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Abstract

All three papers included in this thesis, rely on an exemplar trait-impression formation

paradigm (Asch, 1946), but throughout each paper different theoretically important

aspects of the sampling task are analyzed. Prager, Krueger and Fiedler (2018) elaborate

a possible solution to the "less-is-more" debate, that is the question whether more

information leads to more or less extreme judgments. The correlation between sample

size and how amplified judgments are depends crucially on how the respective sample

was stopped. When sample size was experimenter-determined (random), judgments

tended to be more conservative for small than for large samples. In contrast, judgments

on small samples were polarized for self-truncated sampling (i.e. when the judging

participants can themselves decide on when to stop the sampling sequence). Prager

and Fiedler (2021b) transferred the self-truncation principle to an inter-group context,

where impression targets were groups rather than individuals. By assessing perceived

within-group homogeneity in addition to the likeability judgment, we could demonstrate

that perceived homogeneity is part of the self-truncation principle: Early truncated

samples are not only more polarized but also more homogeneous than samples that

are expanded further. Given that out-groups are associated with smaller information

samples, these self-truncation effects might constitute a sufficient explanation of out-

group homogeneity and out-group polarization.

In Prager et al. (2018) and Prager and Fiedler (2021a) we apply different versions

of a yoked controls design: Whereas a primary participant engages in self-truncated

sampling, a secondary yoked control receives exactly the same samples passively. This

procedure results in regression: Small samples are perceived less polarized for the yoked

control than for the primary self-truncating participant. This difference is an exclusive

result of different cognitive processing of the sampling input, since the yoked controls

design keeps the sampling input itself identical.

All three papers analyze the impact of diagnosticity: Especially negative and ex-

treme information is more diagnostic than positive and moderate input. Highly dia-

gnostic input results in earlier truncation and more polarized judgment. The diagnosti-

city concept is further elaborated by considering multi-dimensional density in Prager

and Fiedler (2021b).
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Judgments and Decisions from

Information Samples

Information samples have traditionally been the basis of judgment and decision tasks.

Such tasks involved for example estimating the mean or variance of a deck of numbered

cards or to infer from which of two bookbags the experimenter draws poker chips of

different color (see Peterson & Beach, 1967 for a summary). More recent approaches to

information sampling (see Fiedler, Juslin & Denrell, in press for an overview), focus on

how sampling task features, stochastic principles and their interaction with task goals

constraint the possible outcomes of cognitive processing and consequent judgments and

decisions.

Almost any judgments and decisions refer to latent attributes or dimensions that

are in principle not directly and exhaustively accessible by experience. Such latent

attributes could be the precise probability of a lottery outcome, student ability, true

diagnosis, or likeability. Information samples, experience, but even summary statistics,

can merely approximate the true parameters. Human agents (but also computer al-

gorithms and even census data) can never fully access the entirety of relevant instances

of proximal observations of these latent dimensions or states (like lottery outcomes,

grades in examinations, symptoms, social interaction). Information samples do not

contain an imperative that directly results in an action. Thus, the judging agent must

integrate potentially diverging and fluctuating information and translate these aggreg-

ates into decisions like stopping information search, switching to another information

source, choosing an option or to report a final judgment. Such inferences from samples

inevitably involve a two-stage process: Samples drawn from the ecology need to be

processed, aggregated, and transformed into actions by the cognitive system.

1



2 Judgments and Decisions from Samples

A Cognitive-Ecological Perspective on Sampling

The cognitive-ecological perspective on inference from sampling (Fiedler, 2000; Fiedler

& Wänke, 2009; Kutzner & Fiedler, 2017) considers that latent features and character-

istics of the environment need to be inferred from proximal stimulus samples. These

stimulus samples are the basis of any cognitive processing, judgments and decisions –

the sampling ecology must be considered antecedent to cognitive processes. This seem-

ingly trivial notion has crucial consequences on how to analyze judgment and decision

behavior: Before we turn to cognitive causes in explaining and predicting judgment and

decision patterns, like encoding and retrieval, cognitive strategies, aggregation rules or

personal motives, we must consider characteristics of the sampling ecology. Biased

judgments (e.g. on out-groups or minorities) are hard to ascribe to personal motives

or biased cognitive processing, when already the ecological informational basis of these

judgments is skewed, systematically selected or censored. To be clear: Explanations of

behavioral phenomena by environmental sampling properties rather than biased cog-

nition do not at all exclude the possibility of subsequent cognitive biases in processing

and storing the sampled information or the impact of social or personal motives. Yet,

current research taking a cognitive-ecological perspective has demonstrated in various

contexts, tasks and paradigms, that many social-cognitive phenomena can be suffi-

ciently explained without assuming any systematic biases in cognitive processing. For

example, recent sampling approaches have provided sufficient explanations to phenom-

ena like illusory correlations (Denrell & Le Mens, 2008; Fiedler, 2000), confirmation

bias (Fiedler et al., 1999), overconfidence (Erev et al., 1994), loss aversion (Walasek &

Stewart, 2015), or social influence (Denrell & Le Mens, 2007).

The thesis-related research articles also build on the sampling approach while con-

sidering sample size effects (starting form the less-is-more debate), valence asymmetries

and out-group homogeneity. However, neither these, nor many other publications of

the sampling framework stop at a mere reproduction of known empirical phenomena

by sampling rather than blaming cognitive biases. The sampling perspective provides a

deeper understanding of respective judgment and decision phenomena. Knowing that

sample properties determine subsequent judgments and decisions, experimentally con-

trolling the constraints of the sampling environment must lead to predictable changes

in related judgments and decisions. Controlling sampling constraints and considering
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the consequences on resulting samples goes far beyond stochastic exercises: Research-

ers have successfully controlled phenomena in various contexts, where other approaches

(especially cognitive biases) have a hard time explaining the resulting specific boundary

conditions. Walasek and Stewart (2015) for example demonstrated that loss aversion

is strongly impacted by the range-frequency property of gains and losses in the ecology

(in usual environments gains are large and infrequent, losses are frequent and small).

Exposing participants to a counter-natural environment makes loss-aversion disappear.

In a similar approach, Alves et al. (2015) demonstrated that reversing the positive-

negative asymmetry in density of words, removes the recognition-advantage of negative

words over positives. Or, more recently, Harris et al. (2020) showed that initially biased

views on two options either persists or are corrected, depending on whether outcomes

in this task are predominantly gains or losses.

Sampling Task Constraints

These examples demonstrate that a comprehensive insight to judgment and decision

phenomena is only possible when considering, understanding and controlling the sampling

task constraints, that is the way in which the ecology translates into an information

sample and the way this sample reaches the human judge. The research included in

this thesis will first focus on the less-is-more debate as the questions of how sample

size and impressions correlate, but also on the positive-negative valence asymmetry in

impression formation and on the out-group homogeneity effect.

But before turning to these phenomena and how they can be tested in experi-

ments, we should acknowledge that research on sampling-based judgment and decision

making is a very diverse field: Researchers have relied on a rather large variety of

task features. Experimental paradigms can be meaningfully classified in the cognitive-

ecological framework by considering the sampling features and constraints. Participants

of a sampling task might for example be asked to either chose between options, or to

estimate an aggregate value inferred from the sample. Or, they might either observe

the sample in order to gain maximum knowledge on the target, or to actually con-

sume the sample, that is facing the consequences of sampling input (like gain and loss

or pleasantness and unpleasantness). Similarly, the whole sample might be determined

externally, for example drawn by the experimental program, or participants might have
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influence of some kind on what they see. They might decide on when to stop an un-

folding sample or to decide for themselves whether they want to switch sampling from

one to another available option.

There are many more features by which sampling tasks and constraints can be

classified. But rather than providing an exhaustive taxonomy of sampling tasks, I want

to demonstrate that sampling task constraints are much more than adding a label to

an experimental paradigm. Sampling task constraints determine the way participants

can draw inferences from the sample. Thus, specific technical task features determine

unique and theoretically meaningful features of the problem space. Consequently, a

different sampling ecology calls for different kinds of cognitive inference and inference-

strategies and most likely results in distinct behavior and responses. When we for

example consider whether the task is estimation of a target feature from a sample, or

whether the task is to chose between two or more choice options, identical sampled

input gets a different meaning. Choice tasks require discriminating between options:

information that maximizes discriminability (i.e. minimum within-option variance,

maximum between-option variance) is most helpful. In contrast, in feature-estimation

tasks (like impression-formation tasks), information is helpful and influential when

it helps to locate the target on the feature-scale with high confidence, that is when

samples appear stable and non-ambivalent about the placement of the target on the

feature scale.

Most theoretical work in the three papers involved in this thesis originates from

the task feature of self-truncated sampling. The small technical detail of whether par-

ticipants can decide for themselves when to truncate a sequentially unfolding sample,

rather than having to rely on a computer-determined sample, causes manifold con-

sequences on the cognitive-processing level, which even reflect back on the sampling

ecology. But, let us consider the details of the impression-formation task, before re-

turning to these cognitive-ecological consequences.

Sampling Task Constraints of the Basic Impression Formation Paradigm
of this Thesis

All three research articles included in this thesis rely on variants of a basic person im-

pression formation paradigm. Inspired by Asch (1946), we presented participants with

a sequence of traits characterizing a target person. After traits were presented, parti-
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cipants were asked to report their likeability on the target person (Prager & Fiedler,

2021a; Prager et al., 2018). For the experiments in Prager and Fiedler (2021b) the

sampling procedure remained identical, but targets were groups rather than individu-

als and impression ratings aimed at perceived within-group homogeneity in addition to

likeability. This experimental paradigm can be classified as impression formation on

one target at a time (rather than choice between options).

This specification of task and sampling constraints is much more than a mere tax-

onomy and labelling empirical effects. Prager et al. (2018) demonstrated that simply

changing the sampling constraint of how and when a sequentially unfolding sample is

stopped, can reverse sample size effects. By turning sample size from an independent

variable in externally (random) determination of sample size into a dependent variable

when participants can decide for themselves when to stop the sequence of traits, we

changed the inference problem. These theoretically predictable and empirically robust

consequences of changing sampling constraints allowed for a new interpretation of the

so-called "less-is-more" debate (see next chapter).

Besides establishing a small-sample polarization effect in impression judgments from

self-truncated sampling, the aspect of self-truncation makes this research part of a

new branch of cognitive-ecological sampling. Dynamic iterations rather than a linear

two-stage process must be considered when predicting the sampling and judgment

outcomes of self-truncated sampling. For each piece of information being sampled, the

judging agent needs to integrate the new information and subsequently decide whether

to continue sampling or to stop and to move on to the final judgment. This iterative loop

of sampling from the ecology – integration of new information – decision to continue or

stop must be repeated until the decision to stop is made. Crucially, this iterative process

is recursive: How novel information is processed and whether the sample is continued

or truncated depends on the entire sequence of sampling – processing iterations on the

current target.

Two further sampling phenomena follow from this dynamic cognitive-ecological per-

spective. First, we must consider that sampling decisions and impression judgments

are not only determined by the mere stimulus input, but also by oscillation (or noise)

within the mind of the processing individual. Truncation decisions made by one par-

ticipant cannot be expected evoke the same level of clarity and preparedness in a

yoked-control participant who passively receives the same sample, including the other’s
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truncation decision. Such a passing on of samples between yoked control participants

causes regression in the amplification of small-sample polarization effects (Prager &

Fiedler, 2021a; Prager et al., 2018, see the chapter on Thurstonian sampling). Second,

the self-truncation context would not only imply small-sample polarization, but also

small-sample homogeneity. Thus, transferring the small-sample consideration to an

inter-group context, Prager and Fiedler (2021b) demonstrated that this is sufficient

in producing typical inter-group phenomena, namely out-group homogeneity and out-

group polarization (or derogation when considering the valence asymmetry caused by

diagnosticity; see chapter on diagnosticity).

All described theoretical considerations and empirical phenomena closely relate to

the manifold consequences of the task-feature of self-truncated sampling. It seems

worthwhile to elaborate on self-truncation in detail before I discuss the consequences

resulting from the presence of Thurstonian uncertainty in self-truncated sampling.



Self-Truncated Sampling in

Impression Formation

Impression formation is truly ubiquitous in social environments and social interaction.

Typically, it has been assumed that impressions are antecedent to choice – impressions

inferred from the observed sample express an approach-avoidance tendency, which can

be translated into a specific decision. But even in the absence of a consequential decision

or choice, impression formation can be meaningful in itself (e.g. grading students,

ranking job applicants or gaining a first impression of a newly encountered person).

Coming back to the trait-sampling paradigm, the distinction of impression forma-

tion from choice tasks becomes highly relevant when considering the decision of when

to stop a sequentially unfolding sample in self-truncated sampling. We assume that

samples are truncated whenever the current impression is clear-cut and sufficiently

conflict-free and that ambivalence and contradiction within the sample cause continu-

ation of the sampling sequence. Or, in other words, sampling is truncated when place-

ment of the target person on the likeability scale is easy and consistent. This way of

truncating a sample is different from a choice task, where high contrast between choice

options leads to sample truncation. Also the epistemic nature of the task (as people do

not actually consume the sampled content) is necessary to assume such a truncation-

contingency: Hedonic environments would evoke truncation whenever participants face

an unpleasant sample and inhibit truncation for pleasant encounters (Denrell, 2005;

Fazio et al., 2004).

The assumed truncation-contingency in self-truncated sampling has a crucial impact

on the role of sample size: When sample size is fixed and determined by external factors,

there is no causal relation between sample content and sample size – sample size remains

an independent variable. In self-truncated sampling however, sample size becomes

7
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dependent on participant’s truncation decisions. As lined out above, we assume a

contingency between sample truncation and sampled content. Exactly this central

element of how sample size is determined, becomes the key to gaining a new perspective

and a possible solution to the less-is-more debate.

A New Perspective on the Less-Is-More Debate

The "less-is-more" principle in interpersonal impression formation is strongly propag-

ated by Norton et al. (2007, 2013). In some of their studies, they relied on an impression

formation task, where target persons were characterized by trait words like "ambitious",

"bright", "polite", "stubborn", or else. Norton et al. (2007) found a negative correlation

between sample size (i.e. the number of traits used to characterize the targets) and im-

pressions. That is, targets were liked less when described by more traits. Ullrich et al.

(2013) however argued that such an assumption would contradict statistical principles,

like averaging (Anderson, 1965). Given that sampling is stochastically independent, the

sample mean is an unbiased estimator of the true population mean. Although we must

expect larger fluctuation for small rather than large samples, the mean expected value

of samples of any size remains unchanged. Relying on the same impression-formation

paradigm and on trait samples as stimulus materials, Ullrich et al. (2013) found no

evidence for any kind of sample-size effect.1

Solving the "less-is-more" debate is not only of empirical or phenomenological in-

terest. And "less-is-more" does not only violate statistical principles (Ullrich et al.,

2013). Many social-cognitive (Zajonc, 1968), but also sampling explanations rely on a

"more-is-more" assumption. From the very beginning, judgment and decision research-

ers assumed that human judges follow (at least approximately) a Bayesian impression-

integration strategy (Edwards, 1965; Peterson & Beach, 1967). Given that judging

agents do not have any precise expectation on the target before observing information

(De Finetti, 1937), larger samples carry stronger evidence and are thus expected to have

a greater potential of resulting in a polarized impression, whereas small samples are

determined by prior belief, which causes moderate and cautious judgments when priors
1Ullrich et al. (2013) focused on the Asch (1946) impression formation task. Norton et al. (2007)

also used a romantic dating scenario, which can be even easier understood from a cognitive-ecological
perspective. A decision for going on a date with someone is an instance of a very positive impres-
sion. Such an impression, that is also based on a small sample will almost inevitably be corrected
by sampling more. Selection of extreme events (such as dates or crises) will inevitably be subject to
profane regression.



Self-Truncated Sampling in Impression Formation 9

are uninformed (or at least approximately central and symmetrical). In this tradition of

considering stochastic properties of samples, Fiedler (2000) assumes that the stronger

evidence carried by larger compared to smaller samples causes stronger impressions,

which results in illusory correlations (Fiedler et al., 2002, for further examples).

When we strictly follow Norton et al. (2007) and, for a moment, naively interpret

the "less-is-more" phenomenon as a universal principle, we end up with a paradox-

ical situation. Assuming that impressions are antecedent to decisions, by providing a

position on an approach-avoidance scale, how can people develop longer lasting rela-

tionships? Almost every relationship would constantly deteriorate. The key to solving

(at least part of) the contradiction of this conflict is taking sampling constraints into ac-

count. In general, statistical rules such as the law of large numbers (Bernoulli, 1713) or

Bayesian updating from indifference (De Finetti, 1937) clearly support a general "more-

is-more" expectation on the relation between impressions and sample size: Generally,

more information renders impressions more confident and sometimes more polarized.

This general "more-is-more" principle however has certain boundary conditions. Fiedler

and Kareev (2006) for example demonstrated that given a satisficing threshold-based

strategy, small samples can (for specific parameter settings) improve contingency de-

tection.

It is crucial to solving the "less-is-more" problem, to consider whether samples are

randomly determined and sample size represents an independent variable. Or, whether

judging agents can themselves determine when an unfolding sample stops, turning

sample size into a dependent variable. For the given person-impression formation from

traits paradigm, we allow some participants to truncate the sample themselves whenever

they feel to have seen enough in order to give a judgment on the target (Prager et al.,

2018). Others must accept the experimenter-truncated sample size (which is chosen

randomly). In order to understand sample-size effects in a fixed-sample-size envir-

onment and a self-truncated-sample-size environment, we need to combine statistical

sampling properties with the impacts of applying a truncation rule. We must expect

different sample properties from small and large samples. In addition, in self-truncated

sampling, the truncation rule (i.e. the instance of when a sample is stopped) needs to

reflect a moment when the sample conveys a clear-cut and conflict-free impression.

Concerning the stochastic properties of small and large samples, the law of large

numbers (Bernoulli, 1713) states that for very large samples, the sample parameters
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approximate the latent population parameters. That also implies that small samples

in turn have a greater potential to vary and fluctuate. Small samples more likely

amplify an existing trend compared to large samples (Hertwig & Pleskac, 2010). Also,

small samples are more likely to convey an unrealistically clear-cut and convergent

impression, just by mere sampling error. Applying the proposed sampling rule, it is

exactly those instances of clear-cut and conflict-free samples, that are truncated at an

early stage. In contrast, samples that are ambivalent and contain conflicting evidence

are continued. However, instances of extremely or even exaggeratedly low conflict are

much less likely for expanded samples. This contingency of sample size on the clarity

of evidence typically leads to a small-sample polarization effect: Impressions on small

samples are stronger (one might say more extreme) than impressions on larger samples.

Taking a cognitive-ecological perspective on the issue, we came up with theoretically

deduced task constraints, which would lead to either stronger evidence with larger

samples (when sample size is fixed externally) or to stronger judgments for small than

large samples (when samples are self-truncated). Considering the sampling environment

and constraints thereof, "less is more" vs. "more is more" is not an actual contradiction

any longer – we can rather specify environmental features that determine the direction

of sample size effects on impression judgments. However, to respond to the question,

whether "less" is really "more", we need to consider further constraints, namely the cost

of errors versus the benefit of sampling less. I will discuss these aspects as an outlook

in the last chapter – in the three research articles included in this thesis, we primarily

focused on the peculiarities of the sample-size-impression-strength dependency.

The sample truncation rule is not peculiar to human judges, but might as well be

expressed in statistical terms. In Prager and Fiedler (2021a) and Prager and Fiedler

(2021b) we give examples of simplified statistical optional stopping rules. Truncation

of the sample at a moment of clarity and perceived stability might be expressed as

a sufficiently small standard error as in Haldane’s (1945) labour saving method of

sequential estimation. Or, when using Bayesian methodology, truncation is contingent

on the width of a fixed-weight posterior highest-density-interval. Such an interval

covers the narrowest possible range of, say 90%, posterior probability. Both exemplar

statistical optional-stopping procedures result in a negative relation between sample size

and the strength (i.e. polarization) of resulting calculated estimates (which are meant

to imitate human impression judgments) for the vast majority of possible parameter
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settings.

Self-Truncated Sampling: A Sufficient Condition to Out-

Group Homogeneity

In Prager and Fiedler (2021b) we argued that it is exactly those consequences of self-

truncation that form a sufficient condition to produce out-group homogeneity and out-

group polarization effects. For elaborating on this claim, it is necessary to transfer the

self-truncation principles to the inter-group context. In Prager and Fiedler (2021b) we

consider groups rather than individuals as impression targets, while the self-truncated

sampling from traits procedure remains the same. Each sampled trait is assigned

to a different member of the current target group. Besides likeability, which aims

at the central moment of the target impression, we assessed perceived homogeneity,

addressing how likeability is dispersed within the target group. We confirmed that,

given the epistemic impression formation sampling goal, self-truncated trait sampling

results in the already described small-sample polarization effect as well as in a small

sample homogeneity effect. Assuming that it is typically the out-groups that we know

and sample little about (Linville et al., 1989; Park & Rothbart, 1982), we can transfer

these sample size effects to the inter-group context.

By considering the consequences of self-truncated sampling, it is possible to provide

sufficient reasons to solving the "less-is-more" debate, but also to account for out-group

homogeneity effects. In order to understand self-truncated sampling however, we must

take exclusively cognitive processes in addition to the sampling ecology into account.

Self-truncated sampling is a dynamic interactive process of sampling from the ecology

and impression-updating within the mind of the judging individual. When considering

the moment of sample truncation for example, it is not only the clarity of evidence

that triggers truncation, but also a simultaneous amplification of this impression by

intra-cognitive processes.





Thurstonian Sampling

Brunswikian and Thurstonian Sources of Uncertainty2

The concept of subjective scaling (Thurstone, 1927) has now been used and applied in

different contexts for almost a century. Nevertheless, we can still gain meaningful and

novel insight into sampling and judgment behavior in impression formation tasks from

taking a Thurstonian perspective on sampling tasks. The first two articles included in

this thesis (Prager & Fiedler, 2021a; Prager et al., 2018) apply the concept of Thursto-

nian uncertainty to impression formation from self-truncated sampling. Crucially, the

dynamics of self-truncated sampling make Thurstonian uncertainty an integral part of

sampling and judgment behavior.

Thurstonian uncertainty refers to the notion of a dispersed and fluctuating mental

representation of the judgment target, even when the stimulus input is held perfectly

constant (Thurstone, 1927). Each individual impression might vary over time, context

and between individual judges. In contrast, Brunswikian uncertainty (for a detailed

definition an distinction, see Juslin & Olsson, 1997) covers all aspects of fluctuation,

incompleteness or sampling error caused by the mere stimulus materials. Before analyz-

ing the characteristics and consequences of these two distinct determinants of sampling

behavior and judgment, it is worthwhile to elaborate more on the conceptualization of

Thurstonian uncertainty, starting from Thurstone’s (1927) idea of psychological scaling

of stimuli.

A Law of Comparative Judgment

By proposing a “law of comparative judgment”, Thurstone (1927) provided a method

for scaling stimuli on a latent attribute dimension. For the person-impression formation
2This chapter is a shortened and adapted version of the chapter "Thurstonian Uncertainty in Self-

Determined Judgment and Decision Making" in Fiedler et al. (in press)

13
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paradigm of this thesis’ studies, the latent attribute dimension is likeability and the

to be scaled stimuli are traits (e.g., "honest", "cruel", "creative"). Thurstone’s core

assumption is that traits (or all other kinds of stimuli) are not represented as unchanged

scalars on a fixed likeability dimension, but rather that each stimulus takes a normally

distributed scale position that fluctuates dependent on time and situation. The latent

likeability dimension on which different traits take their normally distributed positions

can thus only be inferred from paired comparisons over different instances. Thus,

once the scale has been set by a pairwise comparison of two traits, the relative scale

positions of further stimuli can be determined from preference judgments of these over

the original stimuli.

While Thurstone’s (1927) model of psychological scaling relied on paired-comparison

data, his general notion of a distributive (and therefore fluctuating) representation of

target stimuli can be applied to modeling judgments of all kinds. Impression formation

from person traits calls for the integration and forming an aggregate evaluation rather

than their pairwise comparison. Yet, Thurstone’s idea of a relative latent psychological

scale is still applicable: Locating target stimuli on a common scale is the first step of

inferring an aggregate likeability impression. Most importantly, likeability judgements

that were combined from a sample of traits fluctuate from one situation to another.

Brunswikian and Thurstonian Sources of Uncertainty

The ambiguity, fluctuation and uncertainty resulting from Thurstone’s concept of stim-

ulus scaling has important implications for judgments and decisions inferred from in-

complete and indirect stimulus samples. Based on the law of comparative judgment,

Juslin and Olsson (1997) classified “Thurstonian” in contrast to “Brunswikian” uncer-

tainty. Brunswikian sources of uncertainty are fully environmentally determined. As

Brunswikian uncertainty is caused by the incompleteness, invalidity and insufficiency

of a sample in characterizing the true population from which it is drawn and related

true parameters, this kind of uncertainty can in principle not be reduced by the cog-

nitive system through more careful assessment or enhanced processing capacity. Even

unbiased, lossless and flawless statistical procedures or perfectly operating algorithms

are subject to Brunswikian uncertainty.

Thurstonian sources of uncertainty, in contrast, exclusively take place within the

mind of the processing individual. Thus, Thurstonian uncertainty can cause varying
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judgments between different contexts, individuals and situations, even when Brun-

swikian uncertainty is kept constant (i.e. when information or the input stimuli remain

unchanged). Oscillations related to Thurstonain uncertainty can result for different

reasons, such as memory responses or interference, or variability inherent to the per-

ceptual and nervous system.

Although both types of uncertainty in sampling tasks are clearly distinct concep-

tually and refer to either ecological (Brunswikian) or intra-cognitive (Thurstonian)

influences, they are neither mutually independent nor do they reflect additive or sep-

arable consecutive stages of an overarching process. Judgment tasks cannot be split

into categories, where only Brunswikian or Thurstonian uncertainty effects responses.

Rather, the interplay of ecological and cognitive sampling processes reflects an inter-

twined iterative process. That is especially the case when judging individuals can base

their judgments on self-truncated samples, when they can themselves determine the mo-

ment of stopping the sequentially unfolding trait sample in the impression-formation

task. In such an iterative process of sampling (vs. stopping) and impression updat-

ing, Brunswikian uncertainty can produce accentuated and clear-cut evidence, which

is especially likely for small samples. Or, also as a consequence of Brunswikian uncer-

tainty (i.e. sampling error), an initial sample might contain conflicting and ambivalent

evidence. The observed evidence (trait sample) triggers associative and generative cog-

nitive processes within the mind of the judging individual, extracting the contextual

and individual meaning of the current state of information. Thus, Thurstonian uncer-

tainty might as well result in either enhanced clarity and convergence, amplifying the

Brunswikian trend, or it might result in a conflicting and contradictory interpretation

of the sampled evidence. Thus, in impression formation from self-truncated samples,

updating one’s impression involves an iterative process of repeated interaction between

environment (the Brunswikian trend) and mind (interpretation and integration of what

has been observed). Both, the moment of sample truncation (sample size) as well as

the final impression judgment are a product of this repeated interaction.

Sample Truncation

As explained in earlier chapters, impression formation calls for a truncation strategy,

which aims at placement of the target (person/group) on a target dimension (like-

ability). It seems sensible to assume truncation to depend on sufficient settlement,
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stability, and freedom of conflict. Thus, the moment of truncation can be character-

ized as a situation where the sampled evidence is integrated into a stable impression,

that is not expected to change much when new evidence is added. Truncation takes

place, when the anticipated informational value of newly added traits is expected to be

minimal.

Stochastic indeterminacy and conflict versus settlement and expected stability in

the Brunswikian sample can be expressed by statistics of the sampled values (e.g., trait

valence values). Those could be the standard deviation, or the width of the posterior

highest-density-interval in Bayesian updating. In Prager and Fiedler (2021a) we based

our demo-simulation on these statistical approaches to optional stopping of sequential

samples (Edwards, 1965; Haldane, 1945).

In our characterization of the sampling process as a genuine interaction of Brun-

swikian and Thurstonian uncertainty, statistical stopping rules that exclusively consider

the Brunswikian sample do indeed provide a first access to self-truncated sampling, but

they ignore Thurstonian uncertainty in the mind of the judging individual. Both, the

decision to continue sampling or to stop and the final impression are inevitably im-

pacted by Thurstonian uncertainty. The moment of truncation cannot be expected to

be exclusively determined by the clarity and convergence of the Brunswikian sample,

but also by an alignment with a Thurstonian interpretation of this evidence that sup-

ports the perception of clarity and freedom of conflict. In other words, samples are

truncated when sample and mind align to a clear-cut impression. Similarly, result-

ing (likeability) judgments are strongly affected by both Brunswikian and Thurstonian

evidence. All traits used as stimulus materials were pre-tested for valence. All three

papers included in this thesis show a very strong determination of likeability judgments

by the simple average of pre-test valence values of actually sampled traits. Yet, this re-

search simultaneously demonstrates that participants systematically underweight input

that has little informative value (e.g., when it is redundant to what is already known)

and overweight instances of highly informative input (see the following discussion on

diagnosticity).

In previous research, the interplay of Brunswikian and Thurstonian uncertainty

in self-truncated sampling has mainly been examined in choice tasks (Busemeyer &

Townsend, 1993; Ratcliff, 1978), but not in impression formation contexts. The as-

sessment of Brunswikian and Thurstonian sampling by Prager et al. (2018) and Prager
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and Fiedler (2021a) thus goes beyond a mere technical refinement of already existing

experimental paradigms. Rather, the small changes in technical details lead to consid-

erable differentiation in what is to be expected from sampling and judgment behavior

theoretically. The full potential of theoretical contribution of adding the concept of

Thurstonian uncertainty to obvious Brunswikian uncertainty of the sampled content,

unfolds when considering the yoked controls design.

Detecting Thurstonian Sampling: The Yoked Controls Design

Since Thurstonian uncertainty covers a multitude of cognitive processes (perceptual,

memory-related, neuronal and all variants thereof) it seems reasonable to conceptualize

Thurstonian uncertainty as normally distributed random noise scattered around the

Brunswikian center point. This highly simplified conceptualization of the outcomes of

a multi-causal process (Galton, 1894) comes close to the dispersion of stimuli on the

latent cognitive scale in Thurstone’s (1927) original model.

Relying on this simplified "black box" perspective on Thurstonian uncertainty,

we applied the yoked controls design in a series of impression formation experiments

(Prager & Fiedler, 2021a; Prager et al., 2018). A primary judge in a pair of parti-

cipants could sample traits and truncate the sample when they felt ready to form a

judgment. The secondary participant received exactly the same trait sample, presented

in the same order and limited by the primary judge’s truncation decision, making them

the yoked control. This arrangement is especially suited for detecting the impact of

Thurstonian uncertainty, since Brunswikian uncertainty is kept identical between the

yoked participants: they receive exactly the same traits in the same order and up to

the same sample size. The states of mind and cognitive processing (i.e. Thurstonian

uncertainty) however cannot be expected to be equally synchronized. The moment

of sample truncation was only tuned to the primary participant’s mind, not to the

presumably different Thurstonian evaluation of the second participant. The primary

participant most likely experienced synchrony between Brunswikian and Thurstonian

processes, whereas there is more potential for contradiction for the secondary yoked

partner, whose mind set is not fully synchronized with the first participant.

The sample size effects caused by self-truncated sampling (see previous chapter)

carry over to the secondary yoked partners, who passively observe a formerly self-



18 Thurstonian Sampling

truncated trait sample. As the Brunswikian sample is kept identical, and since sample

truncation effects are regularly also visible in the mere Brunswikian sample content,

secondary yoked controls can be expected to show the same tendencies in their de-

pendence of impressions from sample size. However, the misalignment and conflict

between Thurstonian uncertainty causes regression in the yoked partners’ sample size

effects. Yoked control’s impressions on small samples are generally weaker than the

original self-truncated impressions. The regressive shrinkage was confirmed empirically

in Prager et al. (2018) and Prager and Fiedler (2021a).

Critical Tests of Yoked Controls’ Regression

In a more sophisticated task variant (Prager & Fiedler, 2021a), we were able to generate

experimental conditions where yoked controls showed different levels of dependency

between their Thurstonian mind states, resulting in specific levels of regression in their

sample size effects. So far, the yoked controls design consisted of yoked pairs of which

the primary partner worked on the self-truncated impression formation task, whereas

the secondary partner passively received that same sample passively. Although we

confirmed the expected regression phenomenon (i.e. the correlation between sample size

and the strength/polarization of impression judgments shrank noticeably between the

primary to the secondary participants) in the first yoked controls experiment (Prager

et al., 2018), there is still one critical test missing. Yoked participants did not only

differ in how their samples were truncated (which we obviously assume to be the cause

of the regression effect). They also engaged in either active sampling (self-truncated) or

passive reception of the sample (yoked control). Our yoked-controls design (Prager &

Fiedler, 2021a) presented participants in an other-yoked condition with trait samples

that other participants had truncated in a previous block of trials, identical to the

former experiments by Prager et al. (2018). In contrast, participants in a self-yoked

condition, in the second block received copies of their own trait samples, which they

had themselves truncated in the first block.

This extension of the paradigm is a critical test of whether the regression phe-

nomenon is an artifact of active versus passive sampling. Since all participants of

the second block engage in passive sampling, we should not observe any difference in

regression here when the effect was caused by a task-feature artifact. But the crossed-

over design of self- and other yoked controls can provide further theoretical insight
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than testing against an artifact: The self- and other-yoking conditions decomposed the

Thurstonian process into (a) the impact of mere inter-temporal oscillations in mental

representations of the same trait samples (self-yoking) versus (b) the joint impact of

both inter-temporal and inter-personal oscillations (other-yoking). Thus, Thurstonian

uncertainty in the yoked-controls trials is highly dependent on Thurstonian uncertainty

of the previous self-truncated sampling trials for participants who received their own

samples again. In contrast, other-yoked participants’ Thurstonian uncertainty is much

less dependent due to changing the judging agent between blocks. The empirical res-

ults confirmed this expectation: Regressive shrinkage was indeed stronger in the other-

yoked than in the self-yoked condition. Asking the same person to form impressions

from the same trait sample twice, separated only by the delay between blocks, causes

less asynchrony in Thurstonian preparedness to judge than asking different persons.

Diagnosticity: A Systematic Interaction of Brunswikian

and Thurstonian Properties

All three thesis papers (Prager & Fiedler, 2021a, 2021b; Prager et al., 2018) confirm

that aside from the measurement of unspecific Thurstonian oscillation by the yoked

controls design, sampling behavior and impression judgments are driven by a system-

atic and predictable interaction of Brunswikian and Thurstonian properties. The Brun-

swikian stimulus input is to be processed and aggregated on a meaningful background of

task and contextual features. Even when Brunswikian uncertainty remains unchanged,

identical stimuli can change their meaning and thus their informativeness and diagnosti-

city considerably when they are processed or integrated under different sampling or task

goals or in different contexts. In the following section, I will classify and characterize

the most important features of traits in the context of a person impression formation

task, namely positive versus negative and moderate versus extreme valence in addition

to density. The stimulus features are obviously part of the Brunswikian sample. Task

and context features are not actually dependent on the Brunswikian sample, but rather

represent systematic Thurstonian impacts. Consequently, exchanging those features, by

for example switching the sampling goal, must be expected to change the Brunswikian

information’s meaning and thus the weight given to respective pieces of information.

However, before discussing the possibility of dynamic context effects, it is necessary to
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consider diagnosticity in the present impression formation context first.



Diagnosticity

Diagnosticity has been considered by two streams of theorizing and research: First,

diagnosticity is an important property of information integration in a Bayesian per-

spective on judgment and decision making. Secondly, diagnosticity has regularly been

considered by social-cognition researchers. I will try to unify these perspectives here by

demonstrating that social-cognitive diagnosticity effects can be explained and predicted

in the conceptual framework of the original Bayesian updating framework.

In classical decision theory, diagnosticity signifies the change in preference (or belief)

caused by newly integrated information (Edwards, 1965). When we consider a classical

bookbag problem (Phillips & Edwards, 1966), the task is usually to infer the origin of a

sample from one of two bookbags: One bag contains 70% red and 30% blue poker chips,

whereas the other bag the reversed proportion of 70% blue, 30% red. The experimenter

draws (hidden to the participant) one chip after another from one of the bags and the

participant is asked to guess which bag the chips are taken from. In such a context,

a sequence of red-blue-red-blue would be very low in diagnosticity. The sequence does

not shift the belief into one or the other direction, the likelihood ratio of the data given

one over the other hypothesis (70:30 vs. 30:70 bag) is undecisive (i.e. close to 1). In

contrast, a sequence of red-blue-red-red would shift the preference towards the 70% red

bag, the likelihood ratio differs from 1 (as the data is much more likely given the 70%

red hypothesis) – the sequence is diagnostic.

Social-cognition literature was rather considered with valence than poker-chip-

proportions in bookbags. Here, negative and extreme behaviors or traits are regularly

more diagnostic. It takes, for example, less behavioral observations to confirm a negat-

ive impression, but much more observations to disconfirm a negative impression than a

positive impression (Gidron et al., 1993; Rothbart & Park, 1986). Generally, negative

and extreme information has a greater impact on the resulting impression (Skowronski
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& Carlston, 1987). Although the social-cognition and the classical judgment and de-

cision making literature differ in many respects, the view on diagnosticity can be easily

unified. We can also describe the diagnosticity-valence effects in terms of Bayesian

updating. Negative and extreme observations have a greater potential of changing the

impression judgment. For example, both a honest and a dishonest person tell the truth

on most occasions. It is only the rare instances of observing someone telling a lie that

differentiate honest from dishonest people. The likelihood ratio of observing telling the

truth given positive (honest) over negative (dishonest) is rather indifferent, whereas the

ratio has a clear tendency towards negative (dishonest) after observing lies.

In all three papers, we empirically tested for the differential diagnosticity of valence

(Prager & Fiedler, 2021a, 2021b; Prager et al., 2018). In all experiments, we rely on

pre-defined population sets of traits from which samples are drawn. These population

sets are constructed to reflect certain valence properties. Sets reflected negative versus

positive and orthogonally extreme versus moderate sets. The diagnosticity over the

valence range is illustrated in Figure 1. All three articles report convergent evidence

on the diagnostic value of negative and extreme compared to positive and moderate

valence. This higher diagnosticity manifests in both sampling behavior and judgments.

Samples from population sets of high diagnosticity are truncated earlier, they result in

stronger impression judgments and are perceived to be more homogeneous.

Density

In Prager and Fiedler (2021b) we relied on the density hypothesis (Unkelbach et al.,

2008) to explain the diagnosticity patterns. Informational input (here: trait words)

can be scaled on multiple dimensions rather than only one (likeability) target scale.

Such multi-dimensional abstract scaling of stimuli allows to determine the distance (or

density as opposite distance) between stimuli. Since negative and extreme words are

more distant from all other words in the total set compared to positive and moderate

words, we can explain diagnosticity effects by density: The uniqueness of negative and

extreme traits causes fast and strong formation of an impression judgment.

When we discuss density (or distance as opposite density) in an impression-formation

paradigm, we must consider two facets when predicting sample truncation and impres-

sion judgments. There is distance within a sample and the distance of a sample as a
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Figure 1: Prototypical diagnosticity for different levels of valence. Negative and extreme
valence is expected to be higher in diagnosticity than positive and moderate valence.

whole to the context of other targets. In other words, we must consider within sample

and between sample distance. The two facets have differential impact on sample trun-

cation and judgments: We can expect early truncation, strong judgments and high

perceived target homogeneity when within sample distance is low (i.e. high within

sample density) and when, simultaneously, between sample distance is high. This pre-

diction becomes clear, when we conceptualize density as redundancy (Soll, 1999). The

more similar the traits on different dimensions, the more redundant they are (i.e. fea-

tures of one trait can easily be inferred from the other trait), the higher the distance, the

more unique and individual characteristics they carry. Redundancy is a fundamentally

different signal to sample truncation between and within a sample. Between sample-

redundancy (typical for the positive and moderate domain) is non-diagnosticity. When

a sample is (partly) redundant to the context of other samples, for example when a

group does hardly differ from other groups we know, the impression hardly changes,

the informational value is low, and the situation calls for more information. However,

when within sample redundancy is high, it is a strong signal of convergence, freedom

of conflict and validity. The different pieces of information within the sample confirm

each other. That calls for truncation and the judging individual is enabled to form

strong and confident impressions (given that the between sample distance allows for
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strong impressions). Additionally, within sample redundancy should drive the within

target homogeneity perception.

In an earlier chapter, I discussed self-truncated sampling as a sufficient cause to

out-group homogeneity effects. Now, having considered the crucial role of density,

the prediction becomes even more clearly. Density amplifies such an inter-group ef-

fect: When group-related samples are of high within and low between sample density,

small-group polarization and small-group homogeneity become even stronger and more

predictable as we consider a multi-dimensional feature-space rather than the singular

dimension of likeability. Furthermore, the typical ecology is skewed in density (as we

confirmed for the used trait set in Prager & Fiedler, 2021b): Negative and extreme

traits are more distant to all other traits, positive and moderate traits are closer to

other traits. This skewness predicts a small-group derogation effect. When samples

contain negative and extreme information they are typically high in between sample

distance, truncated early and judged strongly and homogeneously.



Discussion

In recent years, researchers’ interest in judgments and decisions based on experience

(i.e. on samples) has considerably increased. Different lines of research have been

established. The three articles included in this thesis demonstrate repeatedly, that

considering the boundary conditions and constraints of sampling environments is far

beyond discussing technical details. Explaining phenomena "by experience" or to char-

acterize effects as phenomena of "sampling" has little value if researchers are not specific

on the sampling constraints that are either inherent to the environment, or that are

imposed by researchers. We argued in Prager et al. (2018) for example, that the task

constraint of either externally fixed or self-truncated sample size can reverse a "more-

is-more" into a "less-is-more" pattern.

Engaging in the debate, we refrained from explicitly stating that "less" is actually

"more", but rather focused on the small sample polarization effect: Small samples are

judged more strongly. Whether that is "more" in a sense that participants profit from

the polarized judgments from small samples, can only be determined by considering

further sampling constraints. Furthermore, self-truncated sampling has an unsolvable

conflict inherent to sample truncation and judgment. When a small sample contains

extreme and conflict-free evidence, it might indicate a strong population trend, or it

might as well just reflect an instance of clarity caused by sampling error. When we ana-

lyze truncation and judgment behavior, we see – from hindsight – that people’s small

samples actually intermix population trends and sampling error (and Thurstonian er-

ror). But when we consider the situation in judging a currently unfolding sample, we

do not know about the population properties and are forced to base the judgment

on the sampling input alone. Even sophisticated statistical procedures cannot solve

this problem of differentiating trends and error in early clear-cut evidence. Therefore,

participants do not need to be naive on the origins of samples to truncate clear-cut

25
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samples early (Le Mens & Denrell, 2011). Most circumstances however indicate that it

is profitable to exploit such instances of early "good luck" (Edwards, 1965). Whether it

is beneficial to go for an early trend or to be more cautious and only accept higher levels

of confirmation depends on the cost-benefit context. Time pressure might for example

require fast trend-detection (Fiedler et al., 2021). Such changes in the cost-benefit

context however can hardly effect the described self-truncation principles. Although

sample size-effects fade out for larger sample size and would thus result in approx-

imate zero-effect sizes for accuracy-focused truncation strategies, the self-truncation

principles should still hold, with the only difference that evidence-thresholds required

for truncation are set higher.

Connected to self-truncation effects, the yoked controls design demonstrates that

a simple classification and mere labelling of sampling tasks and sampling constraints

without any sampling-theoretical background is insufficient. We can label both, ex-

ternally fixed sampling as well as yoked controls sampling as "passive" sampling, since

in both conditions, participants receive samples in the same presentation mode and

cannot decide on sample truncation. As already discussed, yoked controls conserve

small sample polarization from the formerly self-truncated samples whereas externally

fixed sampling lacks such a contingency. Similarly, when only considering the actual

sampling input, self-truncated samplers and yoked control participants do not differ,

while considering Thurstonian uncertainty allows for a precise analysis of regression of

sample-size effects. Applying the concept of Thurstonian uncertainty to the yoked con-

trols design, allowed us to deduce further predictions: The comparison of self- versus

other- yoked controls in Prager and Fiedler (2021a) precisely followed the expected

differential dependency when considering the same participant in different occasions or

when additionally exchanging the participant.

Only the consideration of meaningful and relevant elements of sampling constraints

in a theory-driven cognitive-ecological analysis can lead to meaningful, justified and

transferable predictions and explanations in specific sampling contexts. Since inference

from samples is omnipresent also in everyday judgment and decision making, it is

worthwhile to analyze the impact of sampling constraints in the real-world, too. In

any sampling scenario, the causes of sample truncation inevitably impact resulting

judgments and decisions: It makes a difference whether samples are a priori fixed, self-

truncated, or whether information is communicated from an actively sampling sender
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to a rather passive receiver in a scenario close to the yoked-controls design.

In other sampling contexts, task constraints might change how judgments can be

inferred. We mainly considered a communion-focused likeability judgment. Here, neg-

ative and extreme observations proved to be most informative and diagnostic. However,

when the task goal is more agency-centered (e.g. in an evaluation of performance rather

than likeability) we must expect changes in how sampled information is weighted. For

agency contexts, positive behavior is regularly more diagnostic than negative behavior

(Skowronski & Carlston, 1987). Thus, the diagnosticity considerations presented in the

research papers have clearly defined boundary conditions, that are set by the task goal

and the stimulus environment. Concerning our density explanation (Prager & Fiedler,

2021b), we must expect clearly different effects when participants get used to a reversed

task environment that does not reflect the usual positive-negative asymmetry.

The research presented in this thesis is part of a recent dynamic approach to sample-

informed judgment and decision making. New sampling approaches do not only con-

sider that samples form the interface between the environment and cognitive processing,

but also that most often, the cognitive system and the sampling process dynamically

interact. In self-truncated sampling, the sample content is still drawn at random, but

sample size is systematically determined. Previous sampled content impacts whether

or not further evidence is sought. And since such an iterative evaluation and integ-

ration of a sequentially unfolding sample inevitably requires the involvement of the

cognitive system, Thurstonian uncertainty becomes an integral part of the sampling

process. Such inter-dependent iterative structures are typical of real-world sampling

scenarios. Systematic theoretical (defining the inference problem) and empirical ana-

lyses are worthwhile in explaining and predicting sample-informed judgments and de-

cisions.
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ABSTRACT
Impression formation is a basic module of fundamental research in social cogni-
tion, with broad implications for applied research on interpersonal relations, social
attitudes, employee selection, and person judgments in legal and political context.
Drawing on a pool of 28 predominantly positive traits used in Solomon Asch’s (1946)
seminal impression studies, two research teams have investigated the impact of the
number of person traits sampled randomly from the pool on the evaluative im-
pression of the target person. Whereas Norton, Frost, and Ariely (2007) found a
“less-is-more” effect, reflecting less positive impressions with increasing sample size
n, Ullrich, Krueger, Brod, and Groschupf (2013) concluded that an n-independent
averaging rule can account for the data patterns obtained in both labs. We address
this issue by disentangling different influences of n on resulting impressions, namely
varying baserates of positive and negative traits, different sampling procedures, and
trait diagnosticity. Depending on specific task conditions, which can be derived on
theoretical grounds, the strength of resulting impressions (in the direction of the
more prevalent valence) (a) increases with increasing n for diagnostic traits, (b)
is independent of n for non-diagnostic traits, or (c) decreases with n when self-
truncated sampling produces a distinct primacy effect. This refined pattern, which
holds for the great majority of individual participants, illustrates the importance of
strong theorizing in cumulative science (Fiedler, 2017) built on established empirical
laws and logically sound theorizing.

KEYWORDS
less-is-more, Brunswikian sampling, Thurstonian sampling, primacy advantage,
diagnosticity

Drawing on the seminal impression-formation paradigm originally developed by Asch
(1946), Norton et al. (2007, 2011), and then Ullrich et al. (2013) investigated evaluative
impressions as a function of the number of traits sampled from a basic set. Partici-
pants were asked to evaluate a target person described by a sample of traits that were
randomly drawn from a universe of 28 traits used in Asch’s (1946) seminal work. The
majority of traits was positive, reflecting the preponderance of positive (i.e., normative)
behavior in reality. The central finding reported by Norton et al. (2007, 2011) was called
a less-is-more effect: Smaller samples led to more positive impressions. However, two
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follow-up studies by Ullrich et al. (2013), one of which was coordinated with the Norton
team to be an exact replication, did not replicate the less-is-more effect. Instead, judg-
ments closely resembled the average valence of all sampled traits, regardless of sample
size. A synthesis of all experiments led Ullrich et al. (2013) to conclude that an unbiased
averaging algorithm – in line with Anderson’s (1981) information-integration model –
provides a satisfactory account of the entire evidence, including the seemingly divergent
findings reported by Norton et al. (2013).

Ullrich et al. (2013) only relied on aggregation of all available data, not on substantial
theorizing about underlying mechanisms. Although they discussed several reasons why
evaluations might decrease, remain constant, or even increase with sample size (as in a
set-size effect, Anderson, 1967), their experiments were not designed to critically test
these ideas.

We contend that strict theorizing is worthwhile (Fiedler, 2014, 2017), arguing that
an averaging rule – though flexible in explaining different kinds of data (Dawes, 1979)
– oversimplifies sample-based impression formation. Theoretical progress and a deeper
understanding of how impressions depend on sample size can only be obtained when
the trait sampling process is set apart from the cognitive trait-integration process. Our
cognitive-ecological perspective on impression formation leads to several new insights,
highlighting that intrapsychic processes can only be understood when the environmental
sampling process is analyzed in the first place (Kutzner & Fiedler, 2015).

Our aim is not to study naturally occurring impression formation in a dynamic social
context, as a function of perceivers’ deliberate search strategies (Waggoner et al., 2009)
or impressions in different stages of close relationships (Finkel et al., 2015). Rather,
to answer the questions raised by Norton et al. (2007) and Ullrich et al. (2013), it is
necessary to rule out the complexities of dynamic social interactions in an experimental
design that relies on random sampling of traits. Within such an idealized experimental
set-up, statistical sampling theory can be used to derive hypotheses about distinct causal
influences on sample-based impression formation.

Functional Analysis of the Impression Formation Task

With this goal in mind, we extend the paradigm in several ways. First, we ask par-
ticipants to provide impression judgments of multiple targets across trials, rather than
only one judgment as in the preceding experiments. A sequential design does not only
increase the overall data base and the reliability of empirical results. It also allows
us to relate sample size to strength of impressions within participants, across targets
described by varying numbers of traits.

Second, we manipulate the base-rates of positive and negative traits in different
reference sets, from which the target traits are sampled. Across trials within participants,
the positivity rate p+ in the reference traits can take on four levels (.20 vs. .33 vs. .67 vs.
.80), yielding repeated measures for positive (p+ > .5) versus negative targets (p+ < .5)
and for moderate (p+ = .33 or .67) versus extreme (p+ = .2 or .8) targets. Such an
overall flat distribution of impressions at all valence levels should prevent participants
from anchoring their judgments in prior expectancies of moderately positive behavior,
which is most common in the real world.

Third, the traits sampled from the four reference sets vary in diagnosticity. Negative
and extreme traits are more diagnostic than positive and moderate traits (Koch et
al., 2016; Peeters & Czapinski, 1990; Unkelbach et al., 2008). Regarding the “big two”,
negative traits related to morality (e.g., dishonesty) and positive traits related to ability
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(high expertise) are more diagnostic than positive morality traits (honesty) and negative
ability traits (low expertise; cf. Fiske et al., 2007; Reeder and Brewer, 1979; Skowronski
and Carlston, 1987). So, to analyze the impact of diagnosticity, we classify stimulus
traits not only by valence and extremity but also by the big two, as referring to ability
or morality.

Fourth, we introduce a crucial distinction between experimenter-determined and self-
truncated sampling. Sample size is either set to n = 2, 4, or 8 in the fixed-n condition,
or, in a self-truncated sampling condition, respondents can stop sampling at will. Finally,
each participant in a yoked-control condition receives exactly the same stimulus samples
as one yoked participant in the self-truncated condition. As we shall see in the next
section, the impact of the number of traits on resulting impressions will be radically
different in these three sampling conditions.

Last but not least, we include two different measures of the resulting impressions. In
addition to participants’ final subjective impression judgments, we include a measure of
actuarial judgments (Dawes et al., 1989), defined as the average valence scale value of all
traits in a sample. Actuarial judgments capture the stimulus samples that provide the
input to the cognitive integration of sampled traits in the final impression judgments.

Implications Derived from Pertinent Theories

Within this enriched paradigm, a number of distinct theoretical implications can be
tested. Let us first outline these basic implications, which may not all be common sense
in social cognition research, before we lay out specific predictions and experimental
methods.

Sampling Theory
To the extent that either positive or negative valence prevails the distribution of samples
drawn from this universe will be skewed. The more common outcome will be overrepre-
sented in the majority of samples, especially when sample size is small (Hadar & Fox,
2009; Hertwig & Pleskac, 2010). The deviation of the proportion of positive elements in
the population p+ from .5 reflects this skew and over-representation towards a positive
(p+ > .5) or negative (p+ < .5) direction. When p+ = .8, for instance, 64% of all sam-
ples of size n = 2 can be expected to obtain only positive traits (exceeding .8). Although
the valence mean is unbiased, any strategy that does not purely reflect the mean but
a tally of the most frequent outcome, or samples exceeding a high threshold (Fiedler
& Kareev, 2006), will let small samples exaggerate the dominant outcome. What looks
like a “less-is-more effect” in human impression formation may thus reflect a normal
sampling effect. Neither Norton et al. (2007, 2011) nor Ullrich et al. (2013) mentioned
the possibility that the dependence of trait valence on samples size may be already built
into the sampling input, before the cognitive integration process started. The analysis
of actuarial judgments (i.e., average valence scale values of sampled traits) provides a
patent means of separating sampling effects from cognitive integration effects.

Impression Updating
Whereas the over-representation of the more prevalent outcome in small random samples
alone may account for a less-is-more result, an opposite more-is-more effect derives from
a theoretical analysis of impressions formed in a sequential updating process. Again,
an increase in impression strength with increasing sample size can result from a fully
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unbiased cognitive process. To illustrate, assume that in the context of an experiment
with many trials involving an overall balanced distribution of positive and negative
targets an unbiased judge has to start from neutral expectations, consistent with the
principle of insufficient reason (Bernoulli, 1713; Savage, 1954). The neutral starting
impression is then updated sequentially by adjusting the growing impression to the
incoming information. In an unbiased design, in which positive and negative traits are
pretested to be of comparable strength, the expected upward and downward shift caused
on average by positive or negative traits, respectively, should be the same. If a sample
includes n+ positive and n− negative traits, the expected (unbiased) impression will be
the neutral starting value plus n+ upward minus n− downward shifts. It is easy to see
that the difference (n+ − n−) increases with sample size: The expected difference for
10 traits drawn from a universe with p+ = .8 is (n+ = 8) minus (n− = 2) = 6; for a
smaller sample of 5 traits the expected difference is only (n+ = 4) minus (n− = 1) = 3.

Sequential updating thus renders impressions stronger (in the dominant direction)
as sample size increases. Note that a repeated-updating mechanism, which produces
a summation effect of (n+ − n−) times the expected average shift, can be contrasted
with an averaging model, which predicts a total updating effect of (n+/n−) times the
average shift expected per trait, and which is therefore independent of absolute sample
size1. Because actuarial judgments are defined as the average valence scale value of all
sampled traits, any (non-average) more-is-more effect cannot be visible in the actuarial
measure. It must originate in a cognitive trait integration process that deviates from
the sampling input. A comparison of both measures may thus afford a useful tool to
diagnose the origin of increasing impression strength with increasing sample size.

Diagnosticity
It seems obvious that the updating influence added by specific traits should depend on
their diagnosticity. Negative traits are well known to be more diagnostic than positive
traits (Fiske, 1980; Ito & Cacioppo, 2005; Skowronski & Carlston, 1987). Thus, when
integrating multiple traits in an impression, the more diagnostic negative traits should
have a stronger impact than positive traits. Despite their matched (symmetric) valence
scale values, negative traits should have a stronger impact on the cognitive integration
process than negative traits. Moreover, diagnosticity (in the sense of an enhanced up-
dating influence) should be higher for extreme than for moderate traits, and for negative
communion traits and positive competence traits than for positive communion and neg-
ative competence traits. As already noted by Fiske (1980), diagnostic impact is inversely
related to expectedness or base-rates of occurrence. Rare and unexpected (extreme, neg-
ative, non-communal and high-agentive) traits are more diagnostic than common and
expected (moderate, positive, communal and low-agentive) traits. Whether judgments
are sensitive to diagnosticity can be tested by coding sampled traits in terms of all three
sources of diagnosticity (valence, extremity, and the interaction of valence with the big
two). Note, again, that diagnosticity cannot affect the (average) actuarial measure, be-
cause the scale values of positive and negative traits are of equal strength. Diagnosticity
can only affect the post-sampling cognitive integration stage in the impression-formation
process. The concept of diagnosticity therefore clearly differs from sampling mechanisms
discussed in the last paragraph; it is expected to cause systematic asymmetries even in
perfectly balanced (symmetric) experimental contexts.

1The discrepancy reflects the fact that the described updating algorithm starts from flat priors (i.e., neutral
starting values), whereas the averaging algorithm is only sensitive to the valence of all stimuli, independent of
any prior expectation. Because the summed valence is divided by n, averaging is independent of sample size.
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Fixed Sample Size Versus Self-Truncated Sampling
In addition to the less-is-more effect due to overrepresentation of the more frequent
valence in samples of restricted size, there is another type of a less is more effect, which
can be very strong and visible in both human and actuarial judgments and which was
never considered in previous impression research. This novel and neglected phenomenon
cannot occur when sample size is manipulated experimentally at fixed levels of n. It only
arises when sampling is self-truncated so that n depends on participants’ own decisions
to stop sampling as a sufficiently clear-cut impression has been reached. Self-truncated
sampling only allows judges to decide when to stop a sample the ordering and contents of
which is as randomized as in a fixed-n task. Thus, self-truncation does not allow judges
to engage in active, self-determined search of specific stimulus items (as in Waggoner
et al., 2009) or to influence the sequential order.

Yet, the seemingly minor difference between self-truncated random samples and
experimenter-determined random samples regularly produces a profound primacy ef-
fect leading to a marked less-is-more effect. Computer-simulations demonstrate, indeed,
that self-truncated sampling produces this phenomenon across a wide range of parame-
ters ( p+ , and specific aggregation- and stopping rules; Prager, Harris, & Fiedler, 2017),
and under various task conditions such as two-armed bandits (Fiedler et al., 2010) or
multiple student sampling in a virtual classroom paradigm (Harris et al., 2017).

The underlying principle is easy to understand. When the first few randomly drawn
traits happen to convey a clear-cut positive or negative impression, sampling will be
truncated early. Exactly because strong initial information is what triggers early trunca-
tion, small sample size is naturally correlated with strong sampled contents (as assessed
by the actuarial measure). Samples will be truncated later when the initially encoun-
tered evidence is mixed and equivocal. As a consequence, small samples are likely to
evoke strong and confident judgments, and this should be evident not only in the fi-
nal integrative impression judgments but also in the actuarial measure of average trait
valence.

Moreover, because truncation is presumably sensitive to the diagnosticity of early
traits rather than only to their valence scale value, the strength of the primacy effect
that renders small samples stronger and more informative than large samples is further
enhanced when the initial traits are high in diagnosticity. After all, self-truncating is
contingent on judges’ own growing impressions, which in turn depend on the diagnos-
ticity of the so far encountered traits. Therefore, small truncated samples (informing
strong and confident judgments) should be replete with diagnostic (negative, extreme
etc.) traits.

Our analysis suggests that early truncation due to primacy of diagnostic and evalua-
tively consistent traits cannot be reduced to a hot-stove effect (Denrell & March, 2001)
or the hedonic sampling rule discussed by Denrell (2005), Denrell and Le Mens (2007),
and Fazio et al. (2004). Drawing on Thorndike’s (1911) law of effect, these authors
assume a hedonic preference to sample more from positive than from negative sources.
As unpleasant samples are truncated, negative initial impressions cannot be corrected,
thus creating a negativity bias. However, such a hedonic truncation rule cannot explain
the breadth of the primacy effect. First, negative trait words are hardly of sufficient he-
donic value to trigger abrupt truncation2. Second, hedonic sampling cannot account for
valence-independent diagnosticity effects. And finally, hedonic sampling cannot explain
the result in the following yoked-control condition.

2The negativity effect shown by Fazio et al. (2004) and simulated by Denrell (2005) disappears when sampling
from negative sources is not abrupt enough (cf. Fiedler, Woellert, Tauber & Hess, 2013).
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Brunswikian and Thurstonian Sampling
Drawing on prior work by Juslin and Olsson (1997), we introduce a distinction between
Brunswikian sampling (of evaluative properties of stimulus targets in the environment)
and Thurstonian sampling (of internal states or evaluative reactions in different judges,
or within judges across different contexts). Brunswikian sampling of stimuli from an
experimentally controlled environment is the focus of most familiar sampling theories
(Fiedler, 2000; Stewart, Chater & Brown, 2006; Walasek & Stewart, 2015). The notion
of Thurstonian sampling is less common and hardly ever considered, although it only
highlights the obvious fact that judgments reflect a genuine interaction of external
stimulus information and internal responses generated within human judges. According
to the law of comparative judgments (Thurstone, 1927), the very same attitude target
solicits different evaluative responses in different judges (or on different occasions within
the same judge), and this inter-judge variance must be taken into account to understand
differential target judgments.

To illustrate this genuine interaction of variance between stimuli and between judges,
consider the self-truncated sampling condition. Participants in this condition stop the
search process when their own internal evaluation is sufficiently clear-cut. Truncation is
not exclusively determined by the objective properties (i.e., diagnosticity and valence
consistency) of the traits sampled in the environment (i.e., Brunswikian sampling). It
also depends on variation between different judges, whose responses to the same stimulus
input can vary a lot. Because of memorized associations and self-generated thoughts,
different judges can be more or less ready to stop and solicit a judgment from the
available stimulus sample. This person-dependent variation in reacting to the very same
(Brunswikian) stimulus input creates a crucial difference and asynchrony between the
self-truncated search condition and a yoked control group of participants. Participants
of the self-truncated condition truncated sample size not only because it appeared clear-
cut based on its mere Brunswikian value, but also due to their individual and specific
interpretation. Participants in the yoked-control condition however, cannot be expected
to see the same samples as equally informative and hence to produce similarly strong
judgments.

Empirical Predictions

As evident from this theoretical discussion, there can be no general answer to the ques-
tion of whether an increasing number of n traits will produce stronger, weaker, or equally
strong judgments. Under distinct conditions, different measures (actuarial, cognitive)
of evaluative impression formation should be sensitive to different sample-size effects.
The following predictions, derived on theoretical a-priori grounds, will be tested in three
experiments:

We expect the impact of (Brunswikian) sampling error to be substantial, consistent
with our cognitive-ecological approach. Brunswikian sampling error is the deviation of
the sample average valence from the population’s average it is drawn from. It represents
valence information specific to the sample. In regression analyses conducted within indi-
vidual participants across all trials, the resulting impression judgments should strongly
depend on random variation of sampled traits (sample specificity), when the impact
of systematic predictors (valence, extremity, sample size) is controlled for. This should
be the case for all experiments, using fixed-n samples (Experiment 1), self-determined
samples (Experiment 2a), and yoked controls (Experiment 2b). The impact of random
sampling should be evident both in judges’ final evaluations and in actuarial judgments
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(i.e., average scale values of sampled items).
Second, unsystematic sampling error should come along with systematic influences of

the universe from which the stimulus samples are drawn. We predict extreme attributes
(positivity rates of p+ = .20 or .80) to trigger stronger judgments than moderate at-
tributes (positivity rates of p+ = .33 or .67), reflecting sensitivity to the parameters of
the latent world. We also predict negative stimuli (positivity rates of p+ = .20 or .33) to
induce stronger judgments than positive attributes (positivity rates of p+ = .67 or .80),
due to enhanced diagnosticity of negative attributes (Gidron et al., 1993). We hasten
to repeat that such valence asymmetry is not due to unequal scale values of negative
and positive traits, which are controlled to be equal. Enhanced diagnosticity of nega-
tive traits must rather arise in the integration process, because negative attributes are
more diagnostic, adding more independent and less redundant evidence than positive
attributes, as specified in the density model (Unkelbach et al., 2008).

We also pursue the prediction concerning the Big Two that, orthogonal to general va-
lence asymmetry, negative attributes should be more diagnostic in the morality domain
whereas positive attributes should be more diagnostic in the ability domain (Reeder &
Brewer, 1979; Skowronski & Carlston, 1987). To test this idea, we classify traits in a
pilot study as referring to either morality or ability, and we include the variation in this
sort of diagnosticity (in random sampling of traits) as a further predictor of individual
judges’ impression judgments.

Turning to the central research question concerning the impact of sample size, differ-
ent predictions apply to three task settings. In the fixed-n task, impression judgments
should either resemble the average scale value of all sampled attributes, showing little
sample size effects if traits are low in diagnosticity. Or, judgment strength should in-
crease with increasing sample size if diagnostic traits trigger noticeable updating. The
latter condition might be met for extreme and negative traits, which have been shown
to carry more diagnostic information than positive traits. Actuarial judgments should
not exhibit such positive-negative asymmetry for the average scale values of positive
and negative traits are matched. Any valence asymmetry must reflect post-sampling
diagnosticity effects on the cognitive integration of traits.

In the self-truncated search task, in which judges can stop sampling when they feel
to have gathered sufficient information, a primacy effect should render smaller sam-
ples more informative than larger samples. Judgments should increase with decreasing
n to the extent that small (early truncated) samples entail a (joint) primacy effect
in Brunswikian sampling (non-ambivalent and highly diagnostic initial traits) and in
Thurstionian sampling (judges’ internally generated responses to the stimulus input). If
both truncation and trait integration are sensitive to unequal diagnosticity of positive
and negative attributes, the less-is-more effect should be less visible for positive than
for negative information.

Finally, judgments in the yoked-control condition rely on the same Brunswikian sam-
pling input (captured by the actuarial measure) as judgments of yoked partners in the
self-truncation condition. Yet, the primacy effect may be reduced or even eliminated in
human impression judgments, due to Thurstionian sampling variation. Yoked-control
judges’ internal evaluations are not matched or synchronized with the evaluations ex-
perienced by judges in the self-truncated condition. As a consequence, impression judg-
ments in the yoked-control condition should exhibit the primacy effect to a lesser degree.
They should only exhibit the Brunswikian but not the Thurstonian component of the
original judges’ primacy effect.
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Experiment 1

Methods

Participants and design. Forty-five participants (34 female) were recruited from the
computerized subject pool “Studienportal” (software hroot: Bock, Nicklisch, & Baetge,
2012) at the University of Heidelberg. One participant whose response latencies to like-
ability questions were highly extended (more than three standard deviations above the
participants’ median reaction time) was excluded. All three design factors – extremity
and valence of stimulus traits and sample size – were varied within participants in a
complete repeated measures design. All 2 (strong vs. moderate) x 2 (negative vs. posi-
tive valence) x 3 (sample size n = 2, 4, or 8) factor combinations were presented three
times, yielding 2 x 2 x 3 x 3 = 36 judgment trials.

As it is impossible to estimate the effect size of a completely new design beforehand,
we calculated the smallest effect size (post hoc) given the observed sample size of 44
participants. Setting type-I-error to α = .05 and type-II-error to β = .20, the smallest
effect size that could be reliably detected was d = .38. This effect size was slightly higher
than the observed d = .37 for tests of the individual linear relationship between sample
size and judgment strength against zero.

Materials and procedures. Fifty-seven trait adjectives of the Berlin Affective
Word List – Reloaded (BAWL-R) by Võ, Conrad, Kuchinke, Urton, Hofmann, and
Jacobs (2009) were selected for the present investigation. Four (overlapping) subsets of
30 traits out of these 57 BAWL-R adjectives served as reference sets (see appendix table
A3), from which the stimulus samples of the 2 x 2 valence x extremity conditions were
drawn.

The entire experiment was controlled by an interactive Java program. General intro-
ductory instructions were provided on the first screen, followed by a short demographic
questionnaire and an agreement to participate conscientiously on the next screen. Then
the procedure was explained in more detail. Participants were told that on every trial of
a sequential judgment task they would be presented with several adjectives describing
the traits of a target student, allegedly based on fellow students’ descriptions. Partic-
ipants learned that they would be asked to judge the target person described on each
trial on a likeability scale.

Each trial started with a blank screen after participants initiated a new trial by click-
ing on a corresponding button. The trait adjectives of the current sample appeared
serially, one per 1000 ms, presented in the top center of the screen in black letters
(font size 20 pt) on white ground. Only the last trait appeared in full contrast, whereas
previous ones were dimmed to gray. When the stimulus sample was complete, a likeabil-
ity scale appeared on the screen bottom. The poles of a 180 millimeter horizontal line
were labelled “highly unlikeable” (in German: “starke Abneigung”) and “highly like-
able” (“starke Zuneigung”). Participants could click on the continuous graphical scale
to provide their evaluative impression. Afterwards, they were asked to indicate their
subjective confidence on a five point scale, consisting of five discrete points labelled
“very unsure”, “unsure”, “neutral”, “sure”, and “very sure”, respectively. The latencies
of both responses (temporal difference between appearance and click on the scale) were
recorded. Participants could then clear the screen and start the next trial by clicking
any button. For each individual participant, the presentation order of the 36 trait sam-
ples was randomized, just as the ordering of traits within each sample. The experiment
lasted for about ten minutes; it was the third out of five experiments conducted in a
60-minutes session.
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Results

Relation of sample size to judgment strength. For a general index J of judgment
strength, we computed the deviation of judgments from the scale midpoint in the direc-
tion of the predominant valence. That is, J scores were given a positive sign if p+ = .67
or .80 but a negative sign if p+ = .20 or .33, so that all measures were transformed to
a scale reflecting judgment strength in the correct direction. The correlation r(J, n) af-
fords an appropriate measure of the linear relation between judgments strength (J) and
sample size (n), which is the focus of the present and of the preceding investigations.

The average r(J, n) computed within individual judges across all 36 trials (target
persons) amounts to 0.05 (SD = 0.14), which is significantly different from zero, t(43) =
2.44, p = .019. The consensus rate of participants with a positive r(J, n) is 64%. This
overall figure is in line with the prediction of (slightly) increasing judgment strength
with increasing sample size.

Closer inspection reveals, however, that this positive relation only holds for targets
sampled from negative reference sets (p+ = .20 or .33), average r(J, n) = 0.11 (SD =
0.25), t(43) = 3.07, p = .004, consensus rate 68%, but not for targets sampled from
positive reference sets, average r(J, n) > −.01 (SD = 0.26), t(43) = −0.12, p = 0.90,
consensus rate = 52%. We refrained from computing r(J, n) for specific combinations of
valence and extremity, because such correlations would be based on only 9 data pairs.
However, the scatter plots in Figure 1 provide an overall picture of the strength of
likeability judgments as a function of sample size n for all p+ levels.

Systematic nature and sensitivity of impression judgments. To highlight
the regularity and the sensitivity of impression judgments to all theoretically relevant
aspects of the sampled traits, we conducted for each individual participant a regres-
sion analysis of the 36 judgments as a function of four predictors. In addition to the
three orthogonal-design predictors extremity (extreme vs. moderate), valence (positive
vs. negative), and sample size (2, 4, 8), we included sampling error as a fourth predic-
tor. Sampling error is the deviation of the average scale value of sampled traits from
the mean of the corresponding valence and extremity condition. As all four predictors
are orthogonal – the first three by design and the last predictor stochastically – the
standardized regression weight β for the sample size predictor must approximate the
zero-order correlation r(J, n). For the same reason, no interaction terms had to be in-
cluded in the regression analyses. Table 1 exhibits mean β (SD in parentheses) averaged
across all participants. The table also reveals the consensus proportions with which in-
dividual β-weights exhibit the same sign as the average judge, and t-statistics for all
individual β-weights tested against zero.

Several strong and highly significant findings testify to the regularity of sample-based
impression judgments. First, the individual β-weights for extremity are consistently posi-
tive, t(43) = 6.59, d = .99, p < .001. Judgments not only reflect the predominant valence
but also the extremity of the predominant trend in the reference set. The consensus of
positive β is 82%.

Second, the consensus (i.e. 100%) is maximal for the sampling error predictor,
t(43) = 27.96, d = 4.22, p < .001, corroborating the judges’ sensitivity to (even stochas-
tic variation in) the input samples and, at the same time, highlighting the importance of
taking the ecological sampling stage into account. Unsystematic noise due to ecological
(Brunswikian) sampling error accounts for more systematic variance than any system-
atically manipulated influence factor. With regard to the third predictor, positive versus
negative valence, it is evident, and actually not too surprising, that the vast majority
of individual β-weights (82% consensus) are negative, indicating clearly stronger im-
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Table 1. Regression Analyses of Likeability Judgments in Experiment 1
as a Function of Four Theoretically Relevant Predictors

Predictor Mean β (SD) Consensus t value df p value

Extremity .15 (.15) 82% 6.59 43 < .001
Valence -.26 (.25) 82% -6.85 43 < .001
Sample size .08 (.13) 75% 4.11 43 < .001
Sampling error .57 (.13) 100% 27.96 43 < .001

pression judgments triggered by negative than positive traits, t(43) = −6.85, d = 1.03,
p < .001. Recall once more that such clear-cut valence asymmetry cannot be attributed
to the pretested strength of negative and positive stimulus traits.

Finally, because β = r for orthogonal predictors, the β-weights of the sample size
predictor greatly resemble the aforementioned r(J, n) results. A substantial majority
of 75% positive β-weights, t(43) = 4.11, d = .62, p < .001, reflects a marked trend
towards stronger judgments with increasing n. Theoretically, this central finding is not
surprising; it could be expected on logical grounds if only some of the judges sometimes
engage in updating of initially flat priors.

Diagnosticity. Analyses of trait diagnosticity support this account, showing that
judgment strength only increases when added traits are diagnostic. To substantiate this
point, we conducted another regression analysis within each judge, including four predic-
tors that represent different aspects of diagnosticity: the extremity condition (extreme
vs. moderate) along with three counts of traits per sample, (a) the frequency difference
of positive minus negative traits in a sample, (b) the frequency difference of communion
minus agency traits, and (c) the frequency of negative communion or positive agency
traits minus the frequency of positive communion or negative agency traits. Note that
(a) and (c), but not (b) are theoretically expected indices of diagnosticity. Because trait
types (communion vs. agency) and valence (positive vs. negative) are hardly correlated
across the stimulus materials (cf. Appendix), no interaction terms must be considered
to interpret the β-weights.3

The mean regression weights in Table 2 corroborate the notion that likeability judg-
ments are sensitive to (all measures of) diagnosticity. A consistently negative β-weight
of the valence index validates the conclusion that negative traits inform stronger judg-
ments than positive traits, t(43) = −14.53, d = 4.38, p < .001. Apparently, this trend,
which holds for a majority of 98% of all judges, is particularly strong for the valence of
the effectively sampled traits.

Interestingly, the other, conceptually independent measure of diagnosticity (i.e., the
interaction of big two and valence) also contributes to predicting likeability strength.
A positive β-sign for a majority of 86% judges, t(43) = 7.59, d = 2.29, p < .001, cor-
roborates that negative communion and positive agency (i.e., diagnostic) traits trigger
stronger impressions during the cognitive-integration stage than positive communion
and negative agency.

The remaining index for the sheer frequency difference of communion and agency
traits did not contribute, t(43) = −1.01, d = −0.31, p = .317; judgments did not
depend on the relative number of communion versus agency traits. Note that the overall
difference between communion and agency traits cannot account for the predictive value
of the two other indices of diagnosticity.

The consistently positive β-weights of the extremity predictor, 80% consensus,

3Note also that the valence index in the present analysis (i.e., the different number of positive minus negative
traits in a sample) is different from the valence predictor of the previous regression analysis underlying Table
1 (i.e., the p+ baserate of positive traits in the reference set).
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Figure 1. Strength of likeability judgments as a function of sample size (2, 4, or 8 traits) broken down by
negative (upper plots) versus positive (lower plots) sign and extreme (left plots) versus moderate (right plots)
strength of valence. Small grey dots represent individual judges’ average judgments per condition; the solid
black lines connect aggregated means across all judges. Note that likeability judgments of extremely negative
targets (p+ = .20) exhibit the strongest increase with sample size.
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Table 2. Regression Analyses of Likeability Judgments in Experiment 1 Using Four
Predictors Relevant to Assessing the Impact of Diagnosticity

Real judgment criterion

Predictor Mean β (SD) Consensus t value df p value

Extremity .15 (.17) 80% 5.73 43 < .001
Diagnosticity (valence) -.34 (.16) 98% -14.53 43 < .001
#Communion – # Agency -.05 (.18) 61% -2.09 43 .043
Diagnosticity (big two) .18 (.16) 86% 7.59 43 < .001

t(43) = 5.73, d = 1.73, p < .001, replicate the results obtained in the first regres-
sion analysis. After all, extremity affords another index of diagnosticity. Thus, all three
indices of diagnosticity provide strong convergent support for the contention that like-
ability judgments are sensitive to the evidence strength of a stimulus sample. This con-
clusion is consistent with the above interpretation of the influence of increasing sample
size, which was strongest when trait samples were diagnostic in terms of two aspects,
negativity and strength.

Confidence in the judgment. Recall that participants were asked to rate how
confident they were in their likeability judgments after each trial. We refrain here from
reporting all kinds of additional analyses that might be conducted with confidence rat-
ings (e.g., different confidence-weighted likeability judgments), which all yielded sensible
results. Suffice it to briefly mention the results of a regression analysis using confidence
per se as criterion and the same four predictors as in Table 1 (reference sets’ valence
and extremity, sampling deviation from p+, and sample size). First, positive β-weights
for extremity (mean β = .13, SD = .16, consensus 82%, t(43) = 5.65, d = .85, p < .001)
indicate that extreme samples induced higher confidence than moderate samples. Confi-
dence also increased with increasing sampling error (i.e., fluctuation of the predominant
valence in the sample’s average valence; mean β = .18, SD = .20, consensus 75%,
t(43) = 5.76, d = .87, p < .001). Thus, environmental sampling error not only had a
strong impact on judgment strength but also on subjective confidence. Third, weak but
significant β-weights of the valence predictor reflect somewhat higher confidence after
judging negative than positive targets (mean β = −.06, SD = .19, consensus 59%,
t(43) = −2.06, d = .31, p = .046). Finally, sample size did not affect the confidence of
judgments (mean β < .01, SD = .21, consensus 55%, t(43) = .31, d = .05, p = .760).
The latter finding speaks against the possibility that statistical education (e.g., the les-
son that the reliability of a sample increases with n) may underlie the obtained impact
of sample size on impression strength.

Discussion

To summarize, the first experiment supports the contention that sample-based impres-
sion judgments can be studied systematically, leading to distinctive and consistent find-
ings. Likeability judgments are not only sensitive to the prevailing valence of the target’s
trait reference set but also to variation in degree of valence strength as well as two other
indices of diagnosticity resulting from valence asymmetries in general and from the inter-
action of valence and the big-two (communion and agency), respectively. In addition to
these influences on the cognitive integration process of the systematic target attributes
defining the stimulus pool, the strongest predictor was the sampling error reflecting
unsystematic variation in sampled trait valence. These (Brunswikian) sampling effects
are antecedent to all cognitive processes.
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With regard to the dependency of judgment strength on sample size, our findings
highlight the benefits of a theory-driven research strategy. We reasoned that an updating
process starting from flat priors would, if anything, produce stronger judgments with
increasing sample size. This should only be the case if diagnostic traits render updating
steps more likely. Consistent with this theoretical reasoning, we found the strength of
likeability judgments to increase with increasing n, but only for negative traits – mostly
for extreme negative traits. Sample size did not affect the strength of judgments in the
positive domain. Marked valence asymmetry is consistent with many previous findings
that testify to stronger impact of negative than positive traits on evaluative judgments
(Kanouse & Hanson, 1987; Peeters & Czapinski, 1990), with a growing body of evidence
on the density model (Alves et al., 2015; Unkelbach et al., 2008), and with linguistic
evidence for enhanced diagnosticity of negative (compared to positive) social inferences
(Rothbart & Park, 1986; Semin & Fiedler, 1992). Accordingly, updating should depend
more on added negative traits than on added positive traits.

With regard to the previous debate between Norton et al. (2007) and Ullrich et al.
(2013), our findings provide evidence concerning both positions, each under theoret-
ically predictable conditions, which were masked by the designs used in the previous
research. For the positive valence conditions that mostly resemble the restricted trait set
used in these previous studies, our findings support the conclusion reached by Ullrich
et al. (2013) that impression judgments are unaffected by sample size. In contrast, the
positive influence of sample size on judgment strength is opposite to the less-is-more
effect originally observed by Norton et al. (2007). However, the next experiment will
demonstrate that a reverse (“less-is-more”) relationship can be predicted theoretically
when judges themselves can engage in self-truncated trait sampling, rather than receiv-
ing predetermined samples of fixed size. As we shall see, this shift to a more dynamic
task setting, in which amount of information depends on judges’ truncation decisions,
will induce a strong negative relation between judgment strength and of sample size,
that is, a clear-cut less-is-more effect that is predictable on theoretical grounds.

Experiment 2a (Self-Truncated Sampling)

Using the same basic stimulus materials and similar procedures as in Experiment 1, Ex-
periment 2a also investigates sample-based likeability judgments, drawing on the same
trait adjectives and the same three within-participants variables, strength, valence and
samples size. However, the new set-up differs in one crucial aspect. Rather than receiv-
ing experimenter-controlled samples of fixed size, judges in this experiment are free to
determine how many traits they want to see before they feel they can make a final judg-
ment. Although common in real-life, self-truncated sampling leads to dramatic changes
in theoretically expected sample-size effects. The reason is that, (Brunswikian) trait
sampling is no longer independent of the (Thurstonian) variation in different judges’
truncation decisions. Rather, n becomes a dependent variable that takes on different
values for different levels of valence, extremity, and diagnosticity.

To the extent that judges are sensitive to the evidence of growing trait samples,
a distinct primacy effect can be predicted, causing a diagnosticity advantage of small
samples. On those trials, in which the first few randomly drawn traits happen to provide
a clear-cut positive or negative impression, the search process will be truncated early
and the resulting small samples will reflect decidedly strong impressions. This primacy
effect (i.e., preponderance of one valence among the initial traits) will produce stronger
judgments when early truncation renders sample size small.
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Importantly, this should be evident not only in judges’ actual likeability ratings but
also in the average scale values of sampled traits (i.e., in actuarial judgments). Also, an
analysis of the primacy effect affords a new intriguing test of diagnosticity in updating.
The primacy effect should be most pronounced when negative (i.e., highly diagnostic)
traits enhance the evidential value of the first few traits in a sample. Thus, given self-
truncated sampling, the tendency for smaller samples to trigger stronger likeability
judgments should be more pronounced when the dominant valence is negative rather
than positive.

Method

The task set-up of Experiment 1 was used for Experiment 2a, except that the Java
software was modified to allow participants to stop sampling when they felt appropri-
ate. Instructions were adapted only slightly. Participants were asked to “only retrieve
the number of traits [they] consider sufficient for making a judgment”. The stimulus
presentation procedure was modified accordingly: During information sampling, partic-
ipants could either press the space bar to get an additional (randomly selected) trait
or press the “Enter”-key (after at least retrieving one item) to terminate the sampling
process and make a likeability judgment using the same scale format and subsequent
confidence rating as in Experiment 1. During this stimulus-sampling process, shortened
key-press instructions remained visible. Sample size was limited to a minimum of one
and a maximum of 16 items.

Fifty-nine participants (46 females) took part in the experiment at the University
of Heidelberg. Three participants were excluded because they invariantly sampled only
one trait or the maximum of 16 traits. This time the post-hoc power analysis showed
that sample size was large enough to reliably detect effects greater than d = .34 (given
α = .05 and β = .20). The observed effect size for the test of the individual linear
correlations between sample size and judgment strength this time clearly exceeded this
minimum effect size.

Results

Relation of sample size to judgment strength. Unlike Experiment 1, the linear
correlations r(J, n) in Experiment 2a between sample size n and judgment strength
J , computed within each participant across all 36 trials (target persons), were clearly
negative. Figure 2 portrays this strong reversal from a more-is-more to a less-is-more
effect. The average overall r(J, n), across all 36 trials, is –.21 (SD = .24), consensus 82%,
t(55) = ˘6.83, p < .001. However, again, the tendency of smaller samples to come along
with stronger impression judgments is subject to a marked valence asymmetry. The
correlation r(J, n) between sample size n and judgment strength was clearly negative
for negative reference sets (r = −.38, SD = .27, consensus 89%, t(55) = −10.62,
p < .001). This was not the case for the positive reference sets (r = .01, SD = .32,
consensus 46%, t(55) = .27, p = .790). The scatterplots in Figure 3 illustrate the valence
asymmetry.

The opposite r(J, n) relations obtained in Experiments 1 and 2a are significantly
different from each other, across all 36 targets, t(98) = −6.64, p < .001, and of course
for targets drawn from negative reference sets, t(98) = −9.47, p < .001, but not for
targets drawn from positive reference sets, t(98) = .27, p = .785.

Systematic nature and regularity of impression judgments. Impression judg-
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Figure 2. Mean linear correlation r(J, n) between judgment strength and sample size of the current trait
sample for all experiments, split up for the four reference sets (with different shades of grey representing
different proportions of positive traits p+ in the reference set). Error bars represent the standard error of the
specific mean r(J, n).
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Figure 3. Experiment 2a: Strength of likeability judgments as a function of sample size, split up by reference
sets with different p+ proportions. Small grey dots represent individual judges’ average judgments per condition;
the solid black lines connect aggregated means across all judges. Note that likeability judgments of negative
targets (p+ = .20 or .33) exhibit the highest sensitivity to sample size.
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Table 3. Predictor Intercorrelations for Experiment 2a

Predictor Ref. set strength Ref. set valence Sample size

Ref. set valence 0
Sample size -.11* .21*
Sampling error .01 -.07* -.19*

Table 4. Regression Analyses of Experiment 2a, Using Judgment Strength as
Criterion

Predictor Mean β (SD) Consensus t value df p value

Reference set strength .23 (.53) 66% 3.30 55 .002
Reference set valence -.52 (.77) 79% -5.00 55 < .001
Sample size -.06 (.27) 59% -1.74 55 .087
Sampling error .51 (.17) 100% 22.96 55 < .001
Strength * sample size -.11 (.51) 63% -1.62 55 .111
Valence * sample size .26 (.83) 61% 2.33 55 .023

Zero-order correlations with the extremity of the likeability judgment

Reference set strength .14 (.18) 77% 5.86 55 < .001
Reference set valence -.34 (.28) 89% -9.14 55 < .001
Sample size -.21 (.24) 82% -6.83 55 < .001
Sampling error .55 (.15) 100% 26.43 55 < .001

ments based on self-truncated samples were again highly systematic and sensitive to
all relevant information sources. We regressed each individual participant’s 36 impres-
sion judgments (J) on the same four predictors as in Experiment 1: extremity, valence,
sampling error (i.e., deviation from extremity and valence parameters), and sample size.
Because self-determined sample size was no longer independent of other predictors (e.g.,
n could be different for predominantly positive and negative reference sets), we included
the interactions between samples size and the extremity and valence predictors in the
regression analyses. Note that the β weight of sample size deviates from r(J, n) because
correlated predictors (cf. Table 3) influence the relation between J and n.

A distinct pattern of regression results was obtained for a large majority of indi-
vidual judges (cf. Table 4). Judgments were again sensitive to the extremity of p+ ;
the corresponding β was positive for 66% of the participants, t(55) = 3.30, d = .44,
p = .002. Valence was also a significant predictor, t(55) = −5.00, d = .67, p < .001;
β was negative for 79% of all participants; judgments were stronger for negative than
for positive reference sets. By far the strongest predictor was again sampling error, the
stochastic deviation of individual samples’ average valence from the mean of the refer-
ence set. A positive sign of this predictor was obtained with a perfect consensus (100%),
t(55) = 22.96, d = 3.07, p < .001.

Finally, regarding sample size, the β weight, mean β = ˘.06, t(55) = ˘1.74, d = .23,
p = .087, was clearly weaker than the zero-order correlation r = ˘.21 (SD = .24),
consensus 82%, t(55) = ˘6.83, p < .001. The stronger valence predictor apparently
absorbed the predictive power of the redundant sample-size predictor (r = .21; cf.
Table 3). A significant interaction of sample size and valence, t(55) = 2.33, d = .31,
p = .023, means that early truncation decisions (yielding small n) were mainly due to
the enhanced diagnosticity of negative traits. Although the interaction of sample size
and extremity fell short of significance, t(55) = −1.62, d = .22, p = .111, its negative
sign is also consistent with the notion that less-is-more effects tended to be stronger for
diaganostic (i.e., extreme rather than moderate) targets (cf. Figure 3).

Diagnosticity. The mean β-weights of the other diagnosticity indices in Table 5
corroborate this. As in Experiment 1, extremity, t(55) = 5.86, d = 1.57, p < .001,

50



COGNITIVE-ECOLOGICAL ANALYSIS OF IMPRESSION FORMATION

Table 5. Regression Analyses of Likeability Judgments in Experiment 2a Using Four
Predictors Relevant to Assessing the Impact of Diagnosticity

Real judgment criterion

Predictor Mean β (SD) Consensus t value df p value

Extremity .14 (.18) 77% 5.86 55 < .001
Diagnosticity (valence) -.30 (.17) 96% -13.05 55 < .001
#Communion – # Agency -.07 (.17) 70% -2.89 55 .006
Diagnosticity (big two) .14 (.18) 79% 5.87 55 < .001

positivity, t(55) = −13.05, d = 3.49, p < .001, and big-two diagnosticity, t(55) = 5.87,
d = 1.57, p < .001, all contribute to predicting judgment strength. The frequency
difference of communion minus agency traits also made a modest contribution; there
was a significant trend towards stronger judgments as the relative number of agency
traits increased, t(55) = −2.89, d = −0.77, p = .006.

Determinants of sample size. Examining self-determined sample sizes as a de-
pendent measure is of interest in its own right. Individual regression analyses of n as
a function of the extremity and the predominant valence of the target reference set
showed that judges relied on smaller samples when reference sets were extreme (mean
n = 7.42) than moderate (mean n = 8.12), mean β = −.12, SD = .19, consensus 75%,
t(55) = ˘4.66, d = .62, p < .001. Moreover, n was smaller for negative (mean n = 7.13)
than for positive targets (mean n = 8.41), mean β = .22, SD = .25, consensus 80%,
t(55) = ˘6.66, d = .89, p < .001. Plausibly, a truncation threshold is reached faster
when extremity and negativity render traits more diagnostic.

Frequency norms from the BAWL-R (Võ et al., 2009) allowed us to check on the notion
that diagnosticity relates to unexpectedness (Fiske, 1980). Word frequency (according to
BAWL-R-norms) was associated with self-determined sample size (r = .19, SD = .22,
consensus 79%, t(55) = 6.242, SD = .83, p < .001). As low-frequency traits evoke
surprise (non-familiarity), they have a stronger impact on truncation decisions than
high-frequency traits, consistent with the hypothesized link between diagnosticity and
unexpectedness.

Subjective confidence. An intriguing psychological concomitant of primacy effects
due to early truncation is enhanced confidence. Initially strong tendencies in trait sam-
ples should not only lead to fast truncation of the search process. The resulting strong
and congruent samples should also induce high degrees of confidence. Indeed, small sam-
ple size predicted confident likeability judgments, mean β = −.32, SD = .41, consensus
85%, t(55) = −5.80, d = .78, p < .001, thereby further emphasizing the (negative)
relation of sample size to judgment strength.

Neither the extremity of target reference sets, mean β = −.07, SD = .65, consensus
58%, t(55) = −.82, d = .11, p = .417, nor the predominant valence, mean β > −.01,
SD = .73, consensus 56%, t(55) = −.06, d < .01, p = .953, affected the confidence
ratings. Interactions of sample size with extremity, mean β = .15, SD = .67, with
consensus 65%, t(55) = 1.65, d = .22, p = .104, and with valence contributed little
to predicting confidence either, mean β < .01, SD = .83, consensus 55%, t(55) = .03,
d < .01, p = .978. These findings suggest that metacognitive feelings of confidence
are not well-calibrated for diagnosticity. Only the β for sampling error was significant,
mean β = .16, SD = .18, consensus 82%, t(55) = 6.49, d = .88, p < .001, reflecting
higher subjective confidence when sampling error was consistent with the predominant
tendency.
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Discussion

Experiment 2 resembled Experiment 1 in many ways, corroborating the predictability
of impression judgments from sensible psychological factors. With respect to sample
size, the predictor of most interest, a seemingly small procedural change in task condi-
tions produced a radical reversal. Whereas experimentally fixed sample sizes in Exper-
iment 1 exhibited a “more-is-more” effect (i.e., stronger judgments with increasing n),
self-truncated sample size in Experiment 2 had the reverse effect. Judgment strength
decreased as n increased, due to a distinct primacy effect that renders small (i.e., early
truncated) samples particularly informative.

Our theoretical analysis implies that participants in this experiment will not only rely
on stimulus sampling in the environment. When judges can search as much information
as they like, they can stop when clarity of the sample coincides with preparedness of
the mind. However, the same (Brunswikian) samples (profiting from the same primacy
effect) may not lead to the same strong and confident judgments when Thurstonian
responses in different judges are not identical. For a simple and straightforward test
of this intriguing notion, we conducted another experiment, in which exactly the same
samples as in Experiment 2a were presented to new participants, who could however
not themselves determine the moment of truncation.

Experiment 2b (yoked controls)

Each participant of Experiment 2b was a yoked control of one participant in Experiment
2a, receiving exactly the same series of 36 samples. If the polarized judgments triggered
by small samples can be explained in terms of Brunswikian sampling alone, a similarly
strong “less-is-more” effect should be obtained. If, however Thurstonian sampling mod-
erates the judgments, the same samples may not induce the same sample-size effect
in Experiment 2b judges, who may not be in a critical state of mind when samples
are truncated (by somebody else). In the latter case likeability judgments should be
markedly diluted, due to misaligned Thurstonian activity.

Method

Fifty Heidelberg students (41 female) participated. One participant was excluded be-
cause of conspicuously long judgment latencies (> 3 standard deviations from the me-
dian latency). Six yoked control participants were missing in Experiment 2b, resulting
in a slightly smaller of participants than in Experiment 2a (56). The minimum reliably
detectable effect size in the post-hoc power analysis was d = .36 (given α = .05 and
β = .20) for the given sample size of 50. The observed effect size for the test of linear
correlations between sample size and judgment strength exceeded this minimum effect
size.

Materials and procedures. Instructions and procedures were the same as in
Experiment 1; the stimulus materials were identical to Experiment 2a. Each participant
of Experiment 2b received the same trait samples in the same order and size as the
yoked partner in Experiment 2a, except for the active trait-sampling instructions. The
yoked-control design was not mentioned.
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Figure 4. Experiment 2b: Strength of likeability judgments as a function of sample size, split up by reference
sets with different p+ proportions. Small grey dots represent individual judges’ average judgments per condition;
the solid black lines connect aggregated means across all judges.

Results and Discussion

Relation of sample size to judgment strength. Comparison of the middle and
right parts of the bar chart in Figure 2 shows that the average r(J, n) across all 36 trials
in Experiment 2b was clearly weaker, r = ˘.10, SD = .22, consensus 70%, t(49) = ˘3.39,
p = .001, than in Experiment 2a above, t(49) = 3.06, p = .003, between experiments.
The less-is-more effect, manifested in negative r(J, n), was still stronger for targets
drawn from negative references sets, ˘.15 (SD = .24), although reduced in comparison
to the latter experiment, t(49) = 5.52, p < .001. The correlation for positive reference
sets was negligible, r = .04, SD = .27, consensus 52%, t(49) = .94, p = .350 (see Figure
4), and indifferent from Experiment 2a: t(49) = 1.11, p = .273 (see Figure 2).

Apparently, then, Thurstonian variation between judges contributed substantially to
the enhanced less-is-more effect in Experiment 2a. Whereas judges in Experiment 2a
truncated sampling when they were mentally ready to recognize a clear-cut trend in
a growing sample, judges in Experiment 2b were exposed to the same sample, but at
a moment when they may have not mentally prepared (i.e. their individual interpre-
tation of the same sample did not lead to an equally clear-cut impression) to draw a
judgment. Thurstonian sampling effects were not synchronized with the Brunswikian
samples gathered from the environment.

Systematic nature and regularity of impression judgments. Though not in-
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Table 6. Individual Regression Analyses of Judgment Strength in Experiment 2b

Predictor Mean β (SD) Consensus t value df p value

Reference set strength .21 (.54) 68% 2.76 49 .008
Reference set valence -.28 (.62) 62% -3.22 49 .002
Sample size .15 (.31) 76% 3.43 49 .001
Sampling error .56 (.18) 100% 22.49 49 < .001
Strength * sample size -.11 (.61) 60% -1.26 49 .213
Valence * sample size < .01 (.64) 46% .07 49 .943

Zero-order correlations with the extremity of the likeability judgment

Reference set strength .13 (.17) 70% 5.26 49 < .001
Reference set valence -.29 (.27) 84% -7.38 49 < .001
Sample size -.10 (.22) 70% -3.39 49 < .001
Sampling error .53 (.16) 100% 22.81 49 < .001

Table 7. Differences in β-Weights Between Experiments 2a and 2b, Using
Judgment Strength as Criterion

Predictor ∆β (SD) Consensus t value df p value

Reference set strength >-.01 (.77) 48% -.03 49 .978
Reference set valence .20 (.80) 64% 1.75 49 .087
Sample size .21 (.38) 78% 3.88 49 < .001
Sampling error .05 (.18) 62% 1.93 49 .059
Strength * sample size -.03 (.85) 52% -.23 49 .822
Valence * sample size -.21 (.88) 64% -1.70 49 .095

Differences in zero-order correlations

Reference set strength -.03 (.14) 58% -1.27 49 .209
Reference set valence .05 (.40) 50% .92 49 .361
Sample size .11 (.25) 66% 3.06 49 .004
Sampling error >-.01 (.17) 44% -.37 49 .716

formed by one’s “own sample”, impression judgments in the yoked-control condition
were as systematic and sensitive to all relevant regular manipulations as in both pre-
vious experiments. Table 6 summarizes the results of the pertinent within-participants
regression analyses.

The extremity of the target reference set was again a significant predictor (consensus
69%, t(49) = 2.76, d = .39, p = .008); judgments tended to be stronger for targets sam-
pled from extreme than from moderate reference sets. Sampling error (i.e., deviations
of the average scale value of traits sampled from p+) remained the strongest predictor
(consensus 100%, t(49) = 22.49, d = 3.18, p < .001). Valence asymmetry was also repli-
cated, with negative target sets producing stronger judgments than positive target sets
(consensus 62%, t(49) = ˘3.22, d = .46, p = .002).

Surprisingly, though, controlling for the other (correlated) predictors, the sample-size
predictor now received a significant positive β-weight across all 36 judgments (mean
β = .15, consensus 76%, t(49) = 3.43, d = .49, p = .001). The interactions of reference
set strength with sample size (consensus 60%, t(49) = ˘1.26, d = .18, p = .213) and of
reference set valence with sample size (consensus 46%, t(49) = .07, d < .01, p = .943)
did not show consistent results.

Comparisons across experiments revealed that the β-weight relating sample size to
judgment strength (negative for the zero-order correlations) was significantly higher in
Experiment 2b than in Experiment 2a (Table 7), consensus 78%, t(49) = 3.88, d = .55,
p = .001, apparently due to Thurstonian sampling. No other predictor but sample size
discriminated between the two matched experiments.

Diagnosticity. Analyses of diagnosticity indices were largely consistent with preced-
ing experiments (cf. Table 8). Extremity, t(48) = 5.06, d = 1.44, p < .001, positivity,
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Table 8. Regression Analyses of Likeability Judgments in Experiment 2b Using Four
Predictors Relevant to Assessing the Impact of Diagnosticity

Real judgment criterion

Predictor Mean β (SD) Consensus t value df p value

Extremity .12 (.17) 69% 5.06 48 < .001
Diagnosticity (valence) -.35 (.17) 98% -14.66 48 < .001
#Communion – # Agency -.05 (.18) 61% -1.88 48 .066
Diagnosticity (big two) .17 (.14) 88% 8.60 48 < .001

t(48) = −14.66, d = 4.19, p < .001, and big-two diagnosticity, t(48) = 8.60, d = 2.46,
p < .001, were significant predictors of judgment strength, but not the frequency differ-
ence of communion minus agency traits, t(49) = ˘1.88, d = −0.54, p = .066.

Subjective confidence. Given the missing alignment of Brunswikian and Thursto-
nian sampling in Experiment 2b, the enhanced subjective confidence in small (early
truncated) samples that we observed in Experiment 2a should be reduced. Indeed,
smaller samples no longer led to a significant increase in confidence, mean β = ˘.07,
SD = .36, consensus 57%, t(49) = −1.36, d = .19, p = .179); compared to Experiment
2a, t(49) = 2.34, d = .34, p = .023. Neither extremity, mean β = .14, SD = .65, consen-
sus 57%, t(49) = 1.48, d = .21, p = .145, nor valence of the reference set, mean β = .16,
SD = .76, consensus 49%, t(49) = 1.48, d = .21, p = .145, were significant predictors of
confidence in Experiment 2b. However, a strong influence of (trend-consistent) sampling
error is manifested in positive regression weights (mean β = .24, SD = .19, consensus
91%, t(49) = 8.88, d = 1.27, p < .001). We did not obtain an interaction of extremity
and sample size (mean β = −.06, SD = .70, consensus 53%, t(49) = −.61, d = .09,
p = .543) but a noticeable interaction of valence and sample size (mean β = −.25,
SD = .83, consensus 59%, t(49) = −2.15, d = .31, p = .037). The latter interaction
shows that the negative relationship between sample size and confidence was slightly
more pronounced for negative reference sets.

Actuarial Judgments

To set the sampling stage apart from the cognitive-integration process, and to further
validate our theoretical interpretation of the relation between sample size and judgment
strength, let us finally consider the actuarial “judgments”, that is, the average valence
scale values of all sampled traits (Dawes et al., 1989).

An analysis of these actuarial judgments J∗ reveals that the less-is-more effect in Ex-
periments 2a and 2b originates in the sampling stage, prior to the cognitive integration
of the sampled traits. Thus, the linear relation r(J∗, n) between n and actuarial judg-
ments, which was approximately zero for Experiment 1 (r = ˘.05, SD = .12, consensus
66%, t(43) = −2.52, p = .016), dropped to strong negative values in Experiment 2a
and by definition also in Experiment 2b using the same samples in a the yoked-control
design, r = ˘.21, SD = .22, consensus 84%, t(55) = ˘6.92, p < .001. This clearly shows
that in Experiment 2a self-truncation already produced a less-is-more effect in the ob-
jective stimulus input: Smaller samples did contain systematically stronger (actuarial)
evaluations than larger samples drawn from the same universe.

Note that deviations of actual human judgments J from the actuarial judgments
J∗ must reflect the complementary influence of the cognitive-integration stage. The
mean linear relation r(J, n) was significantly higher than r(J∗, n) in Experiment 1,
(.05 vs. ˘.05; consensus 73%, t(43) = 4.42, p < .001), consistent with an updating
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Table 9. Regression Analyses of Experiments 1 and 2a, Using Actuarial Judgments
as Criterion

Predictor Mean β (SD) Consensus t value df p value

Experiment 1 (fixed sample sizes)

Extremity .29 (.03) 100% 63.73 43 < .001
Valence .07 (.01) 100% 63.39 43 < .001
Sample size < .01 (< .01) 52% .65 43 .522
Sampling error .95 (.05) 100% 132.84 43 < .001

Experiment 2a (self-truncated sample sizes)

Extremity .40 (.10) 100% 29.57 55 < .001
Valence .09 (.02) 100% 29.30 55 < .001
Sample size < .01 (< .01) 41% .25 55 .807
Sampling error .92 (.09) 100% 80.67 55 < .001
Extremity * Sample size > −.01 (.01) 80% -4.99 55 < .001
Valence * Sample size < .01 (.01) 71% 3.72 55 < .001

Experiment 2a: zero-order correlations r(J∗, n)

Extremity .38 (.18) 98% 15.70 55 < .001
Valence .02 (.16) 55% .89 55 .379
Sample size -.21 (.22) 84% -6.92 55 < .001
Sampling error .91 (.05) 100% 151.27 55 < .001

account of the more-is-more effect (i.e., the positive sign of the linear r(J, n) relation).
This (diagnosticity-dependent) updating process must take place during the cognitive-
integration stage.

In Experiment 2a, the negative relations r(J∗, n) and r(J, n) are similarly strong, (-
.21 and -.21; consensus 55%, t(55) = −.27, p = .790), indicating that human judgments
are not regressive relative to the actuarial input. That is, human judgments exploit
the full linear relationship between sample size and evaluation strength that is inherent
in the actuarial input. We interpret this surprising lack of regression (cf. Fiedler &
Unkelbach, 2014) in terms of the counteractive force of Thurstonian sampling effects.
Judgments in Experiment 2a were not only made at the moment when the (Brunswikian)
stimulus samples exhibit the strongest evaluation effects. They were also made at the
very moment of truncation when (due to internal Thurstonian processes) participants
are mentally ripe and ready to make a judgment. This synchronization of Brunswikian
sampling of stimuli and Thurstonian states within judges may explain the strong (non-
regressive) less-is-more effect in Experiment 2a.

Corroborating this interpretation, the negative relation r(J, n) was markedly weaker
than r(J∗, n) in Experiment 2b, (–.10 vs. –.20; consensus 60%, t(49) = 3.25, p = .002),
when yoked-control judges were not synchronized or mentally prepared to make a judg-
ment at the moment of truncation (by judges of Experiment 2a). Although they received
the same trait samples, Experiment 2b judges were less sensitive to the enhanced valence
of small samples.

It is also interesting that the strong linear relationship r(J∗, n) between sample size
n and actuarial judgments J∗ largely disappeared when (individual) regression analyses
included other predictors, which apparently played a causal role in truncation decision.
The pertinent results are summarized in Table 9, separately for actuarial judgments of
Experiments 1 and 2.

Consistent with a cognitive-ecological sampling approach, the actuarial sampling in-
put was sensitive to the extremity of traits in the reference set, (Exp. 1: mean β = .29;
Exp. 2: mean β = .40), and to sampling error, (Exp. 1: mean β = .95; Exp. 2: mean
β = .92), which was always the most powerful predictor. However, crucially, the valence
factor did not produce the same strong negativity effect as in human judgments (Exp.
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1: mean β = .07; Exp. 2a: mean β = .09). If anything the slightly positive β weights
tended to point in the opposite direction. Obviously, because scale values of positive
and negative trait stimuli were balanced, the negativity effect must originate from the
cognitive integration stage and cannot affect actuarial measures.

Although actuarial judgments must be independent of sample size, (mean β < .01)
and valence in Experiment 1, self-truncation in Experiment 2a (and 2b) creates distinct
correlations between sample size and other variables related to truncation decisions. Due
to higher diagnosticity of negative than positive traits, and of extreme than moderate
traits, samples were truncated earlier when traits were negative and extreme (rather
than positive and moderate), as evident in distinct influences of valence and extremity
on actuarial judgments (cf. Table 9). Moreover, because valence and extremity triggered
truncation and resulting sample size, the influence of sample size was absorbed by these
two logically antecedent predictors and therefore only showed up in significant extremity
x sample size and valence x sample size interactions.

To summarize, the less-is-more effect in Experiment 2 arose early in the sampling
stage, prior to the cognitive integration process, when a few diagnostic traits created
a strong primacy effect, encouraging early truncation of trait sampling. Whether the
negative influence of sample size on valence strength carried over to actual human
judgments depends on the alignment of Brunswikian and Thurstonian sampling. When
Thurstonian and Brunswikian sampling effects were well aligned, as in Experiment
2a, then judges were mentally prepared for a judgment at the moment of truncation.
So they exhibited a similarly strong less-is-more effect as the actuarial judgments. In
contrast, when judges in Experiment 2b were provided with identical samples truncated
by other participants, Thurstonian and Brunswikian sampling effects were not aligned,
and judgments were therefore less sensitive to the primacy advantage.

General Discussion

Revisiting a debate in the present journal, we investigated the relation between impres-
sion formation and amount of information from a decidedly theory-driven perspective
(Fiedler, 2017). The basic idea of strong cumulative science is to build testable hy-
potheses on firmly established empirical laws and logical principles. Strictly derived
theoretical constraints can then be tested empirically.

Thus, with respect to the primary research question, the dependence of person im-
pressions on the number of (randomly sampled) traits from the universe of all available
information, it is essential to consider the logic underlying the principle of insufficient
reason (Gilboa et al., 2009; Savage, 1954). In the context of a sequential task covering
the full range of positive and negative trait proportions (i.e., p+ varying from .20 to .80),
this principle implies that there is no sufficient reason to expect on the next trial a target
to represent a particular degree of positive or negative valence. Judges must be equally
prepared to encounter targets of all valence levels. An unbiased impression formation
process should therefore start from a neutral default expectation, and this neutral start-
ing value should then be updated in the light of a series of target traits. Depending on
whether a new trait is more positive or more negative than the current impression, it
should cause an update in upward or downward direction, respectively. This updating
process is largely independent from Bayesian principles of belief updating, they would
however lead to highly convergent predictions.

Moreover, because the total updating effect is the sum of upward minus downward
upgrades, it follows that the resulting degree of polarization (i.e., the strength of im-
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pression judgments in the direction of the more prevalent valence) should increase with
sample size. Whether such a viable process hypothesis is actually borne out has to be
tested, but our findings actually support the contention of such a more-is-more effect
after sequential trait sampling, when multiple trials with a flat distribution of p+ call
for neutral “priors”.

Although it could not be predicted with certainty, the dependency of impression
updating on the diagnosticity of sampled traits is well consistent with this sequential
sampling algorithm. Three different versions of diagnosticity (related to valence, ex-
tremity, and the interaction of valence and the big two) lend convergent support to the
role of diagnosticity. No more-is-more effect was obtained for non-diagnostic (positive)
traits. In other words, we replicate the null findings reported by Ullrich et al. (2013) for
targets described by mostly positive (not diagnostic) traits, even though for diagnostic
(negative) traits we demonstrate a positive relation between sample size and impression
strength.

With regard to the less-is-more effect reported by Norton et al. (2007), reflecting de-
creasing impression strength with increasing n, our sampling approach at least suggests
a plausible account. Because their participants provided only a single impression judg-
ment based on a sample drawn from a largely positive pool, and because positive traits
are more common than negative traits in the real world, participants might have started
from a default expectation of a clearly positive target. Further traits may have diluted
this (too) positive starting impression, letting impressions regress to less positive levels.

Our multi-trial repeated measures design with a flat distribution of traits from all
valence levels served to substantiate the principle of insufficient reason (making all
valence levels equally likely) and thereby to rule out any uncontrolled vicissitudes of
experiments resting on a single trait sample. In this regard, to be sure, our design is
not directly comparable to the design used by Norton et al. (2007) and by Ullrich et al.
(2013).

Yet, another hardly contestable principle predicts a less-is-more effect for a completely
different reason than the one suggested by Norton et al. (2007). It was shown to arise
in the self-truncated sampling condition, when sample size is not fixed as an indepen-
dent variable but dependent on the judges’ own truncation decision. When samples are
terminated at the very moment when the participant feels to have obtained a clear-cut
impression, it follows that early truncated (i.e., small) samples must be informative and
reflective of strong impressions, whereas less clear-cut trait sets should be truncated
later, as manifested in larger sample size. This natural consequence of self-truncation
can be shown in Monte-Carlo simulations (Prager et al., 2017) to generalize over wide
ranges of the parameter space (n ranges, p+ parameters, specific stopping rules etc.),
but only when samples are self-truncated, not when n is under extraneous experimental
control.

Note that the enhanced strength and clarity of small self-truncated samples consti-
tutes a bias, resulting from the exploitation of a stochastic primacy effect, that is, the
exploitation of samples that happen to provide a clear-cut picture at the beginning.
In the context of this selective primacy effect, n is no longer under experimental con-
trol but has become a dependent variable (dependent on the stochastic distribution of
trait valence and diagnosticity in early sampling stages). Yet, it is important to note
that self-truncation, or control over the amount of information gathered, is typical for
impression formation under many natural conditions. Moreover, the mechanism under-
lying the less-is-more effect of self-truncation can be generalized to other judgment and
decision tasks, and it is not restricted to random sampling. On the contrary, the bias
can be even more pronounced when non-random sampling allows people to render small
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samples decisive and informative.
The inclusion of an actuarial measure of sample contents allowed us to analyze the

nature of small self-truncated samples, informing strong and confident judgments, more
closely. They were replete with negative and diagnostic traits, which were clearly more
likely to encourage early truncation than positive and non-diagnostic traits. Thus, unlike
the impact of diagnosticity on sequential updating in the fixed-n condition, which only
affected the cognitive integration stage but not the actuarial measure of sample contents,
the impact of the primacy bias is strongly manifested in the actuarial measure. In other
words, the primacy-dependent less-is-more effect is manifested in the sampling stage as
well as the cognitive integration stage.

At the end, we are convinced that it is worth engaging in strict theorizing – beyond
ad-hoc speculation and mere explicit announcement (pre-registration) of empirical hy-
potheses that could be easily replaced by their opposite. Strong cumulative science
means to beware of the logical and theoretical constraints imposed on testable hy-
potheses. Had we only doubled (or tripled) the number of participants relative to prior
studies, or had we only run exact replications, we could not have gained new insights
about several non-intuitive phenomena.

This holds in particular for the seemingly exotic distinction between Brunswikian and
Thurstonian sampling, which simply refers to a truism: Person impressions (much like
other judgments and decisions) are not fully determined by the objective properties of
stimuli sampled in the environment but by the internal cognitive and affective responses
generated by different individuals (or across time and occasions within individuals).
While the term “Brunswikian” refers to sampling in an uncertain environment, the
term “Thurstonian” refers to complementary influences of different internally generating
responses to the same stimulus samples.

As a consequence, we have seen that yoked control judges who were presented the
same samples as participants in the self-truncated condition produced clearly weaker
less-is-more effects. These divergent results reflect the different Thurstonian responses
solicited by the same Brunswikian stimulus samples in the two experimental conditions.
Apparently, for the yoked control participants, the truncated samples were not as well-
suited for strong and confident impression judgments as for the original participants
who could make their own truncation decisions. The reasons for divergence may be
manifold. Waggoner et al. (2009) reasoned that passive yoked control participants (in
a related but distinct paradigm) try to reach a quick and more superficial judgment.
There is no support for such a difference in the present research, as the impression
judgments in the yoked control condition are no less systematic and sophisticated (in
terms of sensitivity to sampling error, extremity, and diagnosticity) than judgments in
the other conditions. But the notion of “Thurstonian sampling” allows for many sources
of variation between judges in different conditions. In any case, it highlights the genuine
interaction of external stimulus variance and internal judgment variance.

The precisely stated algorithms and theoretically derived boundary conditions that
have guided our research and that have been supported empirically can improve our
understanding of diversely related phenomena, the different names of which prevented
their theoretical integration. For instance the learning- and updating-principle under-
lying the more-is-more effect is at the heart of countless other demonstrations that
information increases with the amount of stimulus observations: when judging one-
self versus others (Moore & Healy, 2008), majorities or minorities (Fiedler & Wänke,
2009), ingroups versus outgroups (Brewer, 2007), or when testing focal versus alterna-
tive hypotheses (Fiedler & Wänke, 2009; Koriat et al., 1980). Conversely, the enhanced
power of (selectively) truncated small samples may help to integrate such phenomena

59



PRAGER, KRUEGER, AND FIEDLER

as choice overload in consumer decisions (Chernev et al., 2015), hot-stove effects and
hedonically motivated sampling effects (Denrell & Le Mens, 2012; Fazio et al., 2004),
or under-justification effects inspired by dissonance theory (Linder & Worchel, 1970).

No doubt, the present approach is not meant to provide a comprehensive account of
the entirety of psychological influences on person impressions. Hardly any phenomenon
in a multi-causal world is determined by a single causal process. Our demonstration that
sampling rules applied to elementary traits alone can account for a whole pattern of
clearly predictable influences does not preclude the operation of other influences. Thus,
Norton et al. (2013) may be right to assume that the meaning of traits may change
in the context of other traits, and the quantum theoretical model (Busemeyer et al.,
2011) may offer a computational account of such meaning change. Likewise, order effects
(Hogarth & Einhorn, 1992) may moderate the impact of traits, and valence asymmetries
may be further elucidated in terms of neural system properties (Ito & Cacioppo, 2005).

The focus of the present research was on sampling influences rather than neural
structures. Order effects were deliberately excluded and distinct trait interactions were
minimized by random sampling from a sufficiently large universe of traits. But these are
exactly the task constraints established in the preceding work that provided the starting
point for the present research. In any case, with regard to the goal to base empirical
research on clearly spelled out theoretical constraints (Fiedler, 2017), it seems fair to
conclude that the study of social cognition can profit a lot from a cognitive-ecological
sampling approach. In our own lab, we are now working on a computational (simulation)
model supposed to provide a more comprehensive understanding of the generality and
the confines of self-truncated sampling effects.
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Appendix A. Construction of the Four Trait Reference Sets

As mentioned above, fifty-seven trait adjectives of the Berlin Affective Word List –
Reloaded (BAWL-R) by Võ et al. (2009) served as a pool of potential stimuli. For the
experiments four different, but overlapping trait reference sets had to be drawn from
the overall pool of stimuli.

Table A1. Frequency Distributions Underlying the Generation of the Four Trait
Reference Sets Forming the Stimulus Material of All Three Experiments

BAWL-R valence interval

Reference set -3 : -2 -2 : -1 -1 : 0 0 : 1 1 : 2 2 : 3

Extremely negative 3 12 9 4 1 1
Moderately negative 2 9 9 7 2 1
Moderately positive 1 2 7 9 9 2
Extremely positive 1 1 4 9 12 3

The first step in this procedure was to determine frequency distributions of resulting
reference sets. The four distributions can be considered to consist of two pairs symmetric
in valence. One moderate and one extreme distribution was formed and exactly mirrored
towards the other direction of valence. Binomial distributions of n = 5 and p-parameters
of .2, .4, .6, and .8 served as orientation. Note, that binomial distributions (equal n and
p-parameters p and p∗) of p∗ = 1 − p are axisymmetric to the center. As n = 5 suggests,
we split the scale of the BAWL-R valence norms (ranging from -3 to +3) into 6 intervals
of equal range (1). Setting population size of each reference set to 30, the four frequency
distributions presented in Table A1 resulted.

In a second step, the described frequency distributions had to be filled with stimuli.
Therefore the 57 traits were split into the six intervals depending on their BAWL-R
valence. Thus, 6 distinct urns of homogenous valence resulted. Next, the number of
traits – determined by the previously formed distributions – were drawn randomly from
each urn. All items of the urns were replaced after the stimuli for one reference set were
drawn, so that within reference set items do not overlap, whereas one item might be
part of different reference sets. Manifest statistics of the drawn reference sets are shown
in Table A2.

Table A2. Statistics for Valence Scores of the Four Ref-
erence Sets

Reference set Mean p+ SD Skewness

Extremely negative -.78 .20 1.10 .73
Moderately negative -.40 .33 1.20 .43
Moderately positive .50 .67 1.21 -.41
Extremely positive .85 .80 1.20 -1.07

As can be seen from the current table, reference sets were almost, but not perfectly
symmetric around neutral valence. Not only proportions of positive valent items p+
varied systematically and symmetrically, but also the mean valence and skewness of
the trait valences. Therefore the two extreme reference sets’ p+ deviated more from .5,
but they also showed more deviating means and skewness (from 0) compared to the
moderate reference sets. The finally selected trait reference sets can be seen in Table
A3.
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Table A3. Selected Trait Adjectives Together With Their English Translation and Their BAWL-R Valence
(Scaled From Very Negative [-3] to Very Positive [3]; Võ et al., 2009)

Original German English translation BAWL-R valence p+ = .20 p+ = .33 p+ = .67 p+ = .80

herzlos heartless -2.5 1 0 0 1
verlogen mendacious -2.3 1 1 0 0
humorlos humorless -2.1 1 1 1 0
boshaft mischievous -1.9 1 0 0 1
gemein mean -1.9 1 1 0 0
launisch moody -1.9 1 1 1 0
gierig greedy -1.5 1 1 0 0
labil labile -1.5 1 1 0 0
stur obstinate -1.5 1 1 0 0
mutlos despondent -1.4 1 0 0 0
primitiv primitive -1.4 1 1 0 0
altklug precocious -1.1 1 1 1 0
derb coarse -1.1 1 0 0 0
eitel vain -1.1 1 1 0 0
passiv passive -1.1 1 1 0 0
wortkarg taciturn -0.9 1 1 1 0
laut noisy -0.8 1 1 1 1
naiv naive -0.8 1 1 1 1
defensiv defensive -0.6 1 1 1 0
unnahbar inapproachable -0.6 1 1 1 0
listig cunning -0.4 1 1 1 1
albern foolish -0.2 1 1 1 0
forsch outspoken -0.2 1 1 0 1
redselig talkative -0.1 1 1 0 0
stoisch stoical 0.1 0 1 1 1
sparsam thrifty 0.2 1 0 1 0
ruhig calm 0.6 0 1 1 1
sachlich factual 0.6 1 1 1 1
still silent 0.6 1 1 1 1
verwegen audacious 0.6 1 1 1 1
eifrig eager 0.8 0 1 1 1
sensibel sensitive 0.8 0 1 1 1
strebsam ambitious 0.9 0 0 1 1
vornehm genteel 0.9 0 0 0 1
liberal liberal 1.3 0 0 0 1
sanft gentle 1.3 0 0 1 1
spontan spontaneous 1.4 1 0 1 1
aktiv active 1.6 0 0 1 1
pfiffig smart 1.6 0 0 1 1
schlau shrewd 1.6 0 0 1 1
flexibel flexible 1.7 0 0 1 1
munter alert 1.7 0 0 0 1
tapfer courageous 1.7 0 0 0 1
heiter cheerful 1.8 0 1 1 1
nett nice 1.8 0 1 1 1
taktvoll considerate 1.9 0 0 1 1
loyal loyal 2.1 0 0 0 1
ehrlich honest 2.2 1 0 0 0
mutig brave 2.2 0 0 1 1
treu faithful 2.2 0 1 1 0
kreativ creative 2.6 0 0 0 1

Note. The columns on the right hand side indicate the usage (1) or nonusage (0) of the trait for each of the four
reference sets indicated by their proportion of positive valent traits.
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Forming Impressions From Self-Truncated Samples of Traits –
Interplay of Thurstonian and Brunswikian Sampling Effects
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ABSTRACT
Consistent with sampling theories in judgment and decision research, impression
judgments depend in distinct ways on the number of traits drawn randomly from
a population of target person traits. When sample size is determined externally by
the experimenter, the sensitivity of resulting impression judgments to the prevail-
ing (positive or negative) valence increases with the number of traits. In contrast,
sensitivity is negatively related to sample size (more extreme judgments for smaller
samples) when sampling is self-truncated. Building on previous findings by Prager,
Krueger, and Fiedler (2018), two new experiments corroborate the judgment pattern
for self-truncated sampling and elaborate on the distinction of Brunswikian sam-
pling (of stimuli in the environment) and Thurstonian sampling (of states within
the judge’s mind). Thurstonian sampling effects were evident in depolarized (re-
gressive) judgments by yoked control participants provided with exactly the same
trait samples as original judges, who could truncate sampling when they felt ready
for a judgment. Experiment 1 included two kinds of yoked controls, receiving trait
samples truncated in a previous stage either by themselves or by other judges, distin-
guishing between temporal and interpersonal sources of Thurstonian sampling vari-
ance. As expected, self-yoking yielded less regressive shrinkage than other-yoking.
Experiment 2 provided convergent results with yoked controls manipulated within
participants, dealing with higher dispersion of impressions on self-truncated samples
(Thurstone, 1927). Across both experiments, individual impression judgments were
highly predictable from theoretically meaningful parameters: expected valence in the
population, sampling error, sample size and different indices of trait diagnosticity.

KEYWORDS
Thurstonian sampling, yoked controls design, diagnosticity, self-truncated sampling
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Forming impressions from restricted information samples is a social-cognitive task
that one frequently encounters in everyday life. Imagine, for example, a teacher asking
knowledge questions to students, a consumer reading product reviews on the internet, or
a personnel manager interviewing job candidates. What the examples have in common
is a judge (teacher, customer, or personnel manager), whose task is to gauge a target
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entity (student, product, job applicant) regarding a latent attribute (ability, quality,
future job performance). This attribute is often not amenable to direct observation but
needs to be inferred indirectly from restricted samples of raw observations. Judgments
(and consequent decisions) entail inferences of latent attributes from restricted and
often rather small and incomplete samples of relevant stimulus observations. Person
impression judgments, in particular, are integrative verbal or numerical summaries of
inferences drawn from samples of traits or behaviors.

One chief determinant of judgments and decisions is the amount of information, or
the size of the sample it is based on. Assuming unbiased random sampling and sample
size being an independent variable rather than dependent on the information content,
the reliability and sensitivity of sampled evidence will normally increase with increasing
sample size. According to the "law of large numbers" (Bernoulli, 1713) , as samples size
increases, sample estimates approximate the true properties of the universe from which
the sample is drawn. This widely known advantage of increasing sample size is not only
evident in the reliability of scientific research but also in inference tasks of judgment
and decision making (e.g. Peterson Beach, 1967), the wisdom of crowds (Galton, 1907)
or more generally in the positive slope of learning curves. It is well known that the
reliability of a test increases with the number of items (Spearman, 1910) and it is
commonly supposed that the quality of expert judgments and advice increases with the
amount of experience.

But while this is common sense, it seems worthwhile explicating the underlying logic.
Statistical theory tells us that sample means afford unbiased estimates of the latent
population parameter or its expected value, independently of sample size. However,
while there is no reason to expect the mean or central tendency of a small sample
to be more biased relative to a large sample, the crucial difference lies in the disper-
sion of the sampling distribution. Small samples are more dispersed and deviate more
from the population means than larger samples. As a consequence of this basic inac-
curacy, small samples are prone to misrepresent true population tendencies. However,
the same inaccuracy that often obscures population properties may also exaggerate
and over-accentuate existing trends (Hadar & Fox, 2009; Hertwig & Pleskac, 2010). As
a consequence, smaller samples may, under distinct conditions, provide a particularly
clear-cut and conflict-free picture of a true latent trend.

Imagine, for example, a student with a true probability p = .8 of responding correctly
to arithmetic problems in a math lesson (i.e., the expected probability of responding
correctly is 80%). A small sample of only n = 2 responses will most likely exhibit a
correctness proportion higher than 80%; the most frequent sample proportion obtained
at a rate of .82 = .64 is indeed 100%. Such an extreme proportion (that exceeds the
expected value of 80%) is much less likely for a larger sample of, say, n = 10, (i.e.,
.810 = .11). More generally, because sampling distributions are skewed, especially for
small n, the smaller samples are more likely to exaggerate distribution trends, despite
a constant expected value for every sample size (De Finetti, 1937; Hadar & Fox, 2009;
Hertwig & Pleskac, 2010; Kareev, 2000).

Crucially, we implicitly assumed that sample size is a sample characteristic indepen-
dent of its content, especially of the described initial instances of exaggeratedly clear
outcomes. But what happens when we abandon this assumption and, instead cede con-
trol of the amount of sampled information to the individuals themselves, thus allowing
sample size to become dependent on observed sampled information and the judging
individual’s strategy? That case is indeed quite representative of sampling in many nat-
ural settings. Teachers, for instance, tend to stop asking a particular student questions
when their impression of the student’s competence is sufficiently clear. Similarly, con-
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sumers decide themselves when to stop sampling and make a choice between products.
Personnel managers conclude a job interview when they feel sufficiently informed to
make a selection decision. In all these cases, self-truncation has seemingly paradoxical
implications.

Self-truncation typically creates a negative correlation between sample size and
strength of evidence in the sample, making existing trends more visible in small (early
truncated) than in large (late truncated) samples. Crucial to understanding this curious
phenomenon is the question of when sampling is truncated. Imagine an individual in-
volved in a person judgment task. Their impression of a target person might already be
clear after a few observations if all stimuli in an initial set convey a consistent picture.
This high convergence of evidence will result in high confidence in the stability of the
current impression. In this case, sampling will likely stop early, and the resulting small
samples will result in clear-cut and confident impressions. Alternatively, a growing sam-
ple may as well be ambivalent and indeterminate at a small sample size. Impressions will
seem confusing and uncertain and will likely motivate further information search due
to too much variation and conflicting evidence in the initial sample. In the latter case,
sampling is likely to continue and, in many cases, the resulting large sample remains
equivocal and conflict-prone, leading to weaker impression judgments.

The strong evidence found in small samples is exactly the reason why they remained
that small. Conversely, that large samples often carry weaker evidence was the reason
why they were not stopped at an earlier stage. At first glance, the negative relation
of impression strength and sample size seems to reverse common intuition that large
samples are more reliable. As we examine the phenomenon more closely, we see how-
ever that all assumptions are perfectly compatible with sample-size related statistical
principles, such as the law of large numbers.

We already implied instances of clear-cut impressions as reasons for judging individ-
uals’ decision to truncate an unfolding information sample. Although we refrain from
propagating exclusive assumptions on invariant stopping mechanisms, the decision to
truncate sampling flexibly follows the clarity in information, the diagnostic (informa-
tive) value of the sampled content and the individual’s preparedness to provide an
impression. In principle, it makes sense for truncation decisions to follow one or both
of two dimensions: variance between targets and/or invariance within a focal target. If
a task calls for a choice between two or more options, we may stop sampling when the
differential evidence gathered for one and against alternative options is strong enough.
However, graded evaluations from samples of information on a single target person are
of greater relevance to the present research than the contrast between optional targets
(as in personnel selection). In the present estimation and impression context, we may
stop sampling when the information settles on a clear-cut and conflict-free impression
that remains stable when new stimuli are added.

Brunswikian and Thurstonian Sampling

Up to this point, we have mainly discussed stimulus sampling that takes place in the
environment, but we have disregarded the sampling of internal events that takes place
within the individual’s mind. Suppose that one person has truncated sampling at a point
where they were sufficiently confident to make a judgment. Then this very same sample
is presented to another individual, making them a yoked control pair. From an ecologi-
cal or statistical sampling perspective the information observed by both individuals is
equivalent. Both are exposed to identical target information, which ought to result in
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equivalent impression judgments. But are judgments informed by one’s own sampling
process really psychologically equivalent to judgments informed by samples passed on
from another person?

Adopting a pair of terms coined by Juslin and Olsson (1997), Prager et al. (2018)
proposed a distinction between Brunswikian and Thurstonian sampling, suggesting a
negative answer to the question of whether the information input is equivalent for yoked
controls and for persons who have themselves truncated a sample. For two independent
observers of the same sample, the Brunswikian sampling input of stimuli provided by
the environment is indeed identical. Brunswikian sampling is constrained by ecological
factors alone, such as the true properties of the constitutive entity and the rate and
strength of sampling error. Thurstonian sampling, in contrast, broadens the notion of
sampling to a process that is not confined to information provided by the environment.
It also includes internal sampling of the individual’s states of mind, decision weights, en-
coding foci, attention and interference in observing information. Thurstonian sampling
covers a variety of oscillating cognitive activities.

Diagnosticity and Expectedness

One particularly important variable that is sensitive to Thurstonian sampling is diag-
nosticity. In the context of impression formation, diagnosticity is crucial for the judge’s
metacognitive evaluation of the stimulus input and for the decision when to truncate.
Diagnosticity of sampled information can be conceived as the ease with which the indi-
vidual can locate the impression target on a relevant judgment scale, given the current
sample of information (Skowronski & Carlston, 1987).

Imagine for example an impression-formation process in the context of a job interview
or an episode of getting acquainted. Typically, all applicants report their professional
success, interest in the company and present themselves as socially competent. Ob-
serving such reports in a job interview hardly differentiates between applicants. It is
therefore hard to locate their abilities and fit to the company – related observations
have little diagnostic value. To change the impression of an applicant, one needs unique
observations that are diagnostic in that they discriminate between the focal applicant
and rival applicants. For example, we might learn in a job interview that a candidate
used to exhibit dishonest behavior in the course of previous employment as opposed
to observing that a candidate used to be moderately friendly towards their coworkers.
Presenting oneself as friendly does not really discriminate between applicants – almost
every applicant will talk about their strengths, no matter how competent they are.
In contrast, dishonest behavior is diagnostic of dishonest people. Both dishonest and
honest people might tell the truth most of the time, but only dishonest people tell lies
(Gidron et al., 1993; Reeder & Brewer, 1979; Skowronski & Carlston, 1987). Telling lies
is diagnostic as it discriminates between honest and dishonest people. In the context
of impression formation, this asymmetry is apparent in negative behavior being more
diagnostic than positive behavior.

Additional aspects of differential interpretation and weighting of stimulus content, like
expectedness, may contribute to this asymmetry between positive and negative valence.
Common behaviors (characterized by high consensus rates in attributional terms; Kel-
ley, 1967) are given less weight in impression formation than surprising and exceptional
behaviors. This asymmetry applies especially to negative and extreme behaviors versus
positive and moderate behaviors. Negative and extreme information is less expected in
everyday contexts compared to positive and moderate information (Fiske, 1980; Fiske
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et al., 2007). Different positive traits or behaviors are also more redundant (i.e. highly
similar to one another) than negative information items, which are more distinct and
unique (Koch et al., 2016; Unkelbach et al., 2008). The asymmetry in weighting pos-
itive and negative information is manifested in several interrelated findings: Negative
information is more diagnostic, less expected and more distant compared to positive
information.

In addition to diagnosticity and expectedness conceived as systematic properties of
the sampled stimuli, differential weighting and interpretation of stimulus content is also
dependent on individuals’ internal states of mind and their personal experience with
the task environment. We must therefore consider the joint impact of both Brunswikian
and Thurstonian sampling on diagnosticity. The reason why yoked controls and original
samplers may arrive at divergent impression judgments is that the same stimulus infor-
mation whose apparent diagnosticity led one person to truncate a sample may appear
less diagnostic to another, yoked control person.

Regression by Thurstonian Oscillation

Fluctuations in subjectively perceived diagnosticity may originate in a variety of quasi-
random oscillations of internal states of mind: variation of attentional focus, current
memory context through priming, individual autobiographic associations, prior ex-
pectancies, and so forth. Because of all these dynamic activities within the judge’s
mind, Thurstonian oscillations can have a profound influence on impression formation,
as demonstrated by Prager et al. (2018).

When sample size is determined externally and judges are not free to determine their
own information search, Thurstonian sampling is simply personal and situational noise
that renders the resulting impression judgments less systematic and less reliable, with-
out exerting a measurable influence on the judgment. When it comes to self-truncated
sampling, however, the impact of Thurstonian sampling increases radically. Comple-
menting the (Brunswikian) input of sampled traits, Thurstonian oscillations modulate
the subjective diagnosticity in the mind of the beholder and thereby exert a strong
impact on the truncation process. Agents truncate sampling when they feel ready to
make a judgment: This readiness to judge depends on both the Brunswikian stimulus
input and Thurstonian variation within the individual’s mind.

A suitable method to measure these dependencies on and differences in Thurstonian
oscillation is the yoked controls design (Prager et al., 2018). A first participant in a
yoked pair engages in an impression formation task based on sequential sampling. This
participant determines the sample size, truncating the sample at the very moment
when they feel ready to judge the target. A second, yoked participant is then presented
exactly the same sample. However, this second participant (yoked control) cannot be
expected to be ready for a judgment at the very same instance at which the sample was
truncated by the original participant. Perfectly synchronized cognitive activities within
both yoked judges are extremely unlikely. Small samples are typically truncated when
the original observer experiences synergy between the Brunswikian stimulus sample
and the Thurstonian states of mind. Therefore, the individual’s judgment based on
early truncated samples tends to exaggerate the mere Brunswikian (ecological) sample
contents. The amplification of Brunswikian input through alignment with Thurstonian
sampling, facilitated by the variation of small samples, is weakened for the yoked control,
who cannot be expected to be exactly in the same Thurstonian state of mind at the
moment of truncation. Therefore, judgments of the trend extracted from the sample
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should be diminished when small samples are passed on to yoked controls, compared to
judgments from self-truncating partners based on their own samples. Conversely, larger
samples grow so large precisely because the samples’ evidence remained ambivalent to
the original judge for so long due to a non-fit between Thurstonian and Brunswikian
aspects of sampling. Such a non-compelling sample is likely to appear less ambivalent
to the yoked judge. This diverging pattern of judgments in a yoked controls design can
be conceived as regression toward the mean. Yoked controls’ judgments can be expected
to be more regressive (i.e., less pronounced for small samples and less conflict-prone for
large samples) than the original samplers’ judgments.

To set Thurstonian sampling influences apart from Brunswikian aspects of the sam-
pling process, we use a straightforward averaging rule (Anderson, 1965), assessing the
Brunswikian stimulus input as the average pretested scale value of all sampled traits.
This benchmark measure can be conceived as actuarial judgment by an idealized judge
(Dawes et al., 1989), who takes the stimulus input as it is and who aggregates and
processes invariantly.

Prior Evidence

Preliminary evidence for the interplay of Brunswikian and Thurstonian sampling and
for the moderating influence of diagnosticity was already obtained in three experiments
reported by Prager et al. (2018). Participants were asked to judge target persons de-
scribed by samples of traits on likeability. The relation between sample size and judg-
ment strength (i.e. the magnitude of the likeability judgment pointing in the direction of
the dominant valence) switched from positive (i.e., stronger judgments with increasing
n) when sample size was pre-determined experimentally to clearly negative (i.e., stronger
with decreasing n) when participants themselves could truncate their samples. More-
over, judgment strength and sample size were also negatively related in yoked controls,
who saw exactly the same samples as their counterpart in the self-truncation condition,
reflecting a regular Brunswikian sampling effect. However, yoked controls’ judgments
showed regressive shrinkage, reflecting the asynchrony of Thurstonian sampling between
the self-truncating judge and the yoked control judge. Impressions informed by small
samples were not as strong and impressions informed by large samples were not as weak
in yoked controls, who were exposed to samples truncated by the yoked partner.

These sample size effects depended heavily on distinct indices of diagnosticity. Ear-
lier truncation of samples, resulting in more polarized impression judgments, was facil-
itated by negative rather than by positive stimulus traits and by extreme rather than
by moderate traits. Moderation by the "big two" was also demonstrated, meaning that
enhanced diagnosticity of morality-related negative traits and ability-related positive
traits (compared to morality-related positive and ability-related negative traits) led to
more pronounced impression judgments (Reeder & Brewer, 1979; Skowronski & Carl-
ston, 1987).

Present Investigation: Clarifying the Interplay of Brunswikian and
Thurstonian Sampling

Despite the encouraging evidence obtained in the Prager et al. (2018) research, the
conceptual distinction between Brunswikian and Thurstonian sampling and the nega-
tive relation between sample size and impression strength in self-truncated sampling
remain novel and insufficiently explored. Little is known about underlying mechanisms
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and about functional boundary conditions and limitations of the delineated phenom-
ena. Hence, more systematic research and theorizing are clearly needed. One might
wonder to what extent self-truncated sampling involves the strategic "exploitation of
good luck" (Edwards, 1965), that is, how judges exploit the variation in diagnosticity
and consistency that can be expected by chance in small random samples. Or, one
may speculate about the degree of asynchrony that can be expected in yoked partners,
following statistical sampling theory.

One intriguing question is whether the phenomena related to Thurstonian sampling
not only apply to variation between individual judges (in a yoked control design) but
also to variation within the same individual across time and occasions. Thus, when orig-
inal judges are later exposed to "their own" sample that they have themselves truncated
on an earlier occasion, they cannot be expected to be in the same critical state of mind
that had prepared them to truncate early and to form a very strong impression judg-
ment immediately after the truncation decision. However, in this case, when participants
become their own yoked controls, as it were, the regressive shrinkage of impression judg-
ments should be less pronounced than when other individuals serve as yoked controls. In
other words, when Thurstonian processes can only vary over time within participants,
their influence should be weaker than when allowed to vary between individuals and
over time.

Such theoretical issues demand for systematic elaboration and careful consolidation
through well-designed experimental research. The present investigation aims to illu-
minate the interplay of Brunswikian and Thurstonian sampling by drawing on the
impression-formation paradigm developed by Prager et al. (2018). A primary goal,
and premise for all further ideas, is to replicate and substantiate the robustness of
the sophisticated pattern of previous findings, using novel samples of participants and
stimulus materials. Second, prior to conducting new experiments, we make a delib-
erate attempt to elucidate the theoretical implications of our sampling approach in
comparative computer simulations of impression judgments based on externally deter-
mined and self-truncated trait sampling. Our simulation model also provides suitable
operational definitions of our theoretical key concepts, Brunswikian and Thurstonian
sampling. Third, we conducted two new experiments, providing convergent evidence for
self-truncation effects obtained with different stimulus materials. Going beyond previous
findings (Prager et al., 2018), we not only expose yoked control participants to samples
truncated by other participants. We also create an intrapersonal version of a yoked
control design, exposing participants to trait samples they themselves had truncated at
an earlier stage. In this way, we decompose Thurstonian sampling into different sources
of variation, namely, inter-individual variation between different participants and inter-
temporal variation within the same participants.

Summary of Predictions
The most basic prediction regarding Brunswikian sampling is that participants will be
sensitive (a) to the true parameters of the populations from which the stimulus samples
are drawn and (b) to the unique deviation of samples from their population parameters
(i.e., sampling error). Judgments are therefore expected to reflect both: (a) systematic
and (b) unique properties of respective samples.

Since clear-cut, converging, and extreme information is more likely to occur in small
rather than large samples, and since adding more information is likely to increase am-
bivalence, small samples are expected to give rise to stronger impressions than larger
samples. Such a negative relation between sample size and judgment strength should
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result from self-truncated sampling.
Our discussion of Thurstonian sampling implies that impressions triggered in yoked

controls by the very same truncated samples will exhibit regressive shrinkage due to
asynchrony in Thurstonian oscillation. The strength of regression depends, in turn, on
the degree of divergence or asynchrony that can be expected between original judges and
yoked controls. If the same person judges their own samples again in a later situation,
regression can be expected to be weaker than when another person provides a judgment
based on the same sample.

All influences discussed so far depend on the diagnosticity of the sampled contents.
Highly diagnostic samples (negative and extreme vs. positive and moderate traits) will
be truncated earlier and judged more strongly. In addition to valence and extremity, an-
other property related to expectedness is scarcity or infrequency of occurrence. Common
traits with a high occurrence rate should have less impact on impressions and truncation
decisions, compared to rare traits; samples of frequent traits will be truncated later and
the resulting judgments will be weaker.

Diagnosticity effects will be not only visible in pronounced impression judgments but
will also carry over to higher-order phenomena: The negative relation between sample
size and judgment strength depends on the presence of truly compelling information; the
more diagnostic the sampled contents, the stronger is the negative correlation. Similarly,
the yoked controls’ judgments should exhibit more regressive shrinkage when highly
diagnostic stimulus contents amplify the self-truncation effect and render the original
sampler’s judgment extreme.

Simulation Study

To illustrate and elucidate the emergence of a negative relation between sample size and
judgment strength through self-truncation and the regressive shrinkage of this relation
from self-truncation to yoked controls, we report a simulation study. The purpose of this
simulation is to demonstrate the emergence of the postulated self-truncation patterns in
an idealized and simplified context. Our simulation is not meant to identify a distinct
cognitive mechanism applied by participants of the subsequent impression formation
experiments. Yet, it certainly clarifies the statistical constraints imposed on the forma-
tion of impressions from self-truncated sampling in an exemplary fashion. In fact, there
are plenty of ways to track or model self-truncated sampling. For the purpose of this
simulation study, we decided on a formalization of the impression formation process by
means of Bayesian inference (Edwards, 1965) from dichotomous information samples.

Although our experiments acknowledge that each piece of information might be lo-
cated in a specific position over the full range of likeability between "extremely unlike-
able" and "extremely likeable", we simplify sampled stimuli as (stochastically indepen-
dent) dichotomous information to render the simulation more traceable and convenient.
Every simulated piece of information can either be "likeable" or "not likeable". We sim-
ulate impression formation as an inference of the probability of observing the attribute
"likeable", which can be accomplished within the framework of Bayesian updating of
beta-distributed priors.

As long as nothing is known about the target person before sampling, the principle
of insufficient reason (Savage, 1954) implies that each level of p(”likeable”) must be
assumed to be equally likely (see flat curve of the left-most graph in Figure 1)1.The

1In our experimental design participants should not deviate considerably from uniform prior beliefs, since
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...

Figure 1. Illustration of the highest density interval constituting a stopping rule for the simulation of im-
pression judgments. The algorithm is provided with a series of "likeable" and "not likeable" stimuli. The solid
curve of each graph represents the posterior probability density function (i.e. an instantiation of the beta dis-
tribution) for increasing sample size from n = 0 to n = 7 (left to right). The vertical dashed line represents the
(posterior) mean of likeability reflected in the current sample. The 90% posterior highest probability density
interval (grey area) is compared against the threshold value t (width of the line segment above the distribution
curves; here t = .4), which is reached at n = 7 in this example (far right plot). All prior and posterior values
(which express a p(”likeable”) value) are transposed to a [-1, 1] interval, namely into impression judgment J .

mean of this prior belief about the target likeability is 0, indicating a neutral or inde-
cisive impression. This likeability belief is then updated after each piece of information
encountered in a sequential sample of traits (i.e. "likeable" vs. "not likeable"). For in-
stance, if the first trait is positive, the posterior probability p("likeable"|Trait 1) is now
more likely high than low, as evident from the negative skew of the density function in
the second chart of Figure 1. Further steps of updating from an exemplar sample follow
in Figure 1. To determine a distinct judgment from the posterior density distribution
of p("likeable"|Sampled Traits), we rely on the posterior mean (represented by dashed
vertical lines in Figure 1).

But how will the simulated judge decide when to stop sampling? The monadic struc-
ture of the impression formation task calls for a different answer than the dyadic choice
between two options (samples) assumed in most prior work on optional stopping in de-
cision making (Kahan et al., 1967; Payne et al., 1988; Simon, 1955) and statistics (Wald,
1947). Stopping rules for choice must be sensitive to the variance between competing
options: samples are typically truncated as soon as the sampled evidence clearly favors
one option over others. An impression judgment task, in contrast, calls for a different
stopping rule. A natural moment to stop sampling is when the growing evidence on
the target stabilizes and settles on a coherent impression. A Bayesian updating frame-
work offers such a stopping criterion in terms of the subjective certainty of a growing
impression, which can be well expressed by the shape of an updated density curve.

Returning to Figure 1, we can see that the interval shaded in dark grey, which marks
the interval of the 90% highest density (i.e. the narrowest 90% interval possible) becomes
narrower with increasing sample size n, from the left to the right chart. Sampling is
truncated when this highest-density interval shrinks to less than a critical width limit
t (indicated by the horizontal lines above the density curves) that is, when posterior
p(”likeable”) converges on a reasonably compact high-density range.

Updating the beta distribution provides a simple and straightforward method to
formally simulate the stopping rule and the resulting posterior mean of the depicted
algorithm. The beta distribution requires two shape parameters and β to specify the
probability density function of p(”likeable”). Assuming full ignorance at the beginning,
both shape parameters are initially set to α0 = β0 = 1, resulting in a uniform prior

populations with different expected values of valence (i.e. extremely negative – moderately negative – moder-
ately positive – extremely positive; see methods section for details) from which samples are drawn are randomly
exchanged after each consecutive trial.
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Figure 2. Simulation results of impressions generated by the Bayesian sequential estimation procedure ap-
plying a probability-density-dependent truncation rule. The graph plots impression strength J against sample
size n. Samples are generated by independent sequential random draws of "likeable" vs. "not likeable" with
the probability of the attribute "likeable" of p = .75. The algorithm starts from uniform priors Beta(1, 1).
N = 200, 000 sampling trials were simulated. Sampling was truncated whenever the range of the 90% posterior
highest density interval was smaller than the threshold value t = .4, which served as a moderate solution in
the trade-off between stopping all samples extremely early and stopping only at very large sample size. Dot
sizes are proportional to the frequency of occurrence. The overall correlation between sample size ln(n) and
impression strength J is r = −.80.

distribution, expressing that every possible likeability value is expected equally probable
prior to seeing any evidence. After each sampled stimulus trait (i.e., evidence supporting
either "likeable" or "not likeable"), the two shape parameters are updated: α = α0+k and
β = β0 + n − k, where n is the current sample size and k the number of "likeable" traits.
To extract a likeability judgment from the updated beta distribution, we transform
the judgment scale (i.e., the horizontal axis in the charts of Figure 1) to a range from
-1 ("extremely unlikeable") to +1 ("extremely likeable")2. The resulting judgment J
amounts to J = 2M − 1 if true p(”likeable”) ≥ 1

2 or J = −2M + 1 if p(”likeable”) < 1
2

, with the posterior mean calculated as M = α
α+β .

Applying the discussed procedure, a first series of simulations produced a pronounced
negative relation between sample size and impression strength (this relation is positive
for externally determined sample size in the Bayesian framework for the given param-
eters). When samples were drawn from a predominantly negative population opposed
to a predominantly positive population, impressions were more negative for smaller n
and more moderate for larger n, so we can still see a negative relation of sample size
and impression strength (i.e. deviation from neutrality in the positive or negative di-
rection). The relation disappears when the target is perfectly neutral (i.e. p = 1

2), since
all impressions are then symmetrically distributed around the center. Yet, even in this
case, small samples yield more extreme judgments – they just cancel each other out be-
cause they symmetrically deviate in both directions from the center. Figure 2 displays
simulation results from an exemplary set of parameters.

To introduce Thurstonian sampling to the simulation procedure, we assume that both
the updating of the posterior likeability distribution and the threshold parameter setting
are affected by oscillations within the judging individual’s mind. Because Thurstonian
oscillations reflect a variety of different cognitive influences and activities, we resort to

2Additionally, values are reversed when the actual (population) p(”likeable”) value is smaller than .5, that is
a predominantly (truly) unlikeable target.
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Figure 3. Simulation results for self-truncated samples (left) and corresponding yoked control samples (right):
likeability judgment strength J dependent on sample size n. Basic input parameters are identical to those of
Figure 2. At each updating step (n), normally distributed Thurstonian noise was applied to the beta distribution
shape parameters α and β (oscillation SD = .2). For yoked controls, noise was removed and independently
re-added the same way. Sampling was truncated whenever the self-truncating judge’s posterior highest density
interval (including noise) was narrower than t = .4. Impression strength J was calculated according to the
respective mean of the posterior distribution. The clear-cut negative correlation (r = −.59) of impressions
strength and self-truncated (log) sample size ln(n) regresses to r = −.38 for yoked controls.

a simplifying model by adding normally distributed noise with an expected value of 0
and a certain standard deviation (here SD = .2)3 in every updating step to the shape
parameters ( and β) of the beta distribution. More precisely, for each updating step (or
sample size n), a new noise component was generated and applied to the beta shape
parameters (added to and subtracted from β), resulting in fluctuation in how the new
piece of informational input is currently perceived (in terms of likeability).

To simulate the regression effect that distinguishes yoked controls from original sam-
plers, we removed the Thurstonian fluctuation from the original sampler’s shape pa-
rameters and β and added a new random-fluctuation component supposed to represent
a yoked control’s independent Thurstonian state of mind. The results corroborate the
prediction that the correlation between sample size n and judgment strength J shrinks
noticeably between self-truncation (left in Figure 3) and yoked controls (right in Figure
3).

Although a variety of parameter settings converged in producing a clearly negative
relation between sample size and impression strength, certain distinct cases set bound-
aries to the generality of the phenomenon. The effect vanishes when thresholds are set to
extreme values (e.g., when all samples are either truncated very early or at extremely
large sample sizes where the effect fades out). In contrast, strongly informed priors
approximating the sample’s true p(”likeable”) only shift the truncation point towards
earlier truncation, but do not actually affect the described sample size effects: Reducing
surprise by introducing accurately informed priors triggers early truncation, but does
not change the relationship between sample size and likeability judgments. However,
strong priors deviating markedly from the true p(”likeable”) will obscure patterns and
may, sometimes, even reverse the effect. In this case, incorrect priors may cause a shift
in the location of the posterior distribution in a direction not supported by the sample.
For convenience we have omitted adding Thurstonian noise to the truncation threshold

3The oscillation SD of .2 also takes a medium position between no noticeable influence of Thurstonian elements
on the sampling procedure and an entirely noisy and obscured pattern of results.
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t, too. When the threshold value is also subject to random fluctuation, the sample size
pattern is flattened (i.e. the correlation between sample size and strength of judgments
shrinks) and samples tend to be truncated earlier, since this kind of noise causes a ten-
dency towards smaller samples due to instances of randomness-driven early truncation.
The regressive shrinkage between self-truncated and yoked control trials however is not
affected by this additional source of Thurstonian noise. Details of these extensions and
limiting conditions are provided in the supplemental materials.

To conclude, our simulations demonstrate and clarify how it is possible that impres-
sions from self-truncated samples tend to overestimate existing population trends when
sample size is small and tend to slightly underestimate existing trends when samples
are large. These sample-size dependent biases are less pronounced in simulated yoked
control judgments, where sample size does not relate as strongly to judgment strength
as for the simulated self-truncated sampling. This phenomenon does not contradict
common expectations that estimations become increasingly stable and certain when
sample size increases, but is perfectly in line with it. Smaller samples are more likely
than larger samples to produce the kind of strong deviations from population param-
eters that enable truncation at moments that allow samples to exaggerate underlying
trends. These results support the predictions derived from our theoretical framework,
they additionally refine the expected empirical patterns and effects.

Experimental Evidence

One purpose of Experiment 1 was to disentangle a confound of the Prager et al. (2018)
yoked controls design: The yoked controls’ regressive judgments might have reflected
a notable procedural difference rather than only Thurstonian sampling differences.
Whereas self-truncating participants were actively involved in sample solicitation, let-
ting the sequential sample unfold and truncate in a self-determined way, their yoked
controls passively observed an externally provided sample. Experiment 1 introduces a
crucial refinement in the yoking procedure: some participants see their own samples
again (the "self"-condition), whereas others observe samples truncated earlier by an-
other (i.e. partner) participant (the "other"-condition). This allows for observing "self"
and "other" yoked partners at two levels of dissociated Thurstonian processes. Presenta-
tion mode or involvement in the sampling procedure is however identical for "self" and
"other" yoked participants. Both participants working on "self" and "other" yoked con-
trols trials have previously worked on self-truncated sampling. This parallel procedure
rules out possible confounds of the former research design, varying only the source of
sample truncation for the yoked control sampling. Procedural differences between active
sampling and truncation versus passive sample observation cannot account for differ-
ential impression judgments because both types of yoked partners ("self" and "other")
observe the stimuli in the same passive and externally determined way. Still, the the-
oretical distinction between inter-temporal and inter-individual sources of Thurstonian
variation predict a stronger sample-size dependence for judgments of "self"- compared to
"other"-yoked controls. Between the self-truncated judgments and the "self"-yoked con-
trols only time changes, whereas for the comparison between self-truncated judgments
of the "self" condition and "other" yoked controls, both time and individual change.

80



IMPRESSIONS FROM SELF-TRUNCATED TRAIT SAMPLES

Experiment 1

Methods

General Task and Stimulus Materials. Participants were presented with sequential
samples of trait adjectives. They were informed that the traits had been reported by
members of a seminar characterizing their fellow students. Based on each sample of
traits related to a single target person, participants rated the likeability of the target.

Trait samples were drawn from a pool of fifty-seven trait adjectives used by Prager
et al. (2018), originally taken from the Berlin Affective Word List – Reloaded (Võ et
al., 2009). From the entire pool, four potentially overlapping population sets containing
30 traits each were drawn4. Two sets of predominantly negative traits (proportion of
positive traits of .20 and .33) were mirrored by two sets of mainly positive traits (pro-
portion positive of .80 and .67). Within each of these two trait sets of opposite valence,
one set represented moderate valence and one extreme valence. Mean valence scale val-
ues were held approximately symmetrical, variance and skewness approximately equal
across both factors, positive versus negative and moderate versus extreme valence (see
Appendix).

Participants worked on nine trait samples from each of the four stimulus sets in both
blocks of the experiment, summing up to 36 samples per block shuffled in random order,
thus yielding an orthogonal within-participant manipulation of positive versus negative
and moderate versus extreme targets. During sampling, trait words were displayed se-
quentially in black letters (font size 20pt) on white background, filling the screen (from
top left to bottom right) up to 16 word slots of an invisible 8 x 2 grid. All traits of a
sample remained onscreen, but only the most recent trait appeared in full black while
all previously presented traits were reduced to grey after the onset of the next trait.

Procedure. The experiment was the first in a series of three studies included in a
one-hour lab session at Heidelberg University. It consisted of two blocks separated by an
unrelated experiment on causal impact ratings. The entire experiment was controlled
by a Java-program.

Participants were assigned to one of two experimental conditions, "self" or "other".
The first participant assigned to a computer workplace in the lab was assigned to the
"self"- condition. The second participant assigned to the same computer then served
as the yoked control participant. The following participant was assigned to the "self"-
condition again and so forth. All participants, regardless of their experimental condition,
completed two blocks. In the first block, they received samples of traits. At each sam-
pling step, they themselves could actively control whether to consider another trait
(by pressing the space bar) or to truncate sampling at the current state (by pressing
the enter-key). Very brief summaries of instructions remained visible throughout sam-
pling in small font on bottom of the screen. During this first block, both "self" and
"other"-participants could gather samples of up to 16 traits drawn randomly from the
same ordered set of 16 stimuli. Participants of both conditions were instructed to gather
traits until they felt ready to make a judgment. Since all samples were self-truncated,
sample size differed depending on individual truncation decisions between "self" and
"other"-participants, despite the yoked sample content. Participants worked on a total
of 36 samples during the first block.

After truncation of a sample by pressing the enter-key, a continuous rating scale (18
cm long) appeared below the listed traits, ranging from "highly unlikeable" to "highly
likeable". Immediately afterwards, a rating of confidence in the preceding likeability

4These population sets were not identical to those used by Prager et al. (2018).
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Figure 4. Schematic illustration of the design used for Experiment 1.

judgment was requested, using a similar graphical scale underneath the likeability scale,
along with the labels "very unsure", "neutral", and "very sure" (from left to right).
Ratings were submitted by simply clicking on the scales. Judgments were visualized
by a tick (small vertical bar) on the scale; its position could be corrected. After both
judgments were registered and participants confirmed their entries by clicking a button
– the screen cleared and the next trait sample started.

Ten to 15 minutes later (after an experiment involving causal-impact ratings), par-
ticipants of both conditions worked on a second block of trait sampling and impression
judgments. This time, they were not free to decide for themselves whether to extend
the sample or truncate; rather they passively observed the trait samples that had been
recorded during the first stage of the "self"-condition. The visual presentation mode of
the sample remained identical to the previous block. Samples grew at a fixed pace of one
second per trait, but stopped automatically. When the pre-determined end of a sample
was reached, participants provided their judgments in the same way as during the first
block. Both conditions received the 36 trait samples that the "self"-condition had trun-
cated during the first block in a new random order. The study design is illustrated by
Figure 4.

Participants. Ninety-six participants (71 female) were recruited from the online
pool "Studienportal" at Heidelberg University. Eighty-nine participants were students;
their age ranged from 17 to 63 years (Mean = 24.99 years). Four participants were
excluded; two had always chosen the same sample size and two had heavily extended
median response times (more than four standard deviations above the average individual
median). Their yoked counterparts also had to be excluded. The remaining N = 88
participants were included in the analysis, of which N = 42 pairs could be formed; four
participants of the "self" condition did not have a yoked control partner because they
were not succeeded by another participant.

Results

Systematic Nature of Impression Judgments and Sensitivity to Sampling
Input. Before we turn to the central hypothesis tests, it is necessary to assess the effec-
tiveness of the manipulation and the sensitivity of participants’ likeability judgments to
the sampling input, according to the Võ et al. (2009) valence norms. We used the av-
erage valence norms of stimulus traits (Anderson, 1965) as a benchmark for comparing
judgments to the Brunswikian sample input.
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Table 1. Regression of Likeability Judgments on Population Set Average
and Sampling Error

Predictor Mβ (SD) Consensus t df p-value

Block 1: self

Population average .61 (.15) 100% 27.38 44 < .001
Sampling error .38 (.15) 98% 17.65 44 < .001

Block 1: other

Population average .65 (.16) 100% 25.83 42 < .001
Sampling error .39 (.13) 100% 19.17 42 < .001
Block 2: self

Population average .62 (.20) 98% 21.02 44 < .001
Sampling error .37 (.14) 100% 17.93 44 < .001

Block 2: other

Population average .63 (.18) 100% 23.27 42 < .001
Sampling error .25 (.13) 100% 12.63 42 < .001

Note. Consensus refers to percentage of participants whose β matches the
sign of the general trend. As both predictors are orthogonal, regression
weights β (approximately) equal zero-order correlations r.

As each trait sample was drawn from one of four population sets, each individual
judgment was subject to the systematic influence of average valence of that population
set. In addition to this experimentally controlled systematic property, however, each
judgment also depended on sampling error, that is, the Brunswikian sample’s deviation
from the population mean.

Two predictors, the systematically manipulated population set average and the un-
systematic sampling error, both calculated from trait valence norms were included in
a hierarchical multiple regression, using participants’ likeability judgments as criterion.
The resulting regression weights in Table 1 indicate that both predictors accounted for a
substantial portion of systematic judgment variance, testifying to the high data quality
and the judges’ generally high degree of sensitivity to the experienced trait input. Mean
individual proportions of explained variance are R2 = .60 (block 1, "self"), R2 = .64
(block 1, "other"), R2 = .62 (block 2, "self"), and R2 = .52 (block 2, "other").

Relation of Sample Size and Judgment Strength. For a test of the central
hypothesis, we calculated the hierarchical regression of judgment strength J on sample
size n. Judgment strength J is equal to the likeability judgment for positive population
sets; for negative sets, the sign is reversed such that positive (negative) J scores always
indicate the strength of judgments pointing in the correct (incorrect) direction. For
all analyses of the relation between n and J , sample size n is rescaled by the natural
logarithm to ln(n), which is better suited for testing the expected results pattern. All
results and statistical conclusions remain unaffected by this logarithmic transformation.
Table 2 summarizes the corresponding statistics; Figure 5 illustrates the same data
graphically.

Data from all blocks converge in demonstrating a stable and highly consensual neg-
ative relation between ln(n) and J . This replicates the results of Prager et al. (2018):
Impression judgments reflected the prevailing valence more strongly when sample size
was small rather than large.

Regressive shrinkage is also apparent from these results: Individual correlation co-
efficients of the relation between ln(n) and J showed a tentative shrinkage from
rln(n),J = −.30 to -.27, (SD = .11, t(44) = 2.08, p = .044, 64% consensus) from the
first to the second block within the "self" condition. This reflects regressive shrinkage of
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Table 2. Mean Correlations (and Standard Deviations) Between Individual Partici-
pants’ Judgment Strength J and the Natural Logarithm of Sample Size ln(n) Across
Trait Samples

Experimental condition & block Mβ (SD) Consensus t df p-value

Block 1: self -.30 (.22) 89% -9.24 44 < .001
Block 1: other -.28 (.21) 93% -8.75 41 < .001
Block 2: self -.27 (.24) 84% -7.37 44 < .001
Block 2: other -.17 (.20) 81% -5.50 42 < .001

Note. Blocks 1 and 2 of the other condition differ in degrees of freedom because one
participant of Block 1 had to be excluded due to invariant sample size.
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Figure 5. Judgment strength J plotted against size of self-truncated samples n of the "self" condition and
yoked control samples for the "self" and "other" condition. Dots represent individually averaged judgment
strength values per sample size, lines cross averaged individual means per sample size.
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Figure 6. Differences in judgment strength ∆J between the first and second block of the "self"-condition (left
hand side) and between conditions “self” and “other”-yoked controls (i.e. between conditions of the second
block; right hand side). Dots represent individual mean values per sample size, solid lines the averaged individual
means per sample size.

judgments based on the judges’ own formerly truncated trait samples. The negative cor-
relation decreased more strongly from rln(n),J = −.27 to -.17 (SD = .25, t(41) = 2.51,
p = .016, 64% consensus) when comparing "self" and "other" yoked controls’ judgments
during the second block.

In the twofold yoked design, participants’ judgments can be organized in triplets.
We could analyze two quantities of regressive shrinkage by forming two types of differ-
ence scores: between judgments of self-truncated samples and yoked controls samples
within the "self"-condition, and between judgments of "self" and "other"-yoked controls.
Figure 6 reflects the expected regressive patterns: When, in the second block, judges
were exposed to exact copies of self-truncated samples from the "self"-condition’s first
block, the originally stronger judgments from small samples shrunk to somewhat weaker
judgments, whereas the originally weaker judgments from larger samples tended to in-
crease somewhat. The same regressive pattern is evident in slightly positive correlations
between (log) sample size ln(n) and the change in judgment strength ∆J . Both, the
correlation for the judgment changes in the "self" condition (mean rln(n),∆J = .06,
SD = .17, t(44) = 2.32, p = .025, 64% consensus) and the correlation for the dif-
ference between "self" and "other" yoked controls (mean rln(n),∆J = .09, SD = .26,
t(41) = 2.17, p = .036, 62% consensus) tended to be positive – a reduction of originally
negative correlations.

Diagnosticity. Our theoretical conception emphasizes diagnosticity as a chief deter-
minant of Thurstonian sampling effects. For a test of the influence of trait diagnosticity
on truncation and resulting impression judgments, we conducted two hierarchical re-
gression analyses, using self-truncated n and judgment strength J as criteria, and three
measures of diagnosticity as predictors: population set valence (expected diagnosticity
difference: negative > positive), population set extremity (extreme > moderate), and
trait word frequency (rare > common) according to norms (frequency count per one
Million words of written language; Võ et al, 2009).

The regression of n revealed that participants truncated their samples earlier for both
negative and extreme population sets compared to positive and moderate sets (Table 3
and 4). From the zero-order correlations it is evident that (low) average word frequency
is also a predictor of early truncation but this relation is mostly absorbed by population
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Table 3. Regression of Self-Truncated Sample Size ln(n) on Indicators of Diagnosticity: Population Set Valence,
Extremity, and Expectedness Indicator Sample Mean Word Frequency

Predictor M r (SD) Consensus M β (SD) Consensus t df p-value

Block 1: self

Population set extremity -.11 (.19) 80% -.11 (.20) 76% -3.74 44 <.001
Population set valence .25 (.19) 91% .23 (.23) 84% 6.72 44 <.001
Sample mean word frequency .18 (.18) 84% .04 (.20) 58% 1.32 44 .194

Block 1: other

Population set extremity -.06 (.17) 62% -.07 (.18) 67% -2.42 41 .020
Population set valence .18 (.23) 79% .15 (.28) 64% 3.48 41 .001
Sample mean word frequency .14 (.20) 81% .05 (.25) 62% 1.37 41 .178

Note. Second block data were perfectly redundant with Block 1 self results.

Table 4. Diagnosticity/Expectedness Predictor Inter-Correlations

Predictor M r (SD) Consensus

Population set extremity and valence 0 (0) –
Population set extremity and sample mean word frequency -.03 (.12) 60%
Population set valence and sample mean word frequency .62 (.08) 100%

Note. Analyses performed on data from the self-condition’s first block. Predictor intercor-
relations for the other conditions are virtually identical.

set valence, which constitutes a highly correlated but stronger predictor.
The other regression analyses showed that judgment strength J increased in both

blocks of both conditions when underlying population sets were extreme and negative
rather than moderate and positive. Average sample word frequency also predicted J ;
samples containing infrequent traits solicited stronger judgments (in the correct direc-
tion) than samples of frequent traits. However, as in the previous analysis, the predictive
value of the word-frequency predictor vanished when population set parameters were
included in the multiple regression.

We hypothesized not only an impact of diagnosticity on sample size n and judgment
strength J but also on the relation between these two variables rln(n),J . The pertinent
results appear in Table 5 and Figure 7. Whereas (negative) valence is highly predictive
of individual judges’ (negative) rln(n),J , across conditions and blocks, the extremity
index contributes little to explaining the impact of diagnosticity on the accentuation of
judgments informed by small samples.

Judgment Confidence. Correlations rln(n),c between sample size ln(n) and subjec-
tive confidence c corroborate the impact of diagnosticity. Consistently negative correla-
tions indicate that smaller trait samples informed more confident impression judgments
than larger samples.

The relation between ln(n) and c was subject to the same regressive shrinkage from
self-truncated samples to yoked controls as the relation between ln(n) and J . Between
the two blocks of the "self" condition (self-truncated, then yoked controls), the rln(n),c
correlations did not shrink noticeably (mean ∆rln(n),c = .03, SD = .24, t(44) = .72, p =
.475, 51% consensus). Comparing yoked control participants in the "self" versus "other"
condition, however, revealed substantial shrinkage (mean ∆rln(n),c = .15, SD = .37,
t(41) = 2.74, p = .009, 67% consensus).

Judgment confidence was also subject to the same impact of diagnosticity as judg-
ment strength. As is evident from Table 8, mean c was higher for samples drawn from
extreme and negative population sets consisting of infrequent traits than for samples
from moderate and positive population sets consisting of frequent traits. Again, the
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Table 5. Regression of Judgment Strength J on Indicators of Diagnosticity: Population Set Valence, Extremity,
and Expectedness Indicator Sample Mean Word Frequency

Predictor M r (SD) Consensus M β (SD) Consensus t df p-value

Block 1: self

Population set extremity .16 (.14) 87% .17 (.15) 87% 7.71 44 < .001
Population set valence -.37 (.36) 82% -.41 (.41) 82% -6.70 44 < .001
Sample mean word frequency -.19 (.24) 78% .08 (.21) 71% 2.50 44 .016

Block 1: other

Population set extremity .20 (.14) 93% .20 (.14) 93% 9.65 42 < .001
Population set valence -.35 (.34) 86% -.38 (.36) 88% -6.87 42 < .001
Sample mean word frequency -.20 (.26) 84% .05 (.19) 58% 1.69 42 .098

Block 2: self

Population set extremity .17 (.13) 93% .17 (.13) 89% 8.58 44 < .001
Population set valence -.43 (.37) 87% -.45 (.40) 82% -7.59 44 < .001
Sample mean word frequency -.24 (.27) 84% .04 (.22) 58% 1.33 44 .190

Block 2: other

Population set extremity .20 (.15) 88% .20 (.15) 88% 8.88 42 < .001
Population set valence -.32 (.32) 81% -.35 (.38) 84% -6.10 42 < .001
Sample mean word frequency -.17 (..22) 81% .06 (.20) 65% 1.87 42 .069

Table 6. Regression of rln(n),J on Population Set Valence and Extremity

Predictor β (SE) Consensus t df p-value

Block 1: self

Population set extremity -.08 57% -1.05 170 .294
Population set valence .30 68% 4.13 170 < .001

Block 1: other

Population set extremity -.11 62% -1.54 164 .132
Population set valence .34 69% 4.59 164 < .001

Block 2: self

Population set extremity -.02 50% -.25 170 .803
Population set valence .23 61% 3.13 170 .002

Block 2: other

Population set extremity -.00 48% -.01 164 .99
Population set valence .37 79% 5.11 164 < .001

Figure 7. Mean sample size n, mean judgment strength J and mean correlation rln(n),J between n and J

(left to right) as a function of extremity (moderate vs. extreme) and valence (negative vs. positive). Error bars
indicate standard errors of individual means. The bar chart for rln(n),J is broken down by sampling conditions
“self”, “other”, “self-yoked”, and “other yoked” (left to right and dark to light grey shading).
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Table 7. Mean Correlations rln(n),c Between the Natural Logarithm of Sample Size ln(n)
and Self-Reported Confidence in Impression Judgments c

Experimental condition & block M rln(n),c (SD) Consensus t df p-value

Block 1: self -.25 (.31) 76% -5.50 44 < .001
Block 1: other -.29 (.28) 83% -6.83 41 < .001
Block 2: self -.23 (.24) 78% -6.33 44 < .001
Block 2: other -.06 (.25) 64% -1.56 41 .127

Table 8. Regression of Confidence in the Judgment c on Indicators of Diagnosticity: Population Set Valence,
Extremity, and Expectedness Indicator Sample Mean Word Frequency

Predictor M r (SD) Consensus M β (SD) Consensus t df p-value

Block 1: self

Population set extremity .15 (.17) 78% .15 (.17) 80% 5.96 44 < .001
Population set valence -.16 (.22) 76% -.18 (.26) 69% -4.57 44 < .001
Sample mean word frequency -.10 (.18) 73% .02 (.21) 53% .59 44 .559

Note. Only results from the first block of “self” condition are listed. Results from all other blocks are highly
convergent.

predictive value of the word frequency measure was absorbed by the other diagnosticity
indices in the multiple regression (see discrepancy between zero-order correlations and
regression coefficients).

Correlations between sample size and confidence were not (noticeably) influenced
by diagnosticity (Table 9). Yet, the overall pattern converged with that of judgement
strength.

Discussion

The entire pattern of findings testifies to the sensitivity of impression judgments to
systematic and unsystematic variation in the sampled information. Judgments were not
only highly sensitive to the valence of the population set from which the trait samples
were drawn, but also to the sampling error or deviations of the sampled traits from the
population mean. The same regular influence of diagnosticity on impression judgments
was manifested in judgment strength J , the subjective confidence c of impression judg-
ments, and the sample size n at which participants ended sampling because they deemed
it sufficient. High trait diagnosticity not only led to early truncation at small n and to
sensitive judgments J at high levels of confidence c but – consistent with the sign of
these separate influences – also to distinct negative relations rln(n),J and rln(n),c between
n and judgment strength and confidence, along with positive relations between J and
c. The entire pattern determined by the sampling and diagnosticity of stimulus traits
was observed at a high rate of consensus across most individual participants, providing
convergent validation for the findings obtained previously (Prager et al., 2018).

However, crucially, these highly sensitive impression judgments were not exclusively
determined by the meaning and diagnosticity of the traits inherent in Brunswikian
stimulus samples. They also depended regularly on Thurstonian sampling processes

Table 9. Regression of rln(n),c on Population Set Valence and Extremity

Predictor M β (SD) Consensus t df p-value

Population set extremity .02 45% .25 170 .804
Population set valence .09 64% 1.12 170 .264
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within the judges’ mind. This less obvious, Thurstonian, influence is evident from the
regressive shrinkage in the yoked control participants’ judgments J and their negative
correlations rln(n),J , relative to self-truncating participants, whose impression judgments
were based on exactly the same trait samples. The only reasonable explanation for
regressive shrinkage is that yoked controls were not as ready or well-prepared to make a
judgment at the time of truncation as the self-truncating judges, whose internal sampling
oscillations were obviously aligned with the instance of sample truncation.

Further support and more refined evidence for the interplay of Brunswikian and
Thurstonian sampling comes from the newly introduced manipulation of "self"-yoked
versus "other"-yoked controls. Re-presenting participants with their own samples trun-
cated in a previous block also resulted in regressive judgments and less pronounced
negative relations rln(n),J between n and J . However, the regression effect after self-
yoking was smaller than the regression observed in the other-yoking condition, when
participants were exposed to the samples truncated in an earlier block by another per-
son. In other words, the amount of variance explained by Thurstonian sampling was
smaller within participants over time than between participants, when temporal and
interpersonal variance came together.

The present experiment and the Prager et al. (2018) research both used the same gen-
eral set of trait adjectives and the same norms. Population sets (i.e. the populations from
which samples were drawn) were not identical between experiments, but they overlapped
considerably. Furthermore, Experiment 1 was conducted in two distinct blocks with a
clearly different task setting (self-truncated vs. yoked controls tasks). Yoked controls’
judgments may have been generally less extreme (for small samples especially) com-
pared to judgments using self-truncated samples. Thus, the distribution of judgments
on an underlying reference scale might have differed between Block 1 (self-truncation)
and the yoked controls of Block 2 (Thurstone, 1927), due to a generally broader range
of judgments in the self-truncated sampling phase. Yoked control participants may have
therefore expanded their scale usage, because they generally experienced extreme im-
pressions less frequently compared to the first block of self-truncated sampling (Parducci
& Perrett, 1971; Stewart et al., 2006).

Experiment 2

To fix these issues and to further substantiate our theoretical approach, we modified
the setup for Experiment 2 in two respects: First, we generated entirely new, natural
and non-redundant traits in a pilot-study. Replacing traits entirely helps to control for
material artifacts and enhances the value of replicated findings. Second, we switched to
a full within-participants-within-blocks design, in an attempt to deal with the issue of
differential scale usage. By intermixing self-truncated and yoked samples in the same
series, the reference scale experience of judgments based on both types of (self-truncated
and yoked) samples is held constant.

Methods

Materials and pre-study procedures. In order to generate a new trait population,
and also to fit the cover story more realistically, we asked 18 students from a seminar
to write down trait words using paper and pencil. They were instructed to think of
traits of someone they like and someone they dislike. Liking and disliking traits were
written down in separate, successive blocks, administered in random order. Blocks of
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12 lines were provided for traits of liked and disliked persons. This resulted in 297
trait adjectives, from which we excluded negations by prefix (German “un-“). We then
randomly selected a total of 120 trait words as basic stimulus material for Experiment
2.

In the next step, we conducted an online pre-study optimized for running on mobile
device browsers in order to achieve context-independent valence norms comparable to
those used in the previous experiment (BAWL-R norms by Võ et al., 2009). Participants
were asked to rate the valence of the trait generally, detached from a specific situation.
Traits were presented one after another in bold face in the top center of the screen
along with a 4.5 cm rating scale ranging from “very negative” to “very positive” below
(without default). The study took on average less than 10 minutes to complete. Forty-
four participants completed the pre-study; 28 were female; their age ranged from 18
to 75 (mean = 34.77). Forty-one participants identified as native German speakers;
the remaining three rated their language skills in German as “fluent”. One participant
was excluded because of too large inconsistency of their ratings with judgments of other
participants: The correlation of this participant’s ratings with all other ratings was more
than three standard deviations below the mean of this measure of all other participants.
After this exclusion (pairwise) interrater correlations were on average r = .79 (.77
without exclusion).

In the next step, we added frequency-norms to the pool of traits. We retrieved
the relative frequency per one million written words taken from the online-database
“Deutsches Referenzkorpus” (Institut für Deutsche Sprache, 2017). For spoken lan-
guage we consulted the database “Datenbank für gesprochenes Deutsch” (Institut für
Deutsche Sprache, 2014). Resulting word frequencies from written and spoken language
were highly redundant (r = .93). For data analysis, we merged them by averaging the
natural logarithm of both z-standardized values.

Analogous to Experiment 1, four overlapping population sets (showing symmetric
properties in predominant valence and extremity with proportions of positive traits of
.20, .33, .67, .80) were formed, from which random samples were drawn throughout the
experiment (see Appendix for more details).

Design and procedures. The general procedures of sampling and likeability judg-
ments of Experiment 1 remained unchanged, except for a shift to a full repeated-
measures design. Each participant now provided impression judgments based on both
self-truncated samples and, on other trials, samples truncated by another (preceding)
participant. Thus, the self-truncated samples of one participant were passed on, as other-
yoked samples, to the subsequent participant at the same computer workplace, whose
own self-truncated samples were again passed on to a subsequent participant, and so
forth (see Figure 8). The first participant in each chain who could not receive samples
from a preceding participant was presented with a randomly truncated sample (not in-
cluded in analysis but necessary for balancing the experimental design). Thus, the new
repeated-measures-design only allowed for “other”-yoked controls, in the terminology of
Experiment 1, but not for “self”-yoked comparisons.

The experiment was controlled by a Java-program. Participants were welcomed and
asked to provide demographic information. After extensive instructions, before the par-
ticipants started sampling, the entire task was briefly summarized on one slide. The
experiment was run either in the 4th position of a one-hour session that included five
experiments or in the 2nd position of a one-hour session containing four experiments.
Research took place in computer laboratories at Heidelberg University.

Prior to each trial, one of two icons signaled whether the following task involved
self-truncation or passive observation (as yoked control; Figure 9). On self-truncation
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Figure 8. Serial yoked control design used for Experiment 2. Each participant received the self-truncated
half of the samples from a preceding participant as his/her yoked control, while self-truncating the other half,
which were in turn passed on to the next participant in the chain.

Figure 9. Icons announcing the type of trial to follow: observing an other-truncated sample (eye) or generating
a self-truncated sample (hand).

trials, they were instructed that pressing the space bar would serve to sample more trait
adjectives (one per keypress). Alternatively, they could truncate the sample by pressing
“Enter”. On yoked control trials, they observed the sample unfolding at a rate of 1 s per
trait until it reached the size determined by the yoked partner’s truncation decision.
When sampling was complete, participants judged likeability and confidence in their
judgment just as in Experiment 1. Participants were neither told how other-truncated
samples had been generated nor that their own self-truncated samples were passed on to
another participant, instructions merely discriminated between self-truncated sampling
and observation of (yoked control) samples.

Analogous to Experiment 1, four partly overlapping population sets of 30 traits each
were formed from the trait material. Again, two of these population sets were predom-
inantly negative and two were positive and within both pairs of same-valence sets, one
contained extreme and one contained moderate traits, overall. Each participant made
40 impression judgments, of which 20 were based on self-truncated samples (again with
a maximal sample size of 16) and 20 predetermined samples. Within each subset of 20,
samples were equally often drawn from all four population sets (i.e. five samples per set
per sampling mode).

Participants. One hundred and fourteen participants (88 female) were recruited at
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Table 10. Regression of Likeability Judgments on Population Set and
Sampling Error

Predictor M β (SD) Consensus t df p-value

Self-truncated trials

Population average .72 (.15) 100% 48.27 104 < .001
Sampling error .34 (.16) 98% 22.24 104 < .001

Yoked controls trials

Population average .69 (.16) 99% 44.10 98 < .001
Sampling error .31 (.16) 99% 19.66 98 < .001

Heidelberg University. Ninety-seven participants were students; their age ranged from
18 to 59 years (M = 24.30). Eight participants were excluded for always choosing
the same sample size, and one for exhibiting strongly extended median response time
for judgments (individual median response time more than four standard deviations
above the mean of individual medians). From the remaining N = 105 participants, it
was possible to form 99 yoked control pairs. For every computer workplace in the lab,
the first participant could not have a preceding yoked partner, and was thus provided
with computer-truncated samples (see Figure 8). Thus, these samples and the yoked
controls’ trials based on them (i.e. yoked controls’ trials by the first participants in each
workplace) had to be removed from the data set. Finally, 91 yoked pairs containing
actual truncation decisions remained for the analysis. Additionally, we made sure that
no participant had already participated in Experiment 1.

Results

Systematic Nature of Impression Judgments and Sensitivity to Sampling
Input. We repeated the checks on the systematic nature of judgments similar to the
first experiment. Impression judgments were again firmly predictable from population
set averages and sampling error. Table 10 summarizes these results separately for self-
truncated and yoked controls trials. Judgments were again highly sensitive to systematic
(i.e. population-determined) and to random variation (sampling error) in the trait input.
The mean individual coefficients of determination were R2 = .71 (self-truncated trials)
and R2 = .65 (yoked controls trials).

Relation of Sample Size and Judgment Strength. Correlations rln(n),J between
likeability judgment strength J (in the correct direction) and the natural logarithm of
sample size ln(n) were clearly negative (Figure 10), both for self-truncated samples
(mean rln(n),J = −.30, SD = .28, t(104) = −11.05, p < .001, 84% consensus) and
for yoked controls (mean rln(n),J = −.11, SD = .24, t(98) = −4.42, p < .001, 67%
consensus).

Since data for self-truncated and yoked controls’ trials were ideally matched in par-
ticipant pairs, we were able to analyze the degree of regressive shrinkage between yoked
partners’ judgments pair-wise. The mean correlation between ln(n) and J decreased
by mean ∆rln(n),J = .19 (SD = .27, t(90) = 6.75, p < .001, 73% consensus). Form-
ing difference scores between individual yoked judgments, we again observed the same
regressive pattern: judgment strength J decreased for small samples and tended to in-
crease for large samples when comparing individual judgments based on self-truncated
versus yoked control trials (see Figure 11). The difference score ∆J thus correlated
positively with the natural logarithm of sample size (mean rln(n),∆J = .14, SD = .22,
t(90) = 6.04, p < .001, 69% consensus), reflecting regressive shrinkage of the distinct
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Figure 10. Correlations rln(n),J between sample size n and judgment strength J for self-truncated samples
(left hand side) and yoked control samples (right hand side). Dots represent individual mean values per condition
and sample size, solid lines the averaged individual means per condition and sample size.
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Figure 11. Changes in judgment strength ∆J between self-truncated and yoked control samples between
pairs of yoked partners plotted as a function of sample size n.

negative correlations rln(n),J between sample size n and judgment strength J .
Diagnosticity and Expectedness. As in Experiment 1, we conducted a hierarchi-

cal multiple regression analysis of sample size n and judgment strength J , including as
predictors the same indicators of diagnosticity: population set valence, extremity, and
expectedness indicator sample word frequency.

The analysis of n as criterion revealed that sampling was truncated earlier, at lower n,
when traits were drawn from a negative than when they were drawn from a positive set,
and also when samples were drawn from extreme compared to moderate population sets
(Table 11 and Figure 12). Additionally, samples of infrequent trait words were truncated
earlier than samples of frequent trait words. However, as in Experiment 1, the β weight
of the latter predictor (as distinguished from its substantial r) was negligible. The
contribution of word frequency was absorbed by the other two correlated predictors
(Table 12).

For both self-truncated and yoked controls, judgment strength J was higher (in the
correct direction) when population sets were extreme and negative rather than moderate
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Table 11. Regression of Self-Truncated ln(n) on Indicators of Diagnosticity: Population Set Valence, Extremity,
and Expectedness Indicator Sample Mean Word Frequency

Predictor M r (SD) Consensus M β (SD) Consensus t df p-value

Population set extremity -.12 (.25) 67% -.12 (.27) 61% -4.66 104 < .001
Population set valence .14 (.27) 70% .15 (.34) 64% 4.36 104 < .001
Sample mean word frequency .07 (.24) 67% 0 (.33) 49% -.07 104 .943

Note. Only data from self-truncated trials are included.

Table 12. Predictor Intercorrelations

Predictor M r (SD) Consensus

Population set extremity and valence 0 (0) -
Population set extremity and sample mean word frequency .15 (.18) 82%
Population set valence and sample mean word frequency .56 (.18) 99%

Note. Only data from self-truncated trials are included.

and positive. Trait word frequency did not account for additional variance of judgment
strength (see Table 13).

In a corresponding regression analysis of the correlation rln(n),J between the natural
logarithm of sample size n and judgment strength J as criterion, no noticeable influence
of diagnosticity could be detected (Table 14).

Judgment Confidence. Subjective confidence c was again higher for smaller than
for larger samples (Table 15), corroborating the enhanced strength of judgments for
small samples. A comparison of rln(n),J correlations for self-truncated and yoked con-
trols’ samples showed marked regressive shrinkage by mean ∆rln(n),c = .21 (SD = .36,
t(90) = 5.50, p < .001, 68% consensus).

Regarding diagnosticity, the confidence results did not completely mirror the findings
for judgment strength J . Extreme population sets were associated with higher confi-
dence and with stronger negative correlations between sample size and confidence in
the judgment. However, population set valence and sample mean word frequency did
not contribute to predicting the relation rln(n),c between sample size and confidence.

Discussion

For Experiment 2 the entire stimulus materials were replaced and the design changed
from a between-participants designs with two consecutive blocks to a repeated-measures
design with self-truncated and other truncated trait samples alternating randomly

Table 13. Regression of Judgment Strength J on Indicators of Diagnosticity: Population Set Valence, Extremity,
and Expectedness Indicator Sample Mean Word Frequency, Separately for Self-Truncated and Yoked Control
Trials

Predictor M r (SD) Consensus M β (SD) Consensus t df p-value

Self-truncated trials

Population set extremity .24 (.24) 88% .24 (.25) 87% 9.93 104 < .001
Population set valence -.14 (.37) 64% -.14 (.42) 66% -3.44 104 .001
Sample mean word frequency -.02 (.29) 56% .01 (.28) 56% .34 104 .734

Yoked controls trials

Population set extremity .23 (.20) 86% .21 (.22) 84% 9.30 98 < .001
Population set valence -.08 (.36) 62% -.10 (.41) 60% -2.41 98 .018
Sample mean word frequency .01 (.26) 51% .03 (.28) 58% 1.18 98 .241
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Table 14. Regression of the Correlation rln(n),J Between Judgment
Strength and Sample Size on Indicators of Diagnosticity: Population Set
Valence, Extremity, and Expectedness Indicator Sample Mean Word Fre-
quency, Separately for Self-Truncated and Yoked Control Trials

Predictor β Consensus t df p-value

Self-truncated trials

Population set extremity .03 46% .66 393 .511
Population set valence .10 57% 1.96 393 .051

Yoked controls trials

Population set extremity .06 50% 1.12 363 .265
Population set valence 0 51% .08 363 .934

Figure 12. Sample size n, judgment strength J and the correlation rln(n),J between the two variables as a
function of the valence and extremity of population sets. Error bars indicate standard errors of the mean. The
plot for rln(n),J is broken down by sampling conditions; dark grey bars indicate self-truncated trials and light
grey bars yoked controls’ trials.

Table 15. Mean rln(n),J Correlations Between the Natural Logarithm
of Sample Size n and Self-Rated Confidence in Impression Judgments c

Sampling mode M r (SD) Consensus t df p-value

Self-truncated -.32 (.31) 82% -10.82 104 < .001
Yoked controls -.08 (.26) 63% -3.02 98 .003

Table 16. Regression of Judgment Confidence c on Population Set Valence, Extremity, and Sample Mean Word
Frequency

Predictor M r (SD) Consensus M β (SD) Consensus t df p-value

Population set extremity .17 (.24) 78% .17 (.26) 76% 6.64 104 < .001
Population set valence -.01 (.28) 53% -.03 (.33) 56% -1.02 104 .308
Sample mean word frequency .03 (-23) 53% .04 (.28) 55% 1.29 104 .201

Note. Only data from self-truncated trials are included.

Table 17. Regression of the Correlation rln(n),c Between Confidence
and Sample Size on Population Set Valence and Extremity

Predictor β Consensus t df p-value

Population set extremity .18 34% 3.56 393 < .001
Population set valence -.03 40% -.68 393 .496

Note. Only data from self-truncated trials are included. Results from
yoked controls trials highly converge.
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within participants. Despite these changes, an equivalent pattern of robust findings was
obtained, testifying to the regularity and robustness of the interplay of Brunswikian
and Thurstonian sampling.

Judgments remained highly sensitive to systematic (population parameters) and un-
systematic (sampling error) sources of sample variation. Both sample size n and judg-
ment strength J also reflected the diagnostic value of sampling input. Population set
valence and extremity of the sampled input regularly determined participants’ decisions
to truncate the sample and the strength of their judgments. However, the expectedness
parameter of word frequency within the samples no longer contributed to predicting
participant behavior.

Participants’ ratings strongly confirmed regressive shrinkage in judgments on per-
fectly identical samples of traits, which only differed in how the sample had been trun-
cated: The relation between sample size and judgment strength declined considerably
when passing the formerly self-truncated sample on to the subsequent yoked control.
The confirmation of this regression phenomenon in the repeated-measures design of
Experiment 2 provides cogent evidence for Thurstonian sampling effects, making alter-
native accounts in terms of differential response-scale usage between self-truncated and
yoked controls trials highly improbable.

General Discussion

The two experiments and the simulation study reported in the present article provide
strong convergent evidence about the highly regular nature of trait integration in person
impression formation. In the context of a sample-based impression judgment paradigm,
in which unknown target persons were solely described by samples of stimulus traits
drawn at random from an experimentally controlled population set, we were able to
rule out the influence of prior knowledge and memory-based target impressions (Hastie
& Park, 1986). The resulting likeability judgments were highly predictable and strongly
influenced by the judges’ freedom to truncate the trait sampling process. Let us first
summarize the evidence and the theoretical insights gained from the reported findings,
before we discuss their implications in the context of the extant literature and related
issues in current judgment and decision making research.

The results of our experiments highlight the extremely regular nature of sample-
based impression judgments. Our mixed design with many judgment targets nested
within individual participants revealed that judgments were highly sensitive to the av-
erage valence of the target’s trait population set, to trait sampling error, diagnosticity,
and the number of sampled traits. Predictions of impression ratings from the mere sam-
pling input (i.e. the actuarial judgments; Dawes et al., 1989) resulted in determination
coefficients ranging between R2 = .52 and R2 = .71. In other words, judgments were
highly sensitive to Brunswikian sampling variance, that is, to the environmental input
of trait stimuli provided on each judgment trial.

However, secondly, the manner in which the resulting impressions depend on the
stimulus input diverged markedly from a naïve application of statistical sampling the-
ory, which would suggest that judgment strength increases with the increasing size of
a sample drawn from the same population set. Both prior empirical evidence (Fiedler
& Kareev, 2006; Fiedler et al., 2010) and normative principles such as Bayesian up-
dating imply that the same observed tendency of the sample toward mainly positive
or mainly negative traits provides stronger evidence in larger than in smaller samples.
And, indeed, prior research in the present sample-based judgment paradigm confirmed
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the validity of this implication when sample size was implemented as an independent
variable, that is, when n was pre-determined by design, so that sample truncation was
independent of the strength of evidence sampled so far. In contrast, when the trunca-
tion decision was drawn by the judges themselves, making n strongly dependent on the
input and on primacy effects, a strong and consistent reversal was obtained: Smaller
(self-truncated) samples led to stronger judgments than larger samples drawn from the
same population. Simulation results corroborated these remarkable results and clari-
fied that the negative correlation between judgment strength and samples size can be
emulated by an objectively defined algorithm.

This strong and robust reversal, which can be predicted on normative grounds, has
important theoretical and practical implications. Understanding the stronger evidence
conveyed in small rather than large samples at a theoretical level requires going beyond
the basic assumptions of a simple averaging model (Anderson, 1965; Ullrich et al., 2013),
which presumes that likeability judgments reflect the average valence scale values of all
observed stimulus traits. Despite its simplicity and usefulness as a comparison standard,
the averaging rule does not account for truncation effects and, more importantly, it does
not acknowledge the traits’ informational value (i.e. diagnosticity) beyond mere valence
in a given impression formation context.

The diagnosticity of sampled traits not only received a strong weight in impression
judgments, but also facilitated early truncation of samples, leading to strong negative
correlations between sample size and judgment strength. Negative traits were clearly
more diagnostic than positive traits, although their absolute valence scale values were
matched. Thus, diagnosticity is not an isolated feature of individual trait stimuli but a
measure of a trait’s impact on an integrative judgment exceeding the item-level valence.

Within the broader context of recent theorizing in judgment and decision making
research, the present approach also emphasizes the need to go beyond the so-called
“description-experience gap” (Hertwig et al., 2004; Hertwig & Pleskac, 2010). This ma-
jor topic of recent research on sample-based decision making (Wulff et al., 2018) focuses
on the contrast between decision options described (second-hand) in terms of numer-
ically specified expectancies and probabilities and the (first-hand) experience with a
sample of observations under uncertainty, from which expected values and probabilities
must be inferred in an inductive-statistical process. The present findings demonstrate,
however, that it is essential to further distinguish between different types of decisions
by experience, depending on whether samples are self-truncated or predetermined ex-
ternally.

The negative correlation of sample size and impression judgment strength for self-
truncated samples has important practical implications as well. For instance, Wilson
and Schooler’s (1991) finding that consumer choices are met with higher satisfaction
when reasoning about the choice was brief rather than extended may be understood as
a special case of self-truncated choice. This finding is not at all in conflict with other
evidence for higher decision quality with increasing amount of information, provided
the size of information samples is determined externally.

Practical consequences and misunderstandings of the self-truncation effect can be
expected because the reversal correlations between judgment strength and the size of
self-truncated versus externally fixed samples is highly counterintuitive. In many applied
domains, decision makers may hardly ever realize and memorize the corresponding trun-
cation rule. Consumers barely notice whether they stopped sampling because they had
gathered enough information or because of external constraints. Teachers hardly know
how their samples of different students’ performance were truncated, just like mem-
bers of democratic decision groups do not typically include a note in the protocol on
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what determined the end of a deliberation process. Consequently, it is hard to distin-
guish whether distinct and clear-cut information is either a symptom of diligence and
accuracy (if n is fixed) or a sign of cogent initial evidence (if sampling is self-truncated).

When impressions are made from conditionally truncated samples, on a trial basis
(e.g. grading one particular student) we have a hard time distinguishing between the
influence of chance (i.e. “exploitation of good luck”; Edwards, 1965) and the influence
of an underlying trend. Thus, the negative relation between self-truncated sample size
and impression strength is not a mere cognitive bias but is reflective of individuals’ re-
actions to an insolvable statistical dilemma. Ignoring opportunities of “good luck” (i.e.
small samples drawing an extremely clear picture) can be very costly, as we need to
waste time and resources after we have already seen a clear hint on how to form the
impression. As our analysis of impression data shows, exploiting such primacy oppor-
tunities does not prevent judges from making highly accurate judgments, coming close
to the averaging benchmark (Anderson, 1965). In any context where samples cannot
be extended infinitely, because judgments need to be completed in time, dynamic self-
truncated sampling is a highly efficient and adaptive tool, as it exploits instances of
initially clear-cut information.

Whether we consider the often exaggerated views provided by very small samples to
be excessive or advantageous critically depends on the context. Small sample amplifi-
cation of impressions is advantageous in contexts where the benefits of efficient trend-
detection are high. In such contexts, yoked controls’ judgments might be interpreted as
too cautious or even obscuring the correct trends. In contrast, in other contexts that
render the costs of exaggerating impressions and erroneous inferences very expensive,
more cautious judgment strategies based on generally stronger evidence (thus, resulting
in larger samples) are called for.

Last but not least, our sample-based judgment paradigm helps to illuminate the
joint impact of two intertwined sources of information sampling. Person impressions
were shown to be contingent not only on Brunswikian sampling of traits in the stimu-
lus environments but also on Thurstonian sampling processes taking place within the
judges’ mind. In other words, it was shown that impressions are not exclusively deter-
mined by the trait input; they also reflect the oscillations that take place in the mind
of the beholder.

Although impression judgments were highly predictable from, and greatly resembled
an actuarial assessment of the Brunswikian sample input, they were also contingent
on Thurstonian sampling of mental states, that is, on fluctuations in judges’ mental
preparedness to make a judgment. Thus, judges stopped sampling and finally made a
judgment not only when the sample of traits was informative and diagnostic but also
when they happened to be in a state of mind that enabled them to recognize and perhaps
even overestimate the evidence in the sample.

To render this second sort of Thurstonian sample visible, we developed a yoked con-
trol design that allowed us to compare the original self-truncating judges’ impressions
with the impressions of yoked controls, who were provided with exactly the same trait
samples, presented in the same format, and trait order, and who could therefore be
expected to differ only in terms of Thurstonian oscillations of states of mind. Unlike
self-truncating judges, yoked controls cannot be ideally prepared for a judgment at the
very moment when the trait sample was complete. As a consequence of this misfit – the
only distinctive feature of self-truncating judges and their yoked controls – the yoked
participants’ impression judgments were clearly regressive. Positive impressions were
less positive and negative impressions were less negative than in the self-truncating
conditions.
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We elaborated on this methodology, showing that yoked control judges provided with
their own pre-determined samples showed less regression than yoked controls provided
with other judges’ previously determined samples. This refined method allowed us to
distinguish between temporal and interpersonal sources of Thurstonian sampling ef-
fects. Thurstonian misalignment of yoked partners most probably presents one source
of disagreement between individuals’ impressions when one self-truncated sample was
passed on to another person, or even when the same individual re-evaluated their own
impressions. Overall, yoked partners’ regressive judgments were more moderate. In our
experimental setting, yoked partners most probably disagreed when the self-truncated
part of the pair came to a judgment of strong disliking after only a few pieces of infor-
mation. However, yoked controls introduced their own individual deviations from the
mere Brunswikian sampling input. As determination coefficients in explaining impres-
sion variance by actuarial (averaging) impressions showed, this did not serve to improve
precision of judgments; yoked controls rather deviated further from the actuarial esti-
mation.

Though the present article takes a strong theoretical focus, yoked control settings are
also at the heart of many everyday social phenomena. Whenever someone tries to pass
on information or an opinion from self-truncated information search, it is the opinions
on topics supported by small information samples that have the largest potential for
disagreement. In turn, strong impressions from self-truncated small samples are likely
to drive the message passed on in a serial-reproduction process (Kashima, 2000). We
also showed theoretically that the re-evaluation of one’s own impression, judgment or
opinion after examining the original sources underlying the judgment again might cause
a tendency to be dissatisfied and to feel conflict with, or simply to revise one’s very own
initial impression, due to regressive shrinkage.

We believe that the presented findings and implications can lead to an improved un-
derstanding of person impressions. With respect to the ongoing debate on the restricted
replicability and usability of psychological findings, we would like to emphasize once
more the regularity and robustness of person impressions and the highly systematic
pattern of a negative relation between sample size and the strength of judgments on
self-truncated samples. Just as the evidence inherent in a pre-determined sample in-
creases with sample size, the higher deviation of smaller samples creates the potential
for the counterintuitive finding that the evidence inherent in a self-truncated sample is
stronger when samples size is low rather than high.
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Appendix A. Experiment 1: Construction of the Four Trait Population Sets

Fifty-seven trait adjectives of the Berlin Affective Word List – Reloaded (BAWL-R) by
Võ et al. (2009) made up the pool of potential stimuli. Four potentially overlapping
population sets were selected from the overall stimulus pool. The aim was to generate
almost symmetrical population sets. Therefore, the BAWL-R scale was split into six
equally wide intervals. As can be seen from Table A1, certain frequencies in these
valence intervals were considered.

Table A1. Fixed Frequencies for Generating the Population Sets. Adjectives of
Each Population Set Were Drawn at Random, However The Proportions of Valence
Intervals Were Enforced.

BAWL-R valence interval

Population set -3 : -2 -2 : -1 -1 : 0 0 : 1 1 : 2 2 : 3

Extremely negative 4 12 8 4 1 1
Moderately negative 2 10 8 7 2 1
Moderately positive 1 2 7 11 7 2
Extremely positive 1 1 4 11 11 2

This selection lead to almost symmetrical properties of the two extreme and the two
moderate sets (cf. Table A2).

Table A2. Proportion of Positive Traits p+ and Statis-
tics for BAWL-R Valence Norms (Scaled to a Range of
-1 : 1) for Each of the Four Population Sets.

Population set p+ M SD Skewness

Extremely negative .20 -.26 .38 .88
Moderately negative .33 -.15 .41 .39
Moderately positive .67 .16 .38 -.56
Extremely positive .80 .26 .37 -.97

Appendix B. Experiment 2: Consruction of the Four Trait Population Sets

Seventy-one trait adjectives scaled in the pretest formed the original pool of potential
stimuli. The formation of the four population sets followed similar principles as in Ex-
periment 1. The frequency table for the population sets is shown in Table B1 and the
properties of the resulting set in Table B2.
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Table A3. Trait Adjectives Used in Experiment 1 With their English Translation and Their BAWL-R Mean
Valence (Scaled from Very Negative -3 to Very Positive 3; Võ et al., 2009). The Columns on the Right Hand
Side Indicate the Usage (1) or Non-Usage (0) of the Trait for Each of the Four Population Sets Indicated by
Their Proportion of Positive Valent Traits.

Original German English translation BAWL-R valence p+ = .20 p+ = .33 p+ = .67 p+ = .80

herzlos heartless -2.5 0 1 0 0
verlogen mendacious -2.3 1 0 1 0
humorlos humorless -2.1 1 0 0 1
unfair unfair -2 1 0 0 0
dekadent decadent -2 1 0 0 0
brutal harsh -2 0 1 0 0
launisch moody -1.9 1 1 0 0
gemein mean -1.9 1 1 0 0
boshaft mischieveous -1.9 1 1 0 0
gierig greedy -1.5 1 1 1 1
stur stubborn -1.5 1 1 0 0
labil labile -1.5 1 1 0 0
mutlos discouraged -1.4 1 1 1 0
primitiv primitive -1.4 1 0 0 0
altklug precocious -1.1 1 1 0 0
eitel vein -1.1 1 1 0 0
passiv passive -1.1 1 1 0 0
derb coarse -1.1 1 0 0 0
wortkarg taciturn -0.9 1 1 1 1
naiv naive -0.8 1 0 0 0
laut noisy -0.8 1 1 1 1
defensiv defensive -0.6 1 1 1 0
unnahbar unapproachable -0.6 0 1 0 0
listig cunning -0.4 1 0 1 1
albern ridiculous -0.2 1 1 1 1
forsch outspoken -0.2 1 1 1 0
redselig talkative -0.1 0 1 0 0
schlicht plain 0 1 1 1 0
stoisch stoical 0.1 0 1 1 1
sparsam thrifty 0.2 0 1 1 1
still silent 0.6 1 1 1 1
verwegen audacious 0.6 1 0 1 1
ruhig calm 0.6 0 1 1 1
sachlich factual 0.6 0 0 1 1
eifrig eager 0.8 1 1 1 1
sensibel sensitive 0.8 1 1 1 1
vornehm genteel 0.9 0 0 1 1
strebsam ambitious 0.9 0 0 1 1
agil agile 1 0 1 1 1
sanft gently 1.3 1 0 0 1
liberal liberal 1.3 0 0 0 1
spontan spontaneous 1.4 0 0 1 1
schlau clever 1.6 0 1 1 1
aktiv active 1.6 0 0 1 1
pfiffig smart 1.6 0 0 1 0
flexibel flexible 1.7 0 1 1 1
tapfer brave 1.7 0 0 1 0
munter cheerful 1.7 0 0 0 1
heiter humorous 1.8 0 0 0 1
nett kind 1.8 0 0 0 1
taktvoll tactful 1.9 0 0 1 1
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Table B1. Fixed frequencies for Generating the Population Sets of the Second Experiment.

Prestudy valence interval

Population set -1 : -.66 -.66 : -.33 -.33 : 0 0 : .33 .33 : .66 .66 : 1
extremely negative 5 10 9 4 1 1
moderately negative 2 10 8 7 2 1
moderately positive 1 2 7 8 10 2
extremely positive 1 1 4 9 10 5

Table B2. Proportion of Positive Traits p+ and Statis-
tics for BAWL-R Valence Norms (Scaled to a Range of
-1 : 1) for Each of the Four Population Sets.

Population set p+ M SD Skewness

extremely negative .20 -.28 .38 .80
moderately negative .33 -.18 .41 .58
moderately positive .67 .19 .42 -.45
extremely positive .80 .29 .42 -.88
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Table B3. Trait Adjectives Used in Experiment 2 With their English Translation and Their Mean
Valence (Scaled from Very Negative -1 to Very Positive +1) Assessed in a Pretest to Experiment 2.
The Columns on the Right Hand Side Indicate the Usage (1) or Non-Usage (0) of the Trait for Each
of the Four Population Sets Indicated by Their Proportion of Positive Valent Traits.

Original German English translation Valence p+ = .20 p+ = .33 p+ = .67 p+ = .80

herzlos heartless -0.85 1 0 0 0
hochnäsig arrogant -0.80 1 0 0 1
ignorant ignorant -0.77 0 1 0 0
aggressiv aggressive -0.74 0 0 1 0
arrogant conceited -0.72 1 1 0 0
feindselig hostile -0.71 1 0 0 0
manipulativ manipulative -0.68 1 0 0 0
nervig annoying -0.65 0 1 0 0
oberflächlich superficial -0.65 0 1 0 1
aufgesetzt hypocritical -0.62 0 1 0 0
ichbezogen egocentric -0.60 0 0 1 0
dreist audacious -0.60 1 0 0 0
pessimistisch pessimistic -0.58 1 0 0 0
vulgär coarse -0.58 1 1 0 0
künstlich artificial -0.57 1 1 0 0
aufbrausend irascible -0.53 0 1 0 0
faul lazy -0.53 1 1 0 0
stur stubborn -0.51 1 1 0 0
anstrengend exhausting -0.46 1 0 1 0
dominant dominant -0.41 1 0 0 0
übertrieben exaggerated -0.38 0 1 0 0
verschlossen withdrawn -0.35 1 0 0 0
hässlich ugly -0.35 1 0 0 0
schwatzhaft talkative -0.34 0 1 0 0
bestimmend determining -0.28 1 1 1 0
überdreht overwrought -0.26 1 1 1 0
zerstreut absentminded -0.24 1 1 1 1
langsam slow -0.23 1 1 1 1
kränkbar easily offended -0.21 1 1 0 1
chaotisch messy -0.18 1 1 0 0
introvertiert introverted -0.13 1 1 1 0
impulsiv impulsive -0.13 1 0 1 1
schüchtern shy -0.01 1 1 1 0
still silent 0.04 1 0 0 1
verschwiegen discreet 0.05 0 1 0 1
alternativ alternative 0.06 0 0 1 1
detailverliebt attentive to detail 0.06 0 1 0 0
perfektionistisch perfectionist 0.08 0 0 1 1
verrückt crazy 0.10 1 1 1 1
zurückhaltend reserved 0.12 0 1 1 1
vorsichtig cautious 0.20 0 1 0 1
rational rational 0.22 1 1 1 0
selbstironisch self-ironic 0.31 0 0 1 0
kumpelhaft back-slapping 0.32 1 1 1 1
ruhig calm 0.33 0 0 1 1
bedacht considered 0.40 0 0 1 0
spontan spontaneous 0.47 1 0 1 0
stabil stable 0.50 0 0 1 1
neugierig curious 0.50 0 0 0 1
empathisch empathetic 0.53 0 0 1 0
gründlich thorough 0.55 0 0 1 1
gesellig sociable 0.55 0 1 0 1
inspirierend inspiring 0.58 0 1 0 1
aktiv active 0.59 0 0 1 0
gelassen serene 0.60 0 0 0 1
warm warm 0.60 0 0 0 1
offen amenable 0.61 0 0 0 1
intelligent intelligent 0.62 0 0 1 0
zärtlich tender 0.62 0 0 1 1
authentisch genuine 0.62 0 0 0 1
natürlich natural 0.65 0 0 1 0
entspannt relaxed 0.65 0 0 1 0
optimistisch optimistic 0.71 0 0 0 1
kooperativ cooperative 0.72 1 0 0 0
herzlich sincere 0.75 0 0 0 1
mitfühlend compassionate 0.76 0 1 0 0
treu loyal 0.76 0 0 0 1
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Small-Group Homogeneity: A Crucial Ingredient to
Inter-Group Sampling and Impression Formation

Johannes Prager and Klaus Fiedler
Heidelberg University

ABSTRACT
Applying a recently developed framework for the study of sample-based individual
person impressions to the level of group impressions resulted in convergent evidence
for a refined but highly robust judgment process. Group impressions were sensitive
both to systematic variance between distinct population sets from which trait sam-
ples were drawn and to the specific sampled traits. However, impressions did not
merely follow a simple averaging rule applied to the likeability scale values of the
sampled trait stimuli. Rather, the function relating group impressions to stimulus
traits was subject to two distinct moderating influences, the diagnosticity of traits
and the amplifying impact of early self-truncation. Three indices of trait diagnostic-
ity – negative valence, extremity, and distance to other traits in a density framework
– jointly determined not only the final impressions but also the decision to truncate
the sampling process. When trait samples carried negative and extreme information
and when traits within the sample were dense (i.e. the distance between traits was
low), they triggered polarized impression judgments, high perceived within-sample
homogeneity and early truncation decisions. Granting that out-group judgments
typically rely on smaller samples than in-group judgments, our sampling approach
can account for essential biases of inter-group judgment: out-group homogeneity,
out-group polarization and (because negative traits are more diagnostic) out-group
derogation.

KEYWORDS
out-group homogeneity, out-group polarization, self-truncated sampling

Out-group homogeneity (or relative in-group heterogeneity) is a classical and in-
tensely discussed finding in social cognition and inter-group research. It refers to the
unequal mental representation of groups we are part of (in-groups) and of groups we do
not belong to (out-group). Specifically, the variability between individuals and target
behaviors is perceived to be lower for out-groups such as a rival university, another age
group or a foreign nation than for in-groups such as one’s own university, age group, or
nationality (Linville et al., 1989; Quattrone & Jones, 1980).

Theoretical explanations of this asymmetry vary on a continuum, one pole of which
emphasizes structural causes in the environment whereas the other pole emphasizes
motives and conflicts within the individual. Typical structural causes include larger ex-
perience samples (Kareev et al., 2002; Konovalova & Le Mens, 2020; Linville & Fischer,

Johannes Prager, Department of Psychology, Heidelberg University, johannes.prager@psychologie.uni-
heidelberg.de

Klaus Fiedler, Department of Psychology, Heidelberg University
This manuscript is currently unpublished. It was submitted for publication November 29, 2021.
The work underlying the present article was supported by a Grant provided by the Deutsche Forschungsge-

meinschaft (Fi 294/29-1) to Klaus Fiedler. Helpful comments by Gaël Le Mens and Linda McCaughey on a
draft of this article are gratefully acknowledged.

109



PRAGER AND FIEDLER

1993; Linville et al., 1989) and more detailed knowledge (Park & Rothbart, 1982) of in-
groups compared to out-groups. In contrast, motivational accounts stress the desire to
develop a positive in-group identity (Simon & Brown, 1987) along with optimal distinc-
tiveness (Brewer, 1993) and the familiarity advantage of closer individuals. While there
was never any doubt that motivational biases nourished by real conflicts, group-related
emotions or xenophobia are sufficient to trigger inter-group biases, a controversial ques-
tion is whether they represent necessary conditions. Proponents of cognitive ecological
theory approaches have recently pointed out that biased judgments and decisions can
originate in completely unbiased intrapsychic processes (Denrell & Le Mens, 2007; Fazio
et al., 2004; Fiedler, 2000; Fiedler & Wänke, 2009) embedded in perfectly adaptive be-
havior. Even when all stimuli are processed the same way, whether they are positive
or negative in valence and related to in-groups or out-groups, the resulting judgments
or evaluations can exhibit a systematic bias, simply because the stimulus environment
provides the same mechanism with unequal samples of in-group or out-group related
information. One obvious source of inequality, which is the focus of the present research,
is sample size. Because our own group membership creates more opportunities to ob-
serve behaviors of other in-group members at an enhanced rate and reduced distance, in
comparison to out-group members’ behaviors, it seems self-evident that we are exposed
to larger samples of in-group than out-group information (Quattrone & Jones, 1980).

Sample Size and Inter-Group Relations

The aim of the present investigation is to demonstrate that this characteristic differ-
ence in sample size offers a comprehensive account of out-group homogeneity. Com-
puter simulations and a series of two pilot studies and four main experiments not only
provide convergent evidence for a strong and regular out-group homogeneity effect.
They also demonstrate that the same mechanism that produces out-group homogeneity
also produces the other major phenomenon of inter-group research, namely, out-group
derogation. Thus, the mechanism propagated in the present research can explain why
(out-)groups described by smaller samples not only appear more homogeneous but also
more negative than (in-)groups described by larger samples. We hasten to add that our
evidence specifies a sufficient condition for inter-group biases. It need not reflect a nec-
essary condition as it cannot exclude that other causal mechanisms may also produce
inter-group biases.

A review of previous research suggests two different explanations of why small sample
size may be at the heart of (out-)group homogeneity. The first explanation can be derived
from statistical sampling theory, as formalized in Linville et al.’s (1989) seminal work.
The loss of one degree of freedom in the calculation of a sample variance implies a
stronger variance reduction for small samples (when n − 1 is markedly lower than n)
than for large samples (when n − 1 approximates n). The resulting decrease in actual
variance with decreasing n shown by Kareev et al. (2002) to account for a sizeable part
of judgment biases.

In contrast to this formal statistical proof, the second explanation attributes the
reduced variance of smaller samples to a “hot-stove” effect (Denrell & March, 2001).
Assuming that adaptive agents follow Thorndike’s (1927) law of effect, repeating pleas-
ant and stopping unpleasant behaviors, they will under specifiable conditions (Denrell,
2005; Denrell & Le Mens, 2007) truncate sampling from negative sources while contin-
uing to sample from pleasant sources. Consequently, they forego to correct for initial
negativity effects (i.e., persistent and markedly negative judgments of small-sample tar-
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gets) and only have a chance to correct for initially positive impressions (leading to
larger samples of moderately positive stimuli). Thus, unlike the statistical sampling
rule, this explanation attributes the sample-size effect to the agent’s hedonic informa-
tion search, which is neither irrational nor driven by any a-priori bias against some
stigmatized target (Brockbank et al., in press; Le Mens & Denrell, 2011).

Self-Truncation Effects
The mechanism proposed in the present research is categorically different from both of
these earlier approaches. It can neither be reduced to the statistical (n−1)/n correction
that underlies Linville’s work, nor does it reflect a hot-stove effect as proposed by
Denrell and Le Mens or Fazio and colleagues. Rather, the present account is based on
recent findings uncovered and analyzed in our own research on impressions of individual
targets based on samples of traits (Prager, Krueger & Fiedler, 2018; Prager & Fiedler,
in press). Across a series of experiments, we persistently found that the strength of
impressions J increased with increasing samples of n traits, but only when sample size
was determined experimentally as an independent variable. When however, participants
in a self-truncated sampling condition could themselves determine sampling when they
felt to be ready for an impression judgment, making n a dependent variable, judgment
strength J bore a clearly negative correlation to sample size n.

Note that this clear-cut reversal from positive correlations (with experimenter-
determined sampling) to negative correlations (with self-truncated sampling) is fully
consistent with statistical sampling principles. Although sample statistics indeed ap-
proximate population parameters as n increases, so that large samples more likely reflect
existing population trends than smaller samples (De Finetti, 1937), Bernoulli’s (1713)
law of large numbers leads to new implications when samples are self-truncated. Self-
truncated sampling produces small samples when the first few items exhibit a strong,
presumably stable, conflict-free and consistent trend, whereas they become large only
when no such stochastic primacy effect allows for early truncation. As a sample’s devi-
ation from population parameters becomes more probable with decreasing sample size,
stronger stochastic primacy effects can be exploited when samples are small rather than
large.

Diagnosticity Amplifies Self-Truncation Effects.
However, the basic self-truncation effect – overlooked and counter-intuitive as it may
appear – is but one part of the story underlying the mechanism we are propagating.
Equally important as the negative correlation it implies between n (sample size) and J
(judgment strength) is the moderating impact of diagnosticity. Not every primacy trend
(i.e. evidence from the first few items) is equally likely to cause truncation. Rather, the
likelihood to truncate a sample increases markedly with the diagnosticity of the stimuli
sampled so far. Early sampling is clearly more likely when the first few items in a sample
are high rather than low in diagnosticity. Traits are more diagnostic if they are extreme
rather than moderate and if there are negative rather than positive (Prager et al., 2018;
Rothbart & Park, 1986). Moreover, diagnosticity comes to interact with the “big two”,
such that traits referring to negative morality and positive ability are more diagnostic
than traits referring to positive morality and negative ability (Fiske et al., 2007; Reeder
& Brewer, 1979; Skowronski & Carlston, 1987). Thus, the systematic tendency of small
trait samples to solicit strong judgments, negatively correlated with sample size, is an
increasing function of all these diagnosticity functions.
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Let us take this opportunity to be explicit about the definition and theoretical mean-
ing of diagnosticity. Whereas positive versus negative valence, extremity, and reference
to the big two are semantic features of individual traits, a trait’s diagnosticity quan-
tifies its impact on a sequentially updated impression. In Bayesian odds notation, the
likelihood ratio represents diagnosticity, quantifying the degree to which an added trait
renders one final (e.g., positive) impression more likely than its reverse (e.g., negative).
To illustrate this point, Prager et al. (2018) found that negative traits exerted stronger
impact on resulting impressions than positive trait words of the same absolute valence
scale value.

Density Model
The density model (Unkelbach et al., 2008) offers a deeper understanding of the cog-
nitive underpinnings of the diagnosticity concept and the way it moderates cognitive
performance. Positive stimuli are closer to each other and more densely interconnected
in associative memory than negative stimuli, which are more distinct in meaning and
less overlapping. For example, if someone is polite, they are also very likely friendly and
punctual and reliable and tactful. In contrast, if someone is dishonest, we can hardly in-
fer that they are offensive, brutal, depressed, or resentful. Thus, whereas positive person
attributes form interconnected clusters, producing integrative halo effects (Unkelbach
et al., 2008), negative attributes denote more separable properties. As a consequence,
positive person attributes are common and redundant and positive words are used more
frequently, whereas negative attributes are distinct and negative words are less frequent.
Because of their more specific, less overlapping meaning, negative words are more di-
verse. The lexicon contains more distinct negative than positive verbs and adjectives.

At the behavioral level, the positive priming effects are stronger and positive words
can be recognized and positive person attributes verified faster than negative stimuli
(Unkelbach et al., 2008), simply because high-density clusters of positive stimuli in asso-
ciative memory allow for a good deal of parallel processing. For the same reason, though,
singular positive words or person attributes add little to the semantic meaning of the
other positive items in the cluster, and a higher rate of positive evidence is required to
confirm a positive judgment (Gidron et al., 1993; Rothbart & Park, 1986). Recognizing
and confirming negative words and attributes takes longer but exerts stronger impact
on evaluative judgments. Negative valence is thus a major determinant of diagnosticity,
and the density model offers a mental account (i.e., the unequal distance and overlap
or positive and negative stimuli in memory) and a highly useful measure of diagnos-
ticity (i.e., the average distance from the remaining stimuli in a set, measured through
multidimensional scaling; see Koch et al. 2016).

Yet, negative valence is by no means the only determinant of diagnosticity. Pitting
diagnosticity against valence, it has been shown that those exceptional negative stimuli
that bear low distances to others behave like high-density (non-diagnostic) stimuli and
exceptional positive stimuli with high distances to others behave like low-density (diag-
nostic) stimuli (Unkelbach et al., 2008). Because extreme stimuli are also more distant
from other stimuli, they were found by Prager et al. (2018) to exert stronger influence
on growing impressions (i.e., to be more diagnostic) than moderate stimuli.

Drawing on the density model as a conceptual framework and as a methodological
tool, we therefore expect stronger self-truncation effects resulting in stronger impression
judgments for negative than positive traits, and for extreme than moderate traits. We
do not expect that self-truncation and group impressions will be moderated by those
aspects of the density model that are unrelated to diagnosticity, such as the frequency
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of occurrence of positive and negative terms in a large language corpus.1

Preview and Predictions

To lay out the theoretical expectations and empirical hypotheses to be tested below,
we expect the typical self-truncation effect (i.e., negative correlation between n and J)
to carry over from individual to group impressions. This basic prediction is not at all
trivial. Because every trait in the group impression formation task refers to a different
individual, entitativity is higher for individuals than for groups as impression targets
(Campbell, 1958; Yzerbyt et al., 2000). It is therefore possible that weaker entitativity
and consistency constraints moderate the impact of sample size on group impression
judgments and reduce the influence of prior knowledge about existing social groups.
To support this premise, we manipulate familiar versus neutral group labels to rule
out prior group knowledge as an inhibiting condition and to highlight the functional
equivalence of unlabeled samples of n people and existing groups with a familiar name.
Note that, if anything, reduced entitativity implies higher independence of traits in a
sample, making groups particularly prone to truncation effects.

We demonstrate that impressions resulting from self-truncated trait sampling exhibit
strong and persistent homogeneity effects such that small samples of low variance are
truncated earlier, leading to more polarized judgments than large samples. We regularly
observe negative correlations rn,J between sample size and judgment strength as well
as negative correlations rn,H between sample size and (two measures of) homogene-
ity within most individual participants (computed across judgment trials). Both rn,J

and rn,H become stronger with two measures of diagnosticity, that is, when traits are
extreme rather than moderate and when traits are negative rather than positive. More-
over, because negative valence is a chief determinant of diagnosticity, homogeneity (and
polarization) come along with devaluation. Impressions tend to be most homogeneous
and polarized when negative valence renders traits most diagnostic.

Beware of the conditional direction of the mechanistic account we are proposing. We
postulate self-truncation as a sufficient rather than as a necessary causal condition of
OHE. Thus, our theoretical argument is not that self-truncation effects (i.e., negative
rn,J and rn,H correlations) underlie all manifestations of OHE. Our argument is rather
that small sample size alone is sufficient to produce homogeneity, polarization, and
devaluation. To the extent that out-group samples are smaller than in-group-referent
samples, our causal mechanism predicts self-truncation to produce the depicted inter-
group biases. Note, however, that the same theoretical argument applies to small samples
of all kinds, not just out-groups, and it does not apply to contexts in which large
samples are available about prominent or very large out-groups (Simon & Brown, 1987).
Logically, our argument does not preclude that other causal influences may obscure or
overshadow the predicted self-truncation effect.

Finally, this outline should reveal what is theoretically novel and original about the
present approach, which has not been anticipated in previous inter-group research. As
mentioned at the outset, the depicted self-truncation mechanism can be neither reduced
to the statistical (n − 1)/n argument that motivated Linville’s (1989) approach, which
cannot account for the persistent negative correlations rn,J and rn,H . Nor can it be
considered a special case of a hot-stove effect leading to a one-sided negativity bias,

1Whether a trait word appears once or ten times per million may also be considered a linguistic measure
of diagnosticity. It is however hardly relevant for group impression updating. Thus, frequency of words in the
lexicon is less relevant for impression judgments than the distinctness and distance of added traits. Later in
the results section we shall further elaborate on this consideration.
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because self-truncation effects are not restricted to negativity. We also specify conditions
under which self-truncation causes positivity biases when diagnosticity goes beyond
valence. Moreover, our sample-based judgment approach offers a sensible account for
both prominent inter-group biases, out-group homogeneity and out-group derogation,
and for the co-occurrence of both major biases. Thus, although self-truncation effects are
not peculiar to groups but have been already demonstrated for judgments of individual
targets, placing them in the context of inter-group theorizing yields a variety of novel
insights, about inter-group biases and downstream consequences of self-truncation, and
also a new theoretical focus on truncation triggered by homogeneity.

In the next section, we present formal algorithms and computer simulation approaches
to underline the generality and the logical cogency of the self-truncation mechanism.
Then, we report two pre-studies supposed to control for prior group knowledge, to high-
light the viability of the assumption that samples of n items behave like groups of n
members, and to establish the density model as a theoretical framework for understand-
ing the notion of diagnosticity. The remainder of this article is then devoted to a series of
four experiments, in which participants judge the homogeneity and likeability of groups
described by a sample of traits. Independent variables include the diagnosticity (valence
and extremity) of different sets of traits from which the stimulus traits are sampled, fre-
quency of traits, average distance of traits in a set, and prior group knowledge. Sample
size depends on participants’ self-truncation decisions and constitutes a major mediat-
ing variable. Judgments of group likeability, two measures of homogeneity, and various
derived measures, such as rn,J and rn,H , function as dependent variables.

Convergent Simulation of Sample Truncation Algorithms

Although the decrease in homogeneity and impression strength through self-truncation
is novel and counter-intuitive at first sight, it does not reflect a strange, far-fetched em-
pirical phenomenon. It is rather derivable on theoretical grounds, reflecting a corollary
of Bernoulli’s (1713) law of large numbers. Because distributions of sample statistics
– not only of means but also of samples’ variance, skewness, and curtosis – are more
dispersed for small than large samples, truncation can cause more inflation of a sampled
trend when early truncation renders samples small. A glance at the statistical under-
pinnings reveals that the sign of rn,J (correlation between self-truncated sample size
and impression strength) and rn,H (between sample size and perceived within-group
homogeneity) is regularly negative under a wide range of conditions.

Indeed, different stopping rules converge in producing both out-group homogeneity
(negative correlation rn,H of sample size and perceived sample homogeneity) and out-
group polarization, (negative correlation rn,J of sample size and impression strength),
which can be expected to be particularly strong for negative impressions, due to en-
hanced diagnosticity (producing out-group derogation). Thus, whether the truncation
threshold decreases with sample size n or uses a fixed criterion independently of n, simu-
lated self-truncation effects converge in producing out-group homogeneity and out-group
polarization (i.e., negative rn,H and rn,J). Later in this article, four group-impression
experiments will support the simulation effects.

Readers who are not interested in formal notation may simply skip the next section.
To illustrate the normative constraints imposed on impression formation from dichoto-
mous samples, let us assume for simplicity that each trait in a sample characterizes a
group member as either “likeable” or “unlikeable”, so that group impression judgments
amount to estimating the probability p(”likeable”) of encountering likeable group mem-
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Figure 1. Simulated sample SD (inverse measure of homogeneity; left chart) and judgment strength J (right
chart) as a function of n, the size of samples truncated according to Haldane’s (1945) rule, assuming a true
likeability probability of p(”likeable”) = .75 and a threshold of t = 5 (compromise between liberal and conser-
vative strategy). Estimated impression strength is J = 2 ∗ k−1

n−1 − 1 when k = t (or J = 2 ∗ n−k−1
n−1 − 1 when

n − k = t).

bers. Given no prior knowledge of p(”likeable”) , truncation decisions cannot rely on
group’s mean exceeding a threshold, but must rely on the second moment, namely on
the variance of likeable versus unlikeable group members. Accordingly, a reasonable
stopping rule is to cease sampling when group impression updates settle on a stable
judgment, which hardly varies with additional traits/members.

Now, granting that low variability (homogeneity) triggers truncation, the question
is whether the stopping criterion should decrease with increasing sample size n (as in
statistical significance testing, when the standard error se = SD/

√
n decreases with√

n) or remains constant with increasing n (as in Bayesian updating). The first case
of an n-dependent stopping rule was formalized by an algorithm suggested by Haldane
(1945). The second case of an n-independent Bayesian stopping rule relies on updating
a beta-distribution. In either case, the simulation results support stronger homogeneity
and polarization for smaller than for larger samples.

Haldane’s Labor-Saving Sampling Method

Assuming that judges, like statisticians, are sensitive to
√

n Haldane (1945) proposed
the standard error se as a variable threshold, calling for sample truncation when the
number of “likeable” k traits (or the complementary number n˘k of “not likeable” traits)
obtained in a sample of n exceeds an a-priori chosen threshold t. Figure 1 shows that this
stopping rule implies that sample heterogeneity (conceived as the standard deviation
SD = set∗

√
n increases (left chart) and impression strength J decreases with increasing

sample size n (right chart). Note that a positive J reflects a deviation of judgments from
.5 in the correct direction.

Belief-Updating Using the Beta-Distribution in Sample-Based
Impressions

A Bayesian approach, in contrast, renders the stopping rule independent of√
n.In Bayesian calculus, the posterior odds of, say, p("likeable" | all sampled

traits)/p("unlikeable" | all sampled traits) equals the prior odds (set to 1/1 for uni-
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Figure 2. Plot of sample SD (left chart) and judgment strength J (right chart) as a function of n, the size
of samples truncated according to a Bayesian stopping rule, assuming truncation when 90% posterior highest
density becomes narrower than the threshold interval width t = .4. SD and J are calculated from p′ = α

α+β
,

the Bayesian estimate of p("likeable")|n members), SD =
√︁

p′(1 − p′ ∗2; J = 2p′ −1 if p ≥ 1
2 ; and J = −2p′ +1

if p < 1
2 .

form priors) multiplied k times with a likelihood ratio of LR = p(likeable trait added
|"likeable" group)/p(likeable trait added |"unlikeable" group) and (n˘k) times with the
reverse ratio 1/LR. Because k LR updates and (n˘k) 1/LR updates cancel each other
out, a Bayesian stopping rule is sensitive to the frequency difference of likeable minus
unlikeable members, regardless of n. Thus, the same 2:1 ratio of 16 likeable and 8 un-
likeable traits in a larger sample affords stronger evidence for the prevailing positivity
than 8 likeable and 4 unlikeable traits.

We realize uniform priors as a beta distribution Beta(α = 1, β = 1). Updating these
priors with k “likeable” and (n − k) “not likeable” traits, the posterior probability den-
sity distribution becomes Beta(α0 + k, β0 + n − k).2 Sampling is truncated when the
highest density of this posterior distribution is condensed within a sufficiently narrow
interval. The width of this interval is an expression of how confident and stable the
current impression is. Truncating samples this way produces similar (increasing) SD
and (decreasing) J functions of n as the Haldane algorithm (Figure 2). Thus, whether
the stopping rule is sensitive to

√
n or not, the simulated self-truncation effect on ho-

mogeneity and extremity of group impressions remains largely unchanged. We obtain
similar decreasing SD and J functions in a simulation of sampling from a universe
of non-binary likeability scale values. Self-truncated small samples are regularly more
homogeneous (consistent, conflict-free) leading to stronger (more polarized) judgments
than larger, non-truncated samples.

Empirical Evidence

Encouraged by these simulation results and by converging evidence from earlier simu-
lations and experiments (Prager et al., 2018; Prager & Fiedler, in press), we based our
investigation of group impression judgments on the two-stage process model depicted
in Figure 3. Parameters of the population sets (particularly the positivity proportions
p), from which group traits are sampled, are supposed to exert a direct influence on

2In general, across all possible p(”likeable”) levels, Beta(α, β) = Γ(α+β)
Γ(α)+Γ(β) p(”likeable”)α−1(1 −

p(”likeable”))β−1 for 0 ≤ p(”likeable”) ≤ 1.
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Figure 3. Two stage process model of sample-based group impression judgments.

judgments of group homogeneity and polarization (measured by H and J), but also an
indirect effect mediated by small sample size (

√
n) resulting from early truncation.

We conducted four experiments to elucidate the antecedent sampling input and the
judgmental consequences of sample truncation and to disentangle the direct and the
mediate sampling effects on group judgments. As a pre-condition of the main experi-
ments, we ran two pre-studies to check on the suitability of the stimulus materials and
task procedures. The purpose of the first pre-study was to demonstrate that sample size
n reflects the same stimulus characteristics and produces equivalent judgments effects,
regardless of whether it refers to existing groups labeled with common names or to
samples without any reference to existing groups. The same canonical relationship of
sample size to homogeneity and evaluation strength can be expected with either type of
sample. The second pre-study will then establish the applicability of the density model
to the trait stimuli used in the following experiments, using a method introduced by
Goldstone (1994).

Pre-Study 1: Sample size, Homogeneity, and Evaluation of Existing
Social Groups

We selected labels of 28 social groups from Study 3a in Koch et al. (2016), for example
“artists”, “car drivers”, “conservatives” or “vegans”. We selected group labels that were
supposed to be familiar to most people, but also sufficiently similar in their level of
abstraction (see Appendix for the full list). Two subsets of participants were asked to
rate either group knowledge or group likeability and homogeneity. Group labels were
presented one after another. After seeing a new group label, knowledge ratings were
prompted by two questions (on the same screen below the displayed label): “How much
do you know about this group in general?” and “How many members of this group
do you know?” They responded by clicking on a continuous scale below each question,
which was marked at the endpoints, ranging from “nothing” to “very much”, and from
“none” to “a great many”. A second subset of participants also completed sequential
ratings of one group label after another. This time groups were rated on likeability
and homogeneity, prompted by the questions “How much do you like this group?”
(continuous scale with endpoints labeled “strong antipathy” and “strong sympathy”)
and “How similar are group members to each other?” (endpoints “very different” and
“very similar”).

Results and Discussion. We averaged responses to both knowledge questions,
which were highly correlated (hierarchical correlation nested in N = 119 participants:
Mean r = .77, SD = .18). Individual correlations were positive for 99% of all partici-
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pants. Likeability (N = 83) and homogeneity (N = 119) ratings for each social group
label were averaged across all participants. As expected, group knowledge correlated
negatively with rated homogeneity (r = −.58, t(26) = 3.62, p = .001) but positively
with likeability (r = .42, t(26) = 2.38, p = .025), reflecting the joint dependency of
both major inter-group biases on the amount of group knowledge, operationalized by
two highly correlated ratings.

Pre-Study 2: Density of Traits

In the second pre-study, we validated the assumption that the density (i.e., average
distance to other stimuli) is higher for positive than for negative traits and for extreme
than for moderate traits. This amounts to expecting lower density for traits high than
low in diagnosticity.

Methods. The stimulus traits were a set of adjectives that had been scaled for va-
lence in Prager and Fiedler’s (in press) experiments on individual impression-formation.
We applied the spatial arrangement method (Goldstone, 1994) to assess the distance
between the 70 traits of the entire set as the core feature of density. In each of five suc-
cessive study rounds, participants were asked to position twelve traits (font size 24 pt)
in a white square (side length 278 px). They were thoroughly instructed to group fitting
words together and to spatially separate non-fitting ones. The white square was initially
empty; participants could then drag and drop traits one after another from a grey box
below the positioning area by clicking, moving and releasing the mouse. Traits could be
relocated later. After all twelve items were placed, a button to continue emerged. Click-
ing the continue-button cleared the screen and started a new round of twelve traits. For
each round the twelve traits were drawn randomly without replacement from the entire
pool of traits. Thus, the order of traits was newly randomized for each participant.

The study was conducted first in the context of five other unrelated studies (on
serial back-translation, simultaneous encoding of two trends, personal data privacy, and
multiple contingencies learning) at Heidelberg University. The age of the ninety-five
participants ranged from 18 to 65 years (M = 24.93), with 78 being female, 16 male
and one of other gender. Ninety participants were students (16 Psychology students).
We intended to use a minimal duration of 20 seconds per round as exclusion criterion,
but no participant had to be excluded by this criterion.

The whole procedure was executed by Java software. For each possible pair out of
the set of 70 traits, the Euclidean distance between placement positions was averaged
across all participants who rated that pair of traits in the same round.

Results. We computed the distance of each trait to the rest of the entire set of 70
by the sum of squared distance values of the individual trait and all other traits. Going
beyond Unkelbach et al. (2008), we not only expected negative traits to be more distant
from each other than positive ones, but also extreme traits to be more distant from
others than moderate ones. In a regression analysis of distance scores, this two-fold
expectation should be evident in a strong linear trend (i.e., distance decreasing with
trait positivity) along with a quadratic trend (to capture the higher distance of extreme
than moderate traits of either valence). Figure 4 corroborates exactly this pattern.
Standardized regression coefficients confirmed that distance decreased with increasing
positivity (linear β = −.64, t(68) = 6.84, p < .001) and with increasing extremity
(quadratic β = .21, t(68) = 2.28, p = .026).
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Figure 4. Average distance between traits and the remaining set (i.e. “global distance”) plotted as a function
of trait valence norms. Each point represents one trait term.

Experiment 1

Having approved the stimulus materials and the comparability of real groups and mere
trait samples, we can now move on to Experiment 1. Its primary purpose was to substan-
tiate the assumptions of the two-stage process model in Figure 3. In essence, we wanted
to demonstrate that similar self-truncation effects as in former research by Prager et al.
(2018) on impressions of individual targets can be found in a group impression forma-
tion task of less entitativity, when each sampled trait refers to a different member of
a group. Moreover, because inter-group research is concerned with both homogeneity
and impression strength, Experiment 1 introduces homogeneity measures. We assessed
both mean impressions and perceived homogeneity using two operationally independent
measures: rating-scales and the distribution-builder method (Sharpe et al., 2000). We
expected judgments of group homogeneity and polarization (on the likeability scale) to
be jointly determined by a direct influence of the traits sampled from the population
set and an indirect influence mediated by the sample size resulting from self-truncation
(see Figure 3).

To substantiate the viability of mere trait samples for the study of group impres-
sions, we compared one condition with meaningful labels of existing social groups to
another condition with meaningless labels (like “group A”) attached to mere samples of
traits. Based on materials constructed in previous research (Prager & Fiedler, 2021) on
individual impression formation, we relied on population sets of traits that represented
different levels of diagnosticity (valence and extremity). All four experiments involved
random sampling of traits from these distinct population sets.

Participants and design. One-hundred and thirty-four participants were recruited
from a participant pool at Heidelberg University. Participants’ age ranged from 17 to
77 (M = 24.88); 107 participants were female. One hundred and twenty-six participants
were students, of which 36 were students of psychology. Fifteen participants who had
invariantly sampled one or all 16 traits on every trial were excluded. Of the remaining
participants, 62 were randomly assigned to the meaningful groups condition and 57 to
the meaningless-labels condition. In addition to this between-participants factor, the
positivity proportion p of the population set from which trait samples were drawn was
manipulated within participants as a repeated-measures factor.

The experiment was second in a sequence of four unrelated experiments (on directed
forgetting, speed-accuracy trade-off, and simultaneous encoding of two trends) in a
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Figure 5. The distribution builder: A participant has already placed three squares on a moderately and an
extremely positive likeability-position. Three further squares must still be set.

one-hour session. Participation was compensated either by payment (8e) or by course
credit.

Materials. From the entire list of 70 adjective traits (see pre-study), we extracted
four potentially overlapping population sets of 30 randomly ordered stimulus traits,
from which the stimulus samples were drawn. The four sets had positivity proportions
of p = .20, .33, .67, .803, that is two sets were predominantly positive, two negative in
valence and orthogonally, two sets were of moderate and two of extreme valence. On
each trial, a target group was described by a random sample of traits drawn from one
population set. Each participant completed 28 trials in random order, seven drawn from
each population set.

Procedure. After providing basic demographic data, participants received instruc-
tions saying that each trial started with a group label displayed on top of the screen
(21pt bold face). By pressing the space bar, participants could invoke a new trait (dis-
played in font size 20pt in the top center region of the screen). At each point between
n = 1 and n = 16, they could decide to either solicit another trait (by pressing the space
bar again) or to truncate the sample using the Enter key and proceed to the judgments.
All traits remained on screen as long as sampling continued. They were listed vertically;
when sample size exceeded n = 8, additional traits were displayed in a second column.
The most recent trait was highlighted by enhanced contrast.

Immediately after the truncation decision, participants provided their group judg-
ments. Using a modified version of the Sharpe et al. (2000) “distribution builder”, they
were asked to construct a distribution curve for the group’s likeability, by clicking the
cells of six degree-of-liking columns of a 6 x 6 grid (illustrated in Figure 5). Clicking a
column results in placement of a grey square in the respective column. Note that the
distribution builder offers a measure of both the mean and dispersion of the likeability
impression on the target group.

Upon completion of the distribution builder task, participants continued to a new
screen on which three horizontal graphical rating scales with marked endpoints appeared

3Mean (SD) of the four population sets were -.28 (.39), -.19 (.41), .18 (.42), .30 (.42). Selection of traits aimed
at keeping all parameters identical or symmetrical between sets.
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Table 1. Regression Analyses Testing for Consistency and Sensitivity of Impression Judgments Assessed
by the Distribution Builder and Rating Scales

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Tests for consistency

r(MDB , LRating) .90 (.13); 99% .89 (.09); 100% .92 (.06); 100% .92 (.10); 100%
r(SDDB , HRating) -.38 (.28); 87% -.43 (.26); 92% -.33 (.36); 79% -.46 (.26); 96%

Test for sensitivity to sampling input

r(LRating , MT rait valence) .77 (.21); 98% .79 (.19);98% .77 (.16); 100% .84 (.11); 100%
r(MDB , MT rait valence) .74 (.20); 99% .76 (.19); 98% .75 (.15); 100% .81 (.12); 100%
r(HRating , SDT rait valence) .30 (.21); 91% .32 (.22); 96% .27 (.31); 77% .38 (.23); 94%
r(SDDB , SDT rait valence) -.30 (.23); 90% -.36 (.26); 88% -.31 (.28); 84% -.38 (.24); 92%

Note. The upper part of the table provides correlations (r) between distribution builder (DB) measures
and ratings of likeability (L) and homogeneity (H). The bottom part contains means (M) and standard
deviations (SD) of individual judges’ correlations between measures of L and H and average trait valence
norms across all 28 samples. Percentages indicate consensus proportions (i.e. the proportion of participants’
individual values sharing the sign of the average value) of individual judges’ correlations sharing the same
sign as the average correlation.

one after another. They provided their ratings by clicking on the appropriate horizontal
scale position. Scales referred to likeability (“How much would you like that group” with
endpoints “highly unlikeable” and “highly likeable”), homogeneity (“How similar are the
group members in their likeability?”, endpoints “very different” to “very similar”), and
confidence in both ratings (“How confident are you in these judgments?” ranging from
“very uncertain” to “very sure”). During the entire judgment phase, the current group
label remained visible in the central top position on the screen. When all ratings were
completed, participants could start sampling traits of a new group by clicking a button4.

Results

Quality of judgment data. Table 1 provides an overview of the quality and reliability
of the judgment data from all four experiments. Consistency checks testify to the high
quality of judgments and to participants’ motivation. We extracted means and standard
deviations of likeability ratings L from the distribution-builder responses to the six
likeability scale values: (-1, -.6, -.2, .2, .6, 1), weighted by the number of squares that
had been placed in the respective column. Individual participants’ correlations between
the average likeability positions of the distribution builder and the likeability ratings
on the graphical scale ranged from r = .89 to .92.

For an index of sensitivity to sampled input traits, we correlated ratings and distri-
bution builder scores with the average valence norms of the sampled traits underlying
the likeability judgments.5 The correlations in the bottom of Table 1 corroborate that
judgments were highly sensitive to the direct influence of the sampled traits’ valence
norms. Likeability measures correlated strongly with average valence scale values of the
sampled traits (average r ranged from .74 to .84 across experiments). Consensus rates
across participants were close to 100% (see Table 1).

Both measures of homogeneity converged only moderately: The standard deviation
of distribution-builder positions (i.e. inverse homogeneity) correlated with homogeneity
assessed by the rating scales in the range of r = −.33 to -.46 between the four exper-
iments. The homogeneity measures correlated only moderately with samples’ valence

4After finishing the experimental task, participants worked on knowledge ratings of pre-study 1a.
5As in the preceding quality checks, these results refer to likeability judgments L as they were, as distinguished

from the deviation scores J used to assess judgment strength.
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Table 2. Means (SD) of Individually Calculated Standardized Regression
Weights (β) Using the Linear and Quadratic Trend of Population Set Valence
(Proportion Positive) as Predictors.

Predictors
Criterion p (linear) p (quadratic)

β = .26 (1.15) β = −.24 (1.13)
Sample size

√
n t(118) = 2.50 , p = .014 t(118) = 2.28, p = .024

62% 62%

β = −.48 (1.09) β = .57 (1.06)
Homogeneity H t(118) = 4.82, p < .001 t(118) = 5.80, p < .001

66% 71%

β = −1.02 (1.08) β = .83 (1.05)
Impression strength J t(118) = 10.30, p < .001 t(118) = 8.63, p < .001

82% 80%

norm standard deviations (i.e. inverse homogeneity; average r from .27 to .38).
Valence and extremity as antecedents of truncation and direct sampling

effects. The four population sets from which samples were drawn allowed for an or-
thogonal test of the impact of two valence-measures of diagnosticity. When predicting√

n, H and J from the proportion p of positive traits in the population sets (p = .20,
.33, .67, .80), the influence of negative versus positive valence should be manifested in a
linear trend whereas the influence of extreme versus moderate valence should be evident
in a quadratic trend.

Consistent with the expectation that more diagnostic traits facilitate earlier trunca-
tion, regression analyses of

√
n showed that (the square root of) sample size tended to

be smaller for negative (linear β: M = .26, SD = 1.15) and for extreme population sets
(quadratic β: M = −.24, SD = 1.13) than for positive and moderate population sets.
Likewise, the analysis of judgment strength confirmed the expectation of a direct influ-
ence. Negative and extreme sets evoked stronger impressions than positive and moderate
ones (linear β: M = −1.02, SD = 1.08; quadratic β: M = .83, SD = 1.05). Moreover,
in the analysis of perceived homogeneity H, samples/groups described by negative and
extreme compared to positive and moderate population sets appeared more homoge-
nous (linear β: M = −.48, SD = 1.09; quadratic β: M = .57, SD = 1.06; see Table
2).

Truncation effects on H and J. Turning to the self-truncation effects proper (i.e.,
higher homogeneity and group polarization in small than in large groups), we calcu-
lated within each individual participant (across trials) the correlations of samples size√

n with impression strength J and homogeneity H. We averaged all measures (distri-
bution builder and ratings) of impression strength J and both (z-standardized) values
of homogeneity H. Recall that impression strength J is a deviation score with a positive
sign when likeability L deviates from the scale midpoint in the correct direction (i.e.,
L > midpoint for samples drawn from a positive set or L < midpoint for samples drawn
from a negative set; J is negative for deviations pointing in the incorrect direction). We
related the square root

√
n of sample size to homogeneity and strength of impression

judgments to capture the expected non-linear function.
The scatter diagrams in Figure 6 reflect the typical impact of self-truncated sam-

pling. Table 3 indicates the corresponding mean sample sizes (and standard deviations)
of

√
n, homogeneity scores H, impression strength scores J , and average individual

correlations r√
n,J , r√

n,H , and rJ,H , (across 28 judgments) along with the standard de-
viations (between participants) in parentheses. Results in the left column are pooled
over all participants; separate results for meaningful groups and meaningless samples
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Figure 6. Perceived homogeneity H (left) and impression strength J (right) plotted as function of self-
truncated sample size n. Grey dots indicate individual averages for each sample size, the black line represents
global averages split by sample size.

Table 3. Means (SD) and % Consensus in Sign Across Participants

Variable Pooled for both conditions Meaningful social group labels Meaningless labels

n 7.68 (3.74) 7.69 (3.90) 7.67 (3.60)√
n 2.67 (.66) 2.67 (.68) 2.67 (.64)

H 0 (.76) -.10 (.79) .11 (.73)
J .28 (.11) .25 (.12) .32 (.09)

r√
n,H -.19 (.25); 74% -.17 (.25); 73% -.22 (.25); 81%

r√
n,J -.19 (.23); 82% -.16 (.23); 74% -.22 (.20); 88%

r,H,J .44 (.25); 93% .41 (.26); 92% .47 (.24); 95%

are given in the middle and right column, respectively.
Several sensible findings deserve to be emphasized. First, a strong overall tendency

towards positive J scores shows that participants were highly sensitive to actually ex-
isting trends in the population sets from which trait samples were drawn. Yet, secondly,
there was considerable variation across judgments in

√
n, J and H to allow for marked

correlations. The last row of Table 2 shows that impression strength J and homogene-
ity H correlated strongly and positively over trials. Of central importance, third, both
self-truncation effects were evident from clearly negative correlations, r√

n,H and r√
n,J ,

reflecting both small-group homogeneity and small-group polarization. Mean correla-
tions of roughly one standard deviation below zero reflected a strong and regular effect
that generalized across a large majority of participants: mean r√

n,H = −.19, SD = .25
(consensus in sign: 76%); mean r√

n,J = −.19, SD = .22 (consensus 82%).
Knowledge: Effects of meaningful group labels. A comparison of the mid-

dle and right column of Table 3 shows that both experimental conditions yielded highly
similar results. Whether trait samples referred to naturally existing groups with a famil-
iar name or to samples with meaningless names, the same fundamental self-truncation
effects emerged. Small sample size triggered high perceived homogeneity and strong im-
pressions. A small

√
n in a meaningless sample yielded similar small-group homogeneity

as impoverished knowledge about existing out-groups. A contrast in r√
n,H between con-

ditions was not significant, t(117) = 1.06, d = .19, p = .291.
Table 3 also shows that group labels did not affect sample size (t(117) = .04, p = .968)

and exerted little influence on homogeneity (t(117) = 1.51, p = .135); samples labelled
with existing social group names appeared slightly less homogeneous than groups with-
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out meaningful labels. Still, judgments of existing social groups were less polarized,
that is, groups labelled with existing names were judged less strongly (t(117) = 3.64,
p < .001).

Discussion

Regular and consistent results corroborate the reliability of various measures of group
impression judgments obtained in Experiment 1, reflecting participants’ motivation and
commitment. The average pretest valence scores of the sampled traits afforded a pow-
erful predictor of likeability judgments, and so did dispersion of sample valence norms
predict homogeneity reports: Judgments were systematically driven by the sampling
contents.

The results obtained with the “distribution builder” (Sharpe et al., 2000) strongly
converged with the continuous rating measures of group impression judgments, sug-
gesting that the distribution builder offers a valuable instrument for group-judgment
research.

Experiment 1 suggested that the same functional rules that describe impression judg-
ments of individuals from trait samples (Prager et al., 2018) also apply to groups as
impression targets. We consolidated the sample-truncation effect obtained for individ-
ual impression judgments. Impressions were stronger and more homogenous for smaller
than for larger samples, analogous to the well-known polarization and homogenization
of (small) out-group samples, relative to (large) in-group samples (Brewer, 1993; Linville
& Jones, 1980; Quattrone & Jones, 1980).

Comparisons of judgments of existing groups with meaningful labels to mere trait
samples of unknown “groups” with meaningless labels did not reflect a systematic influ-
ence of unequal prior knowledge. Sample-truncation effects (small-sample homogeneity
and polarization) were about equally strong in both experimental conditions. Yet, mean-
ingful group labels led to less extreme, more cautious likeability judgments than samples
without meaningful labels, presumably because prior knowledge serves to dampen the
impact of on-line sampled trait information.

The experimental design included two valence-related measures of diagnosticity: pop-
ulation set valence and extremity. Despite the reduced entitativity of groups compared
to individuals, which might dilute systematic influences on sample truncation and im-
pressions, group judgments nevertheless showed the same typical tendency as individ-
ual judgments towards earlier truncation and stronger judgments when negative and
extreme traits rendered information more diagnostic than positive and moderate traits.
Consistent with our theoretical reasoning, high diagnosticity of the sampled traits en-
hanced the impact of sample size and truncation effects.

Experiment 2

So far, Experiment 1 and two pre-studies provided convergent evidence for both an-
tecedent and consequent conditions of self-truncation. On one hand, because negative
and extreme traits are more diagnostic than positive and moderate traits, valence and
extremity afforded critical predictors or antecedent conditions of self-truncation. On
the other hand, the small sample sizes resulting from early truncation had two regular
consequences; small sample size

√
n led to high homogeneity H and high impression

strength J . Moreover, as anticipated by the structure depicted in Figure 3, our findings
also reflect a direct influence of sampled traits on group judgments, independent of
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the mediational truncation effect, as manifested in stronger trait valence and extremity
effects on H and J than on self-truncated sample size

√
n.

Nevertheless, the stable and coherent pattern of Experiment 1 results raises some
open questions concerning the relationship of the two major phenomena of inter-group
judgments, out-group homogeneity and out-group polarization. One problem refers to
the independence of H and J measures. To the extent that the variance of extreme
population sets (at positivity proportions of p = .2 and p = .8) is restricted compared
to the variance of moderate population sets (at p = .33 and p = .67), maybe in particular
for negative traits, the homogeneity effect may reflect an artificial consequence of the
ecological population from which traits are sampled.

To disentangle perceived homogeneity, H, conceived as a dependent measure or a
judgmental consequence, from the variability of traits in the population sets, in Ex-
periment 2 we deliberately manipulated variability orthogonally to the valence of the
population sets. Thus, at each level of positivity, we constructed two parallel popula-
tion sets of traits, one with traits of high variability in their likeability values, and one
with traits of low variability. If the perceived homogeneity continues to be higher for
small than for large groups in such an orthogonal design, this can no longer reflect the
restricted variance of extreme population sets.

More generally, the orthogonal design allows us to understand the direct as well
as the indirect (truncation-mediated) influence of diagnosticity (valence and extrem-
ity) on group judgments. The density model implies that negative and extreme traits
should trigger earlier truncation, yielding smaller sample sizes, and higher H and J
judgments than positive and moderate traits, for higher distance between the former
traits increases diagnosticity (i.e., lesser overlap of added traits with preceding traits).
Conversely, there is no reason to expect that the other factor of the orthogonal design,
high versus low variability of trait likeability in population sets, leads to faster trunca-
tion or stronger H and J judgments, simply because density relies on multidimensional
trait distance, rather than on uni-dimensional likeability “distance”. The design guar-
antees that high and low likeability variability of positive and negative population sets
is symmetrical. Our theoretical approach implies a persistent influence of diagnosticity
(valence x extremity) even when trait variability is controlled for.

Methods

Participants and design. Ninety-four participants were recruited for the second ex-
periment via the Psychology subject pool at Heidelberg University. The experiment was
conducted as an online study, which was controlled by php and javascript. Participants’
age was 18 to 59 years (23.56 years on average), of which 72 identified themselves as
female, 20 as male and 2 as other. Eighty-seven students (22 psychology students) par-
ticipated. We also excluded data from two participants whose total participation time
was shorter than 7 minutes (median around 13 minutes), which did not allow for care-
ful task execution. Another 11 participants needed to be excluded from data analysis
because their sample truncation strategies resulted in a constant sample size of either
n = 1 (minimum) or n = 16 (maximum), resulting in 82 analyzed data sets.

Both design factors, the positivity proportion p of traits in different population sets
and trait variability, varied within participants, across 20 impression judgment trials,
as explained in the Materials section below.

Materials. When selecting items from the pool of traits, variability and valence are
hard to separate. Trait populations of extreme valence tend to be more homogenous in
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valence than moderate ones, because upper and lower boundaries restrict distributions
in extreme ranges. To construct population sets of orthogonal valence and homogeneity,
we applied an iterative procedure: As the maximum observable sample size was set
to 12 traits, we set the population set size to 12 accordingly. To manipulate valence,
we set five levels of p, involving 2, 4, 6, 8, and 10 positive out of 12 traits. For each
of these five valence levels, we formed parallel population sets: two of (identical) high
and two of low within-set variance each using an iterative algorithm (repeated random
draws with replacement from the total set of 70 traits) until the resulting population
sets approximated the desired characteristics (symmetry in valence mean, approximate
equivalence in density and frequency). The iterative procedure made sure that not only
the entire set but also sub-set parameters of each population set remained stable with
regard to the parallel variability levels, valence, and control measures. By generating
two sets per parameter combination (i.e. 5 p-levels x 2 variability levels), 20 population
sets were formed in total. A side benefit resulted from this procedure: Valence now
varied at a slightly higher level of resolution than before; the 20 population sets now
covered 5 steps of negative versus positive valence (i.e., p varying from 2/12 to 10/12).

Procedure. The entire procedure was largely the same as in Experiment 1. Each
participant provided judgments of 20 self-truncated trait samples representing all 20
population sets, with meaningless group labels. Set order within the experiment and
the order of traits within each set were shuffled (randomized) for every participant.

Results

Valence and extremity as antecedents of truncation and direct sampling ef-
fects. To replicate the basic results from Experiment 1, we ran regression analyses with
criteria

√
n (truncation) and then of H and J on the valence and extremity predictors

(diagnosticity), operationalized by linear and quadratic trend over the p parameter in
addition to the predictor within-set variability. Note that all three predictors, valence
(linear p), extremity (quadratic p), and trait variability, are orthogonal by design, thus
making interaction terms obsolete. Table 4 and Figure 7 summarize the results. Regres-
sion parameters for the linear and quadratic trend of valence p consolidate findings of
Experiment 1. Samples tend to be truncated earlier (criterion

√
n ) the more negative

and extreme the population set is in valence. Accordingly, samples from predominantly
negative and extreme in comparison to positive and moderate sets are judged more
strongly (J) and more homogenous (H).

Within-set variability. The novel variable of this experiment, within-set variability
at different p levels, hardly explained any variance when predicting

√
n and J , beyond

valence (linear p effect) and extremity (quadratic effect). Not surprisingly, the variabil-
ity predictor did receive a significant regression weight for the prediction of perceived
homogeneity H, which is evident from the divergence of curves in the center chart of
Figure 7. Nevertheless, H judgments were mainly determined by the diagnosticity of
the sampled traits; valence and extremity together accounted for more variance in per-
ceived homogeneity than population set variability. Note also that the curves for high
and low variability diverge mainly for positive impressions, when high variability entails
the diagnostic impact of a few negative traits in a set.
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Figure 7. Sampling and judgment parameters (sample size, Homogeneity H, impression strength J) plotted
by population sets. Population set proportion of positive traits p is plotted on the abscissa. Lines connect the
means of participants’ individual values; error bars represent specific standard errors. Light grey (dark grey)
curves refer to high-variance (low-variance) population sets.

Table 4. Standardized Mean (SD) β Parameters of Multiple Hierarchical Regression with Predictors
Population Set Variability and Valence (Linear and Quadratic Trend)).

Predictors
Criterion p (linear) p (quadratic) Variability

β = .41 (1.21) β = −.34 (1.19) β = .04 (.20)
Sample size

√
n t(81) = 3.06 , p = .003 t(81) = 2.61, p = .011 t(81) = 1.72, p = .089

60% 61% 59%

β = −.61 (1.22) β = .65 (1.20) β = .11 (.23)
Perceived homogeneity H t(81) = 4.50, p < .001 t(81) = 4.92, p < .001 t(81) = 4.17, p < .001

68% 67% 70%

β = −1.93 (1.00) β = 1.82 (.98) β = .06 (.20)
Impression strength J t(81) = 17.42, p < .001 t(81) = 16.81, p < .001 t(81) = 2.90, p = .005

98% 99% 67%

Note. Each row reports results of one multiple regression analysis, respective criteria are indicated by the
left column. Percentages refer to the proportion of individual parameters of the same sign as the aggregate
coefficient.
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Experiment 3

Experiment 3 offers an immediate test to corroborate the density account of truncation
and group impression judgments. If the average distance of traits to all other traits is the
crucial stimulus property that drives the impact of sampling and truncation on group
judgments, then the distance norms should explain for a substantial part of variance
in regression analyses of

√
n, H, and J , beyond the valence and extremity predictors.

For a test of this notion, in Experiment 3 we replaced the manipulation of population
set variability by a manipulation of average trait density within population sets (and
thus samples), which was again orthogonal to the manipulation of the p proportions
underlying the manipulation of valence and extremity. If trait diagnosticity is sensitive
to the distance parameter of stimulus traits, capturing the diversity versus overlap of
traits in multidimensional space, then the average distance norm of trait samples should
contribute substantially to predicting

√
n, H, and J .

Methods

Participants and design. Ninety-eight participants were recruited via the Psychology
subject pool at Heidelberg University. The experiment was the second in a block of three
unrelated studies (on tradeoff-decisions in an information-purchasing paradigm, and on
environmentally sustainable behavior) at a Psychology lab at Heidelberg University.
Participants were between 17 and 77 years old (mean = 26.11), 75 were female. Ninety
students (14 Psychology) participated. Five participants, who consistently truncated
sampling after one item or did never truncate before automatic stopping (at n = 16)
were excluded from the analyses; 93 data sets were analyzed. As in Experiment 2, both
design factors, the positivity proportions p and the trait distance norms at each level of
p varied within participants, across 34 judgment trials.

Materials. Analogous to Experiment 2, the aim was to generate population sets
of orthogonal within-set distance, valence (linear p), and extremity (quadratic p). Al-
though positive (negative) valence and high (low) density are naturally related in the
ecology (see Unkelbach et al., 2008), we relied on a similar iterative procedure as in
Experiment 2 to accomplish an orthogonal manipulation. Setting the maximum observ-
able sample size to 16, we defined 17 levels of p, ranging from 0 positive traits up to
16 out of 16 positive traits. For each of these 17 valence levels, we formed two parallel
population sets: one of high and one of low average within-set density. The population
sets were selected by an iterative sampling algorithm, where possible population sets
were repeatedly drawn (with replacement) from all available traits, but only those with
the best-fitting characteristics were kept. Those target characteristics were symmetry
in valence, identical values in word frequency, but also within-set stability (i.e. that
sub-sets of the total set have similar density-values as the total set).

Procedure. Each participant engaged in self-truncated sampling and judgments
on 34 unlabeled groups corresponding to the 34 population sets. Set order within the
experiment and the order of traits within the sets were both shuffled randomly for every
participant.

Results

Valence, extremity and within-set density effects. Again, valence and extremity
strongly predicted all three criteria

√
n, H, and J in a series of regression analyses, thus
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Figure 8. Sampling and judgment parameters (sample size, Homogeneity H, impression strength J) plotted
by population sets. Population set valence (p) is plotted on the abscissa. Lines connect the means of participants’
individual values; error bars represent specific standard errors. Light grey indicates diverse and dark grey dense
population sets.

Table 5. Standardized Mean (SD) β Parameters of Multiple Hierarchical Regression with Predictors
Population Set Valence (Linear and Quadratic Trend)) and Average Within- Population Set Density.

Predictors
Criterion p (linear) p (quadratic) Within-set density

β = .82 (.80) β = −.79 (.80) β = −.07 (.18)
Sample size

√
n t(92) = 9.93 , p < .001 t(92) = 9.56, p < .001 t(92) = 3.54, p = .001

82% 84% 66%

β = −1.17 (.86) β = 1.32 (.82) β = .14 (.17)
Homogeneity H t(92) = 13.12, p < .001 t(92) = 15.49, p < .001 t(92) = 7.64, p < .001

87% 95% 78%

β = −1.94 (.52) β = 1.74 (.51) β = .10 (.13)
Impression strength J t(92) = 36.29, p < .001 t(92) = 33.03, p < .001 t(92) = 7.33, p < .001

100% 99% 80%

Note. Each row reports results of one multiple regression analysis, respective criteria are indicated by
the left column. Percentages refer to the proportion of individual parameters of the same sign as the
aggregate coefficient.

replicating the same robust pattern as in previous experiments. However, including
the average distance score of sampled traits as a third predictor, along with the linear
(valence) and quadratic (extremity) p-contrast, created a marked increment in predictive
validity. As portrayed in Figure 8 and in the descriptive statistics in Table 5, truncation
(
√

n) as well as group impressions (H and J) were not only strongly related to valence
and extremity but also to the distance predictor.

Low within-sample distance (i.e. high density) lead to earlier truncation than high
within-sample distance (low density), as evident from a mean regression weight of β =
−.07 (.18), t(92) = 3.54, p = .001 and a consensus rate of 66% of participants with
a negative individual β. Because group judgments were not only affected indirectly by
the truncation effect but also directly reflected the properties of sampled traits (see
Figure 8), distance received a stronger regression weight in predictions of H, mean
β = .14 (SD = .17), t(92) = 7.64, p < .001, 78% consensus, and J , β = .10 (SD = .13),
t(92) = 7.33, p < .001, 80% consensus. Both perceived homogeneity (H) and impression
polarization increased with decreasing trait distance.

Thus, consistent with the density-model analysis, the average distance of sampled
traits allowed us to predict the truncation measure

√
n and the greatest part of the

group-impression measures J and H, whereas within-set variability (operationalized as
variance between traits) did not contribute much beyond the diagnosticity of traits in
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the previous experiment. After all, diagnosticity (i.e., negative valence and extremity)
is a property of traits, independent of the variance of the set of different traits included
in a set.

Experiment 4

To round up the insights gained from our density-model analysis of trait sampling and
group impression formation, we report a final experiment that included a correlate
of density that is presumably irrelevant to trait diagnosticity, namely, the linguistic
frequency of trait terms. Previous research has shown that positive high density (low-
distance) words occur more frequently in a large text corpus than negative low density
(high-distance) words. However, despite this correlation, there is no reason to assume
that trait diagnosticity depends on the infrequency of words in the lexicon, as distin-
guished from their distance in mental representations. It is easy to find synonyms of the
same trait (at a given level of diagnosticity) denoted by frequent and infrequent words
(example: loyal and trustworthy), and it is easy to think of equally frequent words of
clearly different diagnosticity (example: detail-orientated and manipulative). Our theo-
retical approach therefore predicts that word frequency counts should hardly contribute
predictions of

√
n, H, and J from trait samples.

Methods

Participants and design. Fifty-six participants were recruited via the Psychology
subject pool of Heidelberg University. The experiment was the first in a 55-minutes
session of four unrelated studies (on speed-accuracy tradeoff in choices, detection of
statistical suppression, and probability prediction from sampling). Participants’ age
ranged from 18 to 51 with 22.88 years on average. Thirty-five identified themselves as
female, 20 as male and one other. Twelve out of a total of 55 students were students
of psychology. Three participants who invariantly sampled one or the maximum of all
16 traits were excluded, leaving 53 data sets for the analysis. In a complete repeated-
measures design, each participant received in total 32 samples from four population
sets (consisting of 30 traits each), representing orthogonal combinations of positive
versus negative valence (corresponding to p = .27 and p = .73) and high versus low
word frequency. Note that given two p levels we could not distinguish extremity from
valence. Although both factors were related to density, only valence should affect the
diagnosticity of traits (conceived as distance in a mental representation), whereas word
frequency should not affect sample truncation and group impression judgments.

Materials. We assessed word frequency of the entire pool of 70 traits in large corpora
of spoken and written language (Leibniz Institut Für Deutsche Sprache, 2014, 2017),
which offered an approximate measure of word frequency. Four population sets were
constructed by an iterative algorithm; sets of 30 traits were randomly drawn from the
entire pool of 70 traits in a repetitive loop, until frequency and valence were orthogo-
nally distributed, whereas density values were equalized across population sets. Positive
population sets had a proportion of p = .73, as compared to p = .27 for negative sets.
Positive and negative sets were selected to be symmetrical also in their valence mean
and approximately equal in variance.
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Table 6. Means (SD) of Individually Calculated Regression Weights (β) of Three Diagnosticity
Contrasts

Predictors
Criterion C1: Valence C2: Word frequency C3: Interaction

β = .03 (.16) β = −.04 (.19) β = −.01 (.17)
Sample size

√
n t(52) = 1.28 , p = .208 t(52) = 1.51, p = .137 t(52) = .40, p = .694

58% 60% 55%

β = .10 (.22) β = .01 (.19) β = .02 (.20)
Homogeneity H t(52) = 3.34, p = .002 t(52) = .43, p = .667 t(52) = .75, p = .459

66% 53% 51%

β = −.26 (.30) β = .01 (.18) β = −.02 (.17)
Impression strength J t(52) = 6.34, p < .001 t(52) = .45, p = .652 t(52) = .75, p = .459

81% 45% 49%

Note. Each row reports results of one multiple regression analysis, respective criteria are indicated
by the left column. Percentages refer to the proportion of individual parameters of the same sign as
the aggregate coefficient.

Results and Discussion

Predicting truncation and judgment effects from valence and word frequency.
We included three predictors for hierarchical regression analyses for sample size (

√
n)

homogeneity (H) and impression strength (J); trait valence, frequency, and the interac-
tion thereof. The interaction term contrasted the population sets negative – infrequent
and positive – frequent (naturally occurring combinations) against positive – infrequent
and negative – frequent (reversed to the typical relation in language). We averaged
distribution builder and rating scores of H and J , as in all previous analyses.

As evident from the last two columns of Table 6, neither word frequency per se nor
its interaction with valence was ever a significant predictor, corroborating the notion
that the frequency of words in the lexicon is largely detached from the diagnosticity of
its referent trait. Only the valence of sampled traits was again related systematically
to H and J , although in this particular study we did not support the typical impact
of negative valence on earlier truncation. In the absence of a final explanation for this
unexpected failure to replicate the dependency of truncation on valence, we tend to at-
tribute this singular abnormal finding to the fact that very large set sizes in Experiment
4 allowed for a very high sampling error. Because of the resulting confusion between
trait samples from positive and negative population sets, the enhanced diagnosticity
of negative valence only fostered higher H and J judgments, but failed to affect the
truncation decision.

As in all previous experiments, truncation bore systematic relations to subse-
quent judgments. Smaller samples solicited more homogenous group impressions (mean
r√

n,H = .− .30, SD = .27, consensus in sign: 87%) and stronger impressions than larger
samples (mean r√

n,J) = −.24, SD = .22, consensus in sign: 87%). Moreover, perceived
homogeneity and impression strength were substantially correlated (mean rJ,H = .39,
SD = .23, consensus in sign: 94%).

General Discussion

In sum, all simulation results and empirical findings obtained in the present research
converge to a robust but nevertheless refined pattern that allows us to draw distinct
conclusions. Our research highlights that sample-based impression judgments follow
the same set of distinct rules regardless of whether the sampled traits characterize one
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individual target or whether each trait belongs to a different member of a group. In either
case, impression judgments are highly sensitive not only to the parametric influence of
the population sets from which the stimulus samples are drawn, but also to the specific
traits of individual samples. The final impression judgments were highly predictable
from the normative properties of the randomly sampled traits (i.e., from their semantic
and pragmatic scale values) that were determined in careful pilot testing.

Notably, the resulting impression judgments systematically deviated from a simple
averaging rule; that is, the group’s likeability was not a simple average of all sampled
traits’ likeability scale values (Anderson, 1965). Rather, trait diagnosticity strongly
moderated the impact of a newly added trait on the sequential impression updating
process. Highly diagnostic traits exerted a stronger impact on integral impressions than
less diagnostic traits of equivalent likeability. Moreover, we were able to isolate three
underlying factors of trait diagnosticity. In addition to negative (vs. positive) valence
and extremity, a trait’s high average distance to the other traits within the sample (in
accordance with the density-model framework) provided a third source of diagnosticity.
The research design of all experiments involved pre-selected population sets from which
samples were drawn randomly. Since each participant received samples from all sets and
since the different population sets were constructed to carry orthogonal combinations
of diagnosticity determinants, the research design allowed us to precisely predict the re-
sulting group impressions from orthogonal diagnosticity predictors within participants.

While the entire pattern corroborates the usefulness and fertility of a sampling-
theoretical approach to impression formation (Norton et al., 2007; Prager et al., 2018;
Ullrich et al., 2013), the main original contribution of our research consisted in the
delineation of self-truncation effects, thereby offering a completely novel perspective
on inter-group judgment. Whereas the law of large numbers and Bayesian updating of
flat priors predicts that the same proportion (e.g., proportion of positive traits, cor-
rect student responses, or favorable consumer ratings) provides stronger evidence when
observed in a larger than in a smaller sample (Bernoulli, 1713; Tversky & Kahneman,
1971), self-truncated sampling removes this large-sample advantage. Thus, 12 positive
votes in a sample of n = 16 provides stronger evidence for a positive outcome rate of
75% than the same proportion of 3 positive outcomes in n = 4, as long as sample size
is treated as independent variable. However, self-truncation causes a notable reversal
of the positive relation between evidence strength and size of a sample. When the first
few observations happen to reflect a strong and regular trend (e.g., 3 or 4 positive out-
comes in n = 4), early truncation produces polarized and homogeneous samples that
can be expected to trigger strong and conflict-free judgments. In the absence of such
a stochastic primacy effect, samples of increasing size are quite unlikely to reach simi-
larly extreme proportions and reduced variance as is possible in early phases of growing
samples. Thus, because self-truncated samples can be expected to remain small if they
exhibit strong and conflict-free patterns but become large when the initial evidence is
weak and conflict-prone, it is no wonder that self-truncated samples tend to convey
stronger evidence when they are small rather than large.

Note that this strong reversal from a positive correlation between sample size and
evidence strength with experimenter-determined n to a negative correlation with self-
truncated n is possible because n is no longer an independent variable but dependent
on the judge’s primacy impression of strong evidence that justifies early truncation.
Conversely, a large self-truncated n is reflective of judge’s appraisal that a samples
started with weak evidence that did not justify earlier truncation.

Two important implications of self-truncation effects deserve to be emphasized. First,
although the evidence for a strong reversal from a positive to a negative impact of sam-
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ple size on evidence strength has been replicated in various experiments and substan-
tiated in simulation studies (Fiedler et al., 1999; Fiedler et al., 2010; Prager & Fiedler,
2021), its relevance for political, economic, or health-related judgments and decisions
is hardly ever recognized. For instance, protocols of democratic decision groups do not
reveal whether a discussion underlying a consequential decision was self-truncated or
externally determined, or whether consumer choices were informed by self-truncated or
externally truncated sampling. In all these domains, we continue to presuppose that
more extensive information acquisition and more careful advice taking produces more
accurate decisions, if only to justify information costs.

Secondly, it is obvious that sample truncation decisions (i.e., the decisions to stop a
sequentially unfolding sample) are similarly sensitive to stimulus diagnosticity as the
final judgments. The evidence from the present investigation provides strong support for
this notion. The enhanced diagnosticity of negative, extreme, and low within-sample-
distance traits (compared to less diagnostic positive, moderate, and high-distance traits)
not only led to stronger and more homogenous final impression judgments (manifested
in stronger impression strength J and homogeneity H scores), but also enabled ear-
lier truncation (

√
n) leading to exaggerated sample estimates. As a consequence, the

dominant impact of trait diagnosticity on truncation served to amplify the diagnostic-
ity effect on the resulting impressions, as manifested in regularly negative correlations
between sample size and impression strength r√

n,J and between sample size and ho-
mogeneity r√

n,J . The process model depicted in Figure 3, which guided the present
research, explicates the co-existence of a direct influence of sampled stimulus properties
on group impressions and an indirect effect mediated by truncation effects. Empirical
support for this two-fold influence can be found in systematic (negative) relations be-
tween diagnostic trait properties (negativity, extremity, and distance) on one hand and
judgment strength (J), homogeneity (H) and negative r√

n,J and r√
n,H correlations on

the other hand.
One appealing implication of this analysis is that our sampling approach offers a

sufficient and parsimonious account of both major phenomena of inter-group research.
Granting that experienced samples are typically smaller for out-groups than for in-
groups, the reported findings afford a sufficient account of out-group homogeneity (H)
and out-group polarization (J). Because negative behavior (in the communion domain;
Reeder & Brewer, 1979) is more diagnostic than positive behavior, enhanced homogene-
ity and polarization also implies out-group derogation. Consistent with this sample size
account of inter-group judgments, pertinent research has shown that out-group polar-
ization and homogeneity are ameliorated or even reversed from minority perspectives
(when out-group sample size is relatively high; Simon Brown, 1987) or when asym-
metric social contact serves to reduce the sample-size difference between in-groups and
out-groups (Wagner et al., 2006).

For the sake of theoretical clarity, it seems appropriate to note that we do not state
that inter-group judgments can be reduced to variation in sample size reflecting variation
in diagnosticity. In a multi-causal world, inter-group relations and inter-group judgments
are presumably sensitive to many different causal impacts, including real conflicts, re-
sentments, cultural and linguistic influences, closeness of social inter-connections, and
the distribution of resources. Rather than propagating a necessary condition supposed to
underlie all inter-group biases, we argue, and have provided cogent evidence to demon-
strate, that unequal samples size constitutes a sufficient condition for the most promi-
nent biases reported in inter-group literature. We believe that this demonstration is very
useful for progress in future research, which should try to disentangle inter-group effects
that go beyond the basic sampling effects that were the focus of the present article.

133



PRAGER AND FIEDLER

References

Bernoulli, J. (1713). Ars conjectandi: Opus posthumum. Thurnisii.
Brewer, M. B. (1993). Social identity, distinctiveness, and in-group homogeneity. Social

Cognition, 11 (1), 150–164.
Brockbank, E., Holdaway, C., Acosta-Kane, D., & Vul, E. (in press). Sampling data,

beliefs, and actions. In K. Fiedler, P. Juslin, & J. Denrell (Eds.), Sampling in
judgment and decision making. Cambridge University Press.

Campbell, D. T. (1958). Common fate, similarity, and other indices of the status of
aggregates of persons as social entities. Behavioral Science, 3, 14–25.

De Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives. Annales
de l’institut Henri Poincaré, 7 (1), 1–68.

Denrell, J. (2005). Why most people disapprove of me: Experience sampling in impres-
sion formation. Psychological Review, 112 (4), 951–978.

Denrell, J., & Le Mens, G. (2007). Interdependent sampling and social influence. Psy-
chological Review, 114 (2), 398–422.

Denrell, J., & March, J. G. (2001). Adaptation as information restriction: The hot stove
effect. Organization Science, 12 (5), 523–538.

Fazio, R. H., Eiser, J. R., & Shook, N. J. (2004). Attitude formation through exploration:
Valence asymmetries. Journal of Personality and Social Psychology, 87 (3), 293–
311.

Fiedler, K., Kemmelmeier, M., & Freytag, P. (1999). Explaining asymmetric inter-group
judgments through differential aggregation: Computer simulations and some
new evidence. European Review of Social Psychology, 10 (1), 1–40.

Fiedler, K. (2000). Beware of samples! a cognitive-ecological sampling approach to judg-
ment biases. Psychological Review, 107 (4), 659–676.

Fiedler, K., Renn, S.-Y., & Kareev, Y. (2010). Mood and judgments based on sequential
sampling. Journal of Behavioral Decision Making, 23 (5), 483–495.

Fiedler, K., & Wänke, M. (2009). The cognitive-ecological approach to rationality in
social psychology. Social Cognition, 27 (5), 699–732.

Fiske, S. T., Cuddy, A. J., & Glick, P. (2007). Universal dimensions of social cognition:
Warmth and competence. Trends in Cognitive Sciences, 11 (2), 77–83.

Gidron, D., Koehler, D. J., & Tversky, A. (1993). Implicit quantification of personality
traits. Personality and Social Psychology Bulletin, 19 (5), 594–604.

Goldstone, R. (1994). An efficient method for obtaining similarity data. Behavior Re-
search Methods, Instruments Computers(4), 381–386.

Haldane, J. (1945). A labour-saving method of sampling. Nature, 155, 49–50.
Kareev, Y., Arnon, S., & Horwitz-Zeliger, R. (2002). On the misperception of variability.

Journal of Experimental Psychology: General, 131 (2), 287–297.
Koch, A., Imhoff, R., Dotsch, R., Unkelbach, C., & Alves, H. (2016). The ABC of stereo-

types about groups: Agency/socioeconomic success, conservative–progressive
beliefs, and communion. Journal of Personality and Social Psychology, 110 (5),
675–709.

Konovalova, E., & Le Mens, G. (2020). An information sampling explanation for the
in-group heterogeneity effect. Psychological Review, 127 (1), 47–73.

Le Mens, G., & Denrell, J. (2011). Rational learning and information sampling: On the
’naivety’ assumption in sampling explanations of judgment biases. Psychological
Review, 118 (2), 379–392.

Leibniz Institut Für Deutsche Sprache. (2014). Datenbank für gesprochenes Deutsch
[spoken german database].

134



SMALL-GROUP HOMOGENEITY IN SELF-TRUNCATED SAMPLING

Leibniz Institut Für Deutsche Sprache. (2017). Deutsches Referenzkorpus [german ref-
erence corpus].

Linville, P. W., & Fischer, G. W. (1993). Exemplar and abstraction models of perceived
group variability and stereotypicality. Social Cognition, 11 (1), 92–125.

Linville, P. W., & Jones, E. E. (1980). Polarized appraisals of out-group members.
Journal of Personality and Social Psychology, 38 (5), 689–703.

Linville, P. W., Fischer, G. W., & Salovey, P. (1989). Perceived distributions of the
characteristics of in-group and out-group members: Empirical evidence and a
computer simulation. Journal of Personality and Social Psychology, 57 (2), 165–
188.

Norton, M. I., Frost, J. H., & Ariely, D. (2007). Less is more: The lure of ambiguity, or
why familiarity breeds contempt. Journal of Personality and Social Psychology,
92 (1), 97–105.

Park, B., & Rothbart, M. (1982). Perception of out-group homogeneity and levels of
social categorization: Memory for the subordinate attributes of in-group and
out-group members. Journal of Personality and Social Psychology, 42 (6), 1051–
1068.

Prager, J., & Fiedler, K. (2021). Forming impressions from self-truncated samples of
traits - interplay of Thurstonian and Brunswikian sampling effects. Journal of
Personality and Social Psychology, 121 (3), 474–497.

Prager, J., Krueger, J. I., & Fiedler, K. (2018). Towards a deeper understanding of im-
pression formation-new insights gained from a cognitive-ecological perspective.
Journal of Personality and Social Psychology, 115 (3), 379–397.

Quattrone, G. A., & Jones, E. E. (1980). The perception of variability within in-groups
and out-groups: Implications for the law of small numbers. Journal of Person-
ality and Social Psychology, 38 (1), 141–152.

Reeder, G. D., & Brewer, M. B. (1979). A schematic model of dispositional attribution
in interpersonal perception. Psychological Review, 86 (1), 61–79.

Rothbart, M., & Park, B. (1986). On the confirmability and disconfirmability of trait
concepts. Journal of Personality and Social Psychology, 50 (1), 131–142.

Sharpe, W. F., Goldstein, D. G., & Blythe, P. W. (2000). The distribution builder: A
tool for inferring investor preferences.

Simon, B., & Brown, R. (1987). Perceived intragroup homogeneity in minority-majority
contexts. Journal of Personality and Social Psychology, 53 (4), 703–711.

Skowronski, J. J., & Carlston, D. E. (1987). Social judgment and social memory: The
role of cue diagnosticity in negativity, positivity, and extremity biases. Journal
of Personality and Social Psychology, 52 (4), 689–699.

Thorndike, E. L. (1927). The law of effect. The American Journal of Psychology, 39,
212–222.

Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological
Bulletin, 76 (2), 105–110.

Ullrich, J., Krueger, J. I., Brod, A., & Groschupf, F. (2013). More is not less: Greater
information quantity does not diminish liking. Journal of Personality and Social
Psychology, 105 (6), 909–920.

Unkelbach, C., Fiedler, K., Bayer, M., Stegmüller, M., & Danner, D. (2008). Why posi-
tive information is processed faster: The density hypothesis. Journal of Person-
ality and Social Psychology, 95 (1), 36–49.

Wagner, U., Christ, O., Pettigrew, T. F., Stellmacher, J., & Wolf, C. (2006). Prejudice
and minority proportion: Contact instead of threat effects. Social Psychology
Quarterly, 69 (4), 380–390.

135



PRAGER AND FIEDLER

Yzerbyt, V., Castano, E., Leyens, J. P., & Paladino, M. P. (2000). The primacy of the
ingroup: The interplay of entitativity and identification. European Review of
Social Psychology, 11 (1), 257–295.

136



SMALL-GROUP HOMOGENEITY IN SELF-TRUNCATED SAMPLING

Appendix A. Pre-Study: Ratings on Natural Social Groups

Table A1. Naturally occurring social groups adapted from Koch et al. (2016) with average ratings on knowledge
(2 items averaged), likeability and within-group homogeneity.

group label (German original) group label (English translation) knowledge likeability homogeneity

Ärzte physicians 0.50 0.62 0.42
Arbeiter workers 0.57 0.61 0.40
Arbeitslose unemployed 0.27 0.45 0.33
Auszubildende trainees 0.41 0.59 0.35
Autofahrer car drivers 0.79 0.44 0.24
Buddhisten Buddhists 0.20 0.62 0.51
Christen Christians 0.77 0.53 0.36
Fahrradfahrer bicycle drivers 0.79 0.63 0.38
Fußballspieler soccer players 0.36 0.42 0.55
Hipster hipsters 0.39 0.44 0.64
Homosexuelle homosexuals 0.53 0.70 0.31
Konservative conservatives 0.50 0.33 0.63
Künstler artists 0.39 0.66 0.37
Lehrer teachers 0.69 0.60 0.32
Manager managers 0.29 0.41 0.54
Musiker musicians 0.49 0.70 0.36
Muslime Muslims 0.39 0.52 0.34
Obdachlose homeless 0.17 0.47 0.42
Politiker politicians 0.40 0.43 0.44
Punks punks 0.18 0.43 0.61
Reiche rich 0.45 0.42 0.42
Rentner retiree 0.58 0.53 0.37
Schüler pupils 0.75 0.55 0.28
Selbstständige freelancers 0.45 0.59 0.34
Singles singles 0.77 0.62 0.17
Städter town people 0.72 0.60 0.38
Studenten (university) students 0.90 0.74 0.27
Veganer vegans 0.57 0.57 0.56

Appendix B. Experiment 4: Contrast Analysis

Table B1. Contrasts used for the analyses on valence and frequency in Experiment 4. The four columns relate to
the four population sets applied in the experiment.

Negative natural Positive natural Negative reversed Positive reversed

Contrast 1: valence − 1
4

1
4 − 1

4
1
4

Contrast 2: frequency 1
4 − 1

4 − 1
4

1
4

Contrast 3: natural vs. reversed 1
4

1
4 − 1

4 − 1
4

Note. Natural sets indicate that the naturally occurring correlation of higher frequency for positive than negative
is preserved, which is reversed for the respective two other sets.
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