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Zusammenfassung

In der vorliegenden Disssertation beschäftigen wir uns mit abhängigen Daten in drei
verschiedenen Situationen. Als erstes untersuchen wir die emprisiche Prozesstheorie für
(lokal) stationäre Prozesse bezüglich Klassen von glatten bzw. nichtglatten Funktio-
nen. Dabei durchleuchten wir unsere Theorie unter dem funktionalen Abhängigkeitsmaß
(functional dependence measure) und führen eine zusätzliche Abhängigkeit in der Zeit
ein. Wir formulieren funktionale zentrale Grenzwertsätze und nichtasymptotische Ma-
ximalungleichungen. Unsere Resultate erweitern bereits bekannte Ergebnisse auf dem
Gebiet der stationären Markovketten und mischenden Prozesse (mixing sequences). Als
Anwendung unserer Theorie leiten wir gleichmäßige Konvergenzraten für nichtparame-
trische Regression mit lokal stationärem Rauschen sowie die funktionale Konvergenz der
empirischen Verteilungsfunktion her. Weiterhin folgern wir gleichmäßige Konvergenzra-
ten für den Kerndichte-Schätzer im (lokal) stationären Fall. Sämtliche Ergebnisse werden
in der bestehenden Literatur eingeordnet und verglichen.

In einer daran anschließenden Abhandlung wenden wir uns dem Gebiet des statis-
tischen Lernens zu. Wir betrachten dabei hoch-dimensionale stationäre Daten, die aus
einer verrauschten Transformation vergangener Beobachtungen hervorgehen. Basierend
auf unseren vorherigen Resultaten und ausgehend von Realisierungen eines absolut re-
gulären mischenden Prozesses oder eines Bernoulli-Shift-Prozesses unter dem funktio-
nalen Abhängigkeitsmaß leiten wir Orakelungleichungen für den empirischen Risiko-
Minimierer her. Wenn wir davon ausgehen, dass die Daten einer Kodierung-Dekodierung-
Struktur folgen, so sind wir in der Lage einen Neuronalen-Netzwerk-Schätzer zu konstru-
ieren, der eine Vorhersage für zukünfitge Zeitpunkte erlaubt. Unter spezifischen struktu-
rellen Bedingungen und Spärlichkeitsannahmen (sparsity) an die zugehörigen Netzwerke
lässt sich der erwartete Vorhersagefehler nach oben abschätzen. Über quantitative Si-
mulationen untersuchen wir das Verhalten von Netzwerk-Schätzern unter verschiedenen
Modellannahmen. Wir stellen abschließend eine praktische Anwedung durch die Wetter-
vorhersage von deutschen Städten mit den Daten des Deutschen Wetterdienstes vor.

In einer weiteren Untersuchung von abhängigen Daten widmen wir uns der nichtpa-
rametrischen Schätzung der Überlebensfunktion auf der positiven reellen Achse durch
Stichproben mit mulitplikativen Messabweichungen. Das vorgeschlagene datengetriebe-
ne Verfahren in dieser Arbeit basiert auf der Schätzung der entsprechenden Mellin-
Transformierten und einer Regularisierung ihrer Inversen durch einen spektralen Cut-
Off; die datengetriebene Wahl des Cut-Off-Parameters gleicht üblicherweise den Bias und
die Varianz aus (bias-variance trade-off ). Für die Analyse des Bias-Terms führen wir
sogenannte Mellin-Sobolev-Räume ein, welche die Regularität der Überlebensfunktion
durch das Zerfallverhalten ihrer Mellin-Transformierten charakterisiert. Den Varianz-
Term werden wir anhand von unabhängig, identisch verteilten (i.i.d.) Beobachtungen
und abhängigen Daten durchleuchten. Wie zuvor spezialisieren wir uns auf Bernoulli-
Shift-Prozesse unter dem funktionalen Abhängigkeitsmaß und auf absolut regulär mi-
schende Prozesse. Im i.i.d.-Fall erreichen wir Minimax-Optimalität des sprektralen Cut-
Off-Schätzers auf Mellin-Sobolev-Räumen.
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Abstract

In this doctoral dissertation we will investigate dependence structures in three different
cases.

We first provide a framework for empirical process theory of (locally) stationary pro-
cesses for classes of either smooth or nonsmooth functions. The theory is approached
by using the so-called functional dependence measure in order to quantify dependence.
This work extends known results for stationary Markov chains and mixing sequences
while accounting for additional time dependence. The main contributions consist of
functional central limit theorems and nonasymptotic maximal inequalities. These can be
employed to show, for example, uniform convergence rates for nonparametric regression
with locally stationary noise. We further derive rates for kernel density estimators in the
case of stationary and locally stationary observations. A special focus is placed on the
functional convergence of the empirical distribution function (EDF). Comparisons with
results based on other measures of dependence are carried out, as well.

In a subsequent step, we consider high-dimensional stationary processes where new ob-
servations are generated by a noisy transformation of past observations. By means of our
previous results we prove oracle inequalities for the empirical risk minimizer if the data is
generated by either an absolutely regular mixing sequence (β-mixing) or a Bernoulli shift
process under functional dependence. Assuming that the underlying transformation of
our data follows an encoder-decoder structure, we construct an encoder-decoder neural
network estimator for the prediction of future time steps. We give upper bounds for the
expected forecast error under specific structural and sparsity conditions on the network
architecture. In a quantitative simulation we discuss the behavior of network estimators
under different model assumptions and provide a weather forecast for German cities
using data available by the German Meteorological Service (Deutsche Wetterdienst).

Moving onto a different setting, we study the nonparametric estimation of an un-
known survival function with support on the positive real line based on a sample with
multiplicative measurement errors. The proposed fully data-driven procedure involves
an estimation step of the survival function’s Mellin transform and a regularization of
the Mellin transform’s inverse by a spectral cut-off. A data-driven choice of the cut-off
parameter balances bias and variance. In order to discuss the bias term, we consider
Mellin-Sobolev spaces which characterize the regularity of the unknown survival func-
tion by the decay behavior of its Mellin transform. When analyzing the variance term
we consider the standard i.i.d. case and incorporate dependent observations in form of
Bernoulli shift processes and absolutely regular mixing sequences. In the i.i.d. setting we
are able to show minimax-optimality over Mellin-Sobolev spaces for the spectral cut-off
estimator.
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Chapter 1

Introduction

In this thesis we explore stochastic processes based on two dependence structures,
Bernoulli shift processes under the functional dependence measure and absolutely reg-
ular mixing sequences. Beginning this thesis with empirical process theory for locally
stationary processes, Chapter 2 and Chapter 3, we wind our way through its conse-
quences in forecasting with neural networks, Chapter 4, and bring it to an end with
survival analysis, Chapter 5. Let us briefly introduce these topics and place them in
their literary context.

Empirical process theory. Empirical process theory is a powerful tool to prove uni-
form convergence rates and weak convergence of functionals. The main concern revolves
around the probabilistic behavior of processes {Gn(f) : f ∈ F}, where

Gn(f) :=
1√
n

n∑
i=1

{
f(Xi)− Ef(Xi)

}
,

is given for a random sample Xi, i = 1, ..., n, and a function f in the class F of measur-
able functions. The theory for independent variables is well-studied (cf. Dudley [2014],
Giné and Nickl [2016], van der Vaart and Wellner [1996] or van der Vaart [1998] for an
overview, based on the original ideas of Donsker [1952], Dudley [1966], Dudley [1978],
Pollard [1982] and Ossiander [1987], among others). For dependent observations var-
ious approaches have been discussed. There exist a well-developed empirical process
theory and large deviation results for Harris-recurrent Markov chains based on regener-
ative schemes (cf. Levental [1988], Samur [2004], Ellis and Wyner [1989] and Adamczak
[2008], among others) or geometric ergodicity (cf. Kulik et al. [2019]). To quantify the
speed of convergence in maximal inequalities, additional assumptions like β-recurrence
(cf. Karlsen and Tjø stheim [2001]) have to be imposed. The theory covers a rich class
of Markov chains, but for instance, fails to discuss linear processes.

In the context of stationary processes, an empirical process theory under complex
assumptions on the moments of means is formulated in Dehling et al. [2009] and further
discussion papers. In the paradigm of weak dependence, in which the size of covariances of
Lipschitz continuous functions of random variables is measured, Doukhan and Neumann
[2007] provides Bernstein-type inequalities.
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Focusing on the analysis of the empirical distribution function (EDF), much more
techniques have been developed. Regarding the functional weak convergence of the EDF,
more specific conditions are stated in the literature for stationary observations. The work
of Durieu and Tusche [2014] provides functional convergence of the EDF (Theorem 4
therein) using bounds for covariances of Hölder functions of random variables. Another
abstract concept was introduced by Berkes et al. [2009] via stationary mixing (S-mixing),
which imposes the existence of m-dependent approximations of the original observations.
They derived strong approximations and uniform central limit theorems for the EDF.
More approaches are presented in Borovkova et al. [2001] and Dedecker [2010].

Another idea to measure dependence of random variables is given by mixing coef-
ficients. In this case, several concepts were established, the most common (in order of
increasing strength) being α-, β- and φ-mixing. For an overview about mixing coefficients
we refer to Doukhan [1994]. Large deviation results and uniform central limit theorems
for general classes of functions (not only for EDFs) can be derived by using coupling tech-
niques, cf. Rio [1995], Liebscher [1996], Arcones and Yu [1994], Yu [1994] for α-mixing,
successively refined by Doukhan et al. [1995], Rio [1998], Dedecker and Prieur [2007]
and Dedecker [2010] (the last two for EDFs only); Rio [2017] for β-mixing and Dedecker
and Louhichi [2002], Borovkova et al. [2001] for β- and φ-mixing. For a comprehensive
overview also consider Andrews and Pollard [1994], Dedecker and Louhichi [2002] and
Rio [2017].

In Dedecker and Louhichi [2002] it is argued that β-mixing is the weakest mixing
assumption that allows for a “complete” empirical process theory which incorporates
maximal inequalities and uniform central limit theorems. There exist explicit upper
bounds for β-mixing coefficients for Markov chains (cf. Heinrich [1992]) and for so-called
V-geometric mixing coefficients (cf. Meyn and Tweedie [2009]). For several stationary
time series models like linear processes (cf. Pham and Tran [1985] for α-mixing), ARMA
(cf. Mokkadem [1988]), nonlinear AR (cf. Karlsen and Tjø stheim [2001]) and GARCH
processes (cf. Francq and Zaköıan [2006]) there are upper bounds on mixing coefficients
available. A common assumption in these results is that the observed process or, more
often, the innovations of the corresponding process, have a continuous distribution. This
is a crucial assumption in order to handle the rather complicated mixing coefficients
defined over a supremum over two different σ-algebras. A relaxation of β-mixing coef-
ficients was investigated by [Dedecker and Prieur, 2007, Theorem 1] and is specifically
designed for the analysis of the EDF. They provide coefficients that are defined by con-
ditional expectations of certain classes of functions and are easier to upper bound for a
wide range of time series models.

Recently, another measure of dependence, the so-called functional dependence mea-
sure, became popular (cf. Wu [2005]). It uses a Bernoulli shift representation (see equa-
tion (1.2.1) below) and a decomposition into martingales and m-dependent sequences.
It has been shown in various applications that the functional dependence measure, when
combined with the rich theory of martingales, allows for sharp large deviation inequali-
ties (cf. Wu et al. [2013] or Zhang and Wu [2017]). In Wu [2008] and Mayer et al. [2020],
uniform central limit theorems for the EDF were derived for stationary and piecewise
locally stationary processes.

2



So far, to the best of our knowledge, no general empirical process theory that allows
for general classes of functions using the functional dependence measure is available. This
dissertation intends to fill this gap and prove maximal inequalities as well as functional
central limit theorems under functional dependence. We are going to consider classes of
smooth functions and additionally allow for nonsmooth functions in a separate discus-
sion. In particular, our framework includes, but is by far not limited to, the empirical
distribution function (EDF). Furthermore, we will draw connections and compare our
results to the already existing empirical process theory for dependent data we mentioned
earlier.

While the empirical process theory for Markov chains and mixing sequences cited
above was developed for stationary processes, we will work in the framework of locally
stationary processes and thus provide the first general empirical process theory in this
setting. Locally stationary processes allow for a smooth change of the distribution over
time but can locally be approximated by stationary processes. Therefore, they provide
more flexible time series models (cf. Dahlhaus et al. [2019] for an introduction). The
work of Dahlhaus and Polonik [2009] investigates spectral empirical processes for linear
processes and Mayer et al. [2020] shows a functional central limit theorem for a localized
empirical distribution function.

The definition of the functional dependence measure for locally stationary processes
is similar to its stationary version and is easy to calculate for many time series models.
It does not rely on the stationarity assumption but on the representation of the process
as a Bernoulli shift. Therefore, many upper bounds for stationary time series given in
Wu [2011], including recursively defined models and linear models, directly carry over to
the locally stationary case. It seems reasonable to use it as a starting point to generalize
empirical process theory for stationary processes to the more general setting of locally
stationary processes. Contrary to the concept of β-mixing, the functional dependence
measure can effortlessly deal with transformed observations by using Hölder-type as-
sumptions. On the same note, it can easily be calculated in many situations and is not
restricted to continuously distributed data. It is worth pointing out that linear processes
are covered, as well.

However, there are some peculiarities that come along when using the functional de-
pendence measure (1.2.2). While for Harris-recurrent Markov chains and β-mixing, the
empirical process theory is independent of the function class considered, the situation for
the functional dependence measure is more involved. For example, let us consider some
(possibly high-dimensional) random variables X1, ..., Xn and a general function class
f ∈ F . In order to quantify the dependence of a transformation f(X), X = (X1, ..., Xn),
we have to impose certain smoothness conditions on the function f itself. Therefore,
certain measures of distances that are necessary to derive weak convergence results will
change according to the dependence structure of X. They also have to be “compatible”
with the function class F . However, requiring smoothness conditions will pose chal-
lenging issues when considering chaining procedures where rare events are excluded by
(nonsmooth) indicator functions.
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Oracle inequalities. In a next step, we would like to apply the results from the em-
pirical process theory for classes of smooth functions. They help us to better understand
the performance of certain time series forecasting regimes that involve empirical risk
minimizers. Let us consider such a (high-dimensional) time series and assume that the
observed data Xi, i = 1, ..., n, is a realization of a stationary stochastic process which
follows an autoregressive regression model with Subgaussian innovations εi,

Xi = f0(Xi−1, ..., Xi−r) + εi, i = r + 1, ..., n,

for number of lags r, made precise later in (4.1.1). First, we develop oracle inequalities for
observations that come from Bernoulli shift processes under the functional dependence
measure and on a sample that is drawn from β-mixing sequences. Oracle inequalities
provide a useful tool when trying to measure an estimator’s accuracy.

Based on the prediction error

R(f) =
1

d
E[|Xr+1 − f(Xr, ..., X1)|22]

(cf. (4.1.2)), we will define its empirical counterpart and asses the excess Bayes risk of
the empirical risk minimizer over a certain class of measurable functions.

Specifically, we investigate the statistical behavior of structured neural network esti-
mators in high-dimensional time series forecasting. Here, we harness the approximation
results obtained by Schmidt-Hieber [2017] and derive upper bounds for the excess Bayes
risk. The general idea to use networks for forecasting was already described in Tang and
Fishwick [1993], Kline [2004], Zhang [2012]. However, up to now, no theoretical results
for convergence rates on dependent data in this setting seem to exist. They are of utmost
value since the conditions needed can shed light on the choice of a network structure.
Furthermore, quantifying the impact of the underlying dependence in the data can yield
information on the number of training samples (or observation length, in a time series
context) required to bound the prediction error.

A general overview for oracle inequalities and its use cases can be found in Bühlmann
and Van De Geer [2011]. Related studies can be found in, for example, Blanchard et al.
[2008] and Schmidt-Hieber [2017].

Let us emphasize that our stochastic results can be seen as a generalization of Schmidt-
Hieber [2017] which deals with independent and identically distributed (i.i.d.) data Xi

and one-dimensional outputs Yi, in particular. Furthermore, we will be imposing an
encoder-decoder structure which is crucial when transferring the strong convergence
rates from Schmidt-Hieber [2017] to the setting of high-dimensional outputs, especially
in the case of recursively defined time series.

Survival analysis. So far, many statistical procedures under dependent data have
yet to be developed. For our next topic, we focus on an estimation procedure for the
unknown survival function of a positive random variable X, that is,

S : R+ → [0, 1], x 7→ P(X > x),
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given identically distributed copies of Y = XU , where X and U are independent of each
other and U has a known density g : R+ → R+. In this setting, the density fY : R+ → R+

of Y is given by

fY (y) = [f ∗ g](y) :=

∫ ∞
0

f(x)g(y/x)x−1dx ∀y ∈ R+.

Here, “∗” denotes multiplicative convolution. The estimation of S using an observable
sample Y1, . . . , Yn from fY becomes thus an inverse problem called multiplicative de-
convolution. We account for certain dependence structures on the sample Y1, . . . , Yn.
More precisely, we assume X1, . . . , Xn to be a stationary process while the error terms
U1, . . . , Un will be i.i.d.
Multiplicative deconvolution models are, for example, treated in the recent work of
Brenner Miguel et al. [2020], which uses the Mellin transform to construct a density
estimator under multiplicative measurement errors, and Brenner Miguel [2021], where
they consider the multivariate case of density estimation. The model of multiplicative
measurement errors was motivated in the work of Belomestny and Goldenshluger [2020]
as a generalization of several models, for instance, the multiplicative censoring model or
the stochastic volatility model.

To the best of our knowledge, the estimation for the survival function of a positive
random variable for general multiplicative measurement errors has not been studied yet.

The investigations in Vardi [1989] and Vardi and Zhang [1992] introduce multiplicative
censoring and focus on multiplicative deconvolution problems with uniformly distributed
multiplicative error U on [0, 1]. This model is applied often in survival analysis and was
motivated in Van Es et al. [2000]. The estimation of the cumulative distribution function
of X is discussed in Asgharian and Wolfson [2005] and Vardi and Zhang [1992]. Series
expansion methods are covered in Andersen and Hansen [2001], treating the model as
an inverse problem. The survival function estimation in a multiplicative censoring model
is considered in Brunel et al. [2016] using a kernel estimator and a convolution power
kernel estimator. Assuming an uniform error distribution on an interval [1 − α, 1 + α]
for α ∈ (0, 1), Comte and Dion [2016] analyzes a projection survival function estimator
with respect to the Laguerre basis. On the other hand, Belomestny et al. [2016] sheds
light on the theory with beta-distributed error U .

In the work of Belomestny and Goldenshluger [2020], the authors use the Mellin trans-
form to construct a kernel estimator for the pointwise density estimation. Moreover, they
point out that the following widely used naive approach is a special case of their esti-
mation strategy. Applying a log-transformation, the model Y = XU is equivalent to
log(Y ) = log(X) + log(U), which in turn is just a convolution of the log-transformed
data. As a consequence, the density of log(X) is eventually estimated by employing the
usual strategies for nonparametric deconvolution problems (cf. Meister [2009]) and then
transformed back to an estimator of f . However, it is difficult to interpret regularity con-
ditions on the density of log(X). Furthermore, the global risk analysis of an estimator
using this naive approach is challenging as Comte and Dion [2016] pointed out.

In the last chapter, we extend the results of Brenner Miguel et al. [2020] for the
estimation of the survival function. To do so, we introduce the Mellin transform for
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positive random variables and revise necessary properties. The key to the multiplica-
tive deconvolution problem is the multiplication theorem of the Mellin transform, which
roughly states M[fY ] =M[f ]M[g] for a density fY = f ∗ g. Exploiting the multiplica-
tion theorem and applying a spectral cut-off regularization on the inverse of the Mellin
transform we then define a survival function estimator. The accuracy of the estimator
is measured by introducing a global risk in terms of the L2-norm. We borrow ideas
from, for example, Engl et al. [2000] when characterizing the underlying inverse prob-
lem. The regularity conditions will be expressed in the form of Mellin-Sobolev spaces.
The proposed estimator, however, involves a tuning parameter which is selected by a
data-driven method. We will first establish an oracle inequality for the fully-data driven
spectral cut-off estimator under fairly mild assumptions on the error density g and then
show that uniformly over Mellin-Sobolev spaces the proposed data-driven estimator in
the i.i.d. case is minimax-optimal. More precisely, we state both an upper bound for
the mean integrated squared error of the fully-data driven spectral cut-off estimator and
a general lower bound for the estimation of the density f based on copies from fY = f ∗g.

Besides the discussion of i.i.d. samples, we also examine the estimator’s behavior
when certain dependence structures are present, similar to Comte et al. [2008] whose
work considers density estimation for general ARCH models using the log-transformed
data approach. We base our theory on the two concepts of dependence that we are
by now familiar with, namely absolutely regular mixing sequences and Bernoulli shift
processes under the functional dependence measure. The merits of the latter were already
highlighted in the above paragraphs.

1.1 Contribution and outline

General display of results. For overview purposes, the subsequent chapters will
display main results first. Thereafter, proofs and technicalities are provided in a separate
section found towards the end of each chapter, respectively.

We would like to give a short overview of how this thesis and each chapter is structured.

Chapter 2 - Empirical process theory for smooth functions

Our main contributions are the following.

• We derive maximal inequalities for Gn(f) for classes of smooth functions F ,

• a chaining device which preserves smoothness during the chaining procedure and

• conditions to ensure asymptotic tightness and functional convergence of Gn(f),
f ∈ F .

In Section 2.2, we present our main result Theorem 2.2.5, the functional central limit
theorem under minimal moment conditions. As a special case, we derive a version for
stationary processes. We include a discussion on the custom distance that we are going
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to use in this new context and compare our result with the empirical process theory for
β-mixing sequences. Some assumptions are postponed to Section 2.3, where a novel mul-
tivariate central limit theorem for locally stationary processes is shown. In Section 2.4 we
provide new maximal inequalities for Gn(f) over a class F of either finitely or infinitely
many functions. We apply our theory in Section 2.5 to prove uniform convergence rates
and weak convergence of several estimators. The aim of the last section is to highlight the
wide range of applicability of our theory and to display the typical conditions which have
to be imposed, as well as some discussion. We derive further large deviation inequalities
in Section 2.6 as they might be of interest for some future applications. In Section 2.7,
a conclusion is drawn. A detailed account on the proofs can be found in Section 2.8.

This chapter has been published independently as Phandoidaen and Richter [2022].

Chapter 3 - Empirical process theory for nonsmooth functions

The results obtained are similar to Chapter 2 but now consider nonsmooth functions.
Even though our theory allows for general function classes, we will focus on the empir-

ical distribution function (EDF). In particular, we derive functional convergence of the
EDF under weak conditions on the moments and the dependence structure of the process
itself. We will see that our results typically require weaker conditions on the underlying
dependence structure than comparable results for the stationary case mentioned above.

In Section 3.1, we present our main result, Theorem 3.1.2, the functional central limit
theorem under minimal moment conditions, now formulated in its nonsmooth context.
We then derive a version for stationary processes and discuss its application on empirical
distribution functions where the underlying process is either stationary or locally sta-
tionary. Some assumptions are postponed to Section 3.2, where we state a reformulation
of the multivariate central limit theorem for locally stationary processes presented in
Chapter 2. In the new setting, Section 3.3 provides new maximal inequalities for Gn(f)
in case of a finite and infinite function class F . It is the aim of Subsection 3.3.3 to show
the wide range our theory can be applied to. Section 3.4 accommodates a conclusion for
this chapter. We postpone all detailed proofs to Section 3.5.

Chapter 4 - Oracle inequalities applied to neural network estimators

Based on the empirical process theory for smooth functions we present

• oracle inequalities, i.e. upper bounds for the excess Bayes risk

of the empirical risk minimizer. They can be found as Theorem 4.1.3 in case of Bernoulli
shift processes under the functional dependence measure and in Theorem 4.1.6 for β-
mixing sequences. As a consequence we then have

• convergence rates for encoder-decoder neural network estimators,

found in Theorem 4.2.6 and Theorem 4.2.5 for each dependence case, respectively.
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In Section 4.1 we briefly reintroduce the two aforementioned dependence structures
and provide the corresponding oracle inequalities. In Section 4.2 we describe the struc-
tural assumptions on the true regression function, formulate the neural network estimator
and provide upper bounds for the excess Bayes risk. A small simulation study is pro-
vided in Section 4.3 and sheds light on the behavior of neural network estimators from
a practical point of view. We also include an investigation on real-world temperature
data for German cities. The arising approximation error when using a certain class of
neural networks to approximate the true regression function is discussed in Section 4.4.
In Section 4.5, a conclusion is drawn. Most of the proofs are deferred to Section 4.6.

Chapter 5 - Survival function estimation as a deconvolution problem

We summarize the novel contributions in survival function estimation with multiplicative
errors via Mellin transforms as follows. In the setting of i.i.d. and dependent observations
we provide

• an upper bound for the spectral cut-off estimator’s global risk and the rates in the
Mellin-Sobolev space (cf. Theorem 5.3.2 and corollary),

• minimax-optimality for i.i.d. data (cf. Theorem 5.3.8) as well as

• an upper bound and respective rates when a data-driven method is employed for
selecting an appropriate tuning parameter (cf. Theorem 5.4.2 and corollary).

Our discourse is organized as follows. After a brief motivation and introduction, Sec-
tion 5.3 revises the Mellin transform, briefly offers an overview of its main properties
and gives examples. Thereafter, we establish our estimation strategy for the survival
function. We provide oracle inequalities for independent and dependent data and with
respect to the MISE derive upper bounds with parametric as well as nonparametric
rates in an appropriate Mellin-Sobolev space. We conclude the section by deriving the
estimator’s minimax optimality in the i.i.d. case. Since our theory depends on a spectral
cut-off parameter, we propose in Section 5.4 a data-driven method based on a penalized
contrast approach for an optimal choice. As before, we state an oracle inequality and
derive an upper bound, accordingly. To illustrate our results, we showcase numerical
studies in Section 5.5. A conclusion is drawn in Section 5.6. The proofs can be found in
Section 5.7.

1.2 Preliminaries and notation

Functional dependence. The functional dependence measure is a key concept of
this thesis. It uses a representation of the given process as a Bernoulli shift process and
quantifies dependence with a norm defined on moments. More precisely, we assume that
Xi = (Xij)j=1,...,d, i = 1, ..., n, is a d-dimensional process of the form

Xi := Xi,n := Ji,n(Ai) (1.2.1)
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where Ai = (εi, εi−1, ...) for εi, i ∈ Z, a sequence of i.i.d. random variables in Rd̃

(d, d̃ ∈ N) and some measurable function Ji,n : (Rd̃)N0 → Rd, i = 1, ..., n, n ∈ N.
For a real-valued random variable W and some ν > 0, we define the norm ‖W‖ν :=
E[|W |ν ]1/ν . If ε∗k is an independent copy of εk, independent of εi, i ∈ Z, we define

A∗(i−k)
i := (εi, ..., εi−k+1, ε

∗
i−k, εi−k−1, ...) and X

∗(i−k)
i := X

∗(i−k)
i,n := Ji,n(A∗(i−k)

i ). Then,
the uniform functional dependence measure is given by

δXν (k) = sup
i=1,...,n

sup
j=1,...,d

∥∥Xij −X∗(i−k)
ij

∥∥
ν
. (1.2.2)

Graphically, δXν can be interpreted to measure the impact of ε0 in Xk. Although
representation (1.2.1) appears to be rather restrictive, it does cover a large variety of
processes. In Borkar [1993] it was motivated that the set of all processes of the form Xi =
J(εi, εi−1, ...) should be equal to the set of all stationary and ergodic processes. However,
this conjecture was proven not to hold true by Rosenblatt [2009]. We additionally allow
J to vary with i and n in order to cover processes which change their stochastic behavior
over time; as suggested by the double index of Ji,n or Xi,n. This is exactly the form of
the so-called locally stationary processes discussed in Dahlhaus et al. [2019]. As it is
quite common to omit the double index in Xi,n we will denote the process simply by Xi

if no confusion arises.
Since we are working in the time series context, many applications ask for functions f

that not only depend on the actual observation of the process but on the whole (infinite)
past Zi := (Xi, Xi−1, Xi−2, ...). During the course of this thesis, one fundamental aim is
to derive asymptotic properties of the empirical process

Gn(f) :=
1√
n

n∑
i=1

{
f(Zi,

i

n
)− Ef(Zi,

i

n
)
}
, f ∈ F , (1.2.3)

where
F ⊂ {f : (Rd)N0 × [0, 1]→ R measurable}.

Let H(ε,F , ‖ · ‖) denote the bracketing entropy, that is, the logarithm of the number of
ε-brackets with respect to some distance ‖·‖ that is necessary to cover F ; a precise formu-
lation is given below. If the corresponding bracketing entropy integral

∫ 1
0

√
H(ε,F , Vn)dε

on a custom seminorm Vn is finite, the weak convergence of the empirical process in
(1.2.3) can be guaranteed.

We now introduce some basic notation grouped into the chapters they first appear in.

Chapter 2 and Chapter 3

For a, b ∈ R, let a ∧ b := min{a, b}, a ∨ b := max{a, b}. For s ∈ (0, 1], a sequence
z = (zi)i∈N0 of elements of Rd (equipped with the maximum norm |·|∞) and an absolutely
summable sequence χ = (χi)i∈N0 of nonnegative real numbers, we set

|z|χ,s :=
( ∞∑
i=0

χi|zi|s∞
)1/s
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and abbreviate |z|χ := |z|χ,1.
For k ∈ N,

H(k) := 1 ∨ log(k), (1.2.4)

which naturally appears in large deviation inequalities. For a given finite class F , let |F|
denote its cardinality. We use the abbreviation

H = H(|F|) = 1 ∨ log |F| (1.2.5)

if no confusion arises. For some norm ‖·‖, let N(ε,F , ‖·‖) denote the bracketing numbers,
that is, the smallest number of ε-brackets [lj , uj ] := {f ∈ F : lj ≤ f ≤ uj} needed to
cover F . In more detail, an ε-bracket contains measurable functions lj , uj : (Rd)N0 ×
[0, 1]→ R for which ‖uj − lj‖ ≤ ε for all j. Let H(ε,F , ‖ · ‖) := logN(ε,F , ‖ · ‖) denote
the bracketing entropy.

For ν ≥ 1, let

‖f‖ν,n :=
( 1

n

n∑
i=1

∥∥f(Zi, i
n

)∥∥ν
ν

)1/ν
.

Chapter 4

We additionally make use of the following notations.
For q > 0, let |v|q := (

∑r
j=1 |vj |q)1/q denote the q-norm of a vector v ∈ Rr with the

convention |v|∞ := maxj=1,...,r |vj | and |v|0 := |{j ∈ {1, ..., r} : vj 6= 0}|.
For a matrix W ∈ Rr×s, let |W |∞ := maxj=1,...,r,k=1,...,s |Wjk| and |W |0 := |{j ∈
{1, ..., r}, k ∈ {1, ..., s} : Wjk 6= 0}|.

For mappings f : Rt → R, we denote by ‖f‖∞ := supx∈Rt |f(x)| the supremum norm.
If f : Rt → Rd, we use ‖f‖∞ := ‖|f |∞‖∞.

For sequences xn, yn we write xn <∼ yn if there exists a constant C > 0 independent of
n such that xn ≤ Cyn for n ∈ N. We write xn � yn if xn <∼ yn and yn <∼ xn.

Chapter 5

The flavor of this chapter will differ from the preceding chapters. We therefore need to
establish a new notation habit which might, however, be overloaded. Please keep that in
mind, when considering this chapter.

We define for any weight function ω : R → R+ the corresponding weighted norm
by ‖h‖2ω :=

∫∞
0 |h(x)|2ω(x)dx for a measurable, complex-valued function h. Denote by

L2(R+, ω) the set of all measurable, complex-valued functions with finite ‖ . ‖ω-norm and
by 〈h1, h2〉ω :=

∫∞
0 h1(x)h2(x)ω(x)dx for h1, h2 ∈ L2(R+, ω) the corresponding weighted

scalar product. On the other hand, L1(Ω, ω) := {h : Ω → C : ‖h‖L1(Ω,ω) < ∞}, where
‖h‖L1(Ω,ω) :=

∫
Ω |h(x)|ω(x)dx, for a normed space Ω. Similarly, we set L2(R) := {h :

R → C measurable : ‖h‖2R < ∞} for ‖h‖2R :=
∫∞
−∞ h(t)h(t)dt and L1(R) := {h : R →

C measurable : ‖h‖R < ∞} for ‖h‖R :=
∫∞
−∞ |h(t)|dt, if the constant unit weight is

applied. We use the shorthand ‖h‖2 := ‖h‖2R on L2(R), sometimes written as L2(R, x0)
depending on the context.
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Chapter 2

Empirical process theory for
smooth functions under
functional dependence

At the heart of this thesis lies the empirical process theory, spanning the next two
chapters and impacting the one after. In this chapter we are going to focus on locally
stationary process for classes of smooth functions. As we consider Bernoulli shift pro-
cesses under the functional dependence measure, novel approaches have to be found or
existing ideas modified in order to provide asymptotic tightness. From a purely technical
perspective, one of the main issues will be finding an alternative to the chaining proce-
dure, which is crucial for similar results in the setting of i.i.d. and mixing observations,
but does not work for the setting studied here.

2.1 Motivation

One of the crucial concepts for empirical process theory is chaining. Chaining describes a
procedure for dealing with stochastic processes that are indexed by an uncountable set.
It allows us to handle suprema of such processes or a transformation thereof by breaking
down the index set into a sequence of finite subsets that is able to “approximate” the
original set. We then decompose the process into a sum of increments based on the
carefully chosen sequence of finite subsets. These contributions can be bounded in a way
that guarantees convergence of the sum. We will eventually, in Subsection 2.8.3, provide
a novel chaining technique for Bernoulli shift processes under the functional dependence
measure for classes of sufficiently smooth functions as standard approaches as found,
for example, in van der Vaart [1998] fail to work. An introduction to chaining is also
available by Pollard [2012].

A basic property that a seminorm Vn(·) has to fulfill when using a chaining procedure
is that its square has to be an upper bound of the variance of Gn(f), that is,

Var(Gn(f)) ≤ Vn(f)2.

We therefore first derive an expression for the left hand side. Let k ∈ N0. For a
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sequence Wi = Ji,n(Ai) with ‖Wi‖1 <∞, let Pi−kW := E[Wi | Ai−k]− E[Wi | Ai−k−1].
Then, (Pi−kWi)i∈N is a martingale difference sequence with respect to (Ai)i∈N, and
Wi − EWi =

∑∞
k=0 Pi−kWi.

Our theory is mainly based on the case ν = 2. By the projection property of the
conditional expectation and an elementary property of δW2 (cf. [Wu, 2005, Theorem 1]),
we have

‖Pi−kWi‖2 ≤ min{‖Wi‖2, δW2 (k)}. (2.1.1)

Since min{a1, b1} + min{a2, b2} ≤ min{a1 + a2, b1 + b2} for nonnegative real numbers
a1, b1, a2, b2 ≥ 0, we obtain

Var(Gn(f))1/2 ≤
∞∑
k=0

∥∥∥ 1√
n

n∑
i=1

Pi−kf(Zi,
i

n
)
∥∥∥

2

=
∞∑
k=0

( 1

n

n∑
i=1

‖Pi−kf(Zi,
i

n
)‖22
)1/2

≤
∞∑
k=0

( 1

n

n∑
i=1

min{
∥∥f(Zi,

i

n
)
∥∥2

2
, δ
f(Z, i

n
)

2 (k)2}
)1/2

≤
∞∑
k=0

min
{
‖f‖2,n,

( 1

n

n∑
i=1

δ
f(Z, i

n
)

2 (k)2
)1/2}

. (2.1.2)

To further bound (2.1.2), we therefore have to investigate for u ∈ [0, 1],

δ
f(Z,u)
2 (k) = sup

i∈Z

∥∥f(Zi, u)− f(Z
∗(i−k)
i , u)

∥∥
2
, (2.1.3)

the functional dependence measure accommodated for f (cf. 1.2.2). Due to the linear
nature of the functional dependence measure, it is necessary to impose smoothness as-

sumption on f ∈ F in order to derive upper bounds for δ
f(Z,u)
2 (k) in terms of the

functional dependence measure of Xi from (1.2.2). When doing so, we “lose” the proper-
ties of f and especially of ‖f‖2,n, whose information we would like to retain. Therefore,
our goal should be to bound (2.1.3) by some quantity which is completely independent
of a specific f . To obtain a rich enough theory for our setting (of local stationarity),
we have to allow f to depend on n and include classes F where parts of f change the
convergence rate of Gn(f). In an abstract way, we would like for each f ∈ F to factorize
as

f(z, u) = Df,n(u) · f̄(z, u), z ∈ (Rd)N0 , u ∈ [0, 1],

where Df,n(u) ∈ R does not depend on z.
Given some decreasing sequence ∆(k) ≥ 0 and Dn ≥ 0 which fulfill

sup
u∈[0,1]

sup
f∈F

δ
f̄(Z,u)
2 ≤ ∆(k), sup

f∈F

( 1

n

n∑
i=1

Df,n

( i
n

)2)1/2
≤ Dn, (2.1.4)
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we obtain from (2.1.2),

Var(Gn(f))1/2 ≤
∞∑
k=0

min{‖f‖2,n,Dn∆(k)}.

This motivates the definition of our actual Vn(·) in the next section.

2.2 A functional central limit theorem

Roughly speaking, a process Xi, i = 1, ..., n, is called locally stationary if for each
u ∈ [0, 1], there exists a stationary process X̃i(u), i = 1, ..., n such that Xi ≈ X̃i(u) if
|u− i

n | is small (cf. Dahlhaus et al. [2019]). The exact form needed is stated in Assump-
tion 2.3.1. Thus, Xi behaves stationary around each fixed (rescaled) time point u ∈ [0, 1],
but over the whole time period i = 1, ..., n its distribution can change drastically. De-
terministic properties of the process like expectation, covariance, spectral density or
empirical distribution functions therefore also depend on the rescaled time u ∈ [0, 1].
Typical estimators are of the form

1

nh

n∑
i=1

K
( i/n− u

h

)
f̄
(
Zi,

i

n

)
where K is a kernel function and h = hn > 0 is a bandwidth. Such a localization will
certainly have an impact on the convergence rate. To cover these cases, suppose that
any f ∈ F has a representation

f(z, u) = Df,n(u) · f̄(z, u), z ∈ (Rd)N0 , u ∈ [0, 1], (2.2.1)

where f̄ is independent of n and Df,n(u) is independent of z. We put

F̄ := {f̄ : f ∈ F}. (2.2.2)

Definition 2.2.1. The function class F̄ is called a (LF , s, R,C)-class if there exist
LF = (LF ,i)i∈N0 , a sequence of nonnegative real numbers, s ∈ (0, 1] and R : (Rd)N0 ×
[0, 1]→ [0,∞) such that for all u ∈ [0, 1], z, z′ ∈ (Rd)N0 , f̄ ∈ F̄ ,

|f̄(z, u)− f̄(z′, u)| ≤ |z − z′|sLF ,s ·
[
R(z, u) +R(z′, u)

]
.

Furthermore, C = (CR, Cf̄ ) ∈ (0,∞)2 fulfills supu |f̄(0, u)| ≤ Cf̄ , supu |R(0, u)| ≤ CR.

We can consider the function class F̄ as consisting of Hölder continuous functions in
direction of z.

Remark 2.2.2. The condition on F̄ to be a (LF , s, R,C)-class poses a smoothness
condition on any f̄ ∈ F̄ separately. There is no need for any connection between the
different f̄ ∈ F̄ . Moreover, it should not be confused with the important example of so-
called parametric Lipschitz classes in empirical process theory (cf. [van der Vaart, 1998,
Example 19.7]), where it is assumed that there exists some parameter space Θ ⊂ Rp such
that F̄ = {f̄θ : θ ∈ Θ} and for two θ1, θ2 ∈ Θ, |f̄θ1(z, u)− f̄θ2(z, u)| ≤ m(z, u) · |θ1− θ2|∞
for some measurable function m.
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The basic assumption for our main results is the following compatibility condition on
F . We will later provide a slightly adapted version of it.

Assumption 2.2.3. The class F̄ is a (LF , s, R,C)-class. There exist p ∈ (1,∞], CX > 0
such that

(i) sup
i,u
‖R(Zi, u)‖2p ≤ CR, (ii) sup

i,j
‖Xij‖ 2sp

p−1
≤ CX . (2.2.3)

Let Dn ≥ 0, ∆(k) ≥ 0 be such that for all k ∈ N0,

2dCR ·
k∑
j=0

LF ,j
(
δX2sp
p−1

(k − j)
)s ≤ ∆(k), sup

f∈F

( 1

n

n∑
i=1

∣∣∣Df,n

( i
n

)∣∣∣2)1/2
≤ Dn.

While (2.2.3) summarizes moment assumptions on Xij which are balanced by p, the
sequence ∆(k) reflects the intrinsic dependence of f(Zi,

i
n). The value Dn measures the

influence of the factor Df,n(u) to the convergence rate of Gn(f).
Based on Assumption 2.2.3, we define for f ∈ F ,

Vn(f) := ‖f‖2,n +

∞∑
k=1

min{‖f‖2,n,Dn∆(k)}. (2.2.4)

The following lemma collects some properties of Vn and in particular shows that Vn is a
seminorm. The proof is straightforward and thus omitted.

Lemma 2.2.4. Let f, g ∈ F and λ ∈ R. Then

(i) Vn(0) = 0, Vn(f + g) ≤ Vn(f) + Vn(g) and Vn(λ · f) = |λ|Vn(f),

(ii) |f | ≤ g =⇒ Vn(f) ≤ Vn(g),

(iii) ‖f‖1,n , ‖f‖2,n ≤ Vn(f), and Vn(f) ≤ Vn(‖f‖∞) <∞ if ‖f‖∞ <∞.

Therefore, Vn(f − g) can be interpreted as a (pseudo) distance between f, g ∈ F .
Based on the fact that we will later assume that F fulfills (2.1.4) or Assumption 2.2.3

(and thus Gn(f) is properly standardized), it is reasonable to suppose that Dn ∈ (0,∞)
is independent of n ∈ N. In this case, simpler forms of Vn can be derived for special cases
of ∆(k) which are given in Table 2.1. Note that if f(Zi,

i
n), i = 1, ..., n, are independent,

δ
f(Z,u)
ν (k) = 0, ν ≥ 1, for k > 0 and thus Vn(f) = ‖f‖2,n. We therefore exactly recover

the case of independent variables with our theory.
We are now able to state our main result, a weak convergence statement that takes

place in the normed space

`∞(F) = {G : F → R | ‖G‖∞ := sup
f∈F
|G(f)| <∞}, (2.2.5)

cf. van der Vaart [1998] for a detailed discussion of this space. The proof of the fol-
lowing Theorem 2.2.5 consists of two ingredients, convergence of the finite-dimensional
distributions (cf. Theorem 2.3.4) and asymptotic tightness (cf. Corollary 2.4.5). We will
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have to impose some complex conditions on the process’ behavior and certain regularity
conditions on the function class, in order for the statements to be valid. For overview
purposes, we postpone the exact wordings of the assumptions necessary. They will ap-
pear right before the two key theorems, accordingly. For the sake of completeness we
have to include them here, already.

Theorem 2.2.5. Let F satisfy Assumption 2.2.3, 2.3.1, 2.3.2 and 2.3.3. Suppose that

sup
n∈N

∫ 1

0

√
H(ε,F , Vn)dε <∞.

Then, in `∞(F), [
Gn(f)

]
f∈F

d→
[
G(f)

]
f∈F

where (G(f))f∈F is a centered Gaussian process with covariances

Cov(G(f),G(g)) = lim
n→∞

Cov(Gn(f),Gn(g)) = Σ(K)

and Σ(K) is from Assumption 2.3.3.

The more challenging part will be the proof for asymptotic tightness; it only relies on
Assumption 2.2.3 and consists of a new maximal inequality presented in Theorem 2.4.1.
To ensure convergence of the finite-dimensional distributions, we have to formalize local
stationarity (Assumption 2.3.1) and impose conditions in time direction on f̄(z, ·) (cf.
Assumption 2.3.2) and Df,n(·) (cf. Assumption 2.3.3), which is done in Section 2.3. In
particular, we require that Df,n(u) is properly normalized.

Let us note that in the case where Xi is stationary, f̄(z, u) = f̄(z) and Df,n(u) = 1.
Hence, Assumption 2.3.1, 2.3.2 and 2.3.3 are automatically fulfilled. In other words,
Assumption 2.2.3 is sufficient for Theorem 2.2.5 in the stationary case. We formulate
this finding as a simple corollary. Let Xi = J(Ai), i = 1, ..., n, be a stationary process
and

G̃n(h) :=
1√
n

n∑
i=1

{
h(Xi)− Eh(Xi)

}
where the functions h are contained in

H ⊂ {h : Rd → R measurable}

such that for all x, y ∈ Rd, |h(x)− h(y)| ≤ LH|x− y|s∞.

Corollary 2.2.6. Suppose that ‖X1‖2s < ∞. Let ∆(k) := 2dLHδ
X
2s(k)s and Dn := 1.

Assuming that

sup
n∈N

∫ 1

0

√
H(ε,H, Vn)dε <∞, (2.2.6)

we have in `∞(H), [
G̃n(h)

]
h∈H

d→
[
G̃(h)

]
h∈H

where (G̃(h))h∈H is a centered Gaussian process with covariances

Cov(G̃(h1), G̃(h2)) =
∑
k∈Z

Cov(h1(X0), h2(Xk)).
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2.2.1 Form of Vn and discussion on ∆(k)

Form of Vn

Suppose that Dn ∈ (0,∞) is independent of n ∈ N. Based on the decay rates of ∆(k),
simpler forms of Vn can be derived and are given in Table 2.1. These results are elemen-
tary and are proven in Lemma 2.8.14 and Lemma 2.8.15 in Section 2.8.

∆(j)

cj−α, α > 1, c > 0 cρj , ρ ∈ (0, 1), c > 0

Vn(f) ‖f‖2,n max{‖f‖−
1
α

2,n , 1} ‖f‖2,n max{log(‖f‖−1
2,n), 1}∫ σ

0

√
H(ε,F , Vn)dε

∫ σ̃
0 ε−

1
α

√
H(ε,F , ‖ · ‖2,n)dε

∫ σ̃
0 log(ε−1)

√
H(ε,F , ‖ · ‖2,n)dε

Table 2.1: Equivalent expressions of Vn and the corresponding entropy integral under
the condition that Dn ∈ (0,∞) is independent of n. We omitted the lower and
upper bound constants which are only depending on c, ρ, α and Dn. Further-
more, σ̃ = σ̃(σ) fulfills σ̃ → 0 for σ → 0.

Discussion on ∆(k)

Assumption 2.2.3 provides an upper bound ∆(k) for

k∑
j=0

LF ,j
(
δX2sp
p−1

(k − j)
)s
,

which is a convolution of the uniform Hölder constants LF ,j of f ∈ F and the dependence
measure δX2sp

p−1

(k) of X = (X1, ..., Xn). Therefore, the specific form of f ∈ F has an impact

on the dependence structure, which is then introduced via Vn. This is quite different
to other typical chaining approaches for Harris-recurrent Markov chains or β-mixing
sequences where the dependence structure of Xi simply transfers to functions f(Xi)
without further conditions.

Furthermore, in contrast to other chaining approaches, we have to ask for the existence
of moments of Xi in Assumption 2.2.3, even though Gn(f) only involves f(Xi). This is
due to the linear nature of the functional dependence measure (1.2.2). If f is Lipschitz
continuous with respect to its first argument (s = 1 in Assumption 2.2.3), we have to
impose supi,j ‖Xij‖2 < ∞. However, these moment assumptions can be relaxed at the

cost of larger ∆(k), as follows. Let us consider the special case that f(Zi,
i
n) only depends

on Xi, that is, f(z, u) = f(z0, u). If f is bounded and Lipschitz continuous with respect
to its first argument with Lipschitz constant L, for any s ∈ (0, 1],

|f(z0, u)− f(z′0, u)| ≤ min{2‖f‖∞, L|z0 − z′0|} ≤ (2‖f‖∞)1−sLs|z0 − z′0|s.
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Thus, ∆(k) can be chosen proportionally to δX2s(k)s. This means that we can reduce the
moment assumption to supi,j ‖Xij‖2s <∞ at the cost of having a larger norm Vn.

2.2.2 Comparison to empirical process theory with β-mixing

In this section, we compare our functional central limit theorem for stationary processes
from Corollary 2.2.6 under functional dependence with similar results obtained under
β-mixing. Unfortunately, it does not seem to be straightforward to find a general setting
under which the functional dependence measure δX2 can be compared with the β-mixing
coefficients βX of Xi, i = 1, ..., n. However, in some special cases, both quantities can be
upper bounded.

Upper bounds for dependence coefficients of linear processes

Consider the linear process

Xi =

∞∑
k=0

akεi−k, i = 1, ..., n,

with an absolutely summable sequence ak, k ∈ N0, and i.i.d. εk, k ∈ Z, with Eε1 = 0.
Then it is immediate that

δX2 (k) ≤ 2|ak| · ‖ε1‖2.

From Pham and Tran [1985] (cf. also [Doukhan, 1994, Section 2.3.1]) we have the follow-
ing result. If for some ν ≥ 1, ‖ε1‖ν <∞, ε1 has a Lipschitz continuous Lebesgue density
and the process Xi is invertible, then for some constant ζ > 0,

βX(k) ≤ ζ ·
( ∞∑
m=k

|Am,ν |
1

1+ν

)
∨
( ∞∑
m=k

L(Am,2)
)

where Am,s :=
∑∞

k=m |ak|s and L(u) =
√
u(1 ∨ | log(u)|). If ak = O(k−α) for some α > 1,

δX2 (k) = O(k−α), βX(k) = O
(
k−α+ 1+α

1+ν
+1 ∨ (k−α+ 3

2 log(k)1/2)
)
. (2.2.7)

Note that the calculation of the functional dependence measure is much easier. Moreover,
bounds for βX(k) are typically larger than δX2 (k); the reason being that δX2 is of simpler
structure than the more involved formulation of dependence via σ-algebras for the β-
mixing coefficients. For recursively defined processes with a finite number of lags, δX2
are typically upper bounded by geometric decaying coefficients (cf. Wu [2011], Dahlhaus
et al. [2019]); the same holds true for βX(k) under additional continuity assumptions
(cf. [Doukhan, 1994, Section 2.4], or Kulik et al. [2019], Heinrich [1992] among others).
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Entropy integral

In Doukhan et al. [1995] (and also Dedecker and Louhichi [2002]), it was shown that if
Xi, i = 1, ..., n, is stationary and β-mixing with coefficients β(k), k ∈ N0, then∫ 1

0

√
H(ε,H, ‖ · ‖2,β)dε <∞ (2.2.8)

implies weak convergence of (Gn(h))h∈H in `∞(H). Here, the ‖ · ‖2,β-norm is defined as
follows. If β−1 denotes the inverse cadlag of the decreasing function t 7→ β(btc) and Qh
the inverse cadlag of the tail function t 7→ P(h(X1) > t), then

‖h‖2,β :=

∫ 1

0
β−1(u)Qh(u)2du.

Condition (2.2.8) was later relaxed in [Rio, 2017, Theorem 8.3]. It was shown that if
F consists of indicator functions of specific classes of sets (in particular, F corresponds
to the empirical distribution function), weak convergence can be obtained under less
restrictive conditions than (2.2.8). At the moment, our theory does not allow us to
analyze indicator functions directly because F has to be a (LF , s, R,C)-class, meaning
that smoothness assumptions have to be satisfied. This will be the topic of Chapter 3.

In the special cases of polynomial and geometric decay, simple upper bounds for ‖h‖2,β
are available (cf. Dedecker and Louhichi [2002]). If

∑∞
k=0 k

b−1β(k) <∞ for some b ≥ 1,
then ‖ · ‖2,β is upper bounded by ‖ · ‖ 2b

b−1
.

Generally speaking, (2.2.8) asks for 2b
b−1 moments of the process f(Xi) to exist while

our condition in (2.2.6) only requires second moments of f(Xi). However, the additional
factors given in the entropy integral (cf. Table 2.1) reduce the function classes’ size. In
specific examples (cf. (2.2.7)) it may occur that the entropy integral (2.2.6) is finite while
(2.2.8) is infinite due to missing summability of βX(k).

To give a precise comparison, consider the situation of linear processes from (2.2.7).
If ν > 2α+ 1, we can choose b = α− 3

2 . Then, the two entropy integrals from Corollary
2.2.6 (left) and (2.2.8) read as∫ 1

0
ε−

1
α

√
H(ε,F , ‖ · ‖2)dε vs.

∫ 1

0

√
H(ε,F , ‖ · ‖ 4α−6

2α−5
)dε.

Here, the entropy integral for mixing only exists if α > 5
2 . The difference in the behavior

can be explained by the different bounds used for the variance of Gn(f).

2.3 A general central limit theorem for locally stationary
processes

In this section, we introduce the remaining assumptions needed in Theorem 2.2.5 which
pose regularity conditions on the process Xi and the function class F in time direction.
They are used to derive a multivariate central limit theorem for (Gn(f1), ...,Gn(fk))

18



under minimal moment conditions, Theorem 2.3.4. Comparable results in different and
more specific contexts were shown in Dahlhaus et al. [2019] or Truquet [2020].

We first formalize the property of Xi to be locally stationary (cf. Dahlhaus et al.
[2019]). Recall the quantities R(·), s, p from Assumption 2.2.3.

Assumption 2.3.1. For each u ∈ [0, 1], there exists a process X̃i(u) = J(Ai, u), i ∈ Z,
where J is a measurable function. Furthermore, there exists some CX > 0, ς ∈ (0, 1]
such that for every i ∈ {1, ..., n}, u1, u2 ∈ [0, 1],∥∥∥Xi − X̃i

( i
n

)∥∥∥
2sp
p−1

≤ CXn−ς , ‖X̃i(u1)− X̃i(u2)‖ 2sp
p−1
≤ CX |u1 − u2|ς .

For Z̃i(u) = (X̃i(u), X̃i−1(u), ...) we require supv,u ‖R(Z̃0(v), u)‖2p <∞.

The behavior of the functions f(z, u) = Df,n(u) · f̄(z, u) of the class F in the direction
of time u ∈ [0, 1] is controlled by the following two continuity assumptions which impose
conditions on f̄(z, ·) and Df,n(·) separately.

Assumption 2.3.2. There exists some ς ∈ (0, 1] such that for every f̄ ∈ F̄ ,

sup
v,u1,u2

∥∥∥∥∥ |f̄(Z̃0(v), u1)− f̄(Z̃0(v), u2)|
|u1 − u2|ς

∥∥∥∥∥
2

<∞.

For f ∈ F , let D∞f,n := supi=1,...,nDf,n( in).

Assumption 2.3.3. For all f ∈ F , the function
Df,n(·)
D∞f,n

has bounded variation uniformly

in n, and

sup
n∈N

1

n

n∑
i=1

Df,n(
i

n
)2 <∞,

D∞f,n√
n
→ 0. (2.3.1)

One of the two following cases holds true.

(i) Case K = 1 (global). For all f, g ∈ F ,

u 7→ E
[
E[f̄(Z̃j1(u), u) | A0] · E[ḡ(Z̃j2(u), u) | A0]

]
has bounded variation for all j1, j2 ∈ N0 and the following limit exists:

Σ
(1)
fg := lim

n→∞

∫ 1

0
Df,n(u)Dg,n(u) ·

∑
j∈Z

Cov(f̄(Z̃0(u), u), ḡ(Z̃j(u), u))du.

(ii) Case K = 2 (local). There exists a sequence hn > 0 and v ∈ [0, 1] such that
supp(Df,n(·)) ⊂ [v − hn, v + hn]. It holds true that

hn → 0, sup
n∈N

(h1/2
n ·D∞f,n) <∞.

The following limit exists for all f, g ∈ F :

Σ
(2)
fg := lim

n→∞

∫ 1

0
Df,n(u)Dg,n(u)du ·

∑
j∈Z

Cov(f̄(Z̃0(v), v), ḡ(Z̃j(v), v)).
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Assumption 2.3.3 looks rather technical. The first part including (2.3.1) guarantees the
right normalization ofDf,n(·). The second part ensures the convergence of the asymptotic
variances Var(Gn(f)) and covariances Cov(Gn(f),Gn(g)).

We obtain the following central limit theorem.

Theorem 2.3.4. Let F satisfy Assumption 2.2.3, 2.3.1, 2.3.2 and 2.3.3. Let m ∈ N
and f1, ..., fm ∈ F and Σ(K) = (Σ

(K)
fkfl

)k,l=1,...,m. Then for K ∈ {1, 2},

1√
n

n∑
i=1




f1(Zi,

i
n)

...

fm(Zi,
i
n)

− E


f1(Zi,

i
n)

...

fm(Zi,
i
n)




d→ N(0,Σ(K)).

Theorem 2.3.4 generalizes the one-dimensional central limit theorem from Dahlhaus
et al. [2019]. We now comment on the assumptions.

Remark 2.3.5. Assumptions 2.3.1, 2.3.2 and 2.3.3 allow for very general structures of
f ∈ F . However, in many special cases, a subset of them is automatically fulfilled:

• If Xi is stationary, then Assumption 2.2.3 already implies Assumption 2.3.1.

• If f̄(z, u) = f̄(z) does not depend on u, Assumption 2.3.2 is fulfilled.

Regarding Assumption 2.3.3 we have:

• If Df,n(u) = 1, Xi is stationary and f̄(z, u) = f̄(z), then Assumption 2.2.3 already

implies Assumption 2.3.3(i) with Σ
(1)
fg =

∑
j∈Z Cov(f̄(Z0), f̄(Zj)).

• If Df,n(u) = 1, Assumption 2.2.3 and 2.3.2 are satisfied with s = ς = 1, then As-

sumption 2.3.3(i) holds true with Σ
(1)
fg =

∫ 1
0

∑
j∈Z Cov(f̄(Z̃0(u), u), f̄(Z̃j(u), u))du.

• If hn → 0, nhn → ∞ and Df,n(u) = 1√
hn
K(u−vhn

) for some Lipschitz continuous

kernel K : R → R with support ⊂ [−1, 1] and fixed v ∈ (0, 1), then Assumption

2.3.3(ii) holds true with Σ
(2)
fg =

∫ 1
0 K(x)2dx ·

∑
j∈Z Cov(f̄(Z̃0(v), v), f̄(Z̃j(v), v)).

2.4 Maximal inequalities and asymptotic tightness under
functional dependence

In this section, we provide the necessary ingredients for the proof of asymptotic tight-
ness of Gn(f). We first derive a new maximal inequality for finite F under functional
dependence in Theorem 2.4.1 and then generalize this bound to arbitrary F in Section
2.4.2 using a modified chaining technique.
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2.4.1 Maximal inequalities

We first derive a maximal inequality which is a main ingredient for chaining devices but
also is of independent interest. To state the result, let

β(q) :=

∞∑
j=q

∆(k).

and define
q∗(x) := min{q ∈ N : β(q) ≤ q · x}.

Set D∞n (u) := supf∈F |Df,n(u)|. For ν ≥ 2, choose D∞ν,n such that

( 1

n

n∑
i=1

D∞n
( i
n

)ν)1/ν
≤ D∞ν,n. (2.4.1)

Put D∞n = D∞2,n. Recall that H = H(|F|) = 1 ∨ log |F| as in (1.2.5).

Theorem 2.4.1. Suppose that F satisfies |F| < ∞ and Assumption 2.2.3. Then there
exists some universal constant c > 0 such that the following holds: If supf∈F ‖f‖∞ ≤M
and supf∈F Vn(f) ≤ σ, then

Emax
f∈F

∣∣Gn(f)
∣∣ ≤ c · min

q∈{1,...,n}

[
σ
√
H +

√
H · D∞n β(q) +

qMH√
n

]
(2.4.2)

and

Emax
f∈F

∣∣Gn(f)
∣∣ ≤ 2c ·

(
σ
√
H + q∗

(M√H√
nD∞n

)MH√
n

)
. (2.4.3)

Clearly, the second bound (2.4.3) is a corollary of (2.4.2) which balances the two terms
where q is involved. Values of q∗(·) for the two prominent cases that ∆(·) is polynomially
or exponentially decaying can be found in Table 2.2. The proof of Theorem 2.4.1 relies
on a decomposition of Gn(f) in i.i.d. parts and a residual term of martingale structure.
Similar decompositions are also the core of empirical process results for Harris-recurrent
Markov chains (cf. Li et al. [2016]) and mixing sequences (cf. Dedecker and Louhichi
[2002]).

In the next subsections, we will prove asymptotic tightness for Gn(f) under the con-
dition that D∞n , Dn do not depend on n. However, uniform convergence rates of Gn(f)
for finite F (growing with n) can be obtained without this condition but with additional
moment assumptions, which is done in the following Corollary 2.4.3. To incorporate the
additional moment assumptions, we use a slightly stronger assumption than Assumption
2.2.3.

Assumption 2.4.2. Let F̄ be a (LF , s, R,C)-class. There exist ν ≥ 2, p ∈ (1,∞],
CX > 0 such that

sup
i,u
‖R(Zi, u)‖νp ≤ CR, sup

i,j
‖Xij‖ νsp

p−1
≤ CX . (2.4.4)
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∆(j)

Cj−α, α > 1 Cρj , ρ ∈ (0, 1)

q∗(x) max{x−
1
α , 1} max{log(x−1), 1}

r(δ) min{δ
α
α−1 , δ} min{ δ

log(δ−1)
, δ}

Table 2.2: Equivalent expressions of q∗(·) and r(·) taken from Lemma 2.8.13 in Section
2.8.7. We omitted the lower and upper bound constants which are only de-
pending on C, ρ, α.

Let Dn ≥ 0, ∆(k) ≥ 0 be such that for all k ∈ N0,

2dCR ·
k∑
j=0

LF ,j
(
δXνsp
p−1

(k − j)
)s ≤ ∆(k), sup

f∈F

( 1

n

n∑
i=1

∣∣∣Df,n

( i
n

)∣∣∣2)1/2
≤ Dn.

Note that Assumption 2.2.3 is obtained by taking ν = 2. For δ > 0, let

r(δ) := max{r > 0 : q∗(r)r ≤ δ},

cf. Table 2.2 for values of r(·) in special cases.

Corollary 2.4.3 (Uniform convergence rates). Suppose that F satisfies |F| < ∞ and
that Assumption 2.4.2 is fulfilled for some ν ≥ 2. Let C∆ := 4d · |LF |1 · CsXCR + Cf̄ .
Furthermore, suppose that

sup
n∈N

sup
f∈F

Vn(f) <∞, sup
n∈N

D∞ν,n
D∞n

<∞, sup
n∈N

C∆H

n1− 2
ν r( σ

D∞n
)2
<∞. (2.4.5)

Then,
max
f∈F
|Gn(f)| = Op(

√
H).

The first condition in (2.4.5) guarantees that Gn(f) is properly normalized. The second
and third condition are needed to prove that “rare events”, where |f(Zi,

i
n)| exceeds some

threshold Mn ∈ (0,∞), are of the same order as
√
H. For this, we may need more than

two moments of f(Zi,
i
n), that is, ν > 2, depending on

√
H and the behavior of D∞n .

Corollary 2.4.3 can be used to prove (optimal) convergence rates for kernel density
and regression estimators as well as maximum likelihood estimators under dependence.
We give an example in Section 2.5.
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2.4.2 Asymptotic tightness

In this subsection, we extend the maximal inequality from Theorem 2.4.1 to arbitrary
(infinite) classes F . Since Assumption 2.2.3 forces f ∈ F to be Hölder continuous with
respect to its first argument z, classical chaining approaches which use indicator functions
do not apply here. For example, a standard approach in [van der Vaart, 1998, Lemma
19.34] is to split the function of interest into a sequence of segments on a cleverly chosen
sequence of nested partition of F , using the noncontinuous indicator function. Each
segment can then be bounded in a way such that their sum is finite.

We provide a new chaining technique based on a special truncation method which
preserves continuity in Subsection 2.8.3 in its full detail.

For n ∈ N, δ > 0 and k ∈ N define H(k) = 1 ∨ log(k) and

m(n, δ, k) := r
( δ
Dn
)
· D
∞
n n

1/2

H(k)1/2
. (2.4.6)

Here, m(n, δ, k) represents the threshold for rare events in the chaining procedure. We
have the following result.

Theorem 2.4.4. Let F satisfy Assumption 2.2.3 and let F be some envelope function
of F , that is, for each f ∈ F , |f | ≤ F . Let σ > 0 and assume that supf∈F Vn(f) ≤ σ.
Then there exists some universal constant c̃ > 0 such that

E sup
f∈F

∣∣Gn(f)
∣∣

≤ c̃
[(

1 +
D∞n
Dn

+
Dn
D∞n

)∫ σ

0

√
H
(
ε,F , Vn

)
dε+

√
n
∥∥F1{F> 1

4
m(n,σ,N(σ

2
,F ,Vn))}

∥∥
1,n

]
.

As a corollary, we obtain asymptotic equicontinuity of Gn(f). Here, we use Assumption
2.3.1 and 2.3.2 only to discuss the remainder term in Theorem 2.4.4 without imposing
the existence of additional moments.

Corollary 2.4.5. Let F satisfy Assumption 2.2.3, 2.3.1 and 2.3.2. Suppose that

sup
n∈N

∫ 1

0

√
H(ε,F , Vn)dε <∞. (2.4.7)

Furthermore, assume that Dn,D∞n ∈ (0,∞) are independent of n, and

sup
i=1,...,n

D∞n ( in)
√
n
→ 0. (2.4.8)

Then, the process Gn(f) is equicontinuous with respect to Vn, that is, for every η > 0,

lim
σ→0

lim sup
n→∞

P
(

sup
f,g∈F ,Vn(f−g)≤σ

|Gn(f)−Gn(g)| ≥ η
)

= 0.
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2.5 Applications

In this section, we provide some applications of some main results (Corollary 2.4.3 and
Corollary 2.2.5). We will focus on locally stationary processes and therefore use a lo-
calization in our functionals, but the results also hold true for stationary processes,
accordingly.

Let K : R → R be some bounded kernel function which is Lipschitz continuous with
Lipschitz constant LK ,

∫
K(u)du = 1,

∫
K(u)2du ∈ (0,∞) and support ⊂ [−1

2 ,
1
2 ]. For

some bandwidth h := hn > 0, put Kh(·) := 1
hK( ·h).

In the first example we consider the nonparametric kernel estimator in the context of
nonparametric regression with fixed design and locally stationary noise. We show that
under conditions on the bandwidth h, which are common in the presence of dependence
(cf. Hansen [2008] or Vogt [2012]), we obtain the optimal uniform convergence rate√

log(n)
nh . Recall that for sequences an, bn we have an & bn whenever there exist c > 0

such that an ≥ cbn for all n ∈ N.

Example 2.5.1 (Nonparametric Regression). Let Xi be some arbitrary process of the
form (1.2.1) with

∑∞
k=0 δ

X
2 (k) < ∞ fulfilling supi=1,...,n ‖Xi‖ν ≤ CX ∈ (0,∞) for some

ν > 2. Suppose that we observe Yi, i = 1, ..., n, given by

Yi = g
( i
n

)
+Xi,

where g : [0, 1]→ R is some function. Estimation of g is performed via

ĝn,h(v) :=
1

n

n∑
i=1

Kh

( i
n
− v
)
Yi.

Suppose that either

• δX2 (j) ≤ κj−α with some κ > 0, α > 1, and h &
( log(n)

n1− 2
ν

)α−1
α or

• δX2 (j) ≤ κρj with some κ > 0, ρ ∈ (0, 1) and h & log(n)3

n1− 2
ν

.

Equations (2.5.1) and (2.5.2) (cf. below) imply

sup
v∈[0,1]

|ĝn,h(v)− Eĝn,h(v)| = Op

(√ log(n)

nh

)
.

First note that due to Lipschitz continuity of K with Lipschitz constant LK , we have

sup
|v−v′|≤n−3

∣∣(ĝn,h(v)− Eĝn,h(v))− (ĝn,h(v′)− Eĝn,h(v′))
∣∣

≤ LKn
−3

nh2

n∑
i=1

(
|Xi|+ E|Xi|

)
= Op(n

−1). (2.5.1)
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For the grid Vn = {in−3, i = 1, ..., n3}, which discretizes [0, 1] up to distances n−3, we
obtain by Corollary 2.4.3,

√
nh sup

v∈Vn
|ĝn,h(v)− Eĝn,h(v)| = sup

f∈F
|Gn(f)| = Op

(√
log |Vn|

)
= Op

(
log(n)1/2

)
(2.5.2)

where

F =
{
fv(x, u) =

1√
h
K
(u− v

h

)
x : v ∈ Vn

}
.

The conditions of Corollary 2.4.3 are easily verified: First, observe that fv(x, u) =
Df,n(u) · f̄v(x, u) with Df,n(u) = 1√

h
K(u−vh ) and f̄v(x, u) = x. Thus, Assumption 2.4.2

is satisfied with ∆(k) = 2δX2 (k), p = ∞, R(·) = CR = 1. Furthermore, Dn = |K|∞,

Dν,n = |K|∞√
h

and

‖fv‖2,n ≤
1√
h

( 1

n

n∑
i=1

K
(v − u

h

)2 ‖Xi‖22
)1/2

≤ CX |K|∞,

which shows that supf∈F Vn(f) = O(1). The conditions on h emerge from the last
condition in (2.4.5) and the bounds for r(·) from Table 2.2.

For the following two examples we assume that the underlying process Xi is locally
stationary in the sense of Assumption 2.3.1. Similar assumptions are stated in Dahlhaus
et al. [2019] and are fulfilled for a large variety of locally stationary processes.

In the same spirit as Example 2.5.1, it is possible to derive uniform rates of convergence
for M-estimators of parameters θ in models of locally stationary processes. Furthermore,
weak Bahadur representations can be obtained. The following results apply for instance
to maximum likelihood estimation of parameters in tvARMA or tvGARCH processes.
The main tool is to prove uniform convergence of the corresponding objective functions
and its derivatives. Since the rest of the proof is standard, the details are postponed
to Section 2.8, Subsection 2.8.5. Let ∇jθ denote the j-th derivative with respect to θ.
To apply empirical process theory, we ask for the objective functions to be contained in
(LF , 1, R, C)-classes in (A1) (see lemma below) and Lipschitz continuous with respect
to θ in (A2) (see lemma below).

Lemma 2.5.2 (M-estimation, uniform results). Let Θ ⊂ Rd be compact and θ0 : [0, 1]→
interior(Θ). For each θ ∈ Θ, let `θ : Rk → R be some measurable function which is twice
continuously differentiable. Let Zi = (Xi, ..., Xi−k+1) and define for v ∈ [0, 1],

θ̂n,h(v) := arg min
θ∈Θ

Ln,h(v, θ), Ln,h(v, θ) :=
1

n

n∑
i=k

Kh

( i
n
− v
)
· `θ(Zi).

Suppose that there exists CΘ > 0 such that for j ∈ {0, 1, 2},

(A1) F̄j = {∇jθ`θ : θ ∈ Θ} is an (LF , 1, R, C)-class with R(z) = 1 + |z|M−1
1 for some

M ≥ 1 and Assumption 2.3.1 for F̄j is fulfilled with s = 1, p = M
M−1 .
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(A2) for all z ∈ Rk, θ, θ′ ∈ Θ,∣∣∇jθ`θ(z)−∇jθ`θ′(z)∣∣∞ ≤ CΘ(1 + |z|M1 ) · |θ − θ′|2.

(A3) θ 7→ E`θ(Z̃0(v)) attains its global minimum in θ0(v) with positive definite I(v) :=
E∇2

θ`θ(Z̃0(v)).

Furthermore, suppose that either

• δX2M (j) ≤ κj−α with some κ > 0, α > 1, and h &
( log(n)

n1− 2
ν

)α−1
α or

• δX2M (j) ≤ κρj with some κ > 0, ρ ∈ (0, 1) and h & log(n)3

n1− 2
ν

.

Define τn :=

√
log(n)
nh and Bh := supv∈[0,1] |E∇θLn,h(v, θ0(v))| (the bias). Then, Bh =

O(hς), and as nh→∞,

sup
v∈[h

2
,1−h

2
]

∣∣θ̂n,h(v)− θ0(v)
∣∣ = Op

(
τn +Bh

)
and

sup
v∈[h

2
,1−h

2
]

∣∣{θ̂n,h(v)− θ0(v)} − I(v)−1∇θLn,h(v, θ0(v))
∣∣ = Op((τn + hς)(τn +Bh)).

Remark 2.5.3. • In the tvAR(1) case Xi = a(i/n)Xi−1+εi, we can use for instance

`θ(x1, x0) = (x1 − ax0)2,

which for a ∈ (−1, 1) is a ((1, a), 1, |x0|+ |x1|, (0, 1))-class.

• With more smoothness assumptions on ∇θ` or using a local linear estimation
method for θ̂n,h, the bias term Bh can be shown to be of smaller order, for instance
O(h2) (cf. Dahlhaus et al. [2019]).

• The theory derived here can also be used to prove asymptotic properties of M-
estimators based on objective functions `θ which are only almost everywhere dif-
ferentiable in the Lebesgue sense by following the theory of [van der Vaart, 1998,
Chapter 5]. This is of utmost interest for `θ that have additional analytic proper-
ties, such as convexity. Since these properties are also needed in the proofs, we will
not discuss this in detail.

We give an easy application of the functional central limit theorem from Theorem
2.2.5 by inspecting a local stationary version of Example 19.25 in van der Vaart [1998].
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Example 2.5.4 (Local mean absolute deviation). For fixed v ∈ (0, 1), put Xn(v) :=
1
nKh

(
i
n − v

)
Xi and define the mean absolute deviation

madn(v) :=
1

n

n∑
i=1

Kh

( i
n
− v
)
|Xi −Xn(v)|.

Let Assumption 2.3.1 hold true with s = 1, p =∞. Suppose that P(X̃0(v) = EX̃0(v)) = 0
and that for some κ > 0, α > 1, δX2 (j) ≤ κj−α. We show that if nh→∞ and nh1+2ς → 0,

√
nh
(
madn(v)− E|X̃0(v)− µ|

) d→ N(0, σ2) (2.5.3)

where µ = EX̃0(v), G denotes the distribution function of X̃0(v) and

σ2 =

∫
K(u)2du ·

∞∑
j=0

Cov
(
|X̃0(v)− µ|+ (2G(µ)− 1)X̃0(v),

|X̃j(v)− µ|+ (2G(µ)− 1)X̃j(v)
)
.

The result is obtained by using the decomposition

√
nh
(
madn(v)− E|X̃0(v)− µ|

)
= Gn(fXn(v) − fµ) + Gn(fµ) +An,

An =

√
nh

n

n∑
i=1

Kh

( i
n
− v
){

E|Xi − θ| − E|X̃0(v)− µ|
}∣∣∣
θ=Xn(v)

where Θ = {θ ∈ R : |θ − µ| ≤ 1} and

F = {fθ(x, u) =
√
hKh(u− v)|x− θ| : θ ∈ Θ}.

By the triangle inequality, F satisfies Assumption 2.2.3 with f̄θ(x, u) = |x − θ|, R(·) =
CR = 1, p = ∞, s = 1 and ∆(k) = 2δX2 (k). Assumption 2.3.2 is trivially fulfilled
since f̄ does not depend on u. Since F is a one-dimensional Lipschitz class, we have
supn∈NH(ε,F , ‖ · ‖2,n) = O(log(ε−1∨1)). By Corollary 2.2.5, we obtain that there exists
some process [G(fθ)]θ∈Θ such that for h→ 0, nh→∞,[

Gn(fθ)
]
θ∈Θ

d→
[
G(fθ)

]
θ∈Θ

in `∞(Θ). (2.5.4)

Furthermore by Assumption 2.3.1,

‖fXn(v)(Xi)− fµ(Xi)‖2
≤ ‖Xn(v)− µ‖2 ≤ ‖Xn(v)− EXn(v)‖2 + ‖EXn(v)− µ‖2

≤ 1√
nh

( 1

nh

n∑
i=1

K
( i
n − v
h

)2)1/2
∞∑
j=0

δX2 (j) +
1

n

n∑
i=1

Kh

( i
n
− v
)∣∣EXi − EX̃0(v)|

= O((nh)−1/2 + hς). (2.5.5)
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By [van der Vaart, 1998, Lemma 19.24], we conclude from (2.5.4) and (2.5.5) that

Gn(fXn(v) − fµ)
p→ 0. (2.5.6)

in probability.
By Assumption 2.3.1 and bounded variation of K,

An =
√
nh
{
E|X̃0(v)− θ|

∣∣
θ=Xn(v)

−E|X̃0(v)−µ|
}

+Op((nh)−1/2 + (nh)1/2h−ς). (2.5.7)

Due to P(X̃0(v) = µ) = 0, the function g(θ) = E|X̃0(v) − θ| is differentiable in θ = µ
with derivative 2G(µ)− 1. The Delta method delivers

√
nh
{
E|X̃0(v)− θ|

∣∣
θ=Xn(v)

− E|X̃0(v)− µ|
}

= (2G(µ)− 1)
√
nh(Xn(v)− µ) + op(1). (2.5.8)

From (2.5.6), (2.5.7) and (2.5.8) we obtain

√
nh
(
madn(v)− E|X̃0(v)− µ|

)
= Gn(fµ + (2G(µ)− 1)id) + op(1).

Theorem 2.3.4 now yields (2.5.3).

2.6 Excursus: Large deviation inequalities

A variety of large deviation inequalities using the functional dependence measure have
been derived, see for instance Zhang and Wu [2017] and Wu et al. [2013] for Nagaev-
and Rosenthal-type inequalities. Here, we present a Bernstein-type inequality for Gn(f)
which can be extended to a large deviation inequality for supf∈F |Gn(f)| using a combi-
nation of our novel chaining scheme and results in Alexander [1984]. We provide these
results to complete the picture of empirical process theory for the functional dependence
measure and to show the power of the decomposition (2.8.23), a key approach when prov-
ing the maximal inequality (of finite F). In general, however, the derived inequalities
are weaker than a combination of Markov’s inequality and Theorem 2.4.1. The reason
for this mainly lies in the treatment of the first summand in (2.8.23) and the fact that
the functional dependence measure is formulated with a moment based norm instead of
probabilities. This leads to an additional factor for Vn(·) and β(·).

For q ∈ N, ν ≥ 2, define

ω(q) := q1/ν log(eq)3/2, L(q) = log log(eeq), Φ(q) = qL(q)

as well as

β̃(q) =
∞∑
j=q

∆(j)ω(j)L(j), Ṽn(f) = ‖f‖2,n +
∞∑
j=1

min{‖f‖2,n,Dn∆(j)ω(j)}L(j).

With the above quantities, we can formulate the following result.
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Theorem 2.6.1 (Bernstein-type large deviation inequality). Let F satisfy Assumption
2.4.2. Then there exist universal constants c0, c1 > 0 such that the following holds true:
For each q ∈ {1, ..., n} there exists a set Bn(q) independent of f ∈ F such that for all
x > 0,

P
(∣∣Gn(f)

∣∣ > x,Bn(q)
)
≤ c0 exp

(
− 1

c1

x2

Ṽn(f)2 + MΦ(q)√
n
x

)
(2.6.1)

and

P(Bn(q)c) ≤ 4
(D∞n β̃(q)

√
n

MΦ(q)

)2
.

Define q̃∗(z) := min{q ∈ N : β̃(q) ≤ Φ(q)z}. Then for any y > 0, x > 0,

P
(
|Gn(f)| > x,Bn

(
q̃∗(

M√
nD∞n y

)
))
≤ c0 exp

(
− 1

c1

x2

Ṽn(f)2 + Φ(q̃∗( M√
nD∞n y

))Mx√
n

)
(2.6.2)

and P(Bn(q̃∗( M√
nD∞n y

))c) ≤ 4
y2 .

Remark 2.6.2. (i) Theorem 2.6.1 mimics the well-known large deviation inequalities
from [Rio, 1995, Theorem 5] or Liebscher [1996] in the case of α-mixing sequences.

(ii) The reason for the change of Vn, β, q to Ṽn, β̃,Φ(q) in Theorem 2.6.1 compared
to Theorem 2.4.1 is due to the arising sums over l = 1, ..., L in the second term
and j = q, q + 1, ... in the first term

∑∞
j=q maxf∈F

1√
n

∣∣Sn,j+1(f) − Sn,j(f)
∣∣ in the

decomposition (2.8.23), which forces us to include additional log-factors to obtain
convergence. The additional factor j1/ν that appears in β̃ is due to an application
of Markov’s inequality. It can be argued that this is a relict of the fact that the
dependence conditions are stated with moments and not with probabilities as in
the case of mixing.

(iii) Theorem 2.6.1 can be seen as an improvement of the Bernstein inequalities given
in Doukhan and Neumann [2007] which are only available for random variables
with exponential decay (in our setting, the conditions are comparable to ∆(k) =
O(exp(k−a)) for some a > 0).

A similar statement is valid in the case of classes F of noncontinuous functions. We de-
cide to include its discussion here, before we study noncontinuous functions formally. We
then need the following analogue of Assumption 3.3.3 (an additional submultiplicativity
statement for β(·)) where β(·) is replaced by β̃(·) and q is replaced by Φ(q).

Assumption 2.6.3. The sequence j 7→ ∆(j)ω(j)L(j) is decreasing. There exists some

constant Cβ̃ > 0 such that β̃norm(q) := β̃(q)
Φ(q) fulfills for all q1, q2 ∈ N,

β̃norm(q1q2) ≤ Cβ̃β̃norm(q1)β̃norm(q2).

In the following, a constant C∆ will appear. This constant will be defined later on in
Lemma 3.5.1, Chapter 3.

29



Theorem 2.6.4. Let F satisfy the Assumption 3.1.1, 2.6.3. Then there exist universal
constants c◦0, c

◦
1 > 0 such that the following holds true: For each q ∈ {1, ..., n} there exists

a set B◦n(q) independent of f ∈ F such that for all x > 0,

P
(∣∣Gn(f)

∣∣ > x,B◦n(q)
)
≤ c◦0 exp

(
− 1

c◦1

x2

Ṽn(f)2 + MΦ(q)√
n
x

)
(2.6.3)

and

P(B◦n(q)c) ≤ [4 + C∆Cβ̃]
(√nD∞n

M

β̃(q)

Φ(q)

)2
.

Furthermore, for any x > 0, y > 0,

P
(∣∣Gn(f)

∣∣ > x,B◦n
(
q̃∗(

M√
nD∞n y

)
))
≤ c◦0 exp

(
− 1

c◦1

x2

Ṽn(f)2 + q̃∗( M√
nD∞n y

)Mx√
n

)
(2.6.4)

and P(B◦n(q̃∗( M√
nD∞n y

)c) ≤ 4+C∆Cβ̃
y2 .

It is possible to extend Theorem 2.6.1 to an exponential inequality for supf∈F |Gn(f)|
using a chaining scheme from Alexander [1984], which incorporates an entropy integral
of the form

∫ σ
0 ψ(ε)W(1 ∨H(ε,F , Ṽn))dε where ψ includes a log-factor (cf. (3.1.5)) and

W : R → R fulfills H1/2 ≤ W(H) ≤ H, depending on the decay of ∆(·). Details can be
found in Subsection 2.8.6, Theorem 2.8.11. The larger entropy integral comes from the
fact that in the proof of Theorem 2.6.1, we can only recover the exp(−x)-part of the
Bernstein inequality in the discussion of the first summand in (2.8.23) (cf. (2.8.87) in
Section 2.8).

2.7 Concluding remarks

In this chapter, we developed a new empirical process theory for locally stationary pro-
cesses with the functional dependence measure on classes of smooth functions. We have
proven a functional central limit theorem and maximal inequalities. A general empirical
process theory for locally stationary processes is a key step in deriving asymptotic and
nonasymptotic results for M-estimates or testing based on L2- or L∞-statistics. We pro-
vided an example in nonparametric estimation where our theory is applicable. Due to
the possibility to analyze the size of the function class and the stochastic properties of
the underlying process separately, we conjecture that our theory also permits an exten-
sion of various results from i.i.d. to dependent data, such as empirical risk minimization
(which will be a later chapter’s main topic).

From a technical point of view, the linear and moments based nature of the functional
dependence measure has forced us to modify several approaches from empirical process
theory for i.i.d. or mixing variables. A main issue was given by the fact that the depen-
dence measure only transfers decay rates for continuous functions. We therefore have
provided a new chaining technique which preserves continuity of the arguments of the
empirical process.
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2.8 Lemmata and proofs of Chapter 2

2.8.1 Proofs of Section 2.3

In the following we provide a proof for the central limit theorem. All lemmata used are
given thereafter.

Proof of Theorem 2.3.4. Denote Wi(f) := f(Zi,
i
n) and Wi := (Wi(f1), ...,Wi(fm))′. Let

a = (a1, ..., am)′ ∈ Rm\{0}. We use the decomposition

1√
n

n∑
i=1

a′(Wi − EWi) =

∞∑
j=0

1√
n

n∑
i=1

a′Pi−jWi.

For fixed J ∈ N ∪ {∞}, set

(Sn(J))k=1,...,m := Sn(J) :=
J−1∑
j=0

1√
n

n∑
i=1

Pi−jWi.

Then, since Pi−jWi(fk), i = 1, ..., n, is a martingale difference sequence and by Lemma
2.8.3(i),

‖Sn(∞)k − Sn(J)k‖2 ≤
∞∑
j=J

∥∥ 1√
n

n∑
i=1

Pi−jWi(fk)
∥∥

2
=

∞∑
j=J

( 1

n

n∑
i=1

‖Pi−jWi(fk)‖22
)1/2

≤
( 1

n

n∑
i=1

Dfk,2,n(
i

n
)2
)1/2

·
∞∑
j=J

∆(j),

thus

lim sup
J,n→∞

‖Sn(∞)k−Sn(J)k‖2 ≤ sup
n∈N

( 1

n

n∑
i=1

Dfk,2,n(
i

n
)2
)1/2
·lim sup
J→∞

∞∑
j=J

∆(j) = 0. (2.8.1)

Define

(S◦n(J)k)k=1,...,m := S◦n(J) :=
1√
n

n−J+1∑
i=1

J−1∑
j=0

PiWi+j .

Then, we have

‖S◦n(J)k − Sn(J)k‖2 ≤
J−1∑
j=0

‖ 1√
n

j∑
i=1

Pi−jWi(fk)‖2 +
1√
n

J−1∑
j=0

‖
n∑

i=n−J+j+1

Pi−jWi(fk)‖2

≤ 2J2

√
n
· sup
i=1,...,n+j

‖Pi−jWi(fk)‖2

≤ 2J2

√
n
· sup
i=1,...,n+j

‖fk(Zi,
i

n
)‖2.
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By Lemma 2.8.3(i),

sup
i=1,...,n+j

‖fk(Zi,
i

n
)‖2 ≤ C∆,2 ·D2,n(

i

n
),

which gives
lim
n→∞

‖S◦n(J)k − Sn(J)k‖2 = 0. (2.8.2)

Stationary approximation: Put S̃◦n(J) = (S̃◦n(J)k)k=1,...,m where

S̃◦n(J)k :=
1√
n

n−J+1∑
i=1

J−1∑
j=0

Pifk(Z̃i+j(
i

n
),
i

n
).

Then, we have

‖S◦n(J)k − S̃◦n(J)k‖2

≤
J−1∑
j=0

( 1

n

n−J+1∑
i=1

∥∥∥Pifk(Zi+j , i+ j

n
)− Pifk(Z̃i+j(

i

n
),
i

n
)
∥∥∥2

2

)1/2
.

For each j, k,

1

n

n−J+1∑
i=1

‖Pifk(Zi+j ,
i+ j

n
)− Pifk(Z̃i+j(

i

n
),
i

n
)‖22

≤ 2

n

n−J+1∑
i=1

(
Dfk,n(

i+ j

n
)−Dfk,n(

i

n
)
)2
· sup

i
‖f̄(Zi+j ,

i+ j

n
)‖22

+
2

n

n−J+1∑
i=1

Df,n(
i

n
)2 · sup

i

∥∥∥f̄k(Zi+j , i+ j

n
)− f̄k(Z̃i+j(

i

n
),
i

n
)]‖22.

By Lemma 2.8.3, we have supi ‖f̄(Zi+j ,
i+j
n )‖22 < ∞. Since 1√

n
Dfk,n(·) has bounded

variation uniformly in n,

1

n

n−J+1∑
i=1

(
Dfk,n(

i+ j

n
)−Dfk,n(

i

n
)
)2

≤ sup
i=1,...,n

1√
n
Dfk,n(

i

n
) · 1√

n

n−J+1∑
i=1

∣∣∣Dfk,n(
i+ j

n
)−Dfk,n(

i

n
)
∣∣∣→ 0.

By Lemma 2.8.3(ii),

sup
i

∥∥∥f̄k(Zi+j , i+ j

n
)− f̄k(Z̃i+j(

i

n
),
i

n
)
∥∥∥

2
→ 0.

We therefore obtain
‖S◦n(J)k − S̃◦n(J)k‖2 → 0. (2.8.3)
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Note that

Mi,k :=
1√
n

J∑
j=0

Pifk(Z̃i+j(
i

n
),
i

n
), i = 1, ..., n,

is a martingale difference sequence with respect toAi−1 := σ(εi−1, εi−2, ...) (the σ-algebra
generated accordingly) and

S̃◦n(J)k =

n−J+1∑
i=1

Mi,k.

We can therefore apply a central limit theorem for martingale difference sequences to
a′S̃◦n(J) =

∑n−J+1
i=1 (

∑m
k=1 akMi,k).

The Lindeberg condition: Let ς > 0. Iterated application of Lemma 2.8.1(i) yields that
there are constants c1, c2 > 0 only depending on m,J such that

n−J+1∑
i=1

E[(
m∑
k=1

akMi,k)
2
1{|

∑m
k=1 akMi,k|>ς

√
n}]

≤ c1

∑
l=0,1

J−1∑
j=0

m∑
k=1

|ak|2 ·
1

n

n−J∑
i=1

E
[
E[fk(Z̃i+j(

i

n
),
i

n
)|Ai−l]21{|E[fk(Z̃i+j(

i
n

), i
n

)|Ai−l]|>
√
n ς
c2|a|∞

}

]
.

For each l, j, k we have

1

n

n−J∑
i=1

E
[
E[fk(Z̃i+j(

i

n
),
i

n
)|Ai−l]21{|E[fk(Z̃i+j(

i
n

), i
n

)|Ai−l]|>
√
n ς
c2|a|∞

}

]
=

1

n

n−J∑
i=1

Dfk,n(
i

n
)2E
[
E[f̄k(Z̃i(

i

n
),
i

n
)|Ai−l]21{|E[f̄k(Z̃i(

i
n

), i
n

)|Ai−l]|>
√
n

supi=1,...,n |Df,n( in )|
ς

c2|a|∞
}

]
=

1

n

n−J∑
i=1

Dfk,n(
i

n
)2E
[
W̃i(

i

n
)2
1{|W̃i(

i
n

)|>cn}

]
, (2.8.4)

where we have put

W̃i(u) := E[f̄k(Z̃i(u), u)|Ai−l], cn :=

√
n

supi=1,...,n |Df,n( in)|
ς

c2|a|∞
.

By Lemma 2.8.3(ii), W̃i(u) satisfies the assumptions (2.8.8) of Lemma 2.8.2. By as-
sumption, cn →∞. With an(u) := Dfk,n(u)2, we obtain from Lemma 2.8.2 that (2.8.4)
converges to 0, which shows that the Lindeberg condition is satisfied.
Convergence of the variance: We have

n−J+1∑
i=1

E[(

m∑
k=1

Mi,k)
2|Ai−1]

=
J−1∑

j1,j2=0

m∑
k1,k2=1

akal ·
1

n

n−J+1∑
i=1

Dfk,n(
i

n
)Dfl,n(

i

n
)

·E
[
Pif̄k(Z̃i+j1(

i

n
),
i

n
) · Pif̄l(Z̃i+j2(

i

n
),
i

n
)|Ai−1

]
.
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For each j1, j2, k1, k2 we define

W̃i(u) := E
[
Pif̄k(Z̃i+j1(u), u) · Pif̄l(Z̃i+j2(u), u)|Ai−1

]
, an(u) := Dfk,n(u)Dfl,n(u).

Then

1

n

n−J+1∑
i=1

Dfk,n(
i

n
)Dfl,n(

i

n
) · E

[
Pif̄k(Z̃i+j1(

i

n
),
i

n
) · Pif̄l(Z̃i+j2(

i

n
),
i

n
)|Ai−1

]
=

1

n

n−J+1∑
i=1

an(
i

n
)W̃i(

i

n
).

By Lemma 2.8.3(i),(ii), we have

‖W̃0(u)− W̃0(v)‖1 ≤ ‖f̄k(Z̃0(u), u)− f̄k(Z̃0(v), v)‖2 · ‖f̄l(Z̃0(u))‖2
+‖f̄l(Z̃0(u), u)− f̄l(Z̃0(v), v)‖2 · ‖f̄k(Z̃0(v))‖2

≤ 2CcontCf̄ · |u− v|ςs/2.

Let An := supi=1,...,n |an( in)|. Since
Df,n(·)
D∞f,n

has bounded variation uniformly in n, it

follows that an(·)
An

has bounded variation uniformly in n. From
D∞f,n√
n
→ 0 we conclude

An
n → 0.

By assumption and the Cauchy-Schwarz inequality,

sup
n

[ 1

n

n∑
i=1

|an(
i

n
)|
]
≤ sup

n

( 1

n

n∑
i=1

Dfk,n(
i

n
)2
)1/2

·
( 1

n

n∑
i=1

Dfl,n(
i

n
)2
)1/2

<∞.

We have supn(hn ·An) ≤ supn(h
1/2
n D∞fk,n) · supn(h

1/2
n D∞fl,n) <∞, and

|v − u| > hn ⇒ Dfk,n(u) = 0, Dfl,n(u) = 0, ⇒ an(u) = 0.

Thus, Lemma 2.8.2(ii) is applicable.
Case K = 1: If u 7→ E[P0f̄k(Z̃j1(u), u) · P0f̄l(Z̃j2(u), u)] has bounded variation, we have

1

n

n−J+1∑
i=1

Dfk,n(
i

n
)Dfl,n(

i

n
) · E

[
Pif̄k(Z̃i+j1(

i

n
),
i

n
) · Pif̄l(Z̃i+j2(

i

n
),
i

n
)|Ai−1

]
p→ lim

n→∞

∫ 1

0
Dfk,n(u)Dfl,n(u) · E[P0f̄k(Z̃j1(u), u) · P0f̄l(Z̃j2(u), u)]du.

and thus

n−J+1∑
i=1

E[(

m∑
k=1

Mi,k)
2|Ai−1]

p→
m∑

k,l=1

akal · lim
n→∞

∫ 1

0
Dfk,n(u)Dfl,n(u) ·

J−1∑
j1,j2=0

E[P0f̄k(Z̃j1(u), u) · P0f̄l(Z̃j2(u), u)]du

= a′Σ
(1)
kl (J)a
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Here, for f, g ∈ F , E[P0f̄(Z̃j1(u), u) · P0ḡ(Z̃j2(u), u)] can be written as

E[P0f̄(Z̃j1(u), u) · P0ḡ(Z̃j2(u), u)]

= E[E[f̄(Z̃j1(u), u)|A0]] · E[ḡ(Z̃j2(u), u)|A0]]

−E[E[f̄(Z̃j1(u), u)|A−1]] · E[ḡ(Z̃j2(u), u)|A−1]],

which shows that the condition stated in the assumption guarantees the bounded vari-
ation of u 7→ E[P0f̄(Z̃j1(u), u) · P0ḡ(Z̃j2(u), u)].
Case K = 2: If hn → 0, we obtain similarly

n−J+1∑
i=1

E[(
m∑
k=1

Mi,k)
2|Ai−1]

p→
m∑

k,l=1

akal · lim
n→∞

∫ 1

0
Dfk,n(u)Dfl,n(u)du ·

J−1∑
j1,j2=0

E[P0f̄k(Z̃j1(v), v) · P0f̄l(Z̃j2(v), v)]du

= a′Σ
(2)
kl (J)a.

By the martingale central limit theorem and (2.8.2), (2.8.3),

a′Sn(J)
d→ N(0, a′Σ

(K)
kl (J)a). (2.8.5)

Conclusion: For K ∈ {1, 2}, we have

a′Σ
(K)
kl (J)a→ a′Σ

(K)
kl (∞)a (J →∞) (2.8.6)

due to ∑
j1,j2:max{j1,j2}≥J

‖P0f̄k(Z̃j1(u), u) · P0f̄l(Z̃j2(u), u)‖1

≤
∑

j1,j2:max{j1,j2}≥J

‖P0f̄k(Z̃j1(u), u)‖2‖P0f̄l(Z̃j2(u), u)‖2 → 0 (J →∞)

uniformly in n and

sup
n

∫ 1

0
|Dfk,n(u)Dfl,n(u)|du ≤ sup

n

( ∫ 1

0
Dfk,n(u)2du

)1/2( ∫ 1

0
Dfl,n(u)2du

)1/2
<∞.

By (2.8.1), (2.8.5) and (2.8.6) we have

∑
j∈Z

Cov(f̄k(Z̃0(u), u), f̄l(Z̃j(u), u)) =
∞∑

j1,j2=0

E[P0f̄k(Z̃j1(u), u) · P0f̄l(Z̃j2(u), u)].

Via the Cramer-Wold device the proof is completed.
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Lemma 2.8.1. Let c ∈ R, c > 0.

(i) For x, y ∈ R, it holds true that

(x+ y)2
1{|x+y|>c} ≤ 8x2

1{|x|> c
2
} + 8y2

1{|y|> c
2
}.

(ii) For random variables W, W̃ , it holds true that

E[W 2
1{|W |>c}] ≤ 4E[(W − W̃ )2] + 4E[W̃ 2

1{|W̃ |> c
2
}].

Proof of Lemma 2.8.1. (i) We have

(x+ y)2
1{|x+y|>c} ≤ 2

[
x2 + y2

]
1{|x|> c

2
or |y|> c

2
}

≤ 2
[
x2 + y2

]{
21{|x|> c

2
,|y|> c

2
} + 1{|x|> c

2
,|y|≤ c

2
} + 1{|x|≤ c

2
,|y|> c

2
}
}

≤ 4
[
x2
1{|x|> c

2
} + y2

1{|y|> c
2
}
]

+ 4x2
1{|x|> c

2
} + 4y2

1{|y|> c
2
}

≤ 8x2
1{|x|> c

2
} + 8y2

1{|y|> c
2
}.

(ii) We have

E[W 2
1{|W |>c}] ≤ 2E[(|W | − W̃ )2

1{|W |>c}] + 2E[W̃ 2
1{|W |>c}]

≤ 2E[(W − W̃ )2] + 2E[W̃ 2
1{|W−W̃ |+|W̃ |>c}]. (2.8.7)

Furthermore, by Markov’s inequality,

E[W̃ 2
1{|W−W̃ |+|W̃ |>c}]

≤ E[W̃ 2
1{|W−W̃ |> c

2
}] + E[W̃ 2

1{|W̃ |> c
2
}]

≤ (
c

2
)2P(|W − W̃ | > c

2
) + E[W̃ 2

1{|W−W̃ |> c
2
}1{|W̃ |> c

2
}] + E[W̃ 2

1{|W̃ |> c
2
}]

≤ E[(W − W̃ )2] + 2E[W̃ 2
1{|W̃ |> c

2
}].

Inserting this inequality into (2.8.7), we obtain the assertion.

The following lemma generalizes some results from Dahlhaus et al. [2019] using similar
techniques as therein.

Lemma 2.8.2. Let q ∈ {1, 2}. Let W̃i(u) be a stationary sequence with

sup
u∈[0,1]

‖W̃0(u)‖q <∞, ‖W̃0(u)− W̃0(v)‖q ≤ CW |u− v|ς . (2.8.8)

Let an : [0, 1]→ R be some sequence of functions with lim supn→∞
1
n

∑n
i=1 |an( in)| <∞.

(i) Let q = 2 and cn be some sequence with cn →∞. Then,

1

n

n∑
i=1

|an(
i

n
)| · E[W̃i(

i

n
)2
1{|W̃i(

i
n

)|>cn}]→ 0,
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(ii) Let q = 1. Suppose that there exists hn > 0, v ∈ [0, 1] such that for all u ∈ [0, 1],
|v − u| > hn implies an(u) = 0. Set An = supi=1,...,n |an( in)| and suppose that

sup
n∈N

(hn ·An) <∞, An
n
→ 0,

an(·)
An

has bounded variation uniformly in n.

Under the assumption that the limits of the following right hand sides exist, if
u 7→ EW̃0(u) has bounded variation, then

1

n

n∑
i=1

an(
i

n
)W̃i(

i

n
)
p→ lim
n→∞

∫ 1

0
an(u)EW̃0(u)du.

If hn → 0, then

1

n

n∑
i=1

an(
i

n
)W̃i(

i

n
)
p→ lim
n→∞

∫ 1

0
an(u)du · EW̃0(v).

Proof of Lemma 2.8.2. Let J ∈ N be fixed and assume that n ≥ 2·2J . For j ∈ {1, ..., 2J},
Define Ij,J,n := {i ∈ {1, ..., n} : i

n ∈ ( j−1
2J
, j

2J
]}. Then (Ij,J,n)j forms a decomposition of

{1, ..., n} in the sense that
∑2J

j=1 Ij,J,n = {1, ..., n}. Since i
n ∈ ( j−1

2J
, j

2J
] ⇐⇒ j−1

2J
· n <

i ≤ n · j−1
2J
≤ n

2J
, we conclude that n

2J
− 1 ≤ |Ij,J,n| ≤ n

2J
. Thus, since n ≥ 2 · 2J ,∣∣∣Ij,J,n|

n
− 1

2J

∣∣∣ ≤ 1

n
, |Ij,J,n| ≥

1

2

n

2J
. (2.8.9)

Let wi, i ∈ N be an arbitrary sequence. Then,∣∣∣ 1
n

n∑
i=1

wi −
1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

wi

∣∣∣ ≤ 2J∑
j=1

∣∣∣ |Ij,J,n|
n
− 1

2J

∣∣∣ · ∣∣∣ 1

|Ij,J,n|
∑

i∈Ij,J,n

wi

∣∣∣
≤ 1

n

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|wi|

≤ 2J

n2

n∑
i=1

|wi|. (2.8.10)

(i) Application of (2.8.10) with wi = an( in)E[W̃i(
i
n)2

1{|W̃i(
i
n

)|>cn}] yields

1

n

n∑
i=1

E[W̃i(
i

n
)2
1{|W̃i(

i
n

)|>cn}]

≤ 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

[
E[W̃i(

i

n
)2
1{|W̃i(

i
n

)|>cn}]

+
2J

n
· 1

n

n∑
i=1

an(
i

n
) · sup

u
‖W̃0(u)‖22

]
. (2.8.11)
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By Lemma 2.8.1(ii),

1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|an(
i

n
)| · E[W̃i(

i

n
)2
1{|W̃i(

i
n

)|>cn}]

≤ 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|an(
i

n
)| · E[W̃0(

j

2J
)2
1{|W̃0( j

2J
)|>cn}]

+
1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|an(
i

n
)| ·
∥∥W̃0(

i

n
)− W̃0(

j

2J
)
∥∥2

2

≤
[

sup
j=1,...,2J

E[W̃0(
j

2J
)2
1{|W̃0( j

2J
)|>cn}] + CW (2−J)ς

]
· 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|an(
i

n
)|. (2.8.12)

By (2.8.9),

1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|an(
i

n
)| ≤ 2

n

n∑
i=1

|an(
i

n
)|.

The dominated convergence theorem delivers

lim sup
n→∞

E[W̃0(
j

2J
)2
1{|W̃0( j

2J
)|>cn}].

Furthermore, lim supn→∞
2J

n · supu ‖W̃0(u)‖22 = 0. Inserting (2.8.12) into (2.8.11)
and applying lim supn→∞ as well as lim supJ→∞ afterwards, yields the assertion.

(ii) Since (2.8.8) also holds true for W̃0(u) replaced by W̃0(u)−EW̃0(u), we may assume
in the following that w.l.o.g. EW̃0(u) = 0.

By (2.8.10) applied to wi = a( in)Wi(
i
n) we obtain

∥∥∥ 1

n

n∑
i=1

an(
i

n
)W̃i(

i

n
)− 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

an(
i

n
)W̃i(

i

n
)
∥∥∥

1

≤ 2J

n
· 1

n

n∑
i=1

|an(
i

n
)| · sup

u
‖W0(u)‖1 → 0 (n→∞). (2.8.13)
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We furthermore have

∥∥∥ 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

an(
i

n
)W̃i(

i

n
)

− 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

an(
i

n
)W̃i(

j − 1

2J
)
∥∥∥

1

≤ 1

2J

2J∑
j=1

1

|Ij,J,n|
∑

i∈Ij,J,n

|an(
i

n
)| ·
∥∥W̃0(

i

n
)− W̃0(

j − 1

2J
)
∥∥

1

≤ 2

n

n∑
i=1

|an(
i

n
)| · CW (2−J)ς . (2.8.14)

Fix j ∈ {1, ..., 2J}. Put uj := j−1
2J

and, for a real-valued positive x, define [x] :=
max{k ∈ N : k > x}. By stationarity, the following equality is valid in distribution,

1

|Ij,J,n|
∑

i∈Ij,J,n

an(
i

n
)W̃i(uj)

d
=

1

|Ij,J,n|

|Ij,J,n|∑
i=1

an(
i

n
+

[ujn]− 1

n
)W̃i(uj). (2.8.15)

Set W̃i(u)◦ := W̃i(u)1
{ i
n

+
[ujn]−1

n
∈[rn,rn]}

. By partial summation and since an(·)
An

has

bounded variation Ba uniformly in n,

1

|Ij,J,n|

|Ij,J,n|∑
i=1

an(
i

n
+ [ujn]− 1)W̃i(uj)

=
1

|Ij,J,n|

|Ij,J,n|−1∑
i=1

{
an(

i

n
+ [ujn]− 1)− an(

i+ 1

n
+ [ujn]− 1)

} i∑
l=1

W̃l(uj)
◦

+
1

|Ij,J,n|
An ·

|Ij,J,n|∑
l=1

W̃l(uj)
◦

≤ Ba + 1

|Ij,J,n|
An · sup

i=1,...,|Ij,J,n|

∣∣∣ i∑
l=1

W̃l(uj)
◦
∣∣∣ (2.8.16)

By stationarity, we have

sup
i=1,...,|Ij,J,n|

∣∣∣ i∑
l=1

W̃l(uj)
◦
∣∣∣

= sup
i=1,...,|Ij,J,n|

∣∣∣ i∧(bn(v−hn)c−[ujn]+1)∑
l=1∨(dn(v+hn)e−[ujn]+1)

W̃l(uj)
∣∣∣ d= sup

i=1,...,mn

∣∣∣ i∑
l=1

W̃l(uj)
∣∣∣,
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since (|Ij,J,n|∧(bn(v+hn)c−[ujn]+1))−(1∨(dn(v−hn)e−[ujn]+1)) ≤ mn := 2nhn.
By assumption, mn = 2n

An
·Anhn →∞.

Exploiting the ergodic theorem, we have

lim
m→∞

∣∣∣ 1

m

m∑
l=1

W̃l(uj)
∣∣∣ = 0 a.s.

and especially ( 1
m

∑m
l=1 W̃l(uj))m is bounded almost surely. We derive that

1

mn
sup

i=1,...,mn

∣∣∣ i∑
l=1

W̃l(uj)
∣∣∣

≤ 1
√
mn

sup
i=1,...,

√
mn

∣∣∣1
i

i∑
l=1

W̃l(uj)
∣∣∣+ sup

i=
√
mn+1,...,mn

∣∣∣1
i

i∑
l=1

W̃l(uj)
∣∣∣→ 0.

We conclude from (2.8.16) that

1

|Ij,J,n|

|Ij,J,n|∑
i=1

an(
i

n
+ [ujn]− 1)W̃i(uj)

≤ 2 · 2J(Ba + 1) ·An ·
mn

n
· 1

mn
sup

i=1,...,|Ij,J,n|

∣∣∣ i∑
l=1

W̃l(uj)
◦
∣∣∣→ 0. (2.8.17)

Combining (2.8.13), (2.8.14), (2.8.15) and (2.8.17), taking lim supn→∞, lim supJ→∞,
successively, we obtain

1

n

n∑
i=1

an(
i

n
)
{
W̃i(

i

n
)− EW̃0(

i

n
)
} p→ 0.

If u 7→ EW̃0(u) has bounded variation, we have for some intermediate value ξi,n ∈
[ i−1
n , in ],

∣∣∣ 1
n

n∑
i=1

an(
i

n
)EW̃0(

i

n
)−

∫ 1

0
an(u)EW̃0(u)du

∣∣∣
≤ 1

n

n∑
i=1

∣∣an(
i

n
)EW̃0(

i

n
)− an(ξi,n)EW̃0(ξi,n)

∣∣
≤ An

n
· 1

An

n∑
i=1

|an(
i

n
)− an(ξi,n)| · sup

u
‖W̃0(u)‖1

+
An
n

n∑
i=1

∣∣EW̃0(
i

n
)− EW̃0(ξi,n)

∣∣→ 0.
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If instead hn → 0, we have for some intermediate value ξi,n ∈ [ i−1
n , in ],∣∣∣ 1

n

n∑
i=1

an(
i

n
)EW̃0(

i

n
)− 1

n

n∑
i=1

an(
i

n
)EW̃0(v)

∣∣∣
≤ 1

n

n∑
i=1

|an(
i

n
)| · sup
|u−v|≤hn

‖W̃0(u)− W̃0(v)‖1 → 0.

Since an(·)
An

has bounded variation uniformly in n,∣∣∣ 1
n

n∑
i=1

an(
i

n
)−

∫ 1

0
an(u)du

∣∣∣ ≤ An
n
· 1

An

n∑
i=1

|an(
i

n
)− an(ξi,n)| → 0.

Lemma 2.8.3. Let F satisfy Assumptions 2.3.1, 2.3.2 and 2.2.3. Then there exist con-
stants Ccont > 0, Cf̄ > 0 such that for any f ∈ F ,

(i) for any j ≥ 1,

‖Pi−jf(Zi, u)‖2 ≤ Df,n(u)∆(j),

sup
i=1,...,n

‖f(Zi, u)‖2 ≤ C∆ ·Df,n(u),

sup
i,u
‖f̄(Zi, u)‖2 ≤ Cf̄ , sup

v,u
‖f̄(Z̃0(v), u)‖2 ≤ Cf̄ .

(ii)

‖f̄(Zi, u)− f̄(Z̃i(
i

n
), u)‖2 ≤ Ccontn

−ςs, (2.8.18)

‖f̄(Z̃i(v1), u1)− f̄(Z̃i(v2), u2)‖2 ≤ Ccont
(
|v1 − v2|ςs + |u1 − u2|ςs

)
.(2.8.19)

Proof of Lemma 2.8.3. (i) If Assumption 2.2.3 is satisfied, we have by Lemma 2.8.4,

‖Pi−jf(Zi, u)‖2 ≤ ‖f(Zi, u)− f(Z
∗(i−j)
i , u)‖2 = δ

f(Z,u)
2 (j) ≤ Df,n(u)∆(j).

The second assertion follows from Lemma 2.8.4.

(ii) Let C̄R := supv,u1,u2
‖ |f̄(Z̃0(v),u1)−f(Z̃0(v),u2)|)

|u1−u2|ς ‖2 <∞ (by Assumption 2.3.2) and

CR := max{supi,u ‖R(Zi, u)‖2, supu,v ‖R(Z̃0(v), u)‖2}. Then,

‖f̄(Z̃i(v), u1)− f̄(Z̃i(v), u2)‖2 ≤ C̄R|u1 − u2|ς . (2.8.20)

We derive

‖f̄(Zi, u)− f̄(Z̃i(v), u)‖2 ≤ ‖|Zi − Z̃i(v)|sLF,s(R(Zi, u) +R(Z̃i(v), u)‖2
≤ ‖|Zi − Z̃i(v)|sLF,s‖ 2p

p−1

×
(
‖R(Zi, u)‖2p + ‖R(Z̃i(v), u)‖2p

)
≤ 2CR‖|Zi − Z̃i(v)|sLF,s‖ 2p

p−1
.
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Furthermore,

‖|Zi − Z̃i(v)|sLF ,s‖ 2p
p̄−1

≤
∞∑
l=0

LF ,l‖|Xi−l − X̃i−l(v)|s‖ 2p
p−1

=

i∑
l=0

LF ,l‖Xi−l − X̃i−l(v)‖s2ps
p−1

≤
i∑
l=0

LF ,lC
s
X

(
|v − i

n
|ς + lςn−ς

)s
≤ |v − i

n
|ς · CX |LF |1 + n−ς · CX

∞∑
l=0

LF ,ll
ςs
}
.

We obtain with Ccont := 2C̄R + 2CRCX
{
|LF |1 +

∑∞
j=0 LF ,jj

ςs
}

that

‖f̄(Zi, u)− f̄(Z̃i(v), u)‖2 ≤ Ccont ·
[
|v − i

n
|ςs + n−ςs

]
. (2.8.21)

Furthermore, as above,

‖f(Z̃i(v1), u)− f(Z̃i(v2), u)‖2 ≤ 2CR‖|Z̃0(v1)− Z̃0(v2)|sLF ,s‖ 2p
p−1

≤ 2CR

i∑
l=0

LF ,l‖X̃0(v1)− X̃0(v2)‖s2ps
p−1

≤ 2CRCX |LF |1 · |v1 − v2|ςs (2.8.22)

Equation (2.8.21) yields (2.8.18) with v = i
n . By (2.8.20) and (2.8.22), we conclude

equation (2.8.19).

2.8.2 Proofs of Section 2.4.1

We provide an approach to obtain maximal inequalities for sums of random variables
Wi(f), i = 1, ..., n, indexed by f ∈ F , by using a decomposition into independent
random variables. An approach with similar intentions is presented in [Dedecker and
Louhichi, 2002, Section 4.3] for absolutely regular sequences and in Li et al. [2016] for
Harris-recurrent Markov chains. For convenience, we abbreviate

Wi(f) := f(Zi,
i

n
)

and put Sn(f) :=
∑n

i=1Wi(f).
To approximate Wi(f) by independent variables, we use a technique from Wu et al.

[2013] which was refined in Zhang and Wu [2017]. This decomposition is much more
involved then the ones for Harris-recurrent Markov chains or mixing sequences since no
direct coupling method is available. Define

Wi,j(f) := E[Wi(f)|εi−j , εi−j+1, ..., εi], j ∈ N,
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and

Sn(f) :=
n∑
i=1

{Wi(f)− EWi(f)}, Sn,j(f) :=
n∑
i=1

{Wi,j(f)− EWi,j(f)}.

Let q ∈ {1, ..., n} be arbitrary. Put L := b log(q)
log(2)c and τl := 2l (l = 0, ..., L − 1), τL := q.

Then we have

Wi(f) = Wi(f)−Wi,q(f) +

L∑
l=1

(Wi,τl(f)−Wi,τl−1
(f)) +Wi,1(f)

(in the case q = 1, the sum in the middle does not appear) and thus

Sn(f) =
[
Sn(f)− Sn,q(f)

]
+

L∑
l=1

[
Sn,τl(f)− Sn,τl−1

(f)
]

+ Sn,1(f).

We write

Sn,τl(f)− Sn,τl−1
(f) =

b n
τl
c+1∑

i=1

Ti,l(f), Ti,l(f) :=

(iτl)∧n∑
k=(i−1)τl+1

[
Wk,τl(f)−Wk,τl−1

(f)
]
.

The random variables Ti,l(f), Ti′,l(f) are independent if |i − i′| > 1. This leads to the
decomposition

max
f∈F

∣∣Gn(f)
∣∣ ≤ max

f∈F

1√
n

∣∣Sn(f)− Sn,q(f)
∣∣

+

L∑
l=1

[
max
f∈F

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i even

1
√
τl
Ti,l(f)

∣∣∣+ max
f∈F

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i odd

1
√
τl
Ti,l(f)

∣∣∣]

+ max
f∈F

1√
n

∣∣SWn,1(f)
∣∣ (2.8.23)

=: A1 +A2 +A3.

While the first term in (2.8.23) can be made small by assumptions on the dependence
of Wi(f) and by the use of a large deviation inequality for martingales in Banach spaces
from Pinelis [1994], the second and third term allow for an application of Rosenthal-type
bounds due to the independency of the summands Ti,l(f) and Wi,1(f), respectively. Since
the first term in (2.8.23) allows for a stronger bound in terms of n than it is the case for
mixing, we can obtain a theory which only needs second moments of Wi(f) = f(Xi,

i
n).

By Assumption 2.2.3, we can show the following results (cf. Lemma 2.8.4 and recall
(2.4.1) for the definition of D∞n ). For each i = 1, ..., n, j ∈ N, s ∈ N ∪ {∞}, f ∈ F ,∥∥∥ sup

f∈F

∣∣Wi(f)−Wi(f)∗(i−j)
∣∣ ∥∥∥

2
≤ D∞n (

i

n
)∆(j), (2.8.24)

∥∥Wi(f)−Wi(f)∗(i−j)
∥∥

2
≤ |Df,n(

i

n
)| ·∆(j), (2.8.25)∥∥Wi(f)‖s ≤

∥∥f(Zi,
i

n
)
∥∥
s
. (2.8.26)
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Proof of Theorem 2.4.1. We denote the three terms on the right hand side of (2.8.23)
by A1, A2, A3. We now discuss the three terms separately. First, we have

EA1 ≤
∞∑
j=q

1√
n
Emax
f∈F

∣∣∣ n∑
i=1

(Wi,j+1(f)−Wi,j(f))
∣∣∣.

For fixed j, the sequence

Ei,j := (Ei,j(f))f∈F =
(
(Wi,j+1(f)−Wi,j(f))

)
f∈F

= (E[Wi(f)|εi−j , ..., εi]− E[Wi(f)|εi−j+1, ..., εi])f∈F

is a |F|-dimensional martingale difference vector with respect to Ai = σ(εi−j , εi−j+1, ...).
For a vector x = (xf )f∈F and s ≥ 1, we write |x|s := (

∑
f∈F |xf |s)1/s. By [Pinelis, 1994,

Theorem 4.1] there exists an absolute constant c1 > 0 such that for s > 1,∥∥∥∣∣∣ n∑
i=1

Ei,j

∣∣∣
s

∥∥∥
2
≤ c1

{
2
∥∥∥ sup
i=1,...,n

|Ei,j |s
∥∥∥

2
+
√

2(s− 1)
∥∥∥( n∑

i=1

E[|Ei,j |2s|Ai−1]
)1/2∥∥∥

2

}
.

(2.8.27)
We have ∥∥∥ sup

i=1,...,n
|Ei,j |s

∥∥∥
2

=
∥∥∥( sup

i=1,...,n
|Ei,j |2s

)1/2∥∥∥
2
≤
∥∥∥( n∑

i=1

|Ei,j |2s
)1/2∥∥∥

2
,

therefore both terms in (2.8.27) are of the same order and it is enough to bound the
second term in (2.8.27). We have∥∥∥( n∑

i=1

E[|Ei,j |2s|Ai−1]
)1/2∥∥∥

2
=

∥∥∥ n∑
i=1

E[|Ei,j |2s|Ai−1]
∥∥∥1/2

1

≤
( n∑
i=1

∥∥E[|Ei,j |2s|Ai−1]
∥∥

1

)1/2

≤
( n∑
i=1

∥∥|Ei,j |s∥∥2

2

)1/2
. (2.8.28)

Note that

Ei,j(f) = Wi,j+1(f)−Wi,j(f) = E[Wi(f)|εi−j , ..., εi]− E[Wi(f)|εi−j+1, ..., εi]

= E[Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)|Ai], (2.8.29)

where H(Fi)∗∗(i−j) := H(F∗∗(i−j)i ) and F∗∗(i−j)i = (εi, εi−1, ..., εi−j , ε
∗
i−j−1, ε

∗
i−j−2, ...).

By Jensen’s inequality, Lemma 2.8.4 and the fact that (Wi(f)∗∗(i−j),Wi(f)∗∗(i−j+1))
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has the same distribution as (Wi(f),Wi(f)∗(i−j)),

‖|Ei,j |s
∥∥

2
= |

∥∥∥(∑
f∈F
|Ei,j(f)|s

)1/s∥∥∥
2

≤ s1/s
∥∥∥ sup
f∈F

∣∣E[Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)|Ai]
∣∣∥∥∥

2

≤ e ·
∥∥∥E[ sup

f∈F

∣∣Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)
∣∣ ∣∣Ai]∥∥∥

2

≤ e ·
∥∥∥ sup
f∈F

∣∣Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)
∣∣ ∥∥∥

2

= e ·
∥∥∥ sup
f∈F

∣∣Wi(f)−Wi(f)∗(i−j)
∣∣ ∥∥∥

2

≤ e ·D∞n (
i

n
)∆(j). (2.8.30)

Inserting (2.8.30) into (2.8.28) delivers( n∑
i=1

∥∥|Ei,j |s∥∥2

2

)1/2
≤ e
( n∑
i=1

D∞n (
i

n
)2
)1/2

∆(j).

Inserting this bound into (2.8.27), we obtain∥∥∥∣∣∣ n∑
i=1

Ei,j

∣∣∣
s

∥∥∥
2
≤ 4ec1s

1/2n1/2
( 1

n

n∑
i=1

D∞n (
i

n
)2
)1/2

∆(j).

We conclude with s := 2 ∨ log |F| that

EA1 ≤ 1√
n

∞∑
k=q

∥∥∥∣∣∣ n∑
i=1

Ei,j

∣∣∣
s

∥∥∥
2

≤ 4ec1 ·
√

2 ∨ log |F| ·
( 1

n

n∑
i=1

D∞n (
i

n
)2
)1/2

∞∑
j=q

∆p(j)

≤ 8ec1 ·
√
H · D∞n β(q). (2.8.31)

We now discuss EA2. If MQ, σQ > 0 are constants and Qi(f), i = 1, ...,m, mean-zero
independent variables (depending on f ∈ F) with |Qi(f)| ≤ MQ and the upper bound
( 1
m

∑m
i=1 ‖Qi(f)‖22)1/2 ≤ σQ, then there exists some universal constant c2 > 0 such that

Emax
f∈F

1√
m

∣∣∣ m∑
i=1

[
Qi(f)− EQi(f)

]∣∣∣ ≤ c2 ·
(
σQ
√
H +

MQH√
m

)
, (2.8.32)

(see e.g. Dedecker and Louhichi [2002] equation (4.3) in Section 4.1 therein).
Note that (Wk,j −Wk,j−1)k is a martingale difference sequence and Wk,τl −Wk,τl−1

=∑τl
j=τl−1+1(Wk,j −Wk,j−1). Furthermore, we have

‖Wk,j −Wk,j−1‖2 ≤ ‖Wk − E[Wk|εk−j+1]‖2 ≤ ‖Wk‖2
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and

‖Wk,j −Wk,j−1‖2 = ‖E[W
∗∗(k−j+1)
k −W ∗∗(k−j+2)

k |Ak]‖2
≤ ‖W ∗∗(k−j+1)

k −W ∗∗(k−j+2)
k ‖2

= ‖Wk −W
∗(k−j+1)
k ‖2 = δWk

2 (j − 1),

thus

‖Wk,j −Wk,j−1‖2 ≤ min{‖Wk‖2, δWk
2 (j − 1)}.

We conclude by the elementary inequality min{a1, b1}+ min{a2, b2} ≤ min{a1 +a2, b1 +
b2} that

‖Ti,l‖2 =
∥∥∥ (iτl)∧n∑
k=(i−1)τl+1

(Wk,τl −Wk,τl−1
)
∥∥∥

2

=
∥∥∥ τl∑
j=τl−1+1

(iτl)∧n∑
k=(i−1)τl+1

(Wk,j −Wk,j−1)
∥∥∥

2

≤
τl∑

j=τl−1+1

∥∥∥ (iτl)∧n∑
k=(i−1)τl+1

(Wk,j −Wk,j−1)
∥∥∥

2

≤
τl∑

j=τl−1+1

( (iτl)∧n∑
k=(i−1)τl+1

‖Wk,j −Wk,j−1‖22
)1/2

≤
τl∑

j=τl−1+1

min
{( (iτl)∧n∑

k=(i−1)τl+1

‖Wk‖22
)1/2

,
( (iτl)∑
k=(i−1)τl+1

(δWk
2 (j − 1))2

)1/2}
.

Let us set

σi,l :=
( 1

τl

(iτl)∧n∑
k=(i−1)τl+1

‖Wk‖22
)1/2

, ∆i,j,l :=
( 1

τl

(iτl)∧n∑
k=(i−1)τl+1

δWk
2 (j − 1)2

)1/2
.
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Then,

( 1
n
τl

b n
τl
c+1∑

i=1
i even

1

τl
‖Ti,l(f)‖22

)1/2

≤
( 1
n
τl

b n
τl
c+1∑

i=1

( τl∑
j=τl−1+1

min
{( 1

τl

(iτl)∧n∑
k=(i−1)τl+1

‖Wk‖22
)1/2

,

( 1

τl

(iτl)∧n∑
k=(i−1)τl+1

δWk
2 (j − 1)2

)1/2})2)1/2

=
( 1
n
τl

b n
τl
c+1∑

i=1

((
τl − τl−1

)2
min{σ2

i ,∆
2
i,τl−1+1,l}

)1/2

=
( 1
n
τl

b n
τl
c+1∑

i=1

(
τl − τl−1

)2
min{σ2

i,l,∆
2
i,τl−1+1,l}

)1/2

≤
(
τl − τl−1

)
·
(

min{ 1
n
τl

b n
τl
c+1∑

i=1

σ2
i,l,

1
n
τl

b n
τl
c+1∑

i=1

∆2
i,τl−1+1,l}

)1/2

≤
τl∑

j=τl−1+1

min{
( 1
n
τl

b n
τl
c+1∑

i=1

σ2
i,l

)1/2
,
( 1
n
τl

b n
τl
c+1∑

i=1

∆2
i,τl−1+1,l

)1/2
}

≤
τl∑

j=τl−1+1

min{‖f‖2,n,
( 1

n

n∑
i=1

δWi
2 (τl−1)2

)1/2
}

≤
τl∑

j=τl−1+1

min{‖f‖2,n,Dn∆(b j
2
c)}. (2.8.33)

With 1√
τl

∣∣Ti,l(f)
∣∣ ≤ 2

√
τl‖f‖∞ ≤ 2

√
τlM and (2.8.32), we obtain

L∑
l=1

[
Emax
f∈F

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i even

1
√
τl
Ti,l(f)

∣∣∣]

≤ c2

L∑
l=1

[
sup
f

( 1
n
τl

b n
τl
c+1∑

i=1
i even

∥∥∥∥ 1
√
τl
Ti,l(f)

∥∥∥∥2

2

)1/2√
H +

2
√
τlMH√
n
τl

]
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and a similar assertion for the second term (i odd) in A2. With (2.8.33), we conclude

EA2 ≤
L∑
l=1

[
Emax
f∈F

1√
n
τl

∣∣∣ ∑
1≤i≤b n

τl
c+1,i odd

1
√
τl
Ti,l(f)

∣∣∣
+Emax

f∈F

1√
n
τl

∣∣∣ ∑
1≤i≤b n

τl
c+1,i even

1
√
τl
Ti,l(f)

∣∣∣]

≤ 4c2

L∑
l=1

[( τl∑
j=τl−1+1

min{max
f∈F
‖f‖2,n,Dn∆(b j

2
c)}
)
·
√
H

+

√
τlMH√
b nτl c+ 1

]
. (2.8.34)

Note that

L∑
l=1

√
τl√

b nτl c+ 1
≤

L∑
l=1

√
τl√
n
τl

=
1√
n

L∑
l=0

τl =
1√
n

L−1∑
l=1

2l ≤ 1√
n

(2L + q) ≤ 2q√
n
. (2.8.35)

Furthermore, we have by Lemma 2.8.5 that

L∑
l=1

τl∑
j=τl−1+1

min{max
f∈F
‖f‖2,n,Dn∆(b j

2
c)} ≤

∞∑
j=2

min{max
f∈F
‖f‖2,n,Dn∆(b j

2
c)}

≤ 2V̄n(max
f∈F
‖f‖2,n)

= 2 max
f∈F

V̄n(‖f‖2,n) = 2 max
f∈F

Vn(f) (2.8.36)

where

V̄n(x) = x+

∞∑
j=1

min{x,Dn∆(j)} (2.8.37)

and the second to last equality holds true due to x 7→ V̄n(x) being increasing.
Inserting (2.8.35) and (2.8.36) into (2.8.34), we conclude that for some universal c3 > 0,

EA2 ≤ c3

(
sup
f∈F

Vn(f)
√
H +

qMH√
n

)
≤ c2

(
σ
√
H +

qMH√
n

)
. (2.8.38)

Since SWn,1 =
∑n

i=1Wi,1(f) is a sum of independent variables with |Wi,1(f)| ≤ ‖f‖∞ ≤
M and ‖Wi,0(f)‖2 ≤ 2‖f‖2 ≤ 2Vn(f) ≤ 2σ, we obtain from (2.8.32) again

EA3 ≤ c2

(
σ
√
H +

MH√
n

)
. (2.8.39)

If we insert the bounds (2.8.31), (2.8.38) and (2.8.39) into (2.8.23), we obtain the result
(2.4.2).
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We now show (2.4.3). If q∗( M
√
H√

nD∞n
)Hn ≤ 1, we have q∗( M

√
H√

nD∞n
) ∈ {1, ..., n} and thus by

(2.4.2),

Emax
f∈F

∣∣∣ 1√
n
Sn(f)

∣∣∣ ≤ c
(√

HD∞n β
(
q∗
(M√H√

nD∞n

))
+ q∗

(M√H√
nD∞n

)MH√
n

+ σ
√
H
)

≤ 2c
(
q∗
(M√H√

nD∞n

)MH√
n

+ σ
√
H
)

= 2c
(√

nM ·min
{
q∗
(M√H√

nD∞n

)H
n
, 1
}

+ σ
√
H
)
. (2.8.40)

If q∗( M
√
H√

nD∞n
)Hn ≥ 1, we note that the simple bound

Emax
f∈F

∣∣∣ 1√
n
Sn(f)

∣∣∣ ≤ 2
√
nM

≤ 2c
(√

nM min
{
q∗
(M√H√

nD∞n

)H
n
, 1
}

+ σ
√
H
)

(2.8.41)

holds true. Putting the two bounds (2.8.40) and (2.8.41) together, we obtain the result
(2.4.3).

Lemma 2.8.4. Let Assumption 2.4.2 be fulfilled for some ν ≥ 2. Then,

δf(Z,u)
ν (k) ≤ |Df,n(u)| ·∆(k),

sup
i

∥∥∥ sup
f∈F

∣∣f(Zi, u)− f(Z
∗(i−j)
i , u)

∣∣ ∥∥∥
ν
≤ D∞n (u) ·∆(k),

sup
i
‖f(Zi, u)‖ν ≤ |Df,n(u)| · C∆,

where C∆ := 4d · |LF |1 · CsXCR + Cf̄ .

Proof of Lemma 2.8.4. We have for each f ∈ F and ν ≥ 2 that

sup
i

∥∥∥f̄(Zi, u)− f̄(Z
∗(i−k)
i , u)

∥∥∥
ν

≤ sup
i

∥∥∥|Zi − Z∗(i−k)
i |sLF,s

(
R(Zi, u) +R(Z

∗(i−k)
i , u)

)∥∥∥
ν

≤ sup
i

∥∥∥∣∣Zi − Z∗(i−k)
i

∣∣s
LF,s

∥∥∥
p
p−1

ν

∥∥∥R(Zi, u) +R(Z
∗(i−k)
i , u)

∥∥∥
pν

≤ sup
i

∥∥∥∥∥∥
∞∑
j=0

LF ,j
∣∣Xi−j −X∗(i−k)

i−j
∣∣s
∞

∥∥∥∥∥∥
p
p−1

ν

(
‖R(Zi, u)‖pν +

∥∥∥R(Z
∗(i−k)
i , u)

∥∥∥
pν

)

≤ 2dCR

k∑
j=0

LF ,j(δ
X
p
p−1

νs(k − j))
s.
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This shows the first assertion. Due to

sup
f∈F

∣∣f̄(Zi, u)− f̄(Z
∗(i−k)
i , u)

∣∣ ≤ |Zi − Z∗(i−k)
i |sLF,s

(
R(Zi, u) +R(Z

∗(i−k)
i , u)

)
,

the second assertion follows similarly. The last assertion can be derived from

|f̄(z, u)| ≤ |f̄(z, u)− f̄(0, u)|+ |f̄(0, u)| ≤ |z|sLF ,s · (R(z, u) +R(0, u)) + |f̄(0, u)|,

which implies

‖f̄(Zi, u)‖ν ≤
∥∥∥ ∞∑
j=0

LF ,j |Zi−j |s∞
∥∥∥

p
p−1

ν

(∥∥R(Zi, u)
∥∥
pq

+R(0, u)
)

+ |f̄(0, u)|

≤ 2d · |LF |1 · CsX · (CR + |R(0, u)|) + |f̄(0, u)|
≤ 4d · |LF |1 · CsX · CR + Cf̄ .

Lemma 2.8.5. Let ω(k) be an increasing sequence in k. Then, for any x > 0,

∞∑
j=2

min{x,Dn∆(b j
2
c)}ω(j) ≤ 2

∞∑
j=1

min{x,Dn∆(j)}ω(2j + 1).

Especially in the case ω(k) = 1,

∞∑
j=2

min{x,Dn∆(b j
2
c)} ≤ 2

∞∑
j=1

min{x,Dn∆(j)}.

Proof of Lemma 2.8.5. We have

∞∑
j=2

min{x,Dn∆(b j
2
c)}ω(j)

=

∞∑
k=1

min{x,Dn∆(b2k
2
c)}ω(2k) +

∞∑
k=1

min{x,Dn∆(b2k + 1

2
c)}ω(2k + 1)

=
∞∑
k=1

min{x,Dn∆(k)} · {ω(2k) + ω(2k + 1)}

≤ 2
∞∑
k=1

min{x,Dn∆(k)} · ω(2k + 1).

Proof of Corollary 2.4.3. Let σ := supn∈N supf∈F Vn(f) <∞. For Q ≥ 1, define

Mn =

√
n√
H
r(
σQ1/2

D∞n
)D∞n .
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Let F̄ = supf∈F f̄ , and F (z, u) = D∞n (u) · F̄ (z, u). Then F is an envelope function of F .
We furthermore have

P( sup
i=1,...,n

F (Zi,
i

n
) > Mn) ≤ P

(( 1

n

n∑
i=1

F (Zi,
i

n
)ν
)1/ν

>
Mn

n1/ν

)
≤ n

Mν
n

· ‖F‖νν,n. (2.8.42)

Inserting the bound

‖F‖νν,n =
1

n

n∑
i=1

D∞n (
i

n
)ν‖F̄ (Zi,

i

n
)‖νν ≤ Cν∆ ·

1

n

n∑
i=1

D∞n (
i

n
)ν ≤ Cν∆ · (D∞ν,n)ν

into (2.8.42) and using r(γa) ≥ γr(a) for γ ≥ 1, a > 0 (this is similarly proven as in
Lemma 2.8.6), we obtain

P( sup
i=1,...,n

F (Zi,
i

n
) > Mn) ≤

( H

n1− 2
ν r(σQ

1/2

D∞n
)2

)ν/2
·
(C∆D∞ν,n

D∞n

)ν
≤ 1

Qν/2

( H

n1− 2
ν r( σ

D∞n
)2

)ν/2
·
(C∆D∞ν,n

D∞n

)ν
. (2.8.43)

Using the rough bound ‖f‖ν,n ≤ ‖F‖ν,n and r(a) ≤ a for a > 0 from Lemma 2.8.6, we
obtain

max
f∈F

1√
n

n∑
i=1

E[f(Zi,
i

n
)1{|f(Zi,

i
n

)|>Mn}] ≤
1

√
nMν−1

n
max
f∈F

n∑
i=1

E[|f(Zi,
i

n
)|ν ]

≤ n

Mν
n

· Mn√
n

max
f∈F
‖f‖νν,n

≤
( C2

∆H

n1− 2
ν r(σQ

1/2

D∞n
)2

)ν/2
· σQ

1/2

√
H
·
(D∞ν,n
D∞n

)ν
≤ σ

Q
ν−2

2

√
H

( C2
∆H

n1− 2
ν r( σ

D∞n
)2

)ν/2
·
(D∞ν,n
D∞n

)ν
. (2.8.44)

Let us abbreviate

Cn :=
( C2

∆H

n1− 2
ν r( σ

D∞n
)2

)ν/2
·
(D∞ν,n
D∞n

)ν
.
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By assumption, supn∈NCn <∞. By Theorem 2.4.1, (2.8.43) and (2.8.44),

P
(

max
f∈F

∣∣Gn(f)
∣∣ > Q

√
H
)

≤ P
(

max
f∈F

∣∣Gn(f)
∣∣ > Q

√
H, sup

i=1,...,n
F̄ (Zi,

i

n
) ≤M

)
+P( sup

i=1,...,n
F (Zi,

i

n
) > M)

≤ P
(

max
f∈F

∣∣Gn(max{min{f,M},−M})
∣∣ > Q

√
H/2

)
+P
(

max
f∈F

∣∣ 1√
n

n∑
i=1

E[f(Zi,
i

n
)1{|f(Zi,

i
n

)|>M}] > Q
√
H/2

)
+P( sup

i=1,...,n
F (Zi,

i

n
) > M)

≤ 2c

Q
√
H

[
σ
√
H + q∗

(
r(
σQ1/2

D∞n
)
)
r(
σQ1/2

D∞n
)D∞n

]
+
( 1

Q
ν
2

+
2σ

Q
ν
2H

)
Cn

≤ 4cσ

Q1/2
+
( 1

Q
ν
2

+
2σ

Q
ν
2H

)
Cn.

Since supn∈NCn <∞ and σ is independent of n, the assertion follows for Q→∞.

Lemma 2.8.6 (Properties of r(·)). The quantity r(·) is well-defined and for each a > 0,
r(a)

2 ≥ r(
a
2 ) and r(a) ≤ a.

Proof. The quantities q∗(·) and r(·) are well-defined since βnorm(·) is decreasing (at a
rate � q−1), r 7→ q∗(r)r is increasing (at a rate � r) and limr↓0 q

∗(r)r = 0.
Let a > 0. We show that r = 2r(a2 ) fulfills q∗(r)r ≤ a. By definition of r(a), we obtain

r(a) ≥ r = 2r(a2 ) which gives the result. Since βnorm is decreasing, q∗ is decreasing. We
conclude that

q∗(r)r = 2 · q∗(2r(a
2

))r(
a

2
) ≤ 2 · q∗(r(a

2
))r(

a

2
) ≤ 2 · a

2
= a.

The second inequality r(a) ≤ a follows from the fact that q∗(r)r is increasing and
q∗(a)a ≥ a.

2.8.3 A chaining approach which preserves continuity

In this section we provide a chaining approach which preserves continuity of the functions
inside the empirical process. Typical chaining approaches work with indicator functions
which are not suitable for the application of Theorem 2.4.1. Instead, we replace the
indicator functions by suitably chosen truncations. For m > 0, define ϕ∧m : R → R and
the corresponding “peaky” residual ϕ∨m : R→ R via

ϕ∧m(x) := (x ∨ (−m)) ∧m, ϕ∨m(x) := x− ϕ∧m(x).
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In the following, assume that for each j ∈ N0 there exists a decomposition F =⋃Nj
k=1Fjk, where (Fjk)k=1,...,Nj , j ∈ N0, is a sequence of nested partitions. For each

j ∈ N0 and k ∈ {1, ..., Nj} we choose a fixed element fjk ∈ Fjk. For j ∈ N0 we define
πjf := fjk if f ∈ Fjk.

Assume furthermore that there exists a sequence (∆jf)j∈N such that for all j ∈ N0,
supf,g∈Fjk |f − g| ≤ ∆jf . Finally, let (mj)j∈N0 be a decreasing sequence which will serve
as a truncation sequence.

For j ∈ N0 we use the decomposition

f − πjf = ϕ∧mj (f − πjf) + ϕ∨mj (f − πjf).

Since

f − πjf = f − πj+1f + πj+1f − πjf
= ϕ∧mj+1

(f − πj+1f) + ϕ∨mj+1
(f − πj+1f)

+ϕ∧mj−mj+1
(πj+1f − πjf) + ϕ∨mj−mj+1

(πj+1f − πjf), (2.8.45)

we can write

ϕ∧mj (f − πjf) = ϕ∧mj+1
(f − πj+1f) + ϕ∧mj−mj+1

(πj+1f − πjf) +R(j), (2.8.46)

where

R(j) := ϕ∧mj (f − πjf)− ϕ∧mj (ϕ
∧
mj+1

(f − πj+1f))− ϕ∧mj (ϕ
∧
mj−mj+1

(πj+1f − πjf)).

To bound R(j), we use (i) of the following elementary Lemma 2.8.7 which is proven
at the end of this subsection.

Lemma 2.8.7. Let y, x, x1, x2, x3 and m,m′ > 0 be real numbers. Then the following
assertions hold true:

(i) If |x1|+ |x2| ≤ m, then∣∣ϕ∧m(x1 + x2 + x3)− ϕ∧m(x1)− ϕ∧m(x2)
∣∣ ≤ min{|x3|, 2m}.

(ii) |ϕ∧m(x)| ≤ min{|x|,m} and if |x| < y,

|ϕ∨m(x)| ≤ ϕ∨m(y) ≤ y1{y>m}.

(iii) If F fulfills Assumption 2.4.2, then Assumption 2.4.2 also holds true for {ϕ∧m(f) :
f ∈ F} and {ϕ∨m(f) : f ∈ F}.

Because the partitions are nested, we have |πj+1f −πjf | ≤ ∆jf . By Lemma 2.8.7 and
(2.8.45), we have

|R(j)| ≤ min
{∣∣ϕ∨mj+1

(f − πj+1f) + ϕ∨mj−mj+1
(πj+1f − πjf)

∣∣, 2mj

}
≤ min

{∣∣ϕ∨mj+1
(∆j+1f)

∣∣, 2mj

}
+ min

{∣∣ϕ∨mj−mj+1
(∆jf)

∣∣, 2mj

}
.(2.8.47)
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Let τ ∈ N. Then, by iterated application of (2.8.46) and linearity of f 7→ Wi(f), we
obtain

Gn(ϕ∧m0
(f − π0f))

= Gn(ϕ∧m1
(f − π1f)) + Gn(ϕ∧m0−m1

(π1f − π0f)) + Gn(R(0))

= Gn(ϕ∧mτ (f − πτf))

+

τ−1∑
j=0

Gn(ϕ∧mj−mj+1
(πj+1f − πjf)) +

τ−1∑
j=0

Gn(R(j)), (2.8.48)

which in combination with (2.8.47) can now be used for chaining. The following lemma
provides the necessary balancing between the truncated versions of Gn(f) and the rare
events excluded. Recall that H(k) = 1 ∨ log(k) as in (1.2.4).

Lemma 2.8.8 (Compatibility lemma). If F fulfills |F| ≤ k and Assumption 2.4.2, then
supf∈F Vn(f) ≤ δ, supf∈F ‖f‖∞ ≤ m(n, δ, k) imply

Emax
f∈F

∣∣Gn(f)
∣∣ ≤ c(1 +

D∞n
Dn

)δ
√
H(k), (2.8.49)

and supf∈F Vn(f) ≤ δ implies that for each γ > 0,

√
n‖f1{f>γ·m(n,δ,k)}‖1,n ≤

1

γ

Dn
D∞n

δ
√
H(k). (2.8.50)

Proof of Lemma 2.8.8. For q ∈ N, put βnorm(q) := β(q)
q . By Theorem 2.4.1 and the

definition of r(·),

Emax
f∈F

∣∣Gn(f)
∣∣ ≤ c

(
δ
√
H(k) + q∗

(m(n, δ, k)
√
H(k)√

nD∞n

)m(n, δ, k)H(k)√
n

)
= c

(
δ
√
H(k) + D∞n q∗(r(

δ

Dn
))r(

δ

Dn
)
√
H(k)

)
= c(1 +

D∞n
Dn

)δ
√
H(k)

which shows (2.8.49). Since

‖f(Zi,
i

n
)1{f(Zi,

i
n

)>γm(n,δ,k)}‖1 ≤
1

γm(n, δ, k)
‖f(Zi,

i

n
)2‖1 =

1

γm(n, δ, k)
‖f(Zi,

i

n
)‖22,

for all f ∈ F with Vn(f) ≤ δ,

√
n‖f1{f>γm(n,δ,k)‖1,n ≤

√
n

γm(n, δ, k)
‖f‖22,n ≤

1

γ

‖f‖22,n
D∞n r( δ

Dn )

√
H(k). (2.8.51)

If ‖f‖2,n ≥ Dn∆(1), we have

Vn(f) = ‖f‖2,n + Dn
∞∑
j=1

∆(j) ≥ ‖f‖2,n + Dnβ(1). (2.8.52)
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In the case ‖f‖2,n < Dn∆(1), the fact that ∆(·) is decreasing implies that a∗ = max{j ∈
N : ‖f‖2,n < Dn∆(j)} is well-defined. We conclude that

Vn(f) = ‖f‖2,n +

∞∑
j=0

‖f‖2,n ∧ (Dn∆(j)) = ‖f‖2,n +

a∗∑
j=1

‖f‖2,n + Dn
∞∑

j=a∗+1

∆(j)

= ‖f‖2,n(a∗ + 1) + Dnβ(a∗) ≥ ‖f‖2,na∗ + β(a∗). (2.8.53)

Summarizing the results (2.8.52) and (2.8.53), we have

Vn(f) ≥ ‖f‖2,n(a∗ ∨ 1) + Dnβ(a∗ ∨ 1).

We conclude that

Vn(f) ≥ min
a∈N

[
‖f‖2,na+ Dnβ(a)

]
≥ ‖f‖2,nâ+ Dnβ(â),

where â = arg minj∈N
{
‖f‖2,n · j + Dnβ(j)

}
.

Since δ ≥ Vn(f), we have δ ≥ Dnβ(â) = Dnβnorm(â)â. Thus, βnorm(â) ≤ δ
Dnâ . By

definition of q∗, q∗( δ
Dnâ) ≤ â. Hence, q∗( δ

Dnâ) δ
Dnâ ≤

δ
Dn . By definition of r(·), r( δ

Dn ) ≥ δ
Dnâ .

We conclude with ‖f‖2,n ≤ Vn(f) ≤ δ that

‖f‖22,n
D∞n r( δ

Dn )
≤

Dnâ‖f‖22,n
D∞n δ

≤ DnVn(f)‖f‖2,n
D∞n δ

≤ Dn
D∞n
‖f‖2,n ≤

Dn
D∞n

δ. (2.8.54)

Inserting the result into (2.8.51), we finally obtain that for all f ∈ F with Vn(f) ≤ δ,

√
n‖f1{f>γm(n,δ,k)‖1,n ≤

√
n

γm(n, δ, k)
‖f‖22,n ≤

1

γ

‖f‖22,n
D∞n r( δ

Dn )

√
H(k) ≤ 1

γ

Dn
D∞n

δ
√
H(k)

which shows (2.8.50).

Proof of Lemma 2.8.7. (i) Since |x1|+ |x2| ≤ m implies |x1|, |x2| ≤ m, we have

I :=
∣∣ϕ∧m(x1 + x2 + x3)− ϕ∧m(x1)− ϕ∧m(x2)

∣∣ =
∣∣ϕ∧m(x1 + x2 + x3)− x1 − x2|.

Case 1: x1 +x2 +x3 > m. Then, since |x1|+ |x2| ≤ m, we have I = |m−x1−x2| =
m− x1 − x2 < x3 ≤ |x3|.
Case 2: x1 + x2 + x3 ∈ [−m,m]. Then I = |x1 + x2 + x3 − x1 − x2| = |x3|.
Case 3: x1+x2+x3 < −m. Then, since |x1|+|x2| ≤ m, we have I = |−m−x1−x2| =
m+ x1 + x2 < −x3 ≤ |x3|.
Furthermore, I ≤ |ϕm(x1 + x2 + x3)|+ |x1 + x2| ≤ m+m = 2m.
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(ii) The first assertion is obvious. If |x| ≤ y, we have

|ϕ∨m(x)| =


x−m, x > m

0, x ∈ [−m,m]

−x−m, x < −m

=


|x| −m, x > m

0, x ∈ [−m,m]

|x| −m, x < −m
= (|x| −m)1|x|>m

≤ (y −m)1y>m = (y −m) ∨ 0 = (y −m)1{y−m>0} ≤ y1y>m,

which shows the second assertion.

(iii) We will show that for all z, z′ ∈ RN,

|ϕ∧m(f)(z)−ϕ∧m(f)(z′)| ≤ |f(z)− f(z′)|, |ϕ∨m(f)(z)−ϕ∨m(f)(z′)| ≤ |f(z)− f(z′)|
(2.8.55)

from which the assertion follows. For real numbers ai, bi, we have

max
i
{ai} = max

i
{ai − bi + bi} ≤ max

i
{ai − bi}+ max

i
{bi},

which gives |maxi{ai} − maxi{bi}| ≤ maxi |ai − bi|. This implies the inequality
|max{a, y} −max{a, y′}| ≤ |y − y′| and therefore

|ϕ∧m(f)(z)− ϕ∧m(f)(z′)| = |(−m) ∨ (f(z) ∧m)− (−m) ∨ (f(z′) ∧m)|
≤ |f(z) ∧m− f(z′) ∧m|
= |(−f(z′)) ∨ (−m)− (−f(z)) ∨ (−m)|
≤ |f(z)− f(z′)|.

For the second inequality in (2.8.55), note that

ϕ∨m(f)(z) = (f(z)−m) ∨ 0 + (f(z) +m) ∧ 0.

Therefore,

|ϕ∨m(f)(z)−ϕ∨m(f)(z′)| =
∣∣(f(z)−m)∨0−(f(z′)−m)∨0+(f(z)+m)∧0−(f(z′)+m)∧0|.

If f(z), f(z′) ≥ m, then

|ϕ∨m(f)(z)− ϕ∨m(f)(z′)| ≤
∣∣(f(z)−m) ∨ 0− (f(z′)−m) ∨ 0| ≤ |f(z)− f(z′)|.

A similar result is obtained for f(z), f(z′) ≤ −m. If f(z) ≥ m, f(z′) < m, then

|ϕ∨m(f)(z)− ϕ∨m(f)(z′)|
≤

∣∣(f(z)−m)− (f(z′) +m) ∧ 0|

=

{
|f(z)− f(z′)− 2m| = f(z)− f(z′)− 2m ≤ f(z)− f(z′), f(z′) ≤ −m,
|f(z)−m| = f(z)−m ≤ f(z)− f(z′), f(z′) > −m

.

A similar result is obtained for f(z) ≥ m, f(z′) ≤ m, which proves (2.8.55).
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2.8.4 Proofs of Section 2.4.2

Proof of Theorem 2.4.4. In the following, we abbreviate H(δ) = H(δ,F , Vn) and N(δ) =
N(δ,F , Vn). We set δ0 = σ and δj = 2−jδ0.

For each j ∈ N0, we choose a covering by brackets Fprejk := [ljk, ujk]∩F , k = 1, ...,N(δj),
such that Vn(ujk − ljk) ≤ δj and supf,g∈Fjk |f − g| ≤ ujk − ljk =: ∆jk. We may assume
w.l.o.g. that ljk, ujk,∆jk ∈ F .

If ljk, ujk do not belong to F , we can simply define new brackets by

l̃jk(z, u) := inf
f∈[ljk,ujk]

f(z, u), ũjk(z, u) := sup
f∈[ljk,ujk]

f(z, u)

which fulfill [ljk, ujk] ∩ F = [l̃jk, ũjk] ∩ F , and

|l̃jk(z, u)− l̃jk(z′, u)| ≤ sup
f∈[ljk,ujk]

|f(z, u)− f(z′, u)|.

Thus, we can add l̃jk, ũjk to F without changing the bracketing numbers N(ε,F , ‖ · ‖)
and the validity of Assumption 2.4.2.

We now inductively construct a new nested sequence of partitions (Fjk)k of F from
(Fprejk )k in the following way: For each fixed j ∈ N0 define

{Fjk : k} := {
j⋂
i=0

Fpreiki
: ki ∈ {1, ...,N(δi)}, i ∈ {0, ..., j}}

as the intersections of all previous partitions and the j-th partition. Then, |{Fjk : k}| ≤
Nj := N(δ0) · ... · N(δj). By monotonicity of Vn we have

sup
f,g∈Fjk

|f − g| ≤ ∆jk, Vn(∆jk) ≤ δj .

In each Fjk, fix some fjk ∈ F , and define πjf := fj,ψjf where ψjf := min{i ∈
{1, ..., Nj} : f ∈ Fji}. Setting ∆jf := ∆j,ψjf and

I(σ) :=

∫ σ

0

√
1 ∨H(ε,F , Vn)dε,

we construct

τ := min
{
j ≥ 0 : δj ≤

I(σ)√
n

}
∨ 1. (2.8.56)

Let

mj :=
1

2
m(n, δj , Nj+1),

(m(·) from Lemma 2.8.8). Choose Mn = 1
2m0. We then have

E sup
f∈F

∣∣Gn(f)
∣∣ ≤ E sup

f∈F(Mn)

∣∣Gn(f)
∣∣+

1√
n

n∑
i=1

E
[
Wi(F1{F>Mn})

]
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where F(Mn) := {ϕ∧Mn
(f) : f ∈ F}. Due to Lemma 2.8.7(iii), F(Mn) still fulfills As-

sumption 2.4.2.
Since |f | ≤ g implies |Wi(f)| ≤Wi(g) and ‖Wi(g)‖1 ≤ ‖g(Zi,

i
n)‖1, it holds true that

|Gn(f)| ≤ 1√
n

n∑
i=1

∣∣Wi(f)− EWi(f)
∣∣

≤ Gn(g) +
2√
n

n∑
i=1

‖Wi(g)‖1 ≤ Gn(g) + 2
√
n‖g‖1,n.

By (2.8.47) and (2.8.48) and the fact that ‖f − π0f‖∞ ≤ 2Mn ≤ m0, we have the
decomposition

sup
f∈F
|Gn(f)| ≤ sup

f∈F
|Gn(π0f)|

+ sup
f∈F
|Gn(ϕ∧mτ (f − πτf))|

+

τ−1∑
j=0

sup
f∈F

∣∣∣Gn(ϕ∧mj−mj+1
(πj+1f − πjf))

∣∣∣
+
τ−1∑
j=0

sup
f∈F
|Gn(R(j))|

≤ sup
f∈F
|Gn(π0f)|

+
{

sup
f∈F
|Gn(ϕ∧mτ (∆τf))|+ 2

√
n sup
f∈F
‖∆τf‖1,n

}
+

τ−1∑
j=0

sup
f∈F

∣∣∣Gn(ϕ∧mj−mj+1
(πj+1f − πjf))

∣∣∣
+
τ−1∑
j=0

{
sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨mj+1

(∆j+1f)
∣∣, 2mj

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆j+1f1{∆j+1f>mj+1}‖1,n

}
+
τ−1∑
j=0

{
sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨mj−mj+1

(∆jf)
∣∣, 2mj

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆jf1{∆jf>mj−mj+1}‖1,n

}
=: R1 +R2 +R3 +R4 +R5. (2.8.57)

We now discuss the terms Ri, i ∈ {1, ..., 5} from (2.8.57). Therefore, put Cn := c(1 +
D∞n
Dn ) + Dn

D∞n
.

Since ∆jk = ujk − ljk with ljk, ujk ∈ F , the class {1
2∆jk : k ∈ {1, ...,N(δj)}} still

fulfills Assumption 2.4.2. We conclude by Lemma 2.8.7(iii) that for arbitrary m, m̃ > 0,
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the classes

{1

2
ϕ∧m(∆jk) : k ∈ {1, ...,N(δj)}},

{1

2
min{ϕ∨m(∆jk), 2m̃} : k ∈ {1, ...,N(δj)}},

{1

2
ϕ∧m(πj+1f − πjf) : k ∈ {1, ...,N(δj)}}

fulfill Assumption 2.4.2.

• Since |{π0f : f ∈ F(Mn)}| ≤ N(δ0) = N(σ), ‖π0f‖∞ ≤ Mn ≤ m(n, δ0,N(δ1)) and
Vn(π0f) ≤ σ = δ0 (by assumption, every f ∈ F fulfills Vn(f) ≤ σ), we have by
(2.8.49):

ER1 = E sup
f∈F(Mn)

|Gn(π0f)| ≤ Cnδ0

√
1 ∨ logN(δ1).

• Note that |{ϕ∧mτ (∆τf) : f ∈ F(Mn)}| ≤ Nτ . If g := ϕ∧mτ (∆τf), then ‖g‖∞ ≤
mτ ≤ m(n, δτ , Nτ+1) and Vn(g) ≤ Vn(∆τf) ≤ δτ . We conclude by (2.8.49) that:

E sup
f∈F(Mn)

|Gn(ϕ∧mτ (∆τf))| ≤ Cnδτ ·
√

1 ∨ logNτ+1. (2.8.58)

As for the second term, we have by definition of τ in (2.8.56) and the Cauchy-
Schwarz inequality:

√
n‖∆τf‖1,n ≤

√
n‖∆τf‖2,n ≤

√
nVn(∆τf) ≤

√
nδτ ≤ I(σ). (2.8.59)

From (2.8.58) and (2.8.59) we obtain

ER2 ≤ Cnδτ
√

1 ∨ logNτ+1 + 2 · I(σ).

• Since the partitions are nested, it holds true that |{ϕ∧mj−mj+1
(πj+1f − πjf) : f ∈

F(Mn)}| ≤ Nj+1. If g := ϕ∧mj−mj+1
(πj+1f − πjf), we have ‖g‖∞ ≤ mj −mj+1 ≤

mj ≤ m(n, δj , Nj+1) and

|g| ≤ |πj+1f − πjf | ≤ ∆jf.

Furthermore, Vn(g) ≤ Vn(∆jf) ≤ δj . We conclude by (2.8.49) that:

ER3 ≤
τ−1∑
j=0

E sup
f∈F(Mn)

|Gn(ϕ∧mj−mj+1
(πj+1f − πjf))| ≤ Cn

τ−1∑
j=0

δj
√

1 ∨ logNj+1.

• Note that |{min{ϕ∨mj+1
(∆j+1f), 2mj} : f ∈ F(Mn)}| ≤ Nj+1. If we set g :=

min{ϕ∨mj+1
(∆j+1f), 2mj}, we have ‖g‖∞ ≤ 2mj = m(n, δj , Nj+1) and

|g| ≤ ∆j+1f.
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By monotonicity of Vn, Vn(g) ≤ Vn(∆j+1f) ≤ δj+1 ≤ δj . We conclude by (2.8.49)
that:

τ−1∑
j=0

E sup
f∈F(Mn)

|Gn(min{ϕ∨mj+1
(∆j+1f), 2mj})| ≤ Cn

τ−1∑
j=0

δj
√

1 ∨ logNj+1.

(2.8.60)
Furthermore, Vn(∆j+1f) ≤ δj+1 and mj+1 = 1

2m(n, δj+1, Nj+2). By (2.8.50), we
have √

n‖∆j+1f1{∆j+1f>mj+1}‖1 ≤ 2δj+1

√
1 ∨ logNj+2. (2.8.61)

From (2.8.60) and (2.8.61) we obtain

ER4 ≤ (Cn + 4)
τ∑
j=0

δj
√

1 ∨ logNj+1.

• It holds true that |{min{ϕ∨mj−mj+1
(∆jf), 2mj} : f ∈ F(Mn)}| ≤ Nj+1. If g :=

min{ϕ∨mj−mj+1
(∆jf), 2mj}, we have ‖g‖∞ ≤ 2mj = m(n, δj , Nj+1) and

|g| ≤ ∆jf.

Thus, Vn(g) ≤ Vn(∆jf) ≤ δj . We conclude by (2.8.49) that:

τ−1∑
j=0

E sup
f∈F(Mn)

|Gn(min{ϕ∨mj−mj+1
(∆j+1f), 2mj})| ≤ Cn

τ−1∑
j=0

δj ·
√

1 ∨ logNj+1.

(2.8.62)
Note that Vn(∆jf) ≤ δj and

2(mj −mj+1) = m(n, δj , Nj+1)−m(n, δj+1, Nj+2)

= D∞n n1/2
[ r(

δj
Dn )√

1 ∨ logNj+1

−
r(
δj+1

Dn )√
1 ∨ logNj+2

]
≥ D∞n n1/2√

1 ∨ logNj+1

[
r(
δj
Dn

)− r(δj+1

Dn
)
]

≥ 1

2

D∞n n1/2√
1 ∨ logNj+1

r(
δj
Dn

) = mj ,

where the last inequality is due to Lemma 2.8.6. By (2.8.50) we have

√
n‖∆jf1{∆jf>mj−mj+1}‖1,n ≤

√
n‖∆jf1{∆jf>

mj
2
}‖1,n ≤ 4δj

√
1 ∨ logNj+1

(2.8.63)
keeping in mind that mj = 1

2m(n, δj , Nj+1) in the last inequality. From (2.8.62)
and (2.8.63) we obtain

R5 ≤ (Cn + 8)
τ−1∑
j=0

δj
√

1 ∨ logNj+1.
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Summarizing the bounds for Ri, i = 1, ..., 5, we obtain that for some universal constant
c̃ > 0,

E sup
f∈F(Mn)

∣∣∣Gn(f)
∣∣∣ ≤ c̃ · Cn[ τ∑

j=0

δj
√

1 ∨ logNj+1 + I(σ)
]
. (2.8.64)

We have (1 ∨ logNj)
1/2 =

(
1 ∨

∑j
i=0 logN(δi)

)1/2
≤
(∑j

i=0(1 ∨ H(δi))
)
≤
∑j

i=0(1 ∨
H(δi))

1/2, whence

τ∑
j=0

δj
√

1 ∨ logNj+1 ≤
∞∑
j=0

δj

j∑
i=0

√
1 ∨H(δi+1) ≤

∞∑
i=0

( ∞∑
j=i

δj

)√
1 ∨H(δi+1)

= 2

∞∑
i=0

δi
√

1 ∨H(δi+1) ≤ 4

∞∑
i=0

δi+1

√
1 ∨H(δi+1). (2.8.65)

Since H is increasing, we obtain

∞∑
i=0

δi+1

√
1 ∨H(δi+1) ≤

∞∑
i=0

δi
√

1 ∨H(δi) = 2
∞∑
i=0

δi+1

√
1 ∨H(δi)

= 2
∞∑
i=0

∫ δi

δi+1

√
1 ∨H(δi)dε

≤ 2
∞∑
i=0

∫ δi

δi+1

√
1 ∨H(ε)dε = 2

∫ σ

0

√
1 ∨H(ε)dε = 2 · I(σ). (2.8.66)

Inserting (2.8.66) into (2.8.65) and then into (2.8.64), yields the statement.

Proof of Corollary 2.4.5. Define F̃ := {f − g : f, g ∈ F}. It can easily be seen that
N(ε, F̃ , Vn) ≤ N( ε2 ,F , Vn)2 (cf. van der Vaart [1998], Theorem 19.5), thus

H(ε, F̃ , Vn) ≤ 2H(
ε

2
,F , Vn) (2.8.67)

Let σ > 0. Define

F (z, u) := 2D∞n (u) · F̄ (z, u), F̄ (z, u) := sup
f∈F
|f̄(z, u)|.

Then obviously, F is an envelope function of F̃ .
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By Markov’s inequality, Theorem 2.4.4 and (2.8.67),

P
(

sup
Vn(f−g)≤σ, f,g∈F

|Gn(f)−Gn(g)| ≥ η
)

≤ 1

η
E sup
Vn(f−g)≤σ, f,g∈F

|Gn(f)−Gn(g)|

=
1

η
E sup
f̃∈F̃ ,Vn(f̃)≤σ

|Gn(f̃)|

≤ c̃

η

[
(1 +

D∞n
Dn

+
Dn
D∞n

)

∫ σ

0

√
1 ∨H(ε, F̃ , Vn)dε+

√
n
∥∥F1{F> 1

4
m(n,σ,N(σ

2
))}
∥∥

1

]
≤ c̃

η

[
2
√

2(1 +
D∞n
Dn

+
Dn
D∞n

)

∫ σ/2

0

√
1 ∨H(u,F , Vn)du

+
4
√

1 ∨H(σ2 )

r( σ
Dn )

∥∥F 2
1{F> 1

4
n1/2 r(σ)√

1∨H(σ2 )
}

∥∥
1,n

]
.

The first term converges to 0 by (2.4.7) and (2.4.8) for σ → 0 (uniformly in n).
We now discuss the second term. The continuity conditions from Assumption 2.4.2

and Assumption 2.3.2 transfer to F̄ by the inequality

|F̄ (z1, u1)− F̄ (z2, u2)| = | sup
f∈F

f̄(z1, u1)− sup
f∈F

f̄(z2, u2)| ≤ sup
f∈F
|f(z1, u1)− f(z2, u2)|

We therefore have, as in Lemma 2.8.3(ii), for all u, u1, u2, v1, v2 ∈ [0, 1],

‖F̄ (Zi, u)− F̄ (Z̃i(
i

n
), u)‖2 ≤ Ccont · n−αs, (2.8.68)

‖F̄ (Zi(v1), u1)− F̄ (Z̃i(v2), v2)‖2 ≤ Ccont ·
(
|v1 − v2|αs + |u1 − u2|αs

)
. (2.8.69)

Put cn = 1
8

n1/2

supi=1,...,nD
∞
n ( i

n
)

r(σ)√
1∨H(σ

2
)
. Then by Lemma 2.8.1(ii) and (2.8.68),

‖F 2
1{F> 1

4
n1/2 r(σ)√

1∨H(σ2 )
}‖1,n

≤ 4

n

n∑
i=1

D∞n (
i

n
)2 · E

[
F̄ (Zi,

i

n
)2
1{|F̄ (Zi,

i
n

)|>cn}

]
≤ 16

n

n∑
i=1

D∞n (
i

n
)2 · E

[
F̄ (Z̃i(

i

n
),
i

n
)2
1{|F̄ (Z̃i(

i
n

), i
n

)|>cn}

]
+16Ccont · n−αs · (D∞n )2. (2.8.70)

Put W̃i(u) := F̄ (Z̃i(u), u) and an(u) := (D∞n (u))2. By (2.8.69), ‖W̃i(u1) − W̃i(u2)‖2 ≤
2Ccont|u1 − u2|αs. By the assumptions on Df,n(·) we can derive that cn → ∞ and
lim supn→∞

1
n

∑n
i=1 |an( in)| = lim supn→∞(D∞n )2 <∞. We conclude with Lemma 2.8.2(i)

that
16

n

n∑
i=1

D∞n (
i

n
)2 · E

[
F̄ (Z̃i(

i

n
),
i

n
)2
1{|F̄ (Z̃i(

i
n

), i
n

)|>cn}

]
→ 0,
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that is, the first summand in (2.8.70) tends to 0. Since lim supn→∞D∞n <∞, we obtain
that (2.8.70) tends to 0.

2.8.5 Proofs of Section 2.5

Proof of Lemma 2.5.2. Put Dv,n(u) :=
√
hKh(u− v). From (A1) and Assumption 2.3.1

we obtain ∆(k) = O(δX2M (k)), CR = 1 + kmax{CX , 1}2M .
Since K is Lipschitz continuous and (A2) holds true, we have

sup
|v−v′|≤n−3,|θ−θ′|2≤n−3

∣∣(∇jθLn,h(v, θ)− E∇jθLn,h(v, θ)
)

−
(
∇jθLn,h(v′, θ′)− E∇jθLn,h(v′, θ′)

)∣∣
∞

≤ sup
|v−v′|≤n−3,|θ−θ′|2≤n−3

CR
h2

[
LK |v − v′|+ CΘ|θ − θ′|2

]
× 1

n

n∑
i=k

(
1 + |Zi|M1 + E|Zi|M1

)
= Op(n

−1).

Let Θn be a grid approximation of Θ such that for any θ ∈ Θ, there exists some
θ′ ∈ Θn such that |θ − θ′|2 ≤ n−3. Since Θ ⊂ Rd, it is possible to choose Θn such that
|Θn| = O(n−6d). Furthermore, define Vn := {in−3 : i = 1, ..., n} as an approximation of
[0, 1].

As in Example 2.5.1, Corollary 2.4.3 applied to

F ′j = {fv,θ : θ ∈ Θn, v ∈ Vn}

yields for j ∈ {0, 1, 2} that

sup
v∈[h

2
,1−h

2
]

∣∣∇jθLn,h(v, θ)− E∇jθLn,h(v, θ)
∣∣
∞ = Op

(
τn
)
. (2.8.71)

Put L̃n,h(v, θ) := 1
n

∑n
i=1Kh(i/n− v)`θ(Z̃i(v)). With (A1) it is easy to see that∣∣E∇jθLn,h(v, θ)− E∇jθL̃n,h(v, θ)

∣∣
∞

≤
djΘCR
n

n∑
i=1

|Kh(i/n− v)| · ‖|Zi − Z̃i(v)|1‖M

×
(
1 + ‖|Zi|1‖M−1

M + ‖|Z̃i(v)|1‖M−1
M

)
≤ djΘCR|K|∞CX(1 + 2CM−1

X )
(
n−1 + h

)
. (2.8.72)

Finally, since K has bounded variation and
∫
K(u)du = 1, uniformly in v ∈ [h2 , 1−

h
2 ] it

holds true that

E∇jθL̃n,h(v, θ) =
1

n

n∑
i=1

Kh(i/n−v)E∇jθ`θ(Z̃1(v)) = E∇jθ`θ(Z̃1(v))+O((nh)−1). (2.8.73)
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From (2.8.71), (2.8.72) and (2.8.73) we obtain

sup
v∈[h

2
,1−h

2
]

sup
θ∈Θ

∣∣∇jθLn,h(v, θ)− E∇jθ`θ(Z̃1(v))
∣∣
∞ = Op(τ

(j)
n ) (2.8.74)

where

τ (j)
n := τn + (nh)−1 + h, j ∈ {0, 2}, τ (1)

n := τn + (nh)−1 +Bh.

By (A3) and (2.8.74) for j = 0, we obtain via standard arguments that if τ
(0)
n = o(1),

sup
v∈[h

2
,1−h

2
]

∣∣θ̂n,h(v)− θ0(v)
∣∣
∞ = op(1).

Since θ̂n,h(v) is a minimizer of θ 7→ Ln,h(v, θ) and `θ is twice continuously differentiable,
we have the representation

θ̂n,h(v)− θ0(v) = −∇2
θLn,h(v, θ̄v)

−1∇θLn,h(v, θ0(v)) (2.8.75)

where θ̄v ∈ Θ fulfills |θ̄v − θ0(v)|∞ ≤ |θ̂n,h(v)− θ0(v)|∞ = op(1).
By (A2), we have∣∣E∇2

θ`θ(Z̃0(v))
∣∣
θ=θ0(v)

− E∇2
θ`θ(Z̃0(v))

∣∣
θ=θ̄v

∣∣
∞ = O(|θ0(v)− θ̄v|2) = op(1)

and thus with (2.8.74),

sup
v∈[h

2
,1−h

2
]

∣∣∇2
θLn,h(v, θ̄v)− E∇2

θ`θ(Z̃1(v))
∣∣
θ=θ0(v)

∣∣
∞ = Op(τ

(2)
n ) + op(1). (2.8.76)

By (A3) and the dominated convergence theorem, E∇θ`(Z̃0(v)) = ∇θE`(Z̃0(v)) = 0. By
(2.8.74),

sup
v∈[h

2
,1−h

2
]

∣∣∇θLn,h(v, θ0(v))
∣∣
∞ = sup

v∈[h
2
,1−h

2
]

∣∣∇θLn,h(v, θ0(v))− E∇θ`(Z̃0(v))
∣∣
∞

= Op(τ
(1)
n ). (2.8.77)

Inserting (2.8.76) and (2.8.77) into (2.8.75), we obtain

sup
v∈[h

2
,1−h

2
]

∣∣θ̂n,h(v)− θ0(u)
∣∣
∞ = Op(τ

(1)
n ).

This yields an improved version of (2.8.76):

sup
v∈[h

2
,1−h

2
]

∣∣∇2
θLn,h(v, θ̄v)− E∇2

θ`θ(Z̃1(v))
∣∣
θ=θ0(v)

∣∣
∞ = Op(τ

(2)
n ). (2.8.78)

Inserting (2.8.77) and (2.8.78) into (2.8.75), we obtain the assertion.
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2.8.6 Proofs of Section 2.6

We now provide the proofs for the large deviation inequalities. We generally consider
Gn(f) = 1√

n
Sn(f), see Subsection 2.8.2.

Proof of Theorem 2.6.1. The statement of the theorem is obtained for Wi(f) = f(Zi,
i
n).

Let V ◦n (f) = ‖f‖2,n +
∑∞

j=1 min{‖f‖2,n,Dn∆(j)}ϕ(j)1/2, where ϕ(j) = log log(eej).

The term V ◦n (f) serves as a lower bound for Ṽn(f).
For q ∈ {1, ..., n}, we use decomposition (2.8.23) without the maximum. The set Bn(q)

is defined below in (2.8.85). We then have

P
(∣∣ 1√

n
Sn(f)

∣∣ > x,Bn(q)
)

≤ P
( 1√

n

∣∣Sn(f)− Sn,q(f)
∣∣ > x/4, Bn(q)

)

+P
( L∑
l=1

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i even

1
√
τl
Ti,l(f)

∣∣∣ > x/4
)

+ P
( L∑
l=1

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i odd

1
√
τl
Ti,l(f)

∣∣∣ > x/4
)

+P
( 1√

n

∣∣Sn,1(f)
∣∣ > x/4

)
=: A1 +A2 +A3.

Define for l ∈ N,

g1(l) =
√

log(l + 1) + 1, g2(l) = log(l + 1) + 1, a(l) = l1/2 log(el)1/2ϕ(l),

and for j ∈ N, γ(j) = log2(j) + 1. By elementary calculations, we see that there exists a
universal constant c ≥ 1 such that

L∑
l=1

τlg2(l) ≤
L∑
l=1

2

τl∑
j=τl−1+1

g2(l) ≤ 2

q∑
j=1

L∑
l=1

1{τl−1+1≤j≤τl}g2(l)

≤ 2

q∑
j=1

g2(γ(j)) ≤ 2q · g2(γ(q)) ≤ 8Φ(q).

The third to last inequality is due to 2l−1+1 = τl−1+1 ≤ j ⇐⇒ l ≤ log2(j−1)+1 ≤ γ(j)
and the monotonicity of g. In a similar fashion,

L∑
l=1

g1(l)

τl∑
j=τl−1+1

min{‖f‖2,n,Dn∆(b j
2
c)}

≤
q∑
j=1

min{‖f‖2,n,Dn∆(b j
2
c)} ·

L∑
l=1

1{τl−1+1≤j≤τlg1(l)

≤
q∑
j=1

min{‖f‖2,n,Dn∆(b j
2
c)}g1(γ(j)) ≤ 4V ◦n (f)
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by g1(γ(j)) ≤ 2ϕ(j)1/2 and Lemma 2.8.5.
Therefore,

x

4
=

x

8
+
x

8
=

x

32V ◦n (f)

L∑
l=1

g1(l)

τl∑
j=τl−1+1

min{‖f‖2,n,Dn∆(b j
2
c)}+

x

64Φ(q)

L∑
l=1

τlg2(l)

=

L∑
l=1

y1(l) +

L∑
l=1

y2(l),

where y1(l) := x
32V ◦(f)g1(l)

∑τl
j=τl−1+1 min{‖f‖2,n,Dn∆(b j2c)}, y2(l) = x

64Φ(q)τlg2(l).
We now use a standard Bernstein inequality for independent random variables: If

MQ, σQ > 0 are constants and Qi, i = 1, ...,m mean-zero independent variables with
|Qi| ≤MQ, ( 1

m

∑m
i=1 ‖Qi‖22)1/2 ≤ σQ, then for any z > 0,

P
( 1√

m

∣∣∣ m∑
i=1

[
Qi − EQi

]∣∣∣ > z
)
≤ 2 · exp

(
− 1

2

z2

σ2
Q + 2

3
MQz√
m

)
. (2.8.79)

Using the bound (2.8.33), 1√
τl
|Ti,l(f)| ≤ 2

√
τl‖f‖∞ ≤ 2

√
τlM and the elementary

inequality 1
2 min{ab ,

a
c} ≤

a
b+c ≤ min{ab ,

a
c} we obtain

P
( L∑
l=1

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i even

1
√
τl
Ti,l(f)

∣∣∣ > x

4

)

≤
L∑
l=1

P
(∣∣∣ 1√

n
τl

b n
τl
c+1∑

i=1
i even

1
√
τl
Ti,l(f)

∣∣∣ > y1(l) + y2(l)
)

≤ 2
L∑
l=1

exp
(
− 1

4
min

{ (y1(l) + y2(l))2(∑τl
j=τl−1+1 min{‖f‖2,n,Dn∆(b j2c)}

)2 ,
y1(l) + y2(l)

2
3

√
τlM√
n
τl

})

≤ 2

L∑
l=1

exp
(
− 1

4
min

{ y1(l)2(∑τl
j=τl−1+1 min{‖f‖2,n,Dn∆(b j2c)}

)2 ,
y2(l)

2
3

√
τlM√
n
τl

})

= 2
L∑
l=1

exp
(
− 1

4
min

{ x2g1(l)2

210V ◦n (f)2
,
xg2(l)

27

3
MΦ(q)√

n

})

≤ 2

L∑
l=1

exp
(
− x2g1(l)2

212V ◦n (f)2

)
+ 2

L∑
l=1

exp
(
− xg2(l)

29

3
MΦ(q)√

n

)
. (2.8.80)
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We now discuss the summands in (2.8.80). If x >
√

2 · 26V ◦n (f),

( L∑
l=1

exp
(
− x2g1(l)2

212V ◦n (f)2

))
exp

( x2

212V ◦n (f)2

)
=

L∑
l=1

exp
(
− log(l + 1) ·

( x

26V ◦n (f)

)2)
≤

L∑
l=1

(l + 1)
−( x

26V ◦(f)
)2

≤ π2

6
.

Similarly, if x > 210

3
MΦ(q)√

n
,

( L∑
l=0

exp
(
− xg2(l)

29

3
MΦ(q)√

n

))
exp

( x
29

3
MΦ(q)√

n

)
≤ π2

6
.

We conclude from (2.8.80): If

x > max{
√

2 · 26V ◦n (f),
210

3

MΦ(q)√
n
}, (2.8.81)

then

P
( L∑
l=1

∣∣∣ 1√
n
τl

b n
τl
c+1∑

i=1
i even

1
√
τl
Ti,l(f)

∣∣∣ > x

4

)

≤ π2

3

[
exp

(
− x2

212V ◦n (f)2

)
+ exp

(
− x

29

3
MΦ(q)√

n

)]
≤ 2π2

3
e2 exp

(
−min

{ x2

212V ◦n (f)2
,

x
29

3
MΦ(q)√

n

})
, (2.8.82)

where in the last step we added the factor e2 for convenience with regards to the next
step of the proof. If (2.8.81) is not fulfilled, then either x ≤

√
2·26V ◦n (f) or x ≤ 210

3
MΦ(q)√

n
.

The upper bound (2.8.82) then still holds true since x ≤
√

2 · 26V ◦n (f) implies

exp
(
−min

{ x2

212V ◦n (f)2
,

x
29

3
MΦ(q)√

n

})
≥ exp

(
− x2

212V ◦n (f)2

)
≥ exp(−2)

and the left hand side of (2.8.82) is ≤ 1 since it is a probability. A similar bound is valid

for x ≤ 210

3
MΦ(q)√

n
. Thus, (2.8.82) holds true for all x > 0.

We therefore obtain

A2 ≤
4π2e2

3
· exp

(
− 1

2

x2

211V ◦n (f)2 + 28

3
MΦ(q)x√

n

)
. (2.8.83)
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Since ‖Wi(f)‖2 ≤ ‖f(Zi,
i
n)‖2 and ‖Wi(f)‖∞ ≤ ‖f‖∞ ≤M , we obtain from (2.8.79)

A3 ≤ 2 exp
(
− 1

2

x2

24‖f‖22,n + 23

3
Mx√
n

)
. (2.8.84)

Since 1 ≤ Φ(q) and ‖f‖2,n ≤ V ◦n (f), this yields a similar bound as (2.8.83).
We now discuss A1. Write

1√
n

(Sn(f)−Sn,q(f)) =

∞∑
j=q

1√
n

(Sn,j+1(f)−Sn,j(f)) =

∞∑
j=q

1√
n

n∑
i=1

(Wi,j+1(f)−Wi,j(f)).

Put

Ωn(j) := {sup
f∈F

1

n

n∑
i=1

E[(Wi,j+1(f)−Wi,j(f))2|Ai−1] ≤ (
MΦ(q)

β̃(q)
√
n

)2∆(j)2a(j)2g2(j)}

∩{sup
f∈F

sup
i=1,...,n

|Wi,j+1(f)−Wi,j(f)| ≤ 2
MΦ(q)

β̃(q)
∆(j)a(j)}

and

Bn(q) :=
∞⋂
j=q

Ωn(j). (2.8.85)

Note that

A1 ≤ P
( 1√

n

∣∣Sn(f)− Sn,q(f)
∣∣ > x

4
,

∞⋂
j=q

Ωn(j)
)
. (2.8.86)

Here, Wi,j+1(f)−Wi,j(f) is a martingale difference with respect to Ai. Furthermore,

∞∑
j=q

∆(j)a(j)g2(j) ≤ 4

∞∑
j=q

∆(j)j1/2 log(ej)2 = 4β̃(q).

By Freedman’s Bernstein-type inequality for martingales (cf. Freedman [1975]) we have
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for x ≥ 24MΦ(q)√
n

,

P
( 1√

n

∣∣Sn(f)− Sn,q(f)
∣∣ > x

4
,

∞⋂
j=q

Ωn(j)
)

≤
∞∑
k=q

P
( 1√

n

∣∣∣ n∑
i=1

(Wi,j+1(f)−Wi,j(f))
∣∣∣ > x

24

∆(j)a(j)g2(j)

β̃(q)
,Ωn(j)

)

≤ 2

∞∑
k=q

exp
(
− 1

2

( x
24

∆(j)a(j)g2(j)

β̃(q)
)2

( MΦ(q)

β̃(q)
√
n

)2∆(j)2a(j)2g2(j) + 2
3
MΦ(q)∆(j)a(j)

β̃(q)
√
n

· x
24

∆(j)a(j)g2(j)

β̃(q)

)

= 2

∞∑
k=q

exp
(
− 1

2

x2g2(j)2

28(MΦ(q)√
n

)2g2(j) + 25

3
MΦ(q)xg2(j)√

n

)
= 2

∞∑
k=q

exp
(
− g2(j)

4
min

{( x
24MΦ(q)√

n

)2
,
( x

24MΦ(q)√
n

)})
≤ 2

∞∑
k=q

exp
(
− g2(j)x

26MΦ(q)√
n

)
.

(2.8.87)

We conclude that for x > 27MΦ(q)√
n

,

( ∞∑
j=q

exp
(
− g2(j)x

26MΦ(q)√
n

))
· exp

( x

26MΦ(q)√
n

)
≤
∞∑
j=q

(j + 1)
−( x

24MΦ(q)√
n

)

≤ π2

6
,

and thus (with an additional factor e2),

A1 ≤ P
( 1√

n

∣∣Sn(f)− Sn,q(f)
∣∣ > x

4
,
∞⋂
j=q

Ωn(j)
)
≤ π2

3
e2 exp

(
− x

24MΦ(q)√
n

)
. (2.8.88)

In the case x ≤ 27MΦ(q)√
n

, we have

π2

3
e2 exp

(
− x

26MΦ(q)√
n

)
≥ π2

3
≥ 1,

thus (2.8.88) holds true for all x > 0.
Finally, since g2(j) ≥ 1, we have

Ωn(j) ⊂ { 1

n

n∑
i=1

E[sup
f∈F

∣∣Wi,j+1(f)−Wi,j(f)
∣∣2|Ai−1] ≤ (

MΦ(q)

β̃(q)
√
n

)2∆(j)2a(j)2}

∩{
( n∑
i=1

sup
f∈F
|Wi,j+1(f)−Wi,j(f)|2

)1/2
≤ 2

MΦ(q)

β̃(q)
∆(j)a(j)},
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thus we obtain by Markov’s inequality as in (2.8.30) that

P(Ωn(j)c) ≤
(√nβ̃(q)

MΦ(q)

)2 1

∆(j)2a(j)2

1

n

n∑
i=1

∥∥∥ sup
f∈F

∣∣Wi,j+1(f)−Wi,j(f)
∣∣∥∥∥2

2

+
( β̃(q)

2MΦ(q)

)2 1

∆(j)2a(j)2

n∑
i=1

∥∥∥ sup
f∈F

∣∣Wi,j+1(f)−Wi,j(f)
∣∣∥∥∥2

2

≤ 2
( β̃(q)

√
n

MΦ(q)

)2 (D∞n )2

a(j)2
.

Therefore,

P(Bn(q)c) ≤ P
( ∞⋃
j=q

Ωn(j)c
)
≤ 2
(D∞n β̃(q)

√
n

MΦ(q)

)2
∞∑
k=q

1

a(j)2
. (2.8.89)

Note that

∞∑
j=q+1

1

a(j)2
≤

∞∑
j=q+1

∫ j

j−1

1

a(j)2
dx

≤
∫ ∞
q

1

a(x)2
dx ≤ 2

∫ ∞
q

1

x log(eex) log(log(eex))
dx =

2

log(log(eeq))
,

so that
∞∑
k=q

1

a(j)2
=

1

a(q)2
+

∞∑
j=q+1

1

a(j)2
≤ 3

ϕ(q)
.

Summarizing the bounds (2.8.83), (2.8.84), (2.8.88) and (2.8.89) and using the fact that

V ◦n (f) = ‖f‖2,n +
∞∑
j=1

min{‖f‖2,n,Dn∆(j)}ϕ(j)1/2 ≤ Ṽn(f),

we obtain (2.6.1).
We now show (2.6.2) by a case distinction. We abbreviate q̃∗ = q̃∗( M√

nD∞n y
). In the case

Φ(q̃∗) 1
n ≤ 1, we have q̃∗ ∈ {1, ..., n}, and thus by (2.6.1),

P
( 1√

n
|Sn(f)| > x,Bn(q̃∗)

)
≤ c0 exp

(
− 1

c1

x2

Ṽn(f)2 + MΦ(q̃∗)√
n

x

)
and, by definition of q̃∗,

P(Bn(q̃∗)c) ≤ 4
( β̃(q̃∗)

Φ(q̃∗)
· D
∞
n

√
n

M

)2
≤ 4

y2
.
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In case of Φ(q̃∗) 1
n > 1, we obviously have

P
( 1√

n
|Sn(f)| > x

)
≤ P(M

√
n > x) ≤ c0 exp

(
− 1

c1

x

M
√
n

)
≤ c0 exp

(
− 1

c1

x
MΦ(q̃∗)√

n

)
≤ c0 exp

(
− 1

c1

x2

Ṽ (f)2 + MΦ(q̃∗)√
n

x

)
,

and the assertion follows without any restricting set Bn(q) We can therefore choose q
arbitrarily.

Lemma 2.8.9. Let F be a class of functions in the setting of Lemma 3.5.2. Then there
exist universal constants c0, c1 > 0 such that the following holds: For each q ∈ {1, ..., n}
there exists a set B

(2)
n (q) independent of f ∈ F such that for all x > 0,

P
( 1

n

∣∣Sn(f)
∣∣ > x,B(2)

n (q)
)
≤ c0 exp

(
− 1

c1

x
M2Φ(q)

n

·min
{ x

‖f‖2,nVn(f)
, 1
})

(2.8.90)

and

P(B(2)
n (q)c) ≤ n(D∞n )2

M2
· C∆

β(q)

Φ(q)
.

Define q̃∗(z) = min{q ∈ N : β(q) ≤ Φ(q)x}. Then for any x > 0, y > 0,

P
( 1

n

∣∣Sn(f)
∣∣ > x,B(2)

n (q̃∗(
M2

n(D∞n )2y2
))
)

≤ c0 exp
(
− 1

c1

x
M2

n Φ(q̃∗( M2

n(D∞n )2y2 ))
·min

{ x

‖f‖2,nVn(f)
, 1
})

(2.8.91)

and P(B
(2)
n (q̃∗( M2

n(D∞n )2y2 ))c) ≤ C∆
y2 .

Proof of Lemma 2.8.9. We use a similar argument as in Theorem 2.6.1, especially we
make use of the decomposition (2.8.23).

The set B
(2)
n (q) is defined below in (2.8.97). We then have

P
(∣∣ 1
n
Sn(f)

∣∣ > x,B(2)
n (q)

)
≤ P

( 1

n

∣∣Sn(f)− Sn,q(f)
∣∣ > x/4, B(2)

n (q)
)

+P
( L∑
l=1

∣∣∣ 1
n
τl

b n
τl
c+1∑

i=1
i even

1

τl
Ti,l(f)

∣∣∣ > x/4
)

+ P
( L∑
l=1

∣∣∣ 1
n
τl

b n
τl
c+1∑

i=1
i odd

1

τl
Ti,l(f)

∣∣∣ > x/4
)

+P
( 1

n

∣∣Sn,1(f)
∣∣ > x/4

)
=: A1 +A2 +A3.
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As in the proof of Theorem 2.6.1, we see that with g2(l) = log(l + 1) + 1,

L∑
l=1

τlg2(l) ≤ 8Φ(q).

Therefore,

x

4
=

x

8
+
x

8
=

x

8Vn(f)

L∑
l=1

τl∑
j=τl−1+1

min{‖f‖2,n,Dn∆(j)}+
x

64Φ(q)

L∑
l=1

τlg2(l)

=

L∑
l=1

y1(l) +

L∑
l=1

y2(l)

where y1(l) := x
8Vn(f)

∑τl
j=τl−1+1 min{‖f‖2,n,Dn∆(j)}, y2(l) = x

64Φ(q)τlg2(l).
By Lemma 3.5.3, if MQ, σQ > 0 are constants and Qi, i = 1, ...,m mean-zero indepen-

dent variables with |Qi| ≤MQ, 1
m

∑m
i=1 ‖Qi‖1 ≤ σQ, then for any z > 0,

P
( 1√

m

∣∣∣ m∑
i=1

[
Qi − EQi

]∣∣∣ > z
)
≤ 2 · exp

(
− 1

2

z2

σQ
MQ

m + 2
3
MQz
m

)
. (2.8.92)

Using the bound (3.5.10) combined with (3.5.13), 1
τl
|Ti,l(f)| ≤ 2‖f‖2∞ ≤ 2M2 and the

elementary inequalities 1
2 min{ab ,

a
c} ≤

a
b+c ≤ min{ab ,

a
c} and (a+ b)2 ≥ 4ab, we obtain

P
( L∑
l=1

∣∣∣ 1
n
τl

b n
τl
c+1∑

i=1
i even

1

τl
Ti,l(f)

∣∣∣ > x

4

)

≤
L∑
l=1

P
(∣∣∣ 1

n
τl

b n
τl
c+1∑

i=1
i even

1

τl
Ti,l(f)

∣∣∣ > y1(l) + y2(l)
)

≤ 2

L∑
l=1

exp
(
− 1

4
min

{ (y1(l) + y2(l))2

‖f‖2,n
∑τl

j=τl−1+1 min{‖f‖2,n,Dn∆(j)} · M2
n
τl

,

y1(l) + y2(l)
2
3
M2
n
τl

})

≤ 2

L∑
l=1

exp
(
− 1

4
· y2(l)

M2
n
τl

min
{ 4y1(l)

‖f‖2,n
∑τl

j=τl−1+1 min{‖f‖2,n,Dn∆(j)}
,

1
2
3

})

≤ 2

L∑
l=1

exp
(
− xg2(l)

29M
2Φ(q)
n

·min
{ x

‖f‖2,nVn(f)
, 1
})
. (2.8.93)
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If x is such that c(x) := x

29M
2Φ(q)
n

·min
{

x
‖f‖2,nVn(f) , 1

}
≥ 2, then

( L∑
l=1

exp
(
− g2(l)c(x)

))
· exp

(
− c(x)

)
=

L∑
l=1

exp
(
− log(l + 1)c(x)

)
≤

L∑
l=1

(l + 1)−c(x) ≤ π2

6
.

Insertion into (2.8.93) leads to

P
( L∑
l=1

∣∣∣ 1
n
τl

b n
τl
c+1∑

i=1
i even

1

τl
Ti,l(f)

∣∣∣ > x

4

)
≤ π2

3
· e2 exp(−c(x)). (2.8.94)

In case c(x) < 2, the right hand side of (2.8.94) is ≥ 1. Thus, (2.8.94) holds true for all
x > 0.

We therefore obtain

A2 ≤
2π2e2

3
· exp

(
− 1

29
· x
M2Φ(q)

n

·min
{ x

‖f‖2,nVn(f)
, 1
})
. (2.8.95)

Since ‖Wi(f)‖1 ≤ ‖f(Zi,
i
n)‖22 and ‖Wi(f)‖∞ ≤ ‖f‖2∞ ≤M2, we obtain from (2.8.92),

A3 ≤ 2 exp
(
− 1

2

x2

‖f‖22,n · M
2

n + 2
3
M2x
n

)
≤ 2 exp

(
− 1

2

x
M2

n

·min
{ x

‖f‖22,n
, 1
})
. (2.8.96)

Since 1 ≤ Φ(q) and ‖f‖2,n ≤ Vn(f), this yields a similar bound as (2.8.95).
We now discuss A1. Put

B(2)
n (q) := {sup

f∈F

1

n
|Sn(f)− Sn,q(f)| ≤ M2Φ(q)

n
}. (2.8.97)

Then with Markov’s inequality and using the same calculation as in (3.5.17),

P(B(2)
n (q)c) ≤ n

M2Φ(q)
·
∥∥ sup
f∈F

1

n
|Sn(f)− Sn,q(f)|

∥∥
1

≤ n

M2Φ(q)
·
∞∑
k=q

1

n

n∑
i=1

∥∥ sup
f∈F
|Wi,j+1(f)−Wi,j(f)|

∥∥
1

≤ n

M2Φ(q)
· (D∞n )2C∆β(q). (2.8.98)

Furthermore,

A1 = P
( 1

n
|Sn(f)− Sn,q(f)| > x

4
, B(2)

n (q)
)

= 1
{M

2Φ(q)
n

>x
4
}
≤ e · exp

(
− x

4M
2Φ(q)
n

)
. (2.8.99)
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Summarizing the bounds (2.8.95), (2.8.96), (2.8.99) and (2.8.98), we obtain the result
(2.8.90).

We now show (2.8.91) by a case distinction. Abbreviate q̃∗ = q̃∗( M2

n(D∞n )2y2 ). In the case

Φ(q̃∗) 1
n ≤ 1, we have q̃∗ ∈ {1, ..., n} and thus by (2.8.90),

P
( 1

n
|Sn(f)| > x,Bn(q̃∗)

)
≤ c0 exp

(
− 1

c1

x
M2Φ(q̃∗)

n

·min
{ x

‖f‖2,nV (f)
, 1
})

and, by definition of q̃∗,

P(Bn(q̃∗)c) ≤ (D∞n )2n

M2
· C∆

β(q̃∗)

Φ(q̃∗)
≤ C∆

y2
.

The assertion follows with B
(2)
n (M,y) = B

(2)
n (q̃∗).

In the case Φ(q̃∗) 1
n > 1, we obviously have

P
( 1

n
|Sn(f)| > x

)
≤ P(M2 > x) ≤ c0 exp

(
− 1

c1

x

M2

)
≤ c0 exp

(
− 1

c1

x
M2Φ(q̃∗)

n

)
≤ c0 exp

(
− 1

c1

x
M2Φ(q̃∗)

n

·min
{ x

‖f‖2,nVn(f)
, 1
})
.

The assertion follows with B
(2)
n (M,y) being the whole probability space.

Proof of Theorem 2.6.4. LetBn(q) denote the set from Theorem 2.6.1 (applied toWi(f) =
E[f(Zi,

i
n)|Zi−1] instead of Wi(f) = f(Zi,

i
n); the proof is similar for this situation). Let

B
(2)
n (q) denote the set from Lemma 2.8.9.
Put

B◦n(q) = Bn(q) ∩B(2)
n (q2).

Then we have for Gn(f) = G(1)
n (f) + G(2)

n (f) as in Section 3.3,

P
(
|Gn(f)| > x,B◦n(q)

)
≤ P

(
G(1)
n (f)| > x

2
, B(2)

n (q2)
)

+ P
(
|G(2)

n (f)| > x

2
, Bn(q)

)
≤ P

(
|G(1)

n (f)| > x

2
, R2

n(f) ≤ max
{
Ṽn(f)2,

MΦ(q)√
n

x
})

+P
(
R2
n(f) > max

{
Ṽn(f)2,

MΦ(q)√
n

x
}
, B(2)

n (q2)
)

+P
(
|G(2)

n (f)| > x

2
, Bn(q)

)
. (2.8.100)

We now discuss the three summands in (2.8.100) separately. By Theorem 2.6.1,

P
(
|G(2)

n (f)| > x

2
, Bn(q)

)
≤ c0 exp

(
− 1

c1

(x/2)2

Ṽn(f)2 + MΦ(q)√
n

(x/2)

)
.
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By Freedman’s inequality for martingales, we have

P
(
|G(1)

n (f)| > x

2
, R2

n(f) ≤ max
{
Ṽn(f)2,

MΦ(q)√
n

x
})

≤ 2 exp
(
− 1

2

(x/2)2

max{Ṽn(f)2, MΦ(q)√
n
x}+ M√

n
x

)
≤ 2 exp

(
− 1

4

(x/2)2

Ṽn(f)2 + MΦ(q)√
n
x

)
.

By Lemma 2.8.9 applied to Wi(f) = E[f(Zi,
i
n)2|Zi−1] and using Φ(q2) ≤ Φ(q)2 (cf.

(2.8.101)),

P
(
R2
n(f) > max

{
Ṽn(f)2,

MΦ(q)√
n

x
}
, B(2)

n (q2)
)

≤ c0 exp
(
− 1

c1

MΦ(q)√
n
x

M2Φ(q2)
n

·min
{ Ṽn(f)2

‖f‖2,nVn(f)
, 1
})

= c0 exp
(
− 1

c1

x2

MΦ(q)√
n
x

)
.

Inserting the above estimates into (2.8.100), equation (2.6.3) is obtained. Furthermore
by Assumption 2.6.3,

P(B(2)
n (q2)c) ≤ C∆

n(D∞n )2

M2
β̃norm(q2) ≤ C∆Cβ̃

(√nD∞n
M

β̃norm(q)
)2
.

Thus,

P(B◦n(q)c) ≤ P(Bn(q)c) + P(B(2)
n (q2)c) ≤ [4 + C∆Cβ̃]

(√nD∞n
M

β̃norm(q)
)2
.

The second assertion (2.6.4) is derived as in Theorem 2.6.1 with q = q̃∗( M√
nD∞n y

).

Lemma 2.8.10 (A compatibility lemma). Let n ∈ N, δ, aM > 0 and k ∈ N. For H > 0,
put

r̃(δ) := max{r > 0 : q̃∗(r)r ≤ δ}

and
w(H) := min{w > 0 : w · r̃(w) ≥ H−1}, W(H) := Hw(H).

Define

m̃(n, δ, k) := aM r̃(
δ

Dn
)r̃(w(H(k))) · D∞n n1/2.

Finally, put

Ĉn := 8c1(1 +
D∞n
Dn

)(1 + C2
β̃
(β̃(1) ∨ 1))(1 + aM ).
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(i) Then, W is subadditive.

(ii) If F fulfills Assumption 2.2.3 and Assumption 2.6.3, then supf∈F Ṽn(f) ≤ δ,
supf∈F ‖f‖∞ ≤ m̃(n, δ, k) implies that for any ψ : (0,∞)→ [1,∞),

P
( 1√

n

∣∣Sn(f)
∣∣ > Ĉnψ(δ)δW(H(k)), Bn

)
≤ c0 exp

(
− 2H(k)

)
,

√
n‖f1{f>γ·m̃(n,δ,k)}‖1,n ≤ 4

γaM
· D
∞
n

Dn
· δW(H(k)),

P
(
Bc
n

)
≤ 4

ψ(δ)2a2
M

,

where Bn = Bn(q̃∗( m(n,δ,k)√
nD∞n ψ(δ)aM

)), c0, c1 are from Theorem 2.6.1.

Proof of Lemma 2.8.10. (i) Note that for a, b > 0, we have w(a + b) ≤ w(a) since
w(a)r̃(w(a)) ≥ a−1 ≥ (a+ b)−1. Thus,

W(a+b) = (a+b)w(a+b) ≤ aw(a+b)+bw(a+b) ≤ aw(a)+bw(b) ≤ W(a)+W(b).

(ii) As in the proof of Lemma 3.5.5 (cf. (3.5.30)), we obtain that for x1, x2 > 0,

q̃∗(Cβ̃x1x2) ≤ q̃∗(x1)q̃∗(x2).

Furthermore, for q1, q2 ∈ N we have due to x1 + x2 ≤ x1x2 + 1 that

log log(eeq1q2) ≤ log[log(eq1) + log(eq2)]

≤ log[log(eq1) · log(eq2) + 1] ≤ log[log(eq1) · log(eeq2)]

≤ log log(eq1) + log log(eeq2)

≤ log log(eq1) · log log(eeq2) + 1

≤ log log(eeq1) · log log(eeq2),

and thus
Φ(q1q2) ≤ Φ(q1)Φ(q2). (2.8.101)

Furthermore, note that for a ∈ (0, (β̃(1) ∨ 1)], q = dΦ−1( (β̃(1)∨1)
a )e satisfies

Φ(q)a = Φ(dΦ−1(
(β̃(1) ∨ 1)

a
)e)a ≥ (β̃(1) ∨ 1) ≥ β̃(q),

that is,

Φ(q̃∗(a)) ≤ Φ(dΦ−1(
(β̃(1) ∨ 1)

a
)e) ≤ Φ(2Φ−1(

(β̃(1) ∨ 1)

a
))

≤ 4Φ(Φ−1(
(β̃(1) ∨ 1)

a
)) ≤ 4(β̃(1) ∨ 1)

a
. (2.8.102)
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With y = ψ(δ)aM we have

q̃∗(
m̃(n, δ, k)√
nD∞n y

) = q̃∗(
m̃(n, δ, k)√
nD∞n ψ(δ)aM

) = q̃∗(
C2
β̃
(β̃(1) ∨ 1)r1r2

ψ(δ)
),

where r1 = r̃( δ
Dn ), r2 = r̃(w(H(k))), and thus with (2.8.101) and (2.8.102),

Φ(q̃∗)
m̃(n, δ, k)√

n
≤ Φ(q̃∗(

C2
β̃
(β̃(1) ∨ 1)r1r2

ψ(δ)
))r1r2D∞n aM

≤ Φ
(
q̃∗(

(β̃(1) ∨ 1)

ψ(δ)
)q̃∗(r1)q̃∗(r2)

)
r1r2D∞n aM

≤ Φ
(
q̃∗(

(β̃(1) ∨ 1)

ψ(δ)
)
)

Φ(q̃∗(r1))Φ(q̃∗(r2)))r1r2D∞n aM

≤ 4
D∞n
Dn

ψ(δ)δw(H(k))aM .

By definition of W(·) and Theorem 2.6.1, we obtain

P
( 1√

n

∣∣Sn(f)
∣∣ > Ĉnψ(δ)δ · W(H(k)), Bn

)
≤ c0 exp

(
− 1

c1

Ĉ2
nψ(δ)2δ2W(H(k))2

δ2 + 4D∞n
Dn aM Ĉnδ

2ψ(δ)2w(H(k))W(H(k))

)
≤ c0 exp

(
− 1

c1

Ĉ2
n

1 + 4aM
D∞n
Dn Ĉn

H(k)
)

≤ c0 exp
(
− 2H(k)

)
.

Similar as in the proof of Lemma 2.8.8, we obtain due to Assumption 2.6.3 that

Ṽn(f) ≥ min
a∈N

[
‖f‖2,n

(
1 +

a∑
j=1

ϕ(j)
)

+ Dnβ̃(a)
]
≥ ‖f‖2,n

(
1 +

â∑
j=1

ϕ(j)
)

+ Dnβ̃(â),

where â = arg mina∈N{‖f‖2,n ·
(
1+
∑a

j=1 ϕ(j)
)

+Dnβ(a)}. Elementary calculations
show that for â ≥ 2,

â∑
j=1

ϕ(j) = 1 +
â∑
j=2

ϕ(j) ≥ 1 +

∫ â−1

1
ϕ(x)dx

= 1 + (Φ(â− 1)− 1)−
∫ â−1

1

1

log(eex)
dx ≥ Φ(â− 1)− â− 2

e
≥ 1

4
Φ(â).

Clearly, the same holds true for â = 1. We therefore have

Ṽn(f) ≥ 1

4
‖f‖2,nΦ(â). (2.8.103)
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Now, δ ≥ Ṽn(f) ≥ Dnβ̃(â) = Dnβ̃norm(â)Φ(â). Thus, β̃norm(â) ≤ δ
DnΦ(â) . By

definition of q̃∗, q̃∗( δ
DnΦ(â)) ≤ â. So, Φ(q̃∗( δ

DnΦ(â))) δ
DnΦ(â) ≤

δ
Dn . By definition of r̃,

r̃( δ
Dn ) ≥ δ

DnΦ(â) .

Using this result, (2.8.103) and the definition of w(·) yield

√
n‖f1{f>γ·m̃(n,δ,k)}‖1,n ≤ 1

γ

√
n‖f‖22,n

m̃(n, δ, k)
≤ 1

γ

1

aMD∞n

‖f‖22,n
r̃( δ

Dn )r̃(w(H(k)))
,

and

‖f‖22,n
r̃( δ

Dn )r̃(w(H(k)))
≤ Dn

Φ(â)‖f‖22,n
δ

1

r̃(w(H(k))

≤ Dn
4Ṽn(f)‖f‖2,n

δ

1

r̃(w(H(k))
≤ 4δ · 1

r̃(w(H(k))

≤ 4DnδW(H(k)),

which provides

√
n‖f1{f>γ·m̃(n,δ,k)}‖1,n ≤

4

γ

Dn
D∞n

1

aM
δW(H(k)).

Finally, Theorem 2.6.1 implies that

P(Bc
n) ≤ 4

y2
=

4

ψ(δ)2a2
M

.

Here, we would like to present a chaining version of the large deviation inequality
from Theorem 2.6.1. For the sake of simplicity, we derive the result for some continuous
strictly decreasing upper bound H̄(ε) of H(ε,F , V ).

Theorem 2.8.11 (Chaining for large deviation inequalities). There exists a universal
constant c3 > 0 such that the following holds true.

Let aM ≥ 1, M,σ > 0 be arbitrary, ψ(x) :=
√

log(x−1 ∨ e) log log(x−1 ∨ ee).
Let F be a class which satisfies Assumption 2.2.3 and 2.6.3, and supf∈F Ṽn(f) ≤ σ,

supf∈F ‖f‖∞ ≤M . Define

Ĩ(σ) :=

∫ σ

0
ψ(ε)W(1 ∨ H̄(ε))dε.

Choose σ◦, x > 0 such that

H̄(σ◦) =
1

50c1
· x2

σ2 + Φ(q̃∗( M√
nD∞n aM

))Mx√
n

, x ≥ c3ĈnĨ(σ◦), (2.8.104)
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where Ĉn,W is from Lemma 2.8.10. Then there exists a set Ωn independent of x such
that

P
(

sup
f∈F

∣∣Gn(f)
∣∣ > x,Ωn

)
≤ 5 exp

(
− 1

50c1
· x2

σ2 + Φ(q̃∗( M√
nD∞n aM

))Mx√
n

)
and

P(Ωc
n) ≤ 16

aM

∫ σ◦

0

1

xψ(x)2
dx.

Proof of Theorem 2.8.11. We use the chaining technique from Alexander [1984], Theo-
rem 2.3 therein.

We define δ0 := σ◦,

δj+1 := max{δ ≤ δj
2

: H̄(δ) ≥ 4H̄(δj)}.

Since H̄(·) is continuous, H̄(δj+1) = 4H̄(δj). Put

τ := min{j ≥ 0 : δj ≤
Ĩ(σ◦)√
n
}.

Define
ηj := 4Ĉnψ(δj)δjW(H(N̄j+1)),

where Ĉn is from Lemma 2.8.10 and

N̄j+1 :=

j+1∏
k=0

exp(H̄(δk)) ≥
j+1∏
k=0

exp(H(δk)) =

j+1∏
k=0

N(δk) =: Nj+1.

By Lemma 2.8.10(i), W(·) is subadditive, whence

τ∑
j=0

ψ(δj)δjW(H(N̄j+1)) ≤
τ∑
j=0

ψ(δj)δjW(1 ∨
j+1∑
k=1

H̄(δk))

≤
τ∑
j=0

ψ(δj)δj

j+1∑
k=1

W(1 ∨ H̄(δk))

≤
τ−1∑
k=0

W(1 ∨ H̄(δk+1))

τ∑
j=k

ψ(δj)δj . (2.8.105)

Similar to (3.5.38), there exists some universal constant cψ > 0 such that

τ∑
j=k

ψ(δj)δj ≤ 2
∞∑
j=k

∫ δj

δj/2
ψ(δj)dx ≤ 2

∞∑
j=k

∫ δj

δj+1

ψ(x)dx

≤ 2

∫ δk

0
ψ(x)dx ≤ 2cψδkψ(δk). (2.8.106)
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Furthermore, by definition of the sequence (δj)j and since w(·) is decreasing but W is
increasing, we have

W(1 ∨ H̄(δj+1)) ≤ W(4(1 ∨ H̄(δj))) ≤ 4W(1 ∨ H̄(δj)). (2.8.107)

Insertion of (2.8.106) and (2.8.107) into (2.8.105) yields

τ∑
j=0

ηj ≤ 4Ĉn

τ∑
j=0

ψ(δj)δjW(H(N̄j+1))

≤ 32cψĈn

∞∑
k=0

δkψ(δk)W(1 ∨ H̄(δj))

≤ 64cψĈn

∞∑
k=0

∫ δk

δk/2
ψ(δk)W(1 ∨ H̄(δj))dε

≤ 64cψĈn

∞∑
k=0

∫ δk

δk+1

ψ(ε)W(1 ∨ H̄(ε))dε

≤ 64cψĈn

∫ σ◦

0
ψ(ε)W(1 ∨ H̄(ε))dε = 64cψĈnĨ(σ◦). (2.8.108)

We set up the same decomposition as in the proof of Theorem 2.4.4. Define

m̃j :=
1

2
m̃(n, δj , N̄j+1).

Note that
x ≥ x

5
+ 3(

x

5
− 2ητ ) + (

x

5
+ 2ητ ).

Set c3 := 5 · 28 · cψ. Condition (2.8.104) implies

x

5
≥ 28cψĈnĨ(σ◦) (2.8.109)

and thus with (2.8.108), we obtain

x

5
− 2ητ ≥ 28cψĈnĨ(σ◦)− 2ητ ≥

τ−1∑
j=0

2ηj .

Let q̃∗j := q̃∗(
m(n,δj ,Nj+1)√
nD∞n ψ(δj)aM

) and

Ωn := Bn(q̃∗(
M√

nD∞n aM
)) ∩

τ⋂
j=0

Bn(q̃∗j ),
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where Bn(q) is from Theorem 2.6.1. From (2.8.57), we obtain the decomposition

P
(

sup
f∈F

∣∣Gn(f)
∣∣ > x,Ωn

)
≤ P

(
sup
f∈F
|Gn(π0f)| > x

5
,Ωn

)
+P
(

sup
f∈F
|Gn(ϕ∧m̃τ (∆τf))|+ 2

√
n sup
f∈F
‖∆τf‖1,n >

x

5
+ 2ητ ,Ωn

)
+P
( τ−1∑
j=0

sup
f∈F

∣∣∣Gn(ϕ∧m̃j−m̃j+1
(πj+1f − πjf))

∣∣∣ > x

5
− 2ητ ,Ωn

)

+P
( τ−1∑
j=0

{
sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨m̃j+1

(∆j+1f)
∣∣, 2m̃j

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆j+1f1{∆j+1f>m̃j+1}‖1,n

}
>
x

5
− 2ητ ,Ωn

)
+P
( τ−1∑
j=0

{
sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨m̃j−m̃j+1

(∆jf)
∣∣, 2m̃j

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆jf1{∆jf>m̃j−m̃j+1}‖1,n

}
>
x

5
− 2ητ ,Ωn

)
≤ P

(
sup
f∈F
|Gn(π0f)| > x

5
,Ωn

)
+P
(

sup
f∈F
|Gn(ϕ∧m̃τ (∆τf))|+ 2

√
n sup
f∈F
‖∆τf‖1,n >

x

5
+ 2ητ ,Ωn

)
+

τ−1∑
j=0

P
(

sup
f∈F

∣∣∣Gn(ϕ∧m̃j−m̃j+1
(πj+1f − πjf))

∣∣∣ > 2ηj ,Ωn

)

+
τ−1∑
j=0

P
(

sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨m̃j+1

(∆j+1f)
∣∣, 2m̃j

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆j+1f1{∆j+1f>m̃j+1}‖1,n > 2ηj ,Ωn

)
+
τ−1∑
j=0

P
(

sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨m̃j−m̃j+1

(∆jf)
∣∣, 2m̃j

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆jf1{∆jf>m̃j−m̃j+1}‖1,n > 2ηj ,Ωn

)
=: R∗1 +R∗2 +R∗3 +R∗4 +R∗5. (2.8.110)

We now discuss the terms in (2.8.110) separately.
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• We have by definition of Theorem 2.6.1,

R∗1 ≤ P
(

sup
f∈F
|Gn(π0f)| > x

5
, Bn(q̃∗(

M√
nD∞n aM

))
)

≤ N(σ◦) · sup
f∈F

P
(
|Gn(π0f)| > x

5
, Bn(q̃∗(

M√
nD∞n aM

))
)

≤ exp(H(σ◦)) · c0 exp
(
− 1

c1

(x/5)2

σ2 + Φ(q̃∗( M√
nD∞n aM

))M(x/5)√
n

)
≤ c0 exp

(
− 1

50c1

x2

σ2 + Φ(q̃∗( M√
nD∞n aM

)) M√
n

)
.

• We have by Lemma 2.8.10,

P
(

sup
f∈F
|Gn(ϕ∧m̃τ (∆τf))| > ητ , Bn(q̃∗τ )

)
≤ exp(H(Nτ+1)) · c0 exp(−2H(Nτ+1))

≤ c0

∞∑
j=0

exp(−H(Nj+1)) ≤ c0 exp(−H(σ◦))

(for details on the last inequality look at the calculation for R∗3, below). By the
Cauchy-Schwarz inequality, the definition of τ and (2.8.109),

√
n sup
f∈F
‖∆τf‖1,n ≤

√
n‖∆τf‖2,n ≤

√
nV (∆τf) ≤

√
nδτ ≤ Ĩ(σ◦) <

x

5
.

We conclude that
R∗2 ≤ c0 exp(−H(σ◦)).

• We have by Lemma 2.8.10(i),

R∗3 ≤
τ−1∑
j=0

P
(

sup
f∈F

∣∣∣Gn(ϕ∧m̃j−m̃j+1
(πj+1f − πjf))

∣∣∣ > 2ηj , Bn(q̃∗j )
)

≤
τ−1∑
j=0

Nj+1 · sup
f∈F

P
(∣∣∣Gn(ϕ∧m̃j−m̃j+1

(πj+1f − πjf))
∣∣∣ > ηj , Bn(q̃∗j )

)

≤
τ−1∑
j=0

exp(H(Nj+1)) · c0 exp(−2H(N̄j+1))

≤ c0

τ−1∑
j=0

exp(−H(N̄j+1)) ≤ c0

τ−1∑
j=0

exp(−H̄(δj+1))

≤ c0

∞∑
j=0

exp(−4j+1H̄(σ◦))

≤ c0 exp(−H̄(σ◦)).
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The last inequality is due to the fact that( ∞∑
j=0

exp(−4j+1H̄(σ◦))
)

exp(H̄(σ◦)) =

∞∑
j=0

exp(−(4j+1 − 1)H̄(σ◦))

≤
∞∑
j=0

exp(−(4j+1 − 1)) ≤ 1. (2.8.111)

• Similar to R∗3 we have by Lemma 2.8.10(ii),

τ−1∑
j=0

P
(

sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨m̃j+1

(∆j+1f)
∣∣, 2m̃j

}
)
∣∣∣ > ηj , Bn(q̃∗j )

)

≤
τ−1∑
j=0

Nj+1 · c0 exp(−2H(N̄j+1))

≤ c0 exp(−H̄(σ◦))

and, since aM ≥ 1,

√
n sup
f∈F
‖∆j+1f1{∆j+1f>m̃j+1}‖1,n ≤ 8

D∞n
Dn

δjW(H(N̄j+1))

< Ĉn · δjW(H(N̄j+1)) ≤ 1

2
ηj .

This shows
R∗4 ≤ c0 exp(−H(σ◦)).

• Similar to R∗4 we obtain

τ−1∑
j=0

P
(

sup
f∈F

∣∣∣Gn(min
{∣∣ϕ∨m̃j−m̃j+1

(∆jf)
∣∣, 2m̃j

}
)
∣∣∣ > ηj , Bn(q̃∗j

)

≤
τ−1∑
j=0

Nj+1 · c0 exp(−2H(N̄j+1))

≤ c0 exp(−H̄(σ◦)).

As in the proof of Theorem 2.4.4 (discussion of R5 therein), we see that 2(m̃j −
m̃j+1) ≥ m̃j due to the fact that the inequality

r̃(
δj
Dn

)− r̃(δj+1

Dn
) ≥ r̃( δj

Dn
)− r̃( δj

2Dn
) ≥ r̃( δj

Dn
)− 1

2
r̃(
δj
Dn

) ≥ 1

2
r̃(
δj
Dn

).

only requires δj+1 ≤ δj
2 . Thus, since aM ≥ 1,

√
n sup
f∈F
‖∆jf1{∆jf>m̃j−m̃j+1}‖1,n ≤

√
n sup
f∈F
‖∆jf1{∆jf>

1
2
m̃j}‖1,n

≤ 16
D∞n
Dn

δjW(H(N̄j+1))

< 2ĈnδjW(H(N̄j+1)) ≤ 1

2
ηj .
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This shows
R∗5 ≤ c0 exp(−H̄(σ◦)).

By plugging in the above upper bounds for R∗i , i ∈ {1, ..., 5}, into (2.8.110) and using
(2.8.104), we obtain

P
(

sup
f∈F
|Gn(f)| > x,Ωn

)
≤ 5c0 exp

(
− 1

50c1
· x2

σ2 + Φ(q̃∗( M√
nD∞n aM

))Mx√
n

)
. (2.8.112)

Discussion of the residual term: By Lemma 2.8.10(ii), we have

P(Ωc
n) ≤ P(Bn(q̃∗(

M√
nD∞n aM

))c) +
∞∑
j=0

P(Bn(q̃∗j )
c)

≤ 4

a2
M

+
4

a2
M

∞∑
j=0

1

ψ(δj)2
≤ 8

a2
M

∞∑
j=0

1

ψ(δj)2
.

Due to

∞∑
j=0

1

ψ(δj)2
=

∞∑
j=0

1

δj − δj+1

∫ δj

δj+1

1

ψ(δj)2
dx

≤ 2
∞∑
j=0

∫ δj

δj+1

1

δjψ(δj)2
dx ≤ 2

∫ σ◦

0

1

xψ(x)2
dx ≤ 4

log(log((σ◦)−1 ∨ ee))
,

the proof is completed.

2.8.7 Form of the Vn-norm and connected quantities

Lemma 2.8.12 (Summation of polynomial and geometric decay). Let α > 1 and q ∈ N.
Then,

(i)

1

α− 1
q−α+1 ≤

∞∑
j=q

j−α ≤ max{α, 2−α+1}
α− 1

q−α+1.

(ii) For σ > 0, κ2 ≥ 1,

bρ,κ2,l · σ · log(σ−1) ≤
∞∑
j=1

min{σ, κ2ρ
j} ≤ bρ,κ2 · σ · log(σ−1 ∨ e),

bα,κ2,l · σ · σ−
1
α ≤

∞∑
j=1

min{σ, κ2j
−α} ≤ bα,κ2 · σ ·max{σ−

1
α , 1},

where bρ,κ2 , bρ,κ2,l, bα,κ2 , bα,κ2,l are constants only depending on ρ, κ2, α.
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Proof of Lemma 2.8.12. (i) Upper bound: If q ≥ 2, then

∞∑
j=q

j−α =
∞∑
j=q

∫ j

j−1
j−αdx ≤

∞∑
j=q

∫ j

j−1
x−αdx =

∫ ∞
q−1

x−αdx =
1

−α+ 1
x−α+1

∣∣∣∞
q−1

=
1

α− 1
(q − 1)−α+1 =

1

α− 1
q−α+1 · (q − 1

q
)−α+1 ≤ 2−α+1

α− 1
q−α+1.

If q = 1, then
∑∞

j=q j
−α = 1 +

∑∞
j=q+1 j

−α ≤ 1 + 1
α−1q

−α+1 = α
α−1 .

Lower bound: Using similar decomposition arguments as above, we have
∞∑
j=q

j−α ≥
∞∑
j=q

∫ j+1

j
x−αdx =

∫ ∞
q

x−αdx =
1

−α+ 1
x−α+1

∣∣∣∞
q

=
1

α− 1
q−α+1.

(ii) • Exponential decay: Upper bound: First let a := max{b log(σ/κ2)
log(ρ) c, 0}+ 1. Then

we have
∞∑
j=0

min{σ, κ2ρ
j} ≤

a−1∑
j=0

σ + κ2

∞∑
j=a

ρj = aσ + κ2
ρa

1− ρ

≤ aσ +
κ2

1− ρ
min{ σ

κ2
, 1} ≤ aσ +

σ

1− ρ

≤ σ ·
[ 1

log(ρ−1)
max{log(κ2/σ), 0}+

2

1− ρ

]
≤ σ ·

[ 1

log(ρ−1)
max{log(σ−1), 0}+

log(κ2) ∨ 0

log(ρ−1)
+

2

1− ρ

]
≤ bρ,κ2 · σ · log(σ−1 ∨ e),

where bρ,κ2 := 2(log(κ2) ∨ 1) · 1
log(ρ−1)

[
1 + 2 log(ρ−1)

1−ρ
]
.

Lower Bound: Put β(q) = κ2
∑∞

j=q ρ
j = κ2

1−ρρ
q. Then,

∞∑
j=1

min{σ, κ2ρ
j} ≥ σ(q̂ − 1) + β(q̂),

where q̂ = min{q ∈ N : σ
κ2
≥ ρq}. We have q̂ ≥ log(σ/κ2)

log(ρ) =: q and q̂ ≤ q + 1.
Thus,

∞∑
j=1

min{σ, κ2ρ
j} ≥ σ(q − 1) + β(q + 1).

Now consider the case σ
κ2
< ρ2, that is, log(σ/κ2)

log(ρ) ≥ 2. Then, q − 1 ≥ 1
2q, and

q ≤ 2 log(σ/κ2)
log(ρ) . We obtain

∞∑
j=1

min{σ, κ2ρ
j} ≥ 1

2
σ

log(σ/κ2)

log(ρ)
+

κ2ρ

1− ρ
ρ

log(σ/κ2)
log(ρ) =

1

2
σ

log(σ/κ2)

log(ρ)
+

ρ

1− ρ
σ

≥ 1

2

( ρ

1− ρ
+

1

log(ρ−1)

)
σ log(σ−1κ2),
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that is, the assertion holds true for bρ,κ2,l := 1
2

( ρ
1−ρ + 1

log(ρ−1)

)
.

• Polynomial decay: Upper bound: Let a := b( σκ2
)−

1
α c + 1 ≥ ( σκ2

)−
1
α . Then we

have by (i),

∞∑
j=1

min{σ, κ2j
−α} ≤

a∑
j=1

σ + κ2

∞∑
j=a+1

j−α = aσ +
κ2

α− 1
a−α+1

≤ aσ +
κ

1
α
2

α− 1
σ
α−1
α

≤ σ ·
[
κ

1
α
2 σ
− 1
α + 1 +

κ
1
α
2

α− 1
σ−

1
α

]
≤ σ ·

[ α

α− 1
κ

1
α
2 σ
− 1
α + 1

]
≤ bα,κ2 · σ ·max{σ−

1
α , 1},

where bα,κ2 := 2 α
α−1(κ2 ∨ 1)

1
α .

Lower Bound: Put β(q) = κ2
∑∞

j=q j
−α. By (i), β(q) ≥ κ2

α−1q
−α+1. Then,

∞∑
j=1

min{σ, κ2j
−α} ≥ min

q∈N
{σq + β(q)}

≥ min
q∈N
{σq +

κ2

α− 1
q−α+1}.

Elementary calculus yields that the minimum is achieved for q = κ
1
α
2 · σ−

1
a =

(κ2
σ )

1
α , that is,

∞∑
j=1

min{σ, κ2j
−α} ≥ α

α− 1
κ

1
α
2 · σ

α−1
α .

The assertion holds with bα,κ2,l := α
α−1κ

1
α
2 .

Lemma 2.8.13 (Values of q∗, r(δ)). Depending on specific decay rates, the following
statements holds true.

• Polynomial decay ∆(j) = κj−α (α > 1). There exist constants c
(i)
α,κ, C

(i)
α,κ > 0,

i = 1, 2 only depending on κ, α such that

c(1)
α,κ max{x−

1
α , 1} ≤ q∗(x) ≤ C(1)

α,κ max{x−
1
α , 1}

and
c(2)
α,κ min{δ

α
α−1 , δ} ≤ r(δ) ≤ C(2)

α,κ min{δ
α
α−1 , δ}.
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• Geometric decay ∆(j) = κρj (ρ ∈ (0, 1)). There exist constants c
(i)
ρ,κ, C

(i)
ρ,κ > 0,

i = 1, 2 only depending on κ, ρ such that

c(1)
ρ,κ max{log(x−1), 1} ≤ q∗(x) ≤ C(1)

ρ,κ max{log(x−1), 1}

and

c(2)
ρ,κ

δ

log(δ−1 ∨ e)
≤ r(δ) ≤ C(2)

ρ,κ

δ

log(δ−1 ∨ e)
.

Proof of Lemma 2.8.13. (i) By Lemma 2.8.12(i), βnorm(q) = β(q)
q ∈ [cα,κq

−α, Cα,κq
−α]

with cα,κ = κ
α−1 , Cα,κ = κmax{α,2−α+1}

α−1 . In the following we assume w.l.o.g. that
Cα,κ > 1 and cα,κ < 1.

• q∗(x) Upper bound: For any x > 0,

q∗(x) = min{q ∈ N : βnorm(q) ≤ x} ≤ min{q ∈ N : q ≥ (
x

Cα,κ
)−

1
α } = d( x

Cα,κ
)−

1
α e.

Especially, q∗(x) ≤ ( x
Cα,κ

)−
1
α + 1 ≤ 2C

1
α
α,κ max{x−

1
α , 1}. The assertion holds

true for C
(1)
α,κ := 2 max{Cα,κ, 1}

1
α .

• q∗(x) Lower bound: Similar to the above calculations,

q∗(x) ≥ d( x

cα,κ
)−

1
α e ≥

( x

cα,κ

)− 1
α = c

1
α
α,κx

− 1
α .

On the other hand, q∗(x) ≥ 1 ≥ c
1
α
α,κ, which yields the assertion with c

(1)
α,κ =

min{cα,κ, 1}
1
α .

• r(δ) Upper bound: Put r = 2
α
α−1 c

− 1
α−1

α,κ δ
α
α−1 . Then we have

q∗(r)r ≥ d( r

cα,κ
)−

1
α er = 2

α
α−1 c

− 1
α−1

α,κ d2−
1

α−1 c
1

α−1
α,κ δ

− 1
α−1 eδ

α
α−1 ≥ 2δ > δ.

By definition of r(·), r(δ) ≤ r. It was already shown in Lemma 2.8.6 that

r(δ) ≤ δ holds true for all δ > 0. We obtain the assertion with C
(2)
α,κ =

2
α
α−1 c

− 1
α−1

α,κ .

• r(δ) Lower bound: First consider the case δ < Cα,κ.

Put r = 2−
α
α−1C

− 1
α−1

α,κ δ
α
α−1 . Since x := 2

1
α−1C

1
α−1
α,κ δ

− 1
α−1 > 1, dxe ≤ 2x and

thus

q∗(r)r ≤ d( r

Cα,κ
)−

1
α er = 2−

α
α−1C

− 1
α−1

α,κ d2
1

α−1C
1

α−1
α,κ δ

− 1
α−1 eδ

α
α−1 ≤ 2 · 2−1δ ≤ δ.

By definition of r(·), r(δ) ≥ r = 2−
α
α−1 min{( δ

Cα,κ
)

1
α−1 , 1}δ.
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In the case δ > Cα,κ, we have

q∗(δ)δ = d( δ

Cα,κ
)−

1
α eδ ≤ 1 · δ ≤ δ.

Thus, r(δ) ≥ δ = min{( δ
Cα,κ

)
1

α−1 , 1}δ ≥ 2−
α
α−1 min{( δ

Cα,κ
)

1
α−1 , 1}δ. We con-

clude that the assertion holds true for c
(2)
α,κ = 2−

α
α−1C

− 1
α−1

α,κ .

(ii) We have βnorm(q) = β(q)
q = Cρ,κ

ρq

q , where Cρ,κ = κρ
1−ρ . In the following we assume

w.l.o.g. that Cρ,κ > 8.

• q∗(x) Upper bound: Put ψ(x) = max{log(x−1), 1}. Define q̃ = d
ψ( x

Cρ,κ log(ρ−1)
)

log(ρ−1)
e.

Then we have

βnorm(q̃) ≤ Cρ,κ
ρ

log(
(

x
Cρ,κ log(ρ−1)

)−1
)/ log(ρ−1)

q̃
≤

x
log(ρ−1)

q̃
≤ x

ψ( x
Cρ,κ log(ρ−1)

)
≤ x,

whence

q∗(x) = min{q ∈ N : βnorm(q) ≤ x} ≤ q̃ =
⌈ψ( x

Cρ,κ log(ρ−1)
)

log(ρ−1)

⌉
.

Especially,

q∗(x) ≤ 1

log(ρ−1)

(
ψ(x)+log(Cρ,κ log(ρ−1))

)
+1 ≤ 2(1 + log(Cρ,κ log(ρ−1)))

log(ρ−1)
ψ(x),

that is, the assertion holds true for C
(1)
ρ,κ =

2(1+log(Cρ,κ log(ρ−1)))
log(ρ−1)

.

• q∗(x) Lower Bound: Case 1: Assume that x < Cρ,κ log(ρ−1)ρ4. Define q̃ =

d1
4

log(( x
Cρ,κ log(ρ−1)

)−1)

log(ρ−1)
e ≥ 1. Then, q̃ ≤ 1

2

log(( x
Cρ,κ log(ρ−1)

)−1)

log(ρ−1)
and thus

βnorm(q̃) ≥ Cρ,k

(
x

Cρ,κ log(ρ−1)

)1/2

q̃
≥ (Cρ,κ log(ρ−1))1/2 x1/2

log(( x
Cρ,κ log(ρ−1)

)−1/2)
> x

since
(

x

Cρ,κ log(ρ−1)
)−1/2 > log((

x

Cρ,κ log(ρ−1)
)−1/2).

We therefore have shown that for x < Cρ,κ log(ρ−1)ρ4,

q∗(x) ≥ q̃ = max{1, q̃}. (2.8.113)

Case 2: If x ≥ Cρ,κ log(ρ−1)ρ4, then q̃ ≤ 1, that is,

q∗(x) ≥ 1 = max{1, q̃}.
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We have shown that for all x > 0,

q∗(x) ≥ max{1, q̃}.

Since

q̃ ≥ 1

4

log(( x
Cρ,κ log(ρ−1)

)−1)

log(ρ−1)
≥ 1

4 log(ρ−1)

[
log(x−1) + log(Cρ,κ log(ρ−1))

]
≥ 1

4 log(ρ−1)
log(x−1),

the assertion follows for c
(1)
ρ,κ = 1

4 log(ρ−1)
.

• r(δ) Upper bound: Put r̃ =
2(c

(1)
ρ,κ)−1δ

log((2−1c
(1)
ρ,κδ−1)∨e)

. Then we have

q∗(r̃)r̃ ≥ c(1)
ρ,κ log(r̃−1 ∨ e) · r̃

=
2δ

log((2−1c
(1)
ρ,κδ−1) ∨ e)

· log([2−1c(1)
ρ,κδ

−1 log((2−1c(1)
ρ,κδ

−1) ∨ e)] ∨ e)

≥ 2δ

log((2−1c
(1)
ρ,κδ−1) ∨ e)

· log([2−1c(1)
ρ,κδ

−1] ∨ e) = 2δ > δ.

By definition of r(·) we obtain

r(δ) ≤ r̃.

For a ∈ (0, 1), the function (0,∞) → (0,∞), x 7→ log(x−1∨e)
log((ax−1)∨e) attains its

maximum at x = ae−1 with maximum value 1 + log(a−1). Thus,

r̃ ≤ 2(c(1)
ρ,κ)−1(1 + log(2−1(c(1)

ρ,κ)−1)) · δ

log(δ−1 ∨ e)
.

The assertion holds true for C
(2)
ρ,κ = 2(c

(1)
ρ,κ)−1(1 + log(2−1(c

(1)
ρ,κ)−1)).

• r(δ) Lower Bound: Put r̃ =
2−1(C

(1)
ρ,κ)−1δ

log((2C
(1)
ρ,κδ−1)∨e)

. Then

q∗(r̃)r̃ ≤ C(1)
ρ,κ log(r̃−1 ∨ e) · r̃

=
2−1δ

log((2C
(1)
ρ,κδ−1) ∨ e)

· log([2C(1)
ρ,κδ

−1 log((2C(1)
ρ,κδ

−1) ∨ e)] ∨ e)

≤ 2−1δ

log((C
(1)
ρ,κδ−1) ∨ e)

·
[

log((2C(1)
ρ,κδ

−1) ∨ e) + log log((2C(1)
ρ,κδ

−1) ∨ e)
]

≤ δ,

where the last step is due to log(x) + log log(x) ≤ 2 log(x) for x ≥ e. By
definition of r(·) we obtain

r(δ) ≥ r̃.
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For a > 1, the function (0,∞)→ (0,∞), x 7→ log(x−1∨e)
log((ax−1)∨e) attains its minimum

at x = e−1 with minimum value 1
1+log(a) . We therefore have

r̃ ≥ (C
(1)
ρ,κ)−1

2(1 + log(2C
(1)
ρ,κ))

δ

log(δ−1 ∨ e)
.

The assertion holds true for c
(2)
ρ,κ =

(C
(1)
ρ,κ)−1

2(1+log(2C
(1)
ρ,κ))

.

Lemma 2.8.14 (Form of Vn). Depending on specific decay rates, the following state-
ments hold true.

(i) Polynomial decay ∆(j) = κj−α (where α > 1). There exist some constants C
(3)
α,κ, c

(3)
α,κ

only depending on κ, α,Dn such that

c(3)
α,κ‖f‖2,n max{‖f‖−

1
α

2,n , 1} ≤ Vn(f) ≤ C(3)
α,κ‖f‖2,n max{‖f‖−

1
α

2,n , 1}.

(ii) Geometric decay ∆(j) = κρj (where ρ ∈ (0, 1)). There exist some constants

c
(3)
ρ,κ, C

(3)
ρ,κ only depending on κ, ρ,Dn such that

c(3)
ρ,κ‖f‖2,n max{log(‖f‖−1

2,n), 1} ≤ Vn(f) ≤ C(3)
ρ,κ‖f‖2,n max{log(‖f‖−1

2,n), 1}.

Proof of Lemma 2.8.14. The assertions follow from Lemma 2.8.12(ii) by taking κ2 =
κDn. The maximum in the lower bounds is obtained due to the additional summand
‖f‖2,n in Vn(f).

The following lemma formulates the entropy integral in terms of the well-known brack-
eting numbers with respect to the ‖ · ‖2,n-norm in the case that supn∈NDn <∞. We use
the upper bounds of Vn given in Lemma 2.8.14.

Lemma 2.8.15. Depending on specific decay rates, the following statements hold true.

(i) Polynomial decay ∆(j) = κj−α (where α > 1). For any σ ∈ (0, C
(3)
α,κ),∫ σ

0

√
H(ε,F , Vn)dε ≤ C(3)

α,κ

α− 1

α

∫ ( σ

C
(3)
α,κ

)
α
α−1

0
u−

1
α

√
H(u,F , ‖ · ‖2,n)du,

where C
(3)
α,κ is from lemma 2.8.14.

(ii) Exponential decay ∆(j) = κρj (where ρ ∈ (0, 1)). For any σ ∈ (0, e−1C
(3)
ρ,κ),∫ σ

0

√
H(ε,F , Vn)dε ≤ C(3)

ρ,κ

∫ E−( σ

C
(3)
ρ,κ

)

0
log(u−1)

√
H(u,F , ‖ · ‖2,n)du,

where E−(x) = x
log(x−1)

and C
(3)
ρ,κ is from Lemma 2.8.14.
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Proof of Lemma 2.8.15. (i) By Lemma 2.8.14, Vn(f) ≤ C
(3)
α,κ‖f‖2,n max{‖f‖−

1
α

2,n , 1}.
We abbreviate c = C

(3)
α,κ in the following.

Let ε ∈ (0, c) and (lj , uj), j = 1, ..., N , brackets such that ‖uj − lj‖2,n ≤ ( εc )
α
α−1 .

Then,

Vn(uj − lj) ≤ cmax{‖uj − lj‖2,n, ‖uj − lj‖
α−1
α

2,n } ≤ cmax
{

(
ε

c
)

α
α−1 ,

ε

c

}
≤ c · ε

c
= ε.

Therefore, the bracketing number fulfills the relation

N(ε,F , Vn) ≤ N
(

(
ε

c
)

α
α−1 ,F , ‖ · ‖2,n

)
.

We conclude that for σ ∈ (0, c),∫ σ

0

√
H(ε,F , Vn)dε ≤

∫ σ

0

√
H
(

(
ε

c
)

α
α−1 ,F , ‖ · ‖2,n

)
dε

= c
α− 1

α

∫ (σ
c

)
α
α−1

0
u−

1
α

√
H(u,F , ‖ · ‖2,n)du.

In the last step we used the substitution u = ( εc )
α
α−1 which leads to du

dε = α
α−1 ·

1
c ·

( εc )
1

α−1 = α
α−1 ·

1
c · u

1
α .

(ii) By Lemma 2.8.14, Vn(f) ≤ C
(3)
ρ,κE(‖f‖2,n) with E(x) = xmax{log(x−1), 1}. We

abbreviate c = C
(3)
ρ,κ in the following.

We first collect some properties of E. Let E−(x) = x
log(x−1∨e) . In the case x > e−1,

we have E(E−(x)) = x. In the case x ≤ e−1, we have

E(E−(x)) =
x

log(x−1)
· log

( x−1

log(x−1)−1

)
≤ x

log(x−1)
log(x−1) = x.

This shows that for all x > 0,

E(E−(x)) ≤ x. (2.8.114)

Furthermore, for x < e−1,

log(E−(x)−1) = log(x−1 log(x−1)) ≥ log(x−1). (2.8.115)

Now let ε ∈ (0, 1) and (lj , uj), j = 1, ..., N , brackets such that ‖uj−lj‖2,n ≤ E−( εc ).
Then by (2.8.114),

Vn(uj − lj) ≤ cE(E−(
ε

c
)) ≤ c · ε

c
= ε.

Therefore, we have the following relation between the bracketing numbers

N(ε,F , Vn) ≤ N
(
E−(

ε

c
),F , ‖ · ‖2,n

)
.
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We conclude that for σ ∈ (0, ce−1),∫ σ

0

√
H(ε,F , Vn)dε ≤

∫ σ

0

√
H
(
E−(

ε

c
),F , ‖ · ‖2

)
dε

≤ c

∫ E−(σ
c

)

0
log(u−1)

√
H(u,F , ‖ · ‖2)du.

In the last step we used the substitution u = E−( εc ) which leads to du
dε = 1

c ·
1+log((ε/c)−1)
log((ε/c)−1)2 , and with (2.8.115) we obtain

dε = c
log((ε/c)−1)2

1 + log((ε/c)−1)
du ≤ c log((ε/c)−1)du ≤ c log(E−(

ε

c
)−1)du = c log(u−1)du.
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Chapter 3

Empirical process theory for
nonsmooth functions under
functional dependence

In this chapter we would like to extend our current theory to nonsmooth functions,
motivated by a proper discussion of the empirical distribution function. The previously
obtained results come into play as we decompose our process into a smooth and a
martingale type “contribution”. The smooth contribution can be dealt with by the means
of Chapter 2. It is the latter process that needs further investigation.

3.1 A functional central limit theorem under functional
dependence and application to empirical distribution
functions

Let us, as an example, consider the localized empirical distribution function of Xi,

Ĝn,h(x, v) :=
1

nh

n∑
i=1

K
( i/n− v

h

)
1{Xi≤x}, (3.1.1)

where K : R → R is a kernel function and h = hn > 0 a bandwidth. Notice now that
a noncontinuous indicator function is included. The goal of this chapter is to provide
a general empirical process theory which allows us to show, for instance, a functional
central limit theorem of Ĝn,h(x, v) for fixed v ∈ [0, 1] of the form[√

nh
(
Ĝn,h(x, v)−G(x, v)

)]
x∈R

d→ G(x)x∈R (3.1.2)

where (G(x))x∈R is a centered Gaussian process and G(x, v) = P(X̃0(v) ≤ x) denotes
the distribution function of X̃0(v), the stationary approximation of X0 according to
Assumption 2.3.1.

As before, the additional localization via kernels changes the convergence rate of the
empirical process. In order to discuss (3.1.1) with the general form (1.2.3), we assume
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that any f ∈ F has a representation as in (2.2.1),

f(z, u) = Df,n(u) · f̄(z, u), z ∈ (Rd)N0 , u ∈ [0, 1], (3.1.3)

where f̄ is independent of n and Df,n(u) is independent of z = (zj)j∈N0 . For the specific
example given in (3.1.2), we consider

F =
{

(z, u) 7→ fx(z, u) :=
1√
h
K
(u− v

h

)
· 1{z0≤x} : x ∈ R

}
,

and thus Dfx,n(u) = 1√
h
K(u−vh ) and f̄x(z, u) = 1{z0≤x}.

We now introduce the necessary assumptions for our empirical process theory in con-
text of the functional dependence measure. Based on decomposition (3.1.3), we define
the following two function classes with regard to f̄ , which mimic the one-step-ahead
mean and variance forecast,

F̄ (1) := {(z, u) 7→ E[f̄(Zi, u)|Zi−1 = z] : f ∈ F , i ∈ Z},
F̄ (2) := {(z, u) 7→ E[f̄(Zi, u)2|Zi−1 = z]1/2 : f ∈ F , i ∈ Z},

where Zi := (Xi, Xi−1, Xi−2, ...), as in Subsection 1.2.
There are two key assumptions on f̄ to show our main result, Theorem 3.1.2. The first

is a compatibility condition which connects smoothness properties of F̄ (κ), κ ∈ {1, 2},
with corresponding moment assumptions on the process Xi, i = 1, ..., n.

Assumption 3.1.1 (Compatibility condition for function classes). The classes F̄ (κ),
κ ∈ {1, 2}, are (L, s,R,C)-classes. There exists p ∈ (1,∞], CX > 0 such that

(i’) sup
i,u
‖R(Zi−1, u)‖2p ≤ CR, (ii) sup

i,j
‖Xij‖ 2sp

p−1
≤ CX .

Let Dn ≥ 0 and ∆(k) ≥ 0 such that

2dCR

k−1∑
j=0

Lj
(
δX2sp
p−1

(k − j − 1)
)s ≤ ∆(k), sup

f∈F

( 1

n

n∑
i=1

∣∣∣Df,n

( i
n

)∣∣∣2)1/2
≤ Dn.

Notice that the index in the variable Zi−1 of condition (i’) is shifted in comparison to
the earlier formulation of Assumption 2.2.3, condition (i).

First, let us summarize the dependence structure by the quantity

β(q) =

∞∑
j=q

∆(j) (3.1.4)

where ∆(·) plays the same role in Assumption 3.1.1 as in Assumption 2.2.3. Recall
H(ε,F , ‖ · ‖) as the bracketing entropy and Vn from (2.2.4). Postponing some technical-
ities, we state our main result.
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Theorem 3.1.2. Suppose that F satisfies Assumption 3.1.1, 3.2.1, 3.3.3, 2.3.1, 3.2.2,
2.3.3. For

ψ(ε) =
√

log(ε−1 ∨ 1) log log(ε−1 ∨ e) (3.1.5)

suppose that

sup
n∈N

∫ 1

0
ψ(ε)

√
H(ε,F , Vn)dε <∞.

Then in `∞(F), [
Gn(f)

]
f∈F

d→
[
G(f)

]
f∈F

where (G(f))f∈F is a centered Gaussian process with covariances

Cov(G(f),G(g)) = lim
n→∞

Cov(Gn(f),Gn(g)) = Σ(K)

and Σ(K) is from Assumption 2.3.3.

As in the preceding chapter, the statement is a result of the convergence of the finite-
dimensional distributions in Section 3.2, Theorem 3.2.3, and asymptotic tightness in
Section 3.3.2, Corollary 3.3.6. They will be shown later on.

Suppose that Dn ∈ (0,∞) is independent of n ∈ N. Based on decay rates of ∆(k), we
derive simpler forms of Vn which are shown below in Table 3.1. The rates are similar to
Table 2.1 except for the additional factor ψ(ε) in the entropy integral.

∆(j)

cj−α, α > 1, c > 0 cρj , ρ ∈ (0, 1), c > 0

Vn(f) ‖f‖2,n max{‖f‖−
1
α

2,n , 1} ‖f‖2,n max{log(‖f‖−1
2,n), 1}∫ σ

0

√
H(ε,F , Vn)dε

∫ σ̃
0 ε−

1
αψ(ε)

√
H(ε,F , ‖ · ‖2,n)dε

∫ σ̃
0 log(ε−1)ψ(ε)

√
H(ε,F , ‖ · ‖2,n)dε

Table 3.1: Equivalent expressions of Vn and the corresponding entropy integral under
the condition that Dn ∈ (0,∞) is independent of n. We omitted the lower and
upper bound constants which are only depending on c, ρ, α and Dn. Further-
more, σ̃ = σ̃(σ) fulfills σ̃ → 0 for σ → 0.

The theorem significantly simplifies if Xi is stationary. In that case, f̄(z, u) = f̄(z0)
depends only on one observation and no weighting is present, i.e. Df,n(u) = 1. As-
sumption 3.2.1, 3.2.2, 2.3.1 and 2.3.3 then are fulfilled automatically. These assumptions
are needed only to provide a (pointwise) central limit theorem for locally stationary
processes. They basically enforce several smoothness properties of f̄ .

In more detail, let

G̃n(h) :=
1√
n

n∑
i=1

{
h(Xi)− Eh(Xi)

}
,
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where Xi = J(Ai), i = 1, ..., n, is a stationary Bernoulli shift process and h ∈ H ⊂ {h :
Rd → R measurable}, a function class with envelope function h̄, i.e. for h ∈ H we have
|h(·)| ≤ h̄(·), such that

h(1)(z0) = E[h(X1) | X0 = z0], h(2)(z0) = E[h(X1)2 | X0 = z0]1/2

are Hölder continuous with exponent s and constant LH, that is, for all z, z′ ∈ R,

|h(1)(z)− h(1)(z′)| ≤ LH|z − z′|s, |h(2)(z)− h(2)(z′)| ≤ LH|z − z′|s.

Assumption 3.1.1 automatically holds true with R(·) = 1
2 and thus CR = 1

2 , L = LH as

well as C = max{h(1)(0), h(2)(0)}. Recall β(·) from (3.1.4). Then we have the following
corollary of Theorem 3.1.2 in the stationary case.

Corollary 3.1.3. Suppose that ‖X1‖2s < ∞ and put Dn := 1. Let ∆(k) fulfill ∆(k) ≥
dLHδ

X
2s(k − 1)s and there exists Cβ > 0 such that for all q1, q2 ∈ N,

β(q1q2) ≤ Cββ(q1)β(q2). (3.1.6)

Furthermore, ‖h̄(X1)‖2p̄ <∞ for some p̄ > 1. Assume that

sup
n∈N

∫ 1

0
ψ(ε)

√
H(ε,H, Vn)dε <∞

where ψ(ε) is from (3.1.5). Then in `∞(H),[
G̃n(h)

]
h∈H

d→
[
G̃(h)

]
h∈H

where (G̃(h))h∈H is a centered Gaussian process with covariances

Cov(G̃(h1), G̃(h2)) =
∑
k∈Z

Cov(h1(X0), h2(Xk)).

3.1.1 Application to empirical distribution functions of stationary
processes

As an example, consider the family of indicators

H = {hx(z0) := 1{z0≤x} : x ∈ R},

which is the function class that corresponds to the empirical distribution function

[
Ĝn(x)

]
x∈R =

[ 1

n

n∑
i=1

1{Xi≤x}

]
x∈R

=
[
G̃n(h)

]
h∈H.

Suppose that Xi, i = 1, ..., n, is stationary. Define the conditional distribution function

Gz(x) = P(X1 ≤ x | X0 = z).

Then we have the following corollary.
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Corollary 3.1.4. Suppose that Xi is stationary and z 7→ Gz(x) is Lipschitz continuous
with Lipschitz constant LG for all x ∈ R. Suppose that for some s ∈ (0, 1

2 ], ‖X1‖2s <∞
and δX2s(k) ≤ ck−α with α > 1

s , c > 0. Then,[
Ĝn(x)

]
x∈R

d→
[
G̃(x)

]
x∈R

where G̃(x) is a Gaussian process with

Cov(G̃(x), G̃(y)) =
∑
k∈Z

Cov(1{X0≤x},1{Xk≤y}).

As it is only a short discussion we include its proof here.

Proof of Corollary 3.1.4. Due to min{1, w} ≤ wa for a ∈ [0, 1], w ≥ 0, we have for any
s ∈ (0, 1

2 ],
|Gz(x)−Gz′(x)| ≤ min{1, LG|z − z′|} ≤ LsG|z − z′|s

and
|Gz(x)−Gz′(x)|1/2 ≤ min{1, (LG|z − z′|)1/2} ≤ LsG|z − z′|s.

Choose ∆(k) = cLG(k − 1)−αs, which is easily seen to satisfy (3.1.6) (in particular,
β(q) <∞ for q ∈ N) for some Cβ = Cβ(α, s, c, LG) chosen large enough.

Note that H(ε,H, ‖·‖2,n) = O(log(ε−1)) for a given ε > 0 by [van der Vaart, 1998, Ex-
ample 19.6], because in the stationary situation of the corollary, ‖h‖2,n = E[h(X1)2]1/2.
Since αs > 1, Table 3.1 implies∫ 1

0
ψ(ε)

√
H(γ,H, Vn)dε = O

(∫ 1

0
ψ(ε)ε−

1
αs

√
log(ε−1)dε

)
<∞.

Corollary 3.1.3 now delivers the assertion.

3.1.2 Comparison with other functional convergence results for the
empirical distribution function of stationary processes

In the literature, several functional convergence results for the empirical distribution
function were already provided. Here we list some approaches which are closely related
to the functional dependence measure and compare the results to Corollary 3.1.4.

In Borovkova et al. [2001], stationary processes of the form Xi = J(Gi) are considered
where Gi = (εi, εi−1, ...) and J is measurable. Therein, the function J itself is assumed
to fulfill a (geometrically decaying) Lipschitz condition, i.e. for any sequences (ai), (a

′
i)

with ai = a′i, i ≤ k, ∣∣J((ai))− J((a′i))
∣∣ ≤ Cαk (3.1.7)

for some constants C,α > 0. Based on this, 1-approximation coefficients ak are defined
as upper bounds on

E
∥∥X0 − E[X0 | σ(ε0, ..., εk)]

∥∥
1
≤ ak.
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There is a strong connection between δX1 (k) and ak, since it is possible to choose
ak ≤

∑∞
j=k+1 δ

X
1 (j). The work of [Borovkova et al., 2001, Theorem 5] shows that, under

summability conditions on ak, the β-mixing coefficients and monotonicity assumptions
on F = {ft : t ∈ [0, 1]}, a uniform central limit theorem for (Gn(ft))t∈[0,1] holds true.
Compared to our setting, (3.1.7) would lead to a geometrically decaying functional de-
pendence measure δX . Thus, the result in our Corollary 3.1.4 is much less restrictive
regarding the dependence of the underlying process.

In [Dedecker, 2010, Theorem 2.1], a uniform central limit theorem for the empirical
distribution function is shown under β2(k) = O(k−1−γ), γ > 0, by using specifically
designed dependence coefficients β2(k), k ∈ N0, based on the idea of absolute regularity.
We now compare this result to Corollary 3.1.4. In [Dedecker and Prieur, 2007, Section
6.1] it was shown that if Xi = J(Gi) is stationary and the distribution function of X1 is
Lipschitz continuous, then for any ν ∈ [0, 1],

β2(k) ≤ C ·
( ∞∑
j=k+1

δXν (j)ν
′
) ν
ν′(ν+1)

, ν ′ = min{ν, 1},

where C > 0 is a constant independent of k. The condition β2(k) = O(k−1−γ) now
naturally provides a decay condition on δXν (k). For ν = 2s, which corresponds to the
moments of the process we have given in Corollary 3.1.4, we see after a short calculation
that β2(k) = O(k−1−γ) implies

α ≥ 1

s
+

γ

2s
+ γ + 1.

In other words, if the results from Dedecker [2010], Dedecker and Prieur [2007] are
transferred to the functional dependence measure setting, they need a more restrictive
decay condition.

Meanwhile, Berkes et al. [2009] investigates strong approximations of the multivariate
empirical distribution function process (that is, contrary to our approach, the results are
limited to empirical distribution functions). They assume that the stationary process

Xi = J(Gi) allows for approximations (X
(m)
i ) such that for all m, i,

P(|Xi −X(m)
i | ≥ m−A) ≤ m−A (3.1.8)

for some A > 4, and that for any disjoint intervals I1, ..., Ir of integers and any positive

integers m1, ...,mr, the vectors {X(m1)
i : i ∈ I1}, ..., {X(mr)

i : j ∈ Ir} are independent of
each other provided the separation between Ik and Il is greater than mk + ml. Under
these assumptions, [Berkes et al., 2009, Theorem 1, Corollary 1] shows that the empirical
distribution function with respect to Xi weakly converges to some Gaussian process.

When having knowledge about the functional dependence measure, X
(m)
i could be

chosen as X
(m)
i = E[Xi | εi, ..., εi−m]. Then by Markov’s inequality,

P
(
|Xi −X(m)

i | ≥ m−A
)
≤
‖Xi −X(m)

i ‖2s2s
m−2sA

≤
(
mA ·

∞∑
j=m+1

δX2s(j)
)2s
,
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so that (3.1.8) leads to a decay condition on δXν (j). After a short calculation, we see that
(3.1.8) is fulfilled if

α ≥
( 1

2s
+ 1
)
A+ 1,

again a more restrictive decay condition than given in Corollary 3.1.4.
The work of Durieu and Tusche [2014] discusses the functional convergence of the

multivariate empirical distribution function under a general growth condition imposed
on the moments of

∑n
i=1{h(Xi)−Eh(Xi)}, where h ∈ Hγ is a Hölder continuous function

with exponent γ ∈ (0, 1] approximating the indicator function. They relate their result
to the functional dependence measure in a rather involved discussion, as well.

3.1.3 Application to empirical distribution functions of locally
stationary processes

In this section, we apply our theory to the localized empirical distribution function
Ĝn,h(x, v) from (3.1.1) on a locally stationary process, as motivated in the beginning of
Section 3.1.

Suppose that Xi is locally stationary in the sense of Assumption 2.3.1 and recall
G(x, v) = P(X̃1(v) ≤ x). Define the conditional distribution function of the stationary
approximation of Xi,

Gz(x, v) = P(X̃1(v) ≤ x | X̃0(v) = z).

Next, we impose a regularity assumption on the distribution functionGi(x) := P(Xi ≤ x)
of the locally stationary process itself.

The following generalization of Corollary 3.1.4 holds true.

Corollary 3.1.5. Let v ∈ (0, 1). Suppose that there exists some LG > 0 such that

• z 7→ Gz(x, v) is Lipschitz continuous with constant LG for all x ∈ R,

• x 7→ G(x, v) is Lipschitz continuous with constant LG,

• x 7→ Gi(x) is Lipschitz continuous with constant LG and limx→−∞ supi,nGi(x) = 0,
limx→+∞ infi,nGi(x) = 1.

Assume that K : R → R is a Lipschitz continuous kernel function with
∫
K(x)dx = 1

and support ⊂ [−1
2 ,

1
2 ].

Furthermore, for some s ∈ (0, 1
2 ] let supi,n ‖Xi‖2s <∞ and δX2s(k) ≤ ck−α with α > 1

s ,
c > 0.

Then for hn→∞, h→ 0,[
Ĝn,h(x, v)

]
x∈R

d→
[
G̃(x, v)

]
x∈R,

where G̃(x, v) is a Gaussian process with

Cov(G̃(x, v), G̃(y, v)) =

∫
K(u)2du ·

∑
k∈Z

Cov(1{X̃0(v)≤x},1{X̃k(v)≤y}).
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The recently published work Mayer et al. [2020] considers functional convergence of
the empirical distribution function of piece-wise locally stationary processes and retrieve
similar results. We provide slightly less (weaker) assumptions and include polynomial
decay of the dependence coefficients.

3.2 A general central limit theorem for locally stationary
processes

In this section, we provide a multivariate central limit theorem for Gn(f). To guarantee
a regular behavior of the asymptotic variance, we need the following assumptions.

Assumption 3.2.1. Let F̄ be an envelope function of {f̄ : f ∈ F}, that is, |f̄(·)| ≤
F̄ (·) for all f ∈ F . There exists p̄ ∈ (1,∞] such that supi,u ‖F̄ (Zi, u)‖2p̄ < ∞ and

supv,u ‖F̄ (Z̃0(v), u)‖2p̄ <∞. Furthermore, either

• Xi is stationary, or

• for all c > 0 and f ∈ F ,

sup
u,v∈[0,1]

1

cs
E

[
sup

|a|LF ,s≤c

∣∣f̄(Z̃0(v), u)− f̄(Z̃0(v) + a, u)
∣∣2] <∞. (3.2.1)

Additionally, (3.2.1) also holds true for F̄ .

Assumption 3.2.2. There exists some ς ∈ (0, 1] such that for every f ∈ F ,

|f̄(z, u1)− f̄(z, u2)| ≤ |u1 − u2|ς ·
(
R̄(z, u1) + R̄(z, u2)

)
,

and supu,v ‖R̄(Z̃0(v), u)‖2 <∞.

We comment on the assumptions after the following theorem.

Theorem 3.2.3. Suppose that F satisfies Assumption 3.1.1, 3.2.1, 2.3.1, 3.2.2 and

2.3.3. Let m ∈ N, f1, ..., fm ∈ F and ΣK = Σ
(K)
fk,fl

)k,l=1,...,m. Then,

1√
n

n∑
i=1




f1(Zi,

i
n)

...

fm(Zi,
i
n)

− E


f1(Zi,

i
n)

...

fm(Zi,
i
n)




d→ N(0,ΣK),

where Σ(K) is from Assumption 2.3.3.
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While Assumption 3.2.1 asks for smoothness of f̄ in the L2-sense if Xi is nonstation-
ary, Assumption 3.2.2 requires the function class F to behave smoothly in the second
argument. The last Assumption 2.3.3 mainly controls the behavior of the part Df,n(u)
of f ∈ F which does not depend on the observations.

In contrast to the continuous case where all conditions imposed on f ∈ F also transfer
to supf∈F f due to the purely analytic nature of Assumption 2.2.3 and 3.2.2, we here
additionally require some envelope function F̄ to fulfill Assumption 3.2.2 and (3.2.1)
because the supremum over f ∈ F does not interchange with the expectation in (3.2.1).

Note that Assumptions 3.2.2, 2.3.1 and 2.3.3 are needed to allow for very different
function classes F . In many special cases, however, some of these assumptions are au-
tomatically fulfilled. We commented on similar cases in Remark 2.3.5. For example, if
f̄(z, u) = f̄(z) does not depend on u, Assumption 3.2.2 is fulfilled.

Theorem 3.2.3 is a version of Theorem 2.3.4 but for nonsmooth function classes. The
proofs are very similar to each other. The only difference appears as Lemma 3.5.6, for
which we supply the proof in Section 3.5.3. It can be considered as an analogue to Lemma
2.8.3 under the different Assumption 3.2.1, 3.2.2, 2.3.1 and 2.3.3.

3.3 Maximal inequalities and asymptotic tightness under
functional dependence

We now provide an approach for empirical process theory if the class F consists of
nonsmooth functions. Our approach is based on the decomposition

Gn(f) = G(1)
n (f) + G(2)

n (f)

into a martingale

G(1)
n (f) =

1√
n

n∑
i=1

{
f
(
Zi,

i

n

)
− E

[
f
(
Zi,

i

n

)
| Zi−1

]}
and a process

G(2)
n (f) =

1√
n

n∑
i=1

{
E
[
f
(
Zi,

i

n

)
| Zi−1

]
− Ef

(
Zi,

i

n

)}
which is smooth with respect to the arguments Zi if Assumption 3.1.1 is fulfilled. The

second part G(2)
n can then be controlled in a similar way as done in Section 2.4. Therefore,

it is only discussed in Section 3.5, where all the proofs of this chapter are deferred to. The

term G(1)
n is dealt with by using a Bernstein-type inequality for martingales. Observe

that the conditional variance of G(1)
n (f) on Zi−1 is bounded from above by

R2
n(f) :=

1

n

n∑
i=1

E
[
f
(
Zi,

i

n

)2 | Zi−1

]
.

The first step is now to bound R2
n(f) uniformly over f ∈ F .
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3.3.1 Maximal inequalities

We recall that based on β(·) from (3.1.4), we define

q∗(x) := min{q ∈ N : β(q) ≤ q · x}

and for δ > 0,
r(δ) := max{r > 0 : q∗(r)r ≤ δ}.

Again, D∞n (u) := supf∈F |Df,n(u)|. For ν ≥ 2, we choose D∞ν,n such that the inequality(
1
n

∑n
i=1D

∞
n ( in)ν

)1/ν ≤ D∞ν,n is fulfilled. Put D∞n = D∞2,n. As before in (1.2.5), H =
H(|F|) = 1 ∨ log |F|. The values for q∗(·) and r(·) under polynomial and exponential
decaying ∆(·) were given in Table 2.2.

We have the following theorem. Note that the below appearing constant C∆ is quite
complex, which is why we reduce it here to its formal existence. We refer to Lemma 3.5.1
for its exact form.

Theorem 3.3.1 (Controlling the variance). Let F satisfy |F| < ∞ and Assumption
3.1.1. Then there exists some universal constant c > 0 such that the following holds
true. If supf∈F ‖f‖∞ ≤M and supf∈F Vn(f) ≤ σ, then

Emax
f∈F

∣∣∣R2
n(f)− ER2

n(f)
∣∣∣ ≤ c · min

q∈{1,...,n}

[
Dnr

( σ
Dn
)
σ +C∆(D∞n )2β(q) +

qM2H

n

]
. (3.3.1)

Furthermore,

Emax
f∈F

∣∣∣R2
n(f)− ER2

n(f)
∣∣∣ ≤ 2c ·

[
Dnr

( σ
Dn
)
σ + q∗

( M2H

n(D∞n )2C∆

)M2H

n

]
. (3.3.2)

Theorem 3.3.1 in conjunction with Theorem 2.4.1 can be used to provide uniform
convergence rates for Gn(f).

Corollary 3.3.2 (Uniform convergence rates). Suppose that F satisfies |F| < ∞, As-
sumption 3.1.1 for some ν ≥ 2 and Assumption 3.3.3. Let F̄ := supf∈F f̄ and assume
that for some ν2 ∈ [2,∞],

CF̄ ,n := sup
i,u
‖F̄ (Zi, u)‖ν2 <∞.

If

sup
n∈N

sup
f∈F

Vn(f) <∞, sup
n∈N

D∞ν2,n

D∞n
<∞, sup

n∈N

C2
F̄ ,n

H

n
1− 2

ν2 r( σ
D∞n

)2
<∞, (3.3.3)

then
max
f∈F
|Gn(f)| = Op(

√
H).
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3.3.2 Asymptotic tightness

In this section, we extend the maximal inequality from Theorem 3.3.1 to arbitrary (in-
finite) classes F . We need an additional submultiplicativity assumption on β(·) from
(3.1.4).

Assumption 3.3.3. There exists a constant Cβ > 0 such that for each q1, q2 ∈ N,

β(q1q2) ≤ Cβ · β(q1)β(q2).

It is easily seen that Assumption 3.3.3 is fulfilled if ∆(k) follows a polynomial (∆(k) =
ck−α for c > 0, α > 1) or exponential decay (∆(k) = cρk for c > 0, ρ ∈ (0, 1)), cf. Lemma
2.8.12. Assumption 3.3.3 is generally not fulfilled if ∆(k) contains a factor of the form

1
log(k) .

Recall H(k) = 1 ∨ log(k). For n ∈ N, δ > 0, we defined (cf. (2.4.6))

m(n, δ, k) := r
( δ
Dn
)
· D
∞
n n

1/2

H(k)1/2
.

Theorem 3.3.4. Let F satisfy Assumption 3.1.1 and 3.3.3, F be some envelope function
of F . Furthermore, let σ > 0 and suppose that supf∈F Vn(f) ≤ σ. Let ψ be defined as in
(3.1.5). Then there exists a universal constant c > 0 such that for each η > 0,

P
(

sup
f∈F

∣∣G(1)
n (f)

∣∣ > η
)

≤ 1

η

[
c
(

1 +
D∞n
Dn

+
Dn
D∞n

)
·
∫ σ

0
ψ(ε)

√
1 ∨H

(
ε,F , V

)
dε

+
√
n
∥∥F1{F> 1

4
m(n,σ,N(σ

2
,F ,Vn))}

∥∥
1

]
+c
(

1 + q∗
(
C−1

∆ C−2
β

)(D∞n
Dn

)2)∫ σ

0

1

εψ(ε)2
dε. (3.3.4)

Remark 3.3.5. Let m > 0. The chaining procedure found in Nishiyama et al. [2000]
for martingales uses the fact that for functions f, g with |f | ≤ g and g(·) > m,

|G(1)
n (f)| ≤ |G(1)

n (g)|+ 2
√
n · 1

n

n∑
i=1

E
[
g
(
Zi,

i

n

)
| Zi−1

]
≤ |G(1)

n (g)|+ 2
√
n
R2
n(g)

m
.

Afterwards, bounds for the conditional variance R2
n(g) are applied. In our case, these

bounds are not sharp enough. We therefore employ the inequality

|G(1)
n (f)| ≤ |G(1)

n (g)|+ 2|G(2)
n (g)|+ 2

√
n
‖g‖22,n
m

and are forced to use the “smooth” chaining technique applied to G(2)
n (g), as in Theorem

2.4.4, and discuss R2
n(g) with Theorem 3.3.1.
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We now obtain asymptotic equicontinuity of the process Gn(f) by using Theorem

3.3.4 for G(1)
n and Theorem 2.4.4 for G(2)

n .

Corollary 3.3.6. Let F satisfy the Assumption 3.1.1, 3.3.3, 2.3.1, 3.2.2 and 3.2.1. For
ψ from (3.1.5), suppose that

sup
n∈N

∫ ∞
0

ψ(ε)
√

1 ∨H(ε,F , Vn)dε <∞. (3.3.5)

Furthermore, let Dn,D∞n ∈ (0,∞) be independent of n, and

sup
i=1,...,n

D∞n ( in)
√
n
→ 0. (3.3.6)

Then, the process Gn(f) is equicontinuous with respect to Vn, that is, for every η > 0,

lim
σ→0

lim sup
n→∞

P
(

sup
f,g∈F ,Vn(f−g)≤σ

|Gn(f)−Gn(g)| ≥ η
)

= 0.

Remark 3.3.7. Compared to Corollary 2.4.5, the condition (3.3.5) of Corollary 3.3.6 is
not optimal due to the additional ψ(ε)-factor or, in an explicitly calculated case, a log-
factor; the reason here being that we do not approximate the distance R2

n(·) uniformly
over the class F in an external step but evaluate the needed bounds for R2

n(·) during the
chaining process. This is also the reason why our result does not include the i.i.d. version
as a special case. However, in comparison to the results of Lemma 2.8.15 we do not
lose much due to this factor in the case of polynomial dependence. Even in the case of
exponential decay, the additional factor is of the same order as the factor already present
due to dependence.

3.3.3 Further applications

Our theory allows for empirical process theory of general function classes. We illustrate
the results with two short examples.

Example 1 (Distribution of residuals)

Consider the locally stationary time series model which is defined recursively via

Xi = m
(
Xi−1,

i

n

)
+ σ

(
Xi−1,

i

n

)
εi, i = 1, ..., n,

where εi, i ∈ Z, is an i.i.d. sequence of random variables and σ,m : R× [0, 1]→ R.
Besides estimation of m(·), σ(·), it may also be of interest to derive the distribution

function Gε of εi. Following the approach of Akritas and Van Keilegom [2001], we first
have to specify estimators m̂, σ̂ for m,σ, respectively, and define empirical residuals
ε̂i = Xi−m̂(Xi−1,i/n)

σ̂(Xi−1,i/n) . Then the convergence of (Ĝε(x))x∈R,

Ĝε(x) =
1

n

n∑
i=1

1{ε̂i≤x} =
1

n

n∑
i=1

1{
εi≤x·

σ̂(Xi−1,i/n)

σ(Xi−1,i/n)
+
m̂(Xi−1,i/n)−m(Xi−1,i/n)

σ(Xi−1,i/n)

},
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can be discussed with empirical process theory and the rather involved analytic proper-
ties of m̂, σ̂ found in Akritas and Van Keilegom [2001].

In the following example we make use of the maximal inequality provided in Section
3.3, Corollary 3.3.2.

Example 2 (Kernel density estimation)

Let K : R → R be some bounded Lipschitz continuous kernel function that satisfies∫
K(u)du = 1 and has support ⊂ [−1

2 ,
1
2 ]. For some bandwidth h := hn > 0, put

Kh(·) := 1
hK( ·h).

We consider the localized density estimate of the density gX̃1(v) of the stationary

approximation X̃1(v),

ĝn,h(x, v) =
1

n

n∑
i=1

Kh1

( i
n
− v
)
Kh2(Xi − x)

where h1, h2 > 0 are bandwidths. Suppose that:

• For some s ≤ 1
2 , α > s−1, δX2s(j) = O(j−α) and supi,n ‖Xi‖2s <∞.

• There exist pK ≥ 2s, CK > 0 such that for u large enough, |K(u)| ≤ CK |u|−pK .

• There exist constants C∞, LG > 0 such that the following holds true. The condi-
tional density gXi|Xi−1=z of Xi given Xi−1 = z satisfies |gXi|Xi−1=z|∞ ≤ C∞ and
for any x ∈ R, z 7→ gXi|Xi−1=z(x) is Lipschitz continuous with constant LG.

We show that if log(n)
(
nh1h

α(s∧ 1
2 )

α(s∧ 1
2 )−1

2

)−1
= O(1),

sup
x∈R,v∈[0,1]

∣∣ĝn,h(x, v)− Eĝn,h(x, v)
∣∣ = Op

(√ log(n)

nh1h2

)
. (3.3.7)

To do so, note that √
nh1h2

(
ĝn,h(x, v)− Eĝn,h(x, v)

)
= Gn(fx,v)

with

F = {fx,v(z, u) =
√
h1Kh1(u− v) ·

√
h2Kh2(z − x) : x ∈ R, v ∈ [0, 1]}.

To obtain (3.3.7), we use Corollary 3.3.2. We have for κ ∈ {1, 2},

µ(κ)(z) :=
1

h2
E[Kh2(Xi − x)κ | Xi−1 = z]κ

=
1√
h2

(∫
K
(y − x
h2

κ)
fXi|Xi−1=z(y)dy

)1/κ

= h
1
κ
− 1

2
2

(∫
K(w)κfXi|Xi−1=z(x+ wh2)dw

)1/κ
.
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Hence,

|µ(κ)(z)− µ(κ)(z′)|

≤ h
1
κ
− 1

2
2

(∫
|K(w)|κ|fXi|Xi−1=z(x+ wh2)− fXi|Xi−1=z′(x+ wh2)|dw

)1/κ
.

On the other hand, |fXi|Xi−1=z(x+wh2)−fXi|Xi−1=z′(x+wh2)| ≤ min{LG|z−z′|, C∞}.
For s ≤ 1

κ , we obtain

|µ(κ)(z)− µ(κ)(z′)| ≤ h
1
κ
− 1

2
2

(∫
|K(w)|κdw

)1/κ
·
[
C∞min

{
1,
LG
C∞
|z − z′|

}]1/κ

≤ h
1
κ
− 1

2
2

(∫
|K(w)|κ

)1/κ
C

1
κ
−s
∞ LsG|z − z′|s.

This shows that Assumption 3.1.1 is satisfied with R(·) = 1
2 = CR and LF = LG and

∆(k) = LG(k − 1)−αs. As before, it is easily seen that Assumption 3.3.3 is satisfied.

We apply Corollary 3.3.2 with F̄ = |K|∞√
h2

=: CF̄ ,n. For the grids Vn = {in−3 : i =

1, ..., n3}, Xn = {in−3 : i ∈ {−2dn3+ 1
2s e, ..., 2dn3+ 1

2s e}}, we obtain√
nh1h2 sup

x∈Xn,v∈Vn

∣∣ĝn,h(x, v)− Eĝn,h(x, v)
∣∣ = sup

x∈Xn,v∈Vn
|Gn(fx,v)| = Op

(√
log(n)

)
.

The discretization of (3.3.7) is rather standard and postponed to Section 3.5, Subsection
3.5.4.

3.4 Concluding remarks

We developed an empirical process theory for locally stationary processes on function
classes of (possibly) nonsmooth functions. Here, the dependence was quantified again by
the functional dependence measure. In this new setting, we provided maximal inequalities
and functional central limit theorems.

Our theory can be applied to, for instance, empirical distribution functions (EDFs)
and kernel density estimators. However, it allows for more models to be discussed, as
well. Compared to earlier papers in the context of stationary processes and the EDFs,
our results have remarkably weak conditions on the dependence structure of the process.

From a technical point of view, working with noncontinuous functions has forced us to
modify several approaches from Chapter 2. One key step was to decompose our original
process into a martingale and a conditional expectation part.
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3.5 Lemmata and proofs of Chapter 3

3.5.1 Proofs of Section 3.1

Lemma 3.5.1. Let Assumption 3.1.1 be satisfied for some ν ≥ 2. Then for all u ∈ [0, 1],

δ
E[f(Zi,u)|Zi−1]
ν (k) ≤ |Df,n(u)| ·∆(k), (3.5.1)

sup
i

∥∥∥ sup
f∈F

∣∣E[f(Zi, u)|Zi−1]

−E[f(Zi, u)|Zi−1]∗(i−k)
∣∣∥∥∥
ν
≤ D∞n (u) ·∆(k), (3.5.2)

sup
i
‖f(Zi, u)‖2 ≤ |Df,n(u)| · C∆. (3.5.3)

Furthermore,∥∥∥E[f(Zi, u)2|Zi−1]

−E[f(Zi, u)2|Zi−1]∗(i−k)
∥∥∥
ν/2

≤ 2|Df,n(u)| · ‖f(Zi, u)‖ν ·∆(k), (3.5.4)∥∥∥ sup
f∈F

∣∣E[f(Zi, u)2|Zi−1]

−E[f(Zi, u)2|Zi−1]∗(i−k)
∣∣∥∥∥
ν/2

≤ D∞n (u)2 · C∆ ·∆(k),

(3.5.5)

where C∆ := 2 max{d, d̃}|LF |1CsXCR + Cf̄ .

Proof of Lemma 3.5.1. Let µ̄
(1)
f,i (z, u) = E[f̄(Zi, u)|Zi−1 = z] and accordingly µ̄

(2)
f,i (z, u) =

E[f̄(Zi, u)2|Zi−1 = z]. We have by Assumption 3.1.1 that

sup
i

∥∥E[f(Zi, u)|Zi−1]− E[f(Zi, u)|Zi−1]∗(i−k)
∥∥
ν

= |Df,n(u)| · sup
i

∥∥µ̄(1)
f,i (Zi−1, u)− µ̄(1)

f,i (Z
∗(i−k)
i−1 , u)

∥∥
ν

≤ |Df,n(u)| · sup
i

∥∥∥∣∣Zi−1 − Z∗(i−k)
i−1

∣∣s
LF,s

∥∥∥
pν
p−1

∥∥∥R(Zi−1, u) +R(Z
∗(i−k)
i−1 , u)

∥∥∥
pν

≤ |Df,n(u)| · sup
i

∥∥∥∥∥∥
∞∑
j=0

LF ,j
∣∣Xi−1−j −X∗(i−k)

i−1−j
∣∣s
∞

∥∥∥∥∥∥
pν
p−1

×
(
‖R(Zi−1, u)‖pν +

∥∥∥R(Z
∗(i−k)
i−1 , u)

∥∥∥
pν

)
≤ |Df,n(u)| · 2dCR

k−1∑
j=0

LF ,jδ pνs
p−1

(k − j − 1)s,

that is, the assertion (3.5.1) holds true with the given ∆(k). The proof of (3.5.2) is
similar.
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We now prove (3.5.3). We have

E[f(Zi, u)2] = E[E[f(Zi, u)2|Zi−1]] = Df,n(u)2E[µ̄
(2)
f,i (Zi−1, u)2]

and thus ‖f(Zi, u)‖2 = |Df,n(u)| · ‖µ̄(2)
f,i (Zi−1, u)‖2. Since

|µ̄(2)
f,i (y, u)| ≤ |µ̄(2)

f,i (y, u)− µ̄(2)
f,i (0, u)|+ |µ̄(2)

f,i (0, u)|,

the proof now follows the same lines as in the proof of Lemma 2.8.4.
We now show (3.5.4) and (3.5.5). We have∣∣µ̄(2)

f,i (z, u)2 − µ̄(2)
f,i (z

′, u)2
∣∣ =

∣∣µ̄(2)
f,i (z, u)− µ̄(2)

f,i (z
′, u)

∣∣ · [|µ̄(2)
f,i (z, u)|+ |µ̄(2)

f,i (z
′, u)|

]
.

We then have by the Cauchy-Schwarz inequality that∥∥∥ sup
f∈F

∣∣µ̄(2)
f,i (Zi−1, u)2 − µ̄(2)

f,i (Z
∗(i−k)
i−1 , u)2

∣∣ ∥∥∥
ν/2

≤
∥∥∥ sup
f∈F

∣∣µ̄(2)
f,i (Zi−1, u)− µ̄(2)

f,i (Z
∗(i−k)
i−1 , u)

∣∣ ∥∥∥
ν
· 2
∥∥∥ sup
f∈F

∣∣µ̄(2)
f,i (Zi−1, u)

∣∣ ∥∥∥
ν
. (3.5.6)

Since {µ̄(2)
f,i : f ∈ F , i ∈ {1, ..., n}} forms a (LF , s, R,C)-class, the first factor in (3.5.6)

is bounded by ∆(k) as before. Furthermore,

|µ̄(2)
f,i (z, u)| ≤ |µ̄(2)

f,i (z, u)− µ̄(2)
f,i (0, u)|+ |µ̄(2)

f,i (0, u)|

≤ |z|sLF ,s(R(z, u) +R(0, u)) + |µ̄(2)
f,i (0, u)|.

Note that ∥∥∥|Zi−1|sLF ,s ·
[
R(Zi−1, u) +R(0, u)

]∥∥∥
ν

≤
∥∥∥ ∞∑
j=0

LF ,j |Zi−1−j |s∞
∥∥∥

p
p−1

ν
·
(
‖R(Zi−1, u)‖pν + |R(0, u)|

)
≤ d|LF |1 sup

i,j
‖Xij‖sνsp

p−1
· (CR + |R(0, u)|)

≤ 2d|LF |1CsXCR.

We now obtain (3.5.5) from (3.5.6) with the given C∆.
By the Cauchy-Schwarz inequality we have for q ≥ 2,

δ
E[f(Zi,u)2|Zi−1]
ν/2 (k)

= sup
i

∥∥∥E[f(Zi, u)2|Zi−1]− E[f(Zi, u)2|Zi−1]∗(i−k)
∥∥∥
ν/2

= |Df,n(u)| · sup
i

∥∥∥Df,n(u)
(
µ̄

(2)
f,i (Zi−1, u)2 − µ̄(2)

f,i (Z
∗(i−k)
i−1 , u)2

)∥∥∥
ν/2

≤ |Df,n(u)| · sup
i

∥∥∥µ̄(2)
f,i (Zi−1, u)− µ̄(2)

f,i (Z
∗(i−k)
i−1 , u)

∥∥∥
ν

×2
∥∥∥Df,n(u)µ̄

(2)
f,i (Zi−1, u)

∥∥∥
ν

(3.5.7)
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Furthermore,∥∥∥Df,n(u)µ̄
(2)
f,i (Zi−1, u)

∥∥∥
ν
≤ ‖E[f(Zi, u)2|Zi−1]1/2‖ν ≤ ‖f(Zi, u)‖ν . (3.5.8)

Since Assumption 3.1.1 holds true for µ̄
(2)
f,i , the first factor in (3.5.7) is bounded by

Df,n(u)∆(k) as in the proof of Lemma 2.8.4. Inserting this and (3.5.8) into (3.5.7), we
obtain the result (3.5.4).

Proof of Corollary 3.1.5. We verify the conditions of Theorem 3.1.2. By min{1, w} ≤ wa
for a ∈ [0, 1], w ≥ 0, we have for any s ∈ (0, 1

2 ],

|Gz(x, v)−Gz′(x, v)| ≤ min{1, LG|z − z′|} ≤ LsG|z − z′|s

and
|Gz(x, v)−Gz′(x, v)|1/2 ≤ min{1, (LG|z − z′|)1/2} ≤ LsG|z − z′|s.

This shows Assumption 3.1.1 with p =∞, R(·) = 1
2 = CR.

Choose ∆(k) = cLG(k − 1)−αs, which can easily be seen to satisfy Assumption 3.3.3
(in particular, β(q) < ∞ for q ∈ N) for some Cβ = Cβ(α, s, c, LG) chosen large enough.
Regarding Assumption 3.2.1 we first have

1

cs
E sup
LG|a|≤c

[|1{Z̃0(v)≤x} − 1{Z̃0(v)+a≤x}|
2] ≤ 1

cs
E|1{Z̃0(v)≤x} − 1{Z̃0(v)≤x− c

LG
}|

≤ 1

cs
(P(Z̃0(v) ≤ x)− P(Z̃0(v) ≤ x− c

LG
))

≤ 1

cs
(Gz(x, v)−Gz(x−

c

LG
, v))

≤ 1

cs
min{1, c} ≤ 1.

The envelope function is the constant 1-function and satisfies the required condition triv-
ially. Therefore, Assumption 3.2.1 holds true. Assumption 3.2.2 is automatically satisfied
for fixed v ∈ (0, 1). For Assumption 2.3.3, note that Df,n(u) = 1√

h
K(u−vh ) satisfies

1

n

n∑
i=1

Df,n(
i

n
)2 ≤ 1

nh

n∑
i=1

K(
i/n− v

h
)2 ≤ |K|2∞ <∞,

and D∞f,n ≤
1√
h
|K|∞. Thus,

D∞f,n√
n
≤ |K|∞√

nh
→ 0, and the support satisfies supp[Df,n(·)] ⊂

[v − h, v + h]. Finally, h1/2D∞f,n ≤ |K|∞ <∞ and, since v ∈ (0, 1),

lim
n→∞

∫ 1

0
Df,n(u)Dg,n(u)du = lim

n→∞

1

h

∫ 1

0
K(

u− v
h

)2du =

∫
K(u)2du.

This shows all the conditions of Assumption 2.3.3 (ii).
Note that H(ε,H, ‖ · ‖2,n) = O(log(ε−1)) which is proven subsequently.
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Let ε > 0. Since limx→−∞ supi,nGi(x) = 0 and limx→+∞ infi,nGi(x) = 1, there exists
xN = xN (ε) > x1 = x1(ε) > 0 such that supi,nGi(x1) ≤ ε, infi,nGi(x1) ≥ 1− ε. Define

xj+1 := x1 + j · ε2LG , j = 1, 2, ..., N − 1, with N = 1 + d (xN−x1)LG
ε2

e. Put x0 = −∞ and
xN+1 =∞. Then for j = 1, 2, ..., N − 1 we have

‖1{·≤xj+1} − 1{·≤xj+1}‖
2
2,n

≤ sup
i=1,...,n

E[(1{Xi≤xj+1} − 1{Xi≤xj})
2] = sup

i=1,...,n
[Gi(xj+1)−Gi(xj)]

≤ LG|xj+1 − xj | ≤ ε2,

which shows that [1{·≤xj},1{·≤xj+1}], j = 0, ..., N , are ε-brackets with respect to ‖ · ‖2,n.

Hence, H(ε,H, ‖ · ‖2,n) = O(log(ε−1)).
Since αs > 1, Table 3.1 implies that∫ 1

0
ψ(ε)

√
H(γ,H, Vn)dε = O

(∫ 1

0
ψ(ε)ε−

1
αs

√
log(ε−1)dε

)
<∞.

Theorem 3.1.2 now implies the assertion.

3.5.2 Proofs of Section 3.3.1

Proof of Theorem 3.3.1

In this section, we consider

Wi(f) = E[f(Zi,
i

n
)2|Zi−1], Sn(f) :=

n∑
i=1

{
Wi(f)− EWi(f)

}
.

Then,

R2
n(f) =

1

n

n∑
i=1

Wi(f), R2
n(f)− ER2

n(f) =
1

n
Sn(f).

We obtain from Lemma 3.5.1, (3.5.4) and (3.5.5) the following results for ν = 2.

Lemma 3.5.2. Suppose that Assumption 3.1.1 holds true. Then for each i = 1, ..., n,
j ∈ N, s ∈ N ∪ {∞}, f ∈ F ,∥∥∥ sup

f∈F

∣∣Wi(f)−Wi(f)∗(i−j)
∣∣ ∥∥∥

1
≤ C∆D

∞
n (

i

n
)2∆(j),

∥∥Wi(f)−Wi(f)∗(i−j)
∥∥

1
≤ 2|Df,n(

i

n
)| · ‖f(Zi,

i

n
)‖2∆(j),∥∥Wi(f)‖s ≤ ‖f(Zi,

i

n
)‖22s.
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We approximate Wi(f) by independent variables as follows (cf. also Wu et al. [2013],
Zhang and Wu [2017]). Let

Wi,j(f) := E[Wi(f)|εi−j , εi−j+1, ..., εi], j ∈ N,

and

Sn,j(f) :=
n∑
i=1

{Wi,j(f)− EWi,j(f)}.

We now follow the decomposition scheme that we already applied in equation (2.8.23).
The next result is a uniform bound on means of independent random variables.

Lemma 3.5.3. Assume that Qi(f), i = 1, ...,m are independent variables indexed by
f ∈ F which fulfill EQi(f) = 0, 1

m

∑m
i=1 ‖Qi(f)‖1 ≤ σQ and |Qi(f)| ≤MQ almost surely

(i = 1, ..., n). Then there exists some universal constant c > 0 such that

Emax
f∈F

∣∣∣ 1

m

m∑
i=1

Qi(f)
∣∣∣ ≤ c(σQ +

MQH

m

)
, (3.5.9)

where H is defined by (1.2.5).

Proof of Lemma 3.5.3. Let Qi = Qi(f). By Bernstein’s inequality, we have for each
f ∈ F ,

P
(∣∣∣ 1

m

m∑
i=1

Qi

∣∣∣ ≥ x) ≤ 2 exp
(
− 1

2

x2

1
m2

∑m
i=1 ‖Qi‖22 + x

MQ

m

)
≤ 2 exp

(
− 1

2

x2

MQ

m · σQ + x
MQ

m

)
,

where we used in the last step that ‖Qi‖22 = E[Q2
i ] ≤MQ‖Qi‖1.

With standard arguments (cf. [van der Vaart, 1998, proof of Lemma 19.33]), we con-
clude that there exists some universal constant c1 > 0 with

Emax
f∈F

∣∣∣ 1

m

m∑
i=1

Qi(f)
∣∣∣ ≤ c1

(√
H(

σQMQ

m
)1/2 +

MQH

m

)
.

The result follows by using (
HσQMQ

m )1/2 ≤ 2
MQH
m + 2σQ.

We now prove Theorem 3.3.1 based on Lemma 3.5.2, Lemma 3.5.3 and the decompo-
sition (2.8.23).

Proof of Theorem 3.3.1. We first discuss A2. We have

L∑
l=1

Emax
f∈F

1
n
τl

∣∣∣ ∑
1≤i≤b n

τl
c+1,i odd

1

τl
Ti,l(f)

∣∣∣.

111



Since ‖Wk,j(f)−Wk,j−1(f)‖1 ≤ 2 min{‖Wk(f)‖1, δWk(f)
1 (j−1)}, we have for each f ∈ F ,

1

τl
‖Ti,l‖1 ≤

τl∑
j=τl−1+1

1

τl

∥∥∥ (iτl)∧n∑
k=(i−1)τl+1

(Wk,j −Wk,j−1)
∥∥∥

1

≤
τl∑

j=τl−1+1

1

τl

(iτl)∧n∑
k=(i−1)τl+1

∥∥∥Wk,j −Wk,j−1

∥∥∥
1

≤ 2

τl∑
j=τl−1+1

1

τl

(iτl)∧n∑
k=(i−1)τl+1

min{‖Wk(f)‖1, δWk(f)
1 (j − 1)}

≤ 2

τl∑
j=τl−1+1

min{ 1

τl

(iτl)∧n∑
k=(i−1)τl+1

‖Wk(f)‖1,
1

τl

(iτl)∧n∑
k=(i−1)τl+1

δ
Wk(f)
1 (j − 1)}

= 2

τl∑
j=τl−1+1

min{σi,l,∆i,j,l},

where

σi,l :=
1

τl

(iτl)∧n∑
k=(i−1)τl+1

‖Wk(f)‖1, ∆i,j,l :=
1

τl

(iτl)∧n∑
k=(i−1)τl+1

δ
Wk(f)
1 (j − 1).

We conclude that

1

b nτl c+ 1

b n
τl
c+1∑

i=1

1

τl
‖Ti,l‖1 ≤ 2

τl∑
j=τl−1+1

min{ 1
n
τl

b n
τl
c+1∑

i=1

σi,l,
1
n
τl

b n
τl
c+1∑

i=1

∆i,j,l}

≤
τl∑

j=τl−1+1

min{ 1

n

n∑
i=1

‖Wi(f)‖1,
1

n

n∑
i=1

δWi
1 (j)}.(3.5.10)

Furthermore,
1

τl
|Ti,l| ≤ 2 sup

i
‖Wi(f)‖∞ ≤ 2‖f‖2∞ ≤ 2M2. (3.5.11)

By Lemma 3.5.3, (3.5.9), we have for some universal constant c1 > 0,

EA2 ≤ 2c1

L∑
l=1

[
sup
f∈F

( 1

b nτl c+ 1

b n
τl
c+1∑

i=1

1

τl
‖Ti,l(f)‖1

)
+

2M2H

b nτl c+ 1

]
≤ 2c1

( L∑
l=1

sup
f∈F

τl∑
j=τl−1+1

min{ 1

n

n∑
i=1

‖Wi(f)‖1,
1

n

n∑
i=1

δ
Wi(f)
1 (j)}

+
qM2H

n

)
. (3.5.12)
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By Lemma 3.5.2 and the Cauchy-Schwarz inequality for sums,

L∑
l=1

sup
f∈F

τl∑
j=τl−1+1

min{ 1

n

n∑
i=1

‖Wi(f)‖1,
1

n

n∑
i=1

δWi
1 (j)}

≤
L∑
l=1

sup
f∈F

τl∑
j=τl−1+1

min{ 1

n

n∑
i=1

‖f(Zi,
i

n
)‖22,

2

n

n∑
i=1

Df,n(
i

n
)‖f(Zi,

i

n
)‖2 ·∆(j)}

≤
∞∑
j=1

min{sup
f∈F
‖f‖22,n, 2Dn sup

f∈F
‖f‖2,n ·∆(j)}

= sup
f∈F
‖f‖2,n · V̄n(sup

f∈F
‖f‖2,n)

= sup
f∈F

(
‖f‖2,n · V̄n(‖f‖2,n)

)
≤ sup

f∈F

[
‖f‖2,nVn(f)

]
, (3.5.13)

where

V̄n(x) = x+

∞∑
j=1

min{x,Dn∆(j)}. (3.5.14)

The second-to-last equality uses the fact that x 7→ x · V̄n(x) is increasing in x.
We also have ‖Wi,0(f)− EWi,0(f)‖∞ ≤ 2‖f‖2∞ ≤ 2M2 and ‖Wi,0(f)− EWi,0(f)‖1 ≤

2‖Wi(f)‖1. Thus by Lemma 3.5.3, (3.5.9),

EA3 ≤ Emax
f∈F

∣∣∣ 1
n

n∑
i=1

(Wi,0(f)− EWi,0(f))
∣∣∣

≤ 2c1

(
sup
f∈F

1

n

n∑
i=1

‖Wi(f)‖1 +
M2H

n

)
(3.5.15)

≤ 2c1

(
sup
f∈F
‖f‖22,n +

M2H

n

)
. (3.5.16)

Finally,

EA1 ≤
∞∑
j=q

E sup
f∈F

∣∣∣ 1
n

n∑
i=1

(Wi,j+1(f)−Wi,j(f))
∣∣∣

≤
∞∑
j=q

1

n

n∑
i=1

∥∥ sup
f∈F
|Wi,j+1(f)−Wi,j(f)|

∥∥
1
.

Since |Wi,j+1(f) −Wi,j(f)| = |E[Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)|Ai]| ≤ E[|Wi(f)∗∗(i−j) −
Wi(f)∗∗(i−j+1)| |Ai], where we use the already seen notation H(Fi)∗∗(i−j) := H(F∗∗(i−j)i )
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and F∗∗(i−j)i = (εi, εi−1, ..., εi−j , ε
∗
i−j−1, ε

∗
i−j−2, ...), we have∥∥ sup

f∈F
|Wi,j+1(f)−Wi,j(f)|

∥∥
1

≤
∥∥E[max

f∈F
|Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)| |Ai]

∥∥
1

≤
∥∥ sup
f∈F
|Wi(f)∗∗(i−j) −Wi(f)∗∗(i−j+1)|

∥∥
1

=
∥∥ sup
f∈F
|Wi(f)−Wi(f)∗(i−j)|

∥∥
1
≤ D∞n (

i

n
)2C∆∆(j), (3.5.17)

which shows that
EA1 ≤ (D∞n )2C∆β(q). (3.5.18)

Collecting the upper bounds (3.5.12), (3.5.13), (3.5.16) and (3.5.18), we obtain

Emax
f∈F

∣∣∣ 1
n
Sn(f)

∣∣∣ ≤ (4c1 + 1) ·
[

sup
f∈F

[
‖f‖2,nVn(f)

]
+ (D∞n )2C∆β(q) +

qM2H

n

]
. (3.5.19)

By (3.5.28), Vn(f) ≤ σ implies ‖f‖22,n ≤ Dnr( δ
Dn )‖f‖2,n, whence

‖f‖2,n ≤ Dnr(
σ

Dn
).

Thus,

sup
f∈F

[
‖f‖2,nVn(f)

]
≤ Dnr(

σ

Dn
)σ. (3.5.20)

Inserting (3.5.20) into (3.5.19) yields the first equation (3.3.1) of the lemma.

We now show (3.3.2) with a case distinction. We abbreviate q∗ = q∗( M2H
n(D∞n )2C∆

). If

q∗Hn ≤ 1, we have q∗ ∈ {1, ..., n} and thus

P ≤ c
(
Dnr(

σ

Dn
)σ + (D∞n )2C∆β(q∗) + q∗

M2H

n

)
≤ 2c

(
Dnr(

σ

Dn
)σ + q∗

M2H

n

)
= 2c

(
Dnr(

σ

Dn
)σ +M2 ·min

{
q∗
H

n
, 1
})
. (3.5.21)

If q∗Hn ≥ 1, choose q0 = b nH c ≤
n
H . By simply bounding each summand with M2, we

have

Emax
f∈F

∣∣∣ 1
n
Sn(f)

∣∣∣ ≤ M2 ≤ c
(
Dnr(

σ

Dn
)σ +M2

)
≤ 2c

(
Dnr(

σ

Dn
)σ +M2 ·min

{
q∗
H

n
, 1
})
. (3.5.22)

Putting the two bounds (3.5.21) and (3.5.22) together, we obtain the result (3.3.2).
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The following lemma is an auxiliary result to prove Corollary 3.3.2 and Lemma 3.5.5.

Lemma 3.5.4. Let F be some finite class of functions. Let R > 0 be arbitrary and
assume that supf∈F ‖f‖∞ ≤M . Then there exists a universal constant c > 0 such that

Emax
f∈F

∣∣G(1)
n (f)

∣∣1{R2
n(f)≤R2} ≤ c

{
R
√
H +

MH√
n

}
, (3.5.23)

where H is defined by (1.2.5).

Proof of Lemma 3.5.4. By Theorem 3.3 in Pinelis [1994], for x, a > 0 and a measurable
function f ,

P
(∣∣G(1)

n (f)
∣∣ ≥ x,R2

n(f) ≤ R2
)
≤ 2 exp

(
− 1

2

x2

R2 + 2‖f‖∞x
3
√
n

)

)
.

Using standard arguments (cf.[van der Vaart, 1998, proof of Lemma 19.33]), we obtain
(3.5.23).

Proof of Corollary 3.3.2. Let us, again, define the following functions first.
For m > 0, define ϕ∧m : R → R and the corresponding “peaky” residual function

ϕ∨m : R→ R via

ϕ∧m(x) := (x ∨ (−m)) ∧m, ϕ∨m(x) := x− ϕ∧m(x).

Now, let Q ≥ 1, and σ := supn∈N supf∈F Vn(f) <∞. Put

Mn =

√
n√
H
r
(σQ1/2

D∞n

)
D∞n .

Let F (z, u) := D∞n (u) · F̄ (z, u) and recall F̄ = supf∈F f̄ . Then,

P
(

max
f∈F
|Gn(f)| > Q

√
H
)

≤ P
(

max
f∈F
|Gn(f)| > Q

√
H, sup

i=1,...,n
F (Zi,

i

n
) ≤Mn

)
+P
(

sup
i=1,...,n

F (Zi,
i

n
) > Mn

)
≤ P

(
max
f∈F
|Gn(ϕ∧Mn

(f))| > Q
√
H

2

)
+P
( 1√

n
max
f∈F

∣∣ n∑
i=1

E[f(Zi,
i

n
)1{|f(Zi,

i
n

)|>Mn}]
∣∣ > Q

√
H

2

)
+P
(

sup
i=1,...,n

F (Zi,
i

n
) > Mn

)
. (3.5.24)
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For the first summand in (3.5.24), we use the decomposition

P
(

max
f∈F
|Gn(ϕ∧Mn

(f))| > Q
√
H

2

)
≤ P

(
max
f∈F
|G(1)

n (ϕ∧Mn
(f))| > Q

√
H

4

)
+ P

(
max
f∈F
|G(2)

n (ϕ∧Mn
(f))| > Q

√
H

4

)
≤ P

(
max
f∈F
|G(1)

n (ϕ∧Mn
(f))| > Q

√
H

4
, max
f∈F

R2
n(ϕ∧Mn

(f)) ≤ σ2
)

+P
(

max
f∈F

R2
n(ϕ∧Mn

(f)) > σ2
)

+P
(

max
f∈F
|G(2)

n (ϕ∧Mn
(f))| > Q

√
H

4

)
. (3.5.25)

We now discuss the three terms separately. By Lemma 3.5.4, we have

P
(

max
f∈F
|G(1)

n (ϕ∧Mn
(f))| > Q

√
H

4
, max
f∈F

R2
n(ϕ∧Mn

(f)) ≤ Q3/2σ2
)

≤ 4c

Q
√
H

[
σQ3/4

√
H +

MnH√
n

]
≤ 4c

Q
√
H

[
σQ3/4

√
H + σ

√
HQ1/2

]
≤ 8c

Q1/4
.

By Theorem 3.3.1 and (3.5.30),

P
(

max
f∈F

R2
n(ϕ∧Mn

(f)) > Q3/2σ2
)

≤ 2c

σ2Q3/2

[
Dnr(

σ

Dn
)σ + q∗

( M2H

n(D∞n )2C∆

)M2H

n

]
≤ 2c

σ2Q3/2

[
σ2 + q∗

(r(σQ1/2

D∞n
)2

C∆

)
r(
σQ1/2

D∞n
)2(D∞n )2

]
≤ 2c

σ2Q3/2

[
σ2 + q∗

(
C−1

∆ C−2
β

)
·
[
q∗
(
r(
σQ1/2

D∞n
)
)
r(
σQ1/2

D∞n
)
]2

(D∞n )2
]

≤ 2c

σ2Q3/2

[
σ2 + q∗

(
C−1

∆ C−2
β

)
σ2Q

]
|

≤ 2c

Q1/2

[
1 + q∗

(
C−1

∆ C−2
β

)]
for C∆ defined in Lemma 3.5.1.

By Theorem 2.4.1 applied to Wi(f) = E[f(Zi,
i
n)|Zi−1],

P
(

max
f∈F
|G(2)

n (ϕ∧Mn
(f))| > Q

√
H

4

)
≤ 8c

Q
√
H
·
[
σ
√
H + q∗

(
r(
σQ1/2

D∞n
)
)
r(
σQ1/2

D∞n
)D∞n

]
≤ 8c

Q
√
H

[
σ
√
H + σQ1/2

√
H
]
≤ 16cσ

Q1/2
.
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Inserting the upper bounds into (3.5.25), we obtain

P
(

max
f∈F
|Gn(ϕ∧Mn

(f))| > Q
√
H

2

)
≤ 8c

Q1/4
+

2c

Q1/2

[
1 + q∗

(
C−1

∆ C−2
β

)]
+

16cσ

Q1/2
→ 0

for Q → ∞. The second and third summand in (3.5.24) were already discussed in the
proof of Corollary 2.4.3 (equations (2.8.43), (2.8.44) therein) and converge to 0 for Q→
∞ under the given assumptions; note especially that we only need ‖F̄ (Zi,

i
n)‖ν2 ≤ CF̄ ,n

instead of C∆ which is part of the assumptions).

The following Lemma 3.5.5 is used to prove Theorem 3.3.4.

Lemma 3.5.5 (Compatibility lemma 2). Let ψ : (0,∞)→ [1,∞) be some function and
k ∈ N, δ > 0. If F fulfills |F| ≤ k and Assumption 3.1.1, 3.3.3, then there exists some
universal constant c > 0 such that the following holds true: If supf∈F Vn(f) ≤ δ and
supf∈F ‖f‖∞ ≤ m(n, δ, k), then

Emax
f∈F

∣∣G(1)
n (f)

∣∣1{Rn(f)≤2δψ(δ)} ≤ 2c(1 +
D∞n
Dn

) · ψ(δ)δ
√
H(k), (3.5.26)

P
(

sup
f∈F

Rn(f) > 2δψ(δ)
)
≤

2c(1 + q∗
(
C−1

∆ C−2
β

)
(D
∞
n

Dn )2)

ψ(δ)2
. (3.5.27)

Proof of Lemma 3.5.5. By Lemma 3.5.4 and since r(a) ≤ a (cf. Lemma 2.8.6),

Emax
f∈F

∣∣G(1)
n (f)

∣∣1{Rn(f)≤2δψ(δ)} ≤ c
{

2ψ(δ)δ
√
H(k) +

m(n, δ, k)H(k)√
n

}
≤ 2c ·

[
ψ(δ) · δ + D∞n r(

δ

Dn
)
]√

H(k)

≤ 2c · (1 +
D∞n
Dn

) · ψ(δ)δ
√
H(k),

which shows (3.5.26).
For â = arg minj∈N

{
‖f‖2,n · j + Dnβ(j)

}
and since ‖f‖2,n ≤ Vn(f) ≤ δ we have with

r( δ
Dn ) ≥ δ

Dnâ ,

‖f‖22,n
D∞n r( δ

Dn )
≤

Dnâ‖f‖22,n
D∞n δ

≤ DnVn(f)‖f‖2,n
D∞n δ

≤ Dn
D∞n
‖f‖2,n. (3.5.28)

Therefore, ‖f‖22,n ≤ Dnr( δ
Dn )‖f‖2,n and thus ‖f‖2,n ≤ Dnr( δ

Dn ). Note that due to r(a) ≤
a,

ER2
n(f) =

1

n

n∑
i=1

E[f(Zi,
i

n
)2] ≤ ‖f‖22,n ≤ (Dnr(

δ

Dn
))2 ≤ δ2. (3.5.29)

Recall that βnorm(q) = β(q)
q . By Assumption 3.3.3, we have that for any x1, x2 > 0,

q̃ = q∗(x1)q∗(x2) satisfies

βnorm(q̃) ≤ Cββnorm(q∗(x1))βnorm(q∗(x2)) ≤ Cβx1x2.
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Thus, by definition of q∗,
q∗(Cβx1x2) ≤ q∗(x1)q∗(x2). (3.5.30)

We obtain

q∗
(
r(

δ

Dn
)2 1

C∆

)
≤ q∗

(
r(

δ

Dn
)
)2
q∗
(
C−1

∆ C−2
β

)
. (3.5.31)

By (3.5.29), Markov’s inequality, Theorem 3.3.1 and (3.5.31),

P
(

sup
f∈F

R2
n(f) > 2ψ(δ)2δ2

)
≤ P

(
sup
f∈F
|R2

n(f)− ER2
n(f)| > ψ(δ)2δ2

)
≤ 2c

ψ(δ)2δ2
·
[
Dnr(

δ

Dn
)δ + q∗

(
r(

δ

Dn
)2 1

C∆

)
r(

δ

Dn
)2(D∞n )2

]
≤ 2c

ψ(δ)2δ2
·
[
δ2 +

[
q∗
(
r(

δ

Dn
)
)
r(

δ

Dn
)
]2
q∗
(
C−1

∆ C−2
β

)
(D∞n )2

]
≤ 2c

ψ(δ)2δ2
·
[
δ2 + δ2q∗

(
C−1

∆ C−2
β

)
(
D∞n
Dn

)2
]

≤
2c(1 + q∗

(
C−1

∆ C−2
β

)
(D
∞
n

Dn )2)

ψ(δ)2
,

which shows (3.5.27).

Proof of Theorem 3.3.4. In the following, we abbreviate H(δ) = H(δ,F , V ) and N(δ) =
N(δ,F , V ). The proof follows the lines of Theorem 2.4.4. We present it here for com-
pleteness. Recall one last time, ϕ∧m : R → R and the corresponding “peaky” residual
function ϕ∨m : R→ R via

ϕ∧m(x) := (x ∨ (−m)) ∧m, ϕ∨m(x) := x− ϕ∧m(x)

for m > 0.
We choose δ0 = σ and δj = 2−jδ0, and

mj =
1

2
m(n, δj , Nj+1)

as well as Mn = 1
2m0. We then use

E sup
f∈F

∣∣∣G(1)
n (f)

∣∣∣ ≤ E sup
f∈F(Mn)

∣∣∣G(1)
n (f)

∣∣∣+
1√
n

n∑
i=1

E
[
F (Zi)1{F (Zi)>Mn}

]
, (3.5.32)

where F(Mn) := {ϕ∧Mn
(f) : f ∈ F}.

We construct a nested sequence of partitions (Fjk)k=1,...,Nj , j ∈ N of F(Mn) (where
Nj := N(δ0) · ... · N(δj)), and a sequence ∆jk of measurable functions such that

sup
f,g∈Fjk

|f − g| ≤ ∆jk, V (∆jk) ≤ δj .
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In each Fjk, we fix some fjk ∈ F , and define πjf := fj,ψjf where ψjf := min{i ∈
{1, ..., Nj} : f ∈ Fji}, and put ∆jf := ∆j,ψjf , and

I(σ) :=

∫ σ

0
ψ(ε)

√
1 ∨H(ε,F , V )dε

as well as

τ := min
{
j ≥ 0 : δj ≤

I(σ)√
n

}
∨ 1. (3.5.33)

For functions f, g with |f | ≤ g,

|G(1)
n (f)| ≤ |G(1)

n (g)|+ 2
√
n · 1

n

n∑
i=1

E[g(Zi,
i

n
)|Zi−1]

≤ |G(1)
n (g)|+ 2|G(2)

n (g)|+ 2
√
n · 1

n

n∑
i=1

E[g(Zi,
i

n
)]

≤ |G(1)
n (g)|+ 2|G(2)

n (g)|+ 2
√
n‖g‖1,n.

Using a similar approach as in Subsection 2.8.3, equations (2.8.47) and (2.8.48) applied
to Wi(f) = f(Zi,

i
n)− E[f(Zi,

i
n)|Zi−1] and the fact that ‖f − π0f‖∞ ≤ 2Mn ≤ m0, we

119



have the decomposition

sup
f∈F
|G(1)

n (f)| ≤ sup
f∈F
|G(1)

n (π0f)|

+ sup
f∈F
|G(1)

n (ϕ∧mτ (f − πτf))|

+
τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (ϕ∧mj−mj+1

(πj+1f − πjf))
∣∣∣

+
τ−1∑
j=0

sup
f∈F
|G(1)

n (R(j))|

≤ sup
f∈F
|G(1)

n (π0f)|

+
{

sup
f∈F
|G(1)

n (ϕ∧mτ (∆τf))|+ 2 sup
f∈F
|G(2)

n (ϕ∧mτ (∆τf))|

+2
√
n sup
f∈F
‖∆τf‖1,n

}
+
τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (ϕ∧mj−mj+1

(πj+1f − πjf))
∣∣∣

+

τ−1∑
j=0

{
sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨mj+1
(∆j+1f)

∣∣, 2mj

}
)
∣∣∣

+2 sup
f∈F

∣∣∣G(2)
n (min

{∣∣ϕ∨mj+1
(∆j+1f)

∣∣, 2mj

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆j+1f1{∆j+1f>mj+1}‖1,n

}
+
τ−1∑
j=0

{
sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨mj−mj+1
(∆jf)

∣∣, 2mj

}
)
∣∣∣

+2 sup
f∈F

∣∣∣G(2)
n (min

{∣∣ϕ∨mj−mj+1
(∆jf)

∣∣, 2mj

}
)
∣∣∣

+2
√
n sup
f∈F
‖∆jf1{∆jf>mj−mj+1}‖1,n

}
. (3.5.34)

We have for f ∈ F(Mn),

π0f = ϕ∧2Mn
(π0f),

ϕ∧mτ (∆τf) ≤ min{∆τf, 2mτ},
ϕ∧mj−mj−1

(πj+1f − πjf) ≤ min{∆jf, 2mj},
min{ϕ∨mj+1

(∆j+1f), 2mj} ≤ min{∆jf, 2mj},
min{ϕ∨mj−mj+1

(∆jf), 2mj} ≤ min{∆jf, 2mj}. (3.5.35)
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Let us define the event

Ωn := { sup
f∈F(Mn)

Rn(ϕ∧2Mn
(π0f)) ≤ 2σψ(σ)}

∩
τ⋂
j=1

{
sup

f∈F(Mn)
Rn(min{∆jf, 2mj}) ≤ 2δjψ(δj)

}
.

From (3.5.34) and (3.5.35), we obtain

sup
f∈F(Mn)

|G(1)
n (f)|1Ωn

≤ sup
f∈F(Mn)

|G(1)
n (π0f)|1{supf∈F(Mn)Rn(π0f)≤2σψ(σ)}

+
{

sup
f∈F
|G(1)

n (ϕ∧mτ (∆τf))|

×1{supf∈F(Mn) Rn(min{∆τf,2mτ})≤2δτψ(δτ )} + 2R2

}
+

τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (ϕ∧mj−mj+1

(πj+1f − πjf))
∣∣∣

×1{supf∈F(Mn) Rn(min{∆jf,2mj})≤2δjψ(δj)}

+
τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨mj+1
(∆j+1f)

∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn) Rn(min{∆jf,2mj})≤2δjψ(δj)} + 2R4

+
τ−1∑
j=0

sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨mj−mj+1
(∆jf)

∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn) Rn(min{∆jf,2mj})≤2δjψ(δj)} + 2R5

=: R̃1 + {R̃2 + 2R2}+ R̃3 + {R̃4 + 2R4}+ {R̃5 + 2R5}. (3.5.36)

We now discuss the terms R̃i, i = 1, ..., 5, separately. The terms Ri, i ∈ {2, 4, 5} can
be discussed similarly to the proof found in Theorem 2.4.4. Put

C̃n := 2c(1 +
D∞n
Dn

)

where c is a resulting constant from the bound in Theorem 2.4.1 or Lemma 2.8.8.

• Since |{π0f : f ∈ F(Mn)}| ≤ N(δ0), ‖π0f‖∞ ≤ Mn ≤ m(n, δ0,N(δ1)), we have by
Lemma 3.5.5:

ER̃1 = E sup
f∈F(Mn)

|G(1)
n (π0f)|1{supf∈F(Mn)Rn(π0f)≤2δ0ψ(δ0)}

≤ C̃nψ(δ0)δ0

√
1 ∨ logN(δ1).
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• It holds true that |{ϕ∧mτ (∆τf) : f ∈ F(Mn)}| ≤ Nτ . If g := ϕ∧mτ (∆τf), then
‖g‖∞ ≤ mτ ≤ m(n, δτ , Nτ+1). We conclude by Lemma 3.5.5:

ER̃2 ≤ E sup
f∈F
|G(1)

n (ϕ∧mτ (∆τf))|

×1{supf∈F(Mn)Rn(min{∆τf,2mτ})≤2δτψ(δτ )}

≤ C̃nψ(δτ )δτ ·
√

1 ∨ logNτ+1.

• Since the partitions are nested, |{ϕ∧mj−mj+1
(πj+1f−πjf) : f ∈ F(Mn)}| ≤ Nj+1. If

g := ϕ∧mj−mj+1
(πj+1f − πjf), we have ‖g‖∞ ≤ mj −mj+1 ≤ mj ≤ m(n, δj , Nj+1).

We conclude by Lemma 3.5.5:

ER̃3 ≤
τ−1∑
j=0

E sup
f∈F

∣∣∣G(1)
n (ϕ∧mj−mj+1

(πj+1f − πjf))
∣∣∣

×1{supf∈F(Mn)Rn(min{∆jf,2mj})≤2δjψ(δj)}

≤ C̃n

τ−1∑
j=0

ψ(δj)δj
√

1 ∨ logNj+1.

• Note that |{min{ϕ∨mj+1
(∆j+1f), 2mj} : f ∈ F(Mn)}| ≤ Nj+1. If we set g :=

min{ϕ∨mj+1
(∆j+1f), 2mj}, we have ‖g‖∞ ≤ 2mj = m(n, δj , Nj+1). We conclude by

Lemma 3.5.5:

ER̃4 ≤
τ−1∑
j=0

E sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨mj+1
(∆j+1f)

∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn)Rn(min{∆jf,2mj})≤2δjψ(δj)}

≤ C̃n

τ−1∑
j=0

ψ(δj)δj
√

1 ∨ logNj+1.

• Furthermore, |{min{ϕ∨mj−mj+1
(∆jf), 2mj} : f ∈ F(Mn)}| ≤ Nj+1. If g := min{ϕ∨mj−mj+1

(∆jf), 2mj},
we have ‖g‖∞ ≤ 2mj = m(n, δj , Nj+1). We conclude by Lemma 3.5.5 that:

ER̃5 ≤
τ−1∑
j=0

E sup
f∈F

∣∣∣G(1)
n (min

{∣∣ϕ∨mj−mj+1
(∆jf)

∣∣, 2mj

}
)
∣∣∣

×1{supf∈F(Mn)Rn(min{∆jf,2mj})≤2δjψ(δj)}

≤ C̃n

τ−1∑
j=0

ψ(δj)δj ·
√

1 ∨ logNj+1.

Inserting the bounds for ER̃i, i = 1, ..., 5, and the bounds for Ri, i ∈ {2, 4, 5}, from
the proof of Theorem 2.4.4 into (3.5.36), we obtain for some universal constant c̃ > 0,

E sup
f∈F(Mn)

∣∣∣G(1)
n (f)

∣∣∣1Ωn ≤ c̃(1+
D∞n
Dn

+
Dn
D∞n

)
[ τ+1∑
j=0

ψ(δj)δj
√

1 ∨ logNj+1 +I(σ)
]
. (3.5.37)
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Note that
∞∑
j=k

δjψ(δj) ≤ 2
∞∑
j=k

∫ δj

δj+1

ψ(δj)dx ≤ 2

∫ δk

0
ψ(x)dx.

By partial integration, it is easy to see that there exists some universal constant cψ > 0
such that ∣∣ ∫ δk

0
ψ(x)dx

∣∣ ≤ cψδkψ(δk), (3.5.38)

whence
∞∑
j=k

δjψ(δj) ≤ 2cψδkψ(δk). (3.5.39)

Using (3.5.39), we can argue as in the proof Theorem 2.4.4 (see equations (2.8.64),
(2.8.65) and (2.8.66) therein) that there exists some universal constant c̃2 > 0 such that

∞∑
j=0

ψ(δj)δj
√

1 ∨ logNj+1 ≤ c̃2I(σ).

Insertion of the results into (3.5.37) yields

E sup
f∈F(Mn)

∣∣G(1)
n (f)

∣∣1Ωn ≤ c̃ · (3c̃2 + 1)(1 +
D∞n
Dn

+
Dn
D∞n

)I(σ). (3.5.40)

Discussion of the event Ωn: We have

P(Ωc
n) ≤ P

(
sup

f∈F(Mn)
Rn(ϕ∧2Mn

(π0f)) > 2ψ(σ)σ
)

+
τ+1∑
j=1

P
(

sup
f∈F(Mn)

Rn(min{∆jf, 2mj}) > 2ψ(δj)δj

)
=: R◦1 +R◦2. (3.5.41)

We now discuss R◦i , i = 1, 2. Put

C◦n := 2c
{

1 + q∗
(
C−1

∆ C−2
β

)(D∞n
Dn
)2}

where c is from Lemma 3.5.5.

• Since |{ϕ∧2Mn
(π0f) : f ∈ F(Mn)}| ≤ N(δ0) = N(σ), ‖ϕ∧2Mn

(π0f)‖∞ ≤ 2Mn ≤
m(n, σ,N(σ)) and V (ϕ∧2Mn

(π0f)) ≤ V (π0f) ≤ σ. We have by Lemma 3.5.5:

R◦1 ≤
C◦n
ψ(σ)2

.
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• Note that |{min{∆jf, 2mj} : f ∈ F(Mn)}| ≤ Nj+1. So, ‖min{∆jf, 2mj}‖∞ ≤
2mj = m(n, δj , Nj+1) and V (min{∆jf, 2mj}) ≤ V (∆jf) ≤ δj . We conclude by
Lemma 3.5.5:

R◦3 ≤ C◦n
τ+1∑
j=0

1

ψ(δj)2
.

Inserting the bounds for R◦i , i = 1, 2, into (3.5.41) yields

P(Ωc
n) ≤ 2C◦n

∞∑
j=0

1

ψ(δj)2
. (3.5.42)

We now have
∞∑
j=0

1

ψ(δj)2
≤ 2

∫ σ

0

1

εψ(ε)2
dε =

2

log(log(σ))
.

We conclude that for each η > 0,

P
(

sup
f∈F
|G(1)

n (f)| > η
)
≤ P

(
sup
f∈F
|G(1)

n (f)| > η,Ωn

)
+ P(Ωc

n)

≤ 1

η
E sup
f∈F
|G(1)

n (f)|1Ωn + P(Ωc
n).

Insertion of (3.5.32), (3.5.40) and (3.5.42) gives the result.

Proof of Corollary 3.3.6. We will follow the proof of Corollary 2.4.5. Define F̃: = {f−g :
f, g ∈ F}. We obtain

P
(

sup
V (f−g)≤σ, f,g∈F

|Gn(f)−Gn(g)| ≥ η
)

≤ P
(

sup
V (f̃)≤σ, f̃∈F̃

|G(1)
n (f̃)| ≥ η

2

)
+ P

(
sup

V (f̃)≤σ, f̃∈F̃
|G(2)

n (f̃)| ≥ η

2

)
. (3.5.43)

Now let F (z, u) := 2D∞n (u) · F̄ (z, u), where F̄ is from Assumption 3.2.1. Then obvi-
ously, F is an envelope function of F̃ .

We now discuss the second summand on the right hand side in (3.5.43). By Markov’s
inequality and Theorem 2.4.4 applied to Wi(f) = E[f(Zi,

i
n)|Zi−1], we obtain as in the

proof of Corollary 2.4.5 that

P
(

sup
V (f̃)≤σ, f̃∈F̃

|G(2)
n (f̃)| ≥ η

2

)
≤ c̃

(η/2)

[
2
√

2(1 +
D∞n
Dn

+
Dn
D∞n

)

∫ σ/2

0

√
1 ∨H(u,F , V )du

+
4
√

1 ∨H(σ2 )

r( σ
Dn )

∥∥F 2
1{F> 1

4
n1/2 r(σ)√

1∨H(σ2 )
}

∥∥
1,n

]
. (3.5.44)
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The first summand in (3.5.44) converges to 0 for σ → 0 (uniformly in n) since

sup
n∈N

∫ σ/2

0

√
1 ∨H(u,F , V )du ≤ sup

n∈N

∫ σ

0
ψ(ε)

√
1 ∨H(ε,F , V )dε <∞.

We now discuss the second summand in (3.5.44). The continuity conditions from Assump-
tion 3.2.1 on F̄ yield, as in the proof of Lemma 3.5.6(ii), that for all u, u1, u2, v1, v2 ∈
[0, 1],

‖F̄ (Zi, u)− F̄ (Z̃i(
i

n
), u)‖2 ≤ Ccont · n−αs/2, (3.5.45)

‖F̄ (Zi(v1), u1)− F̄ (Z̃i(v2), v2)‖2 ≤ Ccont ·
(
|v1 − v2|αs/2 + |u1 − u2|αs

)
. (3.5.46)

In the same manner of Corollary 2.4.5, we now obtain with (3.5.45) and (3.5.46) that∥∥F 2
1{F> 1

4
n1/2 r(σ)√

1∨H(σ2 )
}

∥∥
1,n
→ 0 (3.5.47)

for n → ∞ (this is obvious if Zi is stationary, i.e. the first part of Assumption 3.2.1 is
fulfilled), which shows that (3.5.44) converges to 0 for σ → 0, n→∞.

We now consider the first term in (3.5.43). By Theorem 3.3.4, we have for some
universal constant c > 0 that

P
(

sup
V (f̃)≤σ, f̃∈F̃

|G(1)
n (f̃)| ≥ η

2

)
≤ 2

η

[
c
(

1 +
D∞n
Dn

+
Dn
D∞n

)
·
∫ σ

0
ψ(ε)

√
1 ∨H

(
ε, F̃ , V

)
dε

+
4
√

1 ∨H(σ2 )

r( σ
Dn )

∥∥F 2
1{F> 1

4
m(n,σ,N(σ

2
))}
∥∥

1

]
+c
(

1 + q∗
(
C−1

∆ C−2
β

)(D∞n
Dn

)2)∫ σ

0

1

εψ(ε)2
dε. (3.5.48)

For the first summand in (3.5.48),∫ σ

0
ψ(ε)

√
1 ∨H(ε, F̃ , V )dε

≤ 2
√

2

∫ σ/2

0
ψ(2ε)

√
1 ∨H(ε,F , V )dε ≤ 2

√
2

∫ σ/2

0
ψ(ε)

√
1 ∨H(ε,F , V )dε.

Equation (2.8.67) together with (3.3.5) and the uniform boundedness of Dn,D∞n show
that the first summand in (3.5.48) converges to 0 for σ → 0 (uniformly in n).

The third summand in (3.5.48) converges to 0 for σ → 0 (uniformly in n) since∫∞
0 εψ(ε)2dε <∞ and by the uniform boundedness of Dn,D∞n .
The second summand in (3.5.48) converges to 0 for n→∞ by (3.5.47).

125



3.5.3 Proofs of Section 3.2

Lemma 3.5.6. Let F satisfy Assumption 2.3.1, 3.2.2. Suppose that Assumptions 3.1.1,
3.2.1 hold true. Then there exist constants Ccont > 0, Cf̄ > 0 such that for any f ∈ F ,

(i) for any j ≥ 1,

‖Pi−jf(Zi, u)‖2 ≤ Df,n(u)∆(j),

sup
i=1,...,n

‖f(Zi, u)‖2 ≤ C∆ ·Df,n(u),

sup
i,u
‖f̄(Zi, u)‖2 ≤ Cf̄ , sup

v,u
‖f̄(Z̃0(v), u)‖2 ≤ Cf̄ ,

(ii) with x = 1
2 ,

‖f̄(Zi, u)− f̄(Z̃i(
i

n
), u)‖2 ≤ C̃n−ςsx, (3.5.49)

‖f̄(Z̃i(v1), u1)− f̄(Z̃i(v2), u2)‖2 ≤ C̃
(
|v1 − v2|ςsx + |u1 − u2|ςs

)
.(3.5.50)

Proof of Lemma 3.5.6. (i) If Assumption 3.1.1 is satisfied, we have by Lemma 3.5.1,

‖Pi−jf(Zi, u)‖2 = ‖Pi−jE[f(Zi, u)|Ai−1]‖2
≤ ‖E[f(Zi, u)|Ai−1]− E[f(Zi, u)|Ai−1]∗(i−j)‖2 ≤ Df,n(u)∆(j).

The second assertion follows from Lemma 3.5.1.

(ii) Let C̄R := supv,u ‖R̄(Z̃0(v), u)‖2 and

CR := max{sup
i,u
‖R(Zi, u)‖2, sup

u,v
‖R(Z̃0(v), u)‖2}.

We first use Assumption 3.2.2 and Hölder’s inequality to obtain

‖f̄(Z̃i(v), u1)− f̄(Z̃i(v), u2)‖2 (3.5.51)

≤ |u1 − u2|ς ·
(
‖R̄(Z̃i(v), u1)‖2 + ‖R(Z̃i(v), u2)‖2

)
≤ 2C̄R|u1 − u2|ς . (3.5.52)

Assume w.l.o.g. that

sup
u,v

1

cs
E
[

sup
|a|LF ,s≤c

∣∣f̄(Z̃0(v), u)− f̄(Z̃0(v) + a, u)
∣∣2] ≤ CR.

(which is obvious if Zi is stationary, i.e. the first part of Assumption 3.2.1 is
fulfilled; in this case Zi = Z̃i(v) for all v). Let cn > 0 be some sequence. Let
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Cf̄ := max{supi,u ‖f(Zi, u)‖2p̄, supu,v ‖f(Z̃0(v), u)‖2p̄}. Then we have by Jensen’s
inequality, ∥∥f̄(Zi, u)− f̄(Z̃i(v), u)

∥∥
2

≤ E
[∣∣f̄(Zi, u)− f̄(Z̃i(v), u)

∣∣21{|Zi−Z̃i(v)|LF ,s≤cn}

]1/2

+E
[
(f̄(Zi, u)− f̄(Z̃i(v), u)2

1{|Zi−Z̃i(v)|LF ,s>cn}

]1/2

≤ E
[

sup
|a|LF ,s≤cn

∣∣f̄(Z̃i(v), u)− f̄(Z̃i(v) + a, u)
∣∣2]1/2

+
{∥∥f̄(Zi, u)

∥∥
2p̄

+ f̄(Z̃i(v), u)
∥∥

2p̄

}
P(|Zi − Z̃i(v)|LF ,s > cn)

p̄−1
2p̄

≤ CRc
s
n + 2Cf̄

(‖|Zi − Z̃i(v)|LF ,s‖ 2p̄s
p̄−1

cn

)s
≤ CRc

s
n + 2Cf̄CX(|LF |1 +

∞∑
j=0

LF ,jj
ςs) ·
{|v − i

n |
ςs + n−ςs}
csn

.

We obtain with C̃ := CR + 2Cf̄CX(|LF |1 +
∑∞

j=0 LF ,jj
ςs) that

‖f̄(Zi, u)− f̄(Z̃i(v), u)‖2 ≤ C̃ ·
[
csn +

|v − i
n |
ςs + n−ςs

csn

]
. (3.5.53)

Furthermore, as above, for any c > 0,

‖f(Z̃i(v1), u)− f(Z̃i(v2), u)‖2 ≤ CRc
s + 2Cf̄

(‖|Z̃0(v1)− Z̃0(v2)|sLF ,s‖ 2p̄
p̄−1

c

)s
≤ CRc

s + 2Cf̄CX |LF |1 ·
|v1 − v2|ςs

cs
. (3.5.54)

From (3.5.53), we obtain the first assertion with v = i
n . The second assertion

follows from (3.5.54) and (3.5.52).

3.5.4 Details of Section 3.3.3

We first show that the supremum over x ∈ R, v ∈ [0, 1] can be approximated by a
supremum over grids x ∈ Xn, v ∈ Vn.

For some Q > 0, put cn = Qn
1
2s . Define the event An = {supi=1,...,n |Xi| ≤ cn}. Then

by Markov’s inequality,

P(Acn) ≤ n · ‖Xi‖2s2s
Q2sc2s

n

≤
C2s
X n

c2s
n

(3.5.55)

is arbitrarily small for Q large enough.
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Put ĝ◦n,h(x, v) := 1
n

∑n
i=1Kh1(i/n− v)Kh2(Xi − x)1{|Xi|≤cn}. Then on An,

ĝ◦n,h(·) = ĝn,h(·). (3.5.56)

Furthermore,

√
nh1h2

∣∣Eĝn,h(x, v)− Eĝ◦n,h(x, v)
∣∣ ≤ √

nh1h2|K|∞
nh1

n∑
i=1

E[Kh2(Xi − x)1{|Xi|>cn}]

≤
√
nh1h2

h1h2
|K|∞c−2s

n sup
i

E[K(
Xi − x
h2

)|Xi|2s]

≤ Q−2s(nh1h2)−1/2|K|2∞C2s
X = o(1). (3.5.57)

For |x| > 2cn we have Kh2(Xi − x)1{|Xi|≤cn} ≤ h−1( cnh )−pK = hpK−1c−pKn and thus

√
nh|ĝ◦n,h(x, v)− Eĝ◦n,h(x, v)| ≤ 2|K|∞CK

h
1/2
1

(nh2)1/2hpK−1
2 c−pKn ≤ hpK2

QpK (nh1h2)1/2
= o(1).

(3.5.58)
By (3.5.56), (3.5.57) and (3.5.58) we have on An,√

nh1h2 sup
x∈R,v∈[0,1]

|ĝn,h(x, v)− Eĝn,h(x, v)|

=
√
nh1h2 sup

x∈R,v∈[0,1]
|ĝ◦n,h(x, v)− Eĝ◦n,h(x, v)|+ op(1)

=
√
nh1h2 sup

|x|≤2cn,v∈[0,1]
|ĝ◦n,h(x, v)− Eĝ◦n,h(x, v)|+ op(1)

=
√
nh1h2 sup

|x|≤2cn,v∈[0,1]
|ĝn,h(x, v)− Eĝn,h(x, v)|+ op(1). (3.5.59)

Let Xn = {in−3 : i ∈ {−2dcnen3, ..., 2dcnen3}} be a grid that approximates each
x ∈ [−2cn, 2cn] with precision n−3, and Vn = {in−3 : i = 1, ..., n3}. Since K is Lipschitz
continuous with constant LK ,√

nh1h2 sup
|x−x′|≤n−3,|v−v′|≤n−3

∣∣(ĝn,h(x, v)− Eĝn,h(x, v)
)

−
(
ĝn,h(x′, v)− Eĝn,h(x′, v)

)∣∣
≤ 2

√
n√

h1h2
sup

|x−x′|≤n−3,|v−v′|≤n−3

[LK |K|∞|x− x′|
h2

+
LK |K|∞|v − v′|

h1

]
= O(n−1). (3.5.60)

We conclude from (3.5.55), (3.5.59) and (3.5.60) that√
nh1h2 sup

x∈R,v∈[0,1]
|ĝn,h(x, v)− Eĝn,h(x, v)|

=
√
nh1h2 sup

x∈Xn,v∈Vn
|ĝn,h(x, v)− Eĝn,h(x, v)|+ op(1). (3.5.61)
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It was already shown that Assumption 3.1.1 is satisfied. Furthermore, we can choose
Dn = |K|∞, D∞ν2,n = |K|∞√

h1
with ν2 = ∞, and F̄ (z, u) = supf∈F f̄(z, u) ≤ |K|∞√

h2
=: CF̄ ,n.

Note that

E[(
√
h2Kh2(Xi − x))2] = E

[
E[(
√
h2Kh2(Xi − x))2|Xi−1]

]
=

∫ (∫
K(w)κfXi|Xi−1=z(x+ wh2)dw

)1/κ
dPXi−1(z)

≤ C∞ · (
∫
K(w)2dw)1/2.

Therefore,

‖fx,v‖2,n ≤ DnC∞
∫
K(w)2dw,

which implies σ := supn∈N supf∈F Vn(f) < ∞. Due to ∆(k) = O(k−αs), the last condi-
tion in (3.3.3) is fulfilled if

sup
n∈N

log(n)

nh2h
αs
αs−1

1

<∞.

By Corollary 3.3.2, we have√
nh1h2 sup

x∈Xn,v∈Vn

∣∣ĝn,h(x)− Eĝn,h(x, v)
∣∣ = sup

f∈F
|Gn(f)| = Op(

√
log |F|) = O(

√
log(n)).

Equation (3.5.61) yields√
nh1h2 sup

x∈R,v∈[0,1]
|ĝn,h(x, v)− Eĝn,h(x, v)| = Op

(√
log(n)

)
.
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Chapter 4

Oracle inequalities for dependent
data with applications to neural
networks

In this chapter we want to highlight our theoretical findings from the previous chapters
by giving an application which has been on the rise in popularity, but for which, yet,
little profound knowledge is available – we are talking about neural networks. Their
use cases are now a crucial part of modern technology. This black box has successfully
been applied to many branches of science and relevant sectors in the industry. Only
in the last couple of years have we come to understand parts of their mathematical
workings. As mentioned in Chapter 1, Schmidt-Hieber [2017] introduces a theory based
on independent and identically distributed observations for sparse neural networks. We
will now generalize the approach and develop a theory for absolutely regular mixing
sequences as well as Bernoulli shift processes under the functional dependence measure,
quantifying a neural network estimator’s performance by deriving convergence rates.
Before that, we will first have to establish a proper mathematical background, beginning
with oracle inequalities.

4.1 Oracle inequalities in the regression model under
dependence

As motivated in the Introduction, Chapter 1, we observe a d-dimensional realization Xi,
i = 1, ..., n, of a stationary stochastic process which follows the recurrence

Xi = f0(Xi−1, ..., Xi−r) + εi, i = r + 1, ..., n, (4.1.1)

where εi is an i.i.d. sequence of d-dimensional random variables, r ∈ N is the number of
lags considered and f0 : Rdr → Rd an unknown function. We abbreviate our notation by
setting Xi−1 := (Xi−1, ..., Xi−r), suppressing the dependence on r in our notation.

We formalize the Subgaussianity assumption as follows.
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Assumption 4.1.1. The random variable ε1 is Subgaussian, that is, for any k ∈ N and
any component j ∈ {1, ..., d},

E[|ε1j |k]1/k ≤ Cε ·
√
k.

Given some weight function W : Rdr → R with compact support ⊂ [0, 1]dr, the
prediction error (or simply risk) of some function f : Rdr → Rd is defined by

R(f) :=
1

d
E[|Xr+1 − f(Xr)|22W(Xr)]. (4.1.2)

Its empirical counterpart is

R̂n(f) =
1

n

n∑
i=r+1

1

d

∣∣Xi − f(Xi−1)
∣∣2
2
W(Xi−1). (4.1.3)

We define by ER(f̂)−R(f0) the excess Bayes risk of the empirical risk minimizer

f̂ ∈ arg min
f∈F

R̂n(f)

over a class F ⊂ {f : Rdr → Rd measurable}.
Let N(δ,F , ‖ · ‖∞) denote the smallest number of δ-brackets with respect to ‖f‖∞ :=

supj∈{1,...,d} ‖fj‖∞ which is needed to cover a function class F of measurable functions,
and let H(δ) := logN(δ,F , ‖ · ‖∞) denote the corresponding bracketing entropy. We
assume further that F ⊂ {f : Rdr → Rd measurable} satisfies

sup
f∈F

sup
j∈{1,...,d}

sup
x∈supp(W)

|fj(x)| ≤ F

for some constant F > 0
We now establish oracle inequalities under two different measures of dependence on

Xi, i = 1, ..., n, namely absolute regularity and functional dependence. We shortly revise
these concepts.

4.1.1 An oracle inequality under absolute regularity

Let βmix(k), k ∈ N0, denote the absolutely regular mixing coefficients of Xi, that is,

βmix(k) := βmix(σ(Xi : i ≤ 0), σ(Xi : i ≥ k)), (4.1.4)

where for two σ-algebras U ,V over some probability space Ω,

2βmix(U ,V) := sup
∑

(i,j)∈I×J

|P(Ui ∩ Vi)− P(Ui)P(Vi)|

and the supremum is taken over all finite partitions (Ui)i∈I , (Vj)j∈J of Ω such that
(Ui)i∈I ⊂ U , (Vj)j∈J ⊂ V. Illustratively, βmix(k), k ∈ N0, measures the dependence
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between σ(Xi : i ≤ 0) and σ(Xi : i ≥ k), and decays to 0 for k → ∞ if σ(Xi : i ≤ 0)
contains no information about Xk for large k. We refer to [Rio, 2013, Section 1.3] or
Doukhan et al. [1995] for a more detailed introduction. There are several results available
which state that linear processes, GARCH or ARMA processes have absolutely summable
βmix(k), cf. Bradley [2005], Fryzlewicz and Subba Rao [2011] or Doukhan [1994].

Based on βmix(·), we define a new quantity Λmix(·) in the following assumption which
then appears in the oracle inequality.

Assumption 4.1.2 (Compatibility assumptions). Let Xi have β-mixing coefficients
βmix(k), k ∈ N0, which are submultiplicative, that is, there exists a constant Cβ,sub > 0
such that for any q1, q2 ∈ N,

βmix(q1q2) ≤ Cβ,subβmix(q1)βmix(q2). (4.1.5)

Let φ : [0,∞)→ [0,∞) be a function which satisfies

(i) φ(0) = 0, φ is convex and differentiable with c0 := supy∈R
φ′(y)y
φ(y) <∞,

(ii) (0,∞)→ (0,∞), y 7→ y
φ(y) is convex and decreasing,

(iii)
∑∞

k=0(φ∗(k + 1) − φ∗(k))βmix(k) < ∞ for the convex conjugate φ∗ of φ, that is
φ∗(x) = supt>0{xt− φ(t)}.

We refer to Rockafellar [2015] for an introduction to convex analysis and convex con-
jugate functions. Based on φ, we define

ψ(x) := φ∗(x)x, Λmix(x) := dψ−1(x−1)ex. (4.1.6)

The proof of the following theorem is given in Section 4.6.1, restated there as Theorem
4.6.4.

Theorem 4.1.3. Let Assumption 4.1.1 and 4.1.2 hold true and let Λmix(·) be the
function defined in (4.1.6). Then, for any δ ∈ (0, 1), η > 0 there exists a constant
C = C(η, c0, r, Cβ,sub, Cε, F ) such that

ER(f̂)−R(f0) ≤ (1 + η)2 inf
f∈F
{R(f)−R(f0)}+ C ·

{
Λmix

(H(δ)

n

)
+ δ
}
.

In the special case of polynomial decay and exponential decay of βmix(·), explicit
representations of Λmix(·) are available via the following lemma.

Lemma 4.1.4. Depending on specific decay rates, the following statements hold true.

(i) Suppose that
∑∞

k=0 k
α−1βmix(k) < ∞ for some α > 1. Then Assumption 4.1.2 is

fulfilled with φ(x) = x
α
α−1 and

Λmix(x) ≤ cα · (x
α
α+1 ∨ x),

where cα > 0 is some constant only depending on α.
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(ii) Suppose that βmix(k) ≤ κρk for some κ > 0, ρ ∈ (0, 1). Then Assumption 4.1.2 is

fulfilled with φ(x) = x log(x+1)
log(a) (a = ρ+1

2ρ ) and

Λmix(x) ≤ cρ · (1 ∨ log(x−1))x,

where cρ > 0 is some constant only depending on ρ.

4.1.2 Oracle inequalities under functional dependence

We assume that Xi = (Xij)j=1,...,d, i = 1, ..., n, is a (stationary) Bernoulli shift process
according to (1.2.1), that is,

Xi = J(Ai). (4.1.7)

The functional dependence measure of Xi, i ∈ Z, for q > 0 is given by

δXq (k) = sup
j=1,...,d

∥∥Xij −X∗(i−k)
ij

∥∥
q
. (4.1.8)

In contrast to the case of absolutely regular mixing coefficients, the functional de-
pendence measure in (4.1.8) requires the process Xi to have at least a q-th moment.
To transfer the dependence structure from Xi to g(Xi) for some function g, we have to
impose smoothness assumptions on g, as it was done in Chapter 2, which also affect the

dependence coefficients δ
g(X)
q . Suppose that there exist ς,K, LF > 0 such that for all

f ∈ F , x, x′ ∈ Rdr,

|W(x)−W(x′)| ≤ 1

ς
|x− x′|∞,

|f0(x)− f0(x′)|∞ ≤ K|x− x′|∞,
|f(x)− f(x′)|∞ ≤ LF |x− x′|∞.

That is, we assume a regularity condition (namely, Lipschitz continuity) on the weight
and on the (true) regression function.

Assumption 4.1.5. Let Xi be of the form (4.1.7). Given L > 0, let ∆(k), k ∈ N0, be a
decreasing sequence of real numbers such that for some θ ∈ (0, 1],

L · sup
l=1,...,r

δX2θ(k − l)θ ≤ ∆(k). (4.1.9)

The parameter θ ∈ (0, 1] in Assumption 4.1.5 can be chosen arbitrarily and regulates
the number of moments which have to be imposed on Xi. A small θ coincides with a
slower decay rate of ∆(k) due to the exponent θ in (4.1.9).

Based on ∆(·), we define a new quantity Λdep(·) which will appear in our oracle
inequality. For x ∈ [0,∞), let

Ṽ (x) = x1/2 +
∞∑
j=0

min{x1/2,∆(j)}. (4.1.10)
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We have seen equations (4.1.9) and (4.1.10) in Chapter 2, already. Especially equation
(4.1.9) is in line with Assumption 2.4.2 which is required for compatibility reasons when
employing maximal inequalities. Let ȳ(x) ∈ [0,∞) be such that

Ṽ (
√
xȳ(x)) ≤ ȳ(x) (4.1.11)

and put
Λdep(x) :=

√
xȳ(x). (4.1.12)

We obtain the following oracle inequality under functional dependence (which is proven
in Theorem 4.6.16, a restated version, of Section 4.6, Subsection 4.6.5).

Theorem 4.1.6. Suppose that Assumption 4.1.1 and Assumption 4.1.5 hold true with
L = 2dr

(
2
ς + (LF+K)

F

)
. Let Λdep(·) be the function defined in (4.1.12). Then, for any

δ ∈ (0, 1), η > 0 there exists a constant C = C(η, Cε, F ) such that

ER(f̂)−R(f0) ≤ (1 + η)2 inf
f∈F
{R(f)−R(f0)}+ C ·

{
Λdep

(H(δ)

n

)
+ δ
}
.

Remark 4.1.7. (i) While in Theorem 4.1.3 the parameter r is directly contained in
the constant C, in Theorem 4.1.6 it is contained in Λdep(·) via Assumption 4.1.5.
Additionally, in the latter theorem the dimension d is incorporated through (4.1.9)
and may be incorporated through L. Besides these facts, both theorems are rather
similar.

(ii) Theorems 4.1.3 and 4.1.6 are rather general and can be applied to any function
class which allows for a measurement of their size via brackets with respect to the
‖ · ‖∞-norm.

(iii) Theorems 4.1.3 and 4.1.6 can be seen as generalizations of Lemma 4 in Schmidt-
Hieber [2017] for dependent observations.

(iv) A specific example for W with support [0, 1]dr is given by

W(x) := 1− ρ(ς−1d(x, [ς, 1− ς]dr)) =


1, x ∈ [ς, 1− ς]dr

0, x 6∈ [0, 1]dr,

linear, else

(4.1.13)

where ρ(z) := max{min{z, 1}, 0} and d∞(x,A) := infy∈A |x− y|∞.

In the special case of polynomial decay and exponential decay of ∆(·), explicit repre-
sentations of Λdep(·) are available via the following lemma.

Lemma 4.1.8 (Special cases). Depending on specific decay rates, the following state-
ments hold true.

(i) If ∆(j) ≤ κj−α with some κ > 0, α > 1, then

Λdep(x) ≤ cκ,α max{x
α
α+1 , x}

where cκ,α is a constant depending only on κ, α.
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(ii) If ∆(j) ≤ κρj with some κ > 0, ρ ∈ (0, 1), then

Λdep(x) ≤ cκ,ρx log(x−1 ∨ 1)2

where cκ,ρ is a constant depending only on κ, ρ.

Remark 4.1.9. It seems to be quite challenging to establish appropriate lower bounds.
Since we base our proof techniques on empirical process theory, the upper bounds suffer
from an increased variance induced by the dependent observations. It is therefore not
clear if our results in Theorem 4.1.3 and 4.1.6 are optimal (from a minimax point of
view). We dedicate this problem to future research. In Hansen [2008] it has been shown
that a kernel estimator applied to dependent observations is able to achieve the same
convergence rates as in the i.i.d. case. However, the proof heavily relies on the estimator’s
explicit representation. The way we formalize our theory as a risk minimization problem
does not allow for such a closed form of the estimator.

It should be noted that the recursion (4.1.1) is only used in the fashion of a regression
model and we do not impose any contraction condition on f0. Thus, it is not necessary
that Xi itself has geometric decaying dependence coefficients. Moreover, for the same
reason, our theory allows us to discuss the more general d-variate regression model

Yi = f0(Xi−1) + εi, i = r + 1, ..., n,

where we do not impose a direct connection between input Xi and output Yi.

4.2 Application to time series forecasting with neural
networks

4.2.1 Encoder-decoder structure and smoothness assumptions

We require that f0 in (4.1.1) has a specific “sparse” form, which we model through
several structural assumptions.

Assumption 4.2.1 (Encoder-decoder assumption). We assume that

f0 = fdec ◦ fenc (4.2.1)

for fenc : Rdr → Rd̃ with d̃ ∈ {1, ..., d}, and fdec : Rd̃ → Rd only depending on a
maximum of tdec ∈ {1, ..., d̃} arguments in each component. Furthermore,

fenc = genc,1 ◦ genc,0 (4.2.2)

where genc,0 : Rdr → RD, D ∈ N, only depends on a maximum of tenc,0 ∈ {1, ..., dr}
arguments in each component and genc,1 : RD → Rd̃ only depends on a maximum of
tenc,1 ∈ {1, ...., D} arguments in each component.
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The structure of f0 (which has not to be a neural network itself) is depicted in Figure
4.1. Condition (4.2.1) means that f0 decomposes into a function fenc, which reduces the

dimension from dr to d̃ ∈ {1, ..., d} (the “encoder”), and fdec : Rd̃ → Rd which expands
the dimension to d (the “decoder”). For r = 1, such structures typically arise when

information has to be compressed into a vector Rd̃ (with the encoder) but also should
be restorable close to its original information content (with the decoder).

The domain of fenc is d-dimensional, with a possibly large d. Therefore, a structural
constraint in the form of (4.2.2) is one possibility to control the convergence rate of
the corresponding network estimator. A typical example we have in mind are additive
models of the following form, where genc,1 is basically chosen as a summation function.

Example 4.2.2 (Additive models).

(1) Reduction to one dimension: Suppose that f0 = fdec ◦ fenc where fdec : R → Rd
and

fenc(x) =
d∑
j=1

gj(xj)

for functions gj : R → R. Then, Assumption 4.2.1 is fulfilled with tenc,0 = d̃ =
tdec = 1, tenc,1 = D = d.

(2) Reduction to d̃ dimensions: Suppose that f0 = fdec ◦ fenc where fdec : Rd̃ → Rd
and fenc = (fenc,k)k=1,...,d̃ with

fenc,k(x) =

d∑
i1,...,itenc,0=1

g
(k)
i1,...,itenc

(xi1 , ..., xitenc )

for functions gi1,...,itenc,0 : Rtenc,0 → R. Then, Assumption 4.2.1 is fulfilled with the

given tenc,0, d̃ = tdec and tenc,1 = D = dtenc,0 .

4.2.2 Neural networks and the estimator

We now present the network estimator, formally. To do so, we use the formulation
from Schmidt-Hieber [2017]. Let σ(x) := max{x, 0} be the ReLU (rectified linear unit)
activation function. For a vector v = (v1, ..., vr) ∈ Rr and its transpose v′ define

σv : Rr → Rr, σv(x) := (σ(x1 − v1), ..., σ(xr − vr))′.

Let L ∈ N0 and p = (p0, ..., pL+1) ∈ NL+2. A neural network with network architecture
(L, p) and ReLU activation function is a function of the form

f : Rp0 → RpL+1 , f(x) = W (L)σv(L)W (L−1)σv(L−1) . . .W (1)σv(1)W (0)x, (4.2.3)
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X1 ∈ Rd

fenc = genc,1 ◦ genc,0

f0(X1) ∈ Rd

fdec
fenc(X1) ∈ Rd̃

...

RD

genc,0 genc,1

Figure 4.1: Graphical representation of the encoder-decoder assumption on f0 in the
special case r = 1.

where W (i) ∈ Rpi×pi+1 are weight matrices and v(i) ∈ Rpi are bias vectors. We see that
L ∈ N0 describes the number of hidden layers and p = (p0, ..., pL+1) ∈ NL+2 is the
number of hidden units for each layer. For L1 ∈ {1, ..., L}, let

Fed(L,L1, p) :=
{
f : Rp0 → RpL+1 is of the form (4.2.3) :

max
k=0,...,L

|W (j)|∞ ∨ |v(j)|∞ ≤ 1, pL1 = d̃
}
,

be a class of networks, where the L1-th hidden layer is d̃-dimensional. In our setting,
since we aim to approximate f0, p0 = dr and pL+1 = d are predetermined.

In practice, a neural network f̂ ∈ Fed(L,L1, p) obtained by minimizing R̂n(f) from
(4.1.3) via a stochastic gradient descent method contains weight matrices and bias vectors
in which many entries are not relevant for the evaluation f̂(x) of x ∈ [0, 1]d. This behavior
can be explained by the random initialization of the weight matrices and large step sizes
of the gradient method. In fact, by employing dropout techniques during the learning
process or imposing some additional penalties we can force W (j), v(j), j = 0, ..., L, to be
sparse. For a compact overview on a simple stochastic gradient descent method we refer
to Richter [2019]. A conceptual explanation of dropout can be found in, for example,
Murphy [2022]. To indicate this type of sparsity in the model class, we introduce for
s ∈ N and F > 0,

F(L,L1, p, s, F ) :=
{
f ∈ Fed(L,L1, p) :

L∑
j=0

|W (j)|0 + |v(j)|0 ≤ s, ‖f‖∞ ≤ F
}
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and define the final neural network estimator via

f̂net ∈ arg min
f∈F(L,L1,p,s,F )

R̂n(f). (4.2.4)

In particular, the resulting network f̂net (with estimated weight matrices Ŵ (j) and bias
vectors v̂(j)) can provide an estimator of the encoder function fenc by only using its
representation up to the L1-th layer, that is,

f̂netenc(x) := Ŵ (L1)σv̂(L1)Ŵ (L1−1)σv̂(L1−1) . . . Ŵ (1)σv̂(1)W (0)x.

Another typical observation made is that fitted neural networks f̂net tend to be rather
smooth functions. This can be enforced by adding a gradient penalty in the learning
procedure (common, for instance, in the training of WGANs (for Wasserstein generative
adversarial networks), where a restricted Lipschitz constant is part of the optimization
functional, cf. Gulrajani et al. [2017]). We see in Section 4.1 that we also formally need
a bound on the Lipschitz constant when quantifying dependence with the functional
dependence measure. We therefore introduce a second neural network estimator based
on the function class

F(L,L1, p, s, F,Lip) :=
{
f ∈ F(L,L1, p, s, F ) : ‖f‖Lip ≤ Lip

}
where ‖f‖Lip := supx∈Rd

|f(x)−f(x′)|∞
|x−x′|∞ . This estimator becomes

f̂net,lip ∈ arg min
f∈F(L,L1,p,s,F,Lip)

R̂n(f). (4.2.5)

In the following results, we will assume that Lip is constant in n. From Theorem
4.6.20 in Section 4.6, Subsection 4.6.7, we see that in principle, there exist approximating
neural networks which provide the best approximation rate and have Lipschitz constant
uniformly bounded in n. In practice, we may force a bounded Lipschitz constant by using
an additional gradient penalty (cf. Gulrajani et al. [2017]).

4.2.3 Smoothness assumptions

To state convergence rates of f̂ , we have to quantify smoothness assumptions of the un-
derlying true function f0 and its components genc,1, genc,0 and fdec. We measure smooth-
ness with the well-known Hölder balls. A function has Hölder smoothness index β if all
partial derivatives up to order bβc := max{k ∈ N0 : k < β} exist, are bounded and
the partial derivatives of order bβc are β − bβc Hölder continuous. The ball of β-Hölder
functions with radius K > 0 and domain of definition P ⊂ Rr is defined as

Cβ(P,K) :=
{
f : P → R :∑

α:|α|<β

‖∂αf‖∞ +
∑

α:|α|=bβc

sup
x,y∈P
x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|β−bβc∞

≤ K
}

where α = (α1, ..., αr) ∈ Nr0 is a multi-index and ∂α := ∂α1 ...∂αr , |α| := α1 + ...+ αr.
We now impose the following assumptions.
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Assumption 4.2.3 (Smoothness assumption). Suppose that for some constants K ≥ 1
and βdec, βenc,1, βenc,0 ≥ 1,

• genc,0 ∈ Cβenc,0([0, 1]dr,K) and genc,0([0, 1]dr) ⊂ [0, 1]D,

• genc,1 ∈ Cβenc,1([0, 1]D,K) and genc,1([0, 1]D) ⊂ [0, 1]d̃,

• fdec ∈ Cβdec([aenc,1, benc,1]d̃,K).

The restriction to the unit intervals for the domain and image is only done for the sake
of simplicity in our presentation and can be easily enlarged to compact sets by rescaling.

4.2.4 Network conditions

For the following theorems we need assumptions on the network class itself. These as-
sumptions are mainly adapted from [Schmidt-Hieber, 2017, Theorem 1] and are neces-
sary to control the approximation error of the class F(L,L1, p, s, F ) as well as the size
H(δ,F(L,L1, p, s, F ), ‖ · ‖∞) of the corresponding covering numbers. The parameter N
therein is a parameter in the final theorems.

Assumption 4.2.4. Fix N ∈ {1, ..., n}. The parameters L,L1, p, s, F of F(L,L1, p, s, F )
are chosen such that

(i) K ≤ F ,

(ii) {log2(4(tenc,0 ∨ βenc,0)) + log2(4(tenc,1 ∨ βenc,1))} log2(n) ≤ L1 and
L1 + log2(4(tdec ∨ βdec)) log2(n) ≤ L <∼ log2(n),

(iii) N <∼ mini∈{1,...,L}\{L1}{pi},

(iv) N log2(n) � s.

We now give a small discussion on the conditions. As we will see below, the optimal
N is roughly of the size na, where a depends on smoothness properties of the underlying
function f0. Assumption (i) encodes the necessary fact that the network class has to
include networks which have a supremum norm larger than the true function f0. The
second condtion (ii) is a condition on the layer size. It should be chosen of order L �
log2(n). In fact, the upper bound on L is not necessary but produces the best convergence
rates (cf. the proof of Theorem 4.2.5 or Theorem 4.2.6, respectively). Condition (iii) poses
a lower bound on the size of the hidden layers (i.e. number of hidden units) in the network.
From a practical point of view, it seems rather unusual to impose such a large dimension
≥ na to all the hidden layers. This is due to the approximation technique used and surely
can be improved. The last condition (iv) is about the number of nonzero parameters
s � N log2(n) which for instance could be enforced by computational methods during
the learning process.
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4.2.5 Theoretical results

During this section, let W : Rdr → [0, 1] be an arbitrary (measurable) weight function
with supp(W) ⊂ [0, 1]dr. The weight function appears in the optimization functional
(4.1.3) and the corresponding prediction error (4.1.2).

Theorem 4.2.5 (Mixing). Suppose that Assumption 4.1.1, 4.2.1, 4.2.3 and 4.1.2 are
fulfilled. If Assumption 4.2.4 is satisfied for some N ∈ {1, ..., n}, then

ER(f̂net)−R(f0) <∼ Λmix
(N log(n)3

n

)
+N−2A

where A := min
{βdec
tdec

,
βenc,0
tenc,0

,
βenc,1
tenc,1

}
.

To formulate an analogous result for the functional dependence measure, we have to
assume that the weight function in (4.1.3) is Lipschitz continuous in the sense that for
some ς > 0,

|W(x)−W(x′)| ≤ 1

ς
· |x− x′|∞.

Theorem 4.2.6 (Functional dependence). Suppose that Assumption 4.1.1, 4.2.1, 4.2.3

are fulfilled. Let Assumption 4.1.5 hold true for LG = 2dr
(

2
ς + (Lip+K)

F

)
. Then there

exists some constant CL > 0 independent of n such that if Assumption 4.2.4 is satisfied
for some N ∈ {1, ..., n} and Lip ≥ CL,

ER(f̂net,lip)−R(f0) <∼ Λdep
(N log(n)3

n

)
+N−2A

where A := min
{βdec
tdec

,
βenc,0
tenc,0

,
βenc,1
tenc,1

}
.

A specific expression for CL becomes available later on but due to its complicated
form we reduce it to its formal existence.

Remark 4.2.7. Note that in the case of independent observations Xi, we can choose
Λmix(x) = Λdep(x) = x in Theorem 4.2.5 and 4.2.6 which yields then the same result as
in [Schmidt-Hieber, 2017, Theorem 1].

To get a glimpse on the convergence rates which can be achieved, we formulate the
following two corollaries of Theorem 4.2.5. Due to the similar form, an analogous result
is available also in the case of the functional dependence measure. The first corollary
is a simple consequence of Lemma 4.1.4 and Theorem 4.2.5 in the case of polynomial
decaying dependence.

Corollary 4.2.8 (Mixing and polynomial decay). Suppose that Assumption 4.1.1, 4.2.1
and 4.2.3 are fulfilled and that Xi is absolutely regular mixing with coefficients satisfying∑∞

k=0 k
α−1βmix(k) <∞ for some α > 1. Let

A = min
{βdec
tdec

,
βenc,0
tenc,0

,
βenc,1
tenc,1

}
.
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If Assumption 4.2.4 is satisfied with

N =
⌈
n

α
α+1

2A+ α
α+1

⌉
,

then

ER(f̂net)−R(f0) <∼ n
−

2A· α
α+1

2A+ α
α+1 log(n)

3α
α+1 .

We now investigate this rate for a specific model from Example 4.2.2, (2) with only
one lag r = 1. Suppose that tenc,0 = d̃ and

fdec, gi1,...,id̃ ∈ C
β([0, 1]d̃,K)

for some β > 0. This means that the encoder function produces a compressed result of
d̃ ≤ d components, where each of the d̃ components is constructed as follows: For each
possibility to choose d̃ from d arguments, a different function can be used to process the
given values. These results are all summed up. Since the summation is infinitely often
differentiable with bounded derivatives, the situation in Corollary 4.2.8 becomes

A = min
{β
d̃
,
∞
dd̃
,
β

d̃

}
=
β

d̃
,

which yields the following result.

Corollary 4.2.9. Suppose that Assumption 4.1.1 holds true and that Xi is mixing with
coefficients satisfying

∑∞
k=0 k

α−1βmix(k) <∞ for some α > 1. Let Assumption 4.2.4 be
satisfied with

N =
⌈
n
d̃·

α
α+1

2β+d̃· α
α+1

⌉
.

Then,

ER(f̂net)−R(f0) <∼ n
−

2β· α
α+1

2β+d̃· α
α+1 log(n)

3α
α+1 .

In contrast to the rate of a (naive) standard nonparametric estimator which suffers
from the curse of the dimension d, we are thus able to formulate structural conditions
on the evolution of the time series to obtain much faster rates which only depend on
the compressed dimension d̃ ∈ {1, ..., d}. Of course, the list in Example 4.2.2 is not
exhaustive and much more models are suitable for our theory.

4.3 Simulations

In this section, we discuss the behavior of the estimator f̂ from (4.2.4). Note that we
use the approximation obtained via a stochastic gradient descent method and based on
an unrestricted neural network function class. During the presentation, v′ denotes the
transpose of a vector or matrix v.

141



4.3.1 Simulated data

We first consider a low-dimensional example given by

Xi = f0(Xi−1) + εi

where εi ∼ N (0, 0.5I5×5), I5×5 denoting the 5-dimensional identity matrix, and

f0 : R5 → R5, f0(x) = va′x (4.3.1)

for a = (0.5, 0.6, 0.2, 0.3, 0.5)′ ∈ R5 and v = (0.4, 0.6, 0.5,−0.2, 0.5)′ ∈ R5, that is,

Xi = v ·
5∑
j=1

ajxj .

We generate n = 1000 observations X1, ..., Xn following the above recursion and use
ntest − n = 1000 further realizations of the time series to quantify the true prediction
error. For the fitting process, we use an encoder-decoder network of the form

p = (5, 20, 10, 1, 10, 20, 5), L = 5,

that is, the network encodes the given information to one dimension and afterwards
restores the value again to 5 dimensions. The network is learned by a standard stochastic
gradient descent method (cf. Richter [2019]) with learning rate γ = 0.003 for the first 30
epochs and γ = 0.0002 afterwards. Furthermore, we use a penalty weight of λ = 0.00001
and the ReLU activation function. We can deduce from Figure 4.2 that the neural
network can easily learn the underlying function f already after approximately 40 epochs.
The process is stopped if the (empirical) error

D(f) :=
1

d
E[|f(Xr)− f0(Xr)|22], D̂n(f) :=

1

n

n∑
i=r+1

1

d
|f(Xi−1)− f0(Xi−1)|22

does not significantly fluctuate for a certain period of epochs (manual stopping criterion).
We surmise that for low dimensional data the testing error (the error calculated on the
test data) can be seen on par with the training error (the error calculated on the training
data), converging rapidly towards the optimal prediction error 1

5E[|ε1|2] = 0.52 = 0.25.
We now turn to an example of higher dimension. We take the same model but consider

f0 : R30 → R30, f0(x) = va′x, (4.3.2)

where we define the vector s = (0.05,−0.05, ..., 0.05,−0.05)′ ∈ R24 that alternates be-
tween the values 0.05 and −0.05 and put

a =

(
0.3 0.6 0.5 s′ 0 −1 0.4
0.5 −0.6 0.2 s′ 0.4 0.9 1

)
∈ R2×30,

v =

(
0.4 0.4 . . . 0.4 0.4
0.5 −0.3 . . . 0.5 −0.3

)t
∈ R30×2.
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Figure 4.2: We depict the learning process under model (4.3.1). After 40 epochs the
neural network learned the underlying function f0 provided by a noisy version
of the data. We can clearly see that the neural network is able to predict the
noise free evolution of the times series.

for alternating values 0.5 and −0.3 in the second row of v. The network architecture is
adjusted to

p = (30, 60, 30, 2, 30, 60, 30), L = 5,

using again a stochastic gradient descent method with learning rate γ = 0.0002 for the
first 50 epochs and γ = 0.00002 afterwards. Furthermore, we set λ = 0.00001 and employ
the ReLU activation function. Although the network is dealing with an input and output
of dimension 30, Figure 4.3 shows that a good prediction already can be realized and
most of the information can be preserved despite the data passing a layer of only two
dimensions.

4.3.2 Real weather data

For our simulation study we consider weather data of d = 32 German cities pro-
vided by the Deutscher Wetterdienst (DWD, German Meteorological Service). Note
that the cities chosen are spread throughout Germany which can be seen in Figure
4.7. The data we are interested in is the daily mean of temperature and can be found
on the DWD’s webpage under Germany’s historical data, https://opendata.dwd.de/
climate environment/CDC/observations germany/climate/daily/kl/historical/. In total
we observe 4779 temperature values for each city over the period of 2006/07/01 to
2019/08/01. A subset of ntrain = 4415 values serves as training data for the network and
represents the data from 2006/07/01 to 2018/07/31. We validate our prediction on the
year 2018/08/01 to 2019/07/31 which contains n − ntrain = 354 values. For fitting, we
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Figure 4.3: The underlying model here is given by (4.3.2). After 20 epochs the neural
network learned the overall behavior of the function f0. The network has
still the potential to improve for the lower peaks. After about 40 epochs the
learning process can be seen as completed. Due to overfitting, the testing
error now begins to slowly increase.
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use a network with architecture

F(5, (rd, rd, 24,m, 24, d, d))

where r ∈ {1, 2, 3, 5} and m ∈ {4, 6, 8, 10}, apply a stochastic gradient descent method
for learning the approximation f̂≈ of f̂ over 150 epochs. The learning rate is chosen to
be γ = 0.000002 until epoch 45 and γ = 0.0000002 thereafter. We let the simulation run
5 times over every step r for each network described by m.

In Figure 4.6 we summarize the prediction errors of D(f̂≈) obtained during the testing
process. The smallest error can be found for r = 2 (that is, usingXi−1, Xi−2 for predicting
Xi) with a “bottleneck” layer L1 of m = 10 hidden units. However, it is also possible to
take a layer with m ∈ {6, 8} hidden units and still obtain a comparable result. Thus, we
surmise that according to our model, when considering the errors, the weather should be
predicted based on the two previous days. Taking one previous day or more than three
days before the date of interest does not seem to yield a good prediction.

In comparison, the naive prediction method f̂naive of taking the temperature value of
the current day as it is to forecast the next day’s value yields an error of approximately
D(f̂naive) ≈ 4.99. Choosing an AR(1) model, the usual predictor f̂AR(1) yields an error
of D(f̂AR(1)) ≈ 4.29, which performs betters than the naive approach and comes close to
that of our encoder-decoder network. We therefore see that employing encoder-decoder
neural networks produces more accurate predictions.

For r = 2,m = 6, we depict the development of the training and testing error for
the network F(5, (2d, 2d, 24, 6, 24, d, d)) in Figure 4.4. After 45 epochs the testing error
already drops down to a magnitude of 4 which means that we anticipate a deviation
(i.e.

√
D(·)) of 2 Kelvin for the prediction itself. The fitting process is displayed for the

city of Mannheim in Figure 4.5.
Additionally, the 1-step predictor can be used to forecast k-steps ahead in time by

applying the learned neural network k-times, accordingly. In our example, we applied
this to the next week’s temperature, i.e. k = 7. The chosen predictor with architecture
F(5, (d, d, 24, 6, 24, d, d)) yields a deviation of around 4.44 Kelvin.

4.4 Approximation error

We consider a network f̃0 approximating the true regression function f0. The network
f̃0 is assumed to have the form

f̃0 = f̃dec ◦ f̃enc : Rdr → Rd (4.4.1)

where f̃enc : Rdr → Rd̃ and f̃dec : Rd̃ → Rd, d̃ ∈ {1, ..., d}, and f̃enc has the additional
network structure

f̃enc = g̃enc,1 ◦ g̃enc,0
where g̃enc,0 : Rdr → RD, D ∈ N, depends on at most tenc,0 ∈ {1, ..., dr} arguments in

each component, and g̃enc,1 : RD → Rd̃ depends on at most tenc,1 ∈ {1, ..., D} arguments
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Figure 4.4: Depicted is the training and testing error in the learning process of the net-
work F(5, (2d, 2d, 24, 6, 24, d, d)) applied to the weather data. We clearly see
that consistently, as expected, the testing error is higher than the training
error. At an early stage the network already learns basic properties of the
evolution scheme of the time series because the testing error rapidly drops.
After 45 epochs the error is in the range of 4.

in each component. We denote by

F(L, p, s) :=
{
f : Rp0 → RpL+1 is of the form (4.2.3) :

max
k=0,...,L

|W (j)|∞ ∨ |v(j)|∞ ≤ 1,
L∑
j=0

|W (j)|0 + |v(j)|0 ≤ s
}

the set of all networks with constraints on W (j), v(j) and sparsity level s. We explicitly
do not ask for the presence of an encoder-decoder structure or an intermediate hidden
layer at position L1.

Now, let t := (tdec, tenc,0, tenc,1) and β := (βdec, βenc,0, βenc,1) where tdec ∈ {1, ..., d̃},
tenc,1 ∈ {1, ..., D} and tenc,0 ∈ {1, ..., dr}.

Theorem 4.4.1. Consider the d-dimensional time series that follows the recursion rela-
tion (4.1.1) and Assumption 4.2.1, 4.2.3. Let N ∈ {1, ..., n}. Suppose that the parameters
of F(L,L1, p, s, F,Lip) satisfy

(i) K ≤ F ,

(ii)
∑

i∈{enc,0;enc,1} log2(4(ti ∨ βi)) log2(n) ≤ L1 and
L1 + log2(4(tdec ∨ βdec)) log2(n) ≤ L,
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Figure 4.5: The graphic shows the daily mean temperature data from 2017/08/01 to
2019/07/31 measured in Mannheim. Note that we continuously count the
days from 1 to 4779 beginning on 2006/07/01 (day 1). The training pro-
cess ends on 2018/31/07 (day 4414), indicated by the gray vertical dashed
line in the middle. Beginning on 2018/08/01 we see the values predicted
f̂≈(Xi−1, Xi−2) by the learned neural network on top of the actual data
observed.

(iii) N <∼ mini{pi},

(iv) N log2(n) <∼ s,

(v) Lip >∼ 1.

Then,

inf
f∗∈F(L,L1,p,s,F,Lip)

‖f∗ − f0‖2∞ ≤ C max
k∈{dec;enc,0;enc,1}

{N
n

+N
− 2βk

tk

}
for a large enough constant C that only depends on d̃, d, t,β.

The proof can be found in Section 4.6, Subsection 4.4.

4.5 Concluding remarks

In this chapter, we proposed a method to forecast high-dimensional time series with
encoder-decoder neural networks and quantified their prediction abilities theoretically
with a convergence rate. A key step was to provide oracle-type inequalities for minimizers
of the empirical prediction error under mixing or functional dependence. Besides the
fact that the corresponding neural network is required to have a similar encoder-decoder
structure to avoid overfitting, we also formulated appropriate conditions on the network
parameters, such as bounds for the number of layers or active parameters. The encoder-
decoder structure we used is fundamental to possibly circumvent the curse of dimension.
The conditions imposed are similar to those in Schmidt-Hieber [2017] since we have used
the same approximation results.
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r = 1 prediction error upon validation

layer m 4 4.81 4.77 4.63 4.68 4.86
6 4.41 4.65 4.75 4.83 4.64
8 4.41 4.49 4.42 4.47 4.45
10 4.41 4.55 4.44 4.45 4.45

r = 2

layer m 4 4.63 4.22 4.41 4.19 4.03
6 3.98 4.10 4.21 4.16 4.22
8 3.98 3.95 4.23 4.05 4.01
10 4.11 4.09 3.93 3.93 4.02

r = 3

layer m 4 4.30 4.79 4.11 4.72 4.10
6 4.27 4.46 4.18 4.04 4.18
8 4.36 4.29 4.08 4.24 4.28
10 4.27 4.12 4.08 4.15 4.28

r = 5

layer m 4 4.28 4.75 4.83 4.48 4.85
6 4.10 4.27 4.28 4.34 4.71
8 4.81 4.09 4.06 4.42 4.45
10 4.24 4.47 4.28 4.37 4.36

Figure 4.6: The testing errors obtained during the simulation. For each of the 4 distinct
network architectures and each of r-step predictions we ran the simulation 5
times.
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Figure 4.7: We collected weather data from the cities of Berlin, Braunschweig,
Bremen, Chemnitz, Cottbus, Dresden, Erfurt, Frankfurt, Freiburg,
Garmisch-Patenkirchen, Göttingen, Münster, Hamburg, Hannover, Kaiser-
slautern, Kempten, Köln, Konstanz, Leipzig, Lübeck, Magdeburg, Cölbe,
Mühldorf, München, Nürnberg, Regensburg, Rosenheim, Rostock, Stuttgart,
Würzburg, Emden and Mannheim.

Our theory can be seen as an extension of the upper bounds found in Schmidt-Hieber
[2017] to dependent observations with high-dimensional outputs.

We also studied the performance of our neural network estimators with simulated
data and saw that the estimators could detect and adapt to a specific encoder-decoder
structure of the true evolution function quite successfully. We applied our procedure
to real temperature data and showed that without too much tuning we were able to
outperform a naive forecast.
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4.6 Lemmata and Proofs of Chapter 4

4.6.1 A variance bound under mixing for Subsection 4.1.1

Recall the definition of the β-mixing coefficients βmix(k), k ∈ N0 from (4.1.4). In this
section, we use the abbreviation β(·) = βmix(·).

We now introduce the ‖ · ‖2,β-norm which originally was defined in Doukhan et al.
[1995].

Define β(t) = β(btc) for t ≥ 1 and β(t) = 1, otherwise. For some cadlag function
g : I → R defined on a domain I ⊂ R, the cadlag inverse is defined as

g−1(u) := inf{s ∈ I : f(s) ≤ u},

which we especially use for β−1(u). For any measurable h : R→ R, let Qh(u) denote the
quantile function of h(X1), that is, Qh(u) is the cadlag inverse of t 7→ P(h(X1) ≤ t). Let

‖h‖2,β :=
(∫ 1

0
β−1(u)Qh(u)2du

)1/2
.

This norm can be used to upper bound the variance of a sum
∑k

i=1 h(Xi). Furthermore,
it is possible to upper bound ‖h‖2,β in terms of ‖h‖1 = E|h(X1)| and ‖h‖∞ which we
will need in the proofs to relate the variance of the empirical risk with the risk itself. Let

Φ := {φ : [0,∞)→ [0,∞) | φ increasing, convex, differentiable,

φ(0) = 0 and lim
x→∞

φ(x)

x
=∞}.

For φ ∈ Φ, let φ∗(y) := supy>0{xy−φ(x)} be the convex dual function. Define the Orlicz
norm associated to φ(x2) via

‖h‖φ,2 := inf{c > 0 : Eφ
(( |h(X1)|

c

)2) ≤ 1}.

The following two results are from [Doukhan et al., 1995, Proposition 1 and Lemma
2].

Lemma 4.6.1 (Variance bounds and bound of ‖ · ‖2,β-norm). For k ∈ N,

Var
( k∑
i=1

h(Xi)
)
≤ 4k‖h‖22,β.

For φ ∈ Φ assume that
∫ 1

0 φ
∗(β−1(u)) <∞. Then,

‖h‖2,β ≤ Cβ · ‖h‖φ,2, Cβ :=
(

1 +

∫ 1

0
φ∗(β−1(u))du

)1/2
.

If ‖h‖∞ ≤ 1, then
‖h‖φ,2 ≤ Cβϕ(‖h‖1) (4.6.1)

where ϕ(x) := φ−1(x−1)−1/2.
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Only the last statement needs to be proven and is postponed to Subsection 4.6.4. The
main goal of this section is to prove Theorem 4.6.4, which is Theorem 4.1.3. To do so, we
use techniques and decomposition ideas from Dedecker and Louhichi [2002], Rio [1995]
and Liebscher [1996]. We begin by establishing maximal inequalities under mixing. The
proofs can be found here in Section 4.6, as well.

4.6.2 Maximal inequalities under mixing

Let G ⊂ {g : Rdr → R measurable} be a finite class of functions and

Sn(g) :=
n∑

i=r+1

{g(Xi−1)− Eg(Xi−1)}.

In the following, let H = 1 ∨ log |G|. Recall

q∗(x) = q∗,mix(x) = min{q ∈ N : βmix(q) ≤ qx}.

Lemma 4.6.2 (Maximal inequalities for mixing sequences). Suppose that supg∈G ‖g‖∞ ≤
1 and that there exists ν(g) > 0 such that supg∈G ‖

g
ν(g)‖2,β ≤ 1. Then, there exists another

process S◦n(g) and some universal constant c > 0 such that

E sup
g∈G
|Sn(g)− S◦n(g)| ≤ cnr · q∗(H

n
)
H

n
. (4.6.2)

Furthermore, with N(g) := q∗(Hn )
√

H
n ∨ ν(g),

(i)

E sup
g∈G
|S
◦
n(g)

N(g)
| ≤ c

√
nrH, (4.6.3)

(ii)

E
[

sup
g∈G
|S
◦
n(g)

N(g)
|2
]
≤ cnr2H. (4.6.4)

Now, for G ⊂ {g : Rdr → Rd measurable}, define

Mn(g) :=
n∑
i=1

1

d
〈εi, g(Xi−1)〉.

Lemma 4.6.3 (Maximal inequalities for mixing martingale sequences). Let Assumption
4.1.1 hold true. Furthermore, assume that Xi is β-mixing and βmix(·) is submultiplicative
in the sense of (4.1.5). Suppose that elements g ∈ G fulfill supg∈G ‖g‖∞ ≤ 1 and that

there exists ν(g) > 0 such that supg∈G ‖
|g(Xr)|2√
dν(g)

‖2 ≤ 1. Then, there exists another process

M◦n(g) and some universal constant c > 0 such that

E sup
g∈G
|Mn(g)−M◦n(g)| ≤ crCεCβ,subn · q∗(

H

n
)
H

n
. (4.6.5)

Furthermore, with N(g) := q∗(Hn )
√

H
n ∨ ν(g),
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(i)

E sup
g∈G
|M
◦
n(g)

N(g)
| ≤ cCε

√
nH, (4.6.6)

(ii)

E
[

sup
g∈G
|M
◦
n(g)

N(g)
|2
]
≤ cC2

εnH. (4.6.7)

4.6.3 Oracle inequalities under mixing

Define as a short hand

D(f) :=
1

d
E[|f(Xr)− f0(Xr)|22W(Xr)],

D̂n(f) :=
1

n

n∑
i=r+1

1

d
|f(Xi−1)− f0(Xi−1)|22W(Xi−1)

where W : Rdr → [0, 1] denotes an arbitrary weight function. In this section, we show
an oracle-type inequality for minimum empirical risk estimators

f̂ ∈ arg min
f∈F

R̂n(f), R̂n(f) =
1

n

n∑
i=r+1

1

d
|Xi − f(Xi−1)|22W(Xi−1)

for any weight functionW : Rdr → [0, 1]. The function classes considered are of the form

F ⊂ {f = (fj)j=1,...,d : Rdr → Rd measurable}

and have to satisfy supf∈F supj∈{1,...,d} supx∈supp(W) |fj(x)| ≤ F . For the proof of the
following theorem we require Lemma 4.6.5 and Lemma 4.6.6 which, among others, are
shown below.

Theorem 4.6.4. Let Assumption 4.1.1 and 4.1.2 hold true. Suppose that each function
f = (fj)j=1,...,d ∈ F satisfies supj=1,...d supx∈supp(W) |fj(x)| ≤ F . Let δ ∈ (0, 1) and H =
logN(δ,F , ‖·‖∞). Then, for any η > 0 there exists a constant C = C(η, c0, r, Cβ,sub, Cε, F )
such that

ED(f̂) ≤ (1 + η)2 inf
f∈F

D(f) + C ·
{

Λ(
H

n
) + δ

}
.

Proof of Theorem 4.6.4. Note that ED̂n(f) = D(f) and

ED̂n(f̂) = E
[ 1

n

n∑
i=r+1

1

d
|f̂(Xi−1)− f0(Xi−1)|22W(Xi−1)

]
.
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By the model equation (4.1.1) for any f ∈ F ,

R̂n(f) :=
1

n

n∑
i=r+1

1

d
|Xi − f(Xi−1)|22W(Xi−1)

=
1

n

n∑
i=r+1

1

d
|εi + (f0(Xi−1)− f(Xi−1))|22W(Xi−1)

=
1

n

n∑
i=r+1

1

d
|εi|22W(Xi−1) +

1

n

n∑
i=r+1

1

d
|f0(Xi−1)− f(Xi−1)|22W(Xi−1)

+
2

n

n∑
i=r+1

1

d
〈εi, f0(Xi−1)− f(Xi−1)〉W(Xi−1)

=
1

n

n∑
i=r+1

1

d
|εi|22W(Xi−1)

+
2

n

n∑
i=r+1

1

d
〈εi, f0(Xi−1)− f(Xi−1)〉W(Xi−1) + D̂n(f).

Since f̂ = arg minf∈F R̂n(f), we have for all f ∈ F ,

D̂n(f̂) = R̂n(f̂)︸ ︷︷ ︸
≤R̂n(f)

− 1

n

n∑
i=r+1

1

d
|εi|22W(Xi−1)

− 2

n

n∑
i=r+1

1

d
〈εi, f0(Xi−1)− f̂(Xi−1)〉W(Xi−1)

≤ D̂n(f) +
2

n

n∑
i=r+1

1

d
〈εi, f0(Xi−1)− f(Xi−1)〉W(Xi−1)

− 2

n

n∑
i=r+1

1

d
〈εi, f0(Xi−1)− f̂(Xi−1)〉W(Xi−1).

Since E[εi|Ai−1] = Eεi = 0 for Ai−1 = σ(εi−1, εi−2, ...),

ED̂n(f̂) ≤ ED̂n(f)︸ ︷︷ ︸
=D(f)

+E
[ 2

n

n∑
i=r+1

〈εi, f̂(Xi−1)〉W(Xi−1)
]
,

that is,

ED̂n(f̂) ≤ inf
f∈F

D(f) + 2E
[ 1

n

n∑
i=r+1

〈εi, f̂(Xi−1)〉W(Xi−1)
]
. (4.6.8)
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Let η > 0. Define

R1,n := (1 + η)crF 2q∗(
H

n
)
H

n
+
ηF 2

2
(ϕ−1)∗

(
2

1 + η

ηF 2
rCβ

√
H

n

)
,

R1,δ := crF 2Cβ

√
H

n
ϕ(2F−2δ2),

R2,n := cCεCβ,subrFq
∗(
H

n
)
H

n
,

R2,δ := Cεδ + cCεCβ,subrF

√
H

n
δ.

By Lemma 4.6.5, (4.6.8) and Lemma 4.6.6,

ED(f̂) ≤ (1 + η)ED̂n(f̂) +R1,n + (1 + η)R1,δ

≤ (1 + η)
{

inf
f∈F

D(f) + 2E
[ 1

n

n∑
i=r+1

〈εi, f̂(Xi−1)〉W(Xi−1)
]

+R1,δ

}
+R1,n

≤ (1 + η)
{

inf
f∈F

D(f) + 2cCεCβ,subrF

√
H

n
E[D(f̂)]1/2 +R2,n +R2,δ +R1,δ

}
+R1,n.

Due to 2ab ≤ a2 +b2 with a := (1+η)cCεCβ,subrF
√

H
n (1+η

η )1/2, b := ( η
1+η )1/2E[D(f̂)]1/2,

we obtain

ED(f̂) ≤ (1 + η) inf
f∈F

D(f) +
(1 + η)3

η
(cCεCβ,subrF )2H

n
+

η

1 + η
E[D(f̂)]

+(1 + η)(R2,n +R2,δ +R1,δ) +R1,n.

This implies

ED(f̂) ≤ (1 + η)2 inf
f∈F

D(f) + (1 + η)R1,n

+(1 + η)2(R2,n +R2,δ +R1,δ)

+
(1 + η)4

η
(cCεCβ,subrF )2H

n
. (4.6.9)

Using Young’s inequality applied to ϕ−1 (ϕ−1 is convex) and Lemma 4.6.7, we obtain

R1,δ ≤ crF 2Cβ(ϕ−1)∗
(√H

n

)
+ 2crCβδ

2 ≤ crF 2Cβ(4c0)2Λ(
H

n
) + 2crCβδ

2.

By Lemma 4.6.8, R2,n ≤ 2cCεCβ,subFΛ(Hn ), and

R1,n ≤ (1 + η)crF 2Λ(
H

n
) +

ηF 2

2

(
2

1 + η

ηF 2
rCβ

)2
(4c0)2Λ(

H

n
).
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Furthermore,

R2,δ ≤ Cεδ + cCεCβ,subrFδ
2 + cCεCβ,subrF

H

n
.

Insertion of these results into (4.6.9) yields

ED(f̂) ≤ (1 + η)2 inf
f∈F

D(f)

+Λ(
H

n
) ·
{

(1 + η)2cF 2 + 32(
(1 + η)3

ηF 2
)C2

βr
2c2

0

+2(1 + η)2crCεCβ,subF + 16(1 + η)2c2
0crCεCβ,subF

2
}

+δ2 · (1 + η)2cCεCβ,subrF + Cεδ · (1 + η)2

+
(1 + η)4

η
(cCεCβ,subrF )2H

n

Lemma 4.6.5. Suppose that Assumption 4.1.1, 4.1.2 hold true. Assume that each f ∈ F
satisfies supx∈supp(W) |f(x)|∞ ≤ F . Let H = logN(δ,F , ‖ · ‖∞). Then, there exists an
universal constant c > 0 such that for any δ ∈ (0, 1), η > 0,

ED(f̂) ≤ (1 + η)ED̂n(f̂) +
{

(1 + η)crF 2q∗(
H

n
)
H

n
+
ηF 2

2
(ϕ−1)∗

(
2

1 + η

ηF 2
rCβ

√
H

n

)}
+(1 + η)crF 2Cβ

√
H

n
ϕ(2F−2δ2).

Proof of Lemma 4.6.5. Let (fj)j=1,...,Nn be a δ-covering of F , whereNn := N(δ,F , ‖·‖∞).

Let j∗ ∈ {1, ...,Nn} be such that ‖f̂ − fj∗‖∞ ≤ δ for all k = 1, ..., d. Without loss of
generality, assume that δ ≤ F .

Let (X ′i)i∈Z be an independent copy of the original time series (Xi)i∈Z. Then, the
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process (Xi−1,X′i−1) is still β-mixing with the coefficients 2β̃(q) = 2β(q − r). We have∣∣ED(f̂)− ED̂n(f̂)|

=
∣∣∣E[ 1

nd

n∑
i=r+1

|f̂(X′i−1)− f0(X′i−1)|22W(X′i−1)

− 1

nd

n∑
i=r+1

|f̂(Xi−1)− f0(Xi−1)|22W(Xi−1)
]∣∣∣

≤
∣∣∣E[ 1

nd

n∑
i=r+1

|fj∗(X′i−1)− f0(X′i−1)|22W(X′i−1)

− 1

nd

n∑
i=r+1

|fj∗(Xi−1)− f0(Xi−1)|22W(Xi−1)
]∣∣∣+ 10δF

≤ E
∣∣∣ 1
n

n∑
i=r+1

gj∗(Xi−1,X′i−1)
∣∣∣+ 10δF

=
F 2

n
E|Sn(gj∗)|+ 10δF, (4.6.10)

where we used a = f̂(Xi−1)− fj∗(Xi−1), b = fj∗(Xi−1)− f0(Xi−1) ∈ Rd,∣∣|a+ b|22 − |b|22
∣∣ = |a|22 + 2|〈a, b〉| ≤ |a|22 + 2|a|2|b|2 ≤ dδ2 + 4dδF ≤ 5dδF,

defined for x, x′ ∈ Rd,

gj(x, x
′) :=

1

dF 2
|fj(x′)− f0(x′)|22W(x′)− 1

dF 2
|fj(x)− f0(x)|22W(x),

and Sn(·) is from Lemma 4.6.2. By the same Lemma 4.6.2, there exists another process
S◦n(·) and some universal constant c > 0 such that

E|Sn(gj∗)− S◦n(gj∗)| ≤ E sup
g∈G
|Sn(g)− S◦n(g)| ≤ crq∗(H

n
)
H

n
. (4.6.11)

Note that ‖g‖2,β̃ ≤ r ‖g‖2,β. Put

N(g) := q∗(
H

n
)

√
H

n
∨ 2‖g‖2,β.

We use the Cauchy-Schwarz inequality and again Lemma 4.6.2, yielding a universal
constant c > 0 such that

E|S◦n(gj∗)| = E
∣∣∣S◦n(gj∗)

N(gj∗)
·N(gj∗)

∣∣∣
≤

∥∥∥S◦n(gj∗)

N(gj∗)

∥∥∥
2
E[‖g‖22,β

∣∣
g=gj∗

]1/2 + E
∣∣∣S◦n(gj∗)

N(gj∗)

∣∣∣ · q∗(H
n

)

√
H

n

≤ c
[
r
√
nHE[‖g‖22,β

∣∣
g=gj∗

]1/2 +
√
rq∗(

H

n
)H
]
. (4.6.12)

156



Insertion of (4.6.11) and (4.6.12) into (4.6.10) delivers

|ED(f̂)− ED̂n(f̂)| ≤ crF 2
[
q∗(

H

n
)
H

n
+

√
H

n
E[‖g‖22,β

∣∣
g=gj∗

]1/2
]
. (4.6.13)

By Lemma 4.6.1,
‖g‖2,β ≤ Cβ‖g‖φ,2 ≤ Cβϕ(‖g‖1),

where ϕ(x)2 = φ−1(x−1)−1 is concave. Thus by Jensen’s inequality and due to the fact
that ϕ is concave (therefore subadditive),

E[‖g‖22,β
∣∣
g=gj∗

]1/2 ≤ CβE[ϕ(‖g‖1
∣∣
g=gj∗

)2]1/2 ≤ Cβϕ(E[‖g‖1
∣∣
g=gj∗

])

≤ Cβϕ(F−2ED(fj∗))

≤ Cβ[ϕ(2F−2δ2) + ϕ(2F−2ED(f̂))].

Insertion into (4.6.13) yields

∣∣ED(f̂)− ED̂n(f̂)| ≤ cF 2r
[
q∗(

H

n
)
H

n
+ Cβ

√
H

n
[ϕ(2F−2δ2) + ϕ(2F−2ED(f̂))]

]
.

By Lemma 4.6.10,

ED(f̂) ≤ (1 + η)
[
ED̂n(f̂) + crF 2q∗(

H

n
)
H

n
+ crF 2Cβ

√
H

n
ϕ(2F−2δ2)

]
+
ηF 2

2
(ϕ−1)∗

(
2

1 + η

ηF 2
rCβ

√
H

n

)
.

Lemma 4.6.6. Suppose that Assumption 4.1.1, 4.1.2 hold true. Let each f ∈ F satisfy
supx∈supp(W) |f(x)|∞ ≤ F . Then there exists an universal constant c > 0 such that for
any δ ∈ (0, 1), ∣∣∣E[ 1

nd

n∑
i=r+1

〈εi, f̂(Xi−1)〉W(Xi−1)
]∣∣∣

≤ Cεδ + cCεCβ,subrF
[
q∗(

H

n
)
H

n
+

√
H

n
(E[D(f̂)]1/2 + δ)

]
.

Proof of Lemma 4.6.6. Let (fj)j=1,...,Nn denote a δ-covering of F w.r.t. ‖ · ‖∞. Let j∗ ∈
{1, ...,Nn} be such that ‖f̂ − fj∗‖∞ ≤ δ. Let H = H(δ) = logN(δ,F , ‖ · ‖∞). Since εi is
independent of Xi−1 and Eεi = 0, we have∣∣∣E[ 1

nd

n∑
i=r+1

〈εi, f̂(Xi−1)〉W(Xi−1)
]∣∣∣ ≤ δ · 1

nd

n∑
i=r+1

E|εi|1︸ ︷︷ ︸
≤ 1
d

∑d
k=1 E|ε1k|≤Cε

+
F

n
|EMn(gj∗)| (4.6.14)
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where gj(x) = 1
F (fj(x)−f0(x))W(x) and Mn is from Lemma 4.6.3. By the same Lemma

4.6.3, there exists a process M◦n(·) and some universal constant c > 0 such that

1

n
|E{Mn(gj∗)−M◦n(gj∗)}| ≤

1

n
E sup
g∈G
|Mn(g)−M◦n(g)| ≤ crCεCβ,subq∗(

H

n
)
H

n
. (4.6.15)

Define N(g) := ‖ 1√
d
|g(Xr)|2‖2 ∨ q∗(Hn )

√
H
n . Note that

E|M◦n(gj∗)| = E
∣∣∣M◦n(gj∗)

N(gj∗)
·N(fj∗)

∣∣∣
≤

∥∥∥M◦n(gj∗)

N(gj∗)

∥∥∥
2
E[‖ 1√

d
|g(Xr)|2‖22

∣∣
g=gj∗

]1/2︸ ︷︷ ︸
=F−1E[D(fj∗ )]1/2

+E
∣∣∣M◦n(gj∗)

N(gj∗)

∣∣∣ · q∗(H
n

)

√
H

n

≤ E
[

sup
j=1,...,Nn

∣∣∣M◦n(gj)

N(gj)

∣∣∣2]1/2
· F−1(E[D(f̂)]1/2 + δ)

+E
[

sup
j=1,...,Nn

∣∣∣M◦n(gj)

N(gj)

∣∣∣] · q∗(H
n

)

√
H

n
.

By Lemma 4.6.3, there exists some universal constant c > 0 such that

E|M◦n(gj∗)| ≤ cCε
[√

nH · F−1(E[D(f̂)]1/2 + δ) + q∗(
H

n
)H
]
. (4.6.16)

Insertion of (4.6.15) and (4.6.16) into (4.6.14) yields∣∣∣E[ 1

nd

n∑
i=1

〈εi, f̂(Xi−1)〉W(Xi−1)
∣∣∣

≤ Cεδ + 2cCε

[
FrCβ,subq

∗(
H

n
)
H

n
+

√
H

n
(E[D(f̂)]1/2 + δ)

]
.

4.6.4 Auxiliary results for mixing time series

Variance bound for mixing

Proofs of Lemma 4.6.1. We only have to prove the last inequality. Note that for any
c > 0, due to monotonicity of x 7→ φ(x)

x ,

Eφ
(( |h(X1)|

c

)2)
= E

[φ(( |h(X1)|
c

)2)
|h(X1)|

· |h(X1)|
]
≤
φ
((‖h‖∞

c

)2)
‖h‖∞

· ‖h‖1.

This upper bound attains the value 1 for

c = ‖h‖∞ · φ−1(
‖h‖∞
‖h‖1

)−1/2,
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which shows

‖h‖φ,2 ≤ ‖h‖∞ · φ−1(
‖h‖∞
‖h‖1

)−1/2. (4.6.17)

The result (4.6.1) now follows from ‖h‖∞ ≤ 1.

During the proofs for the oracle inequalities under mixing, there will occur two quan-
tities:

(ϕ−1)∗(
√
x) and q∗(x)x, (4.6.18)

where q∗(x) = q∗,mix(x) = min{q ∈ N : βmix(q) ≤ qx}. For x, we have to plug in a
specific rate of the form H

n . It is therefore of interest to upper bound both quantities in
(4.6.18) by one common quantity.

Recall the definitions ψ(x) := φ∗(x)x and Λ(x) := dψ−1(x−1)ex from (4.1.6).
In Lemma 4.6.7, we show that (ϕ−1)∗(

√
x) is upper bounded by a constant times Λ(x).

Lemma 4.6.8 shows that q∗(x)x is upper bounded by a constant times Λ(x). Thus, Λ(x)
serves as a common upper bound for both quantities in (4.6.18).

Unification theory for (4.6.18)

Lemma 4.6.7. Let Assumption 4.1.2 hold true. Then ϕ(x) = φ−1( 1
x)−1/2 and ψ(x) =

φ∗(x)x satisfy:

(i) for any C ≥ 1, (ϕ−1)∗(Cx) ≤ C2(ϕ−1)∗(x),

(ii) ϕ2, ϕ are concave and thus subadditive,

(iii) (ϕ−1)∗(
√
x) ≤ (4c0)2ψ−1( 1

x)x ≤ (4c0)2Λ(x).

Proof of Lemma 4.6.7. (i) Since y 7→ φ(y)
y is increasing, φ(y)

y ≤ φ(C2y)
C2y

. Thus, 1
φ(y) ≥

C2

φ(C2y)
. We obtain

(ϕ−1)∗(Cx) = sup
z>0
{Cxz − φ(

1

z2
)−1}

= C2 sup
z>0
{x z
C
−

1
C2

φ( 1
z2 )
}

≤ C2 sup
z>0
{x z
C
− 1

φ(C
2

z2 )
}

u:= z
C= C2 sup

u>0
{xu− φ(

1

u2
)−1} = C2(ϕ−1)∗(x).

(ii) We have

(ϕ2)−1(y) = φ(
1

y
)−1. (4.6.19)

By assumption, y 7→ y
φ(y) is convex. Since x 7→ f( 1

x) is convex on (0,∞) if and

only if x · f(x) is convex on (0,∞) (cf. [Baricz, 2012, page 1]), we obtain that
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y 7→ φ( 1
y )−1 is convex. By (4.6.19), its inverse ϕ2 is concave. By concavity of

√
·,

ϕ is concave. Since concavity implies subadditivity, the claim follows.

(iii) First Claim: If f : [0,∞)→ R is a convex function with f(0) = 0 and w0 ∈ [0,∞)
is such that xw0 − f(w0) ≤ 0, then

f∗(x) ≤ w0f
′(w0).

Proof: F : [0,∞) → R, F (w) = xw − f(w) is concave with F (0) = 0, F (w0) ≤ 0.
Thus, F attains its global maximum in [0, w0]. Since F is concave, the tangent
t(w) := F ′(w0)(w − w0) + F (w0) at w0 satisfies

f∗(x) = sup
w>0

F (w) ≤ sup
w>0

t(w) = t(0) = −F ′(w0)w0 + F (w0)

= −(x− f ′(w0))w0 + (xw0 − f(w0))

= f ′(w0)w0 − f(w0) ≤ f ′(w0)w0.

This proves the claim.

Second Claim: If f : [0,∞) → R is convex with f(0) = 0, then f(x) ≤ f ′(x)x for
all x > 0.

Proof: Since f is convex, the tangent t(y) = f ′(x)(y − x) + f(x) at x satisfies
t(0) ≤ f(0) = 0, which gives the result.

Let y0(x) := (φ′)−1(c0x). Then,

x =
1

c0
φ′(y0(x)) ≤ φ(y0(x))

y0(x)
.

Application of the first claim to φ∗ and y0(x) yields

ψ(x) = φ∗(x)x ≤ xy0(x) = c0x
2(φ′)−1(c0x) =: g(x).

Since g, ψ : [0,∞) → [0,∞) are strictly increasing, we conclude that for any
y ∈ [0,∞),

g−1(y) = ψ−1(ψ(g−1(y))) ≤ ψ−1(g(g−1(y))) = ψ−1(y).

Especially, we obtain for any x > 0,

ψ−1(
1

x
)x ≥ g−1(

1

x
)x. (4.6.20)

As in (ii), we obtain that y 7→ φ( 1
y )−1 is convex. Additionally, it is increasing,

whence y 7→ φ( 1
y2 )−1 is convex. Moreover, for all z > 0,

z · ∂z(φ(
1

z2
)−1) =

2φ′( 1
z2 ) 1

z2

φ( 1
z2 )2

≤ 2c0φ(
1

z2
)−1. (4.6.21)
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Choose z0(x) > 0 such that

√
xz0(x)− φ(

1

z0(x)2
)−1 = 0. (4.6.22)

We obtain from the first claim and (4.6.21) that

(ϕ−1)∗(
√
x) = sup

y>0
{xy − φ(

1

y2
)−1} ≤ z0(x)∂z(φ(

1

z2
)−1)

∣∣
z=z0(x)

≤ 2c0φ(
1

z0(x)2
)−1

= 2c0 ·
√
xz0(x). (4.6.23)

By the second claim, we obtain

√
x =

φ( 1
z0(x)2 )−1

z0(x)
≤ ∂z(φ(

1

z2
)−1)

∣∣
z=z0(x)

=
2φ′( 1

z0(x)2 )

φ( 1
z0(x)2 )2z0(x)3

. (4.6.24)

By (4.6.22) and (4.6.24),

z0(x)√
x

=
√
xz0(x)3φ(

1

z0(x)2
)2 ≤ 2φ′(

1

z0(x)2
).

Thus,

g(
1

c0

z0(x)

2
√
x

) =
1

c0
(
z0(x)

2
√
x

)2 · (φ′)−1
(z0(x)

2
√
x

)
≤ 1

c0
(
z0(x)

2
√
x

)2 · 1

z0(x)2
=

1

4c0

1

x
.

Since g is increasing,

g−1(
1

4c0

1

x
) ≥ 1

c0

z0(x)

2
√
x
, and thus g−1(

1

4c0

1

x
)x ≥ 1

2c0

√
xz0(x).

By (4.6.20) and (4.6.23), g is increasing. Due to the fact that c0 ≥ 1 (see the second
claim), we have

(ϕ−1)∗(
√
x) ≤ 2c0 ·

√
xz0(x)

≤ (4c0)2g−1(
1

4c0

1

x
)x ≤ (4c0)2g−1(

1

x
)x ≤ (4c0)2ψ−1(

1

x
)x.

Lemma 4.6.8. Let Assumption 4.1.2 hold true. Then,

q∗(x)x ≤ 2CΛ(x)

where C ≤
∑∞

k=0{φ∗(k + 1)− φ∗(k)}β(k).
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Proof of Lemma 4.6.8. Since β−1(u) =
∑∞

i=0 1{u<β(i)} and β(0) = 1, we have∫ 1

0
φ∗(β−1(u))du =

∞∑
i=0

∫ β(i)

β(i+1)
φ∗(i+ 1)du =

∞∑
i=0

(β(i)− β(i+ 1))φ∗(i+ 1)

=
∞∑
i=0

i∑
k=0

{φ∗(k + 1)− φ∗(k)}(β(i)− β(i+ 1))

=
∞∑
k=0

{φ∗(k + 1)− φ∗(k)} ·
∞∑
i=k

(β(i)− β(i+ 1))

=
∞∑
k=0

{φ∗(k + 1)− φ∗(k)}β(k) <∞. (4.6.25)

Let Z be a nonnegative N0-valued random variable with P(Z ≥ k) = β(k). Then,
P(Z = k) = β(k) − β(k + 1), so (4.6.25) shows that C := Eφ∗(Z) ≤ Eφ∗(Z + 1) < ∞.
Markov’s inequality implies

β(k) = P(Z ≥ k) ≤ Eφ∗(Z)

φ∗(k)
,

that is, β(k)φ∗(k) ≤ C. We then obtain

q∗(x) = min{q ∈ N :
β(q)

q
≤ x} ≤ min{q ∈ N :

C

φ∗(q)q
≤ x}

= min{q ∈ N : Cx−1 ≤ φ∗(q)q} ≤ dψ−1(Cx−1)e,

whence
q∗(x)x ≤ dψ−1(Cx−1)ex. (4.6.26)

Since φ∗ is increasing, ψ(Cx) = Cxφ∗(Cx) ≥ Cxφ∗(x) = Cψ(x). This implies for any
y > 0 and z := ψ−1(y),

ψ−1(Cy) = ψ−1(Cψ(z)) ≤ ψ−1(ψ(Cz)) ≤ Cz = Cψ−1(y).

From (4.6.26) we obtain

q∗(x)x ≤ dCψ−1(x−1)ex ≤ dCdψ−1(x−1)eex ≤ 2Cdψ−1(x−1)ex.

The following proof shows the announced special forms for Λ = Λmix in Lemma 4.1.4.

Proof of Lemma 4.1.4. (i) Let φ(x) = x
α
α−1 with α > 1. Then obviously, Assumption

4.1.2 (i), (ii) are fulfilled for c0 = α
α−1 . Furthermore,

φ∗(x) = sup
y>0
{xy − φ(y)} = Cαx

α, Cα := (1− 1

α
)α · 1

α− 1
,
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which implies φ∗(k + 1) − φ∗(k) = O(kα−1) and thus proves
∑∞

k=0(φ∗(k + 1) −
φ∗(k))β(k) = O(

∑∞
k=0 k

α−1β(k)) <∞.

In this case, we have ψ(x) = φ∗(x)x = Cαx
α+1, ψ−1(x) = (C−1

α x)
1

α+1 and

Λ(x) = dψ−1(x−1)ex = dC
− 1
α+1

α x−
1

α+1 ex.

For x > 1, the above quantity is bounded by 2C
− 1
α+1

α x; for x < 1, it is bounded

by 2C
− 1
α+1

α x−
1
αx. This yields the result with cα = 2C

− 1
α+1

α .

(ii) Let a := ρ+1
2ρ > 1. Then aρ < 1. Define φ(x) = x log(x+1)

log(a) . Obviously, Assumption

4.1.2 (i), (ii) are fulfilled with c0 = 2. Furthermore, by the first claim in the proof
of Lemma 4.6.7 applied to w0 := ax − 1,

φ∗(x) ≤ w0 · φ′(w0) ≤ 2φ(w0) = 2x{ax − 1}.

On the other hand, for x ≥ 1, 0 ≤ w1 := ax−1 − 1, thus

φ∗(x) ≥ xw1 − φ(w1) = ax−1 − 1. (4.6.27)

We obtain

∞∑
k=1

(φ∗(k + 1)− φ∗(k))β(k) ≤
∞∑
k=1

(
2(k + 1)(ak+1 − 1)− ak−1 + 1)κρk

= O(

∞∑
k=1

k(ρa)k) <∞.

To upper bound the rate function, we use (4.6.27) to obtain

ψ(x) = φ∗(x)x ≥ x(ax−1 − 1) =: g(x)

where g : [1,∞)→ [0,∞) is bijective. Thus, for any y ≥ 0 we obtain

ψ−1(y) = ψ−1(g(g−1(y))) ≤ ψ−1(ψ(g−1(y))) = g−1(y).

We conclude that Λ(x) ≤ dg−1( 1
x)ex. Here,

g(
log(2a(y ∨ e))

log(a)
) =

log(2a(y ∨ e))
log(a)

(
2a(y ∨ e)

a
− 1) ≥ 2(y ∨ e)− 1 ≥ y ∨ e.

Thus for y ≥ e,

g−1(y) ≤ log(2ay)

log(a)
≤ 2 +

log(y)

log(a)
.

We obtain for x ≤ e−1,

Λ(x) ≤ 2
(

2 +
log(x−1)

log(a)

)
x. (4.6.28)
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Note that for y ≤ e, c := 1 + e
a−1 satisfies φ∗(c) = supy>0{cy − φ(y)} y=a−1

=

(a− 1)[c− log((a−1)+1)
log(a) ] = e and ψ(c) = φ∗(c)c ≥ ec ≥ e ≥ y. Therefore,

ψ−1(y) ≤ c.

So, for x ≥ 1
e ,

Λ(x) = dψ−1(x−1)ex ≤ 2cx. (4.6.29)

A combination of (4.6.28) and (4.6.29) gives the result.

Proofs of maximal inequalities under mixing

In this subsection, we prove auxiliary maximal inequalities under mixing. To do so, we
use techniques and decomposition ideas from Dedecker and Louhichi [2002], Rio [1995]
and Liebscher [1996].

Proof of Lemma 4.6.2. During the proof, let q ∈ {1, ..., n} be arbitrary. Later we will
choose q = q∗(Hn ) ≤ n. Note that

βX(k) := β(σ(Xi−1 : i ≤ 0), σ(Xi−1 : i ≥ k))

= β(σ(Xi−1 : i ≤ 0), σ(Xi−1 : i ≥ k − r + 1)) = βX(k − r + 1) ≤ βX(k − r).

We define β̃(k) := βX((k − r) ∨ 0). Now, following Dedecker and Louhichi [2002], there
exist random variables X◦i−1 with the following properties:

• for all i ≥ 0, U◦i−1 = (X◦(i−1)q+1, ...,X
◦
(i−1)q+q) and Ui−1 = (X(i−1)q+1, ...,X(i−1)q+q)

have the same distribution,

• (U◦2(i−1))i≥1 and (U◦2i)i≥1 are i.i.d.,

• for all i ≥ 1, P(Xi−1 6= X◦i−1) ≤ P(Ui−1 6= U◦i−1) ≤ β̃(q).

Put

S◦n(g) :=
n∑

i=r+1

{g(X◦i−1)− Eg(X◦i−1)}.

Then,

|Sn(g)− S◦n(g)| ≤ 2‖g‖∞
∣∣∣ n∑
i=r+1

(1{Xi−1 6=X◦i−1} + P(Xi−1 6= X◦i−1))
∣∣∣. (4.6.30)

We now proceed with the proof of the announced inequalities. First, we have

E sup
g∈G
|Sn(g)− S◦n(g)| ≤ 4

n∑
i=r+1

P(Xi−1 6= X◦i−1) = 4nβ̃(q).
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Let q̃∗(x) = min{q ∈ N : β̃(q) ≤ qx}. For q = q̃∗(Hn ) ≤ n, we obtain

E sup
g∈G
|Sn(g)− S◦n(g)| ≤ 4nβ̃(q∗(

H

n
)) ≤ 4nq̃∗(

H

n
)
H

n
.

Now, let q̃ := q∗(x) + r. Then,

β(q̃ − r) = β(q∗(x)) ≤ q∗(x)x = (q̃ − r)x ≤ q̃x.

This yields q̃∗(x) ≤ q̃ = q∗(x) + r ≤ rq∗(x). Finally,

E sup
g∈G
|Sn(g)− S◦n(g)| ≤ 4nq̃∗(

H

n
)
H

n
≤ 4nrq∗(

H

n
)
H

n
,

which proves (4.6.2).
We now show (4.6.3) and (4.6.4). We have

S◦n(g) =

bn
q
c+1∑

k=r+1,k even

Y ◦k (g) +

bn
q
c+1∑

k=r+1,k odd

Y ◦k (g)

where

Y ◦k (g) :=

kq∧n∑
i=(k−1)q+1

{g(X◦i−1)− Eg(X◦i−1)}.

Furthermore, (Yk)k even and (Yk)k odd are independent with

‖
Y ◦k (g)

N(g)
‖∞ ≤ 2qN(g)−1, ‖

Y ◦k (g)

N(g)
‖22 ≤

1

N(g)2
Var(

kq∧n∑
i=(k−1)q+1

g(Xi−1)) ≤ 4q
‖g‖2

2,β̃

N(g)2
.

Next,

‖g‖2,β̃ =

∫ 1

0
β̃−1(u)Qg(u)du =

∞∑
i=1

∫ β̃(i)

β̃(i+1)
iQg(u)du

=

∞∑
i=1

∫ β((i−r)∨0))

β((i−r+1)∨0)
iQg(u)du

=

∞∑
i=r+1

∫ β((i−r)∨0))

β((i−r+1)∨0)
iQg(u)du

=
∞∑
j=1

∫ β(j)

β(j+1)
(j + r)Qg(u)du

≤ r

∞∑
j=1

∫ β(j)

β(j+1)
jQg(u)du

= r ‖g‖2,β .
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Hence,

‖
Y ◦k (g)

N(g)
‖22 ≤ 4q

‖g‖2
2,β̃

N(g)2
≤ 4qr

‖g‖22,β
N(g)2

≤ 4qr.

We obtain by Bernstein’s inequality,

P
(∣∣S◦n(g)

N(g)

∣∣ > x
)

≤ P
(∣∣ bn

q
c+1∑

k=r+1,k even

Y ◦k (g)

N(g)

∣∣ > x

2

)
+ P

(∣∣ bn
q
c+1∑

k=r+1,k odd

Y ◦k (g)

N(g)

∣∣ > x

2

)
≤ 4 exp

(
− 1

2

(x/2)2

4nr + 2qN(g)−1x/2

)
≤ 4 exp

(
− 1

32

x2

nr + qN(g)−1x

)
. (4.6.31)

(i) Using standard arguments (cf. van der Vaart [1998], Lemma 19.35), we obtain from
(4.6.31) that there exists a universal constant c > 0 such that

E sup
g∈G
|S
◦
n(g)

N(g)
| ≤ c

[√
nrH + qN(g)−1H

]
.

For q = q∗(Hn ) ≤ n, we obtain

E sup
g∈G
|S
◦
n(g)

N(g)
| ≤ c

[√
nrH + q∗(

H

n
)N(g)−1H

]
≤ 2c
√
nrH.

This shows (4.6.3).

(ii) Here, we use

E
[

sup
g
|S
◦
n(g)

N(g)
|2
]

=

∫ ∞
0

P
(

sup
g
| S

◦
n

N(g)
| >
√
t
)
dt.

Put a := q∗(Hn )
√

H
n . Choose G := 64nrq a. Then for t ≥ G2, q

a

√
t ≥ nr. With

(4.6.31) and
∫∞
b2 exp(−b2

√
t)dt =

∫∞
b 2s exp(−b2s)ds = 2(b2b+ 1)b−2

2 exp(−b2b) we
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obtain ∫ ∞
0

P
(

sup
g
|S
◦
n(g)

N(g)
| >
√
t
)
dt

= G2 +

∫ ∞
G2

P
(

sup
g
|S
◦
n(g)

N(g)
| >
√
t
)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

32

t

nr + qN(g)−1
√
t

)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

32

t

nr + qa−1
√
t

)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp(− 1

64

√
t

qa−1
)dt

≤ G2 + 8|G|
(Ga
q

+ 1
)

(64qa−1)2 exp(− 1

64

Ga

q
)

≤ 215
[(nar

q

)2
+ |G| · exp

(
− nr(a

q
)2
)
· (nr + (qa−1)2)

]
. (4.6.32)

We receive

E
[

sup
g
|S
◦
n(g)

N(g)
|2
]
≤ 216

[(nar
q

)2
+ |G| · exp

(
− nr(a

q
)2
)
· (nr + (qa−1)2)

]
.

With q = q∗(Hn ), the latter is upper bounded by

216
[
nr2H + nr +

n

H

]
= 218nr2H,

proving (4.6.4).

Proof of Lemma 4.6.3. Note that (εi,Xi−1) is still β-mixing with coefficients β̃(k) :=
β(k − r) . This is due to the following argument: The model equation yields Xi =
f0(Xi−1) + εi, that is, εi = Xi − f0(Xi−1). Thus, the generated sigma fields fulfill

σ((εi,Xi−1) : i ≤ 0) = σ(Xi : i ≤ 0)

and
σ((εi,Xi−1) : i ≥ k) = σ(Xi−1 : i ≥ k − r + 1) = σ(Xi : i ≥ k − r).

Similar to the proof of Lemma 4.6.2, for each q ∈ {1, ..., n} we can construct coupled
versions (ε◦i ,X◦i−1) of (εi,Xi−1) and define

M◦n(g) :=

n∑
i=1

1

d
〈ε◦i , g(X◦i−1)〉.
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We will apply the following theory to q = q∗(Hn )2. Since
∑

q∈N β(q) <∞, q∗(Hn ) ≤
√

n
H

and hence q = q∗(Hn )2 ≤ n.
Now we have

|Mn(g)−M◦n(g)| ≤
n∑
i=1

1

d

(
|ε◦i |2|g(X◦i−1)|2 + |εi|2|g(Xi−1)|2

)
1{(εi,Xi−1)6=(ε◦i ,X

◦
i−1)}

≤ 2
n∑
i=1

1√
d

(|εi|2 + |ε◦i |2)1{(εi,Xi−1) 6=(ε◦i ,X
◦
i−1)}. (4.6.33)

With (4.6.33) and the Cauchy-Schwarz inequality, we obtain

E[sup
g∈G
|Mn(g)−M◦n(g)|] ≤ 2n

1√
d
‖|ε1|2‖2‖1{(εi,Xi−1) 6=(ε◦i ,X

◦
i−1)}‖2 ≤ 4nCεβ̃(q)1/2.

(4.6.34)
With q = q∗(Hn )2 and (4.6.34) we derive

E[sup
g∈G
|Mn(g)−M◦n(g)|] ≤ 4nCεβ̃

(
q∗(

H

n
)2
)1/2

≤ 4nCεCβ,sub(β̃(q∗(
H

n
))2)1/2

≤ 4nCεCβ,subq̃
∗(
H

n
)
H

n

where q̃∗(x) = min{q ∈ N : β̃(q) ≤ qx}. By a similar argument as discussed in Lemma
4.6.2,

E[sup
g∈G
|Mn(g)−M◦n(g)|] ≤ 4nrCεCβ,subq

∗(
H

n
)
H

n
,

which shows (4.6.5).
We now show (4.6.6) and (4.6.7). We first decompose

M◦n(g) =

bn
q
c+1∑

k=r+1, k even

Y ◦k (g) +

bn
q
c+1∑

k=r+1, k odd

Y ◦k (g) (4.6.35)

where

Y ◦k (g) :=

kq∧n∑
i=(k−1)q+1

1

d
〈ε◦i , g(X◦i−1)〉

are independent. Since (〈εi, g(Xi−1)〉)i is a martingale, by [Rio, 2009, Theorem 2.1] we
have

‖Y ◦k (g)‖m ≤ (m− 1)1/2
( kq∧n∑
i=(k−1)q+1

‖1

d
〈ε◦i , g(X◦i−1)〉‖2m

)1/2

≤ (m− 1)1/2q1/2 1

d
‖〈ε◦1, g(X◦r)〉‖m. (4.6.36)
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Due to independence we get(1

d
‖〈ε◦1, g(X◦r)〉‖m

)m
≤
∥∥∥ |ε1|2√

d

∥∥∥m
m
· 1

d
E[|g(Xr)|22] · ‖g‖m−2

∞ . (4.6.37)

Furthermore,

∥∥∥ |ε1|2√
d

∥∥∥m
m
≤ E

[(1

d

d∑
j=1

ε2
1j

)m/2]
=
∥∥∥1

d

d∑
j=1

ε2
1j

∥∥∥m/2
m/2
≤
(1

d

d∑
j=1

‖ε2
1j‖m/2

)m/2
≤ ‖ε11‖mm ≤ Cmε mm/2. (4.6.38)

Insertion of (4.6.38) into (4.6.37) and afterwards into (4.6.36) yields with a := q∗(Hn )
√

H
n ,

‖
Y ◦k (g)

N(g)
‖mm ≤ (m− 1)m/2mm/2 · (Cεa−1q1/2)m−2 · qC2

εE[
1
d |g(Xr)|22
ν(g)2

]

≤ m!

2
· 2e2qC2

ε (Cεe · a−1q1/2)m−2. (4.6.39)

By Bernstein’s inequality for independent variables, we conclude from (4.6.39) that

P
(∣∣∣ 1

N(g)

bn
q
c+1∑

k=r+1, k even

Y ◦k (g)
∣∣∣ > x

)
≤ 2 exp

(
− 1

2

x2

n
q · 2e2C2

ε q + eCεq1/2a−1x

)
.

Insertion into (4.6.35) yields

P(|M
◦
n(g)

N(g)
| > x) ≤ 4 exp

(
− 1

2

(x/2)2

2e2C2
εn+ eCεq1/2a−1(x/2)

)
≤ 4 exp

(
− 1

8

x2

2e2C2
εn+ eCεq1/2a−1x

)
. (4.6.40)

(i) Standard arguments (cf. [van der Vaart, 1998, Lemma 19.35] ) applied to (4.6.40)
state that there exists some universal constant c > 0 such that

E sup
g∈G
|M
◦
n(g)

N(g)
| ≤ cCε

[√
nH + q1/2a−1H

]
. (4.6.41)

With q = q∗(Hn )2, we obtain

E[sup
g∈G
|M◦n(g)|] ≤ cCε

[√
nH + q∗(

H

n
)a−1H

]
≤ 2cCε

√
nH,

which shows (4.6.6).
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(ii) Here, we use

E
[

sup
g
|M
◦
n(g)

N(g)
|2
]

=

∫ ∞
0

P
(

sup
g
|M
◦
n(g)

N(g)
| >
√
t
)
dt.

Choose G := 16eCε
na
q1/2 . Then for t ≥ G2, q1/2a−1

√
t ≥ 2e2C2

εn. With (4.6.40) and∫∞
b2 exp(−b2

√
t)dt =

∫∞
b 2s exp(−b2s)ds = 2(b2b+ 1)b−2

2 exp(−b2b),∫ ∞
0

P
(

sup
g
|M
◦
n(g)

N(g)
| >
√
t
)
dt

G2 +

∫ ∞
G2

P
(

sup
g
|M
◦
n(g)

N(g)
| >
√
t
)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

8

t

2e2C2
εn+ eCεq1/2a−1

√
t

)
dt

≤ G2 + 4|G|
∫
G2

exp(− 1

16

√
t

eCεq1/2a−1
)dt

≤ G2 + 8|G|
( Ga

eCεq1/2
+ 1
)

(16eCεq
1/2a−1)2 exp(−1

8

Ga

eCεq1/2
)

≤ 210e2C2
ε

[( na
q1/2

)2
+ |G| · exp

(
− n(

a

q1/2
)2
)
· (n+ (q1/2a−1)2)

]
.(4.6.42)

We obtain

E
[

sup
g
|M◦n(g)|2

]
≤ 210e2C2

ε

[( na
q1/2

)2
+ |G| · exp

(
− n(

a

q1/2
)2
)
· (n+ (q1/2a−1)2)

]
.

For q = q∗(Hn )2 this implies

E
[

sup
g
|M
◦
n(g)

N(g)
|2
]
≤ 210e2C2

ε

[( na

q∗(Hn )

)2

+|G| · exp
(
− n(

a

q∗(Hn )
)2
)
· (n+ (q∗(

H

n
)a−1)2)

]
≤ 210e2C2

ε

[
nH + n+

n

H

]
≤ 211e2C2

εnH,

proving (4.6.7).

Lemma 4.6.9. Let β̃(k) := β((k − r) ∨ 0). Suppose that βmix(·) is submultiplicative in
the sense of (4.1.5). Then for any q1, q2, r ∈ N there exists Cβ,sub, such that

β̃(q1q2) ≤ Cβ,subβ̃(q1)β̃(q2).
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Proof of Lemma 4.6.9. By case distinction it is elementary to prove

((q1 − r) ∨ 0)((q2 − r) ∨ 0) ≤ (q1q2 − r) ∨ 0.

Since β is decreasing, we directly have

β̃(q1q2) = β((q1q2 − r) ∨ 0)

≤ β(((q1 − r) ∨ 0)((q2 − r) ∨ 0))

≤ Cβ,subβ((q1 − r) ∨ 0)β((q2 − r) ∨ 0) = Cβ,subβ̃(q1)β̃(q2)

Auxiliary results for oracle inequalities under mixing

The following lemma is applied to ϕ(x) = φ−1( 1
x)−1/2 in the proof of Theorem 4.6.4.

Lemma 4.6.10. Let r1, r2, b, P > 0 and ϕ some concave function with ϕ(0) = 0. If
a ≥ 0 satisfies |a− b| ≤ r1ϕ(r2a) + P , then for any η > 0,

a ≤ η

r2
(ϕ−1)∗(

1 + η

η
r1r2) + (1 + η)(b+ P ).

Proof of Lemma 4.6.10. The mapping g(x) := η
1+η

1
r2
ϕ−1(x) is convex. By Young’s in-

equality and denoting by g∗ the convex conjugate of g,

r1ϕ(r2a) ≤ g∗(r1) + g(ϕ(r2a)) =
η

(1 + η)r2
(ϕ−1)∗(

1 + η

η
r1r2) +

η

1 + η
a.

We therefore have

a ≤ |a− b|+ b ≤ r1ϕ(a) + (b+ P ) ≤ η

(1 + η)r2
(ϕ−1)∗(

1 + η

η
r1r2) +

η

1 + η
a+ (b+ P ).

Rearranging the terms leads to

a ≤ η

r2
(ϕ−1)∗(

1 + η

η
r1r2) + (1 + η)(b+ P ).

4.6.5 Results for the functional dependence measure

Recall the definition of the functional dependence measure coefficients δXq (k), k ∈ N0

from (4.1.8).
During the proofs for the oracle inequalities under functional dependence, there will

occur two quantities:
(Ṽ −1)∗(

√
x) and q∗(

√
x)x, (4.6.43)

where
q∗(x) = q∗,dep(x) = min{q ∈ N : βdep(q) ≤ qx} (4.6.44)
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and

βdep(q) =
∞∑
j=q

∆(j). (4.6.45)

Here, ∆(k), k ∈ N0, is an upper bound chosen dependent on the function class of interest
and specified below. For x, we have to plug in a specific rate of the form H

n . It is therefore
of interest to upper bound both quantities in (4.6.43) by one common quantity. We saw
this approach already when we discussed mixing sequences.

Recall the definitions

Ṽ (x) = x1/2 +

∞∑
j=0

min{x1/2,∆(j)}

and Λ(x) =
√
xȳ(x) as well as ȳ(x) from (4.1.11) and (4.1.12).

In Lemma 4.6.11, we show that both terms in (4.6.43) are bounded by a constant
times Λ(x). Thus, Λ(x) serves as a common upper bound for both quantities in (4.6.43).
Besides that, we show in Lemma 4.6.13 that Ṽ is a concave function which is needed
to obtain meaningful upper bounds in Theorem 4.6.16, which was originally stated as
Theorem 4.1.6.

Unification theory for (4.6.43)

Lemma 4.6.11. Let Ṽ ′ denote the left derivative of Ṽ .

(i) Let h, δ ≥ 0. Then Ṽ (h) ≤ δ implies
√
h ≤ r(δ).

(ii) If there exists C > 0 such that for all q ∈ N, βdep(q) ≤ Cq ·∆(q), then

inf
x∈[0,∞)

Ṽ ′(x)x

Ṽ (x)
≥ 1

2(1 + C)
.

(iii) Under the assumptions of (ii),

(Ṽ −1)∗(
√
x) ≤ 2(1 + C) · Λ(x), q∗,dep(

√
x)x ≤ Λ(x). (4.6.46)

Proof of Lemma 4.6.11. (i) It can be shown as in the proof of Lemma 2.8.8 that for
any h ∈ [0,∞),

Ṽ (h) =
√
h · a∗ + βdep(a∗) (4.6.47)

with some a∗ ∈ N dependent on h.

Let δ > 0. If Ṽ (h) ≤ δ, then βdep(a∗) ≤ δ, that is, βdep(a∗)
a∗ ≤ δ

a∗ . By definition of

q∗,dep, q∗,dep( δ
a∗ ) ≤ a∗. This implies q∗,dep( δ

a∗ )
δ
a∗ ≤ δ and thus by definition of r(·)

and (4.6.47),

r(δ) ≥ δ

a∗
≥
√
h.
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(ii) Let x ∈ [0,∞). If ∆(N) <
√
x < ∆(N − 1) for some N ∈ N, then

Ṽ (x) = x1/2 +
N−1∑
j=0

x1/2 +
∞∑
j=N

∆(j) = (N + 1)
√
x+ βdep(N),

and thus x · ∂xṼ (x) = (N + 1) · 1
2x

1/2. By assumption, βdep(N) ≤ N∆(N) and√
x > ∆(N), implying

x · ∂xṼ (x)

Ṽ (x)
≥ 1

2
· (N + 1)

√
x

(N + 1)
√
x+ CN∆(N)

≥ 1

2

(N + 1)∆(N)

(N + 1)∆(N) + CN∆(N)
≥ 1

2(1 + C)
.

(4.6.48)
Writing the left derivative as a limit of ∂xṼ (x), the result follows.

(iii) Fix x ≥ 0. Define y0(x) ∈ [0,∞) as a solution of

Ṽ (
√
xy0(x)) = y0(x). (4.6.49)

Since z 7→ Ṽ (z)
z is decreasing, y0(x) ≤ ȳ(x). It is therefore enough to show that the

quantities in (4.6.46) are bounded by multiples of
√
xy0(x) ≤ Λ(x).

Let W̃ denote the right derivative of Ṽ −1. By the First Claim in the proof of
Lemma 4.6.7(iii) (which also holds true for left or right derivatives), we obtain

(Ṽ −1)∗(
√
x) ≤ W̃ (y0) · y0. (4.6.50)

For any y ≥ 0 with z = Ṽ −1(y),

W̃ (y)y

Ṽ −1(y)
≤ Ṽ (z)

zṼ ′(z)
≤ 2(1 + C).

Insertion into (4.6.50) and using the definition of y0 yields

(Ṽ −1)∗(
√
x) ≤ W̃ (y0) · y0 ≤ Ṽ −1(y0) = 2(1 + C)y0

√
x.

By (4.6.49) and (i), we have

√
xy0(x) ≤ r(y0(x))2.

Together with r(δ) ≤ δ for any δ ≥ 0, this implies

√
x =

√
xy0

y0
≤ r(y0)2

y0
≤ r(y0).

Since z 7→ q∗,dep(z)z is increasing,

q∗,dep(
√
x)x ≤ q∗,dep(r(y0))r(y0)

√
x ≤ y0

√
x.
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Lemma 4.6.12. For c > 0, (Ṽ −1)∗(cx) ≤ c2(Ṽ −1)∗(x).

Proof of Lemma 4.6.12. We have

(Ṽ −1)∗(cx) = sup
y>0
{cxy − Ṽ −1(y)}

= sup
z>0
{cxṼ (z)− z}

= sup
w>0
{cxṼ (c2w)− c2w}

≤ sup
w>0
{c2xṼ (w)− c2w}

≤ c2 sup
w>0
{xṼ (w)− w} = c2(Ṽ −1)∗(x)

due to

Ṽ (c′a) =
∞∑
j=0

min{c′a,∆(j)} ≤
√
c′Ṽ (a).

for c′ > 0.

The following lemma shows that Ṽ (·) defined in (4.1.10) is concave. This property is
needed in the next section in order to get a good upper bound in the maximal inequalities.

Lemma 4.6.13. Let (ak)k∈N be a decreasing nonnegative sequence of real numbers for
which

∑∞
k=0 ak <∞. Then,

y 7→ v(y) :=
( N∑
k=1

min{√y, ak}
)2
, N ∈ N ∪ {∞},

is a concave map.

Proof of Lemma 4.6.13. It is obvious that v is concave on y ∈ (a2
j , a

2
j−1] because v can

be represented as a sum of concave functions, namely

v(y) =
(

(j − 1)
√
y +

N∑
k=j

ak

)2
= (j − 1)2y + 2(j − 1)

N∑
k=j

ak
√
y + (

N∑
k=j

ak)
2.

We investigate the slope’s behavior on the interval’s open boundary. The derivative’s
left limit at aj yields

lim
y→a2

j ,y<a
2
j

∂yv(y) = lim
y→a2

j ,y<a
2
j

j
√
y

(
j
√
y +

N∑
k=j+1

ak

)
=

j

aj

(
jaj +

N∑
k=j+1

ak

)

=
j

aj

(
(j − 1)aj +

N∑
k=j

ak

)
.
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On the other hand, the right limit is given by

lim
y→a2

j ,y>a
2
j

∂yv(y) = lim
y→a2

j ,y<a
2
j

j − 1
√
y

(
(j − 1)

√
y +

N∑
k=j

ak

)
=
j − 1

aj

(
(j − 1)aj +

N∑
k=j

ak

)
.

Hence,
lim

y→a2
j ,y<a

2
j

∂yf(y) ≥ lim
y→a2

j ,y>a
2
j

∂yf(y).

Since f is concave on intervals of the form (a2
j , a

2
j−1], the just proven inequality for the

derivative implies that f has a representation as f(y) =
∫ y

0 ṽ(x)dx. Now let λ ∈ (0, 1).
Since

ṽ(x+ λ(y − x)) =

∫ x+λ(y−x)

0
ṽ(z)dz =

∫ x

0
ṽ(z)dz +

∫ x+λ(y−x)

x
ṽ(z)dz

=

∫ x

0
ṽ(z)dz +

∫ λ(y−x)

0
ṽ(x+ u)du.

and

ṽ(x) + λ(ṽ(y)− ṽ(x)) =

∫ x

0
ṽ(z)dz + λ

∫ y

x
ṽ(z)dz

=

∫ x

0
ṽ(z)dz + λ

∫ x−y

0
ṽ(x+ u)du

for x, y > 0, we conclude that v is concave.
The result for N =∞ can be obtained since the limit of concave functions is concave.

Here, we prove the upper bounds from Lemma 4.1.8 for Λ(·) which arise in the special
cases of polynomial and exponential decay.

Proof of Lemma 4.1.8. (i) In Lemma 2.8.12 it was shown that

Ṽ (z) ≤ Cκ,α ·max{z
1
2
α−1
α , z

1
2 },

where Cκ,α > 0 is some constant only depending on κ, α. Fix x ∈ [0,∞). With

ȳ(x) = cmax{x
1
2
α−1
α+1 , x

1
2 }, we have

√
xȳ(x) = cmax{x

α
α+1 , x}

and by case distinction x > 1, x ≤ 1,

Ṽ (
√
xȳ(x)) ≤ Cκ,α ·max{c

1
2
α−1
α , c

1
2 } ·max{x

1
2
α−1
α+1 , x

1
2
α−1
α , x

1
2

α
α+1 , x

1
2 }

≤ Cκ,α max{c
1
2
α−1
α , c

1
2 } ·max{x

1
2
α−1
α+1 , x

1
2 } = Cκ,α max{c−

1
2
α+1
α , c−

1
2 }ȳ(x).

So, choosing c = max{C
2α
α+1
κ,α , C2

κ,α} yields the result.
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(ii) Lemma 2.8.12 yields

Ṽ (z) ≤ Cκ,ρ · z
1
2 log(z−1 ∨ 1),

where Cκ,ρ > 1 is some constant only depending on κ, ρ. Fix x ∈ [0,∞). With

ȳ(x) = cx
1
2 log(x−1 ∨ 1)2, we have

√
xȳ(x) = cx log(x−1 ∨ 1)2

and by case distinction x > 1, x ≤ 1,

Ṽ (
√
xȳ(x)) ≤ c

1
2 log(c−1 ∨ e)Cκ,ρ ·max{x

1
2 log(x−1 ∨ 1)(log(x−1 ∨ 1)− 2 log(log(x−1 ∨ 1) ∨ 1)),

x
1
2 log(x−1 ∨ 1), x

1
2 }

≤ 1

4
c

1
2 log(c−1 ∨ e)Cκ,ρ ·max{x

1
2 log(x−1 ∨ 1)2, x

1
2 }

=
1

4
c−

1
2 log(c−1 ∨ e)Cκ,ρȳ(x).

So, choosing c = 16C2
κ,ρ yields the result.

Maximal inequalities under functional dependence

The following empirical process results are based on the theory developed in Chapter 2.
Let G ⊂ {g : Rdr → R measurable} be a finite class of Lipschitz continuous functions

in the sense that there exists b ∈ (0, 1] such that for xj ∈ Rd, x′j ∈ Rd, j = 1, ..., r,

|g(x1, ..., xr)− g(x′1, ..., x
′
r)| ≤ LG · max

j=1,...,r
|xj − x′j |∞, (4.6.51)

and for some G > 0,
sup
g∈G
‖g‖∞ ≤ G. (4.6.52)

For θ ∈ (0, 1],

|g(x1, ..., xr)− g(x′1, ..., x
′
r)| ≤ min{2G,LG max

i=1,...,r
|xi − x′i|∞}

≤ (2G)1−θLθG( max
i=1,...,r

|xi − x′i|∞)θ.

Then, using the notation from (4.1.7) and (4.1.8),

δ
g(X·−1)
2 (k) = ‖g(Xi−1)− g(X∗(i−k)

i−1 )‖2
≤ (2G)1−θLθG · ‖ max

j=1,...,r
|Xi−j −X∗(i−k)

i−j |θ∞‖2

≤ dr(2G)1−θLθG max
j={1,...,r},l∈{1,...,d}

‖Xi−j,l −X
∗(i−k)
i−j,l ‖

θ
2θ

≤ dr(2G)1−θLθG · sup
l=1,...,r

sup
j=1,...,r

δ
X·,l
2θ (k − j)θ. (4.6.53)
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In the following, we suppose that ∆(k), k ∈ N0, is a decreasing sequence chosen such
that

dr(2G)1−θLθG · sup
l=1,...,r

sup
j=1,...,r

δ
X·,l
2θ (k − j)θ ≤ ∆(k). (4.6.54)

Recall the definition of q∗,dep and βdep from (4.6.44) and (4.6.45).
Put

Sn(g) :=
n∑

i=r+1

{g(Xi−1)− Eg(Xi−1)}.

To prove maximal inequalities for Sn(g), we use the decomposition technique throughout
Chapter 2, equation (2.8.23) therein, or Chapter 3. For j ≥ 1 define

Sn,j(g) :=
n∑

i=r+1

Wi,j(g), Wi,j(g) := E[g(Xi−1)|εi−j , ..., εi−1].

Then,

Sn(g) = Sn(g)− Sn,q(g) +
L∑
l=1

(Sn,τl − Sn,τl−1
) + Sn,0(g) (4.6.55)

where L = b log(q)
log(2)c and τl = 2l (l = 0, ..., L− 1), τL = q for arbitrary q ∈ {1, ..., n}. Set

S◦n(g) := Sn,q(g)

and

Sn,τl(g)− Sn,τl−1
(g) =

b n
τl
c+1∑

i=1

Ti,l(g), Ti,l(g) :=

(iτl)∧n∑
k=(i−1)τl+1

[
Wk,τl(g)−Wk,τl−1

(g)
]
.

Hence,

S◦n(g) =

L∑
l=1

[b nτl c+1∑
i=1
i even

Ti,l(g) +

b n
τl
c+1∑

i=1
i odd

Ti,l(g)
]

+ Sn,0(g).

Lemma 4.6.14 (Maximal inequalities under functional dependence). Assume that Xi

is of the form (4.1.7). Suppose that G satisfies (4.6.51) and (4.6.52) with G = 1 and
some LG > 0. Let θ ∈ (0, 1]. Then, for any decreasing sequence ∆(k), k ∈ N0, satisfying

drLθG · sup
l=1,...,d

sup
j=1,...,r

δ
X·,l
2θ (k − j)θ ≤ ∆(k),

there exists some universal constant c > 0 such that

E sup
g∈G
|Sn(g)− S◦n(g)| ≤ cHq∗,dep(

√
H

n
). (4.6.56)

Furthermore, for any estimator ĝ ∈ G we have for some universal constant c > 0

E|S◦n(ĝ)| ≤ c(
√
nHṼ (E[‖g(Xr)‖1 |g=ĝ]) + qH). (4.6.57)
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Proof of Lemma 4.6.14. Let q ∈ {1, ..., n} be arbitrary. Then, as in the proof of Theorem
2.4.1 (cf. the term A1 accordingly), there exists a universal constant c > 0 such that

E sup
g∈G
|Sn(g)− S◦n(g)| ≤ c

√
nHβdep(q).

If q := q∗,dep(
√

H
n ),

E sup
g∈G
|Sn(g)−S◦n(g)| ≤ c

√
nHβ(q∗,dep(

√
H

n
))) ≤ c

√
nHq∗,dep(

√
H

n
)

√
H

n
= cHq∗,dep(

√
H

n
),

which proves (4.6.56).

We employ a similar strategy as in the proof of Lemma 4.6.2. LetNl(g) := τl

√
H
n ∨Vl(g)

for Vl(g) :=
∑τl

j=τl−1+1 min{‖g‖2 ,∆(b j2c)}. We show the following two inequaltities first,
where c denotes some universal constant:

(i)

E sup
g∈G
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
| ≤ c

√
nH, (4.6.58)

(ii)

E
[

sup
g∈G
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
|2
]
≤ cnH. (4.6.59)

For g ∈ G, we have∣∣∣Ti,l(g)

Nl(g)

∣∣∣ ≤ 2τl ‖g‖∞Nl(g)−1 ≤ 2τlτ
−1
l

√
n

H
= 2

√
n

H

and by the same calculation as in the proof of Theorem 2.4.1,

1
n
τl

b n
τl
c+1∑

i=1
i even

∥∥∥∥Ti,l(g)

Nl(g)

∥∥∥∥2

2

≤ 1

Nl(g)2

(√
τl

τl∑
j=τl−1+1

min{‖g‖2 ,∆(b j
2
c)}
)2
≤ τl.

By Bernstein’s inequality we obtain

P
(∣∣Sn,τl(g)− Sn,τl−1

(g)

Nl(g)

∣∣ > x
)

≤ P
(∣∣∣b

n
τl
c+1∑

i=1
i even

Ti,l(g)

Nl(g)

∣∣∣ > x

2

)
+ P

(∣∣∣b
n
τl
c+1∑

i=1
i even

Ti,l(g)

Nl(g)

∣∣∣ > x

2

)

≤ 4 exp
(
− 1

2

(x/2)2

n+ 2
√

n
Hx/2

)
≤ 4 exp

(
− 1

8

x2

n+
√

n
Hx

)
. (4.6.60)
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(i) Using standard arguments (cf. [van der Vaart, 1998, Lemma 19.35]), we derive
from (4.6.60) that there exists a universal constant c > 0 such that

E sup
g∈G

∣∣Sn,τl(g)− Sn,τl−1
(g)

Nl(g)

∣∣ ≤ c√nH.
This shows (4.6.58).

(ii) Next, we use

E
[

sup
g∈G
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
|2
]

=

∫ ∞
0

P
(

sup
g∈G
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
| >
√
t
)
dt.

Put a :=
√

H
n and choose G := 16na. Then for t ≥ G2, a−1

√
t ≥ n. With (4.6.60)

and
∫∞
b2 exp(−b2

√
t)dt =

∫∞
b 2s exp(−b2s)ds = 2(b2b+ 1)b−2

2 exp(−b2b), we obtain∫ ∞
0

P
(

sup
g
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
| >
√
t
)
dt

= G2 +

∫ ∞
G2

P
(

sup
g
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
| >
√
t
)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

8

t

n+
√

n
H

√
t

)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

8

t

n+ a−1
√
t

)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp(− 1

16

√
t

a−1
)dt

≤ G2 + 8|G|
(
Ga+ 1

)
(16a−1)2 exp(− 1

16
Ga)

≤ 211
[(
na
)2

+ |G| · exp
(
− na2

)
· (n+ a−2)

]
. (4.6.61)

We have

E
[

sup
g
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
|2
]
≤ 212

[
(na)2 + |G| · exp

(
− na2

)
· (n+ a−2)

]
.

which can be upper bounded by

E
[

sup
g
|
Sn,τl(g)− Sn,τl−1

(g)

Nl(g)
|2
]
≤ 212

[
nH + n+

n

H

]
= 214nH,

proving (4.6.58).

179



Moving on to E|S◦n(ĝ)|, the Cauchy-Schwarz inequality yields

E|S◦n(ĝ)| ≤
L∑
l=1

[∥∥∥Sn,τl(ĝ)− Sn,τl−1
(ĝ)

Nl(ĝ)

∥∥∥
2
E[Vl(ĝ)2]1/2

+E
∣∣∣Sn,τl(ĝ)− Sn,τl−1

(ĝ)

Nl(ĝ)

∣∣∣ · τl√H

n

]
+E[Sn,0(ĝ)]

≤ c(
√
nH

L∑
l=1

E[Vl(ĝ)2]1/2 + qH) + E[|Sn,0(ĝ)|]. (4.6.62)

The last summand can be discussed as follows. Let N(g) :=
√

H
n ∨ ‖g‖2,

E[
∣∣Sn,0(ĝ)

∣∣] = E[
∣∣Sn,0(ĝ)

N(ĝ)
·N(ĝ)

∣∣]
≤

∥∥∥∥Sn,0(ĝ)

N(ĝ)

∥∥∥∥
2

E[‖g‖22
∣∣
g=ĝ

]1/2 + E
[∣∣Sn,0(ĝ)

N(ĝ)

∣∣]√H

n
. (4.6.63)

Since Sn,0(g) =
∑n

i=r+1Wi,0(g) is a sum of independent variables with |Wi,0(g)| ≤
‖g‖∞ ≤ 1 and ‖Wi,0(g)‖2 ≤ 2‖g‖2, the Bernstein inequality yields

P
(∣∣Sn,0(g)

N(g)

∣∣ > x
)
≤ 2 exp

(
− 1

4

x2

n+N(g)−1x/2

)
,

from which we derive

E
[

sup
g∈G

∣∣Sn,0(g)

N(g)

∣∣] ≤ c(√nH +N(g)−1H) ≤ c
√
nH

for some universal constant c > 0. In analogy to the calculation of equation (4.6.61),

E
[

sup
g∈G

∣∣∣Sn,0(g)

N(g)

∣∣∣2] ≤ 210nH.

Therefore, equation (4.6.63) can be bounded by

E sup
g∈G
|Sn,0(ĝ)| ≤ c(

√
nHE[‖g(Xr)‖1 |g=ĝ]

1/2 +H). (4.6.64)

Now, let us define vl(x) :=
∑τl

j=τl−1+1 min{
√
x,∆(b j2c)}. Then,

Vl(h)2 =
( τl∑
j=τl−1+1

min{‖h(Xr)‖2 ,∆(b j
2
c)}
)2

≤
( τl∑
j=τl−1+1

min{‖h(Xr)‖1/21 ,∆(b j
2
c)}
)2

= vl(‖h‖1)2.
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This implies the first bound of the following inequality. The second bound follows from
Jensen’s inequality while taking into account that v2

l is concave by Lemma 4.6.13:

E[Vl(ĝ)2]1/2 ≤ E[vl(‖g(Xr)‖1)2
∣∣
g=ĝ

]1/2 ≤ vl(E[‖g(Xr)‖1
∣∣
g=ĝ

]). (4.6.65)

Inserting equations (4.6.65), (4.6.64) into (4.6.62) and applying Lemma 2.8.5 afterwards,
which allows to replace ∆(b j2c) in vl(·) by ∆(j), gives

E sup
g∈G
|S◦n(ĝ)| ≤ c

(√
nH(

L∑
l=1

vl(E[‖g(Xr)‖1
∣∣
g=ĝ

]) + E[‖g(Xr)‖1 |g=ĝ]
1/2 + (q + 1)H

)
≤ c2

(√
nH(2

∞∑
j=1

min{E[‖g(Xr)‖1
∣∣
g=ĝ

]1/2,∆(j)}+ E[‖g(Xr)‖1 |g=ĝ]
1/2) + qH

)
≤ c(

√
nHṼ (E[‖g(Xr)‖1 |g=ĝ]) + qH).

For g : Rdr → Rd, let

Mn(g) :=
n∑

i=r+1

1

d
〈εi, g(Xi−1)〉.

Lemma 4.6.15 (Maximal inequalities for martingale sequences under functional de-
pendence). Assume that Xi is of the form (4.1.7) and that Assumption 4.1.1 holds true.
Suppose that any component of g ∈ G satisfies (4.6.51) and (4.6.52) with G = 1 and
some LG > 0. Let θ ∈ (0, 1]. Then, with any decreasing sequence ∆(k), k ∈ N0, satisfying

drLθG · sup
l=1,...,r

sup
j=1,...,r

δ
X·,l
2θ (k − j)θ ≤ ∆(k),

there exists another process M◦n(g) and some universal constant c > 0 such that

E sup
g∈G
|Mn(g)−M◦n(g)| ≤ cCε

√
nHβdep(q). (4.6.66)

Furthermore for an estimator ĝ : Rdr → Rd,

E[|M◦n(ĝ)|] ≤ cCε(
√
nH(

√
log(q) + 1)E[‖|g(X1)|2‖2

∣∣
g=ĝ

]1/2 + q1/2H) (4.6.67)

Proof of Lemma 4.6.15. We use a similar decomposition as in the proof of Lemma 4.6.14.
For j ≥ 1 define

Mn,j(g) :=

n∑
i=r+1

W̄i,j(g), W̄i,j(g) := E[
1

d
〈εi, g(Xi−1)〉|εi−j , ..., εi] =

1

d
〈εi,Wi,j(g)〉,

where Wi,j(g) := E[g(Xi−1)|εi−j , ..., εi−1]. Let

M◦n(g) := Mn,q(g).

181



Note that (〈εi, g(Xi−1)〉)i is a martingale and for fixed j, the sequence

(Ei,j(g))g∈G =
(
(W̄i,j+1(g)− W̄i,j(g))

)
g∈G

is a |G|-dimensional martingale difference vector with respect to Ai := σ(εi−j , εi−j+1, ...).
Since

sup
g∈G
|Ei,j(g)| = sup

g∈G
|W̄i,j+1(g)− W̄i,j(g)| ≤ 1

d
|εi|2 · sup

g∈G
|Wi,j+1(g)−Wi,j(g)|2,

we have by (4.6.53) (which also holds with supg inside the ‖ · ‖2-norm),

∥∥ sup
g∈G
|Ei,j(g)|

∥∥
2
≤ 1

d

d∑
k=1

‖εik‖2

∥∥∥∥∥sup
g∈G
|g(Xi−1)k − g(X∗(i−j)i−1 )k|

∥∥∥∥∥
2

≤ Cε∆(j).

Therefore, in analogy to the proof of Theorem 2.4.1,

E sup
g∈G
|Mn(g)−M◦n(g)| ≤

∞∑
j=q

∥∥∥∥∥sup
g∈G

∣∣∣ n∑
i=r+1

Ei,j(g)
∣∣∣∥∥∥∥∥

2

≤ cCε
√
nHβdep(q).

for some universal constant c > 0.
For q ∈ {1, ..., n},

M◦n(g) =

L∑
l=1

[b nτl c+1∑
i=1
i even

T̄i,l(g) +

b n
τl
c+1∑

i=1
i odd

T̄i,l(g)
]

+Mn,0(g)

where

T̄i,l(g) :=

(iτl)∧n∑
k=(i−1)τl+1

[
W̄k,τl(g)− W̄k,τl−1

(g)
]

=
1

d

(iτl)∧n∑
k=(i−1)τl+1

〈εk,Wk,τl(g)−Wk,τl−1
(g)〉.

Next, let

Nl(g) = max{τ1/2
l ·

√
H

n
,Dl(g)}, Dl(g) := E[

1

d
|W1,τl(g)−W1,τl−1

(g)|22]1/2.

We show the following two inequalities first, where c denotes a universal constant:

(i)

E sup
g∈G
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
| ≤ cCε

√
nH, (4.6.68)

(ii)

E
[

sup
g∈G
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
|2
]
≤ cC2

εnH. (4.6.69)
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We have, similar to (4.6.39), by [Rio, 2009, Theorem 2.1] and Assumption 4.1.1,

1

b nτl c

b n
τl
c+1∑

i=1

E[|T̄i,l(g)|m]

≤ (m− 1)m/2
1

b nτl c

b n
τl
c+1∑

i=1

1

d

( (iτl)∧n∑
k=(i−1)τl+1

E[|〈εk,Wk,τl(g)−Wk,τl−1
(g)〉|m]2

)1/2

≤ (m− 1)m/2
1

d
τ
m/2
l E[|ε1|m2 ] · E[|W1,τl(g)−W1,τl−1

(g)|m2 ]

≤ (m− 1)m/2τ
m/2
l Cmε ·

1

d
E[|W1,τl(g)−W1,τl−1

(g)|22] ‖g‖m−2
∞

≤ m!

2
· 2e2C2

ε τlE[
1

d
|W1,τl(g)−W1,τl−1

(g)|22] · (eCετ1/2
l )m−2. (4.6.70)

With ã := τ
1/2
l ·

√
H
n ,

1

b nτl c

b n
τl
c+1∑

i=1

1

Nl(g)
E[|Ti,l(g)|m] ≤ m!

2
· 2e2C2

ε τl(ã
−1eCετ

1/2
l )m−2

By Bernstein’s inequality for independent variables, we conclude that

P
(∣∣Mn,τl(g)−Mn,τl−1

(g)

Nl(g)

∣∣ > x
)

≤ P
(∣∣∣b

n
τl
c+1∑

i=1
i even

Ti,l(g)

Nl(g)

∣∣∣ > x

2

)
+ P

(∣∣∣b
n
τl
c+1∑

i=1
i even

Ti,l(g)

Nl(g)

∣∣∣ > x

2

)

≤ 4 exp
(
− 1

8

x2

2(eCε)2n+ eCε
√

n
Hx

)
. (4.6.71)

(i) Using standard arguments (cf. [van der Vaart, 1998, Lemma 19.35]), we derive
from (4.6.60) that there exists a universal constant c > 0 such that

E sup
g∈G

∣∣Mn,τl(g)−Mn,τl−1
(g)

Nl(g)

∣∣ ≤ cCε√nH.
This shows (4.6.68).

(ii) Next, we use

E
[

sup
g∈G
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
|2
]

=

∫ ∞
0

P
(

sup
g∈G
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
| >
√
t
)
dt.
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Put a :=
√

H
n . Choose G := 16(eCε)na. Then for t ≥ G2, a−1

√
t ≥ n. With (4.6.71)

and
∫∞
b2 exp(−b2

√
t)dt =

∫∞
b 2s exp(−b2s)ds = 2(b2b+ 1)b−2

2 exp(−b2b), we obtain∫ ∞
0

P
(

sup
g
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
| >
√
t
)
dt

= G2 +

∫ ∞
G2

P
(

sup
g
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
| >
√
t
)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

8

x2

2(eCε)2n+ eCε
√

n
Hx

)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp
(
− 1

8

t

2(eCε)2n+ eCεa−1
√
t

)
dt

≤ G2 + 4|G|
∫ ∞
G2

exp(− 1

16

√
t

eCεa−1
)dt

≤ G2 + 8|G|
( Ga
eCε

+ 1
)

(16eCεa
−1)2 exp(− 1

16eCε
Ga)

≤ 211(eCε)
2
[
(na)2 + |G| · exp

(
− na2

)
· (n+ a−2)

]
. (4.6.72)

We conclude that

E
[

sup
g
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
|2
]
≤ 212(eCε)

2
[
(na)2 + |G| · exp

(
− na2

)
· (n+ a−2)

]
which can be upper bounded by

E
[

sup
g
|
Mn,τl(g)−Mn,τl−1

(g)

Nl(g)
|2
]
≤ 212(eCε)

2
[
nH + n+

n

H

]
≤ 214(eCε)

2nH.

This shows (4.6.69).

Using (4.6.68) and (4.6.69), we can now upper bound E|M◦n(ĝ)|. By the Cauchy-Schwarz
inequality,

E|M◦n(ĝ)| ≤
L∑
l=1

[∥∥∥Mn,τl(ĝ)−Mn,τl−1
(ĝ)

Nl(ĝ)

∥∥∥
2
E[Dl(ĝ)2]1/2

+E
∣∣∣Mn,τl(ĝ)−Mn,τl−1

(ĝ)

Nl(ĝ)

∣∣∣ · τ1/2
l

√
H

n

]
+E[Mn,0(ĝ)]

≤ cCε(
√
nH

L∑
l=1

E[Dl(ĝ)2]1/2 + q1/2H) + E[|Mn,0(ĝ)|]. (4.6.73)
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For v ∈ RL, |v|1 ≤
√
L|v|2. Thus,

L∑
l=1

E[Dl(ĝ)2]1/2 ≤
√
L ·
( L∑
l=1

E[Dl(ĝ)2]
)1/2

=
√
LE
[(1

d

L∑
l=1

E[|W1,τl(g)−W1,τl−1
(g)|22]

)∣∣∣
g=ĝ

]1/2
. (4.6.74)

Note that (W1,τl(g) − W1,τl−1
(g))l is a martingale difference sequence with respect to

Ãl := σ(ε1−τl , ..., ε1). We therefore have

E[|W1,q(g)−W1,0(g)|22] = E
[∣∣∣ L∑

l=1

W1,τl(g)−W1,τl−1
(g)
∣∣∣2
2

]
=

L∑
l=1

E[|W1,τl(g)−W1,τl−1
(g)|22].

Since the left hand side is bounded by 4E[|g(X1)|22] by the projection property of condi-
tional expectations, insertion into (4.6.74) yields

L∑
l=1

E[Dl(ĝ)]1/2 ≤ 4
√
L · E[

1

d
‖|g(X1)|2‖22

∣∣
g=ĝ

]1/2. (4.6.75)

The last summand in (4.6.73) can be similarly dealt with. WithN(g) :=
√

H
n ∨‖|g(X1)|2‖2,

E[
∣∣Mn,0(ĝ)

∣∣] = E[
∣∣Mn,0(ĝ)

N(ĝ)
·N(ĝ)

∣∣]
≤

∥∥∥∥Mn,0(ĝ)

N(ĝ)

∥∥∥∥
2

E[‖|g(X1)|2‖22
∣∣
g=ĝ

]1/2

+E
[∣∣Mn,0(ĝ)

N(ĝ)

∣∣]√H

n
. (4.6.76)

Since Mn,0(g) =
∑n

i=r+1 W̄i,0(g) is a sum of independent variables, we can proceed as
before in Lemma 4.6.14 and obtain the existence of universal constants c > 0 such that∥∥∥∥Mn,0(ĝ)

N(ĝ)

∥∥∥∥
2

≤ cCε
√
nH, E

[∣∣Mn,0(ĝ)

N(ĝ)

∣∣] ≤ cC2
ε

√
nH.

Insertion into (4.6.76) yields

E[
∣∣Mn,0(ĝ)

∣∣] ≤ cCε{√nH · E[‖|g(X1)|2‖22
∣∣
g=ĝ

]1/2 +H
}
. (4.6.77)

Insertion of (4.6.75) and (4.6.77) into (4.6.73) gives the result.
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Oracle inequalities under functional dependence

Let F ⊂ {f : Rdr → Rd measurable} such that any f = (fj)j=1,...,d ∈ F satisfies

sup
j∈{1,...,d}

|fj(x)− fj(x′)| ≤ LF · |x− x′|∞ (4.6.78)

and
sup

j∈{1,...,d}
sup

x∈supp(W)
|fj(x)| ≤ F (4.6.79)

where W : Rdr → [0, 1] is an arbitrary weight function depending on ς > 0 with

|W(x)−W(x′)| ≤ 1

ς
· |x− x′|∞.

Let
f̂ ∈ arg min

f∈F
R̂n(f).

The main result of this section is the following theorem, restated from Theorem 4.1.6.
Here, H(δ) = logN(δ,F , ‖ · ‖∞).

Theorem 4.6.16. Suppose that Xi is of the form (4.1.7) and that Assumption 4.1.1
holds true. Assume that there exist F > 0, LF > 0 such that F satisfies (4.6.78) and
(4.6.79). Furthermore, suppose that f0 : Rdr → Rd from (4.1.1) is such that |f0(x) −
f0(x′)|∞ ≤ K|x− x′|∞ for some K > 0.

Let Assumption 4.1.5 be fulfilled with LG = 2dr
(

2
ς + (LF+K)

F

)
, δ ∈ (0, 1). Then, for

any η > 0 there exists a constant C = C(η, Cε, F ) such that

ED(f̂) ≤ (1 + η)2 inf
f∈F

D(f) + C ·
{

Λ(
H(δ)

n
) + δ

}
.

Proof of Theorem 4.6.16. Let η > 0. We follow the proof of Theorem 4.6.4. Define

R1,n := (1 + η)cF 2q∗,dep(

√
H

n
)
H

n
+
ηF 2

2
(Ṽ −1)∗

(
2

1 + η

η

√
H

n

)
,

R1,δ := cF 2

√
H

n
Ṽ (2F−2δ2),

R2,n := 2cCεFq
∗,dep(

H

n
)
H

n
,

R2,δ := Cεδ + 2cCεF

√
H

n
δ.

Then, as in the mixing case, by Lemma 4.6.18, (4.6.8) and Lemma 4.6.17,

ED(f̂) ≤ (1 + η)ED̂n(f̂) +R1,n + (1 + η)R1,δ

≤ (1 + η)
{

inf
f∈F

D(f) + 2cCεF

√
H

n

√
q∗,dep(

√
H

n
)E[D(f̂)]1/2 +R2,n +R2,δ +R1,δ

}
+R1,n.
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Due to 2ab ≤ a2+b2 with a := (1+η)cCεF
√

H
n

√
q∗,dep(

√
H
n )(1+η

η )1/2, b := ( η
1+η )1/2E[D(f̂)]1/2,

we obtain

ED(f̂) ≤ (1 + η) inf
f∈F

D(f) +
(1 + η)3

η
(cCεF )2q∗(

√
H

n
)
H

n
+

η

1 + η
E[D(f̂)]

+(1 + η)(R2,n +R2,δ +R1,δ) +R1,n.

This implies

ED(f̂) ≤ (1 + η)2 inf
f∈F

D(f) + (1 + η)R1,n

+(1 + η)2(R2,n +R2,δ +R1,δ)

+
(1 + η)4

η
(cCεF )2q∗,dep(

√
H

n
)
H

n
. (4.6.80)

Using Young’s inequality applied to Ṽ −1 (Ṽ −1 is convex) and Lemma 4.6.11, we obtain

R1,δ ≤ cF 2(Ṽ −1)∗
(√H

n

)
+ 2cδ2 ≤ cF 2Λ(

H

n
) + 2cδ2,

as well as R2,n ≤ 4cFΛ(Hn ). Furthermore,

R1,n ≤ (1 + η)cF 2Λ(
H

n
) +

ηF 2

2

(
2

1 + η

η

)2
Λ(
H

n
).

and

R2,δ ≤ Cε(δ + cFδ2 + cF
H

n
).

Insertion of these results into (4.6.80) yields the assertion.

To prove Theorem 4.6.16, the following two lemmata are used.

Lemma 4.6.17. Suppose that Xi is of the form (4.1.7) and that Assumption 4.1.1 holds
true. Assume that there exist F > 0, LF > 0 such that F satisfies (4.6.78) and (4.6.79).
Furthermore, suppose that f0 : Rdr → Rd from (4.1.1) is such that |f0(x) − f0(x′)|∞ ≤
K|x− x′|∞ for some K > 0.

If additionally Assumption 4.1.5 is fulfilled with LG = 2dr
(
K+LF
F + 2

ς

)
, then

∣∣∣E[ 1

nd

n∑
i=1

〈εi, f̂(Xi−1)〉W(Xi−1)
]∣∣∣

≤ Cεδ + 2cCεF
[
q∗,dep(

√
H

n
)
H

n
+

√
H

n

(√
q∗,dep(

√
H

n
)E[D(f̂)]1/2 + δ

)]
.
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Proof of Lemma 4.6.17. As in the proof of Lemma 4.6.6, let j∗ ∈ {1, ...,Nn} be such
that ‖f̂ − fj∗‖∞ ≤ δ. Since εi is independent of Xi−1 and Eεi = 0, we have∣∣∣E[ 1

nd

n∑
i=1

〈εi, f̂(Xi−1)〉W(Xi−1)
]∣∣∣ ≤ δ · 1

nd

n∑
i=1

E|εi|1︸ ︷︷ ︸
≤ 1
d

∑d
k=1 E|ε1k|≤Cε

+
F

n
|EMn(gj∗)|, (4.6.81)

where gj(x) := 1
F (fj(x) − f0(x))W(x) and Mn(·) is from Lemma 4.6.15. We choose

G = {gj : j ∈ {1, ...,Nn}}. Note that

sup
j=1,...,Nn

sup
k=1,...,d

‖gjk‖∞ ≤
1

F
· F · ‖W‖∞ ≤ 1

and

|gjk(x)− gjk(x′)| ≤
1

F
|fjk(x)− f0k(x)− fjk(x′)− f0k(x

′)| · W(x)

+
1

F
|fjk(x′)− f0k(x

′)| · |W(x)−W(x′)|

≤
(K + LF

F
+

2

ς

)
· |x− x′|∞.

That is, G satisfies (4.6.51) and (4.6.52) with G = 1 and LG = K+LF
F + 2

ς . With the
argument (4.6.53), we conclude that for any l ∈ {1, ..., d},

δ
gjl(X)
2 (k) ≤ 2drLG · sup

j∈{1,...,r}
sup

j=1,...,r
δ
X·,l
2θ (k − j)θ ≤ ∆(k).

By Lemma 4.6.15, (4.6.66) and (4.6.67) (taking q := q∗,dep(
√

H
n )), we obtain

E|Mn(gj∗)|

≤ cCε
√
nHβdep(q∗,dep(

√
H

n
)) + E|M◦n(gj∗)|

≤ cCεHq
∗,dep(

√
H

n
) + cCε

(√
nH(

√
log(q∗,dep(

√
H

n
)) + 1)

×E
[
‖|g(Xr)|2‖2

∣∣
g=gj∗

]1/2 + q∗,dep(

√
H

n
)1/2H

)
≤ 2cCε

(
Hq∗,dep(

√
H

n
) +
√
nH

√
q∗,dep(

√
H

n
) · E[D(fj∗)]

1/2
)
. (4.6.82)

Since ‖f̂k − fj∗k‖∞ ≤ δ, k = 1, ..., d, we have

E[D(fj∗)]
1/2 ≤ 1√

d
‖|f̂(Xr)−fj∗(Xr)|2W(Xr)‖2 +E[D(f̂)]1/2 ≤ δ+E[D(f̂)]1/2. (4.6.83)

Insertion of (4.6.82) and (4.6.83) into (4.6.81) yields the result.

188



Lemma 4.6.18. Suppose that Xi is of the form (4.1.7) and that Assumption 4.1.1 holds
true. Assume that there exist F > 0, LF > 0 such that F satisfies (4.6.78) and (4.6.79).
Furthermore, suppose that f0 : Rdr → Rd from (4.1.1) is such that |f0(x) − f0(x′)|∞ ≤
K|x− x′|∞ for some K > 0.

If additionally Assumption 4.1.5 is satisfied with LG = 2dr
(

2
ς + (LF+K)

F

)
, then there

exists some universal constant c > 0 such that for every η > 0,

ED(f̂) ≤ (1 + η)ED̂n(f̂)

+
{

(1 + η)cF 2q∗,dep(

√
H

n
)
H

n
+ c

F 2

2
η(Ṽ −1)∗

(
2

1 + η

η

√
H

n

)}
+(1 + η)cF 2

√
H

n
Ṽ (2F−2δ2).

Proof of Lemma 4.6.18. The proof follows a similar structure to Lemma 4.6.5. Let (fj)j=1,...,Nn
be a δ-covering of F w.r.t. ‖ · ‖∞, where Nn := N(δ,F , ‖ · ‖∞). Let j∗ ∈ {1, ...,Nn} be
such that ‖f̂ − fj∗‖∞ ≤ δ. Without loss of generality, assume that δ ≤ F .

Let (X ′i)i∈Z be an independent copy of the original time series (Xi)i∈Z. We have

∣∣ED(f̂)− ED̂n(f̂)| ≤ 2F 2

n
E|Sn(gj∗)|+ 10δF, (4.6.84)

where for x, x′ ∈ Rdr,

gj(x, x
′) :=

1

2dF 2
|fj(x′)− f0(x′)|22W(x′)− 1

dF 2
|fj(x)− f0(x)|22W(x),

and Sn(·) is from Lemma 4.6.14 based on the process (Xi, X
′
i), where X ′i, i ∈ Z, is an

independent copy of Xi, i ∈ Z.
Here, due to the assumption on f0 and on F ,

|gj(x, x′)− gj(y, y′)| ≤
1

2dF 2

(
|fj(x′)− f0(x′)|22 − |fj(y′)− f0(y′)|22

)
W(x′)

+
1

2dF 2
|fj(y′)− f0(y′)|22 · |W(x′)−W(y′)|

+
1

2dF 2

(
|fj(x)− f0(x)|22 − |fj(y)− f0(y)|22

)
W(x)

+
1

2dF 2
|fj(y)− f0(y)|22 · |W(x)−W(y)|

≤
(2

ς
+

(LF +K)

F

)
(|x− y|∞ + |x′ − y′|∞),

and

‖gj‖∞ ≤
2

2dF 2
· dF 2 · ‖W‖∞ ≤ 1.

Thus, G = {gj : j = 1, ...,Nn} satisfies the conditions (4.6.51) and (4.6.52) with G = 1
and

LG =
(2

ς
+
LF +K

F

)
.
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Since X ′i, i ∈ Z, has the same distribution as Xi, i ∈ Z, the argument (4.6.53) yields for
j ∈ {1, ...,Nn} that

δ
gj(X·−1,X′·−1)

2 (k) ≤ 2drLG · sup
l=1,...,r

sup
j=1,...,r

δ
X·,l
2θ (k − j)θ ≤ ∆(k).

Furthermore, there exists another process S◦n(·) and some universal constant c > 0
such that

E|Sn(gj∗)− S◦n(gj∗)| ≤ E sup
g∈G
|Sn(g)− S◦n(g)| ≤ c

√
nHβdep(q).

For q = q∗(
√

H
n ),

E|Sn(gj∗)− S◦n(gj∗)| ≤ cHq∗(
√
H

n
). (4.6.85)

Insertion of (4.6.85) and (4.6.57) into (4.6.84) yields

|ED(f̂)− ED̂n(f̂)| ≤ 2cF 2
[
q∗(

√
H

n
)
H

n
+

√
H

n
Ṽ (E[‖g(Xr)‖1 |g=gj∗ ])

]
. (4.6.86)

Now, observe that

Ṽ (E[‖g(Xr)‖1 |g=gj∗ ]) ≤ Ṽ (F−2ED(fj∗)) ≤ Ṽ (2F−2δ2) + Ṽ (2F−2ED(f̂))

which together with Lemma 4.6.10 delivers,

ED(f̂) ≤ (1 + η)
[
ED̂n(f̂) + 2cF 2q∗(

√
H

n
)
H

n
+ 2cF 2Ṽ (2F−2δ2)

]
+cηF 2(Ṽ −1)∗

(
2

1 + η

η

√
H

n

)
.

4.6.6 Proof of Section 4.2

We will now prove the theoretical results from Subsection 4.2.5.

Proof of Theorem 4.2.5. Choose η = 1 and δ = n−1. Applying Theorem 4.1.3, Assump-
tion 4.1.2 and 4.1.1 we have

ER(f̂net)−R(f0) <∼ inf
f∈F(L,L1,p,s,F )

{R(f)−R(f0)}+
(
Λmix(

H(n−1)

n
) + n−1

)
. (4.6.87)

By Theorem 4.4.1 and Assumption 4.2.1, 4.2.3 and 4.2.4,

inf
f∈F(L,L1,p,s,F )

{R(f)−R(f0)} ≤ inf
f∈F(L,L1,p,s,F )

‖f − f0‖2∞ <∼ (
N

n
)2 +N−2A. (4.6.88)
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Proposition 4.6.19 and Assumption 4.2.4 deliver

H(δ) ≤ (s+ 1) log(22L+5δ−1(L+ 1)p2
0p

2
L+1s

2L) <∼ sL log(s)

<∼ N log2(n) · log2(n) log(n) <∼ N log(n)3. (4.6.89)

Insertion of (4.6.88) and (4.6.89) into (4.6.87) yields the result.

Proof of Theorem 4.2.6. Choose η = 1 and δ = n−1. Applying Theorem 4.1.6, Assump-
tion 4.1.2 and 4.1.1 we have

ER(f̂net,lip)−R(f0) <∼ inf
f∈F(L,L1,p,s,F )

{R(f)−R(f0)}+
(
Λdep(

H(n−1)

n
) + n−1

)
. (4.6.90)

By Theorem 4.4.1 and Assumption 4.2.1, 4.2.3 and 4.2.4,

inf
f∈F(L,L1,p,s,F,Lip)

{R(f)−R(f0)} ≤ inf
f∈F(L,L1,p,s,F,Lip)

‖f − f0‖∞ <∼
N

n
+N−2A. (4.6.91)

Proposition 4.6.19 and Assumption 4.2.4 deliver

H(δ) ≤ (s+ 1) log(22L+5δ−1(L+ 1)p2
0p

2
L+1s

2L) <∼ sL log(s)

<∼ NL log2(n) log(n) <∼ N log(n)3. (4.6.92)

Insertion of (4.6.91) and (4.6.92) into (4.6.90) yields the result.

4.6.7 Approximation results

In this section we consider the approximation error as well as the size of the corresponding
network class.

Proof of the approximation error, Section 4.4

Proof of Theorem 4.4.1. We follow the proof given by [Schmidt-Hieber, 2017, Theorem
1] and employ [Schmidt-Hieber, 2017, Theorem 5] (recited here as part of Theorem
4.6.20), adapting it to the “encoder-decoder” structure. Since C is not explicitly given,
it is enough to prove the result for large enough n. Fix N ∈ N and choose m = dlog2(n)e.

By Theorem 4.6.20, we find for arbitrarily chosen N > 0 functions

g̃enc,0 ∈ F(Lenc,0 + 2, (dr, penc,0, D), D(senc,0 + 4))

and
g̃enc,1 ∈ F(Lenc,1 + 2, (D, penc,1, d̃), d̃(senc,1 + 4))

where

Lenc,i = 8 + (m+ 5)(1 + log2(tenc,i ∨ βenc,i)),
penc,0 = D(6(tenc,0 + dβenc,0e)N, . . . , 6(tenc,0 + dβenc,0e)N) ∈ RLenc,0+2,

penc,1 = d̃(6(tenc,1 + dβenc,1e)N, . . . , 6(tenc,1 + dβenc,1e)N) ∈ RLenc,1+2
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and
senc,i ≤ 141((tenc,i + βenc,i + 1)3+tenc,iN(m+ 6), i = 0, 1,

such that

‖(genc,i)j − (g̃enc,i)j‖∞ ≤ (2K + 1)(1 + t2enc,i + β2
enc,i)6

tenc,iN2−m +K3βenc,iN
βenc,i
tenc,i

for i = 0, 1. The composed network f̃enc := g̃enc,1 ◦ g̃enc,0 satisfies

f̃enc ∈ F(Lenc,0 + Lenc,1 + 5, (dr, penc,0, D, penc,1, d̃), d̃(D(senc,0 + 4) + d̃(senc,1 + 4)))

as well as f̃enc ∈ F(L1, p̄, s̄) for

Lenc,0 + Lenc,1 + 5 ≤
∑

i∈{enc,0;enc,1}

log2(4(ti ∨ βi)) log2(n) ≤ L1

(the first inequality holds true for n large enough) and

p̄ := ( dr, ..., dr︸ ︷︷ ︸
(k̄+1) times

, penc,0, D, penc,1, d̃)

s̄ := d̃(D(senc,0 + 4) + d̃(senc,1 + 4))) + k̄dr

where k̄ := L1−(Lenc,0+Lenc,1+5) (cf. [Schmidt-Hieber, 2017, Section 7.1]). Furthermore,
by Theorem 4.6.20 there exists a network

f̃dec ∈ F(Ldec + 2, (d̃, pdec, d), d(sdec + 4))

where

Ldec = 8 + (m+ 5)(1 + log2(tdec ∨ βdec)),
pdec = d(6(tdec + dβdece)N, . . . , 6(tdec + dβdece)N) ∈ RLdec+2,

sdec ≤ 141((tdec + βdec + 1)3+tdecN(m+ 6),

such that

‖(fdec)j − (f̃dec)j‖∞ ≤ (2K + 1)(1 + t2dec,i + β2
dec,i)6

tdec,iN2−m +K3βdec,iN
βdec,i
tdec,i

for j = 1, ..., d. We then obtain f̃0 = f̃dec ◦ f̃enc ∈ F(L′, p′, s′) by composing the networks
f̃enc and f̃dec (cf. [Schmidt-Hieber, 2017, Section 7.1]) with the values

L′ := L1 + Ldec + 1,

p′ := (p̄, pdec, d),

s′ := s̄+ d(sdec + 4).

The composition also satisfies f̃0 ∈ F(L, p, s) for additional layers where

L′ ≤ L1 + log2(4(tdec ∨ βdec)) log2(n) ≤ L
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(the first inequality holds true for n large enough) and s, p are set according to [Schmidt-
Hieber, 2017, Section 7.1, equation (18)], i.e.

k = L− L′, p = (dr, ..., dr︸ ︷︷ ︸
k times

, p′), s = s′ + kp′0.

The conditions (ii) to (v) are automatically met. In analogy to [Schmidt-Hieber, 2017,
Section 7.1, Lemma 3],

‖f̃0 − f0‖2∞ ≤ C max
k∈{dec;enc,0;enc,1}

{N
n

+N
− 2βk

tk

}
(4.6.93)

for a constant C that only depends on t,β. By Theorem 4.6.20, since N2−m <∼ 1, f̃0 has
Lipschitz constant

‖f̃0‖Lip ≤ ‖f̃dec‖Lip · ‖g̃enc,1‖Lip · ‖g̃enc,0‖Lip ≤ C2

for a constant C2 only depending on β, t.
Up to now, f̃0 is not bounded by a given F . For large enough n we are able to generate a

sequence (f̃n)n∈N in F(L,L1, p, s, F̄ , C2) (F̄ chosen arbitrarily large) satisfying equation

(4.6.93). If we define f∗n := (
‖f0‖∞
‖f̃n‖∞

∧ 1)f̃n,

‖f∗n‖∞ ≤ ‖f0‖∞ ≤ ‖fdec‖∞ ≤ K ≤ F

by assumption (i). Therefore, f∗n ∈ F(L,L1, p, s, F, C2). Equation (4.6.93) also holds true
for the class F(L,L1, p, s, F, C2) since ‖f∗n − f0‖∞ ≤ 2‖f̃n − f0‖∞. This completes the
proof.

We cite [Schmidt-Hieber, 2017, Remark 1] in order to maintain a consistent reading
flow and for the sake of completeness.

Proposition 4.6.19. For the network F(L,L1, p, s,∞) we have the covering entropy
bound

logN (δ,F(L,L1, p, s,∞), ‖·‖∞) ≤ (s+ 1) log(22L+5δ−1(L+ 1)p2
0p

2
L+1s

2L).

Approximation error and Lipschitz continuity of neural networks

The first part of the following theorem is taken from [Schmidt-Hieber, 2017, Theorem
5]. The second part (4.6.94) is proven below.

Theorem 4.6.20. For any function f ∈ Cβt ([0, 1]t,K) and any integers m ≥ 1, N ≥
(β + 1)t ∨ (K + 1)et, there exists a network

f̃ ∈ F(L, (t, 6(t+ dβe)N, ..., 6(t+ dβe)N, 1), s,∞)

with depth
L = 8 + (m+ 5)(1 + dlog2(t ∨ β)e)
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and number of active parameters

s ≤ 141(t+ β + 1)3+rN(m+ 6)

such that
‖f̃ − f‖∞ ≤ (2K + 1)(1 + t2 + β2)6tN2−m +K3βN−

β
t .

Furthermore, f̃ satisfies for any x, y ∈ [0, 1]t,

|f̃(x)− f̃(y)| ≤ Lip(N,m) · |x− y|∞ (4.6.94)

where
Lip(N,m) := 2βF (K + 1)et(24t62tN2−m + 3t).

To prove (4.6.94), we first recap how f̃ is constructed in [Schmidt-Hieber, 2017, The-
orem 5].

As in Schmidt-Hieber [2017], we define for x, y ∈ [0, 1], m ∈ N,

multm(x, y) :=
(m+1∑
k=1

{
Rk(

x− y + 1

2
)−Rk(x+ y

2
)
}

+
x+ y

2
− 1

4

)
+

where
Rk := T k ◦ T k−1 ◦ ... ◦ T 1, k ∈ N,

and
T k(x) := min{x

2
, 21−2k − x

2
}, k ∈ N.

Lemma 4.6.21. For x, y ∈ [0, 1] where multm is differentiable, it holds that

∂1multm(x, y) = y + res1(x, y), ∂2multm(x, y) = x+ res2(x, y)

where |resi(x, y)| ≤ 2−m−1, i = 1, 2. Furthermore,

|multm(x, y)− x · y| ≤ 2−m−1(x+ y) ≤ 2−m.

Proof of Lemma 4.6.21. A straightforward calculation yields

∂1R
k(x) =

{
1
2k
, x ∈ Ak+,

− 1
2k
, x ∈ [0, 1]\Ak+

=
1

2k
(2 · 1Ak+

(x)− 1)

where

Ak+ :=
2k−1⋃
j=0

[
j

2k
,
j + 1

2k
].

We conclude that

∂1multm(x, y) =

m+1∑
k=1

{
∂1R

k(
x− y + 1

2
) · 1

2
− ∂1R

k(
x+ y

2
) · 1

2

}
+

1

2

=
m+1∑
k=1

1

2k
{
1Ak+

(
x− y + 1

2
)− 1Ak+

(
x+ y

2
)
}

+
1

2
. (4.6.95)
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Suppose that the following binary representations are valid for x, y ∈ [0, 1]:

x+ y

2
=
∞∑
k=1

ak
2k
,

x− y + 1

2
=
∞∑
k=1

bk
2k

where ak, bk ∈ {0, 1} (k ∈ N). Then,

1Ak+
(
x− y + 1

2
) = 1− bk, 1Ak+

(
x+ y

2
) = 1− ak.

Insertion into (4.6.95) yields

∂1multm(x, y) =
m+1∑
k=1

1

2k
{
ak − bk

}
+

1

2
=
x+ y

2
− x− y + 1

2
+

1

2
+ res(x, y) = y + res(x, y)

where

resk(x, y) :=
∞∑

k=m+2

bk
2k
−

∞∑
k=m+2

ak
2k
.

Due to ak, bk ∈ {0, 1} (k ∈ N), we see that |res(x, y)| ≤ 2−(m+1). The proof for ∂2multm
is similar.

The second statement follows by the first one using the fundamental theorem of anal-
ysis:

∣∣multm(x, y)− xy
∣∣ ≤ x

∫ 1

0
|∂1multm(xt, yt)− yt|dt+ y

∫ 1

0
|∂2multm(xt, yt)− xt|dt

≤ 2−m−1(x+ y).

As in Schmidt-Hieber [2017], define recursively for x ∈ [0, 1],

Mm(x) := x,

for x = (x1, ..., x2q) ∈ [0, 1]2
q
, q ∈ N,

Mm(x) := multm(Mm(x1, ..., x2q−1),Mm(x2q−1+1, ..., x2q)),

and for x = (x1, ..., xt) ∈ [0, 1]t, q = dlog(r)e,

Mm(x) := Mm(x1, ..., xt, 1, ..., 1︸ ︷︷ ︸
(2q − t) ones

).

The first part of the following lemma is taken from [Schmidt-Hieber, 2017, Lemma
A.3].
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Lemma 4.6.22. For y ∈ [0, 1]t we have

|Mm(y1, ..., yt)−
r∏

k=1

yk| ≤ t2 · 2−m (4.6.96)

and for j ∈ {1, ..., t}, at the points y where Mm is differentiable,

|∂jMm(y1, ..., yt)−
t∏

k=1,k 6=j
yk| ≤ 2t3 · 2−m. (4.6.97)

Proof of Lemma 4.6.22. We only have to show (4.6.97). We restrict ourselves to j = 1
for simplicity. With some abuse of notation, overload y := (y, 1, ..., 1) (where we added
2q − t entries of 1). Then by Lemma 4.6.21, (4.6.96) and |yk| ≤ 1 (k = 1, ..., 2q),

|∂y1Mm(y)−
t∏

k=2

yk|

≤
q∑
i=1

{( 2q∏
k=2q−i+1+1

yk

)

×
∣∣∣∂1Mm(Mm(y1, ..., y2q−i),Mm(y2q−i+1, ..., y2q−i+1))−

2q−i+1∏
k=2q−i+1

yk

∣∣∣
×

q∏
j=i+1

∂1Mm(Mm(y1, ..., y2q−j ),Mm(y2q−j+1, ..., y2q−j+1))
}

≤
q∑
i=1

{( 2q∏
k=2q−i+1+1

yk

)
·
(∣∣Mm(y2q−i+1, ..., y2q−i+1)−

2q−i+1∏
k=2q−i+1

yk
∣∣+ 2−m−1

)
×

q∏
j=i+1

(
Mm(y2q−j+1, ..., y2q−j+1) + 2−m−1

)}

≤
q∑
i=1

{( 2q∏
k=2q−i+1+1

yk

)
· 2 · 4q−i2−m ·

q∏
j=i+1

( 2q−j+1∏
k=2q−j+1

yk + 4q−j2−m
)}

≤ 2−m+1 ·
q∑
i=1

{
4q−i ·

q∏
j=i+1

(1 + 4q−j2−m)
}

≤ 2−m
q∑
i=1

8q−i ≤ 8

7
t32−m.

Now we show (4.6.94). To do so, we derive the mathematical expression Q3 used in
[Schmidt-Hieber, 2017, Theorem 5] to describe f̃ .
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Let M be the largest integer such that (M + 1)t ≤ N . Define the grid

D(M) := {xl := (`j/M)j=1,...,t : (`1, ..., `t) ∈ {0, 1, ...,M}t}.

For x, y ∈ [0, 1], put

Iy(x) := (
1

M
− |x− y|)+,

and for x, y ∈ [0, 1]t,
Hatx(y) := Mm(Ix1(y1), ..., Ixr(yr)).

For a, x ∈ [0, 1]r, let

P βa f(y) =
∑

0≤|α|<β

(∂αf)(a) · (y − a)α

α!
=

∑
0≤|γ|<β

cγ(a) · yγ

denote the multivariate Taylor polynomial of f with degree β at a. In the above formula,
α and γ denote multi-indices.

Then (cf. Schmidt-Hieber [2017], (31)-(35) therein), |cγ | ≤ K
γ! and

∑
γ≥0 |cγ | ≤ Ket ≤

1
2B, where B := d2Kete. Put

Q1(y)xl :=
1

B

∑
0≤|γ|<β

cγ(xl) ·Mm(yγ) +
1

2
,

where yγ := (yγ1 , yγ2 , ..., yγt). Define

Q2(y) :=
∑

xl∈D(M)

multm
(
Q1(y)xl ,Hatxl(y)

)
and

Q3 := S ◦Q2

where S(x) := BM t(x− 1
2Mt ). Since f̃ = Q3, (4.6.94) follows from Lemma 4.6.23.

Lemma 4.6.23. For x, y ∈ [0, 1]t,

|Q3(x)−Q3(y)| ≤ βFB(24t62tN2−m + 3t) · |x− y|∞.

Proof of Lemma 4.6.23. Since Q2 is piecewise linear, it is enough to consider its first
derivative at the points where it is differentiable to derive its Lipschitz constant.

With q = dlog(t)e,

∂y1Hatxl(y) = ∂1Mm(Mm(y1, ..., y2q−1),Mm(y2q−1+1, ..., yt, 1, ..., 1))

×
q−1∏
i=2

∂1Mm(Mm(y1, ..., y2q−i),Mm(y2q−i+1, ..., y2q−i+1))

×∂1multm(y1, y2).
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By Lemma 4.6.22,

|Q1(y)xl −
( 1

B
P βxlf(y) +

1

2

)
| ≤ 1

B

∑
0≤|γ|<β

|cγ(xl)| · |Mm(yγ)− yγ |

≤ r22−m

B
·
∑

0≤|γ|<β

|cγ | ≤
1

2
t22−m. (4.6.98)

Furthermore,

∂y1Q1(y)xl =
1

B

∑
0≤|γ|<β,γ1≥1

cγ(xl) · ∂y1Mm(yγ) =
1

B

∑
0≤|γ|<β

cγ(xl) ·
γ1∑
j=1

∂jMm(yγ).

Thus by Lemma 4.6.22,

∣∣∂y1Q1(y)xl −
1

B
∂y1P

β
xl
f(y)

∣∣ ≤ 1

B

∑
0≤|γ|<β,γ1≥1

|cγ(xl)| ·
γ1∑
j=1

∣∣∂jMm(yγ)− yγ−(1,0,...,0)
∣∣

≤ 1

B

∑
0≤|γ|<β

|cγ(xl)| · 2γ1t
32−m ≤ βt32−m. (4.6.99)

Finally, Lemma 4.6.22 yields

∣∣Hatxl(y)−
t∏

k=1

I(xl)k(yk)
∣∣ ≤ t22−m (4.6.100)

and for j ∈ {1, ..., t}, since ∂yjI(xl)j (yj) ∈ {−1,+1},

∣∣∂yjHatxl(y)− ∂yj
t∏

k=1

I(xl)k(yk)
∣∣

=
∣∣∣∂jMm(I(xl)1

(y1), ..., I(xl)t(yt))−
t∏

k=1,k 6=j
I(xl)k(yk)

∣∣∣ · |∂yjI(xl)j (yj)|

≤ t22−m. (4.6.101)

Note furthermore that

|∂yj
t∏

k=1

I(xl)k(yk)| ≤
t∏

k=1,k 6=j
I(xl)k(yk) · |∂yjI(xl)j (yj)| ≤ 1

and

| 1
B
∂y1P

β
xl
f(y)| ≤ 1

B

∑
0≤|γ|<β

|cγ(xl)| · γ1y
γ−(1,0,...,0) ≤ β

2
.
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By Lemma 4.6.21, (4.6.99) and (4.6.101), it holds that∣∣∣∂y1Q2(y)

−
∑

xl∈D(M),|xl−y|∞≤M−1

{
Hatxl(y) · ∂y1Q1(y)xl +Q1(y)xl · ∂y1Hatxl(y)

}∣∣∣
≤

∑
xl∈D(M),|xl−y|∞≤M−1

{∣∣∂1multm
(
Q1(y)xl ,Hatxl(y)

)
−Hatxl(y) · ∂y1Q1(y)xl

∣∣
×|∂y1Q1(y)xl |

+
∣∣∂2multm(Q1(y)xl ,Hatxl(y))−Q1(y)xl

∣∣ · ∣∣∂y1Hatxl(y)
∣∣}

≤ 2−m−1
∑

xl∈D(M),|xl−y|∞≤M−1

{
|∂y1Q1(y)xl |+ |∂y1Hatxl(y)

∣∣}
≤ 2−m−1 · 2t ·

{
(βt32−m +

β

2
) + (t22−m + 1)

}
≤ 4βt32t · 2−m.

(4.6.102)

In a similar manner, we obtain with (4.6.98), (4.6.99), (4.6.100) and (4.6.101) that∣∣∣ ∑
xl∈D(M),|xl−y|∞≤M−1

Hatxl(y) · ∂y1Q1(y)xl

−
∑

xl∈D(M),|xl−y|∞≤M−1

( t∏
k=1

I(xl)k(yk)
)
· 1

B
∂y1P

β
xl
f(y)

∣∣∣
≤ 2t ·

(
t22−m · (βt32−m +

β

2
) + 1 · (βt32−m)

)
≤ 4βt52t · 2−m (4.6.103)

and ∣∣∣ ∑
xl∈D(M),|xl−y|∞≤M−1

Q1(y)xl · ∂y1Hatxl(y)

−
∑

xl∈D(M),|xl−y|∞≤M−1

{( 1

B
P βxlf(y) +

1

2

)
·
( t∏
k=2

I(xl)k(yk)
)
· ∂y1I(xl)1

(y1)
}∣∣∣

≤ 2t ·
(1

2
t22−m · (t22−m + 1) + 1 · (t22−m)

)
≤ 4t42t · 2−m.

(4.6.104)
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Now, we have ∣∣∣ ∑
xl∈D(M),|xl−y|∞≤M−1

( t∏
k=1

I(xl)k(yk)
)
· 1

B
∂y1P

β
xl
f(y)

∣∣∣
≤ β

2
·

∑
xl∈D(M),|xl−y|∞≤M−1

( t∏
k=1

I(xl)k(yk)
)
≤ β

2
·M−t. (4.6.105)

Let u ∈ D(M) be the grid point which satisfies uj ≤ yj ≤ uj +M−1, j = 1, ..., t.
Let b(|α|) := b, if |α| = β − 1 and b(α) = 1, otherwise. For general a, a′ ∈ [0, 1]t with
|y − a|∞, |y − a′|∞ ≤M−1, |a− a′|∞ ≤M−1, it holds true that

|P βa f(y)− P βa′f(y)| ≤
∑

0≤|α|<β

1

α!
·
{∣∣∂αf(a)− ∂αf(a′)

∣∣ · |(y − a)α|

+|∂αf(a′)| ·
∣∣(y − a)α − (y − a′)α

∣∣}
≤

∑
0≤|α|<β

1

α!
·
{
K|a− a′|b(|α|)∞ M−|α|

+(K + F )
t∑

j=1

( j−1∏
k=1

|yk − ak|αk
)
·
( t∏
k=j+1

|yk − a′k|αk
)
· |(yj − aj)αj − (yj − a′j)αj |

}
≤

∑
0≤|α|<β

1

α!
·
{
K|a− a′|b(|α|)∞ M−|α| +

t∑
j=1

αjM
−(αj−1)|aj − a′j |

}
≤

∑
0≤|α|<β

1

α!
·
{
K|a− a′|b(|α|)∞ M−|α| + (K + F )βM−1

}
≤ (K + βK + βF )etM−1.

The last step is due to the fact that f is assumed to have at least Hölder exponent 1.
Using this result, we obtain∣∣∣ ∑

xl∈D(M),|xl−y|∞≤M−1

{( 1

B
P βxlf(y) +

1

2

)
·
( t∏
k=2

I(xl)k(yk)
)
· ∂y1I(xl)1

(y1)
}∣∣∣

≤
∑

(i2,...,it)∈{0,1}r

( t∏
k=2

I
uk+

ik
M

(yk)
)
·
∣∣∣( 1

B
P β

(u1+M−1,u2+
i2
M
,...,ut+

it
M

)
f(y) +

1

2
) · ∂y1Iu1+M−1(y1)

+(
1

B
P β

(u1,u2+
i2
M
,...,ut+

it
M

)
f(y) +

1

2
) · ∂y1Iu1(y1)

∣∣∣
≤ 1

B

∑
(i2,...,it)∈{0,1}t

( t∏
k=2

I
uk+

ik
M

(yk)
)
·
∣∣P β

(u1+M−1,u2+
i2
M
,...,ut+

it
M

)
f(y)− P β

(u1,u2+
i2
M
,...,ut+

it
M

)
f(y)

∣∣
≤ (K + βK + βF )et

B
M−(t−1) ·M−1 =

(K + βK + βF )et

B
·M−t.

(4.6.106)
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Using the bounds (4.6.102), (4.6.103), (4.6.104), (4.6.105) and (4.6.106), we obtain with
K ≥ 1 that

|∂y1Q2(y)| ≤ 24βFt52t2−m + 3βM−t.

The proof for the other derivatives ∂yj , j = 2, ..., t, is completely similar. Thus, for
x, y ∈ [0, 1]t,

|Q2(y)−Q2(x)| ≤
∫ 1

0
|〈∂Q2(x+ t(y − x)), y − x〉|dt ≤ t sup

y
|∂Q2(y)|∞ · |y − x|∞.

We obtain

|Q3(x)−Q3(y)| ≤ BM t|Q2(x)−Q2(y)| ≤ βFB(24t62tM t2−m + 3t) · |x− y|∞.
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Chapter 5

Multiplicative deconvolution in
survival analysis under
dependence

A popular branch of Statistics is represented by survival analysis. It has many appli-
cations in, for example, Economics and Biology. So far, there are a lot of applications
regarding independent and identically distributed observations which we do not have
access to most of the time. In this chapter we extent the theory to data with certain
dependence structures and consider the estimation of survival functions from an inverse
problem point of view.

5.1 Motivation

In survival analysis one primary interest is the survival function. As always, we most
often do not have access to such in real life and therefore have to recover it, given our
observations. We will be focusing on the following scenario. Let S : R+ → R+ be the
unknown survival function of a positive random variable X given identically distributed
copies of Y = XU where X and U are independent of each other. We assume that U
has a known density g : R+ → R+. In this setting, the density fY : R+ → R+ of Y is
given by

fY (y) = [f ∗ g](y) :=

∫ ∞
0

f(x)g(y/x)x−1dx ∀y ∈ R+

where, as usual, “∗” denotes the operation of multiplicative convolution. The estimation
of S using a sample Y1, . . . , Yn from fY is thus a multiplicative deconvolution problem.
Under this view point, we can build up our theory by means of Mellin transforms, whose
concept is closely related to that of Fourier transforms.

Subsequently, we assume that the errors U1, . . . , Un are independent and identically
distributed (i.i.d.) and that X1, . . . , Xn are i.i.d. or a stationary process with the fol-
lowing, already established, dependence structures. We briefly revise them here in this
context for completeness.
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Absolutely regular mixing (β-mixing) First, let us consider two sigma fields U ,V
over some probability space Ω and define the quantity

βmix(U ,V) :=
1

2
sup

∑
(p,q)∈P×Q

|P(Up ∩ Vq)− P(Up)P(Vq)|

where the supremum is taken over all finite partitions (Up)p∈P , (Vq)q∈Q of Ω such that
(Up)p∈P ⊂ U , (Vq)q∈Q ⊆ V. Now, let (β(k))k∈N0 be a sequence of real-valued numbers
defined by

β(k) := β(X0, Xk) := βmix(σ(X0), σ(Xk)), (5.1.1)

for σ-fields generated by X0 and Xk, respectively. Then, the process is said to be β-
mixing if for the corresponding coefficients β(k)→ 0 as k →∞. We refer to the previous
chapters for more references on this subject.

Functional dependence measure We assume that the given process has a repre-
sentation as a Bernoulli shift process. Let Xj , j = 1, ..., n, be a one dimensional process
of the form

Xj = Jj,n(Gj), (5.1.2)

where Gj = (εj , εj−1, ...) for εj , j ∈ Z, a sequence of i.i.d. random variables in R,
and some measurable function Jj,n : RN0 → R, j = 1, ..., n, n ∈ N. For a real-valued
random variable W and some ν > 0, we define ‖W‖ν := E[|W |ν ]1/ν . Note that this
notation should not be confused with a norm on function spaces; whenever we refer
to the functional dependence measure, it should be clear that we apply a moments
based norm. If ε∗k is an independent copy of εk, independent of εj , j ∈ Z, we define

G∗(j−k)
j := (εj , ..., εj−k+1, ε

∗
j−k, εj−k−1, ...) and X

∗(j−k)
j := Jj,n(G∗(j−k)

j ). Then, the func-
tional dependence measure of Xj is given by

δXν (k) =
∥∥Xj −X∗(j−k)

j

∥∥
ν
. (5.1.3)

As before, references and properties already appeared in previous chapters.

5.2 Mellin transform

In this section we establish the key concept of Mellin transforms and collect its relevant
properties for our theory. Let L1(Ω, ω), L2(R+, ω) denote the space of either weighted
absolutely integrable or weighted square-integrable functions on a space Ω or R+ (the
positive real line), respectively. The spaces L1(R) or L2(R) consist of absolutely in-
tegrable or square-integrable functions on R, respectively. For mathematically sound
definitions we refer to Section 1.2.
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Multiplicative Convolution In Chapter 1 we already mentioned that the density
fY of Y1 can be written as the multiplicative convolution of the densities f and g. We
will now define this convolution in a more general setting. Let c ∈ R. For two functions
h1, h2 ∈ L1(R+, x

c−1) we define the multiplicative convolution h1 ∗ h2 of h1 and h2 by

(h1 ∗ h2)(y) :=

∫ ∞
0

h1(y/x)h2(x)x−1dx, y ∈ R. (5.2.1)

It is possible to show that the function h1 ∗ h2 is well-defined, h1 ∗ h2 = h2 ∗ h1 and
h1 ∗ h2 ∈ L1(R, xc−1), compare Brenner Miguel [2021]. It is worth pointing out, that
the definition of the multiplicative convolution in equation (5.2.1) is independent of the
model parameter c ∈ R. We also know that for densities h1, h2; h1, h2 ∈ L1(R+, x

0). If
additionally h1 ∈ L2(R+, x

2c−1), then h1 ∗h2 ∈ L2(R+, x
2c−1). We would like to mention

that in this case the weight function is a polynomial, referred to by its own evaluation,
that is, by abuse of notation xa : x 7→ xa for a ∈ R. However, this is quite common in
the literature.

Mellin transform properties We will now collect the main properties of the Mellin
transform which will be used in the upcoming theory. Proof sketches of these properties
can be found in Brenner Miguel [2021]. Let h1 ∈ L1(R, xc−1). Then, we define the Mellin
transform of h1 at the development point c ∈ R as the function Mc[h] : R→ C with

Mc[h1](t) :=

∫ ∞
0

xc−1+ith1(x)dx, t ∈ R. (5.2.2)

A very important result with regards to the Mellin transform, which makes it so appeal-
ing for the use in multiplicative deconvolution, is the so-called convolution theorem: For
h1, h2 ∈ L1(R+, x

c−1),

Mc[h1 ∗ h2](t) =Mc[h1](t)Mc[h2](t), t ∈ R. (5.2.3)

Additionally, for the estimation of the survival function the following property is used.
Let h ∈ L1(R+, x

c−1) be a density and Sh := R+ → R+, y 7→
∫∞
y h(x)dx its cor-

responding survival function. Then for any c > 0, Sh ∈ L1(R+, x
c−1) if and only if

h ∈ L1(R+, x
c). Furthermore, for any t ∈ R,

Mc[Sh](t) = (c+ it)−1Mc+1[h](t).

Let us now define the Mellin transform of a square-integrable function, that is, for
h1 ∈ L2(R+, x

2c−1). Let ϕ : R→ R+, x 7→ exp(−2πx) and ϕ−1 : R+ → R be its inverse.
Then, as diffeomorphisms, ϕ,ϕ−1 map Lebesgue null sets to Lebesgue null sets. Thus,
the isomorphism Φc : L2(R+, x

2c−1)→ L2(R), h 7→ ϕc · (h ◦ϕ) is well-defined. Moreover,
let Φ−1

c : L2(R) → L2(R+, x
2c−1) denote the inverse of Φc. Then, for h ∈ L2(R+, x

2c−1)
we define the Mellin transform of h developed in c ∈ R by

Mc[h](t) := (2π)F [Φc[h]](t), t ∈ R,
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where F : L2(R) → L2(R), H 7→ (t 7→ F [H](t) := limk→∞
∫ k
−k exp(−2πitx)H(x)dt)

is the Fourier-Plancherel transform. Due to this definition several properties of Mellin
transforms can be deduced from the well-known theory of Fourier transforms. In the
case that h ∈ L1(R+, x

c−1) ∩ L2(R+, x
2c−1) we have

Mc[h](t) =

∫ ∞
0

xc−1+ith(x)dx, t ∈ R, (5.2.4)

which coincides with the usual notion of Mellin transforms as considered in Paris and
Kaminski [2001].

Now, due to the construction of the operator Mc : L2(R+, x
2c−1) → L2(R) it can

easily be seen that it is an isomorphism. We denote by M−1
c : L2(R) → L2(R+, x

2c−1)
its inverse. If additionally to H ∈ L2(R), H ∈ L1(R), we can express the inverse Mellin
transform explicitly by

M−1
c [H](x) =

1

2π

∫ ∞
−∞

x−c−itH(t)dt, x ∈ R+. (5.2.5)

Furthermore, we can directly show that a Plancherel-type identity holds true for the
Mellin transform: For all h1, h2 ∈ L(R+, x

2c−1),

〈h1, h2〉x2c−1 = (2π)−1〈Mc[h1],Mc[h2]〉R whence ‖h1‖2x2c−1 = (2π)−1‖Mc[h]‖2R.
(5.2.6)

Examples 5.2.1. Given below are the Mellin transforms of commonly used distribution
families.

(i) Beta distribution: Let us consider the family (gb)b∈N, gb(x) := 1(0,1)(x)b(1− x)b−1

for b ∈ N and x ∈ R+. Obviously, we see that Mc[gb] is well-defined for c > 0 and

Mc[gb](t) =
b∏

j=1

j

c− 1 + j + it
, t ∈ R.

(ii) Scaled log-gamma distribution: Consider the family (gµ,a,λ)(µ,a,λ)∈R×R+×R+
where

for a, λ, x ∈ R+ and µ ∈ R we have gµ,a,λ(x) = exp(λµ)
Γ(a) x−λ−1(log(x)−µ)a−1

1(eµ,∞)(x).
Then for c < λ+ 1,

Mc[gµ,a,λ](t) = exp(µ(c− 1 + it))(λ− c+ 1− it)−a, t ∈ R.

If a = 1 then gµ,1,λ is the density of a Pareto distribution with parameter eµ and
λ. If µ = 0 we have that g0,a,λ is the density of a log-gamma distribution.

(iii) Gamma distribution: Consider the family (gd)d∈R+ ,gd(x) = xd−1

Γ(d) exp(−x)1R+(x)

for d, x ∈ R+. Obviously, we see that Mc[gd] is well-defined for c > −d+ 1 and

Mc[gd](t) =
Γ(c+ d− 1 + it)

Γ(d)
, t ∈ R.
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(iv) Weibull distribution: Consider the family (gm)m∈R+ , gm(x) = mxm−1 exp(−xm)1R+(x)
for m,x ∈ R+. Obviously, we see that Mc[gm] is well-defined for c > −m+ 1 and

Mc[gm](t) =
(c− 1 + it)

m
Γ(
c− 1 + it

m
), t ∈ R.

(v) log-normal distribution: Consider the family (gµ,λ)(µ,λ)∈R×R+
where gµ,λ for λ, x ∈

R+ and µ ∈ R is given by gµ,λ(x) = 1√
2πλx

exp(−(log(x)−µ)2/2λ2)1R+(x). We see

that Mc[gµ,λ] is well-defined for any c ∈ R and

Mc[gµ,λ](t) = exp(µ(c− 1 + it)) exp

(
λ2(c− 1 + it)2

2

)
, t ∈ R.

5.3 Minimax theory

In the upcoming theory, we need to ensure that the survival function S of the sample
X1, . . . , Xn is square-integrable. Furthermore, in order to define the estimator, we also
need the square-integrablility of the empirical survival function ŜX which is defined by

ŜX(x) := n−1
n∑
j=1

1(0,Xi)(x) (5.3.1)

for any x ∈ R+. The following proposition shows that we can derive the square-integrablilty
condition for both functions by moment conditions.

Proposition 5.3.1. Let E(X1/2) < ∞. Then, S ∈ L1(R+, x
−1/2) ∩ L2(R, x0). If addi-

tionally E(X1) <∞ then ŜX ∈ L1(R+, x
−1/2) ∩ L2(R, x0) almost surely.

The proof of Proposition 5.3.1 can be found in Section 5.7.2.
We now define an estimator of S based on the contaminated data Y1, . . . , Yn and use

the rich theory of Mellin transforms in Section 5.2.

Estimation strategy Let c = 1/2. So, the weighted L2(R, x2c−1)-norm becomes the

usual unweighted L2-norm. Assuming now that E(X
1/2
1 ) < ∞ we have for k ∈ R+,

M1/2[S]1[−k,k] ∈ L1(R) ∩ L2(R). Thus

Sk(x) :=M−1
1/2[M1/2[S]1[−k,k]](x) =

1

2π

∫ k

−k
x−1/2−itM1/2[S](t)dt, x ∈ R+, (5.3.2)

is an approximation of S in the L2(R+, x
0) sense, that is, ‖Sk − S‖2 → 0 for k → ∞.

Now, applying the property of the Mellin transform for survival functions, we know
that M1/2[S](t) = (1/2 + it)−1M3/2[f ](t) for all t ∈ R. Assuming that E(U1/2) < ∞,

and thus E(Y 1/2) <∞, we get fY , g ∈ L1(R, x1/2). We can deduce from the convolution
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theorem thatM3/2[fY ] =M3/2[f ]M3/2[g]. Under the mild assumption that for all t ∈ R,
M3/2[g](t) 6= 0, we can rewrite equation (5.3.2) as

Sk(x) =
1

2π

∫ k

−k
x−1/2−it M3/2[fY ](t)

(1/2 + it)M3/2[g](t)
dt. (5.3.3)

To derive an estimator from equation (5.3.3) we use the empirical Mellin transform

M̂(t) := n−1
∑n

j=1 Y
1/2+it
j as an unbiased estimator of M3/2[fY ](t) for all t ∈ R. Keep-

ing in mind that |M̂(t)| ≤ |M̂(0)| < ∞ almost surely, it is sufficient to assume that∫ k
−k |(1/2 + it)M3/2[g](t)|−2dt < ∞ for all k ∈ R+ to ensure the well-definition of the

spectral cut-off estimator

Ŝk(x) :=
1

2π

∫ k

−k
x−1/2−it M̂(t)

(1/2 + it)M3/2[g](t)
dt, k, x ∈ R+. (5.3.4)

Up to now, we had two minor conditions on the Mellin transform of the error density g
which we want to collect in the following assumption:

∀ t ∈ R :M3/2[g](t) 6= 0 and ∀ k ∈ R+ :

∫ k

−k
|(1/2 + it)M3/2[g](t)|−1dt <∞.

([G0])

The following proposition shows that the proposed estimator is consistent for a suit-
able choice of a cut-off parameter and under certain assumptions on the dependence
structure of X1, . . . , Xn. It is worth stressing out that for t ∈ R the estimator (1/2 +

it)−1M̂X(t) := (1/2 + it)−1n−1
∑n

j=1X
1/2+it
j is an unbiased estimator of M1/2[S](t).

Furthermore, there is a special link between the empirical survival function and the esti-
mator (1/2+ it)−1/2M̂(t). In fact, (5.3.1) ensures that almost surely ŜX ∈ L1(R0, x

−1/2)
which almost surely implies the existence of the Mellin transform of ŜX . From that, it
can easily be shown that

M1/2[ŜX ](t) = (1/2 + it)−1M̂X(t) (5.3.5)

for all t ∈ R.

Theorem 5.3.2. Assume that E(Y ) < ∞ and that [G0] holds true. Then for any
k ∈ R+,

E(‖Ŝk − S‖2) ≤ ‖S − Sk‖2 + E(Y1)
∆g(k)

n
+

1

2π

∫ k

−k
Var(M1/2[ŜX ](t))dt,

where ∆g(k) = (2π)−1
∫ k
−k |(1/2 + it)M3/2[g](t)|−2dt.

If (kn)n∈N is chosen such that kn → ∞ for n → ∞, 1
2π

∫ kn
−kn Var(M1/2[ŜX ](t))dt → 0

and ∆g(kn)n−1 → 0, the consistency of Ŝkn, that is,

E(‖Ŝkn − S‖2)→ 0, n→∞

is obtained.
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Corollary 5.3.3. Under the assumptions of Theorem 5.3.2 we have

(I) for independent observations X1, . . . , Xn,

E(‖Ŝk − S‖2) ≤ ‖S − Sk‖2 + E(Y1)
∆g(k)

n
+

E(X1)

n
;

(B) for β-mixing observations X1, . . . , Xn under the assumption that E(X1b(X1)) <∞,

E(‖Ŝk − S‖2) ≤ ‖S − Sk‖2 + E(Y1)
∆g(k)

n
+
cE(X1b(X1))

n
,

where c > 0 is a positive numerical constant;

(F) and for Bernoulli shift processes (5.1.2) under the dependence measure (5.1.3)
provided that

∑∞
j=1 δ

X
1 (j)1/2 <∞,

E(‖Ŝk − S‖2) ≤ ‖S − Sk‖2 + E(Y1)
∆g(k)

n
+
c log(k)

n

( ∞∑
j=1

δX1 (j)1/2
)2

where c > 0 is a numerical positive constant.

As we can see, the first term, the so-called bias term, in the upper bound in Theorem
5.3.2 is monotonically decreasing in k ∈ R+ while the second and the last term are
monotonically increasing in k ∈ R+. The second and the third term are a decomposition
of E(‖Ŝk − Sk‖2), the so-called variance term. While Corollary 5.3.3 indicates how the
third term can be bounded, the general assumptions on the error densities do not allow
us to determine the exact growth of the second term. For a more sophisticated analysis
of the variance’s growth, we need to consider more specific assumptions on the error
density g. More precisely, the growth of ∆g is determined by the decay of the Mellin
transform of g. In this work, we mainly focus on the case of smooth error densities, that
is, there exist c, C, γ ∈ R+ such that

c(1 + t2)−γ/2 ≤ |Mc[g](t)| ≤ C(1 + t2)−γ/2, t ∈ R. ([G1])

This assumption on the error density is typical in context of additive deconvolution prob-
lems (cf. Fan [1991]) and is also considered in the works of Belomestny and Goldenshluger
[2020] and Brenner Miguel et al. [2020].

In the context of smooth error densities, we have the following with regards to [G1].

Examples 5.3.4 (Examples 5.2.1, continued). (i) Beta distribution: For b ∈ N and
t ∈ R we have already seen that M3/2[gb](t) =

∏b
j=1

j
1/2+j+it . Therefore, there

exist cg, Cg > 0 such that

cg(1 + t2)−b/2 ≤ |M3/2[gb](t)| ≤ Cg(1 + t2)−b/2.
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(ii) Scaled log-gamma distribution: For λ > 1/2, a ∈ R+ and µ, t ∈ R we have already
seen thatM3/2[gµ,a,λ](t) = exp(µ(1/2 + it))(λ− 1/2− it)−a. Therefore, there exist
cg, Cg > 0 such that

cg(1 + t2)−a/2 ≤ |M3/2[gµ,a,λ](t)| ≤ Cg(1 + t2)−a/2.

We would like to mention that for small values of γ in [G1] it is possible to choose k
independently of the decay of the bias term, in a way that the risk in Theorem 5.3.2 is of
order n−1, respectively log(n)n−1. These cases are covered in the following paragraphs.

Parametric rate If γ ≤ 1/2 in [G1], the parameter k ∈ R+ can be chosen in a way
that leads to a parametric rate up to a log-term. This choice can be done independently
of the precise decay of the bias term ‖S − Sk‖2. We accomplish it by the naive bound

‖S − Sk‖2 =
1

π

∫ ∞
k
|M1/2[S](t)|2dt ≤ k−1E(X

1/2
1 )2

where we exploit M1/2[S](t) = (1/2 + it)−1M3/2[f ](t) and the bound |M3/2[f ](t)| ≤
E(X

1/2
1 ). The different cases are collected in the following proposition whose proof is

omitted.

Proposition 5.3.5. Let E(Y ) <∞ and [G1] hold true for γ ≤ 1/2. Then,

∆g(k) ≤

{
C(g) , γ < 1/2;

C(g) log(k) , γ = 1/2.

For γ = 1/2, choosing k = n leads in all three cases (I),(B) and (F) to a parametric
rate up to a log-term, that is,

E(‖Ŝn − S‖2) ≤ C(f, g)
log(n)

n

where C(f, g) is dependent on E(X1), E(U1), the constants in [G1] and the dependence
structure.
If γ < 1/2 in the cases (I) and (B), choosing k =∞ leads to a parametric rate,

E(‖Ŝ∞ − S‖2) ≤ C(f, g)

n

where C(f, g) depends on E(X1), E(Y1), the constants in [G1] and the dependence struc-
ture. If γ < 1/2 and we are in the case of (F), the third summand in Corollary 5.3.3
dominates the second, which leads to no improvement in the rate.
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Nonparametric rate Now let us consider the case where γ > 1/2, which forces ∆g(k)
to be polynomial increasing. Under [G1] we see that cgk

2γ−1 ≤ ∆g(k) ≤ Cgk
2γ−1 for

every k ∈ R+.
In order to control the bias-term we introduce regularity spaces characterized by the

decay of the Mellin transform in analogy to the usually considered Sobolev spaces for
common deconvolution problems. Let us for s ∈ R+ define the Mellin-Sobolev space by

Ws
1/2(R+) := {h ∈ L2(R+, x

0) : |h|2s := ‖(1 + t)sM1/2[h]‖2R <∞} (5.3.6)

and the corresponding ellipsoids with L ∈ R by Ws
1/2(L) := {h ∈ Ws

1/2(R+) : |h|2s ≤ L}.
For f ∈ Ws

1/2(L) we deduce that ‖S − Sk‖2 ≤ Lk−2s. Setting

Ws
1/2(L) := {S ∈ Ws

1/2(L) : S survival function,

VarS(M1/2[ŜX ](t)) ≤ L(1 + |t|)−1n−1 for any t ∈ R},

the previous discussion leads to the following statement whose proof is omitted.

Proposition 5.3.6. Let E(U) <∞. Then under the assumptions [G0] and [G1],

sup
S∈Ws

1/2
(L)

E(‖S − Ŝkn‖)2 ≤ C(L, g, s)n−2s/(2s+2γ−1)

for the choice kn := n1/(2s+2γ−1).

Again, let us consider the three different cases of dependence considered in Corol-
lary 5.3.3. As a direct consequence of Proposition 5.3.6 and Corollary 5.3.3 we get the
following corollary.

Corollary 5.3.7. The assumption Var(M1/2[ŜX ](t)) ≤ L(1 + |t|)−1n−1 for any t ∈ R
in Proposition 5.3.6 can be replaced by

(I) E(X1) ≤ L

(B) E(X1b(X1)) ≤ L

(F)
∑∞

k=1 δ
X
1 (k)1/2 ≤ L1/2

in the three different dependence cases.

We will now show that the rates presented in Corollary 5.3.7 are optimal in the sense,
that there exists no estimator based on the i.i.d. sample Y1, . . . , Yn that can achieve
uniformly over Ws

1/2(L) a better rate. This implies that the estimator Ŝkn presented in
Proposition 5.3.6 is minimax-optimal.
For technical reason we need an additional assumption on the error density g. Let us
assume that the support of g is bounded, that is, there exists a constant d > 0 such that
for all x ≥ d, g(x) = 0. For the sake of simplicity we assume that d = 1. Furthermore,
let there be constants c, C, γ ∈ R+ such that

c(1 + t2)−γ/2 ≤ |M1/2[g](t)| ≤ C(1 + t2)−γ/2, t ∈ R. ([G2])

With this additional assumption we can show the following theorem. Its proof can be
found in Section 5.7.2.
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Theorem 5.3.8. Let s, γ ∈ N and assume that [G1] and [G2] hold true. Then there
exist constants cg, Ls,g > 0 such that for all L ≥ Ls,g, n ∈ N and for any estimator Ŝ of
S based on an i.i.d. sample Y1, . . . , Yn,

sup
S∈Ws

1/2
(L)

E(‖Ŝ − S‖2) ≥ cgn−2s/(2s+2γ−1).

For the multiplicative censoring model, that is, U is uniformly-distributed on [0, 1],
the assumptions [G1] and [G2] hold true.
Nevertheless, the rate presented in Proposition 5.3.6 is very pessimistic, meaning that
we can find examples of f ∈ Ws

1/2(L) where the bias decays faster than Lk−2s. These
examples are considered in the next section.

Faster rates Let us revisit the families (iii)-(v) in Example 5.2.1.

Examples 5.3.9 (Example 5.2.1, continued). By application of the Stirling formula,

(i) the gamma distribution f(x) = xd−1

Γ(d) exp(−x)1R+(x), d, x ∈ R+ delivers

|M1/2[S](t)| = |(1/2 + it)|−1|M3/2[f ](t)| ≤ Cd|t|d−1 exp(−π|t|/2), for |t| ≥ 2;

(ii) the Weibull distribution f(x) = mxm−1 exp(−xm)1R+(x), m,x ∈ R+, delivers for
|t| ≥ 2,

|M1/2[S](t)| = |(1/2 + it)|−1|M3/2[f ](t)| ≤ Cm|t|(1−m)/2m exp(−π|t|/(2m));

(iii) the log-normal distribution f(x) = (2πλ2x2)−1/2 exp(−(log(x) − µ)/2λ2)1R+(x),
λ, x ∈ R+ and µ ∈ R delivers

|M1/2[S](t)| = |(1/2 + it)|−1|M3/2[f ](t)| ≤ Cµ,λ|t|−1 exp(−λ2t2/2), for |t| ≥ 1.

In all three cases, we can bound the bias term by ‖S − Sk‖ ≤ C exp(−δkr) for some
δ, r ∈ R+ leading to a much sharper bound than Lk−2s, although it is easy to verify
that all three examples lie in Ws

1/2(L) for any s ∈ R+ and L ∈ R+ large enough. For

example, in the case of (I), the choice of k = kn = n1/(2s+2γ−1), which was suggested in
Proposition 5.3.6, can be improved for any choice of s ∈ R+. Setting kn = (log(n)δ−1)1/r

leads to

E(‖Ŝkn − S‖2) ≤ C(f, g)
log(n)(2γ−1)/r

n

which results in a sharper rate then n−2s/(2s+2γ−1).
Furthermore, despite the fact that the choice of kn in Proposition 5.3.6 does not depend
on the explicit density f ∈ Ws

1/2(L), it is still dependent on the regularity parameter
s ∈ R+ of the unknown density f . While it is tempting to set the regularity parameter
s ∈ R+ to a fixed value and interpret this as an additional model assumption, the
discussion above suggests that we might end up with worse rates. In the next section, we
therefore present a data-driven method in order to choose the parameter k = kn ∈ R+

based only on the sample Y1, . . . , Yn.
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5.4 Data-driven method

We now present a data-driven method for selecting the above appearing tuning parameter
k ∈ R+ based on a penalized contrast approach. We only consider the case where [G1]
holds true for γ > 1/2. For γ ≤ 1/2, we already have discussed a choice of the parameter
k ∈ R+, that is independent of the density f and achieves an almost parametric rate.
In the case γ > 1/2, the second summand in Theorem 5.3.2 dominates the third term.
Thus, the growth of the variance term is determined by the growth of ∆g. Our aim now

is to define an estimator k̂ which mimics the behavior of

k :∈ arg min{‖S − Sk‖2 + E(Y )Cg(2πn)−1k2γ−1 : k ∈ Kn}

for a suitable large set of parameters Kn ⊂ R+. Considering the result of Proposition
5.3.6 and the fact that ‖S − Sk‖2 ≤ k−1E(X1/2)2, which we have seen in the paragraph
about the parametric case, we can ensure that the set Kn := {k ∈ {1, . . . , n} : ∆g(k) ≤
n−1} is suitably large enough. Starting with the bias term we see that ‖S − Sk‖2 =
‖S‖2 − ‖Sk‖2 behaves like −‖Sk‖2. Furthermore, for k ∈ Kn we define the penalty term
pen(k) = χσY ∆g(k)n−1, σY := E(Y1), which imitates the behavior of the variance term.

Exchanging −‖Sk‖2 and E(Y1) with their empirical counterparts −‖Ŝk‖2 and σ̂Y :=
n−1

∑n
j=1 Yj we define a fully data-driven model selection k̂ by

k̂ ∈ arg min{−‖Ŝk‖2 + p̂en(k) : k ∈ Kn} where p̂en(k) := 2χσ̂Y ∆g(k)n−1 (5.4.1)

for χ > 0. The following theorem shows that this procedure is adaptive up to a negligible
term.

Theorem 5.4.1. Let g satisfy [G1] with γ > 1/2 and ‖xg‖∞ < ∞. Assume further

that E(Y
5/2

1 ) <∞. Then for χ > 96,

E(‖S − Ŝ
k̂
‖2) ≤ 6 inf

k∈Kn

(
‖S − Sk‖2 + pen(k)

)
+ C(g, f)

(
n−1 + Var(σ̂X) +

∫ n

−n
Var(M1/2[ŜX ](t))dt

)
where C(g, f) > 0 is a constant depending on χ, the error density g, E(X

5/2
1 ), σX :=

E(X1) and σ̂X := n−1
∑n

j=1Xj.

The proof of Theorem 5.4.1 is postponed to Section 5.7.3. The assumption ‖xg‖∞ <∞
is rather weak because it is satisfied for a large range of densities considered. Note that
by abuse of notation x : x 7→ x is the identity mapping.

Corollary 5.4.2. Let the assumptions of Theorem 5.4.1 hold true. Then,

(I) in the presence of i.i.d. observations X1, ..., Xn and E[X2
1 ] <∞,

E(‖S − Ŝ
k̂
‖2) ≤ 6 inf

k∈Kn

(
‖S − Sk‖2 + pen(k)

)
+
C(g, f)

n

(
1 + E[X2

1 ] + E|X1|
)

;
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(B) for β-mixing observations X1, ..., Xn under the assumption that E[X2
1b(X1)] <∞,

E(‖S − Ŝ
k̂
‖2) ≤ 6 inf

k∈Kn

(
‖S − Sk‖2 + pen(k)

)
+
C(g, f)

n

(
1 + E[X2

1b(X1)] + E[|X1|b(X1)]
)

;

(F) for Bernoulli-shift processes (5.1.2) under the dependence measure (5.1.3) provided
that

∑n
j=1 δ

X
1 (j)1/2 <∞ and

∑n
j=1 δ

X
2 (j) <∞,

E(‖S − Ŝ
k̂
‖2) ≤ 6 inf

k∈Kn

(
‖S − Sk‖2 + pen(k)

)
+
C(g, f) log(n)

n

1 +
( n∑
j=1

δX2 (j)
)2

+
( n∑
j=1

δX1 (j)1/2
)2

 .

Under the assumptions of Theorem 5.4.1 and if S ∈ Ws
1/2(L), we can ensure that

s > 1/2. Then we have kn := bn1/(2s+2γ−1c ∈ Kn and thus

E(‖S − Ŝ
k̂
‖2) ≤ C(f, g)n−2s/(2s+2γ−1)

for all three cases (I), (B) and (F).

5.5 Numerical studies

In this section, we use Monte-Carlo simulations to visualize the properties of the esti-
mator Ŝ

k̂
. We will first consider the case of independent observations [I] and then study

the behavior of the estimator in presence of dependence.

5.5.1 Independent data

Let us illustrate the performance of the fully-data driven estimator Ŝ
k̂

defined in (5.3.4)
and (5.4.1). To do so, we consider the following densities whose corresponding survival
function will be estimated.

(i) Gamma distribution: f1(x) = 0.54

Γ(4)x
3 exp(−0.5x)1R+(x),

(ii) Weibull distribution: f2(x) = 2x exp(−x2)1R+(x),

(iii) Beta distribution: f3(x) = 1
560(0.5x)3(1− 0.5x)4

1(0,2)(x) and

(iv) log-gamma distribution: f4(x) = x−4

6 log(x)3
1(1,∞)(x).

As for the distribution of the error density, we consider the following three cases

(a) Uniform distribution: g1(x) = 1[0,1](x),
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(b) Symmetric noise: g2(x) = 1(1/2,3/2)(x) and

(c) Beta distribution: g3(x) = 2(1− x)1(0,1)(x).

We see that g1 and g2 satisfy [G1] with the parameter γ = 1 and g3 fulfills the conditions
with γ = 2. Due to the fact that the true survival function satisfies S(x) ∈ [0, 1], x ∈ R,
we can improve the estimator Ŝ

k̂
by defining

S̃
k̂
(x) :=


0 , Ŝ

k̂
(x) ≤ 0;

Ŝ
k̂
(x) , Ŝ

k̂
(x) ∈ [0, 1];

1 , Ŝ
k̂
(x) ≥ 1.

The resulting estimator S̃
k̂

has a smaller risk then Ŝ
k̂
, since ‖S̃

k̂
−S‖2 ≤ ‖Ŝ

k̂
−S‖. On the

other hand, the estimator has the desired property that it is [0, 1]-valued. Nevertheless,
it is difficult ensure that S̃

k̂
(0) = 1 and that S̃

k̂
is monotone decreasing. Although there

are many procedures to guarantee the monotonicity of an estimator Ŝ and the property
Ŝ(0) = 1, the presented theoretical results of this work are not applicable to the modified
estimators.
We will now use a Monte-Carlo simulation to visualise the properties of the estimator S̃

k̂
and discuss whether the numerical simulated behavior of the estimator coincides with
the theoretical predictions.
After that we will construct a survival function estimator Ŝ based on Ŝ

k̂
which, in fact,

is a survival function, keeping in mind that the theoretical results of this work do not
apply for this estimator.

n = 500 n = 1000 n = 2000

(i) 1.31 0.75 0.23
(ii) 0.19 0.09 0.04
(iii) 0.21 0.12 0.06
(iv) 1.10 0.34 0.20

Table 5.1: The entries showcase the MISE (scaled by a factor of 100) obtained by Monte-
Carlo simulations each with 200 iterations. We take a look at different densities
and varying sample sizes. The error density is chosen as (a) in each case.

In Table 5.1 we can see that for an increasing sample size, the variance of the estimator
seems to decrease. Also, increasing the sample size allows for the estimator to choose
bigger k̂ values, which on the other hand decreases the bias induced by the approximation
step. Next, let us consider different error densities.
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Figure 5.1: Considering the estimators S̃
k̂
, we depict 50 Monte-Carlo simulations with

varying error density (a) (left), (b) (middle) and (c) (right) for (i) (top),
(ii) (bottom) with n = 1000. The true survival function S is given by the
black curve while the red curve is the point-wise empirical median of the 50
estimates.

In Figure 5.1 we see that the reconstruction of the survival function with error density
(a) and (b) is of the same complexity while the reconstruction with error density (c)
seems to be more difficult. This behavior is predicted by the theoretical results because
for [G1], (a) and (b) share the same parameter γ = 1 while (c) has the parameter γ = 2.

Heuristic estimator We will now modify the estimator Ŝ
k̂

such that the resulting

estimator Ŝ is a survival function. To do so, we see that for any k ∈ R and x ∈ R+,

Ŝk(x) =
1

2π

∫ k

−k
x−1/2−it M̂(t)

M3/2[g](t)
(1/2 + it)−1dt = (p̂k ∗ gu)(x),
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where gu(x) = 1(0,1)(x) is the density of the uniform distribution on (0, 1) and p̂k(x) =

(2π)−1
∫ k
−k x

−1/2−it M̂(t)
M3/2[g](t)dt. Exploiting the definition of the multiplicative convolu-

tion we see that for any x ∈ R+,

Ŝk(x) =

∫ ∞
x

p̂k(y)y−1dy.

This motivates the following construction of a survival function estimator. First, ex-
changing p̂k with (p̂k(x))+ ensures the monotonicity and the positivity of our estimator.
The final estimator is then defined as

Ŝ(x) := S̃(x)/S̃(0+), where S̃(x) :=

∫ ∞
x

(p̂
k̂
(y))+y

−1dy, for any y ∈ R+.

where 0+ denotes a positive real number very close to 0. Since our estimator is not
defined in 0 we cannot normalise it with S̃(0).

Let us now illustrate the behavior of the heuristic estimator Ŝ for an increasing number
of observations compared to the estimator S̃

k̂
.

216



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5.2: Considering the estimators S̃
k̂

(top) and Ŝ (bottom), we depict 50 Monte-
Carlo simulations with varying sample sizes n = 500 (left), n = 1000 (middle)
and n = 2000 (right) in the case (ii) with error density (b). The true survival
function S is given by the black curve while the red curve is the point-wise
empirical median of the 50 estimates.

Although the estimator Ŝ is a survival function, the alteration of the estimator seems to
introduce an additional bias. Based on the numerical study, this additional bias seems
to decrease for n large enough. Nevertheless, this modification is purely heuristic.

Dependent data In this subsection we are going to take a look at an AR(1)-process
of the following form and analyze its structure using the functional dependence measure.
For |ρ| < 1 we define

Xn := ρXn−1 + εn, where εn | Bn ∼ Γ(Bn,λ) with Bn ∼ Bin(m, 1− |ρ|).

Here, we obviously refer to the gamma distribution by Γ(α, λ), α, λ > 0, and the binomial
distribution by Bin(m, p), m ∈ N ∪ {0}, ρ ∈ (0, 1). It is apparent that the innovations
constructed are i.i.d. and for this specific choice of εn, the marginals of the AR(1)-
process follow a gamma distribution Γ(m,λ) as shown in Gaver and Lewis [1980]. The
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sequence (Xn)n∈N then emits a representation as a Bernoulli shift, Xn =
∑∞

j=0 ρ
jεn−j

(cf. Brockwell and Davis [2016] orChow and Teicher [1988]). In this case,

δXp (k) = |ρk| sup
j=1,...,n

‖εj − ε∗(j−k)
j ‖p ≤ 2|ρk|‖ε1‖p.

Therefore,
∑∞

k=0 δ
X
2 (k) = 1

1−|ρ| < ∞ and
∑∞

k=0 δ
X
1 (k)1/2 = 1

1−|ρ|1/2 < ∞ as geometric

series. Hence, the assumptions of Corollary 5.3.3 and 5.4.2 are satisfied. Specifically,
the estimator’s variance depends on the choice of ρ. The closer ρ is to one, the more
dependent the data becomes whereas the variance increases. However, if ρ approaches
zero, the data can be seen more independent, until it becomes i.i.d. This behavior can
be seen in Table 5.2, as well.

n = 500 n = 1000 n = 2000

m = 1 ρ = 0.1 0.15 0.11 0.05
ρ = 0.5 0.29 0.16 0.07
ρ = 0.9 1.19 0.63 0.35

m = 4 ρ = 0.1 0.69 0.39 0.13
ρ = 0.5 0.93 0.52 0.18
ρ = 0.9 2.87 1.57 0.70

Table 5.2: The entries showcase the MISE (scaled by a factor of 100) obtained by Monte-
Carlo simulations each with 200 iterations. We take a look at different densi-
ties, three distinct sample sizes and varying ρ. The error density is chosen as
(a) in each case.

5.6 Concluding remarks

We have developed a theory for the estimation of the survival function with multiplicative
measurement error based not only on i.i.d. but also on dependent observations. As an
inverse problem, employing the Mellin transform turned out to be a successful strategy.
If the data is i.i.d. or β-mixing we obtained oracle rates of a similar magnitude. In case
of Bernoulli shift processes under the functional dependence measure a slightly slower
rate by an additional factor of log(n) was achieved. Under certain conditions almost
parametric rates were recovered. The bias-variance trade-off was typically dealt with by
a spectral cut-off for which a cut-off parameter was selected by a data-driven method.
So far, we have established a minimax rate when our observations are independent and
identically distributed; in the presence of dependence a completely new theory has yet to
be provided. In a numerical study we have seen that the simulations support our theory,
which is why would also expect a good performance in real life applications.
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5.7 Lemmata and Proofs of Chapter 5

5.7.1 Useful inequalities

The following inequality is due to Talagrand [1996], the formulation of the first part can
be found for example in Klein and Rio [2005].

Lemma 5.7.1. (Talagrand’s inequality) Let Z1, . . . , Zn be independent Z-valued random
variables and let ν̄h = n−1

∑n
i=1 [νh(Zi)− E (νh(Zi))] for νh belonging to a countable class

{νh, h ∈ H} of measurable functions. Then,

E
(

sup
h∈H
|ν̄h|2 − 6Ψ2

)
+

≤ C
[
τ

n
exp

(
−nΨ2

6τ

)
+
ψ2

n2
exp

(
−KnΨ

ψ

)]
(5.7.1)

with numerical constants K = (
√

2− 1)/(21
√

2) and C > 0 where

sup
h∈H

sup
z∈Z
|νh(z)| ≤ ψ, E(sup

h∈H
|νh|) ≤ Ψ, sup

h∈H

1

n

n∑
j=1

Var(νh(Zi)) ≤ τ.

Remark 5.7.2. Keeping the bound (5.7.1) in mind, we can specify particular choices
of K, e.g. K ≥ 1

100 . As an immediate consequence we have

E
(

sup
h∈H
|ν̄h|2 − 6Ψ2

)
+

≤ C
(
τ

n
exp

(
−nΨ2

6τ

)
+
ψ2

n2
exp

(
−nΨ

100ψ

))
. (5.7.2)

5.7.2 Proofs of Section 5.3

Proof of Lemma 5.3.1. Let us assume that E(X1/2) < ∞. Then, f ∈ L1(R, x1/2) and
thus S ∈ L1(R, x−1/2) because∫ ∞

0
x−1/2S(x)dx =

∫ ∞
0

∫ ∞
0

x−1/2
1(0,x)(y)f(y)dydx =

∫ ∞
0

2y1/2f(y)dy <∞.

By the generalized Minkowski inequality, cf. Tsybakov [2008], we have∫ ∞
0

S2(x)dx =

∫ ∞
0

(∫ ∞
0

1(0,x)(y)f(x)dx

)2

dy

≤

(∫ ∞
0

(∫ ∞
0

1(0,x)(y)f2(x)dy

)1/2

dx

)2

=

(∫ ∞
0

x1/2f(x)dx

)2

,

which implies S ∈ L2(R+, x
0). Next, we can easily see that E(‖ŜX‖L1(R+,x−1/2)) =∫∞

0 x−1/2SX(x)dx <∞. Since E(X1) <∞, we obtain

E(‖ŜX‖2) ≤
∫ ∞

0
E(1(x,∞)(X1))dx =

∫ ∞
0

S(x)dx = E(X1) <∞.

Hence, ŜX ∈ L1(R+, x
−1/2) ∩ L2(R+, x

0) almost surely.
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Proof of Theorem 5.3.2. Let k ∈ R+. SinceM1/2[S−Sk](t) = 0 for |t| ≤ k we get by ap-

plication of the Plancherel identity, 〈S−Sk, Sk−Ŝk〉 = 1
2π

∫ k
−kM1/2[S−Sk](t)M1/2[Sk−

Ŝk](−t)dt = 0 and thus ‖S − Ŝk‖2 = ‖S − Sk‖2 + ‖Sk − Ŝk‖2. Again by application of
the Plancherel identity, cf. equation (5.2.6), and the Fubini-Tonelli theorem,

E(‖Ŝk − Sk‖2) =
1

2π

∫ k

−k

Var(M̂(t))

|(1/2 + it)M3/2[g](t)|2
dt.

Now we will use the fact that Var(M̂(t)) = Var(M̂(t)− E|X(M̂(t))) + Var(E|X(M̂(t)).

For the first summand we see that by E|X(Y
1/2+it
j ) = E(U

1/2+it
j )X

1/2+it
j ,

Var
(
M̂(t)− E|X(M̂(t))

)
= n−2

n∑
j,j′=1

E(X
1/2+it
j X

1/2−it
j′ (U

1/2+it
j − E(U

1/2+it
j )(U

1/2−it
j′ − E(U

1/2−it
j′ ))

= n−2
n∑

j,j′=1

E(X
1/2+it
j X

1/2−it
j′ )E((U

1/2+it
j − E(U

1/2+it
j )(U

1/2−it
j′ − E(U

1/2−it
j′ ))

= n−1E(X1)Var(U
1/2+it
1 ) ≤ n−1E(Y1).

On the other hand, we have E|X(M̂(t)) = n−1
∑n

j=1X
1/2+it
j E(U

1/2+it
j ) and thus

Var(E|X(M̂(t)) = |E(U
1/2+it
1 )|2E(|n−1

n∑
j=1

X
1/2+it
j −M3/2[f ](t)|2).

Due to these considerations and the fact that E(U
1/2+it
1 ) =M3/2[g](t) for all t ∈ R, we

have

E(‖Ŝk − Sk‖2) ≤ E(Y1)
∆g(k)

n
+

1

2π

∫ k

−k

E(|M̂X(t)−M3/2[f ](t)|2)

|1/2 + it|2
dt.

As for the last summand, for any k ∈ R+,

1

2π

∫ k

−k

E(|M̂X(t)−M3/2[f ](t)|2)

|1/2 + it|2
dt =

1

2π

∫ k

−k
Var(M1/2[ŜX ](t))dt

using equation (5.3.5).

For the proof of Corollary 5.3.3 we will need the following results. The key statement
regarding β-mixing processes is delivered by the variance bound in Asin and Johannes
[2017] after Lemma 4.1 of the same work. Their approach is based on the original idea
of [Viennet, 1997, Theorem 2.1].
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Lemma 5.7.3. Let (Zj)j∈Z be a strictly stationary process of real-valued random vari-
ables with common marginal distribution P. There exists a sequence (bk)k∈N of measur-
able functions bk : R → [0, 1] with EP[bk(Z0)] = β(Z0, Zk) such that for any measurable
function h with E[|h(Z0)|2] <∞ and b =

∑∞
k=1(k + 1)p−2bk : R→ [0,∞], p ≥ 2,

Var
( n∑
j=1

h(Zj)
)
≤ 4nE[|h(Z0)|2b(Z0)]

where b0 ≡ 1.

As far as the functional dependence measure is concerned, we do not have access to

the process (Xj) itself. In its given form (X
1/2+it
j ) we make use of the two following

statements.

Lemma 5.7.4. The function g : R+ → R, x 7→ x1/2+it, t ∈ R, is Hölder continuous
with exponent 1/2, i.e. |g(x)− g(y)| ≤ L(t) · |x− y|1/2 where L(t) = 1 + 4|t|1/2.

Lemma 5.7.5. Let g : R+ → R, x 7→ x1/2+it, t ∈ R. In the case of (F) we have
Var(

∑n
j=1 g(Xj))

1/2 ≤ L(t) · n1/2
∑∞

k=1 δ
X
1 (k)1/2 where L(t) = 1 + 4|t|1/2.

Proof of Corollary 5.3.3. We consider the different dependence structures separately.

(I) The result for independent observations can directly be obtained since

Var(M1/2[ŜX ](t)) = |1/2 + it|−2n−1Var(X
1/2+it
1 ) ≤ |1/2 + it|−2n−1E(X1).

On the other hand, as k →∞, (2π)−1
∫ k
−k |1/2 + it|−2dt→ 1.

(B) In the case of β-mixing we employ Lemma 5.7.3. We then have

Var(M1/2[ŜX ](t)) ≤ 4|1/2 + it|−2n−2 · nE[|X1/2+it
1 |2b(X1)]

≤ 4|1/2 + it|−2n−1E[|X1|b(X1)].

As before, as k →∞, (2π)−1
∫ k
−k |1/2 + it|−2dt→ 1.

(F) We now study the dependence measure. According to Lemma 5.7.5 we have

Var(M1/2[ŜX ](t))dt ≤ L2(t)|1/2 + it|−2 · n−1
( ∞∑
k=1

δX1 (k)1/2
)2

where L(t) = 1 + 4|t|1/2. Therefore,
∫ k
−k L

2(t)(1/2 + it)−2dt ≤ c log(k) for a numer-
ical constant c > 0.
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Proof of Lemma 5.7.4. Without loss of generality let x > y > 0. By the elementary
inequality |x1/2 − y1/2| ≤ |x− y|1/2 we have

|g(x)− g(y)| = |x1/2+it − y1/2+it| ≤ |xit| · |x− y|1/2 + |y|1/2 · |xit − yit|
≤ |x− y|1/2 + |y|1/2 · |xit − yit|.

We then bound the second term. First we see that

|y|1/2 · |xit − yit| ≤ |y|1/2 · (| cos(t log(x))− cos(t log(y))|+ |(sin(t log(y))− sin(t log(y)))|).

Moreover,

| cos(t log(x))− cos(t log(y))| ≤ |t| · log(x/y) = |t| · log
(

1 +
x− y
y

)
≤ |t| · x− y

y

where we used log(1+z) ≤ z for z > 0. At the same time | cos(t log(x))−cos(t log(y))| ≤ 2.
Applying both bounds together and exploiting min{1, z} ≤ zs for z ≥ 0, s ∈ (0, 1),

|y|1/2 · | cos(t log(x))− cos(t log(y))| ≤ 2|y|1/2 min
{
|t|x− y

y
, 1
}

≤ 2|t|1/2|y|1/2
∣∣∣x− y

y

∣∣∣1/2
= 2|t|1/2| · |x− y|1/2.

A similar argument applies for the sine terms, which delivers

|y|1/2 · |xit − yit| ≤ 4|t|1/2 · |x− y|1/2.

The case y > x > 0 follows analogously by interchanging the roles of x and y. Therefore,

|g(x)− g(y)| = |x1/2+it − y1/2+it| ≤ (1 + 4|t|1/2)|x− y|1/2.

Proof of Lemma 5.7.5. For a sequence Wj := Jj,n(Gi) with ‖W1‖1 <∞, let Pj−k(W ) :=
E[W | Gj−k] − E[W | Gj−k−1] denote its projection, k ∈ N0. Then, by the projection
property of the conditional expectation and an elementary property of δ2 (cf. Wu [2005],
Theorem 1), we have

Var(
n∑
j=1

g(Xj))
1/2 =

∞∑
k=0

∥∥∥ n∑
j=1

Pj−kg(Xj)
∥∥∥

2

≤ n1/2
∞∑
k=0

δ
g(X)
2 (k).
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By Lemma 5.7.4,

δ
g(X)
2 (k) = sup

j=1,...,n
‖g(Xj)− g(Xj)

∗(j−k)‖2

≤ L(t) · sup
j=1,...,n

‖Xj −X∗(j−k)
j ‖1/21 = L(t) · δX1 (k)1/2,

which delivers our desired statement.

Proof of Theorem 5.3.8. We first outline the main steps of the proof. We will construct a
family of functions in Ws

1/2(L) by a perturbation of the survival function So : R+ → R+

with small “bumps”, such that their L2-distance and the Kullback-Leibler divergence of
their induced distributions can be bounded from below and above, respectively. The claim
follows by applying Theorem 2.5 in Tsybakov [2008]. We use the following construction,
which we present first.
Denote by C∞c (R) the set of all smooth functions with compact support in R and let
ψ ∈ C∞c (R) be a function with support in [0, 1] and

∫ 1
0 ψ(x)dx = 0. For each K ∈ N (to be

selected below) and k ∈ {0, . . . ,K} we define “bump functions” ψk,K(x) := ψ(xK−K−
k), x ∈ R. For j ∈ N0 we set the finite constant Cj,∞ := max{‖ψ(l)‖∞, l ∈ {0, . . . , j}}.
Let us further define the operator S : C∞c (R) → C∞c (R) by S[f ](x) = −xf (1)(x) for all
x ∈ R and define S1 := S and Sn := S ◦ Sn−1 for n ∈ N, n ≥ 2. Now, for j ∈ N, we
define the function ψk,K,j(x) := Sj [ψk,K ](x) = (−1)j

∑j
i=1 ci,jx

iKiψ(i)(xK −K − k) for
x ∈ R+ and ci,j ≥ 1.
For a “bump amplitude” δ > 0, γ ∈ N and a vector θ = (θ1, . . . , θK) ∈ {0, 1}K we define

Sθ(x) = So(x) + δK−s−γ+1
K−1∑
k=0

θk+1ψk,K,γ−1(x) where So(x) := exp(−x). (5.7.3)

Taking the negative sign of the derivative of this function leads to the density

fθ(x) = fo(x) + δK−s−γ+1
K−1∑
k=0

θk+1ψk,K,γ(x)x−1 where fo(x) := exp(−x). (5.7.4)

Until now, we did not give a sufficient condition to ensure that our constructed functions
{Sθ : θ ∈ {0, 1}K} are survival functions. We do this by stating conditions such that the
family {fθ : θ ∈ {0, 1}K} is a family of densities.

Lemma 5.7.6. Let 0 < δ < δo(ψ, γ) := exp(−2)2−γ(Cγ,∞cγ)−1. Then for all θ ∈
{0, 1}K , fθ from (5.7.4) is a density.

Furthermore, it is possible to show that these survival functions all lie inside the
ellipsoids Ws

1/2(L) for L big enough. This is captured in the following lemma.

Lemma 5.7.7. Let s ∈ N. Then, there is Ls,γ,δ > 0 such that So and any Sθ as in
(5.7.3) with θ ∈ {0, 1}K , K ∈ N, belong to Ws

1/2(Ls,γ,δ).
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For sake of simplicity we denote for a function ϕ ∈ L2(R+, x
0) ∩ L1(R+, x

−1/2) the
multiplicative convolution with g by ϕ̃ := ϕ ∗ g. Next, we see that for y2 ≥ y1 > 0,

f̃o(y1) =

∫ ∞
0

g(x)x−1 exp(−y1/x)dx ≥
∫ ∞

0
g(x)x−1 exp(−y2/x)dx = f̃o(y2)

and thus f̃o is monotonically decreasing. Additionally, we have that f̃o(2) > 0, since oth-
erwise g = 0 almost everywhere. Exploiting Varshamov-Gilbert’s lemma (cf. Tsybakov
[2008]) in Lemma 5.7.8 we show that there exists M ∈ N with M ≥ 2K/8 and a subset
{θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such that for all j, l ∈ {0, . . . ,M}, j 6= l,
the L2-distance and the Kullback-Leibler divergence are bounded for K ≥ Ko(γ, ψ).

Lemma 5.7.8. Let K ≥ max{Ko(ψ, γ), 8}. Then there exists a subset {θ(0), . . . ,θ(M)}
of {0, 1}K with θ(0) = (0, . . . , 0) such that M ≥ 2K/8 and for all j, l ∈ {0, . . . ,M}, j 6= l,

‖Sθ(j) − Sθ(l)‖2 ≥ ‖ψ(γ−1)‖2δ2

16 K−2s and KL(f̃θ(j) , f̃θ(0)) ≤ C1(g)‖ψ‖2

f̃o(2) log(2)
δ2 log(M)K−2s−2γ+1

where KL(·, ·) is the Kullback-Leibler divergence.

Selecting K = dn1/(2s+2γ−1)e delivers

1

M

M∑
j=1

KL((f̃θ(j))⊗n, (f̃θ(0))⊗n) =
n

M

M∑
j=1

KL(f̃θ(j) , f̃θ(0)) ≤ cψ,δ,g,γ,fo log(M)

where cψ,δ,g,γ,fo < 1/8 for all δ ≤ δ1(ψ, g, γ, fo), M ≥ 2 and for the choice of a large
enough n ≥ ns,γ := max{82s+1,Ko(γ, ψ)2s+2γ+1}. Thereby, we can use [Tsybakov, 2008,
Theorem 2.5], which in turn for any estimator S of Ws

1/2(L) implies

sup
S∈Ws

1/2
(L)

P
(
‖Ŝ − S‖2 ≥ cψ,δ,γ

2 n−2s/(2s+2γ−1)
)
≥

√
M

1+
√
M

(
1− 1/4−

√
1

4 log(M)

)
≥ 0.07.

Note that the constant cψ,δ,γ only depends on ψ, γ and δ. Hence, it is independent of the
parameters s and n. The claim of Theorem 5.3.8 follows by using Markov’s inequality,
which completes the proof.

Proofs of the lemmata

Proof of Lemma 5.7.6. For any h ∈ C∞c (R), S[h] ∈ C∞c (R) and thus Sj [h] ∈ C∞c (R) for
any j ∈ N. Further, for h ∈ C∞c (R),

∫∞
−∞ h

′(x)dx = 0, which implies that for any δ > 0

and θ ∈ {0, 1}K we have
∫∞

0 fθ(x)dx = 1.
Now due to the construction (5.7.4) of the functions ψk,K we easily see that the function
ψk,K has support on [1 + k/K, 1 + (k + 1)/K], which leads to ψk,K and ψl,K having
disjoint supports if k 6= l. Here, we want to emphasize that supp(S[h]) ⊆ supp(h) for all
h ∈ C∞c (R), which implies that ψk,K,γ and ψl,K,γ have disjoint supports if k 6= l, too.
For x ∈ [1, 2]c we have fθ(x) = exp(−x) ≥ 0. Now let us consider the case x ∈ [1, 2].
Then there is ko ∈ {0, . . . ,K − 1} such that x ∈ [1 + ko/K, 1 + (ko + 1)/K] and hence

Sθ(x) = So(x) + θko+1δK
−s−γ+1x−1ψko,K,γ(x) ≥ exp(−2)− δ2γCγ,∞cγ
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since ‖ψk,K,j‖∞ ≤ 2jCj,∞cjK
j for any k ∈ {0, . . . ,K − 1}, s ≥ 1 and j ∈ N where

cj :=
∑j

i=1 ci,j . Choosing δ ≤ δo(ψ, γ) = exp(−2)2−γ(Cγ,∞cγ)−1 ensures fθ(x) ≥ 0 for
all x ∈ R+.

Proof of Lemma 5.7.7. Our proof starts with the observation that for all t ∈ R we have
M1/2[So](t) = Γ(1/2 + it). Now, by applying the Stirling formula (cf. Belomestny and
Goldenshluger [2020]) we get |Γ(1/2 + it)| ∼ exp(−π/2|t|), |t| ≥ 2. Thus for every s ∈ N
there exists Ls such that |So|2s ≤ L for all L ≥ Ls.
Next, we consider |So−Sθ|s. Let us define ΨK :=

∑K−1
k=0 θk+1ψk,K and ΨK,j := Sj [ΨK ] for

j ∈ N. Then we have |So−Sθ|2s = δ2K−2s−2γ+2|ΨK,γ−1|2s where | . |s is defined in (5.3.6).
Now since for any j ∈ N, supp(ΨK,j) ⊂ [1, 2] and ‖ΨK,j‖∞ <∞, we have that the Mellin
transform of ΨK,j is defined for any c ∈ (0,∞). By a recursive application of the inte-
gration by parts we deduce that |M1/2[ΨK,s+γ−1](t)|2 = (1/4 + t2)s|M1/2[Ψk,γ−1](t)|2,
whence

|Ψk,γ−1|2s ≤ Cs
∫ ∞
−∞
|M1/2[ΨK,s+γ−1](t)|2dt = Cs

∫ ∞
0
|ΨK,s+γ−1(x)|2dx

by the Parseval formula, see equation (5.2.6), where Cs > 0 is a positive constant.
Since the ψk,K have disjoint support for different values of k we reason that |Ψk,γ−1|2s ≤
Cs
∑K−1

k=0 θ2
k+1

∫∞
0 |S

γ−1+s[ψk,K ](x)|2dx. Applying Jensen’s inequality and considering
the fact that supp(ψk,K) ⊂ [1, 2], we obtain

|Ψk,γ−1|2s ≤ C(γ,s)

K−1∑
k=0

γ+s−1∑
j=1

c2
j,γ−1+s

∫ 2

1
x2jK2jψ(j)(xK −K − k)2dx

≤ C(γ,s)K
2(γ−1+s)

K−1∑
k=0

γ+s−1∑
j=1

c2
j,γ+s4

jC2
ψ,s,γK

−1 ≤ C(γ,s)K
2(γ−1+s).

Thus, |So−Sθ|2s ≤ C(s,γ,δ) and |Sθ|2s ≤ 2(|So−Sθ|2s + |So|2s) ≤ 2(C(s,γ,δ) +Ls) =: Ls,γ,δ,1.
By Corollary 5.3.7 it is sufficient to show that

∫∞
0 xfθ(x)dx ≤ Ls,γ,δ,2. In fact,

∫ ∞
0

xfθ(x)dx = 1 + δK−s−γ+1
K−1∑
k=0

∫ 1+(k+1)/K

1+k/K
ψk,K,γ(x)dx ≤ 1 + δCγ

since ‖ψk,K,γ‖∞ ≤ 2γCγ,∞cγK
γ = CγK

γ , cf. the proof of Lemma 5.7.6. The claim follows
by choosing Ls,γ,δ = max{Ls,γ,δ,1, Ls,γ,δ,2}.

Proof of Lemma 5.7.8. Using the fact that the functions (ψk,K,γ)k∈{0,...,K−1} with differ-
ent index k have disjoint supports we get

‖Sθ − Sθ′‖2 = δ2K−2(s+γ−1)‖
K−1∑
k=0

(θk+1 − θ′k+1)ψk,K,γ−1‖2

= δ2K−2(s+γ−1)ρ(θ,θ′)‖ψ0,K,γ−1‖2
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with ρ(θ,θ′) :=
∑K−1

j=0 1{θj+1 6=θ′j+1}, the Hamming distance. Now the first claim follows

by showing that ‖ψ0,K,γ−1‖2 ≥ K2γ−3‖ψ(γ−1)‖2
2 for K big enough. To do so, we observe

‖ψ0,K,γ−1‖2 =
∑

i,j∈{1,...,γ−1}

cj,γ−1ci,γ−1

∫ ∞
0

xj+i+1ψ
(j)
0,K(x)ψ

(i)
0,K(x)dx.

Defining Σ := ‖ψ0,K,γ−1‖2 −
∫∞

0 (xγ−1ψ
(γ−1)
0,K (x))2dx, we see

‖ψ0,K,γ−1‖2 = Σ +

∫ ∞
0

(xγ−1ψ
(γ−1)
0,K (x))2dx ≥ Σ +K2γ−3‖ψ(γ−1)‖2 ≥ K2γ−3‖ψ(γ−1)‖2

2
(5.7.5)

as soon as |Σ| ≤ K2γ−3‖ψ(γ−1)‖2
2 . This is obviously true because K ≥ Ko(γ, ψ) and thus

‖Sθ − Sθ′‖2 ≥ δ2‖ψ(γ−1)‖2
2 K−2s−1ρ(θ,θ′) for K ≥ Ko(ψ, γ).

Now we use the Varshamov-Gilbert Lemma (cf. Tsybakov [2008]) which states that for
K ≥ 8 there exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K with θ(0) = (0, . . . , 0) such
that ρ(θ(j),θ(k)) ≥ K/8 for all j, k ∈ {0, . . . ,M}, j 6= k and M ≥ 2K/8. Therefore,

‖Sθ(j) − Sθ(l)‖2ω ≥
‖ψ(γ−1)‖2δ2

16 K−2s.

For the second part we have fo = fθ(0) and by using KL(f̃θ, f̃o) ≤ χ2(f̃θ, f̃o) :=∫
R+

(f̃θ(x)− f̃o(x))2/f̃o(x)dx it is sufficient to bound the χ2-divergence. We notice that

f̃θ − f̃o has support on [0, 2] since fθ − fo has support on [1, 2] and g has support
on [0, 1]. For y > 2, f̃θ(y) − f̃o(y) =

∫∞
y (fθ − fo)(x)x−1g(y/x)dx = 0. Let ΨK,γ :=∑K−1

k=0 θk+1ψk,K,γ = Sγ [
∑K−1

k=0 θk+1ψk,K ] =: Sγ [ΨK ]. Now by using the compact support
property and a single substitution we get

χ2(f̃θ, f̃o) ≤ f̃o(2)−1‖f̃θ − f̃o‖2 = f̃o(2)−1δ2K−2s−2γ+2‖ω̃−1ΨK,γ‖2.

Let us now consider ‖ω̃−1ΨK,γ‖2. In a first step we see by application of the Parse-

val equality that ‖ω̃−1ΨK,γ‖2 = 1
2π

∫∞
−∞ |M1/2[ω̃−1ΨK,y](t)|2dt. Now for t ∈ R, we see

by using the multiplication theorem for Mellin transforms that M1/2[ω̃−1ΨK,γ ](t) =
M1/2[g](t)·M1/2[ω−1Sγ [ΨK ]](t). Again we haveM1/2[ω−1Sγ [ΨK ]](t) = (−1/2+it)γM−1/2[ΨK ](t).
Together with assumption [G1’] we obtain

‖ω̃−1ΨK,γ‖2 ≤
C1(g)

2π

∫ ∞
−∞
|M−1/2[ΨK ](t)|2dt = C1(g)‖ω−1ΨK‖2 ≤ C1(g)‖ψ‖2.

Since M ≥ 2K we have KL(f̃θ(j) , f̃θ(0)) ≤ C1(g)‖ψ‖2

f̃o(2) log(2)
δ2 log(M)K−2s−2γ+1.
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5.7.3 Proofs of Section 5.4

Proof of Theorem 5.4.1. Let us define nested subspaces (Uk)k∈R+ by Uk := {h ∈ L2(R+, x
0) :

∀|t| ≥ k :M1/2[h](t) = 0}. For any h ∈ Uk we consider the empirical contrast

γn(h) = ‖h‖2 − 2
1

2π

∫ ∞
−∞
M̂(t)

M1/2[h](−t)
(1/2 + it)M3/2[g](t)

dt = ‖h‖2 − 2n−1
n∑
j=1

νh(Yj)

with νh(Yj) := 1
2π

∫∞
−∞ Y

1/2+it
j

M1/2[h](−t)
(1/2+it)M3/2[g](t)dt. It can be seen easily that Ŝk = arg min{γn(h) :

h ∈ Uk} with γn(Ŝk) = −‖Ŝk‖2. For h ∈ Uk define the centered empirical process
ν̄h := n−1

∑n
j=1 νh(Yj)− 〈h, S〉. Then we have for h1, h2 ∈ Uk,

γn(h1)− γn(h2) = ‖h1 − S‖2 − ‖h2 − S‖2 − 2ν̄h1−h2 . (5.7.6)

Now since γn(Ŝk) ≤ γn(Sk) and by the definition of k̂, we have γn(Ŝ
k̂
) − p̂en(k̂) ≤

γn(Ŝk)− p̂en(k) ≤ γn(Sk)− p̂en(k) for any k ∈ Kn. Using (5.7.6),

‖S − Ŝ
k̂
‖2 ≤ ‖S − Sk‖2 + 2ν̄

Ŝ
k̂
−Sk + p̂en(k)− p̂en(k̂).

First we note that Uk1 ⊆ Uk2 for k1 ≤ k2. Let us now denote by a ∨ b := max{a, b} and
define for all k ∈ Kn the unit balls Bk := {h ∈ Uk : ‖h‖ ≤ 1}. Next, we deduce from
2ab ≤ a2 + b2 that 2ν̄

Ŝ
k̂
−Sk ≤ 4−1‖Ŝ

k̂
− Sk‖2 + 4 suph∈B

k̂∨k
ν̄2
h. Furthermore, we see that

4−1‖Ŝ
k̂
−Sk‖2 ≤ 2−1(‖Ŝ

k̂
−S‖2 +‖S−Sk‖2). Putting all the facts together and defining

p(k̂ ∨ k) := 24σY ∆g(k̂ ∨ k)n−1. (5.7.7)

we have

‖S − Ŝ
k̂
‖2 ≤ 3‖S − Sk‖2

+8
(

sup
h∈B

k̂∨k

ν̄2
h − p(k ∨ k̂)

)
+

+ 8p(k̂ ∨ k) + 2p̂en(k)− 2p̂en(k̂).

The decomposition ν̄h = ν̄h,in + ν̄h,de where

ν̄h,in := n−1
n∑
j=1

(νh(Yj)− E|X(νh(Yj))) and ν̄h,de = n−1
n∑
j=1

E|X(νh(Yj)))− E(νh(Yj))

implies the inequality

‖S − Ŝ
k̂
‖2 ≤3‖S − Sk‖2 + 16

(
sup

h∈B
k̂∨k

ν̄2
h,in −

1

2
p(k ∨ k̂)

)
+

+ 16 sup
h∈B

k̂∨k

ν̄2
h,de + 8p(k̂ ∨ k) + 2p̂en(k)− 2p̂en(k̂).
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Assuming that χ ≥ 96, 4p(k̂ ∨ k) ≤ pen(k) + pen(k̂). Thus,

‖S − Ŝ
k̂
‖2 ≤6

(
‖S − Sk‖2 + pen(k)

)
+ 16 max

k∈Kn

(
sup
h∈Bk

ν̄2
h,in −

1

2
p(k)

)
+

+ 16 max
k′∈Kn

sup
h∈Bk′

ν̄2
h,de + 2(p̂en(k)− 2pen(k)) + 2(pen(k̂)− p̂en(k̂))+.

We will use the following Lemmata which will be proven afterwards.

Lemma 5.7.9. Under the assumption of Theorem 5.4.1 we have

E(max
k∈Kn

sup
h∈Bk

ν̄2
h,de) ≤

1

2π

∫ n

−n
Var(M1/2[ŜX ](t))dt

Lemma 5.7.10. Under the assumption of Theorem 5.4.1 we have

E
(

max
k∈Kn

( sup
h∈Bk

ν̄2
h,in −

1

2
p(k)

)
+
≤ C(g)

(σX
n

+
E(X

5/2
1 )

σ
3/2
X n

+
Var(σ̂X)

σX

)
Lemma 5.7.11. Under the assumption of Theorem 5.4.1 we have

E((pen(k̂)− p̂en(k̂))+) ≤ 4χ
E(Y 2

1 )

σY n
+ 4χ

σU
σX

Var(σ̂X).

Applying the lemmata and using the fact that E(p̂en(k)) = 2pen(k),

E(‖S − Ŝ
k̂
‖2) ≤ 6

(
‖S − Sk‖2 + pen(k)

)
+
C(g, χ, f)

n
+C(g, χ)

Var(σ̂X)

σX

+
1

2π

∫ n

−n
Var(M1/2[ŜX ](t))dt.

Since this inequality holds true for all k ∈ Kn, it implies the claim.

Proofs of the lemmata

Proof of Lemma 5.7.9. By applying the Cauchy-Schwarz inequality and the identity

E|X(Y
1/2+it
j ) − E(Y

1/2+it
j ) = M3/2[g](t)(X

1/2+it
j − E(X

1/2+it
1 ), we get for any k ∈ Kn

and any h ∈ Bk,

1

n

n∑
j=1

E|X(νh(Yj))− E(νh(Yj)) =
1

2πn

∫ k

−k

(
∑n

j=1X
1/2+it
j − E(X

1/2+it
j )M1/2[h](−t)

(1/2 + it)
dt

≤

(
1

2π

∫ k

−k

|n−1
∑n

j=1X
1/2+it
j − E(X

1/2+it
j )|2

1/4 + t2
dt

)1/2

‖h‖L2(R+,x0).

Now since ‖h‖L2(R+,x0) ≤ 1, E(maxk∈Kn suph∈Bk ν̄
2
h,de) ≤

1
2π

∫ n
−n Var(M1/2[ŜX ](t))dt.
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Proof of Lemma 5.7.10. First let us define p̃(k) := 24σU σ̂X∆g(k)n−1. Then,

max
k∈Kn

( sup
h∈Bk

ν2
h,in −

1

2
p(k))+ = max

k∈Kn
( sup
h∈Bk

ν2
h,in −

1

2
p̃(k))+ +

1

2
max
k∈Kn

(p̃(k)− p(k))+.

For the second summand we have

E(max
k∈Kn

(p̃(k)− p(k))+) ≤ 24σUE((σ̂X − σX)+).

Let us define ΩX := {|σ̂X − σX | ≤ σX/2}. Then on ΩX we have σ̂X ≤ 3σX/2 and thus
E((σ̂X−σX)+) = E((σ̂X−σX)+1ΩcX

) ≤ 2σ−1
X Var(σ̂X) by application of Cauchy-Schwarz

and the Markov’s inequality.
For the first summand we see

E(max
k∈Kn

( sup
h∈Bk

ν̄2
h,in −

1

2
p̃(k))+) = E(E|X(max

k∈Kn
( sup
h∈Bk

ν̄2
h,in −

1

2
p̃(k))+)).

Thus we start by considering the inner conditional expectation in order to bound the
entire term. By the construction of ν̄h,in, its summands conditioned on σ(Xi, i ≥ 0) are
independent but not identically distributed. We therefore split the process again in the
following way

ν̄h,1 :=n−1
n∑
j=1

νh(Yj)1(0,cn)(Y
1/2
j )− E|X(νh(Y1)1(0,cn)(Y

1/2
1 ))

and ν̄h,2 := n−1
n∑
j=1

νh(Yj)1(cn,∞)(Y
1/2
j )− E|X(νh(Y1)1(cn,∞)(Y

1/2
1 ))

to get

E|X(max
k∈Kn

( sup
h∈Bk

|ν̄h,in|2 −
1

2
p̃(k))+) ≤ 2E|X(max

k∈Kn
( sup
h∈Bk

|ν̄h,1|2 −
1

4
p̃(k))+ + |ν̄h,2|2),

:= M1 +M2,

where we will now consider the two summands M1,M2 separately.
To bound the M1 term we will make use of Talagrand’s inequality (5.7.2) on the term
E|X(supt∈Bk |ν̄h,1|

2 − 1
4 p̃(k))+. We have

M1 ≤
Kn∑
k=1

E|X( sup
t∈Bk
|ν̄h,1|2 −

1

4
p̃(k))+,

which will be used to show the claim. We want to emphasize that we are able to apply the
Talagrand’s inequality on the sets Bk, since Bk has a dense countable subset and due to

continuity arguments. Further, we see that the random variables νh(Yj)1(0,cn)(Y
1/2
j ) −

E|X(νh(Y1)1(0,cn)(Y
1/2

1 )), j = 1, . . . , n, are conditioned on σ(Xi, i ≥ 0), centered and
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independent but not identically distributed. In order to apply Talagrand’s inequality, we
need to find the constants Ψ, ψ, τ such that

sup
h∈Bk

sup
y>0
|νh(y)1(0,cn)(y

1/2)| ≤ ψ; E|X( sup
h∈Bk

|ν̄h,1|) ≤ Ψ;

sup
h∈Bk

1

n

n∑
j=1

Var|X(νh(Yj)1(0,cn)(Y
1/2
j )) ≤ τ.

We start by determining the constant Ψ2.

Let us define M̃(t) := n−1
∑n

j=1 Y
1/2+it
j 1(0,cn)(Y

1/2
j )) as an unbiased estimator of

M3/2[fY 1(0,cn)](t) and

S̃k(x) :=
1

2π

∫ k

−k
x−1/2−it M̃(t)

(1/2 + it)M3/2[g](t)
dt

where n−1
∑n

j=1 νh(Yj)1(0,cn)(Yi) = 〈S̃k, h〉. Thus, we have for any h ∈ Bk that ν̄2
h,1 =

〈h, S̃k − E|X(S̃k)〉2 ≤ ‖h‖2‖S̃k − E|X(S̃k)‖2. Since ‖h‖ ≤ 1, we get

E|X( sup
h∈Bk

ν̄2
h,1) ≤ E|X(‖S̃k − E|X(S̃k)‖2) =

1

2π

∫ k

−k

E|X(|M̃(t)− E|X(M̃(t))|2)

(1/4 + t2)|M3/2[g](t)|2
dt.

Now since Y
1/2+it
j 1(0,cn)(Y

1/2
j ) − E|X(Y

1/2+it
j 1(0,cn)(Y

1/2
j ) are independent conditioned

on σ(Xi : i ≥ 0) we obtain

E|X(|M̃(t)− E|X(M̃(t))|2) ≤ 1

n2

n∑
j=1

E|X(Yj1(0,cn)(Y
1/2
j )) =

σU
n
σ̂X ,

which implies

E( sup
h∈Bk

ν̄2
h,1) ≤ σU σ̂X

∆g(k)

n
=: Ψ2.

Thus 6Ψ2 = 1
4 p̃(k).

We now deal with ψ. Let y > 0 and h ∈ Bk. Then using the Cauchy-Schwarz in-

equality, |νh(y)1(0,cn)(y)|2 = (2π)−2c2
n|
∫ k
−k y

it M1/2[h](−t)
(1/2+it)M3/2[g](t)dt|

2 ≤ (2π)−1c2
n

∫ k
−k |(1/2+

it)M3/2[g](t)|−2dt ≤ c2
n∆g(k) =: ψ2 since |yit| = 1 for all t ∈ R.

Next, we consider τ . For h ∈ Bk we can conclude

Var|X(νh(Yj)1(0,cn)(Y
1/2
j )) ≤ E|X(νh(Yj)

2)

=
1

4π2

∫ k

−k

∫ k

−k

E|X(Y
1+i(t1−t2)
j )

(1/2 + it1)(1/2− it2)

M1/2[h](−t1)

M3/2[g](t1)

M1/2[h](t2)

M3/2[g](−t2)
dt1dt2

=
1

4π2

∫ k

−k

∫ k

−k

X
1+i(t1−t2)
j Eg(U

1+i(t1−t2)
1 )

(1/2 + it1)(1/2− it2)

M1/2[h](−t1)

M3/2[g](t1)

M1/2[h](t2)

M3/2[g](−t2)
dt1dt2

= Xj

∫ ∞
0

g(u)u

∣∣∣∣M−1
1/2[1[−k,k](t)

M1/2[h](t)

(1/2− it)M3/2[g](−t)
](u)

∣∣∣∣2 du.
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Taking the supremum of u 7→ ug(u) and applying the Plancherel theorem delivers

Var|X(νh(Yj)1(0,cn)(Y
1/2
j )) ≤ Xj‖xg‖∞

1

2π

∫ k

−k

|M1/2[h](t)|2

|(1/2 + it)M3/2[g](t)|2
dt.

Now since ‖h‖2 ≤ 1 and for Gk(t) := 1[−k,k](t)|(1/2 + it)M3/2[g](t)|−2,

sup
h∈Bk

1

n

n∑
j=1

Var|X(νh(Yj)1(0,cn)(Y
1/2
j )) ≤ σ̂X‖Gk‖∞‖xg‖∞ =: τ.

Hence, we have nΨ2

6τ =
σU∆g(k)

6‖xg‖∞‖Gk‖∞ and nΨ
100ψ =

√
σU σ̂Xn
100cn

. Choosing the sequence cn :=
√
σU σ̂Xn

a100 log(n) gives nΨ
100ψ = a log(n). We deduce

E|X
(

sup
h∈Bk

ν̄2
h,1 −

1

4
p̃(k)

)
+
≤ C

n

(
σ̂X‖Gk‖∞‖xg‖∞ exp(− πσU∆g(k)

3‖xg‖∞‖Gk‖∞
)

+
σU σ̂X∆g(k)

log(n)2
n−a

)
.

Under [G1] we have Cgk
2γ−1 ≥ ∆g(k) ≥ cgk

2γ−1 and for all t ∈ R it holds true that
cgk

2γ−2 ≤ |Gk(t)| ≤ Cgk2γ−2. Hence,

Kn∑
k=1

E|X
(

sup
h∈Bk

ν̄2
h,1 −

1

4
p̃(k)

)
+
≤ C(g)σ̂X

n

(
Kn∑
k=1

k2γ−1 exp(−C(g)k) +

Kn∑
k=1

k2γ−1

log(n)2na

)
where the first sum is bounded in n ∈ N. The second sum can be bounded by the term

C(g)n
2γ

2γ−1
−a
/ log(n)2, which by choosing a = 2γ

2γ−1 ensures the boundedness in n ∈ N.
Thus, we have

Kn∑
k=1

E|X
(

sup
h∈Bk

ν̄2
h,1 −

1

4
p̃(k)

)
+
≤ C(g)σ̂X

n
.

Now, we consider M2. Let us define Sk := Ŝk − S̃k. Then, from νh,2 = νh,in − νh,1 we
deduce ν2

h,2 = 〈Sk − E|X(Sk), h〉2 ≤ ‖Sk − E|X(Sk)‖2 for any h ∈ Bk. Further, for any

k ∈ Kn, ‖Sk − E|X(Sk)‖2 ≤ ‖SKn − E|X(SKn)‖2 and

E|X(‖SKn − E|X(SKn))‖2) =
1

2π

∫ Kn

−Kn
Var|X(M̂(t)− M̃(t))|(1/2 + it)M3/2[g](t)|−2dt

≤ 1

n2

n∑
j=1

E|X(Yj1(cn,∞)(Y
1/2
j ))∆g(Kn).

Let us define the event ΞX := {σ̂X ≥ σX/2}. Then, we have

1

n2

n∑
j=1

E|X(Yj1(cn,∞)(Y
1/2
j ))∆g(Kn)1ΞX ≤

1

n

n∑
j=1

X
1+p/2
j E(U

1+p/2
j )c−pn 1ΞX
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where on ΞX we can state that c−pn = C(g)n−p/2(σ̂X)−p/2 log(n)p ≤ C(g)σ
−p/2
X n−p/2 log(n)p.

Choosing p = 3 leads to E|X(‖SKn−E|X(SKn))‖2)1ΞX ≤
C(g)σ

−3/2
X
n E(U

5/2
1 )n−1

∑n
j=1X

5/2
j .

On the other hand,

1

n2

n∑
j=1

E|X(Yj1(cn,∞)(Y
1/2
j ))∆g(Kn)1ΞcX

≤ σX
2
1ΞcX

≤ σX
2
1ΩcX

.

These three bounds imply

E(max
k∈Kn

( sup
h∈Bk

ν2
h,in −

1

2
p(k))+) ≤ C(g)

(σX
2n

+
E(X

5/2
1 )

σ
3/2
X n

+
2Var(σ̂X)

σX

)
.

Proof of Lemma 5.7.11. First we see that

E((pen(k̂)− p̂en(k̂))+) = 2χE((σY /2− σ̂Y )+∆g(k̂)n−1) ≤ 2χE((σY /2− σ̂Y )+).

On ΩY := {|σY − σ̂Y | ≤ σY /2} we have σY /2− σ̂Y ≤ 0. Therefore,

E((pen(k̂)− p̂en(k̂))+) ≤ 2χE((σY /2− σ̂Y )+1Ωc) ≤ 2χ
√

VarnfY (σ̂Y )PfY (Ωc)

by applying the Cauchy-Schwarz inequality. Next, by Markov’s inequality, P[|σ̂Y −σY | ≥
σY /2] ≤ 4Var(σ̂Y )σ−2

Y which implies E((pen(k̂)−p̂en(k̂))+) ≤ 4χVar(σ̂Y )σ−1
Y . In analogy

to the proof of Theorem 5.3.2 we get

Var(σ̂Y ) ≤ E(Y 2
1 )

n
+ E(U1)2Var(σ̂X).

Proof of Corollary 5.4.2. We discuss each case separately. We already assessed the vari-
ance term in the integral in Corollary 5.3.3. It remains to upper bound the variance of
σ̂X .

(I) Trivially, Var(n−1
∑n

j=1Xj) ≤ n−1E(X2
1 ).

(B) Exploiting Lemma 5.7.3 for the identity mapping h = id, we have

Var(n−1
n∑
j=1

Xj) ≤ n−2 · 4nE(X2
1b(X1)) = 4n−1E(X2

1b(X1)).

(F) Setting the function g in Lemma 5.7.5 as the identity mapping g := id, we simply
have

Var(
n∑
j=1

Xj)
1/2 ≤ n1/2

∞∑
k=0

δX2 (k).

Combined with the results of Corollary 5.3.3, we derive our statement.
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Chapter 6

Perspectives

Our work has led to some questions which might be addressed in a future work.

Empirical process theory

In principle, a similar empirical process theory for locally stationary processes can be
established under mixing conditions such as absolute regularity (β-mixing). This would
be a generalization of the results found in Rio [1995] and Dedecker and Louhichi [2002].
As we have seen in Section 2.2.2, such a theory would impose additional moment con-
ditions on f(Zi,

i
n). Contrary to that, our framework only requires second moments of

f(Zi,
i
n). However, the entropy integral in our case becomes enlarged by a factor which

increases with stronger dependence.
Moreover, the derivation of a bound for mixing coefficients in nearly all models consid-

ered by the community requires that the innovation process is continuous, which may not
be suitable in some examples. Especially for linear processes, the bounds are quite hard
to obtain and do not seem to be optimal. Also, there exist no “invariance rules” which
directly allow us to transfer the mixing properties of Xi to f(Zi,

i
n), which incorporates

infinitely many lags of Xi. In this regard, our theory from Chapter 2 to 4 substantially
generalize the existing theory even in the stationary case.

Many of the more elaborated dependence concepts developed in for example Dedecker
and Prieur [2007], Borovkova et al. [2001], Durieu and Tusche [2014], Berkes et al. [2009]
are restricted (at least in their original formulation) to the discussion of the empirical
distribution function or connected one-dimensional indexed function classes. Here, results
for a broader range of functions could be interesting.

Statistical learning, neural networks

A natural extension of our work would be the proof of lower bounds (and thus minimax
optimality) under specific structural assumptions on the process or its recurrence rela-
tion. The conditions for dependent data have not been formulated yet, even for common
nonparametric methods.

It would also be interesting to consider a general ARCH-type model,

Xi = f0(Xi−1) + σ(Xi−1)εi, i = r + 1, ..., n,
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with an additional matrix-valued function σ : Rdr → Rd×d. We conjecture that in such
models, similar convergence rates could be obtained under appropriate structural as-
sumptions on σ(·).

On another note, it should be possible to derive more precise results when approximat-
ing the estimators by, for example, a stochastic gradient descent algorithm. Moreover,
similar to the theory of boosting, we could hope for explicit or adaptive stopping rules.

Finally in this field, there are many more architectures to choose from. However, little
is known about them from a mathematical point of view. How can we build a theory
based on a fully connected, recurrent or convolutional network?

Survival analysis

We have discussed the multiplicative deconvolution problem in the field of survival anal-
ysis, estimating the survival function under multiplicative noise. Although we restricted
ourselves to sufficiently smooth error densities, we should, in principle, be able to gen-
eralize our theory for arbitrary error types.

In a similar context, we would also like to incorporate the case of an unknown error.
Then, we would have to perform an additional estimation step for the underlying error
density. In another setting, Meister [2009], Comte and Lacour [2010] and Johannes [2009]
recovered the typical nonparametric rates, minimax optimality and included adaptivity
in their theory.

So far, our proposed estimator delivers an estimator that approximates a survival
function. However, the estimator itself is not required to satisfy the exact conditions of a
survival function. We have provided a heuristic in which we took this fact into account;
in numerical evaluations our approach seems to have introduced more bias. In this re-
gard, further investigations are needed for a mathematical sound groundwork.

We hope to answer these questions soon enough and reserve them for future discus-
sions or inspire other researchers to investigate them.
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Christian Francq and Jean-Michel Zaköıan. Mixing properties of a general class
of GARCH(1,1) models without moment assumptions on the observed process.
Econometric Theory, 22(5):815–834, 2006. ISSN 0266-4666. doi: 10.1017/
S0266466606060373. URL https://doi.org/10.1017/S0266466606060373.

Wei Biao Wu. Nonlinear system theory: another look at dependence. Proc. Natl. Acad.
Sci. USA, 102(40):14150–14154, 2005. ISSN 0027-8424. doi: 10.1073/pnas.0506715102.
URL https://doi.org/10.1073/pnas.0506715102.

Wei Biao Wu, Weidong Liu, and Han Xiao. Probability and moment inequalities under
dependence. Statist. Sinica, 23(3):1257–1272, 2013. ISSN 1017-0405.

Danna Zhang and Wei Biao Wu. Gaussian approximation for high dimensional time se-
ries. Ann. Statist., 45(5):1895–1919, 2017. ISSN 0090-5364. doi: 10.1214/16-AOS1512.
URL https://doi.org/10.1214/16-AOS1512.

Wei Biao Wu. Empirical processes of stationary sequences. Statistica Sinica, 18(1):
313–333, 2008. ISSN 10170405, 19968507. URL http://www.jstor.org/stable/

24308259.

Ulrike Mayer, Henryk Zähle, and Zhou Zhou. Functional weak limit theorem for a
local empirical process of non-stationary time series and its application. Bernoulli, 26
(3):1891 – 1911, 2020. doi: 10.3150/19-BEJ1174. URL https://doi.org/10.3150/

19-BEJ1174.

Rainer Dahlhaus, Stefan Richter, and Wei Biao Wu. Towards a general theory for
nonlinear locally stationary processes. Bernoulli, 25(2):1013–1044, 2019. ISSN 1350-
7265. doi: 10.3150/17-bej1011. URL https://doi.org/10.3150/17-bej1011.

238

http://www.jstor.org/stable/1403549
https://doi.org/10.1017/CBO9780511626630
https://doi.org/10.1016/0304-4149(85)90031-6
https://doi.org/10.1016/0304-4149(88)90045-2
https://doi.org/10.1017/S0266466606060373
https://doi.org/10.1073/pnas.0506715102
https://doi.org/10.1214/16-AOS1512
http://www.jstor.org/stable/24308259
http://www.jstor.org/stable/24308259
https://doi.org/10.3150/19-BEJ1174
https://doi.org/10.3150/19-BEJ1174
https://doi.org/10.3150/17-bej1011


Rainer Dahlhaus and Wolfgang Polonik. Empirical spectral processes for locally station-
ary time series. Bernoulli, 15(1):1–39, 2009. ISSN 1350-7265. doi: 10.3150/08-BEJ137.
URL https://doi.org/10.3150/08-BEJ137.

Wei Biao Wu. Asymptotic theory for stationary processes. Stat. Interface, 4(2):207–226,
2011. ISSN 1938-7989. doi: 10.4310/SII.2011.v4.n2.a15. URL https://doi.org/10.

4310/SII.2011.v4.n2.a15.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with
relu activation function, 2017.

Zaiyong Tang and Paul A. Fishwick. Feedforward neural nets as models for time series
forecasting. ORSA Journal on Computing, 5(4):374–385, 1993. doi: 10.1287/ijoc.5.4.
374. URL https://doi.org/10.1287/ijoc.5.4.374.

Douglas Kline. Methods for Multi-Step Time Series Forecasting with Neural Networks,
pages 226–250. IGI Global, 01 2004. doi: 10.4018/978-1-59140-176-6.ch012.

G. Peter Zhang. Neural Networks for Time-Series Forecasting, pages 461–477. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-540-92910-9. doi: 10.1007/
978-3-540-92910-9 14. URL https://doi.org/10.1007/978-3-540-92910-9_14.
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