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Zusammenfassung

Die chronische lymphatische Leukämie (CLL) ist eine bösartige Erkrankung reifer B-Lymphozyten,
die durch die Ansammlung bösartiger Zellen im Blut, im Knochenmark und in den Lymphknoten
gekennzeichnet ist. Der Verlauf der Krankheit wird durch mehrere Faktoren bestimmt, unter an-
derem genetische Aberrationen, die Signalübertragung über den B-Zell-Rezeptor (BCR) und In-
teraktionen mit nicht-neoplastischen Zellen in der Mikroumgebung des Tumors. Viele dieser Fak-
toren wurden bereits detailliert charakterisiert, sodass CLL eine Erfolgsgeschichte in der Verknüp-
fung von Fortschritten im molekularen Verständnis mit Verbesserungen bei den klinischen An-
sätzen repräsentiert. Darauf aufbauend verspricht die Integration mehrerer Datentypen, unser
Verständnis der Krankheitsbiologie zu verbessern. Im klinischen Bereich besteht nach wie vor die
Notwendigkeit, ein systematisches Verständnis der Rolle zu entwickeln, die genetische Aberratio-
nen und Signalübertragung gemeinsam bei CLL spielen.

In dieser Dissertation untersuche ich den Einfluss zelleigener und -fremder Faktoren auf die Biolo-
gie von CLL und das Ansprechen auf Medikamente. Ich verwende einen Datensatz, in welchem
das Überleben von CLL-Primärzellen gemessen wurde, die mit Arzneimitteln und Stimuli aus der
Tumor-Mikroumgebung behandelt wurden, ergänzt durch molekularen Profile derselben Proben
bestehend aus Messungen der Punktmutationen, Kopienzahlvariationen, DNA-Methylierung und
mRNA-Expression. Die Messungen wurden mit 12 Medikamenten durchgeführt, die jeweils mit
17 individuellen Stimuli der Tumor-Mikroumgebung kombiniert wurden (n=192). Schliesslich um-
fasst der Datensatz auch klinische Patientendaten und immunhistochemische (IHC) Färbungen
von Lymphknoten-Biopsien. Ich wende Methoden zur statistische Inferenz und Regressionsmod-
elle an, um mehrere wichtige Erkenntnisse zu gewinnen.

Erstens zeigen CLL-Proben heterogene Reaktionen auf die verschiedenen Stimuli aus der
Mikroumgebung, wobei IL4 und TLR-Signale den stärksten Einfluss haben. Aus den Reaktionspro-
filen lassen sich vier Patientenuntergruppen ableiten, die unterschiedliche Krankheitsdynamiken
und molekulare Profile aufweisen. Als zweite Erkenntnis ergibt eine systematische Untersuchung
der genetischen Determinanten der Mikroumgebung, dass Trisomie 12 als wichtiger Modula-
tor fungiert, wobei die Daten darauf hindeuten, dass die Transkriptionsfaktoren Spi-B und PU.1
diese Wirkung vermitteln können. Drittens erstelle ich eine Karte der Wechselwirkungen zwis-
chen Mikroumgebung-Signalwegen und Arzneimitteln und identifiziere neue Wege der Arzneimit-
telresistenz, einschliesslich der Wirkung von IFNγ auf die Toxizität von Ibrutinib. Ich zeige, wie
diese Wechselwirkungen zwischen Medikament und Mikroumgebung durch molekulare Merkmale
weiter moduliert werden können und identifiziere kontextabhängige Mechanismen der Resistenz
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zu Medikamenten, die bei bestimmten genetischen Hintergründen auftreten. Zum Beispiel in-
duziert die TLR-Aktivität eine Resistenz gegen Fludarabin bei IGHV-U und Trisomie 12, aber nicht
bei IGHV-M. Schliesslich wird die in vivo Relevanz dieser Ergebnisse in CLL-infiltrierten Lymph-
knoten nachgewiesen, die im Vergleich zu nicht-neoplastischen Proben höhere Aktivität des IL4-
Signalwegs aufweisen (p<0,001). Erhöhte IL4-Signale in CLL-infiltrierten Lymphknoten korreliert
mit schlechteren Behandlungsergebnissen (p=0,038).

Der vorgestellte Datensatz und die Analyse sind sowohl online (https://github.com/Huber-g
roup-EMBL/CLLCytokineScreen2021) als auch über eine interaktive Shiny App (https://www.
imbi.uni-heidelberg.de/dietrichlab/CLLMicroenvironment/) verfügbar. Insgesamt zeigen
diese Ergebnisse die Auswirkungen genetischer Aberrationen und Stimuli in der Mikroumgebung
des Tumors auf das Ansprechen auf Medikamente und legen neue pathogene Mechanismen und
Ursachen der Medikamentenresistenz nahe.
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Abstract

Chronic lymphocytic leukaemia (CLL) is a malignancy of mature B lymphocytes, characterised by
the accumulation of malignant cells within the blood, bone marrow and lymph nodes. The disease
follows a heterogeneous course driven by multiple factors, including genetic aberrations, signalling
via the B cell receptor (BCR) and interactions with non-neoplastic cells in the tumour microenviron-
ment. Many individual disease drivers have been well-characterised, and CLL represents a suc-
cess story in linking advances in molecular understanding to improvements in clinical approaches.
Building on this, multi-omics approaches promise to further our understanding of disease biology
through the integration of multiple datatypes. There remains a clinical need to generate system-
atic understanding of the role that genetic aberrations and signalling pathways collectively play in
CLL.

In this thesis, I investigate the impact of cell-intrinsic and extrinsic factors on CLL biology and drug
response. I employ a dataset consisting of viability data of CLL primary samples treated with drugs
and microenvironmental stimuli, along with molecular profiles of the same samples. The viability
assay was performed using 12 drugs each co-applied with 17 individual microenvironmental stimuli
(n=192) and combined with molecular profiles covering point mutations, copy number variations,
DNA methylation and mRNA expression. The dataset is complemented with patient clinical data
and immunohistochemistry (IHC) stains of lymph node biopsies. I apply statistical inference and
regression modelling to reveal several key findings.

Firstly, CLL samples demonstrate heterogeneous responses to the panel of microenvironmental
stimuli and Interleukin-4 (IL4) and Toll-like Receptor (TLR) signalling have the strongest impact.
The response profiles delineate four patient subgroups that show differential disease dynamics
and molecular profiles. Secondly, a systematic survey of genetic determinants of microenviron-
mental response identifies trisomy 12 as a key modulator. The data suggest that the transcription
factors Spi-B and PU.1 may mediate this effect. Thirdly, I generate a map of interactions between
microenvironmental signalling pathways and drugs and identify novel drug-resistance pathways
including the effect of IFNγ on ibrutinib toxicity. I demonstrate how these drug - microenvironment
interactions can be further modulated by molecular features, and identify context-dependent drug
resistance mechanism that occur in specific genetic backgrounds. For example, TLR activity in-
duced resistance to fludarabine in IGHV-U and trisomy 12 CLLs, but not in IGHV-M. Finally, the
in vivo relevance of these findings is established within CLL-infiltrated lymph nodes, which show
higher levels of IL4 signalling compared to non-neoplastic samples (p<0.001). Elevated IL4 sig-
nalling in CLL-infiltrated lymph nodes correlates with poorer outcomes (p=0.038).
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The presented dataset and analysis are available online (https://github.com/Huber-group-EMB
L/CLLCytokineScreen2021) and through an interactive shiny app (https://www.imbi.uni-hei
delberg.de/dietrichlab/CLLMicroenvironment/). Collectively, these results demonstrate the
impact of genetic aberrations and microenvironmental stimuli on drug response and propose novel
pathogenic mechanisms and causes of drug resistance.
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Chapter 1

Introduction

1.1 Chronic Lymphocytic Leukaemia (CLL)

1.1.1 Disease characteristics

Chronic lymphocytic leukaemia (CLL) is a malignancy of mature B cells, characterised by the
progressive accumulation of malignant lymphocytes in the blood, bone marrow and lymph nodes
(Kipps et al. 2017). The malignant cells can be distinguished by expression of CD5, CD19, and
CD23, and by lower levels of membrane IgM, IgD, and CD79B (Matutes et al. 1994; Moreau et al.
1997; Chiorazzi, Rai, and Ferrarini 2005) (Figure 1.1).

The disease pathogenesis is driven by multiple factors, including molecular features, signalling via
the B cell receptor (BCR) and interactions with non-neoplastic cells within the lymphoid tissues
(known as the tumour microenvironment) (Kipps et al. 2017). Whilst the majority of CLL cells are
in a resting state (B. T. Messmer et al. 2005; Defoiche et al. 2008), evidence suggests that CLL
cells migrate towards lymph nodes where they form proliferation centres (Granziero et al. 2001;
B. T. Messmer et al. 2005), similar to germinal centres in healthy lymph nodes, which can show a
daily birth rate of up to 3.3% of the tumour (Herndon et al. 2017).

CLL is the most common leukaemia in the West, accounting for 37% of leukaemia cases and
~19,000 newly detected cancers in the US in 2016 (Kipps et al. 2017; Dubois et al. 2020). The
risk of developing CLL is twice as high for men than women, and more likely with increasing age
(Siegel et al. 2012; Nabhan et al. 2014; Y. Li et al. 2015; Pulte et al. 2015). Chemotherapy (Robak
2005; Chang and Kahl 2012; Lukenbill and Kalaycio 2013) and chemoimmunotherapy (Hallek et
al. 2010; Goede et al. 2014; Hillmen et al. 2015) has been the mainstay of therapy for many years.
More recently, the central role of BCR signalling in disease pathogenesis has been appreciated and
new drugs targeting this pathway have improved patient outcomes. The disease course is highly
heterogeneous, and the overall 5-years relative survival for CLL is 84% (Miller et al. 2019).

In spite of this, CLL is widely considered to be incurable (Bosch and Dalla-Favera 2019), and
treatment regimens induce significant side-effects. Moreover, the disease is characterised by its
clinical heterogeneity (Miller et al. 2019) and there is significant variation in disease progression
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Figure 1.1: Wright–Giemsa-stained blood smear of a CLL malignant B cell, de-
picting typical morphology. Figure reproduced with permission from Kipps et al.
(2017) .

amongst patients. Some patients harbour indolent disease, and can be followed by a watch-and-
wait approach, sometimes going decades without requiring treatment. Others may need immediate
treatment and survival can be short (Miller et al. 2019). There is a clinical need to understand
the underlying biology of the disease, with a view to understanding the causes of this clinical
heterogeneity and to improving patient outcomes and experiences.

1.1.2 Cell of Origin

Identifying the cell of origin of a cancer can help explain disease pathogenesis, and understand
the different subtypes, and their associated prognosis. Various studies have established mature
CD5+ B cells as the cell of origin in CLL (Bosch and Dalla-Favera 2019).

In healthy tissues, these mature B cells are derived from haematopoietic stem cells in the bone
marrow (Kondo 2010; Fischer et al. 2020). These stem cells develop in multiple stages, where
each stage is defined by rearrangements within the immunoglobulin heavy chain and light chain
loci (Pelanda and Torres 2012) that encode components of the BCR. The aim of this process is to
generate a large BCR repertoire, capable of recognising a range of foreign antigens.

Developing B cells in the bone marrow undergo positive and negative selection, ensuring that each
BCR binds effectively to foreign antigen, whilst eliminating those that bind strongly to self-antigen
(Lebien and Tedder 2008; Mårtensson et al. 2010). These immature B cells then migrate to the
lymph nodes and spleen where they differentiate into mature cells that are considered to be antigen
“naive” (Chung, Silverman, and Monroe 2003).

B cells are later activated when they encounter their respective antigen. When activated, the B
cells form germinal centres, which are specialised microenvironments within the lymph node that
facilitate extensive proliferation. Here they undergo a process called affinity maturation, in which
the loci encoding components of the BCR undergo somatic hypermutation to optimise BCR antigen
specificity (Shlomchik and Weisel 2012). This process generates short-lived plasmablasts which
provide immediate protection, along with plasma cells and memory B cells procuring longer-term
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immunity (Nutt et al. 2015).

1.1.3 IGHV status

The two major subtypes of CLL can be defined by whether the B cell of origin has undergone
this process of somatic hypermutation within a germinal centre. This is reflected in the degree of
mutation of the immunoglobulin heavy chain variable region (IGHV) genes. Evidence suggests that
IGHV-mutated (IGHV-M) CLLs (60% of cases) are derived from antigen-experienced B cells. On
the other hand, there is continued debate as to whether IGHV-unmutated (IGHV-U) CLLs derivate
from naive B cells, or germinal centre, antigen-experienced B cells (Klein et al. 2001).

The two subtypes show distinct clinical and molecular properties. In contrast to IGHV-M CLLs,
IGHV-U CLLs have a higher proportion of high-risk genetic lesions, more commonly undergo clonal
evolution and consequently have a shorter time to first treatment (TTFT) and less favourable overall
survival (OS) (Hamblin et al. 1999; Damle et al. 1999; Landau et al. 2013; Puente et al. 2015;
Bosch and Dalla-Favera 2019). Their differential antigen experience also affects how they respond
to signals from the microenvironment, including stimulation of the BCR.

1.1.4 The central role of BCR signalling

The BCR pathway is central to the process of selection, development, proliferation and survival of
CLL clones (Chiorazzi and Ferrarini 2003; Stevenson and Caligaris-Cappio 2004; Agathangelidis
et al. 2012; J. A. Burger and Chiorazzi 2013; Iacovelli et al. 2015; Dubois et al. 2020). Evidence of
the importance of this pathway comes from the observation that BCRs of CLL cells show a biased
selection of IGHV and immunoglobulin light chain variable region (IGLV) κ/λ genes. This generates
BCRs that are remarkably similar across patients (Kipps et al. 1989; Fais et al. 1998; Widhopf et
al. 2004; B. T. Messmer et al. 2004; K. Stamatopoulos et al. 2007), suggesting that BCR binding to
certain antigens may drive selection and proliferation of CLL clones. Other compelling studies have
shown that BCR signalling genes are upregulated in CLL cells taken from lymph nodes (Herishanu
et al. 2011) and that cells from IGHV-U CLL patients (with poorer outcomes), also show activation
of BCR-related genes (Rosenwald et al. 2001). The success of BCR inhibitors in the clinic (Byrd
et al. 2013), also underlines the critical importance of this pathway in CLL.

Figure 1.2 shows a schematic of the BCR pathway itself. The BCR is a multimeric complex con-
sisting of surface immunoglobulin (Ig), which recognises antigen, plus the Ig-α/Ig-β hetero-dimers,
known as CD79A and CD79B. The BCR may bind to external antigens within the microenvironment
(Binder et al. 2010) or intra-BCR self-antigens (Minden et al. 2012), which in turn recruits SYK
and the Src kinase LYN. These kinases phosphorylate motifs located on the cytoplasmic tails of
CD79A and CD79B, initiating a signalling cascade involving a number of proteins and pathways.
These include the proteins BTK (Herman et al. 2011) and PI3K (Longo et al. 2007) which activate
a number of downstream pathways and players including PLCγ 2, calcium signalling, PKC, NFκB
signalling, ERK and MAPKs, and nuclear transcription (J. A. Burger and Chiorazzi 2013; Dubois et
al. 2020).
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There are two types of BCR signalling in healthy and CLL B cells: ligand-dependent “active” sig-
nalling that relies on antigen-binding, and ligand-independent “tonic” signalling (Lam, Kühn, and
Rajewsky 1997; Kraus et al. 2004). Whilst active signalling engages the entire signalling cascade
described above, tonic signalling activates only a subset of these. Kraus et al. (2004) showed that
tonic signalling is important for prolonged B cell survival whereby PI3K signalling is thought to play
a key role in delivering survival signals (L. Srinivasan et al. 2009; Pua et al. 2019). Both these
modes of BCR signalling are believed to impact of the survival and growth of the tumour, although
the dominant mode remains a matter of debate (J. A. Burger and Chiorazzi 2013).

The different clinical properties of IGHV-M and IGHV-U CLLs are believed to be determined by
in part by their differential response to BCR stimulation, which is influenced by their cell of origin
(J. A. Burger and Chiorazzi 2013). IGHV-U CLLs have not undergone somatic hypermutation and
consequently express low-affinity BCRs that are frequently activated by numerous antigens and
auto-antigens in the microenvironment (Borche et al. 1990; Bröker et al. 1988; Sthoeger et al.
1989; Hervé et al. 2005; Myhrinder et al. 2008; Chu et al. 2008; Binder et al. 2010; Krysov et al.
2010; Kostareli et al. 2012). In contrast, IGHV-M BCRs only recognise highly specific antigens,
which either occur infrequently or induce anergy due to high-affinity binding (Chiorazzi and Ferrarini
2003; Stevenson and Caligaris-Cappio 2004; Chiorazzi, Rai, and Ferrarini 2005; J. A. Burger and
Chiorazzi 2013). IGHV-M CLL clones therefore are more stable and expand at a slower rate.

Figure 1.2: Graphical depiction of the BCR pathway. Figure reproduced with per-
mission from Kipps et al. (2017)

1.1.5 Recurrent genetic features in CLL

The genomic landscape of CLL has been thoroughly characterised in a number of studies, includ-
ing two seminal papers involving >500 CLL samples (Landau et al. 2015; Puente et al. 2015).
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Such studies have indicated that CLL shows a lower mutational load than other lymphoid neo-
plasms (Vogelstein et al. 2013; Alexandrov et al. 2013; Bosch and Dalla-Favera 2019), in which
a relatively large number of genes are rarely mutated (Fabbri and Dalla-Favera 2016). A small
number of driver genes are mutated in a significant proportion of cases, though a common genetic
event which can accounts for most cases of CLL has not been identified (Fabbri and Dalla-Favera
2016). These genetic alterations encompass chromosomal alterations, mutations, alterations in
miRNA expression and epigenetic modifications (Kipps et al. 2017).

Somatic Mutations

There are many recurrent somatic mutations in CLL, and these centre on several major pathways
and functions that are frequently altered (Figure 1.3) (Puente et al. 2015; Fabbri and Dalla-Favera
2016; Kipps et al. 2017). These pathways include Notch signalling, DNA damage response, RNA
processing, NFκB signalling, BCR signalling, WNT signalling and chromatin modification (Kipps et
al. 2017; Bosch and Dalla-Favera 2019).

Within these pathways, most mutations are rare and only a few occur at a frequency >5% (Bosch
and Dalla-Favera 2019). One landmark study indicated the most frequent mutations occur in
NOTCH1 (12.6% of cases), ATM (11%), BIRC3 (8.8%) and SF3B1 (8.6%), although these fre-
quencies are dependent disease stage and treatment status (Puente et al. 2015). The functional
role and prognostic importance of a number of these putative driver mutations has been estab-
lished, and are discussed below.

Notch signalling The Notch pathway activates genes required for proliferation, metabolism and
survival, including MYC, via the activation of the NOTCH1 transmembrane receptor (Guruharsha,
Kankel, and Artavanis-Tsakonas 2012). Mutations in NOTCH1 are very common in CLL (~4-20%)
(Fabbri et al. 2011; Puente et al. 2011, 2015; Landau et al. 2013, 2015). A number of other
recurrent mutations also centre on Notch deregulation, indicating that this pathway is disrupted in
many CLL cases (Fabbri and Dalla-Favera 2016). NOTCH1 mutations occur more often in IGVH-U
CLLs and are associated with a less favourable OS (Fabbri et al. 2011). NOTCH1 mutants also
respond less-well to anti-CD20-based therapies, due to decreased surface expression of CD20
(Fabbri et al. 2011; Rossi et al. 2012).

DNA Damage Response A number of frequently occurring mutations disrupt the DNA damage
response, the most clinically important of which is TP53. TP53 is known as the “guardian of the
genome,” owing to its role as a tumour suppressor gene protecting genome integrity by preventing
mutation. Despite being a tumour suppressor, TP53 mutations can have a dominant negative
effect on function, such that loss of genomic stability occurs even when a single allele is mutated
(Zenz et al. 2008). TP53 is an important prognostic marker, as dysregulation of its function is
associated with resistance to DNA-damaging agents (chemotherapy and radiotherapy) (Zenz et al.
2008; Dicker et al. 2009; Rossi et al. 2009), and cases with TP53 mutations at diagnosis often
show shorter TTFT and a less favourable OS (Döhner et al. 2000; Zenz et al. 2008; Rossi et al.
2013; Puente et al. 2015).

Upstream of TP53, the tumour suppressor ATM is also frequently mutated in CLL (Bosch and
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Dalla-Favera 2019). ATM activates the DNA damage response upon recognition of DNA double
strand breaks (Austen et al. 2005; Shiloh and Ziv 2013). Similarly to TP53 mutants, ATM-disrupted
CLLs also show genomic instability and these mutations are associated with shorter TTFT and OS,
and chemoresistance (Austen et al. 2005; Stankovic and Skowronska 2014).

POT1 is also involved in genomic stability, and is mutated in around 3 – 7% of cases (Bosch and
Dalla-Favera 2019; Ramsay et al. 2013). POT1 mutations disrupt telomere protection, leading to
a increased in structural aberrations and chromosomal breaks (Ramsay et al. 2013). Mutations in
POT1 are associated with IGHV-U CLL and advanced clinical stage (Ramsay et al. 2013).

RNA processing 30% of CLL tumours harbour mutations disrupting RNA processing and the
spliceosome machinery (Puente et al. 2011, 2015; Wang et al. 2011; Quesada et al. 2012; Fabbri
and Dalla-Favera 2016). SF3B1 mutations are the most frequent to occur, and are found in 10% of
cases, usually in IGHV-U CLLs (Puente et al. 2011, 2015; Wang et al. 2011; Quesada et al. 2012;
Fabbri and Dalla-Favera 2016). The SF3B1 gene encodes part of the U2 snRNP complex which
is involved in RNA splicing (Shin and Manley 2004), though the functional implication of SF3B1
mutations are yet to be established, and many transcripts show abnormal splicing inSF3B1 cases
(Quesada et al. 2012). The presence of SF3B1 mutations is associated with a decreased TTFT
and unfavourable OS (Bosch and Dalla-Favera 2019).

NFκB signalling A wide range of mutations across various pathways converge on the activation
of NFκB (Fabbri et al. 2011; Puente et al. 2011, 2015; Wang et al. 2011; Quesada et al. 2012;
Landau et al. 2015), including BIRC3 and MYD88. For example, certain mutations in MYD88 result
in increased binding to IRAK1 and higher activation of NFκB (Puente et al. 2011). However, the
role and prognostic importance of NFκB activation in CLL is still unclear (Bosch and Dalla-Favera
2019).

Structural Aberrations

In addition to the aforementioned mutations, a number of common structural aberrations confer
similar disruption to normal B cell function. The key structural aberrations and their prognostic
value were set out in a landmark paper by Döhner et al. (2000), as follows.

del(11q) Deletions of chromosome 11q (del(11q)) are fairly common (~10%) in CLL, and are be-
lieved to target the ATM gene in the 11q22-23 region (Döhner et al. 2000; Austen et al. 2005;
Bosch and Dalla-Favera 2019). del(11q) is usually monoallelic, but can also be associated with
mutations in the remaining ATM allele (~30% of cases) (Austen et al. 2005). In certain instances,
the deleted region does not include ATM but rather BIRC3, a negative regulator of the NFκB
pathway (Rossi et al. 2012). Cases with del(11q) or ATM lesions have a shorter TTFT and OS,
especially if the lesion is biallelic (Austen et al. 2005; Skowronska et al. 2012; Stankovic and
Skowronska 2014; Nadeu et al. 2016).

del(17p) Deletion of chromosomal region 17p13 (del(17p)) is found in 1 – 20% of cases, depending
on the stage of the disease and most common in chemo-refractory cases (Döhner et al. 2000;
Zenz et al. 2008, 2010; Stilgenbauer et al. 2014). The target of this lesion is thought to be
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Figure 1.3: Graphical depiction of commonly mutated genes in CLL, grouped into
cellular pathways. Minus sign indicates negative regulation. Figure reproduced
with permission from Kipps et al. (2017) .

TP53; the deleted region consistently includes the TP53 locus (Döhner et al. 1995), and around
80% del(17p) cases also have missense mutations in the second TP53 allele (Zenz et al. 2008;
Gonzalez et al. 2011; Trbusek et al. 2011). Del(17p) CLLs show increased genomic instability
(L. Yu et al. 2017), resistance to chemotherapy and, correspondingly, a shorter TTFT and a less
favourable OS (Döhner et al. 2000; Zenz et al. 2008; Rossi et al. 2013; Puente et al. 2015).

del(13q) Deletion in the 13q14 region (del(13q)) is the most common genetic lesion in CLL (~50–60%
of cases) (Döhner et al. 2000). Experiments to determine the minimal deleted region identified that
this invariably contains DLEU1 and DLEU2, two long non-coding RNA genes, and the microRNA
gene cluster MIR15A–MIR16-1 (Kalachikov et al. 1997; Migliazza et al. 2001; Calin et al. 2002;
Palamarchuk et al. 2010). in vitro studies have demonstrated the role of these genes in regulation
of the cell cycle and apoptosis (Cimmino et al. 2005; Bosch and Dalla-Favera 2019). In some CLL
cases, del(13q) is the sole genetic abnormality, indicating that this lesion may be involved in early
CLL development (Döhner et al. 2000; Landau et al. 2015). Moreover, conditional deletion of the
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equivalent minimal deleted region in mice recapitulated CLL initiation and progression, and these
mice developed clonal lymphoproliferations (Migliazza et al. 2001). del(13q) CLLs have the best
prognosis, with prolonged TTFT, and OS compared to tumours with other lesions (Döhner et al.
2000; Rossi et al. 2013).

The incompletely understood role of trisomy12

Complete duplication of chromosome 12 (trisomy 12) is observed in ~15% of CLL cases at diagno-
sis (Döhner et al. 2000). Despite its recurrence, there is currently no functional explanation for this
lesion (Bosch and Dalla-Favera 2019), although a number of features have been observed. Trisomy
12 is more common in IGHV-M CLLs than IGHV-U (Hamblin et al. 1999), and is thought to confer
an abnormal cellular morphology (Bosch and Dalla-Favera 2019). Previous work in our lab has
also demonstrated that trisomy 12 CLLs show a specific signalling signature and distinct transcrip-
tomic (Dietrich et al. 2017) and proteomic profiles (Herbst 2020; Meier-Abt et al. 2021), including
differential expression of genes within the BCR, PI3K, AKT, and mTOR signaling and chemokine
signaling pathways. Moreover, trisomy 12 CLLs show higher sensitivity to BCR inhibitors, indicating
that BCR signalling may be amplified in these cases (Dietrich et al. 2017).

Traditionally trisomy 12 has been classified as an intermediate-risk lesion (Döhner et al. 2000):
these cases have a higher proliferative capacity, but are more treatable with chemotherapeutics
and BCR inhibitors. However, NOTCH1 mutations are frequently observed in trisomy 12 cases,
and this is associated with poorer outcomes (Balatti et al. 2012; Del Giudice et al. 2012).

Epigenetic alterations

In addition to genetic lesions, the epigenome is also modified in CLL and samples typically show
global hypomethylation combined with local hypermethylation (Wahlfors et al. 1992; Cahill et al.
2013; Ziller et al. 2013; Kipps et al. 2017; Bosch and Dalla-Favera 2019). Studies investigating
the epigenome in CLL have proven revealing, in particular, higher levels of intra-sample methy-
lation heterogeneity have been shown to be associated with high-risk genetic lesions and poorer
prognosis (Landau et al. 2014).

Moreover, methylation signatures have been used to classify distinct clinical CLL subgroups (Kulis
et al. 2012; Bhoi et al. 2016), as they are useful to trace the cell of origin. For example, CLL
cells from distinct patients originate from many different B cell maturation states, possibly reflect-
ing the biological and phenotypic heterogeneity of CLL (Oakes et al. 2016). Accordingly, IGHV-U
CLLs have a distinct methylation signature to IGHV-M CLLs, and these patterns correspond ap-
proximately to those of pre-germinal centre or post-germinal centre memory B cells, respectively
(Kulis et al. 2012; Oakes et al. 2016). Epigenetic studies have also revealed the relationship
between certain genetic lesions and specific epigenetic signatures, for example MYD88 mutations
and trisomy 12 (Beekman et al. 2018). The CLL epigenome can also be modulated by drugs and
thus is of increasing clinical interest (Timp and Feinberg 2013; Beekman et al. 2018; Gaiti et al.
2019).
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1.2 Therapies in CLL

Extensive work to uncover the molecular drivers of CLL has led to the development of several
therapeutic strategies. CLL represents a successful example of how developing a complex un-
derstanding of the biological characteristics of a disease can lead to significantly improved patient
outcomes (Yosifov et al. 2019). Treatment of CLL patients can be via chemotherapy, chemoim-
munotherapy or targeted therapies that inhibit specific pathways (Kipps et al. 2017; J. A. Burger
2020). Additionally, allogeneic stem cell transplantation is sometimes considered (Kipps et al.
2017).

1.2.1 Chemotherapy and chemoimmunotherapy

Chemotherapy has been the standard of care for CLL for many decades, either with purine ana-
logues such as fludarabine or alkylating agents such as chlorambucil (Robak 2005; Lukenbill and
Kalaycio 2013). Chemoimmunotherapy has also benefited many patients owing to rapid improve-
ments to monoclonal antibody technology and the development of anti-CD20 treatments, such as
rituximab (Yosifov et al. 2019; Robak et al. 2010). However, patients with higher risk lesions
such as TP53 and del(17p) do not respond well to chemoimmunotherapy, and require alternative
therapeutic options (Zenz et al. 2010).

1.2.2 Targeted therapies

More recently, the importance of BCR signalling and upregulation of anti-apoptotic proteins in CLL
expansion has been increasingly realised and led to the development of therapies targeting these
pathways. Drugs targeting BCR signalling and BCL-2 have changed the treatment landscape dra-
matically (Scheffold and Stilgenbauer 2020). Three main drug classes that target BCR signalling
have been developed for CLL: BTK inhibitors, PI3K inhibitors and SYK inhibitors (De Rooij et al.
2012; Kipps et al. 2017).

Ibrutinib is a BTK inhibitor approved for use as an initial therapy and for patients who are refractory
to chemoimmunotherapy (Byrd et al. 2013, 2014). Despite such success, complete remission
is rare and many patients continue to harbour minimal residual disease within the bone marrow
(Byrd et al. 2013), requiring continued therapy for years (Byrd et al. 2013; Woyach and Johnson
2015). Resistance can also occur via the acquisition of mutations in BTK or PLCγ 2 (Woyach and
Johnson 2015) genes. Treatment initiation with ibrutinib is associated with a concomitant increase
in the absolute lymphocyte count in the blood (Woyach et al. 2014), thought to caused by the
inhibition of chemokine receptor signalling leading to the release of malignant B cells from the
lymph nodes into the peripheral blood.

Idelalisib also acts to inhibits BCR signalling and chemokine signalling (Hoellenriegel et al. 2011),
via inhibition of PI3K. Whilst the drug is highly efficacious in CLL (Furman et al. 2014; Brown et
al. 2014), idelalisib demonstrates more toxicities and lower efficacy than BTK inhibitors and thus is
generally used as an alternative therapy in patients for whom BTK inhibitors are unsuitable (Ghia
et al. 2020; J. A. Burger 2020).
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Other drugs targeting SYK, downstream of BTK, have also shown promise in Phase I/II clinical
trials (Friedberg et al. 2010), though none are licenced as yet.

Aside from BCR inhibitors, BCL-2 inhibitors such as venetoclax, have also shown good efficacy in
CLL. Venetoclax is thought to induce apoptosis in CLL cells, by acting as a BH3 mimetic interfering
with the ability of BCL-2 to sequester BIM (Moore et al. 2007).

CLL is thus a manageable disease, with a well-established arsenal of treatments and associated
management algorithm. However, treatments are harsh, and the disease is still considered incur-
able (Bosch and Dalla-Favera 2019). Many cases develop resistance to therapy, both via acquired
mutations and through survival signals provided by the microenvironment (see Section 1.3.4) and
minimal residual disease within the bone marrow is common. Collectively, these lead to relapse or
required prolonged therapy and its associated toxicities. There remains a clinical need to improve
patient outcomes and experience.

1.3 The tumour microenvironment in CLL

1.3.1 The role of the tumour microenvironment in CLL

In addition to genetic aberrations, the tumour microenvironment is an important driver of disease
pathogenesis in CLL (Ten Hacken and Burger 2016). The term microenvironment encompasses
the set of non-neoplastic cells within the lymphoid tissues, including the bone marrow and lymph
nodes, that provide survival signals to the tumour, leading to clonal expansion and drug resistance
(J. A. Burger and Gribben 2014). Malignant B cells engage in a dialogue with the non-neoplastic
cells, via cell-cell contacts and soluble factors, including chemokines, integrins, cytokines and sur-
vival factors, centring on a number of important pathways including BCR signalling and tissue
homing chemokine receptors (Ten Hacken and Burger 2016).

The importance of the microenvironment in CLL pathogenesis was first recognised in studies that
showed CLL cells rapidly undergo apoptosis in vitro, whilst their survival can be extended by stim-
ulation or by co-culture with nurselike cells (NLCs) or mesenchymal bone marrow stromal cells
(BMSCs) (Collins et al. 1989; J. A. Burger et al. 2000; Kurtova et al. 2009; Deaglio and Malavasi
2009; Purroy et al. 2015). This observation indicated that the ability of CLL to progressively ac-
cumulate in vivo may be highly dependent on external stimulation, rather than some cell-intrinsic
feature of the tumour. Building on these observations, further in vitro studies have shown a number
of cell types and soluble factors belonging to the microenvironment are also capable of protecting
the tumour cells from drugs and chemotherapeutic agents. Many CLL patients continue to har-
bour minimal residual disease (MRD), in which a fraction of the malignant cells remain whilst the
patient is in remission and eventually lead to relapse (Hayden et al. 2012). It is believed that the
tumour microenvironment provides a sanctuary for the malignant B cells to shield from the effects
of therapy (Dubois et al. 2020).
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1.3.2 Components of the tumour microenvironment

Lymph Nodes Over the last two decades, significant progress has been made in unravelling this
complex cross-talk and many of the important cellular and molecular components have been de-
fined and studied. Malignant B cells circulate through the blood in a resting state, and follow
chemokine gradients towards the lymph nodes to form “profileration centres” (Figure 1.4), similar
to germinal centres (Herishanu et al. 2011). Studies using detuerated water labelling have shown
that up to 3% of the clone is actively proliferating within the lymph node (B. T. Messmer et al. 2005;
Herndon et al. 2017). Cross-talk with the non-neoplastic cells in the lymph node shapes the tran-
scriptomic profile of the malignant B cells, and leads to upregulation of the BCR pathway Mittal et
al. (2014), a central driver of CLL pathogenesis.

Figure 1.4: Haemotoxylin and eosin stain of CLL-infiltrated lymph node tissue
section, showing pale-staining profileration centres (circled). Figure reproduced
with permission from Kipps et al. (2017) .

Bone marrow The bone marrow is also known to be important, and several studies have shown
ex vivo BMSCs to protect CLL cells against the drug toxicity (Kay et al. 2007; Kurtova et al. 2009).
However, gene expression changes are less pronounced within the bone marrow compared to the
lymph node (Herishanu et al. 2011).

Cellular components Within these compartments, the CLL cells engage in a dialogue with mes-
enchymal stromal cells (MSCs), NLCs and follicular dendritic cells (FDCs), in concert with T cells,
natural killer cells (NK cells) and components of the extracellular matrix (Ten Hacken and Burger
2016). NLCs are of monocytic origin: their critical role in CLL was first demonstrated by the obser-
vation that peripheral blood-derived monocytes differentiate into NLCs, and that these cells prolong
CLL cell survival ex vivo (J. A. Burger et al. 2000). They are also found within the lymphoid tissues
of CLL patients (Tsukada et al. 2002; Bürkle et al. 2007). MSCs, which include BMSCs, are
frequently observed within the secondary lymphatic tissues of CLL patients. Many studies have
demonstrated the ability of these cells to inhibit spontaneous and drug-induced apoptosis in in vitro
CLL co-cultures Kurtova et al. (2009).
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FDCs are important for tissue homing and retention of CLL cells within tissues. In healthy tissues,
they are usually found within germinal centres (Allen and Cyster 2008), and present unprocessed
antigen to B cells. In CLL they play an important role within the secondary lymphoid organs,
having a protective effect on CLL via cytokine secreton, adhesion molecules and the activation of
BCR signalling (Dubois et al. 2020). CLL co-culture with FDCs leads to inhibition of spontaneous
apoptosis and upregulation of anti-apoptotic MCL-1 (I. M. Pedersen et al. 2002).

The T cell compartment is also altered in CLL, first described by Scrivener et al. (2003). T cells
have been observed to have pro-tumour and anti-tumour behaviour. On the one hand, higher
numbers of CD4+ T-helper (Th) cells are seen in CLL patient blood samples (Palma et al. 2017;
Elston et al. 2020), and in line with this, Th cell cytokines have been shown to provide pro-survival
signals in vitro, for example IL4 from Th2 cells (Dancescu et al. 1992; Bhattacharya et al. 2015;
Aguilar-Hernandez et al. 2016). Activated CD4+ T-cells in murine xenograft models (Bagnara et
al. 2011; Os et al. 2013) of CLL have also been shown to increase survival and growth of the
tumour. On the other hand, there is evidence of increased antigen-experienced CD8+ T cells in
CLL, which control tumour growth in a CLL mouse model (Roessner and Seiffert 2020; Grioni et
al. 2021).

1.3.3 Microenvironmental pathways

Cross-talk between these non-neoplastic cells and the malignant B cells can occur directly, via cell-
cell contacts and adhesion molecules, indirectly, via soluble factors that bind to receptors on the
CLL cells, or through the exchange of material held in extracellular vesicles (Guarini et al. 2008;
Oppezzo and Dighiero 2013; Crompot et al. 2017). Collectively these induce pathway activation
(most importantly BCR and NFκB (Herishanu et al. 2011)) and gene expression modifications with
the CLL cells, leading to chemotaxis, homing to lymphoid tissues and survival of the tumour cells
(Dubois et al. 2020). Figure 1.5 depicts an overview of this cross-talk.

Cell-cell contacts The importance of direct contact between cells became clear with observations
that the ability of MSCs to provide efficient rescue from spontaneous and drug-induced apoptosis
is dependent on direct contact and can be blocked by separation through a filter (Lagneaux et al.
1998; J. A. Burger et al. 2000; Kay et al. 2007; Kurtova et al. 2009; Ding et al. 2009). Likewise,
FDCs also operate through direct contact, as evidenced by the observation that contact with HK
cells (an FDC cell line) protects against CLL cells from apoptosis (I. M. Pedersen et al. 2002).

This direct contact operates through a number of receptor-receptor interactions. For example,
CLL-stromal cell binding involves β 1 integrin (ITGB1, or CD29) and β 2 integrin (ITGB2, or CD18)
(Lagneaux et al. 1999). VLA-4 is also an important integrin for retention of CLL cells within the
lymph nodes and bone marrow, by interacting with its ligand VCAM-1 (or CD106) on stromal cells
(J. A. Burger et al. 2001).

These cell-cell interactions then lead to pathway activation (including BCR (B. Stamatopoulos et
al. 2015) and TLR (Schulz et al. 2011)), gene expression changes and epigenetic changes (Van-
gapandu et al. 2017; Xu et al. 2018) within the tumour cells. For example, contact between CLL
B cells and MSCs alters the transcriptomic profile of the cells (Schulz et al. 2011; Mangolini et al.
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Figure 1.5: Graphic summarising soluble factors and cell-cell contacts involved in
cross-talk between CLL cells and non-neoplastic cells of the tumour microenviron-
ment. Figure reproduced with permission from Kipps et al. (2017) .

2018), leading to increased expression of anti-apoptotic proteins such as BCL-2 (Nwabo Kamdje et
al. 2012; Patel et al. 2014), BCL-XL (Patel et al. 2014; Amigo-Jiménez et al. 2015), MCL-1(Kurtova
et al. 2009; Amigo-Jiménez et al. 2015), and β-catenin (Mangolini et al. 2018).

Soluble Factors NLCs, MSCs, FDCs and T cells also secrete soluble factors that have a protective
effect on the tumour. For example, MSCs secrete a number of cytokines. One of the most widely
studied is SDF1-α (or CXCL12), which interacts with CXCR4 on CLL cells (J. A. Burger, Burger,
and Kipps 1999; J. A. Burger et al. 2001; Kay et al. 2007), stimulating the PI3K (M. Burger et
al. 2005), STAT3 (J. A. Burger, Burger, and Kipps 1999), and p44/42 MAPK (J. A. Burger et al.
2000) pathways which activates BTK (Montresor et al. 2018), ERK (D. Messmer et al. 2011),
and AKT (O’Hayre et al. 2010). FDCs on the other hand secrete B cell-activating factor (BAFF),
which has been shown to increase survival of CLL cells through the activation of canonical NFκB
signalling (Nishio et al. 2005). A number of Th T-cell-derived cytokines have also been shown to
increase CLL viability in vitro, including IFNγ (Buschle et al. 1993), IL15 (Trentin et al. 1996), IL21
(Totero et al. 2006; Pascutti et al. 2013), IL4 (Dancescu et al. 1992; Bhattacharya et al. 2015;
Aguilar-Hernandez et al. 2016), IL2 (Decker et al. 2010) and CD40L (Kitada et al. 1999; Pascutti
et al. 2013; Bhattacharya et al. 2015). Certain soluble factors can also increase apoptosis and act
against the tumour, including TGFβ (Lotz, Ranheim, and Kipps 1994).
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1.3.4 The influence of the microenvironment on drug response

In addition to their effect of spontaneous apoptosis, the cell types and soluble factors outlined
above have also been shown to impact on drug-induced apoptosis in vitro. For example, NLCs
and stromal cells have been shown to meditate ibrutinib resistance (Cheng et al. 2014; Guo et al.
2017), and the chemotherapeutics fludarabine, oxaliplatin, chlorambucil, cyclophosphamide and
doxorubicine show reduced efficacy in stromal cell co-cultures (Kay et al. 2007; Kurtova et al.
2009; Mraz et al. 2011; W. Zhang et al. 2012). A number of soluble factors also induce resistance
to drugs in vitro. These include decreased efficacy of fludarabine and venetoclax in the presence
of TLR stimulation (Fonte et al. 2013; Jayappa et al. 2017) and reduced sensitivity to ibrutinib in
the presence of IL4 (Aguilar-Hernandez et al. 2016) and BAFF (McWilliams et al. 2019).

Evidence of drug resistance induced by the microenvironment in vivo is less prevalent, although
there is widespread consensus that the microenvironment, in particular the lymph node, plays an
important role in patient outcomes. Low rates of complete response and the inevitability of relapse
in CLL have implicated the protective niche in enabling MRD (O’Brien and Kay 2011; Hayden et al.
2012). A number of studies have shown enlarged lymph nodes are associated with MRD (Moreton
et al. 2005), in particular, incomplete response to ibrutinib is associated with persistently enlarged
lymph nodes (Ahn et al. 2018). MSCs have also been shown to protect CLL cells taken from
patients before and after in vivo fludarabine therapy (Trimarco et al. 2015).

In light of this, an important goal in CLL research is to develop strategies to overcome drug re-
sistance induced by the microenvironment. Targeting microenvironmental signalling in the lymph
node tissue could be key to achieving long term remission and cure (Hayden et al. 2012) and
thus there is a need for combinatorial therapies that aim to eliminate CLL cells in the lymph node
and reduce CLL load in the peripheral blood. For example, Guo et al. (2017) have proposed cer-
dulatinib as a potential CLL therapy. Cerdulatinib is a dual inhibitor of the BCR pathway and the
JAK-STAT pathway, capable of inducing cell death whilst also inhibiting the protective effects from
the microenvironment.

The development of rational strategies to target the microenvironment requires a more comprehen-
sive understanding of drug – microenvironment interactions, and how these interplay with molecu-
lar features. Some studies have worked in this direction, for example Jayappa et al. (2018) tested
the impact of several agonists on ibrutinib and venetoclax. In a larger scale approach, Gimenez et
al. (2020) applied machine learning to identify drugs targeting proteins involved in microenviron-
mental signalling, and later screened these drugs in combination with venetoclax and ibrutinib, for
activity against CLL in the presence of stromal cells.

Previous work in our lab probed drug activity in CLL peripheral blood mononuclear cell (PBMC)
samples in the context of BMSC co-culture in a large-scale screen of 81 CLL patients (Herbst
2020). Similar larger scale systematic studies of drug – microenvironment interactions, particularly
in the context of molecular features, are required.
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1.3.5 Modelling the tumour microenvironment

A major goal of current research in CLL is to unravel the complexity of CLL-microenvironment
cross-talk and its role in drug response. Many studies have applied a range of strategies to mimic
the pro-survival effect of the microenvironment, each with their own advantages (Crassini et al.
2017; Scielzo and Ghia 2020).

Stimulation with soluble factors One such strategy is to stimulate individual pathways in CLL
samples ex vivo in order to elucidate their impact on CLL survival and drug response. For example,
studies of BCR, TLR, CD40L and interleukin stimulation (Muzio et al. 2009; Crassini et al. 2017;
Scielzo and Ghia 2020) have proven critical in demonstrating the marked effect each of these
have on CLL survival and the key downstream pathways involved (in particular NFκB and MAPK)
(Crassini et al. 2017). This strategy allows a direct understanding of cause and effect, with the
caveat that accurately mimicking cytokine concentrations in vitro is challenging, and that the activity
of certain stimuli may be altered in the absence of other signals.

Co-culture Stimulation studies omit the impact of cell-cell contacts and thus co-culturing CLL cells
with cell lines can provide a more complete picture. Various co-culture systems have been de-
veloped in order to mimic different components of the microenvironment, including stromal cells,
T cells, endothelial cells, NLCs and FDCs (Panayiotidis et al. 1996; Lagneaux et al. 1998; I. M.
Pedersen et al. 2002; Kurtova et al. 2009; B. Stamatopoulos et al. 2010, 2012; Asslaber et al.
2013; Hamilton et al. 2012; Crassini et al. 2017).

3D Models In recent years, interest has developed in the use of 3D culture systems, to create yet
more in vivo-like models of the microenvironment (Jensen and Teng 2020; Scielzo and Ghia 2020).
Static 3D approaches involve the use of scaffolds or the generation of spheroids, recapitulating
the complexity of the protective niche to a greater degree (Farinello et al. 2018; Scielzo and
Ghia 2020). More ambitious still is the development of dynamic 3D cultures, through the use of
bioreactors and microfluidics. These systems attempt to capture the influences of gravity, flow and
mechanical stresses, to study the phenotypic changes that occur as CLL cells traffic through and
communicate with the non-neoplastic tissues (Walsby et al. 2014; Scielzo and Ghia 2020).

in vivo murine models Murine models to investigate CLL-microenvironment interactions are also
possible (D. Lu et al. 2004; Enzler et al. 2009; Herishanu et al. 2011; Fedorchenko et al. 2013;
Simonetti et al. 2014; Crassini et al. 2017), though the value of these models can be hampered by
species-specific biological differences (Simonetti et al. 2014) and in vitro modelling is often a more
accurate approach (Crassini et al. 2017).

Of the many strategies to model the microenvironment, the reductionist approach of stimulating
individual pathways is a useful tool to demonstrate direct causal relationships between signal and
response. So far, most of these studies have investigated individual stimuli. Larger scale system-
atic studies of stimuli in other lymphomas have proven successful, such as work by Carey et al.
(2017) to functionally screen many immune stimuli in Acute Myeloid Leukaemia (AML), suggesting
that similar approaches could be valuable in CLL.

Moreover, most of these studies have been performed in smaller patient cohorts, omitting the in-
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fluence of the molecular heterogeneity of CLL. Indeed, integrative studies of the interplay between
external stimuli and cell-intrinsic features in CLL are lacking. A few studies have identified inter-
actions between genetic features and the microenvironment, for example, Martínez-Trillos et al.
(2016) have established a link between MYD88 mutations and TLR response, and Chatzouli et al.
(2014) demonstrated a link between IGHV status and the response to TLR activation. In addition,
Mansouri et al. (2016) have discussed the convergence of mutations and external signals on the
NFκB pathway.

The importance of interplay between microenvironment and molecular features in CLL survival
and drug response is abundantly clear. However, a systematic study of the integrative influence of
mutations and signals, particularly in the context of drug response, is missing in CLL.

1.4 CLL as a model for studying tumour biology

CLL represents a valuable model system in cancer and studies of CLL can offer proof-of-principle
for the application of new approaches in other entities. Primary PMBC samples are relatively
simple to obtain, as CLL is the most common leukaemia and biopsies are performed by taking
blood samples rather than intrusive operations. In addition, multiple biopsies cab be taken over
the course of a patient’s monitoring and therapy. The samples themselves can survive ex vivo for
several days, even in basic culture conditions, making it relatively simple to perform experiments
on primary samples.

Moreover, CLL is widely viewed as the prototypic disease for studying the integrative role of cell-
intrinsic and cell-extrinsic features in disease initiation, expansion and drug response (Mansouri et
al. 2016; V. K. Srinivasan et al. 2020; Oppezzo, Navarrete, and Chiorazzi 2021). Thus, studies
seeking to integrate the impact of cell-intrinsic and cell-extrinsic features on CLL survival and drug
response are important in the study of CLL and beyond.

For example, the work by J. Lu et al. (2021) to decipher a new multi-omic marker of disease
aggression not only represents an important advance in our understanding of CLL drive, it also
demonstrates an integrative approach to the study of cancer which could be useful in other cancers,
particular where the heterogeneity of outcome remains unexplained.

1.5 Background to the approaches used in this thesis

This thesis explores drug - microenvironment - gene interplay in CLL through the analysis of ex vivo
perturbation assays combined with multi-omic profiling of patient samples. Background information
on these experimental approaches, and associated data analysis, is outlined below.

1.5.1 Ex-vivo drug pertubation screens

Drug perturbation screens have been invaluable in identifying pathway dependencies, biomarkers
and potential therapies in CLL (Bosch and Dalla-Favera 2019). Drug perturbation screens are
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usually performed in microtiter plates that contain a grid of wells suitable for performing an array
of pharmacological or genetic experiments (Letai 2017). Tumour cells, either cell lines or primary
samples, can be deposited in each well to test their sensitivity to a set of compounds of interest. Tu-
mour cells are incubated with each of the compounds, commonly dissolved in an aqueous solution
of dimethyl sulfoxide (DMSO). After a set amount of time has passed to allow the cells to respond
to the compound, the effect of each compound is measured. This “read-out” can take a number
of forms. For example the morphology of the cells can imaged (Snijder et al. 2017; Herbst 2020),
or the cell viability can be measured via the number of cells or the level of adenosine triphosphate
(ATP) in the well (Dietrich et al. 2017).

High-throughput drug screens of cancer cell lines have been widely used to link drug responses to
molecular features (Barretina et al. 2012; Basu et al. 2013; Garnett et al. 2012; Iorio et al. 2016).
However, cell lines do not capture the genetic heterogeneity of a cancer (Goodspeed et al. 2016),
and thus drug screening of primary samples can be more valuable (Dietrich et al. 2017; Tyner et al.
2013; Pemovska et al. 2013; Snijder et al. 2017). In the case of CLL, screening primary samples
has the caveat that CLL cells do not proliferate ex vivo (Collins et al. 1989) and thus read-outs
need to be taken on the basis of the rate of apoptosis relative to controls, rather than proliferation
rate.

A few ex vivo perturbation screens have also investigated the impact of microenvironmental stim-
ulation on cancer biology, for example Carey et al. (2017)’s functional screen of 94 cytokines in
primary AML samples. Studies of stimuli are much rarer despite the well-recognised role of the
microenvironment across haematological malignancies and other cancers.

Drug perturbation assays are also suited to combinatorial approaches, most commonly to test the
efficacy of pairs of drugs in order to identify synergistic combinations (Axelrod et al. 2014; Lukas
et al. 2020). Combinatorial screening to test drug efficacy in the context of microenvironmental
stimulation is also possible, though rare.

1.5.2 Multi-omics profiling and integration of multiple datatypes

Multi-omics profiling of samples, in combination with ex vivo perturbation screening, is a powerful
approach to link cell phenotypes with molecular features in cancer.

The disease pathogenesis and drug response of a cancer is determined by complex interactions
between mutations, epigenetic alterations, gene expression, metabolic abnormalities, and aber-
rant signalling functions (Anda-Jáuregui and Hernández-Lemus 2020). Thus, the study of tumour
biology, and indeed CLL biology, requires integrative methodologies and analyses to decipher this
complex network (Du and Elemento 2015).

Enter multi-omics, an approach to studying biological systems that utilises multiple “omic” lay-
ers to study biological entities (Anda-Jáuregui and Hernández-Lemus 2020; Menyhárt and Gyrffy
2021). These “omic” layers can encompass next-generation sequencing technologies, including
DNA sequencing (DNAseq) and RNA sequencing (RNAseq) and high-throughput proteomics and
metabolomics, along with newer single cell technologies and other sequence-based approaches
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such as ChIPseq (chromatin immunoprecipitation sequencing) and ATACseq (Assay for Transposase-
Accessible Chromatin using sequencing) (Anda-Jáuregui and Hernández-Lemus 2020). A number
of methods have been built to integrate these diverse data types, calling on tools from statistics,
probability, machine learning and network analysis (Hernández-Lemus 2013; Argelaguet et al.
2018; Anda-Jáuregui and Hernández-Lemus 2020).

In CLL, studies have profiled each of these layers independently, including the genomic (Landau et
al. 2015; Puente et al. 2015), transcriptomic (Ferreira et al. 2014; Zenz et al. 2019), epigenomic
(Rendeiro et al. 2016, 2020; Beekman et al. 2018; Mallm et al. 2019) and proteomic landscapes
(Herbst 2020; Meier-Abt et al. 2021).

Building on these studies, multi-omics approaches have the power to identify causal relationships
between phenotypic layers of CLL, and thus have led to important biological insights and clinical
perspectives (Dietrich et al. 2017; Berest et al. 2019; Lipsky et al. 2020; Herbst 2020; J. Lu et
al. 2021). For example, a recent study in our lab integrated multiple data types to identify a novel
biological axis, termed CLL proliferative drive, which is strongly associated with disease outcome
(J. Lu et al. 2021). Other multi-omics studies have identified markers of drug response (Dietrich
et al. 2017). Integration of ATACseq and RNAseq has also been used to determine differences
in transcription factor (TF) activity in CLL between the two major subtypes (IGHV-M and IGHV-
U) (Berest et al. 2019). These studies highlight the importance of integrative approaches to gain
further insights into CLL pathogenesis, especially with a view towards more personalised treatment
strategies for patients.

1.5.3 Mathematical modelling

A number of mathematical tools are valuable in analysing complex multi-omics datasets. In this
thesis, linear regression with and without lasso penalisation is used extensively to model the impact
of the microenvironment and molecular features on drug response and a basic background to these
approaches is outlined below.

Basic linear regression Linear regression involves fitting a linear model to a dataset, to model the
process that generated the data. For example, equation (1.1) describes a basic model to map the
values of X, to the values of Y :

Y = β0 + β1X + ε (1.1)

This model specifies two components: the linear predictor β0 + β1X and the error ε. The linear
predictor can be compared to the equation for a straight line (Y = mX + c), where β0 represents
the intercept (c), and β1, the gradient (m). The error ε can be modelled by sampling from a normal
distribution e.g. N(0, σ2), a normal distribution with mean zero and variance σ2.

Thus, we can model a variable Y via an expected value derived from the X independent variable(s),
plus a random value derived from normal distribution with specified variance (Walker 2018; Huber
and Holmes 2019).

Multiple Linear Regression and Interaction Effects In certain cases, multiple independent vari-
ables may be predictors of the value of Y . In these cases, multiple linear regression is required,
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involving more than one explanatory variable. The basic model, for two independent variables X1

and X2, is denoted as follows:

Y = β0 + β1X1 + β2X2 + ε (1.2)

In some cases, the effect of an independent variable on Y may depend on the on the value of
another independent variable. For example, the effect of a drug on the viability of a CLL cell may
depend on whether TP53 is mutated. Such “interactions” between independent variables can also
be accounted for within linear models. These interactions are denoted as the product of two or
more independent variables:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε (1.3)

Here X1X2 represents the interaction, and β3 is the associated regression coefficient. Higher-order
interactions with more terms are also possible.

Generalised Linear Models Not all dependent variables (Y ) can be assumed to derive from sam-
pling a normal distribution, as in equation (1.1). For example, if Y is binary and takes only the
values 0 or 1, a Bernoulli distribution is more appropriate. Generalised linear modelling builds on
linear regression such that the response variable can have an error distribution other than the nor-
mal distribution (Nelder and Wedderburn 1972). A number of distributions are possible, including
the binomial, Poisson and gamma distributions. Where Y is categorical, binomial or multinomial
distributions are valuable; for count data, the Poisson distribution is often used.

Lasso Regularisation When fitting such models to a particular dataset, it is important to avoid
overfitting the data. Overfitting occurs when a model conforms too precisely to the dataset in hand.
The model may not be representative of other datasets, and thus any predictions made using model
are not reliable. Regularisation is an important tool to minimise such issues (Kumar n.d.).

Regularisation adds a penalty term to the best fit model. This reduces the influences of dependent
variables on the value of Y , by compressing the coefficients. This often acts to reduce the number
of predictors and to generate a lesser variance with the test dataset. There are two main methods
for this, named L1 Lasso Regression and L2 Ridge Regression. The models described in this
thesis use Lasso Regression, which is more interpretable than Ridge Regression.

Lasso regularisation shrinks coefficients towards a central point, by adding a penalty to each co-
efficient, equal to the absolute value of its magnitude. This shrinkage approach means than some
coefficients are reduced to 0 and are eliminated from the model, generating models that are sparse
and have fewer parameters (Tibshirani 1996; Kumar n.d.).

This can make models simpler to interpret and can be useful in cases where the dependent vari-
ables are highly correlated, as in these cases only one of the correlated variables will usually be
assigned a coefficient. This also has the caveat that the correlated features may each indepen-
dently effect Y , but only one of these variables will be deemed important by the model. It is also
often impossible to determine whether one or all the correlated variables are truly influencing Y .
Thus, it is important to bear in mind that whilst modelling approaches have proven invaluable in
advancing our understanding of biological processes, careful interpretation is required.
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1.6 Summary of this thesis

In this thesis, I investigate interplay between molecular features and microenvironmental signals
and their influence on viability and drug response in a large CLL patient cohort. Layer by layer, I aim
to establish an integrative understanding of survival and drug resistance pathways in CLL.

I employ a large-scale screening dataset of 192 primary CLL samples, which quantifies the ef-
fects of 17 microenvironmental stimuli, both alone and in combination with 12 drugs. I combine
the screening data with multi-omic profiles for each of the patient samples, covering point muta-
tions, copy number variations, DNA methylation and mRNA expression. The screen serves as a
reductionist model of signalling via soluble factors in the microenvironment, in a cohort of patient
samples that encompasses the clinical and molecular heterogeneity of CLL. I investigate the influ-
ence of microenvironmental stimulation on spontaneous and drug-induced apoptosis, and how this
can be further modulated by molecular features.

Several signalling pathways and genetic features emerge as key players in CLL-microenvironment
cross-talk, and in microenvironmental mechanisms of drug resistance. The above experiments
are complimented by IHC stains of healthy and CLL-infiltrated lymph nodes to investigate the in
vivo activity of selected pathways. To supplement the large scale screening approach, I also make
use of RNAseq, ATACseq, Mass Spectrometry and ChIPseq datasets of CLL patient samples to
validate individual findings at a mechanistic level.

The thesis is structured as follows:

Chapter 1: Introduction Overview of the background information and surrounding literature of the
project.

Chapter 2: Methods Overview of the experimental and analytical methods used in this the-
sis.

Chapter 3: Data Overview of the datasets employed in this thesis, and the corresponding public
code repository and shiny app.

Chapter 4: Ex-vivo responses of primary CLL samples to microenvironmental stimuli Phe-
notypic profiling of the responses of CLL samples to the panel of microenvironmental stimuli.

Chapter 5: Genetic modulators of responses to microenvironmental stimulation Integration
of the screening data with patient sample multi-omic profiles to perform a comprehensive survey
of molecular determinants of stimulus response.

Chapter 6: Molecular and microenvironmental modulators of drug response in CLL Mapping
of drug - microenvironment interactions and how these can be further modulated by molecular
features

Chapter 7: Discussion A discussion of the findings, the strengths and weakness of the ap-
proaches and their context within the field and surrounding literature.
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Chapter 2

Methods

Some of the method descriptions in this chapter contain paragraphs taken verbatim or adapted
from published work or manuscripts that I have authored or co-authored. These paragraphs are
in quotations or marked by the citation at the end of the paragraph, and I authored the text unless
stated. Where text contributions or experimental work was performed by or with support from
others, this is annotated.

2.1 Experimental methods

2.1.1 Preparation of patient samples for combinatorial screening

Section 3.1.1. Peripheral blood samples were obtained from 192 patients (Appendix Table 1). A
Ficoll gradient (GE Healthcare) was used to separate the samples and subsequently mononuclear
cells were cryopreserved. Patient samples were selected based on number of cells available in
the tumour bank and to ensure that the frequency of genotypes was representative of CLL disease
heterogeneity observed in other studies. On screening days, samples were thawed and DMSO
was removed. Primary patient samples were next incubated on a roll mixer at room temperature in
cell culture medium for a duration of three hours. This process ensured that any remaining DMSO
was removed and that cell counts would only include those that survived the freezing process. 20
cell lines were also included in the screen, but were excluded from downstream analysis due to lack
of response to stimulation (Bruch and Giles et al. 2021). Performed by Peter-Martin Bruch.

2.1.2 Preparation of plates for combinatorial screening

Section 3.1.1. Drugs and stimuli were first selected and ordered from Selleckchem, MedChemEx-
press and Sigma-Aldrich. Drugs were initially dissolved in DMSO and stored at -20◦C. For a list of
drugs, concentrations and sources see Appendix Table 2. Recombinant cytokines and stimulatory
agents were dissolved according to protocol defined by the manufacturer. Appendix Table 3 pro-
vides a detailed list of concentrations and sources. In addition, HS-5 conditioned medium (HS-5
CM) was produced by incubating the stromal cell line HS-5 for four days at 37◦C and 5% CO2. The
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resulting supernatant was centrifuged and stored at -20◦C and the final concentration of HS-5 CM
used in the screen was 20%.

Drugs were pre-plated in 384-well polypropylene storage plates (Greiner Bio-One Cat. No. :
781271), which were stored at -20◦C. Storage plates were thawed on day of use, and diluted
in serum free RPMI with or without corresponding stimuli (Bruch and Giles et al. 2021). Performed
by Peter-Martin Bruch.

2.1.3 Combinatorial Drug - Stimulus Perturbation Screen

Section 3.1.1. 5µl of this drug-stimulation dilution was added into each well of the 384-well assay
plates (Greiner Bio-One Cat. No. 781904), followed by 20 µl of cell suspension. Final DMSO
concentration did not exceed 0.3% and the final cell concentration was 8 x 105 cells/ml. Screening
was performed in RPMI-1640 (Gibco by Life Technologies, final concentration of 100 Units/ml)
supplemented with Penicillin Streptomycin (Gibco, 100 µg/ml), L-Glutamine (Gibco, 2mM), and
pooled, heat-inactivated and sterile filtered human type AB male off-the-clot serum (PAN Biotech,
Cat. No. P40-2701, Lot. No. P-020317, 10%). One well was used for each drug, concentration
and stimulus combination (Appendix Figures 1, 2, 3), such that each patient sample was screened
on two plates. For each patient sample, technical replicates existed for single drug treatments
(two) and DMSO wells (100). Samples were incubated at 37◦C and 5% CO2 for 48 hours. Cell
viability was determined using the ATP-based CellTiter-Glo assay (Promega, Cat. No. G7573).
Luminescence was measured for the drug-stimulation assays using a Perkin Elmer EnVision, with
a measurement time of 100ms per well. 15 drugs, in two concentrations, alone and in combination
with 18 stimuli were studied, across 192 patient samples. Carfilzomib, panobinostat and venetoclax
were removed from downstream analysis as they showed inconsistent toxicity depending on used
media, as well as Bead immobilised anti-IgM due to storage instability. 12 drugs and 17 stimuli
were used in all downstream analyses (Bruch and Giles et al. 2021). The screen was primarily
designed and performed by Peter-Martin Bruch.

2.1.4 Spi-B and PU.1 shRNA Knockdowns

Section 5.2.6. “shRNAs directed against PU.1 (shRNA: 5’-GAAGAAGCTCACCTACCAGTT-3’)21
and SPIB (shRNA: 5’-CAAGGTTCCCTCTTGTCAGAT-3’)22 were integrated into the pLKO.1 vec-
tor backbone (Addgene plasmid #10878) according to the manufacturer’s protocol using pLKO.1-
scramble shRNA (Addgene plasmid #1864) as control.

Lentiviruses were produced by co-transfecting psPAX2 (4.8 µg; Addgene plasmid #12260), pMD2.G
(3.2 g; Addgene plasmid #12259) and one of the cloned shRNA plasmids (8 µg) to HEK 293T cells.
Virus-containing medium was collected 48 and 72 hours post transfection and concentrated via ul-
tracentrifugation. The target cells were transduced in 96-well plates and sufficient amounts of virus
were added to transduce about 80% of the cells. Spinoculation was performed in the presence
of polybrene (SU-DHL 4, SU-DHL 5: 8 µg/mL; SU-DHL 2: 12 µg/mL) for 45 minutes at 3,200g.
At 72 hours post infection, the cells were selected with puromycin (0.5 µg/mL). For the PU1/SPIB
Double-KD, the SPIB-KD cell lines were additionally transduced with the PU1-KD lentivirus in the
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same manner as in the first transduction. Knockdown efficiencies were confirmed by PU.1 and
Spi-B western blots.” (Bruch and Giles et al. 2021) Original text written by Master’s Student Tina
Becirovic. Experiment performed by Tina Becirovic and Dr. Sophie Herbst.

2.1.5 IHC staining of lymph nodes for pSTAT6

Section 6.4.2. “Lymph node biopsies of CLL-infiltrated and non-neoplastic samples were formalin
fixed and paraffin embedded, arranged in Tissue Microarrays and stained for pSTAT6 (ab28829,
Abcam). The slides were analysed using Qupath (Bankhead et al. 2017) and the recommended
protocol.” Bruch and Giles et al. 2021. Original text written by Peter-Martin Bruch. Experiment
performed by Mark Kriegsmann, Katharina Kriegsmann and Christiane Zgorzelski.

2.1.6 Preparation of samples for ATACseq of CLL PBMCs treated with DMSO and
IBET-762

Sections 5.2.4 and 6.2.1. Peripheral blood was taken from four CLL patients and separated by
Ficoll gradient (GE Healthcare), mononuclear cells were cryopreserved on liquid nitrogen. Sam-
ples were later thawed from frozen following the protocol described in Dietrich et al. (2017), and
MACS-sorted for CD19 positive cells (Milteny autoMACS). The cells were resuspended in RPMI
(GIBCO, Cat. No. 21875-034), with the addition of 2mM glutamine (GIBCO, Cat. No. 25030-24),
1% Pen/Strep (GIBCO, Cat. No. 15140-122) and 10% pooled, heat-inactivated and sterile filtered
human type AB male off the clot serum (PAN Biotech, Cat. No. P40-2701, Lot.No:P-020317). 5ml
of cell suspension was cultured in 6-well plates (Greiner Bio-One Cat. No. 657160). To prepare
the treatment, IBET-762 (Selleckchem, Cat. No. S7189) was dissolved in DMSO (SERVA, Cat.
No. 20385) and stored at - 20◦C. After thawing, IBET-72 was prediluted in DMSO and added to the
plates. In both treatment and DMSO control, the final DMSO concentration was 0.2%. Cells were
then added and incubated at 37◦C and 5% CO2 for 6 hours. The final cell concentration was 2 x 106

cells/ml and the final IBET-762 concentration was 1µM. After treatment, cell viability and purity was
assessed using FACS. All samples had a viability over 90% and over 95% of CD19+/CD5+/CD3-
cells (Bruch and Giles et al. 2021).

The four DMSO samples were analysed as part of the investigation of TF activity in trisomy 12
CLL (Section 5.2.4). The four IBET-762 and four control samples were investigated in Section
6.2.1). Text adapted from extracts originally published in Berest et al. (2019) and Bruch and Giles
et al. (2021). Original text authored by myself and Peter-Martin Bruch. Experiment performed by
Peter-Martin Bruch.

2.1.7 ATACseq library generation and sequencing of CLL PMBCs treated with DMSO
and IBET-762

Sections 5.2.4 and 6.2.1. “ATACseq libraries were generated as described previously (Buenrostro
et al. 2013). Cell preparation and transposition was performed according to the protocol, starting
with 5 x 104 cells per sample. Purified DNA was stored at -20◦C until library preparation was
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performed. To generate multiplexed libraries, the transposed DNA was initially amplified for 5x
PCR cycles using 2.5 µL each of 25 µM PCR Primer 1 and 2.5 µL of 25 µM Barcoded PCR
Primer 2 (included in the Nextera index kit, Illumina, San Diego, CA, USA), 25 µL of NEBNext
High-Fidelity 2x PCR Master Mix (New England Biolabs, Boston, Massachusetts) in a total volume
of 50 µL. 5 µL of the amplified DNA was used to determine the appropriate number of additional
PCR cycles using qPCR. Additional number of cycles was calculated through the plotting of the
linear Rn versus cycle, and corresponds to one-third of the maximum fluorescent intensity. Finally,
amplification was performed on the remaining 45 µL of the PCR reaction using the optimal number
of cycles determined for each library by qPCR (max. 13 cycles in total). The amplified fragments
were purified with two rounds of SPRI bead clean-up (1.4x). The size distribution of the libraries
was assessed on Bioanalyzer with a DNA High Sensitivity kit (Agilent Technologies, Santa Clara,
CA), concentration was measured with Qubit DNA High Sensitivity kit in Qubit 2.0 Flurometer (Life
Technologies, Carlsbad, CA). Sequencing was performed on NextSeq 500 (Illumina, San Diego,
CA, USA) using 75bp paired-end sequencing, generating 450 million paired-reads per run, with
an average of 55 million reads per sample.” (Berest et al. 2019; Bruch et al. 2021). Original text
written by Nayara Trevisan Doimo de Azevedohe of the EMBL Genomics Core Facility. Experiment
performed by Nayara Trevisan Doimo de Azevedohe and Peter-Martin Bruch.

2.2 Additional Data and Data availability

Patient sample multi-omic profiles Whole-exome sequencing, DNA-methylation, RNA-sequencing
and copy number variant data were taken from the Primary Cancer Cell Encyclopedia (PACE)
repository (Oles et al. 2021).

Clinical data on patient samples Clinical follow-up data was available for some of the 192 pa-
tients, taken from PACE (Oles et al. 2021) including TTT (n = 188), TTFT (n = 189) and OS (n =
192). LDT (n = 115) measurements were curated from clinical records.

CLL PBMC ATACseq data ATACseq Dataset 2 in Section 5.2.4 was generated by Rendeiro et al.
(2016) and downloaded from the European Genome-Phenome Archive (EGA, EGAD00001002110).

Spi-B and PU.1 ChIPseq data Spi-B and PU.1 ChIPseq data in the OCILY3 DLBCL cell line (Care
et al. 2014) was downloaded from the NCBI GEO database (Edgar, Domrachev, and Lash 2002),
accession GEO : GSE56857, IDs : GSM1370276, GSM1370275

Proteomics data for CLL PMBCs The proteomics dataset used to investigate gene dosage effects
in trisomy 12 (Section 5.2.2) was shared by Dr. Sophie Herbst (Herbst 2020).

Availability The datasets described in this thesis, including the drug-stimulus combinatorial screen
and associated patient meta data, along with validation experiments (SPIB and PU1 shRNA knock-
downs, ATACseq of CLL PBMCs and IHC data of patient lymph nodes) are all available as part of
the online repository, which can be found at https://github.com/Huber-group-EMBL/CLLCytok
ineScreen2021.
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2.3 Data processing

2.3.1 Normalisation of screening data

Section 3.2. Raw luminescence measurements from the experiments were read in using custom-
made R scripts and functions. Raw values represent the luminescence readout of the CellTiter-Glo
Luminescent Cell Viability Assay. Each raw count was normalised to internal DMSO values of the
same plate. Specifically, the mean of each well corresponding to each stimulus, drug or drug-
stimulus treatment was divided by the median of the 50 DMSO negative control wells present on
each plate, resulting in viability scores. Control-normalised viability scores were natural logarithm
transformed, to generate log-transformed control-normalised viability scores used for the majority
of the downstream analysis (Bruch and Giles et al. 2021). Initial data processing performed by
Peter-Martin Bruch.

2.3.2 Processing of ATACseq of CLL PMBCs treated with DMSO and IBET-762

Section 5.2.4 and 6.2.1. The dataset contained 8 ATACseq samples from 4 CLL patients, incubated
with DMSO and IBET-762. The ATACseq processing pipeline outlined in Berest et al. (2019) was
followed to generate GC-biased corrected bam and peak files mapped to the hg38 and the hg19
annotation genome (as both were used in separate downstream analyses). More specifically, this
involved a Snakemake (Kö Ster and Rahmann 2012) pipeline, written by Berest et al. (2019) which
accepts raw fastq files, and performs steps quality control, adaptor trimming, alignment, post-
alignment filtering and processing steps to generate bam files. First FastQC determined sequence
quality then trimmomatic (Bolger, Lohse, and Usadel 2014) was used to remove sequences derived
from the Nextera Transposase agent. Next Bowtie2 (Langmead and Salzberg 2012) was used for
the alignment step, followed by numerous clean-up processes involving Picard tools, CleanSam,
FixMateInformation, AddOrReplaceReadGroups, and ReorderSam. Base quality recalibration was
performed using GATK (McKenna et al. 2010), allowing the detection and correction of systematic
errors in quality score estimated for each base call, thereby increasing data quality.

Data was then filtered, first to remove mitochondrial reads and reads from non-assembled con-
tigs or alternative haplotypes, then to remove reads with a mapping quality below the threshold.
Duplicate reads were marked and removed with Picard tools, and read start sites were adjusted
as described in Buenrostro et al. (2013) i.e. 4 bp on the forward and 5 bp on the reverse strand.
Reads with insertions or deletions were removed using SAMtools (H. Li et al. 2009). GC bias
correction was performed using deepTools (Ramírez et al. 2014). Benjamini’s method (Benjamini
and Speed 2012) was then performed for each sample to quantify level of GC bias. Peak calling
was performed using MACS2 (Y. Zhang et al. 2008), to generate peak files. The pipeline gener-
ated summary statistics and additional files and plots (coverage files for visualisation, transcription
start site enrichment, sample-specific fragment length distributions, library complexity measures
and PCA sample correlations) that were assessed to determine data quality and any batch effects
(Bruch and Giles et al. 2021). Text adapted from original extract written by Dr. Ivan Berest and
published in Berest et al. (2019). Alignment to hg38 performed with Dr. Ivan Berest.
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2.3.3 Processing of CLL PBMC ATACseq dataset

Section 5.2.4. The Rendeiro et al. (2016) CLL dataset (dataset 2) contained 88 ATACseq samples
from 55 patients. For the analysis one sample per patient was used passing quality checks, result-
ing in 52 samples. The ATACseq processing pipeline outlined in Berest et al. (2019) and above
was followed to generate GC-biased corrected bam and peak files mapped to the hg19 annotation
genome (Bruch and Giles et al. 2021). Performed by Dr. Ivan Berest.

2.4 Statistical Analysis

The following analysis was performed using R version 4 (R Core Team 2021) with the RStudio
interface (RStudio Team 2020), and packages from Bioconductor (Huber et al. 2015). Plots were
generated with the R package ggplot2 (Wickham et al. 2021) and arranged with the R package
patchwork (T. L. Pedersen 2020).

2.4.1 Drug-drug and stimulus - stimulus correlations

Section 3.3.2 and 4.1.1. Pearson correlation coefficients were calculated for each drug - drug and
stimulus - stimulus pair, using the cor functions in R (R Core Team 2021) with log transformed via-
bility values which were normalised to untreated controls (Bruch and Giles et al. 2021). Performed
with Peter-Martin Bruch for the manuscript Bruch and Giles et al. 2021.

2.4.2 Correlation of cytokine receptor expression with viability scores of corre-
sponding stimulus

Section 3.4.2. RNA count data for matched samples was available for 49 patients and was trans-
formed using the variance stabilising transformation. Stimulus - receptor pairs were defined using
the available literature. For each stimulus, a Pearson correlation coefficient was calculated between
the log-transformed control-normalised viability values and the expression of the corresponding
stimulus receptor for matching samples. Correlation coefficients were visualised in a volcano plot,
to determine if any cytokine-receptor pairs showed R>0.4 (Bruch and Giles et al. 2021). Performed
with Peter-Martin Bruch for the manuscript Bruch and Giles et al. 2021.

2.4.3 Consensus clustering and visualisation of stimulus responses

Section 4.1.2. For the heatmap in figure 4.4, the log transformed control-normalised viability scores
were scaled for optimal visualisation. For each stimulus, viability values were row-scaled according
to the Median Absolute Deviance, and limits were then applied to this row scaling factor for the
purposes of visualisation, such that all resulting z scores were between -3 and +3.

The columns (patient samples) of the resulting matrix were then clustered using the function
ConsensusClusterPlus , from the ConsensusClusterPlus package (Wilkerson and Waltman 2021).
The function generated robust clusters for k (number of clusters) = 2 - 7, performing heirarchical
clustering based on Euclidean distances, with 10,000 repeats.
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To quantify the degree of confidence in the clusters for each k, plots representing the cumulative
distribution functions (CDFs) of the consensus matrices for k = 2 - 7, the relative change in area
under the CDF curves, and cluster stability were assessed.

The z scores were then visualised for k = 4, using the pheatmap package (Kolde 2019), whereby
the columns were clustered according to the dendrogram resulting from the above, and the rows
(stimuli) were ordered using the dendrogram order produced by hclust with default branch ar-
rangement (Bruch and Giles et al. 2021). Performed with Peter-Martin Bruch for the manuscript
Bruch and Giles et al. 2021.

2.4.4 Assosciation of clusters and lymphocyte doubling times

Section 4.2.2. Data on lymphocyte growth rates were curated from clinical records. To calculate
growth rates, a linear model was fit to log10 transformed lymphocyte counts for a series of time
points starting with the sample collection date and ending with the time of the next treatment.
Where less than four time points were recorded, these patients were excluded, resulting in LDT
measurements for 115 patient samples. Associations between LDT measurements and patient
clusters were assessed using two-sided Student’s t-tests (Bruch and Giles et al. 2021). Performed
by Junyan Lu and Peter-Martin Bruch for the manuscript Bruch and Giles et al. 2021.

2.4.5 Assosciation of clusters and patient outcomes

Section 4.2.2. Differential disease progression between patient clusters was measured using TTT
as metric. 188 of 192 CLL patients were annotated for treatment information after sample collec-
tion. TTT represents the period between the date of sample collection and the data of treatment
initiation. TTT was plotted using the Kaplan-Meier method, in which patient samples were stratified
by cluster. To calculate significance, univariate Cox proportional hazards regression models were
fitted using the coxph function of the R package survival (Therneau 2021), using C1 as reference
for the comparison C1 versus C2 and C4 as reference for C3 versus C4. To determine whether the
prognostic value of cluster assignment between C3 and C4 was independent of other prognostic
markers, a multivariate Cox proportional hazards regression models was fit, with the design formula
~Cluster + IGHV.status + trisomy12 + TP53, with Cluster 3 as reference (Bruch and Giles et
al. 2021). Performed with Peter-Martin Bruch for the manuscript Bruch and Giles et al. 2021.

2.4.6 Penalised multivariate regression to identify genetic predictors of cluster
membership

Section 4.2.4. Differential enrichment of genetic features amongst the four patient clusters was
quantified using a multinomial linear model with L1-penalty, via the cv.glmnet function of the
glmnet package (Friedman et al. 2021). As input to the model, the discrete response matrix
represented the vector of cluster assignments (1-4) for each patient sample. The feature matrix
consisted of genetic features (p=39) and IGHV status (input as M=1 and U=0). All features were
thus encoded on a similar scale to ensure equal treatment by lasso constraint in model fitting.
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Where genetic features showed more than 20% missing values, these were excluded from the fea-
ture matrix. Samples without complete annotation for remaining features were removed, resulting
in n=129 samples. Using three-fold cross-validation, the optimal penalty parameter λ was selected
so as to minimise the cross-validated R2. The misclassification error was used as loss. The re-
sulting coefficients are the mean of 50 bootstrapped repeats, where coefficients were filtered if
they were selected in <60% of cases or were <0.35. Standard deviations were calculated for each
coefficient based on the bootstrapped repeats (Bruch and Giles et al. 2021).

2.4.7 Comparison of gene expression between clusters and Gene Set Enrichment
Analysis (GSEA)

Section 4.2.5. To look for associations between stimulus response data and RNA expression
data the R package DESeq2 (Love, Anders, and Huber 2021) was used. RNAseq data was avail-
able for 49 matched PBMC samples, 21 of which belonged to C3 and C4 (Bruch and Giles et
al. 2021).

To quantify differential gene expression between C3 and C4, genes encoding components of the
BCR were first filtered, including genes at the heavy, light and kappa immunoglobulin loci. Differ-
ential expression was quantified using DESeq2 protocol (Love, Anders, and Huber 2021) with the
design formula ~ IGHV.status + Cluster. Genes were then ranked according to the resulting
Wald statistics and GSEA was performed using the the clusterProfiler package (G. Yu 2021),
with the fgsea algorithm and using KEGG pathway gene sets from the MSigDB database (Dolgalev
2021) (Bruch and Giles et al. 2021).

2.4.8 Analysis of differential gene dosage in trisomy 12 CLL

Section 5.2.2. For all RNA samples available in PACE that matched the samples in the screen,
differential expression was called using the DESeq2 package (Love, Anders, and Huber 2021), with
the design formula ~trisomy12. Raw RNA counts were visualised if the gene had BH-adjusted
p < 0.1 and belonged to TGFβ, JAK-STAT or TLR pathways genesets, as defined in the KEGG
database (Kanehisa et al. 2010) downloaded using the msigdbr package (Dolgalev 2021). Sam-
ples in proteomics data partially overlap with those in RNAseq data.

2.4.9 Univariate analysis of gene - stimulus response assosciations

Section 5.1.1 and 6.2.1. Two-sided Student’s t-tests, with equal variance were performed for IGHV
status and somatic mutations and copy number aberrations with at least three patient samples in
each group (n = 54). Mutations in KRAS, NRAS and BRAF were tested in a single group. p values
were adjusted using the BH-adjustment procedure, and a 10% FDR cut off was used to determine
significance (Bruch and Giles et al. 2021). Performed with Peter-Martin Bruch for the manuscript
Bruch and Giles et al. 2021.
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2.4.10 Penalised multivariate regression of gene - stimulus assosciations

Section 5.1.2. To identify gene-stimulus associations, a Gaussian linear model with L1-penalty with
mixing parameter alpha = 1 was fitted for each stimulus using the cv.glmnet function from the R
package glmnet (Friedman et al. 2021). The feature matrix consisted of genetic features (p=39),
IGHV status (input as M=1 and U=0), and Methylation Cluster (input as 0, 0.5, 1). All features
were thus encoded on a similar scale to ensure equal treatment by lasso constraint in model
fitting. Where genetic features showed more than 20% missing values, these were excluded from
the feature matrix. Samples without complete annotation for remaining features were removed,
resulting in n=129 samples. The matrix of control-normalised log-transformed viability values for
these 129 samples was provided as the response matrix. λ (the optimal penalty parameter) was
chosen with 3-fold cross-validation. The model was fitted for 30 bootstrapped repeats, and the
resulting coefficients are the mean of those coefficients that were selected in >75% model fits
(Bruch and Giles et al. 2021).

2.4.11 Identification of trisomy 12 phenocopies

Section 5.2.3. Trisomy 12 phenocopies were identified using a classification approach. The clas-
sifier was built in two steps: First, coefficients were selected that predict trisomy 12 status based
on stimulus response, using a binomial linear model with L1-penalty implemented in the R package
glmnet (Friedman et al. 2021). The feature matrix consisted of z scores of the viability values after
treatment with each stimulus, and was used to predict the response, a vector of the trisomy 12
statuses for each sample. Using three-fold cross-validation, the optimal penalty parameter λ was
selected so as to minimise the cross-validated R2. The mean absolute error was used as loss.
The model fitting was performed for 50 bootstrapped repeats.

Second, the function predict was used with each of the 50 model fits, to assign trisomy 12 status
for each sample, based on the matrix of z scores. Non-trisomy 12 samples were determined to be
misclassified i.e. phenocopies if they were wrongly annotated as trisomy 12 in >25 of repeats.

2.4.12 diffTF analysis of TF activity in trisomy 12 CLL

Section 5.2.4. For the ATACseq dataset 2 from Rendeiro et al. (2016) (n = 52), trisomy 12 status
was not included in the published metadata. Trisomy 12 status was annotated based on the mean
number of reads in the chromatin accessible peaks for each sample. All samples containing 1.4
times more reads in the peaks located on chromosome 12, compared to the peaks on all other
chromosomes, were classified as trisomy 12 (n = 9).

Following the diffTF Berest et al. (2019) protocol, a consensus peak set was first generated
using the function dba.peakset from the package DiffBind (Stark and Brown 2021) and with
minOverlap = 2, which defines the minimum number of samples in which a peak should be present
to be included in the consensus set. Sex chromosomes, non-assembled contigs and alternative
haplotypes were then filtered. Transcription factor binding sites were defined based on the hg19
HOCOMOCO v10 database (Kulakovskiy et al. 2016) which summarises TF binding sites as Posi-
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tion Weight Matrices (PWMs) from a range of ChIPseq experiments, resulting in 638 human TFs.
diffTF was run in permutation mode with design formula: sample_processing_batch + sex +
IGHV status + trisomy 12. For more detail see Berest et al. (2019).

For the ATACseq dataset 1 (n = 4), trisomy 12 status was already annotated (Oles et al. 2021). The
consensus peak set was defined using minOverlap = 1 and TF binding sites were defined using
the hg19 HOCOMOCO v10 database (Kulakovskiy et al. 2016). diffTF was run twice (with and
without chromosome 12 data) in analytical mode (due to the smaller sample size) with the following
design formula ~ patient + trisomy 12 (Bruch and Giles et al. 2021). Performed with Dr. Ivan
Berest for the manuscript Bruch and Giles et al. 2021.

2.4.13 Functional enrichment analysis of Spi-B ChIPseq data

Section 5.2.5. Spi-B and PU.1 ChIPseq data in the OCILY3 DLBCL (Diffuse Large B Cell Lym-
phoma) cell line (Care et al. 2014) was downloaded from the NCBI GEO database (Edgar, Dom-
rachev, and Lash 2002). Spi-B ChIP peaks were filtered for significance (q value < 0.05). The
annotatePeaks function from the package clusterProfiler (G. Yu 2021) was used to anno-
tate the nearest gene for each ChIP peak. The resulting gene list was filtered to only include
genes where the transcription start site (TSS) was within 1kb of its associated ChIP peak, in either
direction. The enricher function of the clusterProfiler package was used to perform over-
representation of KEGG (Kanehisa et al. 2010) and Reactome (Jassal et al. 2020) pathways
amongst this list of of genes (Bruch and Giles et al. 2021).

2.4.14 Linear modelling of drug-stimulus interactions

Section 6.1.1. Linear models were fitted for each drug-stimulus combination, to extract a βint term
and associated p value for each combinatorial treatment. Linear model was fitted using equation
(6.1), using the lm function of R (R Core Team 2021).

To fit model, the matrix of log-transformed viability values, for control, single and combinatorial
treatments was used. Interactions were filtered according to whether p value for βint < 0.05.
To generate the map of drug-stimulus interactions, the matrix of resulting βint was plotted as a
heatmap, with the package pheatmap(Kolde 2019) where the rows (stimuli) and columns (drugs)
were ordered according to the dendrogram order produced by hclust (R Core Team 2021) using
default branch arrangement (Bruch and Giles et al. 2021).

2.4.15 Categorising drug-stimulus interactions

Section 6.1.2. To define the four interaction categories, drug-stimulus combinations were first
divided with respect to the sign of βint, whereby a positive βint indicates that the viability with
combinatorial treatment is higher than would be expected based on additive effects alone and vice
versa. The groups were further divided into synergies and antagonisms according to the values
of the model coefficients (βdrug, βstimulus and βint). Synergisms were assigned when coefficients
for single treatments (βdrug and βstimulus) were both greater than, or both less than, the observed
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coefficient for the combinatorial treatment (i.e. βdrug + βstimulus + βint). For positive antagonisms,
βdrug + βstimulus + βint was less than either βdrug or βstimulus. For negative antagonisms, βdrug +
βstimulus + βint was greater than either βdrug or βstimulus. All drug - stimulus interactions for which
p value for βint <0.05 fit into one of these groups (Bruch and Giles et al. 2021). Performed with
Peter-Martin Bruch for the manuscript Bruch and Giles et al. (2021).

2.4.16 Univariate analysis of drug-gene assosciations

Section 6.2.1. Two-sided Student’s t-tests, with equal variance were performed for IGHV status
and somatic mutations and copy number aberrations with at least three patient samples in each
group (n = 54). Mutations in KRAS, NRAS and BRAF were tested in a single group. p values
were adjusted using the BH-adjustment procedure, and a 10% FDR cut off was used to determine
significance.

2.4.17 diffTF analysis of TF activity of CLL samples after treatment with IBET-762
CLL

Section 6.2.1. TF activity was calculated using diffTF (Berest et al. 2019). First, the consensus
peak set was defined using minOverlap = 2 and TF binding sites were defined using the hg38 HO-
COMOCO v10 database (Kulakovskiy et al. 2016). diffTF was run in analytical mode (due to the
smaller sample size, 4*4) with the following design formula ~ patient + treatment to compare
DMSO versus IBET-762 treated samples (Bruch and Giles et al. 2021). Performed with Dr. Ivan
Berest.

2.4.18 Analysis of trisomy 12 CLL signature TFs after treatment with IBET-762

Section 6.2.1. To compare the TF binding site accessibility profiles of trisomy 12 CLL with IBET-
762-treated CLL, accessibility profiles of trisomy 12 CLL were calculated as described in Section
2.4.12 and for IBET-762 treated CLL as described in Section 2.4.17.

Weighted mean difference values of the two diffTF analyses (trisomy 12 vs. non-trisomy 12 and
IBET-762 treated cells vs. DMSO treated cells) were plotted. TFs with adjusted p value < 0.05 from
the trisomy 12 vs. non-trisomy 12 analysis were plotted, absolute effect sizes cannot be directly
compared (Bruch and Giles et al. 2021).

2.4.19 Modelling of drug-stimulus-gene interactions

Section 6.3. Identification of drug-stimulus interactions that were modulated by genetic features
was performed in two steps.

First the linear model in equation (6.1) was fitted in a patient sample specific manner i.e. equation
(6.2) was fit to the matrix of log-transformed, control-normalised viability scores, for each drug -
stimulus combination.
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This resulted in a higher order interaction term for each drug-stimulus-patient combination, named
βintXdrugXstimulusXpatient. This term represents a patient sample-specific βint for each drug -
stimulus combination, quantifying the size of an interaction between a drug and stimulus in each
patient genetic background.

In the second step, multivariate regression with L1 (lasso) regularisation was used to identify as-
sociations between the size of the patient sample-specific βint terms and genetic features. As
input to the model, the response matrix was composed of the sample-specific βint values for each
drug-stimulus combination. The feature matrix consisted of genetic features (p=39), IGHV status
(input as M=1 and U=0), and Methylation Cluster (input as 0, 0.5, 1). All features were thus en-
coded on a similar scale to ensure equal treatment by lasso constraint in model fitting. Where
genetic features showed more than 20% missing values, these were excluded from the feature
matrix. Samples without complete annotation for remaining features were removed, resulting in
n=129 samples.

Using three-fold cross-validation, the optimal penalty parameter λ was selected so as to minimise
the cross-validated R2. The misclassification error was used as loss. The resulting predictors
are the mean of those coefficients that were selected in at least 90% of 30 bootstrapped repeats
(Bruch and Giles et al. 2021).

2.4.20 Survival analysis of IHC data

Section 6.4.2. The levels of pSTAT6 were obtained from IHC data. First patient samples were split
into two groups (low / high) based on their staining levels for each protein. The cut off for each group
was calculated using R package maxstat (Hothorn 2017) to compute maximally selected rank
statistics. 64 of 100 patients were annotated for treatment information after sample collection. TTT
represents the period between the date of sample collection and the data of treatment initiation.
TTT was plotted using the Kaplan-Meier method with the R package survminer (Kassambara,
Kosinski, and Biecek 2021), in which patient samples were stratified by staining level (low / high)
(Bruch and Giles et al. 2021). Performed with Peter-Martin Bruch for the manuscript Bruch and
Giles et al. 2021.

2.4.21 Viability assay of ibrutinib, IBET0762 and IL4 treated CLL PBMC samples

Section 6.4.3. The experiment was performed on 16 independent CLL PBMC samples. The same
sample preparation and drug-stimulation profiling method was followed as described in Sections
2.1.1, 2.1.2 and 2.1.3, except that luminescence was read with a Perkin Elmer EnSight. Treatment
concentrations were as follows: IBET-762 (1µM), ibrutinib (500nM), IL4 (10ng/ml). Performed by
Peter-Martin Bruch.
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Chapter 3

Data

This chapter provides an overview of the datasets that are central to this thesis. It also covers the
generation of resources to make the data and associated analysis publicly-available.

The screening dataset discussed here was produced and published as part of the manuscript
Bruch and Giles et al. (2021). Some analysis and figures outlined in this chapter have also been
published in Bruch and Giles et al. (2021), and this is clearly stated where this is the case.

3.1 Experimental overview

3.1.1 Drug-stimulus combinatorial pertubation assay and patient sample multi-
omic profiling

This thesis centres on a dataset of 192 CLL patient samples subjected to functional and molecular
profiling. A drug-stimulus combinatorial perturbation assay (refered to below as the screen) mea-
sured the effects of 17 cytokines and microenvironmental stimuli alone and in combination with 12
drugs, to investigate the influence on spontaneous and drug-induced apoptosis (Bruch and Giles
et al. 2021).

The screen was primarily designed and performed by Peter-Martin Bruch in the Department of
Medicine, University of Heidelberg, and published in the manuscript by Bruch and Giles et al. (2021).
Drugs and stimuli were deposited first and patient samples second, using two 384-well plates per
patient sample. Each plate contained stimulus, drug and drug - stimulus wells along with DMSO
control wells (Appendix Figures 1, 2 and 3). After 48 hours of incubation at 37◦C, cell viability
was assessed using the CellTiter-Glo Luminescent Cell Viability Assay. This method estimated
the number of viable cells in a culture by determining the quantity of ATP present, an indicator the
number of metabolically active cells. The drugs and stimuli tested in the screens are outlined in
Sections 3.3 and 3.4.

Multi-omics profiles for the patient samples were also available from the PACE repository (Oles et
al. 2021), consisting of whole-exome sequencing, DNA-methylation, RNA-sequencing and copy

33



number variant data. In addition, clinical follow-up data was also available for some patients,
including LDT, TTT, TTFT and OS.

Collectively, these data enabled (i) characterisation of responses to microenvironmental stimuli, (ii)
definition of functional patient subgroups, (iii) profiling of molecular determinants of drug and stim-
ulus responses (iv) mapping of drug-stimulus and drug-stimulus-gene interactions, thus shedding
light on the heterogeneity of CLL biology and drug response (Figure 3.1).

i

DNA Methylome

Viability
Genome

Transcriptome

Figure 3.1: “Schematic of experimental protocol. By combining 12 drugs and 17
stimuli, we systematically queried the effects of simultaneous stimulation and in-
hibition of critical pathways in CLL (n = 192). Integrating functional drug-stimulus
response profiling with four additional omic layers, we identified pro-survival path-
ways, underlying molecular modulators of drug and microenvironment responses,
and drug-stimulus interactions in CLL.” Figure and caption from Bruch and Giles et
al. 2021.

3.1.2 Additional datasets

A number of key findings emerged from the above data which warranted further investigation. In
addition to the screen, I made use of a number of validatory datasets, from within our lab and
from external sources. These are outlined in the Methods (Chapter 2) and in the relevant results
chapters.

3.2 Data Processing

3.2.1 Processing the raw values obtained from the screen

This section describes the process of generating viability scores used in downstream analyses (fol-
lowing the same process as published in Bruch and Giles et al. (2021)). Initially, raw luminescence
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measurements from the experiments were read in using custom-made R scripts and functions. Raw
values represent the luminescence readout of the CellTiter-Glo Luminescent Cell Viability Assay,
which is proportional to the amount of ATP present. The ATP levels are directly proportional to the
number of viable cells in the well.

1e+05

3e+05

1e+06

3e+06

Patient samples

V
ia

bi
lit

y 
of

 
D

M
S

O
−t

re
at

ed
 c

on
tro

ls

Figure 3.2: Boxplots of raw viability count data prior to normalisation and log trans-
formation. For each of the 192 patient samples, there were 50 DMSO-treated
wells. Raw data read in and initial processing performed by Peter-Martin Bruch,
figure adapted from Bruch and Giles et al. 2021.

Figure 3.2 shows the raw viability values from the DMSO-treated wells for each patient sample.
The absolute values vary between patient samples, and between measuring dates, and thus the
viability values required additional normalisation.

Each viability value was normalised to internal DMSO values of the same plate. Specifically, the
well for each stimulus, drug or drug-stimulus treatment was divided by the median of the DMSO
negative control wells present on each plate, resulting in viability scores. A value of 0 indicated
that all cells were killed by the treatment, and a value of 1 indicated the cells survived as well as in
the negative control.

Given the downstream analysis involved the use of linear modelling, I thus applied a natural log-
arithm transformation to the viability scores. This generated log-transformed control-normalised
viability scores which are used for the majority of the downstream analysis. Here 0 indicates that
cells survived as well as negative control.

3.2.2 Quality control and data reproducibility

Next, several additional quality control steps were considered, with the aim of a) adjusting for any
spatial effects on each screening plate, b) accounting for any batch effects between screening
batches and c) testing data reproducibility.

First, the screening data for each well on each plate was plotted in a grid corresponding to the
plate layout, to visualise whether viability values were affected by their position on the plate. We
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discussed adjusting for any position effect by fitting a surface to the negative control wells, to
generate correction factors for each well for each plate. The resulting correction factor was then
subtracted from each of the treatment wells. We decided that the position effect was not sufficient
to warrant this adjustment, and continued the analysis with the unadjusted values.

With regards to batch effects, screening was performed on 16 separate days. Peter-Martin Bruch
normalised data to the DMSO-treated wells on each plate and concluded that this sufficiently ac-
counted for any batch effects. With respect to data reproducibility, technical replicates existed for
single drug treatments (two) and DMSO wells (100), for each patient sample. Peter-Martin Bruch
compared replicates to ensure data was reproducible.

Thus, the data processing steps generated robust, log-transformed control-normalised viability
scores that aim to capture the biological impact of the concomitant application of drugs and stimuli,
outlined below.

3.3 Characteristics of drugs used in the screen

3.3.1 The panel of drugs

This study aimed to generate a systematic investigation of the impact of soluble factors on therapies
and critical pathways in CLL (Bruch and Giles et al. 2021). To that end, a panel of 17 drugs was
constructed, encompassing FDA-approved therapies for CLL, along with a number of drugs in
clinical trial or laboratory compounds targeting pathways of interest (Figure 3.3). These included
fludarabine (a frontline chemotherapeutic) and ibrutinib and idelalisib (BCR inhibitors).
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Figure 3.3: Bar plot of the drugs used in screen, indicating targets and licencing
status. Screen primarily designed by Peter-Martin Bruch. Figure from Bruch and
Giles et al. 2021.

The number and concentration of drugs included was limited by the size of the plate. Thus there
is minimal overlap between drug targets, and two concentrations were used for each drug. The
choice of concentration was guided by the results of a previous drug screen in CLL patients, per-
formed in our lab (Dietrich et al. 2017). The concentrations used were expected to reduce CLL
viability without eliminating all cells. Drug concentrations are shown in Appendix Table 2.
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3.3.2 Assessing drug response

To assess the quality of the drug response data, we quantified correlation coefficients for every
drug pair (Bruch and Giles et al. 2021). Drugs were highly correlated if they shared identical target
pathways, suggesting that the screen captures inter-individual differences in pathway dependen-
cies, both sensitively and specifically. For example, BCR inhibitors ibrutinib, idelalisib, PRT062607
and selumetinib were all highly correlated (Figure 3.4A).
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Figure 3.4: (A) Heatmap of Pearson correlation coefficients of each pair of drugs,
based on log transformed viability values. See Methods Section 2.4.1. (B) Log
transformed control-normalised viability values for all drugs that were included in
the screen after quality control. p values from Student’s t-test. Figure (A) adapted
from original generated with Peter-Martin Bruch for the manuscript Bruch and Giles
et al. (2021).

In addition, the individual drug response profiles (Figure 3.4B) indicated that each of the drugs
decreased CLL viability as expected, and in line with previous CLL drug screens performed in our
lab (Dietrich et al. 2017).

3.4 Characteristics of stimuli used in the screen

3.4.1 The panel of stimuli

The stimuli selected for the screen, their associated targets and concentrations used are described
in Appendix Table 3, including 16 individual stimuli, plus HS-5 Culture Medium which encom-
passes the range of soluble factors secreted by the stromal cell line HS-5 (Bruch and Giles et
al. 2021).

A number of studies have demonstrated the ability of various soluble factors to increase CLL viabil-
ity or induce drug resistance ex vivo (see Section 1.3.3). Guided by these observations, the panel
of stimuli was selected so as to cover a range of key survival signals in CLL, aiming to minimise re-
dundancy amongst the targeted pathways. The stimuli encompass a cross-section of the complex
communication network between CLL cells and non-neoplastic cells, mediated by soluble factors
within the tumour microenvironment (Figure 3.5).
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Figure 3.5: A selection of interactions between CLL cells and components of the
microenvironment, covered by the screen. See Section 1.3.3 for more details on
these signals. Figure adapted from an original published in Wiestner (2015) and
reproduced with permission.

The stimuli targeted a number of critical pathways in CLL, including BCR, TLR, JAK-STAT, NFκB
and TGFβ. For more information on the importance of these pathways see Section 1.1.4 and
1.3.3. Amongst these, the roles of BCR, IL4, sCD40L and TLR stimulation were of particular
interest.
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Figure 3.6: “Overview of stimuli included in the screen and summary of their as-
sociated targets. HS-5 Culture Medium is omitted, as no specific target can be
shown.” Screen primarily designed by Peter-Martin Bruch. Figure and caption
from Bruch and Giles et al. 2021.

3.4.2 Assessing stimulus response

To guide our interpretation of the stimulus responses, it was important to determine whether het-
erogeneity of response to the stimuli could be caused by differences in receptor expression (Bruch
and Giles et al. 2021).
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Pearson correlation coefficients were calculated to compare log-transformed control - normalised
viability values for each stimulus, with vst-transformed RNA counts of the matching receptor(s). All
coefficients were <0.4, indicating that response heterogeneity was not related to receptor expres-
sion.

3.5 Characteristics of patient samples used in the screen

3.5.1 Overview of the molecular profiles of the patient samples

Multi-omics profiles were available for the patient samples in the screen, taken from PACE (Oles et
al. 2021). The PACE repository represents an initiative by our lab to characterise primary tumour
samples from leukemia and lymphoma patients. Patient multi-omic profiles included whole-exome
sequencing, DNA-methylation, RNA-sequencing and copy number variant data. In addition, clinical
information and follow-up data was also available for some patients, including sex, IGHV status
and LDT, TTT, TTFT and OS. Figure 3.7 summarises the molecular characteristics of the patient
samples. See also Appendix Table 4.
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Figure 3.7: Summary of the genetic characteristics of the patient samples in the
screen. Annotations: Grey shows when patient sample is not annotated. Black
indicates treated / IGHV-M, Green indicates occurrence of CNV, Yellow indicates
gene is Mutated.

The findings from this study have potential relevance in a clinical setting. Thus it was important to
ensure that the distribution of genetic features amongst the cohort was representative of those ob-
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served in clinical practice. Other studies have determined the frequency of many recurrent genetic
features in CLL (Döhner et al. 2000; Puente et al. 2015; Landau et al. 2015) : the distribution of
molecular lesions in our cohort is comparable to these (Bruch and Giles et al. 2021).

3.6 Making the data and assosciated analysis available

Collectively, this dataset represents a valuable resource providing the ability to explore genetic,
epigenetic and microenvironmental modulators of survival and drug response in a heterogeneous
cohort, and how these relate to clinical outcomes. With CLL samples relatively simple to obtain
compared to other cancers, this project (in collaboration with the PACE initiative (Oles et al. 2021))
represents a considerable dataset containing joint functional and molecular profiling of primary
cancer samples.

An important goal of my work was thus to ensure that this dataset was both publicly available
and accessible for a range of users. I aimed to ensure that our analysis was transparent and
reproducible, and that others could explore the dataset for the purposes of their own research. To
that end, I developed a shiny app to explore the screening dataset, and published all code and
data from the manuscript Bruch and Giles et al. (2021) to an online git repository.

The process of generating these resources is described below.

3.6.1 Shiny app

The shiny app can be found at https://www.imbi.uni-heidelberg.de/dietrichlab/CLLM
icroenvironment/. Figure 3.8 shows the home page. It consists of four tabs, covering the
following:

• Drug and stimulus responses Explore drug - stimulus interactions and view log-transformed
viabilities with single and combinatorial treatments

• Effects of mutations on drug and stimulus responses Explore how drug and stimulus
responses are modulated by genetic features and view log-transformed viability data stratified
by mutations

• Genetic predictors of drug and stimulus responses Explore how drug and stimulus re-
sponses are modulated by genetic features with predictor profiles from section 5.1.2

• Genetic predictors of drug and stimulus interactions Explore how drug - stimulus inter-
actions are further modulated by mutations, and view predictor profiles from section 6.3.2

To generate the app, I first curated the individual datasets and ran each of the individual analyses
required to generate the plots outlined above. I then set up the four tab structure, and adapted
the code required to generate plots in a dynamic manner. Finally, I worked on the aesthetics and
interface of the app, to ensure that it was both professional and understandable. I then tested the
app with number of colleagues, to ensure it was accessible and understandable by a range of users
both familiar and unfamiliar with the project. I maintain the app on the university server.
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Figure 3.8: Home page of the shiny app accompanying this project. The app was
published alongside Bruch and Giles et al. 2021.

3.6.2 Online code repository

The online repository can be found at https://github.com/Huber-group-EMBL/CLLCytokineS
creen2021.The repository consists of the data and executable transcripts to completely reproduce
the analysis described in Bruch and Giles et al. (2021).

To generate the repository, I first curated each of the individual datasets to generate objects con-
taining the screening data, patient genetic meta data, ATACseq processed data, RNAseq counts
and clinical data (including LDT, TTT and OS data), plus the follow up data including lymph node
IHC experiments, shRNA knockdown experiments, and additional stimulation and inhibition as-
says. As many of these data contain sensitive information on patients, I anonymised each object
by updating the patient IDs and removing potential identifying features such as age.

I next arranged the analysis into seven separate scripts, one for each figure, such that all individual
sections can be rendered into a single html vignette outlining the entire analysis. I ensured that the
code in each script was well-annotated and relatively simple to understand and to follow. I shared
the code with several colleagues to receive feedback on coding style, and ensured that the analysis
could be reproduced by others, and on different operating systems. I published the repository with
the along with the preprint (Bruch and Giles et al. 2021).

These online resources are already beginning to serve as a community resource (e.g. J. Lu et
al. (2021), Nature Cancer), as querying them enables researchers to test new hypotheses within
minutes and may obviate the need for certain small-scale experiments.
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Chapter 4

Ex-vivo responses of primary CLL
samples to microenvironmental
stimuli

The assay quantified the effects of 17 cytokines and microenvironmental stimuli on cell viability in
192 primary CLL samples. The 17 stimuli were selected based on evidence in the literature that
each stimulus had been shown to impact on CLL viability in vitro, aiming to minimise redundancy
between them (see also Section 3.4.1, Bruch and Giles et al. 2021). Many studies have applied
various methods to model the impact of microenvironmental signalling on CLL, and each method
has its strengths (see also Section 1.3.5). This assay represents a reductionist model of microen-
vironmental signalling, making it possible to dissect the effect of individual soluble factors within
the protective niche on baseline viability.

This chapter details the analysis of the phenotypic effects of stimuli on CLL viability, leading to the
identification of four patient subgroups that differ in their stimulus response profiles. This chapter
also covers the clinical and molecular characterisation of these four subgroups (Bruch and Giles et
al. 2021).

The results presented in this chapter centre on viability values of CLL PMBCs samples treated with
our panel of stimuli. CLL cells do not proliferate in vitro, but rather undergo spontaneous apoptosis
(Collins et al. 1989). Treatment with various stimuli, or co-culture with NLCs or BMSCs can extend
survival of CLL PBMCs ex vivo (Collins et al. 1989; J. A. Burger et al. 2000; Kurtova et al. 2009;
Deaglio and Malavasi 2009; Purroy et al. 2015). To measure the individual phenotypes generated
by each of our stimuli, viability was quantified by comparing ATP counts in treated samples, with
those in DMSO wells, after 48 hours. A positive viability value indicates that the sample viability
was increased relative to control. Values shown have additionally been log-transformed.

Some findings and figures outlines in this chapter have been published in Bruch and Giles et
al. (2021), and this is clearly stated where this is the case.
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4.1 Prolifing responses to the panel of stimuli

4.1.1 ex vivo assay demonstrates functional diversity of cytokines and microenvi-
ronmental stimuli

To begin the analysis, I started by investigating heterogeneity amongst responses to the stim-
uli. I calculated Pearson correlation coefficients for each stimulus pair, using the log-transformed
normalised viabilities. The resulting coefficients were ordered using hierarchical clustering and
visualised in a symmetrical heatmap (Figure 4.1, Bruch and Giles et al. 2021).

In the resulting heatmap, several clusters of stimuli could be identified, including a larger group
corresponding to agonists of TLR and NfκB pathways (CpG ODN (CpG oligodeoxynucleotides),
Resiquimod, BAFF, sCD40L, IL-1β, soluble anti-IgM) and a smaller group encompassing IL4 and
TLR stimuli (IL4, sCD40L + IL4, CpG ODN and Resiquimod).
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Figure 4.1: Heatmap of Pearson correlation coefficients of each pair of stimuli,
based on log-transformed viability values. See Methods Section 2.4.1. Figure
adapted from original generated with Peter-Martin Bruch for the manuscript Bruch
and Giles et al. (2021).

However, whilst certain stimuli clustered into groups, very few stimulus pairs showed any signifi-
cant correlation. Almost all stimulus pairs showed little correlation (R < 0.6), including those that
targeted similar downstream pathways, indicating a high degree of functional diversity amongst
soluble factors in the CLL microenvironment. For example, JAK-STAT agonists such as IL4 and
IL6 showed little correlation (Figure 4.2A).

Only two stimulus pairs showed correlations where R > 0.6, and in both cases these targeted near
identical receptors or downstream pathways. These included CpG ODN (TLR 9) and Resiquimod
(TLR 7 and 8) (Figure 4.2B), and IL4 and IL4 + CD40L which primarily target JAK3 - STAT6 (Bruch
and Giles et al. 2021).

Having observed that microenvironmental stimulation induced diverse phenotypes between patient
samples, I next aimed to visualise a global overview of these phenotypes. I plotted log-transformed
viability values normalised to DMSO controls for all patient samples and all stimuli (Figure 4.3,
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Figure 4.2: Scatter plot of log-transformed viability values, normalised to DMSO
controls, for (A) treatment with JAK-STAT agonists IL4 and IL6 and (B) treatment
with TLR agonists CpG ODN (TLR9) and Resiquimod (TLR7/8).

Bruch and Giles et al. 2021).

Figure 4.3 shows that most of the stimuli increased viability, highlighting the supportive role of
soluble factors within the microenvironment in CLL (Bruch and Giles et al. 2021). However, four out
of 17 reduced CLL viability relative to control, namely IL6, TGFβ and TLR 7/8/9 agonists CpG ODN
and Resiquimod in some IGHV-mutated (IGHV-M) samples (Bruch and Giles et al. 2021).
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Figure 4.3: Log-transformed viabilities after treatment with each stimulus. Stimuli
are grouped by corresponding pathway, and responses are stratified by IGHV sta-
tus. Figure adapted from Bruch and Giles et al. (2021).

IL4 and TLR7/8/9 agonists Resiquimod and CpG ODN induced the strongest responses, an indi-
cation of their potency in modulating CLL cell survival. Notably, TLR agonists increased viability
in certain samples, in most cases IGHV-U, and decreased viability in others, mostly IGHV-M. The
assay identified IL4 and TLR7/8/9 as key players in CLL-microenvironment cross-talk, and thus
remain central throughout the results of this thesis.
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4.1.2 Microenvironmental response profiling identifies discrete patient subgroups

To further investigate the variability in responses across the cohort, it was next logical to produce a
heatmap of all stimuli responses across all samples, using z-scores for optimal visualisation. Con-
sensus clustering was run on the resulting heatmap to group patients according to their response
profiles (Figure 4.4, Bruch and Giles et al. 2021).
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Figure 4.4: The heatmap matrix shows viability measurements for 192 samples
(columns) and 17 stimuli (rows). The data are shown z-scores of log-transformed,
control-normalised viability values. The colour bars to the right show sample an-
notations. Consensus clustering was used to define column tree layout, using hi-
erarchical clustering with the Euclidean metric. See Methods Section 2.4.3. Figure
generated with Peter-Martin Bruch for the manuscript Bruch and Giles et al. (2021).
Caption adapted from manuscript.

The consensus clustering method generates robust hierarchical clustering by subsampling from the
matrix of values (in this case, the viability z-scores). Using subsampling, it is possible to calculate
a “consensus matrix” which indicates the proportion of times each pair of values occupy the same
cluster when subsampled together. This is repeated for different numbers of clusters, denoted by
k, allowing the user to select the optimal number of clusters for a given dataset.

Running Consensus clustering the matrix of z-scores for different values of k generated several
dendrograms. The corresponding heatmaps for each value of k could then be arranged accord-
ingly: Figure 4.4 shows the arrangement for k = 4. Comparing the heatmaps, I concluded on the
existence of four robust clusters within the cohort. Each cluster shows a unique response profile
to the panel of stimuli.

To support the choice of four clusters, I additionally visualised summaries of the consensus matri-
ces for each value of k, to quantify the degree of confidence in the clusters for each k (Figure 4.5),
using the package ConsensusClusterPlus (Wilkerson and Waltman 2021).
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Figure 4.5: (left) CDFs of the consensus matrices for k = 2 - 7, as indicated in the
legend, estimated using 100 bin histogram. (right) Relative change in area under
the CDF curve, for k = 2 - 7, to compare k with k - 1. In the case of k = 2, there
is no k - 1, so the total area is plotted. Line shows relative increase in consensus
between each value of k. See Methods Section 2.4.3.

The graph of the Cumulative Distribution Functions (CDFs) of the consensus matrix for each k
indicated that the CDF reaches a maximum and cluster confidence is maximised at k = 7, though
above k = 4 there is little appreciable increase (Figure 4.5). This is confirmed in the graph show-
ing relative change in the area under the CDF curve, showing there is only a small increase in
consensus between k = 4 and k = 5. The cluster tracking plot depicts how each patient sample
is assigned for each value of k. For k = 4, the plot indicates that C3 and 4 in particular are highly
stable (Appendix Figure 4).

4.2 Functional characterisation of patient clusters

4.2.1 C1 - C4 show distinct response profiles with the panel of stimuli

Consensus clustering identified four patient subgroups, which each responded differently to the
panel of stimuli (Bruch and Giles et al. 2021). This raised the possibility that responses to mi-
croenvironmental stimulation are linked to cell-intrinsic features, and could be prognostic. Thus,
the next aim was to characterise the phenotypic and molecular differences between these four
clusters.

I began by investigating the differences between the response profiles of each cluster. I refer to
the four clusters as C1 to C4: C1 and C2 were enriched for IGHV-U whilst the samples in C3 and
C4 were mostly IGHV-M. Amongst the IGHV-U enriched C1 and C2, both showed strong, positive
responses to IL4 and TLR7/8/9 stimulation. C2 could be distinguished by stronger responses to
the stimuli overall, in particular to NFκB agonists IL1β, anti-IgM, BAFF and sCD40L. Amongst the

47



IGHV-M enriched clusters, C3 showed weaker responses to the majority of stimuli, and C4 was
defined by a negative response to TLR7/8/9 stimulation (Bruch & Giles et al. 2021). Figure 4.6
summarises these findings in more detail, showing responses stratified by cluster for a subset of
the stimuli.
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Figure 4.6: Log-transformed normalised viability values stratified by cluster, for
each stimulus. Stimuli activating the same pathway are grouped together. P-values
from Student’s t-test. Figure adapted from Bruch and Giles et al. (2021).

4.2.2 The clusters show differences in disease dynamics

To validate the potential biological significance of these four clusters, the in vivo disease dynamics
of each cluster was investigated (Bruch & Giles et al. 2021). Lymphocyte doubling time (LDT)1 and
time to next treatment (TTT)2 were used to quantify CLL proliferative capacity.

C1 and C2 showed a shorter LDT than C3 and C4, which is expected due to the differential propor-
tions of IGHV-U and M patient samples in these groups (Figure 4.7A). Notably, within the IGHV-M
enriched clusters C3 and C4, samples in C3 showed a significantly shorter LDT (Student’s t-test,
p-value = 0.025, Bruch and Giles et al. 2021).

Moreover, TTT in the IGHV-M enriched C3 was significantly shorter than C4 (Cox proportional
hazards model p = 0.005) and comparable to the progression dynamics of IGHV-U enriched C1
and 2 (Figure 4.7B, Bruch and Giles et al. 2021).

The difference in disease progression between the clusters indicated that microenvironmental re-
sponse represents an additional biological layer, holding information relevant to disease dynamics.
To validate that these clusters were not simply an indication of any underlying genetic features,

1 LDT represents rate at which malignant B cells accumulate, and is an independent biomarker that correlates with overall
survival (OS) (Baumann et al. 2021).

2 TTT reflects time between initiation of one therapy and start of next (Campbell et al. 2020; Delgado and Guddati 2021),
accounting for treatment period plus period in which disease / symptoms are controlled.
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Figure 4.7: (A) LDT stratified by cluster, p-values from Student’s t-test. (B) Kaplan-
Meier curves to show TTT for each cluster. p-values from univariate Cox propor-
tional hazards models comparing IGHV-U enriched C1 with C2, and IGHV-M en-
riched C3 with C4. See Methods Sections 2.4.4 and 2.4.5. Figure generated with
Peter-Martin Bruch for the manuscript Bruch and Giles et al. (2021).

it was necessary to check whether the observed differences in progression dynamics could be
explained by other prognostic markers (Bruch and Giles et al. 2021).

A multivariate Cox proportional hazards model accounting for IGHV status, trisomy 12 and TP53 in
addition to the cluster assignment indicated an independent prognostic value for cluster assignment
between C3 and C4 (p = 0.039, Table 4.1).

Table 4.1: Table depicting results of multivariate Cox proportional hazards model
to test prognostic value of key genetic features and clusters using TTT and C3
as reference. HR indicates Hazard Ratio, CI low and CI high indicate 95 percent
confidence intervals. Table generated with Peter-Martin Bruch and published in
Bruch and Giles et al. (2021).

Factor HR p value CI Low CI High

Cluster 3 vs Cluster 1 0.96 0.89 0.54 1.72

Cluster 3 vs Cluster 2 1.68 0.17 0.80 3.51

Cluster 3 vs Cluster 4 0.44 0.04 0.20 0.96

IGHV.status 1.74 0.04 1.02 2.96

trisomy 12 0.87 0.71 0.44 1.76

TP53 4.01 <0.0001 2.41 6.69

4.2.3 The clusters show differential responses to drugs in vitro

The combinatorial nature of the screen made it possible to investigate drug responses, as well
as stimulus responses, for matching samples. The potential clinical relevance of the clusters was
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underlined by my observation that the samples within each group showed differential responses to
drugs in vitro (Figure 4.8).

As expected, the IGHV-U enriched clusters C1 and 2 were more sensitive to BCR inhibition by
ibrutinib, idelalisib and PRT062607, than C3 and 4. Between C1 and C2, C2 was more sensitive
to a number of the drugs, including idelalisib (SYK) (p = 0.012), everolimus (mTOR) (p = 0.02) and
the chemotherapeutics fludarabine (p = 0.031) and nutlin-3a (p = 0.042). Amongst C3 and C4, C3
showed lower sensitivity to everolimus (p = 0.051) and to fludarabine (p < 0.001) and nutlin-3a (p =
0.01). This aligns with the observation that patients in C3 have a poorer prognosis, despite the fact
most of these samples were annotated as IGHV-M. C4 also showed a positive response to NfκB
inhibition by BAY-11-7085, and p38 MAPK inhibition by ralimetinib.

Such differential drug response patterns suggests that microenvironmental response may reflect
disease-specific CLL biology.
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Figure 4.8: Log-transformed normalised viability values, stratified by cluster, for
each drug. Drugs targeting the same pathway are grouped together. P-values
from Student’s t-test.

4.2.4 The clusters are enriched for different genetic features

Next I assessed differences in the molecular profiles of samples within each cluster. Visually, it
appeared that certain clusters were enriched or depleted for various genetic features recurrent in
CLL (Figure 4.9).

To quantify whether each cluster was enriched or depleted for certain genetic features, I used
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Figure 4.9: Distribution of selected genetic features (rows) within each cluster for
all patient samples (columns). White indicates patient sample is not annotated.

a multinomial modelling approach, with lasso penalisation (for more background on generalised
linear models, see Section 1.5.3 (Bruch and Giles et al. 2021)).

I ran the multinomial model to assign coefficients to genetic features that were associated with
each cluster, C1 to C4. Running the regression with lasso regularisation meant that the majority
of the coefficients were shrunk towards 0. Genetic features that were assigned a coefficient were
thus assumed to be either enriched or depleted within a cluster.

To run the model, I generated a feature matrix, consisting of the genetic data for patient sam-
ples and a discrete response matrix, which included the cluster assigned to each patient. Genetic
features with >20% missing values were excluded (n = 39), and only patients with complete an-
notation were included in the feature matrix (n = 137). I used the function cv.glmnet from the R
package glmnet (Friedman et al. 2021) to generate the model, using three-fold cross validation,
and selecting the optimal model using λmin.

Each cluster was thus assigned a set of genetic coefficients. To ensure that these were robust,
I applied certain cut-offs. I ran 50 bootstrapped repeats, and removed features if they were not
selected in at least 60% of cases. Additionally, coefficients <0.35 were eliminated.

Figure 4.10 shows the resulting mean coefficients. A positive coefficient indicated that this feature
was enriched in the cluster, and a negative coefficient indicated it was depleted. The associated
standard deviations are also indicated.

As expected, IGHV status was the main feature that predicted cluster membership. C2 showed
enrichment of trisomy 12 and SF3B1 mutations, whilst C4 (the cluster with slowest disease pro-
gression) showed depletion of mutations in TP53, ATM, BRAS/KRAS or NRAF and gain(8q) (Bruch
and Giles et al. 2021).
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Figure 4.10: Genetic features associated with each cluster, quantified using lasso-
penalised regression. x axis shows features, y axis indicates value and sign of
coefficient assigned to feature, for each cluster. Coefficients are mean of 50 boot-
strapped repeats, error bars indicate mean +/- standard deviation. See Methods
Section 2.4.6. Figure and caption adapted from Bruch and Giles et al. (2021).

4.2.5 GSEA of differential gene expression between subgroups

In addition to genetic features, I investigated differential expression of genes within each cluster.
For n = 49 samples, RNAseq data was available for matched PBMC samples. I focused on the
difference between C3 and C4, for which 21 RNAseq samples were available (Bruch and Giles
et al. 2021). C3 and C4 were of most interest, as they distinguished between two sets of mostly
IGHV-M cases that showed distinct disease dynamics.

To quantify differential gene expression, I began by filtering out immunoglobulin genes, including
genes at the heavy, light and kappa loci that encode the antigen receptor of B cells. The clusters
each show differential enrichment of IGHV-M and U samples, and thus the differential expres-
sion analysis would otherwise be dominated by immunoglobulin genes that are affected by this
biomarker.

I followed the DESeq2 protocol (Love, Anders, and Huber 2021) using a design formula to quantify
the difference between clusters, and accounting for the confounding effect of IGHV status. 87
genes were differentially expressed (adjusted p < 0.05) between C3 and 4 (Figure 4.11).

To assign biological meaning to the differentially expressed genes, I quantified the enrichment of
Hallmark pathways amongst the genes. I ranked the genes based on the Wald statistic, and then
ran GSEA using the fgsea algorithm (Figure 4.12) (Bruch and Giles et al. 2021).

Several pathways were upregulated amongst samples in C3, compared to C4, indicating that these
pathways may relate to the shorter TTT and LDT of patients within this cluster. Pathways associ-
ated with higher disease aggression were upregulated in C3 including genesets relating to stress
response (Unfolded Protein Response, UV Response Up, P53 Pathway), metabolism (Oxidative
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Figure 4.11: Volcano plot of differentially expressed genes between C3 and C4.
x axis indicates log2 fold change values, calculated using the DESeq2 package
(Love, Anders, and Huber 2021), y axis gives corresponding -log10(BH-adjusted
p value). Darker grey points are labelled where adjusted p < 0.01. See Methods
Section 2.4.7. Figure from Bruch and Giles et al. (2021).

Phosphorylation) and proliferation (G2M Checkpoint, MYC Targets V1, MTORC1 Signaling, E2F
Targets) (Figure 5).

In addition, C3 showed upregulation of microenvironmental signalling pathways relative to C4, in-
cluding TNFa Signalling via NFKB and Interferon Gamma Response (Appendix Figure 5, Bruch
and Giles et al. 2021). This finding underlines the hypothesis that differential activity of microen-
vironmental signalling, both in vivo and ex vivo may be relevant to disease prognosis (Bruch and
Giles et al. 2021).

4.3 Summary

The screen enabled a systematic study of the impact of individual microenvironmental pathways
on CLL viability. The assay highlighted potent pro-survival signals that are active across hetero-
geneous genetic backgrounds, such as IL4, and others that operate in subsets of patients, such
as TLR. IL4 and TLR represent the key pathways that I focus on throughout the rest of this the-
sis.

In addition, this screen demonstrates the ability of microenvironmental response profiling, to distin-
guish disease subgroups. The assay revealed four subgroups with distinct response profiles and
molecular properties and clinical outcomes, suggesting that microenvironmental response holds
biologically significant information that may be relevant to prognosis and treatment decision mak-
ing.
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Chapter 5

Genetic modulators of responses to
microenvironmental stimulation

Profiling the effects of microenvironmental stimulation of CLL samples revealed the heterogeneous
nature of responses to external signals. Next I asked to what extent this heterogeneity relates to the
molecular profiles of the tumours. I sought to understand which underlying genetic features might
modulate responses to external signals, and how these interactions may occur. I combined the
screening dataset with multi-omics profiles of the patient samples taken from the PACE repository
(Dietrich et al. 2017; Oles et al. 2021) and performed a systematic survey of molecular determi-
nants of stimulus response, using whole-exome sequencing, DNA methylation, RNAseq and copy
number variant data. In addition, ATACseq and Mass Spectrometry data was available for a small
subset of patients.

Here I present an investigation of genetic and epigenetic features that modulate responses to mi-
croenvironmental stimuli, in a heterogeneous cohort that encompasses the clinical and molecular
diversity of CLL. In the first part of this chapter, I apply a systematic approach to identify genetic
modulators of microenvironmental response, and in the second I outline my follow-up investigations
into the impact of trisomy 12.

Some findings and figures outlined in this chapter have been published in Bruch and Giles et
al. (2021), and this is clearly stated where this is the case.

5.1 Systematic analysis of the effect of genetic features on responses
to stimuli

5.1.1 Univariate analysis identifies IGHV status and trisomy 12 as key modulators
of microenvironmental response

To begin, I ran a univariate analysis to compare viability values post-stimulation for patient samples
with and without each genetic feature. In total 54 genetic features were surveyed, including IGHV
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status, somatic gene mutations and structural variants, where there were at least three patient
samples in each group (Figure 5.1).
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Figure 5.1: Plot showing BH-adjusted p values from Student’s t-tests (two-sided,
with equal variance), for all tested gene-stimulus associations. Each circle repre-
sents a gene-stimulus association. Associations that meet 10% FDR cut off are
indicated in colour, where the colour denotes the genetic feature. See Methods
Section 2.4.9. Figure generated with Peter-Martin Bruch for the manuscript Bruch
and Giles et al. (2021), and caption adapted from manuscript.

This analysis revealed the extent to which genetic features modulate microenvironmental response.
Responses to 10/17 stimuli were modulated by at least one genetic feature and for 6/17 stimuli by
two or more genetic features (Student’s t-tests, FDR = 10%, Bruch & Giles et al. 2021). The most
common features were IGHV status and trisomy 12. Del(11q) also affected responses to several
stimuli. Notably, del(13q) and del(17p) had no detectable impact on the responses to the panel of
stimuli despite being some of the most common aberrations in CLL and known to affect prognosis
(Döhner et al. 2000).

5.1.2 Multivariate analysis of gene - stimulus assosciations confirms IGHV status
and trisomy 12 are key modulators of stimulus response

I hypothesised that there may be interplay between genetic factors in determining responses to
external signals. To address this, I applied multivariate modelling to integrate the influence of
genetic features, IGHV status and DNA methylation on the size of response (Bruch and Giles et
al. 2021). I used a Gaussian linear model with L1-penalty (i.e., lasso regression), to derive a
predictor for each stimulus, comprised of these covariates. For background on this approach, see
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Section 1.5.3.

As input to the model, the response matrix was composed of the log-transformed viability values
for each stimulus. To generate the feature matrix (137 samples versus 41 features), I excluded
genetic features for which >20% of the values were missing, and patient samples with incomplete
annotation. As predictors, I included genetic mutations and CNVs (p= 39), IGHV status and Methy-
lation Cluster. I ran lasso regression, as implemented in the R package glmnet(Friedman et al.
2021) and the resulting predictors are the mean of those coefficients that were selected in at least
75% of 30 bootstrapped repeats.

Using the output of the regression, I generated predictor profiles for each stimulus. For 5/17 stimuli,
there was at least one genetic predictor that met the cut-offs (a selection are shown in Figure
5.2).
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Figure 5.2: Predictor profiles for IL4 and CpG ODN (TLR9) depicting gene - stim-
ulus associations. Bar plots (left) show size and sign of assigned coefficients from
Gaussian linear modelling. A positive coefficient indicates that stimulated increase
in viability is larger when genetic feature is present. Scatter plots (bottom) and
corresponding heatmaps above show how presence of selected genetic feature
relates to sample viabilities. Scatter plots show ranked log-transformed viability
values for each sample and heatmaps show mutation status for each predictor, for
corresponding sample in scatter plot. See Methods Section 2.4.10. Figure and
caption adapted from Bruch and Giles et al. (2021).

The multivariate analysis demonstrated that responses to IL4 and sCD40L + IL4, TLR stimuli and
TGFβ were all affected by multiple genetic features (Bruch and Giles et al. 2021). For example,
higher viability in response to IL4 stimulation was associated with trisomy 12 and unmutated IGHV.
In contrast, IL4 generated little or no increase in viability in samples with a mutation in KRAS,
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NRAS or BRAF. These tumours benefited less from the anti-apoptotic effects of IL4, indicating that
signalling via Ras-Raf-MEK-ERK may have an inhibitory effect of the pro-survival effects of IL4. To
validate this, I visualised data from the screen for IL4 and IL4 + Ralimetinib (a p38 MAPK inhibitor)
treated samples. Inhibition of signalling via Ras-Raf-MEK-ERK increased the pro-survival effect of
IL4 (paired t-test, p <0.0001, Figure 5.3).
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Figure 5.3: Beeswarm-boxplots of log-transformed control-normalised viability val-
ues for IL4 and IL4 + Ralimetinib treated samples. p value from t-test.

5.1.3 Response to TLR stimulation is dependent on IGHV status, trisomy 12 and
mutations in DNA Damage Response genes

The multivariate analysis highlighted that TLR stimulation by CpG ODN (TLR9) and Resiquimod
(TLR 7/8) both showed the largest number of predictors, so I next decided to look into this in more
detail. The predictors included del(11q) and ATM , del(17p) and TP53, IGHV status, trisomy 12
and SF3B1 (Bruch and Giles et al. 2021), reflecting the multiple layers of biology involved here.
Further, the survival differences between the clusters identified in Section 4.2.1 indicated that TLR
response may relate to disease progression, thus warranting a more detailed look at the underlying
features modulating TLR signalling (Figure 5.4).

The features with the strongest impact on TLR response were IGHV status and trisomy 12. Chat-
zouli et al. (2014) have previously shown that TLR response is dependent on IGHV status (see
also, Section 1.3.3) and these results highlight trisomy 12 as an additional, novel determinant
(Bruch and Giles et al. 2021). In samples without trisomy 12, TLR stimulation increased the viabil-
ity of IGHV-U samples, whilst it decreased viability in IGHV-M samples, as expected. In contrast, in
samples with trisomy 12, TLR stimulation increased viability regardless of IGHV status (Student’s
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Figure 5.4: Control-normalised log-transformed viability values after treatment
with Resiquimod (TLR 7/8), stratified by named genetic features.

t-test, p<0.001 and p = 0.018, Figure 5.5).

Chatzouli et al. (2014)’s observations point to the existence of specific types of BCR/TLR collabo-
ration in CLL depending on the IGHV status of the tumour, either activating pro-survival pathways,
or inducing apoptosis. The results here suggest that synergy between the BCR and TLR pathways
may also be modulated by trisomy 12.

TLR stimulation also increased viability in samples with mutations in the DNA damage response
pathway, namely del(11q), del(17p), and ATM and TP53 (del(17p) is associated with loss of TP53
(Zenz et al. 2010) and del(11q) is associated with loss of ATM (Kipps et al. 2017)). This suggests
that there may also be cross-talk between the TLR and DNA damage response pathway, and that
this affects the outcome of TLR stimulation.

The effect of TLR stimulation on CLL viability is thus dependent on the molecular make-up of
the tumour. The observations in Section 4.2.1 also indicate that pro-survival versus pro-apoptotic
responses to TLR stimulation may relate to disease progression i.e. the subgroup of patients (C3)
that showed slower disease progression was the sole subgroup in which TLR stimulation induced
apoptosis. BCR signalling is viewed as central to CLL pathogenesis and prognosis; the role of TLR
signalling may be under appreciated.

This chapter represents a large-scale attempt to profile the integrative effects of cell-extrinsic sig-
nals and cell-intrinsic features in lymphoma (Bruch and Giles et al. 2021). In CLL, this systematic
approach highlighted trisomy 12 as the most common feature to modulate responses (Bruch and
Giles et al. 2021). The rest of this chapter outlines my work to investigate the role of trisomy 12 in
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Figure 5.5: Beeswarm-boxplot showing control-normalised log-transformed viabil-
ity values, after treatment with Resiquimod (TLR 7/8), stratified by trisomy 12 and
IGHV status. p-values from Student’s t-tests. Figure generated with Peter-Martin
Bruch for the manuscript Bruch and Giles et al. (2021), and caption adapted from
manuscript.

microenvironmental response.

5.2 Investigating trisomy 12 as a modulator of microenvironmental
response

5.2.1 Trisomy 12 is a modulator of microenvironmental response

Trisomy 12 modulated responses to IL4, TGFβ, soluble CD40L + IL4 and TLR stimuli (Bruch &
Giles et al. 2021, Figure 5.6). For example, the increase in viability induced by IL4 was enhanced
in trisomy 12 samples, as was the decrease in viability in response to TGFβ stimulation.

Trisomy 12 occurs commonly in CLL (15% of cases) (Döhner et al. 2000). Until recently, this ge-
netic lesion was regarded as conferring intermediate risk, though novel therapies have improved
outcomes for trisomy 12 cases (Bosch and Dalla-Favera 2019). However, the functional explana-
tion for its recurrence is incompletely understood. Previous work has shown a role for gene dosage
effects in the pathogenic mechanism: Kienle et al. (2005) show that overexpression of genes in-
cluding CDK4 and E2F1 leads to increased cell cycling and higher proliferative capacity. Likewise,
Herbst (2020) showed that BCR signalling proteins are also upregulated, which may also con-
tribute to the increased proliferative capacity. Correspondingly trisomy 12 cases show increased
susceptibility to BCR inhibition (Dietrich et al. 2017) (see also, Section 1.1.5).

In the following, I outline my work to investigate the incompletely understood role of trisomy 12 in
CLL.
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Figure 5.6: Control-normalised log-transformed viability values after treatment
with IL4, sCD40L + IL4 and TGFβ, stratified by trisomy 12.

5.2.2 STAT6, IRAK4 and SMAD3 are more highly expressed in trisomy 12 CLL

Trisomy 12 samples contain a third copy of chromosome 12: transcriptomic and proteomic profiling
of CLL samples with this lesion have demonstrated that this has a major impact on gene expression
and protein abundances (Abruzzo et al. 2018; Herbst 2020; Meier-Abt et al. 2021).

Guided by this observation, I began by investigating RNA and protein expression levels amongst
genes involved in the TGFβ, IL4 and TLR pathways, to which trisomy 12 samples respond more
strongly. The aim was to determine whether proteins in these pathways are more abundant in
trisomy 12 CLL, thus contributing to the enhanced response.

I ran differential expression analysis to compare CLL samples from the screen with and without
trisomy 12. Next, I filtered the differentially expressed genes (adjusted p < 0.1) for those belonging
to the TGFβ, JAK-STAT and TLR pathways genesets, from the KEGG database. I visualised the
RNA counts and protein abundances (Herbst 2020) for those genes.

Only a small proportion of the differentially expressed genes belonged to the TGFβ, JAK-STAT
and TLR pathways genesets. However of those that were, several genes were key downstream
mediators of these pathways (Figure 5.7). Amongst TGFβ signalling genes, 7/95 were upregu-
lated in trisomy 12, including SMAD3. 12/160 IL4 signalling genes were differentially expressed,
including STAT2. 2/116 genes in the TLR geneset were differentially expressed, including IRAK4
on chromosome 12. Amongst these key mediators SMAD3, STAT2, and IRAK4, all showed higher
protein abundance in addition to increased RNA expression. Notably, STAT6, the key downstream
mediator of IL4 signalling, was not differentially expressed, but also showed differential protein
abundance. Many of the over-expressed genes are not located on chromosome 12, indicating the
extent to which the differential dosage of this chromosome has on the expression of the entire
genome.

Next I looked for further evidence to directly link the higher gene dosage of cytokine signalling
genes, to enhanced responses to cytokine signals.
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Figure 5.7: Beeswarm-boxplots showing RNA counts and protein abundances
stratified by trisomy 12 status. P values from Student’s t-test. See Methods Section
2.4.8. Proteomics dataset from Herbst (2020)

5.2.3 Classification analysis identifies trisomy 12 phenocopies that show increased
expression of IRAK4 and SMAD3

I next investigated whether any non-trisomy 12 samples might display a trisomy 12-like pheno-
type (referred to as a phenocopy), in that they respond in a similar way to the panel of stimuli.
The aim was to identify trisomy 12 phenocopies and to isolate the feature of these samples that
might explain the underlying cause of enhanced response to external signals in trisomy 12 CLL. In
particular, I was interested to see if these phenocopies showed higher expression, or even gene
amplification, of the signalling genes identified in Section 5.2.2.

To identify trisomy 12 phenocopies, I began by generating a classifier to predict the trisomy 12
status of a sample from the stimulus response matrix. I aimed to find non-trisomy 12 samples that
were consistently misclassified as trisomy 12.

The classifier was built using binomial regression, with lasso penalisation, as implemented in the
R package glmnet (Friedman et al. 2021). The feature matrix consisted of z scores of the viability
values after treatment with each stimulus, and was used to predict the response (trisomy 12 status).
I ran the model for 50 bootstrapped repeats. Resiquimod (TLR 7/8), sCD40L+IL4 and TGFβ were
selected as coefficients that predict trisomy 12 status (Figure 5.8), as would be expected based on
the observations in Section 5.2.1.

I then predicted trisomy 12 status with the same viability matrix, using each of the 50 bootstrapped
model fits. I compared the results of the classification with the true trisomy 12 status. I identified
two trisomy 12 phenocopies i.e. patient samples that were misclassified as trisomy 12 in more than
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below show how the viability with each stimulus relates to trisomy 12 status. Model
shown selected from 50 repeats, based on maximal AUC. See Methods Section
2.4.11.

50% of repeats, refered to as Phenocopy A and B in the below.

I aimed to determine what features these phenocopies shared with trisomy 12 samples. Phenocopy
A showed the lowest viability with TGFβ (Figure 5.9), and Phenocopy B showed the highest viability
with IL4, and the second highest with Resiquimod (TLR 7/8).
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Figure 5.9: Control-normalised log-transformed viability values, for all samples
after treatment with Resiquimod (TLR 7/8), sCD40L + IL4 and TGFβ. Phenocopies
A and B are indicated in blue and red, respectively. See Methods Section 2.4.11.

I investigated whether either of these non-trisomy 12 samples contained any regional amplifica-
tions on chromosome 12, which may help to isolate the gene(s) causing the tumour to respond
more strongly to these signals. The whole exome sequencing data (Dietrich et al. 2017) for both
patient samples indicated that Phenocopy A had several amplified regions at 12p13.31 (42 copies),
12q24.13 (10 copies) and 12q24.33 (21 copies). Phenocopy B did not show any amplified regions.
An examination of the genes in these regions indicated that none of the signalling genes identified
in 5.2.2 could be found in these regions, and no clear candidate gene(s) emerged that may be
involved in responses to external signals.
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In the absence of gene amplification, I checked if patient samples A and B might show higher
expression of the signalling genes identified in 5.2.2 by visualising the RNA expression levels for
SMAD3, IRAK4 and STAT6 for these patients (Figure 5.10). Phenocopy A, which responded most
strongly to Resiquimod (TLR 7/8), showed high levels of IRAK4 compared to the other non-trisomy
12 samples. Phenocopy B, which responded strongly to TGFβ showed the highest level of SMAD3
expression amongst the non-trisomy 12 samples. Thus, whilst neither patient sample contained an
amplicon of SMAD3 or IRAK4, its possible that increased expression of these proteins enables a
stronger response to the corresponding pathway.
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Figure 5.10: Raw RNA counts for SMAD3, IRAK4 and STAT6, stratified by trisomy
12 status. Phenocopies A and B are indicated in blue and red, respectively. P
values from Student’s t-test.

These results collectively suggest that increased gene dosage of key genes in the IL4, TLR and
TGFβ pathways may underlie the increased response of trisomy 12 samples to these pathways.
This is also reflected in the patient samples A and B, which responded more strongly to the TGFβ
and TLR pathways, respectively, and correspondingly higher levels of SMAD3 and STAT6 proteins.
However, this observational analysis can only go to far in providing biological proof, and more work
is needed here to confirm this finding. In addition to gene dosage effects, I also investigated differ-
ences in transcription factor binding site accessibility in trisomy 12. The results of this warranted
further follow up, and this forms the focus of rest of this chapter.

5.2.4 Spi-B and PU.1 TFs show higher binding site accessibility in trisomy 12
CLL

Trisomy 12 has been well-studied at both the transcriptomic and proteomic level, and yet the cause
of its recurrence in CLL is not fully understood. Thus, I next decided to investigate the impact of
trisomy 12 on the epigenetic landscape of CLL. In particular, I wanted to investigate differential tran-
scription factor binding site accessibility in CLL, which would give an indicator of which pathways
are differentially active (Bruch and Giles et al. 2021).

This investigation involved two independent ATACseq datasets. The first, generated internally
and refered to as dataset 1, consisted of two WT and two trisomy 12 samples (Bruch & Giles
et al. 2021). The second, refered to as dataset 2, was taken from Rendeiro et al. (2016) and
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comprised 43 WT and nine trisomy 12 samples.

In dataset 2, trisomy 12 status was not already annotated. To do this, it was possible to use the AT-
ACseq reads to call trisomy 12 in samples that contained > 1.4 times more reads per peak (i.e. ge-
nomic region) on average in chromosome 12, compared to peaks on other chromosomes.

Next, I aimed to identify TFs that showed differential binding site accessibility between the WT and
trisomy 12 samples. This analysis involved the diffTF software (Berest et al. 2019) which enables
comparison of TF activity between two conditions, using chromatin accessibility data (Appendix
Figure 7). In this case, diffTF compared binding site accessibility for 638 TFs, from the HOCO-
MOCO v10 database (Kulakovskiy et al. 2016), between trisomy 12 and WT samples (Bruch and
Giles et al. 2021).

Running this analysis indicated that the binding sites of nine TFs were more accessible (p<0.05)
in the trisomy 12 samples of the larger dataset 2 (Figure 5.11) and 92 TFs in the smaller dataset
1 (Appendix Figure 6). Collectively, these ATACseq data indicate that there is a specific signalling
signature in trisomy 12 CLL (Bruch and Giles et al. 2021).

I also needed to confirm that the results were not affected by the additional copy of chromosome
12. Rerunning the diffTF analysis without the ATACseq reads from chromosome 12 had negligible
impact on the significant TFs.

In both datasets, the TFs with the largest increase in binding site accessibility in trisomy 12 were
Spi-B and/or PU.1 (Bruch and Giles et al. 2021). Both TFs share similar binding motifs and ex-
hibit functional redundancy (Garrett-Sinha et al. 2001), which makes it difficult to distinguish from
ATACseq data alone whether either or both are more active.

Spi-B and PU.1 are haematopoetic regulators that are known to be key regulators of healthy B
cell function (Turkistany and Dekoter 2011), controlling B-cell responses to environmental cues
including CD40L, TLR ligands and IL4 (Willis et al. 2017).

Spi-B and PU.1 appeared to be upregulated in trisomy 12 CLL, and evidence in the literature
indicated that these may regulate environmental sensing genes, providing a link between trisomy
12, and enhanced responses to external signals (Bruch and Giles et al. 2021).

To provide further evidence of this, I next aimed to profile the downstream effects of Spi-B and
PU.1 in lymphoma.

5.2.5 Spi-B and PU.1 targets are enriched for immune signalling pathways

The above observations suggested Spi-B and PU.1 might coordinate transcriptional response to
external signals, thus modulating CLL proliferation in response to the microenvironment. To identify
Spi-B and PU.1 target genes specifically in lymphoma, I acquired a ChIPseq dataset (Care et al.
2014) containing data on Spi-B and PU.1 binding in lymphoma cell lines. I used this dataset to test
for functional enrichment of immune signalling pathways amongst the TF targets (Bruch and Giles
et al. 2021).
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Figure 5.11: Bar plot showing the results of the diffTF analysis for the external
dataset (Rendeiro et al. 2016). y axis shows change in TF binding site accessi-
bility (weighted mean difference) between trisomy 12 (n = 9) and non-trisomy 12
samples (n = 43), x axis indicates TF names. 17 / 638 TFs, with BH adjusted p
<0.05 are shown. p values generated by diffTF in permutation mode. TF binding
sites defined in HOCOMOCO v10 (Kulakovskiy et al. 2016). See Methods Section
2.4.12 ATACseq data from Rendeiro et al. (2016). Analysis performed with Dr. Ivan
Berest. Figure and caption adapted from Bruch and Giles et al. (2021).

To define TF targets, I took the closest gene to each significant ChIP peak (q value < 0.05), and
within ± 1kb of the TSS. I then tested for over-representation of these TF targets amongst selected
KEGG (Kanehisa et al. 2010) and Reactome (Jassal et al. 2020) genesets, using the R package
clusterProfiler (G. Yu 2021). This method corresponded to a one-sided version of Fisher’s
exact test. This analysis showed TLR, BCR and TGFβ signalling genes to be enriched (p < 0.01)
amongst Spi-B targets (Figure 5.12, Bruch and Giles et al. 2021)).

5.2.6 Double knockdown of Spi-B and PU.1 reduces profileration of trisomy 12 cell
lines

To establish the functional impact of Spi-B and PU.1 inhibition in trisomy 12 lymphoma, the impact
of inhibiting these TFs on proliferation of lymphoma cell lines was investigated (Figure 5.13. Single
and double shRNA knockdowns were generated in lymphoma cell lines, namely SU-DHL4 and
SU-DHL5 (trisomy 12) and SU-DHL2 (no trisomy 12) and then measured cell counts at 24 hour
intervals (Bruch and Giles et al. 2021).

The single knockdowns had a small impact on proliferation: Spi-B inhibition reduced proliferation
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KEGG and Reactome pathways amongst Spi-B and PU.1 targets. Columns show
geneset pathways, corresponding database, the number of genes within geneset,
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genes defined also shown). p-values from over-representation test.” See Methods
Section 2.4.13. ChIPseq data from Care et al. (2014). Figure and caption adapted
from Bruch & Giles et al 2021.

in SU-DHL5, as did PU.1 to a lesser extent. Double knockdown of both TFs markedly reduced
proliferation in SU-DHL2 and SU-DHL4, and was lethal in SU-DHL5. This result suggested that
both these TFs play an important role in the proliferative capacity of the tumour cells, and that there
is functional redundancy between Spi-B and PU.1 in this context.

Collectively, these observations demonstrate that trisomy 12 modulates responses to microenvi-
ronmental signals. Trisomy 12 appears to increase the activity of Spi-B and PU.1 which regulate
genes relating to environmental sensing (Bruch and Giles et al. 2021).

5.3 Summary

This chapter outlines a systematic survey of genetic determinants of microenvironmental response,
leading to two key findings. Firstly, TLR signalling has a range of effects on CLL viability, and this is
determined by many genetic features, including IGHV status, trisomy 12 and mutation in the DNA
Damage Response pathway. Secondly, I identified trisomy 12 as a modulator of microenvironmen-
tal response, and show that higher activity of Spi-B and PU.1 may mediate this effect (Bruch and
Giles et al. 2021).
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Figure 5.13: Relative cell counts of Diffuse Large B Cell Lymphoma cell lines with
single and double knockdown of Spi-B and PU.1. Data shown is the mean of three
technical rlicates. SU-DHL 5 shows reduced growth rate after Spi-B knockdown.
SU-DHL 2 and SU-DHL 4 show reduced growth rate with double knock-down. Dou-
ble knockdown induced rapid cell death in SU-DHL 5 (data not shown). Cell count
normalised to seeded cell number of cell lines after knockdown of Spi-B or dou-
ble knockdown of Spi-B and PU.1 or shRNA as control. See Methods Section
2.1.4. Experiment performed by Tina Bercirovic. Figure and caption generated
with Peter-Martin Bruch and adapted from Bruch & Giles et al. (2021).
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Chapter 6

Molecular and microenvironmental
modulators of drug response in CLL

Chapters 4 and 5 provide a systematic exploration of the effect of microenvironmental stimulation
on ex vivo CLL biology, and how these pathways can be modulated by genetic features. Collec-
tively, these results underline the fact that cancer biology is determined by an integrated network
of cell-intrinsic molecular aberrations and cell-extrinsic signals generated by cell-cell contacts and
soluble factors. In this chapter, I present my investigations into the impact of each of these on drug
response.

The effect of genetic features on in vitro drug response in CLL has been well-characterised, in-
cluding as part of recent work produced by our lab (Dietrich et al. 2017). Many studies have
also demonstrated the impact of individual microenvironmental signals on drug response ex vivo,
including a number of studies demonstrating that soluble factors can induce resistance to drug
licenced for the treatment of CLL (Fonte et al. 2013; Aguilar-Hernandez et al. 2016; Jayappa et al.
2017; McWilliams et al. 2019).

Evidence of microenvironmental signals inducing resistance to therapies in vivo is less prevalent,
although there is widespread consensus that the microenvironment, in particular the lymph node,
plays an important role in patient outcomes. A number of studies have shown enlarged lymph
nodes are associated with MRD (Moreton et al. 2005), in particular, incomplete response to ibruti-
nib is associated with persistently enlarged lymph nodes (Ahn et al. 2018). For more information
see Introduction Section 1.3.4.

Guided by these observations, this chapter explores the impact of genetic features, and microen-
vironmental stimulation on drug response, both individually and in combination. In Section 6.1,
the impact of the panel of stimuli on drug response is quantified by identifying drug-stimulus inter-
actions. In Section 6.2, the impact of genetic features on drug response is explored. In Section
6.3, multivariate modelling is applied to investigate how drug-stimulus interactions can be further
modulated by genetic features. Finally, in Section 6.4, I outline my work to investigate IL4-induced
resistance identified in the above analysis.
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The analyses described here benefit from linear regression and generalised linear modelling ap-
proaches, described in more detail in Section 1.5.3.

Some findings and figures outlined in this chapter have been published in Bruch and Giles et
al. (2021), and this is clearly stated where this is the case.

6.1 The impact of microenvironmental stimuli on drug response

6.1.1 Linear modelling maps interactions between drugs and stimuli

To begin the analysis, I first aimed to screen for cases where stimulus pathways specifically inter-
acted with drug target pathways (Bruch and Giles et al. 2021). I evaluated computational methods
for quantifying this, and decided to apply linear modelling based on the following principle:

When a stimulus is individually applied to a CLL sample, the stimulus activates signalling cascades
that modulate CLL viability and impact the rate of spontaneous apoptosis. When a stimulus is co-
applied with a drug, the stimulus will continue to impact upon baseline viability, at the same time
as the drug inhibits baseline viability. Assuming the drug and stimulus do not interact, the viability
of the tumour cells with the combinatorial treatment will equate to the additive impact of both the
compounds, providing viability is measured on a log scale.

In the case that there is some interaction between the stimulus pathway and drug target pathway,
the resulting viability will not simply be additive. The difference between the additive, or expected
viability, and the true measured viability, can be quantified by an interaction factor. Linear mod-
elling aims to quantify this interaction factor.

Based on this principle, I fitted linear models to log-transformed viability data for each drug - stim-
ulus combination, outlined in Equation (6.1) (Bruch and Giles et al. 2021). I used the lm function
implemented in the R package stats(R Core Team 2021).

Equation (6.1) quantifies how the viability with any combination can be predicted:

log(V ) = βdrugXdrug + βstimulusXstimulus + βintXdrugXstimulus + ε (6.1)

where V is the predicted viability with a given treatment, βdrug, βstimulus and βint represent the
coefficients for the drug, stimulus and interaction terms and Xdrug and Xstimulus are indicator
variables (0 or 1) for the presence or absence of a drug/stimulus. ε is the vector of model residuals.
See also Methods Section 2.4.14. Equation from Bruch and Giles et al. (2021).

This method to identify interactions was a valuable screening tool, but was not a perfect approach
and indeed there were many other possible methods each with their own strengths and weak-
nesses. There are a number of widely used reference models to measure the effects of combi-
nations of drug and compound combinations, including the Loewe additivity model (Loewe and
Muischnek 1926) and Bliss independence model (Bliss 1939). The approach used here is based
on a similar principles to the Bliss model, with the exception that the data has been log trans-
formed.
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In my approach, βint quantifies how the combined treatment effect differs from the sum of the
individual treatments. This analysis identified 45 drug-stimulus combinations (out of 204), where
βint had p < 0.05, highlighting the extent to which drug action can be modulated by cell-extrinsic
signals ex vivo (Bruch and Giles et al. 2021).

6.1.2 Drug-stimulus interactions can be categorised by their mode of action

The interactions identified through linear modelling demonstrated different modes of action. I was
most interested to identify stimuli which induce drug resistance, and drugs that may inhibit the pro-
survival effects of a stimulus, which represent candidate drugs for targeting the microenvironment
in the clinic. To establish which interactions may be of interest within a clinical context, the drug-
stimulus interactions were classified into four categories (Bruch and Giles et al. 2021).

The categories were firstly defined based on whether the interaction was antagonistic or synergis-
tic, i.e. the stimulus / drug acted to oppose or reinforce the activity of the other. These were further
divided based on the sign of βint i.e. whether the combinatorial viability was higher (positive) or
lower (negative) than would be expected based on additive effects (Figure 6.1A).
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Figure 6.1: (A) Graphical line plots representing typical response patterns for the
four interaction categories (types I - IV). x-axis shows treatment, y-axis shows log-
transformed viability values. Blue and black horizontal lines demonstrate effect of
interaction on viability with combinatorial treatment. Horizontal blue line shows pre-
dicted viability based on additive effects and horizontal black line shows observed
viability (accounting for additive effects and interaction). (B) Histogram showing
number of interactions within each category, where p value for βint <0.05. See
Methods Section 2.4.14 and 2.4.15. Figure generated with Peter-Martin Bruch for
the manuscript Bruch & Giles et al. (2021), caption adapted from manuscript.

These categories encompassed the following interaction types. Type I defined positive antago-
nisms in which stimuli reversed drug action, leading to decreased drug efficacy and increased CLL
viability. This group highlighted drug - stimulus interactions that could be relevant to treatment
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resistance pathways in vivo. Type II negative antagonisms highlighted cases where the drug in-
hibited the stimulus, reducing the effect of the stimulus on baseline viability, and decreasing CLL
viability. These interactions included drugs that represent candidates to target microenvironmen-
tal signalling pathways in vivo. Type III and type IV interactions covered synergies, in which the
drug and stimulus increase the effect of the other. Type III positive synergies led to increased CLL
viability with the combinatorial treatment, whilst type IV negative synergies led to increased drug
efficacy and lower viability. In the latter case, these may highlight cases where drug efficacy is
dependent on external pathways, and indicate where co-culture approaches may be more appro-
priate in laboratory studies of ex vivo drug action. Figure 6.1B quantifies the number of interactions
in each category.

6.1.3 Investigating specific drug-stimulus interactions indicates that INFγ induces
resistance to ibrutinib in vitro

The combined approach of fitting linear models and subsequently classifying these interactions
represents an attempt to generate a comprehensive map of drug-stimulus interactions in CLL
(Bruch and Giles et al. 2021, Figure 6.2). The aim is that this resource may facilitate further
work into these drug-stimulus interactions, such as the work outlined in Section 6.4.

Having generated an overview of drug - stimulus interactions, I next examined each interaction
within each category with the aim of identifying the most clinically interesting examples (Figure 6.3,
Bruch and Giles et al. 2021).

Positive antagonistic Interactions categorised as positive antagonistic were the most common
i.e. the stimulus reversed drug action. This group included known resistance mechanisms such
as the inactivation of ibrutinib by IL4 stimulation (Figure 6.3A)(Aguilar-Hernandez et al. 2016),
indicating that the modelling and classification approach successfully recapitulated established
drug-stimulus interactions (Bruch and Giles et al. 2021).

Additionally, this analysis demonstrated the broader significance of IL4-induced resistance, be-
yond what previous work has shown. IL4 showed the highest number of positive antagonistic
interactions amongst all of the stimuli and inhibited a range of drugs, including BCR inhibitors and
chemotherapeutics. This is investigated in more detail in Section 6.4.1 below.

In addition to IL4, IFNγ showed the second largest number of positive antagonistic interactions.
IFNγ stimulation induced resistance to BCR inhibition by ibrutinib and idelalisib, and to the chemother-
apeutic nutlin-3a (MDM2) (Figure 6.3B, Bruch and Giles et al. 2021), and may represent a novel
targetable resistance mechanism (Bruch and Giles et al. 2021).

IL4 and IFNγ induced resistance to common pathways and thus I stipulated that both stimuli may
share the same mechanism of action. This was supported by the observations in Section 5.1.2, in
which I demonstrated that inhibition of p38 MAPK activity with ralimetinib increased the pro-survival
effect of IL4 stimulation. IFNγ demonstrated similar behaviour whereby p38 MAPK inhibition in-
creased the pro-survival effect of stimulating this pathway (Appendix Figure 10). Collectively these
observations suggest that IL4 and IFNγ may operate via a common pro-survival mechanism, which
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Methods Section 2.4.14 and 2.4.15. Figure generated with Peter-Martin Bruch for
the manuscript Bruch & Giles et al. (2021), and caption taken from manuscript.

is negatively regulated by activity of p38 MAPK signalling.

Negative antagonisms There were six cases of negative antagonisms, whereby drug action in-
hibited the pro-survival effect of the stimulus. Such cases could potentially be used to target micro-
nenivronmental signals in vivo. As IL4 appeared to be the most potent conferrer of drug resistance,
it was of greatest interest to identify drugs that may inhibit this pathway. For example, the Pan-JAK
inhibitor pyridone-6 inhibited the increase in viability with sCD40L + IL4 stimulation (Figure 6.3C,
Bruch and Giles et al. 2021).

Positive synergisms The model identified a single positive synergism, in which IFNγ treatment
in combination with ralimetinib, a p38 MAPK inhibitor, stimulated a large increase in viability that
was not observed in each of the single treatments (Figure 6.3D, Bruch and Giles et al. 2021).
As discussed above, this finding suggests a potential inhibitory effect of p38 MAPK activity on
signalling via IFNγ (Bruch and Giles et al. 2021).

Negative synergisms 16 combinations demonstrated negative synergistic interactions. This im-
plied that the efficacy of the drug was somehow dependent upon, or increased by, activation of
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Figure 6.3: Line plots showing examples of drug-stimulus interactions. x-axis indi-
cates treatment, y-axis shows log-transformed viability values, with matching sam-
ples linked across treatments. Black horizontal lines represent predicted viability
for each treatment, using coefficients from linear model fit. For combinatorial treat-
ment, blue line indicates predicted viability based on additive effects alone, and
black line indicates predicted viability accounting for additive effects plus interac-
tion. See Methods Section 2.4.14. Figure generated with Peter-Martin Bruch for
the manuscript Bruch & Giles et al. (2021), and caption taken from manuscript.

the stimulus pathway. For example, luminespib (a HSP90 inhibitor) showed higher efficacy with a
number of stimuli, including soluble anti-IgM, indicating that ex vivo measurements of luminespib
action are likely to be affected by the presence or absence of microenvironmental signals (Figure
6.3F, Bruch and Giles et al. 2021).

Collectively, these results represent a comprehensive and systematic study of the influence of the
microenvironment on drug efficacy in CLL. This work highlights key resistance pathways, strategies
for targeting microenvironmental resistance, and underlines important pathways in ex vivo studies
of drug efficacy (Bruch and Giles et al. 2021).

This work aims to serve as a resource, to provide a basis for further follow-up studies. All drug-
stimulus combinations and interactions can be explored on the online shiny app [https://www.im
bi.uni-heidelberg.de/dietrichlab/CLLMicroenvironment/] (https://www.imbi.uni-hei
delberg.de/dietrichlab/CLLMicroenvironment/), and the whole analysis can be replicated
or adapted from the online code repository https://github.com/Huber-group-EMBL/CLLCytok
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ineScreen2021, published alongside Bruch and Giles et al. (2021). In this thesis, I have selected
IL4-induced resistance to investigate in more detail (see Section 6.4.

6.2 Genetic modulators of drug response

6.2.1 Univariate analysis identifies trisomy 12 as a key modulator of drug response

I next aimed to screen for cases where molecular features modulated drug responses. Previous
work in our lab (Dietrich et al. 2017) has generated the largest survey of molecular determinants of
response in CLL to date. Here I repeated a similar analysis, as it was valuable to establish the ef-
fects of mutations independently of stimuli on drug response within my dataset before investigating
the impact of mutations on drug-stimulus interactions.
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I surveyed genetic modulators of drug response using t tests, to establish the effects of mutations
independently of stimuli on drug response. I used the genetic data, including all mutations, copy
number variants and IGHV status for which there were greater than three cases in the cohort
(n = 54), to perform t-tests to identify molecular features that impact on drug response (Figure
6.4).

This analysis recapitulated the findings of previous work (Dietrich et al. 2017). For example IGHV-
U CLL samples responded more strongly to BCR inhibition by ibrutinib (BTK) and idelalisib (Pi3K),
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and TP53 and del(17p) mutations conferred resistance to nutlin-3a (MDM2) and fludarabine (Purine
analogue).

In addition, this analysis highlighted the broad impact of trisomy 12 on drug response ex vivo (Fig-
ure 6.5). While trisomy 12 CLL demonstrates higher proliferative capacity, tumours with trisomy
12 are more treatable due to higher sensitivity to chemotherapeutics and ibrutinib. This was re-
flected in the in vitro data in this study; the presence of trisomy 12 increased sensitivity to 8 / 12
drugs.
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Figure 6.5: Beeswarm-boxplots showing control-normalised log-transformed vi-
ability values after treatment with (A) Ralimetinib (p38 MAPK) and (B) IBET-762
(BRD2/3/4), stratified by trisomy 12.

I noted that trisomy 12 CLL showed increased sensitivity to IBET-762, a bromodomain inhibitor that
has been shown to suppress transcriptional responses to cytokine signalling via JAK-STAT (Chan
et al. 2015). The results in Section 5.2.1 indicated that trisomy 12 enhances responses to some
cytokines. I was interested to see whether bromodomain inhibition may provide a strategy to target
this feature of trisomy 12 samples. I decided to investigate the impact of IBET-762 treatment on the
trisomy 12 transcription factor signature determined in Figure 5.11. I used an additional ATACseq
dataset consisting of CLL samples (n = 4) which were treated with both IBET-762 and DMSO as
contro. I visualised the change in TF binding site accessibility for the TFs that were previously
identified to be altered in trisomy 12 CLL (Figure 5.11). All nine TFs showing higher accessibility
in trisomy 12 CLL (Figure 5.11) exhibited decreased accessibility upon treatment with IBET-762
(Appendix Figure 11). This result suggests that bromodomain inhibition may represent a potential
target in CLL patients with trisomy 12 (Bruch and Giles et al. 2021).

6.3 The modulatory effect of mutations on drug-stimulus interac-
tions
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6.3.1 Patient-specific linear modelling identifies drug-stimulus-gene interactions

Sections 6.1 & 6.2 explore the effects of microenvironmental signals and molecular features on
drug response independently. I next aimed to investigate their collective effect on in vitro drug effi-
cacy in CLL, by quantifying the extent to which genetic driver mutations modulated the interactions
between stimuli and drugs (Bruch and Giles et al. 2021).

I began by conceptualising methods to quantify the collective effect of the drugs, stimuli and genetic
features on CLL viability and biology. I decided to adapt the linear model in Equation (6.1), by fitting
this model in a patient sample-specific manner (Bruch and Giles et al. 2021):

log(V ) = βdrugXdrug + βstimulusXstimulus + βpatientXpatient + βdrug−stimulusXdrugXstimulus+

βdrug−patientXdrugXpatient + βstimulus−patientXstimulusXpatient+

βintXdrugXstimulusXpatient + ε

(6.2)

where V is the predicted viability of a patient sample with a given treatment, βdrug, βstimulus,
βpatient, βdrug−stimulus, βdrug−patient, βstimulus−patient and βint are regression coefficients for the
drug, stimulus, patient sample and combinatorial terms and Xdrug, Xstimulus and Xpatient are in-
dicator variables (0 or 1) for the presence or absence of a drug/stimulus/patient sample. ε is the
vector of model residuals. See also Methods Section 2.4.19. Equation from Bruch and Giles et
al. (2021).

With these patient sample-specific βint terms, it was possible to search for associations between
the size of βint and genetic features. The aim was to screen for molecular features that increased
or decreased the size of a drug-stimulus interactions, using multivariate regression with L1 (lasso)
regularisation.

To assemble the inputs for the model, first the response matrix was composed of the sample -
specific βint values for each drug-stimulus combination. To generate the feature matrix (137 sam-
ples versus 40 features), I excluded genetic features for which >20% of the values were missing,
and patient samples with incomplete annotation. As predictors, I included genetic mutations and
CNVs (p = 39) and IGHV status (coded as 0-1). I ran lasso regression, as implemented in the
R package glmnet(Friedman et al. 2021), using three-fold cross-validation with misclassification
error as loss. This approach identified genetic predictors of the size of drug - stimulus interactions,
where the predictors represent the mean coefficient values that were selected in at least 90% of
30 bootstrapped repeats.

This analysis revealed that 60/204 drug - stimulus interactions were modulated by at least one
genetic feature (Figure 6.6, Appendix Figure 8, Bruch and Giles et al. 2021). A positive coefficient
here indicates that the presence of the genetic feature is associated with more positive βint, in
other words, the viability with the drug and stimulus is higher than expected in the presence of the
genetic feature.

Applying this broad scale screening approach established some wider trends. Firstly, trisomy 12
and IGHV status impacted the largest number of drug - stimulus interactions, indicating that their
impact on stimulus and drug response individually also extends to drug-stimulus interactions. Sec-
ondly, out of all the stimuli, IL4 and sCD40L + IL4-based interactions were modulated by the largest
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Figure 6.6: Heatmap summarising genetic predictors of drug - stimulus interac-
tions. Each row depicts a single drug - stimulus combination, and each coloured
tile indicates that βint for given drug and stimulus combination is modulated by cor-
responding genetic feature. Thus each row represents the output of a single model
fit (as in Figure 6.7). Colour of tile indicates size and sign of coefficient assigned
to genetic feature, where a positive coefficient corresponds to a more positive βint

if the feature is present. Only top 8 most commonly selected genetic features are
shown. Drug - stimulus combinations with no genetic predictors of βint amongst
top 8 shown are omitted for clarity. See Methods Section 2.4.19. Figure and cap-
tion adapted from Bruch and Giles et al. (2021).
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number of features. IL4 alone increased viability uniformly across genetic backgrounds; its inter-
action with drugs may be more influenced by genetic features. Notably, the presence of trisomy 12
acted to increase IL4-induced drug resistance, in almost all drugs for which βint>0.05.

6.3.2 Patient - specific drug - stimulus interactions of clinical interest

The multivariate modelling approach outlined above was a valuable screening tool. Using the
results of this screening approach, I next examined each individual hit to establish which drug
- stimulus - gene interactions were the most biologically interesting. This analysis highlighted
several interactions that may have clinical importance and may warrant further investigation (Bruch
and Giles et al. 2021).

The first of these concerned the interaction between fludarabine (purine analogue) and CpG ODN
(TLR9). Six genetic features were associated with the value of βint for fludarabine and CpG ODN,
including IGHV status, del(11q) and trisomy 12 (Figure 6.7, Bruch and Giles et al. 2021).

Fludarabine + CpG ODN

IGHV status

del(13q)

NOTCH1

SF3B1

trisomy 12

del(11q)

Mutation status for each patient

-0.2 0.0 0.2

Size of coefficient

Patient-specific βint

-1

0

1

2

Figure 6.7: “Genetic features that modulate the size of βint between fludarabine
and CpG ODN. Bar plots indicate size and sign of coefficients assigned to genetic
features named on right. Scatter plot depicts βint values for each patient sample
(i.e.response matrix). Heatmap tiles indicate mutation status for the named genetic
features (i.e. feature matrix) corresponding to same sample in scatter plot below,
to show how size of βint varies with each feature.” See Methods Section 2.4.19.
Figure and caption from Bruch and Giles et al. (2021).

I visualised sample responses to CpG ODN and fludarabine stratified by two of these features:
IGHV status and trisomy 12 (Figure 6.8, Bruch and Giles et al. 2021). In IGHV-M non-trisomy 12
samples, TLR stimulation increased fludarabine efficacy. In samples that were either IGHV-U or
trisomy 12, the reverse was true and TLR stimulation induced resistance to fludarabine (Bruch and
Giles et al. 2021).

I observed a similar effect with other chemotherapeutic drugs. Nutlin-3a is an MDM2 inhibitor,
which in our dataset showed higher efficacy in IGHV-U, trisomy12, and del(11q) CLLs (Figure 6.4,
Figure 6.5, Appendix Figure 9). TLR stimulation reduced nutlin-3a toxicity in these same genetic
backgrounds, i.e nutlin-3a efficacy in the context of CpG ODN stimulation was lower in IGHV-U,
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Figure 6.8: “Beeswarm-boxplots of log-transformed viability values for fludara-
bine (purine analogue) and CpG ODN (TLR9) single and combinatorial treatments,
faceted by IGHV status and trisomy 12 status. P-values from paired Student’s t-
tests.” Figure and caption from Bruch and Giles et al. (2021).

trisomy 12 and del(11q) samples (Figure 6.9, Appendix Figure 12). This observation underlines
the need to measure in vitro drug activity in the context of microenvironmental signals.

The modelling approach also identified interactions where the differential size of βint was driven
by the single treatment effect, rather than the combination. For example, if a drug was more
efficacious in a certain genetic background, but a stimulus nonetheless eradicated drug toxicity,
the size of the interaction was larger in this genetic background. This is because the increase in
expected viability in these samples (quantified by βint) would be even higher than in other genetic
backgrounds.

This was the case with ibrutinib + IL4 for instance (Bruch and Giles et al. 2021). Ibrutinib showed
higher efficacy in trisomy 12 and IGHV-U samples and IL4 induced complete resistance to ibru-
tinib independently of genetic background. Thus in trisomy 12 and IGHV-U samples treated with
ibrutinib, the increase in viability in the context of IL4 stimulation was larger than in non-trisomy 12
and IGHV-M samples, and thus these features were assigned positive coefficients.

This result highlights that IL4-induced resistance may be a broad spectrum resistance mechanism,
even in tumours with molecular features that are associated with higher ibrutinib efficacy. IL4
signalling may represent a drug resistance mechanism common to many CLLs, in a disease known
for its molecular and genetic heterogeneity, though more in vivo evidence is required here (Figure
6.10, Appendix Figure 13, Bruch and Giles et al. 2021).
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Figure 6.9: Predictor profile depicting genetic features that modulate the size of
βint between nutlin-3a (MDM2) and CpG ODN (TLR9). Plot generated as in Figure
6.7. See Methods Section 2.4.19.
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Figure 6.10: Predictor profile depicting genetic features that modulate the size of
βint between ibrutinib (BTK) and IL4. Plot generated as in Figure 6.7. See also
Methods Section 2.4.19. Figure from Bruch and Giles et al. (2021).

6.4 IL4 induced resistance to BCR inhibition

6.4.1 IL4 induces resistance to BCR inhibitors and chemotherapeutics

The analyses outlined above in sections 6.1 and 6.3 highlighted two key findings. Firstly, IL4
was capable of inducing resistance to a range of drugs, including all of the BCR inhibitors and
chemotherapeutics included in the screen (Figure 6.11). Secondly, the pro-survival effect of IL4 op-
erates across heterogeneous genetic backgrounds, and could induce resistance to ibrutinib across
genetic subtypes. These observations warranted further investigation, in particular with respect to
the in vivo relevance of IL4 signalling and how the IL4 pathway may be targeted in the clinic.

6.4.2 Levels of in vivo IL4 signalling correlate with clinical outcomes

It was next natural to ask whether IL4 signalling is active within the in vivo protective niche, as an
indication of whether this pathway may induce drug resistance within in vivo situations.

To quantify levels of IL4 signalling within CLL-infiltrated lymph nodes, 100 lymph node sections
from CLL patients were stained for pSTAT6 using immunohistochemistry. pSTAT6 is a downstream
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Figure 6.11: Plots show log-transformed viability values (y axis) for named treat-
ments (x axis). Matching samples are linked across treatments. Black and blue
horizontal lines as in Figure 6.3. Plots show IL4 + (A) idelalisib (Pi3K), (B)
PRT062607 (SYK) (C) everolimus (mTOR), and (D) selumetinib (MEK). See Meth-
ods Section 2.4.14.

effector of IL4 signalling and therefore operates as a proxy for IL4 signalling intensity. The levels
of pSTAT6 in CLL-infiltrated lymph nodes were compared with that of 100 non-neoplastic samples
(Figure 6.12A - C). This analysis indicated that pSTAT6 levels were higher within CLL-infiltrated
lymph nodes (Bruch and Giles et al. 2021).

Next, to determine the influence of in vivo IL4 activity on disease progression, pSTAT6 staining in-
tensity was correlated with to time to next treatment (Bruch and Giles et al. 2021). Patient samples
with higher pSTAT6 staining levels showed a shorter time to next treatment (Figure 6.12D). This
indicated that increased IL4 signalling within the protective niche correlates with a shorter time to
next treatment, supporting the hypothesis that signalling within the lymph node may support the
existence of MRD and promote resistance to therapy (Bruch and Giles et al. 2021).

6.4.3 IBET-762 rescues ibrutinib toxicity in the context of IL4 stimulation

The potential clinical significance of IL4-mediated drug resistance raised the question of whether
the pro-survival effect of IL4 was targetable. The screening dataset made it possible to identify
drugs that might inhibit the anti-apoptotic effect of IL4 and rescue drug sensitivity, with a view to
proposing a strategy by which IL4 could be targeted in vivo.

Out of the drugs included in the screen, IBET-762 was able to inhibit the pro-survival effect of IL4
(Figure 6.13A). IBET-762 is a BET inhibitor, targeting BRD2, 3 and 4 to inhibit the formation of the
transcription initiation complex. A number of BET inhibitors have been implicated in the treatment
of haematological malignancies, though none are as yet clinically licensed.

The ability of IBET-762 to inhibit IL4 activity suggested that IBET-762 may be capable of rescuing
ibrutinib toxicity in the context of IL4. This was indeed the case: whilst the efficacy of ibrutinib treat-
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Figure 6.12: (A) Mean pSTAT6 staining intensity in CLL-infiltrated and non-
neoplastic lymph node biopsies after background subtraction (y axis), p-values
from Student’s t-test. Each dot represents the mean of all cells in TMA cores per
patient sample. (B + C) Example images of IHC sections showing pSTAT6 levels in
(B) CLL-infiltrated and (C) non-neoplastic sample. (D) Kaplan-Meier plot for time
to next treatment stratified by levels (high/low) of pSTAT6. See Methods Sections
2.1.5 and 2.4.20. IHC experiments performed by Dr. Mark Kriegsmann, Dr. Katha-
rina Kriegsmann and Christiane Zgorzelski. Figure produced with Peter-Martin
Bruch and adapted from the manuscript Bruch & Giles et al. (2021).

ment was lost if the Il4 pathway was stimulated, ibrutinib maintained efficacy if administered in com-
bination with IBET-762 even in the context of IL4 stimulation (Figure 6.13B) (Figure 6.13B).

This finding suggests that IBET-762 may rescue ibrutinib toxicity in the context of IL4 stimulation,
and that this may operate via inhibition of transcription of IL-4-induced genes. BET inhibition may
represent a potential strategy to target IL4 in vivo, though more work is required here.

6.5 Summary

This work aims to integrate the effects of mutations and the microenvironment in drug response in
CLL, at a large scale. The results demonstrate the value of using multi-omic data (consisting of
both observational data on patient samples and perturbation data generated through screening) to
generate more complex biological insights that can guide further clinical studies.

More specifically, these results identify a number of novel drug-resistance pathways, including the
impact of IFNγ on ibrutinib. Trisomy 12 is identified as an important modulator of drug response.
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Figure 6.13: (A) Log-transformed control-normalised viability values of CLL sam-
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by presence / absence of IL4. See Methods Section 2.4.21. Ibrutinib + IBET-762
+ IL4 viability experiment performed by Peter-Martin Bruch.

These results also show that certain resistance pathways are context-dependent. In particular, the
ability of TLR stimulation to induce resistance to chemotherapeutics is modulated by IGHV and
trisomy 12 status.

Finally, I investigated IL4-induced resistance in more detail. IL4 signalling is increased within CLL-
infiltrated lymph nodes and high IL4 signalling correlates with faster disease progression. IBET-
762 provides a potential therapy with which to target this signalling, and future work should seek to
investigate the value of this drug in combination with standard therapies in CLL.
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Chapter 7

Discussion

“All models are wrong, but some are useful.”

— George E. P. Box

For many years, the approach to managing CLL has been dominated by an understanding of the
disease genetics. The collective work of many labs has identified the characteristic molecular
features of CLL (Döhner et al. 2000; Ferreira et al. 2014; Landau et al. 2015; Puente et al. 2015;
Rendeiro et al. 2016, 2020; Beekman et al. 2018; Zenz et al. 2019; Mallm et al. 2019; Herbst
2020; Meier-Abt et al. 2021) and these have informed the development of successful treatment
strategies (Kipps et al. 2017). However, despite the onset of new targeted therapies CLL remains
largely incurable (Bosch and Dalla-Favera 2019) and relapse and the occurrence of MRD represent
major issues (Hayden et al. 2012; Bosch and Dalla-Favera 2019). Moreover, the molecular players
identified so far only partially account for the level of disease heterogeneity seen amongst CLL
patients.

More recently, the role of the lymph node and bone marrow compartments have become appre-
ciated (Ten Hacken and Burger 2016). Indeed, several seminal studies have underlined the im-
portance of the tumour microenvironment in CLL pathogenesis. Firstly, CLL cells require external
signals to survive ex vivo, indicating that malignant B cells survival is likely to rely on external sig-
nals as much as on cell-intrinsic features of the tumour (Collins et al. 1989; J. A. Burger et al.
2000; Kurtova et al. 2009; Deaglio and Malavasi 2009; Purroy et al. 2015). Secondly, the lymph
node and bone barrow compartments are the main site of proliferation, in which the aggressive
fraction of tumour cells are located (B. T. Messmer et al. 2005; Herishanu et al. 2011; Herndon et
al. 2017). Thirdly, the lymph node compartment has been linked to drug resistance and incomplete
response to therapy and enlarged lymph nodes are associated with MRD (Moreton et al. 2005;
Ahn et al. 2018).

Unravelling the complex cross-talk between malignant B cells and the tumour microenvironment
is likely to support several clinical goals. Many patients harbour MRD after therapy and it is prob-
able that targeting the protective niche in combination with current therapies will lead to deeper
remissions. in vitro studies of drugs in the absence of microenvironmental stimulation have proven
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invaluable in the development of treatments that have improved patient outcomes. However, more
successful treatment strategies will be underpinned by studying drug action within the context of
the microenvironment. Greater predictive power is required to successfully stratify patients and
to move towards more personalised approaches: its therefore possible that prognostic indices
should account for the protective niche in addition to tumour cell-intrinsic markers, given its well-
established role in treatment resistance and MRD.

Achieving these goals starts with basic biology. This will require a systematic understanding of the
critical pathways in CLL–microenvironment crosstalk. In particular, this provides the opportunity
to identify unifying pathogenic mechanisms that operate across heterogeneous disease subtypes.
Moreover, many studies have characterised the individual omic layers of the disease (Ferreira et al.
2014; Landau et al. 2015; Puente et al. 2015; Rendeiro et al. 2016, 2020; Beekman et al. 2018;
Zenz et al. 2019; Mallm et al. 2019; Herbst 2020; Meier-Abt et al. 2021). Integrating these layers,
and how they interact with microenvironmental signals will provide a more complex understanding
of disease biology. Furthermore, linking cell-intrinsic and cell-extrinsic features to response will
provide greater insight into drug resistance mechanisms and guide treatment strategies

Bridging the gaps between what we currently know, and where we need to be, will require the
concerted efforts of many studies toward this direction. This thesis aims to provide some under-
standing to bridge this gap.

7.1 ex vivo profiling of drug and stimulus responses of CLL primary
patient samples

In this thesis, I conceived that a systematic investigation of drugs, molecular features and solu-
ble factors within the CLL microenvironment could provide the building blocks for a more holistic
understanding of interactions between tumour genetics, the microenvironment and drugs in more
complex in vivo situations. I made use of a reductionist model of microenvironmental signalling
based on an ex vivo perturbation assay to query the effect of 17 microenvironmental stimuli and
12 drugs on primary CLL samples. This dataset was combined with patient multi-omic profiles.
Collectively, this work maps the effects of soluble factors in the microenvironment, both in isolation
and in combination with drugs, and links these to underlying molecular properties in 192 primary
CLL samples (Bruch and Giles et al. 2021). I discuss the key findings below.

This reductionist approach had both advantages and drawbacks. Cross-talk between malignant
cells and the tumour microenvironment is mediated by soluble factors, along with cell-cell contacts,
the extracellular matrix and secreted vesicles (see Section 1.3.3) (Guarini et al. 2008; Oppezzo
and Dighiero 2013; Crompot et al. 2017). Thus, whilst the functional assay employed here en-
compasses a cross-section of this network, it does not account for the complete landscape of
microenvironmental communication. Nevertheless, the use of soluble factors enabled the iden-
tification of direct causal links between signalling pathways and tumour responses. Moreover,
this study complements similar work investigating cell-cell contacts in CLL drug response (Herbst
2020), and collectively these studies aim to piece together the role that both soluble factors and
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cell-cell contacts play in drug response.

Additionally, the use of primary CLL samples rather than cell lines, encompassed the disease het-
erogeneity of CLL. Significantly, this study represents a much larger scale approach than previous
work in order to capture this genetic diversity. For example, the effects of IL4 on CLL cells has
been studied in primary samples previously (Dancescu et al. 1992; Bhattacharya et al. 2015;
Aguilar-Hernandez et al. 2016) but only in very small cohorts.

7.1.1 Sensitivity to microenvironmental stimulation

The ex vivo functional assay evaluated the impact of 12 soluble factors on CLL viability. This
approach was informed by Carey et al. (2017), who performed a similar screen of 94 soluble factors
in AML. Both studies demonstrate the value of systematic in vitro functional screening to probe the
impact of cell-extrinsic factors on primary samples. In particular, studies of this kind can support
the identification of unifying pathogenic mechanisms in genetically heterogenous haematological
malignancies.

We observed that most stimuli increased tumour cell survival. A few signals had a profound impact,
most notably IL4 which increased tumour cell viability across all genetic backgrounds. Stimulation
of TLR7/8/9 had an equally significant impact on tumour cell viability and increased or decreased
viability depending on the molecular features of the tumour cells (Bruch and Giles et al. 2021).
A few signals decreased survival of the tumour cells, including TGFβ, and these pathways may
represent potential targets to exploit in a clinical setting.

7.1.2 Microenvironmental response profiling identified a group of IGHV-M CLLs
with faster disease progression

In addition to highlighting key survival pathways, microenvironmental response profiling delineated
four CLL subgroups. These subgroups were linked to distinct molecular profiles and showed differ-
ential disease progression, independently of known prognostic markers. The subgroup containing
mostly IGHV-M CLLs that responded poorly to the panel of stimuli demonstrated faster disease
progression (Bruch and Giles et al. 2021).

These subgroups highlight the importance of microenvironmental signaling in CLL pathogenesis
and raise the possibility that in vitro responses to microenvironmental signals might reflect dis-
tinct in vivo leukemic potential and thus may have prognostic value. This is not unprecedented;
for example Scielzo et al. (2011) proposed that in vitro responses to sCD40L distinguished two
functional CLL subsets, that demonstrate different clinical courses.

Stimuli response profiling as a clinical tool may be unconventional. However, CLL is a highly
heterogenous disease, and our current understanding of molecular features only goes so far in ex-
plaining and predicting disease outcomes and relapse (Miller et al. 2019; Bosch and Dalla-Favera
2019). These observations suggest that prognostic indices may be improved through account-
ing for role of the protective niche. The finding that IL4 signalling is measurable and elevated
within CLL lymph node biopsy samples, and relates to disease progression further underlines this.
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Its possible that probing signalling activity as part of lymph node biopsies may have prognostic
value.

7.2 Genetic modulators of microenvironmental signalling

7.2.1 Systematic analysis of the effect of genetic features on responses to stim-
uli

Patient subgroups with distinct molecular features responded differently to the panel of stimuli,
pointing to the fact that genetic mutations alter responses to signalling pathways (Bruch and Giles
et al. 2021).

I applied multivariate modelling to quantify the impact of molecular features on microenvironmental
pathways. For example, multiple features modulated viability in response to TLR7/8/9 stimulation,
including IGHV status, trisomy 12, del(11q), del(13q) and ATM. This reflects the complexity of the
network of molecular features and pathways that drive pathogenicity in CLL (Bruch and Giles et
al. 2021).

del(11q) and ATM mutations are thought to impact on the function of the DDR. Thus, these results
suggest possible cross-talk between the TLR and DDR pathways, which is disrupted by mutations
in del(11q) and ATM. This would support previous observations suggesting a role for ATM in TLR
signalling (Neves-Costa and Moita 2017).

7.2.2 The role of trisomy 12 as a modulator of microenvironmental response

Amongst these gene-microenvironment interactions, trisomy 12 emerged as a key modulator of
response to microenvironmental signals (Bruch and Giles et al. 2021). This observation raises
the possibility that trisomy 12 CLLs may be more reliant on microenvironmental signals than other
subtypes. This would agree with clinical observations that trisomy 12 CLLs show a shorter redis-
tribution lymphocytosis during ibrutinib therapy (Thompson et al. 2015), such that when tumour
cells are released from the lymph node they rapidly undergo apoptosis outside of the protective
niche.

I investigated which molecular features of trisomy 12 CLL may lead to enhanced responses to
microenvironmental signals. A number of studies have implicated over expression of genes in
trisomy 12 pathogenicity, particularly those on chromosome 12 (Dickinson et al. 2006; Porpaczy
et al. 2009; Abruzzo et al. 2018), and thus I began by investigating expression of genes within
microenvironmental signalling pathways. STAT6, IRAK4 and SMAD3 were all overexpressed in
trisomy 12. This may enable trisomy 12 CLLs to respond more strongly to external stimulation.
Previous work has also pointed to a critical role for IRAK4 in trisomy 12 CLL. Reid et al. (2021)
identified IRAK4 as a key drug target through a drug screen of inhibitors of trisomy 12-related
genes. IRAK4 inhibition also selectively targeted trisomy 12 CLLs in patient-derived xenografted
mouse models. Thus, IRAK4, and the TLR pathway may represent an important target in trisomy
12 CLL.

88



Additionally, I investigated the epigenetic signature of CLL and identified TFs that showed higher
binding site accessibility in trisomy 12 CLL (Bruch and Giles et al. 2021). This analysis demon-
strated that Spi-B and PU.1 showed higher inferred activity in two independent datasets. Using
ChIPseq, I linked these TFs to control of BCR, TLR and TGFβ signalling genes, suggesting that
both these TFs may contribute to enhanced activity of these pathways (Bruch and Giles et al. 2021).
These findings build on work by Beekman et al. (2018), who indicated that trisomy 12 CLL is linked
to a distinct epigenetic signature. They observed that NFAT, FOX and TCF/LEF TF family binding
sites were enriched amongst the open chromatin regions that were unique to trisomy 12 sam-
ples. Despite the contrasting results, both studies suggest that the distinctive epigenetic profile
and TF activities observed in trisomy 12 CLL may represent a targetable feature. More work will
be required to establish how to exploit this in the clinic.

In this thesis, I noted that IBET-762 inhibited the TF signature of trisomy 12 CLL and showed
greater efficacy in trisomy 12 samples (Bruch and Giles et al. 2021). Though speculative, its possi-
ble that BET inhibition represents a strategy through which to target enhanced microenvironmental
response in trisomy 12 CLL. This is supported by other work on BET inhibitors in haematological
malignancies indicating that these therapies may inhibit cytokine signalling. For example, the BET
inhibitor OTX015 has been shown to inhibit growth of cell lines derived from mature B-cell lymphoid
tumors via inhibition of NFκB, TLR, and JAK-STAT (Boi et al. 2015), whilst the BET inhibitor JQ1
reduced expression of NFκB target genes in Mantle Cell Lymphoma (Sun et al. 2015).

7.3 Genetic and microenvironmental modulators of drug response

7.3.1 The impact of stimuli on drug response

In addition to drug-gene interactions, a key feature of this study was the ability to identify drug-
stimulus interactions. This refers to cases where the efficacy of a drug was modulated by the
activity a microenvironmental pathway, or vice versa. I identified such cases using a linear model,
indicated in Equation (6.1) (Bruch and Giles et al. 2021).

The linear modelling approach represents the first attempt to map drug-microenvironment inter-
actions in CLL on a large scale. Whilst it cannot be assumed that the analysis captured all in-
teractions existing in the dataset, the linear model nevertheless represents a valuable tool and
my drug-stimulus interaction analysis recapitulated known phenomena and identified many novel
cases. These included the effect of IL4 stimulation on BCR inhibition (Aguilar-Hernandez et al.
2016), discussed in Section 7.4 and the impact of IFNγ on BCR inhibitor and chemotherapeutic
efficacy (Bruch and Giles et al. 2021).

The drug-microenvironment interaction map is also not comprehensive in that it only accounts for
the pathways included within the screen. However, the approach has guided other interaction
analyses, such as that published in Herbst (2020), who used a similar linear model to identify drug-
microenvironment interactions between drugs and BMSC cell lines. Collectively, these studies
are piecing together a comprehensive picture of the importance of the microenvironment in drug
response, to help guide better therapeutic strategies that account for the role of the protective
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nice.

Intriguingly, the comprehensive approach enabled the observation that IL4 and IFNγ both inter-
acted with a common set of drugs, suggesting that they may operate via a similar mechanism.
This was supported by the observation that inhibition of p38 MAPK with ralimetinib increased the
protective effect of both stimuli. Previous work suggests that both IL4 and IFNγ both induce nitric
oxide synthase (NOS2) in CLL cells to promote survival (Levesque et al. 2003). Taken together, its
possible that both IL4 and IFN/gamma increase viability via NOS2. Further work will be needed to
confirm whether this could be targeted in the clinic.

7.3.2 The modulatory effect of mutations on drug-stimulus interactions

Together with the impact of cell-extrinsic factors on drug response, the network of cell-intrinsic
molecular components adds an additional layer of complexity (Bruch and Giles et al. 2021). I
captured the impact of genetic features on drug-stimulus interactions using multivariate modelling.
The size of each drug-stimulus interaction within each patient was measured by fitting Equation
(6.1) (Bruch and Giles et al. 2021) in a patient specific manner. Then the impact of genetic features
on the size of the interaction for each drug-stimulus combination was quantified through multivariate
modelling, with lasso penalisation.

This chosen method had both benefits and caveats. The approach effectively screened a large
number of drug-stimulus-gene combinations to generate a smaller list of interactions that could be
interpreted individually. It is possible that certain hits were artefacts of the modelling approach,
which meant that interpreting each individual hit within a biological context was important. Addi-
tionally, the use of lasso penalisation generated sparse models with only a few genetic predictors
per interaction which supported the interpretation. However, its likely that some genetic features
may have been eliminated from the model outputs, due to the fact they correlated with other ge-
netic features that were assigned coefficients. In these cases, it was not possible to know which
mutation was causing the observed effect and again careful interpretation was required.

Nevertheless, this drug-stimulus-gene interaction map successfully highlighted many interesting
cases. Strikingly, TLR stimulation induced drug resistance or increased drug efficacy with chemother-
apeutic drugs depending on the genetic background. For example, TLR stimulation increased
fludarabine efficacy in IGHV-M non-trisomy 12 CLL samples, but induced resistance in all other
cases (Bruch and Giles et al. 2021). TLR signalling is also known to be highly active within CLL-
infiltrated lymph nodes (Bruch and Giles et al. 2021). Collectively, these observations may partially
explain why fludarabine therapy often achieves lasting remission in IGHV-M but not in IGHV-U CLL
cases (Chai-Adisaksopha and Brown 2017). These observations also underline how greater un-
derstanding of the protective niche will bridge some of the gaps in our understanding of disease
heterogeneity in CLL.
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7.4 The interaction between IL4 and ibrutinib

Throughout this thesis, IL4 has continually emerged as a central pro-survival signal, at least within
this in vitro context. Not only did IL4 stimulation increase viability in the absence of drugs, it
also induced resistance to all BCR inhibitors and chemotherapeutics included in the screen. IL4
also represented a unifying mechanism of CLL survival as it increased survival and induced drug
resistance across diverse genetic backgrounds. Notably, the impact of IL4 was elevated in trisomy
12 CLL, and slightly reduced in CLL samples with mutation is Ras/Raf/MEK/ERK (Bruch and Giles
et al. 2021).

Given these findings, it was natural to investigate whether IL4 signalling is relevant within the in vivo
context. This thesis demonstrated increased IL4 activity within CLL-infiltrated lymph nodes com-
pared to non-neoplastic samples and showed that higher IL4 activity was associated with faster
disease progression (Bruch and Giles et al. 2021). This builds on work by Aguilar-Hernandez et
al. (2016), who identified enrichment of IL4 signature genes within the lymph node compared with
blood and bone marrow samples from the same CLL patients. Combined with the observation
that enlarged lymph nodes are linked to resistance to BCR inhibition (Ahn et al. 2018), its pos-
sible that in vivo activity of IL4 within the lymph node could induce resistance to treatment with
chemotherapeutics and BCR inhibitors. Future studies should now focus on single cell studies of
lymph node biopsies. It will be of particular interest to define the impact of microenvironmental
signals on drug response directly within the in vivo context, with the aim of generating effective
strategies to eliminate MRD within the protective niche (Bruch and Giles et al. 2021).

It will also be important to confirm the source of IL4, as this is still debated. CD4+ T cells may be
involved (Patten et al. 2008; Monserrat et al. 2014; Aguilar-Hernandez et al. 2016). Recent work
within out lab suggests that follicular helper T cells provide the source of IL4 (Roider et al. 2020).
Levels of these T cells are higher in CLL patient blood samples and cells thought to be follicular
helper T cells have also been observed within lymph node samples (Ahearne et al. 2013).

Deeper remissions during ibrutinib and idelalisib therapy are essential to improving patient out-
comes and targeting IL4 signalling in vivo could support this goal. This thesis identified bromod-
omain inhibition via IBET-762 to be an effective strategy to inhibit IL4 activity and support BCR
inhibitor efficacy within in vitro CLL primary samples. Its possible that bromodomain inhibition may
target JAK-STAT signalling in IL4 stimulated CLL cells: other studies have shown that bromod-
omain inhibition suppresses transcriptional responses to JAK-STAT signalling in monocytes (Chan
et al. 2015) and mature B-cell lymphoid tumour cell lines (Boi et al. 2015).

Moreover, bromodomain inhibition in combination with other therapies may also be useful as
a broad spectrum microenvironmental inhibitor: BET inhibitors have been shown to target cy-
tokine signalling also via NFκB and TLR in mature B-cell lymphoid tumour cell lines (Boi et al.
2015).

Our results indicate that BET inhibition increases ibrutinib efficacy in the context of IL4, and may
be useful as a combinatorial therapy. This agrees with other work showing that bromodomain
inhibition reduces expression of BTK in Mantle Cell Lymphoma cells (Sun et al. 2015), indicating
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that BET inhibition may complement BCR inhibition by operating downstream of current BTK and
SYK targeted drugs. BET inhibition has also been shown to synergise with ibrutinib in DLBCL
mouse models (Ceribelli et al. 2014). Beyond ibrutinib and idelalisib, bromodomain inhibition
may be a useful tool in combination with other drug types. For example, BRD inhibition shows
additional activity in combination with venetoclax (Carrà et al. 2020) in CLL cell lines and in ex vivo
CLL samples.

Collectively, these studies make the case for evaluating bromodomain inhibitors in combination with
current targeted therapies, although more in vivo work will be needed here. Current phase I clinical
studies have focused on directly targeting JAK-STAT signalling in combination with BCR inhibitors
and have shown promise (Hamlin et al. 2019; Spaner et al. 2019). Bromodomain inhibition may
provide an additional tool, inhibiting both cytokine signalling and BCR signalling to increase the
efficacy of BCR and BCL2-targeted drugs.

7.5 Open Science

Few studies have so far investigated cell-intrinsic and cell-extrinsic features systematically in can-
cer, and this study represents an important milestone in this direction. Thus an important goal was
to ensure that this work is freely available, through the publication of open-access software. In this
thesis, and published alongside Bruch and Giles et al. (2021), I present a resource for the study
of drug response in the context of molecular and microenvironmental modulators. This resource
has already been used by other researchers e.g. J. Lu et al. (2021) and aims to inform targeted
mechanistic investigations and support efforts to identify combination therapies (Giles and Bruch
et al. 2021).

7.6 Summary

This thesis presents the analysis of an ex vivo perturbation assay to query the effect of 17 mi-
croenvironmental stimuli and 12 drugs on primary CLL samples, combined with patient multi-omic
profiles. The aim was to generate a systematic investigation of drugs, molecular features and sol-
uble factors within the CLL microenvironment and to provide the building blocks for a more holistic
understanding of interactions between tumour genetics, the microenvironment and drugs in more
complex in vivo situations (Bruch and Giles et al. 2021).
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Appendix - Figures

Figure 1: Layout of the 15 drugs in two concentrations on each screening plate.
Plot produced by Peter-Martin Bruch.

Figure 2: Layout of 9 / 18 stimuli on the first screening plate. A.A., S.P., Beads,
B.S.A. and C.A. refer to additional agents tested in the screen which were not
included in downstream analysis. Plot produced by Peter-Martin Bruch.
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Figure 3: Layout of the remaining 9 / 18 stimuli on the second screening plate.
A.A., S.P., Beads, B.S.A. and C.A. refer to additional agents tested in the screen
which were not included in downstream analysis. Plot produced by Peter-Martin
Bruch.

Figure 4: Assignment of patient samples (columns), to each cluster, for k = 1 -
7 (rows) to demonstrate stability of cluster membership. Cluster colour for k = 4
match those in heatmap in 4.4. See Methods Section 2.4.3.
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Figure 5: Enrichment plot of selected pathways. Gene set enrichment analy-
sis (GSEA) was performed with the Hallmark gene sets from the GSEA Molecu-
lar Signatures Database. Wald statistic was used to rank the genes. The green
curve corresponds to the Enrichment Score curve, which is the running sum of the
weighted enrichment score obtained from GSEA software. See Methods Section
2.4.7. Figure and caption adapted from Bruch and Giles et al. (2021).
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Figure 6: “Analysis of ATACseq dataset of two trisomy 12 and two non-trisomy 12
untreated CLL PMBC samples. The volcano plot depicts change TF binding site
accessibility (x axis) versus BH-adjusted p-values (y axis), comparing trisomy 12
and non-trisomy 12 samples. The diffTF (Berest et al. 2019) software was run
in analytical mode to calculate TF activity, measured as weighted mean difference.
TFs are labelled if adjusted p-value < 0.01 and absolute weighted mean difference
> 0.15.” diffTF pipeline was run by Ivan Berest, figure and caption published in
Bruch and Giles et al. 2021.
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Figure 7: diffTF workflow from Berest et al. (2019). diffTF accepts a list of TFs
along with the genomic locations of their bindings sites. For each TF, the software
computes the distribution of fold changes between the trisomy 12 and WT samples,
using the ATACseq peaks at each TF binding site in each condition. The software
compares this distribution to a set of background fold changes produced from loci
that show the same GC content but not the TF binding site motif. Each TF is thus
assigned assigned a weighted mean difference value, which quantifies the change
in binding site accessibility, and a p value. Figure from original published in Berest
et al. (2019), and adapted with permission.
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Figure 8: “Heatmap depicting overview of genetic predictors of drug - stimulus
interactions (each row represents the coefficients from fitting a single multivariate
model). Stimuli are shown on left, and corresponding drugs on right. Drugs, stimuli
and genetic alterations are alphabetically sorted. Coloured fields indicate that the
βint for given drug and stimulus is modulated by corresponding genetic feature.
Positive coefficients are shown in red, indicating βint is more positive for given drug
and stimulus combination if the feature is present.” Figure and caption generated
with Peter-Martin Bruch for the manuscript Bruch and Giles et al. 2021.
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Figure 9: Predictor profile plot depicting genetic features that predict in vitro re-
sponse to Nutlin-3a. Bar plot on left indicates size and sign of coefficients for the
named predictors. Positive coefficients indicate higher viability after treatment, if
the feature is present. Scatter plot and heatmap indicate how each genetic feature
relates to patient sample viabilities: Scatter plot indicates log(viability) values, in
order of magnitude, for each individual sample. Heatmap shows patient mutation
status for each of genetic predictors for corresponding sample in scatter plot.
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Figure 10: Beeswarm-boxplots of log-transformed control-normalised viability val-
ues for IFNγ treated samples, with and without Ralimetinib.
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Figure 11: “Differential TF binding site accessibility (y axis) in trisomy 12 vs non-
trisomy 12 CLL PBMC samples (purple) and for IBET-762 vs DMSO treated CLL
samples (green). Direction of differential accessibility values are shown for two
independent datasets comparing trisomy 12 vs non-trisomy 12 CLL and IBET-762
vs control-treated CLL, for all TFs with adjusted p value <0.05 in the trisomy 12
comparison. Absolute change in TF accessibility can not be compared between
the two experiments. See Methods Section 2.1.7 and 2.4.17.” Figure and caption
generated with Peter-Martin Bruch for the manuscript Bruch and Giles et al. 2021.
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Figure 12: Beeswarm-boxplots showing control-normalised log-transformed via-
bility values, after treatment with nutlin-3a (MDM2), and CpG ODN (TLR9) and
nutlin-3a (MDM2), stratified by del(11q), IGHV and trisomy 12 status. p-values
from Student’s t-tests.
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Figure 13: “Beeswarm-boxplots of log-transformed viability values for ibrutinib
(BTK) and IL4 single and combinatorial treatments, faceted by IGHV status and
trisomy 12 status. P-values from paired Student’s t-tests.” Figure and caption from
Bruch and Giles et al. 2021.
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Appendix - Tables

Table 1: Summary of the patient samples and selected genetic features included
in this study. Table published in Bruch and Giles et al. 2021.

Patient ID Sex Treated before IGHV status Methylation Cluster Del(13q) Del(11q) Trisomy 12 Del(17p)

Pat_001 f 1 U LP 1 0 0 0

Pat_002 m 1 M IP 1 0 0 0

Pat_003 m 0 M HP 0 0 1 0

Pat_004 f 1 U LP 0 1 0 0

Pat_005 m 0 U LP 1 0 0 0

Pat_006 f 0 U LP 0 0 0 0

Pat_007 f 0 M HP 1 0 0 0

Pat_008 m 1 U LP 1 0 0 0

Pat_009 m 1 U LP 1 0 0 1

Pat_010 f 1 U LP 1 0 0 1

Pat_011 f 0 U NA 0 0 1 0

Pat_012 f 0 M HP 1 0 0 0

Pat_013 f 1 U IP 1 1 0 0

Pat_014 m 0 M HP 0 0 0 0

Pat_015 m 0 M HP 1 0 0 0

Pat_016 m 0 M HP 1 0 0 0

Pat_017 m 0 M NA 1 0 0 0

Pat_018 f 1 U LP 1 1 0 0

Pat_019 m 0 M HP 1 0 0 0

Pat_020 f 1 M IP 1 0 0 0

Pat_021 m 0 U LP 0 0 0 1

Pat_022 f 0 M IP 0 0 1 0

Pat_023 f 0 M HP 0 0 0 0

Pat_024 f 1 M HP 0 0 0 1

Pat_025 m 0 M IP 1 0 0 0

Pat_026 m 0 M HP 1 0 0 0

Pat_027 f 0 M HP 1 0 0 0

Pat_028 f 0 M IP 1 0 0 0

Pat_029 f 0 M HP 1 0 0 0

Pat_030 m 1 M HP 1 0 0 0

Pat_031 m 0 M HP 0 0 0 0

Pat_032 f 1 U LP 1 1 0 0

Pat_033 m 1 U IP 0 1 0 0

Pat_034 m 1 U LP 0 1 0 0

Pat_035 m 0 M HP 1 0 0 0

Pat_036 m 1 U LP 1 1 0 1

Pat_037 f 1 U IP 1 0 0 0

Pat_038 m 0 M IP 1 0 0 0

Pat_039 m 1 M HP 1 0 0 0

Pat_040 f 0 M HP 0 0 0 0

Pat_041 f 1 U LP 0 0 1 0

Pat_042 f 0 M IP 1 1 0 0

Pat_043 f 0 M HP 1 0 0 0
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Table 1: Summary of the patient samples and selected genetic features included
in this study. Table published in Bruch and Giles et al. 2021. (continued)

Patient ID Sex Treated before IGHV status Methylation Cluster Del(13q) Del(11q) Trisomy 12 Del(17p)

Pat_044 m 0 M HP 1 0 0 0

Pat_045 m 0 U LP 0 0 0 0

Pat_046 m 0 M IP 0 0 1 0

Pat_047 m 0 M HP 1 0 0 0

Pat_048 m 0 M HP 1 0 0 0

Pat_049 f 0 M IP 0 1 0 0

Pat_050 m 0 M HP 0 0 1 0

Pat_051 m 0 M NA 1 0 0 0

Pat_052 f 0 M IP 1 0 0 0

Pat_053 m 1 U LP 1 1 0 0

Pat_054 f 1 U LP 0 1 0 0

Pat_055 m 1 U LP 0 0 0 0

Pat_056 f 0 U LP NA NA NA NA

Pat_057 f 0 M HP 1 0 1 0

Pat_058 f 1 U LP 0 0 0 0

Pat_059 m 0 M HP 1 0 0 0

Pat_060 m 1 M IP 1 0 0 1

Pat_061 m 0 U LP 0 0 1 0

Pat_062 m 1 U LP 1 1 0 0

Pat_063 f 0 U LP 1 0 0 0

Pat_064 m 1 U LP 1 1 0 1

Pat_065 m 0 U LP 0 1 0 0

Pat_066 m 1 U LP 1 1 0 0

Pat_067 f 0 M HP 1 0 0 0

Pat_068 m 0 M HP 1 0 0 0

Pat_069 m 1 M HP 1 0 0 0

Pat_070 f 0 M HP 0 0 0 0

Pat_071 f 0 U LP 0 0 0 0

Pat_072 m 1 M HP 0 0 1 0

Pat_073 f 0 U LP 1 1 0 0

Pat_074 f 0 M HP 0 0 0 0

Pat_075 f 0 M HP 1 0 0 0

Pat_076 m 0 M HP 1 0 0 0

Pat_077 f 0 U NA 0 0 1 0

Pat_078 m 0 U LP 0 0 0 0

Pat_079 m 0 M HP 1 0 0 0

Pat_080 f 0 M HP 0 0 0 0

Pat_081 m 0 M HP 0 0 0 0

Pat_082 m 0 U LP 0 0 0 0

Pat_083 m 0 M HP 0 0 0 0

Pat_084 m 0 U LP 0 0 1 0

Pat_085 m 0 M HP 0 0 0 0

Pat_086 m 1 U LP 1 1 0 0

Pat_087 m 0 M IP 1 0 0 0

Pat_088 f 1 U LP 1 0 0 1

Pat_089 m 0 M HP 0 0 0 0

Pat_090 m 1 U LP 0 0 1 0

Pat_091 m 1 M NA 1 0 0 0

Pat_092 m 1 M HP 0 0 0 0

Pat_093 m 0 M HP 1 0 0 0

Pat_094 f 1 M HP 0 0 0 0

Pat_095 m 1 U LP 0 0 0 0

Pat_096 m 0 M HP 0 0 0 0

Pat_097 f 1 U LP 0 0 0 0

Pat_098 m 0 M HP 1 0 0 0

Pat_099 f 0 U LP 1 0 0 0

Pat_100 f 0 U LP 1 0 0 0
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Table 1: Summary of the patient samples and selected genetic features included
in this study. Table published in Bruch and Giles et al. 2021. (continued)

Patient ID Sex Treated before IGHV status Methylation Cluster Del(13q) Del(11q) Trisomy 12 Del(17p)

Pat_101 f 0 U LP 1 0 0 0

Pat_102 m 1 U IP 0 0 0 0

Pat_103 f 0 M HP 1 0 1 0

Pat_104 f 1 M HP 0 0 0 0

Pat_105 m 0 U LP NA NA NA NA

Pat_106 m 0 U LP 1 1 0 1

Pat_107 f 0 M NA 1 0 0 0

Pat_108 m 0 M NA 1 0 1 0

Pat_109 m 0 M HP 1 0 0 0

Pat_110 m 0 M IP 1 1 0 0

Pat_111 f 1 U LP 1 0 0 0

Pat_112 f 0 M NA 0 0 1 0

Pat_113 f 0 M HP 1 0 0 0

Pat_114 m 0 U LP 1 0 0 0

Pat_115 m 1 U LP 1 0 0 1

Pat_116 m 0 U LP 1 0 0 0

Pat_117 m 0 U IP 1 0 0 0

Pat_118 f 0 M HP 0 0 0 1

Pat_119 m 0 U LP NA NA NA NA

Pat_120 f 0 U LP 0 0 1 0

Pat_121 m 0 U LP 0 0 0 1

Pat_122 m 0 U LP 0 1 0 0

Pat_123 m 0 U LP 1 0 0 1

Pat_124 f 0 M HP 1 0 1 0

Pat_125 f 0 M HP 1 0 0 0

Pat_126 m 1 NA NA 0 0 1 0

Pat_127 m 0 U LP 1 1 0 1

Pat_128 m 0 M HP 1 0 0 0

Pat_129 m 1 U LP 1 0 0 0

Pat_130 f 0 M IP 1 0 0 0

Pat_131 f 0 U LP 1 0 0 1

Pat_132 m 1 U LP 1 0 0 1

Pat_133 m 1 U LP 1 0 0 1

Pat_134 m 1 M HP 1 0 0 1

Pat_135 m 0 M HP 1 0 0 0

Pat_136 m 0 M HP 1 0 0 0

Pat_137 f 0 U LP 0 0 1 0

Pat_138 f 0 M HP 1 0 0 0

Pat_139 f 0 M HP NA NA NA NA

Pat_140 f 0 M IP 1 0 0 0

Pat_141 m 0 M IP 1 0 0 0

Pat_142 m 0 M HP 1 0 0 0

Pat_143 f 0 U LP 1 0 0 0

Pat_144 m 1 U LP 0 0 0 1

Pat_145 f 0 M HP 0 0 0 0

Pat_146 m 1 U LP NA NA NA NA

Pat_147 m 1 U LP 0 0 0 1

Pat_148 m 1 U NA 1 0 0 0

Pat_149 m 1 U LP 0 1 1 0

Pat_150 f 0 M HP 1 0 0 NA

Pat_151 m 0 U LP 0 0 1 0

Pat_152 m 0 NA NA 0 1 1 0

Pat_153 m 1 U LP 1 0 0 0

Pat_154 m 0 M HP 1 0 0 0

Pat_155 m 0 M HP 1 0 0 0

Pat_156 f 0 U LP 1 0 0 0

Pat_157 f 0 U LP 1 1 0 0
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Table 1: Summary of the patient samples and selected genetic features included
in this study. Table published in Bruch and Giles et al. 2021. (continued)

Patient ID Sex Treated before IGHV status Methylation Cluster Del(13q) Del(11q) Trisomy 12 Del(17p)

Pat_158 m 0 M HP 1 0 0 0

Pat_159 f 0 U LP 1 0 0 0

Pat_160 m 0 U LP NA NA NA NA

Pat_161 m 1 U LP 0 0 0 0

Pat_162 m 0 M HP 0 0 0 0

Pat_163 m 0 M HP 0 0 0 0

Pat_164 f 0 U LP 0 0 0 0

Pat_165 m 1 U LP 0 1 1 0

Pat_166 m 0 U LP 1 0 1 0

Pat_167 m 0 NA IP NA NA NA NA

Pat_168 m 0 M HP 1 1 0 0

Pat_169 m 0 M HP 0 0 1 0

Pat_170 m 0 M HP 1 0 0 0

Pat_171 m 0 M HP 1 0 0 0

Pat_172 m 0 M HP 1 0 0 0

Pat_173 m 0 M HP 1 0 0 0

Pat_174 f 0 U LP NA 0 NA 0

Pat_175 m 0 U LP 0 0 0 0

Pat_176 f 0 M HP NA NA NA NA

Pat_177 f 0 NA IP NA 1 NA NA

Pat_178 m 0 M HP 1 0 0 0

Pat_179 m 0 U LP 0 1 0 0

Pat_180 m 0 M HP NA NA NA NA

Pat_181 f 0 M HP NA NA NA NA

Pat_182 m 0 M HP 1 0 0 0

Pat_183 f 1 NA IP 1 0 0 0

Pat_184 m 0 U LP NA NA NA NA

Pat_185 m 0 M HP NA NA NA NA

Pat_186 m 0 M HP 1 0 0 0

Pat_187 m 1 U LP NA NA NA NA

Pat_188 m 0 NA NA NA NA NA NA

Pat_189 m 0 NA NA NA NA NA NA

Pat_190 m 0 NA NA NA NA NA NA

Pat_191 f 0 NA NA 0 0 0 0

Pat_192 f 0 NA NA 1 0 0 0

Table 2: Characteristics of the drugs included in the screen. Table published in
Bruch and Giles et al. 2021. Table generated with Peter-Martin Bruch and pub-
lished in Bruch and Giles et al. 2021.

Drug Main targets Target category Drug Group Company Cat. No. Conc. 1 Conc. 2

Ibrutinib BTK BCR kinase inhibitor Selleck Chemicals S2680 500nM 50nM

Idelalisib PI3K delta BCR kinase inhibitor Selleck Chemicals S2226 500nM 50nM

Fludarabine Purine analogue DDR chemotherapeutic agent Selleck Chemicals S1491 2000nM 200nM

Nutlin-3a MDM2 DDR other Selleck Chemicals S8059 10000nM 1000nM

Selumetinib MEK1/2 MAPK kinase inhibitor Selleck Chemicals S1008 1000nM 100nM

BAY-11-7085 NFkB NFkB other Selleck Chemicals S7352 2000nM 200nM

Everolimus mTOR mTOR other Selleck Chemicals S1120 500nM 50nM

PRT062607 SYK BCR kinase inhibitor Selleck Chemicals S8032 500nM 50nM

Pyridone-6 JAK1/2/3 JAK/STAT kinase inhibitor MedChemExpress 457021-03-7 500nM 50nM

Ralimetinib p38 MAPK MAPK kinase inhibitor Selleck Chemicals S1494 1500nM 150nM

Luminespib HSP90 HSP90 other Selleck Chemicals S1069 200nM 20nM

I-BET 762 BRD2/3/4 Epigenome other Selleck Chemicals S7189 1000nM 100nM
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Table 3: Characteristics of the stimuli included in the screen. Table produced with
Peter-Martin Bruch and published in Bruch and Giles et al. 2021.

Stimulus Name Supplier Concentration Catalogue Number Lot Number Pathway

IL4 human recombinant animal component free IL4 Sigma-Aldrich 10 ng/ml SRP3093 0712AFC14 JAK/STAT

IL10 human Animal component free IL10 Sigma-Aldrich 10 ng/ml SRP3312 1012AFC21 JAK/STAT

IL2 human recombinant animal component free IL2 Sigma-Aldrich 10 ng/ml SRP3085 0416AFC12 JAK/STAT

R-848 Resiquimod Enzo Life Siences 1000 ng/ml ALX-420-038-M025 10211615 TLR 7/8

Human IL-21 IL21 Peprotech 10 ng/ml 200-21 414226 JAK/STAT

Human BAFF BAFF Peprotech 250 ng/ml 310-13 0706CY194 NFkB

Human IL-1 beta IL1b Peprotech 10 ng/ml 200-01 0606B95 NFkB

Human sCD40 Ligand sCD40L Peprotech 1000 ng/ml 310-02 1214145 NFkB

Goat F(AB’)2 Fragment to human IgM soluble anti-IgM MP Biomedicals 20000 ng/ml 55055 7227 BCR

Human TGFbeta TGFB1 Peprotech 10 ng/ml 100-21 1117209 MAPK

Human IL15 IL15 Peprotech 10 ng/ml 200-15 91624 JAK/STAT

Human IL6 IL6 Peprotech 10 ng/ml 200-06 031316-2 JAK/STAT

ODN 2006 (ODN 7909) CpG ODN Invivogen 1000 ng/ml tlrl-2006-1 3901-09T TLR 9

Human SDF1 alpha (CXCL12) SDF-1a Peprotech 200 ng/ml 300-28A 101492 JAK/STAT

Human Interferon gamma Interferon gamma Peprotech 5 ng/ml 300-02 121527 NFkB

HS-5 conditioned medium HS-5 CM self produced 20 % NA NA NA

Table 4: Number of cases of each gene mutation within the cohort used in this
study.

0 1

del13q 66 108

TP53 157 30

del11q 148 28

SF3B1 161 26

trisomy12 149 25

NOTCH1 137 24

del17p 154 20

ATM 164 16

gain8q 159 13

del8p 135 11

MED12 170 10

gain2p 137 9

KRAS 177 7

BRAF 180 7

del6q 166 7

POT1 174 6

del9p 140 6

NFKBIE 175 5

FAT2 175 5

CSMD3 175 5

del1q 141 5

del18p 141 5

del15q 141 5

del14q 145 5

IKZF3 176 4

FAT4 176 4

EGR2 176 4

gain19q 142 4

gain19p 142 4

gain18q 144 4

del9q 142 4

MYD88 184 3
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