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Abstract

Understanding an event means being able to answer the question Who did what to whom?
(and perhaps also how, when, where...). The what in this sentence is called an event, and it
is directly linked to a predicate, which admits event-specific roles for participants that take
part in the event. Semantic Role Labeling (SRL) is the task of assigning semantic argument
structures to words or phrases in a sentence, which comprises the predicate, its sense, the
participants, and the roles they play in the event or state of affairs.

Nowadays the prevailing method for SRL is supervised learning, hence the quality of SRL
systems is dependent on annotated training resources. In this thesis we address the problem
of improving SRL performance for languages other than English. Given that annotation of
SRL resources is time consuming, latest improvements on SRL have focused mainly on
English; especially since the use of deep learning in Natural Language Processing (NLP)
became the state-of-the-art (SOTA), annotated resources in other languages are not sufficient
to compete with the latest improvements we witness for English.

Earlier research has tried to address the lack of training resources in specific languages
with bilingual annotation projection methods, or monolingual data augmentation approaches
to generate more labeled data that can be later used to train a labeler. Instead, we explore in
this work a novel and flexible Encoder-Decoder architecture for SRL that is robust enough
to work with more than two languages at the same time, immediately benefiting from more
available training data. We are the first to apply sequence transduction for monolingual
and cross-lingual SRL, and show that the Encoder-Decoder architecture yields competitive
performance with the sequence labeling approaches. Moreover, by capitalizing on existing
Machine Translation (MT) research, our model is capable of learning to translate from
English to other target languages and label predicates and semantic roles on the target side
within a single inference step. We show that – similar to multi-source machine translation –
the proposed architecture can profit from multiple input languages and knowledge learned
during translation to improve labeling performance on the otherwise resource-poor target
languages. We see potential for future development of this framework for diverse structured
prediction tasks.
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In addition, this work addresses the long-standing problem of SRL annotation incompati-
bility across languages found in existing corpora; these divergences hinder the development
of unified multilingual solutions for this task. To address and alleviate this problem, we
define an automatic process for creating a new multilingual SRL corpus which is parallel,
contains unified predicate senses and semantic roles across languages, and includes a manu-
ally validated test set on source and target sides. We demonstrate that this corpus is better
suited than existing ones when used for joint multilingual training with neural models on
lower-resource languages. Our work on this corpus is restricted to German, French, and
Spanish as target languages; however, we see great potential to extend it to further languages.

In short, we propose the first model that is capable of solving the SRL task in a single
language, as well as performing cross-lingual SRL via joint translation and semantic argument
structure labeling while resorting to high-quality MT. Additionally, our novel annotation
projection method allows us to transfer existing annotations into new languages to create a
densely labeled parallel cross-lingual SRL resource with human-validated test data.
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Chapter 1

Introduction

1.1 Motivation

SRL is the task of automatically finding predicate-argument structures and assigning the
appropriate roles to words or phrases in a sentence. SRL information has proven to be useful
for related NLP tasks such as MT (Liu and Gildea, 2010; Marcheggiani et al., 2018), Relation
Extraction (Shi and Lin, 2019) and Abstract Meaning Representation parsing (Wang et al.,
2015a); as well as downstream applications that require understanding such as question
answering (Chen et al., 2013), metaphor detection (Stowe et al., 2019), multi-document
summarization (Khan et al., 2015), commonsense reasoning (Paul and Frank, 2020) and
reading comprehension (Berant et al., 2014; Wang et al., 2015b; Mihaylov and Frank, 2019).

Since SRL is beneficial for language understanding, it is desirable to develop systems
that are equally effective for different languages. So far, the best results have been obtained
by using supervised machine learning, therefore, a large amount of high-quality annotated
data is required to obtain them. This is problematic when dealing with several languages
given the fact that a substantial amount of work is required, such as: i) the design of predicate
and role definitions, ii) the development of guidelines that define a consistent annotation
process, iii) linguistically trained annotators that apply the given definitions to a corpus of
examples and, iv) the examples in the dataset need to be balanced to overcome label sparsity
and allow models to learn and generalize from the data.

The major projects for formalizing role semantics were first conducted for English. Cur-
rently, the biggest projects include FrameNet (Fillmore, 1976; Baker et al., 2003), PropBank
(Palmer et al., 2005) and VerbNet (Kipper-Schuler, 2006). FrameNet and PropBank in
particular have been widely used because they already comprise a large enough amount of
high-quality annotated examples to allow Machine Learning (ML) systems to perform well
on the task. For this reason, in this thesis we refer to any language other than English as
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a lower-resource language, given that English has received considerably more attention in
SRL research.

Even though the theory of role semantics was carefully crafted and defined since the 70s
using different linguistic formalisms, the latest improvements we can observe for English SRL
performance as a ML task have occurred mainly because of enhancement of architectures
and training techniques in Deep Learning (DL). It is true that using DL alleviates the need for
human-engineered features; however, one of its main drawbacks is that a considerable amount
of training data is needed to achieve competitive results. While nowadays there are annotated
resources available in other languages such as German (Burchardt et al., 2009), Spanish
(Subirats and Sato, 2003), Japanese (Saito et al., 2008), Czech (Hajič et al., 2009), or Arabic
(Pradhan et al., 2012) (just to mention a few), they are not as extensive and complete as
their English counterparts, or they were separately annotated with language-specific role-sets,
hampering the generalization and, as a consequence, impeding other languages to reach the
same performance as English.

In this thesis we will focus on the PropBank-style semantic role annotations, given that
PropBank defines a compact set of roles, contains the biggest high-quality annotation corpus
for English and more importantly, there is already existing work that has confirmed the
validity of extending a common PropBank semantic role set to other languages (van der Plas
et al., 2010; Akbik et al., 2015). These resources were created by applying an automatic
semantic role labeler on English sentences, from an existing parallel corpus, then transferring
the labels to the target languages via annotation projection techniques. Because of this, the
resulting data often contains noisy source annotations, faulty bilingual alignments, and low
coverage of labels due to strict projection filtering, which particularly impacts the availability
of infrequent roles and rare predicates; this being particularly noticeable when applied to text
from a different domain.

Here we aim to address these resource-bottleneck issues by relying on the latest advances
in neural NLP models to find more robust methods for transferring SRL data to other
languages. We use the available high-quality SRL data that already exists in English and
propose to transfer it to other languages with the goal of obtaining good-quality training
data for them. To do this, we explore architectures that have already proven to be successful
in MT when dealing with lower-resource languages, namely the Multi-source (Zoph and
Knight, 2016) and Multi-target Encoder-Decoder models (Firat et al., 2016a). The main
concept of these models is to use a single architecture for several language pairs where the
model can profit from the language with more and higher-quality data in order to improve
results for the remaining target languages. Our contribution is to apply similar techniques
to the SRL task. Specifically, we propose to extend the decoder from a generator of token
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sequences to one that generates word tokens in the target language interspersed with SRL
annotation labels. With this extension we are capable of translating from English into target
languages while, at the same time, applying semantic labels on the target side. This approach
comes with considerable advantages compared to annotation projection such as i) being less
dependent on parallel data, thus gaining the ability to generate labeled sentences for novel
domains or textual styles ii) avoiding the need for external automatic syntactic and semantic
role labelers during the process, iii) bypassing the need for trained word aligners and iv)
abstaining from hard-coded filtering projection rules. We expect to exploit this approach to
obtain high-quality and more densely annotated training data for lower-resource languages.

1.2 Research Questions

The main goal of this work is to find methods that allow us to augment the availability
of labeled data for PropBank SRL in languages other than English. We aim to develop
methods for obtaining high-quality annotations while avoiding a resource-consuming manual
annotation scenario.

This thesis raises the following research questions:

• Is it possible to jointly translate and project annotations from English gold la-
beled sentences to a chosen target language (e.g. German) by exploiting Encoder-
Decoder architectures? The main problem when transferring annotations across
languages is that lexical and semantic shifts occur in different languages, making the
mapping of meaning from any source to a target language far from trivial. Also, we
are interested in preserving the correct predicate sense and arguments that are present
in English on the target side to produce high quality labeled sentences. Both problems
may still persist in our approach; however, with a neural model that jointly translates
from a source language into a target language while labeling the target sentence, we do
no longer need to have corpus-specific filters nor parallel data at prediction time.

• Once we establish a method that is able to generate more labeled SRL data in different
target languages, we will further assess the impact of a joint multilingual system that
learns from different languages at the same time. Hence, we will try to answer the
question: will joint multilingual learning result in further improvements of SRL
performance, particularly for lower-resource languages?

• Our cross-lingual SRL labeling approach using a seq2seq model raises further ques-
tions related to the quality of the produced labeled data, and how to assess it. For
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example, how can we determine the quality of the labeled sentences that we gener-
ate, regarding both the naturalness of the translations and SRL labeling quality?
and how can we control meaning preservation of the generated sentences? Since
we are using an Encoder-Decoder model that generates words and labels from scratch
instead of labeling an existing sentence (as is typical for a sequence labeling architec-
ture), there is no guarantee that the decoded target sentences will be token-identical to
an existing reference for evaluation, hence there is no gold-standard to compare to.

• Finally, our work is confronted with a lack of homogeneously labeled SRL training data
across different languages, which is another obstacle when it comes to evaluating the
impact of our novel cross-lingual SRL labeling architecture. Specifically, we ask: how
can we automatically generate a cross-lingual dataset that is fully compatible
across languages, shares the same semantic role-sets, and at the same time has
parallel information? Such a dataset is necessary to fully explore the capabilities of
multilingual learning and cross-lingual projection, while in the current situation no
such evaluations are straight-forward.

1.3 Contributions

The main contributions of this thesis are:

• We propose the first Encoder-Decoder model for PropBank SRL that can translate a
source sentence to a target language while at the same time applying semantic labels
to the target sentence. This model is applicable for monolingual, multilingual and
cross-lingual settings.

• We benchmark the performance of our model in monolingual settings and find that it
outperforms the state-of-the-art SRL sequence labeling models in the case of English
and improves monolingual baselines by applying joint multilingual learning in the case
of lower-resource languages. Finally, we demonstrate that the cross-lingual system
generates sentences that are highly grammatical and natural with sensible PropBank
labels. We confirm the quality of the outputs by performing human evaluation on a
subset of the generated sentences and by re-training systems with the generated data
that obtain performance improvements.

• We construct the first fully parallel SRL dataset with dense, homogeneous annotations
and human-validated test sets covering three new languages paired with the original
high-quality English annotations. We employ a method to generate training sets by
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projecting existing SRL annotations automatically from English to lower-resource
languages improving coverage and quality compared to previous techniques. We
also describe a fast method to create a human-supervised test set that allows us to
explore the syntactic and semantic divergences in SRL across languages and assess
performance differences.

1.4 Thesis Overview

In the remainder of this thesis, we first provide the background on several aspects that we need
to consider in order to achieve our proposed contributions. In Chapter 2 we describe what
SRL is and how it is defined as a ML task (Section 2.1). We then describe the fundamentals
of neural models and how they are applied for solving different structured sequence label
prediction tasks such as SRL (Section 2.2). Next, we present the Encoder-Decoder (Enc-Dec)
architecture (Section 2.3) which is an extension of sequence labeling that allows us to predict
sequences of varying lengths, hence they are also frequently called Sequence-to-Sequence
(seq2seq) models. This architecture has been very successful in Neural Machine Translation
(NMT) models for translating sequences across languages and also for mapping of sentences
to structured representations, such as semantic parsing tasks. After this, we explain in Section
2.4 more complex architectures that have been built for NMT to deal with several language
pairs at the same time, including multi-source and multi-target seq2seq that include several
languages in a joint model and serve as the basis for our proposed architecture. Such models
have already shown performance and quality improvements for the translation task, and
in later chapters we demonstrate that they also help for our task. Next, we talk about the
Transformer architecture (Section 2.5), which provides a robust method for solving a multiple
variety of NLP problems such as language modeling, sequence labeling and sequence-to-
sequence tasks and have also proved to work very well in multilingual settings. We close this
chapter with a brief explanation of Contextualized Language Models (Section 2.6), which
demonstrated to be very useful tools for our purposes in this work.

In Chapter 3 we focus on the related work that exists for Neural SRL. We first describe
existing SOTA models for the SRL task: from end-to-end deep neural models to the addition
of self-attention and syntactic information for improved labeling performance (Section
3.1). The majority of those systems work only for English however, we also include recent
attempts to improve SRL for other languages. We continue with a discussion on data
augmentation methods that have been applied for lower-resource SRL, including monolingual
data augmentation (Section 3.2), cross-lingual annotation projection (Section 3.3) and the
training of joint multilingual models (Section 3.4).
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Chapter 4 gives a broad overview of the areas of opportunity for the current SRL
approaches and the reasons that motivate our proposed model. We aim to provide solutions
that overcome the different problems that arise when creating more SRL resources in other
languages using currently existing techniques.

Chapter 5 is concerned with our adaption of the Enc-Dec architecture for the task of
SRL, which we are the first to formulate as a seq2seq task instead of the usual sequence
labeling task formulation. In section 5.1 we explain how we adapt the SRL task to fit the
Enc-Dec approach, and in Section 5.2 we describe the basic architecture we used to test our
proposed method. We then describe our experimental setup (Section 5.3) and finally the
results of our approach compared to monolingual SOTA models (Section 5.4). One of the
main drawbacks of using an Enc-Dec is that the Decoder can generate sequences of varying
length which do not necessarily correspond to a gold reference. Therefore, in this Chapter
we limit evaluation to monolingual models, to have more control over the expected outputs
(with the addition of a copying mechanism) and properly assess the feasibility of using an
Enc-Dec for the SRL task. We find that our monolingual models give competitive results
in the case of English but, as expected, lag behind when using the (considerably smaller or
noisier) training data available for French and German.

In Chapter 6, first we discuss in detail the multilingual and cross-lingual settings of
our approach (sections 6.1 and 6.2); then, section 6.3 states a description of the datasets we
use to train these models, as well as the different experiments (section 6.4). For evaluation
(Section 6.5), we discuss suitable methods for our novel task setup, which addresses the issue
of not having a gold-standard available when generating labeled sequences from scratch in a
different language, where copying the source words does not help anymore. We demonstrate
in this chapter that multilingual settings boost labeling performance on the lower-resource
languages because of parameter sharing with the higher-quality English data, and also show
that, after applying appropriate output filtering, the generated sequences in a different target
language (the cross-lingual setting) are grammatical and contain sensible labels.

Motivated by the annotation inconsistencies found in the datasets used for training the
models of Chapter 6, we describe in Chapter 7 a different approach to create compatible
training data that is more suitable for multilingual and cross-lingual experiments. This
separate approach benefits from the latest advances in large-scale contextualized multilingual
language models. Section 7.1 states our motivations for constructing a fully parallel cross-
lingual dataset, besides the data that is already available. In Section 7.2 we explain our
approach for obtaining parallel data, in Section 7.3 we describe the test set construction
which involved human validation and in Section 7.4 we describe our automatic annotation
transfer method to the lower-resource languages. We finally perform experiments that assess
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the quality of our generated corpus and its capacity to help models learn in cross-lingual
scenarios (Section 7.5). Our method described here led us to successfully publish the first
fully parallel cross-lingual dataset for SRL.

Lastly, Chapter 8 summarizes the findings of this thesis and discusses the open questions
and potential future directions of research.

1.5 Published Work

The majority of the research presented in this thesis is an extension of published works that
were first-authored by the author of this thesis. The first Encoder-Decoder model created for
the Semantic Role Labeling task together with the analysis and results for English SRL was
presented in the third Workshop on Representation Learning for NLP at the ACL Conference
(Daza and Frank, 2018) where the feasibility of such a model for SRL was demonstrated.

The extension of the Encoder-Decoder architecture for multilingual and cross-lingual
scenarios was published at the Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP) (Daza and Frank, 2019), where we assess the potential of multilingual
joint learning and the limitations caused by heterogeneous SRL annotations across languages
in existing multilingual corpora. Additionally, we show a method for generating new labeled
data on lower-resource languages by using our cross-lingual setting.

Finally, after analysing the limitations found when training our general multilingual
model, we describe a method for creating a dataset that accomplishes more suitable conditions
for multilingual and cross-lingual scenarios. We described the process of creation of such
cross-lingual parallel dataset in (Daza and Frank, 2020), presented at the Conference on
Empirical Methods in Natural Language Processing (EMNLP). Specifically, in this paper we
describe a novel automatic projection method for creating the training set in target languages
and also describe an annotation setting for obtaining test datasets with human-validated
annotations that are considerably more efficient that the SRL annotation from scratch.

The code for processing the data as well as training and evaluating models presented in
this thesis are listed in Appendix C.





Chapter 2

Background

2.1 Semantic Role Labeling

SRL is the task of assigning semantic argument structure to words or phrases in a sentence,
in order to recognize the events that are present in the sentence and answer the question Who
did what to whom? (and perhaps also how, when, where...). The difficulty of recognizing
events occurs at the semantic level, since the same event can be conveyed in different
syntactic structures and surface forms. Thus, semantic predicates and roles are important
for understanding events in a generalized way, regardless of how they are expressed inside
individual sentences, allowing us to identify the event (predicate) and its participants (roles)
at the semantic level. To illustrate this generalization consider the following example from
Jurafsky and Martin (2019):

(1) a. John
AGENT

broke the window
THEME

.

b. John
AGENT

broke the window
THEME

with a rock
INSTRUMENT

.

c. The rock
INSTRUMENT

broke the window
THEME

.

d. The window
THEME

broke.

e. The window
THEME

was broken by John
AGENT

.

Even when all sentences describe the same event, additional information is expressed
through different syntactic elements and surface forms. For example, the syntactic subject of
1a takes the semantic role of agent (the one who is breaking) while in 1c the subject of the
sentence has the role of instrument (the thing that is used to break something). On the other
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hand, we can conclude in every example that the agent (if present) is John, regardless of its
position and syntactic function inside the sentences.

Once we understand the importance of semantic roles, we need to define the possible kinds
of events (predicates) and subsequently what are the possible semantic roles that are involved
with each defined event. Much research has been carried to create specific catalogues with a
broad coverage of predicates and, more importantly, to define the granularity of predicate-
specific roles. A few inventories even question whether roles should be predicate-independent
or individually defined per-predicate. Some of the most prominent proposed semantic role
formalisms are:

• FrameNet (Fillmore, 1976) which seeks to have a lexicon of fine-grained events and
roles. It groups predicates with similar characteristics into frames, where each frame
has its own set of core-roles (called frame elements) that are unique to describe the
specific nature of the event. The frame also includes optional and adjunct roles that can
be shared across frames as well as a hierarchy definition that captures more linguistic
generalizations across frames.

• ProtoRoles (Dowty, 1991): a schema that goes on the opposite direction and defines
a generalized set of proto-agent and proto-patient categories to which any component
of a sentence can belong, provided it complies with some or all of a set of heuristically
defined features. This is done purposefully to avoid the problem of proposing a fixed
granular catalogue of roles and combat incomplete coverage of events.

• PropBank (Palmer et al., 2005): a schema that defines specific verb-senses and
proposes a reduced set of core role names (A0-A5), which also includes syntactically
grounded adjunct roles ArgM’s. Unlike the previous two, this formalism was conceived
directly as a corpus-based annotation project, which makes it more suitable for data-
driven research.

• VerbNet (Kipper-Schuler, 2006): the largest verb lexicon currently available for
English, with mappings to other annotated resources such as WordNet, PropBank, and
FrameNet. It is organized into verb classes defined by Levin (1993). Each verb class
can be defined by: its thematic roles (actor, agent, asset...), selectional restrictions
(characteristics that words must fulfil to be considered a thematic role), and frames
(syntactic patterns in which the events occur).

A good set of roles ideally should be small enough to allow for strong generalizations,
yet large enough so that every argument of every predicate can be assigned a role from the
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set (Levin, 2019). While FrameNet is the richest lexicon and contains the most fine-grained
information for semantic predicates, including verbs, nouns and adjectives; this same nature
results on sparsity of annotations when building annotated resources with FrameNet, since it
is very expensive to cover all possible cases and combinations of the defined predicates and
roles. This reduces the predicting power of systems trained with datasets that follow such
formalism. On the other hand, while the ProtoRoles definitions avoid the sparsity problems
of any discrete role definition, this comes at the expense of lacking the granular information
that could be informative enough and useful for downstream tasks.

We chose to focus on PropBank for the following reasons: i) it is grounded on a big corpus
with high-quality linguistic annotations, namely the English Penn Treebank (Marcus et al.,
1993), ii) it has enough granularity on its role definitions to achieve generalizations when
training systems, iii) the automatic semantic role labelers that work with this annotations
have shown steady improvements in the last years for the English SRL task (He et al., 2017;
Strubell et al., 2018; Ouchi et al., 2018; Shi and Lin, 2019) and iv) there has been significant
successful work on extending and standardizing the English PropBank set of roles into
languages other than English, by using different techniques such as: direct role annotation
on a foreign language (van der Plas et al., 2010), annotation projection (van der Plas et al.,
2011; Akbik et al., 2015), and joint multilingual SRL learning (Kozhevnikov and Titov, 2013;
Mulcaire et al., 2018).

2.1.1 PropBank

The Proposition Bank, or PropBank, is a resource of semantic role annotations added as a
semantic layer on top of the Wall Street Journal (WSJ) section of the Penn TreeBank for
English (Marcus et al., 1993). The semantic roles in PropBank are defined individually with
respect to a particular verb sense. This definition of a predicate with its respective set of roles
is also called predicate frame. It is worth to note that later on, nominal predicate frames and
annotations were integrated with the creation of the NomBank project for English (Meyers
et al., 2004).

Even though arguments are defined per predicate, the argument catalogue of PropBank is
compact: The core semantic arguments are numbered (as opposed to having a descriptive
name such as e.g. Agent), this results in a small number of core roles in the range of A0-
A5. This is possible because, by definition, arguments belonging to different frames tend
to have generalized commonalities (e.g. A0 is the proto-agent, and A1 is often the proto-
patient). Additionally there are general modifier arguments, or adjuncts, that any predicate
can optionally take, which are fully shared across predicate frames. For a complete catalogue
of the roles originally defined for English PropBank see Table 2.1.
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Tag Role Example
A0 Proto-Agent He, the woman...
A1 Proto-Patient the big window...

A2-A5 Predicate-specific -
AM-ADV Adverbial Fortunately
AM-CAU Cause Because, as a result...
AM-DIR Direction to her house
AM-DIS Discourse Marker Also, however ...
AM-EXT Extent Marker more, raised by 15%
AM-LOC Location in Europe
AM-MNR Manner Marker closely, mechanically...
AM-MOD Modals May, could, must...
AM-NEG Negation Not, never...
AM-PNC Purpose Clause to pay, for future meetings...
AM-PRD Secondary Predication (adjunct carrying predication)
AM-REC Reciprocal himself, each other...
AM-TMP Temporal The next morning, On Friday...

C-Ax Continuation of ARGx -
R-Ax Reference to ARGx (arg in other part of the sentence)

Table 2.1 PropBank Semantic Roles defined for English (Palmer et al., 2005). Core roles
(A0-A5) are specifically defined for each predicate sense. Modifier roles (AM-x) – also
called adjuncts – are shared across predicate frames.

According to the PropBank annotation guidelines (Palmer et al., 2005), for every syntactic
tree (sentence) in the Penn Treebank, each verb that appears in the sentence represents a
proposition whose root (the main verb, adjective or noun) should be assigned with a specific
predicate-sense. An example of a predicate frame1 and its role definitions (in this case we
keep using the verb break from Example 1) followed by a PropBank annotated example is:

break.01: break, cause to not be whole.
A0: breaker
A1: thing broken
A2: instrument
A3: pieces
A4: broken away from what?

EXAMPLE: Last night,
AM-TMP

John
A0

broke the window
A1

with a rock
A2

.

1The full definition of the frame referenced here is available at https://verbs.colorado.edu/propbank/
framesets-english-aliases/break.html

https://verbs.colorado.edu/propbank/framesets-english-aliases/break.html
https://verbs.colorado.edu/propbank/framesets-english-aliases/break.html
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Fig. 2.1 Span-based SRL (annotations are done on top of syntactic constituents) and
Dependency-based SRL (annotations are done on top of syntactic dependencies).

The annotated example above shows that the predicate frame break.01 should be assigned
to the verb broke. From the available roles of the assigned frame, A0, A1 and A2 are present
in this particular sentence and also an adjunct AM-TMP which is a temporal modifier of the
event. Any sentence will have annotations for as many propositions (or predicate-argument
structures) as predicate senses it has.

2.1.2 Task Description

The SRL task consists of analyzing the predicate-argument structures expressed in a given
sentence2. In Machine Learning, although there are unsupervised approaches (Grenager
and Manning, 2006; Lang and Lapata, 2010; Titov and Klementiev, 2012), it is generally
conceived as a supervised problem, where a model learns to predict the predicates and
arguments from a set of annotated examples. For each target predicate in a sentence, all the
dependent sub-phrases that fill a semantic role for the predicate in question must be identified
and classified. Thus, the task can be subdivided in four main steps: i) predicate detection ii)
predicate disambiguation, iii) argument identification and iv) argument classification.

Since the Penn Treebank was annotated with syntactic constituents, the span of semantic
arguments is also based on the given constituent boundaries. Therefore, each argument is a

2There is a variation of the task called implicit SRL where the surrounding discourse is also taken into
account to find roles related to a main predicate beyond the sentence boundaries (Ruppenhofer et al., 2009).
Nevertheless, for the purposes of this work we focus on single sentences only.
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sub-phrase of the sentence. This is what is known as span-based SRL. Later on, a different
syntactic formalism was considered for the task, based on syntactic dependencies. In SRL,
this mode of annotation is also known as dependency-based SRL, and it has demonstrated
that it is more prone to generalize across languages (Hajič et al., 2009; Björkelund et al.,
2009). The differences across annotation schemes are shown in Figure 2.1.

Importantly, both span-based and dependency-based task formulations evaluate the
labeling of predicates and roles with respect to Precision = TP/(TP + FP ), where, for
each class, TP are the True Positives and FP the False Positives; Recall = TP/(TP +FN),
where FN are the False Negatives; and finally the F1 measure is computed, which is the
harmonic mean of Precision and Recall:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(2.1)

For the span-based classification to be correct, the span boundaries (as well as the role
label) must completely match, whereas for the dependency-based task, since only the head
words of some of the syntactic dependencies are labeled, each individual word is considered
to be as correctly labeled or not.

2.1.3 PropBank SRL Datasets

As mentioned earlier, PropBank emerged directly as a corpus-based schema with semantic
annotations on top of the English Penn Treebank. However, SRL was popularized as a task
at the CoNLL 2004 Shared Task (Carreras and Màrquez, 2004) and further refined for the
CoNLL 2005 Shared Task (Carreras and Màrquez, 2005) which incorporated full-fledged
syntax information and a bigger training corpus that became the official evaluation standard
for span-based SRL.

On the other hand, the dependency-based SRL schema was formalized for the first time
in the CoNLL 2008 Shared Task (Surdeanu et al., 2008), which aimed for a stronger syntax-
semantic linking that directly benefited the semantic task. The original PropBank corpus
annotations (based on syntactic constituents) were converted into syntactic dependency
annotations by following the head finding rules of Magerman (1994). In this annotation
version, only the head word of the syntactic children of a given predicate could have a role
label assigned, and such labeled role would be the (syntactic and semantic) head of the phrase
which represents the argument3.

3While it is true that in many cases there is a mismatch between syntactic and semantic heads, for example
with semantically empty words such as some auxiliaries, expletives or complementizers(Bender, 2013), Sur-
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Monolingual Train Language Sentences Total Predicates Total Arguments Avg Preds/sent Avg Args/sent
CoNLL-05 EN [Span] 39,832 59,544 157,208 2.37 3.94
CoNLL-09 [Verbs] EN [Head] 39,279 89,193 238,793 2.37 6.07
CoNLL-09 [Verbs+Nouns] EN [Head] 39,279 179,014 393,699 4.59 10.02
CoNLL-09 DE [Head] 36,020 17,400 34,276 1.09 0.95
CoNLL-09 ES [Head] 14,329 43,821 99,054 2.85 6.91

Table 2.2 Monolingual annotated training sets with SRL annotations for different languages.
We can immediately observe that non-English languages have considerably less annotations
when compared to English training data.

In a like manner, the CoNLL 2009 Shared task (Hajič et al., 2009) extended the advantages
of this unified dependency-based formalism to seven different languages, with the aim of
expanding the PropBank SRL task for non-English data. The languages included in this
task were chosen according to pre-existing annotated corpora: Catalan and Spanish from the
AnCora corpus (Taulé et al., 2008), the Chinese Treebank 2.0 (Xue and Palmer, 2009) for
Chinese, the Prague Dependency Treebank 2.0 (Hajič et al., 2006) for Czech, the SALSA
corpus (Burchardt et al., 2006) for German, and the Kyoto University Text Corpus (Kawahara
et al., 2002) for Japanese. The aims of this Shared Task were to convert such independently
developed resources into homogeneous PropBank-style labels; however, for practical reasons,
the conversions where performed in an automated manner and in some cases the language-
specific annotations were preserved, resulting only in a partially compatible corpus.

For example, German possesses only core-labels that range from A0− A9, which were
assigned based on the original FrameNet-like annotations in the SALSA corpus. Therefore,
German predicate frames lack of a direct match with the analogous predicate senses on
English PropBank and the roles do not match those from the English catalogue. Spanish
and Catalan have more fine-grained PropBank-like tags, e.g. instead of having a single
proto-agent A0 tag there are several: A0-AGT, A0-CAU, A0-EXP, etcetera, and defines
roles that are not present in English such as: A0-NULL or AL-NULL.

Finally, a more important divergence occurring is the density of annotations available
for non-English languages, generally having not only less sentence examples but, for each
sentence, less annotated predicates and arguments, resulting in weaker training signal when
training non-English models. For example, in the CoNLL-09 datasets, English contains
around 39K sentences, and 89K verbal predicate-argument structures per sentence in the
training set; whereas German has only 36K sentences, and 17K propositions per sentence;
and Spanish 14K sentences and 40K propositions in their respective training sets. See Table
2.2 for more details.

deanu et al. (2008) report that their heuristic for converting annotations works remarkably well on nearly 99%
of the cases with the advantage of being compatible at the syntactic and semantic levels.
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2.1.4 Machine Learning with Features

The first automatic machine learning approach for the SRL task was conducted for English
by Gildea and Jurafsky (2000) on the FrameNet corpus. In this work, they approached SRL
as a classification task for constituents. They trained a complex pipeline composed of several
sub-modules: first, they used an automatic parser (Collins, 1997) to obtain the syntactic
parse of each training sentence and used it to extract various lexical and syntactic features
such as verb-object pairs, phrase types of labeled constituents, and parse tree paths between
predicates and arguments. Separately, they used the training corpus to compute statistical
knowledge of the predicates, as well as information such as the prior probabilities of semantic
role combinations and various lexical clustering algorithms (Hofmann and Puzicha, 1998) to
generalize across possible fillers of roles. This set of pre-computed features was aggregated
and combined to train different classifiers that act on linear interpolations of the different
pre-computed probabilities for the corpus. This work assumed that the predicate token
and predicate sense were already given. Thus, the first classifier was a binary classifier for
argument identification, where each span or phrase inside a sentence was labeled as argument
or non-argument. In a second step, the argument classification was performed by assigning a
role label to each of the identified spans, given a sentence and a predicate.

In general, this was the seminal work that exposed the feasibility of learning to label
semantic roles automatically with probabilistic knowledge drawn from a big corpus. Most
of the subsequent systems integrated more robust ML frameworks that aimed to generalize
beyond the raw feature probabilities seen in the corpus, and also aimed at capturing structural
constraints such as repetition of roles (for example, a single predicate-argument structure
can’t have two A0 roles) as well as integrating the predicate identification and classification, or
even better, benefit from joint role and predicate labeling systems. These follow-up systems
were also feature-based and kept using different kinds of pipelines to obtain part-of-speech
tags and syntactic parsing information of the sentence, and afterwards, used that information
together with statistical knowledge to assign semantic roles. Some of the common features
across different works used for training systems were: the governing predicate, phrase type
(NP, VP, PP) of the argument, the headword of the constituent, the path from the constituent
to the predicate of interest, the named entity type, among many others (Xue and Palmer,
2004).

The promising results obtained with syntactic feature-based approaches led researchers
to believe that this information was crucial for creating SRL classification systems (Pradhan
et al., 2005; Johansson and Nugues, 2008; Merlo and Van Der Plas, 2009). Motivated by
this, several works focused on improving the quality of the syntactic features. Pradhan
et al. (2005) presented a PropBank semantic role labeler based on Support Vector Machine
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classifiers that included feature selection and calibration together with a combination of
several parses that were trained using different syntactic views with the aim of improving
SRL performance. Similarly, Koomen et al. (2005) and Surdeanu et al. (2007) proposed
that an ensemble of classifiers could reduce the impact of the noise produced by automatic
syntactic parsers in the SRL classifiers, reporting effective improvements with these solutions.
Punyakanok et al. (2008) proposed to solve the task by using Integer Linear Programming
with explicit constraints for labeling. Finally, Toutanova et al. (2008) proposed a system that
predicted semantic argument frames as a joint structure, with strong dependencies among
the arguments, and used this information to build a classifier that dramatically improved the
SOTA at the time. In fact, the 80.3 F1 points achieved by this system remained unchallenged
for seven years, until the advent of neural models.

Other approaches, such as Täckström et al. (2015), presented a dynamic programming
algorithm for efficient constrained inference that automatically captured the majority of
the structural constraints examined by Punyakanok et al. (2008). Their model showed
significant improvements in efficiency and performance on both PropBank and FrameNet
corpora; however, it still didn’t outperform the SOTA at that time, and needed a big amount
of hand-crafted features defined specifically for the training set. To close with the early
SRL approaches, we mention that models aimed to learn both syntactic and semantic tasks
jointly demonstrated to outperform their pipeline counterparts (Lewis et al., 2015), suggesting
already that finding more sophisticated techniques to model both tasks at the same time
would result in significant improvements.

2.2 Neural Network Fundamentals

As described in the previous section, feature-based approaches made improvements on SRL
by combining different sets of features and using different probabilistic ML frameworks
to make the learning more robust. However, the performance plateaued because of i) the
increasing level of intuition necessary to develop more complex features by hand, which was
consequently becoming more language-specific; ii) while lexical features (also on arguments)
were known to be important, sparsity was an issue, which naturally increased when dealing
with morphologically complex languages; iii) the scalability of lexical knowledge drawn from
vocabulary dependent on seen training data or hand-crafted lexical resources such as WordNet
(Fellbaum, 1998). Hence, a call for better lexical representations and the exploitation of
lexical similarities and differences were clearly an issue that needed to be tackled for the
improvement of the task performance.
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The big break-through was thus the advent of deep learning models that were able to
learn relevant features by themselves, as well as the learning of dense vector representations
for lexical items. NLP was radically re-thought in terms of neural architectures suitable for
different NLP tasks. For SRL, sequence labeling seemed the most natural setting, much akin
to tagging or parsing, as a single input sequence could be labeled with BIO labels. More
experience led to end-to-end architectures that dispensed with NLP pipelines.

When NLP deals with written language it is straightforward to model many of its tasks
as a mapping from a sequence of words (input) to an associated sequence of task-specific
labels (output). In ML, this particular paradigm is called sequence labeling and in the latest
years neural network approaches, in particular the Recurrent Neural Network (RNN) and
Transformer architectures, have consistently shown better performance than feature-based
ML for sequence labeling. This is particularly true when enough training data is available.
For this reason, nowadays the most common approach when solving these kind of tasks is
through the use of neural network mechanisms, sometimes as feature selectors or as end-to-
end neural architectures that completely avoid the need for explicit feature engineering. In
the rest of this section we will introduce the basic theory and components that are used to
build the neural architectures, in particular we describe the tools that will play a role at many
stages of the work presented in this thesis.

2.2.1 Deep Learning for NLP

Artificial Neural Networks (ANNs) are a computational paradigm inspired by how the human
brain learns by using dense interconnections of neurons. In practice, a computational neural
network is composed of multiple interconnected units called neurons. Each neuron is an
activation function that transforms the input. The neurons tend to be arranged in several
layers, hence the most widely generalized term nowadays used is Deep Learning (DL).

DL can be characterized as a learning process to make predictions and also as a method
for learning better representations of the data in order to optimize the predictions (Goldberg,
2017). DL approaches work by feeding numerical representations of the data into a network
that applies successive mathematical transformations to the input, through a certain amount
of layers, until a final layer is used to predict the output. In the supervised learning setting,
the specific transformations produced by the network are learned from the given input-
output mappings (training data), such that the network adjusts its parameters to approximate
a general function that models the relationship between input data and its output labels.
Therefore, if the network sees enough representative cases, the function it learns will be
robust enough to not only approximate the seen data but also to accurately predict unseen
cases.
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The simplest neural network unit is called the perceptron; its mathematical expression is:

y = NN(x) = f(xW + b) (2.2)

where x ∈ Rdin is the input vector with dimensionality din (which is also referred to
as the vector of input features), W ∈ Rdin×dout is a learnable matrix of weights and b is a
bias term; f is a non-linear function that permits the network to approximate more complex
values that are mapped into the output vector y ∈ Rdout .

A stacked arrangement of perceptrons form a Multi-layer Perceptron (MLP), which is
also the simplest kind of Feed-Forward Neural Network (FFNN). In this setting, the neurons
in each layer are connected to all neurons in the successive layer which can be stacked
indefinitely and apply transformations to the data in a forward manner. For example, a
3-layer MLP can be expressed as:

NN(x) = f ′′(f ′(f(xW1 + b1)W2 + b2)W3 + b3) (2.3)

In this example the network first computes the output of the first layer perceptron (with
matrix W1 and bias b1) and given its output, the operation of the second layer is computed
(with matrix W2 and bias b2), and so on, in an iterative manner. f, f ′, f ′′ are non-linear
functions which allow the network to make the necessary transformations to approximate a
complex function.

2.2.2 Distributed Word Representations

The initial difficulty when using Neural Networks in NLP tasks is to find a suitable method
to represent discrete data (words and sentences) in a numerical representation x ∈ Rdin

that can be processed by a neural network. A straight-forward and common approach for
representing linguistic data in numerical terms is called one-hot encoding. This method
treats each different word-type 4 as a feature and therefore sentences are transformed into
sparse binary vectors containing a 1 if a given word is mentioned in the current sentence
or 0 otherwise. The main drawback of this approach is having to use a considerable-sized
vector to represent each sentence, with usually just a few relevant bits of information5. More

4A word-type is a word mention in the abstract, regardless of the context where it is being mentioned.
5The size of the vector is the vocabulary size, which comprehends all the known features (i.e. word-types)

in a given training set. Therefore, if there are 5,000 unique words in a training set, a 5-word sentence is a vector
x ∈ Rd5000 with 5 ones and 4,995 zeroes.
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importantly, this method does not help to measure how similar two word or sentence vectors
are, since all features are treated equally.

To account for the word similarity problem, several works considered to use the distribu-
tional property of language, which states that similar words normally occur in similar contexts
(see (Turney and Pantel, 2010) for a detailed survey on distributional semantics). Most of
these methods are known as count-based methods, since they compute co-occurrence matri-
ces from large corpora to build a vector space containing vectors associated to each word-type
in the known vocabulary. These methods also offer the advantage of reducing the vector size
problem, since dimensionality reduction algorithms can be used to collapse the redundant
information within vectors. This comes, however, at the cost of interpetability because the
information is now compressed across meaningless dimensions (as opposed to the one-hot
encoding where each dimension is a word-type). However, the biggest advantage of dis-
tributed representations is that such vectors can be used to identify similar words inside
the common space to which they were compressed by finding the closest neighbors in the
shared space of vectors.

A similar approach can be used to create distributed neural word representations
through a neural Language Model (LM). The main advantage of a neural LM is that it learns
simultaneously i) a distributed representation for each word and ii) the probability function
for word sequences, since the model is trained to predict the next word given the previous
sequence of words (Bengio et al., 2003). To learn the language modeling task, the network
takes a one-hot encoded input of words and outputs the next word as seen in the sentences
from a training set. Once the training is finished, the weights of the first layer of the network
(which represent each word-type seen in the trianing set) have been implicitly adjusted to
account for a distributed vector representations. A further non-LM neural approach to obtain
continuous word representations was Word2Vec (Mikolov et al., 2013a), a technique for
training neural networks that optimizes different objectives such as predicting the current
word based on the context (its surrounding n-words), this is called Continuous Bag Of
Words (CBOW); or, conversely, predicting the surrounding words given the current input
word (also called Skip-gram). Another popular neural-based word representation learning
method is GloVe (Pennington et al., 2014), a count-based model with an objective function
that seeks to learn word vectors in a similar way as Word2Vec with the addition of collecting
and exploiting global co-occurrence statistics.

In summary, obtaining representations through any of these neural methods yields a
better generalization compared to the count-based methods (neural methods are better when
dealing with unknown words and sequences) and, more importantly, they successfully capture
fine-grained semantic and syntactic regularities using vector arithmetic.



2.2 Neural Network Fundamentals 21

Because these solutions already use a neural architecture, they can be directly loaded
as the first-layer (the features component) of a more complex network architecture such as
RNN or Transformer. This initial layer added to the network is commonly referred to as
the embedding layer, and it is simply a matrix E ∈ R|vocab|×d that acts as a lookup table,
mapping the discrete symbols (all words in the known vocabulary) into the previously learned
continuous fixed-length vectors of dimension d. Importantly, the network can keep treating
the information in this matrix as learnable parameters that can be adjusted accordingly with
the whole architecture in order to maximize the specific task performance.

Equally important, the neural word representations can be trained to obtain shared vector
spaces for more than one language, making it feasible to perform the same vector operations
and retrieve word-type features for different languages at the same time. To achieve this,
earlier approaches aimed at learning first monolingual representations and then use a post-hoc
mapping method to project them into the same space, such as a linear transformation of
vectors (Mikolov et al., 2013b), or directly using bilingual dictionaries (Faruqui and Dyer,
2014; Artetxe et al., 2017). Later approaches aimed to train models to learn directly with
cross-lingual supervision (Joulin et al., 2018), or unsupervised learning (Lample et al., 2017;
Ruder et al., 2019; Shareghi et al., 2019) resulting in word representations that can be useful
for downstream cross-lingual tasks.

2.2.3 Recurrent Neural Networks

The FNNs described in Eq. 2.2.1 work very well if we already know the amount of features
that we need to process (it works with a fixed-size sequence of features). However, for
NLP problems, where words are the input features, we necessarily will deal with inputs of
different sizes (sentences or documents are always varying in size). The ideal solution is then
to use another kind of architecture called Recurrent Neural Networks (RNNs). RNNs (Elman,
1990) are neural models specialized in dealing with sequential data and are particularly
powerful because they allow to represent arbitrarily long sequential inputs in fixed-sized
vectors. On the abstract level, an RNN is a function that takes as input an ordered sequence
of din -dimensional vectors X = x1, x2, . . . , xT , xtϵRdin and returns as output a series of dout
-dimensional vectors O = o1, o2, . . . , oT , otϵRdout where every ot summarizes the whole
sequence up to xt. The recursive definition of RNN means that at each time-step t the RNN
takes as input the previous vector xt−1 in the sequence and its own previous state ht−1 to
upgrade the current state ht as:

ht = f(xtW + ht−1U + b) (2.4)
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Fig. 2.2 A simple Recurrent Neural Network (left-hand side). On the right-hand side, the
same network appears unfolded through time. At each time step t the network outputs a
fixed-size vector ot and holds a hidden state ht which represents the sequence from x0 to
xt. When the whole sequence is processed, ht=T is also called z, which is the encoded
representation of sequence X.

where the equation is similar to the feed-forward version (Eq. 2.2.1) with the addition of
the matrix U which acts as the memory that correlates the changes of the network through
time since it is modifying the previous time-step network state ht−1. Once the network
processed the whole input sequence, the resulting vector oT = z is said to be the encoded
representation of the entire sequence processed by the network. For a graphic description
see Figure 2.2.

When we train an RNN we are obtaining an informative numeric representation of the
sequential input data that can be used as a basis for making predictions, and for this reason,
one can refer to an RNN as an Encoder. If the sequence X is a sentence (i.e. a sequence of
word-tokens), the RNN will be able to hold in its final hidden state ht=T the representation
of the whole sentence, often denoted as vector z.

RNNs, as defined so far, process the information left-to-right. This only preserves infor-
mation from the past (i.e. the left part of the sequence). However, one can add information
from the future tokens by running in parallel an RNN that processes the sequence from
right-to-left X−1 = [xT , xT−1, . . . , x1], in addition to the left-to-right RNN. This paradigm is
called a bidirectional encoder, since it encodes information from both directions and it has
shown to produce a better encoded representations. There are different ways of obtaining
a more informed vector z using the bi-directional states. The most common approach is
by concatenating or adding the left-to-right final hidden state

−→
hT and the right-to-left final

hidden state
←−
hT . Other common approaches are by pooling6 the hidden states in a token-wise

6We refer to pooling here as a reduction operation that takes two or more ht vectors and combines them by
using operations such as addition, product, mean, max to obtain a single vector.
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Fig. 2.3 A Bi-LSTM sequence labeler maps each token xt from the input sequence into a
corresponding label yt.

manner (for example h′
t = pooling(

←−
ht ,
−→
ht ), and then combine all the h′

t states) or directly on
the final hidden states h′

T = pooling(
←−
hT ,
−→
hT ).

Finally, an important problem emerges in practice with RNNs when sequences are very
long. The memory of RNNs is quite limited for storing long-term information which produces
the vanishing gradient problem.7 This causes the network to incrementally forget the initial
items of the sequence. To fix this problem, the additions of gated mechanisms such as Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated Recurrent Unit
(GRU) (Cho et al., 2014) to the RNN mechanism results in a more complex way of capturing
intricate statistical regularities when labeling long sequences. Therefore, in practice most
architectures that implement the RNN paradigm use LSTMs or GRUs.

For consistency purposes, from now on when talking about RNNs, we will refer directly
to them as LSTM, and Bidirectional LSTM (Bi-LSTM) when dealing with bidirectional
networks, as this is the architecture that is more widely used in the literature and is also the
one that we use in most of our experiments.

2.2.4 Sequence Labeling

In supervised learning, the term sequence labeling is used for describing tasks that involve
the mapping of any sequence of inputs x = [x1, x2, ..., xTn ] to a sequence of outputs (their
respective labels) y = [y1, y2, ..., yTm ] where |x| = |y| and every yt represents exactly one
label from a predefined vocabulary L. This is a one-to-one mapping where each token in
the sequence has a single label assigned. It is considered that both the inputs and the labels

7This problem arises because the non-linear functions used in practice (e.g. sigmoid) in the neurons squash
the numeric values into a small region, preventing the neural network from learning when updating its weights
too many times, since the values get smaller every time until they stop being significant.
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form strongly correlated sequences, therefore the whole sequence needs to be classified at
the same time in order to learn such correlations (Graves, 2012).

Taking this into account, a Bi-LSTM is a straight-forward neural sequence labeler
(depicted in Figure 2.3). Since the encoding of information occurs step-by-step, one can
make token-specific predictions for each time step. This is done in practice by adding an
extra layer on top, and use it to predict the desired label yt for each xt. In practice, this layer
is a MLP that transforms the LSTM output into a vector of L-dimensionality (where L is
the number of available labels) together with a softmax function that normalizes the output
vector into a probability distribution over predicted output labels. t:

zt = (BiLSTM(xt)W + b)
p(yt|x0, ..., xt−1) = softmax(zt)

(2.5)

The softmax function is formally defined as:

σ(z)i = ezi∑L
j=1 e

zj
, i = 1, . . . , L , z = (z1, . . . , zL) ∈ RL (2.6)

2.3 Encoder-Decoder Architecture

Although LSTMs work well for various NLP tasks, including sequence classification and
sequence labeling, they are restricted to applying one-to-one mappings from input to output
and cannot be used to map sequences of a given length n to sequences of a different length m.
A straightforward task that needs such a setting is MT: When translating sentences across
languages there are no direct word-to-word mappings between a source language and a target
language.

The Enc-Dec architecture is a neural architecture that directly addresses this issue. It
combines two LSTMs where the first one is an encoder which summarizes the input sequence
into the fixed-size vector z (in the Enc-Dec formal definitions this vector is also called c
since it holds the source context); the second one is the decoder, which generates an output
sequence in an auto-regressive manner, that is, conditioned both on the representation of the
previously encoded sequence c and the output tokens generated so far. By definition, this
architecture models the mapping of a variable length source sequence into a different length
target sequence, therefore it is also often referred as a seq2seq model.

A wider advantage of this architecture is that this mapping of variable-length sources to
targets is not only tied to solve the language translation problem, but can be generalized to
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any sequence transduction scenario, to model the relationship between any kind of whole
source-target sequence pairs without a restriction of length.

It is important to know a crucial problem that emerges when using this architecture: there
is no hard constraint on the length of the output sequences, which makes evaluation difficult.
In the case of sequence labeling, there is a one-to-one mapping across source words and the
target labels that are applied to each word individually, therefore accuracy or F1 score can be
used in a straightforward manner to evaluate the generated sequence against the gold standard
sequence of labels. However, in the sequence-to-sequence scenario, there are many occasions
where a generated target sequence does not necessarily resemble exactly the target reference
and nevertheless it could be considered a valid sequence (this will be more noticeable when
explaining MT).

In the rest of this section we use the task of MT to formally introduce the Enc-Dec
architecture (Section 2.3.1). We then describe the related work that uses this architecture to
solve more generalized sequence transduction problems, such as language generation and
structured prediction (Section 2.3.2).

2.3.1 Machine Translation

The general task of MT is defined as translating a source sentence E = e1, ..., eTx (e.g.
English) into a target sentence F = f1, ..., fTy (e.g. French). To perform translation, a system
with parameters θ must learn the probability of F given E, therefore its task is to find the
target sequence F with the maximum conditional probability given a source sequence:

p(F |E) ∝ p(E|F ; θ)p(F ; θ) (2.7)

where p(E|F ) is the translation model, p(F ) is the target language model and the
parameters θ are learned from data consisting of aligned sentences in the source and target
languages (sentences that are translations of each other); this is what we call a parallel
corpus. Note that a parallel corpus has translation pairs that can be used as a reference to
learn plausibility of translations; however, as it is well known, there is not a unique translation
of a sentence, therefore having a reference does not imply that it is the only possible correct
translation.

A whole research area seeks to find the best ways to evaluate the quality of translations
(and in general any sequence transduction problem). The most widely used metric for MT
is BLEU (Papineni et al., 2002), which computes a score that measures the partial overlap
between the generated translation and the reference by using weighted n-grams. Other
relevant metrics are TER (Snover et al., 2006), METEOR (Denkowski and Lavie, 2011), and
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Fig. 2.4 The Encoder-Decoder architecture. Example when translating from English to
French. A Bi-LSTM Encoder is used to obtain the context vector c. An LSTM decoder
predicts the next word given c, the previous LSTM state and the previous word in the target
sequence.

BERTscore (Zhang et al., 2020); however, as of the writing of this thesis, BLEU continues
to be consistently reported on Enc-Dec research given that, so far, no metric has shown a
clearly superior correlation with human evaluation on these tasks.

Before neural models emerged, statistical MT used phrase-based systems to approximate
the translation model defined in Equation 2.7 by learning to factorize and weight the trans-
lation probabilities of pre-computed matching phrases in the source and target sentences
(Marcu and Wong, 2002; Koehn et al., 2003). In practice, this was done with stand-alone
sub-modules that were trained separately and ensembled in a pipeline to perform a translation.

Neural Networks started to be used as sub-modules for statistical MT, specifically to aid
the computation of phrase probabilities (Schwenk et al., 2006) and later to obtain phrase
representations as features for the statistical models (Cho et al., 2014). The first full-fledged
NMT systems (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014) aimed to train
a single large neural network that takes as input a source sentence and directly outputs a
translation of that sentence into the target language, without the need for computing any extra
features. This was the initial formulation of the Enc-Dec, where the two LSTMs are trained
jointly to maximize Eq.2.7, and it works as follows:

The input sentence E (English) is transformed into a sequence of word-representations
x = (x1, ..., xTx) through the embedding layer Esrc ∈ R|Vsrc|×d. The Encoder takes this
input sequence x and processes it. In general, the encoding step is defined as:

hj = f(xj,hj−1) ; c = q({h1, · · · ,hTx}) = hTx (2.8)

where hj ∈ Rn is a hidden state at each time j of the source; f is frequently a Bi-LSTM
network; and c is the source context vector that summarizes the information derived from
the source hidden-states.
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Fig. 2.5 The attention mechanism re-computes the context vector for each decoder time-step.
This allows the Enc-Dec model to always look back at the entire source sequence, resulting
in better performance, especially for longer sequences.

In the case of the output sequence F (French), it is also converted through an embedding
layer Etgt ∈ R|Vtgt|×d into a target sequence of word representations y = (y1, ..., yTy). The
Decoder is trained to predict the next word yi given the context vector c as well as the
information from the previously predicted target sequence such that:

p(yi| {y1, · · · , yi−1} , c) = g(yi−1, si, c) (2.9)

where yi−1 is the previously decoded token, si is the latest decoder hidden state (obtained
with an LSTM8), and g is a MLP with a softmax layer that outputs a probability distribution
over the target vocabulary from which the most likely next token is chosen.

The Enc-Dec as explained so far, however, still shows sub-optimal performance on longer
sequences, even when using an LSTM. This happens because the encoder network is forced
to compress all of the source information inside a single fixed-sized vector, resulting in loss
of information that might lead to divergent or defective translations in such cases. To address
this problem, a third component is proposed: the attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015). This mechanism allows the decoder, each time it generates a new
target word, to (soft-)search for a set of positions in the source sentence where the most
relevant information for the prediction is concentrated (Bahdanau et al., 2015). To obtain
such an approximation, the decoder computation of each yi is re-defined as:

8Note that this LSTM network is always uni-directional, since it is producing the target tokens from left-
to-right in an auto-regressive manner, and since the probability of the next token is based on the previously
produced tokens, the decoder cannot look into the future.
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p(yi| {y1, · · · , yi−1} , x) = g(yi−1, si, ci) (2.10)

where si is the LSTM hidden state for time i, computed by

si = g(si−1, yi−1, zi) (2.11)

notably with the addition of attention, the computing of the decoder state si takes into
account a context vector ci that is re-computed at every decoder time-step, whereas in the
original decoder definition the context was always a fixed vector c that represented the entire
source sequence.

The attention mechanism is the component that recalculates the context vector at each
step. It is computed as a weighted sum of the source hidden states hj , j = 1, . . . , Tx:

ci =
∑Tx

j=1 αijhj ; αij =
exp(ei,j)∑Tx

k=1 exp(ei,k)
(2.12)

where

eij = a(si−1, hj) (2.13)

is the alignment model, which is meant to focus on the inputs around position j and
the output at position i that are most relevant for the currently generated target tokens. In
Bahdanau et al. (2015) the function a is a 1-layer MLP with a softmax layer on top which
returns eij as the probability distribution denoting the importance of the source token j
relative to the current target token i being decoded.

2.3.2 Other Sequence-to-Sequence Tasks

Given that the Enc-Dec architecture is a jointly trained network whose parameters are
optimized based only on data without the need of specific features, it can be applied to any
kind of problem that can be formulated as a mapping between source and target sequences,
provided there is either access to big parallel data or a cheap way to produce silver training
data9. An example of this occurs in language generation: having an Encoder to get an image
representation and decoder that generates a novel caption based on it (Karpathy and Fei-Fei,
2017); or data-to-text generation, where abstract representations of data (for example from a
knowledge base) can be transformed into a sentence in natural language (Chisholm et al.,

9The datasets that are produced with the assistance of automatic labelers and are not human-validated are
called silver data. Since the labeling process is automatic, they contain noisy labels; however, this can be
overcome by labeling bigger amounts of data and expecting the model to tune-out the noise.
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Fig. 2.6 Dong and Lapata (2016) use a LSTM Enc-Dec network to map a sentence in plain
text to its logical semantic form.

2017); or automatic summarization where a generated summary is decoded given an encoded
large text (See et al., 2017).

In this line, a mapping from natural language text into structured sequences is also
possible. Vinyals et al. (2015) demonstrate that constituency parsing can be formulated as a
seq2seq problem by pairing the text to a linearized version of the parse tree. Following this
approach, they use an Encoder-Decoder network with attention mechanism and only feed the
network with large amounts of (sentence, parsed tree) pairs, without any extra feature set,
and obtain results close to state-of-the-art. Similarly, the Enc-Dec framework has been used
to aid the mapping of sentences to different semantic formalisms such as Semantic Parsing
(Zettlemoyer and Collins, 2005) and Abstract Meaning Representation (AMR) Parsing
(Banarescu et al., 2013). For example, Dong and Lapata (2016) built an Enc-Dec model for
semantic parsing, where they map sentences to their linearized logical semantic form. This
particular work demonstrated the surprising capability of networks for sequence transduction
from text to deeply embedded hierarchical structures and preservation of balanced structures
on the output, since parentheses proved to be well learned by the network. For AMR,
Konstas et al. (2017) effectively constructed a two-way mapping: generation of text given an
AMR representation (text to structured representation) and AMR parsing of natural language
sentences (structured representation to text), again without relying on any external knowledge
base or trained parsers, but only using parallel training data.

Finally, Zhang et al. (2017) went one step further by proposing a cross-lingual end-to-end
system that learns to encode natural language (i.e. Chinese source sentences) and to decode
them into sentences on the target side containing open semantic relations in English. This
approach takes advantage of a high-resource language such as English with a high-quality
parser to produce silver training data: first, they use an automatic parser to label English
sentences and second, they translate the same English sentences to Chinese and end up with
a parallel corpus of (Chinese, Parsed-English) pairs. They used this data to train a seq2seq
model that directly learns to translate from a sentence in Chinese to the parsed English
representation. The common denominator of the tasks described above is the use of seq2seq
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models with large amounts of silver data. This architecture has shown to be robust enough
for learning even with noise in the training corpus, provided there is a cheap method to obtain
a big amount of silver data that helps the model to generalize beyond the noise. Moreover,
this architecture is very robust for cross-lingual tasks, as well as text-to-structure mappings,
since it relies solely on parallel data to learn the patterns for the mapping, regardless of the
complexity of the structure that needs to be decoded.

2.4 Multi-Way Machine Translation

Machine Translation is normally applied to a pair of languages, by modeling p(E|F ): the
probability of a target sequence F conditioned on a source sequence E. However, this kind of
mapping is strictly specific to a given language pair, where models learn to map words or
sub-phrases from the specific source and target pair, presumably overfitting to the correlations
of the two selected languages. In general, the basic assumption for trying models beyond the
one-to-one translation is that, even when many languages differ lexically, they are closely
related on the semantic level when working with parallel corpora.

It is not trivial to extend this mapping to work on multiple pairs of languages. The
availability of multi-way parallel corpora10 allows for the possibility to generalize MT to take
into account more than a single pair of languages at a time. In their proposal for multi-source
NMT (many-to-one translation), Zoph and Knight (2016) train a p(E|F,G) model directly
on trilingual data, using two source sentences (F,G) simultaneously as information for
decoding a target sequence E and show positive BLEU score improvements over strong
single-source baselines, especially when the two source languages are more distant from
each other, showing that having information from multiple languages helps the generalization
of the model to decode better sequences.

Conversely, Dong et al. (2015), avoid the issue of language pair-specific translation by
training a multi-task system that performs one-to-many translation. This system learns to
encode a source sequence E and decode either F or G; this is trained by alternating the target
languages. The model then learns a shared encoded representation and shared attention
mechanism that the decoder can use to condition the target language generation.

Firat et al. (2016a) generalize the previous approaches into a fully multi-way NMT system
that can perform many-to-many translations. In this case, there are N language-specific
encoders and M language-specific decoders. The system is trained to share the attention

10A multi-way corpus is such that contains parallel data across multiple languages, namely the same sentence
has equivalent translation in N different languages, therefore one is not tied to work only with one source and
one target reference pair at a time.
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mechanism, this means that it learns a common continuous representation space that is shared
by all N ×M languages, demonstrating that training a system with all combinations of
languages generalizes better. Moreover, the use of shared parameters across many languages
has potential for zero-resource machine translation, in which there does not exist any direct
parallel examples between a target language pair, but where the shared-attention mechanism
is language-agnostic enough to empower a translation across a previously unseen language
pair (Firat et al., 2016b).

On a parallel approach, Johnson et al. (2017) introduce a simpler method to translate
between multiple languages by using a single model that is encompassed by only one
universal encoder and one universal decoder, that can share all parameters end-to-end and
process sentences from any language pair while improving translation performance for all
languages involved. To do so, they add an artificial token to the input sequence to indicate
the required target language, a simple amendment to the data only while keeping the same
Enc-Dec model proposed for one-to-one NMT by Wu et al. (2016). This method has the
additional benefit of directly improving lower-resource languages since all languages use
exactly the same set of parameters and finally, it makes zero-shot straightforward since the
model can recognize N ×M languages to encode and decode without bi-text restrictions.

2.5 Transformer Architecture

As explained when discussing the LSTM-based seq2seq models, the general task is always
to encode an input sequence, obtain one or more vector representations of the input and at
the next stage use a second network to decode a target sequence given the input context and
the so-far previously generated target sequence to predict the next token. This means that
at each step the decoder is auto-regressive, consuming the previously generated symbols as
additional input when generating the next. While this is certainly already a robust architecture,
it can be optimized for more efficient processing. For example, by avoiding the constraint
of compressing the whole input and only decode at a later stage; or decoding the sequences
piece-by-piece in a left-to-right fashion; or looking at the input sequence only through an
indirect attention mechanism.

The transformer architecture is an enhanced seq2seq architecture that bypasses the
recurrence constraints of LSTMs and relies entirely on a fully integrated attention mechanism
to draw global dependencies between input and output (Vaswani et al., 2017). Given that it
does not rely on recurrence, it allows for significantly more parallelization (which results in
execution time optimization), while at the same time augmenting the expressiveness of the
learned representations by virtue of more and better interconnected parameters. This allows
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Fig. 2.7 The full transformer architecture as shown in Vaswani et al. (2017)

the transformer to learn from longer sequences, together with more complex correlations
between input and output. It is worth noting, however, that the bigger size in parameters that
transformers have, come at the drawback of needing considerably more training data to fully
exploit the capabilities of the architecture, making it not always a suitable alternative to the
LSTM-based seq2seq architecture.

The transformer architecture also includes an initial embedding layer to transform the
discrete words into continuous vectors that represent them (they can also be initialized
with the pre-trained word representations from Section 2.2.2). The subsequent layer is an
Encoder, defined as a stack of N identical layers. Each layer has a multi-head self-attention
mechanism11, followed by a fully connected feed-forward network. Residual connections are
employed (He et al., 2016) around each of the two sub-layers, followed by layer normalization
(Ba et al., 2016).

11self-attention means that the encoder will attend the full input sequence itself for each processed input
token. The attention mechanism is similar to the one explained in Section 2.3.1. It is called multi-head, since
there are several copies of attention (each copy is a head) that can focus on different sections of the attended
sequence.
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The Decoder is, as the encoder, an N-stacked layered network, with the addition of a
third sub-layer in each of the N components. This sub-layer performs multi-head attention
over the input sequence representation (namely the output of the encoder stack), in the same
way the attention in a LSTM seq2seq architecture does. Finally, another important difference
is that the self-attention sub-layer in the decoder stack is masked to force it to only attend
to previously decoded tokens, ensuring that the predictions for position i depend only on
the known outputs at positions less than i. With these two additions, the Transformer fully
imitates the behavior of the seq2seq models, with the advantage that there is no recurrence
involved.

2.6 Contextualized Language Models

The continuous word representations described in Section 2.2.2 are computed to represent
each word-type, and while the context is considered when computing the representation,
once the word entries are learned, they are used at the word-level, regardless of the context.
This is very convenient to represent words in an efficient way; however, it does not take into
account the fact that the same word-type often has a different meaning depending on the
context in which it appears. This is the well-known problem of word sense disambiguation in
NLP. Contextualized word representations are intended to keep the context information
within the word representation. This is obtained by training a neural network that captures
correlations between each word-mention and its respective context. Unlike word-type vectors,
which are essentially lookup tables that assign the same vector to any mention of a word-type,
contextualized representations include both word-level and sentence-level information that
contextualizes each word (all this expressed in the neural network parameters that are learned
through diverse language learning tasks) (Smith, 2019).

Therefore, contextualized word representations were recognized as a tool not only for
learning better representations of words, but as a potential tool for robust inductive transfer
learning (Howard and Ruder, 2018) that could then be used as the base for training NLP
models and avoid random initialization from scratch everytime that a new task needs to
be learned, and as a result of this, improve SOTA results in different NLP tasks. Several
general contextual LM architectures and training objectives were thus proposed to obtain
these pre-trained representations such as GPT (Radford et al., 2018), ULMFiT (Howard and
Ruder, 2018), ELMo (Peters et al., 2018), BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2020) among others.

Importantly, there are two strategies for applying pre-trained language representations to
downstream tasks: feature-based and fine-tuning. In the first one, the idea is to train a deep
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neural language model and then extract the word representation vectors to use them as extra
features for task-specific architectures; the latter is constructing a robust enough architecture
where pre-trained word representations are further refined at training time directly to fit into
specific tasks. This results in contextualized vectors that are also specialized in the tasks for
which they were fine-tuned.

In some parts of this work we rely particularly on two contextualized word representations
(namely ELMo and BERT), the latter being more used in detail, both as a source for word
representations and as an architecture that we fine-tune for different task purposes. For these
reasons we focus on explaining such architecture in detail.

2.6.1 ELMo

Embeddings from Language Models (ELMo) was the first model trained explicitly for
capturing contextualized representations (Peters et al., 2018). This is a Language Model
(LM) based on a multilayered Bi-directional LSTM. This means that the bi-directional
network is trained to learn a forward LM, predicting the current token given the past context:

p(t1, t2, . . . , tN) =
N∏
k=1

p(tk|t1, t2, . . . , tk−1) (2.14)

and a backward LM, predicting the previous token given the future context

p(t1, t2, . . . , tN) =
N∏
k=1

p(tk|tk+1, tk+2, . . . , tN) (2.15)

Training both objectives on the same L-layer network ends up with word representations
Rk for each word token xk:

RK =
{

xLMk ,
−→
h LM
k,j ,
←−
h LM
k,j |j = 1, . . . , L

}
(2.16)

where hLMk,j is the hidden state corresponding to word k at layer j. ELMo is then obtained
as a linear combination of the intermediate layer representations in the biLM, thus capturing
complex characteristics of word use such as syntax and semantics, and how these uses vary
across linguistic contexts (i.e., to model polysemy).

2.6.2 BERT

Bi-directional Encoder Representations from Transformers (BERT) (Devlin et al., 2019)
is a particular architecture that can be used as a source for contextualized word vectors
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Fig. 2.8 The BERT architecture can be used for training a masked language model and, once
it is pre-trained, the same weights can be used for fine-tuning on different down-stream tasks.
Figure taken from Devlin et al. (2019)

(one can use the BERT pre-trained vectors as input features for an external architecture) as
well as an architecture that can be entirely fine-tuned, where the BERT model itself can be
further trained to solve specific NLP downstream tasks. BERT is based on the transformer
architecture, which models the whole sequence context at the same time (as opposed to
using Bi-LSTMs where the network is constrained to the token-by-token processing and
a post-concatenation of left and right contexts), making it a robust architecture to produce
context-informed predictions.

To allow looking at both directions at the same time, BERT is pre-trained as a masked
language model. This means that for a given sentence, some of the tokens are randomly
substituted by a [MASK] token and the learning objective is to predict the word-type that
was in the original sentence at that given position. In addition to this, the same architecture
is also pre-trained to perform a next sentence prediction task, where given a sentence pair
(S1, S2) the model makes a binary prediction to decide if S2 is the following sentence of S1

or not. These two tasks generate a robust architecture that models token-level as well as
sentence-level relationships (See pre-training on the left side of Figure 2.8).

BERT is flexible enough to be fine-tuned as a classifier for several token-level and
sentence-level complex tasks. For the sentence-level classification task, the architecture
includes a special token [CLS] that is used during training to hold the class of the encoded
sequence. The architecture also includes the special token [SEP ] which acts as the separator
to be able to encode different spans inside the input sequence (e.g. one can encode a question-
answer pair by including a [SEP ] token between them). Some of the sentence-level tasks
where BERT was fine-tined and presented SOTA performance are GLUE (Wang et al., 2018),
Natural Language Inference (Bowman et al., 2015), and SQuAD (Rajpurkar et al., 2016,
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2018). See fine-tuning on the right side of Figure 2.8. As for the token-level predictions, it
is only necessary to add an output layer on top on the transformer to recreate state-of-the-
art models sequence labeling results, for tasks such as Named Entity Recognition (Tjong
Kim Sang and De Meulder, 2003).

2.6.3 Multilingual BERT

The pre-training of BERT is unsupervised, making it very easy to obtain results in a wide
variety of languages, since the only prerequisite is to have written text available without any
kind of labeled data: for the masked token prediction, one just randomly replace a word-token
with the [MASK] token; and for the next sentence prediction, one just needs to provide
examples seen in the data as the positive class and any random pair as the negative class).
This allowed to straightforwardly train a Multilingual BERT (mBERT) version. Surprisingly,
the mBERT architecture is strong enough to learn in the same parameters simultaneously
from different language pairs, specifically mBERT is trained on 102 languages, and has
demonstrated SOTA performance also in many non-English NLP tasks.
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Related Work

Before neural networks became the norm, most semantic role labeling approaches relied
heavily on lexical and syntactic indicator features. Through the availability of large annotated
resources, researchers designed features and used a series of complex techniques, such as
dynamic programming, or integer linear programming, to optimize global and local designed
constraints and achieve high accuracy on the common datasets. However, results often
fell short when the input to be labeled involved non-frequent predicates, or instances of
infrequent syntactic linguistic phenomena and surface realizations, given that they did not
appear frequently enough in the training data and didn’t allow the statistical models to
generalize well given the hand-crafted features.

Neural network components were added to SRL systems to overcome the feature-
engineering bottleneck (FitzGerald et al., 2015; Roth and Lapata, 2016). One of the first
examples of research in NLP shifting from purely featured-based approaches to neural net-
work models is the neural multi-task system proposed by Collobert et al. (2011), where a
single system (based on a Convolutional Neural Network) learned to solve several tasks with-
out any explicit feature designed for them. Further, the first fully neural system specifically
designed for the SRL task was proposed by Zhou and Xu (2015) who define it as a sequence
labeling task, and train a a deep LSTM network as a semantic role labeler.

While eliminating language-specific features in principle could help a model to learn
from data in any language, neural networks have shown to be successful on supervised tasks
mostly when there is access to a large amount of high-quality annotated data. Only when
this requirement is met, the network can exploit the patterns in the data obviating the need of
features. This is the case of English SRL because the high-quality PropBank training corpus
is large enough to give a strong signal to the neural model. Unfortunately, this is not yet the
case for other languages, calling for methods to create more scenarios where neural networks
can be used to improve performance such as data augmentation or joint multilingual systems.
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For this reason, most of the neural semantic role labelers have been developed for English.
Throughout this chapter we will first describe some of the most prominent semantic role
labelers that give the current English SOTA results for PropBank annotations (Section 3.1).
We will then explain the most common data augmentation methods used to enlarge datasets in
a single language (Section 3.2) and also augmentation methods that make use of high-quality
annotations in a source language (usually English) to label data in a lower-resource target
language by cross-lingual label projection (Section 3.3). Finally, in Section 3.4 we describe
more recent joint multilingual solutions that seek to train single polyglot models that leverage
data from different languages at the same time with the aim of providing stronger training
signals, especially to the lower-resource languages and thus improving the task results in
those languages.

3.1 Neural Models for SRL

3.1.1 Neural Features for SRL

The use of neural components as an aid to obtain features that could be more resilient
to infrequent phenomena not captured by the hand-designed features attracted interesting
changes in how supervised tasks are approached, including SRL. In this line, Hermann et al.
(2014) use pre-trained word embeddings as input features for a semantic frame identification
classifier. Given a sentence and a marked predicate, they use a linear transformation to
map the word embeddings of the predicate and predicate’s children into a low-dimensional
representation, where the frame labels are also embedded. Using this information, they
train a ranker that assigns the most feasible semantic frame for the given predicate word.
Following this idea, FitzGerald et al. (2015) use a feed-forward neural network that generates
argument and role representations (related to their respective predicates) that are embedded
in a shared vector space. With this, they skip the step of finding syntactic features and let
the neural network automatically learn the correlations between predicates and arguments.
The similarity of such learned representations can be measured by their dot product, and is
used to score possible roles for candidate arguments by using a graphical model proposed by
Täckström et al. (2015). This graphical model jointly models the assignment of semantic
roles to all arguments of a predicate, subject to structural linguistic constraints. The original
work used hand-crafted features, but FitzGerald et al. (2015) straightforwardly integrated
the vector representations learned by the neural network as the input features and obtain
even better results. Moreover, with this feature-free proposal, it is also possible to learn,
in a single model, representations from different schemes such as FrameNet (Baker et al.,
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1998) and PropBank (Palmer et al., 2005), as well as being able to work with span-based
and dependency-based annotations. On all datasets, this model performed on par with the
hand-engineered graphical model.

In a similar manner, Roth and Lapata (2016) propose to use lexicalized dependency path
embeddings as features to better handle the problem of sparsity expressed in phenomena
such as control predicates and sentences with rare dependency structures. In particular, this
work aims to model the semantic relationships between a predicate and its arguments by
analyzing the dependency path between the predicate word and each argument head word. It
considers lexicalized paths, which are decomposed into sequences of individual items. For
example, in the sentence He had trouble raising funds. one can automatically extract the
dependency paths between the predicate and its arguments, resulting in the following paths:

(3) a. raising NMOD−−−−→trouble OBJ−−−→had SBJ←−−he

b. raising OBJ←−−−funds

In general, given a dependency path x with steps xk ∈ {x1, . . . , xn}, it is fed into an
LSTM Encoder to obtain the representation en. This representation is combined with a vector
of binary features B through a linear hidden layer h which is then fed into the output layer s
which computes the most probable class category for the given word wn. This is expressed
in the equation:

sc = softmax(max(0,WBhB + Wehen + bh)) (3.1)

The obtained vectors sc are the features that are fed into the classic SRL system described
in (Toutanova et al., 2008). The neural embedding features also proved to be transferable
to other languages. In this case, Roth and Lapata (2016) report new SOTA for English and
German and confirmed not only the flexibility but also the efficacy of neural features for
SRL.

3.1.2 NLP (Almost) from Scratch

Collobert et al. (2011) propose a multi-task model that, given raw text inputs, learns several
NLP tasks (e.g. Part-of-speech tagging, Chunking, Named Entity Recognition and SRL).
This is done by first learning internal word representations based on vast amounts of mostly
unlabeled training data (around 852 million words), instead of exploiting input features care-
fully optimized for each particular task. On the top of these learned representations, a deep
task-specific network is trained on task-specific data to learn from the word representations
as features and the labels at different linguistic level. A last Conditional Random Field (CRF)
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layer which is used to compute the most probable label for each token (thus each of the NLP
tasks is treated as a sequence labeling task (See Section 2.2.4). The aim is two-fold: firstly,
to evaluate the quality of the learned representations on each of the linguistically relevant
tasks, and secondly, to completely bypass the feature engineering process for each task. This
is also based on the intuition that the network should be powerful enough to infer all the
intrinsic linguistic relations needed to solve each of the proposed tasks.

To standardize the sequence labeling for all tasks, they use the IOB (Inside Other Begin)
notation, which marks relevant spans of text with the task-specific labels, for example:

(4) a. The account billed $ 6 million according to [Leading National Advertisers]ORG
[The]O [account]O [billed]O [$6]O [million]O [according]O [to]O [Leading]B−ORG

[National]I−ORG [Advertisers]I−ORG

b. [The account]A0 [billed]V [$ 6 million]A1 according to Leading National Advertisers
[The]B−A0 [account]I−A0 [billed]V [$6]B−A1 [million]I−A1 [according]O [to]O
[Leading]O [National]O [Advertisers]O

where a. is labeled for NER and b. is labeled for SRL. Note that both tasks are initially
span-based, and the IOB notation assigns one label per token without loosing the span ranges.
This way it is possible to straight-forwardly treat each task as a standard sequence labeling.
Importantly, for the case of SRL, the model processes one predicate-argument structure at a
time. In order to have coherent IOB notation for complex sentences, they are repeated as
many times as predicates there are inside it, and produce a label sequence for each predicate
separately.

Specifically for SRL, this model reached 75.49 F1 score on the CoNLL-05 dataset, which
is slightly below the SOTA models with hand-crafted engineering features for the task (which
reported 77.92 F1 at that moment). Nevertheless, this work demonstrated the ability of
deep neural networks to discover hidden representations from unlabeled data by only using
a stochastic learning algorithm that scales linearly with the number of examples. More
importantly, it demonstrated that the automatically learned representations are promising
and strong enough to be transferred to downstream tasks in NLP within the same neural
architecture, opening the path for experimenting with neural networks for end-to-end learning.

3.1.3 End-to-End BiLSTM Models for SRL

Zhou and Xu (2015) propose the first end-to-end neural system for SRL. This model takes
only the original text as its input features, without any intermediate tag nor syntactic infor-
mation, which then are processed by a deep bidirectional LSTM. At the top of the Bi-LSTM
it locates a conditional random field (CRF) model for sequence label prediction.
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Formally, the task is to predict a sequence of labels (or tags) y given a sentence w =

{w0, . . . , wn} and a predicate v. Each yi ∈ y belongs to a discrete set of BIO tags T, and
n = |w| = |y|. Predicting the SRL structure becomes the task of predicting the most probable
tag sequence over the space of all possible Y:

ŷ = argmax
y∈Y

f(w, y) (3.2)

The word inside the sentence w is converted, through an embedding layer E into a se-
quence of word representations (which are pre-trained with a neural language modeling task).
The model processes one token at a time E(wi), to which 3 more features are concatenated:
the word representation of main predicate wj of the sentence E(wj), a predicate context (the
word representations inside the predicate’s surrounding window) pctx, and a binary indicator
pflag (set to 1 if the current token to be processed is inside the predicate context-window or 0
otherwise). Thus the input for each layer l of the network at each time step is the following
feature vector:

xl,t =

[E(wi);E(wj);pctx;pflag] l = 1

hl−1,t l > 1
(3.3)

The deep Bi-LSTM processes the whole sequence of inputs and finally the CRF layer
computes the most probable tag sequence. This model, which only used those four simple
features as input, obtains 81.07 and 81.27 F1-score on the CoNLL-05 and CoNLL-12 span-
based datasets respectively, out-performing by an important margin the previous systems that
were based on parsing results and feature engineering.

Later, He et al. (2017) also approach the span-based SRL task in a very similar way:
A deep Bi-LSTM was trained for SRL as a sequence labeler; however, it introduced four
improvements with respect to Zhou and Xu (2015)’s model:

• A simplified input layer (the input is only a word representation with a binary predi-
cate indicator, P = 1 if the token is a predicate or P = 0 otherwise).

• Introduced high-way connections, meaning that they interconnect non-consecutive
layers on the deep BiLSTM network.

• They used recurrent dropout, a technique where some of the input tokens are ran-
domly masked (i.e. the word representation, or corresponding hidden state is set to 0),
this noise mechanism acts as a regularizer to improve generalization.
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• Instead of the CRF layer, it uses a constrained decoding A* algorithm with BIO
constraints.

• It used an ensemble approach to improve further the latest SOTA.

In this case, the layer-specific inputs xl,t are:

xl,t =

[E(wt);P(t = v)] l = 1

hl−1,t l > 1
(3.4)

The Bi-LSTM is trained to minimize the following equation:

f(w, y) =
n∑
t=1

log p(yt|w)−
∑
c∈C

c(w, y1:t) (3.5)

where the first term is the negative log likelihood of the label sequence conditioned on the
input, and the second term is an optional set of decoding constraints C (e.g. structural consis-
tency, syntax constraint, etc), inspired by previous feature-based SRL models (Punyakanok
et al., 2008; Täckström et al., 2015).

Since this model does not include a CRF layer, the A* decoding algorithm is the one that
manages the sequence constraints (e.g. a inner tag I-A0 cannot appear before a B-A0 opening
tag, or a single sentence cannot have two A0 roles, etcetera).

This model was also tested on the span-based CoNLL-05 and CoNLL-12 PropBank test
sets, obtaining, with the final ensemble of models, a F1 score of 84.6 and 83.4 which showed
a considerable improvement over the SOTA at that moment.

For the case of dependency-based SRL, which was typically more linked to syntax given
that only syntactic heads are annotated, Marcheggiani et al. (2017) propose a neural model
that labels the syntactic heads by only relying on Bi-LSTM hidden states (encoder) without
any syntactic supervision. An role classifier is applied on top of the encoder to predict the
tag for each word in the sentence. As in previous work, one predicate-argument structure is
predicted at a time, processing one sentence as many times as predicates it has.

In this work the word representation is the concatenation of four vectors: a randomly
initialized word embedding xre ∈ Rdw , a pre-trained word embedding xpe ∈ Rdw , a ran-
domly initialized part-of-speech embedding xpos ∈ Rdp and a randomly initialized lemma
embedding xle ∈ Rdl , which is processed by a 4-layer Bi-LSTM. The classifier is a log-linear
model:

p(r|vi, p) ∝ exp(Wrvi) (3.6)
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where vi is the hidden state calculated by BiLSTM(x1:n, i); p refers to the predicate of
interest and ∝ is the proportionality. This model is equivalent to the CRF layer used by Zhou
and Xu (2015).

The authors reported their architecture on 4 languages of the CoNLL-09 Shared Task
(Hajič et al., 2009), namely English, Chinese, Czech and Spanish. They slightly improved
the SOTA at that time for those four languages: from 86.7 to 87.7 in English, from 79.4 to
81.2 in Chinese, from 80.2 to 80.3 in Spanish, and from 85.4 to 86 in Czech. Again, the
biggest advantage of this model is that the neural model didn’t need any lexico-syntactic
features nor separately trained parsers to achieve these results.

3.1.4 Syntactically Informed Neural SRL

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.
Even though syntax-agnostic neural architectures managed to surpass the results for feature-
based systems, Marcheggiani and Titov (2017) experiment with a neural model that incorpo-
rates syntactic information using graph convolutional networks (GCNs) (Duvenaud et al.,
2015; Kipf and Welling, 2017) and achieve better SOTA scores for English and Chinese.

They use initially the same Bi-LSTM encoder as in Marcheggiani et al. (2017) to obtain
the word representations BiLSTM(x1:n, i), which are subsequently used as the initial layer of
a k-layered GCN encoder. This encoder incorporates the syntactic tree of the same sentence
by treating it as a labeled directed graph where L(u, v) represents the syntactic label that
relates word v (governor) to word u (dependent). For each word v, its hidden state h(k+1)

v for
the next layer is computed as:

h(k+1)
v = ReLU(

∑
u∈N (v)

g(k)v,u(V
k
dir(u,v)h

(k)
u + b

(k)
L(u,v))) (3.7)

where each u is a word belonging to the syntactic neighborhood N of v; g(k)v,u is a
learned gating mechanism for each word pair, h(k)u is the hidden state of each u word in the
neighborhood, and V k

dir(u,v) and b(k)L(u,v) are the learnable parameters.
By incorporating the syntactic information, the authors aim to profit from the syntactic

information that is already present in the CoNLL-09 datasets. They find that syntax helps to
slightly improve the scores from Marcheggiani et al. (2017) (by 1 F1 score approximately);
however, because their model is overparametrized (the network has too many degrees of
freedom, especially considering that the size of SRL training data are very small) the
improvements were achieved only on the bigger datasets available: Chinese and English.
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Linguistically-Informed Self-Attention for Semantic Role Labeling. For the case of
span-based SRL, Strubell et al. (2018) explore the possibility of adding syntax information to
a Transformer to focus its learning capacities for the SRL task. Their enhanced Transformer
is called LISA: linguistically-informed self-attention. This architecture combines a multi-
head self-attention mechanism with multi-task learning. The model is trained to i) jointly
predict parts of speech and predicates; ii) perform syntactic parsing; and iii) use a dedicated
attention head to attend to syntactic parse parents, while iv) assigning semantic role labels.
To incorporate syntax, one self-attention head is trained to attend to each token’s syntactic
parent, allowing the model to use this attention head as an oracle for syntactic dependencies.

The input to the network is a sequence of token representations X = {x0, . . . , xt}
initialized to pre-trained ELMo representations. These tokens are projected to representations
of the same size as the output of the self-attention layers. The multi-head self attention
consists of H attention heads, and the results of the H self-attentions are concatenated to
form the final self-attended representation for each token.

As mentioned before, one head is specialized in syntax, this means that instead of
computing the dot product of the key-query attention pairs (K,V ), as done traditionally in
the Transformer architecture (Vaswani et al., 2017), they score the compatibility between
Kparse and Qparse using a bi-affine operator (Dozat and Manning, 2017) (denoted as Uheads
to obtain attention weights:

Aparse = softmax(QparseUheadsK
T
parse) (3.8)

this head is provided with auxiliary supervision (the syntactic heads of the training corpus)
to model the probability of token t having parent q as:

P (q = head(t)|X ) = Aparse[t, q] (3.9)

The last layers of the model use the transformer representations to predict semantic roles.
Each transformer token representation t is projected to a predicate-specific representation tpred
and a role-specific representation trole, which are provided to another bilinear transformation
Us for scoring. So, the role label scores sft of token t with respect to frame f (i.e. the
predicate) are given by:

sft = (spredf )TUsrolet (3.10)

The last layer computes a locally normalized distribution over role labels for token t in
frame f using the softmax function. At test time, constrained Viterbi decoding is used to
emit valid sequences of BIO tags.
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This work also finds that performing multi-task learning and incorporating syntactic
information is beneficial for neural models especially when a big training corpus with gold
data is available. They tested their approach on the span-based CoNLL-05 (Carreras and
Màrquez, 2005) and CoNLL-12 (Pradhan et al., 2012) for English and improved SOTA by 2
F1 points with respect to only using a syntax-agnostic transformer architecture (Tan et al.,
2018). Unfortunately, this approach is also heavily parametrized, being difficult to apply to
lower-resource languages.

As we have seen in this review of semantic role labelers, big improvements were made
by focusing on neural architectures that get rid of the intensive task of language-specific
feature-engineering. While in principle this should imply that the end-to-end neural models
can be applied to any language, the evidence shows that the best performing neural models
are those which have access to a big corpus that provides robust training signals (i.e. corpora
annotated with gold part-of-speech, syntactic parsing, lemmas and semantic roles). We
have seen that in the cases where this is not true, the feature-based models exhibit a better
performance. We take this as evidence that there is still a need for generating more training
data for lower-resource languages. In the following two sections we will go through the
related work for monolingual data augmentation and cross-lingual annotation projection.
Both techniques aim to alleviate the lack of big training corpora in lower-resource languages,
which ultimately can be used as auxiliary to generate more training data and once a bigger
corpus is available, perhaps a big parametrized neural model such as the ones that have
worked for English can be also used to improve the results for SRL in languages other than
English.

3.2 Monolingual Augmentation Methods

Above we showed the progress in deep neural approaches to SRL, which are exclusive for
English. For other languages it was not possible to replicate such performance results given
much smaller training resources. Therefore, now we will explain the work that aims to
get more data for other languages. Because the manual construction of large-scale labeled
corpora is an expensive process in terms of time, human and economic resources, several
semi-automatic methods have been proposed. Any method which can help to reduce the
manual effort involved with resource creation for new languages, as well as methods that can
leverage unnanotated data as means of training signal, constitute an important step towards
improving the performance of the SRL task.

There are augmentation methods at the monolingual level aimed at obtaining larger la-
beled corpora to train large models in a semi-supervised manner where the original annotated
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data is augmented with automatically generated sentences that are based on the original gold
annotations. This can be achieved by obtaining e.g. more diverse syntactic realizations or
coverage of uncommon predicate and role sets without the need of manually annotating these
new sentences. In this line, Vickrey and Koller (2008) propose a joint system for sentence
simplification and semantic role labeling that proves to be more robust across syntactic
variations at inference time.

Fürstenau and Lapata (2009) developed an algorithm that augments a small number of
manually labeled instances with unlabeled examples whose roles are inferred automatically
via (monolingual) annotation projection. The projection is formulated as a generalization of
the linear assignment problem. This method finds a role assignment in the unlabeled data
such that the argument similarity between the labeled and unlabeled instances is maximized.
Experimental results on semantic role labeling show that the automatic annotations produced
by this method also result in performance improvements.

Woodsend and Lapata (2017) developed a method to automatically extract rules for
rewriting from comparable corpora and bi-texts to generate multiple versions of sentences
annotated with gold standard semantic role labels. They re-train a semantic role labeler with
the official CoNLL-2009 benchmark dataset augmented with their rewritten sentences and
show performance improvement.

More recently, Cai and Lapata (2019) use an LSTM-based semantic role labeler that
is jointly trained as a sentence learner (it simultaneously learns POS tagging, dependency
parsing and predicate identification) in order to use data without semantic role labels as
additional training signal when learning the SRL task. This technique consistently improves
the performance in Chinese, German and Spanish portions of the CoNLL-09 benchmark
dataset.

3.3 Cross-lingual Annotation Projection

Beyond machine translation, parallel corpora can be exploited to relieve the effort involved
in creating annotations for new languages, especially when the resources available for them
are scarce or lower quality. One of the most common methods to automatically overcome
scarcity of annotations on a different language is annotation projection (Yarowsky et al.,
2001). The automatic induction of annotations is a common technique to take advantage
of existing models and annotations in a resource-rich source language and transfer them to
a lower-resource target language. Given that an overwhelming majority of NLP research
is done in English, it is feasible to use its resources as a source of annotations and develop
cross-lingual methods that allow to map all this existing knowledge into other languages in a
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reliable manner. Importantly, this technique relies on a pre-existent availability of a parallel
corpus. A parallel corpus contains a translated equivalent sentence to the source into N target
languages, and the key idea of annotation projection is to use this parallelism to transfer the
information. It works as follows:

1. Given a pair of sentences E (English) and L (new language) that are translations of
each other, obtain annotations for E. These annotations can be obtained in two ways:
i) take an annotated source corpus and obtain high-quality translations of the source
text to create the parallel corpus, ii) take an already available parallel corpus and use a
high-performance source model to label the source side.

2. Generate reliable alignments from the source annotations to the target candidates. The
level of these alignments can be at any granularity inside the text (words, phrase chunks,
discursive units, etc.), but all of the alignments ultimately rely on the availability of
word alignments, which are links between individual words of both sides that indicate
translational equivalence.

3. Once the alignments E→ L are obtained, the annotations from E are induced onto L
by following the alignments.

4. The new labeled sentences can then serve as data for training a model for L that is
independent of the parallel corpus.

In the specific case of transferring predicates and semantic roles, the annotation projec-
tion paradigm faces important challenges: firstly, the automatic alignment methods often
produce noisy or incomplete alignments hence, when the annotated roles are span-based, it is
sometimes impossible to completely recover source and target aligned word spans; secondly,
on top of their overall translational equivalence, the semantic structure to be projected must
be shared between the two sentences. Clearly, if the role-semantic analysis of the source
sentence E is inappropriate for the target sentence L, simple transfer through alignments will
not produce valid semantic role annotations on L (Pado, 2007).

Importantly, even when having a human translated parallel corpus and gold standard
word alignments, there is a phenomenon present when translating from one language to
another, namely translation shifts. This occurs because there are cases of idiosyncratic
lexical preferences in two different languages or when free translation is used to better adapt
to the target language use. For example:

(5) a. If Mr. Mason had used less derogatory language to articulate his amateur analysis,
would the water be quite so hot?
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b. Hätte Mason in seiner amateurhaften Analyse eine weniger abwertende Sprache
verwendet, würde er dann so tief in der Tinte sitzen?

where both sentences are perfect translations from each other; however, the English
predicate articulate disappears on the German sentence. More importantly, the English
sentence uses a specific idiom that is then adapted to find an equivalent German expression,
loosing the lexical correspondence to fully preserve the meaning on the target side.

In these cases there cannot be a method that solely relies on alignments, and subsequent
filtering is needed to rule-out the implausible transfers into the target language. A naive
approach to this problem could be to use translation dictionaries and discard all expressions
that do not match, but by following this hard-matching approach we encounter again coverage
problems, and ideally what we want is to capture the meaning in context of the translated
expressions (and not only lexical matches) in order to obtain a larger amount of plausible
target annotations. On the other hand, if one relaxes too much the matching constraints, the
resulting target annotations will be very noisy (as we risk transferring labels that shouldn’t
be present in the target language).

As this is still an on-going area of research, below we list some of the most common
approaches to effectively apply annotation projection to SRL.

3.3.1 Cross-lingual Annotation Projection of Semantic Roles

Padó and Lapata (2009) assess whether English semantic role annotations can be transferred
successfully onto German, by using English-German parallel sentences taken from Europarl
(Koehn et al., 2003). They automatically assign FrameNet labels by aligning constituency
trees. The alignment of arguments inside sentences is treated as an optimization problem.
They find that the two languages exhibit a degree of semantic correspondence substantial
enough to warrant projection. Since the FrameNet annotations are span-based, they also
tackle the problem of annotated semantic roles with arbitrarily long word spans (therefore
mere word alignments are not enough to reliably transfer the labels). To tackle this, they
construct semantic alignments between syntactic constituents of source and target sentences
and formalize the search for the best semantic alignment as an optimization problem in a
bipartite graph.

Their method works as follows: Consider each bi-sentence as a set of linguistic units:
source us ∈ Us and target ut ∈ Ut. A semantic alignment A between Us and Ut is a subset
of the cartesian product of linguistic units (i.e. A ⊆ Us × Ut). Provided with an optimal A
and the role assignment function for the source sentence as, projection consists simply of
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transferring the source labels r onto the union of the target units that are semantically aligned
with the source units bearing the label r:

at(r) = {ut||∃us ∈ as(r) : (us, ut) ∈ A} (3.11)

The task then is to find such optimal semantic alignment A among the set of all admissible
alignments A. This is done by solving the following equation:

A = argmax
A∈A

∏
(us,ut)∈A

sim(us, ut) (3.12)

In this work, the word alignments, obtained with GIZA++ (Och and Ney, 2003), are used
as the proxy for computing the similarity measure between source and target constituents,
and in general this problem is solved as a bipartite graph optimization problem, where Us
and Ut are the two partitions of the graph G which is initially fully-connected. The task is
then to find the subgraph G′ which keeps both partitions connected while minimizing the
weight of the connections in G′ which is analogous to solving equation 3.12.

The constituent based projection works as follows: represent source and target sentences
as constituent sets Us = {C1

s , C
2
s , . . . } and Ut = {C1

t , C
2
t , . . . } respectively. Use the word

overlap between cs and ct with Jaccard’s coefficient (based on the word alignments) as the
constituent-based similarity function. The overlap function is formally defined as:

o(cs, ct) =
|al(cs) ∩ yield(ct)|
|al(cs) ∪ yield(ct)|

(3.13)

Since the Jaccard’s coefficient is symmetric, in order to take into account the alignments
in both directions (source-to-target and target-to-source) the mean of both directions is taken
as the final similarity measure:

sim(cs, ct) =
(o(cs, ct) + o(ct, cs))

2
(3.14)

On top of the similarity-based alignment they introduce three filters to reduce the noise
of alignments:

• Forcing the alignments to be inside a given span (only keep the contiguous word
alignments of a constituent).

• Only perform alignments of content words: adjectives, adverbs, or verbs, nouns; and
avoid processing words for which the word alignment tool didn’t assign an explicit
alignment.
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• Reduce the size of the target tree by only considering the set of likely constituents to
be labeled which are the children constituents of some ancestor of the predicate. This
heuristic is according to the findings of Xue and Palmer (2004).

To evaluate the semantic parallelism and accuracy of this transfer method, the authors
have independently annotated the source and target side of 1,000 parallel sentences with
FrameNet semantic roles. The performance was measured using precision and recall, treating
the German annotations as gold standard. They found that about 72% of the time English
and German sentences evoked the same frame and around 91% of the time they contained
the same set of roles (for the subset of sentences already holding the same semantic frame).
This demonstrated that for languages that are close such as German and English it is possible
to transfer semantic frames provided that the appropriate filter for predicate equivalence are
used. This work showed successfully that the semantic correspondences in a parallel corpus
can be used as a means for generating labeled corpora in a target language without explicit
annotations on the target side.

3.3.2 Cross-lingual Validity of PropBank

In a separate line of work, van der Plas et al. (2010) studied the feasibility of directly applying
the English PropBank frame definitions (Palmer et al., 2005) into a different language, in
this case French. They hypothesize that the level of abstraction of a well-defined semantic
lexicon/ontology should be already cross-lingually valid. To prove this, they manually
annotated 1,000 French sentences by directly using the guidelines from the English predicate
and label definitions and use it as a gold standard for further experiments.

There are two key differences of this work with Padó and Lapata (2009): i) this is based
on PropBank semantic frames, which means the projection of frames is predicate- and sense-
specific as opposed to frame-specific; ii) it uses dependency parsing as support, instead of
constituents, therefore this is dependency-based semantic labeling (only the head word of
each argument holds the role label). The manual annotation proceeded as follows:

1. For each predicate they find in the French sentence, annotators translate it to English
and look for it in the frame file to be able to label the predicate token with the right
verb sense.

2. If the translated verb is not found then a dummy label is assigned. Since this implies a
non-parallelism between the English frames and the French sentence, these examples
will be discarded.
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3. Argument identification is performed for the cases that already have a predicate frame
assigned. The annotator is guided to select the heads of phrases during the annotation
process and then decide if they correspond to a role in the corresponding English frame
definitions.

4. After discussions and individual corrections, the F1 agreement scores are between
91% (predicates) and 95% (arguments). This indicates that the task is well-defined.

The task of labeling predicates proved to be more difficult than labeling semantic roles.
The inter-annotator agreement was 59% for PropBank verb senses, but if they are measured
using VerbNet classes it increases to 81%, meaning that translations of predicates occur to
similar-enough related lexical entries. Disagreement was resolved by comparing annotations
at the verb class level. Non-parallel cases (dummy labels) were found to be mostly due to
idioms and collocations, they were discarded because they are translation shifts. Following
this approach, they arrived to a corpus of 1,000 French sentences with high-quality labeling
which can be used as a test set for larger-scale cross-lingual experiments using the PropBank
framework.

3.3.3 Scaling-up Cross-lingual SRL Annotation

The research continued towards developing a method to automatically generate enough
French PropBank-labeled data to train a labeler for that language (van der Plas et al., 2011).
They construct automatically a large-scale parallel English-French corpus with semantic
role annotations. To do this, they also use the Europarl corpus (Koehn et al., 2003). In this
case, they train a joint syntactic and semantic role parser for English, then they obtain word
alignments for each sentence with its French translation by using GIZA++ (Och and Ney,
2003). Separately, they train a French syntactic parser and finally they use the word-alignment
information and the syntactic relationships in both languages to transfer the semantic roles
from English to French.

To increase the quality of the annotations on the target side, they only consider the
intersection of alignments as valid alignments. This means that given the parallel sentences
E ↔ F , the English word xE is aligned to the French word xF if and only if xE →
xF ∧ xF → xE is true. Furthermore, to ensure a strong alignment quality, they adopt the
direct semantic correspondence approach (Hwa et al., 2005), where a relationship transfer
R(xE, yE)→ R(xF , yF ) is valid if and only if there exists a simultaneous valid alignment
xE → xF and yE → yF (i.e. both the governors and dependents of the relationships are
aligned). Likewise, the transfer of a semantic property P (xE)→ P (xF ) is made if and only
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if there exists a a valid alignment xE → xF . The relationships in this case are semantic role
dependencies and the properties are predicate senses.

Additionally, they propose the following filters to improve the alignment quality:

1. Filter low-frequency: remove a sentence pair if it contains a predicate sense with a
low relative frequency given its word (relative frequency less than 0.2).

2. PoS tags filters: only keep sentence pairs whose predicates are aligned to a target
POS noun, verb or adjective

3. Avoid non-literal translations: only keep sentence pairs with a source to target
predicate alignment and at least one of the roles that have an alignment to the target.

Even though this careful design of annotation transfer ensures high-quality alignments,
this comes at the trade-off of very low density of annotations on the target side. This was
measured by comparing the automatically annotated sentences to 500 manually annotated
French sentences (van der Plas et al., 2010), and resulted in F1 score of 55 for predicates and
65 for arguments, which is close to the inter-annotator agreement of 59 and 74 for predicates
and arguments respectively. However, in practice the consequence of having low-density
of annotations is that systems trained on this data assign scarce annotations and normally
only identify the frequent predicates and roles seen in the construction of the corpus. On
the other hand, this work is already an important step that shows feasibility of applying
cross-lingual projections at large-scale for PropBank SRL annotations into a target language.
More importantly, because the performance was measured using a human-annotated test set,
this work shows that the automatic transferability of English PropBank labels is valid at least
for related target languages.

3.3.4 Global Methods for SRL and Predicate Labeling

van der Plas et al. (2014) propose to learn a global transfer method for SRL and combine
it with the direct transfer sentence-level method. The aim of the global method is to learn
semantic relationships from the entire source corpus, as opposed to the direct transfer
approach (such as the ones described above) where a token-by-token alignment is done
only inside individual sentences. With a global approach they aim to obtain a more stable
semantic representation across syntactically different sentences, address the translation shifts
and word alignment noise problems that are present in the previously described approaches
(Pado, 2007; Padó and Lapata, 2009; van der Plas et al., 2011), which are direct transfer
methods. They use again Europarl (Koehn et al., 2003) and after filtering for sentence length
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(40 tokens) and for avoiding translation shifts, they end up with a parallel corpus of 276,000
instances. In particular, two separate models that learn from this corpus are built: i) a model
for predicate identification and labelling and ii) a model for semantic role assignment.

The transfer of predicates is modeled as a cross-lingual Word Sense Disambiguation
(WSD) task and exploits information gathered from the whole corpus such as a bi-lingual
lexicon and alignments obtained with using GIZA++ (Och and Ney, 2003). They compute
the co-occurrence counts for alignments between English and French predicates, and given
the probability they compute an association score for alignment, which they use to decide
when and to which target tokens should the predicates be transferred to at inference time.

For the transfer of roles, the model determines the most suitable semantic role label r
for a given argument of a given predicate p, based on its syntactic dependency label d. They
compute the maximum likelihood estimates (MLE) and count occurrences of (p, d, r) triples,
computed first in a large English corpus with gold semantic and syntactic annotated data and
then applying that model cross-lingually to French .

This work finds that using the direct transfer method combined with the global knowledge
improves coverage: 39% of predicates are recovered vs 29% from the direct transfer, and an
F1 score of 45% which is an improvement over the global-only 42% and a big improvement
over the direct transfer baseline which attained 37%. As for the role labeling, only the
accuracy obtained is reported which is 68 for the global method and 73 for the combined
method, as opposed to the direct transfer baseline of 35.

This work shows that a global approach provides useful information for correcting and
complementing the annotations from traditional direct transfer methods. Because direct
transfer is a high-precision method, its combination with global methods (which are high
in recall) improved previous results. The major advantage of the purely global approach is
that it does not need parallel data or alignments at inference time (it uses the probabilities
computed during training). However, as it was demonstrated in this work, the combination of
direct and global transfer provides the best scores, loosing the advantage of the purely global
method. Finally, while it is true that this approach generalizes better than the purely direct
transfer, it is still restricted by the vocabulary and syntactic information found in the specific
training corpus, a problem that can be straightforwardly addressed by neural methods.

3.3.5 Generating High Quality Proposition Banks for Multilingual SRL

In search of higher-confidence projection and denser annotations, Akbik et al. (2015) propose
a combination of annotation projection and bootstrapping for refining the projections. Their
proposed method is applied on English as a source language and a broad amount of target
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languages: Arabic, Chinese, French, German, Hindi, Russian, and Spanish. This work also
claims to address better the translation shifts across the diverse languages.

Given a parallel corpus, the general steps followed in this work are:

1. Run a syntactic parser and semantic role labeler to assign PropBank labels to the source
language S; in practice, they used the ClearNLP (Choi and McCallum, 2013) toolkit1.

2. Assign syntactic labels to the target language T using a SOTA parser for each T .

3. Filtered Projection: first apply a direct projection(van der Plas et al., 2011), and then
apply strict filters to the intermediate assigned labels, to only keep the high-confidence
labels. This results in a T corpus with very low recall but very high precision.

4. Bootstrap learning: iteratively add new labels to the sentences by training classifiers
for T and obtaining silver labeled data, improving coverage with each iteration.

Filtered Projection: The common errors obtained by the direct projection methods
are analyzed in depth in order to design the constrains for developing the filters. They are
inspired by the most common mistakes that were found during the error analysis and aim to
either fix or avoid the projections that fall into one or more of the following cases:

• Verb Filter (VF): drops the transfer of a predicate if the word alignment tool gives a
V erb→ NonV erb alignment. This is to ensure that only verbal predicates are labeled
on T (since only verbal predicates from S are being projected).

• Translation Filter (TF): aims to avoid translation shift errors on verbal predicates.
Specifically, it is a translation dictionary that allows projection if and only if the T
predicate is a valid translation of the S predicate (i.e. it is in the dictionary). The
dictionary holds the k most commonly observed si → (t0 . . . tk) translations.

• Reattachment Heuristic (RH): targets to obtain only syntactic head-to-head align-
ments. This means that when a source argument is lexically aligned to a non-head
argument, a heuristic is used to move the T argument label to the ancestor which is the
immediate child of the predicate.

The authors report that the VF filter increases the predicate precision from 45% to
59% without impact to recall (since the original aim is to only label verbal predicates)
and argument precision from 43% to 53%, subsequently, applying the TF filter increases
predicate precision to 88%, however, the recall impact is significant, dropping it to 71%.

1https://github.com/clearnlp

https://github.com/clearnlp
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Note that the translation filter is very strict, since it is lexically constrained to the coverage
of the dictionary, a consequence of this is that the filter might be blocking valid transfers of
predicates, ending in low density of T predicates (and hence of arguments, since a missing
predicate means the whole predicate-argument structure won’t be present in T ).

Note that other important sources of error that are not covered by the filters are: Gold
Labeled data errors (some mistakes done during test set annotations), semantic labeler errors
(noise from the original labels assigned by the SOTA systems), alignment errors (noise from
the Berkeley aligner (DeNero and Liang, 2007) system), and parsing errors (noise form the
SOTA – at that time – syntactic parsers).

Bootstrap Learning: Given that the constraints for filtering labels are very strict, the
resulting data is scarcely labeled, but with very good quality. Since the parallel corpus used
for the transfer is large enough, even with the low-density labels it is already possible to
train an SRL system on the target language. Then it is possible to use this SRL to relabel the
T corpus, effectively overwriting the projected labels with potentially less noisy predicted
labels. This process is repeatedly applied until no further re-labeling is detected.

They train the SRL system of Björkelund et al. (2009). Since the precision of labels
generated by the SRL system is lower than the precision of labels obtained from filtered
projection, the precision of the training data is expected to decrease with the increase in recall.
To optimize precision and avoid overtraining, the bootstrapping step is done for 3 iterations.
They used as training data the Europarl (Koehn et al., 2003) and UN (Ziemski et al., 2016)
parallel corpora. Its performance is tested for French with the manually annotated French
corpus from van der Plas et al. (2010), and for the rest of the languages it is estimated
by manually annotating 100 random sentences. This resulted in roughly 90 F1 points of
predicates being correctly annotated and 70-80 F1 points for arguments (varying slightly
across languages). For the assessment of the rest of T languages studied in this paper, the
precision of predicate labels is over 95% and the recall is around 85%. For argument labels,
the precision is at least 85% and the recall is between 66% to 83%.

Whereas the improvements of both precision and recall are impressive with respect to the
hard-filter approach, the method is still bound to the existence of several resources that were
used as a pipeline, namely there should be high-quality source and target syntactic parsers,
big-enough parallel corpora, a well trained word aligner and curated lexical dictionaries
for both source and target languages. On top of this, the coverage for predicates, that
depends on fixed dictionaries, directly impacts the density of final annotations on the target
side, especially if the method is used for out-of-domain data at inference time, calling for
re-running this method each time one wished to apply it for different types of data.
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On the other hand, this method was followed to generate two important (not manually
annotated) resources for lower-resource languages, derived from this bootstrapping technique:
the Universal Proposition Banks2 datasets available for Chinese, Finnish, French, German,
Italian, Portuguese, and Spanish, and a pre-trained open-source software, ZAP: An Open-
Source Multilingual Annotation Projection Framework Akbik and Vollgraf (2018), that can
be used out-of-the-box for Spanish, French and German. Particularly, we will use ZAP as a
baseline when we evaluate the models that we present in this thesis.

3.3.6 Other Recent Approaches

Transferring Semantic Roles Using Translation and Syntactic Information. Aminian
et al. (2017) define and use a customized cost function to train over noisy projected instances.
This is shown to be an alternative to the manually-defined rules to filter projections. They
propose to use bootstrapping following Akbik et al. (2015), however, the authors report that
relabelling all training instances (including the already labeled data) instead of only labeling
unlabeled raw data give better results on coverage of annotations on the target side..

They also introduce a weighting algorithm to improve annotation projection based on
cues obtained from syntactic and translation information. For each aligned source argument
si that is projected to a tj , a cost function λdepi is defined according to the dependency of the
source and target words dep(si) and dep(tj) as:

λdepi =

1 if dep(si) = dep(tj)

0.5 otherwise
(3.15)

With this the claim is to avoid translation shift projection and therefore improve quality
during the boostrapping rounds. They report that by following this technique, they reach
63.8 F1 score (an improvement of 1.3 over the baseline) on role projection from English
to German. On a closer look at projection, the authors report a precision of around 60%
for the A0 role (the most frequent one in the dataset), while having a recall of 50% after 6
re-labeling iterations. Importantly, they ignore the projection of the modifier AM− roles
to German since this particular role does not appear in the CoNLL-09 German dataset. In
contrast, one of the aims of our thesis is to include such role definitions in lower-resource
languages such as German, this to have a more complete set of annotations that closely can
follow English PropBank definitions.

From Raw Text to Semantic Roles. Aminian et al. (2019) propose a full method that
performs first annotation projection from English to other target languages and uses this

2https://github.com/System-T/UniversalPropositions/

https://github.com/System-T/UniversalPropositions/
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automatically created data to train a group of neural semantic role labelers. For the annotation
projection step they assume a parallel corpus, perform word-alignments using GIZA++ (Och
and Ney, 2003) to project the annotations.

The novelty of this approach is in the avoidance of any intermediate annotations such as
supervised lemmas, dependency parse trees, and part-of-speech tags, they train a SRL system
using the projected predicate-argument structures with two separate components: i) a joint
argument identifier and classifier , and ii) a classifier for predicate sense disambiguation. They
use BiLSTM encoders, and a role+predicate specific decoder that, instead of using explicit
lower-level annotations (such as lemmas and POS), benefit from the encoded representations
to learn the features in an unsupervised fashion.

For the predicate disambiguation they use an external system from Björkelund et al.
(2009). For the joint argument classifier, given a sentence with n tokens and m predicates,
m separate predicate BiLSTM encoders are run to extract contextualized representations
for each token related to each predicate. The input of an encoder E for each token is the
concatenation of a randomly initialized word embedding, a pre-trained word embedding,
a character representation of the word (obtained by running a char-LSTM encoder on the
token), and a predicate lemma embedding (active if the current token i is a predicate or a
zero-vector otherwise). Therefore, each token i related to a predicate j is represented as:

xij = [xrei ;x
pe
i ;x

char
i ;xleij]∀i ∈ [1, · · · , n]; j ∈ [1, · · · ,m] (3.16)

They use this as an input for each of the predicate-specific encoders Ei,j and assign a
label for each token inside the sentence.

The novelty of this work is that the cross-lingual transfer of dependency-based SRL
annotations is end-to-end. This model is agnostic to linguistic features, as it is character-
based, and can be trained on projected text on a target language without annotated data. The
model achieved competitive performance compared to bootsrapping techniques; however,
the evaluation was conducted on the Universal Proposition Banks (Akbik et al., 2015) which
contains test data that was produced automatically also with bootstrapping techniques. It
would be desirable to assess the effectiveness of this method with human-validated test sets.
Moreover, the performance of the presented method is still poor in coverage, all the languages
exhibit F1 projection scores around 60, which still shows that cross-lingual transfer methods
based on word alignments hit a coverage limit and calls for an upgraded projection method
that can improve coverage. We will show in Chapter 7 that our proposed projection method
fulfills these two goals as we test it on a human-validated dataset and we avoid relying on
pre-trained word alignments such as most of the methods presented here do.
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3.4 Joint Multilingual Models

The models presented above follow, in general, a similar line of work: obtain an available
parallel corpus, first using a monolingual SRL model on the source side and afterwards apply
a cross-lingual method supported on lexical and syntactic information learned on the parallel
sentences. On the contrary, the following models aim to use all the data available in several
languages as a training signal since the beginning. The hypothesis is that if we are already
using a semi-standardized label-set for different languages, the semantic roles should be
applied to the parallel sentences. Even when this is not always the case, these commonalities
should be enough to help a model from a lower-resource language to profit from the quality
of labels from a high-resource language.

The final goal of a joint multilingual approach is to create models that obtain performance
gains by improving the statistical strength for all languages (i.e. sharing parameters), which
should benefit the semantic role labelers of resource-poor languages. The hypothesis is that
multilingual models should optimize the information sharing across languages, instead of
manually designing explicit alignments and filters that transfer labels from a source to a
target. Importantly, the last two papers that we describe here, which are neural approaches
(Sections 3.4.3 and 3.4.4), are concurrent work to what we present in this thesis.

3.4.1 Multilingual Semantic Role Labeling

Björkelund et al. (2009) propose a single multilingual approach that learns from all lan-
guages in the CoNLL-09 Shared Task (Hajič et al., 2009). They propose a pipeline of three
independent, local logistic-regression classifiers that given a sentence S and a predicate p
i) identify the predicate sense, ii) identify the arguments of the predicates, and iii) classify
the arguments. They use the local models to generate a pool of candidates, which are then
processed by a global re-ranker that applies a linear combination of the local classifiers’
probabilities and a set of proposition features. The global re-ranker chooses the best sense
and set of labels for each (S, p) pair.

To address the multilingual nature of the data, they implemented a feature selection
procedure that obtains the best feature-set for each individual language, obtaining important
gains over a generic set of features. To work with the label divergences across languages they
made some special adaptions for what to consider core labels: in Catalan and Spanish, all the
labels prefixed by A0 to A3; in Chinese and English, only the labels A0− A4; and in Czech,
German, and Japanese all the labels were considered core labels.

This work already showed the potential of training systems that optimizes the task for
several languages at the same time. It reached the second place at the SRL-only CoNLL-09
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Shared Task (Hajič et al., 2009), and SOTA for Chinese and German. Unfortunately, in the
years that came after this, very little work was done on exploiting the multilinguality of the
task, and aside from German and Chinese, no further progress was made on the performance
for non-English languages.

3.4.2 Bootstrapping Semantic Role Labelers from Parallel Data

Kozhevnikov and Titov (2013) aim to facilitate the construction of SRL models for resource-
poor languages, while preserving the annotation schemes designed for each target language.
They propose a co-training of two monolingual SRL models (they use the model from
Björkelund et al. (2009)), which are initially trained on monolingual data. Next, they
aim to use information of both models to learn a role correspondence model (RCM) on a
(English, Target) parallel corpus3. Initially, the parallel corpus is annotated with semantic
roles using the independent monolingual models, and then they use the RCM to refine these
annotations via a joint inference procedure. The refined predictions are expected to propagate
the superior information quality from English to the weaker language, thus improving the
initial predictions.

The task of the RCM is to jointly use the source model fs and target model (conditioned
on the source) fst scoring information, given the source Ss and target St sentences, and
source ps and target pt predicates to identify the target language role assignment rt that
maximizes the objective:

L(rt) = λtft(rt, St, pt) + λstfst(rt, rs, ps, pt) (3.17)

where rs = argmaxr fs(rs, Ss, ps) is the role assignment of the source-side arguments as
predicted by the monolingual model and λ are the weights associated with the models.

For training the monolingual models they used the CoNLL-09 datasets (Hajič et al.,
2009), for the parallel corpus, Europarl (Koehn et al., 2003), and GIZA++ for obtaining
source-to-target alignments. Concretely, they evaluate their model on four language pairs:
English (EN) vs German (DE), Spanish (ES), Czech (CZ) and Chinese (ZH), using the
CoNLL-09 test sets. Consistent improvements are observed over a self-training baseline (this
is, re-training the SRL monolingual model with the Europarl sentences of the corresponding
language). For example, EN-CZ self-training has an accuracy of 62.15 vs 63.11 using the
joint model (+0.96); whereas German self-training yields 68.34 vs 70.13 using the joint
approach (+1.79). This work shows again that using data from different languages as training
signal can yield improvements on the SRL task. Importantly, the authors also report that

3Where the English source is the better informed language and the target is a lower-resource language.
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iterating more than one time through the joint re-labeling, ends in poorer performance for
all languages, which shows that there is too much noise from the automatically labeled
data and this is limiting the generalization capabilities across languages of this approach.
Another important aspect that hampers improvement is the domain mismatch between the
monolingual training data and the cross-lingual dataset, which affects the performance of
models’ predictions, as reported by the authors.

3.4.3 Polyglot Semantic Role Labeling

Mulcaire et al. (2018) try the straight-forward approach of training a single neural architecture
using data from CoNLL-09 (Hajič et al., 2009). They only combine the languages bi-lingually
(English + a lower-resource language). This is inspired by a successful neural multilingual
dependency parsing model (Ammar et al., 2016) that uses the universal dependencies corpus
(Nivre et al., 2016) to train a single model, and achieves better results in several languages
compared to their monolingual baselines. In this work, the authors re-implement the span-
based SRL model of He et al. (2017), and try three different modifications for language
combination during training:

Simple Polyglot Sharing. Use pre-trained multilingual embeddings in the first layer of
the model and train it on the union of data from two languages. Because English data is
considerably bigger than the rest of languages in the CoNLL-09 corpus, they use stratified
sampling to give the two datasets equal effective weight during training.

Language Identification. Concatenate a language ID vector to each multilingual word
embedding and predicate indicator feature in the input representation. This vector is randomly
initialized and updated in training. These additional parameters provide a small degree of
language-specificity in the model, while still sharing most parameters.

Language-specific LSTMs. In addition to the language ID vector and processing every
example with a shared biLSTM as in previous models, train language-specific 2-layer
biLSTMs only on the examples belonging to one language. Each of these language-specific
biLSTMs are stacked on top of the shared deep-biSLTM that is used in the two previous
variants. The aim is to give the model a greater parameter space to learn both language
commonalities and language specificity at the same time.

The authors compare their polyglot variants to a monolingual baseline (using the system
of He et al. (2017) only with each language-specific training data), and to SOTA neural
systems. They find inconsistent results for each language, where the first variant is the best
for German and Japanese, the second variant is the best for Czech and Spanish, and the
third variant is the best for Catalan and Chinese. Importantly, the monolingual baselines are
quite low as compared to the SOTA of each language, this is understandable since such a
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big neural system can’t learn a strong-enough signal when trained with the small datasets of
non-English languages. For example, the German SOTA F1 score is 80.10, the monolingual
baseline reported is 66.71 and the best polyglot (English+German) yields 69.97, which is
an improvement from the baseline but still quite far from the SOTA. The authors also find
that the improvements are mainly due to the core-roles that are both more frequent and also
shared across languages, namely A0− A4, which indicates the importance of having more
reliable training data for lower-resource languages.

The fact that the polyglot approach works better than the monolingual baselines for
lower-resource languages shows that neural models benefit from having more training data
and from the English higher-quality labels; the neural architecture manages to generalize
and transfer that knowledge into the weaker language. On the other hand, the fact that
the polyglot model didn’t outperform the monolingual SOTA shows the weaknesses of the
incompatibility of annotations present in the CoNLL-09 datasets4 (a finding that we will
also analyze in our own work, see Chapter 6), such as a partial share of predicate senses and
role labels, lower density of annotations in non-English languages, and fewer exposure to
different sentence realizations in the non-English training sets.

3.4.4 Syntax-aware Multilingual Semantic Role Labeling

Inspired by the performance gains that more recent models for English obtained (Marcheg-
giani and Titov, 2017; Strubell et al., 2018) by leveraging syntactic information and enhanced
word representations within a neural architecture for SRL, He et al. (2019) propose a
language-independent neural model for dependency SRL that leverages syntactic information
present in the individual training sets for each language in the CoNLL-09 dataset. With
this technique, and with the help of multilingual contextualized representations (Che et al.,
2018; Devlin et al., 2019), they improve the SOTA for the seven languages included in that
dataset. This model is language-independent in the sense that the rules extracted for syntactic
pruning depend only on the language-specific training data (as opposed to handcrafted rules,
where the pruning might not work for all languages); the multilinguality of the model comes
from the replacement of the embedding layer, either with the language-specific pre-trained
embeddings or the multilingual contextualized embeddings, without changing anything else
in the architecture. However, the model does not leverage SRL data from different languages
at the same time, despite being called multilingual.

Concretely, they adapt the deep BiLSTM Encoder of Cai et al. (2018) and add an
additional layer that integrates a novel method for pruning argument candidates guided by

4As we mentioned earlier, their work is inspired in a previous successful approach (Ammar et al., 2016) that
uses Universal Dependencies, which, unlike SRL, is a completely standardized dataset across languages.
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language-specific syntactic rules. As a last layer, they implement a biaffine scorer (Dozat and
Manning, 2017) for the tasks of argument identification and classification. For each sentence
and predicate pair, the model encodes at each time-step the concatenation of five vectors: i) a
randomly initialized word embedding, ii) lemma embedding, iii) part-of-speech embedding,
iv) pre-trained word embedding and v) predicate-specific indicator embedding (whether the
current token is a predicate or not). The pruning rule is based on the well known property
from the feature-based SRL models (Gildea and Jurafsky, 2000; Xue and Palmer, 2004), that
the distances between predicate and its arguments on syntactic tree are within a certain range
for most languages. Inside each language-specific training set, for each predicate p and their
labeled arguments ai, the distances from p and each ai to their nearest common ancestor is
calculated and saved as a tuple. Only the top-k frequent distance tuples (dp, dai) are kept as
probable for argument labeling. During encoding, after the BiLSTM processed the whole
sequence, the argument pruning layer drops the hidden representations corresponding to the
tokens that do not appear as top-k candidates for the predicate of interest, and only the rest is
processed by the last layer of the network.

The biaffine scorer takes as input the BiLSTM hidden states of predicate hp and candidate
arguments hai filtered by the argument pruning layer. It computes the probability of the
corresponding semantic labels using a biaffine transformation defined as follows:

Φr(p, ai) = (hp)
TW1haiW

T
2 (hp;hai) + b (3.18)

where ; represents concatenation operator, W1 and W2 are the weight matrices of the
bilinear and the linear terms respectively, and b is the bias item.

This model, when used together with pre-trained multilingual BERT representations
(Devlin et al., 2019) in the embedding layer, improves the SOTA for the 7 languages in the
CoNLL-09 dataset. In most cases it improves the F1 score by a considerable amount such
as Catalan (80.3 to 85.1), Chinese (84.3 to 86.42), Czech (86 to 89.66), Japanese (78.2 to
83.76) and Spanish (80.5 to 84.6), however, in English and German the improvement was
less significant (80.1 vs 80.9) for German and (90.4 vs 90.8) for English.

This architecture primarily reflects two aspects of neural SRL: namely that syntactic-
based argument pruning still helps in neural models and that the strong lexical information
encoded in the contextual representations are a big boost for improving SRL performance,
even when the training data is smaller.



Chapter 4

An Extensible Model for Semantic Role
Labeling

Thus far, we have described how end-to-end neural models considerably improved the state-
of-the-art results for SRL in recent years. The majority of these neural models treat the
problem of SRL as a supervised sequence labeling task, using deep architectures that assign
a label to each token within the sentence. Given the complexity of these architectures, most
of the described improvements are limited to English, for which resources are more plentiful
and of higher quality. Even in those cases where training resources for another language
exist, they are more restricted both in terms of the number of sentences, as well as in terms
of the diversity of annotated predicates and arguments. Moreover, the available resources are
not compatible with each other, because they were produced independently.

We also listed various works that address the data scarcity problem for non-English
languages. Annotation projection in particular is a widely used method for augmenting both
monolingual and bilingual data. However, such methods rely on preexisting parallel corpora,
and on a pipeline of statistical models such as word aligners, a source semantic parser as well
as source and target syntactic parsers, each of which introduce noise and propagate errors.
Importantly, the filtering measures taken to reduce noise tend to be overly cautious, limiting
the amount of data that can be produced. In addition to requiring parallel data and relying on
automatic parsers and noise reduction strategies, annotation projection methods are designed
to work for one language pair at a time. Hence, the need for improved solutions to the issue
of resource scarcity for languages other than English.

In this thesis, we present a model that seeks to be a unified and extensible solution to
overcome the issues listed above. The general solution that we propose is to simultaneously
translate and transfer the labels by using a single joint model that accomplishes both things
within the same step. In order to do this, we propose to reformulate the SRL task as a seq2seq
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task. Our approach is based on related work on two different tasks: low-resource NMT, which
has shown the positive impact on target predictions by adding more than one language during
training (Zoph and Knight, 2016; Johnson et al., 2017; Firat et al., 2016a), and structured
prediction using seq2seq models (Dong and Lapata, 2016; Zhang et al., 2017), where a text
input is mapped into a structured output. Additionally, it is directly related to concurrent
work on joint multilingual labeling models (Mulcaire et al., 2018; He et al., 2019) where a
single architecture is proposed to solve the same task for different languages.

We divide our effort to solve SRL as a seq2seq task and address resource scarcity in three
stages of experimentation: monolingual, multilingual and cross-lingual.

In Chapter 5, we introduce the seq2seq formulation of SRL and a corresponding Enc-
Dec model. We analyze how well such an architecture performs in a classical English
monolingual setting by benchmarking the proposed system against existing monolingual
SOTA sequence labeling models for SRL on well-known labeled evaluation data (the CoNLL-
05, CoNLL-09, and CoNLL-12 datasets).

After establishing the feasibility of seq2seq SRL in a monolingual setting, Chapter
6 describes enhancements to the Enc-Dec model that let us fully exploit the architecture
on languages other than English, and make the architecture flexible enough to apply it in
multilingual and cross-lingual scenarios. Specifically, to experiment with non-English data,
we take two lower-resource languages, German and French1, and show how the availability
of data impacts the performance of the same architecture in the same task as compared to
English, the high-resource language. To overcome the performance gap for the lower-resource
languages, we define the multilingual setting as the combination of data from more than one
language to train a single model. Note that in this setting, we are not translating; instead, we
are exploiting the data available in different languages. We do this by concatenating all the
available training data from more than one language, i.e. as a data augmentation technique,
and using the seq2seq model as a multilingual labeler. For example, if the model receives an
English sentence as input, it generates a labeled English sentence; whereas if it receives a
French input then it generates a French labeled sentence.

Furthermore, we define the cross-lingual setting as the joint task of generating a labeled
sentence which is in a different target language with respect to the source input: in this case
the model receives an input sentence in English and can translate and produce a labeled
sentence in German or in French. Our architecture can learn to translate input sentences
to another language while transferring semantic role annotations by leveraging machine
translation parallel data and making use of existing cross-lingual SRL datasets for training.

1We are aware that these languages are not generally perceived as low-resource in NLP; however, since we
are comparing the data availability and task performance to English, the lower performance in the task for these
languages calls for the availability of more resources, thus we consider them here as lower-resource languages.
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Importantly, the cross-lingual setting poses a complex evaluation scenario that was not
present on the SRL (monolingual and multilingual) labeling task. Since we are proposing
a model that translates and labels at the same time by using a generative decoder, we have
to evaluate this setting as a data generation task. Here, the generated target sequences at
inference time can only approximate reference targets, hence we lack defined gold data to
compare our labeled outputs with. We define intrinsic and extrinsic evaluation scenarios
for the cross-lingual outputs and also we include human-evaluation to assess the quality
of the novel generated labeled data. With this, we show that our model can be used for
augmentation of labeled data on the lower-resource languages.

Finally, we assess the difficulties that emerged by training and evaluating our cross-
lingual model with the so-far available datasets. Even when we found our Enc-Dec to be
robust enough for generating useful labeled sentences, we hypothesize that having more
homogeneous data across languages can result in higher-quality multilingual and cross-
lingual learning. Moreover, we managed to train our cross-lingual model with a limited
parallel labeled corpus, thus we can benefit from defining a method for obtaining more
parallel training data for cross-lingual SRL. For this reason, we explore alternatives to
bilingual annotation projection for generating our own high-quality cross-lingual resources.
Based on the latest advances in machine translation and multilingual contextualized language
models, we propose a portable semi-automatic method for creating more parallel labeled
training data that allows us to obtain uniformly labeled datasets across languages while
minimizing human intervention in the data creation process. Our method for creating training
data uses existing SOTA Machine Translation to generate high-quality parallel data and the
multilingual BERT language model (mBERT) to emulate word alignments and annotation
projection without the need of training specific bilingual transfer models. Additionally, we
create manually validated test sets for German, Spanish and French in order to experiment
and explore the dataset we obtained by following our method.





Chapter 5

Encoder-Decoder Architecture for SRL

5.1 SRL as a Sequence-to-Sequence Task

In this chapter we give the definition SRL as a seq2seq task; we then demonstrate and
evaluate the architecture in a monolingual setting. We start with the monolingual setting for
the sake of both simplicity and comparison with SOTA results. In this setting, the source
and target sequences are always in the same language. We use the datasets that were used
to establish the SOTA for the SRL neural sequence labeling approaches (Collobert et al.,
2011; Zhou and Xu, 2015; He et al., 2017) which are the span-based datasets for English,
CoNLL-05 (Carreras and Màrquez, 2005) and CoNLL-12 (Pradhan et al., 2012).

We propose a straight-forward implementation of a seq2seq Enc-Dec model with attention
(Bahdanau et al., 2015) to perform SRL. Our model learns to map an unlabeled source
sequence of words S = (w1...w|S|) into a target sequence (T = y1...y|T |) consisting of both
word tokens and SRL label tokens (see Figure 5.1), therefore, even when source and target
are the same sentence in lexical terms, |S| ̸= |T| because the target sequence contains the
additional tokens that describe its SRL structure (See Table 5.1).

The source sentence, represented as a sequence of dense word vectors (x1...x|S|) obtained
through a word embedding layer, is fed to a multi-layer Bi-LSTM encoder that produces a
series of hidden states that represent the input. The decoder then uses this information to
recursively generate target tokens yi (which can be a word or a label) step-by-step, conditioned
on the source, by attending the encoder’s hidden states as well as the so-far generated tokens.

Because we are dealing with monolingual data, our architecture also includes a copying
mechanism (Gu et al., 2016). This helps the model avoid lexical deviations in the output
without taking away the freedom to generate words and SRL labels based on the context.
The attention-based generation and copying mechanism compete with each other so that the
model learns when to copy a token directly from the source and when to generate the next
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Source-1: The trade figures <PRED> turn out well , and all those recently unloaded bonds spurt in price .
Target-1: (# The trade figures A1) (# turn out V) (# well A2) , and all those recently unloaded bonds spurt in price .

Source-2: The trade figures turn out well , and all those recently <PRED> unloaded bonds spurt in price .
Target-2: The trade figures turn out well , and all those (# recently AM-TMP) (# unloaded V) (# bonds A1) spurt in price .

Source-3: The trade figures turn out well , and all those recently unloaded bonds <PRED> spurt in price .
Target-3: The trade figures turn out well , and (# all those recently unloaded bonds A1) (# spurt V) (# in price AM-ADV) .

Table 5.1 A single sentence with three labeled predicates is converted into three different
source-target pairs. The symbol <PRED> in each source marks the predicate for which the
model is expected to generate a correct predicate-argument structure.

token. This is a big aid for the monolingual SRL task since it helps the model converge faster
by learning to copy the source words into the target sentence and to generate the appropriate
labels interleaved in the target.

5.1.1 Sequence Linearization

At the start of the process, we convert each of the SRL structures of every sentence into a
linearized sequence that can be processed by the Enc-Dec architecture as a target sequence
corresponding to the source sentence in plain text. To ease the linearization process, we
restrict role labeling to a single predicate per sentence. If a sentence has more than one
predicate, we create a separate copy for each predicate as in Collobert et al. (2011); Zhou
and Xu (2015) and most subsequent work. In addition, for each sentence copy, the predicate
whose roles are to be labeled is preceded by a special token <PRED> which marks the
position of the predicate under consideration (see Table 5.1). This helps the decoder focus
on generating the argument labels that related only to that specific predicate. Therefore, if a
sentence has np predicates we process the sentence np times, each one with its corresponding
predicate-argument structure. Because this process is entirely reversible, we can convert the
system outputs back to the original format and then compute the results using the official
CoNLL-05 Shared Task evaluation script.

5.1.2 Vocabulary

We assume a unique vocabulary that is shared by the encoder and decoder. The vocabulary
comprises theN most frequent words occurring during training1, the out-of-vocabulary token,
and the special symbol used to mark the position of the predicate, thus V = {v1, ..., vN} ∪
{UNK,< PRED >}. In addition, we employ a set L = {l1, ..., lM} with all the possible
labeled brackets and a set X = {x1..., xS}, a per-instance set containing the S words from

1This is determined separately for each of the different training datasets.
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the current source sequence being processed by the model. Thus, our total vocabulary is
defined for each instance as V ∪ L ∪ X .

The label set L contains one common opening bracket (# for all argument types to
indicate the beginning of an argument span, and several label-specific closing brackets, such
as V) which indicates the span comprises the main predicate or A1), which indicates in this
case that the span for argument A1 is ending, and so forth for the rest of the role labels
available in each dataset.

5.2 Monolingual Encoder-Decoder for SRL

5.2.1 Encoder

We use a two-layer Bi-LSTM encoder that outputs a series of hidden states hj =
[−→
hj ;
←−
hj

]
where each hj contains information about the context surrounding the word xj . We refer to
the complete matrix of encoder hidden states as M, since it acts as a memory that the decoder
can use to attend or copy words directly from the source.

5.2.2 Attention

We use the global dot product attention mechanism from Luong et al. (2015) to compute the
context vector ci as:

ci =
∑Tx

j=1 αijhj ; αij =
exp(ei,j)∑Tx

k=1 exp(ei,k)
(5.1)

where ei,j is the dot product function between decoder state si−1 and each encoder hidden
state hj . The decoder uses this mechanism as a soft-matching support that learns during
training which source words are the most relevant when generating each target token.

5.2.3 Decoder

Our decoder is a single-layer recurrent unidirectional LSTM with copying mechanism (Gu
et al., 2016) that emits an output token yt from a learned distribution over the vocabulary at
each time step t given its state st, the previous output token yt−1, the attention context vector
ct, and the memory M. To get this distribution it is necessary to compute two separate modes:
one for generating and one for copying.

To obtain the probability of generating yt we use the context vector produced by the
attention to learn a score ψg for each possible token vi of being the next generated token. We
define ψg as:

ψg(yt = vi) = Wo[st; ct], viϵV ∪ L (5.2)
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Fig. 5.1 Our sequence-to-sequence model for SRL. A score for copying and a score for
generating tokens is computed at each time step and a joint softmax determines the probability
of the next token over the extended vocabulary of words V , labels L and current instance
words X .

whereWoϵRN×2ds is a learnable parameter and st, ct are the current decoder state and context
vector respectively. This means that the model computes a generation score for both words
and labels, based on what it is attending on at the current step.

For the probability of copying yt we compute the score ψc of copying a token directly
from the source as:

ψc(yt = xj) = σ(hTjWc)st, xjϵX (5.3)

where WcϵRdh×ds is a learnable parameter, hj is the encoder hidden state representing xj ,
st is the current decoder state, and σ is a non-linear transformation; we used tanh for our
experiments.

Having access to these two scoring methods, the decoder has two competing modes: the
generation mode, used to generate the most probable subsequent token based on attention;
and the copying, used to choose the next token directly from the encoder memory M, which
holds both positional and content information of the source. A final mixed distribution is
calculated by adding the probability of generating yt and the probability of copying yt:

p(yt|st, yt−1, ct,M) = p(yt,g|st, yt−1, ct) + p(yt, c|st, yt−1,M) (5.4)

We use a softmax layer to convert the two scores into a joint distribution that represents
the mixed likelihood of generating and copying yt. Again following Gu et al. (2016), we
define this as:
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p(yt,g|·) =

{
1
Z
eψg(yt) ytϵV ∪ L
0 otherwise

p(yt, c|·) =

{
1
Z

∑
j:xj=yt

eψc(xj) ytϵX
0 otherwise

(5.5)

where Z is the normalization term shared by the two modes, Z =
∑

vϵV e
ψg(v) +

∑
xϵX e

ψc(x).
Since a single softmax is applied over the copying and generating modes, the network learns
by itself when it is proper to copy a word from the source and when it needs to generate a
label.

5.3 Experimental Setup

5.3.1 Training

Since we process as many copies of the sentence as there are predicates, the final amount
of sequence pairs available for training is approximately 94 thousand for CoNLL-05 and
185 thousand for CoNLL-12 training sets. We keep linearized sequences up to 100 tokens
long and lowercase all tokens. Because of this limit, we omit 30 (CoNLL-05) and 900
(CoNLL-12) sequences from training. Additionally, we initialize the model with pre-trained
100-dimensional GloVe embeddings (Pennington et al., 2014), which are updated during
training.2 All the tokens that are not covered by GloVe or that appear less frequently than a
given threshold3 in the training dataset are mapped to the UNK embedding. Our vocabulary
size is set to |V| ≈ 20K words for CoNLL-05 and |V| ≈ 18K words for CoNLL-12.

During training, the objective is to minimize the negative log-likelihood of the target
token yt for each time-step for both generate mode (given previous generated tokens) and
copy mode (given source sequence X). We calculate the loss for the whole sequence as:

loss = − 1

Ty

Ty∑
t=0

logP (yt|y<t, X) (5.6)

We use the Adam optimizer (Kingma and Ba, 2014), a learning rate lr = 0.001 and
gradient clipping at 5.0. Both encoder and decoder have hidden layers of 512 LSTMs. We

2We experimented with word2vec word embeddings (Mikolov et al., 2013a) but found GloVe6B (trained
on Wikipedia2014+Gigaword5) embeddings to perform better. Available at https://nlp.stanford.edu/
projects/glove/

3We used a threshold of 10 for CoNLL-05 and 15 for CoNLL-12.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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CoNLL-05 CoNLL-12
Dev WSJ Brown Dev Test

Seq2seq ( attention-only)

same length 29.19 29.98 32.24 - -
brackets 95.25 94.93 94.24 - -

Seq2seq (w/ Attention & Copying)

same length 96.71 97.15 97.24 97.46 96.07
brackets 99.91 99.82 99.88 99.97 99.93

Table 5.2 Quality of reproducing words and SRL brackets with seq2seq: Attention-only
vs. Attention & Copying, on CoNLL-05 and CoNLL-12 datasets: percentage of correctly
reproduced sentence length and percentage of balanced brackets.

use dropout (Srivastava et al., 2014) of 0.4 and train for 4 epochs with batch size of 6. The
fast convergence of the model is due to the copying mechanism rapidly adapting to the
fact that source and target contain always the same words, and that the decoder is basically
learning to generate the label-tokens interspersed among the content words.

5.4 Monolingual English Results and Error Analysis

5.4.1 Effect of Copying Mechanism

To assess the effect of the copying mechanism on our outputs, we train a model using
attention only, and compare performance with a model that uses both attention and a copying
mechanism. Notably, the attention-only model learns to properly generate balanced brackets
without further constraints, meaning that every opening bracket has a corresponding closing
bracket within the sequence. This suggests that tasks using a similar notation as ours, or
different SRL formalisms, could be easily extended to use a Enc-Dec architecture in a similar
fashion as ours. However, due to the decoder’s generative nature, many target sequences
produce repetitions or diverge from the source in both length and token sequences. For
example:

(6) a. Source: Some say november.
Target: (# some A0) (# say V) ( november A1) .
Sys Out: (# some A0) (# say V) ( say hi A1) .

b. Source: Now, the network has opened a news bureau in the hungarian capital.
Target: (# now AM-TMP) , (# the network A0) has (# opened V) (# a news bureau
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A1) (# in the hungarian capital AM-LOC) .
Sys Out: (# now AM-TMP) , (# the network A0) has (# opened V) (# a news bureau
in the soviet capital A1) .

This behavior is expected, since the system has to learn to generate not only the labels at
the correct time-step but also to re-generate the complete sentence accurately, and part of the
model’s generalization includes lexical divergences. While this is a disadvantage compared
to the sequence labeling models where the words are already given, it also shows a potential
use of Enc-Dec to generate labeled sentence variations if intended to be used in this manner.

By adding the copying mechanism, the model avoids such unwanted divergences and
successfully regenerates the source sentence in the majority (up to 99%) of cases, as shown
in Table 5.2. Such behavior also enables us to measure the performance of the model as
an argument role classifier against the gold standard, because we are forcing to reproduce
exactly the same lexical tokens and a one-to-one word mapping can be assumed. Thus, we
can benchmark its labeling performance against previous neural architectures built to solve
the SRL task.

5.4.2 Semantic Role Labeling Results

Table 5.3 shows the overall labeling performance of our copying-enhanced seq2seq model in
comparison to previous neural sequence labeling architectures. For sequences that do not
fully reproduce the input, we cannot compute appropriate scores against the gold standard.
We compute two alternative scores for these cases: oracle-min, by setting the score for
these sentences to 0.0 F1, and oracle-max, by setting their results to the scores we would
obtain with perfect (= gold) labels. With these scores, we can better estimate the loss we are
experiencing by non-perfectly reproduced sequences (see Table 5.2.)

As seen in Table 5.3, our model achieves an F1 score of 76.05 on the CoNLL-05
development set, and 73.4 on CoNLL-12 using min-oracle (min) evaluation, and 77.29
and 75.05 with max-oracle (max) evaluation, respectively. While these scores are still
low compared to the latest neural SRL architectures, they are above the relatively simple
model of Collobert et al. (2011). Note also that in contrast to the stronger models of
FitzGerald et al. (2015); Zhou and Xu (2015) and He et al. (2017), our architecture is very
lean (only 2-layer encoder and a single layer decoder) and does not employ explicit structured
prediction constraints (e.g. Conditional Random Field or A* decoding), to impose on the
label assignment. Our simplified architecture allows us conclude that an Enc-Dec such as the
one used for MT can be straightforwardly applied without further SRL specific additions.
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CoNLL-05 CoNLL-12
dev test WSJ Brown dev test

Collobert 72.29 74.15 - - - -
FitzGerald 78.3 - 79.4 71.2 79.2 79.6
Zhou & Xu 79.55 81.27 82.84 69.41 81.07 81.27
He 81.6 81.6 83.1 72.1 81.5 81.7
Ours (min) 76.05 76.7 78.13 66.28 73.4 73.61
Ours (max) 77.29 77.87 79.23 68.39 75.05 75.43

Table 5.3 F1 measure for argument role labeling of our seq2seq model w/ Attention &
Copying on CoNLL-05 and CoNLL-12 dev and test sets, compared to Collobert w/o parser,
FitzGerald single model, Zhou & Xu, and He single model .

5.4.3 Error Analysis

We analyze the output of the proposed model for a deeper investigation of the kind of errors
that an unconstrained seq2seq model makes when performing SRL. The analysis is performed
specifically on the CoNLL-05 development set.

Argument Spans. The model needs to generate labeled brackets at the appropriate
time-step, that is, the prediction of correct spans for arguments. To evaluate performance of
this function, we measure how much overlap exists between the generated spans and the gold
ones. This is equivalent to computing unlabeled argument assignment. We found that 77.5%
of the spans match the gold spans completely, 21.2% of spans are partially overlapping with
gold spans, and only 1.2% of the spans do not overlap at all with gold.

Argument Labels. Recall that, even with the copying mechanism, our model is labeling
the sentences as in a translation task. Every generated target token is conditioned on the
source and the past. It learns to use information from relevant words in the source sequence,
aligning the labels to the argument words via learned attention weights as it is shown in
Figure 5.2. This means we can examine what the model attends to when generating the
labeled bracket.

The confusion matrix in Figure 5.3 shows predicted vs. gold labels for all correctly
assigned argument spans (i.e., the spans that match the gold boundaries). We observe
that the model does very well for A0 and A1 gold roles, and that it produces only few
mis-classifications for A2. However, it frequently predicts core argument roles A0–A3 for
non-argument roles, and also tends to mix predictions among non-core arguments. Since
A0 and A1 roles are most frequent in the data, this suggests that the seq2seq model would
benefit from more training data, particularly for less frequent roles, to better differentiate
them. Notably, this kind of error is more prominent for spans that start with prepositions.
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Fig. 5.2 Example of the alignments
learned by the attention mechanism. Fig. 5.3 Confusion matrix showing per-

centage of predicted labels compared to
the gold labels on the CoNLL-05 develop-
ment set.

Fig. 5.4 Percentage of sentences with
0,1,2 or more missing (blue) or excess
(orange) arguments (seq2seq w/Copying,
CoNLL-05, dev set).

Fig. 5.5 Performance of the model based
on the number of tokens that the sequence
has.



76 Encoder-Decoder Architecture for SRL

Fig. 5.6 F1 score of arguments in buckets
of increasing distances from their pred-
icate, with distance normalized by sen-
tence length (CoNLL-05, dev). We com-
pare our model with He et al. (2017).

Fig. 5.7 Error ratio of arguments in
different regions of the sequences
(CoNLL-05, dev).

Role co-occurrence and role set constraints. Despite the absence of more refined
decoding constraints, our model avoids generating duplicated argument labels in most of
the sequences. We find duplicated argument labels in less than 1% of the sequences. Figure
5.4 shows that for the majority (about 70%) of sentences, there are no missing or excess
arguments; about 24/20% of sentences experience a single missing/excess role, and only
5/4% of the sentences experience a higher amount of missed/excess roles. Overall, missed
vs. excess arguments are balanced.

Sequence Length. The seq2seq model encodes both words and labeled brackets within
a single sequence. This increases the length of the sequences that need to be processed. It is
a well known problem that sequence length affects performance of recurrent neural models,
even with the use of attention. To measure the labeling performance difficulty experienced by
our model with increasing sequence length, we partition the system outputs in six different
bins containing groups of sentences of similar length (see Figure 5.5). As expected, the F1
score degrades proportionally to the length of the sequence, especially in sentences with
more than 30 tokens.

Distance to predicate. He et al. (2017) show that the number of labeling errors is
proportional to the surface distance between the argument and the predicate. In our model,
the distance between argument words and the predicate is even longer because of labeled
brackets embedded in the sequence. Figure 5.6 displays the F1 score for different token
distances between predicate and the respective argument. We see that the seq2seq model
follows the same trend as the sequence labeling model, despite the fact that our model has
access to the hidden states from the encoded input sentence; however, the real distance
between predicate and argument in the decoder is also bigger.
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Distance from sentence beginning. With each token that the model generates in decod-
ing, the distance to the end position of the encoded sentence representation grows. While
intuitively we would expect the model performance to degrade with larger distance to the
input, it is also true that the model could be more prone to making mistakes at the beginning
of the sequence, when the decoder has not yet generated enough context. To investigate
this, we traced the ratio of errors that occur in several ranges of the sequence. We can see
in Figure 5.7 that the first intuition was correct, the distance to the encoded representation
is proportional to the mistakes that the model makes. We compare the error ratio to He
et al. (2017) and show that the seq2seq system follows a similar trend but, understandably,
degrades faster with sequence length.





Chapter 6

Multilingual and Cross-lingual Models
for Semantic Role Labeling

Having established a stable formulation of SRL as a seq2seq task and achieved promising
results on English monolingual datasets, we propose an enhancement and generalization of
the Enc-Dec architecture, in order to leverage SRL data for multiple languages simultaneously.
In this chapter, we detail the additions made to the model to successfully apply it for the target
lower-resource languages. We describe experiments using English, German, and French
data, and show that training a single multilingual model on all the available data in different
languages yields a significant improvement in the lower-resource languages without overly
affecting labeling performance for English.

Moreover, we experiment in a cross-lingual setting where our model functions as a
generator of unseen labeled sentences by creating translations into lower-resource target
languages (German and French) with interleaved SRL labels; as opposed to (monolingual)
SRL labeling, where we were copying the source words and producing suitable labels (cf.
Chapter 5). The biggest advantage of training a seq2seq generator in this manner is that
we avoid the need for preexisting parallel corpora as well as explicit syntactic or semantic
annotations at inference time, which are resources needed for label projection techniques.
Next, we show that it is possible to augment the training set of a lower-resource language
with sentences generated by our cross-lingual model and obtain improved F1 scores on the
benchmark datasets, which leads us to conclude that the data generated by our model has
enough quality to be used as training data. We close the chapter with an assessment of the
achieved improvements and evaluate the strengths and weaknesses of our joint approach for
translating and labeling SRL data.
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Fig. 6.1 Distribution of predicates (left-hand side) and arguments (right-hand side) in the
three languages that we study here. We can see that non-English data has considerably less
propositions per sentence and fewer argument labels.

6.1 Multilingual Semantic Role Labeling

In Chapter 5 we tested our seq2seq model (monolingually) on two English span-based SRL
datasets (CoNLL-05 and CoNLL-12) and obtained results that, while having respectable per-
formance, unfortunately fell short from the SOTA. In this section, we present enhancements
to the Enc-Dec model which make it more robust, reaching SOTA scores for English, and
more importantly, allow it to be extensible to multilingual experiments.

6.1.1 Multilingual SRL Datasets

The ideal scenario for training and evaluating the enhanced multilingual model would be
to have data available in multiple languages that use the same definitions for semantic
roles. This is not the case in practice, because the bulk of role semantics theory was first
developed for English and interest in transferring such knowledge to other languages is a
recent phenomenon. Therefore, our model must prove to be robust enough to leverage the
cross-lingual divergences in existing annotations across languages. Importantly, we do not
aim to optimize for a language-specific SRL characterization, but rather use the higher-quality
predicate and role definitions available in English to improve performance in other languages.

As discussed in Section 2.1.3, the most widely used datasets for benchmarking SRL
monolingual models are the ones defined for the CoNLL-05 (Carreras and Màrquez, 2005),
and CoNLL-09 (Hajič et al., 2009) Shared Tasks, of which the latter, despite having aimed
for a common SRL strategy for different languages, the subsets for each language diverge
from one another in ways that can impact performance, even when using the same model
architecture for each language. These divergences include: absence of nominal predicates in
non-English languages, different number of sentences available, language-specific definition
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Dataset Language Train Test
# Sents w/ 1-Pred w/ 1-Pred

CoNLL-05 EN [Span] 75,187 94,497 5,476
CoNLL-09 EN [Head] 39,279 180,446 (92,908) 10,626
CoNLL-09 DE [Head] 36,020 39,138 2,044
v.d. Plas FR [Head] 20,012 40,827 2,036
One-to-One Multilang [Head] 95,311 172,873 -

Table 6.1 Train and Test Data for Monolingual Baseline Models. We show the original
number of sentences and the size of the "expanded" data with one copy per predicate.
The last row shows the concatenation of the available annotated dependency-based verbal
propositions in the three different languages, which we use to train the multilingual model.

of predicate senses, different amount of predicates per sentence and density of annotated
roles per sentence.

Figure 6.1 shows the discrepancies in the number of predicate and argument annotations
per sentence in the available training data for the four languages used in our experiments. The
fact that most sentences in ES, FR and DE have 2 or fewer predicates signifies a considerably
smaller number of propositions (training examples) available to the model. Additionally, the
overall lower density of arguments per sentence (especially for German) directly impacts the
number of labels seen by the model, which receives considerably more exposure to labeled
arguments in English sentences compared to the other languages.

For our non-English monolingual baselines, we train and test our enhanced Enc-Dec
model on the German (DE) dependency-based CoNLL-09 dataset, and the French (FR)
PropBank labeled data from van der Plas et al. (2011). We test the model on English as well,
using the CoNLL-09 dependency-based English (EN ) monolingual data for comparison
with German and French; and the English span-based CoNLL-05 data for comparison with
the monolingual English results presented in Chapter 5. We describe and compare the
specific training data used for each monolingual baseline in Table 6.1. Note that, for direct
comparison with the English SOTA we train the English monolingual model with verbal
and nominal predicates, and later for the multilingual experiments we only consider verbal
predicates.

For the one-to-one multilingual experimental setting, we use the same data as in the
monolingual baselines. Despite the divergences between the data sets, we expect the model
to benefit from exposure to a larger amount of labeled sentences (direct training example
augmentations), as well as a higher exposure to annotated arguments per sentence (for the
lower-resource languages). We believe these two factors can boost performance compared
to the monolingual baselines. Thus, the single multilingual model is trained with the con-



82 Multilingual and Cross-lingual Models for Semantic Role Labeling

catenation of the monolingual training datasets of the four language pairs: (EN,EN-SRL)1,
(DE,DE-SRL) and (FR,FR-SRL) that is listed in Table 6.1.

6.1.2 Multilingual Model

We propose some modifications to the Enc-Dec model described in Chapter 5. These
modifications aim to make a more data-robust model capable of generalizing and making
better use of multilingual data. In this setting we are not performing any language translation,
but rather utilize all of the training data available from different languages to obtain a stronger
training signal, with the aim of benefiting the languages with less labeled data available. This
is one-to-one multilingual SRL: if the model receives an input sentence in German, it will
produce the same German target sentence with labels (similar to the monolingual setting);
likewise, if it gets a sentence in French, it will produce a labeled French sentence, and so on.

Our approach of using a single universal Enc-Dec for multilingual data is based on
Johnson et al. (2017). In their case, because they have access to millions of parallel sentences
for MT, they do not apply any architecture modification2. In our case, given the fact that our
training data is some orders of magnitude smaller than theirs, we need to apply architecture
modifications that guide the model for effective multilingual learning, as well as SRL labeling
enhancement. We make the following modifications to our vanilla Enc-Dec:

Language Indicator Embeddings. We want the model to profit from the (partial)
intersection of role labels used across languages, yet at the same time there are subtle
differences in role labeling and how roles are linguistically marked in the different languages3.
Hence, we define N different special tokens, namely the language indicators (e.g., <EN>,
<FR>, <DE>), which represent each language with a randomly initialized vector that we
fine-tune during training. The model can use at each time-step these language vectors to
leverage language-specific properties when generating SRL annotations. Also, by using
these embeddings in the decoder, we can help it to stay consistent regarding the language it
generates.

Encoder. In our English-only experiments from the last Chapter, we used a 2-layer
Bi-LSTM as an encoder. We now adopt the 8-layer Deep Bi-LSTM Encoder with highway
connections from He et al. (2017) which has been shown to work well for SRL models.
Again, following He et al. (2017), we define the encoder input vector xi as the concatenation

1Since only English has nominal predicate annotations, for the multilingual model we omit them and only
keep the verbal predicate argument-structures (which comprise half of the annotated predicates, namely 92,908
propositions).

2They only use a translation token, which is directly added to each training example. We will follow a
similar approach in our cross-lingual setting.

3e.g. the role A2 (Beneficiary) can be PP in EN and FR, but dative NP in DE (DativeNP).
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Fig. 6.2 We modify the Enc-Dec architecture from Chapter 5 in order to deal with multilingual
and cross-lingual SRL datasets.

of a word embedding wi and a binary predicate-feature embedding pi indicating at each
time-step whether the current word is a predicate or not. The encoder still outputs a series of
hidden states h1, ..., hTx representing each token.

Thus, in all multilingual settings, at each time step t we feed the Encoder with a concate-
nation of the previous encoder state ht−1, the word embedding wt of the current token, the
embedded predicate indicator pt and the language indicator embedding lt. The Encoder state
update is defined as:

ht = LSTM([ht−1;wt; pt; lt]) (6.1)

Decoder. Likewise, on the Decoder side we concatenate the representations for both
word tokens and label tokens with the language indicator vector to produce tokens in a
specific language. For SRL-labeled output sentences the indicator token for the language
embedding is <DE-SRL>, <FR-SRL>, ... depending on the target language. Formally, at
each time step the decoder updates its state by taking into account the previous decoder
state st−1, the previous generated token yt−1, the language indicator embedding lt−1 and the
attention context vector ct:

st = LSTM([st−1; yt−1; lt−1; ct]) (6.2)

During training we use teacher forcing, feeding the gold target token instead of the
previously generated token. We use a common vocabulary for the three languages and keep
all tokens that occur more than 5 times in the combined dataset. We train the model with
batches containing instances randomly chosen from the individual languages (this means
that each batch will contain examples from different language pairs). The training objective
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Parameter Size
Encoder Embedding Size [GloVe, BERT, ELMo] [300, 768, 1024]
Vocabulary Size Freq > 5
Encoder Layers 8
Decoder Layers 1
Encoder Hidden 300
Decoder Hidden 500
Attention 1024
Language Embedding Size 200
Predicate Indicator 100
Epochs 30
Early Stopping Patience 5 epochs
Optimizer Adam
Learning Rate 0.0001
Batch Size [GloVe, Other] [32, 12]
Gradient Clipping 5
Dropout 0.1

Table 6.2 Hyperparameter configuration used for all the settings tested here: monolingual,
multilingual and cross-lingual.

is the same as its vanilla counterpart, that is, minimizing the negative log likelihood of the
generated target token by the decoder at each time step, as described in Equation 5.6.

To summarize, our vanilla Enc-Dec model tested in Chapter 5 here is enhanced with a
deeper encoder (eight layers instead of two), predicate indicator embeddings for the Encoder
and language-specific embeddings for both Encoder and Decoder. Note that all this additions
increase the number of parameters of the model; we can afford to do this because by using
all training data from the different languages at the same time, we have more data points to
tune the network parameters and expect a better result for each language.

6.2 Multilingual Experiments and Results

6.2.1 Hyper-parameters

We evaluate the proposed model using monolingual datasets (SRL labeling) and a combina-
tion of datasets in several languages (multilingual SRL labeling). To narrow down the effects
of data in the different settings, we use the same hyper-parameter configurations for both
experiments. All versions were trained up to 30 epochs using Adam optimizer with a learning
rate of 1e-4. We use early stopping (with patience of 5 epochs) based on the BLEU score
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Type Model Word CoNLL-05 CoNLL-09
Repres. WSJ OOD WSJ OOD

Sp
an

SR
L

He 2017 GloVe 84.6 73.6 - -
He, 2018 ELMo 83.9 73.7 - -
Tan, 2018 GloVe 84.8 74.1 - -
Strubell 18 [LISA] GloVe 84.6 74.5 - -
Strubell 18 [LISA*] ELMo 86.5 78 - -
Ouchi 2018 ELMo 88.5 79.6 - -
Ours [Vanilla] GloVe 79.2 68.4 - -

D
ep

SR
L Roth 2016 DPE* - - 87.7 76.1

Marcheggiani 2017 Dyer* - - 87.7 77.7
Cai et al 2018 GloVe - - 89.6 79

D
ep

an
d

Sp
an

SR
L FitzGerald 2015 GloVe 80.3 72.2 87.8 75.5

Li 2019 ELMo 87.7 - 90.4 -
Ours [Mono] GloVe 80.4 70.5 85.5 75.7
Ours [Mono] ELMo 88.3 80.9 90.8 84.1

Table 6.3 CoNLL-09 and CoNLL-05 Test Sets for English. Our model with ELMo shows
SOTA performance on both types of SRL. LISA* only reports ELMo with predicted predi-
cates; DPE*: dependency path embeddings; Dyer*: Dyer et al. 2015.

of the development set. We represent both words and labels as tokens using N-dimensional
vectors. We use pre-trained word embeddings for the 3 languages, which we fine-tune during
training4. The dimension of embeddings change depending on the pre-trained representations
used: 300 for GloVe, 768 for BERT and 1024 for ELMo. All models use the same Encoder
(8-layer interlaced BiLSTM – 4 forward and 4 reversed layers) of 300-dimensional hidden
size and a single-layer decoder with hidden size of 500. Our predicate feature embedding and
language embedding are 100 and 200 dimensions respectively. Due to memory constraints,
the batch size is smaller (12 instead of 32) for the models that use contextual representations.
The details are fully described in Table 6.2.

6.2.2 Monolingual Baselines

For the monolingual experiment, we benchmark the proposed model against a wide variety
of English EN models (both span- and dependency-based) that perform the role classification
task with gold predicates, as well as against the vanilla version of the proposed system (cf.
Chapter 5). The results of this comparison are given in Table 6.3. We find that with the
modifications described in this chapter, our proposed seq2seq SRL model improves the
existent SOTA for English, obtaining better F1 score for CoNLL-05 out-of-domain test data

4Except for the BERT embeddings, which showed better performance when left frozen.



86 Multilingual and Cross-lingual Models for Semantic Role Labeling

Model EN-Test DE-Test FR-Test
SOTA models* 90.4 80.1 73
Ours-EN [Mono + GloVe] 85.5 - -
Ours-DE [Mono + GloVe] - 61.9 -
Ours-FR [Mono + GloVe] - - 70.3
Ours-ES [Mono + GloVe] - - -
Mulcaire 2018 [Multi + GloVe] 86.5 69.9 -
Ours [Multi + GloVe] 87 68.2 70.5
Ours [Multi + ELMo] 91.1 75.7 70.7
Ours [Multi + BERT] 89.7 77.2 72.4

Table 6.4 F1 scores for role labeling on dependency-based SRL data. EN and DE Tests:
CoNLL-09; FR-Test: van der Plas et al. (2011). State of the art (SOTA) models∗ are: Cai
et al. (2018) [GloVe] for EN, Roth and Lapata (2016) [Dependency-path Embeddings] for
DE, van der Plas et al. (2014) [Non-neural] for FR.

and for both English CoNLL-09 test sets. Importantly, when using GloVe word embeddings,
the model is competitive, but still falls several F1 points below SOTA in most settings; on the
other hand, when using ELMo embeddings, we achieve SOTA results for both span-based
and dependency-based SRL with a single Enc-Dec architecture.

We then compare our system performance across languages for the other two lower-
resource languages: DE, and FR, which only use the respective language dataset as training.
The performance for EN is compared to performance for DE and FR settings in the top half
of Table 6.4 as well as the respective SOTA results for each language. Results show that, as
expected, EN setting performance is much higher than the other languages, given its higher
density of annotations. In our case, the EN model performs at least 10 F1 points higher than
the other monolingual models.

6.2.3 Error Analysis

We directly compare our enhanced seq2seq model with the one described in Chapter 5. We
analyze again the English CoNLL-05 development and test datasets, as in Section 5.4.3,
and perform a similar error analysis. We evaluate argument spans, argument labels on the
whole dataset and related to their distance to the main predicate on the development set and
overall performance bucketed by sequence length on the test set. We did it this way for fully
comparison with both (He et al., 2017) and (Daza and Frank, 2018) reported experiments.

Argument Spans. We first measure the ability of the model to generate the labeled
tokens that wrap the appropriate argument spans in the sentence (regardless of the label).
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Fig. 6.3 Confusion matrix showing per-
centage of predicted labels (rows) com-
pared to the gold labels (columns) on the
CoNLL-05 development set.

Fig. 6.4 Performance of the model, based
on the distance (no. of tokens that sepa-
rate the argument and the predicate).

This is analogous to measuring argument span identification in classic SRL systems. We
found that 84% of the generated the spans match completely with the gold ones, compared
to the 77.5% reported earlier (Chapter 5) and only 0.9% do not overlap at all, which is an
improvement from the 1.2% reported in the previous model (as measured in the development
set).

Argument Labels. Next, we take the subset of correctly predicted spans and analyze
how many of their argument labels are correct. Figure 6.3 shows this in a confusion matrix
comparable to Figure 5.3. In the current matrix, we also visualize the core labels and the most
common modifier argument labels of the dataset. We see small but steady improvements
for most labels when compared to the previous confusion matrix. For example, the model
presented here correctly predicts A0 and A1 95% of the time (the same score compared with
the model from Chapter 5); however, for other case like A2 we see 2% improvement, for
AM-DIR we see a +23% chance, for AM-PNC we see 9% improvement, etc. (as measured
in the development set).

Distance to predicate. In Figure 5.6 we showed the model performance for arguments
according to their distance to the predicate. Here in Figure 6.4 we show the same graph
including the SOTA model back then (He_Dev in blue), the model from Chapter 5 (S2S_-
Chpt5 in red) and the current model (S2S_Chpt5 in yellow). We still see a similar trend (in
the development set) of performance drop across the three models; however, the deeper new
model is consistently better for all distances to the predicate. This confirms the argument for
robustness given by our deeper encoder and the predicate embeddings which the previous
model lacked.
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Fig. 6.5 Error ratio of arguments in differ-
ent regions of the sequences (CoNLL05
development set.)

Fig. 6.6 Performance of the model (test
set) based on the number of tokens that
the sequence has.

Distance from sentence beginning. We also show the error rate of arguments present in
different regions of the sentence in the development set (Firgure 6.5). We include the values
showed in Figure 5.4 (the SOTA back then is He_dev in green and the previous model is
Chpt_5_dev in blue) and add the datapoints from the current model, in purple. Again, the
error rate is consistently lower in the enhanced seq2seq model, and this time even better than
(He et al., 2017). Notably, the first seq2seq model did not outperformed (He et al., 2017) at
any stage, however the enhancements done to the present model boosted the performance
above such model.

Sequence Length. Finally, we analyze on the test set (both in-domain and out-of-domain)
the robustness of the models with different lengths of sequences. Once more, we see that the
deeper encoder and predicate embeddings of the current model provide more robustness on
the source sentence representation and notably improves performance in the arguments that
are on the last part of the sequences. This is show in Figure 6.6 we show the performance of
both models: the lean seq2seq (with triangle points) vs the deeper model from this chapter
(with circle points). For sequences longer than 30 tokens the previous model significantly
dropped its performance (especially on the out-of-domain data), whereas the new version
plateaus in performance even with the longer sequences.

6.2.4 Multilingual Experiment and Results

For the multilingual experiment, we train a single multilingual model on a concatenation
of the training data for the three languages EN, DE, and FR; this architecture is identical
to the one we used on the monolingual experiments. We use a common vocabulary for
the three languages and keep all tokens that occur more than 5 times in the combined
data set. We train the model with batches containing instances randomly chosen from the
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individual languages. This means that each batch might contain examples from different
language pairs; our hypothesis is that this should leverage the training signal to optimize the
sequence generation for all the languages at the same time. Note that the multilingual data
has the CoNLL-09 style labeling, thus is not comparable with the span-based experiments
we showed earlier. Nevertheless we still use the same robust architecture, and can measure
how much does the combination of multilingual training data affect the results by comparing
the monolingual baselines with their multilingual counterparts. Table 6.4 compares the
one-to-one multilingual systems to each other in the bottom half of the table, as well as the
polyglot SRL system of Mulcaire et al. (2018), which also leverages data from multiple
languages during training; besides, improvements can be directly seen compared to the
monolingual systems in the upper half of the same table.

Multilingual training yields improvement on each of the four languages studied here,
when compared to the monolingual baselines. The largest benefit occurs for German, where
we observe more than 6 points (F1) of improvement. In comparison to a concurrent work to
ours, the polyglot system of Mulcaire et al. (2018), we obtain better results for English using
GloVe and for both English and German when using ELMo embeddings. Finally, we observe
that adding contextual representations to our model results in additional improvements across
the board. Unfortunately, the important gains shown for lower-resource languages is not
enough to improve the current SOTA. However, it is worth noticing that the German SOTA
is a hybrid model that uses neural dependency path embeddings as features for a classic
SRL system (Toutanova et al., 2008); whereas the French SOTA is based on corpus-specific
maximum likelihood estimates (van der Plas et al., 2014). In contrast, our model is a
straight-forward architecture that provides a flexible solution that is able to combine data
for different languages as well as pre-trained word embeddings, which has the potential for
better generalization.

6.3 Cross-lingual Semantic Role Labeling

After validating the robustness of our architecture when handling different languages simul-
taneously, we can now perform cross-lingual SRL. We consider that the positive results on
monolingual and multilingual settings were good steps towards confirming that the Enc-Dec
is suitable for the SRL task and more importantly, that it is possible to handle data from
multiple languages at the same time without loosing labeling effectiveness in the individual
language test sets. After this has been established, we can focus on the cross-lingual eval-
uation which by nature is more difficult. This happens because the cross-lingual training
of an Enc-Dec involves several points of uncertainty, especially for evaluation purposes:
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Cross-lingual Setting # Sentences w/ 1-Pred
EN - DE-SRL (Akbik, 2015) 41,993 63,397
EN - FR-SRL (Akbik, 2015) 20,012 40,827
EN - FR (UN) 100,000 -
EN - DE (Europarl) 100,000 -

Table 6.5 Data used for Cross-lingual Models: From the SRL parallel data available we take
90% for training and use the rest as a Dev set for our experiments. We add the non-labeled
data (from UN and Europarl) during training to enforce translation knowledge.

Our cross-lingual labeling experiment is fundamentally different from the monolingual and
multilingual experiments because here we are not only labeling sentences; instead, once
the model is trained with a cross-lingual signal (e.g. with EN sources paired to their cor-
responding labeled German DE-SRL translated sentences). This is possible because of the
generative properties of the decoder, which opens the possibility to generate new labeled
sentences. This, however, also means that there is no control over the resulting target sen-
tences (a similar case occurs when training MT models, where the translation system aims to
approximate a translation, but there is no single correct translation). Thus, in this setting we
will evaluate what happens once we have access to a trained cross-lingual model, which we
can use to produce entirely novel labeled sentences and use them as means for labeled data
augmentation for lower-resource languages. In the following sections we explain where we
obtain the data to train such a model (Section 6.3.1), and then we show how the system is
trained (Section 6.3.2).

6.3.1 Cross-lingual SRL Datasets

While the datasets used for the multilingual experiment in Section 6.1.1 are available in
different languages, they are not parallel datasets, and therefore not suitable for our cross-
lingual experiments. For these experiments, we therefore use the dependency-based labeled
SRL corpus that was used as training data to generate the Universal Proposition Banks
Akbik et al. (2015)5. This data was requested to the authors, who created it via annotation
projection and active learning methods on parallel corpora from EN to DE, FR respectively.
Importantly, these sentences are already pre-filtered to ensure that the predicate sense of the
source predicate is preserved in the target sentence6.

5We do not use the Universal Proposition Banks because they are not parallel
6This is the main reason for choosing an available dataset as opposed to artificially creating parallel data.

It is important to have filtered parallel data, since we seek to avoid translation shifts in our training data, and
finding this correspondence between source and target sentences is not trivial
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Fig. 6.7 Distribution of predicates (left-hand side) and arguments (right-hand side) in the
available cross-lingual datasets. We include the distribution of the English CoNLL-09 data
as an ideal distribution, and observe that the available data has considerably less propositions
per sentence and fewer argument labels available.

Also, since the role labels were projected from automatically PropBank-parsed English
sentences, the same label set is used across all languages, including predicate senses. This
training data is a subset of sentences taken from underlying existing Machine Translation
(MT) parallel corpora: Europarl (Koehn et al., 2003) for EN-DE (about 63K labeled parallel
sentences), and UN (Ziemski et al., 2016) for EN-FR (about 40K labeled parallel sentences).
Since we only had access to the labeled sentences (target-side), we constructed our parallel
training pairs EN to FR-SRL and EN to DE-SRL by finding the original source English
counterparts in the full set of parallel sentences. Once we found the source sentences that
correspond to the labeled targets, we need to know what predicates are present in the source
sentence (to populate the predicate-indicator embeddings that the Encoder uses).

We used Flair (Akbik et al., 2018) to obtain predicted PropBank frames on the English
source sentences and then found the alignment to the (already) labeled predicate on the target
side by looking for the matching predicate sense; if no equal sense was found in target, the
proposition was dropped. Because the sense was predicted for the source, and it is also
labeled in the target, we treat this as a valid cross-lingual predicate-argument structure. By
following this method, we ended with 63,397 labeled training examples for (EN-DE-SRL)
and 40,827 for (EN-FR-SRL). We show in Figure 6.7 the density of our training corpus, and
compare it with the English CoNLL-09 corpus, which is our guide for a successful training
data set for neural network models. We observe that the amount of labels is also quite low
compared to English, however, by combining both datasets in a single model we expect to
still obtain good quality target labeled data.

Further, besides the parallel SRL-labeled data, we choose a subset of 100K parallel
(non-labeled) sentences for each language pair from the mentioned MT datasets (Europarl
and UN corpora) and use them as training examples to improve the translation quality of



92 Multilingual and Cross-lingual Models for Semantic Role Labeling

Fig. 6.8 For cross-lingual SRL, we utilize the same multilingual architecture as in Section
6.1 (Figure 6.2), but this time we train it using cross-lingual datasets.

the model. We use 90% for training and the remaining 10% as the development set. The
available cross-lingual data is described in Table 6.5.

6.3.2 Training Cross-lingual SRL

When performing cross-lingual SRL, the proposed model needs to accomplish two tasks: in
addition to generating appropriate SRL labels, it needs to properly translate sentences from
the source into the target language. We train a single SRL model on a concatenation of the
parallel datasets described in Section 6.3.1 which we synthesize in Table 6.5. Note that the
model is trained on four different language source-target pairs (each pair is a row in the table).
The inclusion of MT data is intended to reinforce the translation knowledge of the model and
improve the source to target alignment (via the attention mechanism), so that it can generate
fluent properly labeled target sentences. Because the model treats this additional data as a
separate language-pair, this does not directly impact the density of labels on the target side
for the labeled outputs. Following the same strategy as for multilingual training, we feed the
model with alternating batches of randomly chosen instances from the various language pairs
(each batch contain multiple language pairs). Note that in this training schema, the amount
of MT data that we can add is restricted by the amount of labeled multilingual data, since we
do not want the non-labeled language pairs to dominate too much and therefore affect the
labeling capabilities of the model.

Finally, we also deviate from the multilingual architecture by adding a translation token
to each training example. Following Johnson et al. (2017), this involves prefixing the source
sequence with a special token that indicates the expected language of the target sequence.
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For example, if the source is in EN and the target is a German sentence with SRL labels
(DE-SRL), the source sentence will be preceded by the special token <2DE-SRL>.

6.4 Cross-Lingual Experiment and Results

6.4.1 Evaluation Strategy

In this section, we evaluate the cross-lingual setting of our Enc-Dec model, which was trained
with the same hyper-parameters given in Section 6.2.1 and described in Table 6.2 in order
to preserve consistency through all experiments. We trained two versions of the model,
where the only difference is the pre-trained embedding layer: one uses GloVe embeddings
(Pennington et al., 2014) and the latter uses mBERT (Devlin et al., 2019).

Due to the generative capacity of the cross-lingual model, it can be used for augmentation
of labeled data for lower-resource languages. This poses an evaluation challenge: the decoder
may generate output in the target language, which are unseen, but whose predicate-argument
labels are valid and useful. Because the copying mechanism is not in place here to enforce
exact reproduction of the source words, as was the case in the monolingual and one-to-one
multilingual settings, there is the possibility that the generated sentences do not match the
gold reference. Since there is no gold standard to straight-forwardly evaluate the model
outputs with, we need an alternative method to judge the validity of the predicate-argument
structures of these unseen items.

This setting, where the output is intended to approximate target references as closely as
possible but will not necessarily be identical, resembles the setting in classical MT, language
generation, as well as label projection. Inspired by approaches used in this field, we develop
an evaluation strategy that assesses the correctness of SRL labels as well as the quality of
the translations and the usability of the generated data as training examples. We assess the
performance of our system in three evaluation settings: i) an automatic intrinsic evaluation
using BLEU score (Papineni et al., 2002) as a proxy for translation and expected argument
label quality, ii) an extrinsic evaluation using labeled sentences generated by our system to
augment the training set for a resource-poor language, iii) a small-scale human evaluation
where we evaluate the automatically assigned SRL labels against 226 sentences that were
manually judged and labeled by human annotators to give an estimation of the quality of the
generated data.
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German (DE) French (FR)
Model [Filter] Full Seq Word Label Full Seq Word Label
XL-GloVe [All] 18.86 17.17 25.52 28.99 17.36 32.76
XL-BERT [All] 27.22 27.36 29.59 33.59 22.48 37.17
XL-GloVe [≥ 10] 30.58 36.71 51.68 38.99 43.79 61.73
XL-BERT [≥ 10] 36.95 41.36 55.73 42.66 46.52 65.32

Table 6.6 Cross-lingual (XL) system results using BLEU score on individual languages from
the Dev set. We compute BLEU on labeled sequences (Full Seq), and separately for words
and only labels. We also show scores when applying a filter on Full Seq of BLEU ≥ 10.

6.4.2 Intrinsic Evaluation

BLEU Scores. In the absence of a gold standard against which to test our output, we make
use of BLEU scores (Papineni et al., 2002), a common metric in MT research (Sutskever et al.,
2014; Bahdanau et al., 2015; Firat et al., 2016a; Johnson et al., 2017) to automatically assess
the degree of closeness between outputs and reference instances. BLEU scores give only a
rough estimate of the quality of translations, which is why we do it as a first step to measure
the cross-lingual task. We perform this evaluation on the development set, since for our
inference step we do not know the expected target labels. We split the BLEU measurement
in three different sub-cases: i) translation quality and labeling quality as a whole, computing
BLEU for the full system output sequences against the target reference sequences, we call
this full labeled sequences (both word and label outputs), ii) we strip the labels from both
system output and target reference and compute its BLEU score (words only), and finally
iii) We keep only the generated labels and the reference labels and compute BLEU on them
(labels only).

For the GloVe version, we can see that the quality of predictions of words is similar for
both the German and French instances. Notably, both systems have great difficulty with
German than with French. We also observe that adding multilingual BERT is very helpful
for obtaining even more fluent and correct labeled outputs (according to BLEU) resulting in
ca. +9 points in German and +5 in French on the full sequences. This is very important given
that we have a small training set compared to classic NMT scenarios.

Output Filtering. The average BLEU score is not very informative about the individual
sentences that contain high-quality labeled sentences, which are the ones that ultimately can
be used as training data. Therefore, we also make use of the development set to search for a
BLEU threshold for which we manage to keep the best quality sentences while also keeping
enough quantity of examples, we call this the sentence quality threshold.
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We will use this threshold for filtering out the excessively noisy output instances while
retaining a large enough number of candidate novel training instances. Because the over-
arching goal is to improve SRL for lower-resource languages, we assess only the quality
of predictions in German and French. We experiment with discarding items with BLEU
scores below a certain threshold7 as a method of improving output quality. A threshold of
BLEU ≥ 10 was found to give the best trade-off between an increase in average BLEU
score (presumably reflecting higher sentence quality) and decrease in available predictions
(above the threshold). The lower part of Table 6.6 shows the scores when restricting the
evaluation to sentences with score ≥ 10. By keeping only the filtered subset of sentences
we achieve an improvement of approx. 10 BLEU points on average on the full sequences
(Full Seq), and almost double the score for labels only. This holds for both the GloVe and
BERT versions and for both languages; however, given that the BERT version of the model
gives significantly better outputs, for the next two evaluation setups, we will always use the
XL-BERT outputs to perform the closer dissection of the generated data. Moreover, we only
keep the filtered outputs with quality threshold ≥ 10. In the next section we explain how this
is used for an extrinsic evaluation setup.

Additionally, we also measure the improvement as measured by BERTScore (Zhang
et al., 2020): The unfiltered DE dataset obtains an average BERTScore of 67.63, whereas
the filtered version (BLEU higher than 10) goes up to 72.99 points; on the FR dataset, we
see an unfiltered score of 73.89 and the filtered version goes up to 76.22. We cannot use
these scores as a hard filter (like with BLEU), since the scores tend to be saturated on the
upper numbers (i.e. close to 1)8 and while it is useful to rank the similarity of sentences,
establishing a partition based on it would be too risky.

6.4.3 Extrinsic Evaluation

Threshold Application. We use our cross-lingual model with pre-trained mBERT embed-
dings as a label data generator by applying it on 100K EN sentences from Europarl and
100K UN corpora not seen during training9 and let the model predict DE-SRL and FR-SRL as
target languages respectively. This results in previously unseen German and French labeled
sentences. Since there is no guarantee that the generated sentences should preserve the source
predicate meaning, we first filter all outputs by keeping only those that come close to the
original sentence meaning. We approximate this by back-translating the generated outputs
and applying the quality filter (BLEU ≥ 10) on them. We perform the back-translation by

7Concretely we experimented with thresholds of 5, 10, 20 and 30
8We give more details on the behavior of BERTScore on the next chapter where we use it more actively
9Note that these are taken from a different subset than the parallel sentences used during training.
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Fig. 6.9 We apply a back-translation filter to the model outputs to exclude the translations
whose meaning is not as close to the source, increasing the probability of preserving the
source meaning on the target side.
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Model Added Type Added Size Total Size F1 Test
DE [Mono] - - 39K 61.90
DE [Mono] LabelProj 44K 83K 62.37
DE [Mono] OurGen 10K 49K 62.40
DE [Mono] OurGen 20K 59K 62.46
DE [Mono] OurGen 30K 69K 62.81
DE [Mono] OurGen 44K 83K 63.57
FR [Mono] - - 73K 70.30
FR [Mono] LabelProj 32K 105K 70.45
FR [Mono] OurGen 10K 83K 70.33
FR [Mono] OurGen 32K 93K 70.52
FR [Mono] OurGen All 105K 70.39

Table 6.7 We retrain the monolingual systems DE, FR using the original training sets (no
added data) shown in Table 6.1 and compare it to performance of models trained on increasing
amounts of generated data added to the original data. We also compare to the stronger baseline
LabelProj where we add data created by label projection (Akbik et al., 2015)

(stripping the labels and keeping only the words) using a pre-trained DE-EN and FR-EN
model from OpenNMT Klein et al. (2017). See Figure 6.9 for a graphic explanation of this
process.

The logic behind this is that if the back-translation is close enough to the source, the
generated target sentence preserves a fair amount of the original sentence meaning10. By
following this strategy, after applying the quality filter, we end up with a parallel dataset of
44K generated sentences for (EN, DE-SRL) and 32K for (EN, FR-SRL).

Data Augmentation. We use the filtered generated data to augment the original training
sets of our two resource-poor languages, namely DE and FR (we augment the CoNLL-09
train set for German and the training set of van der Plas et al. (2011) for French). We train
our monolingual Enc-Dec model with the augmented data in steps of 10K, until we have
added the complete generated data set and measure the increase in F1 score when training
different models with incrementally augmented data. Additionally, we show a comparison of
the improvement achieved when adding the same amount of sentences produced by ZAP11, a
SOTA label projection framework (Akbik and Vollgraf, 2018), to have a better measurement
of the gains obtained by our method.

10BLEU score is used as a naive approach to avoid excessively noisy data but we could also develop, for
example, a semantic similarity metric to also keep sentences that are close enough to the original predicate
sense meaning.

11https://github.com/zalandoresearch/zap
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As it can be observed in Table 6.7, adding our German data shows improvement in
F1 score in the German dataset, despite the fact that the CoNLL-09 label scheme contains
arguments not seen in our training data (namely A5-A9). We still observe improvement
because the frequency of the major roles (A0 and A1) is considerably higher than that of the
unseen minority arguments. In the case of French, the improvement is not as significant, but
the effect of adding projected data follows a similar trend. More importantly, our training
data results in better F1 on the test set when compared to the SOTA label projection software.

6.4.4 Human Evaluation

To provide an in-depth quality assessment of the generated sentences, we also conduct
human evaluation. We create a small-scale gold standard consisting of 226 sentences that is
given to two annotators. The exact guidelines that the annotators followed can be found in
Appendix A. To select a representative sample from our newly generated labeled sentences,12

we analyze the distribution of labels in the data and apply stratified sampling to cover as
many predicates as possible and as many role label variants as possible. We judge these
sentences on the quality of the generated language and annotate them with PropBank roles.
Because manual annotation is costly and German proved to be more challenging according
to the BLEU-score based comparison (Table 6.6) we conduct this manual evaluation only on
the German data.

Translation Quality. We ask two native speaker annotators to score each output sentence
(they see only the words, not the labels) on a scale of 1-5 for Quality (where 1: ‘is completely
ungrammatical’; 5: ‘is perfectly grammatical’) and for Naturalness (where 1: ‘The sentence
is not what a native speaker would write’; 5: ‘The sentence could have been written by a
native speaker’). We obtain a high average score of 4.4 for Quality and 4.2 for Naturalness.

SRL Performance. To avoid the need for trained PropBank annotators, we use an an-
notation method based on the question-based role annotation method of He et al. (2015),
Annotation with this technique entails using question and answer pairs in order to label
the predicate-argument structure of verbs. The process consists of several sub-tasks: i) to
generate questions targeting a specific verb in a sentence and to mark as answers a subset
of words from the same sentence, ii) to choose the head word of each selected subset and
iii) to assign a PropBank label to this head according to a table that correlates WH-phrases
with the most likely label, as depicted in Figure 6.10. The table that the annotators used as a

12i.e., the generated sentences for which we measured a BLEU score ≥ 10 against the source using back-
translation.
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Fig. 6.10 Indirect QA Annotation Example: The annotators see the German words that
the system generated and a specific central predicate. Based on this, they have to create
WH-questions whose answers are a subset inside the same sentence. A mapping from the
question to the appropriate label is provided later.

guide to map their questions to a corresponding SRL label are given in Table 6.8). With this
method we can compare the (gold) labels assigned by the annotator vs. the labeled-output of
the system, because both sequences coincide at the word level and thus we can compute F1
labeling score on the subset of human annotated outputs.

We ask two linguistically trained annotators to perform this task independently and
compute Krippendorff’s Alpha (Krippendorff, 1980) on the role labels, which returns an inter-
annotator agreement score of 82.83. We resolve conflicting annotations through discussion
among the annotators. The resulting gold standard contains 737 annotated roles. Notably,
the most prominent roles (as in the CoNLL-09 datasets) are A0 and A1 which are normally
related to the agent and the patient in sentences, but the annotated data also includes modifier
roles such as temporal, modal, discourse markers, among others13.

Using our human-annotated sentences, we can determine that the automatic labeling
performance of our cross-lingual SRL model (XL-BERT) achieves an F1 score of 73.21
(73.33 precision, 73.1 recall). We also evaluate performance of the label projection system
of Akbik and Vollgraf (2018) on this data. We only consider arguments of the predicates
that were annotated, and find that ZAP obtains a low F1 score of 56.03 (42.65 precision,

13The label distribution is given in the Appendix A
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Role Question
A0 [Agent] Who? What?
A1 [Patient] What? Who? How much?
A2 [Patient 2] What? How much? Where?
A3 [Patient 3] What? Who?
A4 [Patient 4] -
AM-DIR [Direction] To where?
AM-LOC [Location] Where?
AM-MNR [Manner - modify verb] How?
AM-TMP [Temporal] When?
AM-EXT [Extent] How much? How?
AM-PNC [Purpose] Why?
AM-CAU [Cause] Why?
AM-ADV [Adverbial - modify entire sentence] Why?
AM-DIS [Discourse Marker / Vocatives] #AM-DIS / #VOCATIVE
AM-MOD [Modals] #AM-MOD
AM-NEG [Negation] #AM-NEG

Table 6.8 WH-Questions used to elicit manual semantic role annotations.

81.7 recall). Akbik and Vollgraf (2018)’s label projection method shows more unstable
results, with a very low precision. Most likely this is due to the fact that it uses a statistically
learned predicate dictionary and also due to the word alignment noise; whereas XL-BERT
shows much better, and more precise results than this baseline, presumably because it was
pre-trained in a bigger amount of data and possess the lexical knowledge to identify more
predicates. The results that our model achieves are overall acceptable and stable in terms of
labeling quality, suggesting that the joint translation-labeling method was successful.



Chapter 7

X-SRL: A Parallel Cross-lingual
Semantic Role Labeling Corpus

7.1 Overview and Motivation for the X-SRL Corpus

In the previous two chapters, we showed that SRL can be formulated as a seq2seq task,
for English and for other languages as well. We addressed the data scarcity problem on
lower-resource languages by training models that use all the available multilingual labeled
data at the same time, obtaining better results when compared to monolingual versions.
Moreover, we showed that the main advantage of using an Enc-Dec to perform SRL is the
possibility to not only use the model as a labeler but also as a generator for new training data
for the lower-resource languages.

To train our models we used an already available annotated corpus with cross-lingual
annotations as training data. We noted that there are discrepancies when it comes to available
training datasets for different seq2seq settings. Firstly, while there are monolingual datasets
available in different languages they were constructed with independent processes and rules
of annotation, sometimes even semi-automatic ones. As a result, they have differing densities
of annotations per sentence, as well as differing labeling definitions. This fact limited the
number of languages we could integrate into our multilingual setting, and may have as
well limited the improvements for those languages we managed to integrate. Secondly, the
existing parallel corpora that we were able to use for the cross-lingual seq2seq setting was
artificially created by means of an independent label projection method, for which no original
gold annotations exist. In order to achieve high enough precision in the output, the creators
of such data employed strict filtering methods, resulting in low-density annotated sentences
in the target languages. Thirdly, there is a discrepancy in domain between the monolingual
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datasets and parallel datasets, which are sampled from news-wire text and parliamentary
speeches respectively, which might be affecting the integration when being combined with
one another. In short, there are issues with compatibility and precision in the available
multilingual and cross-lingual data that limits multilingual integration and restricted the
proposed model’s performance.

We hypothesize that, by relying on the latest advances in multilingual contextualized
word representations, we can develop a method for creating higher-quality cross-lingual
data that helps to improve SRL labeling quality as well as generate better training data in
lower-resource languages, without relying on annotation projection statistical models. Even
though our Enc-Dec was shown to be robust enough to produce useful annotated data with
the available training data, if we develop a method for obtaining more cross-lingual labeled
data to train it.

In this chapter, we develop a new method for obtaining more cross-lingual training
data in non-English languages, and test whether our seq2seq architecture can exploit better
the multilingual shared properties of this improved training data. Now that we have full
control over the annotation scheme, we are able to target more languages. For comparison
purposes, we develop data for the same lower-resource languages targeted in the previous
chapter (German and French), as well as for a third language: Spanish. We did not involve
Spanish before because we observed large differences in predicate senses and argument
label definitions between the available SRL labeled Spanish data and the other monolingual
datasets, which we believed could harm performance.

Ideally, we would like to have data with all of the following properties:

• Multi-way parallel sentences across languages: go beyond bi-lingual aligned data and
have sentences that are parallel in several languages at the same time, to evaluate the
differences in predicate-argument structures across languages.

• Shared domain across languages and the cross-lingual data and the high-quality SRL
labels: we would like to have cross-lingual data on the news-wire domain, to directly
match the domain of the available monolingual SRL annotations.

• Sentences with a similar density of annotations across languages: to improve multi-way
compatibility of sentences, we aim to have annotated data that has a similar amount of
labels across-languages.

• A human-validated test set with gold labels in non-English languages: the availability
of a human-validated set can ease the evaluation of future cross-lingual methods.
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Fig. 7.1 A comparison of available training data for the four different languages studied here.
We can see that currently no available dataset fulfills all of the desirable characteristics for
optimal multilingual and cross-lingual training, a gap that X-SRL aims to fill-in.

None of the SRL datasets available prior to our work satisfy these four things at the same
time (see Figure 7.1). For this reason, we want to create our own parallel SRL labeled corpus.
To create such corpus, which we name X-SRL, we propose the following:

1. Translate the official English dependency-based SRL corpus (CoNLL-09 corpus,
comprised of around 40,000 sentences) to German, French and Spanish. This can
be done using a SOTA MT system, to ensure rapid processing of the data with the
best possible translation quality. We hypothesise that a good quality MT system will
produce faithful lexical translations that will preserve the majority of the original
source predicates on the target side.

2. Once we have the parallel sentences we will propose our own annotation projection
technique to transfer the English high-quality labels to the target languages.

3. To validate the quality of our systems, we need a human-labeled test dataset. We also
use MT to obtain parallel sentences to the CoNLL-09 English test set (around 2,400
sentences) and hire annotators with knowledge in translation that help us to analyze
and in this case manually validate the quality of translations as well as decide which
predicates and roles should be transferred to the target language.

By following these steps, we create the first cross-lingual and multi-way parallel dataset
for SRL with homogeneous and similar amount of annotations across languages (see Figure
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Fig. 7.2 Method to create X-SRL. We automatically translate the English CoNLL-09 corpus,
use a fast label projection method for train-dev and get human annotators to select the
appropriate head words on the target sentences to obtain gold annotations for the test sets.

7.2). Having such a corpus allows to fully exploit the multilingual properties of SRL and
improve performance by exploiting the best of our seq2seq architecture. We can use this
knowledge to generate more training data using our cross-lingual system and possibly e.g.,
make a better SRL labeler for German. Finally, we will have a reliable test set that was
validated by humans that will allow us to measure our performance more accurately.

In the following sections we describe how we obtain parallel sentences to the gold-labeled
CoNLL-09 English corpus (Section 7.2). Next, we show how the human-validated labels
(only for the test sets) were obtained in an efficient way (Section 7.3). We then describe the
details of how we perform (automatic) annotation projection enhanced with simple filters for
train/dev in Section 7.4. With this we achieve new large annotated SRL datasets for German,
French and Spanish.

Notably, when building the X-SRL dataset, in line with the current PropBank SRL
data available in different languages, we focus on verbal predicates only. We have already
mentioned that the English CoNLL-09 data includes both verbal and nominal predicate anno-
tations; by contrast, the remaining languages with PropBank SRL training data (including
the CoNLL-09 non-English data) only provide annotations for verbal predicates. While we
could attempt projecting the English nominal predicate annotations and create an X-SRL
dataset that includes nominal SRL for all target languages – which would mean a big advance
over the current situation – admitting nominal and verbal SRL annotations in a multilingual
setting would confront us with many translation shifts. We could try to capture these for
the manually curated test set, but we would run the risk of generating noisy or scarce target
annotations when projecting them for the train/dev sections.

The reasons for this are complex: first, by including nominal SRL, we would be con-
fronted with translation shifts in both directions, e.g. Noun-to-Verb or Verb-to-Noun transla-
tions. For these, we would have to verify whether they correspond to valid verbalizations or
nominalizations on the target side. This would lead to considerable overhead and, most likely,
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EN DE ES FR
X-SRL Sents Preds Args Sents Preds Args Sents Preds Args Sents Preds Args

Train 39,279 92,908 238,887 39,279 60,861 134,714 39,279 68,844 154,536 39,279 67,878 154,279
Dev 1,334 3,321 8,407 1,334 2,152 4,584 1,334 2,400 5,281 1,334 2,408 5,388
Test 2,399 5,217 14,156 2,213 4,086 11,050 2,346 4,376 10,529 2,095 3,770 9,854

Table 7.1 Overall statistics for X-SRL.

noise in automatic projection. Also, translation shifts often involve light verb constructions,
which require special role annotations. These would be difficult to assign in automatic
projection. We thus defer the inclusion of nominal SRL to future work.

In Table 7.1 we provide the final statistics for our X-SRL corpus. Note that the English
statistics are exactly the same as the CoNLL-09 English corpus, and the other three languages
are the result of our projection and test set validation methods described in the following
sections, where we give in detail the method for constructing each of the train/dev/test
sections to end with the given amount of sentences and annotations for each language.

7.2 Dataset Translation

We aim to produce high-quality labeled corpora while reducing as much as possible the
amount of time, cost and human intervention needed to fulfill this task. We use MT to
perform dataset translation, obviating the need of human translator services or parallel
corpora availability. As previous work Tiedemann and Agic (2016); Tyers et al. (2018) has
shown, automatic translations are useful as supervision for syntactic dependency labeling
tasks since they are quite close to the source languages; likewise, in Argumentation Mining,
Eger et al. (2018) achieve comparable results to using human-translated data. One could
argue that by automatically translating the English source, we may run into the problem of
translationese. Translationese occurs when – in an attempt to reproduce the meaning of
a text in a foreign language – the resulting translation is grammatically correct but carries
over language-specific constructs from the source language to the target. While it would be
interesting to study possible shining-through effects in our automatically translated target
texts and any potential impact on SRL performance (e.g. by comparing a natural vs. translated
test set), our main concern is to preserve the relevant predicate-argument structures in order
to give a strong-enough signal to train our SRL systems, and our initial assumption relies on
the evidence from the mentioned previous works (confirmed by our results) that obtaining
relevant training data is possible with MT generated sentences.

In sum, we take as source the set of sentences in the English CoNLL-09 dataset, which are
tokenized and annotated for part-of-speech (POS), syntactic dependencies, predicate senses
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and semantic roles. We use the DeepL1 software to obtain translations of each sentence into
the three target languages. For all target sentences we use spaCy2 to tokenize, assign POS
tags (language-specific and universal POS) as well as syntactic dependency annotations. This
gives us a 4-way parallel corpus with syntactic information on both sides.

7.3 Test Set Annotation

7.3.1 Annotation Setup.

To confirm the quality of the translations delivered by DeepL, we hired 12 annotators with
a background in translation studies and experience in EN → T translation (we hired 4
annotators for each language pair) to rate and validate the automatic translations of the
test set3 by following a guideline that explains the quality validation and the annotation
processes4. First, we ask them to rate the translations on a scale from 1-5 (worst to best). On
the basis of the obtained ratings, we apply a filter and keep only the sentences with quality
rating 3, 4, or 5, since lower quality implies that the translations are ungrammatical.

Only on this subset of good-quality sentences we require them to do three more tasks:
i) we show them the labeled verbal predicates5 in the English sentence and ask them to
mark on the target side the words that express the same meaning, ii) we show them a list
of key arguments (which correspond to the labeled syntactic heads in the English sentence)
and likewise, ask them to mark on the target side the expression that best matches each
key argument’s meaning (marking several words is allowed), and finally iii) we ask them
to fix minor translation mistakes in order to better reflect the source meaning. Importantly,
we ask annotators to flag as special cases any one-to-many mappings, and for predicates,
any mapping that aligns a source verb to a non-verbal predicate in the target language. We
also give the option to map source heads or predicate words to NONE when no relevant
corresponding expression in the translated sentence can be found.

1https://www.deepl.com/translator
2https://github.com/explosion/spaCy
3Note that validating a translation that already exists is considerably faster than generating translations from

scratch, therefore annotation time and budget dropped significantly.
4See Appendix B for the X-SRL annotation guidelines.
5We ignore all source nominal predicates.

https://www.deepl.com/translator
https://github.com/explosion/spaCy
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Fig. 7.3 Examples of translation shifts: (1) predicate nominalization on the target side, (2)
and (1) source verb converted to a light verb construction on the target side, (3) a source
predicate translates to a verb with separable prefix, and (4) instances of Named Entities being
translated or not to the target language.

7.3.2 Annotation Agreement.

To approximate the inter-annotator agreement, we gave the first 100 sentences to all annotators
of each language pair and compute Krippendorff’s alpha6 on this subset of sentences. We ob-
tain αpredDE

=0.75, αpredES
=0.73, αpredFR

=0.78 for predicate and αroleDE
=0.79, αroleES

=0.70,
αroleFR

=0.79 for role labels. This shows that the annotation method can be trusted.

7.3.3 Linguistic Validation.

We run a second annotation round where two annotators with linguistic background re-
validate the instances that were flagged as special cases by translators during the first round
(more concretely, the possible translation shifts). Specifically, annotators in this phase decide,
for each special case, if the annotated label should be deleted or corrected. The cases could
fall into one or more of the following categories7 (see Figure 7.3 for some examples):

• Nominalizations: A verbal expression (predicate) in English is translated to a nominal
expression in the Target (see Figure 7.3, examples (1, 2)). Since we restrict our dataset
to verbal predicates we discourage the annotation of nominal predicates even when
they preserve the original sense.

• Light Verb Constructions: This is a special case of nominalization on the target side,
where a noun that corresponds to a verb in the source language is an argument of a

6We use the NLTK implementation with binary distance to compute the agreement of labels.
7This validation was performed independently, according to the annotators’ language expertise. However,

the annotators discussed general policies and jointly resolved difficult cases.
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so-called ’light’ verb with bleached, often aspectual, meaning. In example (2), the
verb billed is translated to in Rechnung gestellt (literally: ‘in invoice put’). According
to Bonial et al. (2015), the nominal argument of a light verb needs a special role
annotation.8 Since there is no easy automatic method to figure out the target senses,
we leave these cases for future work and do not annotate them here.

• Separable Verb Prefixes: In German, specific verbs must split off their prefix in
certain constructions, even though this prefix crucially contributes to their meaning.
In example (3), the German verb is abhängen which means to depend, while the verb
hängen means to hang. Since the labeling scheme that we are using only allows us to
tag one word as the head, annotators were instructed to pick the truncated stem of the
verb, given that the particle is a syntactic dependent of it.

• Multiword Expressions (MWEs): A single source word is translated to several target
words that constitute a single unit of meaning. The translators were allowed to mark
more than one target word if the source word meaning could be mapped to a MWE.
For these cases, if they did not fall in any of the previous three categories, and since
they were manually aligned for being equivalent in meaning, we transfer the source
label to the syntactic head of the marked MWE.

• Named Entities: are treated as special cases of MWEs. Some NEs, but not all,
are (correctly) translated to the target language, which can result in a change of the
argument’s head. We see both cases in example (4). When NEs are translated to the
target language, we need to select the appropriate head: Exchange is the head of the
NE in English but Bourse should be the head in French. We re-locate the label to the
NE’s syntactic head on the target side.

The linguistic analysis highlights the importance of providing a human-validated test
set – as opposed to relying on automatic projection. While the English labels are considered
to be gold standard, their transfer to any target language is not straightforward and must
be controlled for the mentioned cases to be considered gold standard on the target side.
Accordingly, we also consider filters or refinements for the automatic projection and finally,
on the basis of our validated test set, we can evaluate how accurate our automatic projection
is.

8The noun projects its predicate-specific role set and in addition includes the governing verb with a role
ARGM-LVB.
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QUALITY (Q) EN DE ES FR

5 2,399 718 1,758 1,358
4 0 902 407 463
3 0 593 181 274
2 0 164 46 184
1 0 22 15 119

# Sentences Q >2 2,399 2,213 2,346 2,095
# Kept Predicates Q >2 5,217 4,086 4,376 3,770
# Kept Arguments Q >2 14,156 11,050 10,529 9,854

Table 7.2 EN shows the original numbers for the English CoNLL-09 corpus. The other
three languages show the quality distribution and predicate and role annotations kept after
applying the quality and linguistic filters.

7.3.4 Test Statistics

Table 7.2 shows the statistics for the final quality distribution for each of the target language
datasets according to the translators’ ratings. The final test sets are composed by all sentences
with quality level higher than 2. We observe that after applying this filter, the three languages
have roughly similar amounts of good quality sentences (between 87% and 97%) as well
as similar density of annotations for both predicate and argument labels. The number of
sentences that are completely 4-way parallel is 1,714 (71.45% of the original EN corpus).
This confirms the intuition that DeepL generates translations that are faithful to the sources.
The number of special cases analyzed in the second validation step were 294 (DE), 332 (ES)
and 1300 (FR), of which 105, 122 and 173, respectively, were considered to be translation
shifts and thus were not taken into further consideration.

7.4 Label Projection Method

The next step is to find an efficient method to automatically transfer the labels in the train/dev
portions of the data to the target languages without loosing too many gold labels. In contrast
to the test set, we cannot perform human validation on the train/dev sets due to the size
of the data; here we are mostly interested in getting automatically good enough labels
to train models. Usually, label projection methods (Pado, 2007; Padó and Lapata, 2009;
van der Plas et al., 2011; Akbik et al., 2015; Aminian et al., 2019) rely on the intersection
of source-to-target and target-to-source word alignments to transfer the labels in the least
noisy manner, and this way prefer to have higher precision at the expense of lower recall.
We instead take a novel approach and rely on the shared space of mBERT embeddings
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Fig. 7.4 We compute a pair-wise cosine similarity matrix to simulate word alignments. For
each column, we look only at source word-pieces with an associated label and keep the top-k
(k=2) most similar target-side word piece candidates (red squares). The black circles show
the aligned full-word. By mapping word pieces to their full-words and applying filters we
choose the final aligned target words for each source word.

Devlin et al. (2019). Specifically, we compute pair-wise cosine similarity between source
and target tokens and emulate word-alignments according to this measure9. We show that
using mBERT instead of typical word alignments dramatically improves the recall of the
projected annotations, and enhanced with filters, it also achieves high enough precision,
resulting in a more densely labeled target side and therefore better quality training data is
expected. Additionally, previous works show that BERT contextualized representations are
useful for monolingual Word Sense Disambiguation (WSD) tasks (Loureiro and Jorge, 2019;
Huang et al., 2019) which lets us assume that we can rely on mBERT to find good word-level
alignments across languages.

7.4.1 BERT Cosine Similarity

We start with our word tokenized parallel source S = (ws0 , ..., wsn) and target T =

(wt0 , ..., wtm) sentences. Then, we use the mBERT tokenizer to obtain word-pieces and

9This is similar to what is done as a first step in BERTScore Zhang et al. (2020) towards computing a metric
for (semantic) sentence similarity, but here we use the token-wise similarity as a guide for cross-lingual word
alignments.
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their corresponding vectors S′ = (vs0 , ..., vsp) and T′ = (vt0 , ..., vtq) respectively, where we
have p source word-pieces and q target word-pieces. We compute the pairwise word-piece
cosine similarity between S′ and T′. The cosine similarity between a source word-piece
vector and a target word-piece vector is vTs vt

||vs||||vt||
10. The result is a similarity matrix SM

with p (columns) and q (rows) word-pieces (see Figure 7.4). In addition, we keep a mapping
S′ → S and T′ → T from each of the word-piece vectors to their original respective word
tokens to recover the full-word alignments when needed.

7.4.2 Word Alignments

For each column in SM , we choose the k most similar pairs (vs, vt) 11. This is analogous to
a AS′→T ′ alignment 12. The alignment is done from full-word ws to full-word wt, meaning
that for each vs, instead of adding a vs → vt alignment, we retrieve the full-word ws to
which vs belongs and the wt to which vt belongs and add a ws → wt alignment to the list
of candidates for ws. At this step, we still permit one-to-many mappings, which means
that a ws can be associated with more than one wt candidates. We retain a dictionary
D = {ws : [(wt1 , simt1)...(wtx , simtx)]|wsϵS} with their associated similarity scores to
keep track of the candidates. See the right hand side of Figure 7.4 for an example.

7.4.3 Alignment Modes

When projecting annotations to the translated training sections, we are confronted with the
same special cases that we identified in the test set. In the absence of human validation,
we have to define filters to eliminate noisy alignments. By only keeping the intersection of
alignments AS→T

⋂
AT→S , we can get rid of a considerable amount of noisy alignments.

This, however, comes at the cost of very low recall and a sparsely labeled dataset. Since we
are using an accurate word-similarity measure instead of (noisier) word alignments, we can
encourage higher recall by considering all AS→T alignments and include additional filters to
get rid of noisy labels and thus preserve high precision. In (§7.5.1) we describe in detail the
experiments that support this assumption.

7.4.4 Filtered Projection

First, we eliminate a considerable amount of potential noise by only looking at the ws’s that
hold a predicate or argument label, while ignoring the rest. Next, for each labeled source

10We use the implementation of Zhang et al. (2020)
11k is a hyperparameter which we chose by hand. The best results were obtained with k=2.
12Conversely, we can simulate a AT ′→S′ alignment by defining a similar process for each row in the matrix.
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Method Lang INTER S2T
P R F1 P R F1

mBERT Only
EN-DE 86.6 49.6 63.0 69.0 76.1 72.4
EN-ES 83.8 68.2 75.2 70.0 84.8 76.7
EN-FR 82.7 61.8 70.7 67.7 79.5 73.1

mBERT+Filters
EN-DE 96.1 51.8 67.4 92.5 65.8 76.9
EN-ES 94.0 68.8 79.4 91.9 80.7 85.9
EN-FR 91.7 63.7 75.2 88.9 74.8 81.2

Table 7.3 Examining different projection methods on our human-validated test set: a)
vanilla mBERT cosim (mBERT-Only) vs. adding filters (mBERT+Filters); b) INTER using
intersective alignments vs. S2T using full source-to-target alignments. Using S2T alignments
and applying filters yield highest F1 alignment score.

predicate, we retrieve from D the list of target candidates and keep only those that bear a
verbal POS tag. If the list contains more than one target candidate we keep the one with the
highest score, and if the list is empty we do not project the predicate, as it will most likely
instantiate a translation shift or nominalization. Light verbs should be automatically filtered
with this method, since the alignment links a verb to a noun and is therefore dropped. For the
case of arguments, we also retrieve the candidates from D. In the ideal case, all candidates
belong to the same wt and we project the label to that word. Otherwise, we take the wt with
more votes, i.e. the wt that was added most often to the list of candidates. In case of a tie,
we turn to the similarity score and transfer the argument label to the wt with the highest
similarity13.

7.5 Experiments and Evaluations

7.5.1 Label Projection

Intrinsic Evaluation. Since our test sets are human-validated, we can use them to measure
the quality of the label projection methods we have at hand. First, we test the effectiveness
of our full method (mBERT+Filters) by comparing it to vanilla cosine similarity (mBERT
only) as a projection tool. We apply each method to the test sentences and evaluate the
automatically assigned labels against the gold labels provided by annotators. We also show
the performance differences when keeping all source to target alignments (S2T) vs. using

13Score aggregation would be a straightforward way of computing similarities. However, Zhang et al.
(2020) mention that while cosine similarity is good to rank semantic similarity, the computed magnitude is not
necessarily proportional, therefore it is not a strict metric. For this reason, we only rely on scores as a decision
factor in case of ties.
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ZAP OURS

PREDICATE ARGUMENT PREDICATE ARGUMENT
P R F1 P R F1 P R F1 P R F1

EN-DE 68.9 15.9 25.9 72.7 15.6 25.7 95.7 76.2 84.9 91.3 61.6 73.6
EN-ES 78.9 34.7 48.2 68.7 30.5 42.2 98.0 89.3 93.4 89.0 76.4 82.2
EN-FR 66.2 21.1 32.0 66.5 24.4 35.7 97.3 85.4 91.0 88.9 69.8 78.2

Table 7.4 We compare our best projection method with ZAP, a SOTA system for SRL label
projection on our test sets. The recall of ZAP is extremely low, damaging their overall scores.
In contrast, our method is very good at projecting verbal predicates and arguments.

the intersection of alignments (INTER) when projecting both predicates and arguments. In
Table 7.3 the four combinations can be observed with their specific trade-offs. When using
only mBERT with S2T alignments we have high recall but a very mediocre precision; when
using INTER alignments we see big gains in precision at the expense of lower recall, as
expected. On the other hand, mBERT+Filters obtains consistently better F1, with INTER
showing similar behavior to what we observe with the vanilla method, yet with much better
precision; however, using full S2T alignments with filters gives us the best trade-off: we still
achieve around 90% precision and much better recall compared to INTER. This confirms
that using S2T alignments (established using mBERT-based cosine similarity) combined
with our filters are the best option for projecting labels.

Extrinsic Evaluation. Having settled our best method, we compare it with an SRL label
projection software: ZAP Akbik and Vollgraf (2018) 14, which also works with the three
target languages studied in this chapter. ZAP is a pipeline model that takes as input parallel
(S,T) sentences, uses source syntactic and semantic parsers to obtain the annotations, and
through a trained heuristic word alignment module that uses pre-computed word transla-
tion probabilities, it transfers the labels only when it considers the alignments to be valid,
preferring to have fewer, but higher-quality annotations on the target side.

To compare our method to this baseline, we measure the density of the labels on the target
training sets after applying both methods to project the labels15. Figure 7.5 shows the case of
EN projected to DE where our method consistently recovers more labels from the source,
resulting in a more densely annotated training set with comparable label distribution to the
EN source. This trend is similar for Spanish and French (overall coverage relative to EN is:
DE: 58.9%, ES: 67.3%, FR: 66.9%). To investigate more deeply why ZAP performs so poorly
compared to our method, we use the test sets to measure performance. We first evaluate the
capacity to transfer source predicates to the target side. Table 7.4 clearly shows that ZAP

14www.github.com/zalandoresearch/zap
15We consider the gold source labels for both methods, thus comparing only their projection performance.

www.github.com/zalandoresearch/zap
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Fig. 7.5 Ten most frequent labels obtained with two label projection methods: OURS vs.
ZAP - on the German train set, compared to English source annotations.

fails to transfer many predicates, perhaps because it has unreliable (or no) word-alignment
probabilities for infrequent predicates and it is not fine-tuned for this domain (it was trained
on Europarl). As a result, the argument scores are also very low, since for each predicate it
misses, the system cannot recover any arguments. This highlights the main advantages of
our method: by relying on a big multilingual language model i) we obtain high-quality word
alignments featuring high precision and recall, and ii) we do not need to re-train for other
language pairs nor different domains.

7.5.2 Training SRL Systems on X-SRL

At this point we have attested the quality of the automatic method for creating the training sets.
Now, as an extrinsic evaluation, we will measure how well different models can learn from
our data. Following the method described above, we achieve a large, annotated SRL dataset
for three new languages, which is comparable in size, contains homogeneous annotations
and is multi-way parallel. (cf. Table 7.1).

To train the models we follow Zhou and Xu (2015); He et al. (2017) in the sense that we
feed the predicate in training and inference, and we process each sentence as many times as
it has predicates, labeling one predicate-argument structure at a time.

mBERT fine-tuning. In all settings, we fine-tune mBERT16. We use batch size of 16,
learning rate of 5e−5 and optimize using Adam with weight decay (Loshchilov and Hutter,
2019) and linear schedule with warmup. We train for 5 epochs on our data and pick the epoch
that performs best on dev. Concretely, we explore three settings: The obvious baseline is i) to

16We use BertForTokenClassification from https://huggingface.co/transformers/

https://huggingface.co/transformers/
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Fig. 7.6 Comparison of the F1 score that fine-tuned mBERT obtains for the four languages
when broken by length of input sequences.

use only the available English high-quality labels for fine-tuning mBERT and apply zero-shot
inference on the other three languages (we call this EN-tuned). The other two settings are
ii) to fine-tune each language independently with its respective training set (Mono) and iii)
using all the available data from the four languages to train a single model (Multi). Table
7.5 shows that, as expected, for the EN-tuned baseline, English reaches an F1 score of 91,
and the other three languages can make good use of mBERT’s knowledge in the zero-shot
setting, reaching scores around 70. We also see that our training sets are more complete,
obtaining, across the board, higher F1 scores than the training sets projected using ZAP. We
observe that training on monolingual data results in improvements for all languages, and
finally, the best setting is to use all data at once, improving the already robust mBERT results,
and reaching scores of 77, 92, 81 and 78 for DE, EN, ES, FR respectively, about 8 points
higher than the zero-shot baseline in the case of German.

Sequence Length Analysis. We also break the analysis of the transformer-based mBERT
model to observe if there exists a difference in performance depending on the sequence
length (similar to the two previous chapters). Although this is a completely separate dataset
and a completely different model (Transformer vs LSTM), we can still observe interesting
conclusions from looking at Figure 7.6: First of all, we see that the four languages behave
similarly when we break the performance analysis by sequence length; more importantly,
the transformer model shows a flatter descent correlated with the length of sequences. This
shows support for the robustness of transformers for dealing with longer-range dependencies
on sequences.
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EN DE ES FR

MODEL ZAP OURS ZAP OURS ZAP OURS ZAP OURS

mBERT EN-tuned 91.0 91.0 69.5 69.5 75.1 75.1 71.9 71.9
mBERT Mono (finetune) 91.0 91.0 58.6 76.1 64.5 80.5 59.5 77.4
mBERT Multi (finetune) 92.4 92.9 63.7 77.0 67.4 81.1 64.1 78.3

Table 7.5 F1 Score with Fine-tuning mBERT on our training data, created using ZAP vs.
OUR projection method and evaluated on our test sets. We compare zero-shot (EN-tuned),
mono- and multilingual settings.

MODEL EN DE ES FR

Ours (Ch. 6) [Mono] 90.9 67.6 56.2 58.1
Ours (Ch. 6) [Multi] 87.6 72.5 77.1 75.2
Cai et al. (2018) Mono 91.4 76.5 82.6 80.3
He et al. (2019) Mono 92.4 75.8 82.3 79.3
He et al. (2019) Multi 92.1 77.3 82.5 80.4

Table 7.6 F1 Score when training existing SRL models with our data and evaluating on our
test. We compare monolingual (Mono) vs using all data available (Multi).

SOTA Models. Next, we choose three SRL systems that show SOTA results on CoNLL-
09 and train them using our data instead. Note that our results are not comparable since
our train and test sets are completely different for ES and DE; also the EN results are not
comparable since we only label verbal predicates; finally, FR is not present in CoNLL-09.
Table 7.6 summarizes the results. The model marked as "Ours" is the Encoder-Decoder
model that was described in Chapter 6. Because it was conceived for multilingual SRL, it
performs poorly when trained on monolingual data but improves significantly when trained
with more data (multilingual setting). The model of Cai et al. (2018) adapts the biaffine
attention scorer of Dozat and Manning (2017) to the SRL task; we note that this model
is not designed for handling multilingual data, and therefore only show the monolingual
results, which still achieve the best score (82.6) for ES on our test data. Finally, He et al.
(2019) generalizes and enhances the biaffine attention scorer with language-specific rules
that prune arguments to achieve SOTA on all languages in CoNLL-09. When training this
model using our data it achieves the highest scores for EN in the Mono setting and for DE and
FR when trained with multilingual data. In sum, using our new corpus to train multilingual
SRL systems, with SOTA models and finetuning mBERT, we find evidence that the models
can use the multilingual annotations for improved performance, especially for the weaker
languages.
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German (DE) French (FR) Spanish (ES)
Model [Filter] Full Seq Word Label Kept % Full Seq Word Label Kept % Full Seq Word Label Kept %
XL-BERT [All] 14.1 11.7 16.2 100 20.1 18.8 29.9 100 17.0 15.6 22.2 100
XL-BERT [≥ 10] 23.3 23.2 50.1 55.9 26.3 26.8 56.4 71.1 24.6 24.7 49.0 63.6

Table 7.7 Cross-lingual (XL) system results using BLEU score on the X-SRL Test sets. We
compute BLEU on labeled sequences (Full Seq), and separately for words and only labels.
We also show scores when applying a filter on Full Seq of BLEU ≥ 10.

7.6 Cross-lingual SRL with X-SRL

Another advantage of our dataset is that it is straightforwardly suited for cross-lingual
experiments. We use the same Enc-Dec model described in Section 6.3 initialized with
pre-trained mBERT embeddings in the first layer to perform translation from source English
sentences to SRL labeled sequences on a different target language. This time, we use our
X-SRL dataset for training (c.f. Table 7.1).

We apply BLEU scores on the sequences for the three different target languages: German,
French and Spanish. We emulate the evaluation setting from Section 6.4, and apply a
BLEU ≥ 10 filter; however, this time we have a proper test set for which we know the
reference sentences and labels on the target side, therefore we do not need to perform the
back-translation step to obtain the filter, in fact, we directly perform the BLEU evaluation
against the test gold sequences. By following this method, after applying the BLEU quality
filter we see that we manage to retain 56%, 71%, and 63%, for DE, FR and ES respectively
which presumably have a better sentence quality and, given the high label-only BLEU scores
we can expect to retain most of the expected target labels.

It is important to notice that in the experiments of Chapter 6 we were dependent on a
dataset created via a statistical annotation projection method followed by strict filtering for
semantic correspondence, tying us to lower-density of labeled data for training. In contrast, in
this Chapter we developed our own method for creating parallel training data, by transferring
gold semantic labels to the non-English target size, therefore now we can cover the full
pipeline for creating new SRL data on non-English languages.

More importantly, our Enc-Dec model is not a label projection method but a labeled data
generator, which uses the multilingual lexical knowledge encoded in the contextualized
representations to transfer source labels into target sentences. This means that it is not
necessary to re-train from scratch an annotation projection model each time we need to
generate new data or include a new language pair.





Chapter 8

Conclusions and Outlook

This thesis begins with the observation that the latest advances in SRL for English were
achieved by means of deep neural networks which happen to be resource-intense architectures.
Thus, in the search of emulating the gains achieved in English, we focus mainly on finding
methods for improving the availability of annotated SRL data for non-English languages.

Concretely, we examine here the cases of three different languages: German, French and
Spanish. As we mentioned already, although these languages are not normally considered as
low-resource in NLP, the fact that they have not achieved the same improvements that we
observe in the case of English, even when annotated resources are already attainable, calls
for a search of strategies to augment the availability of high-quality training data. For this
reason, by combining insights from neural MT, neural structured prediction models and joint
multilingual training, we propose for the first time to treat SRL as a sequence-to-sequence
task, with the aim of applying a flexible model that allows to consume data from multiple
languages at the same time, hence automatically augmenting the availability of labeled data
on the resource-poor languages. Moreover, the same Enc-Dec architecture that we use for
multilingual labeling, is flexible enough be used as a data generator when trained with parallel
cross-lingual SRL data, giving us an additional method for further augmenting the amount of
available target language labeled data.

Our motivation for using a seq2seq model comes from the fact that this architecture
contains a generative decoder which opens the possibility of creating unseen target sentences.
Moreover, it already showed successful results for multilingual processing in MT tasks, as
well as the possibility of generating new labeled data in cases such as syntactic dependency
parsing and semantic parsing. These scenarios encouraged us to use similar methods for
improving the SRL performance in lower-resource languages. Below, we summarize the
contributions of this thesis as well as the insights gained with he different methods that were
proposed here. We will then discuss the current limitations and potential future directions.
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We will revisit our research questions, and summarize how our proposed model and created
dataset addressed the questions raised in Chapter 1.

8.1 Summary

SRL as Sequence-to-Sequence. In Chapter 5, we investigate the basic formulation of
PropBank SRL as a seq2seq task. We present and evaluate an Enc-Dec model with attention
and copying mechanisms that encodes a source sentence and generates the same source
words but this time with interleaved semantic role labels. We face specific challenges by
formulating the problem in this way, such as: i) the decoding of labels and words within a
single sequence; ii) generating balanced labeled brackets at the correct position; iii) avoiding
repetition of tokens, and especially, iv) generating labeled sequences that perfectly match
the source sentence in order to make the labeled sequence absolutely comparable. We test
our outputs for these challenges and confirm that the Enc-Dec with copying mechanism is
robust enough to generate sequences that, in most of the cases, avoid such problems. Next,
by evaluating on the most popular English SRL span-based datasets, namely the CoNLL-05
and CoNLL-12 data, we successfully prove that the SRL task can be formulated in this
manner and, although we didn’t improve the SOTA at that time, we obtained robust results
for English, which encouraged us to keep our research in this direction.

A Flexible Encoder-Decoder model for SRL. In Chapter 6 we present the first suc-
cessful joint multilingual seq2seq model for identifying and labeling PropBank roles on
different languages. This model is built on top of the basic Enc-Dec presented in Chapter
5 with architecture additions that allows it to benefit from multilingual data. Moreover, we
demonstrate that our flexible architecture is capable of being trained as a data generator.
Concretely, we propose a model that can be used in three different modes: monolingual,
multilingual and cross-lingual. The first two modes are evaluated as SRL labeling task and
the third mode is treated as a data generation task.

As expected, the neural Enc-Dec architecture is overparametrized to achieve satisfactory
results in the non-English languages when trained monolingually (given the lack of a bigger
annotated training corpus in such languages); however, because of the flexibility of our
architecture, we experiment with different scenarios that allow us to directly augment the
training data for the lower-resource languages and obtain improvements with the multilingual
approach. We prove the efficacy of our enhanced monolingual and multilingual model
by evaluating on the English and German CoNLL-09 datasets and on a publicly available
French dataset (van der Plas et al., 2010, 2011) and demonstrate that our model improved
the SOTA for English at the time of publication. We also show that training a multilingual
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neural Enc-Dec improves results over the monolingual baselines, as well as achieving better
results when compared to the only available multilingual neural model for SRL at the time of
publication (Mulcaire et al., 2018).

Evaluation Strategies for Cross-lingual SRL. When training our model with cross-
lingual data we are not performing SRL labeling anymore, but SRL data generation. This
calls for a separate and more detailed evaluation procedure in order to assure the validity of
the data produced by our model. Thus, we propose three different stages of evaluation: by
means of an automatic metric, BLEU score (intrinsic evaluation); by re-training semantic
role labelers with our generated labeled data and observing improvements in labeling scores
(extrinsic evaluation); and finally by performing a human evaluation on a stratified sample
drawn from the generated labeled sentences in German. For this, we follow (He et al., 2015)
to bypass the need of trained annotators with linguistic knowledge and apply a useful and
fast evaluation method based on generating questions that later can be mapped to SRL labels.

The evaluation of our cross-lingual system shows that its filtered generated outputs can
be used as additional SRL-labeled data for lower-resource languages; human evaluation also
shows that the quality-filtered sentences are highly grammatical and natural, and that the
generated PropBank labels can be more precise than a SOTA label projection system, namely
ZAP (Akbik and Vollgraf, 2018). Moreover, we test our generated sequence as training data
by re-training an SRL model using our own data vs using data generated by ZAP, and obtain
the best results when using our method. Thus, our three evaluation settings confirm our
hypothesis that an Enc-Dec can be used to successfully translate and label SRL sequences in
a single step, without the need of a pipeline of statistical models as previous methods do.

A Method for Creating Parallel SRL Data. Our experiments of Chapter 6 use an
available parallel dataset with labeled semantic roles from previous research, which is pre-
filtered for preserving predicate correspondence on source and target sides (Akbik et al.,
2015). However, we also note that such dataset is not fully-compatible with the monolingual
labeled data that is normally used for evaluating SRL, which poses challenges for evaluating
the same task when involving different languages. Therefore, to round up our proposal
for cross-lingual data generation, in Chapter 7 we propose a method to obtain high-quality
cross-lingual SRL data without the need of relying only on existing parallel datasets. Our
approach also minimizes the need for trained human annotators and offers an alternative
to the current label projection techniques that, because of the tight filtering that they need
to apply, produce low-density annotations. We show how we can profit from the latest
advances in neural MT and Multilingual Contextualized Language Models to propose a
neural approach for transferring the English gold labels from English to other languages.
This approach directly addresses the incompatibility problems that current SRL datasets face,
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namely the lack of label standardization across languages, as well as the imbalance in density
of annotations. Even though we tested our method on German, French, and Spanish, our
method is in principle extensible to other language pairs that have access to high-quality MT
and mBERT.

By using DeepL to create parallel sentences to the existing English CoNLL-09 data;
and multilingual BERT to simulate word alignments, we show that out-of-the-box MT and
mBERT together can be used to obtain useful data for training SRL models in different
languages. We evaluate our hypothesis by hiring experts in translation on the 3 different
language pairs to annotate corresponding test sets. The experts see the translated test sets and
validate the quality of the automatically produced sentences. Furthermore, they manually
annotate the target words that semantically correspond to the original English predicates and
roles (with an option to ignore the non-transferable roles). Our human annotators confirm
that MT produces high-quality data that is lexically faithful to the English sources, avoiding
translation shifts in the majority of cases. More importantly, by following this method we
create a complete new dataset, the first multi-way parallel corpus with homogeneous and
dense semantic role labels, which we name X-SRL and will be published soon as a resource
in the Linguistic Data Consortium (LDC).

We test the quality of the newly created dataset by training different SOTA semantic role
labelers and evaluating their performance using the human-validated tests sets. Furthermore,
we demonstrate the usefulness of having more training data by comparing mBERT as a zero-
shot labeler (i.e. fine-tuning it with English data and directly testing on the target languages)
against a fine-tuning setting of mBERT with our data for each target language. We observe
gains when using the latter setting, confirming that even such a robust architecture benefits
from out new labeled dataset. In sum, we demonstrate that our dataset is an interesting
resource for further exploring the capabilities of multilinguality in SRL.

8.2 Future Work

Our current Enc-Dec model can be improved by adding more automatically generated data in
the data augmentation scenario, or by targeted selection in an active learning setting. Current
limitations of the system may be alleviated by pre-training the model to acquire better
translation knowledge from larger training data, and by developing more refined filtering
methods. Currently, an advantage of our proposed model is that it does not need parallel
data at inference time. Thus, promising work can also be done by aiming for augmenting the
system flexibility, such as extending it to few-shot or zero-shot learning. This would alleviate
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the need for an initial big annotated set, and thus we would be able to use the knowledge
from existing annotated languages and generate SRL data for truly resource-poor languages.

Further challenges for this novel architecture are to extend it to joint predicate and role
labeling for more than one predicate at a time. By integrating predicate identification, we
could perform end-to-end SRL with our Enc-Dec. This would give us more control over
predicate senses, because for now we just work on argument labeling provided we already
know the predicates. Another interesting approach to follow is upgrading our proposal to the
latest Enc-Dec architectures that have pushed even further the SOTA of Machine Translation,
such as Transformers and multi-task training.

Finally, our method for using mBERT as a means for word-alignment can be improved
by using external supervision for a better lexical alignment of the pre-trained embeddings.
Besides, because mBERT possesses more than 200 languages, our method is extendable to
creating parallel labeled datasets for other languages, provided there is access to a good-
quality MT system. Further tuning of the contextualized word representations could be
performed in order to augment the semantic correspondence for languages that are typologi-
cally divergent and use it for transferring English labels into those languages. These new
datasets could keep being compatible with the well-known English CoNLL-09 (as we did in
this thesis) or use other kinds of high-quality source labelers to transfer annotations to other
lower-resource languages. Having more languages with a compatible cross-lingual label-set
may enhance the performance analysis of multilingual SRL systems.

As for our X-SRL dataset, we provided some analysis of the performance that existing ar-
chitectures achieve with it, however, the published dataset is available for further exploration.
X-SRL is optimal for testing cross-lingual SRL architectures and improving effectiveness
in different languages with a single model, as opposed to using a pipeline of an annotation
projection model followed by a sequence labeler, as it is currently done in most scenarios.
Because of the label schema compatibility across languages, this resource can also be used
for an deeper analysis of cross-linguality of semantic roles.





Appendix A

Cross-lingual Guidelines for Human
Evaluation

A.1 Overall Sentence Annotation

Quality Mark on a scale from 1-5 how grammatical the sentence is:

1 = This sentence is completely ungrammatical.

5 = This sentence is perfectly grammatical.

Naturalness Mark on a scale from 1-5 how natural the sentence is:

1 = A native speaker would never produce such a sentence.

5 = This sentence could have been written by a native speaker.

• Mark the sentence as #NO-VERB if the marked predicate is NOT a verb.

A.2 Predicate-Argument Annotation

For each sentence:

1. The predicate of interest is given.

2. Argument Identification:

(a) You should generate as many questions as possible using this predicate. The
answers must be a sub-string [phrase] from the sentence.

(b) Write a single Question-Answer pair per line.
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(c) Once you cannot think of more Q-A pairs for this sentence, you should fill the
column named "head" with the syntactic head of each answer phrase you entered
in step 2c.

3. Argument Classification (Labeling):

(a) Assign the closest possible labels to each Q-A pair according to the criteria of
the Annotation Process B

A.3 Labeling Criteria

Kinds of Roles

1. Core Roles (A0-A4): are supposed to be agents and patients of the sentence, and to
be closely related to the action that the verb describes.

2. You can find the list of roles of interest in the Auxiliary Table at the end of this
document.

3. Modifier Roles (AM-XXX): are general and not tied to specific predicates. Example:
(# because AM-CAU) will always be causal regardless of the predicate. Locations
will always be places regardless of the action happening, and so on.

Annotation Process

1. Start by confirming that the given predicate is a Verb. If this is the case, write in the
question field the token #VERB, the answer should be the predicate itself and the label
should be marked as V.

2. As a General Rule, assign labels in this order: A0 » A1 » A2 ... » AM-XX

3. Always start asking Who?/ What? (A0). This label should always be assigned first (if
it exists in the sentence). A0 is always the causation of a change of state (normally is
an agent but in some exceptions, it could be the patient. Either way, it should be the
main cause of the change of state that the verb represents).

4. Ask again the question What?. Now the label for this answer will be A1. A1 is
normally the patient of that change of state. There are exceptions (normally with
passive sentences) where you would have A1 without A0 in a sentence. Example:
The (# book A1) was given (# to A2) him. Here the sentence does
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not contain an answer to the question Who gave the book? therefore it has no A0 role.
However, the first question you will ask is What was given? and the answer The book
should be labeled as A1 (skipping A0) because it is the patient of the ’to give´ action.
There are also cases where there are secondary animated participants in the patient
role, for example, John has been fooled by Mary: What? Does not refer to John, but
you need Whom?, and then John will be labeled as A1.

5. If there is no answer to What? in the sentence, and/or there are still questions to ask
which have a patient as an answer, (someone or something affected by the action that
is not only a general modifier of the situation), then use A2 - A4. The indices of core
roles are assigned incrementally (for example, there can’t be an A3 if there is no A2).
In the example shown in 4, the prepositional phrase to him is the answer to the question
To whom was the book given?, therefore to is labeled with A2 because it is the second
patient found in the sentence (and it is the head of the answer phrase).

6. Next, try to ask the questions Where? Why? How?... whose answers will be modifier
AM-XXX roles.

7. Finally, consider that there some are roles that do not answer questions:

(a) AM-NEG: this is used for the negations in the sentence. Write in the question
field the token #AM-NEG, in the answer field the phrase that expresses negation,
and the label should be marked as AM-NEG. Example: (# You A0) will

(# never AM-NEG) know.

(b) AM-DIS: this is used for the discourse markers in the sentence. Write in the
question field the token #AM-DIS, in the answer field you should put the phrase
that is acting as a discourse marker, and the label should be marked as AM-DIS.
Also, you should apply this label for vocatives (For example, Dear (# Mr.

AM-DIS) President, ...). In this case, write in the question field the
token #VOCATIVE.

(c) AM-MOD: this is used for the modal verbs in the sentence (when they are not
the predicate of interest). For example, I (# must AM-MOD) give this

(# book A1) (#to A2) her. Write in the question field the token AM-
MOD, and in the answer field the answer should be the modal verb and the label
will be marked as AM-MOD.
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Examples

(# I A0) tried to give (# her A2) (# a book A1), (# but she doesn’t

like to read AM-DIS).

In this case, A0 is the giver (Who?), A1 is the thing given (What?) and A2 is the recipient (To
whom?), and receives A2 because it is a secondary agent that is related to the act of giving.
This tagging is following the rule of first asking who, then what, and then assigning core
roles incrementally if there are more found.

A.4 Useful Remarks

Examples of most common heads

1. In the case of a Prepositional Phrase, the argument head is the preposition. E.g. (#
In AM-LOC) diesem Bereich. Normally, this preposition (together with the
rest of the phrase) would be the direct answer to the WH-Word used for the question.

2. For a Noun Phrase, the noun is the head der Europäischen (# Kommission

A1).

3. For verbs with a separable prefix, the head must be the main part (the stem). Example:
Ich (# rufe V) Sie an .

Notes

1. After asking the common questions (Who? What? To Whom?) for agents and
participants, try to find questions whose answers are Prepositional Phrases.

2. Try to state as many questions as possible, but always include the predicate in the
question.

3. Always include in the answers all the relevant participants related to the given predicate.
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WH-Phrase Correlation Table
Role Question
A0 [Agent] Who? What?
A1 [Patient] What? Who? How much?
A2 [Patient 2] What? How much? Where?
A3 [Patient 3] What? Who?
A4 [Patient 4] -
AM-DIR [Direction] To where?
AM-LOC [Location] Where?
AM-MNR [Manner - modify verb] How?
AM-TMP [Temporal] When?
AM-EXT [Extent] How much? How?
AM-PNC [Purpose] Why?
AM-CAU [Cause] Why?
AM-ADV [Adverbial - modify entire sentence] Why?
AM-DIS [Discourse Marker / Vocatives] #AM-DIS / #VOCATIVE
AM-MOD [Modals] #AM-MOD
AM-NEG [Negation] #AM-NEG





Appendix B

X-SRL Dataset Annotation Guidelines

In this annotation task, you will be provided with pairs of sentences taken from the business
section of the Wall Street Journal newspaper. Each pair consists of the original English source
and its corresponding translation in a given target language (German, Spanish or French).
Every target sentence was produced via automatic translation software. We are interested in
three main aspects of the translations:

B.1 Validation of Automatically Translated Text - Overall
Quality

We are interested in how much the automatic translation preserves the general meaning that
the source intended to communicate. Considering the target sentence as a whole, mark on a
scale from 1-5 (worst to best) how well the target translation captures the original meaning:

Quality Mark on a scale from 1-5 how grammatical the sentence is:

1 = Ungrammatical or meaningless.

2 = Grammatical but does not preserve the source meaning.

3 = The translation has most of the source meaning but has

key errors.

4 = This is a translation with small distortions.

5 = This translation could have been done by

a (non-professional) human.
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B.2 Key Predicates

We are also interested in the preservation of source events (verbs) in the target sentence.
We are aware that sometimes the best translation of a sentence does not contain a direct
translation of each verb. For our specific purposes, however, we would like to have sentence
pairs that contain them in both the source and the target. We will provide a list of the main
verbs of the source and you should indicate if there is a one-to-one corresponding verb on
the target side. We only aim to keep verbal predicates, therefore target corresponding nouns
should be ignored even if they are a correct translation.

B.3 Key Arguments

We also want to measure how many keywords (arguments) from the source are still preserved
in the target sentence. We will provide a list of such words taken from the source and you
should indicate if there is a corresponding word on the target side. Note that in this case,
rather than a one-to-one correspondence, we want to find semantically related sub-phrases
inside the sentence (please see the “Difficult Examples” and “Important notes” sections for
more details). We provide you with:

B.4 Annotation Elements

1. Source sentence: the original English sentence. Example:

Heavy selling of Standard & Poor’s 500-stock index futures

in Chicago relentlessly beat stocks downward.

2. Target sentence: the automatic translation of the source (in English, German or
French). Example:

Starke Verkäufe von Standard & Poor’s 500-Aktienindex-Futures

in Chicago schlagen Aktien unerbittlich nach unten.

3. Indexed Source: the same English source but indicating, on the left side of each word,
in which position it is located inside the source sentence. This will help you to identify
the specific words we are interested in. Example:

1_Heavy 2_selling 3_of 4_Standard 5_ 6_Poor 7_’s 8_500 9_-

- 10_stock 11_index 12_futures 13_in 14_Chicago 15_relent-

lessly 16_beat 17_stocks 18_downward 19_.
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4. Indexed Target: the same translated sentence but indicating, on the left side of each
word, in which position it is located inside the target sentence. Example:

1_Starke 2_Verkäufe 3_von 4_Standard 5_ 6_Poor 7_’s 8_500

9_- 10_Aktienindex-Futures 11_in 12_Chicago 13_schlagen

14_Aktien 15_unerbittlich 16_nach 17_unten 18_.

5. Source Predicates: the relevant events (verbs) that occur in the source sentence.
Example:

16_beat

6. Source Arguments (keywords): these are words that bear most of the semantic
meaning of the source, therefore we would like to find them as well in the target.
Example:

2_selling

15_relentlessly

17_stocks

18_downward

7. Propose an Alternative Translation: if you think that the whole translation should
be rephrased, please provide it in this space.

B.5 Difficult Examples

1. When an Argument (keyword) is a preposition or a syntactic marker, you should
read the complete sub-phrase that is associated to it and try to find the translated sub-
phrase on the target side: we are interested in matching the same semantic meaning,
even if the keywords do not correspond. Example:

As the market plunged 90 points, it barely managed to

stay this side of chaos.

Als der Markt 90 Punkte einbrach, gelang es ihr kaum , auf

dieser Seite des Chaos zu bleiben.

11_to −→ 13_auf

2. When in doubt, it is preferable that you fill-in more than one word in the EQUIVALENT
IN TARGET column, and mark it as a special case. The special cases that you find
will be analyzed on a further steps by other annotators. For example:
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18_downward −→ 16_nach 17_unten

15_surrendered −→ 2_gaben 21_auf

20_unable −→ 27_nicht 28_in 29_der 30_Lage

3. Sometimes the English side has a preposition but the target refers directly to a main
noun, therefore you should pair it with the noun. Example:

Martha gave a book to Jonas .

Martha gab Jonas ein Buch .

5_to −→ 3_Jonas

4. Sometimes the proper names in the text are not marked properly (even in the source).
Please provide always the complete proper name (even when they are many words).
Example, for “The New York Stock Exchange” you should answer like the following:

7_Exchange −→ 4_New 5_Yorker 6_Börse

B.6 Important Notes

1. If the translation quality is 2 or 1 then you can ignore the predicates and arguments
and you don’t have to do the translation fix (such examples will be dropped).

2. If there is no equivalent predicate in the target, you should indicate this by putting the
token <NONE> on the target predicate cell

3. Avoid spending too much time thinking about “the best possible translation”, if you
think the sentence should be improved but you can’t think of it right away, please fill-in
the token <FIX-LATER> and skip it (for now). Later go back and improve it if you
find the time.

4. If you find concepts whose translation you don’t know how to handle, add the Sentence-
ID to your log so we can comment on it later.

5. If you found that a predicate or an argument could be present by fixing a mistaken
word (just a one-word fix), please fill-in <FIX-ARG> and on the immediate cell to the
right write the word that you consider most appropriate.

6. Please ALWAYS keep the original word indices, even after you provided different
translations for the sentences or you fix word-segmentation issues (e.g. two words have
a single index). Mark this cases on the log and they will be revisited later to be fixed.
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Data Management

Resources for Chapters 5 and 6. we have a heiDATA repository available at https:
//doi.org/10.11588/data/TOI9NQ that contains the code for reproducing the monolingual,
multilingual and cross-lingual experiments presented in Chapters 5 and 6 which correspond
to the ACL workshop paper (Daza and Frank, 2018) and EMNLP conference paper (Daza
and Frank, 2019) respectively. As for the datasets we used for the experiments:

• The span-based English SRL data is provided by the CoNLL-2005 Shared Task
(Carreras and Màrquez, 2005) available at http://www.lsi.upc.edu/~srlconll/.
However, the original words are from the Penn Treebank dataset which is not publicly
available, but can be purchased at https://catalog.ldc.upenn.edu/LDC99T42.

• The CoNLL-12 shared task English dataset (Pradhan et al., 2012) is available at
http://conll.cemantix.org/2012/data.html.

• The dependency-based English SRL data is provided by the CoNLL-2009 Shared Task
(Hajič et al., 2009). The original task description is available at https://ufal.mff.
cuni.cz/conll2009-st/task-description.html. However, the datasets were split-
ted in two parts and integrated into the Linguistic Data Consortium (LDC). The
German, Czech, Spanish, Catalan and Japanese datasets are available at https:

//catalog.ldc.upenn.edu/LDC2012T03; whereas the English and Chinese datasets
are available at https://catalog.ldc.upenn.edu/LDC2012T04.

• The dependency-based SRL parallel English-French corpus (van der Plas et al., 2010,
2011) was part of the CLaSSic project and is available at
http://www.classic-project.org/.

• The parallel datasets we used for training the cross-lingual versions of the model were
Europarl (Koehn et al., 2003), available at https://opus.nlpl.eu/Europarl.php

https://doi.org/10.11588/data/TOI9NQ
https://doi.org/10.11588/data/TOI9NQ
http://www.lsi.upc.edu/~srlconll/
https://catalog.ldc.upenn.edu/LDC99T42
http://conll.cemantix.org/2012/data.html
https://ufal.mff.cuni.cz/conll2009-st/task-description.html
https://ufal.mff.cuni.cz/conll2009-st/task-description.html
https://catalog.ldc.upenn.edu/LDC2012T03
https://catalog.ldc.upenn.edu/LDC2012T03
https://catalog.ldc.upenn.edu/LDC2012T04
http://www.classic-project.org/
https://opus.nlpl.eu/Europarl.php
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and the United Nations parallel corpus (Ziemski et al., 2016), can be taken from https:

//conferences.unite.un.org/UNCorpus/. We additionally used the training data
from Akbik et al. (2015), which was requested to the authors of such publication.

• To train models you need to first pre-process the CoNLL data using the CoNLL_to_-
JSON.py script. For example, python pre_processing/CoNLL_to_JSON.py

-source_file datasets/raw/CoNLL2009-ST-English-trial.txt

-output_file datasets/json/EN_conll09_trial.json -dataset_type

mono -src_lang "<EN>" -token_type CoNLL09. The results will be written
in the datasets folder.

• Once you have a suitable data you train a model with the AllenNLP 0.8.2 frame-
work (available at: https://github.com/allenai/allennlp/tree/v0.8.2). This
requires you to have a configuration file that uses the models provided in our reposi-
tory. For example, to train an English monolingual model one must run the following
command:
allennlp train training_config/test/en_copynet-srl-conll09.json

-s saved_models/example-srl-en/ -include-package src.

• For a more thorough description of how to handle the code and run the specific models
trained in this thesis you can also consult the repository at the Heidelberg-NLP GitHub
available at https://github.com/Heidelberg-NLP/SRL-S2S.

Resources for Chapter 7 The heiDATA repository is available at https://doi.org/
10.11588/data/HVXXIJ and contains the code for reproducing experiments presented in
Chapter 7 which includes the BERT-based annotation projection code, as explained in the
EMNLP paper (Daza and Frank, 2020). In particular,

• The English side of annotations were taken from the English CoNLL-09 corpus.

• The translations of the English text from that corpus to Spanish, German and French
were obtained by using a DeepL Pro software subscription https://www.deepl.com/

pro#single.

• The projections of annotations from English to any target language can be done
by executing our project_srl_annotations.py script. A concrete example for
projecting English labels to Spanish sentences would be: python project_srl_-

annotations.py -src_file trial_data/X-SRL_Gold_EN.conll

-tgt_file trial_data/ES_template_trial.syn.conll -tgt_lang ES

-align_mode S2T.

https://conferences.unite.un.org/UNCorpus/
https://conferences.unite.un.org/UNCorpus/
https://github.com/allenai/allennlp/tree/v0.8.2
https://github.com/Heidelberg-NLP/SRL-S2S
https://doi.org/10.11588/data/HVXXIJ
https://doi.org/10.11588/data/HVXXIJ
https://www.deepl.com/pro#single
https://www.deepl.com/pro#single
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• For more detailed information of our code used for the experiments of Chapter
7 you can visit the Heidelberg-NLP Github repository at https://github.com/

Heidelberg-NLP/xsrl_mbert_aligner.

• The final X-SRL Dataset (which follows the method and code published here) is going
to be part of the Linguistic Data Consortium (LDC) at around Summer 2021.

https://github.com/Heidelberg-NLP/xsrl_mbert_aligner
https://github.com/Heidelberg-NLP/xsrl_mbert_aligner
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