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Abstract

This thesis reports on the reconstruction and improvement of a quantum gas experiment
for studying Bose polarons as well as on theoretical investigations at the interface between
Efimov physics and Fermi polarons. In both experiment and theory an ultracold mixture of
fermionic 6Li and bosonic 133Cs with a large mass ratio is considered. With the improved
experimental setup we realize Bose-Einstein condensates (BEC) of 133Cs with N = 104

atoms and molecular BECs of 6Li2 with N = 105 dimers. For the creation of Bose polarons
we trap a small number of Li atoms in a tightly confined optical dipole trap and propose
a scheme to combine them with the 133Cs BEC. In a theoretical study, employing the
Born-Oppenheimer approximation, we calculate Efimov bound state energies (E < 0) in a
three body Cs-Cs-Li system and in a many-body environment where two 133Cs atoms are
immersed in a Fermi sea of 6Li atoms. In these systems the intraspecies scattering length
determine the ground state and the Fermi sea leads to a modification of the binding
energies. For the scattering states (E > 0) we calculate the induced scattering length
between two 133Cs atoms mediated by the Fermi sea, and find resonant behavior. We find
that for large mass ratios bound states can persist at positive energies to form quasibound
states.

Zusammenfassung

Die vorliegende Arbeit beschreibt die Rekonstruktion und Verbesserung eines Quantengas-
experiments zur Untersuchung von Bose Polaronen, sowie theoretische Untersuchungen an
der Schnittstelle zwischen Efimov Physik und Fermi Polaronen. Hierbei wird ein ultrakal-
tes Gemisch bestehend aus fermionischen 6Li und bosonischen 133Cs Atomen mit großem
Massenverhältnis betrachtet. Mit dem verbesserten experimentellen Aufbau ist es möglich
Bose-Einstein Kondensate (BEC) aus N = 104 133Cs Atomen und molekulare BECs aus
N = 105 6Li2 Molekülen zu erzeugen. Zur Implementierung von Bose Polaronen fangen
wir wenige 6Li Atome in einer stark fokussierten optischen Dipolfalle und entwickeln ein
Schema zur Mischung von 6Li Atomen mit dem 133Cs BEC. Auf der theoretischen Sei-
te verwenden die Born-Oppenheimer Näherung um gebundene Efimov Zustandsenergien
(E > 0) zu berechnen. Dabei betrachten wir ein Dreikörper Cs-Cs-Li System und ein
Vielteilchensystem bestehend aus zwei 133Cs Atomen in einem Fermisee aus 6Li Atomen.
In diesen Systemen wird der Grundzustand bestimmt durch die Intraspeziesstreulänge
und der Fermisee führt zu einer Modifikation der Bindungsenergien. Für die Streuzustän-
de (E > 0) berechnen wir die durch den Fermisee induzierte Streulänge zwischen zwei
133Cs Atomen und finden resonantes Verhalten. Wir stellen fest, dass gebundene Zustände
für hohe Massenverhältnisse auch bei positiven Energien als quasi-gebundene Zustände
fortbestehen können.
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Chapter 1

Introduction

The concept of quasiparticles is a powerful tool to reduce the complexity of a many-
body problem to the level of single particles. It was first introduced by Landau
[Landau, 1933] and Pekar [Pekar, 1946] to describe the motion of an electron in a
dielectric crystal lattice. The negative charge of the electron polarizes the surround-
ing atoms and leads to a lattice deformation which is dragged along the electron’s
motion. The electron is said to be dressed by the surrounding cloud of phonons
and forms a polaron which is characterized by a modified effective mass and energy
compared to the bare electron. The underlying electron-phonon interaction is an
important research topic e.g. in transport properties of semiconductors, colossal
magnetoresistance or high temperature superconductors [Devreese and Alexandrov,
2009]. More generally, the problem of a particle or impurity in a medium gives rise
to a vast number of interesting phenomena ranging from the Kondo effect in metals
[Kondo, 1964] to the Higgs mechanism [Higgs, 1964] through which elementary par-
ticles in the standard model acquire their mass. Even everyday phenomena such as
the formation of raindrops, consisting of a dust particle surrounded by water vapor,
can be seen as a classical analogue of dressed particles.

However, even simple theoretical descriptions of polarons such as the Fröhlich
model [Fröhlich, 1954] cannot be solved analytically, but rely on approximations.
Experimentalists therefore use a complementary approach realized with ultracold
quantum gases. The rapid developments in this field after the achievements of
Bose-Einstein condensates [Anderson et al., 1995; Davis et al., 1995; Bradley et al.,
1995, 1997] and degenerate Fermi gases [DeMarco and Jin, 1999] have opened up
new paths to study many-body physics problems with a high degree of control [Bloch
et al., 2008]. In particular, the possibility to change the interaction strength between
atoms via magnetically tunable Feshbach resonances [Inouye et al., 1998; Courteille
et al., 1998] provides access to polarons with strong impurity-medium interactions.
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Chapter 1. Introduction

Figure 1.1: Cartoon of polarons in solids and quantum gases. a) Electron (red)
moving through a crystal lattice drags along a cloud of surrounding atoms and
forms a quasiparticle. b) In a quantum gas a Bose polaron is formed by a 6Li
atom (red) dressed by the phonon excitations of a Bose-Einstein condensate of
133Cs atoms (blue). Three-body Efimov states become important in a highly
mass-imbalanced systems. c) Two Fermi polarons, consisting of two Cs atoms
immersed in a Li Fermi sea, can interact via the Fermi sea and form bound
states.

Impurities immersed in a degenerate Fermi gas, called Fermi polarons, were first
realized in a spin-imbalanced gas of 6Li where spin-down atoms served as impurities
in a spin-up Fermi sea [Schirotzek et al., 2009]. The polaron energy was mapped
out by means of radio-frequency (RF) spectroscopy showing that the transition fre-
quency between two hyperfine states of the impurity is altered by the presence of
the Fermi sea. Since then Fermi polarons have been studied extensively in many
experiments [Nascimbène et al., 2009; Kohstall et al., 2012; Koschorreck et al., 2012;
Cetina et al., 2016; Scazza et al., 2017; Yan et al., 2019; Ness et al., 2020; Fritsche
et al., 2021] and in theory (reviewed in [Massignan et al., 2014; Schmidt et al.,
2018]).

On the other hand, Bose polarons, i.e. impurities immersed in a Bose-Einstein
condensate (BEC), are more similar to the solid-state polaron. The system of an
impurity interacting with the collective phonon excitations of the BEC can be di-
rectly mapped onto the Hamiltonian in the Fröhlich model [Tempere et al., 2009].
While earlier experiments realized impurities in a BEC in the weakly interacting
regime [Palzer et al., 2009; Catani et al., 2012; Spethmann et al., 2012; Scelle et al.,
2013; Rentrop et al., 2016], Bose polarons in the strongly interacting regime have
only been realized in 2016 simultaneously by two independent groups [Hu et al.,
2016; Jørgensen et al., 2016]. Further spectroscopic measurements in the quantum
critical regime [Yan et al., 2020] and experiments on the dynamics of Bose polarons
have been performed recently [Skou et al., 2021, 2022]. The experimental progress
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also stimulated new theoretical work on the Bose polaron, for which an overview is
given in the reviews [Grusdt and Demler, 2015; Scazza et al., 2022].

One key difference between Fermi and Bose polarons lies in their quantum statis-
tics. While the Pauli principle hinders the formation of bound states between iden-
tical fermions in the Fermi sea, bound states play an important role for bosons.
Especially, the influence of so-called Efimov trimers, a weakly bound three-body
state, on the properties of Bose polarons remains one of the open questions which
has not been observed so far. Efimov trimers, originally proposed to be observed
in nuclear systems [Efimov, 1970], have been created in ultracold quantum gases
in homonuclear [Kraemer et al., 2006; Williams et al., 2009; Zaccanti et al., 2009;
Gross et al., 2009; Pollack et al., 2009; Knoop et al., 2009; Lompe et al., 2010;
Nakajima et al., 2010; Wild et al., 2012] and heteronuclear systems [Barontini et al.,
2009, 2010; Bloom et al., 2013; Pires, 2014; Tung et al., 2014]. Theoretical stud-
ies [Levinsen et al., 2015; Sun et al., 2017; Sun and Cui, 2017] suggest that for
investigating the interplay between few-body Efimov states and many-body Bose
polaronic states, systems with a large mass ratio are particularly well suited. In
the 6Li − 133Cs system, for example, with a mass ratio of mCs/mLi ≈ 22 the size
of some of the Efimov trimers lT is on the same order as the interparticle distance
n−1/3 of the BEC giving rise to intriguing few-body correlations in a many-body
system. In addition, the 6Li − 133Cs system offers magnetically tunable Feshbach
resonances [Repp et al., 2013; Tung et al., 2013] which allow for the preparation and
detection of the Bose polaron in the strongly interacting regime via RF spectroscopy.

Besides the interplay between few- and many-body physics, interactions between
Fermi or Bose polarons induced by the medium remain largely unexplored in current
experiments. Important examples of mediated interactions include the occurrence
of Cooper pairing responsible for superconductivity or the fundamental interactions
where elementary particles serve as mediators. First signatures of polaron-polaron
interactions have been observed in [Cetina et al., 2016] and theoretical predictions
suggest two Bose polarons to bind to a bipolaron due to interactions mediated by
BEC phonons [Casteels et al., 2013; Camacho-Guardian et al., 2018]. In Bose-
Fermi mixtures fermion-mediated boson interaction have recently been studied in
the weakly interacting regime [DeSalvo et al., 2019; Edri et al., 2020; Mukherjee
et al., 2020]. Mediated interactions in the strongly interacting regime, however, re-
main still unobserved.

This thesis investigates topics from Efimov physics to Bose polarons and inter-
actions between Fermi polarons in an ultracold 6Li − 133Cs Fermi-Bose mixture. We
setup an experimental platform designed for creating Bose polarons in the strongly
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Chapter 1. Introduction

interacting regime, studying the interplay between Efimov states and Bose polaron
states in the radio-frequency spectrum across a 6Li − 133Cs Feshbach resonance.
Besides that, in theoretical studies, we investigate the heteronuclear Efimov effect
in a three-body Cs-Cs-Li system using the Born-Oppenheimer approximation. We
calculate the bound state spectrum with emphasis on the intraspecies interaction.
We then study how the bound state spectrum is altered if the two 133Cs atoms are
embedded in a 6Li Fermi sea. In this scenario, the bound states can be interpreted
as bipolaronic states of two Fermi polarons. Finally, we compute the interactions
between the two heavy Fermi polarons mediated by the Fermi sea.

The starting point of this thesis work is an existing experiment which enabled
studies of the heteronuclear Efimov effect with thermal gases of a 6Li−133Cs mixture
[Pires, 2014; Ulmanis et al., 2015, 2016a,b,c; Häfner et al., 2017]. Investigations of
polarons in the quantum degenerate regime, however, require the development of
new schemes to trap and cool 6Li and 133Cs atoms and a major reconstruction of the
experiment. We start in Ch. 2 by giving an overview of the existing experimental
setup and by describing upgrades and new insights. In Ch. 3, we create a Bose-
Einstein condensate of 133Cs atoms at a high magnetic field of B = 895 G where we
can simultaneously tune the interactions between 6Li and 133Cs atoms. Moreover,
we prepare a gas of ultracold Li atoms in a tightly focused optical dipole trap and
propose a scheme to immerse them as impurities in the 133Cs BEC. In Ch. 4, we
present the calculations of the bound state spectrum of the Cs-Cs-Li system and
of two 133Cs atoms immersed in a Fermi sea. The interactions between two Fermi
polarons mediated by the Fermi sea are calculated in Ch. 5 across a Feshbach reso-
nance. We investigate the occurrence of resonances in the induced scattering length
and furthermore study the emergence of quasi-bound states for positive interspecies
interactions.
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Chapter 2

Experimental setup

In this chapter we describe the experimental setup used for preparing ultracold Bose-
Fermi mixtures of 133Cs and 6Li. We give a short overview of the existing apparatus
[Repp, 2013; Pires, 2014; Häfner, 2017] and present new insights and upgrades. A
schematic representation of the experimental apparatus is shown in Fig. 2.1. The
apparatus can be coarsely divided into six sub-modules each of which is described
in one section of this chapter. The experiments take place in the Vacuum Chamber
around which the apparatus is built. A starting point in ultracold atom experiments
is usually the preparation of atoms in a magneto-optical trap (MOT) which requires
a combination of Laser Cooling and Magnetic Fields. Colder and denser atomic

Vacuum 

Chamber

Laser Cooling 

Optical Dipole 

Traps

Diagnostics

Radio-frequency/

Microwave system

Magnetic 

Fields

Figure 2.1: Schematic representation of the different sub-systems in our experi-
ment positioned around the main vacuum chamber.
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Oven

Ion pump

Ion pump Ion pump TSP

TSP

Differential 
pumping chamber

Slower
viewport

UHV 
pumping
chamber

Reentrant
viewports

Inner
helical coils

Outer
helical coils

Experimental 
chamber

Figure 2.2: Vacuum system. Top: Overview of the whole vacuum system with
different pumping chambers. With a combination of ion pumps and titanium
sublimation pumps (TSP) an ultra-high vacuum (UHV) with a pressure of
p ∼ 10−11 mbar is achieved in the experimental chamber. Bottom: The double-
species Zeeman slower consisting of inner and outer helical coils facilitates sub-
sequent deceleration of both Cs and Li atoms. Figure adapted from [Repp,
2013].

gases are realized in Optical Dipole Traps where interactions are tuned via magnetic
Feshbach resonances (see Ch. 3.1) and internal spin states can be controlled by a
Radio-frequency/Microwave system. Information on the trapped atoms such as their
density distributions or temperatures is extracted from our Diagnostics system.

2.1 Vacuum chamber

The vacuum chamber lies at the heart of the experiment (Fig. 2.2) and is pumped to
ultra-high vacuum (UHV) which is necessary to minimize collisions of the trapped,
ultracold Li and Cs atoms with the background gas leading to losses. The vacuum
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2.2. Magnetic fields

system starts with a double-species oven, similar to the design in [Stan and Ketterle,
2005], in which temperatures of Li and Cs can be controlled independently. Typi-
cally temperatures of 633 K (373 K) are used to create vapor pressures of 10−5 mbar
(10−3 mbar) for Li (Cs) [Gehm, 2003; Steck, 2008]. In order to reach lower final
pressures the oven section is followed by two differential pumping stages (with di-
ameters d1 = 7 mm, d2 = 10 mm and lengths l1 = 103 mm, l2 = 500 mm), one of
which is surrounded by the helical coils of a double-species Zeeman slower. An ion
pump is used in this area to lower the pressure. Finally, the main vacuum chamber
is connected to the UHV pumping chamber where another ion pump together with
a titanium sublimation pump (TSP) realize pressures on the order of ∼ 10−11mbar.
The vacuum chamber provides optical access through four CF63 and two CF40
viewports as well as a separate CF63 slower viewport in the horizontal plane. The
slower viewport is heated to 373 K to avoid deposition of atoms from the atomic
beam source which would lower the optical transmission of the viewport. In vertical
direction two CF150 reentrant viewports with a small separation of 39 mm allow for
high numerical aperture (NA) imaging and dipole trapping.

2.2 Magnetic fields
Magnetic fields are essential for trapping and manipulating Li and Cs atoms. Here
we give an overview of the different magnetic fields in our experimental setup and
shortly describe their functionality.

• Double-species Zeeman slower. The Li and Cs atoms coming from the
oven are decelerated by the force of a resonant laser beam in counter-propagating
direction through absorption of photons. As the atoms decelerate the change
in Doppler shift can be compensated by a spatially varying magnetic field
produced by the Zeeman slower [Phillips and Metcalf, 1982]. Since the decel-
eration is mass dependent the required magnetic field profile along the atomic
beam scales as B(z) ∝

√
1/m. For the highly mass-imbalanced Li-Cs system

an efficient deceleration is therefore provided by two sets of helical coils (see
Fig. 2.2) where the outer set is used for Cs and both sets are used for Li
which are loaded subsequently. The detailed characterization of our Zeeman
magnetic field profiles can be found in [Repp, 2013]. At the end of the Zee-
man slower an adaption coil is implemented to match the field profiles of the
Zeeman slower coils to the MOT coils in the experimental chamber.

• MOT coils. A quadrupole field is required in a MOT to create a spatially
varying Zeeman shift that gives rise to an indirect confinement of an optical
molasses through scattering of photons [Raab et al., 1987]. The MOT coils
create such gradient fields of ∂BLi/∂z = 31 G/cm and ∂BCs/∂z = 9.5 G/cm

7



Chapter 2. Experimental setup

0 200 400 600 800 1000

Magnetic field (G)

−6

−4

−2

0

2

4

6

E
n

er
gy

(G
H

z)

F = 3

F = 4

+3

-4

+4

-3

mF

133Cs

0 200 400 600 800 1000

Magnetic field (G)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

E
n

er
gy

(G
H

z)

F = 1/2

F = 3/2

6Li

mJ = -1/2

mJ = -1/2

+1/2
-1/2
-3/2

-1/2
+1/2
+3/2

mF

+1
0
-1

-1
0
+1

mI

Figure 2.3: Magnetic field dependence of atomic energy levels of 133Cs and 6Li in
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and the total electronic angular momentum, respectively. The employed 133Cs
(6Li) states in our experiment are highlighted in blue (red).8
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Figure 2.4: Magnetic field coils around the vacuum chamber. a) The Feshbach
and curvature coils (green) are placed on top of the reentrant viewports (blue)
while the larger MOT coils (violet) are situated around the steel chamber. b)
The magnetic field produced by the Feshbach coils has an axial curvature (red)
which can be compensated by the curvature coils (green). Figure adapted from
[Repp, 2013].

consisting of 6 layers with 12 winding and a minimal radius of 100 mm per coil.
The large design, however, causes a large inductance which limits the turn off
time together with Eddy currents to > 10 ms. This limitation is problematic
for subsequent optical cooling techniques such as degenerate Raman sideband
cooling for Cs or gray molasses cooling for Li.

• Compensation cage. A large, rectangular cage (800 mm × 1380 mm ×
660 mm) around the vacuum chamber consisting of three pairs of coils pro-
vides magnetic fields of up to 2 G in each spatial direction. They are used to
compensate the earth magnetic field or other stray magnetic fields e.g. from
permanent magnets of the ion pumps.

• Feshbach coils. Offset magnetic fields of up to 1400 G are provided by the
Feshbach coils to tune the intraspecies (Li-Li, Cs-Cs) and interspecies (Li-
Cs) scattering lengths (the scattering length is introduced in Ch. 3) and
the hyperfine energy levels according to the Zeeman effect (Fig. 2.3). The 24
windings per coil (four in axial and six in radial direction) are directly placed on
the reentrant viewport (Fig. 2.4). Since this geometry deviates from an ideal
Helmholtz configuration, the effective magnetic field along the axial direction
is given by Bz = B0(1 + αz2) with a curvature of α = 0.0274 G/cm [Gerken,
2022]. The exact geometry as well as the manufacturing process are described
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Chapter 2. Experimental setup

in [Pires, 2014]. The Feshbach coils are additionally stabilized using a current
transducer1 which is fed into a home-built PID controller. A high stability
of the Feshbach coils requires a thermal equilibrium in the experiment and is
analyzed in detail in [Ulmanis, 2015]. The resolution is limited to about 20 mG
by a 16 bit DAC of the experimental control system.

• Curvature coils. The curvature coils are placed inside the Feshbach coils
and were originally designed to compensate for the curvature of the Feshbach
coils (Fig. 2.4b)). However, the trapped atomic gas is usually not strongly
affected by the curvature if placed in the center of the Feshbach coils. For
this reason we connect the curvature coils in anti-Helmholtz configuration
to produce quadrupole fields. Due to their small size with two layers and
two windings per coil, we can make use of faster switching times of 1-2 ms
compared to the MOT coils. We therefore typically transfer the atoms from the
quadrupole field provided by the MOT coils after loading to the one provided
by the curvature coils.

• Raman coils/Offset coils. Additional, small offset fields of up to 2 G can
be produced in all three spatial directions by these coils. This is useful e.g.
for having a small magnetic field with high resolution (< 1 mG) on top of
the Feshbach field for mapping out splittings in p-wave Feshbach resonances
[Gerken et al., 2019] or for degenerate Raman sideband cooling. The offset
fields in the horizontal plane can be used to e.g. spatially shift the center of
the quadrupole field.

2.3 Laser cooling
In this section we present some of the basic concepts of our Li and Cs laser cooling
setup. The full laser cooling scheme consists of a complex setup of different diode
lasers which are frequency-stabilized by spectroscopic methods and frequency shifted
by acusto-optic modulators before they are guided to the vacuum chamber via opti-
cal fibers across different laser tables. Here we give an overview of the employed Li
and Cs frequencies and discuss the cooling technique of degenerate Raman sideband
cooling which is necessary in our system to reach Bose-Einstein condensation of Cs.

The level schemes for the D2 transition for 6Li and 133Cs including the employed
light frequencies are shown in Fig. 2.5. For Li, the D2 line is at a wavelength of
670.977 nm and has a natural linewidth of 5.87 MHz [Gehm, 2003]. Since the hyper-
fine structure in the excited state is unresolved, atoms in the excited state can decay

1Danfysik Ultrastab 866
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Figure 2.5: Hyperfine structure of the D2 cooling line for 6Li and 133Cs. The ar-
rows and the red (blue) numbers mark the laser light frequencies and frequency
shifts by the AOMs, respectively. Li TA, Cs DL and Cs TA stand for the diode
lasers which are frequency-stabilized. Figure adapted from [Repp, 2013].

into both the F = 3/2 and F = 1/2 state, requiring repumping light in addition to
the cooling light. Also sub-Doppler cooling techniques are less effective due to the
unresolved excited state and we use a gray molasses cooling scheme on the D1 tran-
sition instead [Gerken, 2016]. Both the laser light for cooling and trapping Li atoms
in the MOT as well as for gray molasses cooling are provided by Toptica TA pro 670
laser systems with a recently upgraded home-built tapered amplifier system (design
of S. Whitlock group). With gray-molasses cooling we typically reach temperatures
of T = 42µK.

The D2 line of Cs is at 852.347 nm with a natural linewidth of 5.22 MHz [Steck,
2008]. The 9.2 GHz hyperfine splitting of the ground state is the famous clock
transition serving as a time standard for defining the second. Unlike Li, Cs has
a resolved excited hyperfine state which allows for efficient sub-Doppler cooling
[Drewsen et al., 1994]. Although the F = 4 → F ′ = 5 cooling transition is a
closed cycling transition, off-resonant coupling can still lead to population in the
dark F = 3 state, requiring an additional repumping beam. Cooling and repumping
light are provided by a Toptica TA pro 850 and a Toptica DL pro 850 laser system,
respectively. With sub-Doppler cooling we typically reach temperatures of T = 8µK.
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Chapter 2. Experimental setup

Figure 2.6: Schematics of degenerate Raman sideband cooling. Degenerate vibra-
tional levels are coupled via Raman transitions (double-sided arrows). Optical
pumping via the excited F ′ = 2 level transfers atoms into the |3, 3⟩ ground
state.

2.3.1 Degenerate Raman sideband cooling of 133Cs
The Cs atoms can be further cooled by the technique of degenerate Raman sideband
cooling (dRSC) [Vuletic et al., 1998; Kerman et al., 2000] where our setup follows
the one in [Treutlein et al., 2001]. Our full setup is described in [Repp, 2013]. In
dRSC the atoms are loaded from the MOT into a 3D optical lattice (Fig. 2.6). The
cooling takes place by pumping atoms which are initially in high-lying vibrational
states into the vibrational ground state of the |F = 3,mF = 3⟩ hyperfine sublevel. A
small offset magnetic field B0 leads to a Zeeman splitting ∆EZ = gFµBB0 bringing
the states |F = 3,mF = 3, ν⟩, |F = 3,mF = 2, ν−1⟩, and |F = 3,mF = 1, ν−2⟩ into
degeneracy. These states are coupled to each other by a two-photon Raman transi-
tion driven by the lattice light. An additional polarizer beam which is composed of
a strong σ+- and a weak π-component pumps the atoms from the 62S1/2, F = 3 into
the 62P3/2, F

′ = 2 manifold. The Raman coupling is much faster than the optical
pumping by the weak π beam such that atoms are pumped preferably starting from
the mF = 1 state. The atoms decay back into the F = 3 manifold and maintain
their vibrational state since the vibrational energy ℏω is much larger than the pho-
ton recoil energy (’Lamb-Dicke regime’). At the end of the cooling, a large part of
the atoms are in the |F = 3,mF = 3, ν = 0⟩ which is a dark state hindering Raman
transitions and optical pumping.

In our setup the Raman lattice light is set on the |F = 4⟩ → |F ′ = 4⟩ transi-
tion (see Fig. 2.5) with a red detuning of 9.2 GHz to the |F = 3⟩ manifold. The
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Figure 2.7: Characterization of degenerate Raman sideband cooling. a) The
achieved temperature depends on the offset magnetic field determining Zee-
man shift and the degeneracy of the vibrational states. b) The cooling time,
during which the polarizer beam is turned on, needs to be long enough to ac-
count for the Raman transition rate and the optical pumping rate.

light therefore also serves as a repumper for off-resonantly pumped atoms into the
|F = 4⟩ manifold. The Raman polarizer beam drives the |F = 3⟩ → |F ′ = 2⟩ transi-
tion with a blue detuning of about 10 MHz. The strong σ+- and weak π-component
are achieved by a small angle of the polarizer beam with respect to the magnetic
field axis and can be optimized with a small horizontal magnetic field on top of the
vertical offset field B0 which slightly rotates the quantization axis of the system.

In the following a characterization of our dRSC scheme is presented. In Fig.
2.7a) we investigate the magnetic field dependence on the temperature. We therefore
transfer Cs atoms from the MOT with a density of n = 2×1010cm−3 into the Raman
lattice and apply a pulse of the polarizer of 1.5 ms. The temperature is extracted by
measuring the cloud size after release from the lattice in a time-of-flight expansion
(see Sec. 2.6). We read off a minimum of the temperature of T ≈ 0.6µK in a
magnetic field range of about 25 mG ≲ B ≲ 125 mG. This is in agreement with
our estimated value of B0 = ℏω̄/gFµB = 80 mG where we assumed a harmonic
lattice with a mean trap frequency of ω̄ = 2π × 28 kHz based on a peak intensity of
I = 329 mW/cm−2 per beam. Power broadening of the vibrational states contribute
to the large magnetic field range over which the temperature stays constant. On
the other hand the Gaussian intensity distribution of the lattice prevents that the
degeneracy condition between the vibrational states is fulfilled at every lattice site.
We compensate for this effect by ramping the lattice intensity to a lower value during
the cooling process, thereby dynamically changing the trap frequencies. Finally, we
note that the required magnetic field is much smaller than the earth magnetic field
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a) b)

Figure 2.8: Raman sideband cooling lattice release. a) Measured temperature
after an adiabatic release of the atoms from the Raman lattice with a linear
intensity ramp. b) After release we use a Stern Gerlach separation to find 85
% of the atoms in the |3, 3⟩ state. The two clouds below show atoms in the
|3, 2⟩ and |3, 1⟩ state.

of ∼ 0.5 G which makes a compensation necessary. A method for calibrating our
compensation cage via microwave transitions is presented in Sec. 2.5. Fig. 2.7b)
shows the temperature dependence on the total cooling time which denotes the
time during which the polarizer beam is turned on. After transfer of the Cs atoms
from the MOT we wait for 2 ms for decaying magnetic fields before we turn on
the polarizer (t = 0). For very short times we recover the temperature that we
reach after sub-Doppler cooling of T < 8µK. The minimal temperature is already
achieved for cooling times above 1 ms. Since we omit the additional intensity ramp
in this measurement for simplicity, the temperature is slightly higher than in Fig.
2.7a). After optical pumping of the Cs atoms low temperatures can be achieved by
adiabatically releasing them from the lattice [Kastberg et al., 1995; DePue et al.,
1999]. We do this by a linear intensity ramp and find that compared to a sudden
release the temperature can be decreased by another ∼ 0.3µK after a ramp time
above 0.3 ms (Fig. 2.8). For much longer ramp times the atoms get heated up again
due to photon scattering of the lattice light (see (2.3)). Once the atoms are released
from the lattice we can quantify the quality of the optical pumping by performing
a Stern-Gerlach separation, i.e. spatially separating the mF states by application
of a magnetic field gradient. In this way we find a typical population of 85% in the
mF = 3 state, 13% in the mF = 2 state and 2% in the mF = 1 state. In general
the performance of dRSC is mainly limited by the density of the sample. While at
low densities n ≤ 1 × 1010 cm−3 temperatures close to the recoil limit TR = 198 nK
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have been achieved in our experiment and in the literature [Kerman et al., 2000],
at higher densities reabsorption of photons leads to higher temperatures. At very
high densities, n = (852 nm/2)−3 ≈ 1 × 1013 cm−3 when lattice sites are occupied
with more than one atom [DePue et al., 1999; Vuletic et al., 1998], also light-assisted
collisions play a role.

2.4 Optical dipole traps

Optical dipole traps work based on dipole forces which create a conservative trapping
potential for neutral atoms [Chu et al., 1986]. The form of the potential can be
derived from an oscillator model. Following [Grimm et al., 2000] we consider an
atom placed into an oscillating electric light field E which induces an atomic dipole
moment p. This induced dipole moment can again interact with the electric field
giving rise to the interaction potential

Udip = −1
2 < pE >= − 1

2ϵ0c
ℜ(α)I. (2.1)

where we have used the linear relation between the dipole moment amplitude and
the field amplitude p0 = αE0. Here α denotes the complex polarizability and I is
the light intensity which follows a Gaussian function for a focused laser beam. The
imaginary part of the polarizability is linked to the absorbed power of the atom Pabs

and leads to the photon scattering rate

Γsc(r) = Pabs

ℏω
= 1

ℏϵ0c
ℑ(α)I(r). (2.2)

From the photon scattering rate one can calculate the corresponding heating rate
in a three-dimensional harmonic potential via

Ṫ = 1
3TrecΓsc (2.3)

where Trec = ℏ2k2/2m is the recoil energy. In Fig. 2.9 we show the real part of
the polarizability for Li and Cs and the corresponding heating rate. Our dipole
traps operate at a wavelength of 1064 nm which is far detuned from the atomic
resonance frequencies where photon scattering is negligible and at the so-called tune-
out wavelength for Cs of 880 nm. At this wavelength the polarizability of Cs is zero
which enables species-selective trapping of Li [LeBlanc and Thywissen, 2007]. Since
this wavelength lies between the D1 and D2 line of Cs it leads to a considerable
heating rate which we need to take into account in our Li-Cs mixing scheme.
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Figure 2.9: a) Real part of the polarizability for Li (red) and Cs (blue). b) Calcu-
lated heating rate for a typical microtrap intensity of 108 W/m2. The vertical
dashed lines mark the wavelengths of our dipole traps.

The dipole traps implemented in our setup are schematically shown in Fig. 2.10.

• Reservoir trap. The reservoir trap is a large volume trap designed to capture
a large number of Cs atoms from the Raman lattice at temperatures below
1µK and low densities on the order of 1011cm−3. A Mephisto MOPA laser
with 55 W output power is used to focus down a laser beam to a waist of
300µm. The beam is deflected behind the chamber and backreflected under a
90° angle which requires a rotation of the linear polarization in order to avoid
interference. A piezo mirror allows to translate the trapped atoms in the hori-
zontal plane by about < 1 mm. The full optical setup and its characterization
can be found in [Arias, 2014]. A system for intensity stabilization has recently
been implemented to suppress heating caused by laser noise.

• Dimple trap. The dimple trap has two purposes: as the name suggests,
it serves as a small volume trap for Cs in the context of the dimple trick
(Ch. 3.2.3). Secondly, it was designed to capture Li atoms from a MOT
for subsequent evaporative cooling. A 200 W fiber laser (IPG YLR-200-LP-
WC) with a wavelength of 1070 nm is focused down to 62µm. The beam
is reflected under an angle of 8° and forms a cigar-shaped trap. The high
power allows to create trap depths of up to 1.2 mK for Li. The complete
optical setup can be found in [Heck, 2012]. In the course of this thesis a setup
was implemented to dynamically change the trapping volume via frequency
modulation of an acousto-optic modulator (AOM) [Neiczer, 2018]. This allows
for effective loading of Li atoms after gray molasses cooling. The high power
of the laser makes it difficult to stabilize the intensity over the whole range.
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Figure 2.10: Schematic overview of the optical dipole traps.

A new intensity stabilization based on a digital PID controller (Red Pitaya)
is implemented to stabilize at low intensities and low gas temperatures where
intensity fluctuations become more critical.

• Microtrap. For spatially tight confinement of Li atoms within a Cs Bose-
Einstein condensate a single-beam trap has been implemented with a beam
waist of 10µm operated at the Cs tune-out wavelength of 880 nm. It is oriented
along the symmetry axis of the dimple trap. The laser source is a Ti:sapphire
laser (Coherent MBR-110) with a maximum output power of 3 W in the wave-
length tunable range of 700 nm to 1030 nm and is intensity stabilized. The
microtrap can be translated in z-direction via displacement of a dichroic mir-
ror in a large range of over 13 mm. The full setup of the microtrap is discussed
below.

Optical Setup of Microtrap

The microtrap setup is divided onto two tables (Fig. 2.11) which are connected
via an optical fiber. The fiber allows for a pure TEM00 Gaussian mode and is less
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susceptible to beam pointing fluctuations. Finally, the large Ti:sapphire laser sys-
tem and thermal effects related to dissipation of high intensities are kept far away
from the experimental chamber. On the laser table, the output of the laser passes
an AOM2 which is used for switching and intensity stabilization. The strong, first
order of the AOM is directed through a polarizing beam splitter (PBS) to ensure a
linear polarization before it reaches the fiber coupler and the polarizing maintaining
single-mode3 fiber to the experimental chamber table. The weaker, zeroth order is
used as an input for a wavelength meter4 which we employ as a reference to tune
our laser to the tune-out wavelength.
On the experimental chamber table (Fig. 2.11b)), a fiber coupler5 with a focal
length of 12 mm outputs a beam with a diameter of d = 2.1 mm. A Galilean tele-
scope magnifies the beam with a magnification of M = |400 mm/(−50 mm)| = 8
which is focused by a two-inch achromatic lens6 with a focal length of 250 mm. Al-
though a high numerical aperture (NA) aspheric lens with small focal length would
be the natural choice for a microtrap setup, spatial constraints mainly due to the
large MOT coils (see Sec. 2.2) prevent us from their usage. With an off-the-shelf
achromatic lens from the Thorlabs AC series we reach a beam waist of 10µm which
is small enough for the Li atoms to be trapped within our Cs BEC. We will discuss
this aspect further in Ch. 3. Behind the first mirror a photodiode picks up a small
fraction of light for intensity stabilization. In front of the chamber a dichroic mir-
ror7 mounted on a compact, high-resolution translation stage8 reflects the microtrap
light while transmitting the dimple trap light. In this way the horizontal move of the
translation stage converts into a vertical displacement of the beam over a maximum
travel range of 13 mm. Additional fine-tuning of the microtrap focus position can
be done via one piezo mirror and the fiber coupler which is mounted into a second
piezo mirror holder allowing for adjustment of both the angle and the position of
the beam. Moreover, the achromatic lens is placed on a manual translation stage to
shift the focal position along the axial direction of the beam.

2.5 Radio-frequency and microwave setup

Radio-frequency (RF) spectroscopy has a wide range of applications in ultracold
atom experiments. While early experiments employed RF spectroscopy to map

2Crystal Technology 3100-125
3Thorlabs P3-780PM-FC-10
4HighFinesse WS7
5Schäfter+Kirchhoff 60FC-4-M12-10
6Thorlabs AC508-250-B
7Thorlabs DMLP950L
8Physik Instrumente Q-545.140

18



2.5. Radio-frequency and microwave setup

Ti:sapphire laser

wavelength meter

HighFinesse WS7

x

y

x

z

dimple trap

a)

b)

to experimental

chamber table

from laser table

mirrror fiber coupler AOM periscope beam dump photodiode

lens PBS λ/2 plate
dichroic

mirrror

translation

stage

beam

sampler

achromatic

lens

250 mm

400 mm

- 50 mm 12 mm
50 mm

Piezo

Piezo

Figure 2.11: Optical setup of the microtrap. a) On the laser table the light is
switched and tuned in wavelength before it is coupled through a fiber to the
b) experimental chamber table. Here the light is focused by an achromatic
lens and the beam can be moved by a motorized translation stage and by
piezo mirror holders.
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Figure 2.12: Radio-frequency (RF) and microwave (MW) setup for spin manipu-
lation of Li and Cs atoms. The upgraded RF setup includes the possibility
to apply arbitrary waveforms and has a 100 W amplifier to drive high fre-
quency Rabi oscillations. An Arduino based interlock prevents the antenna
from overheating. In the new MW setup the signal output from the generator
is amplified before it is emitted by a horn antena.

out energy distributions of trapped atoms [Martin et al., 1988], later experiments
have measured molecular binding energies [Regal et al., 2003], mean-field interaction
energies [Regal and Jin, 2003], or the fermionic pairing gap [Chin et al., 2004a].
Finally, the ground state hyperfine transition in Cs provides the standard of time in
atomic clock experiments. In the course of this thesis our radio-frequency (RF) setup
for Li has been upgraded and a new setup for driving microwave (MW) transitions
for Cs has been implemented. The main motivation for our setups is to probe
the properties of polarons via RF spectroscopy and for magnetic field calibration.
In the case of the Bose polaron, Li impurities in a Cs bath are driven from the
non-interacting Li|1⟩ + Cs|3, 3⟩ to the interacting state Li|2⟩ + Cs|3, 3⟩ (injection
spectroscopy) or vice versa (ejection spectroscopy). The spectral shift ∆ = ω0 −ωRF

between the bare Li transition frequency ω0 and the altered frequency in the presence
of the bath ωRF provides information about the energy of the polaron.

In Fig. 2.12 our setup is presented. For Li (Cs) an RF (MW) generator pro-
duces a typical output frequency of 76 MHz (9.2 GHz) which is amplified before it
is emitted by a double looped antenna (horn). The pulse duration is controlled by
an FPGA control system (’Logic Box’) and a Rb clock serves as a 10 MHz reference
oscillator to the frequency generator. In the RF setup the Logic Box also provide the
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Figure 2.13: Radio-frequency spectroscopy on Li atoms. a) Li atom number in
the |2⟩ state after application of a 3π pulse of 0.64 ms duration driving the
Li|1⟩→Li|2⟩ transition. Data points are averages with standard errors. The
solid line is a fit to the data. b) Rabi oscillations with a determined frequency
of 13.5(1) kHz from the fit (blue line).

possibility to generate arbitrary waveforms such as Gaussian or Blackman functions
in order to suppress sidelobes. For a rectangular pulse these sidelobes are inevitably
present since the Fourier-transformed signal follows a sinc function. However, the
rectangular pulse has the advantage of a smaller width in the frequency domain com-
pared to the other two pulses. A high power P = 100 W amplifier is implemented
to drive high Rabi frequencies Ω ∝

√
P up to 13.5 kHz, similar to frequencies in

existing polaron experiments [Kohstall et al., 2012]. An interlock system based on
an Arduino microcontroller (for details see [Filzinger, 2018]) protects the antenna
from overheating if pulse durations are set too long. The antenna is placed within
the vacuum chamber and is connected to an impedance matching circuit to maxi-
mize the output power. In Fig. 2.13a) we show a typical Li|1⟩→Li|2⟩ spin flip with
a pulse duration of 0.64 ms corresponding to a 3π pulse. A Rabi oscillation with
maximum Rabi frequency is displayed in Fig. 2.13b).

The Cs MW setup is implemented to drive the transition F = 3 → F = 4 be-
tween the hyperfine ground states. Analogously to the Li setup it could be used in
a Fermi polaron experiment to flip Cs impurities in a Li Fermi sea. Another im-
portant application of MW spectroscopy is the determination of absolute magnetic
fields, e.g. for high resolution Feshbach spectroscopy experiments or for compensa-
tion of the earth magnetic field. In the previous section (Sec. 2.3.1) we have seen
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Figure 2.14: Cs microwave spectroscopy. Cs atom number after microwave trans-
fer in the ground state hyperfine transition F = 3 → F = 4. The blue solid
line shows a multi-Lorentzian fit to the data. The outermost right peaks cor-
respond to the transitions |3, 3⟩→ |4, 4⟩, |3, 3⟩ → |4, 3⟩, etc. From the peak
positions we calculate an offset magnetic field of B = 51(1) mG via the Breit-
Rabi formula (2.4).

how important a proper compensation of stray magnetic fields is for application of
degenerate Raman sideband cooling. Similarly, gray molasses cooling for Li already
suffers from small magnetic fields below 1 G [Gerken, 2016]. Fig. 2.14 shows an
example of a bad compensation of stray magnetic fields. The data show the trans-
ferred atom numbers in the F = 4 manifold and the peaks indicate transitions of
|F = 3,mF ⟩ → |F = 4,mF ± {0, 1}⟩ due to the Zeeman splitting (see Fig. 2.3).
The data is fitted by Lorentzian functions and from the peak positions we infer the
absolute magnetic field via the Breit-Rabi formula which can be used across small
(Zeeman regime) and high magnetic fields (Paschen Back regime) for the hyperfine
ground state manifold [Breit and Rabi, 1931; Steck, 2008]

E(B) = −Ahfs

4 + gIµBmB ± Ahfs(I + 1/2)
2

(
1 + 4mx

2I + 1 + x2
)1/2

. (2.4)

HereAhfs denotes the hyperfine structure constants and x = (I+1/2)(gJ−gI)µBB/Ahfs

where I and J refer to the nuclear spin and total electron angular momentum, re-
spectively. For the presented data in Fig. 2.14 the magnetic field is determined to be
B = 51(1) mG. We compensate this by applying different magnetic fields with our
compensation cage in all three spatial directions to find a minimum in the Zeeman
splitting, such that the different transitions merge to one peak in the observed atom
number.
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2.6 Diagnostics

A common technique to extract information on our trapped atoms such as density
distributions or temperatures is absorption imaging (see e.g. [Ketterle et al., 1999]).
In this destructive technique, atoms are illuminated with resonant laser light and
the shadow of the atomic cloud is recorded by a CCD camera. The transmission
of the light T (x, y) with incoming (outgoing) intensity Iin (Iout) through the atomic
cloud with a density distribution of n(x, y, z) follows the Beer-Lambert law

T (x, y) = Iout(x, y)
Iin(x, y) = e−σ

∫
n(x,y,z)dz (2.5)

where σ denotes the absorption cross section. The column density n(x, y) =
∫
n(x, y, z)dz

along the beam direction (which is the line of sight) can then be extracted via

n(x, y) = − 1
σ

log[T (x, y)] =: 1
σ

OD(x, y) (2.6)

with the optical density OD := − log[T (x, y)]. The atom number and the sizes of the
cloud in x- and y-direction can be extracted by fitting a two-dimensional Gaussian
function to the column density. Alternatively, since the column density is discretized
via the pixels of the CCD chip of size sx and sy, we extract the number of atoms
simply by summing up over the pixels

N =
∫
n(x, y)dxdy = sxsy

σ

∑
pix

OD(x, y). (2.7)

The temperature of the atomic cloud is be determined in a so-called time-of-flight
(TOF) expansion. After switching off the trapping potential we study the ballistic
expansion and the cloud size σx,y,z after TOF t which follows

σx,y,z(t) =
√
σ2

x,y,z(t = 0) + kBT

m
t2 (2.8)

where we assume that the velocity distribution of the thermal cloud follows a
Maxwell-Boltzmann distribution. The temperature T and the inital size σx,y,z(t = 0)
are thus determined as fit parameters in the above equation. Alternatively, the ini-
tial size can be obtained via σx,y,z(t = 0) =

√
2kBT/m/ωx,y,z where ωx,y,z is the trap

frequency of a harmonic trap.

In our setup, we use a Ximea MD028MU-SY CCD camera to image in horizontal
direction and a AVT Guppy F-038 NIR or an Andor iKon camera in vertical direc-
tion. The latter features a fast kinetics mode which allows us to image both Li and
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Cs in one experimental run. This is achieved by imaging on a subset of pixels on
the CCD chip followed by a quick shift of the charges to an unused subset of pixels.
A second picture can then be taken on the first subset before reading out the chip.
A high resolution of our imaging setup well below < 2µm [Filzinger, 2018] allows us
to resolve small Bose-Einstein condensates of Cs atoms or small Li impurity density
distributions. The full imaging setup can be found in [Renner, 2014; Häfner et al.,
2017] with detailed information on noise analysis [Filzinger, 2018] and estimates on
resolvable atom numbers [Klaus, 2019; Rautenberg, 2021].

Absorption imaging can be performed at low magnetic fields or high magnetic
fields of up to ∼ 1000 G. Since the imaging frequencies are shifted due to the Zeeman
effect at high magnetic fields, independent Li and Cs diode lasers which are stabilized
by an offset lock [Schünemann et al., 1999] to the low field laser are employed (for
the setups see [Heck, 2012] for Li and [Schönhals, 2013]). Li at zero magnetic
field is imaged on the F = 1/2 ground state manifold to the F ′ = 1/2, 3/2, 5/2
excited state manifold which is not resolved. Since the atoms can decay back to the
F = 3/2 hyperfine state, an additional repumper is used. After the imaging pulse
is turned off, the repumper beam is kept on for another few hundred µs in order to
optically pump the atoms into the F = 1/2 manifold which is the desired state for
our Feshbach resonances. At high magnetic fields the two hyperfine sublevels are
not degenerate anymore and we can image the different states selectively by directly
varying the frequency of the high field imaging laser. If we want to prepare Li atoms
in one single spin state we can use the high field light to remove the other state by
application of a resonant light pulse.

Cs at low magnetic fields is imaged on the F = 4 → F ′ = 5 transition. Since
the atoms are prepared in the F = 3 state we need to pump them into the F = 4
state by what we also refer to as ’repumper’ beam. At high magnetic fields two
additional lasers provide the imaging and repumper beams for the same transition.
The repumper transition can also be driven by the recently implemented microwave
setup (Sec. 2.5) which does not suffer from typical problems of optical setups such
as power or beam pointing instabilities.
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Chapter 3

Towards the creation of Bose
polarons in a 6Li − 133Cs mixture

In this chapter we present an experimental scheme designed for the realization of
Bose polarons, i.e. a system of 6Li impurities immersed in a 133Cs Bose-Einstein con-
densate (BEC). The chapter is structured as follows: a basic theoretical background
of two-body scattering at ultracold temperatures is given in Sec. 3.1. We then con-
tinue by presenting the realization of the 133Cs BEC in Sec. 3.2, the trapping of 6Li
impurities in Sec. 3.3, and the mixing scheme of 6Li and 133Cs in Sec. 3.4. Each of
these sections begins with a summary of the relevant scattering properties of 133Cs,
6Li and 6Li − 133Cs followed by the presentation of the experimental realization and
the characterization of the gas.

3.1 Low-energy two-body scattering
One of the major successes of ultracold gas experiments lies in the exquisite control
of interactions. At ultralow temperatures scattering properties and two-body inter-
actions are solely governed by the so-called s-wave scattering length a independent
of the underlying two-body interaction potentials. The tunability of the scattering
length via Feshbach resonances allows for precise control of the strength and sign of
the interactions via magnetic fields [Chin et al., 2010]. In the following we introduce
the basic concepts of two-body scattering physics which are used throughout the
whole thesis including the derivation of the scattering length and the concept of
Feshbach resonances.

Two-body scattering

Two-body scattering physics is the subject of many textbooks (e.g. [Merzbacher,
1998; Sakurai, 1993]). In deriving some of the main concepts we closely follow [Dal-
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ibard, 1999]. The scattering process of two particles in the center-of-mass reference
interacting via the potential V (r) can be described by the Schrödinger equation(

−ℏ2∇2

2µ + V (r)
)
ψk(r) = Ekψk(r) (3.1)

with the effective mass µ, a positive collisional energy Ek = ℏ2k2/2µ and the relative
coordinate r between the particles. If the interparticle distance |r| is much larger
than the range of interaction r0 of V (r), i.e. |r| ≫ r0, the solution of the Schrödinger
equation reads

ψk(r) ∼ eikr + f(k, θ)e
ikr

r
. (3.2)

The solution is a superposition of an incoming plane wave with wavevector k and a
scattered spherical wave with scattering amplitude f(k, θ). The scattering amplitude
contains the physics of the collisional process and depends on the angle θ between
incident and observation direction. It is related to the scattering cross section σk

via an integration over the solid angle Ω

σk =
∫

Ω
|f(k, θ)|2 dΩ. (3.3)

For a spherically symmetric potential V (r) = V (r) the situation can be further
simplified to a one-dimensional Schrödinger equation by expanding the wavefunction
in spherical harmonics. In this case the scattering amplitude reads

f(k, θ) = 1
2ik

∞∑
ℓ=0

(2ℓ+ 1)(e2iδℓ(k) − 1)Pℓ(cos θ) (3.4)

where Pℓ(x) and δℓ(k) are the Legendre polynomials and the scattering phase shift
between incoming and outgoing wave of partial wave ℓ = 0, 1, 2...(s, p, d, ...), respec-
tively. The scattering cross section is then given as a sum of the partial wave cross
sections,

σ(k) =
∑

ℓ

σℓ(k) with σℓ(k) = 4π
k2 (2ℓ+ 1) sin2 δℓ(k). (3.5)

At ultralow temperatures only s-wave scattering (ℓ = 0) needs to considered since
collision energies are well below the centrifugal barrier. In this regime the scattering
phase shift can be expressed by the equation [Sakurai, 1993]

k cot δℓ=0(k) = −1
a

+ 1
2r0k

2 + ... (3.6)
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3.1. Low-energy two-body scattering

which is known as the effective range expansion. To first order, the scattering length
is therefore given in the limit of low energies (k → 0) by

a = − lim
k→0

tan δℓ=0(k)
k

. (3.7)

Equivalently, using the effective range expansion, the s-wave cross section can be
written as

σ(k) = 4πa2

1 + k2a2 (3.8)

which in the low-energy limit is simply given by σk = 4πa2. In the unitarity limit
(k2a2 ≫ 1), when the scattering length exceeds the deBroglie wavelength λ ∼
k−1, the cross-section becomes independent of the scattering length σ(k) = 4π/k2.
We note that this cross-section is valid for distinguishable particles. For bosons
(identical fermions), it can be shown that, due to the symmetry (antisymmetry) of
the wavefunction, the cross-section is enhanced (reduced) to σ(k) = 8πa2/(1+k2a2)
(σ(k) = 0).

Feshbach resonances

The scattering length can be varied via magnetically tunable Feshbach resonances.
The topic of magnetically tunable Feshbach resonances is treated in detail in [Mo-
erdijk et al., 1995; Timmermans et al., 1999; Köhler et al., 2006; Chin et al., 2010].
Here, we give a basic introduction of the physical picture of Feshbach resonances,
closely following [Chin et al., 2010]. Fig. 3.1a) depicts the origin of a Feshbach
resonance considering two molecular potentials. The potential denoted by the open
channel is associated with two free atoms in the limit of large internuclear distances
R and is open to scattering events with small collision energies Ecol close to thresh-
old. The closed channel supports bound states close to the open channel threshold.
If a molecular bound state in the closed channel and the open channel threshold
have different magnetic moments δµ, the application of a magnetic field B can lead
to a resonant energy of the two states which gives rise to a Feshbach resonance. A
weak coupling between the channels, e.g. via hyperfine interactions, can lead to an
avoided crossing of the states with two branches and a divergence of the scattering
length a. In the vicinity of a Feshbach resonance a can be parametrized and written
as a function of the magnetic field (Fig. 3.1b))

a(B) = abg

(
1 − ∆

B −B0

)
(3.9)
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Figure 3.1: Feshbach resonance working principle. a) A Feshbach resonance oc-
curs as the result of the open channel threshold coupling to a weakly bound
molecular state with energy Ec in the closed channel. b) Top: The scattering
length diverges around the Feshbach resonance position B0. Bottom: Close to
resonance the molecular binding energy has a quadratic form. Redrawn from
[Chin et al., 2010].

where ∆ is the resonance width. At the resonance position B0 the scattering length
diverges and displays an attractive (a < 0) and repulsive branch (a > 0) next to
it. The parameter abg describes the background (off-resonant) scattering length
associated with atoms scattering in the open channel. For B − B0 < 0, if the
scattering length is very large, i.e. a ≫ r0, the energy of the weakly bound molecule
takes the form

Eb = − ℏ2

2µa2 . (3.10)

For smaller a, the binding energy is linear with a slope proportional to the difference
in magnetic moment δµ. The regime where the binding energy has a quadratic
dependence on the scattering length is said to be universal since a is the only relevant
length scale independent of microscopic details of the potential. The molecules in
the universal regime are very weakly bound and represent a special case of halo
systems [Köhler et al., 2006]. One of the intriguing properties of halo states is that
its wavefunction extends to sizes on the order of the scattering length, far beyond
the classical turning point of the potential. Later we will see how the universal
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3.2. A Bose-Einstein condensate of 133Cs

properties of halo dimers become important in the preparation of molecular Bose-
Einstein condensates of 6Li2 (Ch. 3.3) or the understanding of Efimov spectra (Ch.
4).

3.2 A Bose-Einstein condensate of 133Cs

3.2.1 Concepts of Bose-Einstein condensation
We start this section with an introduction on some of the most important concepts
of Bose-Einstein condensation with focus on the experimental aspects in harmonic
traps which are used throughout this chapter. Beyond the here presented concepts,
the theoretical background of Bose-Einstein condensates in dilute atomic gases is
subject in textbooks of [Pethick and Smith, 2002] and [Pitaevskii et al., 2003]. A
larger experimental perspective is given in lecture notes of [Ketterle et al., 1999].

The nature of Bose-Einstein condensation is based on the quantum statistics of
bosons and their wave properties. When the atoms in a gas are cooled down, the
thermal deBroglie wavelength, which is the length scale associated with their wave
packet extent, increases via

λdB = h√
2πmkBT

. (3.11)

When λdB is on the order of the interparticle spacing n−1/3 the wave packets start
to overlap and a phase transition to a Bose-Einstein condensate can occur. In this
case the phase-space density (PSD)

Γ = nλ3
dB (3.12)

reaches unity (1.202 for a harmonic trap) and is used to characterize the transition.
To calculate the critical temperature where the transition occurs we start by con-
sidering non-interacting bosons. The mean occupation number of particles in the
single-particle state i is given by

ni = 1
e(ϵi−µ)/kBT − 1

highT−−−→ e(µ−ϵi)/kBT (3.13)

where the chemical potential µ is fixed by the conservation of the total atom number
N = ∑

i ni. At high temperatures, the mean occupation number follows a Boltzmann
distribution and is much smaller than unity which implies that the chemical potential
µ must be smaller than the ground state energy ϵ0. For decreasing temperatures the
chemical potential rises with the mean occupation number, but can never exceed ϵ0
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since this would lead to an unphysical occupation number. As this condition limits
the maximum value of the occupation number, conservation of atom number dictates
that the atoms which are not in the excited states must occupy one ground state
giving rise to Bose-Einstein condensation. In a three-dimensional harmonic trap of
the form U(r) = ∑3

i=1 1/2mω2
xi
x2

i the number of atoms in the excited, thermal states
can be summed up via

NT =
∑

nxnynz ̸=0
= 1

e(ϵi−µ)/kBT − 1 (3.14)

where nx, ny, nz are the quantum numbers associated with the harmonic oscillator
eigenenergies. With the conditions µ = ϵ0 and NT = N the critical temperature can
be calculated as [Pitaevskii et al., 2003]

kBTc = ℏω̄
(
N

ζ(3)

)1/3

≈ 0.94 ℏω̄N1/3 (3.15)

where ζ(x) is the Riemann function and ω̄ = (ωxωyωz)1/3 denotes the mean trap
frequency. With the conservation of atom number N = N0 + NT we also find the
condensed fraction given by

fc = N0

N
= 1 −

(
T

Tc

)3
. (3.16)

Bose-Einstein condensates can be characterized by analysis of their density distri-
butions. For introducing density distributions, we consider BECs in harmonic traps
at zero temperature. We start with the Gross-Pitaevskii equation (GPE) for the
order parameter ψ(r) describing the many-body ground state. The stationary GPE
reads (

−ℏ2∇2

2m + U(r) + g |ψ(r)|2
)
ψ(r) = µψ(r) (3.17)

where the coupling constant g = 4πℏ2a/m accounts for weak two-body interactions
and the density can be related to nc(r) = |ψ(r)|2. In the Thomas-Fermi limit,
when gn ≫ ℏωx,y,z, we neglect the kinetic energy term in the GPE and the density
becomes

nc(r) = max
(
µ− U(r)

g
, 0
)
. (3.18)

mimicking the shape of the trapping potential. For a harmonic trap this leads to the
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3.2. A Bose-Einstein condensate of 133Cs

well-known inverted parabola density profile. In an experiment it is often necessary
to characterize only partly condensed clouds superimposed with a thermal part,
giving rise to a bimodal distribution. The bimodal density distribution can in this
case be expressed by [Ketterle et al., 1999]

ntot(r) = nth g3/2

( 3∏
i=1

e−xi/x2
i,th,0

)
+ nc max

(
1 −

3∑
i=1

x2
i

x2
i,c,0

, 0
)

(3.19)

where gp(x) is the polylogarithmic function and the initial sizes of the thermal and
condensed cloud are given by xi,th,0 =

√
ℏ/mωi and xi,c,0 =

√
2µ/mω2

i , respectively.
The first term follows a Gaussian distribution for thermal gases and the second
term follows the functional form of (3.18). From fitting the amplitudes nth and nc

we can extract the condensed fraction. A slightly modified version of (3.19) to fit
our absorption images accounts for two-dimensional column densities (see Ch. 2.6).

3.2.2 Scattering properties of 133Cs
Before the realization of the first BECs in the 90s with Rb [Anderson et al., 1995],
Na [Davis et al., 1995] and 7Li [Bradley et al., 1995, 1997], employing evaporative
cooling in magnetic traps, Cs was considered a promising candidate to make it
first [Tiesinga et al., 1992]. The heavy Cs atom with its large hyperfine splitting
possessed ideal requirements for laser cooling, and measurements of its scattering
properties revealed feasible elastic cross sections [Monroe et al., 1993]. However,
first attempts in realizing Cs BECs in magnetic traps in the |F = 4, mF = 4⟩ state
[Söding et al., 1998; Arlt et al., 1998] suffered from unexpectedly high two-body
inelastic collisions due to spin-dipole relaxation ruling out condensation for this
particular spin state. In the publication [Guery-Odelin et al., 1998] with the title
"Is Bose-Einstein condensation of atomic cesium possible?" the authors eventually
shifted their experimental focus to the lower hyperfine level, i.e. the |3,−3⟩ state in
which dipolar relaxation rates were, however, still too high (also investigated by the
Oxford group [Hopkins et al., 2000]).

The solution around the inelastic two-body collisions lied in the employment
of the lowest hyperfine sub-level state |3, 3⟩ which is, however, not magnetically
trappable and requires an optical approach. In the |3, 3⟩ state, the Cs atoms can
not decay into lower-lying states anymore in a two-body collision and the limitation
in the lifetime is given by three-body recombination processes. In a three-body loss
process two atoms form a dimer and 2/3 of the released binding energy is distributed
on the atom and 1/3 on the molecule. Since the binding energy usually exceeds the
trap depth, this will lead to a loss process. After performing Feshbach spectroscopy
[Chin et al., 2000] and mapping out three-body losses [Weber et al., 2003a], the
Innsbruck group realized the first BEC of Cs in 2003 [Weber et al., 2003b] at a
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Figure 3.2: Cs-Cs scattering length as a function of the applied magnetic field
including s-, d-, and g-wave resonances. The three broad s-wave resonances are
centered around −12 G, 549 G, and 787 G. Data taken from [Berninger et al.,
2013].

magnetic field around 21 G. Later Cs BECs at this magnetic field have also been
realized in our group [Pires, 2014]. The creation of stable Cs BECs requires small
repulsive interactions for which the three broad s-wave Feshbach resonances centered
around −12 G, 549 G and 787 G (see Fig. 3.2) are generally suitable [Berninger et al.,
2013]. In the following we want to discuss the role of losses, in particular of three-
body losses, and our strategy to create BECs at high magnetic fields around 900 G
where we can simultaneously tune the Cs-Cs and the Li-Cs interactions. The atomic
density of trapped Cs atoms in the |3, 3⟩ state follows the differential equation

dn

dt
= −τ−1n(t) − L3n

3(t) (3.20)

where τ and L3 are the one-body 1/e lifetime and the three-body recombination
rate, respectively. One-body losses can for example happen by collisions of atoms
with the background gas and are governed by e.g. the quality of the vacuum or by
the photon scattering rate. Also technical noise from the laser or the magnetic fields
can contribute to a shorter lifetime [Savard et al., 1997; He et al., 2011]. In our
system (Fig. 3.3) we map out the one-body lifetime by holding a thermalized Cs gas
in the reservoir trap at a zero-crossing of the scattering length around B = 880 G.
Thermalization has been achieved by holding the gas at B = 900 G for 500 ms before
jumping to the target magnetic field of B = 880 G. At this magnetic field the three-
body recombination rate L3 is negligible and densities in (3.20) can be integrated to
obtain atom numbers. By fitting an exponential function to the data we extract a
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Figure 3.3: Atom number of a thermalized Cs gas held at B = 880 G at the zero-
crossing of the scattering length. From an exponential fit (red line) to the data
a 1/e lifetime of τ = 20.4(8) s is extracted.

one-body lifetime of τ = 20.4(8) s. On the other hand, the three-body recombination
rate was studied theoretically [Esry et al., 1999; Bedaque et al., 2000; Braaten and
Hammer, 2001, 2006] and experimentally [Weber et al., 2003a; Kraemer et al., 2006]
and can be written as

L3 = 3C(a) ℏ
m
a4 (3.21)

for large positive or negative scattering lengths (|a| ≫ r0). Besides the simple a4

dependence the log-periodic function C(a) leads to loss minima (maxima) for a > 0
(a < 0) caused by quantum interference and shape resonance effects based on Efimov
physics [Esry et al., 1999; Esry and Greene, 2006]. In effective field theory it can be
written as [Braaten and Hammer, 2006]

C(a) =

4590 sinh(2η−)
sin2[s0 log(a/a−)]+sinh2 η−

, a < 0
67.1 e−2η+ sin2[s0 log(a/a+) + sinh2 η+] + 16.8(1 − e−4η+), a > 0

(3.22)

where s0 ≈ 1.00624 is connected to the Efimov scaling factor λ = eπ/s0 = 22.7.
The parameters a+/a− and η+/η− are related to the Efimov resonance positions
and lifetimes, respectively. They have been extracted for the different Cs s-wave
Feshbach resonances in [Kraemer et al., 2006; Berninger et al., 2011] by fits to the
experimental data. A three-body loss minimum at B = 21 G, corresponding to a
scattering length of a+ = 210 a0 (see Fig. 3.4), opened up the possibility of effective
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Figure 3.4: Calculated Cs three-body recombination rate (blue line) from effective
field theory according to (3.21) with parameters η− = η+ = 0.10 and a− =
a+ = 210 a0 taken from [Berninger et al., 2011]. The lower and upper bounds
(grey lines) show the a4 scaling and are obtained by setting the sin2 terms to
1. Dashed lines mark the temperature dependent unitarity limit.

evaporative cooling and was key in achieving the first Cs BEC. Analogously, a
three-body loss minimum was also found at a high magnetic field of B = 893 G or
a+ = 270 a0.
When working at finite temperatures, the three-body loss rate saturates in the
unitarity limit when the scattering length is on the order of the thermal deBroglie
wavelength a ∼ λdB. In this limit the three-body loss rate follows a T−2 scaling
which can be expressed via [Rem et al., 2013]

L3 ≈ ℏ5

m
36

√
3π2 1 − e−4η∗

(kBT 2) (3.23)

where η∗ is the so-called Efimov inelasticity parameter. The value of this parameter
differs for different Cs Feshbach resonances [Eismann et al., 2016] and in Fig. 3.4
we set η∗ = ∞ to omit the details of Efimov physics and calculate an upper bound.
We see that for our experimentally relevant temperature regimes the unitarity limit
will not play any role below scattering lengths of about a ∼ 1500 a0.

For effective evaporative cooling we need to go a scattering length where the
elastic collision rate (’good collisions’) is high while keeping inelastic collisions (’bad
collisions’) low. The ratio of good to bad collisions is defined as

R = Γel

Γ3B + Γ1B
(3.24)

where Γ3B = n2L3 and Γ1B = 1/τ are the three-body and the one-body loss rates,
respectively. The elastic collision rate is given by Γel = nσv̄ with the elastic cross
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Figure 3.5: Ratio of good to bad collisions. The ratio shows maxima well below
scattering lenghts of 1000 a0 for typical reservoir trap (blue, n = 5×1011 cm−3,
T = 1 µK) and dimple trap parameters (orange, n = 3 × 1012 cm−3 and T =
400 nK).

section σ for bosons (3.8) and the mean relative velocity v̄ = 4
√
kBT/πm. For

typical densities and temperatures in the reservoir and in the dimple trap the ratio
of good to bad collisions is plotted in Fig. 3.5. While in both traps scattering lengths
well below 1000 a0 lead to a maximum in R, the higher densities in the dimple trap
require smaller scattering lengths around ∼ 350 a0.

3.2.3 Experimental Realization

With the understanding of the scattering properties of 133Cs we now turn to the
experimental realization of the BEC at high magnetic fields. We give a detailed
description of its preparation starting from the loading process of Cs atoms into the
reservoir trap after laser cooling. Afterwards, we characterize the performance of
the dimple trick, a technique to enhance the local phase-space density, in our system
and describe the evaporative cooling process to reach condensation.

Loading of Cs atoms into Reservoir Trap

In order to avoid high densities leading to three-body losses we start by loading
Cs atoms into a large volume, magnetically levitated reservoir trap after they have
been laser-cooled via dRSC (see Sec. 2.3.1). Magnetic levitation means that we
apply a magnetic field gradient with the curvature coils to counteract gravity which
has a large influence on the trapping potential of the heavy Cs atoms. Additionally,
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Figure 3.6: Trapping potential of Cs atoms with magnetically levitated reservoir
trap. a) In vertical direction the magnetic levitation compensates for gravity
entirely, while in horizontal direction b) anti-trapping occurs requiring an offset
magnetic field B0.

magnetic levitation serves as a filter to obtain a pure sample of Cs atoms in the
|3, 3⟩ ground state since the magnetic potential of the unwanted fraction of atoms
in the |3, 2⟩ and |3, 1⟩ is too weak to be held. This filtering process is important
to exclude inelastic two-body losses. Finally, magnetic levitation allows to create
larger trapping volumes compared to an all-optical approach.

We shall have a look how the magnetic levitation determines the trapping po-
tential. The total potential reads

Utot(r) = Udip(r) + Ugrav(r) + Umag(r) (3.25)

where Udip(r) is the potential created by the dipole force (2.1) and Ugrav(r) = mCsgz

is the gravitational potential with the Cs mass mCs and the gravitational constant
g. The magnetic potential can be expressed as

Umag(r) = −µ · B(r) = −mFgFµBB (3.26)

where µ = mFgFµB is the absolute value of the magnetic moment with the Bohr
magneton µB and gF = −1/4 for the |3, 3⟩ state. The last step in the equation holds
under the assumption that the atoms follow the magnetic field axis adiabatically,
i.e. if the Larmor frequency of the atoms is large compared to the rotation axis
of the magnetic field which is fulfilled in our system. The total magnetic field is
composed of an offset field in z-direction B0(1 + αz2) with a small curvature α (see
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Sec. 2.2) and a gradient field ∂B/∂z =: ∂zB. Using Maxwell’s equations ∇ · B = 0
and ∇ × B = 0 one finds

B(r) = −
(
∂zB

2 + αB0z

)
xex −

(
∂zB

2 + αB0z

)
yey

+
[
B0 + ∂zB + αB0

(
z2 − x2 + y2

2

)
ez

]
.

(3.27)

We see that the atoms experience a magnetic field gradient with opposite sign in
x- and y-direction which leads to so-called anti-trapping (Fig. 3.6) while gravity
is compensated in z-direction. In the harmonic approximation we Taylor expand
(3.26) to obtain the radial and axial magnetic trap frequencies

ωρ =
√

µ

4mB0
(∂zB2 − 4αB2

0) and ωz =
√

2µαB0

m
, (3.28)

respectively. With a curvature of α = 0.0274 G/cm [Gerken, 2022] and a levitation
gradient for Cs of ∂zB = 31 G/cm we find that an offset magnetic field of B0 = 94 G
is necessary to turn the anti-trapping into a trapping potential.

For an efficient transfer of the Cs atoms into the reservoir trap after degenerate
Raman sideband cooling we need to switch on the magnetic fields fast (offset and
gradient fields) in order to avoid a long free fall under gravity of the atoms and to
compensate for anti-trapping. We determine turn-on times of the magnetic fields
by implementing current transducers1 to dynamically measure the currents flowing
through the coils. The currents are provided by commercial power supplies2 and
can be switched by MOSFETS. In an ideal RL circuit with effective resistance R
and inductance L the current follows a simple exponential rise

I(t) = V0

R
(1 − e−t/τ ) (3.29)

where V0 and τ = L/R are the applied voltage and the 1/e time constant, respec-
tively. For our curvature coils the time constant is determined to be τ = 0.8 ms
[Freund, 2019] and cannot be tuned easily without a redesign of the coils. Instead,
we initially apply the maximum voltage provided by the power supply to profit from
a large amplitude of the exponential rise followed by a limitation of the voltage in
order to reach the desired set value of the magnetic fields. In Fig. 3.7a) we demon-
strate the turn-on process for a magnetic field of B0 ≈ 200 G and a corresponding
levitation gradient of ∂zB = 30 G/cm. By limiting the voltage after around 1 ms

1Danfysik Ultrastab 666
2Delta SM15-400 and TDK Lambda Gen8-400
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Figure 3.7: Magnetic field switching times. a) Turn-on time of offset magnetic
field (Feshbach coils) and magnetic field gradient (Curvature coils). The ap-
plied voltage is first maximized and then limited (dashed line) in order to
achieve fast turn-on times (see text). b) Turn-off times of the offset magnetic
field measured by a current transducer (red), a magnetic sensor (blue) and by
performing optical spectroscopy (black points). Turn-off times are limited by
Eddy currents.

(dashed line) we achieve rise times of t10%−90% ≈ 0.7 ms. The small overshoot of the
current depends on the time of voltage limitation and results in a short overlevita-
tion which might even be beneficial to compensate for the free fall of the atoms. On
the other hand, turn-off times of our magnetic fields are considerably longer due to
Eddy currents induced in e.g. the steel chamber (Fig. 3.7b)). The long decay of
the magnetic field prevents us from applying additional, fast cycles of degenerate
Raman sideband cooling (see Ch. 2.3.1) which helps in recapturing and recooling
highly energetic atoms in the reservoir trap.

With the presented scheme we load up to N = 8 × 106 atoms at a temperature
of T = 1.8µK considering 2 s of loading time into the MOT yielding a transfer
effieciency of about 20 %. We note that longer MOT loading times barely increase
the atom number in the reservoir trap due to limited densities in the MOT. Higher
transfer efficiencies can therefore only be achieved by larger trap volumes, e.g. by
increasing the beam waist of the reservoir trap.

Dimple trick

After having loaded Cs atoms into the reservoir trap, we need to find a way to
increase the phase-space density to unity in order to reach condensation. In standard
evaporative cooling techniques [Ketterle and Druten, 1996] the phase-space density is
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3.2. A Bose-Einstein condensate of 133Cs

U
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V1
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V2

Figure 3.8: Illustration of the dimple trick. In analogy with a two-box model of
volumes V1 and V2 in an isolated environment (left) in the canonical ensemble,
the dimple trick can be modeled in a system with two dipole traps consisting
of a large reservoir trap and a small dimple trap with trap depth U .

increased by sacrificing hot atoms which leave the trap. This principle can, however,
result in inefficient evaporation for atomic species with a low ratio of good-to-bad
collisions such as Cs (see Sec. 3.2.2). In [Pinkse et al., 1997] it was shown that
for a collisional gas an adiabatic change of the trap shape can lead to a gain in
phase-space density without any loss of atoms and is therefore even reversible. Yet,
this technique is limited to phase-space density gains of about 20 and has led to the
development of the dimple trick [Stamper-Kurn et al., 1998] where factors of up to
50 in a local subspace of atoms have been reached. As pointed out by the authors,
the dimple trick can be seen as an equivalent to a simple box model in a canonical
ensemble (Fig. 3.8). An isolated box with volume V0 = V1 + V2 and phase-space
density Γ0 where the small volume V2 (dimple) is adiabatically lowered to a well
depth U . Through thermal contact with the reservoir V1 the atoms equilibrate to
the temperature Tf and the density in V2 increases by the Boltzmann factor eU/kBTf .
The local phase-space density gain in V2 can be calculated as

log Γ2/Γ0 = U/kBTf

1 + (V2/V1)eU/kBTf
(3.30)

and is thus largely determined by the relative ratio of the two volumes V2/V1. Al-
though in theory one can reach arbitrarily large gains in phase-space densities by
increasing the volume ratio, in practice one is limited by several factors. Small
dimple volumes result in large three-body losses while large reservoir volumes (and
ratios) are limited by thermalization times between reservoir and dimple as well as
by available laser powers.

We will now experimentally characterize how well the dimple trick works in our
system and compare it to a refined model taking into account harmonic potentials.
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Figure 3.9: Role of adiabaticity in the dimple trick. a) Atom number and b)
size of the atomic cloud (as a measure of the temperature after trap release at
tTOF = 23 ms) after the power of the dimple trap is ramped up and down again,
compared to a background measurement without the dimple trap. For ramp
times ≤ 10 ms parametric heating is visible while for larger times the process
is nearly reversible.

Therefore we start by investigating if the condition of adiabaticity is fulfilled. Af-
ter loading atoms into the reservoir we set the magnetic field to a high value of
B0 = 940 G (∼ 900 a0) and wait for 4 s for sufficient initial thermalization. The
dimple trap is turned on to a trap depth of U = kB × 17µK using a linear inten-
sity ramp with a variable ramp time tramp and subsequently the intensity is ramped
down again in the same way to turn off the trap. If conditions are the same be-
fore and after the ramps, the process is reversible and therefore adiabatic. We wait
for another thermalization time of 5 s before we image the released atoms from the
reservoir trap at a time of flight of tTOF = 23 ms and extract the atom number as
well as the cloud size (see Fig. 3.9). The cloud size after expansion can be seen as a
measure of the temperature (see Ch. 2.6). As a comparison we show a background
measurement where the atoms are simply held in the reservoir trap for the same
time. We see that while at very short times tramp < 1 ms the system has no time to
react and is basically identical to the background, for 1 ms < tramp < 10 ms the atom
number (size) shows a minimum (maximum). Since the frequencies of the intensity
ramps are on the same order as the trap frequencies parametric heating can occur
[Savard et al., 1997] through which the atoms can accumulate kinetic energy to leave
the trap. For larger ramp times well-above tramp > 10 ms the size comes back to
the background and the atom number stays slightly below. This small discrepancy
might already be an indication of three-body losses for which the corresponding time
scale is on the order of τ3 = (n2

DTL3)−1 ∼ 100 ms where nDT refers to the density in
the dimple trap. We choose a ramp time of tramp = 150 ms which is long enough to
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3.2. A Bose-Einstein condensate of 133Cs

allow for elastic collisions between atoms in the reservoir and in the dimple trap.

In the following we investigate the gain in phase-space density as a function
of the dimple trap depth U with the experimentally confirmed adiabaticity. For
calculating phase-space densities Γ = n0λ

3
dB we use peak atomic densities obtained

via

n0 = Nω̄3
(

m

2πkBT

)3/2
(3.31)

where the temperature T is measured in a time-of-flight expansion (see Ch. 2.6)
while the mean trap frequency ω̄ = (ωxωyωz)1/3 is measured via an excitation of
center-of-mass oscillations (see e.g. [Gensemer and Jin, 2001]) and via parametric
heating for the reservoir and the dimple trap, respectively. When turning on the
dimple trap, the determination of the atom number in it is not easily extracted
since the atomic distribution is on top of the one in the reservoir trap. We therefore
extract the atom number in the following way: after linearly ramping up the dimple
trap within tramp at B0 = 920 G we suddenly turn off the reservoir trap. We need
to wait about 100 ms for expansion before the cloud is dilute enough to assign the
remaining atoms on our absorption image to atoms in the dimple trap. In order to
mitigate effects of plain evaporation during this waiting time, the atoms are held
at B0 = 880 G where they are non-interacting. Our results are displayed in Fig.
3.10. The gain in phase-space density rises for increasing trap depths and shows a
maximum of 3.5 at a trap depth of U = kB × 14µK. For larger trap depths the
gain decreases since more atoms are loaded into the dimple trap and the situation
becomes eventually comparable to a simple compression. The maximum gain is far
below the numbers in [Stamper-Kurn et al., 1998] and shall be compared to our
theoretical expectations. We therefore employ the simple model from above and
refine it by replacing the two boxes by harmonic potentials V0(r) = Vi(r) + V (r)
(see also [Rautenberg, 2021]) of the form

Vi(r) = 1
2mω̄

2
i r

2 − Ui and r ≤ rmax,i =

√
2kBUi/m

ω̄i

(3.32)

where the index i refers to initial quantities in the reservoir trap and we drop the
index for the same quantities in the dimple trap. The calculated gain lies even be-
low the experimental data and the maximum is shifted towards lower trap depths.
Comparing the theoretical and experimental temperatures we see that the theory
overestimates the temperature in the dimple trap. This may be explained by on-
going plain evaporation during the ramp time tramp = 150 ms of the dimple trap
leading to lower temperatures. The time scale for evaporation in the reservoir trap
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Figure 3.10: Performance of the dimple trick. The theoretical prediction (blue)
underestimates the experimental data in the phase-space density gain unless
the temperature is corrected (orange) accounting for plain evaporation (see
text). Temperatures T and densities n are normalized by the initial values
in the reservoir trap, which are Ti = 1.1 µK and ni = 2.3 × 1011cm−3. Data
points are averages and error bars include the standard error and uncertainties
from trap frequency determinations.

is estimated via Γ−1
ev ≈ [(η − 4)e−ηΓel]−1 = 110 ms [Olson et al., 2013] with the trun-

cation parameter η = U/kBT = 10 and lies on the same order as tramp. We account
for this effect by stretching the theoretical temperature by a somewhat arbitrary
value of T (3/4U) to match the experimental data. This also leads to a reasonable
agreement between theory and experiment in the phase-space density gain and con-
firms the necessity of tuning the volume ratio of the traps for an efficient dimple trick.

In future experiments a larger reservoir trap with a beam waist of up to 650µm,
limited by the available laser power, may be used to increase the volume ratio. With
a similar beam waist and a smaller dimple phase-space density gains of 40 have been
reached in the Innsbruck experiment for Cs [Weber, 2003]. Since the dimple trap
in our setup also serves the purpose of loading Li from a MOT, we would have to
compromise between Li and Cs. In Appendix A the setup of an independent dimple
trap is described which can be used to find the optimal volume ratio. Monte Carlo
simulations can help to obtain better theoretical predictions [Ma et al., 2004].
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3.2. A Bose-Einstein condensate of 133Cs

Evaporative Cooling

After the application of the dimple trick we now start to evaporatively cool our
atomic sample. In the previous Sec. 3.2.2 we have already discussed a way of
choosing the right scattering length via an optimal ratio of good to bad collisions.
To quantify the process of evaporative cooling, we define the evaporation efficiency
as [Ketterle and Druten, 1996]

γ = log(Γfinal/Γinitial)
log(Ninitial/Nfinal)

(3.33)

which is large if the gain in phase-space density is large compared to the loss of atoms
before and after an evaporation sequence. Besides the evaporation efficiency it is also
important to consider the total time of evaporation. In kinetic theory of evaporation
[Luiten et al., 1996] it is assumed that the energy distribution of an evaporating gas
is approximated well by a Boltzmann distribution which is truncated at the trap
depth. Choosing a constant truncation parameter η = U/kBT with the right value
would lead to a rescaling of the Boltzmann distribution during the cooling while
its shape remains the same. In other words, this would ensure the right balance
between the time of lowering the trap depth and a sufficient rethermalization time
of the atoms. Usually, the optimal truncation parameter lies in the range of 6-10 for
which the truncation has a small effect on the energy distribution. In [Olson et al.,
2013] a model for 3D harmonic traps and constant η > 6 allows to find an optimal
evaporation trajectory taking into account elastic and inelastic collisions as well as
changes in the trap shape. This model is used to obtain starting points for efficient
evaporation. Finally, the presented evaporation scheme is empirically optimized.

In Fig. 3.11a) our experimental sequence to Bose-Einstein condensation is sum-
marized leading to the evaporation dynamics shown in Fig. 3.11b). We also include
the loading of the reservoir trap (open data points) which marks the time t = 0. We
load the magnetically levitated reservoir trap with a trap depth of U = kB × 10µK
at a magnetic field large enough to compensate for anti-trapping (here B0 = 600 G)
with 8 × 106 Cs atoms and an initial phase-space density of 1 × 10−3. Afterwards,
we go to the target magnetic field of B0 = 895 G corresponding to a scattering
length of a ∼ 300 a0. Although we go to this magnetic field as soon as possible in
our sequence to profit from low densities and low three-body losses when crossing
a series of Feshbach resonances (see Fig. 3.2) we observe an atom loss by over 60
% during this step. The third data point is an optional spatial displacement of the
reservoir trap for a mixing scheme with Li (see e.g. [Pires et al., 2014b]) which shall
not be discussed further here. The dimple trap is ramped up in 150 ms followed by
ramping down the reservoir trap in 300 ms. This leaves us with starting conditions
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a)

b)

Figure 3.11: a) Schematics of the experimental sequence for creation of a Cs BEC
at high magnetic fields. The most important parameters for the trapping
potential and magnetic fields are displayed with time durations given in ms. b)
Characteristic quantities during evaporation in the reservoir (open circles) and
in the dimple trap (filled cirlces). The colors mark the different evaporation
steps analogous to a). The time t = 0 is defined by the initial conditions in
the reservoir trap.
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Figure 3.12: Evaporation to Cs BEC. Phase-space density and atom number mea-
sured after different stages of evaporation (see text) in the dimple trap (filled
circles). Evaporation efficiencies γ between the stages are denoted above the
lines (guide to the eye). The open circles mark atoms in the reservoir trap
and colors are chosen analogous to Fig. 3.11.

of N = 1×106 atoms in the dimple trap (filled data points) at a phase-space density
of 5 × 10−3. The collision rate is drastically enhanced from 60 s−1 to 376 s−1. We
evaporate further by ramping down the magnetic field gradient from 28 G/cm to
0 G/cm in 2 s which corresponds to a tilt of the trap in z-direction. This only yields
a small increase in phase-space density to 7 × 10−3. Afterwards the intensity of the
laser decreased in a total time of 3.5 s followed by 0.5 s of plain evaporation during
which Bose-Einstein condensation is reached. The three linear intensity ramps are
performed with decreasing slope between each other to account for a decrease of
collision rate trying to reach a constant truncation parameter η. Calculating the
resulting evaporation efficiencies (Fig. 3.12) we note that the intensity ramps (pur-
ple lines) with an average of γ̄ = 2.1 are much more efficient than the previous tilt
via the magnetic field gradient with γ = 0.3. We speculate that the inefficient
evaporation might be due to the atoms leaving the trap only in z-direction making
the evaporation one-dimensional. In this case an increase in the scattering length
would help to create high energy atoms through collisions enabling them to find
escape trajectories in all three dimensions through stochastic motion [Hung et al.,
2008]. With the intensity ramps we can enhance the phase-space density by three
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Figure 3.13: Onset of Cs Bose-Einstein condensate. In the two-dimensional col-
umn density the transition from a thermal gas (left) to an almost pure BEC
can be observed by stopping the evaporation at different powers. The images
are taken in a time-of-flight expansion.

Figure 3.14: Bimodal distribution of Cs Bose-Einstein condensate shown in the
one-dimensional column density. The image (inset) is taken after a time-of-
flight expansion of t = 55 ms. From a bimodal fit we extract a condensed
fraction of fc = 45% and an atom number of N = 1.3 × 104 in the condensed
part. A Gaussian fit to the thermal wings (orange) yields a temperature of
T = 28 nK.
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3.3. A quantum degenerate gas of 6Li

orders of magnitude and obtain a temperature in the thermal fraction of the atomic
distribution of around T = 28 nK. With this scheme we create pure BECs with
N = 1 − 2 × 104 atoms in an evaporation time below 7 s.

The onset of condensation can be observed in the density profiles (Fig. 3.13)
which are taken after a time-of-flight expansion of 45 ms in the presence of magnetic
field levitation. With final dimple trap powers in the typical range of P = 98 mW to
P = 88 mW for which we stop the evaporation, we can control the condensed fraction
arbitrarily and observe the build-up of the bimodal distribution giving evidence for
Bose-Einstein condensation. Already small changes in laser power on the mW scale
strongly influence the trapping potential due to the large effect of gravity for the
heavy 133Cs atoms. By fitting a two-dimensional bimodal function to the data (Fig.
3.14) we can extract the atom number and the condensed fraction. The temperature
is extracted from the thermal wings of the distribution according to (2.8).

3.3 A quantum degenerate gas of 6Li

3.3.1 Scattering properties of 6Li
The scattering properties of 6Li are fundamentally different compared to 133Cs due to
its fermionic nature. The Pauli exclusion principle suppresses collisions between two
identical fermions and hence a spin mixture is required for thermalization and evap-
orative cooling. s-wave Feshbach resonances of different spin mixtures (Fig. 3.15)
have been precisely mapped out via RF spectroscopy on weakly bound molecules
[Zürn et al., 2013; Bartenstein et al., 2005]. In this work the Feshbach resonance of
the |1⟩-|2⟩ spin mixture around 834 G is employed which is a particularly broad reso-
nance with a width of ∆ = 300 G and a background scattering length of abg = 1405 a0

yielding its universal character. Pioneering work such as the realization of a Bose-
Einstein condensate of 6Li2 dimers [Jochim et al., 2003; Zwierlein et al., 2003] and
first studies on the BEC-BCS crossover [Bourdel et al., 2004] have been performed
across this Feshbach resonance. Evaporation at unitarity is very effective due to the
high two-body cross-section while three-body recombination is strongly suppressed
in Li, even in a two-component mixture [Petrov, 2003]. Atom-dimer collisions, where
a weakly bound dimer decays into a lower bound state, are hindered by the Pauli
principle as this process would require two identical fermions to come close to each
other on the order of the molecular state’s size. [Petrov et al., 2004].

In our experiment evaporative cooling usually starts in a |1⟩-|2⟩ spin mixture on
resonance or close to resonance e.g. at 790 G where interactions are unitarity limited
followed by a change of the magnetic field depending on the goal of the experiment.
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Figure 3.15: Feshbach resonances of 6Li for different spin mixtures. The FRs for
the |1⟩-|2⟩, |1⟩-|3⟩, and |2⟩-|3⟩ mixtures are centered around 834 G, 690 G, and
810 G, respectively. Data taken from [Zürn et al., 2013].

A molecular BEC (mBEC) can be created by evaporating further while the creation
of a degenerate Fermi sea requires negative scattering lengths. Therefore, the mBEC
can be dissociated by a magnetic field ramp across the Feshbach resonance. Above
resonance, interactions are however strong due to the large background scattering
length. In order to create a weakly, interacting Fermi gas one can jump with the
magnetic field to ∼ 300 G where the spin mixture has a small negative scattering
length of a12 ∼ 300 a0. In our Bose polaron scenario we aim to be in the vicinity of
the Li-Cs Feshbach resonance around 889 G (Sec. 3.4.1) in the final stage.

3.3.2 Experimental Realization

Based on the very different properties of 6Li compared to 133Cs as described in the
previous section, we will discuss in the following how this determines our experi-
mental procedure in preparing 6Li impurities at ultracold temperatures. We begin
the description with an improved scheme of loading Li atoms into the dimple trap
after laser cooling. We then characterize the performance of evaporative cooling in
the dimple trap and show how we can either create large molecular BECs or transfer
6Li atoms into the tightly confined microtrap where they serve as impurities in the
Bose polaron scenario.
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3.3. A quantum degenerate gas of 6Li

Loading of Li atoms into Dimple Trap

The required trapping potential for Li is rather simple compared to the combined
magnetic and optical potential for Cs (Sec. 3.2). It consists of a deep optical
potential which is only slightly affected by gravity due to the small mass of Li.
Other than in previous experiments in our group [Ulmanis et al., 2016b; Häfner
et al., 2017; Gerken et al., 2019], we load a MOT with Li atoms for 1.5 s with
additional performance of gray molasses cooling yielding N = 3 × 107 atoms at
a temperature of T = 42µK. The lower temperature after gray molasses cooling
requires a shallower dipole trap on the order of U ∼ 6−10 kBT for efficient transfer.
We therefore employ a fast frequency modulation of the AOM (ωmod ≫ ωx,y,z) which
dynamically changes the diffraction angle of the laser beam, effectively enhancing
the trap volume while reducing the trap depth.

The loading procedure is discussed in detail in [Gerken, 2022] and shall not be
repeated here. After loading, we jump to a high magnetic field close to resonance to
ensure fast thermalization. The high laser powers of the dimple trap up to 120 W
per beam cause the two beams to spatially separate within tens of milliseconds due
thermal lensing effects of the AOM [Heck, 2012]. We therefore do a first evaporation
intensity ramp down to 37 W before the beams separate. In this way we end up with
N = 2.5 × 106 atoms in each spin state of the |1⟩-|2⟩ mixture with a temperature
of T = 30µK and a PSD of Γ = 3 × 10−5. We consider these parameters to be our
starting conditions for further evaporative cooling.

Evaporative Cooling in the Dimple Trap

The evaporation of Li atoms in the dimple trap is done by lowering the laser inten-
sity of the dimple trap (Fig. 3.16). We perform the evaporation at B = 880 G where
the scattering length is a = −8500 a0. However, the exact magnetic field around
the Feshbach resonance is irrelevant due to the unitarity limit (k2a2 ≫ 1) where
the two-body cross-section σ(k) = 4π/k2 is independent of the scattering length.
Analogously to Sec. 3.2, linear intensity ramps are used which are experimentally
optimized by maximizing the evaporation efficiency (3.33). The large cross-section
in combination with low three-body losses makes the evaporation highly efficient
with efficiencies up to γ = 8.8. However, a drop in phase-space density after the
third evaporation ramp occurs when we turn off the AOM frequency modulation. In
this process we adiabatically ramp down the modulation amplitude of a triangular
signal. An adiabatic change of the trap shape leads to a change in the phase-space
density [Pinkse et al., 1997] and might explain this drop. Adiabaticity is confirmed
in this measurement since we can revert the process. Although the starting condi-
tions for evaporative cooling are worse than for Cs, the phase-space density can be
enhanced by almost five orders of magnitude while the atom number only drops by
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Figure 3.16: Li evaporation in the dimple trap. The numbers above the lines
denote the evaporation efficiency between start and end points of linear evap-
oration ramps (blue points). The drop in evaporation efficiency after the third
ramp is related to a turn off of the AOM frequency modulation. Data points
are averages with standard errors. Adapted from [Gerken, 2022].

one order of magnitude.

Bose-Einstein condensation of 6Li2 dimers can be reached by employing an anal-
ogous evaporation sequence at large positve scattering lengths, e.g. at B = 790 G
(Fig. 3.17). In this way we typically achieve molecular BECs with N ∼ 1 × 105

dimers. We note that the dimers can be imaged with the same laser light as the
atoms due to their small binding energy. Since the ground state energy shift is
much smaller than the natural linewidth Γ = 5.9 MHz only the shift of the ex-
cited state plays a role [Jochim, 2004]. In the long-range excited state potential
V (R) ∼ ℏΓ(λ/2πR)3 [Zwierlein et al., 2003] where the internuclear distance R can
be approximated by the scattering length a, one finds that the excited state shift
is smaller than the linewidth for a ∼ 2000 a0 or a magnetic field of B = 714 G.
Our images are therefore taken around this magnetic field in the weakly interacting
regime.

Loading of Li atoms into Microtrap

For obtaining tightly confined Li impurities we perform evaporative cooling in the
dimple trap at unitarity on the positive scattering length side as described above.
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Figure 3.17: Bimodal distribution of molecular Bose-Einstein condensate of 6Li2,
taken after a time-of-flight expansion of t = 10 ms. The optical density is
obtained through integration of the 2D column density which is depicted in the
inset. From a bimodal fit (blue) we find a total dimer number of N = 1.6×105

with a condensed fraction of fc = 71%. The orange curve shows the thermal
wings of the distribution.

We stop the forced evaporative cooling when the dimple trap depth is smaller than
the maximum microtrap depth UDT ≤ Umax

MT to facilitate high transfer efficiencies.
On the other hand, we leave the trap depth well above the dimer binding energy
UDT > Eb (3.10) in order to avoid the formation of weakly bound dimers. The Li
atoms are loaded into the microtrap (Fig. 3.18) by increasing its laser intensity
and decreasing the dimple trap intensity. First attempts to load the microtrap
yield N ∼ 1 × 105 atoms at a temperature of T = 4µK well above Eb = 0.4µK
at B = 790 G. From here on, the further evaporation process for preparing single-
component Li impurities in the Bose polaron scenario strongly depends on the mixing
procedure of Li and Cs. Evaporative cooling could for example be continued at
B = 300 G where a ∼ −300 a0 (see Fig. 3.15) before going to zero-field in order to
load a MOT of Cs atoms. In the next section we discuss in more detail how such a
mixing procedure could look like.
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Figure 3.18: Loading of Li atoms into microtrap. The optical alignment of the
microtrap beam (w = 10 µm) onto the dimple trap (w = 62 µm) is simplified
by overlapping it with an expanding atomic cloud of Li atoms (tTOF = 0.5 ms)
after release from the dimple trap.

3.4 A quantum degenerate 6Li − 133Cs mixture

3.4.1 6Li − 133Cs s-wave Feshbach resonances

The 6Li − 133Cs system offers a large variety of s-wave Feshbach resonances which
have been mapped out by atom-loss spectroscopy [Repp et al., 2013; Tung et al.,
2013; Häfner, 2017] and by RF spectroscopy on weakly bound LiCs dimers [Ulmanis
et al., 2015]. A theoretical analysis of the 6Li−133Cs Feshbach resonances comparing
different models has been performed in [Pires et al., 2014a]. Resonances of larger
interest include two broad resonances centered around B = 843 G and B = 889 G
of the Li |1⟩ ⊕ Cs |3, 3⟩ and Li |2⟩ ⊕ Cs |3, 3⟩ scattering channel, respectively (Fig.
3.19). The center position of the former coincides with a negative Cs-Cs scattering
length while the latter is on small positive Cs-Cs scattering lengths. The 889 G
Feshbach resonance therefore offers the possibility to form stable Cs BECs while
tuning the interspecies interactions and is therefore well suitable for studying the
Bose polaron. The small background length of the Li-Cs Feshbach resonances of
abg ≈ 30 a0 allows for the preparation of both a non-interacting and a strongly
interacting Li-Cs mixture at the same magnetic field. Via a transfer of Li impurities
between the |1⟩ and |2⟩ spin states by means of radio-frequency spectroscopy (Ch.
2.5) the polaron’s spectral response can be mapped out.
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Figure 3.19: Li-Cs and Cs-Cs Feshbach resonances. Top panel: Magnetic field
dependence of the interspecies scattering length of the Li |2⟩ ⊕ Cs |3, 3⟩ (blue
line) and Li |1⟩ ⊕ Cs |3, 3⟩ (dashed red line) scattering channel. Calculated
with parameters from [Häfner, 2017]. Bottom panel: Zero-crossing in the
interspecies scattering length of the Cs |3, 3⟩ ⊕ Cs |3, 3⟩ channel. Data from
[Berninger et al., 2013].

3.4.2 Preparation of degenerate 6Li − 133Cs mixtures

In the previous sections we have discussed how to create Cs Bose-Einstein conden-
sates and ultracold Li gases as well as the difficulties in their individual preparation.
In this section we want to present a scheme allowing us to mix the two species in or-
der to create Bose polarons. Therefore we will first discuss the individual steps from
loading the MOT to combining the dipole traps highlighting the explicit challenges
related to the Li-Cs mixture. Afterwards, we present our solutions and a proposed
mixing scheme. We emphasize that the presented solutions are not the only possible
ways of handling a Li-Cs mixture, but depicts a compromise between many factors.

Challenge 1: Dual-species MOT loading. During the initial phase of loading
Li and Cs atoms into the MOT, we face two species-dependent issues. First, the
large mass difference between Li and Cs requires magnetic fields of the Zeeman
slower B(z) ∝

√
1/m differing by a factor of five (see Ch. 2.2), making it hard to

decelerate both species at the same time. Second, trapping Li and Cs in a double-
species MOT suffers from light-assisted inelastic collisions which lead to atom loss

53



Chapter 3. Towards the creation of Bose polarons in a 6Li − 133Cs mixture

[Schlöder et al., 1999]. More precisely, collisions involving optically excited Cs can
cause fine-structure changing collisions or radiative escape in the presence of a light
field. For a review of inelastic collisions in a MOT we refer the reader to [Weiner
et al., 1999].

Solution: The Li and Cs atoms are loaded into the MOT subsequently with dif-
ferent, optimized magnetic field profiles of the double-species Zeeman slower [Repp,
2013]. To overcome inelastic light-assisted collisions the two species are spatially
separated. We do this by loading atoms from the Li MOT into the dimple trap with
subsequent transfer into the microtrap (see Ch. 3.3.2). The microtrap is displaced
in vertical direction away from the center enabling Cs atoms to be loaded into the
MOT.

Challenge 2: Dipole trap loading. In many mixtures experiments, such as
6Li−40 K [Spiegelhalder et al., 2010], 6Li−23 Na [Hadzibabic et al., 2002], 6Li−87 Rb
[Silber et al., 2005] or 40K −87 Rb [Ospelkaus et al., 2007], the two atomic species
are loaded from the MOT into a common magnetic trap or optical dipole trap
followed by evaporative cooling. In our case, besides the fact that Cs|3, 3⟩ is not
magnetically trappable, we prepare Cs and Li atoms at temperatures of TCs =
1µK and TLi = 42µK after degenerate Raman sideband cooling and gray molasses
cooling, respectively. For effective dipole trap loading, trap depths of typically
U ∼ 6 − 10 kBT are required which cannot be fulfilled for both species at the same.
At the wavelength of 1064 nm, where dipole trap lasers are commonly available, the
polarizabilities of Cs and Li differ by αCs/αLi ≈ 4 (see Fig. 2.9) which makes the
trap depth for Cs even deeper than for Li, although Cs would require a shallower
trap.

Solution: The different requirements in temperatures are solved by loading Li
and Cs atoms into the dimple trap and the large volume reservoir trap, respectively,
which are well mode-matched to the individual species in terms of trap depth and
trap volume. Besides the different temperatures, small densities for Cs are necessary
to avoid high three-body losses which are less present for the fermionic Li. We also
note that in our subsequent loading scheme it is important to load Li atoms into the
dipole trap prior to the Cs atoms. The reason is that the Cs atoms in the reservoir
trap are in the |3, 3⟩ ground state which requires a small magnetic field of a few G
to maintain the spin polarization. On the other hand, when loading Li atoms into
the MOT and performing gray molasses cooling the latter is already significantly
disturbed at small magnetic fields above 1 G. This problem can therefore be circum-
vented by loading Cs atoms into the reservoir trap only after gray molasses cooling
is finished.
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Figure 3.20: Dual-species overlap challenge of Li and Cs. a) Calculated trapping
potentials of Li (red) and Cs (blue) at low temperatures. For shallow trapping
potentials the potential minima for Li and Cs separate. b) Ratio of magnetic
moment to mass for different alkali atoms. A vastly different ratio for Li and
Cs implies different magnetic field gradients necessary to compensate for the
gravitational sag.

Challenge 3: Dual-species overlap. When mixing the two species, a common
approach is to trap both species in one final dipole trap, as we did in previous
experiments where Li and Cs were in the dimple trap at 450 nK [Pires et al., 2014b].
However, at lower temperatures, the effect of gravity becomes more important (3.25)
shifting the center of the trapping potential (’gravitational sag’), see Fig. 3.20. For a
harmonic trap the potential U(z) = 1/2mω2z2 +mgz has a minimum at z = −g/ω2

where the trap frequency scales as ω ∝
√
U0/m. In our case the highly mass-

imbalanced Li-Cs mixture entirely separates at temperatures below 100 nK [Ulmanis
et al., 2016b]. A simple magnetic levitation scheme to overcome this effect, as used
e.g. in Rb-Cs mixtures, is not possible due to vastly different ratios of magnetic
moment to mass (Fig. 3.20b)). Finally, even without gravitational sag, the widths
of the thermal density distributions scale as σLi/σCs ∝

√
αCs/αLi ≈ 2 (αi refer

to the real-part polarizabilities at a wavelength of 1064 nm) leading to a larger Li
distribution which would be the opposite of what we aim for in the Bose polaron
scenario.

Solution: The use of our tightly confined microtrap at the tune-out wavelength
of 880 nm enables us to move the trapped Li atoms along the vertical direction
without affecting the Cs trapping potential3. We expect that the tight confinement

3neglecting mean-field interactions between the two species which can alter the effective trap
frequencies.
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will enable us to confine Li atoms within the Cs BEC in radial direction to study
Bose polarons. Our expectations are encouraged by recent experiments at MIT who
make use of a similar dipole trap geometry [Yan et al., 2020].

Taking into account the different challenges for mixing Li and Cs we present a
schematic experimental sequence in Fig. 3.21.

We start by loading Li atoms into the MOT and performing gray molasses cooling
(1). Afterwards, the atoms are loaded into the dimple trap with a first evaporative
cooling step (2). When the dimple trap depth in on the order of the microtrap depth
UDT ≤ Umax

MT the atoms are loaded into the microtrap by ramping up its intensity and
ramping down the dimple trap intensity, following entirely the procedure of the Li
preparation from Sec. 3.3. After evaporative cooling of the Li atoms around 300 G
the microtrap is vertically displaced from the center of the experimental chamber
by > 1 mm and stored allowing for an independent preparation of Cs (3). Since
three-body losses in Li are largely suppressed (see Sec. 3.3.1), we expect lifetimes of
> 20 s limited by one-body losses (see Fig. 3.3), in particular if we go away from the
Li Feshbach resonance to prepare Cs. Once the Li atoms are stored, we can start
to load Cs atoms into the MOT followed by the application of degenerate Raman
sideband cooling (4). The Cs atoms are transferred into the reservoir trap (5) where
a large number of atoms is trapped with low densities avoiding three-body losses.
The dimple trick is applied to enhance the phase-space density with subsequent
forced evaporative cooling (6). At this stage the sequence could follow the Cs BEC
scheme presented in Sec. 3.2, allowing for a Cs BEC at high magnetic fields spatially
separated from Li atoms in the microtrap (7). The ideal moment to move the Li
atoms back onto the Cs atoms (8) is, however, subject of future experiments. A
proper interspecies scattering length should be chosen to allow for thermalization
between Li and Cs and the possibility of sympathetic cooling [Mudrich et al., 2002].
On the other hand, inelastic losses such as three-body losses between Li and Cs as
well as one-body losses of Cs due to photon scattering of the microtrap light need
to be taken into account when mixing the two species.

As an outlook we show calculations of the aimed trapping potentials and the
corresponding density distributions for degenerate Li impurities in a Cs BEC (Fig.
3.22). For better visibility, density distributions of Li are multiplied by a factor
of 10. For Cs we assume an improved condensate with NCs = 1 × 105 atoms. In
the microtrap an atomic cloud with NLi = 5 × 103 atoms is assumed, which is still
easily resolvable with our absorption imaging system. By calculating the overlap
integral this leads to a concentration of about c ≈ 2%. As expected from the
geometry of our optical dipole traps, the Li impurities are well immersed in the Cs
BEC in x- and z-direction due to the tight radial confinement of the microtrap and
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1. Loading of a Li MOT  
+ Gray Molasses Cooling

2. Transfer into Dimple Trap 
+ Evaporative Cooling

3. Transfer into Microtrap
+ Evaporative Cooling + Displacement

4. Loading of a Cs MOT  
+ Degenerate Raman Sideband Cooling

5. Transfer into Reservoir Trap

6. Cs Dimple trick + Evaporation

7. Separate Cs cloud and Li impurities

8. Li impurities in a Cs BEC

Figure 3.21: Schematic graph of the preparation of Li impurities in a Cs Bose-
Einstein condensate.
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Figure 3.22: Calculated final trapping potentials (solid lines) and one-dimensional
cut through density distributions (dashed lines) in arbitrary units for Li (zero-
temperature profile) and Cs (Thomas-Fermi profile). The Li density distribu-
tion is multiplied by a factor of 10 for better visibility.

the cancellation of the relative gravitational sag. In y-direction the missing axial
confinement of the single-beam microtrap results in a larger atomic distribution of
Li. In RF spectroscopy measurements this can give rise to an additional signal at
the bare Li transition frequency (see Ch. 2.5) next to the frequency related to the
Bose polaron energy.

Conclusions

In conclusion, we presented the realization of a Cs Bose-Einstein condensate at high
magnetic fields and the preparation of Li atoms in a tightly confined microtrap
taking into consideration the challenges of combining Li and Cs for the realization
of Bose polarons. In the first part, we presented our improved scheme of loading
Cs into a magnetically levitated reservoir trap sample where we make use of fast
magnetic field control. The experimental characterization of the dimple trick with
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the existing trap geometry yields a small local phase-space density gain of ∼ 3.5 in
agreement with our theoretical model. This gain is far below state-of-the-art and
can be further enhanced by an optimized volume ratio. With further evaporative
cooling we achieve Cs BECs at B = 895 G with atom numbers of N = 1 − 2 × 104.
In the second part we presented our scheme to prepare Li samples with an improved
dipole trap loading scheme and high evaporation efficiencies of up to γ = 8.8 in
the dimple trap. Besides the realization of molecular BECs with dimer numbers of
N = 1 × 105, we transfer Li atoms into the translatable microtrap operating at the
tune-out wavelength of Cs. Finally, we outline a scheme to combine a small number
of Li atoms in a Cs BEC where we overcome the difficulties of the highly mass-
imbalanced mixture such as the dipole trap loading or the large relative gravitational
sag. While future experiments still need to answer open questions regarding three-
body losses in the quantum degenerate regime or sympathetic cooling, a readily
available and improved setup for performing radio-frequency spectroscopy on Li will
allow to probe the spectral response of the Bose polaron.
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Chapter 4

Fermions meet two bosons - the
heteronuclear Efimov effect
revisited

Parts of this chapter are based on the following publication:

Fermions Meet Two Bosons—the Heteronuclear Efimov Effect Revisited
B. Tran, M. Rautenberg, M. Gerken, E. Lippi, B. Zhu, Juris Ulmanis, M. Drescher,
Manfred Salmhofer, T. Enss, and M. Weidemüller
Brazilian Journal of Physics (2021) 51:316-322

The Efimov effect was first predicted in 1970 by Vitaly Efimov [Efimov, 1970]
describing the emergence of an infinite number of three-body bound states for par-
ticles with pairwise, resonant interaction. In the universal regime where the scatter-
ing length a exceeds the characteristic range of two-body interactions r0, an infinite
number of three-body bound states can form which follow a discrete scaling law.
Even if interactions are too weak to support two-body states, three particles can
come together to form Efimov trimers. This unintuitive effect initially raised serious
doubts about possible realizations and applicability, but theorists trying to prove
Efimov wrong had to eventually admit that his predictions might be right. While
Efimov suggested a possible observation in nuclear systems of three α-particles (12C)
or three nucleons (3H), the existence of more than one three-body bound states re-
quires the two-body interactions to be close to resonance. The tuning of two-body
interactions via Feshbach resonances in ultracold quantum gases eventually enabled
the first observation of the Efimov effect in a gas of 133Cs atoms in 2006 [Kraemer
et al., 2006]. Since then the Efimov effect has become a whole new area of research
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and the initial investigations in homonuclear systems were followed by heteronuclear
sytems [Barontini et al., 2009, 2010; Bloom et al., 2013; Pires et al., 2014b; Tung
et al., 2014]. In the 6Li − 133Cs system with a large mass ratio the denser Efimov
spectrum led to the observation of up to three consecutive Efimov states [Pires et al.,
2014b; Tung et al., 2014]. Investigations on the Efimov effect are, however, not only
relevant in the field of few-body physics. In particular, the influence of a many-body
background medium on the Efimov trimers has been studied in different scenarios
with a Fermi sea [MacNeill and Zhou, 2011; Nygaard and Zinner, 2014; Sun and
Cui, 2019; Sanayei and Mathey, 2020] or a Bose-Einstein condensate [Zinner, 2013;
Naidon, 2018]. On the other hand, theoretical studies have shown that many-body
systems such as polaronic systems are influenced by the presence of three-body states
[Levinsen et al., 2015; Sun et al., 2017; Sun and Cui, 2017]. Further studies on the
Efimov effect are covered extensively in several reviews [Braaten and Hammer, 2006,
2007; Ferlaino et al., 2011; Blume, 2012; Wang et al., 2013, 2015; Naidon and Endo,
2017].

In this chapter we investigate the heteronuclear Efimov effect in a system con-
sisting of two heavy bosons and one light fermion allowing us to work in the Born-
Oppenheimer approximation. As a specific example, we consider fermionic 6Li as
a light particle and 133Cs as heavy bosons. Two limiting cases of the Efimov ef-
fect are studied: first, we revisit the Efimov effect in vacuum, where we will show
how the infinite series of three-body bound states arises as a consequence of an
underlying attractive −1/R2 potential [Fonseca et al., 1979; Bhaduri et al., 2011;
Petrov, 2012] and investigate the influence of the intraspecies interactions on the
Efimov spectrum [Häfner et al., 2017; Ulmanis, 2015; Wang et al., 2012]. In the
second step, a Fermi sea is added as a background and we will study its influence
on the Efimov trimers, again taking into account the intraspecies scattering length.
The chapter is structured in the following way: after introducing the heteronuclear
Efimov effect (Sec. 4.1) and the Born-Oppenheimer formalism (Sec. 4.2), we solve
the Schrödinger equation in the vacuum limit in Sec. 4.3. Afterwards, the situation
of two heavy bosons in a Fermi sea is considered where we introduce the effective
interaction potential and solve the Schrödinger equation in Sec. 4.4.

4.1 The heteronuclear Efimov scenario

The heteronuclear Efimov scenario can be visualized in an energy diagram (Fig.
4.1) which is shown in dependence of the inverse interspecies scattering length 1/a
between two identical bosons B and a distinguishable particle X. We first consider
the case in which the two bosons interact resonantly (aBB → ∞). In the energy
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Figure 4.1: The heteronuclear Efimov scenario of two bosons B and one distin-
guishable atom X for resonant interactions between the bosons. The few deep-
est Efimov trimer states are drawn (solid lines) connecting the three-body scat-
tering continuum with the atom-dimer threshold B+BX. The infinite series of
Efimov states limited by short-range two-body interactions (red shaded circle).

diagram we can distinguish between three distinct areas, representing the three-
body scattering states, the Efimov trimers, and the atom-dimer states. For E > 0,
the three atoms are unbound and have a finite kinetic energy. For E < 0, a weakly
bound dimer state BX exists on the positive scattering length side. Its binding
energy (3.10) sets the atom-dimer threshold above which the dimer state BX coexists
with a free atom B. The Efimov trimers are formed in the region below the three-
body scattering continuum at a < 0 and the atom-dimer threshold at a > 0. In this
region, an infinite number of Efimov states with energies En exist which cross the
three-body scattering continuum at the scattering lengths a(n)

− . Remarkably, these
crossings follow the discrete scaling laws

a
(n+1)
− = λa

(n)
− ,

En+1 = λ−2En

(4.1)
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where λ = eπ/s0 is the scaling factor characterized by the dimensionless parameter
s0. The scaling factor gets smaller for increasing mass ratio and furthermore depends
on the number of resonant interactions and the quantum statistics of the particles
[Naidon and Endo, 2017].
Finally, in real systems, there is no infinite number of Efimov states due to finite
range effects (red circle). That is, in the underlying interaction potential, only
non-zero interparticle distances must be considered which leads to the definition
of a ground state. It can be introduced by a three-body parameter (3BP) which is
defined via the energy E0 or the scattering length a(0)

− of the lowest Efimov state. As
we will see in the next section, it is governed by short-range two-body interactions
and thus the universal Efimov scaling only holds if the scattering length exceeds the
characteristic van der Waals range |a| ≫ max(rBX

vdW, r
BB
vdW).

4.2 Born-Oppenheimer approximation

In this section we introduce the concept of the Born-Oppenheimer (BO) approxi-
mation for the three-body problem. This concept is very similar to the textbook
problem of the hydrogen molecular ion H+

2 (see e.g. [Bransden and Joachain, 2003;
Demtröder, 2016]) with a large proton to electron mass ratio of mp/me ≈ 1836 ex-
plaining the chemical binding from quantum mechanical principles. Here we present
the BO approximation as discussed in the context of Efimov physics, following [Fon-
seca et al., 1979; Petrov, 2012]. We consider two heavy, identical bosons with mass
M and displacement vector R and a light atom with mass m. The two bosons and
the light atom are located at ±R/2 and r from the origin, respectively, as depicted
in Fig. 4.2. The stationary Schrödinger equation for this system reads

HΨ(r,R) = EΨ(r,R) (4.2)

with the three-body wavefunction Ψ(r,R) and the Hamiltonian (ℏ = 1)

H = − 1
M

∇2
R − 1

2µX

∇2
r + VBB(R) +

∑
±
VBX(|r ± R/2|). (4.3)

where µX = 2Mm/(2M + m) is the reduced mass of the light particle. Assuming
a mass ratio of M/m ≫ 1, the kinectic energy of the heavy atoms is much smaller
than the one of the light atom. Therefore the wavefunction can be written in a
product ansatz of the form

Ψ(r,R) = ψR(r)ϕ(R) (4.4)
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Figure 4.2: Coordinates of two heavy bosons B and a distinguishable atom X in
the Born-Oppenheimer approximation.

where ϕ(R) is the wavefunction of the heavy atoms. The wavefunction ψR(r) de-
scribes the fast motion of the light atom which immediately follows the motion of
the heavy atoms and only depends parametrically on R, i.e. the interparticle sep-
aration can be chosen as a fixed parameter. In this approximation the Schrödinger
equation splits into a set of two coupled equations. The equation of the light atom
reads [

− 1
2m∇2

r +
∑
±
VBX(|r ± R/2|)

]
ψR(r) = ϵ(R)ψR(r) (4.5)

with an energy ϵ(R) = κ2(R)/2m. This resulting energy serves as an interaction
potential in the Schrödinger equation of the heavy bosons[

− 1
M

∇2
R + VBB(R) + ϵ(R)

]
= Eϕ(R). (4.6)

In the first step we solve (4.5) where the interaction potentials VBX(|r ± R/2|) are
considered contact potentials [Huang and Yang, 1957] which are the simplest form
of zero-range potentials. This problem is similar to the double-well problem and for
bound states the light wavefunction can be expressed as

ψR(r) ∝ C1
e−κ(R)|r−R/2|

|r − R/2|
+ C2

e−κ(R)|r+R/2|

|r + R/2|
(4.7)

where the coefficients C1, C2 and κ(R) can be obtained via the Bethe-Peierls bound-
ary condition ψR(r) ∝ 1/ |r ± R/2| − 1/a for r ± R/2 → 0 and have the solutions
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Figure 4.3: Symmetric (blue line) and antisymmetric (orange line) solution of the
light atom Schrödinger equation. Both energies asymptotically approach the
molecular dimer energy Ed (dashed grey line), while the antisymmetric solution
hits the scattering continuum (grey area) at short-range.

{C1, C2}± = {1,±1} [Petrov, 2012]. For the wavenumber we obtain the equation

κ±(R) ∓ e−κ±(R)R

R
= 1
a

(4.8)

which is solvable when R/a > ∓1 and yields

κ±(R) = 1
a

+ 1
R
W (±e−R/a). (4.9)

Here, W (z) denotes the Lambert W-function which has the property z = W (z)eW (z).
With this result we can plot the symmetric and antisymmetric energies ϵ±(R) of
the light atom Schrödinger equation (4.5), as shown in Fig. 4.3. The symmetric
(antisymmetric) solution ϵ+ (ϵ−) is attractive (repulsive) which means that through
the presence of the light atom the heavy ones experience an attractive (repulsive)
interaction. For small distances (R/a < 1), the symmetric state is the only bound
state while the antisymmetric one hits the scattering continuum. If the interparticle
distance between the two heavy atoms is very large (R/a ≫ 1) the light atom can
only localize on one heavy atom, thus the energies asymptotically approach the
molecular dimer energy Ed. We can confirm this result by looking at the analytical
solution obtained via a power series expansion of (4.9) for small exp(−R/a) in the
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limit R/a ≫ 1,

κ±(R) ≈ 1
a

± e−R/a

R
− e−2R/a

R
, (4.10)

which yield the energies

ϵ±(R) ≈ − 1
2ma2 ∓ e−R/a

maR
+ e−2R/a

maR
(1 − a/2R). (4.11)

The first term gives the above-mentioned molecular binding energy of the dimer
state and the following terms show that for large R the light particle induces a
Yukawa-type force between the heavy atoms. The Yukawa potential was originally
introduced in nuclear physics to describe the nature of the interaction between pro-
tons and neutrons [Yukawa, 1955], but it is also known in solid-state physics as
a screened Coulomb potential in the description of a collective electron gas [Hun-
klinger, 2017] or in the interaction between two Bose polarons [Naidon, 2018]. For
R/a ≪ 1, we find similarly via (4.8) the result

ϵ+(R) ≈ − c2

2mR2 (4.12)

which becomes valid for all interparticle distances R at unitarity a = ∞. Here
c := W (1) ≈ 0.567 is connected to the scaling factor s0 via c =

√
2m/M(s2

0 + 1/4).
As we will demonstrate in the following section the attractive −1/R2 potential lies
at the heart of the Efimov effect and the infinite series of three-body bound states.

4.2.1 Boson-boson interaction in the heavy atom Schrödinger
equation

After having solved the Schrödinger equation for the light atom, we now turn to
the heavy atom equation (4.6) and use the energy ϵ+(R), which we will refer to as
the Efimov potential, serving as an induced interaction potential between the heavy
atoms. Since we are interested in three-body bound states, we only consider the
symmetric solution and, for simplicity, we will focus on the unitarity case (4.12).

For modelling the interaction between the two heavy bosons VBB(R), we would
require knowledge of their molecular potentials. The collision between two ultracold,
alkali atoms with electronic orbital angular momentum of l = 0 is described by their
electronic Born-Oppenheimer interaction potential [Chin et al., 2010]. However, for
qualitative understanding it often suffices to only consider the long-range van der
Waals potential of the molecular potential, since the molecular potential and the
Efimov potential are on vastly different energy scales. At distances R < rvdW, where
rvdW is the so-called van der Waals length, the molecular potentials are typically on
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the order of ∼ (103 −104)K while the Efimov potential close to R = rvdW is typically
on the order of ∼ (0.1 − 1mK) [Chin, 2011]. Therefore, we model the interaction
between the two heavy bosons by a van der Waals (vdW) potential with a hard core
of the form [Gribakin and Flambaum, 1993; Flambaum et al., 1999]

VBB(R) =

∞, R < R0

−C6/R
6, R > R0.

(4.13)

where R0 is a short-range cutoff radius. The C6 coefficient can be naturally con-
nected to the van der Waals radius rvdW and energy EvdW via [Chin et al., 2010]:

rvdW = 1
2(MC6)1/4 (4.14)

and

EvdW = 1
Mr2

vdW
. (4.15)

For two 133Cs atoms we calculate the vdW radius and energy to be rvdW = 101 a0

and EvdW/kB = 0.13 mK (or EvdW/h = 2.7 MHz) with the C6 coefficient taken from
[Chin et al., 2004b]. The cutoff radius R0 in (4.13) is connected to the boson-boson
scattering length aBB via the analytical expression [Gribakin and Flambaum, 1993]

N1/4(2rvdW/R
2
0)

J1/4(2rvdW/R2
0) = 1 −

√
2 aBB

rvdW

Γ(5/4)
Γ(3/4) (4.16)

where Jν(x) and Nν(x) are Bessel functions of first and second kind, respectively. As
(4.16) has multiple solutions, the cutoff R0 does not only determine the boson-boson
scattering length aBB, but also the number of bound states within the vdW potential.
However, the exact number of bound dimer states has no significant influence on the
long-range Efimov wavefunctions [Wang et al., 2012]. From the vdW potential and
the corresponding energy scale, we can already see that in the BO approximation
the three-body parameter will be determined by the interaction of the two heavy
bosons, as we will calculate in the next section.

4.3 Two bosons meet one fermion

We can now solve the Schrödinger equation of the heavy atoms (4.6) for a Cs-Cs-Li
system with a large mass ratio of MCs/mLi = 22.1. The calculation is performed
with the matrix Numerov method [Pillai et al., 2012] on a logarithmic grid from the
short-range cutoff R0 up to of distances of R/rvdW ∼ 1010. The short-range cutoff is
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Figure 4.4: Efimov energy spectrum across a Cs-Cs resonance for resonant inter-
species interaction. The spacing between the lowest Efimov trimer states (blue
lines) is governed by the Cs2 dimer states (orange dashed lines).

chosen such that the potentials support up to two Cs2 dimer states. It is instructive
to solve the two cases

a) only boson-boson interaction VBB(R)

b) total potential VBB(R) + ϵ+(R).

which we show in Fig. 4.4 for positive and negative boson-boson scattering length.
In case a) we can identify two weakly bound dimer states (orange dashed lines). For
positive aCsCs ≫ rvdW the energy of the least bound state approaches the binding
energy of the universal dimer Eb = −1/Ma2

CsCs (3.10) which is solely determined
by the scattering length aCsCs. The size of the wavefunction of this very weakly
bound dimer state is typically on the order of the scattering length and is therefore
also known as halo state [Chin et al., 2010]. The energy of the deeply bound state,
however, persists across the resonance and shows gradual steps around aCsCs = rvdW

which mark a crossover between the vdW-dominated (aCsCs < rvdW) dimer and the
halo state (aCsCs > rvdW). In case b), taking into account the total potential, we see
that the energy of the most deeply bound state closely follows case a) and we can
assign this state to the Cs2 dimer. The following state En=0 does not coincide with
the univeral Cs2 dimer anymore, but persists across the resonance. This clearly
demonstrates the necessity of the mediated interaction via the Li atom to form
Efimov states. Higher lying Efimov states En=1..3 are still affected by the presence
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Figure 4.5: Efimov spectrum of two Cs atoms in a Li Fermi sea with aBB = ∞
(blue line). A finite density of the Fermi sea of (orange line) modifies the
binding energies of the Efimov states as well as the scattering continuum. Data
shown for fermion wavevectors of kF rvdW = 0.00 (blue) and kF rvdW = 0.01
(orange).

of the large halo dimer, as indicated by the gradual steps around aCsCs = rvdW.
From the energy spectrum we can additionally calculate the scaling factors λ2

n :=
En/En−1 between two adjacent energy levels for which we expect the universal value
of λ2

BO = (5.63)2 = 31.7 in case of a pure −1/R2 potential in the BO approximation.
However, the presence of the Cs2 dimer state determines the three-body parameter
E0 and leads to a scaling factor of λ2

1 = 42.9 well above the universal value at
resonance. The scaling factor approaches the universal value for higher-lying states
where already the second factor λ2

2 = 31.9 only shows a small deviation.

4.4 Two bosons meet the Fermi sea
We now turn to the scenario where the two heavy Cs atoms are immersed in a Li
Fermi sea (Fig. 4.5). In this scenario the binding energies are modified and the
scattering continuum is lowered [Nygaard and Zinner, 2014; Sun and Cui, 2019].
Instead of three free atoms or a dimer plus one free atom, the scattering continuum
is made of two impurities in a Fermi sea (Fermi polarons) or an impurity dimer state
in a Fermi sea dependent on the scattering length. To understand the origin of this
behaviour we will in the following first derive the mediated interaction potential of
two heavy atoms in the presence of a whole Fermi sea, following [Nishida, 2009].
Afterwards, we solve the Schrödinger equation analogously to the previous section

70



4.4. Two bosons meet the Fermi sea

and investigate the effect of the Fermi sea on the binding energies of the Efimov
states, which we refer to as in-medium Efimov states, with focus on the intraspecies
scattering length. Finally, we discuss our findings on how the Efimov scaling law is
violated and is replaced instead a by modified version incorporating the length scale
kF of the Fermi sea.

We start by extending the Hamiltonian (4.3) to N fermions at positions ri which
yields

H = − 1
M

∇2
R −

N∑
i=1

1
2m∇2

ri
+ VBB(R) +

N∑
i=1

[VBX(|ri + R/2|) + VBX(|ri − R/2|)]

(4.17)

In Sec. 4.2 we have already derived the bound state energies ϵ±(R) for solving the
light atom Schrödinger equation which we can use here analogously. In addition to
the bound states, there exists a continuum of fermion scattering states at positive
energies ϵ = k2/2m > 0. The fermion wavefunction is of the form

ψR(r) ∝ C1
sin(k |r − R/2| + δ±)

|r − R/2|
+ C2

sin(k |r + R/2| + δ±)
|r + R/2|

. (4.18)

The coefficients C1, C2 and the acquired scattering phase shift δ± are found again
via the Bethe-Peierls boundary condition, yielding {C1, C2}± = {1,±1} and the
equation

k cos δ±(k) ± sin(kR + δ±(k))
R

= −sin δ±(k)
a

. (4.19)

Solving for the phase shift, one obtains

tan δ±(k) = − kR ± sin(kR)
R/a± cos(kR) (4.20)

where 0 ≤ δ±(k) < π. Next, we assume that the atoms are confined in a large sphere
with radius L ≫ R around the origin. At the boundary, the wavefunction vanishes
ψ(r → L) → 0 such that we find discretized momenta

k+
nL+ δ+ = nπ,

k−
nL+ δ− = (n− 1/2)π.

(4.21)
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The total energy of the system is therefore

E = −
κ2

+ + κ2
−

2m +
N∑

n=1

k+2
n + k−2

n

2m . (4.22)

Taking the thermodynamic limit N,L → ∞ and subtracting the free particle ener-
gies one can find the energy reduction

∆E(R) = −
κ2

+ + κ2
−

2m −
∫ kF

0
dkk

δ+(k) + δ−(k)
πm

(4.23)

where for the Fermi momentum the definition kF := Nπ/L has been used. At large
interparticle distances R → ∞, the heavy bosons no longer interact and the energy
reduction approaches the energy of two single polarons,

∆E(R → ∞) → 2µ (4.24)

where the single-polaron energy can be written down analytically as [Combescot
et al., 2007]

µ = − k2
F

2m
kFa+ [1 + (kFa

2)][π/2 + arctan(1/kFa)]
π(kFa2) . (4.25)

The effective, mediated interaction between the two heavy bosons is finally given by

Veff(R) = ∆E(R) − 2µ. (4.26)

It is instructive to write down the effective potential analytically in different limits.
In the unitarity limit (a → ∞), with a simple change of variables in (4.23), the
effective potential can be expressed as

Veff(R) = − c2

2mR2 − k2
F

m
v(kFR) (4.27)

which has the exact same form as the Efimov potential (4.12) with the addition of a
long-range term where v(kFR) is a dimensionless function representing the scattering
contribution in (4.23). On the other hand, in the limit of a ≪ R, k−1

F , the potential
is

Veff(R) = − k2
F

2m
(akF )2 cos(2kFR) − sin(2kFR)

2π(kFR)4 (4.28)

and of the same form as the RKKY interaction [Ruderman and Kittel, 1954] or of
Friedel oscillations [Friedel, 1952] which are well-known in solid-state physics and
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Figure 4.6: Left panel: Mediated interaction potential of two heavy Cs atoms in
a Li Fermi sea with aCsCs = aLiCs = ∞. For comparison the pure −1/R2

potential (grey dotted line) and the −1/R6 potential (grey dashed line) with
a short-range cutoff (hatched area) are plotted. On a lin-lin scale (inset) and
higher values of kF rvdW = 0.02 (red) and kF rvdW = 0.05 (purple) the repulsive
barrier with oscillating decay is clearly visible. Right panel: eigenenergies of
the system for different kF .

arise as a consequence of the sharp edge of the Fermi distribution.
The total potential V (R) = Veff(R)+VBB(R) is shown in Fig. 4.6 for which we solve
the heavy particle Schrödinger equation (4.6) with aCsCs = aLiCs = ∞. The gray
hatched area marks the hard wall below the short-range cutoff R0. Setting kF rvdW =
0 we recover the Efimov potential −1/R2 with short-range vdW interaction −1/R6.
For increasing kF we observe the growth of a repulsive potential barrier which is
located around R = k−1

F . In addition, the potential barrier shows an oscillating
decay at large distances which can be seen more clearly in the inset for larger values
of kF . The corresponding eigenenergies are shown in the right panel of Fig. 4.6 and
we note that the values of the Fermi wavevector 0.01 ≤ kF rvdW ≤ 0.05 are related
to fermion density n via kF = (6π2n)1/3 and correspond to realistic experimental
values on the order of 1011cm−3 − 1013cm−3. For kF rvdW = 0.01, the lowest Cs2

dimer state and the two lowest in-medium Efimov states remain unaffected by the
Fermi sea. However, the next higher bound state is shifted towards higher energies
due to the rise of the potential around R ∼ 70 rvdW forming the repulsive barrier.
Any higher lying in-medium Efimov states are entirely suppressed upon increasing
repulsion of the potential. In the same way, for a higher density of kF rvdW = 0.05,
the potential starts to deviate from the pure −1/R2 potential around R ∼ 10 rvdW
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Figure 4.7: Energy spectrum of two Cs atoms in a Li Fermi sea across a Cs-Cs
resonance (for aLiCs = ∞). The presence of the Fermi sea leads to a suppression
of bound states and break the discrete scaling behavior.

leading to a weakening of the binding already of the second Efimov state followed
by suppression of the infinite series one state earlier than in the previous case.

As we did before for the Cs-Cs-Li system we would like to investigate the role
of the intraspecies interaction in the presence of the Fermi sea (see Fig. 4.7). For
kF rvdW = 0, we again recover the energies of the Efimov states without Fermi sea
from Fig. 4.4. A finite density of the Fermi Sea (kF rvdW = 0.05) leads to first devi-
ations in the energy E1 for aCsCs > rvdW when the system undergoes a change from
the vdW-dominated to the long-range regime. After crossing the resonance towards
negative scattering lengths, this deviation increases further around −aCsCs ∼ rvdW.
Before reaching the next step aCsCs ∼ rvdW on the positive scattering length side, the
state rapidly rises to the dissociation threshold. Analogously, the states are more
robust for kF rvdW = 0.01 and show a first deviation in the energy E2 supporting
one more bound state in total.

Finally, we calculate the density dependence of the binding energies (see Fig.
4.8). The energies remain nearly constant before they show a steep rise for increasing
kF disfavoring the formation of bound states. The symmetry of the curves suggests
a scaling behavior similar to the three-body Efimov scenario. In the presence of the
Fermi sea, a new discrete scaling law can be formulated incorporating the additional
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Figure 4.8: Density dependence of the bound state energies for intraspecies reso-
nance. Inset: Clear deviations from the discrete scaling law are found for the
ground state (n = 0) due to finite range effects while states with n ≥ 2 fall on
the same curve following the discrete scaling.

length scale kF which reads [Nygaard and Zinner, 2014; Sun and Cui, 2019]

a
(n+1)
− (kF ) = λa

(n)
− (λkF ),

En+1(kF , a) = λ−2En(λkF , λ
−1a).

(4.29)

In our calculation including boson-boson interactions, this scaling is fulfilled well
for bound states n ≥ 2 (see inset of Fig. 4.8). Analogous to the Cs-Cs-Li system
the first excited bound state (n = 1) shows a slight deviation from (4.29) while the
scaling is broken for the ground state due to the short-range vdW interaction.

Conclusions

In conclusion, we have calculated the Efimov energy spectrum in a system of two
heavy Cs atoms in the limits of one additional Li atom as well as a whole Li Fermi
sea taking into account intraspecies interactions. By using the Born-Oppenheimer
approximation we find that in the former case the intraspecies interactions lead to
a step-like behavior in the energy spectrum marking a crossover between regions
dominated by the short-range vdW potential and the long-range Efimov potential.
In the latter case, the formation of bound states is suppressed by the presence of
the Li Fermi sea for sufficiently large kF and the discrete Efimov scaling law is vio-
lated. However, a new discrete scaling law can be formulated by including kF as an
additional length scale. This may also give rise to new universal region ("window of
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universality") which does not only depend on the characteristic range of two-body
interactions, but also on the Fermi wavevector. Experimentally, the in-medium Efi-
mov states may be mapped out analogously to previous experiments [Ulmanis et al.,
2016b] via three-body losses with the new requirements of lower temperatures and
higher densities for creation of a Fermi sea. The Feshbach resonances of the Li-Cs
system around 843 G and 889 G also provide the possibility to investigate both neg-
ative and positive intraspecies interactions. More quantitative predictions on the
positions of the bound states would, however, require calculations beyond the BO
approximation which only deliver qualitative results. For the Li-Cs Efimov states
in vacuum more quantitative results have been obtained in the spinless vdW theory
[Häfner et al., 2017] in which the system is treated in a hyperspherical formulism
with two-body interactions modeled by a Lennard Jones potential. Finally, in more
realistic scenarios, finite temperatures and effects such as particle-hole formation
due to scattering of the bound states with the Fermi sea, leading to an altered ef-
fective potential [MacNeill and Zhou, 2011], need to be considered.
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Chapter 5

Scattering of two heavy Fermi
polarons: Resonances and
quasi-bound states

Parts of this chapter are based on the following publication:

Scattering of two heavy Fermi polarons: Resonances and quasibound
states
T. Enss, B. Tran, M. Rautenberg, M. Gerken, E. Lippi, M. Drescher, B. Zhu,
M. Weidemüller, and Manfred Salmhofer
Physical Review A 102, 063321 (2020)

In the previous chapter we have studied the effect of a Fermi sea on the three-
body bound states in the strongly mass-imbalanced Li-Cs system. We now want
to turn to the investigation of the scattering states (E > 0) where we consider
two heavy impurities in a Fermi sea, or two heavy Fermi polarons. The possibility
to create such quasiparticles with ultracold gases including the ability to enter the
strongly interacting regime between impurity and Fermi sea has led to a number
of realizations of Fermi polarons [Schirotzek et al., 2009; Nascimbène et al., 2009;
Kohstall et al., 2012; Koschorreck et al., 2012; Cetina et al., 2016; Scazza et al.,
2017; Yan et al., 2019; Ness et al., 2020; Fritsche et al., 2021] where e.g. the spec-
tral properties have been mapped out. After studies of single-polaron properties,
experimental investigations on fermion-mediated interactions [DeSalvo et al., 2019;
Edri et al., 2020; Mukherjee et al., 2020], which were typically weak, have come into
focus. Mediated interactions are of great interest due to their wide applicability
across different areas of physics. In condensed matter physics, the RKKY interac-
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Figure 5.1: Effective potential between two heavy Cs atoms in a Li Fermi sea,
shown for negative, resonant and positive interaction (from left to right).

tion serves as an indirect coupling between nuclear magnetic moments or localized
electron moments via the conduction electrons in a metal. [Ruderman and Kittel,
1954]. In quantum field theory, the Casimir effect [Casimir, 1948] is a manifestation
of mediated interactions between e.g. two conductor plates due to vacuum fluctua-
tions. The Fermi sea in ultracold gases can be seen as an analogue of the vacuum
in the Casimir effect [Nishida, 2009].

In the following we investigate the scattering properties of two Fermi polarons
on the specific example of the Li-Cs system. Similarly to Ch. 4, we make use of the
induced interaction potential in Born-Oppenheimer approximation [Nishida, 2009]
to calculate the scattering phase shift and the induced scattering length between the
impurities. In addition, we investigate if in-medium Efimov states can become quasi-
bound states at positive energies where the induced interaction potential features
a repulsive barrier. We start by introducing the variable phase method (Sec. 5.1)
as a means to calculate the scattering properties. In Sec. 5.2 we first look at the
Efimov bound state spectrum without intraspecies interactions before presenting our
results for the scattering phase shift and our findings of resonances in the induced
interactions in Sec. 5.3. Finally, the formation of quasi-bound states at positive
energies is discussed in Sec. 5.4.

5.1 Variable phase method

Since in this chapter, we will only consider the effective potential between the heavy
impurities (Fig. 5.1) without taking into account the intraspecies interactions, we
omit the index V (R) := Veff(R). The heavy atoms are therefore governed by the
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stationary Schrödinger equation[
− 1
M

∇2
R + V (R) + 2µ

]
ψ(R) = Eψ(R). (5.1)

where 2µ is the energy of two free Fermi polarons (4.24). We can solve the Schrödinger
equation directly to calculate the bound state energies, similarly to the results in
Ch. 4. In addition to the bound state energies, we can calculate the scattering phase
shift δind

ℓ (k) with angular momentum ℓ by comparing the phase of the scattered ra-
dial wavefunction to the free case. A more elegant way to calculate δind

ℓ (k) lies in
the employment of the variable phase method [Calogero, 1967]. Instead of solving
a second-order linear differential equation this method solves a first-order nonlinear
differential equation (Riccati equation). The name variable phase comes from the
fact that the dependent variable for which we solve is always directly linked to the
scattering phase shift. Focusing on the s-wave phase shift (ℓ = 0), we integrate the
equation

k∂Rδ
ind
ℓ=0(k,R) = −MV (R) sin

[
kR + δind

ℓ=0(k,R)
]2

(5.2)

where the so-called phase function δind
ℓ=0(k,R) asymptotically approaches the scatter-

ing phase shift δind
ℓ=0(k,R → ∞) = δind

ℓ (k) with the boundary condition δind
ℓ=0(k,R =

0) = 0. Via the effective range expansion (3.6) the scattering phase shift is related
to the scattering length. An analogue variable equation can therefore be setup

∂Raind(R) = −MV (R)[R − aind(R)]2 (5.3)

with the boundary condition aind(0) = 0 and the induced scattering length aind =
aind(R → ∞). Numerically, this equation cannot be solved straightforwardly by
finite difference methods due to resonances in a(R). By a change of variables [Ouer-
dane et al., 2003] a(R) = tan θ(R) and R = tan ρ we instead solve the equation

dθ(ρ)
dρ

= MV [tan(ρ)] sec4 ρ sin2[θ(ρ) − ρ] (5.4)

for distances [0, π/2). For all of the differential equations (5.1), (5.2), (5.4) we use
an ordinary differential equation solver employing an explicit Runge-Kutta method
of 8th order (DOP853).

Choice of short-range cutoff

Solving the above-mentioned equations requires a regularization since the singularity
in the short-range effective potential V (R → 0) = −α/R2 leads to a Hamiltonian
which is only bounded from below for α < 1/4. However, in a Li-Cs system, the large

79



Chapter 5. Scattering of two heavy Fermi polarons: Resonances and quasi-bound
states

−2 −1 0 1 2

1/kFa

−2.0

−1.5

−1.0

−0.5

0.0

(E
−

2µ
)/
E
F

a
(1)
− a

(1)
+

medium n = 1

vacuum n = 1

medium n = 2

vacuum n = 2

Figure 5.2: Efimov energy spectrum of two Cs atoms in the presence of one Li
atom (vacuum, dashed line) or a Li Fermi sea (medium, solid line) relative to
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0), respectively (the Fermi
energy has no physical meaning in this case).

mass ratio leads to α = (M/2m)c2 ≈ 3.6. Therefore, we choose a hard cutoff R0

such that the position of the Efimov ground state matches experimentally observed
values. In [Häfner et al., 2017], an Efimov scattering resonance has been determined
at a(1)

− = −2130a0, where a0 is the Bohr radius. Correspondingly, the cutoff is
calculated to be R0 = 220a0 or kFR0 = 0.1 if we assume a realistic fermion density
of n = 1013cm−3, as used in typical Fermi polaron experiments [Cetina et al., 2016].

5.2 Efimov spectrum

We start by solving the Schrödinger equation for the heavy atoms (5.1) without
intraspecies interactions for the Li-Cs system with M/m = 22.17 and a cutoff R0 =
220 a0 as described above. The corresponding bound state energies are shown in Fig.
5.2. Compared to the three-body system (vacuum), the presence of the Li Fermi
sea (medium) changes the binding energies and the scattering lengths a(n)

− where
the energies hit the scattering continuum, as already seen in Ch. 4.4. For weak
attraction, the Fermi sea facilitates binding and the scattering lengths a(n)

− shift
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Figure 5.3: scattering phase shift at negative interaction, unitarity, and positive
interaction.

towards smaller interaction strength. On the other hand, for positive scattering
lengths, the repulsive barrier in the effective potential (Fig. 5.1) hinders binding
and shifts a(n)

− towards larger interactions.

5.3 Scattering phase shift and induced scattering
length

Besides the bound states we now want to investigate the scattering states. We
therefore calculate the s-wave scattering phase shift δind

ℓ=0(k) by solving the variable
phase equation (5.2) for different interaction regimes (Fig. 5.3). From these curves
we can extract information on at least three important aspects: first, we recall that
via the effective range expansion (3.6) the s-wave scattering length is related to the
phase shift in the low energy limit:

aind = − lim
k→0

tan δℓ=0(k)
k

. (5.5)

Hence, the induced scattering length can be determined from the initial slope of
the curves and yield values of kFaind = −0.8,+0.7,−1.0 (from left to right) for the
exemplary curves in Fig. 5.3. Second, using Levinson’s theorem, the number of
bound states n can be read off from the zero momentum phase shift

δℓ=0(k → 0) = nπ. (5.6)

At resonance, we therefore have one bound state, as also seen before in Fig. 5.2.
Third, a rapid change of the scattering phase shift δℓ=0(k) = π/2, 3π/2, ... through
odd integers of π/2 leads to a maximum of the scattering cross section [Sakurai,
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1993]

σℓ=0(k) = 4π
k2 sin2 δℓ=0(k) = 4π

k2
1

1 + cot2 δℓ=0(k) (5.7)

In the right panel of Fig. 5.3 we see that the phase shift steeply rises and crosses
π/2. We will discuss in the next section in more detail how such a behavior might
form quasibound states behind the repulsive barrier of the effective potential. Before
that, we want to have a more detailed look on the induced scattering length and its
dependence on the interspecies interaction.

The induced scattering length is obtained by solving the variable phase equation
(5.3) and displayed in Fig. 5.4 (blue line). It exhibits two resonances, where one of
each is located on the positive and negative coupling side. In order to understand
the nature of these resonances we write down the analytical solution of (5.3) for the
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short-range −α/R2 potential (R0 < R ≪ |a| , k−1
F ) in the interval [R0, R],

aind(R) = R
[
1 − 1

2α + s0

α
tan

(
arctan 1

2s0
− s0 log R

R0

)]
(5.8)

where s0 =
√
α− 1/4 > 0. From this solution we find resonances with a log-

periodicity and the solution is repeated whenever s0 log(R/R0) is a multiple of π.
This corresponds to the typical periodicity of Efimov states [Petrov, 2012; Endo
et al., 2011] with the scaling factor of λ = exp(π/s0). In the solution including the
full potential in Fig. 5.4 we can confirm that the position of the resonances corre-
spond to the scattering lengths a(1)

− where the Efimov states cross the continuum in
Fig. 5.2. For a smaller cutoff R0 the potential supports more bound states [Sun and
Cui, 2019] and we can find more resonances in the induced scattering length.
Let us now compare our solution to different theoretical approaches. For weakly re-
pulsive impurities, the induced scattering length in second-order perturbation theory
(PT) can be written as [Santamore and Timmermans, 2008]:

aPT
ind = −kF

2π
(M +m)2

Mm
a2 +O(a3). (5.9)

PT therefore implies a negative induced interaction independent of the sign of the
interspecies interaction. Compared to the exact solution of the Schrödinger equation
we see no good agreement, even at weak coupling. We investigate this discrepancy
by looking at the Born approximation. The Born approximation is a weak potential
approximation assuming that the wavefunction is not substantially affected by the
potential. In the variable phase method, the definition is taken that the phase
function always stays small and never reaches multiples of π/2 [Calogero, 1967].
This corresponds to omitting the quadratic term in (5.3) and we can write

aBorn
ind =

∫ ∞

0
dRR2MV (R). (5.10)

We note that in the Born approximation this equation is integrable without the
necessity of a short-range cutoff R0. In the weakly attractive limit 1/kFa ≲ −1 we
can find an analytical solution with the potential

Vweak = −Θ(|a| −R)
2mR2

(
W (eR/|a|) − R

|a|

)2

+ a2

2m
2kFR cos(2kFR) − sin(2kFR)

2πR4 +O((kFa)3)

(5.11)

where the first and second term correspond to the bound and scattering state con-
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tribution, respectively (see Sec. 4.4). Inserting the potential (5.11) into (5.10) yields

aBorn
weak = M

2m

(
γa− kF

π
a2 +O(a3)

)
(5.12)

where γ =
∫ 1

0 dx [W (exp(x) − x)]2 ≈ 0.10. We see that in addition to the quadratic
dependence on the interspecies interaction a, which is also obtained in second-order
PT (5.9), the Born approximation yields linear dependence on a coming from the
bound state contribution of the potential. Therefore PT is not suitable to describe
attractive impurities, even for weak coupling R0 < |a| < k−1

F where the linear term
is dominant.
Solving the induced scattering length in Born approximation (5.10) with the full
potential, we find that it agrees well with (5.12) around |1/kFa| ≳ 3. However, it
still shows a significant discrepancy to the exact solution of the Schrödinger equation.
We attribute this behavior to the singularity of the potential which might alter the
wavefunction substantially beyond the validity of the Born approximation.

5.4 Quasibound states

Lastly, we want to investigate the possible existence of so-called quasibound states
in our system. The repulsive barrier in the effective potential between the two heavy
impurities (Fig. 5.1) raises the question whether in-medium Efimov states can be
pushed towards positive energies E > 0 and survive behind the barrier, similar
to those found in [Kartavtsev and Malykh, 2007]. Due to the finite height of the
barrier and the possibility of quantum mechanical tunneling, the state will have a
finite lifetime and will therefore be quasibound. As discussed above, the associated
scattering phase shift of such a state rapidly rises through nπ/2 (with n = 1, 3, 5, ...)
from below when the incident energy is resonant to the energy of the quasibound
state and results in a maximum of the scattering cross section. More precisely, we
identify a quasibound state if the resonance is of Breit-Wigner form. The Breit-
Wigner formula is obtained by considering the s-wave scattering cross section (5.7)
and expanding cot δℓ=0(k) around the resonant energy Eqbnd assuming that it varies
smoothly around the resonance. This yields

cot δℓ=0(k) = − 2
Γqbnd

(E − Eqbnd) + ... (5.13)
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Figure 5.5: Scattering resonance and quasi-bound states. In the Li-Cs system
enhanced scattering processes can be seen in the maximum of the scattering
cross section (dashed red line). The phase shift (blue solid line) and its cotan-
gent (green dotted line) cross the values of π/2 and 0, respectively, around
k = 1.12kF . The inset shows a well-defined quasibound state in a system with
a larger mass ratio of M/m = 44.33.

where the definition (d(cot δℓ=0)/dk)E=Eqbnd := 2/Γqbnd has been used. The Breit-
Wigner formula in the s-wave scattering cross section is therefore

σℓ=0(k) = 4π
k2

Γ2
qbnd/4

(E − Eqbnd)2 + Γ2
qbnd/4

(5.14)

where Γqbnd denotes the the full width at half maximum decay width.

For the Li-Cs system (Fig. 5.5) with M/m = 22.17 and a scattering length close
to the resonance position a

(1)
+ (1/kFa = +1.87 ≳ 1/kFa

(1)
+ = +1.85) the scatter-

ing cross-section shows a maximum at positive energies close to EF . Accordingly
the scattering phase shift (and its cotangent) rises from below (above) and crosses
π/2 (zero), as expected. However, the width Γqbnd > Eqbnd is still large such that
we cannot assign this to a quasibound state, yet. Instead we only find enhanced
scattering between the impurities which could lead to a greater mean-field shift in
the impurity spectra. The lifetime of states trapped behind the repulsive barrier
depends on its height which could be tuned by changing the mass ratio M/m which
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scales linearly with the barrier height. Increasing the mass ratio, we find quasi-
bound states for values of M/m ≳ 40. In the inset of Fig. 5.5 the calculation has
been performed hypothetically for twice the Li-Cs mass ratio M/m = 44.33 and
1/kFa = +2.780 ≳ 1/kFa

(1)
+ = +2.777. In this regime, the in-medium Efimov state

can live on behind the barrier and can form a well-defined quasibound state with
Γqbnd < Eqbnd.

Experimentally, it does not seem feasible to observe quasibound states in a sys-
tem of Cs impurities immersed in a Li Fermi sea. According to our calculations
even the large Li-Cs mass ratio is not large enough to support long-lived states be-
hind the repulsive barrier. More generally, quasibound states could be detected as
a mean-field shift in the polaron spectrum (on the order of a few percent [Naidon,
2018]) or by radio-frequency association [Lompe et al., 2010].

Conclusions

In this chapter we have computed the scattering properties of two heavy Cs impu-
rities immersed in a Li Fermi sea employing the Born-Oppenheimer approximation.
We solved the Schrödinger using the variable phase method allowing us to extract
the scattering phase shift and the induced scattering length in dependence of the
interspecies scattering length. For very weak attractions on the order of kFa ≈ 0.01
the induced scattering length is similar to results from perturbation theory with an
additional, small contribution arising from the bound states, consistent with exper-
imental findings [DeSalvo et al., 2019; Edri et al., 2020]. On the other hand, our
results are the first findings of resonant behavior in the induced scattering length
in the Fermi polaron scenario. The resonances are found at interspecies scattering
lengths at which the in-medium Efimov states cross the scattering continuum. For
increasing positive interspecies scattering lengths the in-medium Efimov states can
be shifted to positive energies to form quasiparticles behind the repulsive barrier of
the induced interaction potential. Despite the large Li-Cs mass ratio, we only find
long-lived quasibound states for M/m ≳ 40 making an experimental observation in
our system infeasible. In general, beyond the current results, one might increase
the impurity concentration where the induced interaction potential is simply the
sum over pairwise interactions [Nishida, 2009; Bulgac and Wirzba, 2001]. In a finite
temperature gas of impurities with thermal wavevector k ∼ λ−1

d̊B
=
√
mkBT/2π an

enhanced mean-field energy shift would be expected for T ≈ Eqbnd.
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Conclusions

In this thesis we have presented a series of experimental and theoretical investiga-
tions from few-body Efimov physics to many-body Bose and Fermi polarons in an
ultracold mixture of 6Li − 133Cs with a large mass ratio.

Starting from an existing experimental apparatus which allowed for studies of
Cs-Cs-Li Efimov trimers in the thermal regime, we reconstructed and improved the
setup for an optimized production of quantum degenerate gases with the aim of
creating polarons. Improved sub-Doppler laser cooling of 133Cs via degenerate Ra-
man sideband cooling and of 6Li via gray molasses cooling with temperatures of
TCs < 1µK and TLi = 42µK allow for better initial conditions before further evap-
orative cooling. Loading of 6Li and 133Cs atoms into existing optical dipole traps
has been improved and a new microtrap for tight confinement of 6Li atoms in a
133Cs BEC has been implemented. For the probing of polarons, the radio-frequency
spectroscopy setup for 6Li has been upgraded to allow for arbitrary waveform gen-
eration and Rabi frequencies of up to 13.5(1) kHz in the Li|1⟩→Li|2⟩ transition. A
microwave setup has been implemented for 133Cs to drive F = 3 → F = 4 transi-
tions. We have used the latter to improve on the compensation of stray magnetic
fields.

With the upgrade of the experimental apparatus we have presented our route
towards the creation of Bose polarons. We have presented the realization of a 133Cs
BEC at high magnetic fields around B = 895 G. We trap 133Cs atoms in a magnet-
ically levitated reservoir trap and make use of the dimple trick followed by evapo-
rative cooling. In this way we achieve 133Cs BECs with N = 1 − 2 × 104 atoms. A
characterization of the dimple trick revealed a small gain of < 4 in local phase-space
density. An improvement of the dimple trick by a change of the relative volumes
between reservoir trap and dimple trap is suggested to achieve BECs with higher
atoms numbers. We have presented our preparation scheme of ultracold 6Li atoms
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with high evaporation efficiencies of up to γ = 8.8 in the dimple trap. This allows
for the creation of molecular BECs with up to N = 1×105 molecules. The 6Li atoms
can furthermore be transferred into the microtrap where they serve as impurities in
the Bose polaron scenario. For mixing the 6Li impurities with the 133Cs BEC we
have designed and proposed an experimental scheme which overcomes many of the
challenges related to the high 6Li−133Cs mass ratio from efficient dipole trap loading
to the spatial overlap of 6Li and 133Cs at ultralow temperatures. With this scheme
we expect to be able to map out the polaron energy by means of radio-frequency
spectroscopy.

On the theoretical side we have studied a system of two heavy 133Cs atoms and
one light 6Li atom in the Born-Oppenheimer approximation. The fermion-mediated
interactions between the two 133Cs atoms give rise to an infinite series of Efimov
three-body bound states. Including the intraspecies scattering length in the model,
we have seen that it determines the three-body parameter and therefore the scal-
ing factor between consecutive states. In the energy spectrum we have found a
crossover between regions dominated by the short-range vdW potential and the
long-range −1/R2 potential when aCsCs ≈ RvdW. Replacing the single 6Li atom by
a whole 6Li Fermi sea we have found that bound state formation is weakened and
eventually suppressed for sufficiently high kF . The suppression of bound states is
explained by a build-up of oscillations in the effective interaction potential. This
leads to a violation of the discrete scaling law which is, however, replaced by a mod-
ified version including kF as an additional length scale. Although our model only
gives qualitative results within the Born-Oppenheimer approximation, it provides
intuitive access to Efimov physics in a mass-imbalanced system. A better under-
standing may be gained by mapping out the bound state energies in the Fermi sea
experimentally via atom-loss spectroscopy. In the 6Li−133Cs system the experiments
could be performed in the vicinity of the s-wave Feshbach resonances at B = 843 G
and B = 889 G, featuring a negative and positive intraspecies scattering length,
respectively.

In addition to the bound state energies we have also investigated the scatter-
ing states of two heavy Cs atoms in a Li Fermi sea, or two Fermi polarons, in the
Born-Oppenheimer approximation. We have calculated the scattering phase shift
and the induced scattering length between the two Cs atoms mediated by the Fermi
sea. For weak interspecies attractive interactions, the induced interaction is also
weakly attractive consistent with recent experiments [DeSalvo et al., 2019; Edri
et al., 2020]. However, for strong interspecies interaction, we have found resonances
in the induced scattering length leading to a sign change. The position of these
resonances is determined by the values of the interspecies scattering lengths where
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the bound states cross the scattering continuum. This demonstrates the different
nature of two attractive impurities in a Fermi sea compared to the RKKY interac-
tion of between nuclear spins in an electron gas. While the long-range potential has
the same oscillating form, the bound states arising in the short-range −1/R2 poten-
tial alter the induced interactions. Finally, we have studied if the bound states can
turn into quasibound states trapped behind the repulsive barrier of the interaction
potential. Our calculations suggest that long-lived states can only form in systems
with even larger mass ratios M/m ≳ 40. Experimentally, induced interactions be-
tween Fermi polarons may be measured by mapping out the impurity concentration
dependence of the RF spectrum [Fritsche et al., 2021]. For increasing concentration
and sufficiently low temperatures the impurity will eventually take over the role of
the majority particle and form Bose polarons.
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Appendix

Optical setup of Cs dimple trap

The optical setup of an alternative dimple trap for 133Cs is shown in Fig. A.1. Since
the currently implemented dimple trap (see Fig. 2.10) is used for both 6Li and
133Cs changes of the optical setup, always affect both species. For test purposes,
an independent Cs dimple trap has been setup, which can be used to find the
optimal volume ratio between reservoir trap and dimple trap in the context of the
dimple trick (Ch. 3.2.3). The optical setup of the trap is depicted in Fig. A.1.
The laser source is an ytterbium fiber laser1 with a wavelength of λ = 1064 nm
and a maximum output power of P = 3.6 W. The fiber collimator is held in a
home-built mount made out of a massive aluminum block in order to ensure a high
pointing stability. The collimated output beam with a Gaussian beam diameter of
2w = 4 mm is demagnified by a Gaussian telescope to 1 mm. The beam passes an
acusto-optical modulator2 (AOM) , which is used for switching, with a diffraction
efficiency of about 90 % in the first order. A first polarizing beam splitter (PBS)
only transmits p-polarized light, before it is split to two single-mode polarizing
maintaining optical fibers3. Without the first PBS fluctuations in the laser light
polarization would translate into a different power ratio after the two fibers. The
light is guided to the vacuum chamber table (Fig. A.1b)) and the two fibers output
light with perpendicular, linear polarization with respect to each other in order to
avoid interference. In both branches of the dipole trap the light is first magnified by
a Galilean telescope before it is focused into the chamber. In this way, two beams
cross under an angle of slightly below 90◦ and the current mean beam waist amounts
to w = 74µm. The setup, however, allows for an easy change of the beam waist by

1IPG YLD-3-1064-LP
2Gooch and Housego, 3110-197
3Fibers: Thorlabs P3-780PM-FC-10, Fiber coupler: Schäfter + Kirchhoff, f = 8 mm, 60FC-4-

M8-08
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Figure A.1: Optical setup of the Cs dimple trap. a) On the laser table, the laser is
switched by an AOM and guided to the vacuum chamber table via two fibers.
b) The light in two optical branches is magnified and focused into the chamber
under a crossing angle of nearly 90◦.
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replacing the second lens in the Galilean telescope which is realized in a cage mount.
The laser power is stabilized by picking up light on a photodiode4 behind a mirror
and feeding it into a home-built PID controller which controls the AOM RF power.
In each branch of the dipole trap, a piezo mirror holder is implemented which can
be used for fine adjustment of the beam position or to excite dipole oscillations of
the atomic cloud to e.g. measure trap frequencies and map out the beam waist.

4Thorlabs PDA30B-EC, Ge amplified detector
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