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Summary 

Radiotherapy outcome of poorly oxygenated tumours is currently limited. Mathematical models 

describing the oxygen-dependent tumour response may help to optimise treatment schedules 

and improve radiotherapy outcome. The tumour response model (TRM) predicts the 

spatiotemporal development of tumours based on radiation dose, microscopic oxygenation 

distributions, proliferation of tumour cells, angiogenesis, tumour growth, resorption of dead 

tumour cells and tumour shrinkage. In this thesis, the TRM was validated and its input parameters 

were adjusted to reproduce experimental dose-response curves of three rat prostate carcinoma 

sublines. The validation confirmed the correct implementation of the main TRM components and 

the dependence on input parameters were consistent with underlying principles. The adjustment 

to experimental data could only be achieved after changing the assumption on oxygen 

consumption of radiation-inactivated tumour cells. The adjusted intrinsic fractionation 

parameter, 𝛼 𝛽⁄ , was smaller than the experimentally obtained value, revealing the impact of 

additional biological processes on the tumour response to fractionated irradiations. Additionally, 

available experimental 𝛼 𝛽⁄  and 𝛼 values were compatible with the values adjusted in the TRM. 

This study demonstrates the ability of the TRM to reproduce experimental in-vivo tumour 

response data. 
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Zusammenfassung 

Die Ergebnisse der Strahlentherapie bei schlecht mit Sauerstoff versorgten Tumoren sind derzeit 

begrenzt. Mathematische Modelle, die die sauerstoffabhängige Reaktion des Tumors beschreiben, 

können dazu beitragen, die Behandlungspläne zu optimieren und die Ergebnisse der 

Strahlentherapie zu verbessern. Das Tumor-Response-Modell (TRM) prognostiziert die 

räumlich-zeitliche Entwicklung von Tumoren basierend auf der Strahlendosis, der 

mikroskopischen Sauerstoffverteilung, der Proliferation von Tumorzellen, der Angiogenese, des 

Tumorwachstums, der Resorption abgestorbener Tumorzellen und der Schrumpfung des 

Tumors. In dieser Arbeit wurde das TRM validiert und seine EIngangsparameter wurden 

angepasst, um experimentelle Dosis-Wirkungs-Kurven von drei Sublinien eines Ratten-

Prostatakarzinoms zu reproduzieren. Die Validierung bestätigte die korrekte Implementierung 

der Hauptkomponenten des TRM, und die Abhängigkeit von den Eingangsparametern war 

konsistent mit den zugrunde liegenden Prinzipien. Die Anpassung an die experimentellen Daten 

konnte nur durch eine Änderung der Annahme über den Sauerstoffverbrauch von 

strahlungsinaktivierten Tumorzellen erreicht werden. Der angepasste intrinsische 

Fraktionierungsparameter, 𝛼 𝛽⁄ , war kleiner als der experimentell ermittelte Wert, was den 

Einfluss zusätzlicher biologischer Prozesse auf die Reaktion des Tumors auf die fraktionierte 

Bestrahlungen offenbart. Außerdem waren die verfügbaren experimentellen 𝛼 𝛽⁄ - und 𝛼-Werte 

mit den im TRM angepassten Werten kompatibel. Die Studie demonstriert die Fähigkeit des TRM, 

experimentelle in-vivo-Tumorreaktionsdaten zu reproduzieren. 
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1   Introduction 

The uncontrolled growth and subsequent spread of abnormal cells characterise the group of 

diseases known as cancer. Certain environmental factors are known to increase cancer risk, but 

the causes of this disease remain mostly unknown and are the subject of ongoing research. Cancer 

leads to one out of six deaths worldwide and as of 2018, is the second-leading cause of death, 

surpassed only by cardiovascular diseases [1].  

Radiotherapy uses ionising radiation to kill cancer cells and is currently an essential component 

of effective cancer treatment. Approximately half of the cancer patients would benefit from 

radiotherapy to cure the disease and alleviate symptoms [2], [3]. A clear relationship between the 

tumour response to radiation and the delivered radiation dose has been observed when 

radiotherapy is used with curative intent. This dose-dependent response is influenced by the 

intrinsic tumour cell sensitivity to radiation, as well as by additional biological processes and 

microenvironmental factors [4]. Improvements in radiotherapy outcome have been achieved 

thanks to the latest technological developments. These allow delivering highly conformal dose 

distributions to the tumour while minimising the dose to the surrounding healthy tissue. 

Nonetheless, radiotherapy efficacy is still compromised by various factors, especially by the 

deficient oxygenation, referred to as hypoxia, present in most solid tumours [5]. 

The impact of oxygen on tumour response to radiation was first described by Gray in 1953 [6]. 

Since then, several studies established the negative impact of hypoxia on radiotherapy outcome 

in terms of local disease control and overall survival [5], [7]. Hypoxia is caused by the rapid 

growth of solid tumours, which increases the oxygen demand on the existing tumour vasculature. 

Driven by this high oxygen demand, new tumour vasculature is rapidly formed. However, this 

new vasculature is usually immature, chaotic, dysfunctional and structurally abnormal. As a 

consequence, tumours become hypoxic, with spatially and temporarily strongly varying oxygen 

deficiencies [4].  

Recent efforts to improve radiotherapy outcome have focused on in-vivo assessment of tumour 

oxygenation. Non-invasive three-dimensional estimation of tumour hypoxia may be achieved by 

different imaging techniques such as positron emission tomography (PET) or magnetic resonance 

imaging (MRI). However, the quantitative assessment of the oxygen partial pressure based on 

these imaging techniques is not yet feasible. Microscopic variations at low and intermediate 

oxygen levels are key determinants of treatment success or failure, while the available imaging 

techniques provide only millimetre-resolution information on tumour oxygenation [8].  
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An alternative strategy to understand the radiation response of tumours is the mathematical 

modelling and computer simulation of the underlying biological processes. These models may 

consider different processes, such as tumour oxygenation, tumour growth or the generation of 

new tumour vasculature. Additionally, calculations may be performed on different 

spatiotemporal scales. These models allow considering a higher degree of complexity than 

calculations solely based on simple analytical models. In the context of tumour response, they 

may potentially serve as a tool to predict the radiation response of experimental in-vivo tumours. 

Regardless of the specific characteristics of a mathematical model, various challenges have to be 

addressed before implementing the model clinically. The complexity of a model is usually 

reflected in the number of parameters needed to perform the calculations. These parameters 

present sources of uncertainty and may limit the model’s applicability. Additionally, comparison 

and validation against experimental pre-clinical data are necessary to prove the model’s 

suitability for clinical application.  

The objective of this thesis is to further improve and validate the tumour response model (TRM) 

developed by Espinoza et al. [9], [10]. The TRM is a multi-scale model that accounts for the oxygen 

impact on tumour response. Tumours are represented in a voxel-discretised space, where 

microscopic oxygen distributions are assigned voxel-wise in terms of oxygen histograms. Six 

biological processes are modelled in the TRM: Tumour cell proliferation, capillary cell 

proliferation, tumour growth, oxygen-dependent tumour cell kill, dead cell resorption and 

tumour shrinkage. The TRM simulates the spatiotemporal tumour response to a radiotherapy 

course and gives output on multiple scales: The number of tumour, capillary, dead and normal 

cells per voxel, the survival fraction of tumour cells per voxel, the spatiotemporal development of 

the tumour and the information whether the tumour is controlled or not. 

The thesis firstly focuses on validating the TRM by analytical calculations by assessing the 

reliability and importance of the main radiobiological components of the model. The second and 

main objective is to adapt the TRM to predict the radiation response of preclinical in-vivo data of 

three rat prostate carcinoma sublines. These sublines differ in their degree of differentiation, 

growth rate and oxygenation status, and were irradiated with 1, 2, or 6 fractions in previous 

studies [11]–[14]. The parameter adjustment was performed by comparing the TRM-simulated 

and experimental dose-response curves for the three fractionation schemes.  
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2   Materials and methods 

In this section, the bases of the physics of radiotherapy as well as of radiobiology are presented, 

to equip the reader with the tools to understand how tumours respond to radiotherapy, and how 

the response is measured and affected by the presence of oxygen. Next, the tumour response 

model (TRM) is explained, and further developments of the original model are described. Lastly, 

the experimental in-vivo data is presented and the adjustment strategy to fit the TRM input 

parameters to this data is described.  

2.1 Background 

2.1.1 Physics of radiotherapy 

Radiation is considered ionising if it has enough energy to release electrons from atoms or 

molecules as the radiation travels through matter. Among the radiation qualities used for 

radiotherapy, charged particles such as electrons, protons, and carbon ions are considered as 

directly ionising radiation, whereas uncharged particles such as photons and neutrons are 

considered as indirectly ionising radiation [15]. While directly ionising radiation deposits its 

energy via collisions caused by the interaction of electromagnetic fields, indirectly ionising 

radiation releases its energy to the medium in two steps: energy is first transferred from the 

uncharged particles to charged particles and in a second stage, energy is deposited in the medium 

by these charged particles [16]. The most frequently used radiation type in radiotherapy are high-

energy photons.  

The number of photons in the primary beam is reduced by the interaction with the material. The 

decrease in the number of photons 𝑑𝑁 is proportional to the number of incident photons and the 

thickness of the absorber, 𝑁 and 𝑑𝑥 respectively [15]. Taking 𝜇 as a proportionality constant, and 

considering the number of photons decreases as the absorber thickness increases, the following 

equation is obtained: 

 𝑑𝑁 =  −𝜇𝑁𝑑𝑥 (2.1) 

Equation (2.1) can be written in terms of the photon beam intensity 𝐼, being proportional to the 

number of photons. If the thickness of the absorber 𝑥 is considered as a length, 𝜇 is the linear 

attenuation coefficient, with units of cm−1, and it follows: 
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𝑑𝐼

𝐼
=  −𝜇𝑑𝑥 (2.2) 

The differential equation in (2.2) can be expressed in terms of the absorber’s thickness 𝑥 and the 

incident photon intensity 𝐼0, to obtain: 

 𝐼(𝑥) =  𝐼0𝑒−𝜇𝑥 (2.3) 

The linear attenuation coefficient 𝜇 depends on the energy of the photons and the properties of 

the absorber material, such as its relative atomic mass and its density. To remove the dependency 

of 𝜇 on the absorber’s density 𝜌, the mass attenuation coefficient 𝜇 𝜌⁄  is defined. For compound 

substances, 𝜇 𝜌⁄  can be calculated as the weighted sum of the different mass attenuation 

coefficients [17].  

There are five major types of interactions contributing to photon beam attenuation by the 

material. For the photon energies commonly used in radiotherapy (< 10 MeV), attenuation by 

photodisintegration of a charged particle in the nucleus is considered to have a negligible 

contribution. Therefore, the four major interactions contributing to photon attenuation are 

coherent (Rayleigh) scattering, photoelectric effect, Compton effect, and pair production. Each of 

these interactions can be represented by a dedicated attenuation coefficient which depends, in 

different ways, on the photon energy and the absorber’s properties. By adding up the individual 

coefficients, the total mass attenuation coefficient is obtained: 

 

𝜇

𝜌
=  

𝜎𝑐𝑜ℎ

𝜌
+ 

𝜏

𝜌
+  

𝜎𝐶

𝜌
+  

𝜋

𝜌
 

(2.4) 

In equation (2.4), 𝜎𝑐𝑜ℎ, 𝜏, 𝜎𝐶  and 𝜋 correspond to the attenuation coefficients for the interactions 

of coherent (Rayleigh) scattering, photoelectric effect, Compton effect, and pair production, 

respectively [15].  

Rayleigh scattering 

This interaction is also known by the name of “classical interaction” or “coherent scattering”, and 

it occurs between a photon and an absorber atom.  The photon is scattered by bound atomic 

electrons, while the atom is neither ionised nor excited. The transferred momentum is absorbed 

by the entire atom, with very small recoil energy. The photon is scattered at a relatively small 

angle with essentially the same initial energy. This interaction occurs predominantly at high 

atomic number 𝑍 of the absorber and low photon energies ℎ𝜈 [16], and it has minor importance 

in the context of radiotherapy [15]. Rayleigh scattering does not contribute to energy absorption 

and therefore to the deposited dose. 
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Photoelectric effect 

During this interaction, an incoming photon is absorbed by an atom and as a result, an atomic 

electron is ejected. The kinetic energy of the ejected electron is the difference between the 

incoming photon’s energy and the electron’s binding energy. Once the electron is ejected, a 

vacancy in the atom’s shell is created. This vacancy can be filled by an outer electron, resulting in 

the emission of a characteristic x-ray. Since the K-shell binding energy for soft tissues is 

approximately 0.5 keV, the energy of characteristic photons is very low and considered to be 

locally absorbed. The cross section of the photoelectric effect depends on the absorber’s atomic 

number and the photon energy, 𝜏 𝜌⁄ ∝  𝑍3 𝐸3⁄  [15]–[17]. 

Compton effect 

In the Compton effect, also known as incoherent scattering, a photon interacts with a loosely 

bound electron, considered to be “free” since the energy of the photon is considerably larger than 

the electron’s binding energy. As a result, the photon transfers energy to the electron and is 

scattered, with reduced energy, at an angle Φ. On the other hand, the electron is emitted from the 

atom at an angle 𝜃. The cross section of the Compton effect in water-like tissues increases with 

photon energy until approximately 1 MeV and decreases for further photon energy increment. 

Taking into account that Compton interactions occur mainly with “free” electrons, the cross-

section does not depend on the absorber’s atomic number. Instead, the Compton mass 

attenuation coefficient 𝜎𝐶/𝜌 depends on the electron density [15], [16], [18]. 

Pair production 

A pair production, the creation of an electron-positron pair, is possible when the energy of the 

incident photon exceeds 2𝑚𝑒𝑐2 = 1.02 MeV, where 𝑚𝑒𝑐2 is the rest energy of the electron. In this 

process, the photon interacts with the strong electromagnetic field close to the nucleus and is 

converted into an electron-positron pair. In the case the photon’s energy exceeds 2𝑚𝑒𝑐2, the 

exceeding energy is shared between the electron-positron pair as kinetic energy. Annihilation 

radiation occurs when the positron has travelled through the absorber and lost most of its kinetic 

energy. The slowly travelling positron combines with an electron in the neighbourhood and two 

annihilation photons arise. These annihilation photons have an energy of 0.51 MeV each and due 

to momentum conservation, they are ejected in opposite directions [15], [16]. The cross section 

of occurrence for pair production is zero for photon energy below the 2𝑚𝑒𝑐2 threshold, and 

increases swiftly with ℎ𝜈 beyond this threshold. For energies above 20 MeV, the cross-section is 

approximately proportional to 𝑍2. 

 



6 
 

Total mass attenuation coefficient 

The contributions of the previously mentioned interactions to the total mass attenuation 

coefficient in water are shown in Figure 2.1. For the photon energies used in radiotherapy (1-15 

MeV), the major contribution in water-like soft biological tissues is from the Compton effect.   

 

Figure 2.1: Total mass attenuation coefficient 𝜇 𝜌⁄  as a function of the photon energy for water, with the 
separate contributions from coherent (Rayleigh) interaction, photoelectric effect, Compton effect, and pair 
production. Adapted with permission of IOP Publishing from [18]. 

Absorbed dose 

In the context of radiotherapy, the energy deposited in the absorbing material, i.e. the biological 

tissue, is the most relevant quantity. The total absorbed energy is described by the respective 

mass attenuation coefficients of the underlying interaction processes. The absorbed dose 𝐷 is 

then defined as the quotient of the mean energy imparted 𝑑𝜀  ̅by ionising radiation to the material 

of mass 𝑑𝑚: 𝐷 =  𝑑𝜀̅ 𝑑𝑚⁄ . 𝐷 is usually measured in units of Gray, denoted as Gy, where 1 Gy =

1 J/kg. While the absorbed dose is related to the biological effect, this relationship is not simple 

and therefore specialised disciplines, such as radiobiology, are needed to understand how the 

absorbed dose relates to biological effect [15], [16]. 

2.1.2 Radiobiology  

Radiobiology focuses on understanding, experimentally and theoretically, the events that follow 

the irradiation of biological systems. In the case of photon radiotherapy, secondary electrons 

generated by incident photons release the energy in the tissue. Therefore, these electrons are the 

major contributor to the biological damage imparted to the tissue exposed to radiation. The first 

series of events post-irradiation occur during the physical phase, where the secondary electrons 
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traverse the tissue in 10−18 − 10−12 seconds. During the following chemical phase, chemical 

changes occur in the molecules ionised by the electrons, which result in molecular damage. In 

most cases, molecules can be repaired or replaced, when various copies are available in the cell, 

and in those cases, the survival of the cell is not jeopardised. However, there are only two copies 

of the largest and most important molecule in the cell: The deoxyribonucleic acid (DNA). Damage 

to the DNA can be permanent, leading to mutations or cell death. Subsequent reactions after the 

chemical phase, for both healthy and tumour tissue, can appear from seconds to years after 

irradiation. This last phase is referred to as the biological phase, and it is characterised by early 

loss of cells, compensatory cell proliferation and in some cases the appearance of secondary 

tumours [19].  

The structure, size and function of healthy tissue are determined by stem cells, with the unlimited 

capability of proliferation. Tumours are driven by cancer stem cells, which constitute the tumour 

tissue by generating additional stem cells, as well as well-differentiated non-malignant cells. 

When cancer stem cells can form a cell colony they are called clonogenic cells. Clonogenic cells 

drive tumour growth and therefore radiotherapy aims to prevent these cells from further 

proliferation [17].   

Linear Quadratic Model 

Clonogenic assays are essential to study the radiation response of cancer cells. These assays are 

performed by placing cells in a defined growth environment to then assess their colony-forming 

ability after irradiation. Cell kill is determined as the complement to the survival fraction (SF), 

which is the fraction of surviving relative to the irradiated cells:  

 
SF = 

 # surviving cells 

 # irradiated cells 
 

(2.5) 

The SF for a given cell line depends on the dose and its temporal delivery pattern, i.e. the dose 

fractionation. It is of radiobiological interest to describe the relationship between cell survival, 

dose and dose fractionation, to provide a common framework for comparing and analysing data, 

and in the long term to build a consistent theory of this particular phenomenon [19]. Various 

descriptive models have been developed in the past decades to describe the SF as a function of 

dose. To describe the combined dependence of the SF on the dose and fractionation for different 

cell lines, the Linear Quadratic Model (LQM) is used [20].  

The LQM results from the fit of a second-order polynomial to the cell survival curves (Figure 2.2), 

with a zero constant term to obtain SF = 1 at zero doses. The LQM is a key tool in radiobiology 
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and radiation physics since it provides a simple relation between dose and cell survival [21]. The 

basic formulation of the LQM describes the cell SF after exposure to a single radiation dose 𝐷 as: 

 SF = 𝑒−α𝐷−β𝐷2
 (2.6) 

where the fitting parameters 𝛼 and 𝛽, measured in Gy−1 and Gy−2 respectively, describe the cell’s 

sensitivity to radiation. Radiotherapy is usually delivered in multiple radiation doses, in what is 

called a fractionated treatment, consisting of 𝑛 irradiations, each delivering a fraction dose 𝑑 for 

a total dose of 𝐷 = 𝑛𝑑.  As a result of each radiation fraction, a cell may either die or survive with 

or without sublethal damage. Assuming irradiated cells are given enough time to recover after 

each fraction (6-24 hours), all sublethal damage would be repaired and the cells would respond 

to the following fraction as if they have not been previously irradiated [19], [21]. Under this 

assumption, the cell SF after 𝑛 fractions of dose 𝑑 is: 

 SF = (𝑒−𝛼𝑑−𝛽𝑑2
)𝑛 =  𝑒−𝑛(𝛼𝑑+𝛽𝑑2) =  𝑒−𝐷(𝛼+𝛽𝑑) (2.7) 

 

Figure 2.2: SF curves for single (dashed lines) and fractionated irradiations (continuous lines), for low and 
high 𝛼 𝛽⁄  values (red and blue lines, respectively). Note that a given SF, for example 10−5, is achieved at a 
different dose level for each irradiation schedule. The dose difference between the dashed and continuous 
lines of the same colour at a given survival level indicates how sensitive a cell line, with a given 𝛼 𝛽⁄ , is to 
changes in fractionation. 

The ratio 𝛼/𝛽, with units of Gy, is used to describe the curvature of the SF as a function of the dose 

shown in Figure 2.2. Acute-responding tissues express biological damage days or weeks after 

radiation exposure and are characterised by 𝛼/𝛽 values ranging from 7 to 20 Gy. On the contrary, 

late-responding tissues express biological damage months or even years after irradiation, with 

𝛼/𝛽 values between 0.6 and 6 Gy. The response to fractionated treatments of most well-

oxygenated tumours is similar to that of acute-responding tissues, in some cases reporting even 

higher values of 𝛼/𝛽. As shown in Figure 2.2, the SF of cells with low 𝛼/β, with more pronounced 

curvature, is more sensitive to dose fractionation than for cells with high 𝛼/𝛽. Therefore, the 
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rationale behind fractionated treatments is the sparing of late-responding normal tissues, while 

treating the tumour [19].  

It is possible to provide a mechanistic interpretation of the LQM. For example, 𝛼 is thought to be 

related to the lethal damage (damage that cannot be repaired by the cell and leads to cell death) 

produced by a single hit, and therefore proportional to 𝑑. On the other hand, 𝛽 is related to the 

combination of two independent single hits, proportional to 𝑑2 [22]. There are other 

interpretations, related either to the cell repair process [23], the creation of potentially lethal 

damages [24], or the repair rate saturation [25]. However, it is important to note there are many 

factors affecting cell death following irradiation. Some of these factors are related to the density 

and type of cell damage caused by radiation, the repair mechanisms available in the cell, the cell 

cycle phase during irradiation, and the cell death pathways, among others. Therefore, the LQM 

with its fitting parameters is often considered as a phenomenological description of the resulting 

cell survival.  

Besides the dependence on the cell-specific characteristics, cell death depends on the various 

additional treatment and biological factors, such as the radiation quality and microenvironmental 

conditions. One of the first radiation response-modifying factors identified was oxygen. Low 

oxygen levels in tumours are associated with increased radioresistance and therefore poor 

radiotherapy outcome [21]. 

Impact of oxygen on the radiation response 

Advanced tumours usually develop areas with poor oxygenation, mainly due to the imbalance 

between vasculature growth and tumour nutrient consumption. New vasculature in tumours is 

created by a process called angiogenesis. However, rapidly-growing tumours usually outpace the 

vascular development, resulting in functional and structural abnormalities of the tumour 

vasculature, altered vascular geometry, and local anaemia, leading to reduced oxygen availability. 

Hypoxia refers to low oxygen concentration and is generally classified into two categories: 

Chronic or diffusion-limited hypoxia which is caused by decreased oxygen concentration at large 

distances from the vessel (> 70μm) due to large inter-vessel distances, and acute or perfusion-

limited hypoxia, which takes place when the oxygen concentration varies over short intervals of 

time (minutes to hours) due to perfusion changes [5], [19]. Both types of hypoxia are illustrated 

in Figure 2.3.  

Hypoxia is characterised as being heterogeneous in various aspects. Hypoxia occurs not only at 

zero oxygen concentrations but also at higher concentrations. These concentrations can vary 

spatially as well, with tumour regions showing high oxygen concentrations and others showing 

hypoxia. Additionally, hypoxia can vary over short periods, or may be stable in time. In the context 
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of radiotherapy, it is important to note that hypoxia is also markedly different among patients, 

and therefore personalised approaches are necessary to successfully treat cancer [19], [26].  

 

 

Figure 2.3: Illustration of the two different types of hypoxia. Chronic or diffusion-limited hypoxia (left) is 
caused by large inter-vessel distances, leading to chronically hypoxic cells at large distances from the vessel. 
Acute or perfusion-limited hypoxia is caused by the variation of oxygen concentration due to perfusion 
changes in the vessel over time, causing surrounding cells to become temporarily hypoxic. Reprinted with 
permission of Springer Nature and Elsevier, from [4] and [27], respectively.  

The relation between oxygen concentration and cell sensitivity to radiation was first reported in 

1955 by Gray [28]. Nowadays, the negative impact of hypoxia on the radiotherapy outcome has 

been further studied and continues to be a topic of research [4], [19], [26], [29]–[31]. Different 

approaches have been established to target hypoxia-induced radioresistance, ranging from cell 

sensitisers to radiation boost to hypoxic tumour regions [32]–[34]. Additional efforts include 

modelling and simulation of the radiation response of hypoxic tumours, a topic which will be 

covered in further detail later in this thesis. 

Oxygen as a dose-modifying factor 

The impact of oxygen on radiation response has been studied using clonogenic assays. The cell SF 

decreases more rapidly when oxygen is present, which in the context of radiotherapy means that 

more tumour cells are killed by radiation when oxygen is available. This enhanced damage caused 
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by oxygen is equivalent to an increased delivered dose. This increase is given by a factor termed 

oxygen enhancement ratio (OER), which is approximately the same at all survival levels. The OER 

is calculated as: 

 
OER = 

Dose hypoxia

Dose air
|

same biological effect

 (2.8) 

For most cells exposed to photon irradiation in-vitro, the OER has a value of around 3. Expressing 

the oxygen concentration as the partial pressure of the gas 𝑝𝑂2, the OER is parameterised as 

follows: 

 
OER(𝑝𝑂2) =  

𝑚 ∙ 𝑝𝑂2 + 𝑘

𝑝𝑂2 + 𝑘
 (2.9) 

In equation (2.9), 𝑚 is the maximum OER and 𝑘 is the 𝑝𝑂2 at which the OER equals half of its 

range [35]. The OER as a function of 𝑝𝑂2 is shown in Figure 2.4, where the rapid variation of OER 

occurring at intermediate 𝑝𝑂2 levels can be seen.  

 

Figure 2.4: OER as a function of 𝑝𝑂2. The oxygen partial pressure ranges between zero and 100mmHg, 
covering the 𝑝𝑂2 of veins and arteries (left). At intermediate and low 𝑝𝑂2, as found in tumours, the OER 
decreases. For better visualisation, the curve is additionally shown on a logarithmic scale (right).  

The dose-modifying effect of oxygen is currently explained by the so-called oxygen fixation 

hypothesis, as illustrated in Figure 2.5. Under this hypothesis, the secondary electrons generated 

by a photon beam ionise water molecules in the cell, creating free radicals. These free radicals 

quickly attach to the DNA, resulting in radiation damage that can be repaired by different cell 

repair mechanisms. However, in the presence of oxygen, additional radical reactions lead to a 

fixation of the radiation damage, making repair less likely.  

The OER can be used to extend the LQM, resulting in a mathematical formula that considers the 

oxygen level and its impact on cell survival after irradiation:  

Vein Artery
Intermediate
oxygen levels
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 SF(OER) = exp [−
𝛼

𝑚
𝐷 ∙ OER(𝑝𝑂2) −  

𝛽

𝑚2
𝐷2 ∙ OER2(𝑝𝑂2)] (2.10) 

In equation (2.10), the OER as parameterised in equation (2.9) is inserted into the LQM 

formulation from equation (2.6), and 𝛼 and 𝛽 refer to completely oxygenated conditions. Since 𝑚 

is the maximum OER, and the OER(𝑝𝑂2) varies from 1 to 𝑚, the SF under hypoxic conditions is 

always larger than under well-oxygenated conditions, as shown in Figure 2.6. 

 

Figure 2.5: The oxygen fixation hypothesis is the currently accepted mechanism underlying the dose-
modifying effect of oxygen in radiotherapy. In the presence of oxygen, the radical -OO* is created by 
secondary electrons, and it binds to the DNA, fixing the radiation damage, making repair less likely. 
Reprinted from [36] under the terms of the Creative Commons Attribution 3.0 licence. 

 

Figure 2.6: Example of SF curves for well-oxygenated and hypoxic conditions for a given clonogenic assay, 
as calculated with equation (2.10), for 𝛼 and 𝛽 referring to the same well-oxygenated condition and for 
OER(𝑝𝑂2) = 1.5. A given SF is achieved at lower doses for the well-oxygenated condition than for the 
hypoxic one. 
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Dependence of the fractionation effect on the tumour oxygenation  

Based on equation (2.10), the OER may also be thought to modify the effective tumour 

radiosensitivity rather than the dose. If the tumour is completely hypoxic (OER = 1, see equation 

(2.9) and Figure 2.4), the effective radiosensitivity parameters are: 𝛼𝑒𝑓𝑓 =  𝛼 𝑚⁄  and 𝛽𝑒𝑓𝑓 =

 𝛽 𝑚2⁄ , where 𝛼 and 𝛽 refer to completely oxygenated conditions. For any other tumour 

oxygenation, the effective radiosensitivity parameters are given by 𝛼𝑒𝑓𝑓 =  𝛼 ∙ OER(𝑝𝑂2) 𝑚⁄  and 

𝛽𝑒𝑓𝑓 =  𝛽 ∙ OER2(𝑝𝑂2) 𝑚2⁄ , and it follows that the effective 𝛼 𝛽⁄  is given by the expression: 

 
( 

𝛼

𝛽
 )

𝑒𝑓𝑓

=  
𝛼𝑒𝑓𝑓

𝛽𝑒𝑓𝑓
=  

𝛼

𝛽
∙

𝑚

OER(𝑝𝑂2)
 (2.11) 

The parameter 𝛼 𝛽⁄
𝑒𝑓𝑓 describes the effective fractionation effect observed for tumours of a given 

oxygenation condition, and due to the asymptotic behaviour of OER(𝑝𝑂2), it follows that 

𝛼 𝛽⁄
𝑒𝑓𝑓 > 𝛼 𝛽⁄

 for all 𝑝𝑂2 values. Taking into account that 𝑚 is constant, the 𝛼 𝛽⁄
𝑒𝑓𝑓 depends only 

on 𝛼 𝛽⁄
 and OER(𝑝𝑂2). Therefore, a higher fractionation effect, as illustrated in Figure 2.2, may 

be achieved by decreasing 𝛼 𝛽⁄
 or increasing OER(𝑝𝑂2). 

Dose-response curves 

Radiobiology focuses on studying the biological response caused by radiation, and the factors 

influencing this response. Specifically, it is relevant to know the relationship between dose and 

local tumour control probability (TCP), where a tumour is considered as being locally controlled 

if all clonogenic tumour cells are sterilised by the radiation. The TCP approaches zero at low doses 

and tends to 100% at very high doses. The intermediate region of this dose-response curve is of 

particular interest, and its sigmoid shape, as shown in Figure 2.7, may be described by different 

statistical models. Considering that the killing of clonogenic tumour cells with radiation is a 

stochastic event, the TCP can be described using a Poisson distribution, which depends on the 

average SF and the initial number of cells. If the SF is defined by the LQM, the TCP is given by: 

 TCP(𝐷) = exp(−𝑁0 ∙ SF(𝐷)) = exp[−𝑁0exp (−𝛼𝐷 −  𝛽𝐷2)] (2.12) 

Empirically, TCP curves may be estimated if incidence rates, defined as the ratio of the number of 

locally controlled and irradiated tumours, are available at different dose levels. In this case, the 

logistic dose-response model may be fitted [19], [37]: 

 
TCP(𝐷)  =  

exp (𝑏0 +  𝑏1𝐷)

1 + exp (𝑏0 +  𝑏1𝐷)
 (2.13) 
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In equation (2.13), the logarithm of the probability has been expanded to the first term, resulting 

in two fitting parameters for the TCP, 𝑏0 and 𝑏1, estimated via maximum likelihood regression. 

These fitting parameters can be used to calculate 𝐷50, the dose leading to a TCP of 50%:  

which is used to specify the position of the TCP curve [11], [19]. Additionally, the TCP slope may 

also be calculated as the derivative of TCP(D) at 𝐷50, depending only on 𝑏1, as shown in equation 

(2.15): 

 TCP′(𝐷 = 𝐷50) =  
𝑏1

4
 (2.15) 

 

Figure 2.7: Example of a TCP curve with 𝐷50 indicated. The TCP curve is fitted to the experimentally 
obtained tumour control rates (incidence rates), calculated as the ratio of the number of locally controlled 
and irradiated tumours at different dose levels. For small doses, no tumour is controlled, whereas for large 
doses all tumours are controlled.  

The 5 R’s of Radiotherapy 

There is a variety of factors influencing the tumour response and thus the tumour control after 

radiotherapy. After decades of radiobiology research, the following influence factors have been 

identified and are often referred to as the “5 R’s of Radiotherapy” [19]: 

 Radiosensitivity: Each cell population and tumour type has an intrinsic radiosensitivity. 

 Recovery of sublethal damage: There are various repair mechanisms available in the cell 

to deal with sublethal radiation damages. 

No tumour 
controlled

All tumours 
controlled

 
𝐷50 =  −

𝑏0

𝑏1
   (2.14) 
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 Cell-cycle redistribution: Cell radiosensitivity varies over the cell cycle. After delivering 

some radiation fractions, the surviving cells are synchronised in the most resistant phases 

of the cell cycle.  

 Repopulation: Remaining cancer stem cells can repopulate the tumour after radiotherapy, 

in some cases at an increased pace.  

 Reoxygenation: Hypoxia in the tumour may diminish during the treatment, due to the 

increased oxygen availability after killing well-oxygenated cells. 

Nowadays, an increasing number of malignant tumour types are treated with hypofractionation, 

which includes a low number of high-dose fractions. At high doses (> 8Gy), there are some 

indications of additional factors influencing the tumour response to radiotherapy, such as damage 

to the blood capillaries, enhanced immune stimulation, and decreased impact of hypoxia on the 

tumour response. Even in this scenario, there is evidence suggesting that the cell SF is still 

accurately modelled by the LQM [38]. 

Modelling of tumour response to radiotherapy 

Radiotherapy aims to treat tumours with sufficiently high radiation doses while sparing the 

surrounding healthy tissue. The tumour response to radiation depends on many factors, making 

it challenging to objectively choose the best treatment course for each patient. Computational 

models provide a tool to improve the understanding of the biological processes involved in 

radiation response, as well as to assess different treatment scenarios during treatment planning. 

There are plenty of approaches to the modelling of tumour response, varying in the spatial scale, 

the considered biological processes and the way the response is quantified [39]. This thesis is 

based on the tumour response model developed by Espinoza et al. [9], [10]. This model is 

appealing for its implementation of the LQM along with the consideration of the most relevant 

biological processes in the tumour response to radiation. Additionally, it allows accounting for 

microscopic variations of oxygen while providing the macroscopic evolution of the tumour in the 

course of radiotherapy. In the following section, the tumour response model as developed by 

Espinoza et al. is summarised.  

2.2 Tumour response model (TRM) 

The tumour response model (TRM) is a mathematical model to simulate the response of a 

discretised tumour volume to radiation, depending on the oxygenation of the tumour cells in the 

volume, as well as on other relevant biological processes. As a result, the spatiotemporal 

development of a single tumour is obtained. The TRM together with the tumour oxygenation 
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model, as implemented by Espinoza et al. [9], [10], along with its components is explained in this 

section. 

2.2.1 Model structure 

The TRM considers a voxel-based volume, where each voxel may contain four different types of 

cells: Viable tumour cells (TC), dead tumour cells (DC), capillary cells (CC), and normal cells (NC). 

The absolute number of cells 𝑁𝐶  is given by the sum of all cell types: 

 𝑁𝐶 = 𝑁𝑇𝐶 + 𝑁𝐷𝐶 + 𝑁𝐶𝐶 + 𝑁𝑁𝐶  (2.16) 

At the beginning of the simulation, the volume is spatially and biologically characterised, and 

information about the radiation treatment, such as total dose and dose per fraction, is provided. 

Additionally, information about the tumour oxygenation for each voxel is given in terms of oxygen 

histograms, which specify the fraction of TCs at given oxygen levels.  

There are six main biological processes considered in the TRM: Proliferation of TCs, proliferation 

of CCs (angiogenesis), tumour growth, radiation-induced cell kill, DC resorption, and tumour 

shrinkage. The information about tumour oxygenation impacts two of the six functions: 

Angiogenesis, where CCs proliferate only under hypoxic conditions, and the radiation response, 

where the SF is calculated with the OER-modified LQM formulation, given by equation (2.10). 

Once the TRM simulation starts, these six functions are repeatedly executed in a loop, until the 

tumour is either controlled or all dose fractions are delivered. This TRM loop is illustrated in 

Figure 2.8, including the influence of tumour oxygenation.  

 

Figure 2.8: TRM loop consisting of six main functions that are repeatedly executed. Only angiogenesis and 
radiation-induced cell-kill depend on tumour oxygenation.  
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At the beginning of the simulation, the tumour volume is characterised. During the simulation, 

information about the tumour oxygenation and the treatment is used. The resulting 

spatiotemporal tumour development provides information about the number of all cell types in 

the volume over the entire simulation time, from which the SF and the status of the tumour 

control (Y/N) are obtained. A tumour is considered as being controlled only if no tumour cell 

survived. The TRM simulation of one single tumour is illustrated in Figure 2.9.  

  

Figure 2.9: Flowchart of the TRM simulation for a single tumour. The tumour is controlled (Y) if all TCs 
were killed by the end of the simulation. If several tumours are simulated at different dose levels, TCP 
curves can additionally be calculated, as described in section 2.1.2.  

2.2.2 Initial characterization of the tissue 

The TRM considers four different types of data for the initial characterisation: 

 Anatomical characterisation: Specification of the shape and tissue type, which may be 

tumour, normal soft tissue, bone, or air. A fixed total cell density is assigned to the entire 

volume, while the TC and CC densities can be specified for every single voxel. In this study, 

this information is generated manually. However, the TRM also supports processed input 

data from medical imaging such as computed tomography (CT), positron emission 

tomography (PET) or magnetic resonance imaging (MRI). 

 Hypoxic status: Information about the tumour oxygenation is provided for each tumour 

voxel in terms of oxygen histograms. Currently, these histograms are generated before 

the TRM simulation using the tumour oxygenation model [40], explained in further detail 

in section 2.2.3. According to the vascular fraction (VF, fraction of the voxel volume 

occupied by CCs) and the dead fraction (DF, fraction of the voxel volume occupied by DCs, 

which do not consume oxygen), an oxygen histogram is selected. Cell kill and angiogenesis 

depend on the tumour oxygenation given by the oxygen histogram.  

 Tumour development: Specification of the parameters related to all the biological 

processes considered in the TRM, as shown in Figure 2.8 and explained in section 2.2.4. 
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 Treatment parameters: Information about the radiation dose delivery, such as dose per 

fraction, number of fractions, the time between fractions and eventually additional breaks 

(for example, during the weekend). Additionally, the spatial dose distribution is specified. 

Preparation of the input data 

The initial characterisation of the tissue within the TRM in the version of Espinoza et al. [9], [10], 

later modified by Mang [41], is performed according to the following specifications [42]: 

 Anatomical characterisation: Provided in the file format NRRD, with all files having the 

same voxel size and domain dimensions. 𝑁𝐶  is calculated as the ratio of the cell density, 

𝜌𝐶 , and the voxel volume, 𝑣: 𝑁𝐶 = 𝜌𝐶 ∙  𝑣.  

o 𝑁𝑇𝐶  is coded on a logarithmic scale, where the image value 𝐼𝑇𝐶  is given by: 

 𝐼𝑇𝐶 =  100 ∙ log  10 (𝑁𝑇𝐶) (2.17) 

If 𝑁𝑇𝐶 = 0, the NRRD image value is coded as 𝐼𝑇𝐶 = −1. 

o The VF is coded with the image value 𝐼𝐶𝐶 as follows: 

 𝐼𝐶𝐶 = 103 +  104 ∙ VF (2.18) 

For example, a VF of 0.035 has an image value of 1350. Then, 𝑁𝐶𝐶 =  𝑁𝐶 ∙ VF. 

o DCs are assumed to be zero at the beginning of the simulation. 

o 𝑁𝑁𝐶  is calculated as 𝑁𝑁𝐶 = 𝑁𝐶 − 𝑁𝑇𝐶 − 𝑁𝐶𝐶 . 

o Air and bony structures are given as two separate binary images, where the image 

value 1 corresponds to air or bone, respectively. Soft tissue (non-bone and non-

air structures) has an image value of zero. A voxel cannot be air and bone at the 

same time.  

 Hypoxic status: Oxygen histograms are provided as text files, one file per DF, with VF 

ranging from 0.001 to 0.20. 

 Tumour development: The parameters associated with the different biological processes 

considered in the TRM (section 2.2.4) are provided in a text file. 

 Treatment parameters: Information about the number of fractions and time between 

fractions is provided in the text file previously mentioned. The dose distribution is 

provided in a NRRD file, where the image value is the dose per fraction in units of Gy.  

2.2.3 Tumour oxygenation model (TOM) 

Oxygen is assumed to diffuse from capillaries into the tissue, where it is consumed by the cells. 

This process can be modelled by a diffusion-reaction partial differential equation [43]–[46]: 
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𝜕𝑝𝑂2

𝜕𝑡
= 𝐷𝑂2

∇2𝑝𝑂2 −  𝑔𝑚𝑎𝑥

𝑝𝑂2

𝑝𝑂2 + 𝑘
 (2.19) 

where 𝑝𝑂2 is the spatiotemporal distribution of oxygen, 𝐷𝑂2
 is the oxygen diffusion coefficient, 

𝑔𝑚𝑎𝑥 is the maximum consumption rate and 𝑘 is the Michaelis-Menten coefficient of oxygen 

consumption. For short time scales, equation (2.19) can be considered as stationary, i.e. 

𝜕𝑝𝑂2 𝜕𝑡 ≅ 0⁄ . Equation (2.19) can be solved through different numerical methods [46]–[49].  

The tumour oxygenation model (TOM) was developed by Espinoza et al. [9], [46] to calculate the 

spatiotemporal distribution of oxygen. The TOM originally solved equation (2.19) in a 1 mm3 

cubic tumour volume with a given vascular architecture using the particle strength exchange 

method. Later, the TOM was adapted and modified by A. Neuholz [47], and currently, the 

calculation is performed using the finite difference method.  

Using a vascular architecture of randomly distributed parallel linear vessels in 3D, each of 20 μm 

diameter, the 3D oxygen distribution is calculated with TOM for different VF and DF. These 

distributions are condensed in a database of oxygen histograms. The main factors influencing the 

shape of the oxygen histogram are the VF and DF: The VF is determined by the volume occupied 

by vessels, where increased VF leads to a higher number of vessels and subsequently to a better-

oxygenated histogram. As DCs are assumed not to consume oxygen, the available oxygen 

increases with decreasing DF. This is achieved by decreasing the consumption rate 𝑔𝑚𝑎𝑥 in the 

same proportion as the DF increases, in steps of 10% at a time. Hence, the database provides 

histograms with different combinations of VF and DF to cover all possible scenarios. For this 

thesis, the impact of the DF on the oxygen histogram selection is referred to as “DF influence”. 

Examples of the vascular architecture and the oxygen histograms are shown in Figure 2.10. 

 

Figure 2.10: Example of parallel linear vessels of 20 μm diameter in a 1 mm3 cube, considered for the 
simulations with the TOM (left) and oxygen histograms for VF 3.6% and 5.0% (right). The HF corresponds 
to the sum of the two leftmost oxygen bins (𝑝𝑂2 < 5 mmHg). Images courtesy of A. Neuholz [47]. 
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At the beginning of the TRM simulation, an oxygen histogram is selected from the database for 

each voxel, according to its VF and DF. The different biological processes considered in the TRM, 

such as the oxygen-dependent cell kill, angiogenesis and cell redistribution between voxels, 

modify the VF and DF after each iteration and thus also the shape of the histograms for each voxel. 

At the beginning of the next iteration, a new oxygen histogram is selected from the database, 

based on the updated VF and DF. The parameter values used by A. Neuholz to obtain the oxygen 

histogram database are summarised in Table 2.1. 

Table 2.1: Parameters used for simulations with the TOM to obtain the oxygen histogram database used for 
the TRM simulations. 

Parameter Symbol Value 

Diffusion coefficient of molecular oxygen at 37 °C 𝐷𝑂2
 2 ∙ 10−9  m2 s⁄  [50], [51] 

Maximum oxygen consumption rate in the tissue 𝑔𝑚𝑎𝑥 15 mmHg/s [43], [50], [52] 

𝑝𝑂2 at the half-maximum consumption rate 𝑘 2.5 mmHg [43], [50], [52] 

2.2.4 Biological processes in the TRM 

The TRM in the version of Espinoza [9], [10] considers six biological processes in the simulation 

of the tumour response to radiotherapy, as shown in Figure 2.8: 

1. Tumour cell proliferation 

Experimentally, the tumour volume increases exponentially with time. However, above a certain 

volume, the growth rate decreases as nutrients and oxygen become scarce and the growth curve 

begins to saturate. This growth behaviour is described by the Gompertz equation: 

 𝑉 =  𝑉0exp [
𝐴

𝐵
(1 − 𝑒−𝐵𝑡)] (2.20) 

where V is the volume, 𝑉0 is an arbitrary initial volume, 𝑡 is the time, and 𝐴 and 𝐵 determine the 

growth rate. Experimental data may be used to fit equation (2.20) and to obtain the volume 

doubling time (VDT, time required for the tumour to double its volume): VDT =  ln(2) /𝐴. For 

short times as used in the TRM, the TC proliferation is modelled by a purely exponential function 

of time, leading to the proliferation factor PF [19]: 

 
PF =  exp (

ln (2)

VDT
∙ 𝑡) (2.21) 
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2. Angiogenesis 

The proliferation of CCs is modelled similarly to TC. However, as angiogenesis takes place only 

under hypoxic conditions, the oxygen histogram is additionally taken into account. In the TRM, 

angiogenesis is only considered in proportion to the hypoxic fraction (HF, the fraction of the 

volume with less than 5mmHg of oxygen pressure, as given by the voxel’s oxygen histogram). 

Otherwise, the proliferation factor for capillary cells PFangio [9], [10] is defined analogue to 

equation (2.21): 

 
PFangio = exp (

ln (2)

VDTangio
∙ 𝑡) (2.22) 

3. Tumour growth 

The proliferation of TCs and CCs leads to an overall increase in the total cell density. Once a 

density threshold of 10% above the initial cell density is exceeded, tumour growth occurs. In this 

case, cells are exchanged with neighbouring voxels with lower cell density, proportionally to the 

absolute difference in cell number and inversely proportional to the distance between voxels. All 

cell types are distributed in this manner until all voxels fall again below the given density 

threshold. The tumour is allowed to invade air and normal tissue but not bone [9], [10].  

4. Radiation-induced cell kill 

Initially, the frequency of oxygen levels of the TCs is assumed to be distributed according to the 

corresponding oxygen histogram (see Figure 2.10). The number of surviving TCs per bin of the 

oxygen histogram is then calculated, according to the LQM-OER equation (2.10).  

To reflect the variation of tumour radiosensitivity among tumours of different patients [53], [54], 

an additional parameter 𝜎𝛼, introduces inter-tumour variability to the TRM, which allows the 

sampling of the LQM parameters. Initially, 𝛼0, 𝛽0, and 𝜎𝛼 are specified, and before the simulation 

of an individual tumour starts, 𝛼 is sampled based on a probability distribution defined by 𝛼0 and 

𝜎𝛼. Originally, a normal distribution was used, with mean 𝛼0 and standard deviation 𝜎𝛼. For this 

thesis, the normal distribution has been replaced by a lognormal distribution, to ensure 𝛼 > 0 for 

all values of 𝜎𝛼 and 𝛼0, since the radiosensitivity given by the LQM parameters is always positive. 

For 𝜎𝛼 ≪  𝛼0, the lognormal distribution in equation (2.23) approximates to a normal 

distribution. 

 



22 
 

 

Lognormal(𝜇, 𝜎2) =  
1

𝑥𝜎√2𝜋
∙ exp [−

(ln 𝑥 − 𝜇)2

2𝜎2
] 

𝜇 = ln (
𝛼0

√1 + 𝜎𝛼
2 𝛼0

2⁄
)   ;    𝜎 =  √ln (

𝜎𝛼
2

𝛼0
2 + 1) 

(2.23) 

Once 𝛼 is determined, 𝛽 is calculated assuming a fixed 𝛼0 𝛽0⁄  ratio. 

The calculation of the number of surviving TCs is performed in two different ways, depending on 

𝑁𝑇𝐶  per bin: If more than 100 TCs remain in a bin, the surviving 𝑁𝑇𝐶  is calculated by multiplying 

𝑁𝑇𝐶  by the average SF given by equation (2.10):  𝑁𝑇𝐶
surviving

 
 = SF ∙ 𝑁𝑇𝐶. However, if less than 100 

TCs remain, the fate of each TC is stochastically determined, using the respective SF as the average 

survival probability and a random number generator (RN), as shown in Figure 2.11: 

 

Figure 2.11: Process to calculate 𝑁𝑇𝐶
surviving

 
for each bin of the oxygen histogram.  

The threshold of 100 cells defines a compromise between computation time and biological 

accuracy of the model: Ideally, cell survival would be calculated stochastically for all cells. 

However, this stochastic approach comes with the cost of a longer calculation time and therefore 

is used only when 𝑁𝑇𝐶  falls below the defined threshold and when stochastic fluctuations become 

important. Due to this stochastic component, it is expected that two independent simulations for 

the same tumour lead to slightly different results.  

The total number of surviving TC, 𝑁𝑇𝐶
surviving

 
, in a voxel is given by the sum of 𝑁𝑇𝐶

surviving

 
 over all 

bins in the oxygen histogram calculated by the above procedure. Those TCs killed by radiation 

are no longer considered as TCs but as DCs. CCs and NCs are considered completely radioresistant 

and are therefore not killed by radiation.   

5. Dead cell resorption 

DCs are assumed to be resorbed with time. DC resorption is modelled as an exponential 

probability function of time, with a given resorption half-time RT, after which half of the 

remaining dead cells are resorbed. The resorption factor RF is calculated as: 

Calculate > 100?

= SF * 

Generate random 
number (RN) ϵ [0,1]

yes

no
RN < SF?

TC survives

TC dies

yes

no
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RF = exp (−

ln(2)

RT
∙ 𝑡) (2.24) 

If more than 100 DC remain to be resorbed in the voxel, the remaining number of DC 𝑁𝐷𝐶
remain is 

calculated as 𝑁𝐷𝐶  ∙ RF. However, if less than 100 DC remain, cell resorption is calculated 

stochastically employing a random number generator, using the RF as the average resorption 

probability, similarly as for cell kill. 

6. Tumour shrinkage 

The resorption of DCs leads to a decrease in the voxel cell density. Once the decrease is larger 

than 10% of the initial cell density, tumour shrinkage is triggered. Cells are exchanged between 

voxels, in proportion to the absolute cell density difference and inversely proportional to the 

distance to neighbouring voxels, for all cell types.  

Further details about all biological processes are given in Espinoza’s previous work [9], [10]. 

2.2.5 Integration with the Medical Imaging Interaction Toolkit (MITK) 

The original TRM as developed by Espinoza at the German Cancer Research Center (DKFZ) has 

been further modified for the simulation to be executed from the Medical Imaging Interaction 

Toolkit (MITK). With this modification, the TRM can be executed from the MITK graphical user 

interface to simulate the radiation response of one single tumour. MITK also provides a platform 

to visualise the spatiotemporal development of the tumour, along with the additional image input 

and output files. The TRM implementation in MITK was possible thanks to the support of the 

Medical Image Computing department at the DKFZ. 

2.3 Improvement of the TRM 

The TRM as described in section 2.2 was developed in its basic version by Espinoza [9], [10]. In 

this thesis, the model was further developed and tested. These further developments are 

described in this section and the results are shown in section 3.  

Stochastic components of proliferation and angiogenesis 

A stochastic component for small cell numbers was added to the proliferation and angiogenesis 

functions, similarly as for the radiation-induced cell kill function (section 2.2.4): If less than 100 

cells remain, the fate of each cell is stochastically determined, i.e. a cell either generates a new cell 

or not. This decision is simulated based on a random number generator and the average 
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proliferation probability (PF − 1), where PF is given by equations (2.21) and (2.22), for 

proliferation and angiogenesis respectively.  

Variable type for cell counting 

Initially, Espinoza implemented integers to count cells, motivated by the fact that cells are single 

discrete entities. As a result, computational cell loss due to rounding occurred when calculating 

𝑁𝑇𝐶
surviving

 
 by multiplication with the SF. This issue was solved with the implementation of double-

precision variables.  

Stochastic distribution of cells in the oxygen histogram 

Radiation-induced cell kill depends on the oxygen distribution, as shown in section 2.2.4. Before 

calculating the SF, 𝑁𝑇𝐶  per bin must be determined. This calculation was previously performed 

by multiplying the relative frequency 𝑓𝑖 of the bin by 𝑁𝑇𝐶 : 𝑁𝑇𝐶𝑖
= 𝑓𝑖 ∙ 𝑁𝑇𝐶 , leading to 

computational cell loss due to fractions of TCs not being distributed to the different oxygenation 

levels. To correct this, the distribution of all TCs over the oxygen histogram is now performed 

stochastically: Using the respective cumulative oxygen histogram and a random number 

generator, the bin to which a TC is assigned is determined. This implementation corrects the 

computational TC loss which has been visible in the SF curves. This implementation was 

performed in collaboration with A. Gago-Arias (Instituto de Investigación Sanitaria, Santiago de 

Compostela, Spain).  

Code regression test 

From a technical point of view, the TRM code is quite complex. To check if the TRM calculations 

are not unintentionally changed by code modifications, a regression test was implemented. 

Synthetic input images were generated to cover a wide range of combinations of VF, dose, and TC 

density. The regression test evaluates two scenarios, one considering bone and air structures and 

the other one only soft tissue. During the test, all functions in the TRM are executed and other 

basic code structures are tested. The test is passed if all functions are correctly executed, and if 

the resulting cell distribution does not differ from the stored reference distribution by more than 

10−10. The regression test was implemented with the support of the Medical Image Computing 

department at the DKFZ. 

2.4 Adjustment of the TRM to experimental in-vivo data 

The validation of the TRM as an adequate model to predict the response of hypoxic tumours to 

radiotherapy can be achieved by fitting the simulation model to experimental in-vivo data. In this 
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thesis, the input parameters of the TRM are adjusted to reproduce the TCP curves obtained for 

three different tumour sublines of a rat prostate carcinoma irradiated with different fractionation 

schemes [11]–[14], [55], [56]. In this section, the experimental data is presented, followed by the 

strategy to adjust the TRM parameters to describe the experimental dose-response curves.  

2.4.1 Experimental in-vivo data 

Three different syngeneic rat prostate adenocarcinomas sublines, Dunning R3327-AT1, -HI, and 

-H were studied. These syngeneic tumours are a good model system for human prostate tumours 

and have been extensively characterised. The different sublines vary in degree of differentiation, 

overall cell density, proliferation rate, hypoxic status, and hormonal response. The main endpoint 

studied was local tumour control, represented by TCP curves for each tumour subline [11]–[14], 

[57], [58].  

Fresh tumour segments were implanted in the distal thigh of male Copenhagen rats. At the time 

of treatment, the mean tumour diameter was 10 mm. The animals were irradiated under 

anaesthesia with a single 6MV photon beam, shaped with a cylindrical tungsten collimator to 

provide a 90% isodose of 15 mm at the isocenter, with the tumour located at 99 cm from the beam 

source. A homogeneous depth-dose profile in the tumour was achieved by placing two 

polymethylmethacrylate boli in front and behind the tumour. The lateral dose distribution in the 

x- and the y-axis is shown in Figure 2.12, where the position of the tumour within the 95% 

isodoses can be seen. For fractionated treatments, the dose was delivered in consecutive days. 

Tumour control was the primary endpoint measured in these studies and was defined as no 

detectable tumour regrowth assessed up to 300 days after the last fraction was delivered.  

 

Figure 2.12: Experimental dose profiles in the x- and y-axis obtained for 50 monitor units. The tumour is 
located within the 95% isodoses. For this thesis, the average profile was used for the simulations. 
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Biological characterisation 

Tumour growth, total and tumour cell density for the three tumour sublines were determined by 

immunohistochemistry and flow cytometric characterisation [11], [55], [56].  

 The tumour volume of untreated animals was calculated assuming the tumours were 

spherical, with the diameter determined by the average orthogonal diameter measured 

with a calliper. The growth data for the AT1 tumour subline can be found in the literature 

[11], [12], whereas the original growth data for the HI and H tumour sublines were kindly 

provided by C. Glowa. The complete growth data for the three tumour sublines is shown 

in Figure 2.13.  

 Cell nuclei were stained with 4’,6-diamidino-2- phenylindole (DAPI). The total number of 

cells per mm2 was determined as the ratio of DAPI+ cells and the area of the analysed 

histological sample. The average DAPI+ nucleus diameter was determined as 8.3 ± 1.3 μm. 

Taking into account that the slice thickness (ST) of the tumour samples studied was 7 μm, 

it is assumed that most DAPI+ nuclei are detected at most in two of the consecutive slices 

analysed. Under this assumption, the volumetric cell density is given by equation (2.25). 

Original data collection and analysis was performed by A. Bendinger and C. Glowa [56]. 

Additional image protocols not included in the literature can be found in the Appendix 

(page 66). 

 𝜌𝐶 =  
𝑁𝐶

mm3
=  

𝑁𝐶

mm2
∙  

1

ST
 (2.25) 

 The TC density was determined by counting the cytokeratin 19 positive cells (CK19+) [55]. 

The volumetric TC density 𝜌𝑇𝐶  is then calculated as the product of the CK19+ percentage 

by the volumetric cell density given by DAPI  𝜌𝐶: 𝜌𝑇𝐶 =  %CK19+ ∙  𝜌𝐶. 

 To illustrate the biological differences between the three tumour sublines, tumour 

samples were analysed. Samples were stained with haematoxylin and eosin (H&E) to 

visualise tumour morphology. Capillaries were stained with the cluster of differentiation 

(CD31), perfusion with Hoechst 33342, and hypoxia with pimonidazole. Images were 

obtained by A. Bendinger and are shown in Figure 2.14 along with samples of DAPI 

staining for the different tumour sublines [56].  
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Figure 2.13: Relative tumour volume growth as a function of time for the tumour sublines AT1 (left), HI 
(centre), and H (right). The error bars correspond to one standard error (SE).  

 

Figure 2.14: Tumour samples obtained for different staining procedures, showing morphology (H&E, 
top row), cell nuclei (DAPI, middle row), capillaries (CD31, bottom row, red), hypoxia (Pimo, bottom 
row, green) and perfusion (Hoechst, bottom row, blue), for the tumour sublines AT1 (left column), HI 
(centre column), and H (right column). According to A. Berdinger’s observations, the anaplastic AT1 



28 
 

tumour exhibited no differentiated cells, short and thin capillaries, with the presence of both well-
perfused and hypoxic areas. The moderately-differentiated HI tumour showed some glandular 
structures and immature vessels, not all of them perfused with hypoxic areas at large distances from 
vessels. The H tumour is well-differentiated, with glandular structures similar to those of healthy 
prostate glands. This tumour subline also showed good perfusion and only small confined hypoxic 
regions. [56].  

TCP curves 

Incidences for tumour control at different dose levels were determined for the three tumour 

sublines for 1, 2, and 6 fractions. TCP curves were fitted to this data with the logistic dose-

response model given by equation (2.13) using a maximum likelihood estimation. As a result, each 

curve is described by the two fitting parameters 𝑏0 and 𝑏1, with 𝐷50 given by equation (2.14). 

Additionally, the LQM parameter 𝛼 𝛽⁄  was estimated by adjusting all TCP curves with a 

generalised logistic dose-response model [14]. In this case, the parameter 𝛼 𝛽⁄
  has to be 

considered as “effective” (𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝

), since it is expected for in-vivo measurements that all tumour-

related processes, such as repopulation and reoxygenation (section 2.1.2), impact its 

determination. Therefore, 𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝 effectively describes how the tumour control for each tumour 

subline is affected by fractionation without being solely related to repair as assumed in the LQM. 

All parameters of the adjusted TCP curves are summarised in Table 2.2, and the TCP curves for 

the different fractionation schemes are shown in Figure 2.15.  

Table 2.2: Fitting parameters 𝑏0 and 𝑏1 for experimental TCP curves of 1, 2, and 6 fractions, with the 

corresponding 𝐷50, and 𝛼 𝛽⁄
𝑒𝑓𝑓

𝑒𝑥𝑝
 for the three tumour sublines.  The values of 𝐷50 and 𝛼 𝛽⁄

𝑒𝑓𝑓

𝑒𝑥𝑝
 are reported 

in the literature [11]–[14], whereas the original fitted values of 𝑏0 and 𝑏1 were kindly provided by C. Karger. 

The 𝛼 𝛽⁄
𝑒𝑓𝑓

𝑒𝑥𝑝
 for the H subline could not be calculated due to the non-convergence of the logistic regression. 

The reported value was therefore obtained with the Douglas-Fowler method, based only on the 𝐷50 values, 
and no uncertainty calculation was possible [14].  

Tumour 

subline 
Fractions 𝒃𝟎 𝒃𝟏 

𝑫𝟓𝟎 ± SE  

[Gy] 

TCP′(𝑫𝟓𝟎) 

[Gy−𝟏] 

𝜶 𝜷⁄
𝒆𝒇𝒇
𝒆𝒙𝒑

 ± SE 

[Gy] 

AT1 

1 -25.4844 0.33645 75.7 ± 1.6 0.08411 

84.7 ± 13.8 2 -18.6783 0.20614 90.6 ± 2.3 0.05154 

6 -22.7177 0.19485 116.6 ± 3.0 0.04871 

HI 

1 -6.8705 0.11016 62.4 ± 3.2 0.02754 

87.7 ± 32.9 2 -6.0478 0.08257 73.2 ± 4.0 0.02064 

6 -5.3321 0.05841 91.3 ± 6.3 0.01460 
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H 

1 -8.4854 0.22218 38.2 ± 1.8 0.05554 

0.40 2 -21.444 0.39941 53.7 ± 1.5 0.09985 

6 -4.6593 0.05115 93.0 ± 6.3 0.01279 

 

Figure 2.15: TCP curves obtained from the adjustment to the experimental data for the tumour sublines 
AT1 (left), HI (centre), and H (right), for 1, 2, and 6 fractions. The SE for 𝐷50 is marked by the horizontal 
error bars [11]–[14].  

2.4.2 Adjustment to experimental in-vivo data 

In this section, the procedure to adjust the input parameters of the TRM to fit the experimental 

in-vivo TCP curves (see section 2.4.1) is explained. Due to the complexity of the TRM, the 

parameters were fitted considering first the 1-fraction TCP curve and in a second step the 2- and 

6-fractions curves. The strategy to simulate the incidence rates, to fit a single TCP curve and to 

adjust the TRM parameters to describe all the experimental dose-response curves for different 

fractionation schemes are described in this section. This procedure was repeated for each tumour 

subline. 

Simulating incidence rates and adjusting TCP curves 

The TCP curve is the result of fitting the logistic dose-response model to tumour control incidence 

rates (see section 2.1.2). These incidence rates are obtained by simulating the response of many 

tumours at different dose levels. After the treatment delivery, each tumour is either controlled or 

not controlled, and, as a result, an incidence rate is calculated for each dose level, as shown in 

Figure 2.7.  

The TRM code cannot be parallelised, due to the complexity and interdependency of the biological 

processes considered. However, many TRM simulations of different tumours can be executed in 
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parallel: In this thesis, the Python* subprocess management module was used to spawn multiple 

TRM simulations of 𝑚 tumours irradiated at different dose levels 𝐷 to obtain a single TCP curve. 

The same procedure can be followed for different fractionation schemes, where 𝐷 = 𝑛𝑑 (section 

2.1.2). Once the incidence rate is obtained, the TCP curve is fitted in R† using the logistic dose-

response model shown in equation (2.13), using a maximum likelihood estimation.  

Optimizing the TRM parameters to fit experimental  1-fraction TCP curves 

To establish the best strategy to fit the TRM parameters to the experimental data, it is important 

to consider the four main factors influencing the simulated TCP curves: 

 𝛼: This parameter determines the radiosensitivity of the tumour, and therefore the cell 

survival as calculated with equation (2.10).  

 𝜎𝛼
 : Variation of the radiosensitivity 𝛼 between tumours. A larger variability leads to 

shallower TCP curves. The probability distribution used to sample 𝛼 is given by equation 

(2.23).  

 𝛼 𝛽⁄ : The behaviour of the TCP curves for different fractionation schemes is defined by 

𝛼 𝛽⁄ , as exemplified in Figure 2.2.  

 Stochastic components of the TRM: As mentioned in section 2.2, the TRM is composed of 

different stochastic processes, associated with deciding the cell’s fate for growth and 

survival, as well as with sampling the radiosensitivity of the simulated tumour.  Therefore, 

it is expected that two independently simulated TCP curves for the same tumour type 

using the same input parameters result in slightly different TCP curves. This variation 

must be considered when searching the optimal TRM parameters.  

Considering these factors, the following hierarchical strategy to fit the TRM parameters to a single 

experimental TCP curve is used: 

a. Use fixed values of VF and 𝛼 𝛽⁄ . 

b. Use starting values of 𝛼 and 𝜎𝛼
  to simulate 𝑘 independent TCP curves and to calculate the 

doses at TCP of 20%, 50%, and 80% for each curve (i.e., 𝐷20, 𝐷50, and 𝐷80). 

c. These dose levels are used for the adjustment to the experimental 1-fraction TCP curve 

using the objective function value OF(𝛼, 𝜎𝛼) as the squared difference of the experimental 

and simulated reference doses, 𝐷𝑒𝑥𝑝 and 𝐷𝑠𝑖𝑚 respectively: 

 OF(𝛼, 𝜎𝛼)𝑘 = (𝐷20
𝑠𝑖𝑚 − 𝐷20

𝑒𝑥𝑝
)2 +  (𝐷50

𝑠𝑖𝑚 − 𝐷50
𝑒𝑥𝑝

)2 +  (𝐷80
𝑠𝑖𝑚 − 𝐷80

𝑒𝑥𝑝
)2 (2.26) 

                                                             
* Python programming language, versions 4.7.12 and 4.8.2 
† R software environment for statistical computing, versions 3.6.2 and 4.1.1. 
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While the 𝐷50-term adjusts the position of the curve, the 𝐷20 and 𝐷80- terms are sensitive 

to the slope. 

d. Minimize the average objective function given by: 

 
OF(𝛼, 𝜎𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑘
 ∑ OF(𝛼, 𝜎𝛼)𝑘

𝑘

𝑖=1

 (2.27) 

where 𝑘 is the number of simulated TCP curves. The averaging over 𝑘 TCP curves is 

performed to minimise the impact of the stochastic components of the TRM on the 

objective function. The minimisation of OF(𝛼, 𝜎𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is performed with the 

optimize.minimize function of the Python-based ecosystem SciPy [59], via the Nelder-

Mead gradient-less search method [60], [61].  

This fitting strategy allows finding 𝛼 and 𝜎𝛼 to simulate the 1-fraction experimental TCP curve for 

the given VF and 𝛼 𝛽⁄ , taking into account the stochasticity of the TRM results.  

Optimizing the TRM parameters to fit the fractionation dependence  

Using the parameters obtained from the adjustment of the 1-fraction TCP-curve as starting 

values, the curves for 2 and 6 fractions are adjusted to the experimental curves as follows: 

1. Use the fixed VF value 

2. Select a new value of 𝛼 𝛽⁄ . As this changes, also the 1-fraction TCP curve changes and 

therefore the adjustment of 𝛼 and 𝜎𝛼 (steps a.-d. previously described) is repeated.  

3. Simulate the 2- and 6-fractions TCP curves with the new 𝛼 𝛽⁄ , and the readjusted 𝛼 and 

𝜎𝛼, by changing only the treatment parameters (number of fractions and total dose). 

4. Assess the parameter adjustment using the adjustment quantitative metric (AQM), based 

on the simulated and experimental TCP of 20%, 50%, and 80%, (i.e., 𝐷20, 𝐷50, and 𝐷80), 

for the 2- and 6-fraction experiments:  

5. Iterate 𝛼 𝛽⁄  and consequently 𝛼 and 𝜎𝛼 to best reproduce the 1-fraction TCP curve (based 

on minimising OF(𝛼, 𝜎𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) and to minimise the deviations for 2 and 6 fractions (based on 

minimising AQM). 

The complete workflow for the parameter adjustment is shown in Figure 2.16.  

 

AQM =  
1

2
({(

𝐷50
𝑒𝑥𝑝

− 𝐷50
𝑠𝑖𝑚

𝐷50
𝑒𝑥𝑝 )

2

+
1

2
 [(

𝐷20
𝑒𝑥𝑝

− 𝐷20
𝑠𝑖𝑚

𝐷20
𝑒𝑥𝑝 )

2

+ (
𝐷80

𝑒𝑥𝑝
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𝐷80
𝑒𝑥𝑝 )

2
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+
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𝐷20
𝑒𝑥𝑝
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𝑠𝑖𝑚

𝐷20
𝑒𝑥𝑝 )
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+ (
𝐷80

𝑒𝑥𝑝
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𝑠𝑖𝑚

𝐷80
𝑒𝑥𝑝 )

2
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6𝑓𝑥

) 

(2.28) 
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Figure 2.16: Workflow to adjust the TRM parameters to reproduce experimental TCP curves for 1, 2, and 6 
fractions.  

2.4.3 Simulations 

The ultimate aim of this thesis is to investigate the capabilities of the TRM to reproduce 

experimental in-vivo data. For this investigation, three main questions are addressed: 

1. Is the TRM consistent with LQM-based analytical calculations? 

2. How do the key input parameters in the TRM impact the TCP curves? 

3. Can the TRM input parameters be adjusted to reproduce experimental in-vivo data? 

With this in mind, the simulations performed with the TRM were divided into three different 

groups, and the motivation behind each of these groups is explained in this section. The obtained 

results are described in section 3. 

1. Validation by analytical calculations 

The core of the TRM is the LQM, which allows calculating the SF considering the impact of oxygen 

in the tumour response to radiation, given by equation (2.10). Therefore, the TRM validation is 

achieved by comparing the simulated results with analytical calculations, in terms of SF and TCP. 

Additionally, the different features and improvements of the TRM described in section 2.3 are 
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shown. This set of results should equip the reader with an understanding of the different TRM 

components and improvements in terms of SF and TCP curves.  

For these simulations, a spherical tumour was irradiated with a uniform dose distribution. No air 

or bony structures were considered, therefore the simulation volume was composed of only soft 

tissue, discretised by 1 mm3 cubic voxels. SF and TCP curves were generated with only the TRM 

radiation-induced cell kill process turned on to compare the simulated results with the LQM 

predictions, while all the other biological processes were turned off (see section 2.2.4). The 

different TRM features and improvements are shown by turning on and off different TRM 

biological processes and components, and by comparing the results with previous versions of the 

code. The dose to obtain the TCP curves was varied by increasing the number of fractions while 

keeping the same dose per fraction.  

Table 2.3: Parameter values used for the simulations to compare the TRM with LQM predictions and to 
show the model features and improvements. The values for cell densities, OER, and those associated with 
the tumour development and treatment were chosen to exhibit the different features and improvements of 
the model. References are given for the VDTangio and RT, which are kept constant for all the simulations 
presented in this thesis. The VDT corresponds to the average VDT value from the growth fit data for the 
three experimental tumour sublines, shown in section 3.3.1. 

Characterization Parameter Symbol Value 

Anatomy 

Tumour diameter - 4 mm 

Total cell density 𝜌𝐶  1 × 106 cells/mm3 

Tumour cell density 𝜌𝑇𝐶  2.3 × 105 TC/mm3 

Hypoxic status 

Oxygen partial pressure pO2 11.25 mmHg  

Oxygen enhancement ratio OER 2.579 

Maximum OER m 3 

pO2 at OER half-range k 3 mmHg 

Tumour 

development 

Volume doubling time VDT 760.17 hours 

VDT angiogenesis VDTangio 612 hours [62] 

Resorption half-time RT 168 hours [63] 

Tumour fractionation response 𝛼 𝛽⁄  10 Gy 

Tumour radiosensitivity 𝛼 0.2 Gy−1 

Sensitivity heterogeneity 𝜎𝛼 0 – 0.02 Gy−1 

Treatment 
Total dose D 2 – 70 Gy 

Dose per fraction d 2 Gy  
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2. The interplay of key input parameters 

As a first step to the parameter adjustment to experimental data, the interplay of the OER and 

𝛼 𝛽⁄  is shown. For this, a single 𝑝𝑂2 value is used, allowing the calculation of a tumour OER with 

equation (2.9). As for the previous simulations, all biological processes in the TRM were turned 

off, except for the radiation-induced cell kill. The impact of varying the OER for different 𝛼 𝛽⁄  

values is illustrated by the relative and absolute variation of the TCP curves. This set of 

simulations aims to show the behaviour of the clinical parameters predicted by the TRM and to 

establish how the TRM key parameters impact the TCP curves relative to the experimental curves. 

For these simulations, a spherical tumour was irradiated with a uniform dose distribution. The 

simulation domain was conformed only by soft tissues, with no air or bony structures, discretised 

by 1 mm3 cubic voxels.  Incidence rates were generated by increasing the total dose while 

maintaining the number of fractions fixed.  

Table 2.4: Parameter values used for the simulations to study the interplay effect of the key input 
parameters of the TRM. The cell densities and VDTs correspond to the experimental values obtained for 
the AT1 tumour subline, shown in section 3.3.1. References are given for the VDTangio and RT, which are 
kept constant for all the simulations presented in this thesis. 𝛼 and  
𝜎𝛼 were adjusted to the 1-fraction experimental TCP curve, as described in section 2.4.2. 

Characterization Parameter Symbol Value 

Anatomy 

Tumour diameter - 4 mm 

Total cell density 𝜌𝐶  593634  cells/mm3 

Tumour cell density 𝜌𝑇𝐶  461253 TC/mm3 

Hypoxic status 

Oxygen partial pressure pO2 1.25 – 38.75 mmHg 

Oxygen enhancement ratio OER 1.59 – 3 

Maximum OER m 3 

pO2 at OER half-range k 3 mmHg 

Tumour 

development 

Volume doubling time VDT 121.66 hours 

VDT angiogenesis VDTangio 612 hours [62] 

Resorption half-time RT 168 hours [63] 

Tumour fractionation response 𝛼 𝛽⁄  1, 10 and 84.7 Gy 

Tumour radiosensitivity 𝛼 To be adjusted 

Sensitivity heterogeneity 𝜎𝛼 To be adjusted 

Treatment 
Total dose D 60 – 250 Gy 

Fractions n 1, 2, and 6  
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3. Adjustment to experimental in-vivo data 

The TRM input parameters are adjusted to simulate the experimental in-vivo TCP curves of three 

different rat prostate carcinomas, as described in sections 2.4.1 and 2.4.2. The parameters 

adjusted are 𝛼 𝛽⁄ , 𝛼 and 𝜎𝛼, for three different oxygenation conditions: Severe hypoxia, mild 

hypoxia and well-oxygenated, defined by different initial oxygen histograms. The fitting quality is 

determined by the OF(𝛼, 𝜎𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and the AQM, given by equation (2.27) and (2.28). This parameter 

adjustment aims to further understand how different biological processes, represented by the 

TRM components, impact the in-vivo tumour response to radiation, and how the oxygenation 

status influences the interplay of the TRM input parameters reflected in the TCP curves.  

For these simulations, a spherical tumour was considered, without any adjacent air or bony 

structures. The simulation domain was discretised by 1 mm3 cubic voxels, and the simulations 

were performed including all TRM biological processes mentioned in section 2.2.4 unless 

specified otherwise. All tumours were irradiated with a dose distribution defined by the mean 

experimental dose profile shown in Figure 2.12, with a constant dose-depth profile. The 

parameters 𝛼, 𝜎𝛼 and 𝛼 𝛽⁄  were fitted following the procedure described in section 2.4.2 and 

summarised in Figure 2.16. This procedure was repeated for three oxygenation scenarios: Severe 

hypoxia, mild hypoxia and well-oxygenated, characterised by an initial vascular fraction VF0 of 

1%, 3%, and 5-10% (selected as 5%, 7% or 10%), respectively. The corresponding initial 

histograms are shown in Figure 2.17. The three oxygenation scenarios were studied for the three 

experimental tumour sublines AT1, HI, and H, and the corresponding experimental parameters 

(parameters for incidence rates shown in section 2.4.1, cell densities and VDT described in section 

3.3.1) were used for each case.  

Table 2.5: Parameter values used for the simulations to adjust the TRM input parameters to experimental 
in-vivo data. The cell densities and VDTs are tumour-specific and were calculated for each tumour subline 
as shown in section 3.3.1. References are given for the VDTangio and RT, which are kept constant for all the 
simulations presented in this thesis. The values of 𝛼, 𝜎𝛼 and 𝛼 𝛽⁄  are obtained as a result of the parameter 
adjustment for each VF considered, as shown in section 2.4.2 and illustrated in Figure 2.16.  

Characterization Parameter Symbol Value 

Anatomy 

Tumour diameter - 10 mm 

Total cell density 𝜌𝐶  Tumour-specific 

Tumour cell density 𝜌𝑇𝐶  Tumour-specific 

Hypoxic status 

Initial vascular fraction VF0 1%, 3%, 5%, 7%, 10% 

Maximum OER m 3 

pO2 at OER half-range k 3 mmHg 
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Tumour 

development 

Volume doubling time VDT Tumour-specific 

VDT angiogenesis VDTangio 612 hours [62] 

Resorption half-time RT 168 hours [63] 

Tumour fractionation response 𝛼 𝛽⁄  To be adjusted 

Tumour radiosensitivity 𝛼 To be adjusted 

Sensitivity heterogeneity 𝜎𝛼 To be adjusted 

Treatment 
Total dose D 30 – 250 Gy 

Fractions n 1, 2, and 6  

 

Figure 2.17: Initial oxygen histograms for the three oxygenation conditions considered, characterised by 
the corresponding VF0: severe hypoxia (VF0 =  1%), mild hypoxia (VF0 = 3%), and well-oxygenated (VF0 = 
5%, 7% or 10%). The HF corresponds to the oxygen bins below the dashed red line. These oxygen 
histograms are a representative example of the three initial oxygenation conditions considered. 
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3   Results 

3.1 Validation by analytical calculations 

The TRM was compared to the LQM, as described in section 2.4.3. For this comparison, all the 

biological processes considered in the TRM were turned off, except for the radiation-induced cell 

kill. SF curves were generated for a fractionated treatment of 35 daily fractions of 2 Gy, delivered 

on consecutive days for three different degrees of radiosensitivity heterogeneity, as given by the 

parameter 𝜎𝛼.  

 

Figure 3.1: Comparison of SF curves calculated with the LQM and the TRM. For the TRM, three different 
radiosensitivity heterogeneities were used: 𝜎𝛼 = 0 ∙ 𝛼 (left), 𝜎𝛼 = 0.05 ∙ 𝛼 (centre), and 𝜎𝛼 = 0.10 ∙ 𝛼 
(right), and the mean SF curve was obtained by averaging the SF curves for 10 independently simulated 
tumour samples, represented by the grey curves. Error bars of one standard deviation (SD) are shown for 
the TRM mean SF curve. Additional TRM input parameters are summarised in Table 2.3.  

As shown in Figure 3.1, the average SF calculated with the TRM shows no significant deviations 

when compared to the LQM predictions, for the three degrees of radiosensitivity heterogeneity. 

As the heterogeneity increases, the slope variation between the curves of the individual tumours 

increases as a result of the lognormal distribution of the radiosensitivity parameter 𝛼 given by 

equation (2.23). Additionally, as the SF decreases, larger deviations between the LQM and the 

TRM are observed. In particular, for the SF curves obtained for 𝜎𝛼 = 0 ∙ 𝛼, deviations between 

each sample and the mean curve occur for SF < 10−5, due to implemented stochastic cell kill 

mechanism for less than 100 surviving TCs (see section 2.2.4 and Figure 2.11). 

The following simulations were performed with the proliferation and angiogenesis components 

turned on, to also reflect the stochasticity associated with these two components, as described in 

section 2.3. Since the radiation-induced cell kill is the dominant process in changing the total 
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number of cells, it was necessary to add additional breaks in the radiation schedule to observe 

the proliferation-related changes in the response. For this reason, weekend breaks were 

introduced to the treatment, as well as 5 additional radiation-free days to monitor tumour growth 

after the delivery of the last fraction. The SF curves obtained for 10 independently simulated 

tumour samples are shown in Figure 3.2. 

 

Figure 3.2: SF curves obtained with 𝜎𝛼 = 0.10 ∙ 𝛼 for 10 independently simulated tumour samples, with 
deterministic (left) and stochastic (right) proliferation and angiogenesis. The simulated radiation schedule 
consisted of daily 2 Gy fractions from Monday to Friday, with a weekend break and 5 days of tumour growth 
after the delivery of the last fraction (day 47). Additional TRM input parameters used for these simulations 
are summarised in Table 2.3. 

When the proliferation is performed deterministically, the SF of all tumours increases at the same 

rate, regardless of their SF, as observed in Figure 3.2-left. On the other hand, with stochastic 

proliferation, the SF increment rate varies among tumours for SF < 10−5, approximately from 

day 40.  

The TRM was also compared with the LQM in terms of TCP. For this, the LQM-based Poisson 

model given by equation (2.12) was implemented. For the simulated TCP curves, 10 tumour 

samples were generated for each dose level, each level obtained by increasing the number of 2 

Gy-fractions delivered. Simulations were performed considering only one TRM biological process 

at a time, and for each case, 10 TCP curves were independently simulated. Simulations were 

performed with 𝜎𝛼 = 0 ∙ 𝛼 to obtain results directly comparable to the LQM. The simulated and 

calculated TCP curves are shown in Figure 3.3, and the corresponding 𝐷50 values are summarised 

in Table 3.1.  
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Figure 3.3: TCP curves simulated with the TRM (solid lines) and calculated with the LQM-based Poisson 
model (dotted lines). The different TRM-simulated curves were obtained by including only one biological 
process of the TRM at a time. Each of these curves corresponds to the average of 10 independently 
simulated curves, with error bars indicating one standard deviation (SD). Additional TRM input parameters 
used for these simulations are summarised in Table 2.3. 

Table 3.1: Values of 𝐷50 and corresponding SD for the simulated and calculated TCP curves shown in Figure 

3.3. The significance of the effect of turning on/off the different TRM components on the 𝐷50
𝑇𝑅𝑀  vs 𝐷50

𝐿𝑄𝑀  

relative to the displayed standard deviations (SD) is shown in the third column. 

Case 𝑫𝟓𝟎 + SD [Gy] 𝑫𝟓𝟎
𝑻𝑹𝑴 vs 𝑫𝟓𝟎

𝑳𝑸𝑴
 

LQM-based Poisson model 80.44 - 

TRM – Only irradiation  80.96 ± 0.92 𝐷50
𝑇𝑅𝑀 ≈  𝐷50

𝐿𝑄𝑀  

TRM – Irradiation + DF influence 81.46 ± 1.05 𝐷50
𝑇𝑅𝑀 ≈  𝐷50

𝐿𝑄𝑀  

TRM – Irradiation + angiogenesis 81.61 ± 0.40 𝐷50
𝑇𝑅𝑀 >  𝐷50

𝐿𝑄𝑀  

TRM – Irradiation + proliferation 85.51 ± 0.66 𝐷50
𝑇𝑅𝑀 >  𝐷50

𝐿𝑄𝑀  

TRM – Irradiation + angiogenesis + proliferation + growth 85.67 ± 0.73 𝐷50
𝑇𝑅𝑀 >  𝐷50

𝐿𝑄𝑀  

TRM – Irradiation + resorption 79.51 ± 0.51 𝐷50
𝑇𝑅𝑀 <  𝐷50

𝐿𝑄𝑀  

TRM – Irradiation + resorption + shrinkage 80.41 ± 0.66 𝐷50
𝑇𝑅𝑀 ≈  𝐷50

𝐿𝑄𝑀  

TRM – All processes 83.93 ± 0.64 𝐷50
𝑇𝑅𝑀 >  𝐷50

𝐿𝑄𝑀  
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The TCP curves obtained with the TRM were comparable with the LQM-based Poisson model 

when the TRM considers only the radiation-induced cell kill with no influence of the DF in the 

oxygen histogram selection (see section 2.2.3), as well as no other biological process, i.e., for the 

case “TRM – Only irradiation”. For these two cases, represented by the black solid (TRM) and 

dotted (LQM-Poisson model) lines in Figure 3.3, no significant difference in 𝐷50 was found: 

𝐷50
LQM

= 80.44 Gy vs 𝐷50
TRM =  80.96 Gy ± 0.92 Gy, as shown in Table 3.1. However, the two TCP 

curves deviate slightly in their shape, as can be seen in the TCP intervals of 0.0 – 0.2 and 0.8 – 1.0. 

No significant differences in 𝐷50 between the simulated and LQM-calculated TCP curves were also 

found for the following cases: “TRM – Irradiation + DF influence” and “TRM - Irradiation + 

shrinkage”. The only case with 𝐷50
TRM < 𝐷50

LQM  was “Irradiation + resorption”, where the DCs are 

resorbed with a resorption half-time of 168 hours i.e., 7 days (Table 2.3). 𝐷50
TRM > 𝐷50

LQM was 

obtained for the following cases: “Irradiation + angiogenesis”, “Irradiation + DF influence”, 

“Irradiation + proliferation”, “Irradiation + growth”, and “All processes”. The largest deviation 

occurred for “Irradiation + growth”, with a 𝐷50
TRM shifted to higher doses by 5.23 Gy. When all the 

TRM biological processes are included, 𝐷50
TRM was shifted to higher doses by 3.49 Gy relative to 

𝐷50
LQM. 

3.2 The interplay of key input parameters 

To understand how the TRM key input parameters impact the TCP curves, simulations were 

performed for different fractionation responses given by three values of 𝛼 𝛽⁄ , for different 

oxygenation conditions, as described in section 2.4.3. To isolate the effects caused by the 

mentioned parameters, all biological processes in the TRM were turned off except for the 

radiation-induced cell kill. The parameters 𝛼 and 𝜎𝛼 were adjusted to reproduce the experimental 

1-fraction TCP curve for the AT1 tumour subline, as described in section 2.4.2. Since the purpose 

of these simulations was to study the behaviour of the TCP curves rather than adjusting all the 

parameters to reproduce the experimental data, the second part of the adjustment, where 𝛼 𝛽⁄  is 

fitted using the AQM (see section 2.4.2 and equation (2.28)), was not performed. The simulated 

TCP curves are shown in Figure 3.4, along with the experimental curves for all the fractionation 

schemes.  

The results shown in Figure 3.4 reflect the complex interplay between the TRM key parameters, 

and therefore each effect will be considered separately. Additionally, it is important to remember 

that for all combinations of 𝛼 𝛽⁄  and OER, the parameters 𝛼 and 𝜎𝛼 were fitted to reproduce the 

1-fraction AT1 experimental TCP curve, and therefore all 1-fraction simulated TCP curves overlap 

with the corresponding experimental curve.  
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Observing first the impact of the OER on the TCP curves and how they changed relatively to the 

best-possible oxygenation scenario of OER = 3.00, larger deviations were found as the 𝛼 𝛽⁄  

increased: for 𝛼 𝛽⁄ = 1 Gy, the 6-fraction 𝐷50 decreased 3.2 Gy when OER varied from 3.00 to 

1.59. In contrast, for the same OER change, the 6-fraction 𝐷50 decreased by 11.8 Gy for 𝛼 𝛽⁄ =

10 Gy, and by 16.3 Gy for 𝛼 𝛽⁄ = 84.7 Gy, following equation (2.11). A similar but less pronounced 

effect is observed for the 2-fractions TCP curves.  

Considering now the impact of 𝛼 𝛽⁄  on the 𝐷50, the fractionation effect is observed in the larger 

spread of the TCP curves as 𝛼 𝛽⁄  decreased: Taking as reference the 1-fraction 𝐷50 = 75.7 Gy, the 

average 𝐷50 overall OER values, 𝐷50
OER̅̅ ̅̅ ̅̅ ̅, increased by 30.0 Gy and 107.3 Gy for the 2- and 6-fraction 

TCPs, respectively, for 𝛼 𝛽⁄  = 1 Gy. For 𝛼 𝛽⁄  = 10 Gy, a less pronounced 𝐷50
OER̅̅ ̅̅ ̅̅ ̅ increment of 28.0 Gy 

and 92.5 Gy were obtained for the 2- and 6-fraction TCP curves, respectively. For the largest 𝛼 𝛽⁄  

value of 84.7 Gy, corresponding to the experimental 𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝 (see section 2.4.1), the smallest 𝐷50

OER̅̅ ̅̅ ̅̅ ̅ 

shifts were found: 15.3 Gy and 35.6 Gy for the 2- and 6-fraction TCP curves.  

Under the conditions of these simulations, where the only active biological process in the TRM 

was the radiation-induced cell kill, the experimental TCP curves were better reproduced with 

𝛼 𝛽⁄  = 84.7 Gy, for either OER = 2.86 and 3.00 (see section 2.4.1, and Figure 3.4-bottom). For OER 

= 2.86, the obtained 𝐷50 was 76.0 ± 0.6 Gy, 92.4 ± 0.8 Gy, and 115.6  ± 1.0 Gy for the 1-, 2-, and 

6-fraction TCP curves, respectively, while for OER = 3.00 the obtained 𝐷50 was 75.7 ± 0.9 Gy, 

92.9 ± 1.2 Gy, and 117.5  ± 1.0 Gy for the 1-, 2-, and 6-fractions TCP curves, respectively.  
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Figure 3.4: TCP curves simulated with the TRM for three 𝛼 𝛽⁄  values: 1 Gy (top), 10 Gy (centre) and 84.7 Gy 
(bottom) and for five oxygenation conditions. The parameters 𝛼 and 𝜎𝛼 were fitted to reproduce the 
experimental 1-fraction TCP curve for the AT1 tumour subline. The experimental curves for 1, 2, and 6 
fractions are also shown. Error bars (1 SD) are shown for the value of 𝐷50. Additional TRM input parameters 
used for these simulations are summarised in Table 2.4.  
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3.3 Adjustment to experimental in-vivo data 

3.3.1 Experimental tumour parameters 

Based on the experimental growth data shown in Figure 2.13, Gompertz growth curves were 

fitted using equation (2.20), from which the VDT was obtained for each tumour subline. The fitted 

curves are shown in Figure 3.5. Additionally, the values of 𝜌𝐶  and 𝜌𝑁𝐶 were calculated as 

described in section 2.4.1 and are summarised in Table 3.2 along with the VDT. 

 

Figure 3.5: Measured relative tumour volume as a function of time and fitted Gompertz curves for the 
tumour sublines AT1 (left), HI (centre) and H (right). The error bars correspond to one standard error. 

Table 3.2: VDT, total cell density 𝜌𝐶  and tumour cell density 𝜌𝑇𝐶  for the three experimental tumour sublines. 

3.3.2 AT1 tumour subline 

The first tumour subline studied in the parameter adjustment of the TRM was the AT1. 

Simulations were performed as described in section 2.4.3, with input parameters as specified in 

Table 2.5. The tumour-specific VDT and cell densities were taken from section 3.3.1.  

The parameters 𝛼 and 𝜎 were fitted to reproduce the experimental 1-fraction TCP curve, and the 

AQM was calculated based on the 2- and 6-fractions TCP curves, following the procedure 

Tumour 

subline 
VDT ± SD [hours] 

𝝆𝑪 ± SD 

[cells/mm3] 

CK19+ [%] 

[55] 

𝝆𝑻𝑪 ± SD 

[cells/mm3] 

AT1 121.7 ± 5.7 593634 ± 69558 77.7 461253 ± 54046 

HI 239.3 ± 41.0 458423 ± 82441 87.1 399286 ± 71807 

H 1919.5 ± 49.3 465413 ± 81674 34.5 160567 ± 28177 
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described in section 2.4.2 and Figure 2.16. To find the minimum value of AQM, simulations were 

performed for different 𝛼 𝛽⁄ , ranging from 1 Gy to the experimental 𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝

 = 84.7 Gy. As the AQM 

approached its minimum value, the sampling of 𝛼 𝛽⁄  was refined. This procedure was repeated 

for the three oxygenation conditions studied: Severe hypoxia, mild hypoxia, and well-oxygenated, 

with VF0 1%, 3%, and 5%, respectively. The obtained AQM values are shown in Figure 3.6. 

 

Figure 3.6: AQM as a function of 𝛼 𝛽⁄  for the AT1 tumour subline, for the three oxygenation conditions 
studied. Simulations were performed as described in section 2.4.3, with all TRM biological processes turned 
on, and additional input parameters are specified in Table 2.5.  

The minimum AQM for the VF0 3% and 5% was found to be at least one order of magnitude larger 

than for VF0 1%. The minimum AQM value was 1.29 × 10−3 for VF0 1% and 𝛼 𝛽⁄  = 5 Gy, with 

adjusted 𝛼 = 0.055 Gy-1 and 𝜎 = 0.044 Gy-1. The corresponding simulated TCP curves are shown 

in Figure 3.7, along with the experimental curves. From these results, it was possible to identify 

firstly, that there were still noticeable deviations between the simulated and experimental TCP 

curves for the minimum AQM shown in Figure 3.7, and secondly that the TCP curves of tumours 

with VF0 3% and 5% were located at much too low doses after the first fraction, resulting in 2-

fraction TCP curves at similar and even lower doses than for 1 fraction. As an example of the latter 

effect, the results for the minimum AQM at VF0 3% and 5%, with 𝛼 𝛽⁄  = 1 Gy and 25 Gy 

respectively, are shown in Figure 3.8. Motivated by these two observations, the impact of the 

different TRM components on the TCP curves was studied for VF0 3% and 𝛼 𝛽⁄  = 10 Gy, by keeping 

the radiation-induced cell kill turned on and turning on one additional biological process at a 

time. Besides the six core biological processes (see section 2.2.4), the influence of the DF in the 

selection of the oxygen histogram, termed as “DF influence”, was also studied (see TOM, section 

2.2.3). The resulting TCP curves are shown in Figure 3.9, which were all simulated for VF0 3% and 

𝛼 𝛽⁄  = 10 Gy, and adjusted 𝛼 = 0.084 Gy-1 and 𝜎𝛼 = 0.051 Gy-1. 
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Figure 3.7: Simulated TCP curves (dash-dotted lines) for the minimum AQM. The related parameter 
adjustment led to the best fit of the experimental TCP curves for the AT1 tumour subline (solid lines). The 

simulated curves were obtained for VF0 = 1% (severe hypoxia), 𝛼 𝛽⁄  = 5 Gy, and adjusted 𝛼 = 0.055 Gy-1 

and 𝜎𝛼 = 0.044 Gy-1, with all the TRM biological processes turned on. Additional TRM input parameters are 
specified in Table 2.5.  

 

Figure 3.8: Simulated TCP curves (dash-dotted lines) obtained for the minimum AQM (see Figure 3.6) for 
VF0 = 3% (mild hypoxia, left) and VF0 = 5% (well-oxygenated, right). In both cases, the curves for 2 and 6 
fractions deviate significantly from the AT1 experimental TCP curves (solid lines). For these simulations, 
all the TRM biological processes were turned on. Additional TRM input parameters are specified in Table 
2.5.  
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Figure 3.9: Simulated TCP curves with different TRM biological components turned on for VF0 = 3% and 

𝛼 𝛽⁄  = 10 Gy, and with 𝛼 = 0.084 Gy-1 and 𝜎𝛼 = 0.051 Gy-1 adjusted to reproduce the 1-fraction TCP curve. 
The experimental TCP curves are shown in solid lines. Additional TRM input parameters are specified in 
Table 2.5. 

As shown in Figure 3.9, no significant differences in 𝐷50 were found between the results with all 

TRM components turned on and with the different combinations of biological effects, except for 

the DF influence on the oxygen histograms (i.e., the assumption that DCs do not consume oxygen). 

In the case where the DCs were assumed to consume oxygen, the 2- and 6-fraction TCP curves 

shifted to higher doses in comparison to all the other simulated cases shown in Figure 3.9. Based 

on these observations, the parameter adjustment was repeated entirely, removing the DF 

influence on the oxygen histograms, i.e., with the new assumption that DCs consume oxygen. The 

obtained AQM as a function of 𝛼 𝛽⁄  for this parameter adjustment is shown in Figure 3.10. A 

minimum AQM was found for all oxygenation conditions, in contrast to the previous adjustment 

where no minimum AQM was found for the mild hypoxia case (VF0 = 3% in Figure 3.6). The 

minimum AQM value was 1.03 × 10−3 and was obtained for VF0 = 3% and 𝛼 𝛽⁄  = 5 Gy, with 

adjusted 𝛼 = 0.046 Gy-1 and 𝜎𝛼 = 0.037 Gy-1. The corresponding simulated TCP curves are shown 

in Figure 3.11. 

The performed parameter adjustment assuming that DCs consume oxygen resulted in a slight 

decrease on the minimum AQM of 2.63 × 10−4 with respect to the previously obtained value 

when assuming DCs do not consume oxygen. The impact of this reduction on the simulated TCP 

curves in both scenarios is illustrated in Figure 3.8 and Figure 3.11, respectively. In both cases, 

deviations between simulated and experimental 2-fraction TCP were obtained: For the 2-fraction 

TCP, 𝐷50 = 92.5 ± 0.7 Gy when considering that DCs do not consume oxygen, and 88.5 ± 0.7 Gy 
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assuming DCs do consume oxygen (see Figure 3.8 and Figure 3.11, respectively), while for the 

experimental 2-fraction TCP curve, 𝐷50 = 90.6 ± 2.6 Gy (see Table 2.2) was obtained. In addition, 

a better adjustment of the 6-fraction TCP was achieved when the DCs were assumed to consume 

oxygen. This case resulted in 𝐷50 = 116.2 ± 1.7 Gy, compared to the experimental 6-fraction value 

𝐷50 = 116.6 ± 3.0 Gy.  

 

Figure 3.10: AQM as a function of 𝛼 𝛽⁄  for the AT1 tumour subline obtained for the three oxygenation 
conditions studied. Simulations were performed as described in section 2.4.3, with all TRM biological 
processes turned on except for the DF influence on the oxygen histogram selection (solid lines). For 
comparison, the results obtained including the DF influence are also shown (dotted lines). Additional input 
parameters are specified in Table 2.5.  

 

Figure 3.11: Simulated TCP curves (dash-dotted lines) for the minimum AQM for the parameter adjustment 
to the AT1 experimental TCP curves (solid lines). The simulated curves were obtained for VF0 = 3% (mild 

hypoxia), 𝛼 𝛽⁄  = 5 Gy, and adjusted 𝛼 = 0.047 Gy-1 and 𝜎𝛼 = 0.037 Gy-1, with all the TRM biological processes 
turned on except for the DF influence on histogram selection (i.e., assuming DCs do consume oxygen). 
Additional TRM input parameters are specified in Table 2.5. 
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3.3.3 HI tumour subline 

The TRM parameter adjustment was conducted for the HI tumour subline following the same 

procedure as for the AT1 subline, without the DF influence on the oxygen histogram selection, i.e., 

assuming that DCs consume oxygen. The AQM was determined for 𝛼 𝛽⁄  in the range from 1 Gy to 

87.7 Gy, corresponding to 𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝

 (see Table 2.2), and the results are shown in Figure 3.12. 

 

Figure 3.12: AQM as a function of 𝛼 𝛽⁄  for the HI tumour subline obtained for the three oxygenation 
conditions studied. Simulations were performed as described in section 2.4.3, with all TRM biological 
processes turned on except for the DF influence on the oxygen histogram selection. Additional input 
parameters are specified in Table 2.5. 

A minimum AQM was found in the 𝛼 𝛽⁄ -range studied for the three oxygenation conditions 

studied. The overall minimum AQM was 9.8× 10−2 for VF0 = 1% and 𝛼 𝛽⁄  = 25 Gy and the 

corresponding TCP curves are shown in Figure 3.13. 

 

Figure 3.13: Simulated TCP curves (dash-dotted lines) for the minimum AQM for the parameter adjustment 
to the HI experimental TCP curves (solid lines). The simulated curves were obtained for VF0 = 1% (severe 

hypoxia), 𝛼 𝛽⁄  = 25 Gy, and adjusted 𝛼 = 0.265 Gy-1 and 𝜎𝛼 = 0.212 Gy-1, with all the TRM biological 
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processes turned on except for the DF influence on histogram selection (i.e., assuming DCs do consume 
oxygen). Additional TRM input parameters are specified in Table 2.5. 

3.3.4 H tumour subline 

The TRM parameter adjustment was conducted for the H tumour subline following the same 

procedure as for the other two sublines. Taking into account the results obtained for the AT1 

tumour subline, the adjustment was carried out without the DF influence on the oxygen 

histogram selection, i.e., assuming DCs consume oxygen. The AQM was determined for 𝛼 𝛽⁄  in the 

range from 0.4 Gy, corresponding to 𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝

 (see Table 2.2), to 40 Gy, and the results are shown 

in Figure 3.14 for the three oxygenation conditions considered. For VF0 = 1% and 5%, AQM 

decreased until the lowest value of the studied 𝛼 𝛽⁄ -range. For VF0 = 3%, a minimum AQM of 0.12 

was obtained for 𝛼 𝛽⁄  = 1 Gy. However, neither this minimum nor any of the different VF0-𝛼 𝛽⁄  

combinations allowed reproducing the experimental results, and as a consequence, all AQM 

values resulted to be two orders of magnitude larger than those obtained in the adjustment for 

the AT1 subline. As an example, the simulated TCP curves for the minimum AQM for VF0 = 1% 

and 3%, for 𝛼 𝛽⁄  0.4 Gy and 1 Gy respectively, are shown in Figure 3.15. 

 

Figure 3.14: AQM as a function of 𝛼 𝛽⁄  for the H tumour subline, for the three oxygenation conditions 
studied. Simulations were performed as described in section 2.4.3, with all TRM biological processes turned 
on except for the DF influence on the oxygen histogram selection. Additional input parameters are specified 
in Table 2.5.  
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Figure 3.15: Simulated TCP curves (dash-dotted lines) obtained for VF0 = 1% (severe hypoxia, left) and VF0 
= 3% (mild hypoxia, right) for the parameter adjustment to the H subline experimental TCP curves (solid 
lines). For these simulations, all the TRM biological processes were turned on except for the DF influence 
on the oxygen histogram selection. Additional TRM input parameters are specified in Table 2.5. 

As shown in Figure 3.15, none of the VF0-𝛼 𝛽⁄  combinations corresponding to the minimum AQM 

for VF0 = 1% and 3% allowed reproducing the experimental TCP curves. Based on these results, 

it was evident that the TCP curves needed to be shifted to higher doses as the number of fractions 

increased, i.e., the fractionation effect needed to be larger (see Figure 2.2). Based on equation 

(2.11), the fractionation effect may be increased by increasing the OER, which in this case is 

achieved by increasing VF0. Hence, for the well-oxygenated condition, VF0 = 7% and 10% were 

additionally considered for the adjustment to the experimental curves using an 𝛼 𝛽⁄ -range from 

0.4 Gy to 15 Gy. The resulting AQM is shown in Figure 3.16, where it can be seen that very similar 

results were obtained for VF0 = 7% and 10%, with a minimum AQM at 𝛼 𝛽⁄
 = 8 Gy in both cases. 

The minimum AQM over all VF0 was 1.89 × 10−2 at VF0 = 7%, 7.36 × 10−4 below the minimum 

AQM obtained for VF0 = 10%. The TCP curves for  VF0 = 7% are shown in Figure 3.17. 
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Figure 3.16: AQM as a function of 𝛼 𝛽⁄  for the H tumour subline using additionally VF0 = 7% and 10% (solid 
lines) as parameter setting for well-oxygenated conditions. Simulations were performed as described in 
section 2.4.3, with all TRM biological processes turned on except for the DF influence on the oxygen 
histogram selection. For comparison, the previous results obtained with lower VF0 are also shown (dotted 
lines) in the 𝛼 𝛽⁄ -range from 0.4 Gy to 15 Gy. Additional input parameters are specified in Table 2.5.  

 

Figure 3.17: Simulated TCP curves (dash-dotted lines) for the minimum AQM for the parameter adjustment 
to the H experimental TCP curves (solid lines). The simulated curves were obtained for VF0 = 7% (well-

oxygenated), 𝛼 𝛽⁄  = 8 Gy, and adjusted 𝛼 = 0.096 Gy-1 and 𝜎𝛼 = 0.092 Gy-1, with all the TRM biological 
processes turned on except for the DF influence on histogram selection (i.e., assuming DCs do consume 
oxygen). Additional TRM input parameters are specified in Table 2.5. 

3.3.5 Summary of adjusted parameters 

This section summarises the parameters obtained from the adjustment of the TRM to the 

experimental data that has been performed in the previous sections (3.3.2, 3.3.3, and 3.3.4). In 

addition, the values of 𝐷50 and the slope, TCP′(𝐷50), of the TCP curves are displayed and 
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compared to the experimental values. The adjusted TCP curves are displayed in Figure 3.11 for 

the AT1-, in Figure 3.13 for the HI-, and in Figure 3.17 for the H-tumour subline.  

Table 3.3: Parameters adjusted to reproduce the experimental TCP curves with the TRM for the three 
tumour sublines studied. 

Subline VF0 [%] 𝜶 𝜷⁄  [Gy] 𝜶 [Gy−𝟏] 𝝈𝜶 [Gy−𝟏] 

AT1 3 5 0.047 0.037 

HI 1 25 0.265 0.212 

H 7 8 0.096 0.092 

 

Table 3.4: 𝐷50 and TCP′(𝐷50) for the simulated TCP curves that reproduce the experimental data for the 
three tumour sublines studied (see section 2.4.1). The simulations were performed with the adjusted 
parameters specified in Table 3.3. Additional input parameters are specified in Table 2.5. 

Subline Parameter Method 

Fractions 

1 2 6 

AT1 

𝐷50  ± SD [Gy] 

Simulation 75.5 ± 0.7 88.5 ± 0.7 116.2 ± 1.7 

Experiment 75.7 ± 1.6 90.6 ± 2.3 116.6 ± 3.0 

TCP′(𝐷50) ± SD 

[Gy−1] 

Simulation 0.100 ± 0.017 0.060 ± 0.012 0.040 ± 0.005 

Experiment 0.08411 0.04871 0.02064 

HI 

𝐷50  ± SD [Gy] 

Simulation 62.2 ± 2.1 78.2 ± 2.3 91.2 ± 2.3 

Experiment 62.4 ± 3.2 73.2 ± 4.0 91.3 ± 6.3 

TCP′(𝐷50) ± SD 

[Gy−1] 

Simulation 0.045 ± 0.003 0.025 ± 0.003 0.016 ± 0.002 

Experiment 0.02754 0.02064 0.01460 

H 

𝐷50  ± SD [Gy] 

Simulation 38.7 ± 0.5 52.3 ± 1.2 83.8 ± 1.5 

Experiment 38.2 ± 1.8 53.7 ± 1.5 93.0 ± 6.3 

TCP′(𝐷50) ± SD 

[Gy−1] 

Simulation 0.160 ± 0.039 0.076 ± 0.011 0.031 ± 0.004 

Experiment 0.05554 0.09985 0.01279 
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Table 3.5: Comparison of 𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝

, corresponding to the experimentally-obtained value, and 𝛼 𝛽⁄ , obtained 

from the parameter adjustment.  

Subline AT1 HI H 

𝛼 𝛽⁄  [Gy] 5 25 8 

𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝

 ± SE [Gy] 84.7 ± 13.8 87.7 ± 32.9 0.40 
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4   Discussion 

The discussion of this study follows the structure of the results presented in section 3. First, the 

validation by analytical calculations is discussed, followed by the interplay of the key input 

parameters. Then, the adjustment to experimental in-vivo data is discussed, also examining the 

findings regarding the TRM components and their biological significance, as well as the biological 

interpretation of the adjusted parameter values. The last part covers the limitations of the current 

study and challenges for future studies with the TRM.  

4.1 Validation by analytical calculations 

The TRM was validated by comparing the simulated results with those of the LQM, as described 

in section 2.4.3 and shown in section 3.1 for a fractionated treatment of 35 fractions of 2 Gy and 

for three tumour radiosensitivity heterogeneities as given by 𝜎𝛼. The SF curves show that the 

TRM follows the LQM in all cases, which is an expected result since simulations were performed 

with only the radiation-induced cell-kill component of the TRM, given by equation (2.10). 

However, it is important to note that for larger heterogeneities, i.e., larger 𝜎𝛼, deviations may 

occur. This is due to the lognormal distribution used to model the radiosensitivity heterogeneity 

given by equation (2.23), with rising skewness as 𝜎𝛼 increases. In terms of SF curves, as 𝜎𝛼 

becomes comparable or larger than 𝛼, the sampled radiosensitivity tends to decrease and 

approaches zero, and therefore deviations of the mean SF from the LQM may occur. Furthermore, 

an additional stochastic component was introduced to the TRM to sample the TC and CC 

proliferation, as shown in Figure 3.2. Also, prolonged irradiation breaks and additional biological 

processes that alter the number of cells were introduced, and therefore the simulated SF curves 

did not match the results of the LQM anymore. Although the differences were subtle, introducing 

stochastic cell proliferation to the TRM allows consistent modelling of all the processes that alter 

the number of cells in the tumour.  

As a last step of the analytical validation, TCP curves were simulated and compared with the 

results of the LQM-based Poisson model, given by equations (2.10) and (2.12) and shown in 

Figure 3.3. Although the slope of the TCP curves differed, similar 𝐷50 values were obtained for the 

TRM with only the irradiation component of the TRM and the LQM-based Poisson model. The 

different curve shapes were likely caused by the different mathematical models, with the logistic 

model reaching its maximum steepness at 50% and the Poisson model at 37% [19]. The TCP 

curves in Figure 3.3, with 𝐷50 given in Table 3.1,  show that each TRM component either sensitises 
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the tumour or makes it more resistant, and that this strongly depends on the parameter settings 

of each component.  

Overall, the analytical validation indicates that the results obtained with the TRM behave as 

expected from the main principles described by the LQM. This demonstrates that the formalism 

used to model the TRM components studied was correctly implemented. The validation was 

performed using synthetic input parameters without specific biological meaning and assuming 

homogeneous tumour oxygenation (see Table 2.3), and it is difficult to extend the analytical 

validation to more complex scenarios due to the lack of ground truth. To assess the TRM 

performance in such cases, the model reliability and the interplay of the biologically most relevant 

input parameters was studied.  

4.2 The interplay of key input parameters 

The interplay between the two main input parameters, OER and 𝛼 𝛽⁄ , and its impact on the 

simulated TCP curves, was analysed as described in section 2.4.3 and shown in section 3.2. The 

TRM results adequately described the TCP variations for the OER- and 𝛼 𝛽⁄ -values considered in 

accordance to the OER-𝛼 𝛽⁄  relationship given by equation (2.11). These results also show that 

this finding is valid for a wide range of OER- and 𝛼 𝛽⁄ -values for the fitted 𝛼 and 𝜎𝛼 values, 

indicating that the TRM is reliable in this respect. It is important to note that it is not possible to 

directly compare the simulated TCP curves with analytical calculations, due to the complexity of 

the input data used and the inter-tumour radiosensitivity variation. It was only possible to 

confirm that the range of the simulated 𝐷50 values agreed well with LQM-based analytical 

calculations for the OER-𝛼 𝛽⁄  combinations studied (data not shown). 

The experimental results of the AT1 tumour subline were reproduced in terms of 𝐷50, using only 

the irradiation component in the TRM, with a uniform OER of 2.86 and 3.00, for 𝛼 𝛽⁄ =  𝛼 𝛽⁄
𝑒𝑓𝑓
𝑒𝑥𝑝 =

84.7 Gy. This result is in agreement with the value in Karger et al. [12]: If no additional biological 

process impacts the tumour response and if only the tumour intrinsic oxygen-independent 

radiosensitivity is considered to be relevant, a very large 𝛼 𝛽⁄  is indeed needed to reproduce the 

TCP curves obtained for the AT1 subline. 

4.3 Adjustment to experimental in-vivo data 

The TRM was adjusted to reproduce experimental in-vivo data, as described in section 2.4.2 and 

shown in section 3.3. The AT1 subline and the findings regarding the TRM components are 

discussed in the first sections, followed by the HI and H sublines. The remaining sections are 
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dedicated to the modelling of tumour heterogeneity, the impact of the metrics used for the 

adjustment, and the biological interpretation of the adjusted parameters. 

4.3.1 AT1 tumour subline 

The TRM input parameters were adjusted to reproduce the TCP curves for the AT1 tumour 

subline, as shown in section 3.3.2. The lowest AQM among all tumour sublines was obtained for 

the AT1 for the two different conditions studied: With DF influence turned on, shown in Figure 

3.6, and with DF influence turned off, shown in Figure 3.10. This might have been caused by the 

homogenous biological features of this subline which is mostly formed by poorly differentiated, 

anaplastic cells (see Figure 2.14 and [13], [56], [58], [64]). Therefore, the TCP curves are the 

steepest of all sublines and show similar slopes among the different fractionation schemes. The 

adjusted parameters allowed reproducing the slope of the TCP curve which results from the 

remaining tumour heterogeneity for all fractionation schemes, as well as the 𝐷50 values within 

one SD of the simulated results (see Table 3.4). The only exception was the slope for the 6-fraction 

TCP slope, which agreed only within four SD. 

Initially, all the TRM components were turned on, including the DF influence on the oxygen 

histogram selection (see section 2.2.3). A striking observation was the location of the 2-fraction 

TCP curve for the mild hypoxia and well-oxygenated conditions (VF0 of 3% and 5%, respectively): 

The TCP was located at similar and even lower doses than the single fraction curve, as shown in 

Figure 3.8. Taking into account that the main contributing factor was the DF influence on 

oxygenation (see Figure 3.9), a plausible explanation for this finding is that TCs at low and 

intermediate oxygen levels exhibited decreased radiosensitivity compared to the well-

oxygenated TCs. After the first fraction, predominantly well-oxygenated TCs died, which 

increased the DF and correspondingly oxygen became available in the same proportion, as DCs 

were assumed not to consume oxygen. As a result of the better oxygenation, the radiosensitivity 

increased and more TCs died after the second fraction, which increased the DF and the available 

oxygen even further. This means that the tumours were considerably more sensitive at the second 

fraction than at the first. Accordingly, the reoxygenation effect observed for the 2-fraction scheme 

did not impact the 6-fraction TCP curves to the same extent. This may be explained by two 

different mechanisms: On the one hand, the reduced dose per fraction led to reduced DF for the 

6-fraction scheme, resulting in reduced reoxygenation caused by the DF influence. On the other 

hand, the tumours may have been already well-oxygenated after a very small number of fractions. 

It should be noted that the differences observed with the DF influence turned on and off are 

important only when higher doses per fraction are delivered, i.e., for larger DF, but not for 

conventional fraction sizes of 2 Gy, as discussed in the following section. 
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4.3.2 Cell death and oxygen availability 

The results obtained for the AT1 subline (see section 3.3.2), show that when a few, but more than 

one, fractions are delivered, the resulting high doses per fraction cause significant reoxygenation, 

which discontinuously changes the radiosensitivity. For the AT1 subline, this effect was striking 

for the 2-fraction experiment, and for two of the three oxygenation conditions considered (mild 

hypoxia and well-oxygenated, see Figure 3.8).  

In the TRM as initially implemented by Espinoza [9], [10], TCs killed by radiation were assumed 

to immediately abort cell metabolism, including the consumption of oxygen. Under this 

assumption, the oxygen that was previously consumed by DCs becomes available for the 

remaining TCs to consume, thereby increasing their radiosensitivity. Based on the problems with 

the parameter adjustment for the AT1 tumour subline, especially for the 2-fraction TCP curve, 

this initial assumption was discarded and replaced by the assumption that DCs continue to 

consume oxygen until they are resorbed. This ad hoc assumption prevented abrupt changes of 

the oxygen availability after irradiation and as a result, the adjustment of the AT1 TCP curves was 

possible for all three fractionation schemes, as well as for the other two tumour sublines.  

From the radiobiological point of view, this new assumption can be explained as follows: While 

the effect of radiotherapy originates from the inactivation of TC proliferation leading finally to 

cell death, this inactivation is known to take place not immediately after irradiation. In cell 

experiments, it is observed that cells irradiated with x-rays may undergo several mitoses until 

daughter cells eventually die [65]. This implies that initial radiation-induced DNA damage 

becomes effective in terms of cell kill only after several cell cycles. This more detailed view on 

radiation-induced cell kill indicates that irradiated cells, although damaged, are still metabolically 

active over a limited period of several days. This biologically justifies the newly introduced 

assumption that DCs continue to consume oxygen for a limited period until they are resorbed.  

Adjusting the TRM parameters to reproduce the tumour response to highly hypofractionated 

treatments led to the implementation of the new assumption on cell death and oxygen availability. 

In contrast, a parameter adjustment to conventional treatments with considerably lower doses 

per fraction would not have led to discarding the initial assumption, as supported by the results 

of the analytical validation. As shown in Figure 3.3 and Table 3.1, the reoxygenation driven by the 

DF influence was only minimal: No significant difference in the 𝐷50 value was observed when the 

DF influence was included in the TRM, in comparison to the 𝐷50 value obtained with only the 

irradiation component in the TRM turned on. 
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4.3.3 HI and H tumour sublines 

The TRM was also adjusted to reproduce the experimental results of the HI and H tumour 

sublines, as shown in sections 3.3.3 and 3.3.4, with all TRM components turned on except for the 

DF influence. The minimum AQM obtained for these sublines was one order of magnitude larger 

than that for the AT1, which reflects the larger deviations observed in the TCP curves (see Figure 

3.13 and Figure 3.17). The HI subline exhibits rather shallow TCP curves for the three 

fractionation schemes, with less-optimal fitting for the 1- and 2-fraction TCP curves. For the H 

subline, the slope could not be perfectly adjusted for the 1- and 6-fraction TCP curves. Contrary 

to the AT1 subline, the HI shows a mixture of TCs and NCs, which leads to a larger inter-tumour 

heterogeneity, whereas the H subline is mostly composed of NCs and only a few TCs [13], [66]. 

Likewise, the three sublines also show different patterns of perfusion, capillary structure and 

hypoxic regions, as shown in Figure 2.14 [56]. In the following section, the tumour heterogeneity 

and its impact on the TRM parameter adjustment are further discussed. 

Regarding the H tumour subline, the parameter adjustment was not possible for the oxygenation 

conditions considered for the other two sublines, defined by VF0 of 1%, 3% and 5% (see section 

2.4.3). A larger fractionation effect, governed by equation (2.11), was achieved by increasing VF0 

to 7% and 10%, with corresponding initial oxygen histograms shown in Figure 2.17. The resulting 

AQM turned out to be very similar for the additional VF0 values and the minimum AQM was 

obtained for VF0 7%, as shown in Figure 3.16. The oxygenation condition “well-oxygenated” was 

initially described by VF0 5%, motivated by the fact that the corresponding initial oxygen 

histogram shows a HF close to zero. For comparison, the oxygen histograms for VF0 5% and 7% 

are shown in Figure 4.1. Considering the established 𝑝𝑂2-OER relationship (see equation (2.9) 

and Figure 2.4), the main OER difference between these histograms lies in the intermediate 𝑝𝑂2 

range. In contrast, the difference at higher 𝑝𝑂2 values between VF0 7% and 10% (see Figure 2.17) 

did not lead to significant changes in the tumour response, reflected in the similar AQM values 

obtained for the H subline (see Figure 3.16). The results of the parameter adjustment for the H 

subline then support previous findings of the reduced predictive power of the HF alone and the 

necessity to consider the whole tumour oxygenation [47], [67], [68]. Although the oxygen 

histograms do not provide information about the spatial 𝑝𝑂2 distribution, they are assigned 

voxel-wise in the TRM and this implementation has shown to impact the tumour response. 
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Figure 4.1: Superposition of the oxygen histograms for the "well-oxygenated" condition, for the initially 
used VF0 = 5% and the additionally considered VF0 = 7% (shown in separate plots in Figure 2.17), used for 
the parameter adjustment of the H tumour subline.  

4.3.4 Modelling of tumour heterogeneity  

The variation in tumour heterogeneity among patients is currently understood as the cause of 

shallow TCP slopes [19]. This variation is accounted for in the TRM by sampling the 

radiosensitivity for each simulated tumour, using a lognormal probability distribution (see 

equation (2.23) in section 2.2.4). For the AT1 subline, the adjustment of the 1-fraction TCP curve 

was achieved in terms of the 𝐷50 and TCP′(𝐷50) within the range of one SD, as mentioned in 

section 4.3.1, but for the HI and H sublines, this was not the case. For both sublines, it was not 

possible to fit the parameters 𝛼 and 𝜎𝛼 to reproduce the 1-fraction TCP curve, and especially the 

slope, to the same extent as for the AT1. From the fitting for the 1-fraction curve, large values of  

𝜎𝛼 were obtained for the three sublines, and in the case of the HI and H sublines, further increase 

in 𝜎𝛼 did not lead to a further decrease of the slope. This is an indication that modelling the 

tumour response heterogeneity solely based on the inter-tumour radiosensitivity variation might 

have certain limitations and that additionally, the intra-tumour radiosensitivity variation may be 

important. Technically, it would be feasible to include intra-tumour heterogeneities similarly into 

the simulation. However, this implementation would result in an additional parameter, which 

would have to be fitted to outcome data. Finally, it should be considered that the experimental 

dose-response curves used as a reference for the TRM simulations also represent only estimates 

of the true TCP curve, as they were determined from a limited number of animals. Despite these 

limitations, the parameter adjustment still provides useful insights into the biological processes 

that might impact the tumour response to radiation. 
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4.3.5 Impact of the choice of OF and AQM 

The parameter adjustment was performed step-wise and based on two quantities: OF and AQM 

(see section 2.4.3). These metrics were chosen to compare the simulation results with the 

experimental TCP curves. Consequently, the selection of these metrics directly impacts the 

adjusted parameters.  

Fitting 𝛼 and 𝜎𝛼 based on the 1-fraction TCP curves allowed to separately determine these two 

parameters, under the assumption that the tumour radiosensitivity and its inter-patient 

heterogeneity, determined by 𝛼 and 𝜎𝛼 respectively, are the only parameters that impact the 

position and slope of this curve. As the position and the slope of the simulated TCP curve needed 

to be adjusted, the OF was composed of equally-weighted summed squared differences of three 

reference doses (𝐷50, 𝐷20 and 𝐷80) of the curve: 𝐷50describing the position, and 𝐷20 and 𝐷80 

describing the slope (equation (2.26)). On the other side, the AQM was the metric for finding the 

best combination of VF and 𝛼 𝛽⁄  (and for readjusting 𝛼 and 𝜎𝛼 to maintain the fit to the 1-fraction 

TCP curve) to reproduce the 2- and 6-fraction TCP curves. For this metric, the squared differences 

at 20% and 80% TCP were weighted by a factor of 0.5, to assign equal weights to the parameters 

related to the TCP curve position (𝐷50) and slope (𝐷20 and 𝐷80). Additionally, all differences were 

normalised by the experimental value to account for the larger absolute doses of the 2- and 6-

fraction TCP curves, respectively. If different weights were given to the reference doses in OF or 

AQM, or if OF and AQM were defined differently, the adjusted parameters would also be expected 

to differ from those obtained in this study. Nonetheless, based on the reasoning underlying the 

metric definition, the applied definition of OF and AQM appears appropriate.   

Alternatively to the step-wise adjustment, the simultaneous optimisation of all parameters could 

have been considered, with a simultaneous adjustment of all three TRM-simulated TCP curves 

steered by an adequately redefined AQM. However, this would significantly increase the 

complexity of the fit and the computation time and might lead to convergence problems. For this 

reason, the fitting procedure in this study was split into the adjustment of the 1-fraction curve 

(resulting in 𝛼 and 𝜎𝛼) and the adjustment of the 2- and 6-fraction curves (resulting in VF and 

𝛼 𝛽⁄ , and only slightly readjusted 𝛼 and 𝜎𝛼). 

4.3.6 Biological interpretation of the adjusted 𝜶 𝜷⁄   

The adjustment performed in section 3.3 resulted in the parameters summarised in Table 3.3. 

Taking into account the ongoing debate about the 𝛼 𝛽⁄  value for prostate and the increased use 

of hypofractionated treatments for prostate cancer [14], [69]–[75], it is worth exploring the 

biological meaning of the adjusted 𝛼 𝛽⁄ .  
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The 𝛼 𝛽⁄  values for the AT1 and HI sublines obtained from the TRM parameter adjustment were 

lower than the experimental values reported by Glowa et al. [14], as shown in Table 3.5. This can 

be explained by the fact that the experimental 𝛼 𝛽⁄  value reflects the effective tumour response 

to the given fractionation schemes rather than the intrinsic fractionation dependence of isolated 

cells. As 𝛼 𝛽⁄  in the TRM is directly associated to the underlying cells, this parameter must be 

considered as an intrinsic value. In real experiments as well as in the TRM, also other biological 

processes, such as hypoxia, impact the result of the 𝛼 𝛽⁄ -adjustment, as shown in Figure 3.3 and 

Figure 3.9. Besides being hypoxic, the AT1 and HI sublines (see Figure 2.14) are also characterised 

by a moderate to high growth rate, which for extended overall treatment times results in 

increased 𝐷50 and 𝛼 𝛽⁄  values [14], [73]. The adjustment of the TRM to the experimental TCP 

curves further supports the hypothesis of increased effective 𝛼 𝛽⁄  values, but considerably lower 

intrinsic 𝛼 𝛽⁄  values defining the repair capacity of the underlying cells. 

For the H tumour subline, a larger 𝛼 𝛽⁄  was found in comparison to the experimental value, which 

however was still comparable within one order of magnitude with 𝛼 𝛽⁄  values reported for 

prostate [69], [70], [72], [73], [75]. With this respect, it has to be noted that for the H tumour 

subline, the generalised logistic dose-response could not be fitted [14], and 𝛼 𝛽⁄  was therefore 

determined by a linear regression using the Douglas-Fowler method [76]. In this method, 

however, the dependent quantity on the y-axis (reciprocal total isoeffective dose) is not 

independent of the independent quantity on the x-axis (isoeffective fractional dose), and 

therefore the uncertainty of 𝛼 𝛽⁄  cannot be assessed. The low experimental 𝛼 𝛽⁄  value adjusted 

for the H subline is most likely a result of the good oxygenation observed in the immuno-

histochemical samples and was confirmed so far by the 𝛼 𝛽⁄  adjustment of the TRM simulations. 

Here, the minimum AQM was obtained for VF0 = 7%, and considering the relatively narrow 

distribution of the TCP curves over the dose range, a larger 𝛼 𝛽⁄  allowed reproducing the results. 

Finally, the parameters 𝛼 𝛽⁄  and 𝛼 have also been experimentally determined in cell culture for 

the AT1 tumour cells in the work by von Neubeck [77]. This experimental measurement was 

performed in-vitro for a single dose with a 250 kVp photon beam. Interestingly, the 

experimentally-determined values are comparable to those obtained from the parameter 

adjustment of the TRM-simulated TCP curves for the AT1 tumour subline: The obtained 

parameters were 𝛼 = 0.174 ± 0.052 Gy−1, 𝛼 𝛽⁄ = 6.8 ± 0.5 Gy for the in-vitro study in 

comparison to 𝛼 = 0.047 ± 0.037 Gy−1, 𝛼 𝛽⁄ = 5 Gy for the TRM simulations. Considering that 

the two methods are very different in their methodology, the two parameter sets appear well 

comparable. This shows that the TRM is a valuable tool to analyse the different biological 

processes on the overall radiation response of tumours and to separately investigate their 

contributions. 
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4.4 Limitations and challenges 

Modelling of the radiation-induced cell kill 

The core of the TRM is the radiation-induced cell kill as defined by the LQM and modified by the 

OER to account for the oxygen impact on tumour response (see equation (2.10) and section 2.1.2). 

The tumour response is then defined by the oxygen-dependent TC survival, as well as by the other 

biological processes included in the model. The TRM has been validated based on in-vivo tumours 

irradiated at very high doses per fraction (see section 2.4.1), which might impose different 

challenges to the TRM.  

The first challenge implementing the LQM in the TRM is related to the heterogeneity of the 

tumour tissue, which is not purely composed of TCs. Assigning a unique radiosensitivity to the 

complete tumour tissue might disregard other types of cells, particularly for highly 

heterogeneous tumours such as the HI and H sublines (see section 2.4.1). Therefore, the adjusted 

parameters do not reflect the isolated TC radiosensitivity, but rather the average radiosensitivity 

over all the cell types found in the tumour. 

The second challenge originates from modelling the radiation response of TCs at high doses per 

fraction using only the LQM [78]. Besides the intrinsic repair capacity of TCs, additional biological 

processes have been reported to impact the tumour response at high doses per fraction as well. 

For example, the involvement of the immune response might result in enhanced cell kill [79], [80], 

and potential vessel damage could further alter the tumour oxygenation which in turn affects the 

response of TCs. These additional biological processes that alter the tumour response may be 

considered separately from the LQM. This strategy has already been applied in the 

implementation of the TRM, and could potentially be extended. For example, a separate 

radiosensitivity value could be assigned to CCs to reflect the vessel damage at high doses. 

However, this would come with the cost of an increased number of model parameters to be 

determined or adjusted. On the other hand, if the repair mechanisms present at high doses per 

fraction differ from those at conventional doses, the LQM would no longer be valid. Nonetheless, 

considering there is currently not enough quantitative evidence to prefer an alternative model 

[21], [81]–[84], the LQM is the best available model to implement in the TRM. 

Finally, the TRM implementation of the LQM considers a modified formulation to account for the 

oxygen effect on tumour response. As a result, the oxygen-dependent cell kill is modelled by 

equation (2.10), where the dependence of the model on the OER-related parameters is evident. 

The mechanisms behind the 𝑝𝑂2-OER relationship are still being studied and the current model 

is mainly a result of in-vitro measurements [36]. The in-vivo OER may depend on additional 
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parameters, such as the dose per fraction and cell-dependent characteristics [85]. The TRM would 

therefore benefit from an improved OER model, but again this might come with the cost of an 

increased number of parameters in the model.  

Implementation of oxygen histograms 

The TRM considers the tumour oxygenation via the oxygen histogram database generated with 

the TOM, as described in section 2.2.3. At each simulation time step, the histogram is updated 

based on the VF (previously also on the DF) and different 𝑝𝑂2 values are correspondingly 

assigned to the TCs. This implementation allows considering a temporally changing microscopic 

oxygen distribution within each voxel without significant additional computing time. However, 

this implementation does not account for the oxygen-dependent cell kill for the following fraction: 

When the highly oxygenated and thus highly radiosensitive TCs are killed, these cells are no 

longer considered as TCs but as DCs. Therefore, for the following simulation step, the remaining 

available TCs would have to be considered as being more hypoxic, which would require a different 

oxygen histogram. Since the current oxygenation model in the TRM does not record which TCs 

are killed, a similar or even better-oxygenated histogram is assigned instead. The oxygen 

histogram update therefore leads to instantaneous reoxygenation of the tumour when more than 

one fraction is delivered.
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5   Conclusion 

The objective of this thesis was to further improve and validate the tumour response model 

(TRM) previously developed by Espinoza et al. [9], [10]. The TRM was validated by analytical 

calculations to test the various modelled radiobiological processes. This validation confirmed the 

correct implementation of the different components, in particular of the linear quadratic model 

(LQM), modified to consider the oxygen enhancement ratio (OER). Together, these components 

consistently describe the oxygen-dependent response of tumours. 

To understand the interaction of effects between the OER and the LQM-parameter 𝛼 𝛽⁄ , the TRM 

simulations were studied for different settings of OER and 𝛼 𝛽⁄ . The variations of the dose-

response curves for the different OER-𝛼 𝛽⁄  parameter settings showed a larger fractionation 

effect for larger OER and for smaller 𝛼 𝛽⁄ . This in turns demonstrates a reliable implementation 

of the OER-𝛼 𝛽⁄  relationship also when more complex input data is used for the simulations. 

This is the first study where the multi-scale oxygen-dependent TRM was applied to reproduce in-

vivo data. For this, three sublines of the Dunning R3327 rat prostate carcinoma (-AT1, -HI, and -

H) were used, which differ in cell differentiation, growth rate and oxygenation status. This thesis 

has shown that the TRM can be adjusted to reproduce the radiation response of these tumours 

for different fractionation schemes. As a result, the following conclusions can be drawn:  

i) The assumption that tumour cells killed by radiation do not consume oxygen was not 

compatible with the comparison of the simulated and experimental dose-response 

curves. This assumption was successfully replaced by assuming that dead cells continue 

to consume oxygen until they are resorbed. 

ii) The concept of considering the impact of oxygenation by oxygen histograms when 

modelling the tumour response to radiation is supported by the simulation results. 

iii) The study reveals that intrinsic 𝛼 𝛽⁄  values are lower than the experimental 𝛼 𝛽⁄  values 

and the differences can be explained by the influence of additional biological processes 

that impact the tumour response to radiation. 

iv) The adjusted radiation response parameters 𝛼 𝛽⁄  and 𝛼 for the AT1 tumour subline were 

comparable to those experimentally determined in-vitro. 

In summary, this study established a consistent parameter set for the TRM that predicts the 

oxygen-dependent radiation response of three sublines of an experimental prostate tumour. The 

model has shown to be a suitable tool to investigate the impact of different biological processes 

on the radiation response and to study their relative importance for tumour control. 
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6   Outlook 

The present study demonstrated the ability of the TRM to reproduce the response of experimental 

in-vivo tumours after radiation. Some of the most relevant parameters describing the tumour 

characteristics were determined or were adjusted from existing data, but certain assumptions on 

the initial simulation conditions were necessary. As previously shown, tumour oxygenation has a 

great impact on the response, and therefore an estimation of the actual initial vascular fraction 

(VF) would improve the available information on input parameters and thus reduce the number 

of additional assumptions required for the parameter adjustment. The VF could in principle be 

estimated using pharmacokinetic modelling of signals from dynamic contrast-enhanced MRI 

(DCE-MRI) [56] or 18fluoromisonidazole PET (18F-MISO-PET) [57], [58], although the resulting 

values are often rather unstable and model-dependent.  

Overall, the TRM was successfully adjusted to reproduce the experimental data on three 

experimental tumour sublines with the currently implemented oxygenation model. As an 

alternative oxygenation model, one could consider a spatiotemporal development of the oxygen 

histograms: Initially, an oxygen histogram would be assigned to each voxel based on an initial VF. 

Then, the effect of different biological processes on the oxygen distribution would be tracked. 

With this approach of temporally propagated oxygen histograms, a generally more hypoxic 

histogram would be obtained after each irradiation as the well-oxygenated and thus more 

radiosensitive TCs are predominantly killed. Additional investigations are necessary on whether 

this constitutes a more realistic representation of the oxygen availability for the tumour cells. 

Furthermore, the TRM predictions could be compared against clinical patient data, paying 

particular attention to early-detectable morphological and functional imaging signals. 

Considering that the tumour control can only be reliably determined years after irradiation, the 

TRM might rather be used as a short- and medium-term predictive tool after adjusting the input 

parameters adequately. Studies have shown that hypoxia imaging has strong predictive power 

when assessed before and during radiotherapy [34], [86], [87]. Complementary, a tumour 

response model such as the TRM might be able to predict how hypoxic tumours reoxygenate after 

a sequence of irradiation sessions to decide if a modification of the treatment schedule is required 

before continuing the treatment. 
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Appendix 

Image processing to count DAPI+ cell nuclei 

1. Import cleared image to Fiji‡ 

2. “image”  “colour”  “split channels” 

3. Keep only blue channel 

4.  "Process"  "Subtract background"  radius: 100      

5. "Image"  "Adjust"  "threshold"      

6. "Process"  "Binary"  "make Binary"      

7. "Edit"  "Invert"      

8. "Process"  "binary"  "Watershed"      

9. "Analyse"  "Analyse Particles"   "Size: 30-infinity" in pixel units    

10. "Summary"  "count"    

Image processing to determine DAPI area 

1. Load "mask" to Fiji      

2. "Analyse"  "set scale"  "Click to remove scale"  "OK"     

3. "Image"  "Adjust"  "threshold"      

4. "Analyse"  "Analyse Particles"  "Size: 0-infinity" in pixel units 

 

                                                             
‡ Fiji image processing software 
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