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Abstract

This thesis reports on the exploration of p-wave Feshbach resonances in ultracold 6Li
and 6Li-133Cs gases where the pair rotation angular momentum is l = 1. An improved
experimental apparatus is presented, allowing atom loss spectroscopy with a magnetic
field resolutions down to several milli-Gauss on three 6Li and five 6Li-133Cs Feshbach res-
onances. A doublet structure is observed for the first time on three 6Li p-wave Feshbach
resonances. We assign the splittings to spin-spin interactions where the projection of the
pair rotation angular momentumml splits the resonance intoml = 0 and |ml| = 1. For the
first time we report on observation of spin-rotation interaction on three 6Li-133Cs p-wave
Feshbach resonances. Here the pair-rotation couples to the atomic spins, leading to an
additional splitting of the ml = −1 and ml = +1 projections. Via coupled channel calcu-
lations we determine the dimensionless spin rotation constant to be |γ| = 0.566(50)×10−3.
With a simple model we show that the strength of spin-rotation coupling depends signifi-
cantly on the short-range part of the electron wave functions, highlighting the potential of
Feshbach resonances to provide precise information on electron and nuclear wave functions
at short internuclear distance. In an additional exploratory study of losses close to a single
component Fermi p-wave Feshbach resonance we find changes in qualitative loss behavior
depending on the density and temperature of the gas. We separate two regimes depending
on the dominance of either elastic or inelastic collisions showing three- or two-body loss
behavior, respectively. Collisional losses with possible cooling efficiencies similar to classic
evaporative cooling are predicted.
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Zusammenfassung

Diese Arbeit präsentiert die Untersuchung von p-Wellen Feshbach-Resonanzen in ultra-
kalten 6Li und 6Li-133Cs Gasen, bei denen der Molekül-Rotationsdrehimpuls l = 1 beträgt.
Es wird eine Verbesserung des experimentellen Aufbaus vorgestellt, der Atomverlustspek-
troskopie mit einer Magnetfeldauflösungen bis zu wenigen Milli-Gauß bei drei 6Li und fünf
6Li-133CsFeshbach-Resonanzen ermöglicht. Bei drei 6Li p-Wellen Feshbach-Resonanzen
wird zum ersten Mal eine Doppelstruktur beobachtet. Wir führen die Aufspaltung auf Spin-
Spin-Wechselwirkungen zurück, wobei die Projektion des Molekül-Rotationsdrehimpulses
ml die Resonanz in ml = 0 und |ml| = 1 aufspaltet. Zum ersten Mal beobachten wir die
Spin-Rotations-Wechselwirkung bei drei 6Li-133Cs p-Wellen Feshbach-Resonanzen. Hier
koppelt die Molekül-Rotation an die atomaren Spins, was zu einer zusätzlichen Aufspal-
tung der ml = −1 und ml = +1 Projektionen führt. Mittels einer Coupled − Channel
Modellierung bestimmen wir die dimensionslose Spinrotationskonstante |γ| = 0.566(50)×
10−3. Anhand eines einfachen Modells zeigen wir, dass die Stärke der Spin-Rotations-
Kopplung signifikant von den elektronischen Wellenfunktionen bei kurzem Kernabstand
abhängt. Dies hebt das Potenzial der Feshbach-Resonanzen hervor, präzise Informationen
über Elektronen- und Kernwellenfunktionen bei kurzem Kernabstand zu erhalten. In ei-
ner zusätzlichen explorativen Studie über Verluste in der Nähe eines ein komponentigen
Fermi p-Wellen Feshbach-Resonanz, finden wir qualitative Veränderungen im Verlustver-
halten in Abhängigkeit von Dichte und Temperatur des Gases. Wir unterscheiden zwei
Regime, in denen entweder elastische oder unelastische Stöße dominieren, die ein Drei-
bzw. Zweikörper-Verlustverhalten aufzeigen. Kollisionsverluste mit einer mögliche Kühlef-
fizienz ähnlich der klassischen Verdunstungskühlung werden vorhergesagt.
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Introduction

Discriminating physical regimes is at the core of progress and understanding in physics as
a natural science. Ultracold gases have proven to provide an excellent platform for the ex-
ploration of the most diverse physical regimes. From the measurement of the gravitational
red-shift [Bothwell et al., 2022] to the simulation of vacuum fluctuations by phononic exci-
tations in a Bose-Einstein-Condensate (BEC) [Rentrop et al., 2016], ultracold gases access
regimes through control of almost every relevant physical parameter such as dimensions,
temperature, densities and interactions under high isolation from the environment [Bloch
et al., 2008].

Feshbach resonances have been one of the most striking and productive features in
ultracold gases [Chin et al., 2010]. Named after Hermann Feshbach for the development
of a theory for resonant scattering in nuclear physics [Feshbach, 1958] and introduced to
quantum gases by Inouye et al. [1998] and Courteille et al. [1998], this tool allows the
control of inter-particle interactions. By changing the relative energy of the scattering
state in an open channel and a bound molecular state in a closed channel, the scattering
phase shift can be changed giving complete control over the inter-atomic interactions.
Tuning the relative energy is either possible via optical coupling [Fedichev et al., 1996;
Theis et al., 2004; Cetina et al., 2016], change in scattering energy [Boesten et al., 1997;
DeMarco et al., 1999] or by exploiting the different magnetic moments of the channels by
applying a magnetic field [Moerdijk et al., 1995].

In broad s-wave Feshbach resonances, scattering of two colliding atoms with relative
angular momentum l = 0, the scattering length a fully describes the phase shift of the
scattering wave [Chin et al., 2010]. A series of success stories originate from the magnetic
control of scattering in the universal regime where a is the only relevant length scale
of the system. The production of a BEC of weakly bound dimers of Fermi atoms with
size a/2 was achieved for positive a [Jochim et al., 2003; Zwierlein et al., 2003; Greiner
et al., 2003]. Later, the understanding of the BEC-BCS crossover would be one of the
greatest achievements in ultracold gases [Bartenstein et al., 2004; Kinast et al., 2004; Chin
et al., 2004; Partridge et al., 2005; Zwierlein et al., 2005]. A continuous change of bound
dimers on the positive side of the Feshbach resonance to Cooper pairs on the negative
side of the resonance allowed deep insights into pairing mechanisms. Different progress
has been made in few-body physics where three particles form the famous Efimov states,
an infinite series of resonant three-body bound states of size λa, where λ is a universal
scaling parameter [Naidon and Endo, 2017]. These states have been observed in a series
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of different systems and lead to precise investigations of the universal regime [Kraemer
et al., 2006; Lompe et al., 2010; Berninger et al., 2011; Ulmanis et al., 2016; Johansen
et al., 2017]. Also the creation of Feshbach molecules has been studied in great detail [Wu
et al., 2012; Heo et al., 2012; Cumby et al., 2013; Köppinger et al., 2014; Wang et al.,
2015]. They proved to be beneficial for the study of chemical reactions, where the reaction
energy can be changed from exothermic to endothermic by preparing particular molecular
states [Ye et al., 2018; Hoffmann et al., 2018]. Feshbach molecules are also used as the
first step in the production of molecules in the electronic and vibrational ground state
via stimulated adiabatic Raman sideband passage [Ni et al., 2008; Molony et al., 2014;
Takekoshi et al., 2014; Park et al., 2015; Guo et al., 2016]. Feshbach resonances were
also used to probe many-body physics in the polaron scenario, where single impurities are
immersed in a Fermi sea (Fermi polaron) or BEC (Bose polaron) simulating the famous
"Fröhlich polaron" problem [Fröhlich, 1954; Kohstall et al., 2012; Hu et al., 2016; Cetina
et al., 2016; Jørgensen et al., 2016; Yan et al., 2020; Fritsche et al., 2021].

In narrow s-wave Feshbach resonances another length scale comes into play. If the
effective range 1/ke, describing the effective length scale of the inter atomic potential,
becomes comparable to the thermal de Brogli wavelength of the atoms, the scattering
process can no longer be described in terms of only the scattering length a and the universal
regime breaks down [Gurarie and Radzihovsky, 2007; Johansen et al., 2017]. While narrow
resonances are of large interest to theory due to the validity of simple two channel models
[Gurarie and Radzihovsky, 2007], the resonances are difficult to exploit experimentally,
compared to broad resonances, due to large losses accompanying strong interactions [Li
et al., 2018]. Nevertheless, a few studies have been performed close to narrow 6Li s-wave
resonance at 542 G where Hazlett et al. [2012]; Wang et al. [2013] studied losses and the
breakdown of universality. In another recent study losses near the resonances has been
used to cool atomic samples via recombinational cooling [Peng et al., 2021].

Broad and narrow s-wave Feshbach resonances have been characterized, studied and
exploited in great detail in ultracold 6Li-133Cs systems. Observation through atom loss
spectroscopy, thermalization through elastic collisions, detailed analysis using different
theoretical models and radio frequency association of Feshbach dimers lead to very ac-
curate determination of the resonance poles, positions and resonance widths Repp et al.
[2013]; Tung et al. [2013]; Pires et al. [2014a]; Ulmanis et al. [2015]; Johansen et al. [2017].
With the help of these measurements, the long range part of these interaction poten-
tials were accurately determined Repp et al. [2013]; Ulmanis et al. [2015]. The precise
characterization of the resonances was used for detailed studies of aforementioned Efimov
resonances, of special interest in high mass-imbalanced systems due to a small scaling
factor λ Tung et al. [2014]; Pires et al. [2014b]; Ulmanis [2017]. Furthermore, Johansen
et al. [2017] performed investigations of van der Waals universality comparing the Efimov
states at Feshbach resonances with different widths. In another study it was shown that
the 6Li-133Cs interactions lead to a shift in the 133Cs-133Cs interactions and that the in-
terspecies interaction could be used to trap 6Li within a 133Cs BEC [DeSalvo et al., 2017,
2019].
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In p-wave Feshbach resonances the relative angular momentum of the colliding atoms
is l = 1. These resonances are usually of narrow nature due to the centrifugal barrier
of the interacting potential [Gurarie and Radzihovsky, 2007]. In single component Fermi
gases s-wave interactions are suppressed due to Pauli blocking, making p-wave scattering
the dominant interaction process [DeMarco et al., 1999]. This makes strongly interacting
p-wave gases especially interesting for single component Fermi gases. For example the
enriched phase diagram in the superfluid phase [Gurarie et al., 2005] plays an essential
role inside neutron stars [Page et al., 2011; Shternin et al., 2011]. A Fermi polaron close to a
p-wave resonance is also expected to show a more complex state structure compared to the
s-wave case [Levinsen et al., 2012]. Efimov states, however do not exist for l = 1 resonances
[Nishida, 2012]. As for narrow s-wave resonances, p-wave resonances are accompanied by
large losses making their exploitation difficult and scarce to date.

Nevertheless, p-wave Feshbach resonances have been observed and studied in different
ultracold gas systems DeMarco et al. [1999]; Regal et al. [2003]; Zhang et al. [2004]; Dong
et al. [2016]. Next to studies surrounding p-wave Feshbach molecules [Gaebler et al.,
2007; Waseem et al., 2016; Zhou and Cui, 2017; Bazak and Petrov, 2018; Duda et al.,
2022], loss processes and scaling laws were studied extensively [Regal et al., 2003; Zhang
et al., 2004; Schunck et al., 2005; Waseem et al., 2017]. Especially single component Fermi
gases in the hyperfine ground state are of special interest due to suppression of two-body
losses [Waseem et al., 2018; Yoshida et al., 2018; Waseem et al., 2019]. Confinement to
less than three spatial dimensions also leads to a reduction of losses [Günter et al., 2005;
Marcum et al., 2020]. The contact relation was investigated by [Luciuk et al., 2016] showing
universal behavior close to a p-wave resonance. Ticknor et al. [2004] observed a multiplet
structure of the p-wave resonance in ultracold 40K attributed to spin-spin interactions.
The molecular state inducing the resonance carries the l = 1 angular momentum as a
molecular rotation and the projection of the rotation onto the magnetic field leads to the
splitting of the ml = 0, ml = ±, 1 allowing individual control of the different rotational
projections.

This thesis reports on the exploration of p-wave Feshbach resonances in ultracold 6Li
and 6Li-133Cs gases. An improved experimental apparatus is presented, allowing atom
loss spectroscopy with resolutions down to several milli-Gauss on three 6Li and five 6Li-
133Cs Feshbach resonances. A doublet structure, that we assign to spin-spin interactions,
is observed for the first time on three 6Li p-wave Feshbach resonances. For the first
time we report on the observation of spin-rotation interaction on three 6Li-133Cs p-wave
Feshbach resonances. Here, the pair-rotation couples to the atomic spins, leading to an
additional splitting of the ml = −1 and ml = +1 projections. With a simple model we
show that the strength of spin-rotation coupling depends significantly on the short range
part of the electronic wave functions. In an exploratory study of losses close to a single
component Fermi p-wave Feshbach resonance we find changes in qualitative loss behavior
depending on the density and temperature of the gas. We describe collisional cooling due
to three-body losses or out of equilibrium momentum distributions due to two-body loss
behavior.
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This thesis is divided into two parts. In the first part we focus on the presentation of
the improved experimental preparation and characterization of ultracold 6Li and 6Li-133Cs
samples for the investigation of p-wave Feshbach resonances. Chapter 1 gives an overview
of the experimental apparatus starting from the vacuum system and the magnetic field
creation, describing also the optical cooling and trapping techniques and conclude with the
radio-frequency system and the absorption imaging for detection. Chapter 2 presents the
experimental sequence and characterization of the improved creation of a degenerate 6Li
sample. Additionally, details of the experimental sequence for the creation of an ultracold
6Li-133Cs mixture are given. Chapter 3 discusses the improved calibration of the magnetic
field landscape, essential for the high precision measurements in the vicinity of the p-wave
resonances. In the second part of the thesis we present the exploration of 6Li and 6Li-133Cs
p-wave Feshbach resonances. After an introduction into atomic collision, containing the
basics of scattering and Feshbach resonances in chapter 4, we present our findings on spin-
spin interactions in 6Li and 6Li-133Cs resonances and their temperature dependence in
chapter 5. Chapter 6 reports on the measurements of spin-rotation splitting on three 6Li-
133Cs p-wave Feshbach resonances and their temperature dependence. A simple model,
estimating the spin-rotation coupling constant γ is presented. In the last chapter 7 we
present the exploratory study of losses in a single component Fermi gas in the hyperfine
ground state.
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Part I

An Improved Experimental
Lithium-Cesium Platform





1. Experimental Apparatus

Before going into details of the improved setup we give an introduction to the basic exper-
imental apparatus used for the preparation of the ultracold Lithium and Lithium-Cesium
samples. Parts of the experimental setup have been described previously in Repp [2013];
Pires [2014]; Ulmanis [2017]; Häfner [2017]. Figure 1.1 shows a modular overview of the ex-
perimental apparatus. The system is separated into six (almost) independent sub-systems
which are the vacuum system, magnetic field coils, optical cooling systems, systems for
optical trapping, radio-frequency systems and the detection system. Each of the modules
consist of further sub-systems that are presented in the following sections. Parts of the
experimental apparatus that are not included here are environment systems such as room
temperature stabilization, water cooling or control systems such as experimental control
and experimental monitoring systems. In the following description we follow the route of
the atoms from the hot oven at several hundreds of K to the detection at several hundreds
of nK.

1.1 Vacuum System

Figure 1.2 shows an overview of the vacuum chamber of the Lithium-Cesium experiment.

The double species oven is the first part of the vacuum system. It follows a similar
design as used in Stan and Ketterle [2005] and is shown in figure 1.2 as (a). It is used
for the creation of two atomic beams. Despite the large difference in vapor pressure for
both species [Gehm, 2003; Steck, 2002] we achieve separat control over the atomic flux
by operating the two different oven chambers containing the different species at different
temperatures. Typically temperatures are TLi = 635 K and TCs = 375 K. The atomic
beams leave the oven through a nozzle with a diameter of 10 mm. Due to the large
mass difference between 6Li and 133Cs and the two operation temperatures this results in
atomic fluxes of ΦLi = 5 × 1015atomss−1 and ΦCs = 1 × 1014atomss−1 and mean atomic
velocities of v̄Li = 1600 m s−1 and v̄Cs = 250 m s−1. The pressure in the oven region is
approximately p ≈ 1×10−3mbar and is maintained by a turbo molecular pump. The oven
chamber is followed by a differential pumping stage consisting of a 103 mm long tube with
a diameter of 7 mm, directly connected to an ion getter pump (IGP).
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Chapter 1. Experimental Apparatus

Vacuum System
- Double Species Oven

- Zeeman Slower

- Zeeman Viewport

- Experimental Chamber

1

Optical CoolingMagnetic Fields
- Compensation Cage
- Zeeman Slower Coils
- MOT Coils
- Curvature Coils
- Feshbach Coils
- Raman Coils

Lithium System

- Li MOT
- Li Gray Molasses

Cesium System 

- Cs MOT
- Cs dRSC

2 3

- Reservoir Trap

- Dimple Trap

- Lithium RF

- Cesium MW

- Camera x1
- Camera x3
- Laser System

Optical Trapping4 Radio Frequency5 Detection6

Figure 1.1: Modular overview of the experimental apparatus presented in the
following sections: the Vacuum system (1), the magnetic field coils (2), the systems
for optical cooling of 6Li and 133Cs (3), the optical dipole trapping laser systems
(4), the radio-frequency systems for 6Li and 133Cs spin flips (5) and the detection
systems for absorption imaging at low and high magnetic field (6).

The Zeeman slower follows the differential pumping stage and is effectively another
differential pumping stage of a length of a 500 mm at a diameter of 10 mm ((b) in figure
1.2). It additionally consists of magnetic field coils and optical light explained in sections
1.2 and section 1.3.

The experimental chamber is the heart of the experiment and follows the Zeeman
slower. In figure 1.2 it is marked as (c). Due to the two differential pumping stages
between oven and experimental chamber, we are able to hold a difference in pressure of
more than five orders of magnitude. An Ion getter pump (IGP), a Titanium Sublimation
pump (TiSub) and a non-evaporable getter coating [Benvenuti et al., 1999] hold a pressure
as low as 10−11mbar. Optical access to the center of the experimental chamber is provided
via four CF63 and two CF40 viewports in horizontal direction at a distance of ∼130 mm
from the center. In vertical direction two custom made CF150 reentrant viewports are
placed ∼19.5 mm away from the center. This allows for large NA optical access and for
magnetic coil placement close to the atoms for the generation of large magnetic fields. All
viewports are anti-reflection coated at the wavelength of 6Li (670 nm), 133Cs (852 nm)
and the wavelength of common optical dipole traps (1064 nm). Suprasil 3001 glass is used
for the viewports to minimize infrared light absorption.

The slower viewport closes the vacuum system ((d) in figure 1.2). It grants optical
access to the Zeeman slower. To minimize viewport coating by the atomic beam that is
directed directly at the viewport, the window is heated to temperatures of 485 K.

8
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Oven

IGP

IGP IGP TiSub

TiSub

Differential 
pumping chamber
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UHV 
pumping
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Reentrant
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Inner
helical coils

Outer
helical coils

Experimental 
chamber

a

b

c d

b

c

Figure 1.2: Overview of the vacuum system of the 6Li-133Cs experiment. The
upper panel shows the whole vacuum system. (Starting from the left) First the
double species oven including an Ion-getter-pump (IGP) and a Titanium Sublima-
tion pump (TiSub) (a) followed by a differential pumping stage and another IGP
separating the oven vacuum from the high vacuum. Then comes the Zeeman slower
(b) that also acts as a differential pumping stage. The experimental chamber (c)
is the heart of the experiment with optical access from eight viewports. On the
right side of the chamber a set of IGP and TiSub pumps generate the ultra high
vacuum with pressures of 10−11mbar. They are followed by the Slower viewport
(d). The lower panel shows a cross section of the Zeeman slower including the four
different coils and the experimental chamber with the reentrant viewports close to
the chamber center. Picture adapted from Repp [2013].

Overall the vacuum system allows for the generation of a 6Li and 133Cs atomic beam
into an experimental chamber at a pressure of 10−11mbar with very good optical access
and large magnetic fields.

1.2 Magnetic Fields
Besides optical control of atoms, we also use magnetic fields to control the atomic samples.
A detailed discussion of the impact of magnetic fields on atoms is given in chapter 3.
Here we introduce the magnetic field coils in our experiment that are used for Zeeman
deceleration, magneto-optical trapping, magnetic field compensation, Raman sideband
cooling of 133Cs and scattering control via Feshbach resonances (see chapter 4.2). The
most important coils are depicted in figure 1.3.
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Chapter 1. Experimental Apparatus

MOT coils

Feshbach- and
Curvature coils

Figure 1.3: Feshbach- and MOT-coil setup around experimental chamber. The
MOT coils are located far away from the experimental chamber. The Feshbach coils
and the curvature coils are situated as close as possible to the center of the vacuum
chamber at a distance of 31.5 mm from the center. Switching times for the MOT
coils are >10 ms, for the Feshbach coils ∼1 ms and for the curvature coils ∼1 ms.
Picture adapted from Repp [2013].

The Zeeman slower coils are a set of four interleaved helical coils that are situated
around the 1 m long Zeeman slower tube shown in the lower part of figure 1.2. Their
purpose is the generation of magnetic gradients along the tube for either 6Li or 133Cs to
provide an deceleration scheme as used in a Zeeman slower [Phillips and Metcalf, 1982].
A detailed description of our double species Zeeman slower is given in [Repp, 2013]. The
principle works as follows: the Doppler shift on an atomic resonance frequency is compen-
sated by the Zeeman shift of the magnetic field inside the Zeeman slower such that the
applied optical beam along the slower is at resonance with the atomic resonance frequency.
The optical pressure leads to slowing of the atoms and the decreasing magnetic field in-
duced Zeeman shift leads again to a precise compensation of the Doppler shift. Thus the
atoms are slowed along the Zeeman slower until they reach the center of the experimental
chamber. The ideal magnetic field profile between 6Li and 133Cs differs by a factor 4.7
Repp [2013]. This is provided by our double species Zeeman slower following the design
of Bell et al. [2010]. An additional adaption coil generates a smooth transition from the
Zeeman slower to the magnetic gradient field of the Magneto-Optical-Trap (MOT) coils to
minimize transversal expansion of the atomic beam [Schünemann et al., 1998]. The whole
Zeeman slower coil system is water cooled to optimize heat dissipation.

The compensation cage is used for the compensation of the earth magnetic field and
other external magnetic fields from outside the experimental system. The cage consists
of three pairs of coils situated in the three spatial dimensions around the experimental
chamber. A coil consists of a rectangle with dimensions of 800mm×1380mm×660mm. The
vertical coils consist of 100 windings and the horizontal coil pairs consist of 100 and 150
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1.2. Magnetic Fields

windings. The coil pairs can each provide magnetic fields at the center of the experimental
chamber of up to 2 G. The calibration of this cage is discussed in chapter 3.3. The fields
are only changed following a new calibration which are preformed approximately every
half year.

The MOT coils generate a quadrupole field for the MOT and can be seen in figure 1.3
in red. The pair of coils consist of 6 layers of 12 windings with a minimal radius of 100 mm
at a distance of 204 mm from each other around the center of the experimental chamber.
They are setup in an anti-Helmholtz configuration providing gradients of ∂BCs/∂z =
9.5 G cm−1 and ∂BLi/∂z = 31 G cm−1 at currents of ICs = 30A and ILi = 97.7A for
the 133Cs- and 6Li-MOT respectively. Additionally the gradient provided by the MOT
coils leads to a smooth Zeeman deceleration from the Zeeman slower up to the center
of the experimental chamber. The MOT coils are also cooled by water flowing through
the hollow core wire to minimize heating. Due to the large size of the coil pair and the
large inductance, the switching times of the MOT coils are limited to > 10 ms. This large
switching time is problematic for applications like gray molasses cooling of 6Li. Repp
[2013] provides more details on the implementation of the MOT coils.

The Curvature coils are another set of anti-Helmholtz coils generating magnetic
quadrupole fields around the center of the experimental chamber of up to ∂B/∂z =
100 G cm−1. They consist of two layers with two windings and are both placed within
the Feshbach coils (see below and figure 1.3) at a distance of 63 mm from each other. The
low inductance leads to fast switching times of 1 − 2 ms. After loading the MOT using
the MOT coils, the atoms are transfered to the quadrupole field provided by the curva-
ture coils to effectively switch the quadrupole field before cooling 6Li with gray molasses
cooling or 133Cs with degenerate Raman sideband cooling (dRSC).

The Feshbach coils provide large magnetic fields of up to 1200 G at the center of
the experimental chamber for the control of intra- and interspecies scattering length via
Feshbach resonances (see chapter 4.2). Figure 1.3 shows the configuration of the Feshbach
coils as implemented in the experiment. The coils are placed inside the recess of the
reentrant viewports. Both coils consist of 24 windings, 4 windings in axial directions
and 6 in radial direction with a minimal inner radius of 39.1 mm. The distance from the
center of the chamber and the coils is 31.5 mm. The helix configuration and the point
symmetric configuration of both coils assures a homogeneous field in the center of the coil
setup. Distance of 5 mm between the windings provide space for glass fiber tubes for water
cooling. The profiles of the inner coils are milled into a peek mount with a CNC milling
machine to provide maximal precision and consistency. The outer layers are milled into
a low viscosity epoxy used to glue the wire. Heat is dissipated by water cooling using an
industrial water cooler pumping water at 10 bar through a hollow core wire with a round
inner hole of 2.8 mm inner diameter and a quadratic cross section of 4 mm × 4 mm. The
temperature is stabilized to ∆T < 0.3 K. This reduces changes in resulting resistance
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Chapter 1. Experimental Apparatus

and thermal expansion which would lead to changes in the magnetic field. A Delta SM
15-400 power supply creates currents up to 400 A at voltages up to 15 V. A current
transducer (Ultrastab 866 Precision Current Transducer) is used to monitor and stabilize
the actual current using a PID feedback loop. We use MOSFET switches for fast switching
of the current. To reach maximal magnetic field stability an experimental sequence with
a certain magnetic field function needs to be constantly repeated for roughly 12 h. Then
a thermal equilibrium is reached within that experimental sequence. The experimental
control system is running on a 16bit channel limiting the magnetic field control resolution
to ≈ 20 mG. The precise calibration of the magnetic field and the magnetic field landscape
around the center is presented in chapter 3.

The Raman coils and offset coils are three sets of coils arranged in Helmholtz
configuration in three spatial directions. They are used to generate small homogeneous
magnetic offset fields to either displace the center of gradient fields (displace the MOT
cloud), generate a field for degenerate Raman sideband cooling or to add experimental
resolution to the Feshbach field. Placed either around the CF63 viewports or the CF150
viewports of the main chamber the coil pairs generate fields of 150−300mG A−1 at switch-
ing times of 1 − 2ms. The coil pair mounted in vertical direction can provide magnetic
fields of ±2G with theoretical resolutions of 0.2mG. This is used to provide an increase
in magnetic field resolution used for atom loss spectroscopy of part II of this thesis.

1.3 Optical Cooling
In this section we present the optical cooling used on 6Li and 133Cs during the preparation
of ultracold 6Li and 6Li-133Cs mixtures. MOT cooling methods are standard methods
that can be found in several books [Foot, 2005; Weidemüller and Zimmermann, 2003]. A
more detailed description of the setup and the laser systems can be found in Repp [2013];
Pires [2014] and Häfner [2017].

Optical cooling for 6Li and 133Cs is performed in different stages. First stage
is the deacceleration in the Zeeman slower. The hot atoms emitted by the effusive oven
(see section 1.1) are decelerated by a combination of a gradient magnetic field (see section
1.2) and red detuned light on the D2-line for both species (marked at "Li+Cs Slower"
in figure 1.4). After the slowing of the fast atoms, the atoms are trapped in the MOT
consisting of a magnetic quadrupole field (see section 1.2) and three counter propagating
beams in σ+ and σ− polarization for each species. In figure 1.4 these beams are called
"Li MOT" and "Cs MOT" beams. Beams are coupled out in linear polarization from
Schäfter+Kirchhoff fiber couplers and pass through quarter-wave plates (green elements
in figure 1.4) to generate the circular polarized light. Lithium beams are retroflected in
all three dimensions. Cesium beams are generated by six fiber couplers. Temperatures in
the MOT reach approximately TLi = 300 µK and TCs = 10µK. Due to the non resolved
hyperfine structure in 6Li red detuned MOT light does not lead to sub-Doppler cooling.
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Figure 1.4: Overview over optical cooling beams at the experimental chamber.
Left side shows the top view, right side shows the side view. Red beams belong to the
6Li setup, blue beams belong to the 133Cs setup. 6Li cooling consists of a Zeeman
cooling beam, Doppler cooling (broad red beams), gray molasses cooling (small
dark red beams) and imaging beams (overlapped with Doppler cooling beams).
133Cs cooling consists of Zeeman cooling beam, Doppler cooling (broad blue beams),
Raman lattice and polarizer beams (small dark blue beams) and imaging beams
(overlapped with Doppler cooling beams). Picture adapted from Repp [2013].

However, for 133Cs the red detuned MOT light cools the atoms below the Doppler limit
[Lett et al., 1988].

Gray molasses cooling on 6Li is used to cool the atoms down to 40 µK within a few
ms. The working principle, implementation and characterization are presented in chapter
2.1.

Degenerate Raman sideband cooling on 133Cs leads to cooling down to the recoil
temperature. The setup follows Kerman et al. [2000]; Treutlein et al. [2001]. An optical
lattice consisting of three beams (see figure 1.4) detuned by 9 GHz from resonance is used
to confine the atoms. The different total angular momentum projections mf of the 133Cs
ground state atoms are shifted via a small magnetic field on the order of 100 mG such
that the Zeeman shift equals the trapping frequency of the optical lattice. By applying a
Raman polarizer, the atoms are pumped into the lowest vibrational state of the mf = 3
state. We reach spin polarizations in the mf = 3 state of 85% at temperatures below
1 µK. Details are given in Repp [2013].

Finally the setup is used for atom imaging (see section 1.6) in x1- and in x3- direction.
Imaging beams are separated from MOT beams via polarizing beam splitters. After optical
cooling we end up with approximately NLi = 4× 107 6Li atoms and NCs = 4× 107 133Cs
at temperatures of TLi = 40µK and TCs = 1µK.
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55 W
Reservoir trapDimple trap

x1

x2x3

Figure 1.5: Experimental chamber and optical dipole traps in the 6Li-133Cs ex-
periment from top view. The Dimple trap (red) has two 60 µm beams overlapped
at an angle of 8° and a power of up to 120 W. The Reservoir trap (blue) has two
300 µm beams intersecting at 90° with a power of up to 55 W. It can be moved by
1 mm using a Piezo mirror. Picture adapted from Repp [2013].

1.4 Optical Trapping
Optical dipole traps are essential tools in ultracold atom experiments [Grimm et al., 2000].
Strong optical fields induce electric dipole moments in neutral atoms which retroactively
interacts with the optical field. The electric dipole p̃ of an atom through induced by an
AC-light field Ẽ is given by p̃ = α(λ)Ẽ where α(λ) is the polarizability leading to the
potential

Udip = − 1
2ε0c

Re(α(λ))I (1.1)

where I = 2ε0c|Ẽ|2 is the intensity of the light field, ε0 the vacuum permittivity and
c the speed of light.The polarizability α(λ) is species, state, wavelength and polarization
dependent, however the effects of state and polarization dependence are neglected here.
The potential now only depends on the wavelength λ and the light field I(~r), where
~r = (x1, x2, x3). For a Gaussian beam propagating in x1 direction with power P and
beam waist w, the intensity distribution I(~r) is given by

I(~~r) = 2P
πw(x1)2 exp

(
− 2x2

2
w(x1)2

)
exp

(
− 2x2

3
w(x1)2

)
(1.2)

where w(x1) = w0(1+( λx1
πw2

0
)2)1/2 is the beam waist along the beam and w0 is the beam

waist at the focus. For a crossed beam trap with an angle β between the two beams, the
trap depth is given by

U0 = −P Re(α(λ))
πε0cw2

0
(1.3)

Writing the potential in a harmonic approximation as Udip(~r) = 1/2m∑3
i=1 ω

2
xi
x2
i ,

where m is the mass and ωxi is the trapping frequency gives the trapping frequencies
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ωx1 =

√√√√4 cos
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√√√√4 sin
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β/2

)2
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0

ωx3 =
√

4U0
mw2

0
(1.4)

In the experiment we use two different dipole traps, both at a wavelength of 1064 nm.
Both traps are presented in detail in Pires [2014]; Ulmanis [2017] and Häfner [2017]. The
trap geometries are shown in figure 1.5.

The Reservoir trap is shown in blue in figure 1.5. Its purpose is to load the optically
cooled 133Cs into the trap and to act as a reservoir during the dimple trick. The two beams
intersect at 90° and the focus beam waist is 300 µm at a maximal power of 55 W. The trap
can be moved by 1 mm while it is loaded with 133Cs atoms using a Piezo mirror. This
mechanism is used to overlap 6Li and 133Cs.

The Dimple trap consists of two beams intersecting at an angle of 8.4° and with a
focus beam waist of 60 µm and a maximal power of 120 W. The trap fulfills the task of
loading the optically cooled 6Li into the trap and to act as a dimple trick for 133Cs [Pinkse
et al., 1997; Stamper-Kurn et al., 1998]. In section 2.2 we discuss spatial modulation of
the Dimple trap for enhanced loading of 6Li.

1.5 Radio-frequency
Radio-frequency signals can be used for population control of hyperfine states, radio-
frequency spectroscopy [Ulmanis et al., 2015] or magnetic field calibration [Häfner, 2017].
Here we introduce the 6Li radio-frequency (rf) and 133Cs microwave (mw) systems. In
chapter 3 we go deeper into details and present magnetic field calibrations by driving splin
flip transitions using the following setups:

The 6Li radio-frequency setup is used for the creation of frequencies between
10 MHz and 80 MHz. The setup is explained in detail in Häfner [2017]. The rf signal
is generated by an Agilent E4421B signal generator. The signal shape can be formed by
mixing the rf signal with an external pulse shape. An interlock protects the rf antenna,
situated inside the vacuum, from overheating (see [Filzinger, 2018]). A ZHL-100W-52+
amplifier from Mini Circuits creates rf powers up to 100 W.

The 133Cs microwave setup is used for the creation of frequencies between 9 GHz and
13 GHz. The mw signal is generated by a Rohde & Schwarz SMA100B signal generator
and amplified by a ZVE-3W-183+ Mini Circuits amplifier. A WR90 horn antenna from
Tactron Elektronik with a 15 dB gain is used as output.

Both signal sources are referenced to an SRS FS725 — 10 MHz Rb frequency standard
for long term stabilization.
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Chapter 1. Experimental Apparatus

1.6 Detection
Absorption imaging techniques are a common tool to extract information about the atomic
clouds [Ketterle et al., 1999]. By shining resonant light onto the atoms and recording the
absorbed light with a CCD camera the atom number, the atomic distribution and the
sample temperature can be reconstructed. Here we give an overview on the detection
method and our detection setup.

When shining resonant light onto an atomic cloud and recording the light intensity
on a CCD ship one gets an intensity distribution Iabs(x1, x2) called absorption image.
Recording a second picture without the atoms leads to the so called division picture
Idiv(x1, x2). A final picture without light gives a background picture Ibac(x1, x2). Using
Beer’s law I(x3) = I0 exp (−σx3) where I0 is the initial light intensity, σ is the absorption
cross section and x3 is the direction of the light beam, we can reconstruct the initial atomic
column density distribution n(x1, x2) =

∫
n(x1, x2, x3)dx3 in the direction of the incident

light with

n(x1, x2) = − 1
σ

ln
(
Iabs(x1, x2)− Ibac(x1, x2)
Idiv(x1, x2)− Ibac(x1, x2)

)
(1.5)

By fitting a two dimensional Gaussian function to the column density distribution we
extract the atom number N and the cloud sizes σx1 and σx2 from the absorption image.
By studying the ballistic expansion of the cloud after release from a trap, we also extract
the temperature T of the system via

T = m

kBt2
(σ(t)2 − σ(t = 0)2) (1.6)

where t is the time after the release of the atoms from the trap called time of flight
(tof), σ(t) is the cloud size at time t, m is the atomic mass and kB is the Boltzmann
constant.

The setup of the imaging system in our experiment can be found in Repp [2013]; Pires
[2014] and Häfner [2017].

Cameras x1 and x3 allow for absorption imaging in x1 and x3 direction (see figure
1.4) enabling access to all the spatial dimensions of the atomic cloud. Additionally this
allows for simultaneous imaging of 6Li and 133Cs.

The laser systems create resonant light for both species at magnetic fields from 0 G
up to 1200 G allowing for high-field imaging. The setups are explained in detail in Heck
[2012]; Schönhals [2013].

Since resonant light is destructive for a trapped atomic cloud, we also use the imaging
light for the cleaning of single 6Li spin states by applying a short light pulse on resonance
of the desired spin state.
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2. Improved Cooling and Trapping
of Lithium and Lithium-Cesium

In this chapter we describe an improved production of a degenerate 6Li sample and the
preparation sequence for an ultracold 6Li-133Cs mixture. The newly implemented gray
molasses cooling on 6Li as a sub-Doppler cooling scheme improves the starting conditions
for the loading of the optical dipole trap an thereby also the resulting final conditions of
the atomic sample. We go through the improved preparation sequence for 6Li step by step
starting with the working principle, implementation and characterization of gray molasses
cooling in section 2.1. Afterwards, we report on the modulated dipole trap for enhanced
dipole trap loading in section 2.2. We present the characterization of forced evaporative
cooling and the final degenerate 6Li sample in section 2.3. We close the chapter with
a summary of the preparation sequences for an ultracold 6Li sample and an ultracold
6Li-133Cs mixture in sections 2.4 and 2.5 respectively.

2.1 Gray Molasses Cooling

The standard optical cooling schemes used for alkali atoms are limited in 6Li due to the
unresolved hyperfine splitting of the 22P3/2 excited states [Lett et al., 1988]. Additionally,
the light mass of Lithium leads to a rather high Doppler temperature of around 140 µK
leading to an overall high limit of the optical cooling temperature. In the past two tech-
niques have been developed to reduce the limit of optical cooling of 6Li. The first method
is Narrow-line cooling on the 22S1/2 → 32P3/2 transition at 323 nm. Due to the reduced
linewidth of the transition, the Doppler temperature reduces to 18 µK. This method has
been implemented successfully in 6Li experiments [McKay et al., 2011; Duarte et al.,
2011] and lead to optical cooling to temperatures of less than 60 µK. The other method is
gray molasses cooling. Using the D1-line and a combination of Sysiphus cooling [Castin
et al., 1991] and velocity selective coherent population trapping (VSCPT) [Grynberg and
Courtois, 1994; Weidemüller et al., 1994], this method lead to temperatures around 40 µK
in 6Li for different groups [Grier et al., 2013; Burchianti et al., 2014; Gerken, 2016]. In
this section we present the working principle of gray molasses cooling, the experimental
implementation and characterization. The work in this section is based on Gerken [2016].
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Δ

Figure 2.1: Three-level Λ scheme with two ground states |1〉, |2〉 and an excited
state |3〉 coupled by two light fields Ω1 and Ω2 detuned from resonance by δ1 and δ2
respectively. For δ1 = δ2 this configuration leads to a dark state |ΨD〉 and a bright
state |ΨB〉 configuration as described in the text. Figure adapted from Grier et al.
[2013]

Dressed state picture in three-level Λ configuration presents a good model
system to understand the base principles of gray molasses cooling including a combination
of Sisyphus like cooling, a dark state and VSCPT. Figure 2.1 shows a three-level system
in Λ configuration, consisting of two ground states |1〉, |2〉 and an excited state |3〉 coupled
by two light fields with Rabi frequencies Ω1 and Ω2, detuned by δ1 and δ2 from the excited
state, respectively. In the case of δ1 = δ2 the Hamiltonian H in the dressed state picture
is given by

H = Hkin +H0 + V = Hkin + ~
2


0 0 Ω1

0 0 Ω2

Ω1 Ω2 −2δ1

 (2.1)

,
where Hkin = 1

2mv
2, H0 and V give the kinetic energy, the bare energies of the states

and the light coupling, respectively. The diagonalized Hamiltonian gives the new basis
with a dark and a bright state |ΨD〉 and |ΨB〉

|ΨD〉 = 1√
Ω2

1 + Ω2
2

(Ω2 |1〉 − Ω1 |2〉) (2.2)

,

|ΨB〉 = 1√
Ω2

1 + Ω2
2

(Ω2 |1〉+ Ω1 |2〉) (2.3)

.
Here for Hkin = 0, |ΨD〉 does not experience a light shift ED = 0, |ΨB〉 instead couples

to the bright state |3〉 and experiences a light shift of EB = Ω2
1+Ω2

2
δ1

. Including a kinetic
energy term that is non-zero Hkin 6= 0 the detunings δ1 and δ2 are Doppler shifted and
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2.1. Gray Molasses CoolingD. Rio Fernandes et al.

0

z
λ/4 λ/2 3λ/4

E

ψB

ψD

Fig. 1: Gray Molasses scheme. On a F → F ′ = F or
F → F ′ = F −1 optical transition with positive detuning,
the ground state splits into a dark and a bright manifold
with positive energy, shown as |ψD〉 and |ψB〉 respectively.
In the presence of a polarization gradient, the bright state
energy is spatially modulated. Like in Sisyphus cooling,
energy is lost when an atom in |ψB〉 climbs a potential
hill before being pumped back into the dark state |ψD〉.
Motional coupling between |ψD〉 and |ψB〉 occurs prefer-
entially at the potential minima.

on the F → F ′ = F (F → F ′ = F − 1) optical tran-
sition. For any polarization of the local electromagnetic
field, the ground state manifold possesses one (two) dark
states which are not optically coupled to the excited state
by the incident light [12,16]. When the laser is detuned to
the blue side of the resonance, the ground state manifold
splits into dark states which are not affected by light and
bright states which are light-shifted to positive energy by
an amount which depends on the actual polarization and
intensity of the laser field (see fig. 1).

When the atom is in a bright state, it climbs up the hill
of the optical potential before being pumped back to the
dark state near the top of the hill. The kinetic energy of
the atom is thus reduced by an amount of the order of the
height of the optical potential barrier. The cooling cycle
is completed near the potential minima by a combination
of motional coupling and optical excitation to off-resonant
hyperfine states.

We implement 3D gray molasses cooling in 40K on the
D1 transition (see fig. 2). In alkali atoms, the P1/2 excited
level manifold has only two hyperfine states, which are
better resolved than their P3/2 counterparts. These facts
allow for less off-resonant excitation and a good control of
the cooling mechanism. A first laser beam (cooling beam)
is tuned to the |2S1/2, F = 9/2〉 → |2P1/2, F

′ = 7/2〉
transition with a detuning δ > 0. A second laser beam
(repumping beam) is tuned to the |2S1/2, F = 7/2〉 →
|2P1/2, F

′ = 7/2〉 transition with the same detuning δ.

2S1/2

F=7/2

F=9/2

2P1/2

F'=7/2

F'=9/2

7
7

0
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 n
m
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𝛿
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Fig. 2: Level scheme for the D1 transition of 40K and
transitions used for gray molasses cooling. The laser de-
tuning from the cooling/repumping transitions is δ and
the detuning from the off-resonant excited hyperfine state
F ′ = 9/2 is δ2 (see text).

As mentioned above, two mechanisms can lead to the
departure from the dark state. The first one is the mo-
tional coupling Vmot due to the spatial variations of the
dark state internal wave-function induced by polarization
and intensity gradients. The second one is the dipolar
coupling Voff via off-resonant excited hyperfine states. A
rough estimate shows that Vmot ' ~kv, where v is the
velocity of the atom and k the wave-vector of the cool-
ing light, while Voff ' ~Γ (Γ/δ2) I/Isat, where Γ−1 is the
lifetime of the excited state, I the light intensity, Isat the
saturation intensity and δ2 the detuning to off-resonant ex-
cited state. Comparing the two couplings, we see that the
motional coupling is significant in the high velocity regime
v & Γ/k (Γ/δ2) I/Isat. In our case, the off-resonant level
F ′ = 9/2 (see fig. 2) is detuned by δ2 = 155.3 MHz+δ from
the cooling transition |2S1/2, F = 9/2〉 → |2P1/2, F

′ =
7/2〉. For I ' Isat, motional coupling dominates for
T & 50µK, meaning that both processes are expected to
be present in our experiments. In general, the transition
rate between |ψD〉 and |ψB〉 induced by motional coupling
Vmot and the off-resonant coupling Voff are both maximal
when the distance between the dark and bright manifolds
is smallest, which favors transitions near the bottom of
the wells of the optical lattice.

In 40K, the simplified discussion presented so far must
be generalized to the case involving many hyperfine states
(10 + 8). However, the essential picture remains valid. In-
deed, by numerically solving the optical Bloch equations

p-2

Figure 2.2: A spatially dependent polarization for a three-level λ system as shown
in figure 2.1 with a positive detuning δ1 = δ2 > 0 leads to a spatially dependent light
shift of the bright state |ΨB〉. Atoms in a moving frame experience velocity selective
coupling from the dark state |ΨD〉 to the bright state |ΨB〉 as shown in equation
2.4. Atoms climb the potential hill and decay back to the dark state leading to loss
of kinetic energy. Figure taken from Rio Fernandes et al. [2012]

.

the dark state picture breaks down. The dark state |ΨD〉 experiences a velocity dependent
coupling to the bright state |ΨB〉 given by

P|ΨD〉→|ΨB〉 = 2

 Ω1Ω2√
Ω2

1 + Ω2
2

vm
k

~


2

δ1
δ1

(Ω2
1 + Ω2

2) (2.4)

where k is the wavenumber of the transition, v is the velocity of the atom [Papoff
et al., 1992]. The coupling probability increases with v2 [Dalibard and Cohen-Tannoudji,
1989] and the inverse of the bright state light shift EB. The light field alone does not lead
to cooling. A spatially dependent light field however, leads to the expected results.

A Polarization gradient field leads to a more complex system. The light coupling
between different hyperfine states

∣∣∣f,mf

〉
and

∣∣∣f ′,m′f〉 is polarization dependent leading
to a polarization dependent light shift. A light field with spatially dependent polarization
leads to a dark and bright state configuration as shown in figure 2.2. Polarization gradient
light fields can be generated in different ways. One way is used in a Magneto-Optical-trap
(MOT) where two counter propagating beams are in σ+-σ− configuration for all three
spatial dimensions. Another method are two counter propagating beams in horizontal
and vertical polarization. The spatially dependent phase shift will then lead to a change
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Figure 2.3: Temperature T (black circles) and number of atoms N (blue squares)
after 1 ms of gray molasses cooling as a function of the relative detuning ∆ in units
of Γ with δcool = 4Γ, Icool = 15Isat and Irep = 0.75Isat. At the Raman condition
∆ = 0, a capture efficiency of 80% and a temperature of T = 42µK are reached.
For ∆ = −0.25Γ 100% of the atoms are trapped at a temperature of T = 80µK.
Taken from Gerken [2016]

of the polarization along the beam axis with a period of half the wavelength [Dalibard and
Cohen-Tannoudji, 1989].

The process of a moving atom in the dark state, coupling to the bright state at low
bright state light shift EB via VSC, climbing up the potential hill, decaying to the dark
state can be repeated several times. The process will stop when the velocity of the particle
is reduced such that the coupling probability goes to zero. Within the three level model the
theoretical limit is at ~v = 0, small compared to the Doppler limit or even the recoil limit
[Esslinger et al., 1996]. Off-resonant coupling and imperfect polarization however lead to
coupling of the dark state to the bright state and limit the temperature. Nevertheless the
nature of gray-molasses cooling leads to a population of the coherent dark state as a final
stage of the cooling process leading to the name of VSCPT [Arimondo, 1991].

The Experimental implementation and characterization on 6Li in our ex-
periment is presented in Gerken [2016]. Three counter propagating beams in σ+-σ− con-
figuration consisting of two frequencies f|f=1/2〉→|f ′=3/2〉 and f|f=3/2〉→|f ′=3/2〉 on the D1

line at intensities Icool and Irep respectively, both detuned by ∆ from resonance where
implemented. The light is switched on for a short pulse of t = 1 msat zero magnetic field
after the MOT phase. An improved version of the optical setup is presented in A.1. It
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is important to note, that a magnetic field would disturb the cooling scheme very easily.
Considering a Zeeman shift, on the order of the line width ~Γ of the optical transitions,
would lead to the breakdown of the coherent dark state. This is already the case for
magnetic fields on the order of B = 1 G [Gerken, 2016]. Because of this, extra care has
been taken for a fast switching of the magnetic quadrupole field of the MOT but also the
zero field calibration (see chapter 3).

Figure 2.3 shows the final temperature T and atom number N after t = 1 ms of gray
molasses cooling from an initial MOT consisting of N0 = 4× 107 atoms at a temperature
of T0 = 240 µK. The intensities were set to Icool = 15Isat and Irep = 0.75Isat where Isat is
given by Isat = Γ~f3

0 /3c2 where f0 is the transition frequency of the D1 line. The x-axis
shows the relative detuning ∆ = δ1 − δ2. At a relative detuning of ∆ = 0 we achieved
temperatures of 42 µK at a capture efficiency of 80%. Considering no significant expansion
during the cooling cycle, this corresponds to a gain in phase space density by a factor of
approximately 10.

2.2 Dipole Trap Loading
Loading an atomic cloud into an optical dipole trap is a crucial point for the preparation
of ultracold gases [Grimm et al., 2000]. Particular care has to be taken to achieve good
mode-matching between trap and free atom cloud, meaning good overlap in real space and
momentum space. After having discussed the implementation of gray molasses cooling
of 6Li we now describe changes implemented on the dipole trap loading. We start by
discussing what good mode-matching exactly means. Then we describe the setup of the
optical dipole trap and the setup of the trap modulation.

Mode-Matching describes the adjustment of two different phase-space distributions.
Efficient loading of an optical dipole trap can be understood as a projection of the phase-
space distribution ω̄(~r, ~p) onto the volume of the dipole trap. The number of loaded atoms
is estimated by

Nload =
∫
ω̄(~r, ~p)d~rd~p (2.5)

where ω̄(~r, ~p) is the phase space distribution of the atomic cloud as a function of the
position ~r and momentum ~p. For a thermalized gas at temperature T one can divide the
phase-space-density into a spatial density n(~r) and a Maxwell-Boltzmann distribution at
a temperature T . The integral limits are given by the trap volume V and the trap depth
U0 (see chapter 1.4). The number of loaded atoms Nload into the trap is then given by
[Luiten et al., 1996]

Nload = n0V

Erf

√ U0
kBT

− 2√
π

√
U0
kBT

exp
(
−U0
kBT

) (2.6)

21



Chapter 2. Improved Cooling and Trapping of Lithium and Lithium-Cesium

Here n0 is the peak density, kB is the Boltzmann and Erf(x) = 2/
√
π
∫ x

0 exp
(
−x2

)
dx is

the error function. The integral over the density can be replaced by n0V if the trap volume
is small compared to the initial cloud size. In this model one can see, that maximizing
the volume V and the trap depth U0 leads to a maximum number of loaded atoms.
However, there are limitations to the model. If the volume V is chosen larger than the
initial cloud, non-adiabatic expansion of the cloud will lead to a reduction in phase-space-
density [Ketterle et al., 1999]. If U0 becomes large compared to the average kinetic energy
of the atoms, converting potential energy into kinetic energy will lead to heating of the gas.
Limited laser power leads to a forced compromise between V and U . V can be estimated
by the beam waists of the trap giving V = 2wx12wx22wx3 . Equation 1.3 shows how V and
U0 are related. This leads to an optimized loading for a maximal volume at a trap depth
of approximately U0 ≈ 10T0. The change in the initial temperature T0 of the atomic cloud
due to gray molasses cooling requires a new evaluation of the optimal trap volume. In the
following section we discuss the dipole trap setup and spatial modulation scheme we use
to achieve the needed trap volume at the given trap depth.

The time Averaged Potentials is an effective trapping seen by the atoms caused
by fast changing potential compared to the reaction time of the atoms. A fast changing
potential U( ~x1) will lead to a potential UAvg( ~x1) under the following circumstances.

Atoms being exposed to an optical potential U( ~x1) react to the potential on a timescale
given by the trapping frequencies t = 2π/ωx1 . If the potential undergoes slow changes in
time U( ~x1(t)) with t� 2π/ωx1 , then the atoms are exposed to the initial potential charac-
terized by ωx1 but with a moving center position U0( ~x1(t)). If however the changes of the
potential are fast compared to the trap frequencies meaning t� 2π/ωx1 , then the atoms
feel a new potential. As discussed in Roy et al. [2016], the resulting potential UAvg(x1) can
be approximated by an harmonic potential if the modulation function ModFct(t) solves
the equation

1
3A3

Mod

ModFct(t)3 −ModFct(t) + v0t = 0 (2.7)

where AMod is the modulation amplitude and v0 is an integration constant defined
by the modulation frequency fMod and AMod. The resulting potential will thus lead to
trapping frequencies ωAMod

.

The Modulation setup is an extension of the dipole trap setup introduced in chapter
1.4. To understand the implementation of the spatial modulation of this trap, we present
a more detailed description of the dipole trap setup which has been described previously
in Pires [2014]; Ulmanis [2017]; Häfner [2017]. We use a 200 W Yb-doped fiber laser (IPG
YLR-200-LP-WC) at a wavelength of 1064 nm with two back reflected crossed beams at
a crossing angle of β = 8.4° with a beam waist of 60 µm. With a maximum power of
120 W at the position of the atoms, this leads to a trap depth of approximately U0/kB ≈
2 mK. The intensity can be tuned via two acousto-optical-modulators (AOM) (CRYSTAL
TECHNOLOGY, 3110-197), one in horizontal and one in vertical direction. By varying
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Figure 2.4: Schematic of AOM control dipole trap modulation setup. The logic box
is controlled via the experimental control system. The arbitrary waveform generator
produces the modulation signal send to the VCO. The power of the dipole trap is
controlled via a mixer can be turned on and off via a switch. Figure taken from
Neiczer [2018].

the frequency applied to the horizontal AOM, the refractive angle and thus the beam
path changes. Figure 2.5 shows a schematic picture of the beam path at three different
AOM frequencies. The center or crossing point of the two beams indicate the position of
the dipole trap. By tuning the AOM frequency the center of the dipole trap is changed
along the first beam. The setup of the AOM driver is presented in figure 2.4. The AOMs
are driven by radio-frequency signals fAOM (VV CO) on the range of 100 MHz to 120 MHz
supplied by Mini-Circuits ZX95-200+VCOs. Here the input voltage VV CO determines the
frequency fAOM . The signal is amplified with powers between 0 W and 3 W. An arbitrary
waveform generator (RIGOL DG4000) generates the input voltage VV CO. By applying a
periodic signal with frequency fMod to the VCO, one gets an AOM frequency fAOM that
changes with the modulation frequency fMod. This leads to a periodic change of the trap
position. For a modulation frequency fast compared to the trapping frequencies, this leads
to a time averaged potential. With this setup we increase the axial size of the trap up to
a factor of four by applying a triangle shaped modulation waveform.

The experimental characterization of the dipole trap loading with a modulated
trap is presented in figure 2.6. The figures show the normalized temperature of the loaded
cloud T/T0, the normalized number of loaded atoms N/N0 and the normalized phase space
density ρ/ρ0 in the trap in dependence of the normalized axial size σ/σ0. The power of the
trap is kept at a maximum of 120 W. The initial values (corresponding to no modulation)
are given by N0 = 1×106, T0 = 120 µK, ρ0 = 3×10−5 and σ0 = 260 µm. A decrease of the
temperature is explained by the decrease in trap depth with an increasing trap size (see
equation 1.3) and reaches a minimum of 0.5T0. The increase in atom number is caused
by the increase in volume (see equation 2.6) and reaches a maximum of 2.3N0. The PSD
increases up to a factor of 2.3 while loading. Even though the atom number increases and
the temperature decreases for large axial sizes, the PSD decreases due to the decrease in
trap frequency (and thereby atom density).

With the improved dipole trap loading, we end the trap loading with 2× 106 atoms in
each spin state at a temperature of T = 70µK with a PSD of ρ = 7× 10−5.
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x
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y

Figure 2.5: Beam path of the modulated crossed optical dipole trap. The beams
leave from the AOM depicted by the red dot at the lower right and are reflected
at the mirrors depicted by the solid black lines. The crossing point of the optical
dipole trap is translated by adjusting the diffraction angle φ after the ATOM via
frequency fAOM tuning. The crossing position of the respective beams is depicted
by the colored dots at the crossing points. The black dot dashed line depicts the
size of the arising modulated trap.

2.3 Creation of a Bose-Einstein-Condensate of 6Li

For the creation of a quantum degenerate sample of 6Li we need to increase the phase-
space density by more then four orders of magnitude. Forced evaporation on 6Li is a
favorable cooling process to achieve this. Due to the suppression of inelastic loss processes
even at diverging scattering length, a fast and efficient forced evaporation leads to huge
increase in PSD with comparably small loss in atom number. The evaporation efficiency
is defined by [Ketterle and Druten, 1996]

γevap =
log

(
ρ
ρ0

)
log

(
N0
N

) (2.8)

describing the logarithmic increase in PSD over the decrease of atoms. Figure 2.7
shows the PSD of 6Li over the number of atoms during the evaporation sequence. The
red numbers indicate the evaporation efficiency γevap during the different experimental
dipole trap power ramps. The evaporation is started of with an increase of a factor of 600
in the PSD while loosing a factor of 3 in atoms with γevap = 5.8. The evaporation ramp
is followed by a 100 ms adiabatic ramp down of the modulation amplitude. Adiabaticity
has been assured via a two way ramp confirming preservation of the initial condition.
The decrease in phase space density can be explained by a change in the potential shape
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Figure 2.6: Dipole trap loading of 6Li with a modulated trap. The x-axis shows the
axial size of the trap in dependence of the initial trap size σ0. The axial size depends
on the modulation amplitude while the radial sizes of the trap stay almost constant.
Shown are the temperature T normalized over the initial temperature of the trap
without modulation T0 in solid squares, the Atom number N normalized over the
initial atom number N0 in solid triangles and the phase-space-density (PSD) ρ over
the initial PSD ρ0 in open circles. The error bars are given by standard deviation of
the measurements. For a modulation that leads to twice the axial size of the dipole
trap, the temperature decreases by a factor of 1.6 while the atom number increases
by a factor of 2 and the PSD increases by a factor 2.3.

described by βtrap [Walraven, 2010]

U(~r) = ω0|~r|3/βtrap (2.9)

The triangle shape of the modulated trap leads to γtrap0 = 3 whereas the unmodulated
trap in a standard harmonic shape follows βtrap = 3/2. 1 The decrease in PSD can thus
be explained by a change in the potential form.

A 6Li Bose-Einstein-Condensate (BEC) is reached after a further evaporation
ramp following the modulation turn off. With a positive scattering length of the double
component 6Li gas we reach a BEC of 6Li dimers [Jochim et al., 2003]. Figure 2.8 shows
an integrated density profile of the BEC fitted with a Gaussian function (green) and a
parabolic density distribution (teal) [Ketterle and Zwierlein, 2008] after a time of flight of
10 ms at a scattering length of aLiLi ≈ 2000 a0. The lower picture shows the corresponding

1For an adiabatic change of the trap shape, the change in PSD is given by [Walraven, 2010]

ρ

ρ0
=

exp
(
5/2 + βtrap + S/(NkB)

)
exp

(
5/2 + γtrap0 + S/(NkB)

) (2.10)

where the entropy S and the atom number N stay constant and kB is the Boltzmann constant.

25



Chapter 2. Improved Cooling and Trapping of Lithium and Lithium-Cesium

1 0 5 1 0 61 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

ρ

A t o m  N u m b e r

2 . 4

8 . 8

7 . 2

3 . 6

5 . 8

m o d u l a t i o n  t u r n - o f f

Figure 2.7: Phase-space-density ρ over atom number for evaporative cooling of
6Li in a cigar shaped spatially modulated dipole trap. With an initial condition of
2.5× 106 atoms at a PSD of 3× 10−5 the cloud is evaporated to a final condition of
5× 105 atoms at a PSD of 0.1. The values in red are evaporation efficiencies given
by equation 2.8. Overall the PSD is increased by five orders of magnitude while
loosing one order of magnitude in atoms. The modulation turn-off is performed as
an adiabatic ramp of the modulation amplitude.

absorption picture. With the described sequence we achieve 6Li-BECs of 3 × 105 atoms
with a condensate fraction of 50%.

2.4 Preparation of ultracold 6Li

Here we present the resulting experimental sequence for the preparation of an ultracold 6Li
sample from the information presented in the previous sections. The presented sequence
has been used for the data presented in part II of this thesis. We prepare thermal 6Li
samples of 3× 104 atoms at temperatures between 300 µK and 100 µK.

Figure 2.9 shows a schematic time line of the experimental preparation. We start
by loading a 6Li MOT for 2 s, transferring the cloud from the quadrupole field of the
MOT coils to the quadrupole field of the curvature coils. After fast switching of the
magnetic field we apply a 5 ms gray molasses light pulse with an intensity ramp in the
last millisecond. During this stage the dipole trap is already turned on at 120 W with the
optimized modulation amplitude. After the optical cooling we jump to a magnetic field of
890 G with a

∣∣1/2, 1/2〉-∣∣1/2,−1/2
〉
scattering length of aLiLi = −8800 a0. After 2 s forced

evaporative cooling by ramping the trap power to 3 W, we adiabatically ramp the spatial
trap modulation down within 100 ms followed by another 3 s forced evaporation ramp to
the final trap power. At this point we jump to a magnetic field of 920 G where we apply
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Figure 2.8: 6Li Bose-Einstein-Condensate after 10 ms time of flight at a scattering
length of aLiLi ≈ 2000 a0. Upper figure shows one dimensional column density with a
Bimodal fit (red) consisting of a Gaussian function (green) and a parabolic function
(teal). The total dimer number is 3× 105 at a condensate fraction of f = 0.5. The
lower figure shows the absorption image taken from the top. The condensed part
and the thermal part of the cloud can be distinguished by eye. Figure taken from
Neiczer [2018].

a short light pulse to clean the sample from either the
∣∣1/2, 1/2〉 state, the

∣∣1/2,−1/2
〉

state, or we don’t apply a light pulse if we want to keep both spin states. We end up
with Lithium either in the

∣∣1/2,−1/2
〉
the

∣∣1/2, 1/2〉 or both states in the dimple trap
at temperatures between 140 − 300nK, atom numbers of N = 3 × 104 in one spin state
at densities of n0 = 1.6(1)× 1011cm−3, T/TF = 0.53(4). A jump 1 G above the magnetic
field of interest is followed by a short hold time of 50 ms for the magnetic field to stabilize.
Then we go to the magnetic field where we perform atom loss spectroscopy and hold it
there for a time thold. Finally we jump to a magnetic field of 920 G and perform absorption
imaging to extract atom number and sample temperature. An experimental cycle has a
duration of approximately ∼8 s.

2.5 Preparation of an ultracold 6Li-133Cs mixture
In this section we present the experimental sequence used for the preparation of an ultra-
cold 6Li-133Cs mixture used in the experiments presented in part II of this thesis. With
this sequence we achieve final mixture temperatures between 800 µK and 200 µK.
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Figure 2.9: Schematic presentation of the preparation sequence for an ultracold
sample of 6Li atoms at a temperature down to 100 nK. Dimple trap powers and
modulation amplitude over time within the sequence as well as the magnetic offset
and gradient field.
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Figure 2.10: Schematic presentation of the preparation sequence for an ultracold
sample of 6Li-133Cs atoms at a temperature down to 200 nK. Reservoir trap and
Dimple trap powers over time within the sequence as well as the magnetic offset
field and the reservoir trap displacement from the dimple trap. Figure adapted from
Häfner [2017].

Figure 2.10 shows a schematic time line of the experimental preparation. We start by
loading a 133Cs MOT via the double species Zeeman slower 1 mm away from the center of
the experimental chamber. Afterwards we compress the MOT by increasing the magnetic
gradient and by further detuning the cooling light from resonance. Due to the natural sub-
Doppler cooling of 133Cs on the D2-line [Drewsen et al., 1994], we achieve temperatures
of approximately 8 µK at an atom number of 4 × 107 after 1 s loading time. Continuing
with dRSC [Vuletic et al., 1998; Kerman et al., 2000; Treutlein et al., 2001], the 133Cs
atoms are pumped to the lowest energy state

∣∣∣fCs = 3,mf = 3
〉
and further cooled down

to temperatures below 1 µK . At this point we turn on the reservoir trap at approximately
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30 W. Due to the gravitational potential acting on 133Cs, the atoms are heated during
the loading process. After quarter trap period increments we apply dRSC light pulses. In
total we apply three pulses. We end up with 2× 106 atoms at a temperature of 2 µK at a
density of approximately 1× 1013cm−3 inside the reservoir trap. A small magnetic offset
field of 4.5 G is applied to maintain the spin polarization of 85%. The 133Cs atoms are
stored in the reservoir trap while the 6Li MOT is loaded for 2.5 s. After the compression
of the MOT, the atoms are optically pumped into the lowest hyperfine states fLi = 1/2
and loaded into the dimple trap, situated at the center of the experimental chamber. The
loading of the trap is performed at a magnetic field of 896 G where 6Li thermalization
is fast. Within three seconds we perform forced evaporative cooling on 6Li and 133Cs
separately at scattering length of aLiLi ≈ −8000 a0 and aCsCs ≈ 320 a0. At a magnetic
field of 907 G and interspecies scattering length of aLiCs ≈ 100 a0 we move the reservoir
trap within 1 s by 1 mm with the Piezo mirror to overlap 6Li and 133Cs. Thermalization
between 6Li and 133Cs leads to sympathetic cooling of 133Cs. Overlapping both species is
concluded by slowly turning off the reservoir trap within 1.5 s. After applying a resonant
light pulse to one of the 6Li spin states we end up with an ultracold spin polarized mixture
of Li|1/2, 1/2 > +Cs|3, 3 > or Li|1/2,−1/2 > +Cs|3, 3 > with 5× 104 133Cs and 3× 104

6Li at temperatures between 200 − 850nK in the dimple trap. A jump 1 G above the
magnetic field of interest is followed by a short hold time of 50 ms for the magnetic field to
stabilize. Then we go to the magnetic field where we perform atom loss spectroscopy and
hold it there for a time thold. Finally we jump to a magnetic field of 880 G and perform
absorption imaging on both species to extract atom number and sample temperature. An
experimental cycle has a duration of approximately ≈10 s.

29



Chapter 2. Improved Cooling and Trapping of Lithium and Lithium-Cesium

30



3. Calibrating the magnetic field
landscape

Magnetic fields are an essential part of the ultracold 6Li-133Cs experiment. We have
already seen in section 2.1, that magnetic fields can be destructive or necessary for certain
cooling schemes. As we will see in section 4.2, magnetic fields are a powerful tool to
control inter particle scattering and molecule-state energy via Feshbach resonances[Chin
et al., 2010]. Thus, magnetic field control is at the heart of the investigations on p-wave
Feshbach resonances presented in part II of this thesis.

The magnetic field landscape of our experiment has already been discussed in previous
work [Repp, 2013; Pires, 2014; Ulmanis, 2017; Häfner, 2017]. Thus we focus on new
insights and developments. In this chapter we introduce the behavior of 6Li and 133Cs in
a magnetic field and methods for magnetic field calibration via rf spin flip of 6Li and 133Cs
(sections 3.1 and 3.2). We present compensation of external magnetic fields in section 3.3
and a precise characterization of the Feshbach field landscape in section 3.4. Finally we
conclude on the magnetic field uncertainty on measurements presented in part II (section
3.5).

An exact knowledge of the magnetic field landscape is key for precision measurements
on magnetic fields dependence. Atoms themselves can be used to determine the magnetic
field with very high precision. By measuring atomic transitions and knowing their mag-
netic field dependence one can extract the value of the magnetic field. Optical transitions
are a possible and simple method. Due to large optical line width on the order of MHz
however, the calibration of fields between 0 G and 1200 G are usually limited to a preci-
sion of ∆B = 3 G. A more sophisticated and precise method is the measurement of a rf
transition, meaning the transition from one hyperfine state of the ground state manifold
into another. Figure 3.1a and 3.1b, show the ground state manifold for 6Li and 133Cs
respectively, at magnetic fields between 0 G and 1000 G, calculated using the well known
Breit-Rabi formula [Breit and Rabi, 1931]. In the case of 6Li the energy behavior can be
separated into two parts: at fields between 0 G and a few tens of Gauss, the total angular
momentum f with the projection mf onto the magnetic field axis, is a good quantum
number. This regime is called the Zeeman regime. At fields larger then a few hundred
Gauss we are in the Pschen-Back regime where j and mj , the total electronic angular
momentum and its projection onto the magnetic field axis, are good quantum numbers.
Nevertheless it is common to remain with the f and mf quantum numbers in this regime
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due to a bijectiv assignment. The inset shows the behavior of the energy difference between
the state 6Li

∣∣∣f = 1/2,mf = 1/2
〉
(black), and 6Li

∣∣∣f = 1/2,mf = −1/2
〉
(red), with linear

behavior within both regimes. In the case of 133Cs and fields between 0 G and 1200 G the
energy behavior only acts within the Zeeman regime due to the large hyperfine interaction.
The inset shows the energy difference between the 133Cs|4,+4〉 (red) and the 133Cs|3,+3〉
(blue) state. In the following we call 6Li

∣∣1/2, 1/2〉=|1〉 and 6Li
∣∣1/2,−1/2

〉
=|2〉.

3.1 Lithium rf spectroscopy
The Breit-Rabi formula introduced in the previous section can be used to determine the
magnetic field in a very precise manner. Using a Lithium rf spin flip, transferring atoms
from state |2〉 to state |1〉 or vise versa by applying an electromagnetic fields on the
scale of h × 75 MHz, the magnetic field can be determined with relative precision down
to ∆B/B = 10−6. Two examples for these magnetic field measurements are presented in
figure 3.2a and 3.2b. We start by preparing a sample of 6Li atoms as described in section
2 with N0 around 3 × 104 to 8 × 104 atoms in the |1〉 spin state at a magnetic field B0.
We then apply a rf pulse at a certain frequency f with a power that transfers into a Rabi
frequency Ω0 for a time τ . By scanning the frequency we transfer a certain number of
atoms N0 − N to the state |2〉. The remaining number of atoms in state |1〉 is given by
the line shape

N(f) = N0

1− Ω2
0

(
sin
(
Ωeff(f)/2× τ

)
Ωeff(f)

)2
 , (3.1)

where Ωeff =
√

Ω2
0 + (2πδ)2 is the effective Rabi frequency with δ = f−f0, the detuning

from the atomic resonance frequency f0. By fitting the number of atoms detected in state
|1〉 with equation 3.1 we extract a resonance frequency f0 from the measurements. Using
the Breit-Rabi formula we translate this into a magnetic field. Figure 3.2a shows a typical
uncertainty for f0 on the order of 40 Hz. Figure 3.2b shows a typical uncertainty for f0
on the order of 1 Hz. Due to the difference of the energy on the magnetic field ∂E/∂B|B0

both uncertainties translate to magnetic field uncertainties of 1 mG.
When calibrating the magnetic field for a measurement, we take three to six rf-spectra

in dependence of a magnetic field control parameter within the range of the performed
experiment. A magnetic field is thus attributed to a control parameter value. The mag-
netic field is then given by a linear interpolation of the control parameters. Interpolation
uncertainties typically yield magnetic field uncertainties of 10 mG.

3.2 Cesium mw spectroscopy
Similar to a magnetic field calibration with Lithium, Cesium can be used to extract the
magnetic field from a microwave spin flip spectrum taken at frequencies between 9.1 GHz
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Figure 3.1: Energy of hyperfine states of a) 6Li and b) 133Cs in their electronic
ground state in dependence of the magnetic field. f represents the total angular
momentum, j the total electronic angular momentum and i presents the total nu-
clear spin. mf , mj and mi represent their respective projection onto the magnetic
field axis. In a) the highlighted curves present the 6Li

∣∣1/2, 1/2〉=|1〉 (black) and
6Li
∣∣1/2,−1/2

〉
=|2〉 (red) states. The inset shows their energy difference in depen-

dence of the magnetic field. The Zeeman regime only holds only for small fields up
to tens of Gauss. The Paschen-Back regime holds only for fields larger then few hun-
dred Gauss where the energy splitting is between h×74 MHz and h×77 MHz. In b)
the highlighted curves present the 133Cs|3,+3〉 (red) and 133Cs|4,+4〉 (blue) states.
The inset shows their energy difference in dependence of the magnetic field. Due to
the large hyperfine splitting of 133Cs we remain in the Zeeman regime over the whole
field range between 0 G and 1000 G where the splitting is given by h × 9.193 GHz
and h× 11.721 GHz.

33



Chapter 3. Calibrating the magnetic field landscape

- 1 0 - 5 0 5 1 0

0

4

8
Nu

mb
er o

f L
i at

om
s in

 |1〉
 (1

04 )

f − f 0 (k H z )

(a)

- 2 0 0 - 1 0 0 0 1 0 0 2 0 0
0

1

2

3

Nu
mb

er o
f L

i at
om

s in
 |1〉

 (1
04 )

f - f 0  ( H z )
(b)

Figure 3.2: Radio-frequency spectroscopy of the 6Li |2〉 to |1〉 transition. The
plots show the remaining number of Li atoms in state |1〉 versus the frequency
detuning f − f0 from atomic resonance f0. The red line is a fit of equation 3.1
to the measurements performed with an rf-pulse length of τ = 0.5ms (a) and τ =
25ms (b). We extract resonance frequencies of f0 = 70.269 49(4) MHz (a) and
f0 = 76.165 892(1) MHz (b), corresponding to magnetic fields of B0 = 184.801(1) G
(a) and B0 = 764.169(1) G (b), and on-resonance Rabi frequencies of Ω0 = 2π ×
11.19(1)kHz (a) and Ω0 = 2π × 60.3(2)Hz (b). The data are averaged over at least
6 measurements and the error bars represent the standard error of the mean.

34



3.2. Cesium mw spectroscopy
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Figure 3.3: Schematic representation of Cesium detection during the magnetic
field calibration at high fields. Atoms in the 133Cs 62S1/2|3,+3〉 state are trans-
fered to the |4,+4〉 state via microwave pulse (red). The absorption imag-
ing is then performed on the imaging transition (blue) from 62S1/2|4,+4〉 to
62P3/2

∣∣J ′ = 3/2,mJ ′ = 3/2
〉
.

and 12 GHz. We start by preparing a sample of 133Cs atoms as described in section 2.5
in the |3,+3〉 state. By applying a mw pulse at frequency f with a power corresponding
to a Rabi frequency Ω0 and a pulse length of τ , the atoms in state

∣∣∣f = 3,mf

〉
can be

transfered to states
∣∣∣f ′ = 4,mf ′ = mf ± 0, 1

〉
. Assigning atomic transitions to measured

resonances allows for the determination of the magnetic field.

Detection of atoms in state |4,+4〉 is performed via absorption spectroscopy. Figure
3.3 shows the optical transitions used for absorption imaging of 133Cs at non zero magnetic
fields. A mw signal (red) is used to transfer the atoms from the 62S1/2|3,+3〉 to the
62S1/2|4,+4〉. The optical transition (blue) is used for absorption imaging. Figure 3.4
shows the normalized number of Cesium atoms in the |4,+4〉 state after a mw transition
from |3,+3〉 with frequency f with f0 = 9.192 631 77 GHz, the exact transition frequency
at zero field. The earth magnetic field is here already compensated as described in the
following section 3.3. The line shows a Lorentzian function with a detuning from the zero
field frequency of f − f0 = 750(60) Hz and a width of 2 kHz. The frequency detuning
translates into a magnetic field uncertainty of B = 0.30(3)mG. Figure 3.4 shows Rabi
oscillations on resonance. The Rabi frequency is deduced by fitting a sinus curve N(t) =
N0 sin

(
Ω0t/2

)2 where we extract Ω0 = 2π × 1.8(1)Hz.

35



Chapter 3. Calibrating the magnetic field landscape

- 2 0 2 4
0 , 0

0 , 5

1 , 0

0 5 0 0 1 0 0 0
0 , 0

0 , 5

1 , 0
No

rm
aliz

ed 
Cs

 At
om

num
ber

f - f 0  ( k H z )

b )

No
rm

aliz
ed 

Cs
 At

om
num

ber

P u l s e l e n g t h  ( µs )

a )

Figure 3.4: Cesium mw spin flip from |3,+3〉 to |4,+4〉 with a pulse length of
τ = 250 µs. a) Normalized number of atoms depending on f − f0 where f0 =
9.192 631 77 GHz is the resonance frequency at zero field. The Lorenz curve shows
a width of w = 2.0(3) kHz and a center position detuned by f − f0 = 750(60) Hz.
This translates into a magnetic field uncertainty of B = 0.30(3)mG. b) Shows
the corresponding Rabi oscillations on resonance with a Rabi frequency of Ω0 =
2π × 1.8(1)kHz.

3.3 Zero Field Calibration

Even without applied magnetic fields, the earth magnetic field and other sources, lead to a
non zero field at the position of the atomic cloud. For gray molasses cooling of Lithium we
have seen, that a magnetic field above 1 G can already disturb the coherent dark state and
lead to heating instead of cooling. DRSC is relying on a matching between the Zeeman
shift energy and the harmonic oscillator energy levels. This magnetic field is usually on
the order of 100 mG in x3 direction [Vuletic et al., 1998; Han et al., 2000; Weber, 2003].
The earth magnetic field itself is on the order of 0.5 G in Heidelberg [Harcken, 2021].
Other sources of magnetic fields e. g. Ion pumps for the ultra high vacuum lead to
additional factors that need to be compensated. Here we present the careful calibration of
compensation fields for the compensation of stray magnetic fields using the compensation
coils described in chapter 1.2.

The Zeeman shift depends on the absolute value of the magnetic field∣∣∣ ~B∣∣∣ =
√
B2
x1 +B2

x2 +B2
x3 (3.2)

where Bxi are the field components in three spatial directions. We apply a small magnetic
field B0 on the order of 200 mG in one direction, change the compensation Bxi in another
direction and look how the mw transition frequency depends on the applied compensation
field. By finding the minimum of the function

B2 = B2
0 +B2

xi
(3.3)

36



3.4. Feshbach tomography

9 , 1 9 2 8 9 , 1 9 2 9 9 , 1 9 3 0 9 , 1 9 3 1
0

1

2

3

4

5

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 , 0 3

0 , 0 4

0 , 0 5

0 , 0 6

0 , 0 7

0 , 0 8

0 , 0 9

Cs
 At

om
 nu

mb
er (

104 )

f  ( G H z )

b )

B² 
(G

²)

B x 3  ( m G )

a )

Figure 3.5: Calibration of magnetic field compensation via Cesium mw spin flip.
a) shows an example spin flip for atoms transfered from |3, 3〉 → |4, 4〉, |3, 3〉 →
|4, 3〉, |3, 3〉 → |4, 2〉 and |3, 2〉 → |4, 3〉 overlapped, |3, 2〉 → |4, 2〉 (left to right).
The extracted magnetic field is B = 165(1) mG. b) A total field calibration in
vertical direction with an applied offset field of 171(1) mG in other directions and a
compensation at Bx3 = 329(3) mG.

we find the value of the magnetic field component in the compensation direction.
Figure 3.5a shows a spin flip measurement to extract the magnetic field by assigning the
peaks to different transitions (see caption). Figure 3.5b shows a calibration example for the
magnetic field in vertical direction, where the magnetic field is compensated when applying
a field of Bx3 = 329(3) mG. For north-south direction we measure Bx1 = 234(4) mG and in
east-west direction we measure Bx2 = 83(4) mG. The absolute value of the compensated
magnetic field is Btotal = 412(6) mG.

3.4 Feshbach tomography
The experiments presented in part II of this thesis are performed either at magnetic fields
between 150 G and 220 G for 6Li , or between 700 G and 900 G for 6Li-133Cs. The magnetic
field for these experiments is provided by the Feshbach coils described in chapter 1.2. A
precise knowledge of the magnetic field landscape, the stability and the position of the
atoms within this landscape is required to perform measurements with high magnetic
field precision. Here we present a detailed description of the Feshbach coil magnetic field
landscape using Cesium mw spectroscopy.

We perform tomographic measurements of the Feshbach fields in all three spatial di-
rections. We create an ultracold cloud of Cesium atoms at different positions within the
magnetic field landscape by changing the position of the reservoir trap. By applying a
Cesium mw spin flip as described in the previous sections, we measure the magnetic field
at a certain position. Due to a large expansion of the atomic cloud of approximately
170 µm within a spatially dependent magnetic field, only a slice of the atomic distribution
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Chapter 3. Calibrating the magnetic field landscape

is transfered to the other spin state. By looking at the position of the transfered slice
relative to the position on the camera, one gets an immediate measurement of a position
dependent spin flip frequency f . This frequency is transfered into a magnetic field using
the Breit-Rabi formula. Figure 3.6 shows the magnetic field tomography measurement
in x3 direction with a mw pulse length of 35 µs and maximal mw power. The position
of the atomic slices is determined by the center position of a Gaussian fit to the atomic
optical density distribution on the absorption picture. Points within 10 pixels (∼40 µm)
are binned together. The pixel size is calibrated via the gravitational acceleration of an
atomic cloud without external fields. Each point consists of at least 20 measurements
and we show the standard error. The line is a quadratic fit yielding a center magnetic
field of B0 = 1074.945(1) G and a curvature factor of α = 274(6) m−2 where the spatially
dependent magnetic field is given by

~B(~r) = B0


−αx1x3

−αx2x3

1 + α

(
x2

3 −
x2

1+x2
2

2

)
 (3.4)

We perform a similar measurements in x1, x2 direction shown in figure 3.7. Here
the calibration of the camera pixel size was performed comparing the expansion of a
thermalized cloud in time of flight with the expansion in vertical direction. By situating the
atomic cloud in the center of the Feshbach field we minimize the magnetic field uncertainty
due to the curvature of the field. The magnetic field dependence on the current in the
center of the field yields a calibration of 2.8033(5) G A−1. We check the magnetic field
calibration by calculating the field landscape using elliptic integrals [Bergeman et al.,
1987]. We calculate an magnetic field dependence on the current of 2.8032 G A−1 and a
curvature factor of α = 286(2)m−2 which are in good agreement with our measurements.

The curvature of the Feshbach field induces a magnetic potential on atoms. With
Epot = µ

∣∣∣ ~B∣∣∣ where µ = dE
dB is the magnetic moment of the atoms. The lowest order of the

potential landscape is of second order. Thus the potential landscape can be characterized
by trapping frequencies similar to optical potentials given by

ωx1/2 =
√
αµB0
m

ωx3 =
√

2αµB0
m

(3.5)

3.5 Magnetic Field Uncertainty
We finally summarize the previously obtained information to evaluate the total magnetic
field uncertainty and their limitations:

• Field inhomogeneities are induced, as outlined above, by the curvature of the
Feshbach field. The non optimal Helmholtz configuration leads to a non homoge-
neous field at the center of the coils. For an optimized atomic cloud position at the
center of the coils we give an upper limit on the magnetic field curvature along the
cloud of up to 8 mG at fields of 935 G.
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Figure 3.6: Tomography of the Feshbach magnetic field in x3 direction. A fit to
the data yields a center magnetic field of B0 = 1074.945(1) G and a field curvature
factor of α = 274(6) G m−2. Each point consists of at least 20 measurements. The
shown error is given by the standard error.
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Figure 3.7: Tomography of the Feshbach magnetic field in x1, x2 directions. Each
point consists of at least 20 measurements. The positions are presented relative to
the center of the Feshbach field which is saddle point.

• Long-term stability are induced by field fluctuations over the course of one exper-
iment consisting of multiple measurements. One experimental run takes about 8 s
for pure Lithium samples and up to 15 s for 6Li-133Cs experiments. One measure-
ment including magnetic field calibration can take up to several hours. During this
time the thermal equilibrium of the magnetic field coils might change or the position
of the optical dipole traps might fluctuate. These effects lead to a fluctuation of the
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Chapter 3. Calibrating the magnetic field landscape

magnetic field over several experimental runs. The extensive characterization of the
stability of the magnetic field leads to a maximum deviation from the mean of up
to 8 mG [Ulmanis, 2017].

• The length of the experimental sequence as well as the current inducing the
magnetic field have a large impact on the thermal equilibrium of the magnetic field
coils. The energy dissipation leads to a difference in temperature which might alter
the alignment and resistance of the magnetic field coils leading to changes of the
field at the position of the atomic cloud. We minimize these effects by running
one particular sequence for several hours to reach an equilibrium before taking a
measurement. We estimate the effects on the field value to be up to 8 mG [Ulmanis,
2017].

• The switching time of the magnetic fields describes the characteristic time from
the digital switching of the currents to the time where to magnetic field value is
reached. The behavior of the magnetic field is described by the function ∆B exp

(
−t/τ

)
where ∆B is the step in the magnetic field and τ = 5(1) ms is the characteristic
switching time given by the inductance of the coils. To separate this time from the
hold time during an atom loss measurement we jump the field close to the resonance
position we want to investigate. After a stabilization time of ≈ 20 ms we perform
the final step to the measurement position. For this we use the Raman coils (see
section 1.2), a pair of coils with smaller inductance. We reach the final magnetic
field value within < 1 ms.

To evaluate to total systematic magnetic field uncertainty we take all of these effects
into account. We assume them to be uncorrelated and thus take their quadratic sum. For
measurements at magnetic fields around 180 G we end up with uncertainties of 10 mG.
For fields around 700 G we calculate systematic uncertainties of 16 mG.

Summary
In summary we have presented our experimental apparatus for the production of an ultra-
cold sample of 6Li and a 6Li-133Cs mixture. We presented the ultra high vacuum setup
that sets the environment for the ultracold atom experiment. We introduced the magnetic
and electric fields used in the experiment for the manipulation and cooling of the atoms
and presented our detection method. In the second chapter a closer look has been taken
at the experimental sequence for the improved production of a degenerate 6Li sample. An
introduction to gray molasses cooling on the D1-line of 6Li as an optical sub-Doppler cool-
ing method has been given. We presented the improved dipole trap loading via a spatially
modulated optical dipole trap and the subsequent evaporative cooling into a degenerate
6Li sample. We present the sequence for the production of a thermal ultracold 6Li sam-
ple at temperatures between 100 nK and 300 nK and a sequence for the production of a
thermal ultracold 6Li-133Cs mixture at temperatures between 900 nK and 200 nK. In the
third chapter we investigated the magnetic field landscape of the experiment acting on the
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atomic cloud. After introducing magnetic field dependent 6Li radio-frequency and 133Cs
microwave spin-flip spectroscopy we presented our method for compensation of stray mag-
netic fields. Finally we presented the investigation of the curvature of the Feshbach field
and we discussed the resulting magnetic field accuracies and concluded on absolute accu-
racies of 10 mG and 16 mG for measurements around magnetic fields of 180 G and 700 G
respectively. The results of the first part of this thesis lay the ground for the experimental
investigation of p-wave Feshbach resonances presented in the second part of the thesis.
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Part II

Exploring p-wave Feshbach
Resonances





4. Introduction to Atomic
Collisions

In this chapter we introduce basic concepts of scattering theory and Feshbach resonances
to lay the groundwork for the following studies of spin-spin and spin-rotation coupling in
p-wave Feshbach resonances of 6Li-133Cs. We start by introducing basic scattering theory
of atomic collisions at ultra low kinetic energies in section 4.1. We continue by introducing
Feshbach resonances 4.2 followed by the description of the system Hamilton in 4.3 and
finally the methods of measuring Feshbach resonances in section 4.4.

4.1 Basics of scattering theory
The concepts of inter atomic scattering at ultra low kinetic energies are well estab-
lished.The presented introduction into inter atomic scattering theory closely follows the
treatment of Dalibard [1999]. Other introductions and treatments of atomic two-body
collisions at ultra low kinetic energy can be consulted for further information [Landau and
Lifshitz, 1965; Jochain, 1983; Sakurai and Napolitano, 1994; Ketterle et al., 1999].

Scattering theory describes the interaction of two approaching atoms. Thus, the change
of incoming states into outgoing states. The states interact via a potential V (~R) and a
Hamiltonian in the center of mass frame[

− ~2

2µ
~∇2 + V (~R)

]
Ψ(~R) = ~2k2

2µ Ψ(~R) (4.1)

Here
∣∣∣~R∣∣∣ is the inter particle separation, µ = m1m2/(m1 +m2) is the reduced mass of

the atomic components, ~ is the Planck constant and k =
√

2µE/~2 is the wave vector
given by the energy E = Ekin + V (~R). The energy of the system is chosen in a way,
that for large inter atomic separations |~R| = R � R0, where R0 is the effective range
of the potential V (~R), the potential energy vanishes V (R � R0) = 0. For large atomic
separation R� R0 the solutions of equation 4.1 can be separated into an incoming plane
wave Ψi(R) = eikR with momentum k and a scattered spherical wave Ψf (R) = f(k, φ) eikR

R

with amplitude f(k, φ)

Ψ(R) = eikR + f(k, φ)e
ikR

R
(4.2)
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The momentum dependent scattering cross-section into a solid angle Ω is then given
by dσ(k)/dΩ = |f(k, φ)|2. In the case of neutral atoms V (~R) can be described by a short-
ranged isotropic Born-Oppenheimer molecular potential. In this case the wave function
can be expand in spherical harmonics Y m

l (φ, ψ):

Ψ(R) =
∞∑
l=0

l∑
ml=−l

Y ml
l (φ, ψ)χk,l,ml

(R)
R

(4.3)

Here l is the relative angular momentum, ml is its projection and χk,l,ml
(R) is the

radial wave function depending on the wave number k. When solving the Hamilton from
equation 4.1 using this wave function (4.3), we obtain the scattering amplitude for large
R:

f(k, φ) = 1
2ik

∞∑
l=0

(2l + 1)(e2iδl(k) − 1)Pl(cos(φ)) (4.4)

Here Pl(cos (φ)) are the Legendre polynomials and δl(k) is the phase shift between
the incoming and outgoing wave. The scattering amplitudes angular distribution depends
only on the relative angular momentum l.

The radial part of the wave function Rl = χl(R)/R can be obtained by solving the
Hamiltonian from equation 4.1 and inserting the angular solution from equation 4.4:(

d2

dR2 + 2
R

d

dR
− 2µ

~2
[
E − Vl(R)

])
Rl(R) = 0 (4.5)

Here Vl(R) = V (R) + ~2l(l+1)
2µR2 is the total inter atomic Born-Oppenheimer potential

including the centrifugal barrier for l > 0 (shown in figure 4.3b)). A simplified equation
can be found when substituting χl(R) = R ·Rl(R), ε = 2µE/~2 and Ṽ (R) = 2µVl(R)/~2:

d2

dR2χl(R) +
[
ε− Ṽ (R)

]
χl(R) = 0 (4.6)

with the solution

χl(R) ∼ sin
(
kR− lπ2 + δl(k)

)
(4.7)

Here the scattering phase shift δl(k) is a measure of the effect of the whole potential
on the collision. For collision energies E small compared the centrifugal barrier hight, the
particle will not interact with the short range potential V (R) and will simply be reflected
at the centrifugal barrier. Therefore, we expect that for partial waves with l > 0 the
scattering induced by V (R) can be neglected at low scattering energies. Th phase shift
scales as δl(k) ∝ k2l+1 for low collisional energies k → 0 [Wigner, 1948]. For a van-
der-Waals potential with V (R) ∝ R−6, the scattering phase shift can be described as 1

1The scaling δl(k) ∝ k2l+1 is only valid for l = 0 and l = 1 for van-der-Waals potentials.
Otherwise for l > 1 the scaling is given by δl(k) ∝ k4 [Dalibard, 1999].
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[Dalibard, 1999; Chin et al., 2010]

k2l+1 cot
(
δl(k)

)
= − 1

al
+ 1

2R
1−2l
0 k2 (4.8)

Here a0 is the so called s-wave scattering length with dimension m−1 and a1 = Vp is
the p-wave scattering volume with dimension m−3. 2

To evaluate the scattering cross-section σ(k) we need to take quantum statistics
into account. For Bosonic particles we need to fulfill the symmetrization of the par-
ticle wavefunction. Fermionic particles need to fulfill the anti-symmetrization of the
particle wavefunction. In terms of the differential cross-section this means dσ(k)/dΩ =
|f(k, φ) ± f(k, π − φ)|2. Where + is used for Bosons and − for Fermions. This means
twice the contribution in the total scattering cross-section from the contributing partial
waves even(odd) and an extinction of odd(even) partial waves for Bosons(Fermions)

σl(k) = 8π
k2

∑
l

(2l + 1) sin2(δl(k)) (4.9)

For Bosons(Fermions) the sum is only taken over even(odd) l. This leads to a total
s-wave, cross-section of

σs(k) =


4πa2

1+k2a2 for distinguishable particles,
8πa2

1+k2a2 for idendtical bosons,
0 for identical fermions

(4.10)

For identical fermions only partial waves with l = 1, 3, .. contribute to the cross-
section. For the case that k2a2 � 1 is called unitarity regime and the cross-section
becomes independent on a and only depends on the collisional energy k2.

For p-wave elastic collisions for distinguishable particles the cross-section can be writ-
ten as:

σp(k) = 12π
k2
e

k4

(k2 − 1
Vpke

)2 + γ2
e/4

(4.11)

where Vp is the scattering volume, ke is one over the effective range and γe is a resonance
width that we will further discussed in chapter 7.1.

In the following, we will give an introduction to Feshbach resonances. There we will
see how the scattering volume Vp can be tuned via magnetic field.

4.2 Feshbach Resonances
Feshbach resonances have been studied in great detail [Chin et al., 2010; Gurarie and
Radzihovsky, 2007; Timmermans et al., 1999; Köhler et al., 2006; Hutson and Soldán,
2006; Duine and Stoof, 2003]. In this section, we restrict our self to the description on

2We will later use ke = 1/R0 as another definition of the effective range
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magnetically tunable Feshbach resonances with special focus on p-waveresonances, closely
following the work of Moerdijk et al. [1995]. We start by introducing the effective Hamil-
tonian H of the system consisting of two parts. H0 has Eigenstates of the form

∣∣{αβ}〉
that we call channels. For large inter atomic separation the states |α〉 and |β〉 correspond
to the internal states of single atoms α and β. V is an interaction, coupling the different
channels. The scattering state Ψ is expand in the bases

∣∣{αβ}〉 with the atomic separation
~R dependent coefficient ψ{αβ}(~R).

Ψ =
∑
{αβ}

ψ{αβ}(~R)
∣∣{αβ}〉 (4.12)

Using this bases be obtain a set of coupled differential equations for ψ{αβ}. The
ultra low collisional energy of ultracold atoms greatly reduces the number of channels
relevant to the investigated system. Electronic ground states, low partial wave number l,
symmetry arguments and conservation laws lead to a limited number of channels that can
be separated into two subsets P andQ uncoupled underH0. For scattering energies E large
compared to the asymptotic energy of a channel, we call the channel an "open channel"
and P the subspace of open channels. For scattering energies E below the asymptotic
energy of a channel, we call the channel a "closed channel" and Q the subspace of closed
channels.

Figure 4.1 shows an example of an open- and a closed channel with asymptotic energies
below and above the scattering energy E respectively.

Using projection operators P̂ and Q̂ on the Hamiltonian H leads to two coupled
equations projected on the respective subspaces:

(E −HPP)ΨP = HPQΨQ (4.13)
(E −HQQ)ΨQ = HQPΨP (4.14)

With ΨP = P̂Ψ, ΨQ = Q̂Ψ, HP̂P̂ = P̂HP̂, HQ̂Q̂ = Q̂HQ̂ and HP̂Q̂ = P̂HQ̂,
HQ̂P̂ = Q̂HP̂.

By introducing an energy E+ = E + iδ with a small and positive δ perturbation, we
can now solve equation 4.13 using the Green’s operator 1

E+−HQQ leading to:

ΨQ = 1
E+ −HQQ

HQPΨP (4.15)

We use this wave function to solve the Hamiltonian of equation 4.14, giving an effective
description of scattering into the open channel.(

HPP +HPQ
1

E+ −HQQ
HQP

)
ΨP = EΨP (4.16)

In this equation we can already read some of the key features of Feshbach resonances.
An incoming open channel wave can be divided into two parts: HPP describes the prop-
agation of the open channel wave in the open channel. The second term describes the
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Figure 4.1: Working principle of Feshbach resonance: the scattering atoms with
energy E couple to a near degenerate bound state ε0 in the closed channel subspace
Q

temporary transition of the open channel wave in and out of the closed channel.
We can expand the Green’s operator in discrete Eigenstates of HQQ and if a single

state with energy ε0 is close to the energy E, omit all other states. This leads to the
formal solution for |ΨP〉 of equation 4.16

|ΨP〉 =
∣∣∣Ψ+

i

〉
+ 1
E+ −HPP

HPQ |ψB〉

〈
ψB
∣∣∣HQP ∣∣∣Ψ+

i

〉
E − ε0 − 〈ψB|HQP 1

E+−HPPHPQ |ψB〉
(4.17)

Here
∣∣∣Ψ+

i

〉
is an Eigenstate of HPP with incoming channel i. This scattering event

can also be described in terms of the so called unitary scattering matrix S. Sij describes
the scattering amplitude from state i into state j where i and j are both open channels.
In the case of ultracold collisions the open channel subspace reduces to a single state i = j

reducing the scattering matrix to a scalar. For the total energy E close to closed channel
bound state with energy ε0 (see figure 4.1) the S-matrix reads

S = SP

(
1− iΓ

E − ε0 −∆ + i
2Γ

)
(4.18)

here Γ = 2π| 〈φQ|HQP
∣∣∣Ψ+

i

〉
|2 describes the coupling strength between the incoming

state
∣∣∣Ψ+

i

〉
and the closed channel state 〈φQ| via the coupling Hamiltonian HQP . ∆ is the
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resonance shift induced by the coupling of the scattering state to the closed channel and
SP is responsible for the scattering within the P subspace. For scattering energies E > 0
the molecular state becomes a quasi-bound state shifted with energy ε0 + ∆ and width Γ.
For energies E < 0 the width becomes Γ = 0 but the energy shift ∆ remains.

In the two channel, single resonance approach the scattering matrix S is related to the
scattering phase shift introduced in section 4.1 via S(k) = exp2iδl(k) [Moerdijk et al., 1995;
Timmermans et al., 1999; Mies and Raoult, 2000; Köhler et al., 2006]. The scattering
matrix can then be rewritten in terms of the lowest relevant partial wave which is l = 1
in our case

Sl(k) = e−2iVbgk
3
(

1− 2iCk3

iCk3 − εres

)
(4.19)

where Vbg is the background scattering volume, C is a positive constant describing the
coupling between the open and the closed channel. εres = ε0 − δ is the relative energy
between the closed channel bound state ε0 and the threshold energy. Here we can already
see, that the background scattering volume Vbg is induced by the coupling of the incoming
wave to the open channel described by SP . The second term is responsible for the coupling
of the incoming wave to the closed channel state. Setting the left side equal to exp−2iV k3

leads to

V = Vbg −
C

εres
(4.20)

In ultracold atoms the scattering states usually consist of two atoms in certain hy-
perfine states with magnetic moment µi(B) = µA(B) + µA(B) differing in spin quantum
number from the closed channel state with magnetic moment µ0(B), given by the singlet-
and triplet character of the state with µ0(B) = 〈S〉µT (B). Here 〈S〉 describes the expec-
tation value of the total spin. This leads to a magnetic field dependent relative energy
εres(B) = (µi(Bres)− µ0(Bres))(B −Bres) around the magnetic field Bres where the rela-
tive energy is zero. We can write the resulting p-wave scattering volume in terms of the
magnetic field dependence

Vp(B) = Vbg

(
1− ∆

B −Bres

)
(4.21)

The scattering volume is shown in figure 4.2. ∆ is the distance between the scattering
pole Bres and the zero crossing of the scattering length (see figure 4.2) and is called the
resonance width. The energy of the bound state, inducing the resonance is given by

Eb = ε0 + ∆− i

2Γ(Eb) (4.22)

where εres is the unperturbed resonance energy, dressed by the coupling strength of the
scattering state to the open- and closed channel states ∆. For weakly coupling resonances
∆ can be neglected. For p-wave resonances the bound state energy is given by [Gurarie
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Figure 4.2: Behavior of scattering volume and binding energy close to a p-wave
Feshbach resonance. Upper panel: scattering volume Vp versus the magnetic field
according to equation 4.21. The zero-crossing is located at a distance ∆ from the
resonance position BFR. Lower panel: energy of the weakly-bound molecular state
given by equation 4.23. The bound state behavior differs significantly from the
universal behavior at broad Feshbach resonances [Chin et al., 2010].

and Radzihovsky, 2007]

Eb = ~
µVpke

(4.23)

and the width is given by3

Γ =
2√µE3/2

ke~2 (4.24)

The coupling strength of a free scattering state with a molecular state is essential to
the behavior of the scattering volume Vp, the bound state behavior Eb and the resonance
width Γr. The coupling is induced by either the coulomb interaction contained in the
molecular potentials VS and VT or the dipole-dipole Hamiltonian Hss [Moerdijk et al.,
1995], both discussed in the following section 4.3. Due to parity conservation of l − lM.

3In the following the resonance width Γ will be called Γr.
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Feshbach resonances are classified by the angular momentum in the molecular channel
lM where lM = 0 are called s-wave resonances, lM = 1 p-wave resonances and so on.
Since the parity conservation of l − lM have to be even, the possible entrance channels
for a corresponding Feshbach resonance are limited [Chin et al., 2010]. This means that
p-wave resonances are induced by colliding atoms in a l = 1 entrance channel, coupling
to a lM = 1 molecular channel. Due to angular momentum conservation also ml = mlM .
In the following we use l and ml both for the atomic scattering and the molecular state.
As discussed in the previous section the centrifugal barrier in a p-wave entrance channel
suppresses the cross-section with σ ∝ T 2 [Wigner, 1948]. For ultracold collisions this
means a "freezing out" of the p-wave interaction. However, resonant tunneling through
the centrifugal barrier is possible which leads to a thinning of the resonance width.

4.3 The scattering Hamiltonian

In the previous sections we discussed atomic scattering of two particles in the p-wave
channel with angular momentum of l = 1. We showed the resulting behavior of the
scattering volume Vp and the bound state energy Eb and their dependence on the magnetic
field. In this section we introduce the explicit form of the interaction potentials V (~R) and
the scattering Hamiltonian H [Stoof et al., 1988; Moerdijk et al., 1995; Timmermans et al.,
1999; Köhler et al., 2006]. In the following two chapters we will add two additional terms to
the Hamiltonian and discuss corresponding observations and analysis. This section closely
follows parts of Pires et al. [2014a] and Häfner [2017]. For simplicity and readability we
will keep ~ = 1 in this section.

The scattering Hamiltonian between two atoms A and B can be written as

H = T + (PSVS(R) + PTVT (R)) +Hhf +HZ (4.25)

The first term T describes the relative kinetic energy of the two atoms with T =
−~∇2/(2µ). The next term (shown in parentheses) describes the Born-Oppenheimer po-
tentials VS(R) for the singlet potential (S = 0) and VT (R) for the triplet potential (S = 1)
and the corresponding projection operators PS and PT . Hhf describes the hyperfine inter-
action and HZ the magnetic Zeeman interaction for the electrons and the nuclei. In the
following we will take a closer look at the latter three terms. More detailed introductions
can be found in Stoof et al. [1988]; Moerdijk et al. [1995]; Timmermans et al. [1999]; Köhler
et al. [2006]; Häfner [2017].

The molecular potential curves can be described in the Born-Oppenheimer ap-
proximation. Due to the fast electronic motion compared to the slow nuclear motion
(resulting from the large mass difference) their motions can be separated. The attractive
potential tail at large atomic separation R is induced by dipole-dipole interactions. We
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Figure 4.3: 6Li-133Cs molecular potential curves: (a) full singlet (black line) and
triplet (blue dashed line) Born-Oppenheimer potentials in the electronic ground
state. (b) long range van-der-Waals potential (see equation 4.26) including the
centrifugal barrier for l = 0 (black line), l = 1 (gray dashed line) (see equation
4.28). The horizontal dash-dotted line represents the respective centrifugal barrier
height given by equation 4.29.

written it as a power series of 1/R:

VLR(R) = −C6/R
6 − C8/R

8 − C10/R
10 ± .... (4.26)

Here C6, C8 and C10 are dispersion coefficients depending on details of the electronic
configuration. Different methods exist to gain information about these parameters. They
can be obtained from ab initio calculations [Derevianko et al., 2001] or including exper-
imental information of bound states probed via photo association [Jones et al., 2006] or
Feshbach spectroscopy [Chin et al., 2010].

The spins ~sA and ~sB of the individual atoms couple to a total spin ~S = ~sA + ~sB when
the atom separation is short compared to the electron wave function. For atoms with
single electron contribution to the total atomic spin e.g. alkali atoms, the total spin can
either be of singlet nature (S = 0) or of triplet nature (S = 1). The different spin configu-
rations lead to symmetric or anti-symmetric spatial wave functions for singlet and triplet
spin configurations respectively. This leads to an enhanced (suppressed) electron-wave-
function amplitude between the nuclei for the singlet (triplet) state. An electronic singlet
configuration screens the repulsion of two the atom nuclei and leads to deep potential
curve compared to the triplet configuration. An exchange term describes this difference

Eex(R) = ±AexRγex exp (−βexR) . (4.27)

This term is negative for singlet and positive for triplet potentials. The details of
electronic and nuclear configurations are incorporate in the parameters Aex, γex and βex.
The parameters for our system can be found in Zhu et al. [2021a].
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The potential at short range is dominated by Coulomb repulsion of the nucleus and
Pauli blocking of the inner shell electrons. Figure 4.3a) shows the singlet and triplet
potential fir 6Li-133Cs in black and dashed blue respectively.

As the last important contribution we add the centrifugal term shown in figure 4.3b)
for 6Li-133Cs included as

Hcf = 1
2µ

l(l + 1)
R2 (4.28)

For s-wave collisions with l = 0 the term is zero but for p-wave collisions with l = 1
the barrier height is given by

Ucf = 1√
2C6

(
12
3µ

)3/2

(4.29)

For p-wave collisions of 6Li the barrier is on the order of 8 mK and for 6Li-133Cs it is
on the order of 2 mK.

The Hyperfine interaction term describes the coupling of the electronic angular
momenta ~jβ to the nuclear spins ~iβ of the atom β. Here ~jβ = ~lβ + ~sβ where ~lβ is the
electronic angular momentum and ~sβ is the electron spin. For alkali atoms in the electronic
ground state ~lβ = 0 leading to a hyperfine interaction Hamiltonian of

Hhf =
∑

β=A,B
αβ(R)~sβ ·~iβ (4.30)

Here the function αβ(R) describes the molecular hyperfine coupling. For large internu-
clear separations R approaches the atomic hyperfine constants αβ,hf [Strauss et al., 2010].
For small internuclear distances the electronic distributions are distorted which leads to
an R dependence of the coupling strength αβ(R).

The Zeeman term describes the coupling of the electron spins ~sβ and the nuclear
spins~iβ to an external magnetic field ~B. The resulting Zeeman shifts can be seen in figure
3.1a and 3.1b for 6Li and 133Cs respectively. The shift is given by the Hamiltonian

HZ =
∑

β=A,B

(
gs,β~sβ + gi,β~iβ

)
µB ~B (4.31)

Here gs,β and gi,β describe the electronic and nuclear gyromagnetic ratio respectively.
µB is the Bohr magneton. The Zeeman shift leads to an energy splitting of the different
m projections of the electronic and nuclear spin.

The presented Hamiltonian H describes the scattering states but also the molecular
states inducing Feshbach resonances introduced in section 4.2. The relative magnetic
moment between the molecular state and the entrance channel of two colliding atoms is
described within the Zeeman Hamiltonian. Figure 4.4 shows a schematic of the involved
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Figure 4.4: Schematic of p-wave Feshbach resonances in 6Li for three different
entrance channels |1〉+ |1〉, |1〉+ |2〉 and |2〉+ |2〉. The Feshbach resonances occur at
the magnetic fields where the free atomic scattering states (black) cross a molecular
state (red). The magnetic field dependence of the states is induced by HZ from
equation 4.31, the molecular states are induced by H, we see the lowest hyperfine
manifold induced by Hhf from equation 4.30. The splittings in the molecular states
are induced by spin-spin interactions Hss introduced in chapter 5 and spin-rotation
interactions introduced in chapter 6. The splitting in the molecular state energies
leads to a splitting in the Feshbach resonance positions. In the case of 6Li the
molecular states are almost complete singlet states and thus show now significant
magnetic field dependence.

states emerging from the Hamiltonian in case of the 6Li p-wave Feshbach resonances.
p-wave Feshbach resonances can be found at the position of the crossing between the free
scattering states (black) and the molecular states (red).

4.4 Measuring Magnetic Feshbach resonances
In this thesis we gain information about p-wave Feshbach resonances in 6Li and 6Li-133Cs
through so called atom loss spectroscopy. Next to bound state spectroscopy [Klempt
et al., 2008; Regal et al., 2003; Bartenstein et al., 2005; Ospelkaus et al., 2006; Wu et al.,
2012; Zürn et al., 2013] this is the most common method for the investigation of Feshbach
resonances. Here we discuss how resonance poles can be found through atom loss. In
chapter 7.1 we will go into more detail about the loss process and its consequences on the
sample in the case of 6Li in the lowest hyperfine stat. An inelastic process can lead to
losses when the released energy leads to an increase of kinetic energy, large compared to the
trapping potential. An elastic process leads to losses if a collision leads to redistribution
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of kinetic energy such that the kinetic energy of an atom exceeds the trapping potential.

One-body-loss describe atom loss from a trap with no dependence on the atomic den-
sity. They are independent of Feshbach resonances and can happen either via background
collisions with particles from the remaining vacuum gas or via absorption of resonant light
[He et al., 2011]. In optical dipole traps despite the large detuning, due to the high power
the trapping light leads to losses. One-body-losses usually lead to lifetimes of the atomic
sample on the order of tens of seconds to minutes.

Two-body-losses describe atom loss from a trap with a dependence on the atomic
density because two particles need to be close to each other to induce the loss process. An
inelastic loss process can occur for two atoms changing internal states within a collision.
For atoms in the energetically lowest channel 6Li|2〉⊕6Li|2〉 or 6Li|2〉⊕133Cs|3,+3〉 this
process is suppressed, however it is possible for all other channels [Tung et al., 2013].
An elastic process can be evaporation where thermalization leads to losses when the gas
sample is hot compared to the trap depth. Since thermalization depends on elastic two-
body collisions this process depends on the scattering volume (see equation 4.11).

Three-body-losses describe atom loss from a trap with a dependence on the atomic
density squared because three particles need to be close to each other to induce the loss
process. In an inelastic process one free atom collides with a diatomic molecule. The
molecular binding energy is released and shared between the free atoms and the molecule.
Since the formation of the diatomic molecule depends on the position of the Feshbach
resonance, this process also depends on the resonance position.

We conclude that a Feshbach resonance pole is accompanied by a loss maximum.
We use this knowledge to determine the Feshbach resonance positions via magnetic field
dependent atomic loss spectroscopy.

In the following two chapters we will first add the spin-spin interaction HamiltonianHss

to the previously introduced Hamiltonian H. We will see, that the spin-spin interaction
lifts the degeneracy of the ml = 0,±1 molecular states. Further we will introduce the spin-
rotation interaction Hamiltonian Hsr in chapter 6. There we will see, that this interaction
lifts the degeneracy of the ml = −1,+1 molecular states.
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5. Spin-Spin interactions

In this chapter we present investigations on spin-spin interactions observed in 6Li⊕6Li
and 6Li-133Cs p-wave Feshbach molecules. The content of this chapter follows closely
the publications Gerken et al. [2019]; Zhu et al. [2021b] and Zhu et al. [2021a] where
we observed the dipolar splitting in high-resolution atom-loss spectroscopy of 6Li and
6Li-133Cs p-wave Feshbach resonances for the first time.

Spin-spin interactions have been introduced in 1929 by Van Vleck [Van Vleck, 1929] as
an additional perturbation to the diatomic molecular Hamiltonian to describe splittings in
spectral lines. The splitting arises from an interaction lifting the degeneracy corresponding
to different molecular rotational projections on the magnetic field axis.

The interaction can be separated into a first order effect, and a second order effect. The
first order effect is the magnetic dipole-dipole interaction inducing the coupling between
an electron spin and the magnetic field caused by the electron’s magnetic moments. The
second order effect is induced by the coupling of an electron spin to the magnetic field
induced by the fast orbital motion of other electrons, and can thus be understood as a
second order spin-orbit coupling effect [Strauss et al., 2010].

In Feshbach spectroscopy this effects give rise to a well established doublet splitting
in p-wave Feshbach resonances [Ticknor et al., 2004; Pilch et al., 2009; Wang et al., 2011;
Repp et al., 2013; Wang et al., 2013; Dong et al., 2016; Sawyer et al., 2017] or a triplet
splitting in d-wave Feshbach resonances [Cui et al., 2017]. This doublet features in p-
wave resonances corresponds to the two different projections ml of the orbital angular
momentum l onto the external magnetic field. Potassium for example exhibits a splitting
of ∼ 0.4 G at a magnetic field of 199 G between theml = 0 and the |ml| = 1 states [Ticknor
et al., 2004].

Figure 5.1 shows a schematics of the two different configurations.
We introduce the dipole-dipole interaction HamiltonianHss in its effective form [Strauss

et al., 2010] that is added to the total Hamiltonian H introduced in chapter 4.1

Hss = 2
3λ(R)〈3S2

Z − S2〉 (5.1)

where SZ is the projection of the total electronic spin onto the molecular axis Z, S is the
total electronic spin and λ(R) is the dimensionless spin-spin coupling constant.

λ(R) is a function of internuclear separation R that includes the magnetic dipole-
dipole interaction [Stoof et al., 1988; Moerdijk et al., 1995] with a 1/R3 dependence and
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the second order spin-orbit interaction with exponential R-functions [Mies et al., 1996;
Kotochigova et al., 2001]. The exponential R-function effectively describes an overlap
integral of the two atoms electronic distribution [Pashov et al., 2007].

λ(R) = −3
4α

2

 1
R3 +

∑
β=i

aSOi exp (−biR)

 (5.2)

Here α is the fine-structure constant and aSOi and bi for atom A and B are adjustable
parameters that we will discuss later.

The dipolar splitting in 6Li p-wave Feshbach resonances at 160 G was predicted to
be ∼ 10 mG by Chevy et al. [2005]. Despite the many studies on 6Li p-wave Feshbach
resonances [Zhang et al., 2004; Schunck et al., 2005; Nakasuji et al., 2013; Yoshida et al.,
2018; Waseem et al., 2017, 2018], so far this very small splitting has not been resolved due
to insufficient magnetic field resolution. In another experiment p-wave molecules in the
|ml| = 1 state were selectively formed in an optical lattice without resolving the dipolar
splitting by restricting possible collision channels [Waseem et al., 2016]. Other studies of
the molecular binding energy and lifetime neglected this effect [Fuchs et al., 2008; Inada
et al., 2008; Maier et al., 2010]. In 6Li-133Cs , studies are scarce but the splitting has been
observed [Repp et al., 2013].

In section 5.1 we report on high-resolution trap-loss spectroscopy on three 6Li p-wave
Feshbach resonances in the two lowest hyperfine states. Dipolar splittings in all three
resonances are resolved between 13(1)mG and 6(1)mG. We study systematic effects of the
sample temperature on the resonance with the largest splitting. In section 5.2 we report on
observation of spin-spin splitting in 6Li-133Cs on five different p-wave Feshbach resonances
with splittings between 75(12) mG and 422(5) mG. Also here we study systematic effects
of the sample temperature on the resonance at 663 G.

5.1 Spin-Spin Splitting in 6Li

In this section we present our experimental observations on the spin-spin splitting in 6Li.
A detailed description of the experimental apparatus and sample preparation has been
given in chapter 2. We briefly recap the sample preparation. The two lowest hyperfine
states |2〉=

∣∣1/2,−1/2
〉
and |1〉=

∣∣1/2, 1/2〉 are captured in the cigar shaped optical dipole
trap we call dimple trap. The cloud is evaporatively cooled for 5 s at a magnetic field
of ∼ 890 G which corresponds to an s-wave scattering length a12 between the hyperfine
states |1〉 and |2〉 of a12 = −8000 a0. We selectively populate either one of the spin states
by removing the other one with a short resonant light pulse or we keep the mixture. The
starting conditions for the experiment are 3×104 atoms in each spin state at a temperature
of T ≈ 140 nK with trapping frequencies of ω = 2π × (30, 170, 180)Hz. This results in a
peak atomic density of n = 1.6(1) × 1011cm−3 and T/TF = 0.53(4) where TF is the
Fermi temperature of the system. We hold the sample of atoms for three different spin
configurations at different magnetic fields. Figure 5.2 shows magnetic-field-dependent loss
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Figure 5.1: Schematics of the spin-spin coupling in a weakly bound dimer AB
consisting of one-electron atoms A and B separated by a distance R rotating with
nuclear angular momentum ~l in an external magnetic field ~B. The electron spins are
denoted by ~si, where i = A,B. Spin-spin interaction lifts the degeneracy between
the ml = 0 and ml = ±1 states depicted by a) and b), respectively. b) shows
ml = +1 representing both ml = ±1. Two effects lead to the spin-spin splitting: (1)
the coupling between an electron spin and magnetic fields caused by the electron’s
magnetic moment, (2) the coupling of the electron spin to the magnetic fields caused
by the fast orbital motion of the other electrons. The second effect is a second order
spin-orbit coupling effect.

spectroscopy for the three different samples consisting of a) |1〉⊕|1〉, b) |1〉⊕|2〉 and c)
|2〉⊕|2〉 at magnetic fields of 159 G, 185 G and 214 G, respectively. The hold times vary
for each resonance with a) 500 ms, b) 150 ms and c) 100 ms. The remaining atoms are
detected via absorption imaging.

The points are taken in random magnetic field order to prevent systematic shifts over
time. To calibrate the magnetic field we use a radio-frequency spin flip on lithium as
described in section 3.1 where we also discuss the magnetic field uncertainty arising from
the inferred magnetic field using the Breit-Rabi formula. The main uncertainty derived
from the calibration measurements come from day-to-day drifts. Another contribution
is the residual field curvature along the long axis of the atomic cloud. The absolute
uncertainty is determined to be 10 mG.

To extract information from the measurements we fit Gaussian functions to the doublet
structure of the respective loss measurements. We extract the loss peak position Be

|ml|
and the loss width in terms of the full width at half maximum we|ml|. The resonance
at 185 G is fitted with global loss peak positions Be

|ml| and independent we|ml| and loss
amplitudes to both spin state measurements. We define the splitting between the loss
peaks as δess = Be

0 − Be
1. All extracted information is presented in table 5.1. We find

splittings of 10(1)mG, 6(1)mG and 13(1)mG for the Feshbach resonances at 159 G, 185 G
and 214 G, respectively.

The experimentally obtained splittings δess are compared with theoretical splittings δccss
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Table 5.1: 6Li p-wave Feshbach resonances position Be
1(G), width we|m0| and w

e
|ml|,

doublet splitting
∣∣Be

1 −Be
0
∣∣ = δess and theoretical doublet splitting δccss. The exper-

imental values are obtained by fitting multi peak Gaussian functions to the loss
spectra shown in figure 5.2. For the resonance at 185 G, both spin states are fitted
with a shared loss peak position Be

|ml| and independent widths we|ml| and loss am-
plitude. Both results are listed (the upper row for |1〉 and the lower one for |2〉).
Errors are given in the determination uncertainty (first number in parentheses) and
the systematic uncertainty of 10 mG (second number in parentheses). Coupled chan-
nel scattering calculations to obtain δccss are performed for a relative kinetic energy
of kB × 140 nK, matching with the experimentally measured temperature.

Be
1(G) we0(mG) we1(mG) δess(mG) δccss(mG)

|1〉⊕|1〉 159.097(1)(10) 6(2) 17(2) 10(1) 10
|1〉⊕|2〉 185.091(1)(10) 10(1) 5(2) 6(1) 4

185.091(1)(10) 9(1) 5(1) 6(1) 4
|2〉⊕|2〉 214.825(1)(10) 7(2) 10(1) 13(1) 13

obtained through coupled-channel calculations. The assignment of the quantum numbers
|ml| in figure 5.2 is also obtained through the coupled-channel calculations. The observed
doublet splittings are in very good agreement with a coupled-channel calculation including
an effective spin-spin interaction as presented in chapter 5, similar to the procedure in the
work by Knoop et al. [2009]. Our observations agree very well with previous predictions
[Chevy et al., 2005; Fuchs et al., 2008].

Effects of finite temperature are caused by systematic effects on Feshbach reso-
nances in atom-loss spectra. Figure 5.3a shows temperature dependent atom-loss spectra
of the 6Li p-wave Feshbach resonance at 214 G for temperatures T 6 300 nK. To vary
the temperature we stop evaporation at different trap depth. For temperatures above
T > 300 nK the splitting becomes unresolved due to temperature broadening. Addition-
ally the lineshape becomes asymmetric. In figure 5.3b we present the loss peak positions
Be
|ml| and the loss width we|ml| extracted from figure 5.3a via a double Gaussian fit to the

data.
Due to the asymmetric Maxwell-Boltzmann distribution, asymmetries in the loss

shapes might arise if the temperature width is large compared to the loss resonance width.
Averaging over the Maxwell-Boltzmann distribution also leads to a shift in the resonance
center position. Saturation arises within the unitarity regime where the collision energy
is large compared to the resonance energy [Ticknor et al., 2004; Dong et al., 2016; Zhang
et al., 2004; Waseem et al., 2018, 2016]. This makes it impossible to resolve magnetic
resonance splittings below magnetic fields of order 3kBT/2δµ [Waseem et al., 2018, 2016].
Here δµ is the relative magnetic moment between the molecular and the atomic state with
δµ = kB × 118(8) µK G−1 [Fuchs et al., 2008]. To ensure a magnetic field resolution of
∼ 1 mG at the resonance at 214 G, thus we need temperatures below T < 0.7 µK.
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Figure 5.2: 6Li p-wave Feshbach resonances in the a) |1〉⊕|1〉 , b) |1〉⊕|1〉 and c)
|2〉⊕|2〉 entrance channels observed as atomic-loss features. The figure shows the
remaining fraction of 6Li atoms in the |2〉 spin state (solid squares) or the |1〉 spin
state (open circles) after a) 500 ms, b) 150 ms and c) 100 ms. All three resonances
show doublet structures. Quantum numbers |ml| are assigned to the peaks according
to the theoretical modeling, described in the text. The data b) of spin-state |1〉 is
vertically shifted to avoid overlapping with that of |2〉. The solid curves are fits with
double-Gaussian functions. We extract the resonance positions Be

ml
(indicated by

vertical dashed lines) and widths weml
and listed them in table 5.1.

At lower temperature the resonance peak moves to lower magnetic fields as expected
[Ticknor et al., 2004]. We approximate the temperature dependence with a linear fit to the
loss peak position. We get resonance position slopes of 16(3) mGµK−1 and 10(3) mGµK−1

for the ml = 0 and |ml| = 1 peaks respectively. The zero temperature positions are given
by Be

0(T = 0) = 214.824(1)(10)G and Be
1(T = 0) = 214.837(1)(10)G. Even though

the slopes are slightly different for the two |ml| components, the splitting δe remains
almost constant within the experimental uncertainty within the observed temperature
range. For zero temperature we extrapolate a splitting of 13(1) mG which is in very good
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Figure 5.3: Temperature dependence of atomic-loss spectroscopy near the 214 G
6Li p-wave Feshbach resonance. a) Loss spectrum at different sample temperatures
between 130 nK and 300 nK. The baselines of the profiles are shifted according to
their temperature in order to avoid overlap of the curves. The data are fitted using
a double-Gaussian function. We extract the loss peak positions Be

|ml| and widths
we|ml|. The dotted vertical lines shows the extrapolated peak positions of Be

1 (left)
and Be

0 (right) at zero temperature at 214.824 G. (b) Be
|ml| (black symbols) and

we|ml| (red symbols) of the observed loss features at different T for the |ml| = 1
(solid circles) and ml = 0 (open squares) components. Be

|ml| are referenced to the
zero-temperature value of Be

1 at 214.824 G. The lines are linear fits to the data.

agreement with the coupled-channel calculations and previous predictions [Chevy et al.,
2005]. Waseem et al. [2017, 2018] describe a Breit-Wigner theoretical approach explaining
different slopes for two- and three-body loss processes. Assuming kBT as the smallest
energy scale, we estimate a resonance shift og 5kB/2δµ = 21.2 mGµK−1 and kB/δµ =
8.5 mGµK−1 for two- and three-body loss processes respectively. The experimentally
obtained slopes of 16(3) mGµK−1 and 10(3) mGµK−1 indicate contributions from both
two- and three-body loss to the observed temperature dependence. For a loss resonance
width which is small compared to the temperature width Chevy et al. [2005] calculates
a slope of 11.1 mGµK−1 for a two-body loss process. For a deeper understanding of the
temperature dependence through the loss mechanisms, time-resolved measurements are
necessary.

For the observation of the loss width we obtain zero temperature width of we0(T =
0) = 6(1) mG and we1(T = 0) = 8(1) mG with slopes of 14(4) mGµK−1 and 37(7) mGµK−1

for the ml = 0 and |ml| = 1 components, respectively. The observed width includes the
resonances intrinsic width Γr [Chevy et al., 2005; Waseem et al., 2017, 2018], dimer lifetime
Λad [Chevy et al., 2005; Waseem et al., 2017, 2018] and other experimental broadening
effects such as the trap-induced density inhomogeneity, magnetic field noise and hold time.
The observed width for all measured temperatures is large compared to the temperature
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width with we(T ) > kBT/δµ. From this one may infer that Γr~ � kBT . This is also
backed by the symmetry of the loss spectra. However, this disagrees with estimations of
Γr extraced from the temperature- and interaction-strength-dependent two- [Chevy et al.,
2005; Waseem et al., 2017] and three-body [Waseem et al., 2018] loss rate constants near
the p-wave resonances above the Fermi temperature.

In conclusion we have performed high-resolution atom-loss spectroscopy of p-wave
Feshbach resonances in an optically trapped ultracold 6Li gas. We measured splittings
of 10(1) mG, 6(1) mG and 13(1) mG on all three p-wave resonances at 159 G, 185 G and
214 G respectively. We assigned the different loss peaks to different absolute projections of
the orbital angular momentum |ml| with a full coupled-channel calculation including spin-
spin interactions. We showed that low temperatures are essential to resolve the splitting
since the splitting itself only slightly depends on the temperature. The temperature de-
pendence of the loss feature width however limits the resolution. Resolving the predicted
dipolar splitting of Feshbach resonances in 6Li provides a good starting point for further
investigations in the direction exploring the individual control of |ml| = 0, 1 scattering
processes [Günter et al., 2005; Peng et al., 2018].

5.2 Spin-Spin Splitting in 6Li-133Cs

In this section we report on high-resolution trap-loss spectroscopy on five 6Li-133Cs p-
wave Feshbach resonances |α〉 =

∣∣1/2,−1/2
〉
⊕|3,+3〉and |β〉 =

∣∣1/2, 1/2〉⊕|3,+3〉. Dipolar
splittings on all five resonances are resolved. Observations on spin-rotation splitting is
also observed and discussed in chapter 6.1. Splittings between 76(12) mG and 422(5) mG
are observed. We study systematic effects of the sample temperature on the resonance at
663 G. This section is based in parts on the publications Zhu et al. [2021b,a].

A detailed description of the sample preparation has been given in chapter 2.5. We
briefly recap the sample preparation. We prepare an optically trapped ultracold mixture
of 6Li-133Cs atoms by means of standard laser-cooling techniques. The 133Cs atoms are
optically pumped into the absolute ground state

∣∣∣f = 3,mf = 3
〉
via degenerate Raman

sideband cooling and loaded into the optical dipole trap we call reservoir trap. The 6Li
atoms in the ground state manifold |f = 1/2 > are loaded into another cigar shaped
trap we call dimple trap, located 1 mm away from the reservoir trap. Both clouds are
evaporatively cooled simultaneously at a magnetic field of 896 G where aCsCs = 320 a0
and aLiLi = −8000 a0. The combination of the two species is done at a field of 907 G.
Lithium is spin polarized by removing one spin state via a short resonant light pulse.
Finally both species are trapped in the dimple trap with 5 × 104 Cesium and 3 × 104

Lithium atoms at 430 nK. The trapping frequencies are ωCs = 2π × (12, 173, 162)Hz and
ωLi = 2π × (44, 388, 388)Hz. This corresponds to peak densities of nCs = 2.7× 1012cm−3

and nLi = 2.2× 1011cm−3.
We perform high-resolution trap-loss spectroscopy by measuring the remaining fraction

of 6Li and 133Cs atoms after optimized holding times in the trap. Holding times vary
between 500 ms for the resonance at 663 G and 10 s for the resonance at 658 G. Magnetic
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fields are calibrated as introduced in chapter 3 by a radio-frequency spin flip on Lithium
and the Breit-Rabi formula. Absolute magnetic field uncertainties are determined to be
16 mG and are caused by long-term drifts, residual field curvatures along the long axis of
the trap and calibration uncertainties.

Figure 5.4 shows five p-wave Feshbach resonances at magnetic fields between 658 G and
764 G Lithium and Cesium. In this section we focus on the observed spin-spin splitting,
visible in all five resonances. We assign each peak with a quantum number |ml| according
to a full coupled-channel calculation. We use Gaussian fits to extract the loss resonance
positions Be

ml
where we use Be

|ml|=1 = Be
+1+Be

−1
2 , the loss width we0 and the spin-spin

splitting δess = Be
+1+Be

−1
2 − Be

0. These parameters are all listed in table 5.2 alongside
the theoretical value of the spin-spin splitting δccss extracted from a full coupled-channel
calculation at a collision energy corresponding to a temperature of 430 nK. The observed
splittings δess are very large compared to the resonance width of ∼ 20 mG, such that they
are well resolved.

To account for the observed splitting, spin-spin interactions are included in the full
coupled channel calculation presented in equation 5.1. For Hss the diagonal parts give rise
to the doublet splitting between the ml = 0 and |ml| = 1 states with an energy difference
of

∆Ess = 1
2〈λ(R)〉〈3S2

z − S2〉 (5.3)

Here 〈3S2
z − S2〉 are expectation values calculated with the spin parts of the close-

channel wave function. Off-diagonal parts in ml are too small at high magnetic fields to
cause a significant splitting of the |ml| = 1 components (see Ref [Park et al., 2012] at low
magnetic fields). The full spin-spin coupling parameters 〈λ〉 as introduced in equation 5.2
included in the full coupled channel calculation.

As described in the introduction of this chapter the 1/R3 term describes the direct
magnetic dipole-dipole interaction [Stoof et al., 1988; Moerdijk et al., 1995]. The second
order spin-orbit interactions are included with an biexponential R-function [Mies et al.,
1996; Kotochigova et al., 2001]. The function shows a dominance of the first order term
for large R and a dominance of the second order term for small R.

The energy splittings from equation 5.3 are translated into magnetic field splittings
δss via the differential magnetic moment µrel between closed and open channel. Table 5.2
shows 〈λ〉 calculated from these splittings in units of the rotational energy Bv which is
given by Bv = ~2/(2µR2). By fitting the full coupled channel calculation to the observed
splitting δess, we determine the free parameters in equation 5.2 to be: aso1 = −1.99167,
aso2 = −0.012380, b1 = 0.7 and b2 = 0.28. Table 5.2 also shows the experimentally
measured 〈λe〉 gained via

〈λe〉 = −2µrel
δess

〈3S2
z − S2〉

(5.4)

where µrel and 〈3S2
z − S2〉 are obtained from the full coupled channel calculation.

In addition to the shown measurements of figure 5.4 we perform temperature dependent
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Table 5.2: Dipole-dipole splitting in 6Li-133Cs p-wave Feshbach resonances
observed for different spin channels |α〉 =6Li

∣∣1/2,+1/2
〉
⊕133Cs|3,+3〉 and

|β〉 =6Li
∣∣1/2,−1/2

〉
⊕133Cs|3,+3〉. The resonances are observed at magnetic field

Be
0 and the corresponding loss width we0. δess is the splitting observed induced by

the spin-spin interaction. The numbers in parentheses give the uncertainties in the
determination of Be

0, we0 and δess. The systematic uncertainty is shown for Be
0 in

the second bracket. δccss shows the corresponding theoretical value of the splitting
obtained from the full coupled-channel calculations for a relative kinetic energy cor-
responding to the temperature 430 nK. 〈λe〉 shows the effective spin-spin parameter
calculated from the measured splitting δess, the relative magnetic moment µrel and
the expectation value 〈3S2

z − S2〉 as described in equation 5.2.

Be
0(G) we0(mG) δess(mG) δtss(mG) 〈λe〉(10−3Bv)

|α〉 662.822(3)(16) 21(1) 224(4) 228.5 -7(1)
713.632(4)(16) 15(1) 422(5) 419.5 -8(1)

|β〉 658.080(10)(16) 25(3) 75(12) 81.5 -6(1)
708.663(3)(16) 16(1) 228(4) 232.5 -7(1)
764.201(1)(16) 21(1) 421(1) 423 -8(1)

high-resolution trap-loss spectroscopy on the 663 G p-wave resonance at temperatures
between 210 nK and 840 nK. The measured spectra are presented in figure 5.5a. Also here
we first focus on the spin-spin splitting and discuss the splitting of the ml = ±1 states
in section 6.1. Similar to the temperature dependent observations on the 6Li p-wave
Feshbach resonances, also here the resonance positions shift to lower fields. The splitting
however stays resolved over the whole temperature range. We extract information about
the loss peak positions Be

|ml| and the loss width we0 by fitting multiple Gaussian functions
to the spectra. The extracted information is presented in figure 5.5b.

The loss peak positions Be
0 and Be

±1 are shown for Lithium and Cesium. The data
is presented such that Be

0 = 0 at zero temperature, shifted by 662.819(3) G. To lowest
order we approximate the data by linear functions. The slopes for the loss peak positions
give 25(2) mGµK−1 and 29(5) mGµK−1 for the Be

0 and Be
±1 peaks respectively. The

splitting δess does not change significantly over the whole range and is δess(T = 0) =
222(3) mG at zero temperature. Similar to the discussion of temperature dependence on
the 6Li p-wave Feshbach resonance, we discuss the shift in terms of temperature-induced
resonance shifts for two- or three-body loss processes. The temperature dependent shift
for two-body loss events is given by 3/2kBT/δµ = 10 mGµK−1 [Chevy et al., 2005] and by
kBT/δµ = 7 mGµK−1 for three-body loss [Gerken et al., 2019], where δµ = h×3 kHz mG−1

is the differential magnetic moment between the bound molecular and free atom state.
Only a small part of the resonance shift can be explained by these effects. The other
∼ 20 mGµK−1 might be induced by the AC stark effect induced by the change in trap
power for varying trap-depth and temperature [Jag et al., 2014; Cetina et al., 2016].

Figure 5.5b also shows the change of the resonance width we0 in dependence of the
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temperature for the Cesium measurements. Here a linear fit gives the zero temperature
width of we0(T = 0) = 10(2) mG with a slope of 32(4) mGµK−1. For a full understanding
of the width behavior, measurements over a larger range are necessary. At temperatures
of 840 nK the resonance shape becomes asymmetric, which indicates a resonance width
on the order of Γr~ ≈ kB × 840 nK. Further reasons for the change in loss width can
be experimental parameters like the trap-induced density inhomogeneity, magnetic field
noise, and the holding time in the trap.

In conclusion we showed spin-spin splitting on five 6Li-133Cs p-wave Feshbach reso-
nances via high-resolution trap-loss spectroscopy. We observed splittings between 75(12) mG
and 422(5) mG that are in good agreement with a full coupled channel calculation. Tem-
perature dependence on the resonance at 663 mG was investigated where no significant
temperature dependence on the splitting could be observed. In the next chapter we discuss
the lifting of the degeneracy in the Be

|ml|=1 states.
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Figure 5.4: 6Li-133Cs p-wave Feshbach resonances in the |α〉 ( b) 663 G, d) 713 G
resonances) and |β〉 ( a) 658 G, c) 708 G and e) 764 G resonances) spin state channels.
The upper graphs show the remaining fraction of 6Li atoms (open circles). The lower
graphs show the remaining fraction of 133Cs atoms (solid square). The holding times
are a) 10 s, b) 0.5 s, c) 1 s, d) 5 s and e) 5 s. The error bars are standard deviations
with 10 repeated measurements at each point. Measurements are taken in random
magnetic field order to reduce systematic field shifts. The solid lines are multi-peak
Gaussian functions to extract resonance positions Be

ml
and resonance width weml

presented in table 5.2. Dashed vertical lines indicate ml = 0 to |ml| = 1 dipole-
dipole splitting. The doublet structure in the |ml| = 1 resonances at a) 658 G, b)
663 G and c) 708 G is induced by spin-rotation coupling discussed in chapter 6. 67
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Figure 5.5: Temperature dependence of the 6Li-133Cs p-wave Feshbach resonance
near 663 G. a) Loss features for varied temperature by change of trap-depth. The
remaining fraction of 133Cs atoms after 0.2 s is shown as a function of the external
magnetic field. The spectra are shifted vertically to avoid overlap. Each point is
averaged over 4 experimental runs and the error bars show the standard deviation. A
triplet Gaussian function is fitted to the data to extract the resonance position Be

|ml|.
Vertical dashed lines indicate the zero temperature limit of the Be

|ml|=0 and Be
|ml|=1

resonance. b) shows the resonance positions Be
|ml|=0 (Be

|ml|=1) for 133Cs and 6Li as
open circles and triangles respectively (for 133Cs and 6Li as solid circles and triangles
respectively) and the resonance width we0 for 133Cs in red open circles. In the upper
graph the zero position is set in reference to Be

|ml|=0 at zero temperature, Be
0(T =

0) = 662.819(3) G. The δess dipole-dipole splitting does not depend significantly on
the temperature within the observed range and is δess(T = 0) = 222(3) mG.
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In the previous section we discussed spin-spin coupling where the dipole-dipole interaction
lead to different energy shifts depending on the orientation of the molecular rotation
towards the magnetic field. These interactions lift the degeneracy of the ml = 0 and
|ml| = 1 states in p-wave molecules. In this section we introduce spin-rotation coupling,
the quantum-mechanical coupling of a spin to a magnetic field, induced by a physical
rotation. Even though the effect is well known in molecular [Lefebvre-Brion H., 1986]
and solid physics [Maekawa et al., 2012] it has not been observed so far in Feshbach
molecules. In non-singlet molecules the spin-rotation coupling was first introduced by
Friedrich Hund in 1927 [Hund, 1927]. The splitting is caused by the interaction of the
electron’s magnetic moment with the magnetic field induced by the rotation of the nuclear
charges and the distorted electronic orbitals induced by the same rotation of the nuclear
charges. We introduce the spin-rotation interaction Hamiltonian Hsr and add it to the
total Hamiltonian H introduced in chapter 4.

Hsr = γ

2µR2
~S~l (6.1)

where ~S = ∑
β=A,B ~sβ is the total electron spin and ~l is the molecular rotation angular

momentum. γ is the dimensionless spin-rotation coupling constant. Figure 6.1 shows a
schematic on how the molecular rotation leads to the different couplings.

In deeply bound molecules the well known effect can be precisely measured via mi-
crowave spectroscopy [Brown and Alan, 2003]. However, in shallow molecular states, the
weak rotational effects make it rarely accessible. The already weak dipole-dipole coupling
effect can be compared to the spin-rotation coupling in relative strength to estimate the
spin-rotation coupling effect. To do that we compare the magnetic fields involved in the
two coupling cases. The first order effect of the spin-spin effect directly involves the elec-
tron’s magnetic moment. The first order spin-rotation interaction involves a magnetic
dipole moment induced by the rotation of the nuclei. Thus the ratio between the effects
is proportional to the ratio of the electron-proton mass ratio ∼ me/mp ≈ 5 × 10−4. The
second order effects of the spin-rotation coupling are the perturbations of the nuclear
rotation and the spin-orbit. The second order effect of the dipole-dipole coupling also
arises from spin-orbit coupling. The relative coupling strength ratio can be estimated as
Bv/Aso. Here Bv is the molecular rotational energy Bv = ~2/(2µR2) with µ the reduced
mass and Aso is the excited-state spin-orbit coupling constant [Strandberg and Tinkham,
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Figure 6.1: Schematics of the spin-rotation coupling in a weakly bound dimer AB
consisting of one-electron atoms A and B separated by a distance R rotating with
nuclear angular momentum ~l in an external magnetic field ~B. The electron spins
are denoted by ~si with i = A,B. Spin-spin interaction would result in degenerate
energies for the projections ml = ±1 in (a) and (b), respectively. Nuclear rotation
lifts this degeneracy by two effects: (1) Magnetic fields created directly by the
rotating charges, and (2) spin-orbit coupling caused by rotation-induced electron
orbital angular momenta ~lA and ~lB. The corresponding energies in (a) and (b) have
the same strength, but opposite sign.

1955]. Due to the large size of the Feshbach molecule the rotational energy takes small
values of Bv ≈ h100 MHz. The excited-state spin-orbit coupling can safely be assumed
to be the 133Cs 6p dominated spin-orbit coupling. This leads to a relative strength of
Bv/Aso ≈ 10−5. Here the first order contribution dominates over the second order contri-
bution. From the previous section, where we saw that the spin-spin splitting of a 6Li-133Cs
p-wave Feshbach molecule was on the order of ∼ 400 mG, we can safely assume, that the
spin-rotation splitting is far below the accessible magnetic field resolution or washed out
by the resonance width.

In this section we present the first experimental observation of spin-rotation splitting in
high-resolution trap-loss spectroscopy in p-wave Feshbach resonances of ultracold gases,
specifically in ultracold 6Li-133Cs. The spin-rotation interaction manifests itself as an
additional splitting in the ml = ±1 components of the loss spectra. We will start by
presenting the experimental observations and discuss the relation to spin-rotation coupling
in section 6.1. We also analyze the temperature dependence of the splitting. Finally we
present a simple model-wave-function to calculate the first- and second order spin-rotation
coupling components to gain a deeper understanding of the un-intuitive appearance of the
effect.
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6.1 Spin-rotation interactions in 6Li-133Cs
The data and the experimental procedure have been presented in the previous section
5.2. Figure 6.2 shows a zoom on the atom loss spectroscopy data of the 6Li-133Cs p-wave
Feshbach resonance at 658 G, 663 G and 708 G presented in figure 5.4 to highlight the
spin-rotation splitting. We fit multi Gaussian functions to the loss spectra and extract
loss position Be

ml
, loss width weml

and spin-rotation splitting δesr = Be
−1 − Be

+1 from the
data and summarize them in table 6.1. The two remaining resonances at 714 G and at
764 G do not show a splitting of the ml = ±1 states. The observed splittings are on the
order of 20 mG, much larger then what we expect from the initial estimation.

To account for the observed splitting, the spin-rotation interaction Hamiltonian from
equation 6.1 is included in the full coupled channel calculation. We fit the splittings with
γ, the dimensionless spin-rotation parameter, as the only free parameter. In the range
of high magnetic fields, l and ml both are nearly conserved parameters, such that only
the diagonal terms of the Hamiltonian Hsr contribute significantly to the energy splitting.
The diagonal term γ ~2

2µR2Szml then leads to the splitting

∆Esr = 2γBv〈Sz〉 (6.2)

between the ml = +1 and ml = −1 components. Here Sz is the projection of the
total spin ~S along the external magnetic field, 〈Sz〉 the expectation value in the closed
channel and Bv = 〈~2/(2µR2)〉 ∼ 228 MHz is the rotational constant of the least bound
vibrational state of the 6Li-133Cs triplet electronic ground state. Table 6.1 also shows the
spin-rotation parameter γe we measure for each splitting calculated using

γe = −µrel
δesr

2〈Sz〉Bv
(6.3)

The values 〈Sz〉 and µrel are calculated via a full coupled channel calculation with-
out the spin-spin and spin-rotation terms. We fit the observed splittings including Hsr

to the full coupled channel calculation and determine the free fit parameter |γcc| =
0.566(50) × 10−3. We cannot determine the sign of γcc since a sign change of γcc and
ml are interchangeable. We assign the quantum numbers ml to the loss resonances in
figure 6.2 according to a positive γcc. The table also shows the spin-rotation splittings
δtsr calculated for each resonance via the full coupled channel calculation using γcc. The
experimentally observed splittings of the three resonances are in very good agreement
with the theoretical values. For the two resonances where no splitting is observed, the
predicted splitting is small compared to the measured loss width we0. We assume, that the
splittings cannot be observed due to limiting resolution under the current experimental
conditions. The differences in the predicted splittings δtsr for the different resonances arises
from different singlet- triplet character of the closed molecular states 〈Sz〉.

The spin-rotation coupling explains very well the observed splittings and also the non-
observed splittings. To further justify the spin-rotation coupling as the observed effect,
we investigate further possible explanations [Tischer, 1967]. The rotational Zeeman effect
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Table 6.1: Spin-rotation splitting in 6Li-133Cs p-wave Feshbach resonances ob-
served for different spin channels |α〉 =6Li|1/2,+1/2 > ⊕ 133Cs|3,+3 > and
|β〉 =6Li|1/2,−1/2 > ⊕ 133Cs|3,+3 >. The resonances are observed at the mag-
netic field Be

±1 and the corresponding loss width we±1. δesr is the splitting observed
corresponding to the spin-rotation interaction. The numbers in parentheses give the
uncertainties in the determination of Be

±1, we±1 and δesr. The systematic uncertainty
is shown for Be

±1 in the second bracket. δtsr shows the corresponding theoretical
value obtained from the full coupled-channel calculations for a relative kinetic en-
ergy corresponding to the temperature 430 nK, the temperature at the experiment.
The remaining two resonances presented in table 5.2 do not show a splitting of the
ml = ±1 states.

Be
±1(G) we+1/−1(mG) δesr(mG) δtsr(mG) γe(10−3)

|α〉 662.929(3)(16) 6(1)/10(1) 20(6) 17 0.6(2)

|β〉 658.155(10)(16) 6(1)/13(1) 24(14) 25 0.5(3)
708.772(3)(16) 6(1)/7(1) 20(4) 17 0.6(1)

splits the ml states, but only shows a small dependence on 〈Sz〉 due to the small coupling
to the rotation. This is contradictory to our observation showing a strong dependence on
the electron spin, indicating that the rotational Zeeman effect is not responsible for the
splitting. The molecular anisotropy of the electron g-tensor with respect to the molecu-
lar axis results from the spin-orbit interaction and could thus yield a small contribution
compared to the spin-rotation interaction. Including this effect into the fitting routine
results in a magnitude of about 10 % of the free electron’s g factor. This unphysically
large contribution indicates, that also the molecular anisotropy of the electron g-tensor is
not responsible for the observed splitting. We conclude, that spin-rotation coupling plays
the dominant role in the observed splittings.

We also investigate the behavior of the temperature on the spin-rotation splitting. In
figure 6.3 we present the temperature dependent high-resolution trap-loss spectra with a
focus on the ml = ±1 loss peaks. Figure 6.3b shows the change of the loss peak positions
Be

+1 and Be
−1 relative to the Be

|ml|=±1 at zero temperature, Be
0(T = 0) = 663.051(3) G. The

splitting at zero temperature is δesr(T = 0) = 20(6) mG. The slope are 20(10) mGµK−1

and 24(10) mGµK−1 for the Be
+1 and Be

−1 states respectively. This shows, that the spin-
rotation splitting does not depend significantly on the temperature within the observed
range. The slopes themselves follow the observed slopes for the Be

0 state discussed in
section 5.2 and can thus be explained with the same arguments.

In conclusion we presented an experimental observations of a triplet structure of
6Li-133Cs p-wave Feshbach resonances via high-precision trap-loss spectroscopy. We at-
tributed the splittings to spin-spin and spin-rotation interactions and assignedml quantum
numbers to the loss peaks. We fitted a full coupled channel calculation to the spectra and
extracted the dimensionless spin-rotation parameter γcc = 0.566(50) × 10−3. In the next
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Figure 6.2: 6Li-133Cs p-wave Feshbach resonances in the |α〉 spin state channel
a) 663 G and |β〉 spin state channels b) 658 G, c) 708 G. The upper graphs show
the remaining fraction of 6Li atoms (open circles). The lower graphs show the
remaining fraction of 133Cs atoms (solid square). The holding times are a) 10 s, b)
0.5 s, c) 1 s. The error bars are standard deviations with 10 repeated measurements
at each point. Measurements are taken in random magnetic field order to reduce
systematic field shifts. The solid lines are multi-peak Gaussian functions to extract
resonance positions Be

ml
and resonance width weml

presented in table 6.1. Dashed
vertical lines indicate ml = +1 to ml = −1 spin-rotation splitting. The doublet
structure is induced by spin-rotation coupling.

section we will present a simple model to calculate the spin-spin parameter λ introduced
in section 5.2 and the spin-rotation parameter γ from a model wavefunction for the case
of 6Li-133Cs.
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Figure 6.3: Temperature dependence of the 6Li-133Cs p-wave Feshbach resonance
near 663 G. a) Loss features for varied temperature by change of trap-depth. The
remaining fraction of 133Cs atoms after 0.2 s is shown as a function of the exter-
nal magnetic field. The spectra are shifted vertically to avoid overlap. Each point
is averaged over 4 experimental runs and the error bars show the standard devi-
ation. A triplet Gaussian function is fitted to the data to extract the resonance
position Be

|ml|. Vertical dashed lines indicate the zero temperature limit of the Be
+1

and Be
−1 resonance. ml values are indicated according to a positive γcc. b) shows

the resonance positions Be
−1 (Be

−1) for 133Cs as open circles and closed squares re-
spectively. The zero position is set in reference to Be

|ml|=±1 at zero temperature,
Be

0(T = 0) = 663.051(3) G. The δesr dipole-dipole splitting does not depend signifi-
cantly on the temperature within the observed range and is δesr(T = 0) = 20(6) mG.

6.2 Modeling the 6Li-133Cs Spin-Rotation Interac-
tions

In this section we want to introduce a simple model for the calculation of the spin-spin and
spin-rotation interactions in a 6Li-133Cs system to gain a deeper physical understanding of
the important constituents of the effects. The ratio of the observed values γ/λ is larger then
expected. We will try to reproduce our fitted values for the dimensionless spin-spin and
spin-rotation parameters λ and γ. To do this we will calculate the first- and second order
contributions of both parameter using a molecular wavefunction constructed out of the
atomic electron wavefunctions. We obtained it from the atomic electron wavefunctions at
the unperturbed ground states by treating the static Coulomb interactions between atom
pairs separated by a distance R. Figure 6.4 shows a schematic for the relevant values of the
model. We start this section by introducing the model wavefunction, being the nuclear-
and the electronic wavefunctions. Afterwards we will use the model wavefunction to first
calculate the first- and second order contribution for the spin-spin parameter, and later
for the spin-rotation parameter.
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Figure 6.4: Schematic drawing of a 6Li-133Cs dimer with center of mass (CM)
coordinate system and z axis along the internuclear axis. The variable β = Li, Cs
indicates the cores and i = 1, 2 indicates the electrons. The ionic cores coordinate
is described as ~r = (0, 0, zβ), the valence electrons are found at ~ri = (xi, yi, zi).
~riβ = ~ri − ~rβ describes the vector from the core β to the valence electron i and
the angle θβ is defined as the angle from the z axis to the corresponding valence
electron.

The nuclear wavefunction is obtained by solving the Schrödinger equation for the
last vibrational state of the 6Li-133Cs triplet ground state potential a3Σ+. The bound
state problem is solved by the so-called renormalized Numerov method [Johnson, 1977].
The potential we use is obtained via the full coupled channel calculations using all 6Li-
133Cs resonance position [Häfner, 2017]. The potential also includes the centrifugal barrier
l(l + 1)~2/(2µR2) for p-wave potentials. Figure 6.5a shows a schematic of the obtained
nuclear wave function in the nuclear potential. Note, that the centrifugal barrier is far to
small to be seen (10−6Eh). The binding energy is 3376 MHz, the inner turning point Rin
is at about 8 a0 and the outer turning point Rout is at about 43 a0.

The electron wavefunction and energy for the atom pair at large R, are obtained
following a perturbative derivation of the dispersion coefficients for the ground-state poten-
tials of bi alkali atoms presented in Marinescu and Dalgarno [1995]. This approximation
is valid for nuclear distances down to the LeRoy radius RLR [Le Roy, 1974] where the
electron wavefunctions of the separated atoms do not overlap. In the case of 6Li-133Cs
ground state wavefunctions the LeRoy radius is RLR ≈ 20 a0. In zeroth order we assume
both atoms to be in their electronic ground state being

∣∣∣ψLi2s

〉
and

∣∣∣ψCs6s

〉
which we write

short as
∣∣Ψ2s,6s

〉
for simplification. As the first-order correction we add components of

the electronic wave function being in the first excited state
∣∣Ψ2p,6p

〉
. The full electronic
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Figure 6.5: Model wavefunctions for the calculation of the spin-spin parameter λ
and the spin-rotation parameter γ. a) shows the triplet groundstate a3Σ+ potential
including the p-wave centrifugal barrier in black [Zhu et al., 2021a]. The nuclear
wavefunction Ψ(R) of the least bound vibrational state is shown in red. The energy
scale of the potential is given in Eh the Hartree energy, while the amplitude of
the wavefunction is arbitrarily choose for visualization. b) shows the electronic
wavefunctions for 6Li (133Cs) in red (blue) with the ground state 2s (6s) and the
excited state 2p (6p) are shown as solid and dashed lines respectively. Here r is the
distance between the atomic nucleus and its valence electron.

wavefunction can then be written as

|Ψ;R〉 =
∣∣Ψ2s,6s

〉
+

∑
m=−1,0,1

c1,m
∣∣∣ψLi2p,ml

〉 ∣∣∣ψCs6p,−ml

〉
(6.4)

where ml denotes the projection of the electronic orbital momentum. The coefficients
c1,m are given by

c1,0 = 2c1,±1 = − 2c
3R3 (ELi,2p + ECs,6p)−1 (6.5)

where c =
〈
ψLi2p

∣∣∣ r ∣∣∣ψLi2s

〉〈
ψCs6p

∣∣∣ r ∣∣∣ψCs62s

〉
≈ 24.1. The second order corrections to the

electronic wavefunction can be neglected since they are smaller by a factor of 104 compared
to the first order correction. Thus we now have a full molecular wavefunction validly
approximated for internuclear distances of R > RLR.

6.2.1 Modeling Spin-Spin Coupling
In this section we calculate the expected spin-spin coupling parameter λ via the fit pa-
rameters obtained from the full coupled channel calculation. Following Strandberg and
Tinkham [1955]; Brown and Alan [2003] we separate λ into two parts, namely the first-
order magnetic dipole-dipole interaction and the second order spin-orbit coupling.
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The first order contribution models the magnetic dipole-dipole interaction. It’s
1/R3 dependence is well known for dipole-dipole interactions. In the spin-spin coupling pa-
rameter λ(1) as used [Stoof et al., 1988; Moerdijk et al., 1995] in equation 5.2 is manifested
in

λ(1) = −3
4
α2

R3 (6.6)

The second order contribution models the coupling of the electron spin to the
electron orbital deformed by the molecular rotation. In the spin-spin coupling parameter
λ(2) as used [Mies et al., 1996; Kotochigova et al., 2001] in equation 5.2 is manifested in

λ(2) = −3
4α

2 (aso1 exp (−b1R) + aso2 exp (−b2R)
)

(6.7)

as a biexponential R-function.
Both λ(i) for i = 1, 2 are plotted in figure 6.6. λ(2) is shown with inverse sign. This

already shows, that both orders are competing. While λ(1) is dominating at long range, λ(2)

dominates at short range. The lower part of figure 6.6 shows both λ(i) components weighted
by our model molecular wavefunction. To obtain the averaged 〈λ(R)〉 as measured and
presented in table 5.2, we average and add both λ components 〈λ(R)〉 = 〈λ(1)(R)〉 +
〈λ(2)(R)〉 over R.

We obtain 〈λ(R)〉/Bv ≈ −8 × 10−3. This is in very good agreement with our experi-
mental observations presented in table 5.2.

6.2.2 Modeling Spin-Rotation Coupling
Also here we will follow closely the derivation presented in Brown and Alan [2003]; Strand-
berg and Tinkham [1955] where the spin-rotation coupling for the X3Σ−g state of O2 are
evaluated.

The first order contribution of the spin-rotation coupling describes the coupling
for the electric spins to the magnetic field induced by the molecular rotation. Van Vleck
[1951] gives the first order contribution in the form

H(1)
sr = 1

2gα
2

∑
β,i

Ziβ(~vβ × ~riβ)
r3
iβ

· ~si −
∑
i 6=j

~vj × ~rji
r3
ji

· ~sj

 (6.8)

Here g is the g-factor of the electron, α is the fine structure constant. The subscripts
i = 1, 2 and β = Li,Cs denote the two valence electrons and the atomic cores, respectively.
Ziβ is the effective nuclear charge of β seen by the electron i at ~riα = ~ri−~rα and ~rji = ~rj−~ri.
Here αis the index of the nuclei. The effective charges of the atomic cores are seen
shielded by the valence electrons. Including the shielding of the nuclear charge by the
inner electrons, we take Z2Li = 1.3, Z1Cs = 6.4 and Z1Li = Z2Cs = 1 [Clementi and
Raimondi, 1963; Clementi et al., 1967]. ~vi describes the electronic velocities. Due to the
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Figure 6.6: First-order (dark cyan) and second order (purple) spin-spin coupling
parameter λ from equation 6.6 and 6.7 respectively. The lower graph shows their
corresponding values weighted by the absolute square of the nuclear wavefunction
|Φ(R)|2. To obtain the values for λ(1) and λ(2) we integrate over R.

fast oscillatory nature of their motions, their contributions average to zero. The second
term of equation 6.8 is zero. ~vβ describes the nuclear velocities that can be replaced by
the molecular rotation giving ~vβ = l

µR2 × ~rβ. With this we rewrite equation 6.8 as

H(1)
sr = gα2

2µR2

∑
β,i

Ziβ(~l · ~riβ)~rβ − (~rβ · ~riβ)~l
r3
iβ

· ~si (6.9)

Due to the axial symmetry around the internuclear axis z in the molecule, any terms
containing odd powers of xi and yi are zero and we can further simplify to

H(1)
sr = −gα2B(R)~l ·

∑
β,i

Ziβ
zβ(zi − zβ)

r3
iβ

~si (6.10)
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which results in the first order contribution of the spin-rotation parameter γ

γ(1) = −gα2B(R) 〈Φ;R|
∑
i,β

~S · ~si
S(S + 1)Ziβ

zβ(zi − zβ)
r3
iβ

|Φ;R〉 ≈ gα2

2 R−1 = 5.4× 10−5R−1

(6.11)
The final step of this calculation is presented in the appendix A.2. Due to the large

interactomic separation, the contribution of the excited state
∣∣Φ2p,6p

〉
to the first-order

spin-rotation energy is negligible within the approximations made.

The second order contribution to the spin-rotation energy arises from the finite
electronic orbital angular momentum induced by the rotation of the nuclei. This then
undergoes spin-orbit coupling involving the electronically excited states admixed to the
groundstate. In this sense the second order contribution is a second order spin-orbit
coupling effect. The resulting perturbation to the groundstate energy thus can be written
as [Brown and Alan, 2003; Strandberg and Tinkham, 1955]

H(2)
sr (R) =

∑ 〈ψ;R|He
so

∣∣Ψ2p,6p
〉 〈
ψ2p,6p

∣∣ 2B(R)~L ·~l |Ψ;R〉
ELi,2p + ECs,6p

(6.12)

Here the excited molecular state is approximated with the atomic excited state
∣∣Φ2p,6p

〉
.

The sum is taken over all substates, meaning ml configurations. The energies ELi,2p and
ECs,6p are the energies of the bare atomic states in the 6Li 2p and 133Cs 6p states in
reference to their atomic groundstate. The Hamiltonian He

so = ∑
iAi(R)~̀i · ~si with ~̀

i

and ~si being the orbital angular momentum and spin angular momentum of the atom i

respectively, is the spin-orbit Hamiltonian. The total electronic orbital angular momentum
is the sum of the individual ones ~L = ∑

i
~̀
i.

Equation 6.12 can be rewritten in form of γ(2)
i , the coupling constant for the individual

electrons, by using the relations ~̀i ·~si = (`+i s−i +`−i s+
i )/2+`zi szi and ~̀+i ~l = (`+i l−+`−i l+)/2+

`zi l
z

γ
(2)
i = 1

2
∑ 〈ψ;R|Ai`+i

∣∣Ψ2p,6p
〉 〈
ψ2p,6p

∣∣ `−i |Ψ;R〉
ELi,2p + ECs,6p

(6.13)

with ∑ 〈ψ;R|Ai`+i
∣∣Ψ2p,6p

〉 〈
ψ2p,6p

∣∣ `−i |Ψ;R〉 = 10c2

9R6(ELi,2p+ECs,6p)2 we can rewrite the
second order spin-rotation parameter to the form

γ(2)(R) = 1
2
∑
i

γ
(2)
i (R) = 5c2∑

iAi
18R6(ELi,2p + ECs,6p)2 ≈ 232.6R−6 (6.14)

We can already see, that γ(1) dominates the spin-rotation coupling at large internuclear
distance R and γ(2) dominates at low distance. Figure 6.7 shows γ(1) and γ(2) over the
internuclear distance R. The lower figure 6.7 shows the parameters weighted with the
square of the nuclear wavefunction from figure 6.5a.

To obtain 〈γ(R)〉 = 〈γ(1)(R)〉 + 〈γ(2)(R)〉 we average the weighted components over
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Figure 6.7: First-order (orange) and second order (magenta) spin-rotation cou-
pling parameter γ from equation 6.11 and 6.14 respectively. The lower graph shows
their corresponding values weighted by the absolute square of the nuclear wavefunc-
tion |Φ(R)|2. To obtain the values for γ(1) and γ(2) we integrate over R.

the nuclear distance R and add them. As a loose lower bound for the estimation we
extend our estimations of the γ(1) and γ(2) components to R < RLR, such that we average
over the whole range of the internuclear distance Rin < R < Rout as we did for the
spin-spin coupling parameter λ. In our simple model we find 〈γ(1)(R)〉 = 1.5 × 10−6 and
〈γ(2)(R)〉 = 2.4 × 10−6. This is significantly (two orders of magnitude) smaller than our
experimentally determined values of 〈γ(R)〉 ≈ 5.5 × 10−4 as presented in table 6.1. This
is explained by the underestimation of both first- and second order effects in the range
Rin < R < RLR where our electronic wavefunction is not valid. In reverse this means,
that our high-precision measurement of the spin-rotation parameter γ is a precise measure
for the short-range part of the electronic wavefunction in the molecular structure. Our
measurements can be a benchmark for elaborated ab-initio calculations of the electronic
structure of molecules at short range [Mies et al., 1996; Kotochigova et al., 2001].
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7. Exploratory study of losses
near a p-wave Feshbach Resonance

Understanding losses near magnetic Feshbach resonances has been essential for the ex-
ploitation of said resonances as a control tool in ultracold atom experiments. The mapping
of a three-body loss minimum in 133Cs , induced by a loss resonance interference, has been
key for the preparation of the first 133Cs BEC [Weber et al., 2003]. The stability of a
degenerate Fermi sample, caused by the suppression of the possible loss processes [Petrov,
2003; Petrov et al., 2004], lead first to the production of a BEC of degenerate Fermi atom
dimers [Jochim et al., 2003] and later to the investigation of the BEC-BCS crossover regime
[Bourdel et al., 2004; Bartenstein et al., 2004; Partridge et al., 2005]. p-wave Feshbach
resonances do not show the stability seen in Fermi gas s-wave resonances [Regal et al.,
2003]. Great efforts have been made to understand the elastic [Regal et al., 2003; Chevy
et al., 2005; Nakasuji et al., 2013] and inelastic scattering processes surrounding p-wave
resonances. Inelastic loss processes of two-body nature, where the collision leads to a dipo-
lar relaxation, are dominant in two component Fermi gases [Zhang et al., 2004; Waseem
et al., 2017]. In a one component Fermi gas polarized in the lowest hyperfine ground state
the two-body relaxation is suppressed due to energy and momentum conservation. Instead
the inelastic three-body process dominates [Regal et al., 2003; Suno et al., 2003; Yoshida
et al., 2018; Waseem et al., 2018]. In Waseem et al. [2019] a cascade model has been devel-
oped that separated the inelastic process into a two step. In the first step the dimer forms
with a momentum dependent rate of Γr. In the second step a deeply bound dimer can be
formed with help of an observer atom with ratio Λad. The high momentum dependence
on p-wave Feshbach resonances have lead to interesting studies surrounding the ratio of
elastic to inelastic collision, also called good to bad collision ratio. Collisional cooling has
been proposed and investigated where loss of high momentum particles through inelastic
collisions, and momentum redistribution through elastic collisions leads to an increase of
the phase space density of the probed gas [Mathey et al., 2009; Mathew and Tiesinga,
2013; Nuske et al., 2015; Horvath et al., 2017; Peng et al., 2021]. Top et al. [2021] used
high densities to find a beneficial good to bad collision ratio for effective evaporative cool-
ing far away from a p-wave Feshbach resonance. The separation of elastic and inelastic
collisions across the momentum distribution lead to non equilibrium distributions. In this
chapter we expand the cascade model of Waseem et al. [2019] and theoretically investigate
implications. We find two regimes where either elastic collisions dominate over inelastic
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collisions and the expected three-body loss behavior remains. In the second regime ther-
malization is slow compared to losses and the loss curve follows two-body loss behavior
leading to out of equilibrium momentum distributions. In section 7.1 we introduce the
model and fit it to the data of Waseem et al. [2019] in section 7.2. In section 7.3 and 7.4
we present the two regimes and present their different behaviors. We finally discuss the
separations of regimes and accessibility in an experiment of ultracold 6Li in section 7.5.

7.1 Cascade process
To understand the scattering processes close to a p-wave Feshbach resonance we describe
the process as a cascade of several steps following [Li et al., 2018] and [Waseem et al., 2019].
Figure 7.1 shows two p-wave Van-der-Waals potentials as open- and closed channels. Two
colliding atoms of energy E in the open channel tunnel through the centrifugal barrier at
a rate Γr(E) if on resonance with a dimer state of bound state energy Er of the closed
channel inducing the Feshbach resonance. The dimer can either decay through the barrier
again with rate Γr and lead to two free atoms or collide with another free atom and form a
deeply bound dimer via the rate coefficient of vibrational quenching Λad. The first process
describes an elastic scattering process. In the second process decay into a deeply bound
molecular state will set free kinetic energy on the order of ∆E, the bound state energy of
a deeply bound dimer. When the kinetic energy is large compared to the trap potential
this process leads to loss from the trap. To model the loss as change of atomic density, we
describe these three processes in a set of differential equations as done in Waseem et al.
[2019]:

dn

dt
= 2ΓrnD − 2Lmn2 − ΛadnnD (7.1)

dnD
dt

= −ΓrnD + Lmn
2 − ΛadnnD (7.2)

where n is the atomic density and nD is the dimer density. The first term in both
equations describes the decay from dimer to two free atoms. The second term describes
the creation of a dimer by two free atoms under the condition we will discuss further. The
third term describes the loss of one free atom and a dimer. The rate Γr is given by the
Wigner threshold law [Gurarie and Radzihovsky, 2007]

Γr(E) = 2
√
mE3/2

ke~2 (7.3)

where m is the atomic mass, ke the effective range and E is the collision energy. Lm
is an energy independent atom-atom collision rate that can be written in a momentum
dependent rate Km(v′, v′′) where Lmn2 =

∫
Km(v′, v′′)ρ(v′)ρ(v′′)dv′dv′′ where ρ(v) is the

phase space distribution 1. Km is the atom to dimer creation rate and can contain different
assumptions [Schmidt et al., 2020; Waseem et al., 2019]. In the case that Γr~ � kBT ,

1In the case of a thermal gas the phase space distribution ρ(v) is given by the density n times
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V(R)

R

Er

ΔE
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Λ
ad

Γr(E) E

Figure 7.1: Schematic depiction of p-wave scattering process. The figure shows
the open potential of the incoming scattering atoms at energy E and the closed
channel with an resonant dimer state at energy Er. Incoming atoms can tunnel
through the centrifugal barrier with rate Γr(E) and create weakly bound dimers
with probability Lm. Weakly bound dimers can in return decay into two free atoms
with rate Γr(E). This process leads to energy redistribution e.g. thermalization.
Weakly bound dimers colliding with a free atom lead to collapse into deeply bound
dimers at rate nΛad. This process leads to losses since ∆E sets free kinetic energy
large compared to the trap depth of the atomic trap.

the resonance width is small compared to the width of the momentum distribution kBT .
Km can then be approximated by a delta function giving the velocity condition Er =
1
4m|v

′
1− v′′2 |2, the creation rate Γr and the volume given by the wave vector related to the

de Broglie wavelength kdB = (mE)3/2~−1:

Km(v′, v′′) = 3
(

4π2

k3
dB

)
Γrδ

(
Er −

1
4m|~v

′ − ~v′′|2
)

(7.4)

the Maxwell-Boltzmann distribution f(v)d3v, ρ(v) = n
(

m
2πkBT

)3/2
exp

(
− mv2

2kBT

)
.
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distribution of temperature T this simplifies to

Lm(Er) = 3Γr
(

6π
k2
T

)3/2

exp−(Er/kBT ) (7.5)

where kT =
√

3mkBT/(2~2) is the thermal relative wavenumber.
In a steady-state condition of dnD/dt = 0 equation 7.2 leads to

nD = Lm
Γr + nΛad

n2 (7.6)

We can use this to solve equation 7.1 where this leads to

dn

dt
= −9

(
6π
k2
T

)3/2

exp−(Er/kBT ) nΛadΓr
Γr + nΛad

n2 (7.7)

For small changes in the density one can rewrite this as

dn

dt
= −L3n

3 (7.8)

with

L3 = −9
(

6π
k2
T

)3/2

exp−(Er/kBT ) ΛadΓr
Γr + nΛad

(7.9)

Note that this is only valid for a small change in n since we neglect the density depen-
dence due to atom dimer collisions in L3 itself.

7.2 Bench marking

To verify our model we compare it to experimental data from Waseem et al. [2019]. In
their experiment they investigate three-body-losses of Lithium in the

∣∣1/2,−1/2
〉

state
close to the Feshbach resonance at 160 G in dependence of the magnetic field detuning on
the positive side of the Feshbach resonance. They extract the three body loss parameter
L3 from atom loss curves and the cascade model to extract the rate coefficient of the
vibrational quenching 2 Λad from L3.

Figure 7.2 shows L3 for three sets of measurements of thermalized samples at tem-
perature of 2.7 µK, 3.9 µK and 5.7 µK for magnetic field detuning between 150 mG and
600 mG. The densities for the data sets are n1 = 1.2× 1018m−3, n2 = 1.3× 1018m−3 and
n3 = 1.5× 1018m−3 for the respective temperatures.

Our model differs from the model presented in Waseem et al. [2019] regarding the
assumption on the regime. Waseem et al. assume Γr � nΛad which leads to a three body
loss coefficient of

L3 = −9(6π/k2
T )3/2 exp−(Er/kBT ) Λad (7.10)

2In Waseem et al. [2019] the notation is KAD for the vibrational quenching rate coefficient.
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Figure 7.2: Three-body-loss parameter L3 close to the p-wave Feshbach resonance
at B0 = 159.17(5) G provided from the publication [Waseem et al., 2019]. The data
shows three different sets of temperatures of 2.7 µK, 3.9 µK and 5.7 µK for square,
circle and triangles respectively. We fit equation 7.12 to the data and extract an
Λad = 3.6(6)× 10−14m3 s−1.

(see section 7.3). We assume to be in the intermediate regime of Γr ≈ nΛad which leads
to the three body loss coefficient shown in equation 7.9.

To account for the whole regime covered in the data we add the weakly coupling regime
[Esry et al., 2002] to the loss parameter L3 following Waseem et al. [2019]. The data from
Waseem et al. show a transition from the weakly coupling regime where L3 ∝ V 8/3

p to the
non universal regime at kT /kr < 0.3. We add the weakly coupling regime with

Lweak3 = C
~
m
k4
TV

8/3
B (7.11)

where C is the so called contact describing three-body-recombination at low momen-
tum [Yoshida et al., 2018]. We get a total L3 of

L3 = −9
(

6π
k2
T

)3/2

exp−(Er/kBT ) ΛadΓr
Γr + nΛad

+ C
~
m
k4
TV

8/3
B (7.12)

Using equation 7.12 we fit all three data sets from figure 7.2 with Λad as the only free
parameter. We fix the other parameters to the values from Nakasuji et al. [2013] that are
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Vbg∆B = −2.8(3)×106a0
3 G and ke = 0.055(5)a0

−1. Here Vbg is the background scattering
volume, ∆B is the resonance width in Gauss and ke is one over the effective range. We
use these parameters to calculate the magnetic field dependent bound state energy with
the scattering volume Vp via Vp ≈ Vbg∆B/(B − B0), kr = 1/

√
|Vp|ke and Er = ~2k2

r/m,
where kr is the momentum of the resonance bound state and B0 is the resonance position
in the magnetic field.

We weight each data set equally, independent of the number of points. The resulting
shown curves are shown in figure 7.2. They are in very good agreement with the data. We
extract the vibrational quenching rate coefficient Λad = 3.6(6)×10−14m3 s−1 3. Comparing
Γr and nΛad we get values of Γr/nΛad between 3 and 24 showing, that we are in a transition
regime where dimer creation as well as dimer atom loss equally contribute to the cascade
loss mechanism. By including both processes in the fit function we reduce the relative
error δΛad/Λad ≈ 0.17 relative to δKad/Kad ≈ 0.38 from Waseem et al. [2019].

In the following calculations we will use the parameters extracted in this section. We
separate two regimes where either elastic collisions dominate inelastic collisions or vice
versa. We will first discuss the case of losses in a thermalized regime and afterwards take
a look at non-thermalized regime.

7.3 Thermalized behavior
In this section we discuss the regimes of dominant elastic collisions. We argue that this
leads to a permanent thermalized sample of atoms. Thus we assume a thermalized en-
semble at any point in time. This regime has been discussed in several publications [Peng
et al., 2021; Nuske et al., 2015; Horvath et al., 2017; Mathew and Tiesinga, 2013; Mathey
et al., 2009] and has interesting implications as for example thermalization of a single com-
ponent Fermi gas where s-wave collisions are suppressed due to the Fermi blocking, or
even collisional cooling where atoms with energy above average can be lost in a controlled
manner. This section will start by briefly describing the thermalized regime, then find
an analytic description for the gas behavior of a thermalized gas in a box- and harmonic
potential.

Two colliding atoms that scatter into a weakly bound dimer state of energy Er can
decay back into two free atoms. This elastic process leads to redistribution of kinetic
energy. It is described by the probabilities ∝ Γ2

r [Mathey et al., 2009]. In the limit
Γr � nΛad the probability that these processes occur is large compared to the probability
of loss due to formation of a deeply bound molecule which is given by ΓrnΛad. In other
words, the ratio is given by τel/τin = nΛad/Γr and is τel/τin � 1. Looking at equation 7.7
the limit of large elastic collisions leads to

dn

dt
= −9(6π/k2

T )3/2 exp−(Er/kBT ) Λadn3 = −L3n
3 (7.13)

3Due to a difference in the definition of L3 as compared to [Waseem et al., 2019], our Λad is not
comparable to their parameter Kad.
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In this limit the loss is of three-body nature since it depends on the density cubed.
The rate Γr is not relevant to the process. As soon as three atoms are close to each other
and two of the atoms fulfill the kinetic energy constraint given by the delta function in
equation 7.4, Λad probes if a loss happens. The average energy of lost atoms Eloss due to
Er is given by the average collision energy 3/2kBT and Er by Eloss = Er + 3/2kBT . By
looking at the averaged energy of the lost atoms we can construct a temporal development
of the temperature following the equation [Nuske et al., 2015]

dT

dt
= −L3n

2T

3 (3
2 − η) (7.14)

where we call η = Er/kBT the truncation parameter. When η < 3/2 the losses lead to
heating of the gas. This can be understood in the picture of manly low momentum atoms
fulfilling the loss condition and being lost. Redistribution of energy then leads to heating.
For η > 3/2 the gas is cooled. This on the other hand can be understood in the picture of
mainly high energy particles fulfilling the loss conditions. Thus redistribution of energy
leads to cooling. Looking at the development of the phase-space-density ρ we get

dρ

dt
= −L3n

2 ρ

2

(7
2 − η

)
(7.15)

leading to an increase of phase-space-density for η > 7/2 an a decrease for η < 7/2.
As pointed out in [Mathey et al., 2009; Nuske et al., 2015; Peng et al., 2021] this is a form
of collisional cooling. When choosing η to be above a certain value, only energetically
high atoms are extracted from the sample. This happens almost analogous to evaporative
cooling [Ketterle and Druten, 1996]. In evaporative cooling the atoms with energy large
compared to the trapping potential are lost from the sample if they reach the potential
border. In collisional cooling atoms are lost via the collisional energy condition. An
efficient evaporation is reached for a truncation parameter η = U0/kBT > 6, where U0 is
the trap depth. [Ketterle and Druten, 1996] defines an evaporation efficiency parameter
γ to characterize the cooling efficiency with γ = log

(
ρ0/ρ

)
/ log

(
N0/N

)
. For efficient

evaporation γ can reach values up to 4. For collisional cooling in a box potential we get

γ = η

2 −
7
4 (7.16)

For a good cooling efficiency of γ = 4 we thus need η = 11.5. For a Lithium 6 gas at
T = 2µK, n = 1× 1012cm−3 this leads to a loss time of τ3 ≈ 1 s. The described increase
and decrease of the temperature can be seen in figure 7.3 showing the temporal evolution
of the temperature inside a box potential for different η0. Here η(t = 0) = η0 = Er/kBT0
is the initial truncation parameter. Time is given in units of τ where

τ = 9Λad(6π/k2
T )3/2exp−9/2n2

0t (7.17)

the three body timescale for η = 9/2. As discussed before on η0 = 3/2 the temperature
does not change. The small decrease in T for large η0 is given by the decreasing atom loss.
Note that η is here time dependent since T is changing. Figure 7.4a shows the temporal

87



Chapter 7. Exploratory study of losses near a p-wave Feshbach Resonance

evolution of the phase-space-density ρ for different η0. Here ρ stays constant for η0 = 7/2.

Figure 7.3: Temporal development of temperature T/T0 for different initial trun-
cation parameter η0 in a box. Time is given in τ from equation 7.17. The dashed
line shows η0 = 3/2 where the temperature stays constant. For η0 < 3/2 the tem-
perature of the gas increases. For η0 > 3/2 the temperature decreases due to three
body losses over energetically high particles.

In a harmonic trap two additional effects lead to a small change in the behavior
compared to a gas in a box potential. The so called anti evaporation leads to an additional
heating effect. The position dependent density leads to increase losses in the center of the
trap. Due to the spatially dependent potential energy, atoms with above average potential
energy are lost from the trap [Weber et al., 2003]. This leads to an additional energy loss
per particle of 3/2kBT . Compared to 7.14 this leads to a temperature evolution of

dT

dt
= −L3n

2T

3 (3− η) (7.18)

A second effect is the temperature dependent density which leads to a difference in
temperature dependence of the phase-space-density ρ. Compared to 7.15 we get

dρ

dt
= −L3n

2ρ (4− η) (7.19)

Even though one needs a larger η > 3 for a negative change in temperature and a larger
η > 4 for a positive change in phase-space-density, the evaporation efficiency γ itself is
larger compared to 7.16 with

γ = η − 4 (7.20)

Here an efficient evaporation with γ = 6 is achieved with η = 10. For a Lithium 6
sample at T = 2µK, a density of n = 1 × 1012cm−3 the loss time is τ3 ≈ 200 ms. This
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(a) (b)

Figure 7.4: Temporal development of a) phase-space-density ρ over initial phase-
space-density ρ0 and b) of atom number N for different initial truncation parameter
η0 in a box. Time is given in τ from equation 7.17. The dashed line in a) shows
η0 = 7/2, the border where the phase-space-density of the gas stays constant. Left of
the line the phase-space-density decreases due to decreasing density and increasing
temperature. To the right of the line the phase-space-density decreases due to
decreasing temperature even though density is decreasing.

makes efficient collisional cooling in a harmonic trap a good method for efficient cooling.

7.4 Non-Thermalized behavior

In the case where Γr � nΛad elastic collisions are small compared to inelastic collisions.
Thermalization is no longer assumed since losses are fast compared to thermalization. We
will here show that this process lead to out of equilibrium losses where we start with
a thermal distribution and end up with a velocity distribution that does not follow the
Maxwell-Boltzmann distribution. To do this we describe equation 7.1 including a random
velocity distribution function f(v)

dn

dt
f(v) = 2ΓrnDf(v)− 2

∫
Km(v, v′)n2f(v′)dv′f(v)− ΛadnnDf(v) (7.21)

Note that nf(v) = ρ(v) describes the phase space distribution and that ρ̇(v) = ṅf(v).
The dimer density distribution, multiplied with f(v) is given by

dnD
dt

f(v) = −ΓrnDf(v′) +
∫
Km(v′, v′′)n2f(v′)dv′f(v′′)dv′′f(v)− ΛadnnDf(v) (7.22)

Including both equations with the steady-state condition dnD/dt = 0 we end up with
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a velocity dependent phase-space-density description of

dρ(v)
dt

=− 2
∫
Km(v, v′)ρ(v)ρ(v′)dv′

+ 2
∫
Km(v′′, v′′′)ρ(v′′)ρ(v′′′)dv′′dv′′′ ρ(v)

n

− 3 Λad
Γr + nΛad

∫
Km(v′′, v′′′)ρ(v′′)ρ(v′′′)dv′′dv′′′ρ(v)

(7.23)

In the non-thermalization limit of Γr � nΛad we get the final equation

dρ(v)
dt

= −2
∫
Km(v, v′)ρ(v)ρ(v′)dv′ −

∫
Km(v′′, v′′′)ρ(v′′)ρ(v′′′)dv′′dv′′′ ρ(v)

n
(7.24)

The first thing to note here, is that the loss is no longer dependent on the density
cubed but instead depends on the density squared. This becomes clear when looking at
it for a thermal distribution 4 where we get

dn

dt
= −9

(
6π/k2

T

)3/2
exp−(Er/kBT ) Γrn2 = −L2n

2 (7.25)

This can be understood by assuming that each creation of a dimer immediately leads
to loss of the dimer and an additional atom. Thus the triggering of the loss process only
depends on the dimer creation probability which is dependent on the density squared.

The second thing to note are the two different terms in equation 7.24. They describe
two different roles of the observed atom described by ρ(v). In the first term the observed
atom is part of the dimer creation process and has to follow the energy condition of
Km(v, v′). The atom can participate in the process in the two different positions of the
two dimer atoms, leading to the factor of 2. In the second term the atom follows the role
of the observer, colliding with an existing dimer.

Figure 7.5, 7.6a and 7.6b show the development of a momentum distribution for η0 =
8/2, η0 = 0/2, η0 = 5/2 respectively. The time unit is given by

tf = 9Γr(6π/k2
T )3/2exp−9/2n0t (7.26)

In the case of η0 = 8/2 and η0 = 5/2 for tf = 20 the exponential tail of the initial
Maxwell-Boltzmann distribution is completely lost. Figure 7.7a shows the temporal evo-
lution of the variance of the energy distribution. In the case of a thermal distribution
〈Ev〉 = 3/2kBT . For η0 > 3/2 the average energy per particle decreases linear in η. The
position of the minimum is dependent of the time t at which one looks. For η0 < 3/2 the
average energy increases. Figure 7.7b shows the number of atoms N/N0 for different times
tf .

4The thermalization is only assumed at the initialization time. As we discussed before the losses
will lead non-thermal distributions

90



7.5. Regimes

A description of a harmonic potential in the non-thermal case poses additional chal-
lenges that are beyond the scope of this work. Due to the spatially dependent density,
loss times are spatially dependent. In absence of thermalization this leads to a non trivial
coupling of density and momentum distributions. To access information about resulting
phase space distributions Monte-Carlo simulations are a promising method.

Figure 7.5: Temporal development of energy distribution fv in non-thermal regime
of three body losses in a cascade process close to a p-wave Feshbach resonance for
η0 = 4. Development of velocity distribution starting from a Maxwell-Boltzmann
distribution at t = 0tf where tf is given by equation 7.26. For t = 20tf the
exponential tail of the distribution is gone.

7.5 Regimes
After seperating and discussing the thermal and the non-thermal regime, in this section
we discuss the constraints and accessibility of the different regimes and give some further
limiting factors for experimental observation of the described effects. Figure 7.8 shows
a sketch of the different regimes on a log-log scale of temperature over density. The
transitions between the regimes are not as clear as shown in the sketch. Instead the sketch
shows borders where the relevant timescales of the neighboring regimes are equal. Five
different regimes can be described

The thermal regime is given in the case of Γr � nΛad and is described in section
7.3. Here the atomic loss is of three body nature, depends on the coupling strength of
weakly bound dimers to deeply bound dimers Λad and the dominating elastic collisions
lead to a thermalized gas. Mathey et al. [2009] discuss the possibility to combine two
p-wave resonance. One resonance plays the role of the knife edge losses discussed here
and the other broad lossless resonance leads to elastic collisions.

The non-thermal regime is given in the case of Γr � nΛad and is described in
section 7.4. Here the atomic loss is of two-body nature, depends on the resonance width
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(a) (b)

Figure 7.6: Temporal development of energy distribution fv in non-thermal regime
of three body losses in a cascade process close to a p-wave Feshbach resonance for
a) η0 = 0 and b) η0 = 5/2. Development of velocity distribution starting from a
Maxwell-Boltzmann distribution at t = 0tf where tf is given by equation 7.26. For
a) the maximum of the distribution shifts to higher energies. For b) the maximum
shifts to lower energies and the exponential tail of the distribution is lost.

(a) (b)

Figure 7.7: Temporal development of a) mean energy ε = 〈Ekin〉/(3
2kBT0) and

b) of the atom number N/N0 for different initial truncation parameter η0 in a box
potential. Time is given in tf from equation 7.26.
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Γr and the dominating inelastic collisions lead to a gas out of thermal equilibrium. The
calculations of the thermal and the non-thermal regime rely on the condition that Γr +
nΛad � kBT/~, because an infinetely narrow resonance was assumed.

The broad resonance Regime is reached when Γr + nΛad � kBT/~ where the
resonance width is large compared to the thermal distribution. In this case the loss process
is no longer momentum dependent and equally distributed over the whole momentum
distribution.

The non universal regime is reached when 0.3 < kT /kr < 1 where kr =
√
mEr/~2

is the wave vector related to the bound state energy Er. For 0.3 > kT /kr or kT /kr > 1
we reach the weakly coupling regime or the unitarity regime respectively as discussed in
detail in [Yoshida et al., 2018]. This regime translates into a condition of the truncation
parameter 1.5 < η < 15.

The non-degenerate regime is reached when kf � kT where kf = n1/3 is the wave
vector related to the inter particle distance. In the degenerate regime the momentum
distribution no longer follows a Maxwell-Boltzmann distribution but instead a Fermi dis-
tribution. The behavior of a gas in the transition regime es described in [Mathey et al.,
2009].

The 1B loss regime is reached when the one body loss timescale due to background
losses τ1 is short compared to the three body loss scale τ3 = (L3n

2)−1 in the thermalized
case or τ3 = (L2n)−1 in the non-thermalized case. In the presence of other loss processes,
all loss processes should be slow compared to the losses described in this section.

For 6Li in the lowest hyperfine state
∣∣1/2,−1/2

〉
at the resonance close to 160 G, the

thermal regime can be reached for n = 1 × 1012cm−3, T = 2µK and η0 = 10 which
corresponds to a magnetic field detuning of ∆B = 85 mG.

The non-thermal regime can be reached for example for parameters of n = 1 ×
1012cm−3, T = 600nK and η0 = 10 which corresponds to a magnetic field detuning of
∆B = 30 mG.
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Figure 7.8: Regimes for different loss behavior in an ultracold atomic sample
undergoing p-wave interactions for different density n and temperature T at a fixed η
between 1.5 < η < 15. The thermal regime (orange) is described in section 7.3. Here
elastic collisions are large compared to inelastic collisions. The non-thermal regime
(purple) is described in section 7.4. Here inelastic collisions are large compared to
elastic collisions. In the broad resonance regime (green), the resonance width is
large compared to the width of the temperature distribution. A Km(v, v′) described
by a delta function is no longer a valid assumption. Measurements in section 5 and
6 are taken in this regime. In the 1B loss regime (red), one body losses induced
by background scattering are large compared to three body losses. β indicates the
corresponding exponential scalings n ∝ T β for the regime dividing borders.
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Conclusion and Outlook

In this work we studied and explored p-wave Feshbach resonances in ultracold farmionic
6Li gases and in ultracold Bose-Fermi mixtures of 6Li-133Cs via high-resolution atom-
loss spectroscopy. In this context, we improved our efficiency in the production scheme
of ultracold 6Li samples and precisely characterized the topology of our magnetic fields.
We presented the implementation of gray molasses cooling on the D1-line of 6Li, as a
further optical cooling step, increasing the phase space density after optical cooling by a
factor of twelve, compared to the old apparatus. An adapted and improved dipole trap
loading sequence with a spatially modulated dipole trap was implemented to account for
the modified starting conditions of the optically cooled gas. Here we increased the number
of loaded atoms by a factor of five with a decrease in temperature by a factor of four. We
showed that this allows us to produce a 6Li double component degenerate BEC with up
to 3 × 105 molecules. Ultracold 6Li-133Cs mixtures are produced at temperatures as low
as 200 nK. A precise characterization of the magnetic field landscape has been performed
using 6Li radio-frequency and 133Cs microwave spectroscopy. Compensation of the earth
magnetic field and determination of the Feshbach field curvature, in three spatial directions
allows absolute magnetic field precisions down to 10 mG with relative resolutions as low
as 1 mG.

With this improved experimental apparatus we investigated 6Li and 6Li-133Cs p-wave
Feshbach resonances with an angular momentum of l = 1 at ultra low temperatures and
high magnetic field precision. We performed atom loss spectroscopy on three 6Li and five
6Li-133Cs p-wave Feshbach resonances.

Doublet structures were observed on five of the eight resonances and triplet structures
on the remaining three 6Li and 6Li-133Cs resonances. Comparing the experimentally found
splittings with elaborate coupled channel calculations performed by Eberhard Tiemann
we attributed the doublet structure to spin-spin coupling lifting the degeneracy of ml = 0
and |ml| = 1 projections of the pair rotation.

For the first time we observed triplet structures on p-wave Feshbach resonances at
high magnetic field. Three 6Li-133Cs p-wave resonances showed a further splitting of the
|ml| = 1 resonance. Via the coupled channel calculations we attributed these splittings to
spin-rotation coupling, lifting the degeneracy of the ml = +1 and ml = −1 p-wave pair
rotation orientation. The spin-rotation splitting dependence on 〈Sz〉 explains the observed
and non-observed splittings on three out of five 6Li-133Cs resonances. Other contributions
to the observed splitting, such as the rotational Zeeman effect or the molecular anisotropy
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of the electron g-tensor, were excluded or are negligible small. A fit of the coupled channel
calculation to the resonances yields the dimensionless spin-rotation coupling constant |γ| =
0.566(50)× 10−3.

The observed spin-rotation interaction is well known in molecular physics [Brown and
Alan, 2003] but shows to be unexpectedly large in Feshbach molecules. A calculation of
γ using electron model wave functions leads to a significant underestimation of the spin-
rotation coupling constant. We attribute the deviation to a strong under representation
of the model wave function at low inter nuclear separations. Inversely, this suggests that
γ can act as a high precision measure for electron wave functions at short internuclear
distances.

Additionally, the temperature dependence of the 6Li p-wave resonance at 214 G and
the 6Li-133Cs p-wave resonance at 663 G was investigated. As expected, no significant
temperature dependence on the spin-spin or spin-rotation splitting could be observed.
However, the change in resonance position and width of the 6Li signal suggests two- and
three-body loss contributions to the loss signal.

The observed splittings opens the door to new investigations in spin-polarized Fermi
gases near p-wave Feshbach resonances. Predictions of phase transitions from a polar px
state to an axial px + ipy state as well as the topological transition from a gapless to a
gapped px+ipy phase state promises rich structures in the p-wave superfluid phase diagram
[Botelho and Sá de Melo, 2005; Gurarie et al., 2005; Cheng and Yip, 2005]. Despite great
efforts to understand and to control the large inelastic losses close to single-component p-
wave Feshbach resonances, the realization of a stable p-wave superfluid in quantum gases
is still challenging [Zhang et al., 2004; Schunck et al., 2005; Regal et al., 2003; Waseem
et al., 2018, 2019]. Confining the gas in spatial dimensions has proven to be a promising
route to suppress losses and realize p-wave superfluid pairing [Günter et al., 2005; Waseem
et al., 2017; Zhou and Cui, 2017]. Goyal et al. [2010] proposed that optical coupling to
an excited electronic state can also lead to suppressed losses. Resolving the different
ml = −1, 0,+1 projections gives a further important tool for the individual control of the
rotational states. Studies that have previously only been possible in 40K due to the large
splitting of the ml components, such as the study of p-wave contact, can now be extended
to 6Li [Luciuk et al., 2016]. The temperature dependent decrease in width shows that
accessing lower temperatures is beneficial since the temperature broadened width is still
a limiting factor in individual resonance control.

The newly observed spin-rotation splitting in p-wave Feshbach resonances is also ex-
pected for other bi-alkali dimers with large mass imbalance such as Li-Rb and Na-Cs.
Predicting the splittings is non-trivial as our simple model approach showcased. Never-
theless, a large mass imbalance and a large spin-orbit coupling constant promotes large
spin-rotation coupling. Also here low temperatures and high magnetic field resolutions
are key requirements for the observation of said splittings. We performed an attempt to
observe spin-rotation coupling on the 214 G p-wave 6Li resonance by lowering the tem-
perature down to 50 nK. Apart from a large difference in resonance width between the
two peaks, that has already been observed for higher temperatures, nothing hints towards
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an observable splitting of the ml = −1, ml = 1 states. Also by confining the gas to lower
spatial dimensions, these states can not be distinguished [Günter et al., 2005]. Peng et al.
[2018] showed that optical manipulation of the individual closed-channels might enables
access to the different ml states.

It is compelling that atom loss spectroscopy provides the means and resolution to
investigate molecular fine structure. By further decreasing the temperature dependent
width, the spectroscopy resolution can be increased thus opening the door for the explo-
ration of further molecular sub-structure. While for s-wave Feshbach resonances rf spin
flip association of Feshbach dimers is a very precise method to determine the resonance
pole [Wu et al., 2012; Ulmanis et al., 2015], for p-wave dimers the wave function overlap
to the free atoms is limiting the rf association rate, hindering this approach. However,
Ahmed-Braun et al. [2021] investigated the p-wave Feshbach dimer states very precisely
via rf spin flip association and resonant association.

Furthermore, a theoretical study on the behavior of losses close to the 6Li |1〉⊕|1〉p-
wave Feshbach resonance, was performed. The presented cascade model of a dimer cre-
ation followed by an atom-dimer collision, features two different loss regimes. For larger
temperatures, thermalization and losses can lead to collisional cooling very similar to evap-
orative cooling. We showed that cooling efficiencies of γevap > 4 are accessible over almost
four orders of magnitude in temperature. For low temperatures thermalization is slow
compared to losses leading to non-equilibrium momentum distributions. We show that
the separation of the two regimes can be observed experimentally though a qualitative
change in loss behavior. The thermalized regime exhibits three-body losses whereas the
non-thermalized regime follows a two-body loss behavior.

In comparison with collisional cooling on narrow s-wave Feshbach resonances [Peng
et al., 2021], the centrifugal barrier in p-wave Feshbach resonances leads to a narrowing of
the resonance width for lower momentum, which in turn leads to a lower limit for the final
temperature [Wigner, 1948]. Additionally, our study predicts that p-wave Feshbach reso-
nances can be used to create single component ultracold thermalized samples of fermions.
A task that is not easily achieved since regular evaporation is suppressed due to forbidden
elastic s-wave collisions [Nakasuji et al., 2013].

Schmidt et al. [2020] predicts a three body state at the low momentum side of the
p-wave resonance. Even though the predicted loss amplitude is small compared to the
discussed two body loss channel, this resonance could significantly alter our predicted
cooling efficiency. Top et al. [2021] recently showed, that p-wave resonances can be used
to perform evaporative cooling in the weak coupling regime. In that case, the large mo-
mentum dependence of the elastic scattering lead to a non-thermal distribution, seen as
an underrepresentation of the low momentum part.

Even though great effort has been made to study losses near p-wave resonances [Regal
et al., 2003; Suno et al., 2003; Zhang et al., 2004; Waseem et al., 2017; Yoshida et al., 2018;
Waseem et al., 2018, 2019] qualitative change in loss behavior from three- to two-body loss
has not been observed. Due to the broad regime range this should be easily accessible in
an ultracold 6Li system. Additionally, performing expansion measurements in a pancake-
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shaped trap will reveal the predicted non-equilibrium momentum distributions.
An ultracold 6Li-133Cs system will also in the future enable access to interesting physi-

cal regimes surrounding p-wave Feshbach resonances. Beside the investigation of few-body
physics in 6Li-133Cs mixtures, the experiment is currently being upgraded for studying
many-body physics in the polaron scenario where an impurity interacts with a degenerate
Bose (Bose polaron) or Fermi (Fermi polaron) gas. Analogue to the study on Bose- and
Fermi-polarons near s-wave resonances, that show special behavior due to the large mass
imbalance of 6Li-133Cs [Tran et al., 2021; Enss et al., 2020; Sun et al., 2017; Sun and Cui,
2017], polarons close to p-wave Feshbach resonances are expected to exhibit rich polaronic
state structure due to the lifted ml degeneracy [Levinsen et al., 2012].

In conclusion, the 6Li-133Cs experiments holds exciting prospects for further studies
exploiting the here presented rich structure of 6Li-133Cs p-wave Feshbach resonances.
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A. Appendix

A.1 Improved Optical Setup for Gray Molasses
Cooling

In this section we present the improved optical setup for gray molasses cooling on the
D1-line of 6Li. The first optical setup has been presented in Gerken [2016] but improved
for more flexibility and stability in power. Figure A.1 shows the optical setup. A Toptica
TA-Pro laser system with a main output power of 350 mW and a spectroscopy output of
around 1 mW is used to generate light at around 671 nm. The spectroscopy output is used
for a FM-spectroscopy (frequency modulation) laser stabilization setup that locks the laser
detuned by +156 MHz from the

∣∣f = 3/2
〉
→
∣∣f ′ = 1/2, 3/2

〉
transition. The main output

of the laser is coupled into a PM8-NIR electro optical modulator (EOM) from QUBIG
producing sidebands at 224.8 MHz. The light is separated into two beams. The first beam
with around 250 mW is coupled into an acousto optical modulator (AOM) for power and
switching control. The beam is coupled into a fiber that produces the light in x3 direction
of the gray molasses cooling (see figure 1.4). The other beam with a power of 12 mW is
coupled into a home build tapered amplifier system [Faraoni, 2014] increasing the power to
around 350 mW. After passing through a set of two lenses the light is again separated into
two equally powered beams. The beams are frequency shifted by an AOM at frequency of
−114 MHz and are coupled into optical fibers to produce the light in x1 and x2 direction for
the gray molasses cooling (see figure 1.4). Figure A.2 shows the light frequencies produced
in this setup. The beams carry a cooler frequency

∣∣f = 3/2
〉
→
∣∣f ′ = 1/2, 3/2

〉
+ δ and a

repumper frequency
∣∣f = 1/2

〉
→
∣∣f ′ = 1/2, 3/2

〉
+ δ with a power ratio of Icool/Irep ≈ 10.

The total detuning is fixed at δ ≈ 30 MHz from the
∣∣f ′ = 3/2

〉
state.

99



Chapter A. Appendix

EOM

Lithium-6 cell

pump

probe

0th 

-78MHzx2

x1

-1st

0th 
-1st

Mirror

λ/4 waveplate

Fiber coupler

Lens

λ/2 waveplate

AOM

Photodiode

Aperture

PBS/ 50:50

Cylindric lens Isolator

EOM

x3
TA

0th 

0th 

-1st

-1st

Toptica
 TA Pro

-114MHz

-114MHz

6MHz

114MHz

Figure A.1: Gray molasses optical setup scheme for the preparation of the light
frequencies presented in figure A.2. The optical elements are explained in the legend.
The background color coding divides the setup into five parts: The laser system
is shown in teal. A Toptica TA-Pro provides light at 671 nm with a spectroscopy
output at 1 mW (top) and main output at 350 mW (right). The FM laser lock system
is shown in red. An AOM double pass shifts the laser frequency to −156 MHz. 6Li
heated to 635 K inside a vacuum cell, acts as a frequency reference for the frequency
stabilization to the

∣∣f = 3/2
〉
→
∣∣f ′ = 1/2, 3/2

〉
transition. In the yellow part the

repumper light is created via a frequency sideband at 228.2 MHz by an EOM. The
light is amplified using a home build TA system marked by the green area. Here
12 mW are amplified to 350 mW. In the blue shaded area the light is shifted by two
AOMs by −114 MHz and finally coupled into three fibers for x1, x2 and x3 direction.
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Figure A.2: 6Li level scheme on the D1-line with light frequencies used in
gray molasses cooling. The Toptica TA-Pro laser is locked to the

∣∣f = 3/2
〉
→∣∣f ′ = 1/2, 3/2

〉
transition (pink) but offset by −156 MHz (blue) via an AOM double

pass. An EOM at a frequency of 228.2 MHz produces a sideband that is overlapped
with the carrier frequency. Both frequencies are again shifted by −114 MHz to gen-
erate the cooling frequency (red) and the repumper frequency (green) detuned by
delta ≈ 30 MHz from the

∣∣f ′ = 3/2
〉
state.

101



Chapter A. Appendix

A.2 Calculations for Spin-Rotation coupling

In this appendix we present the extended calculations to the first-order spin-rotation
parameter γ(1). We consider the contribution from Cesium and Lithium separately and
use the introduced simple model wavefunction from equation 6.4. Our starting point is
the spin-rotation Hamiltonian as presented in equation 6.10

H(1)
sr = −gα2B(R)~l ·

∑
β,i

Ziβ
zβ(zi − zβ)

r3
iβ

~si (A.1)

Using the electron model wavefunction and the coordinate system as presented in
figure 6.4 we get for the different contributions

γ
(1)
Cs (R) = −gα2 〈Ψ;R|

 Z1LizLi(r+r1Cs cos(θCs)
(R2 + r2

1Cs − 2Rr1Cs cos(θCs)3/2 + Z1CszCs
r2

1Cs
cos(θCs)

 |Ψ;R〉

= − gα2

1 + η
〈Ψ;R|

Z1Liη

R

∞∑
n=0

(n+ 1)Pn(cos(θCs))(
r1Cs
R

)n + Z1CsR

r2
1Cs

cos(θCs)

 |Ψ;R〉

(A.2)

where zLi = η
1+ηR, zCs = − η

1+ηR and η = 22.1 is the mass ratio between 133Cs
and 6Li. Pn(cos(θCs)) are the Legendre polynomials. The first-order contribution from
Lithium can be similarly written as

γ
(1)
Li (R) = −gα2 〈Ψ;R|

 Z1CszCs(r+r1Li cos(θLi)
(R2 + r2

1Li − 2Rr1Li cos(θLi)3/2 + Z1LizLi
r2

1Li
cos(θLi)

 |Ψ;R〉

= − gα2

1 + η
〈Ψ;R|

Z1Csη

R

∞∑
n=0

(n+ 1)Pn(cos(θLi))(
r1Li
R

)n + Z1LiR

r2
1Li

cos(θLi)

 |Ψ;R〉

(A.3)

The integrals in equation A.2 and A.2 have a general expression of

Il,ml;n =
∫
Y
m∗l
l (θ, φ)Pn(cos θ)Y ml

l (θ, φ)dθdφ

= 2l + 1
2

∫
P−ml
l (cos θ)Pn(cos θ)Pml

n (cos θ)dθ
(A.4)

Here Y ml
l (θ, ψ) = (−1)ml

√
2l+1
4π

(l−ml)
(l+ml)P

ml
l (cos θ) expimlψ are the spherical harmonics

with the associated Legendre Polynomials. Only the s and p states are involved with
(` = 0,ml = 0) and (` = 1,ml = 0,±1). For I0,0;n = δn,0, I1,0;n = δn,0 + 2

5δn,2 and
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I1,±1;n = 1
2(−δn,0 + 2

5δn,2) we get the simplified forms

γ
(1)
Cs = gα2 η

(1 + η)R

1 + |c1,±1|2
(

7
2 + 27〈r2

1Cs〉
5R2

) (A.5)

and

γ
(1)
Li = gα2 η

(1 + η)R

1 + |c1,±1|2
(

7
2 + 27〈r2

2Li〉
5R2

) (A.6)

The final approximation can be made for c1,m � 1 and R � r1Cs, r2Li such that we
finally get

γ(1)(R) =
[
γ

(1)
Cs + γ

(1)
Li

]
/2 ≈ gα2

2R (A.7)
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