
Dissertation
submitted

to the
Combined Faculty for the Natural Sciences and Mathematics

of
Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by

Thomas Bach, M. Sc.
born in Zweibrücken, Germany

Oral examination:

T H O M A S B A C H

T E S T I N G I N V E R Y L A R G E
S O F T WA R E P R O J E C T S

Advisor: Prof. Dr. Artur Andrzejak
Advisor: Prof. Dr. Peter Bastian

Copyright © 2020 Thomas Bach ID https://orcid.org/0000-0002-9993-2814

This work is licensed under a Creative Commons
“Attribution 4.0 International” license.

https://orcid.org/0000-0002-9993-2814
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Abstract

Testing is an important activity for software projects. However, testing
requires effort and therefore creates so-called test costs. They consist of
factors such as human effort for testing, or costs for required software and
hardware. Test costs can contribute considerably to the total cost of a
software project. Therefore, it is desirable to reduce test costs without
affecting the quality of the software. With agile development processes and
short test cycles, this aim is even more important.

Consequently, prior work propose a wide range of techniques for test cost
reduction. However, while studying a very large industrial software project,
we found that techniques proposed in related work can often not be applied
for a project of such a size. We attribute this to problems that are only
significant in large projects and may not be noticed in smaller projects.

The amount of test execution grows superlinearly over time in large
projects. This superlinear increase cannot be sustainably solved by increases
in hardware. Additionally, tests with long execution times have several
negative consequences. A large number of changes and the long execution
times of tests create a conflict that does not exist in smaller projects.

Therefore, approaches for test cost reduction must consider the specific
characteristics of large projects. In our work, we tackle this challenge in
multiple ways. We describe an approach to replace the superlinear increase in
test executions with a linear increase by utilizing a multi-stage test strategy
that provides economic incentives to decrease test costs. We also design
an approach that extracts unit tests from system tests and utilizes the
multi-stage test strategy to reduce test costs without reductions in quality.
Our approach builds upon time-travel debugging and reverse-executes a
system test to identify dependencies. We combine coverage-based differential
analysis and source code analysis via a compiler plugin to enable accurate
identification of the test core. Our approach extends previous work by
creating maintainable source code instead of binary data and by focusing
on the test core instead of extracting tests for all parts of the software.

In addition to our core contributions, we also provide two empirical studies
that investigate the relationship between coverage data and faults. The first
study investigates the distribution of bugs and coverage. The second study
investigates Granger-causality between coverage and bugs.

Finally, as a byproduct of our core contributions, we provide approaches
for automatically determining the creation of objects with complex depen-
dencies, for automated mock recommendation, for combining combinatorial
testing with coverage-based test amplification, for reductions of coverage
data sizes, and we solve coverage-based algorithmic problems.

Zusammenfassung

Das Testen von Software ist ein wichtiger Bestandteil der Softwareentwick-
lung. Es erzeugt allerdings auch sogenannte Testkosten. Diese können Soft-
wareprojekte erheblich teurer machen. Insbesondere in Zeiten von agiler
Softwareentwicklung sind Testzyklen kürzer geworden und die Testkosten
entsprechend gestiegen. Deshalb ist eine Testkostenreduktion wichtig.

Bei der Analyse eines sehr großen Softwareprojekts haben wir festgestellt,
dass viele Ansätze aus der Literatur nicht für ein Projekt dieser Größe über-
tragbar sind. Die Größe des Projekts führt zu besonderen Herausforderungen,
die in kleineren Projekten nicht auftreten oder ignoriert werden.

In großen Projekten wächst die Anzahl der Testausführungen superline-
ar über die Zeit. Dies ist nicht nachhaltig mit Investitionen in Hardware
ausgleichbar. Weiterhin gibt es mehr Tests mit langen Ausführungszeiten.
Die große Anzahl von Änderungen und die langen Testlaufzeiten in großen
Projekten erzeugen einen Konflikt, der in kleinen Projekten nicht auftritt.

Ansätze für die Testkostenreduzierung müssen deshalb die Gegebenhei-
ten von großen Projekten berücksichtigen. Wir erweitern den Stand der
Forschung um mehrere solche Ansätze. Zur Evaluation nutzen wir große
C++ Projekte, ein industrielles und mehrere Open-Source Projekte.

Wir stellen eine Methode vor zur Überführung des superlinearen Wachs-
tums von Testausführungen in lineares Wachstum mittels einer mehrstufigen
Teststrategie mit ökonomischen Anreizen für die Testkostenreduzierung.

Weiterhin konzipieren wir eine Technik welche unit tests von system tests
extrahiert. Diese Technik kombinieren wir mit der mehrstufigen Teststrate-
gie um eine Testkostenreduzierung ohne Qualitätsverluste zu ermöglichen.
Unsere Technik nutzt time-travel debugging. Dabei werden system tests
rückwärts ausgeführt um Abhängigkeiten zu identifizieren. Wir kombinieren
Differentialanalyse auf Coveragedaten und Quelltextanalyse mithilfe eines
Compilerplugins zur akkuraten Bestimmung des Testkerns. Im Vergleich
zu vorherigen Arbeiten erzeugt unsere Technik unit tests mit wartbarem
Quelltext statt Binärdaten und wir fokussieren uns bei der Extraktion auf
den Testkern anstatt für die gesamte Testausführung unit tests zu erstellen.

Weiterhin präsentieren wir die Ergebnisse von zwei empirischen Studien.
Die erste Studie untersucht die Verteilung von Bugs und Coverage. Die
zweite Studie untersucht Granger-Kausalität zwischen Coverage und Bugs.

Schließlich stellen wir noch Methoden vor, um Objekte mit komplexen
Abhängigkeitsgraphen zu erstellen, um Vorschläge für mocks von Objekten
zu erstellen, zur Reduzierung der Größe von Coveragedaten, und wir lösen
algorithmische Probleme im Zusammenhang mit Coveragedaten.

Acknowledgements

First and foremost, I am grateful for all the discussions, advice, and
guidance provided by my advisor, Artur Andrzejak. He pointed me into
interesting directions for my research and fostered collaborations with other
researchers. He provided support in all possible cases and I hope I can learn
from his patience and kindness. Will I ever create a paragraph of writing
where he does not immediately have an idea of how to improve it further?
Maybe I created such a hidden gem somewhere in this work.

I am thankful for all the many persons that contributed to this work and
on my way to this thesis. This thesis would barely exist without them.

Neuenheimer Feld, the place where I met many friendly colleagues that
supported me and my work. Thank you Diego Costa (How many plants
survived in our office?), Lutz Büch (Do you see the optical illusion?), Mo-
hammadreza Ghanavati (Awesome time management), Tuyen Le (Take care
of our office!), Zhen Dong, Kai Chen, and several members of other groups.

I thank all members of the research group at our industry partner, who
welcomed me and my research outside of their database area. Lucas Lerch
(prospective Mitbürger), Frank Tetzel (How long would a chess game with
you really take?), Robin Rehrmann (Can we merge good and bad niveau?),
Stefan Noll (Your next significant contributions?), Tiemo Bang (No more
french beer), Michael Brendle (How many shades are there between hot and
cold?), Jonas Dann, Mehdi Moghaddamfar, former members who always
shared their experiences, Georgios Psaropoulos, Ismail Oukid, Matthias
Hauck, Florian Wolf, Michael Rudolf, Robert Brunel, Marcus Paradies,
David Kernert, Elena Vasilyeva, and Arne Schwarz, he opened a lot of doors
as group manager, even if I constantly annoyed him by persistent inquiries.

Several parts of this work would maybe not exist without the support of
many persons at our industry partner who helped to cope with all complex
details of a large software project. Thank you Ralf Pannemans, Johannes
Haeussler, Jörg Wiemers, Sascha Schwedes, Janos Seboek, Magnus Bie-
neck, Katherina Nizenkov, Arne Gerner, Timo Hochberger, Sascha Bastke,
Christoph Haefner, Colin Joy, Katharina Schell, Andreas Bader, Robin Joy.

Highly beneficial for this work were also several collaborations with other
researchers. Thank you Pavneet Kochhar, Artha Prana, David Lo, Richard
Kuhn, and many others for the productive exchange.

Everyone supporting me in my private life. My significant other, Judith,
who magically endured me all this time. And, by logic deduction, this work
would not exist without my parents and recursively all their parents.

Despite best efforts, I may have inadvertently omitted someone. Please
accept my apologies and be assured that I am grateful for your support.

Contents

Page
1 Introduction 1

1.1 Outline and Contributions · · · · · · · · · · · · · · · 3
2 Background 7

2.1 Software Quality Assurance and Testing · · · · · · · · · · 7
2.2 Study Subject: A Very Large Software Project · · · · · · ·15
2.3 Summary ·21

3 Code Coverage: Measure Test Execution 23
3.1 Definitions ·23
3.2 Implementation Details · · · · · · · · · · · · · · · · ·28
3.3 Problems and Algorithms on Coverage Data · · · · · · · ·31
3.4 Summary ·52

4 On the Relationship Between Coverage and Faults 53
4.1 Discussion ·53
4.2 The Impact of Coverage on Bug Density · · · · · · · · · ·58
4.3 Granger-Causality between Coverage and Faults · · · · · · ·69
4.4 Combinatorial Testing · · · · · · · · · · · · · · · · ·94
4.5 Conclusions · 104

5 Analysis of Approaches for Test Cost Reduction 105
5.1 Background · 105
5.2 An Economic Approach for Test Cost Reduction · · · · · · 109
5.3 Test Case Selection and Prioritization · · · · · · · · · · 119
5.4 Size of Coverage Data · · · · · · · · · · · · · · · · 122
5.5 Shared Coverage: Test Core Identification · · · · · · · · 126
5.6 Nondeterminism in Testing · · · · · · · · · · · · · · 136
5.7 Threats to Validity · · · · · · · · · · · · · · · · · 139
5.8 Conclusions · 140

6 Dynamic Unit Test Extraction 141
6.1 Dynamic Unit Test Extraction via Time-Travel Debugging · · 142
6.2 Object Creation · · · · · · · · · · · · · · · · · · · 160
6.3 Mock Proposal · · · · · · · · · · · · · · · · · · · 181
6.4 Summary · 190

7 Conclusions 191
8 Bibliography 193

List of Notations

{𝑖1, . . . , 𝑖𝑛} A set of 𝑛 distinct items.
⟨𝑎1, . . . , 𝑎𝑛⟩ A sequence, i.e., a list of 𝑛 ordered items with possible repetitions.

N+ The set of natural numbers without zero: {1, 2, 3, 4, . . .}.
N0 The set of natural numbers with zero: {0, 1, 2, 3, 4, . . .}.

Boolean A data type that is restricted to the set {0, 1}.
B𝑛 A 𝑛-dimensional vector space of B = {0, 1}.

𝑆instr A sequence of instructions.
𝑆code Source code, a sequence of instructions in a programming language.
𝑆iC A sequence of items providing information about the execution of 𝑆instr.

{𝑐1, . . . , 𝑐𝑛} A set of 𝑛 coverage files.

𝐴 × 𝐵 The Cartesian product between two sets 𝐴 and 𝐵: {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.
𝑎 ∼ 𝑏 A binary relation, i.e., (𝑎, 𝑏) ∈ 𝑈 for a given 𝑈 ⊆ 𝐴 × 𝐵, where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵.
[𝑎] The equivalence class of 𝑎: {𝑏 ∈ 𝑋 | 𝑎 ∼ 𝑏} for a given set 𝑋 and a relation ∼.

W(𝑐𝑖) = 𝑤𝑖 A weight function W that associated a weight 𝑐𝑖 to an item 𝐶𝑖.
P(𝑆) The power set of the set 𝑆: {𝑈 | 𝑈 ⊆ 𝑆}.
𝑙𝑛(𝑥) The natural logarithm of 𝑥, i.e., base 𝑒 logarithm of 𝑥

𝐻(𝑛) The 𝑛-th harmonic number:
∑︀𝑛

𝑖=1 1/𝑖 ≤ 𝑙𝑛(𝑛) + 1.
𝑂(𝑓) Asymptotic behavior of function 𝑓 : {𝑔(𝑥) | ∃ 𝑐, 𝑥𝑜 > 0 : 0 ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥) ∀𝑥 ≥ 𝑥𝑜}.

1 Introduction

Computer software is a general term for a set of instructions that are inter-
preted and executed by computer hardware. In contrast to fixed hardware,
software is flexible and can be modified without much effort. This allows for
rapid changes and advances in software which are largely decoupled from
the development of the underlying hardware. Given these capabilities, the
development of software is nowadays an important task and the systematic
approach for creating software is called software engineering1 [233]. 1 ISO/IEC 2382: “systematic appli-

cation of scientific and technological
knowledge, methods, and experience
to the design, implementation, testing,
and documentation of software” [135].
ISO/IEC 19759: “the application of a
systematic, disciplined, quantifiable ap-
proach to the development, operation,
and maintenance of software” [233].

The flexibility allowed by software does not only provide benefits, but also
comes with potential disadvantages. As software is executed by hardware,
it can remain unclear what exactly would be the result of such an execution.
This is in contrast to classical engineering fields, where a physical product
can be viewed, measured or investigated more directly. In addition, software
must follow a precise interface defined by the hardware, where a classical
engineering product may be used in a more lenient scenario in practical usage.
These disadvantages can make the validation2 and verification of software3 2 “building the right product”

3 “building the product right”more complex compared to the same tasks for physical engineering products.
Moreover, humankind has more experience with classical engineering of
structures, tools, and machines. Today’s classical engineering products
are the result of centuries of experience and improvements whereas the
engineering of software has only seen several decades.

These differences finally lead to the question of how can we ensure that
software “works as expected”, i.e., how can we verify and validate software How can we verify and validate soft-

ware products?products? The answer is two-fold. First, we must define the expectations,
and second, we must verify the works as. The first part leads to the field
of requirements engineering, i.e., the process of analyzing, defining, docu-
menting and maintaining requirements [233]. However, we do not focus on
requirements engineering in this work and refer to the literature for further
information [73]. The second part leads to the field of software quality and
software testing. Quality refers to “the degree to which a set of inherent
characteristics fulfills requirements” [136] and targets the question of what Quality – “the degree to which a set of

inherent characteristics fulfills require-
ments” [136].

are appropriate quality requirements and how to fulfill them. Consequently,
software quality refers to the “degree to which a software product satisfies
stated and implied needs when used under specified conditions” [133]. Soft-
ware testing refers to any measure that is used to gain information about
the quality of software. In an iterative process, software testing can result
in software quality improvements if the information gained by testing is
consequently used to improve the software and the result is measured again
regarding the defined standards.

2 testing in very large software projects

Software quality and testing are important for software development.
Software that does not fulfill expected requirements can reduce the willing-
ness of a user to use the software or to pay for the development and usage.
A typical scenario is a crash, i.e., the software stops functioning properly
and exits. Other scenarios are incorrect modifications of data or wrong
calculation results. We call such an undesired effect a failure and we use the Fault, failure, defect, bug.

term fault to describe the cause of a failure. We may use the term defect or
bug to refer to either a fault or a failure [233]. Software testing and quality
assurance aim to detect and remove all such defects.

However, it might be hard or even impossible to detect and remove all
defects [124]. Even software that is developed with rigorous software quality
standards, such as software used for space missions, contains defects that
result in catastrophic consequences4 [78, 204]. There are multiple reasons 4 Huckle and Neckel survey a wide

range of software failures [129].why it might not be possible to create software without defects:

1. For any non-trivial software, it might not be possible to conclusively and Can we find all defects in a software?

precisely define the correct set of requirements. For instance, several
million users of a software for word processing might not share the same
understanding of its expected behavior, even if the functionality is well
defined by its documentation.

2. Software interacts with hardware based on an interface and therefore has
only limited control. For instance, caching or parallel processing might
affect the execution of a program in unexpected ways.

3. Hardware can fail. In fact, all hardware parts provide only a statistical
guarantee for correctness. For instance, DRAM errors can alter data.

4. It might not be worth the effort to create a software without defects
considering the potentially low impact of some defects. For instance, a
user might not complain if software created for a programming exercise
crashes for a specific instance of inputs.

In addition to the theoretical impossibility to detect and remove all de-
fects, there are also practical considerations that limit the effort for software
quality and testing. Assuming that software is sold for income, the develop-
ment costs of the software are important [242]. For a sustainable business,
the costs to develop the software must be smaller compared to the total
income which is, simplified, the retail price (price) multiplied with the num-
ber of times it was bought (sales). However, the quality of the software
can influence sales. This leads to the challenging problem of finding the
optimal effort for software quality. Increasing the effort for quality increases Optimal effort for software quality?

costs that may not translate in proportional sales. Reducing the effort for
quality and therefore reducing the costs can result in sales that do not
provide enough income to make the development sustainable. The exact
optimal solution remains unclear due to uncertainties in measurements and
predictions. For instance, it remains unclear how to predict the effect of
an unknown failure on sales. Additionally, different usage scenarios might
require different quality standards. Cases where defects can have severe
results, such as loss of human lives, have different requirements compared
to cases where a defect is barely noticeable, such as a wrong placement of
a graphic in a video game. We conclude that software quality causes costs
and these costs limit the maximum effort invested in quality.

introduction 3

Given a fixed bound of maximum costs, it is important to optimize
testing, i.e., to reduce test costs while remaining the same degree of software
quality. Such reductions on test costs can have significant effects. Google
reports 150 million test executions per day in 2017 [191], Facebook reports
10 billion test executions per day in 2019 [184], Microsoft reports 100 000
test executions per day for some products in 2015 [116], or SAP reports 1
million test executions per day in 2017 [20]. Given these numbers, even a Large test costs provide large opportu-

nities for cost saving.10 % reduction in test executions would result in a large amount of absolute
cost savings. Furthermore, even for smaller projects, such an improvement
can be noticeable if they improve the development workflow by reducing
waiting times for developers.

In addition to the general economic argument for test cost reduction,
time spent on testing also affects the productivity of developers. Typically,
a developer executes tests to verify changes and new functionality. Even
if the test execution is automated, the test execution itself requires time,
the test execution time. For this time, a developer can switch tasks or
wait for the result of the test execution. In simple scenarios with execution
times for tests below a second, the waiting time is negligible. However, in
large projects, the waiting time can require several minutes to several hours.
Assuming a test execution time of two hours, this has multiple effects:

1. Developers cannot re-run tests frequently. This reduces confidence in Test costs affect developer productiv-
ity.code quality and impedes agile development approaches that depend on

frequent text executions [51].
2. Developers have an incentive to avoid test execution. This has, most

likely, a negative effect on software quality. Developers might test less
and might introduce changes influenced by testing times.

3. Developers either have to wait two hours or switch tasks. Both scenarios
will decrease their productivity.

In practice, several approaches can mitigate these effects. However, a
negative impact on developer productivity will remain. Obviously, these neg-
ative effects affect larger projects more significantly than small projects. In
summary, the negative effect on developer productivity is another motivation
to reduce test costs in terms of time spent on testing.

We conclude that although software quality is important, it is typically
not possible to create software without defects. Creating software involves
the optimization problem of maximizing software quality while minimizing
test costs. While the test costs for small software might be negligible, they
are a considerable factor for large projects. Therefore, reducing test costs
without affecting quality is an important problem particularly for large
projects. In this work, we focus on testing in very large software projects
and target the problem of test cost reduction for such projects.

1.1 Outline and Contributions

In Chapter 2, we discuss software quality assurance and the problem of
test costs with a focus on the specific characteristics of large projects. For
this purpose, we study a large industrial project and describe its properties.
Additionally, we discuss related work for test cost reduction.

4 testing in very large software projects

In Chapter 3 and Chapter 4, we focus on coverage, i.e., information
about the execution of a program. Chapter 3 provides definitions and
technical details of operations and algorithms working on coverage data. The
presented algorithms then serve as building blocks for our main contributions
in other chapters. In Chapter 4, we discuss the essence and limitations of
information gained by coverage data. Furthermore, we provide two empirical
studies with new insights into the relationship between coverage and faults.
Moreover, we also show a technique of how coverage can be combined with
combinatorial testing to achieve a higher testedness with low effort compared
to techniques proposed by related work.

In Chapter 5, we analyze several approaches for test cost reductions in
large projects. We show that existing work often target small projects and
do not consider the specific characteristics of large projects. Furthermore,
we present, evaluate and discuss several approaches for test cost reduction
tailored to large projects. We also discuss threats to validity of our work.

Finally, in Chapter 6, we focus on our main contribution, dynamic unit
test extraction. We present, evaluate and discuss an approach to extract
unit tests from system tests via time-travel debugging that combines several
techniques presented in this work to achieve practical usefulness. Addi-
tionally, we present in this chapter our work for object creation and mock
proposal. For both scenarios, we use static analysis to gain insights about
object hierarchies and dependencies. We then use this information to pro-
pose recommendations to create objects or mocks. In both cases, we present
algorithms to minimize the amount of required objects or mocks.

We conclude our work in Chapter 7. We summarize our results, set them
in context, and provide directions for possible future work.

The main contribution of this work is an approach for dynamic unit test
extraction via time-travel debugging, a practical approach to reduce test
costs by extracting unit tests from system tests. The approach is practical
because it is implemented for a large industrial software project and it is
designed in such a way that it fulfills several requirements of practitioners.

The following list contains our contributions. All contributions are in
the context of large projects. Due to brevity and repetitiveness, we omit to
name this specifier for each entry.

1. Dynamic unit test extraction via time-travel debugging, a practical ap-
proach to reduce test costs by extracting unit tests from system tests via
backward-execution of a test execution (Section 6.1).

2. An empirical study of the impact of coverage on bug density (Section 4.2).
3. An economic approach for test case selection and reduction (Section 4.2).
4. An approach for recommending options to create objects in C++ that aims

to reduce the total amount of required intermediate objects (Section 6.2).
5. A study of Granger-causality between coverage and defects (Section 4.3).
6. A technique that combines coverage and combinatorial testing to create

new tests with low effort (Section 4.4).
7. An analysis of compression techniques for coverage data (Section 5.4).
8. An analysis of causes for test costs (Section 2.1).
9. An analysis of approaches for automated mock recommendation and mock

minimization in C++ (Section 6.3).

introduction 5

This thesis includes work that is already published or is planned to be
published. For all work in the following lists, the author of this thesis is the
main author and is responsible for the conception and design of the studies
and techniques, the acquisition of data, the evaluation, the analysis and
interpretation of results, and has drafted and finalized the articles. However,
the author of this thesis is thankful to all co-authors that also contributed
substantially to the aforementioned tasks.

1. Thomas Bach, Artur Andrzejak, and Ralf Pannemans. 2017. Coverage-
Based Reduction of Test Execution Time: Lessons from a Very Large
Industrial Project. IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW 2017) [16].
DOI 10.1109/ICSTW.2017.6

• Partially included in Chapters 3 and 5.

2. Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. 2017.
The Impact of Coverage on Bug Density in a Large Industrial Software
Project. ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM 2017) [17].
DOI 10.1109/ESEM.2017.44.

• See Section 4.2.

3. Thomas Bach, Ralf Pannemans, and Sascha Schwedes. 2018. Effects of
an Economic Approach for Test Case Selection and Reduction for a Large
Industrial Project. IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW 2018) [20].
DOI 10.1109/ICSTW.2018.00076.

• See Section 5.2.

4. Thomas Bach, Ralf Pannemans, Johannes Haeussler, and Artur Andrze-
jak. 2019. Dynamic Unit Test Extraction via Time-Travel Debugging
for Test Cost Reduction (short paper). 41st International Conference on
Software Engineering (ICSE 2019) [19].
DOI 10.1109/10.1109/ICSE-Companion.2019.00093.

• See Section 6.1.

5. Thomas Bach, Ralf Pannemans, and Artur Andrzejak. 2020. Determin-
ing Method-Call Sequences for Object Creation in C++ . IEEE Interna-
tional Conference on Software Testing, Verification and Validation (Porto,
Portugal) (ICST 2020) [18].

• See Section 6.2.

Unpublished:

1. Thomas Bach and Ralf Pannemans and Johannes Haeussler and Artur
Andrzejak. Dynamic Unit Test Extraction via Time-Travel Debugging
for Test Cost Reduction (full paper)

• See Section 6.1.

2. Thomas Bach and Ralf Pannemans and Artur Andrzejak. Automated
Mock Recommendations.

• See Section 6.3.

https://doi.org/10.1109/ICSTW.2017.6
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1109/ICSTW.2018.00076
https://doi.org/10.1109/ICSE-Companion.2019.00093

6 testing in very large software projects

In the following cases, the author of this thesis is not the main author:

1. Artur Andrzejak and Thomas Bach. 2018. Practical Amplification of
Condition/Decision Test Coverage by Combinatorial Testing. IEEE In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2018) [9].
DOI 10.1109/ICSTW.2018.00070.

• See Section 4.4. Contributions: Coverage-based analysis, test suite
reduction, implementations, evaluation, partially written the article.

In submission or review:

1. Pavneet Singh Kochhar and Thomas Bach and Gede Artha Azriadi Prana
and Ralf Pannemans and Artur Andrzejak and David Lo. A Longitudinal
Study on Coverage and Test Suite Effectiveness.

• See Section 4.3. Contributions: Acquisition of data for SAP HANA,
design and discussion of experiments, implementations, discussion of
Granger-causality, partially written the article.

https://doi.org/10.1109/ICSTW.2018.00070

2 Background

In this chapter, we discuss the background and context of this work. We
introduce software quality assurance and describe the problem of test costs
for quality assurance activities. We further introduce research areas related
to the problem of test cost reduction and discuss related work. We also
present our main research subject, SAP HANA, a large industrial software
system developed by SAP. Furthermore, we provide details about the testing
process and the resulting test costs of SAP HANA.

2.1 Software Quality Assurance and Testing

We start with a simple introduction based on an example and then provide
a more detailed discussion of the important aspects.

Software quality assurance (SQA) is a set of activities that ensure a certain Software quality assurance

degree of quality for a software. In a simplified view, quality assurance is a
repeated process consisting of the two activities definition and measurement.
As a recurring example, we define the following quality standard:

Quality standard: Each functionality in a software must be documented.

To assure the quality, we measure for each functionality whether it is doc-
umented or not. We conclude that the software fulfills the quality standard
if all checks are positive. Otherwise, in the case documentation is missing,
we conclude that the software does not fulfill the quality standard.

Considering the case that software does not fulfill a quality standard, we
typically not only state this fact, but we act to change the state. In our
example, such an activity could be the addition of new documentation or
the removal of undocumented functionality. After the improvement activity
has finished, we measure the current state again and compare it against the
quality standard. We can repeat this process until the standard is fulfilled.
We can apply this process not only in cases where a quality standard was
not fulfilled. It is even possible to further improve quality above a certain
standard. For our example, we may verify whether the documentation is
complete, correct or helpful to developers. We then iteratively improve the
documentation until the higher quality degree is reached.

This set of tasks (plan, do, check, act1) provide the foundation for quality 1 Also called PDCA circle or Deming
circle [63]. The steps are similar to the
scientific research process: hypothesis,
experiment, evaluation, analysis.

management [136]. In contrast to SQA, software quality management (SQM)

Software quality management (SQM)
aims to manage, develop and improve the quality of software. While SQM
is an important topic, it is also a broad topic [136] that we do not cover in
this work. Instead, we focus on SQA and discuss important aspects of SQA.

8 testing in very large software projects

SQA is typically applied with a varying degree of formalization for all
software projects. Personal experience tells us that even a small software
program quite often does not work as intended in the very first version and
requires further corrections. In such a case, the quality standard is our
personal expectation of the required functionality. The measurement is the
execution of a program and the improvement activity is the modification of
the source code until the execution of the program results in an expected
result. Larger software projects and professional software projects may
formalize software quality assurance so that the standards and activities
are defined and verified. Such a formalization provides confidence that the ISO 9000 [136]

software quality is appropriate [136].
Software testing is a measurement activity within SQA. A typical im-

plementation of quality measurement for software is the execution of the
software and verification of the result corresponding to the execution. More
formally, “software testing consists of the dynamic verification that a pro-
gram provides expected behaviors on a finite set of test cases, suitably
selected from the usually infinite execution domain.” [233]. In contrast to Software testing consists of dynamic

verification.these dynamic techniques, “static techniques are different from and comple-
mentary to dynamic testing. (...) It is worth noting that terminology is not
uniform among different communities and some use the term testing also in
reference to static techniques.” [233]. The term static testing typically refers
to tests that do not require the execution of a software. For example, they
check the correct usage of programming idioms. For the rest of this thesis,
we do not differentiate between dynamic and static testing (or verification).
We assume that testing contains both dynamic and static techniques, but
we typically focus on the execution of tests and dynamic techniques.

Testing requires a test oracle. That is, a mechanism or source of informa- Test oracle

tion to decide whether an outcome is correct or not [21, 125]. For example,
we may execute a square root function with an argument of 100. The result
is 10. Common sense implies that this result is correct. However, a CPU
typically does not provide common sense, it requires instructions. Therefore,
a test must encode 10 as the expected result and must verify whether the
calculated result is identical to the expected result. Fig. 2.1 shows a typical
implementation of such a test.

1 @Test
2 public void testSqrt () {
3 int input = 100;
4 int expected = 10;
5 int result = (int) Math.

sqrt(input);
6 assertThat (result).

isEqualTo (expected);
7 }

Figure 2.1: A typical fluent unit test
in Java based on jUnit [187, 240] and
AssertJ [64, 176]. The oracle consists of
the expected result and the comparison
against the actual result.

Depending on the test type, we may encode the oracle within an au-
tomated check or we have to verify the results manually. For example,
graphical output often requires manual inspection. In some cases, the test
oracle may not be stated explicitly but can be derived implicitly. For ex-
ample, the absence of exceptions or crashes may represent implicit oracles.
In these cases, the presence of such an event results in a test failure. In
regression testing, an oracle can also only verify that a result is identical to
the result of a previous version.

The oracle problem, i.e., determining an oracle for a specific input, can be Oracle problem

arbitrarily complex. For instance, determining an oracle for the input 101
to a square root function requires a precise understanding of floating point
arithmetic [102, 197]. Determining an oracle for the input −3 requires a
decision on functionality provided by the square root function, i.e., whether
it works on real or complex numbers. Given these examples, we conclude
that the oracle problem can be challenging.

background 9

2.1.1 Test Organization

Software testing consists of several categorizations that help structuring
testing activities. For example, the test level refers to the target of the test Test level

and the objectives of the test. In addition, tests are grouped at different
levels. A single test may be called test case and a set of test cases may Test case

be called test suite. A test suite may be distributed over several files, or a Test suite

software may have several test suites for different testing objectives. The
test level and test objectives provide a characterization of tests. Based on
this characterization, different testing purposes might only require a subset
of all tests. For instance, performance tests require a different kind of tests
compared to functionality tests. Even in within the group of functionality
tests, we can select different subsets depending on the specific functionality
that should be tested. For example, we can separate a software project
into components and only select functionality tests that are relevant for a
component that is tested. This concept leads to techniques for test reduction
that we discuss in Section 2.1.4.

Based on the test target, we can categorize tests into groups such as unit Test target

tests, component tests, integration tests, and system tests. A unit test tar-
gets a function or unit level, a component test targets a component or class,
and an integration test targets the interaction between units, components,
functions or classes. Finally, a system test targets the functionality of the
complete system. We call them different layers of testing. Each layer, in the Layers of testing

presented order, typically executes a larger amount of code compared to the
previous layer. Therefore, a higher layer relates to a longer execution. On
the other hand, tests at the lower layer test only a very specific functionality
where at the higher layer they test overall functionality which may be more
relevant for a user. They also provide a different level of detail for root
cause detection. A fault identified by an unit tests might be faster to find
compared to a fault identified to a system tests. In addition, the developer
effort to create tests on each level might be different. However, this de-
pends on the specific setting of a software project. Table 2.1 summarizes
the characteristics in terms of scope, execution time and amount of tests.

Test Layer Scope Execution Time Amount of Tests

Unit Functions Short Large
Component Classes Short to medium Medium
Integration Interactions Short to high Medium to small
System Whole system Long Small

Table 2.1: Overview of test layers and
their characteristics.

The test objective allows for categorization of tests based on their purpose. Test objective

For example, performance and stress tests verify whether a software executes
within a predefined time window or how the software behaves if used by mul-
tiple users concurrently. Security testing investigates whether functionality
or data can unintentionally be accessed. Regression testing verifies whether
a software continues to work as expected after a change. Acceptance testing
verifies whether the requirements are met. Usability testing measures how
real users use a system and investigates the ease of use for a software. The
literature provides a wide range of test objectives [133, 233].

10 testing in very large software projects

2.1.2 Test Techniques

Test technique refers to the systematic approach that is used to conduct Test technique

the test. They can be grouped in categories such as input-domain based,
code or dataflow based, fault based or model based. Related work propose
a wide range of different techniques with different goals [43, 208]. We focus
on the group of input-domain based techniques. Such a technique selects an
appropriate set of inputs for a given test objective. It might be tempting
to thoroughly and exhaustively test the full input space. However, even for
small programs, this is typically not possible as we will show by an example.

Assuming hardware that can execute 3 × 109 operations per second repre-
senting a 3 GHz processor and assuming one value verification requires one
operation. Then, a single boolean input requires two operations with an
execution time below a second. For a 32 bit integer input, we must iterate Testing the complete input space is typ-

ically not feasible.232 input values. It already requires 2 seconds to execute these operations,
but is still feasible. However, a 64 bit integer input requires 6 × 109 seconds
or at least 190 years. Even with additional hardware, we may not be able
to finish testing in a reasonable amount of time. In practice, there can be
multiple inputs and the type of the input can be of an arbitrary length such
as text from filesystem or data in memory. Therefore, the required execution
time can be arbitrarily long. In addition, even in the case we could iterate
over all inputs, we still have to verify the output. In conclusion, it is often
not feasible to test the complete input space.

There are several techniques to reduce the input space for input-domain
approaches such as equivalence partitioning, pairwise and combinatorial
testing, boundary value testing and random testing [208, 235]. Each term
nowadays represents an own field of research with different approaches. We
highlight the general principles behind each approach and provide informa-
tion about related work for further information.

2.1.2.1 Boundary Value Testing

For boundary value testing, we select values from the input space where we ex- Boundary value testing

pect a boundary for a condition. We find such conditions from requirements
or source code. For example, a function should return 0 for all values larger
than 5. Here, we select 5 and 6 as boundary values for testing. Empirical
research shows that such an approach is effective [49, 88, 90, 219, 235].

2.1.2.2 Equivalence partitioning

Equivalence partitioning (EP) is a standard approach for test input gener- Equivalence partitioning

ation [88, 109, 235]. Based on the specification, we categorize the input
domain into one or more sets where each item in a set shows the same
behavior for the program execution. We call each set an equivalence class
(EC) [230]. Then, for each EC, we test only a single representative2. We 2 We define and explore the mathemati-

cal background of equivalence relations
and classes in Section 3.3.8.

can combine EP with boundary value testing, i.e., we select three candi-
dates for each EC: the “minimal” item, a random item, and the “maximal”
item. For example, to test the function 𝑎𝑏𝑠(𝑥) =

√
𝑥2 for the input domain

[−10, 10], we define the two EC {[−10, −1], [0, 10]}. For testing, we select
the representative input values {−10, −7 − 1, 0, 2, 10}. EP reduces a large

background 11

input domain to a few elements of representatives. However, there are also
limitations. It might not be possible to create EC because of inadequate
specification or the problem does not allow the creation of such classes (e.g.,
creating EC for matrix multiplication). In addition, the amount of EC can
be too large for practical usage (e.g., algorithms working with Strings).

2.1.2.3 Pairwise And Combinatorial Testing

𝑃1 𝑃2 𝑃3 𝑃4

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 2.2: Pairwise testing example.
These 5 tests cover all possible values
for all combinations of two boolean pa-
rameters.

Pairwise testing investigates only combinations of pairs of different param-

Pairwise testing

eters in a multi-dimensional input space instead of all combinations of all
parameters [164, 165, 195, 203]. This approach is reasoned by empirical
studies where root cause analyses of failures show that more than 90 % of
all faults depend on 2 or fewer variables [166]. Therefore, instead of testing
for all 24 combinations of 4 boolean parameters, it might be sufficient to
test only a subset of inputs so that all pairwise combinations between each
parameter are represented in the test input. In fact, this requires only 5
tests instead of 16 tests as shown by Table 2.2. The problem of finding
such an input is NP complete. However, we might accept also near-optimal
solutions. In practice, the difference for test reduction between a large 2𝑛

amount of tests and a small 𝑛 is significant, but the difference between the
minimum amount of 𝑛 and 𝑛 + 10 tests has probably no measurable effect.

Pairwise testing can provide an exponential reduction for the amount
of test cases. For instance, 10 boolean parameters would require 210 test
cases to iterate over all combinations, but less than 30 test cases to execute
all pairwise combinations [164, 165]. Pairwise testing provides promising
results for parameters with small domain sizes such as booleans. For larger
domains, such as 32 bit integers or strings, pairwise testing still leads to an
infeasible amount of test cases. We can see this by a small discussion of an Limitations of pairwise testing

absolute minimum of test cases that must be generated. For 𝑛 parameters
where each parameter can have 𝑚 different values, pairwise testing must
create at least 𝑚 · 𝑚 tests cases, because all pairs of 2 parameters must be
executed. For instance, a function with 𝑛 32 bit parameters requires at least
232 × 232 = 264 test cases. As we have already discussed before, this would
require a time effort of over 100 years on typical hardware. To tackle this
challenge, we can combine pairwise testing with equivalence partitioning as
we explore in Section 4.4.

The generalization of pairwise testing is combinatorial testing, where
instead of only pairs of parameters, larger subsets and their combinations
are investigated [165]. For instance, we may want to cover all 3-way combi-
nations, i.e., all value combinations of all possible subsets with cardinality
3. Empirical studies suggest that extending this approach to 6-way testing
may be sufficient for practical scenarios because defects found in practice
rarely depend on more than 6 parameters [164, 165].

2.1.2.4 Random Testing

Random testing uses randomly selected values of the input domain to test the Random testing

software. Typically, the testing is limited by a threshold in terms of time or
number of generated values. The main issue of random testing is the missing
test oracle. Generally speaking, random input results in random output.

12 testing in very large software projects

Except for implicit test oracles such as crashes and assertions, we have no
further knowledge of whether the random output is correct or not. Therefore,
random testing has limited value in practice. However, randomly generated
tests can be beneficial for differential testing, i.e., comparing whether the
output of software (unexpectedly) changes between versions [190]. Instead
of generating completely random input, there exist also so-called directed
random approaches. There, randomness is used to generate input but the
generation is bounded by some constraints concluded from the source of the
software or its execution [209].

2.1.3 Test Costs

Testing activities require time and resources. It requires time to design,
implement, execute and check tests. The development and setup of a test
framework may require additional time. As discussed in the previous section,
there is a wide range of test techniques for software testing. Given infinite
time and resources, we could employ all techniques to ensure a high degree of
quality. Unfortunately, time and resources are limited in practical scenarios. Test cost problem: Limited time and

resources.This results in a typical cost problem, i.e., how much time and resources
should be invested for an expected benefit.

Also, testing requires resources. Test executions may use a workstation
that is also used for development, if the resource consumption of tests is
reasonably low. However, test executions with higher resource consumption
might require a central system to organize the test executions. A large set Test executions require additional hard-

ware and software.of tests might require multiple test servers to allow the execution of all tests
within an acceptable waiting time. Moreover, the execution time for tests
translates to waiting time for developers. They either wait until testing is
finished, or they switch their current task which might add context switching
costs. In summary, testing can result in a wide range of costs. Therefore,
improving the efficiency of testing is an important task for small and large
software projects to reduce test costs.

As stated in the introduction, reducing test costs is a trade-off between
the effort of testing activities and therefore the degree of quality of a software
project on the one hand and associated costs on the other hand. For any Trade-off between costs and quality.

non-trivial project, it is typically not possible to precisely model this trade-
off due to inaccuracies in calculating the test costs and due to a missing
precise definition of quality. There are several approaches to estimate test
costs and the impact on software quality [116, 144]. However, it is expected
that such approaches must be tailored to the specifics of a given software
project and may not be generalizable.

Even without a precise model, we can still use a simplified model to Simplified model for test costs.

analyze the trade-off property between test costs and the degree of quality
for a software project. Let 𝑐𝑡 be the costs of testing activities and 𝑐𝑜 all other
costs. Then the total cost of a software project 𝑐𝑠𝑢𝑚 follows the equation
𝑐𝑠𝑢𝑚 = 𝑐𝑜 + 𝑐𝑡. Based on the previous discussion, we assume that the
degree of quality 𝑞 depends on the costs for testing. Therefore, 𝑞 = 𝑓(𝑐𝑡)

where 𝑓 is a monotonically increasing function. We further assume that
𝑐𝑜 is fixed. There exist two options to increase 𝑞. First, by increasing 𝑐𝑡,
i.e., by increasing the test costs, we increase 𝑞. However, this also increases

background 13

𝑐𝑠𝑢𝑚, i.e., the total costs. Second, we can make testing more efficient, i.e.,
we replace 𝑓 by 𝑓𝑛𝑒𝑤 so that 𝑓(𝑥) ≤ 𝑓𝑛𝑒𝑤(𝑥)∀𝑥. This allows us to decrease
𝑐𝑡 while maintaining the same result for 𝑞 or increase 𝑞 while maintaining
the same value for 𝑐𝑡. In summary, to improve the degree of quality for
a software project, we either increase the total costs or we improve the
efficiency of the testing3. 3 We may also improve other factors

that were in fact hidden within the 𝑡𝑜

constant, but these other factors are
not in focus of our simplified model.

In practice, it may economically not be advisable to continuously increase
the total costs of a software product by proportionally increasing the costs
for testing. As we show in Section 5.2, the test costs of a large and successful Test costs can increase superlinearly.

software may increase superlinearly over time, which makes it infeasible to
accept a proportional increase in total costs — even for large companies. In
such cases, it may not be possible to guarantee a certain degree of quality
due to the high test costs. Therefore, test cost reduction does not only
provide a reduction in costs, but may even be required to ensure a certain
degree of quality for a large software. Otherwise, the high test costs prevent
any further quality activities.

In summary, test cost reduction is important for small and large projects.
Even more, test cost reduction can be a requirement to ensure a high degree
of quality for large projects, because cost limitations might prevent extensive
testing activities if the crated costs are too large.

2.1.4 Related Work on Test Cost Reduction

Test cost reduction is an important problem and has been addressed by
researchers and practitioners alike: “Testing can be expensive, and the
need for cost-effective techniques has helped it emerge as one of the most
extensively researched areas in testing over the past two decades” [208].

Orso and Rothermel [208] use the following three categories:

• Test case prioritization (TCP). TCP, TCS, and TCR

• Regression test selection (RTS) or test case selection (TCS).
• Test suite reduction (TSR).

Yoo and Harman [257] and Hyunsook [76] provide surveys for all cate-
gories, Khan et al. on TSR [153], and Khatibsyarbini et al. on TCP [154].
Kazmi et al. provide a literature review about TCS techniques [149] and Ali
et al. about the industrial relevance of regression testing research [25].

Each of these three categories describes techniques that filter or reorder
test cases to optimize some criteria. For example, we may consider maxi-
mizing code coverage as the optimization objective, understanding it as a
proxy for the thoroughness of testing [103]. TCS techniques select a subset
of tests for each test run. For example, only test cases relevant to a specific
objective function are selected for a test run. TSR techniques shrink the
test suite (i.e., test cases are removed). Therefore, the potential cost savings
for TCS and TSR techniques are typically higher compared to TCS, but
TCS and TSR techniques have the potential disadvantage of a loss of testing
quality because not all tests are executed compared to the full test suite.

The main difference between TCS and TSR is the state of the original test
suite. For TCS, the original test suite remains unmodified. Typically, TCS
techniques select a subset of tests for a specific activity. TCR techniques

14 testing in very large software projects

modify the original test suite. In this case, instead of the original test suite,
only the test suite as a result of TCR will be used in the future.

Techniques of all three categories can be combined in any order. For
example, we may first reduce a test suite, then select multiple different
subsets of the reduced test suite for different tasks and finally prioritize the
tests for each of these tasks. Even more, TCS and TCR techniques are often
interchangeable and TCP techniques can be converted to TCS techniques
by using a threshold to limit the ordered sequence of test executions.

We provide an extensive discussion of related work for TCP and TCS in
Chapter 5 and therefore do not replicate this overview here. Instead, we
focus only on more recent work that target large systems.

Menon et al. describe their work at Google [191] where 150 million tests
are executed per day. Google engineers implemented a system for TCS. Work at Google

Based on dependency analysis, they collect for each change 𝐶1 the set of
required tests 𝑇1 to test this change. Their build system facilitates such
analysis, requiring minimal overhead compared to advanced static analysis
techniques. Instead of executing all tests in 𝑇𝑐 directly, they collect over a
time frame of several hours the set 𝑇 = 𝑇1 ∪ · · · ∪ 𝑇𝑛 of all 𝑛 tests sets col-
lected within the time frame. Then, they execute all tests in 𝑇 . In the case
all tests succeed, they conclude that the source code is successfully tested
now. In the case one or multiple tests failed, they triage the error-introducing
change by re-executing the failed tests for all intermediate changes to find
the error-introducing change. This approach consequently reduces test ex-
ecutions by dependency analysis and by merging multiple test executions
into a single execution. The approach is effective because the majority of
test executions succeed and there is no benefit in executing succeeding tests
multiple times. Hence, their approach skips these executions.

Machalica et al. describe their work at Facebook [184] where 10 million
tests are executed per day. Facebook engineers implement a system for TCS Work at Facebook

and TCP. For this purpose, they use machine learning techniques to classify,
for a given change, the set of all available tests into potential failing tests
based on metadata of the change (such as the size of a change, history, file
type, or historical failure rates). Consequently, they only execute tests that
are classified as potentially failing. They report that this approach reduced
infrastructure costs for testing code changes by a factor of 2, while guaran-
teeing that over 95 % of individual test failures and over 99.90 % of faulty
changes are still reported back to developers. Most interestingly, the learn-
ing based on metadata is language-agnostic, i.e., no further understanding
or parsing of a programming language is required.

Cruciani et al. describe an TSR approach that aims to be scalable for
large systems [57]. They employ similarity-based clustering techniques on
test suites and then select only a single test for each detected cluster. They
evaluate the execution time of their technique on 500 000 tests collected
from several GitHub projects. To evaluate the fault detection loss of their
approach, they seeded faults into the source code of study subjects. They
conclude that fast execution times and low fault detection loss make their
approach practical for large projects.

We conclude that our work is not the first to investigate testing in large
software projects. However, as we will see, there are still unsolved challenges.

background 15

2.2 Study Subject: A Very Large Software Project

Our main case study for this work is SAP HANA [93, 94, 188], a high-
performance, parallel in-memory database management system developed
by SAP. With over 6 million lines of source code, we consider SAP HANA
a very large software project. SAP HANA is mainly written in C++ and C
and modified by over 800 source code changes (commits) per day4 by more 4 Note that in practice, the metric

“changes per day” is rather vague due
to the unclear definition of what ex-
actly constitutes a single change. With
pre-commit reviews, even the number
of commits or the number of merges
to the main repository may not be rep-
resentative. In our case, we count the
number of changes to the main product
lines and each branch that represents
a component within SAP HANA. How-
ever, such a single change can be the
result of multiple and iterative smaller
changes.

than 100 developers. The code of SAP HANA is in part very complex due
to requirements for high performance, implying own memory management
subsystems, and massive multi-threading. The code basis combines and
integrates several sub-projects with a lifetime of more than 10 years. The
development of SAP HANA creates more than 10 TB of metadata per year
that is stored in and analyzed by an internal SAP HANA database itself.

2.2.1 Quality Assurance

Since many customers use SAP HANA in mission-critical scenarios, quality
assurance of this product is of paramount importance. This requirement
is ensured via extensive software testing practices in all development and
release stages. To illustrate, there exist over 900 000 test cases that can 900 000 test cases

be executed by over 1 000 servers with, on average, 40 CPU cores, 3 GHz
frequency, and 256 GB of memory. Executed sequentially, the total execution
time of all tests (even with optimized builds) would require up to 3 weeks. 3 weeks sequential test execution time

In practice, tests are executed in parallel on a cluster of test servers. The
actual execution times of tests range between 1 min and several hours. The
execution time depends on factors such as test type, cluster size, cluster
load factor, or test configuration. Effects such as flakiness resulting in
re-executions of tests can increase the total execution time.

2.2.2 Test Organization

There are three relevant hierarchies for the test environment of SAP HANA:
the test layer hierarchy, the test deployment (or execution) hierarchy, and
the testing stages hierarchy. The following sections discuss each hierarchy
in more detail. In practice, there exist additional layers, but we focus only
on the aspects important for our work.

2.2.2.1 Test Layer Hierarchy

The test code of SAP HANA is organized in test suites, each containing
between 1 to 20 000 test cases.

A test suite typically consists of a Python file embedded in a custom
testing framework. It can contain different types of tests, mainly: system
and unit tests, but also component and integration tests. A system test Focus on system and unit tests.

typically checks for regressions introduced by new changes to the source
code. Such a system level regression test is typically implemented as one or
multiple SQL queries. The test framework sends each query to a prepared
database instance and checks the result for correctness. Contrary to system
tests, unit tests call code fragments directly using a C++ test framework and
check the results. Counterintuitively to a common understanding that unit

16 testing in very large software projects

tests execute a small amount of code, there are also unit tests that require
a database instance and therefore execute the whole database setup and
database stack and are still referred to as unit tests by (some) SAP devel-
opers. It seems that historically, some developers considered all C++ tests
as unit tests and all Python tests as system tests.

As we can already conclude, the exact categorization of tests into test lay-
ers is not trivial in practice. There exists a definition for each layer [134, 233],
but they can contain ambiguity or are not practical [86]. Based on discus-
sions with developers at SAP, we recognize that developers have different
interpretations of these terms, which aligns with related literature regarding
the differentiation between unit tests and integration tests [86]. In this work,
we typically only differentiate between system tests and unit tests. We cat- Python: System test. C++ : unit test.

egorize tests that use SQL statements and the Python test framework as
system tests and tests that use C++ and any of the existing C++ test frame-
works as unit tests. We see in Section 5.5, that we can also use coverage
data to effectively differentiate such tests.

2.2.2.2 Test Deployment Hierarchy

Figure 2.2: The organization of the
test deployment hierarchy SAP HANA.
Each level consists of multiple refine-
ments.

The test deployment hierarchy determines which test cases are grouped
and executed together. Fig. 2.2 shows an overview with descriptions.

Starting with a test run that identifies a quality review for a specific Test run

version of the software, each level in the deployment hierarchy contains one
or multiple refinements. A test run consists of a set of test profiles that Test profiles

group test suites by their test purposes. Such a test profile can correspond
to a project component (source module), or it can organize test suites by
other criteria. A test profile contains test suites that target a set of features Test suites

or components. Each test suite contains a test layer that only simplifies the
organization of test cases and different types of test cases. We therefore Test cases

typically omit the test layer in further discussion. A test case then represents
a specific single test and can be of different types.

background 17

Developers can also execute single test cases or test suites either on a
local development workstation or on the central testing system. The central
testing system utilizes either test servers directly or they use virtualization
techniques such as docker environments [29, 192].

SAP uses the SAP HANA database itself to store the results and metadata
of all test runs for convenient access and self-testing for SAP HANA.

2.2.2.3 Testing Stages Hierarchy

1INTERNAL© 2019 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Local Testing

New changes

Scope - Effort - Frequency-1

HANA Testing Stages Hierarchy

Component
Testing

Integration into
component

Master Code
Line Testing

Integration into
master code

line

Daily Testing

Expensive tests
& acceptance

testing

Exploratory
Testing

Performance,
malfunction,
fuzzing, …

Weekly
Qualification

SAP-internal
systems

Monthly
Qualification

Cloud releases

Release
Qualification

Major releases,
typically yearly

Post-submit testing

(automated)

Extended testing

(automated & manual)

Pre-submit testing

(automated)

Figure 2.3: The testing stages of SAP
HANA. Source: Sascha Schwedes /
SAP (modified for presentation).

The quality assurance process for SAP HANA is divided into several
testing stages as shown by Fig. 2.3. Broadly speaking, lower testing stages
have a smaller scope, run shorter, require less hardware, and run more
frequently compared to higher testing stages. The stage of local testing is
rather informal. It is the responsibility of a developer to test locally (or not)
and there is no metadata available for this stage, i.e., it is unknown which
tests are run how often and whether they succeed or not. Developers can als
execute tests of a higher testing stage, but they may also apply approaches
that are not contained in higher stages. Starting from component testing
until the highest testing stage, all stages involve automated parts and SAP
records metadata for all stages. In several parts of this work, we utilize this SAP records metadata for testing.

metadata to gain insights about the testing process.
The existence of multiple testing stages has several consequences of which

we only list a subset that is important for our work:

1. The existence of multiple testing reduces the feedback time for developers.
Developers do not have to wait until all tests are executed, they gain early
feedback based on a smaller subset of tests.

2. Developers might not get immediate feedback on their changes if a fault
is only found in one of the later testing stages.

3. The resource consumption is reduced. As higher testing stages typically
involve more expensive tests, the reduced execution frequency results in
reduced costs compared to executing them for every change.

4. It requires a substantial amount of effort to keep changes, tests, versions
and bug reports in synch.

18 testing in very large software projects

All these consequences either improve the productivity of developers or
need additional measures to avoid negative effects for the degree of quality.
We further investigate the concept of multiple testing stages in Section 5.2.

2.2.3 Test Costs

As already mentioned in Section 2.2.2, executing the set of 900 000 test cases
can require a considerable amount of time and resources such as hardware.
In addition to the issue of a large number of tests, there are several other
aspects that increase test costs such as tests with long execution times, high
execution frequency, waiting times for test executions, or follow-up activities
to verify the test result. We briefly discuss these aspects.

2.2.3.1 Large Amount of Test Cases

We consider the amount of 900 000 test cases a fairly large number that is
hard to inspect individually. However, we can categorize test cases by the
different criteria discussed in Section 2.1. This allows us to identify subsets
of particular interests. For instance, unit tests have a lower execution time
compared to system tests. The former typically execute in a fraction of
a second whereas the latter can require more than an hour to execute.
Therefore, in terms of execution time, a single unit test has a considerably
lower impact on the test cost compared to a single system test. Generally, Not all tests are equally expensive.

we expect that tests in a higher testing layer require more execution time
compared to tests in a lower testing layer. In addition, the test purpose
can also provide a characterization with similar implications. Performance
tests or fuzzing tests with some type of random execution typically require
more execution time compared to a functional test. For this discussion, we
characterize tests that require a long execution time for the execution or
extensive resources (such as distributed tests) as expensive.

We also observed that the amount of test cases grows over time and the
deletion of tests rarely occurs. Based on discussions with developers at
SAP, we believe that the reason for this observation is based on insufficient
incentives for developers to delete tests. Even though a test run could be
shorter, tests are executed centrally and a developer might not even notice
a small change in the execution time. On the other hand, test deletion
requires time and might result in a test suite with a reduced degree of
quality. Moreover, developers do not want to be responsible for deleting The amount of tests only grows over

time.a test that would have detected a fault in future versions of the software.
Conclusively, developers write and add more tests over time and rarely delete
tests. Therefore, the amount of test cases grows over time.

Given a large number of test cases, we have multiple options to improve
test costs. We can either remove tests, we execute tests less frequently, or
we focus on non-expensive tests if new tests are added. We noticed that the
first option of test deletions is not practical and the last option is rather
speculative based on future improvements. Therefore, our work explores the
second option in Chapter 6, where we propose to extract unit tests from
system tests and displace the system tests to a higher testing stage with
lower execution frequency and thereby reducing test costs.

background 19

2.2.3.2 Tests with Long Execution Times

For SAP HANA, a large fraction of automatically executed tests can be
categorized into one of the two categories unit tests or SQL system tests.
Regarding execution time, i.e., the time between the start of a test execution
by the central continuous integration system until the results are reported,
these two categories have different characteristics as shown by Table 2.3. Unit tests: fast. System tests: slow.

For this reason, we label unit tests as short or fast and SQL system tests
as long or slow. In practice, there are also unit tests with higher execution
times than some system tests, but for the majority of cases, these labels fit.

Required Time
Unit Test SQL System Test Task

≥2 s 2 h Compile C++ source code to binaries
5 s to 2 h Schedule for free server ressources

≥5 min ≥30 min Distribute binaries
- ≥20 min Install HANA
- ≥1 min Start HANA
- ≥10 s Send SQL statement

>0 s 5 s to 3 h Execute and wait for result
5 min Check result, report to CI

< 30 min Several hours Total required time (typically)

Table 2.3: Composition of test execu-
tion times for tests executed by the
central continuous integration system.
Outliers are possible and occur fre-
quently, however, we omit them to sim-
plify the presentation.

Given these aspects, a single SQL system test contributes a considerably
larger part to the total test costs compared to a single unit test. Therefore,
we focus our work in Chapter 6 on such SQL system tests.

2.2.3.3 High Execution Frequency of Tests

At SAP HANA, developers commit on average more than 800 changes per
day to the central source code repository. Each of these commits requires
pre-commit testing. Therefore, the test costs depend on the number of
commits. Furthermore, the number of commits depends on the number
of developers. As large software projects such as SAP HANA typically
employ a comparatively large amount of developers, the number of commits
is also considerably large as shown by the number of 800 commits per day. In
practice, each of these commits can already consist of several smaller changes. A large amount of developers leads to

large test costs.In conclusion, a large amount of developers results in a high frequency of
commits and therefore in a high frequency of pre-commit testing that leads
to large test costs. Section 5.2 provides further discussion of this issue.

2.2.3.4 Waiting Times for Test Execution

As stated before, developers commit more than 800 changes per day for
SAP HANA. Each change is tested before the change is merged into the
central code repository. As shown in Section 2.2.3.2, a test run can require
several hours of execution time. Assuming that a test run requires only one
hour of time, then 800 changes and therefore 800 test runs would require
800 hours if executed sequentially. The sequential execution is required A day has not enough hours to execute

all required tests.to guarantee the correctness of the system after each change. However, a

20 testing in very large software projects

single day has less than 800 hours. As a result, it is not possible to execute
all test runs sequentially. Either test runs must be executed in parallel or
the development process must be adapted to reduce the number of changes
so that testing can be finished before the next change is committed. For
the development of SAP HANA, testing is done in parallel. Each time a
change is committed to the central source code repository, a new test run is
executed to test the change. The change is merged if testing succeeds.

However, parallel testing can not guarantee that the final state of the
source code passes all tests after each tested change is merged. Suppose
that change 𝐴 implements new functionality that uses an object 𝑂 and
change 𝐵 modifies the behavior of 𝑂. Both changes pass separately all tests.
However, the combined source code can contain defects due to different logic
implemented in both changes. Such conflicts are not detected as merge
conflicts by the version control system. We call this group of conflicts logical
merge conflicts. Related work provides several approaches to detect and
solve logical merge conflicts [7, 35, 112].

2.2.3.5 Test Flakiness

Test flakiness describes the effect that a test passes and fails in multiple
executions for the same code. We discuss in Section 5.6.2 the problems that
flaky tests create. A typical approach for tackling test flakiness is to rerun
failed tests. Each time a test fails, we execute it 𝑛 additional times. If the Additional test executions caused by

flakiness.test succeeds at least once in these 𝑛 executions, we conclude that the test
is flaky. We may either ignore it or further investigate it. These additional
test executions increase the test costs. Given a factor 𝑝 of flaky test and
a set of 𝑚 tests, we statistically have to execute 𝑝 × 𝑚 × 𝑛 additional test
executions. Based on related work, typical values are 𝑝 = 0.1 and 𝑛 = 5.
Therefore, we expect a test cost increase by a factor of 0.5.

In addition to the test cost increase by additional test executions, test
flakiness also affects other aspects. The approach described above represents
a happened-before relationship, i.e., the additional test executions can only
start after a test failure occurred. Therefore, the total time for executing all Total test execution time increases.

tests can substantially increase if a test with a rather large execution time
fails at the end of a test run.

Flaky test results also require additional developer effort. It is typically
unclear whether the source of test flakiness is related to the tested software or
to the testing environment. It may happen that the software contains defects
that appear only with a certain probability for each execution. Therefore, Developer effort increases.

additional analysis by developers might be required. Even more, the analysis
of such defects might be rather time-consuming as a developer might not be
able to easily reproduce the issue.

The effects of flakiness are more visible in larger projects. Let a small
project have 100 tests. A flakiness rate of 0.001 for all tests would result
in one random failed test every 10 test runs. Developers might even ignore A full test run rarely succeeds due to

flakiness.such a result if they rerun the test suite and all tests succeed. In contrast, a
large project with 100 000 tests shows several failed tests for every test run.

In conclusion, test flakiness can, among several negative effects, consider-
ably increase test costs and is more visible in large projects.

background 21

2.2.3.6 Conclusions to Test Costs

Test costs typically exist for all software projects. However, the properties
of large projects can make effects visible that go unnoted in small projects.
The large number of tests, the long execution times and the high frequency
of test executions considerably increases the test costs for large projects.
Additional factors, such as test flakiness, waiting times for developers and
time required for follow-up activities further increase the test costs.

2.2.4 Code Coverage Data

Developers at SAP HANA use DynamoRIO drcov [67] to regularly collect
line-based code coverage data for test executions, i.e., information whether
each particular source code line was executed (“hit”) or not during a test run.
It would be surely interesting to use a more fine-grained granularity than
line coverage (i.e., on branch, statement or instruction level), but previous
internal studies showed that collecting coverage data with more fine-grained
granularity than line coverage considerably increases test execution times
and size of coverage data. Therefore, line coverage is used as a suitable
compromise between accuracy and resource usage. Even for line coverage, Line coverage for SAP HANA.

the cumulative execution time of tests with enabled instrumentation for
collecting coverage data is about 1 877 hours or 78.20 days – an increase by
a factor of 6. A typical coverage run still requires up to 2 days if executed
in parallel on multiple servers. Moreover, each such coverage run generates
about 130 GB of code coverage data. We further define and discuss the
terms coverage and related problems in Chapter 3.

2.3 Summary

Software quality assurance is an important task for software development,
but it also can require considerable efforts in terms of time and cost for
testing. We identify several factors contributing to high test costs that
are unique or only significant for large projects. However, high test costs
also provide an opportunity for large test cost reduction which shows the
relevance of research in test cost reduction.

There is a wide range of research for test cost reduction that aims to
reduce the effort required for testing while minimizing reductions in the
degree of quality. As our discussion shows, several approaches proposed by
researches and practitioners have limitations for large software projects or
even do not consider the specific properties of large projects. Therefore,
our contributions aim to reduce this gap. We investigate several aspects in
the following chapters. Section 5.6.2 investigates approaches for test cost
reduction in large projects and Chapter 6 introduces our main contribution
to reduce the costs of tests with long execution times.

3 Code Coverage: Measure Test Execution

Software tests execute a program, the software under test (SUT). Such a
program execution consists of a sequence of instructions interpreted by a
processor. We can monitor the instructions that are actually executed by the
processor to obtain coverage data, i.e., information about the execution of
the SUT. Furthermore, by mapping the instructions to source code, we can
measure the code coverage. The code coverage allows us, for a given SUT, Coverage records what was executed.

to identify the subset of source code that is executed by a test (“covered”)
and the complementary part that is not executed by a test (“uncovered”).

In this chapter, we define coverage and briefly explain the collection pro-
cess. We discuss multiple problems related to the analysis of coverage data
and present algorithms to solve them. These algorithms serve as a founda-
tion for advanced techniques in other chapters. We discuss the implications
and limitations of information gained by coverage data in Chapter 4.

3.1 Definitions

Code coverage is frequently used in practice and research [6, 46, 83, 120,
122, 140, 202, 213, 248, 256]1. However, there exist different variants of 1 A literature search for “code cov-

erage” finds more than 100 publica-
tions. A survey from 2009 provides an
overview [256].

coverage and the exact meaning of the term coverage may depend on the
context. For instance, a comparative study of 9 code coverage tools shows
that the results for multiple coverage criteria differ significantly across the
different tools, even with cases where some tools show 100 % and other tools
0 % coverage for the same case [202]. Therefore, it is important to define
the exact meaning of coverage and related terms. In this section, we discuss
the context and introduce definitions for multiple variants of coverage.

1 0000000400400 <main >:
2 imul $0xabcd ,%edi ,% edi
3 jmpq 400500 <_Z6squi >
4 0000000400500 <_Z6squi >:
5 mov %edi ,% eax
6 imul %edi ,% eax
7 retq

Figure 3.1: x86/x64 instructions.
3.1.1 Context

A computer program 𝑃 consists of a sequence 𝑆instr of instructions that can
be interpreted and executed by a computer as shown by Fig. 3.1. We focus
in our work on the x86/x64 architectures and, consequently, 𝑆instr consists of
x86/x64 instructions [1, 2, 131, 132]. Instead of the term computer program,
we may also use the terms software or software program.

1 __attribute__ ((noinline))
2 int square (int number) {
3 return number * number ;
4 }
5 int main(int c, char *[]) {
6 return square (c*0 xabcd);
7 }

Figure 3.2: Source code.

A developer that creates 𝑃 can provide 𝑆instr directly. However, instead
of writing x86/x64 instructions, a developer typically uses a formal language
to write a sequence of words and characters that will be translated into
𝑆instr as shown in Fig. 3.2. Such a formal language is called a programming Programming language

language and the sequence of instructions 𝑆code written in such a program-

24 testing in very large software projects

ming language is called source code or just code [114, 245]. 𝑆code consists Source code

of 𝑛 files organized within a file system and each of these 𝑛 files consists
of 0 to 𝑚𝑖 lines, 𝑛 ∈ N+, 𝑚𝑖 ∈ N0∀𝑖 ≤ 𝑛. The content of files consists
of characters typically encoded in ASCII [10] or UTF-8 [137, 246]. The
content is organized in lines. The placement of line breaks, and therefore
the amount of lines, is determined by the developer. In practice, developers
do not introduce line breaks at arbitrary places, but aim to improve the
readability of the source code for humans. Therefore, developers follow a
common understanding or a style guide [152] for placing line breaks.

The translation from 𝑆code to 𝑆instr provides information about the map-
ping 𝑀 ⊆ 𝑆code × 𝑆instr between a specific part of 𝑆code and the correspond-
ing subset of 𝑆instr. That is, we know for each element 𝑖 in 𝑆instr which Mapping between source code and in-

structions.subset of 𝑆code creates 𝑖 and we know for each meaningful part of 𝑆code which
instructions will be generated for this part. It is possible that some lines of
the source code map to an empty sequence of instructions, for instance, in
the case of source code that is ignored during translation or for empty lines.
Vice versa, instructions in 𝑆instr can map to an empty set of characters in
the source code, for instance, in the case of implicitly generated instructions.

3.1.2 Instruction Coverage

For the execution of a program 𝑃 , a computer executes the instructions
in 𝑆instr. However, not all instructions of 𝑆instr may be executed because
x86/x64 allows arbitrary jumps between them. The term instruction cover- Instruction coverage

age refers to the sequence of instructions 𝑆iC that are executed for a specific
execution of 𝑃 . More specifically, the instruction coverage 𝐼𝐶𝑃 𝐸 for a pro-
gram execution of 𝑃 is a sequence of numbers ⟨ℎ1, ℎ2, . . . , ℎ|𝑆instr|⟩ where ℎ𝑖

represents the amount of times the instruction at position 𝑖 was executed
(“hits”). For practical efficiency reasons, ℎ𝑖 may be restricted to ℎ𝑖 ∈ {0, 1}, Boolean counter.

indicating only whether an instruction was executed or not. In addition,
the cases where ℎ𝑖 = 0 may not be contained in 𝐼𝐶𝑃 𝐸 and all items in
𝐼𝐶𝑃 𝐸 have an additional label that indicate the corresponding instruction.
Furthermore, we define the instruction coverage ratio 𝐼𝐶𝑅 as Instruction coverage ratio

𝐼𝐶𝑅 =
|{𝑥 | 𝑥 ∈ 𝑆iC and 𝑥 ̸= 0}|

|𝑆instr|
. (3.1)

A specific execution of 𝑃 may depend on additional input to the program
such as the state of memory. We assume that such input does not change for
multiple executions of the same program if not stated otherwise. Therefore, Assumption: Deterministic program

execution.we expect that a program execution is deterministic, i.e., two executions of
𝑃 will always produce the same instruction coverage for the same input.

The assumed deterministic model of computation simplifies the theoretical
discussion. However, it does not reflect a practical environment. Several
aspects, such as concurrent execution, random number generators, time,
or input from the filesystem or users may result in a scenario where two,
seemingly identical, executions produce different instruction coverage. We
further discuss these practical issues in Section 5.7 and show there that we
can “normalize” such coverage data, i.e., we can make it appear deterministic.
Therefore, our simplification is reasonable.

code coverage: measure test execution 25

3.1.3 Code Coverage

We obtain the instruction coverage 𝐼𝐶𝑃 𝐸 for a program execution 𝑃𝐸 of 𝑃

as described in Section 3.1.2. We map the 𝐼𝐶𝑃 𝐸 to 𝑆code via the mapping
𝑀 provided by the translation of 𝑆code to 𝑆instr as described in Section 3.1.1.
The result is the source code coverage 𝐶𝐶𝑃 𝐸 , or code coverage, a sequence Source code coverage

of numbers that indicate for each part of the source code how often this part
was executed by a specific execution of 𝑃 . More formally,

𝐶𝐶𝑃 𝐸 = ⟨𝑠1, 𝑠2, . . . , 𝑠|𝑆code|⟩ (3.2)

where 𝑠𝑖 :=
∑︁

𝑗∈{𝑦|∀𝑥𝑦∈𝑆instr :(𝑦,𝑖)∈𝑀}

ℎ𝑗 (3.3)

The term code coverage may be used in two different contexts. It may
represent a) coverage data, i.e., information about the execution of the source
code, or b) a percentage, i.e., the amount of executed source code relative
to the total amount of source code. Fig. 3.3 shows a visual representation
of coverage data where executed areas are highlighted.

Figure 3.3: Visual representation of
coverage data. Numbers indicate how
often a line was executed. Not executed
lines with orange background. Lines
that do not map to instructions with
white background. The actual source
code is not relevant. Source: LCOV
documentation [15].

The code coverage is always obtained for a specific execution of the
program. However, the specific execution context may not be provided. In Coverage relates to a specific execution.

such cases, code coverage typically refers to the execution of tests and we
identify the corresponding code coverage with the term test coverage. The Test coverage

coverage data may contain only coverage information for the code under
test, but may also include coverage information for the test code.

We assume a fixed set of tests for the generation of test coverage. In
practice, it may be unclear which tests are considered for test coverage and
the set of tests changes over time. Test coverage may be obtained by the
execution of all tests in a single execution or by the execution of every single
test separately, possibly followed by an aggregation step.

3.1.4 Data Coverage

Instruction coverage contains information whether, e.g., an if condition
statement was executed or not. However, we have no further information
about the result of the execution (true or false for the if) or the cause
of the results if the statement depends on a variable (such as if (x<10)).
Data coverage contains information about the input or output of operations Data coverage

that consists of instructions in 𝑆instr. An instruction operates on a fixed
instruction data width with up to 512 bit for AVX-512 [132]. Therefore,
the input and the output of an instruction can be any of 2512 ≈ 10154

bit combinations. In addition, an algorithm can depend on a possibly
unbounded amount of instructions. Such unbounded cases can appear for
loops and string processing. In conclusion, the domain of the data coverage

26 testing in very large software projects

is in the general case unknown and can be rather large or even infinite. In
practice, however, types such as a 32 bit integer or a 2 bit boolean are small
enough to enumerate the whole domain. Given such considerably small finite
domains, we can calculate coverage-metrics such as the ratio of executed
data over all possible data.

3.1.5 Variants of Coverage

Code coverage data can be aggregated on different levels resulting in differ-
ent code coverage variants. In our work, we focus on line coverage, therefore
we only briefly introduce other variants. We use the source code example
Listing 3.1 to illustrate the differences. For this purpose, 𝑆code = 𝐶𝑎 indi-
cates the set of all coverable items, 𝐶ℎ the set of covered items (“hit”), and
𝐶𝑚 the set of uncovered items (“missed”).

Listing 3.1: Source code example to
illustrate coverage variants.

1 class Object {
2 public :
3 int i = 1;
4 };
5

6 int f1(int a, double b) {
7 if (a < b && a <= 0) {
8 return a+1;
9 }

10 if (a < b) {
11 return a;
12 }
13 return 0;
14 }
15

16 int f2 () {
17 return -1;
18 }
19

20 int f3 () {
21 Object object ;
22 int result = 2* object .i;
23 return result ;
24 }
25

26 int main () {
27 int result1a = f1 (1 ,4);
28 int result1b = f1 (1 ,8);
29 int result1c = f1 (1 ,0);
30 int result3 = f3 ();
31 }

Function coverage contains for each function in a program information Function coverage

about its execution. For Listing 3.1, the function coverage is

𝐶𝑎 = {f1, f2, f3, main}, (3.4)
𝐶ℎ = {f1, f3, main}, (3.5)
𝐶𝑚 = {f2}. (3.6)

Note that the class Object has a default constructor implicitly generated
by the compiler. This implicitly generated constructor may be considered
as a function depending on the implementation of a coverage tool.

Line coverage contains for each line in each source code file information Line coverage

about its execution. Lines without executable source code are not considered.

code coverage: measure test execution 27

For Listing 3.1, the line coverage is

𝐶𝑎 = {1, 6, 7, 8, 10, 11, 13, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30}, (3.7)
𝐶ℎ = {1, 6, 7, 10, 11, 13, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30}, (3.8)
𝐶𝑚 = {8, 16, 17}. (3.9)

Note that line 24 contains an implicit call to the destructor of object
and is therefore an executable line. In total, there are 19 executable lines
and 16 lines are covered, therefore the coverage ratio is 0.84. Our definition
of line coverage only uses a boolean counter for each line. However, it is
also possible to use an integer as a counter for each line that represents the
number of times a line was executed during the execution (execution count).
For Listing 3.1, the execution count for line 16 is 0, 21 is 1, and line 11 is 2.

Branch coverage contains for each branch in a program information about Branch coverage

its execution. Branches are created by branch instructions and represent dif-
ferent possibilities where the execution continues. In a typical programming
language, branches are indicated by if statements. However, branches also
follow other statements such as a loop, switch or exception statement. The
corresponding instruction is typically a (conditional) jump instruction [132].
For Listing 3.1, the branch coverage is

𝐶𝑎 = {71, 72, 101, 102}, (3.10)
𝐶ℎ = {72, 101, 102}, (3.11)
𝐶𝑚 = {71}, (3.12)

where the subscript indicates one of the multiple branches in a line.
Entry and exit coverage contains for each entry and exit point of a code

unit information about the execution of the entry and exit points. For
Listing 3.1, the entry and exit coverage is

𝐶𝑎 = {6, 8, 11, 13, 16, 17, 20, 23, 26, 31}, (3.13)
𝐶ℎ = {6, 11, 13, 20, 23, 26, 31}, (3.14)
𝐶𝑚 = {8, 16, 17}. (3.15)

All previous coverage variants are based on instruction coverage. However,
the following variants require data coverage.

Condition coverage contains for each boolean expression information Condition coverage

about its evaluation result. For Listing 3.1, we indicate for each boolean
expression the evaluation result true with the subscript t, and the evaluation
result false with the subscript f. Then, the condition coverage is

𝐶𝑎 = {7(a<b)𝑡
, 7(a<b)𝑓

, 7(a<=0)𝑡
, 7(a<=0)𝑓

, 10(a<b)𝑡
, 10(a<b)𝑓

}, (3.16)

𝐶ℎ = {7(a<b)𝑡
, 7(a<b)𝑓

, 7(a<=0)𝑓
, 10(a<b)𝑡

, 10(a<b)𝑓
}, (3.17)

𝐶𝑚 = {7(a<=0)𝑡
}. (3.18)

Decision coverage contains for each composition of conditions information Decision coverage

about its evaluation result. Each decision consists of one or more condi-
tions combined with boolean operators. Decision coverage can also contain
information for every entry and exit point whether it was executed or not.

28 testing in very large software projects

For Listing 3.1, we only investigate decisions and use the same subscript
notation as for condition coverage. Then, the decision coverage is

𝐶𝑎 = {7(a<b && a <= 0)𝑡
, 7(a<b && a <= 0)𝑓

, 10(a<b)𝑡
, 10(a<b)𝑓

}, (3.19)

𝐶ℎ = {7(a<b && a <= 0)𝑓
, 10(a<b)𝑡

, 10(a<b)𝑓
}, (3.20)

𝐶𝑚 = {7(a<b && a <= 0)𝑡
}. (3.21)

Modified condition/decision coverage (MC/DC or MCDC) [45, 46, 145] Modified condition/decision coverage

is a rather complex variant of coverage. Therefore, we quote the definition
of previous work verbatim [45]:

MCDC is defined as

• every statement in the program has been invoked at least once.
• every point of entry and exit in the program has been invoked at least

once.
• every control statement (i.e., branchpoint) in the program has taken all

possible outcomes (i.e., branches) at least once.
• every nonconstant boolean expression in the program has evaluated to

both a true and a false result.
• every nonconstant condition in a boolean expression in the program has

evaluated to both a true and a false result.
• every nonconstant condition in a boolean expression in the program has

been shown to independently affect that expression’s outcome.

The calculation of MC/DC coverage is rather comprehensive for our
example. Therefore, we refer to Section 4.4 for a practical example.

Parameter value coverage contains for each parameter of each function Parameter value coverage

information about the different values encountered for this parameter during
execution. For Listing 3.1, 𝐶𝑎 and 𝐶ℎ both contain a large amount of items
and the items depend on the definition of int and double. Furthermore,
the main function in line 26 has implicit arguments that point to char
arrays. Therefore, the size of the set of values for the arguments of main is
infinite. Given these points, we only list the observed arguments 𝐶ℎ = {6a=1,
6b=4, 6b=8, 6b=0}. Note that the implicit constructor of Object also has an
implicit parameter this that points to the memory location for an object
instance. However, listing pointer values is of little use.

3.2 Implementation Details

We discuss two implementation details. First, we present techniques to mea-
sure coverage. We discuss the idea of counters and their dynamic version.
We also highlight zero-overhead techniques and techniques based on func-
tionality provided by the CPU. Second in this section, we present a common
format for coverage data that we also use for our work. This thesis does not
focus on the implementation of coverage measuring approaches. Therefore,
we only provide a general overview of these techniques.

In general, code coverage can be inferred from instruction coverage. The
translation requires a mapping between instructions and source code. Com-
pilers such as GCC [238] or Clang [171] provide this mapping. Therefore,
we only focus on instruction coverage and data coverage.

code coverage: measure test execution 29

3.2.1 Counters

We add a counter for each instruction, typically done automatically by a
library. More precisely, for each instruction 𝑖 in 𝑆instr, we insert an additional
item 𝑖𝑐 before 𝑖 that represents a counter, i.e., an instruction that modifies
the counting variable 𝑐𝑖. We execute 𝑃 and collect the values of all counting
variables at the end of the program execution 𝑃𝐸. The output is the
instruction coverage 𝐼𝐶𝑃 𝐸 . We can adapt this approach for data coverage
by storing values each time the variable is accessed (read or write).

Counters have multiple advantages. The collection process is simple to Counters are a simple approach.

understand and can, theoretically, adapt to any sequence of instructions.
We would also expect that the results are accurate. However, this approach
also has severe disadvantages. The runtime overhead is remarkable because
the amount of executions is at least doubled. In practice, the runtime over-
head will further increase because optimization techniques employed by the
compiler and the CPU are less effective due to the additional statements and
increased resource usage. The runtime overhead may be several magnitudes
and the resulting total execution time can prohibit the implementation of
this approach for large programs. In addition, the practical implementation Counters can have severe performance

drawbacks.of this approach faces several challenges such as correct handling of jump
instructions or object interactions where non-linear code execution must
respect the correct execution of the counting instructions.

3.2.2 Dynamic Counters

The execution of counting instructions results in a large runtime overhead.
Therefore, the reduction of these executions would reduce the overhead.
For this purpose, we can adapt the execution of counting instructions in
such a way that they will be removed after their execution (or replaced
with an empty “NOP” instruction). With such an approach, the overhead Dynamically modify binary code.

would only occur for the first execution of a counting instruction but not for
subsequent executions. This can be implemented by self-modifying code or
by a virtual machine that modifies the code-to-be-executed in such a way
that at the first time of the execution, the counting instruction is added to
the sequence of instructions and for further executions, the original sequence
of instructions is restored [34, 67, 101, 248].

Compared to permanent counters, the advantage of this approach is a
possible reduction of the overhead factor due to the following effects:

• The compiler can leverage optimization techniques because no additional
counting instructions must be considered.

• The amount of executed counting instructions may be smaller because
the instructions will be removed after their execution. This results in
fewer instructions executed but also in a more effective execution due to
optimization techniques applied by the CPU.

However, the process of dynamic modification may introduce additional
overhead. In addition, it is only suitable when we only require information
on whether an instruction was executed or not. For SAP HANA, the tool
DynamoRIO drcov [67] collects such coverage information.

30 testing in very large software projects

3.2.3 Emission Observation

A CPU executing instructions emits electromagnetic emanations. It is pos-
sible to learn patterns in these emanations in a training phase. Then, in a
profiling phase, we can reveal the executed instructions based on the learned
patterns [38, 223]. This allows coverage measurements with zero overhead Identify CPU operations by previously

learned emission patterns.to the program execution. However, the related work is in an early stage
and shows limited reliability with about 90 % path prediction accuracy [223]
for single core executions. Multi-core execution reduces the accuracy.

3.2.4 Functionality Provided by CPU

Current CPU architectures provide specific functionality to measure cover-
age with a low overhead compared to software approaches. Intel provides
Last Branch Record (LBR) and Processor Trace (PT) for selected CPU
models [131, 214, 229].

A CPU that supports LBR records the last 4 to 32 branch results in a LBR stores the result for up to 32
branches.set of model-specific register (MSR) as a tuple of “from” and “to” addresses.

The MSR represent a ring-buffer, i.e., the last recent entries overwrite the
oldest results if the buffer is full. An additional register points to the last
recent entry in the ring-buffer. Intel argues that the LBR has no practical
overhead. However, due to the limited size, execution must be halted fre-
quently to read the content of the MSR. These halts then add considerable
overhead. Therefore, the LBR is typically only used for sampling, i.e., the
content is read in fixed time intervals assuming that statistically the result
is representative for the program execution.

A CPU that supports PT records the program execution in a compressed Intel processor trace for full execution
details.format in memory. Compared to LBR, this has several advantages. First,

PT is not limited to the last 𝑛 branches. Second, data is written to the
memory and the CPU must not halt to allow data access. Third, PT allows
investigating a larger time frame compared to uncompressed LBR data.
However, there are also limitations. First, PT impacts the execution time.
Depending on the memory load of an application, the runtime overhead can
be a factor of 1.05 to 1.20 [229] or, for multithreaded applications, up to a Small overhead.

factor 20 [244]. Second, a typical CPU executes about 3 × 109 instructions
per second, assuming 20 % branch instruction [4], we generate 6 × 108 bits
per second. Intel reports 100 MB/s of compressed data and a compression
ratio of 10. Therefore, the amount and bandwidth of memory and disk can
limit the usage scenario for PT to short term measurements.

3.2.5 Format for Code Coverage

1 SF :/ path/ example .c
2 DA :13 ,0
3 DA :14 ,1
4 DA :15 ,1
5 DA :46 ,0
6 DA :47 ,0
7 DA :48 ,1
8 LF :6
9 LH :3

10 end_of_record

Figure 3.4: Example of the LCOV data
format for a singe source file.

For this work, we use the LCOV [15] format to store coverage information
in the filesystem. Fig. 3.4 provides an example for line coverage data where
SF: indicates a source file, DA: indicates the data for the current source
file, i.e., the line number and whether it is covered (“hit”, indicated by a
number larger than 0) or not (indicated by the number 0) and end_of_record
indicates the end of a source file. The optional LF: summarizes lines found
and LH: indicates the lines hit. In the given example, the single file file.c
has 6 executable lines and 3 of them were executed (“covered”).

code coverage: measure test execution 31

While working with line coverage data, we use bitsets. For a source file Bitsets

𝑆𝐹 with 𝑚 lines, we use a set with 𝑚 bits where bit 𝑖 indicates whether line
𝑖 in 𝑆𝐹 was executed or not by a specific execution of 𝑃 . Technically, the set
is implemented by 64 bit numbers and we use bit operations to set or read
a specific bit as shown by Fig. 3.5. More sophisticated implementations are
available, such as roaring bitmaps that utilize a compression algorithm [44,
174]. Furthermore, the set of all coverable lines is typically considerably
larger compared to the set of covered lines by a single test. Therefore, we
utilize a sparse set, where we allocate a block of memory for bits only if at
least one of the bits within this block is set.

1 public class BitSet64 {
2 static final int LOWER_BITS_MASK = 0 b111_111 ; // 63=64 -1
3 static final int LOWER_BITS_SHIFT_SIZE = 6; // 2^6=64
4 private final long [] array ;
5 public BitSet64 (final long max) {
6 if (max >= 137438952896 L) // (2^32 -1 -8) * 64
7 throw new IllegalArgumentException ("max >=137438952896 ");
8 array = new long [(int)(max >> 6) +1]; // +1 index to length
9 }

10 public void set(final long i) {
11 array [(int) (i >> LOWER_BITS_SHIFT_SIZE)]
12 |= (1L << (i & LOWER_BITS_MASK));
13 }
14 public void clear (final long i) {
15 array [(int) (i >> LOWER_BITS_SHIFT_SIZE)]
16 &= ~(1L << (i & LOWER_BITS_MASK));
17 }
18 public void flip(final long i) {
19 array [(int) (i >> LOWER_BITS_SHIFT_SIZE)]
20 ^= (1L << (i & LOWER_BITS_MASK));
21 }
22 public boolean get(final long i) {
23 return (array [(int) (i >> LOWER_BITS_SHIFT_SIZE)]
24 & (1L << (i & LOWER_BITS_MASK))) != 0;
25 }
26 }

Figure 3.5: A simple bitset implemen-
tation in Java to show the essential con-
cept and operations of a bitset.

A bitset data structure has several practical advantages for our work.
The required space to store line coverage data is reduced compared to the
LCOV format. We evaluate the improvements in Section 5.4. A reduction
in space requirements also reduces the execution time due to better cache
usage. In addition, the bitset allows us to use block-wise boolean operations
which further decrease the execution time. Overall, the bitset data structure
facilitates a fast analysis and fast algorithms for line coverage data, even in
the case of rather large initial data.

3.3 Problems and Algorithms on Coverage Data

We investigate several algorithms that work on coverage data. To sim-
plify the presentation and discussion of the algorithms, we state several
assumptions and define mathematical operations on coverage data. We then
introduce the set cover problem and several variants. Following the problem
definitions, we present and discuss algorithms to solve these problems. In
this context, we also present implementations in Java 8 for several algorithms
to highlight and discuss practical considerations.

32 testing in very large software projects

3.3.1 Assumptions

We list several assumptions that either are required by the following algo-
rithms or simplify the discussion and analysis of these algorithms. We also
discuss whether these assumptions affect generality.

We assume that the coverage data is line coverage, that is, a sequence of
integers indicating which lines are covered. However, the algorithms can also Line coverage.

support other types of coverage, e.g., function coverage or branch coverage.
For example, we can convert line coverage data to function coverage data.

We assume that for a test run, i.e., the execution of all tests, we obtain
𝑛 sets of line coverage. Each of these 𝑛 sets represents the coverage data for
a single test or for a test suite. The value of 𝑛 depends on the grouping of
the tests. We achieve a maximal 𝑛 if we run each single test case separately A test run consists of multiple test suite

executions and therefore multiple cov-
erage files.

and measure the coverage for each execution. Alternatively, we achieve a
minimal 𝑛 (1, in fact) if we execute all test cases in a single execution and
measure the coverage for all of them together. In practice, it is not feasible
to measure coverage for each test case separately due to the overhead of
the test setup as discussed in Section 2.2.3.2. However, a single coverage
measurement of all test executions would only provide a rather limited
amount of information as we are unable then to identify which specific tests
executed a specific line of source code. Therefore, in practice, test cases
are organized in test suites given by a file-based structure and each test
suite contains one or several tests. A coverage run then measures coverage
information for each of these test suites separately.

We assume that the coverage data originates only from a single source
code file. This abstraction simplifies the discussion and analysis of algorithms A single source file.

without impacting the results. In practice, software such as SAP HANA
consists of more than 10 000 files. However, we can map multiple files to a
single file with the following mapping: for each source file 𝑆𝐹 , we rename
each line number 𝑛 to 𝑆𝐹 -𝑛. We concatenate the coverage data of all files
to a new source file 𝑆𝐹𝑎𝑙𝑙 that has coverage information for each renamed
line. We access the lines in 𝑆𝐹𝑎𝑙𝑙 by a new index from 1 to 𝑚, where 𝑚 is
the sum of all lines in all files. The following example visualizes the concept:

1 content a 1 // File A
2 content a 2
1 content b 1 // File B
2 content b 2
3 content b 3
1 content c 1 // File C
2 content c 2

⇐⇒

1 content a 1 // File A
2 content a 2
3 content b 1 // File B
4 content b 2
5 content b 3
6 content c 1 // File C
7 content c 2

We filter lines that are not executed by any test (“uncovered lines”) if Filter uncovered lines.

the result of an algorithm does not depend on such uncovered lines. Note
that this does not affect lines that are not executed by some tests but are
executed by at least one test. This step does not affect generality.

At several places, we provide an example implementations to simplify the
presentation and show the practical usage. For this purpose, we use Java
and assume a version of at least 10. Additionally, we assume the existence
of a Coverage class that implements operations listed in Section 3.3.2 and
provides access to the coverage data by a Set<String, Set<Integer>>

code coverage: measure test execution 33

data structure representing filenames with executed lines. Furthermore, the
class implements hashCode and equals(Objects) in a suitable way. Finally,
all variables in this class are final, therefore making an instance of this class
immutable. We omit to present the implementation of this class because it
is rather long and uninteresting.

3.3.2 Operations on Code Coverage

We define multiple operations on coverage data, which are, in fact, set oper-
ations. The introduction of a different notation for common set operations
simplifies the discussion of the following algorithms.

Let 𝐿 be a sequence ⟨1, . . . , 𝑛⟩ of all source code line numbers in a software
program 𝑃 with 𝑛 lines. Then, line coverage data 𝐶 is a subsequence 𝐶 ⊆ 𝐿

where each item in 𝐶 identifies a line executed for a specific execution 𝑃𝐸

of 𝑃 . The set of all possible coverage data is 𝐶𝑎𝑙𝑙 = 𝒫(𝐿), i.e., the power
set of 𝐿. We define the following operations for 𝑐, 𝑑 ∈ 𝐶𝑎𝑙𝑙:

add/addition/union: 𝑐+ 𝑑 := 𝑐 ∪ 𝑑 — we add two coverage data by taking
the union of both sets. add, sub, and, xor on coverage data.

sub/subtraction/relative complement: 𝑐 − 𝑑 := 𝑐 ∖ 𝑑 — we subtract 𝑑 from
𝑐 by removing all items in 𝑐 that are contained in both coverage data.

and/intersection: 𝑐 & 𝑑 := 𝑐 ∩ 𝑑 — for two coverage data, we keep only the
elements that are contained in both sets.

xor/symmetric difference: 𝑐 ⊕ 𝑑 := 𝑐△𝑑 — for two coverage data, we keep
only the elements that are contained in exactly one set.

The notation name1/name2 indicates interchangeable names for the
same operation. It follows from set operations that add, and, and xor are
commutative operations and sub depends on the order of the arguments.

We demonstrate the notations with several examples:

𝑐 = {1, 2, 3},
𝑑 = {3, 5}

=⇒

𝑐 + 𝑑 = {1, 2, 3, 5},
𝑐 − 𝑑 = {1, 2},
𝑑 − 𝑐 = {5},
𝑐 & 𝑑 = {3},
𝑐 ⊕ 𝑑 = {1, 2, 5}.

3.3.3 Metrics: Distance Functions

Given a sequence of lines 𝐿 = ⟨1, . . . , 𝑛⟩ for a software program 𝑃 and two
line coverage data files 𝑐1, 𝑐2 ⊆ 𝐿 representing the executed lines for two test
executions, we may ask how similar these two coverage files are. In the case
𝑐1 = 𝑐2, they are obviously very similar, in fact they are equal. In the case
when 𝑐1 is inverted to 𝑐2, i.e., every line that is executed in 𝑐1 is not executed
in 𝑐2 and vice versa, we could say the similarity is the lowest, in fact they
share not a single line with the same execution state. These corner case are
simple to illustrate. However, for all other cases the similarity depends on
of how define similarity. Mathematically, we can understand a line coverage
file that contains information about the execution of 𝑛 lines as a vector in

34 testing in very large software projects

B𝑛, where B = {0, 1}. We can define a metric (called distance) 𝑑 on the
described vectorspace [107]: Related work also uses distance metrics

for fault localization [111].
𝑑 : B𝑛 × B𝑛 ↦→ [0, ∞[, (3.22)

(3.23)

where

𝑑(𝑥, 𝑦) ≥ 0 (3.24)
𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 (3.25)
𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (3.26)
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (3.27)

∀𝑥, 𝑦, 𝑧 ∈ B𝑛. (3.28)

We define several metrics to measure distances between coverage files.
They serve different purposes as we explain for each definition. We continue
to use 𝑥, 𝑦 for vectors in B𝑛 and 𝑐1, 𝑐2 for coverage files. Note that coverage
files do not contain lines that were not executed. Therefore, we must virtually
extend such a line in 𝑐1 if not contained in 𝑐1, but in 𝑐2 and vice-versa.

The Euclidean metric [11] 𝑑𝑒 measures the distance as a “straight line” Euclidean metric

between the two points indicated by the input vectors:

𝑑𝑒(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2. (3.29)

Interpreted in the context of coverage, the Euclidean metric counts the
(square root of) number of times when the entries in the two coverage files
differ for any source code line:

𝑑𝑒(𝑐1, 𝑐2) =
√︀

|𝑐1 ⊕ 𝑐2|. (3.30)

The Unshared metric 𝑑𝑢 the Euclidean metric without the square root: Unshared metric

𝑑𝑢(𝑥, 𝑦) =
𝑛∑︁

𝑖=1
|𝑥𝑖 − 𝑦𝑖|. (3.31)

Interpreted in the context of coverage, the unshared metric counts the
number of times the two coverage files differ for a source code line:

𝑑𝑢(𝑐1, 𝑐2) = |𝑐1 ⊕ 𝑐2|. (3.32)

Several previous work utilize the Proportional Binary metric 𝑑𝑝 [74, 143, Proportional Binary metric

175]. We quote Leon and Podgurski: “(The proportional binary metric)
is a modified Euclidean distance formula that takes into account whether
an element was covered or not, and also the count of how many times
the element was executed, while adjusting for differences in scale between
counts.” [175]. Furthermore, they give the following definitions. First, they
introduce the functions 𝐶, 𝑃 , 𝐵:

𝐶𝑖,𝑗 = number of times element 𝑗 is executed for test run 𝑡𝑖 (3.33)

𝑃𝑖,𝑗 =
𝐶𝑖,𝑗 − min𝑘{𝐶𝑘,𝑗}

max𝑘{𝐶𝑘,𝑗} − min𝑘{𝐶𝑘,𝑗}
(3.34)

𝐵𝑖,𝑗 =

⎧⎨⎩0 if 𝑃𝑖,𝑗 = 0,
1 if 𝑃𝑖,𝑗 ̸= 0.

(3.35)

code coverage: measure test execution 35

Then, the proportional binary metric is:

𝑑𝑝(𝑥, 𝑦) =

√︃∑︁
𝑘

(𝑃𝑥,𝑘 − 𝑃𝑦,𝑘)2 + |𝐵𝑥,𝑘 − 𝐵𝑦,𝑘|. (3.36)

We adapted the metric name 𝑑𝑝(𝑥, 𝑦) to our naming schema, the original
definition uses 𝐷𝑛,𝑚. Interestingly, 𝑘 is not further defined in several previ- Inconsistencies in definitions.

ous work. Dickinson et al. do not provide any mathematical definition of the
metric at all [74]. Leon and Podgurski do not further define 𝑘 [175]. Jiang
et al. state that 𝑘 is the number of test cases in total [143]. However, we
can deduce that the 𝑘 in the definition for 𝑑𝑝(𝑥, 𝑦) (Eq. (3.36)) is different
to the 𝑘 in the definition of 𝑃 (Eq. (3.34)). The former seems to be the
number of coverable elements, the latter the number of tests.

We can show that the 𝑘 are different by type analysis on the definitions.
For 𝐶𝑖,𝑗 , the first index is of type test index, the second of type coverable
element. As 𝑃𝑖,𝑗 uses 𝐶 (Eq. (3.34)), we can conclude that the first index of
𝑃 must be of type test index, the second of type coverable element. Thus,
we can conclude that in the definition of 𝑑𝑝(𝑥, 𝑦) (Eq. (3.36)), the index 𝑘

of the sum, which is used as a second index to 𝑃 (and 𝐵) must be of type
coverable element. It also follows that 𝑘 cannot be the number of tests in the
definition of 𝑑𝑝(𝑥, 𝑦). Given these points, we adapt the definition to clarify
the ambiguity. First, we define the sequence 𝐶𝐸 of all coverable elements
(such as lines for line coverage) and the set of all coverage files 𝐶𝐹 . Then,

𝑑𝑝(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑃𝑥,𝑖 − 𝑃𝑦,𝑖)2 + |𝐵𝑥,𝑖 − 𝐵𝑦,𝑖|, (3.37)

where

𝑛 = |𝐶𝐸| (the number of all coverable elements) (3.38)
𝑘 = |𝐶𝐹 | (the number of all coverage files) (3.39)

𝑃𝑖,𝑗 =
𝐶𝑖,𝑗 − min𝑘{𝐶𝑘,𝑗}

max𝑘{𝐶𝑘,𝑗} − min𝑘{𝐶𝑘,𝑗}
(3.40)

𝐶𝑖,𝑗 = number of times statement 𝑗 is executed for test 𝑡𝑖 (3.41)
min𝑘{𝐶𝑘,𝑗} = min{𝐶1,𝑗 , . . . , 𝐶𝑘,𝑗} (3.42)
max𝑘{𝐶𝑘,𝑗} = max{𝐶1,𝑗 , . . . , 𝐶𝑘,𝑗} (3.43)

𝐵𝑖,𝑗 =

⎧⎨⎩0 if 𝑃𝑖,𝑗 = 0,
1 if 𝑃𝑖,𝑗 ̸= 0.

(3.44)

Note that the denominator in Eq. (3.40) can be 0 if a specific coverable
element has the same state for all test executions. Previous work does not
address this issue. We assume that in such cases, the corresponding element
is not considered or 𝑃𝑖,𝑗 = 0.

In our analysis, we focus on line coverage that only indicates whether a
line is executed at all (and not the count). There,

𝑃𝑖,𝑗 =
𝐶𝑖,𝑗 − min𝑘{𝐶𝑘,𝑗}

max𝑘{𝐶𝑘,𝑗} − min𝑘{𝐶𝑘,𝑗}
=

𝐶𝑖,𝑗 − 0
1 − 0 = 𝐶𝑖,𝑗 . (3.45)

36 testing in very large software projects

This follows because min𝑘{𝐶𝑘,𝑗} must be 0, otherwise the denominator
would be 0. Conclusively, max𝑘{𝐶𝑘,𝑗} must be 1 to avoid 0 as denominator.
Based on Eq. (3.45) and Eq. (3.44), it follows that

𝐵𝑖,𝑗 = 𝐶𝑖,𝑗 , (3.46)

and therefore we can simplify Eq. (3.37) to

𝑑𝑝(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝐶𝑥,𝑖 − 𝐶𝑦,𝑖)2 + |𝐶𝑥,𝑖 − 𝐶𝑦,𝑖| =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

2 × (𝑥𝑖 − 𝑦𝑖)2,

because |𝑥 − 𝑦| = (𝑥 − 𝑦)2 for 𝑥, 𝑦 ∈ 0, 1. Interpreted in the context of line
coverage, the proportional binary metric is similar to the Euclidean metric, Proportional binary metric is similar to

Euclidean metric.but uses a factor of
√

2 as a scaling difference:

𝑑𝑝(𝑐1, 𝑐2) =
√︀

2 × |𝑐1 ⊕ 𝑐2|. (3.47)

Furthermore, we define a Shared function 𝑓𝑠 as counting the number of Shared function

times the 𝑖-th index of each vector equals to one for both vectors:

𝑓𝑠(𝑥, 𝑦) =
𝑛∑︁

𝑖=1
𝑥𝑖 × 𝑦𝑖. (3.48)

Interpreted in the context of coverage, the shared metric counts the
number of lines that are marked as executed in both coverage files:

𝑓𝑠(𝑐1, 𝑐2) = |𝑐1 & 𝑐2|. (3.49)

We can verify that 𝑓𝑠 is not a metric, but is symmetric:

𝑐1 = {1} =⇒ 𝑓𝑚(𝑐1, 𝑐1) = 1 ̸= 0, and (3.50)

∀𝑥, 𝑦 ∈ B𝑛 : 𝑓𝑠(𝑥, 𝑦) =
𝑛∑︁

𝑖=1
𝑥𝑖 · 𝑦𝑖 =

𝑛∑︁
𝑖=1

𝑦𝑖 · 𝑥𝑖 = 𝑓𝑠(𝑦, 𝑥). (3.51)

Therefore, 𝑓𝑠 still allows us to compare the similarity of two coverage files
as a similarity measure, but not in the sense of a typical distance.

In addition to the shared function, we also define a Sub Function 𝑓𝑚 that Sub Function

counts the number of times the first index is 1 but the second is 0:

𝑓𝑚(𝑥, 𝑦) =
𝑛∑︁

𝑖=1
𝑥𝑖 × (𝑥𝑖 − 𝑦𝑖), (3.52)

where 𝑚 can be read as “minus”. Interpreted in the context of line coverage,
the sub function subtracts the second coverage from the first coverage and
counts the number of executed lines in the result:

𝑓𝑚(𝑐1, 𝑐2) = |𝑐1 − 𝑐2|. (3.53)

The function 𝑓𝑚 is useful to compare coverage data but is not a metric.
For instance, the symmetry (Eq. (3.26)) is not fulfilled:

𝑐1 = {1}, 𝑐2 = {} =⇒ 𝑓𝑚(𝑐1, 𝑐2) = 1 ̸= 0 = 𝑓𝑚(𝑐2, 𝑐1). (3.54)

code coverage: measure test execution 37

To conclude, we show examples for all metrics:

𝑐1 = {1, 3, 5, 6} =⇒ 𝑥 = (1, 0, 1, 0, 1, 1)𝑡 ∈ B6.
𝑐2 = {1, 2} =⇒ 𝑦 = (1, 1, 0, 0, 0, 0)𝑡 ∈ B6.

Then,

𝑑𝑒(𝑥, 𝑦) = 2, 𝑓𝑠(𝑥, 𝑦) = 1, 𝑑𝑢(𝑥, 𝑦) = 4,
𝑑𝑝(𝑥, 𝑦) =

√
2 × 2, 𝑓𝑚(𝑥, 𝑦) = 3, 𝑓𝑚(𝑦, 𝑥) = 1.

Note that we include line 4 in these examples, which is not executed in
any test execution related to coverage data 𝑐1, 𝑐2. As we can see, such lines
do not affect any metric. Therefore, we typically ignore lines that are not
executed by any test and exclude them in any analysis.

3.3.4 Set Cover Problems

We present the set cover problem and a variant of the set cover problem,
the weighted set cover problem. We first introduce the set cover problem Set cover problem

(SCP). Given a universe 𝑈 of 𝑛 ∈ N0 elements and a family 𝐹 of 𝑚 ∈ N0
subsets of 𝑈 so that the union of all subsets is the universe:

𝑈 = {𝑒𝑖, 𝑒2, . . . , 𝑒𝑛} (3.55)
𝐹 = {𝑆1, 𝑆2, . . . , 𝑆𝑚} (3.56)

𝑆𝑖 ⊆ 𝑈 and
⋃︁

𝑆∈𝐹

𝑆 = 𝑈 . (3.57)

The SCP asks to find a subset of 𝐹 whose union equals the universe and
the cardinality is minimal:

Find 𝑅 ⊆ {1, 2, . . . , 𝑚} (3.58)

such that
⋃︁
𝑖∈𝑅

𝑆𝑖 = 𝑈 (3.59)

and |𝑅| ≤ |𝑋| (3.60)

∀𝑋 ⊆ {1, 2, . . . , 𝑚} where
⋃︁
𝑖∈𝑋

𝑆𝑖 = 𝑈 . (3.61)

The set cover problem (and its variants) is intensively studied [251].
Strictly speaking, we differentiate between the decision version and the
optimization version of the SCP. The decision version asks whether there Decision version and optimization ver-

sionexists a solution with a given size, i.e., a fixed amount of sets. The optimiza-
tion problem asks to find a solution with the smallest size. The decision
version is NP-complete and is also one of the classical 21 NP-complete prob-
lems [148]. The optimization version is NP-hard [148, 162, 251]. We are The set cover problem is NP-complete.

only interested in the optimization version. Therefore, from now on, SCP
refers to the optimization version as given by the definition above.

We can relate the SCP to line coverage by a short transformation. Our SCP and line coverage

universe 𝑈 is a set of line numbers and the family of subsets 𝐹 represents
test executions where each set contains line numbers executed by a test.
Given these 𝑚 test executions, we can then ask to find the minimal amount
of test executions to cover all lines in 𝑈 (the union of all test executions).

38 testing in very large software projects

Practically, we ask for the minimal amount of tests to cover all (coverable)
lines. Note that such reductions may not be safe in terms of bug-finding
ability. Tests that execute the same lines may show different behavior.

The weighted set cover problem (WSCP) is a modification to the SCP. In Weighted set cover problem

addition to the definition of the SCP, we attribute weights (or “costs”) to
each subset of 𝑈 in 𝐹 . Let W : 𝐹 ↦→ N+ be a function that attributes a
weight 𝑤𝑖 to each 𝑆𝑖 ∈ 𝐹 , then the WSCP asks to find a subset of 𝐹 whose
union equals the universe and the sum of all associated weights is minimal:

Find 𝑅 ⊆ {1, 2, . . . , 𝑚} (3.62)

such that
⋃︁
𝑖∈𝑅

𝑆𝑖 = 𝑈 (3.63)

and
∑︁
𝑖∈𝑅

𝑤𝑖 ≤
∑︁
𝑖∈𝑋

𝑤𝑖 (3.64)

∀𝑋 ⊆ {1, 2, . . . , 𝑚} where
⋃︁
𝑖∈𝑋

𝑆𝑖 = 𝑈 . (3.65)

We can relate the WSCP to line coverage and tests execution time by using WSCP: line coverage and execution
timethe same transformation as for the SCP before and additionally associate

weights in terms of execution time (say, in minutes) to each test and therefore
to each set of covered lines.

The SCP and the WSCP are NP-hard. Therefore, we do not expect to SCP and WSCP are NP-hard

find an algorithm with a polynomial time complexity that guarantees to
find an optimal solution for all inputs. For example, simply enumerating
all combinations is not feasible in practice. For SAP HANA, the problem
size typically consists of 4 million elements (lines) within 2 000 subsets.
Enumerating all solutions is equivalent to setting bits in a binary number
with 2000 bits. Each bit represents whether a specific subset is included
or not. Therefore, enumerating all combinations would require calculating
22000 ≈ 10602 possible inputs. Furthermore, for each input, we must iterate
over 4 million elements. Given these points, it is not feasible to enumerate
all combinations for this problem size. However, even for large problem
instances, we can apply an approach consisting of the following steps:

• Apply logical reductions with polynomial time complexity to potentially
simplify a given problem instance, i.e., reduce the cardinality of 𝐹 and
the cardinalities of the elements in 𝐹 .

• Find an optimal solution by a full search for small problem sizes.
• Find a near-optimal solution with a heuristic, i.e., a polynomial time

greedy algorithm that achieves an approximation ratio of 𝐻(𝑛) where 𝑛

is the cardinality of 𝑈 . In this case, 𝐻(𝑛) is the 𝑛-th harmonic number,
i.e., 𝐻(𝑛) =

∑︀𝑛
𝑖=1 1/𝑖 ≤ 𝑙𝑛(𝑛) + 1.

We discuss these steps in the following sections. There is also a wide
range of research proposing different heuristics [30, 79, 161].

3.3.5 Logical Reductions for the SCP

We can apply several logical reductions for the SCP in a repeated approach,
namely duplicate removal, subset removal and must-have item identification.
Each of these reductions has an execution time that depends on the current

code coverage: measure test execution 39

problem size by a polynomial function. We also see that the effort to
parallelize these reductions is considerably low, therefore further reducing
the overall execution time. For the discussion of the worst-case algorithmic
time complexity, we assume that 𝑚 = |𝐹 | dominates the execution time. In
this case, 𝑚 is the amount of executed test suites and therefore the amount
of coverage data files. To simplify the presentation, we ignore 𝑛 = |𝑈 |.
While 𝑚 may vary for a test run, the source code 𝑈 does not.

For duplicate removal, we identify the sequence 𝑆𝑑 of all elements in 𝐹 Duplicate removal

that have identical elements:

𝑆𝑑 = ⟨𝑆𝑖 | ∃𝑆𝑗 ∈ 𝐹 : 𝑆𝑖 = 𝑆𝑗 and 𝑖 < 𝑗⟩. (3.66)

Note that formally, sets do not contain duplicates. We either assume that
𝐹 is a multiset or that each item in 𝐹 additionally has a label representing
the corresponding coverage file with operations adapted correspondingly.
We omit these details in favor of the brevity of the presentation.

In the duplicate removal step, we identify all tests that execute the same
set of lines. We then keep only a single representative of each group of
duplicates. This may seem ineffective because system tests, as explained
in Section 5.6.1, typically contain random coverage that prevents duplicate
detection. However, due to the repeated application of all logical reduc-
tions, the duplicate detection step is quite effective after the must-have item
identification (see later), which filters such random coverage. The implemen-
tation of duplicate detection is rather short and trivial, as shown by Fig. 3.6.
The algorithm can be trivially parallelized by using parallelStream, but
typically the execution time is less than a few seconds due to the efficient
hashcode utilization within the HashSet. HashSet provides (amortized)
linear time for adding elements, therefore the overall time is linear with Amortized linear time complexity

𝒪(𝑚) where 𝑚 = |𝐹 |, i.e., the number of test executions with coverage.

1 public List <Coverage > removeDuplicates (List <Coverage > cov) {
2 // we assume that :
3 // 1) Coverage implements hashCode () and equals (Object)
4 // 2) Collectors . toSet () uses a HashSet
5 return cov. stream (). collect (Collectors . toSet ());
6 }

Figure 3.6: Identification and removal
of coverage duplicates.

The subset removal extends the duplicate removal. We identify the set Subset removal

𝑆𝑢 of all elements that are subsets to any element in 𝐹 , more formally:

𝑆𝑢 = ⟨𝑆𝑖 | ∃𝑆𝑗 ∈ 𝐹 : 𝑆𝑖 ⊆ 𝑆𝑗 and 𝑖 < 𝑗⟩. (3.67)

Practically, we remove all test executions where the covered lines are also
executed by any other test execution. Subset removal includes duplicate
removal, because a set 𝑋𝑖 that is equal to set 𝑋𝑗 is also a subset in our
definition. The reason why we distinguish between subset removal and
duplicate removal is the algorithmic time complexity. Our implementation
for duplicate removal has a linear worst-case algorithmic time complexity.
However, depending on the implementation, the subset removal has a time
complexity 𝒪(𝑚2) where 𝑚 = |𝐹 |. It remains unclear whether an algorithm Quadratic time complexity

with linear time exists for this problem.

40 testing in very large software projects

A naive implementation for subset removal with time complexity 𝒪(𝑚2)

could utilize a matrix-based comparison where we compare each element in 𝐹

with all other elements in 𝐹 . Fig. 3.7 shows an implementation that improves
the naive matrix-based comparisons. Instead of comparing all tuples, we
only calculate comparisons for an upper triangle. For this purpose, we
sort the input by cardinality and then exploit the property that for two sets
𝑆1, 𝑆2, |𝑆1| > |𝑆2| =⇒ 𝑆1 ̸⊂ 𝑆2, because there must be at least one element
in 𝑆1 that is not in 𝑆2. Then, for a list of sets ordered by cardinality, we
can only find a superset for the set at index 𝑖 at an index 𝑗 > 𝑖. We cache
the cardinality calculation and calculate the subset detection in parallel

This implementation still has a computational complexity of 𝒪(𝑚2),
because the amount of operations depends on the number of elements in the
upper triangle (without the diagonal line) which is (𝑚2 − 𝑚)/2. However,
in practice, it requires less than half of the work compared to the naive
matrix-based comparison. We only visit the upper triangle and we can
abort the check if we found at least one superset. The implementation
shown in Fig. 3.7 typically executes within less than 10 s for the problem
sizes encountered at SAP HANA.

1 public List <Coverage > removeSubsets (final List <Coverage > cov){
2 final List <Coverage > all = new ArrayList <>(cov);
3 // calculating the cardinality might be expensive , cache it
4 Map <Coverage , Integer > mapCovToCardinality = all. stream ().

collect (toMap (i -> i, i -> i. getCardinality ()));
5 sort(all , Comparator . comparingInt (mapCovToCardinality :: get));
6 final IntPredicate isNoSubSet = i -> isNoSubSet (all.get(i),

all. subList (i + 1, all.size ()));
7 Set <Coverage > ok = IntStream . range (0, all.size ()). parallel ()

. filter (isNoSubSet). mapToObj (all :: get). collect (toSet ());
8 // keep original order
9 return cov. stream (). filter (ok :: contains). collect (toList ());

10 }
11 public boolean isNoSubSet (Coverage set , List <Coverage > all) {
12 for (final Coverage other : all) {
13 if (set. isSubSetOf (other))
14 return false ;
15 }
16 return true ;
17 }

Figure 3.7: Identification and removal
of coverage subsets.

For must-have item identification, we exploit Eq. (3.59) that the solution Must-have item identification

must contain all elements. For any element 𝑒 in our universe 𝑈 that exists
only in a single subset 𝑆𝑒 of 𝐹 , we can conclude that 𝑆𝑒 ∈ 𝑅, i.e., the
set 𝑆𝑒 must be included in the solution because it is the only option to
include 𝑒. Therefore, we can collect all sets of 𝐹 that contain such required
elements into a partial solution 𝑆𝑝 and reduce the problem size to 𝐹 ∖ 𝑆𝑝.
Furthermore, we know that 𝑆𝑝 ⊆ 𝑅. Therefore, we can conclude that not
only the original elements of interest, but all elements in

⋃︀
𝑆∈𝑆𝑝

𝑆 are already
covered for a solution. Thus, we can remove these elements from all sets in
𝐹 ∖ 𝑆𝑝 and thereby we can further reduce the problem size.

The implementation shown in Fig. 3.8 and Fig. 3.9 identifies all sets in
𝐹 that contain an element that appears only once in all sets. Practically,
the sets are tests and the elements covered lines. The implementation is
separated into several parts to facilitate parallelization:

code coverage: measure test execution 41

1. Calculate the universe 𝑈 , i.e., the set of all lines.
2. Create data structures for later use.
3. Use the data structures of the previous step to count the occurrence of

each line in all coverage data files.
4. Identify all coverage files that contain a line with a count of 1.

As all steps depend on the number of tests, the algorithmic time complex-
ity is 𝒪(𝑚), where 𝑚 = |𝐹 |. All steps, expect the data structure creation, Linear time complexity

use a parallel implementation. The creation of the data structures is faster
single threaded due to the synchronization overhead for parallelization.

1 /** Find all tests with lines that appear only once .*/
2 public Set <Coverage > getMustHaveItems (List <Coverage > cov) {
3 // plan : create map file ->line -># tests , filter for # tests =1
4 final Map <String , Map <Integer , AtomicInteger >>

mapSourceToTestCountPerLine = new HashMap < >();
5 // 1) get the sum to iterate over everything
6 final Coverage sum = parallelSum (cov);
7 // 2) we create our data structures
8 sum. getMapSourceToLhit (). entrySet (). stream (). forEach (entry

-> mapSourceToTestCountPerLine .put(entry . getKey () ,
convertLinesToMapAtomicIntegers (entry . getValue ())));

9 // 3) now we count in parallel
10 cov. parallelStream (). forEach (i->i. getMapSourceToLhit ().

entrySet (). stream (). forEach (e->e. getValue (). stream ().
forEach (l-> mapSourceToTestCountPerLine .get(e. getKey ()).
get(l). incrementAndGet ())));

11 // 4) identification
12 final Set <Coverage > result = ConcurrentHashMap . newKeySet ();
13 mapSource2TestCountPerLine . entrySet (). parallelStream ().

forEach (e -> find1Hit (e, cov , result));
14 return result ;
15 }

Figure 3.8: Identification of must-have
items for the set cover problem, paral-
lelized.

1 public static Map <Integer , AtomicInteger >
convertLinesToMapAtomicIntegers (Set <Integer > lines) {

2 return lines . stream (). collect (toMap (i -> i, i -> new
AtomicInteger ()));

3 }
4 public static void find1Hit (Entry <String , Map <Integer ,

AtomicInteger >> sourceToTestCountPerLine , List <Coverage >
coverage , Set <Coverage > result) {

5 final String source = sourceToTestCountPerLine . getKey ();
6 final Map <Integer , AtomicInteger > mapLineToTestCount =

sourceToTestCountPerLine . getValue ();
7 for (final Entry <Integer , AtomicInteger > entryLineToCount :

mapLineToTestCount . entrySet ()) {
8 if (entryLineToCount . getValue ().get () != 1)
9 continue ;

10 final Integer line = entryLineToCount . getKey ();
11 for (final Coverage item : coverage) {
12 if (item. isSourceLineHit (source , line)) {
13 result .add(item);
14 break ; // there can be only one item
15 }
16 }
17 }
18 }

Figure 3.9: Utility methods for must-
have item identification.

After the identification of must-have items, we reduce the problem as
shown by Fig. 3.10. We add all found items to the solution 𝑅. Then, we

42 testing in very large software projects

remove 𝑅 from 𝐹 and delete all elements in the union of 𝑅 from the universe
𝑈 . Finally, we remove all items in 𝑈 that are already in the solution 𝑅.
The algorithmic time complexity for the identification of must-have items
remains to be 𝒪(𝑚), where 𝑚 = |𝐹 |.

1 public List <Coverage > removeMustHaveItems (List <Coverage >
coverage , Set <Coverage > solution) {

2 Set <Coverage > mustHave = getMustHaveItems (coverage);
3 if (mustHave . isEmpty ()) // no reduction found
4 return coverage ;
5 solution . addAll (mustHave);
6 final Coverage sum = parallelSum (mustHave);
7 Predicate <Coverage > notSelected = i->! mustHave . contains (i);
8 final Function <Coverage , Coverage > subSum = i->i.sub(sum);
9 final Predicate <Coverage > removeEmpty = i -> !i. isEmpty ();

10 return coverage . parallelStream (). filter (notSelected).map(
subSum). filter (removeEmpty). collect (toList ());

11 }

Figure 3.10: Removal of must-have
items for the set cover problem.

Finally, the repeated approach combines all previous reductions as shown Repeated approach

in Fig. 3.11. The combination of duplicate/subset removal and must-have
item identification and their repeated application results in an interesting
effect. Line coverage data is typically continuous. Therefore, subset removal
is effective in removing such chunks. However, a typical limitation case of
subset removal are lines contained only in a single set, because such sets
can never be a subset of any other set. For such cases, the must-have item
identification is effective because all such instances will be removed. Simi- Repeated application of logical reduc-

tions efficiently reduces the problem
size

larly, a typical limitation case of must-have item identification are elements
that are contained in a large number of sets. For this case again, the subset
removal is effective. Overall, each approach reduces the problem in such a
way that another approach can find new reductions.

After we finished the repeated approach phase, i.e., when find no further
reductions, we solve the remaining problem. For up to 15 elements, we
enumerate all possible solutions (up to 215 combinations), which typically
requires less than 1 min. In such a case, we can conclude that the solution
is optimal. The optimality is guaranteed by the properties of the logical
reductions and the full enumeration of all remaining cases. For problem
sizes with more than 15 elements, we apply a greedy approach (see later).
In this case, we are unable to make any statement about the optimality.

We use the following example to demonstrate the algorithm:

𝑈 = {1, 2, 3, 4, 5, 6, 7}
𝐹 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7}

𝑆1 = {1, 2, 3, 4}
𝑆2 = {1, 3, 4, 5}
𝑆3 = {1, 2, 3}
𝑆4 = {1, 2, 4}
𝑆5 = {1, 5, 6}
𝑆6 = {1, 5, 7}
𝑆7 = {1, 5, 7}.

code coverage: measure test execution 43

1 public static final int THRESHOLD = 15; // <1 min with 40 cores
2 public static Set <Coverage > solve (List <Coverage > coverage) {
3 final Set <Coverage > solution = new HashSet < >();
4 List <Coverage > rest = new ArrayList <>(coverage);
5 while (! rest. isEmpty ()) {
6 while (! rest. isEmpty ()) { // cheaper steps first
7 final int rest = rest.size ();
8 final int size = solution .size ();
9 rest = removeDuplicates (rest); // O(n)

10 rest = removeMustHaveItems (rest , solution); // O(n)
11 if (rest == rest.size () && size == solution .size ())
12 break ; // nothing changed
13 }
14 final int restBefore = rest.size (); // O(n^2)
15 rest = removeSubsets (rest);
16 if (restBefore == rest.size ())
17 break ; // no reduction possible anymore
18 }
19 if (! rest. isEmpty () && (rest.size () <= THRESHOLD))
20 solution . addAll (fullSearch (rest));
21 if (rest.size () > THRESHOLD) // optimality not guaranteed
22 solution . addAll (greedy (rest));
23 return solution ;
24 }

Figure 3.11: Algorithm to solve the set
cover problem starting with logical re-
ductions.

We follow the algorithm as shown in Fig. 3.11 and obtain the following
results after each step:

Step 1
𝑈 = {2, 3, 4}
𝐹 = {𝑆1, 𝑆2, 𝑆3, 𝑆4}

𝑆1 = {2, 3, 4}
𝑆2 = {3, 4}
𝑆3 = {2, 3}
𝑆4 = {2, 4}
𝑆𝑝 = {𝑆5, 𝑆6}⋃︁
𝑆𝑝

= {1, 5, 6, 7}

Step 2
𝑈 = {2, 3, 4}
𝐹 = {𝑆1}

𝑆1 = {2, 3, 4}

𝑆𝑝 = {𝑆5, 𝑆6}⋃︁
𝑆𝑝

= {1, 5, 6, 7}

Step 3
𝑈 = {}
𝐹 = {}

𝑆𝑝 = {𝑆1, 𝑆5, 𝑆6}⋃︁
𝑆𝑝

= {1, 2, 3, 4, 5, 6, 7}

In the first iteration of the logical reduction, we remove the duplicate 𝑆7
from 𝐹 and then identify the elements 6 and 7 as must-have items. We
include the sets with elements 6 and 7, i.e., 𝑆5 and 𝑆6, into the partial
solution 𝑆𝑝. Then, we also remove 𝑆5 and 𝑆6 from 𝐹 . Finally, we remove
all elements in sets in 𝑆𝑝, i.e., {1, 5, 6, 7} from 𝑈 and from all 𝑆𝑖 not in 𝑆𝑝.
Step 1 presents the reduced problem.

In the second iteration of the inner looper, we do not find any duplicates
or must-have items. Therefore, the program execution continues with the
detection of subsets. We identify 𝑆2, 𝑆3, and 𝑆4 as subsets of 𝑆1 and remove
them. Step 2 presents the reduced problem.

The next iteration of the inner loop identifies the elements 2, 3, and 4
as must-have items. We add 𝑆1 to 𝑆𝑝, remove 𝑆1 from 𝐹 and remove all
must-have items that we found from 𝑈 and from all 𝑆𝑖 not in 𝑆𝑝 (none in
this case). Step 3 presents the reduced problem. We notice that the problem
is now an empty problem and therefore we found an optimal solution. Due

44 testing in very large software projects

to limitations in space and brevity, we do not present an example where the
remaining problem size requires further enumeration or the greed approach.

In practice, we were able to solve all problem instances we encountered
with a (provable) optimal solution in a reasonable amount of time. Over a
time frame of 3 years, we encounter problem instance with sizes 3 000 000 ≤
|𝑈 | ≤ 5 000 000, 1 000 ≤ |𝐹 | ≤ 3 000, represented by 50 GB to 200 GB of
data. Even in larger instances, the execution time for an implementation Effective for large problem instances in

practiceof our approach is typically below 1 minute, and always below 5 minutes
(80 cores, 3 GHz, and 128 GB RAM) – for a provable optimal solution.

But even with these promising practical results, the overall problem
remains NP-hard. We can trivially construct a problem instance that we
are unable to reduce logically with our reduction steps. Assume that

𝑛, 𝑚 ∈ N+ with 𝑛 > 2, 𝑚 = 𝑛 − 1 (3.68)
𝑈 = {0, 1, 2, . . . , 𝑛 − 1} (3.69)
𝐹 = {𝑆0, 𝑆1, . . . , 𝑆𝑚} (3.70)

𝑆𝑖 = {𝑖 mod 𝑛, (𝑖 + 1) mod 𝑛, . . . , (𝑖 + 𝑚 − 1) mod 𝑛}. (3.71)

For such problem instances, it follows that:

∀𝑋, 𝑌 ∈ 𝐹 : 𝑋 * 𝑌 (3.72)
∀𝑒 ∈ 𝑈 : |{𝑆 | 𝑒 ∈ 𝑆, 𝑆 ∈ 𝐹}| = 𝑛 − 1 > 1. (3.73)

We can conclude that Eq. (3.72) prevents any reduction by duplicate/-
subset removal, and Eq. (3.73) prevents any reduction by must-have item
removal. Therefore, we cannot reduce such problems. With, say, 𝑛 > 100,
we are also unable to enumerate all solutions in a reasonable amount of time.
However, as previously noted, the structure of practical problem instances
is typically suitable for our approach.

The logical reductions we described are well-known in related work [161].
Our practical contributions in this case are:

1. An implementation utilizing efficient data structures and parallel algo-
rithms with polynomial worst-case algorithmic time complexities.

2. The repeated application of a combination of the reductions.
3. An evaluation and experience report with practical problem sizes that

contain millions of elements and thousands of sets.

We also considered an additional logical reduction, namely partition de- Partition detection

tection, where we partition the original problem in two separate smaller
problems if possible. This is possible if we can find 𝑈1, 𝑈2 ⊂ 𝑈 , 𝐹1, 𝐹2 ⊂ 𝐹

where 𝑈1 ∪ 𝑈2 = 𝑈 and 𝐹1 ∪ 𝐹2 = 𝐹 such that 𝑈1 ∩ 𝑈2 = ∅, 𝐹1 ∩ 𝐹2 = ∅,
𝑥1 ̸∈ 𝑆𝑖 ∀𝑥1 ∈ 𝑈1 ∀𝑆𝑖 ∈ 𝐹2, and 𝑥2 ̸∈ 𝑆𝑖 ∀𝑥2 ∈ 𝑈2 ∀𝑆𝑖 ∈ 𝐹1. Informally,
we search for non-overlapping partitions. We expect to find such partitions
in 𝒪(𝑚), where 𝑚 = |𝐹 |, with an algorithm that transforms the sets into
a graph and tests for graph connectivity. The graph consists of nodes that
are the elements of 𝑈 and edges that represent membership in a set 𝑆𝑖, i.e.,
if 𝑒1, 𝑒2 ∈ 𝑆𝑖 then we add an edge between the nodes for 𝑒1 and 𝑒2. In such
a graph, we can test for reachability by utilizing a visited attribute (see re-
lated work for graph connectivity [75]). However, we did not encounter any

code coverage: measure test execution 45

problem instance where we could test the usefulness of this additional step,
as the previous reductions already solved all practical problem instances.

We use an implementation for our approach in several cases where we can
transform a problem to the set cover problem, e.g., Section 4.4 or Section 5.3.

3.3.6 Greedy Algorithm

For problem instances of the SCP that cannot be solved by only logical
reductions, we need an additional approach. A simple, but effective approach
in terms of execution time and accuracy, is a greedy algorithm. It follows
the core idea that, given a problem instance with several sets, the algorithm
selects a set to include into the solution based on a heuristic. The most Select the next available set with the

highest gainsimple heuristic rates each set by the number of elements that are not yet
included within a (partial) solution. Based on this heuristic, the greedy
algorithm selects the set with the largest number of new elements. Fig. 3.12
shows an implementation.

1 /** Solves the SCP. Fast , but may not to be optimal . */
2 public List <Coverage > greedy (final List <Coverage > cov) {
3 Coverage solution = Coverage . EMPTY ;
4 List <Coverage > all = copySort (all , sortByCardinalityDesc);
5 for (int i = 0; i < all.size (); i++) {
6 final Coverage currentItem = all.get(i);
7 if (currentItem . isEmpty ())
8 break ; // sorted guarantees that rest is also empty
9 solution = solution .add(currentItem);

10 List <Coverage > subList = all. subList (i+1, all.size ());
11 subList . replaceAll (item -> item.sub(currentItem));
12 Collections .sort(subList , sortByCardinalityDesc);
13 }
14 return convertSolution (solution);
15 }

Figure 3.12: Greedy algorithm for the
set cover problem.

As already discussed, the greedy algorithm execution time is in 𝒪(𝑚)

where 𝑚 = |𝐹 | and the algorithm achieves an approximation ratio of 𝐻(𝑛)

where 𝑛 = |𝑈 | and 𝐻(𝑛) is the 𝑛-th harmonic number [48], i.e.

𝐻(𝑛) =
𝑛∑︁

𝑖=1

1
𝑖

≤ 𝑙𝑛(𝑛) + 1. (3.74)

3.3.6.1 Adaptations for the WSCP

Considering the weighted version of the set cover problem, all items have
an additional attribute, the weight (or “cost”). This requires several adap-
tations to the approaches for the SCP. However, the core concepts remain
the same. The logical reductions duplicate removal and must-have item
identification remain conceptually unchanged for the WSCP. The former
includes the weight in a duplicate check (i.e., keep the set with the smallest
weight) and the later only considers lines. Therefore, we can (with the help
of polymorphism in Java) continue to use the same source code as presented
in Fig. 3.6 and Fig. 3.10.

For the subset removal, however, the algorithm must consider the weight Subset removal must be adapted.

before removing a subset. Only in the cases where the weight of a subset
is not smaller than the weight of the superset, a subset can be removed

46 testing in very large software projects

without altering the original problem. The following example illustrates the
issue that arises if the subset has a smaller weight:

𝑈 = {1, 2} (3.75)
𝐹 = {𝑆1, 𝑆2, 𝑆3} (3.76)

𝑆1 = {1, 2} 𝑤1 = 3 (3.77)
𝑆2 = {1} 𝑤2 = 1 (3.78)
𝑆3 = {2} 𝑤3 = 1 (3.79)

Removing subsets 𝑆2 and 𝑆3 results in a solution 𝑆𝑙 = {𝑆1} with a total
weight of 3. However, the weight of 𝑆𝑙 is larger compared to the (minimal)
solution 𝑆𝑚 = {𝑆2, 𝑆3} with a total weight of 2.

Therefore, we adapt the isNoSubset function in Fig. 3.7 to verify the
weight condition as shown in Fig. 3.13. With these adaptations, we can
again combine all logical reductions as described in Section 3.3.5. Next, we
modify the heuristic of the greedy algorithm to consider weights.

1 public boolean isNoHeavierSubSet (CoverageWithWeight set , List <
CoverageWithWeight > all) {

2 for (final CoverageWithWeight other : all) {
3 if ((set. weight >= other . weight)&&(set. isSubSetOf (other)))
4 return false ;
5 }
6 return true ;
7 }

Figure 3.13: Identification of coverage
subsets adapted for weights.

The greedy approach in Fig. 3.12 orders the list of unused items by
cardinality. However, for the weighted set cover problem, we adapt the
heuristic by considering the Weight of the items. An item 𝑖1 with cardinality
|𝑖𝑖| = 10 and weight 𝑤2 = 2 may be favored in comparison to an item 𝑖2
with |𝑖2| = 20 and 𝑤2 = 20. Therefore, we order the list of unused items by
the ratio of cardinality over weight. Fig. 3.14 shows an implementation of Adapt heuristic to use the ratio cardi-

nality over weightthis adapted approach.

1 /** Solves the WSCP . Fast , but may not to be optimal . */
2 public static List < CoverageWithWeight > greedy (final List <

CoverageWithWeight > cov) {
3 CoverageWithWeight solution = CoverageWithWeight . EMPTY ;
4 List < CoverageWithWeight > all = copySort (all ,

sortByCardinalityOverWeightDesc);
5 for (int i = 0; i < all.size (); i++) {
6 final CoverageWithWeight currentItem = all.get(i);
7 if (currentItem . isEmpty ())
8 break ; // sorted guarantees that rest is also empty
9 solution = solution .add(currentItem);

10 List < CoverageWithWeight > sub=all. subList (i+1, all.size ());
11 sub. replaceAll (item -> item.sub(currentItem));
12 sort(sub , sortByCardinalityOverWeightDesc);
13 }
14 return convertSolution (solution);
15 }

Figure 3.14: Greedy algorithm for the
weighted set cover problem.

Finally, we can conceptually use the same approach for the full solution
as in Fig. 3.11. We adapt the data type and use the algorithms provided by

code coverage: measure test execution 47

Fig. 3.13 and Fig. 3.14. We omit the presentation of the adapted implemen-
tation due to a large amount of redundancy with Fig. 3.11 and the absence
of any novel aspects in the adaption of the implementation.

The adaptations for the weighted version do not change the worst-case
algorithmic time complexity. In practice, similar to our approach for the
SCP, our adapted approach for the WSCP solves all instances we encoun-
tered in a short execution time with a provable optimal solution, i.e., the
logical reductions and enumerating the (small) problem sizes that were left
solved all instances we encountered. Therefore, we again did not investigate
further optimizations for the greedy approach. However, we also executed
the greedy approach for unreduced problems where we did not apply any
logical reductions to evaluate its effectiveness. Even in such large problem
instances with 2 000 coverage files (𝐹) and 5 × 106 lines of code (𝑈), the
greedy approach is quite effective. The execution time is below 10 s and the
optimality is in 9 out of 10 evaluation cases perfect. However, we would not
know that a solution provided by the greedy algorithm is perfect (or not)
without the additional information.

In conclusion, due to the fast execution times of our full approach and
the additional information gained about the optimality of the solution, we
prefer to use our full approach instead of only the greedy approach even if
the greedy approach is also rather effective. We continue to use the greedy
approach as a fall-back in cases our logical reductions are unable to reduce
a problem below our stated threshold.

3.3.7 Further Variants of the Set Cover Problem

For our work on large software projects, we encountered several other vari-
ants of the SCP. We discuss these variants of the SCP and show practical
approaches and implementations to solve them. The literature provides a
wide range of additional variants of the SCP. For example, Cohen and Katzir
provide a discussion of the generalized maximum coverage problem that in-
cludes several other variants of the SCP [50]. Also, the original work of
Karp serves as a suitable starting point to find additional related work [148].

3.3.7.1 Weighted Set Cover Problem with a Budget

The WSCP with a budget (BWSCP) is a further variant of the WSCP. In
contrast to the WSCP, a threshold limits the total weight of the solution. We WSCP with threshold

search for the subset that covers the largest amount of items with a weight
not exceeding the threshold. More formally, given a threshold 𝑡 ∈ N0, and
a universe 𝑈 of 𝑛 ∈ N0 elements, and a family 𝐹 of 𝑚 ∈ N0 subsets of 𝑈

with associated weights, so that the union of all subsets is the universe:

𝑡 ∈ N0 (3.80)
𝑈 = {𝑒𝑖, 𝑒2, . . . , 𝑒𝑛} (3.81)
𝐹 = {𝑆1, 𝑆2, . . . , 𝑆𝑚} (3.82)
W : 𝐹 → N+ is a weight function (3.83)

𝑆𝑖 ⊆ 𝑈 and
⋃︁

𝑆∈𝐹

𝑆 = 𝑈 . (3.84)

48 testing in very large software projects

The BWSCP asks to find a subset 𝑅 of 𝐹 where the sum of the weights
does not exceed the threshold 𝑀 and the amount of items in 𝑅 is maximal:

Find 𝑅 ⊆ {1, 2, . . . , 𝑚} (3.85)

such that
∑︁
𝑖∈𝑅

𝑤(𝑆𝑖) ≤ 𝑡 (3.86)

and |
⋃︁
𝑖∈𝑅

𝑆𝑖| ≥ |
⋃︁
𝑖∈𝑋

𝑆𝑖| (3.87)

∀𝑋 ⊆ {1, 2, . . . , 𝑚} where
∑︁
𝑖∈𝑋

𝑤(𝑆𝑖) ≤ 𝑡. (3.88)

The BWSCP solves the practical problem of selecting a set of tests that
execute within a given amount of time (a time budget) and provide the
highest amount of coverage in this time. Consider the following example:

𝑈 = {1, 2, 3, 4, 5}, 𝐹 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5}, 𝑡 = 60 (minutes)

𝑆1 = {1, 2, 3, 4, 5} 𝑤(𝑆1) = 90 𝑆4 = {1} 𝑤(𝑆4) = 15
𝑆2 = {1, 2, 3} 𝑤(𝑆2) = 40 𝑆5 = {3, 5} 𝑤(𝑆5) = 15
𝑆3 = {4, 5} 𝑤(𝑆3) = 40

The test associated with 𝑆1 covers the complete universe, but the ex-
ecution time of 𝑆1 exceeds the threshold, and therefore the test cannot
be selected. Alternatively, the tests associated with 𝑆2 and 𝑆3 also cover
the complete universe, but the sum of the execution time also exceeds the
threshold. Therefore, the solution with the highest coverage is 𝑅 = {𝑆2, 𝑆5}
with

⋃︀
𝑖∈𝑅 𝑆𝑖 = {1, 2, 3, 5} and a total weight of

∑︀
𝑖∈𝑅 𝑤𝑖 = 55.

In contrast to the SCP and the WSCP, the logical reductions steps are
only partially applicable. The must-have item identification is not sound
due to the budget limitation, which can exclude a solution that contains all
elements. We can apply duplicate removal and subset removal from WSCP. Logical reduction are not effective for

BWSCP.However, without the iterative identification of must-have items, the impact
is rather limited for our practical test data. Due to randomness introduced
by the system itself, subset relations rarely occur in the full data.

To solve the BWSCP, we can adapt the greedy algorithm similarly as for
the WSCP. In contrast to Fig. 3.14, we skip items where the sum of the
weights would exceed the given threshold as shown in Fig. 3.15.

In contrast to the greedy approach for the WSCP, the approximation
factor of the greedy approach for the BWSCP is unbounded. To show
this, we follow an analysis for the budgeted maximum coverage problem
(BMCP)2 [156]. For this purpose, we use the adapted example: 2 The BMCP is in fact identical to the

BWSCP except that each element in 𝑈

has a specific weight (or benefit) where
for the SCP and BWSCP, each element
in 𝑈 has an uniform weight of 1 [156].

𝑡 = 𝑝 + 1, 𝑝 ∈ N+

𝑈 = {𝑥1, . . . , 𝑥𝑝, 𝑥𝑝+1}
𝐹 = {𝑆1, 𝑆2}

𝑆1 = {𝑥1, . . . , 𝑥𝑝}𝑤(𝑆1) = 𝑝 + 1

𝑆2 = {𝑥𝑝+1} 𝑤(𝑆2) = 1.

The greedy heuristic calculates |𝑆1|/𝑤(𝑆1) = 𝑝/(𝑝 + 1) = 𝑘1 < 1 and
|𝑆2|/𝑤(𝑆2) = 1 = 𝑘2. Based on 𝑘1 < 𝑘2, the greedy heuristic selects 𝑆2 and

code coverage: measure test execution 49

1 /** Solves the BWSCP . Fast , but may not to be optimal . */
2 public static List < CoverageWithWeight > greedy (final List <

CoverageWithWeight > cov , final int maxWeight) {
3 CoverageWithWeight solution = CoverageWithWeight . EMPTY ;
4 List < CoverageWithWeight > all = copyAndSort (cov ,

compareByCardinalityOverWeightDesc);
5 for (int i = 0; i < all.size (); i++) {
6 final CoverageWithWeight current = all.get(i);
7 if (current . isEmpty ())
8 break ; // sorted guarantees that rest is also empty
9 if (solution . getWeight ()+ current . getWeight () > maxWeight)

10 continue ;
11 solution = solution .add(current);
12 List < CoverageWithWeight > sub=all. subList (i+1, all.size ());
13 sub. replaceAll (item -> item.sub(current));
14 sort(sub , sortByCardinalityOverWeightDesc);
15 }
16 return convertSolution (solution);
17 }

Figure 3.15: Greedy algorithm for the
weighted set cover problem with a bud-
get.

reports the solution 𝑅2 = {𝑆2} with |𝑅2| = 1 where the optimal solution is
𝑅1 = {𝑆1} with |𝑅1| = 𝑝. The approximation is 𝑝 and unbounded.

Khuller et al. report two modified greedy algorithms, KA1 and KA2, with
approximation factors of (1 − 1/𝑒)/2 for KA1 and (1 − 1/𝑒) for KA2 [156].
Both KA1 and KA2 require additional calculations to improve the approx-
imation factor. KA1 calculate the best single-element solution over all
elements in 𝐹 and returns this solution if better than the greedy approach.
KA1 calculates |𝐹 | greedy results where each item in 𝐹 is pre-selected for
a calculation and then reports the best result. In practice, we did not
encounter any problem instance where KA1 or KA2 provided better re-
sults than our dscribed approach. Even more, the execution times of KA2
exceeded 10 min in several cases, making it uninteresting for practical cases.

3.3.7.2 Set Cover Problems With Multiple Buckets

Large projects utilizes multiple servers for test executions, say a set 𝑆𝑉 =

{𝑆𝑉1, . . . , 𝑆𝑉𝑛} of 𝑛 servers. This leads to the question of how to distribute
the test executions over the servers in 𝑆𝑉 . Our work does not focus on this SCP with multiple buckets

distributed aspect. However, to show that our algorithms can be adapted for
such cases, we present the ideas for two approaches, a first-come-first-serve
approach and a multiple bucket variant of the greedy approach.

For the first-come-first-serve approach (FCFS), we apply the greedy ap-
proach for the BWSCP to obtain a solution 𝑅 with an ordered sequence
of tests. Then, for each server 𝑆𝑉𝑖 in 𝑆𝑉 that is not executing a test, we
obtain the first test 𝑡top from 𝑅, remove it from 𝑅 and execute 𝑡top on 𝑆𝑉𝑖.
We repeat this approach until all tests in 𝑅 are executed.

For the multiple bucket variant of the greedy approach, we modify the
greedy algorithm for the BWSCP to include buckets as shown in Fig. 3.16.

The FCFS approach even supports a variable amount of servers. However,
the distribution can be unbalanced where one server executes a test with a
large execution time while all other servers are finished and idle. In practice,
parallel test runs mitigate this issue. The greedy with multiple buckets
approach aims to balance the test executions and therefore can reduce the

50 testing in very large software projects

1 /** Solves the BWSCP with buckets . Fast , but may not to be
optimal . */

2 public static List < CoverageWithWeight > greedy (List <
CoverageWithWeight > cov , int maxWeight , int buckets) {

3 final List <T> solutions = new ArrayList <>(Collections .
nCopies (buckets , CoverageWithWeight . EMPTY));

4 final List < CoverageWithWeight > all = copySort (cov ,
sortByCardinalityOverWeightDesc);

5 for (int i = 0; i < all.size (); i++) {
6 final CoverageWithWeight current = all.get(i);
7 if (current . isEmpty ())
8 break ; // sorted guarantees that rest is also empty
9 for (int n = 0; n < solutions .size (); n++) {

10 CoverageWithWeight solution = solutions .get(n);
11 if (solution . getWeight ()+ current . getWeight () > maxWeight)
12 continue ;
13 solutions .set(n, solution .add(current));
14 List < CoverageWithWeight > sub=all. subList (i+1, all.size ());
15 sub. replaceAll (item -> item.sub(current));
16 sort(sub , sortByCardinalityOverWeightDesc);
17 break ;
18 }
19 }
20 return convertSolutions (solutions);
21 }

Figure 3.16: Greedy algorithm for the
weighted set cover problem with a bud-
get and buckets.

total idle times of all servers for a single test run. This typically also results
in a shorter test execution time. However, the planning for parallel test
runs gets rather complex with such an approach and therefore the FCFS
approach is preferred in practice for SAP HANA.

We visualizes the differences by an example. Given 10 tests with test
execution times {1, 4, 9, 5, 1, 6, 6, 9, 10, 4} (in this order), we apply both ap-
proaches to distribute the tests over 4 servers. For the greedy algorithm, we
assume a maxSize = 15. Fig. 3.17 shows the results. We measure the total
execution time 𝑇𝑚, which is the maximum of all bucket sums and represents
the time until the test run is finished. The FCFS approach then results in a
distribution with 𝑇𝑚 = 1 + 1 + 6 + 10 = 18. However, the greedy approach
finds 𝑇𝑚 = 1 + 4 + 9 + 1 = 15.

Figure 3.17: A comparison between
two approaches for distributing tests
with different execution times over mul-
tiple servers.

The theoretical problem behind finding a distribution of 𝑛 tests, each with
an execution time 𝑡𝑖, over 𝑚 servers that satisfies predefined requirements
is a variant of the bin packing problem [162] (BPP) and the multiprocessor Bin packing problem

code coverage: measure test execution 51

scheduling problem [97]. The BPP consists of 𝑛 ∈ N+ items with associated
sizes 𝑎1, . . . , 𝑎𝑛 and a set 𝐵 of 𝑘 ∈ N+ bins {𝐵1, . . . , 𝐵𝑘} with the same size
𝑏 ∈ N+. Then, for a solution, all items must be distributed over all bins
without violating anysize constraints. More formally:

∃ 𝑓 : {1, . . . , 𝑛} → {1, . . . , 𝑘} : ∀ 𝑗 ∈ {1, . . . , 𝑘} :
∑︁

𝑖:𝑓 (𝑖)=𝑗

(𝑎𝑖 ≤ 𝑏) ? (3.89)

In our case, the bins represent servers and the items with sizes are tests
with execution times. Also, the bin size is variable, but the amount of bins is
bounded. We can map our problem to the BPP by introducing a threshold
for execution times. Then, our greedy approach is identical to the first-fit
algorithm with an approximation factor of 2 of related work [162].

3.3.8 Coverage Compaction

Epitropakis et al. propose an algorithm to compact coverage [85]. The
algorithm is lossless, i.e., it allows us to reconstruct the original data. Hence, Lossless compaction

we can use compacted coverage used instead of the original data. The
compaction reduces space requirements, and can potentially reduce the
execution time of any algorithm working on coverage data.

The main idea for the algorithm is to identify two parts of the code that
show exactly the same behavior in terms of coverage for all test executions.
We can then remove one of these parts because its behavior is determined
by the other part. More formally, given the set of all tests 𝑆𝑇 , the set of
all source code lines 𝑆𝐿 and the coverage function 𝑐𝑜𝑣𝑖(𝑙) that reports the
coverage of a source code line 𝑙 ∈ 𝑆𝐿 for the execution of 𝑖 ∈ 𝑆𝑇 , then:

Find pairs (𝑘, 𝑙) ∈ 𝑆𝐿 × 𝑆𝐿 : 𝑐𝑜𝑣𝑖(𝑘) = 𝑐𝑜𝑣𝑖(𝑙) ∀ 𝑖 ∈ 𝑆𝑇 . (3.90)

If such a pair exists, we say that 𝑘 relates to 𝑙, or 𝑘 ∼ 𝑙. The set of all
such pairs represent a binary relation 𝑅𝐶 :

𝑅𝐶 = {(𝑘, 𝑙) | 𝑐𝑜𝑣𝑖(𝑘) = 𝑐𝑜𝑣𝑖(𝑙) ∀ 𝑖 ∈ 𝑆𝑇 with 𝑘, 𝑙 ∈ 𝑆𝐿}. (3.91)

We can see that 𝑅𝐶 is reflexive, symmetric and transitive. Hence, 𝑅𝐶 is Equivalence relation

an equivalence relation [230]. We can partition 𝑅𝐶 into a set of equivalence
classes 𝐸𝐶𝑅𝐶 = {[𝑎1], ..., [𝑎𝑛]}, where [𝑎𝑖] = {𝑥 | 𝑥 ∼ 𝑎𝑖, 𝑥 ∈ 𝑆𝐿}. Then,
[𝑘] = [𝑙] ⇐⇒ 𝑘 ∼ 𝑙 and we select [𝑚𝑖𝑛(𝑘, 𝑙)] as the canonical representa-
tive for the equivalence class. Given these definitions, we can understand
the compaction algorithm as selecting representatives of the equivalence
classes produced by the relation 𝑅𝐶 and thereby reducing 𝑆𝐿 to 𝐸𝐶𝑅𝐶 with
|𝐸𝐶𝑅𝐶 | ≤ |𝑆𝐿|. In practice, |𝐸𝐶𝑅𝐶 | << |𝑆𝐿|, i.e., the set of representatives
is smaller by a large factor than the set of all lines.

We highlight two improvements for the original “Algorithm 1” (𝐴𝐿𝐺𝑐𝑐𝑒)
by Epitropakis et al. [85]. First, the description of 𝐴𝐿𝐺𝑐𝑐𝑒 has a small
flaw in line 7. The delete operation invalidates the index. This is easily
fixed by a temporary variable. Most likely, the authors implemented this
fix for their evaluation. Second, the worst-case time complexity for 𝐴𝐿𝐺𝑐𝑐𝑒

is quadratic: 𝒪(𝑛2) where 𝑛 = |𝑆𝐿|, i.e., the number of lines. For practical
cases with several million lines, the quadratic complexity results in infeasible
execution times. Therefore, we use hash-based filtering which leads to an
amortized [241] linear time complexity 𝒪(𝑛) as shown in Fig. 3.18.

52 testing in very large software projects

1 public List <Coverage > compactCoverage (List <Coverage > all) {
2 Coverage sum = parallelSum (all);
3 List < SourceLinePair > slps = sum. getSourceLinePairs ();
4 Set <BitSet > unique = slps. parallelStream ().map(slp ->

getEcForCoveragesAndSlp (all ,slp)). collect (toSet ());
5 // # unique : unique . size () , # redundant : slps . size () - unique
6 return convert (all , unique) // converts the result to list
7 }
8 public BitSet getEc (List <Coverage > all , SourceLinePair slp) {
9 final BitSet result = new BitSet (all.size ());

10 for (int i = 0; i < all.size (); i++) {
11 if (all.get(i). isSourceLineHit (slp))
12 result .set(i);
13 }
14 return result ;
15 }

Figure 3.18: Hash-based compact cov-
erage algorithm.

1 int f(int a, int b) {
2 int c = a + b; // line 1
3 int d = a - b; // line 2
4 return c*d; // line 3
5 }
6 // ... line 4,5,6

Figure 3.19: Example where executions
result in redundant line coverage.

Fig. 3.20 presents an example. The first three lines in Fig. 3.20a may
represent code as shown by Fig. 3.19. Fig. 3.20 also shows multiple variants.
The variant selection depends on the requirements of the next step. For
example, our approaches to the set cover problem presented in Section 3.3.4
do not require the identification of specific lines. Therefore, we can utilize
Variant B as presented in Fig. 3.20c where we re-label the lines with a new
counter and further reduce the coverage data size compared to variant A.

Lines

Test 1 2 3 4 5 6

A x x x x x
B x x x x
C x x x

(a) Original coverage data.

Lines A B C

1, 2, 3 → 123 3 3
4, 6 → 46 2 2
5 → 5 1 1

(b) Compacted coverage variant A.

Lines A B C

1, 2, 3 → 123 x x
4, 6 → 46 x x
5 → 5 x x

(c) Compacted coverage variant B.

Figure 3.20: Example for coverage com-
paction. Table (a) indicates for 3 tests
which of 6 lines are executed (“x”). Ta-
ble (b) shows the compacted version
where 3 lines are removed, but all in-
formation is preserved. Each number
indicates how often the corresponding
group of lines (indicated by the label)
is executed. Table (c) shows a further
simplified variant, where only a single
bit for the execution state is required
instead of the execution count. The la-
bel for the lines may be used to extract
all required information to reconstruct
the original state. Finally, we may also
replace the labels with a new counter
if reconstruction is not required.

3.4 Summary

We introduced the concept of coverage and defined all related terms. The
exact definitions of coverage are important because the term is used in
literature with different meanings. In our work, we focus on line coverage
data. However, several of our approaches also support other variants.

We also presented approaches for several algorithmic problems when work-
ing with coverage data. We will use them as building blocks for advanced
approaches. One of the design goals is scalability for large projects. Based
on practical experience and evaluations, this design goal is achieved. We
can run our analysis, experiments, and algorithms on coverage data in short
times. This allows a practical adoption and rapid exploration of new ideas.

4 On the Relationship Between Coverage and Faults

Code coverage data for a test execution provides information about the
executed parts of a software 𝑃 . This means that we can derive from coverage
data which parts of the source code were executed by a test and which parts
were not. We also discussed in Chapter 2 that one of the purposes of testing
is to show the presence of defects in source code1. As both concepts provide 1 It is worth mentioning that testing

does not show the absence of defects –
a quote attributed to Edsger W. Dijk-
stra.

information about source code, we can consequently ask whether coverage
data provides any additional information on faults.

To understand this question, we first discuss the essence and limitations
of information gained by coverage data. We then discuss related work and
possible implications. Finally, we contribute two empirical studies with new
insights on the relationship between coverage and faults. More specifically,
our contributions are:

• A study that investigates the impact of coverage on the distribution of
defects for a large industrial system (Section 4.2).

• A study that investigates Granger-causality between coverage and defects
for a large industrial system and an open-source project (Section 4.3).

• An approach to combine coverage-based input partition and combinatorial
testing to increase coverage (Section 4.4).

4.1 Discussion

Code coverage measures to which degree a software under test (SUT) is
executed by software tests. For instance, a set of software tests may execute
80 % of a SUT and therefore the SUT has 80 % test coverage. What do we
learn from such a number? It would be a fallacy to conclude that 80 % of
this SUT is free of faults. In fact, tests are unable to prove the absence of Tests are unable to prove the absence

of faults, they only prove their presencefaults, they only prove their presence. We have no information about the
total amount of faults in a software project, therefore we cannot conclude
whether we found all failures. Furthermore, it may not be possible to derive
the total number of faults. Typically, faults exist because we are not aware
of them. Otherwise, we would just correct them. To derive the number of
all faults, we would require to have information about the information we do
not know. Without an external source of information, this seems infeasible.

Practically speaking, it is a typical experience of every developer that
faults reveal at surprising and unexpected places. For example, binary search
is a fundamental algorithm [53] for which it seems to be a rather simple task
to create, understand, and verify an implementation. Yet, it took 20 years
to detect a fault in the implementation for the Java standard library [227].

54 testing in very large software projects

Fig. 4.1 shows the original Java code containing the fault caused by an
integer overflow [227]. As this example already shows, most likely no person
with experience in software engineering would claim that software contains
no faults based on a set of (succeeding) tests.

1 int bins(int [] a,int key){
2 int low = 0;
3 int high = a. length - 1;
4 while (low <= high) {
5 int mid = (low+high)/2;
6 int midVal = a[mid];
7 if (midVal < key)
8 low = mid + 1
9 else if (midVal > key)

10 high = mid - 1;
11 else // key found
12 return mid;
13 }
14 return -(low +1);// no key
15 }

Figure 4.1: Faulty binary search im-
plementation. Original version of Java
standard library before 2006.

Therefore, we cannot make a statement about the number of faults for
the 80 % of covered source code. However, for 20 % of the SUT, we can
clearly state that we know nothing. These 20 % were not executed at all
and, therefore, they are not tested. This statement seems to be trivial and
obvious. However, it provides value for our testing process. We can conclude

Coverage can guide testing activities.

that this 20 % of the source code can contain any fault — the code may
not work at all. Therefore, we potentially have a clear sequence of steps to
improve the quality. Investigating the unknown 20 % can already improve
the quality of the software by only adding information about these 20 % of
the software.

After investigating the tested and untested parts of the software inde-
pendently, we can also try to compare both parts by various metrics. By
comparing the tested part of the software to the untested part of the software,
we can create the hypothesis that the tested part of the software contains a
lower amount of failures compared to the amount of failures in the untested
part of software. At first, it seems plausible that this hypothesis is true. Has tested code fewer faults compared

to untested code?Software testing is an activity that typically results in quality improvements,
therefore we would expect that the tested part of a software has a higher
quality compared to the untested part of a software. However, this argument
can be misleading for the following reasons:

• The untested part of the software could already have a high quality
ensured by other measures than test executions. The testing process
could use a risk-based approach [89] and therefore targets only the parts
of the software with a high risk.

• The untested part could contain functionality that is not relevant for the
product. There could be failures, but they would not appear to users.
Therefore, the quality of the product is not affected by the untested part.

• The number of known failures might not be distributed evenly. Typically,
we might find more failures in these parts of the software that are more
frequently used. This follows by a statistical argument. The more users
that use a specific functionality, the higher the chance they encounter a
defect in some usage scenarios. Therefore, even if the untested part of
the software is infrequently used by users, the total amount of defects
encountered can be lower compared to the more frequently used (and
tested) parts of the software.

Altogether, we conclude that the existence of causality between tested
code and code quality remains unclear. We only know that the properties
encoded in the tests and checked by the tests hold if the tests succeed. If no causation, is there a correlation?

However, in practice, code coverage is used to guide testing activities and
as a metric to measure the quality of a test suite (or the program itself).
Therefore, we can ask whether there is a correlation between coverage or
the degree of coverage and quality2. There is a wide range of related work 2 Reminder: Correlation does not im-

ply causation.investigating these questions. In addition to the existing work, we also
conducted several studies on SAP HANA.

on the relationship between coverage and faults 55

4.1.1 Prior Work on Benefits of Code Coverage

There are several studies that analyze whether the existence of code coverage
itself and coverage goals are beneficial for measuring and improving software
quality. The general hypothesis that a high test coverage results in a low
amount of defects might sound trivial. Test coverage represents the execution
of tests. Therefore, if a large amount of the source code is tested by tests,
then it should have a low amount of defects. In fact, that is one of the
reasons why we test – to detect and remove defects. While it seems to be
obvious, we argue that it is in fact not. We discuss two cases: a relative
comparison, and an absolute statement.

In the relative case, we argue that it is unclear whether an increase of 𝑋%
in test coverage results to a decrease of 𝑌 % in defects. It may happen that An increase in coverage must not re-

duce the number of defects.𝑋 occurs at trivial places (say, trivial getter/setter methods for objects) and
therefore it has no implications on the number of defects. Then we could
ask how large has 𝑋 to be that 𝑌 will be influenced? Presumably, there
are diminishing returns – if not, all defects would be found at 𝑋 = 100.
Maybe there is even a global maximum or plateau. In a more extreme case,
we could add tests that execute the software but do not verify the results
(i.e., they do not contain a test oracle). This would increase coverage, but
clearly provide little benefit for finding defects. We conclude that it requires
further empirical analysis to draw any conclusion in this case.

In the absolute case, we argue that it is unclear how to interpret a ratio
of 𝑋% in test coverage regarding the number of defects. In fact, how should A coverage ratio does not provide infor-

mation about the number of defects.we draw any conclusion at all? The total number of defects is not known.
Maybe the number of defects found is known (although we see later that
even this is typically not known), but even then how should we correlate
both numbers, coverage and defects? We could try to start with the most
simplified case where 𝑋 = 0. As we discussed in Chapter 3, the only valid
conclusion we can make in this case is that the number of defects is unknown.
It might be 0 or any other number. Conclusively, it requires further empirical
analysis to draw any conclusion in this case.

Given these arguments, we conclude that the question of whether a high
test coverage results in a low amount of defects is in fact not trivial to answer.
A sound answer requires empirical research and statistical arguments.

4.1.2 Results Supporting Benefits of Code Coverage

These publications often study the correlation between code coverage ratio
and the number of bugs in different test subjects. For example, Mockus et
al. investigate the correlation between coverage ratio and the probability
of defects affecting a component on two industrial software projects and
the effort required to increase the coverage ratio [194]. They find that an
increase in coverage leads to a proportional decrease in defects.

Ahmed et al. analyze 49 projects to understand the correlation between
coverage and bugs [3] (see also Section 4.2.2.1). They analyze different
variants of coverage and find a weak but significant correlation between
statement coverage and the number of bug-fixes as a proxy for bugs.

Kochhar et al. investigate two large software systems to investigate and
compute correlations between coverage, test suite size, and test suite effec-

56 testing in very large software projects

tiveness. They find a moderate to strong correlation between coverage and
test suite effectiveness [158]. A metastudy conducted by Inozemtseva et
al. shows that 8 out of 12 previous studies confirm a positive correlation
between coverage and test suite effectiveness [130].

4.1.3 Results Contradicting the Benefits of Code Coverage

While other work also use correlation analysis, other authors consider ad-
ditional variables in extension to only coverage and bugs. For example,
Inozemtseva et al. study correlation between coverage and test suite effec-
tiveness in five open-source systems, but they also control the test suite size
for their experiments [130]. They find that it is generally not safe to assume
test suite effectiveness is strongly correlated with coverage. In fact, their
results indicate that test suite size is correlated with test suite effective-
ness and code coverage does not show a strong correlation with test suite
effectiveness when the suite size is controlled. In other words, larger test
suites with more coverage can find more defects. Namin et al. find similar
results for smaller study subjects and investigate multiple models for the
correlation to explain such findings [199]. Groce et al. provide an extensive
overview of existing work that highlights several limitations [110].

Mark Seemann claims that coverage is a “useless target measure”3. Mar- 3 http://blog.ploeh.dk/2015/11/16/
code-coverage-is-a-useless-
target-measure/

tin Fowler states that “Test coverage is of little use as a numeric statement
of how good your tests are.”4. Both practitioners argue in favor of using 4 https://martinfowler.com/bliki/

TestCoverage.htmlcoverage as a helpful metric to identify untested parts of a software, but the
absolute numbers have no relevance or meaning. This also implies that we
would not be able to draw any conclusions regarding the number of defects.

4.1.4 Mixed Results Regarding the Benefits of Code Coverage

Some work claim that the answer depends on the exact question, definitions
of the terms, and potentially on more variables [110, 199, 232, 270]. For
example, Groce et al. argue in their survey that there is uncertainty as to
what exactly measuring code coverage should achieve, as well as how we
would know if it can, in fact, achieve it. They develop a strong and weak
coverage hypothesis to provide a meaningful context for further discussion
and experiment design [110].

4.1.5 Interpretation of Results Regarding the Benefits of Coverage

The results of related work are partially contradicting each other. While
some studies show the coverage has a benefit on code quality in terms of
number of defects, other studies doubt this benefit. Several studies show that
the correlation seems to be spurious, i.e., there are confounding variables.
In addition, some studies use only surrogates for defects, such as mutants.
Therefore, we can only conclude that there is no accepted result. More studies required to investigate

complex factors.This unclear result, to our belief, reflects the complexity of practical
software engineering. As discussed in Chapter 2 and Chapter 3, there are
several complex factors that might be hard to measure precisely:

1. The definition of a defect depends on the opinion of persons that classify
an issue. In addition, studies typically do not investigate the impact of

http://blog.ploeh.dk/2015/11/16/code-coverage-is-a-useless-target-measure/
http://blog.ploeh.dk/2015/11/16/code-coverage-is-a-useless-target-measure/
http://blog.ploeh.dk/2015/11/16/code-coverage-is-a-useless-target-measure/
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html

on the relationship between coverage and faults 57

defects, i.e., whether they, for instance, crash an application, alter data or
only misrepresent a visual element. It remains unclear how defects could
be classified and analyzed with rigor. Even if such a classification exists,
the task to re-classify existing study subjects seems to be challenging. In
addition, there might be several defects that exist or get fixed which are
never monitored within a bug tracker or a version control system because
developers fix the issue during development before integrating the source
code into the main code line.

2. There are several coverage variants and it remains unclear which to
investigate and how to interpret changes. Coverage might change due to
several reasons such as new code, new tests, or flakiness.

3. Not all code, and therefore, not all coverage is equal. Some parts of the
code might be important for a software product and are frequently used,
other parts are rarely or never used. It might not be a fair comparison to
investigate the complete code base assuming that all code lines are equally
treated. For example, more frequently executed code has a higher chance
to reveal defects compared to code that is never executed. It remains
unclear how this effects a relationship between coverage and defects.

4. The programming language might influence the results. Different lan-
guages support different tooling and philosophies for software creation.
While it might be simple to write unit tests and measure code coverage
in Java, the same task can require considerably more effort in C++ .

5. There might be a large number of possible confounding variables, i.e.,
a third variable that explains the changes in coverage and defects. An
example is the software development method5. In addition, the charac- 5 Although it even remains unclear

which effects different software devel-
opment methods have on the amount
of defects.

teristics of developers affect the correlation. More experienced developers
are most likely better at preventing and detecting defects. Also, they
might be more motivated to write tests and to aim for test coverage.

6. The project size might influence the results. While a large project might
be favorable because the results can be statistically more significant, the
effort to find and analyze large projects reduces the number of large
studies. Even more, large projects with over 1 000 000 lines of code and
over 10 years existence might not be freely available for research.

Given these arguments, we expect that authors of a study will encounter a
well-known problem of empirical studies in software engineering [91, 108, 196,
216]. Either they strictly control all variables and achieve a high construct
(and internal) validity but low practicability and generalizability (i.e., low
external validity), or they achieve the opposite of each. Both variants may
not allow drawing practical conclusion and it remains unclear how to tackle
such complex research questions.

Therefore, we follow a general approach also used in other fields. We
provide additional results for the same question. This allows us to collect
several such results and conduct a meta-analysis to acquire new insights
and possibly draw conclusions with high construct validity but also with
high external validity. To this aim, we investigate SAP HANA as a large
industrial system and, in a second study, we also investigate an open-source
system. In two studies, we analyze the relationship between coverage and
defects for these systems.

58 testing in very large software projects

4.2 The Impact of Coverage on Bug Density

Measuring the quality of test suites is one of the major challenges of software
testing. To approximate test suite quality, code coverage is frequently used
because it identifies tested and untested parts of the code.

Multiple previous studies have investigated the relationship between cov-
erage ratio and test suite quality, without a clear consent in the results. We
study whether covered code contains a smaller number of future bugs than
uncovered code (assuming appropriate scaling). If this correlation holds Contains covered code fewer bugs com-

pared to uncovered code?and bug density is lower in covered code, coverage can be regarded as a
meaningful metric to estimate the state of testing.

To this end, we analyze 16 000 internal bug reports and bug-fixes of
SAP HANA, a large industrial software project. We found that the above-
mentioned relationship indeed holds, and is statistically significant. Contrary
to most previous work our study uses real bugs and real bug-fixes. Further- Real bug data instead of mutants.

more, our data is derived from a complex and large industrial project.

4.2.1 Introduction

Software testing is a crucial and widely deployed tool for ensuring software
quality. One of the practical challenges for software testing is measuring
the quality and effectiveness of test suites. Measures for the adequacy
of testing are typically used to identify whether a software artifact is not
tested sufficiently well, and where improvement is needed. They also play
an important role to indicate that a sufficient amount of testing has been
done, and resource costs for testing eventually surpass the expected savings
from reductions in the amount and impact of defects.

One of the most widely-used measures for the adequacy of testing is
statement coverage. Its direct use is to identify uncovered parts of code
that potentially contain further bugs, not caught by existing test code. The
code coverage (ratio), i.e., ratio of covered lines to all lines, is frequently
interpreted as a metric of test quality, with numerous organizations using
it to set testing requirements. However, some studies question the very
existence of a relationship between coverage and test suite effectiveness [130].

If a positive correlation between coverage ratio and test suite effectiveness
exists, we expect to find a smaller number of future bug-fixes in the covered
parts of code, see Fig. 4.2. Ahmed et al. [3] design a schema to verify the
benefits of coverage as a test quality measure. Essentially, they identify the
number of bugs found in covered and not covered code. If the coverage ratio Does coverage change the distribution

of bugs?is meaningless, then we expect that future bugs are distributed uniformly in
covered and uncovered parts of the source code. However, if coverage ratio
is meaningful, then the percentage of all future bugs found in the covered
parts of the code should be smaller than the coverage ratio. We illustrate
the binary testedness approach of Ahmed et al in Fig. 4.3.

While Ahmed et al. [3] use mutations as surrogates for bugs, we use
records of real bugs and their bug-fixes. Another essential difference is
that we collect our data from a very large industrial application with high
quality requirements. Our work improves the data collection process and
data evaluation by introducing multiple collection points instead of using

on the relationship between coverage and faults 59

a single snapshot like the previous study of Ahmed et al. [3]. This reduces
the risk of losing track of code changes over time and increases the size of
the data set for more robust evaluation.

Figure 4.2: Exemplary coverage and
bug distributions. Scenario 1 describes
a situation where coverage ratio is
meaningless for future code quality
measured by the amount of bugs. Sce-
nario 2 shows a situation where cover-
age is meaningful.

Following the binary testedness approach, we investigate the following
research question for our study subject, SAP HANA:

RQ1 Does coverage have an impact on the distribution of detected defects?

For this purpose, we analyze how many bugs occur in covered and un-
covered parts of the source code of SAP HANA. Our findings show that
indeed there are fewer bugs in the covered parts of the source code than
expected from a uniform distribution. This effect is visible in 70 out of 72 Covered code has fewer bugs compared

to uncovered code.time segments of our data, and is statistically significant for the mean. This
indicates for our test subject, that increasing coverage ratio and enforcing
high coverage goals can reduce the number of defects.

4.2.2 Approach

We describe the binary testedness approach from Ahmed et al. [3], describe
the SAP HANA bug tracking process environment, and outline the method-
ology for data collection and processing of our analysis.

60 testing in very large software projects

4.2.2.1 Binary Testedness Approach

The binary testedness approach proposed by Ahmed et al. [3] separates the
source code in two (binary) groups: Covered and uncovered parts of the
source code. Based on this separation at a given time 𝑇 , all future bugs
and the corresponding bug-fixes after 𝑇 are checked if they occur in the
covered or the uncovered group, see Fig. 4.3. A lower amount of bugs in
covered parts (found covered bugs) compared to coverage ratio times all
bugs (expected covered bugs) would indicate that coverage is meaningful.

Figure 4.3: The binary testedness ap-
proach [3] separates the source code
in two (binary) groups and counts the
number of bugs in the covered and un-
covered group. In this example, 170
bugs occurred in the covered part of
the source code, 24 in the uncovered
part and 6 are undecided.

Ahmed et al. use the GumTree Differencing Algorithm to identify the GumTree Differencing Algorithm

position of the original source code elements at time 𝑇 for a bug-fixing
commit after 𝑇 , even if the source code and position of the elements changed
between 𝑇 and the bug-fixing commit. For this purpose, GumTree utilizes
an abstract syntax tree [87], see Fig. 4.4 (upper part).

Figure 4.4: The GumTree approach [3]
tracks the nodes of an abstract syntax
tree (AST). This can reduce the accu-
racy for consecutive changes. For com-
mit 3, change 1 is uncovered, deleted
and inserted nodes are unknown and
change 2 is covered, but it is, in fact, un-
clear due to intermediate changes. Our
approach accurately maps change 1, 2
and the deletion from commit 3.

Instead of using coverage data for a single point 𝑇 in history, our approach
utilizes the data of multiple coverage runs distributed from 𝑇 until the last
observed bug-fixing commit. This partitions the measurement period into
multiple, non-overlapping time segments. Fig. 4.4 (lower part) visualizes the
concept and shows an example of the accuracy improvements in terms of
a more robust mappings between changed source code and coverage data.
Simplified, shorter time segments provide more information.

on the relationship between coverage and faults 61

Increasing the number of coverage runs shortens the time segments, and
therefore reduces the likelihood of intermediate conflicting commits between
a coverage run and a bug-fix. For our study, we found that 72 time segments
(roughly two coverage runs per week) ensured a mismatch rate below 1 %
for all file modifications. A mismatch occurs if the original source code state
of the bug-fixing commit is not equal to the state of the coverage run. The
accuracy can be further improved by shortening the time segments between
test runs at the cost of a higher resource investment.

4.2.2.2 Bug Tracking Process of SAP HANA

Section 2.2.2 describes the quality assurance process for SAP HANA. We
focus here on the bug tracking process of SAP HANA.

SAP uses a bug tracking tool to maintain defect history. For the purpose
of this study, we classify defects by their detection time into early detected
and late detected defects. Defects found before a change is merged into
the source code repository are classified as early. Defects found later are
classified as late. Early defects are detected, e.g., during development, by Bug detected late: after code is merged

into main code line.peer reviews or by pre-commit test runs. Late defects are detected, e.g.,
by extended continuous automatic regression testing, by manual testing, by
internal usage of SAP HANA (“self-hosting”), by automatic tools, e.g., fuzzy
testing, or even by customer reports. This study focuses on late defects,
which tend to have a higher cost impact [28] and better documentation
compared to defects during early local development. In the following, we
use the term bug synonymous with late detected defects.

This classification of the terms early and late bugs is a proprietary def-
inition, which is different from common terminology, e.g., ISTQB test lev-
els [139]. The ISTQB classification of test levels is linked to the responsibili-
ties in a project. The distinction by responsibilities is not always possible in
our case project. For instance, one test suite can contain component tests,
integration tests, system tests, and regression tests. We classify bugs on the
time of identification and distinguish between bugs that were detected by
the current set of programmatically executed tests and bugs that were not
detected by these set of tests. This allows us to apply the binary testedness
approach from Ahmed et al. as described in Section 4.2.2.1.

4.2.2.3 Data Collection and Processing

Our experiment setup requires coverage data, bug data, and a link between
bugs and coverage. As described in Section 4.2.2.2, line-based coverage
data is collected regularly. Each coverage-execution of a test suite creates
a distinct coverage data file, which is aggregated with all other distinct
coverage data files to a combined coverage data file.

For the bug data, we collect bugs as described in Section 4.2.2.2 and
we assume that each entry in the bug tracking tool indicates a bug. Each
bug entry either contains a link to one or multiple bug-fixing source code
changes (“bug-fixing commit”), or the bug-fixing commit message contains
the id of the bug. SAP engineers have collected, maintained, and used this Accurate information about bugs and

bug-fixing changesinformation for many years within the SAP HANA project, and so we can
assume that the results are reliable.

62 testing in very large software projects

This allows us to accurately identify related code changes for each bug.
Conclusively, we expect our classification to be more accurate than ap-
proaches that identify such changes based on change information alone [231].

4.2.2.4 Classifying Bug-Fixes by Coverage

For each bug, we classify the corresponding bug-fixing as covered, uncovered
or undecided. For this purpose, we use the decision graph shown in Fig. 4.5,
which we explain in the following paragraphs.

Figure 4.5: The process of classifying a
bug-fixing Git commit as covered, un-
decided, or uncovered.

The source code of SAP HANA is maintained in a Git version control Git

system [14]. Each Git commit corresponds to a source code change. Tech-
nically, a Git commit consists of sections that represent files. Each section
consists of chunks that represent a set of lines added or deleted.

on the relationship between coverage and faults 63

A commit is considered covered if at least one chunk is covered and we
call it covered bug-fix. This implies that the original version of these covered Covered bug-fix

chunks was executed by at least one test, but the test did not detect the
bug. We consider at least one covered chunk as sufficient to classify the
commit as a covered bug-fix, because a single covered chunk implies that
the corresponding bug could have been possibly detected by at least one
test. This definition can result in a larger set of covered bug-fixes than a
manual decision by experts, because our covered bug-fixes may not contain
covered parts of the source code which are relevant to the bug.

Analogously, if none of the existing tests executed any part of the original
code of the bug-fixing commit, we call it an uncovered bug-fix. We use a Uncovered bug-fix

third category for unclear cases and call a commit an undecided bug-fix if we Undecided bug-fix

cannot use any of the two previous categories. This occurs in corner cases
where a bug-fix introduces new code. For example, lines 1 to 10 in a file are
covered by a test and lines 11 to 20 are not covered. A bug-fixing change
introduces 5 new lines after the original line 10. It remains unclear whether
these new lines should be classified as covered or not.

We ignore file additions, deletions, and moves. If any modification on
file level occurs, say a new file is introduced, we expect a change at any
other point in the source code reflecting these modifications (e.g., class
instantiation, function usage). We only classify this other change and ignore
the file modification. There are counterexamples for this reasoning, but we
did not find any occurrence in practice. Additionally, the frequency of file
moves is less than 1 % and the classification is complex, therefore we decided
to ignore them for any classification.

Line additions are only classified as covered if the original lines before
and after the addition point are covered. We found several counterexamples
for a less strict approach that classifies line additions as covered if only
one of the stated conditions. For instance, in the case new code is inserted
between an uncovered and covered block of code, it remains unclear whether
the execution of the new block belongs to the covered block (and the defect
could have been detected by a test) or the following uncovered block (where
a defect was not detectable by any test execution). For our strict approach,
we only expect errors if the source code is badly formatted, e.g., there is no
space between two functions and a new function is inserted between or goto
is used. We did not find such counterexamples.

Typically, a bug-fixing change also introduces a new (regression) test to
verify the absence of this bug. We classify a bug-fix according to coverage
before the corresponding regression test is executed and measured in coverage
runs. Therefore, such tests do not influence the classification of the related We ignore regression tests introduced

together with a bug-fix.commit. They can influence the classification of future commits, e.g., if a
second patch is necessary to fully fix a bug.

4.2.3 Empirical Results

This section presents the results of data processing and attempts to answers
our main research question on the impact of code coverage. We first discuss
the results and implications and then highlight possible threats.
Data processing. For the time frame from May 2016 to April 2017, we

64 testing in very large software projects

Metric Number

Lines of executable code Several millions
Number of source files > 25 000
Full coverage runs 72
Bug-fixing commits 16 215

For bug-fixing commits:
Diff sections 76 979
Sections covered 24 571
Sections uncovered 15 210
Sections undecided 7 483
Files added 5 595

Lines in new files 1 044 451
Files deleted 1 156

Lines in deleted files 279 674
Files moved 89
Files with content changes 70 139

Lines added in changes 770 325
Lines deleted in changes 471 926

Files with coverage information 47 264
Files without coverage information 22 875

For sections:
Diff chunks 376 364

Average number of chunks per section 4.89
Average number of chunks per commit 23.21

Skipped chunks source mismatch 4 482
Percentage 0.01 %

Chunks with coverage information 239 119
Chunks covered 94 891
Chunks uncovered 101 907
Chunks undecided 37 839

Table 4.1: Preprocessing statistics for
the bug-fixing Git commits collected
from May 2016 to April 2017 (1 year).

on the relationship between coverage and faults 65

collected 72 coverage runs and 16 215 bug-fixing commits which represent
the same amount of bugs. For these bug-fixing commits, we extracted 76 979
sections from the diff output from Git with cumulatively 376 364 chunks.
Among them, 239 119 chunks modify files contained in the coverage data.
4 482 chunks cannot be used because of source mismatch (it remains unclear
which file is addressed by the chunk). We found that 94 891 chunks occur in
covered parts of the source code, 101 907 chunks occur in uncovered parts of
the source code, and for 37 839 chunks it cannot be decided. Based on these Summary of Table 4.1.

results, we identified 24 571 sections as covered, 15 210 sections as uncovered,
and 7 483 sections as undecided.

As shown in Table 4.2, cumulatively 8 348 (or 51.48 %) of all bug-fixes
occurred in covered parts of the source code, 6 171 (38.06 %) are uncovered,
and 1 696 (10.46 %) of all bug-fixes are of type undecided.

Metric Number Percentage

Total number of bug-fixes 16 215 100.00 %
Bug-fixes in covered source code 8 348 51.48 %
Bug-fixes in uncovered source code 6 171 38.06 %
Bug-fixes with undecided coverage 1 696 10.46 %

Table 4.2: Numbers of bug-fixing com-
mits (bug-fixes) in our data set by cat-
egories defined in Section 4.2.2.4.

Testedness results. We compare the observed number 𝑁𝑜𝑏𝑠 of bugs found
in tested code against the expected number 𝑁𝑒𝑥𝑝 of bugs within the covered
code. We compute 𝑁𝑒𝑥𝑝 under the assumption that coverage level is mean-
ingless (null hypothesis), therefore 𝑁𝑒𝑥𝑝 is the number of all found bugs
times the coverage ratio. In our example Fig. 4.2, Scenario 2 has 𝑁𝑜𝑏𝑠 = 3 Null hypothesis: Coverage has no im-

pact on defect distribution.and 𝑁𝑒𝑥𝑝 = 10 × 0.8 = 8. When 𝑁𝑜𝑏𝑠 is lower than 𝑁𝑒𝑥𝑝, we can conclude
that the existence of coverage correlates with higher software quality (i.e.,
fewer bugs) in our test subject.

We approximate the location of bugs in the source code by the location of
bug-fixing commits. Furthermore, we conservatively assume that undecided
bug-fixes are covered bug-fixes. In other words, we compute 𝑁𝑜𝑏𝑠 as the
sum of covered bug-fixes and undecided bug-fixes.

Contrary to Ahmed et al. [3], we perform this comparison for each of
the 72 time segments described in Section 4.2.2.1, and not only for a single
version of the source code. For each segment we use “local” coverage ratio
(and local numbers of covered / uncovered / undecided bug-fixes). For
confidentiality reasons, we cannot explicitly state these coverage ratios.

Fig. 4.6 shows a comparison of the numbers of covered bug-fixes plus
undecided bug-fixes (sums 𝑁𝑜𝑏𝑠,𝑖) versus the numbers 𝑁𝑒𝑥𝑝,𝑖 of covered bug-
fixes expected under the null hypothesis, for each segment 𝑖 = 0, 1, . . . , 70.
Only the first 71 segments are shown for presentation reasons. Fig. 4.7 shows
the differences 𝑁𝑒𝑥𝑝,𝑖 − 𝑁𝑜𝑏𝑠,𝑖 in greater detail.

For 70 of 72 time segments, we have 𝑁𝑜𝑏𝑠,𝑖 < 𝑁𝑒𝑥𝑝,𝑖, i.e., fewer bugs than
expected. The relative reduction of the number of bug-fixes per segment is
not large. However, this can be in part attributed to our conservative way
of treating undecided bug-fixes as covered bug-fixes.

We also apply the Wilcoxon signed-rank test to reject the null hypothesis
that the mean of expected numbers of covered bug-fixes 𝑁𝑒𝑥𝑝,𝑖 and the mean
of numbers of covered plus undecided bug-fixes 𝑁𝑜𝑏𝑠,𝑖 are equal. The test We can reject the null-hypothesis.

66 testing in very large software projects

confirms this with 𝑝-value less than 2.20 × 10−16, and effect size 𝑟 = 0.612
which is considered as large (𝑟 > 0.5).

This non-parametric test is a paired difference test, i.e., we assume that
the samples of covered bug-fixes and uncovered bug-fixes are dependent.
This is quite likely and indicated by Fig. 4.6. However, we also apply
the Wilcoxon-Mann-Whitney-Test which assumes two independent samples.
Also here the null hypothesis is rejected (𝑝-value 0.06) but with small to
medium effect size (𝑟 = 0.13).

Answer RQ1
The number of bugs (represented by bug-fixes) in covered code is smaller
than expected if code coverage would have no impact. This holds for 70
ouf of 72 time segments and is statistically significant for the means.

0 10 20 30 40 50 60 70
0

200

400

600

800

1,000

Index of the Time Segment

Expected num. of covered bug-fixes 𝑁𝑒𝑥𝑝,𝑖
Covered plus undecided bug-fixes 𝑁𝑜𝑏𝑠,𝑖
Differences 𝑁𝑒𝑥𝑝,𝑖 − 𝑁𝑜𝑏𝑠,𝑖

Figure 4.6: Expected numbers of bug-
fixes 𝑁𝑒𝑥𝑝,𝑖, numbers of covered plus
undecided bug-fixes 𝑁𝑜𝑏𝑠,𝑖, and their
differences for the time segments 𝑖 =
0, . . . , 70.

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Index of the Time Segment

Figure 4.7: Differences 𝑁𝑒𝑥𝑝,𝑖 − 𝑁𝑜𝑏𝑠,𝑖
for 71 time segments. 𝑦-values > 0
indicate that less bugs occurred than
expected.

4.2.4 Discussion of the Results

Our results provide a fairly good support for the thesis that higher coverage
levels imply lower levels of future bug-fixes for our test subject. This is
in particular strengthened by the fact that in 70 out of 72 time segments

on the relationship between coverage and faults 67

the results agree with the hypothesis. In other words, the positive effect
could be observed consistently over time, for large variations of bug numbers.
This supports the argument that setting (and reaching) goals for coverage
ratio can have a positive effect on the overall quality of our test subject by
reducing the number of future bugs.

There are multiple possible explanations for these results. Of course, the Covered code represents code that is
tested.most plausible and widely assumed one is that the tests covering code detect

bugs often, and since most of these defects are fixed, fewer of them remain.
We also consider an alternative interpretation of the results: that un-

covered parts of the source code might include code for which it is difficult
to achieve coverage. One well-known example is execution paths in face of
rare error conditions, e.g., if malloc returns a null pointer. Such return
values might not be checked correctly in code because they are not trivial
to test, leading to failures if these rare error conditions occur during produc-
tion usage. A second example is code with a high amount of dependencies.
This code requires additional effort to test because all of the dependency
interaction must be simulated. A third example comprises code handling
external input, e.g., SQL queries. In this case, is it not feasible to test all
possible valid and invalid input combinations and fuzzing techniques can
require high time and resource costs.

Understanding the relevance of these theories requires further work.

4.2.5 Threats to Validity

Possible threats to our results contain (non-)causality, bad bug classification,
wrong coverage granularity and low diversity.

Based on our results, we conclude that fewer bug-fixes occurred in cov-
ered parts of the source code than expected. However, we cannot confirm
causality, i.e., we cannot conclude that testing caused the reduction of bugs.

We used an existing bug database to retrieve all bugs. These bugs rep-
resent only late defects (see Section 4.2.2.2). We argue that these bugs are Only bugs for code in version control

system.the more interesting defects because they are more expensive to fix [28], and
apparently harder to detect. Analyzing all defects could generate different
results for our research question. However, from our experience, it seems im-
practical to log all early defects during the development, and distinguishing
between early and late bugs is hardly possible for young projects.

The bug classification within the bug tracking tool could be wrong. De- Bug classification.

velopers could falsely use the bug category for enhancements or other tasks.
The bug tracking tool contains different categories for entries, therefore
we do not expect that developers mislabel entries intentionally. But their
decision could be wrong. 88 % of all entries are bugs, the remaining 12 %
consists of the categories feature, enhancement, and performance. In addi-
tion, SAP enforces a strict policy of bug-labeling. These measures reduce
the likelihood of this mislabeling to happen.

We also investigated the possibility that a bug-fixing commit does not only
contain the bug-fix, but also unrelated code changes. Herzig et al. found
that 15 % of all bug-fixes in five open-source projects contain unrelated
changes [119]. One of the reasons why such unrelated changes happen Tangled code changes.

is the boy scout rule: “Leave the campground cleaner than you found

68 testing in very large software projects

it” [187]. According to SAP engineers, unrelated changes rarely happen,
because developers focus on fixing the bug and avoid introducing unrelated
regressions in the same bug-fixing commit. Enforced commit based code
reviews also reduce the probability that unrelated changes are introduced in
the same commit as the bug-fixing change. We investigated a subset of 20
bug-fixes and found no changes unrelated to the bug-fix. In the context of
our study, such unrelated changes could only increase the number of bugs
in covered code due to our conservative classifying approach.

Our coverage data is line-based. A finer granularity (e.g., statement
coverage) could produce different results for our research question. However,
we would only expect a minor effect.

Coverage from different test types is mixed. The test suites for coverage
creation contain a mix of, e.g., integration tests, regression tests, system
tests, or performance tests. It remains unclear how this affects the result.

Finally, we only investigate one large industrial system. We do not have Only one study subject.

access to a second industrial software project with this size, and similar test
environment and test data. It is unclear if our results can be reproduced in
other large industrial software systems.

4.2.6 Conclusions

We applied the binary testedness approach from Ahmed et al. [3] to SAP
HANA, a large industrial software project. Instead of using mutants, we used
a large set of real bugs and bug-fixing commits. In addition, we introduced
multiple data collection points to reduce the risk of losing track of code
changes over time. Our results show that a significantly lower number of
bugs occur in covered parts of the source code than expected if coverage
would be meaningless. For practitioners, our results suggest that setting
(and reaching) goals for coverage ratio has a positive effect on the overall
quality of our test subject in terms of the amount of future bugs. This
confirms previous conclusions from Ahmed et al. [3] and Mockus et al. [194]
that show similar effects for coverage.

For SAP engineers, our results confirm the expectation of engineers and
management, that measuring coverage and enforcing coverage goals can be Measuring coverage and enforcing cov-

erage goals can be beneficialbeneficial to the quality of SAP HANA. We are unable to measure the
internal impact of this study, because changes to QA policies require rather
complex and lengthy processes.

There are several directions to extend our results in future work. Similar
to work of Mockus et al. [194], the binary testedness approach could be
used on a component level instead of a system level. A component level
analysis could produce comparable results between the components in SAP
HANA and could reveal positive or negative correlation factors. Also, a long
term experiment over different release cycles of a software project might
disclose whether different goals for coverage have an impact on the number
of bugs. Mockus et al. [194] found that “there is no indication of diminishing
returns (when an additional increase in coverage brings smaller decrease in
fault potential)”. It would be interesting to replicate our study on large
open-source projects to investigate whether similar findings can be observed
for the distribution of bugs and bug-fixing commits.

on the relationship between coverage and faults 69

4.3 Granger-Causality between Coverage and Faults

Testing is an integral part of software development to ensure the quality of
software as it evolves over time. As the size and complexity of software in-
crease, testing often becomes even more important with developers spending
a significant amount of time and resources on it. Coverage is often used by
developers to gauge the effectiveness of testing. Developers use coverage to
find parts of code not tested that may require their attention. Previous stud-
ies analyzed the correlation between coverage and test suite effectiveness by Correlation between coverage and test

suite effectivenessusing real bugs as well as mutants, i.e., artificially injected faults. However,
these studies only focus on measuring correlations between coverage and
bugs (or mutants) instead of studying Granger-causal relationship between
them. Essentially, Granger-causality is given if future values of a time series
(here number of bugs) can be better predicted using prior values of another
time series (here change in coverage percentage). It is argued that in some
domains the Granger-causality test is a more reliable indicator of causality
than a mere correlation [106]. Also, most of prior studies only consider small
open-source projects rather than large industrial systems.

To complement prior work, we analyze SAP HANA and React, an open-
source system from Facebook, to uncover Granger-causal relationship be- Granger-causal relationship

tween change in coverage and number of future bug fixes found in each
system. For each system, we collect a longitudinal dataset spread over one
year containing records of code coverage from test runs and bug. We col-
lect data at the file level and use Granger-causality test, which evaluates
Granger-causal relationship between two variables, to analyze the relation-
ship between change in coverage and bug-fixes. After filtering constant and
non-stationary files, we find that 29 % and 33 % of the files show Granger-
causality between change in coverage and number of bug-fixes for SAP
HANA and Facebook React, respectively. For these Granger positive files,
we find that the impact of change in coverage on bug fixes affects a majority
of the files after a lag of 3 to 4 observation units (i.e., around 2 weeks).

Complementing prior studies, our study provides added empirical evi-
dence that coverage, as a proxy for testing, has an impact on the number of
future bug-fixes. This is the case especially for files exhibiting certain char-
acteristics such as higher lines of code churn and larger amount of commits.
Thus, we recommend developers to test these files as they will likely have
an impact on the number of bug-fixes.

4.3.1 Introduction

Testing is paramount to ensure a high quality software and is considered
an integral part of the software development process. With the increasing
size and complexity of software, there is a need to improve testing. More
so because inadequate testing can cause millions of dollars [242]. While
testing itself does not produce quality, it can help detect faults that can be
corrected to improve quality. However, complete testing is often infeasible
considering the trade-off between the cost of testing and the number of faults
it can detect. As such, developers often make use of measures such as code
coverage as a proxy for the adequacy of testing.

70 testing in very large software projects

In this work, we consider the line coverage ratio, i.e., the percentage of
lines executed during testing. Line coverage has been shown to produce
better results than more expensive measures like path coverage [103]. Line
coverage gives an idea of the adequacy of testing by measuring the number
of lines of code executed by the test suite. These results can be used by
developers to study the untested parts of the source code and write test
cases to potentially reveal undiscovered bugs. Often organizations set testing
requirements related to coverage levels and allow committing code only after
the code has passed the coverage criteria.

Several related work investigated the question of whether coverage is
useful or not. In general, there are two schools of thought on this important
yet unsolved question. On the one hand, one group claims that coverage
has merit and can lead to an improvement in software quality [194]. This is
shown by studies that claim software projects which have higher coverage
also have lower bugs in the future. While the other group claims that
coverage is a “useless target measure”6,7 and does not help developers 6 http://blog.ploeh.dk/2015/11/16/

code-coverage-is-a-useless-
target-measure/
7 https://martinfowler.com/bliki/
TestCoverage.html

much. Furthermore, some studies fail to come to a conclusion regarding the
relationship of coverage and test suite effectiveness [130]. While this topic
has received significant attention, studies are mostly concentrated on finding
a correlation between coverage and test suite effectiveness. Gopinath et al.
analyze hundreds of projects and measure different coverage criteria, such as
statement, branch, path and block coverage, to understand which coverage
criteria perform the best [103]. They use test cases from the projects as
well as generate test cases using Randoop [209]. Inozemtseva et al. analyze
five large systems to understand the relationship between coverage, test
suite size and test suite effectiveness [130]. A recent study by Ahmed et al.
analyzes the correlation between testedness of an element and the number
of future bug-fixes using coverage and mutation score [3].

While these studies tackle an important problem, there are several issues:

1. They measure the correlation between various metrics. However, correla- Limitations of previous work: mutants,
only open-source system, single snap-
shot.

tion does not imply causation, which measures the impact of one event
on the occurrence of an other event (cause and effect). Without studying
causation, it is difficult to see the impact of coverage on bugs.

2. The majority of the above studies use mutants, i.e., artificially injected
bugs and measure the ability of test suite to kill mutants. However, there
are studies that show that mutants may not be representative of real bugs
and are sensitive to external threats [104, 200].

3. They use open-source software that might not have rigorous quality as-
surance processes compared to industry programs. More than 80% of the
open-source developers agree that their projects lack testing plans [269].

4. They only consider a snapshot and measure coverage to measure test
suite effectiveness. However, testing is a continuous process and measures
such as source code, number of test cases, coverage, or number of bugs,
evolve over time as the project matures [264]. Furthermore, as per the
survey conducted by Runeson [222], newly added functionality should be
tested as soon as possible to provide quick feedback to the developers. As
such, studying a single version or snapshot may not be an appropriate
imitation of the real-world environment as faced by developers.

http://blog.ploeh.dk/2015/11/16/code-coverage-is-a-useless-target-measure/
http://blog.ploeh.dk/2015/11/16/code-coverage-is-a-useless-target-measure/
http://blog.ploeh.dk/2015/11/16/code-coverage-is-a-useless-target-measure/
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html

on the relationship between coverage and faults 71

These factors motivate us to perform a longitudinal study where we
measure change in coverage and its effect on the number of bug-fixes over a
long time period. Our study uses bug-fix instead of mutants.

We investigate a large industrial system SAP HANA to analyze the
Granger-causal relationship [106] between changes in coverage and number
of bug-fixes. In addition, we complement our analysis with an open-source
system Facebook React8. Our core hypothesis is that if coverage changes, 8 See:

https://facebook.github.io/react/then it should create an impact on the number of bug fixes — i.e., the
number of bug fixes should change too.

Figure 4.8: Process steps for data col-
lection and evaluation.

To test our hypothesis, we implement the process of data collection and
evaluation as shown in Fig. 4.8. We collect over one year (2016-05 - 2017-
04 for SAP and 2016-09 - 2017-06 for Facebook) of data consisting of 72 Time frame of one year.

test runs with coverage data and corresponding bug-fixes for each run. We
investigate a time frame of one year to reduce the effects of singular events,
such as testing phases before releases or development freezes.

We compute the coverage ratio and the number of bug fixes at the file
level. For each test run, we first collect all the files in the system and
then compute all the lines that are covered by test cases. We measure line
coverage and aggregate the values of line coverage over all the lines in a
particular file. For each bug-fix, we calculate all the files that are changed.
We aggregate the number of bug-fixes that touch a file. In the end, for each
file, we have two time series: coverage and bug-fixes collected over the whole
observation period. x We use the Granger-causality test which measures the
causal relationship between two time series [106]. In the Granger-causality
test, the hypothesis is to test if a variable 𝑦 can be better predicted by using
the historical values of 𝑥 and 𝑦 compared to using the values of 𝑦 only. In
our case, variable 𝑥 is coverage and variable 𝑦 is the number of bug-fixes.

The contributions of our work are as follows:

1. The adaptation of Granger-causality test to check whether change in
coverage Granger-causes change in number of bug-fixes.

2. Results for a large industrial project with accurate information for 16 000
bugs and bug-fixes over a time frame of one year and results for a large
open-source project with 100 bug-fixes over a time frame of one year.

https://facebook.github.io/react/

72 testing in very large software projects

4.3.2 Granger-Causality

In this section, we describe the details of Granger-causality [106]. We
first start with a definition and discussion of stationary time series as a
requirement for the Granger-causality test. We then describe the test itself
and conclude with interpretations of possible results.

4.3.2.1 Stationary Time Series

Forecasting techniques for time series often have a precondition, the time
series must have a stationary behavior [31, 96, 179]. Stationary time series Stationary behavior

sample values from a stochastic process whose unconditional joint proba-
bility distribution does not change when shifted in time. For stationary
time series, values such as mean and variance are constant over time. The
values of coverage and bug-fixes, when represented as a time series, are
often not stationary. This is expected, because the size and complexity of
systems typically grows over time as described by Lehman’s Law of software
evolution [173]. Often, test suites evolve simultaneously with the change
in source code [212]. However, this is similar to using Granger test for its
original domain, i.e., to track entities such as the values of prices or inflation
that all tend to grow over time.

(a) Non-stationary (Original) (b) Stationary (First Differences)

Figure 4.9: Coverage ratio of an ex-
ample file from SAP HANA over time
with non-stationary (original) and sta-
tionary (first differences) behavior.

When using time series which are not stationary, one possible approach to
make them stationary is to not consider the absolute values of variables, but
rather the “first differences” between two consecutive periods [31, 105, 179].
For a time series 𝑥(𝑡), the first difference is defined as 𝑥′(𝑡) = 𝑥(𝑡)− 𝑥(𝑡 − 1).
Fig. 4.9 shows an example of coverage distribution with mean and error bars,
i.e., (𝜇+ 𝜎) and (𝜇 − 𝜎) of XYZ file (name withheld for confidentiality) over
the entire time period. We apply Augmented Dickey–Fuller test adf.test()9 9 https://www.rdocumentation.org/

packages/tseries/versions/0.10-
42/topics/adf.test

provided by tseries package10 in R11 to check for stationary behavior. Aug-
10 https://cran.r-project.org/web/
packages/tseries/index.html
11 https://www.r-project.org/

mented Dickey–Fuller test (ADF) tests the null hypothesis that a unit root
is present in a time series sample. A unit root (also called a unit root process
or a difference stationary process) is a stochastic trend in a time series and
unit roots can cause unpredictable results in time series analysis.

Fig. 4.9a shows that the coverage value is increasing over time and the
distribution shows a non-stationary behavior (p-value > 0.05). To make the
distribution stationary, we take the first differences of values 𝑥(𝑡)− 𝑥(𝑡 − 1)
and then compute adf.test(). For adf.test(), we use the default value of
lag12 as 𝑛𝑙𝑎𝑔 = 𝑓𝑙𝑜𝑜𝑟(4 × (𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)/100)(2/9)). The second distribution 12 https://www.rdocumentation.org/

packages/aTSA/versions/3.1.2/
topics/adf.test

https://www.rdocumentation.org/packages/tseries/versions/0.10-42/topics/adf.test
https://www.rdocumentation.org/packages/tseries/versions/0.10-42/topics/adf.test
https://www.rdocumentation.org/packages/tseries/versions/0.10-42/topics/adf.test
https://cran.r-project.org/web/packages/tseries/index.html
https://cran.r-project.org/web/packages/tseries/index.html
https://www.r-project.org/
https://www.rdocumentation.org/packages/aTSA/versions/3.1.2/topics/adf.test
https://www.rdocumentation.org/packages/aTSA/versions/3.1.2/topics/adf.test
https://www.rdocumentation.org/packages/aTSA/versions/3.1.2/topics/adf.test

on the relationship between coverage and faults 73

(Fig. 4.9b) shows a stationary behavior (p-value ≤ 0.05). We then use the
stationary time series for every file as an input to the Granger-causality test
to examine Granger-causal relationship between coverage and bug-fixes.

An analysis of the first difference gains us the same insights with the
Grange-causality test as for the original series [31, 105, 179]. Granger and
Newbold recommend the first difference approach13[105]. 13 Although they note that they do

“not advocate first differencing as a uni-
versal sure-fire solution”, therefore we
complemented our approach with the
ADF test

4.3.2.2 Granger-Causality Test

The Granger-causality test is a statistical hypothesis test to determine if one
time series can be useful in forecasting another ([106]). According to the Can one time series be useful in fore-

casting another?Granger-causality test, if a signal 𝑥 Granger-causes 𝑦, then past values of 𝑥

should contain information to help predict 𝑦, which is beyond the information
contained in the previous values of 𝑦 alone. To test the causality between
two time series 𝑥 and 𝑦, Granger makes use of a statistical test called F-Test
to check if 𝑥 can help predict 𝑦. In our study, 𝑥 is the coverage time series
and 𝑦 is the bug-fix time series. The Granger-causality test uses bivariate
and univariate autoregressive models. A bivariate model includes values
from dependent variable 𝑦 and independent variable 𝑥, whereas a univariate
model only considers prior (lagged) values of variable 𝑦.

For the Granger-causality test, we use the bivariate autoregressive model:

𝑦𝑡 = 𝑎0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ... + 𝛼𝑝𝑦𝑡−𝑝

+ 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 + ... + 𝛽𝑝𝑥𝑡−𝑝 + 𝑢𝑡

(4.1)

and the following univariate autoregressive model:

𝑦𝑡 = 𝑎0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + ... + 𝛼𝑝𝑦𝑡−𝑝 + 𝑒𝑡 (4.2)

where p is the autoregressive lag length, u𝑡 and e𝑡 are the error terms [160].
The lag value is used as an input parameter to the test. As per [113], the lag
value can be estimated via various criteria. The lag length is defined as the
number of past values of 𝑥 and 𝑦 that are considered in the model. Eq. (4.1)
and Eq. (4.2) are also called the unrestricted and restricted regression model,
respectively. To test whether 𝑥 Granger-causes 𝑦, the corresponding null Null hypothesis

hypothesis (𝐻0: 𝑥 does not Granger-causes 𝑦) is defined as:

𝐻0 : 𝛽1 = 𝛽2 = ... = 𝛽𝑝 = 0. (4.3)

In such a case, the lagged values of 𝑥 do not add predictive power to the
regression equation (Eq. (4.1)). To check this, we compute F-statistic:

𝑓 =
(𝑅𝑆𝑆𝑅 − 𝑅𝑆𝑆𝑈𝑅)/𝑝

𝑅𝑆𝑆𝑈𝑅/(𝑇 − 𝑘)
, (4.4)

where 𝑘 is number of explanatory variables in the unrestricted regression
model (including the intercept), 𝑇 is the number of observations, 𝑅𝑆𝑆𝑈𝑅

and 𝑅𝑆𝑆𝑅 are the residual sum of squares, i.e., sum of the squares of the
predicted and actual values for the unrestricted and restricted model:

74 testing in very large software projects

𝑅𝑆𝑆𝑈𝑅 =
𝑇∑︁

𝑡=1
𝑢𝑡

2 𝑅𝑆𝑆𝑅 =
𝑇∑︁

𝑡=1
𝑒𝑡

2. (4.5)

If the value of F-statistic 𝑓 is greater than F-critical value at 5 % signifi-
cance level, the null hypothesis is rejected. In this case, the bivariate model
is better than the univariate model and 𝑥 Granger-causes 𝑦.

4.3.2.3 Interpretation of Results

Suppose we have two time series 𝑇1 and 𝑇2. After carefully checking all
preconditions and the application of a Granger-causality test, we can hypo-
thetically obtain the following results:

1. 𝑇1 Granger-causes 𝑇2.
2. 𝑇1 Granger-causes 𝑇2 for multiple lags. Multiple causalities can exist.
3. 𝑇2 Granger-causes 𝑇1.
4. 𝑇2 Granger-causes 𝑇1 for multiple lags. Multiple causalities can exist.
5. There is no Granger-causality from 𝑇1 to 𝑇2.
6. There is no Granger-causality from 𝑇2 to 𝑇1.

We use the term unidirectional if only one direction of causality exists Unidirectional

and the term bidirectional if both directions show causality. For instance, Bidirectional

finding results Item 1 and Item 6 indicates a unidirectional causality. In
contrast, finding results Item 1 and Item 3 indicates a bidirectional causality.

The variable lag value (p in Eq. (4.2)) is responsible for Item 2 and
Item 4. In such cases, 𝑇1 and 𝑇2 can have multiple Granger-causalities Multiple Granger-causalities

𝑐1 to 𝑐𝑛. W.l.o.g. 𝑐1 may have a lag value of 1 and 𝑐4 may have a lag
value of 10. In this example, 𝑐1 indicates a short term effect and 𝑐4 may
indicate a long term effect. As a practical example, Hu et al. mention in
their work [127](Section 1) the work of Freiwald et al. [95] that “revealed the
existence of both unidirectional and bidirectional influences between neural
groups”. As we see later, our analysis suggests that we also found multiple
Granger-causalities (see Table 4.8).

A bidirectional causality can have multiple interpretations and it is im-
portant to differentiate such a bidirectional causality from the effects of
confounding variables. Maziarz categorizes different interpretations for uni-
directional and bidirectional results of Granger-causality analysis [189]. A
bidirectional causality may indicate “an instant Granger-causality between
the time series”. An instant Granger-causality would require a non-existent Instant Granger-causality

or minimal lag value. For example, our analysis later shows that for SAP
data, lag value 3 has the largest amount of Granger-positive files. In such a
case, we can reject the existence of an “instant” Granger-causality.

We may also be able to reject confounding variables if we can reduce
the Granger-causality to a real causality. For instance, based on procedures
at SAP HANA, bug-fixes influence coverage. SAP developers add new
regression tests for fixed bugs. Therefore, two effects occur:

1. A bug-fix modifies source code and therefore may influence coverage.
2. A regression test may execute code that was not tested before and there-

fore may influence future coverage values.

on the relationship between coverage and faults 75

Hence, we have a causality, and we expect that this causality also results
in a Granger-causality of type Item 3. Furthermore, as shown later, there
exists also Granger-causality of type Item 2 from coverage to bug-fixes.
Conclusively, the causality is bidirectional. Regarding the categorization of
Maziarz [189], the bidirectional causality is neither an “instant” Granger-
causality, nor a Granger-causality based on the same effect.

We would like to explain such cases of bidirectional Granger-causality
with a simplified analogy in economics. Let 𝑇1 be the time series (say, yearly) Analogy in economics

of the gross domestic product (GDP) for country 𝐶1, and 𝑇2 the time series
of the GDP for country 𝐶2. 𝐶1 and 𝐶2 are neighbors and have a large
number of exports and imports between both countries. We further assume
that these exchanges positively influence the GDP. In such a situation, we
would see a Granger-causality of 𝑇1 for 𝑇2 and a Granger-causality of 𝑇2 for
𝑇1. Do we observe a bidirectional Granger-causality or two unidirectional
Granger-causalities in this case? In our understanding, it is a bidirectional
Granger-causality [31, 179]. Furthermore, the differentiation between these
two cases is not relevant for the question whether 𝑇1 influences 𝑇2, because
𝑇1 influences 𝑇2 in both cases. Given these points, we conclude that the
presence of unidirectional or bidirectional Granger-causality can both show
that a time series 𝑇1 influences a time series 𝑇2.

4.3.3 Methodology

In this section, we describe the software artifacts used in this study, and
give overview statistics on collected data. We describe our data collection
and its preprocessing. Finally, we introduce the process of data filtering and
processing required for applying the Granger-causality test.

4.3.3.1 Software Subjects and Data Statistics

We analyze the data of two large software systems. SAP HANA as an
industrial system and Facebook React as an open-source system.

Data statistics: Table 4.3 gives overview statistics of our data sets. The
commit statistics are collected from the version control system Git [14]. For
our purpose, we analyze so-called Git diffs. A Git diff for a commit consists Git diffs

of 𝑛 ≥ 0 sections. Each section represents a file and contains 𝑚 ≥ 0 chunks.
A chunk identifies 𝑑 ≥ 0 deleted lines and 𝑎 ≥ 0 added lines, where 𝑑+ 𝑎 > 0.
We analyze the same time period with the same segmentation for both the
projects as we aim to have a comparative analysis and see the impact of
Granger-causality of coverage on bugs for both projects.

Note that the development of SAP HANA follows a so-called feature
branch workflow and a pre-commit review tool is used. Therefore, the pure
number of commits is not a suitable activity metric and we have calculated
a comparable number for SAP HANA based on other metrics. Consequently,
we only provide an approximation.

Coverage for SAP HANA: SAP engineers collect line coverage data
for all relevant tests (on average) two times a week as discussed in Chapter 3.
In the following, we refer to the event of coverage data collection as test run
with coverage analysis, or simply as a test run or coverage run. A test run Coverage run

may consist of several coverage files that we aggregate to a single file.

76 testing in very large software projects

Metric SAP HANA Facebook React

Test runs with coverage analysis 72 72
Number of source files 26,578 262
Bugs 16,757 100
Bug-fixing commits 18,677 100
Total commits ≈ 210,000 1,606
New files added 5,595 572
Lines added in chunks 1,044,451 138,502
Lines deleted in chunks 471,926 132,849
Observation Period May’16 - April’17 Sep’16 - Jun’17

Table 4.3: Statistics on the coverage
data and bug-fixes collected for SAP
HANA and Facebook React.

In this study, we use the coverage ratio of a file, that is, the number of Coverage ratio

executed lines over the number of all executable lines in a file. For example,
a file with 100 lines and 20 executed lines has a coverage ratio of 0.20.

We also experimented with an alternative (and abandoned) file coverage
metric where a file was considered as covered if any line inside the file was
hit. We found that nearly all C++ source files were marked as hit because the
compiler generates executable code for each namespace that is executed by
all tests independent of the source file content. The majority of files contain
namespace because in a large C++ project as SAP HANA, namespaces are
necessary to organize and structure all functionality.

SAP measures the coverage for each test suite. This study focus on
coverage for the whole project, we did not investigate coverage per test suite
or coverage per test. Therefore, the line-based coverage of a file can contain
the coverage of multiple tests and multiple test suites. For instance, if source
code lines 1 and 2 are covered by test 𝑡𝑎, and lines 3 and 4 are covered by
test 𝑡𝑏, then we only measure that lines 1,2,3, and 4 are covered.

Defects for SAP HANA: We classify defects by the time of their
detection into early detected and late detected. Our study focuses on the Early and late detected defects.

latter type of defects, which tend to have a higher cost impact [28, 226]. In
the following, we use the term bug to refer to such late detected defects.

We classify a defect as early detected if it is found by a developer before
a commit, or found by any quality assurance activity before a commit is
merged into the main branch. Such activities include local test runs, peer
reviews, and automatic test runs within the continuous integration process.

Defects detected late are discovered at later QA steps, or might even
escape the in-house testing. Examples of such later QA steps are additional
integration testing, component tests, manual testing, fault discovery during
internal usage of SAP HANA (“self-hosting”), or fuzz testing.

Facebook React: Facebook React is an open-source JavaScript library
to build user interfaces. React is managed by Facebook and is hosted on
GitHub14. According to the GitHub page, React is a “declarative, efficient, 14 Full project details can be found at

https://github.com/facebook/reactand flexible JavaScript library for building user interfaces”.
Coverage for React: Coverage data for React is openly available on

Coveralls.io15. Coveralls.io provides several features for a repository such as 15 See for details https://coveralls.
io/github/facebook/reacttotal percentage of coverage, individual file coverage, line coverage, coverage

trend over time, change in coverage due to commits, integration with GitHub,
and various continuous integration services.

https://github.com/facebook/react
https://coveralls.io/github/facebook/react
https://coveralls.io/github/facebook/react

on the relationship between coverage and faults 77

Defects for React: As React is hosted on GitHub, we use Git logs to
obtain the history of commits and then filter out commits that are related to
bug-fixes based on keyword analysis. This keyword-based approach results
in a less accurate data set than our data set for SAP HANA. However, the
approach is commonly used in related work [231].

4.3.3.2 Data Processing

In this subsection, we describe our data collection procedures.
Coverage data for SAP HANA: Our study comprises coverage data

over one year (from May 2016 until April 2017) with results of 72 valid test
runs with coverage analysis. Chapter 3 describes the format of coverage
data and the processing details.

Bug Data for SAP HANA: Each of the bugs (i.e., late detected
defects as defined in Section 4.3.3.1) is stored in a bug tracking tool. For our
study, we link each bug record to a Git commit. This can be done in both
directions: each bug record contains a reference to the commit with the bug-
fix (typically this reference is a Git commit hash). Conversely, a separate
database contains for each bug-fixing commit a reference to a corresponding
bug record. Consequently, we know for each bug (i.e., bug record) its bug-
fixing commit, and vice versa. SAP engineers have collected, maintained,
and used this information for many years within the HANA project, and
so we can assume that the results are reliable. The above-described data Reliable data provided by a bug track-

ing tool of SAP.allows generating, for each bug, the list of files changed by the corresponding
bug-fixing commit, including the list of lines changed in each file.

Note that for each bug there can be multiple bug-fixing commits, and
vice versa. However, for the purpose of this study, we assume a one-to-one
relationship and ignore additional relations if they exist.

Bug reports

Test runs R 1 , R 2 , …

… …

Bugfixing commits Segment 1; all commits in this
segment are associated with R 1

R 1 R 2 R 3

Figure 4.10: Time segments, test runs,
and bug-fixing commits.

Moving time window for SAP HANA: Intermediate code changes
between a est run with coverage and a bug-fixing commit 𝑐 prevent us from
directly applying the coverage information to 𝑐. Previous work by Ahmet
el at. [3] proposed to solve this problem with elaborated change tracking
approaches like a GumTree Differencing Algorithm [87]. We propose a GumTree Differencing Algorithm

78 testing in very large software projects

simpler approach resembling a moving window analysis on time series as Moving window analysis

shown by Fig. 4.11. We expect that our approach allows more accurate
mapping of bug-fixes to coverage data compared to the GumTree approach
at the cost of considerable higher analysis effort. In addition, we are able
to deploy analysis techniques for time series.

Figure 4.11: The GumTree [87] ap-
proach tracks the nodes of an abstract
syntax tree (AST). This can reduce ac-
curacy for consecutive changes. For
commit 3 in this example, change 1 is
accurately mapped as covered. Change
2 is unclear due to intermediate deleted
and inserted nodes. The new node and
the deleted node in commit 3 cannot be
mapped. Our approach can accurately
map these examples.

For our moving time window approach, we split our data into consecutive
time segments, and measure the line coverage and the number of bug-fixing
commits separately for each of these segments. In detail, we divide our
data into time segments with boundaries determined by the test runs with
coverage analysis. Within each such a segment, each bug-fixing commit is
associated with the closest preceding test run. To illustrate how we divide
the data into time segments, we have plotted Fig. 4.10. To read this figure,
consider R1 as the first test run that outputs coverage information for each
source code file in the system. We then calculate the number of bug-fixes
made between R1 and the next test run R2 by using the timestamps of test
runs (R1 and R2) and comparing them with the timestamps of bug-fixes
from the log files. In Fig. 4.10, both bug-fixing commits in the Segment 1
are associated with the test run 𝑅1.

For each of these bug-fixes, we have information about the files that
are changed and the corresponding lines added, deleted or modified. We
aggregate the number of times a file is changed by counting different bug-fix
commits. Thus, for each test run R𝑖 and for each source code file, we have
corresponding coverage value and the number of bug-fixes applied on that
file. We repeat this procedure for all the test runs in our dataset. Our
analysis considers only the “local” relations within a single segment, i.e.,
relations between a test run and (only) the associated bug-fixing commits
within the same segment. Due to the limited time span of a segment, the risk
of encountering a code change between a test run and a bug-fixing commit
is low. Even if the relations test run vs. commits are considered only per
segment, the Granger-causality test incorporates data over all segments,
which allows us analyzing data over arbitrary time spans.

on the relationship between coverage and faults 79

In comparison to the GumTree approach, our approach reduces the
chances of conflicting intermediate commits between a test run with coverage
analysis and a bug-fixing commit. Such conflicting intermediate commits
can result in an inaccurate mapping of the bug-fixing commit to coverage
data. We highlight two examples in Fig. 4.11. The new node in commit Moving time windows is more accurate.

3 cannot be mapped to the original coverage because there is no AST in-
formation available. Change 2 in commit 3 may be unclear because of the
intermediate commits. Our approach, in this example, accurately maps all
changes to the most recent coverage data.

Coverage Data for React: To select builds to be analyzed, we first
extract those builds on “master” branch that were done between September
2016 to June 2017 from Coveralls.io. In addition to general information of
the builds, we also extract information of individual files in each build (both
changed and unchanged) from the respective builds’ detailed report locations
in Coveralls.io. The time period of September 2016 – June 2017 was chosen
since the entries in this period have a relatively stable reported number of
files, as well as small intervals between entries (typically multiple builds
per day). We subsequently prune build reports with anomalous numbers of
reported files; for example, an entry with 0 reported files between a series
of entries reporting 246 files each. The rationale here is that they are likely
to result from wrong configuration or other errors. After this pruning, we
find 1563 builds with numbers of files ranging between 219 and 262.

Bug Data for React: We identify bug-fixing commits by applying
keyword search on the commit log messages using a set of keywords (“error”,
“bug”, “fix”, “issue”, “mistake”, “incorrect”, “fault”, “defect”, “flaw”) that
have shown to achieve high accuracy [217, 218]. We associate each bug-fixing
commit with its nearest earlier build, using the commit file list to create
counts at file level granularity.

Moving time window for React: See description for SAP HANA.

4.3.3.3 Applying the Granger-Causality Test

To apply the Granger-causality test we need to check if future values of
coverage and bug fixes depend on their previous values as Granger-causality
can be applied to stationary multivariate autoregressive processes. To check
this, we compute autocorrelation, i.e., the correlation between current and Autocorrelation

previous values. We calculate Spearman’s correlation for all the lag values
1 to 10, i.e., the correlation between 𝑖 and 𝑖 + 1, 𝑖 and 𝑖 + 2 and so on. For
SAP HANA, we find a strong correlation for both coverage and bug fixes
with Spearman’s correlation varying from 0.94 to 0.97 for coverage and 0.85
to 0.98 for bug-fixes, all with significant p-values. For Facebook React, we
find a strong correlation for coverage ranging from 0.93 to 0.99, and a weak
correlation for bug fixes 0.07 to 0.13. However, the p-values are significant
for both coverage and bug fixes. Thus, we find that future values of coverage
and bug fixes depend linearly on their past values.

To apply the Granger-causality test to find out causal relationships be-
tween the time series of coverage and the number of bug-fixes, we need to
check for several preconditions. For each file f, the coverage time series Check for several preconditions

Coverage time seriesCoverage[f] is a sequence of coverage values for f over the consecutive time

80 testing in very large software projects

segments. Similarly, the bug fix time series Bug-fixes[f] is a sequence of Bug fix time series

numbers of bug fixes related to f over the consecutive time segments. We
have a coverage time series and a bug-fix time series for each file. Note
that in Eq. (4.1), Coverage[f] corresponds to the independent variable 𝑥 and
Bug-Fixes[f] corresponds to the dependent variable 𝑦. Algorithm 1 describes
the steps to check for the fulfillment of preconditions and run grangertest. In
this algorithm, F𝑖 is the set of all input files of the system, and 𝑐𝑜𝑣_𝑣𝑒𝑐(𝑡),
𝑏𝑢𝑔_𝑣𝑒𝑐(𝑡) denote the 𝑡𝑡ℎ element of a respective time series. We apply
c_check1 (line 3) to check the following preconditions:

• P1: The coverage time series for a file must be present 30 % of the whole
observation period. A time series that is present only for a short period of Coverage time series must be present

at least 30 %.time is called dayfly classes and might not be useful for prediction [170].
We need a considerable history of coverage values to help detect Granger-
causal relationship with bug-fixes. We discard files that do not satisfy
this criterion. Previous studies also ignore such classes [54, 55].

• P2: The coverage time series must not be constant. We found that for Coverage time series must not be con-
stantsome files the values of coverage do not change over the whole observation

period. As changes to independent variables are important to observe
variations in the dependent variable for the Granger-causality test, we
discard files for which coverage remains the same.

Algorithm 1: The Granger-causality test.
Input : F𝑖: Set of input files

n: Lag value for grangertest
Output : F𝑜: Set of output files for which Granger-causal

relationship is observed
1 for all f ∈ F𝑖 do
2 cov_vec = Coverage[f];
3 if c_check1(cov_vec) then
4 cov_vec𝑓𝑑(t) = 𝑐𝑜𝑣_𝑣𝑒𝑐(𝑡) − 𝑐𝑜𝑣_𝑣𝑒𝑐(𝑡 − 1)
5 if c_check2(cov_vec𝑓𝑑(t)) then
6 bug_vec = BugFixes[f];
7 bug_vec𝑓𝑑(t) = 𝑏𝑢𝑔_𝑣𝑒𝑐(𝑡) − 𝑏𝑢𝑔_𝑣𝑒𝑐(𝑡 − 1)
8 if b_check(bug_vec𝑓𝑑(t)) then
9 grangertest(bug_vec𝑓𝑑(t) ∼ cov_vec𝑓𝑑(t), order = n)

10 end
11 end
12 end
13 end

For every file 𝑓 that pass 𝑃1 and 𝑃2, we compute the first differences
cov_vec𝑓𝑑(t), i.e., the difference between coverage values at time 𝑡 and 𝑡 − 1
(line 4). Then, we apply c_check2 (line 5) to check precondition P3:

• P3: The coverage time series must be stationary (see Section 4.3.2.1), Coverage time series must be station-
arywhich is a precondition for applying the Granger-causality test. To test

for stationary behavior, we apply adf.test(vec) provided by tseries package

on the relationship between coverage and faults 81

in R, where vec is a time series. The null hypothesis is that time series
is non-stationary whereas the alternate hypothesis is that time series is
stationary. The function implements Augmented Dickey-Fuller test to
check for stationary behavior [96].

For every file 𝑓 that satisfies 𝑃1, 𝑃2 and 𝑃3, we obtain its corresponding
bug-fix time series (i.e., BugFixes[f]). Similar to coverage time series, we
compute first differences, bug_vec𝑓𝑑(t) = 𝑏𝑢𝑔_𝑣𝑒𝑐(𝑡)− 𝑏𝑢𝑔_𝑣𝑒𝑐(𝑡 − 1) (line
7) for the bug time series. We then apply b_check (line 8) to ensure that
the following pre-condition is met:

• P4: Similar to P3, bug-fix time series must be stationary. The null Bug-fix time series must be stationary

hypothesis is that time series is non-stationary whereas the alternate
hypothesis is that time series is stationary. We apply adf.test(vec), where
vec is a time series of bug-fixes, and discard files that are non-stationary.

After the above checks, the time series cov_vec𝑓𝑑(t) (coverage) and
bug_vec𝑓𝑑(t) (bug-fixes) pass preconditions P1 to P4. We then apply
grangertest16 provided by lmtest17 package in R: 16 https://www.rdocumentation.org/

packages/lmtest/versions/0.9-
35/topics/grangertest
17 https://cran.r-project.org/web/
packages/lmtest/index.html

𝑔𝑟𝑎𝑛𝑔𝑒𝑟𝑡𝑒𝑠𝑡(𝑏𝑢𝑔_𝑣𝑒𝑐𝑓𝑑(𝑡) ∼ 𝑐𝑜𝑣_𝑣𝑒𝑐𝑓𝑑(𝑡), 𝑜𝑟𝑑𝑒𝑟 = 𝑛) (4.6)

where order is the lag value that needs to be specified as an input parameter.
Lag value is defined as the number of past values of the independent variable
that will be considered to predict the current value of the dependent variable.
We run the Granger-causality test with order value from 1 to 10 and take
the union of files that return significant results for the test. Similar to
related work [56], we assume here that for a file to be Granger positive it
is sufficient that it passes the test at any of these lag values. We consider
files as Granger positive and Granger negative if they show significant and Granger positive

Granger negativeinsignificant results for the Granger-causality test, respectively.

SAP HANA Facebook React

Preconditions % Files % Files

Start 100.00 26 578 100.00 562
P1 96.20 25 567 47.51 267
P1+P2 56.26 14 952 43.06 242
P1+P2+P3 51.30 13 635 21.53 121
P1+P2+P3+P4 20.92 6 428 9.43 53

Table 4.4: Percentage and absolute
number of files that satisfy precondi-
tions P1, P2, P3 and P4.

Table 4.4 shows the percentage and the absolute number of files that
satisfy P1 to P4. Initially, there are 26 578 files for SAP HANA. After
filtering out files that are present in at least 30% of the time series (P1),
we have 25 567 files, or 96.20 % of the original data. We then perform a
stationarity test on both the coverage and bug-fixes time series and also
filter out files with no changes in the coverage value over the whole period
(P3, P4, and P2, respectively). In the end, 5 560 files satisfy all criteria.
These files are then used to run the Granger-causality test.

For Facebook React, we have 562 files initially. We apply the same steps
as for SAP HANA and get 53 files that to run the Granger-causality test.

https://www.rdocumentation.org/packages/lmtest/versions/0.9-35/topics/grangertest
https://www.rdocumentation.org/packages/lmtest/versions/0.9-35/topics/grangertest
https://www.rdocumentation.org/packages/lmtest/versions/0.9-35/topics/grangertest
https://cran.r-project.org/web/packages/lmtest/index.html
https://cran.r-project.org/web/packages/lmtest/index.html

82 testing in very large software projects

4.3.4 Findings

In this section, we answer the following research questions (RQ) for our two
study subjects, SAP HANA and Facebook React:

RQ2 How many files show a Granger-causal relationships between time series
with coverage and bug-fixing commits (BFC)?

RQ3 How many files show a Granger-causal relationships between time series
with coverage and non-bug-fixing commits (NBFC)?

RQ4 How does the lag value affect the results?
RQ5 What are differences between files with positive and negative results for

the Granger-causality test?

4.3.4.1 RQ2 Granger-Causality Between Coverage and BFC

Motivation: We want to analyze the causal relationship between coverage
and the number of bug-fixes. This tells us if coverage has an impact on the
number of bug-fixes, i.e., whether covered program elements show a higher
or lower number of bug-fixes. Our hypothesis is that a program element
with changes in coverage over time should also show changes in number of
bug-fixes over time, i.e., in number of bugs over time.

Methodology: After filtering out files which do not satisfy the station-
arity test, we perform the Granger-causality test in R using grangertest
function (see Section 4.3.2.2). We perform the Granger-causality test for
every file, i.e., for every time series of coverage and bug-fixes.

Category SAP HANA Facebook React

Number of Files 6 428 53
GPF1−10 1 893 18
Bug-Fixes 18 677 100
Bug-Fixes𝐺𝑃 𝐹 5 866 97
No. of Files/Bug-Fixes 34.42 % 53.00 %
GPF/Bug-Fixes𝐺𝑃 𝐹 32.27 % 18.56 %

Table 4.5: The results of running the
Granger-causality tests for both appli-
cations. The row names denote: No.
of Files - Total number of files that
are used for the Granger-causality test,
GPF (Granger Positive Files) - Files
that return significant result for the
Granger-causality test, Bug-Fixes - To-
tal number of bug-fixes, Bug-Fixes𝐺𝑃 𝐹

- Total number of bug-fixes applied to
files that satisfy the Granger-causality
test.Findings: Table 4.5 shows the results of running the Granger-causality

test on our dataset. We find that 1 893 files (29.45 %) return significant
results for the Granger-causality test for SAP HANA. Similarly, for Facebook
React 33.96 % of the files (18/53) return significant results.

We use a significance level of 95 % (𝛼 ≤ 0.05) for the Granger-causality
test. Table 4.6 shows the number of Granger positive results at intervals of
the significance level separated by 1 %. We observe that more than 68 % of
the 1 893 files have p-value less than 0.01 for SAP HANA and more than
88 % of the files have p-value less than 0.01 for Facebook React.

Answer RQ2
29.45 % (1 893/6 428) and 33.96 % (18/53) of the files show positive result
for the Granger-causality test for SAP HANA and Facebook React, re-
spectively. 68.83 % and 88.88 % of all files with significant results have
p-value less than 0.01 for SAP HANA and Facebook React, respectively.

on the relationship between coverage and faults 83

Number of Files

Significance Range SAP HANA Facebook React

0.04 < 𝑝 − 𝑣𝑎𝑙 ≤ 0.05 97 0
0.03 < 𝑝 − 𝑣𝑎𝑙 ≤ 0.04 140 1
0.02 < 𝑝 − 𝑣𝑎𝑙 ≤ 0.03 142 0
0.01 < 𝑝 − 𝑣𝑎𝑙 ≤ 0.02 211 1
0.00 < 𝑝 − 𝑣𝑎𝑙 ≤ 0.01 1 303 16

Table 4.6: Granger positive p-values
for files.

4.3.4.2 RQ3 Granger-Causality Between Coverage and NBFC

Motivation: The answer to this research question provides insights into
the significance of the results for RQ2. There might exist a general Granger-
causality between coverage and (all types of) commits. In this case, there
would exist a similar Granger-causalities for BFC and NBFC. To investi-
gate this possible scenario, we perform additional experiments and test two
hypotheses for bug-fixing and non-bug-fixing commits:

1. There is no difference in the number of Granger positive files between bug-
fixing and non-bug-fixing commits or there are more Granger positive
files for non-bug-fixing commits than for.bug-fixing commits.

2. For a Granger positive file f such that the difference of f’s line coverage
in between test runs Granger-causes a difference in the number of f’s bug
fixing commits in between test runs, the difference of f’s line coverage in
between test runs also Granger-causes a difference in the number of f’s
non-bug-fixing commits in between test runs.

Methodology: Compared to our methodology for bug-fixing commits,
we must now filter for non-bug-fixing commits. However, this results in a
different population for our experiment as these commits vary by several
characteristics. Therefore, we enumerate each issue and state how we control
for these variations in our methodology.

• The statistics for number of files changed per commit is different for
non-bug-fixing-commits (median 2, mean 7.52) and bug-fixing commits
(median 2, mean 5.02). We control this variable by selecting non-bug-
fixing commits in such a way that the mean and median are similar
to bug-fixing commits. Otherwise, we would have more candidates for
Granger-causality which would impact the results.

• A non-bug-fixing commit can include non-relevant files such as files that
are not required for the product SAP HANA. We control this variable
by selecting only commits that change files contained in the set of all
files contained in coverage results. Otherwise, unrelated files, such as a
documentation files or sources files for other products, would impact the
results because there cannot be any Granger-causality for such files.

• The number of non-bug-fixing commits is larger than the number of bug-
fixing commits. We control this variable by selecting (randomly) the
same number of non-bug-fixing commits as we found bug-fixing commits.
Otherwise, the population would be different for both experiments.

For the analysis of the bug-fixing commits in Facebook React, we use all
non-bug-fixing commits due to the small number of commits.

84 testing in very large software projects

For both SAP HANA and Facebook React, we determine the number of
common files by calculating the intersection between the set of files that
show Granger-causality for bug-fixing commits and the set of files that show
Granger-causality for non-bug-fixing commits.

Findings: From Table 4.7, we find for SAP HANA 697 GC-positive files
for non-bug-fixing commits compared to 1893 GC-positive files for bug-fixing
commits. Therefore, we can reject the null hypothesis 1 for SAP HANA as
there is a factor of 2.7 less GC-positive files for non-bug-fixing commits. For
Facebook React, we find 57 GC-positive files for non-bug-fixing commits
compared to 18 GC-positive files for bug-fixing commits. Therefore, we can
not reject the null hypothesis 1 for Facebook React. The small sample size
for Facebook React leads to inconclusive results, i.e., we can neither reject
the null hypothesis nor accept the null hypothesis.

Granger Positive Files

Bug-Fixing Commits Non-Bug-Fixing Commits

SAP HANA 1 893 697
Facebook React 18 57

Table 4.7: Granger positive files for
bug-fixing and non-bug-fixing commits.

We found that for SAP HANA and Facebook React, 319 files and 13 files
are common between bug-fixing commits and non-bug-fixing commits that
are GC-positive, respectively. This shows that the percentages of files that
are GC-positive for both experiments (bug-fixing/non-bug-fixing commits)
are rather low (17 %/46 % for SAP HANA, 72 %/23 % for React). We
conclude that we find different files that are GC-positive for each experiment.

Given these numbers, for SAP HANA, in 1 574 files, we can reject the null
hypothesis 2 and in 319 cases, we cannot reject the null hypothesis 2. We
did not further investigate whether the 319 cases contain cases where the lag
value for a file in the bug-fixing analysis is different from the lag value of a file
in the non-bug-fixing analysis. We would expect that such differences exist
and therefore the amount of files with identical results is lower. However,
we did not calculate the exact number because the comparison on this level
is rather complex (a file can have multiple lag values) and provides limited
insights. For Facebook React, in 5 files we can reject the null hypothesis
2 and in 13 files we cannot reject the null hypothesis 2. We argue that
the number of cases is too small to draw any conclusion. We speculate
that the lower number of cases where we can reject the null-hypothesis
happens because of the low amount of files and the different characteristics
for Facebook React compared to SAP HANA as shown by Table 4.9. In
addition, for React, we use a heuristic to detect bug-fixing commits and
such bug-fixing commits may contain changes unrelated to the bug-fix. The
analysis for SAP HANA does not share these issues.

Answer RQ3
For SAP HANA, there are a factor 3 more Granger positive files for bug-
fixing commits than for non-bug-fixing commits. Furthermore, for the
majority of the cases in SAP HANA and Facebook React, files that show
Granger-causality on bug-fixing commits are different from files that show
Granger-causality on non-bug-fixing commits.

on the relationship between coverage and faults 85

4.3.4.3 RQ4 Analysis of Lag Values

Motivation: The Granger-causality test is sensitive to the lag selection.
The lag corresponds to a delay, which is unknown before. Due to the practical
and large scale development process at SAP, it is plausible that different
delays occur. As such, we want to investigate which value of lag can return
the most positive results. This will be helpful for developers to know the
amount of time that is likely to pass before they observe Granger-causality
between coverage and bug-fixes.

Methodology: Originally, we fixed a single value of lag. In this ex-
periment, we change the value of lag from 1 to 10 for each pair of series
of coverage and bug-fixes. If one of the lag returns a significant result
(𝑝 ≤ 0.05), we consider this case as existence of Granger-causality.

SAP HANA Facebook React

Lag Files Files(%) Files Files(%)

1 583 30.80 7 13.21
2 749 39.57 11 20.75
3 779 41.15 14 26.42
4 774 40.89 9 16.98
5 689 36.40 6 11.32
6 684 36.13 5 9.43
7 705 37.24 5 9.43
8 708 37.40 5 9.43
9 712 37.61 5 9.43
10 731 38.62 7 13.21

Table 4.8: Granger positive files over
different lag values for both projects.
Highest values are higlighted.

Findings: Table 4.8 shows the lag values and the number of Granger
positive files for each lag value and each study subject. For each lag value,
there are certain number of files that show Granger-causality. For example in
SAP HANA, for lag value 1, 583 (out of 6,428) files show Granger-causality,
whereas 749 files show causal relationship for lag value 2. When multiple
lags show Granger-causality for a particular file, we take the one with the
lowest p-value. For SAP HANA, we observe that lag value 3 returns 779
files, which is the highest number of files with Granger-causality among
all the lag values. Similarly, for Facebook React, lag value 3 returns the
highest number of files with Granger-causality. Furthermore, there is not
a substantial change in the number of Granger positive files between lag
values 6 and 9 for both SAP HANA and Facebook React. The results for
lag value 10 show a small increase in number of Granger positive files for
both SAP HANA and Facebook React. However, the small number of files
for Facebook React may lead to artificial and insignificant results.

Answer RQ4
The number of files that show Granger-causality varies across different lag
values. For both SAP HANA and Facebook React, the lag value 3 shows
the highest number of Granger positive files with 41.20 % and 26.42 % of
the files that exhibit a Granger-causal relationship. There is no significant
change in the number Granger positive files between lag value 6 and lag
value 9 for both the projects.

86 testing in very large software projects

4.3.4.4 RQ5 Characteristics of Granger Positive Files

Motivation: We want to understand the characteristics of the files for
which Granger-causality is observed in comparison to those files for which
Granger-causality is not observed.

Methodology: For SAP HANA, we compare the 1 893 files for which we
observed Granger-causality against the 4 535 files that satisfy pre-conditions
for the Granger-causality test but for which Granger-causality is not ob-
served. Similarly, for Facebook React, we compare 18 files with Granger-
causality against 35 files for which Granger-causality is not observed. For
each file, we compute the LOC churn, i.e., the number of lines added and
deleted over the time series. This estimation will help us understand the
number of changes that are made to these files over 1 year period and over
many successive test runs. Further, we compute all the number of commits
made to each file and the number of developers who have contributed to each
file during the whole observation period. We run Mann-Whitney Wilcoxon
one-tailed test [185] to compare the mean values of different metrics for
Granger positive and negative files. We use one-tailed test to determine
if the difference between the two groups is in a specific direction, whereas
two-tailed test is used to determine if there is any difference without giving
any specific direction as to which is bigger or smaller.

Findings: The null hypothesis is that there is no difference in LOC
churn, i.e., the number of lines added and deleted, for Granger positive files
and negative files. The alternative hypothesis is that Granger positive files
have higher LOC churn than Granger negative files. The mean values of
LOC churn for Granger positive and negative files for SAP HANA are 472.41
and 442.64, respectively and the median values are 111 and 96, respectively.
We observe that p-value is 0.004 which shows that Granger positive files have
significantly higher LOC churn than Granger negative files. For Facebook
React, while the mean and median values are higher for Granger positive
files than Granger negative files, we do not observe a significant difference
between these two groups. This is possibly due to a limited number of data
points for Facebook React.

Similar to above, we compute the number of commits affecting a file over
the entire time period and compare Granger positive and Granger negative
files. The null hypothesis is that there is no difference in the number of
file changes for Granger positive and Granger negative files, whereas the
alternative hypothesis is that Granger positive files have a higher number
of file changes than Granger negative files. Using Mann-Whitney Wilcoxon
one-tailed test, we observe that there is a significant difference (p-value
= 0.003), i.e., Granger positive files have a significantly higher number
of changes than Granger negative files for SAP HANA. For SAP HANA,
the mean and median values for changes in files with significant Granger-
causality are 12.69 and 7, whereas the corresponding values for Granger
negative files are 12.88 and 6, respectively. For Facebook React, the mean
and median for Granger positive files are 32.33 and 18, whereas those for
Granger negative files are 20.77 and 9. Different from the results we observed
for SAP HANA, we do not observe a significant difference between the two
groups for Mann-Whitney Wilcoxon test for Facebook React.

on the relationship between coverage and faults 87

Furthermore, we analyze the difference between the mean values for the
number of developers who have contributed to Granger positive files against
those who have contributed to Granger negative files. For SAP HANA, we
do not observe a significant difference in the number of developers between
Granger positive and Granger negative files. The mean values for these files
are 4.58 and 4.67, respectively, with a median value of 3 for both groups. For
Facebook React, while the values of mean and median are higher for Granger
positive files over Granger negative files, the difference is insignificant. This
is probably due to the limited number of data points for Facebook React.
Table 4.9 shows the mean and median values for different metrics for Granger
positive and negative files for SAP HANA and Facebook React, respectively.

Granger Positive Granger Negative

Metric Mean Median Mean Median

SAP HANA
LOC difference* 472.41 111 442.64 96
Number of commits* 12.69 7 12.88 6
Number of developers 4.58 3 4.67 3

Facebook React
LOC difference 168.17 29.50 134.40 29
Number of commits 32.33 18 20.77 9
Number of developers 8.06 6.50 6.74 6

Table 4.9: Mean and median values of
different metrics for Granger positive
and negative files for SAP HANA and
Facebook React. A * indicates 𝑝 <
0.05. The lack of statistical significance
for React may be due to limited data
points.

Thus, the result for SAP HANA shows that coverage Granger-causes bugs.
The result for Facebook React is inconclusive (i.e., it is not statistically
significant). The two results are not contradictory. We cannot ascertain
whether the results for React support or refute the relationship observed for
SAP. The size of the React dataset could cause the inconclusive result.

Answer RQ5
For SAP HANA, files that show positive results for the Granger-causality
test exhibit a significant difference from files that show Granger negative
results in terms of LOC churn and number of commits affecting them.
For Facebook React, we do not observe a significant difference between
Granger positive files and Granger negative files, possibly due to a limited
number of data points for Facebook React.

4.3.5 Discussion

In this section, we discuss our findings and their implications. We also state
and discuss possible threats to the validity of our work.

4.3.5.1 Implications

In this study, we highlight the Granger-causality between coverage and
bug-fixes. We find Granger-causal relationship for over 29 % of the files for
SAP HANA and over 33 % of the files for Facebook React. Based on the
categorization in Section 4.3.2.3, these are of type Item 2. This shows that
coverage has an impact on bug-fixes but only for certain files.

88 testing in very large software projects

Not all files show Granger-causal relationship. However, we argue that
this is expected because not all files are modified equally over time. In our
experiment, we analyze the Granger-causality of coverage changes over time
(time series 𝑇1) to bug fixes (time series 𝑇2) on file level. Due to the file
level context, we have in fact multiple time series 𝑇1𝑎𝑙𝑙 = {𝑇11, . . . , 𝑇1𝑛}
where 𝑛 is the number of files. Therefore, our experiment consists of, in
fact, 𝑛 Granger-causality measurements. We do not expect, and it is in One time series for each file.

fact not possible, that all time series in 𝑇1𝑎𝑙𝑙 show Granger-causality. There
are multiple time series in 𝑇1𝑎𝑙𝑙 where no bug fix occurs and, therefore, we
cannot conclude any information about the changes or Granger-causality
(that acts on changes) for such time series. In addition, based on an intuitive
understanding of the appearance of bugs, not all bugs are found by tests and
not all places and files have the same probability to contain bugs. Therefore,
it is expected that not all time series in 𝑇1𝑎𝑙𝑙 show Granger-causality.

Our results show Granger-causality for some time series in 𝑇1𝑎𝑙𝑙. The
importance of our result is not the percentage of time series that show
Granger-causality, it is the fact that there exist such series and the number
of such series is larger compared to time series without bug-fixes. In addi- There exist several time series that

show Granger-causality.tion, we cannot conclude that files that show no Granger-causality would
contradict our hypothesis, that coverage changes influence bug fixes. There
can be several reasons why the Granger-causality test was not positive in
these cases. A better understanding of these reasons requires further work.

Our results are also significant for SAP HANA as our comparison against
non-bug-fixing-commits shows. The number of Granger-causalities on file
level found for non-bug-fixing-commits is a factor 2.7 lower compared to
the number of Granger-causalities found for bug-fixing commits. Therefore,
we conclude that our result depends on the characterization of bug-fixing
commits and therefore coverage Granger-causes bugs.

Our study complements previous studies [3], which show that testing
and coverage have an impact on the improvement of code quality and the
amount of code tested can be helpful in predicting which program element
will require more bug-fixes. However, previous studies only highlight a cor-
relation between coverage and bug-fixes (or mutants), whereas our findings
show Granger-causality between these two variables. Further, our findings
provide evidence of this relationship over a time period of 1 year instead of
using only one snapshot. Thus, we have an empirical finding that supports
the benefit of improving test coverage in the long run.

Our results also show that the impact of coverage is not seen immediately.
The impact will become more prominent only after a certain lag. Our
analysis of different lag values shows that the Granger-causality between
coverage and bug-fixes is more significant after lag 3 or 4, i.e., approximately
two weeks considering that coverage is created twice a week.

We further perform experiments to compare the files that show Granger-
causality and are changed by bug-fixing and non bug-fixing commits. For
SAP HANA, we find that the number of Granger positive files changed in
bug-fixing commits is higher than Granger positive files in non bug-fixing
commits. Furthermore, we observe a difference in the files that show Granger-
causality changed in a bug-fixing commit against files with Granger-causality
changed in a non bug-fixing commit.

on the relationship between coverage and faults 89

On further investigation of the files which show Granger positive results
and comparing them with the Granger negative files, we observe that the size
of Granger positive files changes more in the time period under observation.
This suggests that developers may want focus on adding test cases (and
thus increasing coverage) for files whose size is likely to substantially change
in the near future; such files are likely to be prone to bugs and adding test Files with large changes have higher

chances for defects.cases can prevent these bugs from being detected late. Furthermore, we
observe files that show Granger-causality have a higher number of commits
affecting them in the observation period.

Thus, developers may want to focus testing effort on such files, since
such effort is more likely to have an impact on future bug-fixes affecting
those files. All these above factors also point out that such files would be
popular and indeed more testing is required, as they would have a bigger
impact on the project. Granger-causality confirms that files with such
characteristics indeed need to be tested more often. We do not observe
significant relationships for the above metrics for Facebook React. This
could possibly be due to the small number of files, i.e., 53 files that satisfy
all the preconditions and 18 files that are Granger positive compared to
the larger number files for SAP HANA. Nonetheless, our results for both
the studied subjects show that for a substantial portion of files analyzed, a
Granger-causal relationship is observed between coverage and bug fixes.

Finally, we observe that a small number of files show Granger-causality
for Facebook React. In Section 4.3.3.3, React shows a weak correlation
for bug fixes and this doesn’t show if the assumptions of Granger-causality
are violated. Once we perform the whole cycle analysis on React data, we
find that the Granger-causality results are insignificant, and they do not
contradict the SAP HANA results. Given that React is an open-source
project, we believe that it can help other researchers replicate our study and
also perform complementary studies.

4.3.5.2 Threats to Validity

We discuss a list of possible threats to the validity of our work.
Identification of Bugs: One possible threat relates to the completeness

of identified bugs, and whether the identified bugs are really bugs. We focus
on bugs that are detected late after code is committed to a version control
system. We rely on classification maintained by SAP and on keyword-based
classification for Facebook React. For SAP HANA, this data is likely to
be complete and correct (i.e., an identified bug is a real bug) due to the
rigorous quality assurance activities done in SAP. SAP has been using this
data internally for years and thus we can assume high reliability. We have
also verified manually a sample of identified bugs to be valid. For Facebook
data, we use Coveralls.io which is being used by several large organizations
to find out uncovered parts and given that data is updated frequently.

There are two additional threats for the bug identification for Facebook
React. To identify bug-fixing commits, we used a classification approach, Bug classification for React.

which might not classify all bug-fixing commits correctly [117]. In addition,
bug-fixing commits can contain unrelated changes the actual bug [118]. Our
analysis for SAP HANA is not affected by these threats. As described in

90 testing in very large software projects

Section 4.3.3.1, the bug-fixing commit identification is very accurate. In
addition, the development processes of SAP ensure that bug-fixing commits
with such unrelated code would be rejected. Each bug-fix will be reviewed
by at least one other person who would reject unrelated code changes. In
addition, unrelated code changes increase the probability that a bug-fix
would trigger other test failures or automated static code tests on code
changes report additional problems. Therefore, developers have a strong
incentive to avoid such unrelated changes for bug-fixes. The average size
of a bug-fixing commit in terms of lines changed is quite low (less than
10) and also suggests that this is not an issue. To verify our assumptions,
we manually checked a sample of bug-fixing commits and did not find any
counterexamples with tangled code changes.

We identify bugs by bug-fixing commits. However, the time for the
revelation of a fault and the time of the corresponding bug-fix may be
different with an unknown gap between. For the industrial project, we
expect that the length of the gap is low on average because of customer
requirements. For Facebook React, we do not have additional data to
estimate the length of the gap.

Mapping between Bugs and Coverage: Ahmed et al. [3] use the
GumTree Differencing Algorithm [87] to determine when a program element
was changed and track its history. In our analysis, we divide our observation
period into multiple segments and use a moving time window approach and
also explain the advantages of our approach compared to GumTree (see
Section 4.3.3.2). However, it is not guaranteed that all bugs can be mapped
to coverage. Note that due to the specific requirement of our approach
that we map a bug to coverage on a file level, we do not need to track
line differences accurately. In the case of multiple relocations of source
code between different files within a single segment, our approach might be
inaccurate. For SAP HANA, in 99.70 % of all bugs, our approach could map
the corresponding bug-fixing commits accurately to coverage.

Flakiness of Tests: A flaky test shows both passing and failing results
for the same code. Luo et al. provide an empirical analysis of flaky tests [181].
We derive our coverage data from tests. Therefore, flaky tests affect our
coverage data. A flaky test might abort early and therefore produce different
coverage data for multiple runs. We also observed that generating coverage
itself increases the flakiness. We expect that flakiness affects all tests in a
similar way and therefore does not affect our results.

Granger-Causality: In this study, we use Granger-causality which is
used between two variables as - a variable 𝑥 is said to Granger-cause an-
other variable 𝑦 if past values of 𝑥 help predict the current level of 𝑦. While
Granger-causality does not represent true causality, it can help understand
the relationship between coverage and the number of bug-fixes. As ex-
pressed by Geweke, Granger-causality is not identical to causation in the
classical philosophical sense, but it does demonstrate the likelihood of such
causation or the lack of such causation more forcefully than does simple
contemporaneous correlation [99]. Stern reiterates that “Two variables may
be contemporaneously correlated by chance but it is unlikely that the past
values of 𝑥 will be useful in predicting 𝑦, given all the past values of 𝑦, unless
𝑥 does actually cause 𝑦 in a philosophical sense” [239].

on the relationship between coverage and faults 91

Related work states that Granger-causality only gives whether the rela-
tionship between variables is significant or not. It does not give the strength
of causality, i.e., we do not gain information whether a specific time series 𝑇1
may have a greater or smaller influence than another time series 𝑇2 [126–128].
However, there is also a critical discussion about whether this is true [24].
We do not contribute to this dispute. Our experiment does not analyze the
strength, our experiment only analysis the existence. Therefore, our results
are not affected by this potential threat.

Furthermore, we investigate the relationship between coverage and bug-
fixes. It is possible that other variables also correlate with bugs or coverage Confounding Variables

(e.g., we would expect that coverage correlates with test suite size). We plan
to investigate such a relationship in future work.

Generalizability: Our work focuses on two different types of software
project, however, we can not conclude that the results can be generalized.
Still, to diversify our data we select both closed-source and open-source
projects developed by large organizations, SAP and Facebook. Moreover,
our study complements the existing body of work that has investigated the
relationship between coverage and bugs. To the best of our knowledge, we
are the first to analyze the Granger-causal relationship between coverage
and bug-fixes in two large industrial systems. The systems that we analyze
are also very large — much larger than the systems analyzed by prior
work (e.g., systems analyzed by Inozemtseva and Reid are of 280K LOC
on average [130]). Previous studies have also focused on one industrial
system [198, 271]. Gaining access to large industrial system is a non-trivial
task and we welcome future research to complement our study by replicating
it on additional software systems.

4.3.6 Related Work

We summarize related work on testing, coverage, and studies investigating
the existence of Granger-causal relationships in software engineering.

Coverage and Defects: Mockus et al. study the importance of test cov-
erage as a measure for test effectiveness on two industrial software projects
and analyze the required test effort with different levels of test coverage [194].
For the two study objects, they find that an increase in coverage reduces
the number of post-release defects but requires an increase in the amount
of effort on testing. Ahmed et al. analyze several open-source programs to
understand the correlation between coverage and bug-fixes [3]. The main
hypothesis of their study is that if an element is well-tested at a given point,
it should have fewer bug-fixes in the future than a poorly tested element.
They find a weak yet significant correlation between statement coverage
and the number of bug-fixes and program elements covered by any test case
have half as many bug-fixes as those not covered. Kochhar et al. investigate
two large systems to compute correlations between coverage, test suite size
and test suite effectiveness using real bugs and find a moderate to strong
correlation between coverage and test suite effectiveness [158].

The above studies show the need for achieving good test coverage to
improve the reliability of systems. In this work, we investigate the Granger-
causal relationship between test coverage and bug-fixes in a very large,

92 testing in very large software projects

real-world software project. While the above studies analyze the correlation
between coverage and test suite effectiveness and make use of mutation
testing (or real bugs) for a single snapshot, we analyze Granger-causal
relationship between these variables over a 1 year time frame. Furthermore,
we make use of real bug-fixes instead of injecting mutants.

Coverage and Killing Mutants: There are several work investigating
the correlation between test coverage and its effectiveness in killing mu-
tants [3, 37, 103, 130]. Gopinath et al. experiment on hundreds of projects
from GitHub [103]. They analyze manually and automatically generated
test cases with mutation analysis. Manually generated test cases are col-
lected from the projects and Randoop produces automatically generated test
cases. They found that statement coverage is a good indicator of test suite
effectiveness. Inozemtseva and Reid study five open-source systems and
generated 31 000 test suites by randomly selecting a subset of existing JUnit
tests identified using Java’s reflection API [130]. They measure statement,
decision, and modified condition coverage and perform mutation testing to
measure test suite effectiveness. They conclude based on the results that
code coverage is not strongly correlated with test suite effectiveness. Instead
of mutants, we use real bugs in a large number. Several previous studies
show that mutants can be used in substitution to real bugs as they are
similar to real faults [8, 147], while other studies show that mutants may not
be representative of real bugs [104, 200]. Furthermore, there are limitations
and problems like the ease of detection [8] and issues related to subsuming
and subsumed mutants [210]. Considering the differing views for the rela-
tionship between mutants and real faults, we use real faults as reported in
the issue tracking system. This can help prevent any threats that might
affect a study due to the usage of mutants.

Other Studies: Kochhar et al. investigate over 300 large open-source
projects from GitHub to analyze the correlations between coverage and
metrics such as lines of code, cyclomatic complexity and the number of
developers [159]. Tengeri et al. propose an approach for test suite assessment
and improvement based on code coverage and use it for purposes such as
removal, refactoring and extension of test cases [243]. In this study, we
analyze a very large software project which is developed closed-source by
SAP to understand Granger-causality between coverage and bug-fixes.

Studies on Causal Relationship: Couto at el. study the Granger-
causality between software metrics and software defects [54–56]. They apply
the Granger-causality test (see Section 4.3.2.2) as a statistical hypothesis test
to investigate whether past variations in source code metrics can forecast
changes in defects. They analyze four Java projects and collect various
types of metrics such as CK metrics, LOC, number of methods (NOM).
They identify bugs by linking issue tracking system entries to commit logs
by finding references of commit hashes in issues and vice versa. They first
check for stationary time series and then apply the Granger-causality test
to measure the impact of metrics on the number of bugs. They further
compute threshold values of different metrics and use that as an input to a
defect prediction model to provide recommendations to developers on files
that are likely to have bugs in the future. They were able to find causes for
64 % to 93 % of the defects. Canfora et al. analyze four open-source Java

on the relationship between coverage and faults 93

and C systems and apply the Granger-causality test to understand whether
a change in a software artifact is related to changes occurred in some other
artifacts [39]. They find that a hybrid recommender using combinations of
association rules and Granger-causality can achieve higher recall than the
two techniques used individually. Different from above studies, we examine
Granger-causality between coverage and the number of bug-fixes.

Studies on Industrial Systems: Studies on industrial systems are
important for practitioners and researchers to identify new problems and
gain new insights. To our knowledge, there does not exist a previous study
on Granger-causality for a very large industrial system. Memon et al. study
continuous integration (CI) at Google [191]. They focus on analysis and
improvements for the CI system at Google, but also provide results about
relationships among frequency of changes, file types, number of authors and
test results. For example, their data shows that a single file with many
changes by different authors has an almost 100 % probability to cause a fail-
ure. Zimmerman et al. investigate how dependencies correlate with defects
and use this to predict defects for binaries in Windows Server 2003 [271]. Our
study complements these studies by analyzing Granger-causal relationship
between coverage and bug-fixes in a large industrial system.

4.3.7 Conclusion and Future Work

Testing, being an integral part of software development, is a continuous
process that helps improve the quality of the underlying system. Code cov-
erage metric is often used as a proxy for the amount of testing. Past studies
have analyzed coverage and test suite effectiveness, however, those studies
are mostly limited to analyzing correlation, using mutants and collecting
a single snapshot. Different from previous studies, we investigate the ex-
istence of Granger-causal relationship between change in coverage and the
number of bug-fixes by collecting longitudinal data over 1 year time period
for SAP HANA and Facebook React. For every source file, we compute
coverage for regression test runs made in the observation period, and the
number of bug fixes made between regression test runs. After performing
several preprocessing steps, we apply the Granger-causality test and further
examine the characteristics of files that show Granger-causal relationship
between change in coverage and the number of bug fixes.

Our empirical study leads to the following findings:

1. 29.45 % of the files (1 893/6 428) for SAP HANA and 33.96 % of the files
(18/53) for Facebook React exhibit Granger-causality between coverage
ratio time series and number of bug-fixes time series.

2. The effect of coverage changes on bug-fixes does not show immediately.
The impact becomes significant after a certain delay. For lag values of 3 to
4, the number of files showing Granger-causality is the highest compared
to all other lag values from 1 to 10.

3. For SAP HANA, the Granger-positive files are statistically significantly
different from the Granger negative files in several aspects. These files
have a higher churn during the observation period and more commits
affect them. We obtain non-conclusive results for Facebook React likely
due to the small number of data points available for analysis.

94 testing in very large software projects

Future work could investigate a larger dataset of projects to reduce threats
to external validity. Furthermore, it could be interesting to investigate dif-
ferences between Granger positive and negative files in terms of additional
factors such as the size of project, development environment, team compo-
sition, company culture, programming languages, or project domain. It is
unclear to us whether such factors could be confounding variables.

In our work, we utilized historical information about bugs and bug-fixes.
As explained in our introduction, it is unclear to us whether mutants could be
a suitable replacement for such bug data. An analysis of Granger-causality
for mutants and coverage could provide further insights into the question of
how suitable mutants are as a replacement for bugs.

4.4 Combinatorial Testing

Test suites in complex software projects might grow over time to consider-
able sizes. This results in incurring high maintenance effort and prolonged
execution times. Maintaining their quality and efficiency requires pruning
of redundancies while increasing, or at least retaining their coverage levels.

We propose a lightweight method to tackle these problems with a focus on
condition/decision coverage (C/D coverage). First, we describe a method to
reduce the size of unit test suites while preserving their C/D coverage degree.
We then introduce an approach which combines combinatorial testing and Combine combinatorial testing with

equivalence partitions.input space modeling to further increase the degree of the C/D coverage.
Our semi-automated method works even in the absence of models or

documentation and produces a low number of new test cases that require
the creation of new test oracles. We also do not use symbolic execution
techniques. These properties make our approach practically applicable for
industrial projects and simpler to implement.

We evaluate our approach on selected examples from SAP HANA. We
demonstrate that it is possible to generate from integration tests new suites
of unit tests with high C/D-coverage but with only a few test cases. At the
same time, the human effort of creating such suites is moderate.

4.4.1 Introduction

Researchers have proposed a wide range of techniques to automatically
create tests covering untested code. These techniques can be summarized
as coverage-adaptive test creation. One family of techniques for coverage-
adaptive test creation regards application code as a black-box and, after test
creation, verifies whether test coverage within the black-box has increased
or not. Another option is to analyze the source code as a white-box, and to
create suitable tests based on knowledge of the code that reach uncovered
parts of the source code. A popular technique for the latter group utilizes
constraint solvers or SAT solvers to determine the inputs that trigger the
execution of certain parts of the code. However, such approaches have prac- Creating new tests is a complex task.

tical limitations due to highly structured inputs, external libraries, and large
complex program structures. These factors pose considerable challenges for
obtaining solutions in an effective way — despite the NP-completeness of
the underlying decision or constraint satisfaction problems.

on the relationship between coverage and faults 95

We propose to use combinatorial testing as a technique for the auto-
matic generation of minimal amount of new tests needed to increase the
condition/decision coverage of an existing test suite. Our approach first
trims the number of test cases in the suite while maintaining the degree
of condition/decision coverage. It then collects the input values used in
the remaining tests and uses them as input levels in the combinatorial test
generation. In other words, we do not assume the availability of a model or
even documentation while applying combinatorial testing.

We further reduce the covering arrays created by combinatorial testing
techniques to a minimal test set that enhances the condition/decision cov-
erage of an existing test suite. Based on the assumptions that existing test
inputs have some purpose and new combinations of them consist of partly
meaningful input, we expect that these newly generated tests have an ad-
vantage compared to random tests. In particular, they can cover untested
parts of the source code, because the original tests already contain some
domain knowledge about the internal behavior of the system under test.

Our technique has fewer requirements than approaches based on symbolic
execution. We only require test inputs and coverage data. In comparison, Simpler than symbolic execution

symbolic execution requires a complex analysis of the SAT problem and a
precise syntactic understanding of the source code.

We show the results of a preliminary evaluation of our approach on two
examples from SAP HANA. The evaluation indicates that our technique
can improve existing test suites in terms of condition/decision coverage.
However, it is not able to create full coverage in all scenarios. For such cases,
we revert to the manual design of input levels with additional insights from
previous steps of our technique.

Our contributions are the following ones:

• A method for improving the level of condition/decision coverage of an
existing test suite via combinatorial testing while maintaining small suite
size and requiring only a few test oracle queries that is is independent of
the source code of the system under test.

• A preliminary evaluation of our approach on functions from SAP HANA.

4.4.2 Methodology

In this section, we first describe a method for reducing the size of unit
test suites while maintaining their degree of condition/decision coverage
(Section 4.4.2.2). In Section 4.4.2.3 we then show how the level of the
condition/decision coverage can be increased by exploiting combinatorial
testing and input space modeling. Fig. 4.12 gives an overview of the complete
approach. The major processing steps are:

1. Reducing the original test suite 𝐵 to 𝐵𝑟 by solving with our implementa-
tion from Section 3.3.4 a set cover/hitting set problem (Section 4.4.2.2).

2. Generating new tests for 𝐵𝑟 by combinatorial testing using projections
of input tuples (Section 4.4.2.4).

3. Optional: Generating combinatorial tests with the support of input space
modeling if required (Section 4.4.2.5).

4. Reducing the test suite again (Section 4.4.2.6).

96 testing in very large software projects

Combinatorial
test suite ct(Br)

Reduced
test suite Br

Original test
suite B

Enhanced comb.
test suite ct+(Br)

Full coverage
by Br?

Full coverage by
Br ∪ ct(Br)?

Reduced combinatorial
test suite Badd

1©

2©

3©

4© 4©

O
u
tp
u
t:

T
es
t
su
it
e
B

r
(w

it
h
te
st

ou
tc
om

es
)

(o
p
t.
)
T
es
t
su
it
e
B

a
d
d
(n
ee
d
or
ac
le

q
u
er
ie
s)

yes

yes

no

no

Figure 4.12: Overview of the process-
ing flow of the complete approach.

4.4.2.1 Definitions and Conventions

In the following, we assume that we start with a given suite of unit tests
for a target function 𝑓 . By analyzing (or instrumenting) these tests we can
collect for each execution of 𝑓 the values of all arguments passed to 𝑓 , and
the return value of 𝑓 . We call such a record an input/output pair and call Input/output pair

the group of input values an input tuple.
We analyze these input/output pairs and retain only those which are

unique in terms of the input tuples (i.e., after this step each input tuple for
𝑓 occurs only once). Since the considered functions are deterministic, this is
equivalent to computing unique elements over the input/output pairs. We
write 𝐵(𝑓) or just 𝐵 for the resulting set of pairs.

Note that each element of 𝐵 completely characterizes a unit test for 𝑓

(including the expected test result). In the following, we use the notions
input/output pair and unit test interchangeably for the elements of 𝐵.

For the terms related to coverage, the definition we use follows Sec-
tion 3.1.5. However, we reiterate it and provide additional examples to
highlight specific attributes of the definitions. A Boolean expression in any
branch or a loop condition of the considered code is called a decision. A Decision

condition is a leaf-level Boolean expression that cannot be broken down into Condition

simpler Boolean expressions. Thus, a decision is either a condition, or it
consists of several conditions and Boolean operators. For example, a decision
like y < y1 || y == y1 gives rise to two conditions: y < y1 and y == y1.
Fig. 4.14 and Table 4.10 illustrate this further. For example, decision 𝐷2
(line 5) generates conditions 𝐶2, 𝐶3, and 𝐶4.

We call a combination of a decision or a condition 𝑋 with an outcome
𝑦 a expression-outcome pair and write 𝑋 = 𝑦 for it. When a test executes Expression-outcome pair

a decision (or condition) 𝑋 and the outcome of the evaluation is 𝑦, we say
that this test case covers the expression-outcome pair 𝑋 = 𝑦. In Fig. 4.13,
test 𝑈1 covers 𝐷1 = 𝑓 , 𝐷2 = 𝑓 , and four other expression-outcome pairs.

For a set 𝑆 of tests and an expression-outcome pair 𝑋 = 𝑦, let 𝑐𝑜𝑣𝑋=𝑦(𝑆)

be a set of those tests in 𝑆 which cover 𝑋 = 𝑦. For example, for a condition
𝐶1 with outcome true the collection 𝑐𝑜𝑣𝐶1=𝑡(𝑆) contains all tests from 𝑆

on the relationship between coverage and faults 97

Cover. Expr. …

� D1, f 1 1 1 … 1

� D1, t 1 1 1 …

� D2, f 1 - - 1 - …

� D2, t 1 - - - … 1

� D3, f - - - 1 … -

� D3, t - - 1 1 - … -

� C1, f 1 1 1 … 1

� C1, t 1 1 1 …

� C2, f - - - …

� C2, t 1 1 - - 1 - … 1

� C3, f - - - …

� C3, t 1 1 - - 1 - … 1

� C4, f 1 - - 1 - …

� C4, t 1 - - - … 1

� C5, f - - - 1 … -

� C5, t - - 1 1 - … -

1

1

-
-
1

1

1
1

-
-

1

1
-
-
1

1

1

1
-
-

1
-
-

1

1
-
-
-
-
-
-

1

1
-
-
1

1
-
-
-
-
-
-
1

Figure 4.13: An illustration of the
expression-outcome pairs, their cover-
age, and a minimum hitting set 𝐵𝑟 for
the function 𝑓1 in Fig. 4.14. A row 𝑋, 𝑦
corresponds to an expression-outcome
pair 𝑋 = 𝑦, and a column 𝑈𝑖 to a unit
test from 𝐵. An entry 1 for row 𝑋, 𝑦
and column 𝑈𝑖 means that a condition
or decision 𝑋 is executed and evaluated
to 𝑦 under test 𝑈𝑖. Column “Cover.”
indicates whether test suite covers (X)
the expression-outcome pair 𝑋 = 𝑦, or
not (X). The set 𝐵𝑟 = {𝑈1, 𝑈2, 𝑈4, 𝑈6}
is a minimal hitting set.

which execute 𝐶1 and evaluate it to true. In Fig. 4.13, the set 𝑐𝑜𝑣𝐷1=𝑓 (𝐵)

are all the unit tests 𝑈𝑖 (columns) which have a 1 in their first row.
A test suite achieves a full condition/decision coverage if (while executing Condition/decision coverage

all test cases in the suite) “every point of entry and exit in the program
has been invoked at least once, every condition in a decision in the program
has taken all possible outcomes at least once, and every decision in the
program has taken all possible outcomes at least once” [45, 46, 145]. See also
Section 3.1.5 for further discussion of various coverage variants.

4.4.2.2 Test Suite Reduction with Unchanged C/D-Coverage

The purpose of the following approach is to identify a minimal (or at least
a small) subset of unit tests from 𝐵 which (cumulatively) have the same
condition/decision coverage (C/D coverage) as 𝐵.

Our approach works in the following steps:

1. We first identify all decisions 𝐷1, . . . , 𝐷𝑘 in the target function 𝑓 and Obtain decisions and conditions.

split each of these decisions into conditions 𝐶1, . . . , 𝐶𝑙. Currently, this
step is performed manually but can be automated by using a parser.

2. For each condition and each decision, we instrument the source code to Obtain coverage.

collect data whether this expression has been evaluated and if yes, what
was the Boolean result. This step is only necessary to compensate that
our dynamic code analysis tool DynamoRio is currently not configured
to collect condition and decision coverage data.

3. For each input/output pair in 𝐵 we generate a corresponding unit test
and subsequently execute it. At each execution, we collect data for all
conditions and decisions described in the previous step.

98 testing in very large software projects

4. For each expression-outcome pair 𝑋 = 𝑦 in the target function 𝑓 we
identify from data generated in the previous step all unit tests in 𝐵 which
cover 𝑋 = 𝑦. In other words, we compute the sets 𝑐𝑜𝑣𝑋=𝑦(𝐵) over all Obtain mapping.

expression-outcome pairs in 𝑓 .
The outcome of this step is a collection of 𝑘 ≤ 2𝑝 sets of tests, where 𝑝 is
the total number of identified decisions and conditions in a target function
𝑓 . If any of the computed sets is empty (i.e. 𝑘 < 2𝑝), the corresponding
expression-outcome pair is not covered. Fig. 4.13 illustrates that for
Example 1 the original unit tests have already covered 𝑘 = 14 out of
2𝑝 = 16 expression-outcome pairs, and thus only two sets 𝑐𝑜𝑣𝐶2=𝑓 (𝐵)

and 𝑐𝑜𝑣𝐶3=𝑓 (𝐵) are empty.
5. Finally, for the test suite reduction we compute an exact or approximate

minimal hitting set 𝐵𝑟 [148]. Here 𝐵 is the universe and the subsets to Reduce tests.

be “hit” are the 𝑆1, . . . , 𝑆𝑘 (non-empty) sets 𝑐𝑜𝑣𝑋=𝑦(𝐵) computed in the
previous step. By the definition of the minimal hitting set problem, 𝐵𝑟

has at least one element in each subset 𝑆𝑖 (this element “hits” 𝑆𝑖), and
has the smallest size among all subsets of 𝐵. In other words, a test suite
induced by 𝐵𝑟 is guaranteed to have the same C/D-coverage as the full
test suite 𝐵. Typically, 𝐵𝑟 has substantially less elements than 𝐵.
In Fig. 4.13, set 𝐵𝑟 = {𝑈1, 𝑈2, 𝑈4, 𝑈6} is a minimal hitting set for the
universe 𝐵 and the sets to be hit being all non-empty sets 𝑐𝑜𝑣𝑋=𝑦(𝐵)

(i.e., all except for 𝑐𝑜𝑣𝐶2=𝑓 (𝐵) and 𝑐𝑜𝑣𝐶3=𝑓 (𝐵)).

To compute the minimal hitting set we convert the problem to an equiv-
alent set cover problem and use the approach presented in Section 3.3.4.

The resulting test suite 𝐵𝑟 is possibly not achieving the full C/D-coverage,
if 𝐵 was not fully covering. To increase the degree of coverage we apply
combinatorial testing enhanced by input space modeling.

4.4.2.3 Improving C/D-Coverage via Combinatorial Testing

For a set 𝑆 of input/output pairs, let 𝑃𝑖(𝑆) denote the set of all unique
values encountered as the 𝑖-th component of any input tuple from 𝑆. In other
words, such a projection on 𝑖-th argument is the set of all different values
used as 𝑖-th input argument for a target function 𝑓 while executing test
suite corresponding to 𝑆. For example, if 𝑓 has 3 arguments 𝑥, 𝑦, 𝑧 and 𝑆

contains the input/output pairs ((1, 2, 3), 6), ((5, 2, 1), 8), and ((10, 3, 7), 20),
the projection 𝑃1(𝑆) is {1, 5, 10} and the projection 𝑃2(𝑆) is {2, 3}.

By examining the original 𝐵 or the reduced test suites 𝐵𝑟 we observed
that expression-outcome pairs 𝑋 = 𝑦 are more frequently not covered if
𝑋 is a condition and not a decision (the higher decision coverage can be
attributed to the high line coverage in our samples). Among the uncovered
expression-outcome pairs with conditions we identified two types:

1. A “complex” condition like b <= (to - from + 1), where two or more
input arguments are involved directly or indirectly (i.e., if one of the
variables is derived from arguments but not an argument itself). In such
a case, there is no coverage because in 𝐵𝑟 there is no suitable combination
of input values for involved arguments. Our approach (Section 4.4.2.4)
attempts to solve this issue by using combinatorial testing to create more

on the relationship between coverage and faults 99

combinations of values for these arguments. For each argument, we use as
values only the projections of 𝐵𝑟 (i.e., original values for this argument).
If this is not sufficient, we proceed as in Section 4.4.2.5.

2. A “simple” condition like variable == val (or e.g., variable < val),
where variable is a function argument or a variable derived from a single
function argument. In such a case the condition is not fully covered
because there is no appropriate value in the projection of 𝐵𝑟 on the
argument relevant for variable. In this case, combinatorial testing based
on projections of 𝐵𝑟 cannot help and we need to introduce new values
for the relevant argument (Section 4.4.2.5).

4.4.2.4 Generating Combinatorial Tests From Projections

Our scenario does not assume knowledge about a model for a target func-
tion 𝑓 , which makes the traditional model-based input space modeling not
applicable. Instead, we derive levels for each argument of 𝑓 (i.e., concrete
values for this argument used in the combinatorial test suite generation) as
follows: levels for 𝑖-th argument are exactly all different values used for this
argument in the test set 𝑆. In other words, the levels for the 𝑖-th argument
of 𝑓 are the projections 𝑝𝑖(𝑆) of 𝑆 on 𝑖-th argument.

We then check whether there are any uncovered complex conditions and
for each such a condition we determine the number 𝑚 of involved input
arguments. For the subsequent test generation, we then set the interaction
level 𝑡 as the maximum of all uncovered complex conditions. To obtain Generate new tests from new combina-

tions of existing values.a combinatorial test suite, we generate a covering array with a tool like
ACTS [262] with a pre-computed interaction level 𝑡.

Note that this method works with the original set 𝐵 of all logged unit
tests and the reduced suite 𝐵𝑟 maintaining the original C/D-coverage level.
Since 𝐵 is likely to have larger projections per argument, we only generate a
combinatorial test suite over 𝐵𝑟. Given a fixed interaction level 𝑡, we write
𝑐𝑡𝑡(𝐵𝑟) or just 𝑐𝑡(𝐵𝑟) for the set of generated unit tests in this step.

In the subsequent step, we check the C/D coverage of the generated
combinatorial suite. If some conditions or decisions are still not covered, we
additionally execute the steps described in the next subsection.

4.4.2.5 Input Modeling for Combinatorial Tests

To improve the coverage of uncovered decisions/conditions, it can be neces-
sary to perform manual input space modeling prior to generating a combi-
natorial test suite. We collect the identical levels 𝑝𝑖(𝑆) as in Section 4.4.2.4. Enhance input values manually or with

symbolic execution.Then, for each uncovered simple condition (e.g., variable == val) we add
a level which evaluates this condition to the missing true/false outcome.

For complex conditions, we consider the projections for all involved input
arguments, and then add level(s) such that at least one combination (of
original and new levels) evaluates the condition to a missing true/false value.
We also set the minimum interaction level 𝑡 to the number of involved input
arguments. A similar approach is taken for the decisions.

Overall, there is no guarantee that suitable levels will be found and
this process is highly manual. In future work, we plan to use constraint
satisfaction methods to automatize this part.

100 testing in very large software projects

After the levels for all arguments are fixed, we generate a combinatorial
test suite (with pre-specified interaction level 𝑡) similarly as in Section 4.4.2.4.
We designate it by 𝑐𝑡+𝑡 (𝐵𝑟), or just by 𝑐𝑡+(𝐵𝑟).

4.4.2.6 Reducing Combinatorial Test Suites

A combinatorial test suite 𝑇 (either 𝑐𝑡(𝐵𝑟) by method in Section 4.4.2.4 or
𝑐𝑡+(𝐵𝑟) by method from Section 4.4.2.5) typically has more test cases than
the original set 𝐵𝑟. Moreover, most of the combinatorial unit tests have
input combinations not in 𝐵, and thus require queries to a test oracle.

Therefore, we apply again the test suite reduction technique described in
Section 4.4.2.2, Step 5. However, the universe is now the set of input tuples Test reduction repeated.

corresponding to the tests in the test suite 𝑇 and the sets 𝑆1, . . . , 𝑆𝑘 to be
“hit” correspond only to the conditions and decisions not covered (not “hit”)
by the reduced test suite 𝐵𝑟.

For example, 𝑓 has the three decisions 𝐷1, . . . , 𝐷3 and the five conditions
𝐶1, . . . , 𝐶5. 𝐵𝑟 (or, equivalently 𝐵) does cover neither of the two cases
𝐶2 = 𝑓𝑎𝑙𝑠𝑒 and 𝐶3 = 𝑓𝑎𝑙𝑠𝑒. We would perform here the test suite reduction
only with 𝑐𝑜𝑣𝐶2,𝑓𝑎𝑙𝑠𝑒(𝑇) and 𝑐𝑜𝑣𝐶3,𝑓𝑎𝑙𝑠𝑒(𝑇) (i.e., computed over 𝑇) as sets to
be hit. This ensures that the resulting reduced test suite (𝐵𝑎𝑑𝑑, say) contains
only unit tests which handle condition/decision and outcome combinations
which are not yet covered by 𝐵𝑟.

The overall output of our approach is a test suite with all the tests from
𝐵𝑟 and additional tests from the just reduced suite 𝐵𝑎𝑑𝑑. The earlier tests
cover the same expression-outcome cases as 𝐵 while the latter attempt to
cover additional cases. Note that we need to query the test oracle for all
new tests in 𝐵𝑎𝑑𝑑, but not those from 𝐵𝑟.

4.4.3 Experiments and Evaluation

We evaluate our technique on example functions of SAP HANA (see Sec-
tion 2.2). Due to the large size of SAP HANA, we have a large set of tests
we can use to extract input values for our approach (see Chapter 6).

4.4.3.1 Improvements of C/D-coverage

We evaluate our approach on several examples from the SAP HANA test
suite, and discuss here two of them. For reasons of confidentiality, we
partially obfuscate the source code and the variable names.

Example 1: The first example is a function 𝑓1 shown in Fig. 4.14. We
identify three decisions and five conditions as shown in Table 4.10.

1 size_t f1(size_t from , size_t to , size_t a, size_t b){
2 if (from == 1) {
3 return (b < to) ? b : a;
4 }
5 if (b > 0 && b <= (to - from + 1) && (a < from + b)) {
6 return from + b;
7 }
8 return a;
9 }

Figure 4.14: Source code of Example 1,
partially obfuscated.

on the relationship between coverage and faults 101

C/D Name Expression C/D Name Expression

𝐷1 (Line 2) 𝐶2 b > 0
𝐷2 (Line 5) 𝐶3 b <= (to - from + 1)
𝐷3 (Line 3) 𝐶4 a < from + b
𝐶1 from == 1 𝐶5 b < to

Table 4.10: Conditions and decisions
in Example 1; “(Line 𝑘)” indicates that
the decision can be found in line 𝑘 of
Fig. 4.14.

Table 4.11 shows intermediate results after five essential phases of the
algorithm. Phase a refers to analyzing the original tests and the correspond-
ing column shows statistics for the test suite 𝐵. There are 171 unit tests
but two expression-outcome cases are not covered, namely 𝐶2 = 𝑓𝑎𝑙𝑠𝑒 and
𝐶3 = 𝑓𝑎𝑙𝑠𝑒 (see e.g. row 𝐶2, where only 19 from 171 unit tests execute this
condition, and all outcomes are true).

Phase a b c d e

Name 𝐵 𝐵𝑟 𝑐𝑡(𝐵𝑟) ∪ 𝐵𝑟 𝑐𝑡+(𝐵𝑟) ∪ 𝐵𝑟 𝐵𝑎𝑑𝑑

#tests 171 4 36 38 2
#oracle 0 0 32 34 2

#missing 2 2 1 0 0

𝐷1 152/19 2/2 28/8 5/33 -
𝐷2 6/13 1/1 4/4 10/23 -
𝐷3 131/21 1/1 22/6 4/1 -
𝐶1 152/19 2/2 28/8 5/33 -
𝐶2 19/0 2/0 8/0 27/4 1/1
𝐶3 19/0 2/0 5/3 17/12 0/1
𝐶4 6/13 1/1 4/1 10/7 -
𝐶5 131/21 1/1 22/6 4/1 -

Table 4.11: Intermediate results of the
approach for Example 1 for the phases
a to e described in text. In row Name,
#tests states the number of test cases
in the suite, #oracle gives the num-
ber of tests which need an oracle query,
#missing states the number of uncov-
ered expression-outcome pairs. Each
of the remaining rows corresponds to
a decision or a condition 𝑋, and for
each phase the entry 𝑝/𝑞 says that the
suite had 𝑝 tests which covered the
expression-outcome pair 𝑋 = 𝑡𝑟𝑢𝑒 (i.e.,
|𝑐𝑜𝑣𝑋=𝑡| = 𝑝), and there were 𝑞 tests
which covered the expression-outcome
pair 𝑋 = 𝑓𝑎𝑙𝑠𝑒 (i.e., |𝑐𝑜𝑣𝑋=𝑓 | = 𝑞).

Phase b refers to the first reduction (Section 4.4.2.2) and shows numbers
for 𝐵𝑟. The four tests in this suite have the same C/D-coverage as 𝐵. Yet,
both 𝐶2 = 𝑓𝑎𝑙𝑠𝑒 and 𝐶3 = 𝑓𝑎𝑙𝑠𝑒 are still not covered. Phase c is the
combinatorial test generation from projections (see Section 4.4.2.4).

To ensure that this step does not reduce the total coverage, we add the
tests from 𝐵𝑟 to the union 𝑐𝑡(𝐵𝑟) ∪ 𝐵𝑟. This is necessary because the
generated suite of the combinatorial tests might not contain the tests from
which projection is taken. In this step, combinatorial testing indeed manages
to increase the C/D-coverage. Out of 32 tests found by combinatorial testing
for 100% 2-way coverage [262], 3 tests cover 𝐶3 = 𝑓𝑎𝑙𝑠𝑒.

Phase d refers to input modeling for combinatorial tests (Section 4.4.2.5).
We provide statistics for 𝑐𝑡+(𝐵𝑟)∪ 𝐵𝑟. By adding a new level 0 for argument
𝑏 we can cover 𝐶2 = 𝑓𝑎𝑙𝑠𝑒 (since condition 𝐶2 is “b > 0”). After this
phase, all conditions and decisions are covered, but there are too many
(combinatorial) tests - 34 new tests.

In phase e we reduce these new CT-generated tests (i.e., 𝑐𝑡+(𝐵𝑟)) as
described in Section 4.4.2.6, but only for the following two sets to be hit:
𝑐𝑜𝑣𝐶2=𝑓 (𝐵𝑟) and 𝑐𝑜𝑣𝐶3=𝑓 (𝐵𝑟). The result is a test suite 𝐵𝑎𝑑𝑑 with two test
cases, which covers both 𝐶2 = 𝑓𝑎𝑙𝑠𝑒 and 𝐶3 = 𝑓𝑎𝑙𝑠𝑒.

Note that the final test suite contains 6 test cases. 4 test cases (in 𝐵𝑟)
have already test results and 2 (in 𝐵𝑎𝑑𝑑) require queries to test oracle.

102 testing in very large software projects

We conclude that for example 1, the derived unit tests already produced a
high C/D-coverage with 14 of 16 expression-outcome pairs covered. The re-
duced test suite features the same C/D-coverage but has only 4 (down from
171) unit tests. “Basic” combinatorial testing (Section 4.4.2.4) covers one
more expression-outcome pairs. Further input modeling (Section 4.4.2.5)
allows covering the last open case. We conclude that both coverage en- Combinatorial testing improves C/D

coverage.hancement via “basic” combinatorial testing and in combination with input
modeling are useful in this case. They offer a trade-off between the degree
of human involvement (for input modeling) and level of the C/D-coverage.

Example 2: The second example is a function 𝑓2 that essentially consists
of a single decision using short circuit evaluation as shown in Fig. 4.15. We
identify a single decision with nine conditions as shown in Table 4.12.

1 bool f2(int y1 , int m1 , int d1 , int h1 , int mi1 ,
2 int y2 , int m2 , int d2 , int h2 , int mi2) {
3 return y1 < y2 ||
4 (y1 == y2 && (m1 < m2 ||
5 (m1 == m2 && (d1 < d2 ||
6 (d1 == d2 && (h1 < h2 ||
7 (h1 == h2 && mi1 < mi2)))))));
8 }

Figure 4.15: Source code of Example 2,
partially obfuscated.

C/D Name Expression C/D Name Expression

𝐷1 (Lines 3-7) 𝐶5 d1 < d2
𝐶1 y1 < y2 𝐶6 d1 == d2
𝐶2 y1 == y2 𝐶7 h1 < h2
𝐶3 m1 < m2 𝐶8 h1 == h2
𝐶4 m1 == m2 𝐶9 mi1 < mi2

Table 4.12: Conditions and decisions in
Example 2. Decision 𝐷1 can be found
in lines 4 to 8 of Fig. 4.15.

Table 4.13 shows intermediate results for 𝑓2 (same format as Table 4.11).
The extracted unit tests (i.e., 𝐵) cover all expression-outcome pairs except
for 𝐶9 = 𝑡𝑟𝑢𝑒. Unfortunately, none of the two variants of coverage enhance-
ment was successful in this case. However, there is an input tuple (unit test)
that covers this case, which we derive manually (see below).

First, we discuss the input modeling step (Section 4.4.2.5). With the levels
for mi1 and mi2 derived from 𝐵𝑟 it is not possible to evaluate condition 𝐶9
(mi1 < mi2) to true, as all levels for mi1 are larger 0 and mi2 is always 0.

Therefore, we add 10 as a new level for mi2 to the input set for combinato-
rial testing. We calculate new result sets for 100% 2-way coverage and 100%
4-way coverage. Both result sets did not cover 𝐶9 = 𝑡𝑟𝑢𝑒. We expect that
(at latest) a test suite with a full 10-way coverage should contain a suitable
input, but the tool which we use does not allow to use an interaction level 𝑡

larger than 6 (and could output at most 10 000 test cases).
Instead, we manually derive an input tuple which satisfies 𝐶9 = 𝑡𝑟𝑢𝑒

by modifying the input tuple in 𝐵𝑟 which covers 𝐶9 = 𝑓𝑎𝑙𝑠𝑒 (namely
2008, 10, 5, 2, 5, 2008, 10, 5, 2, 0): we replace the last argument value 0 by 10 Manual enhancement required.

(any value larger 5 would work). Obviously, such cases can be solved by a
constraint solver by seeding it with the additional information we already
have from execution. We plan to investigate this option in our future work.

on the relationship between coverage and faults 103

Phase a b c d e

Name 𝐵 𝐵𝑟 𝑐𝑡(𝐵𝑟) ∪ 𝐵𝑟 𝑐𝑡+(𝐵𝑟) ∪ 𝐵𝑟 𝐵𝑎𝑑𝑑

#tests 256 9 56 57 0
#oracle 0 0 47 48 0

#missing 1 1 1 1 1

𝐷1 113/143 5/5 34/22 34/22 -
𝐶1 12/244 1/8 28/28 28/29 -
𝐶2 194/50 7/1 10/18 11/18 -
𝐶3 51/143 1/6 3/7 4/7 -
𝐶4 96/47 5/1 6/1 6/1 -
𝐶5 27/69 1/4 2/4 2/4 -
𝐶6 46/23 3/1 3/1 3/1 -
𝐶7 23/23 1/2 1/2 1/2 -
𝐶8 17/6 1/1 1/1 1/1 -
𝐶9 0/17 0/1 0/1 0/1 -

Table 4.13: Intermediate results of the
approach for Example 2 for the phases
a to e described in text. The val-
ues have the same meaning as in Ta-
ble 4.11.

4.4.4 Related Work

Our work is broadly related to test amplification, symbolic execution, test
coverage, and combinatorial testing. Test amplification describes a set of
approaches targeting improving test quality [60]. Related terms are test
augmentation and test enhancement.

Our approach creates new tests to maximize condition/decision coverage
and can be interpreted as an alternative to symbolic execution. The latter Symbolic execution.

technique is one of the most frequently mentioned techniques for test cre-
ation since 2000 [208]. However, despite the excitement and amount of novel
research, symbolic execution has practical limitations due to highly struc-
tured inputs, external libraries, and large complex program structures [208].
Our approach has fewer limitations for practical applications and utilizes
combinatorial testing as an alternative to symbolic execution techniques to
tackle complex program structures.

Work of Bloem et al. [26] is probably closest related to our study. In fact,
they apply similar algorithmic steps as our approach. They utilize a set of
existing test cases to iteratively create new test cases until a termination
criterion is met. They generate a new test case with a backtracking con- Backtracking constraint solver

straint solver that iterates over all possible execution paths until it reaches a
desired branch of the source code. The evaluation shows that this approach
can create up to 100% branch coverage. However, their approach is applica-
ble only under certain preconditions. For example, changes to source code
should be possible and long execution times acceptable.

Coverage criteria in general and C/D coverage used in our work can be
automatically measured and compared for different approaches leading to a
plethora of studies [115, 211]. However, Staats et al. point out that coverage Usefulness of coverage.

criteria such as MC/DC coverage can be ineffective for determining test suite
adequacy [236]. Inozemtseva et al. conclude that coverage is not strongly
correlated to test suite effectiveness when test suite size is controlled [130].
In contrast, our work on the correlation between coverage and bugs in
Section 4.2 shows that coverage correlates to future bugs [17]. Therefore, it

104 testing in very large software projects

may be beneficial to create tests for uncovered and therefore untested parts
of the source code – at least for our system under test.

Several research work analyze combinations between combinatorial testing
and coverage. Choi et al. study the code coverage (line, branch) effectiveness Combinatorial testing and coverage.

of combinatorial 𝑡-way testing with small 𝑡 for grep, make, and flex in
different versions [47]. They found that 𝑡-way testing creates already an
efficient coverage compared to exhaustive testing for 𝑡 < 5. Czerwonka
investigates the effects of combinatorial testing on coverage for several utility
programs in Microsoft Windows [59]. Czerwonka concludes that full 𝑡-way
coverage can lead to test suites with same 𝑡-way coverage but different
(line, statement) code coverage. We can confirm this observation from our
experience with the examples. However, we expect this effect to decrease
when the interaction level 𝑡 becomes comparable to the number of arguments.

4.4.5 Summary Combinatorial Testing

We propose an approach to reduce the size of test suites and enhance them
with new tests created by combinatorial testing techniques. Our prelimi-
nary evaluation shows that our method can improve the condition/decision
coverage for two examples while reducing the size of the test suite. Addi-
tionally, only a few new tests require test oracle queries. Our approach has
lower technical requirements compared to symbolic or concolic execution.
However, our approach has also limitations. For example, in some scenarios,
it could not generate additional test cases to achieve full C/D coverage.

Understanding the robustness and applicability of the proposed technique
requires further analysis such as an evaluation on multiple projects and a
larger set of functions. As discussed in Section 4.4.3, we also see potential
benefits of approaches that combine measuring code coverage, combinatorial
testing, and symbolic execution.

4.5 Conclusions

Our work adds additional data points to the question of the relationship
between coverage and defects. We have shown for a large industrial project
that the amount of defects within the source code areas covered by tests
is less than we would expect if they would follow a uniform distribution.
Additionally, we have shown for a large industrial project that coverage time
series and defect time series show Granger-causality. Finally, we have shown
how we can combine coverage and combinatorial testing to increase the test
coverage of a program with less effort than other test creation techniques.

In conclusion, we believe that measuring and using code coverage can
be beneficial for various activities in software engineering. Therefore, we
partially answered the starting question of this chapter whether coverage
data provides any additional information on faults.

However, even with considering our results, we do not claim a final answer
to this question. We strongly believe that further studies are required to
increase construct validity and generalizability of results due to a large
amount of possible confounding variables.

5 Analysis of Approaches for Test Cost Reduction

Test cost reduction is important for large software projects as discussed in
Chapter 2. Consequently, there exists a wide range of research work on this
subject. However, previous work typically targets small- to medium-sized
projects. Approaches for test cost reduction that work for such smaller
projects may not be effective for large projects. Even more, issues that are
not visible or ignored for smaller projects can be amplified by the size of
large projects to considerable problems that affect test costs significantly as
discussed in Section 2.2.3. In this chapter, we present and analyze several
approaches to tackle these issues. The main contributions are:

• An approach for test cost reduction that tackles the superlinear increase
of test costs over time.

• An analysis of a test case prioritization approach based on coverage and
test execution times for a large project.

• An evaluation of redundancy removal on coverage data for a large project.
• Multiple approaches for shared coverage detection and test core identifi-

cation and their evaluation.
• A discussion of unsolved problems such as random coverage and flakiness.

5.1 Background

As discussed in Section 2.1.4, there is a wide range of research for test cost
reduction. However, we faced multiple challenges in applying them for our
study subject SAP HANA. We briefly discuss challenges for the categories
introduced in Section 2.1.4: test case prioritization (TCP), regression test
selection (RTS)/test case selection(TCS), and test suite reduction (TSR).

Approaches that reduce test cost by identifying a fraction of tests that
can be removed (category TSR) or skipped (category TCS) do not scale
for large projects. Even if 10 % of all tests can be skipped for a test run,
the remaining 90 000 might still be too large. Even more, in the case the
amount of tests continues to grow over time, such a constant reduction
cannot provide sufficient reductions over time. Therefore, it is necessary to
find techniques that tackle the growth of tests over time.

Approaches that prioritize tests (category TCP) provide little usefulness
in practice for large projects. While it sounds tempting to prioritize tests in
such a way that tests finding defects execute first and test runs will abort
after finding the first defect, the practical savings are low. First, the savings
only apply in negative cases, i.e., if a change introduces a defect. In a positive
case, all test cases are executed (in a specific order). Second, flaky tests

106 testing in very large software projects

invalidate the underlying assumptions that a test failure indicates a defect.
In fact, in large projects, each test run can contain several hundred tests
that failed due to flakiness. Aborting a test run after the first failure would
result in a state of staleness. Therefore, it is required to design approaches
that are not affected by flakiness or find ways to reduce flakiness.

As we conducted our research on a large software project, we encountered
several additional issues for existing approaches:

1. Approaches that expect frequent coverage information cannot be applied
in practice. Generating coverage for a large number of tests is time-
consuming and costly in terms of the required hardware.

2. Examining a source code repository for historical data can be a complex
task due to a rather complex development process.

3. The choice of algorithms for TCP/TCS has a large impact on the results. Choice of algorithms for TCP/TCS

4. Shared coverage complicates the analysis of coverage data. Shared cover- Shared coverage

age are parts of the software executed by all or nearly all tests.
5. The coverage size is rarely considered in the design of algorithms working

with coverage data. With coverage data size of 1 GB to 100 GB, algo-
rithms that require an execution time that depends superlinearly or even
exponentially on the size of coverage are not practical anymore.

6. Random coverage does not allow precise analysis.
7. Flakiness affects any approach that assumes the correctness of test results.

We elaborate on several of these issues in the following subsections.

5.1.1 Algorithms and Study Subject Sizes

As stated in Chapter 2, TCP and TCS optimize for fault detection. As it is
a priori unknown where to find faults and by which tests, it is a standard
approach to use coverage as a surrogate for faults [208], i.e., to optimize
or select tests for high coverage. This assumes that a test suite with high
coverage, i.e., a test suite with a broad execution of the software is more
likely to find faults compared to a more narrow test suite.

Based on related work, we identify two groups of algorithms that tackle
TCP and TCS problems with coverage based approaches. The first group,
traditional algorithms, contains algorithms that use only the set of available Traditional algorithms

tests to propose the next test to execute. The second group, overlap-aware Overlap-aware algorithms

algorithms, contains algorithms that consider additionally the existing state,
i.e., the set of already selected tests, as input for the next decision. For
example, in terms of coverage, they consider the currently already covered
code as input for the decision of the next test to select.

We show the difference by an example. Let tests A, B, C execute the sets
of lines 𝐿𝐴, 𝐿𝐵 , 𝐿𝐶 with 100, 90, and 50 lines of code (LOC), respectively.
A traditional algorithm might propose to run first A and then B (TCP),
or select A and B (TCS). However, if 𝐿𝐵 ⊆ 𝐿𝐴, and 𝐿𝐴 ∩ 𝐿𝐶 = ∅, then
the more efficient choice is A and C because they cover 150 LOC, but A
and B only 100 LOC. This choice requires overlap-aware algorithms as these
consider the sizes of intersections between 𝐿𝐴, 𝐿𝐵 , and 𝐿𝐶 . Overlap-aware
algorithms are also known in the literature as additional statement coverage
algorithms, or additional greedy heuristics, among others (Section 5.1).

analysis of approaches for test cost reduction 107

As we see later, several related work propose greedy algorithms similar
to Section 3.3.6 for coverage-based TCS and TCP. However, there are also
alternative heuristics proposed such as evolutionary algorithms and meta-
heuristic optimizations [178, 257]. In our case, an overlap-aware greedy
approach shows a good trade-off between precision and execution time.

Some approach do not only optimize for high coverage but also optimize
for low test execution time. Such time-aware approaches assume that given Time-aware

two test suites with the same coverage, the one with the lower execution
time is preferred. Previous work [261] claims that time-aware TCP makes
no significant difference in terms of fault detection compared to standard
TCP. Other work [77, 254] conclude that considering historical time data
improves TCP techniques. It remains unclear whether the results for small
projects can be generalized to large projects. For our project, feedback from
developers is positive, but the results are not rigorously checked.

Work Size Term

[5] 5 classes to 22 classes overlap-aware
[266] 53 testcases to 209 testcases additional
[178] 374 LOC to 11 148 LOC additional
[261] 500 LOC to 9 564 LOC additional
[265] 2 kLOC to 80 kLOC additional
[77] 7 kLOC to 80 kLOC feedback technique
[82] 7.50 kLOC to 300 kLOC additional
Our work > 3.50 MLOC overlap-aware

Table 5.1: Related work comparing
overlap-aware and non-overlap-aware
solvers for TCS or TCP. The column
“Term” indicates which term is used for
“overlap-aware”. Sizes in lines of code.

Several previous work compare overlap-aware algorithms to traditional
ones, i.e., non-overlap-aware algorithms. Sometimes, the attribute “addi-
tional” is used instead of overlap-aware, e.g., “additional greedy”. Table 5.1
provides an overview of related work. In the following, we discuss details of
related work and also indicate the terminology with: (term: “name”).

Zhang et al. [265] (term: “additional”) analyze the gap between additional
and standard greedy approaches for software with 2 kLOC to 80 kLOC and
propose several strategies to combine or outperform both greedy approaches.
The advantage of overlap-aware algorithms is an indirect conclusion.

Li et al. [178] (term: “additional Greedy”) compare greedy, metaheuristic,
and evolutionary search algorithms for six programs, ranging from 374 LOC
to 11 148 LOC. Their results show the strengths of the overlap-aware greedy
approach compared to the standard greedy. In terms of execution time, they
conclude that the overlap-aware variant should be used.

Elbaum et al. [82] (term: “additional statement coverage”) compare mul-
tiple prioritization techniques by controlled experiments and case studies
(sizes: 7 451 LOC, 9 153 LOC, 300 kLOC). They conclude that “techniques
with feedback (addtl)” produce better results for two programs.

Zhang et al. [266] (term: “additional”) evaluate linear programming for
time-aware test-case prioritization on two programs with 53 test cases (2 s
execution time) and 209 testcases (6 s execution time). Their results indicate
that additional techniques are superior to other techniques.

Alspaugh et al. [5] (term: “overlap-ware”) compare an overlap-aware
greedy algorithm with different solvers for the standard knapsack problem

108 testing in very large software projects

(greedy in multiple variants, dynamic programming, core, random) for two
programs with 5 classes and 22 classes. They conclude that “overlap-aware
solver achieves the highest overall coverage for each testing time constraint”,
but suggest studies on larger applications.

Do et al. [77] (term: “feedback techniques”) compare “no order”, “random
order”, the standard and overlap-aware variants greedy approaches, and
Bayesian network algorithms for programs with 7 kLOC to 80 kLOC.

You et al. [261] (term: “additional”) compare random, greedy for coverage,
time-aware greedy, and time-aware integer linear programming. All three
algorithmic variants in both versions overlap-aware and standard. The
analysis includes eight software projects, seven with up to 500 LOC and one
with 9 564 LOC, total test execution times up to 33 s.

Walcott et al. [254] compare a genetic algorithm with “normal” order
and reverse order. They also use very small study subjects. They do not
compare to a standard greedy approach.

In conclusion, there is a wide range of previous work on coverage-based
TCP and TCS. However, the study subjects are typically rather small in
terms of lines of code. Such studies may lack generalizability for large
projects. Therefore, we compare several proposed approaches in Section 5.3.

5.1.2 Shared Coverage, Randomness, and Flakiness

Our large study subject shows several phenomena rarely addressed in prior
work. One of them is that coverage for system tests contains a large share of
code from shared functionality such as startup code or internal libraries. This Shared functionality

makes it harder to distinguish tests based on coverage and poses problems
for, e.g., change-centric testing. To the best of our knowledge, this problem
is not studied so far. We assume that this phenomenon becomes visible only
in larger software projects. We address this issue in Section 5.5.

Partly related to the previous issue, the coverage data of our study subject
shows a high redundancy of (line) coverage data. This means that e.g., High redundancy of coverage data

either all or none of the lines in a group of lines are covered by a test. Such
redundancy offers opportunities to significantly reduce the size of coverage
data. Epitropakis et al. propose an algorithm to filter such redundancy in
line coverage [85]. We analyze and extend this algorithm in Section 3.3.8.

Finally, we also observe randomness in terms of test results (i.e., flaky Randomness

tests [181]) as well as in terms of covered code. Such randomness occurs
frequently for our study subject and is a threat to the effectiveness of prior
approaches. We further discuss these issues in Section 5.6.2.

5.1.3 Conclusion

As shown by our discussion, there are several reasons why approaches pro-
posed for test cost reduction by previous work may not be effective for large
projects. In the rest of this chapter, we propose an approach for test cost
reduction adapted for the specific characteristics of a large project, we will
investigate the effectiveness of multiple coverage-based algorithms for large
projects and we will further analyze the specific issues related to randomness
in large projects. Finally, we also discuss how our work is affected by various
issues found in large projects.

analysis of approaches for test cost reduction 109

5.2 An Economic Approach for Test Cost Reduction

Extensive testing in large projects can lead to tremendous test costs with
superlinear growth over time. Researchers have proposed several techniques
to tackle this problem [208]. However, the practical effects of these tech-
niques on the asymptotic behavior of test costs growth in large industrial
software projects remain poorly characterized.

We introduce and analyze a fixed time budget for test executions for Fixed time budget for test executions

SAP HANA. Our approach assigns a global fixed time budget to several
components of SAP HANA that are development units within SAP HANA.
Each component can only execute tests within its budget, which can change
only by transferring time budget between components. This limits the
number of test executions for each test run to a constant, thus reducing the
asymptotic growth of test costs.

Budget transfers and test optimizations adhere to balances between value
and costs, thus creating an economic environment for test case selection and Economic environment for test case se-

lection and reductionreduction. Specifically, this creates incentives to remove unnecessary tests
and to optimize test execution times.

For SAP HANA, our approach leads to effective test case selection and
reduction, and reduces test execution times by 105 years in a time frame of
four months with a negligible effect on quality. The trade-off between test
execution time savings and failure detection is 1.83 years/failure.

5.2.1 Introduction

0 50 100 150 200 250 300 350
100

102

104

106

108

Time in Days

N
um

be
r

Developers Commits TE TEFB Tests Figure 5.1: Model of the test execu-
tion growth in logarithmic scale. The
number of developers (𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟𝑠) in-
creases by one every seven days. Each
developer increases the number of ex-
isting tests (𝑇 𝑒𝑠𝑡𝑠) by four per day and
the number of commits (𝐶𝑜𝑚𝑚𝑖𝑡𝑠) by
five code changes per day, each initi-
ating a test run. The number of test
executions (𝑇 𝐸) is equal to 𝑇 𝑒𝑠𝑡𝑠 ×
𝐶𝑜𝑚𝑚𝑖𝑡𝑠 and grows superlinearly over
time due to the linear increases of
𝑇 𝑒𝑠𝑡𝑠 and 𝐶𝑜𝑚𝑚𝑖𝑡𝑠. A fixed time bud-
get for test executions effectively limits
the number of executed tests to a con-
stant 𝑐. Therefore, the number of test
executions with a fixed budget (𝑇 𝐸𝐹 𝐵)
is equal to 𝑐 × 𝐶𝑜𝑚𝑚𝑖𝑡𝑠 and grows lin-
early over time.

As discussed in Chapter 1, it is important to reduce test costs in large
projects. In large projects, the time spent on test execution can contribute
substantially to the test costs. These test execution times increase superlin-
early over time due to the typical characteristics of large software projects Test executions increase superlinearly

over time.that affect the number of test executions 𝑇𝐸. 𝑇𝐸 depends on two factors:

1. The number of tests 𝑇 that are executed, and
2. The frequency 𝐹 the tests are executed.

110 testing in very large software projects

𝑇 increases linearly over time as developers add more tests but rarely
delete tests. 𝐹 increases linearly over time because a successful project
has an increasing number of developers making changes to the code. Each
change initiates a new test run and thus increases 𝐹 . The multiplication
of the two linear factors 𝑇 and 𝐹 lead to a superlinear increase for 𝑇𝐸

over time. The model of Fig. 5.1 demonstrates the superlinear increase of
𝑇𝐸. After one year, 53 developers have produced 39 004 tests, and create
265 code changes per day, resulting in more than 10 million test executions
per day. This model already shows that even with relatively small input
variables, the resulting test costs are large.

In addition to this general issue, there are at least two other aspects with
a considerable effect on test costs. For long term projects as SAP HANA,
there exist multiple product versions for their customers that require parallel Multiple product versions

test executions due to differences in features and code state. The leads to
an additional constant or potential linear factor of test executions. Flaky
tests increase costs for all test stages due to additional required inspections
and reruns for misleading test results (See Section 5.6.1).

Overall, we expect that test executions and test costs increase superlin-
early in large projects. For SAP HANA, Fig. 5.2 confirms the superlinear
growth for test executions between 2010 and 2017. Section 5.2.5 highlights
other work that confirm the superlinear growth.

2010 2011 2012 2013 2014 2015 2016 2017

0

1 · 107

2 · 107

3 · 107

4 · 107

5 · 107

6 · 107

7 · 107

Years

Te
st

E
xe

cu
tio

ns

Test Executions
106𝑥2 (fitting)

Figure 5.2: SAP HANA test executions
with a quadratic curve fit. The dataset
contains all centralized automated test
executions since 2010.

For the development of SAP HANA, SAP adopted a fixed time budget
for test executions to reduce test costs. The fixed time budget implements
TCS and TSR techniques (see Chapter 2). Periodic test runs with all tests
in later testing stages prevent the potential loss of quality. We analyze the
effects of this approach after four months. Our contributions are as follows:

• An approach to reduce test costs that changes the superlinearly increase
over time to a linear increase.

• An analysis of this approach for a large industrial project.

Section 5.2.3 introduces the testing environment of SAP HANA. We
describe our approach in detail in Section 5.2.3. Section 5.2.4 contains our
research questions, results and discussions. Section 5.2.5 briefly highlights
related work. We conclude in Section 5.2.6.

analysis of approaches for test cost reduction 111

5.2.2 Testing of SAP HANA

Section 2.2 provides a general introduction to SAP HANA. Here, we focus
on the practical testing process.

Figure 5.3: Simplified summary of test
stages for SAP HANA. For the imple-
mentation of our fixed test budget ap-
proach, we replace the (full) integra-
tion testing stage with two new stages.
The two new stages consist of a test
run with a fixed time budget for each
code change and a daily full test run.
The fixed time budget for test execu-
tions reduces the growth of the costs
at the integration testing stage. The
daily test run ensures the same quality
level as before the replacement.

Testing of SAP HANA contains several stages as shown by Fig. 5.3 and Testing stages

involves a continuous build environment (CB). At the first stage, developers
execute tests during software development on their own workstation. This
can include manual tests, a subset of test suites from later testing stages
or developer-specific test suites. The second stage incorporates the CB to
automatically execute integration tests of a component. This stage executes
a set of tests decided by a component, i.e., a set of functionalities.

Stage three includes the integration and regression testing for all SAP
HANA components and causes the majority of the test costs because of
the superlinear cost increase explained in Section 5.2.1. Fig. 5.2 shows the
current trend of test executions for SAP HANA. Stage three implements
pre-commit testing, i.e., a software change is only accepted and merged into
the repository if it passes all tests. Even more, in the case a failure is found,
each adaption may require to re-execute all tests.

Within testing stage four, the CB system runs different combinations and
configurations of tests (test profiles) after code changes have been submitted
to the repository. The execution frequency for these profiles reaches from
several times a day to once per release. Stage four includes long-running
tests, randomized and stress testing, or recovery testing like out of memory
or crash tests. The test profile for releases contains over 900 000 single test
cases and would run for 23 days if executed sequentially on an average server About one million test cases

with 40 CPU cores, 3 GHz frequency, and 256 GiB of memory. Although
SAP utilizes a large hardware pool of test servers in parallel mode, the
execution time for a test run is rather large with several hours. Within the
test suites of a database, it is not uncommon to have long-running, complex
and distributed queries to test database functionality. Performance and load
tests contribute to long-running tests as well.

Whereas the stages one to four focus on SAP HANA in an isolated
environment, stage five and six perform end-to-end testing, i.e., testing the
same scenarios as user would use the final product. These later stages
contain automatic, but also manual tests that are performed by separate
teams within the company and thus decrease testing biases.

112 testing in very large software projects

5.2.3 Fixed Test Budget Approach

To limit the execution time of the integration stage, we introduced a fixed
time budget for tests where each component of SAP HANA receives a budget
of test execution time. The component team can select the tests to run by
their own criteria if the cumulative execution time fits into the budget. Time
budgets can be shifted between components to cope with changing priorities
and quality requirements within SAP HANA development. These budget Components can shift budget.

redistributions allow the component team members to focus resources in
areas of special interest. In addition, SAP also expected that the fixed time
budget would benefit them in the following ways:

1. Tests with low bug-finding abilities will move to later testing stages (by
manual or automatic techniques).

2. Execution times for tests will be analyzed and optimized, especially for
long-running and distributed tests.

3. Test scope will improve. A test suite for a component should only include
necessary tests for the quality assurance of this component. This could
require modifications of the test suite or the component structure.

To implement our approach, we need to specify the total time budget and
the distribution to all components. This task is particularly difficult in the
context of SAP HANA. We first evaluated distributions based on empirical
data about test executions. However, this requires a complex methodology
for the collection process as it has to account for several practical challenges.
For example, a long period would not include recent changes, a short period
would not include long term trends and a weighted mix would be difficult to
understand by all developers. In addition, test ownership is not well defined
if multiple components use the same tests in their component test suites.

We decided to devise a simple model that accounts for the team sizes
to output the budget cost. Albeit simple, this model is easy to explain Initial budget based on component

team sizesto Stakeholders. The simple model might have inaccuracies, but after the
initial distribution, the possibility to transfer test budgets between different
components allows a flexible redistribution of time budgets.

The component teams were responsible for the process of test selection and
reduction to fulfill the test budget constraint for their respective component.
To support the component team members with test case selection and test
suite reduction, we created an extensive statistics of execution times and Extensive statistics

failure rates for the tests contained in the integration stage over a time frame
of 6 months. For example, we found that 17 % of all tests had a failure rate
less than 0.01 % and 11 % indicated no failure at all for the observation
time. The criteria for test selection and reduction which were used by the
component teams were not evaluated. We expect the teams used a mix of
domain knowledge and empirical data. A future study could investigate if
these criteria can be utilized for an automated approach.

The introduction of a fixed time budget for integration tests can reduce
the test quality because only a subset of tests is executed. To avoid quality
degradation in later testing stages, a daily test run executes the original set Daily test run

of integration tests. This daily test run effectively moves the complete test
run from pre-commit to post-commit testing.

analysis of approaches for test cost reduction 113

Altogether, the introduction of the fixed time budget for the integration
test stage changes the asymptotic behavior of the number of test executions
𝑇𝐸 over time. Before the introduction, 𝑇𝐸 increased superlinearly over
time, as discussed in Section 5.2.1. After the introduction, 𝑇𝐸 increases only
linearly over time on both new integration test stages. For the integration The fixed time budget reduces the

growth of test executions from super-
linear to a linear.

testing with a fixed budget, the test budget limits the maximum execution
time of tests. 𝑇𝐸 depends on a fixed maximum time (i.e., a constant) and
a variable number of commits over time, resulting in a linear growth for 𝑇𝐸

over time. For the daily full test run, the frequency is fixed. 𝑇𝐸 depends on
a variable number of tests over time and a fixed execution frequency (i.e., a
constant), resulting in linear growth of 𝑇𝐸 over time.

5.2.4 Results

We investigated the following research questions (RQ) in the context of the
large-scale software project SAP HANA:

RQ6 How does the distribution of the fixed test budget for test executions
change over time?

RQ7 How did execution times for integration tests change after the introduction
of the fixed time budget?

RQ8 How is the testing quality affected by the introduction of the fixed test
budget for test executions in terms of failures that pass the reduced test
suite, but appear in the full integration test suite?

RQ6 analyzes whether component teams redistributed test budget be-
tween components. This indicates whether the economic aspect of benefits
and costs lead to re-prioritization of testing efforts. RQ7 investigates the di-
rect effects on developer processes and hardware costs and analyzes whether
test execution times were reduced. RQ8 analyzes the impact of the fixed
time budget on the quality of code change testing. A significant increase in
the number of defects in later testing stages could imply that the fixed test
budget for code changes has a strong negative impact on the product quality.
This would question the usefulness of the approach. On the other hand, a
low increase in defects in later testing stages (or none at all) would indicate
that the trade-off between test execution times and quality is acceptable. In
addition, we quantify the trade-off between execution time and failures in
later test stages in terms of time saved per failure.

5.2.4.1 RQ6 Budget Redistribution

Fig. 5.4 visualizes how the time budget of each component changed between
𝑡0 (introduction of the fixed time budget for test executions, 2017-08) and
𝑡1 (2017-12). Unfortunately, for budget redistributions, we do not have the
source and target components for all changes. Therefore, we cannot show
an alluvial diagram to illustrate the fine-grained changes. We rescaled the
unchanged budget part because it does not provide further information. The
percentage of the unchanged part differs in 𝑡0 and 𝑡1 due to an increase in the
total time budget. The total time budget increased due to readjustments
after the initial introduction. In total, the time budget increased for 18
components and decreased for 27 components between 𝑡0 and 𝑡1.

114 testing in very large software projects

Ti
m

e
 B

u
d
g
e
t

a
t

t0

Ti
m

e
 B

u
d
g
e
t

a
t

t1
1

0
%

2
9

%

1
9

%
1

7
%

Different Components

Time Budget Change± XY%

6
4

%

6
2

%

-100%

-100%-100%

-100%
-27%

-100%-25%

-50%
-21%

-25%
-25%

-25%-29%
-17%

-6%

-6%

-4%

-100%

Unchanged budget, height scaled down

+6%

+10%
+11%

+11%
+13%

+13%
+14%

+5%

+6%

+7%

+13%

+21%

+30%

+21%

+44%
+63%

+33%

+37%

new+89%

+90%new

+156%

new

+386%

new

Figure 5.4: Changes in time budgets
for each component over time from 𝑡0
(introduction of the time budget, 2017-
08) to 𝑡1 (2017-12).

analysis of approaches for test cost reduction 115

Fig. 5.4 shows that time budget transfers occur in practice to optimize
benefits and costs. This is an indicator that the expected economic effect
exists in practice. Further investigations of single cases show that there are
multiple reasons such as:

• SAP split some components to narrow down their test scope, which
increased test efficiency.

• Component team members adapted their requirements and free test bud-
get was reallocated to other components.

• SAP identified and improved or removed tests with long execution times.
• SAP reallocated tests with long execution times to later stages of the

testing process with decreased execution frequency.

Overall, the distribution of the fixed test budget changed over time which
indicates that component teams trade test budgets. Our analysis indicates
that this can lead to positive effects for the state of test suites due to an
incentive to maintain the test suite from a cost and benefit perspective.

Answer RQ6
The changes over time for the distribution of test budgets reflect different
priorities and increased awareness of costs associated to test activities.
Overall, economic effects affect the management of test suites.

5.2.4.2 RQ7 Changes in Test Execution Times

Within the testing process of SAP HANA (Section 5.2.2), the fixed test
budget affects only integration testing for the main product line. Other
integration stages have different policies for test selection. We analyze the
test cost changes in terms of execution times for the integration testing to
the main product line and for all integration testing.

The fixed test budget defines the maximum threshold of execution time for
integration tests to the main product line. At the point of the introduction
𝑡0 (August 2017), the difference between budget and actual execution times
was a factor of 4. After 𝑡0, the actual execution times are nearly equal to the
budget with some deviation. Deviations occur because of re-adjustments,
fluctuations in test execution time, and variations in infrastructure workload
because several projects share the available resources. Fig. 5.5 shows the
execution time statistics for multiple product lines. 𝑀 represents the main
product line. Fig. 5.5 shows that the total execution time for 𝑀 decreased
from August to September by a factor of 2. Based on further analysis, we
conclude that the reasons for the smaller than expected reduction are test
overheads like compile times, binary redistribution, database install and
setup times, and test setup times.

Fig. 5.5 shows that the fixed time budget for test executions saved hard-
ware resources, but the figure also shows that additional product versions
counterbalance the savings. As a result of this study, SAP engineers intro-
duced the fixed time budgets also for other product lines.

The overall average execution times for all integration tests exhibit a
more complex pattern. Fig. 5.6 visualizes the state before and after the
introduction of the fixed test budget. Due to confidentiality reasons, we
cannot provide the exact numbers. Therefore, Fig. 5.6 only shows the scaled

116 testing in very large software projects
20

16
-0

6

20
16

-0
7

20
16

-0
8

20
16

-0
9

20
16

-1
0

20
16

-1
1

20
16

-1
2

20
17

-0
1

20
17

-0
2

20
17

-0
3

20
17

-0
4

20
17

-0
5

20
17

-0
6

20
17

-0
7

20
17

-0
8

20
17

-0
9

20
17

-1
0

20
17

-1
1

20
17

-1
2

Month

Ex
ec

ut
io

n
T

im
es

fo
r

In
te

gr
at

io
n

Te
st

s

A B C

D M

Figure 5.5: Stacked area chart with
cumulative execution times for tests
for product lines 𝑀 (main), 𝐴, 𝐵, 𝐶, 𝐷.
The test execution times for 𝑀 de-
creased in August 2017 due to the in-
troduction of the fixed time budget for
test executions.

4 5 6 7 8 9 10 11 12
Month of 2017

N
um

be
r

Test Runs

Test Runs per h

Avg. Time per Test Run

Figure 5.6: Execution times for integra-
tion tests and test runs over time. Exe-
cution times decrease and test runs in-
crease and therefore test runs per hour
increases.

analysis of approaches for test cost reduction 117

data. The average test execution times 𝑅𝑎𝑣𝑔 decreased after the introduction
of the fixed test budget in August 2017. This leads to an increase in test
runs 𝑇𝑅, which is explained by hardware limitations. 𝑇𝑅 multiplied with
𝑅𝑎𝑣𝑔 cannot exceed the capacities of the existing hardware. Therefore, if
the product is fixed, 𝑇𝑅 must increase if 𝑅𝑎𝑣𝑔 decreases. The increase in
𝑇𝑅 and decrease in 𝑅𝑎𝑣𝑔 result in an increase by factor two for the quotient
test runs per hour which represents efficiency.

Overall, Fig. 5.5 and Fig. 5.6 indicate that the fixed test budget has a
positive effect on test execution times and the efficiency. It is unclear whether
the current trend continues and if yes, why. We would expect that after the
introduction of the test budget, there would be a sharp decline of a factor
4 in the test execution time which would then stay nearly constant. Our
data shows that this factor is not fully reached. We assume that previously,
developers reduced the testing to cope with waiting times. The ongoing
changes could indicate that component teams are continuously improving
their tests and therefore optimizing their test budgets.

Answer RQ7
The fixed test budget reduced the average execution times of test runs by
a factor of 2.5 and the total time spent on testing by a factor of 2.

5.2.4.3 RQ8 Changes in Quality

We analyze all internal bug reports for valid test failures and counted them
over time (this excludes flaky test results). Fig. 5.7 shows the results. Statis-
tically, there are on average 3.2 failures per week. This number is remarkably
low for a large project such as SAP HANA.

In addition, we compare the results from Section 5.2.4.2 (changes in
execution times) and Section 5.2.4.3 (changes in quality) to quantify the
trade-off between execution time savings and failures in later test stages in
terms of time saved per failure. We estimate time savings 𝑅𝑠 by interpolating
of test execution times without the fixed time budget 𝑅𝑖 and subtracting
of the actual test execution time 𝑅𝑎. In Fig. 5.5, the last known test
execution time 𝑅 before the introduction of the fixed test budget is shown
by the datapoint 2017-08 for 𝑀 . We multiply 𝑅 by 5 for 5 months. We can
determine 𝑅𝑎 by the sum over all actual test execution times in 𝑀 for the
last 5 months. Now, we can calculate the time savings 𝑅𝑠 = 𝑅𝑖 − 𝑅𝑎.

Finally, we obtain the result that SAP saved 104.50 years of test execution
time due to the fixed time budget. With the average of 3.2 failures per week
indicated by Fig. 5.7, we can calculate a quotient of 1.83 years/failure. This
implies that SAP traded in average a test execution time of 1.83 years against
one additional failure in a later test stage. This number only provides an
approximation of the trade-off and does not necessarily reflect the reality
precisely due to the interpolation and the low number of data points.

Answer RQ7
On average, 3.2 failures per week are only detected by the next testing
stage. This implies that, on average, a test execution time reduction of
1.83 years is achieved for one additional failure in the next testing stage.

118 testing in very large software projects

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
0

2

4

6

8

Calendar Week of 2017

Fa
ilu

re
s

pe
r

W
ee

k

Figure 5.7: Failures undetected by the
reduced test suite but within the full
test run. Aggregated by calendar week
due to the different behavior of week-
days and weekends. Average: 3.2 fail-
ures per week.

5.2.5 Related Work

Yoo et al. provide a survey about test case selection and test suite reduc-
tion [257]. A recent systematic literature review about test case selection
by Kazami et al. highlights different trends and results in this area [150].
Blondeau et al. analyze test case selection within several industrial projects
[27]. Their work focuses on change-based testing, our approach does not
depend on dependencies between changes and tests.

Our approach shares characteristics with risk-based testing. Although, as
explained in Section 5.2.3, we mitigate risks by a daily full test run. Felderer
and Schieferdecker provide a taxonomy of risk-based testing [89]. Risk-based
test planning subsumes techniques that select or prioritize test cases based
on a risk analysis of their costs and value.

Memon et al. study the same problem of polynomial growth for test
executions at Google [191]. The approach used by Google utilizes a manual
dependency list for each product to collect all required test runs for a source
code change. The test framework collects these required test runs over a
period of four hours and runs each required test only once. An automatic
backward analysis identifies failure-introducing commits. This approach
reduces the linear growth of test executions by commit frequency to a
constant factor due to the fixed number of executions per day. However,
our fixed test budget creates additional incentives for developers to reduce
and improve existing test suites. Additionally, our multi-stage separation
enables faster individual feedback times fo developers.

5.2.6 Conclusions

We described an approach to use a the fixed time budget for testing that
is adapted by SAP to limit the test execution growth. We analyzed the
initial effects on execution times and quality in terms of failures that pass
the reduced test suite, and we analyzed the economic effects. Our analysis
indicates that there are positive effects on execution times and test suite
efficiency, while the negative effects on quality are low.

Although the current observations show possible trends, we cannot con-
clude statistical significance due to limited data. Further work would require

analysis of approaches for test cost reduction 119

an observation time of at least one year to improve the statistical signifi-
cance. One year would cover periodic variations, which can be observed for
example at the end of the year due to vacations or directly before and after
releases of new major software versions.

Based on internal discussions, the results of our analysis are plausible
and the impact on test execution times and failure detection is reasonable.
Surveys or questionnaires with developers would provide further insight on
the impact of the fixed time budget on the individual developer. These
findings could support further refinements of our approach. As a direct con-
sequence of this work, the fixed time budget for test executions is introduced
for parallel product lines, as explained in Section 5.2.4.2.

5.3 Test Case Selection and Prioritization

As we have shown in Section 5.1, existing evaluations of overlap-aware
algorithms were conducted on comparatively small projects. Our study for
SAP HANA in Section 5.3.2 shows that overlap-aware algorithms provide
considerable improvements in terms of potential time savings. This high
impact is related to the large amount of shared coverage for the test suites
of SAP HANA, which can be less pronounced in other projects. Considering
the fast execution times, we argue that only overlap-aware algorithms should Overlap-aware algorithms should be

preferred.be used for coverage-based TCP and TCS optimization problems.

5.3.1 Approach

Test case selection. We focus first on the issue of reducing cumulative time
required for test runs and consider two alternative problem formulations:
(i) Given a fixed time budget for the execution of tests we attempt to find
a subset of tests with maximum coverage, and (ii) we try to find a subset
of tests with minimal execution time which cumulatively achieves the best
possible coverage (understood as cumulative coverage by all available tests).

More formally, let 𝑅 be the set of all available coverage files 𝑐1, . . . , 𝑐𝑛

(with 𝑐𝑖 corresponding to a test 𝑖) that contain the set of covered lines for
all source code files. For 𝑃 ⊆ 𝑅 let 𝑡𝑖𝑚𝑒(𝑃) denote the cumulative time
to execute all tests specified by 𝑃 . Furthermore, let 𝑇 be a time budget
(threshold), and assume the add (+) operation according to Section 3.3.2.
Then the test case selection (TCS) problem can be expressed in either one
of the following dual formulations:

TCSa Maximize |
∑︀

𝑐∈𝑃 𝑐| with 𝑡𝑖𝑚𝑒(𝑃) ≤ 𝑇 and 𝑃 ⊆ 𝑅,
TCSb Minimize 𝑡𝑖𝑚𝑒(𝑃) with

∑︀
𝑐∈𝑅 𝑐 =

∑︀
𝑐∈𝑃 𝑐, 𝑃 ⊆ 𝑅.

𝑡1 (16 s) 𝑡2 (15 s) 𝑡3 (15 s)

L1 x x
L2 x x
L3 x x
L4 x x
L5 x x

Table 5.2: Example coverage data. x
denotes that a test executes (“hits”) a
line.

120 testing in very large software projects

In both cases, we optimize over the set 𝑃 ⊆ 𝑅 which translates to finding
an optimal set of tests. Table 5.2 shows an example. For TCSa, a subset
with maximal coverage for a time budget of 15 s is {𝑡2}, for a time budget
of 20 s it is {𝑡1}, and it is {𝑡2, 𝑡3} for a time budget of 30 s. For TCSb, the
subset with full coverage and minimal time is {𝑡2, 𝑡3}.

TCSa is a variation of the general 0/1 knapsack problem [151]:

maximize

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=1

𝑝𝑗 × 𝑥𝑗

⃒⃒⃒⃒
⃒⃒ (5.1)

subject to
𝑛∑︁

𝑗=1
𝑤𝑗𝑥𝑗 ≤ 𝑇 (5.2)

where:

𝑥𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑛

𝑇 : budget on weights (i.e., time budget)
𝑀 : {1, . . . , 𝑛} set of items (i.e., tests)
𝑝𝑗 : "profit" of item 𝑗 ∈ 𝑀 (i.e., coverage file)
𝑤𝑗 : weight of item 𝑗 ∈ 𝑀 (i.e., execution time).

In Eq. (5.1) we use (with 𝑃 = {𝑝1, . . . 𝑝𝑘}):

𝑝𝑖 + 𝑝𝑗 : as defined in Section 3.3.2
𝑝𝑖 × 𝑥𝑖 : ∅ if 𝑥𝑖 = 0, 𝑝𝑖 otherwise (𝑥𝑖 ∈ {0, 1}).

Note that 𝑥𝑗 indicates whether a test 𝑗 was selected (𝑥𝑗 = 1) or not
(𝑥𝑗 = 0). In Eq. (5.1), we can see that TCSa is similar to the 0/1 knapsack
problem, but the major difference is the overlap of coverage elements 𝑝𝑗 .

Problem TCSb is known as the Weighted Set Cover Problem (WSCP).
Section 3.3.6.1 discusses the WSCP and algorithms to solve it. Similarly, we
address problem TCSa and describe an algorithm to solve it in Section 3.3.7.1.
Dynamic programming (DP) is a typical textbook approach for knapsack
problems [151]. However, DP assumes that a solution for a large problem Approaches based on dynamic pro-

gramming might not be suitable.instance consists of solutions for smaller instances and solutions with the
same weight and profit are equal. This property does not hold for sets, i.e.,
two solutions with the same weight and profit can lead to different results
if re-used later because the set of existing elements in the current solution
affects the weight of newly added items. Therefore, such DP approaches as
used in related work [5] should not be used to solve the WSCP.

Note that both test case selection strategies are not safe, i.e., they can
omit test cases that would otherwise have detected faults. This must be
considered during a risk analysis of the costs and benefits. Related work
provides more information about safe selection strategies [257].

Test case prioritization (TCP). We can use the solution set from
TCS as input for the TCP problem. This requires test reordering so that
tests with the best ratio of code coverage over execution time run first. This
is also called time-aware test suite prioritization [254, 261].

analysis of approaches for test cost reduction 121

Note that in the general case we can only find (any of) the best order
if the exact amount of time (or tests) is fixed. We illustrate this with the
example shown in Table 5.2. We run 𝑡1 with 4 s/line first. This is the best
solution for a solution set with only one element, because 𝑡2 and 𝑡3 have
5 s/line. The next test to add to the existing solution set must be either 𝑡2
or 𝑡3 which gives us a total execution time of 31 s for 5 lines. But we have
done overall better if we choose {𝑡2, 𝑡3} with a total execution time of 30 s
for 5 lines. This example shows that we cannot find the best solution for all
cases (without a fixed time budget or a fixed amount of tests).

5.3.2 Evaluation

We investigate the following research question (RQ) for SAP HANA:

RQ9 Does an overlap-aware heuristic solver for TCS produce better results
than non-overlap-aware solvers?

To answer RQ9, we compare the effectiveness of the overlap-aware greedy
(OAG) approach outlined in Section 5.3.1 against a standard greedy (SG)
implementation. We apply all algorithms on the same coverage data with
different time budgets (increased in 1h steps). For each time budget, we get
a solution in terms of the total number of covered lines (“sum of lines hit”)

— the higher the sum, the better. The execution time of all algorithms is
less than 10 seconds, therefore we do not report these times.

Fig. 5.8 shows the results for one coverage run, while Table 5.3 exhibits
the results of different coverage runs over one year. OAG converges to
high coverage and reaches the maximum significantly faster than SG. The
evaluation shows that SG has similar behavior to a random shuffle and in
some cases, it is even worse than a random guess. OAG is significantly
better, with a factor of 1.40 up to 1.50 for a time budget of up to 30 hours.

Req. Time Budget (hours) for
Coverage Run Greedy Variant 90 % 99 % 100 %

2015-11-15
standard 74 137 137

overlap-aware 19 57 123

2016-05-19
standard 110 182 191

overlap-aware 25 70 173

2016-10-25
standard 108 193 219

overlap-aware 24 72 196

Table 5.3: Required time budgets for
BMCP to reach different percentages
of total coverage (cases span one year).

A comparison between OAG and SG for TCP leads to nearly identical
results. We also evaluated the impact of parallelization as described in
Section 5.3.1 with parallelization factors ranging from 𝑝 = 1 up to 𝑝 = 50.
The relative savings are almost identical, the differences are less than 0.01 %.

Answer RQ9
Compared to a non-overlap-aware approach, an overlap-aware heuristic
solver is substantially better, with a factor of 1.40 up to 1.50 for a time
budget of up to 30 hours. A non-overlap-aware approach performs similarly
to an approach based on random decisions.

122 testing in very large software projects

0 20 40 60 80 100 120 140 160 180 200 220
0

10
20
30
40
50
60
70
80
90

100

Time Budget in Hours

M
ax

im
um

C
ov

er
ag

e
[%

]

Overlap-Aware Greedy (OAG)

Standard Greedy (SG)

best of 10 random shuffles

best of 100 random shuffles

ratio=OAG/SG

90 % coverage OAG 90 % coverage SG
100 % coverage OAG

1

1.1

1.2

1.3

1.4

1.5

R
at

io
O

A
G

/S
G

Figure 5.8: Exemplary comparison of
different algorithms for the maximum
budgeted coverage problem. Higher is
better.

5.4 Size of Coverage Data

A problem less pronounced in the literature is the size of the coverage
data. In the case of SAP HANA, the cumulative size of coverage data for
one coverage run has reached 130 GB in 2016 and 162 GB in 2019. The Over 150 GB data for a single coverage

runevolution of this size over one year is shown in Fig. 5.9. For more advanced
analysis such as the discovery of trends and comparative studies, several
months worth of data is stored. The total storage size is 14 TB as of 2016.

30
40
50
60
70
80
90

100
110
120
130

Time Frame from 2015-06-04 to 2016-11-26

C
ov

er
ag

e
D

at
a

Si
ze

[G
B

]

Figure 5.9: Growth of data size for cov-
erage runs over one year.

Despite the storage requirements, processing of such data requires higher
computational capacities. Analyzing the results of a single coverage run can
require a matrix with more than 109 entries (with an observed density of
9 % to 12 %). Therefore, we investigate methods to reduce the data size.

5.4.1 Approach

We apply several techniques to reduce the coverage data size:

1. Remove uninteresting data such as lines that were not executed.
2. Use space-efficient data structures such as a bitset.
3. Use dictionary compression to replace long strings with short identifiers.
4. Remove redundancy by exploiting the inherent structure of coverage data.

analysis of approaches for test cost reduction 123

Technique 1 is rather simple. In all cases where we only require informa-
tion about executed lines, we can discard all other lines. We can later restore
them if required. For technique 3, we utilize a dictionary that translates long
words, filenames in our case, into short identifier, such as a number [201].
In our case, the dictionary d is a mapping 𝑑 : 𝑆− > N0 where 𝑆 represents
any string. Each time we process a string 𝑠, we either look up the number in
the dictionary 𝑑(𝑠) if the key exists or, if not, we assign 𝑠 the next smallest
integer that is not used, i.e., 𝑑(𝑠) = 𝑚𝑎𝑥(𝑑.𝑣𝑎𝑙𝑢𝑒𝑠) + 1. We then store the
dictionary for later usage and use only the identifier instead of the filenames.
Technique 2 uses 𝑛 bits to encode for 𝑛 lines whether each line was executed
or not. For example, a single 64 bit integer can then represent 64 lines, see
Section 3.2.5 for implementation details. For technique 4, we create equiv-
alence classes (EC) over coverage sets and use only a single representative
line for each EC. The last technique requires further discussion.

When we execute a software, a computer interprets and executes a se-
quence of instructions 𝑆instr. Simplified, the CPU executes the instruction at
position IP in 𝑆instr, increases IP, and repeats these steps until a termination
condition. We call IP the instruction pointer. IP increases linearly until the
program ends or a control flow instruction (CFI) modifies IP. For example, Control flow instruction

statements such as if/then/else, loops, or function calls translate to CFI.
Let 𝑆𝐼𝐷 be a subsequence of consecutive instructions in 𝑆instr where

𝑆𝐼𝐷 contains no CFI. A CPU will either execute all instructions in 𝑆𝐼𝐷

or none of the instructions in 𝑆𝐼𝐷. Therefore, given coverage data for the
instructions in 𝑆𝐼𝐷, the coverage state of the first instruction (i.e., executed
or not executed) determines the coverage state of all other instructions in
𝑆𝐼𝐷. Hence, we only need the coverage state for one instruction in 𝑆𝐼𝐷, Coverage of a single instruction deter-

mines coverage for a block.the coverage data for all other instructions is redundant. Fig. 5.10 shows an
example where either each line in the body of the calc function is executed
or none of the lines are executed. Furthermore, the coverage state of the calc
function also determines the coverage states of the sum and mul function
(assuming no other functions call sum or mul). This shows that redundancies
can even span over multiple subsequences of instructions.

1 int sum(int a, int b) {
2 int sum = a + b;
3 return sum;
4 }
5 int mul(int a, int b) {
6 int mul = a * b;
7 return mul;
8 }
9 int calc(int a, int b) {

10 int x = sum(a, b);
11 int y = sum(a, -b);
12 int binom = mul(x, y);
13 return binom ;
14 }

Figure 5.10: An example where either
all lines are executed or none.

Such redundancies in coverage data occur quite often, because control
flow instructions appear only in comparatively few cases. Akshintala et
al. report for x86-64 in C/C++ programs that only 22 % of all instructions
are control flow instructions (such as CALL, JE, JMP, CMP, JNE, TEST).

CFI occur rarely.

Removing CALL reduces the percentage to 16 % [4].
Furthermore, even in the cases where a CFI is executed, there might still

exist redundancies in coverage data:

• A control flow statement can result in the same execution flow for all
executions and therefore generate redundant coverage data. For example,
an if statement always executes the else branch. Conceptually, we can
remove the instructions that were never executed to obtain a consecutive
sequence of instructions without CFI.

• A function call may always follow the same control flow and therefore
generate redundant coverage data. Conceptually, we can integrate the
function body at the current place of our instruction sequence to obtain
a consecutive sequence of instructions without CFI.

124 testing in very large software projects

• Even in the case where multiple executions of a CFI result in differ-
ent execution flows, the instructions before and after the instructions
affected by the CFI may generate redundant coverage data. For exam-
ple, an if/then/else block may have distinct coverage data for multiple
executions, but the code before and after this block is always executed1. 1 It may not happen that these code

blocks were not executed, otherwise the
if/then/else block would always have
the same coverage: none.

Conceptually, we remove instructions with different coverage data for
multiple executions and track them separately.

Given the diverse list of possible redundancies, we do not identify each
instance separately but apply a general approach to detect all redundancies.
The coverage data for two lines 𝑙1, 𝑙2 is redundant if the coverage data for 𝑙1
is equal to the coverage data 𝑙2 for all executions of the software, i.e., both
lines have the same coverage state in all coverage data of all test executions.
In such a case, the state of 𝑙1 determines the state of 𝑙2. Section 3.3.8
describes the details of the algorithm and shows an implementation.

5.4.2 Evaluation

We investigate the following research question (RQ) in the context of the
large-scale software project SAP HANA:

RQ10 To what degree does each size reduction technique reduce the size of
coverage data?

RQ11 How high is the redundancy of coverage data (in terms of source code
lines with equal behavior) for all tests in a large industrial project, and
does it change over time?

To answer RQ10, we start with the set of all coverage files that contain
line coverage data for all tests within a test run (Section 3.2.5 describes the
format). For this initial set of files, we apply the techniques described in
Section 5.4.1 in the following order:

1. Uninteresting data. For each file, we remove all information about
lines that are not executed and further remove all source files that do not
contain at least one executed line.

2. Bitset. For each file, we use a bitset to store the line numbers, see
Section 3.2.5. For practical reasons, we also store the data now in a
binary format via Java serialization.

3. Dictionary compression. We create a dictionary, which is a bidirec-
tional mapping from filenames to N+. We implement this mapping by
a map where the keys of type string are unique and the value for a new
key is the current size of the map. Given such a dictionary, we use it
to replace all filename strings in all files, i.e., we replace them by the
corresponding number. We then store the dictionary in a separate file.

4. Coverage compaction. We apply the algorithm described in Sec-
tion 3.3.8 for all coverage files.

Table 5.4 presents the results for each step. The results show that each
step reduces the size of coverage data by 35 % to 80 %. The actual savings
may depend on the order of the techniques. However, as our main interest
is the final result, we did not investigate all possible order-combinations.

analysis of approaches for test cost reduction 125

Comparison in Percent

Step Size in GB To Base To Previous Line

Base (initial size) 80.53 100.00 100.00
Keep only executed lines 20.00 24.84 24.84
BitSet utilization 5.10 6.33 25.48
Dictionary compression 3.27 4.06 64.10
Coverage compaction 1.25 1.55 38.12

Baselines
GZIP level 6 (default) 15.45 19.18
GZIP level 9 13.95 17.33
xz/LZMA level 6 (default) 6.11 7.59

Table 5.4: Results of several size reduc-
tion techniques for line coverage data
from 2019-12. Techniques applied con-
secutively from top to bottom.

The exact savings may also depend on the format that is used for the data.
For example, we use the Java HashMap and Java serialization that both
require more space compared to a custom format. Even considering such
limitations, we still conclude that each technique provides a valuable size
reduction because the effort to implement each of them is rather low. We also
consider a final size of less than two gigabytes acceptable for practical use,
even if there might be still a wide range of possible compression techniques
that could be applied for further savings.

Answer RQ10
Each technique reduces the size of coverage data by 35 % to 80 %. The
total size is reduced from 80.53 GB to 1.55 GB, or by 98.45 %.

To answer RQ11, we apply the algorithm described in Section 3.3.8 for
coverage data of different coverage runs. A coverage run consists of a set
of tests that are executed with coverage measurement enabled. These tests
than produce coverage files that we use as an input for our algorithm.

For each coverage run, we calculate the number of executed lines (lines
hit) for this run. We then use all coverage data files and apply the algorithm
for coverage compaction as described in Section 3.3.8. We then calculate
the number of lines hit after the coverage compaction. We call these lines
hit line groups to distinguish them from the lines hit in the unmodified
source. Finally, we calculate the redundancy by dividing the number of line
groups by the number of lines hit. For each coverage run, we calculate the
redundancy, which is the number of redundant lines over total lines.

Table 5.5 presents the results. The results show that the number of
line groups is only 3 % of the number of all executed lines. This ratio is
rather stable over time, i.e., within the time frame of one year, the factor
between the smallest and largest ratio is nearly 1. We also see that in
2019, although the number of lines hit has increased, the number of line
groups grows nearly proportional, therefore resulting in a similar redundancy
compared to the year 2016. We assume that this could be correlated to the
distribution of x86/x64 instructions. The study of Akshintala et al. shows
that several projects have similar distribution for different types of x86/x64
instructions [4]. Based on this empirical evidence, we can assume that the
binaries of SAP HANA in 2015 and 2019 also have a similar distribution of

126 testing in very large software projects

Coverage Run Lines Hit Line Groups Redundancy

2015-11-15 2 901 575 79 741 97.25
2016-05-19 3 172 337 93 162 97.06
2016-08-04 3 371 109 97 368 97.11
2016-10-25 3 510 727 104 764 97.02
2016-10-27 3 501 611 104 355 97.02
2016-10-29 3 422 442 107 402 96.86
2016-11-01 3 421 780 104 837 96.94
2016-11-03 3 399 853 104 638 96.92
2016-11-05 3 424 585 109 338 96.81
2016-11-07 3 413 424 105 235 96.92
2016-11-10 3 405 657 105 361 96.91
2016-11-12 3 391 712 108 754 96.79
2016-11-15 3 436 853 106 030 96.91
2019-09-18 5 111 926 189 863 96.29

Table 5.5: Coverage redundancy for dif-
ferent coverage runs.

instruction types and therefore show a similar ratio of redundancy.
Epitropakis et al. report similar results for smaller software [85]. They

report a redundancy of 86.30 % to 99.80 % for 6 programs with 5 689 to
1 283 504 lines of code. They found the largest redundancy for the largest
program. Because our study project is also rather large, we assume that
larger programs provide a higher percentage of coverage compaction. We
argue that this is reasonably caused by the statistically higher chance of
possible redundancies due to the larger amount of lines.

Answer RQ11
For SAP HANA, 96.29 % to 97.25 % of the coverage data is redundant.
The ratio seems to be constant over a time frame of 4 years.

5.5 Shared Coverage: Test Core Identification

Integration tests typically execute frequently-used program code to perform
application startup, tear-down, and a set of core application functions (e.g.,
parsing of SQL, query execution). Furthermore, both system tests and unit
tests call code from many project-internal libraries, e.g., memory manage-
ment subsystem or string manipulation. This gives rise to the concept of
shared (functionality) coverage. We define shared coverage informally as line Shared coverage

coverage information corresponding to code that is executed by multiple
tests. Such code typically includes functionality related to startup/tear-
down, common application and utility routines and frequently used data
structures for, e.g., memory or string handling. Technically, the shared
coverage can be identified as a set of source lines covered by at least 𝑘 tests,
with parameter 𝑘 depending on the project (see Section 5.5.5).

In general, shared coverage blurs the differences between tests in terms
of their coverage, creating several detrimental effects. First, it reduces the
specificity of the coverage information, making it more difficult for developers
to decide which tests address which parts of code. Analogously, this creates
barriers to utilize techniques such as change-centric testing. In the context

analysis of approaches for test cost reduction 127

of test clustering, shared coverage can pose a challenge for common distance
metrics (e.g., Jaccard’s similarity metric [141, 263]) as large shared coverage
might dominate more subtle coverage differences. Another problem caused
by shared coverage is the increased size of coverage data.

In the context of SAP HANA, we observe a large amount of shared
coverage: 20 % of the covered lines can be found in 80 % of all test suites.
Consequently, identification and removal of shared coverage is an important
processing step to improve coverage-based characterization of tests.

By removing shared coverage and increasing the specificity, we can im- Removing shared coverage

prove the understanding of the relationship between test and parts of the
code that are targeted by the test. Removing shared coverage is highly ben-
eficial for further methods like test prioritization, clustering, or the analysis
of test quality. Furthermore, such processing can significantly reduce the
size of coverage data. We present approaches for filtering shared coverage
in Section 5.5.4, and evaluate them in Section 5.5.5.

Finally, removing shared coverage gives rise to another concept, the test Test core

core. A test might execute a large amount of code although the purpose of
the test is to verify only a specific functionality. For instance, a test executes
500 000 lines of code, but the tested functionality consists of only 50 lines of
code. In such a case, we call these 50 lines of code the test core. We further
investigate this concept in the following sections.

5.5.1 Examples

We show the practical impact of shared coverage by two types of examples.
First, we use a heatmap to visualize the distances between coverage files.
Second, we aggregate and analyze the distances analytically.

5.5.1.1 Heatmaps of Distances

We apply the following methodology for the visualization and the analysis:

1. Load a set 𝑆𝐶𝐹 of coverage data files.
2. Sort them by a sort criteria 𝑆𝐶 descending, i.e., transform 𝑆𝐶𝐹 into a

sorted list 𝐶 where 𝑒𝑖 ≤ 𝑒𝑗 ∀𝑒𝑖, 𝑒𝑗 ∈ {𝑒1, . . . , 𝑒𝑛} = 𝐶 with 𝑖 ≤ 𝑗.
3. Create a matrix 𝑀 of size |𝐶| × |𝐶| where the rows represent 𝐶 and the

columns represent 𝐶. The matrix values represent the results of 𝑑(𝑟, 𝑐)

where 𝑑 is a distance function, 𝑟 is the current row and 𝑐 is the current
column, i.e., 𝑟, 𝑐 are two coverage files and the value is the distance
between these two coverage files.

4. We transform 𝑀 into an image where each element 𝑚𝑖𝑗 of 𝑀 is repre-
sented by a pixel with a color. We select the color by a gradient so that
min(𝑚𝑖𝑗):color1 and max(𝑚𝑖𝑗):color2. More specifically, based on the
distinct values of 𝑀 , create a gradient from color 𝑐1 to color 𝑐2 where
𝑐1 represents the smallest value of 𝑀 and 𝑐2 represents the largest value.
For this purpose, we order the list of distinct values of 𝑀 from smallest
to largest into the list 𝐿𝑀 . We then associate each item 𝑖 ∈ 𝐿𝑀 the
(normalized) position 𝑝𝑖 = index(𝑖)/|𝐿𝑀 | with 0 ≤ 𝑝𝑖 ≤ 1. We use 𝑝𝑖 as
a factor for our gradient to calculate the final color. For instance, given
𝑀 with element 𝑚𝑖𝑗 , we calculate a black-white gradient in a RGB color

128 testing in very large software projects

system with rgb(𝑝𝑚𝑖𝑗 × 255, 𝑝𝑚𝑖𝑗 × 255, 𝑝𝑚𝑖𝑗 × 255) for each value in 𝑀 .

The steps contain several variables that we will explain next. Table 5.6
provides a summary of the following discussion.

• 𝑆𝐶𝐹 : The set of coverage files. For our examples, we use 2613 coverage
files of a coverage run from 2019-09-18, each containing information about
5 500 000 executed lines. We use 𝑆𝑎 to denote the set of all coverage files
for the specific test run of 2019-09-18. Additionally, we investigate the
subset 𝑆𝑠 ⊂ 𝑆𝑎 that only contains coverage files related to system tests.

• 𝑆𝐶: We use multiple sort criteria. Namely, we order by name 𝑆𝐶name,
by number of executed lines 𝑆𝐶lhit, by sum of a column 𝑆𝐶columnSum,
and by differences 𝑆𝐶diff. Note that we apply 𝑆𝐶columnSum = 𝑆𝐶cs and
𝑆𝐶diff not on the set of coverage files 𝑆𝐶𝐹 , but on the matrix 𝑀 , i.e.,
both criteria operate on columns. In the case of 𝑆𝐶cS, we calculate the
sum for each column and order all columns by their sums. In the case
of 𝑆𝐶diff, starting with the first column 𝑐1 with the smallest sum, we
set the next column 𝑐𝑛+1 = 𝑚𝑖𝑛(|𝑐𝑛 − 𝑐𝑖|, . . . , |𝑐𝑛 − 𝑐𝑗 |) where 𝑐𝑖, . . . , 𝑐𝑗

represent all columns that are not yet selected.
• 𝑑: We use the metrics defined in Section 3.3.3. Namely, the Euclidean

metric 𝑑𝑒, the unshared metric 𝑑𝑢, the proportional binary metric 𝑑𝑝 and
also, although they are not a metric, we investigate the shared function
𝑓𝑠 and the sub function 𝑓𝑚.

Coverage Files 𝑆𝐶𝐹 Sort Criteria 𝑆𝐶 Metrics 𝑑

𝑆𝑎 All tests 𝐶𝑙 Lines hit 𝑑𝑒 Euclidean
𝑆𝑠 System tests 𝐶𝑛 Name 𝑑𝑝 Proportional Binary

𝐶𝑐 Column sum 𝑓𝑠 Shared (not a metric)
𝐶𝑑 Differences 𝑓𝑚 Sub (not a metric)

𝑑𝑢 Unshared

Table 5.6: Options for several vari-
ables.

As we can deduce from Table 5.6, there are 40 combinations. Fig. 5.11
shows a heatmap for each combination. The heatmap pictures have sizes of
up to 2613 × 2613 pixels and therefore cannot be presented without loss of
details, even considering showing only one image per full single page. Hence,
we reduce the sizes of the images even further as shown in Fig. 5.11.

We can see several interesting patterns in Table 5.6. We can recognize
multiple black squares within the heatmap of Fig. 5.11.5 (and several other
heatmaps). In fact, there are three black squares, due to the scaling the
smaller one between the upper-left and bottom-right is not clearly visible.
These black squares represent test executions that have a low amount of
“unshared” lines, i.e., lines that are only executed in one test, but not the
other. These three black squares represent the subgroups of test suites that Black squares represent subgroups of

test suitescontain (a) system tests, (b) component tests (not further defined) and (c)
unit tests. These patterns are not visible for sorting criteria 𝐶𝑛 as the (start
of the) name of a test does not allow to differentiate such tests. Given these
insights, we further analyze only system tests, i.e., the group of 𝑆𝑠 (which
is at the lower part of Table 5.6 and separated by a horizontal line).

Focusing on system tests (𝑆𝑠), we can recognize a large amount of white
values in Fig. 5.11.3. In this case, white means that tests share a large

analysis of approaches for test cost reduction 129

(1) 𝑆𝑎, 𝐶𝑙, 𝑑𝑒 (2) 𝑆𝑎, 𝐶𝑙, 𝑑𝑝 (3) 𝑆𝑎, 𝐶𝑙, 𝑓𝑠 (4) 𝑆𝑎, 𝐶𝑙, 𝑓𝑚 (5) 𝑆𝑎, 𝐶𝑙, 𝑑𝑢

(6) 𝑆𝑎, 𝐶𝑛, 𝑑𝑒 (7) 𝑆𝑎, 𝐶𝑛, 𝑑𝑝 (8) 𝑆𝑎, 𝐶𝑛, 𝑓𝑠 (9) 𝑆𝑎, 𝐶𝑛, 𝑓𝑢 (10) 𝑆𝑎, 𝐶𝑛, 𝑑𝑢

(11) 𝑆𝑎, 𝐶𝑐, 𝑑𝑒 (12) 𝑆𝑎, 𝐶𝑐, 𝑑𝑝 (13) 𝑆𝑎, 𝐶𝑐, 𝑓𝑠 (14) 𝑆𝑎, 𝐶𝑐, 𝑓𝑚 (15) 𝑆𝑎, 𝐶𝑐, 𝑑𝑢

(16) 𝑆𝑎, 𝐶𝑑, 𝑑𝑒 (17) 𝑆𝑎, 𝐶𝑑, 𝑑𝑝 (18) 𝑆𝑎, 𝐶𝑑, 𝑓𝑠 (19) 𝑆𝑎, 𝐶𝑑, 𝑓𝑚 (20) 𝑆𝑎, 𝐶𝑑, 𝑑𝑢

(21) 𝑆𝑠, 𝐶𝑙, 𝑑𝑒 (22) 𝑆𝑠, 𝐶𝑙, 𝑓𝑠 (23) 𝑆𝑠, 𝐶𝑙, 𝑑𝑝 (24) 𝑆𝑠, 𝐶𝑙, 𝑓𝑚 (25) 𝑆𝑠, 𝐶𝑙, 𝑑𝑢

(26) 𝑆𝑠, 𝐶𝑛, 𝑑𝑒 (27) 𝑆𝑠, 𝐶𝑛, 𝑑𝑝 (28) 𝑆𝑠, 𝐶𝑛, 𝑓𝑠 (29) 𝑆𝑠, 𝐶𝑛, 𝑓𝑚 (30) 𝑆𝑠, 𝐶𝑛, 𝑑𝑢

(31) 𝑆𝑠, 𝐶𝑐, 𝑑𝑒 (32) 𝑆𝑠, 𝐶𝑐, 𝑑𝑝 (33) 𝑆𝑠, 𝐶𝑐, 𝑓𝑠 (34) 𝑆𝑠, 𝐶𝑐, 𝑓𝑚 (35) 𝑆𝑠, 𝐶𝑐, 𝑑𝑢

(36) 𝑆𝑠, 𝐶𝑑, 𝑑𝑒 (37) 𝑆𝑠, 𝐶𝑑, 𝑑𝑝 (38) 𝑆𝑠, 𝐶𝑑, 𝑓𝑠 (39) 𝑆𝑠, 𝐶𝑑, 𝑓𝑚 (40) 𝑆𝑠, 𝐶𝑑, 𝑑𝑢

Figure 5.11: Heatmaps representing
distances between coverage files. Gra-
dient from black (min) to white (max),
calculated for each image separately.

130 testing in very large software projects

amount of executed lines. This represents the shared coverage as explained
in our introduction. The rather large amount confirms our hypothesis that Large amount of white values that rep-

resent shared codeshared coverage occurs frequently and therefore provides us an opportunity
for savings. The heatmap Fig. 5.11.38 shows large rectangles of connected
white values, showing that 𝐶𝑑 provides rather good results at clustering
such areas. However, such clustering has always local optimums and finding
a global “best” clustering is rather difficult.

We can also see that heatmaps for 𝑑𝑒 and 𝑑𝑝 are identical. The difference
between these two metrics is only a constant factor that does not affect the
gradient. The heatmaps for 𝑑𝑢 are similar to the heatmaps of 𝑑𝑒, but the
gradient has a slightly different distribution due to the square root in 𝑑𝑒.
Due to this difference, the sorting criteria 𝐶𝑐 and 𝐶𝑑 result into different
heatmaps for 𝑑𝑢 and 𝑑𝑒 as they sort based on the results of the metrics.

Comparing heatmaps for 𝐶𝑙 and 𝐶𝑐 shows two interesting aspects. First,
the result for both sorting criteria is rather similar for 𝑆𝑠, i.e., for system tests.
For 𝑆𝑎, i.e., all tests, the placement of the black squares is on the opposite
side in a direct comparison. This is expected due to the implementation of
𝐶𝑐. We start with the “largest” column. The largest column represents the
difference with the most “unshared” lines, i.e., lines that are only executed
in one test. We find the largest such differences by comparing the execution
of test suites with unit tests to the execution of test suites with system tests.
Therefore, such unit test suits will be placed at the top-left for 𝐶𝑐.

Note that for several heatmaps, we can see a special pattern for the Special pattern for the diagonal

diagonal. This represents the property of metrics, that 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦.
For 𝑓𝑚, which is not symmetric, we do not see such pattern and for 𝑓𝑠 we
see a white diagonal because the diagonals represent the maximum values
when a coverage file shares all content with itself.

In summary, the examples show us that the test executions exhibit a
rather large amount of shared coverage and, by comparing coverage files, we
can analyze and detect the shared coverage. In fact, the heatmap analysis
detected several tests that were nearly identical and some of them were then
removed by SAP engineers. Furthermore, we also identified groups of test
suites that covered similar functionality (showed as a rectangle of the same
color on the diagonal). Such groups were combined into single test suites.
Therefore, we conclude that such an analysis can already reduce test costs.

5.5.1.2 Analysis of Distances

Our methodology for the analysis contains the following steps:

1. Load a set 𝑆𝐶𝐹 of coverage data files.
2. Create the set of pairs 𝑆𝑝 = {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝑆𝐶𝐹 , 𝑥 ̸= 𝑦, (𝑦, 𝑥) /∈ 𝑆𝑝}, i.e.,

all pairs without symmetry (and without self-reflexive pairs).
3. Use 𝑆𝑝 to calculate the set of distances 𝑆𝑑 = {𝑑(𝑥, 𝑦) | (𝑥, 𝑦) ∈ 𝑆𝑝}.

Then, we calculate min, arithmetic mean and max for 𝑆𝑑.

The steps contain two variables:

• 𝑆𝐶𝐹 : The set of coverage files. For our examples, we use 2613 coverage
files of a coverage run from 2019-09-18, each containing information about
5 500 000 executed lines. We use 𝑆𝑎 to denote the set of all coverage files

analysis of approaches for test cost reduction 131

for the specific test run of 2019-09-18. Additionally, we investigate the
subset 𝑆𝑠 ⊂ 𝑆𝑎 that only contains coverage files related to system tests.

• 𝑑: We use the metrics defined in Section 3.3.3. Namely, the Euclidean
metric 𝑑𝑒, the unshared metric 𝑑𝑢, the proportional binary metric 𝑑𝑝 and
also, although not a metric, we investigate the shared function 𝑓𝑠. We
do not investigate the sub function 𝑓𝑚 because 𝑓𝑚 is not symmetric.

Metric Min Average (AM) Max

𝑆𝑎 (all tests)
𝑑𝑒 Euclidean 9.1 489.8 1 066.5
𝑑𝑝 Proportional Binary 12.9 692.7 1 508.3
𝑑𝑢 Unshared 83.0 279 443.8 1 137 522.0
𝑓𝑠 Shared (not a metric) 1 432.0 555 347.9 1 051 630.0

𝑆𝑠 (only system tests)
𝑑𝑒 Euclidean 25.1 393.8 784.0
𝑑𝑝 Proportional Binary 35.4 556.9 1 108.7
𝑑𝑢 Unshared 628.0 163 555.9 614 651.0
𝑓𝑠 Shared (not a metric) 503 361.0 696 897.4 1 051 630.0

Table 5.7: Results of distance calcula-
tions for coverage files of all test execu-
tions.

Table 5.7 presents the results of our analysis. The results show that
focusing on system tests indeed increases the shared part as the arithmetic
mean (AM) of 𝑑𝑢 is larger for 𝑆𝑎 compared to 𝑆𝑠. Also, the AM of 𝑓𝑠 is
larger for 𝑆𝑠 compared to 𝑆𝑎. Even more, the min, in this case, is larger
by a factor of 350. This means that there is no combination of two system
tests that do not share at least 500 000 executed lines.

We also see that min, AM and max of 𝑑𝑒 and 𝑑𝑝 always differ by a
factor of

√
2. The expected factor by definitions of 𝑑𝑒 and 𝑑𝑝. The factor

propagates to the result due to the distributive property of arithmetic.
In summary, the calculations show that there exists a large amount of

shared coverage between all coverage files. Focusing on system tests, this
shared part is a significant proportion of the overall execution. Even more,
some test executions differ by less than 1 % of their execution.

5.5.2 Execution Frequency

Software typically has common and specialized functionality. The common
functionality is reused several times by different parts of the software. Typi-
cal examples for common functionality are input parsing, output formatting
or memory and string management in C++ and other languages. In the
broader sense, a language standard library also provides common function-
ality such as data structures like lists or maps. Specialized functionality
typically represents a specific requirement or use case for a software project.

In practice, we differentiate common and specialized functionality by the Common and specialized functionality

frequency of their execution, where the frequency of a line is defined as
the number of tests that execute this line. This differentiation is based
on the hypothesis that common functionality is called in more tests com-
pared to specialized functionality. This hypothesis is reasonable, as we call
functionality common if it is reused several times by different parts of the

132 testing in very large software projects

software and therefore it should be used by more tests compared to special-
ized functionality. Note that we do not define a priori an exact threshold
for the frequency separating between common and specialized functionality.
Instead, we investigate possible values for this threshold later empirically.

Line coverage data allows us to analyze the execution frequency for each
line. More formally, for 𝑛 coverage data files 𝐶 = {𝑐1, . . . , 𝑐𝑛} representing
𝑛 test executions, each line 𝑙 ∈

⋃︀
𝑐∈𝐶 𝑐 has a frequency 𝑓𝑙:

𝑓𝑙 =
|{𝑐 | 𝑙 ∈ 𝑐 and 𝑐 ∈ 𝐶}|

𝑛
∈ { 𝑖

𝑛
| 0 ≤ 𝑖 ≤ 𝑛, 𝑖 ∈ N0}. (5.3)

To simplify the discussion, we may omit the denominator and will only
use the (unreduced) execution count in all cases where the denominator does
not change. We call this number (i.e., the nominator) the testcount as it Testcount

counts the number of tests that execute a specific line.
The following example shows frequencies for several coverage data files:

𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}
𝑐1 = {1, 2, 5}
𝑐2 = {1, 2, 4, 5}
𝑐3 = {1, 2, 4, 5, 6}
𝑐4 = {1, 5}

=⇒

𝑓1 = |{𝑐1, 𝑐2, 𝑐3, 𝑐4}|/4 = 4/4
𝑓2 = |{𝑐1, 𝑐2, 𝑐3}|/4 = 3/4
𝑓3 = |{}|/4 = 0/4
𝑓4 = |{𝑐2, 𝑐3}|/4 = 2/4
𝑓5 = |{𝑐1, 𝑐2, 𝑐3, 𝑐4}|/4 = 4/4
𝑓6 = |{𝑐3}|/4 = 1/4

In this example, line 6 may represent specialized functionality and lines
1 and 5 may represent common functionality. However, due to the small
number of lines, the distinction may be artificial in this specific example.

5.5.3 Test Core Identification

Testing a certain functionality within a program 𝑃 may require executing
other functionality that is not supposed to be tested by the test. For instance,
testing a function isPrime that checks whether a number given by a single
string argument is a prime number will probably also execute a string to
integer conversion. On the system test level, a large fraction of a program
could be executed although only a small part of it is tested by the test. For
the isPrime function, a test might only test the prime functionality, but
cannot avoid executing the string conversion (given the source code is fixed).
We use the term test core of a test to indicate the part of the software that Test core

is indented to be tested by a test. In some cases, more likely for unit tests,
the test core can be identical to the complete execution. In the case of SAP
HANA, the difference between the test core and the execution of the test
can be several 100 000 lines of code.

Theoretically, the full coverage data can be separated into shared coverage
and the test core. In practice, the distinction between shared coverage and
the test core may not be a binary classification due to unclear test intentions,
imprecise tests or an insufficient amount of tests to identify the shared part.
For instance, the execution of a single test may not allow identifying shared
coverage and the test core based on the test execution.

analysis of approaches for test cost reduction 133

5.5.4 Shared Coverage Removal Approaches

As explained in the previous section, shared coverage, i.e., common function-
ality, is typically not of our interest. We want to identify the test core, i.e.,
the specialized functionality that is intended to be tested by a test. Thus,
to obtain the test core, we must filter out the shared coverage.

To filter out shared coverage, we have to identify and then remove it. The
latter step is a technical detail using the sub operation from Section 3.3.2,
therefore we focus on the identification of shared coverage. We investi-
gate three different approaches: differential analysis, baseline removal, and
feature extraction.

5.5.4.1 Differential Analysis

Our main idea is based on the fact that shared coverage lines are hit by
more tests than other lines. We can thus proceed in two steps:

1. Compute the testcount for each line 𝑙 (the number of tests executing 𝑙).
2. Mark (or immediately remove from coverage data) all lines with a higher

testcount than a given threshold.

For small threshold values, e.g., a threshold of 1, the algorithm removes
all shared coverage lines. For high threshold values, this will remove only
lines that are covered by nearly all tests. Both extremes are not optimal.

An example of removing too much are two tests that cover two branches
of an if statement in a function. We cannot prevent that both tests cover the
condition of the if statement. However, a removal is probably not desired
because the condition is part of the if statement.

On the other hand, if the threshold value is too high, we do not remove
anything. We could set the threshold to the number of tests (minus 1) to
filter all common functionality. However, a test for an exception could abort
the execution before reaching such common functionality. In such a case,
although expected, the common functionality would not be filtered.

Therefore, we must identify a reasonable threshold. We find this threshold Threshold identification

by analyzing the distribution of the different testcount values versus the
number of lines with the given testcount. We then either manually conclude
a threshold based on a visual analysis of the graph, or we implement an
algorithmic approach that automatically detects changes in the slope within
a sequence of such distribution data.

5.5.4.2 Baseline Removal

Our main idea in this variant is the assumption that shared coverage occurs
because part of the code has to be executed for all or most inputs. This
gives rise to creating a test that executes only such code.

We implemented it as a test with only the most fundamental functionality.
In our case (SAP HANA is a database system) this is a test with only sim-
ple create, insert, select, delete, and drop statements. The coverage
collected for this test is the baseline and can be removed from all other
coverage files. As an alternative for creating the baseline test manually, it is
also possible to find a suitable candidate automatically with a combination
of the previous approach based on testcounts.

134 testing in very large software projects

5.5.4.3 Feature Extraction

A typical software project has a hierarchical directory structure based on
conventions on how to organize related files. Therefore, each directory may
represent a set of features. In our case, the common and auxiliary function-
ality (e.g., memory or string handling) have own directories. Therefore, we
can remove all coverage for files in these directories. We do not provide an
evaluation for this approach, because the effect is obvious and the removal
of a predefined set of directories only solves the problem partially.

5.5.5 Evaluation

We investigate the following research question (RQ):

RQ12 How does the removal of shared coverage improve the specificity of code
coverage data in the context of SAP HANA?

We answer RQ12 in 3 steps:

1. We identify shared coverage with the following two approaches from
Section 5.5.4: differential analysis, and baseline removal.

2. We remove the shared coverage.
3. We analyze test specificity before and after the removal of shared coverage.

Step 1: For the approach based on differential analysis, we need a
threshold for removing lines with a high testcount. To find this threshold, we
analyze the distribution for testcounts per source code lines, see Fig. 5.12 for
the data of 2017-01. We select the threshold 𝐷𝐵80 at 80 % which corresponds
to 238 test suites, i.e., every line hit by more than 238 test suites is removed.
We select two additional thresholds for our evaluation below and above
𝐷𝐵80: 𝐷𝐴60 and 𝐷𝐶90. To automate the threshold selection, it is possible
to utilize the slope of the distribution curve.

Fig. 5.13 shows the distribution plot for the data of 2019-11. The shape
of the distribution plot is similar to Fig. 5.12 and remains over time.

For the baseline removal approach, we manually chose the baseline test
suite in consultation with SAP engineers.

0 100 200 300 400 500 600 700 800 900 1,000
0

10
20
30
40
50
60
70
80
90

100

𝐷𝐴60(7, 60)

𝐷𝐵80(238, 80)

𝐷𝐶90(954, 90)
•

•
•

Test Suites per Line Hit

Li
ne

s
H

it
[%

]

Figure 5.12: Distribution plot for test-
count versus the relative amount of cov-
ered lines. Data of 2017-01. E.g., 80 %
of all lines hit are covered by ≤ 238
test suites and 31 % of all lines hit are
covered by ≤ 1 test suite.

analysis of approaches for test cost reduction 135

0 200
400

600
800

1,000
1,200

1,400
1,600

1,800
2,000

2,200
2,400

2,600

0
10
20
30
40
50
60
70
80
90

100

Test Suites per Line Hit

Li
ne

s
H

it
[%

]

Figure 5.13: Distribution plot for test-
count versus the relative amount of cov-
ered lines with at most testcount value
of tests based on data of 2019-11.

Step 2: After the identification step, the removal step uses the sub
operation (See Section 3.3.2), either with the baseline test suite or with an
artificial coverage file made of all lines with a testcount above the current
threshold. Table 5.8 shows the size reduction after the sub operation. The
baseline removal reduced the coverage size to 36.01 % of the original coverage.

Threshold [%] Testcount Size Left [%]

0 0 0.00
30 0 0.00
60 7 1.93
70 25 4.64
80 238 15.06
90 954 58.44
99 1 046 95.13

100 1 065 100.00

Table 5.8: Relative size of coverage
data (2017-1) after removal of lines
with certain testcounts. E.g., lines hit
by ≤ 238 test suites represent 80 %
of all lines. Removal of lines with
testcount > 238 reduces the data to
15.06 % of the original size.

Step 3: After the removal, we measure the test specificity before and
after applying our approaches. We evaluate the specificity by counting the
number of lines hit in source code located in different (component-specific)
subdirectories and asking SAP engineers to verify whether the directory
relates to the test intent or not.

We select 20 test suites randomly and compute the top five coverage
directories for each test suite. These are the directories with the highest
number of lines hit for all files in the directory. Under the assumption that
the directory layout represents a coupling between source files and modules,
we should see an increase in specificity for the top directories.

We represent the 20 test suites and five directories for each test suite
by a 20 × 5 matrix. We create this matrix for six configurations. For each
threshold 𝐷𝐴60, 𝐷𝐵80, 𝐷𝐶90 (see Fig. 5.12), and for each version with the
original data and after the removal of lines with high testcount.

We showed these six matrices to developers of SAP and asked them to
select 10 test suites where they can judge which directories are specific to
this test. They should highlight all specific directories within the top 5
directories in green, the unspecific directories in red and the rest in yellow.

136 testing in very large software projects

After this manual task, we attribute the following scores to the classifi-
cations. A green field gets +1, a red field −1, and a yellow field gets 0. In
addition, we add a top score for the first 𝑛 correct top directories: If the top
𝑛 directories are green, we add additional 𝑛 points; for red, we substitute 𝑛

points. For instance: (g,g,r,y,y) gets +2 for green, −1 for red, 0 for yellow
and +2 for top-2 green, in total: 2 − 1 + 0 + 2 = 3 points; (y,r,r,r,g) gets
(1 − 3) + 0 + 0 = −2 points.

Case Correct Dir. Score Lines Hit

Differential analysis

𝐷𝐴60
before 1/10 (7 wrong) −28−25=−53 2 737 700
after 8/10 (0 wrong) 5+10=15 37 848

𝐷𝐵80
before 3/10 (7 wrong) −35−26=−61 3 811 208
after 8/10 (1 wrong) −16+9=−7 292 087

𝐷𝐶90
before 0 (10 wrong) −46−46=−92 3 038 125
after 1/10 (9 wrong) −30−20=−50 1 178 414

Baseline removal 4/10 (6 wrong) −24−6=−30 728 794/3 811 208

Table 5.9: Evaluation of test specificity
changes for shared coverage removal.
The score depends on manual evalua-
tion (see Section 5.5.5), higher is bet-
ter. Correct dir. indicates the amount
of correctly identified directories.

Table 5.9 shows the results of our evaluation. The shared coverage removal
based on differential analysis improves the specificity of the coverage. The
highest increase in test specificity was possible with the highest testcount
removal. This is expected since the highest specificity would be reached
if we only keep lines that are hit by exactly one test. But as discussed in
Section 5.5.4, this is not desired. This choice would remove all covered lines
with multiple tests, but some of them are still interesting for further analysis.
In summary, the 80 % threshold provides a good increase in test specificity
but still guarantees multiple test coverage for most code parts.

We evaluate the baseline removal in the same way. We select a baseline
test that covers only the basic functionality create table, insert, select,
delete, drop table. The score for the baseline removal is −30. Therefore,
the test specificity is lower compared to the results for 𝐷𝐵60 and 𝐷𝐵80.

Answer RQ12
Both approaches, differential analysis, and baseline removal, improve the
specificity of code coverage and allow identification of the test core. In a
direct comparison, differential analysis correctly identifies a larger amount
of source code as a test core compared to the baseline approach.

5.6 Nondeterminism in Testing

5.6.1 Random Coverage

We understand by random coverage the phenomenon that a line of code is
sometimes executed, and sometimes not executed (and thus covered or not)
in multiple executions of the same test with the same state of the software.
Thus, we see randomness at the level of coverage data. Other work already
observed the effect of random coverage [186]. Apart from obtaining less
reliable data, random coverage creates issues for test similarity metrics, and
in general for all techniques that depend on accurate coverage data.

analysis of approaches for test cost reduction 137

Previous work already mentions several sources of random coverage [186].
For SAP HANA, we have detected the following sources of random coverage:

• functions providing random numbers,
• time/date creation,
• multi-threaded execution,
• memory handling,
• scheduling,
• file system interactions,
• errors of coverage tools.

For some test suites of SAP HANA, we found differences of covered lines
for two identical coverage runs from 50 to several hundred lines. This is
only a small fraction of the total number of lines covered by a test suite
which typically ranges (after shared coverage removal) from 10 000 to 200 000.
However, if line coverage of two such test suites differ by, e.g., only 100 LOC,
the random coverage becomes critical, as we do not know which fraction of
this difference can be attributed to randomness. Fig. 5.14 shows that the
same test can generate different coverage for multiple executions. These
different coverage data appear to have no relation, i.e., the underlying causes
of the differences appear to be random.

A B C D
A 0 2 266 2 579 2 963
B 426 0 747 967
C 476 484 0 801
D 1 205 1 049 1 146 0

(a) Number of executed lines. Values cal-
culated by row−column.

A B C D
A 0 138 158 182
B 75 0 95 100
C 74 75 0 83
D 115 103 101 0

(b) Number of source files left. Values cal-
culated by row−column.

Operation #Executed Lines #Source Files Left

𝐴 + 𝐵 + 𝐶 + 𝐷−
(𝐴 & 𝐵 & 𝐶 & 𝐷)

4 777 316

𝐴 − (𝐵 + 𝐶 + 𝐷) 2 101 106
𝐵 − (𝐴 + 𝐶 + 𝐷) 125 28
𝐶 − (𝐴 + 𝐵 + 𝐷) 262 35
𝐷 − (𝐴 + 𝐵 + 𝐶) 869 70
𝐵 + 𝐶 + 𝐷 − 𝐴 1 642 166
𝐴 + 𝐶 + 𝐷 − 𝐵 3 482 222
𝐴 + 𝐵 + 𝐷 − 𝐶 3 745 243
𝐴 + 𝐵 + 𝐶 − 𝐷 3 400 231

(c) Results for several operations.

Figure 5.14: Effects of random cover-
age. Line coverage data A,B,C,D are
the result of repeated executions of the
same test. The test executes about
40 000 source code files and 4 000 000
lines of code. For Tables (a) and
(b), the entries represent results of
(row−column), i.e., row 2, column 1
shows the results for B−A. Operations
as defined in Section 3.3.2.

5.6.1.1 Approach

Randomness in coverage data is a threat to the soundness of any further
analysis on coverage data. For instance, approaches that assume exact
coverage for change based testing may produce different results depending
on the effects of the observed randomness. The best approach to remove

138 testing in very large software projects

random coverage would be to remove all sources of randomness. However,
this is typically not feasible in a large project for multiple reasons:

• Identifying all sources of randomness and replacing them with a deter-
ministic behavior is difficult and rather time consuming.

• Introducing implementations that are only used for testing creates a
special test-state of the software. Test executions would therefore not
test the behavior of a productive environment.

• Removing all sources of randomness would require disabling concurrent
execution. This would not only increase the time for test execution
tremendously but also prohibit any testing of concurrent behavior.

Given these points, the removal of all sources of randomness is not a
feasible approach. Therefore, we consider the following strategies:

1. We design any of our approaches that utilize coverage data in such a way
that random coverage is either not a threat or we control the effect.

2. We detect all lines of source code that show random behavior and mark
them for deletion or for future analysis.

3. We rerun a test multiple times to harmonize the different sets of lines
hit created by randomness. We can either create the union of coverage
data for all runs (which contains all randomly covered lines) or create the
intersection for all runs (which does not contain any randomly covered
lines). Manual evaluation of this approach for single test suites showed
reasonable results. However, we skipped an evaluation on a larger scale
due to the constraints on execution time and resource costs.

Strategy 3 increases the time for test executions by the rerun factor. We
may have to run all tests multiple times (with coverage-enabled overhead).
Therefore, in practice, we apply it only for a small, selected subset of tests.

Regarding strategy 1, the approaches presented in Section 5.5 for shared
coverage removal control the effect of random coverage by design. As ran-
domness may be encountered by all tests, each test may have a percentage
to execute a specific line. For some lines, this percentage is 100 %, for other
lines, it is lower. Thus, statistically, the randomness modifies the number
of tests that execute a line (the testcount) by the percentage factor. As a
result, shared coverage removal typically also removes random coverage.

To handle edge cases of random coverage, such as a single line that is only
executed by a specific single test in only 5 % of all executions, we can use the
strategy 2. We can interpret multiple coverage runs as a set of time-series
over source code lines, i.e., we create for each line a binary sequence of ones
and zeros that represent, over time, whether this line was executed or not.
We can create these time-series either per test run or per test. Per test run
may allow fast detection of lines that show a low probability of execution.
Per test allows identifying randomly executed lines for each test. Although
we expect this approach to be promising, we did not evaluate it due to
practical issues. Tracking code (and test executions) over time in a large
project is a rather complex tasks as shown by Sections 4.2 and 4.3.

For the rest of this work, if not specified otherwise, we assume that the
effects of random coverage are mitigated by shared coverage removal. To
our experience, this assumption is typically true in practice.

analysis of approaches for test cost reduction 139

5.6.2 Flaky Tests

We call a test flaky if the test shows different results (pass/fail) in multiple
runs under the same conditions (inputs, local environment, software ver-
sion) [181]. The reasons for such behavior are diverse and include issues
with the test environment (e.g., file servers), performance impact of other
applications, “junk” data created by previous tests, timing/async issues,
resource leaks, and randomness due to concurrency issues in the application
or the operating system [169, 181].

Empirical data from Google indicates that up to 16 % of all tests at Google
show flaky behavior [193]. Microsoft reports that 14 % to 52 % of all builds 10% to 20% of all tests show flakiness

show flaky test failures [169]. A study on 61 Java projects found that “18 %
of test suite executions fail and that 13 % of these failures are flaky” [168].
Similarly, the Firefox testing process also contains a considerable amount
of flaky tests [215]. This number is similar for SAP HANA, where we also
find a non-negligible number of flaky test results.

Flaky tests create a threat to the validity of results for approaches ex-
ploiting historical test results, and to a certain degree also for research based
on coverage data. A large amount of previous work in this domain assume
perfectly stable test conditions, and repeatable, deterministic test results.
This might not be the case for projects above a certain size, which calls for
an evaluation of such approaches for very large projects.

To eliminate the impact of flaky tests on results in this work, we run a
test up to four times if a previous run fails, and we keep the coverage of
failed test runs. There are several projects in the context of SAP HANA that
attempt to classify test results as correct or erroneous utilizing techniques
from machine learning (specifically, scalable SVMs).

5.7 Threats to Validity

We discuss possible threats to the validity of our work.
Test Suites Granularity: Our coverage data is based on test suites

that include a set of tests. However, in practice, even single test cases call
complex logic and include several checks.

Flaky Tests: As explained in Section 5.6.2, flaky tests influence all
analyses based on test success. Therefore, we avoid any approaches that
rely on the correctness of a test result.

Safeness of TCS: Our TCS strategies are not safe. They can omit test
cases that would otherwise have detected faults. This must be considered
during a risk analysis of the costs and benefits as we show in Section 5.2.

Random Coverage: We observed random coverage. The amount is
rather low compared to the total coverage size. Hence, the impact on our
results is marginal. In practice, shared coverage removal typically removes
random coverage and further approaches were not required.

Relation between Coverage and Bug-Finding Ability: Some ap-
proaches may assume that the bug-finding ability of a test suite 𝑇𝑆1 and a
𝑇𝑆2 is similar, if coverage(𝑇𝑆1) = coverage(𝑇𝑆2) (without further defining
the similarity here). This seems to be an undecided research question, see
Chapter 4 fur further details and discussions.

140 testing in very large software projects

A Database Is a Special Environment: By design, every call of a
database executes a large shared part of the database stack. We argue
that this shared design applies in fact to a wide field of software branches.
Software following the MVC pattern, such as any software with a GUI, has
a large shared part. Software with a single entry point is another common
example, such as parsers, I/O software or command line tools.

Tests Are Not Independent The test independence assumption does
not always hold [267]. We also observed this for SAP HANA. This does not
affect our work, because we use coverage on a test suite level. Test suites
are independent because each test suite is executed completely separated.

Definition of Line Coverage:
We defined line coverage in Section 3.1.5. This definition also defines a

“line” as a sequence of characters followed by a line break. However, the
position of a line break is decided by a developer and can therefore be at
arbitrary places. This can lead to several effects:

• All source code is written in a single line without line breaks.
• The amount of line breaks depends on the developer.
• The position of line breaks depends on the developer.

In the first case, line coverage will be meaningless. In practice, this
extreme case does not occur because the resulting source code is considered
unreadable for humans and not maintainable.

In the other cases, if the amount and positions depend on the developer, a
style guide may formally decide the placement of such line breaks [152] and
therefore reduce the ambiguity. Such a style guide can be automatically en-
forced by tools. Even then, developers can choose different implementations
for the same task which results in a varying amount of lines.

We conclude that it may not be possible to strictly control this threat.
However, this threat may not affect results in a large corpus because we do
not expect large deviations. In our work, we typically compare line numbers
only by their magnitude. For instance, if a program 𝑃𝐴 contains 212 374
lines of code (LOC) and a second project 𝑃𝐵 contains 5 312 413 LOC, then
we conclude that 𝑃𝐵 is “larger” by a magnitude. However, a third project
𝑃𝐶 with 5 313 880 LOC would be of the same size as 𝑃𝐵 . The difference of
fewer than 5 000 lines is not significant.

5.8 Conclusions

We described and discussed several techniques for test cost reduction in large
projects. Our presentation shows that large projects exhibit several specific
characteristics that are often not considered in related work for test cost
reduction. Conclusively, it is important to design approaches for test cost
reduction in large projects that are tailored to the specific characteristics
of large projects. This motivates our main contribution, dynamic unit test
extraction in Chapter 6, which is focused on reducing the negative effects
generated by system tests with large execution times.

We also presented several approaches that target the characteristics of
large projects, such as multiple testing stages or test core identification. We
use these approaches as building blocks for our dynamic unit test extraction.

6 Dynamic Unit Test Extraction

In this section, we introduce our main contribution, a practical approach
to reduce test costs by reducing the time spent on executing tests without
negative effects on the overall quality of the software. The approach is
practical because it is implemented for a large real-world software application
and it is designed in such a way to fulfill several requirements of practitioners
regarding the maintainability of tests and overhead for practical usage.

As we discussed in Chapter 1, tests with large execution times, say 30
minutes or more, contribute substantially to the test costs of large projects.
Therefore, we aim to reduce costs created by such tests. The core technology
to tackle this problem is dynamic unit test extraction, i.e., we analyze the Dynamic unit test extraction

execution of tests with large execution times and use this information to
extract one or multiple smaller tests.

This technique combines several aspects of this work. We use static
analysis provided by our own Clang compiler plugin (Section 6.1.4.2 and
Section 6.2.5) and test core detection (Section 5.5) based on coverage data
(Chapter 3) to identify the part of a test execution that is important to ex-
tract. We then monitor the execution of a test and use time-travel debugging
(Section 6.1) and object creation techniques (Section 6.2) to dynamically
extract source code for C++ unit tests. We optionally reduce the number
of unit tests by coverage-based test suite reduction (Section 3.3.4). Finally,
we use a multi-stage testing strategy (Section 5.2) to efficiently reduce test
costs while maintaining the same level of quality for the software under test.

Previous work on extracting behavior from system tests use terms such
as test extraction/factoring [123, 224, 225], carving [80, 81], capture and
replay [142, 146, 207], or codelet extraction [42].

A large fraction of related work proposes to store the recorded information
in a binary format [80, 81, 123, 146]. This has several practical drawbacks. Disadvantages of binary formats

A binary format is neither human-readable nor maintainable, resulting in
tests with very limited value in practice according to the feedback of our
industry partner. Developers strongly advocate having tests that can be
understood and maintained by humans.

Our work is, to the best of our knowledge, the first effort to investigate
dynamic unit test extraction for C++ . We believe that C++ proposes several Different approaches for various pro-

gramming languages.challenges t be handled separately compared to other languages such as
Java, Python or R. Related work investigated test extraction for R [167],
Java [146, 224], LLVM-IR [42], or FORTRAN [123, 157]

We provide further details about related work within the corresponding
sections for our approaches, see Sections 6.1.8 and 6.2.8.

142 testing in very large software projects

We focus in this chapter on our approach for dynamic unit tests extraction
and its requirements. We first introduce our approach based on time-travel
debugging and then describe a technique that finds options to create objects.
Finally, we also discuss an approach for automated mock proposal.

6.1 Dynamic Unit Test Extraction via Time-Travel Debugging

Compared to system tests, unit tests execute faster and allow more precise
fault localization. Consequently, it can be beneficial to replace a system test
by an equivalent suite of unit tests. However, writing unit tests for complex
applications can require more development effort. Hence, techniques have
been proposed to extract unit tests from system tests. However, these
approaches have limitations such as serialization of object states that causes
hard-to-maintain and partially incomprehensible test code, scalability issues
due to a whole project approach, or missing support for C++ .

We address these issues by an adaptive approach for extracting code-only Code-only unit tests

unit tests. As a central technical element we exploit time-travel debugging Time-travel debugging

for efficient and accurate reconstruction of object states. The extracted unit
tests mimic relevant parts of the system tests, and, by displacing the latter
in early testing stages, save resources and facilitate fault localization.

Our evaluation on SQLite and SAP HANA indicates that there is a
large potential for test cost reduction with our technique. The extraction
process overhead is feasible, with an average slowdown factor of 14 for SAP
HANA. The acceptance of generated tests is high for SAP HANA, as all
of 789 extracted unit tests have passed code reviews and were accepted by
developers. Finally, compared to automatic unit test generation via symbolic
execution, our technique can achieve higher line coverage in specific cases.

6.1.1 Introduction

We focus on reducing the costs associated with regression tests. Such tests
are re-run after essential code changes to ensure that previously developed
and tested software keeps its behavior. Within the workflow of continuous
integration, regression tests are executed for every change that is merged
to the main code line which can result in frequent executions. This is still
acceptable for fast running unit tests, yet for long-running system tests, a
high execution frequency can be prohibitive in terms of waiting time and
hardware usage. In addition, system tests typically make fault localization Disadvantages of tests with large exe-

cution times.more difficult and are more likely to exhibit non-deterministic behavior [181].
Table 6.1 summarizes our observed differences. Thus, if a system test focuses
on a particular functionality or a code region, a suite of equivalent unit tests
might be a better choice instead.

System Test Unit Test

Coding effort low high
Execution time medium to very large short
Fault localization difficult precise
Test flakiness frequent rare

Table 6.1: Contrasting unit tests and
system tests based on the observations
for SAP HANA.

dynamic unit test extraction 143

In complex software projects, the effort of coding a system test (in par-
ticular when targeting a small part of the code) can be much lower than
writing a suite of equivalent unit tests. We observed this phenomenon in
the development process of SAP HANA. In this project, system tests lever-
age a Python framework and typically consist of a simple SQL statement
that is executed and the result is checked for correctness. Such new system Creating unit tests can require more

effort than creating system tests.tests are simple to write and to maintain. In contrast, coding a single unit
test (which is written in C++) may require multiple hours. This can be
attributed to several factors: a complex process of setting up the compi-
lation targets, manually writing unit tests in a test framework (involving
preprocessor macros), identification of object creation steps, and, for legacy
code, modifications to a complex C++ codebase to make it testable.

Consequently, developers are more inclined to write system tests even
if they want to test only a specific functionality of the product. However,
the resource demand incurred by the system tests is substantial. Therefore,
we propose dynamic unit test extraction, or test carving [81, 167] to reduce Dynamic unit test extraction

the resource consumption. To this end, a system test is executed in an
instrumented environment, and values of input arguments and outputs for
targeted functions are recorded. Then, we use this data and a template
framework to generate the source code of the unit tests.

Prior work on carving targeted Java [81], FORTRAN [123], or R [167].
However, these techniques have limitations for large projects such as:

1. object serialization in a custom format,
2. missing support for C++ ,
3. scalability issues for large projects with millions of lines and functions.

We address these issues by proposing a scalable approach for extracting
“source-code-only” unit tests in C++ . Our method utilizes time-travel de- Time-travel debugging

bugging [84, 250], i.e., reverse-execution of a program flow to reconstruct
object creation and modification. Therefore, only source code is generated,
and any “non-code” representation (e.g., binary data, XML) is not required
for the unit test setup. This improves the maintainability of the extracted
tests ([220]) and increases their acceptance by developers at SAP HANA.

Moreover, we specifically target C++ . Several approaches for Java [81,
224] require substantial modifications to work in C++ regarding the memory
model and availability of runtime information about internal program state.
Moreover, authors of previous work for FORTRAN and R question whether
their approaches can be transferred to C++ [123, 167]. Finally, we use
differential analysis on coverage data to identify test intentions and reduce
the number of generated unit tests. Our contributions are:

• An approach based on time-travel debugging for generating maintainable
C++ code for unit test setup.

• A prototypical implementation for extracting maintainable unit tests in
C++ source code by capturing data from executions of system tests.

• A process for reducing test costs by combining a differential analysis on
coverage data, unit test extraction, and a multi-stage testing strategy.

• An evaluation of our approach in terms of potential test time savings, ex-
traction overhead, developer acceptance, and coverage comparison against
test generation via symbolic execution.

144 testing in very large software projects

6.1.2 Motivation

In this section, we illustrate via examples how time-travel debugging is
leveraged to extract maintainable unit tests. For confidentiality reasons, we
cannot show source code of SAP HANA. Therefore, we use examples from
SQLite [121]. SQLite provides 1 000 <name>.test files implementing 40 000
test cases for the publicly available test suite (so called TCL Tests) [121].
For instance, main.test tests main.c and contains tests such as:

1 do_test main -1.8 {
2 db complete {DROP TABLE "xyz ’;}
3 } {0}

An analysis reveals that a large amount of test cases in main.test test
the function int sqlite3_complete(const char *zSql) in complete.c,
a function with 158 lines and 41 executable lines of code (Section 6.1.3.2).
While executing main.test, we record the values of arguments and return
values for sqlite3_complete, and generate 52 unit tests with distinct sets
of arguments for this function. These test cases can be reduced to only 4
tests with identical cumulative line coverage (Section 6.1.3.5):

1 TEST(SimpleExample , test1) { // default template
2 int expected = 0; // extracted oracle
3 int result = sqlite3_complete ("DROP TABLE \" xyz ’;");
4 EXPECT_EQ (expected , result);
5 }
6 TEST(SimpleExample , test2) { // short version
7 EXPECT_EQ (0, sqlite3_complete ("\n /* */ EXPLAIN -- A comment

\n CREATE /**/ TRIGGER ezxyz12 AFTER DELETE backend BEGIN \
n UPDATE pqr SET a=5;\n"));

8 }
9 TEST(SimpleExample , test3) {

10 EXPECT_EQ (0, sqlite3_complete ("\n CREATE TRIGGER xyz AFTER
DELETE [; end ;] BEGIN \n UPDATE pqr ;\n"));

11 }
12 TEST(SimpleExample , test4) {
13 EXPECT_EQ (1, sqlite3_complete ("\n CREATE -- a comment \n

TRIGGERX tangentxx AFTER DELETE backend BEGIN \n UPDATE
pqr SET a=5;\n"));

14 } // we omit repeated whitespaces for brevity

These 4 tests execute 10 times faster than main.test without reducing line
coverage. As one of the main purposes of main.test is testing the complete
function, we could probably run the extracted tests instead of the large
test suite (Section 6.1.3.6). This example shows the overall process and
illustrates potential test costs savings.

Since the function is fairly simple and the tests in main.test are probably
already designed as unit tests, we also provide a more complex example that
involves object creation. We identify a central function of SQLite in hash.c
and trace its arguments in order to extract a unit test:

1 * sqlite3HashInsert (Hash *pH , const char *pKey , void *data)
2 // example data when we execute table . test :
3 pH: 0x16327e8 ->{ htsize =0, count =1, first =0 x15bcd10 , ht =0 x0}
4 pKey: 0 x153f678 -> " NOCASE "
5 data: 0 x153f600 -> ?

The function requires object pH of type Hash, a pointer to a string, and
an argument data of an void type pointer. For a developer who aims to
create an unit test, creating code for correct instantiation and initialization
for the arguments pH and data might require a lot of effort. By leveraging

dynamic unit test extraction 145

a time-travel debugger (active during execution of a system test), we can
“execute backward in time” to reveal the construction of object pH: Reverse execution

1 -> reverse execute
2 Hardware access watchpoint 6: *0 x16327e8
3 Value = 0
4 sqlite3HashInit (pNew= pNew@entry =0 x16327e8)
5 { htsize = 0, count = 0, first = 0x0 , ht = 0x0}
6

7 -> reverse execute
8 Hardware access watchpoint 6: *0 x16327e8
9 Value = 0

10 0 x00007fd19f2eaa2b in __memset_sse2 () from ...

Based on this data, we can construct pH by allocating memory for it and
subsequently calling sqlite3HashInit. To finalize the initialization of pH,
we must set count to 1 and construct the object referenced by first. To
create the third argument data, we perform another reverse execution:

1 -> reverse execute
2 Hardware access watchpoint 7: *0 x1632890
3

4 Old value = 23275784
5 New value = 0 // rev. exec . => old/ new switched
6 findCollSeqEntry (create =1, zName =0 x52e828 " NOCASE ", db =0

x16325e0) at ...
7 165 pColl [0]. zName = (char *)& pColl [3];

The construction of data requires object db, which is a central sqlite3
data structure, that can be created by the same recursive process.

The extracted unit tests could replace a system test as in table.test,
resulting in a time reduction by a factor of 100. In the case of SAP HANA,
the execution times of system tests vary between 30 minutes to several
hours. Replacing them by unit tests can result in a speedup factor of up to
10 000. Therefore, extracting unit tests from system tests is beneficial and
time-travel debugging allows us to extract maintainable unit tests.

6.1.3 Approach

Figure 6.1: Overview of our approach
for test cost reduction via dynamic unit
test extraction.

The examples in Section 6.1.2 show that several challenges must be solved
to dynamically extract unit tests from system tests if the unit tests should be
maintainable and the collection process should be feasible for large projects.
This section explains the details of our approach to solve these challenges.
Fig. 6.1 presents an overview of the individual steps of our approach.

146 testing in very large software projects

6.1.3.1 Definitions

We use the definition of (line) coverage as provided in Chapter 3. We use the
term unit test to describe a test that tests only a small unit of the code, and
the term system test to describe a test that executes the complete system.
Note that in practice developers do not always adhere to these definitions.

6.1.3.2 Preprocessing

In this step, we gather information about the C++ source code.
Static Analysis: We gather accurate information about the C++ source

code, notably a list of all types, functions, and arguments. Later steps
require such information as a binary-only analysis would not be sufficient
to create the C++ source code for the extracted unit tests.

Test Core Detection: We define the core of a test to be the part of
the source code that is intended to be tested by the test. We focus on a
function level, and so our test core is always a set of functions 𝐹 . For unit
tests, the test core typically contains exactly one function. For system tests,
the test core can contain a large number of functions.

We identify the test core by analyzing the coverage data as explained in
Section 6.1.4.2. Alternatively, a developer can manually specify a function
to investigate to reduce time for manual investigation and test code writing.

For SAP HANA, system tests typically execute more than 700 000 lines
of code. However, we noted that frequently, the purpose of a system test is System tests execute over 700000 LoC.

not to test all of these lines, but to test for some specific functionality that
comprises only a small subset of all lines, the test core. A calculation of test
similarities (Table 6.2) supports this argument.

6.1.3.3 Dynamic Test Data Extraction

In this step, we execute the set of functions 𝐹 identified by the previous step
to dynamically extract all required data for the generation of unit tests.

Conceptually, we want to log arguments and return values for each call
of a targeted function 𝑓 . Section 6.1.4.3 provides a brief discussion of
multiple approaches we investigated and partially adapted. In practice, our
implementation is adaptive to the types of arguments for 𝑓 , i.e., a function
with only arguments of type fundamental ([138], 6.9) requires less effort than
a function with complex objects as arguments. In this section, we focus only
on the most advanced approach for complex objects.

We use time-travel debugging [22, 23, 84, 155, 205, 206, 250, 253] to follow Time-travel debugging

the creation and modification of complex objects backward in execution time.
Time-travel debugging allows us to interrupt the program execution at the
entry of a specific function and for each function argument of type object, we
can follow the execution flow of the program in a reverse manner and watch
the object modification and creation. This approach provides an accurate
but also fast way to observe all required steps for the object setup.

To execute the functions in 𝐹 , we execute the original system test, or,
based on coverage data, all tests that execute a function in 𝐹 . During the
test execution, we record for each function in 𝐹 the argument and return
values, and, if required, more data such as the corresponding objects.

dynamic unit test extraction 147

6.1.3.4 Unit Test Creation

In this step, we use the results of the dynamic test data extraction and a
template framework to generate the source code for the unit tests. We use
the observed argument values to execute the function in a unit test and
we use the observed return value (and more data depending on the specific
function details) as a test oracle. We assume that the system test success
implies the successful execution of all intermediate functions.

6.1.3.5 Test Suite Reduction

In this optional step, we reduce the amount of extracted unit tests. We
apply coverage-based reduction as explained in Section 6.1.4.5. Our work
does not focus on this optional aspect since we received mixed feedback
from developers of SAP HANA about the benefit of this step. One group of
developers suggested keeping all tests because the generation is automated
and the execution time is very low. Another group suggested keeping the
number of unit tests “reasonably” low to support further maintenance.

6.1.3.6 Test Cost Reduction

In this step, we reduce the test costs by replacing the original system tests
with the extracted unit tests for the test core. We assume here that the
extracted unit tests evaluate the test core similar to the system test.

Under this assumption, the unit tests can replace the system test or, more
realistically, the system test can be executed less frequently, i.e., moved to a
later testing stage. A testing strategy that involves multiple stages provides Unit tests displace system tests.

a solution to reduce test costs in a safe way, i.e., the costs of frequent
system test runs are reduced by the dynamically extracted unit tests and
infrequent system test runs prevent any loss of quality for the final project.
See Section 5.2 for further details about the multi-stage testing strategy.

6.1.4 Implementation

We highlight in this section several key aspects of our implementation.

6.1.4.1 Static Analysis

We implemented a Clang [171] plugin for performing the static analysis. For
the complete C++ source code of SAP HANA with several million lines of
code, we gather 1.60 TiB of information about:

• Functions (≈ 3.20 million), e.g., source file, line numbers, signature, re-
turn type, namespace, visibility

• Types (≈ 600 000), e.g., source file, line numbers, inheritance, namespace,
constructors, member functions, friends, members

• Arguments of functions (≈ 3 million), e.g., name, type, modifiers

As Clang successfully compiles the source code of SAP HANA, we assume
that information provided by the Clang plugin is accurate and complete. For A Clang compiler plugin provides accu-

rate information.instance, Clang resolves type aliasing, handles preprocessor macros trans-
parently, supports templates, informs about inlined functions and implicitly
generated functionality, or recognizes class hierarchies and object members.

148 testing in very large software projects

6.1.4.2 Test Core Detection

We collect coverage data for all system tests as described in Section 6.1.3.1
and apply differential analysis as follows. For a test suite 𝑆 with a system
test 𝑇 ∈ 𝑆 and line coverage data 𝐶 for 𝑇 , we remove each line in 𝐶 that
is also covered by other tests in 𝑆. The result of this process is the subset
𝑈 ⊆ 𝐶 that is tested only by 𝑇 . Alternatively, we calculate 𝑈 so that 𝑈 ⊆ 𝐶

contains only these code fragments that are covered by the smallest subset of
other tests. We map 𝑈 to the corresponding functions within the source code,
resulting in a set of functions 𝐹𝑢. We have to adjust for randomness, i.e.,
remove all functions that are known to exhibit nondeterministic execution.
We identify such functions by comparing multiple coverage runs. The process
results in a set of functions 𝐹 . The cardinality of 𝐹 depends on the system
test characteristics. Based on our experience, the cardinality very low,
typically reaching a value of 1. Fig. 6.2 shows an example where test 1 is
the only test to cover fragment 6, in contrast to code fragment 2 that is
executed by all tests. In this case, fragment 6 could be the core of test
1 and fragment 2 could implement functionality that is shared by all test
executions, e.g., memory management.

Source Code Fragment (𝑆𝐶𝐹)

Test 1 2 3 4 5 6 7 8 9

Test 1 x x x x x x x
Test 2 x x x x
Test 3 x x x x x x
Test 4 x x x x
Test 5 x x x x x x

Figure 6.2: Example of code fragments
executed by multiple tests. A green
color with 𝑥 indicates that a test exe-
cutes the corresponding fragment. By
differential analysis, we can identify
that only test 1 covers 𝑆𝐶𝐹 6 and 𝑆𝐶𝐹

2 is covered by all tests.

6.1.4.3 Dynamic Test Data Extraction

We extract input and output data for a function call. More precisely, we
monitor the values of arguments of a function as the execution calls the func-
tion and we monitor the return values. In either case, we will obtain memory
content in a binary format. However, we aim to generate a developer-friendly
presentation in terms of typical source code, i.e., instead of using a binary
representation for memory state, we want to provide the source code that
is required to obtain the desired state.

We propose the use of an adaptive approach for dynamic unit test extrac-
tion depending on the function arguments:

• Extract argument and return values using a debugger (Section 6.1.4.3) if
the types are fundamental or enum.

• Extract argument and return values, and object members with a debugger
if the types are object-type with only public members of type fundamental
or enum and a default constructor.

• For other object types, apply time-travel debugging (Section 6.1.4.3) to
trace object creation/modification.

• For member functions, use any of the previous methods to extract the
corresponding object and dependent objects.

dynamic unit test extraction 149

Debugger: A debugger allows investigating data and execution flow
of a function without recompilation. We use GDB [237] which provides a
convenient Python interface for automation and handles a wide range of
C++ and x64 specific behavior. We also developed tools for GDB which
support additional features such as handling recursive function calls beyond
the capabilities of the GDB finish command.

We use GDB without time-travel debugging for types fundamental or
enum. For complex types, such an approach is not suitable. They may have
private fields or constructors with additional dependencies. Tracking the
creation of such complex objects with GDB leads to impractical overheads
for our application. The overheads are due to the need for multiple test
executions or extensive debug monitoring.

Time-Travel Debugger: A time-travel debugger enhances a debugger
with the ability to execute a program backward. In practice, the execution
does not strictly flow backward. Instead, state snapshots are used to simulate
a backward execution. For our implementation, we use UndoDB [250]. UndoDB

UndoDB analyzes the binary that is executed and determines all sources of
nondeterministic data such as system calls. These sources of nondeterminism
will be captured during runtime. In addition, UndoDB creates copy-on-
write snapshots of the program state during execution. UndoDB then allows
reverting the execution flow to a historical state 𝑆 of the process image.
The program continues from 𝑆 and executes all deterministic operations. In
the case of nondeterministic operations, the captured events are replayed.
When reverting to a program state between two memory snapshots, UndoDB
identifies the closest snapshot and forwards the execution to the desired state.

Figure 6.3: Using time-travel debug-
ging to identify how object 𝐶 is created
and modified. In this example, 𝐶 is cre-
ated in steps 𝐶1/𝐶2, and modified in
steps 𝑀1 to 𝑀3.

The authors of UndoDB state that nondeterministic operations represent
only a small fraction of a typical software program execution [250]. Hence,
UndoDB works even for large programs such as SAP HANA. UndoDB
extends GDB [237], resulting in effortless migration between both tools.

Time-travel debugging provides an accurate and fast approach to identify
the construction of complex objects because it allows following the execution
flow backward until a point of interest. Fig. 6.3 visualizes the concept.
Assume that the first argument of a function 𝑓 is a complex object 𝐶. We
start reverse execution at time 𝑡2 corresponding to an invocation of 𝑓 . We
watch the memory address 𝑀1 of 𝐶 for a write access backward in time.

150 testing in very large software projects

Our watchpoint is triggered at 𝑡0; here the innermost frame is a constructor
(static analysis (Section 6.1.4.1) provides this information). By comparing
the state of 𝐶 at 𝑡0 and 𝑡2 we detect that a member variable 𝐴 has a different
content. We go back to 𝑡2 and watch the memory address 𝑀2 of 𝐴 for a
write access backward in time until 𝑡1. For a unit test, we combine the
source code for the object construction at 𝑡1 with the source code for the
object modification at 𝑡2 to create 𝐶2, and call 𝑓 with 𝐶2. 𝐶2 is in the same
state as 𝐶 for the system test. The test oracle is either the result of 𝑓 or
the state of 𝐶 after the function call.

Alternative Approaches: We also investigated other techniques to
monitor a function during execution such as binary instrumentation frame-
works, source code level instrumentation or switchable monitoring state-
ments. Due to limitations in terms of runtime and compile time overhead
we refrained from further considering them.

An instrumentation framework (e.g., Intel Pin [71, 180]) can modify the bi- Instrumentation framework

nary representation of a program and inserted statements to collect function
arguments and return values. In general, such tools support modifications
for all functions identified by a search pattern and the performance overhead
can be small if used sparsely. However, for complex arguments, the setup
process requires recursive dependency tracking which can lead to a large
amount of instrumentation and considerable resource consumption overhead.
In addition, a precise understanding of x64 calling conventions and their
register placement is required to monitor function calls.

Another approach is instrumentation on the source code level before or Instrumentation on the source code
levelas part of the compilation. This allows the compiler to optimize the modi-

fications resulting in reduced performance overhead. In addition, it is not
necessary to have a good understanding of calling conventions for functions,
because the compiler transparently applies them. However, complex argu-
ments can require several recompilations to recursively track their creation,
which results in a large time overhead. For instance, recompilation times
can range from seconds to a single full recompilation of SAP HANA, which
requires on a system with 40 cores (3 GHz CPU clock rate) up to 3 hours.

A project can be enhanced with switchable monitoring statements, de- Switchable monitoring statements

pending, e.g., on environmental variables. This avoids the re-compilation
overhead and is likely to have low runtime overhead due to CPU branch pre-
diction. However, we found considerable runtime overheads in performance-
critical code sections due to different decisions for alignment and inlining.
Multiple test reruns can still be required to identify the placement of all
switches for gathering all required setup steps for complex objects.

6.1.4.4 Unit Test Creation

We convert the extracted data into unit tests via configurable templates.
The only limitation we faced is the integration within the build system.
Selecting the correct minimum amount of header files, dependencies, linking
options, or test file placement, is currently done manually. Our work did
not focus on this aspect and we argue that it could be solved by including
all header files based on static analysis, linking the whole project to satisfy
all possible dependencies, and using a single directory for test files.

dynamic unit test extraction 151

We also filter all duplicates when we convert the extracted data into unit
tests, i.e., we select only one test for each distinct combination of argument
and return values. In an extreme case, this reduces the number of unit tests
for a function of SAP HANA from 3 224 680 to 256.

6.1.4.5 Test Suite Reduction

In this optional step, we apply coverage-based reduction, i.e., we keep only
the subset 𝑆𝑇 of tests 𝑇 such that 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝑇) = 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑇) and the
cardinality |𝑆𝑇 | is lower or equal to the cardinality of any other subset with
the same coverage. More precisely, we utilize a heuristic solver for the mini-
mum set cover problem [53]. For the example mentioned in Section 6.1.4.4
with 256 distinct tests, only 7 tests remain after this step.

6.1.5 Evaluation

We investigate the following research questions (RQ):

RQ13 What reduction of test costs associated with frequent system test execu-
tions can we expect by applying our technique?

RQ14 How large is the overhead of recording data for unit test extraction during
system test execution?

RQ15 How does our approach compare to tests generated by symbolic execution
(in particular, KLOVER [258]) in terms of line coverage?

RQ16 To what degree the developers of SAP HANA accept the extracted unit
tests, and what is their feedback?

6.1.5.1 Environment

We use a workstation with 1 TiB RAM, 160 cores (2.10 GHz clock frequency),
and Linux (SLES 12). The state of our study projects is as of 2018-08.

6.1.5.2 RQ13 Test Cost Reduction

We analyze the potential test cost reductions in two ways:

1. We measure the test time reductions achieved by replacing system tests
via suites of unit tests.

2. We measure the overlap between lines covered by different system tests.

Test Time Reductions: We analyze the potential test cost reductions
on SQLite and SAP HANA. For SQLite, we measure the original time 𝑇𝑂

for system test executions, and we measure the time 𝑇𝑈 for the execution of
the corresponding unit tests. We generate the corresponding unit tests for
SQLite by our approach. We verify manually whether our unit tests reflect
the content of the system test and remove all cases where not.

For SAP HANA, we estimate the potential test cost reduction by a
comparison of existing system tests against existing unit tests. This is
possible in 107 cases. Note that the existing unit tests are only proxies for
the potential time savings, as we cannot assume that they cover the same
functionality as the system tests. However, due to the large number of tests,
we expect that the magnitude of our measurements is reasonable.

152 testing in very large software projects

We also analyze a second scenario where we include the setup times for
the system tests. They consist of compilation times and system preparation
(e.g., installation and startup). In this with setup scenario, we measure the
time 𝑇𝐶 from compilation start until the end of a system test execution.
The setup time for SQLite are very low, therefore we omit the results.

For each time measurement, we calculate the arithmetic mean of 20 single
measurements. We report the ratios 𝑇𝑂/𝑇𝑈 and 𝑇𝐶 /𝑇𝑈 in Fig. 6.4.

10 15 20 25 30

SQLite

0 100 200 300 400 500 600

SAP HANA

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

SAP HANA
with setup

Figure 6.4: Potential test time reduc-
tions due to replacing system tests by
unit tests (as ratios of system test ex-
ecution time to unit tests execution
time). Factors for SQLite based on
extracted unit tests, results for SAP
HANA based on existing unit tests.

For SQLite, the ratios are rather small. We attribute this fact to:

1. The small code size of SQLite with less than 150 000 lines of code. SQLite
starts an empty database in less than a second.

2. SQLite TCL tests mix SQL system tests and unit tests.

It is therefore unclear, whether a project such as SQLite would benefit
from our approach. We expect that for projects with a fast test suite, the
test cost savings could be too small to justify the required time investment
to apply our technique. However, such projects still benefit from other
advantages of unit tests such as more precise error localization

For SAP HANA, the results reflect our initial assumption that system
tests have considerably higher test costs compared to unit tests. The addi-
tional setup costs for system tests increase the total time cost by approx-
imately a factor of 10. However, in practice, the factor depends on the
configuration of the test framework and the testing strategy, which are both
rather complex for large projects.

Coverage Overlap: To show that there is indeed a considerable overlap
between sets of lines covered by different system tests, we use distance
functions to calculate test execution similarities between two coverage data.
As defined in Section 3.3.3, we use 𝑑𝑢 (the number of lines executed by only
one test) and 𝑓𝑠 (the number of lines executed by both tests).

For SQLite, we consider the set of coverage data 𝑆𝐶𝑆 for all test suites
represented by .test files, but we do not include fuzzy tests or tests only
relevant for special configurations (testing nothing). For SAP HANA, we
consider the set of coverage data 𝑆𝐶𝑃 for all system test suites. We cal-
culate 𝑑𝑢, 𝑓𝑠 for all elements in {(𝑥𝑖, 𝑥𝑗) | 𝑥𝑖, 𝑥𝑗 ∈ 𝑀 and 𝑖 > 𝑗} where
𝑀 represents 𝑆𝐶𝑆 or 𝑆𝐶𝑃 , i.e., we consider the “upper triangle” of the
Cartesian product 𝑀 × 𝑀 . We then report the minimum, maximum and
arithmetic mean (AM). Table 6.2 presents the results.

dynamic unit test extraction 153

Covered Lines 𝑑𝑢 𝑓𝑠

Name # Min AM Max Min AM Max Min AM Max

𝑆𝐶𝑆 721 8 670 11 626 19 822 40 3 974 11 833 8 058 9 639 17 677
𝑆𝐶𝑃 1 874 15 221 703 419 1 095 506 428 274 412 1 131 136 471 566 214 1 038 969

Table 6.2: Distance metrics for cover-
age data of all test suites 𝑆𝐶𝑆 (SQLite)
and 𝑆𝐶𝑃 (SAP HANA). 𝑑𝑢 repre-
sents the “unshared” part, and 𝑓𝑠 the
“shared” part.

For SQLite, all tests execute the same set of 8 085 lines, because, to
our understanding of the source code, the test environment always starts an
empty database. For both projects, the percentage of the same lines that are
(on average) executed by all tests is fairly high (83 %, 80 %). This indicates
a large number of redundant test executions and therefore potential test
cost reductions. The minimal difference of two test suites is in both cases
comparatively low indicating that it would also be possible to replace two
system test suites by one system test accompanied by unit tests that cover
the differences between the original two system tests. We conclude that both
projects show the characteristic that system tests cover to a large fraction
similar code and the test core may only be a small fraction.

Answer RQ13
For projects with a fast test suite such as SQLite, the possible test cost
savings are comparably low with a factor less than 20. For SAP HANA,
the possible test cost savings can be up to a factor of 1 000. For both
projects, we expect that, in average, the test core is rather small and the
redundancy in terms of executed lines is rather large. Therefore we expect
considerable test cost reductions for both projects with our technique.

6.1.5.3 RQ14 Overhead

We investigate 50 system test suites for SAP HANA and 879 test suites
for SQLite. For each test suite, we measure the arithmetic mean of the
execution times for 20 executions in three configurations:

1. 𝑇𝑂 for the original configuration without modification,
2. 𝑇𝑆 for our approach using regular debugger (see Section 6.1.4.3),
3. 𝑇𝑇 for our approach with time-travel debugging (see Section 6.1.4.3).

We calculate the overhead factors 𝐹𝑆 = 𝑇𝑆/𝑇𝑂 and 𝐹𝑇 = 𝑇𝑇 /𝑇𝑂 and
present them in Fig. 6.5. For SQLite, the mean overhead factors are 17.86
for 𝐹𝑆 and 136.56 for 𝐹𝑇 . For SAP HANA, the mean overhead factors are
1.03 for 𝐹𝑆 and 13.43 for 𝐹𝑇 . Note that for SQLite, 𝑇𝑆 is within a range of
0.30 s to 140 s and 𝑇𝑇 within 0.60 s to 194 s.

Due to the lack of execution progress, we had to abort the measurements
for 𝑇𝑇 for SQLite in 1 case and for SAP HANA in 7 cases. This shows that
time-travel debugging currently does not support all scenarios. The root
causes remain unclear, we assume that frequent occurrence of nondetermin-
ism resulted in large runtime overheads.

We did not measure the memory overhead. The methodology to measure
varying memory usage within a shared memory system is very complex.
Furthermore, we never experienced memory issues during our experiments.

154 testing in very large software projects

0 20 40 60 80

𝐹𝑆

1 1.1 1.2 1.3

0 200 400

𝐹𝑇

SQLite
0 20 40

SAP HANA

Figure 6.5: Runtime overhead factors
for system test executions with record-
ing via regular debugger (𝐹𝑆) and time-
travel debugger (𝐹𝑇).

We identify the startup time of our approach as a major cause of the
large factors of SQLite. Most of the SQLite test suites run in less than a
second, therefore a fixed time for the startup can considerably increase the
overhead factors even when the execution time of the tests is similar.

For SAP HANA, the small overhead factors for 𝐹𝑆 follow our expecta-
tions for GDB with hardware breakpoints as they should have a negligible
overhead to the execution time of the application. For 𝐹𝑇 , the overhead
is still in a practical range for large projects. However, the large standard
deviation and several timeouts indicate that the behavior of the test has a
large influence on the actual overhead.

Answer RQ14
Dynamic unit test extraction via time-travel debugging leads to an average
factor for runtime overhead of 13.43 for SAP HANA. For SQLite, this
average factor is 136.56. Nevertheless, the approach is still feasible as test
extraction is performed rarely.

6.1.5.4 RQ15 Comparison against KLOVER

KLOVER is one of the few recent research tools for to automatically gener-
ates tests in C++ [258]. However, the purpose is different to our approach
as we aim to extract unit tests and KLOVER generates new unit tests via
symbolic execution. However, we still compare to KLOVER in terms of num-
bers of lines executed by the generated tests (i.e., line coverage) too obtain
additional information on how both approaches handle complex situations

We identify several files of SQLite where the line coverage of KLOVER is
reported ([258], Fig. 4, values extracted automatically [221]). We select the
files hash.c with the highest and vdbe.c with the lowest manual coverage
(we skipped random.c because unit tests for randomness require a different
methodology). In addition, we also analyze complete.c.

We manually setup memory management. SQLite dynamically initializes
memory management functions such as malloc during startup and fails with
nullpointer function access if they are not initialized. We categorize this as
a static access, a limitation described in Section 6.1.6. We expect that the
authors of KLOVER implemented the same adaptation.

For each file, we identify the set of functions by static analysis. For each
function 𝑓 in a file, we find all tests 𝑇𝑓 that test this function by using our
test core approach. Then, we execute each test in 𝑇𝑓 and dynamically extract
unit tests for 𝑓 . We skip the test reduction step. We only investigate the
final line coverage which is not changed by the coverage based test reduction.
Fig. 6.6 reports the results for all study cases.

dynamic unit test extraction 155

Line Coverage [%]

KLOVER

File Manual Automatic Our Approach

complete.c 82% 56% 78%
hash.c 98% 65% 100%
vdbe.c 1% 2% 1%

Figure 6.6: Results reported by the au-
thors of KLOVER [258] and our ap-
proach.

In the case of complete.c, the unit tests extracted by our approach cov-
ered all executable lines except for a function with a void pointer argument:
function int sqlite3_complete16(const void *zSql). We do not have
information about the void pointer and reverse execution lead to the external
TCL library where our analysis aborted. In fact, the argument is extracted
by a TCL function call: Tcl_GetByteArrayFromObj(objv[1], 0). Our
implementation does not support such external code.

In the case of hash.c, our approach creates a large amount of tests
for unsigned int strHash(const char *z), a function calculating hash
values. This set of tests likely has limited value because the distribution
of return values is a more interesting property to check for a hash function
than verifying hashes of individual inputs.

For vdbe.c, our approach was not able to extract the state for the argu-
ments of the sqlite3VdbeExec(Vdbe *p) function that represents a large
part of this file. The argument is a rather complex object that represents
a virtual machine with its own state and contains the state of the global
database via a pointer. We extracted several instances of this object that
passed a manual inspection for correctness but resulted in segmentation
faults when executed. We assume that KLOVER was also not able to gener-
ate this complex object, which would explain the low coverage of KLOVER.

We are not able to identify the strengths and weaknesses of our approach
against KLOVER in terms of line coverage due to the unavailability of the
source code for the tests generated by KLOVER. However, we expect that in
all cases when we successfully extract the state of arguments and therefore
call a function, we benefit from a large system test suite and can reach a high
coverage. In contrast, KLOVER not only has to construct an argument to
be able to call a function but must also resolve all conditions and branches
within the function to reach a high coverage.

Answer RQ15
For source code covered by system tests, our approach results in higher
coverage compared to KLOVER when arguments can be successfully mon-
itored. However, there are also cases where we are unable to extract unit
tests with our approach resulting in lower coverage compared to KLOVER.

6.1.5.5 RQ16 Developer Acceptance and Feedback

Developers of SAP HANA used a prototype implementing our approach to
extract 789 distinct unit tests for multiple C++ files. These unit tests were
submitted (as source code) to the central repository where a mandatory
code review is required for acceptance. All 789 unit tests were accepted by
developers with a positive code review.

156 testing in very large software projects

Since we do not focus on a detailed user study, we only briefly summarize
the feedback from code reviews. Some developers appreciated the number
of tests, some favored to reduce the number of tests with a test suite reduc-
tion approach (see Section 6.1.4.5). Some developers pointed out that the
extracted tests should be extended with more input values based on their
code understanding. We conclude that the extracted unit tests can provide
a better understanding of the test coverage compared to system tests. Some
developers have shown interest in applying our tool to more functions.

Based on the acceptance rate and feedback, we assume that develop-
ers generally accept maintainable unit tests with test oracles that provide
additional unit test coverage if they do not require additional effort.

Answer RQ16
Developers of SAP HANA accepted all of 789 extracted unit tests. The
corresponding code reviews provided positive feedback.

6.1.6 Limitations and Threats to Validity

6.1.6.1 Conclusion validity

Due to the size of the projects, we decided to evaluate only samples. A more
comprehensive study is required to improve the confidence in our results.
However, the existence of results shows that our approach is practically
feasible, it is only unclear to which extent. In Section 6.1.8, we discuss the
work of Křikava and Vitek where they show the feasibility of dynamic unit
test extraction in a large evaluation for R.

6.1.6.2 Construct validity

Our definition of a test core may lack generalization. Based on discussions
with our industry partner, there are cases where the results for test core
identification are confirmed unanimously, but in other cases, there are dis-
cussions whether error checking code, utility code or pre/postprocessing
code should be involved. Therefore, the final decision of whether to displace
a system test is currently done by developers.

6.1.6.3 Internal validity

Due to test flakiness, we are unable to evaluate the effectiveness of our
approach in terms of failure detection rate. When we analyze the failure
detection rate on historical data, the analysis is biased by a large percentage
of flaky system tests. For SQLite, we found a flakiness rate of 0.60 % for
test executions as we measured execution times. The flakiness rate for SAP
HANA is also larger than 0. Therefore, we would not know whether a test
failure indicates flakiness or limitations in our approach. However, we argue
that our approach does not reduce the quality for the final product due to
the multiple testing stages.

To the best of our knowledge, mutations would not provide further in-
sights, because when a system test execution can detect a mutation in a
function 𝑓 , our extracted unit tests for 𝑓 can detect the mutation, too.

Our current implementation does not support all the functionality pro-
vided by C++ . The most important issues are:

dynamic unit test extraction 157

1. We do not fully support calls to static methods that change global state,
such as file system read and write calls or network read and writes. For
manual unit tests, the typical solutions in C++ involve rewriting the source
code or introducing a completely new implementation with preprocessor
or a linking order approach. It is unclear to us how to provide a general
automatic and maintainable solution for this problem. Related work also
report this problem as unsolved.

2. We do not fully support implicit C++ code such as generated constructors
or several variants of template instantiations.

3. Pointers with void types require manual intervention. When a function
requires a pointer to a memory region as an argument, the caller typically
provides a second argument size. This is a frequent pattern in C code but
also appears in C++ code. We may identify simple cases with a heuristic.
However, complex cases require human intervention.

4. We do not support several specific corner cases or surprising usage of
the C++ standard [138], i.e., code that uses infrequently used idioms. We
attribute their presence to the size and age of the studied industry project.

System tests have several purposes. It is unclear whether our approach
would be beneficial for, e.g., performance, security, or usability tests.

We cannot prove the correctness of the extracted tests. We assume that
a successful system test execution implies a correct behavior of the called
functions. However, two functions could produce wrong results, but the
combination of them might mask the failure in a system test. Fault masking
is a widely known phenomenon, but we did not encounter such a case.

6.1.6.4 External validity

SAP HANA has several specific properties. It is

1. a database system,
2. an industrial project,
3. a large project,
4. tested by a large set of system tests.

The database context could affect the expected cost savings because
software in other areas might have a different proportion of system tests to
unit tests (see Section 6.1.7). The incentive for developers to minimize time
and effort for test writing (and so prefer to code system tests instead of unit
tests) could be affected by the industry setting. However, we observed a
similar pattern in SQLite. For small projects, where all tests execute in less
than a minute, further test cost reduction might not be beneficial. Finally,
our approach requires an existing suite of system tests.

6.1.7 Generalization and Utility

We expect that our approach or parts thereof can be used in other program-
ming languages. Related work already targeted Java, R or FORTRAN.

Our approach can considerably reduce test costs when system tests ex-
ecute to a large degree some common code (e.g., startup/teardown code).
Database systems show this characteristic, but it is also present in compilers,
GUI applications, or data analysis software.

158 testing in very large software projects

Dynamic unit test extraction can also be useful in cases where no system
tests exist, but any other form of execution is possible. For example, a
developer can manually execute the program and extract unit tests for a
specific part with less time effort than manual unit test creation.

We expect that dynamically extracted unit tests can be used as input for
other techniques such as test case amplification, test case reduction, program
analysis, or automated fault localization. Differential analysis on coverage
data or time-travel debugging could improve other research techniques in
terms of accuracy and execution time.

6.1.8 Related Work

Previous work on extracting behavior of system tests use terms such as test
extraction, carving, capture and replay, or codelet extraction.

Křikava and Vitek propose automatic unit test extraction for R [167],
which is to our knowledge the closest related work. Their tool Genthat
extracts unit tests from execution traces of R programs provided by existing
tests and so-called vignettes, runnable examples within the documentation
of R packages. They instrument functions to record arguments and return
values which are used to create source code for unit tests. Genthat extracts
≈ 1.30 million unit tests (26 838 without redundancy) for 1 545 R packages.
We improve their work by reducing the problem size with a coverage based
analysis and the utilization of time-travel debugging to recreate the source
code for objects and their state. The authors also state that it is unclear
“whether (their) approach would yield reasonable results in C or C++ (...).”

Elbaum et al. use the term test carving to extract differential unit tests [80,
81]. Their approach captures the program state immediately before (𝑠𝑏) and
after (𝑠𝑝) the execution of a target unit 𝑚. They instantiate 𝑠𝑏 and compare
the modified 𝑚 with 𝑠𝑝. Their approach serializes objects into XML [33].
Such a representation has low developer acceptance in industrial projects
due to maintainability issues. Our approach recreates source code required
to reproduce the state of objects, and we support C++ instead of Java. Also,
we apply differential analysis on coverage data to reduce the problem size.

Saff et al. propose automatic dynamic test factoring [224, 225]. Given a
system test that executes a subsystem 𝑇 and interacts with other components
𝐸, their approach generates unit tests for 𝑇 and introduces mock objects
for all interaction with 𝐸. For this, they record a transcript that contains
all procedure names and their arguments and return values. After the
subsystem 𝑇 is changed to 𝑇 ′, the transcript is used to verify that the
behavior did not change for any interaction of 𝑇 ′ with 𝐸.

Orso and Kennedy propose to record and replay all interactions with a
subsystem of interest within a software program [207]. They employ an
elaborated algorithm to reduce the size of the captured state by recording
only these parts that are required for the replay and recoding events that
recreate state to further reduce the state size. Joshi and Orso report on the
SCARPE tool that implements this technique [146]. In comparison to their
work, we target methods proposed by coverage based differential analysis
and we aim to recreate source code for the unit tests instead of serialized
object states and events. In addition, we support C++ .

dynamic unit test extraction 159

Hovy and Kunkel propose a technique to generate unit tests for legacy
FORTRAN code [123]. Their technique extracts data while running the
original application and uses this data for test inputs. This requires the
modification of the original application based on a static analysis with regular
expressions. Our approach uses precise information provided by our compiler
plugin and does not modify the source, therefore avoiding recompilation. In
addition, they state as a limitation that “we don’t believe that our analysis
approach with regular expressions would work for C or C++ ”. For objects,
they use serialization (although they consider “plain FORTRAN”) while we
recreate the C++ source code for the object creation.

Castro et al. propose CERE [42], a sophisticated tool for performance
benchmarks and optimizations that supports all languages supported by
LLVM [171]. CERE extracts a codelet, a specific part of the source code
such as a function, and creates a dump of the memory and cache dur-
ing program execution to allow codelet replay. Altogether, their approach
and implementation is promising but creates a binary state and LLVM-IR.
Although the textual IR could be an option for readable tests, it would intro-
duce a LLVM dependency and create additional complexity for translations
between LLVM-IR and C++ . Lee and Hall proposed a technique similar to
CERE but less sophisticated [172]. Kim et al. report on KGEN, a Python
tool that extracts FORTRAN kernels to standalone executables [157].

Jaygarl et al. propose to capture objects during execution and mutate the
states of these objects for test generation with high coverage [142]. Their
tool, OCAT, serializes objects in a global map during test executions and
mutates these objects in later steps to reach a high coverage level. Our
approach targets the extraction of maintainable unit tests and does not aim
to generate new tests. OCAT could be used to extend our approach.

KLOVER, developed by Fujitsu, targets C++ [177, 258] and extends the
basic concepts of KLEE [36] (a tool for C). They use symbolic execution to
automatically generate tests with high code coverage. Symbolic execution
solves constraints that are required to reach specific parts of the source code.
However, such tests lack a test oracle. Therefore, such tests typically search
for the violation of implicit test oracles such as assertions or exceptions. Our
approach aims to generate unit tests with test oracles derived from system
tests. However, both approaches could be combined, i.e., the results of our
approach could provide inputs to improve the results of symbolic execution.

Yoo and Harman provide a survey of techniques to reduce regression test
costs [257] and Kazmi et al. for regression test case selection techniques [149].
Garg et al. investigate concolic execution for C/C++ [98].

6.1.9 Conclusions

We propose dynamic unit test extraction to reduce the cost of regression tests
in large C++ projects. Our approach combines several techniques, namely
differential analysis of coverage data to reduce the problem size, time-travel
debugging for accurate and fast extraction of complex object states, and
multiple-stage testing strategy for safe test cost reduction. We address
several limitations of previous research, such as limited maintainability of
unit tests, limited support for large projects or missing C++ support.

160 testing in very large software projects

Our evaluation shows that there is a large potential for test cost reduc-
tion with our technique. The runtime overhead of time-travel debugging is
feasible, and the code coverage of extracted tests can be higher compared to
other state-of-the-art tools. After applying our techniques to SAP HANA,
developers accepted in code reviews all of 789 extracted unit tests.

There are several directions for future work. Additional engineering work
is required to support more practical use cases, as a large project and C++ in
general provide complex challenges. A comprehensible empirical study is
required to better understand the strengths and weaknesses of our approach
compared to other existing work for C++ or for Java.

6.2 Object Creation

Unit tests in object-oriented programming languages must instantiate ob-
jects as an essential part of their set-up. Finding feasible method-call se-
quences for object creation and selecting a most desirable sequence can be
a time-consuming challenge for developers in large C++ projects. This is
caused by the intricacies of the C++ language, complexity of recursive object
creation, and a large number of alternatives.

To address this problem, we propose an approach that supports developers
by suggesting code with desired characteristics. We confirm the significance
of the problem by analysis of 7 large C++ projects and a survey with 143 Survey with 143 practitioners

practitioners. Based on gathered data we design an approach for recom-
mending optimized method-call sequences for object creation. Our approach
exploits accurate and efficient compiler-based source code analysis to build
an object dependency graph used for graph traversals.

An evaluation on a large industrial project shows that, given criteria
collected from developers, our tool proposes method-call sequences with a
higher or equal ranking for 99% of 1104 cases compared to manually crafted
solutions. Developer feedback and manual analysis confirm these results.
Moreover, sequences proposed by our approach are considerably shorter
than those found by approaches from previous work.

6.2.1 Introduction

In object-oriented programming languages [41, 52, 100], unit tests need to
initialize objects under test (or objects used as parameters) as an initial
part of the test set-up. This is typically achieved by appropriate sequences
of method-calls that create and mutate such objects. In programming lan-
guages with a rather strict type system like C++ , it is already a challenge to
find suitable method-call sequences to only create an object. For example,
constructors in C++ may be private and only accessible to friend classes.
Constructors might have parameters that require recursive creation of addi-
tional objects. Such dependencies can give rise to complex sequences with
many intermediate objects. Moreover, there can be a significant variety
of such sequences as for each (intermediate) object multiple constructors
and/or (static) factory methods might be available.

Developers must analyze the dependency hierarchy for a targeted object Dependency hierarchy

to (i) find out a set of feasible method-call sequences (in short sequences) for

dynamic unit test extraction 161

creating it, and then (ii) select an “optimal” sequence, if multiple options
exist. Focusing only on instantiating objects, we call the challenges (i) and
(ii) the object creation problem (OCP). For (i), it is not required to find all Object creation problem

feasible sequences, as typically a subset is sufficient for designing a unit test.
In the context of unit testing, a wide range of research work proposed

techniques for generating method-call sequences to set-up objects into a
desired state [92, 142, 182, 209, 228, 247, 249, 268]. In addition to these
sequence generation methods, there are also direct construction methods [32].
These work focus primarily on achieving a desired object state, assuming
that finding suitable code for object creation is trivial. However, through Related work assumes that the OCP is

trivialour discussions with developers in SAP HANA, we noticed a high devel-
opment effort for solving the OCP. They have reported that finding and
implementing object creation code as a part of unit test writing consumes a
considerable amount of time. Interestingly, setting up an object state after
its creation was typically considered a simpler task by these developers. We
attribute the neglecting of the OCP in the literature to the relatively small
project sizes that are used in evaluations and to the prevalence of other
programming languages such as Java or C# in these previous work.

In this work, we first study the significance of the OCP and characteristics
of suitable solutions by analyzing the code of large C++ projects and by
conducting a survey with practitioners. Based on these results, we propose
and evaluate an approach that suggests sequences of method-calls for object
creation in C++ according to desired criteria. Our contributions are in detail:

• Confirming the significance for the OCP in 7 large C++ projects via static
code analysis, and via a survey with 143 professional developers.

• Characterizing preferences of developers for object creation code based
on the above-mentioned survey.

• An approach for suggesting method-call sequences for object creation
that considers the identified preferences.

• An evaluation on 7 large C++ projects analyzing the effectiveness and
demonstrating the improvements compared to previous work.

6.2.2 Motivation

The OCP can be difficult in C++ even for short programs. Large projects
are likely to have recursive dependencies that need to be fulfilled when
creating complex objects. With several constructors at each recursion level,
the number of options for creating such objects can be huge. Consequently,
the difficulty of OCP is likely to increase with project size.

6.2.2.1 Constructors

1 class CA {
2 public :
3 int a;
4 CA(int a)
5 :a(a){}
6 };
7

8 struct CB {
9 int a;

10 };
11

12 class CC {
13 int& a;
14 };

Figure 6.7: Three simple classes.

In Fig. 6.7 we can create an object of type CA by calling the public constructor.
We can instantiate CB by calling the public default constructor, which is
implicitly generated ([138], Clause 15). Hence, a developer must know the
criteria for implicitly-defined C++ default constructors, which can be non-
trivial in some cases. CC shows such a case. The object cannot be created
with normal language constructs. CC has no default constructor (the member
a is a reference), and list-initialization is not possible (a is private) [138].

162 testing in very large software projects

6.2.2.2 Derived Class 1 class Base{
2 protected :
3 Base(int m) {/* ... */}
4 };
5

6 class Derived : Base{
7 public :
8 Derived (int n) {
9 /* ... */

10 }
11 Derived (ClassX & x) {
12 /* ... */
13 }
14 };

Figure 6.8: Object creation and inheri-
tance.

In Fig. 6.8, an object of type Base cannot be created directly due to the non-
public visibility of the constructor and absence of a default constructor [138].
However, inheritance allows us to use Derived for Base. We have two options
to create an object of type Derived. We might select the Derived(int)
constructor because the second constructor depends on additional objects.

6.2.2.3 Factory Pattern

1 class P {
2 friend class PF;
3 P(int id) {/* ... */ }};
4 class PF {
5 public :
6 PF(int id) : id(id) {}
7 PF(Classx & x) : id(x.id)
8 {/* ... */}
9 unique_ptr <P> createP (){

10 return unique_ptr <P >(
new P(17));

11 }
12 };

Figure 6.9: Object creation via simpli-
fied factory pattern.

In Fig. 6.9, we are unable to create an object of type P directly as the
only constructor is private. However, the class P declares PF as a friend.
Therefore, the private constructor of P can be called from PF. Hence, to
create an object of type P, we must discover the friend relationship to PF,
identify and call PF::createP(), and recognize that the return type, a
smart pointer, provides access to the desired object.

6.2.2.4 Summary

The wide range of patterns in C++ to provide objects can result in a large
search space for developers that require an object of a specific type. Even
more in large projects, a desired object can require additional objects as
dependencies which further increases the search space. Therefore, automated
recommendations for object creation can support developers.

6.2.3 Collecting Data from Users

We describe here the conducted interviews and a survey.

6.2.3.1 Methodology

Exploratory Interviews: We conducted the following experiment with 3
developers for 90 min each. In the first half, we observed the developers while
they create real-world unit tests. We noted their steps, and we qualitatively
assessed the amount of time required by each step. In the second half, we
interviewed the developers whether our observations were correct. Based
on this data we created a list of their distinct activities with associated
(relative) time requirements. The survey described below uses this list. We
omit further descriptions of the interviews because they were only explorative
while the survey provides the empirical foundation for our work.

Survey: We designed an electronic survey [163] and conducted a trial run
with 10 participants. Based on the results of this trial run and discussions
with the participants we selected the specific formulations of the questions
and the scale of the rating. For example, the trial group preferred the
−3 . . . + 3 rating scale over an initially proposed ranking.

The electronic survey contains two questions shown in Table 6.3. Each
question has multiple items with 7-item rating scales and a free text box for
additional comments. Table 6.3 shows all items of the second question based
on the experience of our industry partner and related literature [92, 234].
The first question has as items 10 steps of the test creation process that we
derived from information gained by the interviews:

dynamic unit test extraction 163

1. understanding of the source code,
2. necessary refactoring of the source code to make it testable,
3. conceiving test cases, i.e., thinking about possible input data and test

oracles,
4. object creation/instantiation,
5. object state preparation,
6. mock creation,
7. writing test code (including test framework/build system code),
8. refactoring of the test code,
9. compilation/linking of test code, and

10. executing and testing test code.

6.2.3.2 Survey Participants

Our target audience is professional C++ developers. Our industry partner
sent the survey to 1 185 recipients across multiple global C++ development 1185 survey recipients

units. We assume the most participants are from Germany, North America,
and Asia, in this order. Due to concerns related to European privacy laws,
we have no further knowledge about the cultural distribution and experience.

6.2.3.3 Results

We received 143 responses, yielding a participation rate of 12 %. SAP
estimates that 50 % of all 1 185 recipients regularly write C++ code, resulting
in a relevant participation rate of 24 %. Not all recipients rated all items,
therefore the number of ratings varies between 116 to 133. 15 participants
used the free text box for the first question, and 6 for the second.

Table 6.3 presents the results. For the first question we ordered the
10 items (the steps of a test creation) by the mean of the estimated time
effort in the responses. This yielded the following ranking of the items in
descending order: 2, 6, 1, 4, 3, 7, 5, 8, 9, 10. The step “object creation”
is the fourth highest rated item. Table 6.3 shows distribution of responses.
Even higher rated were steps (descending in this order): code refactoring 2,
mock creation 6, and understanding of the source code 1.

For the second question, the highest ranked criterion is “minimal depen-
dencies”, whereas “first working solution” is ranked lowest. Interestingly,
even though mutability simplifies the state preparation, the criteria “objects
should be mutable” is ranked relatively low.

The free text boxes for the second question contained mostly opinions
about testing in general. Two valuable remarks are:

• Multiple product lines require additional effort, and
• Avoid objects that change the global state.

Interview and Survey Results
Professional developers in large C++ projects consider (a) time effort for
implementing object creation as high, and (b) the minimal amount of
dependent objects as the most important criterion for selecting a method-
call sequence for object creation.

164 testing in very large software projects

Items Rating Mean Median 𝑛

Question 1: Which aspects of implementing unit tests in SAP HANA require considerable time effort?

4) Object creation/instantiation for source code under test. 0.83 1 133

low time effort -3 -2 -1 0 +1 +2 +3 high time effort

Question 2: If there are multiple options for object creation within a unit test (e.g., several constructors,
factory methods), which criteria are important to select one option?
1) The amount of dependent objects should be minimal,
e.g., constructors with fewer additional object-type argu-
ments are preferred.

1.73 2 120

2) The state of objects should be as mutable as possible to
modify the objects during tests.

0.40 1 119

3) The object is created in the same way at other places in
the productive source code.

1.09 1 120

4) The object is created in the same way at other places in
the test code.

0.60 1 119

5) The objects should be related to the code under test,
i.e., the distance between code under test and source code
for the object should be minimal.

1.48 2 119

6) The objects should not be complex, i.e., metrics such as
the cyclomatic complexity or coupling should be minimal.

1.15 2 119

7) It should work at all, i.e., the first working solution is
good enough.

−0.13 0 116

not important -3 -2 -1 0 +1 +2 +3 very important

Table 6.3: Survey questions and re-
sults. Column 𝑛 indicates how many
participants have rated the correspond-
ing item.

dynamic unit test extraction 165

6.2.4 Approach

We describe here our approach to solve the object creation problem. Fig. 6.10
shows an overview of our method.

Figure 6.10: Approach overview.

The object creation problem (OCP) asks to find a method-call sequence Object creation problem

which instantiates an object of a desired type 𝑇 such that the sequence
satisfies or optimizes given criteria (see Section 6.2.3). As mentioned, we do
not consider mutating the created object into a specific state.

An object in C++ is typically created by a constructor ([138], 4.5). In
simple cases, such “object creators” have no parameters, and the OCP is
easy to solve. In other cases, we may have to instantiate multiple parameters
of a creator and have to recursively solve the OCP for each of them.

This process can unfold in different ways, yielding alternative method-
call sequences, each able to instantiate an object of a desired type. Such a
sequence is termed a valid (method-call) sequence or just a sequence. Without Sequence

explicitly enumerating all valid sequences, we search for one which optimizes
certain criteria (see Section 6.2.3). We call such a sequence a solution.

6.2.4.1 Object Creators and Dependency Graphs

BaseConstructor
Derived(int)

Constructor
Derived(ClassX)

𝑏𝑦 𝑏𝑦 Figure 6.11: Top nodes of a depen-
dency graph for Fig. 6.8.

For a given type, let 𝐶 be the set of all functions which provide an instance
(object) of this type, e.g., constructors or methods (see Section 6.2.4.2). We
call such a function an (object) creator for a given type. In Fig. 6.11, type Creator

PF has two creators: constructors PF(int) and PF(ClassX).
A dependency graph 𝐺 for a desired type 𝑇 is a directed acyclic graph Dependency graph

with the following properties. All nodes of 𝐺 correspond to either types or
object creators. For a node 𝑣𝑡 corresponding to a type 𝑡 and each creator 𝑐

of 𝑡, 𝐺 has a node 𝑣𝑐 (corresponding to 𝑐), and an edge 𝑣𝑡 → 𝑣𝑐 labelled with
“by”. For each node 𝑣𝑐 and each required parameter 𝑝 of 𝑐, 𝐺 has a node 𝑣𝑝

corresponding to a type of the parameter 𝑝, and an edge 𝑣𝑐 → 𝑣𝑝. We label
such edges as “required” (or “req” for short) and specify what is required,
e.g., the parameter name or the class instance. 𝐺 might also have special
nodes unknown linked from each type without any creator. Finally, there
is a (root) node corresponding to the targeted type 𝑇 . Given 𝐺, we define
the size of 𝐺 as the number of ’type’-nodes. Fig. 6.12 shows a dependency
graph for a targeted type 𝑃 from Fig. 6.9 with size 4.

166 testing in very large software projects

Our approach has a (one-time) preprocessing phase to determine all cre- Preprocessing phase

ators for each type in the source code (Section 6.2.4.2). Given as input a
desired type to be instantiated, we construct a corresponding dependency
graph for this type (Section 6.2.4.3) and determine an optimal solution via
graph traversal described in Section 6.2.4.5.

P
friend

createP() PF

Constructor
PF(int)

int

Constructor
PF(ClassX)

ClassXunknown

𝑏𝑦 𝑟𝑒𝑞 : 𝑐𝑙𝑎𝑠𝑠

𝑏𝑦

𝑟𝑒𝑞 : 𝑎

𝑏𝑦

𝑟𝑒𝑞 : 𝑥

𝑏𝑦

Figure 6.12: Dependency graph for
Fig. 6.9.

6.2.4.2 Searching for Object Creators

We determine all creators for any type available in the source code by
static analysis. To this purpose, we implemented a plugin for Clang, a Clang compiler plugin

C++ frontend for the LLVM compiler infrastructure [171]. The plugin ex-
tracts all data during compilation resulting in accurate data even in the
case of multiple compilation stages where or complex preprocessor directives
where the final source code for compilation is generated by other source
code generation programs. The data contains all identified object creators
and additional information for them such as order and types of parameters.
In the following, we describe which language concepts are analyzed.

For a given type 𝑇 , let 𝐶 be the set of object creators for 𝑇 . To simplify
the presentation, we (a) use the term class also for struct and union ([138],
Clause 12)), (b) shorten type 𝑇 or class 𝑇 to 𝑇 , and (c) do not distinguish
between references/pointers to an object and the object itself.

Constructors: We add to 𝐶 all useful constructors for 𝑇 and consider
them technically as functions. A constructor is useful if it has public visibility,
no attribute deleted [138], and is no copy or move constructor [138].

Inheritance: We include in 𝐶 all accessible constructors for any subtype
(multi-level, acyclic ([138], Cl. 13)) of 𝑇 .

Factory Method Pattern: We include in 𝐶 all accessible static meth-
ods that return an object of type 𝑇 . We ignore non-static methods. They
are rarely useful because the underlying object must be created. They are
only useful in the case of friends that we handle separately.

Friends: C++ allows a class to declare other functions or classes as friends.
Friends can access private and protected functions and members of the class
declaring the friend [138]. We add to 𝐶 all methods that provide an instance
of 𝑇 and are marked as friends, or are defined in friends-classes of 𝑇 .

Smart Pointers: A smart pointer is a data structure that wraps a
pointer in C++ and provides additional functionality such as automatic mem-
ory management. We “shorten” the indirection of smart pointers ([138],
23.11) which seem to appear frequently in modern C++ code. E.g., for
Fig. 6.9, we use P instead of unique_ptr<P>. We detect such smart pointers
by identifying the standard implementation cases and by providing a list of
custom implementations of the corresponding project.

dynamic unit test extraction 167

Output Parameter: Objects can be created by an output parameter
pattern where a parameter provided by the caller is modified by the callee.

1 void init1 (T** object){
2 * object = new T(5);
3 }
4 void init2 (O2& object2){
5 object2 .setT(new T(7));
6 }

Figure 6.13: Output-parameter.

Fig. 6.13 shows two examples of this pattern, init1 and init2. The first
uses call-by-reference, the latter call-by-sharing. It is challenging to accu-
rately detect such cases in general. Considering all functions with adequate
parameters would be misleading and requires further analysis. The gen-
eral decision problem if a function execution instantiates a specific class is
undecidable due to the halting problem [62].

We use a heuristic that reports a function if any parameter is of type
𝑇 and the body contains a constructor call for 𝑇 . However, due to false
positives, we do not include such results in 𝐶 automatically but report them
to developers for manual investigation.

Public Members: A second class 𝑈 can contain a public member 𝑀 of
type 𝑇 . We do not consider using 𝑀 to be an intended way to create/access
a desired object and therefore ignore it. Also, for creating 𝑇 , 𝑈 must use
any of the detectable variants described before.

Static Casts: It is possible to create an instance of 𝑇 by a static cast of
another object. C++ allows such casts ([138], 8.4) and also allows a memory
copy without further type checks (e.g., [138], 6.9, item 2). However, such
an approach could create incorrect states of objects in memory [138, 183]
and is therefore not considered in 𝐶.

6.2.4.3 Constructing a Dependency Graph

Given the creators of all types, we can create a dependency graph for a type
𝑇 . We start with a root node corresponding to 𝑇 (node of level 0), and
retrieve all creators of 𝑇 . Each of them gives rise to a new ’creator’-node
(level 1), and an edge between root and such a ’creator’-node. Then for
every parameter 𝑝 of a ’creator’-node 𝑣𝑐 from level 1 we retrieve the type 𝑡

of the parameter 𝑝, and create a (level 2) ’type’-node 𝑣𝑡 together with an
edge 𝑣𝑐 → 𝑣𝑡 (see graph definition in Section 6.2.4.1). This process then
repeats recursively for each newly created ’type’-node (on the levels 2, 4, . . .)
until any of the following stopping criterion is met.

Stopping Criteria: We investigate each 𝑣𝑡 in levels {0, 2, 4, . . .}. We
stop if any of the following conditions holds:

1. 𝑣𝑡 has no creators.
2. 𝑣𝑡 is fundamental, enum or function.
3. 𝑣𝑡 is included in a white list (a list that contains types for which we

pre-define solutions, e.g., types that may have a large number of creators
but are in fact simple to create).

4. 𝑣𝑡 is included in a list of objects to mock (if a mock object should be used
instead of the original object).

5. 𝑣𝑡 is defined outside of the software project.
6. 𝑣𝑡 is already processed (to prevent cycles).
7. The corresponding parameter is unnamed or has a default argument.
8. The number of creators is larger than a predefined threshold, e.g., 100

(such a large list may contain a suitable creator).
9. The recursion depth is larger than a predefined threshold, e.g., 5 (we do

not expect any practical results at such depths).

168 testing in very large software projects

6.2.4.4 Valid Method-Call Sequences

The dependency graph for type 𝑇 allows finding all method-call sequences
which instantiate 𝑇 . Note that there can be many such sequences for 𝑇 .
For example, in Fig. 6.8, there are two sequences: one using the constructor
Derived(int), and another using the constructor Derived(ClassX).

In general, a valid sequence corresponds to a subgraph 𝐻 of a dependency
graph with certain properties:

1. 𝐻 contains the root node.
2. For every included ’type’-node 𝑣𝑡, 𝐻 has exactly one child (a creator).
3. For each included ’creator’-node 𝑣𝑐, 𝐻 contains all child nodes.
4. All leaves (’type’-nodes without descendants) correspond to types which

can be created trivially.

For practical use, we do not need to explicitly enumerate all valid se-
quences in a dependency graph. Instead, we can compute a single sequence
that optimizes desired criteria, using the dependency graph as input.

6.2.4.5 Finding Optimal Solutions via Graph Traversal

We describe an algorithm that finds a solution for the OCP of a type 𝑇 , i.e., Solution

a method-call sequence optimizing certain criteria. Following the results of
the survey in Section 6.2.3, our objective is fixed as the minimal number of
dependencies, or “size” of a sequence (formalized below).

A solution is a subgraph of a dependency graph. Therefore, the size A solution is a subgraph of a depen-
dency graphfollows the definition given in Section 6.2.4.1 and is the number of ’type’-

nodes. Fig. 6.12 shows that the (unique) valid sequence for 𝑃 has size 3,
and contains objects with types {𝑃 , 𝑃𝐹 , 𝑖𝑛𝑡}.

A solution is thus a sequence with a minimum size over all valid sequences.
Listing 6.1 shows pseudocode of a divide-and-conquer algorithm to find a
solution. 𝐴𝐿𝐺𝑜 recursively finds an optimal subgraph and returns a solution
(corresponding to a desired sequence) if it exists. Note that the algorithm
can be easily modified to return multiple ranked recommendations.

Listing 6.1: 𝐴𝐿𝐺𝑜 to find a solution for
a given type. Function minSize returns
the input with smaller size.

1 def ALG_o (’creator ’-Node vc) // e.g., root of a DG
2 Node result = copy of vc
3 for each descendant t of vc # parameters
4 Node solution = ’unknown ’
5 for each descendant c of t # c is creator of t
6 Node newSolution = ALG_o (c)
7 solution = minSize (solution , newSolution)
8 append solution to result
9 return result

While 𝐴𝐿𝐺𝑜 minimizes the size of the output sequence, the function
minSize (line 7 in Listing 6.1) can be replaced to use another criterion.
Hence, the proposed algorithm supports different optimization criteria. In
the evaluation, we assume the size of the sequence as the optimization
objective. 𝐴𝐿𝐺𝑜 has the following properties:

• It is a divide-and-conquer algorithm [53] by design. 𝐴𝐿𝐺𝑜 recursively
breaks down the problem of finding a dependency graph into finding
dependency graphs of the dependent types until we find simple solutions.
Such simple solutions exist because objects are typically composite types
that (at some point) consist of fundamental types.

dynamic unit test extraction 169

• We may trivially use multiple threads for parallel execution.
• The worst-case algorithmic time complexity of the algorithm is in 𝒪(𝑛𝑛)

where 𝑛 is the number of types within the project.
• Re-using results for recursion is in general not possible because each

recursion depends on a state (the list of already visited types).
• We can apply a branch and bound approach [53] where we avoid descend-

ing recursion if we already know a better solution.

The time complexity may require additional explanation. For a project
with 𝑛 different types, we assume a worst case, that is all types depend on
all other types. We analyze the steps required by 𝐴𝐿𝐺𝑜 for a type 𝑇1 in such
a case. For this purpose, we calculate the number of required operations
for each level of the dependency graph, starting with the root level 𝐿1. An
operation is here the lookup of creators for a type (which we assume is
constant). Then we can observe:

• At 𝐿1, we only have 𝑇1 and, therefore, only one operation. We must
create 𝑛 − 1 other types (each other type).

• At 𝐿2, we have to investigate 𝑛 − 1 types. Hence, 𝑛 − 1 operations. For
each type on this level, we must create 𝑛 − 2 other types (all expect 𝑇1
and a specific 𝑇2 for each branch).

• At 𝐿3, we have to investigate 𝑛 − 2 types 𝑛 − 1 times. Hence, (𝑛 − 1) ×
(𝑛 − 2) operations. We must create 𝑛 − 3 other types.

• At 𝐿4, we have to investigate 𝑛 − 3 types (𝑛 − 1)× (𝑛 − 2) times. Hence,
(𝑛 − 1)× (𝑛 − 2)× (𝑛 − 2) operations. We must create 𝑛 − 4 other types.

• At 𝐿𝑛, we have to investigate 𝑛 − (𝑛 − 1) types
∏︀𝑛−2

𝑖=1 (𝑛 − 𝑖) times. Hence,∏︀𝑛−1
𝑖=1 (𝑛 − 𝑖) operations.

Next, we sum over the operations on each level to obtain the total amount
of operations as a sum over the product of a sequence:

1 +
𝑛∑︁

𝑗=2

𝑗−1∏︁
𝑖=1

(𝑛 − 𝑖). (6.1)

A proof by induction follows by the above examples for each level. To
illustrate the formula via an example, we obtain for 𝑛 = 3

1 +
3∑︁

𝑗=2

𝑗−1∏︁
𝑖=1

(3 − 𝑖) (6.2)

=1 +
2−1∏︁
𝑖=1

(3 − 𝑖) +
3−1∏︁
𝑖=1

(3 − 𝑖) (6.3)

=1 +
1∏︁

𝑖=1
(3 − 𝑖) +

2∏︁
𝑖=1

(3 − 𝑖) (6.4)

=1 + 2 + 2 × 1 = 5. (6.5)

Which is expected for 3 types because we have to investigate the first
type at 𝐿1, then both other types at 𝐿2 and finally, on each subgraph at 𝐿3,
the respective third left type. Hence, 5 operations in total.

170 testing in very large software projects

Conclusively, based on Eq. (6.1), the worst-case time complexity of 𝐴𝐿𝐺𝑜

is in 𝒪(𝑛𝑛). However, in practice, 𝐴𝐿𝐺𝑜 is rather efficient because the
amount of dependent objects is typically not large and therefore the recursion
width and depth are rather small for practical instances.

6.2.5 Implementation Details

We discuss aspects of our implementation that are tightly related to the
specifics of the C++ language. Our approach does not rely on them but the
results improve if we consider these technical intricacies. For each aspect,
we refer to the corresponding section of the C++ 2017 standard [138].

6.2.5.1 Object Definition

In C++ , “an object is created by a definition (6.1), by a new-expression
(8.3.4), (or . . .) (and) has a type” ([138], 4.5), “that is not a function type,
not a reference type and not cv void” ([138], 6.9, item 8). “A class is a
type” ([138], Clause 12) and “a constructor is used to initialize objects of its
class type” ([138], 15.1, item 2). “An object of a class consists of a (possibly
empty) sequence of members and base class objects” ([138], Clause 12). “A
class-specifier is commonly referred to as a class definition” ([138], Clause
12, item 2) and contains a class-key that is one of {class, struct, union}.

Therefore, we say that an object is an instance of a class and a class
is either indicated by a keyword class, struct, or union. These keywords
result in different default visibility ([138], Clause 14, item 3 and 14.2, item
2). However, other than that, class and struct are identical. Therefore, we
only use the term class for class, struct and union.

6.2.5.2 Templates

C++ templates define “a family of classes, functions, or variables, or an alias
for a family of types” ([138], Clause 17).

1 template < class U>
2 A func(U parameter) {
3 /* setup a of type A */
4 return a;
5 }

Figure 6.14: C++ function template ex-
ample.

Fig. 6.14 shows a function template. Compiler typically implement tem-
plates by creating a distinct class or method for each implicit or explicit
instantiation of a template. Therefore, the number of different objects and
functions in a C++ project can drastically increase by extensive template
utilization. Explicit template instantiation can require the analysis of each
instantiation because each explicit instantiation can implement different
functionality. An analysis of only the abstract type would not provide
enough information in such cases. Templates in central classes can lead to
large dependency graphs due to duplicates of all functions inside a class.

Each template instantiation of function func in Fig. 6.14 provides a
possible way to create an object of type 𝐴. func could be defined as a
member function within a central class. In large projects, central classes
have over 1 000 template instantiation, resulting in a large number of nodes
within the dependency graph. Our implementation either tries to detect such
cases and flags them as a single node or ignores nodes with too many options.
In the case of several hundred options, they likely contain a variant that
can be constructed without additional requirements. Hence, it is justified
to avoid the explicit exploration of all options.

dynamic unit test extraction 171

6.2.5.3 Pointers, References and Arrays

C++ uses pointers ([138], 11.3.1), references ([138], 11.3.2) and arrays ([138],
11.3.4). We argue that if we can create an object of type 𝑇 , the usage of
pointers, references and arrays does not add additional requirements. Hence,
our Clang plugin replaces them with the resolved type.

6.2.5.4 Smart Pointers

Smart pointers ([138], 23.11), i.e., a generic data type wrapped around a raw
pointer in C++ to manage the object the raw pointer points to, are frequently
used in modern C++ software projects. Our implementation directly unwraps
them, therefore removing one additional layer in the analysis. We argue
that if we can create an object of type 𝑇 , the creation of a smart pointer
that wraps these objects does not add additional requirements.

6.2.5.5 typedef and alias-declaration

In C++ , a typedef declaration ([138], 10.1.3) or the semantically equivalent
alias-declaration with the keyword using ([138], 10.1.3, item 2), can be used
to provide a synonym for another type. Typedefs are most often used to
provide a simple alias for complex type names. Multi-layer typedefs, i.e.,
a typedef for a typedef, are common in large projects. Resolving typedefs,
that is, recreating the original type name, is required for a complete type
analysis. Our Clang plugin resolves any typedefs to the ultimate root type.

6.2.5.6 Lambdas

C++ lambdas ([138], 8.1.5) are unnamed function objects. They are typi-
cally used in a non-static way, i.e., they cannot be referenced globally. We
encountered only a very low number of cases where lambdas could be used
in a static way, i.e., could be accessed from any part of a program. In such
cases, the use cases for lambdas did not include object creation, therefore
we do not consider lambdas as an additional source for object creation, but
we support them if they fall into one of the existing categories we search for.
Lambdas also appear as parameter types. We assume in general functions
as a parameter type can be trivially created, e.g., with an unnamed lambda.

6.2.5.7 auto Keyword

C++ 11 introduced the generic type specifier auto ([138], 10.1.7.4), i.e., auto
can be used instead of a concrete type and the compiler deduces the type.
For a complete analysis, each instance of auto must be resolved to the
concrete type which is done by our Clang plugin.

6.2.5.8 Multiple Return Values

C++ 17 introduced the concept of structured bindings ([138], foreword and
11.5). The main purpose of structured bindings is simplified handling of
multiple return values. We only rarely encountered return values of the
type tuple (less than 0.10 % in our industry project), therefore we did not
investigate them further. But we expect that the usage increases with the

172 testing in very large software projects

addition of structured bindings within the C++ standard. It is unclear to
us how to detect structured binding for a class type according to [138] 11.5,
item 4. This would require a rather complex analysis of the class members.

6.2.5.9 Constant Expressions

We support constant expressions, that are, “(expressions) that can be eval-
uated during translation” ([138], 8.20, item 1), as far as they compiler
“removes” them. Our Clang plugin utilizes the Clang compiler that eval-
uates all constant expressions during translation. In our experiments, we
encountered constant expressions very infrequently.

6.2.5.10 Stopping Criteria for Recursive Graph Construction

In addition to the general criteria defined for dependency graphs, the re-
cursive graph construction will not further inspect a function parameter if:
a) The parameter is not named ([138], 11.3.5, item 13) and therefore not
used inside the function. b) The parameter has a default argument ([138],
11.3.5, item 13) and therefore an external creation is not required. c) The
parameter has only a single argument with the same type as the object we
want to create. This happens frequently because of copy constructors and
move constructors ([138], 15.8.1).

6.2.6 Evaluation

We investigate multiple research questions (RQ). First, we analyze the results
of the search phase and characterize the studied projects (RQ17). Then,
we study the existence of solutions (RQ18). Finally, we verify our solutions
(RQ19), and compare our approach against related work (RQ20).

6.2.6.1 Evaluation Setup

We searched for large C++ software projects on GitHub, related literature
and publicly available lists. We filtered the list of possible projects based
on the following criteria. The project

1. uses C++ as the main programming language,
2. supports compilation with Clang,
3. has more than 10 000 different object types (it is “large”).

The resulting list contains 7 projects as shown by Table 6.4, source lines
of code (SLOC) measured by cloc [61]. More projects might fulfill these
criteria, as we could not adapt some projects to compile with our plugin,
and we pre-selected projects based on their expected number of types.

We use a system with 4 processors, 160 cores with 2.10 GHz, and 1 TiB
RAM. The Clang plugin increases the compilation time by a factor of 1.20
and generates 27 GiB of data for SAP HANA and 0.20 GiB to 8 GiB for the
other projects. For practical reasons, SAP HANA requires parallel compila-
tion. This would increase the intermediate data size to 4 TiB. Therefore, we
implemented lock-free duplicate filtering to mitigate this issue. We consider
these overheads acceptable for practical purposes. The execution time of
our algorithm 𝐴𝐿𝐺𝑜 (Listing 6.1) is below a second. This is considerably

dynamic unit test extraction 173

Project #Obj. Types #Functions SLOC

SAP HANA 2018-11-24 735 194 4 210 541 11 065 382
Boost 1.66 [65] 30 548 53 528 4 392 925
CERN ROOT 6.13/08 [66] 100 705 730 507 3 417 362
Firefox 55.0.3 [68] 134 554 940 346 7 343 242
LLVM Clang 6 [69] 88 913 591 112 242 032
MySQL 8.0.11 [70] 54 360 199 692 3 791 989
ScummVM 2.0.0 [72] 13 527 148 350 1 830 628

Table 6.4: List evaluation projects.

faster than a manual search, which can require more than 10 min per case
according to our observations during the interviews with developers.

6.2.6.2 RQ17 Search Phase and Project Characteristics

RQ17 What is the variety of types and the distributions of object creators found
in the search phase?

For each project in Table 6.4, we count the number of object types, the
size of classes and record whether they have a default constructor (DC). For
each object type, we count the number of creators.

Object Types, DC, and Class Sizes: We count each class as
an object type. For class templates, we count explicit and implicit class
template instantiations [138]. Table 6.4 presents the results. Table 6.5 shows
for each class (a) the size 𝑛 = 𝑙𝑖𝑛𝑒𝐸𝑛𝑑 − 𝑙𝑖𝑛𝑒𝑆𝑡𝑎𝑟𝑡 + 1 grouped into small
(𝑛 < 5), medium (5 ≤ 𝑛 < 50), and large (50 ≤ 𝑛) as reported by our
Clang plugin, and (b) whether it has a DC. Technically, a DC exists, if the
existence is reported by the compiler and it is not marked as deleted [138].

Size Groups [LOC]

Project 0..4 5..49 50..∞ All

SAP HANA 83.64 63.82 52.91 68.98
Boost 96.00 82.88 69.15 85.92
CERN ROOT 88.15 81.18 59.31 79.76
Firefox 93.49 79.02 81.32 83.24
LLVM Clang 87.26 79.62 56.55 77.55
MySQL 94.56 89.40 68.91 87.98
ScummVM 97.37 61.69 69.42 70.83

Table 6.5: Distribution of default con-
structors. E.g., 94.56 % of all classes in
MySQL with 1-4 lines have a default
constructor.

Object Creators: For each object type T, we collect the set 𝐶𝑇 of all
creators and count |𝐶𝑇 |. In our dependency graph, |𝐶𝑇 | is the number of
nodes connected with a by-edge from T. For Fig. 6.12, we can deduce that
PF has 2 creators. Fig. 6.15 presents the results.

Discussion: Fig. 6.15 shows that the search phase finds at least one
creator for 93 % to 99 % of all object types. Among all projects, Clang
has the highest percentage of empty results (7 %). We conclude that the
search phase provides reasonable results. A manual investigation of examples
with empty solutions shows mainly cases where we were also unable to find
solutions manually or where an object was used within a class-internal usage
scenario. Further work is required to characterize such cases.

174 testing in very large software projects

0
1
2
3
4
5
6
7
8
9

10..19
20..29
30..39
40..49
50..98
99..∞

25,301
6 · 105

35,613

15,713

9,864

5,411

3,610

2,791

1,978

1,301

4,817

1,432

711

362

608

15,497

#Types

N
um

be
r

of
C

re
at

or
s SAP HANA

1,236

27,306

1,215

312

131

92

43

28

42

21

63

28

14

5

9

3

#Types

Boost

4,978

81,127

3,866

2,172

1,230

1,374

569

362

257

262

874

205

109

58

3,182

80

#Types

ROOT

2,466
1 · 105

10,708

8,703

2,328

1,838

711

564

297

297

924

214

127

45

125

119

#Types

Firefox

5,711

69,795

3,807

1,838

1,025

1,584

575

359

258

221

723

2,667

57

30

215

48

#Types

Clang

986

49,490

1,327

655

316

302

256

202

73

93

269

274

22

22

35

38

#Types

MySQL

68

11,648

649

334

102

143

48

94

33

55

157

56

33

22

39

46

#Types

ScummVM

Figure 6.15: Histogram for number of
object creators per type (x-axis in log-
scale). E.g., for Boost, the search phase
finds no creator in 1 236 cases and ex-
actly 1 in 27 306 cases.

The most frequent cardinality is 1 due to the presence of DC in small
classes. Table 6.5 shows the distribution of DC in different size groups of
classes. It is rather common for small classes to have a DC. Large classes
often do not have default constructors, but multiple creators. This indicates
that our approach is more effective for large classes.

At least 6 % to 20 % of all object types and 16 % to 38 % of all large
classes have more than 1 creator. This confirms the relevance of the OCP.

Answer RQ17
The search phase finds creators for 93 % to 99 % of all object types. The
most frequent result is a single creator. For at least 6 % to 20 % of all
object types, there exists more than one creator.

6.2.6.3 RQ18 Existence of Solutions

RQ18 What is the fraction of functions in studied C++ projects for which our
approach can successfully find solutions for all arguments?

In practice, it is important to create all arguments of a function, which
may require instantiating multiple different object types. Therefore, we
switch our focus from objects to functions. In this section, we define a
dependency graph (DG) of a function 𝑓 as a union of dependency graphs for
the types of each (required) parameter of 𝑓 . Analogously, a valid sequence/-
solution for 𝑓 is the union of the respective concepts over all parameters of
𝑓 . In other words, we introduce ana artificial root node, consider 𝑓 as an
creator for this root and apply our approach accordingly.

Functions: Our Clang plugin reports all functions generated by the
compiler. This includes static functions, object member methods, lambdas,
and each function template instantiation. Table 6.4 presents the results.

Size of Dependency Graphs (DG) and Solutions: We apply our
approach to each function and obtain a dependency graph 𝐷𝐺 and a solution
𝑆. Fig. 6.16 shows for all functions in each project the sizes of 𝐷𝐺 and 𝑆.
Table 6.6 presents the percentage of functions %𝑆𝑜𝑙𝑣𝑒𝑑 where our approach
finds a solution and, over all functions, the average of the solution size |𝑆|,
the graph size |𝐷𝐺|, and the number of parameters |𝑎𝑟𝑔𝑠|.

dynamic unit test extraction 175

Project %Solved |𝐷𝐺| |𝑆| |𝑎𝑟𝑔𝑠|

SAP HANA 97.98 11.36 2.20 1.63
Boost 98.31 4.56 1.78 1.47
CERN ROOT 96.11 14.49 1.85 1.18
Firefox 97.16 15.16 1.95 1.39
LLVM Clang 94.74 18.96 2.03 1.28
MySQL 98.38 9.10 2.24 1.59
ScummVM 99.89 5.19 1.56 1.17

Table 6.6: Results for all functions.
Solved percentage and the means for
dependency graph sizes (DG), solution
sizes (S), and amount of arguments
(args).

Discussion: Table 6.6 indicates that our approach finds full solutions
to create all arguments for 94 % to 99 % of all functions. Fig. 6.16 shows
that the solution size (Section 6.2.4.5) is typically rather low compared to
the size of 𝐷𝐺. The average solution size |𝑆| is slightly larger than |𝑎𝑟𝑔𝑠|,
which is expected. Unnamed arguments rarely occur in our data. Fig. 6.16
also indicates a rather large amount of functions with large 𝐷𝐺 sizes above
99. In some rare cases, the size is larger than 100 000. This aligns with our
original motivation, that a manual inspection of the full space of possible
solutions is either not practical or even not feasible in a reasonable amount
of time. However, our search phase may collect object creators that would
be discarded directly by a developer. Such cases artificially increase |𝐷𝐺|.

0

1

2..4

5..6

7..8

9..14

15..29

30..49

50..98

99..∞

7 · 105

5 · 105

6 · 105

1 · 105

82,756

1 · 105

1 · 105

85,003

93,627

76,654

7 · 105

6 · 105

6 · 105

60,422

18,907

9,376

1,287

53

3

#Functions

D
ep

en
de

nc
y

G
ra

ph
/S

ol
ut

io
n

Si
ze

SAP HANA

25,040

25,707

27,578

4,480

1,735

2,907

2,948

2,169

1,348

232

25,040

24,980

20,205

856

166

56

19

3

1

#Functions

Boost

2 · 105

2 · 105

94,514

13,158

9,967

45,567

47,217

28,574

33,855

26,274

2 · 105

2 · 105

1 · 105

6,790

1,487

577

54

3

1

#Functions

CERN ROOT

3 · 105

2 · 105

2 · 105

37,633

22,252

38,879

44,007

27,501

84,400

34,912

3 · 105

2 · 105

2 · 105

13,083

3,556

2,246

119

5

4

#Functions

Firefox

2 · 105

2 · 105

1 · 105

19,424

15,758

65,156

76,104

62,902

45,403

40,051

2 · 105

2 · 105

1 · 105

8,431

1,241

290

37

3

1

#Functions

LLVM Clang

83,093

78,267

68,323

9,971

5,655

12,940

15,956

12,260

9,816

4,682

83,093

83,211

70,638

7,374

1,678

1,806

135

4

1

#Functions

MySQL

60,691

37,226

31,263

9,077

3,789

3,433

2,809

2,351

2,744

1,320

60,691

41,009

29,675

2,444

1,015

512

60

#Functions

ScummVM

Figure 6.16: Dependency graph sizes —
and solutions sizes — (x-axis in log-
scale). E.g., Boost has 2 169 functions
with dependency graph sizes in range
30-49, and only 3 functions with solu-
tion sizes in this range.

We manually investigated unsolved functions. They contain in no partic-
ular order: a) templates, b) types defined but not implemented, c) types
provided by the operating system d) types that were supposed to be non-
constructable, and e) types we found no way to manually construct them.
We expect that fine-tuning the system with domain knowledge could im-
prove b), c) and d). A more sophisticated template analysis, which might
be rather complex [252], may improve a).

Answer RQ18
Our algorithm for object creation finds at least one solution to create all
required objects for 94 % to 99 % of all functions in the evaluated projects.

176 testing in very large software projects

6.2.6.4 RQ19 Verification of Solutions

RQ19 How does the quality of the solutions found by our approach compare to
manually found solutions with respect to the criteria identified?

We compare object creations by developers found in the source code of
SAP HANA versus those automatically proposed based on preferences stated
by developers in our user study. The comparison involves manual tasks,
therefore we evaluate only a subset of all object creations. To collect these
examples, we extend our static analysis to report all locations in the source
code where an object is created. We then filter them by a selection process
and analyze the results. Additionally, we a) ask developers of SAP HANA
to propose multiple problem instances and evaluate corresponding solutions,
and b) manually investigate problem instances for the other projects.

Selection of Examples: We apply the following filtering steps:

1. SAP HANA consists of about 300 components that can be considered as
own projects. We randomly select a set 𝐶50 of 50 components.

2. For each item in 𝐶50, we collect the set 𝑂𝐶 of all source code locations
where objects are created.

3. We only keep items in 𝑂𝐶 where all of the following conditions are
true: file extension ∈ {cpp, cc, h, hpp, inl, inc, incl, hh, c}, source filename
contains “[T/t]est” (test code), object not in namespace testing (test
framework) nor std (standard library) nor X where X is an internal
reimplementation of the standard library.

4. After filtering 𝑂𝐶, we randomly select a set 𝑂𝐶50 of up to 50 items.
5. We analyze each item in 𝑂𝐶50, and remove those that create artificial

test objects such as a testfixture or a mock. This results in a final set of
examples for each component.

Table 6.7 reports statistics for each step.

Step Statistics After the Step

(0) Start 3 539 879 object creations
(1) 50 random components #files: (2/1 311/267)
(2) Object creations 661 886 object creations
(3) Filter step 113 081 object creations

per component: (0/17 086/2 262)
(4) 50 random examples 19 components with 0 examples
(5) Remove test objects 1 104 object creations

per component: (0/49/22)

Table 6.7: Selectivity of the exam-
ples selection. Statistics annotated in
(min/max/mean).

Categorization: For each example, we apply our approach and generate
a solution. We compare this solution to the manual object creation indicated
by the existing source code. Table 6.8 reports the results.

Out of 1 104 analyzed examples, the category Shorter contains 594 items,
Identical 505 items, and Longer 5 items. Within Shorter, there are 113 cases
where the solution used source code where the last change date is after the
existing object creation, and in 481 cases before. Within Identical, there are
179 cases where the solution used source code where the last change date is
after the existing object creation, and in 326 cases before.

dynamic unit test extraction 177

Category n %𝑇 𝑜𝑡𝑎𝑙 𝐷𝑎 % 𝐷𝑏 %

Total 1 104 100.00 N/A
Shorter 594 53.80 113 19.02 481 80.98
Identical 505 45.74 179 35.45 326 64.55
S + I 1 099 99.55 292 26.57 807 73.43
Longer 5 0.45 N/A

Table 6.8: Solution sizes of 𝐴𝐿𝐺𝑜 vs.
manual solutions.

Date Analysis: Source code changes could impact the retrospective
analysis. Our approach could propose to use code that was not available for
a manual solution. Utilizing the version control system to use the specific
version would require recompilations and static analyzes with an estimated
effort of 138 d of execution time and 45 TiB of disk space. Due to limited
resources, we instead extend our analysis to control for the described threat.

We use the version control system to calculate a date 𝐷𝑆 for a solution,
i.e., the last date when source code involved in a solution was modified, and
identify the date 𝐷𝑀 the manual solution was introduced. In Table 6.8, 𝐷𝑎

reports number of cases for 𝐷𝑆 > 𝐷𝑀 and 𝐷𝑏 for 𝐷𝑆 ≤ 𝐷𝑀 .
Manual Verification: Developers of SAP HANA proposed 10 recent

problem instances, i.e., functions they wanted to call. One function requires
only fundamental arguments, the others require at least one object, i.e.,
they represent complex scenarios. We apply our approach and ask the
developers to evaluate the results. In 8 cases, they determine the results are
identical to their own solutions. In 1 case, the result is better due to the
correct identification of a default argument in a header file. In 1 case, our
approach found no result. However, the developers revealed they also found
no solution for this case and a solution probably does not exist. Hence, our
approach found identical or better solutions in all cases.

For each of the other projects, we randomly select 10 object types from
files with paths containing the string [T/t]est. We apply our approach
and report the results as a tuple (smaller/identical/larger) that shows our
solution sizes in comparison to the solution sizes found in the source code.
ScummVM, ROOT, and MySQL: all (0/10/0). Boost: (1/9/0). The smaller
case involves a custom smart pointer that would require special case handling
and domain knowledge of the project. Firefox: (1/9/0). Clang: (2/8/0).
One smaller case is within a test framework not controlled by the project.

Discussion: In 45.74 % of all examples for SAP HANA, solutions found
by our approach are identical to existing solutions and smaller in 53.80 %.
The 5 larger cases involve complex template metaprogramming [138] and
interfaces with a high number of implementations. Still, developers might
choose other solutions due to specific requirements. However, in the context
of test creation, the functionality for objects not under test is typically not
important. Hence, we assume correctness of our results in such scenarios.

The date analysis indicates that the impact of code changes for the
retrospective analysis is low. For the category identical, the source code of
the calculated solution must have been available at the time the manual
solution was introduced. However, in 35.45 % of all 505 cases, 𝐷𝑆 < 𝐷𝑀 .
Hence, 36% is a threshold of expected cases. For the category smaller,
19.02 % is below this threshold, confirming the initial statement.

178 testing in very large software projects

Given these results and considering the results of the manual verification,
our approach is able to propose correct solutions to create objects.

Answer RQ19
In 99.55 % of all 1 104 cases, our approach proposes solutions identical
(45.74 %) or smaller (53.80 %) compared to existing solutions.

6.2.6.5 RQ20 Comparison Against First-Working Approach

RQ20 How does our approach of a size-minimal solution compare against a
first-working-solution approach?

Methodology and Results: Related work uses a first-working-solution
approach, say 𝐴𝐿𝐺𝑓𝑤. Here the function minSize (line 7 in Listing 6.1) is
replaced by a check whether the subgraph is non-empty and if yes, the loop is
aborted. We compare 𝐴𝐿𝐺𝑜 against 𝐴𝐿𝐺𝑓𝑤 in terms of sizes of solutions for
all functions. However, we only investigate functions that require additional
objects of a type that is not provided by the function. These functions
represent 38 % to 68 % of all functions depending on the project. We do not
report the number of solutions for 𝐴𝐿𝐺𝑜 and 𝐴𝐿𝐺𝑓𝑤, as they are identical.

4

8

12

697k 597k0

So
lu

tio
n

Si
ze

SAP HANASAP HANA

8k 7k0

BoostBoost

124k 75k0

ROOTROOT

146k 106k0

FirefoxFirefox

105k 56k0

ClangClang

34k 29k0

MySQLMySQL

19k 16k0

ScummVMScummVM

Figure 6.17: Comparisons 𝐴𝐿𝐺𝑜 (left)
versus 𝐴𝐿𝐺𝑓𝑤 (right) for functions.
The histograms show how often each
solution size occurred.

Fig. 6.17 shows the histograms of solution sizes for each project and
approach. Fig. 6.18 presents only the cases where the solution sizes are not
equal. Table 6.9 shows statistics for all cases. The execution time of 𝐴𝐿𝐺𝑓𝑤

is typically lower than 𝐴𝐿𝐺𝑜. However, the graph construction requires
considerably more time compared to finding a solution that typically finishes
within the fraction of a second. For example, the analysis for Clang shows
the largest execution time with 0.15 s per function on average. 𝐴𝐿𝐺𝑓𝑤 may
produce different results depending on the order of the input. Given the
large number of functions, we expect that this randomness is not a threat,
and we did not further investigate different orders.

|𝐷𝐺|, all 𝑜 ̸= 𝑓𝑤 |𝐷𝐺|, ̸=

Project 𝑜 𝑓𝑤 % 𝑜 𝑓𝑤

SAP HANA 3.10 6.81 42.07 4.45 13.26
Boost 2.57 3.90 31.80 3.13 7.31
ROOT 2.94 11.41 56.09 3.87 18.97
Firefox 2.88 5.94 44.69 3.67 10.51
Clang 2.62 11.64 60.17 2.96 17.94
MySQL 3.35 5.91 36.31 4.87 11.92
ScummVM 2.73 3.74 35.02 3.78 6.66

Table 6.9: Comparison between 𝐴𝐿𝐺𝑜

and 𝐴𝐿𝐺𝑓𝑤.

dynamic unit test extraction 179

Discussion: Fig. 6.18 shows that size 1 does not occur for 𝐴𝐿𝐺𝑓𝑤.
This is expected because the design of 𝐴𝐿𝐺𝑜 guarantees that |𝐴𝐿𝐺𝑜(𝑓)| ≤
|𝐴𝐿𝐺𝑓𝑤(𝑓)|. We removed all cases where |𝐴𝐿𝐺𝑜(𝑓)| = |𝐴𝐿𝐺𝑓𝑤(𝑓)|. Hence,
0 < |𝐴𝐿𝐺𝑜(𝑓)| < |𝐴𝐿𝐺𝑓𝑤(𝑓)| and therefore 1 < |𝐴𝐿𝐺𝑓𝑤(𝑓)|∀𝑓 .

4

8

12

222k 87k0

So
lu

tio
n

Si
ze

SAP HANASAP HANA

2k 1k0

BoostBoost

48k 29k0

ROOTROOT

40k 20k0

FirefoxFirefox

66k 27k0

ClangClang

7k 4k0

MySQLMySQL

4k 3k0

ScummVMScummVM

Figure 6.18: Presentation similar to
Fig. 6.17. However, all cases where
both solutions have equal sizes are ig-
nored.

Over all projects, solutions based on 𝐴𝐿𝐺𝑜 are on average by a factor
1.37 to 4.44 smaller for all functions or by a factor 1.76 to 6.07 smaller
ignoring functions with identical solutions for both algorithms. Hence, in
comparison to 𝐴𝐿𝐺𝑓𝑤, 𝐴𝐿𝐺𝑜 can considerably reduce the amount of objects
and therefore decrease the complexity of solutions. Fig. 6.18 also shows that
𝐴𝐿𝐺𝑜 effectively reduces cases with large solutions. Therefore, we conclude
that our approach improves 𝐴𝐿𝐺𝑓𝑤.

Answer RQ20
Solutions by 𝐴𝐿𝐺𝑜 require up to 6 times less objects on overage compared
to a first-working-solution approach.

6.2.7 Threats to Validity

We discuss several threats to validity that we identified for our work.

6.2.7.1 User Study

Participants in the user study may not have the professional experience to
answer the questions [40]. We reduce this threat by sending the survey to
professional developers. However, we are unaware of the number of partici-
pants without C++ experience. All participants are related to our industrial
partner. However, we are not aware of any company policy that may influ-
ence our anonymous survey. With respect to diversity, the recipients are
distributed worldwide and have different professional experience.

The user study might be ambiguous or the lists of items might be incom-
plete. We reduce this threat by a trial run.

6.2.7.2 Reliability

We collected a set of 7 projects for our evaluation. However, the composition
did not follow a reproducible methodology, because we are unaware of a
definitive list of large C++ projects. Due to the regulations of our industry
partner, the implementation of our approach is not publicly available and an
exact reimplementation of our approach may not be feasible. We carefully
tested our implementation with an extensive test suite of collected C++ code
examples and therefore expect that the conclusions are reproducible.

180 testing in very large software projects

6.2.7.3 Construct Validity

Our evaluation contains a retrospective analysis. We are unaware of the
reasons why a specific object creation option was selected in the past or
whether such preferences have changed over time. A/B testing could mitigate
this threat. However, it would require extensive resources to do such testing
in large scale, therefore it was out of scope for our work.

6.2.7.4 Internal Validity

The search phase may find creators that are technically feasible, but practi-
cally not. Also, we may iterate uninteresting creators for the graph traversal.
Thus, we may investigate cases that would be discharged directly by devel-
opers. This may produce more work for 𝐴𝐿𝐺𝑜 but does not affect our
conclusions.

6.2.7.5 External Validity

We assume that our approach can be generalized to other object-oriented
programming languages with type information. However, in small projects,
object creation may not be noticed as a problem. The user study results
for time efforts may be specific to the rather strict C++ type system. The
ranking of criteria provides guidance for other programming languages, too.

6.2.8 Related Work

Several other work on testing object-oriented programs either focus on the
broader problem to generate a desirable object state [92, 142, 182, 209,
247, 249, 255, 268] or do not consider the object creation and, for example,
capture objects during runtime [142]. Our work focuses on the specific part
of object creation and does not aim to generate a desirable state.

The work of Thummalapenta et al. [247] is closely related to our work.
They also identify the problem of object creation as challenging and pro-
pose to use a keyword-based code search in method bodies within an intra-
procedural analysis. However, they state that such analysis “is less precise
than inter-procedural analysis” and only used due to scalability reasons.
Due to the keyword-based search, their approach does not require or use
type information. The type detection by an inter-procedural analysis of our
approach provides accurate results and is still fast.

Several related work provide approaches for test generation in object-
oriented programming languages [13, 92, 142, 209, 249]. Such approaches
require a mechanism for object creation. They either (a) search for a con-
structor or generate the object with a general mechanism provided by the pro-
gramming language [13, 142] or (b) recursively traverse the required depen-
dencies for object creation until they find the first working solution [92, 249].
However, considering only the first working solution is undesirable in real-
world projects according to the results of our survey. Cseppentő and Micskei
provide further evaluation of test generation tools and their support regard-
ing objects [58].

Previous work, where the evaluation targets comparatively small projects,
recognize the challenges for the creation of complex objects [12, 228, 249].

dynamic unit test extraction 181

The tools KLOVER [177, 258] and FSX [259, 260] automatically generate
unit tests for large C++ projects. The examples shown for FSX contain a
default constructor call, hence object creation is supported to some degree.
However, the exact support remains unclear. Garg et al. target unit test
generation in C++ with directed random test generation [98].

We are not aware of other studies on developers’ preferences for the
optimization version of the object creation problem. We are unaware of
existing tools for C++ or Java that respect such developer preferences.

6.2.9 Conclusions

The task of object creation in large C++ projects can be a time-consuming
challenge for developers. Our approach automatically finds options for the
object creation problem in more than 94 % of all cases and solutions to
create all required objects for 94 % to 99 % of all functions. Therefore,
our approach can provide significant time reductions for developers. In
addition, our approach can find solutions that better align with preferences of
developers compared to solutions found manually. Thus, using our approach
can improve code quality. Finally, solutions found by our approach better
align with preferences of developers compared to solutions found by a random
approach that is used in related work.

In practice, developers could consider additional requirements for creating
objects. Or even more, they might add new constructors to solve the problem.
However, even in such cases, our approach can provide a list of alternative
options and additional insights for missing options.

While our work focuses on large C++ projects, we expect that the results
generalize to other object-oriented programming languages with type infor-
mation. We also expect that the results of our work allow other researchers
to propose techniques with higher practical acceptance.

Future work on the connection between the creation of objects and their
set-up into a desired state may provide additional benefits for automated
tools and the manual work of practitioners.

6.3 Mock Proposal

A significant share of the effort to create unit tests in object-oriented software
can be attributed to constructing a desired object state. This problem
typically includes object creation and object setup, two tasks that can be
complex in large projects and in the case of interactions with the global
state. Therefore, developers may decide to mock an object, i.e., they simulate Mock an object

the behavior of objects required for a test with simpler implementations1. 1 Note that we use the term mock and
do not differentiate between mocks,
fakes, stubs, dummies or other special-
ized concepts [234].

However, they have to decide which objects should be mocked.
To support developers with writing unit tests, we address the problem of

selecting objects to be mocked and propose heuristics for automated mock
recommendations. We complement it by an algorithm that minimizes the
total number of required mocks for simultaneous instantiation of multiple
objects. Our core methods are graph analysis and traversal algorithms.

An evaluation on seven large C++ projects shows that our algorithm can
reduce the total amount of mocks if multiple objects are instantiated.

182 testing in very large software projects

6.3.1 Introduction

Programming languages that allow to use and instantiate objects are widely
used today [41, 52, 100]. Developing unit tests in such cases requires the con-
struction of object instances in order to test their state, methods, and inter-
actions. Hence, a test setup must create such objects and set-up their desired
states [12]. A wide range of research work proposed multiple techniques to
automatically create a desired state for an object [92, 182, 209, 249, 255, 268].
Due to visibility and dependency issues, this can be a challenging task [142].

Frequently for testing purposes, developers do not want to instantiate and
set-up a target object. An object might contain unintended functionality
or require expensive resources. In such cases, they substitute the regular
object by creating a mock object. Such a mock mimics a specific behavior Mock object

required for a test while avoiding the unwanted characteristics of the regular
object. However, mocks have also disadvantages, such as the effort of their
creation, or possible deviations from the original functionality [234]. In the
face of these trade-offs, it might be challenging for developers to decide
which objects should be mocked, if any (the mock selection problem).

Consequently, developers could benefit from approaches that automati-
cally propose mock recommendations. Our contributions are as follows:

• We propose approaches for recommending which objects to mock. In
addition to two heuristics inspired by common practices, we propose an
algorithm that reduces the overall number of mocks if multiple types or
functions are tested simultaneously.

• An evaluation of our approach on seven large C++ projects.

6.3.2 Motivation

We provide examples for mock selection to illustrate the involved issues.

6.3.2.1 Mocking for dependency reduction

Fig. 6.19 shows an example with multiple classes. Assume that one wants
to instantiate the class Person. Such an object requires an object of type
Office which in turn requires an object of type Building. The constructor
for Building requires multiple other objects that are unclear to create.

1 struct Building {
2 Building (Description & d, Address & a, Dimension & d, Time& t,

PowerMap & p) : /* setup of members */ {}
3 /* several members and complex function */
4 };
5 struct Office {
6 string name;
7 Office (string id , Building & b) : name(b+id) {}
8 };
9 struct Person {

10 Person (Office & office) : office (office) {}
11 private :
12 Office & office ;
13 /* functions */
14 };

Figure 6.19: Mock object for depen-
dency reduction.

dynamic unit test extraction 183

In such a situation, a developer could create a mock object for Building
to imitate it because it is not related to Person and is costly to create.

Office is not a good candidate for mocking, as the class stores only a
value and requires only an object of type Building.

We conclude that this example highlights two mocking goals:

1. Reduce complexity or the number of dependencies not relevant for a test.
2. Avoid mocking of so-called value classes, i.e., classes that only store values

and have no additional functionality.

6.3.2.2 Multiple mocking options

Objects can require multiple tests for multiple functions and interactions. In
such situations, a developer has to decide multiple times whether an object
of a certain type should be mocked. The developer might decide against a
mock the first time but would decide in favor of mocking if the same object
type is encountered several times. Therefore, it can be beneficial to create
a mock if this mock will be used by multiple functions. However, such an
information might not be directly available to developers in large projects.
In practice, objects often depend on other objects that must be created first.
The amount of such dependent objects can reach rather large numbers.

1 struct X {
2 int a;
3 X(string & s) : a(s. length ()) {}
4 };
5 /* Y,M,N,O,P,Q,R all defined similarly to X */
6

7 struct R {int a; R(string & s):a(s. length ()){}};
8

9 struct A {int a; A(X& x, Y& y) : a(x.a + y.a){}
10 A(X& x, Y& y, M& m) : a(x.a + y.a + m.a){}};
11

12 struct B {int a; B(M& M, N& N) : a(M.a + N.a){}
13 B(Y& Y, M& M, N& N) : a(Y.a + M.a + N.a){}};
14

15 struct C {int a; C(O& O, P& P) : a(O.a + P.a){}
16 C(X& X, M& M, N& N) : a(X.a + M.a + N.a){}};
17

18 struct D {int a; D(Q& Q, R& R) : a(Q.a + R.a){}
19 D(X& X, Y& Y, N& N) : a(X.a + Y.a + N.a){}};
20

21 struct E {int a; E(Q& Q, R& R) : a(Q.a + R.a){}
22 E(X& X, Y& Y, N& N) : a(X.a + Y.a + N.a){}};
23

24 struct ClassUnderTest {
25 int function1 (A& a) { return a.a;}
26 int function2 (B& b) { return b.a;}
27 int function3 (C& c) { return c.a;}
28 int function4 (D& d) { return d.a;}
29 int function5 (E& e) { return e.a;}
30 };

Figure 6.20: Multiple possible mocking
options.

Finding a configuration with a minimal number of mock objects can be Configuration with a minimal number
of mock objectsa rather complex task in such situations. The example shown by Fig. 6.20

is rather complex but reflects practical problems in large software projects.
The goal is to test the class ClassUnderTest. A developer could inspect
each function and decide to create 5 mock objects: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸. This

184 testing in very large software projects

might seem reasonable because they appear as the first level of indirection.
However, this approach would not result in a minimum amount of mocks
for our example. A developer could apply a more elaborated approach that
skips the first level of dependencies and selects the minimum from the second
level for each function. In this variant, 8 mock objects would be required:
𝑋, 𝑌 , 𝑀 , 𝑁 , 𝑂, 𝑃 , 𝑄(2), 𝑅(2) where the number indicates how often a mock
is used if used multiple times. This solution would require even more mock
objects than the first variant. However, the minimal solution requires only 4
mock objects (e.g., 𝑋(4), 𝑌 (4), 𝑀 (3), 𝑁(4)). Therefore, it can be beneficial
to consider a larger scope for automated recommendations.

6.3.3 Approach

Automated mock recommendations, i.e., recommendations where a mock
object should be introduced to imitate the behavior of the original object,
depend on the goal of the imitation. Therefore, we study several heuristics
to reflect these goals that can be used separately or combined.

6.3.3.1 Requirements

A requirement for mock recommendation is a precise understanding of the
source code. Additionally, we need to understand object type dependencies,
i.e., we need to know if a target object requires additional objects for its
creation. The Clang plug introduced in Section 6.2.4.2 provides a precise un-
derstanding of the source code and the object dependency graph introduced
in Section 6.2.4.1 contains all required information on object dependencies.

6.3.3.2 External Dependencies

The filesystem provides a heuristic of whether a dependency is external or
internal. Related functionality is typically grouped within the same directory.
Therefore, we can expect that all objects defined by source code within the
same directory are related. In contrast, objects with source code in other Functionality grouped by directories

directories are classified as external and it is recommended to create a mock
object for such external objects. We use the identifier 𝑀𝐷 for this heuristic.

6.3.3.3 Value of a Class

We define a value class as a class that acts only as a data container and
contains only a small amount or no logic. We expect them to be simple
to instantiate without any requirements. We argue that it is generally
not valuable to mock such classes. A mock object would most likely only
reimplement the value class and is therefore redundant to the original object.

The detection of value classes requires a heuristic. We propose to use
the type of members and the types of parameters for the constructors as
indicators. For this purpose, we define that a type is simple if:

1. The type is a fundamental type ([138], 6.9), such as bool, int, or float.
2. The type, as represented by a class, has an implicit or explicit default

constructor that is public and not deleted ([138], Clause 15), i.e,. we can
call a constructor with empty arguments to create an object of this type.

dynamic unit test extraction 185

3. After removing all types listed in a manually pre-defined whitelist, the
type falls in any of the previous categories. The whitelist contains project
specific types such as a string class, types that allow allocation and
deallocation of memory or types that provide logging functionality.

Therefore, we classify an object as a value class and do not recommend
mocking if all parameters and members of an object are simple, i.e., it is
possible to create or call them without additional requirements. Otherwise,
we recommend mocking. We use the identifier 𝑀𝑉 for this heuristic.

6.3.4 Algorithm for Minimal Amount of Mocks

f(A,B,C,D,E)

A
B

C
D

E

A(X,Y)

A(X,Y,M)

B(M,N)

B(Y,M,N)

C(O,P)

C(X,M,N)

D(Q,R)

D(X,Y,N)

E(Q,R)

E(X,Y,N)

𝑟𝑒𝑞 : 𝑎
𝑟𝑒𝑞 : 𝑏

𝑟𝑒𝑞 : 𝑐 𝑟𝑒𝑞 : 𝑑
𝑟𝑒𝑞 : 𝑒

𝑏𝑦

𝑏𝑦 𝑏𝑦
𝑏𝑦 𝑏𝑦

𝑏𝑦

𝑏𝑦
𝑏𝑦

𝑏𝑦

𝑏𝑦

Figure 6.21: Simplified dependency
graph for Fig. 6.20.

As discussed in Section 6.3.2.2, the analysis of multiple functions can lead
to different mocking decisions compared to the case of a single function. We
propose to consider such cases of multiple functions in mocking recommen-
dations. In our approach, we combine the dependency graphs of multiple
functions to a single dependency graph and implement an algorithm to find
a recommendation with a globally minimal number of mocks.

To combine the dependency graphs for multiple functions 𝑓1, ..., 𝑓𝑛 = 𝑆𝑓 ,
we then apply the following steps:

1. Create the set 𝑆𝑡 of all parameter types of each function in 𝑆𝑓 .
2. Introduce a new artificial function 𝑓 in such a way that the parameter

list of 𝑓 contains exactly all elements of 𝑆𝑡. For this artificial function 𝑓 ,
we create the dependency graph 𝐺𝑑 as described in Section 6.2.4.3.

3. Call 𝐺𝑑 the combined dependency graph for all elements in 𝑆𝑓 . Fig. 6.21
presents the combined dependency graph for Fig. 6.20.

We can now use the combined dependency graph for our analysis of mock
objects for multiple functions. A trivial approach would recommend mock Trivial approach

objects for all parameter types of the root function. Note that the result
of this trivial approach would be identical to the result of a single function
analysis. Such an approach does not always create an optimal solution as
shown by Fig. 6.20. The trivial approach would recommend 5 mock objects,
while 4 mock objects would be enough.

In contrast to the trivial approach, there is the full enumeration approach Full enumeration approach

where we iterate over all possible mocking recommendations for all types
in the combined dependency graph and select from all valid solutions the
solution with the minimal number of mock objects. This guarantees to find
the global minimum but is in practice not feasible due to the possibly large
number of 2𝑛 configurations for 𝑛 different types in the dependency graph.

186 testing in very large software projects

Instead of a full enumeration approach, we propose in Fig. 6.22 an al-
gorithm 𝐴𝐿𝐺𝑚𝑚 that exploits our graph data structure and properties of Our own algorithm

the dependency graph to avoid the iteration over all 2𝑛 types as for the full
enumeration approach. The key idea of our algorithm originates from the
observation that edges in our dependency graph are directed. For Fig. 6.20,
where we must resolve the dependency of type 𝐴, we do not have to consider
all possible mock configurations for the subgraph of 𝐴. For example, the
option to propose a mock object for type 𝐴 and types 𝑋, 𝑌 must not be
evaluated, because objects of type 𝑋 and 𝑌 are not required if we introduce
a mock object for type 𝐴. In terms of our dependency graph, we can abort
the traversal of a subgraph below a type node if the type should be mocked.

Further, in these cases where we have several options to create an object,
we do not have to consider all combinations of all options. In the case of our
example in Fig. 6.20, we do not have to inspect the configuration to mock
𝑄, 𝑅 and 𝑋, 𝑌 , 𝑁 below type 𝐸. It is enough to select one of the possible
configurations to create an object.

1 alg_mm (DependencyGraph graph) -> Set(Type) {
2 return getMinimumMocking (graph . rootnode)
3 }
4 getMinimumMocking (Node node) -> Set(Type) {
5 Set(Set(Type)) allValidMocks = allValidMocks (node)
6 return minimum (allValidMocks) // suitably defined
7 }
8 allValidMocks (Node node) -> Set(Set(Type)) {
9 if (node is empty) return EmptySet

10 Set(Set(Type)) solutions
11 if (node is not ROOT) add node.type to solutions
12 List(Set(Set(Type))) argSolutions
13 for each argument in node
14 for each Set(Node) creatorNodes in argument
15 Set(Set(Type)) argSolution
16 for each Node node in creatorNodes)
17 // each option for an argument
18 Set(Set(Type)) subgraph = allValidMocks (node)
19 if (subgraph is not empty)
20 add each element of subgraph to argSolution
21 if (argSolution is not empty)
22 add argSolution to argSolutions
23 if (argSolutions is not empty)
24 Set(Set(Type)) combined = combine (argSolutions)
25 add each element of combined to solutions
26 return solutions
27 }

Figure 6.22: The algorithm 𝐴𝐿𝐺𝑚𝑚 to
find recommendations for mocking that
minimize the total amount of mocks.
Fig. 6.23 presents the combine func-
tion.

𝐴𝐿𝐺𝑚𝑚 avoids the enumeration of 2𝑛 configuration for 𝑛 different types
within the dependency graph. However, 𝐴𝐿𝐺𝑚𝑚 includes several parts that
can have a superlinear evaluation complexity that depends on the number of
types and function parameters. It is trivial to parallelize the implementation
of 𝐴𝐿𝐺𝑚𝑚, because the subgraphs allow independent processing without any
write conflicts. However, in such cases where the execution time of 𝐴𝐿𝐺𝑚𝑚

would be too large, we propose a heuristic variant 𝐴𝐿𝐺𝑚𝑚−ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 that
modifies 𝐴𝐿𝐺𝑚𝑚 in two aspects. These modifications reduce the time re-
quirements but could result in a suboptimal solution. The implementation of
𝐴𝐿𝐺𝑚𝑚−ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 follows Fig. 6.22. We omit to show the full implementation
and we only describe the two modifications:

dynamic unit test extraction 187

1 /** Combine all possibilities for each argument . */
2 combine (<... > solutions) -> Set(Set(Type)) {
3 Set(Set(Type)) result
4 if (solutions is empty)
5 add empty set to result
6 return result
7 Set(Set(Type)) first = solutions [0]
8 Set(Set(Type)) rest = solutions [1..] // all but first
9 Set(Set(Type)) restCombined = combine (rest)

10 for each Set(Type) firstItem in first)
11 for each Set(Type) restItem in restCombined)
12 joined = firstItem union restitem
13 add joined to result
14 return result
15 }

Figure 6.23: Helper function for algo-
rithm 𝐴𝐿𝐺𝑚𝑚 to create all combina-
tions.

1. For each call of allValidMocks, decide whether the result should contain
the type of the current node or if the subgraph is further investigated.

2. For each call of combine, decide whether the result should only contain
the union of all types or all possible combinations of all types.

In our experiments, heuristics based on the depth of the graph, or the
number of children, or the current amount of possible solutions lead to
practicable results in terms of execution time and quality of the solution.

6.3.5 Evaluation

We investigate the following research questions (RQ):

RQ21 How does the heuristics 𝑀𝐷 and 𝑀𝑉 affect the number of required
objects for function calls?

RQ22 Can mocking recommendations that simultaneously consider many target
functions (𝐴𝐿𝐺𝑚𝑚) reduce the number of mock objects compared to
mocking recommendations that consider the target functions one by one?

We investigate functions as they are typically targeted by unit tests.
We study the same projects as in Section 6.2. Table 6.10 repeats their
characteristics, further details are provided by Section 6.2.

Project #Obj. types #Functions SLOC

SAP HANA 2018-11-24 735 194 4 210 541 11 065 382
Boost 1.66 [65] 30 548 53 528 4 392 925
CERN ROOT 6.13/08 [66] 100 705 730 507 3 417 362
Firefox 55.0.3 [68] 134 554 940 346 7 343 242
LLVM Clang 6 [69] 88 913 591 112 242 032
MySQL 8.0.11 [70] 54 360 199 692 3 791 989
ScummVM 2.0.0 [72] 13 527 148 350 1 830 628

Table 6.10: List of evaluation projects.

We use a workstation with 4 CPU, 160 cores with 2.10 GHz, and 1 TiB
RAM. In the cases when the execution time of algorithm 𝐴𝐿𝐺𝑚𝑚 exceeds
30 min or the memory consumption exceeds the available hardware, we
continue with a heuristic version as described in Section 6.3.3.

188 testing in very large software projects

As discussed in Section 6.3.3.1, we first have to create dependency graphs
of argument types. To collect all required objects, we have two alternative
approaches: We can collect all distinct object types or functions.

We use our Clang plugin (Section 6.2.4.2) for static analysis to generate
a list 𝐹 of all functions and information about their argument types. For
each function 𝑓 in 𝐹 , we create a dependency graph 𝐷𝐺𝑓 as described in
Section 6.2.4.3. The root node 𝑛𝑟 of 𝐷𝐺 represents 𝑓 , the child nodes on the
first level 𝑛1 connected to 𝑛𝑟 represent the arguments of 𝑓 . Each node in 𝑛1
then represents the dependency graph for the corresponding parameter type.
We finally obtain the set 𝑆𝐷𝐺 of all dependency graphs for all functions. For
each element in 𝑆𝐷𝐺, we apply both heuristics as described in Section 6.3.3.

Fig. 6.24 shows the results for 𝑀𝐷 and Fig. 6.25 shows the result for
𝑀𝑉 . Table 6.11 presents the results aggregated as averages (arithmetic
mean). The table shows the percentage of solved functions, i.e., functions
where we found an option to create them. We can apply our approach only
for such cases. Then, |𝐷𝐺| represents the size of a dependency graph before
finding a solution. Next, |𝑆| represents the size of the (minimal) solution.
Finally, |𝑀𝐷| and |𝑀𝑉 | represent the sizes of dependency graphs after
we introduce mocks according to the heuristics based on directories and
values, respectively. For comparison, we also provide the average number of
arguments per function, |𝑎𝑟𝑔𝑠|.

0

1

2..4

5..6

7..8

9..14

15..29

30..49

50..98

99..∞

7 · 105

5 · 105

6 · 105

1 · 105

82,756

1 · 105

1 · 105

85,003

93,627

76,654

7 · 105

7 · 105

8 · 105

55,564

14,659

6,917

425

18

#Functions

D
ep

en
de

nc
y

G
ra

ph
Si

ze

SAP HANA

With Mocks

25,040

25,707

27,578

4,480

1,735

2,907

2,948

2,169

1,348

232

25,040

28,243

22,780

578

147

65

9

3

1

#Functions

Boost

With Mocks

2 · 105

2 · 105

94,514

13,158

9,967

45,567

47,217

28,574

33,855

26,274

2 · 105

3 · 105

1 · 105

6,898

1,384

557

49

3

1

#Functions

CERN ROOT

With Mocks

3 · 105

2 · 105

2 · 105

37,633

22,252

38,879

44,007

27,501

84,400

34,912

3 · 105

3 · 105

2 · 105

13,128

3,690

2,110

108

5

4

#Functions

Firefox

With Mocks

2 · 105

2 · 105

1 · 105

19,424

15,758

65,156

76,104

62,902

45,403

40,051

2 · 105

4 · 105

2 · 105

7,189

1,237

424

43

3

1

#Functions

LLVM Clang

With Mocks

83,093

78,267

68,323

9,971

5,655

12,940

15,956

12,260

9,816

4,682

83,093

94,350

76,398

7,059

2,146

2,465

138

3

1

#Functions

MySQL

With Mocks

60,691

37,226

31,263

9,077

3,789

3,433

2,809

2,351

2,744

1,320

60,691

43,714

31,046

2,374

1,021

432

25

#Functions

ScummVM

With Mocks

Figure 6.24: Dependency graph sizes
before — and after — mock object rec-
ommendation based on directory. Log-
scale x-axis.Fig. 6.24 and Fig. 6.25 indicate that simple heuristics for mock object

recommendation can significantly reduce the size of dependency graphs. On
average, as shown by Table 6.11, the number of required objects is a factor
1.5 smaller if we follow the recommendations of 𝑀𝐷.

Interestingly, |𝑀𝑉 | < |𝑎𝑟𝑔𝑠|. This seems to be a contradiction because
each argument requires at leas one object. However, unnamed and default
arguments do not require objects. The heuristic 𝑀𝑉 recommends mocking
all complex types, i.e., typically these types that depend on additional types.
In contrast, simple types typically do not depend on additional objects.
Therefore, 𝑀𝑉 often shows solutions with size one and |𝑀𝑉 | = |𝑎𝑟𝑔𝑠| in

dynamic unit test extraction 189

0

1

2..4

5..6

7..8

9..14

15..29

30..49

50..98

99..∞

7 · 105

5 · 105

6 · 105

1 · 105

82,756

1 · 105

1 · 105

85,003

93,627

76,654

7 · 105

7 · 105

8 · 105

61,486

17,114

7,130

474

14

#Functions

D
ep

en
de

nc
y

G
ra

ph
Si

ze
SAP HANA

With Mocks

25,040

25,707

27,578

4,480

1,735

2,907

2,948

2,169

1,348

232

25,040

29,826

24,364

590

131

57

9

3

1

#Functions

Boost

With Mocks

2 · 105

2 · 105

94,514

13,158

9,967

45,567

47,217

28,574

33,855

26,274

2 · 105

3 · 105

1 · 105

6,830

1,429

624

48

3

1

#Functions

CERN ROOT

With Mocks

3 · 105

2 · 105

2 · 105

37,633

22,252

38,879

44,007

27,501

84,400

34,912

3 · 105

3 · 105

2 · 105

13,613

3,971

2,235

118

5

4

#Functions

Firefox

With Mocks

2 · 105

2 · 105

1 · 105

19,424

15,758

65,156

76,104

62,902

45,403

40,051

2 · 105

4 · 105

2 · 105

7,424

1,302

467

46

3

1

#Functions

LLVM Clang

With Mocks

83,093

78,267

68,323

9,971

5,655

12,940

15,956

12,260

9,816

4,682

83,093

97,948

80,604

7,298

2,528

2,865

230

4

1

#Functions

MySQL

With Mocks

60,691

37,226

31,263

9,077

3,789

3,433

2,809

2,351

2,744

1,320

60,691

46,380

34,043

2,577

1,072

414

35

#Functions

ScummVM

With Mocks

Figure 6.25: Dependency graph sizes
before — and after — mock object
recommendation based on mock value.
Log-scale x-axis.

such cases. However, unnamed arguments and default arguments do not
require additional object creation. Therefore, such arguments are “ignored”
and, consequently, |𝑀𝑉 | < |𝑎𝑟𝑔𝑠|. For practical purposes, 𝑀𝑉 might be
only useful for “negative” recommendation, i.e., to filter all types where
mocking is not recommended. It may not be advisable to mock all other
objects. The heuristic seems to be effective for such negative cases.

Project %Solved |𝐷𝐺| |𝑆| |𝑀𝐷| |𝑀𝑉 | |𝑎𝑟𝑔𝑠|

SAP HANA 97.98 11.36 2.20 1.76 1.61 1.63
Boost 98.31 4.56 1.78 1.50 1.43 1.47
CERN ROOT 96.11 14.49 1.85 1.20 1.15 1.18
Firefox 97.16 15.16 1.95 1.47 1.37 1.39
LLVM Clang 94.74 18.96 2.03 1.32 1.26 1.28
MySQL 98.38 9.10 2.24 1.66 1.56 1.59
ScummVM 99.89 5.19 1.56 1.24 1.17 1.17

Table 6.11: Average number of objects
required to create per category.

Answer RQ21
The mock heuristic 𝑀𝐷 can considerably reduce the amount of required
objects for function calls by a factor of 1.5 on average. The heuristic 𝑀𝑉

can correctly identify objects where mocking is not beneficial.

Next, we evaluate the algorithm 𝐴𝐿𝐺𝑚𝑚 for minimal amount of mocks.
𝐴𝐿𝐺𝑚𝑚 targets functions, therefore we change the evaluation focus to mul-
tiple functions. First, we group all functions by source file. This reflects
typical developer practice for test organization, that is, the test code follows
the same file system organization as the code under test. Then, for each
group, we introduce a new artificial function 𝑓 that contains the parameters
of all functions in this group. We have two choices to select the parameters
for 𝑓 . We can create the union of all parameters as a set where each param-
eter type is distinct (Distinct), or we can append all parameters as a list
(All). We also compare against the baseline of single functions (Single).

We apply our approach for all three variants. We calculate the sum #𝑀

of recommended mocks, the sum #𝑃 of parameters found in functions and
their ratio as percentage #𝑀/#𝑃%. Table 6.12 shows the results.

190 testing in very large software projects

Single Distinct All

Project #𝑀 #𝑃 #𝑀
#𝑃 % #𝑀 #𝑃 #𝑀

#𝑃 % #𝑀 #𝑃 #𝑀
#𝑃 %

SAP HANA 190 765 3 958 115 4.82 90 537 527 617 17.16 67 151 4 064 486 1.65
Boost 7 564 133 864 5.65 4 669 26 530 17.60 3 714 137 998 2.69
ROOT 38 898 783 146 4.97 21 342 135 741 15.72 13 988 804 508 1.74
Firefox 111 598 1 313 459 8.50 78 480 286 043 27.44 54 391 1 336 700 4.07
Clang 57 805 1 022 226 5.65 28 837 166 472 17.32 16 778 1 048 926 1.60
MySQL 20 136 465 061 4.33 16 414 80 137 20.48 10 929 479 828 2.28
ScummVM 11 675 178 190 6.55 11 497 36 786 31.25 11 381 180 406 6.31

Table 6.12: Results for 𝐴𝐿𝐺𝑚𝑚.

Table 6.12 shows the benefits of considering a larger scope. The number
of recommended mocks (#𝑀) is lower by a factor of 1 to 3 for a file scope
compared to single functions. The ratios #𝑀/#𝑃 differ by a factor of 5 to
10 for Distinct and All. Our algorithm successfully detects types that occur
multiple times and prioritizes mock recommendations for such types.

It seems unexpected that Distinct and All must analyze more types than
to Single. This effect is caused by default and unnamed arguments. They
can be exploited by the Single but are not available for Distinct and All.

For ScummVM, the differences for #𝑀 is small. The dependency graphs
for ScummVM are rather small resulting a low amount of mock configura-
tions. Hence, mocks do not reduce the the number of required objects.

Answer RQ22
A broader scope reduces the amount of required mock objects by a factor of
1 to 3 compared to considering single function for finding mock candidates.

6.3.6 Conclusions

We studied multiple heuristics for mock recommendation and proposed a
method for minimal mock recommendations. Our evaluations show the
possible practical benefit of these approaches. Future work is required for
analyzing the quality of the mocking recommendations.

6.4 Summary

We proposed a technique that allows dynamic unit test extraction which
is practical for large software projects. We applied this technique to SAP
HANA and extracted several hundred unit tests that were all accepted by
developers in code reviews, showing the practical usefulness of our technique.
In addition, we also proposed several other techniques to help developers
create unit tests, namely an automated approach to determine object cre-
ation steps and automated mock recommendations. Evaluations for both
approaches show their benefits for large projects.

By utilizing a multi-stage testing strategy, our approach can considerably
reduce test costs while maintaining the same overall degree of quality for
the software under test. Hence, we consider the approach practical.

7 Conclusions

As we introduced in Chapter 1, large software projects require quality as-
surance and testing but the corresponding costs fur such activities can be
substantial. Therefore, it is important to reduce such test costs. In our work,
we analyzed root causes for test costs in large projects and we have discussed
in Chapter 2 and shown in Chapter 5 that the size of large software project
results in specific issues that are not significant for projects of smaller size.

We proposed and evaluated a general approach for test cost reduction in
Chapter 5 that tackles the superlinear increase in test executions over time.
In Chapter 6, we tackled the problem of system tests with large execution
times by proposing to dynamically extract unit tests. Our approach extends
approaches proposed by related work by adapting them for large projects
and increasing their practical usefulness. In addition, we proposed several
approaches to reduce the effort for writing unit tests and therefore motivating
developers to create more unit tests instead of system tests.

Our evaluations show that our proposed approaches decrease test costs
by a substantial amount and reduce the negative effects of tests with large
execution times without loss in quality. We also believe that our approaches
can be adapted to other projects, even with different programming languages
and environments. However, they might only be interesting if test costs
and test execution times are significant. For small projects with negligible
test costs and test suites with less than 30 s execution time, the effort to
implement our approaches may not be justified.

In addition to our core contributions, we also investigated several ques-
tions related to coverage data. We build on related work to design efficient
algorithms and data structures for the analysis of coverage data and we
extend the existing knowledge about the relationship between coverage and
faults by two empirical studies. We do not claim to provide a definitive an-
swer to whether coverage data provides any additional information on faults.
However, our studies suggest that coverage can be useful in estimating and
directing testing activities. Future work is required to extend the state of
knowledge for this topic and to investigate possible confounding variables
and alternative explanations.

There are also several areas for future work. The process of generating
coverage for large projects can be further investigated. Which coverage
variant should be targeted and how can it efficiently measured? Would
it be beneficial to have a mix of different variants and how can we avoid
issues such as random coverage? The testing process itself of large projects
contains several further challenges due to the size of these projects. How

192 testing in very large software projects

to solve the problem of flaky tests? How to select tests for different testing
stages? We also see several possible future work for our proposed approaches.
Our implementation for dynamic unit test extraction has several limitations.
Some of them require further implementations such as support for more
C++ functionality, but there are also conceptional limitations such as the
challenge to extract unit tests from system tests if system tests read and
write a large state but unit tests should be small, readable and maintainable.

We conclude that large projects provide very interesting opportunities
for research. Due to the size of such projects, they show issues that may not
be noted for smaller projects. These unsolved issues provide new insights
for the understanding of software engineering. This is also reflected by the
research community as the number of publications related to specific issues
such as flakiness or very large test suites considerably grow in numbers since
2010. We hope that we can motivate further research with the work done
for this thesis.

8 Bibliography

[1] Advanced Micro Devices (AMD). 2017. AMD64 Architecture Programmer’s Manual. Technical Report.
AMD. AMD number: 24592. (Cited on page: 23)

[2] Advanced Micro Devices (AMD). 2019. Software Optimization Guide for AMD Family 17h Models 30h
and Greater Processors. Technical Report. AMD. AMD number: 56305. (Cited on page: 23)

[3] Iftekhar Ahmed, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen. 2016. Can Test-
edness Be Effectively Measured? In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). Association for Computing
Machinery, New York, NY, USA, 547–558. ISBN 9781450342186 DOI 10.1145/2950290.2950324 (Cited
on pages: 55, 58, 59, 60, 65, 68, 70, 77, 88, 90, 91, and 92)

[4] Amogh Akshintala, Bhushan Jain, Chia-Che Tsai, Michael Ferdman, and Donald E. Porter. 2019. x86-64
Instruction Usage Among C/C++ Applications. In Proceedings of the 12th ACM International Conference
on Systems and Storage (Haifa, Israel) (SYSTOR 2019). ACM, New York, NY, USA, 68–79. ISBN
9781450367493 DOI 10.1145/3319647.3325833 (Cited on pages: 30, 123, and 125)

[5] Sara Alspaugh, Kristen R. Walcott, Michael Belanich, Gregory M. Kapfhammer, and Mary Lou Soffa.
2007. Efficient Time-Aware Prioritization with Knapsack Solvers. In Proceedings of the 1st ACM Inter-
national Workshop on Empirical Assessment of Software Engineering Languages and Technologies: Held
in Conjunction with the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE) 2007 (Atlanta, Georgia) (WEASELTech 2007). Association for Computing Machinery, New York,
NY, USA, 13–18. ISBN 9781595938800 DOI 10.1145/1353673.1353676 (Cited on pages: 107 and 120)

[6] Paul Ammann and Jeff Offutt. 2016. Introduction to Software Testing (second ed.). Cambridge University
Press, New York, NY, USA. ISBN 1107172012, 9781107172012 (Cited on page: 23)

[7] Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis Haenikel, Balaji Varadarajan, Simon
Soriano, Dhaval Patel, and Ali-Reza Adl-Tabatabai. 2019. Keeping Master Green at Scale. In Proceedings
of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys 2019). ACM, New York, NY,
USA, 1–15. ISBN 9781450362818 DOI 10.1145/3302424.3303970 (Cited on page: 20)

[8] James Andrews, Lionel Claude Briand, and Yvan Labiche. 2005. Is Mutation an Appropriate Tool for
Testing Experiments? In Proceedings of the 27th International Conference on Software Engineering (St.
Louis, MO, USA) (ICSE ’05). Association for Computing Machinery, New York, NY, USA, 402–411.
ISBN 1581139632 DOI 10.1109/ICSE.2005.1553583 (Cited on page: 92)

[9] Artur Andrzejak and Thomas Bach. 2018. Practical Amplification of Condition/Decision Test Coverage
by Combinatorial Testing. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW 2018). IEEE Computer Society, Washington, DC, USA, 341–347. DOI
10.1109/ICSTW.2018.00070 (Cited on page: 6)

[10] ANSI. 1986. American National Standard for Information Systems – Coded Character Sets – 7-Bit
American Standard Code for Information Interchange (7-Bit ASCII). Technical Report ANSI X3.4-1986.
American National Standards Institute. (Cited on page: 24)

[11] Howard Anton and Anton Kaul. 2019. Elementary Linear Algebra (twelfth ed.). John Wiley and Sons,
USA. ISBN 9781119268048, 9781119406778 (Cited on page: 34)

[12] Andrea Arcuri, Gordon Fraser, and René Just. 2017. Private API Access and Functional Mocking in
Automated Unit Test Generation. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE Press, Piscataway, NJ, USA, 126–137. DOI 10.1109/ICST.2017.19 (Cited
on pages: 180 and 182)

[13] Shay Artzi, Michael Dean Ernst, Adam Kieżun, Carlos Pacheco, and Jeff H. Perkins. 2006. Finding the
Needles in the Haystack: GEnerating Legal Test Inputs for Object-Oriented Programs. In M-TOOS: 1st

https://dx.doi.org/10.1145/2950290.2950324
https://dx.doi.org/10.1145/3319647.3325833
https://dx.doi.org/10.1145/1353673.1353676
https://dx.doi.org/10.1145/3302424.3303970
https://dx.doi.org/10.1109/ICSE.2005.1553583
https://dx.doi.org/10.1109/ICSTW.2018.00070
https://dx.doi.org/10.1109/ICST.2017.19

194 testing in very large software projects

Workshop on Model-Based Testing and Object-Oriented Systems. M-TOOS, Portland, OR, USA, 27–34.
(Cited on page: 180)

[14] Git authors. 2020. Git Distributed Version Control System. Retrieved 2020-01-10, archived by Internet
Archive at https://web.archive.org/web/20200110161018/https://git-scm.com/ from https://git-
scm.com/ (Cited on pages: 62 and 75)

[15] LCOV authors. 2020. LCOV - The LTP GCOV Extension. Retrieved 2020-01-10, archived by Internet
Archive at https://web.archive.org/web/20200110161124/http://ltp.sourceforge.net/coverage/
lcov.php from http://ltp.sourceforge.net/coverage/lcov.php (Cited on pages: 25 and 30)

[16] Thomas Bach, Artur Andrzejak, and Ralf Pannemans. 2017. Coverage-Based Reduction of Test Execution
Time: Lessons from a Very Large Industrial Project. In 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW 2017). IEEE Computer Society, Washington,
DC, USA, 3–12. DOI 10.1109/ICSTW.2017.6 (Cited on page: 5)

[17] Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. 2017. The Impact of Coverage on
Bug Density in a Large Industrial Software Project. In Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (Markham, Ontario, Canada) (ESEM
2017). IEEE Press, Washington, DC, USA, 307–313. ISBN 9781509040391 DOI 10.1109/ESEM.2017.44
(Cited on pages: 5 and 103)

[18] Thomas Bach, Ralf Pannemans, and Artur Andrzejak. 2020. Determining Method-Call Sequences for
Object Creation in C++. In 2020 IEEE International Conference on Software Testing, Verification and
Validation (Porto, Portugal) (ICST 2020). IEEE Computer Society, Washington, DC, USA, 1–12. (Cited
on page: 5)

[19] Thomas Bach, Ralf Pannemans, Johannes Haeussler, and Artur Andrzejak. 2019. Dynamic Unit Test
Extraction via Time-Travel Debugging for Test Cost Reduction. In Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings (Montreal, Quebec, Canada) (ICSE 2019).
IEEE Press, Washington, DC, USA, 238–239. DOI 10.1109/ICSE-Companion.2019.00093 (Cited on
page: 5)

[20] Thomas Bach, Ralf Pannemans, and Sascha Schwedes. 2018. Effects of an Economic Approach for Test
Case Selection and Reduction for a Large Industrial Project. In 2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE Computer Society, Washington,
DC, USA, 374–379. DOI 10.1109/ICSTW.2018.00076 (Cited on pages: 3 and 5)

[21] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The Oracle Problem
in Software Testing: A Survey. IEEE Transactions on Software Engineering 41, 5 (May 2015), 507–525.
DOI 10.1109/TSE.2014.2372785 (Cited on page: 8)

[22] Earl T. Barr and Mark Marron. 2014. Tardis: Affordable Time-Travel Debugging in Managed Runtimes.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications (Portland, Oregon, USA) (OOPSLA 2014). ACM, New York, NY, USA, 67–82.
ISBN 9781450325851 DOI 10.1145/2660193.2660209 (Cited on page: 146)

[23] Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. 2016. Time-Travel Debugging
for JavaScript/Node.js. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA,
1003–1007. ISBN 9781450342186 DOI 10.1145/2950290.2983933 (Cited on page: 146)

[24] Adam B Barrett and Lionel Barnett. 2013. Granger Causality Is Designed to Measure Effect, Not
Mechanism. Frontiers in Neuroinformatics 7 (2013), 6. DOI 10.3389/fninf.2013.00006 (Cited on
page: 91)

[25] Nauman bin Ali, Emelie Engström, Masoumeh Taromirad, Mohammad Reza Mousavi, Nasir Mehmood
Minhas, Daniel Helgesson, Sebastian Kunze, and Mahsa Varshosaz. 2019. On the Search for Industry-
Relevant Regression Testing Research. Empirical Software Engineering 24, 4 (Aug. 2019), 2020–2055.
(Cited on page: 13)

[26] Roderick Bloem, Robert Koenighofer, Franz Röck, and Michael Tautschnig. 2014. Automating Test-Suite
Augmentation. In Proceedings of the 2014 14th International Conference on Quality Software (QSIC
2014). IEEE Computer Society, USA, 67–72. ISBN 9781479971985 DOI 10.1109/QSIC.2014.40 (Cited
on page: 103)

[27] Vincent Blondeau, Anne Etien, Nicolas Anquetil, Sylvain Cresson, Pascal Croisy, and Stéphane Ducasse.
2017. Test Case Selection in Industry: An Analysis of Issues Related to Static Approaches. Software
Quality Journal 25, 4 (Dec. 2017), 1203–1237. DOI 10.1007/s11219-016-9328-4 (Cited on page: 118)

[28] Barry William Boehm and Papaccio N. Papaccio. 1988. Understanding and Controlling Software Costs.
IEEE Transactions on Software Engineering 14, 10 (Oct. 1988), 1462–1477. DOI 10.1109/32.6191

https://web.archive.org/web/20200110161018/https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://web.archive.org/web/20200110161124/http://ltp.sourceforge.net/coverage/lcov.php
https://web.archive.org/web/20200110161124/http://ltp.sourceforge.net/coverage/lcov.php
http://ltp.sourceforge.net/coverage/lcov.php
https://dx.doi.org/10.1109/ICSTW.2017.6
https://dx.doi.org/10.1109/ESEM.2017.44
https://dx.doi.org/10.1109/ICSE-Companion.2019.00093
https://dx.doi.org/10.1109/ICSTW.2018.00076
https://dx.doi.org/10.1109/TSE.2014.2372785
https://dx.doi.org/10.1145/2660193.2660209
https://dx.doi.org/10.1145/2950290.2983933
https://dx.doi.org/10.3389/fninf.2013.00006
https://dx.doi.org/10.1109/QSIC.2014.40
https://dx.doi.org/10.1007/s11219-016-9328-4
https://dx.doi.org/10.1109/32.6191

bibliography 195

(Cited on pages: 61, 67, and 76)
[29] Carl Boettiger. 2015. An Introduction to Docker for Reproducible Research. ACM SIGOPS Operating

Systems Review 49, 1 (Jan. 2015), 71–79. DOI 10.1145/2723872.2723882 (Cited on page: 17)
[30] Nicolas Bourgeois, Bruno Escoffier, and V Th Paschos. 2009. Efficient Approximation Of MIN SET

COVER by Moderately Exponential Algorithms. Theoretical Computer Science 410, 21–23 (2009), 2184–
2195. (Cited on page: 38)

[31] George Edward Pelham Box, Gwilym Meirion Jenkins, Gregory Charles Reinsel, and Greta Marianne
Ljung. 2015. Time Series Analysis: Forecasting and Control (fifth ed.). John Wiley and Sons, San
Francisco, CA, USA. ISBN 0816211043 (Cited on pages: 72, 73, and 75)

[32] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: Automated Testing Based
on Java Predicates. ACM SIGSOFT Software Engineering Notes 27, 4 (July 2002), 123–133. DOI
10.1145/566171.566191 (Cited on page: 161)

[33] Tim Bray, Jean Paoli, Christopher Michael Sperberg-McQueen, Eve Maler, and François Yergeau. 2008.
Extensible Markup Language (XML) 1.0 (Fifth Edition)). Technical Report. W3C. Retrieved 2020-
01-10, archived by Internet Archive at https://web.archive.org/web/20200110164217/https://www.
w3.org/TR/2008/REC-xml-20081126/ from http://www.w3.org/TR/2008/REC-xml-20081126/ (Cited on
page: 158)

[34] Derek L. Bruening. 2004. Efficient, Transparent, and Comprehensive Runtime Code Manipulation. Ph.D.
Dissertation. Massachusetts Institute of Technology, Cambridge, MA, USA. AAI0807735. (Cited on
page: 29)

[35] Yuriy Brun, Reid Holmes, Michael Dean Ernst, and David Notkin. 2011. Proactive Detection of Collabo-
ration Conflicts. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering (Szeged, Hungary) (ESEC/FSE 2011). ACM, New York, NY,
USA, 168–178. ISBN 9781450304436 DOI 10.1145/2025113.2025139 (Cited on page: 20)

[36] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (San Diego, California) (OSDI 2008). USENIX Association,
Berkeley, CA, USA, 209–224. (Cited on page: 159)

[37] Xia Cai and Michael R. Lyu. 2005. The Effect of Code Coverage on Fault Detection Under Different Testing
Profiles. SIGSOFT Software Engineering Notes 30, 4 (May 2005), 1–7. DOI 10.1145/1082983.1083288
(Cited on page: 92)

[38] Robert Callan, Farnaz Behrang, Alenka Zajic, Milos Prvulovic, and Alessandro Orso. 2016. Zero-Overhead
Profiling via EM Emanations. In Proceedings of the 25th International Symposium on Software Testing
and Analysis (Saarbrücken, Germany) (ISSTA 2016). ACM, New York, NY, USA, 401–412. ISBN
9781450343909 DOI 10.1145/2931037.2931065 (Cited on page: 30)

[39] Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano Di Penta. 2010. Using Multivariate
Time Series and Association Rules to Detect Logical Change Coupling: An Empirical Study. In Proceedings
of the 2010 IEEE International Conference on Software Maintenance (ICSM 2010). IEEE Computer
Society, USA, 1–10. ISBN 9781424486304 DOI 10.1109/ICSM.2010.5609732 (Cited on page: 93)

[40] Jeffrey Carver, Letizia Jaccheri, Sandro Morasca, and Forrest Shull. 2003. Issues in Using Students in
Empirical Studies in Software Engineering Education. In Proceedings of the 9th International Symposium
on Software Metrics (METRICS 2003). IEEE Computer Society, Washington, DC, USA, 239–249. ISBN
0769519873 (Cited on page: 179)

[41] Stephen Cass. 2018. The 2018 Top Programming Languages. IEEE Spectrum. Retrieved 2020-01-10,
archived by WebCite at https://www.webcitation.org/76J2fuhpE from https://spectrum.ieee.org/
at-work/innovation/the-2018-top-programming-languages Rank 1 to 6: Python, C++, Java, C, C#,
PHP. (Cited on pages: 160 and 182)

[42] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and William Jalby. 2015. CERE:
LLVM-Based Codelet Extractor and REplayer for Piecewise Benchmarking and Optimization. ACM
Transactions on Architecture and Code Optimization 12, 1 (April 2015), 1–24. DOI 10.1145/2724717
(Cited on pages: 141 and 159)

[43] Sungdeok Cha, Richard N. Taylor, and Kyo Chul Kang. 2019. Handbook of Software Engineering. Springer
Nature Switzerland, Gewerbestrasse 11, 6330 Cham, Switzerland. ISBN 9783030002619 DOI 10.1007/978-
3-030-00262-6 (Cited on page: 10)

[44] Samy Chambi, Daniel Lemire, Robert Godin, Kamel Boukhalfa, Charles R. Allen, and Fangjin Yang. 2016.
Optimizing Druid with Roaring Bitmaps. In Proceedings of the 20th International Database Engineering
(Montreal, QC, Canada) (IDEAS 2016). ACM, New York, NY, USA, 77–86. ISBN 9781450341189 DOI

https://dx.doi.org/10.1145/2723872.2723882
https://dx.doi.org/10.1145/566171.566191
https://web.archive.org/web/20200110164217/https://www.w3.org/TR/2008/REC-xml-20081126/
https://web.archive.org/web/20200110164217/https://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
https://dx.doi.org/10.1145/2025113.2025139
https://dx.doi.org/10.1145/1082983.1083288
https://dx.doi.org/10.1145/2931037.2931065
https://dx.doi.org/10.1109/ICSM.2010.5609732
https://www.webcitation.org/76J2fuhpE
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://dx.doi.org/10.1145/2724717
https://dx.doi.org/10.1007/978-3-030-00262-6
https://dx.doi.org/10.1007/978-3-030-00262-6

196 testing in very large software projects

10.1145/2938503.2938515 (Cited on page: 31)
[45] John Joseph Chilenski. 2001. An Investigation of Three Forms of the Modified Condition Decision Coverage

(MCDC) Criterion. Technical Report. BOEING COMMERCIAL AIRPLANE CO SEATTLE WA. (Cited
on pages: 28 and 97)

[46] John Joseph Chilenski and Steven P. Miller. 1994. Applicability of Modified Condition/Decision Coverage
to Software Testing. Software Engineering Journal 9, 5 (September 1994), 193–200. DOI 10.1049/sej.
1994.0025 (Cited on pages: 23, 28, and 97)

[47] Eun-Hye Choi, Osamu Mizuno, and Yifan Hu. 2016. Code Coverage Analysis of Combinatorial Testing.
In Joint Proceedings of the 4th International Workshop on Quantitative Approaches to Software Quality
(QuASoQ 2016) and 1st International Workshop on Technical Debt Analytics (TDA 2016) co-located with
the 23rd Asia-Pacific Software Engineering Conference (APSEC 2016) (CEUR Workshop Proceedings).
CEUR-WS.org, Hamilton, New Zealand, 43–49. (Cited on page: 104)

[48] Vašek Chvátal. 1979. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research 4, 3 (Aug. 1979), 233–235. DOI 10.1287/moor.4.3.233 (Cited on page: 45)

[49] Lori. A. Clarke, Johnette Hassell, and Debra J. Richardson. 1982. A Close Look at Domain Testing. IEEE
Transactions on Software Engineering SE-8, 4 (July 1982), 380–390. DOI 10.1109/TSE.1982.235572
(Cited on page: 10)

[50] Reuven Cohen and Liran Katzir. 2008. The Generalized Maximum Coverage Problem. Inform. Process.
Lett. 108, 1 (Sept. 2008), 15–22. DOI 10.1016/j.ipl.2008.03.017 (Cited on page: 47)

[51] Mike Cohn. 2009. Succeeding with Agile: Software Development Using Scrum (first ed.). Addison-Wesley
Professional, USA. ISBN 0321579364, 9780321579362 (Cited on page: 3)

[52] TIOBE Company. 2020. TIOBE Programming Community Index. TIOBE Company. Retrieved 2020-
01-10, archived by Internet Archive at https://web.archive.org/web/20200110152937/https://www.
tiobe.com/tiobe-index/ from https://www.tiobe.com/tiobe-index/ Rank 1 to 5: Java, C, Python,
C++, C#. (Cited on pages: 160 and 182)

[53] Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Stein. 2009. Introduction to
Algorithms (third ed.). The MIT Press, Cambridge, Massachusetts London, England. ISBN 9780262033848
(Cited on pages: 53, 151, 168, and 169)

[54] Cesar Couto. 2013. Predicting Software Defects with Causality Tests. Ph.D. Dissertation. Federal University
of Minas Gerais. (Cited on pages: 80 and 92)

[55] Cesar Couto, Pedro Pires, Marco Tulio Valente, Roberto S Bigonha, and Nicolas Anquetil. 2014. Predicting
Software Defects With Causality Tests. Journal of Systems and Software 93 (2014), 24–41. (Cited on
page: 80)

[56] Cesar Couto, Christofer Silva, Marco Tulio Valente, Roberto Bigonha, and Nicolas Anquetil. 2012. Uncov-
ering Causal Relationships between Software Metrics and Bugs. In Proceedings of the 2012 16th European
Conference on Software Maintenance and Reengineering (CSMR 2012). IEEE Computer Society, USA,
223–232. ISBN 9780769546667 DOI 10.1109/CSMR.2012.31 (Cited on pages: 81 and 92)

[57] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino. 2019. Scalable Approaches
for Test Suite Reduction. In Proceedings of the 41st International Conference on Software Engineering
(Montreal, Quebec, Canada) (ICSE 2019). IEEE Press, Washington, DC, USA, 419–429. DOI 10.1109/
ICSE.2019.00055 (Cited on page: 14)

[58] Lajos Cseppentő and Zoltán Micskei. 2017. Evaluating Code-Based Test Input Generator Tools. Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference on 27 (2017), 1–24.
Issue 6. DOI 10.1002/stvr.1627 (Cited on page: 180)

[59] Jacek Czerwonka. 2013. On Use of Coverage Metrics in Assessing Effectiveness of Combinatorial Test
Designs. In Proceedings of the 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW 2013). IEEE Computer Society, USA, 257–266. ISBN 9780769549934
DOI 10.1109/ICSTW.2013.76 (Cited on page: 104)

[60] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Monperrus, and Benoit
Baudry. 2019. A Snowballing Literature Study on Test Amplification. Journal of Systems and Software
157 (2019), 35. DOI 10.1016/j.jss.2019.110398 (Cited on page: 103)

[61] Al Danial. 2020. cloc – Count Lines of Code. Retrieved 2020-01-10, archived by WebCite at http:
//www.webcitation.org/76J5fFUlo from https://github.com/AlDanial/cloc (Cited on page: 172)

[62] Martin Davis. 1983. Computability and Unsolvability. Dover Publications, Mineola, New York, USA.
ISBN 9780486151069 (Cited on page: 167)

[63] William Edwards Deming. 2000. Out of the Crisis. Massachusetts Institute of Technology, Center for
Advanced Engineering Study, USA. ISBN 9780262541152 (Cited on page: 7)

https://dx.doi.org/10.1145/2938503.2938515
https://dx.doi.org/10.1049/sej.1994.0025
https://dx.doi.org/10.1049/sej.1994.0025
https://dx.doi.org/10.1287/moor.4.3.233
https://dx.doi.org/10.1109/TSE.1982.235572
https://dx.doi.org/10.1016/j.ipl.2008.03.017
https://web.archive.org/web/20200110152937/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20200110152937/https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://dx.doi.org/10.1109/CSMR.2012.31
https://dx.doi.org/10.1109/ICSE.2019.00055
https://dx.doi.org/10.1109/ICSE.2019.00055
https://dx.doi.org/10.1002/stvr.1627
https://dx.doi.org/10.1109/ICSTW.2013.76
https://dx.doi.org/10.1016/j.jss.2019.110398
http://www.webcitation.org/76J5fFUlo
http://www.webcitation.org/76J5fFUlo
https://github.com/AlDanial/cloc

bibliography 197

[64] AssertJ development team. 2020. AssertJ - Fluent Assertions for Java. Retrieved 2020-01-10,
archived by Internet Archive at https://web.archive.org/web/20200110152354/https://github.com/
joel-costigliola/assertj-core from https://github.com/joel-costigliola/assertj-core (Cited
on page: 8)

[65] Boost development team. 2018. boost 1.66.0. Retrieved 2020-01-10 from https://dl.bintray.com/
boostorg/release/1.66.0/source/boost_1_66_0.tar.gz (Cited on pages: 173 and 187)

[66] CERN ROOT development team. 2018. CERN ROOT 6.13/08. CERN. Retrieved 2020-01-10 from
https://root.cern.ch/download/root_v6.13.08.source.tar.gz (Cited on pages: 173 and 187)

[67] DynamoRIO development team. 2020. drcov, a DynamoRIO Client Tool That Collects Code Coverage
Information. Retrieved 2020-01-10, archived by Internet Archive at https://web.archive.org/web/
20200110152248/https://dynamorio.org/docs/page_drcov.html from http://dynamorio.org/docs/
page_drcov.html (Cited on pages: 21 and 29)

[68] Firefox development team. 2018. Firefox 55.0.3. Mozilla. Retrieved 2020-01-10 from https://
archive.mozilla.org/pub/firefox/releases/55.0.3/source/firefox-55.0.3.source.tar.xz (Cited
on pages: 173 and 187)

[69] LLVM Clang development team. 2018. LLVM Clang 6.0.0. Retrieved 2020-01-10 from https://releases.
llvm.org/6.0.0/llvm-6.0.0.src.tar.xz (Cited on pages: 173 and 187)

[70] MySQL development team. 2018. MySQL 8.0.11. Retrieved 2020-01-10 from https://dev.mysql.com/
get/Downloads/MySQL-8.0/mysql-boost-8.0.11.tar.gz (Cited on pages: 173 and 187)

[71] Pin development team. 2020. Intel Pin – A Dynamic Binary Instrumentation Tool. Retrieved 2020-01-
10, archived by Internet Archive at https://web.archive.org/web/20200110135215/https://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool from https://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool (Cited on page: 150)

[72] ScummVM development team. 2018. ScummVM 2.0.0. Retrieved 2020-01-10 from https://www.scummvm.
org/frs/scummvm/2.0.0/scummvm-2.0.0.tar.gz (Cited on pages: 173 and 187)

[73] Jeremy Dick, Elizabeth Hull, and Ken Jackson. 2017. Requirements engineering (fourth ed.). Springer
International Publishing, Switzerland. ISBN 9783319610726 DOI 10.1007/978-3-319-61073-3 (Cited
on page: 1)

[74] William Dickinson, David Leon, and Andy Podgurski. 2001. Finding Failures by Cluster Analysis of
Execution Profiles. In Proceedings of the 23rd International Conference on Software Engineering. ICSE
2001 (Toronto, Ontario, Canada) (ICSE 2001). IEEE Computer Society, Washington, DC, USA, 339–348.
ISBN 0769510507 DOI 10.1109/ICSE.2001.919107 (Cited on pages: 34 and 35)

[75] Rheinhard Diestel. 2016. Graph Theory. Springer Nature, Heidelberger Platz 3, 14197 Berlin, Germany.
ISBN 9783662536216 DOI 10.1007/978-3-662-53622-3 (Cited on page: 44)

[76] Hyunsook Do. 2016. Recent Advances in Regression Testing Techniques. In Advances in Computers.
Vol. 103. Elsevier, Amsterdam, Netherlands, 53–77. DOI 10.1016/bs.adcom.2016.04.004 (Cited on
page: 13)

[77] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2008. An Empirical Study of
the Effect of Time Constraints on the Cost-Benefits of Regression Testing. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16).
ACM, New York, NY, USA, 71–82. ISBN 9781595939951 DOI 10.1145/1453101.1453113 (Cited on
pages: 107 and 108)

[78] Mark Dowson. 1997. The Ariane 5 Software Failure. ACM SIGSOFT Software Engineering Notes 22, 2
(March 1997), 84–85. DOI 10.1145/251880.251992 (Cited on page: 2)

[79] Himanshu Shekhar Dutta. 2009. Survey of Approximation Algorithms for Set Cover Problem. Master’s
thesis. University of North Texas. (Cited on page: 38)

[80] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil. 2006. Carving Differential
Unit Test Cases from System Test Cases. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Portland, Oregon, USA) (SIGSOFT 2006/FSE-14).
ACM, New York, NY, USA, 253–264. ISBN 1595934685 DOI 10.1145/1181775.1181806 (Cited on
pages: 141 and 158)

[81] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Matthew Jorde. 2009. Carving and Replaying
Differential Unit Test Cases from System Test Cases. IEEE Transactions on Software Engineering 35, 1
(Jan. 2009), 29–45. DOI 10.1109/TSE.2008.103 (Cited on pages: 141, 143, and 158)

[82] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2002. Test Case Prioritization: A
Family of Empirical Studies. IEEE Transactions on Software Engineering 28, 2 (Feb. 2002), 159–182.
DOI 10.1109/32.988497 (Cited on page: 107)

https://web.archive.org/web/20200110152354/https://github.com/joel-costigliola/assertj-core
https://web.archive.org/web/20200110152354/https://github.com/joel-costigliola/assertj-core
https://github.com/joel-costigliola/assertj-core
https://dl.bintray.com/boostorg/release/1.66.0/source/boost_1_66_0.tar.gz
https://dl.bintray.com/boostorg/release/1.66.0/source/boost_1_66_0.tar.gz
https://root.cern.ch/download/root_v6.13.08.source.tar.gz
https://web.archive.org/web/20200110152248/https://dynamorio.org/docs/page_drcov.html
https://web.archive.org/web/20200110152248/https://dynamorio.org/docs/page_drcov.html
http://dynamorio.org/docs/page_drcov.html
http://dynamorio.org/docs/page_drcov.html
https://archive.mozilla.org/pub/firefox/releases/55.0.3/source/firefox-55.0.3.source.tar.xz
https://archive.mozilla.org/pub/firefox/releases/55.0.3/source/firefox-55.0.3.source.tar.xz
https://releases.llvm.org/6.0.0/llvm-6.0.0.src.tar.xz
https://releases.llvm.org/6.0.0/llvm-6.0.0.src.tar.xz
https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-boost-8.0.11.tar.gz
https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-boost-8.0.11.tar.gz
https://web.archive.org/web/20200110135215/https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://web.archive.org/web/20200110135215/https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://www.scummvm.org/frs/scummvm/2.0.0/scummvm-2.0.0.tar.gz
https://www.scummvm.org/frs/scummvm/2.0.0/scummvm-2.0.0.tar.gz
https://dx.doi.org/10.1007/978-3-319-61073-3
https://dx.doi.org/10.1109/ICSE.2001.919107
https://dx.doi.org/10.1007/978-3-662-53622-3
https://dx.doi.org/10.1016/bs.adcom.2016.04.004
https://dx.doi.org/10.1145/1453101.1453113
https://dx.doi.org/10.1145/251880.251992
https://dx.doi.org/10.1145/1181775.1181806
https://dx.doi.org/10.1109/TSE.2008.103
https://dx.doi.org/10.1109/32.988497

198 testing in very large software projects

[83] William R. Elmendorf. 1969. Controlling the Functional Testing of an Operating System. IEEE Transac-
tions on Systems Science and Cybernetics 5, 4 (Oct 1969), 284–290. DOI 10.1109/TSSC.1969.300221
(Cited on page: 23)

[84] Jakob Engblom. 2012. A Review of Reverse Debugging. In Proceedings of the 2012 System, Software, SoC
and Silicon Debug Conference. IEEE, IEEE Computer Society, Washington, DC, USA, 1–6. (Cited on
pages: 143 and 146)

[85] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015. Empirical Evaluation of
Pareto Efficient Multi-Objective Regression Test Case Prioritisation. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 234–245.
ISBN 9781450336208 DOI 10.1145/2771783.2771788 (Cited on pages: 51, 108, and 126)

[86] Jens Grabowski Fabian Trautsch. 2017. Are There Any Unit Tests? An Empirical Study on Unit
Testing in Open Source Python Projects. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST 2017). IEEE Computer Society, Washington, DC, USA, 207–218. DOI
10.1109/ICST.2017.26 (Cited on page: 16)

[87] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-
Grained and Accurate Source Code Differencing. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (Vasteras, Sweden) (ASE 2014). Association for Com-
puting Machinery, New York, NY, USA, 313–324. ISBN 9781450330138 DOI 10.1145/2642937.2642982
(Cited on pages: 60, 77, 78, and 90)

[88] Sheikh Umar Farooq, S.M.K. Quadri, and Nesar Ahmad. 2017. A Replicated Empirical Study to Evaluate
Software Testing Methods. Journal of Software: Evolution and Process 29, 9 (2017), 1–22. DOI
10.1002/smr.1883 (Cited on page: 10)

[89] Michael Felderer and Ina Schieferdecker. 2014. A Taxonomy of Risk-Based Testing. International Journal
on Software Tools for Technology Transfer 16, 5 (jul 2014), 559–568. DOI 10.1007/s10009-014-0332-3
(Cited on pages: 54 and 118)

[90] Robert Feldt and Felix Dobslaw. 2019. Towards Automated Boundary Value Testing with Program
Derivatives and Search. In Search-Based Software Engineering. Springer International Publishing, Cham,
155–163. ISBN 9783030274559 DOI 10.1007/978-3-030-27455-9_11 (Cited on page: 10)

[91] Robert Feldt and Ana Magazinius. 2010. Validity Threats in Empirical Software Engineering Research
– An Initial Survey. In Proceedings of the 22nd International Conference on Software Engineering &
Knowledge Engineering (SEKE’2010). SEKE, Redwood City, San Fransisco Bay, CA, USA, 374–379.
(Cited on page: 57)

[92] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Generation for Object-Oriented
Software. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (Szeged, Hungary) (ESEC/FSE 2011). ACM, New York, NY, USA,
416–419. ISBN 9781450304436 DOI 10.1145/2025113.2025179 (Cited on pages: 161, 162, 180, and 182)

[93] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and Wolfgang Lehner.
2012. SAP HANA Database: Data Management for Modern Business Applications. SIGMOD Record 40,
4 (Jan. 2012), 45–51. DOI 10.1145/2094114.2094126 (Cited on page: 15)

[94] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe, and Jonathan
Dees. 2012. The SAP HANA Database – An Architecture Overview. Bulletin of the Technical Committee
on Data Engineering / IEEE Computer Society 35, 1 (2012), 28–33. (Cited on page: 15)

[95] Winrich A Freiwald, Pedro Valdes, Jorge Bosch, Rolando Biscay, Juan Carlos Jimenez, Luis Manuel
Rodriguez, Valia Rodriguez, Andreas K Kreiter, and Wolf Singer. 1999. Testing Non-Linearity and
Directedness of Interactions Between Neural Groups in the Macaque Inferotemporal Cortex. Journal of
neuroscience methods 94, 1 (1999), 105–119. (Cited on page: 74)

[96] Wayne Arthur Fuller. 1996. Introduction to Statistical Time Series. Wiley, USA. (Cited on pages: 72
and 81)

[97] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. William H. Freeman and Company, USA. ISBN 0716710455 (Cited on page: 51)

[98] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta. 2013. Feedback-
Directed Unit Test Generation for C/C++ Using Concolic Execution. In Proceedings of the 2013 In-
ternational Conference on Software Engineering (San Francisco, CA, USA) (ICSE 2013). IEEE Press,
Piscataway, NJ, USA, 132–141. ISBN 9781467330763 (Cited on pages: 159 and 181)

[99] John Geweke. 1984. Inference and Causality in Economic Time Series Models. In Handbook of Econo-
metrics. Handbook of Econometrics, Vol. 2. Elsevier, Amsterdam, Netherlands, 1101–1144. (Cited on
page: 90)

https://dx.doi.org/10.1109/TSSC.1969.300221
https://dx.doi.org/10.1145/2771783.2771788
https://dx.doi.org/10.1109/ICST.2017.26
https://dx.doi.org/10.1145/2642937.2642982
https://dx.doi.org/10.1002/smr.1883
https://dx.doi.org/10.1007/s10009-014-0332-3
https://dx.doi.org/10.1007/978-3-030-27455-9_11
https://dx.doi.org/10.1145/2025113.2025179
https://dx.doi.org/10.1145/2094114.2094126

bibliography 199

[100] GitHub. 2018. The Fifteen Most Popular Languages on GitHub by Opened Pull Request. GitHub Inc.
Retrieved 2020-01-10, archived by WebCite at https://www.webcitation.org/76J2LOTd3 from https:
//octoverse.github.com/2018/ Rank 1 to 6: Javascript, Python, Java, Ruby, PHP, C++. (Cited on
pages: 160 and 182)

[101] Patrice Godefroid. 2014. Micro Execution. In Proceedings of the 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA, 539–549. ISBN 9781450327565
DOI 10.1145/2568225.2568273 (Cited on page: 29)

[102] David Goldberg. 1991. What Every Computer Scientist Should Know About Floating-Point Arithmetic.
ACM Computing Surveys (CSUR) 23, 1 (1991), 5–48. (Cited on page: 8)

[103] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite Evaluation by Developers.
In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New
York, NY, USA, 72–82. ISBN 9781450327565 DOI 10.1145/2568225.2568278 (Cited on pages: 13, 70,
and 92)

[104] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How Close Are They to Real Faults?
In Proceedings of the 2014 IEEE 25th International Symposium on Software Reliability Engineering
(ISSRE 2014). IEEE Computer Society, Washington, DC, USA, 189–200. ISBN 9781479960330 DOI
10.1109/ISSRE.2014.40 (Cited on pages: 70 and 92)

[105] Clive WJ Granger and Paul Newbold. 1974. Spurious Regressions in Econometrics. Journal of econometrics
2, 2 (1974), 111–120. (Cited on pages: 72 and 73)

[106] Clive William John Granger. 1969. Investigating Causal Relations by Econometric Models and Cross-
Spectral Methods. Econometrica 37, 3 (1969), 424–438. (Cited on pages: 69, 71, 72, and 73)

[107] Alfred Gray, Elsa Abbena, and Simon Salamon. 2006. Modern Differential Geometry of Curves and
Surfaces with Mathematica (third ed.). Chapmana and Hall/CRC, USA. ISBN 1584884487 (Cited on
page: 34)

[108] Lucas Gren. 2018. Standards of Validity and the Validity of Standards in Behavioral Software Engi-
neering Research: The Perspective of Psychological Test Theory. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (Oulu, Finland) (ESEM
2018). ACM, New York, NY, USA, 1–4. ISBN 9781450358231 DOI 10.1145/3239235.3267437 (Cited
on page: 57)

[109] Mats Grindal, Jeff Offutt, and Sten F Andler. 2005. Combination Testing Strategies: A Survey. Software
Testing, Verification and Reliability 15, 3 (2005), 167–199. (Cited on page: 10)

[110] Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. 2014. Coverage and Its Discontents. In
Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software (Portland, Oregon, USA) (Onward! 2014). ACM, Association for Computing
Machinery, New York, NY, USA, 255–268. ISBN 9781450332101 DOI 10.1145/2661136.2661157 (Cited
on page: 56)

[111] Alex David Groce. 2005. Error Explanation and Fault Localization with Distance Metrics. Ph.D. Disser-
tation. Carnegie Mellon University. ISBN 0542015544 (Cited on page: 34)

[112] Mário Luís Guimarães and António Rito Silva. 2012. Improving Early Detection of Software Merge Con-
flicts. In Proceedings of the 34th International Conference on Software Engineering (Zurich, Switzerland)
(ICSE 2012). IEEE Press, IEEE Press, Washington, DC, USA, 342–352. ISBN 9781467310673 DOI
10.1109/ICSE.2012.6227180 (Cited on page: 20)

[113] James Douglas Hamilton. 1994. Time Series Analysis. Princeton University Press, USA. (Cited on
page: 73)

[114] Mark Harman. 2010. Why Source Code Analysis and Manipulation Will Always be Important. In
Proceedings of the 10th International Working Conference on Source Code Analysis and Manipulation.
IEEE Computer Society, Washington, DC, USA, 7–19. ISBN 9780769541785 DOI 10.1109/SCAM.2010.28
(Cited on page: 24)

[115] Kelly J. Hayhurst and Dan S. Veerhusen. 2001. A Practical Approach to Modified Condition/Decision
Coverage. In 20th DASC. 20th Digital Avionics Systems Conference, Vol. 1. IEEE Computer Society,
Washington, DC, USA, 1–10. DOI 10.1109/DASC.2001.963305 (Cited on page: 103)

[116] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The Art of Testing Less
Without Sacrificing Quality. In Proceedings of the 37th International Conference on Software Engineering
(Florence, Italy) (ICSE 2015). IEEE Press, Piscataway, NJ, USA, 483–493. ISBN 9781479919345 (Cited
on pages: 3 and 12)

[117] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s Not a Bug, It’s a Feature: How Misclassification
Impacts Bug Prediction. In Proceedings of the 2013 international conference on software engineering (San

https://www.webcitation.org/76J2LOTd3
https://octoverse.github.com/2018/
https://octoverse.github.com/2018/
https://dx.doi.org/10.1145/2568225.2568273
https://dx.doi.org/10.1145/2568225.2568278
https://dx.doi.org/10.1109/ISSRE.2014.40
https://dx.doi.org/10.1145/3239235.3267437
https://dx.doi.org/10.1145/2661136.2661157
https://dx.doi.org/10.1109/ICSE.2012.6227180
https://dx.doi.org/10.1109/SCAM.2010.28
https://dx.doi.org/10.1109/DASC.2001.963305

200 testing in very large software projects

Francisco, CA, USA) (ICSE 2013). IEEE Press, IEEE Computer Society, Washington, DC, USA, 392–401.
ISBN 9781467330763 (Cited on page: 89)

[118] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The Impact of Tangled Code Changes on Defect
Prediction Models. Empirical Software Engineering 21, 2 (2016), 303–336. (Cited on page: 89)

[119] Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes. In Proceedings of the 10th
Working Conference on Mining Software Repositories (San Francisco, CA, USA) (MSR 2013). IEEE Press,
Piscataway, NJ, USA, 121–130. ISBN 9781467329361 (Cited on page: 67)

[120] Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A Large-Scale Study of Test Coverage Evolution.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 53–63. ISBN 9781450359375 DOI
10.1145/3238147.3238183 (Cited on page: 23)

[121] Richard Hipp et al. 2020. SQLite. Retrieved 2020-01-10, archived by Internet Archive at
https://web.archive.org/web/20200110153303/https://www.sqlite.org/index.html from https://
www.sqlite.org/index.html Version 3.24.0 from 2018-06-04. (Cited on page: 144)

[122] Joy W Hollén and Patrick S Zacarias. 2015. Exploring Code Coverage in Software Testing and its Corre-
lation with Software Quality; A Systematic Literature Review. Master’s thesis. University of Gothenburg.
(Cited on page: 23)

[123] Christian Hovy and Julian Kunkel. 2016. Towards Automatic and Flexible Unit Test Generation for
Legacy HPC Code. In Proceedings of the Fourth International Workshop on Software Engineering for
HPC in Computational Science and Engineering (Salt Lake City, Utah) (SE-HPCCSE 2016). IEEE
Press, Piscataway, NJ, USA, 42–49. ISBN 9781509052240 DOI 10.1109/SE-HPCCSE.2016.6 (Cited on
pages: 141, 143, and 159)

[124] William E. Howden. 1976. Reliability of the Path Analysis Testing Strategy. IEEE Transactions on
Software Engineering SE-2, 3 (September 1976), 208–215. DOI 10.1109/TSE.1976.233816 (Cited on
page: 2)

[125] William E. Howden. 1978. Theoretical and Empirical Studies of Program Testing. IEEE Transactions on
Software Engineering SE-4, 4 (July 1978), 293–298. DOI 10.1109/TSE.1978.231514 (Cited on page: 8)

[126] Sanqing Hu, Yu Cao, Jianhai Zhang, Wanzeng Kong, Kun Yang, Yanbin Zhang, and Xun Li. 2012. More
Discussions for Granger Causality and New Causality Measures. Cognitive neurodynamics 6, 1 (2012),
33–42. (Cited on page: 91)

[127] Sanqing Hu, Guojun Dai, Gregory A Worrell, Qionghai Dai, and Hualou Liang. 2011. Causality Analysis
of Neural Connectivity: Critical Examination of Existing Methods and Advances of New Methods. IEEE
transactions on neural networks 22, 6 (2011), 829–844. (Cited on page: 74)

[128] Xueqing Hu, Sanqing Hu, Jianhai Zhang, Wanzeng Kong, and Yu Cao. 2016. A Fatal Drawback of the
Widely Used Granger Causality in Neuroscience. In 2016 Sixth International Conference on Information
Science and Technology (ICIST). IEEE, IEEE Computer Society, Washington, DC, USA, 61–65. DOI
10.1109/ICIST.2016.7483386 (Cited on page: 91)

[129] Thomas Huckle and Tobias Neckel. 2019. Bits and Bugs: A Scientific and Historical Review of Software
Failures in Computational Science. Society for Industrial and Applied Mathematics, Philadelphia, PA.
ISBN 9781611975550 DOI 10.1137/1.9781611975567 (Cited on page: 2)

[130] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated with Test Suite Effec-
tiveness. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE 2014). ACM, New York, NY, USA, 435–445. ISBN 9781450327565 DOI 10.1145/2568225.2568271
(Cited on pages: 56, 58, 70, 91, 92, and 103)

[131] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Optimization Reference Manual. Technical
Report. Intel Corporation. Intel number: 248966-042b. (Cited on pages: 23 and 30)

[132] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual. Technical Report.
Intel Corporation. Intel number: 325462-071US. (Cited on pages: 23, 25, and 27)

[133] ISO. 2011. Systems and Software Engineering – Systems and Software Quality Requirements and Evaluation
(SQuaRE) — System and Software Quality Models. Technical Report ISO/IEC 25010:2011. International
Organization for Standardization, Geneva, Switzerland. (Cited on pages: 1 and 9)

[134] ISO. 2011. Systems and Software Engineering – Vocabulary. Technical Report ISO/IEC/IEEE 24765:2017.
International Organization for Standardization, Geneva, Switzerland. (Cited on page: 16)

[135] ISO. 2015. Information Technology – Vocabulary. Technical Report ISO/IEC 2382:2015. International
Organization for Standardization, Geneva, Switzerland. (Cited on page: 1)

[136] ISO. 2015. Quality Management Systems – Fundamentals and Vocabulary. Technical Report ISO 9000:2015.
International Organization for Standardization, Geneva, Switzerland. (Cited on pages: 1, 7, and 8)

https://dx.doi.org/10.1145/3238147.3238183
https://web.archive.org/web/20200110153303/https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://dx.doi.org/10.1109/SE-HPCCSE.2016.6
https://dx.doi.org/10.1109/TSE.1976.233816
https://dx.doi.org/10.1109/TSE.1978.231514
https://dx.doi.org/10.1109/ICIST.2016.7483386
https://dx.doi.org/10.1137/1.9781611975567
https://dx.doi.org/10.1145/2568225.2568271

bibliography 201

[137] ISO. 2017. Information Technology – Universal Coded Character Set (UCS). Technical Report ISO/IEC
10646:2017. International Organization for Standardization, Geneva, Switzerland. (Cited on page: 24)

[138] ISO. 2017. Programming Languages – C++. Technical Report ISO/IEC 14882:2017. International
Organization for Standardization, Geneva, Switzerland. (Cited on pages: 146, 157, 161, 162, 165, 166,
167, 170, 171, 172, 173, 177, and 184)

[139] ISTQB. 2020. International Software Testing Qualifications Board (ISTQB). ISTQB. Retrieved 2020-
01-10, archived by Internet Archive at https://web.archive.org/web/20200110161249/https://www.
istqb.org/ from http://www.istqb.org/ (Cited on page: 61)

[140] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. 2019. Code Coverage at Google. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). ACM, New
York, NY, USA, 955–963. ISBN 9781450355728 DOI 10.1145/3338906.3340459 (Cited on page: 23)

[141] Paul Jaccard. 1902. Lois de Distribution Florale dans la Zone Alpine. Bull Soc Vaudoise Sci Nat 38
(1902), 69–130. (Cited on page: 127)

[142] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. 2010. OCAT: Object Capture-Based Au-
tomated Testing. In Proceedings of the 19th International Symposium on Software Testing and Analy-
sis (Trento, Italy) (ISSTA 2010). ACM, New York, NY, USA, 159–170. ISBN 9781605588230 DOI
10.1145/1831708.1831729 (Cited on pages: 141, 159, 161, 180, and 182)

[143] Bo Jiang, Zhenyu Zhang, Tsun-Him Tse, and Tsong Yueh Chen. 2009. How Well Do Test Case Prioriti-
zation Techniques Support Statistical Fault Localization. In Proceedings of the 2009 33rd Annual IEEE
International Computer Software and Applications Conference – Volume 01 (COMPSAC 2009). IEEE
Computer Society, Washington, DC, USA, 99–106. ISBN 9780769537269 DOI 10.1109/COMPSAC.2009.23
(Cited on pages: 34 and 35)

[144] Capers Jones. 2007. Estimating Software Costs: BRinging Realism to Estimating. McGraw-Hill Companies
New York, New York, USA. ISBN 9780071483001 (Cited on page: 12)

[145] James A. Jones and Mary Jean Harrold. 2003. Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage. IEEE Transactions on Software Engineering 29, 3 (March 2003), 195–209.
DOI 10.1109/TSE.2003.1183927 (Cited on pages: 28 and 97)

[146] Shrinivas Joshi and Alessandro Orso. 2007. SCARPE: A Technique and Tool for Selective Capture
and Replay of Program Executions. In 2007 IEEE International Conference on Software Maintenance.
IEEE Computer Society, Washington, DC, USA, 234–243. DOI 10.1109/ICSM.2007.4362636 (Cited on
pages: 141 and 158)

[147] René Just, Darioush Jalali, Laura Inozemtseva, Michael Dean Ernst, Reid Holmes, and Gordon Fraser.
2014. Are Mutants a Valid Substitute for Real Faults in Software Testing? In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 654–665. ISBN 9781450330565
DOI 10.1145/2635868.2635929 (Cited on page: 92)

[148] Richard Manning Karp. 1972. Reducibility Among Combinatorial Problems. In Proceedings of a Sym-
posium on the Complexity of Computer Computations (IBM Thomas J. Watson Research Center, York-
town Heights, New York, USA). Springer US, Boston, MA, 85–103. ISBN 9781468420012 DOI
10.1007/978-1-4684-2001-2_9 (Cited on pages: 37, 47, and 98)

[149] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017. Effective Regression
Test Case Selection: A Systematic Literature Review. Comput. Surveys 50, 2 (May 2017), 32. DOI
10.1145/3057269 (Cited on pages: 13 and 159)

[150] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017. Effective Regression
Test Case Selection: A Systematic Literature Review. Comput. Surveys 50, 2 (May 2017), 1–32. DOI
10.1145/3057269 (Cited on page: 118)

[151] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack Problems. Springer Berlin Heidelberg,
Berlin, Heidelberg. ISBN 9783642073113 9783540247777 (Cited on page: 120)

[152] Brian Wilson Kernighan and Phillip James Plauger. 1978. The Elements of Programming Style (second
ed.). McGraw-Hill, New York, USA. ISBN 9780070342071 (Cited on pages: 24 and 140)

[153] Saif Ur Rehman Khan, Sai Peck Lee, Nadeem Javaid, and Wadood Abdul. 2018. A systematic review on
test suite reduction: Approaches, experiment’s quality evaluation, and guidelines. IEEE Access 6 (2018),
11816–11841. (Cited on page: 13)

[154] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang NA Jawawi, and Rooster Tumeng. 2018. Test
Case Prioritization Approaches in Regression Testing: A Systematic Literature Review. Information and
Software Technology 93 (2018), 74–93. (Cited on page: 13)

https://web.archive.org/web/20200110161249/https://www.istqb.org/
https://web.archive.org/web/20200110161249/https://www.istqb.org/
http://www.istqb.org/
https://dx.doi.org/10.1145/3338906.3340459
https://dx.doi.org/10.1145/1831708.1831729
https://dx.doi.org/10.1109/COMPSAC.2009.23
https://dx.doi.org/10.1109/TSE.2003.1183927
https://dx.doi.org/10.1109/ICSM.2007.4362636
https://dx.doi.org/10.1145/2635868.2635929
https://dx.doi.org/10.1007/978-1-4684-2001-2_9
https://dx.doi.org/10.1145/3057269
https://dx.doi.org/10.1145/3057269

202 testing in very large software projects

[155] Yit Phang Khoo, Jeffrey S Foster, and Michael Hicks. 2013. Expositor: Scriptable Time-Travel Debugging
With First-Class Traces. In Proceedings of the 2013 International Conference on Software Engineering
(San Francisco, CA, USA) (ICSE 2013). IEEE Press, IEEE Computer Society, Washington, DC, USA,
352–361. ISBN 9781467330763 DOI 10.1109/ICSE.2013.6606581 (Cited on page: 146)

[156] Samir Khuller, Anna Moss, and Joseph Seffi Naor. 1999. The Budgeted Maximum Coverage Problem.
Inform. Process. Lett. 70, 1 (April 1999), 39–45. DOI 10.1016/S0020-0190(99)00031-9 (Cited on
pages: 48 and 49)

[157] Youngsung Kim, John Dennis, Christopher Kerr, Raghu Raj Prasanna Kumar, Amogh Simha, Allison
Baker, and Sheri Mickelson. 2016. KGEN: A Python Tool for Automated FORTRAN Kernel Generation
and Verification. Procedia Computer Science 80 (2016), 1450–1460. (Cited on pages: 141 and 159)

[158] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code Coverage and Test Suite Effectiveness:
Empirical Study With Real Bugs in Large Systems. In 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (Montreal, QC, Canada) (SANER 2015). IEEE Computer Society,
Washington, DC, USA, 560–564. DOI 10.1109/SANER.2015.7081877 (Cited on pages: 56 and 91)

[159] Pavneet Singh Kochhar, Ferdian Thung, David Lo, and Julia Lawall. 2014. An Empirical Study on
the Adequacy of Testing in Open Source Projects. In Proceedings of the 2014 21st Asia-Pacific Software
Engineering Conference (APSEC 2014). IEEE Computer Society, USA, 215–222. ISBN 9781479974269
DOI 10.1109/APSEC.2014.42 (Cited on page: 92)

[160] Gary Koop. 2006. Analysis of Financial Data. Wiley, USA. (Cited on page: 73)
[161] David Kordalewski. 2013. New Greedy Heuristics For Set Cover and Set Packing. Master’s thesis.

University of Toronto. (Cited on pages: 38 and 44)
[162] Bernhard Korte and Jens Vygen. 2018. Combinatorial Optimization: Theory and Algorithms (sixth ed.).

Springer Publishing Company, Incorporated, Heidelberg, Germany. ISBN 3662560380, 9783662560389
DOI 10.1007/3-540-29297-7 (Cited on pages: 37, 50, and 51)

[163] Jon A. Krosnick and Stanley Presser. 2009. Question and Questionnaire Design. In Handbook of Survey
Research (second ed.), Peter V. Marsden and James D. Wright (Eds.). Emerald Group Publishing, Bingley,
UK, Chapter 9, 439–455. (Cited on page: 162)

[164] David Richard Kuhn, Raghu N. Kacker, and Yu Lei. 2010. Practical Combinatorial Testing. NIST special
Publication 800, 142 (2010), 142. (Cited on page: 11)

[165] David Richard Kuhn, Yu Lei, and Raghu N. Kacker. 2008. Practical Combinatorial Testing: Beyond
Pairwise. It Professional 10, 3 (2008), 19–23. (Cited on page: 11)

[166] David Richard Kuhn, Dolores R Wallace, and Albert M. Gallo. 2004. Software Fault Interactions and
Implications for Software Testing. IEEE transactions on software engineering 30, 6 (2004), 418–421.
(Cited on page: 11)

[167] Filip Křikava and Jan Vitek. 2018. Tests from Traces: Automated Unit Test Extraction for R. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis
(Amsterdam, Netherlands) (ISSTA 2018). ACM, New York, NY, USA, 232–241. ISBN 9781450356992
DOI 10.1145/3213846.3213863 (Cited on pages: 141, 143, and 158)

[168] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the Cost of Regression
Testing in Practice: A Study of Java Projects Using Continuous Integration. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
ACM, New York, NY, USA, 821–830. ISBN 9781450351058 DOI 10.1145/3106237.3106288 (Cited on
page: 139)

[169] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thummalapenta. 2019. Root
Causing Flaky Tests in a Large-Scale Industrial Setting. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA 2019). Association
for Computing Machinery, New York, NY, USA, 101–111. ISBN 9781450362245 DOI 10.1145/3293882.
3330570 (Cited on page: 139)

[170] Michele Lanza. 2001. The Evolution Matrix: Recovering Software Evolution Using Software Visualization
Techniques. In Proceedings of the 4th International Workshop on Principles of Software Evolution (Vienna,
Austria) (IWPSE 2001). Association for Computing Machinery, New York, NY, USA, 37–42. ISBN
1581135084 DOI 10.1145/602461.602467 (Cited on page: 80)

[171] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis
and Transformation. In Proceedings of the International Symposium on Code Generation and Optimization.
IEEE Computer Society, Washington, DC, USA, 75–86. DOI 10.1109/CGO.2004.1281665 (Cited on
pages: 28, 147, 159, and 166)

[172] Yoon-Ju Lee and Mary Hall. 2005. A Code Isolator: Isolating Code Fragments from Large Programs.

https://dx.doi.org/10.1109/ICSE.2013.6606581
https://dx.doi.org/10.1016/S0020-0190(99)00031-9
https://dx.doi.org/10.1109/SANER.2015.7081877
https://dx.doi.org/10.1109/APSEC.2014.42
https://dx.doi.org/10.1007/3-540-29297-7
https://dx.doi.org/10.1145/3213846.3213863
https://dx.doi.org/10.1145/3106237.3106288
https://dx.doi.org/10.1145/3293882.3330570
https://dx.doi.org/10.1145/3293882.3330570
https://dx.doi.org/10.1145/602461.602467
https://dx.doi.org/10.1109/CGO.2004.1281665

bibliography 203

In Proceedings of the 17th International Conference on Languages and Compilers for High Performance
Computing (West Lafayette, IN) (LCPC 2004). Springer-Verlag, Berlin, Heidelberg, 164–178. ISBN
9783540280095 DOI 10.1007/11532378_13 (Cited on page: 159)

[173] Meir Manny Lehman. 1980. Programs, Life Cycles, and Laws of Software Evolution. Proc. IEEE 68, 9
(1980), 1060–1076. (Cited on page: 72)

[174] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François Saint-Jacques, and Gregory
Ssi-Yan-Kai. 2018. Roaring Bitmaps: Implementation of an Optimized Software Library. Software:
Practice and Experience 48, 4 (Jan 2018), 867–895. DOI 10.1002/spe.2560 (Cited on page: 31)

[175] David Leon and Andy Podgurski. 2003. A Comparison of Coverage-Based and Distribution-Based Tech-
niques for Filtering and Prioritizing Test Cases. In Proceedings of the 14th International Symposium on
Software Reliability Engineering (ISSRE 2003). IEEE, IEEE Computer Society, USA, 442–453. ISBN
0769520073 DOI 10.1109/ISSRE.2003.1251065 (Cited on pages: 34 and 35)

[176] Maurizio Leotta, Maura Cerioli, Dario Olianas, and Filippo Ricca. 2019. Hamcrest vs AssertJ: An
Empirical Assessment of Tester Productivity. In International Conference on the Quality of Information
and Communications Technology. Springer, Springer International Publishing, Cham, 161–176. ISBN
9783030292386 DOI 10.1007/978-3-030-29238-6_12 (Cited on page: 8)

[177] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. 2011. KLOVER: A Symbolic Execution and
Automatic Test Generation Tool for C++ Programs. In Computer Aided Verification, Shaz Gopalakrishnan,
Ganeshand Qadeer (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 609–615. ISBN 9783642221101
(Cited on pages: 159 and 181)

[178] Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering 33, 4 (April 2007), 225–237. DOI 10.1109/
TSE.2007.38 (Cited on page: 107)

[179] Helmut Lütkepohl. 2005. New Introduction to Multiple Time Series Analysis. Springer-Verlag Berlin
Heidelberg, Germany. ISBN 9783540401728 DOI 10.1007/978-3-540-27752-1 (Cited on pages: 72, 73,
and 75)

[180] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Chicago, IL, USA) (PLDI 2005). ACM, New York, NY, USA,
190–200. ISBN 1595930566 DOI 10.1145/1065010.1065034 (Cited on page: 150)

[181] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An Empirical Analysis of Flaky
Tests. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Hong Kong, China) (FSE 2014). ACM, New York, NY, USA, 643–653. ISBN 9781450330565
DOI 10.1145/2635868.2635920 (Cited on pages: 90, 108, 139, and 142)

[182] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and Rudolf Ramler. 2015. GRT:
Program-Analysis-Guided Random Testing. In Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (ASE 2015). IEEE Computer Society, Washington,
DC, USA, 212–223. ISBN 9781509000258 DOI 10.1109/ASE.2015.49 (Cited on pages: 161, 180, and 182)

[183] Lei Ma, Cheng Zhang, Bing Yu, and Hiroyuki Sato. 2017. An Empirical Study on the Effects of Code
Visibility on Program Testability. Software Quality Journal 25, 3 (Sept. 2017), 951–978. DOI 10.1007/
s11219-016-9340-8 (Cited on page: 167)

[184] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019. Predictive Test Selection.
In Proceedings of the 41st International Conference on Software Engineering: Software Engineering in
Practice (Montreal, Quebec, Canada) (ICSE-SEIP 2019). IEEE Press, Piscataway, NJ, USA, 91–100.
DOI 10.1109/ICSE-SEIP.2019.00018 (Cited on pages: 3 and 14)

[185] Henry B Mann and Donald R Whitney. 1947. On a Test of Whether One of Two Random Variables Is
Stochastically Larger Than the Other. Annals of Mathematical Statistics 18, 1 (1947), 50–60. (Cited on
page: 86)

[186] Paul Marinescu, Petr Hosek, and Cristian Cadar. 2014. Covrig: A Framework for the Analysis of Code,
Test, and Coverage Evolution in Real Software. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA 2014). ACM, New York, NY, USA, 93–104. ISBN 9781450326452
DOI 10.1145/2610384.2610419 (Cited on pages: 136 and 137)

[187] Robert Cecil Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall
PTR, Upper Saddle River, NJ, USA. ISBN 0132350882, 9780132350884 (Cited on pages: 8 and 68)

[188] Norman May, Alexander Böhm, and Wolfgang Lehner. 2017. SAP HANA – The Evolution of an In-Memory
DBMS from Pure OLAP Processing Towards Mixed Workloads. In Datenbanksysteme für Business, Tech-

https://dx.doi.org/10.1007/11532378_13
https://dx.doi.org/10.1002/spe.2560
https://dx.doi.org/10.1109/ISSRE.2003.1251065
https://dx.doi.org/10.1007/978-3-030-29238-6_12
https://dx.doi.org/10.1109/TSE.2007.38
https://dx.doi.org/10.1109/TSE.2007.38
https://dx.doi.org/10.1007/978-3-540-27752-1
https://dx.doi.org/10.1145/1065010.1065034
https://dx.doi.org/10.1145/2635868.2635920
https://dx.doi.org/10.1109/ASE.2015.49
https://dx.doi.org/10.1007/s11219-016-9340-8
https://dx.doi.org/10.1007/s11219-016-9340-8
https://dx.doi.org/10.1109/ICSE-SEIP.2019.00018
https://dx.doi.org/10.1145/2610384.2610419

204 testing in very large software projects

nologie und Web (BTW 2017). Gesellschaft für Informatik, Bonn, Germany, 545–563. ISBN 9783885796596
(Cited on page: 15)

[189] Mariusz Maziarz. 2015. A Review of the Granger-Causality Fallacy. The journal of philosophical economics:
Reflections on economic and social issues 8, 2 (2015), 86–105. (Cited on pages: 74 and 75)

[190] William M McKeeman. 1998. Differential Testing for Software. Digital Technical Journal 10, 1 (1998),
100–107. (Cited on page: 12)

[191] Atif Memon, Bao Nguyen, Eric Nickell, John Micco, Sanjeev Dhanda, Rob Siemborski, and Zebao Gao.
2017. Taming Google-Scale Continuous Testing. In Proceedings of the 39th International Conference
on Software Engineering: Software Engineering in Practice Track (Buenos Aires, Argentina) (ICSE-
SEIP 2017). IEEE Press, Washington, DC, USA, 233–242. ISBN 9781538627174 DOI 10.1109/ICSE-
SEIP.2017.16 (Cited on pages: 3, 14, 93, and 118)

[192] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent Development and Deployment.
Linux journal 2014, 239 (2014), 2. (Cited on page: 17)

[193] John Micco. 2016. Flaky Tests at Google and How We Mitigate Them. Google. Retrieved 2020-01-10,
archived by WebCite at http://www.webcitation.org/78RWFeVfQ from https://testing.googleblog.
com/2016/05/flaky-tests-at-google-and-how-we.html (Cited on page: 139)

[194] Audris Mockus, Nachiappan Nagappan, and Trung Dinh-Trong. 2009. Test Coverage and Post-Verification
Defects: A Multiple Case Study. In Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement (ESEM 2009). IEEE Computer Society, USA, 291–301. ISBN
9781424448425 DOI 10.1109/ESEM.2009.5315981 (Cited on pages: 55, 68, 70, and 91)

[195] Salim Ali Khan Mohammad, Sathvik Vamshi Valepe, Subhrakanta Panda, and B.S.A.S. Rajita. 2019. A
Comparative Study of the Effectiveness of Meta-Heuristic Techniques in Pairwise Testing. In 2019 IEEE
43rd Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, IEEE Computer
Society, Washington, DC, USA, 91–96. DOI 10.1109/COMPSAC.2019.00022 (Cited on page: 11)

[196] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. 2019. CERSE – Catalog for empirical research
in software engineering: A Systematic mapping study. Information & Software Technology 105 (2019),
117–149. DOI 10.1016/j.infsof.2018.08.008 (Cited on page: 57)

[197] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent
Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge Torres. 2018. Handbook of Floating-Point
Arithmetic (second ed.). Birkhäuser, Basel, Switzerland. 1–627 pages. ISBN 9783319765259 DOI
10.1007/978-3-319-76526-6 (Cited on page: 8)

[198] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn Measures to Predict System
Defect Density. In Proceedings of the 27th International Conference on Software Engineering (St. Louis,
MO, USA) (ICSE 2005). Association for Computing Machinery, New York, NY, USA, 284–292. ISBN
1581139632 DOI 10.1145/1062455.1062514 (Cited on page: 91)

[199] Akbar Siami Namin and James H. Andrews. 2009. The Influence of Size and Coverage on Test Suite
Effectiveness. In Proceedings of the Eighteenth International Symposium on Software Testing and Analysis
(Chicago, IL, USA) (ISSTA 2009). ACM, New York, NY, USA, 57–68. ISBN 9781605583389 (Cited on
page: 56)

[200] Akbar Siami Namin and Sahitya Kakarla. 2011. The Use of Mutation in Testing Experiments and Its
Sensitivity to External Threats. In Proceedings of the 2011 International Symposium on Software Testing
and Analysis (Toronto, Ontario, Canada) (ISSTA 2011). Association for Computing Machinery, New York,
NY, USA, 342–352. ISBN 9781450305624 DOI 10.1145/2001420.2001461 (Cited on pages: 70 and 92)

[201] Mark Nelson and Jean-Loup Gailly. 1995. The Data Compression Book (second ed.). MIS:Press, USA.
ISBN 1558514341 (Cited on page: 123)

[202] Iulia Nica, Gerhard Jakob, Kathrin Juhart, and Franz Wotawa. 2017. Results of a Comparative Study of
Code Coverage Tools in Computer Vision. In 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE Computer Society, Washington, DC, USA, 36–37.
DOI 10.1109/ICSTW.2017.10 (Cited on page: 23)

[203] Changhai Nie and Hareton Leung. 2011. A Survey of Combinatorial Testing. ACM Computing Surveys
(CSUR) 43, 2 (2011), 11. DOI 10.1145/1883612.1883618 (Cited on page: 11)

[204] James Oberg. 1999. Why the Mars Probe Went off Course. IEEE Spectrum 36, 12 (Dec. 1999), 34–39.
DOI 10.1109/6.809121 (Cited on page: 2)

[205] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod Partush. 2017.
Engineering Record and Replay for Deployability. In Proceedings of the 2017 USENIX Conference on
Usenix Annual Technical Conference (Santa Clara, CA, USA) (USENIX ATC 2017). USENIX Association,
Berkeley, CA, USA, 377–389. ISBN 9781931971386 (Cited on page: 146)

https://dx.doi.org/10.1109/ICSE-SEIP.2017.16
https://dx.doi.org/10.1109/ICSE-SEIP.2017.16
http://www.webcitation.org/78RWFeVfQ
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://dx.doi.org/10.1109/ESEM.2009.5315981
https://dx.doi.org/10.1109/COMPSAC.2019.00022
https://dx.doi.org/10.1016/j.infsof.2018.08.008
https://dx.doi.org/10.1007/978-3-319-76526-6
https://dx.doi.org/10.1145/1062455.1062514
https://dx.doi.org/10.1145/2001420.2001461
https://dx.doi.org/10.1109/ICSTW.2017.10
https://dx.doi.org/10.1145/1883612.1883618
https://dx.doi.org/10.1109/6.809121

bibliography 205

[206] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod Partush. 2017.
Engineering Record And Replay For Deployability: Extended Technical Report. CoRR abs/1705.05937
(2017), 1–20. arXiv:1705.05937 http://arxiv.org/abs/1705.05937 (Cited on page: 146)

[207] Alessandro Orso and Bryan Kennedy. 2005. Selective Capture and Replay of Program Executions. In
Proceedings of the Third International Workshop on Dynamic Analysis (St. Louis, Missouri) (WODA
2005). ACM, New York, NY, USA, 1–7. ISBN 1595931260 DOI 10.1145/1082983.1083251 (Cited on
pages: 141 and 158)

[208] Alessandro Orso and Gregg Rothermel. 2014. Software Testing: A Research Travelogue (2000–2014). In
FOSE 2014. ACM, New York, NY, USA, 117–132. ISBN 9781450328654 DOI 10.1145/2593882.2593885
(Cited on pages: 10, 13, 103, 106, and 109)

[209] Carlos Pacheco, Shuvendu K. Lahiri, Michael Dean Ernst, and Thomas Ball. 2007. Feedback-Directed
Random Test Generation. In Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007). IEEE Computer Society, Washington, DC, USA, 75–84. ISBN 0769528287 DOI 10.1109/
ICSE.2007.37 (Cited on pages: 12, 70, 161, 180, and 182)

[210] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon. 2016. Threats to
the Validity of Mutation-Based Test Assessment. In Proceedings of the 25th International Symposium
on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016). Association for Computing
Machinery, New York, NY, USA, 354–365. ISBN 9781450343909 DOI 10.1145/2931037.2931040 (Cited
on page: 92)

[211] Tanay Kanti Paul and Man Fai Lau. 2014. A Systematic Literature Review on Modified Condition and
Decision Coverage. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (Gyeongju,
Republic of Korea) (SAC 2014). ACM, New York, NY, USA, 1301–1308. ISBN 9781450324694 DOI
10.1145/2554850.2555004 (Cited on page: 103)

[212] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding Myths and Realities
of Test-Suite Evolution. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (Cary, North Carolina) (FSE 2012). Association for Computing
Machinery, New York, NY, USA, 1–11. ISBN 9781450316149 DOI 10.1145/2393596.2393634 (Cited on
page: 72)

[213] Paul Piwowarski, Mitsuru Ohba, and Joe Caruso. 1993. Coverage Measurement Experience During
Function Test. In Proceedings of the 15th International Conference on Software Engineering (Baltimore,
Maryland, USA) (ICSE 1993). IEEE Computer Society Press, Los Alamitos, CA, USA, 287–301. ISBN
0897915887 (Cited on page: 23)

[214] Mounika Ponugoti and Aleksandar Milenkovic. 2019. Enabling On-The-Fly Hardware Tracing of Data
Reads in Multicores. ACM Transactions in Embededded Computer Systems 18, 4 (June 2019), 1–27. DOI
10.1145/3322642 (Cited on page: 30)

[215] Md Tajmilur Rahman and Peter C. Rigby. 2018. The Impact of Failing, Flaky, and High Failure Tests on
the Number of Crash Reports Associated with Firefox Builds. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New York, NY, USA, 857–862.
ISBN 9781450355735 DOI 10.1145/3236024.3275529 (Cited on page: 139)

[216] Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering Research and Software
Metrics. In Proceedings of the 22Nd International Conference on Evaluation and Assessment in Software
Engineering 2018 (Christchurch, New Zealand) (EASE 2018). ACM, New York, NY, USA, 13–23. ISBN
9781450364034 DOI 10.1145/3210459.3210461 (Cited on page: 57)

[217] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. 2017. A Large-Scale Study
of Programming Languages and Code Quality in GitHub. Communications ACM 60, 10 (Sept. 2017),
91–100. DOI 10.1145/3126905 (Cited on page: 79)

[218] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A Large Scale Study
of Programming Languages and Code Quality in Github. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014).
Association for Computing Machinery, New York, NY, USA, 155–165. ISBN 9781450330565 DOI
10.1145/2635868.2635922 (Cited on page: 79)

[219] Stuart C. Reid. 1997. An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and
Random Testing. In Proceedings of the 4th International Symposium on Software Metrics (METRICS
1997). IEEE Computer Society, USA, 64–64. ISBN 0818680938 (Cited on page: 10)

[220] Brian Robinson, Michael Dean Ernst, Jeff H. Perkins, Vinay Augustine, and Nuo Li. 2011. Scaling up
Automated Test Generation: Automatically Generating Maintainable Regression Unit Tests for Programs.

http://arxiv.org/abs/1705.05937
https://dx.doi.org/10.1145/1082983.1083251
https://dx.doi.org/10.1145/2593882.2593885
https://dx.doi.org/10.1109/ICSE.2007.37
https://dx.doi.org/10.1109/ICSE.2007.37
https://dx.doi.org/10.1145/2931037.2931040
https://dx.doi.org/10.1145/2554850.2555004
https://dx.doi.org/10.1145/2393596.2393634
https://dx.doi.org/10.1145/3322642
https://dx.doi.org/10.1145/3236024.3275529
https://dx.doi.org/10.1145/3210459.3210461
https://dx.doi.org/10.1145/3126905
https://dx.doi.org/10.1145/2635868.2635922

206 testing in very large software projects

In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering
(Lawrence, KS, USA) (ASE 2011). IEEE Computer Society, USA, 23–32. ISBN 9781457716386 DOI
10.1109/ASE.2011.6100059 (Cited on page: 143)

[221] Ankit Rohatgi. 2020. WebPlotDigitizer 4.2. Retrieved 2020-01-10, archived by Internet Archive
at https://web.archive.org/web/20200110154215/https://automeris.io/WebPlotDigitizer/ from
https://automeris.io/WebPlotDigitizer (Cited on page: 154)

[222] Per Runeson. 2006. A Survey of Unit Testing Practices. IEEE Software 23, 4 (2006), 22–29. (Cited on
page: 70)

[223] Richard Rutledge, Sunjae Park, Haider Khan, Alessandro Orso, Milos Prvulovic, and Alenka Zajic.
2019. Zero-Overhead Path Prediction with Progressive Symbolic Execution. In Proceedings of the 41st
International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE 2019). IEEE Press,
Piscataway, NJ, USA, 234–245. DOI 10.1109/ICSE.2019.00039 (Cited on page: 30)

[224] David Saff, Shay Artzi, Jeff H. Perkins, and Michael Dean Ernst. 2005. Automatic Test Factoring for
Java. In Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering
(Long Beach, CA, USA) (ASE 2005). ACM, New York, NY, USA, 114–123. ISBN 1581139934 DOI
10.1145/1101908.1101927 (Cited on pages: 141, 143, and 158)

[225] David Saff and Michael Dean Ernst. 2004. Automatic Mock Object Creation for Test Factoring. In
Proceedings of the 5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (Washington DC, USA) (PASTE 2004). Association for Computing Machinery, New York,
NY, USA, 49–51. ISBN 1581139101 DOI 10.1145/996821.996838 (Cited on pages: 141 and 158)

[226] Thomas Schulz, Lukasz Radliński, Thomas Gorges, and Wolfgang Rosenstiel. 2010. Defect Cost Flow
Model: A Bayesian Network for Predicting Defect Correction Effort. In Proceedings of the 6th Inter-
national Conference on Predictive Models in Software Engineering (Timisoara, Romania) (PROMISE
2010). Association for Computing Machinery, New York, NY, USA, 1–11. ISBN 9781450304047 DOI
10.1145/1868328.1868353 (Cited on page: 76)

[227] Eric Shade. 2009. Size Matters: Lessons from a Broken Binary Search. Journal of Computing Sciences in
Colleges 24, 5 (May 2009), 175–182. (Cited on pages: 53 and 54)

[228] Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea Arcuri. 2015. Do
Automatically Generated Unit Tests Find Real Faults? An Empirical Study of Effectiveness and Challenges.
In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (ASE 2015). IEEE Computer Society, Washington, DC, USA, 201–211. ISBN 9781509000258 DOI
10.1109/ASE.2015.86 (Cited on pages: 161 and 180)

[229] Suchakrapani Datt Sharma and Michel Dagenais. 2016. Hardware-Assisted Instruction Profiling and
Latency Detection. The Journal of Engineering 2016, 10 (2016), 367–376. DOI 10.1049/joe.2016.0127
(Cited on page: 30)

[230] Steven Skiena. 1991. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathe-
matica. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN 0201509431 (Cited on
pages: 10 and 51)

[231] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do Changes Induce Fixes? In
Proceedings of the 2005 International Workshop on Mining Software Repositories (St. Louis, Missouri)
(MSR 2005). ACM, New York, NY, USA, 1–5. ISBN 1595931236 DOI 10.1145/1082983.1083147 (Cited
on pages: 62 and 77)

[232] Ben Smith and Laurie Ann Williams. 2008. A Survey on Code Coverage as a Stopping Criterion for Unit
Testing. Technical Report. North Carolina State University, Departement of Computer Science. (Cited
on page: 56)

[233] IEEE Computer Society, Pierre Bourque, and Richard E. Fairley. 2014. Guide to the Software Engineering
Body of Knowledge (SWEBOK) (third ed.). IEEE Computer Society Press, Los Alamitos, CA, USA.
ISBN 0769551661, 9780769551661 See also: ISO/IEC TR 19759:2005. (Cited on pages: 1, 2, 8, 9, and 16)

[234] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017. To Mock or Not to
Mock? An Empirical Study on Mocking Practices. In Proceedings of the 14th International Conference
on Mining Software Repositories (Buenos Aires, Argentina) (MSR 2017). IEEE Press, Piscataway, NJ,
USA, 402–412. ISBN 9781538615447 DOI 10.1109/MSR.2017.61 (Cited on pages: 162, 181, and 182)

[235] Andreas Spillner, Tilo Linz, and Hans Schaefer. 2014. Software Testing Foundations: A Study Guide for
the Certified Tester Exam (forth ed.). Rocky Nook, Santa Barbara, USA. ISBN 9781937538422 (Cited
on page: 10)

[236] Matt Staats, Gregory Gay, Michael Whalen, and Mats Heimdahl. 2012. On the Danger of Coverage
Directed Test Case Generation. In Proceedings of the 15th International Conference on Fundamental

https://dx.doi.org/10.1109/ASE.2011.6100059
https://web.archive.org/web/20200110154215/https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer
https://dx.doi.org/10.1109/ICSE.2019.00039
https://dx.doi.org/10.1145/1101908.1101927
https://dx.doi.org/10.1145/996821.996838
https://dx.doi.org/10.1145/1868328.1868353
https://dx.doi.org/10.1109/ASE.2015.86
https://dx.doi.org/10.1049/joe.2016.0127
https://dx.doi.org/10.1145/1082983.1083147
https://dx.doi.org/10.1109/MSR.2017.61

bibliography 207

Approaches to Software Engineering (Tallinn, Estonia) (FASE 2012). Springer-Verlag, Berlin, Heidelberg,
409–424. ISBN 9783642288715 DOI 10.1007/978-3-642-28872-2_28 (Cited on page: 103)

[237] Richard Stallman, Roland Pesch, Stan Shebs, et al. 2019. Debugging with GDB (tenth ed.). Free Software
Foundation, USA. (Cited on page: 149)

[238] Richard Matthew Stallman and GCC Devevelopment Community. 2016. GCC 7.0 Manual 1/2 (Volume
1). Samurai Media Limited, United Kingdom. ISBN 9789888406913, 9888406914 (Cited on page: 28)

[239] David Ian Stern. 2011. From correlation to Granger Causality. Crawford School Research Paper 1, 13
(2011), 1–37. DOI 10.2139/ssrn.1959624 (Cited on page: 90)

[240] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. 2010. JUnit in Action (second ed.).
Manning Publications Co., Greenwich, CT, USA. ISBN 1935182021, 9781935182023 (Cited on page: 8)

[241] Robert Endre Tarjan. 1985. Amortized Computational Complexity. SIAM Journal on Algebraic Discrete
Methods 6, 2 (1985), 306–318. (Cited on page: 51)

[242] Gregory Tassey. 2002. The Economic Impacts of Inadequate Infrastructure for Software Testing. National
Institute of Standards and Technology, RTI Project 7007, 011 (2002), 429–489. (Cited on pages: 2 and 69)

[243] Dávid Tengeri, Árpád Beszédes, Tamás Gergely, László Vidács, Dávid Havas, and Tibor Gyimóthy. 2015.
Beyond Code Coverage – An Approach for Test Suite Assessment and Improvement. In 2015 IEEE Eighth
International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE,
IEEE Computer Society, Washington, DC, USA, 1–7. DOI 10.1109/ICSTW.2015.7107476 (Cited on
page: 92)

[244] Jörg Thalheim, Pramod Bhatotia, and Christof Fetzer. 2016. INSPECTOR: Data Provenance Using Intel
Processor Trace (PT). In 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). IEEE Computer Society, Washington, DC, USA, 25–34. DOI 10.1109/ICDCS.2016.86 (Cited
on page: 30)

[245] The Linux Information Project. 2006. Source Code Definition. The Linux Information Project, USA.
http://www.linfo.org/source_code.html (Cited on page: 24)

[246] The Unicode Consortium. 2019. The Unicode Standard 12.1. Technical Report Unicode Standard 12.1. The
Unicode Consortium, Mountain View, CA: The Unicode Consortium. ISBN 9781936213252 https://www.
unicode.org/versions/Unicode12.1.0/ Latest version: http://www.unicode.org/versions/latest/.
(Cited on page: 24)

[247] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.
MSeqGen: Object-Oriented Unit-Test Generation via Mining Source Code. In Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE 2009). ACM, New
York, NY, USA, 193–202. ISBN 9781605580012 DOI 10.1145/1595696.1595725 (Cited on pages: 161
and 180)

[248] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2002. Efficient Instrumentation for Code Coverage
Testing. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis (Roma, Italy) (ISSTA 2002). ACM, New York, NY, USA, 86–96. ISBN 1581135629 DOI
10.1145/566172.566186 (Cited on pages: 23 and 29)

[249] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex: White Box Test Generation for .NET. In
Proceedings of the 2Nd International Conference on Tests and Proofs (Prato, Italy) (TAP 2008). Springer-
Verlag, Berlin, Heidelberg, 134–153. ISBN 9783540791232 (Cited on pages: 161, 180, and 182)

[250] Undo. 2020. UndoDB – An Interactive Reverse Debugger for C/C++. Undo. Retrieved 2020-01-
10, archived by Internet Archive at https://web.archive.org/web/20200110153106/https://undo.io/
solutions/products/live-recorder/ from https://undo.io/products/undodb/ (Cited on pages: 143,
146, and 149)

[251] Vijay V. Vazirani. 2001. Approximation Algorithms. Springer-Verlag, Berlin, Heidelberg. ISBN 3540653678
(Cited on page: 37)

[252] Todd L. Veldhuizen. 2003. C++ Templates are Turing Complete. Technical Report. IndianaUniversity.
(Cited on page: 175)

[253] Ana-Maria Visan, Kapil Arya, Gene Cooperman, and Tyler Denniston. 2011. URDB: A Universal
Reversible Debugger Based on Decomposing Debugging Histories. In Proceedings of the 6th Workshop on
Programming Languages and Operating Systems (Cascais, Portugal) (PLOS 2011). ACM, New York, NY,
USA, 1–5. ISBN 9781450309790 DOI 10.1145/2039239.2039251 (Cited on page: 146)

[254] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos. 2006. Time-Aware Test
Suite Prioritization. In Proceedings of the 2006 International Symposium on Software Testing and Analysis
(ISSTA 2006). ACM, New York, NY, USA, 1–12. ISBN 9781595932631 DOI 10.1145/1146238.1146240

https://dx.doi.org/10.1007/978-3-642-28872-2_28
https://dx.doi.org/10.2139/ssrn.1959624
https://dx.doi.org/10.1109/ICSTW.2015.7107476
https://dx.doi.org/10.1109/ICDCS.2016.86
http://www.linfo.org/source_code.html
https://www.unicode.org/versions/Unicode12.1.0/
https://www.unicode.org/versions/Unicode12.1.0/
http://www.unicode.org/versions/latest/
https://dx.doi.org/10.1145/1595696.1595725
https://dx.doi.org/10.1145/566172.566186
https://web.archive.org/web/20200110153106/https://undo.io/solutions/products/live-recorder/
https://web.archive.org/web/20200110153106/https://undo.io/solutions/products/live-recorder/
https://undo.io/products/undodb/
https://dx.doi.org/10.1145/2039239.2039251
https://dx.doi.org/10.1145/1146238.1146240

208 testing in very large software projects

(Cited on pages: 107, 108, and 120)
[255] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. 2011. Precise Identification of

Problems for Structural Test Generation. In Proceedings of the 33rd International Conference on Software
Engineering (Waikiki, Honolulu, HI, USA) (ICSE 2011). ACM, New York, NY, USA, 611–620. ISBN
9781450304450 DOI 10.1145/1985793.1985876 (Cited on pages: 180 and 182)

[256] Qian Yang, J. Jenny Li, and David Weiss. 2006. A Survey of Coverage Based Testing Tools. In Proceedings
of the 2006 International Workshop on Automation of Software Test (Shanghai, China) (AST 2006). ACM,
New York, NY, USA, 99–103. ISBN 1595934081 DOI 10.1145/1138929.1138949 (Cited on page: 23)

[257] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection and Prioritization: A
Survey. Software Testing, Verification and Reliability 22, 2 (March 2012), 67–120. DOI 10.1002/stv.430
(Cited on pages: 13, 107, 118, 120, and 159)

[258] Hiroaki Yoshida, Guodong Li, Takuki Kamiya, Indradeep Ghosh, Sreeranga P. Rajan, Susumu Tokumoto,
Kazuki Munakata, and Tadahiro Uehara. 2017. KLOVER: Automatic Test Generation for C and C++
Programs, Using Symbolic Execution. IEEE Software 34, 5 (2017), 30–37. DOI 10.1109/MS.2017.
3571576 (Cited on pages: 151, 154, 155, 159, and 181)

[259] Hiroaki Yoshida, Susumu Tokumoto, Mukul R. Prasad, Indradeep Ghosh, and Tadahiro Uehara. 2016.
FSX: A Tool for Fine-Grained Incremental Unit Test Generation for C/C++ Programs. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 1052–1056. ISBN 9781450342186 DOI
10.1145/2950290.2983937 (Cited on page: 181)

[260] Hiroaki Yoshida, Susumu Tokumoto, Mukul R. Prasad, Indradeep Ghosh, and Tadahiro Uehara. 2016.
FSX: Fine-Grained Incremental Unit Test Generation for C/C++ Programs. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016). ACM,
New York, NY, USA, 106–117. ISBN 9781450343909 DOI 10.1145/2931037.2931055 (Cited on page: 181)

[261] Dongjiang You, Zhenyu Chen, Baowen Xu, Bin Luo, and Chen Zhang. 2011. An Empirical Study
on the Effectiveness of Time-Aware Test Case Prioritization Techniques. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC 2011). ACM, New York, NY, USA, 1451–1456. ISBN
9781450301138 DOI 10.1145/1982185.1982497 (Cited on pages: 107, 108, and 120)

[262] Linbin Yu, Yu Lei, Raghu N. Kacker, and David Richard Kuhn. 2013. ACTS: A Combinatorial Test
Generation Tool. In 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation. IEEE, IEEE Computer Society, Washington, DC, USA, 370–375. DOI 10.1109/ICST.2013.52
(Cited on pages: 99 and 101)

[263] Yanbing Yu, James A. Jones, and Mary Jean Harrold. 2008. An Empirical Study of the Effects of Test-
Suite Reduction on Fault Localization. In Proceedings of the 30th International Conference on Software
Engineering (Leipzig, Germany) (ICSE 2008). ACM, New York, NY, USA, 201–210. ISBN 9781605580791
DOI 10.1145/1368088.1368116 (Cited on page: 127)

[264] Andy Zaidman, Bart Rompaey, Arie Deursen, and Serge Demeyer. 2011. Studying the Co-Evolution of
Production and Test Code in Open Source and Industrial Developer Test Processes Through Repository
Mining. Empirical Software Engineering 16, 3 (2011), 325–364. (Cited on page: 70)

[265] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013. Bridging the Gap Between
the Total and Additional Test-Case Prioritization Strategies. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE 2013). IEEE Press, Piscataway, NJ, USA, 192–201. ISBN
9781467330763 (Cited on page: 107)

[266] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. 2009. Time-Aware Test-Case Prioritization
Using Integer Linear Programming. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis (ISSTA 2009). ACM, New York, NY, USA, 213–224. ISBN 9781605583389 DOI
10.1145/1572272.1572297 (Cited on page: 107)

[267] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael Dean Ernst, and
David Notkin. 2014. Empirically Revisiting the Test Independence Assumption. In Proceedings of the
2014 International Symposium on Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014).
Association for Computing Machinery, New York, NY, USA, 385–396. ISBN 9781450326452 DOI
10.1145/2610384.2610404 (Cited on page: 140)

[268] Sai Zhang, David Saff, Yingyi Bu, and Michael Dean Ernst. 2011. Combined Static and Dynamic
Automated Test Generation. In Proceedings of the 2011 International Symposium on Software Testing
and Analysis (Toronto, Ontario, Canada) (ISSTA 2011). ACM, New York, NY, USA, 353–363. ISBN
9781450305624 DOI 10.1145/2001420.2001463 (Cited on pages: 161, 180, and 182)

[269] Luyin Zhao and Sebastian Elbaum. 2000. A Survey on Quality Related Activities in Open Source. ACM

https://dx.doi.org/10.1145/1985793.1985876
https://dx.doi.org/10.1145/1138929.1138949
https://dx.doi.org/10.1002/stv.430
https://dx.doi.org/10.1109/MS.2017.3571576
https://dx.doi.org/10.1109/MS.2017.3571576
https://dx.doi.org/10.1145/2950290.2983937
https://dx.doi.org/10.1145/2931037.2931055
https://dx.doi.org/10.1145/1982185.1982497
https://dx.doi.org/10.1109/ICST.2013.52
https://dx.doi.org/10.1145/1368088.1368116
https://dx.doi.org/10.1145/1572272.1572297
https://dx.doi.org/10.1145/2610384.2610404
https://dx.doi.org/10.1145/2001420.2001463

bibliography 209

SIGSOFT Software Engineering Notes 25, 3 (2000), 54–57. (Cited on page: 70)
[270] Hong Zhu, Patrick Hall, and John May. 1997. Software Unit Test Coverage and Adequacy. Comput.

Surveys 29, 4 (Dec. 1997), 366–427. (Cited on page: 56)
[271] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting Defects Using Network Analysis

on Dependency Graphs. In Proceedings of the 30th International Conference on Software Engineering
(Leipzig, Germany) (ICSE ’08). Association for Computing Machinery, New York, NY, USA, 531–540.
ISBN 9781605580791 DOI 10.1145/1368088.1368161 (Cited on pages: 91 and 93)

https://dx.doi.org/10.1145/1368088.1368161

	Introduction
	Outline and Contributions

	Background
	Software Quality Assurance and Testing
	Test Organization
	Test Techniques
	Test Costs
	Related Work on Test Cost Reduction

	Study Subject: A Very Large Software Project
	Quality Assurance
	Test Organization
	Test Costs
	Code Coverage Data

	Summary

	Code Coverage: Measure Test Execution
	Definitions
	Context
	Instruction Coverage
	Code Coverage
	Data Coverage
	Variants of Coverage

	Implementation Details
	Counters
	Dynamic Counters
	Emission Observation
	Functionality Provided by CPU
	Format for Code Coverage

	Problems and Algorithms on Coverage Data
	Assumptions
	Operations on Code Coverage
	Metrics: Distance Functions
	Set Cover Problems
	Logical Reductions for the SCP
	Greedy Algorithm
	Further Variants of the Set Cover Problem
	Coverage Compaction

	Summary

	On the Relationship Between Coverage and Faults
	Discussion
	Prior Work on Benefits of Code Coverage
	Results Supporting Benefits of Code Coverage
	Results Contradicting the Benefits of Code Coverage
	Mixed Results Regarding the Benefits of Code Coverage
	Interpretation of Results Regarding the Benefits of Coverage

	The Impact of Coverage on Bug Density
	Introduction
	Approach
	Empirical Results
	Discussion of the Results
	Threats to Validity
	Conclusions

	Granger-Causality between Coverage and Faults
	Introduction
	Granger-Causality
	Methodology
	Findings
	Discussion
	Related Work
	Conclusion and Future Work

	Combinatorial Testing
	Introduction
	Methodology
	Experiments and Evaluation
	Related Work
	Summary Combinatorial Testing

	Conclusions

	Analysis of Approaches for Test Cost Reduction
	Background
	Algorithms and Study Subject Sizes
	Shared Coverage, Randomness, and Flakiness
	Conclusion

	An Economic Approach for Test Cost Reduction
	Introduction
	Testing of SAP HANA
	Fixed Test Budget Approach
	Results
	Related Work
	Conclusions

	Test Case Selection and Prioritization
	Approach
	Evaluation

	Size of Coverage Data
	Approach
	Evaluation

	Shared Coverage: Test Core Identification
	Examples
	Execution Frequency
	Test Core Identification
	Shared Coverage Removal Approaches
	Evaluation

	Nondeterminism in Testing
	Random Coverage
	Flaky Tests

	Threats to Validity
	Conclusions

	Dynamic Unit Test Extraction
	Dynamic Unit Test Extraction via Time-Travel Debugging
	Introduction
	Motivation
	Approach
	Implementation
	Evaluation
	Limitations and Threats to Validity
	Generalization and Utility
	Related Work
	Conclusions

	Object Creation
	Introduction
	Motivation
	Collecting Data from Users
	Approach
	Implementation Details
	Evaluation
	Threats to Validity
	Related Work
	Conclusions

	Mock Proposal
	Introduction
	Motivation
	Approach
	Algorithm for Minimal Amount of Mocks
	Evaluation
	Conclusions

	Summary

	Conclusions
	Bibliography

