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Zusammenfassung

Modellprädiktive Regelung (MPC) ist eine etablierte Technik zur Prozesssteuerung.
Sie basiert auf einem dynamischen Modell, das zur Vorhersage und Optimierung ei-
nes dynamischen Prozesses genutzt wird. In festen Abtastintervallen werden Mes-
sungen des geregelten Prozesses durchgeführt und in ein parametrisches Optimal-
steuerungsproblem (OCP) eingebettet. Die Lösung dieses OCPs wird verwendet,
um eine optimale Regelantwort zu berechnen. Diese Methodik ermöglicht es der
Regelung auf Störungen optimal zu reagieren. In dieser Arbeit konzentrieren wir
uns auf MPC Schemata, die auf gewöhnliche Differentialgleichungen (ODE) oder
Differential-algebraische Gleichungen (DAE) basieren und die eine Mehrzielmetho-
de zur Diskretisierung verwenden.

Eine der größten Herausforderungen von MPC ist die Rechenkomplexität der auf-
tretenden OCPs. Die Echtzeit-Iteration (RTI) ist ein Ansatz zur Verringerung des Re-
chenaufwands durch die Ausnutzung von strukturellen Ähnlichkeiten zwischen auf-
einander folgenden OCPs. Die Multi-Level-Iteration (MLI) ist eine Erweiterung des
RTI-Schemas, die auf eine weitere Verringerung des Rechenaufwands durch Wieder-
verwendung von Simulationsdaten abzielt. Zu diesem Zweck wird eine Hierarchie
von Aktualisierungsformeln mit zunehmender Komplexität, aber auch mit stärkeren
Konvergenzeigenschaften definiert. Diese Aktualisierungsformeln stellen individu-
elle MPC-Schemata dar, die aber auch parallel ausgeführt werden können. In dieser
Arbeit geben wir einen Überblick über die aktuellen Methoden und beschreiben, wie
die einzelnen Ebenen zu ganzheitlichen Schemata kombiniert werden können. Wir
schlagen einen neuartigen Scheduling-Algorithmus vor, der speziell auf Anwendun-
gen mit hohen Abtastfrequenzen zugeschnitten ist.

Eine genaue Zustandsschätzung ist eine wichtige Voraussetzung für schnelle Re-
gelungsverfahren wie MPC. Für eine effiziente Prozesssteuerung ist es von großer
Bedeutung, dass die Zustandsschätzung so schnell wie möglich durchgeführt wird,
um den Rückkopplungsmechanismus mit präzisen Informationen zu versorgen und
schnelle Reaktionen im Falle von Störungen zu ermöglichen. Die Zustandsschät-
zung auf bewegten Horizonten (MHE) ist eine modellbasierte Methode zur online-
Zustandsschätzung, die auf dynamischer Optimierung aufbaut. Das Modell wird an
eine begrenzte Anzahl von vergangenen Messungen angepasst, um den aktuellen
Zustand vorherzusagen. Die Methode weist strukturelle Ähnlichkeiten zu MPC auf
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und daher kann die RTI auch zur Verringerung des Rechenaufwands von MHE-
Schemata eingesetzt werden. Wir präsentieren eine neue Methode, wie die MLI-
Aktualisierungsformeln auf die RTI für MHE angewendet werden können, um die
Rückkopplungsraten zu erhöhen. Dabei schlagen wir eine Reformulierung des MHE-
Problems vor, die nicht nur die Anwendung von MHE-Aktualisierungsformeln, son-
dern auch deren parallele Auswertung ermöglicht.
Die algorithmischen Entwicklungen in dieser Arbeit sind durch den Bedarf an neuen
Regelungskonzepten für Microgrids (MGs) motiviert. Die Energiewende führt zu ei-
ner zunehmenden Anzahl von Erzeugern erneuerbarer Energien im Stromnetz, die
sich durch eine hohe Volatilität auszeichnen und deren effiziente Integration eine
wachsende Herausforderung darstellt. MGs gelten als Schlüsseltechnologie für die
Einbindung von erneuerbaren Energien in das Versorgungsnetz. Sie es ermöglichen
es, lokale Erzeuger und Verbraucher von elektrischer Energie als eine einzige steu-
erbare Einheit zusammen zu fassen. Jedoch ist auch die Steuerung von MGs eine
Herausforderung. Aktuelle Steuerungsansätze stoßen aufgrund des zunehmenden
Anteils erneuerbarer Energien und deren Volatilität an ihre Grenzen. In dieser Ar-
beit fassen wir die Regelungsstruktur von MGs zusammen und führen vollständi-
ge transiente Modelle für die Netzwerkdynamik sowie für die wichtigsten Kompo-
nenten ein. Das Ziel dieser Arbeit ist es, die Anwendbarkeit von MPC auf die Steue-
rung von MGs zu untersuchen. Um die Wirksamkeit der vorgeschlagenen mathema-
tischen Methoden zu zeigen, demonstrieren wir ihre Fähigkeiten in anspruchsvollen
Lastszenarien für realistisch dimensionierte MGs in numerischen Experimenten.
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Abstract

Model Predictive Control (MPC) is a well-established technique for process control.
It is based on a dynamical model that is used to predict and optimize the behavior
of a dynamical process. In fixed sampling intervals, measurements of the controlled
process are carried out and they are embedded into a parametric Optimal Control
Problem (OCP). The solution of this OCP is used to generate an optimal feedback
control answer, which is applied to the process. This methodology enables the con-
troller to react to disturbances in an optimal manner. In this thesis, we focus on MPC
schemes, which consider Ordinary Differential Equation (ODE) or Differential Alge-
braic Equation (DAE) models, and employ the multiple shooting discretization for
the arising OCPs.

One of the main challenges of MPC is the computational complexity of the aris-
ing OCPs. The Real-Time Iteration (RTI) is a well-established approach to reduce
the computational demand by exploiting the similarities of subsequent OCPs. The
Multi-Level Iteration (MLI) is an extension of the RTI scheme that aims at a further
reduction of the computational cost by reusing simulation data. For this, it defines
a hierarchy of update formulas with an increasing computational complexity, but
also with stronger convergence properties. These update formulas state individual
MPC schemes, but they can also be executed in parallel. In this thesis, we review the
current methodologies and describe how the individual levels can be combined to
holistic schemes. We propose a novel scheduling algorithm that is especially tailored
to applications with high sampling frequencies.

Accurate state estimation is a vital prerequisite for fast feedback control methods
such as MPC. For efficient process control, it is of great importance that the esti-
mation process is carried out as fast as possible to provide the feedback mechanism
with precise information and enable fast reactions in case of disturbances. Moving
Horizon Estimation (MHE) is a model-based methodology for online state estima-
tion, which builds upon dynamic optimization. The model is fitted to a limited num-
ber of past measurements in order to predict to current state. The methodology has
structural similarities to MPC and thus, the RTI can be applied to reduce the com-
putational effort of MHE schemes, too. We present a new method to apply the MLI
update formulas to the RTI for MHE (RTI-MHE) in order to increase feedback rates.
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Therefore, we propose a reformulation of the MHE problems that does not only allow
the application of MHE update formulas, but also their parallel evaluation.
The algorithmic developments in this thesis are driven by the need for new control
concepts for Microgrids (MGs). The energy transition leads to an increasing num-
ber of Renewable Energy Resources (RES), which are characterized by a high volatil-
ity, and their efficient integration poses a rising challenge. MGs are considered a
key-technology to incorporate RES into the utility grid, because they allow to cluster
provider and consumer of electrical energy locally as a single controllable unit. How-
ever, the control of MGs is challenging itself and current control approaches reach
their limits due to the rising penetration of RES and the fast electrical system dy-
namics. In this thesis, we summarize the control structure of MGs and introduce full
transient models for the networks dynamics as well as for the most import compo-
nents. The goal of this thesis is to investigate the applicability of MPC to MG control.
To prove the efficacy of the proposed mathematical methods, we demonstrate their
capabilities in challenging load scenarios for realistically sized MGs in numerical ex-
periments.
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Chapter 1

Introduction

Feedback control mechanisms are ubiquitous in industry, society and nature. Whether
developed by man or created by nature, they are a vital prerequisite for the stability
of many processes that surround us. Process control is one of the key research areas
that enables the stable and safe operation of increasingly complex industrial plants.
At the same time, the development of ever more sophisticated techniques constantly
pushes the efficiency of many plants forward. Model-based feedback control is one of
the latest advancements in the field of process control, which is based on mathema-
tical optimization and its wide theoretical background. It is characterized by a great
flexibility and has proven a high control performance in many applications from a
wide variety of areas.

1.1 Model-based Feedback Control

The concept of a dynamic process is of fundamental importance in the field of ap-
plied mathematics, because it has a very wide applicability to procedures from the
real world. It refers to phenomena that are evolving over time. In most relevant ap-
plication cases, the evolution of a dynamic process is observable or measurable and
it is influenced externally, e.g., by disturbances or control actions. Typical examples
are chemical reactions in a plant, a car moving on a track or the movements of a
robot. However, in many situations it is difficult, time-consuming or expensive to
measure the behavior of a dynamic process and therefore, there is a great interest
in mathematical tools to predict its behavior under certain conditions. An accurate
simulation of a dynamic process may save a lot of time and resources.

In order to describe the behavior of a dynamical process accurately, a predictive ma-
thematical model of it is needed. A model allows to predict the behavior of a dy-
namic process given an initial condition and external influences, like control actions
or disturbances. Depending on the phenomenon of interest, there are many mod-
eling techniques available tailored to the considered processes and time scales [56].
The development of a suitable model is often an intensive research task and requires
a deep understanding of the underlying physics. In addition, most models are de-
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CHAPTER 1 INTRODUCTION

pendent on parameters, which need to be tuned to the considered situation. How-
ever, a calibrated and validated model of a dynamic process allows accurate simu-
lations of its behavior and thus may save many expensive and time-consuming ex-
periments. In this thesis, we focus on processes modeled by Ordinary Differential
Equations (ODEs) or Differential Algebraic Equations (DAEs), which can be simu-
lated using a wide variety of integration methods.

Many processes can be controlled by external control inputs over time. The effect
of these control actions are often not directly visible and therefore it is an important
question, how to control the process optimally in a specific, predefined way. This
leads to the problem class of optimal control [9]. The desired process behavior is de-
fined in terms of an objective function and constraints. This allows to formulate an
Optimal Control Problem (OCP). Its solution trajectory refers to the optimal process
behavior in the sense of the objective function. Thereby, the DAE model of the pro-
cess emerges as constraints of the OCP in order to ensure that the solution trajectory
satisfies the model dynamics. The resulting optimal control trajectory is applicable
to the considered process in practice. Since the process and therefore the control
input is dependent on time, an OCP is an infinite-dimensional optimization prob-
lem, which is challenging to solve. Solution approaches for OCPs can be divided
into direct and indirect methods. Indirect solution methods apply a first-optimize-
then-discrete approach. A common methodology is to use Pontryagin’s maximum
principle [97, 89] in order to define optimality conditions in an infinite-dimensional
function space. The resulting equation system is then discretized to compute a nu-
merical solution. In this thesis, we focus on direct approaches, where the OCP is
first discretized [14, 11] and then optimized by a suitable Nonlinear Programming
Problem (NLP) method [80].

Mathematical models are unable to describe processes exactly in every detail. In-
stead, mathematical models only consider the dynamics and time scale which are
suitable for the intended purpose. Therefore, the process is affected by phenom-
ena, which are not considered by the model and that emerge as disturbances and
other unforeseen events. Differences between the actual process behavior and the
model predictions are called plant-model mismatches. Depending on the process,
these plant-model mismatches are accumulating over time and lead to a growing
deviation between the predictions and the actual process behavior. A precomputed
optimal control trajectory is unable to react to this deviation and may result in a sub-
optimal control performance. Larger disturbances may even cause a violation of the
operational constraints. Model Predictive Control (MPC) [94, 44, 19, 20] is a tech-
nique to take the plant-model mismatches in consideration. The main idea is to not
solve an individual OCP, but instead a sequence of similar optimization problems
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INTRODUCTION CHAPTER 1

parameterized by the current system state. In fixed sampling intervals, the system
state is measured or estimated. The control answer is generated by the solution of an
OCP, which represents the optimal process behavior given the current system state.
This allows to adjust the optimal feedback control to current system state constantly
and to compensate for plant-model mismatches.

One major disadvantage of classical MPC algorithms is the computational complex-
ity. In every iteration a OCP needs to be solved, which may require many iterations.
This limits the sampling rate of MPC algorithms for nonlinear systems with stiff dy-
namics. The Real-Time Iteration (RTI) [24] is a technique to reduce the computa-
tion time significantly. It exploits the similarities between subsequent optimization
problems in a closed loop feedback control setup. Instead of solving an NLP until
convergence in every sampling interval, only one iteration is performed. Because of
a careful initialization of the optimization problem, a single iteration yields an ap-
proximation of the real solution of the problem. Furthermore, the RTI reduces the
delay between the arrival of new measurements and the feedback control action sig-
nificantly, by a suitable preparation procedure.

Even though the RTI allows to reduce the computational effort of an MPC algorithm
greatly, a simulation and the corresponding sensitivity generation of the underlying
DAE system is still necessary in every iteration. This is a computational expensive
task for nonlinear systems. The Multi-Level Iteration (MLI) [113] is an extension of
the RTI to address this issue. It avoids the full integration and sensitivity generation
by performing only partial updates. Thereby the computation times of the individ-
ual iterations are reduced even further and very high sampling rates are enabled.
The MLI defines four different sets of update formulas called levels organized in a
hierarchical order. The levels have an increasing computational complexity, but also
stronger convergence properties. Every level states an individual MPC algorithm,
but it is also possible to operate multiple levels in parallel. This allows to utilize the
better performance of the higher levels and the fast feedback times of the lower levels
at the same time.

One vital prerequisite for every feedback control strategy is an accurate knowledge
of the current state of the process. Therefore, it is necessary to carry out measure-
ments in every sampling interval. However, these measurements may be affected
by measurement errors and not all quantities may be directly measurable. State or
parameter estimation is a class of algorithms to determine the actual system state
from a series of measurements. One of the most popular techniques is the so-called
Kalman filter [39] for linear systems, where in every sampling interval prior knowl-
edge and current measurements are used to estimate the current state.
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CHAPTER 1 INTRODUCTION

Even though the Kalman filter has extensions to nonlinear systems [22], it is rather
inflexible. Moving Horizon Estimation (MHE) [92, 93] is a more general approach to
state or parameter estimation, which implements similar ideas as MPC. A model of
the observed system is used to set up a dynamic optimization problem, which con-
siders a limited number of past measurements. A least-squares objective function is
used to minimize the distance between the model predictions and the past measure-
ments. Thereby it is possible to consider the different error ranges of the individual
measurements and operational as well as physical constraints. The state estimate is
generated by a simulation of the model, which is fitted to the measurements. MHE
can be seen as a dual technique to MPC, since in both cases a model of the process
is embedded in a dynamic optimization problem. While in MPC, this model is used
to optimize the future behavior of the process, in MHE it is used to reconstruct the
past behavior.
MHE shares the main algorithmic ideas with MPC and therefore it inherits not only
its flexibility, but also its computational complexity. In every sampling interval a NLP
is solved, which may be a demanding task and limits the applicability to processes
with low sampling frequencies. However, it is possible to apply similar techniques
as the RTI and MLI to MHE in order to increase the sampling rates. The RTI for
MHE (RTI-MHE) [59, 28] avoids to solve an NLP until convergence in every iteration.
Instead, the similarities between subsequent sampling points are exploited to con-
struct an accurate initial guess of the solution. On every sampling point, only one
iteration is performed to correct this initial guess towards the actual solution. This
allows to reduce the computational effort greatly, while maintaining accurate state
and parameter estimates. In this thesis we introduce the MLI for MHE (MLI-MHE)
[47], which avoids the numerical integration of the dynamical system and the evalu-
ation of the corresponding sensitivities. Instead already evaluated system lineariza-
tions are reused and adjusted to the recent measurements. The MLI-MHE defines a
hierarchy of update formulas, which represent individual MHE schemes, but can be
operated in parallel too.

1.2 The Challenge of Microgrid Control

The energy transition describes the ongoing process of replacing fossil energy sources
in all sectors of industry and society. The main carrier of energy will be electricity
generated by heterogeneous Renewable Energy Resources (RES) and therefore the
electrical grid will play a central role for the supply of energy. The most common
sources of renewable electrical energy are wind turbines and Photovoltaic (PV) sys-
tems and their share will increase significantly. However, RES have exceedingly dif-
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ferent properties than traditional power plants and therefore the energy transition
will change the structure of the utility grid fundamentally.

• Traditional power plants are fueled externally and this leads to a very pre-
dictable energy output. In contrast to that, PV systems and wind turbines are
dependent on the current weather conditions and since the weather is volatile,
the energy output of RES is volatile too. In addition, extensive power storage is
necessary to compensate for temporal shortages of renewable energy.

• The scale of RES is usually much smaller than the scale of traditional power
plants and therefore a much higher number of RES units is necessary to pro-
vide the same amount of electrical energy. This will lead to much higher num-
ber of smaller power plants.

• The frequency in the utility grid is physically coupled with the rotational speed
of the generators in traditional power plants. Since these generators have a
high mass and store a lot of rotational energy, the frequency has a lot of inertia
and is resilient against disturbances. In contrast to that, RES are usually con-
nected to the utility grid by power inverters, which have no internal inertia.
Therefore, a high share of RES increases the susceptibility of the utility grid.

• In contrast to traditional power plants, small scale RES are connected mainly
to low or medium voltage networks and in order to use them efficiently, electri-
cal energy needs to be transferred between distribution networks. Therefore,
the introduction of RES leads to a multidirectional power flow.

In summary, RES are harder to control, more RES are necessary and they behave
highly unpredictable. Therefore, the energy transition changes not only the structure
of the utility grid, but poses also a huge challenge to current control concepts for
electrical networks.
Microgrids (MGs) are considered a key-technology in the energy transition, since
they address the challenge of an increasingly complex utility grid. MGs are small,
local, electrical networks comprising heterogeneous components, such as genera-
tors, storage systems, and loads. Usually, they are connected to the utility grid and
thus offer a flexible way to integrate RES. Their main advantage is the ability to han-
dle disturbances and the intermittent behavior of RES locally and hence they can be
seen as single controllable entities in a larger electrical network [17]. Thereby, not
every RES needs to be considered as an individual plant, but they are clustered into
bigger, more controllable units. In addition to that, they can also be operated in an
islanded mode after a disturbance, leading to a more fail-safe power supply. MGs are
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also used on smaller islands or in remote geographical areas, where no connection
to the utility grid is possible.
However, the control of a MG poses a challenge itself. Because of the small scale,
the individual RES units are exposed to changing weather conditions more directly
and their energy input is harder to predict. The proportion of RES in the network is
higher and since they are inverter-interfaced, the inertia in the network is low and
disturbances have a more direct impact. Furthermore, a MG may also include elec-
trical consumers, which behave unpredictable on a short time scale too. A further
challenge of MG control are the different time scales. While the electrical dynam-
ics take place on a particular short time scale, load prediction and weather forecast
consider a time horizon of at least 24 hours.
MGs are typically organized in a hierarchical structure, where the different control
layers address different time scales. The higher layers consider longer time scales
with low sampling time and communicate target values to the lower control layers.
The lower layers implement the provided values on a short time scale, which enables
them to react to short-time disturbances. However, the high volatility of RES pushes
state-of-the-art control approaches to its boundaries and there is a need for more
flexible and efficient control methods. MPC offers a lot of desirable features for the
control of MGs, but the established approaches are not tailored for dynamical sys-
tems with high sampling frequencies. The ultimate goal of this thesis is to develop
new mathematical methods to render MPC feasible for the control of MGs.

1.3 Contributions of this Thesis

The goal of this thesis is to develop a mathematical framework that is able to treat the
stiff dynamics of MGs and the high volatility of RES in real-time. Thereby, we focus
on a centralized MG controller, which is acting on a short time scale. Existing meth-
ods for MPC are neither able to stabilize MGs of moderate size after disturbances nor
estimate the system state reliable. The computational effort for the numerical inte-
gration of the stiff dynamical system is too high to meet the real-time requirement.
To address the challenges of MG control, we develop novel mathematical methods
tailored to systems with high sampling frequencies. Thereby, we present new ap-
proaches for the controller as well as for the state estimator in order to achieve a full
closed loop feedback controller. The mathematical advancements presented in this
thesis are motivated by the challenges of MG control, but they state general control
schemes that pushes the applicability of MPC and MHE forward.
Not only classical approaches for MPC, but also tailored schemes like the RTI are
not able to provide sufficiently accurate control feedback within the required sam-
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pling time of MGs. The high feedback rates, the stiffness of the MG models, and the
high intermittency of RES render state-of-the-art methods too slow for the control of
medium sized MGs. The MLI offers a flexible methodology to generate control feed-
back with high sampling frequencies. However, the lower MLI levels allow to give
feedback with a sufficiently high feedback rate, but since they give suboptimal feed-
back they are not able to stabilize the system after disturbances. In order to meet
the real-time requirement and to stabilize the system at the same time, we develop
a novel MPC scheme, which is based on the parallel operation of multiple MLI lev-
els. A new scheduling algorithm, which is especially tailored to applications with
high sampling frequencies, utilizes the high feedback rates of the lower levels and
the accuracy of the higher levels at the same time. The presented MPC scheme guar-
antees to provide feedback in real-time and shows a superior control performance
compared to state-of-the-art control methods.

An appropriate state estimation methodology is a vital prerequisite for the appli-
cation of MPC to the control of MGs in a closed loop. MHE offers a lot of desired
properties, but the fast dynamics of MGs render even tailored MHE schemes as the
RTI-MHE too slow. In this thesis, we develop a new flexible framework for MHE. It
defines a general class of MHE algorithms, which are customizable to the require-
ments of a wide range of applications. The main idea is to transfer the algorithmic
ideas of the MLI in the context of online state estimation. However, the standard for-
mulation of MHE is not treatable by MLI update formulas. We present a new MHE
problem formulation, which is more flexible. With the Control Trajectory Embed-
ding (CTE), we propose a concept to decouple linearizations from constantly chang-
ing online data. This allows not only to apply MLI update formulas to MHE, but also
enables the parallelization of multiple levels. We investigate the convergence prop-
erties of these schemes by applying the convergence theory of Newton-type meth-
ods. We use this framework to define MHE schemes tailored to the online state esti-
mation of MGs. Thereby, we achieve high accuracy state estimates in real time even
after major disturbances in the network.

We demonstrate the capabilities of the newly introduced mathematical approaches
by comprehensive numerical experiments. Therefore, we consider DAE models of
realistic sized test MGs with PV systems, batteries and Synchronous Generators
(SGs). We use these models to develop a new MPC scheme with state estimation that
is able to respect the operational bounds and the high sampling frequencies of MGs.
It is especially tailored to the hierarchical control structure of MGs. We challenge
the new methods for MPC as well as MHE in challenging scenarios and compare the
results to state-of-the-art control approaches. To the best of our knowledge, it is the
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first time that a methodology is presented, which is able to stabilize MGs with full
dynamic models in a full closed loop control setup with state estimation.
The main methodological approaches of this thesis are based on the following pub-
lications, of which we are the main contributor:

• R. Scholz, A. Nurkanovic, A. Mesanovic, J. Gutekunst, A. Potschka, H. G. Bock,
and E. Kostina. Model-Based Optimal Feedback Control for Microgrids with
Multi-Level Iterations. In Operations Research Proceedings 2019. Operations
Research Proceedings (GOR (Gesellschaft für Operations Research e.V.)), 2020.
doi: 10.1007/978-3-030-48439-2_9

• R. Scholz, A. Nurkanović, A. Mešanović, J. Gutekunst, A. Potschka, H. G. Bock,
and E. Kostina. Multi-level iterations for microgrid control with automatic
level choice. In Scientific Computing in Electrical Engineering. Springer In-
ternational Publishing, 2020. In Press

• J. Gutekunst, R. Scholz, A. Nurkanović, A. Mešanović, H. G. Bock, and E. Kostina.
Fast moving horizon estimation using multi-level iterations for microgrid con-
trol. at - Automatisierungstechnik, 68(12):1059–1076, 2020. doi: 10.1515/auto-
2020-0081

This thesis associates these articles in the context of MPC for MG control and gives a
more comprehensive description of the individual contributions. In particular, this
thesis contributes to the field of applied mathematics by the following aspects.

Mathematical Modeling of MGs

We give a comprehensive introduction in the structure and control concepts of MG.
Thereby we review common modeling techniques for electrical networks in steady-
state as well as full transient models. We introduce Optimal Power Flow (OPF) as
the basis for optimization based control techniques for electrical networks and we
present full transient models for most important components in MGs. These models
emerge as constraints in the OCPs of this thesis and [103, 102, 47].

Adaptive Level Choice by Computation Time

We present a new scheduling algorithm for MLI update formulas, which is tailored to
applications with high sampling frequencies and stiff dynamics. Performing a par-
allel evaluation of multiple update formulas, this algorithm enables a high control
performance, while guaranteeing to stay real-time feasible. This approach is pub-
lished in [103].
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Development of Tailored MPC Scheme for MG Control

Based on the new methodological approaches of this thesis, we propose a novel MPC
scheme that is tailored to MG control. We model a suitable parametric OCP to be
used in the context of MPC. The design of the resulting MPC scheme is geared to the
hierarchical control structure of MGs and is compatible with control methods for the
primary and tertiary control level. Compared to state-of-the-art control approaches
for MGs, the MPC shows not only a superior performance, but it is also able to re-
spect operational bounds. We show the capabilities of new numerical methods in
comprehensive numerical studies in challenging load scenarios.

Extensive Numerical Experiments for Control of MGs

We present comprehensive experimental data for the control of MGs using the pre-
sented numerical approaches. Thereby, we consider realistic-sized MGs in challeng-
ing load scenarios. We compare our new proposed approach with a classical MPC
approach and a state-of-the-art control strategy based on Proportional-Integral (PI)
controller. Our methodology shows a superior control performance compared the
other approach and stays real-time feasible. In this thesis, we present the numerical
results of [103, 102] in an extended way.

Control Trajectory Embedding

We present a reformulation of the classical MHE problem, which decouples system
linearizations from constantly changing online data. This allows to reuse lineariza-
tions over multiple sampling intervals, which is necessary for the application of MLI
update formulas. Initially, we introduced this reformulation in [47].

Multi-Level Iteration Update Formulas for Moving Horizon Estimation

We introduce a novel set of hierarchical update formulas for MHE based on the MLI.
In order to enable them to be applied in parallel, we present shifting strategies for
the optimization variables as well as system linearizations. In this thesis, we give a
more detailed description of the originally proposed formulas in [47].

Arrival Cost Term for MHE for Parallel MLI levels

In MHE the arrival cost term allows to incorporate measurements prior to the cur-
rent estimation horizon. This term is updated in every iteration, which includes a
full system reevaluation. We embedded the arrival cost update in the framework of
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MLI update formulas in order to avoid system linearizations in every iteration. We
give detailed description of this update procedure, which we originally proposed in
[47].

Extensions of Software Package

We implement the proposed algorithmic extensions into the existing software frame-
work MLI [113] in order to apply MLI update formulas to MPC and MHE. These
extensions include the ability to treat DAE systems, the new scheduling algorithm,
the CTE formulation for MHE and the MLI-MHE update formulas. The framework
allows to define holistic MPC schemes with parameter estimation in a general way
and is customizable to a wide range of applications.

Closed Loop Simulations for MHE

We show the capabilities of the newly developed methods for MHE in comprehen-
sive numerical experiments, which consider closed loop as well as open loop scenar-
ios. Thereby, we use full transient models of realistic sized MGs. The experimental
data show that the proposed MHE framework is able to provide state estimates in
real-time.

1.4 Structure of the Thesis

This thesis is structured into three major parts, which consider the modeling of MGs,
methods for MPC and methods for state estimation. The structure of the individual
chapter and their mutual dependencies are depicted in Figure 1.1.

The first part of the thesis is dedicated to the application case of MGs. In Chapter
2, we describe the role of MGs in the energy transition from a high level perspective.
We describe the structure and the challenges of MG control. In Chapter 3, we present
general modeling techniques for Alternating Current (AC) electrical networks and we
present dynamical models of the most important components.

The second part considers Nonlinear Model Predictive Control (NMPC). In Chapter
4, we review the principle of NMPC and present the RTI as a technique to enable
higher sampling rates. Chapter 5 considers the MLI and we present new method-
ological schemes which are tailored to the control of MGs. We present the capabili-
ties of the MLI for MG control in numerical experiments in Chapter 6. Thereby, we
consider a challenging load scenarios and compare the results with a state-of-the-art
control approach.
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Control

State Estimation

Modeling

Chapter 1
Control of MG

Chapter 2
Modeling

Chapter 3
NMPC

Chapter 4
MLI

Chapter 5
MLI for MGs

Chapter 6
MHE

Chapter 7
MHE for MGs

Figure 1.1: Structure of the individual chapters and their mutual dependencies.

In the third part of the thesis, we consider state estimation and MHE. In Chapter 7,
we present the RTI for MHE and we introduce CTE as a reformulation of the classical
MHE problem in order to make MLI update formulas applicable. Furthermore, we
propose MLI update formulas for MHE and we propose a tailored update procedure
for the arrival cost term. In Chapter 8, we test the performance of the presented
methods in open and closed loop simulations.
In Chapter 9, we give a summary of the most important results of the previous chap-
ters.
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Chapter 2

Control of Microgrids

Climate change and limited resources make a transition from fossil-fueled energy
production to Renewable Energy Resources (RES) inevitable [70]. In the context of
the energy transition, heating and mobility will be driven primarily by electrical en-
ergy and therefore electricity will be the most important way to transport energy
[107, 90]. In order to prevent greenhouse emissions fossil-fueled power plants need
to be replaced by RES as the main source of electrical energy. The most viable RES
are Photovoltaic (PV) systems and wind turbines and they have fairly different prop-
erties than traditional power plants. This will change the structure of the utility grid
fundamentally and thereby new challenges will arise.

The traditional power grid is characterized by large power plants and is organized in
a top-down fashion by interconnected subnetworks with different voltage levels. On
the top layer the transmission grid has the purpose to interconnect different subnet-
works and to transfer electrical energy. It uses a high voltage to reduce transmission
losses and to enable the efficient transport of electrical energy over long distances.
Most of the traditional power plants with a high nominal capacity are directly con-
nected to the transmission grid. On the bottom layer distribution grids with low or
medium voltage levels are used to distribute electrical energy to the customers. Such
a distribution grid may cover cities or industrial plants and may be further divided
into smaller networks. The power flow in the traditional power grid is mostly unidi-
rectional. The majority of the electrical energy is produced by large power plants and
is directly injected in the transmission grid. It is delivered to the consumer via distri-
bution networks. The customers are connected to the distribution grid on different
voltage levels, depending on their size.

The frequency plays an important role for the control of Alternating Current (AC)
power grids because it is directly dependent on the rotational speed of the genera-
tors in the power plants. Mostly Synchronous Generators (SGs) are used and their
rotational speed is in synchronization with the grid frequency. A mismatch between
the produced and the consumed electrical energy in the network leads to an acceler-
ation or a deceleration of the frequency and thus of the rotational speed of the gen-
erators. Therefore, the rotational energy of the rotating parts of the generators com-
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pensates for the power imbalances and stabilizes the frequency. This physical cou-
pling between the frequency and the rotational speed of the generators is an intrinsic
feedback control mechanism, which counteracts disturbances in the network. The
impact of power imbalances is delayed by this internal inertia of the utility grid and
therefore the controllers have a certain time frame to react. A high physical mass of
generators leads to a high inertia and therefore the more generators are connected,
the more stable a network is. In addition, the frequency is a convenient feedback sig-
nal to detect power imbalances, since the frequency is almost the same at all buses
of the electrical network. A deviation of the frequency from the nominal value can
be counteracted by a power adjustment of the plants. Since traditional power plants
are fueled mostly externally by coal, oil or gas, their power output is very predictable
and can be adapted to frequency variations.
A detailed description of the physical properties of power systems and control con-
cepts can be found in [60, 40] and a survey of modern control approaches is given
in [79]. Simulation based approaches model the power flow in the utility grid in
a steady state by the nonlinear power flow equations [36, 53] or approximations of
them [21]. The optimal dispatch is computed by an Optimal Power Flow (OPF) prob-
lem, which will be introduced in Chapter 3. The OPF problem is a basic formulation
and many solution approaches were proposed tailored to specific situations. Solu-
tion approaches for classical formulation are collected in [37]. OPF in the context of
Model Predictive Control (MPC) are proposed in [72, 71, 55, 32] and stochastic and
distributed OPF is described in [33, 78].
The energy transition and the accompanying integration of RES is not only a replace-
ment of physical components, but it will change the structure of the utility grid fun-
damentally [17]. Several challenges for the control will arise.

Uncertainty PV systems and wind turbines are the most important sources of renew-
able energy and they have an intrinsic intermittency because of their depen-
dence on the weather. The weather is changing on different time scales. The
intensity of solar radiation and wind is roughly predictable over the course of
one or several days. However, they are also affected by changing weather con-
ditions on short time scale, which are much harder to predict [54, 55]. Ensur-
ing a reliable supply of electrical energy is more challenging, because these
uncertainties need to be considered. A suitable control approach needs to
consider a time horizon of at least a day, while being able to react to sudden
disturbances almost instantaneously.

Scale RES are typically much smaller than traditional power plants and they are
much more spatially distributed. Therefore, a much higher number of indi-

14



CONTROL OF MICROGRIDS CHAPTER 2

vidual RES units is needed to provide the same nominal power as a traditional
power plant. In addition, it is to be expected that the demand for electrical en-
ergy will rise because of the electrification of mobility, heating and other sec-
tors [91]. Furthermore, RES have quite different control properties, depend-
ing on their primary energy source like wind or solar radiation. Thus, the fu-
ture utility grid will comprise a much higher number of active energy providers
with heterogeneous control characteristics.

Inertia The traditional power grid is resilient against disturbances because of its high
inertia. In contrast to that, RES are usually connected to the grid by power in-
verter, which convert Direct Current (DC) to AC. Power inverter are controlled
by power electronics, which allow an independent control of the voltage level
at the terminals. They have no internal inertia and their energy flow needs
to be controlled in order to meet the demands and to stabilize the frequency.
The rising number of RES units reduces the system inertia and concepts are
needed to synchronize the inverters.

Bidirectional Power Flow Traditional power plants are mostly connected to the trans-
mission grid and therefore their energy flow is always directed from the high
voltage to the low voltage grids. The structure of the energy grid is shaped by
its historical development and is adjusted to this unidirectional power flow.
However, RES are usually much smaller than traditional power plants and
much more spatially distributed. Therefore they are connected to the distri-
bution networks on low or medium voltage levels. In order to transfer elec-
trical energy produced by RES over long distances it needs to be injected into
the the transmission grid and this introduces a power flow from the distribu-
tion grid to the transmission grid. This poses an additional control challenge,
because the low voltage distribution networks emerged predominantly as pas-
sive power consumers in the traditional power grid. In addition, more moni-
toring hardware is needed.

Storage The performance of RES is dependent on current weather conditions and
on the time of day. E.g., during the night PV systems produce almost no electri-
cal energy. In order to compensate for this unstable nature of RES and to avoid
generation shedding, storage units are necessary. A wide range of energy stor-
age technologies are available, which differ in operating cost, storage capacity
and response time. An appropriate control and scheduling of the storage units
poses an additional challenge [17].
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2.1 Microgrid Concept

The Microgrid (MG) is a concept to address the challenge of rising complexity of the
utility grid. A MG is a local cluster of loads, energy providers and storage, which is op-
erated as a single controllable unit. A MG is connected to the utility grid by a Point of
Common Coupling (PCC), but has also the possibility to be operated in an islanded
mode, e.g., after a disturbance [62, 63, 51]. The clustering of local energy consumer
and providers has several practical advantages. From the view of the utility grid,
the MG acts as a single controllable unit even though it may include a high number
of RES. Because of its heterogeneous components, the MG is able to compensate
smaller power imbalances locally. Thus, the MG clusters multiple volatile entities
into a single more predictable one. Furthermore, the MG allows to keep the energy
production close to loads, which reduces transmission losses. And since the MG can
be operated as an individual unit in islanded mode, it is more resilient against dis-
turbances in the utility grid. The MG concept is very flexible and has a wide range of
applications. E.g., islanded MGs can be deployed in geographical areas, where a con-
nection to the utility grid is not possible [49] or multiple MGs can be interconnected
to form bigger grids [1, 49].

2.2 Hierarchical Control Structure of Microgrids

The challenge of MG control is characterized by phenomena on a wide range of dif-
ferent time scales. One the one hand, the physical behavior of electrical quantities is
extremely fast and disturbances have an effect on the voltage and phase angle almost
immediately. The nominal frequency in most electrical networks in Europe is 50Hz
and in order to keep it stable, the control hardware needs to react in the same time
scale. On the other hand, the weather and load forecast is dependent on the daytime
and in order to control a MG efficiently a time horizon of at least a day needs to be
considered. To address these different time scales, MG control is usually organized
in a hierarchical fashion. The lower control layers react to the fast electrical dynam-
ics and the higher layers consider the long term planing. Every layer uses different
models and control techniques, which are suitable for the considered phenomenon.
Control signals are sent from the higher levels to lower levels. Measurements from
the physical components of the MG are used as a feedback signal in order to enable
the control layers to react to disturbances.

The most common control approach considers three hierarchical control layers [83,
17, 10, 54, 23]. A review of common control techniques can be found in [51, 86]. The
different levels and their interaction are depicted in Figure 2.1.
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Method: optimal power flow, economic dispatch
Goal: scheduling, economic control, incorperation of
forecast
Sampling time: minutes - days

Tertiary Control

Method: integral controller, MPC
Goal: steady-state offset elimination
Sampling time: 100ms - minutes

Secondary Control

Method: droop control
Goal: stabilization
Sampling time: < 100ms

Primary Control

control signals measurement signals
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Figure 2.1: Hierarchical control structure of MG.

2.2.1 Primary Control

The goal of the primary control layer is to stabilize the system after disturbances. It
is responsible for instantaneous compensation of mismatches between the sched-
uled and the demanded power. Most of the common active components in MGs are
equipped with a primary controller. They rely on local measurements and use droop
control laws for instantaneous reaction to load changes. Their response rate is below
100ms in MGs, but reach up to several seconds in bigger power plants. The perfor-
mance of the primary control layer depends on a careful tuning of the parameters
of the control laws. Since it relies only on local measurements, it is not possible to
eliminate state-state offsets for the voltage level [83, 74, 73].
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2.2.2 Secondary Control

The purpose of the secondary control layer is to steer the system back to the desired
steady-state operating point after a disturbance [45, 17] and to implement control
signals from higher control levels. Typical sampling times of the secondary control
layer range between 100ms up to several minutes. It uses the reference values of the
primary control layer as controls to interact with the physical hardware of the MG.

Traditionally, secondary control is implemented by local integral controllers, which
are tuned to the specific configuration of the MG. This is a flexible approach, since
integral controllers consider only local measurements and therefore the MG can be
extended without a reconfiguration of the complete grid. However, since the voltage
is a local quantity, voltage control by fully decentralized controllers is challenging
[105] and requires a stable operation. The rising penetration of RES pushes this ap-
proach to its boundaries [54] because of its inherent volatile behavior. There is a high
research interest in new control methods [114, 17].

MPC is a control strategy, which gained a lot of attention from the power engineer-
ing community lately because of its flexibility and control performance [17, 55, 110].
All MPC approaches are based on models, which are used to predict and optimize
the performance of the controlled components. On the secondary control layer it
is common to use Ordinary Differential Equations (ODEs) or Differential Algebraic
Equations (DAEs) to models the transient behavior of the individual components
[100, 6]. The interconnecting network is represented in a rotating reference frame
[67] by algebraic equations. Usually, these models include control laws of the pri-
mary control layer.

MPC can be applied in a centralized or a distributed fashion. In a distributed MPC
approach, the individual components are optimized locally [75, 76, 111, 106] and
usually there is also a central control unit, which submits control targets to the indi-
vidual units. The main advantage of a distributed control approach is that no model
of the complete MG is needed and therefore it is easy include additional compo-
nents. This is a desired property for bigger electrical networks, where not all the
information is available and the structure of the network may change often.

In contrast to that, a centralized MPC control approach uses a model of the complete
MG with all controllable units included. This enables the controller to optimize the
performance globally taking all measurements at all buses in consideration. Central-
ized MPC control is especially suited for small MGs, where information about all the
components is available and a communication infrastructure is implemented. One
of the main challenges of centralized secondary control is the computational com-
plexity of the arising optimization problems. Since the model of the MG includes all
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components, the simulation requires a higher computational effort. Several tailored
MPC schemes are proposed to address this issue [102, 103, 83, 84], which reduce the
computation time significantly.

Scope of this Thesis

In this thesis, we develop mathematical methods for a centralized controller on the
secondary level. Thereby, we consider full transient models of the MG and the con-
nected components given by DAEs. They allow accurate predictions of the process
behavior in steady-state and after disturbances. However, current schemes for MPC
as well as state estimation are not able to meet the real-time requirement for MGs.
We propose a new mathematical approach that considers a full feedback loop with
controller and state estimator. We discuss the mathematical methodology in Chap-
ter 5 for the controller and in Chapter 7 for the estimator. Compared to state-of-
the-art methods, the proposed MPC scheme shows a significantly improved perfor-
mance. In addition, it is able to respect operational bounds and to control the volt-
age.

2.2.3 Tertiary Control

The tertiary control layer considers the economic aspects of MG control. It is respon-
sible for the long term scheduling of the individual components and incorporates
weather and load forecast. A typical load profile has a high demand during the day
and a low demand at night. In addition, the solar radiation is very low in the night.
The intensity of wind depends on the season and may change significantly during
the day. In order to take the load profile into account, the tertiary control level needs
a prediction horizon of at least 24 hours.
Typically, the tertiary control layer uses steady-state models of the MG in order to
treat the long prediction horizon [49]. The system state is presented in terms of active
and reactive power balances, which satisfy the so-called power flow equations. The
power flow equations are a set of nonlinear equations, which characterize physical
operating points of the grid. In order to predict the system behavior, the so-called
multi-stage power flow equations are solved, which consists of a sequence of power
flow equations coupled in time by the state of charge of the storage units [32, 72,
71]. We will discuss the power flow equations and the corresponding optimization
problem in Chapter 3. The sample times range from several minutes in smaller MGs
up to hours and days for bigger units.
The fundamental assumption of the tertiary control layer is that the secondary con-
trol layer is able to keep the MG stable at the desired operating point. The secondary
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control layer is responsible to share the additional load between the active compo-
nents.
On the tertiary control layer, optimal control is a common technique to optimize the
operation [77]. From a mathematical point of view, tertiary control is challenging
because it may include integer decision variables. Active components, like e.g. SGs,
can be switched on or off and may have significant startup costs. A common ap-
proach is to relax the nonlinear power flow equations and model the problem as a
mixed integer linear program [88] or a mixed integer quadratically constrained pro-
gram [21]. Depending on the size of the considered MG it may also be beneficial to
solve the arising optimization problems in a distributed manner using the ADMM
[49, 18] or ALADIN [30] algorithm. A further challenge of the tertiary control layer is
to consider uncertainties of the incorporated load and weather forecast. Several ap-
proaches were proposed by modeling the uncertainties as random variables [33, 48]
or as a minimax MPC scheme [118].
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Mathematical Modeling of Power Systems

In this chapter we consider mathematical modeling of electrical networks and mi-
crogrids. First, we will describe the fundamental concepts and terms of electrical
networks. We will introduce the phasor as a steady-state modeling technique and we
will extend it with the d q0-transformation to full dynamic models. The power flow
equations will be used to represent the behavior of a complete electrical network.
Afterwards, we will derive full dynamic models for the most important components,
which are typical for Microgrids (MGs). Thereby, we focus on Synchronous Gener-
ators (SGs) and inverters as the main controllable components. The full dynamical
behavior of the grid will be modeled by Differential Algebraic Equations (DAEs).

The models of the network and the components presented in this chapter are used
to assemble full transient models of complete MGs. We introduce the models in a
general way such that they can be flexible assembled to represent MGs with arbitrary
structure. These models are the basis for the development of a novel mathematical
control approach for MGs. The corresponding DAE will emerge as constraints in
Optimal Control Problems (OCPs) in the later chapters of this thesis. We will use
different objective functions in these OCPs, which will be discussed in Chapter 6
and in Chapter 6.

This chapter follows roughly [36] and [67]. A more comprehensive introduction to
the modeling of power grids can be found in [40] and a modeling approach tailored
to MGs is presented in [17]. The dynamical models for the SG are derived in great
detail in [60] and for the inverter in [96].

3.1 Steady State Modeling

There are two fundamental ways for the transfer of electrical energy: Alternating
Current (AC) and Direct Current (DC). Whereas DC refers to constant voltage and
current signals, AC is an electric current that changes its direction periodically in
sinusoidal fashion. Most of the electrical energy is generated in AC, which is a direct
consequence of the generator design. Traditional generators use a rotating magnetic
field to induce sinusoidal currents at the terminals. One advantageous property of
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AC is that the voltage level can be adjusted easily with coil based transformers. Since
the power loss on a transmission line is lower for higher voltages, AC enables a more
efficient energy transfer. The voltage level of electrical energy is stepped up before
transmission. Close to loads, the voltage is stepped down to the required level of the
equipment. Therefore, AC is the common way to distribute electrical energy and we
will focus on AC throughout this thesis.

In AC power systems current and voltage are given as time-dependent sinusoidal
signals. The direct representation of these signals as functions is called time-domain
representation. However, power analysis using the time-domain may be very labo-
rious. Therefore, it is common to transform these signals into different representa-
tions in order to simplify the calculations [40]. In analysis of AC power systems, there
is the fundamental distinction between quasi-static and transient models. Quasi-
static models assume an operation at fixed frequency and voltage magnitude. Tran-
sient models describe the dynamic behavior of the system with time-varying fre-
quencies and magnitudes. Which type of model is suitable for the specific situation
depends on the time scale and the considered phenomenon. In this section, we in-
troduce the phasor representation as a quasi-static model of power systems. The
d q0 transformation will be introduced as a transient generalization of the phasor in
a later section.

3.1.1 Phasor Representation

In the following, we assume a quasi-static operation, i.e. a fixed frequency ω and
magnitude. Current i (t ) and voltage v(t ) are given by the time dependent functions

v(t ) =Vpk cos(φV + tω),

i (t ) = Ipk cos(φI + tω)
(3.1)

with the initial angles φV and φI . The peak values are given by Vpk and Ipk. The
functions v(t ) and i (t ) are the time-domain representation of voltage and current.
In the frequency-domain voltage and current are represented by complex numbers,
so-called phasors. The phasor of the voltage and current signals is given by

V =Ṽ e jφV ,

I =Ĩ e jφI .
(3.2)

Here we denote the imaginary unit with j =
p
−1. The absolute values of the phasors

are given by the Root Mean Square (RMS) values of the time dependent quantities
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Ṽ = Vpkp
2

and Ĩ = Ipkp
2

. The time-domain representation can be recovered by the real

part of the phasor multiplied by
p

2e jωt

v(t ) =ℜ(V
p

2eωt ) =
p

2Ṽ ℜ(cos(φV +ωt )+ j sin(φV +ωt ))

=Vpk cos(φV +ωt ).
(3.3)

In literature [40], it is also common to denote a phasor by the notation Ṽ∠φV .

Remark 3.1
Throughout this chapter, we will use the following notations. Signals in the time-
domain are time dependent functions, like v(t ). Magnitudes of sinusoidal signals
are indicated by a subscript pk and the RMS values by a tilde, like Vpk or Ṽ . Phase
angles are denoted by Greek letters as variable names, like φ. Variables without tilde
and argument refer to signals in the frequency-domain.

3.1.2 Resistors, Inductors and Capacitors

The most fundamental components in AC networks are resistors, inductors and ca-
pacitors. They are not only physical components, but also a technique to model
other components. For example, transmission lines and loads can be represented as
an equivalent circuit of them.
The resistor is a passive component, which represents physical resistance to the cur-
rent. Its physical properties are specified by the resistance R ∈R. Maintaining a flow
of current through a resistor consumes electrical power and causes a voltage drop
between its terminals. All transmission lines have an internal resistance depending
on their length, material and thickness. Ohm’s Law describes the relation between
voltage and current on a resistor

v(t ) = Ri (t ) (3.4)

and this law is applicable to the phasor

V = I R (3.5)

as well. For time-varying quantities, there are two additional important compo-
nents: inductors and capacitors. Inductors are governed by the differential equa-
tions

v(t ) = L
di (t )

dt
(3.6)
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V1
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L V3

Figure 3.1: Resistor and inductor in series connection.

with the inductance L ∈ R. In quasi-static operation, this differential equation can
be solved directly

v(t ) = L
di (t )

dt
= L

d

dt

(
Ipk cos(φI + tω)

)=−ωLIpk sin(φI + tω)

=−ωLIpk cos

(
φI −

1

2
π+ tω

)
.

(3.7)

A comparison of the arguments shows that φI −φV = π
2 and that an ideal inductor

causes a shift between voltage and current by π
2 . In the frequency-domain this can

be represented by a multiplication with − j

V =ωL j I . (3.8)

The scaling factor is called reactance and is usually denoted by X = ωL ∈ R. The
conductor is governed by the differential equation

i (t ) =C
dv(t )

dt
(3.9)

with the capacitance C ∈R. This equation can be solved in similar way for AC quan-
tities in quasi-static operation

i (t ) =−CωVpk cos

(
φV − 1

2
π+ tω

)
. (3.10)

In the frequency-domain, the phase shift by −π
2 can be achieved by a multiplication

with − j . Solving the equation for V leads to

V = X j I (3.11)

with the reactance X =− 1
ωC . An ideal conductor causes a shift between voltage and

current by π
2 but in the opposite direction as the inductor. Physical components are

never purely inductive or capacitive, but they are also resistive. This can be modeled
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by a series connection of an inductor or capacitor and a resistor like in Figure 3.1

V =V1 −V3 = RI +V2 −V3 = RI −Lω j I = (R −Lω j )I . (3.12)

The combined effect of the resistor and inductor is described by the impedance
Z = R + X j . In fact every combination of resistors, capacitors and inductors can
be represented by a single impedance Z ∈ C. Therefore the physical properties of a
connection in a AC network is described by the impedance Z ∈C. The real part R ∈R
of the impedance refers to the resistance and the imaginary part X ∈R is called reac-
tance. This allows us to describe the relation between voltage and current in an AC
network similar to Ohm’s law

V = Z I . (3.13)

It will become handy to use the admittance Y = 1
Z ∈ C instead of the impedance in

Ohm’s law

I = Y V. (3.14)

The real part of the admittance G = ℜ(Y ) is called conductance and the imaginary
part B =ℑ(Y ) susceptance.

3.1.3 Complex Power

Momentary power p(t ) consumed or produced in an electrical component is given
by

p(t ) = v(t )i (t ). (3.15)

In DC networks, the power is constant and is computed by a multiplication of the
peak values. However in AC networks, current and voltage are following a sinusoidal
curve and a multiplication of the peak values would lead to wrong results. The mo-
mentary power in time-domain is given by

p(t ) = v(t )i (t ) =Vpk cos(φv + tω)Ipk cos(φI + tω)

= 1

2
VpkIpk

(
cos(φV −φI )+cos(2tω+φV +φI )

)
.

(3.16)
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The power p(t ) has a constant part, which is not time depend and a part, which is
oscillating at double angular velocity. The constant part

P = 1

2
VpkIpk cos(φV −φI ) (3.17)

is called active power and the term cos(φV −φI ) is refereed to as the power factor.

In the frequency-domain, we define the apparent power by

S =V I∗ (3.18)

where I∗ refers to the complex conjugate of I . The active power is the real part of the
apparent power

P =ℜ(S) =ℜ(V I∗) =ℜ
(
Ṽ e jφV Ĩ e− jφI

)
= 1

2
VpkIpkℜ

(
e j(φV −φI )

)

= 1

2
VpkIpk cos(φV −φI ).

(3.19)

The imaginary part of the apparent power is called reactive power and is usually
denoted by Q

S = P + jQ. (3.20)

The reactive power measures the amount of power which is circulating constantly
due to the angle displacement. In AC networks, reactive power is produced and con-
sumed by nodes and transmission lines like the active power.

In summary, the phasor representation allows us to identify AC quantities as con-
stant complex numbers. The effect of electrical components and the power can be
calculated by a set of rules similar to DC quantities. In a quasi-static system op-
eration, we can perform most calculations without taking the sinusoidal behavior
directly in consideration.

3.1.4 Three phase power

In electrical networks usually three-phase AC is used. Every transmission line con-
sists of three individual cables and in every cable the signal is shifted. The transmis-
sion of electrical energy in three-phase AC originates from its generation in rotating
electrical machines and it has several practical advantages. The individual phases
are denoted by a,b,c.
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Assumption 3.1 (Balanced 3-phase Operation)
Throughout this chapter, we assume a balanced operation of the system. This term
refers to two properties:

• All signals are three-phase sinusoidal signals, with a phase shift of ±2
3π and

equal magnitude. The sum of the three phases is zero.

• The network is balanced. Every cable of a three-phase connection has the
same physical properties and all components load the network equally on
each phase.

In balanced quasi-static operation, the voltage (and respectively the current) on the
three lines are given by

va(t ) =Vpk cos
(
ωt +φv

)

vb(t ) =Vpk cos

(
ωt +φv −

2

3
π

)

vc (t ) =Vpk cos

(
ωt +φv +

2

3
π

)
.

(3.21)

where Vpk denotes the voltage magnitude and φv the offset. In the following, we will
refer to three-phase signals by the subscript abc, e.g. the three-phase voltage in the
time-domain is denoted by

vabc (t ) =




va(t )
vb(t )
vc (t )


 ∈R3. (3.22)

The momentary power of a balanced three-phase component is the sum of the indi-
vidual phases. The trigonometric identity cos(x)cos(y) = 1

2

(
cos(x − y)−cos(x + y)

)

leads to

p(t ) =pa(t )+pb(t )+pc (t ) = va(t )ia(t )+ vb(t )ib(t )+ vc (t )ic (t )

=1

2
VpkIpk

(
3cos(φv −φi )+

(
cos(2θ+φv +φi )+cos(2θ+φv +φi −

2π

3
)+cos(2θ+φv +φi +

2π

3
)

))

=3

2
VpkIpkcos(φv −φi ).

(3.23)
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This shows that in quasi-static operation the momentary power is constant. For
many applications this is a desired property and one of the main advantages of three-
phase power.

In three-phase networks, it is common to use the line-to-line voltage instead of the
line-to-ground voltage. The line-to-line voltage between phase a and b is given by

vab(t ) = va(t )− vb(t ) =Vpk cos(ωt +φv )−Vpk cos(ωt +φv −
2

3
π)

=−2Vpk sin(ωt +φv )sin(−1

3
π)

=
p

3Vpk sin(ωt +φv )

(3.24)

and therefore the peak is given by
p

3Vpk. The phasor representation of voltage Vabc

and current Iabc stays valid for three-phase networks and Ohm’s law can be applied.
However, since the voltage magnitude refers to the line-to-line voltage, the apparent
power is computed by

S =
p

3Vabc Iabc (3.25)

in order to stay consistent with equation (3.23).

3.1.5 Per-Unit System

In power system analysis it is common, not to use the International System of Units
(SI) directly but instead to express the electrical quantities as a ratio of a base value.
This system is called per-unit system. For a quantity x in SI units, the corresponding
per-unit quantity is given by

xpu = x

xbase
(3.26)

where xbase is the base value. Since the per-unit value is a factor of the base value, it
has no SI unit. The base values for voltage and power are usually the nominal oper-
ating points for the electrical network. Base values for complex quantities are always
real. Therefore, the per-unit value has always the same angle as the SI value. The
other base values are deduced in order to maintain the electrical laws. For example,
it is desirable that the apparent power is computed in the per-unit system similar to
the SI system for single-phase systems

Spu = IpuVpu. (3.27)
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Therefore, the current base value needs to be chosen as

Ibase =
Sbase

Vbase
(3.28)

in order to maintain the definition of apparent power.

Using a per-unit system has several practical advantages. Independently of the size
of the grid, the quantities are in the same range. This makes it easier to detect errors
and improves the numerical stability. For example, the net frequency and the nom-
inal voltage are usually one in the per-unit system. Especially, the per-unit system
makes the distinction between the single and three-phase system obsolete. With a
suitable definition of the base values, all computation rules can be applied to both
systems in the per-unit system. In the following, we refer exclusively to quantities in
the per-unit system and all statements are valid for single and three-phase systems.
A comprehensive description of the per-unit system can be found in [40].

3.1.6 Electrical Networks

In the previous sections, we investigated the relation of voltage between two termi-
nals of an electrical component and the current flowing through it. However, in an
electrical network the individual buses are interconnected and in order to find a valid
point of operation their mutual interactions need to be considered. In this section,
we define an electrical network formally.

An electrical network is given as a set of buses N = {
1, ...,n

}
with n ∈ N and a set

of branches Y ⊆N ×N . The physical properties of a branch (i ,k) ∈ Y is described
by the admittance Yi k . For branches (i ,k) ∉ Y , we define Yi k = 0. Every bus i ∈N
is associated with a voltage Vi = Ṽi e jφi ∈ C, which is measured with respect to a
reference point, typically the ground. The voltage between two buses of the network
i ,k ∈N is denoted by Vi k . The current flowing through a branch (i ,k) ∈Y is given by
Ii k .

3.1.7 Kirchhoff’s Law

The physical behavior of an electrical network is described by Kirchhoff’s Laws. In
order to get consistent results, it is important to take the direction of voltage and
current in consideration. We denote the source bus by the first index and the sink
bus by the second. Kirchhoff’s Voltage Law (KVL) states that the sum of voltages
around a closed loop circle is zero. For every ordered set of indices i1, ..., im ∈N it
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1

2 3

+

−
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+ −V23
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V31

V12 +V23 +V31 = 0
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I21

I31

I41

I21 + I31 + I41 = 0

Figure 3.2: Example of KVL and KCL.

holds

m−1∑
k=1

Vik ,ik+1 +Vim ,i1 = 0. (3.29)

Using the ground, we can use KVL to compute the voltage between two arbitrary
points of the electrical network

Vi k =Vk −Vi . (3.30)

Kirchhoff’s Current Law (KCL) states that all currents at a specific bus sum up to zero.
For every i ∈N it holds

∑
k∈N ,(i ,k)∈Y

Ii k = 0. (3.31)

Both of Kirchhoff’s Laws must be satisfied in order to get a physical valid power flow
of the electrical network. Figure 3.2 visualizes KVL and KCL.

3.1.8 Power Flow Equations

In order to find valid operation points of electrical networks, we introduce the non-
linear AC power flow equations in this section. Since we are mainly interested in
the power balances, we look at the active power and reactive power injected or con-
sumed at the buses. Loads act as power consumer whereas generators and other
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power sources can be interpreted as positive power injections. At every node there
can be multiple power sources and loads connected with different dynamics, but in
this section we are only considering net energy exchange at the buses.

In this section I ∈Cn refers to the nodal current injections from outside the network.
The vector V ∈Cn collects the nodal voltages with respect to the reference point. The
net apparent power injected or consumed at the nodes is given by S = P + jQ ∈ Cn ,
with P,Q ∈Rn . For every node i ∈N , we can apply KCL and KVL to get

Ii =−
∑

k∈N ,(i ,k)∈Y
Iki =−

n∑
k=1,k 6=i

Yki Vki =−
n∑

k=1,k 6=i
Yki (Vi −Vk )

=−
n∑

k=1,k 6=i
Yki Vi +

n∑
k=1,k 6=i

Yki Vk .

(3.32)

To simplify this expression, we define the admittance matrix Y ∈Cn×n by

(Y )i k =
{
−∑

k=1,k 6=i Yki for i = k,

Yki for i 6= k.
(3.33)

The real part G =ℜ(Y ) ∈Rn×n of the admittance matrix is called conductance matrix
and the imaginary part B =ℑ(Y ) ∈ Rn×n susceptance matrix. This allows us to write
equation (3.32) in the compact form

I = Y V. (3.34)

This expression gives the relation between the nodal voltages and the external cur-
rent injections. We can use this to eliminate the currents from the power balances.
The external apparent power injections at the nodes are given by

S =V · I∗ =V · (Y V )∗ (3.35)

where · denotes the elementwise multiplication. Row i of this equation is expanded
to

Pi + jQi = Si =Vi

n∑
k=1

Y ∗
i kV ∗

k (3.36)

= Ṽi

n∑
k=1

Ṽk e j (φi−φk )(Gi k − j Bi k ) (3.37)

= Ṽi

n∑
k=1

Ṽk
(
cos(φi −φk )+ j sin(φi −φk )

)
(Gi k − j Bi k ). (3.38)
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We can get a closed expressions for the active and reactive power injections by split-
ting this equation in the real and imaginary part

Pi = Ṽi

N∑
k=1

Ṽk
(
Gi k cos(φi −φk )+Bi k sin(φi −φk )

)

︸ ︷︷ ︸
=:Pi (V ,φ)

(3.39a)

Qi = Ṽi

N∑
k=1

Ṽk
(
Gi k sin(φi −φk )−Bi k cos(φi −φk )

)

︸ ︷︷ ︸
=:Qi (V ,φ)

. (3.39b)

These equations are referred to as nonlinear AC Power Flow (PF) equations. They
give a complete algebraic relation of the external power injections, the voltage mag-
nitudes and phase angles. Every steady-state operating point of an electrical network
needs to satisfy these equations. The PF equations are the basis for several classical
tasks in power engineering and there are a lot of extensions [33].

3.1.9 Conventional Power Flow

The conventional PF task seeks a deterministic solution to PF equations (3.39). It is
a feasibility problem for a given set of fixed variables. In this model, every bus i is
associated with the four variables Ṽi ,φi ,Pi and Qi . To ensure that the equations are
uniquely solvable, two of the four variables need to be fixed. All nodes are classified
into one of the following categories:

Slack Bus There is always exactly one slack bus in every network. It serves as the
reference point for the voltage angle, i.e. φ= 0. In addition the voltage is fixed
to the nominal level, in the per unit system typically V = 1p.u.. Since the phase
angle and the voltage is fixed, the active and reactive power is free. In fact it
is the only bus with free active power and is responsible to ensure the power
balance in the network.

Load Bus At a load bus P and Q are fixed whereas voltage V and phase angle φ are
free.

Voltage-Controlled Bus At a voltage-controlled bus P and V are fixed, whereas the
reactive power Q and phase angle φ are free.

Given this categorization, it is guaranteed that the PF equations have a physical solu-
tion. There are additional mathematical solutions to this equations, but they do not

32



MATHEMATICAL MODELING OF POWER SYSTEMS CHAPTER 3

represent physical values. For example, negative voltage magnitudes may appear. A
detailed description of the conventional PF task with the mathematical background
and solution methods can be found in [36].

3.1.10 Optimal Power Flow

In this section we introduce the classical Optimal Power Flow (OPF) formulation.
It uses nonlinear power flow equation to find an optimal generator dispatch with
respect to a given objective function. We will refer to this standard formulation in
the later section and expand it to our needs. A detailed introduction to OPF from
mathematical point of view can be found in [36].

In the previous section we only looked at the net active and reactive power balance
on every bus. For OPF we distinguish between the injected power input Sg and the
passive load demand Sd . The injected power sums power generated by classical gen-
erators or storage systems. The injected power is considered as controllable, but
comes with costs. The cost is given by a (typically quadratic) cost function C (P g ).
The load includes not only the classical power consumer but also the energy input
of Renewable Energy Resources (RES). Input from for example a Photovoltaic (PV)-
System appears as a negative load. The demand emerge as fixed parameters in the
optimization problem. In total the net power balance at node i ∈N is given by

Pi = P d
i −P g

i ,

Qi =Qd
i −Qg

i .

The load parameters P d and Qd are fixed parameters whereas P g and Qg are con-
trollable. Similar to the traditional PF problem, there is a slack bus (w.l.o.g. i = 1),
where the phase angle is fixed atφ1 = 0 to avoid ambiguity. On the other nodes, volt-
age and phase angle are free. The complete optimal power flow problem is defined
by

min
P g ,Qg ,V ,φ

C (P g )

s.t . P d −P g = P (V ,φ), Qd −Qg =Q(V ,φ),

P g ≤ P g ≤ P
g

, Qg ≤Qg ≤Q
g

,

V ≤V ≤V , φ≤φ≤φ,
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where the operational bounds on the variables are denoted by over- and underbars.
Variables without subscript indices refer to vectors over the complete set of buses.
The OPF problem formulation is the basis for a lot of more specialized tasks in power
analysis. For example multi-stage OPF allows to represent a time dependent behav-
ior of an electrical network [32], distributed OPF allows to solve the optimization
on multiple machines with limited shared information, and stochastic OPF allows
to consider uncertainties in the parameters [33]. In order to efficiently solve OPF
problems with integer decision variables, e.g. for switch events of generators, the PF
equations can be convexified with a quadratic convex relaxation [21].

3.2 Dynamic Modeling

The phasor representation of voltage and current introduced in the previous sec-
tions is a quasi-static model. Most of the electrical dynamics act on a fast time scale
and are stabilized after a short transient phase. Therefore, it is reasonable to neglect
these dynamics for long-term planing. However, we are also interested in the fast
transient behavior of the electrical network. In this section, we introduce models for
the components as well as the network that consider transient dynamics.

Since we do not assume a steady-state operation, we have to deal with dynamically
changing phase angles. We will investigate the system with respect to a reference
frequency f respectively a reference angular velocity ω = 2π f . The reference fre-
quency is usually the nominal frequency of the network. The European utility grid
uses a nominal frequency of f = 50Hz and since microgrids are often coupled with
the utility grid, this frequency will also be used in our models. The reference angle
is denoted by θ(t ) =ωt . Instead of using the phase angle of an AC signal directly, we
will indicate it by the offset φ(t ) to the reference angle θ(t ). For notional simplicity,
we will omit the time dependence on the angles if they are not needed. This section
follows the lines of [67].

For dynamical modeling, we will consider balanced three-phase networks. In bal-
anced operation, the voltages (and respectively the current) on the three lines are
given by

va(t ) =Vpk(t )cos
(
θ+φv (t )

)

vb(t ) =Vpk(t )cos

(
θ+φv (t )− 2

3
π

)

vc (t ) =Vpk(t )cos

(
θ+φv (t )+ 2

3
π

)
.

(3.40)
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whereφv (t ) is the offset to the reference angle and Vpk(t ) denotes the voltage magni-
tude. Usually, the phases follow a sinusoidal curve and the magnitude Vpk(t ) as well
as the phase offset φ(t ) are changing slowly compared to the nominal frequency. We
collect the three phases in a vector vabc (t ) ∈R3.

3.2.1 DQ0-transformation

The phasor representation is a convenient technique to describe a quasi static op-
eration point in an electrical AC network. However, this formulation is not capable
to describe transients, because the definition of active and reactive power presumes
a quasi static operation. In this section, we introduce the d q0-transformation as a
technique to represent 3-phase AC signals. It allows to fully describe the transient
behavior of an AC network and to compute the power balances in steady state in a
convenient way. Therefore, the d q0-transformation can be interpreted as an exten-
sion of the phasor representation. The fundamental idea of the d q0-transformation
is to describe the electrical quantities in relation to a reference frame, which is ro-
tating with the nominal angular velocity ω. The transformation is dependent on the
current reference angle θ and is given by the matrix

Tθ =
2

3




cos(θ) cos(θ− 2
3π) cos(θ− 4

3π)
−sin(θ) −sin(θ− 2

3π) −sin(θ− 2
3π)

1
2

1
2

1
2


 . (3.41)

The inverse matrix is

T −1
θ =




cos(θ) −sin(θ) 1
cos(θ− 2

3π) −sin(θ− 2
3π) 1

cos(θ− 4
3π) −sin(θ− 2

3π) 1


 . (3.42)

Since the reference angle θ is changing over time, the time derivative of the trans-
formation is not zero. The d q0-transformation is scaled in order to preserve the
regular power balance equations. This transformation is deduced in two separate
steps. First, the 3-phase signals are mapped into an orthogonal coordinate system
by the abc transformation and afterwards a rotation matrix with the reference angle
is applied. A detailed derivation can be found in [87].

A fundamental property of the d q0-transformation is that it maps balanced quasi-
static AC signals to constants. The d q0-transformed 3-phase voltage signal (3.40) is
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given by

vd q0 = Tθvabc =
2

3




cos(θ) cos(θ− 2
3π) cos(θ− 4

3π)
−sin(θ) −sin(θ− 2

3π) −sin(θ+ 2
3π)

1
2

1
2

1
2


vabc

= 2

3
Vpk (t )




3
2 cos(φ)+ 1

2

(
cos(2θ+φ)+cos(2θ+φ− 4

3π)+cos(2θ+φ+ 4
3π)

)
3
2 sin(φ)+ 1

2

(
sin(2θ+φ)+ sin(2θ+φ− 4

3π)+ sin(2θ+φ+ 4
3π)

)

0




=




Vpk (t )cosφ
Vpk (t )sinφ

0


 ,

(3.43)

which is constant for a constant magnitude Vpk and a constant angle φ. The indi-
vidual entries are referred to as the direct, quadrature and zero component. Since we
assume a balanced operation of the network, the zero component is always zero.

The electrical power in d q0-quantities is given by

P = ia va + ib vb + ic vc = i>abc vabc

= i>d q0T −>
θ T −1

θ vd q0

= 3

2
i>d q0




1 0 0
0 1 0
0 0 2


vd q0

= 3

2
(id vd + id vd +2i0v0)

= 3

2
(id vd + id vd ).

(3.44)

3.2.2 Resistors, Inductors and Capacitors in d q0-Representation

In order to represent a complete network in d q0-quantities, we transform the mod-
els of the electrical components. A resistor in a balanced three-phase network is
modeled by

vabc = Riabc . (3.45)
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Since this is a linear equation, it is directly transferable to d q0-signals

vd q0 = Rid q0. (3.46)

The model for an inductor is

vabc = L
d

dt
iabc (3.47)

with the inductance L ∈R. We use iabc = T −1
θ

id q0 to get

vabc = L
d

dt

(
T −1
θ id q0

)
. (3.48)

The matrix T −1
θ

depends on the time and therefore the product rule applies

vabc = L

(
d

dt
T −1
θ

)
id q0 +LT −1

θ

d

dt
id q0. (3.49)

The direct computation of the derivative leads to

d

dt
T −1
θ =−T −1

θ W (3.50)

with

W =




0 d
dt θ 0

− d
dt θ 0 0
0 0 0


 . (3.51)

By substitution, we obtain

vabc =−LT −1
θ Wid q0 +LT −1

θ

d

dt
id q0. (3.52)

A multiplication by Tθ from the left gives the model for an inductor in d q0 signals

d

dt
id q0 =Wid q0 +

1

L
vd q0. (3.53)
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Since we assume a balanced operation, this model can be reduced further to

d

dt
id =ωiq + 1

L
vd ,

d

dt
iq =−ωid + 1

L
vq .

(3.54)

In a similar way, the model for a capacitor can be deduced

d

dt
vd q0 =Wvd q0 +

1

C
id q0 (3.55)

with the explicit expression for balanced networks

d

dt
vd =ωvq + 1

C
id ,

d

dt
vq =−ωvd + 1

C
iq .

(3.56)

3.2.3 Comparison of Phasor and d q0-representation

In this section we investigate the relation between the the phasor and the d q0-
representation. The active and reactive power can be identified with direct and
quadrature component in quasi-static operation. For a constant phase angle and
magnitude, the d q0-signal is constant

vd q0 =




Vpk cosφ
Vpk sinφ

0


 . (3.57)

This allows to represent the phasor by the direct and quadrature component of the
d q0-signal

V = Vpkp
2

e jφ(t ) = Vpkp
2

(
cos(φ)+ j sin(φ)

)= 1p
2

(
vd + j vq

)
. (3.58)

In steady-state the direct and quadrature component refers to real and imaginary
part of the phasor

vd =
p

2ℜ(V ),

vq =
p

2ℑ(V ).
(3.59)
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Hence, we can use the d q0-quantities to express the active and reactive power of
phasors by

P =ℜ(V I∗) = 1

2

(
vd id + vq iq

)
,

Q =ℑ(V I∗) = 1

2

(
vq id − vd iq

)
.

(3.60)

The absolute value and the angle can be expressed by

|V |2 =ℜ(V )2 +ℑ(V )2 = 1

2

(
v2

d + v2
q

)
, (3.61)

φ= atan2(vq , vd ). (3.62)

This shows that we can maintain the definition of active and reactive power and they
match the active and reactive power of the phasor in steady state. This can be seen
as an extension of the phasor to non steady state signals. In a similar way, the models
for electrical components coincide in steady state operation. The phasor model of
an inductor is

V =ωL j I .

Since we can identify the real and imaginary part of the phasors with the direct and
quadrature components of the d q0-signals, this leads to

vd + j vq =ωL j
(
id + j iq

)
. (3.63)

The real and imaginary parts of this equation are

vd =−ωLiq ,

vq =ωLid .
(3.64)

In steady-state operation, i.e. did
dt = diq

dt = 0, this expression matches the d q0-model
of an inductor

d

dt
id =ωiq + 1

L
vd ,

d

dt
iq =−ωid + 1

L
vq .

(3.65)
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In summary, the d q0-representation is capable to fully describe the transient behav-
ior of an electrical network and in quasi-static operation, all phasors can be read out
directly. In addition, it maps 3-phase sinusoidal signals to constants at the nominal
frequency, which allows to compute the power balances conveniently.

3.3 Microgrid Components

Microgrids (MGs) are characterized by a wide variety of connected components.
However, we will focus on microgrids with included RES and restrict ourselves to
their most fundamental components. We consider MGs with the following compo-
nents:

Generators are part of most MGs, because they are able to provide electrical energy
reliable. They are independent of the current weather conditions and are able
to react to load changes very fast. Because of their controllability, they can
be used to stabilize the grid after disturbances. However, they are powered by
fuel, which creates costs and greenhouse gases. Therefore, it is desirable to use
the generators as little as possible. Here we focus on synchronous generators
governed by diesel engines.

Storage Systems are used to store surplus energy generated for example by RES. In
MGs the energy is typically stored in batteries, because they allow a flexible
operation. However, there are many storage technologies available [109].

Loads are passive network components and represent power consumers. They are
not controllable and affected by sudden changes. PV system and other RES are
usually represented as negative loads.

3.3.1 Diesel Generators

Diesel generators are composed of a diesel engine and a SG connected by a shaft.
The diesel engine generates mechanical power by a torque which drives the shaft.
The purpose of the SG is to convert the mechanical power to electrical power. In this
section, we focus on the modeling of the SG. The essentials of modeling of electrical
machines can be found in [60] in great detail. However, we present only the basic
ideas and follow [67].
The general structure of a SG is depicted in Figure 3.3. The main mechanical compo-
nents are the stator and the rotor. The rotor is rotating inside the stator, driven by the
shaft, and is equipped with the so-called excitation winding. The excitation winding
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Figure 3.3: Sketch of synchronous generator

is usually connected to a DC power source and currents in the winding create a mag-
netic field which is rotating with the rotor. Depending on the size of the generator,
the magnetic field may have multiple pole pairs. We focus on generators with just a
single pole pair, but the extension to multiple pole pairs is straightforward.

The stator holds three windings, the armature windings, which are connected to the
terminals of the generator. The rotating magnetic field induces currents in the stator
windings. This type of generator is called synchronous because the currents at the
terminals of the generator are rotating always with the same frequency as the rotor.

The SG can be controlled by the excitation current i f and the mechanical torque Tm .
The resulting frequencyω and voltage magnitude V depend nonlinearly on these pa-
rameters. However, in normal operation, the voltage magnitude is mainly related to
the excitation current and the electrical energy to the mechanical torque. Therefore,
they are often controlled in two separate control loops. The Automatic Voltage Reg-
ulator (AVR) controls excitation current and uses the terminal voltage magnitude as
feedback signal. The mechanical torque is controlled by the governor for the diesel
engine and uses the frequency as feedback. Both controllers aim at tracking refer-
ence values for frequency ωref and voltage V ref. The signal flow of the SG and its
controllers is depicted in Figure 3.3.

We will first describe the mechanical and afterwards the electrical equations of the
generator. Since the electromagnetic field is always synchronous with the rotor, we
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will transform the electrical equations in rotating d q0-reference frame, which is ro-
tating with the angular velocity of the rotor ω.

Mechanical Equations

The fundamental mechanical dynamics of a SG is described by the swing equation

d

dt
ω= 1

J
(Tm −Te ) (3.66)

with the mechanical torque Tm , electrical torque Te and the angular velocity ω. The
physical mass defines the total moment of inertia J of the generator. According to
the swing equation (3.66), a difference between the mechanical and electrical torque
leads to an acceleration or deceleration of the rotor. A high moment of inertia lowers
the effect of a given mismatch between mechanical and electrical torque. Therefore
bigger generators with a higher physical mass are more resilient against disturbances
in the network and provide a more stable frequency.
The relations between torque and power are given by Pm =ωTm and Pe =ωTe . With
K = 1

Jωs
, this leads to

d

dt
ω= K

ωs

ω
(Pm −Pe ). (3.67)

where ωs is the nominal grid frequency.
The mechanical torque Tm is created by the diesel engine. Usually, it is equipped
with a primary control mechanism in order to stabilize the generator frequency at
the network frequency. In numerical experiments in Section 6, the IEEE DEGOV1
[83] is used to represent the diesel engine as well as the frequency governor. How-
ever, in many situations it is sufficient, to represent the engine by a droop control
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law

Tm = 1

ωs

(
3P ref − 1

D
(ω−ωs)

)
(3.68)

in order to steer the frequency to the nominal operating point ωs . The nominal load
of the generator is given by P ref and D is a damping parameter. This leads to the
simplified equation for the frequency

d

dt
ω= K

(
3P ref −ωsTe −

1

D
(ω−ωs)

)
. (3.69)

Here P ref and ωs are external parameters, while ω and Te are dynamic states of the
system.

Electrical Equations

The main mechanism to transform mechanical to electrical energy is the inductive
coupling between the rotor and stator windings. A DC power source is connected
to the excitation winding and creates a magnetic field, which is carried by the rotor.
The magnetic field is flowing through the iron parts of the generator and creates a
flux linkage between the stator and the rotor windings. Due to the rotational move-
ment of the rotor, the flux linkage changes periodically and a voltage at the terminals
of stator windings is induced. The windings in the stator are designed such that the
resulting voltages approximate a sine curve with a period proportional to the rota-
tional speed. The electrical energy provided by the generator causes an electrical
torque Te , which decelerates the rotor.

AC in the armature windings is also causing constantly changing electromagnetic
fields and currents are induced mutually. The electromagnetic flux between the sta-
tor and rotor windings depends on the physical properties of the stator and rotor.
Usually, the mechanical parts are composed of iron layers, in order to carry the elec-
tromagnetic field efficiently and to prevent eddy currents. Mutual inductances be-
tween the rotor and stator windings are nonlinear dependent on the current rotor
angle θ, because the stator is not symmetrical and often salient rotors are used. To
consider the geometry of the SG and the electromagnetic dynamics exactly, compre-
hensive simulations based on partial differential equations are required. In order to
get simplified model equations, we make the following assumptions.
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Assumption 3.2
1. The SG is a magneto-quasi-static device and the temporal dynamics of the

magnetic field are neglected. This assumption is justified since the rotational
speed is significantly slower than the dynamics of the magnetic field.

2. We do not consider magnetic saturation, because in normal operating condi-
tions the material is not saturated and the permeability is almost constant.

3. We assume that the inductances are composed of a constant term and cosine
term varying with double angular velocity, i.e. they depend on 2θ. This as-
sumption is motivated by the symmetrical form of salient rotors in many elec-
trical machines.

The three stator windings are symmetrically shifted by 2
3π in order to create a bal-

anced terminal voltage and this carries over to the inductances. We denote the arma-
ture windings by a,b,c and the excitation winding by f . This allows us to represent
the mutual inductances of the SG in the form

l =




laa lab lac la f

lab lbb lbc lb f

lac lbc lcc lc f

la f lb f lc f l f f


 (3.70)

where the inductances between the stotor winding are defined by

laa = Laa +Lg 2 cos(2θ) , lab = Lab +Lg 2 cos

(
2θ− 3

2
π

)
,

lbb = Laa +Lg 2 cos

(
2θ+ 3

2
π

)
, lbc = Lab +Lg 2 cos(2θ) ,

lcc = Laa +Lg 2 cos

(
2θ− 3

2
π

)
, lac = Lab +Lg 2 cos

(
2θ+ 3

2
π

)
(3.71)

and the mutual inductances between the rotor and stator by

la f = La f cos(2θ) , lb f = La f cos

(
2θ− 3

2
π

)
,

lc f = La f cos

(
2θ+ 3

2
π

)
, l f f = L f f .

(3.72)

The parameters Laa ,Lab ,Lg 2,La f ,L f f are constant and defined by the material and
geometry of the SG.
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Using these inductances, the relationship between the flux linkages of the windings
λabc ,λ f and the currents iabc , i f is given by

[
λabc

λ f

]
= l

[−iabc

i f

]
. (3.73)

The negative stator currents are following the convention, to define currents flowing
out of the generator positive. Following Faraday’s law of induction, the voltages are
given by the derivative of the flux linkage. Considering the internal resistance of the
armature windings R and excitation winding R f , the terminal voltages are obtained
by

va =−Ria +
d

dt
λa , vb =−Rib +

d

dt
λb ,

vc =−Ric +
d

dt
λc , v f = R f i f +

d

dt
λ f .

(3.74)

Since the inductances are defined in a static coordination system, they are varying
in a sinusoidal fashion with the double angular velocity and they are dependent on
2θ. However, in a reference frame, which is rotating with the rotor, they are constant.
Therefore, we transform equation (3.73) in d q0 coordinates

[
λd q0

λ f

]
=

[
Tθ

1

]
l

[
T −1
θ

1

][−id q0

i f

]
. (3.75)

The transformed inductance matrix has the form

[
Tθ

1

]
l

[
T −1
θ

1

]
=




Ld La f

Lq

L0
3
2 La f L f f


 (3.76)

with constant d q0 inductances

Ld = Laa −Lab +
3

2
Lg 2,

Lq = Laa −Lab −
3

2
Lg 2,

L0 = Laa +2Lab .

(3.77)
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In the d q0 reference frame, the flux depends linearly on the currents and is indepen-
dent of the current rotor angle

λd =−Ld id +La f i f , λq =−Lq iq ,

λ0 =−L0i0, λ f =−3

2
La f id +L f f i f .

(3.78)

This allows us to transform equation (3.74) in d q0 quantities

vd =−Rid + d

dt
λd −ωλq , vq =−Riq + d

dt
λq +ωλd ,

v0 =−Ri0 +
d

dt
λ0, v f = R f i f +

d

dt
λ f .

(3.79)

The electrical torque is obtained by the formula for the electromagnetic force for the
armature windings. Transformed to d q0-quantities, this leads to

Te =
3

2

(
λd iq −λq id

)
. (3.80)

The transferred electrical power can be derived by multiplying the torque with the
angular velocity

Pe =
3

2
ω

(
λd iq −λq id

)
. (3.81)

Equations (3.69), (3.80) and (3.79) describe the complete dynamics of a SG as a DAE.
The set of differential equations is given by

d

dt
θ =ω,

d

dt
ω= K

(
3P ref −ωsTe −

1

D
(ω−ωs)

)
,

d

dt
λd = vd +Rid +ωλq ,

d

dt
λq = vq +Riq −ωλd ,

d

dt
λ0 = v0 +Ri0,

d

dt
λ f = v f −R f i f

(3.82)
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and the algebraic equations are

0 = 3

2

(
λd iq −λq id

)−Te ,

0 =−Ld id +La f i f −λd ,

0 =−Lq iq −λq ,

0 =−L0i0 −λ0,

0 =−3

2
La f id +L f f i f −λ f .

(3.83)

The differential states are θ,ω,λd q0,λ f and the algebraic states are Te , id q0, i f . The
voltages vd q0 and v f are external inputs and depend on the connected network. The
nominal power is controlled by P ref.
The differential equation system is specified in a rotating d q0-reference frame, which
is rotating with the angular velocity of the rotor. This frame has not necessarily the
same angular velocity as the d q0-reference frame of the connected grid. In order to
make them compatible, the reference frame of the generator needs to be converted.

Remark 3.2
The DAE model (3.82) and (3.83) will represent a component connected to a bus of
a MG. The equations will be part of a holistic dynamical equation system, which
represents the network as well as the connected components. Thereby, the exter-
nal voltages vd q0 will be states of the network model and will be determined by the
network dynamics.

Extensions and Simplifcations

The SG model presented above is a dynamic model that is suitable to describe fast
transients and high-frequency effects. However, depending on the use case, there
are many extensions and simplifications available [60, 67].

• After a sudden change in load, the power angle of the generator is adjusted dy-
namically. However, the transition is not smooth but instead the rotor is swing-
ing around the new power angle. To prevent these oscillations, it is common
to include so-called damper windings in the rotor. Similar to the principle of
induction machines, an current gets induced if the frequency of the rotor dif-
fers from the net frequency. This leads to a torque that damps the oscillations.
In addition, these windings help to start the generator. In the model, these
winding are represented by two additional differential states, usually denoted
by λ1d and λ1q .
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• In SGs with many pole pairs, the rotor is often almost perfectly round. In this
case, it is a reasonable assumption that the inductances are constant.

• In balanced operation, the zero components are i0, v0 are zero. Therefore the
corresponding differential equations can be omitted.

• With the additional assumption that the excitation current is constant, the SG
can be represented in steady state by an equivalent circuit.

• The model assumes a droop control for the mechanical torque and the excita-
tion voltage is an external input. However, there are different models available
to describe the behavior of the control mechanism and they can be incorpo-
rated in the model equations.

• In normal operation, the derivative of the flux linkage d
dt λd , d

dt λq is small and
can be neglected. With this assumption λd ,λq turn into algebraic states.

3.3.2 Inverters

Many MG components provide electrical energy either as DC or as AC with a differ-
ent frequency. In order to connect these components, the electrical energy needs
to be transformed to AC at grid frequency. An inverter is a power electronic device
that changes DC to AC and is used as an interface to the connected grid on most
components. In this section, we will focus on the inverter design of batteries. They
play a crucial role in MG control because they not only have the possibility to store
energy, but they can also be controlled in a very flexible way. On a physical level
they provide DC and for the connection to the grid a three-phase DC to AC inverter
is needed. In addition, the inverter is used to control the energy flow of the battery.
PV systems also provide DC on a physical level and are interfaced by an inverter,
but they are always operated at maximal load, because the electrical energy comes
without costs. Therefore, they can be represented as passive negative load and we
will consider them in the next section. A detailed description of control methods
for inverters in AC power grids can be found in [96]. However, we will focus on the
fundamental concepts and follow the lines of [67].
In Figure 3.5 the basic structure of a three phase DC to AC inverter is depicted. De-
pending on the connected device on the DC side, the voltage may be varying. There-
fore, a DC-link capacitor is used to provide a more stable DC voltage. However, we
assume that the DC voltage is constant. The main part is the inverter stage, which
is a circuit of transistors. Figure 3.6 shows a sketch of three-phase H-bridge inverter.
The layout of the circuit allows to forward the input voltage Vdc to any pair of output
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Figure 3.6: Schematic of a three phase DC to AC H-bridge inverter.

wires and allows to invert its polarity. In addition, the voltage can be switched on or
off. This leads to a square voltage uabc at the terminals with the magnitude Vdc .

The transistors are controlled by Pulse Width Modulation (PWM) at a high frequency,
usually in the range of kHz. The PWM aims at creating a periodic square wave with
a low harmonic distortion. There are a variety PWM methods, circuit topologies and
filter configurations available suitable for different use cases. Since the switching
operates on significantly higher frequency than the net frequency, it is a common
assumption that the PWM unit is able to provide the setpoints for voltage immedi-
ately and that the inverter acts as an ideal voltage source.

The output of the inverter stage is connected to a low pass filter. In Figure 3.5 a typ-
ical LC filter configuration is depicted, but other filters are available. The low-pass
filter is responsible to eliminate the high order harmonics of uabc to get a sinusoidal
output voltage vabc .
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PWM is switching the transistors at a high frequency. The duty cycle dabc ∈ [−1,1]3

is the proportion of time when the transistors are open and it is the direct control
input of the inverter stage. Since the PWM frequency is significantly higher than the
net frequency, it is a common assumption that the voltage after the inverter stage is
directly controllable. With the duty cycle as control input, the voltage is

uabc =Vdc dabc . (3.84)

In contrast to traditional generators, inverters have no inertia and therefore they
have no physical feedback mechanism. They are able to provide voltage indepen-
dently of the connected grid and in order to be compatible, they need to be con-
trolled accordingly. Therefore, inverters are usually equipped with additional con-
trol loops. The voltage and the current at the terminals are measured constantly
and used as feedback signals. The control laws for inverter control are formulated
in d q0 quantities and therefore, the measurements iabc ,uabc need to be converted
before they can be used in the controller logic. The phase angle θ is provided ex-
ternally or computed from measurements. There are three basic control strategies:
grid-forming, grid-following and grid-supporting inverters.

Grid-forming inverters are controlled to deliver AC at a fixed frequency and with a
fixed voltage magnitude. Therefore, they are also called Voltage Source In-
verter (VSI). The active and reactive power are defined by the interaction with
the network. Typical applications of a grid forming inverters are small micro-
grids, where they define the net frequency. In PF calculations, they are usually
represented as the slack bus. However, they are unable to operate in parallel
with other grid forming inverters or generators. Because there is no feedback
mechanism, the frequency of multiple inverters will go out of synchronization
and this will lead to a high power transfer between the different inverters.

Grid-following inverters are controlled to provide active and reactive power. Fre-
quency and voltage are measured constantly and the output is adjusted ac-
cordingly. They can be represented as P-Q bus in PF calculations. Since they
adapt to the current frequency and voltage, they can not be operated without
a grid forming inverter or generator, which is defining the net frequency. In an
energized grid, multiple grid-following inverters can be operated in parallel.

Grid-supporting inverters are grid-forming inverters with an additional control loop.
The controller design mimics the behavior of a SG in order to promote a fair
load sharing and to stabilize frequency and voltage. This is achieved by a nega-
tive linear relationship between active power and frequency respectively volt-

50



MATHEMATICAL MODELING OF POWER SYSTEMS CHAPTER 3

voltage
control

current
control

d q0 trans-
formation

∫
d t

i ref
d q0

θ

ωref

v ref
d q0

dd q0
dabc

iabc

id q0

vabc
vd q0

Figure 3.7: Signal flow of a grid-forming inverter.

age magnitude and reactive power. Grid supporting inverters can be operated
alone as well as in parallel to other generators or inverters. In PF studies, they
have no direct representation.

3.3.3 Grid-Forming Inverter

The grid-forming inverter aims at providing a terminal voltage v ref
abc with constant

RMS value E ref at a fixed frequencyωref. Using the d q0-transformation with the cur-
rent phase angle θ(t ) =ωreft , the control law

dd =V −1
dc uref

d , dq =V −1
dc uref

q , d0 = 0 (3.85)

allows to control the internal voltage directly. But to control the voltage vabc at the
terminal of the inverter, the dynamics of the filter and and the conditions at the con-
nected grid need to be considered. Figure 3.7 shows the signal flow of a practical
inverter design with two control loops. An inner feedback loop controls the current
and an outer control loop controls the terminal voltages.

The purpose of current control is to steer the terminal currents to the reference value
i ref

d q0. It receives as feedback signal the output currents id q0 and voltage vd q0 and it

is controlled by reference values for current i ref
d q0 and frequency ωref. The terminal
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currents id q0 are governed by the inductor dynamics

d

dt
id =ωrefiq + 1

L
(ud − vd ),

d

dt
iq =−ωrefid + 1

L
(uq − vq ).

(3.86)

The current control law aims at eliminating the cross terms in equation (3.86) and
implementing a Proportional-Integral (PI) control law to steer the current to the de-
sired setpoints

dd (t ) =V −1
dc

(
vd (t )−ωrefLiq (t )+kp (i ref

d (t )− id (t ))+ki

∫ t

0
(i ref

d (τ)− id (τ))dτ

)
,

dq (t ) =V −1
dc

(
vq (t )−ωrefLid (t )+kp (i ref

q (t )− iq (t ))+ki

∫ t

0
(i ref

q (τ)− iq (τ))dτ

)
.

(3.87)

Replacing of ud and uq in Equation (3.86) by Equation (3.87) leads to the closed loop
dynamics

L
d

dt
id = kp (i ref

d (t )− id (t ))+ki

∫ t

0
(i ref

d (τ)− id (τ))dτ,

L
d

dt
iq = kp (i ref

q (t )− iq (t ))+ki

∫ t

0
(i ref

q (τ)− iq (τ))dτ.

(3.88)

Since the cross-terms are eliminated, the system consists of two decoupled PI con-
trol laws which steer the current to the desired reference value. The proportional
part of the control law (3.88) is tuned by the parameter kp ∈ R and the integral part
by ki ∈R.

The voltage is controlled in an outer feedback loop and receives the terminal volt-
age vd q0 as an input signal. The reference value for the voltage v ref

d q0 is given as an

external input. A common choice is to set v ref
d =

p
2E ref and v ref

q = v ref
0 = 0 since the

control logic aims at a constant voltage. Here, E ref refers to the voltage reference
given as RMS value. The basic principle of the outer control loop is similar to the
inner control loop. The dynamics of the capacitor in d q0 quantities are

d

dt
vd =ωrefvq + 1

C

(
i ref

d − vd

R

)
,

d

dt
vq =−ωrefvd + 1

C

(
i ref

q − vq

R

) (3.89)
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Figure 3.8: Signal flow of a grid-following inverter.

for a resistive load R. The control law

i ref
d = vd (t )

R
−ωrefC vq (t )+kp,v (v ref

d (t )− vd (t ))+ki ,v

∫ t

0
(v ref

d (τ)− vd (τ))dτ,

i ref
q = vq (t )

R
+ωrefC vd (t )+kp,v (v ref

q (t )− vq (t ))+ki ,v

∫ t

0
(v ref

q (τ)− vq (τ))dτ

(3.90)

removes cross-coupling of the dynamics and allows a PI control of the voltage. Since
a grid-forming inverter with this control scheme is acting like a voltage source it is
also called VSI.

3.3.4 Grid-Following Inverter

Grid-following inverters are controlled as power sources. They provide active and
reactive power to an already energized grid. In contrast to the grid-forming inverter,
the frequency and phase angle is not directly controlled. Instead the phase angle
needs to be computed from measurements. A Phase Locked Loop (PLL) computes
the frequency by zeroing the quadrature-axis component of the voltage signal vd q0.
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This is achieved by a PI control law for the frequency

d

dt
ω(t ) = kp vq +ki

∫ t

0
vq (τ)dτ,

d

dt
θ(t ) =ω(t ).

(3.91)

Similar to the grid forming inverter, the grid-following inverter is organized in two
control loops. The inner control uses the same logic to control the currents as the
grid forming inverter.

The outer control loop is responsible to perform the power calculations. It is con-
trolled by reference values for active and reactive power P ref,Qref and receives the
voltage signal vd q0 as feedback. The output signal is the current reference value i ref

d q0,
which is used in the inner control loop. The relation between power and current on
a single phase is given by

P ref = 1

2

(
vd i ref

d + vq i ref
q

)
,

Qref = 1

2

(
vq i ref

d − vd i ref
q

)
.

(3.92)

Solving this equation for the target current i ref
d q0 leads to

i ref
d = 2

v2
d + v2

q

(
P refvd +Qrefvq

)
,

i ref
q = 2

v2
d + v2

q

(
P refvq −Qrefvd

)
.

(3.93)

In steady state it is i ref
d q0 = id q0 and the actual provided power matches the reference

values.

A typical application of a grid-following inverter is the interface of a PV-system. Here
the reference values P ref,Qref are determined by the Maximal Power Point Tracking
algorithm of the PV controller, which aims at the maximal utilization of the PV panels
[31, 98]. In this case, the power output is not controlled externally and the inverter
behaves like a negative passive P-Q load.

3.3.5 Grid-Supporting Inverters

Grid-supporting inverters are a combination of grid-following and grid-following in-
verters [95]. They are build on either a grid-following or a grid-following inverter
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Figure 3.9: Signal flow of a grid-supporting inverter.

and proportional control laws are used to mimic the stabilizing behavior of a SG. In
nominal operation, their purpose is to follow reference values for active and reactive
power. During a disturbance, they deviate from the reference values in order to sta-
bilize the grid. Multiple grid-supporting inverters can be operated in parallel and it
is possible to use them to energize the grid.

Although there are multiple designs available, we consider a grid supporting inverter,
which is as a grid forming inverter with an additional control mechanism

ω∗ =ωs +D
(
P ref −P

)
, (3.94a)

u∗
d =

p
2
(
E ref +kq (Qref −Q)

)
(3.94b)

to control the frequency and the voltage magnitude. Here, ωs denotes the nominal
frequency of the grid and E ref denotes the RMS reference value for the voltage. The
first control law (3.94a) causes an increased power angle, if the grid frequency ωg

is below the nominal frequency. This leads to an increased active power injection
in order to steer the frequency back to the nominal value. The second control law
(3.94b) provides reactive power to maintain the desired voltage magnitude at the
terminal of the inverter.

The control laws (3.94) lead to a behavior that is combination of the grid-forming
and grid-following inverters. For D = 0 the frequency of the inverter is constant
and it acts like a grid-forming inverter. If D →∞, the active power matches always
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the reference value, which mimics a grid-following inverter. The voltage control law
acts similarly. If kq = 0, the resulting voltage is constant like a grid forming-inverter
and like grid-following inverters, the reactive power matches the reference value for
kq →∞. The tuning of the parameters kq and D defines the exact behavior.

Derivation of Control Laws for Grid-Supporting Inverters

To give a deeper insight into the mechanics of grid-supporting inverters and the im-
pact of the control laws (3.94), we will derive these laws from a simplified model.
Furthermore, we will present a full state-space model including the control laws and
show the behavior described above numerical experiments. Thereby, we will show,
how a grid-supporting inverter is reacting to changes in the reference values as well
as changes of the grid frequency.
In order to derive the control laws, we consider an inverter connected to an infinite
bus in quasi-static operation as depicted in Figure 3.10. The physical properties of
the connection and the filter are given by R and L. The voltage phasor at the con-
nection to the grid is fixed to V = 1. The magnitude Ũ and the angle offset φ of the
inverter voltage

U = Ũ e jφ (3.95)

can be controlled directly. The current injected to the grid is given by

I = 1

R + j X
(U −V ) = 1

R + j X
(Ũ cos(φ)+ jŨ sin(φ)−1)

= R

R2 +X 2

(
Ũ cos(φ)−1

)+ X

R2 +X 2 Ũ sin(φ)

+ j

(
R

R2 +X 2 Ũ sin(φ)− X

R2 +X 2 (Ũ cos(φ)−1)

)
(3.96)

with X =ωL. This leads to the active power injection to the grid

P =ℜ(S) =ℜ(V I∗) = R

R2 +X 2

(
Ũ cos(φ)−1

)+ X

R2 +X 2 Ũ sin(φ). (3.97)

With the assumption that the resistive part of the transmission line is low and that
the inverter is operated with φ close to zero, the active power can be approximated
by

P ≈ Ũ

X
φ. (3.98)
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Figure 3.10: Steady-state model of an inverter connected to an infinite bus.

This shows a direct relation between the angle offset φ and the emitted active power
P and motivates the droop control law (3.94a). In a similar way the reactive power
can be approximated by

Q ≈ 1

X
(Ũ −1). (3.99)

This shows that the reactive power can be controlled by the magnitude of the inverter
voltage. The droop control law (3.94b) is using this relation to steer the active power
to the nominal operating point.

In a fully dynamic scenario, the grid frequency is not constant but instead changes
over time. We represent the grid frequency by the time depend function ωg (t ). In
addition, the reference values for active and reactive power P ref and Qref are not con-
stant, but may be changed by a controller on a higher control level. The full dynamic
model of a grid-supporting inverter in the d q0-reference frame of the connected grid
is given by

d

dt
θ =ω∗,

d

dt
id =ωg (t )iq + 1

L
(ud −Rid − vd ),

d

dt
iq =−ωg (t )id + 1

L
(uq −Riq − vq )

(3.100)

together with the droop control laws

ω∗ =ωs +D
(
P ref −P

)
,

u∗
d =

p
2
(
E ref +kq (Qref −Q)

)
,

(3.101)
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where ud and uq is the internal inverter voltage in the grid d q0-reference frame. It
is computed by

ud = u∗
d cos(φ),

uq = u∗
d sin(φ)

(3.102)

with the offset φ(t ) = θ(t )− ∫ t
0 ωg (τ)dτ. The active and reactive power is calculated

from measurements on the grid side

P = 2

3

(
id vd + iq vq

)
,

Q = 2

3

(
id vq − iq vd

)
.

(3.103)

We demonstrate the effect of the droop control laws by numerical simulations. We
consider a scenario, where the power reference P ref is changed and the grid fre-
quency ωg is disturbed in order to show the reaction of the inverter. We assume that
the reactive power is not controlled and the voltage magnitude is fixed to ud∗= 1. At
the beginning, the grid is operated at the nominal frequencyωs , the active power ref-
erence P ref is zero and the inverter is in steady-state. After 1s the power reference is
set to P ref = 0.1 from a higher control level and at t = 5s, the grid frequency drops by
1% from 50Hz to 49.5Hz. A drop in frequency usually indicates a mismatch between
the consumed and the provided active power in the grid.

In Figure 3.11 simulation results for a grid-supporting inverter connected to an infi-
nite bus are shown. In the beginning, the complete system is in steady-state and no
power is injected to the network. The change of the power reference at t = 1s leads to
an instantaneous jump of the internal inverter frequency and the offset φ increases.
As a result, more active power is injected until the reference value is reached and the
inverter frequency matches the grid frequency. At t = 5s, the grid frequency drops
and the internal frequency is higher than the grid frequency, i.e. ω∗ >ωg . Therefore,
the offsetφ and the active power injection increases above the given reference value.
The increased power input counteracts the frequency deficiency and helps to steer
back the frequency to nominal value. The amount of additional active power is de-
fined by the droop parameter D and needs to be adjusted to the size of the inverter.

3.3.6 Loads

Consumers of electrical energy in a network are represented as passive loads of ac-
tive and reactive power. They are not controllable and they behave unpredictable on
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Figure 3.11: Simulation results of a grid-supporting inverter connected to an infinite bus.
The blue trajectories show the states of the inverter model and the red plot indicates the
active power reference respectively the grid frequency. At the nominal frequency, the inverter
follows the provided reference values. At a reduced frequency, it provides additional power
to stabilize the grid. The parameters are R = 0.1, L = 0.01 and D = 10.
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a short time scale. Usually, they are modeled as a time series of passive parameters
P and Q. However, a load prediction may be available on longer time scales.
PV systems and other RES are typically interfaced by grid following inverters. Since
they provide active and reactive power without costs, they are operated at their max-
imal capacity most of the time. Therefore, they act as a passive power consumer with
negative load. The power input is dependent on the current weather conditions and
is therefore volatile. On longer time scales, the performance can be estimated by a
weather forecast. In summary, the PV systems are represented in the same way as
loads.
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Chapter 4

Nonlinear Model Predictive Control

The control of processes is a fundamental challenge that occurs in many areas and
control engineering is a wide field of research. Typically, a process is understood
as a system with control inputs and output signals which represent measurements.
While slow and predictable processes can be controlled by predefined control input,
most processes in the real world are subject to disturbances and their behavior is not
exactly predictable. Therefore, it is necessary to react to unforeseen disturbances by
a suitable feedback mechanism. Control concepts which include a closed feedback
loop are referred to as online control.

One of the most widely used approaches in process control are proportional-integral-
derivative (PID) controllers. The basic idea is to constantly measure a process vari-
able ξ(t ) ∈ R and to calculate the distance to a predefined setpoint ξ̄ ∈ R. Feedback
control q(t ) = q̄ +∆q(t ) ∈R is then generated according to the control law

∆q(t ) = Kp
(
ξ(t )− ξ̄)+Ki

∫ t

0

(
ξ(t )− ξ̄)dτ+Kd

d

dt

(
ξ(t )− ξ̄) (4.1)

with the tuning parameters Kp ,Ki ,Kd ∈R. However, the controller is only able to re-
act to instantaneous measurements and is agnostic towards the future behavior of
the process. For processes with nonlinear dynamics, multiple control inputs, and
process states, this approach reaches its boundaries. In order to achieve the desired
process behavior, it is often necessary to build up complex control structures and
this approach is very sensitive to the tuning of parameters. In addition, it is not pos-
sible to incorporate operational limits on the process variables. A comprehensive
introduction to PID control can be found in [108].

Model Predictive Control (MPC) is an approach to overcome the limitations of PID
control by using a dynamic model of the process. This allows to predict the reaction
of the process to control actions for a certain time horizon. Feedback is generated
by repeatedly solving an optimization problem. MPC is not limited to the tracking of
setpoints, but the formulation of an objective function allows more general control
targets. In addition, path constraints and bounds on the states as well as the controls
can be incorporated. Overall, MPC is more powerful than PID control. However, the
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downside of MPC is that a model of the process is necessary in order to predict its
future behavior. Depending on the process, intensive research may be necessary
to understand the dynamics, build a suitable model, and calibrate the parameters.
Furthermore, the computational effort of MPC is significantly higher than for PID
control.
MPC is not a single algorithm, but a general class of control algorithms. A wide range
of models, objective functions, and operational constraints can be treated by MPC.
In addition, many specialized solution approaches are proposed. However, we fo-
cus on MPC with Differential Algebraic Equation (DAE) models. The goal of this
chapter is to introduce the fundamentals of optimal control and MPC. Therefore, we
define a general class of parametric Optimal Control Problems (OCPs) and we de-
scribe multiple shooting as a discretization method. We summarize the Real-Time
Iteration (RTI) as a modern MPC scheme, which aims at high sampling frequencies
and low feedback delays. Even though, the RTI is significantly faster than classi-
cal MPC approaches, it is not able to meet the real-time requirement of secondary
Microgrid (MG) control. We use the RTI as a starting point for the development of a
novel MPC scheme in Chapter 5. The new scheme is based on the Multi-Level Iter-
ation (MLI) and is able to give feedback with significantly higher feedback rates. In
contrast to PID controller, it is able to respect operational bounds.
A comprehensive overview of MPC and its theoretical background can be found in
[94] and a review about the historical development in [64]. An introduction from
the perspective of linear MPC is given in [42]. In this chapter, we focus on the RTI,
which was originally introduced in [24]. It is an established technique with many
successful applications, for example in process control [26, 35]. In addition, many
extensions were proposed to more specialized use cases, like the control of processes
with integer decision variables [57] or uncertainties [65].

4.1 Principle of Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is an established approach to control
dynamic processes online. The main idea of NMPC is to generate feedback by re-
peatedly solving an OCP. The process time is divided by an equidistant sampling
grid t0, t1, · · · with a fixed sampling time ∆t . On every sampling point tk , the current
process state ξk ∈ Rnx is estimated or measured. Based on the current state, a para-
metric OCP on a finite time horizon [tk , tk +T ] with a length T ≥∆t is solved in order
to compute a control answer uξk ∈ Rnu , which is applied in the interval [tk , tk+1]. In
simulations, we have two components which are interacting with each other. The
process represents the reality and constantly provides measurements. The controller

62



NONLINEAR MODEL PREDICTIVE CONTROL CHAPTER 4

tk

states/control

time

ξk

tk−1 tk+1 tk +T

uξk

past now
future

Figure 4.1: Idealized MPC process. The state is depicted in red, the control in blue. At time
tk , the controller receives the current state ξk and computes an optimal feedback control uξk

on the prediction horizon [tk , tk +T ].
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Figure 4.2: Signal flow of MPC algorithm.

uses these measurements to compute a feedback signal in order to react to distur-
bances. The principle of NMPC is shown in Figure 4.1 and Figure 4.2 depicts the
basic signal flow of a closed loop feedback control setup. The core components of
every MPC algorithm are the process model and the parametric OCP, which we will
discuss in the following sections.

In many real world applications, the system state is not directly observable. Only a
subset of the states may be directly or indirectly measurable, and measurement er-
rors may occur. Therefore, a state estimator is often necessary as a third component.
However, in this section, we assume that the state is completely available with no
measurement errors. Algorithms for state estimation will be discussed in Section 7.
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4.2 Process Model

The key component of NMPC is a model that predicts the behavior of the process
in the future depending on its current state. In this thesis, we focus on DAE models
on a time interval [t0, t f ]. The state of the process is described by differential states
x : [t0, t f ] →Rnx and algebraic states z : [t0, t f ] →Rnz . The process is controlled by an
external control function u : [t0, t f ] →Rnu . The model is given by

dx

dt
(t ) = f (x(t ), z(t ),u(t )), (4.2a)

0 = g (x(t ), z(t ),u(t )), (4.2b)

x(t0) = x0 (4.2c)

with an initial value x0 ∈Rnx as well as model functions f :Rnx ×Rnz ×Rnu →Rnx and
g :Rnx ×Rnz ×Rnu →Rnz .

Assumption 4.1
We assume that the model functions f and g are sufficiently smooth and that for a
given control function u and initial value x0, the solution of the system exists and is
unique. In addition, we assume that the DAE system is of index 1, i.e. the Jacobian
d

dz g (x(t ), z(t ),u(t )) is nonsingular.

Remark 4.1
The models of the MG components presented in Chapter 3 are given as DAEs. The
right hand side functions f and g will represent the network as well as the connected
components in numerical experiments.

4.2.1 Solution of DAE System

Throughout the thesis, we use the solution of DAE systems very often. Therefore, we
introduce the notation

x(t ; t0, x0, z0, q) : [t0, t f ] →Rnx , (4.3a)

z(t ; t0, x0, z0, q) : [t0, t f ] →Rnz (4.3b)

for the solution trajectory of the following modified DAE system

dx

dt
(t ) = f (x(t ), z(t ), q), (4.4a)

0 = g (x(t ), z(t ), q)−e
−α t−t0

t f −t0 g (x0, z0, q), (4.4b)
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x(t0) = x0, (4.4c)

z(t0) = z0. (4.4d)

with a constant control parameter q ∈Rnu , an initial algebraic state z0 and a damping
factor α ∈R>0.
In comparison to the original system (4.2), this system shows two modifications.
First, the algebraic equations (4.2b) are replaced by a relaxed algebraic equation

0 = g (x(t ), z(t ), q)−e
−α t−t0

t f −t0 g (x0, z0, q). (4.5)

By this relaxation, the initial algebraic states are treated as independent variables.
This allows to employ bounds directly on the algebraic states in DAE constrained
optimization problems. Details on this relaxation technique can be found, e.g., in
[66, 104].
Second, the control function u needs to have a finite-dimensional parametrization
in order to be tractable by numerical integrators. We assume that

u(t ) =ϕ(t , q) ∈Rnu , (4.6)

whereϕ(·, q) : [t0, t f ] →Rnu is a function with local support parametrized by the vec-
tor q ∈Rnϕ . Typically,ϕ(·, q) is a polynomial and q refers to its coefficients. However,
any DAE system with a finite-dimensional control parametrization can be reformu-
lated as a DAE system with constant control parametrization. To simplify the nota-
tion, we assume w.l.o.g. that the control function is constant. In the following, the
control function is given by

u(t ) = q ∈Rnu (4.7)

for t ∈ [t0, t f ] and we treat the control as parameters of the DAE system (4.4).

4.3 Parametric Optimal Control Problem

At every sampling point tk the current system state ξk is used to set up a parametric
OCP with a horizon length T

min
x(·),z(·),u(·)

Φ(x(·), z(·),u(·)) (4.8a)

s.t. ẋ(t ) = f (x(t ), z(t ),u(t )), 0 = g (x(t ), z(t ),u(t )), (4.8b)

x(tk ) = ξk , (4.8c)
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x lo ≤ x(t ) ≤ xup, z lo ≤ z(t ) ≤ zup, ulo ≤ u(t ) ≤ uup, (4.8d)

t ∈ [tk , tk +T ] . (4.8e)

The control function u : R→ Rnu is a measurable independent function. The defini-
tion of the DAE system (4.8b) – (4.8c) and the control function u refers to the process
model described in Section 4.2. The NMPC feedback signal applied in the interval
[tk , tk+1] is the first part of the solution uξk (t ) = u∗(t ).

Remark 4.2
In order to improve the readability, we restrict ourselves to problems with box con-
straints. However, the presented OCP can be extended, e.g., by path or interior point
constraints. A comprehensive description of a more general OCP can be found, e.g.,
in [113].

4.3.1 Objective Function

Typically, there is a distinction between tracking and economic MPC. In tracking
MPC the objective functions aims at steering the system state to a predefined ref-
erence trajectory. This is the direct approach to replace the PID control law (4.1).
Throughout this thesis, we will primarily deal with tracking MPC even though the
concepts are applicable to a wider problem class. In economic MPC, a more gen-
eral objective function is used to control the process optimally in an economic way.
The generic objective functional usually consists of an integral contribution, the La-
grange type objective with integrand φl , and an end–point contribution, the Mayer
objective φm :

Φ(x(·), z(·),u(·)) =
∫ tk+T

tk

φl (x(τ), z(τ),u(τ))dτ+φm(x(tk +T ), z(tk +T )). (4.9)

In the special case of tracking MPC, the objective function aims at minimizing the
distance to a predefined reference trajectory given by error functions e l and em :

Φ(x(·), z(·),u(·)) =
∫ tk+T

tk

‖e l (x(τ), z(τ),u(τ))‖2dτ+‖em(x(tk +T ), z(tk +T ))‖2.

(4.10)

4.3.2 Discretization

OCP (4.8) is formulated as a continuous optimization problem. Even though, the
solution of this problem gives theoretically optimal feedback, in practice it is not di-
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rectly applicable. In order to solve it by numerical methods, a discretization is neces-
sary. In addition, the controlled process may have a minimal sampling rate and can
only accept constant controls. Therefore, the process may have an intrinsic discrete
character and a discretization which reflects this properly is suitable. We use the di-
rect multiple shooting method [14] to transform the infinite-dimensional OCP into
a finite-dimensional, structured Nonlinear Programming Problem (NLP). Besides
multiple shooting, single shooting [99] and collocation [12] are the most common
discretization methods.

The main idea of multiple shooting is to divide the prediction horizon [tk , tk+T ] into
N ∈N shooting intervals

tk = τ0 < τ1 < ·· · < τN = tk +T. (4.11)

On every shooting interval, the control is w.l.o.g. assumed to be constant, i.e. u(t ) =
qi for t ∈ [τi ,τi+1]. Intermediate variables for the differential and algebraic states
sx

i , sz
i are introduced for every shooting node i = 0, · · · , N . The intermediate states

and controls are collected in sx = (sx
0 , · · · , sx

N ) ∈ R(N+1)nx , sz = (sz
0 , · · · , sz

N ) ∈ RN nz and
q = (q0, · · · , qN−1) ∈RN nu . The DAE system is separately solved on every shooting
interval and matching conditions are introduced to ensure a continuous solution
trajectory. The discretized optimization problem reads as

min
sx ,sz ,q

N∑
i=0

li (sx
i , sz

i , qi ) (4.12a)

s.t. 0 = x(τi+1;τi , sx
i , sz

i , qi )− sx
i+1, i = 0, · · · , N −1 (4.12b)

0 = g (sx
i , sz

i , qi ), i = 0, · · · , N (4.12c)

sx
0 = ξk , (4.12d)

x lo ≤ sx
i ≤ xup, z lo ≤ sz

i ≤ zup, i = 0, · · · , N (4.12e)

ulo ≤ qi ≤ uup. i = 0, · · · , N −1. (4.12f)

Here, the relaxed DAE formulation (4.4) is used. The consistency conditions (4.12c)
ensure that every feasible point refers to the solution of the original DAE system. The
individual summands of the objective function are given by

li (x, z, q) =
{∫ τi+1

τi
φl (x(τ;τi , x, z, q), z(τ;τi , x, z, q), q)dτ if i = 0, · · · , N −1

φm(x, z) if i = N

(4.13)
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Figure 4.3: Discretized MPC process. The controls are depicted in blue and the states in red.
Because of the discretization, the controls are constant in the sampling intervals. The solid
lines represent the past states and controls, while the dashed lines indicate the optimized
model predictions of the controller.

with x ∈Rnx , z ∈Rnz and q ∈Rnq . Figure 4.3 shows an exemplary MPC process using
a discretized OCP with constant controls.

In order to have a more compact notation, we summarize all optimization variables
in a vector v = (sx , sz , q) ∈Rnv . The equality constraints (4.12b)–(4.12d) are collected
in the function b(v) ∈Rnb in combination with a constant embedding matrix E . This
allows us to write the discretized OCP in the compact form

NLP(ξk ) = min
v∈Rnv

l (v) (4.14a)

s.t. b(v)+Eξk = 0, (4.14b)

v lo ≤ v ≤ vup. (4.14c)

Here, l is the discretized objective function (4.8a), the function b together with the
constant matrix E represent the discretized DAE system (4.8b) with the initial value
embedding constraint (4.8c), and v lo and vup are the lower and upper bounds on
states and controls.

4.4 Classical Nonlinear Model Predictive Control

Problem (4.14) is an NLP and can be treated by any suitable NLP solver. In the classi-
cal NMPC approach, a generic NLP method is used to solve Problem (4.14) in every
sampling interval and the solution is used to generate feedback. However, the down-
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side of this approach is the high computational effort. Almost all NLP solvers imple-
ment iterative methods, and many iterations may be necessary to achieve conver-
gence. In addition, every iteration includes the evaluation of the constraints (5.1b)
and thus the integration of the DAE system. For derivative-based algorithms, even
the corresponding sensitivities must be generated. Depending on the system dy-
namics, this is a computational expensive task as the DAE integrator may need a lot
of steps. Therefore, this approach is only feasible for applications with low sampling
rates. The classical approach is already described in [19, 20] and is the subject of
several textbooks [94, 44].

Furthermore, the OCP depends on the current measurement ξk and the calculation
can only begin when ξk is available. This leads to a feedback delay between the mea-
surement and the control answer, the so-called feedback time. In the meantime, the
process continues and the computed feedback control is the reaction to an outdated
system state. The classical NMPC approach includes the solution NLP (4.14) until
convergence at every sampling point and has therefore a long feedback time. This
renders the classical NMPC only feasible for slow processes.

Conventional NMPC uses a generic NLP solver and starts with a new initial guess
in every iteration. Similarities between subsequent NLPs are not considered. The
fundamental idea of the RTI is to exploit such similarities in order to speed up the
computation process. Since the RTI is build on Sequential Quadratic Programming
(SQP), we introduce it in the next section.

4.5 Sequential Quadratic Programming

SQP is a class of iterative methods to solve general inequality constrained NLPs. It
is the basis of the RTI, which will be discussed in the next section. A detailed de-
scription of SQP and its convergence properties can be found in [80], but we restrict
ourselves to a compact overview. The main idea is to find critical points of the La-
grange function of Problem (4.14),

L(v,λ,µ) = l (v)−λ> (b(v)+Eξk )− (µlo)>(v − v lo)− (µup)>(vup − v), (4.15)

where λ ∈ Rnb is the dual multiplier for the equality constraints (5.1b) and µ =
[µlo,µup] with µlo,µup ∈ Rnv

≥0 for the bounds (5.1c). Critical points of the Lagrange
function refer to primal-dual points (v,λ,µ), which satisfy the well-known Karush-
Kuhn-Tucker (KKT) conditions. The application of Newton’s method to the KKT con-
ditions, leads to an iterative solution process. Starting from an initialization point,
a sequence of primal-dual iterates (v j ,λ j ,µ j ) j∈N is generated, which is converging
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to a critical point of the NLP under suitable assumptions. Since the KKT conditions
state an inequality system, in every iteration the Quadratic Programm (QP)

QP (v j ,λ j ,ξk ) = min
∆v

1

2
∆v>A(v j ,λ j )∆v +a(v j )>∆v (4.16a)

s.t. B(v j )∆v +b(v j )+Eξk = 0, (4.16b)

v lo ≤∆v + v j ≤ vup. (4.16c)

is solved. The matrix A(v j ,λ j ) is either the Hessian of the Lagrange function with
respect to v or an approximation of it. We will discuss Hessian approximations in
Section 4.5.1. Note that the dual multipliers for the boundsµ only enter the Lagrange
function linearly and therefore do not appear in the Hessian. The linear objective
term is defined by the objective gradient a(v j ) =∇v l (v j ) and the constraints (4.16b)
are linearizations of (5.1b) based on b(v j ) and its Jacobian B(v j ) = ∇b(v j )>. The
solution (∆vQP ,λQP ,µQP ) of QP (4.16) is used to update the primal-dual variables

v j+1 = v j +∆vQP , λ j+1 =λQP , µ j+1 =µQP . (4.17)

SQP is an established method with strong convergence properties. Besides interior-
point methods, SQP is one of the most widely used methods to solve NLPs. In state-
of-the-art implementations, there are a lot of additional techniques to improve con-
vergence properties and computation time. A comprehensive overview of SQP and
additional techniques can be found, e.g., in [80].

4.5.1 Hessian Approximations

The original SQP method uses the Hessian of the Lagrangian L(v,λ,µ) with respect
to v as the matrix A(v,λ). However, using the exact Hessian in practical applications
may have significant disadvantages. First, the exact Hessian includes second-order
derivatives. Since the evaluation of the constraints includes the integration of a DAE
system, the computational effort for second-order sensitivities is significantly higher
than for first-order derivatives. Second, in general the exact Hessian is not positive
definite on the null space of the constraints. Since this leads to non convex QPs with
possibly non-unique solutions, the SQP method might not convergence.

In many applications, it has turned out to be advantageous to use an approxima-
tion of the Hessian instead of the exact one. This leads to a family of so-called
Quasi-Newton methods to solve NLPs. It can be shown that under certain conditions
Quasi-Newton methods still converge with a super-linear convergence rate. Among
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the most common methods Hessian approximations in the research field of MPC
are:

BFGS-Updates Broyden–Fletcher–Goldfarb–Shanno (BFGS) update formulas are used
to update the Hessian approximation in every iteration. Starting with an ini-
tial positive definite matrix, gradient information is used to perform matrix
updates which ensure that the matrix remains positive definite. A detailed de-
scription can be found, e.g., in [80, Chapter 8].

Constant Hessian In several applications it has turned out that a constant positive
definite matrix, like e.g. the unity matrix, leads to a sufficient contraction.

Gauß-Newton The Gauß-Newton approximation is a special approximation for least-
squares objective functions of the form

l (v) =1

2
‖e(v)‖2 (4.18)

with a smooth error function e. The Hessian is approximated by

A(v,λ) =∇e(v)>∇e(v) (4.19)

which refers to a linearization inside the norm. This method originates from
least-squares problems. In the context of NLP (4.14), such an objective func-
tion may arise, when only a Mayer term is used or when the Lagrange term is
a continuous least-squares objective function. Besides the reduced computa-
tional effort, this approximation enforces convergence to only statistically sta-
ble points, which is a desirable property for parameter estimation problems
[80, Chapter 10].

4.6 Real-Time Iteration

The RTI is an approach to reduce the computation time of the classical NMPC al-
gorithm drastically. It is based on SQP, but the complete iterative solution process
of a generic NLP method is avoided by utilizing the similarities between subsequent
sampling intervals. The RTI exploits that under suitable assumptions local quadra-
tic convergence of SQP is guaranteed. As a consequence, once the iterates are suffi-
ciently close to the true solution, only one iteration per sampling time is sufficient to
obtain excellent solution approximations for the NLPs in subsequent sampling inter-
vals [24]. Therefore, the RTI does not solve NLP(ξk ) at every sampling point tk until
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Process
time

Controller

tk

ξk

qξk

tk+1

ξk+1

qξk+1

feedback phase k

idle time

preparation phase k +1

Figure 4.4: Temporal communication between the controller and the process. The transition
phase is not depicted because their computation time is negligible.

convergence. Instead, one set of primal-dual iteration variables (vk ,λk ,µk ) is used
over the complete simulation time and in every sampling interval, only QP(vk ,λk ,ξk )
is solved. This approach reduces the computational effort from solving one com-
plete NLP to just one QP in every sampling interval.

In addition, the structure of NLP (4.14) allows to reduce the feedback time signifi-
cantly. In order to solve QP (4.16), the objective function and the constraints need
to be evaluated on the current linearization point first. Since the constraint function
b includes the integration of the dynamical system, this is the computational most
demanding step. Constraint (4.12d) decouples the current system state ξk from the
solution of the DAE system and thus it allows to evaluate b without the knowledge
of the actual system state. We will refer to this constraint (4.12d) as Initial Value Em-
bedding (IVE). Since it is linear, it is always satisfied after one SQP iteration. IVE
allows to evaluate all QP data in advance and as soon as the system state is available,
only the QP needs to be solved. Since the computational effort of solving the QP is
low in many applications, the feedback time can be reduced drastically.

We split the RTI into a preparation phase, a feedback phase and a transition phase.

Preparation Phase In the preparation phase, all the necessary evaluations of QP
(4.16) are done. In particular, the Hessian A(vk ,λk ), the gradient a(vk ), the Jacobian
of the constraints B(vk ) and its evaluation b(vk ) are computed. Since the constraints
include the evaluation of a dynamical system, this is a computational demanding
task. The resulting matrices are sparse and have a diagonal block structure, which
originates from the discretization. This structure can be exploited by a preprocessing
step in the preparation phase in order to reduce the QP solution time even further.
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Condensing [101] is a classical approach to exploit the structure and can be done in
the preparation phase.

Feedback Phase In the feedback phase, all QP data is already available. The feed-
back phase starts as soon as a new system state ξk is provided. It completes (4.16)
such that the QP can be solved. After the solution is available, the control feedback
qξk is submitted to the process. Since the arising QPs originate from subsequent it-
erates, the consecutive QPs are also related. These similarities can be exploited to
efficiently solve the QPs. The so-called online active set strategy is an established
method to solve a series of closely related QPs and is implemented in the software
package qpOASES [34].

Transition Phase In the transition phase, the iterations variables for the next QP are
generated by the solution (∆v,λQP ,µQP ) of QP(vk ,λk ,ξk ). In order to achieve good
performance, it is desirable to initialize (vk+1,λk+1,ξk+1) as close as possible to the
solution of NLP(ξk+1). The two main strategies are shifting and warm start. The
shifting strategy builds upon the assumption that the trajectory of the process will
be close to the predicted one. The basic idea is to shift all primal variables by one
time interval. Details can be found for example in [57, Chapter 4]. However, we
will use primarily the warm start strategy because it shows superior performance for
problems with short prediction horizons. The primal-dual solution (∆vQP ,λQP ,µQP )
is used to update the iteration variables according to

vk+1 = vk +∆vQP , λk+1 =λQP , µk+1 =µQP . (4.20)

The temporal sequence of the phases and the communication between process and
controller is depicted in Figure 4.4. After the computations of the preparation phase
are finished, the controller is idle and waits for the new system state. We refer to this
time as idle time. The RTI main loop is summarized in Algorithm 4.1.

Extensions of Model Predictive Control

MPC is a general framework for a wide class of control algorithms. The presented RTI
scheme is one extension of the basic MPC algorithm, which aims at high sampling
rates. However, several extensions of the RTI and basic MLI algorithm were proposed
tailored to special situations. For example, in [57] a RTI scheme is presented, which
is able to treat integer decision variables. In [85, 82] the idea of advanced step NMPC
[117] is incorporated into the RTI. In [38], an RTI scheme is proposed, where only a
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Algorithm 4.1: RTI main loop

loop
preparation phase:
evaluate A(vk ,λk ), a(vk ),B(vk ),b(vk )
wait for system state ξk

feedback phase:
solve QP (4.16)
submit qξk = q0 +∆q0 to controller
transition phase:

vk+1 ← vk +∆vQP ,λk+1 ←λQP ,µk+1 ←µQP

k ← k +1
end loop

fraction of the linearizations are reevaluated. An MPC scheme for dynamical systems
with periodic solutions is presented in [46]. In Chapter 5, we will consider the MLI,
which is an extension of the RTI to reduce the computation time.

4.6.1 Stability of MPC and RTI

The theoretical analysis of MPC schemes defines properties and conditions, which
reflect a desirable behavior of the controlled process. There is a wide range of re-
search results available that distinct between tracking and economic MPC and set
different conditions on the objective function and constraints. In the scope of this
thesis, we restrict ourselves to a brief overview over the most important terms and
we follow the lines of [43].

Theoretical analysis usually considers nominal MPC schemes, i.e. the current sys-
tem state is instantly known and not affected by measurement errors

ξk = xk (4.21)

for k ∈ N. The MPC feedback law µ(xk ) is defined by the solution v∗(xk ) of the dis-
cretized open loop OCP NLP(xk ). In order to investigate the theoretical properties of
an MPC scheme, the closed loop behavior of the time-discrete system

xk+1 = x(tk+1; tk , xk , zk ,µ(xk )) (4.22)
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is analyzed with an initial state x0 ∈ Rnx . The algebraic state zk ∈ Rnz is implicitly
defined by the algebraic consistency constraint 0 = g (xk , zk ,µ(xk )). There are two
important properties of an MPC scheme: the recursive feasibility and the stability.
One of the major advantages of MPC is that it is able to respect operational con-
straints. Therefore, the state and control trajectories of the closed loop system need
to satisfy the operational constraints xk ∈Xµ and µ(xk ) ∈U , where

Xµ =
{

x ∈Rnx |x lo ≤ x ≤ xup ∧∃z ∈Rnz with z lo ≤ z ≤ zup,0 = g (x, z,µ(x))
}

,

U =
{

u ∈Rnu |ulo ≤ u ≤ uup
}

.

(4.23)

Moreover, the stronger feasibility property

xk ∈XN = {
x ∈Rnx | NLP(x) is feasible

}
(4.24)

needs to be satisfied in order to ensure that the scheme is well-defined. The usual
way to address the feasibility is by showing that the scheme recursive feasible. This
property requires the existence of a set A ⊆Xµ such that

• for all x0 ∈ A the problem NLP(x0) is feasible and

• for all x0 ∈ A the next iterate is x(t1; t0, x0, z0,µ(x0)) ∈ A.

The recursive feasibility ensures that the MPC scheme is always able to keep the sys-
tem inside the operational bounds. It is a minimal requirement for the safe applica-
tion of MPC schemes in practice.
A MPC scheme is referred to as stable, if the closed loop dynamics (4.22)

• are asymptotically stable and

• converge to a predefined equilibrium x∗ ∈Xµ

for all initial values x0 in some set S . The equilibrium x∗ ∈Xµ is usually the desired
operating point of the system. Stability implies that a trajectory xk , which started
close to the equilibrium x∗, stays close to x∗ for all k ∈N. In practical applications,
this means that the MPC controller is able to steer the system back to the desired
operating point x∗ after a disturbance. This concept of stability requires a constant
desired operating point x∗, however it can be extended to time varying reference
trajectories [68].
In order to prove the recursive feasibility and stability of a given MPC scheme, it is
necessary that NLP(x) includes a terminal cost term in the objective function and
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has a terminal constraint. This allows the definition of an optimal value function,
which refers to the cost of an OCP with infinite prediction horizon. Using this op-
timal value function, the existence of a Lyapunov function can be shown, which is
a sufficient condition for asymptotic stability. A comprehensive discussion of the
stability of nominal MPC can be found in [94, 44].
However, the presented RTI is not a nominal MPC scheme. It solves the underlying
OCPs not until convergence and therefore the optimizer is not able to provide opti-
mal feedback. In order to extend the stability proof from nominal MPC to the RTI, the
convergence theory of Newton-type methods needs to be considered. In [27, 25], the
Local Contraction Theorem [13] is used to show the stability of an MPC scheme with
equality constrained OCPs with a terminal constraint. In [116], the proof is extended
to a wider class of OCPs and to arbitrary optimization methods with a Q-linear con-
vergence rate.
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Chapter 5

Multi-Level Iteration

The Real-Time Iteration (RTI) presented in Chapter 4 is an established strategy to
increase the sampling rate and to decrease the feedback delay of a conventional
Nonlinear Model Predictive Control (NMPC) algorithm. However, the RTI still re-
quires the integration of a Differential Algebraic Equation (DAE) system and the cor-
responding sensitivity generation in every iteration. The standard version of RTI al-
gorithm utilizes the Hessian of the Lagrange function of the underlying optimization
problem and therefore even second-order sensitives are required. These are compu-
tationally expensive operations for nonlinear differential equations and they may
render the RTI too slow for processes with stiff dynamics.

The Multi-Level Iteration (MLI) is an extension of the RTI, which uses only par-
tial updates instead of full evaluations in every iteration. It is based on the fact
that Newton-type methods, such as the Sequential Quadratic Programming (SQP)
method described in Chapter 4, does not require the exact computation of deriva-
tives to achieve local convergence. This can be exploited to avoid the expensive eval-
uation of the Hessian and the Jacobian in every iteration. The core of the MLI is a
hierarchy of update formulas, which can be operated individually as separate NMPC
algorithms. However, it is also possible to assemble multiple update formulas to
holistic schemes. We will refer to the individual update formulas as levels.

The goal of this chapter is to develop a novel Model Predictive Control (MPC) scheme
that is able to meet the requirements of Microgrid (MG) control. This scheme is
based on the MLI update formulas, which are introduced in this chapter. In order to
utilize the fast feedback rates of the lower levels and the high accuracy model predic-
tions of the higher levels at the same time, it is necessary to operate multiple levels
in parallel. We present methods, how the individual levels are combined to holistic
schemes and how they communicate among each other. In order to utilize paral-
lelization on multi-core CPUs, we propose a novel scheduling approach. The result-
ing new holistic MPC scheme adjusts the sequence of applied levels automatically
to the available computational resources. In contrast to existing MLI schemes, it is
able to stabilize the MG after major disturbances in real-time. In Chapter 6, we show
by comprehensive numerical experiments that this new approach outperforms ex-
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isting control methods significantly while staying real-time feasible. Furthermore, it
offers the possibility to directly take operational bounds into consideration, which is
an essential advantage of MPC over existing methods for MG control.

The MLI was initially introduced in [15]. A detailed description of the update formu-
las can be found in [113, 81] and their convergence properties are analyzed in [15]. A
performance study is presented in [52] and a scheme comprising multiple levels in
parallel is presented in [69].

5.1 MLI Update Formulas

The RTI is a methodology to solve a sequence of parametric Nonlinear Programming
Problems (NLPs)

N LP (ξ) =min
v∈Rnv

l (v) (5.1a)

s.t. b(v)+Eξ= 0, (5.1b)

v lo ≤ v ≤ vup (5.1c)

in the context of NMPC. The core of the RTI is a parametric Quadratic Programm
(QP), which is solved in every iteration

QP (v,λ,ξ)= min
∆v

1

2
∆v>A(v,λ)∆v +a(v)>∆v (5.2a)

s.t. B(v)∆v +b(v)+Eξ= 0, (5.2b)

v lo ≤ v +∆v ≤ vup. (5.2c)

It is a quadratic model of NLP(ξ) as described in Section 4.5. Here A(v,λ) is the Hes-
sian of the Lagrange function of the NLP (5.1) or an approximation of it, a(v) is the
gradient of the objective function, and the matrix B(v) is the Jacobian of the con-
straint function b(v). As described in Section 4, this QP is solved in two phases: the
preparation phase and the feedback phase. In the preparation phase, the QP data is
evaluated and in the feedback phase the actual QP is solved. In many applications,
the preparation phase causes the predominant computational load. The MLI is an
approach to reduce its computation time by applying only partial updates of the QP
data instead of full evaluations. It defines four levels with descending computational
complexity, called Level D, C, B, A. Every level represents its own NMPC scheme and
can be operated independently of the others. In this section, we describe the indi-
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vidual levels and their convergence properties. In Section 5.2, we present multiple
approaches to combine the levels and to operate them in parallel.

In order to have a more compact notation, we denote the primal-dual optimization
variables of NLP (5.1) by

ϑ= (
v,λ,µ

) ∈Rnv ×Rnb ×R2nv (5.3)

and we collect the data, which assembles QP (5.2), in the tuple

Θ(ϑ) = (A(v,λ), a(v),B(v),b(v)) ∈Rnv×nv ×Rnv ×Rnb×nv ×Rnb . (5.4)

5.1.1 The MLI Methodology

The fundamental idea of the MLI is to avoid the evaluation of the QP data Θ(ϑ) in
every iteration. Instead, every Level X ∈ {D,C ,B , A} uses approximations of the QP
data given by an update formulaΘX (ϑ). These update formulas use reference values
for the primal-dual iteration variables

ϑ
X =

(
v X ,λ

X
,µX

)
(5.5)

and for the QP data

Θ
X =

(
A

X
, aX ,B

X
,b

X )
(5.6)

to generate the approximate QP data ΘX (ϑ). These reference values are determined
in advance and they stay fixed during the complete simulation. In every iteration,
the Feedback-generating Quadratic Programm (FQP)

QPX (ϑ,ξ;ΘX (ϑ))= min
∆v

1

2
∆v>AX (ϑ)∆v + (aX (ϑ))>∆v (5.7a)

s.t. B X (ϑ)∆v +bX (ϑ)+Eξ= 0, (5.7b)

v lo ≤ v +∆v ≤ vup (5.7c)

is solved, where the approximate QP data

ΘX (ϑ) =
(

AX (ϑ), aX (ϑ),B X (ϑ),bX (ϑ)
)

(5.8)

is given by level specific update formulas. We will define these update formulas in
the following sections. The pseudocode of the MLI main loop for a fixed Level X is
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depicted in Algorithm 5.1. For ease of notation, we will omit the superscript of the
reference values if the corresponding level is clear from the context.

Algorithm 5.1: Main loop for Level X

Input: reference values ϑ andΘ
ϑk ←ϑ

loop
preparation phase:

evaluateΘX (ϑk ;Θ
X

,ϑ
X

)
wait for system state ξk

feedback phase:

solve QP X (ϑk ,ξk ;ΘX (ϑk )) with primal-dual solution ∆ϑ
submit qξk = q0 +∆q0 to process
transition phase:
update iteration variables ϑk with ∆ϑ
k ← k +1

end loop

The reference valuesΘ
X

and ϑ
X

are fixed and the approximation quality of the levels
depends on a suitable choice. In general, it is desirable to choose the reference val-

ues ϑ
X

close to the solution ϑ∗(ξ) of NLP(ξ) and Θ
X

close to the corresponding QP
data Θ(ϑ∗(ξ)). Nevertheless, ξ is not known in advance and therefore choosing suit-
able reference values is a challenging task. In order to find suitable reference values,
multiple levels can be operated in parallel and the solution of the higher levels can
be used as reference values for the lower levels. We will discuss this in Section 5.2. In
case of tracking MPC, the goal of the controller is to steer the process to a reference
state ξ. In this situation, the QP dataΘ(v∗(ξ)) at the solution v∗(ξ) of NLP(ξ) is often
a suitable initialization.

In the following sections, we will describe the individual update formulas and their
convergence behavior. The convergence is analyzed for a fixed system state ξk = ξ0

for all k ∈ N. Table 7.1 summarizes which data is computed in each iteration and
how the QP data is updated.
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5.1.2 Level D

Level D is the highest level and provides the most accurate, but also most expensive
QP data. The update formulasΘD (ϑ) of Level D corresponds to the RTI

AD (ϑ) = A(v,λ), aD (ϑ) = a(v), (5.9a)

B D (ϑ) = B(v), bD (ϑ) = b(v). (5.9b)

The iteration variables are updated similar to the RTI as well

vk+1 = vk +∆vQP , λk+1 =λQP , µD
k+1 =µQP (5.10)

where (∆vQP ,λQP ,µQP ) is the primal-dual solution of QP D (ϑk ,ξ;ΘD (ϑk )). Level D
corresponds to a full SQP step and therefore it inherits its local quadratic conver-
gence. The convergence properties of the RTI are well investigated and are already
discussed in Section 4.6.1. In particular, the QP dataΘD (ϑ) corresponds to the exact
linearization at the iteration variables ϑ and is therefore a suitable candidate for the
reference values of the lower levels.

5.1.3 Level C - Optimality Iterations

The preparation phase for Level D includes the full Jacobian evaluation of the con-
straints. Depending on the definition of the approximate Hessian A, there might be
even second order sensitivity generation included. This is by far the most compu-
tational expensive part in the preparation phase. Level C avoids the full Jacobian
evaluation and uses the provided reference matrices instead. In order to achieve
convergence to an optimal point, an update formula for the gradient is used

aC (ϑ) = a(v)+
(
B
>−B(v)>

)
λ. (5.11)

In this formula a directional derivatives of the constraints B(v)>λ is involved. By
using Internal Numerical Differentiation (IND), this can be computed significantly
more efficient than the full Jacobian evaluation. A detailed description of IND can
be found in [2]. The definition of all update formulasΘC (ϑ) are

AC (ϑ) = A, aC (ϑ) = a(v)+
(
B
>−B(v)>

)
λ, (5.12a)

BC (ϑ) = B , bC (ϑ) = b(v). (5.12b)
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The iteration variables are updated similar to the RTI

vk+1 = vk +∆vQP , λk+1 =λQP , µk+1 =µQP . (5.13)

The following theorem motivates why Level C iterations are also referred to as Opti-
mality Iterations.

Theorem 5.1 (Optimality Iterations)
If, for a fixed system state ξ0, the Level C iterates (vk ,λk ,µk ) converge towards a
limit (v∗,λ∗,µ∗), then this limit is a Karush-Kuhn-Tucker (KKT) point of the origi-
nal NLP(ξ0).

Proof The proof can be found for example in [15]. �

5.1.4 Level B - Feasibility Iterations

Level B abandons the sensitivity generation completely. In every iteration, only the
constraints b(v) and the gradient a(v) are reevaluated. Note that the evaluation of
b(v) still includes the integration of the dynamical system and might be computa-
tionally expensive. In order to achieve convergence to a feasible point, the gradient
is updated according to

aB (ϑ) = a(v)+ A(v − v)λ. (5.14)

The complete update formulasΘB (ϑ) are given by

AB (ϑ) = A, aB (ϑ) = a(v)+ A(v − v)λ, (5.15a)

B B (ϑ) = B , bB (ϑ) = b(v). (5.15b)

The following theorem motivates why Level B iterations are also referred to as Feasi-
bility Iterations.

Theorem 5.2 (Feasibility Iterations)
If, for a fixed system state ξ0, the level B iterates (vk ,λk ,µk ) converge towards a limit
(v∗,λ∗,µ∗), then this limit is a KKT point of the disturbed problem

min
v

1

2
(v − v)>A(v − v)+ (a +e)>v (5.16a)

s.t. b(v)+Eξ0 = 0, (5.16b)

v lo ≤ v ≤ vup. (5.16c)
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with e = (∇B(v∗)−B>)λ∗.

Proof The proof can be found for example in [15]. �

Theorem 5.2 ensures especially that level B is converging to a feasible point of the
original NLP. However, it is not converging to the solution of the original NLP, but
to the solution of the disturbed problem (5.16). The distance to the original solution
depends on the difference of the Jacobian of the constraints and its approximation.

5.1.5 Level A

In Level A no updates of the QP dataΘ are performed at all. Instead, the data is fixed
to the reference values. Hence, Level A refers to linear MPC with a fixed linear model
of the DAE system. It provides feedback with the lowest computational effort, but for
nonlinear models convergence can not be guaranteed. The QP dataΘA(ϑ) is fixed to

A A(ϑ) = A, a A(ϑ) = a, (5.17a)

B A(ϑ) = B , b A(ϑ) = b. (5.17b)

In contrast to the other levels, even the constraint function b is not reevaluated.
Therefore, the iteration variables are fixed too and only the solution of the QP is used
as an control update

qξk = q0 +∆qQP
0 , (5.18)

where∆qQP
0 is extracted from∆vQP . Since all QP data is fixed for level A, the solution

process reduces to solving a linear equation system, if the active set does not change.
In this case, only the right hand side is changing because of new measurements. This
allows to reuse factorizations and to increase the feedback rate even further [113].

5.1.6 Convergence Properties

Level D and C can be interpreted as Newton-type methods for Problem (4.14) with
a fixed initial value ξk = ξ0. Level D refers to classical SQP with local quadratic con-
vergence. Level C uses approximations for the matrices and can be analyzed with
local convergence theory for Newton-type methods. Under mild conditions, it is
converging locally with a q-superlinear convergence rate. The proof is carried out in
[113, 29], using the local contraction theorem [13]. In Section 5.1.4, we showed that if
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Level necessary computations
b(v) a(v) B(v) A(v ,λ)

D 3 3 3 3

C 3 3 (3)1 7

B 3 7 7 7

A 7 7 7 7

Level update formula for QP data
b a B A

D b(v) a(v) B(v) A(v,λ)

C b(v) a(v)+ (B
>−B(v)>)λ B A

B b(v) a + A(v − v) B A

A b a B A
1 Only the vector-matrix product λ>B needs to be com-

puted in an adjoint fashion.

Table 5.1: Computations and update formulas for the QP data of the different levels.

Level B converges, it converges to an optimal value of the perturbed problem (5.16)
and to a feasible point of the original problem. Level A is using a fixed linear model
and is therefore in general not converging.

The stability analysis for constantly changing initial values ξk is much more chal-
lenging, because the combined system-optimizer dynamics need to be considered.
A pure Level D scheme refers to the RTI introduced in Chapter 4. Its stability was
proven with a zero end point constraint in [27] and with inequalities in [25]. These
proofs are formulated in terms of Newton methods and are therefore also valid for
pure Level C iterations [113]. The stability of Level B iterations with a quadratic ob-
jective function and with a zero terminal constraint is shown in [115].

5.2 Combined MLI Schemes

The MLI comprises a hierarchy of update formulas with descending computational
complexity, but also less strong convergence properties. In applications with nonlin-
ear dynamical systems, the reference valuesΘ deviate from the actual linearizations
and the lower levels give suboptimal feedback. This may lead to an instable behavior
of the process. Therefore, it is desirable not to operate one level independently, but
multiple in parallel. This allows us to utilize the fast feedback rates of the lower levels
and the strong convergence properties of the higher levels at the same time. In order
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to assemble combined MLI schemes from the presented levels, we have to consider
two mayor aspects:

• The individual levels are operated in parallel as independent units. However,
they need to communicate with each other in order to update the correspond-
ing reference values. Thereby the iteration variables, the reference values ϑ
and the reference QP dataΘ can be transferred individually.

• In every sampling interval, feedback can be generated by only one level. In
order to define which level is applied a scheduling algorithm is needed.

5.2.1 Communication Architecture

When we want to combine multiple levels in one holistic scheme, we need to uti-
lize parallelization and we sheer off from the strict sequential character of the RTI.
Instead, we are dealing with multiple components, which are executed on dedi-
cated CPU cores without affecting the computation time of the other components.
The involved components are the process, the Feedback-generating Quadratic Pro-
gramm (FQP) and the individual levels. The signal flow between these components
is depicted in Figure 5.1. The reality is represented by the process. In real world ap-
plications, this is the interface to the controlled plant. However, in numerical exper-
iments the process is also represented by a model. In many cases, the same model
as in Problem (4.8) is used, but it is also possible to use a more detailed model or to
incorporate unforeseen disturbances. The central component, which is responsible
for the communication with the process is the FQP. It receives the current system
state ξ from the process and then solves QP (5.7). Afterwards, the control feedback
qξ is submitted to the process. In addition, the FQP communicates with every level,
which is involved in the scheme. The involved levels are solely responsible for the
evaluation of the corresponding update formulas as described in Sections 5.1. As
soon as their computations are finished, they submit the QP data ΘX to the FQP.
Depending on the scheduling scheme, the FQP chooses one of the available levels to
set up the next QP. Furthermore, the individual levels are communicating with each
other in order to update their reference values and iteration variables.

5.2.2 Communication Schemes

In a combined MLI scheme, the data is reevaluated constantly on every level in par-
allel with respect to their update formulas. In order to achieve better convergence
behavior, it is beneficial to use the recently updated QP data from the higher level
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Top-Down
Communication

Simulate ∆t
Measure state ξ

Process
Solve:

min
∆v

1

2
∆v>AX (ϑ)∆v + (aX (ϑ))>∆v

s.t. bX (ϑ)+B X (ϑ)∆v +Eξ= 0

v lo ≤ v X +∆v ≤ vup

Feedback-generating QP

Evaluation ofΘA(ϑ)
No update

Level A

Evaluation ofΘB (ϑ)
Updates : b(v), a + A(v − v̄)

Level B

Evaluation ofΘC (ϑ)
Updates : b(v),b + (B

>−B(v)>)λ

Level C

Evaluation ofΘD (ϑ)
Updates : a(v),b(v), A(v,λ),B(v)

Level D

ξ

qξ

ϑXΘX

ΘB ,ϑB

ΘC ,ϑC

ΘD ,ϑD

Figure 5.1: Signal flow of MLI scheme with combined levels. The gray boxes represent inde-
pendent components, which are executed on dedicated CPU cores. The arrows represent
the communication signals between the components. In this sketch, a top-down communi-
cation for the reference data is used as depicted on the right hand side.
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as reference values for the lower levels. This allows to adjust the reference values of
the lower levels to the current system state without additional computational effort.
The different levels hold two pieces of data, which are communicated separately: the

reference QP data Θ
X

and the primal-dual iteration variables ϑX . While the QP data
is primarily communicated from the higher to the lower levels, there are multiple
approaches for the iterates. A comprehensive overview of communication schemes
are shown in [113].

We will primarily use a top-down communication for QP data as well as the iter-
ates. The QP dataΘX is always communicated together with the iterates ϑX and the
communication always triggers a restart of the receiving level. In this approach, the
highest level can be interpreted as the main iteration scheme. If the highest level is
either Level C or D, it is a fully nonlinear controller, which resets possible suboptimal
iteration behavior of Level A or B. However, if the there are many intermediate steps
between two high level updates, the iterates might be outdated in comparison to the
iterates of the lower levels. The approach is summarized in Algorithm 5.2.

Algorithm 5.2: Top-down communication algorithm

switch X :
case D :
Θ

C ←ΘD
k , Θ

B ←ΘD
k , Θ

A ←ΘD
k

ϑ
C ←ϑD

k , ϑ
B ←ϑD

k , ϑ
A ←ϑD

k
restart level C, B, A

case C :
Θ

B ←ΘC
k , Θ

A ←ΘC
k

ϑ
B ←ϑC

k , ϑ
A ←ϑC

k
restart level B, A

case B :
Θ

A ←ΘB
k

ϑ
A ←ϑB

k
restart level A

case A:
no communication

87



CHAPTER 5 MULTI-LEVEL ITERATION

5.2.3 Scheduling Scheme

When operating multiple levels in parallel, a scheduling scheme is needed in order
to decide which level is applied next. Multiple approaches have been proposed with
different goals. In this section, we will discuss fixed level schemes and Adaptive
Level Choice by Contractivity (ALC-Con) and in Section 5.3 we will propose a new
approach, which chooses the levels based on computation time.

Remark 5.1
The motivation for combining MLI schemes is to utilize multiple processing units
in parallel. We assume that every component is executed on its own dedicated CPU
core. The computational load does not affect the computation time of the other
components.

Fixed Level Scheme

The most straight forward and also the most common technique for the scheduling
of levels is to define an fixed sequence of levels in advance. For every level a pat-
tern is defined, which is repeated continuously. A common notation is for a fixed
level scheme is AnA B nB C nC DnD , where the superscript letters refer to the number of
sampling intervals after that the corresponding level is scheduled. If two or more
levels are scheduled at the same sampling point, the highest available is applied.
Levels that does not occur in the scheme are omitted. For example, AD2 refers to a
scheme with a level D iteration every second sampling point and one intermediate
level A iteration. The regular RTI is denoted by D1 and a linear MPC algorithm by
A1. Since the levels are fixed in advance, it is not clear if the computation time of
a level is shorter than its sampling time. In simulations, it is possible to apply level
sequences, with a higher computation time than the real-time. We refer to level se-
quences, where the computation time is shorter than the corresponding sampling
time for all participating levels as real-time feasible.

In Figure 5.2 is the temporal communication of an exemplary BD2 scheme depicted.
The horizontal lines represent the individual components and the vertical lines rep-
resent the signals between them. On every second sample point, a Level D iteration
is scheduled followed by an intermediate Level B iteration. In the figure, Level D iter-
ations are scheduled at tk and tk+2, while Level B provides intermediate feedback at
tk+1 and tk+3. In addition, a top-down communication for the iteration variables is
used. The level D controller always stays on its own set of variables and submits the
latest updates to the level B. Level B uses them to compute one intermediate update
and receives new iteration variables in the next sampling interval.
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evaluation Level Devaluation Level B

feedback phase

Figure 5.2: Temporal communication of a BD2 scheme with a Level D iteration every second
sampling point and one intermediate Level B iteration. The gray areas indicate when the
corresponding level is busy.

An example of a fixed level scheme with AD2-AD6 can be found in [4]. Another
example of a mixed scheme with level B and D is presented in [69]. And a compre-
hensive study with different schemes is shown in [52].

Adaptive Level Choice by Contractivity

Fixed level schemes are easy to implement and they lead to good results in many ap-
plications, but they are also rather inflexible. Neither the current convergence prop-
erties nor the computational load are considered. Adaptive Level Choice by Contrac-
tivity (ALC-Con) is an approach to choose the level updates adaptively in order to be
computationally as efficient as possible. The main idea is to track the convergence
properties in every iteration in order to decide which level is scheduled next. For a
fixed system state ξ, Level C can be interpreted as a Quasi-Newton method for the
original problem N LP (ξ) and Level B for the modified Problem (5.16). Thus their
convergence properties and contraction rate can be analyzed in the sense of the Lo-
cal Contraction Theorem [13]. The contraction rate δ gives an upper bound of the
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contraction between two consecutive iteration steps

‖vk − vk−1‖ ≤ δ‖vk+1 − vk‖ (5.19)

and δ< 1 implies the convergence of the scheme.
The goal of ALC-Con is to apply Level B or C as often as possible. In every step,
the contraction rate δ is estimated and only if the estimate is above a predefined
bound δB or δC , a level D iteration is scheduled. Since a Level B iteration requires
less computational effort than a Level C iteration, it is the preferred level update.
However, it does not converge to the solution of the original problem, but instead
to a solution of the modified problem (5.16). Therefore, a low contraction rate does
not necessarily imply proximity to the real solution. To counteract this, a Level C
iteration is scheduled if the iteration variables are too close to the solution of the
modified problem. The norm of the Lagrange gradient of the modified problem is a
possible criterion to decide if a Level C iteration is scheduled.
ALC-Con was initially proposed in [113], which includes a detailed description on
how to estimate the contraction rate and how the levels are scheduled. In addition,
the performance of ALC-Con is demonstrated in a comprehensive numerical study.

5.3 Adaptive Level Choice by Computation Time

ALC-Con, presented in the last section, aims at minimizing the computational load,
while guaranteeing a certain feedback quality. However, for many applications the
load of the CPU is not the bottleneck. Therefore, Adaptive Level Choice by Compu-
tation Time (ALC-Time) aims at giving the best possible feedback for the available
computing power. It is especially suitable in situations, where the computational ef-
fort of the individual level evaluations is varying strongly between subsequent sam-
pling points and a fixed level scheme is not flexible enough. We proposed this ap-
proach initially in [103].

5.3.1 Fixed-step versus Adaptive Integration

The majority of the computational load is caused by the integration of the dynam-
ical system and the sensitivity generation. Most integration methods compute the
solution stepwise in time by an integration formula. Independent of the integration
formula, there are two approaches for choosing the stepsize: fixed-step and adap-
tive. Fixed-step integrators define a time grid in advance and apply their integration
formula for every step. There is no mechanism to ensure a certain accuracy of the
solution. In contrast to that, adaptive integrators use an integration tolerance. On
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tk+1tk tk+2 tk+3 tk+4 tk+5 tk+6 tk+7 tk+8 tk+9 tk+10tk+11tk+12tk+13

Level B

FQP

Level D

Figure 5.3: Exemplary scheduling of levels with ALC-Time with varying computation times.
The colors indicate the state of the levels. Red shows that the corresponding level is busy and
green that it is ready. At the sampling points, the highest available level is used to generate
feedback. The number of intermediate Level B iterations depend on the computation time
of Level D. The gray areas indicate the feedback phase of the FQP.

every step the integration error is estimated and if the error is above the tolerance
the grid is refined.

In the context of MLI, the computation time and the predictability of the computa-
tion time play a crucial role for the scheduling of the individual levels. Since fixed-
step integrators use a predefined time grid, the number of system evaluations is con-
stant for a given time interval. Because one evaluation of the model equations f and
g of the system (4.2) requires a constant computational effort, the overall integration
time is very predictable and can be determined in numerical experiments. This is a
desired property for a fixed-level scheme, because it allows to schedule the updates
tightly without compromising the real-time feasibility. However, the disadvantage is
that the integrator does not consider the integration quality at all. In order to en-
sure a certain approximation quality the time grid needs to be sufficiently fine for
the complete simulation horizon.

In many applications, the number of required integration steps is varying strongly.
In a typical scenario, MPC aims at stabilizing the system at a desired steady state, but
the system is in a transient phase after a disturbance. A high number of integration
steps is required to achieve a given accuracy. The controller steers the system back
to a steady state. While approaching the steady-state, the required number of inte-
gration steps to achieve the same accuracy is decreasing significantly. Therefore, a
fixed-step integrator may use an unnecessary fine grid in steady-state because the
grid needs to be chosen fine enough to also integrate the transient phase accurately.
This leads to a conservative scheduling of updates in a fixed level scheme, since the
worst-case computation time needs to be treated in order to be real-time feasible.
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This problem does not occur for adaptive integration. Because of its error check-
ing, it performs only the necessary number of integration steps to achieve a given
accuracy. However, this approach has two major disadvantages for MLI. First, the
error checking algorithm requires additional computational effort. In an applica-
tion, where the sampling time is low, this additional effort might affect the control
performance. Furthermore, it is not straight forward to estimate the computation
time. E.g., a Level D update in a transient phase may require a multiple of the calcu-
lation time of Level D update in steady state. Therefore, it is difficult to define a MLI
scheme in advance and conservative scheduling may be necessary.

5.3.2 Time Based Scheduling of Levels

ALC-Time is a methodology to deal with the varying computational effort, while stay-
ing efficient. The fundamental idea is to evaluate all levels in parallel and apply at
every sampling point the highest level, which finished its evaluations. For this pur-
pose, the levels are equipped with a state r ead y ∈ {T RU E ,F ALSE }, which represents
if the level is ready or busy. The algorithm is initialized with an initial guess ϑ0 for the
primal-dual solution of NLP(ξ0) and the corresponding QP data Θ. In the beginning
of the simulation, the evaluations of all levels are triggered with the initial guess. As
soon as an evaluation is finished, the corresponding level is marked as ready. When
the simulation of the controlled process reaches the next sampling point, the data
of the highest level, which is marked as ready, is applied to the QP (5.7). The lower
levels are reinitialized with the updated QP data Θ,ϑ as reference values and a new
evaluation starts. The pseudocode for the main loop is depicted in Algorithm 5.3 and
for the individual levels in Algorithm 5.4.

In the described algorithm, a top-down communication of the iteration variables is
used. Here, level A has special purpose. Since it includes no updates of the QP data,
its computation time is very low and it can always be used as a fallback. Therefore, it
is ensured that always at least one level is ready.

In Figure 5.3 an exemplary scheduling of Level D and B is depicted. The horizontal
arrows describe the state of the levels and the vertical arrows represent the commu-
nication between them. In the red area the corresponding level is busy and in the
green area it is ready. The FQP always uses the highest available level, which is ready.
The number of intermediate Level B depends on the computation time of Level D.

ALC-Time allows to use always the most accurate available linearizations whilst hav-
ing the guarantee of remaining real-time feasible. It is especially tailored to modern
multi core CPUs. In comparison to fixed level sequences and ALC-Con, ALC-Time is
especially suitable for control applications with high sampling frequencies and pro-
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Algorithm 5.3: MLI main loop with ALC-Time

Input: ϑ0 andΘ
k ← 0
ϑk ←ϑ0

start Algorithm 5.4 for all participating levels with ϑ0 andΘ
loop

preparation phase:
wait for system state ξk

choose highest level X with r ead y = T RU E
feedback phase:

solve QP X (ϑk ,ξk ) with solution (∆w,λQP ,µQP )
submit qξk = q0 +∆q0 to process
transition phase:

submit (∆w,λQP ,µQP ) to level X
k ← k +1

end loop

Algorithm 5.4: Evaluation for Level X

Input: ϑ andΘ
ϑX ←ϑ

r ead y ← T RU E
loop

wait for (∆v,λQP ,µQP ) from FQP
r ead y ← F ALSE
v X ← v X +∆v,λX ←λQP ,µX ←µQP

evaluateΘX

submit dataΘX and ϑX to FQP
restart all lower levels with ϑX andΘX as reference values
r ead y ← T RU E

end loop
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cesses with fast dynamics since it aims at giving the best control performance for the
available computation capacity.
ALC-Time is especially beneficial for the control of MGs as described in Chapter 6.
The dynamics of a MG are highly nonlinear and stiff and therefore a lot of integra-
tion steps are necessary in a transient phase. In contrast to that, the computational
effort is low in steady-state and therefore the number of required integration steps
changes greatly. In addition, the sampling frequencies are extremely low and the
control performance depends on a low feedback delay. ALC-Time allows to react to
instantaneous disturbances accurately, while maintaining a high feedback. This will
be demonstrated by numerical experiments in Chapter 6.
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Chapter 6

Multi-Level Iteration for Secondary Microgrid Control

In this chapter, we present numerical results for the methods presented in Chapter 4
and Chapter 5. First, we will apply the levels of Multi-Level Iteration (MLI) individu-
ally to a single generator with a load. Afterwards, we will apply our newly developed
Model Predictive Control (MPC) scheme to a more complex electrical network.

6.1 Case Study with One Generator

In this section, we present numerical results for a simple Microgrid (MG). The goal
is to investigate the performance of each level as an independent scheme. In par-
ticular, we are interested in the required computation time and the possible sam-
pling time. We will compare the performance with a state-of-the-art Proportional-
Integral (PI) controller and with the results of an ideal Nonlinear Model Predictive
Control (NMPC) controller. The proposed controller is acting on the secondary con-
trol level. Therefore, the models include primary controllers and the secondary con-
troller aims at tracking reference values. The results presented in this section are
published in [102].

6.1.1 Scenario and Model Description

The considered MG is composed of the different components presented in Chap-
ter 3 and the interconnecting power flow equations. It comprises a Diesel Genera-
tor (DG), a Photovoltaic (PV) system and a passive PQ-load. The DG consists of a

PV
DG

P,Q

Figure 6.1: Sketch of the test grid with diesel generator, PV and load.
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Figure 6.2: Diesel generator with primary controllers.

Synchronous Generator (SG), actuated by a diesel engine. The apparent power base
value is Sbase = 100MVA and the nominal voltage is Vbase = 400V. In total, the model
has 21 differential and 20 algebraic states and 2 controls. The algebraic states in this
model originate from the algebraic power flow equations, as well as from algebraic
states in the SG model. The topology of the test grid is depicted in Figure 6.1.

The speed of the DG is controlled by a proportional controller. Both the diesel en-
gine and the speed controller are modeled with the standard IEEE DEGOV1 model.
For voltage control, an Automatic Voltage Regulator (AVR) is included, which follows
a proportional feedback law. It is modeled with the standard IEEE AC5A model. The
setpoints of the primary controllers for frequency ωref and voltage Vref serve as con-
trol variables of the NMPC controller. Details on the models can be found in [84, 74].
Figure 6.2 shows the signal flow of the DG with the primary controllers.

The goal of MG control is to steer the frequency ω(t ) and the voltage V (t ) to the
nominal value 1 p.u. at the load and prevent peaks that violate the operational limits
of ±10% voltage and frequency deviation from the nominal value 1 p.u. or 50Hz. To
achieve this, we use a Lagrange type objective function

Φ(x(·), z(·),u(·)) =
∫ tk+T

tk

‖ω(τ)−1‖2 +‖V (τ)−1‖2dτ (6.1)

with the prediction horizon T ∈ R. To simulate the intermittent behavior of the PV,
we consider a sudden decrease of the PV production from 100% to 5%, lasting 20s,
which corresponds to a cloud passing over the PV plant. During this period, the gen-
erator needs to compensate the active power shortage. The PV does not contribute
to reactive load sharing. The load profile is depicted in Figure 6.3. Overall, the simu-
lation has a length of 30s.
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Figure 6.3: Active Pload and reactive power Qload demand at the load and active power input
PPV of PV system.

6.1.2 Numerical Results

The resulting Optimal Control Problem (OCP) is discretized with N = 2 multiple
shooting intervals and the prediction horizon is fixed at T = 2s. The length of the
first shooting interval corresponds to the sampling time and the second to the rest
of the prediction horizon. The numerical simulations are carried out with the NMPC
framework MLI [113], written in MATLAB. For integration and sensitivity generation,
the SolvIND integrator [2] suite is used, which implements an adaptive BDF method.
The Quadratic Programms (QPs) are solved by qpOASES [34], which uses an online
active set strategy in order to utilize the similarities between subsequent QPs. In this
section, we use the exact Hessian of the Lagrange function.

We compare our proposed MLI-controller with a typical state-of-the-art control
setup for small MGs: The DG is equipped with an integral controller for steady-state
error elimination of the frequency. It follows an integral control law

ωref(t ) = K
∫ t

0
ω(τ)−1 dτ

with a parameter K ∈R, which is tuned to have a settling time of approximately 20s.
The frequency setpoint is updated every 500ms. The voltage setpoint V ref for the
AVR is kept constant for the complete simulation time. In Figure 6.4 and 6.5 the
trajectory of the integral controller is depicted in blue.

In Figure 6.4 the performance of the integral controller is compared to an ideal MPC
controller and a Real-Time Iteration (RTI) controller. The ideal MPC controller solves
in every iteration the corresponding OCP until convergence using the popular solver
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Figure 6.4: Control performance of RTI and ideal MPC.

IPOPT [112]. It allows us to compute reference values on a sampling grid with 500ms,
which leads to a significantly lower initial peak and a lower settling time compared
to the traditional control setup. In addition, the voltage is stabilized at the desired
operating point with a lower initial peak. Although the control performance is sig-
nificantly better, this scheme is far from real-time feasibility since its maximal com-
putation time is 587s.

The RTI controller is over 80 times faster, since its maximal computation time is
7s and the performance is still significantly better than the integral controller and
very similar to the ideal MPC controller. However, with an accurate integration, this
scheme is still not real-time feasible. To reduce the computation time of Level D be-
low 0.5s, a fixed step-size integrator on a coarse grid is necessary. But this degrades
the performance of the controller to such an extent that the advantage of MPC van-
ishes almost completely.

To overcome this downside, we propose to use Level C, B or A instead. They are real-
time feasible, even with sampling times below 500ms. Figure 6.5 shows the perfor-
mance of Level C, B and A in comparison to the traditional control approach. Level
C uses a sampling time of 200ms and is able to steer the frequency and voltage to
the nominal value without an offset. Since no updates on the sensitivities are used
in Level B, it is possible to operate the Level B controller with a sampling time of
100ms. The system settles significantly faster with a lower initial peak, but with a
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Figure 6.5: Frequency (left) and voltage at the load (right) controlled with Level C, B and A
controller. The trajectory of the controllers are depicted in red, the PI-controller for compar-
ison is shown in blue. All schemes are real-time feasible with a sampling rate below 200 ms.
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Figure 6.6: Computation time for every iteration for the different levels. The sampling time
is represented by the dashed line. For Level A it is 5ms, for Level B 100ms and for Level C
200ms. Level C, B and A are real-time feasible. Level D uses a sampling time of 500ms but is
not real-time feasible.
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sampling time max loop time

ideal NMPC 500 ms 587 s E
RTI 500 ms 7 s E
Level C 200 ms 185 ms
Level B 100 ms 80 ms
Level A 5 ms 3.2 ms

Table 6.1: Sampling time and maximal loop time for different schemes.

voltage offset to the nominal value. However, since Level B is guaranteed to con-
verge to a feasible point, the operational limits are satisfied. In Level A no integration
of the dynamical system is involved and therefore it is possible to reduce the sam-
pling time to 5ms. These short sampling times allow for a control feedback with
the lowest initial peak and the shortest settling time, even though the system is in a
slightly suboptimal state during the power shortage. From a theoretical point of view,
it is not possible to ensure that the bounds are satisfied, but in this case, the offset is
significantly lower than the traditional control approach. The computation time for
Level C, B and A is shorter than the sampling time and therefore these methods are
real-time feasible. The maximal iteration time for Level A is 3.2ms, for Level B 80ms
and for Level C 185ms. The computation times for all schemes are summarized in
Table 6.1.

In Figure 6.6, the computation time of the RTI as well as Level C, B and A are depicted
over the complete simulation horizon. The top plot shows that the computation
times of the RTI are comparatively low in steady state, but increase rapidly as soon
as the disturbance occurs. After the disturbance, the system is in a transient phase
and the integrator needs to do more integration steps to resolve the dynamics and
achieve the given accuracy. During the shortage, the system reaches a new steady
state and the computation time decreases. A similar behavior can be observed from
Level C and B. Since the integrator needs to do more steps in the transient phase, the
computation time increases after the disturbance, but goes down when the system
is stabilized. Level A includes no integration of the dynamical system and therefore
the computation time does not depend on the current state of the system.
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DG DG BA PV

P,Q

Figure 6.7: Topology of the test MG.

6.2 Grid Control with Adaptive Level Choice by Computation Time

In the previous section, we applied the MLI update formulas to a simple test grid
as separate schemes. In this section, we apply MLI to a bigger MG with a realistic
topology, which is typical for islanded MGs. The model of this MG is significantly
larger and stiffer. Therefore, the individual level controllers are either too compu-
tational expensive to be real-time feasible or the levels updates are not accurate
enough to stabilize the system. In order to be real-time feasible and to be able to sta-
bilize the system at the desired operating point at the same time, we apply a mixed
level scheme with the Adaptive Level Choice by Computation Time (ALC-Time) al-
gorithm, which is presented in Section 5.3.

Contrary to the last section, the MG comprises multiple controllable parts and there-
fore the load has to be shared between the active components. In particular, this grid
includes a battery, which is able to store electrical energy. Since the scheduling of
charging and discharging of the batteries requires a long term planning with a pre-
diction horizon of at least 24 hours and the incorporation of a load prediction, this
is usually done by the tertiary control level. The target load sharing is then commu-
nicated to the secondary control level by reference values for the active and reactive
load of the controllable parts. The secondary control level is responsible for track-
ing these reference values, while maintaining frequency and voltage in the grid. The
results presented in this section are published in [103].

6.2.1 Scenario and Model Description

The MG under consideration comprises two identical DGs, a Battery (BA), a PV
plant, and a passive PQ-load. Similar to Section 6.1, the MG model is composed
by the models for the involved components, which are interconnected by the Power
Flow (PF) equations. The DGs are represented by the same model as in Section 6.1.
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Figure 6.8: Active and reactive power demand P and Q of the load for different load profiles.

These consist of a SG that is actuated by a diesel engine with a governor for frequency
stabilization (IEEE DEGOV1) and is equipped with an AVR (IEEE AC5A) for voltage
control. The setpoints for frequency ωref

DG and voltage V ref
DG serve as control variables

of the MLI controller. The battery is modeled as a constant DC voltage source con-
nected to a grid-supporting inverter, like described in Chapter 3. It is controlled
by the setpoints for frequency ωref

B A and voltage V ref
B A . The base power of the MG is

Sgrid = 100kVA, the nominal power of the generator is SDG = 325kVA, and the nomi-
nal power of the battery is SB A = 150kVA. The complete MG is given as a Differential
Algebraic Equation (DAE) system of index 1 with 37 differential and 42 algebraic
states and 6 control inputs. Further details on the models and their primary con-
trollers can be found in [84]. Figure 8.1 shows the structure of the MG system.

To demonstrate the capabilities of the proposed controller, we consider two chal-
lenging load scenarios: a sudden unscheduled load step and a linear load increase.
In both scenarios, the system is in a steady state at the beginning and the reference
values for the battery are set to P ref

B A =Qref
B A = 0 p.u.. The generators share the load of

Pload = 5 p.u. and Qload = 1 p.u. equally. In the first scenario, a sudden unscheduled
load step of 40% in active and reactive power takes place after 1s, which exceeds the
capacity of the generators. In the second scenario, the load increases linearly over
5s. To ensure that the operational limits are satisfied, the battery needs to leave the
provided reference values and serve the missing load. The simulation has an overall
length of 8s and the load profiles are depicted in Figure 6.8.

The goal of MG control is primarily to maintain frequency and voltage, i.e. track the
nominal values. In addition, the controller aims to track reference values from the
tertiary control level in order to share the load between the active components of the
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grid. This is modeled by a continuous least squares objective functional

Φ(x(·), z(·),u(·)) =
∫ tk+T

tk

‖r (x(τ), z(τ),u(τ))‖2
Σ dτ (6.2)

of OCP (4.8) with a weighted norm and a residual function r (x, z,u). The matrix Σ is
positive definite and defines the norm by ‖x‖2

Σ = x>Σx. The most important goal is
to steer the frequencyω(t ) and voltage at the load Vload(t ) to the nominal value 1 p.u.
after a disturbance. This is achieved by tracking terms

r1(x, z,u) =ω−1, r2(x, z,u) =Vload −1.

During transients, we want to utilize the battery to stabilize frequency and voltage. In
steady state, the performance of the battery should follow setpoints P ref

BA, Qref
BA from a

higher control level, in order to charge or discharge the battery. The reference values
are incorporated in the objective function by tracking terms

r3(x, z,u) = PBA −P ref
BA, r4(x, z,u) =QBA −Qref

BA.

The remaining load is supposed to be shared between the generators equally. We use
the terms

r5(x, z,u) = P1 −P2, r6(x, z,u) =Q1 −Q2

to minimize their difference. Since we have two equally sized generators, this is a
convenient way to ensure proper load sharing with only two terms. However, in
more complex situations this objective can also be represented by tracking terms
for active and reactive power of both generators. The priorities of the different terms
are defined by the diagonal elements of the matrix Σ.

The exact Hessian is not only expensive to compute, but it also has disadvantageous
numerical properties since it can be indefinite. Therefore, we use the Gauß-Newton
approximation of the Hessian as described in Section 4.5.1. Besides its favorable nu-
merical properties, its main advantage is that it relies only on first-order derivatives
and we do not have to compute second-order derivatives, which is the most costly
task when evaluating QP (4.16). In order to have a standard least squares form of the
objective function, we approximate the integral in the objective by a Newton-Cotes
formula for numerical integration. Every shooting interval [τi ,τi+1] is divided into
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N sub intervals of equal length

h = τi+1 −τi

N
(6.3)

and the function is evaluated on the intermediate points p j = τi + j h for j = 0, · · · , N .
The integration formula is given by

∫ τi+1

τi

‖r (x(τ), z(τ),u(τ))‖2
Σdτ= (τi+1 −τi )

N∑
j=0

ω j‖r (x(p j ), z(p j ),u(p j ))‖2
Σ (6.4)

with some weights ω j . Popular Newton-Cotes formulas are the Trapezoidal rule or
the Simpsons’s rule [61, Chapter 2].

6.3 Numerical Results

We discretize OCP (4.8) with two multiple shooting intervals and the length of the
prediction horizon is fixed to T = 1s. The length of the first shooting interval corre-
sponds to the sampling time of 100ms and the second to 900ms. We use the same
software stack as in Section 6.1: The numerical simulations are carried out with the
NMPC framework MLI [113]. For integration and sensitivity generation, the SolvIND
integrator suite is used and the QPs are solved by qpOASES [34].

Similar to Section 6.1, we compare our proposed MLI-controller with a typical state-
of-the-art control setup for small MGs: The generators are equipped with an integral
controller for steady-state error elimination of the frequency with a settling time of
approximately 20s and a sampling time of 100ms. The voltage setpoint V ref is kept
constant during the full simulation time.

The sampling time is set to 100ms, since it is the minimal realistic update time. We
focus on mixed level schemes with Level D as the main iteration scheme and Level
B to generate intermediate feedback. In all experiments, the preparation time of
Level B was below 100ms and it was never necessary to use Level A as a fallback.
Since the Gauß-Newton approximation of the Hessian prevents that second-order
derivatives have to be evaluated in the preparation phase of Level D, the difference
in computation time between Level D and C is low. Therefore, Level C is scheduled
very rarely and its impact is low.

Figure 6.9a shows the performance of the proposed MLI controller for the load jump
scenario. For comparison, the traditional control approach is shown in blue. The
MLI controller steers back the frequency faster with a lower initial drop after the
unforeseen disturbance. The voltage gets stabilized faster and the steady state off-
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set is eliminated. In the beginning, the battery follows the setpoints and does not
contribute to load sharing. After the load drop, the fast reacting dynamics of the bat-
tery are used to stabilize the system. Since the overall load exceeds the operational
bounds of the generators, the battery temporarily deviates from its reference value
and instead serves the necessary additional load. In contrast to this, the integral-
controller is not able to obey the operational limits of the generators. If there are no
safety measures installed, the generators are overloaded, which may cause physical
damage. In Figure 6.9b, the computation time and the scheduling of the different
MLI levels are shown. In the beginning, the system is in a steady state and the com-
putation time is short. After the load jump at t = 1s, the system is in a transient phase
and the computation time rises sharply, which leads to less Level D evaluations. Af-
terwards, the system gets steered back to a steady state and the computation time
decreases. As the evaluation time for Level B is always below the sampling time, no
Level A occurs.
In the load ramp scenario, shown in Figure 6.10, the load gradually increases. There-
fore, the initial drop in frequency and voltage is lower. Nevertheless, the MLI con-
troller is able to operate the system closer to the nominal values of frequency and
voltage during the transient phase. Since the linear ramp is unscheduled, the con-
trol is adjusted on every sampling interval and oscillations are created. After t = 6s,
the load is constant again and frequency and voltage are stabilized immediately. In
contrast, the I-controller takes more time to steer the frequency back to 1 p.u. and a
voltage offset remains. Similar to the load jump scenario, the I-controller is not able
to respect the operational bounds.
The computation times, depicted in Figure 6.10b, increase after the start of the load
ramp t = 1s. In contrast to the load jump scenario, they stay high for longer time,
since the system is constantly in a steady state.

Summary

In this chapter, we investigate the capabilities of the MLI on the basis of two ex-
emplary MGs. The simulations on the first example showed that the higher MLI
levels are able to achieve a good control performance, but are computational very
expensive. The lower levels enable very low sampling times, but may provide sub-
optimal feedback. In the second example, we showed that it is possible to improve
the control performance significantly by a mixed level scheme in real-time. With the
ALC-Time algorithm, MGs of realistic size can be controlled reliably even in chal-
lenging load profiles. Since not all levels are involved in this scheme, it can be as-
sumed that the approach is transferable to even bigger models.
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a) Control performance of the MLI-controller in comparison to a traditional control approach. In the
top row, the frequency and the voltage at the load is depicted. In the bottom row, the apparent power
of the generators and the battery is shown.
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Figure 6.9: Simulation results for load jump scenario. The MLI-controller is able to steer
frequency and voltage back to the nominal value faster and with a lower initial drop, while
respecting the operational limits.
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Figure 6.10: Simulation results for linear load ramp scenario. The MLI-controller is able to
steer frequency and voltage back to the nominal value faster and with a lower initial drop,
while respecting the operational limits.
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Chapter 7

Moving Horizon Estimation

Many industry applications require fast and accurate state and parameter estima-
tion based on a stream of ongoing measurements. In particular, the performance
of feedback control strategies such as Nonlinear Model Predictive Control (NMPC)
significantly depends on the quality of the current state estimation. While for un-
constrained systems with linear dynamics Kalman Filters [39] are an adequate tool,
there exists a variety of methods for nonlinear state estimation. An overview of clas-
sical methods can be found in [22]. Many of them are based on particle filters [41] or
are extensions of the linear Kalman Filters [8].

Moving Horizon Estimation (MHE), as presented in [92, 93], is an approach that
stands out due to its flexibility, as it is capable of handling nonlinear systems even
with constraints. In MHE, the estimation process is formulated as an optimization
problem defined on a moving time horizon, which includes a limited number of
past measurements. This approach is closely related to NMPC, as both methods are
based on a flexible optimization framework and solve problems in a moving horizon
fashion. The main difference is that NMPC uses a dynamic model to predict the fu-
ture behavior of the process, whereas MHE uses a similar model to reconstruct the
past behavior. Therefore, the approaches can be seen as dual counterparts to each
other. NMPC and MHE are usually operated in combination in a closed feedback
loop. They are coupled by the current estimation of the system state, which is com-
municated from the estimator to the NMPC solver.

Even though MHE offers a flexible estimation framework and can outperform Kalman
Filter based approaches [50], its main drawback is the computational complex-
ity which arises from solving the underlying optimization problems. However, re-
search has led to major algorithmic improvements, which render these methods
employable for an increasing number of applications. In particular, the RTI for
MHE (RTI-MHE) as introduced in [28, 59] allows a reduction of the computational
complexity from solving a complete optimization problem to performing a single
Gauß-Newton step. It uses the algorithmic ideas of the Real-Time Iteration (RTI)
for NMPC as introduced Chapter 4 and transfers them to MHE. Nevertheless, the

109



CHAPTER 7 MOVING HORIZON ESTIMATION

numerical experiments in Chapter 8 show that the RTI-MHE is not able to provide
sufficiently accurate state estimates within the sampling time of Microgrids (MGs).

The Multi-Level Iteration (MLI) as described in Chapter 5 accelerates the RTI even
further by exploiting contractivity properties of Newton-type methods. It reduces
the number of required function evaluations without sacrificing convergence prop-
erties. This enables the application of NMPC for processes with high sampling fre-
quencies. Linear MHE and zero-order MHE [7] are approaches, which apply similar
ideas as the MLI to state estimation. They are using fixed linearizations respectively
zero-order dynamics updates instead of full Jacobian evaluations in order to reduce
the computational effort in each sampling time considerably.

In this chapter, we develop a novel general framework for online parameter and state
estimation based on MHE. The fundamental idea is to apply update formulas to the
MHE problem similar to the MLI for Model Predictive Control (MPC). This allows
the straightforward definition of MHE schemes tailored to a wide range of applica-
tions. However, the classical MHE problem depends on constantly changing online
data and therefore the MLI update formulas are not directly applicable. We present
a new MHE problem formulation, which allows us to decouple linearizations from
dynamically changing online data. This reformulation enables us to reuse the com-
putationally expensive linearizations of the system. We define a new hierarchy of up-
date formulas for RTI-MHE, which are adjusted to the special structure of the MHE
problem. Furthermore, we describe how to apply the MLI update formulas specifi-
cally to the problem parts which are expensive to evaluate, similar to the mixed-level
updates introduced in [38]. We prove that the newly introduced levels converge un-
der standard assumptions using the convergence theory of Newton-type methods.
In contrast to the classical RTI-MHE, our new framework is able to provide highly
accurate state estimates for realistic sized MGs in real time. In Chapter 8, we show
its performance in closed and open loop control setups after a major disturbance
in the MG. We published the mathematical developments of this chapter and the
numerical results presented in Chapter 8 in [47].

7.1 The Principle of MHE

In a MHE setup, the simulation time is divided into a uniform grid of sampling points
0 = t0 < t1 < ·· · < tk < ·· · with a fixed sampling time ∆t = tk+1 − tk . Three different
components are interacting with each other: the process represents the simulated
reality. At every sampling point tk , control inputs qk ∈ Rnu are received and mea-
surements ηk ∈Rnh of the process are carried out.
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Figure 7.1: Exemplarily MHE process. The measurements are depicted by the black dots, the
past controls are shown in blue and the model representation of the process on the horizon
[tk−M , tk ] is depicted in red. The state estimate ξk is given by the state of the model on the
current time point tk .

The estimator uses these measurements to compute an estimate ξk ∈ Rnx of the
current process state. It solves an optimization problem in order to fit a model of
the process to the past M +1 ∈N measurements ηk−M , · · · ,ηk and M control inputs
qk−M , · · · , qk . The principle of MHE is depicted in Figure 7.1.

The controller is responsible to provide control inputs to the system. There are a
lot of different methodologies available to generate these control inputs, like NMPC
described in Chapter 4. Typically, there is a distinction between a closed loop and an
open loop setup. In an open loop setup, the controller applies a predefined sequence
of controls without consideration of ongoing state measurements. Therefore, the
controller is not able to react to unforeseen disturbances. In contrast to that, the
controller receives a feedback signal in a closed loop setup. It generates controls
qk ∈Rnu based on the current state estimate ξk , which is fed back to the process and
applied in the interval [tk , tk+1). The signal flow of a closed loop control setup with
estimator is depicted in Figure 7.2.
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Figure 7.2: Signal flow of closed loop MPC setup with state estimator.

7.1.1 Process Model

Similar to Section 4.2, the model of the process is given as an autonomous Differential
Algebraic Equation (DAE) system of differentiation index 1

ẋ(t ) = f (x(t ), z(t ),u(t )), (7.1a)

0 = g (x(t ), z(t ),u(t )), (7.1b)

x(t0) = x0 (7.1c)

with differential states x ∈Rnx , algebraic states z ∈Rnz , and control inputs u ∈Rnu . In
order to ensure that the solution is well-defined, continuous and all arising deriva-
tives exist, we assume that the right hand side functions f :Rnx ×Rnz ×Rnu →Rnx and
g :Rnx ×Rnz ×Rnu →Rnz are sufficiently smooth. In addition, a smooth measure-
ment function h : Rnx ×Rnz → Rnh defines the observable quantities of the process,
which are measured at every sampling point.

Similar to Chapter 4, we use a relaxed version of the original DAE system as described
in Section 4.2.1. We denote the differential and algebraic states of the solution of the
relaxed DAE system on the interval [tk , tk+1] by x(t ; tk , x0, z0, q) and z(t ; tk , x0, z0, q)
with constant controls q ∈ Rnu and an initial algebraic state z0. In the relaxed DAE
system, the algebraic function (7.1b) is replaced by

0 = g (x(t ), z(t ), q)−e
−α t−tk

tk+1−tk g (x0, z0, q) (7.2)

with a positive damping factor α ∈ R. This allows us to treat the initial algebraic
states z0 as independent variables and enables us to use them directly in the objec-
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tive function or employ bounds. If we want to evaluate the state of the system at the
end of the interval tk+1, we omit the start tk and end time tk+1 in this notation. Since
we are dealing with an autonomous DAE on an interval with a fixed length ∆t , the
solution is independent of tk+1. The assumption that the right hand side functions
f and g are smooth, ensures that the evaluation functions x and z are well-defined
and smooth too.

7.1.2 MHE Problem Formulation

In the context of MHE, we consider an estimation horizon that includes the last
M +1 measurements ηk−M , . . . ,ηk taken at times tk−M , . . . , tk and the last M controls
qk−M , . . . , qk−1. This leads to the MHE problem, which we want to solve at the sam-
pling point tk

min
v=(sx ,sz ,w)

1
2

∥∥x̄k−M − sx
0

∥∥2
Σ−1

arr,k−M
(7.3a)

+1
2

M∑
i=0

∥∥ηk−M+i −h(sx
i , sz

i )
∥∥2
Σ−1

meas
(7.3b)

+1
2

M−1∑
i=0

‖wi‖2
Σ−1

proc
(7.3c)

s.t.

si+1 = x(sx
i , sz

i , qk−M+i )+wi , i = 0, . . . , M −1, (7.3d)

0 = g (sx
i , sz

i , qk−M+i ), i = 0, . . . , M . (7.3e)

The optimization variables sx
i ∈ Rnx and sz

i ∈ Rnz represent the differential and alge-
braic variables at the sampling time tk−M+i . The variables wi ∈ Rnx represent pro-
cess state noise. ‖x‖2

Σ = x>Σx denotes a weighted Euclidean norm with a symmetric,
positive definite matrix Σ. The matrices Σarr,k ,Σmeas and Σproc will be discussed in
the next section. The estimated state of the process corresponds to the value of the
last differential variable ξk = sM at the solution of the Nonlinear Programming Prob-
lem (NLP). The variable

v = (sx , sz , w) ∈R(M+1)nx ×R(M+1)nz ×RMnx (7.4)

is a collection of the optimization variables with sx = (sx
0 , · · · , sx

M ), sz = (sz
0 , · · · , sz

M )
and w = (w0, · · · , wM−1). The constraints (7.3e) are referred to as consistency con-
ditions. They ensure that every feasible point of the NLP corresponds to a solution
of the original DAE system (7.1), even though the modified system with the relaxed

113



CHAPTER 7 MOVING HORIZON ESTIMATION

algebraic equation (7.2) is used. The matching conditions (7.3d) ensure that the pro-
cess is, up to the process state noise, continuous at the sampling points.

Objective Function

The objective function is composed of multiple maximum-likelihood terms. The
fundamental assumption is that measurement errors and plant-model mismatches
behave like additive, independent and normally distributed random variables. We
derive the maximum-likelihood term in a general way. Given a set of data points
ρ0, · · · ,ρn ∈ R, we assume that ρi ∼N (si ,σ2

i ) for a parameter si ∈ R and a fixed stan-
dard deviation σi ∈ R for i = 1, · · · ,n. We want to find a set of parameters that max-
imizes the probability of the data points ρ0, · · · ,ρn , i.e. we want to maximize the
likelihood function. Since we assume the data points as independent, the likelihood
function is

L(s) =
n∏

i=0
p(ρi |si ) =

n∏
i=0

1√
2πσ2

i

exp

(
− (ρi − si )2

2σ2
i

)
, (7.5)

where p(ρi |si ) is the conditional probability. We exploit the monotonicity of the log-
arithm to derive the objective function

argmax
s

L(s) =argmax
s

ln(L(s)) (7.6a)

=argmax
s

−
n∑

i=0

1

2σ2
i

(
ρi − si

)2 (7.6b)

=argmin
s

1

2
‖ρ− s‖2

Σ−1 (7.6c)

with a positive definite diagonal matrix Σ= diag(σ2
0, · · · ,σ2

n). More details on nonlin-
ear least-squares problems can be found, e.g., in [80].

The three maximum-likelihood terms of the objective function (7.3a) - (7.3c) are mo-
tivated by different optimization targets. The term (7.3a) of the objective function is
called arrival cost and is used to include information from measurements prior to
the current estimation horizon. It is assumed that the differential state at the begin-
ning of the estimation horizon sx

0 is normally distributed with expected value x̄k−M

and covariance Σarr,k−M . There exist different strategies on how to chose x̄k−M and
the corresponding covariance matrix Σarr,k−M . We will cover the update procedure
in Section 7.5.
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The term (7.3b) aims to minimize the difference between the measurements and the
model response. We assume that the measurement errors are normally distributed
ηi ∼N (h(sx

i , sz
i ),Σmeas) with a fixed covariance matrix Σmeas.

The process state noise wi is introduced to take model errors and unforeseen dis-
turbances into consideration. We interpret the process state noise as normally dis-
tributed random variables wi ∼N (0,Σproc), leading to the corresponding maximum-
likelihood term (7.3c).

Remark 7.1
Note that the structure of the MHE problem is very similar to a discretized Optimal
Control Problem (OCP) using multiple shooting [14], as presented in Chapter 4.
However, length and number of the shooting intervals are in case of MHE not a re-
sult of the discretization, but are specified by the experimental setup. The rate of
measurements and the constant control inputs are fixed by the primary controller
respectively by the controlled hardware.

Remark 7.2
While the covariance matrix for the arrival cost Σarr,k−M is updated every iteration,
the covariance matrices for the measurements Σmeas and the process state noise
Σproc needs to be defined in advance. It is part of the modeling process and allows
to include prior knowledge about the expected error range of differential states and
plant-model mismatches.

Compact Notation of MHE Problem

Overall, the MHE problem solved at time tk is defined by the online data con-
sisting of the measurements ηk := (ηk−M , . . . ,ηk ), the past control trajectory qk :=
(qk−M , . . . , qk−1), and the arrival cost state xk−M with the corresponding covariance
matrix Σarr,k−M . We summarize the problem defining data in the tuple

yk := (qk ,ηk , xk−M ,Σarr,k−M ). (7.7)

This allows us to write NLP (7.3) in the compact form:

MHE(yk ) := min
v=(sx ,sz ,w)

1
2‖`(v, yk )‖2

Σ−1
k

(7.8a)

s.t. b(v, qk ) = 0. (7.8b)
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Here, the different residual terms of the objective function (7.3a) – (7.3c) are summa-
rized in the function

`(v, yk ) =




xk−M − sx
0

ηk−M −h(sx
0 , sz

0 )
...

ηk −h(sx
M , sz

M )
w




. (7.9)

The matrix Σk is a block diagonal matrix assembled from the covariance matrices
Σarr,k−M ,Σmeas and Σproc of the individual least squares terms. The matching condi-
tions (7.3d) together with the algebraic consistency condition (7.3e) are collected in
the function b which depends on the optimization variables as well as on the past
control trajectory qk . We denote the primal solution of MHE(yk ) by v∗(yk ).

Remark 7.3
For notational convenience, the inclusion of simple bounds on the state variables
sx

i , sz
i is omitted in the MHE formulation. However, the presented framework is ex-

tensible to treat simple bounds as well as path constraints. A detailed derivation can
be found for example in [113].

7.2 A Generalized Gauß-Newton Method Solution Framework

NLP (7.8) is a constrained nonlinear least-squares problem and can be solved with
the Sequential Quadratic Programming (SQP) method described in Section 4.5. How-
ever, since it has a least-squares objective function, the generalized Gauß-Newton
method is more suitable. In addition to its favorable statistical properties [13], it uses
an approximation of the Hessian that contains only first-order derivatives and there-
fore involves lower computational costs. Similar to the SQP method, a sequence of
iterates (v j ,λ j ) j∈N is generated by solving Quadratic Programms (QPs) of the form

QP(v j , yk ) :=min
∆v

1

2
∆v>A(v j , yk )∆v +a(v j , yk )>∆v (7.10a)

s.t. b(v j , qk )+B(v j , qk )∆v = 0. (7.10b)

The matrix

A(v j , yk ) =∇v`(v j )>Σ−1
k ∇v`(v j ) (7.11)
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is the Gauß–Newton approximation of the Hessian of the Lagrange function of MHE(yk )
and a(v j , yk ) = ∇v`(v j )>Σ−1

k `(v j , yk ) is the gradient of the objective function. Note
that the online data yk enters only linearly in the residual function ` and thus ∇v`

is independent of yk . The Jacobian of the constraints is denoted by B(v j , qk ) =
∇v b(v j , qk )>. The iterates are updated by the primal-dual solution (∆vQP,λQP) of
QP(v j , yk ) by

v j+1 = v j +∆vQP, λ j+1 =λQP. (7.12)

Note that for the regular Gauß-Newton method, the dual variables are not necessary.
However, we will need them in Section 7.4, when we introduce MLI updates.

7.2.1 Real-Time Iterations for MHE

The exact primal solution v∗(yk ) of MHE(yk ) delivers an estimate of the current sys-
tem state, which is optimal in the sense of the objective function, but the computa-
tional demand for solving problem (7.8) might be prohibitively high. Depending on
the initialization, many iterations may be necessary to achieve convergence or the
method might not converge at all. Therefore, using the exact solution is not feasible
for applications with fast dynamics and high sampling frequencies.

The RTI-MHE [58, 28] is an established method to reduce the computational effort
drastically. It is an extension of the RTI for NMPC as described in Section 4.6 or
[24]. The main idea of RTI-MHE is to interpret MHE(yk ) as part of a continuously
evolving sequence of NLPs, parametrized by the online data yk . This allows an ef-
ficient transition from an approximate solution of MHE(yk ) to an approximate so-
lution of MHE(yk+1). Given an initial guess v ′ of the solution of MHE(yk+1) only
a single QP(v ′, yk+1) is solved at time tk+1. The result ∆vQP is used as a correction
towards the solution of MHE(yk+1) by

vk+1 := v ′+∆vQP. (7.13)

The new initial guess for the next iteration is constructed from vk+1 by a shifting
strategy, which is described below. The quality of the solution and thus state estimate
depends on a suitable choice of v ′, since the state estimate ξk is directly taken from
vk+1. Similar to the RTI, the individual iterations are separated in a preparation, a
feedback, and a transition phase to reduce the feedback time even further. The main
loop of the RTI-MHE is summarized in Algorithm 7.1.
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Algorithm 7.1: MHE-RTI main loop

loop
preparation phase:
evaluate h(s′xi , s′zi ) for i = 0, · · · , M and ∇v`(v ′),B(v ′, qk ),b(v ′, qk )
wait for state measurement ηk to complete yk

feedback phase:
evaluate A(v ′, yk ), a(v ′, yk )
solve QP(v ′, yk )
submit ξk = s

′x
M +∆sx

M to controller
transition phase:
wait for applied control qk from controller to complete qk+1

v ′ = Pshift(v ′+∆vQP , qk )
k ← k +1

end loop

Preparation Phase The essential new data contained in yk+1 is the measurement
ηk+1, which is available at time tk+1. The rest of the online data is already available
at time tk , contained in yk in a shifted fashion. As ηk+1 enters only linearly in the
function `, most of the QP data can be evaluated in advance. The MHE preparation
phase comprises the preparation process for QP(v ′, yk+1), mainly consisting of the
evaluation of the constraint function b and its Jacobian. Since it includes the inte-
gration of a DAE system, it requires the majority of the computational effort. The
measurement function h(s

′x
i , s

′z
i ) and ∇v`(v ′) is also evaluated, but since no integra-

tion is involved its computational effort is low. The preparation phase is started right
after qk is determined.

Feedback Phase The MHE feedback phase starts as soon as the measurement ηk+1

is available. It includes the evaluation of the objective function residual and the so-
lution of QP(v ′, yk+1). The result ∆v is used to update the primal iteration variables
by

vk+1 = v ′+∆v (7.14)

and the state estimate ξk+1 is directly taken from vk+1. The computational effort of
the feedback phase is usually significantly lower than the preparation phase, because
no integration of the dynamical system is involved. Thereby, the time delay between
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the arrival of new measurements ηk+1 and the computation of the estimate ξk+1 is
greatly reduced.

Transition Phase The linearization point v ′ needs to be sufficiently close to the solu-
tion of MHE(yk+1) in order to get an accurate approximation of v∗(yk+1). Therefore,
the performance of the RTI-MHE depends on finding a good initialization. This is
achieved by a shifting strategy. Since the online data yk+1 mainly consists of the on-
line data yk shifted by one sampling interval and the time horizon of MHE(yk+1) is
the shifted horizon from problem MHE(yk ), it is a canonical choice to initialize the
primal variable v ′ of problem MHE(yk+1) by forward shifting the approximate solu-
tion vk of problem MHE(yk ). The new differential and algebraic states, which are
entering the horizon, are generated by a forward integration using the control feed-
back qk . The shift map v ′ = Pshift(vk , qk ) is defined by

s′xi :=
{

sx
i+1 for i ≤ M −1,

x(s′xM−1, s′zM−1, qk ) for i = M ,

s′zi :=
{

sz
i+1 for i ≤ M −1,

z(s′xM−1, s′zM−1, qk ) for i = M ,

w ′
i :=

{
wi+1 for j ≤ M −2,

0 for i = M −1.

(7.15)

The new process state noise variable wM−1, which enters at the end of the horizon,
is initialized with 0 since we assume that the model is a proper representation of the
controlled plant and therefore that the plant-model mismatch is low. The tempo-
ral communication between the state estimator, the controller, and the controlled
process is depicted in Figure 7.3.

7.3 Modified RTI-MHE Formulation

Even though the RTI-MHE allows to reduce the computational effort greatly, it has
the same drawback as the regular RTI. In every iteration, the complete QP needs to
be evaluated, which includes elaborate integration and sensitivity generation. This
renders the RTI-MHE too slow for systems with fast dynamics and high sampling fre-
quencies. In Chapter 8 we show that the RTI-MHE is not able to provide sufficiently
accurate state estimates within the sampling time of MGs.
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Process
time

Controller

Estimator

tk

ηk

ξk
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tk+1

ηk+1

ξk+1

qk+1

RTI feedback phase k RTI preparation phase k +1

MHE feedback phase k MHE preparation phase k +1

Figure 7.3: Temporal communication of process, estimator, and controller in the RTI-MHE
algorithm. The MHE preparation phase starts at the end of the RTI feedback phase, when
the applied control is available.

In this chapter, we develop a novel framework for online state and parameter estima-
tion, which is able to provide highly accurate estimates in short sampling intervals.
We define a new set of update formulas, which reduce the computational effort of
the individual RTI-MHE iterations greatly. As we show in Chapter 8, they are nec-
essary to provide state estimates in real time. The fundamental idea is to reuse lin-
earizations and only apply MLI update formulas in every iteration, similar to MLI for
NMPC. The principle of MLI and the individual update formulas are explained in
detail in Chapter 5. However, the RTI-MHE algorithm is not flexible enough to allow
the application of MLI update formulas directly. This has two major reasons:

• The different levels rely on reference values B for the constraint Jacobian
B(vk , qk ), which is dependent on sequence of past controls qk . The controls
qk+l for l ≥ 1 correspond to past controls qk in a shifted fashion together with
the newly applied controls qk , · · · , qk+l−1. Since the distance between qk+l and
qk can be large, the reference value B may be outdated already after one itera-
tion. In order to make the MLI update formulas compatible, we need to ensure
that the linearizations are reusable over multiple sampling intervals.

• When we operate multiple levels in parallel, it is necessary to start the prepara-
tion of QP(vk+l , yk+l ) already at time tk . However, yk+l is not determined yet
and the RTI-MHE is not able to incorporate future control actions. To apply
MLI update formulas in parallel fashion, a methodology is required to prepare
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QP(vk+l , yk+l ) over multiple intervals based on a prediction of the future con-
trol actions.

To address these issues, we propose the following modifications of the RTI-MHE:

• The computational expensive QP data, i.e. the constraint function b and its
Jacobian B , is decoupled from the constantly changing online data by the
introduction of auxiliary control variables and a Control Trajectory Embed-
ding (CTE) constraint.

• A generalized shift map is introduced in order to shift optimization variables
over multiple intervals.

• Computations are moved from the preparation phase to feedback phase in or-
der to enable the algorithm to react to changes in the online data.

We will discuss these modifications in this section. The resulting MHE problem will
be equivalent to the original one, but it will be treatable by MLI update formulas. The
application of MLI to the modified RTI-MHE will be discussed in the Section 7.4.

7.3.1 Control Trajectory Embedding (CTE)

The RTI decouples the system dynamics from the constantly changing online data by
the introduction of the Initial Value Embedding (IVE), as described in Chapter 4. This
allows not only to separate the computations in a preparation and a feedback phase,
but also the application of MLI update formulas. To apply MLI update formulas to
MHE, we transfer the idea of IVE to the RTI-MHE. In the classical RTI-MHE formula-
tion (7.8), the critical online data are the past controls qk+1 = (qk−M+1, . . . , qk ), since
they enter the constraint function (7.8b). The resulting linearizations do not contain
any sensitivity information with respect to the controls and therefore it is not pos-
sible to adapt to more recent online data. The past measurements ηk+1 as well as
the arrival cost x̄k−M and its covariance matrix Σarr,k−M are changing too, but they
enter the objective function algebraically only and can be evaluated in the feedback
phase. We will describe how to deal with them in Section 7.3.3.

To decouple the constraint function b from the online data qk+1, we introduce aux-
iliary control decision variables sq = (sq

0 , . . . , sq
M−1) and in the following they will be

collected in

v = (sx , sz , sq , w) ∈R(M+1)nx ×R(M+1)nz ×RMnu ×RMnx (7.16)
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too. We modify problem MHE(yk ) by replacing all occurrences of qi in (7.3b), (7.3d),
and (7.3e) by the decision variables and introduce an additional linear CTE con-
straint

c(v, qk ) = 0 (7.17)

with

ci (v, qk ) = sq
i −qk−M+i for i = 0, . . . , M −1. (7.18)

We write the resulting modified NLP in the compact form

�MHE(yk ) := min
v=(sx ,sz ,sq ,w)

1
2‖`(v, yk )‖2

Σ−1
k

(7.19a)

s.t. b(v) = 0, (7.19b)

c(v, qk ) = 0 (7.19c)

and denote its solution by ṽ∗(yk ). The corresponding QP has the structure

Q̃P(v, yk ) :=min
∆v

1
2∆v>A(v, yk )∆v +a(v, yk )>∆v (7.20a)

s.t. b(v)+B(v)∆v = 0, (7.20b)

c(v, qk )+C∆v = 0. (7.20c)

Note that c(v, qk ) is linear in v and therefore its Jacobian C is constant. The modified
problem �MHE(yk ) is equivalent to the original problem MHE(yk ). With this modifi-
cation, we achieve that constraint (7.19b) is independent of the online data yk . This
allows us to use the evaluations of �MHE(yk ) not only to prepare for �MHE(yk+1) but
for multiple problems �MHE(yk+l ) with l > 1.

7.3.2 Shift Variable Initialization

In the context of MLI for MHE, the approximate solution of �MHE(yk+l ) is prepared
based on the approximate solution of �MHE(yk ) with l ≥ 1 and therefore we have to
modify the primal variable shift accordingly. To deal with a shift over l sampling
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intervals, we introduce a generalized shift map v ′ = P l
shift(v, qk ) which is defined by

s′qj :=
{

sq
l+ j for j ≤ M − l −1,

qk for M − l −1 < j ≤ M −1,

s′xj :=
{

sx
l+ j for j ≤ M − l ,

x(s′xj−1, s′zj−1, s′qj−1) for M − l < j ≤ M ,

s′zj :=
{

sz
l+ j for j ≤ M − l ,

z(s′xj−1, s′zj−1, s′qj−1) for M − l < j ≤ M ,

w ′
j :=

{
wl+ j for j ≤ M − l −1,

0 for M − l −1 < j ≤ M −1.

(7.21)

This shift duplicates the last available control qk to the new part of the horizon and
uses piece wise integration to generate corresponding state variables that satisfy the
matching condition. This way, the shift has a feasibility preserving property, i.e.,
feasibility of vk for problem �MHE(yk ) implies feasibility of P l

shift(vk , qk ) for problem
�MHE(yk+l ). Additionally, all but the last l components of the objective residual func-
tion `(P l

shift(vk , qk ), yk+l ) are a shifted version of the residual at `(vk , yk ). However,
there are multiple strategies to initialization the optimization variables on the new
part of the horizon. They are discussed in [24, Chapter 4] or [57, Chapter 4].

tk−M

s0

tk−M+1

s1

tk−M+2

s2

tk

sM

tk−M+2

s′0 = s2

tk

s′M−2 = sM

tk+1

s′M−1

tk+2

s′M

Figure 7.4: Illustration of the estimation horizon shift and the induced variable shift map
P l

shift with l = 2.

Note that the proposed variable initialization will violate the CTE constraint (7.17) if
the predicted controls are not correct. However, as we assume that the shift initial-
izes the primal variable close to the true solution and we therefore always apply full
Gauß-Newton steps without any adaptive stepsize globalization strategy, the CTE
constraint is satisfied after the first QP step, as it is linear in v .
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Remark 7.4
The proposed way to initialize the newly introduced control values at the end of the
estimation horizon is only one possibility. A different approach to initialize the new
state variables is to duplicate the last known states. This is computationally cheaper,
as no integration is needed, but additional infeasibilities at the new nodes are intro-
duced.

7.3.3 Modified Feedback Phase

The CTE constraint allows to decouple the dynamical system from the controls qk ,
but the objective function is still dependent on the measurements ηk as well as the
arrival cost x̄k−M and its covariance matrix Σarr,k−M . In contrast to the standard
RTI-MHE, the objective function cannot be evaluated in the preparation phase, since
not all the data is available. However, the objective function

φ(v, yk ) = 1

2
‖`(v, yk )‖2

Σ−1
k

(7.22)

does not include the integration of the dynamical system and is effortless to eval-
uate. Therefore, we only evaluate the gradient of the residual function ∇v`(v) in
the preparation phase, since it does not depend on yk . The Hessian approximation
A(v, yk ) =∇v`(v)>Σ−1

k ∇v`(v) and gradient a(v, yk ) =∇v`(v)>Σ−1
k `(v, yk ) are assem-

bled in the feedback phase. This increases the computational effort of the feedback
phase, but allows to react to the online data yk . Since it includes only algebraic op-
erations, the additional effort of the feedback phase is low.
The pseudocode of the modified RTI-MHE with CTE constraint is shown in Algo-
rithm 7.2. Since all the QP data is evaluated in every iteration, the algorithm is equiv-
alent to the standard RTI-MHE.

CTE in Multi-Level Iterations

The reason for the introduction of the CTE constraint and the generalized shift map
P l

shift for l > 1 is that in the context of MLI the preparation of the QP data may take
l > 1 sampling intervals and thus it is necessary to start the preparation for prob-
lem �MHE(yk+l ) already at time tk . Due to the introduction of auxiliary control vari-
ables, Q̃P(v ′

k+l , yk+l ) contains sensitivities with respect to the not finally determined

controls qk+1, . . . , qk+l−1. This allows to prepare Q̃P(v ′
k+l , yk+l ) based on a predicted

control trajectory, which is in this case a duplication of the last known control qk .
Deviations between the predicted controls and the actual applied control are taken
into account in the QP solution step. This way, CTE can compensate for the lack of
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Algorithm 7.2: Modifed RTI-MHE main loop

loop
preparation phase:
evaluate B(v ′),b(v ′),∇v`(v ′)
wait for state measurement ηk to complete yk

feedback phase:
evaluate residual `(v ′, yk )
evaluate A(v ′, yk ) =∇v`(v ′)>Σ−1

k ∇v`(v ′), a(v ′, yk ) =∇v`(v ′)>Σ−1
k `(v ′, yk )

solve Q̃P(v ′, yk )
submit ξk = s′xM +∆sx

M to controller
transition phase:
wait for applied control qk from controller to complete qk+1

v ′ ← P 1
shift(v ′+∆vQP , qk )

k ← k +1
end loop

knowledge of the final correct control values in the preparation phase and thus im-
proves the resulting estimation quality. The following academic example illustrates
this effect.

Example 7.1 (CTE vs. Predicted Controls)
Consider the dynamic system ẋ(t ) = u with the estimation horizon [tk − 2, tk ] dis-
cretized with 2 equidistant shooting intervals and nodes tk −2, tk −1, tk . Let h(x) = x
be the trivial measurement function and we assume that the measurements η are
normally distributed η− h(x) ∼ N (0,1). For simplicity, we consider the resulting
MHE problem without arrival cost term. As both the dynamics and the measure-
ment function are linear, one full Gauß-Newton step corresponds to the solution of
�MHE(yk ). Suppose the preparation of the solution step of MHE(yk+2) is based on
data available at time tk with the predicted controls q̃k , q̃k+1. This leads to the opti-
mization problem

min
sx∈R3

1
2

∥∥∥∥∥∥∥




sx
0 −ηk

sx
1 −ηk+1

sx
2 −ηk+2




∥∥∥∥∥∥∥

2

s.t.
(

sx
0 + q̃k − sx

1
sx

1 + q̃k+1 − sx
2

)
= 0,
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which, after eliminating sx
0 and sx

1 , gives the estimate

sx∗
2 =

(
1, 1, 1

)

∥∥∥
(
1, 1, 1

)∥∥∥
2 ·



ηk + q̃k + q̃k+1

ηk+1 + q̃k+1

ηk+2


 .

Here · indicates the scalar product. The solution sx∗
2 depends on the predicted con-

trols q̃k and q̃k+1 and it is obvious that the estimate will be wrong if the predicted
controls are not correct. On the other hand, the corresponding MHE problem with
CTE constraint �MHE(yk+2) reads as

min
sx∈R3

sq∈R2

1
2

∥∥∥∥∥∥∥




sx
0 −ηk

sx
1 −ηk+1

sx
2 −ηk+2




∥∥∥∥∥∥∥

2

s.t.




sx
0 + sq

0 − sx
1

sx
1 + sq

1 − sx
2

sq
0 −qk

sq
1 −qk+1


= 0

which leads to the estimate

sx∗
2 =

(
1, 1, 1

)

∥∥∥
(
1, 1, 1

)∥∥∥
2 ·



ηk +qk +qk+1

ηk+1 +qk+1

ηk+2




with the correct controls qk . Consequently, although both linearizations are pre-
pared at time tk , only the CTE version gives the correct estimate as it can incorporate
a correction accounting for possibly wrongly predicted controls in the QP solution
step.

Remark 7.5
The proposed CTE allows to prepare �MHE(yk+l ) at time tk by including sensitivities
with respect to the auxiliary control variables sq . This allows to react to deviations
between the predicted and the true, but at preparation time not determined controls
qk+1, . . . , qk+l−1. Contrary to that, the previous controls qk+l−M , . . . , qk are already de-
termined and the resulting auxiliary control updates∆sq

0 , . . . ,∆sq
M−l−1 will be zero. In

case that the necessary number of sampling intervals l is already known at the start
of the preparation phase, it is possible to eliminate the corresponding auxiliary vari-
ables from the problem in advance. However, the proposed CTE formulation is more
flexible and can also be applied when it is unclear at which sampling time the pre-
pared linearizations will be used. Such a situation occurs, e.g., when implementing
an MLI scheme for MHE with fully automated level choice as presented in Section
5.3 and used in [103] for NMPC.
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7.4 Multi-Level Iteration for Moving Horizon Estimation

In the previous section, we proposed modifications to the standard RTI-MHE algo-
rithm in order to make the underlying QPs compatible with the MLI update formu-
las. In this section, we describe how the update formulas are transferred from NMPC
to MHE. However, since MHE is structural similar to NMPC, the MLI update formu-
las are similar too. They comprise four hierarchical levels of descending compu-
tational complexity, denoted by the letters A, B, C, and D. While on the highest level
(Level D) all linearizations are evaluated at the current primal variable, the lower lev-
els only update a subset of the linearization data and instead use reference constraint
evaluations and reference constraint Jacobians. Every level can be operated as a sep-
arate MHE scheme and is working on its own set of variables. We will first describe
the levels individually and afterwards how they are combined in a holistic scheme.
In this section, we focus on Level B, C, and D. We do not consider Level A, because
it refers to linear MHE and is already extensively studied, see e.g. [5]. The different
update levels are inspired by the existing MLI levels for NMPC feedback generation,
for which the convergence properties are discussed in [15, 113] and Chapter 5.

The constraint function b of problem (7.8) is a collection of dynamical matching
conditions (7.3d) and algebraic consistency conditions (7.3e). Since the dynamical
matching conditions include the integration of a dynamical system, they are expen-
sive to evaluate. In contrast to that, the consistency conditions are purely algebraic
and therefore the effort to evaluate them and their Jacobians is comparatively low.
The MLI update formulas for NMPC are applied to the full constraint function. In
contrast to that, we will apply the MLI update formulas only to the dynamical equa-
tions. The algebraic equations will be reevaluated in every iteration. This way we
only approximate the computational expensive dynamical equations while the alge-
braic equations are evaluated with full accuracy. In order to distinguish the dynami-
cal from the algebraic constraints, we use the notation

b(v) =
[

bdyn(v)
balg(v)

]
(7.23)

for the constraint function and

B(v) =
[

Bdyn(v)
Balg(v)

]
(7.24)
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for the respective Jacobians. Using this notation, QP (7.20) has the structure

Q̃P(v,λ, y) =min
∆v

1

2
∆v>A(v, y)∆v +a(v, y)>∆v (7.25a)

s.t. Bdyn(v)∆v +bdyn(v) =0, (7.25b)

Balg(v)∆v +balg(v) =0, (7.25c)

C∆v + c(v, q) =0. (7.25d)

In order to have a compact notation, we collect the primal-dual variables in

ϑ=
(
v,λbdyn ,λbalg ,λc

)
∈Rnϑ , (7.26)

where λbdyn ,λbalg and λc are the dual multiplier associated to (7.25b) - (7.25d). Since
evaluating (7.25c) and (7.25d) is cheap, we apply the MLI update formulas only to the
dynamical constraint function bdyn. The algebraic conditions balg(v) are reevaluated
in every iteration.

The Principle of the MLI for MHE

Every level X ∈ {D,C ,B} holds its own set of primal-dual iterates ϑX and a reference

value for the constraints Jacobian B
X
dyn. This reference value plays a crucial role for

the MLI update formulas. It is used to adjust the QP data

ΘX (ϑ) =
(

AX (v,λ), aX (v),B X
dyn(v),bX

dyn(v)
)
∈Rnv×nv ×Rnv ×Rnbdyn

×nv ×Rnbdyn .

(7.27)

to the current iteration variables by updates with low computational effort. However,
the quality of the resulting Jacobian approximation depends on a suitable choice of
B dyn. In contrast to MLI for NMPC, we do not need reference values for the objective
function, because we reevaluate it in every iteration. The MLI for MHE (MLI-MHE)
algorithm works similar as Algorithm 7.2. The only difference is that

Q̃P
X

(ϑ, y) :=min
∆v

1

2
∆v>AX (v)∆v + (aX (v))>∆v (7.28a)

s.t. B X
dyn(v)∆v +bX

dyn(v) =0, (7.28b)

Balg(v)∆v +balg(v) =0, (7.28c)

C∆v + c(v, q) =0. (7.28d)
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is solved to update the iterates. To simplify the notation, we will omit the superindex,
if the corresponding level is clear from the context.

Shifting of Reference Values

One of the central components of the MLI-MHE algorithm is the reference value
B dyn as an approximation of the real Jacobian Bdyn(v) at a point v . In general, the ref-
erence matrix B dyn is an arbitrary approximation of the real Jacobian but the perfor-
mance of the algorithm depends on the approximation quality of it. Usually, the ref-
erence value B dyn is generated by a full evaluation of the constraint Jacobian Bdyn(v)
at a specific point v . Remember that the iteration variables are a collection of the
variables

v = (
sx , sz , sq , w

)
(7.29)

as described in Section 7.3.1. Since bdyn is assembled from the individual matching
conditions, its Jacobian is given by

Bdyn(v) = d

dv




x(sx
0 , sz

0 , sq
0 )+w0 − sx

1
...

x(sx
M−1, sz

M−1, sq
M−1)+wM−1 − sx

M




=[
Gx Gz Gq 1

]
(7.30)

with

Gx =




Gx
0 −1

. . .
. . .

Gx
M−1 −1


 , Gz =




Gz
0

. . .

Gz
M−1 0


 , (7.31a)

Gq =




Gq
0

. . .

Gq
M−1 0


 (7.31b)

and

Gx
i = d

dsx x(sx
i , sz

i , sq
i ), Gz

i = d

dsz x(sx
i , sz

i , sq
i ), Gq

i = d

dsq x(sx
i , sz

i , sq
i ) (7.32)

for i = 0, · · · , M − 1. In order to exploit the structure of the constraint Jacobian, we
propose to shift the individual blocks alongside with the iteration variables. Let the
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reference matrix B dyn,k be generated by a full Jacobian evaluation Bdyn(vk ) at time
tk . Then, the reference matrix has the same structure as the constraint Jacobian

B dyn,k = Bdyn(vk ) =
[
G

x
k G

z
k G

q
k 1

]
, (7.33)

with

G
x
k =




G
x
0,k −1

. . .
. . .

G
x
M−1,k −1


 , G

z
k =




G
z
0,k

. . .

G
z
M−1,k 0


 , (7.34a)

G
q
k =




G
q
0,k

. . .

G
q
M−1,k 0


 . (7.34b)

The individual block matrices G
x
i ,k , G

z
i ,k and G

q
i ,k are the sensitivity matrices of the

matching conditions evaluated at si ,k = (sx
i ,k , sz

i ,k , sq
i ,k ). In MLI-MHE,the primal vari-

ables are shifted with the measurements in every iteration, as described in Section
7.3.2. The fundamental assumption of the RTI-MHE is that at time tk the primal vari-
ables vk describe the process on the interval [tk−M , tk ] accurately and therefore the
update∆v is small. At the transition from iteration k to k+1, the primal variables are
shifted by the map vk+1 = P 1

shift(vk ). Since the update ∆v is small, the matrices G
x
i ,k ,

G
z
i ,k and G

q
i ,k are approximations of the Jacobians Gx

i−1,k+1, Gz
i−1,k+1 and Gq

i−1,k+1. In
order to get an accurate approximation of the complete constraint Jacobian Bdyn, we
shift the block rows of B dyn,k together with the primal variables

B dyn,k+1 =
[
G

x
k+1 G

z
k+1 G

q
k+1 1

]
(7.35)

with

G
x
k+1 =




G
x
1,k −1

. . .
. . .

G
x
M−1,k −1

Gx
M−1,k+1 −1




, (7.36a)
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G
z
k+1 =




G
z
1,k

. . .

G
z
M−1,k

Gz
M−1,k+1 0




, (7.36b)

G
q
k+1 =




G
q
1,k

. . .

G
q
M−1,k

Gq
M−1,k+1 0




. (7.36c)

Similar to the variable shift, the Jacobians that enter at the last node Gx
M−1,k+1,

Gz
M−1,k+1 and Gq

M−1,k+1 are generated by a forward integration. We denote the corre-

sponding shift map by Pshift,dyn(B dyn,k , vk , qk ). Even though, this increases the com-
putational effort, the performance can be increased for nonlinear systems since the
reference matrix is a better approximation of the exact Jacobian. In level D, the Jaco-
bian is reevaluated in every iteration and therefore the shift is only applied in Level
C and B.
This procedure can be viewed as the MHE equivalent of Fractional Level Updates for
MLI as introduced in [38]. In fractional level updates the first few shooting intervals
are fully reevaluated and only on the last intervals the update formula of level C is
used. The pseudocode of the complete MLI algorithm with a fixed level is summa-
rized in Algorithm 7.3.

7.4.1 MLI Update Formulas for MHE

In the following, we present the main ideas behind each level X ∈ {D,C ,B} and we in-
troduce the specific update formulasΘX (ϑ) for the QP data. Table 7.1 gives the exact
description which evaluations and derivatives are required and how they are used to
assemble the QP data for each level. We will discuss their convergence properties in
Section 7.4.2.

Level D – Gauß-Newton (GN) Iterations

Level D provides the QP with new evaluations and Jacobians of all functions at the
current primal variable, i.e. the updatesΘD (ϑ) are given by

AD (v) = A(v, yk ), aD (v) = a(v, yk ), (7.37a)

B D
dyn(v) = Bdyn(v), bD

dyn(v) = bdyn(v). (7.37b)
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Algorithm 7.3: Main loop of MLI-MHE algorithm with fixed level X ∈ {D,C ,B}

loop
preparation phase:

evaluate Balg(v ′),balg(v ′),∇v`(v ′), B X
dyn(v ′), bX

dyn(v ′)
wait for state measurement ηk to complete yk

feedback phase:
evaluate residual `(v ′, yk ) and CTE c(v ′, yk )
evaluate AX (v ′, yk ) and aX (v ′, yk )

solve Q̃P
X

(v ′, yk )
submit ξk = s

′x
M +∆sx

M to controller
transition phase:
wait for applied control qk from controller to complete qk+1

v ′ ← P 1
shift(v ′+∆vQP , qk )

B dyn,k+1 ← Pshift,dyn(B dyn,k , v ′+∆vQP , qk )
k ← k +1

end loop

Level necessary evaluations
bdyn(v) Bdyn(v) a(v , yk ) A(v , yk )

D 3 3 3 3

C 3 (3)1 3 3

B 3 7 3 3

QP data update formulas
bdyn Bdyn a A

D bdyn(v) Bdyn(v) a(v , yk ) A(v , yk )
C bdyn(v) B dyn a(v , yk )+ (B dyn −Bdyn(v))>λbdyn A(v , yk )

B bdyn(v) B dyn a(v , yk ) A(v , yk )
1 Only the vector-matrix product λ>

bdyn
Bdyn(v) needs to be computed in

an adjoint fashion.

Table 7.1: Computations and update formulas for the QP data for the different levels. The
linearization points v are the shifted approximate solutions of the previous MHE problem,
according to (7.21). The reference evaluations and Jacobians as well as the multipliers in
Level C are the shifted versions λbdyn of the preceding MHE QPs.
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The solution of Q̃P
D

(ϑ) corresponds to a full SQP step with the GN Hessian approx-
imation of the Lagrangian. For constant online data yk = y , these update formulas
refer to the GN method for constrained least-square problems as discussed, e.g., in
[13]. In the MLI hierarchy, Level D is the most expensive update, but is provide to
most accurate system linearizations because the full constraint Jacobian is reevalu-
ated.

Modified Level C – Optimality Iterations

Level C omits the most expensive computation of Level D, namely the full sensitiv-
ity generation of the DAE system corresponding to the matrix Bdyn(v). Instead, the
matrix-vector product λT

bdyn
Bdyn(v) is computed in an adjoint fashion, which comes

at a significantly lower computational cost and is used to modify the gradient a in the
objective function. Taking into account the discrepancy of the true Jacobian Bdyn(v)
and the reference Jacobian B dyn, the adjoint derivative λT Bdyn(v) can be used to

modify the QP gradient a accordingly. The complete formulas for Level CΘC (ϑ) are

AC (v) = A(v, yk ), aC (v) = a(v, yk )+ (B dyn −Bdyn(v))>λbdyn (7.38a)

BC
dyn(v) = B dyn, bC

dyn(v) = bdyn(v). (7.38b)

For fixed online data y = yk , it can be shown that if Level C iterates converge, they
converge to a Karush-Kuhn-Tucker (KKT) point of the original NLP, which is the rea-
son why these iterates are also called Optimality Iterations.

Modified Level B – Feasibility Iterations

Level B further avoids any sensitivity computation for the shooting conditions in
bdyn. All other functions and derivatives are evaluated. In comparison to MLI for
NMPC, we evaluate the objective function fully in every iteration. Therefore a cor-
rection of the gradient is not necessary in Level B for MHE. The QP data ΘB (ϑ) is
defined by

AB (v) = A(v, yk ), aB (v) = a(v, yk ), (7.39a)

B B
dyn(v) = B dyn, bB

dyn(v) = bdyn(v). (7.39b)

We note that, except the shifting procedure of the reference matrix, the presented
Level B is closely related to zero-order MHE as presented in [7].
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Remark 7.6 (Lower Levels)
We emphasize that levels with even fewer evaluations and linearization updates
could be defined. The counterpart of Level A from NMPC for MHE is an update
formula with no evaluations and no Jacobians at all and subsequent linearizations
are just kept constant. Such a level is essentially linear MHE and could be combined
with the presented higher levels. For the sake of simplicity we omit a detailed de-
scription of such lower levels and refer the reader to [15].

7.4.2 Convergence Properties of MLI for MHE Update Formulas

In order to investigate the convergence properties of the individual levels, we show
that they can be interpreted as Newton-type methods for specific nonlinear systems.
This enables us to employ the convergence theory of Newton-type methods. Then
we show that iterates convergence either to the solution of the original problem or
to a disturbed problem. We will assume that the online data is fixed, i.e. yk = y for
all k ∈N. Consequently, we do not consider the shifting procedures of the variables
Pshift and the reference data Pshift,dyn throughout this section. This allows us, to only
consider the optimization problem and not the interaction with the controlled pro-
cess. An investigation of the complete closed loop behavior with the process is sub-
ject to further research. The theoretical results for NMPC are summarized in Section
5.1.6. The analysis of the local convergence properties of the proposed levels follows
the lines of [15] for the NMPC case and is based on the Local Contraction Theorem
[13] for Newton-type iterations.

�MHE(y) is an equality constrained NLP and we assumed that the dynamical system
and therefore the constraint function is sufficiently smooth. Therefore a local mini-
mizer v∗ satisfies the KKT conditions for equality constrained NLPs

F (ϑ∗) :=



∇vLy (ϑ∗)

b(v∗)
c(v∗)


= 0 (7.40)

with dual variables λ∗
b and λ∗

c and the Lagrange function

Ly (ϑ) = 1
2

∥∥l (v, y)
∥∥2
Σ−1 −λ>

b b(v)−λ>
c c(v). (7.41)

The nonlinear equation system F (ϑ) = 0 can be solved by Newton’s method under
suitable conditions. Starting from an initial guess ϑ0, a sequence of iterates is gener-
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ated by ϑ j+1 =ϑ j +∆ϑ, where ∆ϑ is the solution of

d

dϑ
F (ϑ j )∆ϑ+F (ϑ j ) = 0. (7.42)

If the starting point ϑ0 is in the vicinity of the the solution and d
dϑF (ϑ) is nonsingu-

lar, Newton’s method converges quadratically. However, d
dϑF (ϑ) might be singular

and expensive to evaluate and therefore Newton’s method is not suitable in many
applications. In addition, the iterates of Newton’s method are attracted to spurious
solutions of the KKT system such as maxima or saddle points [13, 16]. Newton-type
methods avoid the direct evaluation of d

dϑF (ϑ) by the usage of an approximation J (ϑ)
instead and the linear equation system

J (ϑ j )∆ϑ+F (ϑ j ) = 0. (7.43)

is solved in every iteration. To prove that level D, B and C are converging, we show
that they can be interpreted as Newton-type methods. To ensure that the iteration
rule is well defined, we make the following assumption.

Assumption 7.1 (Regularity of NLP Solution)
�MHE(y) has a local minimizer ϑ∗ = (

v∗,λ∗
b ,λ∗

c

)
that satisfies the Linear Indepen-

dence Constraint Qualification (LICQ), i.e. the rows of the constraint Jacobians B(v∗)
and C are linearly independent. For X ∈ {D,C ,B} we assume that there is a neigh-
borhood U of ϑ∗, such that for all ϑ ∈U the row vectors of the constraint matrix of
Q̃P

X
(ϑ, y) are linearly independent and the Hessian approximation A(v, y) is posi-

tive definite on the null space of the constraint matrix.

Level D

Level D is defined by the update formulas (7.37a) and fully evaluates the dynamical
system as well as the sensitives. It is equivalent to a full RTI step for MHE. The fol-
lowing proposition shows that it can be interpreted as a Newton-type method for the
KKT system of �MHE(y).

Proposition 7.2
One Level D iteration defined by the solution of Q̃P

D
(ϑ j , y) is one Newton-type step

towards the root of the KKT system F D (ϑ) = 0 of �MHE(y) with

J D (ϑ) =




A(v, y) −B(v)> −C>

B(v)
C


 (7.44)
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as an approximation of the Jacobian d
dϑF D (ϑ).

Proof Level D computes the updates of iterates by

v j+1 = v j +∆v, λb, j+1 =λQP
b , λc, j+1 =λQP

c (7.45)

where (∆v,λQP
b ,λQP

c ) is the solution of Q̃P
D

(ϑ j , y). Since Q̃P
D

(ϑ j , y) is an equality
constrained QP, its KKT system is given by

J D (ϑ j )



∆v

λb, j+1

λc, j+1


+




a(v j , y)
b(v j )

c(v j , y)


= 0 (7.46)

with

J D (ϑ) =




A(v, y) −B(v)> −C>

B(v)
C


 . (7.47)

Assumption 7.1 ensures that the solution of the KKT system is well defined. This
is a well known result of nonlinear programming theory [80, Chapter 16]. Using
∆λb =λb, j+1 −λb, j and ∆λc =λc, j+1 −λc, j , equation (7.46) is equivalent to

J D (v j )



∆v
∆λb

∆λc


+




a(v j , y)−B(v j )>λb, j −C>λc, j

b(v j )
c(v j , y)


= 0. (7.48)

Thus, Level D is a Newton-type method for

F D (ϑ) =




a(v, y)−B(v)>λb −C>λc

b(v)
c(v, y)


 (7.49)

with J D (ϑ) as approximation of d
dϑF D (ϑ). The first entry of F D is the gradient of

the Lagrange function ∇vLy (ϑ) with respect to v and therefore F D refers to the KKT
conditions (7.40). �

Remark 7.7
Note that J D (ϑ) differs from the exact Jacobian d

dϑF D (ϑ) only by A(v, y) as an ap-
proximation of the Hessian ∇2

vLy (ϑ). We are using a Gauß-Newton approximation
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for ∇vLy (ϑ). However, if A(v, y) =∇vLy (ϑ) the Level D iterations correspond to steps
of the exact Newton method and has its quadratic convergence rate.

Level C

In Level C, the full sensitivity generation of the constraints are omitted. However,
Level C still is a Newton-type method for the KKT system of the original problem
�MHE(y) as the following proposition shows.

Proposition 7.3
One Level C iteration defined by the solution of Q̃P

C
(ϑ j , y) is one Newton-type step

towards the root the KKT system F (ϑ)C = F (ϑ) = 0 of �MHE(y) with

JC (ϑ) =




A(v, y) −B
>
dyn −Balg(v)> −C>

B dyn

Balg(v)
C


 (7.50)

as an approximation of the Jacobian d
dϑF C (ϑ).

Proof Similar to Level D, Level C computes the updates of iterates by

v j+1 = v j +∆v, λbdyn, j+1 =λQP
bdyn

, λbalg, j+1 =λQP
balg

, λc, j+1 =λQP
c (7.51)

where (∆v,λQP
bdyn

,λQP
balg

,λQP
c ) is the solution of Q̃P

C
(ϑ j , y). The KKT conditions of

Q̃P
C

(ϑ j , y) are given by

JC (ϑ)




∆v
λbdyn, j+1

λbalg, j+1

λc, j+1


+




a(v j , y)+
(
B dyn −Bdyn(v j )

)>
λdyn, j

bdyn(v j )
balg(v j )
c(v j , y)



= 0. (7.52)

In order to reformulate this equation system, we introduce∆λbdyn =λbdyn, j+1 −λbdyn, j ,
∆λbalg =λbalg, j+1 −λbalg, j and ∆λc =λc, j+1 −λc, j . This leads to the system

JC (ϑ)




∆v
∆λbdyn

∆λbalg

∆λc


+F C (ϑ) = 0 (7.53)
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with

F C (ϑ) =




a(v, y)−Bdyn(v)>λbdyn −Balg(v)>λbalg −C>λc

bdyn(v)
balg(v)
c(v, y)


 . (7.54)

Since F C (ϑ) is the KKT system of �MHE(y), the iterates of Level C correspond to
Newton-type iterations with JC (ϑ) as an approximation of d

dϑF C (ϑ). �

In contrast to level D, we distinguish between bdyn and balg, because only Bdyn is
approximated. Similar to Level D, Level C is a Newton-type method for the KKT
conditions (7.40) and they only differ in the Jacobian approximation. The follow-
ing Theorem shows that the limit of the Level C iterates is a KKT point of the original
problem �MHE(y).

Theorem 7.4 (Limit of Modified Level C Iterations)
Let the online data be fixed, i.e. yk = y for all k ∈ N. Let the optimality iterations
ϑ j = (v j ,λbdyn, j ,λbalg, j ,λc, j ) generated by Algorithm 7.3 converge towards a limitϑ∗ =
(v∗,λ∗

bdyn
,λ∗

balg
,λ∗

c ) and the primal QP solutions ∆v j converge to 0. Then the limit is

a KKT point of the problem �MHE(y).

Proof As the steps ∆v j of the Level C QPs converge to 0, continuity implies that
∆v∗ = 0 together with the dual variables (λ∗

bdyn
,λ∗

balg
,λ∗

c ) is the primal dual solution

of Q̃P
C

(ϑ∗, y) and the KKT conditions are satisfied. The primal feasibility

B dyn∆v +bC
dyn(v∗) =0, (7.55a)

Balg(v∗)∆v +balg(v∗) =0, (7.55b)

C∆v + c(v∗, q) =0 (7.55c)

ensures that v∗ is feasible for �MHE(y), because bC
dyn(v∗) = bdyn(v∗) and ∆v = 0. The

stationarity condition for Q̃P
C

(ϑ∗, y) reads as

A(v∗, y)+a(v∗, y)+ (B
>
dyn −Bdyn(v∗)>)λ∗

bdyn
−B

>
dynλ

∗
bdyn

−
B>

alg(v∗)λ∗
balg

−C (v∗, y)>λ∗
c = 0. (7.56)
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The terms involving B dyn cancel out and the stationarity condition of �MHE(y) re-
mains. Since �MHE(y) has no inequality constraints, it follows that (v∗,λ∗

bdyn
,λ∗

balg
,λ∗

c )

is a KKT point of �MHE(y). �

7.4.3 Level B

In Level B, we reduce the computational effort even further by omitting the direc-
tional derivative in the gradient correction. Therefore, Level B does not correspond
to a Newton-type method for KKT system of �MHE(y). However, the following propo-
sition shows that it is a Newton-type method for a disturbed system, see Remark 7.8.

Proposition 7.5
One Level B iteration defined by the solution of Q̃P

B
(ϑ j , y) is one Newton-type step

towards the root of the disturbed system

F B (ϑ) =




a(v, y)−B
>
dynλbdyn −Balg(v)>λbalg −C>λc

bdyn(v)
balg(v)
c(v, y)


 (7.57)

with the Jacobian approximation

J B (ϑ) =




A(v, y) −B
>
dyn −Balg(v)> −C>

B dyn

Balg(v)
C


 . (7.58)

Proof The iterates of Level B are computed by

v j+1 = v j +∆v, λbdyn, j+1 =λQP
bdyn

, λbalg, j+1 =λQP
balg

, λc, j+1 =λQP
c (7.59)

where (∆v,λQP
bdyn

,λQP
balg

,λQP
c ) is the solution of Q̃P

B
(ϑ j , y). The KKT conditions of

Q̃P
B

(ϑ j , y) are given by

J B (ϑ)




∆v
λbdyn, j+1

λbalg, j+1

λc, j+1


+




a(v j , y)
bdyn(v j )
balg(v j )
c(v j , y)


= 0. (7.60)
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In order to reformulate this equation system, we introduce∆λbdyn =λbdyn, j+1 −λbdyn, j ,
∆λbalg =λbalg, j+1 −λbalg, j and ∆λc =λc, j+1 −λc, j . This leads to the system

J B (ϑ)




∆v
∆λbdyn

∆λbalg

∆λc


+F B (ϑ) = 0. (7.61)

This shows that one Level B iteration refers to one Newton-type step towards the root
of F B (ϑ) = 0 with J B (ϑ) as an approximation of d

dϑF B (ϑ). �

In contrast to F D and F C , the function F B does not represent the KKT system of the
original problem. However, the following theorem shows that the Level B iterates are
still converging to a feasible point.

Theorem 7.6 (Limit of Modified Level B Iterations)
Let the online data be fixed, i.e. yk = y for all k ∈ N. Let the feasibility iterations
ϑ j = (v j ,λbdyn, j ,λbalg, j ,λc, j ) generated by Algorithm 7.3 converge towards a limit
ϑ∗ = (v∗,λ∗

bdyn
,λ∗

balg
,λ∗

c ) and the primal QP solutions ∆v j converge to 0. Then the

limit is a feasible point of the problem �MHE(y).

Proof The Level B iterates are updated by

v j+1 = v j +∆v, λb, j+1 =λQP
b , λc, j+1 =λQP

c (7.62)

where (∆v,λQP
b ,λQP

c ) is the solution of Q̃P
B

(ϑ j , y). Therefore, from convergence of
v j towards v∗ it follows that ∆v j converges towards 0. Because all arising functions
and derivatives are continuous, (∆v∗,λ∗

bdyn
,λ∗

balg
,λ∗

c ) with ∆v∗ = 0 is the primal dual

solution of Q̃P
B

(ϑ∗, y). The KKT conditions of Q̃P
B

(ϑ∗, y)

a(v∗, y)−B
>
dynλ

∗
bdyn

−Balg(v∗)>λ∗
balg

−C>λ∗
c = 0, (7.63a)

bdyn(v∗) = 0, (7.63b)

balg(v∗) = 0, (7.63c)

c(v∗, q) = 0 (7.63d)

are satisfied. The primal feasibility conditions (7.63b) -(7.63d) show that v∗ is feasi-
ble for the original problem �MHE(y). This shows that Level B iterations are converg-
ing to a feasible point for fixed online data y . �

140



MOVING HORIZON ESTIMATION CHAPTER 7

Remark 7.8
The equation system (7.63) can be interpreted as the KKT system of a disturbed op-
timization problem. Let ϑ∗ = (v∗,λ∗

bdyn
,λ∗

balg
,λ∗

c ) be the limit of the Level B iterations

as defined in Theorem 7.6. Then ϑ∗ is a KKT point of the following disturbed opti-
mization problem

min
v

1
2‖`(v, yk )‖2

Σ−1
k
+e>v (7.64a)

s.t. bdyn(v) = 0, (7.64b)

balg(v) = 0, (7.64c)

c(v, qk ) = 0 (7.64d)

with

e =
(
B

T
dyn −B>

dyn(v∗)
)
λ∗

dyn. (7.65)

This problem is related to the original problem �MHE(y), except the error term e. It
shows that the distance of ϑ∗ to the solution of original problem is dependent on
quality of B dyn as an approximation of Bdyn.

We showed that Level X with X ∈ {D,C ,B} is a Newton-type method for a specific
nonlinear function F X with an Jacobian approximation J X . Therefore, Level X cor-
responds to solving the linear equation system

J X (ϑ j )∆ϑ j =−F X (ϑ j ) (7.66)

iteratively with ϑ j+1 = ϑ j +∆ϑ j and a initial guess ϑ0. Assumption 7.1 ensures that
this equation system has an unique solution. In order to prove the convergence to
the solution of the system

F X (ϑ) = 0 (7.67)

we refer to the following result.

Theorem 7.7 (Local convergence of Newton-type Methods)
Let X ∈ {D,C ,B} and U ⊆ Rnϑ . Let F X : U → Rnϑ be continuous differentiable and let
the approximation of the Jacobian J X : U →Rnϑ×nϑ be continuous with a continuous
inverse on U . Furthermore, let us make the following assumptions:
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• There is a κ< 1 such that for all ϑ1,ϑ2 ∈U

∥∥∥∥J X (ϑ1)−1
(

J X (ϑ2)− dF X

dϑ
(ϑ2)

)∥∥∥∥≤ κ. (7.68)

• There is a ω ∈R such that for all ϑ1,ϑ2,ϑ3 ∈U

∥∥J X (ϑ1)−1 (
J X (ϑ2)− J X (ϑ3)

)∥∥≤ω‖ϑ2 −ϑ3‖ . (7.69)

• The initial step ∆ϑ0 is sufficiently small that

δ0 := κ+ ω

2
‖∆ϑ0‖ < 1 (7.70a)

and that

U0 :=
{
ϑ ∈Rnϑ |‖ϑ−ϑ0‖ ≤

‖∆ϑ0‖
1−δ0

}
⊂U . (7.70b)

Under these conditions the sequence of Newton-type iterates defined by Equation
(7.66) remains in U0 and converges to a ϑ∗ with F X (ϑ∗) = 0.

Proof The proof can be found for example in [13] or [24]. �

Theorem 7.7 is a well known result from the convergence theory of Newton-type
methods. Assumption (7.68) characterizes the quality of the Jacobian approximation
and Assumption (7.69) ensures that the derivative of J X is bounded. Equation (7.70)
makes sure that the initial guess ϑ0 is close enough to the solution ϑ∗. Under these
assumptions, Theorem 7.7 ensures that the Newton-type method converges.

7.4.4 Combined MLI-MHE Schemes

To utilize the accurate linearizations of the higher levels and the fast response times
of the lower levels at the same time, the proposed levels are operated simultaneously.
Each level is treated as an independent component and is working on its own set of
iterates and reference values. This allows to parallelize the evaluation on multi–core
CPUs. Every level can be operated on its own CPU core without affecting the com-
putation time of the other levels. There are many ways to combine the different MLI
levels to schemes. The most common approach is to apply the levels in a predefined
sequence, as described in Section 5.2. Nevertheless, it is also possible to choose
online which level is applied based on the contraction rate [113] or on the actual
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computation time [103]. These approaches refer to Adaptive Level Choice by Con-
tractivity (ALC-Con) and Adaptive Level Choice by Computation Time (ALC-Time)
from MLI for NMPC. In this section, we restrict ourselves to MLI-MHE schemes,
where Level D is combined with either Level C or Level B in a repeating sequence
as depicted in Figure 7.5. Level D is operated on a lower sampling rate than the
actual sampling rate of the process. Between Level D updates, intermediate feed-
back is generated by the lower level (C or B) with the original sampling rate. After
the feedback generation of Level D is finished, the resulting QP data is communi-
cated to the lower level and is used as reference values in the following sampling
intervals. This communication method is referred as top-down communication. We
consider a MLI-MHE scheme as real-time feasible, when the preparation phase of
every involved level is below its sampling time. Thereby, we assume that every level
is running on a dedicated CPU core, which is not influenced by other processes. MLI
schemes with a fixed level sequence are described in detail in Chapter 5 and in [113].

timetk tk+1 tk+2 tk+3 tk+4

Level C Level C Level C

Level D

Figure 7.5: Exemplary MLI scheme with one Level D update every fourth sampling point
followed by three intermediate Level C updates (C D4). The gray area denotes, when the
corresponding level is busy.

Remark 7.9
The level sequences are commonly indicated by the notation B nB C nC DnD . The in-
dices denote after how many sampling intervals the corresponding level is sched-
uled. The letters for unused levels are omitted. For example, the regular RTI-MHE
scheme is denoted by D1.

7.5 Arrival Cost Update Procedure

The MHE problem at time tk considers a limited time horizon [tk−M , tk ] and mea-
surements prior to tk−M are not considered. The purpose of the arrival cost objective
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term (7.3a)

1
2

∥∥xk−M − sx
0

∥∥2

Σ
−1
arr,k−M

(7.71)

is to summarize measurement information originating from the time before the cur-
rent estimation horizon [tk−M , tk ]. The theoretical ideal arrival cost considers all
older measurements and leads to the problem

min
sx ,sz ,w

1
2

k−M−1∑
i=−∞

(∥∥ηi −h(sx
i , sz

i )
∥∥2
Σ−1

meas
+‖wi‖2

Σ−1
proc

)
(7.72a)

s.t.

si+1 = x(sx
i , sz

i , qi )+wi , i =−∞, . . . ,k −M −1, (7.72b)

0 = g (sx
i , sz

i , qi ), i =−∞, . . . ,k −M . (7.72c)

Practically, the solution of this problem cannot be computed. In addition, we want
to avoid that an infinite number of old measurements contributes to the arrival cost.
In the following, we describe a method to update the arrival cost efficiently. First,
we will consider the arrival cost for the RTI-MHE. Afterwards, we propose a new
methodology, on how to use the MLI reference variables to update the arrival cost
term with low additional effort. Originally, we have proposed this method in [47].

Online Data Independent Arrival Cost Update Preparation

As suggested in [28], we want to replace the ideal arrival cost by a quadratic penalty
term which is updated in every MHE iteration. In order to derive the update proce-
dure of the arrival cost, we consider the transition from problem �MHE(yk ) to prob-
lem �MHE(yk+1). Ideally, we want to solve the extended problem

min
sx ,sz ,sq ,w

1
2

∥∥x̄k−M − sx
0

∥∥2
Σ̄−1

arr,−M
(7.73a)

+1
2

M+1∑
i=0

(∥∥ηk−M+i −h(sx
i , sz

i )
∥∥2
Σ−1

meas
+‖wi‖2

Σ−1
proc

)
(7.73b)

s.t.

sx
i+1 = x(sx

i , sz
i , sq

i )+wi , i =0, . . . , M , (7.73c)

0 = g (sx
i , sz

i , sq
i ), i =0, . . . , M +1, (7.73d)

sq
i = qi , i =0, . . . , M +1 (7.73e)
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on the time horizon [tk−M , tk+1] with sx ∈ R(M+2)nx , sz ∈ R(M+2)nz , sq ∈ R(M+2)nq and
w ∈R(M+1)nx . This problem considers all past measurements, but its time horizon is
growing with every iteration. In order to prevent a constantly growing time horizon,
we want to formulate a problem on the time horizon [tk−M+1, tk+1] that is similar to
the extended Problem (7.73). The measurement at tk and the previous arrival cost
should be summarized in an updated arrival cost term.

Remark 7.10
In the following, we denote the subvector (sx

i , · · · , sx
j ) ∈R( j−i+1)nx of sx by sx

i : j . A sim-
ilar notation is applied for sz , sq and w .

Principle of Optimality for State Estimation

In order to eliminate the variables sx
0 , sz

0 , sq
0 from the Problem (7.73), we are using a

similar idea as the principle of optimality for optimal control. The principle of op-
timality is an approach to solve optimal control problems with a dynamic program-
ming algorithm. It is explained in great detail in [9]. The basic idea is to split up an
optimal control problem in sub intervals and optimize the system step-wise back-
wards in time. We apply a similar idea to MHE by defining the nonlinear function

Arr
(
sx

1

)= min
sx

0 ,sz
0 ,sq

0

1
2

∥∥x̄k−M − sx
0

∥∥2
Σ̄−1

arr,k−M
+ 1

2

∥∥sx
1 −x(sx

0 , sz
0 , sq

0 )
∥∥2
Σ−1

proc
(7.74a)

+1
2

∥∥ηk−M −h(sx
0 , sz

0 )
∥∥2
Σ−1

meas
(7.74b)

s.t.

0 = g (sx
0 , sz

0 , sq
0 ), (7.74c)

0 = sq
0 −qk−M . (7.74d)

Using this function, we define the problem

min
sx

1:M+1,sz
1:M+1,

sq
1:M+1,w1:M

Arr(sx
1 )+ 1

2

M+1∑
i=1

(∥∥ηk−M+i −h(sx
i , sz

i )
∥∥2
Σ−1

meas
+‖wi‖2

Σ−1
proc

)
(7.75a)

s.t.

sx
i+1 = x(sx

i , sz
i , sq

i )+wi , i =1, . . . , M , (7.75b)

0 = g (sx
i , sz

i , sq
i ), i =1, . . . , M +1, (7.75c)

sq
i = qk−M+i , i =1, . . . , M +1 (7.75d)
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which refers to the shifted time horizon [tk−M+1, tk+1]. This problem does not ex-
plicitly depend on sx

0 , sz
0 , sq

0 anymore. However, the following theorem shows that it
is equivalent to the extended Problem (7.73).

Theorem 7.8
Let (sx

1:M+1, sz
1:M+1, sz

1:M+1, w1:M ) be a solution of (7.75) and let (sx
0 , sz

0 , sq
0 ) be a solution

of Arr(sx
1 ). Then v = (sx , sz , sq , w) with

w0 = sx
1 −x(sx

0 , sz
0 , sq

0 ). (7.76)

is a solution of Problem (7.73).

Proof In a first step, we show that v is a feasible point for Problem (7.73). The con-
straints (7.73d) and (7.73e) are satisfied, because they emerge directly in Problem
(7.75) and in Arr(sx

1 ). The matching conditions (7.73c) are satisfied, because they
emerge directly in Problem (7.75) for i = 1, . . . , M . The matching condition for i = 0
is satisfied by the definition of w0. Therefore, all constraints of Problem (7.73) are
satisfied and v is feasible.

In a second step, we show that v is a solution of (7.73). Lets assume that v is not the
solution (7.73), i.e. there is a feasible point ṽ = (s̃x , s̃z , s̃q , w̃) of Problem (7.73) with a
lower objective function value. Then the following holds

Arr
(
s̃x

1

)+ 1
2

M+1∑
i=1

(∥∥ηk−M+i −h(s̃x
i , s̃z

i )
∥∥2
Σ−1

meas
+‖w̃i‖2

Σ−1
proc

)
≤

1
2

∥∥x̄k−M − s̃x
0

∥∥2
Σ̄−1

arr,−M
+ 1

2

M+1∑
i=0

(∥∥ηk−M+i −h(s̃x
i , s̃z

i )
∥∥2
Σ−1

meas
+‖w̃i‖2

Σ−1
proc

)
<

1
2

∥∥x̄k−M − sx
0

∥∥2
Σ̄−1

arr,−M
+ 1

2

M+1∑
i=0

(∥∥ηk−M+i −h(sx
i , sz

i )
∥∥2
Σ−1

meas
+‖wi‖2

Σ−1
proc

)
=

Arr
(
sx

1

)+ 1
2

M+1∑
i=1

(∥∥ηk−M+i −h(sx
i , sz

i )
∥∥2
Σ−1

meas
+‖wi‖2

Σ−1
proc

)
. (7.77)

The last equality is satisfied since (sx
0 , sz

0 , sq
0 ) is a solution of Arr

(
sx

1

)
and by the defini-

tion of w0. This shows that (s̃x
1:M+1, s̃z

1:M+1, s̃q
1:M+1, w̃1:M ) is a feasible point for Prob-

lem (7.75) with a lower objective function value and this is a contradiction to the
prerequisite that (sx

1:M+1, sz
1:M+1, sz

1:M+1, w1:M ) is a solution of Problem (7.75). �

Theorem 7.8 shows that we can equivalently solve Problem (7.75) instead of Prob-
lem (7.73). The advantage of Problem (7.75) is that it does not directly depend on
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(sx
0 , sz

0 , sq
0 ). However, it still depends implicitly on (sx

0 , sz
0 , sq

0 ) by the nonlinear func-
tion Arr

(
sx

1

)
. In order to eliminate (sx

0 , sz
0 , sq

0 ) completely, we approximate Arr
(
sx

1

)
by

a quadratic penalty term.

Approximation of Ideal Arrival Cost

The nonlinear function Arr
(
sx

1

)
is defined by an NLP with the optimization variables

(sx
0 , sz

0 , sq
0 ). Therefore, the exact evaluation of Arr

(
sx

1

)
may require a lot of iterations

in order to achieve convergence. Especially, the NLP depends on the nonlinear func-
tions x(·),h(·) and g (·), which are expensive to evaluate. In order to save computation
time, we approximate Arr

(
sx

1

)
by an equality constrained QP, which is significantly

cheaper to solve. Since we are looking on the transition from �MHE(yk ) at point tk

to the next problem �MHE(yk+1) at point tk+1, we already have an approximate so-
lution s̃ = (s̃x , s̃z , s̃q ) of �MHE(yk ) available. We transform the NLP into an equality
constrained QP by linearizing the functions x(·),h(·) and g (·) at s̃0 = (s̃x

0 , s̃z
0 , s̃q

0 ). This
leads to the problem

min
s0=(sx

0 ,sz
0 ,sq

0 )

1
2

∥∥x̄k−M − sx
0

∥∥2
Σ̄−1

arr,k−M
(7.78a)

+1
2

∥∥∥∥x(s̃0)+ dx(s̃0)

ds
(s0 − s̃0)− sx

1

∥∥∥∥
2

Σ−1
meas

(7.78b)

+1
2

∥∥∥∥h(s̃x
0 , s̃z

0 )+ dh(s̃x
0 , s̃z

0 )

d(sx , sz )

(
sx

0 − s̃x
0

sz
0 − s̃z

0

)
−ηk−M

∥∥∥∥
2

Σ−1
proc

(7.78c)

s.t.

0 = g (s̃0)+ dg (s̃0)

ds
(s0 − s̃0), (7.78d)

0 = sq
0 −qk−M . (7.78e)

Since the DAE system is of index 1, the derivative dg
dsz (s̃) is nonsingular and constraint

(7.78d) can be used to eliminate the algebraic variable sz
0 . The CTE constraint (7.78e)

allows to substitute the applied control variable sq
0 . The result is a linear least squares

problem in sx
0 dependent on sx

1 as parameter. The minimum of this linearized prob-
lem can analytically be expressed as

Arr
(
sx

1

)≈ 1
2

∥∥sx
1 − x̄k+1−M

∥∥2

Σ
−1
arr,k+1−M

. (7.79)
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The matrix Σarr,k−M+1 and the state xk−M+1 can be calculated explicitly using the
above objective and constraint linearizations. For a detailed description of these
calculations we refer the reader to [59, 28].

Multi-Level Arrival Cost Update

The transformation of Problem (7.78) into the quadratic penalty term (7.79) can be
performed algebraically using a QR transformation. The most expensive part in the
course of this arrival cost update is to evaluate the linearization dx

ds (s̃0), which re-
quires the sensitivity generation for the solution of the DAE system. In contrast to
that, the evaluation of dg

ds (s̃) and dh
ds (s̃) requires a comparatively low computational

effort, since it includes only algebraic operations. Since in Level D all the derivatives
are reevaluated anyhow, the additional effort of evaluating dx

ds (s̃) is low. In contrast to
that, Level C or B require less computations and the evaluation of dx

ds (s̃) may exceed
the effort of the other computations. Therefore, a complete evaluation is in general
not advisable. We propose to reuse the reference matrix of the corresponding level
instead. Since we are shifting also the reference block matrices associated with the
primal variables, we already have an approximation of the derivative dx

ds (s̃) available.
Lets consider the transition from �MHE(yk ) to �MHE(yk+1) with a Level X update for
X ∈ {C ,B}. We denote the primal solution of �MHE(yk ) by ṽ = (s̃x , s̃z , s̃q , w). Level X
for �MHE(yk ) holds a reference matrix

B dyn,k =
[
G

x
k G

z
k G

q
k 1

]
, (7.80)

with

G
x
k =




G
x
0,k −1

. . .
. . .

G
x
M−1,k −1


 , G

z
k =




G
z
0,k

. . .

G
z
M−1,k 0


 , (7.81a)

G
q
k =




G
q
0,k

. . .

G
q
M−1,k 0


 . (7.81b)

Thereby, the block matrices G
x
i ,k ,G

z
i ,k ,G

q
i ,k for i = 0, · · · , M −1 are approximations of

the partial derivatives

G
x
i ,k ≈ d

dsx
i

x(s̃x
i , s̃z

i , s̃q
i ), G

z
i ,k ≈ d

dsz
i

x(s̃x
i , s̃z

i , s̃q
i ), G

q
i ,k ≈ d

dsq
i

x(s̃x
i , s̃z

i , s̃q
i ). (7.82)
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The structure of the reference matrix B dyn,k is explained in detail in Section 7.4. We

propose the use the block matrices G
x
0,k ,G

z
0,k ,G

q
0,k as an approximation of

d

ds
x(s̃x

0 , s̃z
0 , s̃q

0 ) ≈
[
G

x
0,k G

z
0,k G

q
0,k

]
(7.83)

instead of an exact evaluation. Since these matrices are already available, there is
no additional effort for the sensitivity generation necessary. Note that we work with
fixed level sequences. We always know at which sampling time we use the prepared
linearizations for updating the arrival cost. However, the CTE constraint (7.78e)
eliminates the necessity of knowing the exact sampling time at which the prepared
linearizations will be used to update the arrival cost. Thus, the presented update pro-
cedure could also be applied to an MLI-MHE scheme with automated level choice,
see also Remark 7.5.
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Chapter 8

Moving Horizon Estimation for Secondary Microgrid Control

In this section, we demonstrate the capabilities of the presented Moving Horizon
Estimation (MHE) algorithm. To that end, we apply a challenging load scenario to
the model of a test Microgrid (MG). We apply different Multi-Level Iteration (MLI)
schemes in an open and closed loop setting. To evaluate the performance, we com-
pare the estimation error as well as the computation times.

8.1 Microgrid Model

In order to test the presented MHE algorithm, we consider the same MG model as in
Section 6.2. It is a 6-bus system with a typical topology for islanded microgrids. The
grid comprises two identical Diesel Generators (DGs), a Battery (BA), a Photovoltaic
(PV) plant , and a passive PQ-load. In this Chapter, we focus on the model aspects
that are relevant for the estimator. A sketch of the topology is depicted in Figure 8.1.
For a comprehensive description of the grid with the individual components and
the defining numerical parameters we refer the reader to [84]. The individual model
components are presented in Chapter 3.

The buses as well as the transmission lines are modeled by the nonlinear algebraic
Alternating Current (AC) power flow equations in a rotating d q-reference frame. Ev-
ery node is described by the active and the reactive power balance P and Q, the volt-

DG DG BA PV

P,Q

Figure 8.1: Topology of the test MG.
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age V , and the phase angle θ. We assume that all these quantities are measurable.
The base power of the MG is Sgrid = 100kVA.

The DGs consist of a synchronous generator actuated by a diesel engine with a gover-
nor for frequency stabilization (IEEE DEGOV1) and are equipped with an Automatic
Voltage Regulator (IEEE AC5A). The measurable states for the generator are the ter-
minal voltages udq and currents idq, as well as the frequencyωDG, and the excitation
current ifd. The control inputs of the generators are the setpoints for frequency ωref

and voltage Vref. The nominal power of the generator is SDG = 325kVA.

The battery is modeled as a constant DC voltage source connected to an inverter
with an internal droop. It is controlled by the setpoints for frequencyωref

BA and voltage
V ref

BA . Besides the frequency ωBA, the state of charge is assumed to be measurable.
The nominal power of the battery is SBA = 150kVA.

The PV system and the load are modeled as time-varying active and reactive power
infeeds. Disturbances and load changes emerge as jumps in the corresponding
states Pload,Qload,PPV and QPV.

The complete MG is given as a DAE system of index 1 with 37 differential and 42 al-
gebraic states and 6 control inputs. The system is highly nonlinear and stiff. In total,
10 of 37 differential and 28 of 42 algebraic states are measurable. The measurement
function h is the projection of the vector of all differential and algebraic states to the
measurable states.

All process noise and measurement errors are assumed to be time-independent and
uncorrelated, which leads to diagonal matricesΣmeas andΣproc. The active and reac-
tive power at the load are unpredictable time-varying states with process state noise
variance 10−2. In addition, we assume that there is no model-plant mismatch and
therefore we set the variance of the process state noise of the remaining states to
zero. To prevent numerical issues, we eliminate the corresponding variables from
the MHE problem. The variance of the measurement errors is set to 10−1 for all mea-
surable states.

8.1.1 Scenario and Objectives of Control

We analyze the performance of the estimator in a challenging load scenario. At the
beginning, the system is in steady state and the load Pload = 5 p.u. and Qload = 1 p.u.
is shared equally by the generators. The battery does not contribute to load sharing.
After 1s, a sudden unscheduled load step of 40% in active and reactive power takes
place, which exceeds the capacity of the generators. To ensure that the operational
limits are satisfied, the battery needs to serve the missing load. The simulation has
an overall length of 4s.
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The main objective of secondary microgrid control is to ensure a stable frequency
ω = 1 p.u. and constant voltage at the load Vload = 1 p.u.. Since the individual com-
ponents of the microgrid are equipped with local primary controllers, the system
may find a new stable operating point after a disturbance, but an offset to the nom-
inal operation point is introduced. The secondary controller is supposed to restore
the desired frequency and voltage by adjusting the reference values of the primary
controllers. Furthermore, the secondary controller is responsible for proper load
sharing.

8.2 Numerical Results

In this section, we provide numerical results for the presented MHE state estimator.
We compare three exemplary MLI-MHE schemes: the MHE-RTI, a C D4 and a BD4

scheme. We also include the results from an ideal MHE state estimator that, unlike
the other schemes, solves every MHE optimization problem until convergence. We
investigate the performance in an open loop as well as in a closed loop setting. In
both scenarios the estimator takes the last five measurements into consideration and
the estimation horizon is 400ms. The sampling time is 100 ms, which is inherited
from the controller in the closed loop setting. The initial variances of the states Pload

and Qload are set to 10−2 and the variance of the remaining states is set to 10−5. The
initial covariance matrix Σarr is a diagonal matrix with the corresponding values as
diagonal entries.
All computations were carried out with the Nonlinear Model Predictive Control
(NMPC) framework MLI [113] written in MATLAB. For integration and sensitivity
generation the SolvIND integrator suite was used which implements an adaptive
BDF-method [3]. The Quadratic Programms (QPs) were solved with qpOASES [34],
which implements an online active set strategy. All computations were performed
on a 64bit Ubuntu 20.04 Linux machine with 16 GB of RAM and Intel i7-9700 CPU @
3.00 GHz CPU.
We do not consider the computation times of the QP solver, because we use the as-
sumption that feedback is immediately available. The QPs are equality constrained
and solving the Karush-Kuhn-Tucker (KKT) system with the backslash operator in
MATLAB requires less than 15 ms. Since this method neither exploits the KKT struc-
ture nor the shooting structure of the system, we expect that this value can be re-
duced significantly. In addition, we proposed in Section 7.4 to perform the evalua-
tion and derivative generation of the algebraic consistency conditions in QP 7.20 in
the feedback phase. This increases the required computation time for the feedback
phase for this specific example by less than 1.5 ms, which is a small value compared
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Figure 8.2: Computational results for open and closed loop simulations. In the top row, the
trajectories for the frequency are shown and the state estimates of the different MLI-MHE
schemes are indicated by the crosses. In the middle, the voltage at the load is depicted. The
relative error of the full state estimates for the different schemes is shown in the bottom row.
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to the overall sampling time. The assumption of immediate feedback is justified be-
cause the overall computational effort of the feedback phase is small compared to
the sampling time of the process.

8.2.1 Open Loop Scenario

In the open loop scenario, the control inputs for the primary controllers are kept
constant over the whole simulation horizon. At the start of the simulation the ref-
erence points for the primary controllers are set to maintain the desired operating
point ω = 1 p.u. and Vload = 1 p.u. under the given load. After the disturbance at
t = 1s, the system is in a transient phase, but gets stabilized by the primary con-
trollers. However, the resulting stable frequency and voltage has a significant offset
to the nominal value which is a suboptimal operating condition of the microgrid.
Since the microgrid is modeled in a d q-reference frame, which is rotating with a
constant angular velocity of 1 p.u., the dynamical system is not decaying to a steady
state. On the left hand side of Figure 8.2, the frequency and the voltage at the load is
depicted. We show only these two states since controlling the frequency and voltage
is the primary objective of microgrid control. As the voltage of the system is mod-
eled by an algebraic state, it is not part of the state estimate and therefore only the
simulation results are shown. The bottom left plot shows the relative error of the
estimates to the true trajectory. In the beginning, the MHE iteration variables are
initialized in the steady state solution, which leads to a very low estimation error.
The load jump at t = 1s is a disturbance which is not complied with the dynamical
model and instead leads to the introduction of a process state noise contribution.
Because the objective function penalizes process state noise an estimation error is
introduced for all schemes. After the load jump, the estimation error is decreased
by all schemes. However, since the system is not in a steady state at the end of the
simulation, an estimation error remains for the presented MLI schemes. In contrast
to that, the ideal MHE is iterating until convergence and is therefore able to reduce
the estimation error to the range of the integration tolerance.

On the left hand side of Figure 8.3, the computation times of the different schemes
are visualized. During steady state operation of the microgrid, the computation
times are low. In the transient phase, the computation times increase for all levels
because the integrator needs more steps to achieve the desired precision. The maxi-
mal computation times in Table 8.1 show that the presented MHE schemes C D4 and
BD4 are real-time feasible.
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Figure 8.3: Computation times for different MLI-MHE schemes in an open loop and in a
closed loop scenario. From top to bottom, computation times for a D1 estimator, a C D4

schema estimator, and a BD4 schema estimator are shown. The elapsed computation times
are depicted by the heights of the bars while the width indicates during which sampling in-
tervals the computations were performed.The dashed lines mark the maximal allowed com-
putation time for the different levels to stay real-time feasible.
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open loop [ms] closed loop [ms]
max median max median

MHE-RTI D 1923 194 726 186

C D4 D 255 46 396 104
C 62 29 61 35

BD4 D 278 47 288 94
B 96 34 49 33

Table 8.1: Computation times of MHE algorithm for different scenarios and schemes.

8.2.2 Closed Loop Scenario

In the closed loop scenario, the setpoints are repeatedly adjusted by a secondary
controller in order to steer the frequency and the voltage back to the nominal op-
erating point. Here, we use an RTI-NMPC tracking controller as described in [103].
The controller does not receive the exact system state, but an estimate provided by
the different MHE schemes. The right hand side of Figure 8.2 shows the frequency,
the voltage at the load and the relative error to the true trajectory. In addition, the
trajectory of a nominal RTI-NMPC controller, which always receives the current sys-
tem state without an error, is depicted in grey. At the beginning of the simulation all
schemes are initialized in the solution of the MHE problem and have therefore a very
low estimation error during the steady state operation. An interesting observation is
that the relative estimation error of the C D4 scheme is slightly higher then the error
of the BD4 scheme which may indicate that the dual variable shift-initialization pro-
cedure, described in Section 7.4.1, causes a small residuum in the KKT conditions of
the MHE problem and leads to a correction in the feedback phase.

The disturbance at t = 1s causes a drop in frequency and voltage and all schemes
introduce an estimation error. This is caused by the MHE objective function, which
penalizes process state noise and leads to a delayed reaction by the controller. How-
ever, the estimates are accurate enough to enable the controller to steer the system
back to the nominal operating point. In contrast to the open loop scenario, the sys-
tem approaches a steady state and the estimation error decreases to the level of the
integration tolerance. On the right hand side of Figure 8.3, the computation times of
the different schemes are visualized over time. Similar to the open loop scenario, the
computation times spike during the transient phase and the C D4 and BD4 schemes
are real-time feasible.

The results show that the proposed MHE estimator is able to provide the controller
with state estimates accurately enough to steer frequency and voltage back to the de-
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sired operating point. In comparison to the nominal controller, the estimation error
of the MHE schemes lead to less aggressive control actions and it takes to more time
to stabilize the system. This is caused by the estimation error of all schemes, since
the objective function penalizes jumps in the states for the load. However, the per-
formance of all schemes is significantly better then the performance of a traditional
control setup based on PI-controllers, which has usually a settling time of over 10s
[103]. The presented MLI updates make the MHE algorithm real-time feasible, with-
out affecting the control performance significantly in comparison to the ideal MHE.
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Conclusion

This thesis is dedicated to the development of new mathematical methods and
algorithms for model-based feedback control of dynamical processes. Thereby,
we focused on processes modeled by Ordinary Differential Equations (ODEs) or
Differential Algebraic Equations (DAEs). Model Predictive Control (MPC) served as
the main algorithmic framework for process control. In MPC, the time is divided into
fixed sampling intervals. At every sampling point, the control is adjusted to the cur-
rent system state by the solution of an optimization problem. We followed a direct
approach. The arising Optimal Control Problems (OCPs) were discretized by mul-
tiple shooting to receive a family of structured Nonlinear Programming Problems
(NLPs) parameterized by the current system state. The Real-Time Iteration (RTI) was
used to exploit the structure of the NLPs and provide feedback efficiently.

The algorithmic developments of this thesis are motivated by the arising challenges
of Microgrid (MG) control. The dynamics of MGs are stiff, extremely fast, and im-
pacted by the high volatility of Renewable Energy Resources (RES). In order to
achieve a high control performance, exceedingly low sampling times and highly ac-
curate model predictions are necessary at the same time. Hence, the main challenge
of MPC for MG control is to find solutions of the computationally demanding OCPs
in a split second. A model of a MG is composed of a model of the grid topology and
models for the connected components. We reviewed the Alternating Current (AC)
power flow equations as a representation of the electrical grid and we described full
transient models for the most important components in MGs. We integrated these
models into the context of MPC by the definition of a suitable parametric OCP. The
resulting MPC algorithm is tailored to the hierarchical control structure of MGs and
is acting on the secondary layer.

A full feedback control loop comprises two main algorithmic components: the con-
troller and the state estimator. These components are structurally related and can
be approached by a similar set of mathematical tools. This thesis presented novel
mathematical approaches for both components and showed their capabilities in nu-
merical experiments.
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For process control, we reviewed the Multi-Level Iteration (MLI) as an extension of
the RTI. It is a framework for MPC, which is tailored to enable a high sampling
frequency with a low feedback delay. The core of the MLI is a set of update for-
mulas with different convergence properties and computational effort. However,
the individual levels are not able to provide sufficiently accurate control feedback
for a medium sized MG in real-time. We developed a new methodology to operate
them in parallel in order to achieve high sampling rates and accurate feedback at
the same time. Therefore, we introduced a new scheduling algorithm that enabled
a high performance while staying always real-time feasible. Theses methodological
advancements enabled us to define an MPC that stands out due to its high feedback
rates even for stiff dynamical systems. In comprehensive numerical experiments, we
showed that our proposed MPC scheme is capable to outperform current state-of-
the-art control methods for MGs control significantly. In addition, it is more flexible
because it allows the incorporation of operational bounds and global voltage con-
trol. In contrast to the RTI scheme, it always stays real-time feasible.

In order to estimate the system state online, we applied the principle of Moving Hori-
zon Estimation (MHE). This approach is based on a moving time horizon, where a
fixed number of past measurements is used to determine the state of the underly-
ing process. Similar to MPC, the algorithm solves a sequence of related dynamic
optimizations problems. The algorithmic ideas of the RTI were applied to MHE
to reduce the computational effort and to enable a lower feedback delay. How-
ever, even the RTI for MHE (RTI-MHE) is not able to meet the real-time require-
ments of MG control. In order to reduce the computational effort even further, we
developed a novel framework for online state and parameter estimation based on
the RTI-MHE. Thereby, we proposed a reformulation of the arising optimization
problems to achieve a decoupling of the system linearizations from the constantly
changing measurement data. This enabled the application of MLI update formu-
las for MHE and thus resulted in a significant reduction of computation times. We
presented a new hierarchy of update formulas for MHE and discussed their conver-
gence properties. In order to operate multiple levels in parallel, we established a
new methodology for the initialization of the arising problems. We demonstrated
the capabilities of the proposed methods on a model of a realistic sized MG in a
challenging load scenario. In comprehensive numerical experiments, we showed
the capabilities of the proposed MHE scheme. In an open loop control setup, the es-
timator was able to provide accurate state estimations even after major disturbances
within the sampling time of the MG. In closed loop simulations, our proposed MLI
for MHE (MLI-MHE) algorithm enabled a high control performance even though the
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system state was not completely measurable and the states estimates were affected
by errors.
In summary, we showed that the framework of model-based feedback control has
the potential to significantly improve the control performance of real world MGs.
The proposed MPC scheme based on MLI is able to stabilize MGs faster and more
reliable than current control approaches. In addition, it is capable to respect oper-
ational bounds and take economic goals into consideration. The newly introduced
MHE framework with MLI update formulas enabled fast and accurate state estimates
even after major disturbances in the grid. Numerical experiments showed the suit-
ability of MPC and MHE for secondary MG control. Therefore, this thesis is an im-
portant step towards its real word implementation.
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[55] M. Ilić, R. Jaddivada, X. Miao, and N. Popli. Toward multi-layered mpc for
complex electric energy systems. In Handbook of Model Predictive Control,
pages 625–663. Springer International Publishing, 2019. doi: 10.1007/978-3-
319-77489-3_26.

[56] J. Kallrath. Modeling Languages in Mathematical Optimization. Springer Pub-
lishing Company, Incorporated, 2012. doi: 10.1007/978-1-4613-0215-5.

[57] C. Kirches. Fast numerical methods for mixed-integer nonlinear model-
predictive control. Springer, 2010. doi: 10.1007/978-3-8348-8202-8.

[58] T. Kraus, P. Kühl, L. Wirsching, H. G. Bock, and M. Diehl. A Moving Horizon
State Estimation algorithm applied to the Tennessee Eastman Benchmark Pro-
cess. In 2006 IEEE International Conference on Multisensor Fusion and Integra-
tion for Intelligent Systems. IEEE, 2006. doi: 10.1109/mfi.2006.265620.

[59] P. Kühl, M. Diehl, T. Kraus, J. Schlöder, and H. G. Bock. A real-time algorithm
for moving horizon state and parameter estimation. Computers & Chemical
Engineering, 35(1):71–83, 2011. doi: 10.1016/j.compchemeng.2010.07.012.

[60] P. Kundur and N. Balu. Power System Stability and Control. McGraw-Hill, 1994.

168

https://doi.org/10.1021/ie034308l
https://doi.org/10.1002/9781118720677
https://doi.org/10.1109/ECC.2016.7810327
https://doi.org/10.1109/ECC.2016.7810327
https://doi.org/10.1561/3100000002
https://doi.org/10.1016/j.ifacol.2017.08.1081
https://doi.org/10.1016/j.ifacol.2017.08.1081
https://doi.org/10.1007/978-3-319-77489-3_26
https://doi.org/10.1007/978-3-319-77489-3_26
https://doi.org/10.1007/978-1-4613-0215-5
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1109/mfi.2006.265620
https://doi.org/10.1016/j.compchemeng.2010.07.012


Bibliography

[61] P. Kythe and M. Schäferkotter. Handbook of Computational Methods for Inte-
gration. Taylor & Francis, 2004. doi: 10.1201/9780203490303.

[62] R. Lasseter. Microgrids. In 2002 IEEE Power Engineering Society Winter Meet-
ing. Conference Proceedings (Cat. No.02CH37309), volume 1, pages 305–308
vol.1, 2002. doi: 10.1109/PESW.2002.985003.

[63] R. H. Lasseter, A. A. Akhil, C. Marnay, J. Stephens, J. E. Dagle, R. T. Guttromson,
A. S. Meliopoulous, R. J. Yinger, and J. H. Eto. Integration of distributed energy
resources: The certs microgrid concept. Technical report, CERTS, 2003.

[64] J. Lee. Model Predictive Control: Review of the Three Decades of Develop-
ment. International Journal of Control, Automation and Systems, 9:415–424,
2011. doi: 10.1007/s12555-011-0300-6.

[65] C. Leidereiter, A. Potschka, and H. G. Bock. Dual decomposition for QPs in
scenario tree NMPC. In 2015 European Control Conference (ECC), pages 1608–
1613, 2015. doi: 10.1109/ECC.2015.7330767.

[66] D. Leineweber, I. Bauer, H. Bock, and J. Schlöder. An Efficient Multiple Shoot-
ing Based Reduced SQP Strategy for Large-Scale Dynamic Process Optimiza-
tion. Part I: Theoretical Aspects. Computers & Chemical Engineering, 27:157–
166, 2003. doi: 10.1016/S0098-1354(02)00158-8.

[67] Y. Levron, J. Belikov, and D. Baimel. A Tutorial on Dynamics and Control of
Power Systems with Distributed and Renewable Energy Sources Based on the
DQ0 Transformation. Applied Sciences, 8(9), 2018. doi: 10.3390/app8091661.

[68] D. Limon and T. Alamo. Tracking model predictive control. In Encyclope-
dia of Systems and Control, pages 1475–1484. Springer London, 2015. doi:
10.1007/978-1-4471-5058-9_3.

[69] C. Lindscheid, D. Haßkerl, A. Meyer, A. Potschka, H. G. Bock, and S. Engell. Par-
allelization of modes of the multi-level iteration scheme for nonlinear model-
predictive control of an industrial process. In 2016 IEEE Conference on Control
Applications (CCA), pages 1506–1512, 2016. doi: 10.1109/CCA.2016.7588014.

[70] V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Péan, S. Berger, N. Caud,
Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews,
T. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Z. (eds.). Climate change
2021: The physical science basis. contribution of working group i to the sixth

169

https://doi.org/10.1201/9780203490303
https://doi.org/10.1109/PESW.2002.985003
https://doi.org/10.1007/s12555-011-0300-6
https://doi.org/10.1109/ECC.2015.7330767
https://doi.org/10.1016/S0098-1354(02)00158-8
https://doi.org/10.3390/app8091661
https://doi.org/10.1007/978-1-4471-5058-9_3
https://doi.org/10.1007/978-1-4471-5058-9_3
https://doi.org/10.1109/CCA.2016.7588014


Bibliography

assessment report of the intergovernmental panel on climate change. Techni-
cal report, IPCC, 2021.

[71] N. Meyer-Hübner, M. R. Suriyah, T. Leibfried, V. Slednev, V. Bertsch, W. Ficht-
ner, P. Gerstner, M. Schick, and V. Heuveline. Time constrained optimal power
flow calculations on the German power grid. In International ETG Congress
2015; Die Energiewende - Blueprints for the new energy age, pages 1–7, 2015.

[72] N. Meyer-Hübner, M. Suriyah, T. Leibfried, V. Slednev, V. Bertsch, W. Ficht-
ner, P. Gerstner, M. Schick, and V. Heuveline. Optimal Storage Operation with
Model Predictive Control in the German Transmission Grid. In Advances in
Energy System Optimization, pages 31–45. Springer International Publishing,
2017. doi: 10.1007/978-3-319-51795-7_3.
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[74] A. Mešanović, U. Münz, A. Szabo, M. Mangold, J. Bamberger, M. Metzger,
C. Heyde, R. Krebs, and R. Findeisen. Structured controller parameter tun-
ing for power systems. Control Engineering Practice, 101:104490, 2020. doi:
10.1016/j.conengprac.2020.104490.
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and E. Kostina. Multi-level iterations for microgrid control with automatic
level choice. In Scientific Computing in Electrical Engineering. Springer In-
ternational Publishing, 2020. In Press.

[104] V. Schulz, H. Bock, and M. Steinbach. Exploiting Invariants in the Numerical
Solution of Multipoint Boundary Value Problems for DAE. SIAM Journal on
Scientific Computing, 19(2):440–467, 1998. doi: 10.1137/s1064827594261917.

[105] J. W. Simpson-Porco, Q. Shafiee, F. Dörfler, J. C. Vasquez, J. M. Guerrero, and
F. Bullo. Secondary frequency and voltage control of islanded microgrids via
distributed averaging. IEEE Transactions on Industrial Electronics, 62(11):
7025–7038, 2015. doi: 10.1109/TIE.2015.2436879.

[106] O. Stanojev, U. Markovic, P. Aristidou, G. Hug, D. S. Callaway, and E. Vret-
tos. MPC-Based Fast Frequency Control of Voltage Source Converters in Low-
Inertia Power Systems. IEEE Transactions on Power Systems, pages 1–1, 2020.
doi: 10.1109/TPWRS.2020.2999652.

[107] P. Sterchele, J. Brandes, J. Heilig, D. Wrede, C. Kost, T. Schlegl, A. Bett, and H.-
M. Henning. Paths to a climate-neutral energy system. the german energy
transition in its social context. Technical report, Fraunhofer ISE, 2020.

173

https://doi.org/10.1007/BFb0006520
https://doi.org/10.1016/j.automatica.2016.07.036
https://doi.org/10.1016/j.automatica.2016.07.036
https://doi.org/10.1007/978-3-030-48439-2_9
https://doi.org/10.1137/s1064827594261917
https://doi.org/10.1109/TIE.2015.2436879
https://doi.org/10.1109/TPWRS.2020.2999652


Bibliography

[108] S. W. Sung, J. Lee, and I.-B. Lee. Process Identification and PID Control. John
Wiley & Sons, Ltd, 2009. doi: 10.1002/9780470824122.

[109] X. Tan, Q. Li, and H. Wang. Advances and trends of energy storage technology
in microgrid. International Journal of Electrical Power & Energy Systems, 44(1):
179–191, 2013. doi: 10.1016/j.ijepes.2012.07.015.

[110] A. Ulbig, T. Rinke, S. Chatzivasileiadis, and G. Andersson. Predictive control
for real-time frequency regulation and rotational inertia provision in power
systems. In 52nd IEEE Conference on Decision and Control, pages 2946–2953,
2013. doi: 10.1109/CDC.2013.6760331.

[111] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright. Distributed MPC
Strategies With Application to Power System Automatic Generation Control.
IEEE Transactions on Control Systems Technology, 16(6):1192–1206, 2008. doi:
10.1109/TCST.2008.919414.

[112] A. Wächter and L. Biegler. On the Implementation of an Interior-Point Filter
Line-Search Algorithm for Large-Scale Nonlinear Programming. Mathema-
tical Programming, 106(1):25–57, 2006. doi: 10.1007/s10107-004-0559-y.

[113] L. Wirsching. Multi-Level Iteration Schemes with Adaptive Level Choice for
Nonlinear Model Predictive Control. PhD thesis, Heidelberg University, 2018.

[114] R. Zamora and A. K. Srivastava. Controls for microgrids with storage: Review,
challenges, and research needs. Renewable and Sustainable Energy Reviews,
14(7):2009–2018, 2010. doi: 10.1016/j.rser.2010.03.019.

[115] A. Zanelli, R. Quirynen, and M. Diehl. An Efficient Inexact NMPC Scheme with
Stability and Feasibility Guarantees. IFAC-PapersOnLine, 49(18):53–58, 2016.
doi: 10.1016/j.ifacol.2016.10.139.

[116] A. Zanelli, Q. Tran-Dinh, and M. Diehl. A Lyapunov function for the combined
system-optimizer dynamics in inexact model predictive control. Automatica,
134:109901, 2021. doi: 10.1016/j.automatica.2021.109901.

[117] V. M. Zavala and L. T. Biegler. The advanced-step NMPC controller: Op-
timality, stability and robustness. Automatica, 45(1):86–93, 2009. doi:
10.1016/j.automatica.2008.06.011.

[118] H. Zhou, C. A. Hans, and W. Zhang. Minimax model predictive operation con-
trol of grid-connected microgrids. In 2016 IEEE Conference on Control Appli-
cations (CCA), pages 58–63, 2016. doi: 10.1109/CCA.2016.7587822.

174

https://doi.org/10.1002/9780470824122
https://doi.org/10.1016/j.ijepes.2012.07.015
https://doi.org/10.1109/CDC.2013.6760331
https://doi.org/10.1109/TCST.2008.919414
https://doi.org/10.1109/TCST.2008.919414
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1016/j.rser.2010.03.019
https://doi.org/10.1016/j.ifacol.2016.10.139
https://doi.org/10.1016/j.automatica.2021.109901
https://doi.org/10.1016/j.automatica.2008.06.011
https://doi.org/10.1016/j.automatica.2008.06.011
https://doi.org/10.1109/CCA.2016.7587822


List of Figures

1.1 Structure of the individual chapters and their mutual dependencies. . 11

2.1 Hierarchical control structure of MG. . . . . . . . . . . . . . . . . . . . . 17

3.1 Resistor and inductor in series connection. . . . . . . . . . . . . . . . . . 24

3.2 Example of Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL). 30

3.3 Sketch of synchronous generator . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Signal flow of Synchronous Generator (SG) model. . . . . . . . . . . . . 42

3.5 Sketch of a three phase inverter with an LC filter. . . . . . . . . . . . . . 49

3.6 Schematic of a three phase Direct Current (DC) to AC H-bridge inverter. 49

3.7 Signal flow of a grid-forming inverter. . . . . . . . . . . . . . . . . . . . . 51

3.8 Signal flow of a grid-following inverter. . . . . . . . . . . . . . . . . . . . 53

3.9 Signal flow of a grid-supporting inverter. . . . . . . . . . . . . . . . . . . 55

3.10 Steady-state model of an inverter connected to an infinite bus. . . . . . 57

3.11 Simulation results of a grid-supporting inverter connected to an infinite bus.
The blue trajectories show the states of the inverter model and the red plot
indicates the active power reference respectively the grid frequency. At the
nominal frequency, the inverter follows the provided reference values. At a
reduced frequency, it provides additional power to stabilize the grid. The
parameters are R = 0.1, L = 0.01 and D = 10. . . . . . . . . . . . . . . . . 59

4.1 Idealized MPC process. The state is depicted in red, the control in blue. At
time tk , the controller receives the current state ξk and computes an optimal
feedback control uξk on the prediction horizon [tk , tk +T ]. . . . . . . . 63

4.2 Signal flow of MPC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Discretized MPC process. The controls are depicted in blue and the states in
red. Because of the discretization, the controls are constant in the sampling
intervals. The solid lines represent the past states and controls, while the
dashed lines indicate the optimized model predictions of the controller. 68

4.4 Temporal communication between the controller and the process. The tran-
sition phase is not depicted because their computation time is negligible. 72

175



List of Figures

5.1 Signal flow of MLI scheme with combined levels. The gray boxes represent
independent components, which are executed on dedicated CPU cores. The
arrows represent the communication signals between the components. In
this sketch, a top-down communication for the reference data is used as de-
picted on the right hand side. . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Temporal communication of a BD2 scheme with a Level D iteration every
second sampling point and one intermediate Level B iteration. The gray ar-
eas indicate when the corresponding level is busy. . . . . . . . . . . . . 89

5.3 Exemplary scheduling of levels with Adaptive Level Choice by Computation
Time (ALC-Time) with varying computation times. The colors indicate the
state of the levels. Red shows that the corresponding level is busy and green
that it is ready. At the sampling points, the highest available level is used to
generate feedback. The number of intermediate Level B iterations depend
on the computation time of Level D. The gray areas indicate the feedback
phase of the Feedback-generating Quadratic Programm (FQP). . . . . 91

6.1 Sketch of the test grid with diesel generator, PV and load. . . . . . . . . 95

6.2 Diesel generator with primary controllers. . . . . . . . . . . . . . . . . . 96

6.3 Active Pload and reactive power Qload demand at the load and active power
input PPV of Photovoltaic (PV) system. . . . . . . . . . . . . . . . . . . . 97

6.4 Control performance of RTI and ideal MPC. . . . . . . . . . . . . . . . . 98

6.5 Frequency (left) and voltage at the load (right) controlled with Level C, B
and A controller. The trajectory of the controllers are depicted in red, the PI-
controller for comparison is shown in blue. All schemes are real-time feasi-
ble with a sampling rate below 200 ms. . . . . . . . . . . . . . . . . . . . 99

6.6 Computation time for every iteration for the different levels. The sampling
time is represented by the dashed line. For Level A it is 5ms, for Level B
100ms and for Level C 200ms. Level C, B and A are real-time feasible. Level
D uses a sampling time of 500ms but is not real-time feasible. . . . . . 100

6.7 Topology of the test MG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Active and reactive power demand P and Q of the load for different load
profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.9 Simulation results for load jump scenario. The MLI-controller is able to steer
frequency and voltage back to the nominal value faster and with a lower ini-
tial drop, while respecting the operational limits. . . . . . . . . . . . . . 107

6.10 Simulation results for linear load ramp scenario. The MLI-controller is able
to steer frequency and voltage back to the nominal value faster and with a
lower initial drop, while respecting the operational limits. . . . . . . . . 108

176



List of Figures

7.1 Exemplarily MHE process. The measurements are depicted by the black
dots, the past controls are shown in blue and the model representation of
the process on the horizon [tk−M , tk ] is depicted in red. The state estimate
ξk is given by the state of the model on the current time point tk . . . . 111

7.2 Signal flow of closed loop MPC setup with state estimator. . . . . . . . . 112
7.3 Temporal communication of process, estimator, and controller in the RTI-

MHE algorithm. The MHE preparation phase starts at the end of the RTI
feedback phase, when the applied control is available. . . . . . . . . . . 120

7.4 Illustration of the estimation horizon shift and the induced variable shift
map P l

shift with l = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Exemplary MLI scheme with one Level D update every fourth sampling

point followed by three intermediate Level C updates (C D4). The gray area
denotes, when the corresponding level is busy. . . . . . . . . . . . . . . 143

8.1 Topology of the test MG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Computational results for open and closed loop simulations. In the top row,

the trajectories for the frequency are shown and the state estimates of the
different MLI-MHE schemes are indicated by the crosses. In the middle, the
voltage at the load is depicted. The relative error of the full state estimates
for the different schemes is shown in the bottom row. . . . . . . . . . . 154

8.3 Computation times for different MLI-MHE schemes in an open loop and
in a closed loop scenario. From top to bottom, computation times for a D1

estimator, a C D4 schema estimator, and a BD4 schema estimator are shown.
The elapsed computation times are depicted by the heights of the bars while
the width indicates during which sampling intervals the computations were
performed.The dashed lines mark the maximal allowed computation time
for the different levels to stay real-time feasible. . . . . . . . . . . . . . . 156

177



List of Tables

5.1 Computations and update formulas for the QP data of the different levels. 84

6.1 Sampling time and maximal loop time for different schemes. . . . . . . 101

7.1 Computations and update formulas for the QP data for the different levels.
The linearization points v are the shifted approximate solutions of the pre-
vious MHE problem, according to (7.21). The reference evaluations and Ja-
cobians as well as the multipliers in Level C are the shifted versions λbdyn of
the preceding MHE QPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Computation times of MHE algorithm for different scenarios and schemes.157

178



List of Acronyms

Acronyms from Power Engineering

AC Alternating Current

DC Direct Current

OPF Optimal Power Flow

PF Power Flow

KVL Kirchhoff’s Voltage Law

KCL Kirchhoff’s Current Law

RES Renewable Energy Resources

PV Photovoltaic

RMS Root Mean Square

PWM Pulse Width Modulation

SG Synchronous Generator

AVR Automatic Voltage Regulator

MG Microgrid

PI Proportional-Integral

PLL Phase Locked Loop

PID proportional-integral-derivative

DG Diesel Generator

BA Battery

SI International System of Units

VSI Voltage Source Inverter

PCC Point of Common Coupling

179



List of Tables

Mathematical Acronyms

MHE Moving Horizon Estimation

RTI Real-Time Iteration

MLI Multi-Level Iteration

NMPC Nonlinear Model Predictive Control

MPC Model Predictive Control

NLP Nonlinear Programming Problem

SQP Sequential Quadratic Programming

DAE Differential Algebraic Equation

QP Quadratic Programm

FQP Feedback-generating Quadratic Programm

IVE Initial Value Embedding

CTE Control Trajectory Embedding

BFGS Broyden–Fletcher–Goldfarb–Shanno

ALC-Con Adaptive Level Choice by Contractivity

ALC-Time Adaptive Level Choice by Computation Time

GN Gauß-Newton

MLI-MHE MLI for MHE

RTI-MHE RTI for MHE

IND Internal Numerical Differentiation

KKT Karush-Kuhn-Tucker

LICQ Linear Independence Constraint Qualification

OCP Optimal Control Problem

ODE Ordinary Differential Equation

180


	Title Page - Submission
	Title Page - Publication
	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Model-based Feedback Control
	1.2 The Challenge of Microgrid Control
	1.3 Contributions of this Thesis
	1.4 Structure of the Thesis

	2 Control of Microgrids
	2.1 Microgrid Concept
	2.2 Hierarchical Control Structure of Microgrids

	3 Mathematical Modeling of Power Systems
	3.1 Steady State Modeling
	3.2 Dynamic Modeling
	3.3 Microgrid Components

	4 Nonlinear Model Predictive Control
	4.1 Principle of Nonlinear Model Predictive Control
	4.2 Process Model
	4.3 Parametric Optimal Control Problem
	4.4 Classical Nonlinear Model Predictive Control
	4.5 Sequential Quadratic Programming
	4.6 Real-Time Iteration

	5 Multi-Level Iteration
	5.1 MLI Update Formulas
	5.2 Combined MLI Schemes
	5.3 Adaptive Level Choice by Computation Time

	6 Multi-Level Iteration for Secondary Microgrid Control
	6.1 Case Study with One Generator
	6.2 Grid Control with Adaptive Level Choice by Computation Time
	6.3 Numerical Results

	7 Moving Horizon Estimation
	7.1 The Principle of MHE
	7.2 A Generalized Gauß-Newton Method Solution Framework
	7.3 Modified RTI-MHE Formulation
	7.4 Multi-Level Iteration for Moving Horizon Estimation
	7.5 Arrival Cost Update Procedure

	8 Moving Horizon Estimation for Secondary Microgrid Control
	8.1 Microgrid Model
	8.2 Numerical Results

	9 Conclusion
	Bibliography
	Figures, Tables & Acronyms

