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1 INTRODUCTION

1 Introduction

Primary aim of this thesis is to assess molecular properties and prognosis of patients
suffering from light chain amyloidosis in relation to other malignant plasma cell dis-
eases including multiple myeloma and its precursor state. In the following chapter, an
introduction is given into different plasma cell dyscrasias, their diagnosis and treat-
ment, followed by an overview about current knowledge regarding molecular patho-
genesis of these entities. The chapter closes introducing the detailed aims of the thesis.

1.1 Malignant plasma cell diseases

Malignant plasma cell diseases are a group of entities characterized by the accumu-
lation of malignant plasma cells in the bone marrow. These include, as main entities
briefly described in the following, monoclonal gammopathy of undetermined signifi-
cance (MGUS), multiple myeloma (MM), and light chain amyloidosis (AL). Different
entities are defined by tumor mass (number of malignant plasma cells) and whether and
which "end organ damage" they cause. For tumor mass, different surrogates are in use,
in particular the amount of secreted monoclonal protein (M-protein), free light chains
(FLC) as part of monoclonal immunoglobulin (Ig) in serum or urine, and the amount
of plasma cell infiltration (PCI) in the bone marrow (for a more detailed description of
M-protein or FLC see section 1.2.2, for PCI see section 1.6) [265].

The incidence for malignant plasma cell diseases increases with age [133, 168, 169,
171]. The estimated annual incidence of MGUS in men is 120 per 100,000 population
at the age of 50 years and increases to 530 per 100,000 population at the age of 90 years
[293]. For MM and AL, incidences are 7.0 and 0.89 per 100,000 inhabitants in the
USA [133, 168]. Men are more often affected than women [133, 168, 169, 171, 293].

MGUS and multiple myeloma
The earliest detectable stage in plasma cell diseases is called MGUS, consecutively
followed by asymptomatic multiple myeloma (AMM) and MM. The risk of progres-
sion from MGUS to symptomatic disease, e.g. MM or AL, is about 1% per year [172].
AMM progresses to MM with a rate of 10% per year [170]. Generally, MGUS pre-
cedes MM [171, 174].

In MGUS, per definition, M-protein is detectable, but at an amount below 30 g/L in
serum, PCI is below 10% of nucleated cells in the bone marrow, and no disease-related
end organ damage is present [142]. A special case of MGUS is the so-called light chain
(LC) MGUS with presence of monoclonal kappa or lambda LC in serum and/or urine
[142, 242]. PCI or M-protein exceeding the respective threshold classifies the disease

1



1 INTRODUCTION

as multiple myeloma [142]. It is further sub-stratified regarding the presence of end or-
gan damage. This is caused by the accumulation of malignant plasma cells in the bone
marrow leading to displacement of normal hematopoiesis (e.g. anemia), induction
of osteolytic bone lesions (potentially leading to hypercalcemia), and production of a
monoclonal protein or parts thereof which can damage the glomerular capillaries in the
kidneys (leading to renal insufficiency). These signs and symptoms are summarized as
"CRAB" (hyperCalcemia, Renal impairment, Anemia, and Bone disease) [142] by the
"International Myeloma Working Group" (IMWG) in 2003. In absence of "CRAB"
criteria, multiple myeloma is termed asymptomatic multiple myeloma (AMM) [142].

In 2014, the IMWG revised their classification by introducing "SLiM-CRAB" [242].
These criteria add to CRAB biomarkers thought to surrogate immediate progression,
i.e. more than one focal lesion in magnetic resonance imaging (MRI), a serum free
light chain ration (FLCR) between involved and uninvolved chain above 100 (see sec-
tion 1.2.2), and a PCI equal or above 60% [242].

Now, asymptomatic patients who are not MGUS and do not fulfill any of the "SLiM-
CRAB" criteria are termed smoldering multiple myeloma (SMM) patients, and patients
who fulfill at least one of the criteria are considered to be symptomatic. Previously,
the terms AMM and SMM were used synonymously. In this thesis, the term AMM is
used for asymptomatic patients according to the 2003 IMWG criteria [142, 242].

Light chain amyloidosis
"Systemic amyloidosis" describes a group of diseases characterized by misfolded pro-
teins, deposited in sites distant from their production and secretion. The most common
form is AL [199]. Here, the misfolded proteins are monoclonal LC (defining the M-
protein in this case) that are transported via blood from the producing malignant plasma
cells in the bone marrow to organs. The deposition causes clinical signs and symptoms.
AL is characterized by the type of involved organ. Typically, these are heart (82%),
kidneys (68%), liver (14%), and less frequently lung, gastrointestinal tract (8%), or soft
tissues (17%) [199]. Brain involvement is not observed [199]. Peripheral neuropathy
is detected in 12%, and autonomous neuropathy in 10% of patients [199].

Early signs and symptoms of AL include fatigue, inappetence, unexplained weight
loss, and reduced physical fitness [106]. Among clinical signs are unexplained heart
failure and proteinuria. As these symptoms and signs are unspecific, common to
elderly people and other diseases, they frequently do not raise enough suspicion to
specifically diagnose or exclude AL [106, 107].

Diagnosis of AL is made almost always late, due to the unspecific nature of signs and
symptoms and concomitant low incidence of 8.9 (5−13) per million persons per year
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[168]. For comparison, a progression rate of 1% per anno is expected for MGUS to AL
or MM [167, 330]. In 10% of myeloma patients AL occurs [142]. Hence, late diagnosis
of about one year after the recognition of first symptoms and signs is prevalent [187].
In many patients, end organ damage is present at diagnosis and increases especially
early mortality [107].

For earlier diagnosis it is recommended [107] to screen all MGUS patients with abnor-
mal FLCR for amyloid deposits (see section 1.2.2), determine the LC type (see section
1.2.2), and to assess cardiac biomarkers (see section 1.4) [199, 233].

MGUS, AMM and MM are stratified by tumor mass [142, 242], but for AL the tumor
mass is not used for classification [200]. In about 45% − 50% of AL patients the
PCI exceeds 10% [217, 264, 330]. In this thesis, AL patients are further subdivided
whether their underlying plasma cell disease fulfills the MGUS or MM criteria and
are termed ALMG or ALMM, respectively (as described above in part "MGUS and
multiple myeloma" in section 1.1) [28].

1.2 Pathophysiology and pathogenesis

In the following section, the pathophysiologic background and molecular pathogenesis
of malignant plasma cell diseases in relation to their normal counterpart are described.

1.2.1 Bone marrow plasma cells

Bone marrow plasma cells (BMPC) are a component of the adaptive immune system
[156, 219]. Derived from haematopoietic stem cells, they are formed via different
precursor stages including naïve B cells [156, 219]. These enter lymphatic organs
and differentiate - after encountering their specific antigen and being selected for self
tolerance - with the help of T cells to memory B cells (MBC) and early polyclonal plas-
mablastic cells (PPC) in the so-called "germinal center reaction" [156, 219]. Further
maturation to (early) plasma cells enables the production of huge amounts of specific
Ig [156, 219]. These are Y-shaped proteins, consisting of two identical heavy chains
(HC) of the type α , δ , ε , γ , or µ and two functionally identical LC of the type λ or κ

[219]. The HC defines the type of the Ig (A, D, E, G, or M) [219]. PPC migrating via
blood circulation enter the bone marrow [156, 241]. They interact with the bone mar-
row microenvironment and become long-lived BMPC if they can compete successfully
and home in a specific "niche" [156, 241]. The fraction of plasma cells in physiological
bone marrow is below 1% and remains constant during adult life [156, 241].
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1.2.2 Malignant plasma cells

Malignant plasma cells accumulate in the bone marrow due to their ability to prolifer-
ate. With increasing tumor mass in the bone marrow, malignant plasma cells displace
the normal compartments (including the niches of BMPC), taking over nutrition supply
and space [156].

Malignant plasma cells are monoclonal, i.e. of the same clonal origin, and produce the
same Ig, referred to as M-protein [156, 265]. The level of M-protein per individual
myeloma between different patients however can vary [78–80]. It is a surrogate for
tumor mass - more cells produce more protein. Consisting of a full Ig or LC only, the
M-protein is measured and determined in serum and urine samples. For quantitative
assessment, in case of FLC secretion, the fraction and difference of the involved versus

the uninvolved LC can be calculated. The term "involved" is used for the monoclonal
LC. This fraction also comprises a part of LC of the same general type produced by
normal plasma cells. "Uninvolved" LC comprise the sum of all light chains of the other
type, completely produced by non-malignant BMPC. The frequency of Ig type varies
between the different disease entities. In MGUS, the most common type is a full IgG
(∼ 76%) [264]. In MM, IgG accounts for about 59%, IgA for about 20%, and in ap-
proximately 18% only LCs are secreted [264]. This is different to AL. Here, mainly the
LC Ig subunit is secreted [23]. In MM, the κ LC is more frequently detected (∼ 66%)
than the λ LC [264]. In contrast, most patients in AL secrete a λ LC (∼ 76%−80%)
[23, 199, 264].

Amyloid forming light chains

AL is characterized by the deposition of monoclonal LC. Secreted LC are transported
via blood circulation and deposited in different organs [22]. Here, they aggregate and
form amyloid fibrils causing organ dysfunctions [22]. The pathophysiologic mecha-
nism of amyloid toxicity is only partially understood, e.g. soluble amyloid can directly
induce cellular apoptosis [22, 199].

The presence of amyloid deposits can be verified by Congo red staining of tissue biop-
sies. Under polarized light, stained amyloid positive tissue shows an apple green
birefringence [199]. For diagnosis of amyloid deposits, abdominal fat aspirates are
of high reliability and can be carried out by a fast and minimal invasive biopsy
[85, 86, 101, 233]. The LC type can be determined and quantified by protein elec-
trophoresis or immunofixation electrophoresis from serum and urine samples [199],
the so called serum "free light chain assay", an immunoassays based on polyclonal
antibodies [37], or mass spectrometry [206, 207, 271].
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1.2.3 Mechanisms of molecular pathogenesis

Malignant plasma cell characteristics can be informative regarding the molecular
pathogenesis of the underlying disease and be used to stratify molecular subgroups
that are defined by e.g. a specific chromosomal aberration, deregulated gene expres-
sion, or nucleotide variants, affecting signal transduction pathways or the cell cycle.
The assessment of subgroups provides prognostic and potentially treatment-relevant
information.

Chromosomal aberrations
The most important molecular subgroups are defined by IgH translocation (IgH-TL)
and hyperdiploidy (HRD), regarding two paths of underlying "primary" genetic al-
terations leading to myeloma [156, 265]. IgH-TL are considered primary events that
appear during the maturation of plasma cells [265, 309]. HRD is defined by gains
of several odd numbered chromosomes especially 5, 15, 19 [323]. As IgH-TL, HRD
appears during plasma cell differentiation [156, 265]. Both types of underlying aber-
ration appear mostly disjunct [156, 265]. The key difference between malignant and
normal plasma cells is the ability to proliferate [156, 265]. Here, a unifying feature of
malignant plasma cells is a deregulation, i.e. an over- or aberrant expression of one
of the three D-type cyclins (CCND11, CCND2, CCND3) [156, 265]. D-type cyclins
drive cells from the G0 phase (cell cycle arrest) into the cell cycle by interaction with
CDK4/6 (cyclin-dependent kinases 4/6) [156, 265].

IgH-TL are characterized by translocation of a gene under the control of the IgH su-
per enhancer located at chromosome 14, leading to aberrant or overexpression of the
translocated gene [265]. In case of t(11;14), the translocated gene locus is 11q13
(CCND1), which is subsequently aberrantly expressed [265]. The t(4;14) leads to an
overexpression of MMSET (NSD2), and in 68% of events to aberrant expression of
FGFR3 [20, 156, 258, 265]. Indirect CCND2 overexpression is also induced by t(4;14)
[265]. Direct overexpression of CCND2 by IgH-TL is a very rare case of t(12;14)
[20, 51, 265]. The translocation t(14;16) causes an upregulation of the proto-oncogene
MAF [50]. Direct CCND3 upregulation can be caused by t(6;14) [20, 265]. The most
frequent IgH-TL is the t(11;14), detected in 15%−20% of MM patients, followed by
the t(4;14) with 10%−15% [28, 62, 223]. The IgH-TL t(6;14), t(12;14), and t(14;16)
affect less than 2% of patients [28, 156, 221, 265].

HRD is likewise associated with aberrant or overexpression of D-type cyclins. In case

1In this thesis, all genes are only named by their respective HGCN gene symbol [325] and not by
full names, as these are not unique. Genes are written capitalized and italicized, proteins are capitalized.
Online resource: https://www.genenames.org/
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of CCND2, the mechanism is indirect, in case of CCND1 it is mediated by 11q13 gain
[156, 265].

Besides IgH-TL and HRD, further aberrations frequently appear; malignant plasma
cells usually harbor more than one chromosomal aberration (CA) [34, 62, 223, 265].
In MM, the most frequent aberrations are gain of 1q21 (36%), del 13q14 (46%), and
del 17p13 (10%) [221, 265]. Gain of 1q21 is copy number dependently associated with
higher proliferation rate and adverse prognosis in MM [116]. The del 13q14 affects
the tumor suppressor genes RB1 and DIS3 [265]. The gene product of DIS3 has an
exonuclease domain and is active in RNA processing and degradation [190]. DIS3 is
frequently mutated in MM and loss of DIS3 or disruptive mutations may act oncogenic
by deregulation of protein translation (see the next but one part in section 1.2.3 on
altered gene expression). Deletion of 17p13 is associated with adverse prognosis in
MM, and with a higher frequency of mutations in TP53 gene [35, 265].

In AL, the same aberrations occur as in MGUS or MM without any "AL-typical aber-
ration" being detected. Differences however exist in the frequency at which these
aberrations appear in the population of affected individuals, most notably t(11;14) and
HRD.

Compared to MGUS (30%) [25] and MM (57%) [221], HRD as clonal aberration
appears less frequent in AL (11%) [25]. The most common CA in AL is the IgH-TL
t(11;14) (61%) [28]. More frequent in MM than in AL is the t(4;14) (4%) [28]. The
translocations t(14;16) and t(6;14) are rare in both, AL and MM [23, 265].

Gain of 1q21 (31%), del 13q14 (38%) or del 17p13 (3%) [28], which are associated
with poor prognosis in MM, are less frequent in AL compared to MM, but more fre-
quent compared to MGUS [23, 26, 28, 116, 265].

A prognostic relevance of CA in AL is - in contrast to MM - frequently depending on
a specific treatment. For example, patients with t(11;14) had a significantly adverse
prognosis if treated with bortezomib containing regimes [27], whereas the aberration
convey neutral prognosis in MM [267]. Patients with gain 1q21 treated by melpha-
lan/dexamethasone combinations show a comparably adverse prognosis [26].

Different molecular pathways leading to malignant plasma cells imply disease hetero-
geneity between patients (inter-patient heterogeneity, e.g. HRD or IgH-TL) nonethe-
less leading to a comparable phenotype - plasma cell accumulation [156, 265]. Fur-
thermore, an intra-patient heterogeneity can be detected [156, 265]. Despite being a
clonal disease (all malignant plasma cells produce the same Ig or parts thereof, i.e.
M-protein), a "sub-"structure can be demonstrated for most patients, exemplified by
subclonal presence of alterations like del 17p13, and mutations in NRAS or BRAF

[156, 265].
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Part of the objectives of this thesis is to assess whether or not different or AL-typical
CA can be found, how the pattern of CA in AL relates to MGUS, AMM, and MM,
and in as much these are dependent or independent of other molecular and clinical risk
factors (see section 1.6).

Single nucleotide variants
In MM, several studies [30, 31, 45, 185, 307, 308, 310] reported recurrently mutated
genes, none of them being a unifying event: KRAS (24%), NRAS (20%), DIS3 (10%),
FAM46C (11%), TP53 (7%), BRAF (6%), TRAF3 (5%), PRDM1 (4%), CLYD (3%),
and RB1 (2%) [45, 185, 308]. Thus, also on the level of single nucleotide variants
(SNV), inter-patient heterogeneity can be found. Some of these mutations are thought
to bear disease-driving effects [308], but they likewise appear subclonal (see the dis-
cussion in section 4.4.8). Subclonal appearance again exemplifies intra-patient hetero-
geneity.

In AL, only few studies with small numbers of patients have investigated alterations
like SNV [36, 230, 254], in part only selecting several (n = 10) interesting genes [254].
As part of this thesis, the largest and most comprehensive analysis will be undertaken.

Altered- or overexpression of genes
In MM, genetic alterations frequently directly or indirectly influence gene expression,
as exemplified above in case of t(11;14) and aberrant CCND1 expression mediating cell
cycle entry [20, 156, 265]. Other functional examples comprise increased angiogene-
sis [127, 156] and bone turnover, the latter leading to osteolytic lesions as hallmarks
of bone marrow microenvironment transformation [156, 182, 294]. Malignant plasma
cells change the balance between pro-angiogenic and anti-angiogenic cytokines that
influence the microenvironment with increasing tumor mass. They express at least one
pro-angiogenic gene aberrantly [127]. The Wnt-signaling inhibitor DKK1 is aberrantly
expressed by malignant plasma cells in patients with bone lesions [294] and inhibits
osteoblast formation [182]. HGF inhibits the development of osteoblasts [282]. Like-
wise, mutations in signal transduction pathways are able to alter (downstream) gene
expression. Examples include the NF-κB (BIRC2, BIRC3, CYLD, TRAF3) and the
MAPK/ERK (KRAS, NRAS, BRAF) signaling pathways [45, 185, 307]. Other affected
pathways comprise RNA processing, via mutations in genes for RNA binding pro-
teins like DIS3 and FAM46C, [45] or apoptosis via mutations in members of the BCL2

family of apoptosis regulation genes [44]. Loss of function mutations in the histone
demethylase KDM6A [45, 302] can interfere chromatin remodeling.

In AL, gene expression data were previously only reported in small patient cohorts in
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comparison to MM and BMPC [1, 6, 160, 230], i.e. for 24, 16, 9, or 41 AL patients.
Besides that, a set of four genes was investigated in 53 AL patients by RT-qPCR,
and for 16 patients by DNA microarray [335]. Comparisons of different malignant
plasma cell diseases were carried out by significance analysis of gene expression data
[1, 160, 230], or in one case, by differential expression analysis [6]. Other than the
unifying D-type cyclin expression present as well in MM, no characteristic "AL gene
(set)" could be identified. Analysis of gene expression data on the largest cohort with
samples from 196 and 124 AL patients for DNA microarray and RNA sequencing will
be carried out as part of this thesis.

1.2.4 Risk stratification

Besides CA associated with adverse prognosis (see section 1.2.3), gene expression
profiling (GEP) can also be used to a priori determine risk, in contrast to defining bio-
logical subentities and assessing their risk-association a posteriori. Whereas different
strategies exist, in principle, genes individually or as set associated with survival are
selected and grouped into a "score".

Three main strategies can be distinguished: First, scores that primary surrogate bio-
logical variables like proliferation or Myc-activation, which are afterward investigated
for association with prognosis. The first is exemplified by the gene expression-based
proliferation index (GPI) by Hose et al. [128], which assesses low, medium, and high
risk of progression by the cumulative expression of genes associated with cell prolif-
eration, serving as a biological surrogate for proliferation. As for the second, Chng
et al. [55] used a gene set enrichment analysis to find genes associated with cell cycle,
proliferation, and Myc-activation, which are overexpressed in MM, creating the Myc-
activation index (MAI) [55]. The MAI delineates patients with poor prognosis if it is
above a defined threshold [55].

The second strategy is to group myeloma patients regarding molecular plasma cell
subentities, and subsequently assess their prognosis. Based on altered gene expression
of D-type cyclins and oncogenes dysregulated by IgH-TL, the translocation/cyclin D
(TC) classification by Bergsagel et al. [20] assigns patients to eight distinct groups
[20, 54]. Alternatively, Zhan et al. [329] created the molecular classification (MC)
of MM with seven subentities based on unsupervised hierarchical clustering analysis.
Here, the three subentities MF, MS, and PR combined versus all others, delineate a
poor prognosis group.

The third strategy is to directly choose genes associated with survival: Clustering meth-
ods were used at the University of Arkansas for Medical Sciences (UAMS) encompass-
ing the expression values of 70 survival associated genes in a score (UAMS70) [272].
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The score was intended to classify patients regarding high risk disease, i.e. short over-
all survival [272]. Using k-means clustering, patients were classified in short and long
overall survival [272]. Subsequently, a PAM-based predictor was calculated [272]. The
Intergroupe Francophone du Myélome created a 15 gene model (IFM15) [68]. For ev-
ery gene in the expression data set, a univariate cox regression was performed, and
the top 15 survival associated genes were chosen to create the score, delineating high
risk from low risk regarding overall survival. For creation of the EMC92 by Kuiper
et al. [161], 92 genes were selected by a PCA analysis with a cross validation strategy.
Chosen genes were assigned with a positive or negative weighting factor, summed up
and a threshold was determined to separate high risk versus standard risk patients. The
threshold for high risk of EMC92 was defined by delineating the patients with an over-
all survival below 24 months. The risk score (RS) by Rème et al. [248] selects genes
by a running log rank test and estimates the association with prognosis for each gene.
Genes selected for the score were assigned a positive weight for poor prognosis or a
negative weight for good prognosis and summed up. The score splits myeloma patients
into three risk groups: low, medium, and high risk of progression and short survival.

Strategies to assess the risk of progression by GEP are for the first time applied to AL
in this thesis.

1.2.5 Gene expression-based risk assessment in extended clinical routine

Given the primary aim of this thesis of assessing molecular properties and progno-
sis of patients suffering from AL in relation to other malignant plasma cell diseases
including MM, prospective target assessment and multimodal prediction of survival
for personalized and risk-adapted treatment strategies in MM was conducted in the
GMMG-MM5 multicenter trial as part of this thesis, and published (Hose, D.*, Beck,
S.* [shared first-authorship] et al. [126]). A further important question here, regarding
gene expression-based risk assessment and its embedding in multimodal risk assess-
ment (i.e. combination of e.g. expression-based and conventional prognostic factors),
is whether this is applicable in extended clinical routine, e.g. in the context of a clinical
phase III trial.

Two of the above-described scores (UAMS70 and IFM15), the GPI and the two clas-
sifications (TC and MC) were previously combined to a GEP-Report (GEP-R) [198],
which could be seen as laying the basis for potential personalized and risk-adapted
treatment of single patients [126]. The GEP-R framework normalizes each sample
to the original MM reference cohort [198]. Afterwards, it calculates different GEP-
based stratifications (GPI, UAMS70, IFM15), assesses the expression of potential
target genes associated with adverse survival in MM (AURKA [129], FGFR3 [296],
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IGF1R [210]) or targets for potential immunotherapy [137, 259] (CTAG1, MAGEA1,
MAGEA3, HM1.24, MUC1, SSX2), predicts the presence of a t(4;14) from gene ex-
pression by a PAM-based predictor [121], and finally evaluates the HM metascore
(Heidelberg Montpellier meatascore) [198]. The HM metascore [198] summarizes the
GEP-based risk scores UAMS70 and IFM15, the GEP-based proliferation assessment
GPI, the International staging system [111] (ISS, described below in section 1.3), and
t(4;14) assessment into one single risk score.

1.3 Risk assessment of multiple myeloma in clinical routine

Standard for assessment of risk of progression for MM patients is currently the revised
ISS (rISS) by Palumbo et al. [234]. The rISS includes the conventional ISS score,
published by Greipp et al. [111], based on the concentration of serum albumin and
β2-microglobulin, the latter seen as a surrogate for tumor mass [111]. The rISS further
includes the presence of selected CA associated with adverse prognosis, i.e. del 17p13,
t(4;14), and t(14;16) [234].

1.4 Clinical prognostic markers in light chain amyloidosis

In AL, clinical prognostic markers for organ involvement and dysfunction are routinely
determined for heart and kidney. These markers can be combined, to delineate patients
of different risk groups.

Cardiac failure is the most frequent reason for premature death in AL [199]. Com-
monly used cardiac biomarkers are cardiac troponin T (cTnT) [71] and N-terminal
pro-brain natriuretic peptide type-B (NT-ProBNP) [231].

NT-ProBNP is a biologically inactive prohormone consisting of the 32 amino acid
polypeptide BNP secreted attached to a 76 amino acid N-terminal fragment. [33].
It is produced in response to cardiac stress [33]. NT-ProBNP is increased in serum
concentration in patients with advanced heart involvement [231]. Different prognostic
thresholds are drawn; the most frequently used is at 1800 ng/L [164].

The regulator protein cTnT controls calcium-mediated interaction between actin and
myosin [270]. It is a sensitive serum marker for cardiac injury [71]. Kumar et al. [164]
defined a prognostic threshold at 0.025 ng/mL.

The production of FLC correlates with the total tumor mass [24, 295]. Production
of FLC is measured in serum quantitatively, and the fraction and difference of in-
volved versus uninvolved chain (diff FLC) is calculated. Whereas different thresholds
in serum exist [72, 303], most frequently used is 180 mg/L [164].

10



1 INTRODUCTION

Combinations of these three serum parameters are used in three risk assessment mod-
els: The "standard" Mayo Score (2004) by Dispenzieri et al. [70], the revised Mayo
Score (2012) by Kumar et al. [164], and the "advanced" Mayo Stage III Euro Score
(2013) by Wechalekar et al. [315]. For a description, see table 1.1.

Table 1.1: Light chain amyloidosis risk assessment models: the "standard" Mayo Score (2004) by
Dispenzieri et al. [70], the "revised" Mayo Score (2012) by Kumar et al. [164], and the "advanced" Mayo
Stage III Euro Score (2013) by Wechalekar et al. [315]. NT-ProBNP: N-terminal pro-brain natriuretic
peptide type-B; cTnT: cardiac troponin T; diff FLC: difference in free light chains.

Model Marker and threshold Stage
standard NT-ProBNP > 332 ng/L I: no marker above threshold

Mayo cTnT > 0.035 ng/mL II: one marker above threshold
2004 III: both marker above threshold
Euro Mayo 2004 stage III and IIIA: below threshold
2013 NT-ProBNP > 8500 ng/L IIIB: above threshold

revised NT-ProBNP > 1800 ng/L 0: no marker above threshold
Mayo cTnT > 0.025 ng/mL 1: one marker above threshold
2012 diff FLC > 180 mg/L 2: two markers above threshold

3: all markers above threshold

Renal involvement is assessed, as in MM, by measuring the creatinine level and espe-
cially creatinine clearance [96, 131]. Creatinine is a by-product of muscle metabolism
renally excreted [96, 131]. Creatinine production and excretion depends on body mass,
age, and sex of the patient, mainly due to differences in muscle mass, and as such de-
creases with age [131]. Physiologically, in blood of male individuals levels of 0.6−1.2
mg/dL, and in female individuals 0.5− 1.1 mg/dL can be found [131]. A prognostic
threshold indicating severe renal failure is defined at 2 mg/dL [89]. Creatinine clear-
ance, as volume of blood cleared of creatinine per minute, is calculated from the con-
centration of creatinine in serum and urine, as well as the volume of excreted urine
over 24 hours. It approximates the glomerular filtration rate. The physiologic creati-
nine clearance is 110−150 mL/min for men, and 100−130 mL/min for women [110].
Any decrease in creatinine clearance indicates reduced renal function.

1.5 Treatment of multiple myeloma and light chain amyloidosis

Patients progressing to MM require treatment. The intention of treatment is to elimi-
nate malignant plasma cells and prevent patients from myeloma associated organ dam-
ages. In general, it is aimed at giving patients an intensive treatment with induction
treatment, followed by high-dose chemotherapy (HDT), autologous stem cell trans-
plantation (ASCT), consolidation, and maintenance therapy, as described in the fol-
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lowing sections 1.5.1 and 1.5.2. Patients not "fit" enough for intensive treatment, due
to general constitution or comorbidities, receive less intensive treatment, i.e. no ASCT
and frequently reduced doses of therapeutic agents (see section 1.5.3).

Pathophysiology of AL and patient prognosis are primarily determined by organ dam-
age caused by LC deposition. Median survival of AL patients varies between 12−40
months after diagnosis [199]. As signs and symptoms of AL are unspecific (see sec-
tion 1.1), the diagnosis is frequently made late, i.e. when organ dysfunctions hamper
intensive treatment (see also section 1.5.1) [107, 199, 232, 330]. Organ transplanta-
tion is often required for patients with severe organ damages, especially cardiac failure
[107, 199, 232, 330] (see section 1.5.5). Elimination or at least as deep as possible
reduction of malignant plasma cell numbers to stop LC production and concomitant
deposition is currently the main therapeutic principle [107, 199, 232, 330]. Given that
AL is a malignant plasma cell disease (to which extent molecular identical AL is to
MM will be determined in this thesis, see aims in section 1.7), treatment schemata of
MM are modified and applied [107, 199, 232, 330]. Treatment aims first at hemato-
logical response in terms of elimination of malignant plasma cells and concomitant
decrease of M-protein, especially FLC in serum and urine [107, 199, 232, 330]. The
second aim, taking more time, is the organ response, i.e. recovery of organ func-
tion [107, 199, 232, 330]. Pulmonary, renal, and cardiac toxicity of chemotherapeu-
tic agents can reduce the tolerability of treatment schemata especially in AL patients
already encountering AL derived toxicities [232]. Generally, as in MM, the basic dis-
tinction is made between patients that can be treated intensively, i.e. with HDT and
ASCT, and those in which this is not possible [107, 199, 232, 330]. To a certain extent,
molecularly defined subgroups (as described in section 1.2.3) can be used to select the
appropriate agents [26, 27].

1.5.1 Intensive treatment

This concept uses three to six cycles of induction therapy [4, 107], followed by HDT
with 200 mg/m2 melphalan (HDM) and ASCT. The induction regimen currently most
frequently applied includes a proteasome inhibitor, a corticosteroid like dexametha-
sone, and a third agent. Currently, three different proteasome inhibitors [244] are used
in upfront treatment, i.e. bortezomib [166], ixazomib [211], and carfilzomib (GMMG-
CONCEPT trial NCT03104842) [58, 285]. As third agent, either immunomodulatory
agents (IMiDs) [284] like lenalidomide and pomalidomide, or cytotoxic agents like cy-
clophosphamide and adriamycin (e.g. GMMG-MM5 trial, see section 1.5.2) are used.
IMiDs are frequently less well tolerated in AL compared to MM patients [330]. In
recent clinical trials, the administration of monoclonal antibodies against CD38 [264]
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(daratumumab [67] NCT03201965, and isatuximab [69] NCT03499808)) or against
SLAMF7 (elotuzumab [186] NCT03252600) is tested [330]. In particular, anti-CD38-
treatment is promising in AL [150, 330]. An example for an intensive regimen includ-
ing HDT and ASCT for MM is depicted in the following section.

1.5.2 The GMMG-MM5 clinical trial for previously untreated multiple
myeloma patients

In this multicenter randomized phase III trial of the GMMG, (GMMG-MM5 EudraCT
no. 2010-019173-16) [191, 203], patients were allocated to four treatment arms (A1,
A2, B1, and B2). They received two different induction treatments, either three 4-week
cycles PAd (bortezomib, adriamycin, low dose dexamethasone) (A1+B1), or three 3-
week cycles VCD (bortezomib, cyclophosphamide, dexamethasone) (A2+B2, current
GMMG standard). After induction, patients underwent stem cell mobilization and
leukapheresis for subsequent ASCT. Then HDM and ASCT were applied. Patients
not achieving a near complete response (nCR) or better receive a second HDT and
ASCT. Afterwards, all patients receive two cycles of lenalidomide (25 mg, days 1-21)
as consolidation therapy. For maintenance therapy patients receive either lenalidomide
(for the first 3 months, 10 mg/day continuously and thereafter 15 mg/day continuously)
for 2 years (A1+A2) or until CR (B1+B2). The GMMG-MM5 trial was analyzed in this
thesis regarding prospective target assessment and multimodal prediction of survival
for personalized and risk-adapted treatment strategies in MM [126] to relate respective
findings to those in AL patients.

1.5.3 Non-intensive treatment

For transplantation ineligible patients in MM and AL, bortezomib based treatment reg-
imen have long been considered standard of care [107, 243]. Recently, regimen includ-
ing the CD38-antibody daratumumab were introduced for MM, both in combination
with bortezomib based chemotherapy [193] or lenalidomid [95].

In AL, the application of treatment can improve organ function and transplant ineli-
gible patients can become candidates for ASCT [107, 192]. In very fragile patients,
a conventional cytostatic drug like melphalan is combined with dexamethasone [107].
Doses can be reduced, increasing the tolerability but decreasing the response rates
[233].
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1.5.4 Experimental treatment

Experimental treatment regimen includes the small molecule inhibitor venetoclax,
which was tested in relapsed AL patients (NCT03000660) [225]. Venetoclax shows
activity especially in patients with increased levels of BCL2, which is associated with
the translocation t(11;14) (see section 1.2.3) [165, 330].

Besides targeting malignant plasma cells as in all approaches depicted above, exper-
imental strategies reducing formation and fostering removal of amyloid are currently
in clinical testing. This comprises 11-1F4 [134, 278, 330] for removal of amyloid de-
posits (NCT02245867). Inhibition of amyloid fibril formation is currently tested in
multiple clinical trials (NCT02207556, NCT03474458, and NCT03401372) applying
doxycycline, a long known antibiotic drug [21, 151].

1.5.5 Organ transplantation

As organ, especially cardiac, function primarily determines early patient survival, or-
gan transplantation is considered for AL patients [107, 233, 330]. Kidney and heart
transplantation are preferable for patients with severe single organ involvement [233].
To prevent recurrence of amyloid deposition in the graft, preferably malignant plasma
cell accumulations should be controlled before [107].

1.6 Molecular profiling of plasma cells

For molecular profiling of (malignant) plasma cells, bone marrow aspirates were col-
lected from the iliac crest (spina iliaca posterior superior) [125]. In brief, 60− 80
ml of bone marrow are aspirated from patients diagnosed as AL, MGUS, AMM, or
MM [125, 126]. PCI is determined from bone spicules present in the first draft, the
remaining aspirate used for plasma cell purification (see section 2.1.2) [125]. Purified
malignant plasma cells are subjected to molecular profiling [125]. For this, malignant
plasma cells are spinned on glass slides and used for interphase fluorescence in situ hy-
bridization (iFISH). RNA and DNA are extracted from purified malignant plasma cells
for GEP with DNA microarray or RNA sequencing (RNA seq), as well as for whole
exome sequencing (WES) (see figure 1.1 for an overview). Samples were processed
according to the Multiple Myeloma Research Laboratory (LfM) standard operating
procedure (SOP) at the University Hospital Heidelberg [125]. Molecular profiling is
performed in extended clinical routine at the LfM. A brief outline is described in the
following. For a detailed description, see section 2.1.2 and Hose [125].
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Figure 1.1: Summary of sampling and experimental laboratory strategy. Samples and laboratory pro-
cessing are depicted in blue colored boxes, derived data in green colored boxes, and the iFISH data set
in orange colored box. Key words for methods are indicated besides the gray colored arrows. iFISH:
interphase fluorescence in situ hybridization

1.6.1 Interphase fluorescence in situ hybridization

Genetic alterations in terms of copy number alterations and translocations are assessed
by highlighting pre-determined genetic regions with iFISH [125]. For this, purified
myeloma cells are spinned and fixed to glass slides, permeabilized, and incubated with
fluorescence dye labeled DNA-probes (iFISH probes) [125]. These iFISH probes bind
to their pre-defined specific DNA region [125]. Thus, amplifications, deletions, and
translocations can be visualized at single cell level [125].

The routine turnaround time is several days only [125]. Largest disadvantages are first
that only pre-determined aberrations can be detected, and second that the increase of
assessed aberrations considerably increases the needed amount of input cells, as well
as the workload [125]. For a detailed description of the method, see section 2.1.2.

The analyses are performed in extended clinical routine in cooperation of the LfM
with the "Molekular-zytogenetisches Labor" (Prof. Anna Jauch, department of human
genetics, Heidelberg). A full list of used iFISH probes is depicted in section 2.1.2.

1.6.2 DNA microarrays

DNA microarray "chips" are glass slides, on which 54675 different clusters of 25-mer
oligonucleotides (cDNA probes) are synthesized (in the case of Affymetrix HG-U133
2.0 plus chip) [3, 125]. Each cDNA probe binds a specific RNA sequence. The cDNA
probes on the chip are organized as "match" and "mismatch" probes. This can be
used for subsequent determination of "presence" and "absence" of gene expression
(see section 2.3). In clinical routine, GEP with DNA microarrays is possible within
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four weeks, as shown and published based on this thesis [126], and it is a reasonably
expensive method costing in the range of 500 e (in academic setting ) to 2000 e
(in commercial setting). Main methodological disadvantages are a saturation of cDNA
probes, which lead to an upper bound for single expression values for highly expressed
genes, and background noise due to unspecific binding to the cDNA probes [125].

In brief, the experimental procedure is conducted as follows. Extracted total RNA is
labeled, fragmented, in vitro transcribed, amplified, and hybridized to the chip [125].
The amount of labelled RNA binding to a specific cluster is optically measured [125].
Intensities for each probe are stored per sample in a so-called "CEL" file (Affymetrix
specific format) [125].

At the LfM GEP with DNA microarrays is performed in extended clinical routine
[125, 126]. For details, see section 2.3

1.6.3 Next generation sequencing

"Next generation sequencing" (NGS) is a sequencing-by-synthesis based determina-
tion of all (or selected) DNA or RNA sequences in a sample, both in terms of nucleic
acid sequence and abundance. It can be applied at relatively low cost (500e in an
academic setting at the LfM), within a clinically reasonable time frame of four weeks
[204, 273, 301]. In the following section, the sequencing method underlying the data
used in this thesis is briefly described, for more details, see Balasubramanian [15] and
Illumina [138, 141]. The approach comprises three subsequent steps: library prepara-
tion, cluster generation, and sequencing-by-synthesis.

First, to obtain "something that can actually be sequenced" a "library" needs to be
prepared. Here, the first step is "tagmentation" during which DNA is fragmented into
pieces of around 200 bp each, called tag. RNA is previously reversely and stoichio-
metrically transcribed to DNA in case of RNA seq. During the "sample preparation",
custom sequencing adapters are ligated to both ends of each tag. Afterwards, two
indices for sample and regions complementary to the flow cell oligonucleotides are
added. The "flow cell" is a kind of glass slide or reaction chamber on which the ac-
tual sequencing is performed. It is sub-structured in lanes, with each lane containing
oligonucleotides fixed to the surface. The oligonucleotides added to the tags bind to
the complementary oligonucleotides on the flow cell.

In the "cluster generation phase", each bound tag of the library is locally amplified
by PCR ("bridge amplification"). By this method, clusters of identical sequences are
produced to enhance the fluorescence intensity in the following sequencing step.

The actual "sequencing" is performed by synthesis in cycles. Different strategies apply,
but in principle, each of the four bases A, T, G, C in a nucleotide is labeled with a
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specific fluorescence dye. After each synthesis step, the build-in bases at each of the
clusters are determined by laser excitation and specific fluorescence detection, i.e. a
high-resolution image of the flow cell is taken, and position and color of all light signals
are recorded. This visualization determines the necessity of more than one event (i.e.
incorporation of more than one labeled base) at each cluster, the reason for the need
of the previous bridge amplification. The information for each cluster is therefore the
incorporated base at each cycle until the desired number of cycles is reached and is
called a "read".

In "paired end sequencing", another bridging of the tags is applied for turning the tags
and sequencing is performed from the reverse complement strand creating "read two".
This results in a multitude of parallel produced sequencing reads each representing a
tag.

Sequencing reads are stored in FASTQ format (see section 2.4.2) in text files for each
sample. Possible target sequences for NGS are the whole genome, the protein coding
exome, or the transcriptome. At the LfM DNA (WES) and RNA are sequenced in
extended clinical routine.

RNA sequencing uses RNA reverse transcribed to DNA as input material for NGS
[140]. It allows the quantitative assessment of gene expression comparable to DNA
microarrays [138, 140]. As advantage compared to DNA microarrays, the whole tran-
scriptome can be assessed without restriction to predefined sequences [138, 140]. This
allows, in addition to the assessment of gene expression, the detection of mutations,
alternative transcripts or fusion transcripts [138, 140]. There is no saturation for a spe-
cific transcript and background noise is almost nonexistent [138, 140]. Technical bias
is however given by very high abundance transcripts (as e.g. Ig-transcripts) reducing
the detection probability of low abundance transcripts because of a predefined overall
number of sequencing reads. This is addressed within normalization [49]. As RNA
seq can use less input material (0.01 to 10 ng of RNA), it can be performed in more
samples [126, 261]. This is an advantage especially in plasma cell diseases, in which
frequently low numbers of purified malignant plasma cells are available [261].

Whole exome sequencing uses exonic DNA as input material. The protein coding ex-
ome accounts for approximately 2%−3% of the whole genome [114]. To capture only
the protein coding part, biotinylated oligonucleotide probes are used with sequences
complementary to the coding sequence of the reference genome [139]. During the li-
brary preparation, the tags containing fragmented exonic DNA are bound by the probes
and enriched with streptavidin beads binding to biotin on the probes [139]. Tags con-
taining non-exonic DNA fragments do not bind to probes and thus can be removed
from exonic DNA fragments [139]. Due to the target capturing, the amount of re-
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quired input material is larger as compared to RNA seq, i.e. routinely 50 ng of DNA
[139].
The principle aim of WES is the assessment of mutations, especially SNV, and small
insertions and deletions (InDel). Whereas not all structural alterations can be detected
by WES, the method allows detecting chromosomal gains and losses. The major ad-
vantage compared to whole genome sequencing are lower costs. To assess alterations
specific to malignant cells, called somatic variants, a corresponding non-malignant
(germline, normal) sample needs to be sequenced for each tumor sample. In this the-
sis, "somatic" is defined as only present in the tumor and not in the matched normal
sample.
Whole genome sequencing is used for assessment of mutations, also in non-coding
regions, and structural variations. As application in extended clinical routine implies a
balance of cost and experimental yield. Whole genome sequencing compared to WES
is only performed at the LfM in selected circumstances as analysis of paired samples.

1.7 Aim of this thesis

Primary aim of this thesis is to assess molecular properties and prognosis of patients
suffering from AL in relation to other malignant plasma cell diseases including MM
and its precursor state. This first comprises, as a basis to relate to, prospective target
assessment and multimodal prediction of survival for personalized and risk-adapted
treatment strategies in MM in the GMMG-MM5 multicenter trial. Second, to deter-
mine to what degree prognosis of AL patients is driven by malignant plasma cell factors
in contrast to light chain deposition-based factors, and whether both are independent.
And third, to assess the molecular properties of malignant plasma cells in patients
suffering from AL in comparison to normal bone marrow plasma cells and those of pa-
tients with other plasma cell diseases, i.e. MGUS, AMM, and MM (pathophysiology).
This comprises:

• Assessment in MM within the randomized GMMG-MM5 phase III trial for
relation to AL

1. Are gene expression-based risk assessments determining the malignant
plasma cell properties in MM as good as the current standard risk strati-
fications?

2. Is a personalized therapeutic recommendation possible by assessing the
expression of target genes?

18



1 INTRODUCTION

• Regarding prognosis of AL patients

3. What role play malignant plasma cell characteristics versus properties asso-
ciated with amyloid light chain formation and deposition (amyloidogenic-
ity)?

4. Do myeloma derived malignant plasma cell factors as proliferation or
expression-based scores also determine risk in AL?

5. Is it possible to define an expression-based risk score for AL patients, and
does it in turn conveys prognostic significance in MM patients?

• Regarding pathophysiology of AL

6. What are the differences and similarities of malignant plasma cells in AL
in relation to MM and to the precursor stages MGUS and AMM?

7. Do malignant plasma cells in AL represent a unique molecular entity in
terms of pathophysiology?

8. What "molecular age" can be attributed to the malignant plasma cells in
AL, i.e. do they resemble myeloma cells, MGUS cells, or earlier precur-
sors?

To answer these questions the worldwide largest cohort of molecular profiled patients
classified as AL, MGUS, AMM, and MM in terms of iFISH (n= 582/306/444/1691),
DNA microarray (n = 196/64/271/765), RNA sequencing (n = 124/51/140/515)
and whole exome sequencing (AL, n = 113) provided by the Multiple Myeloma Re-
search Laboratory will be analyzed.
For reaching aims 1. and 2. concerned to forming a basis for relation of AL-based
factors to risk assessment of MM, report data generated by the GEP-R [198] for a
cohort of 456 MM patients within the GMMG-MM5 clinical trial [191, 203] have to be
analyzed as part of this thesis. Results are already published in shared first-authorship
(Hose, D.*, Beck, S.* et al. [126]).
Five strategies to reach the six aims (3. to 8.) related to AL are pursued:
First, the risk of AL patients in terms of clinical prognostic factors associated with
amyloid LC deposition and malignant plasma cell derived factors will be assessed.
This includes the application of myeloma derived molecular risk factors to AL.
Second, whether gene expression-based risk assessments can be de novo defined for
AL patients will be analyzed. No such score has previously been derived. For this, a
strategy by Rème et al. [248] in collaboration with the LfM to create a risk assessment
based on gene expression and survival data will be applied.
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Figure 1.2: Outline of analyses performed in this thesis. Derived data is depicted in green colored boxes,
data sets used for analysis in orange colored boxes. Key words for methods are indicated besides the
gray colored arrows.

Third, the prognostic impact of the derived risk stratification for asymptomatic and
symptomatic myeloma patients will be determined to assess the at which degree it
depicts amyloid-specific risk versus malignant plasma cell derived risk.
Fourth, to assess pathogenesis, plasma cell properties will be assessed by transcrip-
tome profiling of the different entities. Here, gene expression is assessed by DNA
microarrays and by RNA sequencing.
Fifth, for the assessment of somatic variation of malignant plasma cells in AL versus

other plasma cell diseases, a whole exome sequencing data analysis pipeline will be
implemented (see figures 1.1 and 1.2). Subsequently, small genomic variants, i.e. sin-
gle nucleotide variants, insertions, and deletions, as well as copy number alterations
will be analyzed.
Finally, molecular findings will then be interpreted to derive a hypothesis about the
"molecular age" and the existence of an AL specific "malignant plasma cell identity".
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2 Materials and methods

The following chapter consists of a description of patients and samples, performed
computational analysis, applied methods, and tools. For sample processing methods,
see section 1.6.

2.1 Patients and samples

Consecutive 3023 patients, presenting at the University Hospital in Heidelberg or be-
ing treated within the GMMG-HD4 (ISRCTN64455289) [279] and the GMMG-MM5
(EudraCT no. 2010-019173-16) [191, 203] clinical trials, with available clinical and
iFISH data were included in the analysis. For 1296 of these, DNA microarray data
were generated. RNA seq data were available for 830 patients and WES data for 141
of these. Table 2.1 gives and overview regarding numbers of patients and samples in
the specific data set per entity. Analyses are covered by votes of the ethics commit-
tee of the Medical Faculty of the Ruprecht-Karls-University Heidelberg (ethic vote no.
229/2003 and S152/2010) and are in accordance with the Declaration of Helsinki.

Table 2.1: Patients, samples, and investigations for the whole cohort per entity and analysis method:
Samples of patients with light chain amyloidosis (AL) with subentity MGUS (ALMG) or multiple
myeloma (ALMM), monoclonal gammopathy of undetermined significance (MGUS), asymptomatic
multiple myeloma (AMM) or symptomatic multiple myeloma (MM). For comparison the variant table
of CoMMpass multiple myeloma patients (MM CP) was used. Memory B cells (MBC), polyclonal
plasmablastic cells (PPC), and healthy donor bone marrow plasma cells (BMPC) represent normal com-
partments. For comparison, human myeloma cell lines (HMCL) were used. Data for analysis were
generated from interphase fluorescence in situ hybridization (iFISH), DNA microarray, RNA sequenc-
ing (RNA seq), variant tables and copy number data from whole exome sequencing (WES).

Entity iFISH DNA microarray RNA seq WES
ALMG 264 82 57 51
ALMM 318 114 67 62
MGUS 306 64 51 -
AMM 444 271 140 -
MM 1691 765 515 28

MM CP - - - 930
BMPC - 19 10 -
MBC - 5 4 -
PPC - 5 4 -

HMCL - 54 26 -
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2.1.1 Patients characteristics

Clinical parameters describing included AL patients by disease subentity are depicted
in table 2.2. For MGUS, AMM, and MM see table 2.3. The distribution of AL spe-
cific biomarkers and staging systems is listed in table 2.4. The assessment of organ
involvement of AL patients is depicted in table 2.5.

Table 2.2: Clinical characteristics of the assessed AL patient cohort splitted by underlying disease entity
ALMG or ALMM. n: number of patients, NA: not available, AL: light chain amyloidosis, ALMG:
AL with subentity monoclonal gammopathy of undetermined significance, ALMM: AL with subentity
multiple myeloma.

AL ALMG ALMM
Variable Level n % n % n %

Sex
female 229 39.3 110 41.7 119 37.4
male 353 60.7 154 58.3 199 62.6
NA 0 0 0 0 0 0

Age
≤60 years 246 42.3 101 38.3 145 45.6
>60 years 336 57.7 163 61.7 173 54.4

NA 0 0 0 0 0 0

Type

Bence Jones 311 53.4 147 55.7 164 51.6
Double gammopathy 3 0.5 1 0.4 2 0.6

IgA 50 8.6 18 6.8 32 10.1
IgD 5 0.9 2 0.8 3 0.9
IgG 176 30.2 72 27.3 104 32.7

Other 7 1.2 4 1.5 3 0.9
NA 30 5.2 20 7.6 10 3.1

Amyloid Kappa 120 20.6 46 17.4 74 23.3
light chain Lambda 461 79.2 217 82.2 244 76.7

type NA 1 0.2 1 0.4 0 0
<10% 265 45.5 232 87.9 33 10.4

Plasma cell ≥10% 270 46.4 31 11.7 239 75.2
infiltration ≥30% 37 6.4 0 0 37 11.6

≥60% 8 1.4 0 0 8 2.5
NA 2 0.3 1 0.4 1 0.3

<20 g/L 203 34.9 90 34.1 113 35.5
Monoclonal ≥20 g/L 22 3.8 3 1.1 19 6

protein ≥30 g/L 8 1.4 0 0 8 2.5
NA 349 60 171 64.8 178 56

Urinary <500 mg/24h 465 79.9 238 90.2 227 71.4
monoclonal ≥500 mg/24h 75 12.9 6 2.3 69 21.7

protein NA 42 7.2 20 7.6 22 6.9
<2 mg/dL 497 85.4 228 86.4 269 84.6

Creatinine ≥2 mg/dL 85 14.6 36 13.6 49 15.4
NA 0 0 0 0 0 0
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Table 2.3: Clinical characteristics of the assessed patient cohort with MGUS, AMM, and MM. n:
number of patients, NA: not available, MGUS: monoclonal gammopathy of undetermined significance,
AMM: asymptomatic multiple myeloma, MM: multiple myeloma.

MGUS AMM MM
Variable Level n % n % n %

Sex
female 147 48 197 44.4 694 41
male 159 52 247 55.6 997 59
NA 0 0 0 0 0 0

Age
≤60 years 146 47.7 206 46.4 791 46.8
>60 years 160 52.3 238 53.6 858 50.7

NA 0 0 0 0 42 2.5

Type

Asecretory 0 0 1 0.2 12 0.7
Bence Jones 16 5.2 26 5.9 320 18.9

Double gammopathy 6 2 5 1.1 4 0.2
Hyposecretory 0 0 0 0 4 0.2

IgA 51 16.7 95 21.4 356 21.1
IgD 0 0 0 0 14 0.8
IgG 233 76.1 316 71.2 978 57.8

Other 0 0 1 0.2 2 0.1
NA 0 0 0 0 1 0.1

<10% 291 95.1 67 15.1 123 7.3
Plasma cell ≥10% 10 3.3 291 65.5 306 18.1
infiltration ≥30% 0 0 64 14.4 423 25

≥60% 0 0 11 2.5 378 22.4
NA 5 1.6 11 2.5 461 27.3

<20 g/L 268 87.6 234 52.7 340 20.1
Monoclonal ≥20 g/L 21 6.9 102 23 210 12.4

protein ≥30 g/L 1 0.3 82 18.5 861 50.9
NA 16 5.2 26 5.9 280 16.6

Urinary <500 mg/24h 293 95.8 379 85.4 697 41.2
monoclonal ≥500 mg/24h 3 1 35 7.9 406 24

protein NA 10 3.3 30 6.8 588 34.8
<2 mg/dL 283 92.5 426 95.9 1454 86

Creatinine ≥2 mg/dL 19 6.2 11 2.5 203 12
NA 4 1.3 7 1.6 34 2
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Table 2.4: Clinical characteristics and risk stratification of AL patient cohort, splitted by underlying
disease entity ALMG or ALMM.n: number of patients, NA: not available, AL: light chain amyloidosis,
ALMG: AL with subentity monoclonal gammopathy of undetermined significance, ALMM: AL with
subentity multiple myeloma, FLC: free light chains, cTNT: cardiac troponin T, NT-ProBNP: N-terminal
pro-brain natriuretic peptide type-B.

AL ALMG ALMM
Variable Level n % n % n %

Difference FLC

<50 mg/L 68 11.7 48 18.2 20 6.3
≥50 mg/L 140 24.1 82 31.1 58 18.2
>180 mg/L 293 50.3 96 36.4 197 61.9

NA 81 13.9 38 14.4 43 13.5

cTnT
<0.025 ng/mL 186 32 97 36.7 89 28
≥0.025 ng/mL 343 58.9 144 54.5 199 62.6

NA 53 9.1 23 8.7 30 9.4

NT-ProBNP
<1800 ng/L 210 36.1 119 45.1 91 28.6
≥1800 ng/L 348 59.8 137 51.9 211 66.4

NA 24 4.1 8 3 16 5

Mayo staging 2004

1 103 17.7 60 22.7 43 13.5
2 165 28.4 83 31.4 82 25.8
3 271 46.6 105 39.8 166 52.2

NA 43 7.4 16 6.1 27 8.5

Mayo staging 2012

0 70 12 46 17.4 24 7.5
1 76 13.1 40 15.2 36 11.3
2 128 22 57 21.6 71 22.3
3 181 31.1 63 23.9 118 37.1

NA 127 21.8 58 22 69 21.7
I 103 17.7 60 22.7 43 13.5
II 165 28.4 83 31.4 82 25.8

European staging 2013 IIIA 137 23.5 47 17.8 90 28.3
advanced NT-ProBNP IIIB 132 22.7 57 21.6 75 23.6

NA 45 7.7 17 6.4 28 8.8
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Table 2.5: Organ involvement of AL patient cohort, splitted by underlying disease entity ALMG or
ALMM. n: number of patients, AL: light chain amyloidosis, ALMG: AL with subentity monoclonal
gammopathy of undetermined significance, ALMM: AL with subentity multiple myeloma.

AL ALMG ALMM
Variable Level n % n % n %

Heart involvement
no 144 24.9 81 30.7 63 20
yes 435 75.1 183 69.3 252 80

Kidney involvement
no 234 40.3 83 31.4 151 47.8
yes 346 59.7 181 68.6 165 52.2

Liver involvement
no 460 79.4 211 80.2 249 78.8
yes 119 20.6 52 19.8 67 21.2

Soft tissue involvement
no 353 61.2 190 72.5 163 51.7
yes 224 38.8 72 27.5 152 48.3

Peripheral neuropathy
no 496 85.7 216 82.1 280 88.6
yes 83 14.3 47 17.9 36 11.4

Autonomous neuropathy
no 506 87.4 232 88.2 274 86.7
yes 73 12.6 31 11.8 42 13.3

Gastrointestinal tract involvement
no 367 63.3 169 64 198 62.7
yes 213 36.7 95 36 118 37.3

Lung involvement
no 565 97.8 258 98.1 307 97.5
yes 13 2.2 5 1.9 8 2.5

Number of involved organs
1 122 21.1 61 23.1 61 19.4

2-4 410 70.8 180 68.2 230 73
>4 47 8.1 23 8.7 24 7.6

2.1.2 Molecular diagnostics of patients

As described before and depicted in table 2.1, patient samples were processed by four
different molecular profiling methods, i.e. iFISH, DNA microarray, RNA seq, and
WES. If not otherwise specified, all procedures were performed at the LfM according
to the laboratory’s SOP [125]. See figure 1.1 for an overview.

Cell purification
After bone marrow aspiration, the bulk of the material was subjected to density gradi-
ent centrifugation, and subsequently plasma cells were purified with anti-CD138 mi-
crobeads by automated magnetic cell sorting (autoMACS Pro, Miltenyi Biotec) and
fluorescence activated cell sorting (FACSAria; Becton Dickinson) [125]. The purity of
CD138+ plasma cells was controlled, and at least 80% were required as quality mea-
sure [125]. Part of the purified CD138+ plasma cells were used for iFISH [125, 126].
Another fraction was subjected to RNA and DNA extraction and subsequently used
for DNA microarray and RNA seq, and WES, respectively [125, 126]. To perform
somatic variant calling from WES, additionally DNA from non-malignant cells of the
same patient was used.
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For comparison to different normal cellular compartments, expression data using DNA
microarrays and RNA seq of peripheral CD27+ MBC as well as in vitro generated
and differentiated PPC [212] (highly proliferative, non-malignant) were generated
[125, 264]. As highly proliferating, malignant comparator, human myeloma cell lines
(HMCL) were used [125, 264]. The HG-lines HG1, HG3, HG4, HG5, HG6, HG7,
HG8, HG9, HG11, HG12, HG13, HG14, HG15, HG17, and HG19 were generated at
the LfM [125, 264] and the cell lines XG1, XG2, XG3, XG4, XG5, XG6, XG7, XG10,
XG11, XG12, XG13, XG14, XG16, XG19, XG20, XG21, XG22, XG23, and XG24 at
Montpellier, France [213, 331]. The cell lines L363, SK-MM-2, LP-1, RPMI-8226,
AMO-1, KMS-18, JIM-3, JJN3, KARPAS-620, KMS-12-BM, ANBL-6, KMS-11,
MM1S, NCI-H929, KMS-12-PE, KMS-28-BM, OPM-2, MOLP-8, MOLP-2, KMM-
1, U266, and EJM were purchased from the German Collection of Microorganisms
and Cell Cultures, American Type Cell Culture, or Japan Health Science Research
Resources Bank.

Interphase fluorescence in situ hybridization
The iFISH panel for extended clinical routine at the LfM comprises iFISH
probes for chromosomal regions 1q21, 4p16, 5p15, 5q31, 5q35, 8p21, 9q34,
11q13, 11q22, 11q23, 13q14, 14q32, 15q22, 16q23, 17p13, and 19q13,
and IgH-TL t(4;14)(p16.3;q32.3), t(11;14)(q13;q32.3), t(14;16)(q32.3;q23), and
t(6;14)(p21;q32.3) (Poseidon Probes, Kreatech) [125]. IgH-TL with unknown part-
ners were identified with the IgH-rearrangement probe (Poseidon Probes, Kreatech).
Hybridization of iFISH probes (Kreatech and Meta-Systems) to CD138+ plasma cells
was carried out according to manufacturer’s instructions.

HRD was assessed according to Wuilleme et al. [323]: A sample was termed hyper-
diploid if gains in two of the three chromosomes 5, 9, and 15 were detected [323]. The
percentage of cells carrying a specific aberration were used to define the clonality of
an aberration [222]. If above 60% of cells carry a specific aberration, it was termed
clonal, in the range of 20%−59% of cells it was termed subclonal [222]. The percent-
age of malignant plasma cells was estimated by the fraction of cells harboring the most
frequent aberration [222].

DNA microarray
RNA was extracted from CD138+ plasma cells samples with the RNeasy Mini Kit
(QIAGEN) [125–127, 129, 266]. Labeled cRNA was generated using the small sample
labeling protocol vII (Affymetrix), fragmented, and hybridized to DNA microarrays
(HG-U133 2.0 plus, Affymetrix) according to manufacturer’s instructions [3].

26



2 MATERIALS AND METHODS

RNA sequencing
For RNA seq, 5 ng of total RNA were used for full-length double-stranded cDNA
preparation [259, 261, 262]. Amplification was performed using the SMARTer Ultra
Low RNA Kit (Illumina) [259, 261, 262]. The Libraries were prepared from 10ng
of fragmented cDNA following the NEBNext Chip-Seq Library Prep protocol (New
England Labs) [259, 261, 262]. Sequencing was done on an Illumina Hiseq2000 with
2 ∗ 50 bp or 2 ∗ 75 bp paired-end reads [259, 261, 262]. FASTQ files that contain the
sequencing reads were prepared with Illumina bcl2fastq software [259, 261, 262].

Whole exome sequencing
WES was performed in extended clinical routine at the LfM by the following method:
Exome capture and library generation were performed from 10− 50 ng of extracted
DNA using the Nextera Flex Exome Enrichment Kit (Illumina) according to the man-
ufacturer’s instructions [139]. Libraries were prepared as 2 ∗ 151 bp paired-end reads
and sequenced using an Illumina Novaseq 6000 sequencer. A mean read coverage of
30x was aimed at. The Illumina sequencing software HCS (version 1.4.0) and basecall
software RTA (version 3.3.3) were used. Raw sequencing results were processed with
the Illumina bcl2fastq software (version 2.20.0.422).

2.2 Computational and statistical methods

Computations were performed on Ubuntu 18.04 and Windows Server 2012 using freely
available software. If possible, parallelization of the code was realized using GNU
parallel [288] on the Ubuntu 18.04 operating system. A complete list of the used tools
is depicted in supplementary table A.1.

Subsequent statistically analysis and graphical interpretation of results were made in R
[239]. Within R, pre-build analysis methods are bundled up in packages. For biological
questions, the Bioconductor project [105] offers additional R packages. For the list of
used R packages, refer to supplementary table A.3.

Statistical methods
Comparisons of two groups with nominal data were performed with Fisher’s exact
test [5] for 2 x 2 contingency tables (see example table 2.6) or Pearson’s χ2 test [5] for
larger contingency tables. The magnitude of differences between groups were depicted
by odds ratio (OR), see formula 1. The overlap rate (efficiency) was calculated from
2 x 2 contingency tables with formula 2. It contains the percentage of overlaps between
two groups.
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For testing of sorted differences among ordered groups, a Jonckheere-Terpstra test
[144, 268] was applied. The number of permutations for the reference distribution was
set to 1000 to obtain a permuted p-value if the number of analyzed samples was larger
than 100.

Table 2.6: Example of a 2 x 2 contingency table for calculating Fisher’s exact test, odds ratio, and
efficiency.

Number of patients
in group Y not in group Y

in group X a b
not in group X c d

OddsRatio =
a/b
c/d

=
a∗d
b∗ c

(1)

E f f iciency =
a+d

a+b+ c+d
(2)

For the depiction of metric data, boxplots were used. The boxes range from the 25%
quantile over the median to the 75% quantile. This defines the interquartile range
(IQR). The lower and the upper whiskers correspond to 1.5 x IQR. The notches at the
median value depict the 90% confidence interval for the median. For the comparison
of metric values in the boxplots, Wilcoxon’s rank sum test [16] was applied.

Fisher’s test (F test) was applied to compare variances of two groups of metric data
[97].

A difference was termed significant if the p-value of the respective test was ≤ 0.05.
Corrections for multiple testing were performed using the Benjamini-Hochberg (BH)
method [18].

Survival analysis
To assess the effect of a variable in disease progression, survival analysis was per-
formed. Survival data were collected for all patients in the study cohort. Survival data
consists of a time span and an outcome status that indicates if the event occurred. The
time span is the interval from diagnosis to specific event, e.g. disease progression or
death. If no event occurred at the end of the time span, the patient is censored. In
overall survival (OS) analysis, the measured status is the death of the patient. For pro-
gression free survival (PFS) of MM patients, a relapse of the disease or patient’s death

28



2 MATERIALS AND METHODS

is considered as event. For AMM patients, progression to therapy requiring, symp-
tomatic MM or the patient’s death is considered as event.
A formula was constructed between the survival data and the variable of interest to re-
ceive an estimate. For survival curves and median time to event, the estimate was com-
puted with nonparametric survival estimates for censored data using the Kaplan-Meier
method [98, 149] in R. In the plot, the time period in years is marked on the x-axis, the
survival rate in percent is depicted on the y-axis. If a patient had an event, the curve
drops, if a patient was censored, a crossing vertical line is drawn at the respective time-
point. The Log-rank test was performed per analysis to test for difference between the
curves [120]. A difference was termed significant if the p-value was ≤ 0.05. Median
survival time for a variable was measured as the time point at which the curve meets
the 50% of the survival rate. Survival rates, describing the percentage of patients not
showing an event in accordance with the definition above, were assessed after two and
five years.
Based on Cox’s proportional hazard model, univariate and multivariate survival re-
gression analysis were performed [8, 292]. As univariate variables, categorical groups
with multiple levels were used. In multivariate analysis, several univariate groups were
compared. The magnitude of difference between two levels of the groups was calcu-
lated as hazard ratio (HR). The hazard describes the risk to experience an event at a
time point t and is written h(t). It can be interpreted as actual mortality rate. In formula
3, the calculation of the HR is described for the two groups a and b. Here, a HR > 1
indicates that the risk in group b is higher than in group a, and vice versa for a HR < 1.
A HR of approximately 1 implies no difference between the mortality rates of the two
groups.

HazardRatio =
hb(t)
ha(t)

(3)

To determine significance of the HR, a Wald test was applied [306]. The reliability of
a significant HR is bound to the proportionality between the two assessed groups in the
time span and was controlled [8, 292]. In the multivariate Cox regression, a significant
HR indicates that the investigated variables are independent predictive.
An integrated Brier score was calculated to evaluate the prediction accuracy for prog-
nostic risk assessments [208, 260, 297]. As input, Cox’s proportional hazard models
are suggested. For cross validation, a subsampling parameter of 2/3 and a bootstrap-
ping parameter of 1/3 of the complete test cohort are recommended [208]. Signifi-
cance of the Brier score was determined by the van de Wiel test [297].
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2.3 Gene expression profiling with DNA microarray

GEP data from DNA microarray were available for 196 patients with AL, 64 with
MGUS, 271 with AMM, and 765 with MM (see table 2.1). As a reference, GEP for
HMCL (n = 54), BMPC (n = 19), PPC (n = 5), and MBC (n = 5) were used.

Preprocessing was performed using the just.gcrma function from the gcrma [321,
322] package in R. The function applies a background correction, normalization, and
log transformation to the basis of 2, converting the raw intensities to expression values
for every gene. It uses the robust multiarray average method (RMA), in awareness of
the GC content. For background correction, experimental gained reference values for
non-specific binding are implemented to determine the amount of background noise for
every probe. The values are normalized to all CEL files in the investigated cohort and
subsequently log-transformed to the basis of 2, with results being termed "expression
values".

After normalization, a batch correction with ComBat [143], which uses a nonpara-
metric Bayesian approach to filter batch effects of known batches, was applied. This
was necessary due to the usage of different IVT labelling kits for preparation of the
different microarrays over time as implied by the manufacturer due to changes in the
availability of kits.

The expression values of the gcrma normalized microarray data are subject to back-
ground noise. To distinguish whether an observed expression of a gene is plausible, the
"presence and absence of negative strand matching probes" method (PANP) [312, 313]
was applied. "Negative strand matching probesets", i.e. those being inherently with-
out a hybridization partner, are used to calculate a matrix of p-values for the expression
values in the given expression data. From the population of p-values, a loose and a tight
cutoff value are determined for every gene. In this thesis, the loose cutoff was used to
determine if an expression value was present or absent. A probe with an expression
value above the cutoff was termed "present" and below the cutoff as "absent".

A different normalization with the mas5 function from the affy R package [32, 103]
was performed, as being necessary for calculation of the UAMS70 score [272], the
Myc-activation index [55], and the molecular classification [329] (described in section
2.3.2). Mas5 strictly subtracts the values of the mismatch probes from the perfect
match probes. Mismatch probes have one exchanged nucleotide and should therefore
not bind (or at least less) specifically [3]. In contrast to the gcrma normalization, mas5
normalizes every sample independently and does not perform a log transformation.

The gcrma and the mas5 normalized expression values of the complete cohort were
used for calculating expression-based risk scores and classifications, as outlined in
section 2.3.2, and for dimension reduction methods, described in section 2.5.1.
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2.3.1 Clinical risk assessment by the GEP-Report

Analyses of reports generated by the GEP-R framework [198] were published as part
of this thesis [126]. Normalization to a reference cohort of 262 MM samples, by
the GEP-R, improves comparability and enables to report prospective GEP-based risk
stratification to each patient in a clinically reasonable time frame considered as during
the first cycle of induction therapy [126, 198].

The risk assessments calculated by the GEP-R were, among others, compared by the
Brier score according to their prediction accuracy (as described above in section 2.2).
For this, a subset of 451 patients with complete prediction information (GEP-R and
rISS) was used within a 69/73 month period for evaluating the performance of risk
assessment regarding PFS/OS. As input for cross validation, a subsampling parameter
of 301 and a bootstrapping parameter of 150 were chosen, based on the sample size
(described in section 2.2).

2.3.2 Myeloma derived gene expression-based risk assessments

Normalized GEP data were used to calculate risk scores and molecular classifications
previously published for MM. Six different scores and two classifications were used:
to assess risk by biological variables, the gene expression-based proliferation index
(GPI) by Hose et al. [128], created at the LfM, and the Myc-activation index (MAI) by
Chng et al. [55] were calculated. For classifications, the translocation/cyclin D (TC) by
Chng et al. [54] and the molecular classification (MC) of multiple myeloma by Zhan
et al. [329] were computed. The respective risk scores are the UAMS 70-gene score
(UAMS70; University of Arkansas for Medical Sciences) by Shaughnessy et al. [272],
the IFM 15-gene score (IFM15; Intergroupe Francophone du Myélome) by Decaux
et al. [68], the EMC92 by Kuiper et al. [161], and the Risk-score (RS) by Rème et al.

[248]. For more details on the scores and classifications, see section 1.2.4.

GPI, TC, MC, UAM70, and IFM15 are all combined in the GEP-R reporting tool, pre-
viously developed by Meissner et al. [198] at the LfM and used in the GMMG-MM5-
trial. Application and respective analysis are part of this thesis and being published in
shared first authorship Hose, D.*, Beck, S.* et al. [126].

In this thesis, the analysis comprises a comparison of the proportions of the score and
classification assessments in AL versus MGUS, AMM, and MM, as well as AL under-
lying subentities ALMG and ALMM. Additionally, the assessments were compared
to AL specific clinical characteristics, i.e. presence of heart involvement, NT-ProBNP
level, difference of FLC level, AL type, and creatinine level substratified by AL suben-
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tities ALMG and ALMM. Finally, for the AL patient cohort, association of every score
and classification with OS was assessed.

2.3.3 New risk assessment for light chain amyloidosis

The Heidelberg AL score (HDAL) [17] was created at the LfM within this thesis, ac-
cording to a strategy by Rème et al. [248]. The score categorizes patients into three
distinct groups based on gene expression and clinical outcome. For the score, 59 prog-
nostic genes were selected, 15 of them associated with good prognosis and 44 with
poor prognosis in the AL patient samples of the training group. Information on the
prognostic genes are described in supplementary table A.12. The score was analyzed
in analogy to the MM scores, and its prognostic value was tested against the current
standard AL stagings. The list of prognostic genes was analyzed according to their role
in plasma cells and cellular pathways by gene set enrichment analysis with metascape
[337] (see section 2.5.6). Using this approach, it takes about one minute to classify a
new patient sample. The code is depicted in supplement B.1.

2.4 Next generation sequencing

In this thesis, RNA seq data of 830 and WES data of 141 patient samples were analyzed
(see table 2.1). Sequencing data were generated as described in section 1.6.3 and 2.1.2.

2.4.1 Human reference genome

The human reference genome FASTA file 2 (GRCh38; release 77) was downloaded
from Ensembl [328]. It was the latest available version of human reference genome,
is approximately 3.6 billion base pairs long, and contains annotations for more than
twenty thousand coding genes. Only the primary assembly, which is not influenced by
the changes of the routinely released patches, was used for sequence alignments.

2.4.2 Sequencing file formats and quality assessment

FASTQ format
The sequencing reads were preprocessed by the Illumnia bcl2fastq software to FASTQ
format [57] and saved in compressed text files.
Every read in a FASTQ file consists of four text lines:
1. Sequence read identifier, starting with an @ symbol

2Ensembl: human reference genome FASTA; Online resource: ftp://ftp.ensembl.org/pub/

release-77/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.

gz; Status: 2015-10-01, 13:46
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2. Sequence (the four bases A, G, T, and C and N for "unsure" bases)
3. Quality score identifier line (contains only a + sign)
4. Base quality score (Phred score; one symbol encoding quality for each base by
Illumina 1.9 encoding)
See short example read in code 2.1. Base quality is depicted by Illumina 1.9 encoding
and is explained below and in table 2.7.

1 @NS500188:53:H3J5VBGXX:1:11101:25611:1537 1:N:0:GCTACGCT}

2 CCTCAAAACACCTGAGTTTAGTTCTTGCCCAGACCTGGAAAGCTAAGGACACACCTCCGATTTT}

3 +

4 AAAAAFFFF.FFFFAFFAF.FAAFF7FFFFAAFFFFFFFFFFFF.FFFFFAFFFFFFFF.FFFF

Code 2.1: Example sequence read in FASTQ format. For explanation, see text and table 2.7

Base quality
Within the sequencing process, the base is identified by the intensity of a fluorescence
signal in the cluster of the read sequence [141]. Afterwards, the Illumina sequencing
software calculates the expected base and a base quality, the Phred scaled base quality
score [92, 93]. The Phred score determines the error probability for a base call [92, 93].
Reads with a mean base quality below 10 were dismissed in the subsequent analyses.
For overview of the error probability of the different Phred scores, see table 2.7. In
every read, one symbol for a Phred score is encoded by Illumina 1.9 encoding [92, 93,
181]. See the last row of the example read in code 2.1.

Table 2.7: Error probability of different Phred scaled base quality scores and the resulting base call
accuracy in percent.

Phred quality score Probability of incorrect base call Base call accuracy
10 1 in 10 90%
20 1 in 100 99%
30 1 in 1,000 99.9%
40 1 in 10,000 99.99%
50 1 in 100,000 99.999%

Sequence alignment format
The alignment is stored in the sequence alignment map (SAM; human readable) format
or its compressed binary version (BAM) [181]. Read information from the FASTQ file
[57] are enriched with information from the alignment step [181] (further described in
section 2.4.3 and the alignment part in section 2.4.4). The SAM/BAM file consists of
an optional header section and an alignment section [181]. The header lines start with
an "@" symbol and contain information on the preprocessing of the alignment and the
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used programs [181]. In the alignment section, every mapped read is written in one
line with single fields tab separated [181]. Eleven fields are mandatory, describing the
read, the alignment and further information for subsequent analysis tools [181].

The aligner determines a best mapping position for every read in the reference genome,
calculates a mapping quality per read, and saves the information about the read map-
ping direction, mismatching bases, insertions, and deletions [181].

The mapping quality is Phred scaled like the base quality [92, 93, 181]. It reflects the
probability that a read is misplaced, e.g. a multiple mapping read receives a mapping
quality of zero [181].

2.4.3 RNA sequencing analysis

The RNA seq analysis pipeline was generated for MM patient samples by Martina
Emde [90] at the LfM and applied to AL patient samples in this thesis. Quality of
all RNA seq FASTQ files was controlled and files of insufficient-quality were re-
performed [90]. For the alignment of the RNA seq reads, the STAR [76] aligner was
used. First, genome index files were generated by STAR, using the human reference
genome FASTA file (see section 2.4.1) and an additional GTF (Gene Transfer Format)
file 3 (GRCh38; release 82), which were downloaded from Ensembl [328]. The GTF
file includes annotations to all known genes and is used to map the gene name to the
position in the reference genome for further read counting. Alignments in BAM for-
mat were created using STAR with default options. STAR uses HTSeq [7] internally to
count the reads per gene with the union method. Read counts of technically replicated
BAM files were summed up per patient sample. Then, read counts were saved together
in a matrix, with each column representing a sample and each row representing a gene.

Afterwards, unstranded read counts were normalized with edgeR [49, 195, 251] for
expression analysis. Normalization factors were determined with the trimmed mean of
M-values method [49, 195, 251]. The raw read counts were adjusted to library size and
afterwards normalized with the "counts per million" (CPM), and the "reads per million
per kilobase" (RPKM) methods [49, 195, 251]. The RPKM method takes the gene
length into account, which is an advantage for comparisons between different genes,
but not between different samples [252]. As expression values per gene, normalized
counts were log transformed to the basis of 2 with a prior count of 1.

Both, i.e. CPM and RPKM normalized expression values, were used as gene expres-
sion of mutated genes in the variant table, described below in part "final variants" in
section 2.4.4. CPM normalized expression values were used for dimension reduction

3Ensembl: human reference genome GTF; Online resource: ftp://ftp.ensembl.org/pub/

release-82/gtf/homo_sapiens/Homo_sapiens.GRCh38.82.gtf.gz; Status: 2015-10-05, 09:19
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analysis, described in section 2.5.1, analysis of Ig gene expression, described in sec-
tion 2.5.3, and to determine if gene expression is altered in CNA, described in section
2.5.4. Read counts were used for differential expression analysis as described in sec-
tion 2.5.2. For references of used tools in the RNA seq pipeline, see supplementary
table A.1 and A.3.

2.4.4 Variant calling pipeline

The following section describes the variant calling pipeline created in this thesis and
applied to 113 AL patient samples. The complete pipeline from raw FASTQ files to the
final table of variants is depicted in figure 2.1. To speed up computations, individual
steps were executed in parallel using GNU parallel [288]. For references of applied
tools used in this pipeline, see supplementary table A.1.

Quality control and read trimming
The quality control of sequencing data is important, as for confident variant calling, e.g.
in mutation detection, a high quality of sequencing reads is essential. Sequencing reads
of low quality, adapter sequences, and common sequencing errors can be filtered or cut
out. For downstream analysis tools, for example the aligner, a higher read quality and
no or a low sequencing adapter content led to a more precise alignment. The quality of
the sequencing reads was controlled with the Fastqc [9] and fastp [47] software. Raw
FASTQ files were used as input and a quality profiling was implemented before and
after read trimming. Reads were trimmed and filtered with fastp [47] using default
options, according to Chen et al. [47] (supplementary code B.2 line 28). Sequencing
adapters were automatically detected and trimmed [47]. "Bad" reads, which were too
short, of too low quality, or had too many N bases in the read, were filtered out [47]: a
read was determined as too short, if its length was below 15 bases [47]. If a base had a
Phred scaled quality score below 15, it was discarded [47]. A single read could contain
up to 40% of low-quality bases before being discarded [47]. Reads were filtered out if
a read contained more than 5 N bases [47].

The assessment of sequencing quality was continued regarding the alignments (see
figure 2.1). Reports and metrics were generated with Picard [38] (supplementary code
B.3 line 46), GATK [196] (supplementary code B.3 line 60), samtools [181] idxstats
(supplementary code B.4 line 16), and samtools [181] stats (supplementary code B.4
line 18) for alignments. The coverage of the targeted exome for every alignment was
assessed with Alfred [246] (supplementary code B.4 line 30). Alfred uses coordinates
for all genes from the reference genome as exome target [246].
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Quality control FastQC

Read trimming fastp

Alignment Bwa-mem

Preprocessing Samtools view

Whole exome FASTQ reads

Picard MarkDuplicates

Structural aberrations

Variant calling

Trimmed FASTQ reads

Final variants

Variant annotation

SNV and small InDels

fastp

False positive filter

Read counting

GATK InDel realignment

Final alignments

Samtools sort

Manta

VarScan2 Strelka Seurat

Ensembl vep

VarScan2 fpfilter

Bam-readcount

Samtools stats AlfredQuality control

Figure 2.1: Flowchart of used variant calling pipeline. Input, intermediate, and final data are depicted
in green colored boxes, the respective processing step, described in section 2.4.4, is depicted in yellow
color, and the name of the tools in light yellow color. For references of applied tools used in this pipeline,
see supplementary table A.1

With the MultiQC [91] tool, quality reports from multiple files from different report
generating tools were collapsed to a summary report on all samples.
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Alignment
After preprocessing the reads, the remaining high quality trimmed reads were aligned
(see figure 2.1). Alignments were saved in the SAM format [181] (see section 2.4.2).
Reads were mapped to a reference with the objective of the "best" match [179, 180].
Taking mismatching bases, insertions, and deletions into account, the aligner deter-
mines where each read maps best to the reference [179, 180].

The alignment of FASTQ files to the human reference genome was performed with
bwa [179, 180], more specifically with the bwa mem command (see supplemental code
B.3 line 39). The bwa mem aligner is designed for reads in a range of 70 bp to 1 Mbp
to a known reference genome [179, 180]. It is suggested as ideal for the subsequent
calling of variants like SNV and InDel [179, 180]. It is based on the "Burrows-Wheeler
transformation" [40], a block sorting data compression method, and on the "finding
super-maximal exact matches" (SMEM) algorithm [178, 179].

For a fast and accurate alignment, the generation of index files from the reference
genome is helpful. The bwa index command uses the "Burrow-Wheeler Transfor-
mation Smith-Waterman" (BWT-SW) method [178, 179]. This creates a bidirectional
FM-index [180] (Ferragina-Manzini), which speeds up computations for the price of
an increased memory requirement (see code in supplement B.3 line 36) [178, 179].

The bwa mem aligner is the most often recommended and used aligner for WES [102],
including large-scale sequencing projects, e.g. 1000Genomes [14].

Processing alignments
Variant calling algorithms recommend preprocessing of alignments before calling vari-
ants [102, 154] to reduce bias introduced by sequencing. The decision whether a mis-
match base is a true mutation or a sequencing error depends on several criteria, e.g.
base quality, mapping quality, or position in the read (see in section 2.4.2 the parts on
sequencing quality).

The bwa alignment in SAM format was directly piped to samtools to skip unnecessary
memory operations. Reads were compressed to BAM format with samtools view

[181] and sorted with samtools sort (supplemental code B.3 line 39). Compression
to BAM format and sorting saves hard disk space and computing time of downstream
tools.

As next step, read duplications were marked. Duplicated reads arise either during the
PCR amplification, or the enrichment phase before library preparation (PCR dupli-
cate), or a single large cluster is reported as two clusters by the sequencing software
(optical duplicate) (see introduction to NGS in section 1.6.3). The marking of dupli-
cates was carried out by the java (version 1.8) application Picard [38]. With the Picard
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MarkDuplicates command, duplicated reads were marked in the BAM files. Addi-
tionally, index files (BAI) were created for every BAM file (see supplemental code B.3
line 46).

As last step of preprocessing, InDel realignment was performed with GATK [196].
Mismatching bases often arise during alignment in the direct neighborhood of short
insertions and deletions. A local realignment around these regions minimizes the num-
ber of mismatching bases. For this, targets were created only for chromosomes 1−22,
X, and Y with GATK RealignerTargetCreator (see supplemental code B.3 line 57).
This command scans all given BAM files at once and creates a list of potential mis-
aligned target positions. Then, BAM files were realigned with GATK IndelRealigner

(see supplemental code B.3 line 60). In addition to the realignment, unmapped reads,
reads marked as secondary alignment, or as duplicate were removed from the resulting
BAM files with the -rf option, to save hard disk space. The full code can be found in
supplemental code B.3.

Variant calling
Somatic variant calling was performed with sequencing data from tumor samples (ma-
lignant plasma cells) in relation to the respective germline samples for each patient.
The somatic variants were called by three different variant callers. For parameter ad-
justment, a minimum base quality of 13 and a minimum read mapping quality of 10
was applied. A variant was kept if it was called and passed the internal quality filters
of at least two of the three callers. This increased precision [112].

The first caller is VarScan2 [158], which runs within java (version 1.8.) (see sup-
plemental code B.5). VarScan2 uses samtools [181] pileup files. A combined pileup
file was created from the germline and the tumor BAM file pairs with the samtools

mpileup command (see supplemental code B.5 line 28). Then, the VarScan2

somatic command was used (supplemental code B.5 line 30). It performs a pair-
wise comparison of tumor versus germline by base calls and normalized sequence
depth from the pileup file. A heuristic algorithm detects variants and determines the
statistical significance by Fisher’s exact test. The variants are classified as SNV, inser-
tion or deletion. VarScan2 detects, somatic variants, loss of heterozygosity (LOH), and
germline variants. Only somatic variants of high confidence were used for downstream
analysis as assessed by the VarScan2 somaticFilter command. In addition to the
filter step with a p-value threshold of ≤ 0.05 and a minimum variant allele frequency
(VAF) of 10%, SNV near InDel were re-evaluated.

The second caller used is the java (version 1.6) application Seurat [56] (see supple-
mental code B.6), which uses the GATK [196] routines internally. It is based on a gen-

38



2 MATERIALS AND METHODS

eralized Bayesian analysis framework for somatic variant calling from pairs of tumor
and germline BAM files. Seurat calls LOH and somatic variants, which are classified
as SNV, insertion, or deletion.

The third caller is Strelka [154] (see supplemental code B.7). Strelka is a python com-
mand line tool, which runs in two steps. First, the parameters for variant calling are au-
tomatically fitted per sample and an internal score is produced. Second, the workflow
runs with the fitted parameters and determines the variants. Strelka uses a mixture-
model-based estimation. Thereby, a variant probability model is supplemented by a
final empirical variant scoring step. Before variant calling with Strelka, structural vari-
ants were called with Manta [48] (see supplemental code B.7 line 23). These were
necessary for the Strelka parameter fitting.

All used variant callers return their results in variant call format (VCF) files. VCF files
were merged per patient sample with an R script (see supplemental code B.8). Variants
were kept if they were identified as somatic and passed the caller intern filter criteria
(see supplemental code B.8 line 34 to 59 and 110 to 126). The variant tables were
reduced to one entry if a variant was found by more than one caller (see supplemental
code B.8 line 95 to 107 and 166 to 176). BED (browser extensible data) files with only
the variant positions for read counting, as well as tables with variant positions and the
alleles for false positive filtering were generated.

Variant filtering

Read counts of the DNA and the RNA tumor BAM files for each variant at the re-
spective variant position were counted using bam-readcount [175] (see supplemental
code B.9 line 25 and line 28). For bam-readcount, criteria for base quality (13) and
mapping quality (10) in DNA were the same as for the variant call, while in RNA a
mapping and base quality above 1 was considered sufficient.

Bam-readcount sums up the reads for the variant and the reference base and calculates
quality measurements like the average mapping quality, the average base quality, the
number of reads on the forward and on the reverse strand, and the average position of
the variant in the read. The subsequently used VarScan2 false positive filter fpfilter
controls these measures, related to the reliability of the detected variants. A complete
list of measurements and the respective filter criteria is depicted in table 2.8. DNA read
counts of variants were utilized by the VarScan2 fpfilter function to exclude "prob-
ably false positive" variants and to calculate the VAF. The RNA read counts were used
to determine which of the variants detected in DNA were expressed and to estimate a
VAF for RNA (see supplemental code B.9 line 30 and line 32).
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Table 2.8: Quality measurements for called variants calculated by bam-readcount used to exclude prob-
ably false positive variants with VarScan2 false positive filter

Measurement Description Filter Criterion
Count Number of reads supporting the variant

base
4

Mapping quality Minimum average mapping quality 30
Base quality Minimum average base quality 30
Strandedness Fraction of supporting reads from the for-

ward strand
1%

Read position Average variant position in supporting
reads from the ends of the read as fraction
of the read length

10%

Mapping quality difference Maximum difference in average map-
ping quality between reference and variant
reads

50

Read length difference Maximum difference in average trimmed
read length between reference and variant
reads

25

Mismatch quality difference Maximum difference in average mismatch
quality sum between reference and variant
reads

50

VAF Minimum variant allele frequency 10%

Variant annotation
To determine whether a variant is located in a protein coding part of the genome, vari-
ant annotation is necessary. Variant annotation was performed with the Ensembl vari-
ant effect predictor (vep) [197] and Ensembl [328] annotations (GRCh38; release 94)4

(see supplemental code B.11). Besides the HGNC [325] gene symbol, variant conse-
quence by Sequence Ontology [87] and default annotations, the SIFT [304] prediction,
the PolyPhen [2] prediction, the Ensembl variation database for known genetic vari-
ation, and information about allelic frequencies from different large scale sequencing
projects were included. SIFT [304] (Sorting Intolerant From Tolerant) and PolyPhen
[2] (Polymorphism Phenotyping) are prediction tools for amino acid substitutions in
protein coding regions. A calculated score predicts the impact of a mutation on the
resulting protein, and its function and is subsequently graded into categories by both
tools [2, 304].

Final variants
Annotated variants without a HGNC [325] gene symbol were excluded, and a filtering
according to the calculated consequences, defined by Sequence Ontology [87] was

4Ensembl: human reference variant annotation; Online resource: ftp://ftp.ensembl.org/pub/
release-94/variation/VEP/homo_sapiens_merged_vep_94_GRCh38.tar.gz; Status: 2018-
10-11, 14:12

40

ftp://ftp.ensembl.org/pub/release-94/variation/VEP/homo_sapiens_merged_vep_94_GRCh38.tar.gz
ftp://ftp.ensembl.org/pub/release-94/variation/VEP/homo_sapiens_merged_vep_94_GRCh38.tar.gz


2 MATERIALS AND METHODS

performed (see supplemental code B.12 line 27 and 29). Only variants with the
following annotated consequences were included: splice_acceptor_variant,
splice_donor_variant, stop_gained, frameshift_variant, stop_lost,
start_lost, inframe_insertion, inframe_deletion, missense_variant,
splice_region_variant, start_retained_variant, stop_retained_variant,
and synonymous_variant. If a variant was assigned to multiple annotations, the
one with the most severe consequence, as estimated by Ensembl [328], was used for
downstream analyses (see supplemental code B.12 line 34 to 44).

Annotation data were merged with read counts and false positive filtering results. Read
counts were used to calculate the final VAF for DNA and RNA (see supplemental code
B.10 line 28 to 31). The used formula for calculating the VAF is depicted below (4).
Only variants annotated with a coding consequence and a minimum VAF of 10% were
kept. Variation in the frequency of appearance of mutations within one patient sample,
(e.g. between different mutations) give evidence for presence of different subclones,
i.e. intra-patient heterogeneity. To clarify, if a mutation is clonal in a diploid organism
its VAF is 50% for a heterozygous and 100% for a homozygous mutation.

Variant Allele Frequency =
#Variant Reads

(#Re f erence Reads+#Variant Reads)
∗100 (4)

For every gene affected by a variant in a sample, the expression value of RNA (assessed
as described in section 2.4.3) was used as assessment whether the respective gene is
expressed, and thus taken as an indicator for the actual influence of the mutation (see
supplemental code B.12 line 58 to 70).

Per patient variant tables were merged with R (see supplemental code B.13).

2.4.5 Copy number calling

By copy number analysis, the ploidy status of chromosomal regions can be analyzed
from WES similar to the assessment of numerical CA by iFISH (described in sec-
tion 1.2.3), but with the advantage of assessing the whole exome or genome instead
of targeted regions. Parallel to calling variants, copy number calls were produced
with VarScan2 [158] (see supplemental code B.14). For this, the VarScan2 function
copynumber suggests positions for copy number alterations (CNA) between germline
and tumor in the joint mpileup file. Afterwards, the VarScan2 function copyCaller

calls the copy number in these positions and assesses whether being normal (diploid),
or if a deletion or a gain is found. Raw copy number positions created by VarScan2
were processed with the DNAcopy [269] package in R (see supplemental code B.15).
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DNAcopy merges the copy number to larger segments. These segments were plotted
with R.

Additionally, the segmentation data were used as input to GISTIC2 [201] (see sup-
plemental code B.16). GISTIC2 identifies genes in the respective CNA and produces
a score for each alteration. This score considers the amplitude and the frequency of
occurrence of a CNA in the cohort of input sample data [201]. The higher the GISTIC
score, the more distinct is the CNA in the analyzed cohort [201]. For comparison of
AL to MM, CNA were processed in the same way from the 28 MM WES samples.

2.5 Analysis of final data sets

The following section comprises a description of the analytical methods used to assess
gene expression, copy number, and variant data.

2.5.1 Dimension reduction of gene expression

Gene expression data are multidimensional: each sample contains expression values
for thousands of genes, which can be interpreted as dimensions.

To receive a measure of similarity between the different entities or groups, RV coeffi-
cients [250] were calculated by the cia function of the made4 package [65] with gene
expression data from gcrma normalized DNA microarrays (described in section 2.3).
The RV coefficient is a multivariate generalization of the squared Pearson correlation
coefficient, interpretable as a matrix correlation coefficient [277]. It ranges from 0 to 1,
with 1 indicating the highest degree of similarity between the compared groups [64].
For better comprehensible representation, dimension reduction was performed. Two
commonly applied methods were used: principal component analysis (PCA) [236]
and t-distributed stochastic neighbor embedding (t-SNE) [298, 300].
By PCA, main variables are linearly combined to principal components. These princi-
pal components are ordered by the magnitude of variance they explain in the data. The
highest amount of explained variance is given by the first principal component. Plot-
ting only the first two principal components, data can be visualized in two dimensions,
by keeping the maximum of information on the variance in the data.
T-SNE is a machine learning algorithm for visualizing high dimensional data. It iter-
atively reduces the dimensions to two vectors, which can be plotted in a scatter plot.
The parameter for the number of iterations is freely adjustable. The optimization func-
tion in t-SNE contains a random initialization. With the R function set.seed [239],
the result of random sampling is conserved by a defined starting point for the random
number generator. For the assessment of the final result, it is advised to choose a re-
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sult with a minimal Kullback-Leibler divergence (relative entropy measure) [299]. It
can be minimized by increasing the number of iterations and by varying the perplexity
parameter. By increasing the number of iterations, the Kullback-Leibler divergence
decreases. The perplexity parameter is an information measure interpretable as num-
ber of nearest neighbors [299]. It is recommended by van der Maaten [299] to vary the
perplexity only between 5−50 and to raise the perplexity if more samples are included
[314]. Too high perplexity values lead to a thorough mixing of the resulting visualiza-
tion and too low values to false clustering.
Both methods were applied to gene expression values from gcrma normalized DNA
microarrays and edgeR normalized RNA seq counts. As input, expression values per
probeset/gene and per sample were used. For PCA, following the suggestion in the
R stats package [239], expression data were scaled to have uniform variance before
performing the analysis. In t-SNE, a perplexity value of 50 was chosen, due to large
sample size in expression data. The iterations parameter was set at 5000, due to a con-
verging Kullback-Leibler divergence. To account for continuity, the same parameters
were applied to both gene expression data.

2.5.2 Differential expression analysis

Differential gene expression analysis with RNA seq data was performed with edgeR
[49, 195, 251]. For this, samples were grouped by entities: BMPC, AL, MGUS, AMM,
and MM. With this grouping design, the negative binomial (NB) dispersion from the
normalization step, and the raw counts, a robust NB generalized linear model (glm)
with the glmQLFit function was fitted. Input genes were filtered to a subset of 27341
genes with an expression value above one CPM normalized count in at least three
samples [49].
To test for significantly differentially expressed genes (DEG), the glmQLTest function,
which uses a quasi-likelihood F-test, was applied. Significant DEG were defined by
a BH-adjusted [18] p-value of ≤ 0.05. Genes were sorted according to their log fold
changes (LFC) by the topTags function. The LFC quantifies the ratio of a gene’s
median expression height between two groups. Using the glmTreat function, genes
significantly above a chosen LFC threshold can be detected. Here, a LFC threshold of
1 was applied, equivalent to a twofold difference between the groups.
The lists of DEG were annotated with the biomaRt R package [82] and the Ensembl
reference version 82 [328], of the same release as the GTF file used for annotation of
raw read counts. Comparisons between the disease entities and the BMPC are listed in
table 2.9
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Table 2.9: Differential expression analysis: Performed comparisons between disease entities AL,
MGUS, AMM, and MM, and normal plasma cells (BMPC) divided into group 1 and group 2. BMPC:
bone marrow plasma cells, AL: light chain amyloidosis, MGUS: monoclonal gammopathy of undeter-
mined significance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma

Comparison group 1 group 2
BMPC vs. AL BMPC AL

BMPC vs. MGUS BMPC MGUS
BMPC vs. AMM BMPC AMM
BMPC vs. MM BMPC MM
AL vs. MGUS AL MGUS
AL vs. AMM AL AMM
AL vs. MM AL MM

2.5.3 Immunoglobulin gene expression

For analysis of Ig gene expression, a list of respective gene segments was downloaded
from HGNC 5 [177, 325]. Of the 431 Ig gene segments in the list, 383 were detected
as expressed in RNA seq. They are grouped to Ig HC genes (n = 190, α = 2, δ =

1, ε = 3, γ = 5, µ = 1), Ig LC λ genes (n = 92) or Ig LC κ genes (n = 101). A
heatmap was created from the expression values (described in section 2.4.3) of the
detected Ig gene segments for the samples of 124 AL, 51 MGUS, 140 AMM, and 515
MM patients with the heatmap.2 function of the gplots package [311]. Internally,
unsupervised hierarchical clusterings were performed for samples and gene segments.
As clustering method, ward.2D was used, which uses the agglomerative Ward’s [220]
minimum variance method to find compact spherical clusters. For distance measuring,
the Euclidean distance was chosen. Clustering dendrograms were colored for patient
samples by disease entity, and for Ig gene segments by Ig gene group. Afterwards,
visually distinguishable clusters were cut according to their height in the clustering
dendrogram, and subsequently analyzed. As cutting height 400 for Ig gene segments,
and 200 for patient samples was applied.

2.5.4 Assessment of copy number alterations

After CNA calling, as described in section 2.4.5, calls were analyzed in threefold man-
ner. First, the disease entities AL and MM were compared regarding CNA present in
both entities. For this, odds ratios (as described in the statistics part of section 2.2)
between AL and MM for each CNA present in both disease entities were calculated.

Second, for testing if CNA translate to changed gene expression, RNA seq gene ex-
pression data (see section 2.4.3) of the respective samples and genes were screened

5HGNC: Gene group: Immunoglobulins; Online resource: https://www.genenames.org/cgi-
bin/genegroup/download?id=348&type=branch; Status: 2019-05-03, 10:55
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for up- or downregulation. For this comparison, only genes present in the expression
table of the 113 AL patient samples with median expression above 1 log transformed
and normalized count across all samples were used. This threshold was applied to
avoid false positive detection. To determine if gene expression is altered, one-sided
Wilcoxon’s rank sum tests, with alternative "greater" for genes inside a gained region
and alternative "less" for genes in a deleted region, with the expression values of sam-
ples with the respective CNA versus samples without were performed. P-values were
adjusted by BH correction [18]. The negative log10 (−log10) values of the adjusted
p-values were used for graphical depiction in a boxplot.

Third, for all AL patient samples, CNA were compared to CA assessed by iFISH for
the same cytoband. The frequency of presence of an alteration in both instances (CNA
and CA) of a sample (overlap rate, see formula 2 in section 2.2) was calculated for all
113 AL patients.

2.5.5 Analysis of variants

The final variant table, created by the pipeline described in section 2.4.4, was analyzed
in relation to the mutational load, indicated by the median number of variants per sam-
ple in each group. The different variant annotations, described in the variant annotation
part of section 2.4.4, were analyzed for all AL patient samples.

Likewise, the two possible cases of base substitution patterns, i.e. transition (Ti) and
transversion (Tv), were assessed, with the following background: purine bases adenine
and guanine consist of a fused-ring structure, pyrimidine bases cytosine and thymine
of a simple-ring. A base substitution can lead to an exchange of a base with the same
underlying ring structure (purine to purine and pyrimidine to pyrimidine) or to an ex-
change with a different ring structure (purine to pyrimidine and vice versa). The first
is called Ti, the latter Tv. Considering that there are twice as many possibilities for Tv
than for Ti, one might expect more Tv, whereas in practice the opposite is the case; Ti
are more frequent [152, 305, 332], likely due to steric similarities of the bases [63]. For
simplification, the four possible Ti are summarized together, e.g. C>T stands for C>T
and G>A, because the second Ti is complementary to the first. The same procedure is
used for Tv. Here, four of the six possible Tv can be summarized in two, e.g. T>G
stands for T>G and A>C. The function titv in the R package maftools [194] was used
for estimating the so-called "Ti-Tv bias".

Assessing whether mutational load, variant type distribution, or Ti-Tv bias are entity
specific, they were compared to MM variant data of the Multiple Myeloma Research
Foundation’s CoMMpass trial ("relating Clinical outcomes in Multiple Myeloma to
Personal Assessment of Genetic Profile") [61, 218]. The current CoMMpass release,
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IA13, includes somatic, coding, and non-synonymous variants detected in 930 newly
diagnosed MM patients (see table 2.1). The variants of the CoMMpass cohort were
detected in alignments against the hg19 reference genome that is a previous version to
the hg38 and contains less information. They differ in the exact positioning of variants
and genes, caused by adjustments from the inclusion of new information. Hence, a
direct comparison of the variants by position is impossible and only mutated genes re-
garding gene name and annotated variants can be compared. For this comparison, only
previously untreated patients of the CoMMpass cohort were used to avoid detection of
mutations potentially induced by treatment.

Further comparisons of the variant table of AL were made by screening for occurrence
of variants in 63 potential myeloma driver genes suggested by Walker et al. [308], and
for overlap with variant tables from small previously published studies [36, 229, 254]
including AL patient samples.

The variant table contains annotations for known genetic variation, i.e. the variant had
previously been detected and analyzed. The annotation was performed by the Ensembl
vep tool in the variant calling pipeline (see the variant annotation part in section 2.4.4).
For these variants, unique and stable identifier exists, e.g. from dbSNP [275] and
COSMIC [100]. Information regarding the variation represented by these identifiers
were retrieved from dbSNP6 and COSMIC7 and subsequently analyzed for selected
genes (i.e. NRAS, KRAS, and BRAF).

2.5.6 Functional enrichment analysis

Functional enrichment analysis (FEA) groups genes to clusters sharing properties that
may lead to association e.g. with disease pathogenesis. The analyses were performed
with metascape 8 [337] (see supplementary table A.1). This tool uses a variety of
databases for annotation of genes with names, translation to protein names, molecu-
lar functions, gene ontologies, and pathways, and performs a FEA. In the following,
database entries are referred as "terms". By metascape, all input genes are annotated
to Entrez Gene ID (ENTREZID) for subsequent annotation and analysis. This reduces
the number of input genes if no ENTREZID is available or multiple genes map the
same ENTREZID [337].

Functional annotation terms, used in the FEA are from gene ontology (GO) [11, 290]

6dbSNP (build 153): Online resource: https://www.ncbi.nlm.nih.gov/snp/; Status: 2019-10-
09, 09:31

7COSMIC (Release v90): Online resource: https://cancer.sanger.ac.uk/cosmic; Status:
2019-10-09, 09:45

8metascape: functional enrichment analysis; Online resource: http://metascape.org/gp/

index.html#/main/step1; Status: 2019-09-13, 16:33
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biological process (BP) with 4436 gene sets, and from the molecular signatures
database (MSigDB) [183, 184, 209] subsets Canonical Pathways [286] and Hallmark
[183]. Canonical Pathways includes 1329 curated gene sets from pathway databases
like KEGG [146–148], Reactome [94] and CORUM [255]. Furthermore, kinase class
by UniProt [247], subcellular location and protein function by Protein Atlas [135] were
annotated. A detailed table of used databases and versions is depicted in supplemen-
tary table A.2.
In enrichment analysis, a list of genes is tested against a background of genes by a
hypergeometric test [326, 337]. For FEA, all genes in the genome (i.e. GRCh38) were
used as enrichment background. The then calculated enrichment factor is the ratio of
hits for a term against the hits expected by chance [337]. Test results were adjusted
for multiple testing by BH correction [18, 337]. Enriched terms with a p-value < 0.01,
a minimum of three hits, and an enrichment factor > 1.5 were grouped into clusters
[337]. These clusters contain all terms that can be grouped together by a parent term
[337]. The term within a cluster with the smallest p-value represents the cluster [337].
FEA were performed for four sets of gene names from different analyses: First, the
overlap of genes found differentially expressed in RNA seq between BMPC versus AL
and BMPC versus MM (see supplementary table A.15). Second, four gene lists with
all DEG between BMPC versus AL, BMPC versus MGUS, BMPC versus AMM and
BMPC versus MM (for a detailed description see section 2.5.2). Third, the 59 prognos-
tic genes of the HDAL (as described in section 2.3.3 and supplementary table A.12).
Fourth, all genes, excluding Ig genes, for which at least one somatic, non-synonymous,
and expressed variant was detected in AL by WES (outlined in section 2.4.4). For
comparison, variant table of MM from the CoMMpass cohort were analyzed. Here,
the gene list was reduced to genes with at least three somatic, non-synonymous, and
expressed variants (for a description of the CoMMpass cohort, see section 2.5.5).
Terms were sorted by p-value in decreasing order, depicting the top 20 terms. Signifi-
cantly enriched terms were depicted in a heatmap for sets of gene lists. For heatmaps,
unsupervised hierarchical clustering was performed with Kappa scores [59] as similar-
ity metric. For graphical depiction, the negative log10 values (−log10) of the p-values
were used.
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3 Results

This chapter comprises: First results regarding WES measurements, i.e. quality control
information derived during variant calling, and variant type analyses (see section 3.1).
Second, the evaluation of individual GEP-based risk assessments in MM (see section
3.2) for relation and subsequent analysis in AL. And third, analyses regarding clinical
parameters, chromosomal aberrations assessed by iFISH, gene expression assessed by
DNA microarrays and RNA seq, and mutational characteristics assessed by WES that
focus on prognosis and pathophysiology of AL (see sections 3.3, 3.4, 3.5, and 3.6).

3.1 Whole exome sequencing

This section first summarizes quality measurements. Subsequently, an analysis of the
variant calling process for 113 AL patient samples is presented. Then, variants from
the CoMMpass cohort of 930 MM patients are described. Analysis of the detected
variant types is outlined at the end of the section.

3.1.1 Quality control

Table 3.1: Quality control (QC) results of FASTQ files and alignments by five tools as described in
section 2.4.4 and supplementary table A.1.

Measurement Value Tool
Per base sequence quality mean 35.3 (sd 0.3) Fastqc
Minimal sequence quality score 33 Fastqc
Per base sequence content Unusual, strong bias in base 1-15 Fastqc
Overrepresented sequences None Fastqc
Per base N content Low Fastqc
Read length 151 Fastqc
GC content 48%-50% Fastqc
Adapter Sequence detected "Nextera Transposase Sequence" Fastqc
Trimmed reads with adapter sequences mean 11,316,561 reads fastp
Trimmed bases in reads with adapter sequences mean 286,718,792 bases fastp
Filtered reads per FASTQ file mean 1.4% fastp
Sequence duplication per FASTQ 33.6% - 69.4% Fastqc
Sequence duplication per FASTQ pair 3.1% - 10.3% fastp
Sequence duplication per alignment 5.2% - 18.6% Picard
Percentage of unmapped reads < 0.1% samtools
Insert size per FASTQ pair mean 193.7 bases (range 157 - 220) fastp
Insert size per alignment median 219 bases (range 179 - 260) Alfred
Covered coding genes in GRCh38 mean 52.7% (range 48.8% - 55.2%) Alfred
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Quality control was performed regarding raw FASTQ files by Fastqc and fastp, and
regarding alignments by samtools, Picard, and Alfred at different steps of the WES
pipeline. An overview of the results is summarized in table 3.1.

The "per base sequence content" was reported as "unusual" by Fastqc in all FASTQ
files. The reason for this was a bias in the base distribution from the start of all reads
up to base 15. Read trimming with fastp eliminated this bias. In all FASTQ files,
"Nextera Transposase Sequence" adapter were detected at the end of the reads. They
originate from library preparation and should in principle already be removed by the
Illumina software. In read pairs with insert size below 151 bases (because of too short
tags during sequence tagmentation, see section 1.6.3) they were not recognized by the
Illumina software. These adapters were trimmed with fastp as well. Fastp removed
only a low percentage of complete reads (mean:1.4%, see table 3.1) per FASTQ file
and all due to insufficient quality. All FASTQ files have a similar "GC content dis-
tribution". With a mean of 49.6% (48%−50%), it was detected as "abnormal" to the
theoretical distribution, i.e. in a normal random library a nearly normal distribution
would be expected. The theoretical distribution is this normal distribution with the
peak corresponding to the overall GC content of the underlying data, see [9]. The "Se-
quence duplication level" was detected as "slightly abnormal" by Fastqc with a mean
of 52.5% and ranges from 34%− 69%. This was further monitored by fastp and Pi-
card, which both detect low (usual) levels of duplicated sequences (3%− 10% and
5%−18%).

No file needed to be removed from further analysis or had to be resequenced due to
quality issues.

3.1.2 Variant calling and filtering

Variants were called with three different variant callers (see section 2.4.4). A total
number of 1388995 potential variants in 113 AL patient samples were detected. Each
variant either being of type SNV or InDel. VarScan2 called 544132 variants, Strelka
called 735920 and Seurat called 837629 possible variants. In figure 3.1, the overlap
of called variants is depicted. Half of the variants detected by Seurat or Strelka were
discarded, as only detected by one caller. In sum, 446929 variants were called by two
or more callers, i.e. 32% of all called variants. Table 3.2 lists the respective variant
statistics.

The first step, applying VarScan2 fpfilter (see the respective part on variant filtering
in section 2.4.4), reduces the number of variants from 446929 to 253642 (57%, see
table 3.2). After annotation, 56216 variants were detected as located in the coding part
of the exome and of these, 30051 code for non-synonymous mutations. Among these
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Figure 3.1: Numbers of all called variants by overlap of variant callers VarScan2, Seurat, and Strelka.

are 370 variants in 118 Ig genes of the constant, variable, diversity and joining region
for HC and for LC, which were analyzed separately.

Table 3.2: Summary statistics of called variants in light chain amyloidosis (AL). The second column
depicts the total number of variants in the group, the following columns contain summary statistics of
variants. The first row comprises all jointly called variants in 113 AL samples, each following row
contains values for a subset of the variants, described in the first column and related to the previous row.
25% Q value of the 25% percentile (first quartile), 75% Q value of the 75% percentile (third quartile).

Variants All Mean Median Min 25% Q 75% Q Max
all 1388995 12292 8277 2776 6400 10551 94542

passed filter 253642 2244.6 384 115 298 512 34033
coding 56216 497.5 33 8 25 50 7190

non-synonymous 30051 265.9 25 3 19 39 3791
without Ig 29681 262.7 22 1 16 36 3785
expressed 4552 48.4 4.5 1 3 8.75 1100

A total number of 9842 mutated genes is detected with 29681 variants. Of these, 4552
variants were likewise detected as expressed in RNA seq in a total of 2909 genes.

3.1.3 Multiple myeloma variants for comparison

The variants and their frequency detected in AL were compared to variants detected in
930 MM patient samples (from the CoMMpass cohort, described in section 2.5.5). The
median number of variants in MM is 43 ranging from 1−1963 variants per sample. A
summary on the variants is given in table 3.3.

To compare the CNA detected in AL to MM, WES samples of 28 MM patients were
assessed in the same way as the AL patient samples at the LfM.
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Table 3.3: Summary statistics of variants in multiple myeloma (MM). The second column depicts the
total number of variants in the 930 samples, the following columns summary statistics of variants. The
first row comprises all non-synonymous variants in CoMMpass cohort variant table version IA13, every
following row contains values for a subset of variants, described in the first column, to the previous row.
25% Q value of the 25% percentile (first quartile), 75% Q value of the 75% percentile (third quartile)

Variants All Mean Median Min 25% Q 75% Q Max
non-synonymous 64954 69.8 56 2 45 71 1980

without Ig 52956 56.9 43 2 33 56 1963
expressed 18442 25.3 19 1 13 56 985

3.1.4 Variant types

The proportions of the detected variants and CNA divided by variant types for AL
and MM are depicted in table 3.4 a and b. The majority of variants (97%) are SNV
appearing in both AL and MM (cf table 3.4 a). A difference in frequency of SNV
between ALMG and ALMM is not detectable. Of the genes detected as altered in
copy number, 87% genes are gained in AL and 82% in MM (cf table 3.4 b). Same
as for SNV and InDel, a difference in frequency of CNA type between ALMG and
ALMM is marginal.

Table 3.4: Number of variants by variant type. a Number of single nucleotide variants (SNV), short dele-
tions (Del) and insertions (Ins) in 113 light chain amyloidosis (AL) and 930 multiple myeloma (MM)
patients detected by variant calling. b Number of genes affected by copy number alterations (CNA) sep-
arated as gains (Gain) and deletions (Del) in 113 AL and 28 MM. ALMG: AL with subentity MGUS,
ALMM: AL with subentity MM, MGUS: monoclonal gammopathy of undetermined significance, n:
number

a

b

Vartype AL ALMG ALMM MM
n 29681 19276 10405 64954

SNV 28880 (97.3%) 18757 (97.3%) 10123 (97.3%) 62828 (96.7%)
Del 477 (1.6%) 307 (1.6%) 170 (1.6%) 1370 (2.1%)
Ins 324 (1.1%) 212 (1.1%) 112 (1.1%) 756 (1.2%)

CNA AL ALMG ALMM MM
n 109765 44504 65261 1671

Gain 95812 (87.3%) 38356 (86.2%) 57456 (88%) 1375 (82.3%)
Del 13953 (12.7%) 6148 (13.8%) 7805 (12%) 296 (17.7%)

3.2 Individual gene expression-based risk assessment in multiple
myeloma

In this section, results from the GEP-R framework assessing individual risk and bio-
logical entity in MM within the randomized GMMG-MM5 phase III trial are presented
for relation to AL regarding the two main questions: "Are gene expression-based risk
assessments estimating malignant plasma cell properties in MM as good as the current
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standard risk stratifications?" and "Is a personalized therapeutic recommendation pos-
sible by assessing the expression of target genes?" Parts of the analyses have already
been published in the article Hose, D., Beck, S. et al. [126].

From 573 (95%) of the 604 patients, included in the GMMG-MM5-trial, bone marrow
aspirates were available and for 559 (97.6%) of these patients and malignant plasma
cells could be purified. GEP by DNA microarray was feasible in 456 (81.9%) patients
and CA could be assessed by iFISH in 99.5% of these 559 patients. All samples with
GEP passed quality control of the GEP-R [126].

Table 3.5: Univariate Cox regression analyses regarding progression free survival (PFS) of patients clas-
sified as multiple myeloma (MM) with gene expression profiling (GEP) by DNA microarray included
in the GMMG-MM5-trial (n = 456, adapted from Hose, D., Beck, S. et al. [126]). Events: number
of events per score grouping level, HR: hazard ratio, CI: 95% confidence interval for HR, p: p-value
of Wald test, Median time: median survival time in months, Survival rate: percentage of patients not
progressing after 2 and 5 years for the respective grouping level, n.r.: not reached.

Median Survival rate [%]
Group Level Events HR CI p time 2-year 5-year

GPI
low 117 49 80 42

medium 136 1.78 1.4-2.3 < .001 33 60 23
high 31 3.59 2.4-5.4 < .001 18 36 9

UAMS70
low risk 197 43 74 36
high risk 87 1.91 1.5-2.5 < .001 23 50 17

IFM15
low risk 199 44 73 37
high risk 85 1.96 1.5-2.5 < .001 25 52 15

predicted 0 245 40 70 33
t(4;14) 1 39 1.58 1.1-2.2 .008 26 53 17

HM low 22 n.r. 93 55
metascore medium 222 2.20 1.4-3.4 < .001 39 68 31

high 40 5.89 3.5-10 < .001 15 35 5

ISS
I 123 48 82 41
II 126 1.43 1.1-1.8 .005 39 68 32
III 117 1.90 1.5-2.4 < .001 26 53 24

rISS
I 76 54 84 44
II 200 1.65 1.3-2.2 < .001 37 67 30
III 56 2.66 1.9-3.8 < .001 22 47 18

The GPI is predictive for the 456 patients for OS (p < 0.001) and PFS (p < 0.001),
229/191/36 patients were classified as low/medium/high proliferative by the GPI (see
figure 3.2). A median PFS of 49/33/18 months and for OS of not reached (n.r.)/74/33
was found for low/medium/high GPI (see table 3.5, 3.6) [126].

UAM70 and IFM15 are predictive for OS and PFS (all p < 0.001) and showed com-
parable results, classifying 343 and 350 patients as high risk (see figure 3.3). Sur-
vival rates for both scores (UAMS70/IFM15) are equal with 26%/27% of low risk,
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Table 3.6: Univariate Cox regression analyses regarding overall survival (OS) of patients classified as
multiple myeloma (MM) with gene expression profiling (GEP) by DNA microarray included in the
GMMG-MM5-trial (n = 456, adapted from Hose, D., Beck, S. et al. [126]). Events: number of events
per score grouping level, HR: hazard ratio, CI: 95% confidence interval for HR, p: p-value of Wald test,
Median time: median survival time in months, Survival rate: percentage of patients being alive after 2
and 5 years for the respective grouping level, n.r.: not reached.

Median Survival rate [%]
Group Level Events HR CI p time 2-year 5-year

GPI
low 38 n.r. 94 83

medium 79 2.71 1.8-4 < .001 74 86 57
high 22 6.13 3.6-10.4 < .001 33 59 33

UAMS70
low risk 81 n.r. 92 74
high risk 58 2.67 1.9-3.7 < .001 54 77 48

IFM15
low risk 87 n.r. 92 73
high risk 52 2.46 1.7-3.5 < .001 58 76 50

predicted 0 113 n.r. 88 70
t(4;14) 1 26 1.89 1.2-2.9 .004 56 85 49

HM low 2 n.r. 98 98
metascore medium 106 9.88 2.4-40 .001 n.r. 89 68

high 31 35.55 8.5-148.8 < .001 41 64 25

ISS
I 42 n.r. 94 81
II 61 1.86 1.3-2.8 .002 n.r. 89 67
III 75 3.25 2.2-4.8 < .001 62 78 51

rISS
I 22 n.r. 95 86
II 99 2.50 1.6-4 < .001 n.r. 87 65
III 41 5.84 3.5-9.8 < .001 42 75 40

Table 3.7: Integrated Brier score for GEP-R assessed scores regarding progression free survival (PFS)
and overall survival (OS) of patients classified as multiple myeloma (MM) with gene expression pro-
filing (GEP) by DNA microarray included in the GMMG-MM5-trial (n = 456, adapted from Hose, D.,
Beck, S. et al. [126]). Score: Integrated Brier score, p: p-value.

Brier PFS Brier OS
Group Score p Score p

GPI 0.189 .08 0.135 .008
UAMS70 0.191 .06 0.139 .02

IFM15 0.192 .12 0.140 .058
predicted t(414) 0.196 .41 0.145 .12
HM metascore 0.186 .02 0.132 < .001

ISS 0.187 .03 0.137 .009
rISS 0.186 .02 0.137 .003
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a b

Figure 3.2: Survival analyses of patients classified as multiple myeloma (MM) with gene expression
profiling (GEP) by DNA microarray included in the GMMG-MM5-trial (n = 456) grouped by: a pro-
gression free survival (PFS) for GPI b overall survival (OS) for GPI. Difference between curves was
tested using Log-rank test and was termed significant if the p-value was ≤ 0.05. (adapted from Hose,
D., Beck, S. et al. [126])

50%/48% of high risk patients progressing after 2 years (see table 3.5) and 92% of low
risk, 77%/76% of patients being alive after 2 years ( see 3.6) [126].
A t(4;14) is predicted from gene expression for 53 patients. In 5 patients, the prediction
does not correspond to the iFISH results. Predicted presence of t(4;14) is significantly
associated with adverse PFS (p = 0.008) and OS (p = 0.003), see figure 3.4 [126].
The HM metascore, as a combination of GEP-based risk assessments and conventional
serum-based risk stratifications, is predictive for PFS and OS (both p < 0.001), and
classifies 58/352/46 as low/medium/high risk (see figure 3.5). The HM metascore has
the smallest Brier score for PFS (0.186) and OS (0.132), indicating the best prediction
accuracy of all stratification methods (see table 3.7) [126].
For comparison to clinical standard stratification ISS and rISS were assessed. Both are
predictive for PFS and OS (all p < 0.001, see figure 3.6), with median time to OS of
48/39/26 and 54/37/22 months for the stages I/II/III of ISS and rISS (see table 3.6).
The Brier scores of ISS and rISS are 0.187 and 0.186 in PFS and 0.137 for both in OS.
They are larger than the Brier scores for the HM metascore (see table 3.7) [126].
The GEP-R provides an assessment of expression of defined target genes (for a list
of genes, see section 1.2.5). In the analyzed cohort of 456 MM patients, 197 express
AURKA, 151 IGF1R, and 50 FGFR3, respectively [126].
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a b

c d

Figure 3.3: Survival analyses of patients classified as multiple myeloma (MM) with gene expression
profiling (GEP) by DNA microarray included in the GMMG-MM5-trial (n = 456) grouped by: a pro-
gression free survival (PFS) for UAM70 b overall survival (OS) for UAMS70 c PFS for IFM15 d OS
for IFM15. Difference between curves was tested using Log-rank test and was termed significant if the
p-value was ≤ 0.05. (adapted from Hose, D., Beck, S. et al. [126])

a b

Figure 3.4: Survival analyses of patients classified as multiple myeloma (MM) with gene expression
profiling (GEP) by DNA microarray included in the GMMG-MM5-trial (n = 456) grouped by: a pro-
gression free survival (PFS) for predicted t(4;14) (1) versus no predicted t(4;14) (0), b overall survival
(OS) for predicted t(4;14) (1) versus no predicted t(4;14) (0). Difference between curves was tested us-
ing Log-rank test and was termed significant if the p-value was ≤ 0.05. (adapted from Hose, D., Beck,
S. et al. [126])
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a b

Figure 3.5: Survival analyses of patients classified as multiple myeloma (MM) with gene expression
profiling (GEP) by DNA microarray included in the GMMG-MM5-trial (n = 456) grouped by: a pro-
gression free survival (PFS) for HM metascore b overall survival (OS) for HM metascore. Difference
between curves was tested using Log-rank test and was termed significant if the p-value was ≤ 0.05.
(adapted from Hose, D., Beck, S. et al. [126])

a b

c d

Figure 3.6: Survival analyses of patients classified as multiple myeloma (MM) with gene expression
profiling by DNA microarray included in the GMMG-MM5-trial (n = 456) grouped by: a progression
free survival (PFS) for ISS b overall survival (OS) for ISS c PFS for rISS d OS for rISS. Difference
between curves was tested using Log-rank test and was termed significant if the p-value was ≤ 0.05.
(adapted from Hose, D., Beck, S. et al. [126])
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3.3 Prognostic role of malignant plasma cell characteristics versus
amyloidogenicity

In the following section the third aim "What role play malignant plasma cell character-
istics versus properties associated with amyloid light chain formation and deposition
(amyloidogenicity)" is addressed. OS analyses were performed for AL patients re-
garding clinical parameters, including organ involvement, serum parameters, staging
systems, and tumor load. Second, regarding malignant plasma cell characteristics CA
detected by iFISH.

3.3.1 Amyloidogenicity

Prognostic impact regarding involvement of different organs is as expected, most
severely for heart versus kidney involvement (p < 0.001, see figure 3.7). NT-ProBNP
and cTnT levels, split by published thresholds (see section 1.4) are predictive as ex-
pected (see figure 3.8).

a b

Figure 3.7: Overall survival (OS) of patients classified as light chain amyloidosis (AL) grouped by: a
heart and kidney involvement b heart involvement. Difference between curves was tested using Log-
rank test and was termed significant if the p-value was ≤ 0.05. The legend beyond each plot indicates
the different delineated levels.

All three different staging methods assessed, i.e. the standard Mayo Score (2004), the
advanced Mayo Stage III Euro Score (2013), and the revised Mayo Score (2012) (see
section 1.4), all based on serum parameters, are predictive for OS (all p < 0.001), see
figure 3.9.
Co-occurrence of involved organs is frequently seen, as depicted in figure 3.10. Only
heart and kidney involvement frequently occur as single involved organ. These are the
two organs that are also to the largest proportion associated with diff FLC (see table
3.8).
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a b

Figure 3.8: Overall survival (OS) of patients classified as light chain amyloidosis (AL) grouped by: a
N-terminal pro-brain natriuretic peptide type-B (NT-ProBNP) b cardiac troponin T (cTnT). Difference
between curves was tested using Log-rank test and was termed significant if the p-value was ≤ 0.05.
The legend beyond each plot indicates the different delineated levels.

Table 3.8: Involved organs and measurements of diff FLC (difference in free light chains) in patients
classified as light chain amyloidosis.

<50 mg/L ≥50 mg/L >180 mg/L
Variable Level n % n % n %

no heart, no kidney 6 8.8 8 5.7 18 6.2
Involved only kidney 35 51.5 26 18.6 24 8.2

Organ only heart 4 5.9 34 24.3 129 44.2
heart, kidney 23 33.8 72 51.4 121 41.4

Number of 1 27 39.7 24 17.1 50 17.1
involved 2-4 34 50.0 104 74.3 216 73.7
organs >4 7 10.3 12 8.6 27 9.2
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a b

c

Figure 3.9: Overall survival (OS) of patients classified as light chain amyloidosis (AL) grouped by:
a standard Mayo Score (2004) b advanced Mayo Stage III Euro Score (2013) c revised Mayo Score
(2012). Difference between curves was tested using Log-rank test and was termed significant if the
p-value was ≤ 0.05. The legend beyond each plot indicates the different delineated levels.

Figure 3.10: Co-occurrence of involved organs, heart, kidney, liver, and others (soft tissue and gastroin-
testinal tract) in patients classified as light chain amyloidosis.
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3.3.2 Tumor load

Surrogated measures for tumor mass, i.e. PCI (p = 0.002), diff FLC (p < 0.001), and
M-protein (p = 0.01) are prognostic for OS of AL patients (see figure 3.11).

a b

c

Figure 3.11: Overall survival (OS) of patients classified as light chain amyloidosis (AL) grouped by:
a plasma cell infiltration (PCI) b difference between involved and uninvolved free light chains (diff
FLC) c monoclonal protein (M-protein). Difference between curves was tested using Log-rank test and
was termed significant if the p-value was ≤ 0.05. The legend beyond each plot indicates the different
delineated levels.

3.3.3 Chromosomal aberrations

CA were analyzed individually regarding impact on OS. In the assessed cohort, com-
prising patients under different treatment regimen, none of the CA alone is associated
with survival (see figures 3.12, 3.13).
A higher proliferation rate, as assessed by the GPI, is significantly associated with gain
1q21 in MM (p < 0.001) but not in AL (see figure 3.14).
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g h

Figure 3.12: Overall survival (OS) of patients classified as light chain amyloidosis (AL) grouped by:
a IgH-rearrangement (presence/absence) b t(11;14) (presence/absence) c t(14;16) (presence/absence)
d t(4;14) (presence/absence) e hyperdiploidy (presence/absence) f 5q31/5q35 (gain versus no gain) g
5p15 (gain versus no gain) h 15q22 (gain versus no gain). Difference between curves was tested using
Log-rank test and was termed significant if the p-value was ≤ 0.05.
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e f

g h

Figure 3.13: Overall survival (OS) of patients classified as light chain amyloidosis (AL) grouped by: a
19q13 (gain versus no gain) b 11q22/11q23 (gain versus no gain) c 11q13 (gain versus no gain) d 9q34
(gain versus no gain) e 1q21 (gain versus no gain) f 13q14 (deletion versus no deletion) g 8p21 (deletion
versus no deletion) h 17p13 (deletion versus no deletion). Difference between curves was tested using
Log-rank test and was termed significant if the p-value was ≤ 0.05.
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Figure 3.14: GPI by presence (yes) or no presence (no) of gain 1q21 in a AL (n=196) and b MM
(n=765). Significant differences, indicated by Wilcoxon’s rank sum test, are illustrated as ***, repre-
senting a significant p-value < 0.001, - indicates no significant difference. AL: light chain amyloidosis,
MM: multiple myeloma
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3.4 Gene expression-based assessment of biological variables and
risk in light chain amyloidosis

In this section the fourth aim, i.e. "Do myeloma derived malignant plasma cell factors
as proliferation or expression-based scores also determine risk in AL?" is addressed.
For this, GEP-based scores and classifications created for MM were assessed in terms
of differences in distribution between the entities and prognostic impact. As described
in section 1.2.4, three main strategies had been used in their creation. Briefly, the
first strategy based on surrogating biological variables is exemplified by GPI and MAI.
The second strategy is outlined by classification of myeloma (and in this case AL) in
molecular subentities as exemplified by TC and MC classifications. The third strategy
is represented by different algorithms of selecting genes associated with survival, i.e.
UAMS70, IFM15, EMC92, and RS scores. In the following, assessments are described
in the order GPI, MAI, TC, MC, UAMS70, IFM15, EMC92, and RS.

Table 3.9: Univariate Cox regression analyses of overall survival (OS) of patients classified as light
chain amyloidosis (AL) by GEP-based surrogates of biological variables and risk stratifications. Events:
number of events per score grouping level, HR: hazard ratio, CI: 95% confidence interval for HR, p:
p-value of Wald test, GEP: gene expression profiling by DNA microarray.

Variable Level Events HR CI p

GPI
low risk 35

medium risk 75 1.24 0.8-1.9 .3
high risk 8 3.58 1.6-7.8 .001

MAI
≤1 73
>1 45 1.42 1-2.1 .07

UAMS70
low risk 106
high risk 12 2.38 1.3-4.3 .005

IFM15
low risk 111
high risk 7 1.30 0.6-2.8 .5

RS
low risk 88

medium risk 24 1.17 0.7-1.8 .5
high risk 6 4.63 2-10.7 < .001

64



3 RESULTS

Table 3.10: Univariate Cox regression analyses of overall survival (OS) of patients classified as light
chain amyloidosis (AL) by GEP-based surrogates of biological variables, classifications and risk stratifi-
cations. Median time: median survival time in months, Survival rate: percentage of patients being alive
after 2 and 5 years for the respective grouping level, n.r.: not reached, GEP: gene expression profiling
by DNA microarray.

Median Survival rate [%]
Variable Level time 2-year 5-year

GPI
low risk 39 64 47

medium risk 43 59 43
high risk 3 21 21

MAI
≤1 52 64 47
>1 20 48 36

TC

11q13 52 63 46
6p21 31 75 47
D1 27 52 18

D1+D2 41 56 44
D2 20 46 37

FGFR3 27 50 n.r.
MAF 72 66 66

MC

CD1 n.r. 74 74
CD2 48 62 45
HY 27 60 20
LB 30 53 39
MF n.r. 80 80
MS 3 40 n.r.
PR 7 40 40

UAMS70
low risk 41 61 45
high risk 6 29 19

IFM15
low risk 39 59 44
high risk 32 56 33

RS
low risk 41 62 45

medium risk 43 51 44
high risk 3 18 n.r.
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3.4.1 Gene expression-based assessment of biological variables

Proliferation assessed by GPI
Using the GPI, 6% of 196 AL patients with available GEP and survival data are classi-
fied as high risk compared to 16% of MM patients. AL high risk patients have a very
adverse median survival time; eight of eleven patients died during the first year (see
table 3.10). Ten of these eleven patients are classified as having concomitantly being
diagnosed as myeloma (ALMM, see figure 3.15 c, supplementary table A.4). The me-
dian OS of patients grouped in low and medium risk is 39 and 43 months, respectively
(see table 3.10). The HR of low to high risk is 3.58 (p = 0.001) (see table 3.9).
Between different subgroups of AL patients, including presence versus absence of
heart involvement, levels of NT-ProBNP, TNT, or diff FLC (for thresholds see section
1.4), no significant difference in the proportions of GPI assessment could be detected
(see 3.15 a). In contrast, a significant difference in the proportions was found between
AL and MGUS, AMM and MM (see figure 3.15 c). No significant difference was
detected between AL with different underlying plasma cell disease, i.e. ALMG and
ALMM.

Myc-activation assessed by MAI
A MAI above a threshold of 1 is associated with adverse survival in MM. This was
significantly more often found in the ALMM compared to the ALMG subgroup (p <

0.01) (see figure 3.16 c). With 43% of patients, the group of patients with a MAI > 1
and subentity ALMM is nearly two times larger than in the ALMG subgroup with 22%
(p < 0.01). The proportion of AL patients with a MAI > 1 is 34% compared to 55%
within MM (p < 0.001) and 17% in MGUS (p < 0.05, see figure 3.16 c). In AL, MAI
is not associated to OS (see figure 3.16 b and table 3.9).
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Figure 3.15: Gene expression-based proliferation index (GPI). a Distribution of AL associated clinical
prognostic markers including heart involvement regarding GPI proliferation rate levels. b Overall sur-
vival (OS) of AL patients delineated by GPI proliferation rate levels. c Distribution of GPI proliferation
rate levels low, medium, and high for patients classified as ALMG, ALMM, AL, MGUS, AMM, or
MM. Significant differences, indicated by Pearson’s χ2 test, are illustrated as *, **, and ***, represent-
ing a significant p-value < .05, .01, and .001, respectively. The legend at the bottom right side of the
figure depicts GPI proliferation rate levels and AL entities. See supplementary table A.4 for frequencies
regarding a and c. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with
subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic
multiple myeloma, MM: multiple myeloma.
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Figure 3.16: Myc-activation index (MAI). a Distribution of AL associated clinical prognostic markers
including heart involvement regarding MAI levels. b Overall survival (OS) of AL patients delineated
by MAI levels. c Distribution of MAI levels >1 and ≤1 for patients classified as ALMG, ALMM, AL,
MGUS, AMM, or MM. Significant differences, indicated by Pearson’s χ2 test, are illustrated as *, **,
and ***, representing a significant p-value < .05, .01, and .001, respectively. The legend at the bottom
right side of the figure depicts MAI levels and AL entities. See supplementary table A.7 for frequencies
regarding a and c. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with
subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic
multiple myeloma, MM: multiple myeloma.
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3.4.2 Gene expression-based classifications

TC classification
The proportions of TC classes are significantly different in AL compared to MGUS,
AMM, and MM (all p < 0.001) (see figure 3.17 c). Most striking difference was
detected for the 11q13, accounting for 50% of AL patients, in contrast to MGUS (9%),
AMM, and MM (both 19%) (see figure 3.17 c, supplementary table A.5). The MAF
group in AL comprises 10% of the patients, similar to AMM (11%) and MM (8%)
but less than within MGUS (28%). The proportions of the D1 and D2 group in AL
are different compared to MGUS, AMM, and MM. The D1 group comprises 8% of
AL patients compared to 17% in MGUS, 29% in AMM, and 37% in MM. An inverse
distribution was found for the D2 group, being larger in AL (21%) compared to MM
(12%). OS is not associated with any of the TC classes either in AL or MM (see figure
3.17 b). No significant difference was detected regarding AL specific clinical factors
between TC classes (see figure 3.17 a).

MC
The distribution of groups within the MC is significantly different between AL and
MGUS, AMM, and MM (all p < 0.001, see figure 3.18 c). The CD2 group is the
largest group with 47% of AL patients, in contrast to all other entities (see figure 3.18
c, supplementary table A.6). From MGUS to AMM and MM the group size of CD2
decreases. The HY group size with 3% in AL is the smallest from all entities. The
proportion of patients in the LB group in AL (37%) is comparable to the in MGUS
(34%) and consists of twice as much patients as in MM (17%). The MF group size in
AL (3%) is closer to MM (4%) than to AMM (7%) or MGUS (16%). Very few AL
patients are classified as either MS (3%) or PR (3%), resembling the low to zero fre-
quencies in MGUS or AMM (see figure 3.18 c). None of the MC groups is associated
with adverse OS (see figure 3.18 b). No difference was detected for AL-associated
clinical factors or the underlying disease subentity (see figure 3.18 a, c).
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Figure 3.17: Translocation/cyclin D (TC) classification. a Distribution of AL associated clinical prog-
nostic markers including heart involvement regarding TC classes. b Overall survival (OS) of AL patients
delineated by TC classes. c Distribution of TC classes for patients classified as ALMG, ALMM, AL,
MGUS, AMM, or MM. Significant differences, indicated by Pearson’s χ2 test, are illustrated as *, **,
and ***, representing a significant p-value < .05, .01, and .001, respectively. The legend at the bottom
right side of the figure depicts TC classes and AL entities. See supplementary table A.5 for frequencies
regarding a and c. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with
subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic
multiple myeloma, MM: multiple myeloma.
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Figure 3.18: Molecular classification (MC). a Distribution of AL associated clinical prognostic markers
including heart involvement regarding MC classes. b Overall survival (OS) of AL patients delineated
by MC classes. c Distribution of MC groups for patients classified as ALMG, ALMM, AL, MGUS,
AMM, or MM. Significant differences, indicated by Pearson’s χ2 test, are illustrated as *, **, and ***,
representing a significant p-value < .05, .01, and .001, respectively. The legend at the bottom right side
of the figure depicts MC classes and AL entities. See supplementary table A.6 for frequencies regarding
a and c. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with subentity
MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple
myeloma, MM: multiple myeloma.

71



3 RESULTS

3.4.3 Gene expression-based assessment of risk

UAMS70
In figure 3.19 the UAMS70 score as calculated for AL is depicted; Fifteen (8%) AL
patients are stratified as high risk, significantly fewer patients compared to MM (25%,
p < 0.001, see figure 3.19 c). Thirteen of the fifteen high risk AL patients are of the
ALMM subentity (see figure 3.19 c, supplementary table A.8). Patients identified as
high risk had a significant shorter OS compared to low risk patients (p = 0.004) (see
figure 3.19 b, table 3.9, 3.10). Median OS is 41 months for patients in the low risk
group compared to 6 months in the high risk group (see table 3.10). The HR of low
to high risk is 2.38 (see table 3.9). AL specific parameters ( see section 1.4) are not
significantly differentially distributed in the proportions between low and high risk
group (see figure 3.19 a).

IFM15
The IFM15 score classifies 12 (6%) AL patients as high risk, in contrast to 25% in MM
(p < 0.001, see figure 3.20 c, supplementary table A.9). An association of the IFM15
to the OS of AL patients was not found (see figure 3.20 b and table 3.9). The median
time of OS is 39 months in the low risk group and 32 months in the high risk group
(see table 3.10). A difference in the proportions of AL specific factors in relation to
IFM15 was not detected (see figure 3.20 a).

EMC92
The EMC92 classifies all 196 AL patients as standard risk, while it classifies 74 (10%)
MM patients as high risk.

RS
Seven AL patients (4%), all classified as ALMM, were identified as being high risk by
the RS. This proportion is significantly smaller compared to the RS high risk group in
MM (8%, p < 0.001; see figure 3.21 c, supplementary table A.10). The median OS in
the high risk group is 3 months (see table 3.10). All seven patients died within the first
3 years of follow-up (see figure 3.21 b). The median survival time in the low and the
medium risk group is not significantly different with 41 and 43 months, respectively.
The HR of low to high risk indicates a 4.6 fold higher risk of death for high risk patients
(see table 3.9). A difference in the proportions of RS groups by AL specific factors
was not found (see figure 3.21 a).

72



3 RESULTS

a

b

c

Figure 3.19: UAMS 70-gene score (UAMS70). aDistribution of AL associated clinical prognostic
markers including heart involvement regarding UAMS70 risk stratification. b Overall survival (OS) of
AL patients delineated by UAMS70 groups. c Distribution of UAMS70 high and low risk groups for
patients classified as ALMG, ALMM, AL, MGUS, AMM, or MM. Significant differences, indicated
by Pearson’s χ2 test, are illustrated as *, **, and ***, representing a significant p-value < .05, .01, and
.001, respectively. The legend at the bottom right side of the figure depicts UAMS70 groups and AL
entities. See supplementary table A.8 for frequencies regarding a and c. AL: light chain amyloidosis,
ALMG: AL with subentity MGUS, ALMM: AL with subentity MM, MGUS: monoclonal gammopathy
of undetermined significance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma.
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a

b

c

Figure 3.20: Intergroup Francophone du Myélome 15-gene score (IFM15). a Distribution of AL as-
sociated clinical prognostic markers including heart involvement regarding IFM15 risk stratification. b
Overall survival (OS) of AL patients delineated by IFM15 risk groups. c Distribution of IFM15 low
and high risk groups for patients classified as ALMG, ALMM, AL, MGUS, AMM, or MM. Significant
differences, indicated by Pearson’s χ2 test, are illustrated as *, **, and ***, representing a significant
p-value < .05, .01, and .001, respectively. The legend at the bottom right side of the figure depicts
IFM15 risk groups and AL entities. See supplementary table A.9 for frequencies regarding a and c. AL:
light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with subentity MM, MGUS:
monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM:
multiple myeloma.
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c

Figure 3.21: Risk score (RS). a Distribution of AL associated clinical prognostic markers including
heart involvement regarding RS risk stratification. b Overall survival (OS) of AL patients delineated by
RS groups. c Distribution of RS low, medium, and high risk groups for patients classified as ALMG,
ALMM, AL, MGUS, AMM, or MM. Significant differences, indicated by Pearson’s χ2 test, are il-
lustrated as *, **, and ***, representing a significant p-value < .05, .01, and .001, respectively. The
legend at the bottom right side of the figure depicts HDAL groups and AL entities. See supplementary
table A.10 for frequencies regarding a and c. AL: light chain amyloidosis, ALMG: AL with subentity
MGUS, ALMM: AL with subentity MM, MGUS: monoclonal gammopathy of undetermined signifi-
cance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma.
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3.5 New gene expression-based risk assessment for light chain
amyloidosis

In the following section the fifth aim is addressed, i.e. "Is it possible to define an
expression-based risk score for AL patients, and does it in turn conveys prognostic
significance in MM patients?". For this, the HDAL score was created at the LfM as
part of this thesis (see section 2.3.3), and applied here regarding its prognostic impact
and potential interrelation with clinical risk stratification and different patterns of organ
involvement in AL patients. Subsequently, the assessments based on gene expression
data of myeloma patients described in the previous section 3.4 were compared to the
HDAL score.

3.5.1 HDAL score

The categorical HDAL stratifies 46 (23.5%) of all AL patients as high risk. Of these
seven, all with heart involvement and λ LC, were sub-stratified as ALMG (see figure
3.22 c, supplementary table A.11). Compared to the HDAL stratification of MGUS,
AMM, and MM, the HDAL groups in AL are significantly different (see figure 3.22
c). With increasing stage (MGUS to AMM to MM), the percentage of high risk pa-
tients significantly grows (Jonckheere-Terpstra test, p < 0.001). If AL patients are
sub-stratified for concomitant presence of MGUS or MM, the latter cohort shows sig-
nificantly more high risk patients (Jonckheere-Terpstra test, p < 0.001).

The ability of the derived HDAL score to predict survival in AL patients had been
validated in an independent group (n = 97, see figure 3.22 b and table 3.11). It sig-
nificantly delineates low from high risk patients with a HR of 3.8 (p<0.001, see table
3.11). The median survival time is 72/33/6 months for low, medium, and high risk,
respectively. It is interesting to denote that the HDAL score, derived on a cohort of AL
patients, is likewise predictive for AMM and MM (both p < 0.001, see figure 3.23).

Table 3.11: Univariate Cox regression analysis with overall survival (OS) of patients classified as light
chain amyloidosis (AL) included in the validation group (n = 97) by Heidelberg AL score (HDAL).
Events: number of events per score grouping level, HR: hazard ratio, CI: 95% confidence interval for
HR, p: p-value of Wald test, Median time: median survival time in months, Survival rate: percentage of
patients being alive after 2 and 5 years for the respective grouping level, n.r.: not reached.

Median Survival rate [%]
Level Events HR CI p time 2-year 5-year

low risk 22 72 67 54
medium risk 16 1.62 0.8-3.1 .14 33 69 29

high risk 14 3.80 1.9-7.6 < .001 6 34 n.r.
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Table 3.12: Multivariate Cox regression analyses with overall survival (OS) of patients classified as
light chain amyloidosis (AL) included in the validation group (n = 97) regarding Heidelberg AL score
(HDAL), AL stagings, and serum parameters. HR: hazard ratio, CI: 95% confidence interval for HR, p:
p-value of Wald test.

Variable Level HR CI p

HDAL & Euro

medium risk 1.62 0.8-3.2 .15
high risk 3.21 1.6-6.5 .001

II 2.31 0.7-7.5 .16
IIIA 3.27 1.1-9.9 .04
IIIB 5.40 1.8-16.1 .002

HDAL &
Mayo 2012

medium risk 1.87 1-3.6 .06
high risk 2.85 1.4-6 .006

1 1.37 0.3-7.1 .71
2 4.31 1-18.7 .051
3 4.34 1-18.8 .05

HDAL &
Mayo 2004

medium risk 1.73 0.9-3.4 .1
high risk 3.36 1.7-6.8 < .001

2 2.35 0.7-7.6 .15
3 4.19 1.5-12 .008

HDAL &
NT-ProBNP

medium risk 1.70 0.9-3.3 .11
high risk 3.28 1.6-6.6 < .001

≥1800 ng/L 2.84 1.4-5.6 .003

HDAL & cTnT
medium risk 1.91 1-3.7 .055

high risk 3.17 1.5-6.5 .002
≥0.025 ng/mL 2.65 1.2-6 .02

HDAL & diff
FLC

medium risk 1.63 0.9-3.1 .14
high risk 3.29 1.6-7 .002

≥180 mg/L 1.37 0.7-2.6 .34

HDAL &
Creatinine

medium risk 1.64 0.9-3.1 .14
high risk 3.95 1.9-8.1 < .001
≥2 mg/dL 0.83 0.3-2 .68
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a

b

c

Figure 3.22: Heidelberg AL score (HDAL). a Distribution of AL associated clinical prognostic markers
including heart involvement regarding HDAL risk stratification. b Overall survival (OS) of the vali-
dation group (n = 97) delineated by HDAL groups. c Distribution of HDAL low, medium, and high
risk groups for patients classified as ALMG, ALMM, AL, MGUS, AMM, and MM. Significant dif-
ferences, indicated by Pearson’s χ2 test, are illustrated as *, **, and ***, representing a significant
p-value < .05, .01, and .001, respectively. The legend at the bottom right side of the figure depicts
HDAL groups and AL entities. See supplementary table A.11 for frequencies regarding a and c. AL:
light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with subentity MM, MGUS:
monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM:
multiple myeloma.
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a b

Figure 3.23: a Overall survival (OS) of multiple myeloma (MM) patients and b progression free survival
(PFS) of asymptomatic multiple myeloma (AMM) patients for high and low risk groups as determined
by Heidelberg AL score (HDAL) risk stratification. Difference between curves was tested using Log-
rank test and was termed significant if the p-value was ≤ 0.05. The legend at the bottom depicts HDAL
groups.

A significant difference of HDAL low and high risk groups was found in AL if sub-
divided regarding diff FLC ≥ 180 versus < 180 mg/L (p < 0.001), or NT-ProBNP
levels of ≥ 1800 versus < 1800 ng/L (p = 0.004), see figure 3.22 a.
In multivariate Cox regression analyses, the categorical HDAL score is independently
predictive if tested with either Mayo or Euro scores, as well as from the biomarkers NT-
ProBNP, cTnT, diff FLC, and creatinine (see table 3.12, for definition see section 1.4).
The continuous HDAL does not correlate with any biomarker (NT-ProBNP, cTnT, diff
FLC, and creatinine) and the hazard of it significantly increases over time (p < 0.001).
The 59 microarray IDs for the prognostic genes of the HDAL score were trans-
lated to 64 unique ENTREZIDs. These were assessed by FEA, as described in
section 2.5.6. Six terms were found significantly enriched: "phagocytosis, recog-
nition" (GO:0006910), "Protein processing in endoplasmic reticulum" (hsa04141),
"ATP biosynthetic process" (GO:0006754), "negative regulation of ion transport"
(GO:0043271), "immune response-regulating cell surface receptor signaling pathway
involved in phagocytosis" (GO:0002433), and "mRNA 3’-end processing" (R-HSA-
72187). The largest group of genes, with six genes, is annotated and enriched to the
GO term "phagocytosis, recognition". HDAL genes that are Ig genes are enriched in
this term.
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3.5.2 Delineation of high risk by gene expression-based scores

Figure 3.24: a Overall survival (OS) of patients suffering from light chain amyloidosis (AL) or multiple
myeloma (MM). Difference between curves was tested using Log-rank test and was termed significant
if the p-value was ≤ 0.05.

Prognosis of AL patients is much poorer than prognosis for MM, especially during the
first 12 months (survival rate of 64% versus 92%, see figure 3.24).
Regarding GEP-based scores predictive for survival in AL patients (GPI, UMAS70,
RS, and HDAL), 54 patients were classified as high risk (see figure 3.25 a for depic-
tion of overlaps). Of 46 patients classified as high risk by the HDAL score, 33 were
exclusively identified by it, i.e. neither by GPI, UMAS70, nor RS. Vice versa, 8 (15%)
AL patients were not identified by HDAL but either by GPI, UAMS70 or RS. Of all
AL patients, with survival data and GEP, succumbing to their disease within the first 12
months (n = 68), 13 (19%) were identified by MM-based scores, 32 (47%) by HDAL.
Of these, 8 were identified by the GPI, 10 by UAMS70, 5 by RS, and 34 (50%) by
none of the scores. Of these, 22 (32%) patients were identified by standard Mayo stag-
ing, and 18 (26%) by revised Mayo staging. In the MM cohort, HDAL exclusively
identified 286 patients as high risk (53%) and only 10% of patients were not identified
by HDAL (see figure 3.25 b).
The frequency of patients classified as high risk by all considered GEP-based scores
for the AL patients is different compared to the frequency of the MM disease entities
(see table 3.13). But the larger frequency of patients classified as high risk in the MM
cohort compared to MGUS and AMM is "transferred" to the AL subentities ALMM
compared to ALMG.
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a b

Figure 3.25: Comparison and overlap of high risk by different GEP-based risk assessments. Patients de-
fined as high risk suffering from a light chain amyloidosis (AL) or b multiple myeloma (MM). Depicted
scores are GPI, UAMS70, RS, and HDAL. GEP: gene expression profiling by DNA microarray.

Table 3.13: Frequency of patients classified as high risk by GEP-based risk assessments in the different
disease entities. The respective risk assessments are GPI, UAMS70, RS, IFM15, MAI, and HDAL. AL:
light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with subentity MM, MGUS:
monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM:
multiple myeloma, GEP: gene expression profiling by DNA microarray.

Entity GPI UAMS70 Rs IFM15 MAI HDAL
ALMG 1 (1.2%) 2 (2.4%) 0 (0%) 5 (6.1%) 18 (22%) 7 (8.5%)
ALMM 10 (8.8%) 13 (11.4%) 7 (6.1%) 7 (6.1%) 49 (43%) 39 (34.2%)

AL 11 (5.6%) 15 (7.7%) 7 (3.6%) 12 (6.1%) 67 (34.2%) 46 (23.5%)
MGUS 1 (1.6%) 2 (3.1%) 0 (0%) 5 (7.8%) 11 (17.2%) 8 (12.5%)
AMM 1 (0.4%) 22 (8.1%) 1 (0.4%) 23 (8.5%) 113 (41.7%) 69 (25.5%)
MM 124 (16.2%) 193 (25.2%) 82 (7.8%) 191 (25%) 418 (54.6%) 484 (63.3%)
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3.6 Pathogenetic role of malignant plasma cell characteristics in
AL in comparison to MGUS, AMM, and MM

This section addresses the sixth aim of this thesis, i.e. "What are the differences and
similarities of malignant plasma cells in AL in relation to MM and to the precursor
stages MGUS and AMM?", and specifically, the last two aims, i.e. "Do malignant
plasma cells in AL represent a unique molecular entity in terms of pathophysiology?"
and "What ’molecular age’ can be attributed to the malignant plasma cells in AL, i.e.
do they resemble myeloma cells, MGUS cells, or earlier precursors?". Here, malignant
plasma cells of AL patients were compared to malignant plasma cells of other disease
entities and normal BMPC.

3.6.1 Chromosomal aberrations as assessed by iFISH

The distribution of CA in the plasma cell samples of 582 AL patients was analyzed
in comparison to MGUS (n = 306), AMM (n = 444), MM (n = 1691), and regard-
ing simultaneous presence of MGUS or MM in AL patients, ALMG (n = 264) and
ALMM (n = 318). Depicted in figure 3.26, AL contains a significant larger propor-
tion of patients with presence of t(11;14) (58%) and consequently of IgH-TL (IgH-
rearrangement) (84%) in comparison to MGUS (20%/62%), AMM (22%/60%) and
MM (20%/63%). This stage dependent difference is not present between ALMG and
ALMM (see figure 3.27).

HRD and the underlying gains of odd numbered chromosomes (5, 9, 15, and 19, see
the respective part in section 2.1.2 for definition) are substantially rarer in AL (17%)
compared to MGUS (26%), AMM (43%), and MM (52%) (see figure 3.26). The small-
est difference is found between AL and MGUS. This also applies to the comparison of
AL subentities ALMG (12%) and ALMM (22%), driven by the difference in gain of
19q13 (see figure 3.27).

Patterns of co-occurrence of CA slightly differ in AL compared to MM (see figure
3.28), mainly driven by the different frequency of t(11;14) and hyperdiploidy (see fig-
ure 3.26). The presence of t(11;14) and hyperdiploidy is significantly disjunct in AL
(p < 0.001, see figure 3.28), being detectable simultaneously in 3% of AL patients.
A fraction of 39 (7%) AL patients neither harbors an IgH-TL nor are HRD. Nonethe-
less, 24 (62%) of these patients show presence of at least one other "myeloma typical
aberration", in this case defined as presence of an alteration detected by any of the in-
vestigated iFISH-probes (1q21, 5p15, 5q31, 5q35, 8p21, 11q13, 13q14, 15q22, 17p13,
or 19q13, see section 1.6.1, 2.1.2, 1.2.3).

The frequencies of patients harboring a gain 1q21 or a del 13q14 are both higher in AL
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Figure 3.26: Frequency of chromosomal aberrations (CA) in different disease entities. Frequencies
are depicted in percent on the y-axis. Significant differences, indicated by Fisher’s exact test, are il-
lustrated as *, **, and ***, representing a significant p-value < .05, .01, and .001, respectively. AL:
light chain amyloidosis, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymp-
tomatic multiple myeloma, MM: multiple myeloma, TL: translocation, IgH-rearr.: IgH-rearrangement
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Figure 3.27: Frequency of chromosomal aberrations (CA) in AL, ALMG and ALMM. Frequencies are
depicted in percent on the y-axis. Significant differences, indicated by Fisher’s exact test, are illustrated
as *, **, and ***, representing a significant p-value < .05, .01, and .001, respectively. AL: light chain
amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with subentity MM, MGUS: monoclonal
gammopathy of undetermined significance, MM: multiple myeloma, TL: translocation, IgH-rearr.: IgH-
rearrangement
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(25%/34%) than in MGUS (15%/27%), but lower compared to AMM (31%/41%)
or MM (37%/48%). Proportions of patients with either del 8p21 or del 17p13 in
AL (7%/2.5%) are equal to the proportions in MGUS (3.5%/1%) and significantly
smaller compared with AMM (13%/5%) or MM (26%/11%). Within AL patients,
ALMM shows significantly higher fractions of presence of del 13q14 and del 8p21 but
not del 17p13 (39%/9%/3.5%) compared with ALMG (29%/4%/1.5%) (see figure
3.27).
In contrast to MM (67%), most AL (47%) patients do not harbor more than one of
the CA 1q21, 13q14, 17p13, 8p21, HRD, t(4;14), and t(11;14). Corresponding to the
proportions detected in MGUS (26%) there is a higher frequency of patients harboring
more than one CA in ALMM (54%) compared to ALMG (38%) (see table 3.14).

Table 3.14: Frequency of chromosomal aberrations in different disease entities. Patients harboring 0
or 1 aberration and patients harboring ≥ 2 aberrations. Summed up aberrations: 1q21, 13q14, 17p13,
8p21, HRD, t(4;14), t(11;14). AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM:
AL with subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymp-
tomatic multiple myeloma, MM: multiple myeloma

Number AL ALMG ALMM MGUS AMM MM
0 10.2 14 7.3 37.3 10.1 4.4
1 43 48.2 39.2 36.3 39.9 28.8

>=2 46.8 37.8 53.5 26.4 50 66.8
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Figure 3.28: Co-occurrence of chromosomal aberrations detected by interphase fluorescence in situ
hybridization (iFISH) for a light chain amyloidosis (AL) and b multiple myeloma (MM).
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3.6.2 Copy number alterations as assessed by WES

The copy number segments of 113 AL and 28 MM WES samples were created as
described in section 2.4.5 and analyzed as outlined in 2.5.4.
In figure 3.29, all alterations (raw copy number segments) per sample are depicted for
the AL patients. Large gains of chromosomal regions (spanning the whole chromo-
some or a chromosome arm) are more frequent than large deletions in AL. This can be
exemplarily visualized for alterations involving chromosomes 9 and 11 (figure 3.29).

Figure 3.29: Copy number alterations (CNA) assessed by whole exome sequencing of 113 AL patients.
Every row represents CNA data of one patient sample, sorted according to presence of gain 1q21 and
deletion 13q14. The color legend above the plot indicates for copy number status, clonal or subclonal
alteration or normal, diploid copy number status. The copy number status is calculated as the mean log
ratio at the respective chromosomal segment. For clonal and subclonal deletions the log ratio is below
-1 and -0.5, for normal, diploid status it is between -0.5 and 0.25, for subclonal gain and clonal gain it
is above 0.25 and 0.5.

A higher number of different cohort-wide CNA can be found in AL (50) compared to
MM (25), see table 3.15. If choosing a random set of 28 AL patients to adjust for the
number of tested patients, this difference remains (47 versus 25). AL patients harbor a
minimum of one CNA, MM patients a minimum of five. The median number of CNA
per patient is 9 in AL and 12.5 in MM, see table 3.15. The four CNA provided with the
highest GISTIC scores in the AL cohort are gain of 7q34, gain of 14q11.2, deletion of
14q32.33 and deletion of 22q11.22 (for details on the method see section 2.4.5). In the
following the comparison of CNA detected in AL and MM is described. Afterward,
the analysis on the influence of the CNA on gene expression is outlined. Complete
methods are described in the respective section 2.5.4.

87



3 RESULTS

Table 3.15: Cohort-wide copy number alterations (CNA) in 113 light chain amyloidosis (AL) and 28
multiple myeloma (MM) patients: a Total number of different cohort-wide CNA. b Summary statistics
calculated per cohort for the disease entities AL and MM. Del: deletion, 25% Q value of the 25%
percentile (first quartile), 75% Q value of the 75% percentile (third quartile)

a

b

Entity All Gain Del
AL 50 20 30
MM 25 16 9

Entity Mean Median Min 25% Q 75% Q Max
AL 9.3 9 1 5 13 28
MM 12.5 12.5 5 10 15 20

Copy number alterations in light chain amyloidosis versus in multiple myeloma

Table 3.16: Copy number alterations present in 113 light chain amyloidosis (AL) and 28 multiple
myeloma (MM) patients. Comparison by odds ratio (OR) regarding the fraction of patients harbor-
ing a specific alteration. Number of patients per disease entity is given in percent and the number of
genes altered is given for AL. CI: 95% confidence interval for OR, p: Fisher’s exact test p-value

Cytoband Alteration OR 95% CI p AL [%] MM [%] Genes AL
19q13.42 Gain 120.1 17.8-5022.4 < .001 17.7 96.4 8

2p11.2 Del 24.25 8-83.2 < .001 10.6 75 3
1p36.33 Gain 4.83 1.7-13.5 < .001 13.3 42.9 2

22q11.22 Del 3.66 1.4-9.8 .004 67.3 35.7 4
7q34 Gain 2.8 1.1-7.5 .02 38.9 64.3 1

14q32.33 Del 2.91 1-8 .03 84.1 64.3 10
14q11.2 Gain 2.65 0.9-7.5 .054 85 67.9 1

4q12 Del 4.21 0.3-60.6 .18 1.8 7.1 1

The four CNA with the highest GISTIC scores in AL are among the eight CNA also
detected in the 28 MM patient samples. In six of the eight CNA a significant minimum
3-fold difference in the frequency of appearance in the cohort, indicated by OR of AL
to MM, is present (see table 3.16). Gain of 19q13.42, gain of 1p36.33, gain of 7q34 are
significantly more frequent in MM, gain of 14q11.2 is more frequent in AL. Among
the deletions, 2p11.2 is significantly more frequent in MM, but del 22q11.22 and del
14q32.33 are significantly more frequent in AL.

Expression of affected genes in copy number alterations
Of the 3153 genes potentially altered by any detected CNA in AL, 2853 genes could
be annotated to an ensemble gene id. In the 113 AL RNA seq samples, 1211 of these
genes are expressed, i.e. present in the expression table (for present definition, see
section 2.5.4), and were analyzed for altered gene expression. Of these genes, 1187
belong to the five CNA (gain 1q21.1, gain 11q13.4, del 13q14.2, del 16q24.3, and del
22q11.22) with significantly altered gene expression depicted in figure 3.30.
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Gene expression of 308 of the 1087 genes at the 1q21.1 locus is significantly higher
in samples harboring a gain 1q21.1 CNA (n = 35) compared to the samples without
the gain. These represent only a sub-fraction of 28% of the genes located at 1q21.1
(median below the significance threshold of p< 0.05, see figure 3.30). The list of genes
at 1q21 comprises several genes, previously had been suggested as "disease drivers"
(see section 2.5.5), including ARID1A, FAM46C, CDKN2C, FUBP1, and NRAS.
In the 41 samples with a gain 11q13.4, gene expression of 3 (ARAP1, ATG16L2,
STARD10) of the 4 genes in the gained region is significantly higher (FCHSD2 did
not exceed the p-value threshold).
For the three deletions 13q14.2, 16q24.3 and 22q11.22, the gene expression of 77/1/1
genes of total 93/2/1 genes is significantly lower in 41/31/76 samples. Regarding del
13q14.2, RB1 is among the significantly downregulated genes. In case of del 22q11
(comprising 4 genes), the only expressed gene is the super-enhancer IGLL5, show-
ing significantly lower expression in samples with the deletion compared to samples
without (see figure 3.30).

●

●●●●●
●●●●●●●●●●●●
●●●
●●●●●

Figure 3.30: Gene expression in RNA sequencing data in relation to copy number alteration (CNA) in
whole exome sequencing data of 113 light chain amyloidosis patients. The expression values of genes
were tested for significant lower or higher expression in CNA altered samples compared to samples
without the CNA. For four of the five depicted CNA, a subset of altered genes shows deregulated gene
expression. Only in del 22q11.22 the only expressed gene IGLL5 is significantly downregulated. This
is indicated by a significant p-value in a Wilcoxon’s rank sum test. For multiple testing correction the
p-values were adjusted by the Benjamini-Hochberg (BH) method and plotted as negative log10 value at
the y-axis. The dashed line depicts the significance threshold for a BH-adjusted p-value of 0.05.
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3.6.3 Overlap between copy number alterations and chromosomal aberrations

Table 3.17: Comparison of copy number alterations (CNA) detected by whole exome sequencing (WES)
to chromosomal aberrations (CA) detected by interphase fluorescence in situ hybridization (iFISH,
iFISH probe at the same or a nearby cytoband to WES) in 113 light chain amyloidosis (AL) patients.
n: total number of patient samples affected by CA or CNA, %: percentage of patient samples affected
by the CA or CNA, Type: the type of alteration Gain or Del (deletion), Genes: number of genes in the
respective CNA, Overlap: Number of patient samples being of same type in CNA and CA, i.e. showing
both alterations or none, Rate: rate of efficient overlap between the CNA and the CA, NA: number of
patient samples not classified by iFISH.

CA CNA
iFISH n % Cytoband n % Type Genes Overlap Rate NA
1q21 38 33.9 1q21.1 29 25.7 Gain 2 94 83.9 1
1q21 38 33.9 1q21.1 35 31.0 Gain 2699 92 82.1 1
1q21 38 33.9 1q21.1 37 32.7 Gain 1 94 83.9 1
4p16 2 6.2 4p16.1 11 9.7 Del 14 28 87.5 81
8p21 7 6.5 8p23.1 18 15.9 Del 3 91 85.0 6
9q34 37 32.7 9q21.11 36 31.9 Gain 8 92 81.4 0
11q13 7 6.2 11q13.4 41 36.3 Gain 6 79 69.9 0
13q14 46 40.7 13q11 38 33.6 Del 2 91 80.5 0
13q14 46 40.7 13q14.2 41 36.3 Del 274 92 81.4 0
14q32 40 35.4 14q11.2 96 85.0 Gain 1 47 41.6 0
14q32 12 10.6 14q32.33 95 84.1 Del 10 28 24.8 0
15q22 18 15.9 15q11.2 23 20.4 Gain 1 96 85.0 0
15q22 18 15.9 15q14 17 15.0 Gain 7 100 88.5 0
16q23 6 21.4 16q23.1 29 25.7 Del 1 20 71.4 85
16q23 6 21.4 16q24.3 31 27.4 Del 5 20 71.4 85
19q13 20 17.7 19q13.42 20 17.7 Gain 8 105 92.9 0

Of the 50 detected CNA in AL, sixteen CNA are spanning the same or a near cytoband
as ten iFISH probes. A pairwise comparison of the samples between the CNA and
the iFISH results was performed (for description see section 2.5.4). Table 3.17 depicts
the comparison of CNA to the respective CA assessed by iFISH. Within the region of
gain 1q21 (CA), three different CNA are found. The two smaller gain 1q21 CNA, with
1 and 2 genes, lie within the gain 1q21 CNA encompassing 2699 genes. An efficient
overlap of 82−84% exists for all three gain 1q21 CNA with the respective CA detected
by iFISH. High overlap rates are present for del 8p23.1 to 8p21 (85%), gain 9q21.11 to
9q34 (81%), del 13q11 (81%) and 13q13.2 (81%) to 13q14, gain 15q11.2 (85%) and
15q14 (89%) to 15q22, and with the highest overlap rate regarding gain 19q13.42 to
19q13 with 93% (see table 3.17). Gain of 11q13 CNA is less consistent to the iFISH
detected CA (70%). The CA 14q32 compared to gain 14q11.2 and del 14q32.33 CNA
show low rates of overlap of 42% and 25% (see table 3.17). For the three CNA del
4p16.1, del 16q23.1 and del 16.24.3 the respective iFISH probe is not determined in
81/85/85 patient samples (see table 3.17).
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3.6.4 Entity specific alterations of gene expression in malignant plasma cells
- similarities and differences between malignant plasma cell populations
and comparator populations

Table 3.18: RV coefficient of gene expression data from DNA microarray AL: light chain amyloi-
dosis, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple
myeloma, MM: multiple myeloma, GEP: gene expression profiling by DNA microarray.

Entity MGUS AMM MM BMPC HMCL MBC PPC
AL 0.55 0.63 0.72 0.22 0.15 0.07 0.10
MGUS 0.76 0.61 0.14 0.13 0.05 0.08
AMM 0.74 0.17 0.15 0.06 0.09
MM 0.25 0.21 0.11 0.15
BMPC 0.07 0.04 0.06
HMCL 0.03 0.06
MBC 0.08

Next, entity specific alterations of gene expression in malignant plasma cells were
assessed and similarities and differences between malignant plasma cell populations
and comparator populations investigated. This was performed to assess the degree
of similarity between different malignant plasma cell populations, i.e. between AL,
MGUS, AMM, and MM. The similarity was then compared to other cell populations,
i.e. BMPC, MBC (non-malignant, non-proliferating), PPC (non-malignant, prolifer-
ating), and HMCL (malignant, proliferating). To do so, two dimension reduction
methods, i.e. PCA and t-SNE and a method to receive a correlation coefficient, i.e.
RV-coefficient, were applied (see section 2.5.1 for a description of methodology).
As depicted by the RV-coefficient (see table 3.18) malignant plasma cell entities show
a greater similarity among each other (0.55−0.76) than to BMPC (0.14−0.25), MBC
(0.05−0.11), PPC (0.08−0.15), or HMCL (0.13−0.21). Figures 3.31 and 3.33 depict
PCA and t-SNE for malignant plasma cell populations only (i.e., without comparator
populations). Using both dimension reduction methods, the center of gravity of all four
malignant plasma cell populations overlaps (yellow, red, green, and purple colored cir-
cles at the right in figure 3.31 for DNA microarray, 3.33 for RNA seq). Comparing
this variance to other populations, in both analyses, MBC, PPC, HMCL, and BMPC
are distinct from malignant plasma cells (see figure 3.32 for DNA microarray, 3.34
for RNA seq). In all analyses, BMPC are distinct from all other populations (see the
center of gravity circles at the right in figure 3.32 for DNA microarray, 3.34 for RNA
seq). In PCA, BMPC are a distinct entity closest neighboring malignant plasma cell
populations; in t-SNE, they are located between MBC as normal precursor-counterpart
of BMPC, and malignant plasma cell populations, as in PCA. In each case, malignant
and non-malignant proliferating populations, i.e. PPC and HMCL, respectively, are
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grouped separately, but most closely together (see the center of gravity circles at the
right in figure 3.32 for DNA microarray, 3.34 for RNA seq).
Quantitatively, the calculated explained variance in the PCA without B-cell lineage
(MBC, PPC, BMPC) and HMCL is 5.7% for principal component 1 (PC1) and 4.4%
for PC2 (figure 3.31 a). For PCA with these comparator populations, PC1 remains
5.7% and PC2 is 4.3% (figure 3.32 a). In RNA seq, PC1 and PC2 comprise more
explained variance then in DNA microarrays and are as similar as with (PC1 = 16.3%,
PC2 = 2.8%, figure 3.34 a) and without (PC1 = 17%, PC2 = 2.5%, figure 3.33 a)
comparator populations.

a

b

● ● ● ●

Figure 3.31: Similarities and differences in gene expression between and within different malignant
plasma cell disease entities. Dimension reduction of gene expression data from DNA microarrays us-
ing a Principal component analysis (PCA) and b t-distributed stochastic neighbor embedding (t-SNE).
Left side: individual data points, right side: center of each group is depicted as ellipse of 10% variance
around the group’s mean value. Groups are color coded, see legend below the figure. Patients samples:
light chain amyloidosis (AL), monoclonal gammopathy of undetermined significance (MGUS), asymp-
tomatic multiple myeloma (AMM), or symptomatic multiple myeloma (MM). PC: principal component
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Figure 3.32: Similarities and differences in gene expression between and within different malignant
plasma cell disease entities, comparator populations, and within these. Dimension reduction of gene
expression data from DNA microarrays using a Principal component analysis (PCA) and b t-distributed
stochastic neighbor embedding (t-SNE). Left side: individual data points, right side: center of each
group is depicted as ellipse of 10% variance around the group’s mean value. Groups are color coded,
see legend below the figure. Patients samples: light chain amyloidosis (AL), monoclonal gammopathy
of undetermined significance (MGUS), asymptomatic multiple myeloma (AMM) or symptomatic mul-
tiple myeloma (MM). For comparison, memory B cells (MBC), polyclonal plasmablastic cells (PPC)
and healthy normal donor bone marrow plasma cells (BMPC), human myeloma cell lines (HMCL) are
depicted. PC: principal component
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b
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Figure 3.33: Similarities and differences in gene expression between and within different malignant
plasma cell disease entities. Dimension reduction of gene expression data from RNA sequencing us-
ing a Principal component analysis (PCA) and b t-distributed stochastic neighbor embedding (t-SNE).
Left side: individual data points, right side: center of each group is depicted as ellipse of 10% variance
around the group’s mean value. Groups are color coded, see legend below the figure. Patients samples:
light chain amyloidosis (AL), monoclonal gammopathy of undetermined significance (MGUS), asymp-
tomatic multiple myeloma (AMM) or symptomatic multiple myeloma (MM). PC: principal component
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Figure 3.34: Similarities and differences in gene expression between and within different malignant
plasma cell disease entities, comparator populations, and within these. Dimension reduction of gene
expression data from RNA sequencing using a Principal component analysis (PCA) and b t-distributed
stochastic neighbor embedding (t-SNE). Left side: individual data points, right side: center of each
group is depicted as ellipse of 10% variance around the group’s mean value. Groups are color coded,
see legend below the figure. Patients samples: light chain amyloidosis (AL), monoclonal gammopathy
of undetermined significance (MGUS), asymptomatic multiple myeloma (AMM) or symptomatic mul-
tiple myeloma (MM). For comparison, memory B cells (MBC), polyclonal plasmablastic cells (PPC)
and healthy normal donor bone marrow plasma cells (BMPC), human myeloma cell lines (HMCL) are
depicted. PC: principal component
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3.6.5 Differential gene expression

Whereas dimension reduction methods were applied to gain a general impression and
quantification of similarities and differences of populations, differential gene expres-
sion was assessed to obtain first a numerical estimation of DEG, and secondly to list
these genes in detail. Differential expression was assessed by RNA seq as most com-
prehensive method. Seven differential gene expression analyses were performed (see
table 2.9 in section 2.5.2 for an overview). Numbers of significantly DEG per analysis
are summarized in table 3.19 and table 3.20. Each list of DEG was subjected to a p-
value threshold of ≤ 0.05 and a LFC > 1 (2-fold difference between groups, see tables
3.19, 3.20, second row).

Table 3.19: Differentially expressed genes (DEG) between normal and malignant plasma cell sam-
ples of each of the four investigated entities AL, MGUS, AMM, and MM. Depicted are number (n)
and percentage (%) of DEG per comparison and subset group. DE: differentially expressed; DOWN:
downregulated compared to first in comparison; UP: upregulated compared to first in comparison. First
row: all significantly DEG per comparison with an adjusted p-value p ≤ 0.05; second row: applied log
fold change (LFC) of above 1, as a subset of the first row; third row: immunoglobulin (Ig) genes as
a subset of genes of the second row; fourth row: genes with ENTREZID as a subset of second row;
fifth row: protein coding genes as a subset of second row. See figure 3.35 a for overlap of DE genes
between the comparisons. BMPC: bone marrow plasma cells, AL: light chain amyloidosis, MGUS:
monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM:
multiple myeloma.

Number of genes
DE DOWN UP

Comparison Group n % n % n %
BMPC vs. AL p ≤0.05 2466 9 1310 53.1 1156 46.9

lfc >1 106 4.3 49 46.2 57 53.8
Ig genes 8 7.5 8 100 0 0

ENTREZID 71 67 23 32.4 48 67.6
protein coding 67 63.2 19 28.4 48 71.6

BMPC vs. MGUS p ≤0.05 2391 8.7 1024 42.8 1367 57.2
lfc >1 55 2.3 26 47.3 29 52.7

Ig genes 1 1.8 1 100 0 0
ENTREZID 44 80 19 43.2 25 56.8

protein coding 42 76.4 18 42.9 24 57.1
BMPC vs. AMM p ≤0.05 5834 21.3 2495 42.8 3339 57.2

lfc >1 551 9.4 222 40.3 329 59.7
Ig genes 34 6.2 34 100 0 0

ENTREZID 374 67.9 132 35.3 242 64.7
protein coding 350 63.5 121 34.6 229 65.4

BMPC vs. MM p ≤0.05 5327 19.5 1776 33.3 3551 66.7
lfc >1 529 9.9 144 27.2 385 72.8

Ig genes 49 9.3 49 100 0 0
ENTREZID 314 59.4 66 21 248 79

protein coding 284 53.7 54 19 230 81
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Table 3.20: Differentially expressed genes (DEG) between malignant plasma cell samples from AL pa-
tients and of each of the three investigated malignant plasma cell disease entities, i.e. MGUS, AMM,
and MM. Depicted are number (n) and percentage (%) of DEG per comparison and subset group. DE:
differentially expressed; DOWN: downregulated compared to first in comparison; UP: upregulated com-
pared to first in comparison. First row: all significantly DEG per comparison with an adjusted p-value
p ≤ 0.05; second row: applied log fold change (LFC) of above 1, as a subset of the first row; third row:
immunoglobulin (Ig) genes as a subset of genes of the second row; fourth row: genes with ENTREZID
as a subset of second row; fifth row: protein coding genes as a subset of second row. See figure 3.35
b for overlap of DE genes between the comparisons. AL: light chain amyloidosis, MGUS: monoclonal
gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM: multiple
myeloma.

Number of genes
DE DOWN UP

Comparison Group n % n % n %
AL vs. MGUS p ≤0.05 3051 11.2 1497 49.1 1554 50.9

lfc >1 71 2.3 22 31 49 69
Ig genes 20 28.2 4 20 16 80

ENTREZID 35 49.3 9 25.7 26 74.3
protein coding 31 43.7 8 25.8 23 74.2

AL vs. AMM p ≤0.05 9062 33.1 3535 39 5527 61
lfc >1 484 5.3 263 54.3 221 45.7

Ig genes 55 11.4 18 32.7 37 67.3
ENTREZID 366 75.6 232 63.4 134 36.6

protein coding 348 71.9 231 66.4 117 33.6
AL vs. MM p ≤0.05 11017 40.3 3546 32.2 7471 67.8

lfc >1 825 7.5 100 12.1 725 87.9
Ig genes 66 8 36 54.5 30 45.5

ENTREZID 421 51 57 13.5 364 86.5
protein coding 364 44.1 54 14.8 310 85.2
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Overlap of differentially expressed genes
The lists of DEG (see tables 3.19, 3.20) were subsequently analyzed regarding the
intersections of DEG between the different comparisons. The Venn diagrams in figure
3.35 depict the numbers of overlapping DEG with a LFC > 1. In the supplemental
tables A.13, A.14 and A.15 lists of overlapping DEG are depicted.
Between BMPC and the four malignant plasma cell disease entities, i.e. AL, MGUS,
AMM, and MM, 31 DEG overlap (figure 3.35 a). Of these, 26 genes are up- and 5
genes downregulated in malignant plasma cell diseases compared to BMPC (see sup-
plementary table A.15 for genes, LFC, and expression height). The direction (higher
or lower) of alteration of expression is the same for all analyzed malignant plasma cell
diseases.
The same holds true for the 80 genes overlapping between the comparisons BMPC
versus AL and BMPC versus MM, 57 are up- and 23 downregulated (see supplemen-
tary table A.15). Of these, 32 genes are likewise overlapping for MGUS, and 73 in
the comparison to AMM (see supplementary table A.15). Nine genes are unique to
the comparison BMPC versus AL (IGHD6-19, H1FX-AS1, PI4KAP1, AC159540.1,
RP11-58H15.1, HSH2D, RPL35AP32, IGHD7-27, and NFKBID), two of which genes
are protein coding, i.e. HSH2D and NFKBID (see supplemental table A.13).
Thirteen genes show differential expression between AL versus each of the other ma-
lignant plasma cell diseases MGUS, AMM, and MM, i.e. HES1, FOLH1, RASD1,
IGHD2-8, BARX2, PAGE1, HTR1D, SCARNA22, RP11-66N7.2, SSTR1, IGHV1OR15-

2, IGLV6-57, and HBE1. Eight are protein coding genes, three are Ig genes, one is in
antisense and one is scaRNA (see supplementary table A.14). Of these, six genes are
higher expressed and seven are lower expressed in AL (see figure 3.35 b).
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Figure 3.35: Overlap of significant differentially expressed genes (DEG) with a log fold change >1
from differential expression analyses on RNA sequencing data. a BMPC versus entities AL, MGUS,
AMM and MM and b AL versus BMPC, MGUS, AMM and MM. The top Venn diagram shows all
differentially expressed (DE) genes, in the middle are only downregulated (DOWN) genes and the bot-
tom depicts only upregulated (UP) genes. BMPC: bone marrow plasma cells, AL: light chain amyloi-
dosis, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple
myeloma, MM: multiple myeloma.
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Comparison to published differential gene expression analyses
For the comparison of the DEG to previous published DEG, gene lists of Abraham
et al. [1] and Kryukov et al. [160] for the analysis of AL versus MM, and from Paiva
et al. [230] for the AL versus BMPC comparison were available.

Table 3.21: Overlap of DEG between AL versus MM with DEG detected by Abraham et al. [1] and
Kryukov et al. [160]. Negative LFC indicates a lower expression in AL compared to MM. DEG: differ-
entially expressed genes, adj. p: adjusted p-value, LFC: log fold change, BMPC: bone marrow plasma
cell, AL: light chain amyloidosis, MM: multiple myeloma.

adj. log counts per million
Gene p LFC BMPC AL MM Citation
JUN < .001 2.01 8.54 8.29 6.29 Abraham et al. [1]

CXCL12 .003 1.77 7.76 8.33 6.57 Abraham et al. [1]
APOE .01 1.66 1.54 2.05 0.99 Abraham et al. [1]
MYC < .001 -1.71 7.01 6.16 7.85 Abraham et al. [1]
TXN < .001 -1.34 6.28 6.98 8.31 Abraham et al. [1]

RPS21 < .001 -1.36 5.47 5.90 7.25 Kryukov et al. [160]
RPL28 .005 -1.28 6.53 6.95 8.22 Kryukov et al. [160]
RPL35 .01 -1.25 7.18 7.96 9.20 Kryukov et al. [160]

From the 47 DEG of Abraham et al. [1], 32 are differentially expressed with a subset
of 5 genes having a LFC >1 and being altered in the same direction (i.e. increased
or decreased expression in both analyses, respectively). MYC and TXN are lower ex-
pressed, JUN, CXCL12 and APOE significantly higher expressed in AL. Of 100 DEG
described by Kryukov et al. [160], 72 genes overlap. Of these, the three ribosomal
protein encoding genes RPS21, RPS28 and RPS35 are significantly differentially ex-
pressed by a LFC > 1 in AL versus MM. Four of the 60 genes that had been detected
as differentially expressed between AL and BMPC by Paiva et al. [230] were detected
as differentially expressed in the comparison AL versus BMPC, none of them with a
LFC > 1. Table 3.21 depicts the 8 overlapping genes with a LFC > 1. Ninety-six
overlapping DEG show a LFC < 1, with 29 genes demonstrating a opposite direction
compared to the analysis depicted above.

Pathway analysis of differentially expressed genes
Using the described RNA seq data, for two different gene sets of DEG a FEA was
performed (described in section 2.5.6): First, for all common DEG between BMPC
versus AL and BMPC versus MM, which were annotated to an ENTREZID (DEG
n = 70) (see supplementary table A.15). Ten terms, all belonging to GO "biological
process" (BP) "origin", are significantly enriched in these genes (see supplementary
table A.16).

Second, the four gene lists with all DEG between BMPC versus AL (DEG n = 73),
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 CORUM:306: Ribosome, cytoplasmic
 hsa00190: Oxidative phosphorylation
 GO:1902600: proton transmembrane transport
 GO:0007007: inner mitochondrial membrane organization
 GO:0050769: positive regulation of neurogenesis
 GO:0045778: positive regulation of ossification
 GO:0099054: presynapse assembly
 GO:0044057: regulation of system process
 hsa05200: Pathways in cancer
 GO:0061311: cell surface receptor signaling pathway ...
 GO:0048729: tissue morphogenesis
 GO:0050808: synapse organization
 GO:0048812: neuron projection morphogenesis
 R-HSA-157118: Signaling by NOTCH
 M232: PID ECADHERIN STABILIZATION PATHWAY
 GO:0060600: dichotomous subdivision of an epithelial ...
 GO:0001836: release of cytochrome c from mitochondria
 GO:0001906: cell killing
 GO:0043900: regulation of multi-organism process
 GO:0043065: positive regulation of apoptotic process
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Figure 3.36: Functional enrichment analyses of differentially expressed genes (DEG) between normal
bone marrow plasma cells (BMPC) and each of the malignant plasma cell populations, i.e. BMPC versus
AL, BMPC versus MGUS, BMPC versus AMM and BMPC versus MM. Depicted are the top 20 terms
(rows) enriched in the individual DEG lists (columns). For better representation the negative log10 value
of the adjusted p-value is depicted. The highest value presents the lowest p-value. A value of 2 equates
to an adjusted p-value of 0.01. BMPC: bone marrow plasma cells, AL: light chain amyloidosis, MGUS:
monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM:
multiple myeloma

Table 3.22: Two enriched terms and the corresponding genes overlapping in the four DEG lists as
detected by functional enrichment analysis. Terms are GO:0044057 from GO (gene ontology) and
hsa05200 from KEGG (Kyoto Encyclopedia of Genes and Genomes)

Term Description Genes
GO:0044057 regulation of system

process
ADM, CYP2J2, TYMP, EDNRB, HGF, IGF1, KIT,
PRKG1, RELN, TGFB2, HOMER1, CALCRL, KC-
NMB2, SEMA3A, BVES, HEY2, NLGN4X, MLIP,
MTG1, RNF207, RHOC, BDKRB1, BMP4, CTSH,
MAP2, RPS19, CCL7, WNT5A, RTN4, SEMA3D,
RPLP1, TXN, UBA52, MAPK8IP3, GPRC5D, NOD2,
PTHLH, RASGRF1, TNFSF10, DKK1, INHBE,
UTS2B

hsa05200 pathways in cancer CCND1, BMP4, CKS2, COL4A3, EDNRB, HGF,
IGF1, JUN, KIT, LAMA5, NFKB2, PLCB4, PTEN,
ELOB, TGFB2, WNT5A, LPAR5, RELN, RASGRF1,
VAV3, PIM1, FOSB, HLA-A, COL4A5
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BMPC versus MGUS (DEG n = 44), BMPC versus AMM (DEG n = 383) and BMPC
versus MM (DEG n = 317) were analyzed. The result of the enrichment analysis is
depicted by a heatmap of the top twenty enriched terms for crossing all four gene lists
(see figure 3.36). Enriched terms include GO BP terms, KEGG and Reactome pathway
terms.
Two terms are enriched in all four DEG lists: "Regulation of system process"
(GO:0044057) and "pathways in cancer" (hsa05200). The respective genes enriched
in these terms are listed in table 3.22. The BMPC versus MGUS comparison DEG
list shares three top enriched terms with the other three DEG lists. The BMPC versus

AL DEG list shares eight terms with BMPC versus MM and four with BMPC versus

AMM (see figure 3.36).

3.6.6 Immunoglobulin gene expression by RNA sequencing

Gene expression of Ig genes was evaluated as described in section 2.5.3. Figure 3.37
shows a heatmap of the expression values of 383 Ig genes. The largest cluster com-
prises Ig genes which are rarely or not at all expressed (cluster A, 267 genes, see table
3.23 a)). A cluster of highly expressed Ig genes (cluster C, Ig HC and IG LC λ , see
table 3.23 a) can be detected. This cluster overlaps with cluster 2 of patient samples,
showing higher expression in more Ig genes than the other patient samples. Cluster 2
refers to 137 samples of patients and harbors the largest group of AL with 35% (see
table 3.23 d and e).
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Figure 3.37: Gene expression of immunoglobulin (Ig) genes in different entities analyzed by unsuper-
vised Ward clustering. Entities are in rows and genes in columns. The legend below depicts the disease
entities AL: light chain amyloidosis, MGUS: monoclonal gammopathy of undetermined significance,
AMM: asymptomatic multiple myeloma, MM: multiple myeloma, and the Ig gene groups Ig H: Ig heavy
chain gene, Ig κ: Ig light chain gene of type κ , Ig λ : Ig light chain gene of type λ . RNA expression
intensity is color coded (upper left corner, expression height of 0 is depicted in black, expression values
increase from blue to red color).
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Table 3.23: Allocation per cluster for immunoglobulin (Ig) genes and patient samples per entity a Total
number of Ig genes per cluster b Percentage of Ig genes per cluster c Percentage of Ig genes per Ig group
d Total number of patient samples e Percentage of patient samples per cluster f Percentage of patient
samples per entity. The disease entities AL: light chain amyloidosis, MGUS: monoclonal gammopathy
of undetermined significance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma, and
the Ig gene groups Ig H: Ig heavy chain gene, Ig κ: Ig light chain gene of type κ , Ig λ : Ig light chain
gene of type λ .

a

b

c

Cluster Ig H Ig LC κ Ig LC λ

A 125 79 63
B 32 9 7
C 13 0 10
D 20 13 12

Cluster Ig H Ig LC κ Ig LC λ

A 46.8 29.6 23.6
B 66.7 18.8 14.6
C 56.5 0 43.5
D 44.4 28.9 26.7

Cluster Ig H Ig LC κ Ig LC λ

A 65.8 78.2 68.5
B 16.8 8.9 7.6
C 6.8 0 10.9
D 10.5 12.9 13

d

e

f

Cluster AL MGUS AMM MM
1 11 1 36 315
2 48 36 25 28
3 18 3 42 115
4 47 11 37 57

Cluster AL MGUS AMM MM
1 3 0.3 9.9 86.8
2 35 26.3 18.2 20.4
3 10.1 1.7 23.6 64.6
4 30.9 7.2 24.3 37.5

Cluster AL MGUS AMM MM
1 8.9 2.0 25.7 61.2
2 38.7 70.6 17.9 5.4
3 14.5 5.9 30 22.3
4 37.9 21.6 26.4 11.1

3.6.7 SNVs and InDels in light chain amyloidosis

The following section describes the analysis of the variants detected by the variant
calling pipeline outlined in section 2.4.4. Variants detected in 113 AL patient sam-
ples were analyzed in comparison to variants detected in MM as well as previously
published studies.

Summary statistics
The median number of variants in AL is 22 (range: 1−3785) per sample, being similar
in ALMG (22, range: 1− 3785) and ALMM (23, range: 7− 3656). In terms of the
number of detected variants, two patterns can be distinguished: the majority of patients
(94%) shows between 1 and 938 variants, whereas 7 patient samples (2 with ALMM,
5 with ALMG) contrasts from the rest of the group with a median of 3609 variants per
sample (see figure 3.38, figure 3.39).

To put this into perspective, the number of variants per sample of the 113 AL pa-
tient samples was compared to the 930 samples from the CoMMpass cohort (newly
diagnosed MM patients). The median number of variants per sample in AL is sig-
nificantly lower (p < 0.001, figure 3.39), the maximum number of observed variants
in a sample is however higher in AL (see table 3.2, 3.3 and figure 3.39, 3.38). The
heterogeneity in the number of variants, which is indicated by the wider peak in the
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density distribution in figure 3.38, the variance of 754,962/35,178 versus 9,048/2,418
for non-synonymous/expressed variants (F test, both p < 0.001), and the range (see
table 3.2, 3.3), is much larger in AL than in MM .

Figure 3.38: Distribution of variants per patient sample in AL (n=113), splitted by underlying suben-
tity ALMG (n=51) and ALMM (n=62), and MM (n=930, from CoMMpass cohort). Variants in im-
munoglobulin (Ig) genes were excluded and analyzed separately, see last part in section 3.6.7. De-
picted on the x-axis are the number of variants per sample after log2 transformation. Solid lines: non-
synonymous variants, dashed lines: expressed variants. AL: light chain amyloidosis, ALMG: AL with
subentity MGUS, ALMM: AL with subentity MM, MGUS: monoclonal gammopathy of undetermined
significance, MM: multiple myeloma.
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Figure 3.39: Numbers of variants per patient sample in AL (n=113) and MM (n=930). Variants in im-
munoglobulin (Ig) genes were excluded and analyzed separately, see section 3.6.7. a non-synonymous
variants, b expressed variants. Data on the y-axis is shown on a log scale. Significant differences, indi-
cated by Wilcoxon’s rank sum test, are illustrated as ***, representing a significant p-value < .001. AL:
light chain amyloidosis, MM: multiple myeloma

Transitions and transversions
The composition of the SNV depicted in the variant tables was analyzed by type of
base substitution and frequency of Ti to Tv, called Ti-Tv bias (see figure 3.40). The
Ti-Tv frequencies are comparable in AL (see figure 3.40 a) and MM (see figure 3.40
b), with a median of 60% transitions in AL and 59% in MM, representing a median
Ti-Tv ratio of 1.5 in AL and 1.4 in MM. The base substitution C>T, with a median of
43.4% in AL and 45.2% in MM, is the most frequent base substitution and T>A is the
least frequent with a median of 5.9% in AL and 7.5% in MM.

Variant annotations
Most of the detected coding, non-synonymous variants are missense mutations (∼
95%), in AL as well as in MM, see table 3.24 a. In AL, these are associated with
a moderate impact (> 94%, see table 3.24 b), a tolerated SIFT score (> 61%, see ta-
ble 3.24 c) or are classified as benign by PolyPhen (> 67%, see table 3.24 d). Most
(110/112) of the 113 AL patients have at least one deleterious/damaging variant clas-
sified by SIFT/PolyPhen. For both the median is 9 variants per patient in comparably
equal ranges of 1−762 for SIFT and 1−750 for PolyPhen.
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Figure 3.40: Number of transition (Ti), transversion (Tv) and the respective base substitution possibil-
ities (C>A, C>G, C>T, T>C, T>A, T>G) of coding, non-synonymous single nucleotide variants for a
113 light chain amyloidosis (AL) samples and b 930 multiple myeloma (MM) samples. Percentage of
mutations is depicted on the y-axis.
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Table 3.24: Predicted coding consequences for variants detected by variant calling. Assessment of vari-
ants by different impact prediction algorithms and databases, in total numbers (n) and percentages (%)
for a coding consequence by Sequence Ontology in 113 AL and MM 930, b impact prediction by vep
(variant effect predictor), c SIFT (Sorting Intolerant From Tolerant) in 113 AL and d PolyPhen (Poly-
morphism Phenotyping) in 113 AL. AL: light chain amyloidosis, ALMG: AL with subentity MGUS,
ALMM: AL with subentity MM, MGUS: monoclonal gammopathy of undetermined significance, MM:
multiple myeloma.

a

b

c

d

Consequence AL ALMG ALMM MM
n 29681 19276 10405 52355

Missense 28328 (95.4%) 18393 (95.4%) 9935 (95.5%) 49499 (94.5%)
Frame Shift Del 185 (0.6%) 121 (0.6%) 64 (0.6%) 920 (1.8%)
Frame Shift Ins 171 (0.6%) 115 (0.6%) 56 (0.5%) 493 (0.9%)
In Frame Del 291 (1%) 186 (1%) 105 (1%) 248 (0.5%)
In Frame Ins 150 (0.5%) 95 (0.5%) 55 (0.5%) 49 (0.1%)
Splice Site 556 (1.9%) 366 (1.9%) 190 (1.8%) 1146 (2.2%)

Impact AL ALMG ALMM
n 29681 19276 10405

Low 553 (1.9%) 365 (1.9%) 188 (1.8%)
Moderate 28160 (94.9%) 18320 (95%) 9840 (94.6%)

High 968 (3.2%) 591 (3.1%) 377 (3.6%)

SIFT AL ALMG ALMM
n 29681 19276 10405
- 2838 (9.6%) 1821 (9.5%) 1017 (9.8%)

tolerated 18796 (63.3%) 12456 (64.6%) 6340 (60.9%)
tolerated low confidence 3010 (10.1%) 1986 (10.3%) 1024 (9.8%)

deleterious low confidence 1658 (5.6%) 1018 (5.3%) 640 (6.2%)
deleterious 8047 (27.1%) 4999 (25.9%) 3048 (29.3%)

PolyPhen AL ALMG ALMM
n 29681 19276 10405
- 1925 (6.5%) 1221 (6.3%) 704 (6.8%)

benign 20381 (68.7%) 13432 (69.7%) 6949 (66.8%)
possibly damaging 3075 (10.4%) 1950 (10.1%) 1125 (10.8%)
probably damaging 3327 (11.2%) 2054 (10.7%) 1273 (12.2%)

unknown 973 (3.3%) 619 (3.2%) 354 (3.4%)

Enriched gene set terms

Enrichment analysis were performed with the list of genes harboring an expressed
mutation for AL and MM patient samples. The resulting list of top 20 enriched terms
is depicted in the heatmap in figure 3.41, comparing AL to MM. Terms are listed in
increasing order of p-value of the respective hypergeometric test in the FEA, i.e. the
top term has the lowest p-value. The top 20 terms include "DNA repair" (GO:0006281)
and "apoptotic signaling pathway" (GO:0097190). Terms associated with plasma cells
in the top 100 contain "cell activation involved in immune response" (GO:0002263),
"Adaptive Immune System" (R-HSA-1280218) and "B cell activation" (GO:0042113).
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Regarding the list with the top 100 enriched terms 83% of these are enriched in both
gene lists, 10 are only significant in MM, and 7 in AL only (data not shown).

 R-HSA-3247509: Chromatin modifying enzymes
 R-HSA-1280218: Adaptive Immune System
 GO:0097190: apoptotic signaling pathway
 GO:0034660: ncRNA metabolic process
 GO:0034976: response to endoplasmic reticulum stress
 GO:0051640: organelle localization
 GO:0002263: cell activation involved in immune response
 GO:0006914: autophagy
 GO:0010564: regulation of cell cycle process
 GO:0033044: regulation of chromosome organization
 GO:0051052: regulation of DNA metabolic process
 GO:0006281: DNA repair
 GO:0080135: regulation of cellular response to stress
 GO:0007017: microtubule-based process
 GO:0019221: cytokine-mediated signaling pathway
 GO:0044257: cellular protein catabolic process
 GO:0010639: negative regulation of organelle organization
 GO:0010638: positive regulation of organelle organization
 R-HSA-1640170: Cell Cycle
 GO:0046700: heterocycle catabolic process
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Figure 3.41: Heatmap of functional enrichment analysis of genes carrying expressed, non-synonymous
variants per disease entity. Depicted are the top 20 terms (rows), enriched in the list of mutated genes
from variant calling of 113 light chain amyloidosis (AL) and 930 multiple myeloma (MM) patient
samples. For representation the negative log10 value of the adjusted p-value is depicted. The highest
value thus represents the lowest p-value. A value of 2 equates to an adjusted p-value of 0.01.

Known genetic variation
Variants in the table of 113 AL patient samples were annotated by genetic varia-
tion databases in the variant calling pipeline (see variant annotation part in section
2.4.4). Annotated identifiers, which represent a known single nucleotide polymor-
phism (SNP), were analyzed as described in section 2.5.5.
All 8 detected KRAS mutations are located at 4 different positions and are annotated to
known SNPs (see table 3.25 a). The SNP with the identifier rs17851045 was detected
3 times in 3 samples, the one by T>A substitution had previously been associated with
MM, the other two (of type T>G) were previously detected in other cancer entities
(acute myeloid lymphoma, non-small cell lung cancer). The remaining three SNPs
rs121913530, rs121913529, and rs121913240 were also previously detected in other
cancer entities, e.g. lung cancer, bladder cancer, and ovarian neoplasms.
In NRAS, five different missense mutations were detected (see table 3.25 b). Three
had been associated with MM (rs121434595, rs11554290, rs121913254), the other
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two (COSM1666991, rs121913255) to other cancer entities, e.g. myelomonocytic
leukemia, cutaneous melanoma, acute myeloid lymphoma, and non-small cell lung
cancer.
Regarding BRAF, 3 missense mutations in 3 samples were detected, two being V600E
(rs113488022, COSM476). One of the two was expressed (VAF in RNA 57%, see
table 3.25 c) with a concurrent expression of the BRAF gene.

Table 3.25: Known genetic variation for variants in a KRAS, b NRAS, and c BRAF detected by variant
calling in 113 samples with light chain amyloidosis (AL). Chr: chromosome, Pos: base position on
chromosome, SNP: known genetic variation identifier, VAF: variant allele frequency, VAF RNA: VAF
in RNA, Expr: expression in RNA

a

b

c

Chr Position Consequence Allele SNP VAF VAF RNA Expr
12 25245351 missense C/A rs121913530 10.2 4.9 yes
12 25227341 missense T/G rs17851045 36.2 21.4 yes
12 25227341 missense T/A rs17851045 81.2 75.5 yes
12 25227341 missense T/G rs17851045 37.4 50.9 yes
12 25245350 missense C/T rs121913529 48.5 3.9 yes
12 25245350 missense C/T rs121913529 38 85.7 yes
12 25227342 missense T/A rs121913240 39.9 no
12 25227342 missense T/A rs121913240 27.1 27.7 yes

Chr Position Consequence Allele SNP VAF VAF RNA Expr
1 114713900 missense A/T COSM1666991 12.2 10.6 yes
1 114716124 missense C/G rs121434595 33.9 11.5 yes
1 114713907 missense T/G rs121913255 16.7 4.5 yes
1 114713908 missense T/C rs11554290 26.1 no
1 114713909 missense G/T rs121913254 16.5 no

Chr Position Consequence Allele SNP VAF VAF RNA Expr
7 140753336 missense A/T rs113488022 12.7 no
7 140753336 missense A/T rs113488022 39 57.1 yes
7 140753334 missense T/C rs121913364 52.6 100 yes

Immunoglobulin genes
Detected variants affecting Ig genes, in the variant table of 113 AL patient samples,
were separately analyzed. The 370 variants are in 118 different Ig genes of the con-
stant, variable, diversity and joining region for heavy or for light chain; 64.5% of
detected variants are expressed and detectable in RNA seq (see table 3.26). Of the 370
variants 296 (80%) are located within genes of the variable regions. The overlap to
the MM variant table is 75%, i.e. of the 118 Ig genes 89 are also mutated in MM.
Genesymbols of Ig genes are depicted in supplementary table A.18.

110

https://cancer.sanger.ac.uk/cosmic/mutation/overview?id=97115560
https://www.ncbi.nlm.nih.gov/snp/rs121913255
https://www.ncbi.nlm.nih.gov/snp/rs113488022
https://cancer.sanger.ac.uk/cosmic/mutation/overview?id=150563774


3 RESULTS

Table 3.26: Summary statistics of immunoglobulin (Ig) gene variants in light chain amyloidosis (AL).

Ig gene group Variants Genes Expressed Samples
Heavy Chain Constat Alpha 5 2 4 5
Heavy Chain Constat Delta 13 6 6 11

Heavy Chain Constat Gamma 28 4 23 19
Heavy Chain Joining 13 4 12 13

Heavy Chain Constat Mu 1 1 1 1
Heavy Chain Variable 151 30 76 71

Light Chain Kappa Constant 1 1 1 1
Light Chain Kappa Variable 31 17 18 18

Light Chain Lambda Constant 10 3 8 10
Light Chain Lambda Joining 3 2 0 2
Light Chain Lambda Varaible 114 23 90 59

Mutated genes
Variant table (SNV, InDel) and CNA were compared with a list of 63 potential
myeloma driver genes by Walker et al. [308]. Of these 63, 44 genes are detected
as mutated in the 113 investigated AL samples. In total, variants and CNA in these
genes affect 76 (67.3%) of the 113 patient samples, while 27 patients are only affected
by CNA. Of these 44 genes, 4 are only affected by CNA and not by SNV or InDel.
These are the RB1 gene, which is only interfered by del 13q14 CNA in 41 samples and
3 genes (CDKN2C, FAM46C, FUBP1) that are only affected by gain of 1q21 CNA in
35 samples. Additionally, NRAS and ARID1A are amplified by gain 1q21 in these 35
samples. Nine samples harbor variants in these two genes (see figure 3.42 and sup-
plementary table A.17). Overall, in 64 (56.6%) samples none of the 63 listed genes
was found to harbor SNVs or InDels. In 28 (24.8%) samples one of these genes was
mutated, 14 (12.4%) samples showed presence of 2− 4 mutated genes, and 7 (6.2%)
samples 6−9 mutated genes.

Regarding SNVs and InDels, mutations in KRAS, DIS3, NRAS and TP53 appear dis-
junct, see figure 3.42. RASA2 of the RAS family is mutated twice in samples harboring
a KRAS mutation. All NRAS, KRAS, RASA2, TP53 and DIS3 variants have a median
VAF below 50% (see figure 3.43). For 14 of the 44 genes (31.8%) the median VAF is
above 50%. The VAF of variants in 9 different genes (XBP1, KDM6A, NF1, TRAF3,
HUWE1, KMT2B, EP300, ZNF292, CCND1) were above 90% in at least one sample
(see figure 3.43). Variants in NRAS and KRAS in MM do appear with VAF over 50% in
26 and 27 of 930 samples, but the median VAF in MM is 35% and 30%, i.e. subclonal.
In AL the median VAF is 17% and 38% for NRAS and KRAS and only one sample
showed a clonal variant with a VAF of 81% in KRAS. Variants in NRAS, KRAS, DIS3

and TP53 occur coincidentally in MM, but are mainly disjunct like in AL.

Five members of the BCL2 family harbor 12 missense mutations in 5 samples, see table
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Altered in 49 (43.36%) of 113 samples.
KRAS
DIS3
ZNF292
NRAS
TET2
TP53
KLHL6
KMT2B
ARID1A
KDM6A
EP300
ACTG1
BRAF
CCND1
DUSP2
HUWE1
IDH1
PRDM1
RASA2
XBP1
ABCF1
ATM
CDKN1B
DNMT3A
HIST1H1E
KMT2C
MAML2
NF1
SETD2
SP140
TRAF3
ARID2
ATRX
C8orf34
CREBBP
EGR1
LTB
PIK3CA
RFTN1
UBR5
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Figure 3.42: Incidence of variants in 63 genes published as potential "driver genes" of multiple myeloma
(MM) in light chain amyloidosis (AL). In total, 40 of the 63 genes variants (single nucleotide variant,
insertion, or deletion) were detected in the 113 AL patient samples. Every row depicts a gene and every
column a sample. If a non-synonymous variant was detected, the color of the box is changed to the
respective color for the variant type as referenced in the legend below the figure.
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Figure 3.43: Variant allele frequency (VAF) of variants in 63 genes published as potential "driver genes"
of multiple myeloma (MM) in light chain amyloidosis (AL). In total, 40 of the 63 genes variants (single
nucleotide variant, insertion, or deletion) were detected in the 113 AL patient samples. At the y-axis the
VAF is given in percent. Guiding lines are depicted at 50% and 90% VAF.
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3.27. These variants occur in pro-apoptotic (BCL2L13, BCL2L14) and anti-apoptotic
(BCL2A1, BCL2L10, BCL2L2) members of the family. Two variants are also expressed
(BCL2L13, BCL2A1).

Table 3.27: Variants in genes of the BCL2 detected by variant calling in 113 samples with light chain
amyloidosis (AL). SNP: known genetic variation identifier, VAF: variant allele frequency, VAF RNA:
VAF in RNA.

Gene Sample VAF VAF RNA SNP
BCL2L10 N1493 100 0 rs2231292
BCL2L13 N1493 59.2 53.8 rs9306198
BCL2L14 N1530 52.8 0 rs61739220
BCL2A1 N1531 100 100 rs3826007,CM064994
BCL2A1 N1531 100 100 rs1138358
BCL2A1 N1531 100 100 rs1138357
BCL2L2 N1551 15.2 0 rs10149339

BCL2L14 N1597 39.7 0 rs150190776
BCL2L14 N1597 40.4 0 rs138650437
BCL2A1 N1597 100 0 rs3826007,CM064994
BCL2A1 N1597 100 0 rs1138358
BCL2A1 N1597 100 0 rs1138357

The variant table was assessed for overlap of mutated genes in relation to three previ-
ously published lists of detected mutations in AL (see supplementary table A.17 for a
list of these genes). The overlap of mutated genes as regards to Boyle et al. [36] is 10
of 13 genes, to those of Rossi et al. [254] is 5 of 5 genes, and third to Paiva et al. [230]
is 65 of 93 genes.

Difference in the incidence of mutations in potential "drivers"
Odds ratios were computed for the 44 genes previously indicated as potential "driver
genes" that were detected in both variant tables (AL and MM). The difference of in-
cidence of variants between AL and MM in these genes was assessed by odds ratio
if genes are at least once mutated in both cohorts (see figure 3.44). NRAS and KRAS

are significantly more frequently mutated in MM. In AL, KDM6A is more frequently
mutated (3.5% versus 0.5%) but the frequency is low in both cohorts. For most genes,
no significant different frequency of mutation exists between the two disease entities.
FAM46C mutations, detected in 89 (9.6%) samples in MM were not detected in AL.
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Figure 3.44: Odds ratio (OR) for the number of variants of previously described potential MM "driver
genes" in AL versus MM. An OR < 1 indicates a greater incidence for mutations in this genes in MM,
an OR ∼ 1 indicates no difference of frequency in any entity and an OR > 1 indicates a greater incidence
in AL. Significant differences, indicated by Fisher’s exact test, are illustrated by a BH-adjusted p-value
≤ 0.05. AL: light chain amyloidosis, MM: multiple myeloma, BH: Benjamini-Hochberg, OR: odds
ratio, p: adjusted p-value.
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4 Discussion

The discussion of this thesis is organized in four parts: first, a methodological sec-
tion on the WES pipeline. Second, the evaluation of the personalized GEP-R. Third,
a part on prognosis of AL patients and fourth, findings in connection with the malig-
nant plasma cells in AL regarding the aims of the thesis. Lastly, the thesis aims are
discussed, a conclusion is drawn, and an outlook is given.

4.1 Methodological discussion of WES pipeline

In the following, the implementation of a WES pipeline and analysis of WES data
are discussed regarding reproducibility, quality control, variant calling strategy, and
adaptability.

4.1.1 Reproducibility of WES pipeline

To ensure reproducibility of the thesis WES pipeline, a comprehensive description of
the analysis steps is given in the materials and methods chapter, see section 2.4.4.
Versions of all used tools (see supplementary table A.1) and reference files (see sec-
tion 2.4.1) are documented and referenced for online access. All code is available in
supplement B.

4.1.2 Quality of sequencing data

QC of WES sequencing files was performed during analysis by five tools, see sec-
tion 2.4.4, the flowchart in figure 2.1 for the processing scheme, and supplementary
table A.1 for a list of used tools. QC results are described in section 3.1.1 and briefly
summarized in table 3.1.

Two categories of results, potentially identifying quality issues need to be discussed,
sequence duplication and GC content.

Sequence duplication rates are available from Fastqc, fastp, and Picard. Fastqc re-
ports high rates of sequence duplication. In 69% of the FASTQ files, Fastqc displays
≥ 50% of sequences as duplicated. In principle, this could indicate a problem, be-
cause sequence duplication would imply low sequence diversity. To further assess this
point, sequence duplication rates determined with different tools, i.e. fastp and Picard,
showed the expected ranges of 3%−10% and 5%−19% (see table 3.1) corresponding
to typical technical variation [9, 38, 47]. The explanation could be attributed to Fastqc
scanning only the first 100,000 reads [9], in contrast, fastp and picard assessing all
reads.
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The GC content is indicated by Fastqc as "abnormal", pointing out an unusual distri-
bution of GC content in comparison to the normal distribution. This fits to the unusual
per base sequence content, detected in all files by Fastqc, showing a variation in the
first 15 bases. Per base sequence content is detected as unusual if the frequency of
two different bases at any position differs in more than 20%. Given that this bias is
restricted to the first 15 bases (and otherwise normal) it can be attributed to technical
bias introduced in the library generation as previously described [9, 117]. With fastp
GC content was calculated per base position over all reads. In all FASTQ files the first
15 bases show a mean GC content varying between 31%− 73% per position in each
sample, while the latter base positions show an expected GC content of 50%. The au-
tomatic trimming by fastp improves the GC content and the per base sequence content
a bit. No consequences were expected by the bias for subsequent analyses steps as
previously described [117].

4.1.3 Sequencing analysis strategy

In the presented analysis strategy for WES data, somatic variant calling and copy num-
ber calling is implemented. For both analysis methods, pairs of tumor sample and cor-
responding germline need to be sequenced. By this direct comparison, assessment of
germline variants can be omitted during variant calling [112]. For copy number call-
ing, germline data are used for estimation of the read depth for physiological diploid
status.

Somatic variants were called in WES data (DNA-level) and validated using RNA seq
(mRNA expression). RNA seq data were also used to assess the expression height
and abundance of altered transcripts compared to non-altered ones ( see sections 3.1.2,
3.6.7). Analyses regarding CNA detected by copy number calling are described in
section 3.6.2.

Variant calling and verification in DNA
The crucial step in variant calling is to decide whether mismatching bases in align-
ments are based on mutations or sequencing errors (see section 1.6.3 and base quality
in section 2.4.2). Seemingly a straight-forward assessment, variant calling results are
impacted by alignment, the calling method, filtering of "possible" variants, and subse-
quent further validation of "high confidence" variants.

A variety of variant callers is available. Comparative studies tend not to suggest "the"
method [226, 227, 324] but support selection of different tools for analysis pipelines
(see the description of the analysis pipeline in section 2.4.4 and figure 2.1). The strat-
egy applied in this thesis is to use more than one variant caller [227] and applying
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different strategies and statistical models to generate an encompassing list of potential
variants first, accepting potential false positive detections. To do so, the three callers
VarScan2 [158], Strelka [154] and Seurat [56] were chosen based on the following
criteria: first, availability of a comprehensive and up-to-date documentation [227],
second, different underlying statistical models as basis for variant calling, and third,
the possibility to install and implement the caller. All chosen callers needed to have
performed well in comparative studies [227, 324]. Strelka and Seurat had been used to
call variants for the CoMMpass cohort [61, 218] used as MM comparator samples to
AL in this thesis (see section 3.1.3 , discussed in section 4.1.3).
The raw variant table from the analysis of 113 patients in this thesis contains 446929
variants, 32% detected by at least two callers (see figure 3.1). The number of variants
detected by only one caller passing the false positive filtering is smaller than the one
detected by two or more callers (37% versus 57%). In a second step, the number of
hits was decreased, and the likelihood of true variants was increased by using the in-
tersection of the three variant calls [112]. After the initial step of assessing an upper
limit for the number of potential variants (by the least stringent criteria, i.e. the sum of
variants found by the different callers), this step was used to obtain highly confident
hits for further biological and systematic analysis. To validate this process, patterns of
known, frequently occurring sequencing errors [158] can be used. For example, if all
variant supporting reads being obtained from the same strand, they are almost always
based on PCR amplification errors [158]. If the average variant position is at the edge
of supporting reads, methodologically the chance of a sequencing error is higher than
that of a true variant [158]. To account for this, metrics of the reads in the alignments
were assessed at the respective variant positions using bam-readcount. These metrics
were used to filter all detected variants. Read counts of the remaining variants were
used to calculate the VAF.
As a further threshold for variants to be assessed in subsequent analyses, a VAF of
≥ 10% was chosen to further reduce false positives and to focus on those variants
involved in prior progression or initiation of the diseases (which are conservatively as-
sessed as those being present at least in a subclonal fraction, defined here as in iFISH
[222]). For other analyses as e.g. longitudinal assessment of two samples, a differ-
ent strategy would need to be applied. Further reason for the threshold (as in iFISH)
are possible contaminations by normal BMPC in low frequencies. Preprocessing of
alignments before calling variants further improves the quality of the VAF. It has pre-
viously been shown that the marking of optical and PCR duplicated reads with picard
MarkDuplicates enhanced the precision of the VAF for SNV [38]. Improvement of
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the VAF for InDels can be gained by realignment around possible InDels with GATK
IndelRealigner before variant calling [112].

Variant types can be distinguished in synonymous variants having no effect on encoded
amino acids, and the non-synonymous variants, resulting in a different amino acid.

Orthogonal validation of variants by RNA
A further validation of biological impact of variants detected by WES is their expres-
sion on RNA-level. First, detection of the same variant by an independent method can
be seen as "orthogonal validation": Variants confirmed by RNA have a high confidence
to be no sequencing error, because RNA seq is a different sequencing method (in case
of input material and library preparation) and the sequences are determined by differ-
ent analysis pipelines compared to genome or exome sequencing [112] (see section
1.6.3). RNA seq is of further benefit in validation of alterations detected by WES as in
malignant plasma cell diseases other conventional validations strategies such as con-
ventional sequencing is not possible due to low amount of tumor input material [126]
(see the RNA seq and WES parts in section 1.6.3 and section 2.1.2). Secondly, to a
certain extent, the biological impact of this alteration can be assessed by determining
the frequency of a particular alteration within all reads at a specific location. E.g., a po-
tentially driver mutation will less likely act as one if either not expressed or expressed
in a minor subfraction of reads. The relation of reads in WES and RNA seq can fur-
thermore be taken as indication for the clonal fraction harboring a mutation (in WES)
in relation to the expression level of the altered allele in comparison to the wild-type
allele.

Comparison AL variants to MM
The obtained variants in AL were compared to MM variants detected in the CoMMpass
cohort (see summaries on AL variant table, section 3.1.2, CoMMpass cohort, section
3.1.3). The underlying question here is whether AL-typical variants exist, or whether
the same variants could be found in both malignant plasma cell diseases. In turn, a
potentially unique AL-specific pathogenetic mechanism could be investigated. A pos-
sible confounder in this comparison is that CoMMpass samples were aligned to the
hg19 reference genome and the AL to the up-to date hg38 version (see section 2.5.5
for description of CoMMpass). As FASTQ files are not available for CoMMpass, no
new alignment could be performed. According to Pan et al. [235] this introduces only
a small technical bias (1%). To correct for ambiguities potentially introduced by differ-
ing reference genomes, variants were only compared regarding gene names, not variant
positions (see section 2.5.5). Further methodological differences cannot be excluded:
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plasma cell purification methods, sequencing strategy (WES and WGS), sequencing
kits, and the bioinformatical pipelines can induce technical variation. Given the size
of the cohorts (especially COMMpass where less information about purity of samples
is available), it is highly unlikely that major alterations in terms of frequent mutation
would have been overlooked. Impurities (e.g. contaminations by normal plasma cells)
would dilute the VAF, but not to an extent omitting specifically aberrant hits. In turn,
purity was well controlled in the AL-cohort. Here, purity was assessed by flow cytom-
etry as well as minimum size of clonal alteration by iFISH (see section 2.1.2 [222]). A
further potential source of variation is the ethnic constitution of both cohorts. Whereas
the AL assessed in this thesis mainly includes samples of German patients, those in
CoMMpass are mainly from US, Canadian, Italian and Spanish patients. Global qual-
ity measurements, e.g. Variant type (97% SNV, 95% missense variants in both, see
3.6.7) and Ti/Tv ratio (1.5 and 1.4, see 3.6.7) are equal between both cohorts (and
therefore also between AL and MM), suggesting a presumably small variation by all
these confounders.

Copy number analysis
The copy number analysis was possible using with VarScan2, DNAcopy and GISTIC2
as described in section 2.4.5. This strategy was validated using assessment by iFISH
[23, 25, 26, 39, 116, 221–223]. Whereas assessment of ploidy by WES is considered
possible using the strategy implemented as part of this thesis, limitations also become
clear. In the meantime, publications refer to an inferiority as compared to analysis
by WGS [145, 327, 333, 334]. The results of this thesis lead to the implementation
of a low coverage WGS strategy (using a low amount of input material necessary in
malignant plasma cell diseases) complementing the RNA seq/WES strategy described
here. Results of the analysis are described in section 3.6.2 and 3.6.3 and discussed in
section 4.4.3.

4.1.4 Adaptability and variability of sequencing pipelines

Sequencing analysis pipelines are, as molecular profiling in malignant plasma cell dis-
ease and other tumor entities in general, not standardized. This especially applies
to library preparation and sequencing strategy, but likewise to bioinformatic analysis.
Different strategies, especially in terms of bioinformatic tools used (see also section
3.1.2 and figure 3.1) lead to different numbers of variants found [226]. This "technical
bias" needs to be taken into account comparing different studies, especially if the com-
position in terms of entities differs. Sequencing analysis pipelines therefore need to
be variable and should be easily up-datable or expandable. An analysis of sequencing
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data should be considered a dynamic process, and along these lines there are even rec-
ommendations to iteratively reanalyzed sequencing data every 1− 2 years, to benefit
from the advantage of new analysis tools, bug fixes and updated annotation sources
[60, 320]. The difficulties of not doing this can be seen for the CoMMpass cohort still
adhering to hg19, making comparisons more error prone (see section 2.5.5). A versa-
tile pipeline structure is of additional need for comparability of samples (e.g. between
different study groups) or addition of patient data to reference cohorts. The applicabil-
ity of the sequencing pipeline described in this thesis was tested for RNA seq data in
the GMMG-MM5-multicenter-trial, for which the LfM served as central laboratory.

As an example for the described adaptability of the pipeline, the analysis of the BRAF
V600E mutation was included, for which clinical grade inhibitors are available [10, 29]
(see section 3.6.7 and 4.4.8).

4.2 Evaluation and prospective application of the GEP-R within
the GMMG-MM5-multicenter trial

This section comprises the discussion of the first two aims, regarding risk assessment
in MM for relation to AL and particularly, are GEP-based risk assessments determin-
ing the malignant plasma cell properties in MM as good as the current standard risk
stratifications? And is a personalized therapeutic recommendation possible by assess-
ing the expression of target genes? Results are presented in section 3.2. Parts of the
analyses have already been published in shared first-authorship in the article Hose, D.,
Beck, S. et al. [126].

Bone marrow aspirates were obtained from 573/604 patients (95%) and could be
CD138-purified in 559/573 (97.6%) [126]. Of these, iFISH-analysis was possible
in 556 (99.5%), GEP in 458 (82%) [126]. This compares favorably to iFISH results
reported by the EMN02/HOVON95-trial (74.1%) [43], IFM2009-trial (73.6%) [12],
DSMM XI-trial (73.7%) [88], SWOG S0777-trial (60.2%) [81], or a pooled analysis
of three PETHEMA/GEM clinical trials, i.e., GEM2000, GEM2005MENOS65, and
GEM2010MAS65 (60.8%) [173], which were conducted during a comparable time
frame [126]. It was therefore for the first time validated prospectively in a randomized
phase III multicenter trial the possibility to perform not only cytogenetic (including
rISS) but also GEP-based risk stratification and reporting in > 80% of patients dur-
ing the first cycle of induction chemotherapy as - potentially - molecular risk-adapted,
personalized treatment strategy [126].

Risk stratification using an integrated approach, i.e., HM metascore, delineated
10/77/13% of patients as high/medium/low risk, transmitting into significantly differ-

120



4 DISCUSSION

ent median progression-free survival (PFS) of 15 vs. 39 months vs. not reached (NR;
p < 0.001) and median overall survival (OS) of 41 months vs. NR vs. NR (p < 0.001),
see figure 3.5 and tables 3.5, 3.6 [126]. Five-year PFS and OS rates were 5/31/54%
and 25/68/98%, respectively (see tables 3.5, 3.6) [126]. Survival prediction by HM
metascore (Brier score 0.132, p < 0.001) is superior compared with the current gold
standard, i.e., revised ISS score (0.137, p = 0.005), see table 3.7 [126].

Besides risk stratification which can be done by both FISH and GEP [99], the specific
benefit of GEP, either by DNA microarrays as in this trial or by RNA seq, lies in the
additional ability to identify target gene expression. In the analysis, this was intended
for immunological targets and those for which small molecules or antibodies existed,
e.g., AURKA (VX-680 [129]), IGF1-receptor (e.g., AVE1642 [210]), or FGF3R (e.g.,
CHIR-258 [296]). Targets were reported as expressed; for IGF1R in 33.1%, AURKA
in 43.2%, and FGFR3 in 11% of patients [126]. AURKA was selected at the time
when the GEP-R was developed and it had previously be shown to be expressed in ap-
proximately 30% of previously untreated myeloma patients and is associated with ad-
verse survival [129]. IGF1R-inhibition was selected due to its importance as myeloma
growth factor and impact on patient survival [280, 281]. Here, it was the intention to
give the proof-of-principle for prospective advanced molecular diagnostics of targets
and reporting in clinical routine; in this way, the GEP-R is depicted and should be
interpreted. Novel targets for which clinical grade inhibitors become available or im-
munological targets can be added to the assessment due to the adaptable surface of the
reporting tool (GEP-R) [198]. Without doubt, actual implementation necessitates stan-
dardization and either commercial or academic development of an actual molecular
diagnostics test. It is shown that such a strategy is in principle feasible.

Alongside the principal possibility of running advanced molecular profiling and depic-
tion of potential targets for individualized treatment, assessment of risk was the first
objective of this thesis. Here, many prognostic factors have been described with the on-
going discussion of which to include [53, 99]. This leaves the treating physician with
a plethora of information that is difficult to consolidate intending counseling patients
and drawing a clinical conclusion. Metascoring appears as an appropriate strategy
[52, 162, 198, 274] to overcome this, and that this is likewise possible in a randomized
clinical trial setting was shown in this thesis. Regarding the molecular techniques used
in the metascore, i.e., iFISH and GEP, it was chosen to include both due to in part
non-overlapping prognostic information, e.g., it is not possible to predict del17p13 at
a high-enough accuracy by GEP [336].

The actual (good) prediction result of the HM metascore per se is thereby not the
main focus of this analysis. Nonetheless, even with this "2010 choice" regarding risk
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factors and target genes, metascoring including GEP-based risk assessment is superior
in numbers to rISS, although not statistically so. The same however holds true for a
comparison of rISS to ISS even on the comparably large cohort of patients used in this
thesis.

4.3 Prognosis of AL patients

This section comprises the discussion for the third, fourth, and fifth research questions
of the thesis regarding prognosis of AL patients. The prognosis of AL patients, inde-
pendent of a specific risk assessment, during the first 12 months is significantly poorer
compared to previously untreated myeloma patients (see figure 3.24).

Determinants of prognosis in AL can be grouped in two broad categories. First, prog-
nostic markers that reflect end organ damage caused by amyloid deposition (see also
section 1.4), and secondly, malignant plasma cell characteristics. Of course, both are
interconnected, and the exact delineation depends on the pathogenic point of view. An
example is the serum FLC-level that is determining FLC organ deposition and thus,
is an organ damage factor, but likewise depends on the number of cells and individ-
ual LC production rate which in turn are malignant plasma cell factors. Tradition-
ally, plasma cellular factors on the one hand are described as corresponding to the
pathogenic LC and underlying clonal bone marrow disorder. On the other hand there
are organ biomarkers, which reflect the end organ damage caused by the toxic FLC and
the deposited amyloid fibrils [73, 75]. As mentioned and discussed in the following,
the two categories are connected. In this thesis, the delineation is made between amy-
loid deposition based prognostic factors, and those corresponding to malignant plasma
cell characteristics impacting in "non-amyloid producing" plasma cell diseases, i.e.
multiple myeloma.

As a rule of thumb, end organ damage associated clinical prognostic markers define
most of early prognosis of AL patients [75], whereas especially if the heart is involved,
the prognosis is poor [75, 107].

Malignant plasma cell characteristics, impact later in terms of response to treatment
and time until disease recurrence (e.g. such as proliferation rate of malignant plasma
cells, in this thesis for the first time assessed for AL, see section 3.4). Prognostic
malignant plasma cell factors have traditionally been restricted to detection of CA in
malignant plasma cells and the amount of FLC by the cells (see section 3.3).

For the first time, in this thesis, molecular characteristics by gene expression regarding
prognosis of AL were analyzed. Results are depicted in section 3.4 and 3.5 and are
discussed below.
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4.3.1 Amyloid deposition based prognostic factors

Amyloid deposition can be seen as depending on the height of FLC (or diff FLC),
which in turn depends on the production rate of FLC by an individual malignant plasma
cell, and the number of malignant plasma cells. An important question lies in how
much the deposition pattern of amyloid is driven by the absolute height of FLC or if
it is an individual characteristic of a specific LC. For the latter, in this thesis, the term
"amyloidogenicity" is used.

As stated, LC production rate is determined by the amount of malignant plasma cells
and their individual production rate [24, 295]. Regarding the latter, normal plasma
cells produce a high amount of intact Ig [156] and only a low rate of unpaired FLC
as identified by the respective serum levels in healthy individuals compared to MM
or AL-patients [79, 80, 256, 257]. Malignant plasma cells produce less Ig, as the
derangement leads to a general deviation from BMPC state [79, 80, 256, 257] (e.g.
acquisition of proliferation by malignant plasma cell instead of being a Ig-factory or
by a CA, like t(11;14), affecting the Ig locus). Derangement of malignant plasma cells,
leading to lower production of complete Ig simultaneously implicate a higher relative
and frequently absolute production of unpaired/free LC as in the physiological state.

A higher number of plasma cells, indicated by high PCI and M-protein [295], is in
turn related to the production of a higher amount of unpaired LC for a given level of
aberrant LC production per cell. It is thus logical that PCI and M-protein levels are sig-
nificantly associated with adverse survival (p = 0.002 and p = 0.01, see figure 3.11 a
and c). Given that the tumor mass is a rather indirect measure, and the FLC deposition
directly impacting on the amount of deposited LC, it is understandable that the grade of
significance is lower compared to the diff FLC measurement (p < 0.001). As the total
FLC production is the product of an individual production rate per malignant cell and
the number of cells (i.e. surrogated by PCI or to a lesser degree M-protein), the total
impact of plasma cell number will also impact in prognosis via the absolute number.
In other words, it is more difficult given fractional cell killing by chemotherapeutic ap-
proaches to lower the tumor mass under a critical threshold of FLC production where
amyloid deposition is prevented if a higher tumor mass is present at the beginning,
i.e. PCI or M-protein. In as much the deposition pattern of amyloid is driven by the
absolute height of FLC or its "amyloidogenicity".

If analyzing the pattern of organ involvement, a large overlap is found, i.e. most fre-
quently several organs are involved (see figure 3.10 in section 3.3). For patients with
heart involvement (75%, see table 2.5), the most frequent organ location, 23% like-
wise show kidney, and 20% liver involvement. This has also been shown assessing
the differences in involved and non-involved FLC, i.e. diff FLC: High ratios are as-

123



4 DISCUSSION

sociated with heart involvement low ratios more frequently with kidney involvement -
and consecutively better prognosis [24, 74, 163, 205]. Thus, at least part the amyloid
deposition is driven by the height of FLC (either assessed absolutely or as diff FLC).
This is exemplified in low diff FLC ratios more frequently affecting kidney, whereas
high ratios are more prone to affect heart, or both organs (see table 3.8). The presence
of a small proportion of patients with one involved organ (21%, see table 2.5), e.g. 8%
with kidney only involvement despite high diff FLC (see table 3.8) however implies
that amyloidogenicity varies at least to a certain degree between different LC. It is also
well understandable that organ involvement determines almost exclusively the early
prognosis of treated patients, and that this is especially the case for heart involvement
as most critical feature (see figure 3.7), and in turn, excellent prognosis if kidneys are
the only involved organs (see figure 3.7 a). In this thesis, we show for the first time
that a malignant plasma cell factor, i.e. the proliferation rate, also highly impacts on
this early prognosis (see section 3.4).
Frequently used serum markers depicting heart damage are NT-ProBNP and cTnT.
Especially cTnT is already very sensitive to small damages [70]. Both markers were
found to be prognostic [71, 164, 231], with NT-ProBNP >= 8500 [315] detecting a
group of patients with high risk of premature death (see figure 3.8 a).
Previous research on these prognostic serum parameters, application of predictive
thresholds and the combination of serum parameters introduced risk assessment mod-
els, i.e. the "standard" Mayo Score (2004) by Dispenzieri et al. [70], the revised Mayo
Score (2012) by Kumar et al. [164], and the "advanced" Mayo Stage III Euro Score
(2013) by Wechalekar et al. [315] (for definition see section 1.4). The combination of
clinical prognostic serum parameters representing different disease associated factors
increases the accuracy of survival prediction, especially late survival [216]. All three
risk assessment models are analyzed in this thesis (see figure 3.9).

4.3.2 Malignant plasma cell characteristics

The second group of factors analyzed in this thesis is associated with malignant plasma
cell characteristics, which are in the following discussed regarding their prognostic
impact. CA assessed by iFISH have previously been described. They are the same
as assessed in MM. In this thesis, special focus is laid on addressing gene expression.
For the first time, proliferation of malignant plasma cells as biological but likewise
prognostic factor is assessed. GEP-based myeloma risk scores are addressed for AL,
and a novel AL-based score derived and tested vice versa for prognostic impact in MM.
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Chromosomal aberrations as detected by iFISH
AL has a lower fraction of patients harboring CA associated with high risk (as gain
1q21, del 17p, t(4;14)). In contrast to MM, in which CA are to a large extent prognostic
independent of applied treatment, this is not the case in AL. Examples are the negative
prognostic impact of t(4;14), t(14;16), del 17p or 1q21 gain, i.e. all features with high
risk in MM [156, 202, 221, 265]. In AL, none of the CA alone has a prognostic impact
(see figures 3.12, 3.13). This is a priori surprising, but then CA have been shown to
be only prognostic regarding a specific therapy scheme [26, 27, 75, 77, 155, 215, 245]
(cf. section 1.2.3). Examples are patients with t(11;14), the most frequent CA in AL,
having a significantly adverse prognosis if treated with bortezomib containing regimes
[27, 77, 215, 245]. Patients with t(11;14) however respond particularly well to HDT
and ASCT [75, 108] (c.f. section 1.5.1). Combinations of daratumumab/dexametha-
sone and ASCT, likewise show a (slightly) better prognosis in event-free survival of
patients with t(11;14) [75, 155]. Better PFS was found for this group of patients with
venetoclax [237] (c.f. section 1.5.4). The latter in agreement with data in MM show-
ing a significantly higher activity of venetoclax in t(11;14) patients [165]. In contrast,
treatment with melphalan/dexamethasone combinations or daratumumab show a rela-
tively adverse prognosis in patients with gain 1q21 [26, 155, 215]. The investigation
in our large cohort of 582 patients treated with different regimen thus implies that
the prognostic impact of CA in AL is almost completely depending on the treatment
regimen.

This is the more surprising as GEP-based features remain significant (see section 3.4
and the discussion below). This likewise holds true for biological variables as prolif-
eration.

MM-derived GEP-based risk factors
As discussed, malignant plasma cell derived factors impact on prognosis of AL patients
in the mixed cohort of this thesis. This impact manifests mainly after the early phase
of treatment, which is mainly derived by organ involvement (see above and reviewed
in [75]). In this thesis GEP-based risk scores derived for MM, as well as different
molecular classifications of myeloma are assessed for the first time (see also discussion
on pathogenesis in section 4.4).

For a description of the risk scores and classifications see section 1.2.4 and the methods
sections 2.3.2. The results are depicted for the individual scores in section 3.4.

The idea behind prognostic scores is to select - by different strategies - genes associated
with prognosis. All respective scores have been initially determined for previously
untreated MM patients undergoing treatment.
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Same as risk associated CA all three investigated myeloma derived GEP-based risk
scores (UAMS70, RS, IFM15), show generally a lower proportion of high risk patients
in AL compared to MM (see table 3.13). In contrast to iFISH-based factors showing
prognostic impact late, GEP-based risk factors however already impact very early (i.e.
in the first 6 months) heavily on patient outcome (see figures 3.19, 3.21 b).

Proliferation
Proliferation assessed by gene expression is a strong prognostic factor in MM and
AL. Here, as GEP-based score, the GPI strongly delineates early differences in patient
survival (see figure 3.15 b). In the latter, AL patients compared to MM, a significantly
lower percentage of malignant plasma cells show either medium or high GPI (66%
versus 80%, p < 0.001).

This is in line with the pathogenic findings of a more adverse (risk prone) molecular
profile in MM compared to AL. This holds true for high-risk CA as well as for all
GEP-based risk factors (see table 3.13, figure 3.26 and below).

GEP-based myeloma risk scores
The GEP-based myeloma risk scores depict a smaller fraction of patients as high risk
compared to previously untreated myeloma patients. The UAMS70 depicts 8% of AL
patients (compared to 25% of previously untreated MM). These patients however show
a very adverse risk (see figure 3.19 b). The same general observation holds true for
the RS (4%/8% AL/MM, see figure 3.21). For the EMC92, no patient is classified
as high risk. Taken together, myeloma derived high risk features (if present) imply
adverse prognosis in AL. Interestingly, this can be detected already early (c.f. fraction
of ALMG and ALMM in table 3.13). Therefore, malignant plasma cell factors can
impact on early mortality in AL, as it is the case in MM.

Next, it was aimed to develop a risk score for AL. Basically, two questions were fol-
lowed: Is such a score specific for AL, i.e. would AL-specific alterations in gene
expression dominate, or would the score at the same time be prognostic in MM, i.e. be
built on malignant plasma cell specific factors in contrast to AL-specific characteris-
tics.

AL-derived GEP-based risk assessments
The HDAL was created using the methodology developed by Rème et al. [248] in
collaboration with the LfM (RS as described in section 2.3.3). Genes for the HDAL
had been selected by prognostic relevance and optimal thresholds for stratification were
determined, both by running Log-rank tests.
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The HDAL is the first gene expression-based risk assessment on AL, which is inde-
pendently predictive and stratifies patients, as intended, in three groups with significant
different median survival (6/33/72 months, see figure 3.22 b and table 3.11). Likewise,
it is prognostic for AMM and MM (p < 0.001, see figure 3.23). In MM, a larger pro-
portion of high risk is present (63% versus 23% in AL, see figure 3.22 c). Risk score
determination on either AL or MM thus delineates malignant plasma cell characteris-
tics. The HDAL is independently predictive for low risk to high risk in multivariate
Cox regressions with risk models based on the amount of FLC production and organ
involvement, i.e. "standard" Mayo Score (2004) by Dispenzieri et al. [70], revised
Mayo Score (2012) by Kumar et al. [164], and "advanced" Mayo Stage III Euro Score
(2013) by Wechalekar et al. [315] (see table 3.12). These three risk assessment mod-
els are the best currently available risk assessments for AL patients based on amyloid
deposition and particularly on heart involvement (as described in section 1.4). Here,
it is shown for the first time that amyloidogenicity and malignant plasma cell factors
independently determine prognosis in AL patients. This holds true for the HDAL
specifically developed on AL patients, but likewise for other - MM-based - risk factors
or proliferation as biological variable (see above).

Both classes of factors play out their main impact during different phases of the dis-
ease. As indicated at the beginning of this section, amyloid deposition and organ
involvement based factors mainly determine survival in the first 6 − 12 months of
the disease, whereas malignant plasma cell disease based factors become important
with chemotherapeutic treatment. This has been shown for chromosomal aberrations
[26, 27, 155]. Gene expression-based risk factors also impact early during the course
of the disease, if they are present. The latter is the case in a significantly fewer propor-
tion of AL patients. A specific case is proliferation. One notable exception of this rule
is high proliferation. If present, patients show a dismal prognosis in first three months
(see figure 3.15 b and table 3.10). One potential explanation is that, as diagnosis is
made late in AL [106, 107], patients with fast accumulation of malignant plasma cells
are potentially diagnosed later during their natural course of disease.

The transferability of the HDAL to AMM and MM is a strong indication that malignant
plasma cells in AL do not determine a unique entity and that they do not differ to the
malignant plasma cells in AMM and MM (in addition to the findings discussed below
on molecular pathogenesis in section 4.4).

4.4 Molecular pathogenesis of AL

The following section discusses the last three research questions of the thesis aims
regarding pathogenesis of AL. The discussion revolves around the question whether
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malignant plasma cells in AL are characterized by specific, i.e. "AL-specific" features.
To do so, similarities and differences of AL to other disease entities, i.e. MGUS,
AMM, and MM are assessed (as described in section 3.4 and 3.6). It starts with gene
expression-based assessments of plasma cell characteristics. Afterwards, the results as
determined by iFISH were discussed. These were compared to copy number alterations
determined from WES data. Subsequently, results from expression analysis obtained
from RNA seq are discussed. Finally, results from variant calling determined from
WES were discussed.

4.4.1 Gene expression-based assessments

It is not surprising to see that GEP-based risk scores show generally a lower proportion
of high-risk patients in AL compared to MM (see table 3.13). Regarding plasma cell
derived prognostic factors, these patients fall in between the categories MGUS, AMM,
and MM, implying that an advanced malignant plasma cell disease like in MM is less
frequent in AL. But this cannot be interpreted as that all in AL patients plasma cells
are more like the early stage MGUS than MM: on a single patient level, the malignant
plasma cells in AL do resemble the characteristics either in MGUS, AMM, or MM.
Different molecular subtypes do contribute in altered proportions.

The group proportions of GPI, MAI, TC and MC in AL are different from the propor-
tions of MGUS and AMM (for example see figure 3.15 c): AL as an entity fits in an
own "molecular age" between MGUS and AMM.

Myc-activation index
Activation of Myc, as surrogated by the MAI, is found in all malignant plasma cell
diseases. A MAI above 1 is more frequent in AL than in MGUS but less frequent than
in MM (see figure 3.16 c). A significantly higher proportion of patients carry a MAI
> 1 in ALMM compared to ALMG (p < 0.01). Thus, Myc-activation in AL mirrors
the stage dependent increase of Myc-activation in plasma cell diseases.

Gene expression-based classifications
GEP-based classifications stratify patients based on gene expression and attribution to
different molecular entities. Groups are in part, but not completely, driven by under-
lying chromosomal aberrations, as e.g. t(11;14) or t(4;14). The different distribution
of molecular entities regarding GEP-based classifications thus mirrors the observed
and known differences in underlying chromosomal aberrations. Consecutively, the TC
classification applied to AL shows the 11q13 group as largest (see figure 3.17 c), corre-
sponding to t(11;14) CA involving the 11q13 locus being the most frequent underlying
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CA in AL. This was detected in the same way for the MC. Here, the CD2 group is
the largest group with 47% of AL patients (see figure 3.18 c). Analogously, the small
proportion of HRD in AL is visible by the small HY group in MC.
In summary, GEP-based classification mirror the distribution of underlying chromoso-
mal aberrations and, in case of MC, the distribution of a (in AL small) "high prolifera-
tion" group.

4.4.2 Chromosomal aberrations assessed by iFISH

For evaluation of CA the largest cohort of iFISH data with samples of 3023 patients is
used (see section 3.6.1). The specific advantage of this cohort is, beside its size, that
all patient populations (i.e. AL, MGUS, AMM, and MM) have been analyzed in the
same way.
The distribution of CA in AL patients (see figure 3.27) has previously been described,
and the findings in this thesis are consistence with the previously published results
[23, 25, 28]. The most striking difference to MM in frequency of CA is the higher
percentage of IgH-TL in AL, driven by the frequency of t(11;14) (see figure 3.28 a).
Only 3% of AL patients with presence of t(11;14) concurrently fulfill the definition of
HRD in agreement with previous findings on smaller patient cohorts [25]. AL patients
show a significant lower number of high-risk aberrations, i.e. t(4;14), del 17p, gain
1q21 (especially three or more copies), or t(14;16) compared to MM (see figure 3.26).
In the mean, malignant plasma cell in AL have less aggressive features compared to
MM. This holds true for proliferation or high-risk CA or GEP-based risk determina-
tion. If however AL patients show high-risk MM-features, their prognosis is especially
adverse (c.f. section 4.3).
Regarding the number of CA as assessed by iFISH, malignant plasma cells in AL pa-
tients mostly harbor one or more of the investigated aberrations (90% versus 10%, as
depicted in table 3.14). This can be explained first by the high proportion of patients
harboring a t(11;14) (with concomitantly fewer aberrations, especially those determin-
ing HRD that were counted as one), see figure 3.28 and section 1.2.3.

4.4.3 Copy number alterations assessed by WES

CNA were assessed using WES data of 113 AL and 28 MM patients. The analysis
of CNA is outlined in section 2.5.4 and comprises a comparison of AL to MM by the
assessed CNA and an analysis of expression of altered genes. See section 3.6.2 for
depiction of results.
The presence of large gains on chromosome 9 and 11 seems to be the most frequent
numerical aberration finding in AL patients, with presence in 32% and 36% of patients,
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see figure 3.29 (Note: translocations like t(11;14) cannot be assessed by WES). This is
somewhat a surprising finding as HRD (defined by the gain of two of the three chromo-
somes 5,9,15 [323]) is significantly less frequent in AL compared to MM (see section
4.4.2 above), but still remain the relatively most frequently detected aberrations. The
total number deletions in AL, assessed by GISTIC, is higher than the number of gains
(see table 3.15 a). But the number of genes in amplified regions is larger than the
number in deleted regions (see table 3.4 b).

The CNA of AL patients were compared to MM. Both entities show significantly dif-
ferent results. The median number of CNA per patient sample in AL (9) is lower
compared to MM (12.5) (see table 3.15 b). Whereas in AL more deletions than gains
are found, the number of gains is higher compared to losses in MM (see table 3.15
a). This finding reflects the larger proportion of HRD (defined by gains) in MM com-
pared to AL (as detected by iFISH, see section 3.6.1). Of the 50 cohort-wide CNA
in AL, only eight (2%) are recurrent CNA, which are also present in MM (see table
3.16). This is likely driven first by the lack of recurrent CNA, and the relatively small
comparator cohort in MM. Although the difference between AL and MM remained
in a comparison with subsampling to 28 randomly chosen AL patient samples. The
GISTIC score considers the amplitude and the frequency of occurrence of a CNA in
the cohort [201]. The higher the score, the more distinct is the CNA. The CNA with
the highest GISTIC scores, are among the overlapping CNA between the entities. Six
of the eight CNA common to AL and MM show significant different frequencies (see
table 3.16): Gain 19q13.42, del 2p11.2, gain 1p36.33 and gain 7q34 are significantly
less frequent in AL than in MM. Del 22q11.22 and del 14q32.33 are more frequent in
AL compared to MM.

The expression of the genes altered by a CNA in the AL samples was subsequently
analyzed (see figure 3.30). Interestingly, expression of none of the genes suggested to
be myeloma driver genes [308], i.e. ARID1A, CDKN2C, FAM46C, FUBP1, is altered
in samples with gain 1q21 CNA compared to samples without, nor is NRAS.

A significant downregulation of the expression of the RB1 gene in samples with a del
13q14.2 CNA is present. RB1 is a negative regulator of the cell cycle and as this a
tumor suppressor 9 [283]. In MM, lower RB1 expression was previously found to be
associated with del 13q14 assessed by iFISH and a higher proliferation rate [128].

Another potential myeloma associated gene, either mutated or showing higher expres-
sion as consequence of the (rare) t(14;22) translocation [316], is IGLL5 (located at the
22q11 cytoband). It is downregulated in expression in samples with del 22q11. IGLL5

9Genecards: RB Transcriptional Corepressor 1; Online resource: https://www.genecards.org/
cgi-bin/carddisp.pl?gene=RB1&keywords=RB1; Status: 2019-09-20, 15:20
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encodes an immunoglobulin polypeptide that does not require somatic rearrangement
10 [283]. Its upregulation in myeloma is bound to super enhancement by a translocation
with the IgH locus [188] (described in the CA part in section 1.2.3).

4.4.4 Copy number alterations versus chromosomal aberrations

For validation of CNA, results in AL were compared to CA detected by iFISH in the
same samples (see section 3.6.3). Here, sixteen CNA correspond to ten loci investi-
gated with iFISH probes (see table 3.17). The overlap rate, indicated by the calculated
efficiency between the iFISH results and the respective CNA is 83% (1q21.1), 85%
(8p23.1), 81% (9q21.11), 80% (13q11), 81% (13q14.2), 85% (15q11.2), 89% (15q14),
and 93% (19q13.42) (see table 3.17). A high overlap to CA at the same locus or at a
near cytoband validates the assessment of CNA from WES data and is implicitly an in-
dicator of sequencing quality. CNA involved in translocations, i.e. 11q13.4, 14q11.2,
and 14q32.33 show less consistent overlap due to location in break-point regions [19].
For the remaining 37 CNA no corresponding iFISH probes were used routinely.

4.4.5 Differences in global gene expression patterns between AL and other ma-
lignant plasma cell entities

To identify patterns and generate hypotheses in multidimensional gene expression data,
dimensions were reduced by PCA and t-SNE (see detailed description of methods in
section 2.5.1 and results in section 3.6.4). Both methods are to a certain degree com-
plementary. In homogenous data (e.g. cell lines, PPC, MBC, BMPC), the inter-sample
variance is enlarged in PCA but not in t-SNE. For comparison between disease entities
that are more heterogeneous, t-SNE shows larger variance between patient samples
than PCA does.

PCA transforms data to as many PCs as variables (genes) exist, ordered by the variance
they explain. Therefore, the first components hold the most variance. All input vari-
ables contribute to all PCs. Single PCs cannot be attributed to single input variables.
In the analysis presented in this thesis, 10% of variance is explained by PC1 (5.7%)
and PC2 (4.4%) in gene expression data from DNA microarray and 19% from RNA
seq.

Taking into account all PCs, 100% variance is explained. In homogenous data, e.g.
the same cell line, the first PC contains a higher amount of explained variance than
in heterogeneous data e.g. patient samples. Here, more PCs are needed to explain

10Genecards: Immunoglobulin Lambda Like Polypeptide 5; Online resource: https://

www.genecards.org/cgi-bin/carddisp.pl?gene=IGLL5&keywords=IGLL5; Status: 2019-09-
20, 15:20
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the same degree of variance. By t-SNE, all variance in the data is transformed and
compressed into two dimensions. No variance, even low degree, is excluded from
analysis. This makes t-SNE more applicable to heterogeneous data.

In the analyzed dataset, three main observations were made: first, methodologically,
t-SNE is more applicable to gene expression data, analyzed in this thesis, than PCA.
Within the sample groups HMCL, BMPC, MBC and PPC, a low biological variabil-
ity was expected (scattering of points in the plot) and detected (see figure 3.32, 3.34
b). Likewise, the expected larger biological variability between the disease entities
(AL, MGUS, AMM, and MM) and BMPC is visible. Between the disease entities and
HMCL, a larger variance was detected. PPC and HMCL are grouped closer together
than all other groups. Unifying biological factor between both is a high proliferation
rate. Whether proliferation is induced by malignant transformation (as in HMCL) or
physiologically (PPC) therefore has less impact than the biological process per se. In
PCA this is more difficult to see (figure 3.32, 3.34 a).

Second, a large sample variance inside a disease entity is present. Ellipses for each
disease entity are remarkably large compared to the ellipses for HMCL, BMPC, MBC
and PPC (see the right side in figure 3.32, 3.34 a and b). This is likewise seen in PCA.

Third, the most interesting finding, is that only a small scattering distance is found
between the compared malignant plasma cell disease entities, i.e. MGUS, AMM, MM,
and AL. In PCA, ellipses for all disease entities overlap, indicating a high similarity
(figure 3.31, 3.32, 3.33, 3.34 a, right side). In t-SNE AL and MM have tangential
ellipses, likewise indication a high similarity between the disease entities (figure 3.32
b). This finding is in remarkable contrast to the (never proven) theory of ongoing
clonal evolution in MM [115, 214]. When taking into account that the delineation of
malignant plasma cell diseases by the IMWG [142] is based on tumor mass (and end
organ damage), it is well conceivable that not the molecular background, but the tumor
mass drives end organ damage. Thus, the main discerning factor between the entities
is tumor mass. This does, of course, not exclude that different frequency of e.g. high-
risk CA or more altered gene expression is present in a cohort of MM patients. The
similarity between these entities is more remarkable as the proportion of underlying
subentities is different between AL and the other malignant plasma cell disease entities,
as exemplified by the frequency of (t11;14) and HRD. Of course, already a different
proportion of t(11;14) between two disease groups could drive a certain difference in
PCA or t-SNE assessments. It is thus conceivable that the found difference for PCA is
smaller than for t-SNE.

The findings in this thesis disproof the previously published assumption that over-
all gene expression profiling of AL is different from other groups (BMPC, MGUS,
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AMM, and MM) [160]. Here, Kryukov et al. [160] used unsupervised clustering and
multi-dimensional scaling analysis on a small cohort of 16 AL, 15 BMPC, 21 MGUS,
24 AMM, and 69 MM samples. The applied method for group identification, hier-
archical clustering, shows a large chance for potential pitfalls [253]. These are first,
the dependence of results on the applied similarity measure, e.g. manhattan or eu-
clidean distance. Second, hierarchical clusterings will always define clusters - even if
significant variability in the data is missing [124]: the distance between the clusters
is independent of the variability of the data. And third, input data is assumed to be
of hierarchical origin, but this is not proven for malignant plasma cell disease entities.
It is likely that this is not fully overcome by the use of multi-dimensional scaling by
Kryukov et al. [160]. A further criticism is the lack of correction for molecular entities
(e.g. accounting for different frequencies of t(11;14)). The main limitation of Kryukov
et al. [160] can be seen however in the small sample size of the cohort (including the
"increase of the molecular differences problem") [124, 153]. In summary, the dimen-
sion reduction analyses applied in this thesis on a large cohort of 1296 samples do not
show distinct molecular profiles. This finding is in agreement with the AL-based GEP
score being prognostic in MM, and vice versa (see discussion above in section 4.3.2).

4.4.6 Differential gene expression

In this thesis, differential gene expression analyses were performed on RNA seq data
using the largest available cohort of 124 AL patients. A brief description of compared
groups is depicted in section 2.5.2 in table 2.9. The results are described in section
3.6.5. Of all four comparisons between BMPC and the four malignant plasma cell
disease entities (AL, MGUS, AMM, and MM), most DEG overlap with at least one
other entity, indicating that the differences of malignant plasma cell diseases to healthy
BMPC are mainly the same (see the Venn diagram in figure 3.35 a). This is in line with
overlapping genes sharing the same direction of regulation i.e. being in all cases either
up or downregulated compared to BMPC in both AL and MM.

The list of overlapping genes between BMPC and all four malignant plasma cell dis-
eases and subentities (see supplementary table A.15) contains genes like DKK1 and
HGF, which are already known to be aberrantly expressed by malignant plasma cells
in MM [130, 156, 282, 294] (see the part on altered gene expression in section 1.2.3).
Here, "aberrant" indicates absence of expression in BMPC but not in malignant plasma
cells.

The detected downregulation of MYC expression in AL to the level of BMPC expres-
sion (see table 3.21) is in agreement with a low rate of Myc-activation in AL compared
to MM indicated by the MAI (see table A.7 and discussion on MAI in section 4.4.1).
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A MAI > 1, indicating an enhanced Myc-activation but also induction of proliferation
and cell cycle, is detected in 67 AL patients, this is 20% less frequent than in MM, but
more than in MGUS.

MYC11 codes for a unspecific transcriptional enhancer and proto oncogene. Translo-
cations with MYC 11 are known to be relatively frequent in myeloma [307]. Myc en-
hances angiogenesis by enhancing the transcription of VEGFA 11 [276]. Both indicate
a potential activation of Myc in AL, but at lower frequencies than in MM.

A large biological variation of gene expression in AL is indicated by comparing the
DEG of AL versus MM to previous published lists of DEG with the same comparators.
The DEG of this thesis show only a small overlap of 5 [1] and 3 [160] DEG with a LFC
> 1 (see table 3.21). No overlap was detected to a previous comparison of AL versus

BMPC. Besides biological variation, this is very likely due to small sample sizes in
these previous studies and therefore an overfitting (see section 1.2.3): 9 [230], 16
[160], 24 [1] or 41 [6] AL patients were assessed, few for the study of heterogeneous
diseases. For differential gene expression analysis from patient samples in contrast to
samples from cell lines usage of a LFC threshold and large cohorts is beneficial (see
section 2.5.2). Because small differences in expression height between groups could
not be discerned from inter-patient variability by low fold changes and in small groups
[49].

4.4.7 Immunoglobulin gene expression

Given the small difference in gene expression between AL and the other malignant
plasma cell disease entities, it was assessed whether a specific difference exists in the
expression of Ig genes. In other words, whether a specific expression pattern of light
chain genes might explain the amyloid deposition (pattern) in AL in contrast to MM.

In section 3.6.6 the expression of 383 Ig genes is depicted regarding Ig type and malig-
nant plasma cell entity. As depicted in figure 3.37, the expression of most Ig genes is
low or not present in agreement with a polyclonal immune suppression by malignant
plasma cells. As the accumulation of malignant (monoclonal) plasma cells takes place,
polyclonal plasma cells are suppressed and outcompeted from their niches. Concomi-
tantly, in assessment of purified plasma cells in bone marrow aspirates, expression of
other than the dominant (monoclonal) light chain is less frequently found and depends
on the overall tumor mass (i.e., number of malignant vs. normal (polyclonal) plasma
cells). Ig genes from polyclonal plasma cells form the largest cluster of Ig genes (clus-
ter A). For cluster 2, comprising a large proportion of AL patient samples (35%, see

11Genecards: MYC Proto-Oncogene; Online resource: https://www.genecards.org/cgi-bin/
carddisp.pl?gene=MYC&keywords=MYC; Status: 2019-09-20, 15:20 [283]
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table 3.23 e) a larger variance in expression of Ig genes is found. Thus, the degree of
remaining polyclonal plasma cells drives the clustering. This is in agreement with AL
patients showing a lower bone marrow infiltration. These patients form a subset with
the cluster C of Ig genes. This is the Ig cluster with the highest expression values and
does not consists of any Ig LC κ gene. The large proportion of AL patient samples
showing high expression values in the Ig genes of cluster C is likely explained by the
large proportion of AL patients expressing amyloid of λ LC type (79%, c.f. table 2.2).

No disease entity did overlap with a single cluster. Cluster 1 is the most homogeneous
with a proportion of 87% MM samples (see table 3.23 e), in agreement with the above
discussed polyclonal suppression. In conclusion, no pattern of Ig expression driven by
amyloid deposition as opposed to MM could be discerned, with the likely explanation
of polyclonal gene expression driving clustering.

4.4.8 SNVs and InDels

In the following section the results of the variant call described in section 3.6.7 are
discussed. All results for AL were analyzed in comparison to MM.

Mutational load
The mutational load indicated by the median number of variants in AL (22) is smaller
than in MM (43) (see table 3.2 and table 3.3). The median number of variants in ALMG
and ALMM are 22 and 23 and do not differ between the subentities. This is comparable
to previously published studies: Paiva et al. [230] detected a median of 15 SNV per
sample in 5 AL samples, Boyle et al. [36] detected 39 variants per sample in a cohort
of 24 AL samples. Sample size and differences in applied VAF threshold of 5% [36]
compared to 10% in this analysis likely explain this variation [36, 230]. Furthermore,
differences in the applied WES method exists and underlying selection bias, i.e. the
percentage of AL patients that can be assessed by WES depends on the number of
malignant plasma cells purified and the amount of input DNA in WES, as already
mentioned in the part on MM comparison in section 4.1.3. In seven AL samples more
than 3000 non-synonymous variants were detected. In four of these samples more than
23% of variants are expressed, in one sample 10% are expressed and in two only a
small percentage of 0.4% is expressed. The presence of hyper-mutated samples was
not reported by the previous studies, which is an effect of the low sample number.

Similarities and differences between AL and MM
Variant tables of AL and MM were subsequently compared regarding Ti-Tv bias, vari-
ant types, and functional enrichment.
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The Ti-Tv bias, i.e. the number of Ti and Tv in base substitutions, of AL and MM,
depicted in figure 3.40, differ only slightly between the two entities. The most frequent
(C>T, 43%/45%) and least frequent (T>A, 6%/8%) base substitution possibilities ap-
pear at comparable frequencies in both entities (AL/MM). The ratio of Ti-Tv is equal
between AL and MM.

For both entities, the most common variant type was SNV (97%, see table 3.4 a) and
the most common coding consequence was missense mutation (95%, see table 3.24 a).

In the FEA, most significantly enriched terms (83%) are shared between AL and MM
for each of the investigated subsets of expressed, non-synonymous coding variants.
Among the top 20 terms only one (R-HSA-3247509: Chromatin modifying enzymes)
was unique to MM as depicted in figure 3.41.

In conclusion, general variant statistics between the variants assessed in the CoMM-
pass cohort for MM and in this thesis cohort for AL are equal. This is more striking as
sample processing pipelines show considerable differences between both analyses.

Specific genes of interest

Three genes frequently mutated in MM were also found mutated in the AL cohort:
NRAS, KRAS and BRAF ( with the "actionable" V600E mutation). All three genes do
harbor SNPs that were previously known to be associated to MM, again indication that
the malignant plasma cells in AL and MM are comparable.

The clinical actionable BRAF mutation V600E (rs113488022, COSM476) has been
detected in 2 AL patient samples on DNA level and once likewise as expressed on RNA
level. V600E as well as V600K can be targeted by clinically available compounds
(vermurafenib and dabrafenib [29, 122]) [10, 45].

A large overlap exists for genes previously suggested as potential "driver genes" (better
termed frequently mutated genes as the relation of being driver has not been discerned).
Out of 63 genes presented by Walker et al. [308] analyzing a cohort of 1273 MM
patients, 44 (70%) genes were likewise found in the AL cohort analyzed in this thesis.
Sixty-seven percent (76 of 113) of patients are affected by a variant or alteration in
at least one of these genes. The incidence of mutations in these genes significantly
differs between AL and MM only for three of the 44 genes (see figure 3.44 and the
respective part on mutations in potential drivers in section 3.6.7). NRAS and KRAS are
significantly more frequently mutated in MM. BRAF mutations is also more frequent
in MM, but not significant. KDM6A is significantly more frequently mutated in AL.
This implies that the mutational spectrum of AL and MM are essentially the same.
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4.4.9 Molecular age of malignant plasma cells in AL

Malignant plasma cells in AL resemble plasma cell characteristics detected in all other
malignant plasma cell disease entities (MGUS, AMM, and MM). GEP-based assess-
ments of proliferation (GPI) and Myc-activation (MAI) can be applied to AL same as
in MM, resulting in different frequencies of underlying group proportions (see section
4.4.1). The same CA as in the other entities do occur, but in AL-specific frequencies
(see section 4.4.2). CA associated with high risk in MM, are significantly less frequent
in AL. As shown in section 4.4.5 the inter-sample variance is larger than the variance
between the different malignant plasma cell disease entities. The analysis of DEG
showed that the different disease entities share a large overlap of genes regulated in the
same direction compared to BMPC (c.f. section 4.4.6). And finally, genes which are
frequently mutated in MM are also detected as mutated in AL (see section 4.4.8). AL
seems to be no distinct molecular entity. The median "molecular age" in terms of the
state during increasingly malignant behavior from BMPC to MGUS to AMM to MM
to HMCL can be attributed as between MGUS and AMM.

4.5 Discussion of thesis aims

The primary aim of this thesis was to assess the molecular background of malignant
plasma cell diseases, as described in section 1.7, especially considering three instances.

First, evaluate reports from prospective personalized risk assessment of MM patients
generated within a clinical trial, which can be used for individualized and risk-adapted
treatment strategies for MM patients.

Second, investigate to what degree prognosis of AL is determined by amyloidogenicity
or to which extent by the properties of the malignant plasma cells.

Third, assess the similarities and differences of AL to MGUS, AMM, and MM by the
malignant plasma cell characteristics, determine if AL is a unique molecular entity and
if not, place the underlying malignant plasma cell disease of AL in relation to MM and
the myeloma precursor stages AMM and MGUS to determine its "molecular age".

These aims mainly focus on assessing the pathogenic background (discussed in section
4.3 and 4.4). Nevertheless, besides the analytical part the analyses comprised a neces-
sary computational part by the implementation of a WES analysis pipeline (described
in section 2.4.4 and discussed in section 4.1.3), which was achieved.

Regarding the first aim of the thesis, i.e. the first two research questions, personalized
risk assessment is possible in a reasonable time frame, shown by the evaluation of the
MM5 clinical trial with 604 patients, for which GEP-based reports could been handed
to treating physician in 456 cases.
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The three research questions belonging to the second part could be answered in that the
molecular properties of malignant plasma cells can determine prognosis as well as the
independent parameters assessing the amyloidogenicity, e.g. Mayo and Euro scores
(described in section 1.4, analyzed in section 3.3, and discussed in section 4.3.1). By
risk assessment based on gene expression, the molecular properties were determined.
AL showed the same underlying pattern compared to the other disease entities with
small but significantly prognostic high risk groups (see section 3.4 and 4.3.2).

The hypothesis that the same malignant plasma cell factors determine prognosis in AL
was validated by application of a risk score (HDAL) on AL and testing its prognostic
significance on two independent groups of AMM and MM (see section 3.5.1 and 4.3.2).
This also indicates that the underlying malignant plasma cell component in AL and
MM is similar.

The research questions regarding the third aim could be answered in that on a patient
level, malignant plasma cells in AL do not show main molecular differences to MGUS,
AMM, or MM. Thus, AL is not a distinct molecular entity regarding malignant plasma
cell characteristics. AL likewise do not resemble a stage earlier than MGUS. The
median "molecular age" can be placed - as a result of this thesis - between MGUS
and AMM. By dimension reduction the sample variance inside the disease entities and
the variance between the entities was visualized, showing a larger variance between
the samples than between the disease entities. Furthermore, by analyzing the overlap
of DEG from the comparisons between BMPC and the disease entities similarities and
differences were assessed, showing a large number of DEG shared between the disease
entities and a smaller number of genes at a low magnitude explicit to the AL versus

BMPC comparison (see section 3.6.5 and 4.4.6). Finally, the comparison of mutated
genes in AL and MM was performed. Both entities harbor mutations in the same genes
partially in varying frequencies, but mutational patterns of AL and MM were similar.
Here, we found consistent results between all entities in case of gene expression and
mutations. However differences exist on a population level, i.e. the large proportion
of patients with t(11;14) (see section 3.6.1) or the small group of highly proliferative
samples (see section 3.4) or the lower mutational load in AL compared to MM (see
sections 3.1.3 and 3.6.7 and figure 3.39).

4.6 Conclusion

The conclusion of this thesis is separated in a methodological section, a part on per-
sonalized risk assessments for MM, and a part on risk assessment and pathogenesis in
AL, just like the discussion above.
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Conclusions on methodology
A WES analysis pipeline was implemented to call somatic variants in the hitherto
largest group of 113 AL samples. The focus was on the detection of probably protein
altering variants. By a versatile filtering strategy, including false positive filtering and
validation by RNA, potential difficulties due to low input of sample material were
overcome. The development strategy for the pipeline was intended to be applicable
for research as well as clinical requirements, exemplified by the detection of specific
mutations, e.g. V600E in BRAF.

Conclusions on personalized risk reports
The application of the GEP-R within the randomized phase III GMMG multicen-
ter MM5 clinical trial proofs that it is possible to perform prospective target assess-
ment and survival prediction for personalized and risk-adapted treatment in over 90%
(iFISH) and 80% (GEP) of patients, respectively. The personalized report can be made
available during the first cycle of induction, a time frame seen clinically reasonable.
Risk assessment by GEP (i.e. HM metascore) compared to the international standard
of rISS, shows a better Brier score (0.132 versus 0.137) and a delineation of more ad-
verse five-year overall survival rate of 98%/68%/25% for low/medium/high risk HM
metascore versus 86%/65%/40% for rISS stages I/II/III, respectively. A main benefit
can be seen in the potential assessment of targets. (see section 4.2 above).

Conclusions on risk and pathogenesis
Till now, early prognosis and risk for AL patients was seen as defined by amyloid
deposition and FLC secretion [75]. Malignant plasma cell characteristics, represented
by CA assessed by iFISH, were only considered regarding treatment decisions and as
such defining prognosis during the course of disease (primarily late prognosis) [75].
Within this thesis, it is shown that early prognosis in AL is also defined by molecular
factors of plasma cells, i.e. proliferation (GPI) or GEP-based risk scores that resemble
these factors (UAMS70, RS).

The genetic landscape of AL was assessed by a plethora of methods (gene expression,
molecular risk stratification, CA, CNA and somatic variants), all indicating that the
malignant plasma cells in AL resemble the characteristics of other malignant plasma
cell diseases like MGUS and MM. This was hypothesized previously by Seckinger
et al. [263] at the LfM and others [36, 230, 254] and could now be verified on a large
cohort of patient samples by diverse methods. Thereby, the hypothesis that AL is
a molecular distinct entity from MM, with a unique molecular signature [1], can be
rejected.
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The comparison of dimension reduction methods and the little overlap with the pub-
lished DEGs indicate that the AL plasma cells hold a great inter-patient variability
in case of gene expression, similar to MM. The wide variety of variants and CNA in
patient samples is further in line.
Given that all MM subgroups are also present in AL, although at different frequencies,
the ability of malignant plasma cells to produce amyloid can appear on every molecular
background. Although, it happens more frequently in case of t(11;14). As expected,
no unifying mutation in AL was detected, similar to MM, as previously suggested by
Boyle et al. [36] and Paiva et al. [230].
In a nutshell, in respect to gene expression, molecular risk stratification, CA, CNA,
and mutations AL is still a malignant plasma cell disease in the mean between MGUS
and AMM - atop an "unlucky" LC [123].

4.7 Outlook

Regarding pathogenesis and prognosis of AL, two main directions of future research
can be envisioned, both regarding amyloidogenicity of LC. First, the actual de novo

alignment of LC and HC gene segments from the RNA sequencing data, i.e. a re-
construction of the complete LC and (in case of co-presence of intact Ig) HC. Sec-
ond, the individual assessment of the protein subunits (M-protein) that form the amy-
loid fibrils by mass spectrometry methods like the MALDI-TOF assay MASS-FIX
[206, 207, 271]. These analyses showed to be more sensitive than the present methods
protein electrophoresis and immunofixation electrophoresis to identify, isotype and
quantify the M-protein [206, 207, 271]. Recently, amyloid fibrils were analyzed by
electron microscopy to assess the exact structure of amyloids [240, 287] in the expec-
tation to identify disease relevant characteristics. A further direction possible based
on the findings and work described in this thesis is the implementation of prospective
target assessment and survival prediction for personalized and risk-adapted treatment
- as shown for MM in the GMMG-MM5 trial - for AL.
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5 Summary

Light chain amyloidosis is a malignant plasma cell disease characterized by the pro-
duction and secretion of immunoglobulin light chains, aggregating as amyloid and
causing end organ damage, most frequently in heart and kidney.
The primary aim of this thesis was to assess the molecular background and prognosis
of light chain amyloidosis in relation to other malignant plasma cell diseases.
CD138-positive purified malignant plasma cells from patients diagnosed with light
chain amyloidosis, monoclonal gammopathy of undetermined significance, asymp-
tomatic and symptomatic multiple myeloma were subjected to interphase fluorescence
in situ hybridization (n = 582/306/444/1691), gene expression profiling by DNA-
microarrays (n = 196/64/271/765), RNA sequencing (n = 124/51/140/515), and
whole exome sequencing (light chain amyloidosis n = 113). Clinical and survival data
were collected.
First, it was shown that for multiple myeloma risk assessment by the gene expression-
based HM metascore compared to the current gold-standard (rISS) shows superior
delineation of five-year overall survival rate of 98%/68%/25% for low/medium/high
risk HM metascore versus 86%/65%/40% for rISS stages I/II/III, respectively.
Second, it was investigated to what degree prognosis of light chain amyloidosis is de-
termined by free light chain production and amyloid deposition and to what degree by
properties of the malignant plasma cells. Till now, early prognosis and risk for patients
was seen as defined by amyloid deposition and free light chain secretion, with risk as-
sessment based on serum parameters of cardiac involvement and the difference in free
light chains in the serum. Malignant plasma cell characteristics in light chain amyloi-
dosis, represented by chromosomal aberrations, were considered regarding treatment
decisions and as defining prognosis rather late during the course of disease.
In this thesis, it was shown that prognosis of light chain amyloidosis patients is like-
wise driven by malignant plasma cell factors accessible by gene expression profiling
independent of light chain deposition-based factors. This especially holds true for
gene expression-based assessment of proliferation (GPI), myeloma-based risk scores
(UAMS70, RS), and the de novo for light chain amyloidosis patients generated HDAL
score. The hypothesis that the same malignant plasma cell factors determine prognosis
in light chain amyloidosis and myeloma was validated by testing the HDAL score’s
prognostic significance on two independent groups of asymptomatic and symptomatic
multiple myeloma patients. This indicates that the underlying malignant plasma cell
component in both diseases is similar. Thus, early prognosis is also defined by molec-
ular factors of plasma cells.
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Third, the similarities and differences regarding malignant plasma cell characteristics
were assessed, to determine if light chain amyloidosis is a unique molecular entity and
if not, place the underlying malignant plasma cell disease of it in relation to multiple
myeloma and its precursor stages to determine a "molecular age".
On a patient level, malignant plasma cells in light chain amyloidosis do not show
mayor molecular differences to myeloma. This was shown by dimension reduction,
analysis of differentially expressed and mutated genes. A larger variance was detected
within samples than between different disease entities. Thus, light chain amyloido-
sis is not a distinct molecular entity regarding malignant plasma cell characteristics,
and it likewise does not resemble a stage earlier than monoclonal gammopathy of un-
determined significance. Differences exist on a population level, i.e. in light chain
amyloidosis a large proportion of patients with translocation t(11;14), a small group
of highly proliferative samples, and a lower mutational load on average compared to
multiple myeloma. Given that all myeloma subgroups are also present in light chain
amyloidosis, although at different frequencies, the ability of malignant plasma cells
to produce amyloid generating light chains can appear on every myeloma associated
molecular background.
In a nutshell, in respect to gene expression, molecular risk stratification, chromoso-
mal aberrations, copy number alterations, and mutations light chain amyloidosis is a
malignant plasma cell disease with a median "molecular age" between monoclonal
gammopathy of undetermined significance and asymptomatic myeloma - atop an "un-
lucky" light chain.
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6 Zusammenfassung

Leichtketten Amyloidose ist eine maligne Plasmazellerkrankung charakterisiert durch
die Produktion und Sekretion von Immunglobulin Leichtketten, welche als Amyloid
zusammenlagern und dadurch Organschäden verursachen, am häufigsten in Herz und
Niere.

Ziel dieser Dissertation war es, molekularen Hintergrund und Prognose der Leichtket-
ten Amyloidose zu bestimmen und zu anderen malignen Plasmazellerkrankungen in
Bezug zu setzen.

CD138-positive maligne Plasmazellen von Patienten mit Leichtketten Amyloidose,
Monoklonaler Gammopathie unklarer Signifikanz, asymptomatischem und symptoma-
tischem Multiplen Myelom wurden aufgereinigt und mittels Interphase Fluoreszenz
in situ Hybridisierung (n = 582/306/444/1691), Genexpressionsanalyse mit DNA-
microarrays (n= 196/64/271/765), RNA Sequenzierung (n= 124/51/140/515), und
Exome Sequenzierung (Leichtketten Amyloidose n = 113) untersucht. Klinische und
Überlebenszeitdaten wurden erhoben.

Als erstes wurde gezeigt, dass hinsichtlich Risikobewertung beim Multiple Myelom
der Genexpressions-basierte HM Metascore im Vergleich zum aktuellen Goldstan-
dard rISS eine bessere Auftrennung bezüglich des Gesamtüberleben zeigt. Mit einer
jeweiligen Rate von 98%/68%/25% beim HM metascore für niedriges/mittleres/hohes
Risiko gegen 86%/65%/40% für rISS Stadien I/II/III nach fünf Jahren.

Zweitens wurde untersucht, wie weit die Prognose der Leichtketten Amyloidose durch
die Produktion freier Leichtketten und der Deposition von Amyloid bestimmt wird
und in wie weit durch molekulare Eigenschaften der malignen Plasmazellen. Bisher
wurde angenommen, dass die frühe Prognose für die Patienten durch die Produktion
der freien Leichtketten und die Amyloid Ablagerungen bestimmt wird. Daher basiert
die Risikobewertung auf Serum Parametern der Herzbeteiligung und der Differenz der
freien Leichtketten im Serum. Maligne Plasmazellcharakteristika, wie chromosoma-
len Aberrationen, werden im Hinblick auf Therapieentscheidungen berücksichtigt und
werden als eher spät im Krankheitsverlauf Einfluss auf die Prognose nehmend angese-
hen.

In dieser Dissertation wurde gezeigt, dass die Prognose bei Leichtketten Amyloidose
Patienten unabhängig von Leichtketten Depositions-basierten Faktoren auch durch
molekulare maligne Plasmazellfaktoren bestimmt wird, die durch Genexpressionsana-
lysen erfassbar sind. Dies beinhaltet die Genexpression-basierte Messung von Prolif-
eration (GPI), Myelom-basierte Risikobewertungen (UAMS70, RS), sowie um die für
Leichtketten Amyloidose Patienten neuentwickelte HDAL Stratifikation. Zur Bestä-
tigung der Hypothese, dass die gleichen malignen Plasmazellfaktoren die Prognose

143



6 ZUSAMMENFASSUNG

in der Leichtketten Amyloidose und dem Myelom bestimmen, wurde der HDAL auf
zwei unabhängigen Kohorten von asymptomatischen und symptomatischen Multiplen
Myelom Patienten getestet und seine prognostische Signifikanz gezeigt. Dies bedeutet,
dass die grundlegende maligne Plasmazellkomponente in beiden Erkrankungen gleich
ist. Die Prognose im frühen Krankheitsverlauf ist somit auch durch die malignen Plas-
mazellfaktoren bestimmt.
Drittens wurden Gemeinsamkeiten und Unterschiede der molekularen Charakteristika
maligner Plasmazellen untersucht, um zu analysieren ob die Leichtketten Amyloidose
eine eigene molekulare Entität darstellt, und falls nicht, die ihr zu Grunde liegende ma-
ligne Plasmazellerkrankung in Relation zum Myelom und seinen Vorstadien zu stellen,
und dadurch ein "molekulares Alter" bestimmen zu können.
Auf Ebene eines individuellen Patienten gibt es kein Anzeichen für molekulare Un-
terschiede maligner Plasmazellen zwischen Leichtketten Amyloidose und Multiplen
Myelom. Das konnten mittels Dimensionsreduktionsverfahren sowie der Analyse von
differentiell exprimierten und mutierten Genen gezeigt werden. Es wurde eine größere
Varianz zwischen einzelnen Patientenproben innerhalb einer Entität als zwischen den
Krankheitsentitäten gefunden. Die Leichtketten Amyloidose ist somit keine eigen-
ständige molekulare Entität in Hinblick auf maligne Plasmazellcharakteristika. Sie
ist ebenfalls keine Vorstufe der Monoklonalen Gammopathie unklarer Signifikanz.
Auf Populationsebene sind Unterschiede sichtbar. Die Leichtketten Amyloidose ist
charakterisiert durch einen größeren Anteil an Patienten mit Translokation t(11;14),
einer kleineren Gruppe mit hoher Proliferationsrate, und einer niedrigeren durchschnit-
tlichen Mutationslast im Vergleich zum Multiplen Myelom. Vor dem Hintergrund,
dass alle aus dem Myelom bekannten Subgruppen auch bei der Leichtketten Amyloi-
dose vorkommen, wenn auch mit unterschiedlichen Häufigkeiten, kann die Produk-
tion zu Amyloid aggregierenden Leichtketten durch maligne Plasmazellen vor jedem
Myelom-assozierten molekularen Hintergrund auftreten.
In der Quintessenz ist die Leichtketten Amyloidose bezüglich Genexpression, moleku-
larer Risikostratifizierung, chromosomalen Aberrationen, Veränderungen der Kopien-
zahl, und Mutationen eine maligne Plasmazellerkrankung mit einem medianen
"molekularen Alter" zwischen Monoklonaler Gammopathie unklarer Signifikanz und
asymptomatischen Myelom - die eine "unglückliche" Leichtkette produziert.
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Appendix

A Supplementary Tables

Table A.1: List of all used tools and programming languages with version and reference resource.

Tool Version Resource
GNU parallel 3.36.5 Tange [288]
Python 2.7.15 Guido van Rossum [113]
R 3.4.4 R Core Team [239]
bioconductor 3.6 Gentleman et al. [105]
Fastqc 0.11.4 Andrews [9]
fastp 0.19.4 Chen et al. [47]
bwa 0.7.12 Li [179], Li and Durbin [180]
samtools 1.5 Li et al. [181]
Alfred 0.1.13 Rausch et al. [246]
Picard 2.10.10 Broad Institute [38]
GATK 3.8 McKenna et al. [196]
VarScan2 2.4.3 Koboldt et al. [158]
Seurat 2.5 Christoforides et al. [56]
Strelka 2.9.6 Kim et al. [154]
Manta 1.4.0 Chen et al. [48]
bam-readcount 0.8.0 Larson and Abbott [175]
Ensembl vep 0.19.4 McLaren et al. [197]
GISTIC 2.0 2.0.23 Mermel et al. [201]
HTSeq 0.11.2 Anders et al. [7]
STAR 2.4 Dobin et al. [76]
MultiQC 1.6 Ewels et al. [91]
metascape 3.5 (data base 2019-08-14) Zhou et al. [337]
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Table A.2: List of all used databases for functional enrichment analysis with metascape.

Database URL Resource
GO http://geneontology.org [11, 290]
MSigDB http://www.broadinstitute.org/gsea/msigdb [183, 184, 209]
Canonical Pathways http://www.broadinstitute.org/gsea/msigdb [286]
Hallmark http://www.broadinstitute.org/gsea/msigdb [183]
KEGG http://www.genome.jp/kegg [146–148]
Reactome http://www.reactome.org [94]
CORUM http://mips.helmholtz-muenchen.de/corum [255]
UniProt http://www.uniprot.org [247]
Protein Atlas http://www.proteinatlas.org [135]
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Table A.3: List of all used R packages with version and reference resource.

Package Version Citation
stats 3.4.4 R Core Team [239]
rms 5.1-2 Harrell [118]
survival 2.43-3 Therneau [291], Therneau and Grambsch [292]
Hmisc 4.1-1 Harrell et al. [119]
maxstat 0.7-25 Hothorn [132]
clinfun 1.0.15 Seshan [268]
pec 2018.07.26 Mogensen et al. [208]
amap 1.58.0 Lucas [189]
made4 1.52.0 Culhane et al. [65]
Rtsne 0.15 Krijthe [159]
edgeR 3.20.9 Chen et al. [49], McCarthy et al. [195], Robinson et al. [251]
limma 3.34.9 Ritchie et al. [249]
affy 1.58.0 Gautier et al. [103]
gcrma 2.50.0 Wu et al. [321]
panp 1.48.0 Warren [312], Warren et al. [313]
DNAcopy 1.52.0 Seshan and Olshen [269]
vcfR 1.8.0 Knaus and Grünwald [157]
IRanges 2.12.0 Lawrence et al. [176]
plyr 1.8.4 Wickham [318]
stringr 1.3.1 Wickham [319]
AnnotationDbi 1.40.0 Pagès et al. [228]
Biobase 2.38.0 Huber et al. [136]
BiocGenerics 0.24.0 Huber et al. [136]
hgu133plus2.db 3.2.3 Carlson [41]
org.Hs.eg.db 3.5.0 Carlson [42]
BiomaRt 2.34.2 Durinck et al. [83, 84]
BSgenome.Hsapiens.NCBI.GRCh38 1.3.1000 The Bioconductor Dev Team [289]
genefilter 1.60.0 Gentleman et al. [104]
ggplot2 3.1.0 Wickham [317]
VennDiagram 1.6.20 Chen [46]
forestplot 1.9 Gordon and Lumley [109]
gplots 3.0.1.1 Warnes et al. [311]
gridExtra 2.3 Auguie [13]
maftools 1.4.28 Mayakonda et al. [194]
RColorBrewer 1.1-2 Neuwirth [224]
showtext 0.6 Qiu [238]
xtable 1.8-3 Dahl et al. [66]
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Table A.4: Gene expression based proliferation index (GPI) distribution: Number of patients (n) and
percentages (%) grouped by GPI low risk, medium risk and high risk. Separation by subentities ALMG
and ALMM and AL disease specific variables and disease entities AL, MGUS, AMM, and MM. See
figure 3.15 a and c for graphical presentation. AL: light chain amyloidosis, ALMG: AL with subentity
MGUS, ALMM: AL with subentity MM, MGUS: monoclonal gammopathy of undetermined signifi-
cance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma.

low risk medium risk high risk
Variable Level Entity n % n % n %

AL 66 33.67 119 60.71 11 5.61
MGUS 37 57.81 26 40.62 1 1.56
AMM 117 43.17 153 56.46 1 0.37
MM 151 19.74 490 64.05 124 16.21

Heart
involvement

no
ALMG 8 33.33 16 66.67 0 0
ALMM 5 21.74 16 69.57 2 8.7

AL 13 27.66 32 68.09 2 4.26

yes
ALMG 20 34.48 37 63.79 1 1.72
ALMM 32 36.36 48 54.55 8 9.09

AL 52 35.62 85 58.22 9 6.16

NT-ProBNP
[ng/L]

<1800
ALMG 13 34.21 25 65.79 0 0
ALMM 10 28.57 23 65.71 2 5.71

AL 23 31.51 48 65.75 2 2.74

≥1800
ALMG 14 32.56 28 65.12 1 2.33
ALMM 27 36.49 40 54.05 7 9.46

AL 41 35.04 68 58.12 8 6.84

Difference
FLC [mg/L]

<180
ALMG 14 28.57 34 69.39 1 2.04
ALMM 12 46.15 13 50 1 3.85

AL 26 34.67 47 62.67 2 2.67

≥180
ALMG 12 40 18 60 0 0
ALMM 25 30.12 50 60.24 8 9.64

AL 37 32.74 68 60.18 8 7.08

AL type

Kappa
ALMG 9 52.94 8 47.06 0 0
ALMM 10 37.04 16 59.26 1 3.7

AL 19 43.18 24 54.55 1 2.27

Lambda
ALMG 19 29.23 45 69.23 1 1.54
ALMM 28 32.18 50 57.47 9 10.34

AL 47 30.92 95 62.5 10 6.58

Creatinine
[mg/dL]

<2
ALMG 26 35.62 46 63.01 1 1.37
ALMM 33 33.67 57 58.16 8 8.16

AL 59 34.5 103 60.23 9 5.26

≥2
ALMG 2 22.22 7 77.78 0 0
ALMM 5 31.25 9 56.25 2 12.5

AL 7 28 16 64 2 8
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Table A.7: Myc activation index (MAI) distribution: Number of patients (n) and percentages (%)
grouped by MAI ≤1 and >1. Separation by AL disease specific variables and disease entities AL,
MGUS, AMM, and MM and subentities ALMG and ALMM. See figure 3.16 a and c for graphical pre-
sentation. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with subentity
MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple
myeloma, MM: multiple myeloma.

≤1 >1
Variable Level Entity n % n %

AL 129 65.82 67 34.18
MGUS 53 82.81 11 17.19
AMM 158 58.3 113 41.7
MM 347 45.36 418 54.64

Heart
involvement

no
ALMG 17 70.83 7 29.17
ALMM 17 73.91 6 26.09

AL 34 72.34 13 27.66

yes
ALMG 47 81.03 11 18.97
ALMM 47 53.41 41 46.59

AL 94 64.38 52 35.62

NT-ProBNP
[ng/L]

<1800
ALMG 30 78.95 8 21.05
ALMM 23 65.71 12 34.29

AL 53 72.6 20 27.4

≥1800
ALMG 33 76.74 10 23.26
ALMM 40 54.05 34 45.95

AL 73 62.39 44 37.61

Difference
FLC [mg/L]

<180
ALMG 35 71.43 14 28.57
ALMM 19 73.08 7 26.92

AL 54 72 21 28

≥180
ALMG 28 93.33 2 6.67
ALMM 44 53.01 39 46.99

AL 72 63.72 41 36.28

AL type

Kappa
ALMG 16 94.12 1 5.88
ALMM 19 70.37 8 29.63

AL 35 79.55 9 20.45

Lambda
ALMG 48 73.85 17 26.15
ALMM 46 52.87 41 47.13

AL 94 61.84 58 38.16

Creatinine
[mg/dL]

<2
ALMG 57 78.08 16 21.92
ALMM 56 57.14 42 42.86

AL 113 66.08 58 33.92

≥2
ALMG 7 77.78 2 22.22
ALMM 9 56.25 7 43.75

AL 16 64 9 36
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Table A.8: UAMS 70-gene score (UAMS70) distribution: Number of patients (n) and percentages (%)
grouped by UAMS70 low risk and high risk. entities and subentities. Separation by AL disease specific
variables and disease entities AL, MGUS, AMM, and MM and subentities ALMG and ALMM. See
figure 3.19 a and c for graphical presentation. AL: light chain amyloidosis, ALMG: AL with subentity
MGUS, ALMM: AL with subentity MM, MGUS: monoclonal gammopathy of undetermined signifi-
cance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma.

low risk high risk
Variable Level Entity n % n %

AL 181 92.35 15 7.65
MGUS 62 96.88 2 3.12
AMM 249 91.88 22 8.12
MM 572 74.77 193 25.23

Heart
involvement

no
ALMG 24 100 0 0
ALMM 20 86.96 3 13.04

AL 44 93.62 3 6.38

yes
ALMG 56 96.55 2 3.45
ALMM 78 88.64 10 11.36

AL 134 91.78 12 8.22

NT-ProBNP
[ng/L]

<1800
ALMG 38 100 0 0
ALMM 31 88.57 4 11.43

AL 69 94.52 4 5.48

≥1800
ALMG 41 95.35 2 4.65
ALMM 66 89.19 8 10.81

AL 107 91.45 10 8.55

Difference
FLC [mg/L]

<180
ALMG 48 97.96 1 2.04
ALMM 23 88.46 3 11.54

AL 71 94.67 4 5.33

≥180
ALMG 29 96.67 1 3.33
ALMM 74 89.16 9 10.84

AL 103 91.15 10 8.85

AL type

Kappa
ALMG 17 100 0 0
ALMM 24 88.89 3 11.11

AL 41 93.18 3 6.82

Lambda
ALMG 63 96.92 2 3.08
ALMM 77 88.51 10 11.49

AL 140 92.11 12 7.89

Creatinine
[mg/dL]

<2
ALMG 71 97.26 2 2.74
ALMM 86 87.76 12 12.24

AL 157 91.81 14 8.19

≥2
ALMG 9 100 0 0
ALMM 15 93.75 1 6.25

AL 24 96 1 4
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Table A.9: IFM 15-gene score (IFM15) distribution: Number of patients (n) and percentages (%)
grouped by IFM15 low risk and high risk. Separation by AL disease specific variables and disease
entities AL, MGUS, AMM, and MM and subentities ALMG and ALMM. See figure 3.20 a and c for
graphical presentation. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL
with subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymp-
tomatic multiple myeloma, MM: multiple myeloma.

low risk high risk
Variable Level Entity n % n %

AL 184 93.88 12 6.12
MGUS 59 92.19 5 7.81
AMM 248 91.51 23 8.49
MM 574 75.03 191 24.97

Heart
involvement

no
ALMG 22 91.67 2 8.33
ALMM 23 100 0 0

AL 45 95.74 2 4.26

yes
ALMG 55 94.83 3 5.17
ALMM 81 92.05 7 7.95

AL 136 93.15 10 6.85

NT-ProBNP
[ng/L]

<1800
ALMG 34 89.47 4 10.53
ALMM 33 94.29 2 5.71

AL 67 91.78 6 8.22

≥1800
ALMG 42 97.67 1 2.33
ALMM 69 93.24 5 6.76

AL 111 94.87 6 5.13

Difference
FLC [mg/L]

<180
ALMG 45 91.84 4 8.16
ALMM 24 92.31 2 7.69

AL 69 92 6 8

≥180
ALMG 29 96.67 1 3.33
ALMM 78 93.98 5 6.02

AL 107 94.69 6 5.31

AL type

Kappa
ALMG 16 94.12 1 5.88
ALMM 26 96.3 1 3.7

AL 42 95.45 2 4.55

Lambda
ALMG 61 93.85 4 6.15
ALMM 81 93.1 6 6.9

AL 142 93.42 10 6.58

Creatinine
[mg/dL]

<2
ALMG 68 93.15 5 6.85
ALMM 92 93.88 6 6.12

AL 160 93.57 11 6.43

≥2
ALMG 9 100 0 0
ALMM 15 93.75 1 6.25

AL 24 96 1 4
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Table A.10: Risk score (RS) distribution: Number of patients (n) and percentages (%) grouped by Rs
low risk, medium risk and high risk. Separation by AL disease specific variables and disease entities
AL, MGUS, AMM, and MM and subentities ALMG and ALMM. See figure 3.21 a and c for graph-
ical presentation. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM: AL with
subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymptomatic
multiple myeloma, MM: multiple myeloma.

low risk medium risk high risk
Variable Level Entity n % n % n %

AL 150 76.53 39 19.9 7 3.57
MGUS 57 89.06 7 10.94 0 0
AMM 216 79.7 54 19.93 1 0.37
MM 541 51.13 435 41.12 82 7.75

Heart
involvement

no
ALMG 19 79.17 5 20.83 0 0
ALMM 18 78.26 4 17.39 1 4.35

AL 37 78.72 9 19.15 1 2.13

yes
ALMG 48 82.76 10 17.24 0 0
ALMM 63 71.59 19 21.59 6 6.82

AL 111 76.03 29 19.86 6 4.11

NT-ProBNP
[ng/L]

<1800
ALMG 31 81.58 7 18.42 0 0
ALMM 27 77.14 7 20 1 2.86

AL 58 79.45 14 19.18 1 1.37

≥1800
ALMG 35 81.4 8 18.6 0 0
ALMM 52 70.27 17 22.97 5 6.76

AL 87 74.36 25 21.37 5 4.27

Difference
FLC [mg/L]

<180
ALMG 40 81.63 9 18.37 0 0
ALMM 23 88.46 2 7.69 1 3.85

AL 63 84 11 14.67 1 1.33

≥180
ALMG 24 80 6 20 0 0
ALMM 56 67.47 22 26.51 5 6.02

AL 80 70.8 28 24.78 5 4.42

AL type

Kappa
ALMG 16 94.12 1 5.88 0 0
ALMM 20 74.07 5 18.52 2 7.41

AL 36 81.82 6 13.64 2 4.55

Lambda
ALMG 51 78.46 14 21.54 0 0
ALMM 63 72.41 19 21.84 5 5.75

AL 114 75 33 21.71 5 3.29

Creatinine
[mg/dL]

<2
ALMG 60 82.19 13 17.81 0 0
ALMM 72 73.47 19 19.39 7 7.14

AL 132 77.19 32 18.71 7 4.09

≥2
ALMG 7 77.78 2 22.22 0 0
ALMM 11 68.75 5 31.25 0 0

AL 18 72 7 28 0 0
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Table A.11: Heidelberg AL score (HDAL) distribution: Number of patients (n) and percentages (%)
grouped by HDAL low risk, medium risk and high risk. Separation by AL disease specific variables and
disease entities AL, MGUS, AMM, and MM and subentities ALMG and ALMM. See figure 3.22 a and
c for graphical presentation. AL: light chain amyloidosis, ALMG: AL with subentity MGUS, ALMM:
AL with subentity MM, MGUS: monoclonal gammopathy of undetermined significance, AMM: asymp-
tomatic multiple myeloma, MM: multiple myeloma.

low risk medium risk high risk
Variable Level Entity n % n % n %

AL 94 47.96 56 28.57 46 23.47
MGUS 45 70.31 11 17.19 8 12.5
AMM 96 35.42 106 39.11 69 25.46
MM 93 12.16 188 24.58 484 63.27

Heart
involvement

no
ALMG 21 87.5 3 12.5 0 0
ALMM 8 34.78 9 39.13 6 26.09

AL 29 61.7 12 25.53 6 12.77

yes
ALMG 35 60.34 16 27.59 7 12.07
ALMM 29 32.95 26 29.55 33 37.5

AL 64 43.84 42 28.77 40 27.4

NT-ProBNP
[ng/L]

<1800
ALMG 31 81.58 7 18.42 0 0
ALMM 14 40 14 40 7 20

AL 45 61.64 21 28.77 7 9.59

≥1800
ALMG 25 58.14 12 27.91 6 13.95
ALMM 23 31.08 21 28.38 30 40.54

AL 48 41.03 33 28.21 36 30.77

Difference
FLC [mg/L]

<180
ALMG 33 67.35 13 26.53 3 6.12
ALMM 17 65.38 7 26.92 2 7.69

AL 50 66.67 20 26.67 5 6.67

≥180
ALMG 21 70 6 20 3 10
ALMM 20 24.1 28 33.73 35 42.17

AL 41 36.28 34 30.09 38 33.63

AL type

Kappa
ALMG 13 76.47 4 23.53 0 0
ALMM 12 44.44 7 25.93 8 29.63

AL 25 56.82 11 25 8 18.18

Lambda
ALMG 43 66.15 15 23.08 7 10.77
ALMM 26 29.89 30 34.48 31 35.63

AL 69 45.39 45 29.61 38 25

Creatinine
[mg/dL]

<2
ALMG 50 68.49 17 23.29 6 8.22
ALMM 34 34.69 34 34.69 30 30.61

AL 84 49.12 51 29.82 36 21.05

≥2
ALMG 6 66.67 2 22.22 1 11.11
ALMM 4 25 3 18.75 9 56.25

AL 10 40 5 20 10 40
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Table A.12: Heidelberg AL score (HDAL) prognostic genes: Affymetrix probeID, prognostic factor,
Gene symbol, position in genome and protein biotypes. These are PC: protein coding, AS: antisense,
IGD: Immunoglobulin constant gene, IGHV: Immunoglobulin heavy variable, lR: long intergenic non-
coding RNA, lncR: long noncoding RNA, PP: processed pseudogene, PT: processed transcript, UP:
unprocessed pseudogene.

ProbeID Factor Gene Position Biotype
1552613_s_at good CDC42SE2 5q31.1 PC
1556072_at good LINC00528 22q11.21 lR
201658_at good ARL1 12q23.2 PC

201976_s_at good MYO10 5p15.1 PC
208612_at good PDIA3 15q15.3 PC

210749_x_at good DDR1 6p21.33 PC
213122_at good TSPYL5 8q22.1 PC
213257_at good SARM1 17q11.2 PC

213674_x_at good IGHD 14q32.33 IGC
214083_at good PPP2R5C 14q32.31 PC

216510_x_at good IGHV3-33 14q32.33 IGHV
221648_s_at good AGMAT 1p36.21 PC
228624_at good TMEM144 4q32.1 PC
233021_at good RBM26-AS1 13q31.1 AS
238822_at good

1555288_s_at poor FBF1,
RP11-552F3.12

17q25.1 PC

1555971_s_at poor FBXO28 1q42.11 PC
1566106_at poor AK091277

200822_x_at poor TPI1, TPI1P1 12p13.31, 1p31.1 PC, PP
201584_s_at poor DDX39A 19p13.12 PC
202212_at poor PES1 22q12.2 PC
202248_at poor E2F4 16q22.1 PC

202325_s_at poor ATP5J 21q21.3 PC
202910_s_at poor ADGRE5 19p13.12 PC
203340_s_at poor SLC25A12 2q31.1 PC
203448_s_at poor TERF1P4,

TERF1P5,
RP11-311P8.2,

TERF1, TERF1P1

Xq21.1, 13q11,
Xq13.3, 8q21.11,

21q11.2

PP, PC

205407_at poor RECK 9p13.3 PC
207104_x_at poor LILRB1 19q13.42 PC

210152_at poor LILRB4 19q13.42 PC
210252_s_at poor MADD 11p11.2 PC
211336_x_at poor LILRB1 19q13.42 PC
214149_s_at poor ATP6V0E1
214882_s_at poor SRSF2 17q25.1 PC
214931_s_at poor SRPK2 7q22.3 PC
218115_at poor ASF1B 19p13.12 PC
219172_at poor UBTD1 10q24.1 PC
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219816_s_at poor RBM23 14q11.2 PC
221042_s_at poor CLMN 14q32.13 PC
221209_s_at poor OTOR 20p12.1 PC
221418_s_at poor MED16 19p13.3 PC
222989_s_at poor UBQLN1 9q21.32 PC
223252_at poor HDGFRP2 19p13.3 PC
225456_at poor MED1 17q12 PC
227587_at poor KRI1 19p13.2 PC
227875_at poor KLHL13 Xq24 PC
228146_at poor C17orf51,

RP11-822E23.8
17p11.2 PC, PT

228361_at poor E2F2 1p36.12 PC
229804_x_at poor CBWD7,

RP11-15J10.1,
CBWD1, CBWD3,
CBWD5, CBWD2

9p11.2, 9q21.11,
9p24.3, 2q14.1

PC, UP

231930_at poor ELMOD1 11q22.3 PC
232351_at poor AK001012
234875_at poor RPL7AP10 19p12 PP
235394_at poor PLAA 9p21.2 PC

235848_x_at poor ATL2 2p22.1 PC
238703_at poor FAM207BP 13q11 PP
238821_at poor CSTF2 Xq22.1 PC
243020_at poor FAM13A-AS1 4q22.1 lncR

243618_s_at poor ZNF827 4q31.22 PC
34225_at poor NELFA 4p16.3 PC
56821_at poor SLC38A7 16q21 PC
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Table A.13: Genes only differentially expressed in the comparison BMPC versus AL. The LFC indicates
the magnitude of difference between BMPC and AL. Mean expression values from RNA sequencing are
depicted as log counts per million. LFC: log fold change, adj. p: BH adjusted p-value, Protein biotypes
for a gene are PC: protein coding, AS: antisense, IGD: Immunoglobulin diversity gene, lR: lincRNA, PP:
processed pseudogene, TPP: transcribed processed pseudogene, TUP: transcribed unprocessed pseudo-
gene. Sample entities are BMPC: bone marrow plasma cells, AL: light chain amyloidosis, MGUS:
monoclonal gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM:
multiple myeloma.

adj. log counts per million
Gene Biotype p LFC BMPC AL MGUS AMM MM

IGHD6-19 IGD .01 3.44 0.42 0.04 0.10 0.08 0.09
H1FX-AS1 AS .03 2.30 2.23 0.80 1.10 1.19 1.09
PI4KAP1 TUP .03 2.69 1.11 0.23 0.27 0.33 0.38

AC159540.1 lR .04 2.93 0.41 0.05 0.08 0.09 0.13
RP11-58H15.1 TPP .04 2.50 2.42 0.82 0.85 0.99 1.09

HSH2D PC .04 1.96 8.09 6.15 7.04 6.58 6.42
RPL35AP32 PP .04 2.75 0.40 0.06 0.12 0.10 0.13
IGHD7-27 IGD .05 2.89 0.13 0.01 0.04 0.02 0.04
NFKBID PC .05 2.51 2.73 0.99 1.55 1.66 1.33

Table A.14: Genes only differentially expressed between AL versus MGUS, AMM and MM. The log
fold change indicates the magnitude of difference between AL and MGUS, AMM and MM. Mean
expression values from RNA sequencing are depicted as log counts per million. Protein biotypes for
a gene are PC: protein coding, AS: antisense, IGD: Ig diversity gene, IGV: Ig variable gene, scR:
scaRNA, Ig: Immunoglobulin. Sample entities are AL: light chain amyloidosis, MGUS: monoclonal
gammopathy of undetermined significance, AMM: asymptomatic multiple myeloma, MM: multiple
myeloma.

log fold change log counts per million
Gene Biotype MGUS AMM MM BMPC AL MGUS AMM MM
HES1 PC -2.26 -3.78 -1.70 0.95 0.27 1.00 1.96 0.75

FOLH1 PC 2.38 1.85 2.29 0.15 0.85 0.20 0.29 0.22
RASD1 PC 2.49 3.62 1.93 3.95 4.34 2.14 1.36 2.59

IGHD2-8 IGD 2.91 4.68 3.24 0.56 1.08 0.20 0.05 0.15
BARX2 PC -2.98 -2.11 -2.76 0.38 1.21 3.50 2.74 3.31
PAGE1 PC -3.35 -2.74 -4.34 0.01 0.42 2.21 1.75 3.04
HTR1D PC 3.10 1.99 2.08 0.06 0.73 0.10 0.21 0.20

SCARNA22 scR -2.82 -3.77 -2.88 0.03 0.02 0.20 0.38 0.21
RP11-669N7.2 AS -3.29 -3.65 -5.29 0.04 0.08 0.68 0.83 1.78

SSTR1 PC -3.27 -3.19 -2.26 0.07 0.17 1.19 1.15 0.71
IGHV1OR15-2 IGV 3.61 5.38 6.64 3.31 5.27 2.03 0.93 0.47

IGLV6-57 IGV 3.84 5.17 6.70 11.34 15.54 11.70 10.36 8.84
HBE1 PC -3.70 -2.24 -4.59 0.06 0.07 0.75 0.32 1.18
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Table A.15: Genes differentially expressed in the comparison BMPC versus AL, MGUS, AMM and
MM. The log fold change indicates the magnitude of difference between BMPC and AL, MGUS, AMM
and MM. If log fold change is missing the gene is not differentially expressed. Mean expression values
from RNA sequencing are depicted as log counts per million. Protein biotypes for a gene are PC: pro-
tein coding, AS: antisense, IGC: Ig constant gene, IGV: Ig variable gene, lR: lincRNA, PP: processed
pseudogene, PT: processed transcript, sR: snRNA, TPP: transcribed processed pseudogene, TUP: tran-
scribed unprocessed pseudogene, UP: unprocessed pseudogene, Ig: Immunoglobulin. Sample entities
are BMPC: bone marrow plasma cells, AL: light chain amyloidosis, MGUS: monoclonal gammopathy
of undetermined significance, AMM: asymptomatic multiple myeloma, MM: multiple myeloma.

log fold change log counts per million
Gene Biotype AL MGUS AMM MM BMPC AL MGUS AMM MM

LINC00173 PT 2.71 2.47 0.94 0.18 0.24 0.23 0.22
RBMS1 PC -2.03 -2.09 -2.30 2.98 4.88 4.55 4.92 5.13

IGHV3-64 IGV 3.53 4.20 7.32 3.89 5.30 6.50 3.27
SCN9A PC -3.45 -3.70 -3.94 -3.72 0.75 3.08 3.30 3.52 3.33
HEY2 PC -2.49 -2.59 1.70 3.78 3.05 3.47 3.87

PRKRIRP3 PP -3.66 -3.89 -4.01 0.05 0.58 0.45 0.66 0.70
IGHV7-56 IGV 2.92 3.91 4.68 1.60 0.34 0.45 0.18 0.11

RP11-669M16.1 lR -2.72 -3.15 -2.88 0.45 1.80 1.52 2.12 1.91
ADGRB3 PC -4.82 -4.29 -4.67 0.33 3.07 2.09 2.61 2.94

TRAPPC13P1 PP -5.86 -5.83 -5.60 0.00 0.38 0.40 0.37 0.32
HSD17B7P2 TUP 2.43 2.65 2.37 2.41 2.42 0.85 0.75 0.88 0.86

C1orf21 PC -3.89 -4.05 -3.54 1.03 4.05 3.24 4.20 3.73
MAB21L1 PC -7.25 -6.23 -6.61 0.06 3.02 2.05 2.17 2.48

RP11-582J16.5 AS 2.77 2.61 2.47 0.77 0.13 0.15 0.15 0.17
RP3-425C14.4 TEC -2.28 -2.81 -2.41 1.30 3.02 3.03 3.50 3.14

UGT8 PC -3.44 -3.47 -3.51 1.19 3.91 3.19 3.93 3.97
CCDC144CP TPP -4.45 -3.77 0.30 2.61 2.28 1.91 2.07

DKK1 PC -4.81 -5.10 -5.90 -7.17 0.94 4.74 5.03 5.80 7.06
ANO5 PC -3.05 -3.06 -3.17 0.99 3.20 2.97 3.21 3.30

GOLGA8S PC -5.15 -5.15 -5.67 0.08 1.73 1.35 1.73 2.12
RP3-460G2.2 lR -2.80 -3.17 -3.97 -4.27 0.38 1.65 1.91 2.54 2.79

PDZRN4 PC -3.23 -3.15 -2.94 2.19 5.10 4.85 5.03 4.83
KCNS3 PC -7.06 -6.91 -7.26 0.11 3.69 3.59 3.56 3.88
PRR15 PC -4.82 -5.26 -4.72 0.45 3.55 3.25 3.96 3.46

PDXDC2P PT 2.72 2.60 2.45 2.08 0.57 0.64 0.61 0.67
MAGEC3 PC -5.29 -5.85 -6.02 0.04 1.28 0.65 1.63 1.75
MAGEC2 PC -7.68 -8.79 -9.05 0.03 2.65 1.73 3.63 3.87
DTX3L PC -2.42 -2.60 -2.38 3.54 5.86 5.69 6.03 5.82
BMP4 PC -5.89 -6.30 -6.59 -6.47 0.20 3.36 3.73 4.00 3.89
TGFB2 PC -6.74 -6.31 -6.22 0.10 3.26 2.54 2.87 2.80
WNT5A PC -4.72 -4.31 -4.70 0.87 4.52 3.76 4.13 4.51
MTG1 PC 1.97 2.27 1.74 2.18 0.92 0.79 1.07 1.04

FAM65C PC 2.26 2.37 2.57 3.53 1.68 1.73 1.60 1.47
LSAMP PC -4.13 -4.10 -4.65 -4.76 1.13 4.45 4.42 4.95 5.06
PARP9 PC -2.52 -2.68 -2.43 3.76 6.19 5.99 6.35 6.10
FMN1 PC -3.42 -2.76 -2.85 1.26 4.01 3.54 3.39 3.48

NLGN4X PC -6.07 -5.48 -5.45 0.92 5.94 4.62 5.36 5.33
RP11-734I18.1 lR -4.70 -4.51 -5.24 -5.88 0.01 0.47 0.42 0.65 0.92

CNTN5 PC -4.83 -6.01 -6.25 -6.66 0.52 3.77 4.88 5.12 5.52
CPXM1 PC 3.33 3.45 3.06 1.93 0.35 0.41 0.32 0.41
DHRS9 PC -6.09 -5.58 -5.99 -4.87 1.47 6.93 6.42 6.83 5.73
PRDM5 PC -3.35 -3.40 -3.54 2.07 5.07 4.20 5.12 5.26

U47924.31 AS 2.78 2.88 2.51 2.35 0.99 0.19 0.18 0.23 0.25
DMRT2 PC -5.89 -5.67 -6.10 -6.23 0.04 1.49 1.36 1.63 1.72
STXBP6 PC -3.95 -3.50 -3.98 -4.15 0.72 3.47 3.07 3.50 3.66
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AC098828.3 PP -4.57 -4.05 -4.94 -4.69 0.05 0.98 0.74 1.17 1.04
VPREB1 PC 3.51 3.79 2.41 0.46 1.57 1.64 0.39

DQX1 PC 3.51 3.23 3.19 2.31 0.43 0.68 0.51 0.52
PLA2G4A PC -3.15 -3.27 -3.21 1.33 3.85 3.35 3.97 3.91
KIAA1683 PC 2.95 3.51 3.33 3.89 1.48 1.74 1.14 1.25

RP11-325P15.2 PP 3.22 3.37 2.90 2.50 0.58 1.08 0.53 0.69
FCRLB PC -4.55 -3.57 1.36 5.24 3.73 3.79 4.29

RP11-395G23.3 lR -3.34 -3.70 -4.11 -4.31 0.12 0.96 1.14 1.38 1.51
FBLN2 PC -5.87 -5.18 -5.94 -6.49 0.35 4.13 3.49 4.19 4.72
CNTN1 PC -5.56 -4.76 -5.24 -5.51 1.21 5.97 5.19 5.67 5.93
CCND1 PC -9.31 -7.04 -7.83 1.23 9.74 6.98 7.48 8.26

MAGEC1 PC -9.36 -9.39 -10.35 -11.01 0.02 3.50 3.53 4.43 5.07
NPEPL1 PC 2.27 2.57 2.56 2.17 2.87 1.21 1.04 1.05 1.26

RNU1-85P sR 3.54 3.18 3.78 0.94 0.10 0.31 0.13 0.09
KIT PC -6.78 -6.19 -7.00 -6.56 0.82 6.41 5.83 6.63 6.19

TMEM52B PC -5.68 -5.01 -6.09 -5.89 0.45 4.32 3.69 4.71 4.52
FAM171B PC -4.37 -3.99 -4.20 0.30 2.54 1.66 2.24 2.41
PTPRK PC -3.99 -3.37 -3.68 -4.09 1.08 4.23 3.65 3.94 4.33
ESRRG PC -4.55 -4.05 -4.92 -4.70 0.72 4.04 3.57 4.39 4.18

ACVR1C PC -3.53 -2.59 -2.86 1.01 3.67 2.66 2.83 3.07
IGLV7-35 IGV 3.64 3.45 5.46 1.92 0.29 0.65 0.32 0.08
CALCRL PC -3.92 -3.10 -4.34 -4.21 1.44 4.75 3.96 5.15 5.03
MFAP3L PC -4.67 -3.83 -3.81 -3.54 1.56 5.67 4.85 4.83 4.57

HGF PC -6.35 -6.77 -6.97 -7.69 0.61 5.46 5.88 6.08 6.78
SLC39A8 PC -2.65 -2.12 -2.28 4.19 6.78 5.81 6.25 6.41
RBFOX2 PC -2.68 -2.23 -2.58 -2.60 2.21 4.60 4.17 4.51 4.52
VCPKMT PC 2.27 2.20 2.33 5.28 3.15 3.43 3.21 3.09
IGHEP1 IGC 4.05 3.28 5.70 3.45 0.67 0.95 1.01 0.25

IGHE IGC 4.46 3.12 6.01 8.88 4.48 5.66 5.79 3.06
FAM133A PC -7.24 -6.41 -7.73 -8.83 0.03 2.47 1.83 2.88 3.88

NDNF PC -5.37 -4.61 -5.03 -5.23 0.94 5.29 4.56 4.96 5.16
RP5-857K21.6 UP 3.99 3.32 2.57 3.51 0.72 1.81 1.03 1.46

TEX14 PC 3.65 3.11 3.35 3.40 4.05 1.16 1.49 1.34 1.31
IGHV7-34-1 IGV 4.76 3.77 4.43 4.91 1.56 0.09 0.19 0.12 0.09

EDA2R PC -5.76 -5.62 -6.35 -6.54 0.15 2.89 2.76 3.40 3.58

Table A.16: Gene ontology (GO) terms enriched in 70 differentially expressed genes (DEG) from both
comparisons BMPC versus AL and BMPC versus MM detected by functional enrichment analysis.

Term Description
GO:0061311 cell surface receptor signaling pathway in-

volved in heart development
GO:0030902 hindbrain development
GO:0010811 positive regulation of cell-substrate adhe-

sion
GO:0030218 erythrocyte differentiation
GO:0050731 positive regulation of peptidyl-tyrosine

phosphorylation
GO:0034330 cell junction organization
GO:0007219 Notch signaling pathway
GO:0051962 positive regulation of nervous system de-

velopment
GO:0051098 regulation of binding
GO:0099054 presynapse assembly
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Table A.17: Overlap of genes harboring variants in 113 AL samples and in previously published lists of
genes by A: Boyle et al. [36] B: Rossi et al. [254] C: Paiva et al. [230] D: Walker et al. [308]. Mean
expression values are the mean of the log2 transformed, normalized counts from the RNA sequencing
data of the samples harboring at least one variant in the gene. AL: light chain amyloidosis, VAF: variant
allele frequency.

Gene Variants Samples Median VAF DNA Expressed in RNA Mean expression A B C D
KRAS 8 8 37.71 7 4.97 x x x

KLHL6 5 4 27.71 5 6.54 x x
MIA2 9 6 55.00 4 2.02 x
TP53 6 4 21.07 4 4.74 x x

ASCC3 7 6 42.31 3 6.07 x
DIS3 7 6 41.07 3 4.26 x x x

FAM208A 5 2 55.56 3 4.32 x
NRAS 5 5 16.67 3 7.05 x x x
TET2 6 4 38.35 3 5.05 x x
XBP1 3 3 68.75 3 11.23 x

ZNF292 8 5 50.89 3 5.39 x x
ACTG1 3 3 41.03 2 8.98 x
BIRC6 3 3 48.72 2 5.53 x
BRAF 3 3 39.02 2 3.82 x x

CCND1 3 3 29.55 2 10.05 x x
EP300 4 3 53.09 2 3.68 x x
KMT2B 5 4 55.63 2 2.04 x x
NBR1 2 2 51.13 2 6.41 x

PRDM1 3 3 49.33 2 7.94 x
TRAF3 2 2 58.61 2 3.90 x x
TTLL4 2 2 79.03 2 2.67 x

AHNAK 6 4 44.58 1 4.93 x
ALKBH4 1 1 36.33 1 3.45 x
ARID2 1 1 27.17 1 5.33 x

CDKN1B 2 2 43.78 1 5.72 x
CSF3R 3 2 47.86 1 3.10 x
FYCO1 14 5 65.70 1 2.95 x

HIST1H1E 2 2 44.94 1 3.75 x
IDH1 3 3 37.82 1 7.13 x
ORC4 2 2 55.71 1 3.74 x

RAD51D 1 1 39.83 1 2.88 x
RASA2 3 3 38.89 1 5.41 x
SETD2 2 2 37.95 1 4.09 x
SP140 2 2 48.66 1 5.17 x
ABCF1 2 2 30.33 0 x
AP3B2 1 1 62.50 0 x

ARID1A 4 4 37.26 0 x
ASIC4 1 1 18.00 0 x
ATM 2 2 46.88 0 x
ATRX 1 1 66.91 0 x
BSN 5 4 43.24 0 x

BTBD17 2 2 48.67 0 x
C14orf39 11 4 47.25 0 x
C8orf34 1 1 40.00 0 x

CACNA1I 2 2 82.41 0 x
CCDC17 3 2 50.98 0 x
CCDC39 1 1 44.64 0 x
CELSR1 10 3 80.69 0 x
CPXCR1 6 5 100.00 0 x
CREBBP 1 1 21.29 0 x
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CTNNAL1 1 1 34.62 0 x
DCAF12L2 3 3 100.00 0 x

DNAH5 12 8 45.10 0 x
DNAH9 12 10 50.16 0 x

DNMT3A 2 2 25.39 0 x
DSEL 4 3 33.08 0 x

DUSP2 3 3 22.93 0 x x
EGR1 1 1 54.66 0 x x
EML6 1 1 42.31 0 x

FBXO15 2 2 31.44 0 x
HECW1 2 2 43.16 0 x
HUWE1 3 3 56.16 0 x
KCNT1 1 1 64.71 0 x
KDM6A 4 4 64.06 0 x
KMT2C 2 2 52.94 0 x
KRT28 1 1 55.66 0 x
LAMA3 4 4 32.04 0 x

LTB 1 1 38.37 0 x
MAML2 2 2 53.13 0 x
MYO18B 11 8 46.15 0 x

NAALAD2 4 4 41.44 0 x
NBEAL1 1 1 26.32 0 x

NF1 2 2 61.29 0 x
OCA2 3 3 48.96 0 x
PCLO 14 10 37.58 0 x
PDE8B 1 1 29.57 0 x
PIK3CA 1 1 50.98 0 x
PKD1 15 4 46.59 0 x
PLCB4 2 2 100.00 0 x

PRPF4B 1 1 29.56 0 x
PSCA 2 2 73.68 0 x
QPCT 1 1 53.28 0 x
RBP3 2 2 38.78 0 x

RFTN1 1 1 51.85 0 x
SALL2 3 3 48.28 0 x

SERPINA5 3 3 65.00 0 x
SI 8 8 36.76 0 x

SLX4 6 3 49.46 0 x
SPATA31D1 1 1 47.46 0 x

SPOCK1 1 1 36.16 0 x
STPG2 4 2 77.22 0 x

SWSAP1 1 1 25.69 0 x
TTN 70 14 45.06 0 x
TTR 1 1 50.59 0 x

UBR5 1 1 10.27 0 x
USP54 1 1 25.51 0 x

ZFYVE1 1 1 47.79 0 x
ZNF519 6 5 77.66 0 x
ZNF729 3 3 29.31 0 x
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Table A.18: Immunoglobulin (Ig) genes in which variants were detected in light chain amyloidosis
separated by Ig gene group.

Ig gene group Genes
Heavy Chain Constat Alpha IGHA1, IGHA2
Heavy Chain Constat Delta IGHD, IGHD3-16, IGHD3-10, IGHD2-2, IGHD6-6, IGHD6-25

Heavy Chain Constat Gamma IGHG1, IGHG2, IGHG3, IGHG4
Heavy Chain Joining IGHJ6, IGHJ4, IGHJ5, IGHJ3

Heavy Chain Constat Mu IGHM
Heavy Chain Variable IGHV1-18, IGHV2-70, IGHV2-70D, IGHV3-53, IGHV1-69D,

IGHV3-11, IGHV4-34, IGHV1OR15-9, IGHV3OR15-7, IGHV5-
10-1, IGHV3-13, IGHV3-16, IGHV3-20, IGHV3-23, IGHV1-
45, IGHV3-49, IGHV1-58, IGHV3-64, IGHV1-2, IGHV3-
30, IGHV3-35, IGHV4-31, IGHV3-74, IGHV3-38, IGHV5-51,
IGHV1-69, IGHV7-4-1, IGHV3-43, IGHV3-66, IGHV4-28

Light Chain Kappa Constant IGKC
Light Chain Kappa Variable IGKV2-24, IGKV5-2, IGKV2-30, IGKV2D-29, IGKV3-7,

IGKV1-16, IGKV2D-26, IGKV1D-16, IGKV3-15, IGKV4-1,
IGKV3D-11, IGKV1-8, IGKV1-27, IGKV1D-33, IGKV1-39,
IGKV1D-37, IGKV6-21

Light Chain Lambda Constant IGLC2, IGLC3, IGLC7
Light Chain Lambda Joining IGLJ3, IGLJ2
Light Chain Lambda Varaible IGLV4-60, IGLV3-1, IGLV4-3, IGLV4-69, IGLV5-45, IGLV7-

46, IGLV3-25, IGLV3-12, IGLV6-57, IGLV3-22, IGLV3-10,
IGLV2-8, IGLV3-21, IGLV3-19, IGLV5-37, IGLV1-44, IGLV1-
47, IGLV2-18, IGLV2-14, IGLV10-54, IGLV2-23, IGLV3-16,
IGLV8-61
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B Supplementary Code

1 # ---------------------------------------------------------------------------- #

2 # R Code #

3 # HDAL #

4 # ---------------------------------------------------------------------------- #

7 # Load docval functions for normalization of one CEL file to the training group

8 source(".../HDAL/Scripts/docval.R")

10 # norm.external.params

11 # Function options:

12 # cel: CEL file name

13 # path: path to CEL file

14 # params: normalization parameters of training group

16 norm.external.params <- function(cel=celfiles, path=path, params=params){

18 for (i in 1:length(cel)) {

19 cel.file <- cel[i]

20 external <- ReadAffy(filenames=cel.file, celfile.path=path)

22 exprs.external.gcrma <- wrap.val.add(external, params, method="gcrma")

23 don <- data.frame(exprs(exprs.external.gcrma))

24 if (i==1) ra <- don else ra <- cbind(ra,don)

25 colnames(ra)[i] <- as.character(cel[i])

26 print(paste(i, "done"))

27 }

28 ra

29 }

31 # HDAL

32 # Function options:

33 # cel: CEL file name

34 # path: path to CEL file

35 # entity: could be: AL (light chain amyloidosis),

36 # MGUS (monoclonal gammopathy of undetermined significance),

37 # AMM (asymptomatic multiple myeloma),

38 # MM (symptomatic multiple myeloma)

40 HDAL <- function(cel, entity="AL", path=""){

42 # prognostic genes

43 al_genes <- c("1552613_s_at", "1556072_at", "201658_at", "201976_s_at",

44 "208612_at", "210749_x_at", "213122_at", "213257_at",

45 "213674_x_at", "214083_at", "216510_x_at", "221648_s_at",

46 "228624_at", "233021_at", "238822_at", "1555288_s_at",

47 "1555971_s_at", "1566106_at", "200822_x_at", "201584_s_at",
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48 "202212_at", "202248_at", "202325_s_at", "202910_s_at",

49 "203340_s_at", "203448_s_at", "205407_at", "207104_x_at",

50 "210152_at", "210252_s_at", "211336_x_at", "214149_s_at",

51 "214882_s_at", "214931_s_at", "218115_at", "219172_at",

52 "219816_s_at", "221042_s_at", "221209_s_at", "221418_s_at",

53 "222989_s_at", "223252_at", "225456_at", "227587_at",

54 "227875_at", "228146_at", "228361_at", "229804_x_at",

55 "231930_at", "232351_at", "234875_at", "235394_at",

56 "235848_x_at", "238703_at", "238821_at", "243020_at",

57 "243618_s_at", "34225_at", "56821_at")

59 al_factor <- c(rep(-1, 15),rep(1, 44))

61 # 1. Normalization

62 (load(".../HDAL/Data/HDAL_params.txt")) # load parameters

63 nc <- norm.external.params(cel=cel, path=path, params=params)

65 # 2. stop if not all al_genes are available in the counttable

66 if(any(!(al_genes %in% row.names(nc)))){

67 stop("Not all 59 prognostic genes are in count table!")

68 }

70 # 3. score estimation by summing up the 59 genes multiplied by a factor and

splitting in 3 groups

71 nc.al <- nc[al_genes,] # cutting nc to 59 al_genes

72 score <- sum(nc.al*as.numeric(al_factor))

74 # 4. low and high cutoff

75 lcut=149.385060831708

76 hcut=161.402300016636

78 risk <- ifelse(score<=lcut, "low risk",

79 ifelse(score<=hcut, "medium risk", "high risk"))

81 data.frame(ID=colnames(nc), score=score, risk=risk, entity=as.character(entity))

82 }

Code B.1: HDAL: Estimation of new CEL files

1 # ---------------------------------------------------------------------------- #

2 # Quality control #

3 # ---------------------------------------------------------------------------- #

5 # Quality report with FastQC:

6 # FastQC version: 0.11.7

7 #

8 # options:

9 # --threads number of computing threads
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11 mkdir $reportdir

12 ./fastqc --threads $cpu $seqdir/*.txt.gz --outdir $reportdir

14 # Automatic trimming of reads with fastp

15 # fastp version: 0.19.4

16 #

17 # options:

18 # -i input reads one for paired end

19 # -I input reads two for paired end

20 # -o trimmed output reads one for paired end

21 # -O trimmed output reads two for paired end

22 # --dont_overwrite stop if quality reports already exists

23 # -V

24 # -j name for the quality control report JSON file

25 # -h name for the quality control report HTML file

26 # -R Sample name for report

28 ./fastp -i $reads1 -I $reads2 -o $sequence1 -O $sequence2 --dont_overwrite -V

-j $samplename.r.json -h $samplename.r.html -R $samplename

Code B.2: Quality control FASTQ files

1 # ---------------------------------------------------------------------------- #

2 # Alignment and preprocessing #

3 # ---------------------------------------------------------------------------- #

5 # Reference genome GRCh38 download link:

6 # ftp://ftp.ensembl.org/pub/release-77/fasta/homo_sapiens/dna/

Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

8 # Alignment with bwa mem and processing with samtools, picard and GATK

9 #

10 # bwa version: 0.7.12

11 # samtools version: 1.5 using htslib 1.5

12 # java version: 8

13 # picard version: 2.10.10 snapshot

14 # bwa options:

15 # index:

16 # -a BWT construction algorithm bwtsw

17 # -p index prefix

18 # mem:

19 # -t number of computing threads

20 # -R readgroup

21 # samtools options

22 # -@ number of computing threads

23 # view:

24 # -b b for bam

25 # -T reference sequence FASTA file

26 # sort:
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27 # -m maximum memory per thread

28 # -O output format BAM

29 # -o output name

30 # picard options:

31 # VALIDATION_STRINGENCY

32 # REMOVE_DUPLICATES

33 # MAX_RECORDS_IN_RAM

35 # before aligning to it build index for reference genome once.

36 bwa index -a bwtsw -p $reference Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

38 # alignment, saving to bam format and sorting bam file

39 bwa mem -t $cpu -R $RG $reference $sequence1 $sequence2 | samtools view -@ $cpu

-bT $reference.fa - | samtools sort -m 20G -@ $cpu -O BAM -o $bam

41 # index bam file

42 samtools index -@ $cpu $bam

44 # mark duplicate reads

45 $mdbam=$(ls $bam | grep trim.bam | sed "s/_trim.bam/_trim_md.bam/")

46 java -XX:+UseParallelOldGC -XX:ParallelGCThreads=4 -jar picard MarkDuplicates I=$out

O=$mdbam M=$bam.metrics.txt VALIDATION_STRINGENCY=LENIENT CREATE_INDEX=true

REMOVE_DUPLICATES=false VERBOSITY=ERROR MAX_RECORDS_IN_RAM=50000000

48 # merge technical replicates

49 samtools merge $bam $bam1 $bam2 -@ 14

51 # new index

52 ls *bam | parallel -j 16 "samtools index {}"

54 # InDel realignment with GATK

55 # create targets for InDel realignment

56 ls *.bam > files.list

57 java -Xms8g -Xmx24g -jar GATK -T RealignerTargetCreator -R $reference.fa -I files.list

-o ir.intervals -S LENIENT -L $regions -nt 10 -U ALLOW_N_CIGAR_READS

59 # InDel realignment

60 java -Xmx12g -jar GATK -T IndelRealigner -I $bam -R $reference.fa

--targetIntervals ir.intervals -S LENIENT --maxReadsForRealignment 50000

-U ALLOW_N_CIGAR_READS -rf NotPrimaryAlignment -rf DuplicateRead

-rf UnmappedRead -log $(echo $bam | sed "s/1_trim_md.bam/realignment.log/")

-o $(echo $bam | sed "s/1_trim_md/realigned/")

Code B.3: Alignment

1 # ---------------------------------------------------------------------------- #

2 # Quality measurements #

3 # ---------------------------------------------------------------------------- #
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5 #!/bin/bash

6 set -e

8 alignment=$1

9 name=$(echo $alignment | cut -d "_" -f 1 | cut -d"/" -f 6)

11 # samtools idxstats and samtools stats

12 # samtools version: 1.5 using htslib 1.5

14 samtoolsf=$reportdir/samtools

16 samtools idxstats $alignment>$samtoolsf/$name-idxstats.txt

18 samtools stats $alignment>$samtoolsf/$name-stats.txt

21 # Alfred version: 0.1.13

23 # Reference genome GRCh38 download link:

24 # ftp://ftp.ensembl.org/pub/release-77/fasta/homo_sapiens/dna/

Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

25 alfred=../alfred/src/alfred

26 reference=../References/hg38

27 rbed=../alfred/maps/exonic.hg38.bed.gz

28 alfredf=$reportdir/alfred

30 $alfred qc -r $reference.fa -b $rbed -o $alfredf/$name.qc.tsv.gz $alignment

Code B.4: Quality measurements alignment

1 # ---------------------------------------------------------------------------- #

2 # Variant Calling with VarScan2 #

3 # ---------------------------------------------------------------------------- #

5 # Variant Calling with VarScan2

6 # samtools version: 1.5 using htslib 1.5

7 # Java version: 8

8 # VarScan2 version: 2.4.3

9 #

10 # samtools options:

11 # -C adjust mapping quality; recommended: 50

12 # -B disable BAQ (per-Base Alignment Quality)

13 # -q skip alignments with mapping quality smaller than

14 # -Q skip alignments with base quality smaller than

15 # -f fasta indexed reference sequence file

16 # VarScan2 options:

17 # --min-coverage Minimum coverage in normal and tumor to call variant

18 # --min-coverage-normal Minimum coverage in normal to call somatic

19 # --min-coverage-tumor Minimum coverage in tumor to call somatic
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20 # -mpileup Input is samtools mpileup

21 # --indel-file File of indes for filtering nearby SNVs

22 # --min-reads2 Minimum supporting reads for a variant

23 # --min-var-freq Minimum variant allele frequency threshold

24 # --p-value Default p-value threshold for calling variants

26 samtools mpileup \

27 -C50 -B -q 10 -Q 13 -f $reference \

28 $normalbam $tumorbam>$pileup

30 java -jar VarScan2 somatic \

31 $pileup \

32 $patient \

33 --min-coverage 5 \

34 --min-coverage-normal 4 \

35 --min-coverage-tumor 2 \

36 --mpileup 1

38 java -jar VarScan2 somaticFilter \

39 $patient.snp -indel-file $patient.indel \

40 -output-file $patient.snp.filtered \

41 --min-coverage 5 \

42 --min-reads2 2 \

43 --min-var-freq 0.1 \

44 --p-value 5e-02

Code B.5: Variant call with VarScan2

1 # ---------------------------------------------------------------------------- #

2 # Variant Calling with Seurat #

3 # ---------------------------------------------------------------------------- #

5 # Variant Calling with Seurat

6 # Seurat version: 2.5

7 # Java version: 6

8 #

9 # Seurat options:

10 # --indels enables somatic indel calling

11 # --structvar enables structural variant detection

12 # -Q Minimum phred scale for reported events

13 # -mmq Minimum mapping quality for reads to be considered in the pileup

14 # -mbq Minimum base quality required to consider a base for calling

15 # -mcv Minimum per-sample coverage required to attempt a call at a locus

16 # -L restrict variant calling to targeted regions by a provided list

18 java -jar Seurat -T Seurat -R $reference -I:dna_normal $normalbam

-I:dna_tumor $tumorbam -o $patient.seurat_somatic_variants.vcf

-go $patient.seurat_large_events.txt --indels --structvar -Q

10 -mmq 10 -mbq 13 -mcv 5 -L $regions -log Seurat_log_vc_$patient
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Code B.6: Variant call with Seurat

1 # ---------------------------------------------------------------------------- #

2 # Variant Calling with Strelka #

3 # ---------------------------------------------------------------------------- #

5 # Variant Calling with Strelka and Manta

6 # Strelka version: 2.9.6

7 # Manta version: 1.4.0

8 #

9 # Manta options:

10 # --exome approciate settings for WES; disables high depth filters

11 # --callRegions restrict variant calling to targeted regions by a provided BED file

12 # Strelka options:

13 # --indelCandidates Candidate indel list by Manta

14 # -m execution on a single node with local

15 # -j parallelization across multiple number of cores

17 mantares=./Manta/Manta_$patient

18 strelkares=./Strelka/Strelka_$patient

20 mkdir $mantares

21 mkdir $strelkares

23 Manta --normalBam $normalbam --tumorBam $tumorbam --referenceFasta $reference --exome

--callRegions $regions --runDir $mantares

25 #$mantares/runWorkflow.py -h # help

26 $mantares/runWorkflow.py -m local -j $cpu

29 Strelka --normalBam $normalbam --tumorBam $tumorbam --referenceFasta $reference

--exome --callRegions $regions

--indelCandidates $mantares/results/variants/candidateSmallIndels.vcf.gz

--runDir $strelkares

31 #$strelkares/runWorkflow.py -h # help

32 $strelkares/runWorkflow.py -m local -j $cpu

Code B.7: Variant call with Strelka

1 # ---------------------------------------------------------------------------- #

2 # R Code #

3 # Merge VCF files #

4 # Create BED file for read counting #

5 # ---------------------------------------------------------------------------- #

6 args <- commandArgs(TRUE)

7 p = args[1]
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9 library(vcfR)

10 library(plyr)

12 # Remove unused factor levels

13 subdf <- function(df) {

14 i.row.names <- row.names(df)

15 df2 <- as.data.frame(

16 lapply(df,

17 function(x) if(is.factor(x)) factor(x) else x

18 )

19 )

20 row.names(df2) <- i.row.names

21 df2

22 }

24 # Read in VCFs

25 VS.snv <- read.vcfR(paste0("/Data/VariantCalls/VarScan/", p, ".snp.vcf"))

26 VS.ind <- read.vcfR(paste0("/Data/VariantCalls/VarScan/", p, ".indel.vcf"))

27 St.snv <- read.vcfR(paste0("/Data/VariantCalls/Strelka/Strelka_", p, "/results/

variants/somatic.snvs.vcf.gz"))

28 St.ind <- read.vcfR(paste0("/Data/VariantCalls/Strelka/Strelka_", p, "/results/

variants/somatic.indels.vcf.gz"))

29 Se.all <- read.vcfR(paste0("/Data/VariantCalls/Seurat/", p, ".seurat_somatic_

variants.vcf"))

31 # Filter and subset VCFs

32 ## SNVs, somatic, passed filter, at CHR 1:22,X,Y

33 ### VarScan

34 VS.snv.red <- data.frame(cbind(VS.snv@fix, VS.snv@gt))

35 # somatic variants

36 VS.snv.red <- VS.snv.red[grep("SS=2", VS.snv.red[,"INFO"]),]

37 # only which passed filter

38 VS.snv.red <- VS.snv.red[grep("PASS", VS.snv.red[,"FILTER"]),]

39 # at CHR 1:22, X, Y

40 VS.snv.red <- VS.snv.red[which(VS.snv.red[,"CHROM"]%in%c(1:22,"X", "Y")),]

41 VS.snv.red$Caller <- "VarScan2"

42 ### Strelka

43 St.snv.red <- data.frame(cbind(St.snv@fix, St.snv@gt))

44 # all somatic variants

45 St.snv.red <- St.snv.red[grep("SOMATIC", St.snv.red[,"INFO"]),]

46 # only which passed filter

47 St.snv.red <- St.snv.red[grep("PASS", St.snv.red[,"FILTER"]),]

48 # at CHR 1:22, X, Y

49 St.snv.red <- St.snv.red[which(St.snv.red[,"CHROM"]%in%c(1:22,"X", "Y")),]

50 St.snv.red$Caller <- "Strelka"

51 ### Seurat

52 # all somatic variants

53 Se.snv.red <- Se.all@fix[grep("somatic_SNV", getINFO(Se.all)),]
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54 # only which passed filter

55 Se.snv.red <- Se.snv.red[grep("PASS", Se.snv.red[,"FILTER"]),]

56 # at CHR 1:22, X, Y

57 Se.snv.red <- Se.snv.red[which(Se.snv.red[,"CHROM"]%in%c(1:22,"X", "Y")),]

58 Se.snv.red <- data.frame(Se.snv.red)

59 Se.snv.red[,c("FORMAT", "NORMAL", "TUMOR")] <- NA

60 Se.snv.red$Caller <- "Seurat"

62 SNV <- rbind(VS.snv.red, St.snv.red, Se.snv.red)

63 SNV <- subdf(SNV)

64 SNV$POS <- as.numeric(as.character(SNV$POS))

66 # Coordinates creation Ensembl vep

67 SNV$InDType <- "sub"

68 SNV$REF2 <- as.character(SNV$REF)

69 SNV$ALT2 <- as.character(SNV$ALT)

70 SNV$Start <- SNV$POS

71 SNV$End <- SNV$POS

72 SNV$Alleles <- paste(SNV$REF,SNV$ALT,sep = "/")

73 SNV$Strand <- "*"

75 # Coordinates creation bam-readcount

76 SNV$REF3 <- as.character(SNV$REF)

77 SNV$ALT3 <- as.character(SNV$ALT)

78 SNV$POSRC <- SNV$POS

80 # Index creation

81 SNV$Position <- paste(SNV$CHROM,SNV$POSRC,sep = ":")

82 SNV$Index <- paste(p, SNV$Position, paste0(SNV$REF3,"/", SNV$ALT3), sep = ".")

84 # sort SNV

85 SNV$Chrom <- as.numeric(mapvalues(SNV$CHROM, c("X", "Y"), 23:24))

86 SNV <- SNV[order(SNV$POS),]

87 SNV <- SNV[order(SNV$Chrom),]

89 # Variant caller column

90 SNV$VarScan <- ifelse(SNV$Caller=="VarScan2", T, F)

91 SNV$Strelka <- ifelse(SNV$Caller=="Strelka", T, F)

92 SNV$Seurat <- ifelse(SNV$Caller=="Seurat", T, F)

94 # Mark variants found by more than one caller

95 snv.split <- split(SNV[, "Caller"], SNV$Index)

96 snv.split <- lapply(snv.split, function(x) paste(x, collapse = ", "))

97 SNV$Caller2 <- NA

98 SNV$Caller2 <- sapply(SNV$Index, function(idx) x <- unlist(snv.split[[idx]]))

99 SNV$Caller2 <- unlist(SNV$Caller2)

100 SNV$VarScan <- ifelse(grepl("VarScan", SNV$Caller2),T, F)

101 SNV$Strelka <- ifelse(grepl("Strelka", SNV$Caller2),T, F)

102 SNV$Seurat <- ifelse(grepl("Seurat", SNV$Caller2),T, F)
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103 SNV$CallerCount <- ifelse(SNV$Caller2 == "Strelka, Seurat" |

SNV$Caller2 == "VarScan2, Seurat" | SNV$Caller2 == "VarScan2, Strelka", 2,

104 ifelse(SNV$Caller2 == "VarScan2, Strelka, Seurat", 3, 1))

106 # Remove all variants found by more than one caller exept the first entry

107 SNV.red <- SNV[-which(duplicated(SNV$Index)),]

109 ## InDel, somatic, passed filter, at CHR 1:22,X,Y

110 VS.ind.red <- data.frame(cbind(VS.ind@fix, VS.ind@gt))

111 VS.ind.red <- VS.ind.red[grep("SS=2", VS.ind.red[,"INFO"]),]

112 VS.ind.red <- VS.ind.red[grep("PASS", VS.ind.red[,"FILTER"]),]

113 VS.ind.red <- VS.ind.red[which(VS.ind.red[,"CHROM"]%in%c(1:22,"X", "Y")),]

114 VS.ind.red$Caller <- "VarScan2"

115 ### Strelka

116 St.ind.red <- data.frame(cbind(St.ind@fix, St.ind@gt))

117 St.ind.red <- St.ind.red[grep("SOMATIC", St.ind.red[,"INFO"]),]

118 St.ind.red <- St.ind.red[grep("PASS", St.ind.red[,"FILTER"]),]

119 St.ind.red <- St.ind.red[which(St.ind.red[,"CHROM"]%in%c(1:22,"X", "Y")),]

120 St.ind.red$Caller <- "Strelka"

121 ### Seurat

122 Se.ind.red <- Se.all@fix[grep("somatic_insertion|somatic_deletion", getINFO(Se.all))

,]

123 Se.ind.red <- Se.ind.red[grep("PASS", Se.ind.red[,"FILTER"]),]

124 Se.ind.red <- Se.ind.red[which(Se.ind.red[,"CHROM"]%in%c(1:22,"X", "Y")),]

125 Se.ind.red <- data.frame(Se.ind.red)

126 Se.ind.red[,c("FORMAT", "NORMAL", "TUMOR")] <- NA

127 Se.ind.red$Caller <- "Seurat"

129 IND <- rbind(VS.ind.red, St.ind.red, Se.ind.red)

130 IND <- subdf(IND)

131 IND$POS <- as.numeric(as.character(IND$POS))

132 IND$REF <- as.character(IND$REF)

133 IND$ALT <- as.character(IND$ALT)

135 # Coordinates creation Ensembl vep

136 IND$InDType <- ifelse(nchar(IND$REF)<nchar(IND$ALT), "ins", "del")

137 IND$REF2 <- as.character(IND$REF)

138 IND$ALT2 <- as.character(IND$ALT)

139 IND$REF2[which(IND$InDType=="del")] <- substr(IND$REF[which(IND$InDType=="del")], 2,

nchar(IND$REF[which(IND$InDType=="del")]))

140 IND$ALT2[which(IND$InDType=="ins")] <- substr(IND$ALT[which(IND$InDType=="ins")], 2,

nchar(IND$ALT[which(IND$InDType=="ins")]))

141 IND$Start <- IND$POS +1 # see: https://www.ensembl.org/info/docs/tools/vep/vep_

formats.html#input

142 IND$End <- ifelse(IND$InDType=="ins", IND$POS, IND$POS + (nchar(IND$REF)-1)) # -

nchar(IND$ALT), IND$Start + (nchar(IND$REF)-1))

143 IND$Alleles <- ifelse(IND$InDType=="ins", paste("-",IND$ALT2,sep = "/"), paste(IND$

REF2,"-",sep = "/"))

144 IND$Strand <- "*"
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146 # Coordinates creation bam-readcount

147 IND$REF3 <- ifelse(IND$InDType=="ins", IND$REF, substr(IND$REF,2,2))

148 IND$ALT3 <- ifelse(IND$InDType=="ins", paste0("+",substr(IND$ALT, 2, nchar(IND$ALT))

), paste0("-", substr(IND$REF, 2, nchar(IND$REF))))

149 IND$POSRC <- ifelse(IND$InDType=="del", IND$POS+1, IND$POS)

151 # Index creation

152 IND$Position <- paste(IND$CHROM,IND$POSRC,sep = ":")

153 IND$Index <- paste(p, IND$Position, paste0(IND$REF3,"/", IND$ALT3), sep = ".")

155 # sort IND

156 IND$Chrom <- as.numeric(mapvalues(IND$CHROM, c("X", "Y"), 23:24))

157 IND <- IND[order(IND$POS),]

158 IND <- IND[order(IND$Chrom),]

160 # Variant caller Column

161 IND$VarScan <- ifelse(IND$Caller=="VarScan2", T, F)

162 IND$Strelka <- ifelse(IND$Caller=="Strelka", T, F)

163 IND$Seurat <- ifelse(IND$Caller=="Seurat", T, F)

165 # Mark variants found by more than one caller

166 ind.split <- split(IND[, "Caller"], IND$Index)

167 ind.split <- lapply(ind.split, function(x) paste(x, collapse = ", "))

168 IND$Caller2 <- NA

169 IND$Caller2 <- sapply(IND$Index, function(idx) x <- unlist(ind.split[[idx]]))

170 IND$Caller2 <- unlist(IND$Caller2)

171 IND$VarScan <- ifelse(grepl("VarScan", IND$Caller2),T, F)

172 IND$Strelka <- ifelse(grepl("Strelka", IND$Caller2),T, F)

173 IND$Seurat <- ifelse(grepl("Seurat", IND$Caller2),T, F)

174 IND$CallerCount <- ifelse(IND$Caller2 == "Strelka, Seurat" | IND$Caller2 == "

VarScan2, Seurat" | IND$Caller2 == "VarScan2, Strelka", 2, ifelse(IND$Caller2 ==

"VarScan2, Strelka, Seurat", 3, 1))

175 # Remove all variants found by more than one caller exept the first entry

176 IND.red <- IND[-which(duplicated(IND$Index)),]

178 # SNVs and InDels

179 allvars <- rbind(SNV.red,IND.red)

180 # use format() else R creates sometimes scientific numbers

181 # (e.g. 8000000 turns to 8e+06) -> problems with bam-readcount

182 allvars$POSRC <- format(allvars$POSRC, scientific = FALSE, trim = TRUE)

184 # write bed for bam-readcount ... for final Variant Allele Frequency

185 # 1-based

186 write.table(allvars[,c("CHROM", "POSRC", "POSRC")],

187 sep = "\t", quote = FALSE, row.names = FALSE, col.names = FALSE,

188 file = paste0("/Data/VariantCalls/bamreadcount_bed_input/", p, ".bed"))

190 # write table input for VarScan2 fpfilter
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191 # 1-based

192 write.table(allvars[,c("CHROM", "POSRC", "REF3", "ALT3")],

193 sep = "\t", quote = FALSE, row.names = FALSE, col.names = c("chrom",

"position", "ref", "var"),

194 file = paste0("Data/VariantCalls/bamreadcount_bed_input/", p,

".fpfilter"))

196 # write table per patient for merging with readcounts and filter

197 write.csv2(allvars, file = paste0("Data/VariantCalls/merged/", p, ".variants.csv"))

Code B.8: Merge VCF files

1 # ---------------------------------------------------------------------------- #

2 # Counting Reads with bam-readcount #

3 # Filter Variants with VarScan2 fpfilter #

4 # ---------------------------------------------------------------------------- #

6 # Counting reads with bam-readcount

7 # bam-readcount version: 0.8.0

8 # Filter variants with VarScan2 fpfilter

9 # Java version: 8

10 # VarScan2 version: 2.4.3

11 #

12 # bam-readcount options:

13 # -f Reference FASTA file

14 # -l BED file with variant positions

15 # -q Minimum read mapping quality

16 # -b Minimum base mapping quality

17 # -w Maximum number of warnings

18 # VarScan2 fpfilter options:

19 # --keep-failures writes all variants from input BED to output table

20 # --min-var-freq minimum variant allele frequency estimated from new read counts

21 # --min-var-count minimum number of reads supporting a variant

24 # readcounts DNA

25 bam-readcount -f $reference -l $bed -q 10 -b 13 -w 0 $tumorbam > $readcounts.DNA

27 # readcounts RNA

28 bam-readcount -f $reference -l $bed -q 1 -b 1 -w 0 $RNAtumorbam > $readcounts.RNA

30 java -jar VarScan2 fpfilter $fpfilter $readcounts.DNA --output-file $final.variants

--keep-failures --min-var-freq 0.1

32 java -jar VarScan2 fpfilter $fpfilter $readcounts.RNA --output-file

$final.variants.rna --keep-failures --min-var-freq 0 --min-var-count 2

Code B.9: Count reads and filter variants
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1 # ---------------------------------------------------------------------------- #

2 # R Code #

3 # Merge counts and filter results #

4 # Create input table for Ensembl vep #

5 # ---------------------------------------------------------------------------- #

7 args <- commandArgs(TRUE)

8 p = args[1]

10 cn <- c("chrom", "position", "ref", "var", "ref_reads", "var_reads", "ref_strand", "

var_strand", "ref_basequal", "var_basequal", "ref_readpos", "var_readpos", "ref_

dist3", "var_dist3", "ref_mapqual", "var_mapqual", "mapqual_diff", "ref_mmqs", "

var_mmqs", "mmqs_diff", "ref_avg_rl", "var_avg_rl", "avg_rl_diff", "filter_status"

, "X")

11 filtered.VS <- read.table(paste0("Data/VariantCalls/filtered/final.", p), sep = "\t",

header = TRUE, as.is = TRUE, fill = TRUE, col.names = cn)

12 filtered.VS$Index <- paste0(p, ".", filtered.VS$chrom, ":", filtered.VS$position, ".",

filtered.VS$ref, "/", filtered.VS$var)

13 rna.VS <- read.table(paste0("Data/VariantCalls/filtered/final.rna.", p), sep = "\t",

header = TRUE, as.is = TRUE, fill = TRUE, col.names = cn)

14 rna.VS$Index <- paste0(p, ".", rna.VS$chrom, ":", rna.VS$position, ".", rna.VS$ref, "/

", rna.VS$var)

15 vars <- read.csv2(paste0("Data/VariantCalls/merged/", p, ".variants.csv"), as.is =

TRUE)

16 if(!all(table(vars$Index%in%filtered.VS$Index))){

17 stop('Not all variants are in both tables run table(vars$Index%in%filtered.VS$Index)

')

18 }

20 # add fpfilter status and readcounts

21 vars$filterstatus <- filtered.VS$filter_status[match(vars$Index, filtered.VS$Index)]

22 vars$REF.reads <- filtered.VS$ref_reads[match(vars$Index, filtered.VS$Index)]

23 vars$ALT.reads <- filtered.VS$var_reads[match(vars$Index, filtered.VS$Index)]

24 vars$REF.reads.rna <- rna.VS$ref_reads[match(vars$Index, rna.VS$Index)]

25 vars$ALT.reads.rna <- rna.VS$var_reads[match(vars$Index, rna.VS$Index)]

27 # calculate VAF and PRESENT status

28 vars$VAF <- vars$ALT.reads/(vars$REF.reads+vars$ALT.reads) *100

29 vars$VAF[vars$REF.reads+vars$ALT.reads == 0] <- 0

30 vars$VAF.RNA <- vars$ALT.reads.rna/(vars$REF.reads.rna+vars$ALT.reads.rna) *100

31 vars$VAF.RNA[vars$REF.reads.rna+vars$ALT.reads.rna == 0] <- 0

32 vars$DNA.present <- ifelse(vars$VAF>=0.1 & vars$ALT.reads > 1, T, F)

33 vars$RNA.present <- ifelse(vars$ALT.reads.rna > 1, "Expressed", ifelse(vars$REF.reads.

rna > 0 & vars$ALT.reads.rna == 0, "Variant not expressed", "Gene not expressed"))

35 # only variants which passed filters and are called by more than one caller

36 vars.red <- vars[which(vars$filterstatus=="PASS"),]

37 vars.red <- vars.red[which(vars.red$CallerCount>1),]
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39 # write table for Annotation with Ensembl vep

40 # 1-based

41 # SNV Startpos == Endpos e.g. 12600 12600 C/A * Index

42 # Insertion Startpos > Endpos e.g. 12601 12600 -/ACC * Index (Startpos = Endpos + 1)

43 # Deletion Startpos < Endpos e.g. 12600 12602 CGT/- * Index

45 write.table(vars.red[,c("CHROM", "Start", "End", "Alleles", "Strand", "Index")],

46 sep = " ", quote = FALSE, row.names = FALSE, col.names = FALSE,

47 file = paste0("VariantCalls/vep_files/", p,"_SNVs.VEP.txt"))

49 # save variant table in R workspace

50 save(vars.red, vars, file = paste0("VariantCalls/variants_raw/", p, "_raw.variants.

RData"))

Code B.10: Merge counts and filter results of variants

1 # ---------------------------------------------------------------------------- #

2 # Annotation with Ensembl vep #

3 # ---------------------------------------------------------------------------- #

5 # Annotation with Ensembl variant effect predictor

6 # Human Genome Annotations Ensembl version 94

7 # vep version: 0.19.4

8 #

9 # options:

10 # -i input variants

11 # -o annotated variants

12 # --fasta reference FASTA file

13 # --symbol HGNC gene symbol

14 # --fork fork input for parallel computation

15 # --cache use cached reference files for faster and offline computations

16 # --tab output in table format

17 # --sift SIFT predictions and/or score

18 # --polyphen PolyPHEN predictions and/or score

19 # --check_existing check existence of known variants that are co-located

20 # with the input

21 # --af global allelic frequency from 1000 Genomes Phase 2 data for any

22 # co-located variant

23 # --max_af highest allele frequency observed in any population from

24 # 1000 Genomes, ESP or gnomAD

25 # -v verbose

26 # --offline compute annotations offline

28 ./vep -i $input -o $output --fasta $reference.fa --symbol --fork 12 --cache --tab

--sift b --polyphen b --check_existing --af --max_af -v --offline

Code B.11: Annotate variants

1 # ---------------------------------------------------------------------------- #

2 # R Code #
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3 # Combine annotation and variant table #

4 # ---------------------------------------------------------------------------- #

6 args <- commandArgs(TRUE)

7 p = args[1]

9 library(stringr)

11 # load variant table

12 load(paste0("VariantCalls/variants_raw/",p,"_raw.variants.RData"))

14 # load Ensembl vep results

15 vep <- read.table(paste0("/VariantCalls/vep_files/", p, "SNVs.VEP.out"), as.is = TRUE)

17 colnames(vep) <- c("Index", "Location", "Allele", "Gene", "Feature", "Feature_type"

, "Consequence", "cDNA_position", "CDS_position", "Protein_position", "Amino_

acids", "Codons", "Existing_variation", "IMPACT", "DISTANCE", "STRAND", "

FLAGS", "SYMBOL", "SYMBOL_SOURCE", "HGNC_ID", "GIVEN_REF", "USED_REF", "

BAM_EDIT", "SIFT", "PolyPhen", "AF", "MAX_AF", "MAX_AF_POPS", "CLIN_SIG", "

SOMATIC", "PHENO")

19 vepFull <- vep

20 allvars <- vars.red

21 # vep <- vepFull

23 # Variant consequences ordered by severity as estimated by Sequence Ontology

24 consorder <- c("splice_acceptor_variant", "splice_donor_variant", "stop_gained", "

frameshift_variant", "stop_lost", "start_lost", "inframe_insertion", "inframe_

deletion", "missense_variant", "splice_region_variant", "start_retained_variant",

"stop_retained_variant", "synonymous_variant")

26 # Remove unwanted consequences

27 vep <- subset(vep, SYMBOL_SOURCE == "HGNC")

28 vep <- subset(vep, !(Consequence %in% c("upstream_gene_variant", "downstream_gene_

variant")))

29 vep <- vep[grep("synon|frame|stop|miss|start|splice", vep$Consequence),]

30 vep$Consequence2 <- unlist(lapply(str_split(vep$Consequence, ","), function(x) x[1]))

31 vep$Consequence2 <- factor(vep$Consequence2, levels = consorder)

33 # Sort consequence in order of severity

34 vep <- vep[order(vep$Consequence2),]

36 # Split by variant index

37 vepl <- split(vep, vep$Index)

38 vepFullConswanted <- lapply(split(vep$Consequence2, vep$Index), function (x) paste(

unique(unlist(str_split(x, ","))), collapse = ","))

39 vepFullConsall <- lapply(split(vep$Consequence, vep$Index), function (x) paste(unique(

unlist(str_split(x, ","))), collapse = ","))
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41 # reduced vep table ... one entry per variant

42 vep2 <- do.call("rbind", lapply(vepl, function(x) x <- x[1,]))

43 vep2$ConsequenceFullwanted <- unlist(vepFullConswanted[vep2$Index])

44 vep2$ConsequenceFullall <- unlist(vepFullConsall[vep2$Index])

46 # Annotation to variant table

47 allvars[,c("Symbol", "Consequence", "ConsequenceFullwanted", "ConsequenceFullall", "

Impact", "Existing_variation", "Codons", "Amino_acids", "Protein_position", "

EnsemblGeneID", "MAX_AF", "MAX_AF_POP", "CLIN_SIG")] <- vep2[match(allvars$Index,

vep2$Index), c("SYMBOL", "Consequence2", "ConsequenceFullwanted", "

ConsequenceFullall", "IMPACT", "Existing_variation", "Codons", "Amino_acids", "

Protein_position", "Gene", "MAX_AF", "MAX_AF_POPS", "CLIN_SIG")]

49 allvars$PolyPhen <- str_remove_all(vep2$PolyPhen, "\\(|\\)|[0-9]|\\.")[match(allvars$

Index, vep2$Index)]

50 allvars$SIFT <- str_remove_all(vep2$SIFT, "\\(|\\)|[0-9]|\\.")[match(allvars$Index,

vep2$Index)]

51 allvars$isCoding <- ifelse(allvars$Codons!="-", TRUE, FALSE)

52 allvars$isSynonymous <- ifelse(grepl("synon",allvars$Consequence), TRUE, FALSE)

53 allvars$inPopulation <- ifelse(allvars$MAX_AF_POP!="-", TRUE, FALSE)

54 allvars$Protein_Change <- ifelse(allvars$Consequence=="missense_variant", paste0("p.",

substr(allvars$Amino_acids,1,1), allvars$Protein_position, substr(allvars$Amino_

acids,3,3)), NA)

56 allvars$Probe <- substr(allvars$Index, 1, 5)

58 # Add expression values from cpm and rpkm normalization

59 (load(".../RS_norm.all_G180726_181022.Rdata"))

60 (load(".../RS_rpkm.norm.all_G180726_190207.Rdata"))

61 nc <- log2(nclist$nc[, which(colnames(nclist$nc) %in% unique(allvars$Probe))]+1)

62 tp <- log2(rpkm[, which(colnames(rpkm) %in% unique(allvars$Probe))]+1)

63 allvars$Expression <- NA

64 allvars$Expression.rpkm <- NA

65 for (i in 1:nrow(allvars)){

66 allvars$Expression[i] <- ifelse(!any(rownames(nc) %in% allvars$EnsemblGeneID[i]), NA

, nc[which(rownames(nc) %in% allvars$EnsemblGeneID[i]),which(colnames(nc) %in%

allvars$Probe[i])])

67 allvars$Expression.rpkm[i] <- ifelse(!any(rownames(tp) %in% allvars$EnsemblGeneID[i

]), NA, tp[which(rownames(tp) %in% allvars$EnsemblGeneID[i]),which(colnames(tp)

%in% allvars$Probe[i])])

68 }

69 allvars$Expression[which(allvars$Expression<1)] <- NA

70 allvars$Expression.rpkm[which(allvars$Expression.rpkm<=0)] <- NA

72 # Add mapping with CoMMpass data

73 CoMMpass <- read.table("/Data/COMMPASS/MMRF_CoMMpass_IA10c_All_Canonical_NS_Variants_

lfthg38.txt", header = TRUE, as.is = TRUE)

74 allvars$GeneinCoMMpass <- allvars$Symbol %in% CoMMpass$ANN....GENE

75 allvars$VarinCoMMpass <- allvars$Existing_variation %in% CoMMpass$ID
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77 # Subset

78 variants <- allvars[which(allvars$isCoding & !allvars$isSynonymous & allvars$

CallerCount > 1),]

79 variants <- variants[order(variants$POS),]

80 variants <- variants[order(variants$Chrom),]

81 variants <- variants[order(variants$Probe),]

83 # Save

84 assign(paste0(p, "_variants"), variants)

85 assign(paste0(p, "_allvars"), allvars)

86 assign(paste0(p, "_vep"), vep)

87 assign(paste0(p, "_vep2"), vep2)

88 assign(paste0(p, "_vepFull"), vepFull)

89 save(list = ls(pattern = paste0(p, "_")), file = paste0("VariantCalls/VariantTables/"

, p, "_all_variants.processed.RDa"))

Code B.12: Create final table of variants per patient

1 # ---------------------------------------------------------------------------- #

2 # R Code #

3 # Merge variant tables #

4 # -----------------------------------------------------------------------------#

6 patients <- substr(list.files("Data/VariantCalls/Strelka/"), 9, 13)

8 allvars <- NULL

9 variants <- NULL

10 vep <- NULL

11 vepFull <- NULL

13 for (p in patients){

14 load(paste0("VariantCalls/VariantTables/", p, "_all_variants.processed.RDa"))

15 allvars <- rbind(allvars, get(ls(pattern = paste0(p, "_allvars"))))

16 variants <- rbind(variants, get(ls(pattern = paste0(p, "_variants"))))

17 vep <- rbind(vep, get(ls(pattern = paste0(p, "_vep"))))

18 vepFull <- rbind(vepFull, get(ls(pattern = paste0(p, "_vepFull"))))

19 }

21 save(allvars, variants, vep, vepFull,

22 file = "VariantCalls/all_variants_processed.RData")

Code B.13: Merge final variant tables

1 # ---------------------------------------------------------------------------- #

2 # Copy number Calling with VarScan2 #

3 # ---------------------------------------------------------------------------- #

5 # Copy number Calling with VarScan2

6 # samtools version: 1.5 using htslib 1.5
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7 # Java version: 8

8 # VarScan2 version: 2.4.3

9 #

10 # samtools options:

11 # -C adjust mapping quality; recommended: 50

12 # -B disable BAQ (per-Base Alignment Quality)

13 # -q skip alignments with mapping quality smaller than

14 # -Q skip alignments with base quality smaller than

15 # -f fasta indexed reference sequence file

16 # VarScan2 options:

17 # -mpileup Input is samtools mpileup

18 # --min-coverage Minimum coverage in normal and tumor to call variant

19 # --min-segment-size Minimum number of bases in a copy number altered segment

20 # --max-segment-size Maximum number of bases in a copy number altered segment

23 samtools mpileup \

24 -C50 -B -q 10 -Q 13 -f $reference \

25 $normalbam $tumorbam>$pileup

27 java -jar VarScan2 copynumber \

28 $pileup $cnvdir/$patient \

29 -mpileup 1 \

30 --min-coverage 20 \

31 --min-segment-size 100 \

32 --max-segment-size 1000

34 java -jar VarScan2 copyCaller \

35 $cnvdir/$patient.copynumber \

36 --output-file $cnvdir/$patient.cnv.called

Code B.14: Copy number call with VarScan2

1 # ---------------------------------------------------------------------------- #

2 # R Code #

3 # Copy number data analysis #

4 # -----------------------------------------------------------------------------#

6 library(DNAcopy)

7 # read in copy number calling files created with VarScan2

8 # for every patient a copy number calling file is saved to $pathtofile

9 cn <- read.table($pathtofile, as.is=T, header=T)

10 cn$adjlr <- as.numeric(gsub(",", ".", cn$adjusted_log_ratio))

11 cn2 <- cn[which(cn$chrom%in%1:22),]

12 cn2 <- cn2[order(cn2$chrom),]

13 cn2$adjlr <- cn2$adjlr-mean(cn2$adjlr, na.rm=T)

14 CNA.subset <- CNA(genomdat = cn2$adjlr,

15 chrom = cn2$chrom,

16 maploc = cn2$chr_start,
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17 data.type = 'logratio',

18 sampleid = sampleid)

19 CNA.smoothed <- smooth.CNA(CNA.subset)

20 segs <- segment(CNA.smoothed, verbose=0, min.width=2)

21 save($segs, file = "segs$patient.RData"))

22 segsAL <- list()

23 segsAL <- c(segsAL, list($segs))

25 # save all segments together in one file for GISTIC2.0

26 segs.gistic <- NULL

27 for (i in names(segsAL)){

28 segments <- segs$output

29 segs.gistic <- rbind(segs.gistic,segments)

30 }

31 write.table(segs.gistic, file = "Segments_gistic2",

32 sep = "\t", row.names = FALSE, col.names = FALSE, quote = FALSE)

Code B.15: Copy number segmentation with DNAcopy

1 # ---------------------------------------------------------------------------- #

2 # Copy number analysis with GISTIC 2.0 #

3 # ---------------------------------------------------------------------------- #

5 # Copy number analysis with GISTIC 2.0

6 # GISTIC version: 2.0.23

7 # Matlab Compiler Runtime (MCR) Enviroment version: 8

8 #

9 # GISTIC options:

10 # -b directory for results

11 # -seg input segment data

12 # -refgene gistic2 reference genome

13 # -genegistic 1 = use the gene GISTIC algorithm

14 # -smallmem 1 = compress memory

15 # -broad additional broad-level analysis should be performed 1:yes

16 # -brlen broad from focal events in units of fraction of chromosome arm

17 # -conf confidence level for calculating region containing a driver

18 # -armpeel Flag set to enable arm-level peel-off of events during peak definition.

19 # -savegene 1 = save segmented input data

20 # -gcm Method for reducing marker-level copy number data to the gene-level copy number

data

22 # output directory

23 echo --- creating output directory ---

24 basedir=~/Gistic

25 mkdir -p $basedir

27 # input file definitions

28 segfile=Segments_gistic2

29 refgenefile=$gisticdir/refgenefiles/hg38.UCSC.add_miR.160920.refgene.mat
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31 cd $gisticdir

32 # call script that sets MCR environment and calls GISTIC executable

33 ./gistic2 -b $basedir -seg $segfile -refgene $refgenefile \

34 -genegistic 1 -smallmem 1 \

35 -broad 1 -brlen 0.5 \

36 -conf 0.90 -armpeel 1 \

37 -savegene 1 -gcm extreme

Code B.16: Copy number alterations with GISTIC2
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