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Towards understanding the dimensional BCS-BEC crossover
and its spectral properties

In this thesis we investigate several aspects of ultracold Fermi gases within the framework
of the functional renormalisation group (fRG). The first part concerns the determination of
the thermodynamics and the phase structure of a Fermi gas within a dimensional crossover
from three to two dimensions over the whole BCS-BEC crossover. Particular focus is put on
the determination of the finite temperature phase diagram for different confinement which
is then compared to recent experimental observations. In the second part, we perform an
analytical continuation of the two-point functions in Euclidean space to real times. This
allows us to gain knowledge about the spectral functions within the three-dimensional BCS-
BEC crossover en route to obtaining transport properties of ultracold quantum gases. The
third part is devoted to the access to quantitative precision within the fRG approach.
We employ an approach that utilises higher order density fluctuations as the fundamental
building blocks which circumvents the fine-tuning problem of the density on the microscopic
level. We primarily compute the equation of state and the gap over the whole range of
BEC-BCS crossover at vanishing temperature. The very good quantitative agreement with
recent experimental results, particularly at unitarity, thus shows the quantitative reliability
of the fRG framework.

Fortschritt zum Verständnis des dimensionalen
BCS-BEC-Crossovers und seiner spektralen Eigenschaften

Mit dieser Arbeit untersuchen wir verschiedene Aspekte von ultrakalten Fermi-Gasen im
Rahmen der funktionalen Renormierungsgruppe (fRG) und versuchen deren Verständnis zu
erweitern. Der erste Teil beschäftigt sich mit der Bestimmung der Thermodynamik und der
Phasenstruktur eines Fermi-Gases innerhalb eines dimensionellen Crossovers von drei auf
zwei Dimensionen über den gesamten BCS-BEC-Crossover. Besonderes Augenmerk legen
wir auf die Bestimmung des Phasendiagramms bei endlicher Temperatur für verschiede-
ne Ausdehnungen, was mit experimentellen Beobachtungen verglichen wird. Im zweiten
Teil führen wir eine analytische Fortsetzung der Zwei-Punkt-Funktionen im euklidischen
Raum zu reelen Zeiten durch. Dies ermöglicht es, Erkenntnisse über Spektralfunktionen
im dreidimensionalen BCS-BEC-Übergang als Zwischenschritt zu Transporteigenschaften
zu gewinnen. Der dritte Teil ist der Bestimmung von Observablen quantitativer Präzision
innerhalb des fRG-Ansatzes gewidmet. Wir verwenden einen Ansatz, der Dichtefluktuatio-
nen höherer Ordnung nutzt, um ein Fine-Tuning-Problem der Dichte auf mikroskopischer
Ebene zu umgehen. Wir berechnen die Zustandsgleichung und die Gap über den gesamten
BEC-BCS-Crossover bei verschwindender Temperatur und zeigen bei guter Übereinstim-
mung mit experimentellen Daten die quantitative Zuverlässigkeit des fRG-Ansatzes.
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CHAPTER 1

Introduction

Ultracold quantum gases provide a rich field exhibiting a plethora of phenomena, often
times going beyond the expected.The theoretical prediction of Bose-Einstein condensation
by Satyendra Bose und Albert Einstein in the 1920s [4, 5] and both the experimental
discovery of superfluidity in 4He by Pyotr Kapitza, John Allen and Don Misener [6, 7] and
the phenomenon of superconductivity by Heike Kamerlingh Onnes [8] laid the foundation
for a series of experimental discoveries. These necessitated new theoretical understanding
and accompanying frameworks in the field of many-body physics, sometimes coming to
fruit with a rather long delay. For example, the insight by John Bardeen, Leon Cooper
and Robert Schrieffer that superconductivity can be seen as a Bose-Einstein condensation
of loosely bound fermions and the so-called BCS-theory came decades after its experimental
discovery in 1957 [9]. With the realisation of a Bose-Einstein condensate in an ultracold
trapped dilute gas of bosonic alkali atoms in 1995 [10–12] and likewise of its fermionic
counterpart in 1999 [13–15], a new playground for investigating the fundamental laws of
nature was born.

1.1 Motivation

Due to their near perfect tunability and experimental control, ultracold quantum gases pro-
vide a perfect test-bed for gaining understanding of the physical principles behind many
effects at the interface of few- and many-body physics. A key element is the achievement
of sufficiently low temperatures for quantum degeneracy where the behaviour of the par-
ticles is no longer determined by classical physics. One rather has to deal with quantum
many-body phenomena, such as Bose-Einstein condensation. For the highly controlled
experimental realisation, a couple of accomplishments were necessary, namely trapping
atoms in a magnetic or optical trap [16], pre-cooling with laser beams [17], a subsequent
evaporative cooling step [18] and imaging the gas in-situ or in momentum space after an
expansion of the gas.
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Chapter 1 Introduction

From a theoretical point of view the appeal of ultracold quantum gases lies in their low-
energy nature. At these very low temperatures the complex interatomic potential can be
successfully modelled by point-like interactions between the particles. As a consequence,
ultracold atom systems can be effectively described by a simple many-body Hamiltonian
with contact interactions, irrespective of their atomic and sub-atomic details.

A particularly neat property of ultracold quantum gases is the possibility of tuning both
the interactions between the individual atoms, as well as their external trapping potential.
This allows for creating complex systems with full control on their properties and inter-
actions. For example, a standing wave of light, using counter-propagating laser beams,
induces a conservative periodic optical lattice [19]. The shape of the induced periodic po-
tential together with its depth and the interactions between the particles, attracted to the
valleys of the potential, can be changed in a highly controlled way. This allows to emulate
ionic crystals and to study condensed matter systems modelled through a regular lattice
of ions, such as Hubbard model physics [20, 21]. An advantage compared to, for example,
solid-state systems is the absence of unwanted impurities, making for a very clean working
sample.

As an alternative to optical lattices the ability to tune the interactions between the
atoms in an ultracold quantum gas is introduced by means of a so-called Feshbach reso-
nance. In a two-body scattering process, the incoming and outgoing states have a different
spin configuration such that an external magnetic field couples differently to their dis-
tinct magnetic moments. The Feshbach resonance can then be used to tune the scattering
length, which sets the rate of scattering processes. Specifically when considering a gas of
two-component ultracold fermions, the Feshbach resonance allows to tune from a weakly
interacting gas of spatially well-separated individual fermions to strong attractive interac-
tions where fermion pairs become tightly bound. In this situation of strong attraction, for
a large positive scattering length, the pairs are much smaller than the interparticle spacing,
essentially constituting a bosonic dimer. For a weak attraction the fermionic system con-
denses into the superfluid state via the formation of Cooper pairs in the BCS picture, while
in the case of bosonic dimers the superfluid state is reached via Bose-Einstein condensation.
It turns out that this evolution between the two extremes is a smooth transition, coining
the term BCS-BEC crossover, as proposed in [22, 23]. Its importance lies in the fact that
the entire range between the previously disconnected limits of BCS- and BEC-physics can
be investigated by the turn of a knob.

The BCS-BEC crossover smoothly interpolates between a weakly interacting gas of
fermions over a strongly correlated region to a region of weakly interacting bosonic dimers.
For a three-dimensional system at the centre of the crossover, i.e. for a diverging three-
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1.1 Motivation

dimensional scattering length, a scale invariant universal system can be found. This so-
called unitarity limit is of great interest, since it allows to study strongly correlated fermion
matter, as relevant for a range of physical systems from electrons in metals to neutron
stars [24], with ultracold atoms. All thermodynamic quantities become universal leaving
only a single remaining length scale, the (inverse) Fermi momentum. As a consequence,
the ground state energy is proportional to the energy of the free Fermi gas at the same
density with a proportionality factor called the Bertsch parameter [25, 26]. All density
derivatives of the energy, e.g. the chemical potential, the pressure, or the speed of sound,
only depend on the universal Bertsch parameter. Its accurate determination has led to a
great undertaking in both experiment and theory [27–34].

At the same time, the strong correlations within the BCS-BEC crossover call for a non-
perturbative theoretical framework which is able to capture the rich phase structure. One
such theoretical method is given by the non-perturbative functional renormalisation group
(fRG) [35–44]. Built around the functional integral formalism of quantum field theories
it provides a tool to describe the scale dependent evolution of effective actions, thereby
including thermal and quantum fluctuations. This evolution is described by a flow equa-
tion, first proposed by Christof Wetterich [35], and essentially boils down to a description
of running couplings of the theory. It thereby enables us to resolve critical phenomena, as
well as the (whole) phase structure and thermodynamic quantities.

The three-dimensional BCS-BEC crossover has been studied extensively within the fRG
formalism. Starting with the ground-laying works in [45–49] extensions including particle-
hole effects were discussed in [50], the formation of a trion-state was investigated by [51]
and further improvements in [52, 53]. Moreover, the investigation of the high momen-
tum behaviour resulting in the Tan contact was carried out by [54], while error estimates
within the fRG can be found in [55]. Spin-imbalanced systems and their phases were ex-
amined in the works of [56–58]. Extended truncation schemes and their influence on the
Bertsch parameter and the critical temperature of an unitary Fermi gas were studied in
[59]. For a review concerning fRG techniques applied to the BCS-BEC crossover cf. [43, 60].

Recent progress in trapping techniques for ultracold atomic gases enables investiga-
tions beyond the three-dimensional case. With the realisation of strongly anisotropic trap-
ping potentials on the one hand, and one-dimensional optical lattices one the other hand,
(quasi-) two-dimensional geometries can be implemented [61, 62]. The investigation of both
zero [63–65] as well as finite temperature effects [63, 66–71] is of great relevance, since in
reduced dimensions strong correlations and pair fluctuations become more pronounced.
Interestingly, having an insufficient degree of anisotropy in the experimental setup leads to
a quantum gas restricted to a not well-defined dimensional geometry. Although initially an
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Chapter 1 Introduction

unwanted deficiency, it may lead to interesting effects and further insight into the physics
of dimensional crossovers. In the context of reduced dimensional systems, the Berezin-
skii–Kosterlitz–Thouless (BKT) phase transition in (quasi-) two-dimensional systems has
been observed in bosonic [66, 69, 72–75], as well as fermionic systems [67, 76] where alge-
braically, instead of exponentially, decaying correlations have been found.

Apart from the study of static, thermodynamic properties, such as the phase diagram,
the determination of transport properties or decay rates within cold atomic systems is
of great relevance. Essential quantities for determining transport coefficients are spectral
functions, from which one can, for example, obtain (quasi-) particle spectra to characterise
collective excitations. In general one can infer real-time information about the physical
system using spectral functions.

There are many interesting (novel) directions in the field of ultracold atomic physics,
which we did not pursue in this thesis. For example, the study of breathing modes and the
accompanied violation of scale invariance [64, 77–86], mixtures of fermions and bosons [87–
89], spin- and mass-imbalanced gases [90–95], as well as dipolar quantum gases, cf. e.g. [96]
for a review on experimental techniques, are further phenomena worth studying in greater
detail. Moreover, the transition from few- to many-body physics can be investigated with
cold atoms, as has been shown in recent measurements [97, 98]. Another promising facet
of recent interest is the simulation of gauge theories using ultracold atomic systems in the
field of quantum simulation, e.g. in [99–103].

In this thesis we expand the knowledge on the three topics outlined above. In particular
we study (1) the dependency of the BCS-BEC crossover on dimensionality, (2) spectral
functions of ultracold Fermi gases and (3) improve on the quantitative precision of zero
temperature observables, including the Bertsch parameter. More concretely, working in
the framework of the functional renormalisation group we first extend the investigation
of the three-dimensional BCS-BEC crossover to the situation of a dimensional crossover
from three to two dimensions. Zero and finite temperature results allow for a qualitative
comparison to the experimental data measured in [67]. The second aspect involves the
calculation of spectral functions where an analytical continuation from imaginary to real
time is performed. Our results serve as a first step to obtain transport coefficients for
ultracold quantum gases within the framework of the fRG. Finally, in order to better the
quantitative precision within the fRG framework we apply an improved method to obtain
the (flow of the) density. We elaborate on an ultraviolet safe way of determining densities
via their higher order correlations. Our approach allows us to compute the equation of
state and the gap at zero temperature in a quantitative manner.
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1.2 Publications

This dissertation was written solely by the author using the referenced sources as indicated
in the corresponding passages. The results were obtained together with my collaborators
and are either published, or are contained in so far unpublished articles. We do not mark
texts and figures taken from these articles explicitly, but refer to them at the beginning of
the individual chapters.

The publications are:

[1] Dimensional crossover in ultracold Fermi gases from Functional Renor-
malisation
Bruno M. Faigle-Cedzich, Jan M. Pawlowski, Christof Wetterich
Published in Phys. Rev. A 103, 033320 (2021)
E-Print: arXiv:1910.07365 [cond-mat.quant-gas]
Comment: This article is mainly contained in Chapter 5, yet portions of Chapter 3
and Chapter 4 build on it as well.

[2] Spectral function of ultracold Fermi gases from functional renormalisation
Bruno M. Faigle-Cedzich, Jan M. Pawlowski
In preparation.
Comment: This work in preparation is the basis for Chapter 6.

[3] Towards quantitative precision in ultracold atoms with functional renor-
malisation
Bruno M. Faigle-Cedzich, Jan M. Pawlowski
In preparation.
Comment: Chapter 7 relies on this work.

1.3 Outline

This thesis is organised as follows: Chapter 2 and Chapter 3 introduce the basic concepts
of ultracold atom physics and functional methods which are relevant for this thesis. We
describe the construction of an effective Hamiltonian and after introducing the framework
of the functional renormalisation group apply it to our situation of a two-component ul-
tracold Fermi gas. In Chapter 4 the flow equations for a fixed d-dimensional setup and
for a confinement from three to two dimensions are derived in general so that they can be
easily adopted to other situations and truncation schemes.
The physics of an ultracold Fermi gas in the dimensional crossover from three to two

dimensions is reflected on in Chapter 5. Here, we confine the system in the transverse
direction by means of periodic boundary conditions and the equation of state and the

5

https://inspirehep.net/literature/1759414
https://inspirehep.net/literature/1759414
https://doi.org/10.1103/PhysRevA.103.033320
https://arxiv.org/abs/1910.07365


Chapter 1 Introduction

superfluid gap at zero temperature are calculated. Particular focus is put on the determi-
nation of the superfluid transition temperature resulting in the finite temperature phase
diagram at different confinement of the Fermi gas. We compare these results with recent
experimental observations in the end.
In Chapter 6 we perform an analytical continuation of the flow equation for the Eu-

clidean propagators to obtain (real-time) spectral functions. After some general remarks
on analytical continuation within the fRG framework, we show results for the fermionic
spectral functions in the symmetry broken phase.
Chapter 7 is dedicated to gaining quantitative precision within the fRG framework.

We formulate an iterative, ultraviolet safe procedure to obtain the density. The desired
reduction of the scaling dimension is accomplished by first solving for the flow of higher
moments of the density and subsequent integration such that we arrive at the density in
the end. We elaborate on the shortcomings of this procedure for our choice of regulators
and lay out a way to circumvent these. In the end, we present results for the equation
of state and superfluid gap at zero temperature, thereby obtaining a Bertsch parameter
which is in good agreement with recent experimental data.
Finally, our main findings are summarised in Chapter 8. Technical details and further

information on calculations are moved to Appendices A – F.
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CHAPTER 2

Fundamentals of ultracold atoms physics

In this Chapter we provide a short overview of the basics of ultracold atom physics relevant
for this thesis. We start by discussing the length scales involved in a system of cold quantum
gases resulting in a general scale hierarchy. This enables us to define an effective low-energy
Hamiltonian which is then the starting point for the later considerations. After shortly
reviewing the basic principles of Bose-Einstein condensation and Cooper pairing we end
with a discussion of the transition from spatially separated fermions to tightly bound
bosonic dimers in an ultracold Fermi gas, the so-called BCS-BEC crossover. A central
ingredient for this is the ability to tune the interactions within a gas of ultracold atoms
which is given by the concept of Feshbach resonances.
There are many pedagogical introductions to the field of condensed matter and ultracold

atoms physics, for some recent reviews from a field theory perspective cf. e.g. [43, 104–107]
out of which this Chapter draws a lot of inspiration.

2.1 Length scales in ultracold atom physics

We start by introducing the typical length scales involved in systems of ultracold quantum
gases. This will also enable us to define an effective microscopic theory which can be used
as a starting point of our later calculations in this thesis. These considerations are valid
model independently and applicable to all (single valence electron) alkali systems, as they
are used in cold atom experiments.
Typically, in an ultracold atoms system one can distinguish the following scales:

Interparticle spacing

For a homogeneous system with density n in d dimensions the interparticle spacing ` can
be defined as

n = `−d , (2.1)

7



Chapter 2 Fundamentals of ultracold atoms physics

where one can view this as equally distributing N particles in boxes of volume V = `d

such that N = V/`d. This is, of course, an approximation to the real situation at hand in
ultracold gases experiments since in most cases the trapping potential is in general space
dependent. One thus has a space dependent density n = n(~x) and consequently chemical
potential µ = µ(~x).

Oscillator length of the trapping potential

Let us consider a time-dependent (harmonic) potential of the form

Vtrap(~x) =
m

2
ω0 r

2 , (2.2)

with trapping frequency ω0 and r = |~x|. Eq. (2.2) can be rewritten in terms of the oscillator
length

`osc =

(
~

mω0

)1/2

. (2.3)

This allows for a formulation in terms of the relevant length scale, to wit

Vtrap(~x) =
~
2
ω0

(
r

`osc

)2

. (2.4)

From Eq. (2.4) we immediately see that our homogeneous assumption is valid if the physics
takes place at much smaller length scales than the oscillator length of the trap `osc. This
so-called local density approximation (LDA) enables one to neglect small corrections for
points ~x and ~y being close to each other, as n(~x) = n(~y) (1 +O(|~x− ~y|)/`osc).

Thermal wavelength

The statistical behaviour of the gas is determined by the thermal de Broglie wavelength λth
or rather its dimensionless ratio with the interparticle spacing. We can define the thermal
de Broglie wavelength by

λth =
h

p
=

(
2π ~2

M kB T

)1/2

. (2.5)

The thermal de Broglie wavelength describes how a massive particle with momentum
p2/2M = π kB T and mass M coupled to a heat bath of temperature T behaves. We can
now characterise the state of the ultracold quantum gas in terms of the interparticle spac-
ing and its de Broglie wavelength. Associating the thermal wavelength λth with the spread
of a particle pictured as wave-packet which has the interparticle distance ` as separation
we see that below a certain temperature the wave-packets start to overlap. The gas then
becomes quantum degenerate or ultracold for `/λth . 1. The system cannot be described

8
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van der Waals
length

interaction scale interparticle
spacing

thermal wavelength oscillator length
of trap

Figure 2.1: A typical scale hierarchy found in ultracold quantum gases. The system is
bound on the one side by the length scale associated with the van der Waals po-
tential an on the other side by the oscillator length of the trap `vdW < ` < `osc.
In a setting away from a Feshbach resonance the system is in a weakly inter-
acting regime with the scattering length a < `th. Figure adapted from [43].

by a single-particle wave any more and one has to account for the many-body system in
the context of quantum mechanics (or quantum field theory). The statistical behaviour
is then determined by the spin of the particles resulting in Bose-Einstein or Fermi-Dirac
distributions for bosons and fermions, respectively. Note that ` = `(n) and λth = λth(T )

represent the many-body length scales due to non-zero density and non-zero temperature.

Van der Waals length

The interaction effects for neutral alkali atoms used in cold atom experiments are electro-
magnetic through van der Waals forces. A typical interaction potential has a repulsive part
U(r) ∼ 1/r12 on short distances r due to Pauli’s principle inhibiting the electron clouds
of two atoms to overlap. We will see that a hard core repulsion with infinite interaction
strength works as well and yields the same scattering length. The attractive part, for
large distances r, can be modelled as U(r) ∼ −1/r6 where the mutual polarisation of the
electron clouds causes the attraction. This generic interatomic interaction is well described
by the Lennard-Jones potential and can be approximated as

UvdW(r) =

∞ for r ≤ r0

−C/r6 for r > r0 .
(2.6)

We then define the van der Walls length scale associated with the potential in Eq. (2.6) by

`vdW =

(
mC

~2

)1/4

. (2.7)

One finds that one never resolves physics beyond the van der Waals length `vdW since it
is much smaller than the interparticle spacing, as well as the thermal wavelength. Thus,
we can define an effective (low-energy) Hamiltonian valid on all scales & `vdW. This mi-
croscopic Hamiltonian will later constitute the starting point for our calculation at an
ultraviolet scale.

9



Chapter 2 Fundamentals of ultracold atoms physics

Scattering length

The relevant parameter to characterise the two-body scattering is the scattering length a
which can be extracted from experiment. Here, we limit our discussion to the case of a
three-dimensional system. For scattering theory in two spatial dimensions cf. e.g. [107]
and references therein. The scattering length emerges as universal sole parameter for low-
energy collisions in potentials of sufficiently short range, see e.g. [43]. Starting from the
Schrödinger equation for the relative motion of the two particles we can define the collision
state as a superposition of an incident plane wave and of a scattered wavefunction, cf. e.g.
[108], to wit

ψk(~x) ∼ ei p z/~ + f(p, θ)
ei p r/~

r
,

where the collision takes place in the z-direction. For a radial potential the scattering
amplitude f(p, θ) depends on the centre of mass energy p2/(2Mred) with reduced mass
Mred, as well as on the scattering angle θ. To solve this scattering problem one usually
expands the scattering amplitude in partial waves f(p, θ) =

∑∞
l=0(2l+1)fl(p)Pl(cos θ) with

Legendre polynomials Pl(cos θ) and determines the partial wave amplitudes fl(p). Due to
the low energies present in ultracold atom physics, the expansion can be restricted to the
case of l = 0 s-wave scattering. Higher angular momentum contributions with l 6= 0 intro-
duce an additional barrier into the Schrödinger equation of the form ~2 l (l+1)/(2Mred r

2)

where we can approximate r2 = `2vdW. Thus particles with energy p2/(2Mred)� ~2/`2vdW
can never overcome this barrier and we find ourselves in the situation of s-wave scattering.
Due to the low-energy regime one can then approximate the scattering amplitude as [108]

fl=0 =
1

− 1
a + 1/2 re p2 − i p+ . . .

. (2.8)

Here re refers to the effective range of the scattering and a denotes the scattering length.
In ultracold quantum gases the corrections for the momentum p is subleading such that
f ' −a. Thus the scattering length a is the universal (scattering) parameter describing
ultracold physics. With the scattering length at hand, in Eq. (2.8), we can define a criterion
for a weakly-interacting gas keeping in mind that the scattering length provides the typical
extent of the collisional properties of a particle,

|a|n1/d � 1 .

In order to calculate the scattering for our system of a short range potential and low-energy
scattering we can use the Born approximation. It expresses the scattering length as the
Fourier transform of the interaction potential

a =
M

4π~2

∫
d3r U(r) ei ~q ~r , (2.9)

10



2.1 Length scales in ultracold atom physics

with ~q being the transferred momentum. From Eq. (2.9) we find immediately that the
same scattering length is reproduced by very different interaction potentials.
One can show that one can replace the more complicated Lennard-Jones potential in

Eq. (2.6) by a convenient local contact potential

UΛ(r) = gΛ δ(~x) . (2.10)

This potential in Eq. (2.10) has to be regularised at short distances and requires the usual
renormalisation procedure afterwards. This is denoted by the index Λ referring to the
ultraviolet cutoff. Lastly, we can relate the renormalised coupling g to scattering length a
which can be measured in experiment

a =
M

4π~2
g .

In Fig. 2.1 we summarise the aforementioned scale hierarchy present in ultracold quan-
tum gases. Here, we have with the scales defined by Eq. (2.1), Eq. (2.3), Eq. (2.5), Eq. (2.7)
and Eq. (2.8)

`vdW . |a| < ` < `th < `osc . (2.11)

Due to the fact that all physics takes place at length scales larger than the van der Waals
length one can write down an effective low-energy Hamiltonian

Ĥ =

∫
~x

(
â†(~x)

(
− ∇

2

2M
+ Vext(~x)

)
â(~x) + gΛ n̂(~x)2

)
, (2.12)

with the usual creation and annihilation operators â† and â. The local density operator is
given by n̂(~x) = â†(~x) â(~x). The squared density operator n̂(~x)2 in Eq. (2.12) comes from
the fact that at least two particles are needed to meet at point ~x in order to interact. It is
an important property of ultracold alkali atoms that they can be described by this universal
Hamiltonian (2.12) where we also find that the system has the natural ultraviolet cutoff
Λ−1 � `vdW. No many-body length scales can resolve physics on shorter length scales and
thus microscopic details beyond Λ−1 are irrelevant.
It is very appealing that the interaction strength between the individual particles can

be tuned in dilute ultracold alkali atoms. Magnetically tunable Feshbach resonances allow
for changing the interaction between two different (hyperfine) species of fermions with the
help of an external magnetic field. For a more detailed description see e.g. [106, 109].
On a general level, Feshbach resonances occur when a bound state in a closed channel
is coupled resonantly with the scattering continuum of an open channel in a two-body
collision. An external magnetic field couples differently to the distinct magnetic moments
of the closed and open channel, thus allowing to tune the scattering length, i.e. the strength
of the interaction [106]. Feshbach resonances enable a violation in the scale hierarchy in
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Chapter 2 Fundamentals of ultracold atoms physics

interaction scale interparticle
spacing

Feshbach resonance

thermal wavelength oscillator length
of trap

van der Waals
length

Figure 2.2: A typical scale hierarchy found in ultracold quantum gases. The system is
bound on the one side by the length scale associated with the van der Waals po-
tential an on the other side by the oscillator length of the trap `vdW < ` < `osc.
In the vicinity of a Feshbach resonance the system is strongly interacting with
`vdW << |a|. Figure adapted from [43].

Eq. (2.11) and Fig. 2.1 by increasing the scattering length a compared to the interparticle
spacing such that

`vdW . ` < `th < |a| < `osc .

Thereby the ultracold atoms system changes from a weakly to a strongly interacting system,
cf. Fig. 2.2. A more detailed description of Feshbach resonances can be found in Sec. 2.4.
Note however, that the argument for the effective Hamiltonian remains valid, as the physics
still takes places on length scales larger than the van der Waals length.

2.2 Thermodynamics

In this Section we give a very brief summary of the relevant thermodynamic variables in-
volved in ultracold quantum systems. These considerations will be model independent and
we will find that the phase diagram together with the equation of state encode important
aspects of the equilibrium state. These are experimentally accessible and it is therefore
desirable to compute them in a fashion comparable with experiment.
In its pure form, thermodynamic relations are only valid in infinitely expanded volume,

which is not the case in experiments. However, formulated in terms of intensive quantities,
like particle or entropy densities, this shortcoming is overcome and we can define the
thermodynamic laws for subsystems at finite volume and particle number.
The equation of state P (µ, T ) is a central quantity in thermodynamics as it stores the full

thermodynamic information in terms of the pressure as a function of the chemical potential
µ and the temperature T . One can then express all other thermodynamic quantities by
using the Gibbs-Duhem relations dP = n dµ + s dT and ε = Ts − P + µn with the
particle number density n = N/V , the entropy density s = S/V and the energy density
ε = E/V . The chemical potential at a given temperature determines the particle number
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2.3 Bose Einstein condensation and Cooper pairing

N(µ). When formulating the chemical potential in terms of the density n(µ, T ) we can
express the equation of state as a Legendre transform of the pressure, i.e. the free energy
density f(n, T ) according to f(n, T ) = µn−P from which all desired equilibrium quantities
can be derived.
For non-homogeneous trapping potentials Vext(~x) one usually turns to the local density

approximation (LDA) which has been successfully applied in many experimental measure-
ments. Here, one assumes that there exists a mesoscopic scale `mes, smaller than the
extent of the system but larger than the interparticle spacing ` or the scattering length
a, over which the system can be thought of as homogeneous. Consider two neighbour-
ing sub-volumes V1 and V2 inside the trapped gas with each their local temperature and
chemical potential. Thermal and chemical processes will lead to an equilibration of the
two subsystems resulting in an overall constant chemical potential inside the trap (since
the two subsystems were picked arbitrarily). One can use the (grand canonical) partition
function to show that the pressure of the system inside the inhomogeneous trap is given
by the homogenous one with the chemical potential shifted w.r.t. the trapping potential

P = Phom(µ− Vext(~x), T ) , (2.13)

and consequently for the chemical potential itself

µ = µhom(n(~x), T ) + Vext(~x) . (2.14)

The relations (2.13) and (2.14) are also valid per spin component σ of e.g. a two-component
Fermi gas.
The equation of state also contains information about the phases the system is in, i.e.

its phase diagram. One can distinguish different phases by macroscopic observables which
change (abruptly) at a phase transition. These feature discontinuities in thermodynamic
variables, typically in higher derivatives of the (grand canonical) potential or the pres-
sure P (µ, T ). In order to more formally characterise phase transitions, order parameters
ρ0(µ, T ) can be defined which yield a non-vanishing value in one and a vanishing value
in a different phase. Using this, one is able to calculate the phase diagram in the (µ, T )-
or equivalently (n, T )-plane. We can then define the critical temperature Tc(µ) at a fixed
chemical potential µ at which the phase transition takes places as ρ0(µ, Tc(µ)) = 0+. This
provides us with a simply way to calculate the phase structure of the system.

2.3 Bose Einstein condensation and Cooper pairing

Having introduced the concept of phase transitions in Sec. 2.2 we can now turn to the case
of Bose and Fermi gases. They both exhibit a (second order) phase transition below a
critical temperature Tc, at the on hand by Bose-Einstein condensation for bosons and by
Cooper pairing on the other hand for weakly interacting fermions. Here, we want to very
briefly recap on the fundamental concepts.
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Chapter 2 Fundamentals of ultracold atoms physics

The statistics of bosons and fermions differs fundamentally. While the many-body wave-
function of bosons is symmetric under the exchange of two particles, it is anti-symmetric
for fermions, thus leading to two very different probability distributions. For bosons the
occupation probability of a state with energy ε and temperature T = kB/β is given by
the Bose-Einstein distribution (ζ = 1), while fermions obey the Fermi-Dirac distribution
(ζ = −1)

n(ε, µ, T ) =
1

eβ(ε−µ) − ζ
. (2.15)

As a consequence, at most one fermion can occupy a quantum state, while for bosons there
exists no restriction on the number of particles per state.
Furthermore, we know from statistical physics that the equation of state for both bosons
(with no condensate present) and fermions is given by

P (µ, T ) = −ζ g kB T
∫

ddp
(2π~)d

log
(

1− ζ e−β(εp−µ)
)
, (2.16)

with the energy εp = ~p2/(2M), g the spin degeneracy and ζ = 1 (ζ = −1) for bosons
(fermions).

2.3.1 Bose-Einstein condensation of bosons

For a non-interaction bosonic system at zero temperature, the lowest energy state is macro-
scopically occupied, i.e. all bosons are condensed in the ~p = 0 state forming a Bose-Einstein
condensate. Increasing the temperature causes the particles to be excited into higher en-
ergy states until at very high temperatures no state is macroscopically occupied and we
arrive at a Boltzmann distributed gas. This suggests that there exists a critical tempera-
ture at which the free Bose gas becomes a Bose-Einstein condensate. By starting from the
density, i.e. µ-derivative of the equation of state in Eq. (2.16), we can compute the critical
temperature Tc in three dimensions by setting µ = 0,

n =
1

λ3
th Γ(3/2)

∫ ∞
0

dε
ε1/2

eε/(kB Tc) − 1
. (2.17)

Here, we already used the three-dimensional density of states ρ(ε) ∼ ε1/2. Eq. (2.17) can
be evaluated by the using the Riemann zeta function, yielding for the critical temperature

Tc = 3.31n2/3/M .

Lowering the temperature below the critical temperature, the number of excited particles
becomes smaller and the condensate fraction N0/N , i.e. the number of particles in the
zero-momentum state w.r.t. the total particle number, follows the form

N0(T )/N = 1−
(
T

Tc

)3/2

for T ≤ Tc .
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2.3 Bose Einstein condensation and Cooper pairing

The condensate fraction is an order parameter for the phase transition and vanishes con-
tinuously for T → Tc signalling a second order phase transition.
In dimensions below three we find that, by using the general expression for the density

of states in d spatial dimensions ρ(ε) ∼ εd/2−1, that there exists no phase transition at
a non-zero critical temperature for d ≤ 2. This can be more generally formulated as the
Mermin-Wagner theorem [110, 111] which states that there is no spontaneous breaking of a
continuous symmetry and thus there exists no long-range order in d ≤ 2. However, quasi-
long-range order, as in the Berezinski-Kosterlitz-Thouless (BKT) transition, may exist.
Furthermore, the trapping potential in ultracold experiments prohibits long wavelength
fluctuations destroying the long-range order such that phase transitions can be nonetheless
observed, even in lower dimensions.
For weakly interacting bosons one usually turns to the Bogoliubov theory which is equiv-

alent to mean field theory and Gaussian approximation and captures most of the physics
at hand. One finds the Bogoliubov excitation spectrum yielding a linear dispersion for
long wavelength excitations and a quadratic particle-like spectrum at short scales. The
low momentum behaviour signals a second order phase transition into the superfluid phase
for the case of a three-dimensional weakly interaction Bose gas. Here, the superfluidity can
be characterised by the Landau criterion [43]. Note that superfluidity and condensation
are distinct phenomena, as can be seen in the case of a BKT transition where superfluidity
but no condensate is present below a critical temperature. For a comprehensive overview
of the physics of weakly interacting bosons cf. [43].

2.3.2 Fermi surface and Cooper pairing

Fermions obey the Fermi-Dirac distribution in Eq. (2.15) and thus two or more fermions
cannot occupy the same quantum state. The ground-state of N non-interacting fermions
is then given by a Fermi sea where the N energetically lowest states are occupied. Due to
rotational symmetry all occupied states lie inside a sphere of radius ~ kF bounded by the
Fermi surface. Dividing the phase space into cells of volume hd we can count the states

n =
g

(2π~)3 Vd(pF ) ,

where V3(pF ) = 4π/3 p3
F in three and V2(pF ) = π p2

F in two dimensions. pF = ~ kF is
called the Fermi momentum and in three and two spatial dimensions we have

kF = (3π2 n)1/3 for d = 3 ,

kF = (2π n)1/2 for d = 2 .

From this, the Fermi energy εF = p2
F /(2M) and the Fermi temperature TF = εF /kB can

easily be derived. We thus see that the lowest energy excitations are not close to zero-
momentum, but to the Fermi surface |~p| = pF . As a consequence of the Pauli principle an
ideal Fermi gas does not undergo Bose-Einstein condensation.
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Chapter 2 Fundamentals of ultracold atoms physics

Figure 2.3: Two fermions with (near) opposite momentum and spin may form a pair on top
of the Fermi sea which is energetically favourable. The range of the attraction
is limited to energies of the order of the Debye frequency ∼ ωD around the
Fermi surface, depicted by the grey shell. Figure adapted from [105].

The situation however changes fundamentally for attractively interacting fermions, no
matter how weak the attraction is. As pointed out by Cooper in the presence of a Fermi sea
it is energetically favourable for two fermions interacting via a phonon mediated interaction
to form a bound state, called a Cooper pair. The new many-body ground-state consists
of a ’Bose-Einstein condensate’ of Cooper pairs and the Fermi sea is unstable towards the
formation of it [104]. The tendency to form Cooper pairs on opposite points of the Fermi
surface for an arbitrarily weak interaction is shown in Fig. 2.3. The locality in momentum
space implies that the Cooper pairs have a large spatial extent in position space. It can be
shown in BCS-theory (named after Baardeen, Cooper and Schrieffer) that the formation
of Cooper pairs opens a gap, usually denoted ∆, in the continuous excitation spectrum.

The second order phase transition into the BCS state of condensed Cooper pairs is
characterised by a critical temperature

Tc/TF =
8 eγ−2

π
e−π/(2 |kF a3D|) for d = 3 ,

Tc/TF =
2 eγ

π kF a2D
for d = 2 ,

with γ = 0.577 being Euler’s constant. These are typically obtained from a (renormalised)
gap equation demanding that the superconducting (or superfluid) gap ∆ vanishes at the

critical temperature Tc as ∆
T→T−c−−−−→ 0+.
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2.4 The BCS-BEC crossover

2.4 The BCS-BEC crossover

In this Section we give a short overview of the physics of a two-component Fermi gas with
tunable interactions. As mentioned above one may make use of Feshbach resonances in
order to tune the scattering properties, thereby going from a purely fermionic system with
weak attractive interactions and large spatial separation to an effectively bosonic one with
bosonic dimers consisting of two tightly bound fermions. Below a critical temperature a
second order phase transition into the superfluid phase takes place by either the formation
of Cooper pairs for weakly interacting fermions or by Bose-Einstein condensation for weakly
repulsive bosons.
On a general level, a two-channel model is needed to describe a Feshbach resonance where

two fermions in the open channel are coupled to a bound state in the closed channel. The
scattering length can be tuned by an external magnetic field B and we can write on a
phenomenological level

a = abg

(
1− ∆B

B −B0

)
,

where abg is the off-resonant background scattering length without coupling to the closed
channel. The position and width of the resonance in the external magnetic field are given
by B0 and ∆B, respectively. We consider two alkali atoms, in ultracold Fermi gases usually
6Li and 40K, with a hyperfine splitting of the ground-state, due to coupling of the electron
spin to the spin of the nucleus. When scattering of each other in a multi-channel scattering,
the two-body system will in general be a superposition of a singlet and a triplet state with
different energy levels. The two particles can then resonantly tunnel from the ingoing
open channel into the bound state of the closed channel situated close to the scattering
threshold, as depicted in Fig. 2.4a. Here, the energetic distance of the bound state to the
scattering threshold E = 0 is called detuning

ν(B) = ∆µ (B −B0) . (2.18)

The external magnetic field B can then couple differently to the open and closed channels
due to their difference in magnetic moment ∆µ. Consequently, the relative energy between
the channels can be tuned ∆E → ∆E+∆µB such that in particular the detuning vanishes
ν(B) → 0. Then both channels couple resonantly and the the system becomes strongly
interacting, see Fig. 2.4b. In most cases the Feshbach resonance is a so-called ’broad’
resonance where the width of the resonance is much larger than the Fermi energy. In this
case it is sufficient to describe the scattering by a single-channel model, instead of the
two-channel model above. For a detailed description of Feshbach resonances cf. e.g. [109].
Feshbach resonances give an experimental knob for tuning a gas of ultracold fermions

across a wide range of interaction strengths from a purely fermionic system described
by the Bardeen-Cooper-Schrieffer (BCS) theory to a effectively bosonic system described
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(a) The open and closed channel of the two-
body scattering process. The detun-
ing ν(B) denotes the energetic distance
of the closed channel bound state from
the scattering threshold, while the dif-
ference in energies between both chan-
nels ∆E can be tuned according to
∆E → ∆E + ∆µB. Adapted from [43].
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(b) Schematic picture of the magnetic field
dependence of the scattering length. It
can be characterised by an off-resonant
scattering length abg and the width
of the resonance ∆B. The scattering
length diverges at the resonance posi-
tion of the magnetic field. Adapted from
[109].

Figure 2.4: Properties of Feshbach resonances.

by Bose-Einstein condensation (BEC). One obtains a smooth crossover from the weakly
interacting BCS theory over a region of strong interactions to the weakly interacting BEC
theory. At the centre of the three-dimensional BCS-BEC crossover, at diverging scattering
length a3D, the system is in the unitarity limit which behaves in a scale invariant universal
way.
As the interparticle spacing is well approximated by the inverse of the Fermi momentum

` ' k−1
F , we can build the dimensionless quantity (kF a3D)−1, sometimes also called the

inverse concentration. We can then identify three regimes within the three-dimensional
BCS-BEC crossover:

(kF a)−1 → −∞ : weakly interacting fermions ,

|(kF a)−1| ≤ 1 : strongly correlated regime ,

(kF a)−1 →∞ : weakly interacting bosonic dimers .

For the strongly correlated regime, near the unitarity limit, perturbative methods can
no longer be applied and we will turn to the non-perturbative functional renormalisation
group in the following.
It is of great importance for the understanding of many-body theory to determine the

phase diagrams in three and two dimensions from first principles, as well as the calculation
of the equation of state, especially the Bertsch parameter, and the critical temperature
Tc/TF at unitarity in a quantitative manner.
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CHAPTER 3

Functional methods

This Chapter is in some parts based on [1].

In this Chapter we review some basic principles of functional approaches to quantum
field theory viewed from a path integral perspective. We then introduce the functional
renormalisation group which can be seen as a continuous version of the Kadanoff block
spinning method with finiteness as an inherent feature. Applying these considerations to
our situation of an ultracold Fermi gas within the BCS-BEC crossover we present a starting
point for the work in this thesis.
In general, a quantum field theory (QFT) is fully determined by its complete set of cor-

relation functions. We work in a Wick-rotated Euclidean space-time with imaginary time
where the QFTs correspond to a quantum statistical theories.

The considerations in this Chapter present no original work and are mostly well-known
relations. The version presented here relies on formulations in typical reviews, e.g. [36–
44, 112].

3.1 Generating functionals

The central object of a QFT is its generating functional Z[J ] depending on the external
source J(x). The derivation presented here is done for a scalar field ϕ(x), but can be
generalised to complex and Grassmann fields in a straightforward manner. In the path
integral formalism the partition function Z[J ] for a scalar field ϕ(x) in d-dimensional
Euclidean space-time can be defined as

Z[J ] =
1

N

∫
[Dϕ]ren exp {−S[ϕ] + J · ϕ} . (3.1)

Here, we introduced the (functional) measure [Dϕ]ren which has to be regularised and
renormalised appropriately. The classical bare action is given by S[ϕ] and we used the
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shorthand notation J · ϕ =
∫
x J(x)ϕ(x). From Eq. (3.1) all correlation functions can be

calculated, thereby cancelling the arbitrary normalisation factor N

〈ϕ1 . . . ϕn〉J =
1

Z[J ]

δnZ[J ]

δJ1 . . . δJn
. (3.2)

We summarised the space-time dependence in the field index ϕi = ϕ(xi). We now pro-
ceed by removing all redundancies present in the definition of the generating functional
in Eq. (3.1) and consequently in the correlation functions in Eq. (3.2). The correlation
functions in Eq. (3.2) can be expressed as a sum of connected and disconnected terms, or
diagrams, where the latter can be re-expressed in terms of lower order correlation func-
tions. These redundancies are cured by defining the Schwinger functional as the logarithm
of the generating functional, Eq. (3.1), to wit

W[J ] = logZ[J ] . (3.3)

One finds that the Schwinger functional, Eq. (3.3), is a convex functional, which can be
proven by using Hölder’s inequality, and likewise to Eq. (3.2) the correlation functions can
be derived from W[J ] as

〈ϕ1 . . . ϕn〉con =
δnW[J ]

δJ1 . . . δJn
. (3.4)

The correlation functions in Eq. (3.4) are connected correlation functions. Of particular
interest is its two-point function, since, as the propagator, it is a fundamental quantity in
QFTs encoding its dispersion

G(x1, x2) =
δ2W[J ]

δJ1δJ2
= 〈ϕ1ϕ2〉 − 〈ϕ1〉 〈ϕ2〉 = 〈ϕ1ϕ2〉con . (3.5)

Due to the convex Schwinger functional the propagator is necessarily positive semi-definite
and its spectrum larger than or equal to zero.
Despite the reduction in redundant information by defining the Schwinger functional, it

itself contains redundancies since the connected correlation functions can be divided into
one-particle irreducible (1PI) and one-particle reducible ones. In a diagrammatic language
1PI diagrams cannot be separated into one-particle reducible diagrams by cutting a single
line. They thus contain all relevant information of the QFT at hand and the generating
functional of 1PI correlation function, called the (quantum) effective action Γ[φ], is given
by the Legendre transform of the Schwinger functional

Γ[φ] = sup
J
{J · φ−W[J ]} = Jsup · φ−W[Jsup] . (3.6)

We introduced the expectation value of the field φ(x) =< ϕ(x) > and the field dependent
current Jsup = Jsup[φ]. Out of convenience, we drop the subscript (·)sup from here on,
understanding it implicitly. Of further importance is the convexity of the effective action
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Eq. (3.6) which stems directly from the Legendre transform and the convexity of the
Schwinger functional. The effective action is the central object when dealing with QFTs
from a functional perspective. It is the quantum analogue of the classical action with its
one-point function given by taking a functional derivative of Eq. (3.6),

δΓ[φ]

δφ(x)
= J(x) . (3.7)

Equation (3.7) are the quantum equations of motion in a given background J reducing to
the quantum analogue of the classical equations of motion in the vacuum for a vanishing
source J . We can define the general moments or vertices of the effective action Γ[φ] as

Γ(n)(x1, . . . , xn) =
δΓ[φ]

δφ1 . . . δφn
, (3.8)

with Γ(2)[φ] being just the inverse of the propagator as defined in Eq. (3.5), since∫
x3

G(x1, x3) Γ(2)(x3, x2) =

∫
x3

δ2W[J ]

δJ1δJ3

δ2Γ[φ]

δφ3δφ2
= δ(x1 − x2) . (3.9)

Equation (3.8) contains all knowledge about the connected correlation functions which can
be used to easily calculate the expectation value of arbitrary operators.

3.2 Functional renormalisation group

The non-perturbative functional renormalisation group (fRG) allows for a scale dependent
study of physical systems and theoretical models. It is a modern implementation of Wil-
son’s RG and enables one to go beyond perturbative methods, i.e. it is also applicable
in strongly-correlated regimes. The fRG is based upon an exact functional flow-equation
of a coarse-grained effective action (or Gibb’s free energy in the language of statistical
physics) which allows for the inclusion of (thermal and quantum) fluctuations on all scales.
It encompasses both Bogoliubov theory and the hydrodynamic approach of Popov and is
inherently free of divergences [44]. It has the advantage that several effects can be included
simultaneously, and all known limits are directly realised. For reviews of the functional
renormalisation group approach see e.g. [36–44, 112].

The microscopic action associated with the effective Hamiltonian given by Eq. (2.12) is
related to an ultraviolet (UV) momentum scale k = Λ at length scales much smaller than
the van der Waals length `vdW. However, the relevant physics takes place at scales � Λ

where the thermal and quantum fluctuations are included. To incorporate these fluctua-
tions and furthermore to obtain results in the strongly coupled regime the a scale dependent
procedure is implemented via the functional renormalisation group, which includes these
fluctuations successively at each momentum scale k.
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For the scale dependent treatment the integration is grouped in frequency and momen-
tum shells according to

q2
0 +

(
~q 2 − µ

)2 ' k4

with external momentum scale k. The infrared regularised partition function is then defined
by

Zk[J ] =
1

N

∫
[Dϕ]ren,Q2≥k2 exp {−S[ϕ] + J · ϕ} . (3.10)

The scale dependent integration measure in Eq. (3.10) can be defined via a soft cutoff
procedure ∫

[Dϕ]ren,Q2≥k2 =

∫
[Dϕ]ren exp {−∆Sk[ϕ]} ,

where we introduced an infrared cutoff term

∆Sk[ϕ] =
1

2

∫
Q
ϕ(Q)Rk(Q)ϕ(−Q) .

The regulator Rk(Q) may be chosen freely within the requirement that it suppresses low
momentum modes Q2 ≤ k2, while leaving high momentum modes unchanged

lim
q2/k2→0

Rk(Q) = k2 , lim
q2/k2→∞

Rk(Q) = 0 . (3.11)

The first condition in of Eq. (3.11) amounts to an effective infrared regularisation and
introduces an additional mass in the path integral. The second condition ensures the
physical limit in the limit k → 0. Solving the theory at hand amounts to lowering the
cutoff scale infinitesimally and successively integrating out momentum shells towards the
infrared. Starting at a ultraviolet cutoff scale Λ with a finite generating function the
infrared regularised one is finite as well. The flow equation for Zk[J ] is given by

k ∂k Zk[J ] = −〈k ∂k ∆Sk[ϕ]〉 Zk[J ] .

We can define the RG-time t = log k
Λ with respect to the reference scale, usually taken as

the ultraviolet cutoff scale Λ. As outlined in Sec. 3.1 we are eventually interested in the
flow equation for the (1PI) effective action. We define the scale dependent effective action
Γk[φ] in the fashion of Eq. (3.6) as the Legendre transform of a scale dependent Schwinger
functional Wk[J ],

Γk[φ] = J · φ−Wk[J ]−∆Sk[φ] .

The full quantum effective action is reached in the infrared k → 0 when all (quantum and
thermal) fluctuations are integrated out. For the flow equation of the effective action we
then find

∂tΓk[φ] = −∂tWk[J ]− ∂t∆Sk[φ]− ∂tJ ·
(
φ−W(1)[J ]

)
=

1

2
TrGk[φ] ∂tRk .
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3.2 Functional renormalisation group

In order to show this relation the flow equation of the scale dependent Schwinger functional
Wk[J ], the Polchinski equation, is used together with the fact that the first moment of the
Schwinger functionalW(1)[J ] gives the expectation value of the field. Formulating the scale
dependent inverse propagator in terms of the two-point function of the Legendre transform[

Gk[φ]

]−1

= Γ
(2)
k [φ] + ∆S

(2)
k = Γ

(2)
k [φ] +Rk , (3.12)

we arrive at the usual form of flow equation of the effective action, the Wetterich equa-
tion [35]

∂tΓk[φ] =
1

2
Tr
(

Γ
(2)
k [φ] +Rk

)
∂tRk . (3.13)

Equation (3.13) is the central component in the functional methods approach in this thesis,
since all correlation functions can be derived from Eq. (3.13). Starting at ΓΛ = S, the
full effective action is reached after the inclusion of all fluctuations where Γk smoothly
interpolates between the microscopic action ΓΛ and the full effective action Γk=0 = Γ.
Each infinitesimal change of the average effective action is described by the flow equa-
tion, Eq. (3.13). In the end fluctuations with large wavelengths are included. Since the
functional renormalisation group includes the fluctuations stepwise, there are no infrared
divergences when approaching the inclusion of long wavelength modes. It is furthermore
a remarkable feature of the flow Eq. (3.13) that it is a non-perturbatively exact equation
with a one-loop structure. Higher moments can be obtained from Eq. (3.13) by taking
functional derivatives. However, this procedure leads to an infinite tower of coupled differ-
ential equations where the n-point function depends on both the (n+1)- and (n+2)-point
function. In order to circumvent this problem and to keep the numerical effort to an man-
ageable level, truncation schemes are employed, see below.
Analogous to defining the quantum theory by means of the classical action in the path in-
tegral formulation, the initial effective action ΓΛ together with the flow equation Eq. (3.13)
determines the full quantum theory. We show a diagrammatic representation of the flow
Eq. (3.13) in Fig. 3.1.
Due to the aforementioned infinite hierarchy of coupled differential equations and the

fact that the flow equation (3.13) is an integro-differential equation, its full solution is in
most cases out of reach. One therefore relies on approximation schemes to the full effective
action Γk which should incorporate the examined physics already at lower order of the
approximation and reduce the number of flow equations to a manageable set of couplings.
Here we touch shortly upon expansion schemes typically employed for the solution of the
flow equation of the effective action and higher moments.

3.2.1 Perturbative expansion

All orders of renormalised perturbation theory can be calculated iteratively within the flow
equation framework. The (N +1)-loop is obtained by insertion of the N -loop result on the
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Chapter 3 Functional methods

Figure 3.1: Diagrammatic depiction of the flow equation of the effective action Eq. (3.13).
The solid line denotes the full propagator Eq. (3.12) and the cross the regulator
insertion ∂tRk.

right hand side of the flow equation Eq. (3.13). We write the the scale dependent effective
action within a loop expansion as

Γk = lim
N→∞

ΓN-loop
k , ΓN-loop

k = S +

N∑
n=1

∆Γk,n ,

where S is the bare classical action and ∆Γn,k constitute the corrections due to quantum
fluctuations at n-th order. One can then show that

1

2
Tr

1

Γ
(2),N -loop
k +Rk

∂tRk = ∂t Γ
(N+1)-loop
k +O ((N + 2)-loop) . (3.14)

Thus, starting at the classing two-point function S(2)[φ] for N = 0 all higher loop contri-
butions can be computed by this iterative procedure.

3.2.2 Vertex expansion

In the vertex expansion the scale dependent effective action Γk[φ] is expanded in powers of
fields around a, in general, non-vanishing background φ̄. The information of Γk then lies
in the vertices Γ

(n)
k ,

Γk[φ] =
∑
n

1

n!

∫
Γ

(n)
k [φ̄](X1, . . . XN )

n∏
i=1

(
φ(Xi)− φ̄(Xi)

)
.

The infinite tower of coupled partial differential equations is cured by truncating the flow
equations at a given order n, i.e. one approximates Γ

(m>n)
k ≡ 0. Vertex expansions are

mostly used in the field of quantum chromodynamics and quantum gravity and allow for
some error control in terms of convergence.

3.2.3 Derivative expansion

For low effective energy theories, like ultracold quantum gases, the derivative expansion is
the standard expansions scheme. The basic idea is to expand the vertices in powers of the
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3.3 QFTs at finite temperature and density

momenta in momentum space where, contrary to the vertex expansion, already at lowest
order all vertices are present. Assuming a mass gap mgap of the theory, the derivative
expansion is valid as long as the physical scales of the system q2 are small compared to
the mass gap

q2

m2
gap
� 1 , (3.15)

which is valid in good approximation for ultracold atom systems. Within the fRG frame-
work the regulator introduces an additional mass gap of order ∼ k2, thus improving the
situation. Even without the existence of a physical mass gap, we find that the condition
Eq. (3.15) is approximately fulfilled, since the regulator suppresses terms for q2 ≤ k2. Gen-
erally speaking, the derivative expansion yields an expansion of the effective action around
the low energy effective action where it is well described by the shape of the microscopic
action.

3.3 QFTs at finite temperature and density

In this Section we briefly comment on how to introduce finite temperature and a non-
zero density to a quantum field theory. We refrain from giving a complete account of the
formalism summarising only the main results for this thesis and direct to the standard
references, e.g. [113–116].
For a QFT at finite temperature in the imaginary time formalism the temperature is

associated with a finite extent in the imaginary time direction. The imaginary time is
then compactified to a torus of circumference β. Accordingly, bosonic and fermionic fields
χ(τ, x) have to be (anti-) periodic in the imaginary time direction τ = iβ,

χ(τ = 0, x) = ζ χ(τ = β, x) ,

where ζ = 1 for bosonic fields χ = φ and ζ = −1 for fermionic fields χ = ψ. As a conse-
quence all correlation functions inherit the (anti-) periodicity in imaginary time

〈χ(τ1, x1) . . . χ(τi + β, xi) . . . χ(τn, xn)〉 = ζ 〈χ(τ1, x1) . . . χ(τi, xi) . . . χ(τn, xn)〉 .

The (anti-) periodicity gives rise to an expansion of the fields in eigenmodes of the time
resulting into corresponding discrete Matsubara frequencies

ωn = 2nπ T for bosonic fields φ , (3.16)

εn = (2n+ 1)π T for fermionic fields ψ .

Due to these discrete Matsubara modes the integration along the imaginary time p0 in
momentum space turns into a so-called Matsubara sum over all n ∈ Z,∫ ∞

−∞

dp0

2π
→ T

∞∑
n=−∞

. (3.17)
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Chapter 3 Functional methods

Technically, the Matsubara sums in Eq. (3.17) over the bosonic or fermionic Matsubara
frequencies in Eq. (3.16) can be evaluated using the residue theorem by introducing addi-
tional functions which have poles at the discrete Matsubara frequencies.

In the grand canonical ensemble the particle number is given by a derivative of the
effective action Ω(µ, T ) = Γ[φEoM;µ, T ] w.r.t. to the chemical potential

N =
∂Γ[φEoM;µ, T ]

∂µ
,

such that the effective potential contains a term Γ ∼ −µN . This introduces a chemical
potential µ into the microscopic action and together with the Matsubara formalism, we
can describe equilibrium properties of QFTs at finite temperature and density.

3.4 Basics of the BCS-BEC crossover from functional
renormalisation

In this Section we come back to our case of a two-component ultracold Fermi gas within the
BCS-BEC crossover and apply the fRG formalism to this situation. We start by defining
the microscopic action derived from Eq. (2.12) and elucidate some general aspects of the
fRG for the BCS-BEC crossover, leaving the explicit derivation of the flow equations and
the truncation to Chapter 4.

3.4.1 Model

Although the Hamiltonian in Eq. (2.12) defines a quantum field theory with creation and
annihilation operators â†(~x) and â(~x), a formulation of the theory in terms of a functional
integral is favourable, especially when applying functional methods to it. The derivation in
terms of a complex field ϕ(x) starts from the grand canonical partition function with tem-
perature β = 1/(kB T ) and chemical potential µ which is directly related to the generating
functional in Eq. (3.1),

Z(µ, T ) = Tr
(
exp{−β(Ĥ − µN̂)}

)
=

∫
Dϕ∗Dϕ exp {−S[ϕ∗, ϕ]} .

One then finds that the normal ordered Hamiltonian Ĥ(â†, â) is connected to the micro-
scopic action as

S[ϕ∗, ϕ] =

∫ β

0
dτ
(∫

~x
ϕ∗(τ, ~x) (∂τ − µ) ϕ(τ, ~x) +H[ϕ∗(τ, ~x), ϕ(τ, ~x)]

)
.

For our case of an ultracold Fermi gas close to a broad Feshbach resonance, as found
in quantum gases consisting of 6Li and 40K, details of the (sub-) atomic interactions in
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3.4 Basics of the BCS-BEC crossover from functional renormalisation

ultracold Fermi gases become irrelevant for the description of the macrophysics. The
system can then be described by the universal action derived from Eq. (2.12)

S[ψ∗, ψ] =

∫
X

∑
σ=1,2

ψ∗σ(∂τ −∇2 − µ)ψσ + λψψ
∗
1ψ
∗
2ψ2ψ1

 . (3.18)

Here ψσ and ψ∗σ denote Grassmann fermions in the hyperfine state σ = 1, 2. We introduce
X = (τ, ~x) with τ being the Euclidean time and

∫
X =

∫ β
0 dτ

∫
ddx with spatial dimension

d. Moreover, the chemical potential µ and the four-Fermi coupling λψ → λψ = 8π a3D are
related to the physical chemical potential and the scattering length through an appropriate
vacuum renormalisation.
We use ~ = kB = 2M = 1 withM being the mass of the fermionic atoms. For sufficiently

low temperatures, the ultracold Fermi gas may develop many-body instabilities resulting
in the formation of a macroscopic anomalous self-energy ∆ which is related to the non-
vanishing expectation value 〈ψ1 ψ2〉. This is signalled by a divergence of the frequency-
and momentum-dependent four-Fermi vertex at lower momentum scales and causes the
breaking of the global U(1)-symmetry. In particular, in the strongly coupled regime, i.e. for
a diverging three-dimensional s-wave scattering length a3D, the quantitative determination
of this phase transition is complicated by the frequency and momentum dependence of the
vertex. In order to resolve this difficulty, a scale dependent treatment in the path integral
formulation is appropriate, as described by the flow equation in Sec. 3.2.
Furthermore, it is convenient to rewrite the four-Fermi interaction λψ in Eq. (3.18) at

a large cutoff Λ in terms of a bosonic degree of freedom φ via a Hubbard-Stratonovich
transformation. The Hubbard-Stratonovich transformation basically amounts to inserting
a functional one into the path integral such that the action becomes

S[ψ, φ] =

∫
X

∑
σ=1,2

ψ∗σ
(
∂τ −∇2 − µ

)
ψσ +m2

φ φ
∗φ− h (φ∗ ψ1 ψ2 − φψ∗1 ψ∗2)

,(3.19)
with λψ = −h2/m2

φ. This can be seen via a Gaussian integration over the bosonic field
φ. The advantage is that it naturally accounts for the bosonic degrees of freedom over
the BCS-BEC crossover enabling a unified description for the superfluid transition. The
Yukawa-type Feshbach coupling h accounts for the interconversion of two fermionic atoms
ψ with different spin to a bosonic dimer φ. In Equation (3.19) we neglected the four-Fermi
interaction λψ. For negative λψ,Λ at the microscopic scale it can absorbed via a rescaling
of the Feshbach coupling h and the bosonic mass m2

φ, but it would be generated during
the flow to the infrared nonetheless. So, this approximation ignores some screening effects,
yet catches the qualitative pictures accurately.
Connecting the above action to the experimental setup we explicitly introduce the closed

channel in the context of Feshbach resonances, cf. Section 2.4, via the bosonic field φ.
The physical detuning ν = ν(B), which depends on the external magnetic field of the
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trap in the experiment, denotes the distance of the closed-channel bound state from the
scattering threshold. In the kinetic term of the bosonic dimer φ the factor of ∇2/2 reflects
the composite mass of the dimer, while this composition also yields twice the chemical
potential for the bosons

S[ψ, φ] =

∫
X

[
ψ∗
(
∂τ −∇2 − µ

)
ψ + φ∗

(
∂τ −

∇2

2
+ ν − 2µ

)
φ − h (φ∗ ψ1 ψ2 − φψ∗1 ψ∗2)

]
.

(3.20)

As we will see in more detail in Chapter 4, applying a derivative expansion within the
functional renormalisation group approach, one can make the following ansatz for the
scale dependent effective action.

3.4.2 Ansatz and ultraviolet renormalisation

The following considerations are, in general valid in three spatial dimensions. Potential
generalisations to the case of a dimensional crossover from three to two dimensions are
discussed in Chapter 5.
We employ the following ansatz for the effective action in derivative expansion

Γk[ψ, φ] =

∫
X

 ∑
σ={1,2}

ψ∗σ Pψ,σ(Q)ψσ + φ∗ Pφ(Q)φ+ Vk(ρ)− h(φ∗ ψ1 ψ2 − φψ∗1 ψ∗2)

 , (3.21)
with bare, unrenormalised (unrescaled) fields ψ, φ and inverse propagators Pψ,σ(Q), Pφ(Q).
The connection to the experiment is then given by the initial condition of the effective
potential Vk(ρ) in Eq. (3.21) at the ultraviolet scale Λ, which may only depend on the
U(1)-invariant quantity ρ = φ∗φ,

VΛ(ρ) = (νΛ − 2µ) ρ . (3.22)

The solution of the flow equations derived from Eq. (3.21) then yields to the equation of
state n(µ, T ) and phase diagram ρ0(µ, T ) as function of the microscopic parameters, the
detuning νΛ and the Feshbach coupling h. We thus need to map these microscopic param-
eters to the experimentally measurable scattering length a3D. To accomplish this, we (ar-
tificially) split the chemical potential into a vacuum and a many-body part µ = µvac + µmb

and follow the RG-flow twice. In a first step, we solve the flow equations in vacuum for
µ = µvac at zero temperature T = 0 where the many-body scales are never reached. This
establishes the connection of the microscopic parameters to the scattering length. After-
wards, in the second step, we go beyond zero density and temperature, i.e. with the full
chemical potential µ = µvac + µmb and T ≥ 0, in order to obtain the physical equation of
state n(µ, T, a3D) and the phase diagram ρ0(µ, T, a3D) as function of experimentally mea-
surable parameters. We can identify the following constraints for the different branches in
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3.4 Basics of the BCS-BEC crossover from functional renormalisation

vacuum by considering the momentum independent parts of the propagators

(i) atom sector (a3D < 0) : m2
φ,k=0 > 0, µvac = 0 ,

(ii) resonance (a−1
3D = 0) : m2

φ,k=0 = 0, µvac = 0 , (3.23)

(iii) dimer sector (a3D > 0) : m2
φ,k=0 = 0, µvac < 0 .

Here, the chemical potential −µ and the bosonic mass m2
φ act as gaps in the propagation

for fermions and bosons. In order to connect to the physical parameters one solves the
flow equations for the bosonic mass m2

φ and the Feshbach coupling in vacuum such that
the physical quantities, i.e. at k = 0, match the conditions in Eq. (3.23). From Eq. (3.22)
the initial value of the boson mass is given by

m2
φ = ν(B)− 2µ+ δν(Λ)

where ν(B) = ∆µ (B −B0) denotes the physical detuning from the scattering threshold
with ∆µ the relative magnetic moment of the molecules, cf. Eq. (2.18). The renormalisation
counter term δν(Λ) has to be adjusted such that the e.g. the resonance condition (ii) in
Eq. (3.23) is satisfied. The two-body scattering length a3D is then extracted from the
analytic solution of the bosonic mass m2

φ and the Feshbach coupling h, see e.g. [54],

a3D = a3D(B) =
h2

Λ

8π ν(B)
, ν(B) = νΛ − δν(Λ) = νΛ −

h2
Λ

6π2
Λ ,

allowing us to translate (νΛ, hΛ)→ a3D. Furthermore, one finds that the chemical potential
only contributes on the BEC-side for the vacuum flow and can be interpreted as half the
binding energy of a bosonic dimer

µvac =
εB
2
.

Having established the relation between the microscopic parameters and the physical scat-
tering length in vacuum, it is now possible to go to finite density and temperature and
determine the equation of state and the phase diagram. The results of which can be found
in the following chapters.
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CHAPTER 4

BCS-BEC crossover from functional renormalisation

This Chapter is in parts based on Ref. [1].

In this Chapter we derive the flow equations in the fRG framework, introduced in Sec-
tion 3.2, for an ultracold Fermi gas for a d-dimensional system. Furthermore, we allow
for a dimensional reduction in the form of a dimensional crossover in Section 4.6. By
defining a Master equation all flow equations of the individual couplings can be obtained
by suitable projection descriptions. Furthermore, for the flow equations in finite volume
we only consider the isotropic case where the flow of the couplings in transversal direction
equal the ones in the plane gi = gi,z, since this distinction is negligible [117]. A similar
formulation can be found in [59].

4.1 Ansatz for the effective action and truncation

As outlined in Section 3.4.1 it is useful to perform a Hubbard-Stratonovich transformation
in order to describe the relevant degrees of freedom of the physics at hand. Having intro-
duced the physical detuning ν = ν(B) in Eq. (3.20), for an explicit map to the experimental
parameters, the full microscopic action is given by

S[ψ, φ] =

∫
X

[
ψ∗
(
∂τ −∇2 − µ

)
ψ + φ∗

(
∂τ −

∇2

2
+ ν − 2µ

)
φ− h(φ∗ ψ1 ψ2 − φψ∗1 ψ∗2)

]
.

(4.1)

The kinetic term of the bosonic dimer φ reflects the composite mass of the dimer, while
also accounting for twice the chemical potential for the bosons.
Our ansatz for the effective average action can be divided into a kinetic part and an

interaction part

Γk = Γkin + Γint. (4.2)
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Chapter 4 BCS-BEC crossover from functional renormalisation

The kinetic part describes the fermion and boson dynamics and following Eq. (4.1) is within
a derivative expansion given by

Γkin =

∫
X

 ∑
σ={1,2}

ψ∗σ Pψ,σ(Q)ψσ + φ∗ P φ(Q)φ

 . (4.3)

The unrenormalised (unrescaled) fields ψ, φ and inverse propagators introduced in Eq. (4.3)
follow the form of the microscopic action Eq. (4.1) and can be defined as

Pψσ(Q) = Zψσ i q0 +Aψσ q
2 − µ ,

P φ(Q) = Zφ i q0 −Wφ q
2
0 +Aφ q

2/2 .
(4.4)

In this work we set Wφ = 0. In terms of the renormalised (rescaled) fields ψ = A
1/2
ψ ψ and

φ = A
1/2
φ φ the kinetic part can be formulated as

Γkin[ψ, φ] =

∫
X

 ∑
σ={1,2}

ψ∗σ
(
Sψ ∂τ −∇2 − µ

)
ψσ + φ∗

(
Sφ ∂τ −

1

2
∇2

)
φ

 . (4.5)

We normalised the coefficients of the gradient terms by means of the wavefunction renor-
malisations Aψ and Aφ which enter the renormalisation group flow via the anomalous
dimensions

ηψ = − ∂t logAψ, ηφ = − ∂t logAφ .

Moreover, coming from the inverse propagators in Eq. (4.4) we defined Sψ,φ = Zψ,φ/Aψ,φ

and the renormalised chemical potential µ = µ/Aψ,σ for Eq. (4.5). In general, the renor-
malised couplings are defined such that

Γ[ψ, φ] = Γ[ψ, φ] .

The interactions in Eq. (4.2) can, after the Hubbard-Stratonovich transformation, be
written as

Γint[ψ, φ] =

∫
X

[
V (φ∗ φ)− h (φ∗ ψ1 ψ2 − φψ∗1 ψ∗2)

]
. (4.6)

The effective average potential V (ρ) depends only on the U(1)-invariant quantity ρ = φ∗ φ

and describes bosonic scattering processes. The U(1)-symmetry is spontaneously broken for
a non-zero minimum ρ0 of the effective average potential and thus describes superfluidity.
In a Taylor-expansion we write

V (ρ) = m2
φ (ρ− ρ0) +

λφ
2

(ρ− ρ0)2 +
N∑
n=3

vn
n!

(ρ− ρ0)n . (4.7)
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F

+

B

( (

Figure 4.1: (F)- and (B)-truncation schemes of the flow equations. The flow of the inverse
boson propagator incorporates both fermionic and bosonic diagrams. Bosonic
propagators correspond to dashed and fermionic propagators to solid lines,
while the distinct vertices are shown in different shapes. The regulator insertion
is denoted by a cross.

where we need to include at least up to the second order in ρ to reproduce the second order
phase transition to superfluidity. In the symmetric regime we therefore have ρ0 = 0 and
positive bosonic mass m2

φ > 0, whereas the symmetry-broken regime is realised for ρ0 > 0

and vanishing bosonic mass m2
φ = 0. In the following we restrict this work to order φ4.

The truncation can be classified by the diagrams in Fig. 4.1 included on the right hand
side of the flow equation (3.13). By including only fermionic diagrams (F) we arrive at the
mean-field result. Bosonic fluctuations enter the flow equation by including diagrams with
two internal bosonic lines (B). In this thesis we only include effects from the renormalisa-
tion of the boson propagator in Fig. 4.1. The renormalisation of the fermion propagator
depicted in Fig. 4.2 will be used in Chapter 6 to derive the analytically continued flow of
the fermion two-point function.

Furthermore, baring in mind that Γ[φ] = βVold V (ρ), the flow of the (negative) density
of the Fermi gas is calculated via a derivative of the effective action with respect to the
chemical potential

∂k nk = −∂k
∂ V (ρ)

∂µ
. (4.8)

In practice, we approximate the dependence of the effective average action on the chemical
potential by an expansion in ρ and µ [53]

V (ρ) =
2∑

n=1

vn
n!

(ρ− ρ0)n − nk δµ+ αk (ρ− ρ0) δµ . (4.9)

Here the chemical potential is split into a reference part µ0 and an offset δµ, such that
µ = µ0 + δµ. This definition in Eq. (4.9) via Eq. (4.8) captures the density, and derived
quantities, in a qualitative manner and constitutes an approximation. In Chapter 7 we
expand on this simple approximation in order to gain quantitative results.
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The inverse propagators G−1
φ (Q) and G−1

ψ (Q) are calculated by functional derivatives of
the effective action w.r.t. the corresponding fields

Γ
(2)

φi,φj
(X,Y, ρ) =

δ2 Γ

δφi(X) δφj(Y )
[φ]

Γ
(2)

ψ
(∗)
α ,ψ

(∗)
β

(X,Y, ρ) =

−→
δ

δψ
(∗)
α (X)

Γ

←−
δ

δψ
(∗)
β (Y )

[φ] .

(4.10)

The direction of the arrow for the inverse fermion propagator denotes derivatives acting
from left and right on the effective potential. In momentum space we arrive after a Fourier
transform of Eq. (4.10) at

Γ
(2)
BB(Q,Q′) = δ(Q+Q′)G−1

φ (Q) ,

Γ
(2)
FF (Q,Q′) = δ(Q+Q′)G−1

ψ (Q) .
(4.11)

After performing the functional derivatives according to Eq. (4.11) of our ansatz in Eq. (4.5)
and Eq. (4.6) we obtain in the {φ1, φ2}-basis for a constant bosonic background field
φ =
√
ρ

G−1
φ (Q) = Aφ

PS,Qφ + V ′ + 2 ρ V ′′ i PA,Qφ

−i PA,Qφ PS,Qφ + V ′

 ,

G−1
ψ (Q) = Aψ

−h√ρ ε −P−Qψ 1

PQψ 1 h
√
ρ ε

 .

(4.12)

Here 1 is the 2-dimensional unity matrix, ε = ((0, 1), (−1, 0)) the fully antisymmetric tensor
and a prime denotes a derivative with respect to ρ. The regulators in the {φ1, φ2}-basis
are likewise given by

RQφ = AφR
Q
φ = Aφ

 RSφ(Q) iRAφ (Q)

−iRAφ (Q) RSφ(Q)

 ,

RQψ = Aψ R
Q
ψ = Aψ

 0 −R−Qψ 1

RQψ 1 0

 .

(4.13)

Moreover we defined the symmetrised and anti-symmetrised components of the propagators
and regulator functions as

fS,A(Q) =
f(Q)± f(−Q)

2
. (4.14)

For a more streamlined notation we define the short-hand abbreviation for the sum of
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4.1 Ansatz for the effective action and truncation

propagator and regulator, as well as the determinants

LQψ = PQψ +RQψ ,

detQF = LQψ L
−Q
ψ + h2 ρ ,

LQφ = PQφ +RQφ + V ′ + ρ V ′′ ,

L̃Qφ = PQφ +RQφ ,

detQB = LQφ L
−Q
φ − (ρV ′′)2 .

(4.15)

We then may write the regularised propagators with the definitions in Eq. (4.15) as

GQφ = AφG
Q
φ =

1

detQB

L̃S,Qφ + V ′ −i L̃A,Qφ

i L̃A,Qφ L̃S,Qφ + V ′ + 2 ρ V ′′

 ,

GQψ = Aψ G
Q
ψ =

1

detQF

(h2 ρ)1/2 ε L−Qψ 1

−LQψ 1 −(h2 ρ)1/2 ε

 .

(4.16)

We can also represent the boson propagator in Eq. (4.16) in the conjugate field basis {φ, φ∗}
where the corresponding matrix will be labelled by a hat. For φ = (φ1 + i φ2)/

√
2 we have φ

φ∗

 =
1√
2

1 i

1 −i

(φ1

φ2

)
,

and thus arrive the inverse propagator in the conjugate field basis

Ĝ−1
φ = U G−1

φ U t .

Here, we used the definitions

U =
1√
2

1 −i

1 i

 , U t =
1√
2

 1 1

−i i

 .

Explicitly, we then obtain for the inverse boson propagator in the {φ, φ∗}-basis

Ĝ−1
φ =

ρ V ′′ L−Qφ

LQφ ρ V ′′

 , R̂φ(Q) =

 0 R−Qφ

RQφ 0


and

ĜQφ =
1

detQB

−ρ V ′′ L−Qφ

LQφ −ρ V ′′


To generate higher n-point functions further functional derivatives have to be applied, once
again paying attention to the correct ordering for fermionic derivatives.
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Chapter 4 BCS-BEC crossover from functional renormalisation

M

( (

Figure 4.2: The mixed diagrams describing the flow of the inverse fermion propagator.
Bosonic propagators correspond to dashed and fermionic propagators to solid
lines, distinct vertices are shown in different shapes. The regulator insertion is
denoted by a cross. Here, we both have bosonic, as well as fermionic internal
lines.

Since we assume momentum and frequency independent vertices to close our set of equa-
tion, the complexity of the system of differential equations is drastically reduced

Γ
(n>2)
k (Q1, . . . , Qn) = γ

(n)
k δ(Q1, . . . , Qn) . (4.17)

Given our ansatz in Eq. (4.5) and Eq. (4.6) the three- and four-point vertices are given in
Appendix D according to Eq. (4.17).
Explicitly, the truncation used in this thesis includes the following running couplings:

V (ρ), Aφ, Sφ . (4.18)

The running of the renormalised Feshbach coupling is then given via the anomalous dimen-
sion ηφ = −Ȧφ/Aφ. The running of the effective potential then includes m2

φ, ρ0, λφ, α, n in
Chapter 5 and Chapter 6 and m2

φ, ρ0, λφ in Chapter 7, where the density is obtained by
an iterative computation.

4.2 Regulator scheme

In this work we choose the optimised three-dimensional Litim-type regulator [118–120] for
the cutoff function R(Q) in three spatial dimensions. It is given for bosons and fermions,
respectively, by

Rφ,k(q
2) =

(
k2 − q2/2

)
θ
(
k2 − q2/2

)
,

Rψ,k(q
2) = k2 (sgn (z)− z) θ (1− |z|) ,

(4.19)

where θ(x) represents the Heaviside-Theta function, sgn(x) the sign function and we used
z = (q2 − µ)/k2. Here, the fermionic regulator takes into account that fermions have to
be regularised around the Fermi surface, while the bosonic regulator includes the fact that
the boson mass is twice the fermion mass. Note, that only spatial momenta q2 = |~q|2 are
regularised for this type of regulator. However, a particular neat property of (4.19) is that
the finite temperature Matsubara sums can be performed analytically.
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4.3 Master equations

4.3 Master equations

In order to solve the Wetterich equation Eq. (3.13) in practice we need to convert it into a
set of coupled differential equations of the correlation functions. We therefore start from
a few Master equations, namely for the inverse fermion and boson propagators and the
effective average potential. The following two Sections are valid for a general regulator
scheme and we only specialise to the case of Eq. (4.19) in Section 4.5.
In the next step these equation are projected appropriately to arrive at flow equations for
the running couplings {gk}.
With the definitions from Eq. (4.15), general regulators the flow equation of the effective

average potential is then given by

V̇ k(ρ) =
1

2
Tr
∫
Q
GQφ Ṙ

Q

φ −
1

2
Tr
∫
Q
GQψ Ṙ

Q

ψ

=
1

2

∫
Q

1

Aφ

LQφ Ṙ
−Q
φ + L−Qφ Ṙ

Q

φ

detQB
− 1

2

∫
Q

1

Aψ

LQψ Ṙ
−Q
ψ + L−Qψ Ṙ

Q

ψ

detQF
.

(4.20)

The (unrenormalised) flow equations can be divided into a bosonic and a fermionic contri-
bution resulting from bosonic (B) and fermionic (F) diagrams, respectively

V̇ (ρ) = V̇ (B) + V̇ (F ) . (4.21)

Including the additional term of the anomalous dimension in Eq. (4.21) we find the flow
for the renormalised quantities, e.g.

V̇ (ρ) = V̇ (B) + V̇ (F ) + ηφ ρ V
′(ρ) .

For the flow of the inverse boson propagator in the {φ1, φ2}-basis we find

Ġ
−1

φiφj (P ) =
1

2
Tr
∫
Q
Gφ(Q) γ

(3)

φiBB
Gφ(Q+ P ) γ

(3)

φjBB
Gφ(Q)Ṙφ(Q)

+
1

2
Tr
∫
Q
Gφ(Q) γ

(3)

φjBB
Gφ(Q− P ) γ

(3)

φiBB
Gφ(Q)Ṙφ(Q)

−1

2
Tr
∫
Q
Gφ(Q) γ

(4)

φiφjBB
Gφ(Q)

−1

2
Tr
∫
Q
Gψ(Q) γ

(3)

φiF |F
Gψ(Q+ P ) γ

(3)

φjF |F
Gψ(Q)Ṙψ(Q)

−1

2
Tr
∫
Q
Gψ(Q) γ

(3)

φjF |F
Gψ(Q− P ) γ

(3)

φiF |F
Gψ(Q)Ṙψ(Q) .

(4.22)

Likewise the flow of the inverse fermion propagator is obtained, taking the Grassmannian
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Chapter 4 BCS-BEC crossover from functional renormalisation

nature of fermions in account,

Ġ
−1

ψαψβ
(P ) =

1

2
Tr
∫
Q
Gφ(Q) γ

(3)

ψαB|F
Gψ(Q+ P ) γ

(3)

F |Bψβ
Gφ(Q)Ṙφ(Q)

−1

2
Tr
∫
Q
Gφ(Q) γ

(3)

BF |ψβ
Gψ(Q− P ) γ

(3)

ψα|FB
Gφ(Q)Ṙφ(Q)

−1

2
Tr
∫
Q
Gψ(Q) γ

(3)

ψα|FB
Gφ(Q+ P ) γ

(3)

BF |ψφ
Gψ(Q)Ṙψ(Q)

+
1

2
Tr
∫
Q
Gψ(Q) γ

(3)

F |Bψβ
Gφ(Q− P ) γ

(3)

ψαB|F
Gψ(Q)Ṙψ(Q) .

(4.23)

Equations (4.20), (4.22) and (4.23) will be used to obtain the flow equations of the rel-
evant couplings via an appropriate projection description in Section 4.4. Furthermore,
in Chapter 6 the flow of the inverse propagators is calculated from Eq. (4.23) and after
an analytical continuation to real-time the spectral functions. The three- and four-point
vertices are explicitly shown in Appendix D.

4.4 Projection description for the running couplings

In this Section we derive suitable projection descriptions for the flow equations of the
running couplings {gk} and expansion coefficients of the effective average potential V (ρ).
We recall that we use a derivative expansion of the inverse fermion and boson propagators

Pψσ(Q) = Zψσ i q0 +Aψσ q
2 − µ = Aψσ

(
Sψσ i q0 + q2 − µ

)
,

P φ(Q) = Zφ i q0 +Aφ q
2/2 = Aφ

(
Sφ i q0 + q2/2

)
.

(4.24)

Here we defined Sψ,φ = Zψ,φ/Aψ,φ and the renormalised chemical potential µ = µ/Aψ,σ.
Since the effective potential is expanded in a Taylor series (here excluding an explicit
contribution containing the density), we can easily project the flow equation (4.20) onto
the coefficients

Vk(ρ) = m2
φ (ρ− ρ0) +

λφ
2

(ρ− ρ0)2 +

N∑
n>2

vn
n!

(ρ− ρ0)n . (4.25)

There are several candidates for projection descriptions for the running couplings which
may at a first glance seem equal. However, as the flow equation is an exact equation
incorporating all orders of the effective average action, every projection neglects certain
higher order couplings and thus results in different flows. We expect though that our
truncation includes the most important effects and a precise projection would only yield
negligible modifications. The distinction between different projection descriptions may also
be used for an error estimate.
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4.4 Projection description for the running couplings

In the symmetric regime of the flow we have ṁ2
φ = V̇

′
(ρ = 0) which makes place for the

flow of ρ̇0 = −V̇
′
(ρ0)/λφ in the symmetry broken regime. For the flow of higher expansion

coefficients one finds

v̇n = ∂t

(
V (n)(ρ0)

)
= V̇

(n)
(ρ0) + vn+1 ρ̇0 . (4.26)

Using the expansion of the effective potential Eq. (4.25) together with Eq. (4.26) we then
obtain the flow of the renormalised couplings via

m2
φ =

m2
φ

Aφ
, ρ0 = Aφ ρ0 , vn =

vn
Anφ

. (4.27)

Again this means that including a term proportional to the anomalous dimension yields
the flow of the renormalised couplings in Eq. (4.27), to wit

ṁ2
φ = ηφm

2
φ +

ṁ
2
φ

Aφ
,

ρ̇0 = −ηφ ρ0 +Aφ ρ̇0 ,

v̇n = n ηφ vn +
v̇n
Anφ

.

(4.28)

Since we restrict ourselves to purely fermionic and bosonic diagrams, we have no running
of the couplings entering the fermionic propagator, yet they are obtained via the same
construction. For the couplings associated with the boson propagator we make use of the
derivative expansion of the inverse propagator, cf. Eq. (4.24) and arrive at

Żφ = −∂p0 Ġ
−1

φ1φ2(P, ρ0)

∣∣∣∣
P=0,ρ0

,

Ȧφ = 2 ∂p2 Ġ
−1

φ2φ2(P, ρ0)

∣∣∣∣
P=0,ρ0

.

(4.29)

From Eq. (4.29) the flow equations for the renormalised quantities are then given with the
anomalous dimension ηφ = −Ȧφ/Aφ by

Ṡφ = ηφ Sφ +
Żφ
Aφ

. (4.30)

In the flow equations for the running couplings we neglected a term proportional to ρ̇0 which
would be generated if one took the RG-time derivative after performing the projections.
Equations (4.28) and (4.30) together with the bosonic anomalous dimension are the set of
coupled differential equations for our truncation, cf. Section 4.1 needed to be solved. A
discussion concerning the initial conditions for this set of coupled differential equations is
postponed to Section 4.7.2.
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Chapter 4 BCS-BEC crossover from functional renormalisation

4.5 Flow equations using the optimised regulator

So far, our considerations were general and especially independent of the specific regulator
scheme used. In this Section we now specialise to the case of the optimised regulator (4.19)
for deriving the flow equations of the running couplings. These equations will be our main
starting point in studying the BCS-BEC crossover in dimensions 2 ≤ d ≤ 3 in the later
Section 4.6.

4.5.1 Expansion scheme

The advantage of the optimised regulator stems from the possibility of analytically per-
forming the Matsubara summations due to a purely spatial cutoff q2 = |~q|2.
The procedure may, however, further be simplified by interchanging the order of the deriva-
tive projection and the Matsubara summation. We therefore start again from the general
form of the flow of the inverse propagators with the trace not being evaluated so that
we can expand the inverse propagators G(Q ± P ) in powers of p0 and p and perform the
projections afterwards.

Fermionic contributions

In this spirit we expand the inverse fermionic propagator from Eq. (4.15) according to

LQ+P
ψ =LQψ + i Sψ p0 +

(
1 +R

(1)
ψ

) (
2 q p x+ p2

)
+

1

2
R

(2)
ψ (2 p q x)2 ,

detQ+P
F = detQF + 2LS,Qψ

((
1 +R

(1)
ψ

) (
p2 + 2 p q x

)
+

1

2
R

(2)
ψ (2 p q x)2

)
+ S2

ψ p
2
0 + 2Sψ p0 q0 +

(
1 +R

(1)
ψ

)2
(2 p q x)2

(4.31)

where the superscript S denotes the symmetrised contribution (4.14) and we defined

~p ~q = p q x , R
(1)
ψ (q2) =

∂ Rψ
∂ q2

(q2) , R
(2)
ψ (q2) =

∂ R
(1)
ψ

∂ q2
(q2) .

We obtain the respective expansions for momenta Q − P by transforming x → −x and
p0 → −p0. In order to apply the projection descriptions in Sec. 4.4 we introduce the
notation which directly act on the expansion in Eq. (4.31)

A(±) = − ∂

∂ p0
GQ±Pψ

∣∣∣
P=0

, B(±) = − ∂2

∂ p2
GQ±Pψ

∣∣∣
P=0

, C(±) =
1

2

∂

∂ p2
0

GQ±Pψ

∣∣∣
P=0

.

With the general definition of the flow equation of the inverse propagators in Sec. 4.3 this
yields the projections on the wavefunction renormalisation Sφ = Zφ/Aφ and the boson
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4.5 Flow equations using the optimised regulator

anomalous dimension

Ṡ
(F )
φ = −1

2

∫
Q
Tr
(
γ

(3)
φ1FF

A(+) γ
(3)
φ2FF

+ γ
(3)
φ2FF

A(−) γ
(3)
φ1FF

) 1

Aψ
GQψ Ṙ

Q

ψ G
Q
ψ ,

η
(F )
φ = −1

2

∫
Q
Tr
(
γ

(3)
φ2FF

B(+) γ
(3)
φ2FF

+ γ
(3)
φ2FF

B(−) γ
(3)
φ2FF

) 1

Aψ
GQψ Ṙ

Q

ψ G
Q
ψ .

(4.32)

Together with the explicit forms of the three-point functions γ(3), cf. Appendix D, Equation
(4.32) then yields the general flow equations given the optimised regulator with the loop
integration still unevaluated

Ṡ
(F )
φ = −2h2 Sψ

∫
Q

Ṙψ(q2)

Aψ

 1(
detQF

)2 −
2h2 ρ(
detQF

)3

 ,

η
(F )
φ =

8h2

d

∫
Q

Ṙψ(q2)

Aψ

q2R
(2)
ψ(

detQF

)3 .

(4.33)

Bosonic contributions

For the bosonic contribution with linear frequency dependence we find as before

LQ+P
φ = LQφ + i Sφ p0 +

(
1

2
+R

(1)
φ

) (
2 p q x+ p2

)
+

1

2
R

(2)
φ (2 p q x)2 ,

detQ+P
B = L

−(Q+P )
φ LQ+P

φ −
(
ρ V ′′

)2
+
(
detQB − L

−Q
φ LQφ +

(
ρ V ′′

)2)
.

(4.34)

Given the flow equations for the propagators in Sec. 4.3 and the explicit forms of the three-
point functions γ(3), cf. Appendix D, Equation (4.34) then results in the flow equations for
a linear frequency dependence

Ṡ
(B)
φ = − 4Sφ ρ V

′′
∫
Q

Ṙφ(q2)

Aφ

(
V ′′ + ρ V (3)

det2B(Q)
(4.35)

+
2 ρ V ′′

[
ρ V ′′

(
V ′′ + ρ V (3)

)
−
(
2V ′′ + ρ V (3)

)
LSφ(Q)

]
det3B(Q)

 ,

η
(B)
φ = 4 ρ

(
V ′′
)2 ∫

Q

Ṙφ(q2)

Aφ

1 + 2R
(1)
φ + 4 q2 x2R

(2)
φ

det2B(Q)
−

2 q2 x2
(

1 + 2R
(1)
φ

)2
LSφ(Q)

det3B(Q)

 .

Equations (4.33) and (4.35) together with the flow equations of the couplings derived from
the effective action are then (after momentum integration) solved numerically and thus
define our theory at hand.
The loop integrations still need to be performed in (4.33) and (4.35). For this we use the

Matsubara formalism outlined in Section 3.3 for the summation over the discrete Matsubara
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Chapter 4 BCS-BEC crossover from functional renormalisation

frequencies at finite temperature. The spatial momentum integration has to account for
the fermionic regularisation around the Fermi surface. The explicit calculations are moved
to Appendix E.

4.5.2 Final flow equations

After performing the Matsubara sums and the momentum integrations in Appendix E the
overall flow equations in our truncation can be cast into the form

V̇ (F )(ρ) = −16 vd
d

kd+2 `
(1,1)
F ,

V̇ (B)(ρ) =
8 vd 2d/2

d
kd+2 `

(1,1)
B .

(4.36)

The fermionic contributions to the boson propagator are found to be

Ṡ
(F )
φ = −16h2 vd

d
kd−4

(
`
(0,2)
F − 2w3 `

(0,3)
F

)
,

η
(F )
φ =

16h2 vd
d

kd−4 `
(0,2)
F,2 ,

(4.37)

while the bosonic contributions are given by

Ṡ
(B)
φ =−

32Sφ
d

ρ V ′′ vd 2d/2 kd−4

[ (
V ′′ + ρV (3)

)
`
(0,2)
B

+ 2
(
ρV ′′

)2 (
V ′′ + ρV (3)

)
k−4`

(0,3)
B − 2ρV ′′

(
2V ′′ + ρ V (3)

)
k−2 `

(1,3)
B

]
,

η
(B)
φ =8 ρ

(
V ′′
)2 vd 2d/2

d
kd−4 `

(0,2)
B,2 .

(4.38)

Here we used the definitions for fermionic contributions

`
(n,m)
F

(
µ̃, T̃ , w3

)
=


`2(µ̃)Fm

(√
1 + w3

)
n even

`1(µ̃)Fm
(√

1 + w3

)
n odd

(4.39)

and

`
(n,m)
F,2

(
µ̃, T̃ , w3

)
=


`3(µ̃)Fm

(√
1 + w3

)
n even

`1(µ̃)Fm
(√

1 + w3

)
n odd

, (4.40)

where we made use of w1 = V ′/k2 and w2 = ρ V ′′/k2, as well as w3 = h2 ρ/k4. For bosonic
diagrams we defined

`
(n,m)
B

(
T̃ , w1, w2

)
=

1

S2m
φ

(
1−

ηφ
d+ 2

)
(1 + w1 + w2)n Bm

(√
(1 + w1)(1 + w1 + 2w2)/Sφ

)
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4.6 Flow equations for finite volume

and

`
(0,m)
B,2

(
T̃ , w1, w2

)
=

1

S2m
φ

Bm
(√

(1 + w1)(1 + w1 + 2w2)/Sφ

)
= `

(0,m)
B

∣∣∣
ηφ=0

.

Fm(z) and Bm(z) label the fermionic and bosonic Matsubara sums of order m given in (E.1)
and (E.3), respectively. The functions `i are defined as in Eq. (E.5)

`1(x) = θ(x+ 1) (x+ 1)d/2 − θ(x− 1) (x− 1)d/2 ,

`3(x) = θ(x+ 1) (x+ 1)d/2 + θ(x− 1) (x− 1)d/2 ,

`2(x) = `3(x)− 2 θ(x)xd/2 ,

(4.41)

and the d-dimensional volume integral is given by v−1
d = 2d+1 πd/2 Γ(d/2).

The flow of the density n = nk→0 is approximated via an expansion of the effective
potential (4.7) with respect to the offset chemical potential δµ with µ = µ0 + δµ according
to (4.9) and (4.8). The differentiation with respect to µ acts rather on δµ as the reference
chemical potential is fixed

ṅk = − ∂ V̇
∂ δµ

. (4.42)

According to the Master equation for the effective average potential (4.20) we now expand
LS,Qψ and detQF in terms of δµ while the fermionic cutoff still regularises around the Fermi
surface, i.e. the reference chemical potential µ0. As mentioned below Eq. (4.9) we will
improve on this approximation in Chapter 7 in order to obtain quantitative results.
The (4.36) – (4.38) together with Eq. (4.42) comprise the set of coupled differential

equations we need to solve starting at an ultraviolet scale Λ to the infrared k → 0. We
will extend them to finite volume in the next Section 4.6 and comment on the procedure
for their solution in Section 4.7.

4.6 Flow equations for finite volume

The flow equations obtained for the Litim-type regulator in Section 4.5 only account for
a fixed dimension d. Here, we extend the calculation to a confined system by means of
a compactifation of one spatial dimension. As we will argue in Chapter 5 the Fermi gas
is then essentially in a dimensional crossover from a three-dimensional to two-dimensional
system where we define a confinement length scale L. By adopting periodic boundary
conditions we restrict our system to a torus in one spatial direction

ψ(L) = ψ(0) .

Note, that anti-periodic boundary conditions do not yield a two-dimensional limit, as is
discussed in Section 5.1. The compactification results in a ’spatial Matsubara sum’ over
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Chapter 4 BCS-BEC crossover from functional renormalisation

discrete momenta kn = 2πn/L with n ∈ Z. Accompanying this quantisation of energy
levels the bosonic and fermionic regulators are modified accordingly, cf. Appendix F, and
thus, the d-dimensional spatial integration splits up into a sum over the discrete momenta
kn and a momentum integral in d− 1 dimensions∫

dd q

(2π)d
=

1

L

∑
kn

∫
dd−1 q

(2π)d−1
.

We therefore find that all bosonic flow equations of Section 4.5.2 still hold when applying
the replacements (

1−
ηφ
d+ 2

)
→ CL , d→ d− 1 ,

where we defined

CL =
1

L

∑
kn

(
1− k2

n

2 k2

)d/2(
1−

ηφ
d+ 2

(
1− k2

n

2 k2

))
θ

(
k2 − k2

n

2

)
.

The fermionic flow equations for finite volume with periodic boundary conditions can then
be inferred from the d-dimensional case in Section 4.5.2 with the replacement

`i → `i,L =
k

L̃

∑
kn

`i , d→ d− 1 ,

where the `i where defined in Eq. (4.41). We show the explicit form of CL and `i,L in
Appendix F.
The generalisations of the flow equations from Section 4.5.2 given here to a system

confined to a torus of circumference L constitute the starting point for our discussion of the
dimensional crossover from three to two dimensions in Chapter 5. The set of coupled flow
equations is then solved numerically enabling us to gain knowledge about thermodynamic
quantities, especially the equation of state and the finite temperature phase diagram for a
arbitrary confinement length L.

4.7 Solving the flow equations

Here we shall briefly comment on solving the flow equations as given in Sec. 4.5.2 and 4.6.
The flow equations as given above constitute a set of coupled differential equations which
can, with the exception of the vacuum case, cf. Section 3.4.1, only be solved numerically.
In particular, we are interested in determining the superfluid gap ∆ and the equation of
state for the density µ/εF . The superfluid gap is, according to our action in Eq. (4.1),
given by

∆ = lim
k→0

∆k =
(
h2
k ρ0,k

)1/2
,
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4.7 Solving the flow equations
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Figure 4.3: The typical (zero temperature) running of the bosonic mass m2
φ (in blue) and

the gap parameter ∆ (in green) with respect to the RG time t = ln(k/Λ). The
flow is initialised at the ultraviolet scale Λ and runs towards the infrared k → 0.
The gap ∆ is generated in the symmetry broken phase, where the bosonic mass
m2
φ vanishes. Here, all contributions to the running of the couplings stem from

infrared Goldstone fluctuations. At unitarity, a3D = ∞, the units are chosen
such that µ = 1 and we rescaled the curves for better visibility. In these
units, the phase transition occurs at t ' −6.8 and many-body effects strongly
influence the physics at k2 ' µ which is equivalent to t ' −6.9 in this plot.

with hk being the scale dependent Feshbach coupling and ρ0,k the scale dependent minimum
of the effective potential. The gap constitutes the order parameter for the superfluid phase.
At zero temperature the superfluid ground state yields in a non-zero ρ0,k→0 resulting in a
non-vanishing gap ∆k→0 > 0. At finite temperature, long range order may be destroyed by
thermal fluctuations such that the gap vanishes ∆ = 0 and one arrives at the normal phase.
In addition, there exists a temperature regime at which the intermediate ρ0,k>0 is non-zero,
but vanishes for k → 0. This is often called the precondensation region. Concerning the
nomenclature, we will use superfluid gap, gap parameter and simply gap interchangeably
in the following.

4.7.1 Numerical procedure

The set of coupled differential equations for the projected flow equations is evaluated
numerically for both zero and finite temperature. However, it is a useful feature of the
functional renormalisation group that for large scales k2 � T the finite temperature flow
can be approximated by the zero temperature system [59]. For a practical computation
we choose kswitch,T = 6π T , i.e. we follow the zero temperature flow until kswitch,T , where
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Figure 4.4: The typical (zero temperature) running of the bosonic mass Sφ (in blue), the
bosonic coupling λφ (in green) and the bosonic anomalous dimension ηφ (in
red) with respect to the RG time t = ln(k/Λ). The units are chosen such that
µ = 1 at unitarity a3D =∞. For better visibility we rescale the curves.

the temperature starts to become an important scale. Afterwards we switch to the finite
temperature flow equations.
The critical temperature is determined as the largest temperature for which the gap of

the fermion spectrum is non-vanishing. Numerically, we use the following algorithm

0 < ∆tfinal (Tc, µ, a) <
1

100
∆tfinal (T = 0, µ, a) . (4.43)

Using this algorithm is very efficient as it accounts for both the large gap on the BEC-side,
as well as for the smaller gap on the BCS-side (especially in the three-dimensional case).
It was checked numerically that a further limitation to < 1% of the zero temperature gap
yields identical results in d ≤ 3 within the numerical precision.

For a three-dimensional Fermi gas we choose for the ultraviolet cutoff Λ/
√
µmb = 1000

in the following, with µmb = µ− εB/2 in the many-body problem, cf. Section 3.4.1. This
is to be slightly modified for the case of the dimensional crossover, as we will detail in
Section 5.3.
Hence, solving the flow equations for the couplings necessitates correct initial conditions

at the ultraviolet scale Λ.

4.7.2 Initial conditions and universality

In three dimensions the running couplings approach fixed points in the renormalisation
group flow of the Fermi gas. As a result, the macrophysics (on the length scales of the
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Figure 4.5: The typical running for the density nk (blue curve) and αk (green curve) with
respect to the RG time t = ln(k/Λ) for a truncation including these couplings
explicitly. At unitarity, a3D = ∞, with the units are chosen such that µ = 1

we rescaled the curves for better visibility.

inter-particle spacing) becomes independent of the microphysics (on the molecular scales)
to a large extent, cf. e.g. [53, 59].
When reaching the fixed points, the system loses its memory of the microphysics with

its initial conditions. Consequently, the initial conditions of the running couplings are
irrelevant and we may essentially start at the fixed point values in the ultraviolet. Even if
we had not done so, they would be immediately generated.
An exception constitutes the bosonic mass termm2

φ whose fixed point is unstable towards
the infrared. Hence, for the effective potential we set as initial condition in the ultraviolet

VΛ(ρ) = (νΛ − 2µ) ρ .

As mentioned in Section 3.4.2 it is advantageous to artificially split the chemical potential
µ into a vacuum component µvac and a many-body contribution µmb such that the vacuum
part µvac equals half the binding energy of a bosonic dimer εB/2 in three spatial dimen-
sions. In Section 3.4.2 we described how the detuning νΛ, the chemical potential µ and
the Feshbach coupling hΛ are related to the experimental parameters via an appropriate
vacuum renormalisation. In Section 5.2 we will comment on the case of the dimensional
crossover.
In three dimensions, with these initial conditions we show the characteristic running

of the couplings in Fig. 4.3 for the rescaled bosonic mass m2
φ and the gap ∆ and for the

rescaled couplings Sφ, λφ and ηφ in Fig. 4.4 at zero temperature and unitarity, a−1
3D = 0. For

a truncation including the density nk and αk explicitly, cf. Eq. (4.9), the initial condition
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Chapter 4 BCS-BEC crossover from functional renormalisation

for the density has to chosen as nΛ = µ3/2/(3π2) according to the definition of the Fermi
momentum in three dimensions. Their running is illustrated in Fig. 4.5. For better visibility
we rescaled the curves and find that all couplings saturate quickly towards the infrared at
sufficiently small k-scales.
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CHAPTER 5

Dimensional crossover

This Chapter is in parts based on Ref. [1].

Lower-dimensional systems are of particular interest both in condensed matter and sta-
tistical physics as they feature a pronounced influence of fluctuations. Furthermore, they
are of experimental and technological importance with examples ranging from high temper-
ature superconductors over layered semiconductors to graphene. Disentangling the effects
of the dimensionality from other many-body physics effects constitutes a key challenge in
the study of systems of reduced dimensionality.
With the recent progress in trapping ultracold atomic gases in quasi-two-dimensional

geometries [61, 62] both zero [63–65] as well as finite temperature effects [63, 66–71] have
been measured. Hereby, strongly anisotropic trapping potentials on the one hand and
one-dimensional optical lattices one the other hand allow for the experimental realisation
of quasi-two-dimensional quantum gases.
For example, the algebraic correlations associated with the Berezinskii–Kosterlitz–

Thouless (BKT) phase transition in (quasi-) two-dimensional systems have been observed
in bosonic [66, 69, 72–75], as well as fermionic systems [67, 76]. In addition, (quasi-) two-
dimensional systems exhibit the breaking of the scale invariance in the strongly interacting
regime of the BCS-BEC crossover. Here, extensive progress both in theory [77–84], as well
as in experiment [64, 85, 86] has been achieved in recent years. For a fRG study of the
BKT transition see e.g. [121].
Due to an insufficient degree of anisotropy in the experimental setup one may not be

restricted to a particular dimension, but finds oneself in a dimensional crossover without a
well-defined dimensionality. Apart from being an undesired effect for the investigation of
pure two-dimensional systems, the crossover may also lead to new materials with physically
interesting properties.
In this Chapter we study the dimensionality behaviour of ultracold Fermi gases, specifi-

cally the BCS-BEC crossover. A comparable quasi-two-dimensional setup has been studied
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Chapter 5 Dimensional crossover

in [122, 123] in a mean-field approach, for a Fermi gas at unitarity and zero temperature in
[124], using the Luttinger-Ward approach in two dimensions in [125] and using Quantum
Monte Carlo (QMC) calculations in two dimensions in [126]. Furthermore, two-dimensional
fermionic systems have been addressed in [127–134].

Apart from featuring the transition to the superfluid phase, the normal-state ’pseudo-
gap’ behaviour can also be studied within the BCS-BEC crossover. Here, the onset of
superfluidity and pairing occurs at different temperatures, i.e. the density of states is par-
tially gapped and the dispersion relation is BCS-like for a range of temperatures above the
critical temperature. The system essentially retains some features of the broken superfluid
phase also in the symmetric normal phase without exhibiting superfluidity. This pairing
at high temperatures has been studied both experimentally, e.g. in [70, 135], as well as
theoretically, e.g. in [136–138].

Moreover, a BCS-BEC crossover can also be found in confined superconducting sys-
tems, where the crossover is induced by tuning the chemical potential to a band edge in
multi-band superconductors. The size-induced molecule-like pairing has both been studied
theoretically [139–142], as well as experimentally [143]. Here, the confinement of super-
conducting materials (e.g., in the form of monolayer systems) results in shape resonances
where an increased temperature, (superconducting) gap, as well as intrapair correlation
length are present. In addition, the confinement leads to a step in the density of states
which gives rise to a change in the topology of the Fermi surface, a so-called Lifshitz tran-
sition, and is another factor in an increased critical transition temperature [144–149]. For
a 1d-2d crossover see e.g. [150].

We investigate the dimensional crossover from three to two spatial dimensions for ul-
tracold Fermi gases by means of the functional renormalisation group. For a study of
non-relativistic bosonic systems, see [117]. In particular, we are interested in the critical
temperature for the superfluid transition over the BCS-BEC-crossover in dependence of
the dimensionality.

The dimensional crossover is achieved by compactifying the ‘transverse’ z-direction by
a potential well of length L. The dimensional crossover can then essentially be observed
by varying the confinement length L. We discuss (anti-)periodic boundary conditions, as
well as a confinement to a box with boundaries fixed to zero. The compactification leads
to a discrete momentum spectrum in z-direction. The choice of the boundary conditions
is crucial for a well-defined two-dimensional limit. It also influences the mapping between
three- and two-dimensional parameters of the Fermi gas. Both aspects are discussed in
detail in Section 5.1. The initial conditions and numerical procedure are presented in
Sections 5.2 and 5.3. We discuss some aspects of the dependence on the final infrared scale
in Sec. 5.4. In Section 5.5 the results for the equation of state and the gap parameter in
the dimensional crossover at zero temperature are discussed. The finite temperature phase
diagrams with respect to the dimensionality and a comparison to experiment are addressed
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in Section 5.6, before concluding in the end.

5.1 Function space and boundary conditions

The choice of the boundary conditions plays a crucial role in arriving at the correct two-
dimensional physics. The dimensional crossover is implemented by compactifying the
‘transverse’ z-direction by a potential well of length L,

Vbox(z) =


0 0 ≤ z ≤ L

∞ else
. (5.1)

One may choose (anti-)periodic boundary conditions

ψ(x, y, z = 0) = ±ψ(x, y, z = L) ,

or restrict oneself to a box

ψ(x, y, z = 0) = ψ(x, y, z = L) = 0 .

The compactification leads to a discrete momentum spectrum in z-direction. For periodic
boundary conditions the respective energies, Ez = ~ q2z

2M , are discrete with qz → kn

kn =
2π n

L
, n ∈ Z ,

which includes a zero mode k0 = 0 with vanishing energy Emin = 0. In turn, for anti-
periodic boundary conditions one finds kn = (2n+ 1)π/L with n ∈ Z and with a lowest
mode |k0| = π/L with a finite energy Emin = ~π2/(2ML2). Finally, confining the Fermi
gas inside a box leads to kn = π n/L with a vanishing energy Emin = 0.
The non-vanishing zero point energy for anti-periodic boundary conditions results in a

gap in the evaluation of the (discrete) mode sum at zero temperature. Consequently, anti-
periodic boundary conditions do not yield the two-dimensional limit for vanishing length
L → 0. For a relativistic system, the dispersion relation allows one to identify the length
of the potential well L with the inverse temperature 1/T in the evaluation of the discrete
mode sum at zero temperature. As a result, T = 0 and L = L0 gives the same result
as T = 1/L0 and L = 0, i.e. the zero length limit L → 0 at zero temperature T = 0

corresponds to the limit of infinite temperature T → ∞ at zero length L = 0. For a non-
relativistic system, the situation is less simple since the dispersion relation allows no clear
mapping between the temperature and the length of the system. Nevertheless, it is clear
that anti-periodic boundary conditions do not admit a two-dimensional limit for L→ 0.

Here we choose periodic boundary conditions, which result in a two-dimensional limit
for vanishing length L → 0. All modes with n 6= 0 have for L → 0 a large gap and can
be integrated out. In general, the three-dimensional system with finite L can be viewed
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as a two-dimensional system with infinitely many fermions as ’modes’, one for each n.
Integrating out the modes with n 6= 0 reduces the system to a ’single two-dimensional
fermion’, the one for n = 0.

This transition maps the parameters of the three-dimensional theory to the ones of
an effective two-dimensional theory. For L → 0 this map may induce large changes for
characteristic quantities as the chemical potential µ or the scattering length a. This can
lead to shifts in fractions including εF and TF , as well as in the crossover parameter.
In experiment, the three-dimensional quantities are generally the ones available, and we
will typically use them for our discussion. However, when comparing to results obtained
from computations in two-dimensions, the matching between three- and two-dimensional
parameters becomes important. In the present discussion we do not deal with this issue,
but we should keep it in mind when comparing with two-dimensional results.
Experimentally realistic confinement potentials, used in most ultracold atom experiment,

such as [67] and [68], are implemented by using harmonic trapping potentials. Here, the
function space consists of Hermite polynomials. Heuristically, our choice for the confine-
ment potential is a limiting case. In particular, observables that are independent of the
different boundary conditions studied here should be the same for the harmonic trap.

5.1.1 Dimensional reduction

In order to obtain a system within the dimensional crossover from three to two dimensions,
we initialise the renormalisation group (RG) flow at ultraviolet cutoff scale k = Λ where the
effective action ΓΛ coincides with the microscopic action of a three-dimensional ultracold
Fermi gas. By delimiting the z-direction of the system via a potential well of length L,
we introduce an additional scale to the three-dimensional system. By following the RG
flow as a function of k for a given length scale L, one observes that the contribution of
modes with k2

n � k2 is suppressed by powers of k2/k2
n. These modes decouple and effective

dimensional reduction is achieved automatically once k � 2π/L. This is very similar to
computations in finite temperature quantum field theories, where an effective dimensional
reduction is also realised by solutions of the flow equations, cf. e.g. [151]. Following the
RG from k = Λ to k = 0, the flow always makes a transition from a three-dimensional
regime to a two-dimensional one. For this purpose the UV scale is always chosen such
that Λ � (L−1, µ1/2, T 1/2). The flow equations become effectively two-dimensional for
k � 2π/L, while the physical system is effectively two-dimensional if L−1 is much larger
than all other many-body scales [117].
To incorporate the effects of the compactification in transversal z-direction given by the

potential well in (5.1), the regulators in (4.19) are modified according to

~q2 = q̂2 + q2
z → q̂2 + k2

n ,

where kn is chosen according to the boundary conditions and q̂2 denotes the square of the
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x- and y-components of the momentum. Note that while in three dimensions all couplings
tend to saturate quickly at sufficiently small k-scales [59], the saturation behaviour is much
slower for d < 3. As a consequence, we choose a much smaller final k-scale in the infrared
(cf. Appendix 5.4), while in three dimensions it is possible to stop the RG-flow earlier.
In order to display the confinement in transversal direction we introduce the dimension-

less length parameter L√µmb of the potential well, where µmb = µ− εB/2 denotes the
chemical potential for the three-dimensional gas with half the dimer binding energy εB/2
being subtracted.

5.2 Initial conditions

As described in Section 4.7.2 for three dimensions the running couplings approach fixed
points in the renormalisation group flow of the Fermi gas, resulting in a macrophysics
independent of the microphysics.
These fixed points lead to a loss of the specific microphysics with its initial conditions.

As a consequence, the initial conditions of the running couplings are, except for the bosonic
mass term, irrelevant and we may essentially start at the fixed point values in the ultravi-
olet.
Since the RG flow for a system in reduced dimensions is initialised at an UV scale where

the Fermi gas is described by the three-dimensional classical action, these considerations
can also be applied to the study of systems inside the dimensional crossover. We therefore
choose the fixed point values of the three-dimensional Fermi gas as our initial conditions.

5.3 Numerical procedure

The general numerical procedure is given in Sec. 4.7.1. Here, we comment on solving the
flow equations within the dimensional crossover. The flow equations, underlying the results
at zero and at finite temperature discussed in this Chapter, are obtained analytically with
periodic boundary conditions for both bosonic and fermionic fields inside the potential
well. The flow equations are given explicitly in Chapter 4.
As described in Sec. 4.7.1, we use that, within the fRG, the finite temperature flow for

large scales k2 � T can be approximated by the zero temperature system. Likewise, the
Fermi gas confined to a trap can be regarded as an unconfined system for large scales
k � L−1. We follow the unconfined flow until kswitch,L, where the (inverse) confinement
length starts to become an important scale. At this scale we switch to the confined flow
equations. Here we choose kswitch,L = 50/L, which significantly decreases the runtime of
the computation. The agreement of the results with and without splitting the flow in zero
and finite temperature, as well as unconfined and confined flow equations, was checked
numerically.
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Figure 5.1: Phase diagram in terms of Tc/TF for a confinement length of L√µmb = 0.7.
Here the dependence on the final IR scale of the RG-flow is shown with (from
top to bottom) tfinal = −10 in solid-blue (solid line dark grey), tfinal = −12

in long-dashed-red (long-dashed line in grey), tfinal = −14 in dashed-green
(dashed line in lighter grey) and tfinal = −17 in dotted-yellow (dotted line in
light grey). It is most pronounced in the strongly-interacting region around
ln (kF a2D) ∼ 1, while being much less significant in the BEC- and BCS-limits.
A smaller IR-scale leads to a reduced critical temperature.

The determination of the critical temperature follows (4.43) and is the largest tempera-
ture for which the gap of the fermion spectrum is non-vanishing. Within the dimensional
crossover with corresponding confinement length L, we use

0 < ∆tfinal (Tc, µ, a, L) <
1

100
∆tfinal (T = 0, µ, a, L) .

As in the three-dimensional system it was checked numerically that a further limitation to
< 1% of the zero temperature gap yields identical results in 2 . d . 3 within the numerical
precision and thus represents a very efficient algorithm.

5.4 Dependence on the infrared RG-flow scale

As mentioned in Section 5.1.1 the running of the couplings does not saturate as quickly in
d < 3 as for a three-dimensional system in our RG-flow. In Fig. 5.1 we show this IR-scale
dependence exemplary for a confinement length of L√µmb = 0.7, with the dimensionless
length parameter L√µmb introduced in Sec. 5.1.1. We find that it is most pronounced in
the strongly interacting region around ln (kF a2D) ∼ 1, while being much less significant
in the BEC- and BCS-limits. Seeing that the critical temperature is reduced for a smaller
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Figure 5.2: Critical temperature Tc/TF at fixed three-dimensional scattering length
a−1
3D = 0 over the dimensional crossover from two- to three-dimensions. Here

we show the dependence on the final IR scale of the RG-flow with (from top to
bottom) tfinal = −10 in blue (dark grey), tfinal = −12 in red (grey), tfinal = −14

in green (lighter grey) and tfinal = −17 in yellow (light grey).

IR-scale requires that we have to choose a sufficiently small final k-scale when solving our
flow equations.
The dependence on the final RG-flow scale in the infrared across the dimensional crossover

can be seen in Fig. 5.2 for a three-dimensional scattering length of a−1
3D = 0. As we will

explain below, the dips within the crossover from two- to three-dimensions are caused by
the chosen boundary conditions and are related to the step-like structure of the density of
states for a confined system [123].
As shown in Fig. 5.3 the maximum critical temperature Tmax

c /TF within the (quasi-)
two-dimensional BCS-BEC crossover for a confinement length scale L√µmb = 0.7 con-
verges for tfinal ≤ −16 (with t = ln(k/Λ)). For this reason we choose a final IR-scale
of tfinal = −17 for all our calculations such that sufficiently converged results should be
obtained.

5.5 Dimensional crossover at zero temperature

As expected in Section 5.1, imposing anti-periodic boundary conditions for fermionic fields
ψ(x) results in a suppression of the fermionic flow for small confinement length scales
L
√
µmb ∼ 2. Consequently, no phase transition on the BCS-side of the crossover can be

found. The BEC-side, however, is not affected by this choice. This finding reaffirms us in
the use of periodic boundary conditions, also concerning fermionic fields.
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Figure 5.3: Maximum critical temperature Tmax
c /TF within the (quasi-) two-dimensional

BCS-BEC crossover for a confinement length scale L√µmb = 0.7 and different
final k-scales in the infrared. A convergence for tfinal ≤ −16 can be inferred.

In Fig. 5.4 the equation of state is shown as a function of the three-dimensional crossover
parameter (kF a3D)−1, which can be interpreted as the inverse concentration of the Fermi
gas. For large confinement length scales L√µmb the three-dimensional result is recovered,
while the equation of state in dependence of the transversal extension starts to saturate
only at the order of L√µmb = 10−4 for a two-dimensional limit.

For better comparison to experiment the equation of state is also displayed in Fig. 5.5
with respect to the two-dimensional crossover parameter ln (kF a2D). Here the (quasi-)
two-dimensional scattering length a2D is calculated by [117]

a
(pbc)
2D = L exp

{
−1

2

L

a3D

}
,

for our setup with periodic boundary conditions.
We find that a reduction of the dimensionless confinement length parameter L√µmb

leads to an increased density and thereby to an increased Fermi energy εF = k2
F . As a

consequence the equation of state (µ− εB/2)/εF , presented in Figs. 5.4 and 5.5, is lowered
for more confined systems.
Here the Fermi momentum is calculated using the three-dimensional definition

kF = (3π2 n)1/3 as the initial conditions for the RG flows, i.e. also for the density, are
given for a three-dimensional system. Therefore, the Fermi momentum kF of the (quasi-)
two-dimensional system is calculated by using the functional form given in the ultraviolet.
The reduced dimension then enters via the flow of the density.
Comparing the results in Fig. 5.4 with the experimental data found in [63] for a (quasi-)

two-dimensional setup we find a qualitatively good agreement. Especially on the BEC-
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Figure 5.4: Comparison of the equation of state at zero temperature for different con-
finement length scales and the three dimensional case with respect to the 3D
crossover parameter 1/(kF a3D) for tfinal = −17. From top to bottom: 3D
limit in solid-red (solid-grey), L√µmb = 1000 in dashed-black, L√µmb = 2 in
long-dashed-blue (long-dashed line in dark grey), L√µmb = 1 in dashed-green
(dashed line in grey), L√µmb = 0.5 in dotted-yellow (dotted line in light grey).
The three-dimensional case is recovered for large L√µmb.

side, where the measurements were obtained in the superfluid phase, the equation of state
for lower values of the confinement length L√µmb yields the correct behaviour. However,
on the BCS-side the equation of state for confinements L√µmb . 6 does not give the
quantitative correct result. This behaviour might be on the one hand attributed to an
insufficient precision in the determination of the density. For a more elaborate way to
obtain the density, see Chapter 7. On the other hand, as mentioned in Section 5.1, the
two-dimensional limit for periodic boundary conditions may feature parameters which do
not coincide with the ones in three dimensions.
In Fig. 5.6 we compare the gap parameter ∆ = (h2 ρ0)1/2 with respect to the Fermi

energy εF for different confinement length scales. One finds a flattening of the curve
for lower dimensionality, while the three-dimensional case is recovered for large length
scales L√µmb. Interestingly, the gap saturates much faster for small length scales, already
around L√µmb ' 0.5, representing the two-dimensional limit. Moreover, depending on the
(three-dimensional) scattering length a3D, regions of an increased gap ∆/εF can be found
at intermediate length scales within the dimensional crossover. This dip-like structure is
a characteristic property of the modes and is related to the specific boundary conditions
and. It is also found at finite temperature.
Note that due to the renormalisation of the fields, the expectation value ∆ = (h2 ρ)1/2
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Figure 5.5: Comparison of the equation of state for different confinement length scales to
the experimental data from [63] with respect to the 2D crossover parameter
ln(kF a2D) for tfinal = −17. Here we show: L√µmb = 9 in dotted-blue (dotted
line in grey), L√µmb = 6 in dashed-red (dashed line in dark grey), L√µmb =

2.5 in solid-green (solid line in light grey). The experimental data is obtained
for the lowest attainable temperatures of T/TF ≈ 0.05 on the BEC-side and
T/TF ≈ 0.1 on the BCS-side. The orange and purple (light grey and dark grey)
squares denote measurements in the superfluid and normal phase.

can be non-zero, even in the two-dimensional limit [117], where the Mermin-Wagner the-
orem [110, 111] forbids true long-range order. Instead, algebraically decaying correlation
functions with a non-vanishing superfluid density can be found [152–155].

5.6 Superfluid transition

5.6.1 Dimensional crossover of the critical temperature

At finite temperature we study in the following the behaviour of the critical temperature
Tc/TF with respect to the spatial extension in transversal z-direction L√µmb. The Fermi
temperature TF = kF

2 is, as in the zero temperature case, calculated using the three-
dimensional relation between the Fermi momentum and the density kF = (3π2 n)1/3. The
order parameter for the superfluid transition is the (finite-temperature) gap ∆ = (h2 ρ)1/2

in the fermion spectrum. The critical temperature is calculated as the largest temperature
at which the gap ∆ is non-vanishing, as described in Section 5.3.
As shown exemplary for a−1

3D = 0 in Fig. 5.7, one can identify a dimensional crossover
from three to two dimensions for all values of the three-dimensional scattering length. The
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Figure 5.6: Comparison of the gap parameter for different confinement length scales and the
three dimensional case with respect to the 3D crossover parameter 1/(kF a3D)

for tfinal = −17. From top to bottom (on BEC-side): 3D limit in solid-red (solid
line in grey), L√µmb = 1000 in dashed-black, L√µmb = 2 in long-dashed-blue
(long-dashed line in dark grey), L√µmb = 1 in dashed-green (dashed line in
grey), L√µmb = 0.5 in dotted-yellow (dotted line in light grey). The three-
dimensional case is recovered for large L√µmb.

limiting case of three dimensions is reached for large confinement scales L√µmb. Moreover,
a two-dimensional limit is obtained where the critical temperature in units of the Fermi
temperature saturates and is significantly reduced with respect to the three-dimensional
case. Note that as in the zero temperature case 5.5 we choose tfinal = −17 for the final
RG-flow scale.
Furthermore, one can clearly discern dips in the dimensional crossover of the critical

temperature where we find an increased Tc/TF at intermediate stages between the two-
and three-dimensional limit. Interestingly, their appearance and amplitude seem to be
related to the scattering length a3D chosen in the ultraviolet. Moreover, we find a larger
amplitude for more confined systems. The occurrence of the dips can be explained by the
mode structure of a confined system specified by the chosen boundary conditions. As a
consequence of the respective mode structure, the density of states for a confined system has
a step-like structure. The dips can be found at the positions of these discontinuities, while
the dip structure for the critical temperature Tc/TF emerges at the same confinement length
scales L√µmb as for the zero temperature gap parameter ∆. In a mean-field analysis with
a confinement in transversal z-direction induced by a harmonic potential on the weakly-
interacting BCS-side of the BCS-BEC crossover a similar dip-like structure of the critical
temperature was found [123]. The same behaviour is seen in confined superconductors
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Figure 5.7: Critical temperature Tc/TF as a function of the confinement length scale
L
√
µmb at an exemplary three dimensional fermion scattering length of a−1

3D = 0

for tfinal = −17. Similar plots can be found for different scattering lengths with
the difference being the amplitude and the position of the dips. This non-
monotonous behaviour results from the mode structure caused by the chosen
boundary conditions and are related to the step-like structure of the density
of states for a confined system. Similar dips were also found in a mean-field
analysis with a harmonic confinement [123].

or thin superconducting films where the critical temperature, the gap parameter and the
intrapair correlation lengths are increased at so-called shape resonances [144–150].

5.6.2 Finite temperature phase diagram

In Figs. 5.8 and 5.9 the critical temperature Tc/TF is shown as a function of the three
dimensional inverse concentration c−1 = (kF a3D)−1 and the two-dimensional crossover
parameter ln(kF a2D) for different confinement length scales over the whole BCS-BEC
crossover. The phase diagram in Fig. 5.8 approaches the three-dimensional limit for large
confinement length scales, while the critical temperature is reduced for lower dimensionality
over the BCS-BEC crossover. On the other hand, we find an increased critical temperature
on the BCS-side of the crossover around L

√
µmb = (0.5 . . . 5). On the BEC-side Tc/TF

continues to be reduced for more confined systems.

In Figs. 5.9 and 5.10 we find the expected exponential decrease on the BCS-side of the
crossover, where ln(kF a2D) � 1, for small confinement scales in a quasi-two-dimensional
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Figure 5.8: Phase diagram in terms of Tc/TF for different confinement length scales and the
three dimensional case with respect to the 3D crossover parameter 1/(kF a3D)

for tfinal = −17. From top to bottom (on BEC-side): 3D limit in solid-red (solid
line in grey), L√µmb = 1000 in dashed-black, L√µmb = 10 in long-dashed-blue
(long-dashed line in grey), L√µmb = 5 in dashed-dotted-green (dashed-dotted
line in lighter grey), L√µmb = 2 in dashed-purple (dashed line in dark grey)
and L√µmb = 1 in dotted-orange (dotted line in light grey).

geometry. Here it was found [156] that

Tc
TF

=
2 eγ

π kF a2D

with the Euler number γ ' 0.5772. The critical temperature is lowered by a factor of e
when including the Gorkov–Melik-Barkhudarov contribution [157, 158].
Furthermore, the BKT-transition temperature on the BEC-side, where ln(kF a2D)� 1,

is approximately reached for these length scales. However, for smaller L√µmb, we obtain
a smaller value than the predicted BKT transition temperature [107, 158]

Tc
TF

=
1

2

[
log

(
B

4π
log

(
4π

k2
F a

2
2D

))]−1

,

with B ' 380.
As described in Section 5.1 this behaviour might be attributed to our choice of boundary

conditions. Although we are arriving at a two-dimensional system using periodic boundary
conditions, integrating out the higher modes in the transversal z-direction may lead to a
shift in the parameters of the Fermi gas. This shift can also be differently pronounced
depending on the scattering length. The observation that Tc/TF decreases towards zero
on the BEC-side for L → 0 may be an indication for a strong L-dependence in the map
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Figure 5.9: Phase diagram in terms of Tc/TF for different confinement length scales with
respect to the 2D crossover parameter ln(kF a2D) for tfinal = −17. From top
to bottom (on BEC-side): L√µmb = 10 in solid-blue (solid line in dark grey),
L
√
µmb = 5 in dashed-red (dashed line in grey), L√µmb = 2 in dashed-dotted-

green (dashed-dotted line in lighter grey) and L
√
µmb = 1 in dotted-yellow

(dotted line in light grey). The low critical temperature on the BEC-side is
caused by our choice of boundary conditions, see Section 5.1.

from three-dimensional to two-dimensional parameters in this region of the phase diagram
and range of L.

In the region of strong correlations, where ln(kF a2D) ' 1, we find a substantial increase
in the critical temperature Tc/TF compared to more weakly interacting regions. This
increased critical temperature cannot be found in a mean-field analysis by extrapolation
of the known BCS- and BEC-limits.

Comparing our results for L√µmb = 3.1 to the experimental data from [67] in Fig. 5.10,
where L√µmb is approximately of the order 0.5 . . . 5, we find a qualitatively similar phase
diagram. Here the increased critical temperature in the strong coupling regime can also
be found, yet slightly less pronounced.

In Fig. 5.11 we show our result for a confinement length of L√µmb = 3.1 and the
experimental data on the non-thermal fraction found in [67]. Here the preferred onset
of a presuperfluid phase in the strongly correlated region is on par with our result of an
increased superfluid temperature. The shift with respect to the two-dimensional crossover
parameter can be assigned to the our map of the parameters from a three-dimensional
theory to the ones of a effective two-dimensional theory. As described in Sec. 5.1, this
possibly induces large changes in parameters like the density or the scattering length and
hence the two-dimensional crossover parameter.
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Figure 5.10: Phase diagram in terms of Tc/TF for a confinement length of L√µmb = 3.1

with respect to ln(kF a2D) for tfinal = −17. Here we show the experimen-
tal data from [67] with the corresponding statistical errors in orange (light
grey), as well as both the perturbative BKT- and BCS-transition temper-
atures as dashed red (dashed grey) lines in the appropriate regimes, i.e.
ln(kF a2D)� −1 (BEC) and ln(kF a2D)� 1 (BCS).

We note, that a comparison to the experimental data in [67], as shown in Fig. 5.10 and
5.11, is not straightforward. Due to different parameters used and a varying transverse
confinement (w.r.t. the three-dimensional scattering length) in the experimental setup,
there is no one-to-one map between the two descriptions of the (quasi-) two-dimensional
system. For a better comparison it would be beneficial to specify the confinement length
L in terms of the Fermi momentum kF . This, however, necessitates a quantitatively
improved determination of the density in our calculations, as we will show in further detail
in Chapter 7. In the end, comparing theoretical and experimental data on equal footing,
would allow to gain further insight in the dimensionality effects of ultracold Fermi gases.

5.7 Conclusion and outlook

We have studied the dimensional crossover in an ultracold Fermi gas from three to two
dimensions, thus extending the work on non-relativistic bosons carried out in [117], as
well as the mean-field analysis in [123] for fermions. Particular emphasis was put on the
superfluid phase transition calculated over the whole BCS-BEC crossover in dependence
on different confinement length scales. A comparison to recent experiments in [63] and
[67] shows a qualitative good agreement. Moreover, we find a non-trivial behaviour of the
finite temperature phase diagram when confining the Fermi gas in reduced dimensionality.
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Figure 5.11: Phase diagram in terms of Tc/TF for a confinement length of L√µmb = 3.1 (in
black) with respect to ln(kF a2D). Here we show the experimental data from
[67]. The experimental critical temperature Tc/TF with the corresponding
statistical errors is depicted in white, while the colour scale denotes the non-
thermal fraction which signals the onset of a presuperfluid phase.

Here, on the one hand, for small confinement length scales a substantial reduction of the
critical temperature Tc/TF is found on the BEC-side of the crossover, while, on the other
hand, the critical temperature on the BCS-side is moderately increased. Notably, in the
strongly-coupled regime a substantially higher critical temperature is found which is on
par with recent measurements [67].
Within the dimensional crossover from three to two dimensions a dip-like structure with

regions of increased and reduced critical temperature Tc/TF were observed. This dip-like
structure is more or less pronounced depending on the scattering length chosen in the
ultraviolet a3D. Its exact shape is an artefact of the boundary conditions chosen for the
confinement. For a harmonic confinement similar dips were seen in [123] for a mean-field
study of the critical temperature on the BCS-side for quasi-two dimensional Fermi gases.
Moreover, in confined superconducting systems this behaviour is known as superconducting
shape resonances and responsible for an increased critical temperature, gap and intrapair
correlation length at the discontinuities of the density of states.
These results suggest that a geometry lying between three and two dimensions might be

beneficial in finding systems with increased critical temperature and hence in advancing in
the quest for high-Tc superconductors.

Overall, we see that certain effects can be attributed to the dimensionality of the sys-
tem. These include the dip-like structure of increased and reduced critical temperature
within the dimensional crossover and the overall shape of the phase diagram at a certain
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Figure 5.12: Comparison of the zero temperature gap ∆/εF with respect to the normalised
chemical potential µ/εF for different confinement length scales. For large
L
√
µmb = 1000 (in blue) we agree well with recent experimental results [160].

For smaller confinement length scales, though being qualitatively of the same
shape (except for the strongest confinement L√µmb = 2 shown here), we find
a decrease in ∆/εF .

confinement length L√µmb. The effective dimension of the system has thus a constraining
impact on the many-body physics.

The above procedure of confinement from three to two dimensions can in general be
extended to confinements from three to one and from two to one dimensions, cf. e.g. [159]
for studies of a dimensional crossover from two to one dimensions. Moreover, for a more
realistic confinement scenario a harmonic trapping potential V (z) = 1

2mωz z
2, as it is

approximately realised in most ultracold atom experiments, should be implemented instead
of the periodic conditions used in this work in order to account for the correct trapping
geometry. However, already the periodic boundary conditions yield qualitatively similar
features in the L-dependence of the critical temperature as a harmonic trap.

A further quantitative improvement within the dimensional crossover as well as in three
dimensions concerns the calculation of the density by which every quantity is normalised,
namely by means of the Fermi momentum kF . As we detail in Chapter 7, the initial
conditions for observables gi with scaling dimension dgi ≥ 2 are dependent on the chemical
potential µ. As a consequence, the flow of the density, calculated by a µ-derivative of
the effective potential, is not UV-finite. In Chapter 7 we define an iterative safe way to
calculate the density and present quantitative results for the three-dimensional BCS-BEC
crossover. The case of the dimensional crossover will be future work. In addition, the
truncation may be extended to include also the renormalisation of the fermion propagator,
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as well as higher orders in the derivative expansion.
Another interesting aspect is the study of spin- and mass-imbalanced Fermi gases within

the dimensional crossover since here the influence of mismatching Fermi surfaces and
stronger fluctuations in lower dimensions might result in competing effects concerning
pairing [90–95]. This may shed further physical insights, for example in the search for high
temperature superconductors.
In addition, new experimental results measured in [160] indicate that the superfluid

gaps ∆/εF versus the normalised chemical potential µ/εF obtained in a three- and two-
dimensional system collapse onto a single curve. This is a very interesting property, as it
points to a unified description of the BCS-BEC crossover independent of the dimensionality.
A first analysis of our zero temperature data for the gap ∆/εF in Fig. 5.12 finds qualitative
agreement for weak confinement, i.e. in a more 3D-like system. For stronger confinement,
though being of the same qualitative shape (except for L√µmb = 2), the gap normalised
over the Fermi energy εF is lowered. This discrepancy may well be attributed to a shift in
parameters, like the density, for our choice of boundary conditions, as well as the insufficient
quantitative precision in the density determination here. Further investigation of this
behaviour might lead to a deeper understanding of the underlying many-body physics.
Already at the present stage our beyond-mean-field analysis is an advancement in the

study of the interplay between many-body physics and dimensionality of ultracold Fermi
gases. It reveals that the dependence of fluctuation effects on the effective dimensionality
leads to new characteristic features that can be exploited in experiment and serve as a test
for theoretical methods.

66



CHAPTER 6

Spectral functions

This Chapter is in parts based on Ref. [2].

We investigate observables obtained in Euclidean space-time in Chapter 5 and Chap-
ter 7. In principle, the full knowledge of imaginary-time Euclidean correlation functions
constitutes the solution of the underlying theory. However, in practice this is complicated
in so far that one usually knows only a finite number of correlation functions and in most
cases only on a numerical level. As we have seen, one can nevertheless compute Euclidean
observables, i.e. static, thermodynamic quantities, such as e.g. the density or the superfluid
gap in ultracold atom systems.
Ultimately, however, we are also interested in acquiring dynamical information of the

theory. In particular, this includes knowledge of transport coefficients, such as conduc-
tivities, viscosities or diffusion coefficients. They characterise fluctuations on long time
and length scales in systems close to thermal equilibrium and their real-time relaxation.
Transport coefficients consequently describe inherently real-time physics.
A central quantity for determining transport coefficients are real-time spectral functions,

where Kubo relations are used to extract the transport coefficients. Moreover, spectral
functions are relevant quantities of their own right since they for example encode (quasi-)
particle spectra, as well as collective excitations, cf. e.g. [33].
To obtain this information for our system of an ultracold Fermi gas, we consequently

need to extend the Euclidean framework to real time.
The difficulty of applying Euclidean approaches in thermal quantum field theory to real

time arises from the necessary analytical continuation. In practice, this can prove to be
rather difficult, since the correlation functions in Euclidean space-time are usually only
known numerically. Several methods have been successfully applied in order to reconstruct
real-time correlation functions from their Euclidean analogues, such as maximum entropy
[33, 161–165] or Padé approximant methods [166–169].
From an experimental point of view, radio frequency spectroscopy is performed, see e.g.
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[170], in either a spatially [171], or a momentum resolved way [172] to determine the full
spectral functions, as outlined e.g. in [173].
In this Chapter we compute (real-time) finite temperature spectral functions for ultracold

Fermi gases within the fRG approach. The utilised method is based upon analytically
continued frequency components of the flow equations for the two-point functions in the
original Euclidean plane, as it has been applied in [174, 175]. Here, we show results for
the fermionic spectral functions at a variety of temperatures within the three-dimensional
BCS-BEC crossover. Experimental measurements can e.g. found in [171, 176, 177] and for
theoretical results for the BCS-BEC crossover we refer e.g. to [33, 178].
We start our discussion by recapping the defining relations of spectral representations

and the properties of the accompanying spectral functions in Section 6.1. Laying out our
procedure to obtain real-time spectral functions from analytically continued flow equations
in Section 6.2 allows us to obtain fermion spectral functions in the symmetry broken regime
in Section 6.3. While summarising our results in the end, we also give a short outlook on
future directions.

6.1 Spectral representations

The method builds on the existence of a spectral representation and we shall summarise
its definitions and the most important properties in this Section. We restrict ourselves
to the case of the propagator. From a physics point of view the spectral function of the
propagator encodes the spectrum of the theory. It contains information e.g. on (quasi-)
particle excitations, masses and decay widths making it a central quantity in understanding
the intricate physics of strongly correlated Fermi gases. We follow the formulation in
[179, 180] where also generalisations to higher n-point functions can be found.

6.1.1 Källén-Lehmann spectral representation

For a Euclidean field theory the Källén-Lehmann spectral representation of the Euclidean
imaginary-time propagator is given by [105, 181–183]

G(p0) =

∫ ∞
−∞

dλ

2π

ρ(λ)

ip0 − λ
. (6.1)

The integrand in Eq. (6.1) can essentially be understood as the free propagator with mass
λ which is then integrated with the weight ρ(λ), representing the spectral function.

6.1.2 Finite temperature spectral representation

The above expression for the spectral representation, Eq. (6.1), is in general only applicable
in vacuum, see e.g. [184]. Here, we recap its generalisation to the finite temperature case
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for the propagator, relying on the formulation in [179, 180]. We start by considering the
two-point function of a general, i.e. fermionic or bosonic, field χ

γi1,i2(t1, t2) = 〈χ1(t1)χ2(t2)〉 ,

with ti ordered in the imaginary part of the analytically continued time. This enables us
to perform the Fourier transform

γi1,i2(t1, t2) =

 2∏
j=1

∫ ∞
−∞

dωj
2π

e−i ωj tj

 γi1,i2(ω1, ω2) . (6.2)

In equilibrium, we can reduce the number of arguments by using translational invariance

γi1,i2(ω1, ω2) = 2π δ(ω1 + ω2) γi1,i2(ω1) . (6.3)

The thermal correlation functions have to fulfil the so-called Kubo-Martin-Schwinger (KMS)
condition, to wit

fωi1 γi1,i2(ω1, ω2) = γi2,i1(ω2, ω1) , (6.4)

with fω = e−βω. In the end, we are interested in imaginary-time correlation functions

γi1,i2(i(p1)0, i(p2)0) =

 2∏
j=1

∫ β

0
dτj e

−(pj)0 τj

 〈T χi1(−iτ1)χi2(−iτ2 = 0)〉 . (6.5)

Here, the zero component of the Euclidean momenta pi is represented by (pi)0 and T is
the time ordering operator. We can now define finite temperature spectral representations
by plugging Eq. (6.2) into Eq. (6.5) using Eq. (6.3).
For the Euclidean propagator we then explicitly find

G(p0) =

∫ ∞
−∞

dλ

2π

∫ β

0
dτ ei p0 τ e−λ τ γ12(λ) ,

where the τ -integration can easily be performed, yielding

G(p0) =

∫ ∞
−∞

dλ

2π

1

λ− ip0

(
1− e−βλ+iβp0

)
γ12(λ) .

We now use the KMS condition Eq. (6.4) to remove fλ = e−βλ and exploit the fact that the
zero component of the Euclidean momenta p0 is restricted to discrete Matsubara modes.
The phase factor thus yields eiβp0 = ζ, with ζ = 1 (ζ = −1) for bosons (fermions). We
obtain the desired Källén-Lehmann spectral representation (with an overall minus sign) at
finite temperature

G(p0) =

∫ ∞
−∞

dλ

2π

ρ(λ)

ip0 − λ
. (6.6)
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Here we defined the spectral function as

ρ(ω) =

[
χ1(ω), χ2(−ω)

]
ζ

. (6.7)

The graded commutator [ · , · ]ζ in Eq. (6.7) relates to the commutator for bosons and to
the anti-commutator for fermions, respectively. Starting from the spectral representation
in Eq. (6.6) we can now define the retarded and advanced propagators of the Euclidean
propagator analytically continued to the whole p0-plane, to wit

GR(ω) = lim
ε→0+

G (−i(ω + iε)) ,

GA(ω) = lim
ε→0+

G (−i(ω − iε)) .
(6.8)

From this one easily finds the usual property [GR(ω)]∗ = GA(ω) where ( · )∗ denotes the
complex conjugation. From Eq. (6.8) also immediately follows the expression for the spec-
tral function ρ(ω) in terms of the real-time retarded and advanced propagators

ρ(ω) = GR(ω)−GA(ω) = 2 ImGR(ω) = 2 Im
[

lim
ε→0+

G
(
− i(ω + iε)

)]
. (6.9)

Using the relation between the (scale dependent) propagator and the second functional
derivative of the effective average action in Eq. (3.9) we can express the spectral function
in Eq. (6.9) in terms of the retarded two-point function Γ

(2)
R (ω)

ρ(ω) =
2 ImΓ

(2)
R (ω)(

ReΓ
(2)
R (ω)

)2
+
(
ImΓ

(2)
R (ω)

)2 , (6.10)

with Γ
(2)
R being the retarded two-point function at the macroscopic scale k = 0. Eq. (6.10)

will be the equation we use in order to calculate the real-time spectral function. Note,
that the propagators and likewise the spectral function in general depend also on spatial
momenta which we have suppressed in our notation.
Spectral functions as defined in Eq. (6.6) have a number of essential properties. By using

the symmetry properties of the retarded and advanced propagators

GR(ω, ~p) = GR(ω,−~p) ,

GR(−ω, ~p) = GA(ω, ~p) ,

it is easily found that the spectral functions obey the following symmetry relations

ρ(ω,−~p) = ρ(ω, ~p)

ρ(−ω, ~p) = −ρ(ω, ~p) ,

ρ(−ω,−~p) = −ρ(ω, ~p) .
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Moreover, one can show that for physical states the spectral function follows the sum rule,
[105, 183] ∫ ∞

−∞

dω

2π
ρ(ω) = 1 .

Finally, the spectral function also obeys the positivity constraint for physical particles

sgn(ω) ρ(ω) ≥ 0 .

6.1.3 Example of free fermion propagator

A concrete example for the spectral representation is computed for a free field. For free
non-relativistic fermions the Euclidean imaginary-time propagator is given by

G(ω) =
1

iωn + p2 − µ
.

Applying Eq. (6.9) we immediately obtain for the spectral function

ρ(ω, ~p) = δ(ω − ε~p + µ) ,

where we have used

1

ω ± i0+
= P 1

ω
∓ i π δ(ω) ,

with P denoting the Cauchy principal value.

6.2 Analytical continuation of flow equations

Our general viewpoint is that our quantum field theory, specifically its scale dependent
effective action Γk[φ], is defined within the Matsubara formalism. Here, the fermionic finite
temperature correlation functions are anti-periodic in imaginary time with circumference
1/T , cf. Section 3.3. In the following, we want to compute real-time properties from the fRG
by analytical continuation. One option is to solve the flow equations (using the Matsubara
formalism) for imaginary frequencies in Euclidean space-time and then to analytically
continue the result at the macroscopic scale k = 0 to real frequencies, e.g. by using Padé
or maximum entropy techniques. This approach generally needs a sufficient amount of
numerical information on the (imaginary) frequency dependence of the propagator, and
thus is numerically usually more involved. Other reconstruction methods can, e.g. be
found in [185] for an approach exploiting analytical properties or in [186] using Deep
Neural Networks. Furthermore, for Dyson-Schwinger calculations see [187, 188].
Here, we use the approach laid out in [174, 175] and perform the analytical continuation

to real frequencies already on the level of the flow equations. As outlined in [174] this
procedure has a number of advantages, to wit
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• Provided the flow equations are known analytically the analytical continuation can
be performed symbolically without using more involved numerical methods.

• Information about real-time properties can be used on the right hand side of the
flow equations in a self-consistent way, thus allowing for an improved truncation and
performance.

• It is able to respect space-time and translational symmetries and at the same time,
it allows for an analytical computation of Matsubara sums given a convenient choice
of the regulator function.

• This approach is easier to compute than closed time contour methods. Furthermore,
as it is based on the Euclidean formalism, the knowledge can be carried over.

Note, that only close-to-equilibrium observables that are accessible via linear response
theory can be calculated in this way [174] and more complicated non-linear response ob-
servables in far-from-equilibrium situations have to be obtained in different ways, e.g.
Schwinger-Keldysh or temporal fRG methods, cf. e.g. [189–192].

In general analytical continuation describes the process of extending the domain of def-
inition of an analytical function (typically only defined on a certain number of discrete
points) to the whole complex plane. One is specifically interested in its definition on the
real axis in order to obtain real-time observables, cf. Fig. 6.1. The analytically continued
function F (z) has to coincide with its original form at its former domain of definition iωn,

F (z)|z=i ωn = f(iωn) .

This procedure is in general not unique and there exist infinitely many ways to define
an analytical continuation (even when based on infinitely many discrete points). For this
reason, in order to restrict the amount of possibilities and to arrive at a physical solution,
appropriate boundary conditions have to be applied, cf. Baym-Mermin boundary conditions
[193]. This requires the analytically continued function F (z) to be analytical off the real
axis and to be bounded as |z| → ∞.

6.2.1 Analytical continuation of two-point functions

In order to analytically continue the flow equations for the two-point functions defined in
Section 4.1, specifically in Eq. (4.16), we exploit the fact that the flow equations of both
fermionic, as well as bosonic two-point functions are of a one-loop structure, as shown in
Fig. 4.2. By using three-dimensional Litim-type regulators, cf. Eq. (4.19), the frequency
component of the four-momentum is unaffected. Thus, we are able to analytically calcu-
late the fermionic and bosonic Matsubara sums and express them in terms of occupation
numbers.
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Figure 6.1: Graphical depiction of the analytical continuation of a function defined at dis-
crete points iωn in the complex plane z to the real axis.

We can utilise the cyclicity of the fermionic and bosonic occupation numbers with respect
to the Euclidean frequency p0 = 2nπT ,

nF,B(E + ip0) = nF,B(E) .

The analytical continuation is then performed in the following way

∂t Γ
(2),R
k (ω, ~p) = − lim

ε→0
∂t Γ

(2),E
k (p0 = −i(ω + iε), ~p) , (6.11)

with ε being a small, real parameter in the numerical implementation.

Our procedure for the calculation of spectral functions is as follows:

1. Calculate the flow of the couplings at vanishing external momentum and frequency
P = 0 in Euclidean space.

2. Analytically continue the two-point functions Γ
(2),E
k (p0, ~p = 0) to real frequencies

according to Eq. (6.11).

3. Solve the flow of the real-time two-point functions with the solution of the couplings
from step 1.

4. Calculate the spectral function according to Eq. (6.10).

In summary, we evaluate the Matsubara sums analytically, thereby taking care of the
mixed diagrams, as in Fig. 4.2, by shifting the Matsubara frequencies appropriately. For
further details on our case, we refer to Appendix C.
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Figure 6.2: The normalised fermion spectral function ρψ εF in terms of the frequency ω/εF
at unitarity, i.e. a3D = ∞, for a variety of temperatures. In blue we show
the zero-temperature case T = 0, while the yellow curve depicts the case for
T/Tc = 0.001 and the green curve T/Tc = 0.0019. In red we show the case for
T/Tc = 0.02.

6.3 Fermion spectral functions in the symmetry broken
regime

With this at hand, we are in a position for a study of spectral functions at finite temperature
within the BCS-BEC crossover. We concentrate on the fermionic spectral functions in
three spatial dimensions at vanishing spatial momenta ~p = 0 for a range of scattering
lengths in the symmetry broken regime. The flow equations of the couplings and the
two-point function are solved numerically, as specified in Section 4.7, and the spectral
function is obtained via Eq. (6.10) from the corresponding flow of the analytically continued
fermionic two-point function. The normalised spectral functions are illustrated in Fig. 6.2
at unitarity, in Fig. 6.3 for a3D = 5 on the BEC-side of the crossover, and for a3D = −5

on the BCS-side of the crossover in Fig. 6.4.

Across all scattering lengths in the strongly interacting regime we find a rather large
broadening of the quasiparticle peaks, especially at the very low temperatures depicted
here. This finding is in line with results in [33]. It can be proven in the perturbative BCS-
and BEC limits that the existence of well-defined quasi-particles at T = 0 is prohibited,
cf. [33, 194]. One expects, that the broadened spectral functions transforms into a delta
peak with infinite lifetime for zero temperature at the minimum of the dispersion relation.

Furthermore, the position of the peaks are found at larger frequencies ω/εF for higher
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Figure 6.3: The normalised fermion spectral function ρψ εF in terms of the frequency ω/εF
at a scattering length of a3D = 5 for a variety of temperatures. In blue we
show the zero-temperature case T = 0, while the yellow curve depicts the case
for T/Tc = 0.001 and the green curve T/Tc = 0.0013. The red curve is at
T/Tc = 0.0313 and the purple curve shows the case for T/Tc = 0.0625.

temperatures, while the peak width (with exception of the peak at zero temperature) stays
approximately constant, as can be seen in Fig. 6.4. In addition, for small temperatures at
unitarity and on the BEC-side of the crossover, the spectral functions show an additional
peak at smaller frequencies apart from the dominant peak. These peaks have much smaller
spectral weight and vanish for increasing temperatures.

6.4 Conclusion and outlook

The results presented above provide initial findings in the study of the real-time spec-
tral functions for a gas of ultracold fermions at zero and at finite temperature in three
dimensions. They cover the strongly interacting regime of the BCS-BEC crossover from
a fermionic system a3D = −5, over the unitary regime a3D = ∞ to the case of bosonic
dimers a3D and can in general be further extended to the BCS and BEC limits. We observe
a finite width of the spectral functions, even at zero temperature. This is in accordance
with the results found in [33, 194]. The expectation of a vanishing width at the disper-
sion minimum for zero temperature can be checked by computing spectral functions at
non-vanishing external momenta. In principle, this can be implemented easily within the
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Figure 6.4: The normalised fermion spectral function ρψ εF in terms of the frequency ω/εF
at a scattering length of a3D = −5 for a variety of temperatures. In blue we
show the zero-temperature case T = 0, while the yellow curve depicts the case
for T/Tc = 0.0012 and the green curve T/Tc = 0.0025. The red curve shows
the case for T/Tc = 0.13 and the purple is at a temperature of T/Tc = 0.23.
For easier comparison of the individual peaks we break the abscissa.

current approach. The only difference is the slightly more complicated momentum inte-
gration. With the knowledge of the momentum dependent spectral function the whole
quasiparticle structure can then be mapped out.
Further effort has to be put in understanding the different behaviour concerning the

single and double peak structure going from an essentially fermionic to a largely bosonic
system. The residual peak for low temperatures at unitarity and for a3D = 5 contains
a much smaller spectral weight and vanishes for larger temperatures. Here, we need to
understand why this feature does not persist when going to higher temperatures.
These observations warrant further examination beyond the temperature range shown

here. Going to temperatures above the critical temperatures allows also to gain knowledge
on the normal and the pseudogap phase.
Overall with these first steps at vanishing external momentum within the framework of

the functional renormalisation group we have shown its applicability in the determination
of real-time spectral functions for the BCS-BEC crossover. In the end, the aim is to
calculate real-time transport properties from the spectral functions via the corresponding
Kubo relations.
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CHAPTER 7

Towards quantitative precision

This Chapter is in parts based on Ref. [3].

The quantitative access to the phase structure of ultracold Fermi gases, and in particular
the resolution of the equation of state and the change of observables such as the gap through
the BEC-BCS crossover has been studied intensively in the past decades. Ultracold Fermi
gases show interesting macroscopic quantum phenomena such as superfluidity and, thanks
to their amazing tunebility, are also tailor made as model systems for many non-relativistic
and relativistic systems such as large density QCD in and out-of-equilibrium and neutron
star physics, see e.g. [24].
The system has been investigated with the functional renormalisation group (fRG) ap-

proach in the past two decades, and many of its interesting phenomena have been explained
within this approach, for respective reviews see e.g. [43, 60]. Given this success, the very
good grip on the physics phenomena at work, and quite elaborate approximation schemes
used, the failure to access some of the observables such as the equation of state (EoS) as
well as the superfluid gap is all the more surprising.
Especially in the unitary limit the determination of the Bertsch parameter, ξ = µ/εF |a→∞,

has been a long standing problem in cold atomic systems, both for theory as well as in
experiment. Its importance has far reaching connections beyond the context of ultracold
quantum gases and condensed matter physics, e.g. it was proposed by G.F. Bertsch that
the physics of neutron stars can be inferred from it [24]. At unitarity all density deriva-
tives of the energy of the system become universal and are solely determined by their
corresponding free Fermi gas quantity and a universal constant, the Bertsch parameter
[25, 26]. For example this includes the pressure, the speed of sound or the compressibility.
The proportionality factor is the universal Bertsch parameter ξ, to wit

E = ξ εFG = ξ
3

5

~2

2m
k2
F .

In this Chapter we show in the context of the fRG approach that the failure to accu-
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rately determine the EoS and the superfluid gap does not affect the overall quantitative
precision of the fRG approach to ultracold gases. On the contrary the dynamics of these
systems is captured very well. The failure is rather related to an insufficient resolution of
specific density observables. To that end we put forward a computational approach for
the determination of observables at finite density on the basis of their density fluctuations
and hyper-fluctuations obtained via derivatives of the density with respect to the chemical
potential µ. These µ-derivatives lower the ultraviolet sensitivity of the computed quanti-
ties and allow for systematic and quantitative computations of observables via successive
integrations with respect to the chemical potential. This scheme has been set-up in the
context of low energy QCD in [195], and its universal applicability is shown here.
In the explicit computation we shall utilise the approximation to the full two-component

Fermi gas as described in Section 4.1, which however already suffices to access the BEC-
side and the unitary limit quantitatively. This also highlights the above statement, that
the fRG approach is well-suited for the access to ultracold atomic systems as it captures
the respective physics in a uniform manner in the whole crossover regime.
We start by laying out the problem of a dependence of initial conditions on the chemical

potential and present a generally valid, iterative safe way to determine related observables
such as the density in Section 7.1. The application of this general computational approach
to our case of ultracold Fermi gases is discussed in the following Sections. Here, our
regulator around the Fermi surface generates the problem of defining ultraviolet finite flows.
We show this and a way to overcome this deficiency in Section 7.2. Implementing these
additions results in a quantitative determination of the EoS and gap at zero temperature
which we present in Section 7.4 before concluding in the end.

7.1 Dependence on the chemical potential µ

In this Section we explain how the method works in general. This entails the discussion
of potential µ-dependences of initial conditions, as well as an iterative safe way of how to
extract related observables, such as the density and higher µ-derivatives, of the free energy.
We refer to [195] for a description of the procedure in the QCD context.
It is well-known that thermal fluctuations decay exponentially with the infrared cutoff

scale,

f(k/T,R) e−c(R)k/T , (7.1)

where f(k/T,R) rises not more than polynomially or even decays, depending on the (canon-
ical) dimension of the observable under consideration, see [196]. The form of the prefactor
as well as the coefficient c(R) depend on the shape of the regulator R. In particular, for
non-analytic cutoffs (in frequency) such as the sharp cutoff and the optimal cutoff, cf. e.g.
Eq. (4.19), we have c(R) = 0 and the thermal behaviour at large cutoff scales relates to the
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7.1 Dependence on the chemical potential µ

dimension of the observable. Note that Eq. (7.1) can be shown to hold to any order of a
given approximation scheme and hence is a formal, exact property of thermal fluctuations.
It is intimately linked to the fact that thermal sums can be represented as contour integrals
and the infrared cutoff scale k serves as a mass parameter which shifts poles to momenta
p2 ∝ ik2. This also hints at the fact that it is not present for non-analytic regulators, where
the Matsubara sum cannot be represented as a contour integral, and a naive dimensional
analysis prevails.
In contradistinction, the chemical potential µ as well as other external tuning parameters

only lead to a polynomial decay or rise in the dimensionless ratio

k̂rel. =
k

µ
, k̂non-rel. =

k
√
µ
,

for the relativistic case and non-relativistic case respectively. In most cases this behaviour
is related to the (canonical) dimension of the observable at hand. For example, the free
energy or effective action has a vanishing canonical dimension. However, it relates to
(negative) pressure p times the space-time volume V and hence has a scaling dimension
dp = d with the cutoff scales in the relativistic case and scaling dimension dp = d + 1 in
the non-relativistic one.
The above arguments entail that the flow of the thermal pressure,

∂tp(T, µ) := −
(
∂tΓk[φEoS, k;T, µ]

VT
− ∂tΓk[φEoS, k; 0, µ]

V0

)
,

in general decays exponentially for large cutoff scales,

∂tp(T, µ) ∝ e−c(R)k/T ,

while the free energy density, f , normalised in the vacuum,

∂tf(T, µ) :=

(
∂tΓk[φEoS, k;T, µ]

VT
− ∂tΓk[φEoS, k; 0, 0]

V0

)
,

has polynomial growth with k,

∂tf(T, µ)→ cdf−2 k
df k̂−2 + cdf−4 k

df k̂−4 + kdf O(k̂−6) , (7.2)

given the scaling dimension df . Here, vanishing exponents (in the relativistic case) include
logarithms.

7.1.1 Initial conditions

From Eq. (7.2) we see that the initial conditions for observables or couplings gi with scaling
dimension dgi ≥ 2 are µ-dependent. In turn, for sufficiently large cutoff scales k̂ � 1 the
initial conditions for couplings with scaling dimension dgi < 2 do not change when changing
the chemical potential.
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First we concentrate on the effective action, the flow of which is the master equation in
our approach,

∂tΓk[ψ, φ] =
1

2
Tr Gk,φ ∂tRk,φ − Tr Gk,ψ ∂tRk,ψ , (7.3)

where the field φ stands for bosonic fields while ψ stands for fermionic ones. Every ob-
servable and coupling can be derived directly from Eq. (7.3) and its solution. Indeed, if
different definitions of approximations of observables such as the density exist, the one
d irectly using the flow Eq. (7.3) should have the smallest systematic uncertainty.
For our investigation we write the effective action as

Γk = Γk[ψ, φ;~g], ~g = (mψ,mφ, Sψ, Sφ , h, λψ, λφ, ...) ,

where ~g encodes all couplings (expansion coefficients) of the effective action, ordered in
decaying mass dimension. We conclude that in three spatial dimensions the only couplings
that potentially require µ-dependent initial conditions are the mass parameters (including
µ itself). However, the flow of the dimer mass reads asymptotically

∂tm
2
φ ∝ k

h2

k
(1 + µ/k2)3/2

and hence its µ-derivative tends towards zero, and the only coupling to be taken care of is
the fermionic mass (and chemical potential).

7.1.2 Density

As already mentioned above, the equation for the density with the smallest systematic
error is its flow. According to Eq. (7.2) for the non-relativistic case it reads

∂tn =
1

Vol
d∂tΓk
dµ

→ cn,3k
3 + cn,1µk +O(k̂−1) ,

and a similar equation holds for the relativistic case. In the present case this leaves us
with a cubic fine-tuning problem in the cutoff, and more importantly, a subleading linear
fine-tuning problem for each value of µ. Fine-tuning problems of this type are difficult to
resolve directly, and we do this by considering the flows of susceptibilities. The flow of the
second order susceptibility reads

∂t∂µn =
1

Vol
d2∂tΓk
dµ2

→ cn,1k +O(k̂−1) ,

while the flow of the second µ-derivative of the density tends towards zero for large cutoff
scales,

∂t∂
2
µn =

∂3
µ∂tΓk

Vol
→ O(k̂−1) ,
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7.1 Dependence on the chemical potential µ

We conclude that the density, and the second order susceptibility at vanishing cutoff, k = 0,
can be obtained from integrating the third order susceptibility, which has a trivial initial
condition for large cutoff scales. We are led to,

n(µ) =

∫ µ

0
dµ′∂µ′n(µ′) , with n(0) = 0 ,

for the density, and

∂µn(µ) =

∫ µ

0
dµ′ ∂2

µ′n(µ′) , with ∂µn(0) = 0 ,

for the second order susceptibility. It is left to determine ∂2
µnk(µ). To that end we rewrite

the flow of the density as

∂tnk =
d∂tΓk
dµ

= ∂µ|~g ∂tΓk +
dgi
dµ

∂gi∂tΓk .

Both terms follow analytically from the master equation, Eq. (7.3), and each partial µ-
derivatives and dgi/dµ ∂gi-derivative lowers the effective k-dimension by two. The coeffi-
cients g(1)

i = dgi/dµ with

g
(n)
i =

dngi
dµn

follow from their flow

∂tg
(1)
i =

d

dµ
∂tgi = ∂µ∂tgi + g

(1)
j ∂gj∂tgi . (7.4)

Eq. (7.4) is a coupled differential equation for ~g(1),

∂t~g
(1) = ~A1 +B1 · ~g(1) (7.5)

with coefficients

A1,i = ∂µ∂tgi , B1,ij = ∂gj∂tgi .

The coefficients A1,i and B1,ij can be read-off from the flow Eq. (7.3), and hence Eq. (7.5)
is a so-called derived flow: it does not feed back into the flow of the effective action.
Naturally, this can be iteratively extended to the higher derivatives w.r.t. µ. For g(2)

i it
reads

∂tg
(2)
i =

d

dµ

(
A1,i +B1,ij g

(1)
j

)
= ∂µA1,i + g

(1)
j ∂gjA1,i + g

(1)
j

(
∂µ + g(1)

m ∂gm

)
B1,ij +B1,ij g

(2)
j .

Again this can be conveniently rewritten in terms of a system of linear differential equations

∂t~g
(2) = ~A2 +B2 · ~g(2) ,
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with

A2,i =
(
∂µ + g(1)

m ∂gm

)
A1,i + g

(1)
j

(
∂µ + g(1)

m ∂gm

)
B1,ij ,

B2,ij = B1,ij .

More explicitly we have

A2,i = ∂2
µ∂tgi + 2g

(1)
j ∂gj∂µ∂tgi + g

(1)
j g(1)

m ∂gm∂gj∂tgi ,

B2,ij = ∂gj∂tgi .

This already allows us to put down the general structure. At a given order g(n)
i the matrix

Bn is simply B1. The vector An depends on ~g,~g(1), ..., ~g(n−1). Hence it can be determined
iteratively with

An,i =

(
∂µ +

n−1∑
m=1

g
(m)
j ∂

g
(m−1)
j

)
An−1,i + g

(n−1)
j

(
∂µ + g(1)

m ∂gm

)
Bij

with g(0)
i = gi and (

∂µ + g(1)
m ∂gm

)
Bij = ∂µ∂gj∂tgi + g(1)

m ∂gm∂gj∂tgi .

For n = 3 this explicitly yields

A3,i =
[
∂3
µ + 3 g

(1)
j ∂gj ∂

2
µ + 3 g

(1)
j g(1)

m ∂gm ∂gj ∂µ

+ g
(1)
k g

(1)
j g(1)

m ∂gm ∂gj ∂gk + 3 g(2)
m ∂gm ∂µ + 3 g

(2)
j g(1)

m ∂gm ∂gj

]
∂t gi .

Note that there are multiple possible definitions for the coefficients An and Bn. The
above forms have the advantage that all derivatives w.r.t. µ and g

(n)
i can be performed

analytically. Finally we write down the flow for higher µ-derivatives of Γk

∂(n−1)
µ ṅ(µ) =

dn∂tΓ

dµn
=

(
∂µ +

n∑
m=1

g
(m)
j ∂

g
(m−1)
j

)
Cn−1 ,

with

C0 = ∂t Γk , C1 = ∂µ ∂t Γk .

For n = 2 this explicitly yields

∂µ ∂t nk =
d2 ∂t Γk
dµ2

=
[
∂2
µ

∣∣
~g

+ 2 g
(1)
i ∂gi ∂µ + g

(1)
j g

(1)
i ∂gi ∂gj + g

(2)
i ∂gi

]
∂t Γk ,

while the second µ-derivative of the flow for the density is found to be

∂2
µ ∂t nk =

d3 ∂t Γk
dµ3

=
[
∂3
µ|~g + 3 g

(1)
i ∂gi ∂

2
µ + 3 g

(1)
j g

(1)
i ∂gi ∂gj ∂µ

+ g(1)
m g

(1)
j g

(1)
i ∂gi ∂gj ∂gm + 3 g

(2)
i ∂gi ∂µ + 3 g

(2)
i g

(1)
j ∂gj ∂gi + g

(3)
i ∂gi

]
∂t Γk .

(7.6)

82



7.2 Definition of ultraviolet finite flows

Hence, overall the density at vanishing cutoff k = 0 is obtained by integrating twice over
the chemical potential

n(µ) =

∫ µ

0
dµ′

[∫ µ′

0
dµ′′ ∂2

µ′′ n(µ′′) + ∂µ′ n(0)

]
+ n(0) , (7.7)

where n(0) and ∂µ n(0) are vanishing.
Moreover, we have

∂2
µ nk=0(µ) =

∫ 0

Λ

dk

k
∂2
µ ṅk(µ) ,

for a UV vanishing flow ∂2
µ ṅk→∞ → 0. To sum up, this procedure leaves us with a closed

set of equations and we obtain the density from integrating the third order susceptibility
n(2) from µ = 0 with the initial conditions n(0) = 0 and n(1)(0) = 0 to µ, leading to our
results in Sec. 7.4.

7.2 Definition of ultraviolet finite flows

7.2.1 Ultraviolet divergence while regularising around Fermi surface

In this Section, we show that our choice of the regulator for the fermions introduces an
additional ultraviolet divergence, and we discuss in detail how to remove this contribution.
This solves a major technical challenge of the present approach with our choice of regu-
lators. Using an optimised Litim-type regulator for the fermions of the form Eq. (4.19)
which regularises around the Fermi surface, there is a divergence in the UV due to the
appearance of an additional sgn-term in the flow equations.
This can be seen as follows: The fermionic part of the flow of the bosonic wavefunction

renormalisation Sφ = Zφ/Aφ is given, as in (4.37), by

Ṡ
(F )
φ = −16 vd

d
h2
k k

d−4
(
`
(0,2)
F − 2w3 `

(0,3)
F

)
.

Here we used the definitions in Eqs. (4.39), (4.40) and (E.5). At zero temperature, in
three spatial dimensions and in the symmetric regime this becomes

Ṡ
(F )
φ = αSφ k

−1 h2
k

[
θ(µ̃+ 1) (µ̃+ 1)3/2 − 2 θ(µ̃) µ̃3/2

]
, for T = 0, SYM (7.8)

with a (k-independent) constant αSφ and where the term 2 θ(µ̃) µ̃3/2 appears due to the
additional sgn-term in the regulator around the Fermi surface. We dropped the term
θ(µ̃− 1) θ(µ̃− 1), as it vanishes due to k2 > µ in the symmetric regime (with µ̃ = µ/k2).
The Yukawa or Feshbach coupling hk is attracted to a (partial) fixed point and has the
scaling behaviour hk ∼

√
6π2 k in the ultraviolet, so that

Ṡ
(F )
φ = αSφ

[
θ(µ̃+ 1) (µ̃+ 1)3/2 − 2 θ(µ̃) µ̃3/2

]
, for T = 0, SYM
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subsuming the factor of 6π2 under the coefficient αSφ . Taking three (partial) µ-derivatives
yields

∂3
µṠ

(F )
φ = α̃Sφ

[
θ(µ̃+ 1)

(µ̃+ 1)3/2
− 2

θ(µ̃)

µ̃3/2

]
, for T = 0, SYM

As the term proportional to µ̃−3/2 = µ3/2/k3 is only present for a regulator around the
Fermi surface, we find in the ultraviolet

∂3
µS

(F )
φ ∝

k−3 regulator around Fermi surface

k−6 otherwise
. (7.9)

Regarding the flow of the effective action we have in the ultraviolet at T = 0 and in the
symmetric regime

V̇ (ρ) = βV (F ) k5 (µ̃+ 1)3/2 θ(µ̃+ 1) + βV (B)

k5

Sφ

(
1−

ηφ
5

)
, (7.10)

Here we again split the k-independent coefficients into βV (F/B) for the fermionic and bosonic
contributions, respectively.
Considering the second µ-derivative of flow of the density in Eq. (7.6) we find from (7.10)
in the last term g

(3)
i ∂gi ∂t Γk for the couplings gi = {Sφ, ηφ}

∂Sφ Γ̇k = γ
k5

S2
φ

(
1−

ηφ
5

)
,

∂ηφ Γ̇k = γ̃
k5

S2
φ

,

(7.11)

where ηφ ∼ k0 in the ultraviolet and γ, γ̃ being k-independent.
From (7.9) and (7.11) we infer that the last term in Eq. (7.6) is therefore proportional to

g
(3)
i ∂gi ∂t Γk ∝

k2 regulator around Fermi surface

k−1 otherwise
.

Hence, with a regulator around the Fermi surface, we encounter a divergence in the ultra-
violet, which is not present otherwise. Note that we used that Sφ ∼ k0 in the UV.

The above argument can be easily generalised to finite temperature, as the only differ-
ence is that the constant αSφ in Eq. (7.8) contains a term proportional to the Fermi-Dirac
distribution ÑF , Eq. (E.2), arising from the Matsubara summation Eq. (E.1). In the ul-
traviolet, where k → ∞, the Fermi-Dirac distribution with the renormalised temperature
T̃ = T/k2 vanishes, ÑF → 0, and exactly the same structure as above is retained.
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7.2.2 Splitting into ultraviolet and infrared flow

However, as the Fermi surface is only relevant in the infrared, we do not need to regularise
around the Fermi surface in the ultraviolet. We may rather employ an overall regula-
tor combined out of an infrared part which regularises around the Fermi surface and an
ultraviolet part which does not

Rψ = RUV θUV +RIR θIR , (7.12)

where we choose θUV = θ(k − k0) and θIR = (1− θUV) with θ(x) being the Heaviside step
function. The scale k0 at which the switch between ultraviolet and infrared regulator takes
place will be chosen appropriately such that the correct physical behaviour is obtained.
The advantage of employing a sharp switch between the infrared and ultraviolet regulator
is the possibility to analytically perform all integrations and Matsubara sums. For a
smooth switching behaviour one would have to deal with both the influence of the switching
function itself, as well as the contributions of the infrared and ultraviolet part in a certain
switching region.
The derivative of the fermion regulator Rψ w.r.t. the RG-time t is thus given by

Ṙψ = k ∂k Rψ = ṘUV θUV + ṘIR θIR + k δk,k0
(
RUV −RIR) , (7.13)

where we use the shorthand notation δk,k0 = δ(k − k0).
With the definition of z := (q2 − µ)/k2 we choose

RUV
ψ (q2) = k2 (1− z) θ (1− z)

for the UV regulator and accordingly

RIR
ψ (q2) = k2 (sgn (z)− z) θ (1− |z|)

for the IR regulator which still appropriately regularises around the Fermi surface in the
infrared, cf. Eq. (4.19).
Hence, with the inverse fermion propagator given, as in Eq. (4.12), by

G−1
ψ (Q) =

−hφ ε −P−Qψ 1

PQψ 1 hφ ε


and the regulator, as in Eq. (4.13), being

RQψ =

 0 −R−QUV 1

RQUV 1 0

 θUV +

 0 −R−QIR 1

RQIR 1 0

 θIR

we find

G−1
ψ (Q) +RQψ =

−a −b−Q

bQ a

 θUV +

−a −c−Q

cQ a

 θIR (7.14)
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where we defined a := hφ ε, bQ :=
(
PQψ +RQUV

)
1 and cQ :=

(
PQψ +RQIR

)
1.

Inverting Eq. (7.14) the propagator is thus found to be

GQψ =
1

detQF

 a
(
θUV + θIR

)
b−Q θUV + c−Q θIR

−bQ θUV − cQ θIR −a
(
θUV + θIR

)


=: GUV θUV +GIR θIR

(7.15)

where we defined

GUV(Q) =
1

detQF

 a b−Q

−bQ −a

 , GIR(Q) =
1

detQF

 a c−Q

−cQ −a

 .

The determinant is then given by

detQF = = −a2
(
θUV + θIR

)
+ bQ b−Q θUV + cQ c−Q θIR

= −a2 + bQ b−Q θUV + cQ c−Q (1− θUV) .

Thus, the flow equations for the effective potential, cf. Eq. (4.20), and for the couplings,
obtained via appropriate projection descriptions, see Sec. 4.4, split up into a purely UV-
and purely IR-part, as well as a term which is proportional to (RUV − RIR) δk,k0. Here,
the derivative w.r.t. the RG-time t acts on θUV and θIR, respectively.
Due to the overall Heaviside step functions θUV (θIR) in Eq. (7.15) for the UV- (IR-)
contribution the determinant detQF simplifies in both regimes

detQF =


−a2 + bQ b−Q =: detUVF (Q) in the UV

−a2 + cQ c−Q =: detIRF (Q) in the IR
. (7.16)

Together with the overall ṘUV/IR in the fermionic flow equations, Eq. (7.16) results in

detUVF = detIRF = deteffF = S2
ψ q

2
0 + k4 + h2 ρ .

Hence, at scales smaller than the switching scale k ≤ k0 (i.e. in the infrared) we find
exactly the same flow equations as before for the regulator around the Fermi surface, cf.
Sec. 4.5. In the ultraviolet, however, the flow equations are modified and for the momentum
integration one obtains ∫

~q
ṘUV
ψ

(
LSψ
)n

=
8 vd
d

kd+2+2n `UV(µ̃) ,∫
~q
ṘUV
ψ

(
LSψ
)2n+1

=
8 vd
d

kd+4+4n `UV(µ̃)

(7.17)

and ∫
~q
ṘUV
ψ q2 x2R

(2)
ψ

(
LSψ
)n

=
2 vd
d

kd+2+2n `UV(µ̃) . (7.18)
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7.2 Definition of ultraviolet finite flows

According to Eq. (E.5), we defined `UV(µ̃) = (1 + µ̃)d/2 θ (1 + µ̃) in an analogous manner.
The evaluation of the Matsubara sum yields the same result as in the infrared case of the
regulator around the Fermi surface, see Eq. (E.1).
Thus, defining an overall threshold function with Eq. (7.17) and Eq. (7.18) we obtain

∫
Q
ṘUV
ψ

(
LSψ

)n
detmF

=
8 vd k

d+2n+4−4m

d
`
(m)
F,UV

∫
Q
ṘUV
ψ q2 x2R

(2)
ψ

(
LSψ

)n
detmF

=
2 vd k

d+2n+4−4m

d
`
(m)
F,UV .

The threshold function for fermionic diagrams is given by

`
(m)
F,UV

(
µ̃, T̃ , w3

)
= `UV(µ̃)Fm

(√
1 + w3

)
,

where we set Sψ = Aψ = 1 and defined w3 = h2 ρ/k4 as before, cf. Section 4.5.2.

Contributions proportional to the delta function

The last term in Eq. (7.13) is generated by the RG-time derivative t acting on the Heaviside
step function θUV/IR itself and hence contains the delta function δk,k0 . For a more straight
forward evaluation, one can rewrite the regulator Eq. (7.12) using the identity that the
nth power of the Heaviside function is the Heaviside function itself, θn(x) ≡ θ(x).

Rψ = RUV (θUV)2 +RIR (θIR)2 .
The advantage is that the t-derivative of the regulator clearly splits into an ultraviolet and
infrared part also for the third term containing the delta function

Ṙψ = k ∂k Rψ = ṘUV θUV + ṘIR θIR + 2
(
RUV θUV −RIR θIR

)
θ̇UV . (7.19)

With this definition in Eq. (7.19) the δ-contribution of the effective potential, due to the
last term in Eq. (7.19), can be calculated as follows

V (F),δ = − tr
∫
Q

(
GQ,UVψ θUV +GQ,IRψ θIR

)
θ̇UV

(
RQ,UVψ θUV −RQ,IRψ θIR

)
.

This simplifies to a purely ultraviolet, as well as purely infrared part and can, with the
definition of the symmetrised components of the propagator in Eq. (4.14), be written as

V (F),δ = −2

∫
Q

LQ,S,UVψ

detQ,UVF

θUVRQ,UVψ θ̇UV + 2

∫
Q

LQ,S,IRψ

detQ,IRF

θIRRQ,IRψ θ̇IR . (7.20)

Overall, with these definitions we then find the contributions proportional to the delta
function at zero temperature. Note, that in order to perform the integration over the
RG-time integration t we recall that for integrands of the form δ(k − k0) θ(k − k0) the
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integration procedure is only well-defined in terms of distribution theory. This results in
an overall factor of δ(k − k0)/2 so that in the end we have

V (δ) = −16 vd k
d+2

d(d+ 2)

[
θ− µ̃

d/2+1
− − 2 θ(µ̃)µ̃d/2+1

]
FT=0

1 (
√

1 + w3) δk,k0 ,

S
(δ)
φ =

32 vd h
2
k k

d−4

d(d+ 2)

[
θ− µ̃

d/2+1
− − (d+ 2) θ(µ̃)µ̃d/2

]
×
(
FT=0

2 (
√

1 + w3)− 2w3FT=0
3 (

√
1 + w3)

)
δk,k0 ,

η
(δ)
φ = 0 .

(7.21)

In addition to using the definition of Fi in Eq. (E.1) we also defined θ± = θ(µ̃±) with
µ̃± = µ/k2 ± 1 for a more compact notation and offer a more detailed derivation of
Eq. (7.21) in Appendix B.

7.2.3 Independence on switching scale

In order to apply the splitting of the flow into an ultraviolet and an infrared part, laid
out in Sec. 7.2.1, the density resulting from the integrated 1-loop fermion flow has to be
independent of the scale k0 at which the flow is switched.
According to (7.6) and (7.7) we have to solve the flow of the third (total) µ-derivative of
the effective action and integrate twice over the chemical potential. As we only consider
the 1-loop fermion flow in the symmetric regime, contributions proportional to g(1)

i and
g

(2)
i vanish since they are determined by their flow. For the flow of the second µ-derivative
of the density we the have

∂2
µ ∂t nk =

d3 ∂t Γk
dµ3

= ∂3
µ|~g ∂t Γk , (7.22)

with g(n)
i ≡ 0 vanishing, as g(n)

i are determined by its flow.
It is sufficient to show that already ∂2

µ nk→0 is independent of the switching scale k0

∂2
µ nk→0 =

∫ 0

Λ

dk

k
∂2
µ ∂t nk + ∂2

µ nk=Λ .

Here, the second term ∂2
µ nk=Λ vanishes for a sufficiently large UV cutoff Λ→∞.

According to Eq. (3.14) we have for the flow equation for the 1-loop approximation

∂t Γ
(F),1-loop
k = −1

2
Tr

1

S
(2)
k [φ] +Rk

∂tRk , (7.23)

with Sk[φ] being the classical action.
From Eq. (7.23) we find for the 1-loop fermion flow equation of the effective potential

V̇ (F),1−loop = V̇ (F),1−loop,UV θUV + V̇ (F),1−loop,IR θIR + V (F),1−loop,δ . (7.24)
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7.2 Definition of ultraviolet finite flows

Here we split the equation in the ultraviolet and infrared part, as well as in a contribution
arising from the RG-time derivative acting on the Heaviside function θUV = 1 − θIR, cf.
the last term in Eq. (7.13).
For the ultraviolet and infrared contributions in Eq. (7.24) we find

V̇ (F),1−loop,UV θUV + V̇ (F),1−loop,IR θIR = αk

[(
θ+ µ̃

3/2
+ − θ− µ̃3/2

−

)
θIR +

(
θ+ µ̃

3/2
+

)
θUV

]
,

with αk = −32 vd/d k
d+2

(
1
2 − ÑF

(√
1 + w3

))
a µ-independent coefficient. We introduced

the short-hand notations µ̃+ = µ̃ + 1 and µ̃− = µ̃ − 1 and used again θUV = θ(k − k0),
θIR = 1− θUV and the Fermi-Dirac distribution ÑF given in Eq. (E.2).

Zero temperature case

At zero temperature, ultraviolet and infrared contributions in Eq. (7.24) simplify to

V̇
(F),1−loop,UV
T=0 θUV + V̇

(F),1−loop,IR
T=0 θIR

= αk,T=0

[(
θ+ µ̃

3/2
+ − θ− µ̃3/2

−

)
θIR +

(
θ+ µ̃

3/2
+

)
θUV

]
,

with αk,T=0 = −16 vd/d k
d+2 a µ-independent coefficient and the other definitions as above.

For the third (total) derivative of the effective potential w.r.t. the chemical potential, which
in the 1-loop case turns into a partial µ-derivative according to Eq. (7.22), we the find

d3 V̇
(F),1−loop
T=0

dµ3
=

1

8π2 k

[
θ+

µ̃
3/2
+

θUV +

(
θ+

µ̃
3/2
+

− θ−

µ̃
3/2
−

)
θIR

]
+ δ

(n)
± -terms . (7.25)

The δ(n)
± -terms result form the derivatives w.r.t. µ acting on the Heaviside step functions

θ (µ̃± 1), i.e. ∂nµ θ± = δ
(n)
± . We then always have combinations of (µ± 1)m/2 δ

(n)
± with

m ∈ {−1, 1, 3} and n ∈ {1, 2, 3}. Since, in the end, we integrate twice over µ (as well as
over the RG-time t), these δ(n)

± -terms vanish under the integrals.
For the integration over the RG-time t of Eq. (7.25) we then find∫ 0

Λ

dk

k
∂3
µ V̇

(F),1-loop
T=0 =

∫ k0

Λ

dk

k
∂3
µ V

(F),1-loop,UV
T=0 +

∫ 0

k0

dk

k
∂3
µ V

(F),1-loop,IR
T=0

=
1

8π2

[∫ k0

Λ

dk

k

θ+

µ̃
3/2
+

+

∫ 0

k0

dk

k

(
θ+

µ̃
3/2
+

− θ−

µ̃
3/2
−

)]

=
1

8π2

(
1√

Λ2 + µ
+ θ(µ− k2

0) θ(µ)
1√

k2
0 − µ

− 2
√
µ
θ(µ)

)
.

(7.26)

Combining Eq. (7.26) and the first equation in Eq. (7.21) we find that the dependence on
the switching scale between ultraviolet and infrared flow in Eq. (7.26) drops out at zero
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Figure 7.1: The flow of the second µ-derivative of the density, here exemplary shown for a
diverging scattering length of a−1 = 0 and µ = 1, is peaked around the switch-
ing scale k0 = ksb. The solid orange line depicts the symmetry breaking scale
ln(ksb/Λ), while the green dashed line shows the chemical potential ln(µmb/Λ)

and the grey dotted one the switching scale ln(k0/Λ) which coincides with the
symmetry breaking scale here.

temperature.

At finite temperature we have an additional factor of the Fermi-Dirac distribution in the
flow equation of the effective potential. This complicates the integration over the RG-time
t, cf. Eq. (7.26) for the zero temperature case, which can then be evaluated numerically.
On the other hand, for the delta contribution Eq. (7.20) at finite temperature, the eval-
uation of the RG-time integration is also not trivial, since factors of θ(k − k0) now occur
in the Fermi-Dirac distribution as well and independence of k0 is again checked numerically.

7.3 Resolution of divergences at µ = k2

As we described in Section 7.2.2 we use a Litim-type regulator for the fermions which
regularises around the Fermi surface in the infrared, i.e. with z := (q2 − µ)/k2 it is of the
form

R
(IR)
ψ (z) = k2 (1− z) θ (1− z) ,
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Figure 7.2: The flow of the second µ-derivative of the density, here exemplary shown for a
scattering length of a−1 = 0 and different values of µ = {0.001, 0.1, 1.} (shown
in green, red and blue from left to right). The lower the chemical potential the
higher is the peak around the switching scale k0.

Performing the momentum integration, as given in Appendix E, results in couplings gi of
the form

ġi ∝ θ (µ̃± 1) (µ̃± 1)3/2 f(gi, k) ,

where f(gi, k) is a function of a combination of the k-dependent couplings and the flow
parameter k. Taking µ-derivatives results in discontinuities starting at the second order
due to the (µ̃− 1) term. Especially, the third µ-derivative results in a 3/2 singularity and
needs to be regulated. To this end, we employ the following regularisation

1

(µ̃− 1)3/2
θ (µ̃− 1)

[
f(gi, k

2)− f(gi, µ)
]
,

where f(gi, k) is the part of the flow equation finite in µ̃ = µ/k2.

7.4 Quantitative BCS-BEC crossover at zero temperature

We are now in the position to calculate the density over the whole BCS-BEC crossover.
Here, we limit ourselves to the three-dimensional case at zero temperature, such that, in
the following, the scattering length a always denotes the three-dimensional one a ≡ a3D.
The generalisation to finite temperature and dimensions below three, e.g. the dimensional
crossover from three to two dimensions, is in principle straightforward, albeit numerically
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(a) The flow of the second µ-derivative of the
density, here exemplary shown for a scat-
tering length of a−1 = 0, µ = 1 and
k0 = 1.5ksb.
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(b) The flow of the second µ-derivative of the
density, here exemplary shown for a scatter-
ing length of a−1 = 0, µ = 1 and
k0 = 3 ksb.

Figure 7.3: The flow of the second µ-derivative of the density for a scattering length of
a−1 = 0 and µ = 1 at switching scales k0 > ksb. For larger switching scales k0

we find an increased influence of the ultraviolet divergence when regularising
around the Fermi surface.

more demanding.

We employ the same truncation, given in Eq. (4.18) and depicted in Fig. 4.1, as before,
with a running boson propagator. We do not allow for a running fermion propagator at
this stage whose inclusion, especially a running fermion mass mψ, might in the end the
yield more accurate results.
Considering the flow of the second µ-derivative of the density, as shown exemplary for a

diverging scattering length a−1 = 0 in Fig. 7.1, it is peaked around the switching scale k0.
The amplitude of the peak generally increases for lower values of the chemical potential µ,
cf. Fig. 7.2.
The same behaviour can be found beyond unitarity, where we take care of the smaller

symmetry breaking scale ksb on the BCS-side of the crossover by running the flow until
tfinal = −20 (for a < 0) and until tfinal = −16 (for a ≥ 0) with a ultraviolet cutoff scale of
Λ/
√
µmb = 1000. For additional details and plots cf. Appendix A. We have seen in Sec.

7.2.3 that the integrated flow is independent within 1-loop of the scale k0 where we switch
from an ultraviolet flow not regularising around the Fermi surface to an infrared flow which
regularises around the Fermi surface. In practice however, the switching scale k0 influences
the result in the way that we see residual influences of the ultraviolet divergence for a
regulator around the Fermi surface when choosing k0 too large, cf. Figs. 7.3. We therefore
set k0 = ksb to the symmetry breaking scale for negative and zero scattering length a ≤ 0.
For positive scattering lengths the symmetry breaking occurs much earlier in the flow such
that we choose k0 = 2/3 ksb in order to minimise the influence of the ultraviolet divergence.
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▲
▲

▲

▲

▲

▲

▲

▲

▲

■■

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.4: Comparison of the equation of state for the density iteratively calculated (blue
open circles and dash-dotted blue line) with the one obtained from Fermi-liquid
theory (FLT) in the BCS-regime (purple solid line), with the Lee-Huang-Yang
results on the BEC-side (black diamond) and the one obtained from the effective
potential calculation (dashed orange line). In addition, we show experimental
data (red square) by the Zwierlein group at MIT (Ku et al.) [27] and by
quantum Monte Carlo calculations (green triangles) by Astrakharchik et al.
[28].

Moreover, we neglect all delta distributions in Eq. (7.21) except for the dominant con-
tribution to the effective potential because of numerical stability. Including further delta
distributions led to numerical instabilities and should have minute impacts on the results.
Note, that neglect data points where we see a residual influence of the diverging be-

haviour from the regulator around the Fermi surface. Furthermore, we set the initial
condition at k = Λ for our couplings g(n)

i with n ∈ {1, 2, 3} to zero, while the initial
conditions for the couplings g(0)

i are chosen as outlined in Sec. 4.7.2.

7.4.1 Equation of state

The result for the equation of state at zero temperature over the three-dimensional BCS-
BEC crossover is shown in Fig. 7.4. We obtain for the Bertsch parameter ξ = µ/εF |a→∞
at unitarity,

ξfRG ' 0.362 for k0 = ksb ,

in good quantitative agreement with the experimental value of ξexp = 0.376(5) from [27].
Here, we compare the equation of state from this iterative procedure to the fRG result
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Figure 7.5: Comparison of the gap iteratively calculated (dash-dotted line) with the one
obtained from mean-field calculations (solid grey line), effective potential cal-
culations (dashed orange line). In addition, experimental data from the Ket-
terle group at MIT (Schirotzek et al.) [197], measured in a spin-imbalanced
Fermi gas, is shown in red squares, from the Moritz group in Hamburg (Biss et
al.) [177] in green triangles and by Hoinka et al. [198] in purple diamonds.

obtained from the effective potential calculation, to the experimental data by the Zwierlein
group at MIT [27] and quantum Monte Carlo calculations by [28]. We find promising and
very good quantitative agreement at unitarity and on the BEC-side with theory calculations
and experimental results. On the BCS-side of the crossover, our iterative result seems to
yield smaller results for the equation of state than comparable calculations, although it
agrees better with the Fermi liquid theory result. Here, an improved truncation including
a running fermion mass mψ might lead to increased precision. Furthermore, there is good
agreement with various other calculations from quantum Monte Carlo simulations [29, 32],
as well as T-matrix [30] and Nozières, Schmitt-Rink [31] studies and measurements [34].

7.4.2 Superfluid gap

The gap is obtained by integrating the susceptibility n(2) from µ = 0 to µ = 1 and at the
same time solving for the flow of the gap at µ = 1, i.e. ∆(µ = 1). The µ-dependence drops
out and the result for the gap at zero temperature over the three-dimensional BCS-BEC
crossover is shown in Fig. 7.5, where our curve corresponds to a fit of all data points. For
the gap ∆/εF |a→∞ at unitarity, we obtain

(∆/εF )fRG ' 0.39 for k0 = ksb ,
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Comparison of Bertsch parameter and gap at unitarity
µ/εF ∆/εF

fRG - this work 0.362 0.392
fRG - effective potential 0.55 0.60

Literature results
Astrakharchik et al. [28] 0.42(1)
Hausmann et al. [206] 0.36 0.46
Bartosch et al. [207] 0.32 0.61
Experimental data
Ku et al. [27] 0.376(5)
Schirotzek et al. [197] 0.44
Hoinka et al. [198] 0.47(3)
Biss et al. [177] 0.47(1)

Table 7.1: Comparison of the Bertsch parameter ξ = µ/εF |a→∞ and the gap ∆/εF |a→∞ at
unitarity for the case of vanishing temperature.

in good agreement with the experimental value of (∆/εF )exp = 0.44 from [197]. We
compare the gap calculated via this iterative procedure to the fRG result obtained from
the effective potential calculation and show the gap in mean field theory, experimental
data by the Ketterle group at MIT (Schirotzek et al.) [197] (obtained in a spin-imbalanced
Fermi gas), by the Moritz group in Hamburg (Biss et al.) [177] and by Hoinka et al. [198]
in comparison to the fRG results. We find good quantitative agreement at unitarity and on
the BEC-side, especially with data from [197]. In addition, good agreement is found with
beyond mean field calculations in [199], other functional integral approaches [33, 200–203],
quantum Monte Carlo simulations [204] and measurements in [205]. This constitutes an
important result of the present work. It demonstrates that the employed method is very
promising in providing quantitatively satisfactory results already with a comparatively
small truncation. The results for the equation of state and the gap at zero temperature
are summarised in Tab. 7.1.

7.5 Conclusion and outlook

In this Chapter we have put forward an iterative computational approach for the compu-
tations of the density, and higher moments of it. The reasoning behind it being that the
density requires a cubic fine-tuning procedure in the cutoff. Considering higher moments
of the density n, specifically the susceptibility n(2) removes this fine-tuning problem. We
obtain improved results for the equation of state and the gap at zero temperature and
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thus progress further in our quest to obtain quantitative access to the phase structure of
ultracold Fermi gases. Our results are in good quantitative agreement with recent exper-
imental, as well as theoretical data, thus showing that quantitative precision within the
promising fRG approach presented here is possible.

Despite of the good quantitative agreement there are a couple of aspects where the
current approach can be improved in. As has been shown before, extending the truncation
yields enhanced results [59]. Especially, the inclusion of a running fermion propagator,
with a renormalised fermion mass mψ, is believed to improve the quantitative access to
the BCS-side of the BCS-BEC crossover. Furthermore, an extension from the zero to the
finite temperature case is needed in order to gain quantitative precision for the superfluid
transition temperature Tc/TF . For this step, the numerical stability in solving the flow
equations of the higher moments has to be improved in order to obtain reliable results.
A further upgrade concerns the regulation scheme used in the setup of the flow equa-

tions. Here, a cutoff which includes a frequency regulation can further better the outcome,
since then the idea of integrating from the ultraviolet to the infrared momentum shell by
momentum shell is fully realised.
In the end, it would be beneficial to apply the iterative computational approach shown

here also to the case of a system within a dimensional crossover as in Chapter 5. A
quantitative precision in this domain would allow for a improved comparison to experiment,
as the parameter LkF could directly be mapped to the experimental setup.
Furthermore, it might also be worthwhile to consider the density defined as the integral

over the full fermion propagator at k → 0

n(µ, T ) = 2

∫
~p

(
1

2
−
∫
p0

Gψ∗ψ(P )

)
.

This ansatz might lead, after overcoming some problems concerning the high momentum
structure, to comparable results, while requiring less effort on a numerical level.
Overall, our results, especially the quantitative determination of the Bertsch parameter

and the superfluid gap at unitarity, constitute significant advancement in the quest for
quantitative precision in ultracold Fermi gases, as well as within the fRG approach.
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CHAPTER 8

Summary and conclusion

In this thesis we have studied aspects of ultracold Fermi gases from multiple angles. Our
focus was on resolving the many-body physics of the strongly correlated regime within
the BCS-BEC crossover. This regime is of particular interest since in three dimensions
it accommodates the unitary limit, resulting in universal scale invariant behaviour. In a
(quasi-) two-dimensional system experimental data suggested a region of increased critical
temperature for strong correlations. However, due to these strong interactions perturbative
methods are not applicable in this region of the crossover leading us to employ functional
methods, specifically the functional renormalisation group (fRG). The fRG, as introduced
in Chapter 3, is perfectly suited for this task since it naturally accounts for the relevant
degrees of freedom. New developments within this well-established method allow us to gain
novel insights into the intricate phase structure and to obtain unprecedented quantitative
precision.

One direction we investigated in Chapter 5 was the examination of a confined system of
ultracold fermions between three and two dimensions. Here, the confinement was induced
by periodic boundary conditions leading to a compactification of the transversal momentum
to a torus of circumference L, similar to the Matsubara formalism at finite temperature.
We discussed the function space and argued that anti-periodic boundary conditions do
not yield a well-defined two-dimensional limit. The dimensional reduction is then realised
within the fRG approach by following the RG flow. Following the RG flow essentially
suppresses higher momentum modes in the confined direction which decouple and one is
left with a system at a specific confinement length. We calculated the zero temperature
equation of state and gap over a wide range of confinement lengths for the whole BCS-BEC
crossover. At finite temperature the phase diagram within the dimensional crossover was
obtained. As in the zero temperature case, for large confinement lengths we found excellent
agreement with the three-dimensional system, while for stronger confinements the critical
temperature Tc/TF is lowered leading to a two-dimensional limit.

We observed a non-monotonic behaviour within the dimensional crossover resulting in
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regions of increased critical temperature due to a step-like density of states for the confined
system, similar to shape resonances in condensed matter systems. Our finite temperature
phase diagram at a fixed low confinement exhibits a region of increased critical temperature
in the strongly interacting regime which is in good qualitative agreement with experimental
data. Our results present new perspectives in understanding confined systems of ultracold
quantum gases, as it allows for calculating many-body observables for arbitrary strong
confinement. Our results computed from first principles constitute a significant contribu-
tion on the study of fluctuation effects on the effective dimensionality. The knowledge of
characteristic new features might be utilised in experimental setups and checks for other
theoretical methods.

There are, however, two main challenges to overcome to allow for a quantitative com-
parison to experimental data. First, a confinement induced by a harmonic potential is
usually employed in experiments necessitating a function space consisting of Hermite poly-
nomials in theory. Secondly, it is important to match the parameters from experiment to
theory. The difficulty here lies in the correct determination of the Fermi momentum kF

in a quantitative manner such that the dimensionless quantity LkF can be matched to
the experimentally given ones and a comparison for the given compactification in terms of
the Fermi momentum can be made. Obtaining quantitative precision within the dimen-
sional crossover would allow for predicting the specific confinement at which the critical
temperature is greatest, thus further advancing towards high-Tc superconductors.

In Chapter 6 we set up a basis for gaining real-time information of ultracold Fermi
gases in three spatial dimensions, with the final goal of obtaining transport properties. We
analytically continued the flow equations of the two-point functions from imaginary time in
Euclidean space to real-time before numerically solving it. The focus was on determining
the fermion spectral function over the three-dimensional BCS-BEC crossover at vanishing
spatial momenta. Across a specific temperature range in the symmetry broken regime,
and from a fermionic to a bosonic system in the strongly interacting regime of the BCS-
BEC crossover we found a rather large broadening of the quasiparticle peaks, especially at
zero temperature. At low temperatures at unitarity and on the BEC-side of the crossover
we obtained a second residual peak with a much smaller spectral weight. Overall, we
showed the applicability of the fRG approach to gain real-time properties in in our context
of ultracold Fermi gases. Our insights gained here constitute a fertile ground for future
advancements, e.g. in calculating the spectral functions at non-vanishing spatial momenta
and for the derivation of transport coefficients in ultracold Fermi gases.

Finally, a further promising direction concerns the access to a quantitative description
of the physics of ultracold quantum gases within the fRG. We argued in Chapter 7 that
this boils down to an insufficiency in the determination of density observables linked to an
ultraviolet sensitive behaviour. We overcome this shortcoming by considering the flow of
higher moments of the density, i.e. higher derivatives w.r.t. the chemical potential µ. We
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found that the second moment of the density, the susceptibility, has an ultraviolet finite
behaviour. By starting from the susceptibility we obtain the density by integrating twice
over the chemical potential after solving the flow equations of the higher µ-derivatives.
Here, we have to take care of the higher µ-derivatives of the couplings as well. We showed
the universal applicability of the computational approach and were able to access the zero
temperature physics of the three-dimensional BCS-BEC crossover, namely the equation of
state and the superfluid gap.
Our results agree well with recent experimental and theoretical data. Especially our

quantitative result for the previously hard to determine universal Bertsch parameter of
ξfRG = 0.362 and the gap at unitarity are in excellent agreement with observations. This
so far unprecedented quantitative precision within the fRG constitutes a significant ad-
vancement in going beyond the qualitative determination of observables. Applying this
computational approach to the case of the finite temperature phase diagram in a quanti-
tative manner is one of the next steps.
To conclude, we employed the functional renormalisation group to gain further knowl-

edge in the physics of ultracold Fermi gases in three distinct, but ultimately connected
directions. We gained novel physical insights into the interplay of many-body physics
and dimensionality, which yielded characteristic new features for confined systems. Sec-
ondly, analytical continuation of the flow equations resulted in real-time spectral functions.
Finally, the computational procedure laid out in the third part resulted in significant im-
provement on zero temperature observables in a quantitative manner. With the progress
accomplished in this thesis we showed the valuable contribution of the fRG framework in
the context of cold quantum gases.
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APPENDIX A

Details on the determination of the density in Chapter 7

In this Appendix we comment on further details regarding the density determination via
the iterative procedure in Chapter 7.
Comparable to the case of a diverging scattering length a−1 = 0 in Fig. 7.1 the flow of the

second µ-derivative of the density is peaked around the switching scale k0 for a scattering
length of a = −1 on the BCS-side of the BCS-BEC crossover. Here, the amplitude of the
peak also increases for lower values of the chemical potential µ, as shown in Fig. A.1. In
Fig. A.2 a similar behaviour can be observed for a positive scattering length a = 1 on the
BEC-side of the crossover.
As already mentioned in Section 7.4 the symmetry breaking scale ksb on the BCS-side of

the crossover is substantially lower than at unitarity and on the BEC-side. Therefore, we
allow for a running of the RG-flow until a final RG-time scale of tfinal = −20 (for a < 0)
compared to tfinal = −16 (for a ≥ 0). For the ultraviolet cutoff we choose Λ/

√
µmb = 1000

consistently.
The integrated second µ-derivative and first µ-derivative of the density, also shown ex-

emplary for a−1 = 0, are illustrated in Figs. A.3. As described in Section 7.1.2 they are
obtained via

∂2
µ nk=0(µ) =

∫ 0

Λ

dk

k
∂2
µ ṅk(µ) + ∂2

µ ṅk=Λ ,

for a UV vanishing flow ∂2
µ ṅk→∞ → 0. The first µ-derivative of the density is then given

by

∂µ nk=0(µ) =

∫ µ

0
dµ′ ∂2

µ′ n(µ′) + ∂µ′ n(0) ,

with ∂µ n(0) = 0. To both curves the delta contributions of Eq. (7.21) have to be added.
Since, we neglect the contributions for Sφ and ηφ the dominant contribution of the effective
potential can be added after solving for the couplings g(n)

i . In particular, this results in an
integrated second µ-derivative of the density finite at the origin µ = 0.
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Appendix A Details on the determination of the density in Chapter 7
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(a) The flow of the second µ-derivative of the
density, here exemplary shown for a scat-
tering length of a = −1 and µ = 1, is
peaked around the switching scale k0 = ksb.
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(b) Scaled flow of the second µ-derivative of the
density, here exemplary shown for a scat-
tering length of a = −1 and different val-
ues of µ = {0.001, 0.1, 1.} (shown in green,
red and blue from left to right). For bet-
ter readability we multiplied the curves for
µ = 1. and µ = 0.1 with a factor of 100.

Figure A.1: The flow of the second µ-derivative of the density for a scattering length of
a = −1.
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(a) The flow of the second µ-derivative of the
density, here exemplary shown for a scat-
tering length of a = 1 and µ = 1, is peaked
around the switching scale k0 = 2/3 ksb.

-15 -10 -5 0

0

2

4

6

8

10

(b) Scaled flow of the second µ-derivative of the
density, here exemplary shown for a scat-
tering length of a = 1 and different val-
ues of µ = {0.001, 0.1, 1.} (shown in green,
red and blue from left to right). For bet-
ter readability we multiplied the curves for
µ = 1. and µ = 0.1 with a factor of 100.

Figure A.2: The flow of the second µ-derivative of the density for a scattering length of
a = 1.
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(a) The integrated second µ-derivative of the
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scale k0 = ksb, before adding the delta
contributions.
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(b) The first µ-derivative of the density, here
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ksb, before adding the delta contribu-
tions.

Figure A.3: Integrated second µ-derivative and first µ-derivative of the density for a scat-
tering length of a−1 = 0. Both curves do not include corrections due to the
delta contributions.
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APPENDIX B

Evaluation of delta contributions

In this Appendix we elucidate on the evaluation of the the delta contributions in Sec-
tion 7.2.2. As outlined there the need for considering contributions proportional to
∼ δ(k − k0) arises from the splitting of the flow into an ultraviolet and an infrared part

Rψ = RUV θUV +RIR θIR , (B.1)

and the choice of a hard cutoff θUV = θ(k − k0) = (1 − θIR). The RG-time derivative
acting on the Heaviside step functions θUV/IR then leads to the delta functions ∼ δ(k−k0).
The delta contributions can evaluated in a straightforward manner by making use of the
’idempotence’ of the Heaviside step function, i.e. θn(x) ≡ θ(x), thereby rewriting Eq. (B.1)
as

Rψ = RUV (θUV)2 +RIR (θIR)2 .
Repeating the argument outlined in Section 7.2.2 the advantage is that with a splitting
of the t-derivative of the regulator leads to a decomposition of the flow equation of the
effective potential, and likewise for its derived couplings, as well as Sφ = Zφ/Aφ and
ηφ = −Ȧφ/Aφ, to wit

V (F),δ = −2

∫
Q

LQ,S,UVψ

detQ,UVF

θUVRQ,UVψ θ̇UV + 2

∫
Q

LQ,S,IRψ

detQ,IRF

θIRRQ,IRψ θ̇IR . (B.2)

According to Sec. 4.5 Eq. (B.2) and the corresponding equations for S(F),δ and η(F),δ are
of the form∫

~q
RQ,UVψ

(
LS,UVψ

)2n
,

∫
~q
RQ,IRψ

(
LS,IRψ

)2n
,∫

~q
RQ,IRψ

(
LS,IRψ

)2n+1
,

1

d

∫
~q
q2RQ,IRψ R

Q,IR,(2)
ψ

(
LS,IRψ

)2n
. (B.3)

The definitions of the symmetrised components L(S)
ψ and of the momentum derivatives

of the regulator R(2)
ψ = ∂2Rψ/∂(q2)2 follow the definitions in Sec. 4.5 and n ∈ N0. The
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general form of the contributions in Eq. (B.3) are then be evaluated in a similar fashion
as in Appendix E. This yields∫

~q
RQ,UVψ

(
LS,UVψ

)2n
=

16 vd
d (d+ 2)

kd+2+4n θ+ µ̃
d/2+1
+ ,∫

~q
RQ,IRψ

(
LS,IRψ

)2n
=

16 vd
d (d+ 2)

kd+2+4n
[
θ+ µ̃

d/2+1
+ − θ− µ̃d/2+1

− − (d+ 2) µ̃d/2
]
,∫

~q
RQ,IRψ

(
LS,IRψ

)2n+1
=

16 vd
d (d+ 2)

kd+2+2(2n+1)
[
θ+ µ̃

d/2+1
+ − θ− µ̃d/2+1

− − 2 µ̃d/2+1
]
,∫

~q
q2RQ,IRψ R

Q,IR,(2)
ψ

(
LS,IRψ

)2n
= 0 . (B.4)

For better readability we defined θ± = θ(µ̃±) with µ̃± = µ/k2 ± 1 in Eq. (B.4).
Note, that in order to perform the integration over the RG-time integration t we recall

that for integrands of the form δ(k − k0) θ(k − k0) the integration procedure is only well-
defined in terms of distribution theory. As a general rule, one can, for a smeared out
Heaviside step function θε(x) with δε(x) = θ′(x) and a continuous function f , apply the
formula

δε(x) f(x, θε(x))
ε→0−−−→ δ(x)

∫ 1

0
du f(0, u) .

This results in an overall factor of δ(k − k0)/2 for the present case of f(x, u) = u and we
find for the delta contributions at zero temperature

V (δ) = −16 vd k
d+2

d(d+ 2)

[
θ− µ̃

d/2+1
− − 2 θ(µ̃)µ̃d/2+1

]
FT=0

1 (
√

1 + w3) δk,k0 ,

S
(δ)
φ =

32 vd h
2
k k

d−4

d(d+ 2)

[
θ− µ̃

d/2+1
− − (d+ 2) θ(µ̃)µ̃d/2

]
×
(
FT=0

2 (
√

1 + w3)− 2w3FT=0
3 (

√
1 + w3)

)
δk,k0 ,

η
(δ)
φ = 0 .

(B.5)

Here, we used that the Matsubara sums decouple at zero temperature from the spatial
momentum integration.
Alternatively, starting from the RG-time derivative of the regulator split into ultraviolet

and infrared part in Eq. (7.12), i.e.

Ṙψ = k ∂k Rψ = ṘUV θUV + ṘIR θIR + k δk,k0
(
RUV −RIR) , (B.6)

one has to correctly account for the regulator difference ∆R :=
(
RUV −RIR) in the last

term of Eq. (B.6) when performing the integration. In the end, this yields the same result
as in Eq. (B.5).
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APPENDIX C

Analytically continued flow equations for the fermionic two-point function

In this Appendix we elaborate on further details concerning the calculation of the analyt-
ically continued two-point functions for the BCS-BEC crossover. Here, we concentrate on
the (inverse) fermion propagator as given in Fig. 4.2. Our aim is to perform the Matsubara
summation at finite temperature, cf. Sec. 3.3 for an outline of the Matsubara formalism,
as well as the spatial momentum integral analytically and in the end continue the flow
equations to real times. This is in general possible, as we use the optimised regulator given
in Eq. (4.19) which only regularises the spatial momenta. However, a difficulty arises,
since the flow equation for the fermionic two-point function contains mixed diagrams on
the right hand side, i.e. with both fermion and boson internal lines. Consequently, there
are both fermionic, as well as bosonic Matsubara frequencies present.
Given an external frequency p0 and according to Eq. (4.23) we have the following type

of Matsubara sum for the flow equation of the fermionic two-point function

T
∞∑

n=−∞

f1(iεn)

(iεn + ip0)2 − y2
1

f2(iωn)

(iωn)2 − y2
2

, (C.1)

with fermionic εn = (2n + 1)πT and bosonic ωn = 2nπT Matsubara frequencies. For
completeness, in this specific case we have f1(iεn) = iεn + ip0 + k2sgn(q2 − µ),
f2(iωn) = (iωn + k2)2 + k4w2

2, y2
1 = k4(1 + w3), y2 = k4(1− w2), w2 = ρV ′′/k2 and

w3 = h2ρ/k4 as before. For non-vanishing Sφ = Zφ/Aφ or Sψ = Zψ/Aψ, the corresponding
Matsubara frequencies can be rescaled accordingly.
Making use of the fact that the fermionic Matsubara frequencies are just shifted versions

of the bosonic ones, and vice versa, i.e. with the identifications

ωn = εn − π T , (C.2)

εn = ωn + π T ,

the Matsubara sums in Eq. (C.1) can be evaluated in the usual manner. This boils down
to applying the residue theorem to Eq. (C.1) and by means of Jordan’s lemma expressing
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two-point function

the resulting contour integral as sum over the residues. When taking into account the sum
over the fermionic Matsubara frequencies εn the bosonic Matsubara frequencies appear
shifted according to Eq. (C.2) and vice versa, summing in the end over all contributions.
The spatial momentum integration factors out, as in Appendix E, except for the fermionic

contributions proportional to f1(±y1 − ip0) and f1(±y2 + iπT ) which result in additional
sgn(q2 − µ)-terms. We account for these contributions separately, while using the results
of Appendix E for the rest.
In the end, we obtain a symbolic expression for the flow equation of the fermionic two-

point function with the loop integration already carried out. It is thus easy to perform the
analytical continuation according to Section 6.2 with

∂t Γ
(2),R
k (ω, ~p) = − lim

ε→0
∂t Γ

(2),E
k (p0 = −i(ω + iε), ~p) ,

which constitutes the flow equation for real frequencies. As described in Chapter 6 we are
then able to solve them numerically in Minkowski space-time.

108



APPENDIX D

Three- and four-point vertices

For displaying the three- and four-point vertices, we choose supermatrices with BB, BF ,
FB and FF as indices for further derivatives where a vertical bar, |, separates fermionic
derivatives acting from the left and right. For an introduction cf. e.g. [115].
The boson vertices in the {φ1, φ2}-basis for a constant bosonic background field φ =

√
ρ

are given by

γ
(3)

φ1BB
= A

3/2
φ

(
v

(3)
111 0

0 v
(3)
122

)
, γ

(3)

φ2BB
= A

3/2
φ

(
0 v

(3)
122,

v
(3)
122 0

)
,

γ
(4)

φ1φ1BB
= A2

φ

(
v

(4)
1111 0

0 v
(4)
1122

)
, γ

(4)

φ1φ2BB
= A

3/2
φ

(
0 v

(4)
1122

v
(4)
1122 0

)
= γ

(4)

φ2φ1BB
,

γ
(4)

φ2φ2BB
= A2

φ

(
v

(4)
1122 0

0 v
(4)
2222

)
, γ

(3)

φ1F |F
= Aψ A

1/2
φ

h√
2

(
−ε 0

0 ε

)
,

γ
(3)

φ2F |F
= Aψ A

1/2
φ

i h√
2

(
ε 0

0 ε

)
, γ

(3)

φF |F = Aψ A
1/2
φ h

(
0 0

0 ε

)
,

γ
(3)

φ∗2F |F
= Aψ A

1/2
φ h

(
−ε 0

0 0

)
.

For better readabiltiy we introduced the short-hand notations

v
(3)
111 =

√
2 ρ
(

3V ′′ + 2 ρ V (3)
)
, v

(3)
122 =

√
2 ρ V ′′ ,

v
(4)
1111 = 3V ′′ + 4 ρ

(
3V (3) + ρ V (4)

)
, v

(4)
1122 = V ′′ + 2 ρ V (3) , v

(4)
2222 = 3V ′′ .
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For the mixed vertices we obtain

γ
(3)

ψ∗1B|F
= Aψ A

1/2
φ

h√
2

(
0 0 0 1

0 0 0 i

)
conj.
=
basis

Aψ A
1/2
φ h

(
0 0 0 1

0 0 0 0

)
,

γ
(3)

ψ1B|F
= Aψ A

1/2
φ

h√
2

(
0 −1 0 0

0 i 0 0

)
conj.
=
basis

Aψ A
1/2
φ h

(
0 0 0 0

0 −1 0 0

)
,

γ
(3)

BF |ψ1
= Aψ A

1/2
φ

h√
2

(
0 1 0 0

0 −i 0 0

)
conj.
=
basis

Aψ A
1/2
φ h

(
0 0 0 0

0 1 0 0

)
,

γ
(3)

BF |ψ2
= Aψ A

1/2
φ

h√
2

(
−1 0 0 0

i 0 0 0

)
conj.
=
basis

Aψ A
1/2
φ h

(
0 0 0 0

−1 0 0 0

)

and

γ
(3)

F |Bψ1
= Aψ A

1/2
φ

h√
2


0 0

1 −i

0 0

0 0

 conj.
=
basis

Aψ A
1/2
φ h


0 0

0 1

0 0

0 0

 ,

γ
(3)

F |Bψ2
= Aψ A

1/2
φ

h√
2


−1 i

0 0

0 0

0 0

 conj.
=
basis

Aψ A
1/2
φ h


0 −1

0 0

0 0

0 0

 ,

γ
(3)

ψ∗1|FB
= Aψ A

1/2
φ

h√
2


0 0

0 0

0 0

1 i

 conj.
=
basis

Aψ A
1/2
φ h


0 0

0 0

0 0

1 0

 ,

γ
(3)

ψ1|FB
= Aψ A

1/2
φ

h√
2


0 0

−1 i

0 0

0 0

 conj.
=
basis

Aψ A
1/2
φ h


0 0

0 −1

0 0

0 0

 ,

in the {φ1, φ2} and conjugate field basis {φ, φ∗}, respectively.
The purely bosonic vertices may moreover be written in the conjugate field basis according
to

γ̂
(3)

φiBB
= U γ

(3)

φiBB
U t , γ̂

(4)

φiφjBB
= U γ

(3)

φiφjBB
U t ,

110



and we eventually arrive at

γ̂
(3)

φ1BB
= A

3/2
φ

(
v

(3)
1φφ v

(3)
1φφ∗

v
(3)
1φφ∗ v

(3)
1φφ

)
, γ̂

(3)

φ2BB
= A

3/2
φ

(
v

(3)
2φφ 0

0 −v(3)
2φφ

)
,

γ̂
(4)

φ1φ1BB
= A2

φ

(
v

(4)
11φφ v

(4)
11φφ∗

v
(4)
11φφ∗ v

(4)
11φφ

)
, γ̂

(4)

φ1φ2BB
= A2

φ

(
v

(4)
12φφ 0

0 −v(4)
12φφ

)
,

γ̂
(4)

φ2φ2BB
= A2

φ

(
v

(4)
22φφ v

(4)
22φφ∗

v
(4)
22φφ∗ v

(4)
22φφ

)
.

The matrix components are defined as

v
(3)
1φφ =

√
2 ρ
(
V ′′ + ρ V (3)

)
, v

(3)
1φφ∗ =

√
2 ρ
(

2V ′′ + ρ V (3)
)
,

v
(3)
2φφ = −i

√
2 ρ V ′′ , v

(4)
11φφ =

(
V ′′ + ρ

(
5V (3) + 2 ρ V (4)

))
,

v
(4)
11φφ∗ =

(
2V ′′ + ρ

(
7V (3) + 2 ρ V (4)

))
, v

(4)
12φφ = −i

(
V ′′ + 2 ρ V (3)

)
,

v
(4)
22φφ = −

(
V ′′ − ρ V (3)

)
, v

(4)
22φφ∗ =

(
2V ′′ + ρ V (3)

)
.
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APPENDIX E

Loop integration in the derivation of the flow equations

In this Appendix we perform the loop integrations still present for (4.33) and (4.35) in the
derivation of the flow equations in Section 4.5. For this we use the Matsubara formalism
outlined in Section 3.3 for the summation over the discrete Matsubara frequencies at finite
temperature, different for fermions and bosons. The spatial momentum integration follows
where the fermionic regularisation around the Fermi surface has to be taken special care
of.

E.1 Fermionic Matsubara sums

For fermionic Matsubara sums we find

F1(z) = T
∑
εn

1

ε2
n + z2

=
1

z

(
1

2
− ÑF (z)

)
,

F2(z) = T
∑
εn

1

(ε2
n + z2)2 = − ∂

∂z2
F1(z) = − 1

2 z

∂

∂ z
F1(z)

=
1

2 z3

(
1

2
− ÑF (z) + z Ñ ′F (z)

)
,

F3(z) = T
∑
εn

1

(ε2
n + z2)3 = −1

2

∂

∂z2
F2(z) = − 1

4 z

∂

∂ z
F2(z)

=
3

8 z5

(
1

2
− ÑF (z) + z Ñ ′F (z)− z2

3
Ñ ′′F (z)

)
.

(E.1)

where the Fermi-Dirac distribution with the renormalised temperature T̃ = T/k2 is defined
as

ÑF (z) =

0 T̃ = 0(
ez/T̃ + 1

)−1
T̃ > 0

. (E.2)
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Appendix E Loop integration in the derivation of the flow equations

To simplify the non-thermal beta-function we set ÑF = 0, while the limit T → 0 with
NF (z)→ θ(−z) yields the same result.

E.2 Bosonic Matsubara sums

Without the quadratic frequency term the bosonic Matsubara sums yield

B1(z) = T
∑
ωn

1

ω2
n + z2

=
1

z

(
1

2
+ ÑB(z)

)
,

B2(z) = T
∑
ωn

1

(ω2
n + z2)2 = − ∂

∂z2
B1(z) = − 1

2 z

∂

∂ z
B1(z)

=
1

2 z3

(
1

2
+ ÑB(z)− z Ñ ′F (z)

)
,

B3(z) = T
∑
ωn

1

(ω2
n + z2)3 = −1

2

∂

∂z2
B2(z) = − 1

4 z

∂

∂ z
B2(z)

=
3

8 z5

(
1

2
+ ÑB(z)− z Ñ ′B(z) +

z2

3
Ñ ′′B(z)

)
.

(E.3)

with the Bose-Einstein distribution

ÑB(z) =

0 T̃ = 0(
ez/T̃ − 1

)−1
T̃ > 0

.

Including a quadratic dependence on q0 in the boson propagator, i.e. for a non-vanishing
Wφ 6= 0 in Eq. (4.4), modifies the bosonic Matsubara sums slightly, but is otherwise
straightforward to take into account.

E.3 Fermionic momentum integration

In order to perform the momentum integration for both fermions, as well as bosons, we
exploit the specific structure of the optimised regulator such that it becomes particularly
simple due to the overall Heaviside-Theta-function.
The optimised fermionic regulator is given by

Rψ(q2) = Aψ k
2 rψ(z) ,

Ṙψ(q2)

Aψ
= −ηψ Rψ + Ṙψ , Ṙψ(q2) = 2 k2 sgn(z) θ (1− |z|) ,
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E.3 Fermionic momentum integration

where z = (q2 − µ)/k2 and

rψ(z) = (sgn(z)− z) θ (1− |z|) ,

r′ψ(z) = −θ (1− |z|) ,

r′′ψ(z) = sgn(z) δ (1− |z|) .

We furthermore have R(2)
ψ (q2) = r′′ψ(z)/k2. Due to the overall Rψ in the integral we

effectively have

LSψ(Q) = q2 − µ+Rψ(q2)
eff.
= k2 sgn(z).

Then for n ∈ N0 we find the evaluated momentum integrals

∫
~q

Ṙψ
Aψ

(
LSψ
)2n

=
8 vd
d

kd+4n+2

[
`2(µ̃)− ηψ

(
`2(µ̃)− 1

d+ 2
˜̀
1(µ̃)

)]
,

∫
~q

Ṙψ
Aψ

(
LSψ
)2n+1

=
8 vd
d

kd+4n+4

[
`1(µ̃)− ηψ

(
`1(µ̃)− 1

d+ 2
˜̀
2(µ̃)

)]
,

∫
~q

Ṙψ
Aψ

q2 x2 r′′ψ(z)
(
LSψ
)2n

=
2 vd
2

k4+4n+d `3(µ̃) ,

∫
~q

Ṙψ
Aψ

q2 x2 r′′ψ(z)
(
LSψ
)2n+1

=
2 vd
2

k6+4n+d `1(µ̃) .

(E.4)

Here we defined the threshold functions

`1(x) = θ(x+ 1) (x+ 1)d/2 − θ(x− 1) (x− 1)d/2 ,

`2(x) = θ(x+ 1) (x+ 1)d/2 + θ(x− 1) (x− 1)d/2 − 2 θ(x)xd/2 ,

`3(x) = θ(x+ 1) (x+ 1)d/2 + θ(x− 1) (x− 1)d/2 ,

˜̀
1(x) = θ(x+ 1) (x+ 1)d/2 (d− 2x)− θ(x− 1) (x− 1)d/2 (d+ 2x) ,

˜̀
2(x) = θ(x+ 1) (x+ 1)d/2 (d− 2x) + θ(x− 1) (x− 1)d/2 (d+ 2x)− 4 θ(x)xd/2+1

(E.5)

and the d-dimensional volume integrals

vd =
1

2d+1 πd/2 Γ(d/2)
, v1 =

1

4π
, v2 =

1

8π
, v3 =

1

8π2
.

Note that the terms proportional to ∼ ηψ in Eq. (E.4) vanish for our truncation, cf.
Eq. (4.18), but are given for a straightforward extension in future works.
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Appendix E Loop integration in the derivation of the flow equations

E.4 Bosonic momentum integration

In accordance with the discussion of the fermionic momentum integration the optimised
bosonic regulator is given by

Rφ(q2) = Aφ k
2 rφ(y) ,

Ṙφ(q2)

Aφ
= −ηφRφ + Ṙφ , Ṙφ(q2) = 2 k2 θ (1− y) ,

where y = q2/2k2 and

rφ(y) = (1− y) θ (1− y) ,

r′φ(y) = − θ (1− y) ,

r′′φ(y) = δ (1− y) .

We furthermore have R(2)
ψ (q2) = r′′φ(y)/4k2. Due to the overall Rφ in the integral we

effectively find

LSφ(Q) =
q2

2
+ V ′ + ρ V ′′ +Rφ(q2)

eff.
= k2 + V ′ + ρ V ′′. (E.6)

Hence, we obtain the simple result∫
~q

Ṙφ
Aφ

= 8
2d/2 vd
d

kd+2

(
1−

ηφ
d+ 2

)
,

∫
~q

Ṙφ
Aφ

q2 x2R
(2)
φ (q2) =

2d/2 vd
d

kd+2.

Due to (E.6) every insertion of
(
Lφ)S

)n under the integral yields another factor of
k2 + V ′ + ρ V ′′ = k2 (1 + w1 + w2) for the linear frequency dependence in our case.
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APPENDIX F

Finite volume summation

In this Appendix we calculate the explicit form of the ’spatial Matsubara sums’ for the
flow equations restricted to finite volume in Section 4.6. As we have argued in Section 4.6
the confinement w.r.t. periodic boundary conditions results in a quantisation of the mo-
mentum in the confined ’transversal’ directions. We then modify the optimised regulators
accordingly

Rφ,k(q
2) =

(
k2 − q2 + k2

n

2

)
θ

(
k2 − q2 + k2

n

2

)
,

Rψ,k(q
2) = k2

[
sgn

(
z + k̃2

n

)
−
(
z + k̃2

n

)]
θ
(

1− |z + k̃2
n|
)
,

where we again used z = (q2 − µ)/k2 and k̃n = kn/k. Hence the d-dimensional spatial
integration splits up into a sum over the discrete momenta kn and a momentum integral
in d− 1 dimensions ∫

dd q

(2π)d
=

1

L

∑
kn

∫
dd−1 q

(2π)d−1
.

Due to the inclusion of the discrete momenta in the regulator the evaluation of the spa-
tial boils down to counting the modes within the potential well. For periodic boundary
conditions we hereby encounter the following type of sums

N∑
n=−N

α = α (1 + 2N) (α ∈ R) ,

N∑
n=1

n2 =
1

6
N (1 +N) (1 + 2N) ,

and

N∑
n=1

n4 =
1

30
N (1 +N) (1 + 2N) (−1 + 3N + 3N2) .
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Appendix F Finite volume summation

As a result of the periodic boundary conditions the regulator function restricts the Matsubara-
type summation in the transversal direction to |kn| = |2πn/L| <

√
2 k or equivalently

|n| < L̃/
√

2π.
For bosonic contributions we define

N (B) =

⌊
L̃√
2π

⌋
with bxc being the largest integer smaller than x. In three dimensions we find

CL =
1

L

∑
kn

(
1− k2

n

2 k2

)d/2(
1−

ηφ
d+ 2

(
1− k2

n

2 k2

))
θ

(
k2 − k2

n

2

)

=
k

L̃

(
1 + 2N (B)

) [
1−

ηφ
4
− 1

6

(
1− ηφ

2

) (
2π

L̃

)2

N (B)
(

1 +N (B)
)

−
ηφ
60

(
2π

L̃

)4

N (B)
(

1 +N (B)
) (
−1 + 3N (B) + 3

(
N (B)

)2
)]

.

The fermionic momentum integrals can be generalised by the transformation
z → ẑ = (q2 + k2

n − µ)/k2. All results can then be transferred by the transformation µ→
µ̂ = µ̃ − k̃2

n. For periodic boundary conditions it can be easily shown in three spatial
dimensions
1

L

∑
kn

θ (µ̂+ 1) (µ̂+ 1)
(d−1)/2

=
1

L

[
µ̃+

(
1 + 2N

(F )
1

)
− 1

3

(
2π

L̃

)2

N
(F )
1

(
1 +N

(F )
1

)(
1 + 2N

(F )
1

)]
θ+ ,

1

L

∑
kn

θ (µ̂− 1) (µ̂− 1)
(d−1)/2

=
1

L

[
µ̃−

(
1 + 2N

(F )
2

)
− 1

3

(
2π

L̃

)2

N
(F )
2

(
1 +N

(F )
2

)(
1 + 2N

(F )
2

)]
θ− ,

1

L

∑
kn

θ (µ̂) (µ̂)
(d−1)/2

=
1

L

[
µ̃
(

1 + 2N
(F )
3

)
− 1

3

(
2π

L̃

)2

N
(F )
3

(
1 +N

(F )
3

)(
1 + 2N

(F )
3

)]
θ (µ̃) .

For a more compact notation we defined θ± = θ(µ̃±) with µ̃± = µ/k2 ± 1 and used

N
(F )
1 =

⌊
L̃ (µ̃+ 1)1/2

2π

⌋
, N

(F )
2 =

⌊
L̃ (µ̃− 1)1/2

2π

⌋
, N

(F )
3 =

⌊
L̃ µ̃1/2

2π

⌋
.

Hence for the spatial threshold function with explicit Matsubara summation we obtain for
periodic boundary conditions in d = 3

1

L

∑
kn

`a(µ̂) =
k

L̃

{[
(µ̃+ 1)

(
1 + 2N

(F )
1

)
− 1

3

(
2π

L̃

)2

N
(F )
1

(
1 +N

(F )
1

) (
1 + 2N

(F )
1

)]

(−1)a
[
(µ̃+ 1)→ (µ̃− 1) &

(
N

(F )
1 → N

(F )
2

)]

− (1 + (−1)a)

[
µ̃
(

1 + 2N
(F )
3

)
− 1

3

(
2π

L̃

)2

N
(F )
3

(
1 +N

(F )
3

) (
1 + 2N

(F )
3

)]}
,
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for a = 1, 2. Furthermore, we find

1

L

∑
kn

`3(µ̂) =
k

L̃

{[
(µ̃+ 1)

(
1 + 2N

(F )
1

)
− 1

3

(
2π

L̃

)2

N
(F )
1

(
1 +N

(F )
1

) (
1 + 2N

(F )
1

)]

+

[
(µ̃+ 1)→ (µ̃− 1) &

(
N

(F )
1 → N

(F )
2

)]}
.

With these generalisations of the flow equations from Section 4.5.2 to finite volume rep-
resents the base for our investigation of the dimensional crossover from three to two di-
mensions in Chapter 5. We will solve the flow equations, after an appropriate vacuum
renormalisation, numerically as described in Section 4.7.
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