und durch ein spätes Replikationstiming gekennzeichnet 

sind. Diese Stellen zeigten einen allmählichen Methylierungsverlust, der mit einem 

methylierungsbasierten mitotischen Index (EpiCMIT.hypo) korreliert und auf eine 

Beeinträchtigung der DNA-Methylierung während der Replikation zurückzuführen ist. Auf der 

Ebene der Genexpression konnte ich Effekte, die direkt auf DHA zurückzuführen sind, von 

Zellkultur-assoziierten Veränderungen der Genexpression trennen. Ich beobachtete eine 

entzündungshemmende Aktivität durch die Verringerung der Signalübertragung des 

Tumornekrosefaktors alpha (TNFα) und die Unterdrückung der Signalübertragung des ‚Sterol 

regulatory element-binding protein 1/2' (SREBP1/2), was möglicherweise zu einer verringerten 

Lipogenese und einer erhöhten Insulinsensitivität beiträgt, zwei entscheidende Mechanismen 

zur Prävention des Metabolischen Syndroms. 

Zusammenfassend lässt sich sagen, dass das molekulare Verständnis des Zusammenspiels 

von Zellstoffwechsel und Epigenetik bei der Genregulation der Adipozytendifferenzierung 

entscheidend für das tiefere Verständnis der Entwicklung des metabolischen Syndroms ist, 
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einer Krankheit mit verändertem Energiestoffwechsel. Darüber hinaus könnte die Aufklärung 

molekularer Mechanismen von DHA in menschlichen Präadipozyten helfen zu verstehen, wie 

einige der metabolischen Komplikationen, die mit Fettleibigkeit verbunden sind, rückgängig 

gemacht werden können, um uns einen Weg zu einer verbesserten Gesundheit der 

Bevölkerung aufzuzeigen. 
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PATHWAY-27 project 

The work of this thesis was part of the EU-funded project PATHWAY-27, formed by an 

interdisciplinary team consisting of 25 partner institutions across Europe, including universities, 

research institutes, and SMEs (Small and Medium Enterprise). The aim of PATHWAY-27 was 

to develop and investigate the effect of three bioactives, namely docosahexaenoic acid (DHA), 

β-glucan, and anthocyanins, enriched in three different food matrices (egg-based-, dairy-, and 

bakery products)) in preventing the development of the metabolic syndrome 

(www.pathway27.eu). 

DHA is an essential n-3 fatty acid produced by algae and found in sea fish and is known for its 

anti-inflammatory function and reducing triglycerides in the blood (Albracht-Schulte et al., 

2018). β-glucan is a fiber found in oat or barley and is involved in improving cholesterol levels 

(Tiwari and Cummins, 2011). The third investigated group of bioactives are the anthocyanins, 

water-soluble pigments responsible for various fruits' blue or red color, which serve as powerful 

antioxidants (Yeung et al., 2019).  

Several natural food compounds are known for their health-promoting activity. However, their 

concentrations found in foodstuff are often too low to achieve these effects through a regular 

diet. Therefore, health-promoting effects could be achieved by formulation of foods enriched 

in these bioactives. To commercialize and advertise the bioactive-enriched foods with health-

promoting effects, health claims have to be approved by the European Food Safety Authority 

(EFSA), by presenting convincing evidence of the given health claims. Therefore, PATHWAY-

27 served as an example of how to develop bioactive-enriched foods, test the stability of the 

bioactives in the food matrix, investigate the bioactive function in vitro, and finally in vivo in a 

large dietary intervention study (LIS). The overarching goal of PATHWAY-27 was to generate 

protocols, best practices, and guidelines for the food industry and research institutes for the 

future development of bioactive-enriched foods and the generation of health claims (Bordoni 

et al., 2019).  

As a partner of PATHWAY-27, our group was to analyze the epigenetic influence of the three 

key compounds on adipocytes. Different from previous in vitro studies, I planned to use i) low 

physiologically relevant concentrations, ii) perform long-term chronic compound treatment for 

several weeks instead of short term exposure, iii) use physiologically relevant metabolites of 

the study compounds, i.e. beside DHA, protocatechuic acid (PA), one of the most abundant 

metabolites of anthocyanins, and propionate (PRO), a metabolite of β-glucan, and iv) use the 

compounds alone and in combination to mimic dietary exposure. Part 2 of this thesis introduces 
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the findings of low-dose, long-term DHA treatment in pre-adipocytes, which turned out to be 

the most effective compound. 

As a model of human adipogenesis, I employed the preadipocyte cell line Simpson-Golabi-

Behmel syndrome (SGBS). SGBS cells can be differentiated in vitro to mature adipocytes and 

seemed ideal for our epigenomics analyses. Since this cell strain had not been epigenetically 

characterized before, I initially analyzed the DNA methylome during adipogenesis without prior 

compound treatment. During these analyses, I realized that not only the DNA methylome, but 

especially the DNA hydroxymethylome changed during adipocyte differentiation. By 

collaborating with groups from Munich and Leipzig that were not part of PATHWAY-27, I also 

had the opportunity to compare our epigenetic results with proteome and metabolome changes 

during adipogenesis in the same SGBS cell line. These findings are presented in the first part 

of the thesis. 
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1 Introduction 

1.1 A definition of the metabolic syndrome 

Overweight and obesity describe the expansion of adipose tissue resulting from an imbalance 

of energy intake and expenditure and are defined by a body mass index (BMI) ≥ 25 and ≥ 30, 

respectively. In 2016, overweight affected about 35 % of the adult population worldwide, and 

obesity about 13 %. Although principally preventable, overweight and obesity have developed 

into a global pandemic. In addition, obesity poses a risk for developing metabolic disorders 

such as glucose intolerance, dyslipidemia, and cardiovascular diseases, being the most 

frequent cause of death worldwide (World Health Organization, 2021). 

Metabolic disorders associated with obesity form a cluster of interrelated diseases, likely driven 

by common underlying causes and mechanisms, as all risk factors respond to diet and physical 

activity (Huang, 2009). Therefore, it is presumable that obesity itself is a central component 

driving the metabolic syndrome (Lemieux et al., 2000). To better identify the individuals with a 

high risk of developing obesity-related diseases, several groups and institutions introduced 

definitions of the metabolic syndrome. The International Diabetes Federation (IDF) definition 

focused on the worldwide practical usability to identify individuals at risk while allowing 

worldwide comparability of the identified prevalence. The main criterion of the metabolic 

syndrome is central obesity, defined by ethnic- and sex-specific waist circumference cut-offs 

(Table 2). In addition to central obesity, individuals must fulfill two of the four following 

metabolic complications: raised triglycerides, reduced high-density lipoprotein (HDL)-

cholesterol, increased blood pressure (BP), and hyperglycemia identified by raised fasting 

plasma glucose (FPG) or previously diagnosed type 2 diabetes. The factors are determined 

by surpassing the clinical cut-offs or by specific treatment of the corresponding metabolic 

complication (Alberti et al., 2005). Although insulin resistance is a central part of the cluster of 

metabolic complications and highly correlates with waist circumference and triglycerides, the 

IDF did not include insulin resistance as a criterion for metabolic syndrome, as it is not easy to 

estimate (Lemieux et al., 2000).   
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Table 2| International Diabetes Federation (IDF) definition of the metabolic syndrome. 

Criteria Clinical cut-off 

Central obesity 
defined as waist circumference with ethnicity-
specific values, Europids:  
≥ 94 cm (male), ≥ 80 cm (female) 

plus any two of the following four factors: 

Raised triglycerides 
≥ 150 mg/dL (1.7 mmol/L)  
or specific treatment for this lipid abnormality 

Reduced HDL cholesterol 
< 40 mg/dL (1.03 mmol/L) in males  
< 50 mg/dL (1.29 mmol/L) in females  
or specific treatment for this lipid abnormality 

Raised blood pressure (BP) 

systolic BP ≥ 130 mm Hg 
or diastolic BP ≥ 85 mm Hg  
or treatment of previously diagnosed 
hypertension 

Raised fasting plasma glucose (FPG) 
FPG ≥ 100 mg/dL (5.6 mmol/L),  
or previously diagnosed type 2 diabetes. 

HDL: high-density lipoprotein (Adapted from S. G. Alberti et al., 2006) 

1.2 Pathophysiology of the metabolic syndrome 

Obesity is a central component of the metabolic syndrome (Fig. 1). Obese adipose tissue fuels 

the development of metabolic syndrome by the secretion of free fatty acids (FFAs) and 

inflammatory cytokines, inducing systemic inflammation (Eckel et al., 2005; Miranda et al., 

2005). When in adipose tissue lipid storage capacity has reached a limit, lipids accumulate 

ectopically, e.g., in muscle cells. There, FFAs inhibit intramuscular glycogen synthesis. 

Furthermore, FFAs and systemic inflammation result in muscular insulin resistance (Boden 

and Shulman, 2002). As insulin resistance leads to reduced glucose uptake into muscle cells 

and, therefore, a decreased glucose clearance in the bloodstream, β-cells secrete increased 

insulin levels as a compensation mechanism. However, this can cause ß-cell exhaustion, and 

the reduced insulin levels cannot sufficiently lower blood glucose levels (hyperglycemia) 

(Hudish et al., 2019). FFAs also accumulate in the liver and promote the development of fatty 

liver disease. In the liver, systemic inflammation and excess lipids can cause insulin resistance, 

resulting in uncontrolled glucose production (gluconeogenesis), further increasing blood 

glucose levels (hyperglycemia) (Eckel et al., 2005). To alleviate the high levels of lipids, the 

liver secretes triglycerides packed within very low density lipoprotein (VLDL) particles that, 

when depositing lipids in adipose or muscle tissue, are transformed to low density lipoprotein 

(LDL) particles.  
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Fig. 1| Development of the metabolic syndrome. During the development of the metabolic syndrome, a high 
caloric diet promotes obese adipose tissue. The obese adipose tissue secretes pro-inflammatory cytokines and free 
fatty acids, promoting low-grade systemic inflammation, lipotoxicity, and insulin resistance in several organs. More 
detailed description in chapter 1.2. The figure was created with BioRender.com and adapted from (Eckel et al., 
2005). VLDL: very low density lipoprotein; LDL: low density lipoprotein.  

LDL particles can get oxidized or glycated in an environment of oxidative stress, inflammation, 

and high blood glucose levels. These modified LDL particles are no longer quickly cleared from 

the bloodstream. In the development of atherosclerosis, modified LDL particles pass the 

endothelial wall that has been damaged, e.g., by hypertension or smoking. The LDL particles 

get trapped around the endothelium and immune cells uptake these modified LDL particles in 

an uncontrolled way to form foam cells, creating plaque in the arteries (Linton et al., 2000). 

Insulin resistance is considered a major metabolic complication that prevents glucose uptake 

by various organs. However, by reducing glucose uptake, insulin resistance also prevents 

excessive lipid accumulation (lipotoxicity) across multiple tissue types by stimulating fatty acid 

oxidation and preventing de novo lipogenesis. Further, in search of the origin of the metabolic 

syndrome, Unger suggested that insulin resistance might only result from leptin resistance. 
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Leptin is a hormone produced and secreted from adipocytes to regulate energy balance in the 

brain, by inhibiting hunger. However, during leptin resistance, leptin cannot successfully pass 

the blood-brain barrier and control food intake in the first place (Unger, 2003). 

1.2.1 Adipocyte cell types and their functions 

Adipose tissue comprises adipocytes, occupying most of its volume, with its central function in 

serving as a storage place for energy. Adipocytes are, however, not the most abundant cell 

type, as the adipose tissue represents a heterogeneous tissue, also containing adipocyte 

precursor cells, the preadipocytes, stem cells, macrophages, neutrophils, lymphocytes, and 

endothelial cells (Esteve Ràfols, 2014). Adipocytes store energy in the form of triglycerides, 

and in times of energy deprivation, they release energy by lipolysis (Birsoy et al., 2013). Over 

the past two decades, it became evident that adipose tissue also functions as an endocrine 

organ to control whole-body energy homeostasis. Adipocytes secrete adipose-derived 

cytokines, adipokines, and lipokines. Additional functions can be local energy supply to 

neighboring tissues such as lymph nodes or the heart by paracrine secretion of fatty acids 

(Ouwens et al., 2010), support of immune cells, and supply of mammary glands with fatty acids 

for lactation. Adipose tissue also acts as a thermal insulator or can generate heat by 

thermogenesis. It also can protect by absorbing shocks, e.g., in the heels and around inner 

organs and blood vessels (Zwick et al., 2018). 

The body possesses different adipocytes organized in different tissue types and locations to 

fulfill their variety of functions. However, most adipose tissues contain white adipocytes forming 

white adipose tissue (WAT). WAT cells derive from perivascular cells of the mesenchymal 

lineage, located along the vasculature (Gupta et al., 2012; Tang et al., 2008; Tran et al., 2012). 

When differentiated to mature white adipocytes, they contain a large lipid droplet, while the 

cytoplasm and nucleus are densely packed at the cell periphery. Their principal role is the 

storage of excess energy. Upon glucose import, white adipocytes undergo de novo lipogenesis 

to form triglycerides (TGs) deposited in lipid droplets. White adipocytes also store circulating 

lipids which they take up as FFA or from lipid transport particles such as VLDL particles or 

chylomicrons. In energy deprivation, white adipocytes undergo lipolysis, where fatty acids 

stored as TGs are hydrolyzed to FFA and glycerol for delivery to the blood circulation. WAT 

can be found subcutaneously and is therefore also called subcutaneous adipose tissue (SAT) 

and around the inner organs, where it is called visceral adipose tissue (VAT) (Zwick et al., 

2018). 

In contrast to WAT, the primary function of brown adipose tissue is heat production. Brown 

adipose tissue is organized in islands between WAT, at the neck, armpits, next to the kidney, 
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along the large blood vessels and trachea, and in children between shoulder blades (Enerbäck, 

2010). Morphologically, brown adipocytes are distinct from white as they contain several small 

lipid droplets (multilocular) and owe their brown color to a high number of mitochondria. Brown 

adipocytes can exploit fatty acids for heat production and weight control instead of ATP 

synthesis in exposure to an obesogenic diet or cold (Feldmann et al., 2009). The uncoupling 

protein 1 (UCP1) transmembrane protein generates a proton leak across the mitochondrial 

inner membrane. Therefore, through non-shivering thermogenesis, it uncouples respiration 

from ATP production, and instead of ATP, heat is generated (Nicholls and Locke, 1984). Brown 

preadipocytes also originate from mesenchymal stem cells (MSCs). However, they display a 

myogenic transcriptional signature and a distinct lineage development. In contrast, beige/bright 

adipocytes functionally and morphologically resemble brown adipocytes but transdifferentiate 

from white adipocytes upon cold exposure. Therefore they do not form their own depot but are 

interspersed within WAT (Berry et al., 2015). Recent research interest has focused on studying 

how to increase the differentiation rate of brown or beige adipocytes or to increase their activity 

in the hope of increasing energy expenditure in the prevention of metabolic syndrome 

(Enerbäck, 2010). 

Bone marrow adipocytes have a characteristic yellow color owed to the intermediate levels of 

mitochondria and have been mostly ignored in the past. They are thought to have a function 

in the regulation of bone and energy homeostasis, but their exact function and lineage 

development are yet far from understood (Berry et al., 2015) 

1.2.2 White adipose tissue dysfunction in metabolic syndrome 

In functional adipose tissue, energy homeostasis upon excessive calorie intake is regained by 

extending the energy storage capacity in WAT. Another level of regulation is endocrine 

signaling, e.g., by secreting increased levels of leptin, controlling the food intake and energy 

expenditure in the brain. Healthy adipose tissue increases storage capacity by combining two 

mechanisms: adipocyte hypertrophy and hyperplasia (Fig. 2). First, existing mature adipocytes 

store the additional lipids while increasing their volume (hypertrophy). Next, hypertrophic 

adipocytes induce hyperplasia via paracrine signaling: The signaling molecules induce 

adipocyte precursor cell differentiation to mature adipocytes, providing additional storage 

capacity.  

In unhealthy adipose tissue, paracrine signaling becomes deregulated and induces a shift 

towards hypertrophy while inhibiting hyperplasia. When adipocytes reach a critical size, 

mechanical stress and hypoxia increase, both resulting in adipose tissue inflammation.  
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Fig. 2| The modes of expansion of white adipose tissue (WAT). In obesity, adipose tissue can handle excessive 
energy intake through two different mechanisms. Hyperplasia is a healthy adaptation process in preadipocytes that 
differentiate to mature adipocytes. With the additional adipocytes, energy can be stored without metabolic 
complications. On the other hand, hypertrophy is an unhealthy adaptation in which pre-existing adipocytes have to 
handle the excess energy intake and become enlarged, associated with adverse side effects. The figure was 
created with BioRender.com and adapted from Longo et al., 2019. 

Hypertrophic adipocytes secrete several proinflammatory cytokines, including tumor necrosis 

factor alpha (TNFα), interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant 

protein-1 (MCP-1). Local inflammation decreases insulin sensitivity of adipocytes by 

phosphorylation of insulin receptor substrate 1 (IRS-1) and recruits immune cells. First T-cells, 

then pro-inflammatory M1 macrophages, instead of the tissue-resident anti-inflammatory M2 

macrophages, are recruited. A typical feature of adipose tissue in obesity is macrophages 

forming crown-like structures around necrotic adipocytes. Accumulation of pro-inflammatory 

immune cells in adipose tissue finally advances systemic inflammation and contributes to 

insulin resistance (Ghaben and Scherer, 2019; Vegiopoulos et al., 2017). Inflammation further 

reduces the expression and secretion of the anti-inflammatory and energy homeostasis-

controlling adipokine adiponectin. Finally, adipose tissue insulin resistance increases the rate 

of lipolysis and therefore promotes FFA secretion, resulting in ectopic lipid deposition and 

lipotoxicity (Morigny et al., 2016).  

To sum up, when in obesity the storage capacity of adipocytes reaches its maximum, metabolic 

complications arise. The development of lipotoxicity and systemic inflammation initiated in 

obese adipose tissue are pivotal to developing insulin resistance in different organs and 

associated complications (Fig. 1 + 2) (Tan and Vidal-Puig, 2008).  
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1.2.3 Adipose tissue depots and their associated risks 

During overfeeding, the most affected storage location is SAT (> 80 %) followed by VAT (10 % 

(female), 20 % (male)) (Walker et al., 2014). However, tissue expansion in these two locations 

is associated with different risks. In VAT, hypertrophy leads to inflammation associated with 

insulin resistance, which occurs only to a smaller extent in SAT (Verboven et al., 2018). In 

contrast, in SAT, preadipocytes maintain a higher proliferation rate which allows overall a 

higher lipid accumulation rate (Macotela et al., 2012; Tchkonia et al., 2006), while adipocytes 

in VAT display higher rates of lipolysis and apoptosis (Arner et al., 1990; Lafontan and Girard, 

2008). It is, however, important to mention that the problematic circulating FFAs mainly are 

delivered from SAT. This suggests that hypertrophic SAT is the source of circulating FFAs and, 

therefore, the development of the metabolic syndrome. This results in lipotoxicity in various 

organs, including VAT, where adipocytes can cope worse with the excess lipids due to their 

metabolic differences. These findings have recently brought the spotlight onto SAT instead of 

VAT as the “real” culprit in the development of metabolic syndrome (Jensen, 2020).  

1.3 Adipogenesis 

Within eight years, 50 % of adipocytes in SAT are replaced (Spalding et al., 2008). This high 

turnover of adipocytes opens possibilities for interventions in obesity to promote the expansion 

of the adipose tissue via hyperplasia instead of hypertrophy. The adipocyte pool is renewed 

from undifferentiated progenitor cells or by dedifferentiation of mature adipocytes to 

preadipocytes, which proliferate and subsequently redifferentiate back to mature adipocytes 

(Symonds, 2017). Adipocyte development can be divided into two stages, the commitment of 

MSCs to the adipogenic lineage and the differentiation to mature adipocytes. With the study of 

in vitro models, we have learned that several signals, such as growth hormones, elevated 

cyclic adenosine monophosphate (cAMP), glucocorticoids, and changes in the extracellular 

matrix (ECM) induce adipocyte differentiation. When preadipocytes reach confluency, cells go 

into growth arrest. Upon stimulation, preadipocytes synchronously re-enter the cell cycle and 

after few rounds of mitotic clonal expansion, cells are able to enter terminal maturation 

(Farmer, 2006). During differentiation, the cell shape switches very early from fibroblastic to 

spherical shape, and during the end of the terminal maturation, the lipid accumulation in lipid 

droplets becomes visible (Gregoire et al., 1998).  
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1.3.1 Transcriptional networks controlling white adipogenesis 

While little is known about the commitment of MSCs to preadipocytes, the network of regulatory 

transcription factors (TFs) controlling the differentiation of preadipocytes to adipocytes has 

been extensively studied. There are two waves of TF binding and chromatin remodeling (Fig. 

3). After reaching confluency, stimulation with an adipogenic medium induces the first wave 

occurring in the first two days, during clonal expansion. cAMP elevating agents activate cAMP 

response element-binding protein 1 (CREB1), which induces in the first hour the mRNA 

expression of CEBPB (CCAAT enhancer binding protein beta). Furthermore, glucocorticoids 

bind to the glucocorticoid receptor (GR) and induce the expression of CEBPB and D. In the 

first wave CEBPB/D act together with other early TFs, such as GR, STAT5A/B (signal 

transducer and activator of transcription 5A/B), CREB1, KLF4/5 (kruppel-like factor 4/5) and 

EGR2 (early growth response 2). In this process, CEBPB can act as a pioneering factor binding 

to closed chromatin, where chromatin becomes remodeled to enhancer regions (with 

acetylation of histone H3 at lysine 27 (H3K27ac)) (see chapter 1.4.2). Then, additional TFs 

can bind and jointly induce the expression of the target genes. Two essential target genes 

induced within the first wave are the adipogenic master TFs PPARG (peroxisome proliferator 

activated receptor gamma) and CEBPA (CCAAT enhancer binding protein alpha). In the 

second wave, PPARG further induces the expression of CEBPA, and synergistically, they form 

with other TFs TF hotspots of the second wave, located at DNAse I hypersensibility sites (DHS) 

of the first wave (stable DHS) or at new genomic positions (de novo DHS). CEBPA also binds 

90 % of PPARG binding sites, showing that TFs often collaborate in gene activation of 

downstream genes forming the phenotype of mature adipocytes, e.g., by the induction of the 

insulin receptor, fatty acid-binding protein 4 (FABP4), and adiponectin (ADIPOQ) (reviewed in 

Cristancho & Lazar, 2011; Siersbaek & Mandrup, 2011). 
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Fig. 3| Two waves of adipogenic transcription factor (TF) binding. The adipocyte differentiation is coordinated 
by two temporal waves of TF binding at hotspots where the signal of multiple TFs is integrated. In the first wave, 
pioneering factors such as CEBPB induce chromatin remodeling for binding of additional TFs of the first wave. 
These TF binding sites are characterized by accessible chromatin and histone H3 lysine 27 acetylation (H3K27ac). 
TF induced during the first wave, e.g., PPARG and CEBPA, are recruited during the second wave to the same TF 
hotspots (stable DHS) or to new TF hotspots (de novo DHS). Together with TFs of the first wave they induce the 
expression of genes forming the adipocyte phenotype. Transient DHS are TF hotspots only present at the first wave 
(not shown). The figure was created with BioRender.com and adapted from (Siersbaek and Mandrup, 2011; Steger 
and Lazar, 2011). CEBPA/B: CCAAT enhancer binding protein alpha/beta, GR: glucocorticoid receptor, RXR: 
retinoid X receptor, STAT5: signal transducer and activator of transcription 5. DHS: DNAse I hypersensibility sites.  

1.3.2 SGBS cells as an in vitro model of human adipogenesis 

Most knowledge on adipocyte differentiation has been generated with the murine transformed 

preadipocyte 3T3-L1 cell line. Studying the differentiation process in the Simpson-Golabi-

Behmel syndrome (SGBS) preadipocyte cell strain should enhance the relevance of the 

acquired knowledge, as the cell strain is, in contrast to 3T3-L1, human and diploid with a stable 

genome (Fischer-Posovszky et al., 2008; Yuan and Zhao, 2011). The cell strain was generated 

from a SAT biopsy of a male infant with the Simpson-Golabi-Behmel syndrome. However, no 

mutation was identified at the glypican 3 (GPC3) gene commonly associated with SGBS.  

Compared to primary cells, the cells retain their differentiation capacity up to 50 generations. 

A further advantage is the ability to study the synchronized differentiation under chemically 

defined conditions (serum-free). SGBS cells harbor a heterogeneous C risk allele rs1421085 

at the FTO alpha-ketoglutarate dependent dioxygenase (FTO) gene that shifts the gene 

expression program towards a white - and not beige - adipocyte differentiation program. 
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However, dependent on the stimuli, both white and beige differentiation of SGBS cells can be 

accomplished, and therefore they serve as a model for both lineages (Klusóczki et al., 2019). 

For white differentiation, first, confluency of SGBS cells is assured, as cell-cell contact affects 

adipogenesis via the Rho-family GTPases (Cristancho and Lazar, 2011). Three days post-

confluency, synchronized differentiation with chemically defined conditions by delivery of 

serum-free differentiation medium is induced. The differentiation medium contains the 

synthetic glucocorticoid dexamethasone (DEX) and cortisol, activating the GR. Adding 

1-methyl-3-isobutylxanthine (IBMX), an inhibitor of phosphodiesterases, increases cAMP 

levels. Further, the differentiation medium contains the potent PPARG agonist rosiglitazone. 

Triiodothyronine (T3) and insulin activate the thyroid hormone receptor and the insulin 

receptor, respectively. Differentiation is achieved in about two weeks with visible lipid 

accumulation.  

1.4 Epigenetic gene regulation 

The DNA carries the code for human life with the four DNA bases cytosine (C), guanine (G), 

thymine (T), and adenine (A). However, cell differentiation and the development of different 

organs cannot be explained by genetics, as all cells are genetically identical (Reik, 2007). In 

1942, Conrad Waddington proposed the concept of epigenetics, introducing a new layer 

between genetics and phenotype, which would explain heritable changes in gene function that 

the DNA sequence does not encode for (Waddington, 1942). With the epigenome, we today 

classify modifications on top of (“epi”) the DNA, which control the accessibility of the DNA to 

regulate gene expression. These modifications include DNA methylation and 

hydroxymethylation, but also chemical modifications on histones, the protein scaffold, around 

which DNA is wrapped. Epigenetic layers also include non-coding RNAs such as enhancer 

RNA, microRNAs (miRNAs), and long non-coding RNAs, the purpose of which is not to encode 

for proteins (non-coding) but to regulate the expression of other genes (Deichmann, 2016). 
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1.4.1 Chromatin organization 

The DNA of each human cell is around 2 m long and needs to be tightly organized and packed 

to fit into the nucleus, but in such a way that it can also be accessible at regions for cell type-

specific gene activation. Chromosomal regions that are not transcribed are packed at the 

nuclear lamina (heterochromatin). In contrast, actively transcribed regions are more loosely 

organized in bundles towards the center of the nucleus (euchromatin). These bundles are 

regions of the DNA that are in close contact and are frequently interacting, such as promoter 

regions and their enhancer regions within so-called topologically associating domains (TADs) 

(Hansen et al., 2021). Such genomic domains are separated from other genomic regions by 

so-called membrane-less organelles by a process called liquid-liquid phase separation, 

allowing local control of the organization of the chromatin (Banani et al., 2017; Shin and 

Brangwynne, 2017).  

1.4.2 Histone modifications 

To achieve different levels of chromatin compaction, the DNA is organized in nucleosomes 

formed by a complex of DNA wrapped around eight histone proteins. The nucleosomes can 

slide aside or be removed by chromatin remodelers to enable chromatin accessibility, e.g., for 

TFs to bind the DNA (Markert and Luger, 2021). Modifications at the histone tails or at domains 

physically interacting with the DNA dictate how close the DNA is attached to the histones, e.g., 

by modifying the charge of the histone protein or marking histones for their recognition by so-

called histone mark “readers”. The cell-type specific histone modifications are dynamically 

placed by “writers” and removed by “erasers” (Table 3). The repression of genes is 

accomplished by deposition of tri-methylation at lysine 27 (H3K27me3) or di-methylation at 

lysine 9 of histone H3 (H3K9me2). Active enhancer and promoter regions are marked by 

acetylation at H3K27 (H3K27ac) deposited by histone acetyltransferases (HAT) (Morgan and 

Shilatifard, 2020). While enhancers are primed H3K4me1, promoter regions are marked at the 

same lysine with trimethylation (H3K4me3). Whole genomes of different cell types have been 

screened for histone modifications to annotate the genome's genomic function systematically. 

With the use of a multivariate Hidden Markov Model (ChromHMM), the chromatin 

immunoprecipitation (ChIP)-sequencing data is integrated and can model the presence of 

certain chromatin states associated with different functional regions (Ernst and Kellis, 2012).  
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Table 3| Histone marks and associated enzymes in the modulation of chromatin function 

Modification Writer Eraser Location Function 

H3K27me3 PRC2 UTX1, JMJD3 
CpG-rich promoters and 
intergenic regions 

Silencing 

H3K9me2 G9A and GLP 
JMJD2A, JMJD2B, JMJD2C 
and JMJD2D; JMJD1A, 
JMJD1B and JMJD1C 

Gene bodies, intergenic 
regions, and enhancers 

Silencing 

H3K4me3 
COMPASS-like proteins 
(SET1, MLL1-MLL2) 

JARID1A, JARID1B, 
JARID1C, and JARID1D; 
KDM2B 

Mainly promoters 
Possibly 
activating 

H3K27ac 
HATs (including CBP/p300, 
GNATs, and MYSTs) 

HDACs and sirtuins 
Promoters and 
enhancers 

Activating 

H3K4me1 
COMPASS-like proteins 
(MLL3-MLL4) 

LSD1 and LSD2 
Promoters, enhancers, 
and intergenic regions 

Priming and/ 
or activating 

Modified from (Atlasi and Stunnenberg, 2017). 

1.4.3 DNA methylation and demethylation 

One of the most studied epigenetic marks is the methylation at the 5’ carbon of cytosines 

(5mC) when guanine (G) follows the C. The so-called CpG dinucleotides are symmetrically 

methylated, and during DNA replication, the methylation on the nascent strand is maintained 

by DNA (cytosine-5)-methyltransferase 1 (DNMT1). DNMT3a/b are involved in de novo 

methylation (Li et al., 1992; Okano et al., 1999). The removal of the methylation mark is 

classified into passive and active demethylation: During replication, the infidelity of DNMT1 to 

remethylate the nascent strand will create passive demethylation, especially in late-replicating 

regions, resulting in partially methylated domains (PMDs) (Gaidatzis et al., 2014; Ginno et al., 

2020). The active demethylation is accomplished by stepwise oxidation of the 5mC by ten-

eleven translocation (TET) enzymes to 5-hydroxymethyl C (5hmC), 5-formyl C (5fC), and 

5-carboxyl C (5caC) (Fig. 4). The unmethylated C can be reestablished by replication-

dependent passive dilution of oxidized bases (oxi-mC: 5hmC, 5fC, 5caC) or by thymine DNA 

glycosylase (TDG)-mediated base excision repair (BER) of 5fC or 5caC (Ginno et al., 2020).  
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Fig. 4| DNA methylation and demethylation cycle. Cytosines (C) in the context of CpG dinucleotides are 
methylated by DNA (cytosine-5)-methyltransferases (DNMTs). The demethylation process can occur passively as 
a result of the infidelity of DNMT1 (not shown) or actively involving step-wise oxidation by ten-eleven translocation 
(TET) enzymes and TDG-mediated base excision repair (BER). During replication, oxidized bases (5hmC, 5fC, or 
5caC) are not maintained (Oxi-mC-facilitated passive DNA demethylation). The figure was created with 
BioRender.com and adapted from (An et al., 2017). TDG: thymine DNA glycosylase. αKG: alpha-ketoglutarate.  

Most of the methylated genome is associated with non-accessible chromatin and functions in, 

e.g., preventing the transcription of imprinted genes or mobile genetic elements. Promoter 

regions are generally unmethylated regions (UMR) with high CpG density, ensuring 

accessibility for the transcriptional machinery. Methylation in the gene body is thought to 

prevent alternative transcription start sites (TSS), speeding up transcription. The methylation 

status of most CpG sites is static. The interest of epigenetic studies is, however, to identify 

those regions which change the methylation status dependent on the cellular state, 

differentiation, or during carcinogenesis (Locke et al., 2019).  

The hydroxymethylation mark (5hmC) as the first step of demethylation is found in higher 

proportions compared to 5fC and 5caC and is therefore considered as an independent 

epigenetic mark. 5hmC is found at low-to-intermediate CpG dense regions with intermediate 

methylation levels (lowly methylated regions (LMRs)), at promoters boundaries, bivalent 

promoters, and enhancer regions. Its function might be the prevention from remethylation by 

DNMTs. 5hmC is also found at the gene body of highly expressed genes and exon-intron 

boundaries, possibly marking splicing sites. It is highly discussed whether the 5hmC mark is 

just a step during demethylation or a stable mark with its own regulatory function. While the 

question has not been answered yet, it probably depends on the cellular system and the 

genomic position: 5hmC has been identified as a snapshot between dynamic cycling of 
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methylation and demethylation at promoter regions (Kangaspeska et al., 2008; Métivier et al., 

2008a) and as a stable mark (Bachman et al., 2014).  

The differences in 5hmC function might be dependent on how each cell type utilizes the 

regulatory mechanisms of demethylation to control the 5hmC state. The levels of regulation 

include the recruitment of TET enzymes by local chromatin environment, by TF, or through 

promoter-enhancer looping.  

1.4.4 Interplay of cell metabolism and epigenetics  

Epigenetic remodeling is directly regulated by cellular metabolism, as many metabolites are 

substrates or cofactors for epigenetic enzymes. For example, the availability of oxygen, Fe(II), 

and α-ketoglutarate (αKG) controls TET activity, while the inhibitory substrates L-2-

hydroxyglutarate (L-2-HG), succinate, and fumarate decrease TET activity (Fig. 4 + 5) (Lu et 

al., 2015). Vitamin C is also known to efficiently increase the activity of TET enzymes by 

restoration of iron Fe(II) via the reduction of Fe(III) (Rose et al., 2011). Histone demethylases 

(HDM) are also αKG-dependent dioxygenases regulated by the same metabolites (Fig. 5). 

Histone and DNA methylation depends on S-adenosyl methionine (SAM) availability. In 

contrast, S-adenosyl homocysteine (SAH) inhibits histone and DNA methyltransferases 

(Miranda et al., 2009). Acetylation of histones is highly dependent on acetyl-Coenzyme A 

(acetyl-CoA), and for deacetylation, nicotinamide adenine dinucleotide (NAD+)  is used as a 

substrate. Apart from the “canonical” modifications (DNA methylation and histone 

methylation/acetylation), several additional emerging posttranslational modifications regulated 

by chromatin-modifying metabolites have been described (Fig. 5) (Dai et al., 2020; Sun et al., 

2021). A few examples are, e.g., histone O-GlcNAcylation, lactylation, or citrullination, but not 

all of these emerging modifications are fully understood in their regulatory function. However, 

it has been shown that in several processes, such as differentiation, immune regulation, or 

tumor progression, changes in the metabolism that are regulated, e.g., by nutrient availability 

and growth factor signaling, are followed by changes in the epigenome (Dai et al., 2020). 

Therefore, the tightly controlled metabolism serves as an axis between the environment and 

epigenetic gene regulation. However, it remains unclear how local metabolite availability can 

be regulated at different genomic domains (Katada et al., 2012) and whether the liquid-liquid 

phase separation is involved in that process (Dai et al., 2020). 
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Fig. 5| Metabolism regulating epigenetic remodeling. Nutrients are metabolized in the cells and the generated 
metabolic intermediates can serve as epigenetic substrates or cofactors, such as acetyl-CoA, NAD+, SAM, and 
ATP. From (Sun et al., 2021). OGT: O-linked N-acetylglucosamine (GlcNAc) transferase, OGA: O-GlcNAcase, 
p300: E1A binding protein P300, HAT: histone acetyltransferase, HDAC: histone deacetylase, SIRT: Sirtuin, AMPK: 
AMP-activated protein kinase, PAD: peptidyl arginine deiminase, KAT2A: lysine acetyltransferase 2A, HMT: histone 
methyltransferase, DNMT: DNA methyltransferase, HDM: histone demethylase, TET: ten-eleven translocation.  

1.4.5 Analysis of DNA hydroxymethylation 

A variety of methods to detect hydroxymethylation have been developed in the past years, and 

they are grouped into base-resolution and non-base-resolution methods, reviewed by (Wu and 

Zhang, 2014, 2017). Base-resolution methods generally involve bisulfite (BS) sequencing (Fig. 

6a). With this technique, unmodified cytosines (C) are chemically deaminated to uracil upon 

bisulfite treatment. During PCR amplification, uracil is converted to thymine. Consequently, 

unmethylated Cs are sequenced as T. At the same time, methylated cytosines are protected 

from bisulfite-induced deamination and sequenced as C. This method delivers absolute 

proportions and a genome-wide profile of methylated C. However, bisulfite sequencing cannot 

discriminate between 5mC and 5hmC. To do so, additional steps are required that depend on 

the differential behavior of the modified cytosines during bisulfite conversion, such as in 

oxidative bisulfite (oxBS) sequencing. During oxBS, 5hmC is first oxidized to 5fC, which can 
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then be bisulfite-converted and sequenced as T. Finally, 5hmC can be calculated by 

subtracting oxBS from BS proportions (Booth et al., 2012). 

In contrast to BS, enrichment-based methods selectively enrich fragments with 5hmC, which 

are then sequenced (Fig. 6b). Enrichment can be achieved by 5hmC-specific antibodies or 

chemical modification of 5hmC. In hMeSeal, DNA is fragmented, and subsequently, 

ß-glucosyltransferase (β-GT) is used to glycosylate 5hmC. With the usage of click chemistry, 

glycosylated 5hmCs are labeled with biotin, and finally, biotinylated fragments are pulled down 

by streptavidin to sequence hydroxymethylated fragments. Enrichment-based methods cannot 

determine which CpG within a fragment is hydroxymethylated, and no absolute 

hydroxymethylation proportions can be estimated. However, the technique is very sensitive in 

detecting hydroxymethylated regions and is cost-effective in sequencing (Song et al., 2011).  

 

Fig. 6| Hydroxymethylation sequencing methods. a, Whole-genome bisulfite sequencing (WGBS-seq) in 
combination with oxidative bisulfite sequencing (WGoxBS-seq) is a base-resolution method to estimate 
hydroxymethylation proportion levels. With WGBS, unmodified cytosines (C) are bisulfite-converted (2) and 
sequenced as a T, while modified cytosines are sequenced as a C (3). With WGoxBS, during an additional oxidation 
step (1), 5hmC is oxidized to 5fC, which can then be bisulfite-converted and is sequenced as T (3) and thereby 
distinguished from 5mC, which is sequenced as a C. b, hMeSeal is an enrichment-based method, where DNA is 
fragmented, and 5hmC is glycosylated with ß-glucosyltransferase (β-GT) (1). With the usage of click chemistry, 
glycosylated 5hmC are labeled with biotin (2) and pulled down by streptavidin (3) to sequence hydroxymethylated 
fragments (4). The figure was created with BioRender.com. 



Introduction 

17 
 

1.4.6 Epigenetics of adipogenesis 

In murine adipogenesis, the generation of new CTCF (CCCTC-binding factor) and PPARG 

binding sites were associated with hydroxymethylation (Dubois-Chevalier et al., 2014; 

Serandour et al., 2012). It was shown that CTCF (Dubois-Chevalier et al., 2014) and PPARG 

(Fujiki et al., 2013) recruit TET1 and thereby orchestrate site-specific hydroxymethylation 

necessary for enhancer progression. siRNA knockdown revealed that TET1 and TET2 are 

involved in lineage differentiation by enhancer activation through oxidation of 5mC to 5hmC 

(Cakouros et al., 2019). In contrast, TET1 can also act as a repressor of adipogenesis. It can 

recruit co-repressor proteins, such as SIN3A (SIN3 transcription regulator family member A) 

and EZH2 (enhancer of zeste homolog 2), and repress promoters. At the local level, it was 

shown that during clonal expansion, DNMT1 maintains the methylation at the PPARG2 

promoter. Afterwards, TET1/2 demethylate the PPARG2 promoter and selected promoters of 

adipogenic genes (leptin, FABP4) (Noer et al., 2006; Teven et al., 2011; Yoo et al., 2017). 

Rauch et al. provided a global view on adipogenesis at the levels of chromatin accessibility by 

comparing changes in ATAC-seq data observed during adipogenesis with those observed in 

osteogenesis. Epigenetically, osteoblasts are more closely related to MSCs than adipocytes, 

and therefore adipogenesis requires more dramatic chromatin remodeling than osteogenesis 

(Rauch et al., 2019). Mikkelsen et al. have characterized genome-wide changes in histone 

modifications, CTCF, and PPARG binding during murine and human adipogenesis. Although 

the critical adipogenic transcription factors are conserved, the genomic locations of enhancer 

regions (H3K27ac) with PPARG and CTCF binding seem to be different between species. 

As PPARG and CEBPA drive adipocyte differentiation, many epigenetic studies have also 

studied the effect of epigenetic players on the expression of CEBPB, PPARG, and CEBPA 

(Ambele et al., 2020; Nanduri, 2021). Most of the studied epigenetic enzymes promote the 

differentiation process, but a few inhibit adipocyte differentiation. The histone deacetylase 9 

(HDAC9) inhibits the expression of CEBPB by deacetylating H3K27ac, and sirtuin 1/2 

(SIRT1/2) inhibit the expression of both CEBPA and PPARG by deacetylating H3K9ac. The 

euchromatic histone lysine methyltransferase 2 (EHMT2) generates the H3K9me2 mark and 

therefore inhibits the binding of CEBPB at the PPARG promoter. Finally, the lysine specific 

demethylase 1 (LSD1) functions both in the promotion and the repression of CEBPA 

expression by increasing H3K4me2 and H3K9me2, respectively. To induce the expression of 

the adipogenic regulators CEBPA and PPARG, the polycomb repressive complex 2 (PRC2) 

with its subunit enhancer of zeste (EZH2) deposits the repressive mark H3K27me3 and 

therefore indirectly promotes adipogenesis by repressing Wnt genes. The switch/sucrose non-

fermentable (SWI/SNF) and the CREB-binding protein (CBP)/p300 protein complex display 
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direct effects on the promotion of PPARG expression with their function in chromatin 

remodeling and acetylation of H3K27 at the PPARG2 promoter, respectively.  

1.4.7 NEIL1, a potential hydroxymethylation reader 

To study additional functions of the hydroxymethylation mark, pulldown experiments have 

been performed to identify proteins preferentially binding to 5hmC, compared to the other 

marks. Among them, UHRF1/2 (ubiquitin like with PHD and ring finger domains 1/2), MECP2 

(methyl-CpG binding protein 2), MSH6 (mutS homolog 6), and NEIL1 (nei like DNA glycosylase 

1) were identified as 5hmC binding proteins (Iurlaro et al., 2013; Spruijt et al., 2013).  

NEIL1 is an enzyme with DNA glycosylase activity and can therefore excise oxidized bases. 

NEIL1 recognizes the oxidized base in replicating cells, preventing the nascent chain from 

growing. It then lets the fork regress the single-strand back to its double-strand position 

allowing safe BER (Hegde et al., 2013). NEIL1 is also involved in repairing oxidative stress-

induced damage in non-proliferating cells. It is found in a complex with BER proteins and 

nucleosome remodeling proteins, the “BERosome”, constantly sitting on nucleosomes. When 

NEIL1 identifies oxidized bases, nucleosomes are remodeled so that DNA is accessible for 

repair. Then, inhibitors of NEIL1, CHAF1A (chromatin assembly factor (CAF)-1 subunit A), the 

p150 subunit of the histone H3/H4 chaperone, and its partner ASF1A (anti-silencing function 

protein 1A) are released from the complex, and NEIL1 becomes active and initiates BER (Yang 

et al., 2017).  

However, NEIL1 might also have functions other than canonical repair, as there was no 

increased mutation rate by NEIL1 knockout. Vartanian et al. speculated a role in the regulation 

of transcription (Vartanian et al., 2006). Others describe a role in DNA demethylation, as NEIL1 

overexpression can partially replace the function of TDG in excising 5fC and 5caC, but TDG is 

considered as the main glycosylase to accomplish this job (Müller et al., 2014). Regarding the 

possible function on 5hmC, it was described that purified human NEIL1 can cooperate with 

TDG to initiate BER on 5fC and 5caC, but was not able to excise 5hmC (Slyvka et al., 2017). 

Beside the ability of binding 5hmC, several in vivo knockout studies support a role of NEIL1 in 

maintaining adipose tissue. NEIL1 knockout in mice has shown that deficiencies in Neil1, but 

also in another repair enzyme, 8-oxoguanine DNA glycosylase (Ogg1), resulted in the 

development of severe obesity (Arai et al., 2006; Sampath et al., 2011; Vartanian et al., 2006), 

which might be due to defective adipogenesis (Longo et al., 2019).  
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1.5 DHA and prevention of Metabolic Syndrome 

The most effective prevention of metabolic syndrome is achieved by weight loss through 

lifestyle changes, including diet and physical activity. Other possible treatments to reduce 

weight include surgery or the intake of pharmaceuticals or dietary supplements.  

One way to reduce the risk of cardiovascular disease was to substitute saturated fatty acids 

(SFA) with polyunsaturated fatty acids (PUFAs), containing two or more double bonds; n-6 and 

n-3, indicating the position of the first double bond (Lenighan et al., 2019). Linoleic acid (LA) 

and alpha-linoleic acid (ALA) are the two essential fatty acids from which the other n-6 and n-

3 fatty acids can be generated (Fig. 7). Later, it became apparent that the ratio between PUFAs 

and SFAs is critical, but the ratio of n-6 (mainly pro-inflammatory) to n-3 (rather anti-

inflammatory) is to be considered, too. Eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA), e.g., are derived from ALA by desaturation and elongation, but as conversion rates 

are considered low, these fatty acids are suggested to be ingested directly by fish or algae oils 

(Brenna et al., 2009; Burdge, 2004; Plourde and Cunnane, 2007). 

The PUFAs are part of membrane lipids. When lipases release these FAs from the 

membranes, the PUFAs compete for lipoxygenase (LOX), cyclooxygenase (COX), and 

cytochrome P450 (CYP), which metabolize them to the downstream effectors, the oxylipins 

(Fig. 7). From n-6 PUFAs mostly proinflammatory oxylipins, are generated, while from n-3 

PUFAs, mainly pro-resolving and anti-inflammatory oxylipins (resolvins, protectins, and 

maresins) are produced (Duan et al., 2021; Liput et al., 2021). 

EPA and DHA themselves affect cellular metabolism by integration into membranes, where 

they change the structure of lipid rafts and affect the function of membrane receptors. In 

addition, they can bind membrane receptors such as G protein-coupled receptors (GPCRs), 

inhibit the action of inflammasomes, activate intracellular receptors such as PPAR and retinoid 

X receptors (RXR), and inhibit the function of the transcription factors liver X receptor α (LXRA), 

sterol regulatory element binding protein 1c (SREBP1c), carbohydrate responsive element 

binding protein (ChREBP), and nuclear factor kappa B (NFκB) (Bordoni et al., 2006; Liput et 

al., 2021). 

In humans, it has been shown that EPA and DHA have a protective function against 

cardiovascular diseases through their anti-inflammatory and hypotriglyceridemic action 

(Albracht-Schulte et al., 2018). Direct effects on the adipose tissue have been shown in mice, 

where supplementation with EPA and DHA has resulted in weight loss. In humans, at least a 

prevention of weight gain has been shown, and the action is discussed to be mainly via lipid 

mediators (oxylipins) by reducing the secretion of leptin and increasing the levels of 
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adiponectin (Rausch et al., 2021). Furthermore, they have been shown to reduce low-grade 

inflammation in the adipose tissue, promote insulin sensitivity, and increase the oxidation of 

FAs and their re-esterification in adipocytes. Finally, EPA and DHA also affect immune cells, 

e.g., supporting a switch from M1 to M2 macrophage phenotype (Kuda et al., 2018). Although 

the ingestion of n-3 FAs, specifically by EPA- and DHA-rich fish oil supplementation, is 

suggested, it is yet not clear what is the optimal ratio of n-6 to n-3 FA and which of the biological 

effects are accomplished by EPA and DHA themselves or by the downstream effectors, the 

oxylipins. 

 

Fig. 7| n-6 and n-3 fatty acid-derived lipid mediators involved in inflammation. Linoleic acid (LA) and alpha-
linoleic acid (ALA) are n - 6 and n - 3 essential fatty acids, respectively, categorized by the position of the first double 
bond. These fatty acids are the templates for the generation of other polyunsaturated fatty acids (PUFAs) with the 
help of desaturases and elongases. Oxylipins are downstream lipid mediators involved in inflammation that are 
generated by lipoxygenase (LOX), cyclooxygenase (COX), or cytochrome P450 (CYP) (not shown) enzymes. 
Adapted from McDaniel et al., 2013.   
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2 Aims 

Metabolic syndrome is a multifactorial metabolic disorder with a pandemic expansion. As part 

of the PATHWAY-27 project (EU grant agreement n° 311876) aiming at prevention of the 

metabolic syndrome by dietary intervention with foods enriched for bioactive compounds, I 

planned first to characterize the SGBS in vitro model for human adipocyte differentiation at the 

epigenetic level (part 1). Second, I aimed to investigate the influence of chronic exposure to 

bioactive compounds on SGBS preadipocytes to study the effect of the bioactive compounds 

at the molecular level (part 2).  

During early investigations of the SGBS cell differentiation model, I identified that not 

necessarily DNA methylation but hydroxymethylation levels were mainly altered. Therefore, 

the focus of the first part was to characterize hydroxymethylation changes during adipocyte 

differentiation and understand its molecular role in epigenetic gene regulation. To address this 

aim, the following objectives were devised throughout this thesis: 

 To map DNA methylation and hydroxymethylation changes during adipocyte differentiation 

(day 0 – day 11) at the base-resolution (using a combination of WGBS and WGoxBS 

sequencing, and validated with the 450k array), as well as at non-base-resolution (hMeSeal 

sequencing).  

 To investigate whether hydroxymethylation is a stable mark by maintaining mature 

adipocytes in culture for an extended time.  

 To characterize the genomic location of hydroxymethylation sites using published 

chromatin states (ChromHMM) and data of adipogenic TF binding (ChIP-seq).  

 To investigate the possible gene regulatory function of hydroxymethylation by its 

integration with gene expression (RNA-seq) and protein levels (untargeted proteome).  

 To validate the in vivo relevance of hydroxymethylation sites, by comparing 

hydroxymethylation in mature SGBS cells with those in white adipose tissue (WAT).  

 To investigate the involvement of the metabolome in the regulation of hydroxymethylation 

dynamics, using targeted and untargeted metabolome data of differentiating SGBS cells.  

 To clarify the potential role of acNEIL1 as a hydroxymethylation binding protein in the 

regulation of hydroxymethylation. For that, acNEIL1 ChIP-seq binding was compared with 

hydroxymethylation in WAT to investigate its in vivo co-localization.  

In the second part of this thesis, I aimed to investigate the function of the PATHWAY-27 

bioactive compounds in vitro in SGBS preadipocytes to study their effect on the differentiation 

capacity necessary for adipose tissue hyperplasia (increase in cell number) instead of 
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hypertrophy (increase in adipocyte size). I also aimed to investigate the possible anti-

inflammatory effects, as preadipocytes are more responsive to the proinflammatory signaling 

than mature adipocytes. The PATHWAY-27 consortium aimed to study the low-dose long-term 

effect of docosahexaenoic acid (DHA), protocatechuic acid (PA), one of the most abundant 

metabolites of anthocyanins and propionate (PRO), a metabolite of β-glucan and their 

combination treatments. As DHA displayed the strongest biological activity, while PA and PRO 

did not show any additive effects, I focused in this thesis on DHA treatment effects. To 

investigate the DHA-associated effects, I aimed: 

 To test the cytotoxicity of the bioactive compounds in SGBS preadipocytes to select 

treatment concentrations. 

 To map DHA-associated methylation changes (EPIC array) and gene expression 

changes (RNA-seq) in a long-term cultivation experiment in SGBS preadipocytes using 

low doses of DHA concentration 

 To compare methylation changes with changes in independent cultivation experiments 

to separate cultivation-associated indirect DHA effects from direct DHA effects. 

 To identify, based on gene expression data, DHA-associated signaling pathways and 

associated TF activities to understand the molecular mechanism of DHA in SGBS 

preadipocytes.  

 To investigate the effect of DHA on SGBS differentiation capacity.  

Overall, a better insight into human adipocyte differentiation and the effect of DHA on human 

preadipocytes will enhance our understanding of regulatory mechanisms for healthy adipocyte 

function and contribute to the improvement of metabolic syndrome in human adipose tissue.  
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3 Material and Methods 

3.1 Materials 

3.1.1 Instruments 

Instruments Manufacturer 

5973N mass selective detector Agilent, Waldbronn, Germany 

6890N gas chromatograph Agilent, Waldbronn, Germany 

Bioanalyzer 2100 Agilent Technologies, Santa Clara, CA, USA 

Biofuge fresco Heraeus, Hanau, Germany 

Biofuge pico Heraeus, Hanau, Germany 

CellXpert C170i Eppendorf, Hamburg, Germany 

Centrifuge 5415R Eppendorf, Hamburg, Germany 

Centrifuge 5424 R  Eppendorf, Hamburg, Germany 

Covaris M220 Focused-ultrasonicator  Covaris, Woburn, Massachusetts, USA 

DM IL light microscope Leica, Wetzlar, Germany 
E1-ClipTip Electronic Adjustable Tip Spacing 
Multichannel Equalizer Pipettes 

Thermo Fisher Scientific, Waltham, MA, 
USA 

Herasafe laminar Flow workbench Heraeus Instruments 

HiSeq X instrument Illumina, San Diego, CA, USA 

HP5-MS column  Agilent, Waldbronn, Germany 

Illumina NextSeq 550 instrument  Illumina, San Diego, CA, USA 

Illumina NovaSeq 6000 machine Illumina, San Diego, CA, USA 

Leica DFC300 FX digital color camera  Leica Microsystems, Wetzlar, Germany 

M220 Focused-ultrasonicator  Covaris, Woburn, MA, USA 

Mastercycler gradient 3 Eppendorf, Hamburg, Germany 

Mastercycler nexus gradient Eppendorf, Hamburg, Germany 

Mettler AT 261 Deltarange microgram scale Mettler Toledo, Zwingenberg, Germany 

Micro-Dismembrator S   Sartorius, Göttingen, Germany 

MSO Minishaker IKA Laborgeräte München, Germany 

Nanodrop spectrophotometer ND1000 Peqlab, Erlangen, Germany 

QIAvac 24 Plus vacuum manifold, (19413) Qiagen, Venlo, Netherlands 

Qubit 3.0 Fluorometer 
Invitrogen, Life Technologies, Darmstadt, 
Germany 

Roche Light Cycler 480 Roche Diagnostics, Mannheim, Germany 

SPECTRAmax M5 microplate reader Molecular Devices, Sunnyvale, CA, USA 

TapeStation 4150 Agilent Technologies, Santa Clara, CA, USA 
Thermo Scientific Series 8000 WJ (Water Jacket) 
Incubator 

Thermo Fisher Scientific, Waltham, MA, 
USA 

Thermomixer Comfort Eppendorf, Hamburg, Germany 

Thermomixer Compact Eppendorf, Hamburg, Germany 

TissueLyser II Qiagen, Venlo, Netherlands 
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3.1.2 Consumables 

Consumables/Reagents Manufacturer 

1-methyl-3-isobutyl xanthine (IBMX), (I5879) Sigma Aldrich, St. Louis, MO, USA 

accutase solution, (A6964) Sigma Aldrich, St. Louis, MO, USA 

AMPure XP beads, (A63880) Beckman Coulter, Brea, USA 

biotin, (B4639) Sigma Aldrich, St. Louis, MO, USA 

bovine serum albumin (BSA), (A6003) Sigma Aldrich, St. Louis, MO, USA 

BRL49653 (Rosiglitazone), (350-125) 
Enzo Life Sciences, Inc, Farmingdale, 
USA 

chloroform, (22711.324) VWR, Radnor, PA, USA 
cOmplete, EDTA-free Protease Inhibitor Cocktail 
(11873580001) 

Roche Diagnostics, Mannheim, Germany 

cortisol, (H0888) Sigma Aldrich, St. Louis, MO, USA 

dexamethasone (DEX), (D1756)  Sigma Aldrich, St. Louis, MO, USA 

dimethyl sulfoxide (DMSO), (20-139) Merck, Darmstadt, Germany 

DMEM/Nutrient Mixture F-12, containing 
2.5 mM L-Glutamine, 15 mM Hepes, (11330) 

Thermo Fisher Scientific, Waltham, MA, 
USA 

dNTP Mix, (201900) Qiagen, Venlo, Netherlands 

docosahexaenoic acid (DHA), (D8768) Sigma Aldrich, St. Louis, MO, USA 

DPBS, (14190) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

DTT, (92008) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

ethanol 96%, (P075.1) Carl Roth, Karlsruhe, Germany 

E-Toxa-Clean, (E9029) Sigma Aldrich, St. Louis, MO, USA 

fetal bovine serum (FBS), (10270) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

fibroblast growth factor 1 (FGF1), (F5542) Sigma Aldrich, St. Louis, MO, USA 

first-strand buffer, (1712020) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

heparin, (H4784) Sigma Aldrich, St. Louis, MO, USA 

human transferrin, (T2252) Sigma Aldrich, St. Louis, MO, USA 
hydroxyethyl piperazine ethanesulfonic acid (HEPES), 
(H3375) 

Sigma Aldrich, St. Louis, MO, USA 

insulin, (I1507) Sigma Aldrich, St. Louis, MO, USA 

isopropanol (2-Propanol), (6752.3) Carl Roth, Karlsruhe, Germany 

Kaliumchlorid (KCl), (4936) Merck, Darmstadt, Germany 

NEBNext High-Fidelity 2x PCR master mix, (M0544) New England BioLabs, Ipswich, MA, USA  

pantothenate, (P5155) Sigma Aldrich, St. Louis, MO, USA 

penicillin/streptomycin, (P0781) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

propionate (PRO), (P1880) Sigma Aldrich, St. Louis, MO, USA 

proteinase K, (158918) Qiagen, Venlo, Netherlands 

protocatechuic acid (PA), (03930590) Sigma Aldrich, St. Louis, MO, USA 

random hexamer oligonucleotides, (S0142) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

RNase A, (1045699) Qiagen, Venlo, Netherlands 

RNaseOUT, (10777019) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

Rotilabo-Gewindefläschchen ND8 Carl Roth, Karlsruhe, Germany 
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RWT buffer, (1067933) Qiagen, Venlo, Netherlands 

safe lock tubes (DNA LoBind Tube), (022431021) Eppendorf, Hamburg, Germany 

Schraubkappen geschl. PP, ND8 Carl Roth, Karlsruhe, Germany 

sodium butyrate, (13121) 
Cayman Chemical Company, Ann Arbor, 
MI, USA 

sodium dodecyl sulfate (SDS), (L4509) Sigma Aldrich, St. Louis, MO, USA 

spermidine, (S2501) Sigma Aldrich, St. Louis, MO, USA 

sulforhodamin B (SRB), (230162) Sigma Aldrich, St. Louis, MO, USA 

SuperScript III RT, (18080093) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

SybrGreen 
Thermo Fisher Scientific, Waltham, MA, 
USA 

T12.5 flask, with vented caps 
Falcon, Corning Incorporated, Durham, 
USA 

T25 fask, with vented caps Greiner Bio-One, Kremsmünster, Austria 

T75 fask, with vented caps Greiner Bio-One, Kremsmünster, Austria 

TRI Reagent, (T9424) Sigma Aldrich, St. Louis, MO, USA 

trichloroacetic acid, (15494749) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

triiodothyronine (T3), (T6397)  Sigma Aldrich, St. Louis, MO, USA 

Triton X-100 Gerbu, Gailberg, Germany 

UltraPure Distilled Water, (10977) 
Thermo Fisher Scientific, Waltham, MA, 
USA 

β-mercaptoethanol, (M6250) Sigma Aldrich, St. Louis, MO, USA 

  

  

Kits Manufacturer 

AllPrep DNA/RNA Mini Kit, (80204) Qiagen, Venlo, Netherlands 

DNA BR Assay Kit 
Thermo Fisher Scientific, Waltham, MA, 
USA 

EZ DNA Methylation Kit 96-well kit 
Zymo Research Europe GmbH, Freiburg, 
Germany 

Illumina TrueSeq Stranded total RNA Library Prep Kit Illumina, San Diego, CA, USA 
Infinium Human Methylation 450k Bead Chip Illumina 
arrays 

Illumina, San Diego, CA, USA 

Infinium Methylation EPIC BeadChip Kit Illumina, San Diego, CA, USA 

MinElute Reaction Cleanup Kit Qiagen, Venlo, Netherlands 

Ovation Ultralow Methyl-Seq Library System Tecan, Männedorf, Switzerland 

Ovation Ultralow Methyl-Sey DR Mutliplex System 1-8 Nugen, San Carlos, CA, USA 

RNA BR Assay Kit 
Thermo Fisher Scientific, Waltham, MA, 
USA 

RNase-Free DNase Set, (79251) Qiagen, Venlo, Netherlands 

Roche universal probe library (UPL) system Roche, Mannheim, Germany 
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3.2 SGBS cells 

Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were kindly provided by Dr. 

Wabitsch (Ulm University, Germany) (Wabitsch et al., 2001) and were tested regularly negative 

for mycoplasm contamination at Multiplexion. The SGBS cell line is no commonly misidentified 

cell line (ICLAC register), and I confirmed its cell authenticity regularly by differentiation 

capacity.  

3.3 SGBS adipocyte differentiation 

For experiment 1 (Fig. 8), I have grown SGBS cells in growth medium (Dulbecco’s Modified 

Eagle’s Medium F12 (DMEM/Nutrient Mixture F-12)) supplemented with 10 % fetal bovine 

serum, 1 % penicillin/streptomycin, 33 μM biotin, 17 μM pantothenate, 90 μg/mL human 

heparin, and 1 ng/mL fibroblast growth factor 1 (FGF1)). Cells were seeded at a density of 

2 – 3x105 cells/T75 flask and passaged twice weekly. Before induction of differentiation, cells 

were grown to confluency in T25 flasks. Three days after reaching confluency, I stimulated 

SGBS cells with a differentiation cocktail in serum-free medium containing 100 nM insulin, 

200 pM triiodothyronine (T3), 1 μM cortisol, 2 μM BRL49653 (rosiglitazone), 0.115 mg/ml 1-

methyl-3-isobutylxanthine (IBMX), 0.25 mmol/L dexamethasone (DEX), and 0.01 mg/ml 

human transferrin. SGBS cells were kept in full differentiation media until day 6 after induction. 

Then the medium was replaced with differentiation medium without FGF1, heparin, 

rosiglitazone, IBMX, and DEX. I harvested cells for epigenetic analyses at day 0, 1, 7, and 11 

of differentiation. Differentiation was performed in three biological replicates. Linda Kessler 

(LK) repeated the adipocyte differentiation in experiment 2 in three biological replicates using 

the same protocol but kept mature SGBS cells in differentiation medium without FGF1, heparin, 

rosiglitazone, IBMX, and DEX until day 27 (Fig. 8).  
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Fig. 8| Overview of experiments related to multi-omic analyses during adipogenesis (thesis part 1). SGBS 
preadipocytes were differentiated to mature adipocytes (day 11/12) or kept in culture up to day 27. SGBS 
differentiation of experiment 1 (n = 3) was performed by myself (CFA) for methylation and hydroxymethylation 
analysis using bisulfite (BS)/oxidative BS treatment analyzed by 450k array technology and for gene expression 
analysis by RNA-seq and RT-qPCR analysis. Differentiation of experiment 2 (n = 3) was performed by LK, I (CFA) 
performed WGBS/oxBS library preparation, and FJ performed hMeSeal library preparation for hydroxymethylation 
analysis. Metabolome analysis of differentiating SGBS cells (experiment 3, n = 5 - 6) were provided by (Miehle et 
al., 2020) and proteome analysis (experiment 4, n = 5) by (Schaffert et al., 2021). Downstream bioinformatic data 
processing was done by myself (CFA). Modified from (Feuerstein-Akgoz, C. et al., in preparation) 

3.4 Long-term cultivation of SGBS preadipocytes with bioactive 

substances 

3.4.1 Complexation of DHA with BSA 

For delivery to SGBS cells, DHA was conjugated and solubilized with bovine serum albumin 

(BSA) in a DHA:BSA ratio of 4:1 with a concentration of 1 mM DHA according to protocol 

(SeahorseBioscience, n.d.) with minor modifications. To avoid lipopolysaccharide (LPS) 

contamination, all glassware and stir bars needed for complexation were soaked overnight in 

a 1 % solution of alkaline detergent (E-TOXA-CLEAN), washed 8 to 10 times with warm 

running tap water, five times with distilled water, and finally twice with endotoxin-free water. 

For the complexation procedure, BSA was dissolved in 150 mM NaCl solution to a 

concentration of 0.5 mM BSA by stirring in a 37 °C water bath. Similarly, DHA was dissolved 

in 150 mM NaCl solution at 2 mM concentration by stirring in a 37 °C water bath under a 

nitrogen atmosphere to avoid oxidation of DHA. Next, the BSA solution was slowly added to 

the DHA solution under a nitrogen atmosphere, creating a final concentration of 1 mM DHA, 

0.25 mM BSA, 150 mM NaCl and stirred for another hour. BSA solution was diluted 1:1 in 

150 mM NaCl solution as solvent control. pH was adjusted to 7.4 with NaOH and solutions 
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were sterile-filtered and aliquoted to clean brown glass flasks. Air in the flask was removed 

with nitrogen gas, and solutions were stored at -80 °C. 

3.4.2 Cytotoxicity experiments 

To determine cell growth inhibitory potential of compounds for SGBS preadipocytes, I seeded 

cells in a 96 well format with 500 cells/well; a cell number I had previously defined in a cell 

growth experiment. After 24 hours, I renewed growth medium (200 µl/well) and supplemented 

with a serial dilution of DHA with concentrations ranging between 0.02 µM – 45 µM, or 

supplemented with PA or PRO with concentrations between 0.78 µM – 100 µM. For cell growth 

experiments, PA and PRO were dissolved in DMSO, pH 2. Control samples for DHA were 

treated with a serial dilution of BSA in NaCl. In control samples for PA and PRO, DMSO 

concentration was adjusted to 0.5 %. Treatment was stopped after 0, 24, 48, and 72 h, 

respectively, by removal of the medium. Cells were fixed with 10 % trichloroacetic acid for 

30 min at 4 °C and washed extensively with tap water to remove trichloroacetic acid and dried 

to avoid detachment of the cells. For quantification of cell growth and anti-proliferative or 

cytotoxic activities of the substances, I performed sulforhodamin B (SRB) staining as described 

by (Skehan et al., 1990a). I stained cells with 0.4 % SRB solution for exactly 30 min at room 

temperature. Afterwards, I removed the SRB solution and washed the plate several times with 

1 % acetic acid. Finally, I added 200 µl 20 mM Tris base solution to each well and shook the 

plates until the dye was completely dissolved. For quantification of the staining, I measured 

the absorbance at 515 nm (for high cell concentrations at 490 nm). The absorbance ratio of 

treated cells to solvent control cells was taken as readout for anti-proliferative activities. To 

distinguish between cytostatic and cytotoxic effects, I subtracted the absorbance at day 0 from 

absorbance values at the respective time points. Thus, cytotoxic effects result in negative 

values, while positive values represent cytostatic effects. Solvent control values for each time 

point were used to calculate the relative percentage of cell growth inhibition. Half-maximal 

inhibitory concentration (IC50) values were computed from the results of eight serial 2-fold 

dilutions of test compound tested in technical duplicates. Nonlinear fitting of the dose-response 

curve was performed using GraphPad Prism version 5.00 for Windows, GraphPad Software, 

La Jolla California USA, www.graphpad.com. 

3.4.3 Long-term cultivation experiments with DHA and nonDHA 

I cultivated SGBS cells in growth medium (see chapter 3.3) in T75 flasks at 37 °C and 5 % 

CO2, while avoiding cells to grow confluent. I prepared 1 mM stock solution of DHA as 

described above, I dissolved PRO in ethanol at a concentration of 31.1 mM and PA in DMSO 
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at 20 mM concentration. To investigate bioactive-induced alterations in DNA methylation and 

gene expression, I cultivated SGBS preadipocytes (three biological replicates: I, III, IV) for 2.5 

to 4 weeks with the bioactives at non-toxic concentrations: 5 µM DHA, 70 µM PRO and 20 µM 

PA, alone or in combinations (experiment 5, Fig. 9). Independent of the treatment, all treated 

samples and solvent controls received all three solvents at a final concentration of 0.1 % 

DMSO, 0.23 % ethanol, and 1.25 µM BSA. I passaged the cells twice a week and freshly 

supplemented with bioactives at each passage. Afterwards I isolated nucleic acids using the 

protocol described in chapter 3.7. 

Untreated control samples of experiment 6 were passaged by Lisa Demoen (LD) for 29 days 

in three independent replicates. In experiment 7, Linda Kessler (LK) cultured SGBS cells for 

14 days in three independent replicates. Then, the cells were seeded into T12.5 cm2 flasks 

and grown to confluency until day 21, using the same growth medium. Each student isolated 

nucleic acids using the protocol described in chapter 3.7. 

 

Fig. 9| Overview of the DHA long-term treatment experiments and applied epigenetic methods (thesis part 
2). SGBS were cultivated for several passages with docosahexaenoic acid (DHA: DHA, DHA+PA or DHA+PRO) or 
without DHA (nonDHA: untreated, solvent, PA or PRO) in three independent replicates (experiment 5/Student 1: 
rep I, III, IV). Untreated control samples of SGBS cultivation by two other students were included to interpret 
changes occurring during cultivation (experiment 6/Student 2 and experiment 7/Student 3 in 3 replicates, each). 
Methylation was analyzed on EPIC arrays and gene expression by RNA-seq. The number of included replicates on 
the EPIC array and RNA-seq are indicated in blue or green, respectively. Experiments 5 - 6 were performed by 
myself (CFA), LD, and LK, respectively. DHA: docosahexaenoic acid, PA: protocatechuic acid, PRO: propionate. 

3.5 WAT tissue biopsies 

Subcutaneous white adipose tissue biopsies were taken from participants of the PATHWAY-27 

human large intervention study (LIS) (NCT02702713, ClinicalTrials.gov). A subset of 5 

biopsies of study participants recruited at the University of Bologna was used in this thesis 

(Fig. 10). Biopsies were collected from participants with or at risk of metabolic syndrome and 
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frozen at -80°C by collaboration partners of the PATHWAY-27 consortium, Silvia Garelli (SG), 

Marianna Farnè (MF), Giampaolo Ugolini (GU), Giancarlo Rosati (GR) and Luigi Ricciardiello 

(LR), from the Department of Medical and Surgical Sciences, University of Bologna, Italy and 

coordinated by Alessandra Bordoni (AB) from the Department of Agricultural and Food 

Sciences, University of Bologna, Italy. After shipment of frozen biopsies, Karin Klimo (KK) and 

Annette Weninger (AW) pulverized the biopsies under liquid nitrogen using the Micro-

Dismembrator S for further downstream processing.  

 

Fig. 10| Overview of WAT biopsies and applied epigenetic methods (thesis part 1). To investigate the in vivo 
relevance of the obtained in vitro findings, I included white adipose tissue (WAT) samples, characterized by gender, 
age, and body mass index (BMI). Biopsies were obtained by SG, MF, GU, GR, LR under the coordination of AB. 
Tissue was pulverized by KK and AW, ACT-seq, and hMeSeal libraries were prepared by JH and FJ, respectively. 
All downstream analyses were performed by myself (CFA). Modified from (Feuerstein-Akgoz, C. et al., in 
preparation) 

3.6 Images 

I took images of differentiating SGBS cells using the Leica DFC300 FX digital color camera 

with the software Leica Application Suite (LAS) Version 3.8.0.  

3.7 Extraction of nucleic acids for epigenetic analyses 

DNA and RNA of SGBS cells or WAT biopsies were isolated using the AllPrep DNA/RNA Mini 

Kit according to the manufacturer’s instructions with modifications described below. Isolations 

were performed by myself or by the responsible experimenter, both mentioned in the chapter 

with the corresponding sample descriptions. Tissues were lysed in safe-lock tubes with lysis 

buffer of the kit (RLT Plus), supplemented with 1 % freshly added -mercaptoethanol. Fat of 

the tissue lysates was removed as an upper layer after centrifugation. Cell lines were first 

washed with PBS and then lysed with the same lysis buffer directly in the plates. During lysis, 

cells were scraped from the flasks and transferred for completion of the lysis to safe-lock tubes.  
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DNA was collected on an AllPrep DNA spin column and flow-through was kept for RNA 

isolation, described below. DNA on the column was cleared from RNA contamination with 

RNase A digestion at 56 °C. Afterwards, Proteinase K digestion was performed and, after 

several washing steps on the column, DNA was eluted in H2O and stored at 4 °C.  

For RNA isolation, all centrifugation steps were performed at full speed and at 4 °C to avoid 

RNA degradation. 450 µl of the flow-through was vortexed thoroughly with 1 ml TRI reagent 

and incubated for 5 min. Next, 200 µl chloroform was added and again vortexed and incubated 

for 15 min at room temperature. Then samples were centrifuged for 15 min and the upper 

aqueous phase containing the RNA was transferred carefully to a fresh safe-lock tube to be 

mixed with 500 µl isopropanol. After 30 min incubation at room temperature, Proteinase K 

digestion (15 µl) was performed and RNA was collected on RNA spin columns using the 

QIAvac 24 Plus vacuum manifold. For that, lysates mixed with RWT washing buffer were 

transferred onto the columns, pre-equilibrized with RWT washing buffer. Afterwards, columns 

were washed with RWT washing buffer and on-column DNase I digest was performed using 

the RNase-Free DNase Set. Columns were then washed once with RWT buffer. The flow-

through was retransferred onto the column and then washed three times with RPE buffer. The 

membranes were dried for 2 min and RNA on the column was eluted by adding RNase-free 

water followed by centrifugation. An aliquot of 5 µl was removed for quantification and quality 

check. The remainder of the RNA solution was subsequently directly stored at -80 °C to 

prevent degradation. 

I quantified the extracted RNA and DNA by QuBit using the DNA BR Assay Kit and the RNA 

BR Assay Kit. For verifying the quality, I determined RNA integrity using the Agilent Bioanalyzer 

2100 with the RNA 6000 Nano Kit, while DNA integrity was confirmed on a 0.5 % agarose gel.  

3.8 Base-resolution hydroxymethylation analysis 

3.8.1 WGBS/oxBS followed by sequencing 

For hydroxymethylation analysis during adipocyte differentiation, I processed DNA of 

experiment 2, using the Ovation Ultralow Methyl-Seq Library System. For that I sheared 750 ng 

DNA in 10 % TE buffer on a M220 Focused-ultrasonicator with peak incident power of 50 W, 

duty factor of 15 %, 200 cycles per burst for 200 - 240 s at 6 °C to achieve an average peak 

size of 200 base pairs (bp). I performed library preparation according to the manufacturer’s 

instructions with the sheared DNA. I submitted multiplexes of BS and oxBS libraries of the 
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same sample for sequencing on a HiSeq X instrument in a 150 bp paired-end setting on four 

lanes per multiplex at the DKFZ Genome and Proteome Core Facility. I analyzed samples that 

fulfilled the quality requirements (Q30 read 1/2 value ≥ 80 %) (n = 3 (day 0); n = 1 (day 7); 

n = 2 (day 11); n = 1 (day 27)). Of those samples, reads had an average median insert size of 

156 bp (standard deviation 11 bp) and a median coverage of 63-fold in BS and 48-fold in oxBS 

libraries. Data preprocessing was performed by the One Touch Pipeline (OTP) for WGBS data 

(https://github.com/DKFZ-ODCF/AlignmentAndQCWorkflows) of the DKFZ Omics IT and Data 

Management Core Facility (Reisinger et al., 2017).  

Calculation of methylation and hydroxymethylation values was performed using MLML2R 

maximum likelihood estimation of DNA methylation and hydroxymethylation proportions based 

on BS and oxBS data using the MLML2R package (Kiihl et al., 2019) implemented into the 

methrix package (https://github.com/CompEpigen/methrix) for fast and efficient 

summarization. This was performed on CpGs with coverage ≥ 15x, but omitting CpGs with 

extremely high coverage (0.99 quantile). To identify changes of methylation and 

hydroxymethylation proportions between day 11 and day 0, we applied the DMLtest function 

on unsmoothed proportions of 9,013,162 CpGs outside of common PMDs, identified in SGBS 

cells. Sites with mean proportion difference ≥ 0.25, p value < 0.005, and difference between 

each sample to mean of the other group > 0.15 were considered as significant. Genomic 

locations of CpGs are given according to human genome version hg19 (hg19/GRCh37). 

3.8.2 BS/oxbBS followed by Illumina 450k array 

For validation of the hydroxymethylation changes, I submitted DNA samples (0.7 – 1.5 µg) 

from differentiation experiment 1 to the DKFZ Genome and Proteome Core Facility for 

methylation/hydroxymethylation analyses on 450k arrays. BS- and oxBS-treatment was 

performed using the TrueMethyl Array Kit according to the manufacturer’s instructions in the 

User Guide Version 2 (Feb 2015) as described by Gross et al. (Gross et al., 2017) and 

analyzed with the Infinium Human Methylation 450k Bead Chip Illumina arrays. During bisulfite 

conversion, methylated C is conserved as C, and unmethylated C is deaminated and replaced 

by a T. After hybridizing DNA to bead-bound probes on the array, dependent on the artificially 

generated genetic difference (C/T), green or red will be detected by binding of the 

corresponding color-labeled base. In a simplified manner, the ratio of red and green signals, 

the so-called β-value reflects DNA methylation values between 0 and 1 (Bibikova et al., 2011). 

Quality control, data pre-processing, and normalization were done using the RnBeads R 

package (Assenov et al., 2014). Briefly, raw IDAT files were used as input and preprocessed 

separately for BS and oxBS data. Probes were filtered for a detection p value threshold of 0.01, 
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cross-reactive probes were removed (Chen et al., 2013), and remaining data was normalized 

using the beta-mixture quantile normalization (BMIQ) method (Teschendorff et al., 2013). The 

normalized BS and oxBS beta values were multiplied with the sum of total signal intensity 

(methylated + unmethylated) for maximum likelihood estimation of DNA methylation and 

hydroxymethylation proportions using the MLML2R package (Kiihl et al., 2019). Data of 

experiment 1 (day 0, 1, 7, and 11) represented 450,395 CpG sites after preprocessing. 

Changes between methylation and hydroxymethylation proportions between day 0 & 1 (n = 5) 

and day 11 were identified by Mann-Whitney U (MWU)-test (Supplementary Data 1). Sites with 

mean proportion difference > 0.1 and p value < 0.05 were defined as significantly differentially 

methylated (BS or oxBS). Genomic locations of CpGs are given according to human genome 

version hg19 (hg19/GRCh37). 

3.9 Non-base resolution hydroxymethylation analysis by hMeSeal 

For non-base resolution hydroxymethylation analysis during adipocyte differentiation, Florian 

Janke (FJ) used DNA of experiment 2 to generate hMeSeal sequencing libraries according to 

(Song et al., 2017) with minor modifications as described in (Janke, 2021). In short, fragmented 

DNA and spike-ins were ligated with sequencing adapters. Then, hydroxymethylated sites 

were conjugated to an azide-containing sugar using a T4 phage β-glucosyltransferase and 

afterwards labeled with a biotin group using click-chemistry. Finally, biotin-tagged DNA 

fragments were pulled down using streptavidin-coupled magnetic beads. For sequencing, 

fragments enriched for hydroxymethylation, and background libraries were amplified using 14 

and 11 PCR cycles, respectively. Libraries were multiplexed and submitted to the Genome and 

Proteome Core Facility of the DKFZ for paired-end 75 bp sequencing on the Illumina NextSeq 

550 instrument. After sequencing, data preprocessing was performed by Florian Janke as 

described in (Janke, 2021), aligning to the human reference genome hg19/GRCh37.  

For downstream analyses, I first removed sequencing reads overlapping with the ENCODE 

blacklist (Amemiya et al., 2019). After downsampling reads of sample “day11, replicate 3” to a 

comparable library size of other day 11 samples, I merged reads of each day for peak calling. 

I called narrow peaks with MACS2 using the q-value cutoff 10-6 and the option --nomodel –

format BAMPE on merged bam files (Zhang et al., 2008). Finally, I prepared a count matrix of 

reads for each peak, filtered for peaks with an average log2CPM > 2 in at least on time point, 

and corrected for library size within the csaw framework (Lun and Smyth, 2016). To analyze 

hydroxymethylation dynamics, I clustered scaled log2CPM values into 6 clusters with Mfuzz 

clustering using minimum membership of 0.3 (Kumar and E. Futschik M, 2007). For the 
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generation of bigWig files for visualization using the UCSC browser (Kent et al., 2002), I 

performed normalization of ‘reads per genome coverage’ with the deeptools function 

bamCoverage using the options -bs 20 –smoothLength 40 --normalizeUsing RPGC (Ramirez 

et al., 2016). For circos plots I used the circlize package in R (Gu et al., 2014). To perform a 

genome-wide correlation of hMeSeal peaks in SGBS cells of day 27 and in WAT samples, I 

binned the genome to 4 kb by setting the bamCoverage option to -bs 4000 (Ramirez et al., 

2016). Afterwards, I performed spearman correlation on averaged hMeSeal scores of 

replicates over 4 kb bins.  

3.10 Base resolution DNA methylation analysis by Illumina EPIC array 

For methylation analyses of experiments 5, 6, and 7, 500 ng DNA were submitted for Infinium 

Methylation EPIC beadchip array analyses to the Genomics and Proteomics Core Facility 

(GPCF) of the DKFZ. In short, DNA was first bisulfite-converted using the EZ DNA Methylation 

Kit 96-well kit. I performed data pre-processing and normalization using the RnBeads package 

in R (Assenov et al., 2014). Briefly, I used IDAT files as input. Probes were filtered for a 

detection p value threshold of 0.01 and cross-reactive probes were removed (Chen et al., 

2013). On the remaining 726,333 CpG sites, I applied SeSAMe’s “noobsb” method for 

background subtraction and performed a dye bias correction using the linear scaling method 

“dyeBiasCorr” (Zhou et al., 2018).  

To identify cell culture or DHA treatment-associated methylation changes during long-term 

cultivation in experiments 5, 6, and 7, I performed a principal component analysis (PCA) on 

methylation values. To filter for CpGs associated with the first three principal components 

(PCs), I applied a linear model and identified CpGs of which the methylation variability 

displayed a significant linear association (positive or negative) with the corresponding PC 

coordinates of each sample (FDR adj. p value < 0.005) and a methylation range > 0.2.  
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3.12 Gene expression analyses 

3.12.1 mRNA expression analysis by reverse-transcription qPCR 

For cDNA synthesis of experiment 1, I used 1 – 1.5 μg of RNA in 10 µl RNase free water for 

reverse transcription. I added 2 µl of random hexamer oligonucleotides (50 ng/µl) and 1 µl 

dNTPs (10 mM) to RNA and incubated at 65 °C for 5 min. I immediately cooled the samples 

on ice and then added 7 µl of a master mix prepared as following (Table 4):  

Table 4| Master mix for cDNA synthesis. 

Master mix Amount [µl] 

5x first-strand buffer 4 

0.1 M DTT 1 

RNaseOUT 1 

SuperScript III RT (200 units/µl) 1 

 

For reverse transcription, I incubated the reaction mix for 5 min at 25 °C, for 60 min at 50 °C, 

and for 15 min at 70 °C. cDNA was afterwards stored at -20°C. Not all primers could be 

designed as intron spanning, so I generated a negative control for the non-intron spanning 

primers by repeating the same reverse transcription reaction but substituting SuperScript III 

RT with RNAse-free water.  

I performed real-time qPCR analysis of 1:10 diluted cDNA samples on the Roche Light Cycler 

480 in 384 well plates using the Roche universal probe library (UPL) system with a program of 

10 min at 95 °C followed by 45 cycles of 10 s at 95 °C, 20 s at 55 °C and 1 s at 72 °C on a 

Lightcycler480 RealTime PCR System. I designed the primers whenever possible as intron 

spanning by using the UPL Assay Design Center to avoid amplifying genomic DNA. I tested 

primary efficiency by calculating the amplification curve of a serial 1:10 dilution and considered 

an > 1.8-fold increase per cycle as acceptable. Expression levels of target genes in experiment 

1 were normalized to the housekeeping genes HPRT1 (hypoxanthine 

phosphoribosyltransferase 1) and TBP (TATA-box binding protein) according to the Livak 

method (Livak and Schmittgen, 2001). Primers and respective probe numbers are listed in  For 

statistical analysis, I performed one-way ANOVA with post hoc Dunnett's analysis for pairwise 

comparisons between different time points of SGBS differentiation (day 1, day 7, day 11) and 

day 0. Statistical tests were done using GraphPad Prism version 5.03 for Windows, GraphPad 

Software, San Diego California USA, www.graphpad.com. 
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Table 5. For statistical analysis, I performed one-way ANOVA with post hoc Dunnett's analysis 

for pairwise comparisons between different time points of SGBS differentiation (day 1, day 7, 

day 11) and day 0. Statistical tests were done using GraphPad Prism version 5.03 for 

Windows, GraphPad Software, San Diego California USA, www.graphpad.com. 

Table 5| RT-qPCR primers. 

Target 
gene 

UPL 
probe 

Forward primer Reverse primer 
Relative 

expression to 
HKG at day0 

PPARGt2 7 gacaggaaagacaacagacaaatc ggggtgatgtgtttgaacttg 0.776 
CEBPA* 28 ggagctgagatcccgaca ttctaaggacaggcgtggag 0.016 

CFD 18 tccaagcgcctgtacgac gtgtggccttctccgaca 0.022 
PLIN1 64 ggacacagtggtgcattacg gtcccggaattcgctctc < 0.001 
HPRT1 73 tgaccttgatttattttgcatacc cgagcaagacgttcagtcct 1.068 – 1.302 

TBP 51 cccatgactcccatgacc tttacaaccaagattcactgtgg 0.547 – 0.936 
HKG: housekeeping genes (HPRT1, TBP). *non-intron spanning 

3.12.2 Analyses of mRNA expression by RNA-seq. 

“Sequencing libraries were prepared by the Genomics and Proteomics Core Facility (DKFZ, 

Heidelberg) from total RNA using the Illumina TrueSeq Stranded total RNA Library Prep Kit 

according to the manufacturer’s instructions. RNA isolated from SGBS cells was sequenced 

in multiplexes of 13 samples in a paired-end setting (100 bp) on an Illumina NovaSeq 6000 

machine. WAT-isolated RNA was sequenced in multiplexes of 5 - 6 samples in a paired-end 

setting (100 bp) on an Illumina Hiseq 4000 machine. Data were processed with the nf-core 

rnaseq pipeline (Ewels et al., 2020). Default parameters were used unless mentioned 

otherwise. Sequences were aligned to the human reference genome (hg19/GRCh37) by 

application of the software HISAT2, --unstranded option. Transcripts were assembled using 

StringTie and GENCODE gene annotation v.29 lift 37. Gene counts were generated with the 

Stringties prepDE.py script (setting: -eb). Normalized counts per million (CPM) were used for 

statistical analyses performed by edgeR (Robinson et al., 2010).” (Feuerstein-Akgoz, C. et al., 

in preparation). 

To identify DHA-associated gene expression differences in experiment 5, I performed a 

principal component analysis on log2CPM values of genes with log2CPM > 1 in at least 2 

replicates. To filter for genes with differential expression in DHA- vs nonDHA-treated samples 

separated in PC3, I applied a linear model to identify those genes whose expression variability 

displayed a significant linear association with the PC3 coordinates of each sample (p value 

< 0.05) and log2CPM range > 1. 
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3.13 Proteome data 

To generate protein expression data from differentiating SGBS cells (details in (Schaffert et 

al., 2021)), protein separation was performed by sodium dodecylsulfate (SDS) polyacrylamide 

gel electrophoresis. Gels were stained with Coomassie Brilliant Blue R-250 dye, and proteins 

were in-gel proteolytically digested with trypsin. Untargeted proteomics data were generated 

by nano ultra-performance liquid chromatography (UPLC) followed by mass spectrometry 

(Schaffert et al., 2021) and were kindly provided for integrated analysis. Changes in protein 

levels were estimated for proteins detected in at least three of five replicates. Average fold 

change of corrected signal intensities of five replicates was used for visualizations as described 

in (Schaffert et al., 2021).  

3.14 Metabolome data 

Targeted and untargeted metabolome data of the SGBS differentiation experiment 3 were 

provided by and partially published by collaboration partners (Miehle et al., 2020). SGBS 

differentiation, sample extraction, and sample homogenate were prepared as described in the 

publication.  

3.14.1 Targeted metabolome data 

“For targeted analysis, 400 µl homogenated cell sample solution was spiked with internal 

standards (ISTD) and subsequently evaporated to complete dryness. Afterwards, 

derivatization was performed using 50 µl of 20 mg/ml methoxyamine hydrochloride in pyridine 

for 1 h at 60 °C and 50 µl MSTFA for another 1 h at 60 °C. For analysis, 1.5 µl of derivatized 

sample solution was automatically injected into the 6890N gas chromatograph. Separation 

was performed on a HP5-MS column (30 m x 0.25 mm, 0.25 µM) with 8:1 split mode. Helium 

was used as carrier gas with a flow of 1.0 ml/min. A temperature gradient with following 

conditions was used: 1 min hold time at 50 °C, temperature increase of 8 °C/min to 175 °C, 

5 min hold time at 175 °C, temperature increase of 8 °C/min to 200 °C, temperature increase 

of 50 °C/min to 300 °C, and post run at 300 °C for 5 min. The GC was coupled with a transfer 

line, heated at 310 °C, to a 5973N mass selective detector. Detection was performed in the EI 

mode (70 eV) using selected ion monitoring (SIM) and matching the retention time. The used 

SIM values were as listed in Table 6. For quantification, seven calibration levels were used. 

The ion source temperature was set to 240 °C and the single quadrupole temperature to 

150 °C. Metabolites were completely excluded from the data set if concentration values were 
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missing (NA) in more than 33.3 % of the samples within a harvesting time point. Missing values 

were replaced by the respective minimal metabolites concentration measured, divided by 2 

and multiplied by a randomly chosen factor between 0.75 and 1.25.” (Feuerstein-Akgoz, C. et 

al., in preparation) 

Table 6| Selected ion monitoring (SIM) values. 

Metabolites m/z Corresponding ISTD m/z 

2-hydroxyglutaric acid 247.1 D3-2-hydroxyglutaric acid 250.2 

α-ketoglutaric acid 198.1 13C4-α-ketoglutaric acid 308.1 

isocitric acid 245.1 D3-2-hydroxyglutaric acid 250.2 

citric acid 273.1 D4-citric acid 276.1 

ISTD: internal standard    

3.14.2 Untargeted metabolome data 

For the untargeted metabolome data, cell homogenates were centrifuged for 5 min at 5,500 x g 

and applied to ultra-high-performance liquid chromatography-tandem mass spectrometry 

(UPLC-MS/MS) in electrospray positive ionization mode. One analysis was performed by 

UPLC-MS/MS in negative ionization mode, one by UPLC-MS/MS in negative ionization mode 

for polar compounds as recently published (Moellmann et al., 2020).  

3.15 ACT-seq data of WAT tissue 

ACT-seq of histone marks and acNEIL1 binding was performed on pulverized WAT samples. 

First, the pA-Tn5ase protein was purified from E.coli by Dieter Weichenhan (DW), as described 

in (Liu et al., 2021). Afterwards, Karin Klimo (KK) performed ACT-seq experiments for histone 

marks and Jessica Heilmann (JH) for acNEIL1 on pulverized tissues. For that, pA-

transposome-antibody (pA-TnpOme-Ab) complex was prepared using the antibodies against 

the following histone marks: H3K27ac, H3K27me3, H3K4me1, H3K4me3 (overview in Table 

7), and Anti-acetylated NEIL1 (Sengupta et al., 2018) (AcNL1, generously provided by 

Muralidhar Hegde and Sankar Mitra, Houston Methodist Research Institute).  

Table 7| List of antibodies against histone marks used for ACT-seq. 

Antibody Manufacturer 

Anti-H3K27ac, (#4729) Abcam, Cambridge, UK 

Anti-H3K27me3, (#9733) Cell Signaling Technology, Denver, MA, USA 

Anti-H3K4me, (#8895) Abcam, Cambridge, UK 

Anti-H3K4me3, (#C15410003) Diagenode, Denville, NJ, USA 
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The tissue permeabilization process was adapted from the CUT&Tag protocol (Kaya-Okur et 

al., 2020). Approximately 25 mg of each pulverized adipose tissue biopsy was lysed by gentle 

pipetting in 0.6 ml ice-cold nuclear extraction buffer (20 µM HEPES-KOH, pH 7.9, 10 µM KCl, 

0.5 µM spermidine, 0.1 % Triton X-100), kept on ice for 3 min and homogenized for 30 s using 

the TissueLyser II. Next, samples were centrifuged at 4 °C and 4,000 rpm for 15 s to remove 

the top layer of fat. The remaining nuclei suspensions were centrifuged again at 4 °C and 

5,000 rpm for 10 min. Nuclei pellets were washed first with 0.8 ml PBS (supplemented with 1x 

cOmplete, EDTA-free Protease Inhibitor Cocktail and 15 mM sodium butyrate) and then twice 

with 0.8 ml PBS. Finally, PBS was removed by pipetting while leaving ~ 25 µl to avoid loss of 

nuclei and resuspended with additional 25 µl 2x complex formation buffer (CB) (1 x CB: 

100 mM Tris, pH 8, 0.3 M NaCl, 0.1 % Triton X-100, 25 % glycerol) and incubated on ice for 

10 min. 

To tag the DNA associated with the protein of interest, the antibody-complexed was allowed 

to enter the nucleus and bind to the protein of interest. For that 2.6 µl pA-TnpOme-Ab complex 

was added to 50 µl sample and incubated for 1 h at room temperature. Next, nuclei were 

washed twice with 350 µl wash buffer (WB, 50 mM Tris, pH 8.0, 150 mM NaCl, 0.05 % Triton 

X-100) and centrifuged at 4 °C and 5,000 rpm for 5 min. Afterward, supernatants were 

discarded, and 100 µl WB was added. The tagmentation reaction was initiated by the addition 

of 1 µl 1 M MgCl2 sustained at 37 °C. After 60 min the reaction was stopped with 4 µl 0.5 M 

EDTA, pH 8.0, 2 µl 10 % SDS and 1 µl proteinase K solution (20 mg/ml) by incubation for 

60 min at 55 °C. Finally, the DNA fragments generated by the tagmentation reaction were 

purified using a MinElute Reaction Cleanup Kit and eluted in 25 µl 37 °C-warm elution buffer 

(EB).  

For library preparation, 25 µl of the eluted DNA were amplified with 2.5 µl custom nextera PCR 

primers 1 and 2, each, and 25 µl NEBNext High-Fidelity 2x PCR master mix. First, a PCR 

preamplification was performed using the following program: 72 °C for 5 min, 98 °C for 30 s; 

5 cycles of [98 °C for 10 s, 63 °C for 10 s, 72 °C for 10 s] and a final 72 °C for 1 min. Then with 

an aliquot of 5 µl preamplified PCR product, the optimal number of cycles for amplification was 

determined according to (Buenrostro et al., 2015). For that the qPCR reaction was performed 

in a 384-well format with a Lightcycler480 Real-Time PCR System. 1 µl 10x SybrGreen was 

added to 5 µl PCR product and further amplified using the following program: 98 °C for 30 s; 

20 cycles of [98 °C for 10 s, 63 °C for 10 s, 72 °C for 10 s] and a final 72 °C for 1 min. After 

estimating the optimal number of additional cycles, the remaining 20 µl of preamplified PCR 

product was amplified in a second round using the same cycle conditions as in the 

preamplification protocol. Finally, the amplified libraries were purified using magnetic AMPure 

XP beads in a two-sided reaction with 0.5x and 1.3x volumes of beads, and eluted in 15 µl EB. 
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For sequencing (paired-end, 75 bp) with mid-output on the NextSeq 550 system, six to eight 

samples were multiplexed and submitted to the Genome and Proteome Core Facility of the 

DKFZ. 

Data preprocessing was performed by a fully dockerized workflow using the Common 

Workflow Language v. 1.0 (Amstutz et al., 2016) which is publicly available (Breuer et al., 

2020). In short, quality control of the sequencing reads and adapter trimming was performed 

with Trim Galore v. 0.4.4 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) in 

combination with Cutadapt v. 1.14 (Martin, 2011) with the non-default parameters “--paired”, “-

-nextera”, “--length_1 35”, “--length_2 35”. Alignment was performed against the human 

reference genome hg19/GRCh37 using Bowtie2 v. 2.2.6 (Langmead and Salzberg, 2012) with 

the “--very-sensitive” flag enabled. Aligned reads of the same sample, but sequenced on 

different lanes were merged using SAMtools merge v. 1.5 (Li et al., 2009). Reads with mapping 

quality below 20 on the Phred scale or not mapping with a pair were filtered out with SAMtools 

view. As each Tn5 transposase homodimer binds a DNA stretch of 9 bp central region, where 

the transposition occurs, as well as two 10 bp flanking regions, the calculated minimal fragment 

size in a tagmentation reaction is 38 bp (Adey et al., 2010). Therefore, we removed all read 

pairs displaying size < 38 bp. To accurately estimate the center of the transposition events, 

reads centers were shifted by +4 bp when aligned to the + strand and read centers were shifted 

by -5 bp when aligned to the – strand, as described by (Buenrostro et al., 2013). All 

downstream analyses were based on these adjusted read coordinates.  

“Broad peaks were called with MACS2 (Zhang et al., 2008) on merged bam files using the 

option –nomodel and setting the q-value to q = 0.05 for histone marks (loose cutoff) or q = 1e-5 

(if stringent peak calling is specified). Within the csaw framework (Lun and Smyth, 2016), 

normalization of the reads was performed by TMM normalization within peaks. BigWigs were 

normalized with the deeptools function bamCoverage (Ramirez et al., 2016) by removing reads 

overlapping with the ENCODE blacklist (Amemiya et al., 2019) and using  the options -p max 

-bs 20 --smoothLength 40 –e --normalizeUsing RPGC.” (Feuerstein-Akgoz, C. et al., in 

preparation) 
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3.16 Bioinformatic downstream analyses 

3.16.1 PMD, LMR, UMR, FMR definitions 

To determine partially methylated domains (PMDs), we applied the MethylSeekR package 

(Burger et al., 2013) on each sample using raw BS data with coverage ≥ 10x, while omitting 

CpGs with extremely high coverage (0.99 quantile) of experiment 2. I defined common PMDs 

for intervals where at least 4 of 7 samples displayed PMD characteristics. Further, I defined 

common unmethylated regions (UMRs) according to default settings and lowly methylated 

regions (LMRs) using a modified cutoff of at least 3 CpGs with a methylation level below 0.7. 

Common UMRs needed to be overlapping in all samples, and common LMRs were defined as 

overlapping in more than four samples. Fully methylated regions (FMRs) were defined as the 

genomic regions not defined as PMDs, UMRs, or LMRs.  

3.16.2 Mfuzz clustering 

I performed Mfuzz clustering with several datasets using the published Mfuzz package (Kumar 

and E. Futschik M, 2007) and applying method specific parameters, to identify dynamic 

changes during adipocyte differentiation. For hydroxymethylation data, I used scaled log2CPM 

in hMeSeal peaks for generating 6 Mfuzz clusters using minimum membership of 0.3 

(experiment 2, Fig. 18). For gene expression data, I preselected the 75 % most variable genes 

(based on standard deviation (SD)), expressed in at least two samples with log2CPM > 1. Then 

I applied Mfuzz clustering on scaled mean log2CPM of all time points using minimum 

membership of 0.5 to generate 5 clusters (experiment 2, Fig. 27). For metabolome data, I 

performed Mfuzz clustering using metabolites with a Human Metabolome Database ID (HMDB, 

https://hmdb.ca) (experiment 3, Fig. 31). I clustered mean signal intensities of all time points 

of the untargeted metabolome analysis applying a minimum membership of 0 to generate 3 

clusters.  

3.16.3 UCSC genome browser tracks 

To generate genome visualizations in Fig. 12, 22, 35 and 44, bedgraph or bigWig files of 

analyzed data (individual replicates or merged data files as indicated) were uploaded to the 

UCSC genome browser with the human genome version hg19 (hg19/GRCh37) (Kent et al., 

2002).  
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3.16.4 EnrichedHeatmaps and Heatmaps 

I generated heatmaps using the R package ComplexHeatmap (Gu et al., 2016) or 

EnrichedHeatmap (Gu et al., 2018).  

In the enriched heatmaps, I displayed hydroxymethylation values based on WGBS/oxBS, as 

well as hMeSeal, ACT-seq, DHS, mediator complex subunit 1 (MED1) normalized reads and/or 

ATAC enrichment bigwigs, representing fold change over background (Fig. 14, 15, 19 - 21, 36, 

37 and 40). I displayed regions of ± 1, 2.5, or 5 kb around the site of interest and quantified the 

signal intensity in a window size of 50 bp in each row, respectively. In Fig. 19 and 20, mean 

values of several sites of interest were plotted. For display, I used the mean_mode = “w0” and 

the smooth = F option. I smoothed hydroxymethylation data (based on WGBS/oxBS) in a 

window size of 50 bp and displayed using the mean_mode = “absolute” option. The upper line 

plots in Fig. 14, 36, and 40 display average intensity curves as indicated. As site of interest 

and heatmap centers served hMeSeal peak, centers of LMRs, or centers of enhancers defined 

by centers of H3K27ac peaks overlapping with H3K4me1 and absence of stringent H3K4me3 

peaks.  

3.16.5 EpiAnnotator enrichment analysis 

I performed enrichment analysis of hMeSeal peaks or CpG sites of interest in chromatin states 

with the EpiAnnotator tool (Pageaud et al., 2018).  

For hMeSeal peak enrichment during adipogenesis (Fig. 20), ChromHMM states of in vitro 

differentiated mature adipocytes (Adipocytes, E023, (Roadmap Epigenomics et al., 2015)) 

were used, defined by the ChromHMM algorithm (Ernst and Kellis, 2012). As background, I 

used ~ 40,000 randomly generated regions of the same interval size as peaks in clusters. 

For enrichment analysis of CpGs with methylation variability associated with cultivation effects 

of SGBS preadipocytes (Fig. 49), I used ChromHMM states of adipose-derived stem cells 

(ADS, E025, (Roadmap Epigenomics et al., 2015)). In addition, I used as target sites CpGs 

significantly positively or negatively associated with PC1 - 3 (see chapter 3.10) and as 

background the remaining CpGs (after preprocessing and filtering) on the EPIC array.  

3.16.6 TF motif enrichment analyses 

I performed TF motif enrichment analysis using the GimmeMotifs gimme motif function on 

hMeSeal peaks in clusters and on WAT enhancer (Bruse and Heeringen, 2018). WAT 
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enhancers were defined by H3K27ac peaks overlapping with H3K4me peaks and not 

overlapping with stringent H3K4me3 peaks. Background regions were corrected for CG 

content. Hocomoco v11 motifs were clustered based on motif similarity by RSAT matrix-

clustering software using standard settings (http://rsat.sb-roscoff.fr/matrix-clustering_form.cgi) 

(Castro-Mondragon et al., 2017).  

In Fig. 23, I displayed the top 5 enriched motif cluster. Of each enriched cluster, I show a 

representation of the binding motif, the enrichment p value and highlight the name of the best 

enriched motif. In the last column, all enriched (p value < 1e-2, with > 2 % matches in input) 

and expressed motifs of the cluster are listed. In Fig. 37 displaying enriched TF motifs in WAT 

enhancers, I display the top 10 enriched TF motif clusters with a significant enrichment (P-

value < 1e-2, with > 1 % matches in input) and expression in WAT samples. Finally, in Fig. 50 

I displayed the top 10 enriched TF motif clusters enriched in LMRs with a CpG negatively 

associated with PC2 (see chapter 3.10) with a significant enrichment (p value < 0.05, with 

> 1 % matches in input). As background served all CpGs on the EPIC array not negatively 

associated with PC2. I displayed in the heatmap the enrichment ratio and at the right side I 

listed all significantly enriched motifs associated with the motif cluster and expressed in SGBS 

cells. The correlation plot at the right, displays the Pearson’s r correlation coefficient between 

methylation at CpGs negatively associated with PC2 and gene expression of the identified 

TFs.  

To find the exact motif position within the peaks, I used the function gimme scan. These 

positions were used to draw a density plot of hydroxymethylated CpGs using WGBS/oxBS 

data around the identified binding motif in an interval of ± 200 bp (Fig. 24+26).  

3.16.7 hMeSeal cluster at gene expression cluster enrichment 

analysis 

To investigate the role of different hydroxymethylation dynamics (six hydroxymethylation 

clusters) at enhancer regions in the regulation of gene programs (5 gene clusters), I performed 

a distance-based enrichment analysis on data of experiment 2 (Fig. 30). “I mapped to each 

hMeSeal peak all genes with a distance of the TSS to the peak center ≤ 100 kb. Then I 

performed for each hMeSeal cluster an enrichment analysis at the five gene clusters that were 

mapped by distance to the specific hMeSeal clusters. As background served random intervals 

to which genes of the five gene clusters were mapped likewise. Fisher's exact test was 

performed to define significant enrichment (Bonferroni-adjusted p value ≤ 0.05).” (Feuerstein-

Akgoz, C. et al., in preparation) 
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3.16.8 Pathway analyses 

Pathway overrepresentation analysis was performed with the WebGestaltR package (Liao et 

al., 2019). For gene expression clusters (eCl) I used genes of the cluster for KEGG pathway 

analysis and displayed all significantly enriched pathways (FDR adj. p value < 1e-5) (Fig. 28). 

For genes with expression changes significantly associated with DHA treatment (PC3) (see 

chapter 3.12.2), I performed KEGG and Wikipathway overrepresentation analysis, and 

displayed top ten significantly (FDR adj. p value < 0.05) enriched pathways (Fig. 55). For all 

analyses, I used all transcripts of the genome as background and default settings.  

For genes with expression changes significantly associated with DHA treatment, I also 

performed Ingenuity Pathway Analysis (IPA) on the log2 fold change between DHA vs nonDHA 

samples (Fig. 56), using replicates as a covariate in the edgeR robust function for differential 

gene expression analysis (Zhou et al., 2014) 

To identify KEGG pathways associated with the protein-metabolite clusters (Fig. 32), I used 

the MetaboAnalyst 5.0 Joint Pathway Analysis tool for Metabolic pathways (integrated) using 

the default settings (Xia et al., 2009). I displayed pathways with an FDR adj. p value < 1e-5. 

3.16.9 Correlation of hydroxymethylation, histone marks and ATAC 

For the correlation of hydroxymethylation (hMeSeal), histone marks, and ATAC signal in WAT 

at enhancer regions, I selected a range of ± 5 kb around the center of enhancer regions defined 

by H3K27ac binding (n = 3) overlapping with H3K4me1 (n = 3) and absence of stringent 

H3K4me3 (n = 4) binding. I performed a Spearman correlation analysis of 1 kb binned 

normalized mean signal intensities. 

3.16.10 Gene body hydroxymethylation correlation analysis 

“Gene body correlation analysis was performed at WAT enhanced genes. I identified enhanced 

genes using the definition of “tissue enhanced” expression of the Protein atlas (Uhlen et al., 

2015) and applied it on GTEx expression data of all available tissues (GTEx Consortium, 

2020). First genes were filtered for an average expression of TPM > 5 in subcutaneous tissue. 

Further, the average expression in subcutaneous tissue was selected for > 4 compared to the 

average expression in the other tissues. To calculate the average expression of other tissues, 

mean expression levels of each tissue type, or median of means of tissue subtypes was taken, 

excluding visceral adipose tissue and mammary tissue due to their high content in adipocytes. 
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As background genes served non-WAT enhanced genes with same average expression 

distribution as WAT enhanced genes in the WAT samples. At WAT enhanced genes or 

background genes, Pearson and Spearman correlation was performed on five samples 

between hMeSeal reads mapped to the gene body (log2CPM) and gene expression 

(log2CPM).” (Feuerstein-Akgoz, C. et al., in preparation) 

3.16.11 Mitotic scores 

EpiCMIT.hyper and EpiCMIT.hypo mitotic scores were calculated using the epiCMIT mitotic 

clock calculator for methylation data (https://github.com/Duran-FerrerM/Pan-B-cell-

methylome) (Duran-Ferrer et al., 2020). I displayed 1-EpiCMIT.hypo to display a decrease of 

the score in line with the loss in methylation (Fig. 51 + 52). 

3.17 Data access 

(Hydroxy-)methylation and RNA-seq data generated from SGBS cells in experiment 2 and 

ACT-seq data of histone marks of WAT have been submitted to the NCBI Gene expression 

omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE131318. 

ChromHMM data with the sample numbers E025 (ChromHMM ADS), E023 (ChromHMM 

Adipocytes), and E063 (ChromHMM Adipose tissue) used for EpiAnnotator enrichment 

analysis and displayed in UCSC genome browser tracks were obtained from Epigenomics 

Roadmap (Roadmap Epigenomics et al., 2015). DHS and MED1 ChIP-seq data of SGBS cells 

at day 10 of differentiation were retrieved from GSE64233 for visualization in the UCSC 

genome browser tracks and EnrichedHeatmaps (Schmidt et al., 2015). PPARG and CEBPA 

ChIP-seq tracks of SGBS cells at day 10 of differentiation, used for enrichment analyses and 

display in the UCSC genome browser tracks, were accessed from GSE27450 (Schmidt et al., 

2011). CTCF binding in adipogenesis was accessed from GSE21366 (Mikkelsen et al., 2010) 

and CTCF ChIP-seq clusters were downloaded from the ENCODE portal (Gerstein et al., 2012; 

Wang et al., 2012b, 2013). ATAC-seq data of SGBS cells at day 14 of differentiation and of 

adipose tissue were taken from GSE110734 (Cannon et al., 2019). The following datasets 

were retrieved directly from the UCSC browser for visualization (Kent et al., 2002): WGBS data 

of adipose-derived stem cells (ADS) were published by (Lister et al., 2011). WGBS, PMDs, 

H3K27me3, and H3K9me3 of the ADS (E025) were published by (Roadmap Epigenomics et 

al., 2015). ChIP-seq data for H3K27me3 and H3K9me3 of ADS (92) are from 

REMC/Broad/Roadmap. Tissue-specific gene expression to identify WAT-enhanced genes 

was retrieved from GTEx Portal.  
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4 Results Part 1 

DNA hydroxymethylation dynamics during adipogenesis 

To characterize epigenetic changes during human adipogenesis, I established the 

differentiation of the SGBS preadipocyte cell line to mature adipocytes as a model (Fig. 8 + 11). 

Fig. 8 (chapter 3.3) summarizes the experimental design and gives an overview of the 

differentiation experiments analyzed with various –omics technologies as indicated. 

To accomplish SGBS differentiation, the cells were grown to confluency, which induces a 

commitment stage. Then, the growth medium was changed to differentiation medium at day 0 

of the differentiation protocol to initiate the differentiation program synchronously. Cells 

underwent a round of mitotic clonal expansion, and the cellular morphology switched from a 

spindle-shaped to a round cell structure (day 1). I confirmed adipocyte differentiation by lipid 

droplet accumulation starting from day 7, which was completed on day 11 (Fig. 11a). At the 

mRNA expression level, I was able to confirm the upregulation of PPARG and CEBPA in 

 

Fig. 11| SGBS adipocyte differentiation. a, Differentiation of SGBS preadipocytes to mature adipocyte at day 0, 
1, 7, and 11. Multilocular lipid accumulation is visible on days 7 and 11. b, mRNA expression changes of adipocyte-
specific marker genes depicted as log2 fold change (RT-qPCR) relative to day 0 (day 0, 1, 7, 11) with n = 3, except 
day 0 with n=2. As housekeeping genes served TBP and HPRT1. P values were estimated by parametric one-way 
ANOVA with Bonferroni’s post hoc test for multiple comparisons. * p value < 0.05, ** p value < 0.01, *** p 
value < 0.001, **** p value < 0.0001. Overall p value for each gene < 0.0001. Bars indicate mean + standard 
deviation. Data in this figure are derived from experiment 1, performed by myself (CFA). See Fig. 8 for the 
experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). 
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mature adipocytes, which are induced in the first wave of TFs. PPARG and CEBPA are 

adipocyte-specific TFs which then, in turn, induce multiple metabolic genes contributing to the 

function of mature adipocytes. One example is the induction of the adipokine complement 

factor D (CFD), which displays the binding of both TFs at its promoter region (not shown). 

Perilipin 1 (PLIN1) is another upregulated marker gene that coats lipid storage droplets (Fig. 

11b). 

4.1 Global analysis of the methylome during SGBS differentiation 

To characterize the DNA methylation landscape, I generated base-pair resolution methylomes 

performing whole-genome bisulfite sequencing (WGBS) from differentiating adipocytes 

(experimental summary in Fig. 8). Unexpectedly in the not-immortalized SGBS strain, I 

identified pronounced manifestations of partially methylated domains (PMDs) with reduced 

average DNA methylation (Fig. 12). PMDs are associated with gene-poor, heterochromatic 

areas in the nuclear periphery (Lister et al., 2009), and are likely not strongly related to 

epigenetic gene regulation or the differentiation process itself. The overall level of PMD  

Fig. 12| Genome-wide characterization of the SGBS methylome.  a, UCSC browser track depicting a partially 
methylated domain (PMD) on chromosome 10 at different time points of adipocyte differentiation (experiment 2) 
and of adipose-derived stem cells (ADS) (Lister et al., 2011). b, Violin plots of mean methylation levels within fully 
methylated regions (FMR), PMDs, unmethylated (UMR), and lowly methylated regions (LMR) defined using bisulfite 
(BS) data of experiment 2. c, Pie chart depicting the number of CpGs from WGBS-seq data (coverage ≥ 10x) within 
PMD, UMR, LMR, and FMR. d, Pie chart depicting the number of PMDs, FMRs, LMRs, and UMRs within the 
genome of SGBS cells. Experiment 2 was performed by LK. WGBS library generation and data analysis performed 
by myself (CFA). See Fig. 8 for experimental design. WGBS: whole-genome bisulfite. 
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methylation did not change over time (Fig. 12a). Therefore, I excluded ~ 10 million CpG sites 

located in PMDs from further analyses and focused on fully methylated (FMRs), unmethylated 

(UMRs), and lowly-methylated regions (LMRs) (Fig. 12b-c). While ~ 1.3 million CpGs in UMRs 

are highly condensed in only ~ 18,000 regions with high CpG density (CpG islands) 

representing mostly promoter regions, further 1.3 million CpGs located in LMRs were 

distributed in ~ 271,000 regions with lower CpG density, representing enhancer regions 

(Burger et al., 2013). 

4.2 Gain in hydroxymethylation masks the loss of methylation in 

bisulfite converted data  

Using the “gold standard” method whole-genome bisulfite sequencing (WGBS) for methylation 

analysis, I defined significantly differentially methylated CpG sites (DMS) by a mean 

methylation difference > 0.25 (which corresponds to ~ 3 SD), p value < 0.005, and difference 

between each sample to means of the other groups > 0.15. In total, I identified 1,812 DMS 

between preadipocytes (day 0, n = 3) and mature adipocytes (day 11, n = 2) (Fig. 13a, left). 

During the differentiation process, most DMS became hypomethylated. By including an 

additional oxidation step to discriminate methylated and hydroxymethylated CpG sites (oxBS), 

I detected over four times more DMS than after BS treatment (Fig. 13a, right), and the degree 

of hypomethylation at day 11 was more pronounced (Fig. 13c). I used Illumina 450k array-

based BS/oxBS analysis to confirm the loss of methylation, with the disadvantage of covering 

only about 450,000 predefined CpG sites, however profiting in comparison to WGBS from high 

coverage. Among the covered CpG sites, loss of methylation was reproduced from the WGBS 

analysis to > 89 %, while I was not able to validate the few examples of gain in methylation, 

which might represent technical artifacts due to low coverage in WGBS (Supplementary Fig. 

1). 

Higher numbers of DMS after oxBS suggested that in conventional methylation analyses with 

BS treatment, loss of methylation might be masked by an increase in hydroxymethylation, as 

BS cannot distinguish these two epigenetic marks (Fig. 6a + 13b). Therefore, I applied a 

maximum likelihood-based analysis of BS and oxBS data to estimate hydroxymethylation 

levels (Kiihl et al., 2019). I identified 4,927 significantly differentially hydroxymethylated CpG 

sites (DhMS) between preadipocytes and mature adipocytes with gain in hydroxymethylation, 

which overlapped to 41 % with the hypomethylated DMS in the oxBS analysis.  
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Fig. 13| Loss in DNA methylation during adipocyte differentiation. a, Scatter plot of mean methylation of CpG 
dinucleotides located outside of partially methylated domains (PMDs) after BS and oxBS treatment followed by 
sequencing. Differentially methylated sites (DMS) between mature adipocytes (day 11, n = 2) and preadipocytes 
(day 0, n = 3) are plotted in red. b, Schematic diagram depicting differences in methylation detection: Bisulfite (BS) 
treatment of DNA discriminates unmethylated C from modified C; oxidative bisulfite (oxBS) conversion differentiates 
5mC from all other modifications. c, Heatmap depicting methylation levels of DMS at day 0, 7, and 11 detected by 
the BS (grey) and oxBS (blue) method. Methylation levels (Meth: range of 0 – 1) are shown in a color gradient 
between blue and red. DMS: mean methylation difference > 0.25, p value < 0.005, and the difference between each 
sample to mean of the other group > 0.15. Experiment 2 was performed by LK. WGBS/oxBS library generation and 
data analysis performed by myself (CFA). See Fig. 8 for experimental design. 

DhMS were enriched in LMRs, which were characterized by intermediate methylation levels 

and a mean size of about 1,000 bp (31 - 7,537 bp) (Fig. 14a). I visualized hydroxymethylation 

levels at LMRs overlapping with DhMS in a range of 5 kb around the center of the LMR. I 

observed a sharp increase of hydroxymethylation at the LMR boundaries (Fig. 14b). 

Hydroxymethylation levels at the 2,157 DhMS located in LMRs gradually increased during 

adipogenesis. In contrast, the concomitant gradual loss in methylation was only detectable 

after oxBS treatment, indicating stalling of the demethylation process at the 5hmC mark (Fig. 

14c).  
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Fig. 14| Gain in hydroxymethylation during adipocyte differentiation. a, Enrichment analysis for unmethylated 
(UMR), lowly methylated (LMR), and fully methylated (FMR) regions was performed on 4,927 differentially 
hydroxymethylated sites (DhMS) with a significant increase in 5hmC at day 11 vs day 0 using. WGBS/oxBS data. 
Fisher's exact test was performed to define significant enrichment (Bonferroni-adjusted p value ≤ 0.05). b, 
Smoothed average intensity curves (upper panel) and heatmaps (lower panel) of hydroxymethylation (5hmC) levels 
of 2,157 DhMS located in LMRs in a range of ± 5 kb from the center of the LMR are displayed at days 0 and 11 of 
differentiation. c, Box plots depicting mean hydroxymethylation levels (upper panel), methylation levels after BS 
(middle panel), and methylation levels after oxBS (lower panel) at 2,157 DhMS located in LMRs at day 0 (n =3), 7 
(n = 1), and 11 (n = 2) of differentiation. Boxplots show median (horizontal line), upper, and lower quartiles (boxes), 
and vertical lines extending to the 1.5× interquartile range. DhMS: mean 5hmC difference > 0.25, p value < 0.005, 
and difference between each sample to mean of the other group > 0.15. Data in this figure are derived from 
experiment 2, performed by LK, library generation and data analysis by myself (CFA). See Fig. 8 for the 
experimental design. WGBS/oxBS: whole-genome bisulfite/oxidative bisulfite.  
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4.3 DNA hydroxymethylation is a stable mark  

Hydroxymethylation is generally discussed as an intermediate step in DNA demethylation (Ito 

et al., 2011; Tahiliani et al., 2009). To explore the fate of hydroxymethylation during 

adipogenesis, mature SGBS adipocytes were maintained in culture until day 27 post-induction 

of differentiation. We extended the detection of 5hmC during adipogenesis using the 

enrichment-based method hMeSeal, specifically capturing DNA fragments harboring at least 

one chemically labeled 5hmC. This method requires only minute amounts of DNA and allows 

a more detailed analysis of hydroxymethylation dynamics due to its sensitivity. By mapping 

hydroxymethylated DNA fragments, I identified peaks with a median width of ~ 582 bp and a 

median number of 9 CpG sites (Fig. 15a). Enrichment methods do not precisely determine the 

hydroxymethylated CpG site within a DNA fragment. However, a principal component analysis 

of hMeSeal peaks showed that the hydroxymethylation data was highly reproducible due to 

the method's high sensitivity. In contrast, hydroxymethylation data estimated from WGBS 

displayed higher within time point variability, possibly resulting from low coverage and that the 

method in general is more error-prone (Supplementary Fig. 2).  

 

Fig. 15| Quality control of hMeSeal-based hydroxymethylation profiles during adipocyte differentiation.  a, 
Heatmap depicting hMeSeal scores at peaks detected at day 27 post-induction of SGBS differentiation. hMeSeal 
reads are depicted in an interval ± 2.5 kb around the peak center and sorted by descending peak size. At the right 
side, a bar plot depicts the corresponding number of CpGs within each hMeSeal peak. b, Principal component 
analysis (PCA) based on hydroxymethylation scores in hMeSeal peaks detected at a genome-wide scale at days 0 
to 27 of SGBS differentiation. Individual biological replicates are depicted by circles. Time points are color-coded 
by a gradient from light to dark blue. Data in this figure are derived from experiment 2, performed by LK, hMeSeal 
library generation and data alignment by FJ, and downstream data analysis by myself (CFA). See Fig. 8 for the 
experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation).  
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The principal component analysis (PCA) of hMeSeal peaks separated biological replicates of 

SGBS differentiation by time point at the first principal component, representing more than 

70 % of the total variance (Fig. 15b). During the differentiation process, the total number of 

hydroxymethylation peaks continuously increased from day 0 (2,874 hMeSeal peaks) to day 

27 (83,980 hMeSeal peaks) (Fig. 16a). This first analysis at the genome-wide level already 

confirmed the accumulation of hydroxymethylation and stalling of the demethylation process 

at the hydroxymethylation stage. When mature adipocytes were kept in culture until day 27 

post-induction of differentiation, I detected almost 24 % more hMeSeal peaks than at day 11, 

and the level of hMeSeal scores also increased on average from 2.18 to 2.43. I could show 

the in vivo relevance of hydroxymethylation in mature adipocytes by a significant correlation 

between hMeSeal peaks detected at day 27 and in subcutaneous WAT of five human 

volunteers (Fig. 10b), with a Spearman correlation coefficient rho of 0.722. These data 

collectively suggested that hydroxymethylation is a stable DNA modification in mature 

adipocytes and WAT.  

 

Fig. 16| hMeSeal identifies regions with CpG sites gaining hydroxymethylation.  a, Bar plot depicts the number 
of hMeSeal peaks identified at day 0, 1, 7, 11, and 27 of SGBS adipogenesis, representing regions with 
hydroxymethylated CpGs (experiment 2). b, Circos plot displays mean normalized hMeSeal reads 
(hydroxymethylation) along the genome in SGBS differentiation (n = 2 - 3, experiment 2) and human white adipose 
tissue (WAT) samples (n = 5, PATHWAY-27 LIS). Experiment 2 was performed by LK, WAT samples were collected 
by SG, MF, GU, GR, LR under coordination of AB, WAT tissue was pulverized by KK and AW, hMeSeal library 
generation and data alignment by FJ, and downstream data analysis by myself (CFA). See Fig. 8 + 10 for the 
experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: large intervention study. 
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After detecting the global increase in hydroxymethylation, I displayed the hydroxymethylation 

levels also at individual loci (Fig. 17). In the three examples, I identified hydroxymethylation at 

enhancer regions defined in adipose-derived stem cells (ADS) (Roadmap Epigenomics et al., 

2015) at and around the gene loci of ACSL1 (Acyl-CoA Synthetase Long Chain Family Member 

1), ELOVL3 (Fatty Acid Elongase 3), and IDH1 (Isocitrate dehydrogenase 1). The hMeSeal 

peaks overlap in all examples with an increased density of hydroxymethylated CpG sites 

shown in the WGBS/oxBS tracks. The hydroxymethylated enhancers overlapped with 

published data of DHS and MED1, CEBPB, and/or PPARG binding in mature SGBS cells 

(Schmidt et al., 2011). ACSL1 and ELOVL3 are two enzymes involved in cholesterol 

metabolism, while ACSL1 has an additional role in lipid biosynthesis and PPAR signaling 

(Slenter et al., 2018). IDH1 is an enzyme that converts isocitrate to -ketoglutarate (KG). This 

metabolite is the co-factor of TET methylcytosine dioxygenases to oxidize 5mC to 5hmC (Wu 

and Zhang, 2017) and, therefore, potentially is involved in stabilizing the hydroxymethylation 

mark.  
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Fig. 17| Hydroxymethylation validation by WGBS/oxBS at individual loci.  a-c, UCSC browser tracks displaying 
hydroxymethylation data at the ACSL1 (Acyl-CoA Synthetase Long Chain Family Member 1) locus (a), the ELOVL3 
(ELOVL Fatty Acid Elongase 3) locus (b), and the IDH1 (Isocitrate dehydrogenase 1) locus (c). Mean 
hydroxymethylation proportions based on WGBS/oxBS were displayed at a scale of 0 - 0.5, followed by hMeSeal 
data of differentiation of SGBS cells (score scale: 0 – 100, experiment 2). Next follow ChromHMM tracks of adipose-
derived stem cells (ADS, E025) (Roadmap Epigenomics et al., 2015) and in vitro differentiated to mature adipocytes 
(Adipocytes, E023) (Roadmap Epigenomics et al., 2015). DHS and MED1 binding (Schmidt et al., 2015), as well 
as CEBPA and PPARG binding (Schmidt et al., 2015) of mature SGBS cells (day 10) are displayed. Color code of 
ChromHMM states as in Fig. 20. Experiment 2 was performed by LK. hMeSeal library preparation and data 
alignment performed by FJ, WGBS/oxBS library generation and downstream data analysis performed by myself 
(CFA). See Fig. 8 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). 
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4.4 Clustering of hydroxymethylation dynamics  

As hMeSeal analyses were sensitive and produced highly reproducible data, I was able to 

investigate in more detail the dynamics of 5hmC during human adipogenesis. I performed 

Mfuzz clustering of hMeSeal peak scores and identified six distinct clusters, each representing 

a characteristic hydroxymethylation profile. The first hydroxymethylation cluster with “transient 

increase” was characterized by stable detection of hydroxymethylation during adipocyte 

differentiation, with a transient peak of elevated levels at day 1. The other clusters displayed 

no hydroxymethylation at day 0. However, levels started to increase from day 1 or day 7 (Fig. 

18). In hydroxymethylation clusters “early-persistent“ and “intermediate-persistent“ I observed 

gain in hydroxymethylation at day 1 and 7, respectively, with stable elevated 

hydroxymethylation levels afterwards. In clusters “intermediate increase 1”, “intermediate 

increase 2” and “late increase“ hydroxymethylation levels continued to increase at day 11 and 

day 27 at different rates. To confirm that the hydroxymethylation dynamics are not resulting 

from artifacts of the enrichment-based method, I compared the hydroxymethylation levels of 

the hMeSeal data with the WGBS/oxBS-based hydroxymethylation data (Fig. 19). 

 

Fig. 18| Mfuzz clustering of hydroxymethylation dynamics. Mfuzz clustering of scaled hMeSeal scores 
identifying six hydroxymethylation clusters representing hydroxymethylation dynamics over day 0, 1, 7, 11, and 27 
of SGBS adipogenesis (n = 3, except for day 27 (n = 2)). Cluster centers are displayed by white lines. Data in this 
figure are derived from experiment 2, performed by LK. hMeSeal library preparation and data alignment performed 
by FJ and downstream data analysis by myself (CFA). See Fig. 8 for experimental design. Modified from 
(Feuerstein-Akgoz, C. et al., in preparation). 
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Fig. 19| Comparison of hydroxymethylation changes in hydroxymethylation clusters. a-b, Heatmaps 
depicting the average hMeSeal score for each hydroxymethylation cluster and time point (a) or hydroxymethylation 
proportions (WGBS/oxBS) ± 1 kb around hMeSeal peaks. Data in this figure are derived from experiment 2, 
performed by LK. hMeSeal library preparation and data alignment performed by FJ and WGBS/oxBS libraries and 
downstream data analysis performed by myself (CFA). See Fig. 8 for experimental design. Modified from 
(Feuerstein-Akgoz, C. et al., in preparation). 

As timepoint day 1 is missing for the WGBS/oxBS-based hydroxymethylation data, I was not 

able to confirm the transient increase of hydroxymethylation at day 1 characteristic for the first 

cluster. However, the persistent presence of hydroxymethylation at the other time points was 

confirmed in the WGBS/oxBS-based hydroxymethylation data (Fig. 19b). Clusters “early-

persistent” and “intermediate-persistent“ could not be distinguished in the WGBS/oxBS data, 

as the difference between these two clusters is the presence or absence of hydroxymethylation 

at day 1. The hydroxymethylation profiles of the last three clusters were confirmed by 

WGBS/oxBS. Overall, I observed broader peaks by hMeSeal, which were primarily defined by 

the fragmentation size of the DNA before library preparation (Fig. 19a). In contrast, for the 

WGBS/oxBS-based hydroxymethylation data, the peak width represents a high density of 

hydroxymethylated sites around the center (Fig. 19b).  

As none of the clusters displayed loss, but rather an accumulation of hydroxymethylation, these 

data collectively suggest stalling of the demethylation process at the 5hmC mark in mature 

adipocytes.   
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4.5 Hydroxymethylation is enriched at adipocyte enhancer regions 

For further characterization of hydroxymethylated sites, I investigated whether increase in 

hydroxymethylation was enriched in specific chromatin states of mature adipocytes (Roadmap 

Epigenomics et al., 2015). Chromatin states were defined by the ChromHMM algorithm using 

the combination of H3K4me3, H3K4me1, H3K36me3, H3K9me3, and H3K27ac ChIP-seq data 

of in vitro differentiated mature adipocytes (Fig. 20a). I observed a continuous increase in 

hydroxymethylation levels at ChromHMM states with H3K4me1 marks, such as regions 

flanking transcribed genes (TxFlnk), as well as at gene regulatory elements, such as regions 

flanking the active TSS (TssAFlnk) or enhancer regions (Enh/EnhG) (Fig. 20b). A weak 

increase in hydroxymethylation was also observed in bivalent regions (TssBiv/BivFlnk/EnhBiv). 

When stratifying according to the individual hydroxymethylation clusters, cluster “transient 

increase” displayed the lowest enrichment ratios (Fig. 20c). At the TxFlnk state, the enrichment 

increased with cluster number, and at bivalent enhancers, hydroxymethylation was only 

enriched in the last four clusters. Overall, enrichment was quite similar for the different 

hydroxymethylation clusters. 

 

Fig. 20| Hydroxymethylation is enriched in enhancer regions. a, ChromHMM states of mature adipocytes 
differentiated from adipose-derived stem cells (ADS, E023) defined by H3K4me3, H3K4me1, H3K36me3, 
H3K9me3, and H3K27ac ChIP-seq data (figure modified from (Roadmap Epigenomics et al., 2015)). b, Mean 
difference in hMeSeal signal (day 1, 7, 11 and 27 vs day 0, n = 2 - 3) or hydroxymethylation proportions (day 27 vs 
day 0, n = 1) based on WGBS/oxBS data at chromatin regions defined by ChromHMM of mature adipocytes (E023). 
Displayed are regions in an interval of ± 2.5 kb around the center of the corresponding chromatin state (left panel). 
c, Enrichment analysis (right panel) of hydroxymethylation clusters in ChromHMM states of mature adipocytes 
(E023). Fisher's exact test was performed to define significant enrichment (Bonferroni-adjusted p value ≤ 0.05). 
Data in this figure are derived from experiment 2, performed by LK. hMeSeal library preparation and data alignment 
performed by FJ and WGBS/oxBS library preparation and downstream data analysis performed by myself (CFA). 
See Fig. 8 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). 
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Fig. 21| Hydroxymethylation in chromatin accessible regions. a, Heatmap displays hydroxymethylation levels 
(hMeSeal score, day 27, n = 2, experiment 2), chromatin accessibility (ATAC) (Cannon et al., 2019), DNase I 
hypersensitivity (DHS), and MED1 binding in mature SGBS cells (Schmidt et al., 2015) ± 2.5 kb around hMeSeal 
peak centers of hydroxymethylation clusters. Peaks are ordered with decreasing peak width. b, hMeSeal (n = 5, 
PATHWAY-27 LIS) and ATAC-seq (n = 3) (Cannon et al., 2019) of human white adipose tissue samples are 
displayed for the same regions as in (a). Data in this figure are derived from experiment 2, performed by LK, WAT 
samples of the PATHWAY-27 LIS were collected by SG, MF, GU, GR, LR under coordination of AB, WAT tissue 
was pulverized by KK and AW, hMeSeal library generation and data alignment by FJ and downstream data analysis 
by myself. See Fig. 8 + 10 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: 
large intervention study. 

I was also able to show that the hydroxymethylation peaks in hydroxymethylation clusters 

display characteristics of gene regulatory regions in mature SGBS cells. hMeSeal peaks 

overlapped with ATAC peaks (Cannon et al., 2019) and were enriched for DHS and MED1 

binding regions (Schmidt et al., 2015), representing accessible DNA and promoter-enhancer 

interactions in SGBS cells, respectively (Fig. 21a). These regions also displayed enrichment 

of hydroxymethylation and ATAC peaks in WAT (Cannon et al., 2019), hinting towards in vivo 

relevance (Fig. 21b). 

As a representative example, I visualized the gain in hMeSeal signal during adipocyte 

differentiation at the PLIN1 (Perilipin 1) locus. PLIN1 is a gene encoding for a protein that coats 

the surface of lipid droplets in mature adipocytes (Lyu et al., 2015). During the adipocyte 

differentiation process, I detected multiple emerging hMeSeal peaks with reproducible 

detection levels starting from day 7 of adipocyte differentiation that were maintained until day 

27, as well as in WAT. The hMeSeal peaks overlapped with gene regulatory regions 

characterized in mature SGBS by DHS with MED1, CEBPB, and/or PPARG binding (Fig. 22). 

A more precise characterization by the ChromHMM model defined these regions as genic and 

intergenic enhancers located upstream of PLIN1.   
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Fig. 22| UCSC genome browser track of hMeSeal signal at the PLIN1 locus.  Visualization of hMeSeal signal 
emerging during SGBS differentiation. hMeSeal scores are displayed at a scale of 0 – 70 and color-coded in a color 
gradient from light to dark blue reflecting each a timepoint of differentiation (day 0, 1, 7, 11, 27, experiment 2). 
hMeSeal peaks overlap partially with hMeSeal peaks of human white adipose tissue (WAT, n = 5) as well as gene 
regulatory regions of mature adipocytes or WAT samples (ChromHMM MSC (E025), Adipocytes (E023) and 
Adipose tissue (E063) (Roadmap Epigenomics et al., 2015)). In mature SGBS cells, these regions overlap with 
chromatin accessibility (ATAC) (Cannon et al., 2019), DNase I hypersensitivity (DHS) and/or MED1 (Schmidt et al., 
2015), CEBPA, and PPARG binding (Schmidt et al., 2011). For a description of ChromHMM states see Fig. 20. 
Experiment 2 was performed by LK, WAT samples were collected by SG, MF, GU, GR, LR under coordination of 
AB, WAT tissue was pulverized by KK and AW, hMeSeal library generation and data alignment by FJ and 
downstream data analysis by myself. See Fig. 8 + 10 for experimental design. Modified from (Feuerstein-Akgoz, C. 
et al., in preparation). 

After identifying the different hydroxymethylation clusters with distinct dynamics, I wondered 

whether they showed differences regarding their functional role. Hydroxymethylated sites were 

located at gene regulatory regions and, therefore, they represent sites of potential TF binding. 

Therefore, I investigated whether the fragments with hydroxymethylated sites represented in 

the six hydroxymethylation clusters showed differences in TF binding motifs. All 

hydroxymethylation clusters displayed a strong enrichment in motifs of key adipogenic TFs 

(Fig. 23). The first cluster (transient increase) with hydroxymethylation detectable at all 

timepoints was enriched for motifs of the AP-1 transcription factor subunits JUN/FOS. I 

identified them as early response TFs, as they are involved in clonal expansion, a process 

occurring on the first day after the induction of the differentiation process (Johnson et al., 1996).  
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Fig. 23| Motifs of adipogenic transcription factors (TF) are enriched at hydroxymethylation clusters. For 
each hydroxymethylation cluster an individual transcription factor (TF) motif enrichment analysis was performed. 
To create TF families, hocomoco motifs were clustered by motif similarity. The motif and enrichment results of the 
best-enriched TF motifs within the TF family are displayed for the top 5 enriched TF families. For each TF family, 
all enriched and expressed motifs were displayed in order of enrichment and the highest expressed at the timepoint 
of highest hydroxymethylation was highlighted (for cluster “transient increase”: day1, “early-persistent” and 
“intermediate-persistent”: day 11, ”intermediate increase 1+2” and “late increase”: day 27). Data analysis based on 
data of experiment 2, performed by LK. hMeSeal library generation and data alignment performed by FJ and 
downstream data analysis by myself (CFA). See Fig. 8 for experimental design. Taken from (Feuerstein-Akgoz, C. 
et al., in preparation). 

These TFs are engaged in the differentiation of adipocytes, but also of multiple other cell types, 

which is achieved by a selective combination of the AP-1 sub-units (Distel et al., 1987). Also, 

several TFs of the forkhead-box (FOX) TF motif family, such as FOXC2, FOXO1, and others, 

are known for their adipogenic potential (Gerin et al., 2009). More specifically, they are involved 

in the initiation of differentiation and metabolism. The early-persistent hydroxymethylation 

cluster, characterized by an early increase in hydroxymethylation at day 1, can be considered 

as an intermediate cluster. It shares enrichment of motifs with both “transient increase” and all 

other clusters. I identified similarly to cluster “transient increase” the two early response TF 

motif families JUN/FOS and FOX, and similarly to the last four clusters, the CEBP-related TFs, 

such as the early transcription factor CEBPB. CEBPA, however, is induced by CEBPB and is 

rather a late adipogenic TF, indicating the broad time range of action of the different CEBP-

related TFs during adipogenesis. In addition, I also identified TF motifs only enriched in the 

last four clusters (intermediate-persistent, intermediate increase 1, intermediate increase 2, 

and late increase), representing clusters with later increases in hydroxymethylation. One 
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example is the enrichment of motifs of PPAR TFs and their heterodimer RXR (retinoid X 

receptor), suggesting binding of the late adipogenic TF PPARG. Further enriched TF motifs 

involved in adipogenesis include hypoxia inducible factor 1 subunit alpha (HIF1A) (Floyd et al., 

2007) and TFs with a role in metabolic signaling pathways, such as activating transcription 

factor 1 (ATF1), CREB1, and  EBF transcription factor 1 (EBF1) (Griffin et al., 2013; Zhang et 

al., 2004). 

With the enrichment-based method hMeSeal, I was able to estimate the approximate location 

of the hydroxymethylation next to specific adipogenic TF motifs. For comparison, I used 

WGBS/oxBS-provided hydroxymethylation data at base-pair resolution to estimate the exact 

distance of 5hmC to the TF binding motifs (Fig. 24). The average distance of the 5hmC mark 

to the early TF binding motifs JUN and FOX, exemplarily represented by JUN and FOXJ2, was 

about ± 100 base pairs (bp). The distance to the late transcription factors such as the C/EBP 

TFs and PPAR/RXR TFs was even smaller, at about ± 50 bp. CEBPE displayed at the center 

of the binding motif the highest density of hydroxymethylated sites, which might reflect the fact 

that this TF is the only one that can harbor a CpG site within its binding motif 

(TTGCGCAATCTT).  

 

Fig. 24| Hydroxymethylation is enriched around the TF binding motifs. Density plot of hydroxymethylated sites 
(from WGBS/oxBS) depicted around hocomoco motifs within ± 200 bp overlapping with hMeSeal peaks of all 
hydroxymethylation clusters. Hydroxymethylated sites were defined as CpG sites with a hydroxymethylation 
proportion > 25 % at any time point of differentiation (day 0, 7, 11, and 27). N = Number of hocomoco TF motifs 
overlapping with hMeSeal peaks in all hydroxymethylation clusters. Data in this figure are derived from experiment 
2, performed by LK. hMeSeal library generation and data alignment performed by FJ, WGBS/oxBS library 
preparation and downstream data analysis performed by myself (CFA). See Fig. 8 for experimental design. Modified 
from (Feuerstein-Akgoz, C. et al., in preparation). 
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4.5.1 5hmC at adipogenic TF binding 

The presence of a binding motif is predictive, however, not the only decisive factor for TF 

binding. Therefore, I confirmed the enrichment of hydroxymethylation at experimentally 

determined TF binding sites in SGBS cells. I displayed hydroxymethylation levels 

(WGBS/oxBS data) of hydroxymethylated CpGs (> 0.25) ± 1,000 bp around CEBPA and 

PPARG binding (Schmidt et al., 2011) and 

detected the highest density of 

hydroxymethylation at ~ 80 - 100 bp around 

the TF binding (Fig. 25).  

Fig. 25| Hydroxymethylation is enriched around 
CEBPA and PPARG binding. a, Density plots 
depicting hydroxymethylated sites at day 27 (from 
WGBS/oxBS, experiment 2) of CpGs located within 
± 1 kb (upper panel) and ± 200 bp (lower panel) to 
CEBPA (left) or PPARG (right) ChIP-seq peaks of 
mature SGBS adipocytes (Schmidt et al., 2011). 
Hydroxymethylated sites were defined as CpG sites 
with a hydroxymethylation proportion > 0.25 at day 27. 
Experiment 2 was performed by LK, WGBS/oxBS 
library preparation, and downstream data analysis done 
by myself (CFA). See Fig. 8 for experimental design. 
Modified from (Feuerstein-Akgoz, C. et al., in 
preparation). 

4.5.2 5hmC at CTCF binding 

Dubois-Chevalier et al. have shown previously in 3T3-L1 cells as a murine adipogenesis model 

that hydroxymethylation levels increased at sites where the insulating factor CTCF is de novo 

recruited (Dubois-Chevalier et al., 2014). One of the functions of CTCF is to control gene 

expression through regulating the 3D structure of chromatin (Phillips and Corces, 2009; Wang 

et al., 2012a). CTCF is attractive in terms of hydroxymethylation as its motif contains one or 

two CpG sites, which influence CTCF DNA binding through their methylation status.  

In our analyses, the CTCF binding motif did not appear to be enriched in the 

hydroxymethylation clusters. Therefore, I repeated the analysis and classified CTCF binding 

sites as constitutive or dynamic based on ChIP-seq data from confluent human adipose-

derived stem cells (ADS) and mature adipocytes (Mikkelsen et al., 2010). In addition, I 

classified the CTCF binding sites based on their methylation level in SGBS preadipocytes (day 

0), since unmethylated sites cannot gain hydroxymethylation. Interestingly, nearly half of the 

CTCF binding sites displayed a methylation level < 10 %, which I classified as unmethylated 

(Fig. 26a). The remaining CTCF binding sites displayed low methylation, with levels of at least 

10 %. Most CTCF binding regions showed constitutive binding, with CTCF bound throughout 
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ADS differentiation. In these regions, I observed only low gain in hMeSeal signal in SGBS 

cells. Among the ~3,000 dynamic CTCF binding sites with de novo recruited CTCF binding in 

mature adipocytes, I detected the strongest enrichment in hydroxymethylation in mature SGBS 

cells (Fig. 26a + b). I also analyzed the distance of hydroxymethylated CpGs to the center of 

the CTCF binding motifs and, similarly to the above analyzed TFs, the distance was around 

± 60 bp to the CTCF binding motif (Fig. 26c).  

To sum up, our findings support the view of a highly regulated system resulting in gain in 

hydroxymethylation during adipogenesis, mostly at newly occupied enhancer regions that are 

essential for the transition of a preadipocyte to a mature adipocyte.  

 

Fig. 26| Hydroxymethylation levels at CTCF binding sites. a, Venn diagram displaying the number of 
adipogenesis CTCF binding sites characterized by methylation status at ± 200 bp around the CTCF binding sites 
(unmethylated < 10 % methylation, lowly methylated > 10 % methylation, based on WGBS, experiment 2). The 
subset of lowly methylated CTCF binding sites was further classified into constitutive binding (in preadipocytes and 
adipocytes) or dynamic CTCF binding (in preadipocytes or adipocytes) (Mikkelsen et al., 2010). b, Density line plot 
of hydroxymethylation (hMeSeal score) at day 0 (left) and day 27 (right) at lowly methylated constitutive or dynamic 
CTCF binding sites at an interval of ± 1,000 bp c, Density plot of hydroxymethylated sites (from WGBS/oxBS, 
experiment 2) depicted around hocomoco CTCF motifs within ± 200 bp overlapping with hMeSeal peaks of all 
hydroxymethylation clusters. Hydroxymethylated sites were defined as CpG sites with a hydroxymethylation 
proportion > 25 % at any time point of differentiation (day 0, 7, 11, and 27). n = Number of hocomoco TF motifs 
overlapping with hMeSeal peaks in all hydroxymethylation clusters. Experiment 2 was performed by LK. hMeSeal 
library preparation and data alignment performed by FJ and WGBS/oxBS library generation and downstream data 
analysis done by myself (CFA). See Fig. 8 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in 
preparation). 
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4.6 Transcriptome changes during SGBS differentiation 

The function of enhancer regions is to co-regulate the level of transcription of locally interacting 

target genes. As hydroxymethylation at enhancer regions might affect enhancer function, I next 

investigated transcriptional changes during the SGBS differentiation process and tested 

whether they can be linked to the hydroxymethylation dynamics.  

4.6.1 Global transcriptome changes 

To assess global transcriptional changes, we performed RNA sequencing during SGBS 

differentiation. Performing Mfuzz clustering of all expressed genes (Fig. 27), I identified five 

mRNA expression clusters (eCl) with distinct profiles. In eCl1, I observed an immediate 

transient decrease from day 0 to day 7 followed by increasing levels after day 7. In contrast, in 

eCl2, gene expression levels decreased from day1 to day 7 and were then persistent at low 

levels. eCl3 displayed a transient peak of elevated expression at day 1 followed by a drop in 

expression levels. Finally, eCl4 + 5 were characterized by increasing mRNA levels; eCl4 with 

a continuous raise in expression levels, and eCl5 with a sharp upregulation between day 1 and 

day 7 and persistent levels after day 7. 

 

Fig. 27| Mfuzz clustering of transcriptional changes. Scaled gene expression data (RNA-seq) of SGBS 
differentiation at day 0, 1, 7, 11 and 27 (n = 3 per time point, except day 27 with n = 1) were clustered into 5 mRNA 
expression clusters (eCl) by Mfuzz. Black lines depict cluster centers. Data in this figure are derived from experiment 
2, performed by LK, downstream data analysis were done by myself (CFA). See Fig. 8 for experimental design. 
Taken from (Feuerstein-Akgoz, C. et al., in preparation). 
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For each expression cluster, I performed KEGG pathway gene overrepresentation analysis 

(Fig. 28). Genes that were immediately downregulated after induction of differentiation (eCl1) 

were enriched for “Focal adhesion”, a pathway involved in the regulation of cell shape. This 

was consistent with the visual observation of morphological changes at about the same time 

(Fig. 11), namely a switch from a spindle-like cell structure to a rounded cell morphology 

starting directly after the induction of differentiation. Genes involved in “cell cycle regulation”, 

such as proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 (MKI67), 

were downregulated between day 1 and day 7. Also, expression of genes involved in DNA 

methylation maintenance, such as DNMT1 and UHRF1, was reduced. This reflects cell cycle 

arrest following the induction of clonal expansion by the differentiation medium and the 

subsequent reduced need of DNA methylation maintenance. In eCl3, genes upregulated at 

day 1 were involved in clonal expansion, namely 66 of 153 genes of the ribosome, necessary 

for the increased translation activity in proliferating cells. eCl4 was not enriched in any 

particular pathway. Upregulated genes clustered in eCl5 were enriched for multiple metabolic 

pathways, which represent the switch of preadipocytes to functional mature adipocytes. At the 

top of the hierarchy, I identified the “PPAR signaling pathway” that induces the expression of 

genes of multiple metabolic pathways. Downstream pathways that were enriched in eCl5  

 

Fig. 28| KEGG overrepresentation analysis of eCls. KEGG overrepresentation analysis was performed with 
genes of 5 mRNA expression clusters (eCl) (FDR adj. p value < 1e-5). The matching/total number of genes within 
the pathway are listed in each bar. eCl4 displayed no significant enrichment. See expression dynamics of eCl of 
experiment 2 in Fig. 27. Experiment 2 was performed by LK, downstream data analysis by myself (CFA). See Fig. 
8 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). 
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included “tricarboxylic acid cycle (TCA cycle)” and “pyruvate metabolism” to generate acetyl-

CoA for the “biosynthesis of unsaturated fatty acids”. The KEGG pathway “degradation of 

valine, leucine, and isoleucine” is an additional pathway that provides metabolites for the 

biosynthesis of fatty acids in adipocytes. In addition, I identified pathways enriched such as the 

“AMPK pathway” and “fatty acid degradation (lipolysis)” that represent functions of normal 

adipocytes, but their pathological upregulation can result in insulin resistance and high levels 

of fatty acids in the blood, respectively, both observed in the metabolic syndrome. In line with 

the characterization of the clusters, also all markers of adipogenesis (CEPBA, PPARG, sterol 

regulatory element binding transcription factor 1 (SREBF1), PLIN1, CFD, fatty acid synthase 

(FASN), FABP4) were found in this last cluster.  

Gene expression is a well established indicator of changes in cellular functions, however, gene 

activity is more precisely interpreted at the protein level. For comparative analyses, I received 

proteome data  obtained by UPLC-MS analyses of tryptic digests of protein lysates collected 

during SGBS differentiation (Schaffert et al., 2021). As genes of eCl5 are responsible for the 

function of mature adipocytes, I wanted to confirm the mRNA expression changes at the 

protein level (Fig. 29). While some lowly or nuclear expressed proteins, including transcription 

factors such as PPARG, were technically not detectable, I was able to globally validate the 

transcriptional upregulation of these genes also at the protein level. Among the highlighted 

examples, I displayed the upregulation of ACSL1 and IDH1, two genes for which I previously 

described an increase of hydroxymethylation (Fig. 17a + c). 

To sum up, clustering of gene expression data based on gene expression dynamics allowed 

the identification of pathways that are de-/activated at specific time points, reflecting the 

different stages of the differentiation program, starting from clonal expansion and 

morphological changes followed by cell cycle arrest and finally activation of multiple metabolic 

pathways. 
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Fig. 29| Validation of mRNA expression changes of eCl5 at the protein level. Heatmaps depict changes in 
mRNA expression (left panel) and protein abundance (right panel) of genes clustered in mRNA expression cluster 
5 (eCl5) during adipocyte differentiation. RNA-seq data (mean Log2FC) were plotted for experiment 2 (n = 3 per 
time point, except day 27 with n = 1) and expression of all detected proteins (mean Log2FC) was plotted for 
experiment 4 (n = 5). Heatmaps are both ordered by mRNA Log2FC expression levels. Proteins below the detection 
limit were depicted in grey. Experiment 2 was performed by LK, experiment 4 published by (Schaffert et al., 2021), 
downstream data analysis was done by myself (CFA). See Fig. 8 for experimental design. Modified from 
(Feuerstein-Akgoz, C. et al., in preparation). 

4.6.2 Transcriptome changes linked to hydroxymethylation 

After characterizing the activation and downregulation of transcriptional programs at specific 

timepoints, I wanted to investigate whether the changes in gene expression might be 

associated with the changes in hydroxymethylation at enhancer regions. For that purpose, I 

first matched hydroxymethylated regions within ± 100 kb to each TSS (to account for the fact 

that enhancer-promoter interaction can be long-ranged) and then performed an enrichment of 

hydroxymethylation of specific hydroxymethylation clusters at each mRNA expression cluster 

(eCl). I identified an enrichment of the first two hydroxymethylation clusters (“transient 

increase”, “early-persistent”) at the two eCls with downregulated genes (eCl1 + 2), mainly 

genes involved in cell cycle and cell morphology (Fig. 30). The hydroxymethylated peaks were 

present at early time points and were enriched for early transcription factors. The expression 

clusters eCl3+4 displayed no specific enrichment. However, for genes in expression cluster 

eCl5 that are induced between day 1 and 7 and are mainly involved in metabolic pathways, 

we identify in the vicinity an enrichment of hydroxymethylation gain between day 1 and 7 (last 
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Fig. 30| Transcriptional changes linked to hydroxymethylation changes.  Distance-based enrichment analysis 
of hydroxymethylation clusters within ± 100 kb of TSS of genes represented in mRNA expression clusters (eCl). 
Fisher's exact test was performed to define significant enrichment (Bonferroni-adjusted p value ≤ 0.05). 
Hydroxymethylation clusters were defined based on hMeSeal scores, see Fig. 18. eCls were defined based on 
RNA-seq data, see Fig. 27. Data in this figure are derived from experiment 2, performed by LK, downstream data 
analysis by myself (CFA). See Fig. 8 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in 
preparation). 

four hydroxymethylation clusters). These hydroxymethylated regions surround enhancer 

regions bound by late adipogenic transcription factors such as PPARG and CEBPA. 

In summary, hydroxymethylation at early time points was identified around enhancer regions 

with binding of early transcription factors, surrounding genes expressed at early time points. 

Analogously, we identified late gain in hydroxymethylation at late adipogenic transcription 

factor binding sites, surrounding genes of metabolic pathways induced at late time points of 

adipogenesis. “This suggests that gene expression is tightly controlled at enhancer regions 

and that hydroxymethylation might contribute to this process in regulating enhancer function 

during adipocyte differentiation.” (Feuerstein-Akgoz, C. et al., in preparation)  

4.7 Metabolic changes 

4.7.1 Integrated pathway analysis based on metabolites and 

associated proteins 

Epigenetic gene regulation and the cellular metabolism are two closely interacting processes. 

On the one hand, epigenetic gene regulation controls the enzyme abundance affecting the 

throughput of metabolites. On the other hand, metabolites including some of the TCA cycle 
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(Boon et al., 2020; Haws et al., 2020; Martinez-Reyes and Chandel, 2020) can serve as 

substrates for epigenetic enzymes. One of the examples related to DNA hydroxymethylation, 

is the regulation of TET activity that can be controlled at the level of transcription, but also at 

the level of availability of the substrate αKG (Wu and Zhang, 2017). As I observed an 

upregulation of genes involved in various metabolic pathways during adipocyte differentiation, 

e.g. the TCA cycle, in eCl5, I also anticipated changes at the level of metabolite concentrations, 

which might affect the epigenetic regulation of gene expression.  

To assess global changes in metabolites concentrations, I received from collaboration partners 

metabolite levels from an untargeted metabolomics analysis of SGBS adipocyte differentiation 

(experiment 3, Fig. 7, described in (Miehle et al., 2020)). As for the hydroxymethylation and 

gene expression data, I performed Mfuzz clustering on scaled metabolite intensities (Fig. 31). 

I identified in total three stable metabolite clusters (mCls), one with increasing concentrations 

(mCl1), one with transient up- followed by downregulation (mCl2), and one with decreasing 

metabolite concentrations (mCl3).  

 

Fig. 31| Mfuzz clustering of metabolites. Clustering of scaled mean metabolite signal intensities of SGBS 
differentiation at day 0, 4, 8, 12, and 16 (n = 5 - 6) into 3 metabolite clusters (mCl) by Mfuzz. Black lines depict 
cluster centers. Data in this figure are derived from experiment 3, provided by FM (Miehle et al., 2020), downstream 
data analysis was performed by myself (CF). See Fig. 8 for the experimental design. Modified from (Feuerstein-
Akgoz, C. et al., in preparation). 

To perform integrated pathway analysis of proteins and metabolite dynamics, I matched to 

each detected metabolite the associated proteins. These proteins represent enzymes 

generating or using the metabolites in a chemical reaction. In Fig. 32a, the three metabolite 

clusters (mCls) and their associated proteins are sub-grouped by the protein dynamics into 

three upregulated (u-mCls) and three downregulated (d-mCls) clusters. For the clusters with 

declining protein levels (d-mCls), representing proteins with a predominant role in 

preadipocytes, I identified only a few enriched pathways. “Purine metabolism” represented 

proteins with reduced abundance during adipogenesis, associated with metabolites with 
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increasing levels, suggesting accumulation of purine metabolites, despite the global 

downregulation of the pathway. “Cysteine and methionine metabolism” represented a group of 

proteins and associated metabolites that were downregulated during adipogenesis. This 

pathway is involved in the generation of SAM, the methyl donor of DNA methyltransferases. 

We could not confirm decrease of SAM itself, as it was not detectable in the metabolomics 

analysis. Since differentiating cells are cell cylce arrested, both SAM and DNMTs might indeed 

be dispensable.  

Among the clusters with increasing protein levels (u-mCls), I identified a large variety of 

enriched metabolic pathways. I observed pathways such as “TCA cycle”, “Pyruvate 

metabolism”, and “Valine, leucine, and isoleucine degradation” that were already identified at 

the mRNA level (Fig. 32b + 28). The majority of the pathways were enriched in at least two or 

even all three of the u-mCls, suggesting that although the vast majority of the metabolic 

proteins became upregulated by the adipogenic signaling cascade, the metabolite 

concentrations followed varying cellular steady-state dynamics due to complex networks of 

connected enzymatic reactions with distinct reaction kinetics. 

 

Fig. 32| Integrated KEGG pathway enrichment analysis of protein and metabolite dynamics. a, Heatmap 
displays all detected metabolites on the right side (experiment 3, n = 5 - 6) and the associated proteins on the left 
side (experiment 4, n = 5). Heatmap of the three metabolite clusters (mCls) sub-grouped based on the protein 
expression changes into d-(downregulated) and u-(upregulated) mCls. c, KEGG overrepresentation analysis was 
performed with proteins and metabolites of d-/u-mCls (FDR adj. p value < 1e-5). mCls are described in more detail 
in Fig. 31. Data of experiment 3 was generated by FM (Miehle et al., 2020) and of experiment 4 by AS and LK2 
(Schaffert et al., 2021). Downstream data analysis performed by myself (CFA). See Fig. 8 for the experimental 
design. Modified from (Feuerstein-Akgoz, C. et al., in preparation).  
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4.7.2 TCA cycle and hydroxymethylation 

Exemplarily, I want to highlight the TCA cycle and its potential link to DNA hydroxymethylation 

regulation. The TCA cycle functions in the mitochondria as a provider of energy-rich ATP, 

NADH, and FADH2 through oxidative decarboxylation. Protein levels of all detectable enzymes 

of the TCA cycle increased during adipogenesis (Fig. 33a), suggesting a continuous increase 

in the TCA cycle throughput. Concentrations of most TCA cycle metabolites, however, 

decreased during adipogenesis or remained unchanged. We determined increasing 

concentrations only for acetyl-CoA (Fig. 33b). 

IDH1 decarboxylates isocitrate to -ketoglutarate (αKG), the TET co-factor, and creates, 

therefore, a link between cell metabolism and epigenetics. As transcript (Fig. 34) and protein 

levels (Fig. 33a) of IDH1 were upregulated during SGBS differentiation, I expected, in turn, 

increased αKG concentrations.  

In contrast, we measured a continuous loss of cellular steady-state αKG levels. The precursor 

metabolite isocitrate was even below the detection limit, possibly due to a high turnover of the 

TCA cycle (Fig. 33b + 34). Also, in the reaction step before, when citrate is converted to 

isocitrate by the enzyme aconitase (ACO1), we observe reduced levels of citrate similarly to 

αKG. A high turnover is further suggested by the accumulation of acetyl-CoA. The metabolite 

 

Fig. 33| Proteins of the TCA cycle are upregulated, but metabolites have distinct dynamics. a, Heatmap 
displays mean Log2FC of detectable proteins of the TCA cycle during SGBS adipogenesis (experiment 4, n = 5). 
b, Heatmaps of log2FC of detectable metabolites of the TCA cycle (experiment 3, n = 5 – 6, untargeted 
metabolomics). Data of experiment 3 was generated by (Miehle et al., 2020) and of experiment 4 published by 
(Schaffert et al., 2021). Downstream data analysis performed by myself (CFA). See Fig. 8 for the experimental 
design. Figure created with BioRender.com and modified from (Feuerstein-Akgoz, C. et al., in preparation). 
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acetyl-CoA is generated by the conversion of citrate by ATP citrate lyase (ACLY), which was 

upregulated at the protein and gene expression level (Fig. 33a+34). In addition, increasing lipid 

synthesis during adipogenesis by fatty acid synthases such as FASN from acetyl-CoA and 

NADPH would explain the increasing demand for acetyl-CoA and drain of citrate to acetyl-CoA 

synthesis.  

To be available as substrates for epigenetic enzymes, KG and citrate need to be exported 

from the mitochondria. Upregulation of both transporters solute carrier family 25 member 11 

(SLC25A11) and 1 (SLC25A1) at the mRNA level would favor this export (Fig. 34). I also 

observed an upregulation of L2HGDH (L-2-hydroxyglutarate dehydrogenase) and MDH1 

(Malate Dehydrogenase 1) mRNA levels, which encode for the enzymes catalyzing the 

oxidation/reduction of L-2-HG and αKG (Ye et al., 2018). As L-2-hydroxyglutarate is an inhibitor 

of TET activity, the declining steady-state concentrations during the differentiation process 

would suggest increased TET activity.  

 

Fig. 34| TCA cycle displayed at the level of gene expression and metabolites. Barplot displays gene expression 
changes (CPM) of genes involved in the TCA cycle during adipogenesis (experiment 2, n = 3) and the abundance 
of the associated detectable metabolites displayed in µM (for targeted) or signal intensity (for untargeted) 
metabolomics, both of experiment 3, n = 5 - 6). Data of experiment 2 was generated by LK, of experiment 3 by 
(Miehle et al., 2020). Downstream data analysis performed by myself (CFA). See Fig. 8 for the experimental design. 
Figure modified from (Feuerstein-Akgoz, C. et al., in preparation).  
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To sum up, we identified decreased levels of the inhibitory substrate L-2-hydroxyglutarate, 

which would favor increased TET activity. However, as the concentrations of the substrate 

αKG, associated with the high turn-over of the TCA cycle, were also decreasing, our data 

suggest that during adipocyte differentiation changes in cells metabolism create an 

environment of an overall decreased TET activity. 

4.8 Hydroxymethylation in white adipose tissue (WAT) – in vivo 

relevance 

4.8.1 Hydroxymethylation at WAT enhancers 

To confirm that gain in hydroxymethylation is not an artifact of the in vitro differentiation system, 

I wanted to investigate hydroxymethylation levels in human WAT. Therefore, we captured 

hydroxymethylated regions by hMeSeal in WAT biopsies of five volunteers. In parallel, we 

characterized the chromatin structure in WAT by ACT-seq for several activating (H3K4me3, 

H3K4me1, H3K27ac) and one repressive histone modification (H3K27me3) (Fig. 10). As an 

example, Fig. 35 depicts averaged tracks of all volunteers for the hMeSeal and ACT-seq 

signals at the adiponectin (ADIPOQ) locus in comparison to the hMeSeal signals in SGBS 

cells. With the ACT-seq tracks, I was able to recapitulate promoter regions (presence of 

H3K27ac and H3K4me3) and enhancer regions (presence of H3K27ac and H3K4me1 and 

absence of H3K4me3) as anticipated by ChromHMM from published WAT (Roadmap 

Epigenomics et al., 2015). It should be noted, however, that the WAT tracks represent an 

average of all cell types present in WAT. For example, ADIPOQ is only expressed in mature 

adipocytes (Uhlen et al., 2015). Therefore, the promoter mark H3K4me3 at this gene is as 

expected comparatively low, as other cell types in WAT will not exhibit this mark. In turn, I 

identified in the promoter region also the repressive mark H3K27me3, which is expected to be 

present in non-adipogenic cells. The hMeSeal peaks in WAT were more abundant in number 

and peak sizes were more homogeneous, compared to hMeSeal peaks in mature SGBS cells. 

This could be also a result of analyzing a mix of several cell types, where signals of different 

cell types are averaged out. At the ADIPOQ locus, hydroxymethylation overlapped with WAT 

enhancers, characterized by chromatin accessibility (ATAC-seq), H3K27ac, and H3K4me1 

enhancer marks. In SGBS cells, these sites overlapped with DNase hypersensitivity, PPARG, 

and CEBPA-binding. In addition to hydroxymethylation at enhancer regions, I observed 

characteristic hydroxymethylation overlapping the gene body of ADIPOQ. 
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Fig. 35| UCSC track of hydroxymethylation and histone marks in WAT at the ADIPOQ locus. UCSC browser 
track of the adiponectin (ADIPOQ) locus. Average ACT-seq signals of histone modifications (n = 3 - 4) and hMeSeal 
in WAT (n = 5, PATHWAY-27 LIS) and mature SGBS adipocytes (experiment 2, n = 2) display hydroxymethylation 
at enhancer regions (yellow Enh/greenyellow EnhG state) and gene body of adiponectin. ChromHMM of adipocytes 
(E023) and adipose tissue (E063) are displayed (Roadmap Epigenomics et al., 2015). Next, ATAC data of mature 
SGBS cells and WAT are shown (Cannon et al., 2019), followed by DNase Hypersensitivity sites (DHS) and MED1 
(Schmidt et al., 2015), CEBPA, and PPARG binding in mature SGBS cells (Schmidt et al., 2011). Description of 
ChromHMM states see in Fig. 20. Data of experiment 2 was generated by LK, WAT biopsies of PATHWAY-27 LIS 
were obtained by SG, MF, GU, GR, LR under coordination of AB. Tissue was pulverized by KK and AW, ACT-seq 
and hMeSeal libraries were prepared by KK, JH and FJ, respectively. All downstream analyses were performed by 
myself (CFA). See Fig. 10 for the experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). 
LIS: large intervention study. 

After identifying the overlap of hydroxymethylation with enhancers in SGBS cells and at the 

ADIPOQ locus as an example in WAT, I performed a systematic analysis of 

hydroxymethylation at WAT enhancer regions. Displayed are all WAT enhancers ± 5 kb 

(n = 41,260), which were defined by the presence of H3K27ac and H3K4me1 and the absence 

of stringent H3K4me3 (Fig. 36). The enhancers overlapped with published chromatin 

accessibility (ATAC) data of WAT (Cannon et al., 2019). I identified in WAT an enrichment of 

hydroxymethylation at enhancer regions. However, comparison with SGBS adipocyte 

hydroxymethylation indicated that in WAT, hydroxymethylation was rather enriched at the 

enhancer boundaries with slightly decreased levels at the enhancer center. I performed a 

Spearman correlation analysis of hMeSeal signal with the histone marks and ATAC signal in 

WAT at 1 kb intervals within ± 5 kb around the enhancer center. I obtained correlation 

coefficients rho = 0.54 for the correlation of hMeSeal and H3K27ac and rho = 0.61 for the 

correlation of hMeSeal and H3K4me1 in enhancers (Fig. 36b). Similarly, in SGBS cells the 

strongest association of hydroxymethylation was found with H3K4me1 (Fig. 20). 
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Fig. 36| Hydroxymethylation at WAT enhancer. a, Enrichedheatmap displays in the upper panel average intensity 
curves and in the lower panel heatmaps in a range of ± 5 kb around the center of enhancer regions. Enhancer 
regions were defined by H3K27ac binding (n = 3) overlapping with H3K4me (n = 3) and absence of stringent 
H3K4me3 (n = 4) binding in WAT samples (PATHWAY-27, LIS). Enhancer regions displayed no H3K27me3 (n = 3) 
chromatin marks and were enriched for hMeSeal signal (n = 5) (PATHWAY-27, LIS) and ATAC-seq in WAT 
(Cannon et al., 2019) and mature SGBS cells (experiment 2, day 27, n = 2) b, Spearman correlation analysis of 
read counts in 1 kb bins for four histone marks, ATAC-seq and hMeSeal in WAT enhancer regions ± 5 kb around 
the enhancer center. Data of experiment 2 was generated by LK, WAT biopsies of PATHWAY-27 LIS were obtained 
by SG, MF, GU, GR, LR under coordination of AB. Tissue was pulverized by KK and AW, ACT-seq and hMeSeal 
libraries were prepared by KK, JH and FJ, respectively. All downstream analyses were performed by myself (CFA). 
See Fig. 8 + 10 for experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: large 
intervention study. 
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Fig. 37| Transcription factor motifs at WAT enhancer. a, The table displays the top 10 enriched transcription 
factor (TF) motif families in WAT enhancer. Hocomoco motifs are clustered by motif similarity and the motif with the 
strongest enrichment result of the TF motif family is displayed. Names of all enriched TF of the family are listed in 
the last column, the one with the strongest expression highlighted in bold. b, Hydroxymethylation EnrichedHeatmap 
displays in the upper panel average intensity curves and in the lower panel heatmaps of hMeSeal signal in a range 
of ± 5 kb around the center of enhancer regions (WAT of PATHWAY-27 LIS, n = 5). Enhancer regions were defined 
in WAT biopsies as described in Fig. 36. WAT biopsies of PATHWAY-27 LIS were obtained by SG, MF, GU, GR, 
LR under coordination of AB. Tissue was pulverized by KK and AW, ACT-seq and hMeSeal libraries were prepared 
by KK, JH and FJ, respectively. All downstream analyses were performed by myself (CFA). See Fig. 10 for the 
experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: large intervention study. 

Next, I investigated which TF motifs are enriched in the above-mentioned WAT enhancers, 

surrounded by hydroxymethylation. I identified enrichment of early- and late-acting adipogenic 

TF motifs (Fig. 37a). Examples of early-acting TF included members of the ETS, JUN/FOS, 

and STAT transcription factor families, which are involved in adipose tissue development and 

physiology and were highly expressed in WAT (Birsoy et al., 2011; Lee et al., 2016; Richard 

and Stephens, 2014). In addition, they were described to induce the master TF CEBPA und 

PPARG. The nuclear factor I (NFI) TF family has been identified as essential for murine 

adipogenesis, and overexpression of NFIA was sufficient for induction of adipocyte 

differentiation in 3T3-L1 cells (Waki et al., 2011). In the in vitro differentiation, GR is an 

important TF and is activated by the synthetic GR ligand dexamethasone (Bauerle et al., 2018). 

FOXO1 regulates as an effector of the AKT signaling pathway proliferation and differentiation 

of adipocytes (Chen et al., 2019). As a top enriched TF motif, I identified CTCF. Similar to 

SGBS cells, I classified conserved CTCF binding sites with binding in ≥ 75 % of available cell 

types and variable CTCF binding sites (< 75 %). I identified hydroxymethylation around both, 

conserved and variable CTCF binding sites; however, hydroxymethylation levels at variable 

CTCF binding sites were stronger, as described by (Dubois-Chevalier et al., 2014) (Fig. 37b).  
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To sum up, I confirm that in SGBS and in WAT, I identified an accumulation and stable 

detection of hydroxymethylation. I was able to display the enrichment around cell-type-specific 

enhancer regions, which was anticipated by WGBS displaying the highest density of 

hydroxymethylation not at the TF binding motifs themselves, but ~ ± 70 – 100 bp around the 

binding motives.  

4.8.2 Hydroxymethylation in WAT highly expressed genes 

I extensively described hydroxymethylation in enhancer regions, but several previous studies 

had focused on gene body hydroxymethylation. In multiple tissues, hydroxymethylation 

overlapping the gene body has been associated with differences in gene expression (Cui et 

al., 2020). As WAT was not included among the tissue types, I performed a comparable 

analysis with gene body hydroxymethylation and gene expression in WAT. I first identified, 

using GTEx gene expression data, 225 genes that have a higher expression in WAT compared 

to other tissues (n = 27) (GTEx Consortium, 2020). As background, I selected genes that have 

similar expression levels but are expressed in several tissues. With these genes, I performed 

a correlation analysis of WAT gene body hydroxymethylation and gene expression. I identified 

for WAT-enhanced genes a positive correlation of R = 0.35 (Pearson) and rho = 0.32 

(Spearman) comparable to the published correlations in other tissues (Cui et al., 2020), which 

was higher than for background genes (Fig. 38).  

 

Fig. 38| Gene body hydroxymethylation in WAT enhances genes. a-b, Pearson (R) and Spearman (ρ) 
correlation between gene body hMeSeal (log2CPM) and gene expression (log2CPM) in WAT-enhanced and 
background genes. WAT biopsies of PATHWAY-27 LIS were obtained by SG, MF, GU, GR, LR under coordination 
of AB. Tissue was pulverized by KK and AW, hMeSeal libraries were prepared by FJ. All downstream analyses 
were performed by myself (CFA). See Fig. 10 for the experimental design. Modified from (Feuerstein-Akgoz, C. et 
al., in preparation). LIS: large intervention study. 
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4.9 Acetylated NEIL1 accumulates at adipogenic enhancers in white 

adipose tissue 

NEIL1 is a member of the small Nei family of DNA repair enzymes involved in replication-

associated base excision repair (BER) of oxidized DNA bases (Hegde et al., 2013; Pfeifer et 

al., 2019; Prakash et al., 2012; Rolseth et al., 2017). Several studies have linked knockout of 

Neil1 in mice with increased susceptibility to obesity and hyperlipidemia (Rolseth et al., 2017; 

Sampath et al., 2011; Vartanian et al., 2006). This prompted us to investigate whether NEIL1 

might be linked to maintenance of 5hmC and involved in regulating adipocyte function. 

 
Fig. 39| Transcriptional changes of NEIL1 and interaction partners in adipogenesis and adipose tissue. a-
c, mRNA expression of NEIL1 (a), EP300 (b) and histone chaperones (c) during SGBS adipogenesis (experiment 
2, n = 3 or n = 1 for day 27) and in WAT (PATHWAY-27 LIS, n = 5). Experiment 2 was performed by LK, WAT 
biopsies of PATHWAY-27 LIS were obtained by SG, MF, GU, GR, LR under coordination of AB. Tissue was 
pulverized by KK and AW. All downstream analyses were performed by myself (CFA). See Fig. 8 for the 
experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: large intervention study. 

NEIL1 mRNA expression was > 30-fold upregulated in mature SGBS cells at day 27 post 

differentiation compared to day 0. We confirmed similar transcript levels in WAT by RNA-seq 

(Fig. 39). Acetylation of NEIL1 by the histone acetyltransferase (HAT) p300 was previously 

found to stabilize its interaction with nucleosome remodeling histone chaperones (Sengupta 

et al., 2018). In differentiating SGBS cells and in WAT, transcript levels of p300 (EP300) were 

high and did not change during adipogenesis, facilitating NEIL1 acetylation in mature 

adipocytes. Transcript levels of the NEIL1 interaction partner ASF1A and CHAF1A/B, which 

were found to sequester and inhibit the BER complex in non-replicating chromatin (Yang et 

al., 2017), remained relatively constant or slightly declined during SGBS differentiation, 

respectively. These data collectively suggested that in mature non-replicating adipocytes, 

acetylated NEIL1 (acNEIL1) might be associated with chromatin and influence adipocyte 

function besides its role in BER.  

To explore a potential epigenetic role in WAT, I analyzed chromatin binding of acNEIL1 in 

comparison to activating and repressive histone marks and 5hmC. I detected over 25,500 

regions with acNEIL1 binding, with a mean size of about 780 bp (range 200 – 5,992 bp). 

acNEIL1 chromatin binding regions largely overlapped with the enhancer marks H3K27ac and  
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Fig. 40| The hydroxymethylation reader NEIL1 accumulates at enhancer regions in white adipose tissue. a, 
Average intensity curves (upper panel, smoothed average for WGBS) and heatmaps (lower two panels) in a range 
of ± 5 kb around the center of acNEIL1 binding (n = 3), H3K27ac (n = 3), H3K4me (n = 3), H3K4me3 (n = 4), 
H3K27me3 (n = 3) chromatin marks and hMeSeal (n = 5) in WAT (Pathway27 LIS). WGBS of adipose tissue from 
GSM1010983. b, Spearman correlation analysis of read counts in 1 kb bins for acNEIL1 and four histone marks in 
acNEIL1-bound regions ± 5 kb around the center. WAT biopsies of Pathway27 LIS were obtained by MF, GU, GR, 
LR under coordination of AB. Tissue was pulverized by KK and AW, ACT-seq and hMeSeal libraries were prepared 
by JH and FJ, respectively. All downstream analyses were performed by myself (CFA). See Fig. 10 for the 
experimental design. Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: large intervention study. 

H3K4me (Fig. 40a). This was confirmed by Spearman correlation analysis of binned read 

counts in a region of ± 5 kb around the center of acNEIL1 binding. I obtained correlation 

coefficients rho = 0.83/0.86 for the correlation of acNEIL1 and H3K27ac and rho = 0.62/0.60 

for the correlation of acNEIL1 and H3K4me1 in enhancer (excluding the H3K4me3 mark) and 

promoter regions, respectively. acNEIL1 binding strongly overlapped with the promoter mark 

H3K4me3 in promoter regions (rho = 0.63), whereas binding to repressed regions indicated by 

H3K27me3 was negligible (Fig. 40a, b). Correlation of acNEIL1 signals with hMe-Seal peaks 

in WAT was higher at enhancer than at promoter regions (rho = 0.47/0.18). This could be 

explained by the fact that enhancer regions showed intermediate methylation levels (consistent 

with their characterization as LMRs (Stadler et al., 2011)), whereas promoter regions with 

acNEIL1 binding were generally unmethylated and therefore could not be hydroxymethylated 

(WGBS panel in Fig. 40a). 

Exemplarily, we detected prominent acNEIL1-binding at the PPARG locus, overlapping with 

H3K27ac and H3K4me1 enhancer marks in WAT and DNase hypersensitivity, PPARG, and 

CEBPA-binding in mature SGBS cells (Fig. 41). In addition to hMeSeal peaks overlapping 

acNEIL1-binding, we observed characteristic gene body hydroxymethylation at the PPARG 

locus as a WAT-specific biomarker (Pfeifer and Szabo, 2018).  
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Fig. 41| UCSC brower track with NEIL1 binding at the PPARG locus. UCSC browser track of the PPARG locus. 
Average ACT-seq signals of acNEIL1 (n = 3), histone modifications (n = 3 - 4) and hMeSeal (n = 5) in WAT 
(PATHWAY-27 LIS) overlap enhancer regions (yellow Enh/greenyellow EnhG state, ChromHMM WAT Roadmap 
E063). For a description of the ChromHMM states see Fig. 20. ChromHMM track is followed by DNase 
Hypersensitivity sites and MED1 (Schmidt et al., 2015), CEBPA and PPARG binding in mature SGBS cells (Schmidt 
et al., 2011). (scale: H3K4me3: 0 - 80; H3K27me3: 0 - 25; H3K27ac: 0 - 75; H3K4me1: 0 - 25; acNEIL1: 0 - 60; 
hMeSeal: 0 - 25). WAT biopsies of PATHWAY-27 LIS were obtained by SG, MF, GU, GR, LR under coordination 
of AB. Tissue was pulverized by KK and AW, ACT-seq and hMeSeal libraries were prepared by KK, JH and FJ, 
respectively. All downstream analyses were performed by myself (CFA). See Fig. 10 for the experimental design. 
Modified from (Feuerstein-Akgoz, C. et al., in preparation). LIS: large intervention study. 

Together, these data indicate that acNEIL1 binds to chromatin at adipogenic enhancers and 

promoters and this might enable and maintain functional WAT differentiation. Correlation 

analyses indicated a stronger association of acNEIL1 with H3K27ac than with 

hydroxymethylated regions, suggesting that the observed acNEIL1 binding at enhancer and 

promoter regions might rather be associated with its known role in BER to maintain genome 

integrity at gene regulatory regions, independent of an association with hydroxymethylation. 
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5 Discussion Part 1 

In the first part of this thesis (chapter 4), I performed an epigenetic characterization of a human, 

non-transformed preadipocyte cell line, the SGBS cell line (Fischer-Posovszky et al., 2008). 

This study provides a map of hydroxymethylation changes during adipocyte differentiation at 

a base resolution level using WGBS/oxBS sequencing data. In addition, I validated these data 

by the 450k array technology (at base resolution) and at a non-base resolution level using 

hMeSeal data. Finally, I used RNA-sequencing data and published proteome (Schaffert et al., 

2021) and metabolome data (Miehle et al., 2020) from collaboration partners for an integrated 

multi-ome analysis with the identified hydroxymethylation changes. 

In my initial approach to identify adipocyte differentiation-induced alterations in DNA 

methylation, I observed only minor changes when analyzing data obtained from BS-treated 

DNA samples collected at day 0 and 11 of differentiation. However, when analyzing 

methylation data derived from BS and oxBS treatment combined, I identified thousands of sites 

displaying shifts from 5mC to 5hmC, which the BS method cannot distinguish (Fig. 13). 

Therefore, the current era of epigenomics, where BS treatment is considered the gold 

standard, might also be an era of neglected hydroxymethylation .  

5.1 Hydroxymethylation at functional enhancer regions and gene body 

During SGBS cell differentiation, I identified increasing 5hmC levels associated with time of 

differentiation, with highest levels in mature adipocytes (Fig. 16). Similarly, in a study of wild 

boar visceral adipose tissue, adipose nuclei sorted based on the expression PPARG 

alternative transcript 2 displayed the highest levels of 5hmC compared to adipocyte precursor 

cells or other tissue-resident cells (Yu et al., 2016). I identified 5hmC at the boundaries of 

LMRs of adipogenic genes, which I characterized as adipogenic enhancer regions (Fig. 

14 + 20). These hydroxymethylated LMRs were enriched for adipogenic transcription factors, 

such as CEBPB, CEBPA, PPARG and RXR, and CTCF (Fig. 23 + 26) (Dubois-Chevalier et 

al., 2014; Schmidt et al., 2011; Serandour et al., 2012), where the TFs recruit TET enzymes to 

oxidize 5mC (Wu and Zhang, 2014). For in vivo validation, I found a significant overlap of 5hmC 

between SGBG and WAT samples at enhancer regions (Fig. 21). 

Based on the enrichment analysis of hydroxymethylation clusters and gene expression 

clusters, I showed that hydroxymethylation accumulates very specifically in the neighborhood 

of cell-type specific upregulated genes, and not necessarily at highly expressed housekeeping 
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genes (Fig. 29), one reason why hydroxymethylation is suggested as a marker to identify a 

cell type (Ecsedi et al., 2018). Our data also confirm the specificity of hydroxymethylation, 

demonstrated by the differential 5hmC occupancy at CTCF binding sites (Fig. 23 + 35), where 

5hmC is rather associated with dynamic CTCF binding with active cell-type specific enhancer 

function, in contrast to stable CTCF binding. This suggests active recruitment of TET enzymes 

at newly generated cell-type specific enhancer regions (Dubois-Chevalier et al., 2014). This 

specificity of hydroxymethylation is also observed regarding the selectivity of gene body 

hydroxymethylation. Based on correlation analysis, I identified a correlation between 5hmC 

levels and gene expression of adipocyte-specific genes (Fig. 38), an analysis previously 

performed in other tissues (Cui et al., 2020), while in housekeeping genes with similar 

expression levels, hydroxymethylation is detected at much lower levels (Pfeifer and Szabo, 

2018). However, increased hydroxymethylation levels in the gene body might be partially also 

due to a higher number of tissue-specific intragenic enhancers and not only driven by its 

location in the gene body.  

Finally, gain in 5hmC is not only relevant for human adipocyte differentiation but was previously 

also found during murine adipocyte differentiation (Serandour et al., 2012). In addition, gain in 

hydroxymethylation in the gene body and enhancer regions seems to be essential for various 

differentiation processes, as it was, for example, described in murine neural differentiation 

(Serandour et al., 2012), T cell maturation, and chondrocyte differentiation (Tsagaratou et al., 

2014), demonstrating the importance of detecting this epigenetic mark during cell 

differentiation as stated in (Ecsedi et al., 2018).  

5.2 Hydroxymethylation dynamics 

With the characterization of the hydroxymethylation dynamics in the SGBS differentiation, I 

identified two distinct types of dynamics, a transient shift and a gradual accumulation of 

hydroxymethylation (Fig. 18). Transiently hydroxymethylated sites, with highest 5hmC levels 

at day 1, were enriched for enhancers with TF binding motifs of early adipogenic TFs (Fig. 23). 

On the other hand, the sites with gradual accumulation of hydroxymethylation until day 11, 

were enriched for enhancers with motifs of late adipogenic TFs. As observed with the 

transiently hydroxymethylated sites, 5hmC was previously often considered as an intermediate 

step during active demethylation and therefore neglected. Indeed, in a cell-free environment, 

TET2 can perform the 3-step oxidation of 5mC to 5caC in one encounter (Crawford et al., 

2016). However, I detected increasing hydroxymethylation during adipocyte differentiation, 

suggesting that TET2 might lose its interaction with the 5hmC mark after the first oxidation 
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step. Ito et al. have shown that murine TET2 displays the highest affinity for 5mC, which could 

explain a temporal accumulation of 5hmC, where 5hmC competes for TET with other 5mC 

marks (Ito et al., 2011).  

In vivo, the activity of TET might not only be regulated by substrate affinity but also by 

expression level, levels of co-substrates or inhibitors, posttranslational modifications of TET, 

or additional interaction proteins. 

Most of the hydroxymethylated sites displayed a gradual accumulation during the 

differentiation process, completed at day 11 post induction. However, I wondered whether this 

might still be a transient process and demethylation might be completed at later time points. 

Therefore, we repeated the differentiation experiment and kept the mature adipocytes in 

culture until day 27 after induction of the differentiation process. Most hydroxymethylation 

marks were maintained, or hydroxymethylation levels even increased at sites with binding 

motifs of key adipogenesis transcription factors PPARG, CEBPA, and/or CREB1, supporting 

the fact that hydroxymethylation is a stable epigenetic mark that might have a specific function 

on its own (Fig. 16 + 23). 

5.3 Regulation of hydroxymethylation dynamics 

A stable hydroxymethylation mark can explain the constant hydroxymethylation levels, as 

described previously in two cancer cell lines, where the mark was even reestablished after cell 

division (Bachman et al., 2014). Another explanation would be a steady-state of dynamic 

demethylation and remethylation, as in embryonic stem cells. There, Ginno et al. described 

how dynamic demethylation and remethylation at the gene body is associated with high levels 

of transcription (Ginno et al., 2020). Similar events were described in transcriptionally active 

promoter regions (Métivier et al., 2008b). This can be tested by a perturbation of the steady-

state by, e.g., inhibiting DNMTs. These described mechanisms were observed in embryonic 

stem cells with high TET expression levels (Wu et al., 2011) and/or in cycling cells; in contrast, 

preadipocytes enter after a clonal expansion into cell cycle arrest. Furthermore, in the SGBS 

cell line, reduced proliferation at later time points of differentiation was linked with a decrease 

in DNMT transcript levels (chapter 4.6.1). This would favor the model of a stable 

hydroxymethylation with reduced turnover, representing a cellular state which is less 

dependent on high DNMT expression for remethylation. Then the question arises, what is 

responsible for the low turnover of 5hmC. One possible explanation would be a reduced TET 

activity. Differentiation experiments in murine 3T3-L1 preadipocytes or human MCSs displayed 

that TET2 upregulated is essential for adipogenesis (Cakouros et al., 2019; Yoo et al., 2017). 



Discussion Part 1 

86 
 

In the SGBS cells, however, mRNA levels of TET2 enzymes were low in preadipocytes and 

mature adipocytes, with slightly higher expression in mature adipocytes (Fig. 34), while 

increase in TET1 expression was inconsistent between the different experiments (data not 

shown). As we did not observe a reduced expression, we considered it unlikely that in our 

SGBS model, accumulation in hydroxymethylation is regulated at the transcript level of TET 

enzymes.  

5.3.1 Potential role of NEIL1 as 5hmC binding protein 

In the search for additional explanations for the accumulation of hydroxymethylation, I wanted 

to investigate the involvement of DNA binding proteins, which might compete with TET for 

5hmC binding. Various in vitro proteomics studies have identified 5hmC-interacting proteins 

(Pfeifer et al., 2019), which might contribute to the accumulation of 5hmC, including UHRF1/2, 

MECP2, MSH6, and NEIL1 (Iurlaro et al., 2013; Spruijt et al., 2013). UHRF2 has been shown 

earlier to enhance the processivity of TET enzymes (Spruijt et al., 2013; Wu and Zhang, 2017). 

Downregulation of UHRF2 during adipogenesis in our SGBS system could limit the step-wise 

oxidation of 5hmC to 5caC (chapter 4.6.1).  

Different from the other putative 5hmC-interacting proteins, mRNA expression of the BER 

enzyme NEIL1 increased during SGBS adipogenesis (Fig. 39). A recent study suggested that 

DNA repair proteins often bind to genomic regions highly involved in genomic interactions, 

such as promoter-enhancer loops, to prevent DNA damage and rearrangements (Sobhy et al., 

2019). Transcription of the NEIL1 inhibitory interaction partners ASF1A and CHAF1A/B, which 

regulate NEIL1 function as a BER enzyme, declined during differentiation. This suggested that 

in mature non-replicating adipocytes, acetylated NEIL1 (acNEIL1) might be associated with 

chromatin and influence adipocyte function with a different yet unknown function. 

A potential influence of NEIL1 in maintaining adipose tissue function is supported by several 

in vivo knockout studies. Mice deficient in Neil1 developed phenotypic symptoms associated 

with the metabolic syndrome, including spontaneous obesity, hepatic steatosis, 

hyperinsulinemia, and hyperleptinemia (Sampath et al., 2011; Vartanian et al., 2006), which 

might be linked to defective adipogenesis (Longo et al., 2019). I could demonstrate that in 

human WAT, acNEIL1 binds to chromatin preferentially at adipogenic enhancer and promoter 

regions, but it was less associated with hydroxymethylation (Fig. 40). Our data indicate that 

acNEIL1 has a role in maintaining enhancer function, but the methods were not specific or 

sensitive enough to exclude or support an additional role in 5hmC binding in WAT. The role of 

acNEIL1 in maintaining enhancer function in WAT could be explained by its known function as 

a repair protein of oxidative stress-induced DNA damage. Cells with high mitochondrial activity 
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have increased oxidative stress levels, typically affecting enhancer regions (Sobhy et al., 

2019). My analyses indicate that acNEIL1 chromatin binding might reduce DNA damage at 

adipogenic enhancers and thereby maintain adipocyte differentiation capacity in WAT. Thus, 

acNEIL1 might contribute indirectly to adipocyte hyperplasia (increase in cell number) rather 

than hypertrophy (increase in cell size), which has been associated with metabolic 

complications in obesity (Longo et al., 2019).  

5.3.2 Metabolism and TET activity 

Cell metabolism represents a strong link between the cellular environment and epigenetic 

control of gene expression to induce cell differentiation or maintain cell identity (Dai et al., 

2020). Conversely, defective cell metabolism can contribute to carcinogenesis via “non-

mutational epigenetic reprogramming”, recently recognized as a hallmark of cancer (Hanahan, 

2022).  

5.3.2.1 The role of αKG and other factors  

Recognizing the important influence of cell metabolism, I hypothesized that the abundance of 

cellular metabolites as substrates, co-substrates, or inhibitory substrates of TET enzymes 

might contribute to decreased 5hmC turnover during adipocyte differentiation. The availability 

of the co-substrate αKG, a TCA cycle intermediate, and the cofactor Fe(II) is elementary, while 

high pathological levels of inhibitory substrates lead to hypermethylation (Killian et al., 2013). 

However, metabolome studies of SGBS differentiation demonstrated that the levels of these 

metabolites did not increase in our differentiation model (Fig. 33+34). 

Insulin-induced high import of glucose and an accumulation of acetyl-CoA suggest a high 

turnover of the TCA cycle. Nevertheless, I observed a low steady-state of αKG levels. αKG is 

involved in several cellular processes and is not only an intermediate metabolite of the TCA 

cycle to produce ATP. Although the subcellular concentrations of αKG are unknown to me, 

overall reduced cellular levels of αKG in late adipogenesis could be responsible for reduced 

TET activity. To maintain the pluripotent state in embryonic stem cells, αKG levels are pivotal 

for maintaining TET activity for sustaining high methylation and demethylation turnover (Carey 

et al., 2015; Shipony et al., 2014). Borkowska et al. found that aged adipose stem cells display 

increased 5hmC levels due to inefficient active demethylation due to reduced active (reduced 

TET activity) and passive demethylation (reduced proliferation) (Borkowska et al., 2020), while 

Tian et al., reported lower circulating αKG levels in middle-aged mice (Tian et al., 2020). 

Similarly, in the first days of SGBS differentiation with high αKG levels, the generation of new 
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enhancer regions could be associated with complete demethylation due to high TET activity 

and proliferation-associated passive demethylation. In late differentiation, a reduced αKG pool 

would reduce TET activity and result in 5hmC stabilization due to cell cycle arrest. Similarly, 

Yang et al. showed that TET activity is associated with αKG levels by intraperitoneal injection 

of glucose or glutamine to mice. Increased levels of αKG in the bloodstream were associated 

with increased 5hmC levels in several tissues, linking αKG levels to TET activity in the first 

oxidation step of 5mC to 5hmC, while it remains unclear how further processing of 5hmC is 

regulated. The authors discussed that the decline of 5hmC levels seems to be independent of 

cell division (Yang et al., 2014). All in all, it seems clear that αKG levels are involved in 

controlling TET activity. However, it remains to be shown experimentally, whether a decline in 

αKG affects processivity of 5hmC or whether other yet unknown levels of regulation are 

involved. 

5.3.2.2 Modulation of TET activity by posttranslational modifications 

Metabolism affects TET activity not only by substrate availability but also by posttranslational 

modifications, such as acetylation, phosphorylation, and O-GlcNAcylation (Cao et al., 2019). 

Using the untargeted metabolome analysis, I was able to confirm the metabolic switch 

occurring during adipocyte differentiation by increased protein levels of enzymes involved in 

metabolic pathways (Fig. 26+31). However, the method was not sensitive enough to detect 

low abundant or nuclear proteins, such as TETs, and quantitatively estimate protein 

modifications. Opposing to Yang’s observations, Wu et al. observed that high glucose levels 

resulted in reduced hydroxymethylation levels due to regulation of TET2 activity via the AMP-

activated protein kinase (AMPK) pathway. Upon starvation, the increased AMP/ATP ratio 

activates the AMPK pathway, which leads to phosphorylation and stabilization of TET2. With 

high glucose levels, TET2 is rapidly degraded, leading to reduced hydroxymethylation levels, 

a phenomenon observed in obesity and cancer (Wu et al., 2018). Overall there are four known 

degradation pathways that affect TET2 levels, and each of them is regulated by different 

posttranslational modifications (Cong et al., 2021). Acetylation of TET2 in the N-terminal, e.g., 

prevents proteasomal degradation of TET2 during oxidative stress (Zhang et al., 2017). Due 

to the tight connection between the metabolic rate and the regulation of TET2 activity, TET2 is 

considered as an intracellular “sensor/regulator” of glucose levels (Ma and Kang, 2019). 

Hydroxymethylation was associated with obesity (Ali et al., 2021; Nicoletti et al., 2015), and is 

higher in VAT than in SAT, suggesting a regulation via cell metabolism (Rohde et al., 2015). 

While it seems clear that αKG levels, but also posttranslational modifications, are involved in 

regulating TET activity and are crucial for lineage specifications, less is known about the in 

vivo regulation dynamics of TET activity during adipocyte differentiation.  
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5.4 Function of hydroxymethylation as an epigenetic mark 

Accumulation of hydroxymethylation seems to be a consequence of metabolic circumstances. 

However, the question remains whether hydroxymethylation is merely a consequence of the 

cellular metabolism or a ‘communication hub’ with relevant cellular signaling function (Juan et 

al., 2016). In recent years the perception of 5hmC has been changing from being an 

intermediate mark of demethylation to a mark with its own regulatory function. Still, possible 

roles are only based on educated guesses, while its exact role in epigenetic regulation remains 

unclear. 

The fact that some 5hmC binding proteins, such as acNEIL1, have a higher binding affinity to 

5hmC than to 5mC, suggests the existence of 5hmC ‘readers’ (Fig. 40). However, the 

indications are more substantial for the existence of 5hmC ‘anti-readers’, as several 5mC 

binding proteins lose their affinity to 5hmC (Pfeifer et al., 2019). In this case, it would be 

irrelevant whether 5hmC is further processed or not.  

The most prominent binding protein is TET itself. TET enzymes are enriched at 

hydroxymethylated sites, e.g., in bivalent regions (Fig. 17). They are described to recruit 

repressive marks to prevent remethylation by DNMTs and, therefore, maintain cell plasticity 

(Wu et al., 2011). Also, at the boundaries of CpG islands, 5hmC could significantly prevent the 

remethylation of unmethylated ‘canyons’ (Pfeifer et al., 2019; Williams et al., 2011). However, 

it is not clear whether the function of 5hmC is to bind TET proteins and prevent DNMT action 

or whether 5hmC is sustained by high methylation and demethylation turnover as suggested 

by Wiehle et al. (Wiehle et al., 2016). 

In brain tissue, Wen et al. demonstrated that 5hmC in the gene body is highly biased towards 

the sense strand, while the anti-sense strand is enriched for 5mC (Wen et al., 2014). It is 

discussed that 5hmC in the gene body could have a more substantial influence than 5mC in 

suppressing uncontrolled TSS in highly expressed genes (Fig. 38), as previously discussed by 

(Pfeifer and Szabo, 2018). Wen and colleagues, however, propose that 5hmC on the sense 

strand might be a consequence of increased accessibility for TET, while the anti-sense strand 

is needed during mRNA transcription. Biophysical studies suggest that 5hmC changes the 

forces needed for strand separation and could, therefore indeed, affect the accessibility of the 

transcriptional machinery to the DNA (Severin et al., 2013). This was also suggested by in vitro 

fluorescence resonance energy transfer (FRET) assays, showing that hydroxymethylation 

might facilitate incorporation of DNA into nucleosomes, but also generate a less compact 

nucleosomal state due to weaker interactions of the DNA with the nucleosomes, as it is needed 

for a transcriptionally active state (Mendonca et al., 2014). 
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6 Conclusion & Outlook Part 1 

Based on our study, I have established a possible link between KG decline and the 

maintenance of 5hmC levels during human adipocyte differentiation. One possibility to finally 

prove the stability of the hydroxymethylation mark would be to perform the SGBS differentiation 

experiment by feeding heavy L-methionine-(methyl-13C,d3) as methyl donor after clonal 

expansion to investigate whether there is still DNMT activity, which could be measured by the 

increased molecular weight of the newly generated 5mC and 5hmC by mass spectrometry 

(Bachman et al., 2014). If I indeed detect incomplete oxidation of 5mC after clonal expansion 

with an accumulation of the 5hmC mark without DNMT activity, then no accumulation of heavy 

5hmC should be observed. On the other hand, a dynamic turnover would require the heavy 

methyl donor for DNMT action, and heavy 5mC and 5hmC should accumulate. 

Bayliak et al. discuss that indeed the ratio of KG and other TCA cycle intermediates such as 

succinate and fumarate could be imperative for a proper equilibrium of the methylation and 

demethylation machinery; an impaired equilibrium was observed during aging (Bayliak and 

Lushchak, 2020). In mice, the importance of KG in brown adipogenesis was shown 

mechanistically by the need of KG for DNA demethylation at the PR/SET domain 16 (Prdm16) 

promoter (Yang et al., 2016). In aging mice, KG levels could be restored by dietary 

supplementation and promoted beige adipogenesis, while supplementation had no effects in 

young mice with high KG levels (Tian et al., 2020). As KG also functions as mimetic of 

caloric restriction by activating AMPK (Bayliak and Lushchak, 2020), the dependency of brown 

adipogenesis to KG could also be mediated via its dependency on high AMPK signaling, 

which in turn promotes DNA demethylation at the Prdm16 promoter mainly via signal 

transduction. This idea is also supported by the fact that white adipocyte differentiation was 

not affected by lower KG levels (Yang et al., 2016). Both differentiation processes are 

dependent on DNA demethylation, and high AMPK signaling will favor beige and brown 

adipogenesis and inhibit white adipogenesis (Ahmad et al., 2020; van der Vaart et al., 2021). 

This suggests that metabolite dependencies of epigenetic enzymes should be interpreted 

carefully, as for example αKG might affect DNA methylation not only by substrate availability, 

but also indirectly via signaling events.  

With respect to analyzing the importance of cellular metabolism for epigenetic mechanisms 

including hydroxymethylation, our in vitro SGBS model might have limitations. An in vitro model 

represents a closed system without considering metabolite in- and outflux. Thus, the cellular 

metabolite concentrations including that of αKG determined during SGBS differentiation might 

not be representative of αKG levels in adipose tissue. To understand the molecular 
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dependencies on metabolites such as αKG, it might not be sufficient to detect cellular 

metabolites concentrations, as they present only a snapshot of the cellular steady-state. In 

contrast, it might be necessary to consider subcellular metabolite concentrations and require 

perturbation experiments to reveal metabolic dependencies and the substrate flow between 

metabolic processes across multiple cell types and organs.  

Currently, I could not conclusively demonstrate a role of acNEIL1 for 5hmC stability during 

adipogenesis. A time-course experiment of acNEIL1 binding during SGBS differentiation would 

allow identifying associations of acNEIL1 binding and hydroxymethylation within one cell type, 

instead of within a mixture of different cells in a complex tissue. Also, NEIL1 expression could 

be manipulated in gain and loss of function experiments, to test whether this would influence 

hydroxymethylation stability and differentiation capacity of the SGBS cells.  

Using the SGBS cells as a model of human adipocyte differentiation without known genetic 

aberrations allowed us to study the differentiation process in a setting similar to the in vivo 

situation. We identified a large overlap of the 5hmC mark in mature SGBS adipocytes and 

WAT. However, for a better comparison, nuclei of isolated mature adipocytes should be 

considered instead of WAT tissue, consisting of a mixture of different cell types. Furthermore, 

WAT samples were taken from humans at risk of metabolic syndrome. Thus, data on adipocyte 

size and numbers in their adipose tissue to characterize hyperplasia or hypertrophy would be 

informative help to assess whether these characteristics are associated with global or local 

differences in hydroxymethylation. Finally, SGBS differentiation is induced by strong chemical 

adipogenic inducers, like the PPARG agonist rosiglitazone, enabling in vitro differentiation 

independent of cellular, physical, metabolic, or signaling interactions in the niche of adipose 

tissue. Therefore, all findings generated in vitro can only be suggestive and should be carefully 

validated in vivo.  

Considering the current expansion of the prevalence of obesity and the associated metabolic 

diseases, the better characterization of human adipocyte differentiation and, therefore, a better 

understanding of the molecular mechanisms are pivotal for developing strategies for healthy 

adipose tissue expansion.  
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7 Results Part 2 

Effect of DHA on SGBS preadipocytes 

7.1 Experimental design and treatment conditions 

The aim of the second part of this thesis was to investigate the mode of action of the bioactives 

DHA, protocatechuic acid (PA) as the most abundant anthocyanin metabolite, and the beta-

glucan metabolite propionate (PRO), for prevention of the metabolic syndrome. As DNA 

methylation is relatively stable in contrast to the more dynamic changes in chromatin 

accessibility and histone modifications, I focused on DNA methylation as “an epigenetic mark 

of cellular memory” (Kim and Costello, 2017). To investigate bioactive-induced methylation 

changes, I selected SGBS preadipocytes rather than mature SGBS cells. Mature adipocytes 

represent non-proliferating cells where we expected little changes in DNA methylation to occur 

after compound treatment. 

To determine toxicity thresholds of the bioactives, I performed cytotoxicity assays with SGBS 

preadipocytes using sulforhodamin B (SRB) staining to determine cell counts (Skehan et al., 

1990b). In initial experiments, I determined the optimal seeding density for SGBS cells in 96-

well format, allowing for exponential growth for three days. To determine toxic effects, I then 

seeded 500 cells/well and treated the cells after 24 h once with PA or PRO in eight serial 

dilutions in a concentration range of 0.78 μM – 100 μM in three independent replicates, and 

with DHA in a range of 0.35 µM – 45 µM. After three days of incubation, the half-maximal 

inhibitory concentrations (IC50) of PA and PRO were determined as > 100 μM. For DHA, I 

detected growth inhibitory effects on preadipocytes with a mean IC50 of 23.5 ± 5.1 µM (Fig. 

42). For long-term treatment of the preadipocytes, I initially selected a concentration of 10 µM 

DHA and physiologically relevant concentrations of 20 μM PA and 70 μM PRO. When I 

performed cultivation experiments with the indicated concentrations at a more extended period 

of 4 weeks, I observed that 10 µM DHA still displayed toxic effects. Therefore, I performed 

another series of experiments using 5 µM DHA, which was tolerated by the SGBS 

preadipocytes and represented after three days of treatment ~ IC5. 
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Fig. 42| Cytotoxicity experiments of docosahexaenoic acid (DHA), propionate (PRO), and protocatechuic 
acid (PA) using SRB staining. Cytotoxicity of the bioactive DHA was tested in SGBS preadipocytes in a range of 
0.35 µM – 45 µM, and PRO and PA in a range of 0.78 μM – 100 μM in a 96-well format, n = 2 in 2 independent 
experiments (graph shows 1 experiment). Below each graph the mean IC50 of all experiments + SD is given. SD: 
standard deviation. 

To provide the SGBS cells with DHA in a physiological manner, I complexed the free fatty acid 

to BSA under nitrogen conditions. This method protects the double bonds of the n-3 fatty acid 

from peroxidation through free radicals (Brown et al., 2004). PA and PRO were dissolved in 

DMSO and ethanol, respectively. Each treated sample obtained the solvents of all three 

bioactives. Twice a week, I passaged the SGBS cells and added again each time the bioactives 

alone or in combination. Samples treated with DHA or a combination with DHA (5 µM DHA, 

5 µM DHA + 70 µM PRO, 5 µM DHA + 20 µM PA) are mentioned in the following as “DHA” 

samples. Sample without DHA-treatment, namely treated with 70 µM PRO, 20 µM PA, the 

solvent control, and a completely untreated sample were called “nonDHA” samples (Fig. 9). 

The concentrations of the bioactives and solvents were well tolerated by the cells. However, 

DHA-treated cells still displayed a slightly reduced proliferation rate (~ 80 – 90% of the 

nonDNA samples), so I compensated during passaging for the reduced number of cells.  
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7.2 Characterization of the SGBS methylome represented on the EPIC 

array 

For methylation analysis, I submitted DNA of three independent biological replicates (rep I, III, 

and IV) at day 0 and after long-term cultivation for 3 - 4 weeks for methylation analysis of 

~ 850,000 preselected CpG dinucleotides on the Infinium HumanMethylationEPIC BeadChip. 

After preprocessing and normalization steps using the RnBeads package (Assenov et al., 

2014), ~ 726,000 CpG sites remained for further analyses. 

Compared to WGBS data (Fig. 12), where I was able to deduce methylation data for about 

20 million CpG sites with ≥ 10x coverage, the EPIC array covers only a fraction of all CpGs 

sites. Especially CpGs in fully methylated regions (FMR) and partially methylated domains 

(PMDs) are underrepresented on the EPIC array, as it was designed to mainly cover promoter 

(UMR) and enhancer regions (LMR). Genome-wide, most CpGs are located in FMRs and 

PMDs (Fig. 43a), and of those, less than 4 % are covered on the EPIC array (Fig. 43b). In 

contrast, of CpG sites located in UMR and LMR, approximately 13 % and 7 % are covered, 

respectively (Error! Reference source not found.b). Therefore, although most of the CpGs 

on the EPIC array are located in PMDs (Fig. 43c), PMDs are actually underrepresented.  

I visualized the CpG sites covered on the EPIC array as well as in WGBS of our SGBS cells 

in the UCSC genome browser (first two methylation tracks) and compared them to the 

methylation levels of two published WGBS data sets of adipose-derived stem (ADS) cells 

(Lister et al., 2011) and (ADS, E025) (Roadmap Epigenomics et al., 2015) (Fig. 44). While the 

second ADS track ADS (E025) displayed almost no demethylation in PMDs (average 

methylation close to 1), in the first ADS track and SGBS cells, I observed extensive 

demethylation in these regions; the larger the domains, the lower the average methylation.  

 

Fig. 43| Characterization of the SGBS methylome and its representation on the EPIC array. a, Bar plot 
depicting number of CpGs from WGBS data (coverage ≥ 10x) within fully methylated regions (FMR), partially 
methylated domains (PMD), defined using WGBS in SGBS data (experiment 2), unmethylated regions (UMRs) and 
lowly methylated regions (LMRs). b, Bar plot depicting the percentage of respective CpGs covered on the EPIC 
array (experiment 5). c, Bar plot depicting distribution of CpGs on the EPIC array representing FMR, PMD, UMR 
and LMR (experiment 5). Experiment 2 was performed by LK, experiment 5, WGBS/oxBS library generation and 
data analysis were performed by myself (CFA). See Fig. 8 and Fig. 9 for experimental design. 
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PMDs overlapped with the heterochromatin-associated histone mark H3K9me3, and the 

borders of the PMDs were marked with the facultative-heterochromatic mark H3K27me3 

(Roadmap Epigenomics et al., 2015). Underrepresentation of CpG sites in PMDs on the EPIC 

arrays is also visible in the UCSC track. While the small PMDs on the right side are still 

relatively highly covered with CpGs, the CpG density in the large PMD in the center is low. 

 

Fig. 44| Partially methylated domains are marked by H3K9me3 and flanked by H3K27me3. Visualization of a 
partially methylated domain (PMD) on chromosome 10. PMDs represent regions where at least 4 of 7 WGBS 
samples of SGBS cells display PMD characteristics (experiment 2). Below the PMD track, EPIC array and WGBS 
of SGBS preadipocytes tracks (experiment 2) are followed by WGBS data of cultured primary adipose-derived stem 
cells (ADS) (beige) (Lister et al., 2011) and (E025, green) (Roadmap Epigenomics et al., 2015), displayed in a 
methylation range between 0 and 1. Borders of PMDs overlap with H3K27me3 and the body of PMDs with H3K9me3 
(Roadmap Epigenomics et al., 2015). The LaminB1 track in Tig3 cells represent log2-ratio scores between -2 and 
2, a score for nuclear lamina-associated domains (Guelen et al., 2008). Experiment 2 was performed by LK. 
WGBS/oxBS library generation and data analysis performed by myself (CFA). See Fig. 7 for experimental design. 

7.3 Global methylation changes during SGBS cultivation confound 

DHA-induced methylation changes 

After obtaining an overview of the analyzed CpG sites, I performed a principal component 

analysis to visualize differences in methylation related to bioactive treatments in all three 

replicates compared to the cultured control samples and day 0 (Fig. 45). With the purpose of 

a better interpretation of the identified methylation changes, I included data of untreated control 

samples from studies of two other students (Student 2 and 3) in our division (LD & LK), who 

investigated the effects of long-term cultivation with other bioactives.  

The strongest variability of the observed methylation changes was induced by long-term cell 

culture, both in samples treated with bioactives and in untreated samples (Fig. 45a). Day 0 of  
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Fig. 45| Tri-dimensional PCA of methylation changes during SGBS cultivation and DHA long-term treatment.  
Principal component analysis based on methylation values of CpG sites covered on the EPIC array of cultured 
SGBS preadipocytes of three students, cultured for 18 to 29 days (experiment 5 - 7). Individual biological replicates 
are coded by shapes. Timepoints are color-coded by a gradient from yellow to purple (a) or treatment with DHA 
(orange) and nonDHA (green), respectively. Experiment 6 was performed by LD (Student 2), experiment 7 by LK 
(Student 3), experiment 5 and data analysis were performed by myself (CFA, Student 1). See Fig. 9 for experimental 
design. 

cultivation in replicate I, III, and Student 2 was located in the upper part of the plot (yellow). 

With increasing cultivation time (color scale from yellow to purple), samples of these replicates 

dropped to the lower left front of the PCA. In contrast, day 0 of replicate IV started were 

samples of replicate I ended, and day 0 of Student 3 started, where samples of Student 2 

ended. From there, time-dependent changes in replicate IV and Student 3 represented the first 

principal component and samples of these replicates ended on the right side of the PCA (follow 

the arrows in Fig. 45a).  

In Fig. 45b, I visualized the samples of my experiments (rep I, III, IV) colored by DHA and 

nonDHA, since treatment with DHA alone and in combination demonstrated a reproducible 

effect compared to the nonDHA samples. DHA and nonDNA samples, respectively, in all three 

replicates grouped together. Therefore, we concluded that the effects of PRO and PA alone 

were negligible and both compounds did not have any significant additive or synergistic effect 

when combined with DHA (Fig. 45b).  

Consequently, for the rest of the thesis, I focused on the impact of DHA. When inspecting the 

DHA effect in the context of the long-term cultivation, it became evident that DHA-associated 

methylation changes in rep I and III overlapped with the culture effects observed for Student 2 

samples. In contrast, the effects on rep IV antagonized the culture effects of Student 3 

samples. 
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Fig. 46| Methylation changes associated with principal component 1.  a, Boxplots of 107,064 CpG sites with a 
positive (upper panel) and 85,103 CpGs with negative (lower panel) association with principal component 1 (PC1) 
displaying a methylation range > 0.2 and a significant linear regression (FDR adj. p value < 0.005). Boxes display 
mean methylation values (n = 1 - 4, see Fig. 26) of control samples (dark blue) of Student 1 - 3 and DHA samples 
(light blue, Student 1). Boxplots show median (horizontal line), upper, and lower quartiles (boxes), and vertical lines 
extending to the 1.5× interquartile range. See Supplementary Fig. 3 with Heatmap of individual methylation values. 
b, Pie chart displays the ChromHMM annotation of adipose-derived stem cell (ADS, E025) (Roadmap Epigenomics 
et al., 2015) of the CpG sites displayed in Fig. 46a, grouped as PMD and nonPMD sites defined in SGBS cells. 
Experiment 6 was performed by LD (Student 2), experiment 7 by LK (Student 3), experiment 5 and data analysis 
were performed by myself (CFA, Student 1). See Fig. 9 for experimental design. 

To understand the nature of methylation changes induced by long-term culturing SGBS cells, 

I next characterized the variability of the methylation changes in the first three principal 

components in more detail. I identified with a linear model all CpGs with a significant 

association (FDR adj. p value < 0.005) between PC1 and methylation levels (methylation 

range > 0.2) (Fig. 46a + Supplementary Fig. 3 to view the individual CpG sites). CpGs 

associated with PC1 displayed the most substantial methylation changes in Student 3 and 

replicate IV data due to cultivation. CpGs, with intermediate median methylation at day 0, and 

with positive (+) association with PC1 showed a gain in methylation during the cultivation time 

of about 23 % (median methylation at day 21 vs day 0) and the opposite effect, a loss in 

methylation, in replicate I and Student 2 data. In contrast, CpGs with a negative (-) association, 

which on average were higher methylated at day 0 than CpGs with positive association, 

displayed an extensive loss of about 21 % in replicate IV and Student 3 data, but only a minimal 

gain in methylation in replicate I and Student 2 data.  

When considering the DHA effect on PC1-associated methylation chances, in replicate I and 

III, DHA treatment led to an extension of the culture effect. In contrast, in replicate IV, I 

observed attenuation of the culture effect in DHA samples compared to nonDHA samples. In 

both groups (with positive or negative associations), CgG sites located in PMDs and nonPMDs 

were about equally affected (Fig. 46b). NonPMD sites were annotated in adipose derived stem 

cells (E025) to gene regulatory (Tss and Enh), transcribed (Tx) and repressed regions 

(Roadmap Epigenomics et al., 2015). 
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Overall, the fact that I observed both gain and loss in methylation at CpG sites located both in 

PMDs (heterochromatin) or in gene regulatory regions (euchromatin), as well as opposing 

effects between students and experiments, argued against only one targeted mechanism 

underlying these methylation changes represented in PC1.  

While PC1 covered opposing methylation changes in rep I, rep III, and Student 2 vs rep IV and 

Student 3, PC2 represented methylation changes associated with all experiments except 

samples of Student 3 (Fig. 47). Notably, median methylation levels of Student 3 samples were 

among the lowest for CpG sites with positive associations, and among the highest for sites 

with negative associations. For CpG sites with positive association, I observed a cultivation-

associated loss in methylation affecting about 14 % of all CpG sites covered on the EPIC array 

(Fig. 47a). The majority of these sites was located in PMDs (~ 70 %) (Fig. 47b, see 

Supplementary Fig. 4 for visualization of the methylation of the individual CpG sites). In 

contrast, I identified ~ 40 k CpGs displaying culture-associated gains in methylation, depleted 

in PMDs, and represented rather CpGs located in gene regulatory or transcribed regions. 

These methylation changes might be associated with replication-associated loss in methylation 

in PMDs and with cultivation-associated silencing of genes due to promoter/enhancer 

hypermethylation (Antequera et al., 1990; Raghavan et al., 2021; Smiraglia et al., 2001). In rep 

I and III, DHA samples displayed a further loss or gain in methylation compared to the nonDHA 

samples, whereas in replicate IV, DHA had no additional effect on methylation. 

 

Fig. 47| Methylation changes associated with principal component 2. a, Boxplots of 116,001 CpG sites with a 
positive (upper panel) and 37,870 CpGs with negative (lower panel) association with principal component 2 (PC2) 
displaying a methylation range > 0.2 and a significant linear regression (FDR adj. p value < 0.005). Boxes display 
mean methylation values (n = 1 - 4, see Fig. 26) of control samples (dark blue) and DHA samples (light blue) of 
Student 1-3. Boxplots show median (horizontal line), upper, and lower quartiles (boxes), and vertical lines extending 
to the 1.5× interquartile range. See Supplementary Fig. 4 with Heatmap of individual methylation values. b, Pie 
chart displays the ChromHMM annotation of adipose-derived stem cell (ADS, E025) (Roadmap Epigenomics et al., 
2015) of the CpG displayed in the upper or lower boxplots, grouped by PMDs and nonPMDs defined in SGBS cells. 
Experiment 6 was performed by LD (Student 2), experiment 7 by LK (Student 3), experiment 5 and data analysis 
were performed by myself (CFA, Student 1). See Fig. 9 for experimental design. 
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The third principal component PC3 represented methylation changes of roughly 38 k CpG sites 

associated explicitly with replicate IV and Student 3, with no alterations in methylation among 

the other experiments (Fig. 48). CpGs with positive association gained methylation during the 

cultivation in replicate IV and lost methylation in Student 3 data. The opposite effect was 

observed for CpG sites with a negative association. In the DHA sample of replicate IV, the 

methylation changes compared to day 0 were attenuated in both association groups. CpG sites 

located both in PMDs and nonPMDs were equally affected.  

 

Fig. 48| Methylation changes associated with principal component 3. a, Boxplots of 37,972 CpG sites with a 
positive (upper panel) and 27,520 CpGs with negative association (lower panel) with principal component 3 (PC3) 
displaying a methylation range > 0.2 and a significant linear regression (FDR adj. p value  < 0.005). Boxes display 
mean methylation values (n = 1 - 4, see Fig. 26) of control samples (dark blue) of Student 1 - 3 and DHA samples 
(light blue) of Student 1. Boxplots show median (horizontal line), upper, and lower quartiles (boxes), and vertical 
lines extending to the 1.5× interquartile range. See Supplementary Fig. 6 with Heatmap of individual methylation 
values. b, Pie chart displays the ChromHMM annotation of adipose-derived stem cells (ADS, E025) (Roadmap 
Epigenomics et al., 2015) of the CpG displayed in the upper or lower panels, grouped by PMDs and nonPMDs 
defined in SGBS cells. Experiment 6 was performed by LD (Student 2), experiment 7 by LK (Student 3), experiment 
5 and data analysis were performed by myself (CFA, Student 1). See Fig. 9 for experimental design. 

7.4 Gain of methylation in gene regulatory regions 

After matching the CpGs to the three PC either by positive or negative association (linear 

model), I performed an enrichment analysis based on published ChromHMM states of adipose-

derived stem cells (ADS) (Roadmap Epigenomics et al., 2015). CpGs with a positive 

association to all three PCs were enriched for states like heterochromatin and repressed or 

quiescent (no histone mark detected) regions. The strongest enrichments were found in PC2 

(Fig. 49). These chromatin states are also associated with PMDs, mainly with larger PMDs 

(Supplementary Fig. 5) and therefore agree with the strong enrichment of PMDs seen in Fig. 

47b. The negatively associated CpGs were enriched instead in gene regulatory and 

transcribed regions, with the exception of PC2, where I additionally identified enrichment for 

bivalent areas.  
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Fig. 49| Enrichment analysis of ChromHMM states. With each set of CpGs (positive or negative association with 
PC1 - 3), enrichment analysis for ChromHMM states of adipose-derived stem cells was performed (ChromHMM 
ADS: E025 (Roadmap Epigenomics et al., 2015)). Fisher's exact test was applied to define significant enrichment 
(Bonferroni-adjusted p value ≤ 0.05). The analysis is based on experiments 5 - 7. Experiment 6 was performed by 
LD (Student 2), experiment 7 by LK (Student 3), experiment 5, and data analysis were performed by myself (CFA, 
Student 1). See Fig. 9 for experimental design.  

As CpGs with a negative association with PC2 were enriched at enhancer regions, these CpGs 

might reflect a gain in methylation to promote silencing of specific enhancers that became 

inactive during prolonged cell culture. Thus, I filtered for CpGs located in LMRs, which mark 

typically enhancer regions, and that I defined using WGBS-based methylation data in SGBS 

cells (Fig. 12 + 43) (Burger et al., 2013). The aim was to identify possible upstream regulators 

associated with the observed gain in methylation or enhancer silencing, respectively. With CpG 

sites negatively associated with PC2 and located in LMRs, I performed an enrichment analysis 

of TF binding motifs and visualized the top 10 enriched TF clusters (Fig. 50a). To further 

investigate a possible regulatory function of the TF, I performed a correlation analysis between 

methylation and gene expression to see whether a gain in methylation is associated with a 

reduced expression of the TF (negative Pearson’s r (red)) (Fig. 50b). I identified motifs of 

several TFs involved in adipogenesis, such as PPARG, the glucocorticoid receptor (NR3C1), 

EBF transcription factor 1 (EBF1), and NFIC, all TFs previously identified in hydroxymethylated 

enhancers (Fig. 23). Also, zinc finger and BTB domain containing 7a (ZBTB7A) binding plays 

an essential role during adipogenesis and displayed the strongest negative correlation 

between methylation at LMRs and gene expression (Fig. 50b) (Laudes et al., 2004), indicating 

that reduced expression of ZBTB7A was associated with the methylation gain at ZBTB7A 
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Fig. 50| Top10 enriched transcription factor motifs associates with Principal Component 2 (-).  a, CpGs with 
a negative association with PC2 overlapping with lowly methylated regions (LMRs) were used for transcription factor 
(TF) motif enrichment. To create TF families, hocomoco motifs were clustered by motif similarity. The motif and 
enrichment of the best-enriched TF within the TF family are displayed for the top 10 enriched TF families. b, For 
each TF family, all enriched and expressed motifs were displayed in order of correlation between methylation and 
gene expression (Person’s r). The analysis is based on experiments 5 - 7. Experiment 6 was performed by LD 
(Student 2), experiment 7 by LK (Student 3), experiment 5, and data analysis were performed by myself (CFA, 
Student 1). See Fig. 9 for experimental design. FPR: fraction of false positives or (1-specificity). 

binding sites. KLF4 is a transcription factor associated with stemness and a critical regulator 

of adipogenesis, binding to the promoter of CEBPB (Birsoy et al., 2008) and snail family 

transcriptional repressor 1 (SNAIL1) is involved in stemness and inhibits adipogenesis 

(Peláez-García et al., 2015). These data suggested that certain gene regulatory elements that 

become nonessential during cultivation are being repressed via the methylation mark and 

possibly inhibit adipocyte differentiation, displayed by the associated reduced gene expression 

(Antequera et al., 1990). The cultivation of the samples of Student 3 started at a later passage. 

The methylation data suggest that these cells had acquired the gain in methylation already, 

but during further cultivation, these sites displayed a stabilized methylation pattern (Fig. 47).  

The TF motif analysis was an attempt to shed light on the upstream or downstream effects of 

the methylation changes, possibly, e.g., by hypermethylation of gene-regulatory elements to 

shut down those that are considered currently as nonessential. However, it is essential to note 

that the majority of the methylation changes associated with PC2 were not occurring in LMRs, 

but in PMDs, and might be related to replication.   
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7.5 Epigenetic mitotic clocks in SGBS cells 

To further investigate the considerable methylation changes occurring during cultivation 

especially in PMDs, I next investigated whether the methylation changes are associated with 

the number of cell divisions. I correlated the methylation-based PCs with the scores calculated 

by different methylation-based mitotic clocks, recently compared by Teschendorff 

(Teschendorff, 2020). The best correlation was identified between PC2 and 1-(EpiCMIT.hypo) 

with an r2 = 0.875 (Fig. 51a). EpiCMIT describes Epigenetically-determined Cumulative 

MIToses. The EpiCMIT.hypo score decreases with mitotic cell divisions and is based on a 

selection of highly methylated CpGs located in inactive regions that lose methylation in B-cell 

samples with the highest vs the lowest proliferative history (Duran-Ferrer et al., 2020). Since 

the CpGs selected to construct the EpiCMIT.hypo score are located per definition in H3K9me3-

marked heterochromatin and quiescent genomic regions, I concluded that the EpiCMIT.hypo 

score represents the demethylation process occurring in PMDs, mainly in my cultivation 

experiments (Student 1) in replicates I and IV, as well as in samples of Student 2. Samples of 

Student 3 already displayed low methylation levels at the beginning of the cultivation, which 

might associate with a high starting passage. However, the methylation in Student 3 samples 

did not further decrease during the cultivation process. A high correlation between PC2 and 

the 1-(EpiCMIT.hypo) score might represent the demethylation in PMDs, affecting ~ 81,000  

 

Fig. 51| Principal component 2 correlates best with mitotic clock EpiCMIT.hypo. a,b Dot plot shows linear 
regression between PC2 defined by variability within methylation data (see Fig. 45 + 47) and 1-EpiCMIT.hypo (a) 
score defined for each sample by a published selection of CpG sites mainly located in PMDs (Duran-Ferrer et al.) 
or EpiCMIT.hyper (b) mainly representing Polycomb-repressed CpGs. The figure includes data of experiments 5 - 7. 
Experiment 6 was performed by LD (Student 2), experiment 7 by LK (Student 3), experiment 5, and data analysis 
were performed by myself (CFA, Student 1). See Fig. 9 for experimental design. 
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Fig. 52| DHA treatment effects on methylation-based mitotic clocks. a,b, Dot plot displaying two methylation-
based mitotic scores, the-EpiCMIT.hypo (a) and EpiCMIT.hyper (b), at day 0 and after cultivation in nonDHA and 
DHA samples of replicates I, III and IV. The figure includes data of experiment 5. See Fig. 9 for experimental 
design. 

CpG on the EPIC array. The EpiCMIT.hyper score is calculated from unmethylated CpGs 

located in H3K27me3-repressed regions or poised promoters, with increasing methylation 

during cell division. Correlation between PC2 and EpiCMIT.hyper score was albeit weaker (Fig. 

51b). 

The two scores also displayed differences in DHA-treated samples (Fig. 52). While the 1-

(EpiCMIT.hypo) score shows that in DHA-treated samples PMD demethylation is enhanced 

during the cultivation time, compared to nonDHA samples, the EpiCMIT.hyper score showed 

that DHA samples display fewer mitotic cell divisions compared to nonDHA samples. This 

would be in line with the fact that DHA-treated samples grew slower than nonDHA samples 

and that the cell number had to be compensated for during passaging.  

To sum up, I observe a close link between DHA-associated methylation changes and 

cultivation-associated methylation changes, such as the demethylation process in large PMDs, 

but also the regulation of the epigenome at gene regulatory regions. Therefore, DHA might 

affect cultivation-associated pathways that indirectly induce massive global methylation 

changes while overlaying and confounding possibly smaller direct DHA-specific methylation 

effects. 
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7.6 DHA-induced gene expression changes 

In the hunt for direct DHA-mediated effects in SGBS cells, I next investigated DHA-associated 

changes at the gene expression level, which is affected by signal transduction processes and 

epigenetic regulation. I performed a principal component analysis with all expressed genes 

(mean expression of log2CPM > 0 in at least one group) using RNA-seq data of experiment 7, 

rep I, III, and IV. I identified differences in the first two principal components separating the 

replicates. Similar to methylation data, DHA samples always clustered separately from 

nonDHA samples (Fig. 53a). I identified an exclusive DHA effect on the third principal 

component describing 7.7 % of the variability, most pronounced in replicate IV (Fig. 53b).  

To identify genes associated with PC3, I applied a linear model on gene expression levels and 

identified 575 DHA-induced and 581 DHA-downregulated genes with a log2CPM range > 1 

and p value < 0.05 (Fig. 54). In addition, I found selected upregulated genes that link to 

methylation changes. For instance, I observed an upregulation of the transcription factor KLF4, 

which is involved in stemness (Fig. 54). Its motif was enriched in LMRs of methylation-

associated PC2 (Fig. 50). The same was true for RXRA, a transcription factor that can be 

inhibited by DHA binding (Sampath and Ntambi, 2004). Also, transforming growth factor beta 

1 (TGFB1) was upregulated by DHA treatment. 

 

Fig. 53| DHA-associated gene expression changes in cultivated SGBS preadipocytes. Principal component 
analysis based on RNA-seq data (log2CPM) of cultured SGBS preadipocytes of three independent replicates. 
Individual biological replicates are coded by shapes and treatment with DHA (orange) and nonDHA (green). The 
figure includes data of experiment 5. See Fig. 9 for experimental design. 
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Fig. 54| Heatmap of DHA-regulated genes. Heatmap displays Z-scores of 575 genes downregulated and 581 
upregulated by DHA treatment. Genes were selected by significant association with gene expression principal 
component 3 (PC3 visualized in Fig. 48), displaying a log2CPM range > 1 and a significant linear regression (p 
value < 0.05). The figure includes data of experiment 5. See Fig. 9 for experimental design.  

No KEGG or WIKI pathway was overrepresented among the genes upregulated by DHA. 

However, among the downregulated genes, I identified several overrepresented pathways 

associated with fatty acid and cholesterol metabolism and SREBP signaling (Fig. 55). DHA 

treatment was also associated with an anti-inflammatory effect visualized by the 

downregulated genes of the TNF signaling pathway (Fig. 55a). 

 

Fig. 55| Pathway overrepresentation 
analysis of DHA-induced 
downregulated genes. a-b, Barplot 
displays significantly overrepresented 
KEGG (a) or WIKI pathways (b) among 
the genes downregulated by DHA 
treatment. Downregulated genes with 
significant negative association with 
principal component 3 of the gene 
expression analysis (linear regression p 
value < 0.05) and log2CPM range > 1 
were used for the pathway analyses. 
Enriched pathways with a significant 
overrepresentation of genes (FDR adj. p 
value < 0.05) are displayed. The 
matching/total number of genes within the 
pathway are listed in each bar. The 
analysis was performed on data of 
experiment 5. See Fig. 9 for experimental 
design.  
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I visualized changes in gene expression of all genes annotated to the cholesterol (WP4718) 

and SREBP signaling pathways (WP1982) that were expressed in SGBS cells (41 of 47 genes 

and 63 of 71 genes, respectively) and identified significant downregulation over all replicates 

(Fig. 56a,b).  

SREBP binding motifs were not enriched in my methylation-based motif analysis (Fig. 50), 

suggesting reduced SREBP activity might not be due to increased methylation at the TF 

binding site, but by reduced SREBF transcript levels. Indeed, mRNA expression of both, 

SREBF1 and 2, was reduced in DHA-treated samples (Fig. 56c,d). I also performed an 

Ingenuity Pathway Analysis (IPA) on genes associated with principal component 3, and 

SREBF1/2 were identified as central regulators involved in the downregulation of the pathway 

“metabolism of sterol” and “conversion of fatty acid” pathways (Fig. 56e).  

 

Fig. 56| DHA downregulates genes associated with Cholesterol metabolism and the SREBP signaling 
pathway. a+b, Boxplots of genes included in the Wikipathways “cholesterol metabolism” and “sterol regulatory 
element-binding protein (SREBP) signaling” (see Fig. 54). Boxplots display mean scaled gene expression of DHA 
and nonDHA treated samples in all three replicates (Student 1, replicates I, III, IV) of all expressed genes (n = 41 
of 47 genes / n = 63 of 71 genes) of the respective pathways. c + d, Boxplot of scaled gene expression of SREBF1 
and SREBF2 genes of DHA and nonDHA treated samples (n = 2 - 3) for each replicate (Student 1, replicates I, III, 
IV). e, Graphical summary of the Ingenuity Pathway Analysis of regulated genes significantly associated with 
principal component 3 (linear regression p value < 0.05) and log2CPM range > 1. The analyses were performed on 
data of experiment 5. See Fig. 9 for experimental design. 
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Insulin-induced gene 1 (INSIG1) and 2 are possible upstream regulators of SREBPs that are 

upregulated in DHA-treated samples and prevent the transport of SREBPs from the 

endoplasmic reticulum to the Golgi, where SREBPs are cleaved and released to enter the 

nucleus (Lee et al., 2006). To be able to investigate systematically the upstream regulators 

that might regulate DHA-induced transcriptional changes, I performed an Integrated System 

for Motif Activity Response analysis (ISMARA). The tool identifies the variability within the gene 

expression using RNA-seq data. Based on the TF binding motifs within the promoter regions 

of the affected genes, it identifies potential regulating upstream TFs (Balwierz et al., 2014). I  

 

Fig. 57| Transcription factor activity associated with DHA treatment. Gene expression-based analysis of TF 
activity was performed with all DHA- and nonDHA-treated samples for each replicate individually (Exp. 7, rep. I, III, 
IV) using the ISMARA web tool (Balwierz et al., 2014). Displayed are all TF with a consistent increase or decrease 
in DHA-treatment associated transcription factor (TF) activity with a Z-value > 2.5 in at least one replicate and the 
others > 0.7. a, Heatmap of TF activity Z-scores over all replicates, grouped by replicates and treatment. b - c, 
Pearson correlation of TF activity (Z-score) and TF gene expression (log2tpm) of all TF with a significant increase 
(b) or decrease (c) and Pearson correlation coefficient r > 0.3. The location of the promoter of the corresponding 
transcript is given as chromosomal position in hg19. Individual biological replicates are coded by shapes and 
treatment with DHA (orange) and nonDHA (green). Figures display experiment 5. See Fig. 9 for experimental design 
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performed a grouped ISMARA analysis between DHA vs nonDHA samples in each replicate 

independently and selected for TFs that had a consistent DHA-associated effect in all three 

replicates (Z-value > 0.7 and > 2.5 in at least one replicate) (Fig. 57). TFs that were suppressed 

in DHA-treated samples were involved in cell proliferation (SP1, STAT5), and response to 

inflammatory signaling pathways (SP1, STAT5A, SREBF2). Transcription factors with 

increased activity were involved in stemness function (FOS like 1, FOSL1), mesoderm function 

(mesoderm posterior BHLH transcription factor 1, MESP1), and the developmental TF MEIS2 

(meis homeobox 2). BATF (basic leucine zipper ATF-like transcription factor), an inhibitor of 

AP1, could be regulating the inhibition of proliferation. MAF BZIP transcription factor B (MAFB) 

is involved in the suppression of interferon signaling (Motohashi and Igarashi, 2010). RBPJ 

(recombination signal binding protein for immunoglobulin kappa J region) of the NOTCH 

signaling pathway is involved in proliferation and differentiation (Ali et al., 2016). Four of the 

five TFs with decreased TF activity displayed a significant correlation between TF expression 

and activity, with a Pearson correlation coefficient r > 0.3 (Fig. 57b). Among the TF with 

increased TF activity seven of nine TF displayed a significant Pearson correlation (Fig. 57c).  

Taken together, my analysis of gene expression data suggests that DHA executes its cellular 

effects via regulation of the expression and activity of several transcription factors. 

7.7 DHA affects TFs regulated in adipocyte differentiation  

Promoting adipose tissue expansion via adipocyte differentiation (hyperplasia) might alleviate 

some of the metabolic complications in patients with metabolic syndrome. To investigate 

whether DHA could target this mechanism, I initiated adipocyte differentiation after long-term 

cultivation with DHA and nonDHA conditions to study adipocyte differentiation capacity. The 

differentiation capacity was drastically impaired in the DHA-treated samples, but as well in the 

control groups. Therefore, I suspect that the long-term cultivation-associated effects on the 

SGBS cells that I identified at the methylation but also gene expression level affected the 

differentiation capacity of the SGBS cells, making it difficult to investigate the effect of DHA on 

this process.  

To identify possible DHA-induced early priming for adipocyte differentiation, I selected DHA-

affected TFs, identified by ISMARA (Fig. 57), and displayed their activity during adipocyte 

differentiation (Fig. 58a). SREBP2 and SP1 are two TFs that were suppressed by DHA, but 

are activated during adipogenesis. SREBP2 activity is central for mature adipocytes, but the 

activity is not regulated at the expression level during adipogenesis (no positive correlation 

with gene expression), but at the level of proteolytic activation (Inoue et al., 2001). In contrast, 
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STAT5A and zinc finger protein 423 (ZNF423) are TFs that were suppressed by DHA but are 

essential at early timepoints of adipogenesis and are downregulated at later timepoints of 

adipogenesis (Behrmann et al., 2014; Siersbaek and Mandrup, 2011). Among the DHA-

activated transcription factors, we identified MAFB (Pettersson et al., 2015) and the myogenic 

TF MEF2A as TFs that increase their activity during adipogenesis with increasing levels of TF 

gene expression. In contrast, regulatory factor X1 (RFX1), FOSL1 and EZH2 showed 

increased activity due to DHA treatment, and had decreased activity and expression during 

adipogenesis, with a significant correlation of TF activity and TF gene expression.  

To sum up, all DHA-regulated TFs were also regulated during SGBS differentiation. Therefore, 

these TFs are possible candidates influencing the capacity of adipocyte differentiation after 

long-term DHA treatment, both positively and negatively.  

 

Fig. 58| DHA-associated TF in adipocyte differentiation. Heatmap of mean TF activity Z-scores over all 
timepoints of SGBS adipocyte differentiation (experiment 2) of DHA-associated TF (see Fig. 57). Gene expression-
based analysis of TF activity was performed with all DHA- and nonDHA-treated samples for each replicate 
individually (Exp. 7, rep. I, III, IV) using the ISMARA web tool (Balwierz et al., 2014). Displayed are all TF with a 
consistent increase or decrease in DHA-treatment associated transcription factor (TF) activity with a Z-value > 2.5 
in at least one replicate and the others > 0.7 (experiment 5). Experiment 2 was performed by LK, experiment 5, and 
data analysis performed by myself (CFA). See Fig. 8 + 9 for experimental design. 
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8 Discussion Part 2 

Considering the current knowledge on anti-inflammatory, lipid-lowering, and insulin-sensitizing 

functions of DHA, I wanted to investigate the role of DHA in the prevention of metabolic 

syndrome as a modulator of adipogenic differentiation. Therefore, I studied the effect of DHA 

in SGBS preadipocytes after long-term cultivation with DHA vs nonDHA conditions. To 

characterize biological effects, I investigated DNA methylation using EPIC array technology, 

covering ~ 850,000 CpG sites, and gene expression using RNA-seq (chapter 7).  

8.1  Cultivation-associated effect in SGBS preadipocytes 

At the DNA methylation level and the gene expression level, I identified differences between 

DHA- and nonDHA-treated samples. However, in a principal component analysis, the first 

three principal components, explaining together about 60 % of the variability, represented 

differences between replicates rather than between treatment groups (Fig. 43). This was 

especially problematic for the interpretation of DHA-associated effects on DNA methylation, as 

DHA- and cultivation-associated effects were largely overlapping. Members of our laboratory 

had not observed such massive changes during cultivation using established (cancer) cell lines 

before. Therefore, I wanted to investigate possible sources for the cultivation-associated 

changes in the SGBS preadipocytes. 

Due to the substantial changes in DNA methylation, I wondered whether I was observing the 

clonal expansion of one particular clone with a different methylation profile than the initial 

culture or a progressive, gradual change in methylation. Based on signal intensities on the 

EPIC array for the detection of copy number alterations (CNA) using the Conumee R package, 

I was not able to identify outgrow of genetic clones based on amplification or deletion of 

genomic regions (data not shown). The question remains whether I observed clonal outgrow 

of an epigenetic clone. However, the fact that I observed gradual methylation changes over 

time occurring in several technical replicates in parallel or even independently in the hands of 

different students, strongly argues for a progressive change in methylation due to culturing 

“environmental” conditions.  

I also considered genetic causes that could explain the susceptibility of the SGBS cells toward 

environmental influences on DNA methylation. It is not known which mutation is responsible 

for the SGBS disease of the child from which the cell line was generated. The gene typically 

associated with SGBS (GPC3) was sequenced, and no mutation was found (Wabitsch et al., 
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2001). When comparing WGBS sequencing data of SGBS cells with whole-genome 

sequencing (WGS) data of a male WAT tissue sample, I found no amplifications or deletions 

(data not shown). These findings confirmed the array-based CNA analysis and rather suggest 

an unidentified single point mutation or small insertion or deletion in the SGBS cell line, which 

was responsible for the SGBS disease and might also be associated with epigenetic 

vulnerability.  

As in the SGBS preadipocytes, no genetic mutation was found yet that could be causal for the 

SGBS disease. Therefore, to identify possible disease-driving genetic aberrations, whole-

genome sequencing of SGBS cells is being performed for an in-depth analysis. Identifying a 

point mutation might also help to find a cause for the susceptibility towards epigenetic 

destabilization. 

8.1.1 DNA methylation and demethylation machinery 

The SGBS preadipocyte cell line is characterized by substantially reduced methylation levels 

in late replicating regions, also named as PMDs (Fig. 42). These PMDs are often found in 

cancer and in established cancer cell lines, and only to a comparably little extent in healthy 

human tissue (Lister et al., 2009; Timp et al., 2014). During cultivation, I observed a substantial 

extent of PMD demethylation (Fig. 49a), as it is regularly observed during cancer progression 

or extensive cultivation of cancer cell lines (Timp et al., 2014). PMD demethylation is currently 

explained by the incapability of proper DNA maintenance, mostly in late (during G2) replicating 

domains due to DNMT infidelity, potentially resulting from high replicative stress (Teschendorff, 

2020). However, in SGBS cells, there was an inconsistency between the extent of PMD 

demethylation, derived from the EpiCMIT.hypo score, and calculated mitotic cell divisions, 

derived from the EpiCMIT.hyper score, especially in DHA-treated samples (Fig. 50). DNA 

maintenance is accomplished by the PCNA/UHRF1/DNMT1/HDAC1/EHMT2 complex 

(Hervouet et al., 2018), where UHRF1 can recognize either H3K9me2/3 and/or 

hemimethylated DNA for recruitment of DNMTs (Liu et al., 2013). According to Salbhab et al., 

in PMDs with extensive demethylation, the associated H3K9me3 mark is maintained or even 

increased, possibly due to a compensation mechanism (Salhab et al., 2018), providing a 

requirement for UHRF1 to recruit DNMT1. This indicates the involvement of other regulatory 

mechanisms on UHRF1 to regulate DNMT1 recruitment. I noticed that samples with the 

strongest PMD demethylation were associated with higher UHRF1 expression (Supplementary 

Fig. 7). This could be due to higher proliferation rates, or even take a causal role, as 

overexpression of UHRF1 in zebrafish was shown to induce DNA demethylation via 

destabilization and delocalization of DNMT1 (Mudbhary et al., 2014). This finding could be a 
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possible mechanism for PMD demethylation in cancer, where UHRF1 is often overexpressed. 

However, I cannot tell whether the increase of UHRF1 during SGBS cell cultivation would be 

sufficient for decreasing DNMT1 activity.  

I also observed gradual gain in methylation in PMDs (Fig. 44), which has not yet been 

described as a common mechanism. As UHRF1 is not dependent on hemimethylated CpGs 

for DNA methylation maintenance (as H3K9me2/3 is enough for recruiting UHRF1 function), I 

could envision that PMD demethylation might be recovered if the cellular conditions for proper 

DNA maintenance are reestablished (Liu et al., 2013). 

DNA methylation could be affected due to deregulated histone modifications, with an indirect 

effect on DNA methylation. For example, in tumors, overexpression of EZH2 via the 

mechanistic target of rapamycin (mTOR) pathway resulted in increased levels of the 

H3K27me3 mark (Harachi et al., 2020), which could result in increased DNA methylation levels 

(Cedar and Bergman, 2009). However, in all cultivation experiments, expression of EZH2 was 

associated with DNMT1 expression (Supplementary Fig. 7) and cell proliferation. As gain in 

repressive marks was also hypothesized as a compensation mechanism of reduced 

methylation in PMDs, I could also envision the opposite effect. Therefore, only the combined 

analysis of DNA methylation and histone modifications would give a better picture of the 

possible regulatory mechanism.  

Finally, I observed not only PMD-associated methylation changes but also a substantial degree 

of gradual methylation changes in gene-regulatory regions (Fig. 47). TET activity plays an 

essential role in gene-regulatory regions, as TET competes with DNMTs for the methylation 

status at CpG islands and enhancer regions (Charlton et al., 2020). In the cultivation 

experiments, expression of TETs were highest in replicate I of Student 1, and TET2 was 

associated with DNMT1 expression, suggesting a competition between TET and DNMTs 

(Supplementary Fig. 7). Environmental factors can also regulate TET activity via 

posttranslational modifications (Bauer et al., 2015) and affect thereby global DNA methylation 

in cell-type specific enhancer regions. As enhancer-associated demethylation is also highly 

dependent on cellular signaling, I am not able to attribute changes in enhancer methylation 

directly to TET activity.  

8.1.2 Metabolism and epigenetic regulation 

Various mechanisms can mediate effects on the DNA methylation and demethylation 

machinery via metabolic alterations, which could be easily affected by changes in the 

cultivation medium. Cultivation of SGBS cells was associated with fast medium “consumption”, 
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and I observed a rapid drop in medium pH during cell culture, indicating the build-up of acidic 

metabolic metabolites or lactic acid.  

Histone and DNA methylation depend on the availability of SAM, which is sustained through 

the diet or the cell culture medium by methyl donors, such as methionine (Dai et al., 2018; 

Maddocks et al., 2016; Raboni et al., 2021). In cancer, excessive DNA and histone methylation 

promote glycolysis, lipogenesis and inhibit gluconeogenesis, suggesting a feed-forward loop 

between metabolism and epigenetics (Fukano et al., 2021). During severe methyl donor 

deficiency, first histones are demethylated to maintain DNA methylation as long as possible, 

making it unlikely that medium fluctuations might have caused methylation changes due to 

methyl donor deficiency (Ye et al., 2019). The histone and DNA demethylation process is 

dependent on oxygen (van den Beucken et al., 2014; Prickaerts et al., 2016). Oxygen 

deficiency in the medium is affected by cell density and medium volume; however, considering 

the given variables and the environmental oxygen levels of ~ 21 %, it is unlikely that hypoxic 

levels were reached (Place et al., 2017).  

Variabilities in the concentrations of nutrients in the medium by consumption could affect 

cellular choices of type of energy metabolism mediated via epigenetic reprogramming (Fukano 

et al., 2021). While mature SGBS cells have a high capacity of oxidative phosphorylation and 

are therefore metabolically flexible, SGBS preadipocytes have four-times decreased oxidative 

phosphorylation rate (only ~ 15 % of the ATP production), and are therefore depending highly 

on glycolysis (~ 85 %), resulting in reduced metabolic flexibility (Keuper, 2019). As in all 

experiments, cells were passaged in the same interval, every 3 - 4 days, all experiments 

should be affected similarly by fluctuations in nutrient and oxygen availability. However, I 

cannot exclude that temporal shifts in medium properties or the quality of utilized medium 

components might have affected the experiments differently.  

8.1.3 Signaling-induced cellular identity 

Signal transduction is an effective mechanism for reacting to extracellular signals. These 

extracellular signals act at receptors, leading to transduction by intracellular second 

messengers to generate a cellular response. Such cellular reactions are carried out by TFs 

inducing the transcription of target genes, involving DNA demethylation at enhancer regions 

to achieve a change in cellular identity. A cellular process that has previously been associated 

with massive changes in DNA methylation is the epithelial-to-mesenchymal transition (EMT) 

(Pistore et al., 2017). Methylation changes induced by conditioned medium of cancer-

associated fibroblasts in a prostate cancer cell line were associated with reduced expression 

of DNMT1 and UHRF1, and antagonizing the EMT process reverted the methylation changes. 
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In SGBS cells, all preadipocytes displayed mesenchymal features. However, the samples 

revealed replicate-specific differences in EMT gene expression. Another more artificial model 

of EMT is the transition induced by transforming growth factor beta (TGFβ/TGFB1) (Cardenas 

et al., 2014). 

Interestingly, my replicates displayed substantial differences in TGFβ signaling, positively 

associated with extracellular matrix (ECM) gene expression levels (data not shown) (Hinz, 

2015). In ovarian cancer cell lines, TGFβ-induced EMT was also associated with changes in 

DNA methylation, however at a lower number of CpG sites and was associated with an 

increase in DNMT levels. Differences in the observed DNA methylation changes between 

these studies could be dependent on the type of the selected EMT model (conditioned medium 

vs TGFβ), the starting cell type (prostate vs. ovarian) but not on the detection method, as both 

used 450k array technology. Furthermore, sources of variability in the TGFβ signaling could 

be originated by different batches of FBS or differences in acquired cell density (Nallet-Staub 

et al., 2015). Finally, physical forces can release latent TGFβ from the ECM so that the splitting 

process could also affect TGFβ signaling.  

TGFβ signaling is antagonized by FGF1. FGF1 signaling results in reduced collagen 

expression (ECM), reverts EMT, and counteracts profibrotic effects (Becerril et al., 1999; 

Ramos et al., 2006, 2010). As FGF1 is a protein that is added to the cultivation medium of 

SGBS preadipocyte, samples with high TGFβ signaling could have been cultivated with FGF1 

affected by freeze-thaw processes (Jain et al., 2021). The quality of FGF1 protein is currently 

the best explanation of the observed differences in TGFβ-associated signaling differences and 

might be a source for the cultivation-associated methylation changes that should be tightly 

controlled in future experiments with the SGBS cell line.  

8.1.4 Lessons learned from cultivating SGBS preadipocytes 

With the careful interpretation of the cultivation-associated DNA methylation changes and gene 

expression differences, I identified methylation changes that might have been due to cell 

proliferation and or cell culture conditions related to the quality or delivery of FGF1 as an 

important growth factor for fibroblasts (including preadipocytes). I also identified and discussed 

culture-associated effects at the gene expression level; however, a systematic analysis is still 

pending. As DHA-associated methylation differences were nearly all overlapping with 

cultivation-associated differences, I found it challenging to isolate DHA-specific effects, as they 

seemed to be overlaid by DHA-indirect effects associated with cultivation. Therefore, it is 

pivotal to repeat experiments where FGF1 freeze-thaw-associated destabilization is reduced 

to a minimum. In replicates with functional FGF1 signal, I still observed massive changes in 
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DNA methylation, particularly in PMDs, suggesting that FGF1 is not the only source of 

variability. Therefore, a controlled repetition of the long-term cultivation experiments with 

controlled changes in nutrient supply could be helpful to investigate whether the discussed 

possible downstream effects on DNA methylation, histone marks, and gene expression can be 

reproduced experimentally. When DNA methylation stability can be achieved during long-term 

cultivation, the DHA treatment can be repeated to identify methylation-associated gene 

regulation and identify DHA-associated TF binding.  

Our gene expression data were also affected by cell cultivation, however, to a smaller extent 

than the methylation data, so I could separate the DHA-associated impact on gene expression 

from culture effects, as discussed in the following chapters.  

8.2 DHA-associated effects in SGBS preadipocytes  

Some of the known roles of DHA in the context of metabolic syndrome are the anti-

inflammatory and lipid-lowering effects (Albracht-Schulte et al., 2018; Li et al., 2021). DHA 

executes its bioactive function in several cell types of different organs, such as adipocytes and 

hepatocytes, though little is known of its role on preadipocytes.  

8.2.1 DHA affects in vitro and in vivo adipocyte differentiation 

The best-characterized effect of DHA on preadipocytes is related to its influence on adipocyte 

differentiation, however, with conflicting results. After long-term cultivation of SGBS 

preadipocytes with low DHA concentrations, I could not successfully differentiate them to 

mature adipocytes. Differentiation capacity was affected in the DHA-treated, but also the 

nonDHA-treated control cells. Increased TGFβ signaling might have inhibited adipocyte 

differentiation (Choy and Derynck, 2003). To estimate the adipogenic differentiation capacity 

in SGBS preadipocytes, I analyzed DHA-affected TF activity during adipogenesis and 

identified pro- and anti-adipogenic effects (Fig. 57).  

In several previous studies, DHA was interpreted as an inhibitor of adipogenesis due to the 

induction of apoptosis (Hanada et al., 2011; Kim et al., 2006). In proliferating AML-1 cells, 

another human preadipocyte cell line, DHA was delivered at very high concentrations (250 µM) 

and in DMSO - a delivery system, which does not prevent oxidation of DHA (Hanada et al., 

2011). In a different study using murine 3T3-L1 preadipocytes, DHA was delivered to confluent 

cells and applied during the whole differentiation process at a concentration of 50 and 200 µM, 
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complexed to BSA in a ratio of DHA:BSA of 4:1, thereby reducing the risk of oxidation (Kim et 

al., 2006). DHA treatment induced apoptosis and thereby inhibited clonal expansion in a dose-

dependent way. As DHA was delivered during adipocyte differentiation – a multi-step process 

of dynamic chromatin remodeling – it is challenging to mechanistically investigate its effects in 

more detail, as it can act on several stages. Martins et al., in contrast, delivered 50 µM DHA to 

confluent 3T3-L1 preadipocytes for 24 h and afterward initiated the differentiation (Martins et 

al., 2020). This approach resulted in inhibition of adipogenesis by downregulation of PPARG 

and CIDEC (cell death inducing DFFA like effector C). Similar results were obtained by delivery 

of DHA during 3T3-L1 differentiation, where adipocyte markers were reduced, accompanied 

by reduced lipid accumulation (Valli et al., 2018). 

In contrast, Madsen et al. have shown that DHA increased differentiation of 3T3-L1 cells, and 

that this effect was dependent on lipoxygenase (LOX) enzymes, which generated DHA 

metabolites that can act as PPARG agonists (Madsen et al., 2003). By using the same cell 

line, Hilgendorf et al. have observed that preadipocytes possess a primary cilium similar to the 

in vivo situation, where the G protein-coupled receptor (GPCR) free fatty acid receptor 4 

(FFAR4/GPR120) is located. DHA acts as a ligand and induces a local elevation of cAMP in 

the cilium, thereby inducing the adipogenic program (Hilgendorf et al., 2019). In their work, the 

authors tested the effect of DHA on adipogenesis by titrating the concentrations of insulin, DEX 

(a synthetic glucocorticoid), and IMBX (a cAMP-elevating agent). They observed that the 

proadipogenic effect was only visible when they decreased the dose of insulin, DEX, and/or 

IBMX. This suggests that the substances are partially redundant, e.g., in the function of 

elevating cAMP levels. The last two studies did not use a synthetic PPARG agonist 

(rosiglitazone), which could outperform the potential of DHA or its downstream metabolites as 

PPARG agonist, as rosiglitazone has an extremely high affinity to PPARG (Edvardsson et al., 

1999). 

In vivo, increased n-3 and n-6 fatty acid levels in SAT correlated with reduced size and an 

increased number of adipocytes (Garaulet et al., 2006), thereby contributing to improved 

insulin resistance in mature adipocytes. Todorčević et al. reviewed that in mice, most studies 

reported with the ingestion of n-3 fatty acids, a reduced total fat mass, with reduced adipocyte 

size and number. However, in this process, the main regulator might not be adipocyte 

differentiation but decreased hepatic lipogenesis, which creates a reduced flux of lipids to the 

adipose tissue (Todorčević and Hodson, 2015). Therefore, more studies are necessary to 

clarify the function of DHA on differentiation and adipocyte function in the contribution of 

metabolic health. 
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8.2.2 Anti-inflammatory effect of DHA in preadipocytes 

DHA is a well-known anti-inflammatory agent (Djuricic and Calder, 2021; Liput et al., 2021). 

Accordingly, DHA reduced the expression of genes involved in the TNFα signaling (Fig. 53). 

In mature adipocytes and adipose tissue, DHA reduced the secretion of proinflammatory 

cytokines, such as IL-6, TNFα, and MCP-1 (Murumalla et al., 2012). It was shown that DHA 

acts as an extracellular ligand on FFAR4 to inhibit TNFα signaling (Oh et al., 2010) and 

therefore prevent TNFα-induced insulin resistance and suppression of adipogenic genes in 

mature adipocytes (Ruan et al., 2002). Not much is known about the DHA effect in 

preadipocytes. However, the role of preadipocytes in proinflammatory signaling has been 

studied. It was shown that the response towards LPS as a proinflammatory stimulus was much 

higher in preadipocytes than in mature adipocytes (Chung et al., 2006). Therefore, 

preadipocytes could be crucial contributors to proinflammatory signaling in adipose tissue. LPS 

activates NFκB and MAPK signaling, resulting in the secretion of MCP-1, which recruits 

macrophages. The secretion of other proinflammatory cytokines contributes to insulin 

resistance in mature adipocytes (Gao et al., 2014; Lagathu et al., 2006; Rotter et al., 2003).  

In addition to acting on surrounding adipocytes, the reduction of proinflammatory cytokines 

could affect adipocyte differentiation capacity and display an additional and more indirect effect 

on differentiation. TNFα and interleukin 1 beta (IL-1b) were shown to inhibit adipogenesis 

(Gagnon et al., 2013; Isakson et al., 2009). However, conditioned medium of obese adipose 

tissue containing TNFα, IL-1b, and IL-6 induced adipogenesis in preadipocytes (Renovato-

Martins et al., 2020). 

Feeding mice with plankton oil rich in n-3 fatty acids reduced the in vivo macrophage infiltration 

in WAT, proinflammatory cytokine levels as well as adipocyte size (Höper et al., 2013). In 

humans with insulin resistance, dietary intervention with n-3 fatty acids resulted in a reduced 

number of macrophages in the adipose tissue. Similar to the observation in mice, it also 

decreased levels of proinflammatory cytokines in plasma (Spencer et al., 2013). 

8.2.3 DHA-associated repression of SREBP signaling in 

preadipocytes 

In my gene expression data, the most consistent effect of DHA treatment was the 

downregulation of SREBF1/2-associated pathways (Fig. 55 + 56). Upon glucose import, 

SREBP1s are involved in insulin-induced energy storage in form of TGs (lipogenesis), while 

SREBP2 is more strongly involved in cholesterol metabolism (Horton et al., 1998; Pai et al., 

1998). SREBPs are lipid membrane-bound proteins, of which the N-terminus is proteolytically 
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cleaved and released to the nucleus for TF activity. During adipogenesis, SREBP1 expression 

highly increases, and enhanced SREBP2 activity is regulated by increased proteolytic activity 

(Inoue et al., 2001). SREBPs play a vital role in the development of insulin resistance. SREBP 

is still activated in insulin-resistant cells in the liver and further suppresses insulin signaling by 

repressing Insulin receptor substrate 2 (IRS-2) transcription (Ide et al., 2004). Also in myocytes, 

SREBP1c expression correlated with insulin resistance (Mingrone et al., 2003). SREBP2 is 

involved in hypertrophy of mature adipocytes (Bauer et al., 2011). 

The molecular mechanisms of DHA action on SREBP activity have previously been mainly 

investigated in liver. In a liver cell line, PUFAs with high length and low saturation reduced 

SREBP1a/c mRNA expression and activity (Hannah et al., 2001). Reduced processing of 

SREBP1c is mediated by the extracellular binding of DHA to FFAR4. As a downstream effect, 

AMPK is activated and phosphorylates SREBP1c, which inhibits its proteolytic activation (Deng 

et al., 2015; Wang et al., 2017). In addition, the cleavage is inhibited by the mTOR pathway 

(Deng et al., 2015). A more recent study showed that when DHA is incorporated into the lipid 

membranes of hepatocytes, it can inhibit SREBP1 cleavage. This serves as a negative 

feedback mechanism, as it reduced PUFA synthesis (Hishikawa et al., 2020).  

The contribution of DHA in preventing metabolic syndrome in preadipocytes and adipocytes 

via affecting SREBP TF activity is currently not so clear. Epididymal adipocytes of mice 

dramatically reduced their lipogenic potential in high fat diet-induced obesity (Sárvári et al., 

2021). In adipocytes, PUFAs reduce nuclear SREBP and therefore further inhibit lipogenesis. 

The mechanism of action on SREBPs was described to be directly mediated by the fatty acid 

itself or indirectly via metabolites produced by cyclooxygenase (COX) enzymes (Madsen et 

al., 2005). On the one hand, reduced SREBP activity would result in smaller adipocytes and 

therefore a less hypotrophic phenotype, but also would decrease the energy storage capacity 

to prevent ectopic lipid accumulation. On the other hand, by reducing SREBP activity, reduced 

lipogenesis could create a switch from lipogenesis towards fatty acid oxidation and thereby 

improve the lipid profile and metabolism in adipocytes. One of the metabolic improvements 

could be increased insulin sensitivity (Albracht-Schulte et al., 2018).  

While in adipocytes the function of SREBP and inhibition by DHA have been studied to some 

extent, even more studies will be needed in the future to understand the contribution of the 

DHA effect on preadipocytes in the prevention of the metabolic syndrome. Considering that 

DHA does not act only on a single organ, in vivo studies were not always able to clearly point 

out which tissues mediated the observed effects. Several metabolic effects of DHA could also 

be strongly modulated in the liver. Here, DHA prevents the activity of insulin-induced SREBP1c 

activity and thereby inhibits lipogenesis resulting in reducing plasma and hepatic triglycerides 
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(Deng et al., 2015). Therefore, the in vivo reduction of plasma TGs could be a strong 

confounding factor in increasing insulin sensitivity, as it could overlay the effects of DHA acting 

directly on the preadipocytes/adipocytes.  

9 Conclusion & Outlook Part 2 

The effect of DHA has been studied in recent years in vitro and in vivo in dietary interventions 

studies, such as in the PATHWAY-27 study. DHA is known to interfere with several layers of 

disease development, such as the modulation of the inflammatory response (Duan et al., 2021) 

and the reduction of TG levels in mice, as well as in humans (Martínez-Fernández et al., 2015). 

In murine studies, there are strong indications that DHA improves other obesity-associated 

complications such as aberrant glucose and insulin levels. However, there are still conflicting 

results regarding the effect on insulin sensitivity. The same is the case for findings in humans, 

where the studies might not have been large enough (Martínez-Fernández et al., 2015). 

Furthermore, there is high variability in the studies regarding dosage, and combination of n-3 

fatty acids, so it is not always possible to precisely attribute the effects to DHA.  

Estimations on conversion rates from ALA to DHA suggest that for an ideal supply, adults are 

dependent on the direct dietary supply of DHA, e.g., by fish oils (Gerster, 1998). However, 

these estimations have been challenged by questioning the accuracy of the used methods. 

Furthermore, animals that received a diet without DHA but with the precursor fatty acid ALA 

had normal DHA levels in the brain (Domenichiello et al., 2015). Similarly, there are indications 

that vegetarians and vegans with an ALA-rich diet can adapt to their diet and increase 

conversion rates (Welch et al., 2010). This shows that in healthy individuals conversion rates 

are highly variable (women have a higher conversion rate than men) but can be modulated to 

adapt to the biological needs. These adaptations might be inhibited in patients with metabolic 

syndrome, e.g., by the imbalance in the diet. In the era of diminished fish resources, studying 

the factors that modulate the conversion rate from ALA to DHA, but also the conversion rates 

to oxylipins is becoming even more critical. Also, exploring the effects of the DHA metabolites 

generated by COX, LOX, and CYP enzymes and how their balance affects the development 

of metabolic syndrome is a currently expanding research field that will help to mechanistically 

understand the effects of DHA and hopefully provide additional targets for disease modulation.  

Metabolic syndrome is a disease with several involved organs and cell types, such as those of 

the adipose tissue, the liver, and the immune system. Therefore, DHA-associated in vivo 

effects might depend on the interplay of these metabolic organs and immune cells. To better 

recapitulate the DHA effects mechanistically, e.g., co-cultures between preadipocytes and 
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macrophages could represent a better model of the inflammatory signaling effects. The tight 

interconnection of the metabolism and epigenetics suggests that in further studies, in addition 

to DNA (hydroxy)methylation and gene expression data, the influence on histone marks should 

be considered, as DHA was shown to reduce the expression of the histone methyltransferase 

EZH2 in breast cancer cells (Dimri et al., 2010).  

In times of COVID-19 pandemics, awareness of healthcare-related topics has fortunately been 

raised. However, the attention in another ongoing pandemic – obesity, has declined 

(Hepatology, 2021). Considering the dramatic impact of the COVID-19-associated restrictions 

on mental health and lifestyle, the expansion of the metabolic syndrome pandemic will 

continue. Therefore, knowledge on DHA and its function might help us understand how to 

reverse some of the adverse effects of obesity and its associated metabolic complications, 

showing us a path towards improved public health.  
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11 Appendix 

 

Supplementary Fig. 1| Validation of differentially methylated sites by 450k array. Heatmap depicts methylation 
proportions of differentially methylated sites (DMS) identified by whole-genome bisulfite (WGBS)/oxidative bisulfite 
(oxBS) sequencing in experiment 2 (mean methylation difference > 0.25, p value < 0.005, and difference between 
each sample to the mean of the other group > 0.15) that overlap with sites covered on 450k arrays in experiment 
1. The last column at the right indicates in grey whether a CpG site was a DMS in BS/oxBS 450k analyses (mean 
proportion difference > 0.1 and the Mann-Whitney U (MWU) p value < 0.05). Experiment 2 was performed by LK, 
experiment 1, WGBS/oxBS library generation and data analysis performed by myself (CFA). See Fig. 7 for 
experimental design. Meth: methylation. 

 

 

Supplementary Fig. 2| PCA of WGBS/oxBS-derived hydroxymethylation levels. Principal component analysis 
(PCA) of hydroxymethylation data calculated from whole-genome bisulfite (WGBS) and oxidative bisulfite (oxBS) 
sequencing data of experiment 2 at day 0 (n = 3), 7 (n = 1), 11 (n = 2) and 27 (n = 1). Experiment 2 was performed 
by LK, WGBS/oxBS library generation, and data analysis performed by myself (CFA). See Fig. 7 for experimental 
design. Meth: methylation 
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Supplementary Fig. 3| Heatmap of CpGs associated with PC1. Heatmap of methylation levels at 107,064 CpG 
sites with a positive (upper panel) and 85,103 CpGs with negative (lower panel) significant association with principal 
component 1 (PC1) of samples from experiment 5 - 7. Significance was defined by a significant linear regression 
(FDR adj. p value < 0.005) and methylation range > 0.2. CpG sites were annotated at the right side with ChromHMM 
states of adipose-derived stem cell (ADS, E025) (Roadmap Epigenomics et al., 2015) and further separated by 
PMDs and nonPMDs, defined by WGBS-seq (experiment 2). Experiment 6 was performed by LD (Student 2), 
experiment 2 + 7 by LK (Student 3), experiment 5, and data analysis were performed by myself (CFA, Student 1). 
See Fig. 9 for experimental design. WGBS-seq: whole-genome bisulfite sequencing.  
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Supplementary Fig. 4| Heatmap of CpGs associated with PC2. Heatmap of methylation levels at 116,001 CpG 
sites with a positive (upper panel) and 37,870 CpGs with negative (lower panel) significant association with principal 
component 1 (PC1) of samples from experiment 5 - 7. Significance was defined by a significant linear regression 
(FDR adj. p value < 0.005) and methylation range > 0.2. CpG sites were annotated at the right side with ChromHMM 
states of adipose-derived stem cell (ADS, E025) (Roadmap Epigenomics et al., 2015) and further separated by 
PMDs and nonPMDs, defined by WGBS (experiment 2). Experiment 6 was performed by LD (Student 2), 
experiment 2 + 7 by LK (Student 3), experiment 5, and data analysis were performed by myself (CFA, Student 1). 
See Fig. 9 for experimental design. WGBS-seq: whole-genome bisulfite sequencing.  
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Supplementary Fig. 5| CpGs of PC2 (+ assoc.) are enriched for the largest PMDs with the strongest degree 
of demethylation. a, Boxplots display mean methylation of CpGs within a partially methylated domain (PMD), 
grouped by the width of the PMD (experiment 2). b, Barplots for each PC (+/- association) the percentage of CpGs 
located in PMDs, grouped by the width of the PMDs. PCs were defined by experiments 5 - 7 (see Fig. 46 - 48) and 
PMDs by WGBS (experiment 2). Experiment 6 was performed by LD (Student 2), experiment 2 + 7 by LK (Student 
3), experiment 5, WGBS, and data analysis were performed by myself (CFA, Student 1). See Fig. 8 + 9 for 
experimental design. PC: principal component, WGBS-seq: whole-genome bisulfite sequencing.  
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Supplementary Fig. 6| Heatmap of CpGs associated with PC3. Heatmap of methylation levels at 37,972 CpG 
sites with a positive (upper panel) and 27,520 CpGs with negative (lower panel) significant association with principal 
component 1 (PC1) of samples from experiment 5 - 7. Significance was defined by a significant linear regression 
(FDR adj. p value < 0.005) and methylation range > 0.2. CpG sites were annotated at the right side with ChromHMM 
states of adipose-derived stem cell (ADS, E025) (Roadmap Epigenomics et al., 2015) and further separated by 
PMDs and nonPMDs, defined by WGBS (experiment 2). Experiment 6 was performed by LD (Student 2), 
experiment 2 + 7 by LK (Student 3), experiment 5 and data analysis were performed by myself (CFA, Student 1). 
See Fig. 9 for experimental design, WGBS-seq: whole-genome bisulfite sequencing.  
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Supplementary Fig. 7| Expression of epigenetic genes during long-term cultivation. Heatmap of scaled 
(Z-score) log2CPM gene expression values of epigenetic genes. Experiment 6 was performed by LD (Student 2), 
experiment 7 by LK (Student 3), experiment 5 and data analysis were performed by myself (CFA, Student 1). See 
Fig. 9 for experimental design. log2CPM: log2 counts per million. 
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